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Preface

APPROACH This text is designed for students in mathematics, physics, and
engineering at the junior or senior undergraduate level. The necessary
theoretical concepts and proofs are illustrated with practical applications and
are presented in a style that is enjoyable for students to read. We believe both
mathematicians and scientists should be exposed to a careful presentation of
mathematics. Our use of the term “careful” here means paying attention to
such things as ensuring requiredassumptions are met before using a theorem,
checking that algebraic operations are valid, and confirming that formulas
have not been blindly applied. We do not mean to equate care with rigor, as
we present our proofs in a self-contained manner that is understandable by
students who have a sophomore calculus background. For example, we
include Green’s theorem and use it to prove the Cauchy–Goursat theorem,
although we also include the proof by Goursat. Depending on the level of
rigor desired, students may look at one or the other—or both.

We give sufficient applications to motivate and illustrate how complex
analysis is usedin applied fields. For example, this sixth edition has an
improved chapter on Fourier and Laplace transforms. Computer graphics
help show that complex analysis is a computational tool of practical value.
The exercise sets offer a wide variety of choices for computational skills,
theoretical understanding, and applications that have been class tested for five
prior editions of the text. We provide answers to all odd-numbered problems.
For those problems that require proofs, we attempt to model what a good
proof should look like, often guiding students up to a point and then asking
them to fill in the details.

The purpose of the first six chapters is to lay the foundation for the study
of complex analysis and develop the topics of analytic and harmonic
functions, the elementary functions, and contour integration. This sixth
edition includes an updated historical introduction to the field in Chapter 1.
Chapters 7 and 8, dealing with residue calculus and applications, may be
skipped if there is more interest in conformal mapping and applications of
harmonic functions, which are the topics of Chapters 10 and 11, respectively.



For courses requiring even more applications, Chapter 12 investigates Fourier
and Laplace transforms. Chapter 9 covers the z-transform. It also gives a peek
at digital filter design and signal processing, though the residue theory of
Chapter 8 is a prerequisite.
 

FEATURES With feedback from students in both university and college
settings, a good amount of textual material and problem statements has been
rewritten or reorganized. The two-color setting of this new edition has been
maintained for ease of reading. The answers to all odd-numbered exercises
should help instructors as they deliberate on problem assignments, and should
help students as they review material. We present conformal mapping in a
visual and geometric manner so that compositions and images of curves and
regions can be more easily understood. We first solve boundary value
problems for harmonic functions in the upper half-plane so that we can use
conformal mapping by elementary functions to obtain solutions in other
domains. We carefully develop the Schwarz–Christoffel transformation and
present applications. Two-dimensional mathematical models are used for
applications in the areas of ideal fluid flow, steady-state temperatures, and
electrostatics. We accurately portray streamlines, isothermals, and
equipotential curves with computer-drawn figures.

An early introduction to sequences and series appears in Chapter 4 and
facilitates the definition of the exponential function via series. We include a
section on Julia and Mandelbrot sets, showing how complex analysis is
connectedto contemporary topics in mathematics. We keep in place the
modern computer-generated illustrations introduced in earlier editions,
including Riemann surfaces, contour and surface graphics for harmonic
functions, the Dirichlet problem, streamlines involving harmonic and analytic
functions, and conformal mapping. We also include a section on the
Joukowski airfoil.

The website http://www.jblearning.com/catalog/9781449604455/
contains supplementary materials for both PC and Macintosh® computers
using the software products Maple™, and Mathematica®. Additional
important materials, such as Mathematica notebooks and graphical
enhancements to the exercises, can be foundon the authors’ website:
http://math.fullerton.edu/mathews/complex.html.

http://www.jblearning.com/catalog/9781449604455/
http://www.math.fullerton.edu/mathews/complex.html


We support the emphasis currently being placed in undergraduate
research. To help in this effort we have prepareda rather extensive list of
research projects for students. They are listed on the Jones & Bartlett
Learning website for this book, given above.
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chapter 1
complex numbers

Overview
Get ready for a treat. You’re about to begin studying some of the most
beautiful ideas in mathematics. They are ideas with surprises. They evolved
over several centuries, yet they greatly simplify extremely difficult
computations, making some as easy as sliding a hot knife through butter.
They also have applications in a variety of areas, ranging from fluid flow, to
electric circuits, to the mysterious quantum world. Generally, they belong to
the area of mathematics known as complex analysis, which is the subject of
this book. This chapter focuses on the development of entities we now call
complex numbers.

1.1 THE ORIGIN OF COMPLEX
NUMBERS

Complex analysis can roughly be thought of as the subject that applies the
theory of calculus to imaginary numbers. But what exactly are imaginary
numbers? Usually, students learn about them in high school with introductory
remarks from their teachers along the following lines: “We can’t take the
square root of a negative number. But let’s pretend we can and begin by
using the symbol i = .” Rules are then learned for doing arithmetic with
these numbers. At some level the rules make sense. If i = , it stands to
reason that i2 = −1. However, it is not uncommon for students to wonder
whether they are really doing magic rather than mathematics.

If you ever felt that way, congratulate yourself! You’re in the company of



some of the great mathematicians from the sixteenth through the nineteenth
centuries. They, too, were perplexed by the notion of roots of negative
numbers. Our purpose in this section is to highlight some of the episodes in
the very colorful history of how thinking about imaginary numbers
developed. We intend to show you that, contrary to popular belief, there is
really nothing imaginary about “imaginary numbers.” They are just as real as
“real numbers.”

Our story begins in 1545. In that year, the Italian mathematician
Girolamo Cardano published Ars Magna (The Great Art), a 40-chapter
masterpiece in which he gave, for the first time, a method for solving the
general cubic equation

Cardano did not have at his disposal the power of today’s algebraic
notation, and he tended to think of cubes or squares as geometric objects
rather than algebraic quantities. Essentially, however, his solution began with
the substitution . This move transformed Equation (1-1) into a cubic
equation without a squared term, which is called a depressed cubic. To
illustrate, begin with z3+9z2+24z+20 = 0 and substitute .
The equation then becomes (x − 3)3 + 9(x − 3)2 + 24(x − 3) + 20 = 0, which
simplifies to x3 − 3x + 2 = 0.

You need not worry about the computational details here, but in general
the substitution  transforms Equation (1-1) into

where 
If Cardano could get any value of x that solved a depressed cubic, he

could easily get a corresponding solution to Equation (1-1) from the identity 
. Happily, Cardano knew how to solve a depressed cubic. The

technique had been communicated to him by Niccolo Fontana who,
unfortunately, came to be known as Tartaglia (the stammerer) due to a
speaking disorder. The procedure was also independently discovered some 30
years earlier by Scipione del Ferro of Bologna. Ferro and Tartaglia showed
that one of the solutions to Equation (1-2) is



Although Cardano would not have reasoned in the following way, today
we can take this value for x and use it to factor the depressed cubic into a
linear and quadratic term. The remaining roots can then be found with the
quadratic formula. For example, to solve z3 + 9z2 + 24z + 20 = 0, use the
substitution z = x − 3 to get x3 − 3x + 2 = 0, which is a depressed cubic in the
form of Equation (1-2). Next, apply the “Ferro–Tartaglia” formula with b =
−3 and c = 2 to get  Since
x = –2 is a root, x + 2 must be a factor of x – 3x + 2. Dividing x + 2 into x – 3x
+ 2 gives x2 – 2x + 1, which yields the remaining (duplicate) roots of x = 1.
The solutions to z3+9z2+24z+20 = 0 are obtained by recalling z = x – 3,
which yields the three roots z1 = –2 – 3 = –5, and z2 = z3 = 1 – 3 = –2.

So, by using Tartaglia’s work and a clever transformation technique,
Cardano was able to crack what had seemed to be the impossible task of
solving the general cubic equation. Surprisingly, this development played a
significant role in helping to establish the legitimacy of imaginary numbers.
Roots of negative numbers, of course, had come up earlier in the simplest of
quadratic equations such as x2 + 1 =0. The solutions we know today as x = ±

, however, were easy for mathematicians to ignore. In Cardano’s time,
negative numbers were still being treated with some suspicion, as it was
difficult to conceive of any physical reality corresponding to them. Taking
square roots of such quantities was surely all the more ludicrous.
Nevertheless, Cardano made some genuine attempts to deal with .
Unfortunately, his geometric thinking made it hard to make much headway.
At one point he commented that the process of arithmetic that deals with
quantities such as  “involves mental tortures and is truly sophisticated.”
At another point he concluded that the process is “as refined as it is useless.”
Many mathematicians held this view, but finally there was a breakthrough.

In his 1569 treatise L’Algebra, Rafael Bombelli showed that roots of
negative numbers have great utility indeed. Consider the depressed cubic x3 −
15x − 4 = 0. Using Formula (1-3), we compute  or,
in a some what different form, .

Simplifying this expression would have been very difficult if Bombelli



had not come up with what he called a “wild thought.” He suspected that if
the original depressed cubic had real solutions, then the two parts of x in the
preceding equation could be written as u + v  and u – v  for some real
numbers u and v. That is, Bombelli believed  and 

, which would mean (u + v )3 = 2 + 11 , and (u − v 
)3 = 2 − 11 . Then, using the well-known algebraic identity (a + b)3 =

a3 + 3a2b + 3ab2 + b3, and assuming that roots of negative numbers obey the
rules of algebra, he obtained

By equating like parts of Equations (1-4) and (1-5) Bombelli reasoned
that u(u2 − 3v2) = 2 and v(3u2 − v2) = 11. Perhaps thinking even more wildly,
Bombelli then supposed that u and v were integers. The only integer factors
of 2 are 2 and 1, so the equation u(u2 − 3v2) = 2 led Bombelli to conclude
that u = 2 and u2 − 3v2 = 1. From this conclusion it follows that v2 = 1, or v =
±1. Amazingly, u = 2 and v = 1 solve the second equation v(3u2 − v2) = 11,
so Bombelli declared the values for u and v to be u = 2 and v = 1,
respectively.

Since (2 + )3 = 2 + 11 , we clearly have 
Similarly, Bombelli showed that . But this means that

which was a proverbial bombshell. Prior to Bombelli, mathematicians could
easily scoff at imaginary numbers when they arose as solutions to quadratic
equations. With cubic equations, they no longer had this luxury. That x = 4
was a correct solution to the equation x3 − 15x − 4 = 0 was indisputable, as it
could be checked easily. However, to arrive at this very real solution,
mathematicians had to take a detour through the uncharted territory of
“imaginary numbers.” Thus, whatever else might have been said about these
numbers (which, today, we call complex numbers), their utility could no
longer be ignored.



Geometric Progress of John Wallis
As significant as Bombelli’s work was, his results left many issues
unresolved. For example, his technique applied only to a few specialized
cases. Could it be extended? Even if it could be extended, a larger question
remained: What possible physical representation could complex numbers
have?

The last question remained unanswered for more than two centuries.
University of New Hampshire professor Paul J. Nahin describes the progress
in answering it as occurring in several stages1. A preliminary step came in
1685 when the English mathematician John Wallis published A Treatise of
Algebra, both Historical and Practical.

Among the many contributions in that book, two are particularly
noteworthy for our purposes. They are displayed in Wallis’ analysis of a
problem from classical geometry that, at first glance, seems completely
unrelated to complex numbers.

Problem 1.1 Construct a triangle determined by two sides and an angle not
included between those sides.

We will get to Wallis’ contributions in a moment. First, observe that
Figure 1.1 illustrates the standard solution to Problem 1.1. Given side length
a (represented by segment AB), angle α (determined by segments AB and
BC), and side length b, draw an arc of radius b whose center is at point A. If
the arc intersects segment BC at points E and F, then the resulting triangles
ABE and ABF each satisfy the problem requirement.

Figure 1.1 The standard solution to Wallis’ problem.

A Geometric Representation of Real Numbers



Wallis’ first contribution allowed him to associate numbers with the points E
and F of Figure 1.1. The association came by way of a construct that may
sound completely trivial to us, but that is only because we have been raised
with Wallis’ idea: the number line. By choosing an arbitrary point to
represent the number zero on a given line, Wallis declared that positive
numbers could be viewed as corresponding distances to the right of zero, and
negative numbers as corresponding (positive) distances to the left of zero.

To complete the association, refer to Figure 1.2 and think of segment BC
as lying on a portion of the x-axis. Then draw a perpendicular segment AD to
BC and designate D to be the origin. If the length of AD is c, the Pythagorean
theorem gives  for the length of segments ED and DF. Combining this
result with Wallis’ number line results in points E and F representing the
numbers

Thus, if b = 5 and c = 4, points E and F would represent –3 and +3,
respectively, because

Figure 1.2 Wallis’ depiction of real numbers.

From both an algebraic and geometric viewpoint, this procedure only
makes sense if the stipulated length b is greater than or equal to c. If b were
less than c, then the algebraic expressions for points 

 would be meaningless, as the quantity b2 − c2

inside the square root would be negative. Viewed geometrically, if b were
less than c, then the arc of radius b that is centered at A would not be able to
intersect segment BC. In other words, if b were less than c, Problem 1.1
would appear to have no solution.



A Geometric Representation of Complex Numbers
Appearances, of course, can be deceiving, and Wallis reinforced the truth of
that ancient proverb when he came up with his second—and bolder—
contribution. It was a solution to Problem 1.1 in the case when b is less than
c. Figure 1.3 illustrates how he did it. From the midpoint of AD, Wallis drew
a circle with diameter AD. Then, with A as a center, he drew an arc of radius
b. Because b is less than c, the arc will intersect the circle at two points, say E
and F.

Again we get two triangles: ABE and ABF. Wallis claimed that these
triangles each satisfy the requirement of Problem 1.1. You might object to
this construction on the grounds that angle α is not part of either triangle. If
you read the problem statement carefully, however, you will notice that it
never states that the angle α has to be part of any triangle, only that it must
play a role in determining a triangle. From this perspective, Wallis
completely satisfied the requirement.

Notice, also, that points E and F are no longer on the x-axis as they were
when b was greater than c (and when  was a real number). They are
now somewhere above the x-axis, and it is not unreasonable to conclude that
points E and F give, respectively, geometric representations of the
expressions –  and +  when b is less than c (and when  is a
complex number).

Although Wallis only hinted at such a conclusion, he nevertheless helped
set the stage for thinking of real numbers as being embedded in a larger set of
complex numbers, and that these numbers could be represented as “points in
the plane.” Unfortunately, if we tried to apply Wallis’ method to construct
complex numbers, we would find that it had some serious defects. For
example, if b = 0 and c = 1, the expression ±  becomes ± , and points
E and F now coincide at point A. But we surely would not want to say that −

 and +  are the same number. Thus, even with Wallis’ work, the jigsaw
of getting a legitimate picture of complex numbers remained. It would be yet
another century before someone put most of the pieces together.



Figure 1.3 Wallis’ depiction of complex numbers.

Caspar Wessel Makes a Breakthrough
Points in the plane can also be thought of as vectors, which are directed line
segments from the origin to those points. In 1797, Caspar Wessel presented a
paper to the Danish Academy of Sciences in which he described how to
manipulate vectors geometrically. This description eventually led to the
current representation of complex numbers.

To add two vectors, make a copy of the second vector and place its tail on
the head of the first vector. The resultant vector is the directed line segment
drawn from the tail of the first vector to the head of the second copy vector.
Figure 1.4(a) illustrates the addition of vector b to vector a.

When Wessel gave his paper, the procedure for adding vectors was
already known. The unique contribution that he made was his description of
how to multiply two vectors.

To understand Wessel’s thinking, recall that any non−zero vector can be
represented by two quantities: its length, and its angular displacement from
the positive x-axis. Figure 1.4(b) illustrates this idea for vector a: it’s length
is r, and its angular displacement from the positive x-axis is α.

Wessel stated that, to multiply two vectors, the length of the product
vector should be the product of the lengths of its factors. Should the angular
displacement of the product vector likewise be the product of the angular
displacements of its factors? Definitely not, and you will see in the Exercises
for Section 1.1 why Wessel knew that such a provision would have been a
bad idea. What, then, should be the angular displacement of the product?

In answering this question, Wessel drew an analogy from the
multiplication of real numbers. He observed that, if c = ab, then 

.



Figure 1.4 The geometry of vectors.

Figure 1.5 The standard unit vector.

In other words, the ratio of the product to any given factor is the same as the
ratio of the other factor to the number 1.

What vector represents the number 1? It seems obvious that, using
Wallis’ number line, it should be the directed line segment from the origin to
the number 1 on the positive x-axis. Let’s call this vector the standard unit
vector, as illustrated in Figure 1.5.

With this identification in mind, and using the multiplication analogy just
mentioned, Wessel made a brilliant move. He reasoned that the (angular)
displacement of the product of two vectors should differ from the
displacement of any given factor by the same amount that the displacement
of the other factor differs from the displacement of the standard unit vector.
That’s quite a mouthful—let’s see what it means.

What is the (angular) displacement of the standard unit vector? Clearly,
its displacement is zero radians, as it coincides with the positive x-axis. Thus,
if vectors a and b have displacements of α and β, respectively, and vector c =
ab, then the displacement of c should be α + β, as shown in Figure 1.6(a).
The reason for this assertion is that, with such an arrangement, Wessel’s
displacement protocol works out perfectly: the displacement of c (which is α



+ (β) differs from the displacement of a (which is α) by β. This is the same
amount that the displacement of b (which is β) differs from the displacement
of the standard unit vector (which is 0). Likewise, the displacement of c
differs from the displacement of b by α, which is the same amount that the
displacement of a differs from the displacement of the standard unit vector.

How does Wessel’s procedure lead to a geometric representation of
complex numbers? Consider what happens if a unit vector is drawn from the
origin straight up the y-axis, and then multiplied by itself. By Wessel’s rules,
the length of the product vector is one unit, as the length of each factor is one
unit. What about its direction? The angular displacement of the original
vector is  radians, so by Wessel’s rules again, the product vector has a
displacement of  +  = π radians. Thus, the product vector is aligned along
the x-axis, but is directed from the origin to the left by one unit, as shown in
Figure 1.6(b). Using Wallis’ number line, we see that the product vector is
naturally identified with the number –1. Label the original vector as i. What
do you conclude? Obviously, that i2 = –1, which must mean that i = .
Neat!

Figure 1.6 Wessel’s multiplication scheme for vectors.

Neat, yes, but the material we presented leading up to this result was (if
you’ll pardon the pun) complex. Thus, you need not worry if you had some
difficulty following it. Sections 1.2–1.5 will flesh out these ideas in much
more detail.

It should be pointed out that Wessel was not the only mathematician—or
even the first—who began thinking of complex numbers as vectors, or, as
points in the plane. As early as 1732, the great Swiss mathematician Leonard



Euler (pronounced “oiler”) adopted this view concerning the n solutions to
the equation xn − 1 = 0. You will learn shortly that these solutions can be
expressed as cos θ +  sin θ for various values of θ. Euler thought of them
as being located at the vertices of a regular polygon in the plane. Euler was
also the first to use the symbol i for . Today this notation is still the most
popular, although some electrical engineers prefer the symbol j instead so
that they can use i to represent current.

Two additional mathematicians deserve mention. The Frenchman
Augustin−Louis Cauchy (1789–1857) formulated many of the classic
theorems that are now part of the corpus of complex analysis. The German
Carl Friedrich Gauss (1777–1855) reinforced the utility of complex numbers
by using them in his several proofs of the fundamental theorem of algebra
(see Chapter 6). In an 1831 paper, he produced a clear geometric
representation of x + iy by identifying it with the point (x, y) in the coordinate
plane. He also described how to perform arithmetic operations with these
new numbers.

It would be a mistake, however, to conclude that in 1831 complex
numbers were transformed into legitimacy. In that same year, the prolific
logician Augustus De Morgan commented in his book, On the Study and
Difficulties of Mathematics, “We have shown the symbol  to be void of
meaning, or rather self-contradictory and absurd. Nevertheless, by means of
such symbols, a part of algebra is established which is of great utility.”

There are, indeed, genuine logical problems associated with complex
numbers. For example, with real numbers  so long as both sides of
the equation are defined. Applying this identity to complex numbers leads to 

. Plausible answers to these problems can be
given, however, and you will learn how to resolve this apparent contradiction
in Section 2.2. De Morgan’s remark illustrates that many factors are needed
to persuade mathematicians to adopt new theories. In this case, as always, a
firm logical foundation was crucial, but so, too, was a willingness to modify
some ideas concerning certain well−established properties of numbers.

As time passed, mathematicians gradually refined their thinking, and by
the end of the nineteenth century complex numbers were firmly entrenched.
Thus, as it is with many new mathematical or scientific innovations, the
theory of complex numbers evolved by way of a very intricate process. But



what is the theory that Tartaglia, Ferro, Cardano, Bombelli, Wallis, Euler,
Cauchy, Gauss, and so many others helped produce? That is, how do we now
think of complex numbers? We explore this question in the remainder of this
chapter.

EXERCISES FOR SECTION 1.1
1. Show that .

2. Explain why cubic equations, rather than quadratic equations, played a
pivotal role in helping to obtain the acceptance of complex numbers.

3. Find all solutions to the following depressed cubics.

(a) 27x3 − 9x − 2 = 0. Hint: Get an equivalent monic polynomial.

(b) x3 − 27x + 54 = 0.

4. This exercise relates to Wallis’ representation of complex numbers as
depicted in Figure 1.3, where E represents −  and F represents +

.

(a) Explain why, with Wallis’ procedure, the complex numbers −  and +
 may be located at the same point. Hint: Set b = 0 and redefine the

length of c.

(b) Part (a) shows that, with Wallis’ procedure, two different complex
numbers may be located at the same point in the plane. Explain why two
different points in the plane may represent the same complex number.
Hint: set c = 5 and choose b to be a value that gives the same resulting
expression for  as in part (a).

(c) Referencing your answers to parts (a) and (b) explain why Wallis’
representation of complex numbers is defective.

5. Use Bombelli’s technique to get all solutions to the following depressed
cubics.



(a) 

(b) 

(c) 

6. Use Cardano’s technique (of substituting ) to solve the following
cubics.

(a) 

(b) 

7. Refer to Figure 1.6(a). The two factor vectors are a = (2, 1) and b = (1, 3).

(a) Find the length of vectors a and b.

(b) Using your calculator, compute the radian and degree measure of
angles α and β.

(c) Using Wessel’s rules for vector multiplication find:

i. The length of the product vector c.

ii. The radian and degree measure of the angular
displacement of the product vector c.

(d) Using your calculator, get the coordinate representation of the product
vector c.

(Note: You will learn a slicker technique for these computations in
Section 1.2.)

8. Explain why it would have been a bad idea for Wessel to stipulate that the
angular displacement of the product of two vectors equaled the product of
the displace ments of the the two vectors.

    Hint: What would be the result of multiplying the vector i with the



standard unit vector? What would the product (−1)(−1) equal? Finally,
show that it would be possible to have non−zero vectors satisfying ab =
ac, but b ≠ c.

9. Write a paper that compares Wallis’ representation of complex numbers
with the procedure outlined in the article by Alec Norton and Benjamin
Lotto: “Complex Roots Made Visible,” The College Mathematics
Journal, 15(3), June 1984, pp. 248–248.

10. Investigate library and/or web resources and write up a detailed analysis
explaining why the solution to the depressed cubic, Equation (1-3), is
valid. Hint: A good reference is the article by Dan Kalman and James
White: “A Simple Solution of the Cubic,” The College Mathematics
Journal, 29(5), November 1998, pp. 415–415.

1.2 THE ALGEBRA OF COMPLEX
NUMBERS

We have shown that complex numbers came to be viewed as ordered pairs of
real numbers. That is, a complex number z is defined to be

where x and y are both real numbers.
The reason we say ordered pair is because we are thinking of a point in

the plane. The point (2, 3), for example, is not the same as (3, 2). The order
in which we write x and y in Equation (1-7) makes a difference. Clearly, then,
two complex numbers are equal if and only if their x coordinates are equal
and their y coordinates are equal. In other words,

(Throughout this text, iff means if and only if.)
A meaningful number system requires a method for combining ordered



pairs. The definition of algebraic operations must be consistent so that the
sum, difference, product, and quotient of any two ordered pairs will again be
an ordered pair. The key to defining how these numbers should be
manipulated is to follow Gauss’s lead and equate (x, y) with x + iy. Then, if z1
= (x1, y1) and z2 = (x2, y2) are arbitrary complex numbers, we have

Thus, the following definitions should make sense.

Definition 1.1: Addition

Definition 1.2: Subtraction

 EXAMPLE 1.1 If z1 = (3, 7) and z2 = (5, –6), then

 and

.

We can also use the notation z1 = 3 + 7i and z2 = 5 − 6i:

 and



Given the rationale we devised for addition and subtraction, it is tempting
to define the product z1z2 as z1z2 = (x1x2, y1y2). It turns out, however, that
this is not a good definition, and we ask you in the exercises for this section
to explain why. How, then, should products be defined? Again, if we equate
(x, y) with x + iy and assume, for the moment, that i =  makes sense (so
that i2 = −1), we have

Thus, it appears that we are forced into the following definition.

Definition 1.3: Multiplication

 EXAMPLE 1.2 If z1 = (3, 7) and z2 = (5,−6), then

We get the same answer by using the notation z1 = 3 + 7i and z2 = 5 − 6i:

Of course, it makes sense that the answer came out as we expected
because we used the notation x + iy as motivation for our definition in the



first place.

To motivate our definition for division, we proceed along the same lines
as we did for multiplication, assuming that z2 ≠ 0:

We need to figure out a way to write the preceding quantity in the form x
+ iy. To do so, we use a standard trick and multiply the numerator and
denominator by x2 − iy2, which gives

Thus, we finally arrive at a rather odd definition.

Definition 1.4: Division

 EXAMPLE 1.3 If z1 = (3, 7) and z2 = (5, −6), then



As with the example for multiplication, we also get this answer if we use the
notation x + iy:

To perform operations on complex numbers, most mathematicians would
use the notation x+iy and engage in algebraic manipulations, as we did here,
rather than apply the complicated−looking definitions we gave for those
operations on ordered pairs. This procedure is valid because we used the x +
iy notation as a guide for defining the operations in the first place.
Remember, though, that the x + iy notation is nothing more than a convenient
bookkeeping device for keeping track of how to manipulate ordered pairs. It
is the ordered pair algebraic definitions that form the real foundation on
which the complex number system is based. In fact, if you were to program a
computer to do arithmetic on complex numbers, your program would perform
calculations on ordered pairs, using exactly the definitions that we gave.

Our algebraic definitions give complex numbers all the properties we
normally ascribe to the real number system. Taken together, they describe
what algebraists call a field. In formal terms, a field is a set (in this case, the
complex numbers) together with two binary operations (in this case, addition
and multiplication) having the following properties.

(P1) Commutative law for addition: .
(P2) Associative law for addition: .



(P3) Additive identity: There is a complex number ω such
that z + ω = z for all complex numbers z. The number ε is
obviously the ordered pair (0, 0).

(P4) Additive inverses: For any complex number z, there
is a unique complex number η (depending on z) with the
property that z + η = (0, 0). Obviously if z = (x, y) = x +
iy, the number η will be (−x, −y) = −x −iy = −z.

(P5) Commutative law for multiplication: z1z2 = z2z1.

(P6) Associative law for multiplication: z1(z2z3) =
(z1z2)z3.

(P7) Multiplicative identity: There is a complex number ζ
such that zζ = z for all complex numbers z. As you might
expect, (1, 0) is the unique complex number ζ having this
property. We ask you to verify this identity in the
exercises for this section.

(P8) Multiplicative inverses: For any complex number z =
(x, y) other than the number (0, 0), there is a complex
number (depending on z), which we denote z–1, having
the property that zz−1 = (1, 0) = 1. Based on our
definition for division, it seems reasonable that the
number z–1 would be 

 We ask you to
confirm this result in the exercises for this section.

(P9) The distributive law: z1(z2 + z3) = z1z2 + z1z3.



None of these properties is difficult to prove. Most of the proofs make use
of corresponding facts in the real number system. To illustrate, we give a
proof of property (P1).

Proof of the commutative law for addition: Let z1 = (x1, y1) and z2 =
(x2, y2) be arbitrary complex numbers. Then,

Actually you can think of the real number system as a subset of the
complex number system. To see why, let’s agree that, as any complex
number of the form (t, 0) is on the x-axis, we can identify it with the real
number t. With this correspondence, we can easily verify that our definitions
for addition, subtraction, multiplication, and division of complex numbers are
consistent with the corresponding operations on real numbers. For example,
if x1 and x2 are real numbers, then

It is now time to show specifically how the symbol i relates to the
quantity . Note that

If we use the symbol i for the point (0, 1), the preceding identity gives

which means i = (0, 1) = . So, the next time you are having a discussion
with your friends and they scoff when you claim that  is not imaginary,



calmly put your pencil on the point (0, 1) of the coordinate plane and ask
them if there is anything imaginary about it. When they agree there isn’t, you
can tell them that this point, in fact, represents the mysterious  in the same
way that (1, 0) represents 1.

We can also see more clearly now how the notation x+ iy equates to (x, y).
Using the preceding conventions (i.e., x = (x, 0), etc.), we have

Thus, we may move freely between the notations x + iy and (x, y),
depending on which is more convenient for the context in which we are
working. Students sometimes wonder whether it matters where the “i” is
located in writing a complex number. It does not. Generally, most texts place
terms containing an “i” at the end of an expression, and place the “i” before a
variable but after a constant. Thus, we write x + iy, u + iv, etc., but 3 + 7i, 5 −
6i, and so forth. Because letters lower in the alphabet generally denote
constants, you will usually (but not always) see the expression a +bi instead
of a + ib. Many authors write quantities like 1 + i  instead of 1 + i to make
sure the “i” is not mistakenly thought to be inside the square root symbol.
Additionally, if there is concern that the “i” might be missed, it is sometimes
placed before a lengthy expression, as in .

We close this section with three important definitions and a theorem
involving them. We ask you for a proof of the theorem in the exercises.

Definition 1.5: Real part
The real part of z, denoted Re (z), is the real number x.

Definition 1.6: Imaginary part
The imaginary part of z, denoted Im (z), is the real number y.



Definition 1.7: Conjugate
The conjugate of z, denoted , is the complex number (x, − y) = x − iy.

 EXAMPLE 1.4 a) Re (−3 + 7i) = −3 and Re[(9, 4)] = 9. b) Im (−3 7i) = 7i
and  and .

 Theorem 1.1 Suppose that z, z1, and z2 are arbitrary complex
numbers. Then

Because of what it erroneously connotes, it is a shame that the term
imaginary is used in Definition (1.6). It was coined by the brilliant
mathematician and philosopher René Descartes (1596–1650) during an era
when quantities such as  were thought to be just that. Gauss, who was
successful in getting mathematicians to adopt the phrase complex number
rather than imaginary number, also suggested that they use lateral part of z in
place of imaginary part of z. Unfortunately, that suggestion never caught on,
and it appears we are stuck with what history has handed down to us.



EXERCISES FOR SECTION 1.2
1. Perform the required calculations and express your answers in the form a

+ bi.

(a) 

(b) 

(c) Re (i)

(d) Im (2)

(e) 

(f) 

(g) Re (7 − 2i)(3i + 5)

(h) 

(i) 

(j) 

2. Evaluate the following quantities.

(a) 

(b) 

(c) 

(d) 

(e) 

(f) 



(g) 

(h) 

(i) 

(j) 

3. Show that  is always a real number.

4. Verify Identities (1-12)–(1-19).

5. Let  be a monic polynomial of degree n.

(a) Suppose that a0, a1,…, an−1 are all real. Show that if z1 is a root of P,
then  is also a root. In other words, the roots must be complex
conjugates, something you likely learned without proof in high school.

(b) Suppose not all of a0, a1,…, an−1 are real. Show that P has at least one
root whose complex conjugate is not a root. Hint: Prove the
contrapositive.

(c) Find an example of a polynomial that has some roots occurring as
complex conjugates, and some not.

6. Let z1 = (x1, y1) and z2 = (x2, y2) be arbitrary complex numbers. Prove or
disprove the following.

(a) Re (z1 + z2) = Re (z1) + Re (z2).

(b) Re (z1z2) = Re (z1) Re (z2).

(c) Im (z1 + z2) = Im (z1) + Im (z2).

(d) Im (z1z2) = Im (z1) Im (z2).

7. Prove that the complex number (1, 0) (which we identify with the real



number 1) is the multiplicative identity for complex numbers.

8. Use mathematical induction to show that the binomial theorem is valid
for complex numbers. In other words, show that if z and w are arbitrary
complex numbers and n is a positive integer, then 

9. Let’s use the symbol * for a new type of multiplication of complex
numbers defined by z1 * z2 = (x1x2, y1 y2). This exercise shows why this
is an unfortunate definition.

(a) Use the definition given in property (P7) and state what the
multiplicative identity ζ would have to be for this new multiplication.

(b) Show that if you use this new multiplication, nonzero complex
numbers of the form (0, a) have no inverse. That is, show that if z = (0,
a), there is no complex number w with the property that z * w = ζ, where
ζ is the multiplicative identity you found in part (a).

10. Explain why the complex number (0, 0) (which, you recall, we identify
with the real number 0) has no multiplicative inverse.

11. Prove property (P9), the distributive law for complex numbers.
12. Verify that if z = (x, y), with x and y not both 0, then 

Hint: Let z = (x, y) and use the (ordered pair) definition for division to
compute  Then, with the result you obtained, use the ordered pair)
definition for multiplication to confirm that zz−1 = (1, 0) = 1.

13. From Exercise 12 and basic cancellation laws, it follows that .
The numerator here, , is trivial to calculate and, as the denominator  is
a real number (Exercise 3), computing the quotient  should be rather
straightforward. Use this fact to compute z−1 if z = 2 + 3i and again if z =
7 − 5i.

14. Show, by equating the real numbers x1 and x2 with (x1, 0) and (x2, 0),
respectively, that the complex definition for division is consistent with the
real definition for division. Hint: Mimic the argument given in the text for
multiplication.



1.3 THE GEOMETRY OF COMPLEX
NUMBERS

Complex numbers are ordered pairs of real numbers, so they can be
represented by points in the plane. In this section, we show the effect that
algebraic operations on complex numbers have on their geometric
representations.

We can represent the number z = x+iy = (x, y) by a position vector in the
xy plane whose tail is at the origin and whose head is at the point (x, y). When
the xy plane is used for displaying complex numbers, it is called the complex
plane, or more simply, the z plane. Recall that Re (z) = x and Im (z) = y.
Geometrically, Re (z) is the projection of z = (x, y) onto the x-axis, and Im (z)
is the projection of z onto the y-axis. It makes sense, then, to call the x-axis
the real axis and the y-axis the imaginary axis, as Figure 1.7 illustrates.

Addition of complex numbers is analogous to addition of vectors in the
plane. As we saw in Section 1.2, the sum of z1 = x1 + iy1 = (x1, y1) and z2 =
x2 + iy2 = (x2, y2) is (x1 + x2, y1 + y2). Hence z1 + z2 can be obtained
vectorially by using the “parallelogram law,” where the vector sum is the
vector represented by the diagonal of the parallelogram formed by the two
original vectors. Figure 1.8 illustrates this notion.

The difference z1 − z2 can be represented by the displacement vector
from the point z2 = (x2, y2) to the point z1 = (x1, y1), as Figure 1.9 shows.

Definition 1.8: Modulus
The modulus, or absolute value, of the complex number z = x + iy is a
nonnegative real number denoted by | z| and defined by the relation



Figure 1.7 The complex plane.

Figure 1.8 The sum z1 +z2.

Figure 1.9 The difference z1 − z2.

Figure 1.10 The real and imaginary parts of a complex number.

The number | z| is the distance between the origin and the point z = (x, y).
The only complex number with modulus zero is the number 0. The number z
= 4 + 3i has modulus  and is depicted in Figure 1.10.
The numbers |Re (z)|, |Im (z)|, and | z| are the lengths of the sides of the right
triangle OPQ shown in Figure 1.11. The inequality | z1| < |z2| means that the
point z1 is closer to the origin than the point z2. Although obvious from
Figure 1.11, it is still profitable to work out algebraically the standard results
that



which we leave as an exercise.
The difference z1 − z2 represents the displacement vector from z2 to z1, so

the distance between z1 and z2 is given by | z1 − z2|. We can obtain this
distance by using Definitions (1.2) and (1.3) to obtain the familiar formula

If z = (x, y) = x + iy, then  is the reflection of z through
the origin, and  is the reflection of z through the x-axis, as
illustrated in Figure 1.12.

We can use an important algebraic relationship to establish properties of
the absolute value that have geometric applications. Its proof is rather
straightforward, and we ask you to give it in the exercises for this section.

An important application of Identity (1-22) is its use in establishing the
triangle inequality, which states that the sum of the lengths of two sides of a
triangle is greater than or equal to the length of the third side. Figure 1.13
illustrates this inequality.

Figure 1.11 The moduli of z and its components.

Figure 1.12 The geometry of negation and conjugation.



Figure 1.13 The triangle inequality.

 Theorem 1.2 (The triangle inequality) If z1 and z2 are arbitrary
complex numbers, then

Proof We appeal to basic results:

Taking square roots yields the desired inequality.

 EXAMPLE 1.5 To produce an example of which Figure 1.13 is a
reasonable illustration, we let z1 = 7 + i and z2 = 3 + 5i. Then  

. Clearly, z1 + z2 = 10 + 6i hence | z1 + z2| = 
. In this case, we can verify the triangle inequality without

recourse to computation of square roots because 
.

We can also establish other important identities by means of the triangle



inequality. Note that

Subtracting | z2| from the left and right sides of this string of inequalities
gives an important relationship that is used in determining lower bounds of
sums of complex numbers:

From Identity (1-22) and the commutative and associative laws, it follows
that

Taking square roots of the terms on the left and right establishes another
important identity:

As an exercise, we ask you to show that

 EXAMPLE 1.6 If z1 = 1 + 2i and z2 = 3 + 2i, then  and 
. Also z1z2 = −1 + 8i; hence .

Figure 1.14 illustrates the multiplication shown in Example 1.6. The
length of the z1z2 vector apparently equals the product of the lengths of z1
and z2, confirming Equation (1-25), but why is it located in the second
quadrant when both z1 and z2 are in the first quadrant? The answer to this
question was hinted at in Section 1.1, but it will be more fully explained in
Section 1.4.



Figure 1.14 The geometry of multiplication.

EXERCISES FOR SECTION 1.3
1. Evaluate the following quantities. Be sure to show your work.

(a) 

(b) 

(c) 

(d) 

(d) 

2. Locate z1 and z2 vectorially and use vectors to find z1 + z2 and z1 − z2
when

(a) 

(b) 

(c) 

3. Which of the following points lie inside the circle | z − i| =2? Explain
your answers.

(a) 

(b) 



(c) 2 + 3i.

(d) 

4. Prove the following Identities.

(a) (1-21).

(b) (1-22).

(c) (1-26).

5. Show that the nonzero vectors z1 and z2 are perpendicular iff .

6. Sketch the sets of points determined by the following relations.

(a) 

(b) 

(c) 

(d) 

7. Prove that 

8. Show that the point  is the midpoint of the line segment joining z1 to
z2.

9. Show that .

10. Prove that | z| = 0 iff z = 0.
11. Show that if z ≠ 0, the four points , and  are the vertices of a

rectangle with its center at the origin.
12. Show that if z ≠ 0, the four points z, iz, −z, and − iz are the vertices of a

square with its center at the origin.
13. Show that the equation of the line through the points z1 and z2 can be

expressed in the form z = z1 + t(z2 − z1), where t is a real number.



14. Show that the nonzero vectors z1 and z2 are parallel iff .

15. Show that .
16. Show that , where n is an integer.
17. Suppose that either . Prove that .

18. Prove the Cauchy–Schwarz inequality: 

19. Show .
20. Show that  is a real number.
21. If you study carefully the proof of the triangle inequality, you will note

that the reasons for the inequality hinge on Re . Under what
conditions will these two quantities be equal, thus turning the triangle
inequality into an equality?

22. Prove that .
23. Use induction to prove that  for all natural numbers n.

24. Let z1 and z2 be two distinct points in the complex plane, and let K be a
positive real constant that is less than the distance between z1 and z2.

(a) Show that the set of points  is a hyperbola with foci
z1 and z2.

(b) Find the equation of the hyperbola with foci ±2 that goes through the
point 2 + 3i.

(c) Find the equation of the hyperbola with foci ±25 that goes through the
point 7 + 24i.

25. Let z1 and z2 be two distinct points in the complex plane, and let K be a
positive real constant that is greater than the distance between z1 and z2.

(a) Show that the set of points  is an ellipse with foci z1
and z2.



(b) Find the equation of the ellipse with foci ±3i that goes through the
point 8 − 3i.

(c) Find the equation of the ellipse with foci ±2i that goes through the
point 3 + 2i.

26. Supply the reason for the indicated step in the proof of Theorem 1.2.

1.4 THE GEOMETRY OF COMPLEX
NUMBERS, CONTINUED

In Section 1.3 we saw that a complex number z = x + iy could be viewed as a
vector in the xy plane with its tail at the origin and its head at the point (x, y).
A vector can be uniquely specified by giving its magnitude (i.e., its length)
and direction (i.e., the angle it makes with the positive x-axis). In this section,
we focus on these two geometric aspects of complex numbers.

Let r be the modulus of z (i.e., r = | z|), and let θ be the angle that the line
from the origin to the complex number z makes with the positive x-axis.
(Note: The number θ is undefined if z = 0.) Then, as Figure 1.15(a) shows,

Definition 1.9: Polar representation
Identity (1-27) is known as a polar representation of z, and the values r
and θ are called polar coordinates of z.



Figure 1.15 Polar representation of complex numbers.

 EXAMPLE 1.7 If z = 1 + i, then r =  and 
 is a polar representation of z. The polar coordinates in this case

are .

As Figure 1.15(b) shows, θ can be any value for which the identities 
 and  hold. For z ≠ 0, the collection of all values of θ for which

z = r(cos θ + isin θ) is denoted arg z. Formally, we have the following
definitions.

Definition 1.10: arg z
If z ≠ 0;,

If θ ∈ arg z, we say that θ is an argument of z.

 
Note that we write θ ∈ arg z as opposed to θ = arg z. We do so because

arg z is a set, and the designation θ ∈ arg z indicates that θ belongs to that
set. Note also that, if θ1 ∈ arg z and θ2 ∈ arg z, then there exists some
integer n such that



 EXAMPLE 1.8 Because , we have

.

Mathematicians have agreed to single out a special choice of θ ∈ arg z. It
is that value of θ for which , as the following definition indicates.

Definition 1.11: Arg z
Let z ≠ 0 be a complex number. Then

If θ = Arg z, we call θ the argument of z.

 EXAMPLE 1.9 .

Remark 1.1 Clearly, if z = x + iy = r(cos θ + i sin θ), where x ≠ 0, then 
,

where arctan . Note that, as with arg z, arctan z is a set (as
opposed to Arctan z, which is a number). We specifically identify arg z as a
proper subset of arctan  because tan θ has period π, whereas cos θ and sin θ
have period 2π. In selecting the proper values for arg z, we must be careful in
specifying the choices of arctan  so that the point z associated with r and θ
lies in the appropriate quadrant.

 EXAMPLE 1.10 If , then r = | z| = 
and θ ∈ arctan . It would be a mistake to
use  as an acceptable value for θ, as the point z associated with r = 2 and 

 is in the first quadrant, whereas  is in the third quadrant. A correct



choice for θ is . Thus,

where n is any integer. In this case,

, and

.

Note that arg (−  − i) is indeed a proper subset of arctan 

 EXAMPLE 1.11 If z = x + iy = 0 + 4i, it would be a mistake to attempt to
find Arg z by looking at arctan  as x = 0, so  is undefined. If z ≠ 0 is on the
y-axis, then

 and

In this case, 

As you will see in Chapter 2, Arg z is a discontinuous function of z
because it “jumps” by an amount of 2π as z crosses the negative real axis.

In Chapter 5 we define ez for any complex number z. You will see that
this complex exponential has all the properties of real exponentials that you
studied in earlier mathematics courses. That is, , and so on. You
will also see, amazingly, that if z = x + iy, then

We will establish this result rigorously in Chapter 5, but there is a
plausible explanation we can give now. If ez has the normal properties of an
exponential, it must be that ex+iy = exeiy. Now, recall from calculus the



values of three infinite series: 
. Substituting iy for x in the

infinite series for ex gives . At this point, our argument

loses rigor because we have not talked about infinite series of complex
numbers, let alone whether such series converge. Nevertheless, if we merely
take the last series as a formal expression and split it into two series
according to whether the index k is even (k = 2n) or odd (k = 2n + 1), we get

Thus, it seems the only possible value for ez is that given by Equation (1-31).
We will use this result freely from now on and, as stated, supply a rigorous
proof in Chapter 5.

If we set x = 0 and let θ take the role of y in Equation (1-31), we get a
famous result known as Euler’s formula:

Figure 1.16 The location of eiθ for various values of θ.

If θ is a real number, eiθ will be located somewhere on the circle with



radius 1 centered at the origin. This assertion is easy to verify because

Figure 1.16 illustrates the location of the points eiθ for various values of θ.
Note that, when θ = π, we get eiπ = (cos π,sin π) = (−1, 0) = −1, so

Euler was the first to discover this relationship; it is referred to as Euler’s
identity. It has been labeled by many mathematicians as the most amazing
relation in analysis—and with good reason. Symbols with a rich history are
miraculously woven together—the constant π used by Hippocrates as early as
400 b. c.; e, the base of the natural logarithms; the basic concepts of addition
(+) and equality (=); the foundational whole numbers 0 and 1; and i, the
number that is the central focus of this book.

Euler’s formula (1-32) is of tremendous use in establishing important
algebraic and geometric properties of complex numbers. You will see shortly
that it enables you to multiply complex numbers with great ease. It also
allows you to express a polar form of the complex number z in a more
compact way. Recall that if r = | z| and θ ∈ arg z, then z = r(cos θ + isin θ).
Using Euler’s formula, we can now write z in its exponential form:

 EXAMPLE 1.12 With reference to Example 1.10, with  we 
.

Figure 1.17 The product of two complex numbers z3 = z1z2.



Together with the rules for exponentiation that we will verify in Chapter
5, Equation (1-35) has interesting applications. If , then

Figure 1.17 illustrates the geometric significance of this equation.
We have already shown that the modulus of the product is the product of

the moduli; that is, | z1z2| = | z1| | z2|. Identity (1-36) establishes that an
argument of z1z2 is an argument of z1 plus an argument of z2. It also answers
the question posed at the end of Section 1.3 regarding why the product z1z2
was in a different quadrant than either z1 or z2. It further offers an interesting
explanation as to why the product of two negative real numbers is a positive
real number. The negative numbers, each of which has an angular
displacement of π radians, combine to produce a product that is rotated to a
point with an argument of π + π = 2π radians, coinciding with the positive
real axis.

Using exponential form, if z ≠ 0, we can write arg z a bit more compactly
as

Doing so enables us to see a nice relationship between the sets arg (z1z2), arg
z1, and arg z2.

 Theorem 1.3 If , then as sets,

Before proceeding with the proof, we recall two important facts about
sets. First, to establish the equality of two sets, we must show that each is a
subset of the other. Second, the sum of two sets is the sum of all
combinations of elements from the first and second sets, respectively. In this



case, arg z1 + arg z2 = {θ1 + θ2: θ1 ∈ arg z1 and θ2 ∈ arg z2}.

Proof Let θ ∈ arg (z1z2). Because , it follows from
Formula (1-37) that . By Equation (1-29) there is some
integer n such that . Further, as .
Likewise,  gives θ2 ∈ arg z2. But if θ2 ∈ arg z2, then θ2 + 2nπ
∈ arg z2. This result shows that . Thus, arg

. The proof that arg  is left as an
exercise.

Using Equality (1-35) gives . In other words,

Recalling that , we also have 
, and 

.

If z is in the first quadrant, the positions of the numbers z, , and z−1 are
as shown in Figure 1.18 when | z| < 1. Figure 1.19 depicts the situation when |
z| > 1.

Figure 1.18 Relative positions of z, , and z−1 when | z| < 1.



Figure 1.19 Relative positions of z, , and z−1 when | z| > 1.

 EXAMPLE 1.13 If z = 1 + i then . Therefore, 
 and has modulus .

 EXAMPLE 1.14 If z1 = 8i and , then representative polar forms
for these numbers are . Hence

EXERCISES FOR SECTION 1.4
1. Find Arg z for the following values of z.

(a) 1 − i.

(b) 

(c) 

(d) 

(e) 



(f) 

(g) 

(h) 

2. Use exponential notation to show that

(a) 

(b) 

(c) 

(d) 

3. Represent the following complex numbers in polar form.

(a) −4

(b) 6 − 6i.

(c) −7i.

(d) 

(e) 

(f) 

(g) 3 + 4i.

(h) (5 + 5i)3.

4. Show that arg , thus completing the proof of Theorem 1.3.

5. Express the following in a + ib form.

(a) 



(b) 

(c) 

(d) 

(e) 

(f) 

(g) 

(h) 

6. Show that arg z1 = arg z2 iff z2 = cz1, where c is a positive real constant.

7. Let . Show that the equation Arg(z1z2) =
Arg z1 + Arg z2 does not hold for the specific choice of z1 and z2.

8. Show that the equation Arg (z1z2) = Arg z1 + Arg z2 is true if 
. Describe the set of points that meets this

criterion.

9. Describe the set of complex numbers for which . Prove your
assertion.

10. Establish the identity 
11. Show that 
12. Show that 
13. Show that if z ≠ 0, then

(a) 

(b) Arg (z + ) = 0 when Re (z) > 0.

14. Let z1, z2, and z3 form the vertices of a triangle as indicated in Figure
1.20. Show that  is an expression for the
angle at the vertex z1.



15. Let z ≠ z0. Show that the polar representation  can be
used to denote the displacement vector from z0 to z, as indicated in Figure
1.21.

16. Show that  iff z − w is not a negative real number.

Figure 1.20 For Exercise 14.

Figure 1.21 For Exercise 15.

1.5 THE ALGEBRA OF COMPLEX
NUMBERS, REVISITED

The real numbers are deficient in the sense that not all algebraic operations
on them produce real numbers. Thus, for  to make sense, we must
consider the domain of complex numbers. Do complex numbers have this
same deficiency? That is, if we are to make sense of expressions such as 
must we appeal to yet another new number system? The answer to this
question is no. In other words, any reasonable algebraic operation performed
on complex numbers gives complex numbers. Later we show how to evaluate
intriguing expressions such as ii. For now we only look at integral powers
and roots of complex numbers.

The important players in this regard are the exponential and polar forms



of a nonzero complex number . By the laws of exponents
(which, you recall, we have promised to prove in Chapter 5) we have

 EXAMPLE 1.15 Show that  in two ways.

Solution (Method 1): The binomial formula (Exercise 14 of Section 1.2)
gives

(Method 2): Using Identity (1-39) and Example 1.12 yields

Which method would you use if you were asked to compute 

 EXAMPLE 1.16 Evaluate 

Solution 

An interesting application of the laws of exponents comes from putting
the equation  in its polar form. Doing so gives

which is known as De Moivre’s formula, in honor of the French
mathematician Abraham De Moivre (1667–1754).



 EXAMPLE 1.17 Use De Moivre’s formula (Equation (1-40)) to show that 

Solution If we let n = 5 and use the binomial formula to expand the left side
of Equation (1-40), we obtain

The real part of this expression is . Equating this to
the real part of cos 5θ + i sin 5θ on the right side of Equation (1-40)
establishes the desired result.

A key aid in determining roots of complex numbers is a corollary to the
fundamental theorem of algebra. We prove this theorem in Chapter 6. Our
proofs must be independent of the conclusions we derive here because we are
going to make use of the corollary now.

 Theorem 1.4 (Corollary to the fundamental theorem of algebra)
If P (z) is a polynomial of degree n (n > 0) with complex coefficients,
then the equation P (z) = 0 has precisely n (not necessarily distinct)
solutions.

Proof Refer to Chapter 6.

 EXAMPLE 1.18 Let . This polynomial of
degree 3 can be written as P (z) = (z − i)2 (z + 2). Hence the equation P (z) =
0 has solutions z1 = i, z2 = i, and z3 = −2. Thus, in accordance with Theorem
1.4, we have three solutions, with z1 and z2 being repeated roots.

Theorem 1.4 implies that if we can find n distinct solutions to the



equation zn = c (or zn − c = 0), we will have found all the solutions. We begin
our search for these solutions by looking at the simpler equation zn = 1.
Solving this equation will enable us to handle the more general one quite
easily.

To solve zn = 1 we first note that, from Identities (1-29) and (1-37), we
can deduce an important condition that determines when two nonzero
complex numbers are equal. If we let , then

where k is an integer. That is, two nonzero complex numbers are equal iff
their moduli agree and an argument of one equals an argument of the other to
within an integral multiple of 2π.

We now find all solutions to zn = 1 in two stages, with each stage
corresponding to one direction in the iff part of Relation (1-41). First, we
show that if we have a solution to zn = 1, then the solution must have a certain
form. Second, we show that any quantity with that form is indeed a solution.

For the first stage, suppose that  is a solution to zn = 1. Putting the
latter equation in exponential form gives , so Relation (1-41)
implies that rn = 1 and nθ = 0 + 2πk. In other words,

where k is an integer.
So, if z = reiθ is a solution to zn = 1, then Relation (1-42) must be true.

This observation completes the first stage of our solution strategy. For the
second stage, we note that if r = 1, and , then  is indeed a
solution to zn = 1 because . For example, if n = 7 and k =
3, then  is a solution to z7 = 1 because .

Furthermore, it is easy to verify that we get n distinct solutions to zn = 1
(and, therefore, all solutions, by Theorem 1.4) by setting k = 0, 1, 2,…, n − 1.
The solutions for k = n, n+1,…merely repeat those for k = 0, 1,…, because the
arguments so generated agree to within an integral multiple of 2π. As we
stated in Section 1.1, the n solutions can be expressed as



They are called the nth roots of unity.
When k = 0 in Equation (1-43), we get , which is a rather

trivial result. The first interesting root of unity occurs when k = 1, giving 
. This particular value shows up so often that mathematicians have

given it a special symbol.

Definition 1.12: Primitive nth root
For any natural number n, the value ωn given by

is called the primitive nth root of unity.

By De Moivre’s formula (Equation (1-40)), the nth roots of unity can be
expressed as

Geometrically the nth roots of unity are equally spaced points that lie on
the unit circle C1 (0) = {z : | z| = 1} and form the vertices of a regular polygon
with n sides.

 EXAMPLE 1.19 The solutions to the equation z8 = 1 are given by the eight
values  for k = 0, 1, 2,…, 7. In Cartesian form, these
solutions are . The primitive 8th root of unity is 



Figure 1.22 The eight eighth roots of unity.

From Expression (1-44) it is clear that ω8 = z1 of Equation (1-43). Figure
1.22 illustrates this result.

The procedure for solving zn = 1 is easy to generalize in solving zn = c for
any nonzero complex number c. If , then zn =
c iff . But this last equation is satisfied iff

rn = ρ, and

nθ =  + 2kπ, where k is an integer.

As before, we get n distinct solutions given by

for k = 0, 1, 2,…, n − 1.
Each solution in Equation (1-45) can be considered an nth root of c.

Geometrically, the nth roots of c are equally spaced points that lie on the
circle  and form the vertices of a regular polygon with n
sides. Figure 1.23 illustrates the case for n = 5.



Figure 1.23 The five solutions to the equation z5 = c.

It is interesting to note that if ζ is any particular solution to the equation zn

= c, then all solutions can be generated by multiplying ζ by the various nth
roots of unity. That is, the solution set is

The reason for this is that if ζn = c, then for any j = 0, 1, 2,…, n − 1, 
 and that multiplying a number by 

increases an argument of that number by , so that Expressions (1-46)
contain n distinct values.

 EXAMPLE 1.20 Find all cube roots of 

Solution Formula (1-45) gives

The Cartesian forms of the solutions are  and z2 = −2i, as
shown in Figure 1.24.

Figure 1.24 The point z = 8i and its three cube roots, z0, z1, and z2.



Is the quadratic formula valid in the complex domain? The answer is yes,
but we will delay its presentation until Section 2.2.

Our tour of the algebraic and geometric properties of complex numbers is
essentially complete. One task remains. It is to describe important properties
that regions, curves, and points in the complex plane might exhibit. Such a
description falls under the general rubric of an area of mathematics known as
Topology, and is the topic of our next section.

EXERCISES FOR SECTION 1.5
1. Calculate the following.

(a) 

(b) 

(c) 

2. Show that 

(a) by squaring twice.

(b) by using De Moivre’s formula, given in Equation (1-40).

3. Use the method of Example 1.17 to establish trigonometric identities for
cos3θ and sin 3θ.

4. Let z be any nonzero complex number and let n be an integer. Show that
zn +( )n is a real number.

5. Find all the roots in both polar and Cartesian form for each expression.

(a) 

(b) 

(c) 



(d) 

(e) 

6. Let m and n be positive integers that have no common factor. Show that
there are n distinct solutions to wn = zm and that they are given by

    

7. Suppose that z ≠ 1

(a) Show that 

(b) Use part (a) and De Moivre’s formula to derive Lagrange’s identity: 

8. If 1 = z0, z1,…, zn−1 are the nth roots of unity, prove that 

9. Let zk ≠ 1 be an nth root of unity. Prove that 

10. Equation (1-40), De Moivre’s formula, can be established without
recourse to properties of the exponential function. Note that this identity
is trivially true for n = 1.

(a) Use basic trigonometric identities to show the identity is valid for n =
2.

(b) Use induction to verify the identity for all positive integers.

(c) How would you verify this identity for all negative integers?

11. Find all four roots of z4 + 4 = 0, and use them to demonstrate that z4 + 4
can be factored into two quadratics with real coefficients.

12. Verify that Relation (1-41) is valid.
13. This exercise is for students who have studied modern algebra.

(a) For  show that the set  of nth roots of unity is a
group.



(b) Prove that  is a generator of this group provided k and n are
relatively prime.

1.6 THE TOPOLOGY OF COMPLEX
NUMBERS

In this section, we investigate some basic ideas concerning sets of points in
the plane. The first concept is that of a curve. Intuitively, we think of a curve
as a piece of string placed on a flat surface in some type of meandering
pattern. More formally, we define a curve to be the range of a continuous
complex-valued function z (t) defined on the interval [a, b]. That is, a curve C
is the range of a function given by z (t) = (x (t), y (t)) = x (t) + iy (t), for a ≤ t
≤ b, where both x (t) and y (t) are continuous real-valued functions. If both x
(t) and y (t) are differentiable, we say that the curve is smooth. A curve for
which x (t) and y (t) are differentiable except for a finite number of points is
called piecewise smooth. We specify a curve C as

and say that z (t) is a parametrization for the curve C. Note that, with this
parametrization, we are specifying a direction for the curve C, saying that C
is a curve that goes from the initial point z (a) = (x (a), y (a)) = x (a) + iy (a)
to the terminal point z (b) = (x (b), y (b)) = x (b) + iy (b). If we had another
function whose range was the same set of points as z (t) but whose initial and
final points were reversed, we would indicate the curve that this function
defines by −C.

 EXAMPLE 1.21 Find parametrizations for C and − C, where C is the
straight−line segment beginning at z0 = (x0, y0) and ending at z1 = (x1, y2).

Solution Refer to Figure 1.25. The vector form of a line shows that the
direction of C is z1 − z0. As z0 is a point on C, its vector equation is



Clearly one parametrization for − C is

Figure 1.25 The straight−line segment C joining z0 to z1.

Figure 1.26 The curve , which forms a
four−leaved rose.

Note that , which illustrates a general principle: If C is a curve
parametrized by z (t) for 0 ≤ t ≤ 1, then one parametrization for − C will be 

A curve C having the property that z (a) = z (b) is said to be a closed
curve. The line segment (1-48) is not a closed curve. The range of z (t) = x (t)
+ iy (t), where x (t) = sin 2t cos t, and y (t) = sin 2tsin t for  is a closed
curve because z(0) = (0, 0) = z (2π). The range of z(t) is the four−leaved rose
shown in Figure 1.26. Note that, as t goes from 0 to , the point is on leaf 1;
from  to π, it is on leaf 2; between π and  it is on leaf 3; and finally, for t
between  and 2π, it is on leaf 4.

Note further that, at (0,0), the curve has crossed over itself (at points other
than those corresponding with t = 0 and t = 2π); we want to be able to



distinguish when a curve does not cross over itself in this way. The curve C is
called simple if it does not cross over itself, except possibly at its initial and
terminal points. In other words, the curve C : z (t), for a ≤ t ≤ b, is simple
provided that z (t1) ≠ z (t2) whenever t1 ≠ t2, except possibly when t1 = a and
t2 = b.

 EXAMPLE 1.22 Show that the circle C with center z0 = x0+iy0 and radius
R can be parametrized to form a simple closed curve.

Solution Note that C : z (t) = (x0 + R cos t) + i (y0 + R sin t) = z0 + Reit, for 0
≤ t ≤ 2π, gives the required parametrization.

Figure 1.27 shows that, as t varies from 0 to 2π, the circle is traversed
counterclockwise. If you were traveling around the circle in this manner, its
interior would be on your left. When a simple closed curve is parametrized in
this fashion, we say that the curve has a positive orientation. We will have
more to say about this idea shortly.

We need to develop some vocabulary that will help describe sets of points
in the plane. One fundamental idea is that of an ε neighborhood of the point
z0.

Figure 1.27 The simple closed curve 



Figure 1.28 An ε neighborhood of the point z0.

It is the open disk of radius ε > 0 about z0 shown in Figure 1.28.
Formally, it is the set of all points satisfying the inequality {z : | z − z0| ≤ ε}
and is denoted Dε (z0). That is,

 EXAMPLE 1.23 The solution sets of the inequalities | z| < 1, | z − i| < 2,
and | z + 1 + 2i| < 3 are neighborhoods of the points 0, i, and −1 − 2i, with
radii 1, 2, and 3, respectively. They can also be expressed as D1 (0), D2 (i),
and D3 (− 1 − 2i).

We also define  the closed diskof radius ε centered at z0, and ,
the punctured diskof radius ε centered at z0, as

The point z0 is said to be an interior point of the set S provided that there
exists an ε neighborhood of z0 that contains only points of S; z0 is called an
exterior point of the set S if there exists an ε neighborhood of z0 that
contains no points of S. If z0 is neither an interior point nor an exterior point
of S, then it is called a boundary point of S and has the property that each ε
neighborhood of z0 contains both points in S and points not in S. Figure 1.29
illustrates this situation.



Figure 1.29 The interior, exterior, and boundary of a set.

The boundary of DR (z0) is the circle depicted in Figure 1.27. We denote
this circle CR (z0) and refer to it as the circle of radius R centered at z0.
Thus,

We use the notation  to indicate that the parametrization we chose for
this simple closed curve resulted in a positive orientation;  denotes the
same circle, but with a negative orientation.(In both cases, counterclockwise
denotes the positive direction.) Using notation that we have already
introduced, we get .

 EXAMPLE 1.24 Let S = D1 (0) = {z : | z| < 1}. Find the interior, exterior,
and boundary of S.

Solution We show that every point of S is an interior point of S. Let z0 be a
point of S. Then | Z0| < 1, and we can choose ε = 1 − | z0| > 0. We claim that 

, then
 

Hence the ε neighborhood of z0 is contained in S, which shows that z0 is an
interior point of S. It follows that the interior of S is the set S itself.

Similarly, it can be shown that the exterior of S is the set {z : | z| > 1}. The
boundary of S is the unit circle C1 (0) = {z : | z| = 1}. This condition is true
because if  is any point on the circle, then any ε neighborhood of z0



will contain the point , which belongs to S, and , which does
not belong to S. We leave the details as an exercise.

The point z0 is called an accumulation point of the set S if, for each ε,
the punctured disk  contains at least one point of S. We ask you to show
in the exercises that the set of accumulation points of D1 (0) is  (0), and that
there is only one accumulation point of , namely the point
0. We also ask you to prove that a set is closed if and only if it contains all of
its accumulation points.

A set S is called an open set if every point of S is an interior point of S.
Thus, Example (1.24) shows that D1 (0) is open. A set S is called a closed set
if it contains all its boundary points. A set S is said to be a connected set if
every pair of points z1 and z2 contained in S can be joined by a curve that lies
entirely in S. Roughly speaking, a connected set consists of a “single piece.”
The unit disk D1(0) = {z : | z| < 1} is a connected open set. We ask you to
verify in the exercises that, if z1 and z2 lie in D1(0), then the straight−line
segment joining them lies entirely in D1(0). The annulus A = {z : 1 < | z| < 2}
is a connected open set because any two points in A can be joined by a curve
C that lies entirely in A, as shown in Figure 1.30. The set B = {z : | z + 2| < 1
or | z − 2| < 1} consists of two disjointed disks. We leave it as an exercise for
you to show that the set is not connected, as shown in Figure 1.31.

We call a connected open set a domain. In the exercises we ask you to
show that the open unit disk D1 (0) = {z : | z| < 1} is a domain and that the
closed unit disk  is not a domain. The term domain is a noun
and is a type of set. In Chapter 2, we note that it also refers to the set of points
on which a function is defined. In the latter context, it does not necessarily
mean a connected open set.



Figure 1.30 The annulus A = {z : 1 < | z| < 2} is a connected set.

Figure 1.31 The set B = {z : | z + 2| < 1 or | z − 2| < 1} is not a connected set.

 EXAMPLE 1.25 Show that the right half-plane H = {z : Re (z) > 0} is a
domain.

Solution First we show that H is connected. Let z0 and z1 be any two points
in H. We claim the obvious, that the straight−line segment C given by
Equation (1-48) lies entirely within H. To prove this claim, we let z(t*) = z0 +
(z1 − z0)t*, for some , be an arbitrary point on C. We must show that
Re (z (t*)) > 0. Now,



If t* = 0, the last expression becomes Re (z0), which is greater than zero
because z0 ∈ H. Likewise, if t* = 1, then Equation (1-53) becomes Re (z1),
which also is positive. Finally, if 0 < t* < 1, then each term in Equation (1-53)
is positive, so in this case we also have Re (z (t*)) > 0.

To show that H is open, we suppose without loss of generality that the
inequality Re (z0) ≤ Re (z1) holds. We claim that  where ε = Re (z0).
We leave the proof of this claim as an exercise.

A domain, together with some, none, or all its boundary points, is called a
region. For example, the horizontal strip {z : 1 < Im (z) ≤ 2} is a region. A set
formed by taking the union of a domain and its boundary is called a closed
region; thus, {z : 1 ≤ Im (z) ≤ 2} is a closed region. A set S is said to be a
bounded set if it can be completely contained in some closed disk, that is, if
there exists an R > 0 such that for each z in S we have | z| ≤ R. The rectangle
given by {z : | x| ≤ 4 and | y| ≤ 3} is bounded because it is contained inside the
disk . A set that cannot be enclosed by any closed disk is called an
unbounded set.

We mentioned earlier that a simple closed curve is positively oriented if
its interior is on the left when the curve is traversed. How do we know,
though, that any given simple closed curve will have an interior and exterior?
Theorem 1.6 guarantees that this is indeed the case. It is due in part to the
work of the French mathematician Camille Jordan (1838–1922).

 Theorem 1.5 (The Jordan curve theorem) The complement of any
simple closed curve C can be partitioned into two mutually exclusive
domains, I and E, in such a way that I is bounded, E is unbounded,
and C is the boundary for both I and E. In addition, I ∪ E ∪ C is the
entire complex plane. The domain I is called the interior of C, and the



domain E is called the exterior of C.

The Jordan curve theorem is a classic example of a result in mathematics
that seems obvious but is very hard to demonstrate, and its proof is beyond
the scope of this book. Jordan’s original argument, in fact, was inadequate,
and not until 1905 was a correct version finally given by the American
topologist Oswald Veblen (1880–1960). The difficulty lies in describing the
interior and exterior of a simple closed curve analytically and in showing that
they are connected sets. For example, in which domain (interior or exterior)
do the two points depicted in Figure 1.32 lie? If they are in the same domain,
how, specifically, can they be connected with a curve? If you appreciated the
subtleties involved in showing that the right half−plane of Example 1.25 is
connected, you can begin to appreciate the obstacles that Veblen had to
navigate.

Figure 1.32 Are z1 and z2 in the interior or exterior of this simple closed
curve?

Although an introductory treatment of complex analysis can be given
without using this theorem, we think it is important for the well−informed
student at least to be aware of it.



EXERCISES FOR SECTION 1.6
1. Find a parametrization of the line that

(a) joins the origin to the point 1 + i.

(b) joins the point 1 to the point 1 + i.

(c) joins the point i to the point 1 + i.

(d) joins the point 2 to the point 1 + i.

2. Sketch the curve z (t) = t2 + 2t + i (t + 1)

(a) for − 1 ≤ t ≤ 0.

(b) for 1 ≤ t ≤ 2.

Hint: Use x = t2 + 2t, y = t + 1 and eliminate the parameter t.

3. Find a parametrization of the curve that is a portion of the parabola y = x2

that

(a) joins the origin to the point 2 + 4i.

(b) joins the point −1 + i to the origin.

(c) joins the point 1 + i to the origin.

4. This exercise completes Example 1.25: Suppose that Re (z0) > 0. Show
that Re (z0) > 0 for all z ∈ Dε (z0), where ε = Re (z0).

5. Find a parametrization of the curve that is a portion of the circle | z| = 1
that joins the point −i to i if

(a) the curve is the right semicircle.

(b) the curve is the left semicircle.



6. Show that D1 (0) is a domain and that  is not a domain.

7. Find a parametrization of the curve that is a portion of the circle C1(0)
that joins the point 1 to i if

(a) the parametrization is counterclockwise along the quarter circle.

(b) the parametrization is clockwise.

8. Fill in the details to complete Example 1.24. That is, show that

(a) the set {z : | z| > 1} is the exterior of the set S.

(b) the set C1 (0) is the boundary of the set S.

9. Consider the following sets.

(i) 

(ii) 

(iii) 

(iv) 

(v) 

(vi) 

(vii) 

(a) Sketch each set.

(b) State, with reasons, which of the following terms apply to the above
sets: open; connected; domain; region; closed region; bounded.

10. Show that D1 (0) is connected. Hint: Show that if z1 and z2 lie in D1(0),
then the straight-line segment joining them lies entirely in D1(0).



11. Let S = {z1, z2,…, zn} be a finite set of points. Show that S is a bounded
set.

12. Prove that the boundary of the neighborhood Dε(z0) is the circle Cε(z0).

13. Let S be the open set consisting of all points z such that | z + 2| < 1 or | z −
2| < 1. Show that S is not connected.

14. Prove that the only accumulation point of  is the point 0.
15. Regarding the relation between closed sets and accumulation points,

(a) prove that if a set is closed, then it contains all its accumulations
points.

(b) prove that if a set contains all its accumulation points, then it is closed.

16. Prove that  is the set of accumulation points of

(a) the set D1 (0).

(b) the set 

17. Memorize and be prepared to illustrate all the terms in bold in this
section.

1 See An Imaginary Tale: the Story of , by Paul J. Nahin, Princeton University Press,
pages 48-55.



chapter 2
complex functions

Overview
The last chapter developed a basic theory of complex numbers. For the next
few chapters, we turn our attention to functions of complex numbers. They
are defined in a similar way to functions of real numbers that you studied in
calculus; the only difference is that they operate on complex numbers rather
than real numbers. This chapter focuses primarily on very basic functions,
their representations, and properties associated with functions such as limits
and continuity. You will learn some interesting applications as well as some
exciting new ideas.

2.1 FUNCTIONS AND LINEAR
MAPPINGS

A complex-valued function f of the complex variable z is a rule that assigns
to each complex number z in a set D one and only one complex number w.
We write w = f (z) and call w the image of z under f. A simple example of a
complex-valued function is given by the formula w = f (z) = z2. The set D is
called the domain of f, and the set of all images {w = f (z) : z  D} is called
the range of f. When the context is obvious, we omit the phrase complex-
valued, and simply refer to a function f, or to a complex function f.

We can define the domain to be any set that makes sense for a given rule,
so for w = f (z) = z2, we could have the entire complex plane for the domain
D, or we might artificially restrict the domain to some set such as D = D1 (0)



= {z : | z| < 1}. Determining the range for a function defined by a formula is
not always easy, but we will see plenty of examples later on. In some
contexts functions are referred to as mappings or transformations.

In Section 1.6, we used the term domain to indicate a connected open set.
When speaking about the domain of a function, however, we mean only the
set of points on which the function is defined. This distinction is worth
noting, and context will make clear the use intended.

Figure 2.1 The mapping w = f (z).

Just as z can be expressed by its real and imaginary parts, z = x + iy, we
write f (z) = w = u + iv, where u and v are the real and imaginary parts of w,
respectively. Doing so gives us the representation

w = f (z) = f (x, y) = f (x + iy) = u + iv.

Because u and v depend on x and y, they can be considered to be real-valued
functions of the real variables x and y; that is,

u = u (x, y) and v = v (x, y).

Combining these ideas, we often write a complex function f in the form

Figure 2.1 illustrates the notion of a function (mapping) using these symbols.

 EXAMPLE 2.1 Write f (z) = z4 in the form f (z) = u (x, y) + iv (x, y).

Solution Using the binomial formula, we obtain



so that  and 

 EXAMPLE 2.2 Express the function  in the form f
(z) = u (x, y) + iv (x, y).

Solution Using the elementary properties of complex numbers, it follows that

 so that  and
v (x, y) = xy.

Examples 2.1 and 2.2 show how to find u (x, y) and v (x, y) when a rule
for computing f is given. Conversely, if u (x, y) and v (x, y) are two real-
valued functions of the real variables x and y, they determine a complex-
valued function f (x, y) = u (x, y) + iv (x, y), and we can use the formulas

 and 

to find a formula for f involving the variables z and .

 EXAMPLE 2.3 Express  by a formula involving the variables
z and .

Solution Calculation reveals that



Using  in the expression of a complex function f may be convenient.
It gives us the polar representation

where u and v are real functions of the real variables r and θ.

Remark 2.1 For a given function f, the functions u and v
defined here are different from those defined by Equation
(2-1) because Equation (2-1) involves Cartesian
coordinates and Equation (2-2) involves polar coordinates.

 EXAMPLE 2.4 Express f (z) = z2 in both Cartesian and polar form.

Solution For the Cartesian form, a simple calculation gives

so that

 and 
For the polar form, we refer to Equation (1-39) to get

so that

 and 

Once we have defined u and v for a function f in Cartesian form, we must use
different symbols if we want to express f in polar form. As is clear here, the
functions u and U are quite different, as are v and V. Of course, if we are
working only in one context, we can use any symbols we choose.



 EXAMPLE 2.5 Express f (z) = z5 + 4z2 – 6 in polar form.

Solution Again, using Equation (1-39) we obtain

We now look at the geometric interpretation of a complex function. If D
is the domain of real-valued functions u (x, y) and v (x, y), the equations

u = u (x, y) and v = v (x, y)

describe a transformation (or mapping) from D in the xy plane into the uv
plane, also called the w plane. Therefore, we can also consider the function

w = f (z) = u (x, y) + iv (x, y)

to be a transformation (or mapping) from the set D in the z plane onto the
range R in the w plane. This idea was illustrated in Figure 2.1. In the
following paragraphs we present some additional key ideas. They are staples
for any kind of function, and you should memorize all the terms in bold.

If A is a subset of the domain D of f, the set B = {f (z) : z ∈ A} is called
the image of the set A, and f is said to map A onto B. The image of a single
point is a single point, and the image of the entire domain, D, is the range, R.
The mapping w = f (z) is said to be from A into S if the image of A is
contained in S. Mathematicians use the notation f : A → S to indicate that a
function maps A into S.

Figure 2.2 illustrates a function f whose domain is D and whose range is
R. The shaded areas depict that the function maps A onto B. The function also
maps A into R, and, of course, it maps D onto R.

The inverse image of a point w is the set of all points z in D such that w =
f (z). The inverse image of a point may be one point, several points, or
nothing at all. If the last case occurs then the point w is not in the range of f.



For example, if w = f (z) = iz, the inverse image of the point –1 is the single
point i, because f (i) = i (i) = –1, and i is the only point that maps to –1. In the
case of w = f (z) = z2, the inverse image of the point –1 is the set {i, –i}.

Figure 2.2 f maps A onto B; f maps A into R.

You will learn in Chapter 5 that if w = f (z) = ez, the inverse image of the
point 0 is the empty set—there is no complex number z such that ez = 0.

The inverse image of a set of points, S, is the collection of all points in the
domain that map into S. If f maps D onto R, it is possible for the inverse
image of R to be a function as well, but the original function must have a
special property: A function f is said to be one-to-one if it maps distinct
points z1 ≠ z2 onto distinct points f (z1) ≠ f (z2). Many times an easy way to
prove that a function f is one-to-one is to suppose f (z1) = f (z2), and from this
assumption deduce that z1 must equal z2. Thus, f (z) = iz is one-to-one
because if f (z1) = f (z2), then iz1 = iz2. Dividing both sides of the last
equation by i gives z1 = z2. Figure 2.3 illustrates the idea of a one-to-one
function: Distinct points get mapped to distinct points.

The function f (z) = z2 is not one-to-one because −i ≠ i, but f (i) = f (−i) =
−1. Figure 2.4 depicts this situation: At least two different points get mapped
to the same point.

In the exercises we ask you to demonstrate that one-to-one functions give
rise to inverses that are functions. Loosely speaking, if w = f (z) maps the set
A one-to-one and onto the set B, then for each w in B there exists exactly one
point z in A such that w = f (z). For any such value of z we can take the



Figure 2.3 A one-to-one function.

Figure 2.4 The function f (z) = z2 is not one-to-one.

equation w = f (z) and “solve” for z as a function of w. Doing so produces an
inverse function z = g (w) where the following equations hold:

Conversely, if w = f (z) and z = g (w) are functions that map A into B and
B into A, respectively, and Equations (2-3) hold, then f maps the set A one-to-
one and onto the set B.

Further, if f is a one-to-one mapping from D onto T and if A is a subset of
D, then f is a one-to-one mapping from A onto its image B. We can also show
that if  = f (z) is a one-to-one mapping from A onto B and w = g ( ) is a one-
to-one mapping from B onto S, then the composite mapping w = g (f (z)) is a
one-to-one mapping from A onto S.

We usually indicate the inverse of f by the symbol f−1. If the domains of f
and f−1 are A and B, respectively, we can rewrite Equations (2-3) as

Also, for z0  A and w0  B,



 EXAMPLE 2.6 If w = f (z) = iz for any complex number z, find f–1 (w).

Solution We can easily show f is one-to-one and onto the entire complex
plane. We solve for z, given w = f (z) = iz, to get  By Equations (2-
5), this result implies that f–1 (w) = -iw for all complex numbers w.

Remark 2.2 Once we have specified f–1 (w) = –iw for all complex numbers
w, we note that there is nothing magical about the symbol w. We could just as
easily write f–1 (z) = –iz for all complex numbers z.

We now show how to find the image B of a specified set A under a given
mapping u+ iv = w = f (z). The set A is usually described with an equation or
inequality involving x and y. Using inverse functions, we can construct a
chain of equivalent statements leading to a description of the set B in terms of
an equation or an inequality involving u and v.

 EXAMPLE 2.7 Show that the function f (z) = iz maps the line y = x + 1 in
the xy plane onto the line v = – u – 1 in the w plane.

Solution (Method1): With A = {(x, y) : y = x +1}, we want to describe B = f
(A). We let z = x + iy  A and use Equations (2-5) and Example 2.6 to get

where  means if and only if (iff).
Note what this result says: u + iv = w  B  v = – u – 1. The image of A

under f, therefore, is the set B = {(u, v) : v = –u – 1}.
(Method2): We write u+iv = w = f (z) = i(x + iy) = – y+ix and note that the

transformation can be given by the equations u = –y and v = x. Because A is
described by A = {x + iy : y = x + 1}, we can substitute u = –y and v = x into
the equation y = x + 1 to obtain – u = v + 1, which we can rewrite as v = –u –



1. If you use this method, be sure to pay careful attention to domains and
ranges.

We now look at some elementary mappings. If we let B = a + ib denote a
fixed complex constant, the transformation

w = T (z) = z + B = x + a + i (y + b)

is a one-to-one mapping of the z plane onto the w plane and is called a
translation. This transformation can be visualized as a rigid translation
whereby the point z is displaced through the vector B = a+ib to its new
position w = T (z). The inverse mapping is given by

z = T–1 (w) = w − B = u − a + i (v − b)

and shows that T is a one-to-one mapping from the z plane onto the w plane.
The effect of a translation is depicted in Figure 2.5.

Figure 2.5 The translation w = T (z) = z + B = x + a + i (y + b).

Figure 2.6 The rotation w = R(z) = rei(θ+α).

If we let α be a fixed real number, then for z = reiθ, the transformation



is a one-to-one mapping of the z plane onto the w plane and is called a
rotation. It can be visualized as a rigid rotation whereby the point z is rotated
about the origin through an angle α to its new position w = R(z). If we use
polar coordinates and designate w = ρiΦ in the w plane, then the inverse
mapping is

This analysis shows that R is a one-to-one mapping of the z plane onto the w
plane. The effect of rotation is depicted in Figure 2.6.

 EXAMPLE 2.8 The ellipse centered at the origin with a horizontal major
axis of four units and vertical minor axis of two units can be represented by
the parametric equation

s (t) = 2cos t + isin t = (2cos t, sin t), for 0 ≤ t ≤ 2π.

Figure 2.7 (a) Plot of the original ellipse; (b) plot of the rotated ellipse.

Suppose that we wanted to rotate the ellipse by an angle of  radians and shift
the center of the ellipse 2 units to the right and 1 unit up. Using complex
arithmetic, we can easily generate a parametric equation r (t) that does so:



Figure 2.7 shows parametric plots of these ellipses, using the software
program Maple.

If we let K > 0 be a fixed positive real number, then the transformation

w = S (z) = Kz = Kx + iKy

is a one-to-one mapping of the z plane onto the w plane and is called a
magnification. If K > 1, it has the effect of stretching the distance between
points by the factor K. If K < 1, then it reduces the distance between points
by the factor K. The inverse transformation is given by

and shows that S is one-to-one mapping from the z plane onto the w plane.
The effect of magnification is shown in Figure 2.8.

Figure 2.8 The magnification w = S (z) = Kz = Kx + iKy.

Finally, if we let A = Keiα and B = a + ib, where K > 0 is a positive real
number, then the transformation



w = L (z) = Az + B

is a one-to-one mapping of the z plane onto the w plane and is called a linear
transformation. It can be considered as the composition of a rotation, a
magnification, and a translation. It has the effect of rotating the plane through
an angle given by α = Arg A, followed by a magnification by the factor K = |
A|, followed by a translation by the vector B = a+ ib. The inverse mapping is
given by  and shows that L is a one-to-one mapping from the
z plane onto the w plane.

 EXAMPLE 2.9 Show that the linear transformation w = iz + i maps the
right half-plane Re (z) ≥ 1 onto the upper half-plane Im (w) ≥ 2.

Solution (Method1): Let A = {(x, y) : x ≥ 1}. To describe B = f (A), we solve
w = iz + i for z to get  Using Equations (2-5) and the
method of Example 2.7 we have

Thus, B = {w = u + iv : v ≥ 2}, which is the same as saying Im (w) ≥ 2.

(Method2): When we write w = f (z) in Cartesian form as

w = u + iv = i (x + iy) + i = – y + i (x + 1),

we see that the transformation can be given by the equations u = –y and v = x
+ 1. Substituting x = v – 1 in the inequality Re (z) = x ≥ 1 gives v – 1 ≥ 1, or v
≥ 2, which is the upper half-plane Im (w) > 2.

(Method3): The effect of the transformation w = f (z) is a rotation of the plane
through the angle  (when z is multiplied by i) followed by a translation
by the vector B = i. The first operation yields the set Im (w) ≥ 1. The second



shifts this set up 1 unit, resulting in the set Im (w) ≥ 2.

We illustrate this result in Figure 2.9.

Figure 2.9 The linear transformation w = f (z) = iz + i.

Translations and rotations preserve angles. First, magnifications rescale
distance by a factor K, so it follows that triangles are mapped onto similar
triangles, preserving angles. Then, because a linear transformation can be
considered to be a composition of a rotation, a magnification, and a
translation, it follows that linear transformations preserve angles.
Consequently, any geometric object is mapped onto an object that is similar
to the original object; hence linear transformations can be called similarity
mappings.

 EXAMPLE 2.10 Show that the image of D1 (−1 −i) = {z : | z + 1 + i| < 1}
under the transformation w = (3 − 4i) z +6+2i is the open disk D5 (−1 + 3i) =
{w : | w + 1 − 3i| < 5}.

Solution The inverse transformation is  so if we designate the range
of f as B, then



Hence the disk with center − 1 −i and radius 1 is mapped one-to-one and onto
the disk with center − 1 + 3i and radius 5 as shown in Figure 2.10.

Figure 2.10 The mapping w = S (z) = (3 − 4i)z + 6 + 2i.

 EXAMPLE 2.11 Show that the image of the right half-plane Re (z) ≥ 1
under the linear transformation w = ( − 1 + i) z − 2+3i is the half-plane v ≥
u+7.

Solution The inverse transformation is given by

which we write as

Substituting  into Re(z) = x ≥ 1 gives  which simplifies
to v ≥ u + 7. Figure 2.11 illustrates the mapping.



Figure 2.11 The mapping w = f (z) = (−1 + i) z – 2 + 3i.

EXERCISES FOR SECTION 2.1
1. Find f (1 + i) for the following functions.

(a) f (z) = z + z–2 + 5
(b) 

(c) f (z) = f (x + iy) = x + y + i (x3 y − y2).
(d) 
2. Let f (z) = z21 – 5z7 + 9z4. Use polar coordinates to find

(a) f (–1 + i).
(b) 
3. Express the following functions in the form u (x, y) + iv (x, y).

(a) f (z) = z3.

(b) f (z) = z–2 + (2 – 3i) z.
(c) 
4. Express the following functions in the polar coordinate form u (r, θ) + iv

(r, θ).

(a) f (z) = z5 + z–5.



(b) f (z) = z5 + z–3.
(c) For what values of z are the above expressions valid?

Why?
5. Let f (z) = f (x + iy) = ex cos y + iex sin y. Find

(a) f(0).
(b) f (iπ).
(c) 
(d) f (2 + iπ).
(e) f (3πi).
(f) Is f a one-to-one function? Why or why not?
6. For z ≠ 0, let f (z) = f (x + iy) = ln (x2 + y2) + i arctan . Find

(a) f (1).
(b) f ( + i).
(c) f (1+ i ).
(d) f (3 + 4i).
(e) Is f a one-to-one function? Why or why not?
7. For z ≠ 0, let f (z) = ln r + iθ, where r = |z|, and θ = Arg z. Find

(a) f(1).
(b) f (–2).
(c) f (1 + i).
(d) f (–  + i).
(e) Is f a one-to-one function? Why or why not?
8. Suppose that f maps A into B, g maps B into A, and that Equations (2-3)



hold.

(a) Show that f is one-to-one.
(b) Show that f maps A onto B.
9. Suppose f is a one-to-one mapping from D onto T and that A is a subset of

D.

(a) Show that f is one-to-one from A onto B, where B = {f
(z) : z ∈ A}.

(b) Show, additionally, that if g is one-to-one from B onto
S, then h (z) is one-to-one from A onto S, where h (z) = g
(f (z)).

10. Let w = f (z) = (3 + 4i) z – 2 + i.

(a) Find the image of the disk | z − 1| < 1.
(b) Find the image of the line x = t, y = 1 − 2t for −∞ < t <

∞.
(c) Find the image of the half-plane Im (z) > 1.
(d) For parts (a) and (b), and (c), sketch the mapping.

Identify three points of your choice and their
corresponding images.

11. Let w = (2 + i) z − 2i. Find the triangle onto which the triangle with
vertices z1 = –2 + i, z2 = –2 + 2i, and z3 = 2 + i is mapped.

12. Let S (z) = Kz, where K > 0 is a positive real constant. Show that the
equation | S (z1) − S (z2)| = K |z1 − z2| holds and interpret this result
geometrically.

13. Find the linear transformations w = f (z) that satisfy the following
conditions.



(a) The points z1 = 2 and z2 = –3i map onto w1 = 1 + i and
w2 = 1.

(b) The circle | z| = 1 maps onto the circle | w − 3 + 2i| = 5,
and f (−i) = 3 + 3i.

(c) The triangle with vertices −4 + 2i, −4 + 7i, and 1 + 2i
maps onto the triangle with vertices 1, 0, and 1 + i,
respectively.

14. Give a proof that the image of a circle under a linear transformation is a
circle. Hint: Let the circle have the parametrization z = z0 + Reit, 0 ≤ t ≤
2π.

15. Prove that the composition of two linear transformations is a linear
transformation.

16. Show that a linear transformation that maps the circle | z − zo| = R1 onto
the circle | w − wo| = R2 can be expressed in the form
A (w − wo) R1 = (z − zo) R2, where | A| = 1.

2.2 THE MAPPINGS w = zn and w = z

In this section we turn our attention to power functions.
For z = reiθ ≠ 0, we can express the function w = f (z) = z2 in polar

coordinates as

If we also use polar coordinates for w = ρeiΦ in the w plane, we can express
this mapping by the system of equations

ρ = r2 and ø = 2θ.



Because an argument of the product (z) (z) is twice an argument of z, we
say that f doubles angles at the origin. Points that lie on the ray r > 0, θ = α
are mapped onto points that lie on the ray ρ > 0, ø = 2α. If we now restrict the
domain of w = f (z) = z2 to the region

then the image of A under the mapping w = z2 can be described by the set

which consists of all points in the w plane except the point w = 0.
The inverse mapping of f, which we denote g, is then

where w ∈ B. That is,

where w ≠ 0. The function g is so important that we call special attention to it
with a formal definition.

Definition 2.1: Principal square root
The Function

is called the principal square root function.

We leave as an exercise to show that f and g satisfy Equations (2-3) and
thus are inverses of each other that map the set A one-to-one and onto the set
B and the set B one-to-one and onto the set A, respectively. Figure 2.12
illustrates this relationship.

What are the images of rectangles under the mapping w = z2? To find out,
we use the Cartesian form



and the resulting system of equations

Figure 2.12 The mappings w = z2 and z = w

 EXAMPLE 2.12 Show that the transformation w = f (z) = z2, for z ≠ 0,
usually maps vertical and horizontal lines onto parabolas and use this fact to
find the image of the rectangle {(x, y) : 0 < x < a, 0 < y < b}.

Solution Using Equations (2-9), we determine that the vertical line x = a is
mapped onto the set of points given by the equations u = a2 − y2 and v = 2ay.
If a ≠ 0, then  and

Equation (2-10) represents a parabola with vertex at a2, oriented horizontally,
and opening to the left. If a > 0, the set {(u, v) : u = a2 − y2, v = 2ay} has v >
0 precisely when y > 0, so the part of the line x = a lying above the x-axis is
mapped to the top half of the parabola.

The horizontal line y = b is mapped onto the parabola given by the
equations u = x2 − b2 and v = 2xb. If b ≠ 0, then as before we get

Equation (2-11) represents a parabola with vertex at −b2, oriented
horizontally and opening to the right. If b > 0, the part of the line y = b to the
right of the y-axis is mapped to the top half of the parabola because the set



{(u, v) : u = x2 − b2, v = 2bx} has v > 0 precisely when x > 0.
Quadrant I is mapped onto quadrants I and II by w = z2, so the rectangle 0

< x < a, 0 < y < b is mapped onto the region bounded by the top halves of
the parabolas given by Equations (2-10) and (2-11) and the u-axis. The
vertices 0, a, a + ib, and ib of the rectangle are mapped onto the four points 0,
a2, a2 − b2 + i2ab, and − b2, respectively as indicated in Figure 2.13.

Finally we can easily verify that the vertical line x = 0, y ≠ 0 is mapped to
the set {(− y2, 0) : y ≠ 0}. This is simply the set of negative real numbers.
Similarly the horizontal line y = 0, x ≠ 0 is mapped to the set {(x2, 0) : x ≠ 0},
which is the set of positive real numbers.

What happens to images of regions under the mapping

where −π < θ ≤ π? If we use polar coordinates for w = ρeiø in the w plane, we
can represent this mapping by the system

Equations (2-12) indicate that the argument of f (z) is half the argument of
z and that the modulus of f (z) is the square root of the modulus of z. Points

Figure 2.13 The transformation w = z2



Figure 2.14 The mapping w = z

that lie on the ray r > 0, θ = α are mapped onto the ray ρ > 0,  The image
of the z plane (with the point z = 0 deleted) consists of the right half-plane Re
(w) > 0 together with the positive v-axis. The mapping is shown in Figure
2.14.

We can use knowledge of the inverse mapping z = w2 to get further
insight into how the mapping w = z  acts on rectangles. If we let z = x + iy ≠
0, then

and we note that the point z = x + iy in the z plane is related to the point w = u
+ iv = z  in the w plane by the system of equations

 EXAMPLE 2.13 Show that the transformation w = f (z) = z  usually maps
vertical and horizontal lines onto portions of hyperbolas.

Solution Let a > 0. Equations (2-13) map the right half-plane given by Re (z)
> a (i.e., x > a) onto the region in the right half-plane satisfying u2 − v2 > a
and lying to the right of the hyperbola u2 − v2 = a. If b > 0, Equations (2-13)
map the upper half-plane Im (z) > b (i.e., y > b) onto the region in quadrant I
satisfying 2uv > b and lying above the hyperbola 2uv = b. This situation is
illustratedin Figure 2.15. We leave as an exercise the investigation of what
happens when a = 0 or b = 0.



Figure 2.15 The mapping w = z

We can easily extend what we’ve done to integer powers greater than 2.
We begin by letting n be a positive integer, considering the function w = f (z)
= zn, for z = reiθ ≠ 0, and then expressing it in the polar coordinate form

If we use polar coordinates w = ρeiø in the w plane, the mapping defined
by Equation (2-14) can be given by the system of equations

ρ = rn and ø = nθ.
The image of the ray r > 0, θ = α is the ray ρ > 0, ø = nα, and the angles

at the origin are increased by the factor n. The functions cos nθ and sin nθ are
periodic with period  so f is in general an n-to-one function; that is, n points
in the z plane are mapped onto each nonzero point in the w plane.

If we now restrict the domain of w = f (z) = zn to the region

then the image of E under the mapping w = zn can be described by the set

which consists of all points in the w plane except the point w = 0. The inverse
mapping of f, which we denote g, is then

where w ∈ F. That is,



where w = 0. As with the principal square root function, we make an
analogous definition for nth roots.

Definition 2.2: Principal nth root
The function

is called the principal nth root function.

We leave as an exercise to show that f and g are inverses of each other
that map the set E one-to-one and onto the set F and the set F one-to-one and
onto the set E, respectively. Figure 2.16 illustrates this relationship.

Figure 2.16 The mappings w = zn and z = w

The Quadratic Formula
We are now able to present a familiar result. It’s proof, which is left as an
exercise, depends on the ideas of this section, and Section 1.5.

 Theorem 2.1 (The Quadratic Formula) The solutions to the



equation az2 + bz + c = 0 are

where the principal square root, Equation (2-8), is used in each case.

 EXAMPLE 2.14 Find all solutions to the equation z2 + z + iz + 5i = 0.

Solution First, rewrite the equation as z2 + (1 + i)z + 5i = 0. The quadratic
formula then gives

Now, Arg (−18i) = − , and | − 18i| = 18, so by Theorem 2.1 and Equation (2-
8) the solutions are

Simplifying the last expression gives z = 1 − 2i and z = − 2 + i.

EXERCISES FOR SECTION 2.2
1. Find the images of the mapping w = z2 in each case, and sketch the

mapping.

(a) The horizontal line {(x, y) : y = 1}.
(b) The vertical line {(x, y) : x = 2}.
(c) The rectangle {(x, y) : 0 < x < 2, 0 < y < 1}.
(d) The triangle with vertices 0, 2, and 2 + 2i.
(e) The infinite strip {(x, y) : 1 < x < 2}.



(f) The right half-plane region to the right of the hyperbola
x2 − y2 =1.

(g) The first quadrant region between the hyperbolas xy = 
and xy = 4.

2. For what values of z does (z2)  = z hold if the principal value of the square
root is to be used?

3. Solve the following quadratics; use Theorem 2.1 if necessary.

(a) 2z2 + 5iz − 2 = 0 (useful for Exercise 2, Section 8.2).

(b) 3z2 − 10z + 3 (useful for Exercise 6, Section 8.2).

(c) z2 + 2z + 5= 0 (useful for Exercise 4a, Section 12.3).

(d) 2z2 + 2z + 1 = 0 (useful for Exercise 5a, Section 12.3).
4. Prove Theorem 2.1, the quadratic formula.

5. Use your knowledge of the principal square root function to explain the
fallacy in the following logic: 

6. Show that the functions f (z) = z2 and  with domains
given by Equations (2-6) and (2-7), respectively, satisfy Equations (2-3)
of Section 2.1. Thus, f and g are inverses of each other that map the
shaded regions in Figure 2.14 one-to-one and onto each other.

7. Sketch the set of points satisfying the following relations.

(a) Re (z2) > 4.

(b) Im (z2) > 6.
8. Find and illustrate the images of the following sets under the mapping w=

z .

(a) 



(b) 
(c) 
(d) The vertical line {(x, y) : x = 4}.
(e) The infinite strip {(x, y):2<y<6}.
(f) The region to the right of the parabola 

Hint: Use the inverse mapping z = w2 to show that the
answer is the right half-plane Re (w) > 2.

9. Find the image of the right half-plane Re (z) > 1 under the mapping w =
z2+2z+1.

10. Find the image of the following sets under the mapping w = z3.

(a) 
(b) 
11. Find the image of  under the following mappings.

(a) w = z3.

(b) w = z4.

(c) w = z6.
12. Find the image of the sector  under the following mappings.

(a) 
(b) 
(c) 
13. Show what happens when a = 0 and b = 0 in Example 2.13
14. Establish the result referred to in the comment after Definition 2.2.



2.3 LIMITS AND CONTINUITY

Let u = u (x, y) be a real-valued function of the two real variables x and y.
Recall that u has the limit u0 as (x, y) approaches (x0, y0) provided the value
of u (x, y) can be made to get as close as we want to the value u0 by taking (x,
y) to be sufficiently close to (x0, y0). When this happens we write

In more technical language, u has the limit u0 as (x, y) approaches (x0, y0)
iff | u (x, y) − u0 | can be made arbitrarily small by making both | x − x0| and |
y − y0| small. This condition is like the definition of a limit for functions of
one variable. The point (x, y) is in the xy plane, and the distance between (x,
y) and (x0, y0) is  With this perspective we can now give a
precise definition of a limit.

Definition 2.3: Limit of u (x, y)
The expression  means that for each number ε > 0, there
is a corresponding number δ > 0 such that

 EXAMPLE 2.15 Show, if 

Solution If x = rcosθ and y = rsin θ, then

Because  and because |cos3θ| < 1,
 whenever 



Hence, for any ε > 0, Inequality (2-15) is satisfied for  that is, u (x, y) has
the limit u0 = 0 as (x, y) approaches (0, 0).

The value u0 of the limit must not depend on how (x, y) approaches (x0,
y0), so u (x, y) must approach the value u0 when (x, y) approaches (x0, y0)
along any curve that ends at the point (x0, y0). Conversely, if we can find two
curves C1 and C2 that end at (x0, y0) along which u (x, y) approaches two
distinct values u1 and u2, then u (x, y) does not have a limit as (x, y)
approaches (x0, y0).

 EXAMPLE 2.16 Show that the function  does not have a limit
as (x, y) approaches (0, 0).

Solution If we let (x, y) approach (0, 0) along the x-axis, then

But if we let (x, y) approach (0, 0) along the line y = x, then

Because the value of the limit differs depending on how (x, y) approaches (0,
0), we conclude that u (x, y) does not have a limit as (x, y) approaches (0, 0).

Let f (z) be a complex function of the complex variable z that is defined
for all values of z in some neighborhood of z0, except perhaps at the point z0.
We say that f has the limit w0 as z approaches z0, provided the value f (z) can
be made as close as we want to the value w0 by taking z to be sufficiently
close to z0. When this happens we write

The distance between the points z and z0 can be expressed by | z − z0|, so



we can give a precise definition similar to the one for a function of two
variables.

Definition 2.4: Limit of f (z)
The expression  means that for each real number ε > 0, there
exists a real number δ > 0 such that

| f (z) − W0| < ε whenever 0 < |z − z0| < δ.

Using Equations (1-49) and (1-51), we can also express the last
relationship as

f (z) ∈ Dε (w0) whenever z ∈ Dδ* (z0).

Figure 2.17 The limit f (z) → w0 as z → z0.

The formulation of limits in terms of open disks provides a good context
for looking at this definition. It says that for each disk of radius ε about the
point w0 (represented by Dε (w0)) there is a punctured disk of radius δ about
the point z0 (represented by D*δ (z0)) such that the image of each point in the
punctured δ disk lies in the ε disk. The image of the δ disk does not have to
fill up the entire ε disk; but if z approaches z0 along a curve that ends at z0,
then w = f (z) approaches w0. The situation is illustrated in Figure 2.17.

 EXAMPLE 2.17 Show that if  then  where z0 is



any complex number.

Solution As f merely reflects points about the y-axis, we suspect that any ε
disk about the point  would contain the image of the punctured δ disk about
z0 if δ = ε. To confirm this conjecture, we let ε be any positive number and set
δ = ε. Then we suppose that z ∈ D*δ (z0) = D*ε (z0), which means that 0 < |z
− z0| < ε. The modulus of a conjugate is the same as the modulus of the
number itself, so the last inequality implies that  This is the same
as  Since f (z) =  and w0 =  this is the same as 

 which is what we needed to show.

If we consider w = f (z) as a mapping from the z plane into the w plane
and think about the previous geometric interpretation of a limit, then we are
led to conclude that the limit of a function f should be determined by the
limits of its real and imaginary parts, u and v. This conclusion also gives us a
tool for computing limits.

 Theorem 2.2 Let f (z) = u (x, y) + iv (x, y) be a complex function that
is defined in some neighborhood of z0, except perhaps at z0 = x0 + iy0.
Then

iff

Proof We first assume that Statement (2-16) is true and show that
Statement (2-17) is true. According to the definition of a limit, for each
ε > 0, there is a corresponding δ > 0 such that

f(z) ∈ Dε (w0) whenever z ∈ D*δ (z0);



that is,

Because f(z) − w0 = u (x, y) − u0 + i (v(x, y) −v0), we can use
Inequalities (1-21) to conclude that

It now follows that | u (x, y) − u0| < ε and | v (x, y) − v0| < ε whenever
0 < |z − z0| < δ, and so Statement (2-17) is true.

Conversely, we now assume that Statement (2-17) is true. Then for
each ε > 0, there exists δ1 > 0 and δ2 > 0 so that

We choose δ to be the minimum of the two values δ1 and δ2. Then we
can use the triangle inequality

to conclude that

that is,

Hence the truth of Statement (2-17) implies the truth of Statement (2-
16), and the proof of the theorem is complete.

 EXAMPLE 2.18 Show that 

Solution We let



Computing the limits for u and v, we obtain

so our previous theorem implies that 

Limits of complex functions are formally the same as those of real
functions, and the sum, difference, product, and quotient of functions have
limits given by the sum, difference, product, and quotient of the respective
limits. We state this result as a theorem and leave the proof as an exercise.

 Theorem 2.3 Suppose that  Then

Definition 2.5: Continuity of u (x, y)
Let u (x, y) be a real-valued function of the two real variables x and y. We
say that u is continuous at the point (x0, y0) if three conditions are
satisfied:



Condition (2-23) actually implies Conditions (2-21) and (2-22) because
the existence of the quantity on each side of Equation (2-23) is implicitly
understood to exist. For example, if  when (x, y) ≠ (0, 0) and if u
(0, 0) = 0, then u (x, y) → 0 as (x, y) → (0, 0) so that Conditions (2-21), (2-
22), and (2-23) are satisfied. Hence u (x, y) is continuous at (0, 0).

There is a similar definition for complex-valued functions.

Definition 2.6: Continuity of f (z)
Let f (z) be a complex function of the complex variable z that is defined
for all values of z in some neighborhood of z0. We say that f is continuous
at z0 if three conditions are satisfied:

Remark 2.3 Example 2.17 shows that the function f (z) =  is continuous.

A complex function f is continuous iff its real and imaginary parts, u and
v, are continuous. The proof of this fact is an immediate consequence of
Theorem 2.2. Continuity of complex functions is formally the same as that of
real functions, and sums, differences, and products of continuous functions
are continuous; their quotient is continuous at points where the denominator
is not zero. These results are summarized by the following theorems. We
leave the proofs as exercises.

 Theorem 2.4 Let f (z) = u (x, y) + iv (x, y) be defined in some
neighborhood of z0. Then f is continuous at z0 = x0 + iy0 iff u and v are
continuous at (x0, y0).



 Theorem 2.5 Suppose that f and g are continuous at the point z0.
Then the following functions are continuous at z0:

 the sum f + g, where (f + g) (z) = f (z) + g (z);

 the difference f − g, where (f − g) (z) = f (z) − g (z);

 the product fg, where (fg) (z) = f (z) g (z);

 the quotient , where , provide g(z0) ≠ 0; and

 the composition f o g, where (f o g) (z) = f (g (z)), provided f is
continuous in a neighborhood of g (z0)

 EXAMPLE 2.19 Show that the polynomial function given by

is continuous at each point z0 in the complex plane.

Solution If a0 is the constant function, then  and if a1 ≠ 0, then we
can use Definition 2.3 with f (z) = a1z and the choice  to prove that 

 Using Property (2-19) and mathematical induction, we obtain

We can extend Property (2-18) to a finite sum of terms and use the result of
Equation (2-27) to get

Conditions (2-24), (2-25), and (2-26) are satisfied, so we conclude that P is
continuous at z0.

One technique for computing limits is to apply Theorem 2.5 to quotients.



If we let P and Q be polynomials and if Q (z0) ≠ 0, then

Another technique involves factoring polynomials. If both P (z0) = 0 and
Q (z0) = 0, then P and Q can be factored as P (z) = (z − z0)P1 (z) and Q (z) =
(z − z0) Q1 (z). If Q1 (z0) ≠ 0, then the limit is

 EXAMPLE 2.20 Show that 

Solution Here P and Q can be factored in the form

so that the limit is obtained by the calculation

EXERCISES FOR SECTION 2.3
1. Find the following limits.

(a) 

(b) 



(c) 

(d) 

(e)  by factoring.

2. Determine where the following functions are continuous.

(a) z4 − 9z2 + iz − 2.

(b) 

(c) 

(d) 

(e) 

(f) 

3. State why 

4. State why 

5. Show that

(a) 

(b) 

6. Let  and let f (0) = 0. Show that f (z) is continuous for all
values of z.

7. Let 

(a) Find  along the line y = x.

(b) Find  along the line y = 2x.



(c) Find  along the parabola y = x2.

(d) What can you conclude about the limit of f (z) as z → 0? Why?

8. Let  and let f (0) = 0.

(a) Show that  if z approaches zero along any straight line
that passes through the origin.

(b) Show that f is not continuous at the point 0.

9. For  Does f (z) have a limit as z → 0?

10. Does  exist? Why? Hint: Use polar coordinates and let z approach
−4 from the upper and lower half-planes.

11. Let  Use the polar form
of z and show that

(a) f (z) → i as z → – 1 along the upper semicircle r = 1, 0 < θ ≤ π.

(b) f (z) → − i as z → –1 along the lower semicircle r = 1, −π < θ < 0.

12. Let  and let f (0) = 1. Show that f (z) is not continuous
at z0 = 0

13. Let f(z) = xey + iy2 e−x. Show that f (z) is continuous for all values of z.
14. Use the definition of the limit to show that 
15. Let  and let f (0) = 1. Is f (z) continuous at the origin?
16. Let  and let f (0) = 0. Is f (z) continuous at the origin?
17. Let  Show that f (z) is discontinuous at each

point along the negative x-axis.
18. Let f (z) = ln |z| +iArg z, where −π < Arg z ≤ π. Show that f (z) is

discontinuous at z0 = 0 and at each point along the negative x-axis.

19. Let | g(z)| < M and  Show that  Note: Theorem
2.3 is of no use here because you don’t know whether  exists. Give
an ε, δ argument.



20. Let Δz = z − z0. Show that 

21. Let f (z) be continuous for all values of z.

(a) Show that g (z) = f ( ) is continuous for all z.

(b) Show that  is continuous for all z.

22. Verify the identities

(a) (2-18).

(b) (2-19).

(c) (2-20).

23. Verify the results of Theorem 2.5.
24. Show that the principal branch of the argument, Arg z, is discontinuous at

0 and all points along the negative real axis.

2.4 BRANCHES OF FUNCTIONS

In Section 2.2 we defined the principal square root function and investigated
some of its properties. We left unanswered some questions concerning the
choices of square roots. We now look at these questions because they are
similar to situations involving other elementary functions.

In our definition of a function in Section 2.1, we specified that each value
of the independent variable in the domain is mapped onto one and only one
value in the range. As a result, we often talk about a single-valued function,
which emphasizes the “only one” part of the definition and allows us to
distinguish such functions from multiple-valued functions, which we now
introduce.

Let w = f (z) denote a function whose domain is the set D and whose
range is the set R. If w is a value in the range, then there is an associated



inverse relation z = g (w) that assigns to each value w the value (or values) of
z in D for which the equation f (z) = w holds. But unless f takes on the value
w at most once in D, then the inverse relation g is necessarily many valued,
and we say that g is a multivalued function. For example, the inverse of the
function w = f (z) = z2 is the square root function z = g (w) = w . For each
value z other than z = 0, then, the two points z and − z are mapped onto the
same point w = f (z); hence g is, in general, a two-valued function.

The study of limits, continuity, and derivatives loses all meaning if an
arbitrary or ambiguous assignment of function values is made. For this reason
we did not allow multivalued functions to be considered when we defined
these concepts. When working with inverse functions, you have to specify
carefully one of the many possible inverse values when constructing an
inverse function, as when you determine implicit functions in calculus. If the
values of a function f are determined by an equation that they satisfy rather
than by an explicit formula, then we say that the function is defined implicitly
or that f is an implicit function. In the theory of complex variables we present
a similar concept.

We now let w = f (z) be a multiple-valued function. A branch of f is any
single-valued function f0 that is continuous in some domain (except, perhaps,
on the boundary). At each point z in the domain, it assigns one of the values
of f (z).

 EXAMPLE 2.21 We consider some branches of the two-valued square
root function  Recall that the principal square root function is

where r = | z| and θ = Arg (z) so that − π < θ ≤ π. The function f1 is a branch
of f. Using the same notation, we can find other branches of the square root
function. For example, if we let

then



so f1 and f2 can be thought of as “plus” and “minus” square root functions.
The negative real axis is called a branch cut for the functions f1 and f2. Each
point on the branch cut is a point of discontinuity for both functions f1 and f2.

 EXAMPLE 2.22 Show that the function f1 is discontinuous along the
negative real axis.

Solution Let z0 = r0eiπ denote a negative real number. We compute the limit
as z approaches z0 through the upper half-plane {z : Im (z) > 0} and the limit
as z approaches z0 through the lower half-plane {z : Im (z) < 0}. In polar
coordinates these limits are given by

The two limits are distinct, so the function f1 is discontinuous at z0.

Remark 2.4 Likewise, f2 is discontinuous at z0. The mappings w = f1 (z), w =
f2 (z), and the branch cut are illustrated in Figure 2.18.

We can construct other branches of the square root function by specifying
that an argument of z given by θ = arg z is to lie in the interval α < θ ≤ α +
2π. The corresponding branch, denoted fα, is

where z = reiθ ≠ 0 and α < θ ≤ α + 2π.



Figure 2.18 The branches f1 and f2 of f(z) = z .

Figure 2.19 The branch fα of f(z) = z .

The branch cut for fα is the ray r ≥ 0, θ = α, which includes the origin.
The point z = 0, common to all branch cuts for the multivalued square root
function, is called a branch point. The mapping w = fα (z) and its branch cut
are illustrated in Figure 2.19.

2.4.1 The Riemann Surface for w = z
A Riemann surface is a construct useful for visualizing a multivalued
function. It was introduced by G. F. B. Riemann (1826–1866) in 1851. The
idea is ingenious—a geometric construction that permits surfaces to be the
domain or range of a multivalued function. Riemann surfaces depend on the
function being investigated. We now give a nontechnical formulation of the
Riemann surface for the multivalued square root function.

Consider w = f (z) = z , which has two values for any z ≠ 0. Each function
f1 and f2 in Figure 2.18 is single-valued on the domain formed by cutting the



z plane along the negative x-axis. Let D1 and D2 be the domains of f1 and f2,
respectively. The range set for f1 is the set H1 consisting of the right half-
plane, and the positive v-axis; the range set for f2 is the set H2 consisting of
the left half-plane and the negative v-axis. The sets H1 and H2 are “glued
together” along the positive v-axis and the negative v-axis to form the w plane
with the origin deleted.

We stack D1 directly above D2. The edge of D1 in the upper half-plane is
joined to the edge of D2 in the lower half-plane, and the edge of D1 in the
lower half-plane is joined to the edge of D2 in the upper half-plane. When
these domains are glued together in this manner, they form R, which is a
Riemann surface domain for the mapping w = f (z) = z . The portions of D1,
D2, and R that lie in {z : | z| < 1} are shown in Figure 2.20.

The beauty of this structure is that it makes this “full square root
function” continuous for all z ≠ 0. Normally, the principal square root
function would be discontinuous along the negative real axis, as points near
−1 but above that axis would get mapped to points close to i, and points near
−1 but below the axis would get mapped to points close to −i. As Figure
2.20(c) indicates, however, between the point A and the point B, the domain
switches from the edge of D1 in the upper half-plane to the edge of D2 in the
lower half-plane. The corresponding mapped points A' and B' are exactly
where they should be. The surface works in such a way that going directly
between the edges of D1 in the upper and lower half-planes is impossible
(likewise for D2). Going counterclockwise, the only way to get from the point
A to the point C, for example, is to follow the path indicated by the arrows in
Figure 2.20(c).



(a) A portion of D1 and its image under w = f1.

(b) A portion of D2 and its image under w = f2

(c) A portion of R and its image under w = z .

Figure 2.20 Formation of the Riemann surface for w = z : (a) a portion of D1
and its image under w = z ; (b) a portion of D2 and its image under w = z ; (c)
a portion of R and its image under w = z .

EXERCISES FOR SECTION 2.4
1. Let f1 (z) and f2(z) be the two branches of the square root function given by

Equations (2-28) and (2-29), respectively. Use the polar coordinate
formulas in Section 2.2 to find the image of

(a) quadrant II, x < 0 and y > 0, under the mapping w = f1 (z).

(b) quadrant II, x < 0 and y > 0, under the mapping w = f2 (z).



(c) the right half-plane Re(z) > 0 under the mapping w = f1 (z).

(d) the right half-plane Re(z) > 0 under the mapping w = f2 (z).

2. Let α = 0 in Equation (2-30). Find the range of the function w = fα (z).

3. Let α = 2π in Equation (2-30). Find the range of the function w = fα (z).

4. Find a branch of the square root that is continuous along the negative x-
axis.

5. Let  f1 denotes the
principal cube root function.

(a) Show that f1 is a branch of the multivalued cube root f (z) = z .

(b) What is the range of f1?

(c) Where is f1 continuous?

6. Let 

(a) Show that f2 is a branch of the multivalued cube root f (z) = z .

(b) What is the range of f2?

(c) Where is f2 continuous?

(d) What is the branch point associated with f?

7. Find a branch of the multivalued cube root function that is different from
those in Exercises 5 and 6. State the domain and range of the branch you
find.

8. Let f(z) = z  denote the multivalued nth root, where n is a positive integer.

(a) Show that f is, in general, an n-valued function.



(b) Write the principal nth root function.

(c) Write a branch of the multivalued nth root function that is different
from the one in part (b).

9. Describe a Riemann surface for the domain of definition of the
multivalued function

(a) w = f (z) = z .

(b) w = f (z) = z .

10. Discuss how Riemann surfaces should be used for both the domain and
the range to help describe the behavior of the multivalued function w =
f(z) = z .

2.5 THE RECIPROCAL
TRANSFORMATION w = 

The mapping w = f(z) =  is called the reciprocal transformation and maps the
z plane one-to-one and onto the w plane except for the point z = 0, which has
no image, and the point w = 0, which has no preimage or inverse image.
Using exponential notation w = ρeiø, if z = reiθ ≠ 0, we have

The geometric description of the reciprocal transformation is now
evident. It is an inversion (that is, the modulus of  is the reciprocal of the
modulus of z) followed by a reflection through the x-axis. The ray r > 0, θ =
α, is mapped one-to-one and onto the ray ρ > 0, ø = −α. Points that lie inside
the unit circle C1 (0) = {z : | z| = 1} are mapped onto points that lie outside
the unit circle, and vice versa. The situation is illustrated in Figure 2.21.

We can extend the system of complex numbers by joining to it an “ideal”



point denoted by ∞ and called the point at infinity. This new set is called the
extended complex plane. You will see shortly that the point ∞ has the
property, loosely speaking, that 

Figure 2.21 The reciprocal transformation w = .

An ε neighborhood of the point at infinity is the set {z : |z| < }. The usual
way to visualize the point at infinity is by using what we call the
stereographic projection, which is attributed to Riemann. Let Ω be a sphere of
diameter 1 that is centered at the point (0, 0, ½) in three-dimensional space
where coordinates are specified by the triple of real numbers (x, y, ). Here
the complex number z = x + iy is associated with the point z = (x, y, 0).

The point  = (0, 0, 1) on Ω is called the north pole of Ω. If we let z be a
complex number and consider the line segment L in three-dimensional space
that joins z to the north pole  = (0, 0, 1), then L intersects Ω in exactly one
point . The correspondence z ↔  is called the stereographic projection of
the complex z plane onto the Riemann sphere Ω.

A point z = x + iy = (x, y, 0) of unit modulus will correspond with  = ( , 
, ½). If z has modulus greater than 1, then  will lie in the upper hemisphere

where for points  = (x, y, ) we have  > ½. If z has modulus less than 1, then
 will lie in the lower hemisphere where for points  = (x, y, ) we have  < ½.

The complex number z = 0 = 0 + 0i corresponds with the south pole,  = (0, 0,
0). Now you can see that indeed z → ∞ iff | z| → ∞ iff  → . Hence 
corresponds with the “ideal” point at infinity. The situation is shown in
Figure 2.22.

Let's reconsider the mapping w =  by assigning the images w = ∞ and w
= 0 to the points z = 0 and z = ∞, respectively. We now write the reciprocal



transformation as

Note that the transformation w = f (z) is a one-to-one mapping of the
extended complex z plane onto the extended complex w plane. Further, f is a
continuous mapping from the extended z plane onto the extended w plane.
We leave the details to you.

Figure 2.22 The Riemann sphere.

 EXAMPLE 2.23 Show that the image of the half-plane A = {z: Re (z) ≤ ½}
under the mapping w =  is the closed disk 1 (1) = {w: |w − 1| ≥ 1}

Solution Proceeding as we did in Example 2.7, we get the inverse mapping
of u + iv = w = f (z) =  as z = f−1 (w) = . Then

which describes the disk 1 (1). As the reciprocal transformation is one-to-
one, preimages of the points in the disk 1 (1) will lie in the right half-plane



Re (z) ≥ ½. Figure 2.23 illustrates this result.

Figure 2.23 The image of Re(z) ≥ ½ under the mapping w .

Remark 2.5 Alas, there is a fly in the ointment here. As our notation
indicates, Equations (2-33) and (2-34) are not equivalent. The former implies
the latter, but not conversely. That is, Equation (2-34) makes sense when (u,
v) = (0, 0), whereas Equation (2-33) does not. Yet Figure 2.23 seems to
indicate that f maps Re (z) ≥ ½ onto the entire disk 1 (0), including the point
(0, 0). Actually, it does not, because (0, 0) has no preimage in the complex
plane. The way out of this dilemma is to use the complex point at infinity. It
is that quantity that gets mapped to the point (u, v) = (0, 0), for as we have
already indicated in Equation (2-32), the preimage of 0 under the mapping 
is indeed ∞.

 EXAMPLE 2.24 For the transformation , find the image of the portion of
the half-plane Re (z) ≥ ½ that is inside the closed disk 1 ½ = {z:  ≤ 1}.

Solution Using the result of Example 2.23, we need only find the image of
the disk 1 (½) and intersect it with the closed disk 1 (1). To begin, we note
that

1 (½) = {(x, y): x2 + y2 − x ≤ }.

Because z = f−1 (w) = , we have, as before,



which is an inequality that determines the set of points in the w plane that lie
on and outside the circle  Note that we do not have to
deal with the point at infinity this time, as the last inequality is not satisfied
when (u, v) = (0, 0).

When we intersect this set with 1 (1), we get the crescent-shaped region
shown in Figure 2.24.

To study images of “generalized circles,” we consider the equation

A(x2 + y2) + Bx + Cy + D = 0,

Figure 2.24 The mapping w = discussed in Example 2.24.

where A, B, C, and D are real numbers. This equation represents either a
circle or a line, depending on whether A ≠ 0 or A = 0, respectively.
Transforming the equation to polar coordinates gives



Ar2 + r (B cosθ + C sinθ) + D = 0.

Using the polar coordinate form of the reciprocal transformation given in
Equation (2-31), we can express the image of the curve in the preceding
equation as

A + ρ(B cos ø − C sin ø) + Dρ
2 = 0,

which represents either a circle or a line, depending on whether D ≠ = 0 or D
= 0, respectively. Therefore, we have shown that the reciprocal
transformation w =  carries the class of lines and circles onto itself.

 EXAMPLE 2.25 Find the images of the vertical lines x = a and the
horizontal lines y = b under the mapping w = .

Solution Taking into account the point at infinity, we see that the image of
the line x = 0 is the line u = 0; that is, the y-axis is mapped onto the v-axis.
Similarly, the x-axis is mapped onto the u-axis. Again, the inverse mapping is
z = , so if a ≠ 0, the vertical line x = a is mapped onto the set
of (u, v) points satisfying  = a. For (u, v) ≠ (0, 0), this outcome is
equivalent to

which is the equation of a circle in the w plane with center w0 =  and radius 
. The point at infinity is mapped to (u, v) = (0, 0).



Figure 2.25 The images of horizontal and vertical lines under the reciprocal
transformation.

Similarly, the horizontal line y = b is mapped onto the circle

which has center  and radius 
Figure 2.25 illustrates the images of several lines.

EXERCISES FOR SECTION 2.5
For Exercises 1–8, find the image of the given circle or line under the
reciprocal transformation w = .

1. The horizontal line 

2. The circle 

3. The vertical line Re z = −3.

4. The circle 

5. The line 2x + 2y = 1.

6. The circle 

7. The circle 

8. The circle 



9. Limits involving ∞. The function f (z) is said to have the limit L as z
approaches ∞, and we write  f (z) = L iff for every ε > 0 there exists
an R > 0 such that f (z) ∈ Dε (L) (i.e., | f (z) − L| < ε) whenever | z| > R.
Likewise,  iff for every R > 0 there exists δ > 0 such that | f (z)| > R
whenever z ∈ D*

δ (z0). (i.e., 0 < |z − z0| < δ). Use this definition to

(a) show that  =0.

(b) show that  = ∞.

10. A line that carries a charge of  coulombs per unit length is perpendicular
to the z plane and passes through the point z0. The electric field intensity
E(z) at the point z varies inversely as the distance from z0 and is directed
along the line from z0 to z. Show that E(z) = , where k is some
constant. (In Section 11.11 we show that, in fact, k = q so that actually 

11. Use the result of Exercise 10 to find the points z where the electric field
intensity E(z) = 0 given the following conditions.

(a) Three positively charged rods carry a charge of  coulombs per unit
length and pass through the points 0, 1 – i, and 1 + i.

(b) A positively charged rod carrying a charge of  coulombs per unit
length passes through the point 0, and positively charged rods carrying a
charge of q coulombs per unit length pass through the points 2 + i and −
2 + i.

12. Show that the reciprocal transformation w =  maps the vertical strip
given by 0 < x < ½ onto the region in the right half-plane Re (w) > 0 that
lies outside the disk D1 (1) = {w: | w − 1| < 1}.

13. Find the image of the disk  under f (z) = .

14. Show that the reciprocal transformation maps the disk | z − 1| < 2 onto
the region that lies exterior to the circle .

15. Find the image of the half-plane y > ½ − x under the mapping w = .



16. Show that the half-plane y < x − ½ is mapped onto the disk | w − 1 − i| < 
 by the reciprocal transformation.

17. Find the image of the quadrant x > 1, y > 1 under the mapping w = .

18. Show that the transformation w =  maps the disk | z − i| < 1 onto the
lower half-plane Im (w) < −1.

19. Show that the transformation w =  = −1 +  maps the disk | z − 1| < 1
onto the right half-plane Re (w) > 0.

20. Show that the parabola 2x = 1 − y2 is mapped onto the cardioid ρ = 1 +
cos ø by the reciprocal transformation.

21. Use the definition in Exercise 9 to prove that .

22. Show that z = x + iy is mapped onto the point  on the
Riemann sphere.

23. Explain how the quantities +∞, −∞, and ∞ differ. How are they similar?



chapter 3
analytic and harmonic functions

Overview
Does the notion of a derivative of a complex function make sense? If so, how
should it be defined and what does it represent? These and similar questions
are the focus of this chapter. As you might guess, complex derivatives have a
meaningful definition, and many of the standard derivative theorems from
calculus (such as the product rule and chain rule) carry over. There are also
some interesting applications. But not everything is symmetric. You will
learn in this chapter that the mean value theorem for derivatives does not
extend to complex functions. In later chapters you will see that differentiable
complex functions are, in some sense, much more “differentiable” than
differentiable real functions.

3.1 DIFFERENTIABLE AND ANALYTIC
FUNCTIONS

Using our imagination, we take our lead from elementary calculus and define
the derivative of f at z0, written f ′ (z0), by

provided the limit exists. If it does, we say that the function f is
differentiable at z0. If we write Δz = z − z0, then we can express Equation (3-
1) in the form



If we let w = f (z) and w = f (z) − f (z0), then we can use the Leibniz
notation  for the derivative:

 EXAMPLE 3.1 If f (z) = z3, show that f ′ (z) = 3z2.

Solution Using Equation (3-1), we have

We can drop the subscript on z0 to obtain f ′ (z)= 3z2 as a general formula.

Pay careful attention to the complex value Δz in Equation (3-3); the value
of the limit must be independent of the manner in which Δz → 0. If we can
find two curves that end at z0 along which  approaches distinct values, then

does not have a limit as Δz → 0 and f does not have a derivative at z0. The
same observation applies to the limits in Equations (3-2) and (3-1).

 EXAMPLE 3.2 Show that the function w = f (z) =  = x − iy is nowhere
differentiable.

Solution We choose two approaches to the point z0 = x0 + iy0 and compute
limits of the difference quotients. First, we approach z0 = x0 + iy0 along a line
parallel to the x-axis by forcing z to be of the form z = x + iy0.



Next, we approach z0 along a line parallel to the y-axis by forcing z to be
of the form z = x0 + iy.

The limits along the two paths are different, so there is no possible value for
the right side of Equation (3-1). Therefore, f (z) =  is not differentiable at the
point z0, and since z0 was arbitrary, f (z) is nowhere differentiable.

Remark 3.1 In Section 2.3 we showed that f (z) =  is continuous for all z.
Thus, we have a simple example of a function that is continuous everywhere
but differentiable nowhere. Such functions are hard to construct in real
variables. In some sense, the complex case has made pathological
constructions simpler!

We seldom are interested in studying functions that aren’t differentiable,
or are differentiable at only a single point. Complex functions that have a
derivative at all points in a neighborhood of z0 deserve further study. In
Chapter 7 we demonstrate that if the complex function f can be represented
by a Taylor series at z0, then it must be differentiable in some neighborhood
of z0. Functions that are differentiable in neighborhoods of points are pillars
of the complex analysis edifice; we give them a special name, as indicated in
the following definition.



Definition 3.1: Analytic
We say that the complex function f is analytic at the point z0, provided
there is some ε > 0 such that f′ (z) exists for all z ε Dε (z0). In other words,
f must be differentiable not only at z0, but also at all points in some ε
neighborhood of z0.

If f is analytic at each point in the region R, then we say that f is analytic
on R. Again, we have a special term if f is analytic on the whole complex
plane.

Definition 3.2: Entire
If f is analytic on the whole complex plane, then f is said to be entire.

Points of nonanalyticity for a function are called singular points. They
are important for certain applications in physics and engineering.

Our definition of the derivative for complex functions is formally the
same as for real functions and is the natural extension from real variables to
complex variables. The basic differentiation formulas are identical to those
for real functions, and we obtain the same rules for differentiating powers,
sums, products, quotients, and compositions of functions. We can easily
establish the proof of the differentiation formulas by using the limit theorems.

Suppose that f and g are differentiable. From Equation (3-1) and the
technique exhibited in the solution to Example 3.1, we can establish the
following rules, which are virtually identical to those for real-valued
functions.



Important particular cases of Equations (3-9) and (3-10), respectively, are

 EXAMPLE 3.3 If we use Equation (3-12) with f (z) = z2 + i2z + 3 and

f ′ (z) = 2z + 2i, then we get

The proofs of the rules given in Equations (3-4) through (3-10) depend on
the validity of extending theorems for real functions to their complex
companions. Equation (3-8), for example, relies on Theorem 3.1.

 Theorem 3.1 If f is differentiable at z0, then f is continuous at z0.



Proof From Equation (3-1), we obtain

Using the multiplicative property of limits given by Formula (2-19),
we get

This result implies that  which is equivalent to
showing that f is continuous at z0.

We can establish Equation (3-8) from Theorem 3.1. Letting h (z) = f (z) g
(z) and using Definition 3.1, we write

If we subtract and add the term f (z0) g (z) in the numerator, we get

Using the definition of the derivative given by Equation (3-1) and the
continuity of g, we obtain h ′ (z0) = f ′ (z0) g (z0) + f (z0) g ′ (z0), which is
what we wanted to establish. We leave the proofs of the other rules as
exercises.

The rule for differentiating polynomials carries over to the complex case
as well. If we let P (z) be a polynomial of degree n, so

P (z) = a0 + a1z + a2z2 +…+ anzn,



then mathematical induction, along with Equations (3-5) and (3-7), gives

P ′ (z) = a1 + 2a2z + 3a3z2 +…+ nanzn − 1.

Again, we leave the proof of this result as an exercise.
We can use the differentiation rules as aids in determining when functions

are analytic. For example, Equation (3-9) tells us that if P (z) and Q(z) are
polynomials, then their quotient  is analytic at all points where Q(z) ≠ 0.
This condition implies that the function f (z) =  is analytic for all z ≠ 0. The
square root function is more complicated. If , then f is
analytic at all points except z = 0 (because Arg (0) is undefined) and at points
that lie along the negative x-axis. The argument function, and therefore the
function f itself, are not continuous at points that lie along the negative x-axis.

We close this section with an important theorem that are complex
extensions of results from calculus.

 Theorem 3.2 (L’Hôpital’s rule) Assume that f and g are analytic at
z0. If f (z0) = 0, g (z0) = 0, and g ′ (z0) ≠ 0, then

Proof We defer the proof until Chapter 7, where you will learn some
amazing things about analytic functions.

EXERCISES FOR SECTION 3.1

1. Find the derivatives of the following functions.

(a) f (z) = 5z3 − 4z2 + 7z − 8.
(b) g (z) = (z2 − iz + 9)5.



(c) h (z) =  for z ≠ −2.
(d) F (z)= (z 2 + (1 − 3i) z +1) (z4 +3z2 +5i).

2. Show that the following functions are differentiable nowhere.

(a) f (z) = Re (z).
(b) f (z) = Im (z).

3. If f and g are entire functions, which of the following are necessarily
entire?

(a) [f (z)]3.
(b) f (z) g (z).
(c) 
(d) f .
(e) f (z − 1).
(f) f (g (z)).

4. Use Equation (3-1) to verify rule (3-5).

5. Let P (z) = a0 + a1z +…+ anzn be a polynomial of degree n ≥ 1.

(a) Show that P ′ (z) = a1 + 2a2z +…+ nanzn−1.

(b) Show that, for k = 0, 1,…,n, a k = , where P(k) denotes the kth
derivative of P. (By convention, P(0) (z) = P (z) for all z.)

6. Let P be a polynomial of degree 2, given by

P (z) = (z − z1)(z − z2),

where z1 ≠ z2. Show that

Note: The quotient  is known as the logarithmic derivative of P.

7. Use L’Hôpital’s rule to find the following limits.

(a) 



(b) 
(c) 
(d) 
(e) 
(f) 

8. Use Equation (3-1) to show that 

9. Show that  = − nz −n−1, where n is a positive integer.

10. Verify the identity.

11. Show that the function f (z) = | z|2 is differentiable only at the point z0 = 0.
Hint: To show that f is not differentiable at z0 ≠ 0, choose horizontal and
vertical lines through the point z0 and show that  approaches two
distinct values as  z → 0 along those two lines.

12. Verify
(a) Identity (3-4).
(b) Identity (3-7).
(c) Identity (3-9).
(d) Identity (3-10).
(e) Identity (3-12).

13. Consider the differentiable function f (z) = z3 and the two points z1 = 1
and z2 = i. Show that there does not exist a point c on the line y = 1 − x
between 1 and i such that  = f′ (c). This result shows that the mean
value theorem for derivatives does not extend to complex functions.

14. Let f (z) =  denote the multivalued “nth root function,” where n is a
positive integer. Use the chain rule to show that if g (z) is any branch of
the nth root function, then



in some suitably chosen domain (which you should specify).

15. Explain why the composition of two entire functions is an entire function.

16. Let f be differentiable at z0. Show that there exists a function η (z) such
that
f (z) = f (zo) + f′ (z0) (z − zo) + η (z) (z − z0),
where η (z) → 0 as z → z0.

3.2 THE CAUCHY–RIEMANN
EQUATIONS

In Section 3.1 we showed that computing the derivative of complex functions
written in a form such as f (z) = z2 is a rather simple task. But life isn’t always
so easy. Many times we encounter complex functions written in the form of f
(z) = f (x + iy) = u (x, y) + iv (x, y). For example, suppose we had

Is there some criterion that we can use to determine whether f is differentiable
and, if so, to find the value of f ′ (z)?

The answer to this question is yes, thanks to the independent discovery of
two important equations by the French mathematician Augustin-Louis
Cauchy1 and the German mathematician Georg Friedrich Bernhard Riemann.

First, let’s reconsider the derivative of f (z) = z2. As we have stated, the
limit given in Equation (3-1) must not depend on how z approaches z0. We
investigate two such approaches: a horizontal approach and a vertical
approach to z0. Recall from our graphical analysis of w = z2 that the image of
a square is a “curvilinear quadrilateral.” For convenience, we let the square
have vertices z0 = 2 + i, z1 = 2.01 + i, z2 = 2 + 1.01i, and z3 = 2.01 + 1.01i.
Then the image points are w0 = 3 + 4i, w1 = 3.0401 + 4.02i, w2 = 2.9799 +
4.04i, and w3 = 3.02 + 4.0602i, as shown in Figure 3.1.



Figure 3.1 The image of a small square with vertex z0 = 2+i, using w = z2.

We know that f is differentiable, so the limit of the difference quotient 
 exists no matter how we approach z0 = 2+i. Thus we can approximate

f ′ (2 + i) by using horizontal or vertical increments in z:

and

These computations lead to the idea of taking limits along the horizontal
and vertical directions. When we do so, we get

and

We now generalize this idea by taking limits of an arbitrary differentiable
complex function and obtain an important result.



 Theorem 3.3 (Cauchy–Riemann equations) Suppose that

f (z) = f (x + iy) = u(x, y) + iv (x, y)

is differentiable at the point z0 = x0 + iy0. Then the partial derivatives
of u and v exist at the point x0 + iy0 = (x0, y0), and

Equating the real and imaginary parts of Equations (3-14) and (3-15)
gives

Proof Because f is differentiable, we know that  regardless
of the path we take as z → z0. We will choose horizontal and vertical
lines that pass through the point z0 = (x0, y0) and compute the limiting
values of  along these lines. Equating the two resulting limits
will yield Equations (3-16). For the horizontal approach to z0, we set z
= x + iy0 and obtain

The last two limits are the partial derivatives of u and v with respect to
x, so

f′ (z0) = ux (x0, y0) + ivx (x0, y0),

giving us Equation (3-14).
Along the vertical approach to z0, we have z = x0 + iy, so



The last two limits are the partial derivatives of u and v with respect to
y, so

f′ (zo) = vy (x0,y0) − iuy (xo,y0),

giving us Equation (3-15).
Since f is differentiable at z0, the limits given by Equations (3-14)

and (3-15) must be equal. If we equate the real and imaginary parts in
those equations, the result is Equations (3-16), and the proof is
complete.

Note some of the important implications of this theorem.

 If f is differentiable at z0, then the Cauchy–Riemann Equations (3-16)
will be satisfied at z0, and we can use either Equation (3-14) or (3-15) to
evaluate f′ (zo).

 Taking the contrapositive, if Equations (3-16) are not satisfied at z0, then
we know automatically that f is not differentiable at z0.

 Even if Equations (3-16) are satisfied at z0, we cannot necessarily
conclude that f is differentiable at z0.

We now illustrate each of these points.

EXAMPLE 3.4 We know that f (z) = z2 is differentiable and that f ′ (z) = 2z.
We also have



f (z) = z2 = (x + iy)2 = (x2 − y2) + i (2xy) = u (x, y) + iv (x, y).

It is easy to verify that Equations (3-16) are indeed satisfied:

ux (x, y) = 2x = vy (x, y) and uy (x, y) = − 2y = − vx (x, y).

Using Equations (3-14) and (3-15), respectively, to compute f′ (z) gives

f′ (z) = ux (x, y) + ivx (x, y) = 2x + i2y = 2z, and

f′ (z) = vy (x, y) − iuy (x, y) = 2x − i(−2y) = 2x + i2y = 2z, as expected.

 EXAMPLE 3.5 Show that f (z) =  is nowhere differentiable.

Solution We have f (z) = f (x + iy) = x − iy = u(x, y) + iv(x,y), where u(x, y) =
x and v (x, y) = −y. Thus, for any point (x, y), ux (x, y) = 1 and vy (x, y) = −1.
The Cauchy–Riemann equations are not satisfied at any point z = (x, y), so we
conclude that f is nowhere differentiable.

 EXAMPLE 3.6 Show that the function defined by

is not differentiable at the point z0 = 0 even though the Cauchy–Riemann
equations are satisfied at (0, 0).

Solution We must use limits to calculate the partial derivatives at (0, 0).

Similarly, we can show that

uy (0, 0) = 0, vx (0, 0) = 0 and vy (0, 0) = 1.



Hence the Cauchy–Riemann equations hold at the point (0, 0).
We now show that f is not differentiable at z0 = 0. Letting z approach 0

along the x-axis gives

But if we let z approach 0 along the line y = x given by the parametric
equations x = t and y = t, then

The two limits are distinct, so f is not differentiable at the origin.

Example 3.6 reiterates that the mere satisfaction of the Cauchy–Riemann
equations is not sufficient to guarantee the differentiability of a function. The
following theorem, however, gives conditions that guarantee the
differentiability of f at z0, so that we can use Equation (3-14) or (3-15) to
compute f′ (z0). They are referred to as the Cauchy–Riemann conditions for
differentiability.

 Theorem 3.4 (Cauchy–Riemann conditions for differentiability)
Let f (z) = u (x, y) + iv (x, y) be a continuous function that is defined in
some neighborhood of the point z0 = x0 + iy0. If all the partial
derivatives ux, uy, vx, and vy are continuous at the point (x0, y0) and if
the Cauchy–Riemann equations ux (x, y) = vy (x, y) and uy (x, y) = − vx
(x, y) hold at (x, y) = (x0, y0), then f is differentiable at z0, and the
derivative f ′(z0) can be computed with either Equation (3-14) or (3-
15).

Proof Let Δz = Δx + iΔy and Δw = Δu + iΔv, and let Δz be small
enough so that z lies in the ε neighborhood of z0 in which the



hypotheses hold. We need to show that  approaches the limit given
in Equation (3-15) as Δz approaches zero. We write the difference, Δu,
as

Δu = u (x0 + Δx,y0 + Δy) − u (x0, y0).

If we subtract and add the term u (x0, y0 + Δ y), then we get

The partial derivatives ux and uy exist, so the mean value theorem
for real functions of two variables implies that a value x* exists
between x0 and x0 + Δx such that we can write the first term in
brackets on the right side of Equation (3-17) as

u (x0 + Δx, y0 + Δy) − u (x0,y0 + Δ y) = ux (x*,y0 + Δy)Δ x.

Furthermore, as ux and uy are continuous at (x0, y0), there exists a
quantity ε1 such that

ux (x*, y0 + Δy) = ux (x0, y0) + ε1,

where ε1 → 0 as x* → x0 and Δy → 0. Because Δx → 0 forces x* →
x0, we can use the equation

where ε1 0 as Δx → 0 and Δ y → 0. Similarly, there exists a quantity
ε2 such that the second term in brackets on the right side of Equation
(3-17) satisfies the equation

where ε2 → 0 as Δx → 0 and Δ y → 0. Combining Equations (3-18)
and (3-19) gives

Δ u = (ux + ε1) Δ x + (uy + ε2) Δ y,



where partial derivatives ux and uy are evaluated at the point (x0, y0)
and ε1 and ε2 tend to zero as Δx and Δy both tend to zero. Similarly,
the change Δv is related to the changes Δx and Δy by the equation

Δv = (vx + ε3) Δx + (vy + ε4) Δy,

where the partial derivatives vx and vy are evaluated at the point (x0,
y0) and ε3 and ε4 tend to zero as Δx and Δy both tend to zero.
Combining these last two equations gives

We can use the Cauchy–Riemann equations in Equation (3-20) to
obtain

Δw = ux Δx − vx Δy + i (vx Δx + ux Δy) + ε1 Δx + ε2 Δy + i (ε3 Δx + ε4
Δy).

Now we rearrange the terms and get

Δw = ux [Δx + i Δy] + ivx [Δx + i Δy] +ε1 Δx +ε2 Δy +i (ε3 Δx +ε4 Δy).

Since Δz = Δx + iΔy, we can divide both sides of this equation by Δz
and take the limit as Δz → 0:

Because ε1 tends to zero as Δx and Δy both tend to zero, we have

Similarly, the limits of the other quantities in Equation (3-21)
involving ε2, ε3, ε4 are zero. Therefore, the limit in Equation (3-21)
becomes



and the proof of the theorem is complete.

 EXAMPLE 3.7 At the beginning of this section (Equation (3-13)) we
defined the function f (z) = u (x, y) + iv (x, y) = x3 − 3xy2 + i (3x2y − y 3).
Show that this function is differentiable for all z, and find its derivative.

Solution We compute ux (x, y) = vy (x, y) = 3x2 − 3y2 and uy (x, y) = −6xy =
−vx(x,y), so the Cauchy–Riemann Equations (3-16) are satisfied. Moreover,
u, v, ux, uy, vx, and vy are continuous everywhere. By Theorem 3.4, f is
differentiable everywhere, and, from Equation (3-14),

f ′ (z) = ux (x, y) + ivx (x, y) = 3x2 − 3y2 + i6xy = 3 (x2 − y2 + i2xy) = 3z2.

Alternatively, from Equation (3-15),
f′ (z) = vy (x, y) − iuy (x, y) = 3x 2− 3y2 − i (−6xy) = 3 (x2 − y2 + i2xy) =

3z2.

This result isn' t surprising because (x + iy)3 = x3 − 3xy2 + i (3x2 y − y 3), and
so the function f is really our old friend f (z) = z3.

 EXAMPLE 3.8 Show that the function f (z) = e −y cos x + ie −y sin x is
differentiable for all z and find its derivative.

Solution We first write u(x,y) = e −ycos x and v(x,y) = e−ysin x and then
compute the partial derivatives.

We note that u, v, ux, uv, vx, and vy are continuous functions and that the
Cauchy–Riemann equations hold for all values of (x, y). Hence, using



Equation (3-14), we write

f′ (z) = f′ (x + iy) = ux (x, y) + ivx (x, y) = −e− y sin x + ie−y cos x.

The Cauchy–Riemann conditions are particularly useful in determining
the set of points for which a function f is differentiable.

 EXAMPLE 3.9 Show that the function f (z) = x3 + 3xy2 + i (y3 + 3x2 y) is
differentiable on the x- and y-axes but analytic nowhere.

Solution Recall (Definition 3.1) that when we say a function is analytic at a
point z0 we mean that the function is differentiable not only at z0, but also at
every point in some ε neighborhood of z0. With this in mind, we proceed to
determine where the Cauchy–Riemann equations are satisfied. We write u (x,
y) = x3 +3xy2 and v (x, y) = y3 +3x2 y and compute the partial derivatives:

ux (x, y) = 3x2 + 3y2, vy (x, y) = 3x2 + 3y2, and
uy (x, y) = 6xy, vx (x, y) = 6xy.

Here ux, uy, vx, and vy are continuous, and ux (x,y) = vy (x, y) holds for all (x,
y). But uy (x, y) = −vx (x, y) iff 6xy = −6xy, which is equivalent to 12xy = 0.
The Cauchy–Riemann equations hold only when x = 0 or y = 0, and
according to Theorem 3.4, f is differentiable only at points that lie on the
coordinate axes. But this means that f is nowhere analytic because any ε
neighborhood about a point on either axis contains points that are not on
those axes.

When polar coordinates (r, θ) are used to locate points in the plane, we
use Expression (2-2) for a complex function for convenience; that is,



where U and V are real functions of the real variables r and θ. The polar form
of the Cauchy–Riemann equations and a formula for finding f ′(z) in terms of
the partial derivatives of U (r, θ) and V (r, θ) are given in Theorem 3.5, which
we ask you to prove in Exercise 10. This theorem makes use of the validity of
the Cauchy–Riemann equations for u and v, so the relation between them and
the functions U and V —namely, u (x, y) = U (r, θ) and v (x, y) = V (r, θ)—is
important.

 Theorem 3.5 (Polar form) Let f (z) = f (reiθ) = U (r, θ) + iV (r, θ) be
a continuous function that is defined in some neighborhood of the
point z0 = r0eiθ0. If all the partial derivatives Ur, Uθ, Vr, and Vθ are
continuous at the point (r0, θ0) and if the polar form of the Cauchy–
Riemann equations,

holds, then f is differentiable at z0 and we can compute the derivative f
′ (z0) by using either

 EXAMPLE 3.10 Show that if f is the principal square root function given
by



where the domain is restricted to be {reiθ : r > 0 and −π < θ < π}, then the
derivative is given by

for every point in the domain.

Solution We write

Thus,

Since U, V, Ur, Uθ, Vr, and Vθ are continuous at every point in the domain
(note the strict inequality in −π < θ < π), we use Theorem 3.5 and Equation
(3-23) to get

Note that f (z) is discontinuous on the negative real axis and is undefined at
the origin. Using the terminology of Section 2.4, the negative real axis is a
branch cut, and the origin is a branch point for this function.

Two important consequences of the Cauchy–Riemann equations close
this section.

 Theorem 3.6 Let f = u + iv be an analytic function on the domain D.



Suppose for all z ε D that |f (z)| = K, where K is a constant. Then f is
constant in D.

Proof The equation |f (z)| = K implies that, for all z = (x, y)ε D,

If K = 0, then it must be that u (x, y)2 = 0 and v (x, y)2 = 0 for all (x, y)
ε D, so f is identically zero on D. If K ≠ 0, then we take the partial
derivative of both sides of Equation (3-25) with respect to both x and
y, resulting in

2uux + 2vvx = 0 and 2uuy + 2vvy = 0,

where for brevity we write u in place of u (x, y), and so on. We can
now use the Cauchy–Riemann equations to rewrite this system as

uux − vuy = 0 and vux + uuy = 0.

Treating u and v as coefficients, we have two equations with two
unknowns, ux and uy. Solving for ux and uy gives

Note that it is important here for K ≠ 0 in Equation (3-25).
A theorem from the calculus of real functions states that if for all

(x, y) ε D we have both ux (x, y) = 0 and uy (x, y) = 0, then for all (x, y)
ε D, u (x, y) = c1, where c1 is a constant. Using a similar argument, we
find that v (x, y) = c2, for all (x, y) ε D, and therefore f (z) = f (x, y) = c1
+ ic2, for all (x, y) ε D. In other words, f is constant on D.

 

 Theorem 3.7 Let f be an analytic function in the domain D. If f′ (z) =



0 for all z in D, then f is constant in D.

Proof By the Cauchy–Riemann equations, f ′ (z) = ux (z) + ivx (z) = vy
(z) − iuy (z) for all z ε D. By hypothesis f′ (z) = 0 for all z in D, so for
all z ε D the functions ux, uy, vx, and vy are identically zero. As with
the conclusion to the proof of Theorem 3.6, this situation means both u
and v are constant functions, from whence the result follows.

EXERCISES FOR SECTION 3.2
1. Use the Cauchy–Riemann conditions to determine where the following

functions are differentiable, and evaluate the derivatives at those points
where they exist.

(a) f (z) = iz + 4i.
(b) 
(c) f (z) = −2 (xy + x) + i (x2 − 2y − y2).
(d) f (z) = x3 − 3x2 − 3xy2 + 3y2 + i (3x2y − 6xy − y3).
(e) f (z) = x3 + i (1 − y)3.
(f) f (z) = z2 + z.
(g) f (z) = x2 + y2 + i2xy.
(h) f (z) = |z − (2 + i)|2.

2. Let f be a differentiable function. Verify the identity | f ′ (z)|2 = ux
2+vx

2 =
uy

2+vy
2.

3. Find the constants a and b such that f (z) = (2x − y)+i (ax + by) is
differentiable for all z.

4. Let f be differentiable at z0 = roeiθ0. Let z approach z0 along the ray r > 0,
θ = θ0 and use Equation (3-1) to show that Equation (3-14) holds.

5. Let f (z) = ex cos y + iex sin y. Show that both f (z) and f ′ (z) are
differentiable for all z.



6. A vector field F(z) = U (x, y) + iV (x, y) is said to be irrotational if Uy (x,
y) = Vx (x, y). It is said to be solenoidal if Ux (x, y) = −Vy (x, y). If f (z) is
an analytic function, show that  is both irrotational and
solenoidal.

7. Use any method to show that the following functions are nowhere
differentiable.

(a) h (z) = ey cos x + iey sin x.
(b) 

8. Use Theorem 3.5 with regard to the following.

(a) 

(b) Let f (z) = (ln r)2 − θ2 + i2θ ln r, where r > 0 and −π < θ ≤ π. Show
that f is analytic for r > 0, −π < θ < π, and find f′ (z).

9. Show that the following functions are entire (see Definition 3.1).

(a) f (z) = cosh x sin y − i sinh x cos y.
(b) g (z) = cosh x cos y + i sinh x sin y.

10. To prove Theorem 3.5, the polar form of the Cauchy–Riemann
equations,

(a) Let f (z) = f (x, y) = f (reiθ = u (reiθ + iv (reiθ = U (r, θ) + iV (r, θ). Use
the transformation x = r cos θ and y = r sin θ (i.e., (x, y) = reiθ) and the
chain rules
 

 
to prove that

 
Ur = ux cos θ + uy sin θ and Uθ = − uxr sin θ + uyr cos θ and Vr = vx cos θ
+ vy sin θ and Vθ = − vxr sin θ + vyr cos θ.

(b) Use the original Cauchy–Riemann equations for u and v and the
results of part (a) to prove that rUr = Vθ and rVr = −Uθ, thus verifying



Equation (3-22)
(c) Use part (a) and Equations (3-14) and (3-15) to show that the right

sides of Equations (3-23) and (3-24) simplify to f ′ (zo).

11. Determine where the following functions are differentiable and where
they are analytic. Explain!

(a) f (z) = x3 + 3xy2 + i (y3 + 3x2y).
(b) f (z) = 8x − x3 − xy2 + i (x2y + y3 − 8y).
(c) f (z) = x2 −y2 + i2|xy|.

12. Let f and g be analytic functions in the domain D. If f′(z) = g′(z) for all z
in D, then show that f (z) = g (z) + C, where C is a complex constant.

13. Explain how the limit definition for the derivative in complex analysis
and the limit definition for the derivative in calculus are different. How
are they similar?

14. Let f be an analytic function in the domain D. Show that if Re [To prove
Theorem 3.5, the polar form f (z)] = 0 at all points in D, then f is constant
in D.

15. Let f be a nonconstant analytic function in the domain D. Show that the
function  is not analytic in D.

16. Recall that, for 

(a) Temporarily, think of z and  as dummy symbols for real variables.
With this perspective, x and y can be viewed as functions of z and .
Use the chain rule for a function h of two variables to show that
 

      
 

(b) Now define the operator  that is suggested by the
previous equation. With this construct, show that if f = u + iv is
differentiable at z = (x, y), then, at the point (x, y), then, at the point 

 Equating real and imaginary parts thus
gives the complex form of the Cauchy–Riemann equations: 



 

3.3 HARMONIC FUNCTIONS
Let ø (x, y) be a real-valued function of the two real variables x and y defined
on a domain D. (Recall that a domain is a connected open set.) The partial
differential equation

is known as Laplace’s equation (sometimes referred to as the potential
equation). If ø, øx, øy, øxx, øxy, øyx, and øyy are all continuous, and if ø (x, y)
satisfies Laplace’s equation, then ø (x, y) is harmonic on D. Harmonic
functions are important in applied mathematics, engineering, and
mathematical physics. They are used to solve problems involving steady state
temperatures, two-dimensional electrostatics, and ideal fluid flow. In Chapter
11 we describe how complex analysis techniques can be used to solve some
problems involving harmonic functions. We begin with an important theorem
relating analytic and harmonic functions.

 Theorem 3.8 Let f (z) = u (x, y) + iv (x, y) be an analytic function on
a domain D. Then both u and v are harmonic functions on D. In other
words, the real and imaginary parts of an analytic function are
harmonic.

Proof In Corollary 6.3 we will show that if f (z) is analytic, then all
partial derivatives of u and v are continuous. Using that result here, we
see that, as f is analytic, u and v satisfy the Cauchy–Riemann equations

ux = vy and uy = −vx.

Taking the partial derivative with respect to x of each side of these
equations gives

uxx = vyx and uyx = −vxx.



Similarly, taking the partial derivative of each side with respect to y
yields

uxy = vyy and uyy = −vxy.

The partial derivatives uxy, uyx, vxy, and vyx are all continuous, so we
use a theorem from the calculus of real functions that states that the
mixed partial derivatives are equal; that is,

uxy = uyx and vxy = vyx.

Combining all these results finally gives uxx + uyy = vyx − vxy = 0, and
vxx+vyy = −uyx+uxy = 0. Therefore, both u and v are harmonic
functions on D.

If we have a function u (x, y) that is harmonic on the domain D and if we
can find another harmonic function v (x, y) such that the partial derivatives
for u and v satisfy the Cauchy–Riemann equations throughout D, then we say
that v (x, y) is a harmonic conjugate of u (x, y). It then follows that the
function f (z) = u (x, y) + iv (x, y) is analytic on D.

 EXAMPLE 3.11 If u(x, y) = x2−y2, then uxx (x, y)+ uyy (x, y) = 2−2 = 0;
hence u is a harmonic function for all z. We find that v (x, y) = 2xy is also a
harmonic function and that

ux = vy = 2x and uy = −vx = −2y.

Therefore, v is a harmonic conjugate of u, and the function f given by

f (z) = x − y + i2xy = z

is an analytic function.



Theorem 3.8 makes the construction of harmonic functions from known
analytic functions an easy task.

 EXAMPLE 3.12 The function f (z) = z3 = x3 − 3xy2 + i (3x2y − y3 ) is
analytic for all values of z; hence it follows that

u (x, y) = Re [f (z)] = x3 − 3xy2

is harmonic for all z and that

v (x, y) = Im [f (z)] = 3x2y − y3

is a harmonic conjugate of u (x, y).

Figures 3.2 and 3.3 show the graphs of these two functions. The partial
derivatives are ux (x, y) = 3x2 − 3y2, uy (x, y) = −6xy, vx (x, y) = 6xy, and vy
(x, y) = 3x2−3y2. They satisfy the Cauchy–Riemann equations because they
are the real and imaginary parts of an analytic function. At the point (x, y) =
(2,−1), we have ux (2,−1) = vy (2,−1) = 9, and these partial derivatives appear
along the edges of the surfaces for u and v where x = 2 and y = −1. Similarly,
uy (2,−1) = 12 and vx (2,−1) = −12 also appear along the edges of the surfaces
for u and v where x = 2 and y = −1.

Figure 3.2 u (x, y)= x3 − 3xy2.



Figure 3.3 v (x, y)=3x2y − y3.

We can use complex analysis to show easily that certain combinations of
harmonic functions are harmonic. For example, if v is a harmonic conjugate
of u, then their product ø (x, y) = u (x, y) v (x, y) is a harmonic function. This
condition can be verified directly by computing the partial derivatives and
showing that Equation (3-26) holds, but the details are tedious. If we use
complex variable techniques instead, we can start with the fact that f (z) = u
(x, y)+iv (x, y) is an analytic function. Then we observe that the square of f is
also an analytic function, which is

[f (z)]2 = [u (x, y)]2 − [v (x, y)]2 + i2u (x, y) v (x, y).

We then know immediately that the imaginary part, 2u (x, y) v (x, y), is a
harmonic function by Theorem 3.8. A constant multiple of a harmonic
function is harmonic, so it follows that ø is harmonic. We leave as an
exercise to show that if u1 and u2 are two harmonic functions that are not
related in the preceding fashion, then their product need not be harmonic.

 Theorem 3.9 (Construction of a harmonic conjugate) Let u (x, y)
be harmonic in an ε neighborhood of the point (x0, y0). Then there
exists a conjugate harmonic function v (x, y) defined in this
neighborhood such that f (z) = u (x, y) + iv (x, y) is an analytic
function.

Proof A conjugate harmonic function v will satisfy the Cauchy–



Riemann equations ux = vy and uy = −vx. Assuming that such a
function exists, we determine what it would have to look like by using
a two-step process. First, we integrate vy (which should equal ux) with
respect to y and get

where C (x) is a function of x alone that is yet to be determined.
Second, we compute C′ (x) by differentiating both sides of this
equation with respect to x and replacing vx with −uy on the left side,
which gives

It can be shown (we omit the details) that because u is harmonic, all
terms except those involving x in the last equation will cancel,
revealing a formula

for C′ (x) involving x alone. Elementary integration of the single-
variable function C′ (x) can then be used to discover C (x). We finally
observe that the function v so created indeed has the properties we
seek.

Technically we should always specify the domain of function when
defining it. When no such specification is given, it is assumed that the
domain is the entire complex plane, or the largest set for which the
expression defining the function makes sense.

 EXAMPLE 3.13 Show that u (x, y) = xy3−x3y is a harmonic function, and
find a conjugate harmonic function v (x, y).

Solution We follow the construction process of Theorem 3.9. The first partial
derivatives are



To verify that u is harmonic, we compute the second partial derivatives and
note that uxx (x, y) + uyy (x, y) = −6xy + 6xy = 0, so u satisfies Laplace’s
Equation (3-26). To construct v, we start with Equation (3-27) and the first of
Equations (3-28) to get

Differentiating the left and right sides of this equation with respect to x and
using −uy (x, y) = vx (x, y) and Equations (3-28) on the left side yield

−3xy 2 + x3 = 0 − 3xy 2 + C′ (x),

which implies that

C′ (x) = x3.

Finally, if we integrate this equation, we get

Harmonic functions arise as solutions to many physical problems.
Applications include two-dimensional models of heat flow, electrostatics, and
fluid flow. We now give an example of the latter.

We assume that an incompressible and frictionless fluid flows over the
complex plane and that all cross sections in planes parallel to the complex
plane are

Figure 3.4 The vector field V(x, y) = p (x, y)+iq (x, y), which can be
considered as a fluid flow.



the same. Situations such as this occur when fluid is flowing in a deep
channel. The velocity vector at the point (x, y) is

which we illustrate in Figure 3.4.
The assumption that the flow is irrotational and has no sources or sinks

implies that both the curl and divergence vanish; that is, qx − py = 0 and px +
qy = 0. Hence p and q obey the equations

Equations (3-30) are similar to the Cauchy–Riemann equations and
permit us to define a special complex function:

Here we have ux = px, uy = py, vx = −qx, and vy = −qy. We can use
Equations (3-30) to verify that the Cauchy–Riemann equations hold for f:

Assuming that the functions p and q have continuous partials, Theorem
3.4 guarantees that function f defined in Equation (3-31) is analytic and that
the fluid flow of Equation (3-29) is the conjugate of an analytic function; that
is,

In Chapter 6 we prove that every analytic function f has an analytic
antiderivative F; assuming this to be the case, we can write

where F ' (z) = f (z).
Theorem 3.8 implies that ø(x, y) is a harmonic function. Using the vector

interpretation of a complex number, the gradient of ø can be written as
grad φ (x, y) = øx (x, y) + iøy (x, y).
The Cauchy–Riemann equations applied to F (z) give øy (x, y) = −Ψx (x,



y); making this substitution in the preceding equation yields

Equation (3-14) says that øx (x, y) + iψx (x, y) = F ′ (z), which by the
preceding equation and Equation (3-32) implies that

Finally, from Equation (3-29), ø is the scalar potential function for the
fluid flow, so

V(x, y) = grad ø (x, y).
The curves given by {(x, y) : ø (x, y) = constant} are called equipotentials.

The curves {(x, y) : ψ (x, y) = constant} are called streamlines and describe
the path of fluid flow. In Chapter 10 we show that the family of
equipotentials is orthogonal to the family of streamlines, as depicted in
Figure 3.5.

 EXAMPLE 3.14 Show that the harmonic function ø (x, y) = x2 − y2 is the
scalar potential function for the fluid flow expression V(x, y) = 2x − i2y.

Solution We can write the fluid flow expression as

An antiderivative of f (z) = 2z is F (z) = z2, and the real part of F (z) is the
desired harmonic function:

ø (x, y) = Re [F (z)] = Re [x2 − y2 + i2xy] = x2− y2.

Note that the hyperbolas ø (x, y) = x2−y2 = C are the equipotential curves
and that the hyperbolas ψ (x, y) = 2xy = C are the streamline curves; these
curves are orthogonal, as shown in Figure 3.6.



Figure 3.5 The families of orthogonal curves {(x, y) : ø (x, y) = constant} and
{(x, y) : ψ (x, y) = constant} for the function F (z) = ø (x, y) + iψ (x, y).

Figure 3.6 The equipotential curves x2 − y2 = C and streamline curves 2xy =
C for the function F (z) = z2.

EXERCISES FOR SECTION 3.3

1. Determine where the following functions are harmonic.

(a) u (x, y) = ex cos y and v (x, y) = ex sin y.
(b) u (x,y) = ln (x2 + y2 for (x,y) ≠ (0,0).



2. Does an analytic function f (z) = u (x, y) + iv(x, y) exist for which v (x, y)
= x3 + y3?Why or why not?

3. Let a, b, and c be real constants. Determine a relation among the
coefficients that will guarantee that the function ø (x, y) = ax2 + bxy + cy2

is harmonic.

4. Let v (x, y) = arctan  for x ≠ 0. Compute the partial derivatives of v, and
verify that v satisfies Laplace’s equation.

5. Find an analytic function f (z) = u (x, y) + iv (x, y) for the following
expressions.

(a) u (x,y) = y3 − 3x2y.
(b) u (x, y) = sin y sinh x.
(c) v (x, y) = ey sin x.
(d) v (x, y) = sin x cosh y.

6. Let u1 (x, y) = x2 − y2 and u2 (x, y) = x3 − 3xy2. Show that u1 and u2 are
harmonic functions but that their product u1 (x, y) u2 (x, y) is not a
harmonic function.

7. Assume that u (x, y) is harmonic on a region D that is symmetric about
the line y = 0. Show that U(x, y) = u (x,−y) is harmonic on D. Hint: Use
the chain rule for differentiation of real functions and note that u (x,−y) is
really the function u (g (x, y)), where g (x, y) = (x,−y).

8. Let v be a harmonic conjugate of u. Show that −u is a harmonic conjugate
of v.

9. Let v be a harmonic conjugate of u. Show that h = u2−v2 is a harmonic
function.

10. Suppose that v is a harmonic conjugate of u and that u is a harmonic
conjugate of v. Show that u and v must be constant functions.

11. Let f (z) = f (reiθ) = u (r, θ) + iv (r, θ) be analytic on a domain D that does
not contain the origin. Use the polar form of the Cauchy–Riemann
equations uθ = −rvr and vθ = rur. Differentiate them first with respect to θ
and then with respect to r. Use the results to establish the polar form of



Laplace’s equation:

r2urr (r, θ) + rur (r, θ) + uθθ (r, θ) = 0.

12. Use the polar form of Laplace’s equation given in Exercise 11 to show
that the following functions are harmonic.
(a) 
(b) 

13. The function F (z) =  is used to determine a field known as a dipole.
(a) 
(b) 

14. Assume that F (z) = ø (x, y) + iψ (x, y) is analytic on the domain D and
that F ′ (z) ≠ 0 on D. Consider the families of level curves {ø(x, y) =
constant} and {Ψ (x, y) = constant}, which are the equipotentials and
streamlines for the fluid flow  Prove that the two families of
curves are orthogonal. Hint: Suppose that (xo,yo) is a point common to
the two curves ø (x, y) = c1 and ø (x, y) = c2. Use the gradients of ø and ψ
to show that the normals to the curves are perpendicular.

15. We introduce the logarithmic function in Chapter 5. For now, let F (z) =
Log z = ln | z| +iArg z. Here we have ø (x, y) = ln| z| and ψ (x, y) = Argz.
Sketch the equipotentials ø = 0, ln 2, ln 3, ln 4 and the streamlines 

16. Theorem 3.9 claims that it is possible to prove that C'(x) is a function of x
alone. Prove this assertion.

17. Discuss and compare the statements “u (x, y) is harmonic” and “u(x, y) is
the imaginary part of an analytic function.”

1 A. L. Cauchy (1789–1857) played a prominent role in the development of complex
analysis, and you will see his name several times throughout this text. The last name is not
pronounced as “kaushee.” The beginning syllable has a long “o” sound, like the word
kosher, but with the second syllable having a long “e” instead of “er” at the end. Thus, we
pronounce Cauchy as “koshe.”



chapter 4
sequences, julia and mandelbrot sets,

and power series

Overview
In 1980, Benoit Mandelbrot (1924–2010) led a team of mathematicians in
producing some stunning computer graphics from very simple rules for
manipulating complex numbers. This event marked the beginning of a new
branch of mathematics, known as fractal geometry, that has some amazing
applications. Many of the tools needed to appreciate Mandelbrot’s work are
contained in this chapter. We begin by looking at extensions to the complex
domain of sequences and series, ideas that are part of a standard calculus
course.

4.1 SEQUENCES AND SERIES

In formal terms, a complex sequence is a function whose domain is the
positive integers and whose range is a subset of the complex numbers. The
following are examples of sequences:



For convenience, at times we use the term sequence rather than complex
sequence. If we want a function s to represent an arbitrary sequence, we can
specify it by writing s (1) = z1, s (2) = z2, and so on. The values z1, z2, z3, …
are called the terms of a sequence, and mathematicians, generally being lazy
when it comes to such things, often refer to z1, z2, z3, … as the sequence
itself, even though they are really speaking of the range of the sequence when
they do so. You will usually see a sequence written as {zn}∞

n=1, {zn}∞
1 or,

when the indices are understood, as {zn}. Mathematicians are also not so
fussy about starting a sequence at z1 so that {zn}∞

n=−1, {zk}∞ k=0,…would
also be acceptable notation, provided all terms were defined. For example,
the sequence r given by Equation (4-4) could be written in a variety of ways:

The sequences f and g given by Equations (4-1) and (4-2) behave
differently as n gets larger. The terms in Equation (4-1) approach 2 + 5i = (2,
5), but those in Equation (4-2) do not approach any particular number, as they
oscillate around the eight eighth roots of unity on the unit circle. Informally,
the sequence {zn}∞

1 has ζ as its limit as n approaches infinity, provided the
terms zn can be made as close as we want to ζ by making n large enough.
When this happens, we write

If  = ζ, we say that the sequence {zn}∞
1 converges to ζ.

We need a rigorous definition for Statement (4-5), however, if we are to
do honest mathematics.

Definition 4.1: Limit of a sequence



 = ζ means that for any real number ε > 0 there corresponds a
positive integer Nε (which depends on ε) such that zn ∈ Dε (ζ) whenever
n > Nε. That is, | zn − ζ| < ε whenever n > Nε.

Remark 4.1 The reason that we use the notation Nε is to emphasize the fact
that this number depends on our choice of ε. Sometimes, for convenience, we
drop the subscript.
 

Figure 4.1 illustrates a convergent sequence.
In form, Definition (4.1) is exactly the same as the corresponding

definition for limits of real sequences. In fact, a simple criterion casts the
convergence of complex sequences in terms of the convergence of real
sequences.

Figure 4.1 A sequence that converges to ζ.

 Theorem 4.1 Let zn = xn + iyn and ζ = u + iv. Then

Proof First we assume that Statement (4-6) is true and then deduce the
truth of Statement (4-7). Let ε be an arbitrary positive real number. To
establish Statement (4-7), we must show (1) that there is a positive
integer Nε such that the inequality | xn − u| < ε holds whenever n > Nε



and (2) that there is a positive integer Mε such that the inequality |yn −
v| < ε holds whenever n > Mε. Because we are assuming Statement (4-
6) to be true, we know (according to Definition 4.1) that there is a
positive integer Nε such that zn ∈ Dε (ζ) if n > Nε. Recall that zn ∈ Dε
(ζ) is equivalent to the inequality |zn − ζ| < ε. Thus, whenever n > Nε,
we have

 (by Inequality (1-21))

Similarly, we can show that there is a number Mε such that |yn − v| < ε
whenever n > Mε, which proves Statement (4-7).

To complete the proof of this theorem, we must show that
Statement (4-7) implies Statement (4-6). Let ε > 0 be an arbitrary real
number. By Statement (4-7), there exist positive integers Nε and Mε
such that

Let Lε = Max{Nε,Mε}; then, if n > Lε,

(What is the reason for this step?)

(by properties of absolute value)

(because | i| = 1)

(by Statements (4-8) and (4-9))



We needed to show the strict inequality | zn − ζ| < ε, and the next-to-last
line in the proof gives us precisely that. Note also that we have been speaking
of the limit of a sequence. Strictly speaking, we are not entitled to use this
terminology because we haven’t proved that a complex sequence can have
only one limit. The proof, however, is almost identical to the corresponding
result for real sequences, and we leave it as an exercise.

 EXAMPLE 4.1 Find 

Solution We write zn = xn + iyn =  Using results concerning
sequences of real numbers, we find that  xn =   = 0 and  yn = 

 EXAMPLE 4.2 Show that {(1 + i)n} diverges.

Solution We have

The real sequences  both diverge, so we conclude
that {(1 + i)n } diverges.

Definition 4.2: Bounded sequence
A complex sequence {zn} is bounded provided that there exist a positive
real number R and an integer N such that | zn| < R for all n > N. In other
words, for n > N, the sequence {zn} is contained in the disk DR (0).

Bounded sequences play an important role in some newer developments
in complex analysis that are discussed in Section 4.2. A theorem from real
analysis stipulates that convergent sequences are bounded. The same result



holds for complex sequences.

Theorem 4.2 If {zn} is a convergent sequence, then {zn} is bounded.

Proof The proof is left as an exercise.

As with the real numbers, we also have the following definition.

Definition 4.3: Cauchy sequence
The sequence {zn} is a Cauchy sequence if for every ε > 0 there is a
positive integer Nε such that if n, m > Nε, then | zn − zm| < ε, or,
equivalently, zn − zm ∈ Dε (0).

The following theorem should now come as no surprise.

Theorem 4.3 If {zn} is a Cauchy sequence, {zn} converges.

Proof Let zn = xn + iyn. Using the techniques of Theorem 4.1, we can
easily show that both {xn} and {yn} are Cauchy sequences of real
numbers. Since Cauchy sequences of real numbers are convergent, we
know that

for some real numbers x0 and y0. By Theorem 4.1, then,  zn = z0,



where z0 = x0 + iy0. In other words, the sequence {zn} converges to z0.

One of the most important notions in analysis (real or complex) is a
theory that allows us to add up infinitely many terms. To make sense of such
an idea we begin with a sequence {zn}, and form a new sequence {Sn}, called
the sequence of partial sums, as follows.

Definition 4.4: Infinite series

The formal expression  is called an infinite
series, and z1, z2, … are called the terms of the series.

If there is a complex number S for which S =  say that
the infinite series  zk converges to S and that S is the sum of the infinite
series. When convergence occurs, we write S =  zk.

The series  zk is said to be absolutely convergent provided that the
(real) series of magnitudes  | zk| converges.

If a series does not converge, we say that it diverges.
 
Remark 4.2 The first finitely many terms of a series do not affect its
convergence or divergence and, in this respect, the beginning index of a
series is irrelevant. Thus, we will conclude that if a series 

 zk converges, then so does  zk, where z1,



z2, …, zN is any finite collection of terms. A similar remark applies to
determining divergence of a series.
 

As you might expect, many of the results concerning real series carry
over to complex series. We now give several of the more standard theorems
for complex series, along with examples of how they are used.

Theorem 4.4 Let zn = xn + iyn and S = U + iV. Then

Proof Let  We use Theorem 4.1 to
conclude that  iff both  Un = U
and  Vn = V. The completion of the proof now follows from
Definition 4.1.

 Theorem 4.5 If  zn is a convergent complex series, then  zn =
0.

Proof The proof is left as an exercise.

 EXAMPLE 4.3 Show that the series  is
convergent.



Solution Recall that the real series  are convergent. Hence,
Theorem 4.4 implies that the given complex series is convergent.

 EXAMPLE 4.4 Show that the series  is disvergent.

Solution We know that the real series  is divergent. Hence, Theorem 4.4
implies that the given complex series is divergent.

 EXAMPLE 4.5 Show that the series  is divergent.

Solution Here we set zn = (1 + i)n and observe that  | zn| ≡ 
 = ∞. Thus  zn ≠ 0, and Theorem 4.5 implies that the series is not

convergent; hence it is divergent.

Theorem 4.6 Let  zn and  wn be convergent series and let c be
a complex number. Then.

Proof The proof is left as an exercise.

Definition 4.5: Cauchy product
Let  an and  bn be convergent series, where an and bn are complex
numbers. The Cauchy product of the two series given above is defined to



be the series  cn, where cn =  akbn−k.

Theorem 4.7 If the Cauchy product converges, then

Proof The proof can be found in a number of texts—for example,
Infinite Sequences and Series, by Konrad Knopp (translated by
Frederick Bagemihl; New York: Dover, 1956).

Theorem 4.8 (Comparison test) Let  Mn be a convergent series of
real nonnegative terms. If {zn} is a sequence of complex numbers and
|zn| ≤ Mn for all n, then  zn =  (xn + iyn) converges.

Proof Using Inequalities (1-21), we determine that |xn| ≤ |zn| ≤ Mn and
|yn| ≤ |zn| ≤ Mn for all n. By the comparison test for real series, we
conclude that  | xn| and  | yn| are convergent. An absolutely
convergent real series is convergent, so  xn and  yn are
convergent. With these results, together with Theorem 4.4, we
conclude that  zn =  xn + i  yn is convergent.

 Corollary 4.1 If  |zn| converges, then  zn converges. In other words,
absolute convergence implies convergence for complex series as well as for
real series.



Proof The proof is left as an exercise.

 EXAMPLE 4.6 Show that  converges.

Solution We calculate  = Mn. Using the comparison test
and the fact that  converges, we determine that  converges and
hence so does 

EXERCISES FOR SECTION 4.1
1. Find the following limits.

(a) 

(b) 

(c) 

(d) 

2. Show that  is the principal value of the nth root of i.

3. Suppose that  zn = z0. Show that 

4. Suppose that the complex series {zn} converges to ζ. Show that {zn} is
bounded in two ways.

(a) Write zn = xn + iyn, and use the fact that convergent series of real
numbers are bounded.

(b) For ε = 1, use Definitions 4.1 and 4.2 to show that there is some
integer N such that, for n > N, |zn| = |ζ + (zn − ζ)| ≤ |ζ| + 1. Then set R =
max {|z1|, |z2|, … |zN|, ζ + 1}.

5. Show that  = i.



6. Suppose that  Show that 

7. Does  exist? Why?

8. Let zn = rneiθn ≠ 0, where θn = Arg (zn).

(a) Suppose 

(b) Find an example where  but  θn does not
exist.

(c) Is it possible to have  does not exist?

9. Show that, if  zn converges, then  zn = 0. Hint: zn = Sn − Sn−1.

10. State whether the following series converge or diverge. Justify your
answers.

(a) 

(b) 

11. Let  (xn + iyn) = u + iv. If c = a + ib is a complex constant, show that

12. If  zn converges, show that 

13. Complete the proof of Theorem 4.1. In other words, suppose that  zn =
ζ, where zn = xn + iyn and ζ = u + iv. Prove that  yn = v.

14. A side comment asked you to justify the first inequality in the proof of
Theorem 4.1. Give a justification.

15. Prove that a sequence can have only one limit. Hint: Suppose that there is
a sequence {zn} such that zn → ζ1 and zn → ζ2. Show this implies ζ1 = ζ2
by proving that for all ε > 0, | ζ1 − ζ2| < ε.

16. Prove Corollary 4.1.
17. Prove that  zn = 0 iff  |zn| = 0.



4.2 JULIA AND MANDELBROT SETS

An impetus for studying complex analysis is the comparison of properties of
real numbers and functions with their complex counterparts. In this section
we take a look at Newton’s method for finding solutions to the equation f (z)
= 0. Then, by examining the more general topic of iteration, we will plunge
into a breathtaking world of color and imagination. The mathematics
surrounding this topic has generated a great deal of popular attention in the
past few years.

Recall from calculus that Newton’s method proceeds by starting with a
function f (x) and an initial “guess” of x0 as a solution to f (x) = 0. We then
generate a new guess x1 by the computation  Using x1 in place of
x0, this process is repeated, giving  We thus obtain a sequence of
points {xk}, where  The points {xk}∞

k=0 are called the
iterates of x0. For functions defined on the real numbers, this method gives
remarkably good results, and the sequence {xk} often converges to a solution
of f (x) = 0 rather quickly. In the late 1800s, the British mathematician Arthur
Cayley investigated the question of whether Newton’s method can be applied
to complex functions. He wrote a paper giving an analysis for how this
method works for quadratic polynomials and indicated his intention to
publish a subsequent paper for cubic polynomials. Unfortunately, Cayley
died before producing this paper. As you will see, the extension of Newton’s
method to the complex domain and the more general question of iteration are
quite complicated.

 EXAMPLE 4.7 Trace the next five iterates of Newton’s method for an
initial guess of  as a solution to the equation f(z) = 0, where f(z) = z2

+1.

Solution For any guess z for a solution, Newton’s method gives as the next
guess the number . Table 4.1 gives the required iterates, rounded



to five decimal places.
Figure 4.2 shows the relative positions of these points on the z plane.

Note that the points z4 and z5 are so close together that they appear to
coincide and that the value for z5 agrees to five decimal places with the actual
solution z = i.

Table 4.1 The iterates of  for Newton’s method applied to f (z) = z2 +
1.

Figure 4.2 The iterates of  for Newton’s method applied to f (z) = z2

+ 1.

The complex version of Newton’s method also appears to work quite
well. Recall, however, that with functions defined on the reals, not every
initial guess produces a sequence that converges to a solution. Example 4.8
shows that the same is true in the complex case.

 EXAMPLE 4.8 Show that Newton’s method fails for the function f (z) = z2

+ 1 if the initial guess is a real number.



Solution From Example 4.7 we know that, for any guess z as a solution of
z2+1 = 0, the next guess at a solution is  We let z0 be any
real number and {zk} be the sequence of iterations produced by the initial
seed z0. If for any k, zk = 0, the procedure terminates, as zk+1 will be
undefined. If all the terms of the sequence {zk} are defined, an easy induction
argument shows that all the terms of the sequence are real. The solutions of
z2 + 1 = 0 are ±i, so the sequence {zk} cannot possibly converge to either
solution. In the exercises we ask you to explore in detail what happens when
z0 is in the upper or lower half-plane.

The case for cubic polynomials is more complicated than that for
quadratics. Fortunately, we can get an idea of what’s going on by doing some
experimentation with computer graphics. We begin with the cubic
polynomial f (z) = z3 + 1. (Recall that the roots of this polynomial are at −1, 
+ i, and  − i.) We associate a color with each root (blue, red, and green,
respectively). We form a rectangular region R, which contains the three roots
of f (z), and partition this region into equal rectangles Rij. We then choose a
point zij at the center of each rectangle and for each of these points we apply
the following algorithm.

1. With  compute N (zij). Continue computing successive
iterates of this initial point either until we are within a certain preassigned
tolerance (say, ε) of one of the roots of f (z) = 0, or until the number of
iterations has exceeded a preassigned maximum.

2. If Step 1 leaves us within ε of one of the roots of f (z), we color the entire
rectangle Rij with the color associated with that root. Otherwise, we
assume that the initial point zij does not converge to any root, and we
color the entire rectangle yellow.

Note that this algorithm doesn’t prove anything. In Step 2, there is no a
priori reason to justify the assumption mentioned, nor is there any necessity
for an initial point zij to have its sequence of iterates converging to one of the



roots of f (z) = 0 just because a particular iteration is within ε of that root.
Finally, the fact that one point in a rectangle behaves in a certain way does
not imply that all the points in that rectangle behave in a like manner.
Nevertheless, we can use this algorithm as a basis for mathematical
explorations. Indeed, computer experiments such as the one described have
contributed to a lot of exciting mathematics during the past 30 years. The
color plates located on the inside front cover of this book illustrate the results
of applying our algorithm to various functions. Color plate 1 shows the
results for the cubic polynomial f (z) = z3+1. The points in the blue, red, and
green regions are those “initial guesses” that will converge to the roots −1,  +

i, and  − i, respectively. (The roots themselves are located in the middle
of the three largest colored regions.) The complexity of this picture becomes
apparent when you observe that, wherever two colors appear to meet, the
third color emerges between them. But then, a closer inspection of the area
where this third color meets one of the other colors reveals again a different
color between them. This process continues with an infinite complexity.

There appear to be no yellow regions with any area in color plate 1,
indicating that at least most initial guesses z0 at a solution to z3 + 1 = 0 will
produce a sequence {zk} that converges to one of the three roots. Color plate
2 demonstrates that this outcome does not always occur. It shows the results
of applying the preceding algorithm to the polynomial f (z) = z3+(−0.26 +
0.02i) z+ (−0.74 + 0.02i). The yellow area shown is often referred to as the
rabbit. It consists of a main body and two ears. Upon closer inspection (color
plate 3) you can see that each of the ears consists of a main body and two
ears. Color plate 2 is an example of a fractal image. Mathematicians use the
term fractal to indicate an object that has this kind of recursive structure.

In 1918, the French mathematicians Gaston Julia and Pierre Fatou noticed
this fractal phenomenon when exploring iterations of functions not
necessarily connected with Newton’s method. Beginning with a function f (z)
and a point z0, they computed the iterates z1 = f (z0), z2 = f (z1), …, zk+1 = f
(zk), …, and investigated properties of the sequence {zk}. Their findings did
not receive a great deal of attention, in part because computer graphics were
not available at that time. With the recent proliferation of computers, it is not
surprising that these investigations were revived in the 1980s. Detailed



studies of Newton’s method and the more general topic of iteration were
undertaken by a host of mathematicians including Curry, Devaney, Douady,
Garnett, Hubbard, Mandelbrot, Milnor, and Sullivan. We now turn our
attention to some of their results by focusing on the iterations produced by
quadratics of the form fc (z) = z2 +c. You will be surprised at the startling
pictures that graphical iterates of such simple functions produce.
 

 EXAMPLE 4.9 For fc (z) = z2 + c, analyze all possible iterations when c =
0, that is, for the function f0 defined by f0 (z) = z2 + 0.

Solution We leave as an exercise the claim that if | z0| < 1, the sequence will
converge to 0; if | z0| > 1, the sequence will be unbounded; and if | z0| = 1,
the sequence will either oscillate around the unit circle or converge to 1.

For the function fc, defined by fc (z) = z2 + c, and an initial seed z0, the set
of iterates given by z1 = fc (z0), z2 = fc (z1), … is also called the orbit of z0
generated by fc. We let Kc denote the set of points with a bounded orbit for fc.
Example 4.9 shows that K0 is the closed unit disk 1 (0). The boundary of Kc
is known as the Julia set for the function fc. Thus, the Julia set for f0 is the
unit circle C1 (0). It turns out that Kc is a nice simple set only when c = 0 or c
= −2; otherwise, Kc is a fractal. Color plate 4 shows K−1.25. The variation in
colors indicate the length of time it takes for points to become “sufficiently
unbounded” according to the following algorithm, which uses the same
notation as our algorithm for iterations via Newton’s method.

1. Compute fc (zij). Continue computing successive iterates of this initial
point until the absolute value of one of the iterations exceeds a certain
bound (say, L), or until the number of iterations has exceeded a
preassigned maximum.

2. If Step 1 leaves us with an iteration whose absolute value exceeds L, we



color the entire rectangle Rij with a color indicating the number of
iterations needed before this value was attained (the more iterations
required, the darker the color). Otherwise, we assume that the orbit of the
initial point zij do not diverge to infinity, and we color the entire rectangle
black.

Note, again, that this algorithm doesn’t prove anything. It merely guides
the direction of our efforts to do rigorous mathematics.

Color plate 5 shows the Julia set for the function fc, where c =
−0.11−0.67i. The boundary of this set is different from the boundaries of the
other sets we have seen, in that it is disconnected. Julia and Fatou
independently discovered a simple criterion that can be used to tell when the
Julia set for fc is connected or disconnected. We state their result, but omit the
proof, as it is beyond the scope of this text.

Theorem 4.9 The boundary of Kc is connected if and only if 0 ∈ Kc.
In other words, the Julia set for fc is connected if and only if the orbit
of 0 is a bounded set.

 EXAMPLE 4.10 Show that the Julia set for fi is connected.

Solution We apply Theorem 4.9 and compute the orbit of 0 for fi (z) = z2+i.
We have fi (0) = i, fi (i) = −1+i, fi (−1 + i) = −i, and fi (−i) = −1+i. Thus, the
orbit of 0 is the sequence {0,−1 + i,−i,−1 + i,−i,−1 + i,−i, … }, which is
clearly a bounded sequence. Thus, by Theorem 4.9, the Julia set for fi is
connected.

In 1980, the Polish-born mathematician Benoit Mandelbrot used
computer graphics to study the set



M = {c : the Julia set for fc is connected}
= {c : the orbit of 0 determined by fc is a bounded set}.
The set M has come to be known as the Mandelbrot set. Color plate 6

shows its intricate nature. The Mandelbrot set is not self-similar, although it
may look that way. There are subtle variations in its infinite complexity.
Color plate 7 shows a zoom over the upper portion of the set shown in color
plate 6. Likewise, color plate 8 zooms in on the upper portion of color plate
7. In color plate 8 you can see the emergence of another structure very similar
to the Mandelbrot set that we began with. Although it isn’t an exact replica, if
you zoomed in on this set at almost any spot, you would eventually see yet
another “Mandelbrot clone” and so on ad infinitum! In the remainder of this
section we look at some of the properties of this amazing set.
 

 EXAMPLE 4.11 Show that 

Solution Let {an}∞
n=0 be the orbit of 0 generated by fc (z) = z2 + c, where 

 Then
a0 = 0,
a1 = fc(a0) = a2

0 + c = c,
a2 = fc(a1) = a2

1 + c, and in general,

an+1 = fc(an) = an
2 + c.

 
We show that {an} is bounded, and, in particular, we show that | an| ≤  for all
n by mathematical induction. Clearly | an| ≤  if n = 0 or 1. We assume that |
an| ≤  for some value of n ≥ 1 (our goal is to show | an+1| ≤ . Now,

 
| an+1| = | a2

n + c|
    ≤ | a2

n| + | c| (by the triangle inequality)
     (by our induction assumption and the fact that ).



In the exercises, we ask you to show that if | c| > 2, then c  M. Thus, the
Mandelbrot set depicted in color plate 6 contains the disk  (0) and is
contained in the disk 2 (0).

We can use other methods to determine which points belong to M. To do
so, we need some additional vocabulary.

Definition 4.6: Fixed point
The point z0 is a fixed point for the function f if f (z0) = z0.

Definition 4.7: Attracting point
The point z0 is an attracting point for the function f if | f ′ (z0)| < 1.

Theorem 4.10 explains the significance of these terms.

Theorem 4.10 Suppose that z0 is an attracting fixed point for the
function f. Then there is a disk Dr (z0) about z0 such that the iterates of
all the points in D*

r (z0) are drawn toward z0 in the sense that if z ∈
D*r (z0), then | f (z) − z0| < | z − z0|. In fact, if zk is the kth iterate of z
∈ D*

r (z0), then  zk = z0.

Proof Because z0 is an attracting point for f, we know that | f ′ (z0)| < 1.
And because f is differentiable at z0, we know that for any ε > 0 there
exists some r > 0 such that if z ∈ D*

r (z0), then  If
we set ε = 1 − | f ′ (z0)|, then we have for all z in D*

r (z0) that



which gives  As z0 is a fixed point
for f, this last inequality implies that | f (z) − z0| < | z − z0| the first part
of our theorem.

The proof that  zk = z0 is left as an exercise.

In 1905, Fatou showed that if the function fc defined by fc (z) = z2 + c has
attracting fixed points, then the orbit of 0 determined by fc must converge to
one of them. Because a convergent sequence is bounded, this condition
implies that c must belong to M. In the exercises we ask you to show that the
main cardioid-shaped body of M in color plate 6 is composed of those points
c for which fc has attracting fixed points. You will find Theorem 4.11 to be a
useful characterization of those points.

Theorem 4.11 The function fc defined by fc (z) = x2 + c has attracting
fixed points iff  where the square root
designates the principal square root function.

Proof The point z0 is a fixed point for fc iff fc (z0) = z 0. In other
words, iff z0

2 − z0 + c = 0. By Theorem 2.1, the solutions to this
equation are where again the square root designates the principal
square root function. Now, z0 is an attracting point iff | f ′c (z0)| = |2z0|
< 1. Combining this result with the solutions for z0 gives our desired
result.



Definition 4.8: n-cycle
An n-cycle for a function f is a set {z0, z1, …, zn−1} of n complex
numbers such that zk = f (zk−1), for 1 ≤ k ≤ n − 1 and f (zn−1) = z0.

Definition 4.9: Attracting n-cycle
An n-cycle {z0, z1,…, zn−1} for a function f is said to be attracting if the
condition | g ′n (z0)| < 1 holds, where gn is the composition of f with itself
n times. For example, if n = 2, then 

 EXAMPLE 4.12 Example 4.10 shows that {− 1 + i, −i} is a 2-cycle for the
function fi. It is not an attracting 2-cycle because g2 (z) = z4 + 2iz2 + i −1 and
g2 (z) = 4z3 + 4iz. Hence | g ′2 (− 1 + i)| = |4 + 4i|, so | g ′2 (− 1 + i)| > 1.

In the exercises, we ask you to show that if {z0, z1, …, zn−} is an
attracting n-cycle for a function f, then not only does z0 satisfy | g ′n (z0)| < 1,
but also | g ′n (zk)| < 1, for k = 1, 2, …, n − 1.

It turns out that the large disk to the left of the cardioid in color plate 6
consists of those points c for which fc (z) has a 2-cycle. The large disks above
and below the main cardioid disk are the points c for which fc (z) has a 3-
cycle.

Continuing with this scheme, we see that the idea of n-cycles explains the
appearance of the “buds” that you see on color plate 6. It does not, however,
begin to do justice to the enormous complexity of the entire set. Even color
plates 7 and 8 are mere glimpses into its awesome beauty. On our website,
we suggest several references for projects that you could pursue for a more
detailed study of topics relating to those covered in this section.



EXERCISES FOR SECTION 4.2
1. Consider the function f (z) = z2 +1, where 

(a) Show that if Im (z0) > 0, the sequence {zk} formed by successive
iterations of z0 via N (z) lies entirely within the upper half-plane.

(b) Show that a similar result holds if Im (z0) < 0.

(c) Use induction to show that if all the terms of the sequence {zk} are
defined, then the sequence {zk} is real, provided z0 is real.

(d) Discuss whether {zk} converges to i if Im (z0) > 0 and to −i if Im (z0)
< 0.

2. Formulate and solve problems analogous to those in Exercise 1 for the
function f (z) = z2 − 1.

3. Prove that Newton’s method always works for polynomials of degree 1
(functions of the form f (z) = az+b, where a ≠ 0). How many iterations are
necessary before Newton’s method produces the solution 

4. Consider the function f0 (z) = z2 and an initial point z0. Let {zk} be the
sequence of iterates of z0 generated by f0. That is, z1 = f0 (z0), z2 = f0 (z1),
and so on.

(a) Show that if | z0| < 1, the sequence {zk} converges to 0.

(b) Show that if | z0| > 1, the sequence {zk} is unbounded.

(c) Show that if | z0| = 1, the sequence {zk} either converges to 1 or
oscillates around the unit circle. Give a simple criterion that you can
apply to z0 that will reveal which of these two paths {zk} takes.

5. Show that the Julia set for f−2 (z) is connected.



6. Determine the precise structure of the set K−2.

7. Prove that if z = c is in the Mandelbrot set, then its conjugate  is also in
the Mandelbrot set. Thus, the Mandelbrot set is symmetric about the x-
axis. Hint: Use mathematical induction.

8. Show that if c is any real number greater than , then c is not in the
Mandelbrot set. Note: Combining this condition with Example 4.11
shows that the cusp in the cardioid section of the Mandelbrot set occurs
precisely at c = .

9. Find a value for c that is in the Mandelbrot set such that its negative, −c,
is not in the Mandelbrot set.

10. Show that the points c that solve the inequalities of Theorem 4.11 form a
cardioid. This cardioid is the main body of the Mandelbrot set shown in
color plate 6. Hint: It may be helpful to write the inequalities of Theorem
4.11 as

11. Use Theorem 4.11 and the paragraph immediately before it to show that
the point  belongs to the Mandelbrot set.

12. Suppose that {z0, z1} is a 2-cycle for f.

(a) Show that if z0 is attracting for g2 (z), then so is the point z1. Hint:
Differentiate g2 (z) = f (f (z)), using the chain rule, and show that g′2 (z0)
= g′2 (z1).

(b) Generalize part (a) to n-cycles.

13. Prove that  zk = z0 in Theorem 4.10.

4.3 GEOMETRIC SERIES AND



CONVERGENCE THEOREMS

We begin this section by presenting a series of the form  zn, which is
called a geometric series and is one of the most important series in
mathematics.

Theorem 4.12 (Geometric series) If | z| < 1, the series  zn

converges to  That is, if |z| < 1, then

If |z| ≥ 1, the series diverges.

Proof Suppose that | z| < 1. By Definition 4.1, we must show 
, where

Multiplying both sides of Equation (4-12) by z gives

Subtracting Equation (4-13) from Equation (4-12) yields

so that

Since | z| < 1,  zn = 0. (Can you prove this assertion? We ask you to
do so in the exercises!) Hence .

Now suppose | z| ≥ 1. Clearly  | zn| ≠ 0, so  zn ≠ 0 (see
Exercise 17, Section 4.1). Thus, by the contrapositive of Theorem 4.5, 



 must diverge.

 Corollary 4.2 If | z| > 1, the series  z−n converges to  That is, if |
z| > 1, then

If | z| ≤ 1, the series diverges.

Proof If we let  take the role of z in Equation (4-11), we get

Multiplying both sides of this equation by  gives

which, by Equation (4-10), is the same as

But this expression is equivalent to saying that  which is
what the corollary claims.

It is left as an exercise to show that the series diverges if | z| ≤ 1.

 Corollary 4.3 If z ≠ 1, then for all n,

Proof This result follows immediately from Equation (4-14).

 EXAMPLE 4.13 Show that 



Solution If we set  By Theorem 4.12, the sum is

 EXAMPLE 4.14 Evaluate 
 

Solution We can put this expression in the form of a geometric series:
 

(by Equation (4-10) in Theorem 4.6)

(by reindexing)

(by Theorem 4.12 because  <1)
(by standard simplification procedures).

Remark 4.3 The equality given in Example 4.14 illustrates an important
point with regard to evaluating a geometric series whose beginning index is
other than zero. The value of  equals . If we think of z as the “ratio” by
which any term of the series is multiplied to generate successive terms, we
note that the sum of a geometric series equals  provided | ratio | < 1.

The geometric series is used in the proof of Theorem 4.13, which is
known as the ratio test. It is one of the most commonly used tests for
determining the convergence or divergence of series. The proof is similar to
the one used for real series, and we leave it for you to do.

 Theorem 4.13 (d'Alembert's ratio test) If  is a complex series
with the property that



then the series is absolutely convergent if L < 1 and divergent if L > 1.

 EXAMPLE 4.15 Show that  converges.

Solution Using the ratio test, we find that

Because L < 1, the series converges.

 EXAMPLE 4.16 Show that the series  converges for all values of z
in the disk |z – i| < 2 and diverges if |z – i| > 2.

Solution Using the ratio test, we find that

If | z – i | < 2, then L < 1, and the series converges. If | z - i| > 2, then L > 1,
and the series diverges.

Our next result, known as the root test, is slightly more powerful than the
ratio test. Before we present this test, we need to discuss a rather
sophisticated idea used with it—the limit supremum.

Definition 4.10: Limit supremum



Let {tn} be a sequence of positive real numbers. The limit supremum of
the sequence (denoted  suptn) is the smallest real number L having the
property that for any ε > 0, there are at most finitely many terms in the
sequence that are larger than L+ε. If there is no such number L, then 
sup tn = ∞.

 EXAMPLE 4.17 The limit supremum of the sequence

{tn} = {4.1, 5.1, 4.01, 5.01, 4.001, 5.001, …} is  suptn = 5,

because if we set L = 5, then for any ε > 0, there are only finitely many terms
in the sequence larger than L + ε = 5 + ε. Additionally, if L is smaller than 5,
then by setting ε = 5 - L, we can find infinitely many terms in the sequence
larger than L + ε (because L + ε = 5).

 EXAMPLE 4.18 The limit supremum of the sequence

{tn} = {1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3, …} is  suptn = 3,

because if we set L = 3, then for any ε > 0, there are only finitely many terms
(actually, there are none) in the sequence larger than L + ε = 3 + ε.
Additionally if L is smaller than 3, then by setting  we can find
infinitely many terms in the sequence larger than L + ε, because L + ε < 3, as
the following calculation shows:

 EXAMPLE 4.19 The limit supremum of the Fibonacci sequence

{tn} = {1, 1, 2, 3, 5, 8, 13, 21, 34, …} is  sup tn = ∞.

(The Fibonacci sequence satisfies the relation tn = tn-1 + tn–2 for n > 2.)



The limit supremum is a powerful idea because the limit supremum of a
sequence always exists, which is not true for the ordinary limit. However,
Example 4.20 illustrates the fact that, if the limit of a sequence does exist,
then it will be the same as the limit supremum.

 EXAMPLE 4.20 The sequence

We leave verification of this as an exercise.

 Theorem 4.14 (Root test) Suppose the series  has  sup 
L. Then the series is absolutely convergent if L < 1 and divergent if L
> 1.

Proof Suppose first that L < 1. We can select a number r such that L <
r < 1. By definition of the limit supremum, only finitely many terms in
the sequence  exceed r, so there exists a positive integer N such
that for all n > N we have  That is,  for all n > N. For r <
1 Theorem 4.12 implies that  converges. But then, by Theorem 4.8, 

 converges and hence so does .Corollary 4.1 then
guarantees that  converges.

Now suppose that L > 1. We can select a number r such that 1 < r ≤ L.
Again, by definition of the limit supremum we conclude that 
for infinitely many n. But this condition means that  for
infinitely many n, and as r > 1, this implies that  does not converge to



0. By Theorem 4.5  does not converge.

Note that, in applying either Theorem 4.13 or 4.14, if L = 1, the
convergence or divergence of the series is unknown, and further analysis is
required to determine the true state of affairs.

EXERCISES FOR SECTION 4.3
1. Evaluate

(a) 
(b) 

2. Show  converges for all values of z in the disk D2 (-i) = {z : |z + i|
< 2} and diverges if |z + i| > 2.

3. Is the series  convergent? Why or why not?

4. Use the ratio test to show that the following series converge.

5. Use the ratio test to find a disk in which the following series converge.

6. Establish the claim in the proof of Theorem 4.12 that if |z| < 1, then 
zn = 0.

7. In the geometric series, show that if |z| > 1, then  | Sn| = ∞.



8. Prove that the series in Corollary 4.2 diverges if |z| < 1.

9. Prove Theorem 4.13.

10. Give a rigorous argument to show that  sup tn = 1 in Example 4.20.

11. For . Show that f (z) = z + f
(z2).

12. This exercise makes interesting use of the geometric series.

(a) Use the formula for geometric series with 
where r < 1, to show that

(b) Use part (a) to obtain

4.4 POWER SERIES FUNCTIONS

Suppose that we have a series  where  If α and the
collection of cn are fixed complex numbers, we get different series by
selecting different values for z. For example, if α = 2 and cn =  for all n, we
get the series  Note that, when α = 0
and cn = 1 for all n, we get the geometric series. The collection of points for
which the series  converges is the domain of a function 

 which we call a power series function. Technically, this
series is undefined if z = α and n = 0 because 00 is undefined. We get around
this difficulty by stipulating that the series  is really compact



notation for  In this section we present some results that are
useful in helping establish properties of functions defined by power series.

 Theorem 4.15 Suppose that  Then the set of points z
for which the series converges is one of the following:

i. the single point z = α;

ii. the disk Dρ (α) = {z : |z − α| ≤ ρ}, along with part (either none,
some, or all) of the circle Cρ (α) = {z : | z − α| = ρ};

iii. the entire complex plane.

Proof By Theorem 4.14, the series converges absolutely at those
values of z for which  sup  This condition is the same
as requiring

There are three possibilities to consider for the value of  sup . If
the limit supremum equals ∞ Inequality (4-15) holds iff z = α, which is
case (i). If 0 <  sup  Inequality (4-15) holds iff 

  which is case (ii).
Finally, if the limit supremum equals 0, the left side of Inequality (4-
15) will be 0 for any value of z, which is case (iii). We are unable to
say for sure what happens with respect to convergence on 

 You will see in the exercises that there are various
possibilities.

Another way to phrase case (ii) of Theorem 4.15 is to say that the power
series  converges if |z – α| < ρ and diverges if |z – α| < ρ.



We call the number ρ the radius of convergence of the power series (see
Figure 4.3). For case (i) of Theorem 4.15, we say that the radius of
convergence is zero and that the radius of convergence is infinity for case
(iii).

Figure 4.3 The radius of convergence of a power series.

 Theorem 4.16 For the power series function , we
can find ρ, its radius of convergence, by any of the following methods:

i. Cauchy’s root test:  (provided the limit exists).

ii. Cauchy–Hadamard formula:  (this limit always exists).

iii. d’Alembert’s ratio test:  (provided the limit exists).

We set ρ = ∞ if the limit equals 0 and ρ = 0 if the limit equals ∞.

Proof If you examine carefully the proof of Theorem 4.15, you will
see that we have already proved (i) and (ii). They follow directly from
Inequality (4-15) and the fact that the limit supremum equals the limit
whenever the limit exists. We can show (iii) by using the ratio test. We
leave the details as an exercise.

We now give an example illustrating each of these cases.

 EXAMPLE 4.21 The series  has radius of convergence



3 by Cauchy’s root test because

 EXAMPLE 4.22 The series  has radius
of convergence  by the Cauchy–Hadamard formula. We see this result by
calculating 

 EXAMPLE 4.23 The series  has radius of convergence ∞ by the
ratio test because 

We come now to the main result of this section.

 Theorem 4.17 Suppose that the function f (z) =  has radius
of convergence ρ > 0. Then

i. f is infinitely differentiable for all z ∈ Dρ (α). In fact,
ii. for all k,  and
iii.  where f(k) denotes the kth derivative of f. (When k = 0,

f(k) denotes the function f itself so that f(0) (z) = f (z) for all z.)

Proof Remarkably, the entire proof hinges on verifying (ii) for the
simple case when k = 1. The cases in (ii) for k ≥ 2 follow by induction.
For instance, we get the case when k = 2 by applying the result for k =
1 to the series  Also, (i) is an automatic
consequence of (ii), because (ii) gives a formula for computing
derivatives of all orders in addition to assuring us of their existence.
Finally, (iii) follows by setting z = α in (ii), as all the terms drop out
except when n = k, giving us f(k) (α) = k(k − 1)… (k − k + 1) ck.
Solving for ck gives the desired result.



Verifying (ii) when k = 1, however, is no simple task. We begin by
defining the following functions:

Here Sj (z) is simply the (j + 1)st partial sum of the series f (z), and Rj
(z) is the sum of the remaining terms of that series. We leave as an
exercise to show that the radius of convergence for g (z) is ρ, the same
as that of f (z). For a fixed z0 ∈ Dρ(α), we must prove that f ' (z0) = g
(z0); that is, we must prove that  We do so by
showing that for all

ε > 0 there exists δ > 0 such that if z ∈ Dρ (α) with 0 < |z − z0| <
δ, then

Let z0 ∈ Dρ (α) and ε > 0 be given. Choose r < ρ so that z0 ∈ Dr
(α). We choose δ to be small enough so that  (see
Figure 4.4 on page 156) and also small enough to satisfy an additional
restriction, which we shall specify in a moment.

Because f (z) = Sj (z) + Rj (z), simplifying the right side of the
following equation reveals that, for all z ∈ Dδ(z0), and for all j,

where S′j (z0) is the derivative of the function Sj evaluated at z0.
Equation (4-16) has the general form A = B + C + D. By the triangle
inequality,

| A| = | B + C + D| ≤ | B| + | C| + | D|,

so our proof will be complete if we can show that for a small enough



value of δ, each of the expressions |B|, |C|, and |D| is less than .

Calculation for |D|

where the last inequality follows from Exercise 12, Section 4.1.
As an exercise, we ask you to show that

Assuming this to be the case, we get

Since r < ρ, the series  converges (can you explain why?).
Thus the tail part of the series, which is the right side of Inequality (4-
18), can certainly be made less than  if we choose j large enough—
say, j ≥ N1.

Calculation for | C|

Since  it is clear that  Thus, there
is an integer N2 such that if j ≥ N2, then 

Calculation for | B|

We define N = max {N1, N2}. Because SN (z) is a polynomial, S′N (z0)
exists. This means we can find δ small enough that it complies with the
restriction previously placed on it as well as ensuring that

whenever z ∈ Dρ (α), with 0 < | z − z0| < δ. Using this value of N for j



in Equation (4-16), together with our chosen δ, yields conclusion (ii)
and hence the entire theorem.

Figure 4.4 Choosing δ to prove that f′ (z0) = g (z0).

 EXAMPLE 4.24 Show that 

Solution We know from Theorem 4.12 that for all z ∈ D1
(0). If we set k = 1 in Theorem 4.17, part (ii), then  

 for all z ∈ D1 (0).

 EXAMPLE 4.25 The Bessel function of order zero is defined by

and termwise differentiation shows that its derivative is

We leave as an exercise to show that the radius of convergence of these series
is infinity. The Bessel function J1 (z) of order 1 is known to satisfy the
differential equation J1 (z) = −J ′0 (z).



EXERCISES FOR SECTION 4.4
1. Prove part (iii) of Theorem 4.17.

2. Consider the series 

(a) Show that each series has radius of convergence 1.

(b) Show that the first series converges nowhere on C1 (0) = {z : | z| = 1}.

(c) Show that the second series converges everywhere on C1 (0).

(d) It turns out that the third series converges everywhere on C1 (0),
except at the point z = 1. This is not easy to prove. Give it a try.

3. Find the radius of convergence of the following.

(a) 

(b) 

(c) 

(d) 

(e) 

(f) 

(g) 

(h) 

(i) 

(j) 



4. Show that  For what values of z is this valid?

5. Suppose that  has radius of convergence R. Show that  has
radius of convergence R2.

6. Does there exist a power series  that converges at z1 = 4 – i and
diverges at z2 = 2 + 3i? Why or why not?

7. Verify part (ii) of Theorem 4.17 for all k by using mathematical
induction.

8. This exercise establishes that the radius of convergence for g given in
Theorem 4.17 is ρ, the same as that of the function f.

(a) Explain why the radius of convergence for g is 

(b) Show that  Hint: The lim sup equals the limit. Show that 

(c) Assuming that  show that the conclusion for
this exercise follows.

(d) Verify the truth of the assumption made in part (c).

9. Here we establish the validity of Inequality (4-17) in the proof of
Theorem 4.17.

(a) Show that

where s and t are arbitrary complex numbers, s ≠ t

(b) Explain why, in Inequality (4-17), | z − α| < r and | z0 − α| < r.

(c) Let s = z − α and t = z0 − α in part (a) to establish Inequality (4-17).



10. Show that the radius of convergence of the series for J0 (z) and J′0 (z) in
Example 4.25 is infinity.

11. Consider the series obtained by substituting for the complex number z the
real number x in the Maclaurin series for sin x. Where does this series
converge?

12. Show that, for 

Hint:  Now use Theorem 4.12.



chapter 5
elementary functions

Overview
How should complex-valued functions such as ez, log z, sin z, and the like, be
defined? Clearly, any responsible definition should satisfy the following
criteria.

 The functions so defined must give the same values as the corresponding
functions for real variables when the number z is a real number.

 As much as possible, the properties of these new functions must
correspond with their real counterparts. For example, we would want 

 to be valid regardless of whether z were real or complex.

These requirements may seem like a tall order to fill. There is a
procedure, however, that offers promising results. It is to put the expansion of
the real functions ex, sin x, and so on, as power series in complex form. We
use this strategy in this chapter.

5.1 THE COMPLEX EXPONENTIAL
FUNCTION

Recall that the real exponential function can be represented by the power
series  Thus, it is only natural to define the complex exponential
ez, also written as exp (z), in the following way.



Definition 5.1: 

Clearly, this definition agrees with that of the real exponential function when
z is a real number. We now show that this complex exponential has two of
the key properties associated with its real counterpart and verify the identity
eiθ = cos θ + i sin θ, which, back in Chapter 1 (see Identity (1-32) of Section
1.4) we promised to establish.

 Theorem 5.1 The function exp z is an entire function satisfying the
following conditions.

i.  (using alternative notation, ).

ii. exp (z1 + z2) = exp (z1) exp (z2) .

iii. If θ is a real number, then eiθ = cos θ + isin θ.

Proof By the ratio test (check Example 4.23), the series in Definition
5.1 has an infinite radius of convergence, so exp (z) is entire by
Theorem 4.17, part (i).

Using Theorem 4.17, part (ii), we get

which gives us part (i) of Theorem5.1.
To prove part (ii), we let ζ be an arbitrary complex number and

define g (z) to be

g (z) = exp (z) exp (ζ – z).

Using the product rule, chain rule, and part (i), we have

 for all z.



According to Theorem 4.16, this result implies that the function g must
be constant. Thus, for all z, g(z) = g(0). Since exp (0) = 1 (verify!), we
deduce

Hence, for all z,

g (z) = exp (z) exp (ζ − z) = exp (ζ).

Setting z = z1 and letting ζ = z1 + z2, we get

exp (z1) exp (z1 + z2 − z1) = exp (z1 + z2),

which simplifies to our desired result.

To prove part (iii), we let θ be a real number. By Definition 5.1,

Note that parts (ii) and (iii) of the Theorem 5.1 combine to verify
DeMoivre’s formula, which we introduced in Section 1.5 (see Identity (1-
40)).

If z = x + iy, then fromparts (ii) and (iii) we have

Some texts start with Identity (5-1) as the definition for exp (z). In the
exercises, we show that this is a natural approach fromthe standpoint of



differential equations.
The notation exp (z) is preferred over ez in some situations. For example, 

 is the value of exp(z) when  and equals the positive
fifth root of e = 2.71828182845904…. The notation , however, is
ambiguous, because it might be interpreted as any of the complex fifth roots
of the number e that we discussed in Section 1.5:

, for k = 0, 1,…, 4.

To prevent this confusion, we often use exp (z) to denote the single-
valued exponential function.

We now explore some additional properties of exp (z). Using Identity (5-
1), we can easily establish that

For example, because Identity (5-1) involves the periodic functions cos y
and sin y, any two points in the z plane that lie on the same vertical line with
their imaginary parts differing by an integral multiple of 2π are mapped onto
the same point in the w plane. Thus, the complex exponential function is
periodic with period 2πi, which establishes Equation (5-2). We leave the
verification of Equations (5-3) and (5-4) as exercises.

 EXAMPLE 5.1 For any integer n, the points

in the z plane are mapped onto the single point



in the w plane, as indicated in Figure 5.1.

Figure 5.1 The points {zn} in the z plane (i.e., the xy plane) and their image
w0 = exp (zn) in the w plane (i.e., the uv plane).

Let’s look at the range of the exponential function. If z = x + iy, we see
from Identity (5-1)—ez = exeiy = ex (cos y + isin y)—that ez can never equal
zero, as ex is never zero, and the cosine and sine functions are never zero at
the same point. Suppose, then, that w = ez ≠ 0. If we write w in its exponential
formas w = ρeiø, Identity (5-1) gives

ρeiø = exeiy.
Using Identity (5-1), and Property (1-41) of Section 1.5, we get

Solving Equations (5-5) for x and y yields

where n is an integer. Thus, for any complex number w ≠ 0, there are
infinitely many complex numbers z = x + iy such that w = ez. From
Equations (5-8), the numbers z are

where n is an integer. Hence



In summary, the transformation w = ez maps the complex plane
(infinitely often) onto the set of nonzero complex numbers.

If we restrict the solutions to Equation (5-9) so that only the principal
value of the argument, –π < Arg w ≤ π, is used, the transformation w = ez =
ex+iy maps the horizontal strip {(x, y) : –π < y ≤ π} one-to-one and onto the
range set S = {w : w ≠ 0}. This strip is called the fundamental period strip
and is shown in Figure 5.2.

Figure 5.2 The fundamental period strip for the mapping w = exp (z).

The horizontal line z = t + ib, for –∞ < t < ∞ in the z plane, is mapped
onto the ray w = eteib = et (cos b + i sin b) that is inclined at an angle ø = b in
the w plane. The vertical segment z = a + iθ, for –π < θ ≤ π in the z plane, is
mapped onto the circle centered at the origin with radius ea in the w plane.
That is, w = eaeiθ = ea (cos θ + i sin θ). The lines r1, r2, and r3, are mapped
to the rays  respectively. Likewise, the segments s1, s2, and s3 are
mapped to the corresponding circles 

 EXAMPLE 5.2 Consider a rectangle R = {(x, y) : a ≤ x ≤ b and c ≤ y ≤ d},
where –π < c < d ≤ π. Show that the transformation w = ez = ex+iy maps R
onto a portion of an annular region bounded by two rays.

Solution The image points in the w plane satisfy the following relationships



involving the modulus and argument of w:

which is a portion of the annulus {ρeiø : ea ≤ ρ ≤ eb } in the w plane
subtended by the rays ø = c and ø = d. In Figure 5.3, we show the image of
the rectangle

Figure 5.3 The image of R under the transformation w = exp (z).

EXERCISES FOR SECTION 5.1
1. Using Definition 5.1, explain why exp (0) = e0 = 1.

2. The questions for this problem relate to Figure 5.2. The shaded portion in
the w plane indicates the image of the shaded portion in the z plane, with
the lighter shading indicating expansion of the area of corresponding
regions.

(a) Why is there no shading inside the circle s*1?

(b) Explain why the images of r1, r2, and r3 appear to make, respectively,
angles of  radians with the positive u-axis.



(c) Precisely where should the images of the points ±iπ be located?

3. Verify Equations (5-3) and (5-4).

4. Express ez in the form u + iv for the following values of z.

5. Find all values of z for which the following equations hold.

(a) ez = –4.
(b) ez = 2 + 2i.

6. Prove that |exp (z2)| ≤ exp (| z|2) for all z. Where does equality hold?

7. Show that exp (z + iπ) = exp (z − iπ) holds for all z.

8. Express exp (z2) and exp ( ) in the Cartesian form u (x, y) + iv (x, y).

9. Explain why

(a)  holds for all z.
(b)  is nowhere analytic.

10. Show that | e–z | < 1 iff Re (z) > 0.
11. Verify that

12. Show that f (z) = zez is analytic for all z by showing that its real and
imaginary parts satisfy the Cauchy–Riemann sufficient conditions for
differentiability.

13. Find the derivatives of the following.

(a) eiz.
(b) z4 exp (z3).



(c) e(a + ib)z.
(d) exp ( ).

14. Let n be a positive integer. Show that

(a) (exp z)n = exp (nz).

15. Show that  converges for Im (z) > 0.

16. Generalize Example 5.1, where the condition –π < c < d ≤ π is replaced
by d − c < 2π. Illustrate what this means.

17. Use the fact that exp (z2) is analytic to show that  sin 2xy is a
harmonic function.

18. Show the following concerning the exponential map.
(a) The image of the line {(x, y) : x = t, y = 2π + t}, where –∞ < t < ∞ is a

spiral.
(b) The image of the first quadrant {(x, y) : x > 0, y > 0} is the region {w

: | w| > 1}.
(c) If a is a real constant, the horizontal strip {(x, y) : α < y ≤ α + 2π} is

mapped one-to-one and onto the nonzero complex numbers.
(d) The image of the vertical line segment {(x, y) : x = 2, y = t}, where 

 is half a circle.
(e) The image of the horizontal ray {(x, y) : x > 0, y = } is a ray.

19. Explain how the complex function ez and the real function ex are
different. How are they similar?

20. Many texts give an alternative definition for exp(z), starting with Identity
(5-1) as the definition for f (z) = exp(z). Recall that this identity states that
exp (z) = exp (x + iy) = ex (cos y + i sin y). This exercise shows such a
definition is a natural approach in terms of differential equations. We start
by requiring f (z) to be the solution to an initial-value problem satisfying
three conditions: (1) f is entire; (2) f′ (z) = f (z) for all z; and (3) f (0) = 1.
Suppose that f (z) = f (x + iy) = u (x, y) + iv (x, y) satisfies conditions (1),
(2), and (3).
(a) Use the result f′ (z) = ux (x, y)+ivx (x, y) and the requirement f′ d(z) = f



(z) from condition (2) to show that ux (x, y) – u(x, y) = 0, for all z = (x,
y).

(b) Show that the result in part (a) implies that  This means
u (x, y) e–x is constant with respect to x, so u(x, y) e–x = p (y), where p
(y) is a function of y alone.

(c) Using a similar procedure for v(x, y),show we wind up getting a pair
of solutions u (x, y) = p (y) ex and v (x, y) = q (y) ex, where p (y) and q
(y) are functions of y alone.

(d) Now use the Cauchy–Riemann equations to conclude from part (c)
that p (y) = q′ (y) and p′ (y) = –q (y).

(e) Use part (d) to show that p′′ (y) + p (y) = 0 and q′′ (y) + q (y) = 0.
(f) Identify the general solutions to part (e). Then, given the initial

conditions f (0) = f (0 + 0i) = u (0, 0) + iv (0, 0) = 1+0i, find the
particular solutions and conclude that Identity (5-1) follows.

5.2 THE COMPLEX LOGARITHM

In Section 5.1, we showed that if w is a nonzero complex number, then the
equation w = exp z has infinitely many solutions. Because the function exp
(z) is a many-to-one function, its inverse (the logarithm) is necessarily
multivalued.

Definition 5.2: Multivalued logarithm
For z ≠ 0, we define the multivalued function log as the inverse of the
exponential function; that is,

If we go through the same steps as we did in Equations (5-8) and (5-9),
we find that, for any complex number z ≠ 0, the solutions w to Equation (5-



10) take the form

where θ ε arg (z) and ln | z| denotes the natural logarithmof the positive
number | z|. Because arg (z) is the set arg (z) = {Arg (z) + 2nπ : n is an
integer}, we can express the set of values comprising log (z) as

where it is understood that Identity (5-13) refers to the same set of numbers
given in Identity (5-12).

Recall that Arg is defined so that for z ≠ 0, –π < Arg (z) ≤ π. We call any
one of the values given in Identities (5-12) or (5-13) a logarithmof z. Note
that the different values of log (z) all have the same real part and that their
imaginary parts differ by the amount 2nπ, where n is an integer. When n = 0,
we have a special situation.

Definition 5.3: Principal value of the logarithm
For z ≠ 0, we define Log, the principal value of the logarithm, by

The domain for the function Log is the set of all nonzero complex
numbers in the z plane, and its range is the horizontal strip {w : –π < Im (w) ≤
π} in the w plane. We stress again that Log is a single-valued function and
corresponds to setting n = 0 in Equation (5-12). As we demonstrated in
Chapter 2, the function Arg is discontinuous at each point along the negative
x-axis; hence so is the function Log. In fact, because any branch of the
multivalued function arg is discontinuous along some ray, a corresponding
branch of the logarithm will have a discontinuity along that same ray.

 EXAMPLE 5.3 Find the values of log (1 + i) and log (i).



Solution By standard computations, we have

The principal values are

 and

We now investigate some of the properties of log and Log. From
Equations (5-10), (5-12), and (5-14), it follows that

and that the mapping w = Log (z) is one-to-one from domain D = {z : | z| > 0}
in the z plane onto the horizontal strip {w : –π < Im (w) ≤ π} in the w plane.

The following example illustrates that, even though Log is not continuous
along the negative real axis, it is still defined there.

 EXAMPLE 5.4 Identity (5-14) reveals that

Log (–e) = ln | –e| + iArg (–e) = 1 + iπ and

Log (–1) = ln | –1| + iArg (–1) = iπ.

When z = x + i0, where x is a positive real number, the principal value of
the complex logarithm of z is

Log (x + i0) = ln x + iArg (x) = ln x + i0 = ln x,



where x > 0. Hence Log is an extension of the real function ln to the complex
case. Are there other similarities? Let’s use complex function theory to find
the derivative of Log. When we use polar coordinates for z = reiθ ≠ 0,
Equation (5-14) becomes

Log (z) = ln r + iArg (z)

= ln r + iθ, for r > 0 and – π < θ ≤ π
= U (r, θ) + iV (r, θ),

where U (r, θ) = ln r and V (r, θ) = θ. Because Arg (z) is discontinuous only
at points in its domain that lie on the negative real axis, U and V have
continuous partials for any point (r, θ) in their domain, provided reiθ is not on
the negative real axis, that is, provided –π < θ < π. (Note the strict inequality
for θ here.) In addition, the polar formof the Cauchy–Riemann equations
holds in this region (see Equation (3-22) of Section 3.2), since

Using Theorem 3.5 of Section 3.2, we see that

provided r > 0 and –π < θ < π. Thus, the principal branch of the complex
logarithmhas the derivative we would expect. Other properties of the
logarithm carry over, but only in specified regions of the complex plane.

 EXAMPLE 5.5 Show that the identity Log (z1 z2) = Log (z1) + Log (z2) is
not always valid.

Solution Let  Then



Our next result explains why Log (z1 z2) = Log (z1) + Log (z2) didn’t
hold for the particular numbers we chose.

 Theorem 5.2 The identity Log (z1 z2) = Log (z1) + Log (z2) holds
true iff –π < Arg (z1) + Arg (z2) ≤ π.

Proof Suppose first that –π < Arg (z1) + Arg (z2) ≤ π. By definition,
Log (z1 z2) = ln | z1 z2| + iArg (z1 z2) = ln | z1| + ln | z2| + iArg (z1 z2).
As –π < Arg (z1) + Arg (z2) ≤ π, it follows that Arg (z1 z2) = Arg (z1)
+ Arg (z2) (explain!), and so Log (z1 z2) = ln | z1| + ln | z2| + iArg (z1)
+ iArg (z2) = Log (z1) + Log (z2). The “only if” part is left as an
exercise.

As Example 5.5 and Theorem 5.2 illustrate, properties of the complex
logarithmdon’t carry over when arguments of products combine in such a
way that they drop down to – π or rise above π. This is because of the
restrictions placed on the domain of the function Arg. From the set of
numbers associated with the multivalued logarithm, however, we can
formulate properties that look exactly the same as those corresponding with
the real logarithm.



 Theorem 5.3 Let z1 and z2 be nonzero complex numbers. The
multivalued function log obeys the familiar properties of logarithms:

Proof Identity (5-17) is easy to establish: Using Identity (1-38) in
Section 1.4 concerning the argument of a product (and keeping in
mind we are dealing with sets of numbers), we write

Identities (5-18) and (5-19) are left as exercises.

We can construct many different branches of the multivalued logarithm
function that are continuous and differentiable except at points along any
preassigned ray {reiα : r > 0}. If we let α denote a real fixed number and
choose the value of θ ε arg (z) that lies in the range α < θ ≤ α + 2π, then the
function logπ defined by

where z = reiθ ≠ 0, and α < θ ≤ α + 2π, is a single-valued branch of the
logarithmfunction. The branch cut for logα(z) is the ray {reiα : r ≥ 0}, and
each point along this ray is a point of discontinuity of logα(z). Because exp
[logα (z)] = z, we conclude that the mapping w = logα (z) is a one-to-one
mapping of the domain | z| > 0 onto the horizontal strip {w : α < Im (w) ≤ α +
2π}. If α < c < d < α + 2π, then the function w = logα (z) maps the set D =
{reiθ : a < r < b, c < θ < d} one-to-one and onto the rectangle R defined by
R = {u + iv : ln a < u < ln b, c < v < d}. Figure 5.4 shows the mapping w =
logα (z), its branch cut {reiθ : r > 0}, the set D, and its image R.



Figure 5.4 The branch w = logα (z) of the logarithm.

We can easily compute the derivative of any branch of the multivalued
logarithm. For a particular branch w = logα (z) for z = reiθ ≠ 0, and α < θ < α
+2π (note the strict inequality for θ), we start with z = exp (ω) in Equations
(5-10) and differentiate both sides to get

Figure 5.5 The Riemann surface for mapping w = log (z).



The Riemann surface for the multivalued function w = log (z) is similar to
the one we presented for the square root function. However, it requires
infinitely many copies of the z plane cut along the negative x-axis, which we
label Sk for k = …, – n,…, – 1, 0, 1,…, n,…. Now, we stack these cut planes
directly on each other so that the corresponding points have the same
position. We join the sheet Sk to Sk+1 as follows. For each integer k, the edge
of the sheet Sk in the upper half-plane is joined to the edge of the sheet Sk+1
in the lower half-plane. The Riemann surface for the domain of log looks like
a spiral staircase that extends upward on the sheets S1, S2,… and downward
on the sheets S–1, S–2,…, as shown in Figure 5.5. We use polar coordinates
for z on each sheet. For Sk, we use

z = r (cos θ + i sin θ), where

r = | z| and 2πk – π < θ ≤ π +2πk.

Again, for Sk, the correct branch of log (z) on each sheet is

log (z) = ln r + iθ, where

r = | z| and 2πk – π < θ ≤ π + 2πk.

EXERCISES FOR SECTION 5.2
1. Find all values for

(a) Log (ie2).

(e) log (–3).
(f) log 8.
(g) log (4i).

2. Use the properties of arg (z) in Section 1.4 to establish



(a) Equation (5-18).
(b) Equation (5-19).

3. Find all the values of z for which each equation holds.

(c) exp (z) = –ie.
(d) exp (z + 1) = i.

4. Refer to Theorem 5.2.

(a) Explain why –π < Arg (z1) + Arg (z2) ≤ π implies that Arg (z1 z2) =
Arg (z1) + Arg (z2).

(b) Prove the “only if” part.

5. Refer to Equation (5-20) and pick an appropriate value for α so that the
branch of the logarithm logα(z) will not be analytic at z = z0, where

(a) z0 = 1.

(b) z0 = –1+ i√3.

(c) z0 = i.

(d) z0 = –i.

(e) z0 = – 1 – i.

(f) z0 = √ 3 – i.

6. Show that  is analytic everywhere except at the points –1, –2,
and on the ray {(x, y) : x ≤ –5, y = 0}.

7. Show that the following are harmonic functions in the right half-plane {z :
Rez > 0}.

(a) u (x, y) = ln (x2 + y2).
(b) v (x, y) = Arctan ( ).

8. Show that zn = exp[n logα (z)], where n is an integer and logα is any
branch of the logarithm.

9. Construct a branch of f (z) = log (z + 4) that is analytic at the point z = – 5



and takes on the value 7πi there.

10. For what values of z is it true that
(a)  = Log (z1) – Log (z2)? Why?

(b)  Why?
(c)  Why?

11. Construct branches of f (z) = log (z + 2) that are analytic at all points in
the plane except at points on the following rays.
(a) {(x, y) : x ≥ –2, y = 0}.
(b) {(x, y) : x = – 2, y ≥ 0}.
(c) {(x, y) : x = – 2, y ≤ 0}.

12. Show that the mapping w = Log (z) maps

(a) the ray {z = reiθ : r > 0, θ = ) one-to-one and onto the horizontal line
{(u, v) : v = }.

(b) the semicircle {z = 2eiθ : –  ≤ θ ≤ } one-to-one and onto the vertical
line segment {(ln 2, v) : –  ≤ v ≤ }.

13. Find specific values of z1 and z2 so that  ≠ Log (z1) – Log z2).

14. Show why the solutions to Equation (5-10) are given by those in Equation
(5-11). Hint: Mimic the process used in obtaining Identities (5-8) and (5-
9).

15. Explain why no branch of the logarithm is defined when z = 0.

5.3 COMPLEX EXPONENTS

In Section 1.5 we indicated that it is possible to make sense out of
expressions such as  or ii without appealing to a number system beyond
the framework of complex numbers. We now show how this is done by
taking note of some rudimentary properties of the complex exponential and
logarithm, and then using our imagination.

We begin by generalizing Identity (5-15). Equations (5-12) and (5-14)



show that log (z) can be expressed as the set log (z) = {Log (z) + i2nπ : n is an
integer}. We can easily show (left as an exercise) that, for z ≠ 0, exp [logα
(z)] = z, where logα(z) is any branch of the function log (z). But this means
that, for any ζ ε log (z), the identity exp ζ = z holds true. Because exp [log (z)]
denotes the set {exp ζ : ζ ε log (z)}, we see that exp [log (z)] = z, for z ≠ 0.

Next, note that Identity (5-17) gives log (zn) = n log (z), where n is any
natural number, so that exp [log (zn)] = exp [n log (z)] = zn, for z ≠ 0. With
these preliminaries out of the way, we can now come up with a definition of a
complex number raised to a complex power.

Definition 5.4: Complex exponent
Let c be a complex number. We define zc as

The right side of Equation (5-21) is a set. This definition makes sense
because if both z and c are real numbers with z > 0, Equation (5-21) gives the
familiar (real) definition for zc, as the following example illustrates.

 EXAMPLE 5.6 Use Equation (5-21) to evaluate .

Solution Calculating  = exp [ ] gives

 = {ln 2 + inπ : n is an integer}.

Thus,  is the set {exp (ln 2 + inπ) : n is an integer}. The distinct values
occur when n = 0 and 1; we get exp (ln 2) = 2 and exp (ln 2 + iπ) = exp (ln 2)
exp (iπ) = –2. In other words,  = {–2, 2}.

The expression  is different from √ 4, as the former represents the set {–
2, 2} and the latter gives only one value: √ 4 = 2.



Because log (z) is multivalued, the function zc will, in general, be
multivalued. If we want to focus on a single value for zc, we can do so via the
function defined for z ≠ 0 by

which is called the principal branch of the multivalued function zc. Note that
the principal branch of zc is obtained from Equation (5-21) by replacing log
(z) with the principal branch of the logarithm.

 EXAMPLE 5.7 Find the principal values of  and ii.

Solution From Example 5.3,

Identity (5-22) yields the principal values of  and ii:

Note that the result of raising a complex number to a complex power may
be a real number in a nontrivial way.



We now consider the possibilities that arise when we apply Equation (5-
21).

Case (i) Suppose that c = k, where k is an integer. Then, if z = reiθ ≠ 0, k log
(z) = {k ln (r) + ik (θ + 2nπ) : n is an integer}.

Recalling that the complex exponential function has period 2πi, we have

zk = exp [k log (z)]
= exp [k ln (r) + ik (θ + 2nπ)]
= exp ln (rk) + ikθ + i2knπ]
= exp ln (rk) exp (ikθ) exp (i2knπ)
= rk exp (ikθ) = rk (cos kθ + i sin kθ),

which is the single-valued kth power of z that we discussed in Section 1.5.

Case (ii): If c = , where k is an integer, and z = reiθ ≠ 0, then

Hence Equation (5-21) becomes

When we again use the periodicity of the complex exponential function,
Equation (5-23) gives k distinct values corresponding to n = 0, 1,…, k – 1.
Therefore, as Example 5.6 illustrated, the fractional power  is the
multivalued kth root function.

Case (iii): If j and k are positive integers that have no common factors and c
= f, then Equation (5-21) becomes



and again there are k distinct values that correspond with n = 0, 1,…, k – 1.

Case (iv): If c is not a rational number, then there are infinitely many values
for zc, provided z ≠ 0.

 EXAMPLE 5.8 The values of  are

where n is an integer. The principal value of  is

Figure 5.6 shows the terms for this multivalued expression corresponding
to n = –9, –8,…,–1, 0, 1,…, 8, 9. They exhibit a spiral pattern that is often
present in complex powers.



Figure 5.6 Some of the values of .

Some of the rules for exponents carry over from the real case. In the
exercises we ask you to show that if c and d are complex numbers and z ≠ 0,
then

where n is an integer.
The following example shows that Identity (5-27) does not hold if n is

replaced with an arbitrary complex value.

 EXAMPLE 5.9

, where n is an integer, and

, where n is an integer.

Since these sets of solutions are not equal, Identity (5-27) does not always



hold.

We can compute the derivative of the principal branch of zc, which is the
function f (z) = exp [c Log (z)]. By the chain rule,

If we restrict zc to the principal branch, zc = exp [c Log (z)], then
Equation (5-28) can be written in the familiar form that you learned in
calculus. That is, for z ≠ 0 and z not a negative real number,

We can use Identity (5-21) to define the exponential function with base b,
where b ≠ 0 is a complex number:

bz = exp [z log (b)].

If we specify a branch of the logarithm, then bz will be single-valued and
we can use the rules of differentiation to show that the resulting branch of bz

is an analytic function. The derivative of bz is then given by the familiar rule

where logα(z) is any branch of the logarithmwhose branch cut does not
include the point b.

EXERCISES FOR SECTION 5.3
1. Find the principal value of

(a) 4i.
(b) (1+i)πi.



2. Find all values of

(a) ii.
(b) (– 1)√2.

3. Show that if z ≠ 0, then z0 has a unique value.

4. For z = reiθ ≠ 0, show that the principal branch of the function

(a) zi is given by the formula

z = e–θ [cos (ln r)+isin (ln r)],

where r > 0 and –π < θ ≤ π.

(b) zα (α a real number) is given by the formula

zα = rα cos αθ + irα sin αθ,

where r > 0 and –π < θ ≤ π.

5. Let zn = (1 + i)n for n = 1, 2,…. Show that the sequence {zn} is a solution
to the difference equation zn = 2zn–1 – 2zn–2 for n ≥ 3.

6. Verify

(a) Identity (5-24).
(b) Identity (5-25).
(c) Identity (5-26).
(d) Identity (5-27).
(e) Identity (5-29).

7. Does 1 raised to any power always equal 1? Why or why not?

8. Construct an example that shows that the principal value of (z1z2)  need

not equal the product of the principal values of z1  and z2 .

9. If c is a complex number, the expression ic may be multivalued. Suppose



all the values of | ic| are identical. What are these values, and what can be
said about the number c? Justify your assertions.

5.4 TRIGONOMETRIC AND
HYPERBOLIC FUNCTIONS

Based on the success we had in using power series to define the complex
exponential, we have reason to believe that this approach will also be fruitful
for other elementary functions. The power series expansions for the real-
valued sine and cosine functions are

so it is natural to make the following definitions.

Definition 5.5: sin z and cos z

With these definitions in place, we can now easily create the other
complex trigonometric functions, provided the denominators in the following
expressions are not zero.

Definition 5.6: Trigonometric functions



The series for the complex sine and cosine agree with the real sine and
cosine when z is real, so the remaining complex trigonometric functions
likewise agree with their real counterparts. What additional properties are
common? For starters, we have

 Theorem 5.4 sin z and cos z are entire functions, with  sin z = cos z
and  cos z = – sin z.

Proof The ratio test shows that the radius of convergence for both
functions is infinity, so they are entire by Theorem 4.17, part (i). Part
(iii) of that theoremgives

We leave the proof that cos z = – sin zas an exercise.

We now list several additional properties, providing proofs for some and
leaving others as exercises.

 For all complex numbers z,

sin (–z) = –sin z,

cos (–z) = cos z, and

sin 2 z + cos 2 z = 1.

The verification that sin (–z) = –sin z and cos (–z) = cos z comes from
substituting –z for z in Definition 5.4. We leave verification of the identity
sin 2 z + cos 2 z = 1 as an exercise (with hints).



 For all complex numbers z for which the expressions are defined,

 tan z = sec2 z,

 cot z = – csc2 z,

 sec z = sec z tan z, and

 csc z = – csc z cot z.

The proof that  tan z = sec2 z uses the identity sin 2 z + cos 2 z = 1:

We leave the proofs of the other derivative formulas as exercises.
 

To establish additional properties, expressing cos z and sin z in the
Cartesian form u + iv will be useful. (Additionally, the applications in
Chapters 10 and 11 will use these formulas.) We begin by observing that the
argument given to prove part (iii) in Theorem5.1 easily generalizes to the
complex case with the aid of Definition 5.5. That is,

for all z, whether z is real or complex. Hence

Subtracting Equation (5-31) from Equation (5-30) and solving for sin z
give

Also,



where cosh y =  and sinh y = , respectively, are the hyperbolic
cosine and hyperbolic sine functions that you studied in calculus.

Similarly

Also,

Equipped with Identities (5-33)–(5-35), we can now establish many other
properties of the trigonometric functions. We begin with some periodic
results.

 For all complex numbers z = x + iy,

sin (z + 2π) = sin z,

cos (z + 2π) = cos z,

sin (z + π) = – sin z,

cos (z + π) = – cos z,

tan (z + π) = tan z, and

cot (z + π) = cot z.



Clearly, sin (z + 2π) = sin [(x + 2π) + iy]. By Identity (5-33) this expression
is sin (x + 2π) cosh y + i cos (x + 2π) sinh y = sin x cosh y + i cos x sinh y =
sin z. Again, the proofs for the other periodic results are left as exercises.

 If z1 and z2 are any complex numbers, then

sin (z1 + z2) = sin z1 cos z2 + cos z1 sin z2 and

cos (z1 + z2) = cos z1 cos z2 – sin z1 sin z2, so

sin 2z = 2 sin z cos z,

cos 2z = cos 2 z – sin 2 z, and

We demonstrate that cos (z1 + z2) = cos z1 cos z2 – sin z1 sin z2 by making
use of Identities (5-33)–(5-35):

Adding these expressions gives

which is what we wanted.

A solution to the equation f (z) = 0 is called a zero of the given function f.
As we now show, the zeros of the sine and cosine function are exactly
where you might expect them to be.

 We have sin z = 0 iff z = nπ, where n is any integer, and cos z = 0 iff 
, where n is any integer.

We show the result for cos z and leave the result for sin z as an exercise.
When we use Identity (5-35), cos z = 0 iff

0 = cos x cosh y – i sin x sinh y.

Equating the real and imaginary parts of this equation gives

0 = cos x cosh y and 0 = sin x sinh y.

The real-valued function cosh y is never zero, so the equation 0 = cos x
cosh y implies that 0 = cos x, from which we obtain x =  for any



integer n. Using the values for z = x + iy =  + iy in 0 = sin x sinh y
yields

which implies that y = 0, so the only zeros for cos z are those given by z = 
 for any integer n.

What does the mapping w = sin z look like? We can get a graph of the
mapping w = sin z = sin (x + iy) = sin x cosh y + i cos x sinh y by using
parametric methods. Let's consider the vertical line segments in the z plane
obtained by successfully setting x =  for k = 0, 1,…, 12, and for each x
value and letting y vary continuously, – 3 ≤ y ≤ 3. In the exercises we ask you
to show that the images of these vertical segments are hyperbolas in the uv
plane, as Figure 5.7 illustrates. In Chapter 10, we give a more detailed
analysis of the mapping w = sin z.

Figure 5.7 Vertical segments mapped onto hyperbolas by w = sin (z).

Figure 5.7 suggests one big difference between the real and complex sine
functions. The real sine has the property that |sin x| ≤ 1 for all real x. In Figure
5.7, however, the modulus of the complex sine appears to be unbounded,
which is indeed the case. Using Identity (5-33) gives



The identities cosh2 y – sinh2 y = 1 and cos 2 x + sin 2 x = 1 then yield

A similar derivation produces

If we set z = x0 + iy in Identity (5-36) and let y → ∞, we get

As advertised, we have shown that sin z is not a bounded function; it is
also evident from Identity (5-37) that cos z is unbounded.

The periodic character of the trigonometric functions makes apparent that
any point in their ranges is actually the image of infinitely many points.

 EXAMPLE 5.10 Find the values of z for which cos z = cosh 2.

Solution Starting with Identity (5-35), we write

cos z = cos x cosh y – i sin x sinh y = cosh 2.

If we equate real and imaginary parts, then we get

cos x cosh y = cosh 2 and sin x sinh y = 0.

The equation sin x sinh y = 0 implies either that x = πn, where n is an integer,
or that y = 0. Using y = 0 in the equation cos x cosh y = cosh 2 leads to the
impossible situation cos x =  = cosh 2 > 1. Therefore, x = πn, where n is
an integer. Since cosh y ≥ 1 for all values of y, the termcos x in the equation
cos x cosh y = cosh 2 must also be positive. For this reason we eliminate the
odd values of n and get x = 2πk, where k is an integer.

Finally, we solve the equation cos 2πk cosh y = cosh y = cosh 2 and use
the fact that cosh y is an even function to conclude that y = ±2. Therefore, the
solutions to the equation cos z = cosh 2 are z = 2πk ± 2i, where k is an integer.



The hyperbolic functions also have practical use in putting the tangent
function into the Cartesian form u + iv. Using Definition 5.6 and Equations
(5-33) and (5-35), we have

If we multiply each term on the right by the conjugate of the
denominator, the simplified result is

We leave it as an exercise to show that the identities cosh2 y – sinh2 y = 1 and
sinh 2y = 2 cosh y sinh y can be used in simplifying Equation (5-38) to get

As with sin z, we obtain a graph of the mapping w = tan z parametrically.
Consider the vertical line segments in the z plane obtained by successively
setting x =  for k = 0, 1,…, 8 and for each z value letting y vary
continuously, –3 ≤ y ≤ 3. In the exercises we ask you to show that the images
of these vertical segments are circular arcs in the uv plane, as Figure 5.8
shows. In Chapter 10, we give a more detailed investigation of the mapping w
= tan z.

Figure 5.8 Vertical segments mapped onto circular arcs by w = tan z.

How should we define the complex hyperbolic functions? We begin with:



Definition 5.7: cosh z and sinh z

With these definitions in place, we can now easily create the other
complex hyperbolic trigonometric functions, provided the denominators in
the following expressions are not zero.

Definition 5.8: Complex hyperbolic functions

As the series for the complex hyperbolic sine and cosine agree with the
real hyperbolic sine and cosine when z is real, the remaining complex
hyperbolic trigonometric functions likewise agree with their real
counterparts. Many other properties are also shared. We state several results
without proof, as they follow fromthe definitions we gave using standard
operations, such as the quotient rule for derivatives. We ask you to establish
some of these identities in the exercises.

The derivatives of the hyperbolic functions follow the same rules as in
calculus:

The hyperbolic cosine and hyperbolic sine can be expressed as

cosh z = cosh x cos y + i sinh x sin y and

sinh z = sinh x cos y + icosh x sin y.



The complex trigonometric and hyperbolic functions are all defined in
terms of the exponential function, so we can easily show themto be related by

cosh (iz) = cos z and sinh (iz) = i sin z,

sin (iz) = isinh z and cos (iz) = cosh z.

Some of the important identities involving the hyperbolic functions are

cosh2 z – sinh z = 1,
sinh (z1 + z2) = sinh z1 cosh z2 + cosh z1 sinh z2,
cosh (z1 + z2) = cosh z1 cosh z2 + sinh z1 sinh z2,
cosh (z + 2πi) = cosh z,
sinh (z + 2πi) = sinh z,
cosh(–z) = cosh z, and
sinh(–z) = – sinh z.

 
We conclude this section with an example from electronics. In the theory

of electric circuits, the voltage drop, ER, across a resistance R obeys Ohm’s
law, or

ER = IR,

where I is the current flowing through the resistor. Additionally, the current
and voltage drop across an inductor, L, obey the equation

The current and voltage across a capacitor, C, are related by



Figure 5.9 An LRC circuit.

The voltages EL, ER, and EC and the impressed voltage E (t) illustrated in
Figure 5.9 satisfy the equation

Suppose that the current I (t) in the circuit is given by

I (t) = I0 sin ωt.

Using this in the equations for ER and EL gives

We then set t0 =  in the equation for EC to obtain

We rewrite the equation I(t) = I0 sin ωt as a “complex current,”

with the understanding that the actual physical current I is the imaginary part
of I*. Similarly we rewrite Equations (5-41)–(5-43) as

Substituting these terms leads to an extension of Equation (5-40),



The complex quantity Z defined by 1

is called the complex impedance. Substituting this last expression into
Equation (5-44) gives

E* = ZI*,

which is the complex extension of Ohm’s law.

EXERCISES FOR SECTION 5.4
1. Establish that  = – sin z for all z.

2. Demonstrate that, for all z, sin 2 z + cos 2 z = 1, as follows.

(a) Define the function g (z) = sin 2 z + cos 2 z. Explain why g is entire.
(b) Show that g is constant. Hint: Look at g′ (z).
(c) Use part (b) to establish that, for all z, sin 2 z + cos 2 z = 1.

3. Show that Equation (5-38) simplifies to Equation (5-39). Hint: Use the
facts that cosh2 y – sinh2 y = 1 and sinh 2y = 2 cosh y sinh y.

4. Explain why the diagrams in Figures 5.8 and 5.9 came out the way they
did.

5. Show that, for all z,

(a) sin (π – z) = sin z.
(b) sin (  – z) = cos z.
(c) sinh (z + iπ) = – sinh z.
(d) tanh (z + iπ) = tanh z.
(e) sin (iz) = i sinh z.
(f) cosh (iz) = cos z.



6. Express the following quantities in u + iv form.

(a) cos (1 + i).

(c) sin 2i.
(d) cos (–2 + i).

(g) sinh (1 + iπ).

7. Find the derivatives of the following, and state where they are defined.

(b) z tan z.
(c) sec z2.
(d) zcsc2z.
(e) z sinh z.
(f) cosh z2.
(g) z tan z.

8. Show that

(a)  holds for all z.
(b)  is nowhere analytic.
(c)  holds for all z.
(d)  is nowhere analytic.

9. Show that

(a) 
(b)  is any fixed real number.

10. Find all values of z for which each equation holds.
(a) sin z = cosh 4.
(b) cos z = 2.
(c) sin z = isinh 1.



(d) 
(e) cosh z = 1.

11. Show that the zeros of sin z are at z = nπ, where n is an integer.
12. Use Equation (5-36) to show that, for z = x + iy, |sinh y| ≤ |sin z| ≤ cosh y.

13. Use Identities (5-36) and (5-37) to help establish the inequality |cos z|2 +
|sin z|2 ≥ 1, and show that equality holds iff z is a real number.

14. Show that the mapping w = sin z
(a) maps the y-axis one-to-one and onto the v-axis.
(b) maps the ray {(x, y) : x = , y > 0) one-to-one and onto the ray {(u, v) :

u > 1, v = 0}.
15. Given an elegant argument that explains why the following functions are

harmonic.
(a) h (x, y) = sin x cosh y.
(b) h (x, y) = cos x sinh y.
(c) h (x, y) = sinh x cos y.
(d) h (x, y) = cosh x sin y.

16. Establish the following identities.

(a) eiz = cos z + i sin z.
(b) cos z = cos x cosh y – i sin x sinh y.
(c) sin (z1 + z2) = sin z1 cos z2 + cos z1 sin z2.

(d) |cos z|2 = cos 2 x + sinh2 y.
(e) cosh z = cosh x cos y + i sinh x sin y.
(f) cosh2 z – sinh2 z = 1.
(g) cosh (z1 + z2) = cosh z1 cosh z2 + sinh z1 sinh z2.

17. Find the complex impedance Z if
(a) R = 10, L = 10, C = 0.05, and ω = 2.
(b) R = 15, L = 10, C = 0.05, and ω = 4.

18. Explain how sin z and the function sin x that you studied in calculus are
different. How are they similar?



19. Show that the following complex functions are periodic
(a) cosh z
(b) sinh z

20. Explain how the complex function sinh z and the real function sinh x are
different. How are they similar?

5.5 INVERSE TRIGONOMETRIC AND
HYPERBOLIC FUNCTIONS

We expressed trigonometric and hyperbolic functions in Section 5.4 in terms
of the exponential function. In this section we look at their inverses. When
we solve equations such as w = sin z for z, we obtain formulas that involve
the logarithm. Because trigonometric and hyperbolic functions are all
periodic, they are many-to-one; hence their inverses are necessarily
multivalued. The formulas for the inverse trigonometric functions are

We can find the derivatives of any branch of these functions by using the
chain rule:

We derive Equations (5-45) and (5-46) and leave the others as exercises.
If we take a particular branch of the multivalued function, w = arcsin z, we
have



which we can also write as

Multiplying both sides of this equation by eiw gives (eiw)2 – 2izeiw – 1 =
0, which is a quadratic equation in terms of eiw. Using the quadratic equation
to solve for eiw, we obtain

where the square root is a multivalued function. Taking the logarithm of both
sides of this last equation leads to the desired result:

where the multivalued logarithm is used. To construct a specific branch of
arcsin z, we must first select a branch of the square root and then select a
branch of the logarithm.

We get the derivative of w = arcsin z by starting with the equation sin w =
z and differentiating both sides, using the chain rule:

When the principal value is used, w = Arcsin z =  maps
the upper half-plane {z : Im (z) > 0} onto a portion of the upper half-plane {w
: Im (w) > 0} that lies in the vertical strip  The image of a
rectangular grid in the z plane is a “spider web” in the w plane, as Figure 5.10
shows.



Figure 5.10 A rectangular grid is mapped onto a spider web by w = arcsin z.

 EXAMPLE 5.11 The values of arcsin √ 2 are given by

Using straightforward techniques, we simplify this equation and obtain

We observe that

and then write

arcsin , where n is an integer.

 EXAMPLE 5.12 Suppose that we make specific choices in Equation (5-
47) by selecting +i as the value of the square root  and using the



principal value of the logarithm. With f (z) = Arcsin z, The result is

and the corresponding value of the derivative is given by

The inverse hyperbolic functions are

Their derivatives are

To establish Identity (5-48), we start with w = arctanh z and obtain

which we solve for e2w, getting  Taking the logarithms of both sides
gives

which is what we wanted to show.



 EXAMPLE 5.13 Calculation reveals that

where n is an integer.

EXERCISES FOR SECTION 5.5
1. Find all values of the following.

(a) 
(b) 
(c) arcsin 3.
(d) arccos 3i.
(e) arctan 2i.
(f) arctan i.
(g) arcsinh i.
(h) 
(i) arccosh i.
(j) 
(k) arctanh i.
(l) arctanh i√3.

2. Establish the following identities.

(a) 
(b) 

(e) arcsin z + arccos z =  + 2nπ, where n is an integer.





chapter 6
complex integration

Overview

Of the two main topics studied in calculus—differentiation and integration—
we have so far only studied derivatives of complex functions. We now turn to
the problem of integrating complex functions. The theory you will learn is
elegant, powerful, and a useful tool for physicists and engineers. It also
connects widely with other branches of mathematics. For example, even
though the ideas presented here belong to the general area of mathematics
known as analysis, you will see as an application of them one of the simplest
proofs of the fundamental theorem of algebra.

6.1 COMPLEX INTEGRALS
We introduce the integral of a complex function by defining the integral of a
complex-valued function of a real variable.

Definition 6.1: Integral of f (t)
Let f (t) = u (t) + iv (t), where u and v are real-valued functions of the real
variable t for a ≤ t ≤ b. Then

We generally evaluate integrals of this type by finding the antiderivatives
of u and v and evaluating the definite integrals on the right side of Equation



(6-1). That is, if U′ (t) = u (t), and V′ (t) = v (t), for a ≤t ≤ b, we have

 EXAMPLE 6.1 Show that

Solution We write the integrand in terms of its real and imaginary parts, i.e., f
(t) = (t − i)3 = t3 − 3t+i (−3t2 + 1). Here, u (t) = t3 − 3t and v (t) = −3t2 +1.
The integrals of u and v are

Hence, by Definition (6-1),

 EXAMPLE 6.2 Show that

Solution We use the method suggested by Definitions (6-1) and (6-2).

We can evaluate each of the integrals via integration by parts. For example,



Adding  costdt to both sides of this equation and then dividing by 2 gives 
. Likewise,  . Therefore,

Complex integrals have properties that are similar to those of real
integrals. We now trace through several commonalities. Let f (t) = u (t) + iv
(t) and g (t) = p (t) + iq (t) be continuous on a ≤ t ≤ b.

 Using Definition (6-1), we can easily show that the integral of their sum
is the sum of their integrals, that is,

 If we divide the interval a ≤ t ≤ b into a ≤ t ≤ c and c ≤ t ≤ b and
integratef (t) over these subintervals by using Definition (6-1), then we
get

 Similarly, if c + id denotes a complex constant, then



 If the limits of integration are reversed, then

 The integral of the product fg becomes

 EXAMPLE 6.3 Let us verify Property (6-5). We start by writing

Using Definition (6-1), we write the left side of Equation (6-5) as

which is equivalent to

It is worthwhile to point out the similarity between Equation (6-2) and its
counterpart in calculus. Suppose U′(t) = u(t) and V′(t) = v(t) for a < t < b, and
F (t) = U (t) + iV (t). Since  Equation (6-2)
takes on the familiar form

where F′ (t) = f (t). We can view Equation (6-8) as an extension of the
fundamental theorem of calculus. In Section 6.5 we show how to generalize
this extension to analytic functions of a complex variable. For now, we
simply note an important case of Equation (6-8):



 EXAMPLE 6.4 Use Equation (6-8) to show that

Solution We seek a function F with the property that . We note
that  satisfies this requirement, so

which is the same result we obtained in Example 6.2, but with a lot less work.

Remark 6.1 Example 6.4 illustrates the potential computational advantage
we have when we lift our sights to the complex domain. Using ordinary
calculus techniques to evaluate , for example, required a lengthy
integration by parts procedure (Example 6.2). When we recognize this
expression as the real part of , however, the solution comes
quickly. This is just one of the many reasons why good physicists and
engineers, in addition to mathematicians, benefit from a thorough working
knowledge of complex analysis. 

EXERCISES FOR SECTION 6.1
1. Use Equations (6-1) and (6-2) to find

(a) 
(b) 
(c) 
(d) 



(e) 

2. Let m and n be integers. Show that

3. Show that  provided Re (z) > 0.

4. Establish the following identities.

(a) Identity (6-3).
(b) Identity (6-4).
(c) Identity (6-6).
(d) Identity (6-7).

5. Let f (t) = u (t) + iv(t), where u and v are differentiable. Show that 

6. Use integration by parts to verify that 

6.2 CONTOURS AND CONTOUR
INTEGRALS
In Section 6.1 we showed how to evaluate integrals of the form  dt,
where f was complex-valued and [a, b] was an interval on the real axis (so
that t was real, with t ε [a, b]). In this section, we define and evaluate
integrals of the form  where f is complex-valued and C is a contour in
the plane (so that z is complex, with z ε C). Our main result is Theorem 6.1,
which shows how to transform the latter type of integral into the kind we
investigated in Section 6.1.

We use concepts first introduced in Section 1.6. Recall that to represent a
curve C in the plane we use the parametric notation

where x (t) and y (t) are continuous functions. We now place a few more
restrictions on the type of curve to be described. The following discussion
leads to the concept of a contour, which is a type of curve that is adequate for



the study of integration.

Recall that C is simple if it does not cross itself, which means that z(t1) ≠
z(t2) whenever t1 ≠ t2, except possibly when t1 = a and t2 =b. A curve C with
the property z(b) = z (a) is a closed curve. If z (b) = z (a) is the only point of
intersection, then we say that C is a simple closed curve. As the parameter t
increases from the value a to the value b, the point z (t) starts at the initial
point z (a), moves along the curve C, and ends up at the terminal point z (b).
If C is simple, then z (t) moves continuously from z (a) to z (b) as t increases
and the curve is given an orientation, which we indicate by drawing arrows
along the curve. Figure 6.1 illustrates how the terms simple and closed
describe a curve.

The complex-valued function z (t) = x (t)+iy (t) is said to be
differentiable on [a, b] if both x (t) and y (t) are differentiable for a ≤ t ≤ b.
Here we require the one-sided derivatives1 of x (t) and y (t) to exist at the
endpoints of the interval. As in Section 6.1, the derivative z′ is

Figure 6.1 The terms simple and closed used to describe curves.

The curve C defined by Equation (6-10) is said to be a smooth curve if z′
is continuous and nonzero on the interval. If C is a smooth curve, then C has
a nonzero tangent vector at each point z (t), which is given by the vector z′ (t).
If x′ (t0) = 0, then the tangent vector z′ (t0) = iy′ (t0) is vertical. If x′ (t0) ≠ 0,
then the slope  of the tangent line to C at the point z (t0) is given by 



Hence for a smooth curve the angle of inclination θ (t) of its tangent vector z′
(t) is defined for all values of t ε [a, b] and is continuous. Thus, a smooth
curve has no corners or cusps. Figure 6.2 illustrates this concept.

Figure 6.2 The term smooth used to describe curves.

If C is a smooth curve, then ds, the differential of arc length, is given by 

The function  is continuous, as x′ and y′ are continuous
functions, so the length L (C) of the curve C is

Now, consider C to be a curve with parametrization

The opposite curve − C traces out the same set of points in the plane, but
in the reverse order, and has the parametrization

Since z2 (t) = z1 (−t), − C is merely C traversed in the opposite sense, as
illustrated in Figure 6.3.

A curve C that is constructed by joining finitely many smooth curves end
to end is called a contour. Let C1, C2,…, Cn denote n smooth curves such
that the terminal point of the curve Ck coincides with the initial point of Ck+i,
for k = 1, 2,…,n−1. We express the contour C by the equation

A synonym for contour is path.



 EXAMPLE 6.5 Find a parametrization of the polygonal path C from −1 +i
to 3 − i shown in Figure 6.4.

Solution We express C as three smooth curves, or C = C1 + C2 + C3. If we
set z0 = − 1 + i and z1 = −1, we can use Equation (1-48) to get a formula for
the straight-line segment joining two points:

When simplified, this formula becomes

Figure 6.3 The curve C and its opposite curve −C.

Figure 6.4 The polygonal path C = C1 + C2 + C3 from −1 + i to 3 - i.

Similarly, the segments C2 and C3 are given by

We are now ready to define the integral of a complex function along a
contour C in the plane with initial point A and terminal point B. Our approach
is to mimic what is done in calculus. We create a partition Pn = 

 of points that proceed along C from A to B and form the
differences  Between each pair of partition points



zk-1 and zk we select a point ck on C, as shown in Figure 6.5, and evaluate the
function f. We use these values to make a Riemann sum for the partition:

Assume now that there exists a unique complex number L that is the limit
of every sequence  of Riemann sums given in Equation (6-12), where
the maximum of  tends toward 0 for the sequence of partitions. We define
the number L as the value of the integral of the function f taken along the
contour C.

Figure 6.5 Partition points {zk} and function evaluation points {ck} for a
Riemann sum along the contour C from z = A to z = B.

Figure 6.6 Partition and evaluation points for the Riemann sum S (P8).

Definition 6.2: Complex Integral
Let C be a contour. Then



provided the limit exists in the sense previously discussed.

Note that in Definition 6.2, the value of the integral depends on the
contour. In Section 6.3 the Cauchy–Goursat theorem will establish the
remarkable fact that, if f is analytic, then  f (z) dz is independent of the
contour.

 EXAMPLE 6.6 Use a Riemann sum to get an approximation for the
integral  exp z dt, where C is the line segment joining the point A = 0 to 

.

Solution Set n = 8 in Equation (6-12) and form the partition P8 : zk = 
 For this situation, we have a uniform increment 

 For convenience we select  for k = 1, 2,
…,8. Figure 6.6 shows the points {zk} and {ck}.

One possible Riemann sum, then, is

By rounding the terms in this Riemann sum to two decimal digits, we obtain
an approximation for the integral:

This result compares favorably with the precise value of the integral, which
you will soon see equals

In general, obtaining an exact value for an integral given by Definition
6.2 is a daunting task. Fortunately, there is a beautiful theory that allows for
an easy computation of many contour integrals. Suppose that we have a



parametrization of the contour C given by the function z (t) for a ≤ t ≤ b. That
is, C is the range of the function z (t) over the interval [a, b], as Figure 6.7
shows.

It follows that

where τk and tk are the points contained in the interval [a, b] with the property
that ck = z (τk) and zk = z (tk), as is also shown in Figure 6.7. If for all k we
multiply the kth term in the last sum by  then we get

The quotient inside the last summation looks suspiciously like a
derivative, and the entire quantity looks like a Riemann sum. Assuming no
difficulties, this last expression should equal  as defined in
Section 6.1. Of course, if we’re to have any hope of this happening, we
would have to get the same limit regardless of how we parametrize the
contour C. As Theorem 6.1 states, this is indeed the case.

Figure 6.7 A parametrization of the contour C by z (t), for a ≤ t ≤ b.



 Theorem 6.1 Suppose that f (z) is a continuous complex-valued
function defined on a set containing the contour C. Let z (t) be any
parametrization of C for a ≤ t ≤ b. Then

We omit the proof of Theorem 6.1 because it involves ideas (e.g., the
theory of the Riemann–Stieltjes integral) that are beyond the scope of this
book. A more rigorous development of the contour integral based on
Riemann sums is presented in advanced texts such as L. V. Ahlfors, Complex
Analysis, 3rd ed. (New York: McGraw-Hill, 1979).

Two important facets of Theorem 6.1 are worth mentioning. First,
Theorem 6.1 makes the problem of evaluating complex-valued functions
along contours easy, as it reduces the task to the evaluation of complex-
valued functions over real intervals—a procedure that you studied in Section
6.1. Second, according to Theorem 6.1, this transformation yields the same
answer regardless of the parametrization we choose for C.

 EXAMPLE 6.7 Give an exact calculation of the integral in Example 6.6.

Solution We must compute  exp z dz, where C is the line segment joining
A = 0 to  According to Equation (1-48), we can parametrize C by 

 Theorem 6.1 guarantees that Each
integral in the last expression can be done using integration by parts. (There
is a simpler way—see Remark 6.1 on page 203.) We leave as an exercise to
show that the final answer simplifies to exp  − 1, as we claimed in
Example 6.6.



 EXAMPLE 6.8 Evaluate 

Solution Recall that C1
+ (2) is the circle with radius 1 centered at x = 2

oriented in a positive direction (i.e., counterclockwise). The function z(t) = 
 is a parametrization for C. We apply Theorem 6.1 with 

 (Note: .) Hence

To help convince yourself that the value of the integral is independent of
the parametrization chosen for the given contour, try working through
Example 6.8 with , for 0 ≤ t ≤ 1.

A convenient bookkeeping device can help you remember how to apply
Theorem 6.1. Because  you can symbolically equate z
with z (t) and dz with z′ (t) dt. These identities should be easy to remember
because z is supposed to be a point on the contour C parametrized by z (t),
and , according to the Leibniz notation for the derivative.

If z (t) = x (t) + iy (t), then by the preceding paragraph we have

where dx and dy are the differentials for x (t) and y (t), respectively (i.e., dx is
equated with x′ (t) dt, etc.). The expression dz is often called the complex
differential of z. Just as dx and dy are intuitively considered to be small
segments along the x- and y- axes in real variables, we can think of dz as



representing a tiny piece of the contour C. Moreover, if we write

we can put Equation (6-11) into the form

so we can think of | dz| as representing the length of dz.
Suppose that f (z) = u (z) + iv (z) and that z(t) = x (t) + iy (t) is a

parametrization for the contour C. Then

where we are equating u with u (z (t)), x′ with x′ (t), and so on.
If we use the differentials given in Equation (6-13), then we can write

Equation (6-15) in terms of line integrals of the real-valued functions u and v,
giving

which is easy to remember if we recall that symbolically

We emphasize that Equation (6-16) is merely a notational device for applying
Theorem 6.1. You should carefully apply Theorem 6.1, as illustrated in
Examples 6.7 and 6.8, before using any shortcuts suggested by Equation (6-
16).

 EXAMPLE 6.9 Show that



where C1 is the line segment from −1 − i to 3 +i and C2 is the portion of the
parabola x = y2 + 2y joining −1 − i to 3 + i, as indicated in Figure 6.8.

The line segment joining ( − 1,−1) to (3,1) is given by the slope-intercept
formula y = ½x − ½, which can be written as x = 2y + 1. If we choose the
parametrization y = t and x = 2t + 1, we can write segment C1 as

Along C1 we have f (z (t)) =2t+1 + it. Applying Theorem 6.1 gives

Figure 6.8 The two contours C1 and C2 joining −1 − i to 3 + i.

We now multiply out the integrand and put it into its real and imaginary
parts:

Similarly we can parametrize the portion of the parabola x = y2 + 2y joining
(−1, −1) to (3, 1) by y = t and x = t2 + 2t so that

Along C2 we have f (z (t)) = t + 2t + it. Theorem 6.1 now gives



In Example 6.9, the value of the two integrals is the same. This outcome
doesn’t hold in general, as Example 6.10 shows.

 EXAMPLE 6.10 Show that

where C1 is the semicircular path from −1 to 1 and C2 is the polygonal path
from −1 to 1, respectively, shown in Figure 6.9.

Solution We parametrize the semicircle C1 as

C1: z(t) = – cost +i sin t and dz = (sin t + i cos t) dt, for 0 ≥ t ≥ π.

Figure 6.9 The two contours C1 and C2 joining −1 to 1.

Applying Theorem 6.1, we have  so

We parametrize C2 in three parts, one for each line segment:

where 0 ≤ t ≤ 1 in each case. We get our answer by adding the three integrals
along the three segments:



Separating the right side of this equation into its real and imaginary parts
gives

Note that the value of the contour integral along C1 isn’t the same as the
value of the contour integral along C2, although both integrals have the same
initial and terminal points.

Contour integrals have properties that are similar to those of integrals of a
complex function of a real variable, which you studied in Section 6.1. If C is
given by Equation (6-10), then the integral for the opposite contour −C is

Using the change of variable t = −τ in this last equation and the property
that  we obtain

If two functions f and g can be integrated over the same path of
integration C, then their sum can be integrated over C, and we have the
familiar result

Constant multiples also behave as we would expect:

If two contours C1 and C2 are placed end to end so that the terminal point
of C1 coincides with the initial point of C2, then the contour C = C1 + C2 is a
continuation of C1, and



If the contour C has two parametrizations

and there exists a differentiable function  such that

then we say that z2 (τ) is a reparametrization of the contour C. If f is
continuous on C, then we have

Equation (6-20) shows that the value of a contour integral is invariant
under a change in the parametric representation of its contour if the
reparametrization satisfies Equations (6-19).

We now give two important inequalities relating to complex integrals.

 Theorem 6.2 (Absolute value inequality) If f (t) = u (t)+iv (t) is a
continuous function of the real parameter t, then

Proof If  then Equation 6-21 is obviously true. If the
integral is not zero, we write its value in polar form, say 
so that  Taking the real part of
both sides of this last equation gives

where the last equality is justified because an integral is a limit of a



sum, and its real part is the same as the limit of the sum of its real
parts.

Now, using Equation (1-21), we obtain

Recall that if g and h are real functions, with g (t) ≤ h (t), for all t ε [a,
b], then  Applying this fact to the left and right sides
of Equation (6-22) (with  yields

Since  this establishes our result.

 Theorem 6.3 (ML inequality) If f (z) = u(x,y) + iv (x,y) is continuous
on the contour C, then

where L is the length of the contour C and M is an upper bound for the
modulus |f (z)| on C; that is, |f (z)| ≤ M for all z ε C.

Proof Using Inequality (6-21) with Theorem 6.1 gives

Equations (6-13), (6-14), and Inequality (6-24) imply that



Figure 6.10 The distances | z − i| and | z + i| for z on C.

 EXAMPLE 6.11 Use Inequality (6-23) to show that

where C is the straight-line segment from 2 to 2 + i.

Solution Here  and the terms | z − i| and | z + i| represent the
distance from the point z to the points i and −i, respectively. Referring to
Figure 6.10 and using a geometric argument, we get

Thus, we have

Because L, the length of C, equals 1, Inequality (6-23) implies that

EXERCISES FOR SECTION 6.2
1. Give a parametrization of each contour.

(a) C = C1 + C2, as indicated in Figure 6.11.

(b) C = C1 + C2 + C3, as indicated in Figure 6.12.



Figure 6.11

Figure 6.12

2. Sketch the following curves.

(a) 
(b) 
(c) 

3. Consider the integral  z2 dz, where C is the positively oriented upper
semicircle of radius 1, centered at 0.

(a) Give a Riemann sum approximation for the integral by selecting n = 4
and the points 

(b) Compute the integral exactly by selecting a parametrization for C and
applying Theorem 6.1.

4. Show that the integral of Example 6.7 simplifies to exp  − 1.

5. Evaluate  x dz from −4 to 4 along the following contours, as shown in
Figures 6.13(a) and 6.13(b).

(a) The polygonal path C with vertices −4, −4 + 4i, 4 + 4i, and 4.
(b) The contour C that is the upper half of the circle | z| = 4, oriented

clockwise.



Figure 6.13

6. Evaluate  y dz for −i to i along the following contours, as shown in
Figures 6.14(a) and 6.14(b).

(a) The polygonal path C with vertices −i, −1 − i, −1, and i.
(b) The contour C that is oriented clockwise, as shown in Figure 6.14(b).

Figure 6.14

7. Recall Cr
+ (a) is the circle of radius r centered at a, oriented

counterclockwise.

(a) Evaluate 
(b) Evaluate 
(c) Evaluate  (The minus sign means clockwise orientation.)
(d) Evaluate 
(e) Evaluate  (z + 1) dz, where C is C1

+ (0) in the first quadrant.

(f) Evaluate  (x2 − iy2 ) dz, where C is the upper half of C1
+ (0).

(g) Evaluate  where C is the upper half of C1
+ (0).

8. Let f be a continuous function on the circle  Show that 

9. Evaluate



(a) 
(b)  where n ≠ 1 is an integer.

10. Use the techniques of Example 6.11 to show that

(a)  where C is the first quadrant portion of C2
+ (0).

(b) 

11. Evaluate  where C is the line segment from 1 to 1 + i.

12. Evaluate  where C is given by C : z (t) = t + it2, for 0 ≤ t ≤ 1.
13. Evaluate  where C is the straight-line segment joining 1 to 1 + iπ.
14. Evaluate  where C is the square with vertices 0, 1, 1 + i, and i

taken with the counterclockwise orientation.
15. Evaluate  where C is the straight-line segment joining 0 to 1 + i.
16. Let z (t) = x (t) + iy (t), for a ≤ t ≤ b, be a smooth curve. Give a meaning

for each of the following expressions.
(a) 
(b) 
(c) 
(d) 

17. Evaluate  cos z dz, where C is the polygonal path from 0 to 1 + i that
consists of the line segments from 0 to 1 and 1 to 1 + i.

18. Let f(t) = eit be defined on a ≤ t ≤ b, where a = 0, and b = 2π. Show that
there is no number c ε (a, b) such that f (c) (b − a) =  f (t) dt. In other
words, the mean value theorem for definite integrals that you learned in
calculus does not hold for complex functions.

19. Use the ML inequality to show that | Pn (x)| ≤ 1, where Pn is the nth
Legendre polynomial defined on 

20. Explain how contour integrals in complex analysis and line integrals in
calculus are different. How are they similar?

6.3 THE CAUCHY–GOURSAT



THEOREM
The Cauchy–Goursat theorem states that within certain domains the integral
of an analytic function over a simple closed contour is zero. An extension of
this theorem allows us to replace integrals over certain complicated contours
with integrals over contours that are easy to evaluate. We demonstrate how to
use the technique of partial fractions with the Cauchy–Goursat theorem to
evaluate certain integrals. In Section 6.4 we show that the Cauchy–Goursat
theorem implies that an analytic function has an antiderivative. To begin, we
need to introduce some new concepts.

Recall from Section 1.6 that each simple closed contour C divides the
plane into two domains. One domain is bounded and is called the interior of
C; the other domain is unbounded and is called the exterior of C. Figure 6.15
illustrates this concept, which is known as the Jordan curve theorem.

Recall also that a domain D is a connected open set. In particular, if z1
and z2 are any pair of points in D, then they can be joined by a curve that lies
entirely in D. A domain D is said to be a simply connected domain if the
interior of any simple closed contour C contained in D is contained in D. In
other words, there are no “holes” in a simply connected domain. A domain
that is not simply connected is said to be a multiply connected domain.
Figure 6.16 illustrates uses of the terms simply connected and multiply
connected.

Let the simple closed contour C have the parametrization C : z (t) = x (t)+
iy (t) for a ≤ t ≤ b. Recall that if C is parametrized so that the interior of C is
kept on the left as z (t) moves around C, then we say that C is oriented
positively (counterclockwise); otherwise, C is oriented negatively
(clockwise). If C is positively oriented, then −C is negatively oriented. Figure
6.17 illustrates the concept of positive and negative orientation.

Figure 6.15 The interior and exterior of simple closed contours.



Figure 6.16 Simply connected and multiply connected domains.

Green’s theorem is an important result from the calculus of real variables.
It tells you how to evaluate the line integral of real-valued functions.

Figure 6.17 Simple closed contours that are positively and negatively
oriented.

Theorem 6.4 (Green’s theorem) Let C be a simple closed contour
with positive orientation and let R be the domain that forms the
interior of C. If P and Q are continuous and have continuous partial
derivatives Px, Py, Qx, and Qy at all points on C and R, then



Proof (For a standard region.*) If R is a standard region, then there
exist functions y = g1 (x), and y = g2 (x), for a ≤ x ≤ b, whose graphs
form the lower and upper portions of C, respectively, as indicated in
Figure 6.18. As C is positively oriented, these functions can be used to
express C as the sum of two contours C1 and C2, where

We now use the functions g1 (x) and g2 (x) to express the double
integral of −Py (x,y) over R as an iterated integral, first with respect to
y and second with respect to x:

Computing the first iterated integral on the right side gives

In the second integral on the right side of this equation we can use the
change of variable x = − t to obtain

Interpreting the two integrals on the right side of this equation as
contour integrals along C1 and C2, respectively, gives



Figure 6.18 Integration over a standard region, where C = C1 + C2.

To complete the proof, we rely on the fact that for a standard region
there exist functions x = h1 (y) and x = h2 (y) for c ≤ y ≤ d whose
graphs form the left and right portions of C, respectively, as indicated
in Figure 6.19. Because C has the positive orientation, it can be
expressed as the sum of two contours C3 and C4, where

Using the functions h1 (y) and h2 (y), we express the double integral of
Qx (x,y) over R as an iterated integral:

A derivation similar to that which led to Equation (6-26) shows that

Adding Equations (6-26) and (6-27) gives us Equation (6-25), which
completes the proof.

We are now ready to state the main result of this section.



 Theorem 6.5 (Cauchy–Goursat theorem) Let f be analytic in a
simply connected domain D. If C is a simple closed contour that lies in
D, then 

Figure 6.19 Integration over a standard region, where C = C3 + C4.

We give two proofs. The first, by Augustin Cauchy, is more intuitive but
requires the additional hypothesis that f ′ is continuous.

Proof (Cauchy’s proof of Theorem 6.5.) If we suppose that f ′ is
continuous, then with C oriented positively we use Equation (6-16) to
write

If we use Green’s theorem on the real part of the right side of Equation
(6-28) (with P = u and Q = −v), we obtain

where R is the region that is the interior of C. If we use Green’s
theorem on the imaginary part, we get



If we use the Cauchy–Riemann equations ux = vy and uy = −vx in
Equations (6-29) and (6-30), Equation (6-28) becomes

and the proof is complete.

in 1883, Edward Goursat (1858–1936) produced a proof that does not
require the continuity of f′.

Figure 6.20 The triangular contours C and C1, C2, C3, and C4.

Proof (Goursat’s proof of Theorem 6.5) We first establish the result
for a triangular contour C with positive orientation. To do so, we
construct four positively oriented contours C1, C2, C3, and C4 that are
the triangles obtained by joining the midpoints of the sides of C, as
shown in Figure 6.20.

Each contour is positively oriented, so if we sum the integrals
along the four triangular contours, the integrals along the segments
interior to C cancel out in pairs, giving

Let C1 be selected from C1, C2, C3, and C4 so that the following



holds:

Proceeding inductively, we carry out a similar subdivision process to
obtain a sequence of triangular contours {Cn}, where the interior of
Cn+1 lies in the interior of Cn and the following inequality holds:

We let Tn denote the closed region that consists of Cn and its interior.
The length of the sides of Cn go to zero as n → ∞, so there exists a
unique point z0 that belongs to all the closed triangular regions {Tn}.
Since D is simply connected, z0 ε D, so f is analytic at the point z0.
Thus, there exists a function η (z) such that

Figure 6.21 The contour Cn that lies in the neighborhood | z − z0| < δ

Using Equation (6-33) and integrating f along Cn, we get



Since  we know that given ε > 0, we can find δ > 0 such that

where L is the length of the original contour C. We can now choose an
integer n so that Cn lies in the neighborhood | z − z0| < δ, as shown in
Figure 6.21. Since the distance between any point z on a triangle and a
point z0 interior to the triangle is less than half the perimeter of the
triangle, it follows that

where Ln is the length of the triangle Cn. From the preceding
construction process, it follows that

We can use Equations (6-32), (6-34), and (6-35) and Theorem 6.3 to
conclude

Because ε was arbitrary, it follows that our theorem holds for the



triangular contour C. If C is a polygonal contour, then we can add
interior edges until the interior is subdivided into a finite number of
triangles. The integral around each triangle is zero, and the sum of all
these integrals equals the integral around the polygonal contour C.
Therefore, our theorem also holds for polygonal contours. The proof
for an arbitrary simple closed contour is established by approximating
the contour “sufficiently close” with a polygonal contour. We omit the
details of this last step.

 EXAMPLE 6.12 Recall that exp z, cos z, and zn (where n is a positive
integer) are all entire functions. The Cauchy–Goursat theorem implies that,
for any simple closed contour,

 EXAMPLE 6.13 Let n be an integer. If C is a simple closed contour such
that the origin does not lie on or interior to C, then there is a simply
connected domain D that contains C in which  is analytic, as is
indicated in Figure 6.22. The Cauchy–Goursat theorem implies that 

We want to be able to replace integrals over certain complicated contours
with integrals that are easy to evaluate. If C1 is a simple closed contour that
can be “continuously deformed” into another simple closed contour C2
without passing through a point where f is not analytic, then the value of the
contour integral of f over C1 is the same as the value of the integral of f over
C2. To be precise, we state the following result.



Figure 6.22 A simple connected domain D containing the simple closed
contour C that does not contain the origin.

 Theorem 6.6 (Deformation of contour) Let C1 and C2 be two
simple closed positively oriented contours such that C1 lies interior to
C2. If f is analytic in a domain D that contains both C1 and C2 and the
region between them, as shown in Figure 6.23, then

Proof Assume that both C1 and C2 have positive (counterclockwise)
orientation. We construct two disjoint contours or cuts, L1 and L2, that
join C1 to C2. The contour C1 is cut into two contours C1

* and C1
**,

and the contour C2 is cut into C2
* and C2

**. We now form two new
contours:

which are shown in Figure 6.24. The function f will be analytic on a
simply connected domain D1 that contains K1, and f will be analytic on
the simply connected domain D2 that contains K2, as illustrated in
Figure 6.24.

We apply the Cauchy–Goursat theorem to the contours K1 and K2,
giving



Adding contours gives

We use Identities (6-17) and (6-18) of Section 6.2 and Equations (6-
36) and (6-37) in this proof to conclude that

which establishes the theorem.

Figure 6.23 The domain D that contains the simple closed contours C1 and
C2 and the region between them.

Figure 6.24 The cuts L1 and L2 and the contours K1 and K2 used to prove the
deformation of contour theorem.

We now state as a corollary an important result that is implied by the
deformation of contour theorem. This result occurs several times in the



theory to be developed and is an important tool for computations. You may
want to compare the proof of Corollary 6.1 with your solution to Exercise 9
from Section 6.2.

 Corollary 6.1 Let z0 denote a fixed complex value. If C is a simple closed
contour with positive orientation such that z0 lies interior to C, then

where n is any integer except n = 1.

Proof Since z0 lies interior to C, we can choose R so that the circle CR with
center z0 and radius R lies interior to C. Hence  is analytic in a
domain D that contains both C and CR and the region between them, as
shown in Figure 6.25.

We let CR have the parametrization

The deformation of contour theorem implies that the integral of f over CR has
the same value as the integral of f over C, so

and

The deformation of contour theorem is an extension of the Cauchy–
Goursat theorem to a doubly connected domain in the following sense. We let
D be a domain that contains C1 and C2 and the region between them, as
shown in Figure 6.23. Then the contour C = C2 − C1 is a parametrization of



the boundary of the region R that lies between C1 and C2 so that the points of
R lie to the left of C as a point z (t) moves around C. Hence C is a positive
orientation of the boundary of R, and Theorem 6.6 implies that  f (z) dz = 0.

Figure 6.25 The domain D that contains both C and CR.

We can extend Theorem 6.6 to multiply connected domains with more
than one “hole.” The proof, which we leave for you, involves the introduction
of several cuts and is similar to the proof of Theorem 6.6.

 Theorem 6.7 (Extended Cauchy–Goursat theorem) Let C, C1,…,
Cn be simple closed positively oriented contours with the properties
that Ck lies interior to C for k = 1, 2,…, n, and the interior of Ck has
no points in common with the interior of Cj if k ≠ j. Let f be analytic on
a domain D that contains all the contours and the region between C
and C1+C2 +…+Cn, as shown in Figure 6.26. Then

 EXAMPLE 6.14 Show that 



Solution Recall that C2
+ (0) is the circle {z : | z| = 2} with positive

orientation. Using partial fraction decomposition gives

Figure 6.26 The multiply connected domain D and the contours C and C1,C2,
…, Cn in the statement of the extended Cauchy–Goursat theorem.

The points  lie interior to C2
+ (0), so Corollary 6.1 implies that

Substituting these values into Equation (6-38) yields

 EXAMPLE 6.15 Show that 

Solution Recall that C1
+ (i) is the circle  having positive

orientation. Using partial fractions again, we have

In this case, z =  lies interior to C1
+ (i) but z = −  does not, as shown in

Figure 6.27. By Corollary 6.1, the second integral on the right side of this
equation has the value 2πi. The first integral equals zero by the Cauchy–



Goursat theorem because the function  is analytic on a simply
connected domain that contains C1

+ (i). Thus,

 EXAMPLE 6.16 Show that  where C is the “figure eight”
contour shown in Figure 6.28(a).

Figure 6.27 The circle C1
+ (i) and the points z = ±

Figure 6.28 The contour C = C1 + C2.

Solution Again, we use partial fractions to express the integral:

Using the Cauchy–Goursat theorem, Property (6-17), and Corollary 6.1 (with
z0 = 0), we compute the value of the first integral on the right side of
Equation (6-39):



Similarly we find that

If we substitute the results of the last two equations into Equation (6-39), we
get

EXERCISES FOR SECTION 6.3
1. Determine the domain of analyticity for the following functions and

evaluate 

(a) 
(b) 
(c) f (z) = tan z.
(d) f (z) = Log (z + 5).

2. Show that  z−1 dz = 2πi where C is the square with vertices 1 ± i and −1
± i and having positive orientation.

3. Show that 

4. Find  (z2 − z)−1 dz for

(a) circle  having positive orientation.
(b) circle  having positive orientation.

5. Find  for the

(a) circle  having positive orientation.
(b) circle  having positive orientation.



6. Let C be the triangle with vertices 0, 1, and i and having positive
orientation. Parametrize C and show that

(a)  1 dz = 0.
(b)  z dz = 0.

7. Evaluate  for

(a) the circle C = C1
+ (0).

(b) the circle 
(c) the circle C = C3

+ (0).

8. Use Green’s theorem to show that the area enclosed by a simple closed
contour C is ½  x dy − y dx.

9. Parametrize  Use the principal branch of
the square root function:  to find 
Hint: Take limits as t → −π.

10. Evaluate  (z2 − 1)− 1 dz for the contours shown in Figure 6.29.

Figure 6.29

11. Evaluate 

12. Suppose that f (z) = u (r, θ) + iv (r, θ) is analytic for all values of z = reiθ.
Show that

Hint: Integrate f around the circle C1
+ (0).

13. If C is the figure eight contour shown in Figure 6.28(a),
(a) evaluate 



(b) evaluate 
14. Compare the various methods for evaluating contour integrals. What are

the limitations of each method?

6.4 THE FUNDAMENTAL THEOREMS
OF INTEGRATION
Let f be analytic in the simply connected domain D. The theorems in this
section show that an antiderivative F can be constructed by contour
integration. A consequence will be the fact that in a simply connected
domain, the integral of an analytic function f along any contour joining z1 to
z2 is the same, and its value is given by F (z2) − F (z2). As a result, we can
use the antiderivative formulas from calculus to compute the value of definite
integrals.

 Theorem 6.8 (Indefinite integrals, or antiderivatives) Let f be
analytic in the simply connected domain D. If z0 is a fixed value in D
and if C is any contour in D with initial point z0 and terminal point z,
then the function

is well-defined and analytic in D, with its derivative given by F ′ (z) = f
(z).

Proof We first establish that the integral is independent of the path of
integration. This will show that the function F is well-defined, which
in turn will justify the notation 

We let C1 and C2 be two contours in D, both with initial point z0 and



terminal point z, as shown in Figure 6.30. Then C1 − C2 is a simple
closed contour, and the Cauchy–Goursat theorem implies that

Therefore, the contour integral in Equation (6-40) is independent of
path. Here we have taken the liberty of drawing contours that intersect
only at the endpoints. A slight modification of the proof shows that a
finite number of other points of intersection are permitted.

We now show that F ′ (z) = f (z). Let z be held fixed, and let |Δz| be
chosen small enough so that the point z + Δz also lies in the domain D.
Since z is held fixed, f (z) = K, where K is a constant, and Equation (6-
9) implies that

Using the additive property of contours and the definition of F given in
Equation (6-40), we have

where the contour Γ is the straight-line segment joining z to z + Δz,
and Γ1 and Γ2 join z0 to z, and z0 to z + Δz, respectively, as shown in
Figure 6.31. Since f is continuous at z, for any ε > 0 there is a δ > 0 so
that

It is important to stress that the line integral

If we require that |Δz| ≤ δ and combine this last inequality with
Equations (6-41), (6-42), and (6-23), we get



Figure 6.30 The contours C1 and C2 joining z0 to z.

Figure 6.31 The contours Γ1 and Γ2 and the line segment Γ.

Remark 6.2 It is important to stress that the line integral of an analytic
function is independent of path. In Example 6.9, we showed that 

 where C1 and C2 were different contours joining −1
− i to 3 + i. Because the integrand f (z) = z is an analytic function, Theorem
6.8 lets us know ahead of time that the value of the two integrals is the same;
hence one calculation would have sufficed. If you ever have to compute a
line integral of an analytic function over a difficult contour, change the
contour to something easier. You are guaranteed to get the same answer. Of
course, you must be sure that the function you’re dealing with is analytic in a
simply connected domain containing your original and new contours.
 



If we set z = z1 in Theorem 6.8, then we obtain the following familiar
result for evaluating a definite integral of an analytic function.

 Theorem 6.9 (Definite integrals) Let f be analytic in a simply
connected domain D. If z0 and z1 are any two points in D joined by a
contour C, then

where F is any antiderivative of f in D.

Proof If we choose F to be the function defined by Formula (6-40),
then Equation (6-43) holds. If G is any other antiderivative of f in D,
then G′ (z) = F′ (z) for all z ε D. Thus, the function H (z) = G (z) − F (z)
is analytic in D, and H′ (z) = G′(z) − F′(z) = 0, for all z ε D. Thus, by
Theorem 3.7, this means H (z) = K, for all z ε D, where K is some
complex constant. Therefore, G (z) = F (z)+ K, so G (z1) − G (z0) = F
(z1) − F (z0), which establishes our theorem.

Theorem 6.9 gives an important method for evaluating definite integrals
when the integrand is an analytic function in a simply connected domain. In
essence, it permits you to use all the rules of integration that you learned in
calculus. When the conditions of Theorem 6.9 are met, applying it is
generally much easier than parametrizing a contour.

 EXAMPLE 6.17 Show that



where z½ is the principal branch of the square root function and C is the line
segment joining 4 to 8 + 6i.

Solution We showed in Chapter 3 that if , where the
principal branch of the square root function is used in both the formulas for F
and F′. We note that C is contained in the simply connected domain D4 (6 +
3i), which is the open disk of radius 4 centered at the midpoint of the segment
C. Since  is analytic in D4 (6 + 3i), Theorem 6.9 guarantees that

 EXAMPLE 6.18 Show that  cos z dz = − sin 1 + i sinh 1, where C is the
line segment between 1 and i.

Solution An antiderivative of f (z) = cos z is F (z) = sin z. Because F is entire,
we use Theorem 6.9 to conclude that

Figure 6.32 The simply connected domain D shown in Examples 6.19 and
6.20.

 EXAMPLE 6.19 We let  be the simply
connected domain shown in Figure 6.32(a). We know that f (z) = 1/z is
analytic in D and has an antiderivative F (z) = Log (z), for all z ε D. If C is a



contour in D that joins the point z1 to the point z2, then Theorem 6.9 implies
that

 EXAMPLE 6.20 Show that 

Solution Recall that C1
+ (0) is the unit circle with positive orientation. We let

C be that circle with the point −1 omitted, as shown in Figure 6.32(b). The
contour C is contained in the simply connected domain D of Example 6.19.
We know that f (z) = 1/z is analytic in D, and has an antiderivative F (z) =
Log (z), for all z ε D. Therefore, if we let z2 approach −1 on C through the
upper half-plane and z1 approach −1 on C through the lower half-plane,

EXERCISES FOR SECTION 6.4
For Exercises 1–14, find the value of the definite integral using Theorem 6.9,
and explain why you are justified in using it.

1.  z2 dz where C is the line segment from 1 + i to 2 + i.

2.  cos z dz, where C is the line segment from − i to 1 + i.

3.  exp z dz, where C is the line segment from 2 to 

4.  z exp z dz, where C is the line segment from − 1 −  to 2 + iπ.

5.  where C is the line segment from 1 to i.

6.  where C is the line segment from 0 to π − 2i.



7.  where C is the line segment from i to 1 + i.

8.  where C is the line segment from 1 − 2i to 1 + 2i.

9.  z cos z dz, where C is the line segment from 0 to i.

10.  sin2 z dz, where C is the line segment from 0 to i.
11.  Log z dz, where C is the line segment from 1 to 1 + i.
12.  where C is the line segment from 2 to 2 + i.
13.  where C is the line segment from 2 to 2 + i.
14.  where C is the line segment from 2 to 2 + i.
15. Show that  1 dz = z2 − z1, where C is the line segment from z1 to z2, by

parametrizing C.
16. Let z1 and z2 be points in the right half-plane and let C be the line

segment joining them. Show that 

17. Let z½ be the principal branch of the square root function.
(a) Evaluate  where C is the line segment joining 9 to 3 + 4i.
(b) Evaluate  z½ dz, where C is the right half of the circle C2

+ (0)
joining− 2i to 2i.

18. Using partial fraction decomposition, show that if z lies in the right half-
plane and C is the line segment joining 0 to z, then

19. Let f′ and g′ be analytic for all z and let C be any contour joining the
points z1 and z2. Show that

20. Compare the various methods for evaluating contour integrals. What are
the limitations of each method?

21. Explain how the fundamental theorem of calculus studied in complex
analysis and the fundamental theorem of calculus studied in calculus are
different. How are they similar?

22. Show that  where C is the upper half of C1
+ (0) .



6.5 INTEGRAL REPRESENTATIONS
FOR ANALYTIC FUNCTIONS
We now present some major results in the theory of functions of a complex
variable. The first result is known as Cauchy’s integral formula and shows
that the value of an analytic function f can be represented by a certain contour
integral. The nth derivative, f(n) (z), will have a similar representation. In
Chapter 7, we use the Cauchy integral formulas to prove Taylor’s theorem
and also establish the power series representation for analytic functions. The
Cauchy integral formulas are a convenient tool for evaluating certain contour
integrals.

 Theorem 6.10 (Cauchy’s integral formula) Let f be analytic in the
simply connected domain D and let C be a simple closed positively
oriented contour that lies in D. If z 0 is a point that lies interior to C,
then

Proof Because f is continuous at z0, if ε > 0 is given, there is a δ > 0
such that the positively oriented circle  lies interior to
C (as Figure 6.33 shows) and such that

Since f (z0) is a fixed value, we can use the result of Corollary 6.1 to
conclude that

By the deformation of contour theorem (Theorem 6.6),



Using Inequality (6-45) and Equations (6-46) and (6-47) above,
together with the ML inequality (Theorem 6.3), we obtain the estimate:

This proves the theorem because ε can be made arbitrarily small.

Figure 6.33 The contours C and C0 in the proof of Cauchy’s integral
formula.

 EXAMPLE 6.21 Show that 

Solution Recall that C1
+ (0) is the circle centered at 0 with radius 1 and

having positive orientation. We have f (z) = exp z and f(1) = e. The point z0 =
1 lies interior to the circle, so Cauchy’s integral formula implies that

and multiplication by 2πi establishes the desired result.

 EXAMPLE 6.22 Show that 

Solution Here we have f (z) = sinz. We manipulate the integral and use



Cauchy’s integral formula to obtain

 EXAMPLE 6.23 Show that .

Solution We see that  The only zero of
this expression that lies in the interior of C1 (0) is z0 =½. We set 
and use Theorem 6.10 to conclude that

We now state a general result that shows how to accomplish
differentiation under the integral sign. The proof is presented in some
advanced texts. See, for instance, Rolf Nevanlinna and V. Paatero,
Introduction to Complex Analysis (Reading, Mass.: Addison-Wesley, 1969),
Section 9.7.

 Theorem 6.11 (Leibniz’s rule) Let G be an open set and let I : a ≤ t
be an interval of real numbers. Let g (z, t) and its partial derivative gz
(z, t) with respect to z be continuous functions for all z in G and all t in



I. Then F (z) =  g (z, t) dt is analytic for z in G, and F′ (z) = 
gz(z,t) dt.

We now generalize Theorem 6.10 to give an integral representation for
the nth derivative, f(n) (z). We use Leibniz’s rule in the proof and note that
this method of proof is a mnemonic device for remembering Theorem 6.12.

 Theorem 6.12 (Cauchy’s integral formulas for derivatives) Let f
be analytic in the simply connected domain D and let C be a simple
closed positively oriented contour that lies in D. If z is a point that lies
interior to C, then for any integer n ≥ 0,

Proof Because f(0) (z) = f (z), the case for n = 0 reduces to Theorem
6.10. We now establish the theorem for the case n = 1. We start by
using the parametrization

We use Theorem 6.10 and write

The integrand on the right side of Equation (6-49) is a function g (z, t)
of the two variables z and t, where

Moreover, g(z,t) and gz (z,t) are continuous on the interior of C, which
is an open set. Applying Leibniz’s rule to Equations (6-49) gives



and the proof for the case n = 1 is complete. We can apply the same
argument to the analytic function f′ and show that its derivative f″ is
also represented by Equation (6-48) for n = 2. The principle of
mathematical induction establishes the theorem for all integers n ≥ 0.

 EXAMPLE 6.24 Let z0 denote a fixed complex value. Show that if C is a
simple closed positively oriented contour such that z0 lies interior to C, then
for any integer n ≥ 1,

Solution We let f (z) = 1. Then f(n) (z) = 0 for n ≥ 1. Theorem 6.10 implies
that the value of the first integral in Equations (6-50) is

and Theorem 6.12 further implies that

This result is the same as that proven earlier in Corollary 6.1. Obviously,
though, the technique of using Theorems 6.10 and 6.12 is easier.

 EXAMPLE 6.25 Show that 

Solution If we let f (z) = exp z2, then a straightforward calculation shows that
f3 (z) = (12z + 8z3) exp z2 . Using Cauchy’s integral formulas with n = 3, we
conclude that



We now state two important corollaries of Theorem 6.12.

 Corollary 6.2 If f is analytic in the domain D, then, for integers n ≥ 0, all
derivatives f(n) (z) exist for z ε D (and therefore are analytic in D).

Proof For each point z0 in D, there exists a closed disk | z − z0| ≤ R that is
contained in D. We use the circle  in Theorem 6.12 to
show that f(n) (z0) exists for all integers n ≥ 0.

 
Remark 6.3 This result is interesting, as it illustrates a big difference
between real and complex functions. A real function f can have the property
that f′ exists everywhere in a domain D, but f″ exists nowhere. Corollary 6.2
states that if a complex function f has the property that f′ exists everywhere in
a domain D, then, remarkably, all derivatives of f exist in D.

 Corollary 6.3 If u is a harmonic function at each point (x, y) in the domain
D, then all partial derivatives ux, uy, uxx, uxy, and uyy exist and are harmonic
functions.

Proof For each point z0 = (x0, y0) in D there exists a disk DR (z0) that is
contained in D. In this disk, a conjugate harmonic function v exists, so the
function f (z) = u + iv is analytic. We use the Cauchy–Riemann equations to
get f′ (z) = ux + ivx = vy − iuy, for z ε DR (z0). Since f′ is analytic in DR (z0),
the functions ux and uy are harmonic there. Again, we can use the Cauchy–
Riemann equations to obtain, for z ε DR (z0),

Because f" is analytic in DR (z0), the functions uxx, uxy, and uyy are harmonic
there.

EXERCISES FOR SECTION 6.5



Recall that Cρ
+ (z0) denotes the positively oriented circle {z : | z − z0| = ρ}.

1. Find 

2. Find 

3. Find 

4. Find 

5. Find 

6. Find 

7. Find 

8. Find  z−2 sin z dz along the following contours:

(a) The circle C1
+ (π/2).

(b) The circle C1
+ (π/4).

9. Find  where n is a positive integer.

10. Find  along the following contours:

(a) The circle C1
+ (0).

(b) The circle C1
+ (4).

11. Find 

12. Find  z−1 (z − 1)−1 along the following contours:

(a) The circle C+
½ (0).

(b) The circle C2
+ (0).

13. Find  (z2 + 1)−1 sinz dz along the following contours:

(a) The circle C1
+ (i).

(b) The circle C1
+ (−i).

14. Find 

15. Find  (z2 + 1)−1 dz along the following contours:



(a) The circle C1
+ (i).

(b) The circle C1
+ (−i).

16.Let  where n is a positive integer.
17. Let z1 and z2 be two complex numbers that lie interior to the simple

closed contour C with positive orientation. Evaluate 
18. Let f be analytic in the simply connected domain D and let z1 and z2 be

two complex numbers that lie interior to the simple closed contour C
having positive orientation that lies in D. Show that

State what happens when z2 → z1.

19. The Legendre polynomial Pn (z) is defined by

Use Cauchy’s integral formula to show that

where C is a simple closed contour having positive orientation and z lies
inside C.

20. Discuss the importance of being able to define an analytic function f (z)
with the contour integral in Formula (6-44). How does this definition
differ from other definitions of a function that you have learned?

6.6 THE THEOREMS OF MORERA AND
LIOUVILLE, AND EXTENSIONS
In this section, we investigate some of the qualitative properties of analytic
and harmonic functions. Our first result shows that the existence of an
antiderivative for a continuous function is equivalent to the statement that the
integral of f is independent of the path of integration. This result is stated in a
form that will serve as a converse of the Cauchy–Goursat theorem.



 Theorem 6.13 (Morera’s theorem) Let f be a continuous function in
a simply connected domain D. If  f (z) dz = 0 for every closed
contour C in D, then f is analytic in D.

Proof We select a point z0 in D and define F (z) by

where the notation indicates the integral is taken on any contour that
begins at z0 and ends at z. The function F (z) is well-defined because,
if C1 and C2 are two contours in D—both with initial point z0 and
terminal point z—then C = C1 − C2 is a closed contour in D, and by
hypothesis,

Since f is continuous, we know that for any ε > 0 there exists a δ > 0
such that  Now we can use the identical
steps to those in the proof of Theorem 6.8 to show that F′ (z) = f (z).>
Hence F (z) is analytic on D, and Corollary 6.2 implies that F′ (z) and
F″ (z) are also analytic. Therefore, f′ (z) = F″ (z) exists for all z in D,
proving that f (z) is analytic in D.

Cauchy’s integral formula shows how the value f (z0) can be represented
by a certain contour integral. If we choose the contour of integration C to be a
circle with center z0, then we can show that the value f (z0) is the integral
average of the values of f (z) at points z on the circle C.

 Theorem 6.14 (Gauss’s mean value theorem) If f is analytic in a
simply connected domain D that contains the circle 



 then

Proof We parametrize the circle CR (z0) by

and use this parametrization along with Cauchy’s integral formula to
obtain

We now prove an important result concerning the modulus of an analytic
function.

 Theorem 6.15 (Maximum modulus principle) Let f be analytic and
non-constant in the domain D. Then |f (z)| does not attain a maximum
value at any point z0 in D. In other words, there is no point z0 in D
such that, for all z in D, 

Proof We prove this result by contraposition. Suppose that there exists
a point z0 in D such that

holds for all z in D. Our goal is to show that, with this stipulation, f is
constant.

If CR (z0) is any circle contained in D, Theorems 6.14 and 6.3 imply
that



for 0 ≤ r ≤ R. We now treat  as a real-valued function
of the real variable θ and use Inequality (6-51) to get

for 0 ≤ r ≤ R. Combining Inequalities (6-52) and (6-53) gives

which we rewrite as

A theorem from calculus states that if the integral of a nonnegative
continuous function taken over an interval is zero, then that function
must be identically zero. Since Inequality (6-51) implies that the
integrand in Equation (6-54) is a nonnegative real-valued function, we
conclude that it is identically zero; that is,

If the modulus of an analytic function is constant in a closed disk, then
the function is constant in that closed disk by Theorem 3.6. Therefore,
we conclude from Identity (6-55) that

where  Now we let ζ denote an arbitrary point in
D, C be a contour in the original domain D that joins z0 to ζ, and 2d
denote the minimum distance from C to the boundary of D. We can
find consecutive points z0, z1, z2,…, zn = ζ along C, with 
such that the disks  for k = 0, 1,…, n, are contained in
D and cover C as illustrated in Figure 6.34.

Each disk Dk contains the center zk+1 of the next disk Dk+1, so it



follows that z1 lies in D0 and, from Equation (6-56), | f (z)| also reaches
its maximum value at z1. An identical argument to the one given above
will show that

We proceed inductively to get

from which it follows that f (ζ) = f (z0). Therefore, f is constant in D.
The proof is now complete.

Figure 6.34 The “chain of disks” D0, D1,…, Dn that cover C.

We sometimes state the maximum modulus principle in the following form.

 Theorem 6.16 (Maximum modulus principle) Let f be analytic and
non-constant in the bounded domain D. If f is continuous on the closed
region R that consists of D and all its boundary points B, then |f (z)|
assumes its maximum value, but does so only at point(s) z0 on the
boundary B.



 EXAMPLE 6.26 Let f (z) = az +b. If we set our domain D to be D1 (0),
then f is continuous on the closed region  Prove that

and that this value is assumed by f at a point z0 = eiθ
0 on the boundary of D1

(0).

Solution From the triangle inequality and the fact that | z| ≤ 1 in 1 (0), it
follows that, for any z in 1 (0),

If we choose z0 = eiθo
0, where −0 ε arg b − arg a, then

so the vectors az0 and b lie on the same ray through the origin. This is the
requirement for the Inequality (6-58) to be an equality (see Exercise 21,
Section 1.3). Hence  and the result is established.

 Theorem 6.17 (Cauchy’s inequalities) Let f be analytic in the
simply connected domain D that contains the circle 

 If | f (z) ≤ M holds for all points z ε CR (z0), then

Proof Let CR (z0) have the parametrization

We use Cauchy’s integral formula and write



Combining this result with the ML inequality (Theorem 6.3), we obtain

Theorem 6.18 shows that a nonconstant entire function cannot be a
bounded function.

 Theorem 6.18 (Liouville’s theorem) If f is an entire function and is
bounded for all values of z in the complex plane, then f is constant.

Proof Suppose that | f (z)| ≤ M holds for all values of z. We let z0
denote an arbitrary point. Then we can use the circle CR (z0) = {z : | z −
z0| = R} and Cauchy’s inequality with n = 1 to get

Because R can be arbitrarily large, we must have f′ (z0) = 0. But z0 was
arbitrary, so f′ (z) = 0 for all z. If the derivative of an analytic function
is zero for all z, then by Theorem 3.7 the function must be constant.
Therefore, f is constant.

 EXAMPLE 6.27 Show that the function f (z) = sin z is not a bounded
function.



Solution We established this characteristic with a somewhat tedious
argument in Section 5.4. All we need do now is observe that f is entire and
not constant, and hence it is not bounded.

We can use Liouville’s theorem to establish an important theorem of
elementary algebra.

 Theorem 6.19 (The fundamental theorem of algebra) If P is a
polynomial of degree n ≥ 1, then P has at least one zero.

Proof (By contraposition, we will show that if P (z) ≠ 0 for all z, then
the degree of P must be zero.) Suppose that P (z) ≠ 0 for all z. This
supposition implies that the function  is an entire function.
Our strategy is as follows: We will show that f is bounded. Then
Liouville’s theorem will imply that f is constant, and since f = 1/p, this
will imply that the polynomial P is constant, which will mean that its
degree must be zero. First we write  and
consider the equation

Combining this result with Equation (6-59) gives

In particular, we can find a value of R such that



which is a continuous function of the two real variables x and y. A
result from calculus regarding real functions says that a continuous
function on a closed and bounded set is bounded. Hence | f (z)| is a
bounded function on the closed disk R(0). Thus, there exists a
positive real number K such that

Combining this with Inequality (6-60) gives

 for all z,
where M = max {K, 1}. By Liouville’s theorem, f is constant, so that
the degree of P is zero. This completes the argument.

 
 Corollary 6.4 Let P be a polynomial of degree n ≥ 1. Then P can be

expressed as the product of linear factors. That is,

where z1, z2,…, zn are the zeros of P, counted according to multiplicity, and
A is a constant.

EXERCISES FOR SECTION 6.6
1. Factor each polynomial as a product of linear factors.

(a) P (z) = z4 + 4.
(b) P (z) = z2 + (1 + i) z + 5i.
(c) P (z) = z4 − 4z3 + 6z2 − 4z + 5.



(d) P (z) = z3−(3 + 3i) z2 +(−1 + 6i) z+3-i. Hint: Show that P (i) = 0

2. Let f (z) = azn + b, where the region is the disk R = {z : | z| ≤ 1}. Show
that .

3. Show that cos z is not a bounded function.

4. Let f (z) = z2. Evaluate the following, where R represents the rectangular
region defined by the set 

(a) 
(b) 
(c) 
(d) 

5. Let f be analytic in the disk D5 (0) and suppose that | f (z)| ≤ 10 for z ε C3
(1).

(a) Find a bound for 
(b) Find a bound for |  Use Theorems 6.16 and 6.17.

6. Let f be an entire function such that 
 for all z.

(a) Show that, for n ≥ 2, f(n) (z) = 0 for all z.
(b) Use part (a) to show that f (z) = az +b.

7. Establish the following minimum modulus principle.

(a) Let f be analytic and nonconstant in the domain D, and continuous on
the closed region R that consists of D and all its boundary points B.
Show that, if f(z) ≠ 0 throughout R, then | f(z)| assumes its minimum
value, but does so only at point(s) z0 on the boundary B.

(b) Show that the requirement f(z) ≠ 0 in part (a) is necessary by finding a
function for which the requirement fails, and whose minimum is
attained at some place other than the boundary.

8. Let u (x, y) be harmonic for all (x, y). Show that



where R > 0. Hint: Let f (z) = u (x, y)+iv (x, y), where v is a harmonic
conjugate of u.

9. Establish the following maximum principle for harmonic functions. Let u
(x, y) be harmonic and nonconstant in the simply connected domain D.
Then u does not have a maximum value at any point (x0, y0) in D.

10. Let f be an entire function with the property that | f (z)| ≥ 1 for all z. Show
that f is constant.

11. Let f be nonconstant and analytic in the closed disk 1(0). Suppose that |
f(z) is constant for z ε C1(0), i.e., that there is some number K such that |
f(z)| = K for all z ε C1 (0). Show that f has a zero in 1 (0), i.e., that there
exists some z0 ε 1(0) such that f(z0) = 0. Hint: Use both the minimum
modulus principle (See Exercise 7) and maximum modulus principle.

12. Why is it important to study the fundamental theorem of algebra in a
complex analysis course?

1The derivatives on the right, x′ (a+), and on the left, x′ (b− ), are defined by the limits 

*A standard region is bounded by a contour C, which can be expressed in
the two forms C = C1 + C2 and C = C3 + C4 that are used in the proof.



chapter 7
taylor and laurent series

Overview
Throughout this book we have compared and contrasted properties of
complex functions with functions whose domain and range lie entirely within
the real numbers. There are many similarities, such as the standard
differentiation formulas. However, there are also some surprises, and in this
chapter you will encounter one of the hallmarks that distinguishes complex
functions from their real counterparts: It is possible for a function defined on
the real numbers to be differentiable everywhere and yet not be expressible as
a power series (see Exercise 20, Section 7.2). For a complex function,
however, things are much simpler! You will soon learn that if a complex
function is analytic in the disk Dr (α), its Taylor series about α converges to
the function at every point in this disk. Thus, analytic functions are locally
nothing more than glorified polynomials.

7.1 UNIFORM CONVERGENCE

Complex functions are the key to unlocking many of the mysteries
encountered when power series are first introduced in a calculus course. We
begin by discussing an important property associated with power series—
uniform convergence.

Recall that, for a function f defined on a set T, the sequence of functions
{Sn} converges to f at the point z0 ∈ T, provided  Sn (z0) = f (z0). Thus,
for the particular point z0, we know that for each ε > 0, there exists a positive
integer Nε,Z0

 (depending on both ε and z0) such that



If Sn (z) is the nth partial sum of the series  ck (z – α)k, Statement (7-1)
becomes

For a given value of ε, the integer Nε,Z0 needed to satisfy Statement (7-1)
often depends on our choice of z0. This is not the case if the sequence {Sn}
converges uniformly. For a uniformly convergent sequence, it is possible to
find an integer Nε (depending only on ε) that guarantees Statement (7-1) no
matter what value for z0 ∈ T we pick. In other words, if n is large enough,
the function Sn is uniformly close to the function f for all z ∈ T. Formally, we
have the following definition.

Definition 7.1: Uniform convergence
The sequence {Sn (z)} converges uniformly to f (z) on the set T if for
every ε > 0, there exists a positive integer Nε (depending only on ε) such
that

If Sn (z) is the nth partial sum of the series  ck (z – α)k, we say that the
series  ck (z – α)k converges uniformly to f (z) on the set T.

 EXAMPLE 7.1 The sequence {Sn (z)} = {ez + } converges uniformly to
the function f (z) = ez on the entire complex plane because for any ε > 0,
Statement (7-2) is satisfied for all z for n ≥ Nε, where Nε is any integer greater
than . We leave the details of showing this result as an exercise.



A good example of a sequence of functions that does not converge
uniformly is the sequence of partial sums forming the geometric series.
Recall that the geometric series has Sn (z) =  zk converging to f (z) =  for
z ∈ D1 (0). Because the real numbers are a subset of the complex numbers,
we can show that Statement (7-2) is not satisfied by demonstrating that it
does not hold when we restrict our attention to the real numbers. In that
context, D1 (0) becomes the open interval (−1, 1), and the inequality | Sn (z) –
f (z)| < ε becomes | Sn (x) – f (x)| < ε, which for real variables is equivalent to
the inequality f (x) – ε < Sn (x) < f (x) + ε. If Statement (7-2) were to be
satisfied, then given ε > 0, Sn (x) would be within an ε-bandwidth of f (x) for
all x in the interval (−1, 1) provided n were large enough. Figure 7.1
illustrates that there is an ε such that, no matter how large n is, we can find x0
∈ (−1, 1) with the property that Sn (x0) lies outside this bandwidth. In other
words, Figure 7.1 illustrates the negation of Statement (7-2), which in
technical terms we state as:

Figure 7.1 The geometric series does not converge uniformly on (−1, 1).

In the exercises, we ask you to use Statement (7-3) to show that the
partial sums of the geometric series do not converge uniformly to f (z) = 
for points z ∈ D1 (0).



A useful procedure known as the Weierstrass M-test can help determine
whether an infinite series is uniformly convergent.

 Theorem 7.1 (Weierstrass M-test) Suppose that the infinite series 
 uk (z) has the property that for each k, | uk (z)| ≤ Mk for all z ∈ T. If
 Mk converges, then  uk (z) converges uniformly on T.

Proof Let Sn (z) =  uk (z) be the nth partial sum of the series. If n >
m, | Sn (z) – Sm (z)| = | um (z) + um+1 (z)+…+ un-1 (z)| ≤  Mk.
Because the series  Mk converges, we can make the last expression
as small as we want to by choosing a large enough m. Thus, for ε > 0,
there is a positive integer Nε such that if n, m > Nε, then | Sn (z) − Sm
(z)| < ε. But this means that for all z ∈ T, {Sn (z)} is a Cauchy
sequence. According to Theorem 4.2, this sequence must converge to a
number, which we might as well designate by f (z). That is, f (z) = 
Sn (z) =  uk (z). This observation gives us a function to which the
series  uk (z) converges. However, we still must show that the
convergence is uniform. Let ε > 0 be given. Again, since  Mk
converges, there exists Nε such that if n ≥ Nε, then  Mk < ε. Thus, if
n ≥ Nε and z ∈ T, then

which completes the argument.



Theorem 7.2 gives an interesting application of the Weierstrass M-test.

 Theorem 7.2 Suppose that the power series  ck (z – α)k has radius
of convergence ρ > 0. Then for each r, 0 < r < ρ, the series converges
uniformly on the closed disk Dr (α) = {z : | z − α| ≤ r}.

Proof Given r, with 0 < r < ρ, choose z0 ∈ Dρ (α) such that | z0 – α | =
r. The proof of Theorem 4.15 part (ii) reveals that  ck (z − α)k

converges absolutely for z ∈ Dρ (α), from which it follows that  | ck
(z0 − α)k | =  | ck| rk converges. Moreover, for all z ∈ Dr (α), | ck(z −
α)k | = | ck | | z − α | k ≤ | ck| rk.

The conclusion now follows from the Weierstrass M-test with Mk =
|ck|rk.

An immediate consequence of Theorem 7.2 is Corollary 7.1.

 Corollary 7.1 For each r, 0 < r < 1, the geometric series converges
uniformly on the closed disk r (0).

Theorem 7.3 gives important properties of uniformly convergent
sequences.

 Theorem 7.3 Suppose that {Sk} is a sequence of continuous



functions defined on a set T containing the contour C. If {Sk}
converges uniformly to f on the set T, then

i. f is continuous on T, and
ii.  ∫C Sk (z) dz = ∫C  Sk (z) dz = ∫C f (z) dz.

Proof Given zo ∈ T, we must prove  f (z) = f(z0). Let ε > 0 be
given. Since {Sk} converges uniformly to f on T, there exists a positive
integer Nε such that for all z ∈ T, | f (z) − Sk (z)| <  whenever k ≥ Nε.
And, as SNε

 is continuous at z0, there exists δ > 0 such that if | z − z0| <
δ, then | SNε (z) − SNε

 (z0)| < . Hence, if | z − z0| < δ, we have

which completes part (i).

To prove part (ii), let ε > 0 be given and let L be the length of the
contour C. Because {Sk} converges uniformly to f on T, there exists a
positive integer Nε such that if k ≥ Nε, then | Sk (z) − f (z)| <  for all z
∈ T. Because C is contained in T,  | Sk (z) − f (z)| <  if k ≥ Nε, and
we can use the ML inequality (Theorem 6.3) to get

 Corollary 7.2 If the series  converges uniformly to f (z) on the



set T and C is a contour contained in T, then

 EXAMPLE 7.2 Show that −Log (1 − z) =  for all z ∈ D1 (0).

Solution For z0 ∈ D1 (0), we choose r and R so that 0 ≤ | z0 | < r < R < 1,
thus ensuring that z0 ∈ r (0) and that r (0) ⊂ DR (0). By Corollary 7.1, the
geometric series  converges uniformly to  on r (0). If C is any
contour contained in r (0), Corollary 7.2 gives

Clearly the function  is analytic in the simply connected domain DR
(0), and f (z) = −Log (1 − z) is an antiderivative of f (z) for all z ∈ DR (0),
where Log is the principal branch of the logarithm. Likewise, g (z) = zn is
analytic in the simply connected domain DR (0), and  is an
antiderivative of g (z) for all z ∈ DR (0). Hence, if C is the straight-line
segment joining 0 to z0, we can apply Theorem 6.9 to Equation (7-4) to get

which becomes

The point z0 ∈ D1 (0) was arbitrary, so we are done.

EXERCISES FOR SECTION 7.1



1. This exercise relates to Figure 7.1.

(a) For x near −1, is the graph of Sn (x) above or below f (x)? Explain.

(b) Is the index n in Sn (x) odd or even? Explain.

(c) Assuming that the graph is accurate to scale, what is the value of n in
Sn (x)? Explain.

2. Complete the details to verify the claim of Example. 7.1.

3. Prove that the following series converge uniformly on the sets indicated.

(a) 

(b) 

(c) 

4. Show that  does not converge uniformly to  on
the set T = D 1 (0) by appealing to Statement (7-3). Hint: Given ε > 0 and
a positive integer n, let zn = ε .

5. Why can’t we use the arguments of Theorem 7.2 to prove that the
geometric series converges uniformly on all of D1 (0)?

6. By starting with the series for the complex cosine given in Section 5.4,
choose an appropriate contour anduse the methodin Example 7.2 to obtain
the series for the complex sine.

7. Suppose that the sequences of functions {fn} and {gn} converge
uniformly on the set T.

(a) Show that the sequence {fn + gn} converges uniformly on the set T.

(b) Show by example that it is not necessarily the case that {fn gn}
converges uniformly on the set T.



8. On what portion of D1 (0) does the sequence  converge, andon
what portion does it converge uniformly?

9. Consider the function  where n−z = exp (−z ln n).

(a) Show that ζ (z) converges uniformly on the set A = {z : Re (z) ≥ 2}.

(b) Let D be a closeddisk containedin {z : Re (z) > 1}. Show that ζ (z)
converges uniformly on D.

7.2 TAYLOR SERIES
REPRESENTATIONS
In Section 4.4 we showed that functions defined by power series have
derivatives of all orders (Theorem 4.17). In Section 6.5 we demonstrated that
analytic functions also have derivatives of all orders (Corollary 6.2). It seems
natural, therefore, that there would be some connection between analytic
functions and power series. As you might guess, the connection exists via the
Taylor and Maclaurin series of analytic functions.

Definition 7.2: Taylor series
If f (z) is analytic at z = α, then the series

is called the Taylor series for f centered at α. When the center is α = 0,
the series is called the Maclaurin series for f.



To investigate when these series converge, we need Lemma 7.1.

 Lemma 7.1 If z, z0, and α are complex numbers with z ≠ z0 and z ≠ α, then

where n is a positive integer.

Proof  The result now follows from Corollary
4.3 if in it we replace z with (z0 − α) / (z − α). We leave verification of the
details as an exercise.

We are now ready for the main result of this section.

 Theorem 7.4 (Taylor’s theorem) Suppose that f is analytic in a
domain G and that DR (α) is any disk contained in G. Then the Taylor
series for f converges to f (z) for all z in DR (α); that is,

Furthermore, for any r, 0 < r < R, the convergence is uniform on the
closed subdisk r (α) = {z : | z − α| ≤ r}.

Proof If we can establish Equation (7-5), the uniform convergence on 
r (α) for 0 < r < R will follow immediately from Theorem 7.2 by

equating the ck of that theorem with 
Let z0 ∈ DR (α) and let r designate the distance between z0 and α

so that | z0 − α| = r. We note that 0 ≤ r < R because z0 belongs to the



open disk DR (α). We choose ρ such that 0 ≤ r < ρ < R, and let C = C+
ρ

(α) be the positively oriented circle centered at α with radius ρ as
shown in Figure 7.2.

With C contained in G, we can use the Cauchy integral formula to
get

Figure 7.2 The constructions for Taylor’s theorem.

Replacing  in the integrand by its equivalent expression in Lemma
7.1 gives



where n is a positive integer. We can put the last term in Equation (7-
3) in the form

Recall also by the Cauchy integral formulas that

Using these last two identities reduces Equation (7-6) to

The summation on the right-hand side of this last expression is the first
n+1 terms of the Taylor series. Verification of Equation (7-5) relies on
our ability to show that we can make the remainder term, En (z0), as
small as we please by making n sufficiently large. We will use the ML
inequality (Theorem 6.3) to get a bound for | En (z0)|. According to the
constructions shown in Figure 7.2, we have

By Property (1-24) of Section 1.3, we also have

If we set  Equations (7-8) and (7-9) allow us to conclude
that, for all z ∈ C,

The length of the circle C is 2πρ, so the ML inequality in conjunction
with Equations (7-7) and (7-10) gives



Because 0 ≤ r < ρ < R, the fraction  is less than 1, so  (and hence
the right side of Equation (7-11)) goes to zero as n goes to infinity.
Thus, for any ε > 0, we can find an integer Nε such that | En (z0)| < ε
for n ≥ Nε, and this completes the proof.

A singular point of a function is a point at which the function fails to be
analytic. You will see in Section 7.4 that singular points of a function can be
classified according to how badly the function behaves at those points.
Loosely speaking, a nonremovable singular point of a function has the
property that it is impossible to redefine the value of the function at that point
so as to make it analytic there. For example, the function  has a
nonremovable singularity at z = 1. We give a formal definition of this
concept in Section 7.4, but with this language we can nuance Taylor’s
theorem a bit.

 Corollary 7.3 Suppose that f is analytic in the domain G that contains the
point α. Let z0 be a nonremovable singular point of minimum distance to the
point α. If | z0 − α| = R, then

i. the Taylor series  converges to f (z) on all of DR (α), and

ii. if | z1 − α | = S > R, the Taylor series  does not converge
to f (z1).

Proof Taylor’s theorem gives us part (i) immediately. To establish part (ii),
we note that if | z0 − α| = R, then z0 ∈ DS (α) whenever S > R. If for some z1,
with | z1 − α| = S > R, the Taylor series converged to f (z1), then according to
Theorem 4.17, the radius of convergence of the series  would
be at least equal to S. We could then make f differentiable at z0 by redefining



f (z0) to equal the value of the series at z0, thus contradicting the fact that z0 is
a nonremovable singular point.

 EXAMPLE 7.3 Show that  is valid for z ∈ D1 (0).

Solution In Example 4.24 we established this identity with the use of
Theorem 4.17. We now do so via Theorem 7.4. If  then a standard
induction argument which we leave as an exercise will show that 

 for z ∈ D1 (0). Thus,  and Taylor’s theorem
gives

and since f is analytic in D1 (0), this series expansion is valid for all z ∈ D1
(0).

 EXAMPLE 7.4 Show that, for z ∈ D1 (0)

Solution For z ∈ D1 (0),

If we let z2 take the role of z in Equation (7-13), we get that  
 for z2 ∈ D1 (0). But z2 ∈ D1 (0) iff z ∈ D1 (0). Letting −z2 take the

role of z in Equation (7-13) gives the second part of Equations (7-12).

Remark 7.1 Corollary 7.3 clears up what often seems to be a mystery when
series are first introduced in calculus. The calculus analog of Equations (7-
12) is



For many students, it makes sense that the first series in Equations (7-14)
converges only on the interval (− 1, 1) because  is undefined at the points
x = ±1. It seems unclear as to why this should also be the case for the series
representing  since the real-valued function  is defined
everywhere. The explanation, of course, comes from the complex domain.
The complex function  is not defined everywhere. In fact, the
singularities of f are at the points ±i, and the distance between them and the
point α = 0 equals 1. According to Corollary 7.3, therefore, Equations (7-12)
are valid only for z ∈ D1 (0), and thus Equations (7-14) are valid only for x
∈ (− 1, 1).

Alas, there is a potential fly in this ointment: Corollary 7.3 applies to
Taylor series. To form the Taylor series of a function, we must compute its
derivatives. We didn’t get the series in Equations (7-12) by computing
derivatives, so how do we know that they are indeed the Taylor series
centered at α = 0? Perhaps the Taylor series would give completely different
expressions from those given by Equations (7-12). Fortunately, Theorem 7.5
removes this possibility.

Theorem 7.5 (Uniqueness of power series) Suppose that in some
disk Dr (α) we have

Then an = bn, for n = 0, 1, 2,….

Proof By Theorem 4.17 part (ii),  for n = 0, 1, 2,….



Thus, any power series representation of f (z) is automatically the Taylor
series.

 EXAMPLE 7.5 Find the Maclaurin series of f (z) = sin3 z.

Solution Computing derivatives for f (z) would be an onerous task.
Fortunately, we can make use of the trigonometric identity

Recall that the series for sin z (valid for all z) is  Using the
identity for sin3 z, we obtain

By the uniqueness of power series, this last expression is the Maclaurin series
for sin3 z.

In the preceding argument we used some obvious results of power series
representations that we haven’t yet formally stated. The requisite results are
part of Theorem 7.6.

Theorem 7.6 Let f and g have the power series representations



If r = min {r1, r2} and β is any complex constant, then

where

Identity (7-17) is known as the Cauchy product of the series for f (z)
and g (z).

Proof We leave the details of establishing Equations (7-15) and (7-16)
for you to do as an exercise. To establish Equation (7-17), we note that
the function h (z) = f (z) g (z) is analytic in Dr (α). Thus, for z ∈ Dr
(α),

By mathematical induction, we can generalize the preceding pattern to
the nth derivative, giving Leibniz’s formula for the derivative of a
product of functions:

(We will ask you to show this result in an exercise.) By Theorem 4.17
we know that



so Equation (7-19) becomes

Now, according to Taylor’s theorem

Substituting Equation (7-20) into this equation gives Equation (7-17)
because of the uniqueness of power series.

 EXAMPLE 7.6 Use the Cauchy product of series to show that 
 for z ∈ D1 (0).

Solution We let  for z ∈ D1 (0). In terms of Theorem
7.6, we have an = bn = 1, for all n, and thus Equation (7-17) gives

EXERCISES FOR SECTION 7.2

1. By computing derivatives, find the Maclaurin series for each function and
state where it is valid.

(a) sinh z.

(b) cosh z.

(c) Log (1 + z).



2. Using methods other than computing derivatives, find the Maclaurin
series for

(a) cos3 z. Hint: Use the trigonometric identity 4 cos3 z = cos3z + 3cos z.

(b) Arctan z. Hint: Choose an appropriate contour and integrate second
series in Equations (7-12).

(c) f (z) = (z2 +1) sin z.

(d) f (z) = ez cos z. Hint:  Now use
the Maclaurin series for ez.

3. Find the Taylor series centeredat a = 1 andstate where it converges for

(a) 

(b) 

4. Let  and set f (0) = 1.

(a) Explain why f is analytic at z = 0.

(b) Find the Maclaurin series for f (z).

(c) Find the Maclaurin series for  where C is the straightline
segment from 0 to z.

5. Show that  has its Taylor series representation about the point α =
i given by

      

6. Let f (z) = (1 + z)β = exp [β Log (1 + z)] be the principal branch of (1 +
z)β, where β is a fixedcomplex number. Establish the validity for z ∈ D1
(0) of the binomial expansion



      

7. Find f (3) (0) for

(a) 

(b) 

(c) 

8. Suppose that  is an entire function.

(a) Find a series representation for , using powers of .

(b) Show that  is an entire function.

(c) Does  = f (z)? Why or why not?

9. Let  where the coefficients cn are
the Fibonacci numbers defined by c0 = 1, c1 = 1, and cn = cn−1 + cn−2,
for n ≥ 2.

(a) Show that  for all z ∈ DR (0) for some number R.

(b) Findthe value of R in part (a) for which the series representation is
valid. Hint: Findthe singularities of f (z) anduse Corollary 7.3.

10. Complete the details in the verification of Lemma 7.1.
11. We used Lemma 7.1 in establishing Identity (7-6). However, Lemma 7.1

is valid provided z ≠ z0 and z ≠ α. Explain why these conditions are
indeed the case in Identity (7-6).

12. Prove by mathematical induction that  in Example 7.3.
13. Establish the validity of Identities (7-15) and (7-16).



14. Use the Maclaurin series and the Cauchy product in Identity (7-17) to
verify that sin 2z = 2 cos z sin z up to terms involving z5.

15. Compute the Taylor series for the principal logarithm f (z) = Log z
expanded about the center z0 = − 1 + i.

16. The Fresnel integrals C (z) and S (z) are defined by

        

        We define F (z) by F (z) = C (z) + iS (z).

(a) Verify the identity 

(b) Integrate the power series for exp  and obtain the power series for F
(z).

(c) Use the partial sum involving terms up to z9 to findapproximations to
C (1.0) and S (1.0).

17. Let f be defined in a domain that contains the origin. The function f is said
to be even if f (−z) = f (z), and it is called odd if f (−z) = −f (z).

(a) Show that the derivative of an odd function is an even function.

(b) Show that the derivative of an even function is an odd function. Hint:
Use limits.

(c) If f (z) is even, show that all the coefficients of the odd powers of z in
the Maclaurin series are zero.

(d) If f (z) is odd, show that all the coefficients of the even powers of z in
the Maclaurin series are zero.

18. Verify Identity (7-18) by using mathematical induction.
19. Consider the function when

        



(a) Use Theorem 7.4, Taylor’s theorem, to show that the Maclaurin series
for f (z) equals 

(b) Obviously, the radius of convergence of this series equals 1 (ratio test).
However, the distance between 0 and the nearest singularity of f equals 
Explain why this condition doesn’t contradict Corollary 7.3.

20. Consider the real-valued function f defined on the real numbers as

        

(a) Show that, for all n > 0, f(n) (0) = 0, where f(n) is the nth derivative of f.
Hint: Use the limit definition for the derivative to establish the case for n
= 1 andthen use mathematical induction to complete your argument.

(b) Explain why the function f gives an example of a function that,
although differentiable everywhere on the real line, is not expressible as
a Taylor series about 0. Hint: Evaluate the Taylor series representation
for f (x) when x ≠ 0, andshow that the series does not equal f (x).

(c) Explain why a similar argument couldnot be made for the complex-
valued function g defined on the complex numbers as

        

Hint: Show that g (z) is not even continuous at z = 0 by taking limits
along the real and imaginary axes.

7.3 LAURENT SERIES
REPRESENTATIONS
Suppose that f (z) is not analytic in DR (α) but is analytic in the punctured
disk D*

R = {z : 0 < | z − α| < R}. For example, the function  is not
analytic when z = 0 but is analytic for | z | > 0. Clearly this function does not



have a Maclaurin series representation. If we use the Maclaurin series for g
(z) = ez, however, and formally divide each term in that series by z3, we
obtain the representation

which is valid for all z such that | z | > 0.
This example raises the question as to whether it might be possible to

generalize the Taylor series method to functions analytic in an annulus

Perhaps we can represent these functions with a series that involves negative
powers of z in some way as we did with  As you will see shortly,
we can indeed. We begin by defining a series that allows for negative powers
of z.

Definition 7.3: Laurent series
Let cn be a complex number for n = 0, ±1, ±2, ±3,…. The doubly infinite
series  called a Laurent series, is defined by

provided the series on the right-hand side of this equation converge.

Remark 7.2 Recall that  is a simplified expression for the sum 
 At times it will be convenient to write  as 

 rather than using the expression

given in Equation (7-21).



Definition 7.4: Annulus
Given 0 ≤ r < R, we define the annulus centered at α with radii r and R by

The closed annulus centered at α with radii r and R is denoted by

Figure 7.3 illustrates these terms.

Figure 7.3 The closed annulus  (α, r,R) The shaded portion is the open
annulus A(α, r,R).

 Theorem 7.7 Suppose that the Laurent series  converges
on the annulus A (α, r, R). Then the series converges uniformly on any
closed subannulus  (α, s, t), where r < s < t < R.

Proof According to Equation (7-21)



By Theorem 7.2, the series  must converge uniformly on the
closed disk t (α). By the Weierstrass M-test, we can show that the
series  converges uniformly on {z : | z − α| ≥ s} (we leave
the details as an exercise). Combining these two facts yields the
required result.

The main result of this section specifies how functions analytic in an
annulus can be expanded in a Laurent series. In it, we use symbols of the
form C+

ρ (α), which—we remind you—designate the positively oriented
circle with radius ρ and center α. That is, C+

ρ (α) = {z : | z − α| = ρ}, oriented
counterclockwise.

 Theorem 7.8 (Laurent’s theorem) Suppose that 0 ≤ r < R, and that
f is analytic in the annulus A = A (α, r, R) shown in Figure 7.4. If ρ is
any number such that r < ρ < R, then for all z0 ∈ A, f has the Laurent
series representation

where for n = 0, 1, 2,…, the coefficients c−n and cn are given by

Moreover, the convergence in Equation (7-22) is uniform on any
closed subannulus  (α, s, t), where r < s < t < R.

Proof If we can establish Equation (7-22), the uniform convergence on



 (α s, t) will follow from Theorem 7.7. Let z0 be an arbitrary point of
A. Choose r0 small enough so that the circle C0 = Cr0

+ (z0) is
contained in A. Since f is analytic in Dr0 (z0), the Cauchy integral
formula gives

Figure 7.4 The annulus A (shaded) and, in its interior, the circles C0, C1, and
C2.

Let C1 = Cr1
+ (α) and C2 = Cr2

+ (α), where we choose r1 and r2 so
that C0 lies in the region between C1 and C2, and r < r1 < r2 < R, as
shown in Figure 7.4. Let D be the domain consisting of the annulus A
except for the point z0. The domain D includes the contours C0, C1,
and C2, as well as the region between C2 and C0 + C1. In addition,
since z0 does not belong to D, the function  is analytic on D, so by
the extended Cauchy–Goursat theorem we obtain



Subtracting the last integral from both sides of Equation (7-25) and
using the identity for f(z0) in Equation (7-24) give

Now, if z ∈ C1, then | z − α| < | z0 − α|, so  and we can use the
geometric series (Theorem 4.12) to get

Moreover, one can show by using Weierstrass M-test that the
preceding series converges uniformly for z ∈ C1. We leave the details
as an exercise. Likewise, using techniques similar to the ones just
discussed, one can show that, for z ∈ C2

and that the convergence is uniform for z ∈ C 2. Again, we leave the
details as an exercise.

Taking the series for  as given by Equations (7-27) and (7-28) and
substituting into the two integrals, respectively, of Equation (7-26)
yields

Because the series in this equation converge uniformly on C1 and C2,
respectively, we can interchange the summations and the integrals in
accordance with Corollary 7.2 to obtain



If we move some terms around in the first series of this equation and
reindex, we get

We apply the extended Cauchy–Goursat theorem once more to
conclude that the integrals taken over C1 and C2 in Equation (7-29)
give the same result if they are taken over the contour C+

ρ (α), where ρ
is any number such that r < ρ < R. This observation yields

Because z0 ∈ A was arbitrary this result establishes Equations (7-22)
and (7-23), completing the proof.

What happens to the Laurent series if f is analytic in the disk DR (α)?
Looking at Equation (7-29), we see that the coefficient for the positive power
(z0 − α)n equals  by using Cauchy's integral formula for derivatives.
Hence the series in Equation (7-22) involving the positive powers of (z0 − α)
is actually the Taylor series for f. The Cauchy–Goursat theorem shows that
the coefficients for the negative powers of (z0 − α) equal zero. In this case,
therefore, there are no negative powers involved, and the Laurent series
reduces to the Taylor series.



Theorem 7.9 delineates two important aspects of the Laurent series.

 Theorem 7.9 Suppose that f is analytic in the annulus A (α, r, R) and
has the Laurent series  for all z ∈ A (α, r, R).

i. If  for all z ∈ A (α, r, R), then bn = cn for all n.
(In other words, the Laurent series for f in a given annulus is
unique.)

ii. For all z ∈ A (α, r, R), the derivatives of f (z) may be obtained
by termwise differentiation of its Laurent series.

Proof We prove part (i) only because the proof for part (ii) involves no
new ideas beyond those in the proof of Theorem 4.17. The series 

 converges pointwise on A (α, r, R), so Theorem 7.7
guarantees that this series converges uniformly on C+

ρ (α), for 0 ≤ r <
ρ < R. By Laurent’s theorem and Corollary 7.2

Since (z − α)m − n − 1 has an antiderivative or all z except when m = n,
all the terms in the preceding expression drop out except when m = n,
giving



The uniqueness of the Laurent series is an important property because the
coefficients in the Laurent expansion of a function are seldom found by using
Equation (7-23). The following examples illustrate some methods for finding
Laurent series coefficients.

 EXAMPLE 7.7 Find three different Laurent series representations for the
function  involving powers of z.

Solution The function f has singularities at z = −1, 2 and is analytic in the
disk D : | z| < 1, in the annulus A : 1 < | z| < 2, and in the region R : | z| > 2.
We want to find a different Laurent series for f in each of the three domains
D, A, and R. We start by writing f in its partial fraction form:

We use Theorem 4.12 and Corollary 4.2 to obtain the following
representations for the terms on the right side of Equation (7-30):

Representations (7-31) and (7-33) are both valid in the disk D, and thus we
have

which is a Laurent series that reduces to a Maclaurin series. In the annulus A,
Representations (7-32) and (7-33) are valid; hence we get



Finally, in the region R we use Representations (7-32) and (7-34) to obtain

 EXAMPLE 7.8 Find the Laurent series representation for  that
involves powers of z.

Solution We use the Maclaurin series for cos z − 1 to write

We formally divide each term by z4 to obtain the Laurent series

 EXAMPLE 7.9 Find the Laurent series for exp  centered at α = 0.

Solution The Maclaurin series for exp z is  which is valid for all z.
We let −z−2 take the role of z in this equation to get  which is
valid for | z| > 0.

EXERCISES FOR SECTION 7.3

1. Find two Laurent series expansions for f (z) =  that involve powers
of z.

2. Show that f (z) =  has a Laurent series representation about the



point z0 = i given by

      

3. Find the Laurent series for f (z) =  that involves powers of z.

4. Show that  is valid for | z − 1| > 1. Hint: Refer to the solution
for Exercise 3(a), Section 7.2.

5. Find the Laurent series for sin  centered at α = 0. Where is the series
valid?

6. Show that  is valid for | z − 1| > 2. Hint: Use the hint for
Exercise 3(b), Section 7.2.

7. Find the Laurent series for f (z)  that involves powers of z.

8. Find the Laurent series for f (z) =  that involves powers of z and is
valid for | z| > 1. Hint: 

9. Find two Laurent series for z −1 (4 − z)−2 involving powers of z and state
where they are valid.

10. Find three Laurent series for (z2 − 5z + 6) −1 centered at α = 0.
11. Find the Laurent series for Log  where a and b are positive real

numbers with b > a > 1, and state where the series is valid. Hint: For
these conditions, show that Log

12. Can Log z be represented by a Maclaurin series or a Laurent series about
the point α = 0? Explain your answer.

13. Use the Maclaurin series for sin z and then long division to get the
Laurent series for csc z with α = 0.

14. Show that cosh  where the coefficients can be expressed in
the form  cos nθ cosh (2 cos θ) dθ. Hint: Let the path of
integration be the circle C+

1 (0).

15. Consider the real-valued function u (θ) = 

(a) Use the substitution cos θ =  and obtain



          

(b) Expandthe function f (z) in part (a) in a Laurent series that is valid in
the annulus A(0, ½, 2).

(c) Use the substitutions cos (nθ) = ½ (zn + z −n) in part (b) and obtain the
Fourier series for u (θ): u (θ) = 

16. The Bessel function Jn (z) is sometimes defined by the generating
function exp 

        Use the circle C1
+ (0) as the contour of integration and show that

17. Suppose that the Laurent expansion f (z) =  anzn converges in the
annulus A(0, r1, r2), where r1 < 1 < r2. Consider the real-valued function
u (θ) = f (eiθ) and show that u (θ) has the Fourier series expansion

        

        where

        

18. The Z-transform. Let {an} be a sequence of complex numbers satisfying
the growth condition | an| ≤ MRn for n = 0, 1,…and for some fixed
positive values M and R. Then the Z-transform of the sequence {an} is the
function F (z) defined by 

(a) Prove that F (z) converges for | z| > R.

(b) Find Z ({an}) for



i. an = 2.

ii. an = 

iii. an = 

iv. an = 1, when n is even, and an = 0 when n is odd.

(c) Prove that Z ({an+1}) = z [Z ({an}) − a0]. This relation is known as the
shifting property for the Z-transform.

19. Use the Weierstrass M-test to show that the series  of
Theorem 7.7 converges uniformly on the set {z : | z − α| ≥ s} as claimed.

20. Verify the following claims made in this section.

(a) The series in Equation (7-27) converges uniformly for z ∈ C2.

(b) The validity of Equation (7-28), according to Corollary 4.2.

(c) The series in Equation (7-28) converges uniformly for z ∈ C1.

7.4 SINGULARITIES, ZEROS, AND
POLES

Recall that the point α is called a singular point, or singularity, of the
complex function f if f is not analytic at the point α, but every neighborhood
DR (α) of α contains at least one point at which f is analytic. For example, the
function  is not analytic at α = 1 but is analytic for all other values
of z. Thus, the point α = 1 is a singular point of f. As another example,
consider the function g (z) = Log z. We showed in Section 5.2 that g is
analytic for all z except at the origin and at the points on the negative real



axis. Thus, the origin and each point on the negative real axis are singularities
of g.

The point α is called an isolated singularity of a complex function f if f is
not analytic at α but there exists a real number R > 0 such that f is analytic
everywhere in the punctured disk D*R(α). The function f (z)  has an
isolated singularity at α = 1. The function g (z) = Log z, however, has a
singularity at α = 0 (or at any point of the negative real axis) that is not
isolated, because any neighborhood of α contains points on the negative real
axis, and g is not analytic at those points. Functions with isolated singularities
have a Laurent series because the punctured disk D*R (α) is the same as the
annulus A(α, 0, R). We now look at this special case of Laurent’s theorem in
order to classify three types of isolated singularities.

Definition 7.5: Classification of singularities
Let f have an isolated singularity at α with Laurent series

       (valid for all z ∈ A (α, 0,R)

Then we distinguish the following types of singularities at α.

i. If cn = 0, for n = −1, −2, −3,…, then f has a removable singularity at
α.

ii. If k is a positive integer such that c−k ≠ 0, but cn = 0 for n < −k, then f
has a pole of order k at α.

iii. If cn ≠ 0 for infinitely many negative integers n, then f has an
essential singularity at α.

Let’s investigate some examples of these three cases.

i. If f has a removable singularity at α, then it has a Laurent series



     (valid for all z ∈ A (α, 0,R).

Theorem 4.17 implies that the power series for f defines an analytic
function in the disk DR (α). If we use this series to define f (α) = c0, then
the function f becomes analytic at z = α, removing the singularity. For
example, consider the function f (z) =  is undefined at z = 0 and has
an isolated singularity at z = 0 because the Laurent series for f is

    

We can remove this singularity if we define f (0) = 1, for then f will be
analytic at 0 in accordance with Theorem 4.17.
Another example is g (z) =  which has an isolated singularity at the
point 0 because the Laurent series for g is

    

If we define g (0) = − , then g will be analytic for all z.

ii. If f has a pole of order k at α, the Laurent series for f is

     (valid for all z ∈ A (α, 0,R))

where c−k ≠ 0. For example
    
has a pole of order 2 at 0.
If f has a pole of order 1 at α, we say that f has a simple pole at α. For
example,

    
has a simple pole at 0.

iii. If infinitely many negative powers of (z − α) occur in the Laurent series,
then f has an essential singularity at α. For example,

    
has an essential singularity at the origin.



Definition 7.6: Zero of order k
A function f analytic in DR (α) has a zero of order k at the point α iff

f (n) (α) = 0, for n = 0, 1,…, k − 1, but f(k) (α) ≠ 0

A zero of order 1 is sometimes called a simple zero.

 Theorem 7.10 A function f analytic in DR (α) has a zero of order k at
the point α iff its Taylor series given by f (z) =  (z − α)n has

c0 = c1 =…= ck− 1 = 0, but ck ≠ 0.

Proof The conclusion follows immediately from Definition 7.6,
because we have cn =  according to Taylor’s theorem.

 EXAMPLE 7.10 From Theorem 7.10 we see that the function

has a zero of order 3 at z = 0. Definition 7.6 confirms this fact because



 Theorem 7.11 Suppose that the function f is analytic in DR (α). Then
f has a zero of order k at the point α iff f can be expressed in the form

where g is analytic at the point α and g (α) = ≠ 0.

Proof Suppose that f has a zero of order k at the point α and that f (z) =
 for z ∈ DR (α). Theorem 7.10 assures us that cn = 0 for 0 ≤

n ≤ k − 1 and that ck ≠ 0, so that we can write f as

where ck ≠ 0. The series on the right side of Equation (7-36) defines a
function, which we denote by g. That is,

 (validfor all z in DR(α))

By Theorem 4.17, g is analytic in DR (α), and g (α) = ck ≠ 0.
Conversely, suppose that f has the form given by Equation (7-35).

Since g is analytic at α, it has the power series representation g (z) = 
 where g (α) = b 0 ≠ 0 by assumption. If we multiply both

sides of the expression dening g (z) by (z − α), we get

By Theorem 7.10, f has a zero of order k at the point α, and our proof
is complete.



An immediate consequence of Theorem 7.11 is Corollary 7.4. The proof
is left as an exercise.

 Corollary 7.4 If f (z) and g (z) are analytic at z = α and have zeros of orders
m and n, respectively, at z = α, then their product h (z) = f (z) g (z) has a zero
of order m + n at z = α.

 EXAMPLE 7.11 Let f (z) = z3 sin z. Then f (z) can be factored as the
product of z3 and sin z, which have zeros of orders m = 3 and n = 1,
respectively, at z = 0. Hence z = 0 is a zero of order 4 of f (z).

Theorem 7.12 gives a useful way to characterize a pole.

Theorem 7.12 A function f analytic in the punctured disk D*R (α) has
a pole of order k at the point α iff f can be expressed in the form

where the function h is analytic at the point α, and h (α) ≠ 0.

Proof Suppose that f has a pole of order k at the point α. We can then
write the Laurent series for f as

where c−k ≠ 0. The series on the right side of this equation defines a
function, which we denote by h (z). That is,

If we specify that h (α) = c−k, then h is analytic in all of DR(α), with h



(α) ≠ 0.
Conversely, suppose that Equation (7-37) is satisfied. Because h is

analytic at the point α with h (α) ≠ 0, it has a power series
representation

where b0 ≠ 0. if we divide both sides of this equation by (z − α)k, we
obtain the following Laurent series representation for f:

where cn = bn+k. Since c−k = b0 ≠ 0, f has a pole of order k at α. This
completes the proof.

Corollaries 7.5–7.8 are useful in determining the order of a zero or a pole.
The proofs follow easily from Theorems 7.10 and 7.12, and are left as
exercises.

 Corollary 7.5 If f is analytic and has a zero of order k at the point α, then 
 has a pole of order k at α.

 Corollary 7.6 If f has a pole of order k at the point α, then g (z) =  has a
removable singularity at α. If we define g (α) = 0, then g (z) has a zero of
order k at α.

 Corollary 7.7 If f and g have poles of orders m and n, respectively, at the
point α, then their product h (z) = f (z) g (z) has a pole of order m + n at α.



 Corollary 7.8 Let f and g be analytic with zeros of orders m and n,
respectively, at α. Then their quotient h (z) =  has the following behavior.

i. If m > n, then h has a removable singularity at α. If we define h (α) = 0,
then h has a zero of order m − n at α.

ii. If m < n, then h has a pole of order n − m at α.

iii. If m = n, then h has a removable singularity at α and can be defined so
that h is analytic at α by h (α) =  h (z).

 EXAMPLE 7.12 Locate the zeros and poles of h (z) =  and determine
their order.

Solution In Section 5.4 we saw that the zeros of f (z) = sin z occur at the
points nπ, where n is an integer. Because f′ (n π) = cos nπ ≠ 0, the zeros of f
are simple. Similarly the function g (z) = z cos z has simple zeros at the points
0 and  π, where n is an integer. From the information given, we find that
h (z) =  behaves as follows:

i. h has simple zeros at nπ, where n = ±1, ±2,…;

ii. h has simple poles at  π, where n is an integer; and

iii. h is analytic at 0 if we define h (0) =  h (z) = 1.

 EXAMPLE 7.13 Locate the poles of g (z) =  and specify their
order.

Solution The roots of the quadratic equation 5z2 + 26z + 5 = 0 occur at the
points −5 and . If we replace z with z2 in this equation, the function f (z) =
5z4 + 26z2 + 5 has simple zeros at the points ±i  and ±  Corollary 7.5
implies that g has simple poles at ±i  and ± 

 EXAMPLE 7.14 Locate the poles of g (z) =  and specify their order.



Solution The function f (z) = z2 sin πz has a zero of order 3 at z = 0 and
simple zeros at the points z = ±1, ±2,…. Corollary 7.5 implies that g has a
pole of order 3 at the point 0 and simple poles at the points ±1, ±2,….

EXERCISES FOR SECTION 7.4

1. Locate the zeros of the following functions and determine their order.

(a) (1+ z2)4.

(b) sin2 z.

(c) z2 + 2z + 2.

(d) sin z2.

(e) z4 + 10z2 + 9.

(f) 1 + exp z.

(g) z6 + 1.

(h) z3 exp (z − 1).

(i) z6 + 2z3 + 1.

(j) z3 cos2 z.

(k) z8 + z4.

(l) z2 cosh z.

2. Locate the poles of the following functions and determine their order.



(a) (z2 + 1)−3 (z − 1)−4

(b) z−1 (z2 − 2z + 2)−2

(c) (z6 + 1)−1

(d) (z4 + z3 − 2z2) −1

(e) (3z4 + 10z2 +3)−1

(f) 

(g) z cot z.

(h) z−5 sin z.

(i) (z2 sin z)−1

(j) z−1 csc z.

(k) (1 − exp z)−1

(l) z−5 sinh z.

3. Locate the singularities of the following functions and determine their
type.

(a) 

(b) sin 

(c) z exp 

(d) tan z.

(e) (z2 + z)−1 sin z.



(f) 

(g) 

(h) 

4. Suppose that f has a removable singularity at z0. Show that the function 
has either a removable singularity or a pole at z0.

5. Let f be analytic and have a zero of order k at z0. Show that f′ has a zero
of order k − 1 at z0.

6. Let f and g be analytic at z0 and have zeros of order m and n, respectively,
at z0. What can you say about the zero of f + g at z0?

7. Let f and g have poles of order m and n, respectively, at z0. Show that f +
g has either a pole or a removable singularity at z0

8. Let f be analytic and have a zero of order k at z0. Show that the function 
has a simple pole at z0.

9. Let f have a pole of order k at z0. Show that f ′ has a pole of order k + 1 at
z0.

10. Prove the following corollaries.

(a) Corollary 7.4.

(b) Corollary 7.5.

(c) Corollary 7.6.

(d) Corollary 7.7.

(e) Corollary 7.8.

11. Find the singularities of the following functions.



(a) 

(b) Log z2.

(c) cot z − 

12. How are the definitions of singularity in complex analysis and asymptote
in calculus different? How are they similar?

7.5 APPLICATIONS OF TAYLOR AND
LAURENT SERIES

In this section we show how you can use Taylor and Laurent series to derive
important properties of analytic functions. We begin by showing that the
zeros of an analytic function must be isolated unless the function is
identically zero. A point α of a set T is called isolated if there exists a disk
DR (α) about α that does not contain any other points of T.

 Theorem 7.13 Suppose that f is analytic in a domain D containing α
and that f (α) = 0. If f is not identically zero in D, then there exists a
punctured disk D*R (α) in which f has no zeros.

Proof By Taylor’s theorem, there exists some disk DR (α) about α
such that

If all the Taylor coefficients  of f were zero, then f would be
identically zero on DR (α). A proof similar to the proof of the



maximum modulus principle (Theorem 6.15) would then show that f is
identically zero in D, contradicting our assumption about f.

Thus, not all the Taylor coefficients of f are zero, and we may
select the smallest integer k such that  According to the results
in Section 7.4, f has a zero of order k at α and can be written in the
form

f (z) = (z − α)k g (z),

where g is analytic at α and g (α) ≠ 0. Since g is a continuous function,
there exists a disk Dr (α) throughout which g is nonzero. Therefore, f
(z) ≠ 0 in the punctured disk D*r (α).

The proofs of the following corollaries are given as exercises.

 Corollary 7.9 Suppose that f is analytic in the domain D and that α ∈ D. If
there exists a sequence of points {zn} in D such that zn → α, and f (zn) = 0,
then f (z) = 0 for all z ∈ D.

 Corollary 7.10 Suppose that f and g are analytic in the domain D, where α
∈ D. If there exists a sequence {zn} in D such that zn → α, and f (zn) = g (zn)
for all n, then f (z) = g (z) for all z ∈ D.

Theorem 7.13 also allows us to give a simple argument for one version of
L’Hôpital’s rule.

 Corollary 7.11 (L’Hôpital’s rule) Suppose that f and g are analytic at α. If f
(α) = 0 and g (α) = 0, but g′ (α) ≠ 0, then

Proof Because g′ (α) ≠ 0, g is not identically zero and, by Theorem 7.13,
there is a punctured disk D*r (α) in which g(z) ≠ 0. Thus, the quotient  

 is defined for all z ∈ D*r (α), and we can write



We can use Theorem 7.14 to get Taylor series for quotients of analytic
functions. Its proof involves ideas from Section 7.2, and we leave it as an
exercise.

 Theorem 7.14 (Division of power series) Suppose that f and g are
analytic at α with the power series representations

If g (α) ≠ 0, then the quotient  has the power series representation

where the coefficients satisfy the equation

an = b0cn +…+ bn−1c1 + bnc0.

In other words, we can obtain the series for the quotient  by the
familiar process of dividing the series for f (z) by the series for g (z),
using the standard long division algorithm.

 EXAMPLE 7.15 Find the first few terms of the Maclaurin series for the
function f (z) = sec z if | z| < , and compute f(4) (0).

Solution Using long division, we see that



Moreover, using Taylor’s theorem, we see that if f (z) = sec z, then 
so f (4) (0) = 5.

We close this section with some results concerning the behavior of
complex functions at points near the different types of isolated singularities.
Theorem 7.15 is due to the German mathematician G. F. Bernhard Riemann
(1826–1866).

 Theorem 7.15 (Riemann) Suppose that f is analytic in D*r (α). If f is
bounded in D*r (α), then either f is analytic at α or f has a removable
singularity at α.

Proof Consider the function g, defined as

Clearly, g is analytic in at least D*r (α). Straightforward calculation
yields

The last equation follows because f is bounded. Thus, g is also analytic
at α, with g (α) = g′ (α) = 0.

By Taylor’s theorem, g has the representation

We divide both sides of Equation (7-39) by (z − α)2 and use Equation
(7-38) to obtain the following power series representation for f:



By Theorem 4.17, f is analytic at α if we define f (α) =  This
completes the proof.

The proof of Corollary 7.12 is given as an exercise.

 Corollary 7.12 If f is analytic in D*r (α), then f can be defined to be
analytic at α iff  f (z) exists and is finite.

 Theorem 7.16 Suppose that f is analytic in D*r (α). The function f
has a pole of order k at α iff  | f (z)| = ∞.

Proof Suppose, first, that f has a pole of order k at α. Using Theorem
7.12, we can say that f (z) =  where h is analytic at α, and h (α) ≠
0. Because  | h (z)| = | h (α)| ≠ 0 and  |(z − α)| = 0, we conclude
that 

Conversely suppose that  | f (z)| = ∞. By the definition of a limit,
there must be some δ > 0 such that | f (z)| > 1 if z ∈ D*δ| (α). Thus, the
function g (z) =  is analytic and bounded (because | g (z)| =  ≤ 1)
in D*(δ). By Theorem 7.15, we may define g at α so that g is analytic
in all of Dδ (α). In fact, | g (α)| =  = 0, so α is a zero of g. We
claim that α must be of finite order; otherwise, we would have g(n) (α)
= 0, for all n, and hence g (z) =  for all z ∈ Dδ (α). Since
g (z) =  is analytic in D*δ(α), this result is impossible, so we can let
k be the order of the zero of g at α. By Corollary 7.5, it follows that f
has a pole of order k, which completes our proof.



 Theorem 7.17 The function f has an essential singularity at α iff  |
f (z)| does not exist.

Proof From Corollary 7.12 and Theorem 7.16, the conclusion of
Theorem 7.17 is the only option possible.

 EXAMPLE 7.16 Show that the function g defined by

is not continuous at z = 0.

Solution In Exercise 20, Section 7.2, we asked you to show this relation by
computing limits along the real and imaginary axes. Note, however, that the
Laurent series for g (z) in the annulus D*r (0) is

so that 0 is an essential singularity for g. According to Theorem 7.17,  | g
(z)| doesn’t exist, so g is not continuous at 0.

EXERCISES FOR SECTION 7.5

1. Determine whether there exists a function f that is analytic at 0 such that
for n = 1, 2, 3,…,

(a) 

(b) 



(c) 

2. Prove the following corollaries and theorem.

(a) Corollary 7.9.

(b) Corollary 7.10.

(c) Theorem 7.14.

(d) Corollary 7.12.

3. Consider the function f (z) = z sin 

(a) Show that there is a sequence {zn} of points converging to 0 such that f
(zn) = 0 for n = 1, 2, 3,….

(b) Does this result contradict Corollary 7.9? Why or why not?

4. Let f (z) = tan z.

(a) Use Theorem 7.14 to Find the first few terms of the Maclaurin series
for f (z) if | z| < 

(b) What are the values of f (6) (0) and f (7) (0)?

5. Show that the real function f defined by

        

        is continuous at x = 0 but that the corresponding function g (z) defined
by

        

        is not continuous at z = 0.



6. Use L’Hôpital’s rule to Find the following limits.

(a) 

(b) 

(c) 

(d) 



chapter 8
residue theory

Overview
You now have the necessary machinery to see some amazing applications of
the tools we developed in the last few chapters. You will learn how Laurent
expansions can give useful information concerning seemingly unrealated
properties of complex functions. You will also learn how the ideas of
complex analysis make the solution of very complicated integrals of real-
valued functions as easy—literally—as the computation of residues. We
begin with a theorem relating residues to the evaluation of complex integrals.

8.1 THE RESIDUE THEOREM

The Cauchy integral formulas given in Section 6.5 are useful in evaluating
contour integrals over a simple closed contour C where the integrand has the
form  and f is an analytic function. In this case, the singularity of the
integrand is at worst a pole of order k at z0. We begin this section by
extending this result to integrals that have a finite number of isolated
singularities inside the contour C. This new method can be used in cases
where the integrand has an essential singularity at z0 and is an important
extension of the previous method.

Definition 8.1: Residue



Let f have a nonremovable isolated singularity at the point z0. Then f has
the Laurent series representation for all z in some punctured disk D*

R (z0)
given by  The coefficient a−1 is called the residue of f
at z0. We use the notation

Res [f, z0] = a−1.

 EXAMPLE 8.1 If f (z) = exp  , then the Laurent series of f about the
point 0 has the form

and Res[f, 0] = a−1 = 2.

 EXAMPLE 8.2 Find Res[g, 0] if 

Solution Using Example 7.7, we find that g has three Laurent series
representations involving powers of z. The Laurent series valid in the
punctured disk D*

1 (0) is  Computing the first few
coefficients, we obtain

Therefore, Res[g,0] = a−1 = .

Recall that, for a function f analytic in D*
R (z0) and for any r with 0 < r <

R, the Laurent series coefficients of f are given by



where C+
r (z0) denotes the circle {z : | z − z0| = r} with positive orientation.

This result gives us an important fact concerning Res[f, z0]. If we set n = −1
in Equation (8-1) and replace C+(z0) with any positively oriented simple
closed contour C containing z0, provided z0 is the still only singularity of f
that lies inside C, then we obtain

If we are able to find the residue of f at z0, then Equation (8-2) gives us an
important tool for evaluating contour integrals.

 EXAMPLE 8.3 Evaluate .

Solution In Example 8.1 we showed that the residue of f (z) = exp (2/x) at z0
= 0 is Res[f, 0] = 2. Using Equation (8-2), we get

 = 2πi Res [f, 0] = 4πi.

Theorem 8.1 (Cauchy’s residue theorem) Let D be a simply
connected domain and let C be a simple closed positively oriented
contour that lies in D. If f is analytic inside C and on C, except at the
points z1, z2,…, zn that lie inside C, then

The situation is illustrated in Figure 8.1.

Proof Since there are a finite number of singular points inside C, there
exists an r > 0 such that the positively oriented circles Ck = Cr

+ (zk),



for k = 1, 2,…, n, are mutually disjoint and all lie inside C. From the
extended Cauchy–Goursat theorem (Theorem 6.7), it follows that

The function f is analytic in a punctured disk with center zk that
contains the circle Ck, so we can use Equation (8-2) to obtain

Combining the last two equations gives the desired result.

The calculation of a Laurent series expansion is tedious in most
circumstances. Since the residue at z0 involves only the coefficient a−1 in the
Laurent expansion, we seek a method to calculate the residue from special
information about the nature of the singularity at z0.

Figure 8.1 The domain D and contour C and the singular points z1, z2,…, zn
in the statement of Cauchy’s residue theorem.

If f has a removable singularity at z0, then a−n = 0, for n = 1, 2,….
Therefore, Res[f, z0] = 0. Theorem 8.2 gives methods for evaluating residues
at poles.



 Theorem 8.2 (Residues at poles)
i. If f has a simple pole at z0, then

    

ii. If f has a pole of order 2 at z0, then

    

iii. If f has a pole of order k at zQ, then

    

Proof If f has a simple pole at z0, then the Laurent series is

If we multiply both sides of this equation by (z − z0) and take the limit
as z → z0, we obtain

which establishes part (i). We proceed to part (iii), as part (ii) is a
special case of it. Suppose that f has a pole of order k at z0. Then f can
be written as

Multiplying both sides of this equation by (z − z0)k gives

If we differentiate both sides k − 1 times, we get



and when we let z → z0, the result is

which establishes part (iii).

 EXAMPLE 8.4 Find the residue of 

Solution We write  Because z2 sin πz has a zero of order 3 at z0 =
0 and π cos (πz0) ≠ 0, f has a pole of order 3 at z0. By part (iii) of Theorem
8.2, we have

This last limit involves an indeterminate form, which we evaluate by using
L’Hôpital’s rule:



 EXAMPLE 8.5 Find 

Solution We write the integrand as  The singularities of f that
lie inside C3 (0) are simple poles at the points 1 and −2, and a pole of order 2
at the origin. We compute the residues as follows:

Finally, the residue theorem yields

The answer,  = 0, is not at all obvious, and all the preceding
calculations are required to get it.

 EXAMPLE 8.6 Find 

Solution The singularities of the integrand  that lie inside C2 (1)
are simple poles occurring at the points 1 ± i, as the points −1 ± i lie outside
C2 (1). Factoring the denominator is tedious, so we use a different approach.
If z0 is any one of the singularities of f, then we can use L’Hôpital’s rule to
compute Res[f, z0]:

Since z4
0 = −4, we can simplify this expression further to yield Res[f, z0] = −

 z0. Hence . We now use the residue
theorem to get



The theory of residues can be used to expand the quotient of two
polynomials into its partial fraction representation.

 EXAMPLE 8.7 Let P (z) be a polynomial of degree at most 2. Show that if
a, b, and c are distinct complex numbers, then

where

  

Solution It will suffice to prove that A =Res[f, a]. We expand f in its Laurent
series about the point a by writing the three terms , , and  in their
Laurent series about the point a and adding them. The term  is itself a
oneterm Laurent series about the point a. The term  is analytic at the
point a, and its Laurent series is actually a Taylor series given by

which is valid for | z − a| < | b − a|. Likewise, the expansion of the term 
is

which is valid for | z − a| < | c − a|. Thus, the Laurent series of f about the
point a is



which is valid for | z − a| < R, where R = min{| b − a|, | c − a|}. Therefore, A =
Res[f, a], and calculation reveals that

 EXAMPLE 8.8 Express  in partial fractions.

Solution Computing the residues, we obtain

Res[f,0] = 1, Res[f,1] = −5, and Res[f,2] = 4.

Example 8.7 gives us

Remark 8.1 If a repeated root occurs, then the process is similar, and we can
easily show that if P (z) has degree of at most 2, then

 EXAMPLE 8.9 Express  in partial fractions.

Solution Using the previous remark, we have

where



Thus

EXERCISES FOR SECTION 8.1

1. Find Res[f, 0] for

(a) f (z) = z−1 exp z.
(b) f (z) = z−3 cosh 4z.
(c) f (z) = csc z.
(d) 

(e) f (z) = cot z.
(f) f (z) = z−3 cos z.
(g) f (z) = z−1 sin z.
(h) 

(i) 
(j) f (z) = z4 sin (1/z).
(k) f (z) = z−1 csc z.
(l) f (z) = z−2 csc z.
(m) 

(n) f (z) = z−1 csc2 z.



2. Let f and g have an isolated singularity at z0. Show that the formula Res[f
+ g, z0] = Res[f, z0] + Res[g, z0] holds true.

3. Evaluate

(a) 

(b) 

(c) 

(d) 

(e) 

(f) 

(g) 

4. Let f and g be analytic at z0. If f (z0) ≠ 0 and g has a simple zero at z0 then

show that Res .

5. Find  when

(a) C = C1
+ (1).

(b) C = C4
+ (0).

6. Find  when

(a) C= C½
+ (i).

(b)  Hint: If z0 is a singularity of  show that Res[f,
z0] = −  z0.

7. Find  when

(a) 
(b) 



8. Find  when

(a) C = C+
½ (0)

(b) 

9. Use residues to find the partial fraction representations of

(a) 
(b) 

(c) 

(d) 

(e) 

(f) 

10. Let f be analytic in a simply connected domain D, and let C be a simple
closed positively oriented contour in D. If z0 is the only zero of f in D and
z0 lies interior to C, then show that , where k is the order of
the zero at z0.

11. Let f be analytic at the points 0, ±1, ±2,…. If g (z) = πf (z) cot πz, then
show that Res[g, n] = f (n) for n = 0, ±1, ±2,….

8.2 TRIGONOMETRIC INTEGRALS

As indicated at the beginning of this chapter, we can evaluate certain definite
real integrals with the aid of the residue theorem. One way to do this is by
interpreting the definite integral as the parametric form of an integral of an
analytic function along a simple closed contour.

Suppose that we want to evaluate an integral of the form



where F (u, v) is a function of the two real variables u and v. Consider the
unit circle C1 (0) with parametrization

which gives us the symbolic differentials

Combining z = cos θ + i sin θ with 1/z = cos θ − i sin θ, we obtain

Using the substitutions for cos θ, sin θ, and dθ in Expression (8-3) transforms
the definite integral into the contour integral

where the new integrand is 
Suppose that f is analytic inside and on the unit circle C1 (0), except at the

points z1, z2,…, zn that lie interior to C1 (0). Then the residue theorem gives

The situation is illustrated in Figure 8.2.

 EXAMPLE 8.10 Evaluate  by using complex analysis.

Solution Using Substitutions (8-4) and (8-5), we transform the integral to

where . The singularities of f are poles located at the points
where 3 (z2)2 + 10 (z2) + 3 = 0. Using the quadratic formula, we see that the



singular points satisfy the relation  Hence the only
singularities that lie inside the unit circle are simple poles corresponding to
the solutions of z2 = − , which are the two points z1 =  and z2 = − . We
use Theorem 8.2 and L’Hôpital’s rule to get the residues at zk, for k = 1, 2:

Figure 8.2 The change of variables from a definite integral on [0, 2π] to a
contour integral around C.

As zk =  and zk
2 = − , the residues are given by Res  We

now use Equation (8-6) to compute the value of the integral:

 EXAMPLE 8.11 Evaluate  by using a computer algebra
system.

Solution Using a variety of software packages we can obtain the
antiderivative of . Many of them give 
Since cot 0 and cot 2π are not defined, the computations for both g (0) and g
(2π) are indeterminate. The graph s = g (t) shown in Figure 8.3 reveals



another problem: The integrand  is a continuous function for all t, but
the function g has a discontinuity at π. This condition appears to be a
violation of the fundamental theorem of calculus, which asserts that the
integral of a continuous function must be differentiable and hence
continuous. The problem is that g (t) is not an antiderivative of  for all t
in the interval [0, 2π]. Oddly, it is the antiderivative at all points except 0, π,
and 2π, which you can verify by computing g′ (t) and showing that it equals 

 whenever g (t) is defined.

Figure 8.3 Graph of 

The integration algorithm used by computer algebra systems here (the
Risch–Norman algorithm) gives the antiderivative  and we
must take great care in using this information.

We get the proper value of the integral by using g (t) on the open
subintervals (0, π) and (π, 2π) where it is continuous and taking appropriate
limits:

 EXAMPLE 8.12 Evaluate 

Solution For values of z that lie on the unit circle C1 (0), we have



We solve for cos 2θ and sin 2θ to obtain the substitutions

Using the identity for cos 2θ along with Substitutions (8-4) and (8-5), we
rewrite the integral as

where  singularities of f lying inside C1
+(0) are poles located

at the points 0 and . We use Theorem 8.2 to get the residues:

and

Therefore, we conclude that

EXERCISES FOR SECTION 8.2
Use residues to find

1. 

2. 

3. 

4. 



5. 

6. .

7. 

8. 

9. 

10. 

11. 

12. 

13. 

14. 

15.  where a, b, and d are real and a2 + b2 < d2

16.  where a, b, and d are real and a > d and b > d.

8.3 IMPROPER INTEGRALS OF
RATIONAL FUNCTIONS

An important application of the theory of residues is the evaluation of certain
types of improper integrals. We let f be a continuous function of the real
variable x on the interval 0 ≤ x < ∞. Recall from calculus that the improper
integral f over [0, ∞) is defined by

provided the limit exists. If f is defined for all real x, then the integral of f
over (–∞, ∞) is defined by



provided both limits exist. If the integral in Equation (8-7) exists, we can
obtain its value by taking a single limit:

For some functions the limit on the right side of Equation (8-8) exists, but the
limit on the right side of Equation (8-7) doesn’t exist.

 EXAMPLE 8.13  but we know from Equation
(8-7) that the improper integral of f (x) = x over (−∞, ∞) doesn’t exist.
Therefore, we can use Equation (8-8) to extend the notion of the value of an
improper integral, as Definition 8.2 indicates.

Definition 8.2: Cauchy principal value
Let f (x) be a continuous real-valued function for all x. The Cauchy
principal value (P.V.) of the integral  f (x) dx is defined by

provided the limit exists.

Example 8.13 shows that P. V.  x dx = 0.

 EXAMPLE 8.14 The Cauchy principal value of  is



If , where P and Q are polynomials, then f is called a rational
function. In calculus you probably learned techniques for integrating certain
types of rational functions. We now show how to use the residue theorem to
obtain the Cauchy principal value of the integral of f over (−∞,∞).

 Theorem 8.3 let  where P and Q are polynomials of degree
m and n, respectively. If Q(x) ≠ 0 for all real x and n ≥ m + 2, then

where z1, z2,…, zk-1, zk are the poles of  that lie in the upper half-
plane. The situation is illustrated in Figure 8.4.

Proof There are a finite number of poles of  that lie in the upper
halfplane, so we can find a real number R such that the poles all lie
inside the contour C, which consists of the segment −R ≥ x ≥ R of the
x-axis together with the upper semicircle CR of radius R shown in
Figure 8.4. By properties of integrals

Using the residue theorem, we rewrite this equation as

Our proof will be complete if we can show that R P(z)/Q(z) dz tends



to zero as R → ∞. Suppose that

Then

so

Since n ≥ m + 2, this limit reduces to 0 (am/bn) = 0. Therefore, for any
ε > 0 we may choose R large enough so that But this means that 

 whenever z lies on CR.But this means that

whenever z lies on CR. Using the ML inequality (Theorem 6.3) and the
result of Inequality (8-10), we get

Since ε > 0 was arbitrary, we conclude that

If we let R → ∞ and combine Equations (8-9) and (8-11), we arrive at
the desired conclusion.



Figure 8.4 The poles z1, z2,…, zk−1, zk of  that lie in the upper half-plane.

 EXAMPLE 8.15 Evaluate 

Solution We write the integrand as  We see that f has
simple poles at the points i and 2i in the upper half-plane. Computing the
residues, we obtain

Using Theorem 8.3, we conclude that

 EXAMPLE 8.16 Evaluate 

Solution The integrand  has a pole of order 3 at the point 2i,
which is the only singularity of f in the upper half-plane. Computing the
residue, we get



EXERCISES FOR SECTION 8.3
Use residues to evaluate

1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

10. 

11. 

12. 

13. 

14.  where a > 0 and b > 0.

15.  where a > 0

8.4 IMPROPER INTEGRALS
INVOLVING TRIGONOMETRIC
FUNCTIONS



Let P and Q be polynomials of degree m and n, respectively, where n ≥ m +
1. We can show (but omit the proof) that if Q (x) ≠ 0 for all real x, then

are convergent improper integrals. You may encounter integrals of this type
in the study of Fourier transforms and Fourier integrals. We now show how
to evaluate them.

Particularly important is our use of the identities

cos (αx) = Re [exp (iαx)] and sin (αx) = Im [exp (iαx)],

where α is a positive real number. The crucial step in the proof of Theorem
8.4 wouldn’t hold if we were to use cos (αz) and sin (αz) instead of exp (iαz),
as you will see when you get to Lemma 8.1.

 Theorem 8.4 Let P and Q be polynomials with real coefficients of
degree m and n, respectively, where n ≥ m + 1 and Q (x) ≠ 0, for all
real x. If α > 0 and

then

where z1, z2,…, zk−1, zk are the poles of f that lie in the upper half-
plane and Re (Res [f, zj]) and Im(Res [f, zj]) are the real and
imaginary parts of Res [f, zj], respectively.



The proof of Theorem 8.4 is similar to the proof of Theorem 8.3. Before
turning to the proof, we illustrate how to use Theorem 8.4.

 EXAMPLE 8.17 Evaluate P.V. 

Solution The function f in Equation (8-12) is  which has a simple
pole at the point 2i in the upper half-plane. Calculating the residue yields

Using Equation (8-14) gives

 EXAMPLE 8.18 Evaluate P. V. 

Solution The function f in Equation (8-12) is  which has simple
poles at the points z1 = 1 + i and z2 = −1 + i in the upper half-plane. We get
the residues with the aid of L’Hôpital’s rule:

Similarly

Using Equation (8-13), we get



We are almost ready to give the proof of Theorem 8.4, but first we need
one preliminary result.

 Lemma 8.1 (Jordan’s lemma) Suppose that P and Q are polynomials of
degree m and n, respectively, where n ≥ m + 1. If CR is the upper semicircle z
= Reiθ, for 0 ≤ θ ≤ π, then

Proof From n ≥ m + 1, it follows that  Therefore, for any ε >
0, there exists Rε > 0 such that

whenever | z| ≥ Rε. Using the ML inequality (Theorem 6.3) together with
Inequality (8-15), we get

provided R ≥ Rε. The parametrization of CR leads to the equation

Using the trigonometric identity sin (π − θ) = sin θ and Equations (8-17), we
express the integral on the right side of Inequality (8-16) as

On the interval 0 ≤ θ ≤ π/2 we can use the inequality

We combine this inequality with Inequality (8-16) and Equation (8-18) to
conclude that, for R ≥ Rε,



Because ε > 0 is arbitrary, our proof is complete.

We now turn to the proof of our main theorem.

Proof of Theorem 8.4 Let C be the contour that consists of the
segment −R ≤ x ≤ R of the real axis together with the upper semicircle
CR parametrized by z = Reiθ, for 0 ≤ θ ≤ π. Using properties of
integrals, we have

If R is sufficiently large, all the poles z1, z2,…, zk of f will lie inside C,
and we can use the residue theorem to obtain

Since α is a positive real number, the change of variables ζ = αz shows
that the conclusion of Jordan’s lemma holds for the integrand 
Hence we let R → ∞ in Equation (8-19) to obtain

Equating the real and imaginary parts of this equation gives us
Equations (8-13) and (8-14), which completes the proof.



EXERCISES FOR SECTION 8.4
Use residues to find the Cauchy principal value of

1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

10. 

11. 

12. 

13. Why do you need to use the exponential function when evaluating
improper integrals involving the sine and cosine functions?

8.5 INDENTED CONTOUR INTEGRALS

If f is continuous on the interval b < x ≤ c, but discontinuous at b, then the



improper integral of f over [b, c] is defined by

provided the limit exists. Similarly, if f is continuous on the interval a ≤ x < b,
but discontinuous at b, then the improper integral of f over [a, b] is defined by

provided the limit exists. For example,

If we let f be continuous for all values of x in the interval [a, c], except at
the value x = b, where a < b < c, then the Cauchy principal value of f over [a,
c] is defined by

provided the limit exists.

 EXAMPLE 8.19

Evaluating the integrals and computing limits give

In this section we show how to use residues to evaluate the Cauchy
principal value of the integral of f over (−∞,∞) when the integrand f has
simple poles on the x-axis. We state our main results and then look at some
examples before giving proofs.



 Theorem 8.5 Let  where P and Q are polynomials with real
coefficients of degree m and n, respectively, and n ≥ m + 2. If Q has
simple zeros at the points t1, t2,…, tl on the x-axis, then

where z1, z2,…, zk are the poles of f that lie in the upper half-plane.

 Theorem 8.6 Let P and Q be polynomials of degree m and n,
respectively, where n ≥ m +1, and let Q have simple zeros at the points
t1, t2,…, tl on the x-axis. If α is a positive real number and if 

 then

and

where z1, z2,…,zk are the poles of f that lie in the upper half-plane.

Remark 8.2 The formulas in these theorems give the Cauchy principal value
of the integral, which pays special attention to the manner in which any limits
are taken. They are similar to those in Sections 8.3 and 8.4, except here we
add one-half the value of each residue at the points t1, t2,…, tl on the x-axis. 



 EXAMPLE 8.20 Evaluate P. V.  by using complex analysis.

Solution The integrand

has simple poles at the points t1 = 2 on the x-axis and z1 = −1 +  in the
upper half-plane. By Theorem 8.5

 EXAMPLE 8.21 Evaluate P.V.  by using a computer algebra
system.

Solution A variety of computer algebra systems give the indefinite integral

However, for real numbers, we should write the second term as  and
use the equivalent formula:

This antiderivative has the property that  as shown in Figure
8.5. we also compute



Figure 8.5 Graph of 

and the Cauchy principal limit at t = 2 as r → 0 is

Therefore, the Cauchy principal value of the improper integral is

 EXAMPLE 8.22 Evaluate P. V. 

Solution The integrand  has simple poles at the points t1 = 1 on
the x-axis and z1 = 2i in the upper half-plane. By Theorem 8.6

The proofs of Theorems 8.5 and 8.6 depend on the following result.

 Lemma 8.2 Suppose that f has a simple pole at the point to on the x-axis. If
Cr is the contour Cr : z = t0 + reiθ, for 0 ≤ θ ≤ π, then

Proof The Laurent series for f at z = t0 has the form



where g is analytic at z = t0. Using the parametrization of Cr and Equation (8-
23), we get

As g is continuous at t0, there is an M > 0 so that  and

Combining this inequality with Equation (8-24) gives the conclusion we
want.

Proof of Theorems 8.5 and 8.6 Since f has only a finite number of
poles, we can choose r small enough that the semicircles

are disjoint and the poles z1, z2,…, zk of f in the upper half-plane lie
above them, as shown in Figure 8.6.

Let R be large enough so that the poles of f in the upper half-plane
lie under the semicircle CR : z = Reiθ, for 0 ≤ θ ≤ π, and the poles of f
on the x-axis lie in the interval −R ≤ x ≤ R. Let C be the simple closed
positively oriented contour that consists of CR and − C1, −C2,…, − Cl
and the segments of the real axis that lie between the semicircles
shown in Figure 8.6. The residue theorem gives 

which we rewrite

as



where IR is the portion of the interval −R ≤ x ≤ R that lies outside the
intervals (tj − r, tj + r) for j = 1, 2,…, l. Using the same techniques that
we used in Theorems 8.3 and 8.4 yields

If we let R → ∞ and r → 0 in Equation (8-25) and use the results of
Equation (8-26) and Lemma 8.2, we obtain

If f is the function given in Theorem 8.5, then Equation (8-27)
becomes Equation (8-20). If f is the function given in Theorem 8.6,
then equating the real and imaginary parts of Equation (8-27) results in
Equations (8-21) and (8-22), respectively, and with these results our
proof is complete.

Figure 8.6 The poles t1, t2, …, tl of f that lie on the x-axis and the poles z1,
z2, …, zk that lie above the semicircles C1, C2, …, Cl.

EXERCISES FOR SECTION 8.5
Use residues to compute



1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

10. 

11. 

12. 

13. 

14. 

15. 

Hint: Use trigonometric identity sin2 x =  −  cos 2x.
16. 

Hint: Use the contour C = L1 + CR − L2 shown in Figure 8.7.

17. 

Hint: Use the contour C = L1 + CR − L2 shown in Figure 8.7.



Figure 8.7 The contour C = L1 +CR − L2 for Exercises 16 and 17.

8.6 INTEGRANDS WITH BRANCH
POINTS

We now show how to evaluate certain improper real integrals involving the
integrand  The complex function zα is multivalued, so we must first
specify the branch to be used.

Let α be a real number with 0 < α < 1. In this section, we use the branch
of zα corresponding to the branch of the logarithm log0 (see Equation (5-20))
as follows:

where z = reiθ ≠ 0 and 0 < θ ≤ 2π. Note that this is not the traditional
principal branch of za and that, as defined, the function za is analytic in the
domain {reiθ : r > 0, 0 < θ < 2π}.
 

Theorem 8.7 Let P and Q be polynomials of degree m and n,
respectively, where n ≥ m+2. If Q(x) ≠ 0, for x > 0, Q has a zero of
order at most 1 at the origin, and  where 0 < α < 1, then



where z1, z2,…, zk are the nonzero poles of

Proof Let C denote the simple closed positively oriented contour that
consists of the portions of the circles Cr (0) and CR (0) and the
horizontal segments joining them, as shown in Figure 8.8. We select a
small value of r and a large value of R so that the nonzero poles z1, z2,
…, zk of P/Q lie inside C. Using the residue theorem, we write

If we let r → 0 in Equation (8-29), the integrand f (z) on the upper
horizontal line of Figure 8.8 approaches  where x is a real
number; however, because of the branch we chose for za (see Equation
(8-28)), the integrand f (z) on the lower horizontal line approaches 

 Therefore,

It is here that we need the function Q to have a zero of order at most 1
at the origin. Otherwise, the first two integrals on the right side of
Equation (8-30) would not necessarily converge. Combining this result
with Equation (8-29) gives

so

which we rewrite as



Using the ML inequality (Theorem 6.3) gives

The argument is essentially the same as that used to establish Equation
(8-11), and we omit the details. If we combine Equations (8-31) and
(8-32) and let R → ∞, we arrive at the desired result.

Figure 8.8 The contour C that encloses the nonzero poles z1, z2,…, zk of .

 EXAMPLE 8.23 Evaluate P. V.  where 0 < a < 1.

Solution The function  has a nonzero pole at the point −1, and the
denominator has a zero of order at most 1 (in fact, exactly 1) at the origin.
Using Theorem 8.7, we have



We can apply the preceding ideas to other multivalued functions.

 EXAMPLE 8.24 Evaluate P.V.  where a > 0.

Solution We use the function  Recall that

where  The path C of integration will consist of the
segments [−R, −r] and [r, R] of the x-axis together with the upper semicircles

 as shown in Figure 8.9.
We chose the branch  because it is analytic on C and its interior—

hence so is the function f. This choice enables us to apply the residue theorem
properly (see the hypotheses of Theorem 8.1), and we get

Figure 8.9 The contour C for the integrand 

Keeping in mind the branch of logarithm that we’re using, we then have

If R2 > a2, then by the ML inequality (Theorem 6.3)



and L’Hôpital’s rule yields  A similar computation shows that
 We use these results when we take corresponding limits in

Equations (8-33) to get

Equating the real parts in this equation gives

Remark 8.3 The theory of this section is not purely esoteric. Many
applications of contour integrals surface in government and industry
worldwide. Many years ago, for example, a briefing was given at the Korean
Institute for Defense Analysis (KIDA) in which a sophisticated problem was
analyzed by means of a contour integral whose path of integration was
virtually identical to that given in Figure 8.8.

EXERCISES FOR SECTION 8.6
Use residues to compute dx

1. 

2. 

3. 

4. 

5.     Hint: Use the integrand 

6. 



7. 

8. 

9. 

10. Carry out the following computations:
(a) For 
(b) Use part (a) and α =  to verify that 
(c) Can you conclude that P. V.  Justify your answer.

11. Carry out the following computations:
(a) For  show that 
(b) Use part (a) and α =  to verify that 
(c) Can you say that P.V.  Justify your answer.

12. P. V. 
13. P. V. 
14. P. V. 
15. P. V. 
16. P. V.  and P.V. 

Hint: Use the complex integrand 
17. P. V.  where 0 < a < 1.

18. P. V.  where a > 0.

19. P. V.  Hint: Use the integrand  and the contour C in
Figure 8.9. Let r → 0 and R → ∞.

20. P. V.  Hint: Use the integrand  the contour C in
Figure 8.9. Let r → 0 and R → ∞.

21. The Fresnel integrals  cos (x2) dx and  sin (x2) dx are important in the
study of optics. Use the integrand f (z) = exp (−z2) and the contour C
shown in Figure 8.10, and let R → ∞ to get the value of these integrals.
Use the fact from calculus that 



Figure 8.8 For Exercise 21.

8.7 THE ARGUMENT PRINCIPLE AND
ROUCHÉ’S THEOREM

We now derive two results based on Cauchy’s residue theorem. They have
important practical applications and pertain only to functions all of whose
isolated singularities are poles.

Definition 8.3: Meromorphic function
A function f is said to be meromorphic in a domain D provided the only
singularities of f are isolated poles and removable singularities.

We make three important observations relating to this definition.

 Analytic functions are a special case of meromorphic functions.

 Rational functions  where P (z) and Q(z) are polynomials, are
meromorphic in the entire complex plane.

 By definition, meromorphic functions have no essential singularities.

Suppose that f is analytic at each point on a simple closed contour C and f
is meromorphic in the domain that is the interior of C. We assert without



proof that Theorem 7.13 can be extended to meromorphic functions so that f
has at most a finite number of zeros that lie inside C. Since the function 

 is also meromorphic, it can have only a finite number of zeros inside
C, and so f can have at most a finite number of poles that lie inside C.

Theorem 8.8, known as the argument principle, is useful in determining
the number of zeros and poles that a function has.

 Theorem 8.8 (Argument principle) Suppose that f is meromorphic in
the simply connected domain D and that C is a simple closed positively
oriented contour in D such that f has no zeros or poles for z ∈ C.
Then

where Zf is the number of zeros of f that lie inside C and Pf is the
number of poles of f that lie inside C.

Proof Let a1, a2,…, azf be the zeros of f inside C counted according to
multiplicity and let b1, b2, …, bpf be the poles of f inside C counted
according to multiplicity. Then f (z) has the representation

where g is analytic and nonzero on C and inside C. An elementary
calculation shows that

According to Corollary 6.1, we have



The function  is analytic inside and on C, so the Cauchy–Goursat
theorem gives ∫C  dz = 0. These facts lead to the conclusion of our
theorem if we integrate both sides of Equation (8-35) over C.

 Corollary 8.1 Suppose that f is analytic in the simply connected domain D.
Let C be a simple closed positively oriented contour in D such that for z ∈ C,
f (z) ≠ 0. Then

where Zf is the number of zeros of f that lie inside C.

Remark 8.4 Certain feedback control systems in engineering must be stable.
A test for stability involves the function G (z) = 1 + F (z), where F is a
rational function. If G does not have any zeros in the region {z : Re (z) ≥ 0},
then the system is stable. We determine the number of zeros of G by writing 

 where P and Q are polynomials with no common zero. Then 
 and we can check for the zeros of Q (z)+P (z) by using Theorem

8.8. We select a value R so that G (z) ≠ 0 for {z : | z| > R} and then integrate
along the contour consisting of the right half of the circle CR (0) and the line
segment between iR and −iR. This method is known as the Nyquist stability
criterion. 

Why do we label Theorem 8.8 as the argument principle? The answer lies
with a fascinating application known as the winding number. Recall that a
branch of the logarithm function, logα, is defined by



where z = reiø ≠ 0 and α < ø ≥ α + 2π. Loosely speaking, suppose that for
some branch of the logarithm, the composite function logα(f(z)) were analytic
in a simply connected domain D containing the contour C. This would imply
that logα (f (z)) is an antiderivative of the function  for all z ∈ D.
Theorems 6.9 and 8.8 would then tell us that, as z winds around the curve C,
the quantity  would change by 2πi (Zf − Pf ). Since
2πi (Zf − Pf) is purely imaginary, this result tells us that arga f (z) would
change by 2π (Zf − Pf) radians. In other words, as z winds around C, the
integral  would count how many times the curve f (C) winds around
the origin

Unfortunately, we can’t always claim that logα (f (z))is an antiderivative
of the function  for all z ∈ D. If it were, the Cauchy–Goursat theorem
would imply that  = 0. Nevertheless, the heuristics that we gave—
indicating that  counts how many times the curve f (C) winds
around the origin—still hold true, as we now demonstrate.

Figure 8.11 The points zk on the contour C that winds around z*.

Suppose that C : z (t) = x (t)+iy (t) for a ≤ t ≤ b is a simple closed contour
and that we let a = t0 < t1 <…< tn = b be a partition of the interval [a, b]. For
k = 0, 1,…, n, we let zk = z (tk) denote the corresponding points on C, where
z0 = zn. If z* lies inside C, then the curve C : z (t) winds around z* once as t
goes from a to b, as shown in Figure 8.11.



Now suppose that a function f is analytic at each point on C and
meromorphic inside C. Then f (C) is a closed curve in the w plane that passes
through the points wk = f (zk), for k = 0,1,…,n, where w0 = wn. We can
choose subintervals [tk−1,tk] small enough so that, on the portion of f (C)
between wk−1 and wk, we can define a continuous branch of the logarithm

where  as shown in Figure 8.12. Then

where  measures in radians the amount that the portion of the
curve f (C) between wk and wk−1 winds around the origin. With small enough
subintervals [tk−1,tk], the angles αk−1 and αk might be different, but the values
arg αk−1wk−1 and argαk wk−1 will be the same, so that logεk−1 wk−1 = argαk
wk−1

Figure 8.12 The points wk on the contour f (C) that winds around 0.

We can now show why  counts the number of times that f (C) winds
around the origin. We parametrize C : z (t), for a ≤ t ≤ b, and choose the



appropriate branches of logαk, w, giving

which we rewrite as

When we use the fact that ρ0 = ρn, the first summation in Equation (8-36)
vanishes. The summation of the quantities Δøk expresses the accumulated
radian measure of f (C) around the origin. Therefore, when we divide both
sides of Equation (8-36) by 2πi, its right side becomes an integer (by
Theorem 8.8) that must count the number of times f (C) winds around the
origin.

Figure 8.13 The image curve f (C2 (0)) under f (z) = z2 + z.

 EXAMPLE 8.25 The image of the circle C2 (0) under f (z) = z2 + z is the



curve {(x, y) = (4 cos 2t + 2 cos t, 4 sin 2t + 2 sin t) : 0 < t < 2π} shown in
Figure 8.13. Note that the image curve f (C2 (0)) winds twice around the
origin. We check this by computing  The residues
of the integrand are at 0 and −1. Thus,

Finally, we note that if g (z) = f (z) − a, then g′ (z) = f (z), and thus we can
generalize what we’ve just said to compute how many times the curve f (C)
winds around the point a. Theorem 8.9 summarizes our discussion.

 Theorem 8.9 (Winding numbers) Suppose that f is meromorphic in
the simply connected domain D. If C is a simple closed positively
oriented contour in D such that for z ∈ C, f (z) ≠ 0 and f (z) ≠ ∞, then

known as the winding number of f (C) about a, counts the number of
times the curve f (C) winds around the point a. If a = 0, the integral
counts the number of times the curve f (C) winds around the origin.

Remark 8.5 Letting f (z) = z in Theorem 8.9 gives

which counts the number of times the curve C winds around the point a. If C
is not a simple closed curve, but crosses itself perhaps several times, we can
show (but omit the proof) that W (C, a) still gives the number of times the
curve C winds around the point a. Thus, winding number is indeed an
appropriate term.
 



We close this section with a result that will help us gain information
about the location of the zeros and poles of meromorphic functions.

 Theorem 8.10 (Rouché’s theorem) Suppose that f and g are
meromorphic functions defined in the simply connected domain D, that
C is a simply closed contour in D, and that f and g have no zeros or
poles for z ∈ C. If the strict inequality | f (z) + g (z)| < | f (z)| + | g (z)|
holds for all z ∈ C, then Zf − Pf = Zg − Pg.

Proof Because g has no zeros or poles on C, we may legitimately
divide both sides of the inequality | f (z) + g (z)| < | f (z)| + | g (z)| by | g
(z) | to get

For z ∈ C, ) cannot possibly be zero or any positive real number, as
that would contradict Inequality (8-37). This means that C*, the image
of the curve C under the mapping f/g, does not contain the interval [0,
∞), and so the function defined by

where  = reiø ≠ 0 and 0 < ø ≥ 2π, is analytic in a simply connected
domain D*. that contains C*. We calculate

so w (z) = log0 ( ) is an antiderivative of  for all z ∈ D*. As
C* is a closed curve in D*, Theorem 6.9 gives 
According to Theorem 8.8, then



which completes the proof.

 Corollary 8.2 Suppose that f and g are analytic functions defined in the
simply connected domain D, that C is a simple closed contour in D, and that f
and g have no zeros for z ∈ C. If the strict inequality | f (z) + g (z)| < | f (z)| +
| g (z)| holds for all z ∈ C, then Zf = Zg.

 
Remark 8.6 Theorem 8.10 is usually stated with the requirement that f and g
satisfy the condition | f (z) + g (z)| < | g (z)|, for z ∈ C. The improved theorem
that we gave was discovered by Irving Glicksberg (see the American
Mathematical Monthly, 83 (1976), pp. 186–187). The weaker version is
adequate for most purposes, however, as the following examples illustrate.

 EXAMPLE 8.26 Consider the polynomial g (z) = z4 −7z −1 and show that
all four of its zeros lie in the disk D2 (0) = {z : | z| < 2}

Solution Let f (z) = −z4. Then f (z) + g (z) = −7z −1, and at points on the
circle C2 (0) = {z : | z| = 2} we have the relation

Of course, if | f (z) + g (z)| < | f (z)|, then as we indicated in Remark 8.6 we
certainly have | f (z) + g (z)| <; | f (z)| + | g (z)|, so that the conditions for
applying Corollary 8.2 are satisfied on the circle C2 (0). The function f has a
zero of order 4 at the origin, so g must have four zeros inside D2 (0).

 EXAMPLE 8.27 Show that the polynomial g (z) = z4 −7z −1 has one zero
in the disk D1 (0).

Solution Let f (z) = 7z + 1, then f (z) + g (z) = z4. At points on the circle C1
(0) = {z : | z| = 1} we have the relation

The function f has one zero at the point −  in the disk D1 (0), and the



hypotheses of Corollary 8.2 hold on the circle C1 (0). Therefore, g has one
zero inside D1 (0).

EXERCISES FOR SECTION 8.7
1. Let f (z) = z5 − z. Find the number of times the image f (C) winds around

the origin if

(a) C =  (0).
(b) C is the rectangle with vertices ±  ± 3i.
(c) C = C2 (0).

(d) C = C  .

2. Show that four of the five roots of the equation z5 + 15z + 1 = 0 belong to
the annulus 

3. Let g (z) = z5 + 4z − 15.

(a) Show that there are no zeros in D1 (0).

(b) Show that there are five zeros in D 2 (0). Hint: Consider f (z) = −z5.
Remark: A factorization of the polynomial using numerical
approximations for the coefficients is

(z − 1.546) (z2 − 1.340z + 2.857J (z + 2.885z + 3.397).

4. Let g (z) = z3 + 9z + 27.

(a) Show that there are no zeros in D2 (0).

(b) Show that there are three zeros in D4 (0).
Remark: A factorization of the polynomial using numerical
approximations for the coefficients is
(z + 2.047) (z − 2.047z + 13.19).

5. Let g (z) = z5 + 6z2 +2z +1.

(a) Show that there are two zeros in D1 (0).

(b) Show that there are five zeros in D2 (0).



6. Let g (z) = z6 − 5z4 + 10.

(a) Show that there are no zeros in | z| < 1.
(b) Show that there are four zeros in | z| < 2.
(c) Show that there are six zeros in | z| < 3.

7. Let g (z) = 3z3 − 2iz2 + iz − 7.

(a) Show that there are no zeros in | z| < 1.
(b) Show that there are three zeros in | z| < 2.

8. Use Rouché’s theorem to prove the fundamental theorem of algebra.
Hint: For the polynomial  Show
that, for points z on the circle CR (0),

and conclude that the right side of this inequality is less then 1 when R is
large

9. Suppose that h(z) is analytic and nonzero and | h (z)| < 1 for z ∈ D1 (0).
Prove that the function g (z) = h (z) − zn has n zeros inside the unit circle
C1 (0).

10. Suppose that f (z) is analytic inside and on the simple closed contour C. If
f (z) is a one-to-one function at points z on C, then prove that f (z) is one-
to-one inside C. Hint: Consider the image of C.



chapter 9
z-transforms and applications

Overview
The z-transform is useful for the manipulation of discrete data sequences and
has acquired a new significance in the formulation and analysis of discrete-
time systems. It is used extensively today in the areas of applied
mathematics, digital signal processing, control theory, population science,
and economics. These discrete models are solved with difference equations in
a manner that is analogous to solving continuous models with differential
equations. The role played by the z-transform in the solution of difference
equations corresponds to that played by the Laplace transforms in the
solution of differential equations.

9.1 The z-transform

The function notation for sequences is used in the study and application of z-
transforms. Consider a function x[t] defined for t ≥ 0 that is sampled at times t
= T, T, 2T, 3T,…, where T is the sampling period (or rate). We can write the
sample as a sequence using the notation {xn = x[nT]}∞

n=0. Without loss of
generality we will set T = 1 and consider real sequences such as {xn = x[n]}
∞

n=0. The definition of the z-transform involves an infinite series of the
reciprocals z−n.

Definition 9.1: z-transform Given the sequence {xn = x[n]}∞
n=0 the z-



transform is defined as follows:

which is a series involving powers of .

Remark 9.1

The z-transform is defined at points z ∈  where the Laurent series (9-1)
converges. The z-transform region of convergence (ROC) for the Laurent
series is chosen to be

| z| ≥ R,

where

R = 

Remark 9.2

The sequence notation {xn}∞
n=0 is used in mathematics to study difference

equations, and the function notation {x[n]}∞
n=0 is used by engineers for

signal processing. It’s a good idea to know both notations.

Remark 9.3

In the applications, the sequence {xn = x[n]}∞
n=0 will be used for inputs and

the sequence {yn = y[n]}∞
n=0 will be used for outputs. We will also use the

notations

[xn]= [x[n]]=X(z),

and

[yn] = [y[n]] = Y(z).



 Theorem 9.1 (Inverse z-transform) Let X(z) be the z-transform of
the sequence {xn = x[n]}∞

n=0 defined in the region R < |z|. Then xn is
given by the formula

where C is any positively oriented simple closed curve that lies in the
region R < |z| and winds around the origin.

Proof The z-transform is X(z) = [{xn}∞
n=0] = . Multiplying

through by zn−1, we obtain

or simply

Therefore

Integrating term-by-term we obtain



Therefore

9.1.1 Admissible Form of a z-transform
Formulas for X(z) do not arise in a vacuum. In an introductory course they are
expressed as linear combinations of z-transforms corresponding to
elementary functions such as S = {δ[n], u[n], nm, bn, nbn, ean, bncos(an),
bnsin(an),…}. In Table 9.1, we will see that the z-transform of each function
in S is a rational function of the complex variable z. It can be shown that a
linear combination of rational functions is a rational function. Therefore, for
the examples and applications considered in this book we can restrict the z-
transforms to be rational functions. This restriction is emphasized in the
following definition.

Definition 9.2: (Admissible z-transform)
Given the z-transform X (z) = Σ∞

n=0 x[n]z–n we say that X (z) is an
admissible z-transform, provided that it is a rational function; that is

where P (z) and Q (z) are polynomials of degree p and q, respectively.

From our knowledge of rational functions, we see that an admissible z-
transform is defined everywhere in the complex plane except at a finite
number of isolated singularities that are poles and occur at the points where Q
(z) = 0. The Laurent series expansion in (9-1) can be obtained by a partial
fraction manipulation and followed by geometric series expansions in powers
of . However, the important feature of formula (9-3) is the calculation of the
inverse z-transform via residues. For convenience we restate this concept.



 Theorem 9.2 (Cauchy’s Residue Theorem) Let D be a simply
connected domain, and let C be a simple closed positively oriented
contour that lies in D. If f (z) is analytic inside C and on C, except at
the points z1, z2,…, zk that lie inside C, then

 Corollary 9.1 (Inverse z-transform) Let X (z) be the z-transform of the
sequence {xn}. Then by Theorems 9.1 and 9.2 xn is given by the formula

where z1, z2,…, zk are the poles of f(z)= X(z)zn–1.

 Corollary 9.2 (Inverse z-transform) Let X (z) be the z-transform of the
sequence. If X (z) has simple poles at the points z1, z2,…, zk then xn is given
by the formula

 EXAMPLE 9.1 Find the z-transform of the unit pulse or impulse sequence

Solution This follows trivially from Equation (9-1) X(z) =  = 



 EXAMPLE 9.2 The z-transform of the unit-step sequence

Solution From Equation (9-1) X (z) = Σ∞
n = 0 xnz–n = Σ∞

n = 0 z–n = 

 EXAMPLE 9.3 The z-transform of the sequence xn = bn is X(z) = 

Solution From the definition X (z) = Σ∞
n = 0 xnz–n = Σ∞

n = 0 bnz–n = 

 EXAMPLE 9.4 The z-transform of the exponential sequence xn = ean is 

Solution From the definition X (z) = Σ∞
n = 0 xnz–n = Σ∞

n = 0 eanz–n = 

9.1.2 Properties of the z-transform
Given that [xn] = [x[n]] = X (z) and [yn] = [y[n]] = Y (z):

  (i) Linearity. [c1xn + c2yn] = [c1x[n] + c2y[n]] = c1X (z) + c2Y (z).

 (ii) Delay Shift. [x[n - N]u[n − N]] = X (z)z–N.

(iii) Advance Shift. [x[n + N]] = zN (X (z) − x[0] − x[1]z–1 − x[2]z–2 −
…x[N − 1]z–N+1), or

[xn+N] = zN (X (z) − x0 − x1z–1 − x2z–2 −…− xN−1z–N+1).

(iv) Multiplication by n. [nxn] = [nx[n]] = –z X (z).



 EXAMPLE 9.5

(a) The z-transform of the sequence xn = cos(an) is given by X (z) = 

(b) The z-transform of the sequence xn = sin(an) is given by X (z) = 

Solution

The solution to part (b) is left as an exercise.

Remark 9.4

When using the residue theorem to compute inverse z-transforms, the
complex form is preferred; i.e.,

and

9.1.3 Table of z-transforms
We list the following table of z-transforms. This table can also be used to find



the inverse z-transform.

Table 9.1 z-transforms of some common sequences.

 Theorem 9.3 (Residues at Poles)
  (i) If f (z) has a simple pole at z0, then the residue is Res[f (z), z0] =

limz→z0(z − z0)f (z).

 (ii) If f(z) has a pole of order 2 at z0, then the residue is Res[f(z), z0] =
limz→z0  ((z − z0)2 f(z)).

(iii) If f(z) has a pole of order 3 at z0, then the residue is Res[f(z), z0]
=  ((z − z0)3 f(z)).

 EXAMPLE 9.6 Find the inverse z-transform xn = x[n] = 
Use (a) series, (b) the table of z-transforms, and (c) residues.



Solution

(a) Method of series.

Expand X(z) =  in a series involving powers of 

The sequence of coefficients in the Laurent series is what
we desire, and we see that

(b) Writing X(z) =  we identify b = ½ and use line 3 in Table 9.1 to
obtain

(c) Writing X(z) =  we see that X(z) has a simple pole at z0 = ½. Using
Corollary 9.1 for finding the inverse z-transform we obtain

Using the function f (z) = X (z)zn–1 and value z0 = ½ in
Corollary 9.2 we get

The following two theorems about z-transforms are useful in finding the
solution to a difference equation.

 Theorem 9.4 (Shifted Sequences and Initial Conditions) Define



the sequence {x[n] = xn}∞
n=0 and let X(z) = Z[x[n]] = Z[xn] = Σ∞

n = 0
xnz–n be its z-transform. Then

(i) [x [n + 1]] = [ xn+1] = z(X(z) − x0),

(ii) [x [n + 2]] = [xn+2] = z2 (X(z) − x0 − x1z–1), and

(iii) [x [n + 3]] = [xn+3] = z3 (X(z) − x0 − x1z–1 − x2z–2).

 Theorem 9.5 (Convolution) Let {xn}∞
n=0 and {yn}∞

n = 0 be
sequences, with z-transforms X(z) and Y(z), respectively. Then

where the operation xn * yn is defined as the convolution sum 

Proof We have X(z) = Σ∞
n = 0 xnz–n,Y(z) = Σn = 0 ynz–n, which can be

written as polynomials in the variable Z = z–n. We can use the Cauchy
product of two power series to write

Equating coefficients, the z-transform of Σn
i = 0 xiyn−i is given by

9.1.4 Properties of the z-transform
The properties of z-transforms listed in Table 9.2 are well known in the field



of digital signal analysis. The reader will be asked to prove some of these
properties in the exercises.

 EXAMPLE 9.7 Use convolution to show that the z-transform of w[n] =
n+1 is W(z) = 

Solution Let both xn = 1 and yn = 1 be the unit step sequence, and X(z) = Y(z)
=  Then W(z) = X(z)Y(z) =  so that wn is given by the convoluation

9.1.5 Application to Signal Processing
Digital signal processing often involves the design of finite impulse response
(FIR) filters. A simple 3-point FIR filter can be described as

Here, we choose real coefficients a and b so that the homogeneous difference
equation

has solutions x[n] = cos(ωπn) and x[n] = sin(ωπn). That is, ifthe linear
combination x[n] = c1 cos(ωπn) + c2 sin(ωπn) is input on the right side of the
FIR filter equation, the output y[n] on the left side of the equation will be
zero.



Table 9.2 Some properties of the z-transform.

Applying the time delay properties to the z-transforms of each term in (9-
4), we obtain X(z) + aX(z)z–1 + bX(z)z–2 = Y(z). Factoring, we get represents
the filter transfer function. Now, in order for the filter to suppress the inputs
cos(ωπn) and sin(ωπn), the zeros of H(z) must cancel the poles of the inputs,
namely eiωπ and e–iωπ. Therefore, we must have

and an easy calculation reveals that

and

b = eiωπ e–iωπ = 1.

A complete discussion of this process is given in Section 9.3.



 EXAMPLE 9.8 (FIR filter design) Use residues to find the inverse z-
transform x[n] of X (z) = 

Then write down the FIR filter equation that suppresses x[n].

Solution Writing X (z) =  we see that X (z) has simple poles at
z1 =  and z2 = , respectively. Using Corollaries 9.1 and 9.2 we obtain

The residue at the pole z2 =  is computed similarly.

Therefore, the sequence x[n] = Z−1[X (z)] is

The following complex calculation can be used to find the coefficients of
the FIR filter equation



Hence the FIR filter equation is y[n] = K(x[n] − √2x[n − 1] + x[n − 2]), where
K is a constant (or gain factor).

Remark 9.5 We leave it as an exercise to substitute x[n] = cos( ) and x[n] =
sin( ) into the right-hand side and verify that the output y[n] becomes
identically zero.

9.1.6 First-Order Difference Equations
The solution of difference equations is analogous to the solution of
differential equations. Consider the first-order homogeneous equation

y[n + 1] − ay[n] = 0

where a is a constant. The following method is often used.

Trial solution method

Use the trial solution y[n] = c1rn, and substitute it into the preceding equation
to get c1rn+1 − ac1rn = 0. Then divide through by rn and simplify to obtain r
= a. The general solution to the difference equation is

y[n] = c1an.

Familiar models of difference equations are given in Table 9.3.

9.1.7 Methods for SolvingFirst-Order Difference
Equations



Consider the first-order linear constant coefficient difference equation
(LCCDE):

y[n + 1] − ay[n] = x[n] with the initial condition y[0] = y0.

Difference Equation Model Solution
Exponential growth or decay  
y[n + 1] = (1 + r)y[n] y[n] = y0(1 + r)n

Newton's law of cooling  

y[n + 1] = aL + (1 − a)y[n]
y[n] = y0(1 − a)n + L(1 − (1 −
a)n)

Repeated dosage drug level  
y[n + 1] = ay[n] + b y[n] = y0an + 

Value of an annuity due  
y[n + 1] = (1 + r)(y[n] + P) where y[0] =
0 y[n] = 

Table 9.3 Some examples of first-order linear difference equations.
 

Trial solution method

First, solve the homogeneous equation yh[n+1]−ayh[n] = 0 and get yh[n] =
c1an. Then use a trial solution that is appropriate for the sequence x[n] on the
right side of the equation and solve to obtain a particular solution yp[n]. Then
the general solution is

y[n] = yh[n] + yp[n].

The shortcoming of this method is that an extensive list of appropriate trial
solutions must be available. (Details can be found in difference equations
textbooks.) We will emphasize techniques that use the z-transform.

z-transform method



(i) Use the time forward property [y[n + 1]] = z (Y (z) − y0). Take the z-
transform of each term and get

z (Y (z) - y0) - aY (z) = X (z).

(ii) Solve the equation in (i) for Y (z).

(iii) Use partial fractions to expand Y (z) in a sum of terms and look up the
inverse z-transform(s), using Table 9.1, to get

y[n] = –1[Y (z)].

Residue method

Perform steps (i) and (ii) of the above z-transform method. Then find the
solution using the formula in step (iii)

where z1, z2,…, zk are the poles of f(z) = Y(z)zn–1.

Convolution method

(i) Solve the homogeneous equation yh[n + 1] − a yh[n] = 0 and get yh[n] =
c1an.

(ii) Use the transfer function H(z) =  and construct the unit-sample
response h[n] = –1 [H(z)] = an.

(iii) Construct the particular solution yp[n] = –1[X(z)H(z)] in convolution
form yp[n] = Σn

i=0 x[n − i]h[i] = Σn
i = 0 x[n − i]a.

(iv) The general solution to the nonhomogeneous difference equation is

(v) The constant c1 = y0 − x[0] will produce the proper initial condition y[0]



= y0. Therefore

Remark 9.6

The particular solution yp[n] obtained by using convolution has the initial
condition yp[0] = Σ0

i=0 x[0 − i]h[i] = x[0]h[0] = x[0].

 EXAMPLE 9.9 Solve the difference equation y[n+1] − 2y[n] = 3n with
initial condition y[0] = 2.

(a) Use the z-transform and Tables 9.1 and 9.2 to find the solution.

(b) Use residues to find the solution.

Solution

(a) Take the z-transform of both sides

Solve for Y(z) and get Y (z) =  Then expand and
obtain

Find the inverse z-transform of each term:

When n = 0 we get y[0] = 2 + 0 + 0 = 2, and when n ≥ 1
the expression for y[n] simplifies to be

y[n] = 2n + 3n.



(b) Start with the formula Y (z) =  in part (a). Then use Corollaries
9.1 and 9.2 and residues to find –1[Y (z)].

 EXAMPLE 9.10 Solve the difference equation y[n+1]−2y[n] = n with
initial condition y[0] = 1.

(a) Use the z-transform and Tables 9.1 and 9.2 to find the solution.

(b) Use residues to find the solution.

Solution

(a) Take the z-transform of both sides

Solve for Y(z) and get Y(z) =  Then expand and
obtain

Find the inverse z-transform of each term

When n = 0 we get y[0] = 1 + 0 + 0 + 0 = 1, and when n



≥ 1 the expression for y[n] simplifies to be

(b) Start with the formula Y (z) =  in part (a). Then use Corollaries
9.1 and 9.2 and residues to find Z−1[Y (z)].

 EXAMPLE 9.11 Given the repeated dosage drug level model y[n + 1] =
ay[n] + b with the initial condition y[0] = y0:

(a) Use the trial solution method.

(b) Use z-transforms to find the solution.

(c) Use residues to find the solution.

(d) Use convolution to find the solution.

Solution

(a) The first step is to solve the equation yh[n + 1] - ayh[n] = 0. The trial
solution is yh[n] = rn, and substitution produces rn+1 − arn = 0, from
which we obtain the characteristic equation r − a = 0. The root is r = a
and the homogeneous solution is

yh[n] = c1an.



The second step is to find a particular solution to the
nonhomogeneous equation

yp[n + 1] − ayp[n] = b.

Since the right-hand side is a constant we try yp[n] = c,
and substitution produces c − ac = b. Hence c =  The
general solution is

Then y[0] = c1a0 +  = y0 can be solved for c1 =  +
y0. Substituting this in the previous expression for y[n]
yields

(b) Start with the difference equation y[n + 1] = ay[n] + b. Take the z-
transform of both sides

Solve for Y (z) and get Y (z) =  Then expand and
obtain

Find the inverse z-transform of each term



When n = 0 we get y[0] = y0(a0) + 0 − 0 = y0, and when
n ≥ 1 the expression for y[n] simplifies to be

(c) Start with the formula for the z-transform that we found in part (b): Y (z)
=  Then use Corollaries 9.1 and 9.2 and residues to find –1[Y
(z)].

(d) The solution to the equation yh[n + 1] − ayh[n] = 0 is yh[n] = c1an.

The transfer function is H (z) =  and the unit-sample
response is h[n] = −1[H (z)] = an.
The input sequence is x[n] = b and its z-transform is X(z)
= 

The particular solution is calculated with the formula yp[n] = −1[X (z)H (z)]
as follows:



which can be simplified to obtain

In convolution form yp[n] = x[n] * h[n] = Σni = 0x[n −
i]h [i], and we have

The particular solution yp[n] obtained by using

convolution has the initial condition yp[0] Σ0i = 0x[0 −
i]h [i] = x[0]h[0] = x[0] = b. The total solution to the
nonhomogeneous difference equation is

Now we compute y0 = y[0] = c1a0 +  = c1 + b and solve or the
constant c1 = y0 − b, which will produce the proper initial condition.
Therefore

which can be manipulated to yield y[n] = y0an + .
An illustration of the dosage model using the parameters a = , b = 1 and

initial condition y0 = 0 is shown in Figure 9.1.



Figure 9.1 The solution to y[n + 1] = y[n] + 1 with y0 = 0.

EXERCISES FOR SECTION 9.1
1. Use the definition of the z-transform to find X(z) = [xn] = [x[n]].

(a) For the sequence xn = x[n] = .

(b) For the sequence xn = x[n] = ean.

(c) For the sequence xn = x[n] = n.

2. Use [eian] =  and [e–ian] =  to prove that [sin(an)] = .

3. Show that the z-transform of the delayed unit-step sequence

is 
4. Find and simplify over a common denominator the following z-

transforms.

(a) X(z) = [2n + 4n]

(b) X(z) = [3n + 3]



(c) X(z) = [2n + 2n]

5. Show that  and supply all the details.

6. Show that the convolution sequences xn = 1 and yn = n is wn = xn * yn = 
, and that [wn] = [xn] [yn].

7. Prove the following properties of z-transforms.

(a) Linearity: [cxn + dyn] = cX(z) + dY(z).

(b) Time delay 1 tap: [xn−1u[n − 1]] = z–1 X(z).

(c) Time forward 1 tap: [xn+1] = z(X(z) − xo).

(d) Differentiation: [nxn] = –zX′ (z).

8. Find x[n] = –1[X (z)] using two methods: (i) partial fractions and Table
9.1, and (ii) using residues.

(a) 

(b) 

(c) 

9. Find x[n] = –1[X (z)] using two methods: (i) partial fractions and Table
9.1, and (ii) using residues.

(a) 

(b)  

Hint: Show that 

(c) 



Hint: Show that 

Hint: Show that 
10. Use direct substitution and trigonometric identities to show the following:

(a) y[n] = x[n] + x[n − 2] will filter out the sequences x[n] = cos( ) and
x[n] = sin( ), and

(b) y[n] = x[n] − √2x[n − 1] + x[n − 2] will filter out the sequences x[n] =
cos( ) and x[n] = sin( ).

11. Solve the difference equation y[n+1] = ay[n]+b with the initial condition
y[0] = y0. Use recursion (and mathematical induction) to find the solution.
That is, compute y[1] = y0a + b, y[2] = y0a2 + (1 + a)b, y[3] = y0a3 + (1 +
a + a2)b, then find the general term.

12. Solve the exponential growth model y[n + 1] = (1 + r)y[n] using the
parameter r =  and initial condition y[0] = 100.

(a) Use the z-transform and Tables 9.1–9.3 to find the solution.

(b) Use residues to find the solution.

13. In the exponential growth model y[n + 1] = (1 + r)y[n] use the parameter r
= –½ and initial condition y[0] = 1000.

(a) Use the z-transform and Tables 9.1–9.3 to find the solution.

(b) Use residues to find the solution.

14. Solve the difference equation y[n + 1] − 3y[n] = 4n with initial condition
y[0] = 2.



(a) Use the z-transform and Tables 9.1–9.3 to find the solution.

(b) Use residues to find the solution.

15. Solve the difference equation y[n + 1] − 3y[n] = 4n with initial condition
y[0] = 1.

(a) Use the z-transform and Tables 9.1–9.3 to find the solution.

(b) Use residues to find the solution.

16. In the Newton law of heating and cooling model y[n + 1] = aL + (1 −
a)y[n], use the parameters a = , L = 100 and initial condition y[0] = 10.

(a) Use the z-transform and Tables 9.1–9.3 to find the solution.

(b) Use residues to find the solution.

17. In the Newton law of heating and cooling model y[n + 1] = aL + (1 -
a)y[n], use the parameters a = , L = 100 and initial condition y[0] = 200.

(a) Use the z-transform and Tables 9.1–9.3 to find the solution.

(b) Use residues to find the solution.

18. In the value of an annuity due model y[n+1] = (1+r)(y[n]+P) use the
parameters r = , P = 1000.

(a) Use the z-transform and Tables 9.1–9.3 to find the solution.

(b) Use residues to find the solution.

19. Consider the system of difference equations x[n + 1] - y[n] = 0 and y[n +
1] + x[n] = 0 with the initial conditions x[0] = 1, and y[0] = 0.

(a) Use trigonometric identities to verify that the solution is x[n] = cos( )
and y[n] = −sin( ).



(b) Use z-transforms and construct the solution in part (a).

20. Consider the system of difference equations

with the initial conditions x[0] = 1, and y[0] = 0.

(a) Use trigonometric identities to verify that the solution is x[n] = cos( )
and y[n] = sin( ).

(b) Use z-transforms and residues to construct the solution in part (a).

9.2 Difference Equations

Before proceeding with the z-transform method, we mention a heuristic
method based on substitution of a trial solution. Consider the second-order
homogeneous linear constant-coefficient difference equation (HLCCDE)

where a and b are constants. Using the trial solution y[n] = rn, direct
substitution into (9-8) produces the equation rn+2 − 2arn+1 + brn = 0.
Dividing through by rn produces the characteristic polynomial r2 − 2ar+b
and characteristic equation

There are three types of solutions to (9-8), which are determined by the
nature of the roots in (9-9).

Case (i) If b < a2, then we have real distinct roots r1 = a −  and r2 = a +
, and

Case (ii) If b = a2, then we have a double real root r = r1 = r2 = a, and



Case (iii) If b > a2, then we have two complex roots r1 = a −  and r2 =
a + , and

The solution for case (iii) can also be written as the following linear
combination:

where r = √b and ø = arctan .

Caution. Be sure to use the value of arctan that lies in the range 0 < ø ≤ π.

9.2.1 Remark About Stability
Stability depends on the location of the roots of the characteristic polynomial.
Without loss of generality if | r1| ≤ | r2| < 1, then both roots lie inside the unit
circle and the solutions are asymptotically stable and tend to zero as n → ∞.
If r1 ≠ r2 and | r1| ≤ | r2| = 1, then a root lies on the unit circle and the
solutions are stable. If r1 = r2 = ±1, then there is an unstable solution. Finally
if 1 < | r2|, then at least one root lies outside the unit circle and there is an
unstable solution.

 EXAMPLE 9.12 Solve y[n + 2] − 4y[n+1]+3y[n] = 0 with y[0] = y0 = 1
and y[1] = y1 = 5.

Solution The characteristic equation r2 − 4r + 3 = (r − 1)(r − 3) =0 has roots
r1 = 1 and r2 = 3, hence the general solution is y[n] = c1 + c23n. Use the
initial conditions and form the linear system

y[0] = c1 + c2 · 1 = 1 and y[1] = c1 + c2 · 3 = 5,



then solve for the constants and get c1 = –1, c2 = 2. Hence the solution is

y[n] = – 1 + 2 · 3n.

 EXAMPLE 9.13 Solve y[n + 2] − 4y[n+1]+4y[n] = 0 with y[0] = y0 = 1
and y[1] = y1 = 5.

Solution The characteristic equation r2 − 4r + 4 = (r − 2)2 = 0 has equal roots
r = r1 = r2 = 2, hence the general solution is y[n] = c12n + c2n 2n. Use the
initial conditions and form the linear system

y[0] = c1 + c2 · 0 = 1 and y[1] = c1 · 2 + c2 · 2 = 5,

then solve for the constants and get c1 = 1 and c2 = 2. Hence the solution is

y[n] = 2n + n 2n = 2n +3n · 2n−1.

 EXAMPLE 9.14 Solve y[n + 2] − 4y[n+1]+5y[n] = 0 with y[0] = y0 = 1
and y[1] = y1 = 5.

Solution The characteristic equation r2 − 4r + 5 = (r − 2 + i)(r − 2 − i) = 0
has complex roots r1 = 2 + i and r2 = 2 − i, hence the general solution is

y[n] = c1(2 + i)n + c2(2 − i)n. Use the initial conditions and form the linear
system

y[0] = c1 + c2 = 1 and y[1] = c1(2 + i) + c2(2 − i) = 5

then solve for the constants and get c1 =  and c2 = . Hence the solution



We leave it for the reader to verify that this can be written as

y[n] =  cos(arctan(½)n) + 3 ·  sin(arctan(½)n).

9.2.2 Higher-Order Difference Equations
The general form of a Pth-order linear constant coefficient difference
equation (LCCDE) is

where {ap}P
p=1 and {bq}Q

q=0. The sequence {xn = x[n]}∞
n=0 is given and

the sequence {yn = y[n]}∞
n=0 is output. The integer P is the order of the

difference equation. The compact form of writing this difference equation is

The formula in (9-15) can be expressed in a recursive form:

This form of the LCCDE explicitly shows that the present output y[n] is a
function of the past output values y[n − p], for p = 1, 2,…, P; the present
input x[n]; and the previous inputs x[n − q] for q = 1, 2,…, Q.

Now we would like to emphasize the method of z-transforms for solving
difference equations. Applying the linearity and time delay shift property of
the z-transform to equation (9-15), we obtain

This can be rearranged as  and then solved for
the quotient H(z) = . The sequence h [n] = –1 [H(z)] can be used to
construct a particular solution to (9-14), i.e., yp[n] = –1 [H(z)X(z)] = h[n] *



x[n]. This solution can be expressed using the convolution sum as follows:

Remark 9.7

This particular solution does not involve initial conditions for (9-14). We will
illustrate how to use convolution at the end of this section.

9.2.3 Difference Equations with Initial Conditions
Often a difference equation involves only one input on the right-hand side of
(9-14) and we write

then we could shift the index and use the form

Consider the first-order linear constant coefficient difference equation
(LCCDE)

with the initial conditions y[0] = y0 and y[1] = y1 (and implicitly we have x[0]
= x0 and x[1] = x1).

Step (i) Using the time forward properties

[y[n + 1]] = z (Y (z) − y0),

[y[n + 2]] = z2(Y (z) − y0 − y1z–1), and

[x[n + 2]] = z2(X (z) − x0 − x1z–1),

take the z-transform of each term and get the equation



Step (ii) Solve Equation (9-20) for Y(z).

Step (iii) Use partial fractions to expand Y(z) in a sum of terms, and look up
the inverse z-transform(s) using Table 9.1, to get the solution

y[n] = –1 [Y (z)].

Step (iv) Alternative calculation using residues. Perform steps (i) and (ii),
then find y[n] using residues

where z1, z2,…, zk are the poles of f(z) = Y(z)zn–1.

Remark 9.8

The function f(z) = Y(z)zn–1 has real coefficients. Hence, if zj and  are poles,
then we can use the computational fact:

We now show how to obtain answers to Examples 9.12–9.14 using z-
transform methods.

 EXAMPLE 9.15

(a) Use z-transform methods to solve y[n+2]−4y[n+1]+3y[n] = 0 with y[0] =
y0 = 1 and y[1] = y1 = 5.

(b) Use z-transform methods to solve y[n + 2] − 4y[n + 1] + 3y[n] = 2n+2

with y[0] = y0 = 1 and y[1] = y1 = 3.

Solution



(a) Take the z-transforms of each term

Solve for Y (z) and get Y (z) = 
Calculate the residues for f(z) = Y (z)zn–1 =  at
the poles

Thus the solution is

which agrees with the result of Example 9.12.
(b) Take the z-transforms of each term

Solve for Y (z) and get Y (z) = 
Calculate the residues for f(z) = Y (z)zn–1 =  at
the poles

Thus the solution is

 EXAMPLE 9.16



(a) Use z-transform methods to solve y[n+2]−4y[n+1]+4y[n] = 0 with y[0] =
y0 = 1 and y[1] = y1 = 5.

(b) Use z-transform methods to solve y[n + 2] − 4y[n + 1] + 4y[n] = 3n with
y[0] = y0 = 2 and y[1] = y1 = 3.

Solution
(a) Take the z-transforms of each term

Solve for Y (z) and get Y (z) = 
Calculate the residues for f(z) = Y (z)zn–1 =  at the
poles

Thus the solution is

y[n] = 2n + 3n2n–1,
which agrees with the result of Example 9.13.

(b) Take the z-transforms of each term

Solve for Y (z) and get Y (z) = 
Calculate the residues for f(z) = Y (z)zn–1 =  at
the poles



Thus the solution is
y[n] = 2n − n2n + 3n.

 EXAMPLE 9.17

(a) Use z-transform methods to solve y[n+2]−4y[n+1]+5y[n] = 0 with y[0] =
y0 = 1 and y[1] = y1 = 5.

(b) Use z-transform methods to solve y[n + 2] − 4y[n + 1] + 5y[n] = (1 − i)n

with y[0] = 1 and y[1] = y1 = 0.

Solution

(a) Take the z-transform of each term

Solve for Y (z) and get Y (z) = 
Calculate the residues for f(z) = Y (z)zn–1 =  at
the poles

Therefore, the solution is



which agrees with the result of Example 9.14.

Remark 9.9

Observe that Res[f (z), 2 − i] = .

(b) Take the z-transform of each term

Solve for Y (z) and get Y (z) = 
Calculate the residues of f(z) = Y (z)zn–1 = 

 at the poles

Therefore, the solution is

y[n] = Res[f (z), 1 + i] + Res[f (z), 1 − i] + Res[f (z), 2 +
i] + Res[f (z), 2 − i]



y[n] = ((2 + 4i)(1 + i)n + (2 − 4i)(1 - i)n + (3 + 4i)(2 +
i)n + (3 − 4i)(2 − i)n).

 

Remark 9.10

Observe that Res[f (z), 1 − i] = Res[f (z), ] =  and Res[f (z), 2
− i] = Res[f (z), ] = .

 EXAMPLE 9.18 Solve y[n+ 3] + y[n+ 2] + y[n+ 1] + y[n] = 0 with y[0] =
2, y[1] = −2, and y[2] = 0.

Solution Take the z-transforms of each term

z3(Y (z) − 2 + 2z–1 − 0z–2) + z2(Y (z) − 2 + 2z–1) + z (Y (z) − 2) + Y (z) = 0.

Solve for Y (z) and get Y (z) = 

Calculate the residues for f(z) = Y (z)zn–1 =  at the poles

Thus the solution is

which can be rewritten as



 EXAMPLE 9.19 Solve y[n + 2] − √2y[n + 1] + y[n] = 0 with y[0] = 2 and
y[1] = √ 2.

Solution Take the z-transforms of each term and get

z (Y(z) − 2 − √2z–1) − √2(z(Y(z) − 2)) + (Y (z)) = 0.

Solve for Y(z) and get Y(z) = 
Calculate the residues for f(z) = Y(z)zn–1 at the poles  and 

Similarly,  Therefore, the solution is

which can be written as

Remark 9.11

The solution can also be obtained by applying the z-transform identity with a
=  that was given in Example 9.5 of Section 9.1 to get



then we have

9.2.4 Convolution for Solvinga Nonhomogeneous
Equation
(i) Solve the homogeneous equation yh [n +2] − 2ayh [n +1]+ byh [n] = 0

and get yh[n].

(ii) Use the transfer function H(z) =  and the unit-sample response
h[n].

(iii) Construct the particular solution using convolution

(iv) The general solution to the nonhomogeneous difference equation is y
[n] = yh [n] + yp [n].

 EXAMPLE 9.20

(a) Find the general solution to 

(b) Find the general solution to 

Solution

(a) The homogeneous difference equation has the form (9-8) with a =  and
b =  and b > a2 so that the solutions are complex and have the form

yh[n] = c1rn cos(øn) + c2rn sin(øn),

where
 and



Hence, the general homogeneous solution is

and is illustrated in Figure 9.2.

Figure 9.2 A typical solution to y[n + 2] −  √2y[n + 1] + y[n] = 0.

Remark 9.12

The homogeneous solution is transient and will decay to 0 as n → ∞ i.e., limn

→ ∞ yh[n] = 0.

Solution

(b) The formula H(z) =  is the transfer function.
Using the z-transform

and the fact that H(z) = , we can write the z-transform
Y (z) using convolution



Calculate the residues for f(z) = Y(z)zn–1 at the poles.
The residue calculus can again be used to find the
solution, but the details are tedious. Let us announce that
the following computations hold true:

which is part of the homogeneous solution. The steady
state or particular part of the solution is

Therefore, the general solution to part (b) is

and is illustrated in Figure 9.3.

For applications, it is useful to determine the limiting amplitude of y[n].
We need to simplify yp[n] in a form that displays its amplitude, and to do this
we apply to the trigonometric identity (also known as the harmonic addition
theorem) acos(θ) + b sin(θ) =  cos(θ + arctan(– )). Therefore, the
steady state solution is



Figure 9.3 A typical solution to y[n + 2] −  √2y[n + 1] + y[n] = cos( ).

Figure 9.3 illustrates that the output signal y[n] tends to this limit as n→∞
i.e.,

Loosely speaking, for large values of n, the values of the input signal x[n] =
cos( ) are amplified by the factor  = 2.49615 to produce the values of the
output signal y[n].

EXERCISES FOR SECTION 9.2
1. Solve the homogeneous difference equations.

(a) y[2 + n] − 6y[1 + n] + 8y[n] = 0 with y[0] = 3, y[1] = 4.

Hint: Get Y (z) = 
(b) y[2 + n] − 6y[1 + n] + 9y[n] = 0 with y[0] = 2, y[1] = 3.

Hint: Get Y (z) = 
(c) y[2 + n] − 6y[1 + n] + 10y[n] = 0 with y[0] = 2, y[1] = 4.

Hint: Get Y (z) = 
2. (a) Solve y[n + 2] + y[n] = 0 with y[0] = 1 and y[1] = 0.



Hint: Get Y (z) = 
(b) Solve y[n + 2] + y[n] = 0 with y[0] = 0 and y[1] = 1.

Hint: Get Y (z) = 
3. Solve the homogeneous difference equations.

(a) y[n + 2] √2y[n + 1] + y[n] = 0 with y[0] = 2 and y[1] = √2.

Hint: Get Y (z) = 
(b) y[n + 2] − √2y[n + 1] + y[n] = 0 with y[0] = 0 and y[1] = √2.

Hint: Get Y (z) = 
4. Solve the homogeneous difference equations.

(a) y[2 + n] − 8y[1 + n] + 15y[n] = 0 with y[0] = 2, y[1] = 4.

Hint: Get Y (z) = 
(b) y[2 + n] − 8y[1 + n] + 16y[n] = 0 with y[0] = 1, y[1] = 3

Hint: Get Y (z) = 
(c) y[2 + n] − 8y[1 + n] + 17y[n] = 0 with y[0] = 2, y[1] = 4.

Hint: Get Y (z) = 
5. (a) Fibonacci numbers. Solve y[n + 2] − y[n + 1] - y[n] = 0 with y[0] = 0,

y[1] = 1.

Hint: Get Y (z) = 
(b) Lucas numbers. Solve y[n + 2] - y[n + 1] - y[n] = 0 with y[0] = 2, y[1]

= 1.
Hint: Get Y (z) = 

6. Solve the nonhomogeneous difference equations.

(a) y[2 + n] − 6y[1 + n] + 8y[n] = 3n with y[0] = 1, y[1] = 3.

Hint: Get Y (z) = 
(b) y[2 + n] − 6y[1 + n] + 9y[n] = 2n with y[0] = 2, y[1] = 1.

Hint: Get Y (z) = 



(c) y[2 + n] − 6y[1 + n] + 10y[n] = 2n+1 with y[0] = 1, y[1] = 4.

Hint: Get Y (z) = 
7. Solve the nonhomogeneous difference equations.

(a) y[2 + n] − 8y[1 + n] + 15y[n] = 4n with y[0] = 1, y[1] = 4.

Hint: Get Y (z) = 
(b) y[2 + n] − 8y[1 + n] + 16y[n] = 5n with y[0] = 2, y[1] = 1.

Hint: Get Y (z) = 
(c) y[2 + n] − 8y[1 + n] + 17y[n] = 2 · 3n with y[0] = 0, y[1] = –1.

Hint: Get Y (z) = 
8. (a) Solve y[n + 2] − y[n + 1] + y[n] = 0 with y[0] = 1 and y[1] = 3.

Hint: Get Y (z) = 
(b) Solve y[n + 2] − y[n + 1] +  y [n] = ( )n with y[0] = 0 and y [1] = 1.

Hint: Get Y(z) = 
9. (a) Solve y[n + − y [n + 1] + y[n] = 0 with y[0] = 1 and y[1] = 1.

Hint: Get Y(z) = 
(b) Solve y[n + 2] − y [n + 1] + y [n] = ( ) with y[0] = 0 and y [1] = 1.

Hint: Get Y(z) = 
10. (a) Solve y[n + 2] − y[n + 1] + y[n] = 0 with y[0] = 0 and y[1] = 6.

Hint: Get Y(z) = 
(b) Solve y[n + 2] − y[n + 1] + y[n] = (in + (–i)n) with y[0] = 0 and y[1] =

1.

Hint: Get Y(z) = 
11. (a) Solve y[n + 2] − y[n + 1] + y[n] = 0 with y[0] = 0 and y[1] = 6.

Hint: Get Y(z) = 
(b) Solve y[n + 2] − y[n + 1] + y[n] = (in + (–i)n) with y[0] = 0 and y[1] =



1.

Hint: Get Y(z) = 
12. (a) Solve y[n + 2] + y[n + 1] + y[n] = 0 with y[0] = 2 and y[1] = −1.

Hint: Get Y(z) = 
(b) Solve y[n + 2] + y[n + 1] + y[n] = 0 with y[0] = 0 and y[1] = √3.

Hint: Get Y(z) = 
13. (a) Solve y[n + 2] − y[n + 1] + y[n] = 0 with y[0] = 2 and y[1] = 1.

Hint: Get Y(z) = 
(b) Solve y[n + 2] - y[n + 1] + y[n] = 0 with y[0] = 0 and y[1] = √3.

Hint: Get Y(z) = 
14. (a) Solve y[n + 2] − √3y[n + 1] + y[n] = 0 with y[0] = 2 and y[1] = √3.

Hint: Get Y(z) = 
(b) Solve y[n + 2] − √3y[n + 1] + y[n] = 0 with y[0] = 0 and y[1] = 1.

Hint: Get Y(z) = 

9.3 Digital Signal Filters

9.3.1 Introduction to Filtering
In the field of signal processing, the design of digital signal filters involves
the process of suppressing certain frequencies and boosting others. A
simplified filter model is

where the input signal is xn = x[n] is modified to obtain the output signal yn =
y[n] using the recursion formula



The implementation of (9-23) is straightforward and only requires starting
values, then yn = y[n] is obtained by simple iteration. Since the signals must
have a starting point, it is common to require that xn = 0 and yn = 0 for n < 0.
We emphasize this concept by making the following definition.

Definition 9.3: (Causal Sequence) Given the input {xn}∞
n=–∞ and output

{yn}∞
n=–∞ sequences. If xn = 0 and yn = 0 for n < 0, the sequence is said

to be causal.

Given the causal sequence {xn = x[n]}∞
n=0, it is easy to calculate the

solution {yn = y[n]}∞
n=0 to (9-23). Use the fact that these sequences are

causal:

Then compute

The general iterative step is

9.3.2 The Basic Filters
The following three simplified basic filters serve as illustrations.

(i) Zeroing Out Filter y[n] = b0x[n]+ b1x[n − 1] + b2x[n − 2] + b3x[n − 3]
(Note that a1 = 0, and a2 =0).

(ii) Boosting Up Filter y[n] = b0x[n] − a1y[n − 1] − a2y[n − 2]. (Note that b1
= 0, b2 = 0, and b3 = 0.)



(iii) Combination Filter y[n] = b0 x [n] + b1x[n − 1] + b2x[n − 2] + b3x[n −
3] − a1y[n − 1] − a2y[n − 2].

The transfer function H(z) for these model filters has the following
general form

where the z-transforms of the input and output sequences are X(z) = [xn] and
Y(z) = [yn], respectively. In Section 9.2 we mentioned that the general
solution to a homogeneous difference equation y[n] + a1y[n − 1] + a2y[n − 2]
= 0 is stable only if the zeros of the characteristic equation lie inside the unit
circle. Similarly if a filter is stable, then the poles of the transfer function H(z)
must all lie inside the unit circle.

Before developing the general theory we would like to investigate the
amplitude response A(θ) when the input signal is a linear combination of
cos(θn) and sin(θn). The amplitude response for the frequency ε uses the
complex unit signal z = eiθ, and is defined to be

The formula for A(θ) will be rigorously explained after a few introductory
examples.

 EXAMPLE 9.21 Given the filter y[n] = x[n] − √2x[n − 1] + x[n − 2].

(a) Show that it is a zeroing out filter for the signals cos ( ) and sin( )
and calculate the amplitude response A( ) = A(0.785398).

(b) Calculate the amplitude responses A(0.10) and A(0.77) and investigate
the the filtered signal for x[n] = cos(0.10n) + sin(0.77n).

(c) Calculate the amplitude responses A(0.10) and A( ) and investigate the
filtered signal for x[n] = cos(0.10n) + 0.20sin( n).

Solution

(a) In Section 9.2, Example 9.19, we established that the difference equation
x[n + 2] − √2x[n + 1] + x[n] = 0 with initial conditions x[0] = 2 and x[1] =



√2 has the solution x[n] = 2cos( ). Thus cos( (n + 2)) is a solution to
x[n] − √2x[n − 1] + x[n − 2] = 0 and so are the signals cos( ) and sin(
). This can also be proven by direct substitution of x[n] = cos( ), and
using the trigonometric identities x[n − 1] = cos (  − ) =  (cos( ) +
sin( )) and x[n − 2] = cos(  − ) = sin( ). An easy calculation shows
that

Testing x[n] = sin( ) is similar.
For this filter, the amplitude response is A (θ) = | H(eiθ)|
where H(z) = 1 − √2z–1 + z–2 is the transfer function.
Calculation reveals that

The graph of A(θ) is given in Figure 9.4. Notice that
there is a zero amplitude response at θ =  and that the
amplitude response increases for values of ε in the
interval [ , π].



Figure 9.4 The amplitude response A(θ) = |1 − √2z–1 + z–2| for the zeroing
out filter y[n] = x[n] − √2x[n − 1] + x[n − 2].

Figure 9.5 The input x[n] = cos(0.10n) + sin(0.77n) and output y[n].

(b) Calculate the amplitude responses A(0.10) and A(0.77):

and

From these calculations we expect that components
cos(0.10n) and sin(0.77n) of the signal are attenuated by
the factors A(0.10) = 0.575795 and A(0.77) = 0.0216078,
respectively. Hence the filter almost eliminates the signal



component sin(0.77n) which is close to the “zero-out”
frequency 0.785398 = . This is illustrated in Figure 9.5.

(c) In part (b) we found A(0.10) = 0.575795, and now we make the
calculation

We expect that components cos(0.10n) and 0.20 sin( n)
of the input signal are attenuated by A(0.10) = 0.575795,
and amplified by A( ) = 2.246507, respectively. This is
illustrated in Figure 9.6.

Figure 9.6 The input x[n] = cos(0.10n) + 0.20 sin( n) and output y[n].

 

 EXAMPLE 9.22 Given the filter y[n] = x[n] +  √2y[n − 1] − y[n − 2].

(a) Show that it is a boosting up filter for the signals cos( ) and sin( )
and calculate the amplitude response A( ).

(b) Calculate the amplitude responses A( ) and A(2.60) and investigate the
filtered signal for x[n] = cos( n) + sin( ) + sin(2.60n).



Solution In Section 9.2, Example 9.20(b), we found that the general solution
to y[n + 2] −  √2y[n + 1] +  y[n] = cos( ) is

Since limn→∞(c1 ( )n cos( ) + c2 ( )n (sin( )) = 0, the output signal y[n]
tends to the steady state signal  cos(  + arctan( )) as n → ∞.

Hence the signal cos( ) is boosted up by an amplification factor of  =
2.49615. A similar boost will be observed for the signal sin( ).

For this filter, the amplitude response is A(θ) = | H(eiθ)| where H(z) = 
 We compute the boost for sin( ) by evaluating A( ):

which is the same value that was obtained in Example 9.20(b) in Section 9.2.
The amplitude response A(θ) for an arbitrary frequency θ for is given in
Figure 9.7. Observe that a maximum occurs near θ =  and there is
amplification for signals with 0 < θ < 1.4944.

Figure 9.7 The amplitude response A(θ) = | | for the boosting up
filter y[n] = x[n] +  √2y[n − 1] − y[n − 2].

Solution



(b) Calculate the amplitude responses A( ) and A(2.60) and investigate the
filtered signal for x[n] = cos( n) + sin( ) + sin(2.60n).

and

Using these calculations we conclude that the
components cos( n) and sin( ) will be boosted up by the
factors A( ) = 2.243847 and A( ) = 2.49615, respectively,
and the component sin(2.60n) will be attenuated by the
factor A(2.60) = 0.454698. The situation is shown in
Figure 9.8.

9.3.3 The General Form
The general form of a Pth order filter difference equation is

Figure 9.8 The input x[n] = cos  +sin  +sin(2.60n) and output y[n].

where {ap}p
p=1 and {bq}Q

q=0 are constants. Note carefully that the terms



involved are of the form y[n − p] and y[n − q] where p ≥ 0 and q ≥ 0, which
makes these terms time-delayed. The compact form of writing the difference
equation is

where the input signal xn = x[n] is modified to obtain the output signal yn =
y[n] using the recursion formula

The portion  will “zero out” signals and  will “boost
up” signals.

Remark 9.13

Formula (9-31) is called the recursion equation and the recursion coefficients
are {ap}p

p=1 and {bq}Q
q=0. It explicitly shows that the present output y[n] is

a function of the past values y[n-p], for p = 1, 2,…, P, the present input x[n],
and the previous inputs x[n - q] for q = 1, 2,…, Q. The sequences can be
regarded as signals and they are zero for negative indices. With this
information we can now define the general formula for the transfer function
H(z). Using the time delayed-shift property for causal sequences and taking
the z-transform of each term in (9-31), we obtain

We can factor X(z) and Y (z) out of the summations and write this in an
equivalent form

From equation (9-33) we obtain



which leads to the following important definition. 

Definition 9.4: (Transfer Function) The transfer function corresponding to
the Pth order difference equation (9-29) is given by

Formula (9-34) is the transfer function for an infinite impulse response
filter (IIR filter). In the special case when the denominator is unity it becomes
the transfer function for a finite impulse response filter (FIR filter).

Definition 9.5: (Unit-Sample Response) The sequence h[n] = −1[H(z)]
corresponding to the transfer function  is called the unit-sample
response.

 Theorem 9.6 (Output Response) The output response y[n] of a the
filter (9-31) given an input signal x[n] is given by the inverse z-
transformation

and in convolution form it is given by

Another important use of the transfer function is to study how a filter
affects various frequencies. In practice, a continuous-time signal is sampled
at a frequency fs that is at least twice the highest input signal frequency to



avoid frequency fold-over, or aliasing. That is because the Fourier transform
of a sampled signal is periodic with period  though we will not prove
this here. Aliasing prevents accurate recovery of the original signal from its
samples.

Now it can be shown that the argument of the Fourier transform maps
onto the z-plane unit circle via the formula

where θ is called the normalized frequency.
Therefore, the z-transform evaluated on the unit circle is also periodic,

except with period 2π.

Definition 9.6: (Amplitude Response) The amplitude response A(θ) is
defined to be the magnitude of the transfer function evaluated at the
complex unit signal z = eiθ. The formula is

Proof Sinusoidal signals are linear combinations of eiθ and e−iθ. To
determine the amplitude response we input x[n] = einθ, which has z-transform
X(z) = .

The z-transform of the output is  which can be
written as

It is possible to use a technique like partial fraction expansions to write (9-39)
in the form

where F0 = H(eiθ).
For stable solutions, we have already mentioned (see Section 9.2.1) that

the poles of the transfer function must all lie inside the unit circle. Hence the



terms in the solution y[n] corresponding to the poles of Q(z) are all transient
and decay to zero as n→∞. The steady state portion of the solution y[n] is the
inverse of the term  and its magnitude is

The fundamental theorem of algebra implies that the numerator has Q roots
(called zeros) and the denominator has P roots (called poles). The zeros
{zq}Q

q=1 may be chosen in conjugate pairs on the unit circle and |zq| = 1 for q
= 1, 2,…, Q. For stability, all the poles {wp} P

p=1 must lie inside the unit
circle and |wp| < 1 for p = 1, 2,…, P. Furthermore, the poles are chosen to be
real numbers and/or in conjugate pairs. This will guarantee that the recursion
coefficients are all real numbers. IIR filters may be all pole or zero-pole and
stability is a concern; FIR filters and all zero-filters are always stable.

9.3.4 Design of Filters
In practice, recursion formula (9-31) is used to calculate the output signal.
However, digital filter design is based on the preceding theory. One starts by
selecting the location of zeros and poles corresponding to filter design
requirements and constructing the transfer function . Since the
coefficients in H(z) are real, all zeros and poles having an imaginary
component must occur in conjugate pairs. Then the recursion coefficients are
identified in (9-34) and used in (9-31) to write the recursive filter. Both the
numerator and denominator of H(z) can be factored into quadratic factors
with real coefficients and possibly one or two linear factors with real
coefficients. The following principles are used to construct H(z).

(i) Zeroing Out Factors

To filter out the signals cos(θn) and sin(θn), use factors of the form

and



in the numerator of H(z). They will contribute to the term

(ii) Boosting Up Factors

To amplify the signals cos(θn) and sin(θn), use factors of the form

and

and

in the denominator of H(z). They will contribute to the term

(iii) Attenuating Factors

To attenuate the signals cos(θn) and sin(θn), use factors of the form

and

The factor



is a special case that attenuates low-frequency signals. These factors will
contribute to the term (9-42).

(iv) Combination of Factors

The transfer function H(z) could have a zero or pole at the origin, but this has
no net effect on the output signal. The other zeros and poles determine the
nature of the filter. A conjugate pair of zeros e±iθ of H(z) on the unit circle
will “zero-out” the signals cos(θn) and sin(θn). If0 < ρ ≈ 1, the conjugate pair
of zeros ρe±iθ of H(z) will attenuate the signals cos(θn) and sin(θn), and the
conjugate pair of poles ρe±iø of H(z) will amplify the signals cos(θn) and
sin(θn). It is useful to plot the location of the zeros and poles and note their
magnitude and argument. As a general rule, zeros are used to attenuate
signals and poles are used to amplify signals. The primary goal of filter
design is to construct H(z) so that the amplitude response A(θ) has a desired
shape. The following examples have been chosen to illustrate these concepts.
Books on digital signal filter design will explain the process in detail.

 EXAMPLE 9.23

(a) The filter y[n] = x[n] + x[n − 2] is designed to zero out  and 

(b) The moving average filter y[n] = (x[n] + x[n − 1] + x[n − 2] + x[n − 3])
is designed to zero out cos(nπ), , and 

Solution

(a) Use the conjugate pair of zeros  and  and calculate

The transfer function has the form  and we see that b0 =
1, b1 = 0, and b2 = 1. The desired filter is

y[n] = b0x[n] + b1x[n − 1] + b2x[n − 2] = x[n] + x[n − 2].

(b) For this part we introduce the additional zero eiπ and calculate



The transfer function has the form , and we see that
b0 = b1 = b2 = b3 = 1. Hence, a filter for zeroing out cos(nσ), ,
and  has the form

y[n] = b0x[n] + b1x[n − 1] + b2x[n − 2] + b3x[n − 3],

or
y[n] = x[n] + x[n − 1] + x[n − 2] + x[n − 3].
If we multiply terms on the right-hand side by , we get the moving

average filter.
y[n] =  (x[n] + x[n − 1] + x[n − 2] + x[n − 3]),
and this filter will zero out the same frequencies.

Figure 9.9 Amplitude response A(θ) and zero-pole plot for 

Remark 9.14

The function A(θ) can be proven to be even; i.e., A(−θ) = A(θ), which
reinforces the fact that the zeros come in conjugate pairs. Also, when
expanded over a common denominator, the transfer function 
actually has a triple pole at the origin. Finally, it can be shown that the zeros
are all equally spaced on the unit circle and that the arguments of the zeros
correspond to frequencies that are zeroed out by the filter. The situation is



illustrated in Figure 9.9.

 

 EXAMPLE 9.24 The moving average filter

y[n] = (x[n] + x[n − 1] + x[n − 2] + x[n − 3] + x[n − 4] +
x[n − 5] + x[n − 6] + x[n − 7])

is designed to zero out , and 
 
Solution We use the property (i) zeroing out filter. Recall that the solutions
to z8 = 1 are the eighth roots of unity  for k = 0, 1, 2, 3, 4, 5, 6, 7 and lie
on the unit circle. Hence the roots of

are  There are no poles, so the transfer function
has the form

Use bi =  for i = 0,…, 7 to get

y[n] = (x[n] + x[n − 1] + x[n − 2] + x[n − 3] + x[n − 4] +
x[n − 5] + x[n − 6] + x[n − 7]).

 



Remark 9.15

This is an extension of the filter in Example 9.23(b), and zeros out twice as
many frequencies. The function A (θ) has additional zeros located at 

 The transfer function can be written

 
The representation has a pole of order seven at the origin. Also, as in the

previous example the zeros are equally spaced points on the unit circle, and
their arguments correspond to frequencies that are zeroed out by the filter.
The situation is illustrated in Figure 9.10.

 EXAMPLE 9.25

(a) Design a filter with poles  and  for boosting up signals near 
and 

(b) Include the additional pole at  to the filter design in (a) so that it
also boosts up low-frequency signals.

Figure 9.10 Amplitude response A(θ) and zero-pole plot for 

 
Solution



(a) We use the property (ii) boosting up filter. The conjugate pair of poles 
 and  lie on the circle | z| =  Then we calculate

There are no zeros, so the transfer function is 
 and we see that b0 = 1,  and 

The filter is

This is the same filter that was investigated in Example
9.22.

Remark 9.16

The transfer function can be written  and has a zero of order
two at the origin, and two poles inside the unit circle. The arguments of the
poles  correspond to frequencies that are boosted up by the filter. The
situation is illustrated in Figure 9.11.

Figure 9.11 Amplitude response A (θ) and zero-pole plot for the boosting up



filter 

(b) Use the additional pole at  and calculate

The transfer function is  where b0 = 1, 
 and  The desired filter is

 

Remark 9.17

The transfer function can be written  and has a zero
of order three at the origin, and three poles inside the unit circle. The
arguments of the poles  correspond to frequencies that are boosted
up by the filter. The situation is illustrated in Figure 9.12.

Figure 9.12 Amplitude response A (θ) and zero-pole plot for the boosting up
filter 



 EXAMPLE 9.26 Design a combination filter using the zeros  and eiπ

for zeroing out cos(πn),  and poles  boosting up some of the
low frequencies.

Solution The zeroing-out portion of this filter design is similar to the filter in
Example 9.23(b), where we showed that

Ofcourse, we could multiply by the constant  to give this filter a moving
average effect on the input signal x[n]. However, for simplicity we use b0 =
b1 = b2 = b3 = 1 in the numerator of the transfer function.

For the boosting up portion of this filter design we choose the one
developed in Example 9.22(a):

and we will use  and  in the denominator of the transfer
function. Putting the two parts together we obtain

The corresponding filter for this transfer function is

 

Remark 9.18

The zeros  and eiσ of H(z) determine which signals are zeroed out and the
arguments of the poles  of H(z) point to frequencies that are boosted up
by the filter.



 
Remark 9.19

The flat portion of the graph in the interval [0, ] makes this filter more
practical for boosting low frequencies than the filter in Example 9.22(a).

 
Remark 9.20

The higher frequencies in the interval [ ,σ] are attenuated more than they are
in Example 9.23(b). The situation is illustrated in Figure 9.13.

Figure 9.13 Amplitude response A (θ) and zero-pole plot for the combination
filter 

A signal processing engineer uses complex analysis to construct filters
with the desired amplitude and phase response characteristics. Finite impulse
response (FIR) filters have only zeros, whereas infinite impulse response
(IIR) filters have poles and may have zeros as well. The area of filter design
involves many types, such as low pass, high pass, all pass, band pass, and
band stop. Special forms of such filters include, but are not limited to, Bessel,
Butterworth, Chebyshev, Gaussian, moving average, single pole, and Remez.
More information about filter design can be found in books on digital signal
processing.



EXERCISES FOR SECTION 9.3
1. Use direct substitution and trigonometric identities to showthe following:

(a) y[n] = x[n]+x[n−1]+x[n−2] will “zero-out” x[n] = cos( n) and x[n] =
sin( n).

(b) y[n] = x[n]−x[n−1]+x[n−2] will “zero-out” x[n] = cos( n) and x[n] =
sin( n).

(c) y[n] = x[n]+√2x[n−1]+x[n−2] will “zero-out” x[n] = cos( ) and x[n] =
sin( ).

(d) y[n] = x[n]+√3x[n− 1]+x[n−2] will “zero-out” x[n| = cos( ) and x[n]
= sin( ).

(e) y [n] = x[n] − √3x[n−1]+x[n−2] will “zero-out” x[n] = cos( ) and x[n]
= sin( ).

2. Given the recursion formula y[n] = x[n] + x[n − 1] + x[n − 2].

(a) Calculate the amplitude response A(0.10), A( ), A( ), and A(2.10).

(b) Discuss what happens to the filtered signal for the input x[n] =
cos(0.10n) + sin(2.10n).

3. Given the recursion formula y[n] = x[n] + √2x[n − 1] + x[n − 2].

(a) Calculate the amplitude response A(0.10), A( ), A( ), and A(2.40).

(b) Discuss what happens to the filtered signal for the input x[n] =
cos(0.10n) + sin(2.40n).

4. Given the recursion formula y[n] = x[n] − x[n − 1] + x[n − 2].

(a) Calculate the amplitude response A(0.10), A( ), A(1.00), and A( ).

(b) Discuss what happens to the filtered signal for the input x[n] =



cos(0.10n) + sin(1.00n).

5. Given the recursion formula y[n] = x[n] + y [n − 1] − y [n − 2].

(a) Calculate the amplitude response A(0), A( ), A( ), and A(π).

(b) Discuss what happens to the filtered signal for the input x[n] = cos( n)
+ sin( n).

6. Given the recursion formula y[n] = x[n] + √3y[n − 1] − y [n − 2].

(a) Calculate the amplitude response A( ), A( ), A( ), and A( ).

(b) Discuss what happens to the filtered signal for the input x[n] = cos( n)
+ sin( n).

7. The single-pole low-pass filter is y[n] = K x[n] + (1 − K)y[n − 1], where
constant K is between 0 and 1.

(a) Use K =  to find A(θ), A(0), A( ), A( ), and A(π).

(b) Use K =  to find A(θ), A(0), A( ), A( ), and A(π).

(c) Use K =  to find A (θ), A(0), A( ), A( ), and A (π).

8. Use the recursion formula y[n] = x[n] + y [n − 1] in Exercise 7(a).

(a) Start with y0 = x0, y1 = x1 +  x0, and show by induction that

(b) Use the transfer function H(z) =  and find the unit-sample
response h[n] = −1 [H (z)].

(c) Verify that the general term in part (a) is given by the convolution
formula y[n] = yn = .

9. Show that the moving average filter y[n] =  (x[n]+x[n − 1] +x[n − 2]
+x[n − 3] + x[n − 4] + x[n − 5]) is designed to zero out cos(nπ), cos( n),



sin( n), cos( n), and sin( n).

10. Use the transfer function H(z) =  and show that the moving
average filter in Exercise 9 has the following alternative formula

11. Use the transfer function H(z) =  and Show that the moving
average filter in Example 9.24 has the following alternative formula

12. (a) Construct a filter using the zeros  and . What signals are
“zeroed-out”?

(b) Construct a filter using the zeros ,  and . What signals are
“zeroed-out”?

13. (a) Construct a filter using the zeros  and . What signals are
“zeroed-out”?

(b) Construct a filter using the zeros  and . What signals are
“zeroed-out”?

14. (a) Construct a filter using the zeros  and . What signals are
“zeroed-out”?

(b) Construct a filter using the zeros ,  and . What signals are
“zeroed-out”?

15. (a) Construct a filter using the zeros  and . What signals are
“zeroed-out”?

(b) Construct a filter using the zeros  and . What signals are
“zeroed-out”?

16. Construct the combination filter using the zeros  and  and poles 
 for attenuating cos(nπ), cos( n), and sin( n) and “boosting up” some

of the low frequencies, respectively.

17. (a) Construct a filter using the zeros  and e–iπ = – 1 for “zeroing out”
cos( n), sin( n), and cos(πn).



(b) Construct a filter using the poles  and  for “boosting up”
signals near cos( n) and sin( ) and low-frequency signals.

(c) Construct a filter using the zeros and poles in parts (a) and (b).

18. (a) Construct a filter using the zeros  and e–iπ = – 1 for “zeroing out”
cos( n), sin( n), and cos(πn).

(b) Construct a filter using the poles  and . for “boosting up”
signals near cos( n) and sin( n).

(c) Construct the combination filter using the zeros and poles in parts (a)
and (b).



chapter 10
conformal mapping

Overview
The terminology “conformal mapping” should have a familiar sound. In 1569
the Flemish cartographer Gerardus Mercator (1512–1594) devised a
cylindrical map projection that preserves angles. The Mercator projection is
still used today for world maps. Another map projection known to the ancient
Greeks is the stereographic projection. It is also conformal (i.e., angle
preserving), and we introduced it in Chapter 2 when we defined the Riemann
sphere. In complex analysis a function preserves angles if and only if it is
analytic or anti-analytic (i.e., the conjugate of an analytic function). A
significant result, known as the Riemann mapping theorem, states that any
simply connected domain (other than the entire complex plane) can be
mapped conformally onto the unit disk.

10.1 BASIC PROPERTIES OF
CONFORMAL MAPPINGS

Let f be an analytic function in the domain D and let z0 be a point in D. If f ′
(z0) ≠ 0, then we can express f in the form

where η (z) → 0 as z → z0. If z is near z0, then the transformation w = f (z)
has the linear approximation



S (z) = A + B (z − z0) = Bz + A − Bz0
,

where A = f (z0) and B = f ′ (z0). Because η (z) → 0 when z → z0, for points
near z0 the transformation w = f (z) has an effect much like the linear
mapping w = S (z). The effect of the linear mapping S is a rotation of the
plane through the angle α = Arg f ′ (z0), followed by a magnification by the
factor | f ′ (z0)|, followed by a rigid translation by the vector A − Bz0

.
Consequently the mapping w = S (z) preserves the angles at the point z0. We
now show that the mapping w = f (z) also preserves angles at z0.

Let C : z (t) = x (t) + iy (t), –1 ≤ t ≤ 1 denote a smooth curve that passes
through the point z (0) = z0. A vector T tangent to C at the point z0 is given
by

T = z′ (0),

where the complex number z′ (0) is expressed as a vector.

The angle of inclination of T with respect to the positive x-axis is

β = Arg z′ (0).

The image of C under the mapping w = f (z) is the curve K given by the
formula K : w (t) = u (x (t) , y (t)) + iv (x (t) , y (t)). We can use the chain rule
to show that a vector T* tangent to K at the point w0 = f (z0) is given by

T* = w′ (0) = f ′ (z0) z′ (0).

The angle of inclination of T* with respect to the positive u-axis is

where α = Arg f ′ (z0). Therefore, the effect of the transformation w = f (z) is
to rotate the angle of inclination of the tangent vector T at z0 through the
angle α = Arg f ′ (z0) to obtain the angle of inclination of the tangent vector
T* at w0. This situation is illustrated in Figure 10.1.



A mapping w = f (z) is said to be angle preserving, or conformal at z0, if
it preserves angles between oriented curves in magnitude as well as in
orientation. Theorem 10.1 shows where a mapping by an analytic function is
conformal.

Figure 10.1 The tangents at the points z0 and w0, where f is an analytic
function and f ′ (z0) ≠ 0.

Figure 10.2 The analytic mapping w = f (z) is conformalat the point z0, where
f ′ (z0) = 0.

 Theorem 10.1 Let f be an analytic function in the domain D, and let
z0 be a point in D. If f ′ (z0) ≠ 0, then f is conformal at z0.

Proof We let C1 and C2 be two smooth curves passing through z0 with
tangents given by T1 and T2, respectively. We let β1 and β2 denote the
angles of inclination of T1 and T2, respectively. The image curves K1
and K2 that pass through the point w0 = f (z0) have tangents denoted



T*1 and T*2, respectively. From Equation (10-2), the angles of
inclination γ1 and γ2 of T*1 and T*2 are related to β1 and β2 by the
equations

where α = Arg f ′ (z0). Hence from Equations (10-3) we conclude that

γ2 − γ1 = β2 − β1.

That is, the angle γ2 − γ1 from K1 to K2 is the same in magnitude and
orientation as the angle β2 − β1 from C1 to C2. Therefore, the mapping
w = f (z) is conformalat z0. This situation is shown in Figure 10.2.

 EXAMPLE 10.1 Show that the mapping w = f (z) = cos z is conformalat
the points z1 = i, z2 = 1, and z3 = π + i, and determine the angle of rotation
given by α = Arg f ′ (z) at the given points.

Solution Because f ′ (z) = – sin z, we conclude that the mapping w = cos z is
conformal at all points except z = nπ, where n is an integer. Calculation
reveals that

f ′ (i) = – sin (i) = –isinh 1, f ′ (1) = – sin1, and

f ′ (π + i) = – sin (π + i) = i sinh 1.

Therefore, the angle of rotation is given by

respectively.



Let f be a nonconstant analytic function. If f ′ (z0) = 0, then z0 is called a
critical point of f, and the mapping w = f (z) is not conformalat z0. Theorem
10.2 shows what happens at a critical point.

 Theorem 10.2 Let f be analytic at z0. If f ′ (z0) = 0, … , f(k−1) (z0) = 0
and f(k) (z0) ≠ 0, then the mapping w = f (z) magnifies angles at the
vertex z0 by a factor k.

Proof Since f is analytic at z0, it has a Taylor series expansion.
Because  for n = 1, 2, …, k – 1, the series representation
for f is

From Equation (10-4) we conclude that

where g is analytic at z0 and g(z0) = ak ≠ 0. Consequently, if w = f (z)
and w0 = f (z0), then using Equation (10-5), we obtain

If C is a smooth curve that passes through z0 and z → z0 along C, then
w → w0 along the image curve K. The angle of inclination of the
tangents T to C and T* to K, respectively, are then given by the
following limits:

From Equations (10-6) and (10-7) it follows that



Figure 10.3 The analytic mapping w = f (z) at point z0, where f ′ (z0) = 0, … ,
f(k−1) (z0) = 0 and f(k) (z0) ≠ 0.

where δ = Arg [g (z0)] = Argak.
If C1 and C2 are two smooth curves that pass through z0 and K1

and K2 are their images, then from Equation (10-8) it follows that

That is, the angle Δγ from K1 to K2 is k times as large as the angle Δβ
from C1 to C2. Therefore, angles at the vertex z0 are magnified by the
factor k. This situation is shown in Figure 10.3.

 EXAMPLE 10.2 Show that the mapping w = f (z) = z2 maps the unit square
S = {x + iy : 0 < x < 1, 0 < y < 1} onto the region in the upper halfplane Im
(w) > 0, which lies under the parabolas

as shown in Figure 10.4.

Solution The derivative is f ′ (z) = 2z, and we conclude that the mapping w =
z2 is conformalfor all z ≠ 0. Note that the right angles at the vertices z1 = 1, z2
= 1 + i, and z3 = i are mapped onto right angles at the vertices w1 = 1, w2 =



2i, and w3 = –1, respectively. At the point z0 = 0, we have f ′ (0) = 0 and f ′′
(0) ≠ 0. Hence angles at the vertex z0 = 0 are magnified by the factor k = 2. In
particular, the right angle at z0 = 0 is mapped onto the straight angle at w0 =
0.

Another property of a conformal mapping w = f (z) is obtained by
considering the modulus of f ′ (z0). If z1 is near z0, we can use Equation (10-
1) and neglect the term η (z1) (z1 − z0). We then have the approximation

Figure 10.4 The mapping w = z2.

From Equation (10-9), the distance | w1 − w0| between the images of the
points z1 and z0 is given approximately by | f ′ (z0)| | z1 − z0|. Therefore, we
say that the transformation w = f (z) changes small distances near z0 by the
scale factor | f ′ (z0)|. For example, the scale factor of the transformation w = f
(z) = z2 near the point z0 = 1 + i is | f ′ (1 + i)| = |2(1 + i)| = 2√2.

We also need to say a few things about the inverse transformation z = g
(w) of a conformal mapping w = f (z) near a point z0, where f ′ (z0) = 0. A
complete justification of the following assertions relies on theorems studied
in advanced calculus.1 We express the mapping w = f (z) in the coordinate
form



The mapping in Equations (10-10) represents a transformation from the
xy plane into the uv plane, and the Jacobian determinant, J (x, y), is defined
by

The transformation in Equations (10-10) has a local inverse, provided J (x, y)
≠ 0. Expanding Equation (10-11) and using the Cauchy–Riemann equations,
we obtain

Consequently, Equations (10-11) and (10-12) imply that a local inverse z = g
(w) exists in a neighborhood of the point w0. The derivative of g at w0 is
given by the familiar expression

EXERCISES FOR SECTION 10.1
1. State where the following mappings are conformal.

(a) w = exp z.
(b) w = sin z.
(c) w = z2 + 2z.
(d) w = exp (z2 + 1).
(e) 
(f) 

For Exercises 2–5, find the angle of rotation α = Arg f ′ (z) and the scale
factor | f ′ (z)| of the mapping w = f (z) at the indicated points.

2.  at the points 1, 1 + i, and i.

3. w = ln r + iθ, where  at the points 1, 1 + i, i, and –1.



4. w =  where –π < θ < π, at the points i, 1, –i, and 3 + 4i.

5. w = sin z at the points , 0, and .

6. Consider the mapping w = z2. If a ≠ 0and b ≠ 0, show that the lines x = a
and y = b are mapped onto orthogonal parabolas.

7. Consider the mapping w = , where  denotes the principal branch of the
square root function. If a > 0and b > 0, show that the lines x = a and y =
b are mapped onto orthogonal curves.

8. Consider the mapping w = exp z. Show that the lines x = a and y = b are
mapped onto orthogonal curves.

9. Consider the mapping w = sin z. Show that the line segment  y =
0 and the vertical line x = a, where | a| < , are mapped onto orthogonal
curves.

10. Consider the mapping w = Logz, where Logz denotes the principal branch
of the logarithm function. Show that the positive x-axis and the vertical
line x = 1 are mapped onto orthogonal curves.

11. If f is analytic at z0 and f ′ (z0) ≠ 0, show that the function g (z) = 
preserves the magnitude, but reverses the sense, of angles at z0.

12. If w = f (z) is a mapping, where f (z) is not analytic, then what behavior
would you expect regarding the angles between curves?

10.2 BILINEAR TRANSFORMATIONS

Another important class of elementary mappings was studied by Augustus
Ferdinand Möbius (1790–1868). These mappings are conveniently expressed
as the quotient of two linear expressions. They arise naturally in mapping
problems involving the function Arctanz. In this section, we show how they
are used to map a disk one-to-one and onto a half-plane.

If we let a, b, c, and d denote four complex constants with the restriction
that ad ≠ bc, then the function



is called a bilinear transformation, a Möbius transformation, or a linear
fractional transformation. If the expression for S in Equation (10-13) is
multiplied by the quantity cz + d, then the resulting expression has the
bilinear form cwz − az + dw − b = 0. We collect terms involving z and write z
(cw − a) = –dw + b. Then, for values of w ≠ , the inverse transformation is
given by

We can extend S and S–1 to mappings in the extended complex plane. The
value S (∞) should equal the limit of S (z) as z → ∞. Therefore, we define

and the inverse is S–1( ) = ∞. Similarly, the value S–1 (∞) is obtained by

and the inverse is  = ∞. With these extensions we conclude that the
transformation w = S (z) is a one-to-one mapping of the extended complex z
plane onto the extended complex w plane.

We now show that a bilinear transformation carries the class of circles
and lines onto itself. If S is an arbitrary bilinear transformation given by
Equation (10-13) and c = 0, then S reduces to a linear transformation, which
carries lines onto lines and circles onto circles. If c ≠ 0, then we can write S in
the form

The condition ad ≠ bc precludes the possibility that S reduces to a
constant. Equation (10-15) indicates that S can be considered as a
composition of functions. It is a linear mapping ξ = cz+d, followed by the
reciprocal transformation , followed by  In Chapter 2, we
showed that each function in this composition maps the class of circles and
lines onto itself; it follows that the bilinear transformation S has this property.
A half-plane can be considered to be a family of parallel lines and a disk as a



family of circles. Therefore, we conclude that a bilinear transformation maps
the class of half-planes and disks onto itself. Example 10.3 illustrates this
idea.

 EXAMPLE 10.3 Show that , maps the unit disk | z| < 1 one-
to-one and onto the upper half-plane Im (w) > 0.

Solution We first consider the unit circle C : | z| = 1, which forms the
boundary of the disk and find its image in the w plane. If we write ,
then we see that a = –i, b = i, c = 1, and d = 1. Using Equation (10-14), we
find that the inverse is given by

If | z| = 1, then Equation (10-16) implies that the images of points on the unit
circle satisfy the equation

Squaring both sides of Equation (10-17), we obtain u2 +(1 + v)2 = u2 +(1 −
v)2, which can be simplified to yield v = 0, which is the equation of the u-axis
in the w plane.

The circle C divides the z plane into two portions, and its image is the u-
axis, which divides the w plane into two portions. The image of the point z =
0 is w = S (0) = i, so we expect that the interior of the circle C is mapped onto
the portion of the w plane that lies above the u-axis. To show that this
outcome is true, we let | z| < 1. Then Equation (10-16) implies that the image
values must satisfy the inequality | –w + i| < | w + i|, which we write as

If we interpret d1 as the distance from w to i and d2 as the distance from w
to –i, then a geometric argument shows that the image point w must lie in the
upper half-plane Im (w) > 0, as shown in Figure 10.5. As S is one-to-one and
onto in the extended complex plane, it follows that S maps the disk onto the
half-plane.



Figure 10.5 The image of | z| < 1 under w = 

The general formula for a bilinear transformation (Equation (10-13))
appears to involve four independent coefficients: a, b, c, d. But as S (z) ≠ K,
either a ≠ 0 or c ≠ 0, we can express the transformation with three unknown
coefficients and write either

respectively. Doing so permits us to determine a unique bilinear
transformation if three distinct image values S (z1) = w1, S (z2) = w2, and S
(z3) = w3 are specified. To determine such a mapping, we can conveniently
use an implicit formula involving z and w.

 Theorem 10.3 (The implicit formula) There exists a unique bilinear
transformation that maps three distinct points, z1, z2, and z3, onto
three distinct points, w1, w2, and w3, respectively. An implicit formula
for the mapping is given by

Proof We algebraically manipulate Equation (10-18) and solve for w
in terms of z. The result is an expression for w that has the form of
Equation (10-13), where the coefficients a, b, c, and d involve various



combinations of the values z1, z2, z3, w1, w2, and w3. The details are
left as an exercise.

If we set z = z1 and w = w1 in Equation (10-18), then both sides of
the equation are zero, showing that w1 is the image of z1. If we set z =
z2 and w = w2 in Equation (10-18), then both sides of the equation take
on the value 1. Hence w2 is the image of z2. Taking reciprocals, we
write Equation (10-18) in the form

If we set z = z3 and w = w3 in Equation (10-19), then both sides of the
equation are zero. Therefore, w3 is the image of z3, and we have shown
that the transformation has the required properties.

 EXAMPLE 10.4 Construct the bilinear transformation w = S (z) that maps
the points z1 = –i, z2 = 1, and z3 = i onto the points w1 = –1, w2 = 0, and w3 =
1, respectively.

Solution We use the implicit formula (Equation (10-18)) and write

Expanding this equation, we obtain

Then, collecting terms involving w and zw on the left results in

2w + 2zw = 2 i − 2iz

from which we obtain w (1 + z) = i (1 − z). Therefore, the desired bilinear
transformation is



 EXAMPLE 10.5 Find the bilinear transformation w = S (z) that maps the
points z1 = –2, z2 = –1 − i, and z3 = 0 onto w1 = –1, w2 = 0, and w3 = 1,
respectively.

Solution Again, we use the implicit formula and write

Using the fact that  we rewrite this equation as

We now expand the equation and obtain z + 2 − zw −2w = iz +izw, which can
be solved for w in terms of z, giving the desired solution

We let D be a region in the z plane that is bounded by either a circle or a
straight line C. We further let z1, z2, and z3 be three distinct points that lie on
C and have the property that an observer moving along C from z1 to z3
through z2 finds the region D to be on the left. If C is a circle and D is the
interior of C, then we say that C is positively oriented. Conversely, the
ordered triple (z1, z2, z3) uniquely determines a region that lies to the left of
C.

We let G be a region in the w plane that is bounded by either a circle or a
straight line K. We further let w1, w2, and w3 be three distinct points that lie
on K such that an observer moving along K from w1 to w3 through w2 finds
the region G to be on the left. Because a bilinear transformation is a
conformal mapping that maps the class of circles and straight lines onto itself,
we can use the implicit formula to construct a bilinear transformation w = S
(z) that is a one-to-one mapping of D onto G.

 EXAMPLE 10.6 Show that the mapping



maps the disk D : | z + 1| < 1 onto the upper half-plane Im (w) > 0.

Solution For convenience, we choose the ordered triple z1 = –2, z2 = –1 − i,
and z3 = 0, which gives the circle C : | z + 1| = 1 a positive orientation and the
disk D a left orientation. From Example 10.5, the corresponding image points
are

Because the ordered triple of points w1, w2, and w3 lie on the u-axis, it
follows that the image of circle C is the u-axis. The points w1, w2, and w3
give the upper half-plane G : Im (w) > 0 a left orientation. Therefore, w = S
(z) maps the disk D onto the upper half-plane G. To check our work, we
choose a point z0 that lies in D and find the half-plane in which its image, w0,
lies. The choice z0 = –1 yields w0 = S (–1) = i. Hence the upper half-plane is
the correct image. This situation is illustrated in Figure 10.6.

Figure 10.6 The bilinear mapping w = S (z) = [(1 – i) z + 2] / [(1 + i)z + 2].

 Corollary 10.1 (The implicit formula with a point at infinity) In Equation
(10-18), the point at infinity can be introduced as one of the prescribed points
in either the z plane or the w plane.

Proof

Case 1 If z3 = ∞, then we can write  and substitute this
expression into Equation (10-18) to obtain



Case 2 If w3 = ∞, then we can write  and substitute this
expression into Equation (10-18) to obtain

Equation (10-21) is sometimes used to map the crescent-shaped region
that lies between the tangent circles onto an infinite strip.

 EXAMPLE 10.7 Find the bilinear transformation that maps the crescent-
shaped region that lies inside the disk | z − 2| < 2 and outside the circle | z − 1|
= 1 onto a horizontal strip.

Solution For convenience we choose z1 = 4, z2 = 2 + 2i, and z3 = 0 and the
image values w1 = 0, w2 = 1, and w3 = ∞, respectively. The ordered triple z1,
z2, and z3 gives the circle | z − 2| = 2 a positive orientation and the disk | z − 2|
< 2 has a left orientation. The image points w1, w2, and w3 all lie on the
extended u-axis, and they determine a left orientation for the upper half-plane
Im (w) > 0. Therefore, we can use the second implicit formula (Equation (10-
21)) to write

Figure 10.7 The mapping w = S (z) = 

which determines a mapping of the disk | z − 2| < 2 onto the upper half-plane



Im (w) > 0. We simplify the preceding equation to obtain the desired
solution:

A straightforward calculation shows that the points z4 = 1 − i, z5 = 2, and z6
= 1 + i are mapped onto the points

respectively. The points w4, w5, and w6 lie on the horizontal line Im (w) = 1
in the upper half-plane. Therefore, the crescent-shaped region is mapped onto
the horizontalstrip 0 < Im (w) < 1, as shown in Figure 10.7.

10.2.1 Lines of Flux
In electronics, images of certain lines represent lines of electric flux, which
comprise the trajectory of an electron placed in an electrical field. Consider
the bilinear transformation

The half-rays {Arg (w) = c}, where c is a constant, that meet at the origin
w = 0 represent the lines of electric flux produced by a source located at w =
0 (and a sink at w = ∞). The preimage of this family of lines is a family of
circles that pass through the points z = 0 and z = a. We visualize these circles
as the lines of electric flux from one point charge to another. The limiting
case as a → 0 is called a dipole and is discussed in Exercise 6, Section 11.11.
The graphs for a = 1, a = 0.5, and a = 0.1 are shown in Figure 10.8.



Figure 10.8 Images of Arg (w) = c under the mapping 

EXERCISES FOR SECTION 10.2
1. If w = S (z) = , find S–1 (w).

2. If w = S (z) = , find S–1 (w).

3. Find the image of the right half-plane Re (z) > 0under w = .

4. Show that the bilinear transformation w =  maps the portion of the
disk | z| < 1 that lies in the upper half-plane Im (z) > 0 onto the first
quadrant u > 0, v > 0.

5. Find the image of the upper half-plane Im (z) > 0under the transformation

6. Find the bilinear transformation w = S (z) that maps the points z1 = 0, z2 =
i, and z3 = –i onto w1 = –1, w2 = 1, and w3 = 0, respectively.

7. Find the bilinear transformation w = S (z) that maps the points z1 = –i, z2
= 0, and z3 = i onto w1 = –1, w2 = i, and w3 = 1, respectively.

8. Find the bilinear transformation w = S (z) that maps the points z1 = 0, z2 =
1, and z3 = 2 onto w1 = 0, w2 = 1, and w3 = ∞, respectively.

9. Find the bilinear transformation w = S (z) that maps the points z1 = 1, z2 =



i, and z3 = –1 onto w1 = 0, w2 = 1, and w3 = ∞, respectively.

10. Show that the transformation w =  maps the unit disk | z| < 1 onto the
right half-plane Re (w) > 0.

11. Find the image of the lower half-plane Im (z) < 0 under w = .
12. If S1 (z) =  and S2 (z) = , find S1 (S2 (z)) and S2 (S1 (z)).

13. Find the image of the quadrant x > 0, y > 0 under w = 
14. Show that Equation (10-18) can be written in the form of Equation (10-

13).
15. Find the image of the horizontal strip 0 < y < 2 under w = .
16. Show that the bilinear transformation w = S (z) =  is conformal at all

points z ≠ 
17. A fixed point of a mapping w = f (z) is a point z0 such that f (z0) = z0.

Show that a bilinear transformation can have at most two fixed points.
18. Find the fixed points of

(a) 
(b) 

10.3 MAPPINGS INVOLVING
ELEMENTARY FUNCTIONS

In Section 5.1 we showed that the function w = f (z) = exp z is a one-to-one
mapping of the fundamental period strip –π < y ≤ π in the z plane onto the w
plane with the point w = 0 deleted. Because f ′ (z) ≠ 0, the mapping w = exp z
is a conformal mapping at each point z in the complex plane. The family of
horizontal lines y = c for –π < c ≤ π and the segments x = a for –π < y ≤ π
form an orthogonalgrid in the fundamental period strip. Their images under
the mapping w = exp z are the rays ρ > 0 and ø = c and the circles | w| = ea,
respectively. These images form an orthogonal curvilinear grid in the w
plane, as shown in Figure 10.9. If –π < c < d ≤ π, then the rectangle R = {x +



iy : a < x < b, c < y < d} is mapped one-to-one and onto the region G = {ρeiø

: ea < ρ < eb, c < ø < d}. The inverse mapping is the principal branch of the
logarithm z = Log w.

In this section we show how compositions of conformaltransformations
are used to construct mappings with specified characteristics.

 EXAMPLE 10.8 Show that the transformation w = f (z) =  is a one-to-
one conformal mapping of the horizontalstrip 0 < y ≤ π onto the disk | w| < 1.
Furthermore, the x-axis is mapped onto the lower semicircle bounding the
disk, and the line y = π is mapped onto the upper semicircle.

Solution The function f is the composition of Z = exp z followed by w = 
The transformation Z = exp z maps the horizontalstrip 0 < y < π onto the
upper half-plane Im (Z) > 0; the x-axis is mapped on to the positive X-axis;
and the line y = π is mapped onto the negative X-axis. Then the bilinear
transformation w =  maps the upper half-plane Im (Z) > 0 onto the disk | w|
< 1; the positive X-axis is mapped onto the lower semicircle; and the negative
X-axis onto the upper semicircle. Figure 10.10 illustrates the composite
mapping.

Figure 10.9 The conformal mapping w = expz.

 EXAMPLE 10.9 Show that the transformation w = f (z) =  is a one-
to-one conformal mapping of the unit disk | z| < 1 onto the horizontal strip | v|



< . Furthermore, the upper semicircle of the disk is mapped onto the line v = 
 and the lower semicircle onto v = 

Solution The function w = f (z) is the composition of the bilinear
transformation Z =  followed by the logarithmic mapping w = Log z. The
image of the disk | z| < 1 under the bilinear mapping Z =  is the right half-
plane Re (Z) > 0; the upper semicircle is mapped onto the positive Y-axis; and
the lower semicircle is mapped onto the negative Y-axis. The logarithmic
function w = LogZ then maps the right half-plane onto the horizontal strip;
the image of the positive Y-axis is the line v =  and the image of the negative
Y-axis is the line v = 

 EXAMPLE 10.10 Show that the transformation w = f (z) =  is a one-
to-one conformal mapping of the portion of the disk | z| < 1 that lies in the
upper half-plane Im(z) > 0 onto the upper half-plane Im (w) > 0. Furthermore,
show that the image of the semicircular portion of the boundary is mapped
onto the negative u-axis, and the segment –1 < x < 1, y = 0 is mapped onto
the positive u-axis.

Figure 10.10 The composite transformation w = 



Figure 10.11 The composite transformation w = 

Figure 10.12 The composite transformation w = 

Solution The function w = f (z) is the composition of the bilinear
transformation  followed by the mapping w = Z2. The image of the
half-disk under the bilinear mapping  is the first quadrant X > 0, Y > 0;
the image of the segment y = 0, −1 < x < 1, is the positive X-axis; and the
image of the semicircle is the positive Y -axis. The mapping w = Z2 then
maps the first quadrant in the Z plane onto the upper half-plane Im (w) > 0, as
shown in Figure 10.12.

 EXAMPLE 10.11 Consider the function w = f (z) = , which is the



composition of the functions Z = z2 − 1 and w = , where the branch of the
square root is , where 0 ≤ φ < 2π. Show that the
transformation w = f (z) maps the upper half-plane Im (z) > 0 one-to-one and
onto the upper half-plane Im (w) > 0 slit along the segment u = 0, 0 < v ≤ 1.

Solution The function Z = z2 − 1 maps the upper half-plane Im (z) > 0 one-
to-one and onto the Z-plane slit along the ray Y = 0, X ≥ –1. Then the function
w =  maps the slit plane onto the slit half-plane, as shown in Figure 10.13.

Remark 10.1 The images of the horizontal lines y = b are curves in the w
plane that bend around the segment from 0 to i. The curves represent the
streamlines of a fluid flowing across the w plane. We discuss fluid flows in
more detailin Section 11.7.

Figure 10.13 The composite transformation w = f (z) =  and the
intermediate steps Z = z2 – 1 and w = .

10.3.1 The Mapping 



The double-valued function f (z) =  has a branch that is continuous for
values of z distant from the origin. This feature is motivated by our desire for
the approximation  ≈ z to hold for values of z distant from the origin.
We begin by expressing  as

where the principal branch of the square root function is used in both factors.
We claim that the mapping w = f1 (z) is a one-to-one conformal mapping
from the domain set D1, consisting of the z plane slit along the segment –1 ≤
x ≤ 1, y = 0, onto the range set H1, consisting of the w plane slit along the
segment u = 0, –1 ≤ v ≤ 1. To verify this claim, we investigate the two
formulas on the right side of Equation (10-22) and express them in the form

where r1 = | z − 1| and ε1 = Arg (z − 1), and

where r2 = | z + 1| and θ1 = Arg (z + 1).
The discontinuities of Arg (z − 1) and Arg (z + 1) are points on the

realaxis such that x ≤ 1 and x ≤ – 1, respectively. We now show that f1 (z) is
continuous on the ray x < –1, y = 0.

We let z0 = x0 + iy0 denote a point on the ray x ≤ – 1, y = 0, and then
obtain the following limits as z approaches z0 from the upper and lower half-
planes, respectively:

and



Both limits agree with the value of f1 (z0), so it follows that f1 (z) is
continuous along the ray x < –1, y = 0.

We can easily find the inverse mapping and express it similarly:

where the branches of the square root function are given by

where ρ1 = | w + i|, ø1 = , and , and

where ρ2 = | w − i|, , and 
A similar argument shows that g1 (w) is continuous for all w except those

points that lie on the segment u = 0, –1 ≤ v ≤ 1. Verification that

hold for z in D1 and w in H1, respectively is straightforward. Therefore, we
conclude that w = f1 (z) is a one-to-one mapping from D1 onto H1. Verifying
that f1 (z) is also analytic on the ray x < –1, y = 0, is tedious. We leave it as a
challenging exercise.

10.3.2 The Riemann Surface for 
Using the other branch of the square root, we find that w = f2 (z) = –f1 (z) is a
one-to-one conformal mapping from the domain set D2, consisting of the z
plane the w plane slit along the segment –1 ≤ x ≤ 1, y = 0, onto the range set
H2, consisting of the w plane slit along the segment u = 0, — 1 ≤ v ≤ 1. The
sets D1 and H1 for f1 (z) and D2 and H2 for f2 (z) are shown in Figure 10.14.

We obtain the Riemann surface for w =  by gluing the edges of D1
and D2 together and the edges of H1 and H2 together. In the domain set, we
glue edges A to a, B to b, C to c, and D to d. In the image set, we glue edges
A′ to a′, B′ to b′, C′ to c′, and D′ to d′. The result is a Riemann domain surface
and Riemann image surface for the mapping, as illustrated in Figures



10.15(a) and 10.15(b), respectively.

Figure 10.14 The mappings w = f1 (z) and w = f2 (z).

Figure 10.15 The Riemann surfaces for the mapping w = 

EXERCISES FOR SECTION 10.3



1. Find the image of the semi-infinite strip 0 < x < , y > 0, under the
transformation w = exp (iz).

2. Find the image of the rectangle 0 < x < ln 2, 0 < y < , under the
transformation w = exp z.

3. Find the image of the first quadrant x > 0, y > 0, under w = 

4. Find the image of the annulus 1 < | z| < e under w = Logz.

5. Show that the multivalued function w = log z maps the annulus 1 < | z| < e
onto the vertical strip 0 < Re (w) < 1.

6. Show that w =  maps the portion of the right half-plane Re (z) > 0 that
lies to the right of the hyperbola x2 − y2 = 1 onto the unit disk | w| < 1.

7. Show that the function w =  the region 1 < | w|.

8. Show that w = , maps the horizontal strip | y| <  onto the unit disk | w|
< 1.

9. Find the image of the upper half-plane Im (z) > 0under w = 

10. Find the image of the portion of the upper half-plane Im (z) > 0 that lies
outside the circle | z| = 1 under the transformation w = 

11. Show that the function w = (1+z)2 / (1 − z)2 maps the portion of the disk |
z| < 1 that lies in the first quadrant onto the portion of the upper half-plane
Im (w) > 0 that lies outside the unit disk.

12. Find the image of the upper half-plane Im (z) > 0 under w = Log (1 − z2).
13. Find the branch of w =  that maps the right half-plane Re (z) > 0 on

to the right half-plane Re (w) > 0 slit along the segment 0 < u ≤ 1, v = 0.
14. Show that the transformation w =  maps the portion of the first

quadrant x > 0, y > 0, that lies outside the circle | z| = 1 onto the first
quadrant u > 0, v > 0.

15. Find the image of the sector r > 0, 0 < θ < , under w = .
16. Show that the function f1 (z) in Equation (10-22) is analytic on the ray x ≤

–1, y =0.



10.4 MAPPING BY TRIGONOMETRIC
FUNCTIONS

The trigonometric functions can be expressed with compositions that involve
the exponential function followed by a bilinear function. We can find images
of certain regions by following the shapes of successive images in the
composite mapping.

 EXAMPLE 10.12 Show that the transformation w = tan z is a one-to-one
conformal mapping of the vertical strip | x| <  onto the unit disk | w| < 1.

Solution Using Equations (5-32) and (5-34), we write

Then, mapping w = tan z can be considered to be the composition

The function Z = exp (i2z) maps the vertical strip | x| <  one-to-one and onto
the right half-plane Re (Z) > 0. Then the bilinear transformation w = 
maps the half-plane one-to-one and onto the disk, as shown in Figure 10.16.

 EXAMPLE 10.13 Show that the transformation w = f (z) = sin z is a one-
to-one conformal mapping of the vertical strip | x| <  onto the w plane slit
along the rays u ≤ –1, v = 0, and u ≥ 1, v = 0.

Solution Because f ′ (z) = cos z ≠ 0 for values of z satisfying the inequality 
, it follows that w = sin z is a conformal mapping. Using

Equation (5-33), we write

u + iv = sin z = sin x cosh y + i cos x sinh y.

If | a| < , then the image of the vertical line x = a is the curve in the w plane



given by the parametric equations

u = sin a cosh y and v = cos a sinh y,

Figure 10.16 The composite transformation w = tan z.

for –∞ < y < ∞. Next, we rewrite these equations as

We now eliminate y from these equations by squaring and using the
hyperbolic identity cosh2 y − sinh2 y = 1. The result is the single equation

The curve given by Equation (10-23) is identified as a hyperbola in the uv
plane that has foci at the points (±1, 0). Therefore, the vertical line x = a is
mapped one-to-one onto the branch of the hyperbola given by Equation (10-
23) that passes through the point (sin a, 0). If 0 < a < , then it is the right
branch; if , it is the left branch. The image of the y-axis, which is the
line x = 0, is the v-axis. The images of several vertical lines are shown in
Figure 10.17(a).



The image of the horizontal segment , y = b is the curve in
the w plane given by the parametric equations

u = sin x cosh b and v = cos x sinh b

Figure 10.17 The transformation w = sin z.

for  We rewrite them as

We now eliminate x from the equations by squaring and using the
trigonometric identity sin2 x + cos2 x = 1. The result is the single equation

The curve given by Equation (10-24) is identified as an ellipse in the uv plane
that passes through the points (± cosh b,0) and (0, ± sinh b) and has foci at
the points (±1, 0). Therefore, if b > 0, then v = cos x sinh b > 0, and the
image of the horizontal segment is the portion of the ellipse given by
Equation (10-24) that lies in the upper half-plane Im (w) > 0. If b < 0, then it
is the portion that lies in the lower half-plane. The images of several
segments are shown in Figure 10.17(b).

10.4.1 The Complex Arcsine Function



We now develop explicit formulas for the real and imaginary parts of the
principal value of the arcsine function w = f (z) = Arcsinz. We use this
mapping to solve problems involving steady temperatures and ideal fluid
flow in Section 11.7. The mapping is found by solving the equation

for u and v expressed as functions of x and y. To solve for u, we first equate
the realand imaginary parts of Equation (10-25) and obtain the equations

Then we eliminate v from these equations and obtain the single equation

If we treat u as a constant, this equation represents a hyperbola in the xy
plane, the foci occur at the points (±1, 0), and the transverse axis is given by
2 sin u. Therefore, a point (x, y) on the hyperbola must satisfy the equation

The quantity on the right side of this equation is the difference of the
distances from (x, y) to (–1, 0) and from (x, y) to (1, 0). We now solve the
equation for u to obtain the real part:

The principal branch of the real function Arcsin t is used in Equation (10-
26), where the range values satisfy the inequality .

Similarly, we can start with Equation (10-25) and obtain the equations

We then eliminate u from these equations and obtain the single equation

If we treat v as a constant, then this equation represents an ellipse in the xy
plane, the foci occur at the points (±1, 0), and the major axis has length 2
cosh v. Therefore, a point (x, y) on this ellipse must satisfy the equation



The quantity on the right side of this equation is the sum of the distances
from (x, y) to (–1, 0) and from (x, y) to (1, 0).

The function z = sin w maps points in the upper half (lower half) of the
vertical strip  onto the upper half-plane (lower half-plane),
respectively. Hence, we can solve the preceding equation and obtain v as a
function of x and y:

Figure 10.18 The mapping w = Arcsin z.

where sign y = 1, if y ≥ 0, and sign y = – 1, if y < 0. The realfunction given by
Arccosh t = ln  with t ≥ 1 is used in Equation (10-27).

Therefore, the mapping w = Arcsin z is a one-to-one conformal mapping
of the z plane cut along the rays x ≤ –1, y = 0, and x ≥ 1, y = 0, onto the
vertical strip  in the w plane, which can be construed from Figure
10.17 if we interchange the roles of the z and w planes. The image of the
square 0 ≤ x ≤ 4, 0 ≤ y ≤ 4, under w = Arcsin z, is shown in Figure 10.18. We
obtained it by plotting the two families of curves {(u (c, t), v (c, t)) : 0 ≤ t ≤
4} and {(u (t, c), v (t, c)) : 0 ≤ t ≤ 4}, where c = , k = 0, 1, … , 20. The
formulas in Equations (10-26) and (10-27) are also convenient for evaluating
Arcsin z, as shown in Example 10.14.



 EXAMPLE 10.14 Find the principal value Arcsin (1 + i).

Solution Using Formulas (10-26) and (10-27), we get

Therefore, we have

Arcsin(1 + i) ≈ 0.666239432 + i1.061275062.

Is there any reason to assume that there exists a conformal mapping for
some specified domain D onto another domain G? Our finaltheorem
concerning the existence of conformal mappings is attributed to Riemann and
is presented in Lars V. Ahlfors, Complex Analysis (New York: McGraw-
Hill), Chapter 6, 1966.

 Theorem 10.4 (Riemann mapping theorem) If D is any simply
connected domain in the plane (other than the entire plane itself ), then
there exists a one-to-one conformal mapping w = f (z) that maps D
onto the unit disk |w| < 1.

EXERCISES FOR SECTION 10.4
1. Find the image of the semi-infinite strip  < x < 0, y > 0, under the

mapping w = tan z.

2. Find the image of the vertical strip 0 ≤ Re (z) <  under the mapping w =
tan z.

3. Find the image of the vertical line x =  under the transformation w = sin



z.

4. Find the image of the horizontal line y = 1 under the transformation w =
sin z.

5. Find the image of the rectangle R = {x + iy : 0 < x < , 0 < y < 1} under
the transformation w = sin z.

6. Find the image of the semi-infinite strip  < x < 0, y > 0, under the
mapping w = sin z.

7. (a) 

(b) 

8. Use Equations (10-26) and (10-27) to find

(a) Arcsin (2 + 2 i).
(b) Arcsin (–2 + i).
(c) Arcsin (1 – 3i).
(d) Arcsin (–4 − i).

9. Show that w = sin z maps the rectangle R =  one-to-
one and onto the portion of the upper half-plane Im (w) > 0 that lies
inside the ellipse

10. Find the image of the vertical strip  < x < 0 under the mapping w = cos
z.

11. Find the image of the horizontal strip 0 < Im (z) <  under w = sinh z.
12. Find the image of the right half-plane Re (z) > 0under the mapping

13. Find the image of the first quadrant x > 0, y > 0, under w = Arcsinz.

14. Find the image of the first quadrant x > 0, y > 0, under w = Arcsin(z2).

15. Show that the transformation w = sin2 z is a one-to-one conformal
mapping of the semi-infinite strip 0 < x < , y > 0, onto the upper half-
plane Im (w) > 0.

16. Find the image of the semi-infinite strip | x| < , y > 0, under the mapping



w = Log (sin z).

1See, for instance, R. Creighton Buck, Advanced Calculus, 3rd ed. (New York, McGraw-
Hill), pp. 358–361, 1978.



chapter 11
applications of harmonic functions

Overview
A wide varietyof problems in engineering and physics involve harmonic
functions, which are the real or imaginarypart of an analytic function. The
standard applications are two dimensional steadystate temperatures,
electrostatics, fluid flow and complex potentials. The techniques of
conformal mapping and integral representation can be used to construct a
harmonic function with prescribed boundary values. Noteworthy methods
include Poisson’s integral formulae; the Joukowski transformation; and the
Schwarz–Christoffel transformation. Modern computer software is capable of
implementing these complex analysis methods.

11.1 PRELIMINARIES

In most applications involving harmonic functions, a harmonic function that
takes on prescribed values along certain contours must be found. In
presenting the material in this chapter, we assume that you are familiar with
the material covered in Sections 2.4, 3.3, 5.1, and 5.2. If you aren’t, please
review it before proceeding.

 EXAMPLE 11.1 Find the function u (x, y) that is harmonic in the vertical
strip a ≤ Re (z) ≤ b and takes on the boundary values

u (a, y) = U1 and u (b, y) = U2



along the vertical lines x = a and x = b, respectively.

Solution Intuition suggests that we should seek a solution that takes on
constant values along the vertical lines of the form x = x0 and that u (x, y) be
a function of x alone; that is,

u (x, y) = P (x), for a ≤ x ≤ b and for all y.

Laplace’s equation, uxx (x, y) + uyy (x, y) = 0, implies that P″ (x) = 0, which
implies P (x) = mx + c, where m and c are constants. The stated boundary
conditions u (a, y) = P (a) = U1 and u (b, y) = P (b) = U2 lead to the solution

The level curves u (x, y) = constant are vertical lines as indicated in Figure
11.1.

Figure 11.1 The harmonic function .

 EXAMPLE 11.2 Find the function  (x, y) that is harmonic in the sector 0
< Arg z < α, where α ≤ π, and takes on the boundary values

 (x, 0) = C1, for x > 0 and

 (x, y) = C2, at points on the ray r > 0, θ = α.



Solution Recalling that the function Arg z is harmonic and takes on constant
values along rays emanating from the origin, we see that a solution has the
form

 (x, y) = a + bArg z,

where a and b are constants. The boundary conditions lead to

The situation is shown in Figure 11.2.

Figure 11.2 The harmonic function .

Figure 11.3 The harmonic function .

 EXAMPLE 11.3 Find the function Φ(x, y) that is harmonic in the annulus
1 < | z| < R and takes on the boundary values



Φ(x, y) = K1, when | z| =1, and

Φ(x, y) = K2, when | z| = R.

Solution This problem is a companion to the one in Example 11.2. Here we
use the fact that ln | z| is a harmonic function, for all z ≠ 0. The solution is

and the level curves Φ (x, y) = constant are concentric circles, as illustrated in
Figure 11.3.

11.2 INV ARIANCE OF LAPLACE’S
EQUATION AND THE DIRICHLET
PROBLEM

 Theorem 11.1 Let Φ(u, v) be harmonic in a domain G in the w plane.
Then Φ satisfies Laplace’s equation

at each point w = u+iv in G. If w = f (z) = u (x, y)+iv (x, y) is a
conformal mapping from a domain D in the z plane onto G, then the
composition

is harmonic in D, and ø satisfies Laplace's equation

at each point z = x + iy in D.



Proof Equations (11-1) and (11-3) are Laplace’s equations for the
harmonic functions Φ and ø, respectively (see Section 3.3). A direct
proof that the function ø in Equation (11-2) is harmonic would involve
a tedious calculation of the partial derivatives øxx and øyy An easier
proof involves the use of a complex variable technique. We assume
that there is a harmonic conjugate  (u, v) so that the function

g (w) = Φ (u, v) + i  (u, v)

is analytic in a neighborhood of the point w0 = f (z0). Then the
composition h (z) = g (f (z)) is analytic in a neighborhood of z0 and can
be written

h (z) = Φ (u (x, y), v (x, y)) + i  (u (x, y), v (x, y)).

If we invoke Theorem 3.8, the real part of the analytic function h(z) is
harmonic. Thus it follows that Φ(u (x, y), v (x, y)) is harmonic in a
neighborhood of z0, and Theorem 11.1 is established.

 EXAMPLE 11.4 Show that ø (x, y) = Arctan  is harmonic in the
disk | z| < 1.

Solution The results of Exercise 7(b), of Section 10.2, show that the function

is a conformal mapping of the disk | z| < 1 onto the right half-plane Re(w) >
0. The results from Exercise 7(b), Section 5.2, show that the function

is harmonic in the right half-plane Re(w) > 0. Taking the real and imaginary
parts of f (z), we write



Substituting these equations into the formula for Φ (u, v) and using Equation
(11-2), we find that  is harmonic for | z| < 1.

Let D be a domain whose boundary is made up of piecewise smooth contours
joined end to end. The Dirichlet problem is to find a function ø that is
harmonic in D such that ø takes on prescribed values at points on the
boundary. Let’s first look at this problem in the upper half-plane.

 EXAMPLE 11.5 Show that the function

is harmonic in the upper half-plane Im(w) > 0 and takes on the boundary
values

Solution The function

is analytic in the upper half-plane Im (w) > 0, and its imaginary part is the
harmonic function Arg (w − u0).

Remark 11.1 We let t be a real number and use the convention Arctan (±∞)
=  so that the function Arctan t denotes the branch of the inverse tangent that
lies in the range 0 < Arctan t < π. Doing so permits us to write the solution in
Equation (11-4) as 

 Theorem 11.2 (N-value Dirichlet problem for the upper half-



plane) Let u1 < u2 <…< uN-1 denote N − 1 real constants. The
function

is harmonic in the upper half-plane Im(w) > 0 and takes on the
boundary values

The situation is illustrated in Figure 11.4.

Proof Each term in the sum in Equation (11-5) is harmonic, so it
follows that Φ is harmonic for Im (w) > 0. To show that Φ has the
prescribed boundary conditions, we fix j and let uj < u < uj+1. Using
Example 11.5, we get

Figure 11.4 The boundary conditions for the harmonic function Φ (u, v).



Substituting these equations into Equation (11-5) gives

You can verifythat the boundary conditions are correct for u < u1 and u
> uN−1 to complete the proof.

 EXAMPLE 11.6 Find the function ø (x, y) that is harmonic in the upper
half-plane Im(z) > 0 and takes on the boundary values indicated in Figure
11.5.

Solution This is a four-value Dirichlet problem in the upper half-plane
defined by Im (z) > 0. For the z plane, the solution in Equation (11-5)
becomes

Here we have a0 = 4, a1 = 1, a2 = 3, and a3 = 2 and x1 = −1, x2 = 0, and x3 =
1, which we substitute into the equation for ø to obtain



Figure 11.5 The boundary values for the Dirichlet problem.

 EXAMPLE 11.7 Find the function ø (x, y) that is harmonic in the upper
half-plane Im(z) > 0 and takes on the boundary values

Figure 11.6 The graph of u = ø (x, y) with the boundary values ø (x, 0) = 1,
for | x| < 1, and ø (x, 0) = 0, for | x| > 1.

Solution This three-value Dirichlet problem has a0 = 0, a1 = 1, and a2 = 0
and x1 = −1 and x2 = 1. Applying Equation (11-5) yields

A three-dimensional graph of u = ø (x, y) is shown in Figure 11.6.

We now state the N-value Dirichlet problem for a simplyconnected
domain. We let D be a simplyconnected domain bounded by the simple
closed contour C and let z1, z2,…, zN denote N points that lie along C in this
specified order as C is traversed in the positive direction (counterclockwise).
Then we let Ck denote the portion of C that lies strictly between zk and zk+1,



for k = 1, 2,…, N −1, and let CN denote the portion that lies strictly between
zN and z1. Finally, we let a1, a2,…, aN be real constants. We want to find a
function ø (x, y) that is harmonic in D and continuous on D  C1  C2 …  CN
that takes on the boundary values

The situation is illustrated in Figure 11.7.

Figure 11.7 The boundary values for ø (x, y) for the Dirichlet problem in the
simply connected domain D.

One method for finding ø is to find a conformal mapping

of D onto the upper half-plane Im (w) > 0, such that the N points z1, z2,…, zN
are mapped onto the points uk = f (zk), for k = 1, 2,…, N −1, and zN is mapped
onto uN = +∞ along the u-axis in the w plane.

When we use Theorem 11.1, the mapping in Equation (11-7) gives rise to
a new N-value Dirichlet problem in the upper half-plane Im (w) > 0 for which
the solution is given by Theorem 11.2. If we set a0 = aN, then the solution to
the Dirichlet problem in D with the boundary values from Equation (11-6) is



This method relies on our abilityto construct a conformal mapping from
D onto the upper half-plane Im (w) > 0. Theorem 10.4 guarantees the
existence of such a conformal mapping.

 EXAMPLE 11.8 Find a function ø (x, y) that is harmonic in the unit disk |
z| < 1 and takes on the boundary values

Solution Example 10.3 showed that the function

Figure 11.8 The Dirichlet problems for | z| < 1 and Im (w) > 0.

is a one-to-one conformal mapping of the unit disk | z| < 1 onto the upper
half-plane Im (w) > 0. Equation (11-9) reveals that the points z = x + iy lying
on the upper semicircle y > 0, 1 – x – y = 0 are mapped onto the positive u-
axis. Similarly, the lower semicircle is mapped onto the negative u-axis, as
shown in Figure 11.8. The mapping given by Equation (11-9) gives rise to a
new Dirichlet problem of finding a harmonic function Φ (u, v) that has the
boundary values

as shown in Figure 11.8. Using the result of Example 11.5 and the functions u
and v from Equation (11-9), we get the solution to Equation (11-8):



 EXAMPLE 11.9 Find a function ø (x, y) that is harmonic in the upper half-
disk H : y > 0, | z| < 1 and takes on the boundary values

Solution When we use the result of Exercise 4, Section 10.2, the function in
Equation (11-9) maps the upper half-disk H onto the first quadrant Q : u > 0,
v > 0. The conformal mapping given in Equation (11-9) maps the points z = x
+ iy that lie on the segment y = 0, –1 < x < 1, onto the positive v-axis.

Equation (11-9) gives rise to a new Dirichlet problem of finding a
harmonic function Φ (u, v) in Q that has the boundary values

Figure 11.9 The Dirichlet problems for the domains H and Q.

as shown in Figure 11.9. In this case, the method in Example 11.2 can be
used to show that Φ (u, v) is given by

Using the functions u and v in Equation (11-9) in the preceding equation, we
find the solution of the Dirichlet problem in H:



A three-dimensional graph u = ø (x, y) in cylindrical coordinates is shown in
Figure 11.10.

 EXAMPLE 11.10 Find a function ø (x, y) that is harmonic in the
quarterdisk G : x > 0, y>0, | z| < 1 and takes on the boundary values

Solution The function

maps the quarter-disk onto the upper half-disk H : v > 0, | w| < 1. The new
Dirichlet problem in H is shown in Figure 11.11. From the result of Example
11.9 the solution Φ (u,v) in H is

Figure 11.10 The graph 



Figure 11.11 The Dirichlet problems for the domains G and H.

Using Equation (11-10), we can show that u2+ v2 = (x2+ y2)2 and 2v = 4xy,
which we use in Equation (11-11) to construct the solution ø in G:

A three-dimensional graph u = ø (x, y) in cylindrical coordinates is shown in
Figure 11.12.

Figure 11.12 The graph

EXERCISES FOR SECTION 11.2



For each exercise, find a solution ø (x, y) of the Dirichlet problem in the
domain indicated that takes on the prescribed boundary values.

1. Find the function ø (x, y) that is harmonic in the horizontal strip 1 ≤ Im (z)
≤ 2 and has the boundary values

2. Find the function ø (x, y) that is harmonic in the sector 0 < Arg z <  and
has the boundary values

3. Find the function ø (x, y) that is harmonic in the annulus 1 < | z| < 2 and
has the boundary values

4. Find the function ø (x, y) that is harmonic in the upper half-plane Im (z) >
0 and has the boundary values

5. Find the function ø (x, y) that is harmonic in the upper half-plane Im (z) >
0 and has the boundary values

6. Find the function ø (x, y) that is harmonic in the first quadrant x > 0, y > 0
and has the boundary values

7. Find the function ø (x, y) that is harmonic in the unit disk | z| < 1 and has
the boundary values

8. Find the function ø (x, y) that is harmonic in the unit disk | z| < 1 and has
the boundary values

9. Find the function ø (x, y) that is harmonic in the upper half-disk y > 0, | z|
< 1 and has the boundary values



10. Find the function ø (x, y) that is harmonic in the portion of the upper half-
plane Im (z) > 0 that lies outside the circle | z| = 1 and has the boundary
values

Hint: Use the mapping w =  and the result of Example 11.9.
11. Find the function ø (x, y) that is harmonic in the quarter-disk x > 0, y > 0, |

z| < 1 and has the boundary values

12. Find the function ø (x, y) that is harmonic in the unit disk | z| < 1 and has
the boundary values

11.3 POISSON’S INTEGRAL FORMULA
FOR THE UPPER HALF-PLANE

The Dirichlet problem for the upper half-plane Im (z) > 0 is to find a function
ø (x, y) that is harmonic in the upper half-plane and has the boundary values ø
(x, 0) = U (x), where U (x) is a real-valued function of the real variable x.

 Theorem 11.3 (Poisson’s integral formula) Let U (t) be a real-
valued function that is piecewise continuous and bounded for all real t.
The function



is harmonic in the upper half-plane Im (z) > 0 and has the boundary
values

ø (x, 0) = U (x)

wherever U is continuous.

Proof Equation (11-12) is easy to determine from the results of
Theorem 11.2 regarding the Dirichlet problem. Let t1 < t2 <…< tN
denote N points that lie along the x-axis. Let t*0 < t*1 <…< t*N be N +
1 points chosen so that t*k-1 < tk < t*k, for k = 1, 2,…, N, and that U (t)
is continuous at each value t*k. Then according to Theorem 11.2, the
function

is harmonic in the upper half-plane and takes on the boundary values

as shown in Figure 11.13.
We use properties of the argument of a complex number (see

Section 1.4) to write Equation (11-13) in the form

Hence the value Φ is given by the weighted mean

where the angles Δθk, for k = 0, 1,…, N, sum to π and are also shown



in Figure 11.13.
Using the substitutions

Figure 11.13 Boundary Values for Φ.

we write Equation (11-14) as

The limit of this Riemann sum becomes the improper integral

and the result is established.

 EXAMPLE 11.11 Find the function ø (x, y) that is harmonic in the upper
half-plane Im (z) > 0 and has the boundary values

Solution Using Equation (11-12), we obtain

Using the antiderivative in Equation (11-15), we write this solution as



 EXAMPLE 11.12 Find the function ø (x, y) that is harmonic in the upper
half-plane Im (z) > 0 and has the boundary values

Solution Using Equation (11-12), we obtain

Figure 11.14 The graph of u = ø (x, y) with the boundary values ø (x,0) = x,
for | x| < 1, and ø (x, 0) = 0, for | x| > 1.

Using techniques from calculus and Equations (11-15), we write the solution
as

The function ø (x, y) is continuous in the upper half-plane, and on the
boundary ø (x, 0), it has discontinuities at x = ± 1 on the real axis. The graph
in Figure 11.14 shows this phenomenon.



 EXAMPLE 11.13 Find ø (x, y) that is harmonic in the upper half-plane Im
(z) > 0 and that has the boundary values ø (x, 0) = x, for | x| < 1, ø (x, 0) = −1,
for x < −1, and ø (x, 0) = 1, for x > 1.

Solution Using techniques from Section 11.2, we find that the function

is harmonic in the upper half-plane and has the boundary values v (x, 0) = 0,
for | x| < 1, v (x, 0) = −1, for x < −1, and v (x, 0) = 1, for x > 1. This function
can be added to the one in Example 11.12 to obtain the desired result:

Figure 11.15 shows the graph of ø (x, y).

Figure 11.15 The graph of u = (x, y) with the boundary values ø (x, 0) = x,
for | x| < 1, ø (x, 0) = −1, for x < −1, and ø (x, 0) = 1, for x > 1.

EXERCISES FOR SECTION 11.3
1. Use Poisson’s integral formula to find the harmonic function ø (x, y) in

the upper half-plane that takes on the boundary values



2. Use Poisson’s integral formula to find the harmonic function ø (x, y) in
the upper half-plane that takes on the boundary values

3. Use Poisson’s integral formula for the upper half-plane to conclude that

4. Use Poisson’s integral formula for the upper half-plane to conclude that

5. Show that the function ø (x, y) given by Poisson’s integral formula is
harmonic by applying Leibniz’s rule, which permits you to write

6. Let U (t) be a real-valued function that satisfies the conditions for
Poisson’s integral formula for the upper half-plane. If U (t) is an even
function so that U (–t) = U (t), then show that the harmonic function ø (x,
y) has the property ø (–x, y) = ø (x, y).

7. Let U (t) be a real-valued function that satisfies the conditions for
Poisson’s integral formula for the upper half-plane. If U (t) is an odd
function so that for all t U (–t) = –U(t), then show that the harmonic
function ø (x, y) has the property ø (–x, y) = –ø (x, y).

11.4 TWO-DIMENSIONAL
MATHEMATICAL MODELS

We now consider problems involving steadystate heat flow, electrostatics,
and ideal fluid flow that can be solved with conformal mapping techniques.
Conformal mapping transforms a region in which the problem is posed to one



in which the solution is easy to obtain. As our solutions involve only two
independent variables, x and y, we first mention a basic assumption needed
for the validity of the model.

The physical problems we just mentioned are real-world applications and
involve solutions in three-dimensional Cartesian space. Such problems
generally would involve the Laplacian in three variables and the divergence
and curl of three-dimensional vector functions. Since complex analysis
involves only x and y, we consider the special case in which the solution does
not varywith the coordinate along the axis perpendicular to the xy plane. For
steadystate heat flow and electrostatics, this assumption means that the
temperature, T, or the potential, V , varies onlywith x and y. Thus for the flow
of ideal fluids, the fluid motion is the same in anyplane that is parallel to the z
plane. Curves drawn in the z plane are to be interpreted as cross sections that
correspond to infinite cylinders perpendicular to the z plane. An infinite
cylinder is the limiting case of a “long” physical cylinder, so the
mathematical model that we present is valid provided the three-dimensional
problem involves a physical cylinder long enough that the effects at the ends
can be reasonablyneglected.

In Sections 11.1 and 11.2, we showed how to obtain solutions ø (x, y) for
harmonic functions. For applications, we need to consider the familyof level
curves

and the conjugate harmonic function ψ (x, y) and its familyof level curves

For convenience, we introduce the term complex potential for the analytic
function

F (z) = ø (x, y) + iψ (x, y).

We use Theorem 11.4, regarding the orthogonalityof the families of level
curves (Equations (11-16) and (11-17)), to develop ideas concerning the
physical applications that we will consider.



 Theorem 11.4 (Orthogonal families of level curves) Let ø(x, y) be
harmonic in a domain D, let ψ (x, y) be the harmonic conjugate, and
let F (z) = ø (x, y) + iψ (x, y) be the complex potential. Then the two
families of level curves given in Equations (11-16) and (11-17),
respectively, are orthogonal in the sense that if (a, b) is a point
common to the two curves ø (x, y) = K1 and ψ (x, y) = K2 and if F' (a +
ib) = 0, then these two curves intersect orthogonally.

Proof Since ø (x, y) = K1 is an implicit equation of a plane curve, the
gradient vector grad ø, evaluated at (a, b), is perpendicular to the curve
at (a, b). This vector is given by

N1 = øx (a, b) + iøy (a, b).

Similarly, the vector N2 defined by

N2 = ψx (a, b) + iψy (a, b)

is orthogonal to the curve ø (x, y) = K2 at (a, b). Using the Cauchy–
Riemann equations, øx = ψy and øy = −ψx, we have

In addition, F' (a + ib) ≠ 0, so we have

øx (a, b) + iψx (a, b) ≠ 0.

The Cauchy–Riemann equations and the facts øx (a, b) ≠ 0 and ψx (a,
b) ≠ 0 implythat both N1 and N2 are nonzero. Therefore, Equation (11-
18) implies that N1 is perpendicular to N2, and hence the curves are
orthogonal.

The complex potential F (z) = ø (x, y) + iψ (x, y) has many physical
interpretations. Suppose, for example, that we have solved a problem in
steadystate temperatures. Then we can obtain the solution to a similar



problem with the same boundary conditions in electrostatics by interpreting
the isothermals as equipotential curves and the heat flow lines as flux lines.
This implies that heat flow and electrostatics correspond directly.

Or suppose that we have solved a fluid flow problem. Then we can obtain
a solution to an analogous problem in heat flow by interpreting the
equipotentials as isothermals and streamlines as heat flow lines. Various
interpretations of the families of level curves given in Equations (11-16) and
(11-17) and correspondences between families are summarized in Table 11.1.

Physical Phenomenon ø (x, y) = constant ψ (x, y) = constant

Heat flow Isothermals Heat flow lines
Electrostatics Equipotential curves Flux lines
Fluid flow Equipotentials Streamlines
Gravitational field Gravitational potential Lines of force
Magnetism Potential Lines of force
Diffusion Concentration Lines of flow
Elasticity Strain function Stress lines
Current flow Potential Lines of flow

Table 11.1 Interpretations for level curves.

11.5 STEADY STATE TEMPERATURES

In the theoryof heat conduction, an assumption is made that heat flows in the
direction of decreasing temperature. Another assumption is that the time rate
at which heat flows across a surface area is proportional to the component of
the temperature gradient in the direction perpendicular to the surface area. If
the temperature T (x, y) does not depend on time, then the heat flow at the
point (x, y) is given by the vector



where K is the thermal conductivityof the medium and is assumed to be
constant. If Δz denotes a straight-line segment of length Δs, then the amount
of heat flowing across the segment per unit of time is

where N is a unit vector perpendicular to the segment.
If we assume that no thermal energyis created or destroyed within the

region, then the net amount of heat flowing through anysmall rectangle with
sides of length Δx and Δy is identically zero (see Figure 11.16(a)). This leads
to the conclusion that T (x, y) is a harmonic function. The following heuristic
argument is often used to suggest that T (x, y) satisfies Laplace’s equation.
Using Expression (11-19), we find that the amount of heat flowing out the
right edge of the rectangle in Figure 11.16(a) is approximately

(a) The direction of heat flow.                        (b) Heat flow lines and
isothermals.

Figure 11.16 Steadystate temperatures.

and the amount of heat flowing out the left edge is

If we add the contributions in Equations (11-20) and (11-21), the result is



Similarly, the contribution for the amount of heat flowing out of the top and
bottom edges is

Adding the quantities in Equations (11-22) and (11-23), we find that the net
heat flowing out of the rectangle is approximated by the equation

which implies that T (x, y) satisfies Laplace’s equation and is a harmonic
function.

If the domain in which T (x, y) is defined is simplyconnected, then a
conjugate harmonic function S (x, y) exists, and

F (z) = T (x, y) + iS (x, y)

is an analytic function. The curves T (x, y) = K1 are called isothermals and
are lines connecting points of the same temperature. The curves S (x, y) = K2
are called heat flow lines, and we can visualize the heat flowing along these
curves from points of higher temperature to points of lower temperature. The
situation is illustrated in Figure 11.16(b).

Boundary value problems for steadystate temperatures are realizations of
the Dirichlet problem where the value of the harmonic function T (x, y) is
interpreted as the temperature at the point (x, y).

 EXAMPLE 11.14 Suppose that two parallel planes are perpendicular to the
z plane and pass through the horizontal lines y = a and y = b and that the
temperature is held constant at the values T (x, a) = T1 and T (x, b) = T2,
respectively, on these planes. Then T is given by

Solution A reasonable assumption is that the temperature at all points on the
plane passing through the line y = y0 is constant. Hence T (x, y) = t (y), where



t (y) is a function of y alone. Laplace’s equation implies that t″ (y) = 0, and an
argument similar to that in Example 11.1 will show that the solution T (x, y)
has the form given in the preceding equation.

The isothermals T (x, y) = α are easilyseen to be horizontal lines. The
conjugate harmonic function is

and the heat flow lines S (x, y) = β are vertical segments between the
horizontal lines. If T1 > T2, then the heat flows along these segments from the
plane through y = a to the plane through y = b, as illustrated in Figure 11.17.

 EXAMPLE 11.15 Find the temperature T (x, y) at each point in the upper
half-plane Im (z) > 0 if the temperature along the x-axis satisfies

Figure 11.17 The temperature between parallel planes where T1 > T2.

Solution Since T (x, y) is a harmonic function, this problem is an example of
a Dirichlet problem. From Example 11.2, it follows that the solution is

The isotherms T (x, y) = α are rays emanating from the origin. The conjugate
harmonic function is S (x, y) =  (T1 − T2) ln | z|, and the heat flow lines S (x,
y) = β are semicircles centered at the origin. If T1 > T2, then the heat flows
counterclockwise along the semicircles, as shown in Figure 11.18.



 EXAMPLE 11.16 Find the temperature T (x, y) at each point in the upper
half-disk H : Im(z) > 0, | z| < 1 if the temperatures at points on the boundary
satisfy

Solution As discussed in Example 11.9, the function

is a one-to-one conformal mapping of the half-disk H onto the first quadrant
Q : u > 0, v > 0. The conformal map given byEquation (11-24) gives rise to a
new problem of finding the temperature T* (u, v) that satisfies the boundary
conditions

If we use Example 11.2, the harmonic function T* (u,v) is given by

Figure 11.18 The temperature T (x, y) in the upper half-plane where T1 > T2.



Figure 11.19 The temperature T (x, y) in a half-disk.

Substituting the expressions for u and v from Equation (11-24) into Equation
(11-25) yields the desired solution:

The isothermals T (x, y) = constant are circles that pass through the points ±1,
as shown in Figure 11.19.

11.5.1 An Insulated Segment on the Boundary
We now turn to the problem of finding the steadystate temperature function T
(x, y) inside the simply connected domain D whose boundary consists of
three adjacent curves C1, C2, and C3, where T (x, y) = T1 along C1, T (x, y) =
T2 along C2, and the region is insulated along C3. Zero heat flowing across
C3 implies that

where N(x, y) is perpendicular to C3. Thus the direction of heat flow must be
parallel to this portion of the boundary. In other words, C3 must be part of a
heat flow line S (x, y) = constant and the isothermals T (x, y) = constant
intersect C3 orthogonally.

We can solve this problem by finding a conformal mapping

from D onto the semi-infinite strip G : 0 < u < 1, v > 0 so that the image of
the curve C1 is the ray u = 0; the image of the curve C2 is the ray given by u
= 1, v > 0; and the thermallyinsulated curve C3 is mapped onto the thermally
insulated segment 0 < u < 1 of the u-axis, as shown in Figure 11.20.

The new problem in G is to find the steadystate temperature function T*

(u, v) so that along the rays, we have the boundary values



Figure 11.20 Steadystate temperatures with one boundary portion insulated.

The condition that a segment of the boundary is insulated can be expressed
mathematically by saying that the normal derivative of T* (u, v) is zero. That
is

where n is a coordinate measured perpendicularlyto the segment. We can
easily verifythat the function

T* (u, v) = T1+ (T2 − T1)u

satisfies the conditions stated in Equations (11-27) and (11-28) for region G.
Therefore, using Equation (11-26), we find that the solution in D is

T (x, y) = T1+ (T2 − T1) u (x, y).

The isothermals T (x, y) = constant and their images under w = f (z) are also
illustrated in Figure 11.20.

 EXAMPLE 11.17 Find the steadystate temperature T (x, y) for the domain
D consisting of the upper half-plane Im (z) > 0, where T (x, y) has the
boundary conditions



Solution The mapping w = Arcsinz conformally maps D onto the semi-
infinite strip , where the new problem is to find the steady
state

Figure 11.21 The temperature T (x, y) with Ty (x, 0) = 0, for −1 < x < 1, and
boundary values T (x, 0) = −1, for x < −1, and T (x, 0) = 1, for x > 1.

temperature T* (u, v) that has the boundary conditions

Using the result of Example 11.1, we can easilyobtain the solution:

Therefore, the solution in D is

If an explicit solution is required, then we can use Formula (10-26) to obtain



where the function Arcsin t has range values satisfying  see
Figure 11.21.

EXERCISES FOR SECTION 11.5
1. Show that  satisfies Laplace’s equation Hxx +Hyy + Hzz

= 0 in three-dimensional Cartesian space but that  does not
satisfy equation hxx + hyy = 0 in two-dimensional Cartesian space.

2. Find the temperature function T (x, y) in the infinite strip bounded by the
lines y = −x and y = 1 −x that satisfies the following boundary values
(shown in Figure 11.22).

Figure 11.22

3. Find the temperature function T (x, y) in the first quadrant x > 0, y > 0 that
satisfies the following boundary values (shown in Figure 11.23).

Figure 11.23



4. Find the temperature function T (x, y) inside the unit disk | z| < 1 that
satisfies the following boundary values (shown in Figure 11.24). Hint:
Use 

Figure 11.24

5. Find the temperature function T (x, y) in the semi-infinite strip 
 that satisfies the following boundary values (shown in

Figure 11.25).

Figure 11.25

6. Find the temperature function T (x, y) in the domainr > 1, 0 < θ < π that
satisfies the following boundary values (shown in Figure 11.26). Hint: 

.



Figure 11.26

7. Find the temperature function T (x, y) in the domain 1 < r < 2, 0 < θ < 
that satisfies the following boundary conditions (shown in Figure 11.27).

Figure 11.27

8. Find the temperature function T (x, y) in the domain 0 < r < 1, 0 < Arg z <
α that satisfies the following boundary conditions (shown in Figure
11.28). Hint: Use w = Log z.



Figure 11.28

9. Find the temperature function T (x, y) in the first quadrant x > 0, y > 0 that
satisfies the following boundary conditions (shown in Figure 11.29).

Figure 11.29

10. Find the temperature function T (x, y) in the infinite strip 0 < y < π that
satisfies the following boundary conditions (shown in Figure 11.30).
Hint: Use w = ez.



Figure 11.30

11. Find the temperature function T (x, y) in the upper half-plane Im (z) > 0
that satisfies the following boundary conditions (shown in Figure 11.31).

Figure 11.31

12. Find the temperature function T (x, y) in the first quadrant x > 0, y > 0 that
satisfies the following boundary conditions (shown in Figure 11.32).

Figure 11.32

13. For the temperature function

in the upper half-disk | z| < 1, Im (z) > 0, show that the isothermals T (x, y) =
α are portions of circles that pass through the points +1 and −1, as illustrated



in Figure 11.33.

Figure 11.33

14. For the temperature function

in the upper half-plane Im (z) > 0, show that the isothermals T (x, y) = α are
portions of hyperbolas that have foci at the points ±1, as illustrated in Figure
11.34.

Figure 11.34

15. Find the temperature function in the portion of the upper half-plane Im (z)
> 0 that lies inside the ellipse

and satisfies the following boundary conditions (shown
in Figure 11.35). Hint: Use w = Arcsin z.



Figure 11.35

11.6 TWO-DIMENSIONAL
ELECTROSTATICS

A two-dimensional electrostatic field is produced by a system of charged
wires, plates, and cylindrical conductors that are perpendicular to the z plane.
The wires, plates, and cylinders are assumed to be so long that the effects at
the ends can be neglected, as mentioned in Section 11.4. This assumption
results in an electric field E(x, y) that can be interpreted as the force acting on
a unit positive charge placed at the point (x, y). In the studyof electrostatics,
the vector field E(x, y) is shown to be conservative and is derivable from a
function ø (x, y), called the electrostatic potential, expressed as

If we make the additional assumption that there are no charges within the
domain D, then Gauss’s law for electrostatic fields implies that the line
integral of the outward normal component of E(x, y) taken around anysmall
rectangle lying inside D is identically zero. A heuristic argument similar to
the one we used for steadystate temperatures, with T (x, y) replaced by ø (x,
y), will show that the value of the line integral is

This quantityis zero, so we conclude that ø (x, y) is a harmonic function. If
we let ψ (x, y) be the harmonic conjugate, then



is the complex potential (not to be confused with the electrostatic potential).
The curves ø (x, y) = K1 are called the equipotential curves, and the

curves ψ (x, y) = K2 are called the lines of flux. If a small test charge is
allowed to move under the influence of the field E(x, y), then it will travel
along a line of flux. Boundary value problems for the potential function ø (x,
y) are mathematically the same as those for steady state heat flow, and they
are realizations of the Dirichlet problem where the harmonic function is ø (x,
y).

 EXAMPLE 11.18 Consider two parallel conducting planes that pass
perpendicular to the z plane through the lines x = a and x = b, which are kept
at the potentials U1 and U2, respectively. Then, according to the result of
Example 11.1, the electrical potential is

 EXAMPLE 11.19 Find the electrical potential ø (x, y) in the region
between two infinite coaxial cylinders r = a and r = b, which are kept at the
potentials U1 and U2, respectively.

Solution The function w = log z = ln | z| + i arg z maps the annular region
between the circles r = a and r = b onto the infinite strip ln a < u < ln b in the
w plane, as shown in Figure 11.36. The potential Φ (u, v) in the infinite strip
has the boundary values

Φ(ln a, v) = U1 and Φ(ln b, v) = U2, for all v.

If we use the result of Example 11.18, the electrical potential Φ(u, v) is

Because u = ln | z|, we can use this equation to conclude that the potential ø



(x, y) is

The equipotentials ø (x, y) = constant are concentric circles centered on the
origin, and the lines of flux are portions of rays emanating from the origin. If
U2 < U1, then the situation is as illustrated in Figure 11.36.

 EXAMPLE 11.20 Find the electrical potential ø (x, y) produced by two
charged half-planes that are perpendicular to the z plane and pass through the
rays x < −1, y = 0 and x > 1, y = 0, where the planes are kept at the fixed
potentials

ø (x, 0) = −300, for x < −1, and ø (x, 0) = 300, for x > 1.

Solution The result of Example 10.13 shows that the function w = Arcsin z is
a conformal mapping of the z plane slit along the two rays x < −1, y = 0 and x
> 1, y = 0 onto the vertical strip . The new problem is to find the
potential Φ(u, v) that satisfies the boundary values

Figure 11.36 The electrical field in a coaxial cylinder, where U2 < U1.

From Example 11.1,



As in the discussion of Example 11.17, the solution in the z plane is

Several equipotential curves are shown in Figure 11.37.

 EXAMPLE 11.21 Find the electrical potential ø (x, y) in the disk D : | z| <
1 that satisfies the boundary values

Solution The mapping w = S (z) =  is a one-to-one conformal
mapping of D onto the upper half-plane Im (w) > 0 with the propertythat C1
is mapped onto the negative u-axis and C2 is mapped onto the positive u-axis.
The potential Φ(u, v) in the upper half-plane that satisfies the new boundary
values

Figure 11.37 The electric field produced by two charged half-planes that are
perpendicular to the complex plane.



is given by

A straightforward calculation shows that

We substitute the real and imaginaryparts, u and v from this equation, into
Equation (11-29) to obtain the desired solution:

The level curve Φ(u, v) = α in the upper half-plane is a rayemanating from the
origin, and the preimage ø (x, y) = α in the unit disk is an arc of a circle that
passes through the points 1 and i. Several level curves are illustrated in
Figure 11.38.

Figure 11.38 The potentials ø and Φ.

EXERCISES FOR SECTION 11.6
1. Find the electrostatic potential ø (x, y) between the two coaxial cylinders r

= 1 and r = 2 that has the boundary values shown in Figure 11.39:



Figure 11.39

2. Find the electrostatic potential ø (x, y) in the upper half-plane Im (z) > 0
that satisfies the boundary values shown in Figure 11.40:

Figure 11.40

3. Find the electrostatic potential ø (x, y) in the crescent-shaped region that
lies inside the disk | z − 2| < 2 and outside the circle | z − 1| = 1 that
satisfies the following boundary values (shown in Figure 11.41).

Figure 11.41

4. Find the electrostatic potential ø (x, y) in the semi-infinite strip 



 that has the boundary values shown in Figure 11.42:

Figure 11.42

5. Find the electrostatic potential ø (x, y) in the domain D in the half-plane
Re (z) > 0 that lies to the left of the hyperbola 2x2 − 2y2 = 1 and satisfies
the following boundary values (shown in Figure 11.43).

Figure 11.43

6. Find the electrostatic potential ø (x, y) in the infinite strip 0 < x <  that
satisfies the following boundary values (shown in Figure 11.44). Hint:
Use w = sin z.



Figure 11.44

7. Consider the conformal mapping w = S (z) = .

(a) Show that S (z) maps the domain D that is the portion of the right half-
plane Re (z) > 0 that lies exterior to the circle | z − 5| = 4 onto the
annulus 1 < | w| < 2.

(b) Find the electrostatic potential ø (x, y) in the domain D that satisfies
the boundary values shown in Figure 11.45:

Figure 11.45

8. Consider the conformal mapping w = S (z) = .

(a) Show that S (z) maps the domain D that is the portion of the disk | z| <
5 that lies outside the circle | z − 2| = 2 onto the annulus defined by 1 < |
w| < 2.

(b) Find the electrostatic potential ø (x, y) in the domain D that satisfies
the boundary values shown in Figure 11.46.



Figure 11.46

11.7 TWO-DIMENSIONAL FLUID FLOW

Suppose that a fluid flows over the complex plane and that the velocity at the
point z = x + iy is given by the velocity vector

We also require that the velocity does not depend on time and the
components p (x, y) and q (x, y) have continuous partial derivatives. The
divergence of the vector field in Equation (11-30) is given by

div V(x, y) = px (x, y) + qy (x, y)

and is a measure of the extent to which the velocity field diverges near the
point. We consider onlyfluid flows for which the divergence is zero. This
condition is more precisely characterized by the requirement that the net flow
through any simplyclosed contour be identically zero.

If we consider the flow out of the small rectangle shown in Figure 11.47,
then the rate of outward flow equals the line integral of the exterior normal
component of V(x, y) taken over the sides of the rectangle. The exterior
normal component is given by −q on the bottom edge, p on the right edge, q
on the top edge, and −p on the left edge. Integrating and setting the resulting
net flow to zero yields



Figure 11.47 A two-dimensional vector field.

Both p and q are continuously differentiable, so we can use the mean value
theorem to show that

where x < x1 < x +Δx and y < y2 < y + Δy. Substitution of the expressions in
Equation (11-32) into Equation (11-31) and subsequentlydividing through by
Δx Δy result in

We can use the mean value theorem for integrals with this equation to show
that

px (x1, y1) + qy (x2, y2) = 0,

where y < y1 < y + Δy and x < x2 < x + Δx. Letting Δx → 0 and Δy → 0 in
this equation yields

which is called the equation of continuity.
The curl of the vector field in Equation (11-30) has magnitude



|curl V(x, y)| = qx (x, y) − py (x, y)

and is an indication of how the field swirls in the vicinityof a point. Imagine
that a “fluid element” at the point (x, y) is suddenlyfrozen and then moves
freelyin the fluid. The fluid element will rotate with an angular velocity given
by

We consider onlyfluid flows for which the curl is zero. Such fluid flows
are called irrotational. This condition is more precisely characterized by
requiring that the line integral of the tangential component of V(x, y) along
anysimply closed contour be identically zero. If we consider the rectangle in
Figure 11.47, then the tangential component is given by p on the bottom
edge, q on the right edge, −p on the top edge, and −q on the left edge.
Integrating and equating the resulting circulation integral to zero yield

As before, we applythe mean value theorem and divide through by Δx Δy,
and obtain the equation

We can use the mean value for integrals with this equation to deduce that qx
(x1, y1) − py (x2, y2) = 0. Letting Δx → 0 and Δy → 0 yields

qx (x, y) − py (x, y) = 0.

Equation (11-33) and this equation show that the function f (z) = p (x, y) − iq
(x, y) satisfies the Cauchy–Riemann equations and is an analytic function. If
we let F (z) denote the antiderivative of f (z), then

which is the complex potential of the flow and has the property



Since øx = p and øy = q, we also have

grad ø (x, y) = p (x, y) + iq (x, y) = V(x, y),

so ø (x, y) is the velocity potential for the flow, and the curves

ø (x, y) = K1

are called equipotentials. The function ψ (x, y) is called the stream function.
The curves

ψ (x, y) = K2

are called streamlines and describe the paths of the fluid particles. To
demonstrate this result, we implicitly differentiate ψ (x, y) = K2 and find that
the slope of a vector tangent is given by

Using the fact that ψy = øx and this equation, we find that the tangent vector
to the curve is

The main idea of the preceding discussion is the conclusion that, if

is an analytic function, then the family of curves

{ψ (x, y) = K2}

represents the streamlines of a fluid flow.
The boundary condition for an ideal fluid flow is that V should be parallel

to the boundarycurve containing the fluid (the fluid flows parallel to the walls
of a containing vessel). In other words, if Equation (11-35) is the complex
potential for the flow, then the boundary curve must be given by ψ (x, y) = K
for some constant K; that is, the boundary curve must be a streamline.



 Theorem 11.5 (Invariance of flow) Let

F1 (w) = Φ(u, v) + iψ (u, v)

denote the complex potential for a fluid flow in a domain G in the w
plane, where the velocity is

If the function w = S (z) = u (x, y) + iv (x, y) is a one-to-one conformal
mapping from a domain D in the z plane onto G, then the composite
function

F2 (z) = F1 (S (z)) = Φ (u (x, y), v (x, y)) + iψ(u (x, y), v (x, y))

is the complex potential for a fluid flow in D, where the velocity is

The situation is shown in Figure 11.48.

Proof From Equation (11-34), F1 (w) is an analytic function. Since the
composition of analytic functions is analytic, F2 (z) is the required
complex potential for an ideal fluid flow in D.

We note that the functions

ø (x, y) = Φ (u (x, y), v (x, y)) and ψ (x, y) = ψ(u (x, y), v (x, y))



Figure 11.48 The image of a fluid flow under conformal mapping.

are the new velocity potential and stream function, respectively, for the flow
in D. A streamline or natural boundary curve

ψ (x, y) = K

in the z plane is mapped onto a streamline or natural boundary curve

ψ(u, v) = K

in the w plane by the transformation w = S (z). One method for finding a flow
inside a domain D in the z plane is to conformally map D onto a domain G in
the w plane in which the flow is known.

For an ideal fluid with uniform density ρ, the fluid pressure P (x, y) and
speed |V(x, y)| are related by the following special case of Bernoulli’s
equation:

 constant.

Note that the pressure is greatest when the speed is least.

 EXAMPLE 11.22 The complex potential F (z) = (a + ib) z has the velocity
potential and stream function of

ø (x, y) = ax − by and ψ (x, y) = bx + ay,

respectively, and gives rise to the fluid flow defined in the entire complex
plane that has a uniform parallel velocity of



The streamlines are parallel lines given by the equation bx + ay = constant
and are inclined at an angle α = −Arctan , as indicated in Figure 11.49.

Figure 11.49 A uniform parallel flow.

 EXAMPLE 11.23 Consider the complex potential F (z) =  z2, where A is
a positive real number. The velocity potential and stream function are given
by

ø (x, y) =  (x2 − y2) and ψ (x, y)= Axy,

 
respectively. The streamlines ψ (x, y) = constant form a familyof hyperbolas
with asymptotes along the coordinate axes. The velocity vector V = 
indicates that in the upper half-plane Im (z) > 0, the fluid flows down along
the streamlines and spreads out along the x-axis, as against a wall, as depicted
in Figure 11.50.
 

 EXAMPLE 11.24 Find the complex potential for an ideal fluid flowing
from left to right across the complex plane and around the unit circle | z| = 1.

Solution We use the fact that the conformal mapping w = S (z) = z +  maps
the domain D = {z : | z| < 1} one-to-one and onto the w plane slit along the
segment −2 ≤ u ≤ 2,v = 0. The complex potential for a uniform horizontal
flow parallel to this slit in the w plane is



F1 (w) = Aw,

Figure 11.50 The fluid flow with complex potential F (z) = 

Figure 11.51 Fluid flow around a circle.

where A is a positive real number. The stream function for the flow in the w
plane is ψ (u, v) = Av so that the slit lies along the streamline  (u,v) = 0.

The composite function F2 (z) = F1 (S (z)) determines the fluid flow in
the domain D, where the complex potential is
 

 
where A > 0. We can use polar coordinates to express F2 (z) as

 
 sin θ.

 
The streamline ψ (r,θ) = A ( r −  ) sin θ = 0 consists of the rays
 



r > 1, θ = 0 and r > 1, θ = π
 
along the x-axis and the curve r −  = 0, which is the unit circle r = 1. Thus
the unit circle can be considered as a boundary curve for the fluid flow.

The approximation F2 (z) = A ( z + ) ≈ Az is valid for large values of z, so
we can approximate the flow with a uniform horizontal flow having speed |V|
= A at points that are distant from the origin. The streamlines ψ (x, y) =
constant and their images  (u,v) = constant under the mapping w = S (z) = z
+  are illustrated in Figure 11.51.
 

 EXAMPLE 11.25 Find the complex potential for an ideal fluid flowing
from left to right across the complex plane and around the segment from −i to
i.

Solution We use the conformal mapping
 

 
where the branch of the square root of Z = z ± i in each factor is 
where R = | Z|, and θ =  (Z), where  < θ ≤ . The function given by w =
S (z) is a one-to-one conformal mapping of the domain D consisting of the z
plane slit along the segment x = 0, −1 ≤ y ≤ 1 onto the domain G consisting of
the w plane slit along the segment −1 ≤ u ≤1,v=0. The complex potential for a
uniform horizontal flow parallel to the slit in the w plane is given by F1 (w) =
Aw, where for convenience we choose A = 1 and where the slit lies along the
streamline  (u,v) = c = 0. The composite function
 

 
is the complex potential for a fluid flow in the domain D. The streamlines



given by ψ (x, y) = c for the flow in D are obtained byfinding the preimage of
the streamline  (u, v) = c in G given bythe parametric equations
 
v = c     and     u = t,     for  − ∞ < t < ∞.
 
The corresponding streamline in D is found bysolving the equation
 

 
for x and y in terms of t. Squaring both sides of this equation yields
 
t2 − c2 − 1 + i2ct = x2 − y2 + i2xy.
 
Equating the real and imaginaryparts leads to the system of equations
 
x2 − y2 = t2 − c2 − 1 and xy = ct.
 
Eliminating the parameter t in the last two equations results in c2 = (x + c2 (y2

− c2), and we can solve for y in terms of x to obtain
 

 
for streamlines in D. For large values of x, this streamline approaches the
asymptote y = c and approximates a horizontal flow, as shown in Figure
11.52.



Figure 11.52 Flow around a segment.

EXERCISES FOR SECTION 11.7
1. Consider the ideal fluid flow for the complex potential F(z) = A (z + ),

where A is a positive real number.

(a) Show that the velocity vector at the point (1,θ), z = reiθ on the unit
circle is given by V (1,θ) = A(1 − cos2θ − isin2θ).

(b) Show that the velocity vector V(1, θ) is tangent to the unit circle |z| = 1
at all points except −1 and +1. Hint: Show that V · P = 0, where P = cos
θ + i sin θ.

(c) Show that the speed at the point (1, θ) on the unit circle is given by |V|
= 2A |sin θ| and that the speed attains the maximum of 2A at the points
±i and is zero at the points ±1. Where is the pressure the greatest?

2. Show that the complex potential F (z) = ze iα +  determines the ideal
fluid flow around the unit circle | z| = 1, where the velocity at points
distant from the origin is given approximately by V ≈ eiα; that is, the
direction of the flow for large values of z is inclined at an angle α with the
x-axis, as shown in Figure 11.53.



Figure 11.53

3. Consider the ideal fluid flow in the channel bounded by the hyperbolas xy
= 1 and xy = 4 in the first quadrant, where the complex potential is given
by F (z) =  and A is a positive real number.

(a) Find the speed at each point, and find the point on the boundary at
which the speed attains a minimum value.

(b) Where is the pressure greatest?

4. Show that the stream function is given by ψ (r,θ) = Ar3 sin 3θ for an ideal
fluid flow around the angular region 0 < θ <  indicated in Figure 11.54.
Sketch several streamlines of the flow. Hint: Use the conformal mapping
w = z3.

Figure 11.54

5. Consider the ideal fluid flow, where the complex potential is

, for 0 ≤ θ ≤ 2π.



(a) Find the stream function ψ (r, θ).

(b) Sketch several streamlines of the flow in the angular region 0 < θ < 
indicated in Figure 11.55.

Figure 11.55

6. Consider the complex potential F (z) = .

(a) Let A > 0. Show that F (z) determines an ideal fluid flow around the
domain r > 1, 0 < θ <  indicated in Figure 11.56, which shows the flow
around a circle in the first quadrant. Hint: Use the conformal mapping w
= z2.

(b) Show that the speed at the point z = eiθ on the quarter-circle r = 1, 0 <
θ <  is given by V = 4 A |sin 2 θ|.

(c) Determine the stream function for the flow and sketch several
streamlines.



Figure 11.56

7. Show that F (z) = sin z is the complex potential for the ideal fluid flow
inside the semi-infinite strip  < x < , y > 0 indicated in Figure 11.57.
Find the stream function.

Figure 11.57

8. Let w = S (z) =  denote the branch of the inverse of z = w + 
that is a one-to-one mapping of the z plane slit along the segment −2 ≤ x ≤
2, y = 0 onto the domain | w| > 1. Use the complex potential F2 (w) = we
−iα +  in the w plane to show that the complex potential F1 (z) = z cos α
−  sin α determines the ideal fluid flow around the segment −2 ≤ x ≤ 2, y
= 0, where the velocity at points distant from the origin is given by V ≈
eiα, as shown in Figure 11.58.

Figure 11.58

9. Consider the complex potential F (z) = −iArcsin z.



(a) Show that F (z) determines the ideal fluid flow through the aperture
from −1 to +1, as indicated in Figure 11.59.

Figure 11.59

(b) Show that the streamline ψ (x, y) = c for the flow is a portion of the
hyperbola 

11.8 THE JOUKOWSKI AIRFOIL

The Russian scientist N. E. Joukowski studied the function

J (z) = z + 

Figure 11.60 Image of a fluid flow under w = J (z) = z + .

He showed that the image of a circle passing through z1 = 1 and containing
the point z2 = −1 is mapped onto a curve shaped like the cross section of an



airplane wing. We call this curve the Joukowski airfoil. If the streamlines for
a flow around the circle are known, then their images under the mapping w =
J (z) will be streamlines for a flow around the Joukowski airfoil, as shown in
Figure 11.60.

The mapping w = J (z) is two-to-one, because J (z) = J ( ), for z ≠ 0. The
region | z| > 1 is mapped one-to-one onto the w plane slit along the portion of
the real axis − 2 ≤ u ≤2. To visualize this mapping, we investigate the implicit
form, which we obtain byusing the substitutions

   and

Forming the quotient of these two quantities results in the relationship
 

 
The inverse of T (w) =  is S3 (z) =  Therefore, if we use the notation
S1 (z) =  and S2 (z) = z2, we can express J (z) as the composition of S1, S2,
and S3:

We can easily show that w = J (z) = z +  maps the four points z1 = −i, z2 = 1,
z3 = i, and z4 = −1 onto w1 = 0, w2 = 2, w3 = 0, and w4 = −2, respectively.
However, the composition functions in Equation (11-36) must be considered
in order to visualize the geometry involved. First, the bilinear transformation
Z = S1 (z) maps the region | z| > 1 onto the right half-plane Re (Z) > 0, and the
points z1 = −i, z2 = 1, z3 = i, and z4 = −1 are mapped onto Z1 = −i, Z2 = 0, Z3
= i, and Z4 = i∞, respectively. Second, the function W = S2 (Z) maps the right
half-plane onto the W plane slit along its negative real axis, and the points Z1
= −i, Z2 = 0, Z3 = i, and Z4 = i∞ are mapped onto W1 = −1, W2 = 0, W3 = −1,
and W4 = −∞, respectively. Then the bilinear transformation w = S3 (W) maps



the latter region onto the w plane slit along the portion of the real axis −2 ≤ u
≤2, and the points W1 = −1, W2 = 0, W3 = −1, and W4 = −∞ are mapped onto
w1 = 0, w2 = 2, w3 = 0, and w4 = −2, respectively. These three compositions
are shown in Figure 11.61.

Figure 11.61 The composition mappings for J (z) = S3 (S2 (S1 (z))).

The circle C0 with center c0 = iα on the imaginaryaxis passes through the
points z2 = 1 and z4 = −1 and has radius r0 = . With the restriction that 0
< a < 1, then this circle intersects the x-axis at the point z2 with angle α 0 = 
−Arctan a, with  < α0 < . We want to track the image of C0 in the Z, W, and
w planes. First, the image of this circle C0 under Z = S1 (z) is the line L0 that
passes through the origin and is inclined at the angle α0. Second, the function
W = S2 (Z) maps the line L0 onto the ray R0 inclined at the angle 2α0. Finally,
the transformation given by w = S3 (W) maps the ray R0 onto the arc of the



circle A0 that passes through the points w2 = 2 and w4 = −2 and intersects the
u-axis at w2 with angle 2α0, where  2α0 < π. The restriction on the angle α0,
and hence 2α0, is necessaryin order for the arc A0 to have a low profile. The
arc A0 lies in the center of the Joukowski airfoil and is shown in Figure
11.62.

Figure 11.62 The images of the circles C0 and C1 under the composition
mappings for J (z) = S3 (S2 (S1z)).

If we let b be fixed, 0 < b < 1, then the larger circle C1 with center given
by c1 = −h + i (1 + h) b will pass through the points z2 = 1 and z4* = −1 −2h
and have radius r1 = (1 + h) . The circle C1 also intersects the x-axis at
the point z2 at the angle α0. The image of circle C1 under Z = S1 (z) is the
circle K1, which is tangent to L0 at the origin. The function W = S2 (Z) maps
the circle K1 onto the cardioid H1. Finally, w = S3 (W) maps the cardioid H1



onto the Joukowski airfoil A1 that passes through the point w2 = 2 and
surrounds the point w4 = −2, as shown in Figure 11.62. An observer
traversing C1 counterclockwise will traverse the image curves K1 and H1
clockwise but will traverse A1 counterclockwise. Thus the points z4, Z4, W4,
and w4 will always be to the observer’s left.

Figure 11.63 The horizontal flow around the circle C1.

Figure 11.64 The horizontal flow around the Joukowski airfoil A1.

Now we are readyto visualize the flow around the Joukowski airfoil. We
start with the fluid flow around a circle (see Figure 11.51). This flow is
adjusted with a linear transformation z* = az + b so that it flows
horizontallyaround the circle C1, as shown in Figure 11.63. Then the
mapping w = J (z*) creates a flow around the Joukowski airfoil, as illustrated
in Figure 11.64.

11.8.1 Flow with Circulation

The function F (z) =  Logz, where s > 0 and k is real, is the complex



potential for a uniform horizontal flow past the unit circle | z| = 1, with
circulation strength k and velocity at infinity V∞ = s. For illustrative purposes,
we let s = 1 and use the substitution α = . Now the complex potential has
the form
 

 
and the corresponding velocity function is
 

 
We can express the complex potential in F = Φ + iψ form:
 

 
For the flow given by ψ = c, where c is a constant, we have
 
ψ (r cos θ, r sin θ) =  sin θ + a ln r = c (streamlines).

 
Setting r = 1 in this equation, we get ψ (cos θ, sin θ) = 0 for all θ, so the unit
circle is a natural boundary curve for the flow.

Points at which the flow has zero velocity are called stagnation points.
To find them we solve F′ (z) = 0; for the function in Equation (11-37) we
have
 



 Multiplying through by z2 and rearranging terms give

 

z2 + aiz −1=0. Now we invoke the quadratic equation to obtain

 

 (stagnation point(s)).

 
If 0 ≤ | a| < 2, then there are two stagnation points on the unit circle | z| =

1. If a = 2, then there is one stagnation point on the unit circle. If | a| > 2, then
the stagnation point lies outside the unit circle. We are mostly interested in
the case with two stagnation points. When a = 0, the two stagnation points
are z = ±1, which is the flow discussed in Example 11.25. The cases a = 1, a
= , a = 2, and a = 2.2 are shown in Figure 11.65.

We are now readyto combine the preceding ideas. For illustrative
purposes, we consider a C1 circle with center c0 = −0.15 + 0.23i that passes
through the points z2 = 1 and z4 = −1.3 and has radius r0 = 0.23 . We
use the linear transformation Z = S (z) = −0.15+0.23i+r0z to map the flow
with circulation k = −0.52p (or a = 0.26) around | z| = 1 onto the flow around
the circle C1, as shown in Figure 11.66.

Then we use the mapping w = J (Z) = Z +  to map this flow around the
Joukowski airfoil, as shown in Figure 11.67 and compare it to the flows
shown in Figures 11.63 and 11.64. If the second transformation in the
composition given by w = J (z) = S3 (S2 (S1 (z))) is modified to be S2 (z) =
z1.925, then the image of the flow shown in Figure 11.66 will be the flow
around the modified airfoil shown in Figure 11.68. The advantage of this
latter airfoil is that the sides of its tailing edge form an angle of 0.15π radians,
or 27°, which is more realistic than the angle of 0° of the traditional
Joukowski airfoil.



Figure 11.65 Flows past the unit circle with circulation a.

Figure 11.66 Flow with circulation around C1.

Figure 11.67 Flow with circulation around a traditional Joukowski airfoil.



Figure 11.68 Flow with circulation around a modified Joukowski airfoil.

EXERCISES FOR SECTION 11.8

1. Find the inverse of the Joukowski transformation.

2. Consider the Joukowski transformation w = z + .

(a) Show that the circles Cr = {|z| = r : r > 1} are mapped onto the ellipses

(b) Show that the ray r > 0, θ = α is mapped onto a branch of the
hyperbola

3. Let C0 be a circle that passes through the points 1 and −1 and has center
c0 = iα.

(a) Find the equation of the circle C0.

(b) Show that the image of the circle C0 under w =  is a line L0 that
passes through the origin.

(c) Show that the line L0 in Figure 11.62 is inclined at the angle α0 = 
−Arctan a.

4. Show that a line through the origin is mapped onto a ray by the mapping



w = z2.

5. Let R0 be a ray through the origin inclined at an angle β0.

(a) Show that the image of the ray R0 under w = is an arc A0 of a
circle that passes through 2 and −2.

(b) Show that the arc A0 is inclined at the angle β0, as shown in Figure
11.62.

6. Show that a circle passing through the origin is mapped onto a cardioid-
like curve by w = z2. Show that the cusp in the cardioid forms an angle of
0°.

7. Let H1 be a cardioid-like curve whose cusp is at the origin. The image of
H1 under w =  will be a Joukowski airfoil. Show that trailing edge
forms an angle of 0°.

8. Consider the modified Joukowski airfoil when W = S2 (Z) = Z 1.925. is
used to map the Z plane onto the W plane. Refer to Figure 11.69 and
discuss why the angle of the trailing edge of the modified Joukowski
airfoil A1 forms an angle of 0.075π radians. Hint: The image of the circle
C0 is the line L0, then two rays R0.1 and R0.2, and then two arcs A0,1 and
A0,2 in the respective Z, W, and w planes. The image of the circle C1 is
the circle K1, then the “cardioid-like” curve H1, and then the modified
Joukowski airfoil A1.



Figure 11.69 The images of the circles C0 and C1 under the modified
Joukowski transformation J (z) = S3 (S2 (S1 (z))).

11.9 THE SCHWARZ–CHRISTOFFEL
TRANSFORMATION

To proceed further, we must review the rotational effect of a conformal
mapping w = f (z) at a point z0. If the contour C has the parameterization z (t)
= x (t) + iy (t), then a vector τ tangent to C at the point z0 is

 
τ = z′ (t0) = x′ (t0) + iy′ (t0).

 
The image of C is a contour K given by w = u (x (t), y (t)) + iv (x (t), y (t)),
and a vector T tangent to K at the point w0 = f(z0) is



 
T = w′ (z0) = f (z0) z′ (t).

 
If the angle of inclination of τ is β = Arg z′ (t), then the angle of inclination of
T is

ArgT = Arg[f′ (z0)z′ (t0)] = Arg f′ (z0) + β.

Hence the angle of inclination of the tangent τ to C at z0 is rotated through the
angle Arg f′ (z0) to obtain the angle of inclination of the tangent T to K at the
point w0.

Many applications involving conformal mappings require the
construction of a one-to-one conformal mapping from the upper half-plane
Im (z) > 0 onto a domain G in the w plane where the boundaryconsists of
straight-line segments. Let’s consider the case where G is the interior of a
polygon P with vertices w1, w2,…, wn specified in the positive sense
(counterclockwise). We want to find a function w = f (z) with the property

Two German mathematicians, Herman Amandus Schwarz (1843–1921) and
Elwin Bruno Christoffel (1829–1900), independently discovered a method
for finding f, which we present as Theorem 11.6.

 Theorem 11.6 (Schwarz–Christoffel) Let P be a polygon in the w
plane with vertices w1, w2,…, wn and exterior angles αk, where −π <
αk < π. There exists a one-to-one conformal mapping w = f (z) from
the upper half-plane Im (z) > 0 onto G that satisfies the boundary
conditions in Equations (11-38). The derivative f ' (z) is



and the function f can be expressed as an indefinite integral

where A and B are suitably chosen constants. Two of the points {xk}
may be chosen arbitrarily, and the constants A and B determine the
size and position of P.
 
Proof The proof relies on finding how much the tangent
 
τj = 1 + 0i

 
(which always points to the right) at the point (x, 0) must be rotated
bythe mapping w = f (z) so that the line segment xj−1 < x < xj is
mapped onto the edge of P that lies between the points wj−1 = f (xj−1)
and wj = f (xj). The amount of rotation is determined by Arg f′(x), so
Equation (11-39) specifies f′ (z) in terms of the values xj and the
amount of rotation αj that is required at the vertex f (xj).

If we let x0 = −∞ and xn = ∞, then, for values of x that lie in the
interval xj−1 < x < xj, the amount of rotation is

 
Arg f′ (x) = Arg A − [αArg (x −x) + α2Arg (x −x2) + … + αn−1 Arg (x
−xn−1)].

 
Because Arg (x −xk) =0, for 1 ≤ k < j, and Arg (x −xk) = π, for j ≤ k ≤ n
−1, we can write this equation as

Arg f′ (x) = Arg A −αj −αj+1 −…−αn−1.



The angle of inclination of the tangent vector Tj to the polygon P at
the point w = f (x) for xj−1 < x < xj is

γj = ArgA − αj − αj+1 −…. αn−1.

Figure 11.70 A Schwarz–Christoffel mapping with n = 5 and α1 + α2 + … +
α4, > π.

The angle of inclination of the tangent vector Tj + 1 to the polygon P at
the point w = f (x) for xj < x < xj + 1, is

γj + 1 = ArgA −αj + 1 −αj+2 −…−αn−1.

The angle of inclination of the vector tangent to the polygon P jumps
abruptly bythe amount αj as the point w = f (x) moves along the side 

 through the vertex wj to the side . Therefore, the exterior
angle to the polygon P at the vertex wj is given bythe angle αj and
satisfies the inequality −π < αj < π, for j = 1, 2,…, n −1. Since the sum
of the exterior angles of a polygon equals 2π, we have αn = 2π −α1 −α2
−−…αn−1 and only n −1 angles need to be specified. The case n = 5 is
illustrated in Figure 11.70.

If the case α1 + α2 + … + α n −1 ≤ π occurs, then αn > π, and the



vertices w1, w2,…, wn cannot form a closed polygon. For this case,
Equations (11-39) and (11-40) will determine a mapping from the
upper half-plane Im (z) > 0 onto an infinite region in the w plane,
where the vertex wn is at infinity. The case n = 5 is illustrated in Figure
11.71.

Figure 11.71 A Schwarz–Christoffel mapping with n = 5 and α1 + α2 + … +
α4 ≤ π.

Table 11.2 Indefinite integrals.



 
Equation (11-40) gives a representation for f in terms of an indefinite

integral. Note that these integrals do not represent elementaryfunctions unless
the image is an infinite region. Also, the integral will involve a multivalued
function, and we must select a specific branch to fit the boundary values
specified in the problem. Table 11.2 is useful for our purposes.

 EXAMPLE 11.26 Use the Schwarz–Christoffel formula to verifythat the
function w = f (z) = Arcsinz maps the upper half-plane Im (z) > 0 onto the
semi-infinite strip  < u < , v > 0 shown in Figure 11.72.

 
Solution If we choose x1 = −1, x2 = 1, w1 = , and w2 = —, then α1 =  and
α2 = , and Equation (11-39) for f′ (z) becomes

Then, using Table 11.2, the indefinite integral becomes

f (z) = Ai Arcsinz + B.

Figure 11.72 The region of interest.

Using the image values f (−1) =  and f (1) = , we obtain the system
 



 
which we can solve to obtain B = 0 and A = −i. Hence the required function
is f (z) = Arcsinz.

 EXAMPLE 11.27 Verifythat w = f (z) =  maps the upper half-
plane Im (z) > 0 onto the upper half-plane Im (w) 0 slit along the segment
from 0 to i. (Use the principal square root throughout.)

Solution If we choose x1 = −1, x2 = 0, x3 = 1, w1 = −d, w2 = i, and w3 = d,
then the formula

will determine a mapping w = g (z) from the upper half-plane Im (z) > 0 onto
the portion of the upper half-plane Im (w) > 0 that lies outside the triangle
with vertices ±d, i as indicated in Figure 11.73(a). If d → 0, then w1 → 0,w3
→ 0,

α 1 → , α2 → −π, and α3 → . The limiting formula for the derivative g′ (z)
becomes

which will determine a mapping w = f (z) from the upper half-plane Im (z) >
0 onto the upper half-plane Im (w) > 0 slit from 0 to i as indicated in Figure
11.73(b). An easycomputation reveals that f (z) is given by

and the boundary values f (±1) = 0 and f (0) = i lead to the solution



Figure 11.73 The regions of interest.

Figure 11.74 The regions of interest.

 EXAMPLE 11.28 Show that the function

maps the upper half-plane Im (z) > 0 onto the right-angle channel in the first
quadrant, which is bounded bythe coordinate axes and the rays x ≥ 1, y = 1
and y ≥ 1, x = 1, as depicted in Figure 11.74(b).

Solution If we choose x1 = −1, x2 = 0, x3 = 1, w1 = 0, w2 = d, and w3 = 1+i,
then the formula

will determine a mapping w = g(z) of the upper half-plane onto the domain
indicated in Figure 11.74(a). With α1 = , we let d → ∞, then α2 → π and α3
→ , and the limiting formula for the derivative g′(z) becomes



where A = −iA1, which will determine a mapping w = f (z) from the upper
half-plane onto the channel as indicated in Figure 11.74(b). Using Table 11.2,
we obtain

If we use the principal branch of the inverse sine function, then the boundary
values f (−1) = 0 and f (1) = 1 + i lead to the system

which we can solve to obtain A =  and B = . Hence the required solution
is

EXERCISES FOR SECTION 11.9
 
1. Let a and K be real constants with 0 < K < 2. Use the Schwarz–

Christoffel formula to show that the function w = f (z) = (z −a)k maps the
upper half-plane Im (z) > 0 onto the sector 0 > arg0w > K π shown in
Figure 11.75.



Figure 11.75

2. Let a be a real constant. Use the Schwarz-Christoffel formula to show
that the function w = f (z) = Log (z −a) maps the upper half-plane Im (z) >
0 onto the infinite strip 0 < v < π shown in Figure 11.76. Hint: Set x1 = a
−1, x2 = a, w1 = iπ, andw2 = −d and let d → ∞.

Figure 11.76

In Exercises 3–15, construct the derivative f′(z) and use the Schwarz–
Christoffel formula, Equation (11-40), and techniques of integration to
determine the required conformal mapping w = f (z).

3. Show that w = f (z) =  −i maps the upper half-
plane onto the domain indicated in Figure 11.77. Hint: Set x1 = −1, x2 =
1,w1 = 0, and w2 = −i.

Figure 11.77

4. Show that w = f (z) =  Arcsin  maps the upper half-plane onto
the domain indicated in Figure 11.78. Hint: Set x1 = w1 = −1, x2 = 0, x3 =
w3 = 1, and w2 = −id and let d → ∞.



Figure 11.78

5. Show that w = f (z) =  Log (z2 −1) = Log  maps the upper half-
plane Im (z) > 0 onto the infinite strip 0 < v < π slit along the ray u ≤ 0, v
= , as shown in Figure 11.79. Hint: Set x1 = −1, x2 = 0, x3 = 1, wi = iπ
−d, w2 = and w3 = −d and let d → ∞.

Figure 11.79

6. Show that w = f (z) =  Arcsin z maps the upper half-plane
onto the domain indicated in Figure 11.80. Hint: Set xi = −1,x2 = 1,w1 =
1, and w2 = −1.

Figure 11.80

7. Show that w = f (z) = z+ Log z maps the upper half-plane Im (z) > 0 onto
the upper half-plane Im (w) > 0 slit along the ray u ≤ −1, v = π, as shown
in Figure 11.81. Hint: Set xi = −1,x2 = 0, w1 = −1 + iπ, and w2 = −d and
let d → ∞.



Figure 11.81

8. Show that w = f (z) =  maps the upper half-plane
onto the domain indicated in Figure 11.82. Hint: Set x1 = −1, x2 = 0,w1 =
iπ, and w2 = −d and let d → ∞.

Figure 11.82

9. Show that w = f (z) = (z −1)α [1 + αz/(1 −α)] 1 −α maps the upper half-
plane Im (z) > 0 onto the upper half-plane Im (w) > 0 slit along the
segment from 0 to eiαπ, as shown in Figure 11.83.

Hint: Show that f (z) = A [z + (1 −α) /α ]−α (z) (z −1)α−1.

Figure 11.83

10. Show that w = f (z) =  maps

the upper half-plane onto the domain indicated in Figure 11.84. Hint: Set
z1 = −1, z2 = 0, w1 = iπ, and w2 = −d and let d → ∞. Use the change of
variable z + 1 = s4 in the resulting integral.



Figure 11.84

11. Show that w = f (z) =  maps the upper half-plane onto the
domain indicated in Figure 11.85. Hint: Set x1 = 0, x2 = 1, w1 = −d, and
w2 = i and let d → 0.

Figure 11.85

12. Show that w = f (z) =  maps the upper half-plane Im (z) > 0 onto
a right triangle with angles ,  and .

13. Show that w = f (z) =  maps the upper half-plane onto an
equilateral triangle.

14. Show that w = f (z) =  maps the upper half-plane onto a square.

(z2 − 1)3

15. Show that w = f (z) =  maps the upper half-plane Im

(z) > 0 onto the domain indicated in Figure 11.86. Hint: Set x1 = −1, x2 =
0, x3 = 1, w1 = 0, w2 = d, and w3 =  + iπ and let d −∞.



Figure 11.86

11.10 IMAGE OF A FLUID FLOW

We have already examined several two-dimensional fluid flows and have
shown that the image of a flow under a conformal transformation is a flow.
The conformal mapping w = f (z) = u (x, y) + iv (x, y), which we obtained by
using the Schwarz–Christoffel formula, allows us to find the streamlines for
flows in domains in the w plane that are bounded by straight-line segments.

The first technique involves finding the image of a fluid flowing
horizontally from left to right across the upper half-plane Im (z) > 0. The
image of the streamline −∞ < t < ∞, y = c is a streamline given by the
parametric equations

u = u (t, c) and v = v (t, c), for −∞< t < ∞,

and is oriented in the positive sense (counterclockwise). The streamline u = u
(t, 0), v = (t, 0) is considered to be a boundary wall for a containing vessel for
the fluid flow.

 EXAMPLE 11.29 Consider the conformal mapping

which we obtained by using the Schwarz–Christoffel formula. It maps the
upper half-plane Im (z) > 0 onto the domain in the w plane that lies above the
boundary curve consisting of the rays u ≤ 0, v = 1 and u ≥ 0, v = 0 and the



segment u = 0, −1 ≤ v ≤ 0.

Figure 11.87

Furthermore, the image of horizontal streamlines in the z plane are curves
in the w plane given by the parametric equation
 

 
for −∞ < t < ∞. The new flow is that of a step in the bed of a deep stream and
is illustrated in Figure 11.87(a). The function w = f (z) is also defined for
values of z in the lower half-plane, and the images of horizontal streamlines
that lie above or below the x-axis are mapped onto streamlines that flow past
a long rectangular obstacle, which is illustrated in Figure 11.87(b).

EXERCISES FOR SECTION 11.10
For Exercises 1−4, use the Schwarz–Christoffel formula to find a conformal
mapping w = f (z) that will map the flow in the upper half-plane Im (z) > 0
onto the flows indicated.

1. Use Figure 11.88 to find the flow over the vertical segment from 0 to i.



Figure 11.88

2. Use Figure 11.89 to find the flow around an infinitely long rectangular
barrier.

Figure 11.89

3. Use Figure 11.90 to find the flow around

(a) one inclined segment in the upper half-plane.

(b) two inclined segments forming a “V” in the plane.

(a) Flow around an inclined segment.

(b) Flow around a V-shape.



Figure 11.90

4. Use Figure 11.91 to find the flow over a dam.

Flow over a dam

Figure 11.91

5. For flow around an infinitely long rectangular barrier with a pointed
“nose,” find

(a) the flow up an inclined step, as shown in Figure 11.92(a).

(b) the flow around a pointed object, as shown in Figure 11.92(b).

(a) Flow up an inclined step.



(b) Flow around a pointed object.
Figure 11.92

11.11 SOURCES AND SINKS

If the two-dimensional motion of an ideal fluid consists of an outward radial
flow from a point and is symmetrical in all directions, then the point is called
a simple source. A source at the origin can be considered as a line
perpendicular to the z plane along which fluid is being emitted. If the rate of
emission of volume of fluid per unit length is 2πm, then the origin is said to
be a source of strength m, the complex potential for the flow is

(a) A source at the origin.



(b) A sink at the origin.
Figure 11.93 Sources and sinks for an ideal fluid.

F (z) = mlog z,

and the velocity V at the point (x, y) is given by

For fluid flows, a sink is a negative source and is a point of inward radial
flow at which the fluid is considered to be absorbed or annihilated. Sources
and sinks for flows are illustrated in Figure 11.93.

11.11.1 Source: A Charged Line
In the case of electrostatics, a source will correspond to a uniformly charged
line perpendicular to the z plane at the point z0. We will show that if the line
L is located at z0 = 0 and carries a charge density of 

 coulombs per unit length, then the
magnitude of the electrical field is |E(x, y)| = . Hence E is given by

and the complex potential is



A sink for electrostatics is a negatively charged line perpendicular to the z
plane. The electric field for electrostatic problems corresponds to the velocity
field for fluid flow problems, except that their corresponding potentials differ
by a sign change.

Figure 11.94 Contributions to E from the elements of charge  situated at
(0, 0, ±h), above and below the z plane.

To establish Equation (11-41), we start with Coulomb’s law, which states
that two particles with charges q and Q exert a force on one another with
magnitude  where r is the distance between particles and C is a constant
that depends on the scientific units. For simplicity, we assume that C = 1 and
the test particle at the point z has charge Q = 1.

The contribution ΔE1 induced by the element of charge  along the
segment of length Δh situated at a height h above the plane has magnitude |
ΔEi| given by

It has the same magnitude as ΔE2 induced by the element  located a
distance −h below the plane. From the vertical symmetry involved, their sum,
ΔE2 + ΔE2, lies parallel to the plane along the ray from the origin, as shown
in Figure 11.94.



By The principle of superposition, we add all contributions from the
elements of charge along L to obtain E = Σ ΔEk. By vertical symmetry, E lies
parallel to the complex plane along the ray from the origin through the point
z. Hence the magnitude of E is the sum of all components |ΔE| cos t that are
parallel to the complex plane, where t is the angle between ΔE and the plane.
Letting Δh → 0 in this summation process produces the definite integral

Next, we use the change of variable h = r tan t and dh = r sec2t dt and the
trigonometric identity sec2 t =  to obtain the equivalent integral:

Multiplying this magnitude  by the unit vector  establishes Formula (11-
41). If q > 0, then the field is directed away from z0 = 0 and, if q < 0, then it
is directed toward z0 = 0. An electrical field located at z0 ≠ 0 is given by

and the corresponding complex potential is

F (z) = −q log (z − z0).

 EXAMPLE 11.30 (Source and sink of equal strength) Let a source and
sink of unit strength be located at the points +1 and −1, respectively. The
complex potential for a fluid flowing from the source at +1 to the sink at −1
is

F (z) = log (z − 1) − log (z + 1) = log .

The velocity potential and stream function are



respectively. Solving for the streamline Ψ (x, y) = c, we start with

and obtain the equation (tan c) (x2 +y2 − 1) = 2y. A straightforward
calculation shows that points on the streamline must satisfythe equation

x2 + (y − cot c)2 = 1 + cot2 c,

which is the equation of a circle with center at (0, cot c) that passes through
the points (±1, 0). Several streamlines are indicated in Figure 11.95(a).

(a) Source and sink of equal strength.

(b) Two sources of equal strength.

Figure 11.95 Fields depicting electrical strength.



 

 EXAMPLE 11.31 (Two sources of equal strength) Let two sources of unit
strength be located at the points ±1. The resulting complex potential for a
fluid flow is

f (z) = log (z - 1) + log (z + 1) = log (z2 - 1).
 
The velocity potential and stream function are
 
φ (x, y) = ln | z2 - 1| and ψ (x, y) = arg (z2 - 1),
 
respectively. Solving for the streamline ψ (x, y) = c, we start with
 
c = arg (z2 - 1) = arg (x2 - y2 - 1+ i2xy) = arctan 

 
and obtain the equation x2 + 2xy cot c − y2 = 1. If we express this equation in
the form

and use the rotation of axes

then the streamlines must satisfythe equation x* y* =  and are rectangular
hyperbolas with centers at the origin that pass through the points ±1. Several
streamlines are indicated in Figure 11.95(b).



Let an ideal fluid flow in a domain in the z plane be affected bya source
located at the point z0. Then the flow at points z, which lie in a small
neighborhood of the point z0, is approximated bythat of a source with the
complex potential
 
log (z − z0) + constant.

 
If w = S (z) is a conformal mapping and w0 = S (z0), then S (z) has a nonzero
derivative at z0 and

 
w − w0 = (z − z0) [S' (z0) + η (z)],

 
where η (z) → 0 as z → z0. Taking logarithms yields

 
log (w − w0) = log (z − z0) + Log [S′ (z0) + η (z)].

 
Because S′ (z0) ≠ 0, the term Log[S′ (z0) + η (z)] approaches the constant
value Log [S′ (z0)] as z → z0. As log (z − z0) is the complex potential for a
source located at the point z0, the image of a source under a conformal
mapping is a source.

We can use the technique of conformal mapping to determine the fluid
flow in a domain D in the z plane that is produced bysources and sinks. If we
can construct a conformal mapping w = S (z) so that the image of sources,
sinks, and boundary curves for the flow in D are mapped onto sources, sinks,
and boundary curves in a domain G where the complex potential is known to
be F1 (w), then the complex potential in D is given by F2 (z)= F1 (S (z)).

 EXAMPLE 11.32 Suppose that the lines x =  are considered as walls of



a containing vessel for a fluid flow produced bya single source of unit
strength located at the origin. The conformal mapping w = S (z) = sin z maps
the infinite strip bounded bythe lines x =  onto the w plane slit along the
boundary rays u ≤ −1, v = 0 and u ≥ 1, v = 0, and the image of the source at z0
= 0 is a source located at w0 = 0. The complex potential

F1 (w) = log w

 
determines a fluid flow in the w plane past the boundary curves u ≤ −1, v = 0
and u ≥ 1, v = 0, which lie along streamlines of the flow. Therefore, the
complex potential for the fluid flow in the infinite strip in the z plane is
 
F2 (z) = log (sin z).

Figure 11.96 A source in the center of a strip.

Several streamlines for the flow are illustrated in Figure 11.96.

 EXAMPLE 11.33 Suppose that the lines x =  are considered as walls of
a containing vessel for the fluid flow produced bya single source of unit
strength located at the point z1 =  and a sink of unit strength located at the
point z2 = . The conformal mapping w = S (z) = sin z maps the infinite strip



bounded bythe lines x =  onto the w plane slit along the boundary
rays K1 : u ≤ −1, v = 0 and K2 : u ≥ 1, v = 0. The image of the source at z1 is a
source at w1 = 1, and the image of the sink at z2 is a sink at w2 = −1. The
potential

 

 

Figure 11.97 A source and a sink on the edges of a strip.

determines a fluid flow in the w plane past the boundary curves K1 and K2,
which lie along streamlines of the flow. Therefore, the complex potential for
the fluid flow in the infinite strip in the z plane is

Several streamlines for the flow are illustrated in Figure 11.97.

We can use the technique of transformation of a source to determine the
effluence from a channel extending from infinity. In this case, we construct a
conformal mapping w = S (z) from the upper half-plane Im (z) > 0 so that the



single source located at z0 = 0 is mapped to the point w0 at infinitythat lies
along the channel. The streamlines emanating from z0 = 0 in the upper half-
plane are mapped onto streamlines issuing from the channel.

 EXAMPLE 11.34 Consider the conformal mapping

which maps the upper half-plane Im (z) > 0 onto the domain consisting of the
upper half-plane Im (w) > 0 joined to the channel −1 ≤ u ≤1, v ≤ 0. The point
z0 = 0 is mapped onto the point w0 = −i∞ along the channel. Images of the
rays r > 0, θ = α are streamlines issuing from the channel as indicated in
Figure 11.98.

Figure 11.98 Effluence from a channel into a half-plane.

EXERCISES FOR SECTION 11.11

1. Let the coordinate axes be walls of a containing vessel for a fluid flow in
the first quadrant that is produced by a source of unit strength located at
z1 = 1 and a sink of unit strength located at z2 = i. Show that F (z) = 

 is the complex z2 +1 potential for the flow shown in Figure 11.99.



Figure 11.99

2. Let the coordinate axes be walls of a containing vessel for a fluid flow in
the first quadrant that is produced by two sources of equal strength
located at the points z1 = 1 and z2 = i. Find the complex potential F (z) for
the flow in Figure 11.100.

Figure 11.100

3. Let the lines x = 0 and x =  form the walls of a containing vessel for a
fluid flow in the infinite strip 0 < x <  that is produced by a single source
located at the point z0 = 0. Find the complex potential for the flow in
Figure 11.101.



Figure 11.101

4. Let the rays x = 0, y > 0 and x = π, y > 0 and the segment y = 0, 0 < x < π
form the walls of a containing vessel for a fluid flow in the semi-infinite
strip 0 < x < π, y > 0 that is produced by two sources of equal strength
located at the points z1 = 0 and z2 = π. Find the complex potential for the
flow shown in Figure 11.102. Hint: Use the fact that sin  sin .

Figure 11.102

5. Let the y-axis be considered a wall of a containing vessel for a fluid flow
in the right half-plane Re (z) > 0 that is produced by a single source
located at the point z0 = 1. Find the complex potential for the flow shown
in Figure 11.103.



Figure 11.103

6. The complex potential F (z) =  determines an electrostatic field that is
referred to as a dipole.

(a) Show that

and that a dipole is the limiting case of a source and sink.

(b) Show that the lines of flux of a dipole are circles that pass through the
origin, as shown in Figure 11.104.

Figure 11.104

7. Use a Schwarz–Christoffel transformation to find a conformal mapping w
= S (z) that will map the flow in the upper half-plane onto the flow from a
channel into a quadrant, as indicated in Figure 11.105.



Figure 11.105

8. Use a Schwarz–Christoffel transformation to find a conformal mapping w
= S (z) that will map the flow in the upper half-plane onto the flow from a
channel into a sector, as indicated in Figure 11.106.

Figure 11.106

9. Use a Schwarz–Christoffel transformation to find a conformal mapping w
= S (z) that will map the flow in the upper half-plane onto the flow in a
right-angled channel indicated in Figure 11.107.

Figure 11.107

10. Use a Schwarz-Christoffel transformation to find a conformal mapping
w = S (z) that will map the flow in the upper half-plane onto the flow
from a channel back into a quadrant, as indicated in Figure 11.108, where



wo = 2√2−2 ln (√2 − 1)+ iπ.

Figure 11.108

11. Consider the complex potential F (z) = w given implicitly by z = w + eω.

(a) Show that F (z) = w determines the ideal fluid flow through an open
channel bounded by the rays

into the plane.

(b) Show that the streamline ψ (x, y) = c of the flow is given by the
parametric equations

as shown in Figure 11.109, which has been called Borda’s mouthpiece.

Figure 11.109



chapter 12
fourier series and the laplace

transform

Overview
In this chapter, we show how Fourier series, the Fourier transform, and the
Laplace transform are related to the study of complex analysis. We develop
the Fourier series representation of a real-valued function U (t) of the real
variable t. We then discuss complex Fourier series and Fourier transforms.
Finally, we develop the Laplace transform and the complex variable
technique for finding its inverse. In this chapter, we focus on applying these
ideas to solving problems involving real-valued functions, so many of the
theorems throughout are stated without proof.

12.1 FOURIER SERIES

Let U (t) be a real-valued function that is periodic with period 2π; that is, U (t
+ 2π) = U (t), for all t.

One such function is s = U (t) = sin (t − ) + 0.7 cos (2t − π − ) + 1.7. Its
graph is obtained by repeating the portion of the graph in any interval of
length 2π, as shown in Figure 12.1.



Figure 12.1 A function U with period 2π.

Familiar examples of real functions that have period 2π are sin nt and cos
nt, where n is an integer. These examples raise the question of whether any
periodic function can be represented by a sum of terms involving an cos nt
and bn sin nt, where an and bn are real constants. As we soon demonstrate,
the answer to this question is often yes.

Definition 12.1: Piecewise continuous

The function U is piecewise continuous on the closed interval [a, b] if
there exist values t0, t1,…, tn with a = t0 < t1 <…< tn = b such that U is
continuous in each of the open intervals tk−1 < t < tk (k = 1, 2,…, n) and
has left- and right-hand limits at the values tk (k = 0, 1,…, n).

 
We use the symbols U (a−) and U (a+) for the left- and right-hand limits,

respectively, of a function U (t) as t approaches the point a. The graph of a
piecewise continuous function is illustrated in Figure 12.2, where the
function U (t) is

The left- and right-hand limits at t0 = 2, t1 = 3, and t2 = 4 are easily
determined:



At t = 2, we have U (2−) =  and U (2+) = 

At t = 3, we have U (3−) =  and U (3+) = 1.

At t = 4, we have U (4−) =  and U (4+) = 

Figure 12.2 A piecewise continuous function U over the interval [1, 6].

Definition 12.2: Fourier series

If U (t) is periodic with period 2π and is piecewise continuous on [−π, π],
then the Fourier series S (t) for U (t) is

where the coefficients an and bn are given by Euler’s formulas:

and

 
We introduced the factor  in the constant term  on the right side of

Equation (12-1) for convenience so that we can obtain a0 from the general
formula in Equation (12-2) by setting j = 0. We explain the reasons for this
strategy shortly. Theorem 12.1 deals with convergence of the Fourier series.



Theorem 12.1 (Fourier expansion) Assume that S (t) is the Fourier
series for U(t). If U′ (t) is piecewise continuous on [−π,π], then S (t) is
convergent for all t ∈ [−π, π]. If t = a is a point of discontinuity of U,
then

where U (a−) and U (a+) denote the left limits and right limits,
respectively. With this understanding, we have the Fourier expansion:

 EXAMPLE 12.1 The function U (t) =  for t ∈ (−π, π), extended
periodically by the equation U (t + 2π) = U (t), has the Fourier series
expansion

Figure 12.3 The function U (t) =  and the approximations S1 (t), S2 (t), and
S3 (t).

Solution Using Equation (12-2) and integrating by parts, we obtain



and then using Equation (12-3) we get

We compute the coefficient a0 by

Substituting the coefficients aj and bj into Equation (12-1) produces the
required solution. The graphs of U (t) and the first three partial sums: S1 (t) =
sin t sin t −  sin 2t, and S3 (t) = sin t −  sin 2t +  sin 3t. These sums are
shown in Figure 12.3.

We now state some general properties of Fourier series that are useful for
calculating the coefficients. We leave the proofs for you.

 Theorem 12.2 If U (t) and V (t) have Fourier series representations,
then their sum W (t) = U (t) + V (t) has a Fourier series representation,
and the Fourier coefficients of W are obtained by adding the
corresponding coefficients of U and V.

 Theorem 12.3 (Fourier cosine series) Assume that U (x) is an even
function. If U (t) has period 2π and U (t) and U' (t) are piecewise



continuous, then the Fourier series for U (t) involves only the cosine
terms (i.e., bn = 0 for all n):

where

an =  U(t) cos nt dt, for n = 0,2,….

 Theorem 12.4 (Fourier sine series) Assume that U (t) is an odd
function. If U (t) has period 2π and if U (t) and U′ (x) are piecewise
continuous, then the Fourier series for U (t) involves only sine terms
(i.e., an = 0 for all n):

where

bn =  U(t) sin nt dt, for n = 0,2,….

 Theorem 12.5 (Termwise integration) If U has the Fourier series
representation given in Equation (12-4), then the integral of U has a
Fourier series representation that can be obtained by termwise
integration of the Fourier series of U; that is,



where we used the expansion  sin nt from Example

12.1.

 Theorem 12.6 (Termwise differentiation) If U′ (t) has a Fourier
series representation and U (t) is given by Equation (12-4), then

 EXAMPLE 12.2 The function U (t) = |t|, for t ∈(−π, π), extended
periodically by the equation U (t + 2π) = U (t), has the Fourier series
representation

Solution The function U (t) is an even function; hence we can use Theorem
12.3 to conclude that bn = 0 for all n and that

We compute the coefficient a0 by



Notice that a2j = 0, and  and the result will follow.

12.1.1 Proof of Euler’s Formulas
The following intuitive proof justifies the Euler formulas given in Equations
(12-2) and (12-3). To determine a0 we integrate both U (t) and the Fourier
series representation in Equation (12-1) from −π to π, which results in

Next, we integrate term by term to obtain

The value of the first integral on the right side of this equation is 2π, and all
the other integrals are zero. Thus,

To determine am, we let m (m > 1) denote a fixed integer and multiply both U
(t) and the Fourier series representation in Equation (12-1) by the term cos
mt. We then integrate to obtain

The value of the first term on the right side of Equation (12-5) is easily seen
to be zero:

We find the value of the term involving cos mt cos nt by using the
trigonometric identity:



cos mt cos nt =  {cos [(m + n)t] + cos [(m − n) t]}.

Calculation reveals that if m ≠ n and m > 0, then

When m = n, the value of the integral becomes

We find the value of the term on the right side of Equation (12-5) involving
the integrand cos mt sin nt by using the trigonometric identity

cos mt sin nt =  {sin [(m + n)t] + sin [(m − n)t]}.

Then, for all values of m and n, we have

Therefore, we can use the results of Equations (12-6)–(12-9) in Equation (12-
5) to obtain

establishing Equation (12-2). We leave as an exercise for you to establish
Euler’s second formula, Equation (12-3), for the coefficients {bn}. A
complete discussion of the details of the proof of Theorem 12.1 is available
in some advanced texts. See, for instance, John W. Dettman, Applied
Complex Variables, Chapter 8, Macmillan, New York, 1965.

 

EXERCISES FOR SECTION 12.1
For Exercises 1–2 and 6–11, find the Fourier series representation. Assume



the given functions have period 2π.

1. 

The graph of U (t) is shown in Figure 12.4.

Figure 12.4

2. 

The graph of V (t) is shown in Figure 12.5.

Figure 12.5

3. For Exercises 1 and 2, verify that U (t) = −V′ (t) by termwise
differentiation of the Fourier series representation for V (t).

4. For Exercise 1, set t =  and conclude that 

5. For Exercise 2, set t = 0 and conclude that 

6. 

The graph of U (t) is shown in Figure 12.6.



Figure 12.6

7. 

The graph of U (t) is shown in Figure 12.7.

Figure 12.7

8. U (t), given in Figure 12.8.

Figure 12.8

9. 

The graph of U (t) is shown in Figure 12.9.



Figure 12.9

10. V (t), given in Figure 12.10.

Figure 12.10

11. U (t), given in Figure 12.11.

Figure 12.11

12. Establish Euler’s second formula, Equation (12-3), for the coefficients
{bn}.

12.2 THE DIRICHLET PROBLEM FOR
THE UNIT DISK



The Dirichlet problem for the unit disk D : |z| < 1 is to find a real-valued
function u (x, y) that is harmonic in the unit disk D and that takes on the
boundary values

at points z = (cos θ, sin θ) on the unit circle, as shown in Figure 12.12.

 Theorem 12.7 If U (t) has period 2π and has the Fourier series
representation

then the solution u to the Dirichlet problem in D is

where z = x + iy = reiθ denotes a complex number in the closed disk |z|
≤ 1.

 
The series representation in Equation (12-11) for u takes on the

prescribed boundary values in Equation (12-10) at points on the unit circle |z|
= 1. Each term, rn cos nθ and rn sin nθ, in the series in Equation (12-11) is
harmonic, so it is reasonable to conclude that the infinite series representing u
will also be harmonic. The proof follows the proof of Theorem 12.8.



Figure 12.12 The Dirichlet problem for the unit disk |z| < 1.

Theorem 12.8 gives an integral representation for a function u (x, y) that
is harmonic in a domain containing the closed unit disk. The result is the
analog to Poisson’s integral formula for the upper half-plane.

 Theorem 12.8 (Poisson integral formula for the unit disk) Let u (x,
y) be a function that is harmonic in a simply connected domain that
contains the closed unit disk |z| ≤ 1. If u (x, y) takes on the boundary
values

u (cos θ, sin θ) = U (θ), for − π < θ ≤ π,

then u has the integral representation

which is valid for |z| < 1.
 
Proof Since u (x, y) is harmonic in the simply connected domain, there
exists a conjugate harmonic function v (x, y) such that f (z) = u (x, y) +
iv (x, y) is analytic. Let C denote the contour consisting of the unit



circle; then Cauchy’s integral formula

expresses the value of f (z) at any point z inside C in terms of the
values of f ( ) at points  that lie on the circle C.

If we set  then z* lies outside the unit circle C and the
Cauchy– Goursat theorem establishes the equation

Subtracting Equation (12-14) from Equation (12-13) and using the
parameterization  = eit, d  = ieit dt and the substitutions z = reiθ, 

 gives

We rewrite the expression inside the parentheses on the right side of
this equation as

and it follows that

Because u (x, y) is the real part of f (z) and U (t) is the real part of f
(eit), we can equate the real parts in the preceding equation to obtain
Equation (12-12), completing the proof of Theorem 12.8.

 
We now turn to the proof Theorem 12.7. The real-valued function



is known as the Poisson kernel. Expanding the left side of Equation (12-15)
in a geometric series gives

We now use this result in Equation (12-12) to obtain

where {an} and {bn} are the Fourier series coefficients for U (t). This result
establishes the representation for u (r cos θ, r sin θ) in Equation (12-11) of
Theorem 12.7.

 EXAMPLE 12.3 Find the function u (x, y) that is harmonic in the unit disk
|z| < 1 and takes on the boundary values



Solution Using Example 12.1, we write the Fourier series for U (θ):

Figure 12.13 Functions U7 (t) and u7 (r cos θ, r sin θ).

Using Equation (12-11) for the solution of the Dirichlet problem, we obtain

This series representation of u (r cos θ, r sin θ) takes on the prescribed
boundary values at points where U (θ) is continuous. The boundary function
U (θ) is discontinuous at z = −1, which corresponds to θ = ±π; U (θ) was not
prescribed at these points. Graphs of the selected approximations U7 (t) and
u7 (x, y) = u7 (r cos θ, r sin θ), which involve the first seven terms in the
preceding two equations, are shown in Figure 12.13.

 

EXERCISES FOR SECTION 12.2
For Exercises 1–6, find the solution to the given Dirichlet problem in the unit
disk D by using the Fourier series representations for the boundary functions
that were derived in the examples and exercises of Section 12.1.



1. 

2. 

Approximations for U5 (θ) and u5 (r cos θ, r sin θ) are shown in Figure
12.14.

Figure 12.14

3. 

4. 

5. 

Approximations for U5 (θ) and u5 (r cos θ, r sin θ) are shown in Figure
12.15.



Figure 12.15

6. 

Approximations for U7 (θ) and u7 (r cos θ, r sin θ) are shown in Figure
12.16.

Figure 12.16

7. 

8. 

12.3 VIBRATIONS IN MECHANICAL
SYSTEMS

Consider a spring that resists compression as well as extension, is suspended
vertically from a fixed support, and has a body of mass m attached toits lower
end. We make the assumption that m is much larger than the mass of the



spring so that we can neglect the mass of the spring. If there is no motion,
then the system is in static equilibrium, as illustrated in Figure 12.17(a). If the
mass is pulled down farther and released, then it will undergo an oscillatory
motion.

If there is no friction to slow the motion of the mass, then we say that the
system is undamped. We determine the motion of this mechanical system by
considering the forces acting on the mass during the motion. Doing so leads
to a differential equation relating the displacement as a function of time. The
most obvious force is that of gravitational attraction acting on the mass m and
given

Figure 12.17 The spring–mass system.

by

F1 = mg,

where g is the acceleration of gravity. The next force to be considered is the
spring force acting on the mass and directed upward if the spring is stretched
and downward if it is compressed. It obeys Hooke’s law

F2 = ks,



where s is the amount the spring is stretched when s > 0 and is the amount it
is compressed when s < 0.

When the system is in static equilibrium and the spring is stretched by the
amount s0, the resultant of the spring force and the gravitational force is zero,
which is expressed by the equation

mg − ks0 = 0.

We let s = U (t) denote the displacement from static equilibrium with the
positive s direction pointed downward, as indicated in Figure 12.17(b), and
write the spring force as

F2 = −k [s0 + U (t)] = −ks0 − kU (t).

The resultant force FR is

We obtain the differential equation for motion by using Newton’s second
law, which states that the resultant of the forces acting on the mass at any
instant satisfies

The distance from equilibrium at time t is measured by U (t), so the
acceleration a is given by a = U″ (t). Applying Equations (12-16) and (12-17)
yields

FR = −kU (t) = mU″ (t).

Hence the undamped mechanical system is governed by the linear differential
equation

mU″ (t) + kU (t) = 0.

The general solution for an undamped system is



12.3.1 Damped System
If we consider frictional forces that slow the motion of the mass, then we say
that the system is damped. To help visualize this situation, we connect a
dashpot to the mass, as indicated in Figure 12.18. For small velocities we
assume that the frictional force F3 is proportional to the velocity; that is,

F3 = −cU′ (t).

The damping constant c must be positive, for if U′ (t) > 0, then the mass is
moving downward and hence F3 must point upward, which requires that F3
be negative. The result of the three forces acting on the mass is given by

F1 + F2 + F3 = −kU (t) − cU′ (t) = mU″ (t) = FR.

Figure 12.18 The spring–mass–dashpot system.

Hence the damped mechanical system is governed by the differential
equation

mU″ (t) + cU′ (t) + kU (t) = 0.

12.3.2 Forced Vibrations
The vibrations discussed earlier are called free vibrations because all the
forces that affect the motion of the system are internal to the system. We
extend our analysis to cover the case in which an external force F4 = F (t)



acts on the mass, as depicted in Figure 12.19. Such a force might occur from
vibrations of the support to which the top of the spring is attached or from the
effect of a magnetic field on a mass made of iron. As before, we sum the
forces F1, F2, F3, and F4 and set this sum equal to the resultant force FR,
obtaining

F1 + F2 + F3 + F4 = FR = −KU (t) − cU′ (t) + F (t) = mU″ (t).

Therefore, the forced motion of the mechanical system satisfies the
nonhomogenous linear differential equation

The function F (t) is called the input, or driving force, and the solution U (t)
is called the output, or response. Of particular interest are periodic inputs F
(t) that can be represented by Fourier series.

Figure 12.19 The spring–mass–dashpot system with an external force.

For damped mechanical systems driven by a periodic input F (t), the
general solution involves a transient part that vanishes as t → + ∞, and a
steady state part that is periodic. We find the transient part of the solution
Uh (t) by solving the homogeneous differential equation



This homogeneous equation has the characteristic equation  and
its roots are  The coefficients m, c, and k are all positive, and
there are three cases to consider.

Case 1 If c2 − 4mk > 0, then the roots are real and distinct,
and because the inequality  holds, it follows that
the roots λ1 and λ2 are negative real numbers. Thus, for this
case, we have

Case 2 If c2 − 4mk = 0, then the roots are real and equal
and λ 1 = λ 2 = λ, where λ is a negative real number. Again,
for this case we find that

Case 3 If c2 − 4mk < 0, then the roots are complex and λ =
−α ± βi, where α and β are positive real numbers, and it
follows that

In all three cases, the homogeneous solution Uh (t) decays to 0 as t → +∞.
We obtain the steady state solution Up (t) by representing Up (t) by its

Fourier series, substituting , and Up (t) into the nonhomogeneous
differential equation, and solving the resulting system for the Fourier
coefficients of Up (t). The general solution to Equation (12-18) then becomes

U (t) = Uh (t) + Up (t).



 EXAMPLE 12.4 Find the general solution to U″(t) + 2U′(t) + U(t) = F(t),
where F(t) is given by the Fourier Series 

Solution First, we solve  for the transient solution.

The characteristic equation is λ 2 + 2λ + 1 = 0, which has a double root λ = −
1.

Hence

For this example, the driving force F(t) is known to have two representations:

We obtain the steady state solution by assuming that Up(t) has the Fourier
series representation

and that  and  can be obtained by termwise differentiation:

Now calculate using 
Substituting these expansions into the differential equation results in

It is easy tosee that a0 = 0.
Then, equating the coefficients in the above series will produce the linear

system of equations



and

Use Cramer’s rule to solve these equations for an and bn, and obtain

and

Hence, the steady state solution Up(t) is

Therefore, the general solution U(t) = Uh(t) + Up(t) is

Alternative solution When n = 2j is even, it is easy tosee that the even
coefficients  and  are all zero, and since (1 − (−1) 2j−1) = 2, we
can express the odd coefficients  and  in the form

and



Hence, the steady state solution Up(t) is

Therefore, the general solution is

 

EXERCISES FOR SECTION 12.3
For Exercises 1–3, parts (a)–(d), use the following Fourier series for F(t).

(a) F(t) = sin(nt), where F(t) =  for −π < t < π.

(b) F(t) = cos(nt), where F(t) = 

(c) F(t) = sin(nt), shown in Figure 12.20.
(d) F(t) = cos(nt), shown in Figure 12.21.

Figure 12.20



Figure 12.21

1. Find the general solution to U″(t) + 2U′(t) + 2U(t) = F(t).

2. Find the general solution to U″(t) + 3U′(t) + 2U(t) = F(t).

3. Find the general solution to U″(t) + 4U′(t) + 4U(t) = F(t).

12.4 THE FOURIER TRANSFORM

If we let U (t) be a real-valued function with period 2π, which is piecewise
continuous such that U′ (t) also exists and is piecewise continuous, then U (t)
has the complex Fourier series representation

U (t)= 

where

cn =  U(t) e−n dt, for all n.

The coefficients {cn} are complex numbers. Previously, we expressed U (t)
as the real trigonometric series

Hence a relationship between the coefficients is

an = cn + c−n,       for n = 0, 1,…,      and



bn = i(cn − c−n),   for n = 1, 2,….

We can easily establish these relations. We start by writing

Comparing Equations (12-20) and (12-19), we see that a0 = 2c0, an = cn + c

−n, and bn = i (cn − c−n).
If U (t) and U′ (t) are piecewise continuous and have period 2L, then U (t)

has the complex Fourier series representation

where

We’ve shown how periodic functions are represented by trigonometric
series, but many practical problems involve nonperiodic functions. A
representation analogous to a Fourier series for a nonperiodic function U (t)
is obtained by considering the Fourier series of U (t) for −L < t < L and then
taking the limit as L → ∞. The result is known as the Fourier transform of
U (t).

We start with the nonperiodic function U (t) and consider the periodic
function UL (t) with period 2L, where

UL (t) = U (t),             for −L < t ≤ L,       and
UL (t) = UL (t + 2L),        for all t.

Then UL (t) has the complex Fourier series representation

We need to introduce some terminology in order to discuss the terms in



Equation (12-23). First

is called the frequency. If t denotes time, then the units for wn are radians per
unit time. The set of all possible frequencies is called the frequency
spectrum, that is,

Note that, as L increases, the spectrum becomes finer and approaches a
continuous spectrum of frequencies. It is reasonable to expect that the
summation in the Fourier series for UL (t) will give rise toan integral over
[−∞,∞]. This result is stated in Theorem 12.9.

 Theorem 12.9 (Fourier transform) Let U (t) and U′ (t) be piecewise
continuous and

for some positive constant M. The Fourier transform F (w) of U (t) is
defined as

At points of continuity, U (t) has the integral representation

and at a point t = a of discontinuity of U, the integral converges to 

The fact that U is transformed into F is commonly expressed by the
operator notation



(U (t)) = F (w).

Proof  These quantities are used in
conjunction with Equations (12-21), (12-22), and (12-23) and the
frequency in Equation (12-24) to obtain

If we define FL (w) by

then we can write Equation (12-26) as

As L gets large, FL (wn) approaches F (wn) and Δwn tends to zero.
Thus the limit on the right side of Equation (12-27) can be viewed as
an integral, which substantiates the Fourier integral representation

A more rigorous proof of this fact is presented in various advanced
texts.

Table 12.1 gives some important properties of the Fourier transform.
Linearity  (aU1 (t) + bU2 (t)) = a (U1 (t)) + b (U2 (t))

Symmetry If (U (t)) = F(w), then  (F (t)) = 2πU (−w).
Time scaling (U (at)) = 

Time shifting (U(t − t0)) = e−it0w F (w)

Frequency shifting  (eiw0tU (t) = F (w − w0)



Time differentiation (U′(t)) = iwF (w)
Frequency differentiation  = ((−it)n U (t))

Moment theorem If Mn =  tnU (t) dt, then (−i) Mn = F(n) (0).

 

Table 12.1 Properties of the Fourier Transform.

 EXAMPLE 12.5 Show that 

Solution Using Equation (12-25), we obtain

establishing the result.

 EXAMPLE 12.6 Show that 

Solution Using the result of Example 12.5 and the symmetry property, we
obtain

We use the linearity property and multiply each term by  and get



Then rewrite this in the form

establishing the result.

 
EXERCISES FOR SECTION 12.4

1. Let U(t) = 

Find (U (t)).

2. Let U(t) = 

Show that (U (t)) = 

3. Let U(t) = 

Find (U (t)).

4. Let U (t) = e−t2/2. Show that  (U (t)) =  Hint: Use the integral
definition and combine the terms in the exponent; then complete the
square and use the fact that 

5. Use the time scaling property and Example 12.5 in the text to show that

6. Use the symmetry and linearity properties and the result of Exercise 1 to
show that

7. Use the symmetry and linearity properties and the result of Exercise 2 to
show that



8. Use the time differentiation property and the result of Exercise 4 to show
that

9. Use the symmetry and linearity properties and the results of Exercise 3 to
show that

12.5 THE LAPLACE TRANSFORM

In this section we investigate a very powerful tool for engineering
applications.

12.5.1 From the Fourier Transform to the
Laplace Transform

We have shown that certain real-valued functions f (t) have a Fourier
transform and that the integral

defines the complex function g(ω) of the real variable ω. If we multiply the
integrand f (t) e−iωt by e−σt, then we create a complex function G(σ + iω) of
the complex variable σ + iω:

The function G(σ + iω) is called the two-sided Laplace transform of f (t)
and it exists when the Fourier transform of the function f (t) e−σt exists. From
Fourier transform theory a sufficient condition for G (σ + iω) to exist is that



For a function f (t), this integral is finite for values of σ that lie in some
interval a < σ < b.

The two-sided Laplace transform has the lower limit of integration t = −∞
and hence requires a knowledge of the past history of the function f (t) (i.e.,
when t < 0). For most physical applications, we are interested in the behavior
of a system only for t ≥ 0. The initial conditions f (0), f ′ (0), f ″ (0),… are a
consequence of the past history of the system and are often all that we know.
For this reason, it is useful to define the one-sided Laplace transform of f (t),
which is commonly referred to simply as the Laplace transform of f (t),
which is also defined as an integral:

where s = σ + iω. If the integral in Equation (12-28) for the Laplace transform
exists for s0 = σ0 + iω, then values of σ with σ > σ0 imply that e−σt < e−σ0t

and so

from which it follows that F (s) exists for s = σ + iω. Therefore, the Laplace
transform  (f (t)) is defined for all points s in the right half-plane Re (s) >σ0.

Another way to view the relationship between the Fourier transform and
the Laplace transform is to consider the function U (t) given by

Then the Fourier transform theory shows that

and, because the integrand U (t) is zero for t < 0, we can write this equation
as



If we use the change of variable s = σ + iω and dω = (ds/i), holding σ > σ0
fixed, then the new limits of integration are from s = σ − i∞ to s = σ + i∞.
The resulting equation is

Therefore, the Laplace transform is

and the inverse Laplace transform is

12.5.2 Properties of the Laplace Transform
Although a function f (t) may be defined for all values of t, its Laplace
transform is not influenced by values of f (t), where t < 0. The Laplace
transform of f (t) is actually defined for the function U (t) given in the last
section by

A sufficient condition for the existence of the Laplace transform is that | f (t)|
not grow too rapidly as t → +∞. We say that the function f is of exponential
order if there exist real constants M > 0 and K, such that

| f (t)| ≤ MeKt

holds for all t ≥ 0. All functions in this chapter are assumed to be of
exponential order. Theorem 12.10 shows that the Laplace transform F(σ + iτ)
exists for values of s in a domain that includes the right half-plane Re (s) > K.



 Theorem 12.10 (Existence of the Laplace transform) If f is of
exponential order, then its Laplace transform (f (t)) = F (s) is given
by

where s = σ + iω. The defining integral for F exists at points s = σ + iτ
in the right half-plane σ > K.

Proof Using s = σ + iτ, we can express F (s) as

Then for values of σ > K, we have

which imply that the integrals defining the real and imaginary parts of
F exist for values of Re (s) > K, completing the proof.

Remark 12.1 The domain of definition of the defining integral for the
Laplace transform (f (t)) seems tobe restricted toa half-plane. However, the
resulting formula F (s) might have a domain much larger than this half-plane.
Later we show that F (s) is an analytic function of the complex variable s. For
most applications involving Laplace transforms that we present, the Laplace
transforms are rational functions that take the form , where P and Q are
polynomials; in other important applications, the functions take the form 



 Theorem 12.11 (Linearity of the Laplace transform) Let f and g
have Laplace transforms F and G, respectively. If a and b are
constants, then

(af (t) + bg (t)) = aF (s) + bG (s).

Proof Let K be chosen so that both F and G are defined for Re (s) > K.
Then

 Theorem 12.12 (Uniqueness of the Laplace transform) Let f and g
have Laplace transforms, F and G, respectively. If F (s)  G (s), then f
(t)  g (t).

Proof If σ is sufficiently large, then the integral representation,
Equation (12-29), for the inverse Laplace transform can be used to
obtain

and the theorem is proven.

 EXAMPLE 12.7 Show that the Laplace transform of the step function
given by



f (t) =  and

is

Solution Using the integral definition for  (f (t)), we obtain

 EXAMPLE 12.8 Show that (eat) = , where a is a real constant.

Solution We actually show that the integral defining  (eat) equals the
formula F (s) =  for values of s with Re (s) > a and that the extension to
other is inferred by our knowledge about the domain of a rational function.

Using straightforward integration techniques gives

Let s = σ + iτ be fixed, or where σ > a. Then, as a − σ is a negative real
number, we have  and use this expression in the preceding
equation to obtain the desired conclusion.

We can use the property of linearity to find new Laplace transforms from
known transforms.

 EXAMPLE 12.9 Show that (sinh at) = 

Solution Because sinh at = eat − e−at, we obtain



Integration by parts is also helpful in finding new Laplace transforms.

 EXAMPLE 12.10 Show that  (t) = 

Solution Integration by parts yields

For values of s in the right half-plane Re (s) > 0, an argument similar tothat in
Example 12.8 shows that the limit approaches zero, establishing the result.

 EXAMPLE 12.11 Show that 

Solution A direct approach using the definition is tedious. Instead, let’s
assume that the complex constants ±ib are permitted and hence that the
following Laplace transforms exist:

Using the linearity of the Laplace transform, we have



Inverting the Laplace transform is usually accomplished with the aid of a
table of known Laplace transforms and the technique of partial fraction
expansion. Table 12.2 gives the Laplace transforms of some well-known
functions, and Table 12.3 highlights some important properties of Laplace
transforms.

 EXAMPLE 12.12 Find 

Solution Using linearity and lines 6 and 7 of Table 12.2, we obtain

f (t) F (s) =  f (t) e−st dt

1

tn

Uc (t) unit step

eat

tneat

tneat

cos bt

sin bt



eat cos bt

eat sin bt

t cos bt

t sin bt

cosh at

sinh at

Table 12.2 Table of Laplace Transforms.

 
Definition (f (t)) = F (s).

First derivative (f ′ (t)) = sF (s) − f (0).

Second derivative (f ″ (t)) = s2F (s) − sf (0) − f ′ (0).

Integral

Multiplication by t (tf (t)) = −F ′ (s).

Division by t

s-axis shifting (eatf (t)) = F (s − a).

t-axis shifting (Ua (t) f (t − a)) = e−asF (s), for a > 0.

Convolution (h (t)) = F (s) G (s),

 where h (t) =  f (t − τ ) g (τ) dτ.



Table 12.3 Properties of the Laplace Transform.

 
EXERCISES FOR SECTION 12.5

1. Show that  (1) =  by using the integral definition of the Laplace
transform.
Assume that s is restricted to values satisfying Re (s) > 0.

2. Let U (t) = 

Find  (f (t)).

3. Let U (t) = 

Find  (f (t)).

4. Show that  (t2) =  by using the integral definition for the Laplace
transform. Assume that s is restricted to values satisfying Re (s) > 0.

5. Let U (t) = 

Find  (f (t)).

6. Let U (t) = 

Find  (f (t)).

For Exercises 7–12, use the linearity of Laplace transform and Table 12.2.

7. Find  (3t2 − 4t + 5).

8. Find  (2 cos 4t).

9. Find  (e2t−3).

10. Find  (6e−t + 3 sin 5t).

11. Find  (t + 1)4).

12. Find  (cosh 2t).



For Exercises 13–18, use the linearity of the inverse Laplace transform and
Table 12.3.

13. Find 

14. Find 

15. Find 

16. Find 

17. Find 

18. Find 

12.6 LAPLACE TRANSFORMS OF
DERIVATIVES AND INTEGRALS

 Theorem 12.13 (Differentiation of f (t)) Let f (t) and f ′ (t) be
continuous for t ≥ 0 and be of exponential order. Then,

(f ′ (t)) = sF (s) − f (0),

where

F (s) = (f (t)).

Proof Let K be large enough that both f (t) and f ′ (t) are of exponential
order K. If Re (s) > K, then (f ′ (t)) is given by



Next, using integration by parts, we rewrite this equation as

As f (t) is of exponential order K and Re (s) > K, we have 
 Hence the preceding equation becomes

proving the theorem.

 Corollary 12.1 If f (t), f ′ (t), and f ″ (t) are of exponential order, then

 (f ″ (t)) = s2f (s) − sf (0) − f ′ (0).

 EXAMPLE 12.13 Show that  (cos2t) = 

Solution If we let f (t) = cos2 t, then f (0) = 1 and f ′ (t) = −2 sin t cos t = −sin
2t. Because  (−sin 2t) = , Theorem 12.13 implies that

 =  (f ′ (t)) = s  (cos2 t) − 1,

from which it follows that 

 Theorem 12.14 (Integration of f (t)) Let f (t)be continuous for t ≥ 0
and of exponential order and let F (s) be its Laplace transform. Then



Proof Let g (t) =  f (τ) dτ. Then, g′ (t) = f (t) and g (0) = 0. If we can
show that g is of exponential order, then Theorem 12.13 will imply
that

and the proof will be complete. As f (t) is of exponential order, we can
find positive values M and K so that

establishing that g is of exponential order and completing the proof.

 EXAMPLE 12.14 Show that  (t2) =  and  (t3) = .

Solution Using Theorem 12.14 and the fact that  (2t) = , we obtain

Now we can use this first result,  (t2) = , to establish the second result:

One of the main uses of the Laplace transform is its role in the solution of
differential equations. The utility of the Laplace transform lies in the fact that
the transform of the derivative f ′ (t) corresponds to multiplication of the
transform F (s) by s and then the subtraction of f (0). This permits us to
replace the calculus operation of differentiation with simple algebraic
operations on transforms.

This idea is used to develop a method for solving linear differential



equations with constant coefficients. Let’s consider the initial value problem

y″ (t) + ay′(t) + by (t) = f (t)

with initial conditions y (0) = y0 and y′ (0) = d0. We can use the linearity
property of the Laplace transform to obtain

 (y″ (t)) + a  (y′ (t)) + b  (y (t)) =  (f (t)).

If we let Y (s) =  (y(t)) and F (s) =  (f(t) and apply Theorem 12.13 and
Corollary 12.1 in the form  (y′ (t)) = sY (s) − y (0) and  (y″ (t)) = s2Y (s) −
sy (0) − y′ (0), then we can rewrite the preceding equation in the form

The Laplace transform Y (s) of the solution y (t) is easily found to be

For many physical problems involving mechanical systems and electrical
circuits, the transform F (s) is known, and the inverse of Y (s) can easily be
computed. This process is referred to as operational calculus and has the
advantage of changing problems in differential equations into problems in
algebra. Then the solution obtained will satisfy the specific initial conditions.
 

 EXAMPLE 12.15 Solve the initial value problem

y″ (t) + y (t) = 0,     with y (0) = 2     and     y′ (0) = 3.

Solution The right side of the differential equation is f (t) ≡ 0, so we have F
(s) ≡ 0. The initial conditions yield  (y″ (t)) = s2Y (s) − 2s − 3 and Equation
(12-30) becomes s2Y (s) + Y (s) = 2s + 3. Solving we get Y (s) =  We
then solve y (t) with the help of Table 12.2 to compute



 EXAMPLE 12.16 Solve the initial value problem

y″ (t) + y′ (t) − 2y (t) = 0,     with y (0) = 1     and     y′ (0) = 4.

Solution As in Example 12.15, we use the initial conditions and Equation
(12-31) becomes

The partial fraction expansion Y (s) =  gives the solution

 
 EXERCISES FOR SECTION 12.6

1. Derive  (sin t) from  (cos t).

2. Derive  (cosh t) from  (sinh t).

3. Find  (sin2 t).

4. Show that  (tet) =  Hint: Let f (t) = tet and f′ (t) = tet + et.

5. Find 

6. Find 

7. Show that 

8. Show that 

For Exercises 9–18, solve the initial value problem.



9. y″ (t) + 9y (t) = 0, with y (0) = 2 and y′ (0) = 9.

10. y″ (t) + y (t) = 1, with y (0) = 0 and y′ (0) = 2.

11. y″ (t) + 4y (t) = −8, with y (0) = 0 and y′ (0) = 2.

12. y′ (t) + y (t) = 1, with y (0) = 2.

13. y′ (t) − y (t) = −2, with y (0) = 3.

14. y″ (t) − 4y (t) = 0, with y (0) = 1 and y′ (0) = 2.

15. y″ (t) − y (t) = 1, with y (0) = 0 and y′ (0) = 2.

16. y′ (t) + 2y (t) = 3et, with y (0) = 2.

17. y″ (t) + y (t) − 2y (t) = 0, with y (0) = 2 and y′ (0) = −1.

18. y″ (t) − y (t) − 2y (t) = 0, with y (0) = 2 and y′ (0) = 1.

12.7 SHIFTING THEOREMS AND THE
STEP FUNCTION

We have shown how to use the Laplace transform to solve linear differential
equations. Familiar functions that arise in solutions to differential equations
are eat cos bt and eat sin bt. Theorem 12.15 shows how their transforms are
related to those of cos bt and sin bt by shifting the variable s in F (s) and is
called the first shifting theorem. A companion result, called the second
shifting theorem, Theorem 12.16, shows how the transform of f (t − a) can be
obtained by multiplying F (s) by e−as. Loosely speaking, these results show
that multiplication of f (t) by eat corresponds to shifting F (s − a) and that
shifting f (t − a) corresponds to multiplication of the transform F (s) by eas.



 Theorem 12.15 (Shifting the variable s) If F (s) is the Laplace
transform of f (t), then

(eatf (t)) = F (s − a).

Proof Using the integral definition , we
have

Definition 12.3: Unit step function

Let a ≥ 0. Then, the unit step function Ua (t) is

 

 

The graph of Ua (t) is shown in Figure 12.22.



Figure 12.22 The graph of the unit step function y = Ua (t).

 Theorem 12.16 (Shifting the variable t) If F (s) is the Laplace
transform of f (t) and a ≥ 0, then

(Ua (t) f (t − a)) = e−as F (s),

where f (t) and Ua (t) (t − a) are illustrated in Figure 12.23.

Figure 12.12 Comparison of the functions f (t) and Ua (t) f (t − a).

Proof Using the definition of the Laplace transform, we write

Using the change of variable t = a + τ and dt = dτ, we obtain

Because Ua (t) f (t − a) = 0, for t < a, and Ua (t) f (t − a) = f (t − a), for
t > a, we rewrite the preceding equation as



and the proof is complete.

 EXAMPLE 12.17 Show that 

Solution If we let f (t) = tn, then  and if we apply

Theorem 12.15, we obtain the desired result:

Figure 12.24 The function y = f (t).

 EXAMPLE 12.18 Show that 

Solution We set f (t) = 1 and then set F (s) =  (1) = . We apply Theorem
12.16 to get

 EXAMPLE 12.19 Find  (f (t)) if f (t) is as given in Figure 12.24.



Solution We represent f (t) in terms of step functions:

f (t) = 1 − U1 (t) + U2 (t) − U3 (t) + U4 (t) − U5 (t).

Using the result of Example 12.18 and linearity, we obtain

 EXAMPLE 12.20 Use Laplace transforms to solve the initial value
problem

y″ (t) + y (t) = Uπ (t),     with y (0) = 0     and     y′ (0) = 0.

Solution As usual, we let Y (s) denote the Laplace transform of y(t). Then, we
get

Solving for Y (s) gives

We now use Theorem 12.16 and the facts that  and  are the transforms
of 1 and cos t, respectively. We compute the solution, y (t), as

which we then write in the more familiar form

 



EXERCISES FOR SECTION 12.7

1. Find  (et − tet).

2. Find  (e−4t sin 3t).

3. Show that  (eat cos bt) = 

4. Show that  (eat sin bt) = 

For Exercises 5–8, find −1 (F (s)).

5. F (s) = 

6. F (s) = 

7. F (s) = 

8. F (s) = 

For Exercises 9–14, find  (f (t)).

9. f (t) = U2 (t) (t − 2)2.

10. f (t) = U1 (t) e1−t.

11. f (t) = U3π (t) sin (t − 3π).

12. f (t) = 2U1 (t) − U2 (t) − U3 (t).

13. Let f (t) be as given in Figure 12.25.

Figure 12.25



14. Let f (t) be as given in Figure 12.26. Hint: The function is the integral of
the one in Exercise 13.

Figure 12.26

15. Find 

16. Find 

For Exercises 17–23, solve the initial value problem.

17. y″ (t) + 2y′ (t) + 2y (t) = 0, with y (0) = −1 and y′ (0) = 1.

18. y″ (t) + 4y′ (t) + 5y (t) = 0, with y (0) = 1 and y′ (0) = −2.

19. 2y″ (t) + 2y′ (t) + y (t) = 0, with y (0) = 0 and y′ (0) = 1.

20. y″ (t) − 2y′ (t) + y (t) = 2et, with y (0) = 0 and y′ (0) = 0.

21. y″ (t) + 2y′ (t) + y (t) = 6te−1, with y (0) = 0 and y′ (0) = 0.

22. y″ (t) + 2y′ (t) + y (t) = 2U1 (t) e1−t, with y (0) = 0 and y′ (0) = 0.

23. y″ (t) + y (t) = U  (t), with y (0) = 0 and y′ (0) = 1.

12.8 MULTIPLICATION AND DIVISION
BY t

Sometimes the solutions to nonhomogeneous linear differential equations



with constant coefficients involve the functions t cos bt, t sin bt, or tn eat as
part of the solution. We now show how the Laplace transforms of tf (t) and 

 related to the Laplace transform of f (t). We obtain the transform of tf (t)
via differentiation and the transform of  via integration. To be precise, we
present Theorems 12.17 and 12.18.

 Theorem 12.17 (Multiplication by t) If F (s) is the Laplace
transform of f (t), then

 (tf (t)) = − F′ (s).

Proof By definition, we have  Leibniz’s rule
(Theorem 6.11) for partial differentiation under the integral sign
permits us to write

establishing the result.

 Theorem 12.18 (Division by t) Let both f (t) and  have Laplace
transforms and let F (s) denote the transform of f (t). If  exists,
then

Proof Because  we integrate F (σ) from s to ∞ and



obtain

We reverse the order of integration in the double integral of this
equation to obtain

completing the proof.

 EXAMPLE 12.21 Show that  (t cos bt) = 

Solution If we let f (t) = cos bt, then  Hence we can
differentiate F (s) to obtain the desired result:

 EXAMPLE 12.22 Show that 

Solution We let f (t) = sin t and  Because  we can
integrate F (s) to obtain the desired result:

Some types of differential equations involve the terms ty′ (t) or ty″ (t). We



can use Laplace transforms to find the solution if we use the additional
substitutions

 EXAMPLE 12.23 Use Laplace transforms to solve the initial value
problem

ty″ (t) − ty′ (t) − y (t) = 0, with y (0) = 0.

Solution If we let Y (s) denote the Laplace transform of y (t) and substitute
Equations (12-32) and (12-33) into the preceding equation, we get

Equation (12-34) involves Y′ (s) and can be written as a first-order linear
differential equation

The integrating factor ρ for the differential equation is

Multiplying Equation (12-35) by ρ produces

When we integrate the equation  with respect to s, the result
is (s − 1)2 Y (s) = C, where C is the constant of integration. Hence the
solution to Equation (12-34) is

The inverse of the transform Y (s) in this equation is the desired solution:



y (t) = Ctet.

 
EXERCISES FOR SECTION 12.8

1. Find  (te−2t).

2. Find  (t2e4t).

3. Find  (t sin 3t).

4. Find  (t2 cos 2t).

5. Find  (t sinh t).

6. Find  (t2 cosh t)

7. Show that 

8. Show that 

9. Find  (t sin bt).

10. Find  (teat cos bt).

11. Find 

12. Find 

For Exercises 13–18, solve the initial value problem.

13. y″ (t) + 2y′ (t) + y (t) = 2e−t, with y (0) = 0 and y′ (0) = 1.

14. y″ (t) + y (t) = 2 sin t, with y(0) = 0 and y′ (0) = −1.

15. ty″ (t) − ty′ (t) − y (t) = 0, with y (0) = 0.

16. ty″ (t) + (t − 1) y′ (t) − 2y (t) = 0, with y (0) = 0.

17. ty″ (t) + ty′ (t) − y (t) = 0, with y (0) = 0.



18. ty″ (t) + (t − 1) y′ (t) + y (t) = 0, with y (0) = 0.

19. Solve the Laguerre equation ty″ (t) + (1 − t) y′ (t) + y (t) = 0, with y (0) =
1.

20. Solve the Laguerre equation ty″ (t) + (1 − t) y′ (t) + 2y (t) = 0, with y (0) =
1.

12.9 INVERTING THE LAPLACE
TRANSFORM

So far, most of the applications utilizing the Laplace transform have involved
a transform (or part of a transform) expressed by

where P and Q are polynomials that have no common factors. The inverse of
Y (s) is found by using its partial fraction representation and referring to
Table 12.2. We now show how the theory of complex variables can be used
systematically to find the partial fraction representation. Theorem 12.19 is an
extension of Example 8.7 to n linear factors. We leave the proof to you.

 Theorem 12.19 (Nonrepeated linear factors) Let P (s) be a
polynomial of degree at most n − 1. If Q (s) has degree n and has
distinct complex roots a1, a2,…, an, then Equation (12-36) becomes



Theorem 12.20 (A repeated linear factor) If P (s) and Q (s) are
polynomials of degree µ and v, respectively, and µ < v + n and Q (a) ≠
0, then Equation (12-36) becomes

where R is the sum of all partial fractions that do not involve factors of
the form (s − a)j. Furthermore, the coefficients Ak can be computed
with the formula

Proof We employ the method of residues. First, multiplying both sides
of Equation (12-38) by (s − a)n gives

We can differentiate both sides of this equation n − k times to obtain

In this equation, we take the limit as s → a. We leave as an exercise
for you to fill in the steps to obtain

which establishes Equation (12-39).

 EXAMPLE 12.24 Let Y (s) = . Find  (Y (s)).
 



Solution From Equations (12-37) and (12-38) we write

We calculate the coefficient B1 by

B1 = Res [Y, 0] = 

We find the coefficients A1, A2, and A3 by using Theorem 12.20. In this case
a = 1 and , and we get

 

 
Hence the partial fraction representation is

and the inverse is

y (t) = −t2et + tet + 2et − 1.

 

 Theorem 12.21 (Irreducible quadratic factors) Let P and Q be



polynomials with real coefficients such that the degree of P is at most
1 larger than the degree of Q. If T does not have a factor of the form (s
− a)2 + b2, then

where

Proof Since P, Q, and Q′ have real coefficients, it follows that

The polynomial Q has simple zeros at s = a ± ib, which implies that Q′
(a ± ib) ≠ 0. Therefore, we obtain

from which we get

If we set A + iB = Res [Y, a + ib] and use Theorem 12.19 and
Equations (12-40)– (12-42), then we find that

We then combine the first two terms on the right side of this equation
to obtain

and the proof of the theorem is complete.



 EXAMPLE 12.25 Let Y (s) =  Find −1 (Y (s)).

Solution Here we have P (s) = 5s and Q (s) = s4 + 13s2 + 36, and the roots of
Q (s) occur at 0 ± 2i and 0 ± 3i. Computing the residues yields

Res [Y, 2i] =  and

Res [Y, 3i] = 

We find that A1 + iB1 =  + 0i and A2 + iB2 = −  + 0i, which correspond to a1
+ ib1 = 0 + 2i and a2 + ib2 = 0 + 3i, respectively. Thus we obtain

and the desired solution is

 EXAMPLE 12.26 Find −1 (Y (s)) if Y (s) = 

Solution The partial fractional expression for Y (s) has the form

The linear factor s is nonrepeated, so we have

D = Res [Y (s), 0] = 

The factor s + 1 is repeated, so we have



C2 = Res [(s + 1) Y (s), −1] = 

The term s2 + 1 is an irreducible quadratic, with roots ±i, so that

A + iB = Res [Y, i] = 

and we obtain A =  and B = − . Therefore,

Now we use Table 12.2 to get

y (t) = 1 − 2e−t − 2te−t + cos t + sin t.

 

 EXAMPLE 12.27 Use Laplace transforms to solve the system

y′ (t) = y (t) − x (t),     with y (0) = 1;

x′ (t) = 5y (t) − 3x (t),     with x (0) = 2.

Solution We let Y (s) and X (s) denote the Laplace transforms of y (t) and x
(t), respectively. Taking the transforms of the two differential equations gives

sY (s) − 1 = Y (s) − X (s)     and

sX (s) − 2 = 5Y (s) − 3X (s),



which can be written as

  (s − 1) Y (s) + X (s) = 1     and

5Y (s) − (s + 3) X (s) = −2.

We use Cramer’s rule to solve for Y (s) and X (s):

We obtain the desired solution by computing the inverse transforms:

y (t) = e−t cos t and

x (t) = e−t (2 cos t + sin t).

According to Equation (12-29), the inverse Laplace transform is given by
the integral formula

where σ0 is any suitably chosen large positive constant. This improper
integral is a contour integral taken along the vertical line s = σ0 + iτ in the
complex s = σ + iτ plane. We use the residue theory in Chapter 8 to evaluate
it. We leave the cases in which the integrand has either infinitely many poles
or branch points for you to research in advanced texts. We state the following
more elementary theorem.



 Theorem 12.22 (Inverse Laplace transform) Let  where
P (s) and Q (s) are polynomials of degree m and n, respectively, and n
> m. The inverse Laplace transform F (s) is f (t), which is given by

where the sum is taken over all of the residues of the complex function
F (s) est.

Proof Let σ0 be chosen so that all the poles of F (s) est lie to the left of
the vertical line s = σ0 + iτ. Let R denote the contour consisting of the
vertical line segment between the points σ0 ± iR and the left semicircle
CR : s = σ0 + Reiθ, where  ≤ θ ≤  as shown in Figure 12.27. A slight
modification of the proof of Jordan’s lemma reveals that

We now use the residue theorem to get

and the proof of the theorem is complete.



Figure 12.27 The contour R.

 Theorem 12.23 (Heaviside expansion theorem) Let P (s) and Q (s)
be polynomials of degree m and n, respectively, where n > m. If Q (s)
has n distinct simple zeros at the points s1,s2,…, sn, then  is the
Laplace transform of the function f (t) given by

Proof If P (s) and Q (s) are polynomials and sk is a simple zeroof Q(s),
then

This result allows us to write the residues in Equation (12-43) in the
more convenient form given in Equation (12-44), and the theorem is
proven.



 EXAMPLE 12.28 Find the inverse Laplace transform of the function given
by

Solution Here we have P (s) = 4s + 3 and Q (s) = (s + 2) (s2 + 1) so that Q
has simple zeros located at the points s1 = −2, s2 = i, and s3 = −i. When we
use Q′ (s) = 3s2 + 4s + 1, calculation reveals that  and 

 Applying Equation (12-44) gives f (t) as

 
EXERCISES FOR SECTION 12.9

For Exercises 1–6, use partial fractions to find the inverse Laplace transform
of Y (s).

1. 

2. 

3. 

4. 

5. 

6. 



7. Use a contour integral to find the inverse Laplace transform of 

8. Use a contour integral to find the inverse Laplace transform of Y (s) = 

For Exercises 9–12, use the heaviside expansion theorem to find the inverse
Laplace transform of Y (s).

9. 

10. 

11. 

12. 

13. Find the inverse of 

For Exercises 14–19, solve the initial value problem.

14. y″ (t) + y (t) = 3 sin 2t, with y (0) = 0 and y′ (0) = 3.

15. y″ (t) + 2y′ (t) + 5y (t) = 4e−t, with y (0) = 1 and y′ (0) = 1.

16. y″ (t) + 2y′ (t) + 2y (t) = 2, with y (0) = 1 and y′ (0) = 1.

17. y″ (t) + 4y (t) = 5e−t, with y (0) = 2 and y′ (0) = 1.

18. y″ (t) + 2y′ (t) + y (t) = t, with y (0) = −1 and y′ (0) = 0.

19. y″ (t) + 3y′ (t) + 2y (t) = 2t + 5, with y (0) = 1 and y′ (0) = 1.

For Exercises 20–25, solve the system of differential equations.

20. x′ (t) = 10y (t) − 5x (t), y′ (t) = y (t) − x (t), with x (0) = 3 and y (0) = 1.

21. x′ (t) = 2y (t) − 3x (t), y′ (t) = 2y (t) − 2x (t), with x (0) = 1 and y (0) = −1.

22. x′ (t) = 2x (t) + 3y (t), y′ (t) = 2x (t) + y (t), with x (0) = 2 and y (0) = 3.



23. x′ (t) = 4y (t) − 3x (t), y (t) = y′ (t) − x (t), with x (0) = −1 and y (0) = 0.

24. x′ (t) = 4y (t) − 3x (t) + 5, y′ (t) = y (t) − x (t) + 1, with x (0) = 0 and y (0)
= 2.

25. x′ (t) = 8y (t) − 3x (t) + 2, y′ (t) = y (t) − x (t) − 1, with x (0) = 4 and y (0)
= 2.

12.10 CONVOLUTION

If we let F (s) and G (s) denote the transforms of f (t) and g (t), respectively,
then the inverse of the product F (s) G (s) is given by the function h (t) = (f *
g) (t). It is called the convolution of f (t) and g (t) and can be regarded as a
generalized product of f (t) and g (t). Convolution helps us solve integral
equations.

 Theorem 12.24 (Convolution theorem) Let F (s) and G(s) denote
the Laplace transforms of f (t) and g (t), respectively. Then the product
given by H (s) = F (s) G (s) is the Laplace transform of the
convolution of f and g, is denoted h (t) = (f * g) (t), and has the
integral representation

Proof The following proof is given for the special case when s is a real
number. The general case is covered in advanced texts. Using the
dummy variables σ and τ and the integrals defining the transforms, we
can express their product as



The product of integrals in this equation can be written as an iterated
integral:

We hold τ fixed, use the change of variables t = σ + τ and dt = dσ, and
rewrite the inner integral in the equation to obtain

The region of integration for this last iterated integral is the wedge-
shaped region in the (t, τ) plane shown in Figure 12.28. We reverse the
order of integration in the integral to get

We rewrite this equation as

which establishes Equation (12-46). We can interchange the role of the
functions f (t) and g (t), so Equation (12-45) follows immediately.



Figure 12.28 The region of integration in the convolution theorem.

Table 12.4 lists the properties of convolution.

Commutative f * g = g * f
Distributive f * (g + h) = f * g + f * h
Associative (f * g) * h = f * (g * h)
Zero f * 0 = 0

Table 12.4 Properties of Convolution.

 EXAMPLE 12.29 Show that 

Solution If we let  f (t) = sin t, g (t) = 2 cos t,
respectively, and apply the convolution theorem, we get

 EXAMPLE 12.30 Use the convolution theorem to solve the integral
equation



Solution Letting F (s) =  (f (t)) and using  in the convolution
theorem, we obtain

Solving for F (s), we get

and the solution is

f (t) = 2 cos t − t sin t.

 
Engineers and physicists sometimes consider forces that produce large

effects but that are applied over a very short time interval. The force acting at
the time an earthquake starts is an example. This phenomenon leads to the
idea of a unit impulse function, δ (t). Let’s consider the small positive
constant a. The function δa (t) is defined by

The unit impulse function is obtained by letting the interval width go to zero,
or

Figure 12.29 shows the graph of δa (t) for a = 10, 40, and 100. Although δ (t)
is called the Dirac delta function, it is not an ordinary function. To be
precise it is a distribution, and the theory of distributions permits
manipulation of δ (t) as though it were a function. Here, we treat δ (t) as a
function and investigate its properties.



 EXAMPLE 12.31 Show that  (δ (t)) = 1.

Solution By definition, the Laplace transform of δa (t) is

Letting a → 0 in equation and using L’Hôpital’s rule, we obtain

Figure 12.29 Graphs of y = δa (t) for a = 10, 40, and 100.

Figure 12.30 The integral of δa (t) is fa (t), which becomes U0 (t) when a →
0.

We now turn to the unit impulse function. First, we consider the function
fa (t) obtained by integrating δa (t):



Hence,  as illustrated in Figure 12.30.
We demonstrate the response of a system to the unit impulse function in

Example 12.32.

 EXAMPLE 12.32 Solve the initial value problem

y″ (t) + 4y′ (t) + 13y (t) = 3δ (t),     with y (0) = 0 and y′ (0−) = 0.

Figure 12.31 The solution y = y (t).

Solution Taking transforms results in (s2 + 4s + 13) Y (s) = 3  (δ (t)) = 3 so
that

and the solution is

y (t) = e−2t sin 3t.

Remark 12.2 The condition y′ (0−) = 0 is not satisfied by the “solution”y (t).
Recall that all solutions involving the use of the Laplace transform are to be
considered zero for values of t < 0—hence the graph of y (t) as given in
Figure 12.31. Note that y′ (t) has a jump discontinuity of magnitude +3 at the



origin. This discontinuity occurs because either y (t) or y′ (t) must have a
jump discontinuity at the origin whenever the Dirac delta function occurs as
part of the input or driving function.

The convolution method can be used to solve initial value problems. The
tedious mechanical details of problem solving can be facilitated with
computer software such as MapleTM, MATLAB®, or Mathematica®.

 Theorem 12.25 (Initial value problem (IVP) convolution method)
The unique solution to the initial value problem

ay″ (t) + by′ (t) + cy (t) = g (t) with y (0) = y0 and y′ (0) = y1

is given by

y (t) = u (t) + (h * g) (t),

where u (t) is the solution to the homogeneous equation

au″ (t) + bu′ (t) + cu (t) = with u (0) = y0 and u′ = y1,

and h(t) has the Laplace transform given by 

Proof The particular solution is found by solving the equation

av″ (t) + bv′ (t) + cv (t) = g (t), with v (0) = 0 and v′ (0) = 0.

Taking the Laplace transform of both sides of this equation produces

as2V (s) + bsV (s) + cV (s) = G (s).

Solving for V (s) in this equation yields  If we set 
 then V (s) = H (s) G (s) and the particular solution is

given by the convolution



v (t) = (h * g) (t).

The general solution is y (t) = u (t) + v (t) = u (t) + (h * g) (t). To verify
that the initial conditions are met, we compute

y (0) = u (0) + v (0) = y0 + 0 = y0 and

y′ (0) = u′ (0) + v′ (0) = y1 + 0 = y1,

completing the proof of the theorem.

 EXAMPLE 12.33 Use the convolution method to solve the IVP

y″ (t) + y (t) = tan t with y (0) = 1 and y′ (0) = 2.

Solution We first solve u″ (t) + u (t) = 0 with u (0) = 1 and u′ (0) = 2. Taking
the Laplace transform yields s2U (s) − s − 2 + U (s) = 0. Solving for U (s)
gives  and it follows that

u (t) = cos t + 2 sin t.

Second, we observe that  and h (t) = sin t so that

Therefore, the solution is



 
EXERCISES FOR SECTION 12.10

For Exercises 1–4, find the indicated convolution.

1. t * t.

2. t * sin t.

3. et * e2t.

4. sin t * sin 2t.

For Exercises 5–8, use convolution to find −1 (F (s)).

5. 

6. 

7. 

8. 

9. Prove the distributive law for convolution, f * (g + h) = f * g + f * g.

10. Use the convolution theorem and mathematical induction to show that

11. Find 

12. Find 

13. Use the convolution theorem to solve the initial value problem

y″ (t) + y (t) = 2 sin t,     with y (0) = 0     and     y′ (0) =
0.



14. Use the convolution theorem to show that the solution to the initial value
problem y″ (t) + ω2y (t) = f (t), with y (0) = 0 and y′ (0) = 0, is

15. Find 

16. Find 

17. Let F(s) =  (f (t)). Use convolution to show that 

For Exercises 18–21, use the convolution theorem to solve the integral
equation.

18. 

19. 

20. 

21. 

For Exercises 22–25, solve the initial value problem.

22. y″ (t) − 2y′ (t) + 5y (t) = 2δ (t), with y (0) = 0 and y′ (0) = 0.

23. y″ (t) + 2y′ (t) + y (t) = δ (t), with y (0) = 0 and y′ (0) = 0.

24. y″ (t) + 4y′ (t) + 3y (t) = 2δ (t), with y (0) = 0 and y′ (0) = 0.

25. y″ (t) + 4y′ (t) + 3y (t) = 2δ (t − 1), with y (0) = 0 and y′ (0) = 0.

For Exercises 26–29, use the IVP convolution method to solve the initial
value problem.

26. y″ (t) − 2y′ (t) + 5y (t) = 8 exp (−t), with y (0) = 1 and y′ (0) = 2.

27. y″ (t) + 2y′ (t) + y (t) = t4, with y (0) = 1 and y′ (0) = 2.



28. y″ (t) + 4y′ (t) + 3y (t) = 24t2e−t, with y (0) = 1 and y′ (0) = 2.

29. y″ (t) + 4y′ (t) + 3y (t) = 2te−t, with y (0) = 1 and y′ (0) = 2.



answers

Answers to odd-numbered problems are
provided.

Section 1.1. The Origin of Complex Numbers: page 10

1.  Mimic the argument the text gives in showing 
3a.  The roots are 
5a.  Use Formula (1-3) to get  Assume, as

Bombelli did, that this expression can be put in the form 
 where u and v are integers. Next, imitate the argument in the text

that leads to equations (1-4), (1-5), and (1-6) to get u(u2 − 3v2) + iv(3u2

− v2) = 18 + 26i. The only factors of 18 are 1, 2, 3, 6, 9, and 18, so you
can deduce (explain your reasoning) that u = 3 and v = 1 solve this
system. Thus, one solution to x3 − 30x − 36 = 0 is x = 6. Divide x3 −
30x − 36 by x − 6 and solve the resulting quadratic to get the remaining
solutions: 

5c.  Proceed as with part a. The solutions are x = 8, 
7a.  By the Pythagorean theorem the length of a is  The length of

b is 
7b.  The radian measure of a is arctan  The radian measure of b is

arctan 
7c.  i. The radian measure of c is 0.4636 + 1.2490 = 1.7126.

ii. The length of c is 
7d.  The coordinate representation of c is 

 You will see in Section 1.2 that x = −1 and y = 7 are
actually the exact answers.



Section 1.2. The Algebra of Complex Numbers: page 19

1a.  
1c.  0.
1e.  2 + 2i.
1g.  3.
1i.  

3.  Let z = x + iy be an arbitrary complex number. Then  x2

+ y2, which is obviously a real number.
5a.  Since z1 is a root of the polynomial P, P(z1) = 0. Use properties (1-12)

through (1-14) of Theorem 1.1 to show that  This
implies  Next show that if  then 
confirming that  is also a root of P.

5c.  Find a polynomial for part a, another for part b, and multiply them
together.

7.  Use the (ordered pair) definition for multiplication to verify that if z =
(x, y) is any complex number, then (x, y)(1, 0) = (x, y).

9a.  We would want to find a number ζ = (a, b) such that for any z = (x, y)
we have z * ζ = z. Obviously if ζ = (1, 1), then according to the
definition of * we would have z * ζ = (x, y) * (1, 1) = (x, y) = z. Thus,
the multiplicative identity in this case would have to be ζ = (1, 1).

9b.  For any complex number w = (x, y) we would have (0, a) * (x, y) = (0,
ay), which can’t possibly equal (1, 1).

11.  Let z1 = (x1, y1), z2 = (x2, y2), and z3 = (x3, y3) be arbitrary complex
numbers. Then
z1(z2 + z3) = (x1, y1) [(x2, y2) + (x3, y3)] = (x1, y1) [(x2 + x3, y2 + y3)] =
(x1(x2 + x3) − y1(y2 + y3), x1(y2 + y3) + (x2 + x3)y1) = ··· = (x1x2 − y1y2,
x1y2 + x2y1) + (x1x3 − y1y3, x1y3 + x2y3) = z1z2 + z1z3.

Complete the missing steps in ··· above using the distributive and other
laws for real numbers.

13.  (2 + 3i)−1 = 



Section 1.3. The Geometry of Complex Numbers: page 25

1a.  

1c.  225.

1e.  (x − 1)2 + y.2

3a.  Inside, since  which is less than 2.
3c.  Outside, since  which is greater than 2.
5.  Let z1 = (x1, y1) and z2 = (x2, y2). Since neither z1 nor z2 equals zero,

they are perpendicular iff their dot product is zero. But their dot product
is (x1, y1) • (x2, y2) = x1x2 + y1y2, which is precisely Re(z1 ).

7.  Let z = x + iy. Then  iff 
 iff  iff  iff 

which is clearly true. A proper argument will start with this last
inequality and work backwards to the appropriate conclusion.

9.  By the triangle inequality, 
11.  Let z = (a, b). Then  = (a, −b), − z = (−a, −b), and −  = (−a, b). The

line segment from z to  is perpendicular to the line segment from  to
−z since the vector from z to  is  − z = (0, −2b). The vector from  to
− z is (− 2a, 0), and the dot product of these is clearly zero. A similar
argument works for the other line segments. It is also easy to show that
the diagonals intersect at the origin, establishing symmetry there.

13.  This is simply an equivalent form of the vector equation between the
points z1 = (x1, y1) and z2 = (x2, y2). Explain!

15.  By repeated application of equation (1-25), we have 

17.  

If  reduces to  and  becomes 
 Thus,  and the conclusion follows.

Similarly, if  = 1, we get the same result.
19.  By inequality (1-24), we see that  Also, 

 so that  Putting these two inequalities



together gives  from whence the conclusion
follows.

21.  Let z1 = (x1, y1) and z2 = (x2, y2). Re(z1 ) = x1x2 + y1y2. | z1 | = 
 either z1 or z2 equals 0, then clearly Re(z1 )

= | z1 |. If neither equals 0, the two quantities are equal precisely when
−x1y2 + x2y1 = 0 and x1x2 + y1y2 ≥ 0. This occurs when the points z1
and z2 lie on a straight line through the origin. Show the details for this
last statement.

23.  The inequality  is clearly true when n = 1. Suppose that for

some  Then, using the triangle inequality and our

induction assumption, 

25a.  By definition, an ellipse is the locus of points the sum of whose
distances from two fixed points is constant. Since  gives the
distance from the point z to the point z1, the set  is
precisely those points that satisfy the definition of an ellipse.

25c.  Letting z1 = 2i, and z2 = − 2i, we compute K = |3 + 2i − 2i | + |3 + 2i +
2i| = 3 + 5 = 8. Then, with z = (x, y), the equation in Exercise 25a
becomes  Show the details that squaring
both sides, simplifying, squaring again, and simplifying again gives 4x2

+ 3y2 = 48. In standard form, 

Section 1.4. The Geometry of Complex Numbers, Continued:
page 34

1a.  − 
1c.  2 .
1e.  − .
1g.  −

3a.  4 (cos π + i sin π) = 4eiπ.



3c.  
3e.  

3g.  5 (cos θ + i sin θ) = 5eiθ, where θ = Arctan .
5a.  i.
5c.  4+ i4 
5e.  

5g.  −e2.
7.  Arg  Arg  Arg  Arg 

 Clearly, 
9.  The negative real numbers and the number zero. Prove this!

11.  Let θ ∈ arg ( ). Then  = re.iθ Hence, z =  e−iθ, so − θ ∈ arg z, or θ
∈ − arg z. Thus, arg ( )  − arg z. The proof that − arg z  arg ( ) is
similar.

13a.  Let 0  z = x + iy. Since z  = x2 + y2 > 0, Arg (z ) = 0.
15.  From the figure it is clear that Arg (z − z0) = , and  The

exponential form for z − z0 then gives the desired conclusion.

Section 1.5. The Algebra of Complex Numbers, Revisited: page 41

1a.  − 16 − i16 .
1c.  − 64.

3.  cos 3θ = cos3 θ − 3 cos θ sin2θ, sin 3θ = 3 cos2 θ − sin3 θ.
5a.  The polar form is  for k = 0, 1, 2.
5c.  The Cartesian form is ±2 ± 2i.
5e.  The polar form is  for k = 0, 1, 2, 3.

7a.  Verify that (1 − z)(1 + z + z2 +…+ zn) = 1 − zn+ 1.

7b.  Let z = eiθ. For the left-hand side of part (a), use De Moivre’s formula.
Keep z = eiθ on the right-hand side and multiply numerator and
denominator by . Simplify, and then equate real parts of the left- and
right-hand sides.



9.  Use exercise (7a) and recall that if zk is an nth root of unity, then  = 1.

11.  The four roots are ±1 ± i (show the details). Use the roots as linear
factors in conjugate pairs to get z4 + 1 = (z2 + 2z + 2) (z2 − 2z + 2).

13a.  The obvious operation is multiplication. The identity is 1, and the
associative property is inherited from  To complete the proof, show
that the set  is closed under multiplication, and that
every element in S has an inverse that is also in S.

Section 1.6. The Topology of Complex Numbers: page 50

1a.  z (t) = t + it for 0 ≤ t ≤ 1.
1c.  z (t) = t + i for 0 ≤ t ≤ 1.

3a.  z (t) = t + it2 for 0 ≤ t ≤ 2.

3c.  z (t) = 1 − t + i (1 − t)2 for 0 ≤ t ≤ 1.
5a.  z (t) = cos t + i sin t for 
7a.  z (t) = cos t + i sin t for 0 ≤ t ≤ .
9b.  Open: (i), (iv), (v), (vi), and (vii). Connected: (i)−(vi). Domains: (i),

(iv), (v), and (vi). Regions: (i)−(vi). Closed regions: (iii) Bounded: (iii),
(v), and (vii).

11.  Let R = Max  Clearly,  Thus, S is bounded.
13.  Let C : z(t) = (x (t), y (t)), a ≤ t ≤ b be any curve joining −2 and 2. Then

x (a) = − 2, and x (b) = 2. By the intermediate value theorem, there is
some t* ∈ (a, b) such that x (t*) = 0. But this means z (t*) = (0, y (t*))
is not in the set in question. Explain why!

15a.  We prove the contrapositive. Suppose z0 is accumulation point of S, but
that z0 does not belong to S. By definition of an accumulation point,
every deleted neighborhood, D*ε (z0), contains at least one point of S.
Therefore, every (nondeleted) neighborhood Dε (z0) also contains at
least one point of S and at least one point not in S (namely, z0). This
condition implies that z0, which does not belong to S, is a boundary
point of S. (Show the details forthis last assertion.) Thus, the set S is not



closed.

Section 2.1. Functions and Linear Mappings: page 65

1a.  6 + i.
1c.  2.

3a.  u (x, y) = x3 − 3xy2; v (x, y) = 3x2y − y3.
3c.  u (x, y) =  v (x, y) = 
5a.  1.
5c.  
5e.  −1.
7a.  0.
7c.   or  
7e.  Yes, because if f (z1) = f (z2) (where z1 =  and z2 = , and θ1 and

θ2 are the arguments of z1 and z2, respectively), then ln r1 + iθ1 = ln r2
+ iθ2. Equating real and imaginary parts gives ln r1 = ln r2, so r1 = r2
(because the function ln is one-to-one). Also, iθ1 = iθ2, so 
i.e., z1 = z2.

9a.  Clearly, f is onto, because if w ∈ B, then by definition of B there exists
a point z ∈ A such that f (z) = w. Suppose that f (z1) = f (z2) for some
values z1 and z2 in A. Then, because A is a subset of D, z1 and z2 both
belong to D. But f is one-to-one on D. Therefore, z1 = z2.

11.  The triangle with vertices − 5 − 2i, − 6, and 3 + 2i.
13a.  
13c.  
15.  Let f (z) = Az + B and g (z) = Cz + E be two linear transformations. Then

h (z) = f (g (z)) = f (Cz + E) = A (Cz + E) + B = ACz + (E + B), which is
the required form for a linear transformation.

Section 2.2. The Mappings w = zn and w = : page 73



1a.  Using Equation (2-9) we see that, if A = {(x, y) : y = 1}, then f (A) = 

1c.  The region in the upper half-plane Im (w) > 0 that lies between the
parabolas  and 

1e.  The point (x, y) in the xy-plane is mapped to the point (u, v) = (x2 − y2,
2xy). For any x, u =  If x = 1, then  If x = 2, then u = 
Your only remaining task is to show that the strip {(x, y) : 1 < x < 2}
indeed is mapped between these two parabolas.

1g.  The infinite strip {(u, v) : 1 < v < 2}, which is the region in the uv plane
between v = i and v = 2i. Show the details in a mannersimilarto the
answer for part a.

3a.  
3c.  z = −1 − 2i, z = 1 + 2i.
5.  See also problem 2. The fallacy lies in the assumption implicit in the

second equality that  for all complex numbers z1 and z2.
Assuming the principal square root is used, then 
This will equal  precisely when Arg (z1z2) =
Arg (z1) + Arg (z2)—explain! The latter equality is plainly false when
z1 = z2 = −1. (Again, explain.) To give a very thorough answer to this
problem, you should state precisely when the last equality is true, and
justify your assertion.

7a.  The points that lie to the extreme right or left of the branches of the
hyperbola x2 − y2 = 4.

9.  The region in the w plane that lies to the right of the parabola u = 4 − .
11a.  The set 
11c.  The set 
13.  The right half-plane given by Re (z) > 0 is mapped onto the region in

the right half-plane satisfying u2 − v2 > 0 and lies to the right of u2 − v2

= 0. This is the region between the lines u = v and u = − v in the right
half of the w plane. A similaranalysis can be applied to the case where b
= 0.



Section 2.3. Limits and Continuity: page 82

1a.  −3 + 5i.
1c.  − 4i.
1e.  1 −  i.
3.   The result now follows by

Theorem 2.2 since the real and imaginary parts of the last expression
have limits that imply the desired conclusion. You should show the
details forthis, of course.

5a.  
7a.  i.
7c.  1.
9.  No. To see why, approach 0 along the real and imaginary axes,

respectively.
11a.  If z → −1 along the upper semicircle r = 1, 0 < θ ≤ π, then  

13.  The real part is continuous since  A similar
argument shows the imaginary part is continuous. The function f is then
continuous by Theorem 2.2.

15.  No. The limit does not exist. Show why.
17.  Rewrite f as in problem 11, and mimic the argument for part a with an

arbitrary negative real number taking the role of −1.
19.  Let ε > 0 be given. Since  there is some number δ such that 

 whenever  Show this implies that if  then 
 so that f(z) g(z) ∈ Dε (0).

21a.  We have remarked that example (2.17) shows that the function h(z) = 
is continuous for all z. Since f is continuous for all z, we can apply
Theorem (2.5) to the function f o h to conclude that g (z) = f(h(z)) = f ( )
is continuous for all z.

23.  Make use of standard techniques. For example, to show that f + g is
continuous, use Theorem 2.3 applied to the sum of two functions.



Section 2.4. Branches of Functions: page 89

1a.  The sector 
1c.  The sector 
3.  Since  where 2π < ∈ θ 4 π (Explain!), we see that

the point  will lie in the lower half−plane or on the
positive real axis (again, explain). Thus, the range of f2π (z) is 

5a.   so  This shows that f1 is
indeed a branch of the cube root function.

7.  The function  where  and  does the job.
Explain why, and find the range of this function, or of a different
function that you concoct.

9.  For k = 0, 1, 2. we have  as the three branches of the cube
root with domains  As in the text, slit each domain along
the negative real axis, and stack D0, D1, and D2 directly above each
other. Join the edge of D0 in the upper half-plane to the edge of D1 in
the lower half-plane. Join the edge of D1 in the upper half-plane to the
edge of D2 in the lower half-plane. Finally, join the edge of D2 in the
upper half-plane to the edge of D0 in the lower half-plane. To really
impress your teacher, make a sketch or real 3D model of this!

Section 2.5. The Reciprocal Transformation w =  : page 95

1.  The circle 
3.  The circle 
5.  The circle 
7.  The circle 
9.  Let ε > 0 be given. Choose  Suppose |z| > R. Then  so 

11a.  If  then with rods at the points z0 = 0, 1 − i and 1 + i, each
carrying a charge of  coulombs perunit length, the total charge at z will



be  Combining terms and solving (using the quadratic
formula) for when the numerator equals zero (tedious, but good for
you!) reveals the total charge to be zero when  Be sure to
show the details of your calculations.

13.  The exterior of the disk 

15.  The disk 

17.  The intersection of 

19.  The map  (with inverse ) has  
 Amazingly, this

simplifies to  which occurs iff u = Re (w) > 0. Show
the details!

21.  Let ε > 0 be given, Choose R =  + 1. Assume  Then 
 Therefore,  To see

how to get R, start with  and work backwards.

23.  Broadly speaking, ±∞ are designations for limits in calculus indicating
quantities that get arbitrarily positive or negative. There is no such
measure in complex analysis. Further, the point ∞ can be given a
meaningful definition on the Riemann sphere. There is no such analogy
for ±∞. Elaborate and give some other comparisons.

Section 3.1. Differentiable and Analytic Functions: page 102

1a.  f ′ (z) = 15z2 − 8z + 7.
1c.   for z ≠ −2.
3.  Parts (a), (b), (e), (f) are entire, and (c) is entire provided that g (z) ≠ 0

for all z.
5.  The result is clearly true when n = 1. Assume for some n > 1 that P′ (z)

= a1 + 2a2z +…+ nanzn−1. consider Q (z) = 
Since the derivative of the sum of two terms is the sum of the
derivatives, we have  The induction



assumption now gives the required result.
7a.  − 4i.
7c.  3.
7e.  −16.
9.   Apply the quotient rule  and simplify.

11.  We evaluate  Follow the hint for
the rest.

13.   The minimum modulus of points on the line y
= 1 − x is  (prove this!). But f ′ (z) = 3z2, and the only solutions to the
equation 3z2 = i have moduli equal to  (prove), which is less than 
(prove this also).

Section 3.2. The Cauchy–Riemann Equations: page 114

1a.  u (x, y) = −y, v (x, y) = x + 4; ux = vy = 0, and uy = −vx = −1. The partials
are continuous everywhere, so f ′ (z) = ux + ivx = i for all z.

1c.  ux = vy = −2(y + 1) and uy = −vx = −2x. The partials are continuous
everywhere, so f ′ (z) = ux + ivx = −2(y + 1) + i2x for all z.

1e.  f is differentiable only at z = i, and f ′ (i) = 0.
1g.  ux = vy = 2x, uy = 2y, and vx = 2y. The conditions necessary for

Theorem 3.4 are satisfied if and only if y = 0, and for z = (x, 0), f ′ (x +
0i) = 2x.

3.  a = 1 and b = 2.

5.  f ′ (z) = f ″ (z) = ex cos y + iex sin y by Theorem 3.4.

7a.  ux = −ey sin x, vy = ey sin x, uy = ey cos x, − vx = −ey cos x. The
Cauchy–Riemann equations hold if and only if both sin x = 0 and cos x
= 0, which is impossible.

9a.  ux = sinh x sin y = vy and uy = cosh x cos y = −vx. The partials are
continuous everywhere, so f is entire.

11a.  f is differentiable only at points on the coordinate axes. f is nowhere



analytic.
11c.  f is differentiable and analytic inside quadrants I and III.
13.  The form of the definition is identical, but the meaning is more subtle in

the complex case. For starters, the limit must exist when z → z0 from
any direction in the complex case. The real case is limited to two
directions.

15.  Since f = u + iv is analytic, u and v must satisfy the Cauchy–Riemann
equations. Since f is not constant, this means the functions u and −v do
not satisfy the Cauchy–Riemann equations. Explain why this is the case,
and then use Theorem 3.3 to conclude that g = u − iv is not analytic.

Section 3.3. Harmonic Functions: page 123

1a.  u is harmonic for all values of (x, y).
3.  c = −a.

5a.  v (x, y) = x3 − 3xy2 + c.

5c.  u (x, y) = − ey cos x + c.
7.  By the chain rule, Ux (x,y) = ux (x, − y), Uy (x,y) = −uy (x,−y), Uxx (x, y)

= uxx (x, −y), Uyy (x, y) = uyy (x, −y). Hence, Uxx (x, y) + Uyy (x, y) = uxx
(x, −y) + uyy (x, −y) = 0.

9.  The function f = u + iv must be analytic, hence so is f2 = u2 − v2 + i
(2uv). By Theorem 3.8, the result follows.

11.  uθ = − rvr implies uθθ = −rvrθ. and uθr = −rvrr − vr. Also, vθ = rur
implies vθθ = rurθ and vθr = rurr + ur. From this we get r2urr + rur +
uθθ (rvθr − rur) + (rur) + (−rvrθ) = 0.

13a.  
15.  The equipotentials are concentric circles with radii 1, 2, 3, and 4. The

streamlines are lines from the origin making an angle of  radians for k
= 0, 1,…, 7.



Section 4.1. Sequences and Series: page 135

1a.  0.
1c.  i.
3.  Let ε > 0 be given. Since  there exists Nε such that if n > Nε

then  But since  this implies that
if n > Nε, then 

5.  This is a “telescoping sum” and we have for the nth partial sum Sn = 
 (show the details forthis). Then  

7.  No. In polar form we have  These points cycle
around the eight roots of unity as Example (4-2) indicated.

9.  Since  converges,  where S is a complex number. But then
 so 

11.   By Theorem 4.4 this
expression equals (au − bv)+ i (bu + av) = (a + ib)(u + iv). Explain why
in detail.

13.  Duplicate the part of the theorem that shows  but replace xn
with yn and u with v.

15.  Following the hint, for ε > 0 there exist numbers Nε and Mε such that n
> Nε implies  and n > Mε implies  Let Lε = Max
{Nε, Mε}. Then n > Lε implies 

17.  Let ε > 0 and suppose  zn = 0. This means there exists Nε such
that n > Nε implies zn ∈ Dε(0), that is, | zn − 0 | < ε. But then | | zn| − 0|
= | zn − 0| < ε, so also we have | zn| ∈ Dε (0). Therefore,  The
other direction is similar. Show the details.

Section 4.2. Julia and Mandelbrot Sets: page 143

1a.  If z = r (cos θ + i sin θ) ≠ 0, show  The



result follows from this—explain!
1c.  If z0 ≠ 0 is real, then obviously  Assume zn is real for

some n > 1. Then zn + 1 = N (zn) =  is also real, provided zn ≠
0.

3.  For f (z) = az + b, if our initial guess is z0, then  But this
is the solution to the equation f (z) = 0, so our iteration stops either here
or with z0 if by chance we had set z0 = .

5.  The Julia set for f−2 (z) = z2 − 2 is connected by Theorem 4.9 because
the orbit of 0 under f−2 are {−2, 2, 2, 2,…}, which is a bounded set.

7.  Suppose c ∈ M, and let {zk} be the orbits of 0 under fc. By definition of
M, there is some real number N such that | zk| < N for all k. Let {wk} be
the orbit of 0 under . Show by induction that wk =  for all k. Once
you have that, it is straightforward to conclude that the set {wk} is
bounded.

9.  There are many examples. The number −2 is in the Mandelbrot set, but
its negative, 2, is not. Whether you use this example or not, justify your
assertion!

11.  If we let c =  then

(show the details for this). But this last quantity equals  (explain),
which is less than 1 (again, explain).

13.  Since  we can choose ρ such that  same technique
as Theorem 4.10, show that if  then   That is, 

 Where z1 = f (z). An easy induction argument now gives
that for all k, | zk − z0| < ρk | z − z0|, where zk is the kth iterate of z. Since
ρ < 1, this implies  Show the details.

Section 4.3. Geometric Series and Convergence Theorems: page 150

1.  By Theorem 4.12,  (show the details), since 



 (show this also).
3.  The series converges by the ratio test. Show the details.

5a.  Converges in 
5c.  Converges in D5 (i).

7.   Now use the fact that | z | > 1
to get the desired conclusion.

9.  Mimic the argument most calculus texts give for real series, but replace
| x | with | z |.

11.  If  The
conclusion follows from this. Explain in detail, especially the second
equality for f (z2).

Section 4.4. Power Series Functions: page 157

1.  The series for f (z) converges absolutely if  If 
 the series converges for all z. If  the series

converges only when z = α. If  is finite but not zero, then the
series converges if 

3a.  ∞
3c.  
3e.  
3g.  
3i.  1.
5.  Show that 

7.  The theorem establishes  when k =
1. Assume the theorem is true for some k > 1, and set g (z) =, 

 where bn = (n + k)(n + k − 1)…(n + 1) cn+k. In other words,
g (z) = f(k) (z) (confirm this). Applying the case when k = 1 to the
function g gives  

 



 (confirm this also), which is
what we needed to establish.

9a.  Since sn − tn = (sn − 1 + sn−2t + sn−3t2 +…stn − 2 + tn − 1 (s − t)
(verify!), the conclusion follows from division and the triangle
inequality.

11.  The series converges for all values of z by the ratio test.

Section 5.1. The Complex Exponential Function: page 164

1.  Recall that  is compact notation for  and that 0! = 1.

Then, by definition, exp (0) =

3.  Let n be an integer, and set z = i2nπ. Then ei2nπ= cos (2nπ)+ i sin (2nπ)
=1. Conversely, suppose ez = ex+iy = 1. Then exeiy = ex (cos y + i sin y)
= 1 + 0i. This implies sin y = 0. Since ex is always positive and ex cos y
= 1, this means that y = 2nπ for some integer n. This also forces x = 0,
so z = x + iy = 0 + i2nπ. This establishes Property (5-3). Property (5-4)
comes from observing that ez1 = ez2 iff ez1 − z2 = 1, and appealing to
Property (5-3).

5a.  Following the method of problem 3, ez = −4 iff z = x + iy with y = (2n +
1) π where n is an integer, and ex = 4. Thus, x = ln 4, and z = ln 4 + i (2n
+ 1) π, where n is an integer.

5c.  z = ln 2 + i (−  + 2nπ), where n is an integer.
7.  This follows immediately from Property (5-4).

9a.  exp  (justify!) = 

because the conjugate is a continuous function (explain). This last
quantity, of course, equals 

11a. Method 1:  Justify the last equality

Method 2: Using L’Hôpital’s rule (Theorem 3.2),  

13a.  ieiz.

13c.  (a + ib)e(a + ib)z.



15.   This is a geometric series. Show that Im (z) > 0 implies
 so that the series converges by Theorem 4.12.

17.  Show that ex2 − y2
 sin 2xy is the imaginary part of exp (z2), and therefore

harmonic by Theorem 3.8.

Section 5.2. The Complex Logarithm: page 172

1a.  2+ i .
1c.  ln 2 + i .
1e.  ln 3 + i (1 + 2n) π, where n is an integer.
1g.  ln 4 + i (  + 2n) π, where n is an integer.
3a.  

3c.  1 + i (−  + 2n) π, where n is an integer.
5a.  α = 2kπ, where k is an integer.
5c.  α =  + 2kπ, where k is an integer.
5e.  α =  + 2kπ, where k is an integer.

7a.  ln (x2 + y2) = 2Re (Log (z)), and Log is analytic for Re (z) > 0.
9.  According to equation (5-20),  has  

11a.  The function f (z) = log0 (z + 2) does the job. Explain why.

11c.  The function f (z) = log−  (z + 2) works. Explain why.

13.  There are many possibilities, such as z1 = 1, z2 = −1. Explain.

15.  Any branch of the logarithm is defined as an inverse of the exponential.
Since there is no value z for which exp (z) = 0, there can be no branch of
the logarithm that is defined at 0.

Section 5.3. Complex Exponents: page 179

1a.  cos (ln 4) + i sin (ln 4).
1c.  cos 1 + i sin 1.



3.  Note that  This collapses to the single element
zero. Thus, for z ≠ 0, z0 = exp(0 · log z) = exp(0) = 1.

5.   This last expression
simplifies to 2i (1 + i)n−2. Now, zn = (1 + i)n. Since Log is a one-to-one
function, the problem is solved by showing Log [(1 + i) ]n = 

 Use properties of the logarithm to do this.

7.  No.  where n is an integer.

9.  The number c must be real, and | ic| = 1.

Section 5.4. Trigonometric and Hyperbolic Functions: page 190

1.   Explain why the index n begins
at 1 in the last expression. The result follows from simplification and
reindexing.

3.   The numerators simplify
to sin 2x and sinh 2y, respectively. Show that the denominator equals
cos 2x + cosh 2y by using the identities cos 2x = cos 2 x − sin 2 x and
cosh 2 y − sinh 2 y = 1.

5a.  This follows immediately from sin (z1 + z2) = sin z1 cos z2 + cos z1 sin
z2.

5c.  This follows immediately from sinh z = sinh x cos y + i cosh x sin y,
where we replace z = x + iy with z = x + iy + iπ = x + i (y + π).

5e.  This follows immediately from sin z = sin x cosh y + i cos x sinh y,
where we replace z = x + iy with iz = −y + ix.

7a.   valid for z ≠ 0.

7c.  2z sec z2 tan z2, valid for  where k is an integer.
7e.  z cosh z + sinh z, valid for all z.
9a.  Use the same methods as in Exercise 11a of Section 5.1.
11.  By identity (5-33), sin z = 0, if and only if sin x cosh y + i cos x sinh y =

0. Equate real and imaginary parts to show this occurs iff x = kπ, where



k is an integer.

13.  Combining (5-36) and (5-37), and letting z = x + iy, we get |sin z |2 +
cos z |2 = sin2 x + sinh2 y + cos2 x + sinh2 y = 1 + 2sinh2 y. This
quantity equals 1 iff y = 0 (when z is a real number) and is greater than
1 otherwise.

15a.  Consider the real part of Identity (5-33), and appeal to Theorem 3.8.
15c.  Consider the imaginary part of sin (iz), and appeal to Theorem 3.8.
17.  Z = 10 + 10i.

Section 5.5. Inverse Trigonometric and Hyperbolic Functions: page 196

1a.  (  + 2n)π ± i ln 2, where n is an integer.
1c.   where n is an integer.
1e.   where n is an integer.
1g.  i [  + 2n) π, where n is an integer.
1i.   and  where n is an integer.
1k.  i (  + n) π, where n is an integer.

Section 6.1. Complex Integrals: page 203

1a.  2 − 3i.
1c.  1.
1e.  
3.  Using (6-8),  

 Show that Re(z) > 0 implies this last limit equals zero.
5.  This follows from (6-8), and the fact that if u and v are differentiable,

then f is differentiable, and 

Section 6.2. Contours and Contour Integrals: page 217

1a.  



3a.  The approximation simplifies to −2  + 2 ≈ −0.828427.
3b.  − 
5a.  −32i.
5b.  −8πi.
7a.  0.
7c.  −2πi.
7e.  i − 2.
7g.  −4 − iπ.
9a.  2πi.
9b.  0.
11.  −1 + .
13.  − 2e.
15.  exp (1 + i) − 1.
17.  sin (1 + i).
19.  The absolute value of the integrand is  which simplifies

to  (show the details forthis assertion). The maximum of
this expression occurs when x = 1. Now simplify and apply the ML
inequality.

Section 6.3. The Cauchy–Goursat Theorem: page 233

1a.  Analytic everywhere except at z = ± . We break the integral up using
partial ractions:  Both ±  lie inside 

(0), so Corollary 6.1 gives  

1c.  Analytic everywhere except at z = (n + )π where n is an integer, so 
 since all nonanalytic points lie outside the circle C1(0).

3.  By the quadratic formula (see Theorem 2.1), 4z2 − 4z + 5 = 0 when z = 
± i (verify). Since both these points lie outside C1 (0), the function (4z2

− 4z + 5)−1 is analytic inside  by the
Cauchy–Goursat theorem.



5a.  4πi.
5b.  2πi.
7a.  
7b.  −
7c.  0.
9.  − .

11.  0.
13a.  4πi.
13b.  0.
Section 6.4. The Fundamental Theorems of Integration: page 239
1.   + 3i.

3.  −e2 + i.
5.  − 1 + 
7.  −  + i .
9.  − 1 − sinh 1 + cosh 1.

11.  
13.  Log (1 + i) − Log (2) + Log (2 + i) = − 
15.  Parametrize C with z (t) = z1 + (z2 − z1) t, 0 ≤ t ≤ 1. Then we see that 

17a.  (cos(0.46) + i sin(0.46)) − 3.
19.  We know that an antiderivative of the function fg ′ + gf ′ is fg by the

product rule. Since fg ′ and gf ′ are analytic (explain why!), Theorem 6.9
gives us  The conclusion follows
from this.

Section 6.5. Integral Representations for Analytic Functions: page 245

1.  4πi.
3.  −i .
5.  −i .



7.  2πi
9.  

11.  
13a.  iπ sinh 1.
13b.  iπ sinh 1.
15a.  π.
15b.  −π.
17.  0.

19.  Let f (z) = (z2 − 1)n, which is analytic everywhere. By Cauchy’s integral
formulas,  The conclusion follows
from this. Show the details.

Section 6.6. The Theorems of Morera and Liouville, and Extensions:
page 253

1a.  (z + 1 + i) (z + 1 − i) (z − 1 + i) (z − 1 − i).
1c.  (z + i) (z − i) (z − 2 + i) (z − 2 − i).
3.  We know that the complex cosine is an entire function that is not a

constant. By Liouville’s theorem, it is not bounded.
5a.   (Explain.)
5b.   (Explain.)
7a.  If f (z) ≠ 0 throughout R, then the function  is analytic in D. Apply the

maximum modulus theorem to the function  to get your result.
9.  Let f (z) = u (z) + iv (z), where v is a harmonic conjugate of u, so that f is

analytic in D. The function F (z) = exp (f (z)) is also analytic in D, so
that | F | does not take on a maximum in D by the maximum modulus
theorem. But | F (z) = exp (u(z)) for all z (show why). This leads to the
conclusion since u is a real-valued function, and the real-valued
function exp is an increasing function. Explain this last part in detail.

11.  By contraposition, show that, if f has no zeros in 1(0), then f is
constant in 1(0). To do so, apply the minimum modulus theorem to f



on the domain D1(0), and use the hypothesis that | f (z)| = K for z ∈
C1(0) to conclude that  | f (z)| = K. The maximum modulus thoerem
applies to f on the domain D1(0) regardless of whether f has any zeros in

1(0), so  | f (z)| = K. Combine the absolute value equalities and
use Theorem 3.6 to conclude that f is constant in D1(0), i.e., there exists
w* ∈  such that f (z) = w* for all z ∈ D1(0). Finally let z0 ∈ C1(0).
Because f is analytic in 1(0) it is continuous at z0, so f(z0) =  f(z)
=  w* = w*. Since z0 was arbitrary we conclude that f(z) = w* for
all z ∈ C1(0). The conclusion follows. Be sure to include all the details
in your presentation of this solution.

Section 7.1. Uniform Convergence: page 261

1a.  By definition, f (−1) =  = . It appears from the graph that the value
of the upper function is approximately 1 (certainly larger than ), so the
graph of Sn must be above the graph of f.

1c.  From the graph, we approximate Sn (1) = 5. As Sn (x) =  we
deduce that n = 5. Explain.

3a.  We see that  for z ∈ 1(0) By the Weierstrass M-test, the
series  converges uniformly on 1 (0) = {z : | z | ≤ 1}, because the
series  converges.

5.  The crucial step in the theorem is the statement, “Moreover, for all z ∈ 
r (α) it is clear that .” If we allowed r = 1,

we would not be able to claim that  converges. Explain.

7a.  Let us say that {fn} and {gn} converge uniformly on T to f and g,
respectively. Let ε > 0 be given. The uniform convergence of {fn}
means there exists an integer Nε such that n ≥ Nε implies | fn (z) − f (z) <
 for all z ∈ T. Likewise, there exists an integer Mε such that n ≥ Mε

implies | gn (z) − g (z)| <  for all z ∈ T. If we set Lε = Max {Nε,Mε},
then for n ≥ Lε   + 



for all z ∈ T.
7b.  For All n, let fn (x) = x, and gn (x) = , for all x ∈ T, where T are the

real numbers. Then fn (x) converges uniformly to x, and gn (x)
converges uniformly to 0 (verify). However, even though fn (x) gn (x)
converges to 0 (explain), the convergence is not uniform (verify). Can
you come up with a different example?

9a.  For z ∈ A, |n−z | = |exp [− (x + iy) ln n]| = |exp (−iy ln n)||exp (−x ln n)|
= n−x. Since z ∈ A, we know Re (z) = x ≥ 2, so n−x ≤ . Thus, with Mn
= , we see that  (z) converges uniformly on A by the Weierstrass M-
test.

Section 7.2. Taylor Series Representations: page 270

1a.  sinh z  for all z.

1c.  Log (1 + z) =  for all z ∈ D1 (0).

3a.   Expand the expression in brackets by
replacing z with z − 1 in the geometric series (valid, therefore, for | z −
1| < 1), then multiply by the (z − 1) term.

5.   Expand the expression in brackets by replacing z
with  in the geometric series (valid, therefore, for  < 1, or | z − i |
< ). Explain.

7a.  By Taylor’s theorem,  Therefore,  so f (3) (0)
= 48.

9a.  Observe that  Reindex and write this
as  Now use the relation cn =
cn − 1 + cn − 2 for n ≥ 2 to conclude 1 + z f (z) + z2 f (z) = f (z). Solve for
f (z).

11.  The point z is on the circle Cρ (α) with center α, so z ≠ α. Also, z0 is in
the interior of this circle, so again z ≠ z0.

13.  To veriy Identity (7-15), let h (z) = β f (z). Clearly,  βan.



By Taylor’s theorem, 

15.  Use the fact that f ′ (z) = [z − (– 1 + i) + (– 1 + i)]−1 and expand f ′ (z) in
powers of [z − (− 1 + i)]. Then apply Corollary 7.2 as done in Example
7.2.

17a.  By definition, f (−z) = − f (z), so using the chain rule, we see that f ′ (z)
=  But this means that f ′ is an even
function.

17c.  If f is even, then by part b f ′ is odd, so f ′ (0) = − f ′(− 0) = − f ′(0). Of
course, this implies f ′ (0) = 0. Similarly, from part a f ″ is even, so f ′″
(0) = 0. An induction argument gives f (2n−1) (0) = 0 for all positive
integers n. Show the details.

19a.  It is easy to show that f (n) (0) = n! for all positive integers n. Do so via
mathematical induction.

19b.  The point z =  is a removable singularity, since f may be redefined at 
to be analytic. State what f should equal at that point.

 

Section 7.3. Laurent Series Representations: page 280

1.   for 

3.   for | z | > 0.

5.   valid for| z | > 0.

7.   valid for | z | > 0.

9.   for | z | < 4.

 for | z | > 4.

11.   valid for | z | > b. Explain.

13.  
15a.  This identity is obtained by straightforward subsitution, and partial

fraction decomposition.



15b.  

17.  Since  is valid for |z| = 1 (explain), letting z = eiθ gives 
 immediately. By Laurent’s theorem, an = 

for all integers n (explain). Parametrizing  (0) with z (θ) = ei  for 0 ≤ 
≤ 2π gives the desired result. Show the details.

19.  Since  converges for | z – α | > r, the ratio test guarantees
that the series converges absolutely for {z : | z – α | ≥ s}, where s > r
(show the details). Thus, if | z – α | = s, the series  converges.
Since  for all | z | ≥ s, the Weierstrass M-test gives us
ourconclusion. Explain.

 

Section 7.4. Singularities, Zeros, and Poles: page 289

1a.  Zeros of order 4 at ±i.
1c.  Simple zeros at − 1 ± i.
1e.  Simple zeros at ±i and ±3i.
1g.  Simple zeros at  and ±i.
1i.  Zeros of order 2 at  and − 1.
1k.  Simple zeros at  and  and a zero of order 4 at the origin.
3a.  Simple pole at the origin.
3c.  Essential singularity at the origin.
3e.  Removable singularity at the origin, and a simple pole at −1.
3g.  Removable singularity at the origin.

5.  By Theorem 7.11, f (z) = (z − z0)k h(z), where h is analytic at z0 and
h(z0) ≠ 0. We compute

where g (z) = kh(z) + (z − z0) h′ (z). Explain why g (z0) ≠ 0, why g is



analytic at z0, and why Theorem 7.11 now gives the conclusion.

7.  If it so happens that m = n, and the coefficients in the Laurent
expansions for f and g about z0 are negatives of each other, then f + g
will have a Taylor series representation at z0, making zo a removable
singularity (show the details forthis). If m ≠ n, then it is easy to show
that f + g still has a pole. State why, and what the order of the pole is.

9.  Appeal to Theorem 7.12 and mimic the argument given in the solution
to Problem 5.

11a.  Simple poles at  for n = ±1, ±2,…, and a nonisolated singularity at
the origin.

 

Section 7.5. Applications of Taylor and Laurent Series: page 295

1a.  No. Otherwise  On the otherhand, 
 Justify and explain.

1b.  Yes. There is a simple function with this property. Find it.
1c.  No. Use Corollary 7.10 to show that for all z in some disk Dr (0) we

have f (z) = z3, and f (z) = −z3, and explain why this is impossible.
3a.  Let  Explain.
3b.  No, the function f is not analytic at zero (explain why), which is

required by the corollary.
5.  For x ≠ 0,  This implies  For the

complex case, show that there is an essential singularity at 0 and use
Theorem 7.17.

 

Section 8.1. The Residue Theorem: page 305

1a.  1.
1c.  1.



1e.  1.
1g.  0.
1i.  e.
1k.  0.
1m.  4.
3a.  
3c.  (1 − cos 1) 2πi.
3e.  i2π sinh 1.
3g.  
5a.  
7a.  
9a.  
9c.  
9e.  
11.  By Theorem 8.2 we have  where n is any integer.

Since  and because f, is analytic at n, we use
L'Hôpital’s rule to get  
Explain how this observation gives the result.

 

Section 8.2. Trigonometric Integrals: page 311

1.  .
3.  .
5.  
7.  
9.  

11.  
13.  
15.  



 

Section 8.3. Improper Integrals of Rational Functions: page 316

1.  
3.  0.
5.  
7.  .
9.  

11.  
13.  
15.  

 

Section 8.4. Improper Integrals Involving Trigonometric Functions:
page 321

1.  
3.  
5.  
7.  
9.  

11.  
13.  The inequality  in Jordan’s lemma

would not be possible to get if we replaced exp (iz) by eitherthe
complex sine orcosine. Explain why.

 

Section 8.5. Indented Contour Integrals: page 327

1.  0.



3.  
5.  .
7.  π
9.  

11.  
13.  π (1 − cos 1).
15.  π.
17.  

 

Section 8.6. Integrands with Branch Points: page 332

1.  
3.  .
5.  π ln 2.
7.  
9.  

11.  No. The hypotheses of Theorem 8.7 are not satisfied. Explain why they
are not.

13.  
15.  
17.  
19.  π
21.  

 

Section 8.7. The Argument Principle and Rouché’s Theorem: page 342

1a.  1.
1c.  5.



3a.  Let f (z) = 15. Then | f (z) + g (z)| = | z5 + 4z | < 6 < | f (z)|. As f has no
roots in D1 (0), neitherdoes g by Rouché’s theorem.

5a.  Let f (z) = −6z2. Then | f (z) + g (z)| = | z5 + 2z + 1|. It is easy to show
that | f (z) + g (z)| < | f (z)| for z ∈ C1 (0). Complete the details.

7a.  Let f (z) = 7. Then | f (z) + g (z)| ≤ 6 < | f (z)|. Show the details and
explain why this gives the conclusion you want.

9.  Let f (z) = zn. Then | f (z) + g (z)| = | h (z)| < 1 = | f (z)|. Complete the
argument.

 

Section 9.1. The z-transform: page 364

1a.  
1c.  

3.  

5.  

7a.   valid for | z | > R1, and  valid for | z | >
R2. Hence,  

 is valid for | z | > R = max{R1, R2}.

7c.  

9a.  Using a table of z-transforms we get 
9c.  Using a table of z-transforms we get

 

Using residues we get
 

and
 



Therefore, 
11.  Use the recursive formula y[n + 1] = ay[n] + b to find the solution with

initial condition y[0] = y0. The first few terms look like y[1] = y0a + b,
y[2] = a(y0a + b) + b = y0a2 + (1 + a)b, y[3] = a(y0a2 + (1 + a)b) + b =
y0a3 + (1 + a + a2)b.

Assume that y[n − 1] has the form y[n − 1] = y0an−1 + (1 + a + a2 + …
+ an−3 + an−2)b, then the next step is y[n] = ay[n − 1]+ b = a(y0an−1 +
(1+ a + a2+ … + an−3 + an−2)b) + b, y[n] = y0an +(1+ a + a2 +…+ an

−2+ an−1)b = 
Therefore, we have established the formula by mathematical induction.

Note: If we observe that x[n − i] = b then the equation y[n] = y0an + 
 can be written as  + x[n − n]an. Now use c1 = y0 −

x[0] and combine terms to get y[n] =  which is the
convolution form of the solution.

13a.  Take the z-transform of both sides z(Y(z) − 1000) = (1 − )Y(z). Solve
for Y(z) and get  then find the inverse z-transform y[n] = 

15a.  Take the z-transform of both sides z(Y(z) − 1) − 3Y(z) =  Solve for
Y (z) and get  and then find the inverse
z-transform  

17a.  The difference equation is y[n + 1] = 10 + y[n]. Take the z-transform
of both sides  Solve for Y (z) and get 

 then find the inverse z-transform
 

19a.  Given x[n] = cos( n) and y[n] = −sin( n) we have x[n + 1] − y[n] = cos(
n + ) + sin( n) = −sin( n) + sin( n) = 0, and y[n + 1] + x[n] −sin( n +
) + cos( n) = −cos( n) + cos( n) = 0.

 



Section 9.2. Second-Order Homogeneous Difference Equations: page
380

1a. Method 1. The characteristic equation r2 − 6r + 8 = (r − 2)(r − 4) = 0
has roots r1 = 2 and r2 = 4. The general solution is y[n] = c12n + c24n.
Solve the linear system y[0] = c1 + c2 = 3, y[1] = 2c1 + 4c2 = 4, and get
c1 = 4 and c2 = −1. Therefore, y[n] = 4 · 2n − 4n.

Method 2. Take z-transforms and get z2(Y (z) − 3 − 4z−1)−6z(Y (z)−3) +
8Y (z) = 0. Solve for  Calculate residues of f(z) = Y
(z)zn−1 at the poles  

 and Res[f(z), 4] = 

1c. Method 1. The characteristic equation r2 − 6r + 10 = (r − (3 − i))(r −(3
+ i)) = 0 has complex roots r1 = 3 ± i. The general solution is y[n] =
c1(3 + i)n + c2(3 − i)n. Solve the linear system y[0] = c1 + c2 = 2, y[1] =
(3 + i)c1 + (3 − i)c2 = 4 and get c1 = 1 + i and c2 = 1 − i. Therefore, y[n]
= (1 + i)(3 + i)n + (1 − i)(3 − i)n.

Method 2. Take z-transforms and get z2(Y (z) − 2 − 4z−1) − 6(z(Y (z) −
2)) + 10Y (z) = 0. Solve for  Calculate residues
of f(z) = Y (z)zn−1 at the poles 

 . At the
conjugate pole we can use the computation Res[f(z), 3 − i] = 

 = (1 − i)(3 − i)n. Therefore, y[n] = Res[f(z), 3 +
i] + Res[f(z), 3 − i] = (1 + i)(3 + i)n + (1 − i)(3 − i)n.

3a.  The characteristic equation  has complex roots
 The general solution is  Solve the linear

system y[0] = c1 + c2 = 2,  and get c1 = c2 = 1.
Therefore, 

5a.  The characteristic equation r2 − r − 1 =  = 0 has roots 
 and  The general solution is y [n] = 

 Solve the linear system y[0] = c1 + c2 = 1, 



 and get  and  Therefore, y[n] = 
 and  = {0, 1, 1, 2, 3, 5, 8, 13, 21, 34,…},

which is the sequence of Fibonacci numbers.

7a.  Take z-transforms and get z2 (Y(z) − 1 − 4z−1)−8z(Y(z) − 1) + 15Y(z) = 
 Solve for  Calculate the

residues f(z) = Y(z)zn−1 at the poles Res[f(z),3)] = 
 and 

 −4 · 4n−1 = −4n

and 
Therefore, y[n] = Res[f(z), 3] + Res[f(z), 4] + Res[f(z), 5] = 3n − 4n + 5n.

7c.  Use the same method as 7a to get 3n − (4 + i)n − (4 − i)n.

9a.  Take z-transforms and get z2 (Y(z) − 1 − 1z−1) − z(Y(z) − 1) + Y(z) = 0.
Solve for  Res[f(z), ] = 

(1 + n) ( )n = ( )n

+ n ( )n. Therefore, y[n] = Res[f(z), ] = ( )n + n ( )n.
11a.  
13a.  

 

Section 9.3. Digital Signal Filters: page 400

1a.  Substitute 
 Substitute 

1c.  Substitute 
 Substitute 

3a.   and



5a.   and

7a.  y[n] − y[n − 1] = x[n] and b0 =  and a0 = − . The transfer function is 

The higher frequencies are attenuated and A(θ) <  when θ > 1.186.
7c.   and b0 =  and a0 = −  The transfer function is 

The higher frequencies are attenuated and A(θ) <  when θ > 1.083.

9. Recall that the solutions to z6 = 1 are the sixth roots of unity  for k
= 0,1,2,3,4,5 and lie on the unit circle. Hence the roots of 

 are  We now multiply the
above expression by  to obtain a product of “zero-out” factors

Now use the property (i) for a zero-out filter. Use bi =  for i = 0,…, 5
to get the desired recursive formula y [n] =  (x[n] + x[n − 1] + x[n − 2]
+ x[n − 3] + x[n − 4] + x[n − 5]).



11.  We use the property (iii) designer specified filter. The solutions to z8 =
1 are the sixth roots of unity  for k = 0,1,2,3,4,5,6,7 and lie on the
unit circle. Hence the roots of  
are  There are no poles in the transfer
function  Use a1 = −1, b0 = , bi = 0 for i = 1, 2,…,7 and b8
= −  and get y[n] =  (x[n] − x[n − 8]) + y[n − 1].

13a.  Use the conjugate pairs of zeros  and  and calculate 
 2z−2 − z−3 + z−4.

There are no poles, so the transfer function has the form 
 and we see that b0 = b4 = 1, b2 = 2 and b1 =

b3 = − 1. The filter is

 
 for “zeroing-out” 

15a.  Use the conjugate pairs of zeros  and  and calculate 

 There are no poles, so the transfer function has the
form  and we see that b0 = b4 = 1, b2 = 2 and
b1 = b3 = − 

The filter is

17a.  Use the conjugate pairs of zeros  and eiπ = −1 and calculate 

The transfer function for part (a) has the form H(z) =  and
we see that b0 = b3 = 1 and b1 = b2 = 1 +  The filter is 

Section 10.1. Basic Properties of Conformal Mappings:
page 411
1a.  All z.



1c.  All z except z = −1.
1e.  All z except z = 0.
3.  f ′ (1) = 1, α = Arg f ′ (1) = 0, | f ′ (1)| = 1;

f ′ (1 + i) =  − , α = Arg f ′ (1 + i) =  | f ′ (1 + i)| = 
f ′ (i) = −i, α = Arg f ′ (i) =  | f ′ (i)| = 1.

5.  f ′ (  + i) = −i sinh 1, α = Arg f ′ (  + i) = , | f ′ (  + i)| = sinh 1;
f ′ (  + i) = i sinh 1, α = Arg f ′ (  + i) = , | f ′ (  + i)| = sinh 1;
f ′ (0) = 1, α = Arg f ′ (0) = 0, | f ′ (0)| = 1.

7.   hence f (z) is conformal at z = a
+ ib. The lines z1(t) = a + (b + t)i and, z2(t) = (a + t) + ib intersect
orthogonally at the point z1(0) = z2(0) = a + ib, therefore, their image
curves will intersect orthogonally at the point 

9.   ≠ 0, hence f
(z) is conformal at z = a + ib. The lines z1(t) = a + ti and z2(t) = a + t
intersect orthogonally at the point z1(0) = z2 (0) = a; therefore, their
image curves will intersect orthogonally at the point sin(a + ib).

11.  First show that the mapping W =  preserves the magnitude, but
reverses the sense, of angles at Z0. Then consider the mapping w = 
as a composition.

Section 10.2. Bilinear Transformations: page 419

1.  
3.  The disk | w | < 1.
5.  The region | w | > 1.
7.
9.  

11.  The disk | w | < 1.
13.  The portion of the disk | w | < 1 that lies in the upper half-plane Imw >

0.



15.  The region that lies exterior to both the circles | w − | =  and | w − | = 
.

17.  The equation  can be written as cz2 + (d − a)z − b = 0, and a
quadratic equation has, at most, two distinct solutions.

Section 10.3. Mappings Involving Elementary Functions: page 427

1.  The portion of the disk | w | < 1 that lies in the first quadrant u > 0, v >
0.

3.  The horizontal strip 0 < Im (w) < 1.
5.  The vertical strip 0 < Re(w) < 1.
7.  The region 1 < | w |.
9.  The horizontal strip 0 < Im (w) < π.

11. The portion of the upper half-plane Im (w) > 0 that lies in the region | w |
> 1.

13.  Z = z2 + 1, w = Z , where the principal branch of the square root Z  is
used.

15.  The unit disk | w | < 1.

Section 10.4. Mapping by Trigonometric Functions: page 433

1.  The portion of the disk | w | < 1 that lies in the second quadrant Re(w) <
0, Im (w) > 0.

3.  The right branch of the hyperbola u2 − v2 = .
5.  The region in the first quadrant u > 0, v > 0 that lies inside the ellipse 

 and to the left of the hyperbola u2 − v2 = .
7.  (a) , (b) .
9.  The portion of the upper half-plane Im (w) > 0 that lies inside the ellipse

11.  The upper half-plane Im (w) > 0.
13.  The semi-infinite strip 0 < u < , v > 0.



15.  The upper half-plane Im (w) > 0.

Section 11.2. Invariance of Laplace’s Equation and the Dirichlet
Problem: page 447

1.  (x, y) = 15 − 9y.
3.  

5.  

7.  
9.  

11.  

Section 11.3. Poisson’s Integral Formula for the Upper Half-Plane:
page 453

1.  

3.  Both ey cos x and e−y cos x are harmonic in the upper half-plane and
satisfy the boundary conditions. Also,  It can be shown
that the Poisson integral formula defines a bounded function in the
upper half-plane; therefore, the desired solution is (x, y) = e−y cos x.

5.  Apply Leibniz’s rule . The term
in brackets in the integrand is  

 Hence the integrand vanishes and 
xx (x, y) + yy (x, y) = 0, which implies that  (x, y) is harmonic.

7.  

Section 11.5. Steady State Temperatures: page 462

1.  For  we get 
 and for  we have 



3.   Arctan  Arctan 
5.  T(x, y) = 100 +  Arctan(sin z + 1) −  Arctan(sin z − 1).
7.  T(x, y) =  ln | z |.

9.  T(x, y) = 25 +  Re(Arcsin z2)
11.  T(x, y) =  Re(Arcsin  ).
13.  Isothermals are T(x, y) = k. The equation 100 −  arctan  can

be manipulated to yield  which is better
recognized as the circle x2 + (y + c)2 = 1 + c2.

15.  T (x, y) = 40 + 20Im (Arcsin z).

Section 11.6. Two-Dimensional Electrostatics: page 473

1.  (x, y) = 100 +  ln | z |.
3.   (x,y) = 150 − .
5.   (x, y) = 50 + Re(Arcsin z).
7.  (a) w = S(z) = , (b) (x, y) = 200 − 

Section 11.7. Two-Dimensional Fluid Flow: page 484

1.  (a) V(r, θ) =  = A(1 − cos2θ − i sin2θ), (c) z = 1, and
z = − 1.

3a.  Speed = A . The minimum speed is A |1 − i | = A .
3b.  The maximum pressure in the channel occurs at the point 1 + i.
5a.  Ψ (r, ) = .
Section 11.8. The Joukowski Airfoil: page 494

1.  z +  = w implies that z2 + 1 = zw. Rewrite as z2 − zw + 1 = 0 and then
use the quadratic formula.

3.  (a) x2+(y−a)2 = 1 + a2, (b) use the inverse  and
substitute for x and y in part (a) and obtain the equation 
which yields the line v = u, (c) the slope is arctan  =  − arctan a.

Section 11.9. The Schwarz–Christoffel Transformation: page 502



1.  f′(z) = A(z−a)− (π−kπ)/π = A(z−a)k−1, integrate and get f(z) = (z−a)k,
then choose A = k.

3.  f′(z) = , integration and the boundary
conditions f(−1) = 0 and f(1) = −1 produces w = f(z) = 

.

5.  f′(z) = A(z + 1) − 1 z(z − 1)−1, and w = f(z) = Log (z2 − 1) .

7.  f′(z) = A(z + 1)1z−1 = A(1 + ), integrate and get f(z) = z + Log z.
9.  Select x1 = , x2 = 0, x3 = 1, then form

f′ (z) = A(z + )−α (z)(z − 1)α−1.

Computation reveals that A = , which is used to construct the
desired function

11.  f′(z) =  integrate and get f(z) = .

Section 11.10. Image of a Fluid Flow: page 507

1.  f′(z) =  integration and the boundary
conditions f(−1) = 0 and f(0) = i produce w = f(z) = (z2 − 1) .

3.  w = f(z) = (z − 1)α .

5.  w = f(z) = −1 + .

w = f(z) = i + 
+Log (1 −  − Log (1 + )].

Section 11.11. Sources and Sinks: page 517

1.  F1(w) =  is the complex potential fora source at w1 = 1 and sink at
w2 = − 1. The function w = S(z) = z2 maps z1 = 1 and z2 = i onto w1 and
w2, respectively. Therefore, the composition F2 (z) = F1(S(z)) = F1(z2)
=  is the desired complex potential.

3.  F(z) = log (sin z).



5.  F (z) = log (z2 − 1).
7.  

9.  

Section 12.1. Fourier Series: page 530

1.  U(t) =  sin[(2j − 1)t].

3.  V′ (t) =  cos[(2j − 1)t] =  sin[(2j − 1)t] = − U(t)

5.   = V(0) =  cos[0] = , now solve for .

7.  U(t) =  sin[(2j − 1)t].

9.  U(t) =  sin[(2j − 1)t] −  sin[2(2j − 1)t], where an = 0 for
all n, and b4n = 0 for all n.

11.  U(t) =  sin[(2j − 1)t] +  sin[2(2j − 1)t], where an = 0 for
all n, and b4n = 0 for all n.

Section 12.2. The Dirichlet Problem for the Unit Disk: page 537

1.  u(r cos θ, r sin θ) =  r2j − 1 sin[(2j − 1)θ].

3.  u(r cos θ, r sin θ) =  r2j − 1 cos[(2j − 1)θ].

5.  u(r cos θ, r sin θ) =  r2j − 1 cos[(2j − 1)θ] −  r4j −

2 cos[2(2j − 1)θ].

7.  u(r cos θ, r sin θ) =  r2j − 1 cos[(2j − 1)θ] +  r4j −

2 cos[2(2j − 1)θ].

Section 12.3. Vibrations in Mechanical Systems: page 546

1a.  Uh(t) = c1 e−t sin(t) + c2 e−t cos(t),

Up(t) =  cos(nt) + sin(nt),



U(t) = c1e−t sin(t) + c2e−t cos(t) +  cos(nt) +  sin(nt).

1c.  Uh(t) = c1 e−t sin(t) + c2 e−t cos(t),

Up(t) = −  cos(nt) + sin(nt),

U(t) = c1e−t sin(t) + c2e−t cos(t) −  cos(nt) + 

sin(nt).
1c.  Alternative Answer.

Up(t) =  cos((2j − 1)t) + 

sin((2j − 1)t),

U(t) = c1e−t sin(t) + c2e−t cos(t) + cos((2j − 1)t) + 

 sin((2j − 1)t).

3a.  Uh(t) = c1e−2t + c2te−2t,

Up(t) = cos(nt) + sin(nt),

U(t) = c1e−2t + c2te−2t +  cos(nt) +  sin(nt).

3c.  Uh(t) = c1e−2t + c2te−2t,

Up(t) = −  cos (nt) +  sin(nt),

U(t) = c1e−2t + c2te−2t −  cos(nt) +  sin(nt).

3c.  Alternative Answer.

Up(t) =  cos((2j − 1)t) +  sin((2j − 1)t),

U(t) = c1e−2t + c2te−2t + cos((2j − 1)t) + 

 sin((2j − 1)t).

Section 12.4. The Fourier Transform: page 551

1.  (U(t)) = .
3.  (U(t)) =  = .



5.   (e−a | t |) = .

7.   

9.  

Section 12.5. The Laplace Transform: page 559

1.  Use s = ε + iτ and the integral ∫e −(σ+iτ)t dt =  + 
 = u(t) + iv(t) and supply the details showing that 

u(t) = 0 and  v(t) = 0. Then (1) =  e−(σ+ iτ)tdt = 0 + 0i = 
.

3.  (f(t)) = .
5.  (f(t)) = .

7.   (3t2 − 4t + 5) = .

9.  (e2t−3) = 

11.   ((t + 1)4) = .
13.  

15.  

17.   = 3e−2t + 3e2t = 6 cosh 2t,

Section 12.6. Laplace Transforms of Derivatives and Integrals: page 563

1.  (sin t) = .

3.   (sin2 t) = .
5.  

7.   = t − 1 + e−t.

9.  y(t) = 2 cos 3t + 3 sin 3t.
11.  y(t) = − 2 + 2 cos 2t + sin 2t.

13.  y(t) = 2 + et.

15.  y(t) = − 1 −  e −t +  et = − 1 + sinh t + et.



17.  y(t) = e−2t + et.

Section 12.7. Shifting Theorems and the Step Function: page 568

1.   (et − tet) = .

3.   (eat cos bt) = .

5.  f(t) =  = e−2t cos t.

7.  f(t) =  = e−2t cos t + e−2t sin t.

9.   (U2(t)(t − 2)2) = .

11.   (U3π (t) sin (t − 3π)) = .

13.   (f(t) = (1 − 2e−s + 2e−2s − e−3s).
15.   = U1(t) + U2(t).

17.  y(t) = −e −t cos t.
19.  y(t) = 

21.  y(t) = t3 e−t.
23.  y(t) = [1 − δ(t − )]sin t + (1 − sin t) (t).

Section 12.8. Multiplication and Division by t: page 572

1.  (te−2t) = 
3.   (t sin 3t) = .
5.   (t sinh t) = .
7.  

9.   (t sin bt) = 
11.  

13.  y(t) = te−t + t2e−t.

15.  y(t) = Ctet.
17.  y(t) = Ct.
19.  y(t) = 1 − t.



Section 12.9. Inverting the Laplace Transform: page 581

1.   = − 1 + 3et

3.   = 3 + 2e−2t − e2t.

5.   = e−2t + et + 2tet.
7.   =  sin 2t.

9.   = −3 + et + e−t + cos t + sin t = −3+ 2cosh t + cos t + sin t.

11.   = −1+ et + e−t−cost t + sin t = −1+ 2cosh t−cos t + sin t.
13.   = cos t + sin2t.

15.  y(t) = e−t + e−t sin2t.

17.  y(t) = e−t + cos2t + sin2t.
19.  y(t) = 1+ t.

21.  x(t) = 2e−2t − et, and y(t) = e−2t − 2et.

23.  x(t) = −e−t+ 2te−t, and y(t) = te−t.

25.  x(t) = −2+ 6e−tcos2t + 6e−t sin2t, and y(t) = −1 + 3e−tcos2t.

Section 12.10. Convolution: page 589

1.  f(t) = t, g (t) = t and (f · g) (t) =  f(τ)g(t−τ)dτ =  τ(t−τ)dτ = .

3.  f(t) = et, g(t) = e2t and (g · f)(t) =  e2τ et−τ dτ = −et + e2t.

5.  f(t) =  = −2et + 2e2t.
7.  f(t) =  = 1 − cos t.
9.  f · (g + h) =  f(τ)(g + h)(t − τ)dτ =  f(τ)g(t − τ)dτ + f(τ)h(t − τ)dτ = f

· g + f · g.

11.  f(t) =  = et + δ(t).
13.  y(t) = −tcos t + sin t.
15.  

17.  Given F(s) = (f (t)). G(s) = (1) =  and g(t) = 1, we have  =
F(s)G(s) = (f · g)(t) = f(τ)g(t − τ)dτ = f(τ)dτ.



19.  F(s) =  and f(t) = e2t.
21.  F(s) =  and f(t) = sinh t − sin t.

23.  y(t) = te−t.

25.  y(t) = (−e3−3t + e1−t)U1(t).

27.  y(t) = −21te−t − 119e−t + 120 − 96t + 36t2 − 8t3 + t4.
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count the number of
order k
residue
simple

Polynomial
factorization
Legendre
roots
zeros

Positive orientation
Potential

complex
curve
electrostatic
velocity



Power series
Cauchy product
convergence
differentiation
division
multiplication
radius of convergence
uniqueness

Powers
complex number
De Moivre’s formula
rational

Primitive nth root of unity
Principal branch

z1/2

zc

Principal value
arg z
log z
z1/2

z1/n

Principle of the argument
Product Cauchy
Product series
Punctured disk
Quadratic Formula
Quotient complex numbers
Quotient series
Radius of convergence
Range of a function



Ratio test
Rational function
Rational function integral
Re(z)
Real axis
Reciprocal transformation
Recursion formula
Region
Region of convergence z-transform
Removable singularity
Reparameterization
Residue

application
calculation
difference equation
poles
singular points
theorem

Response
amplitude
mechanical system
output

Riemann, Bernhard
Riemann

mapping theorem
sphere

Riemann sum
sum
surface log z
surface z1/2



surface (z2 − 1)1/2

theorem of
Risch–Norman algorithm
RLC circuit
Root

complex number
test for series
unity

Rotation transformation
Rouché’s theorem
Rule, L’Hopital’s
Scale factor
Schwarz–Christoffel

formula
theorem
transformation

Sequence
bounded
Cauchy
causal
convergence
divergence
limit

Series
binomial
comparison test
convergence
differentiation
divergence
Fourier



geometric
infinite
Laurent
Maclaurin
power
product
quotient
ratio test
representation of f(z)
root test
Taylor
uniqueness

Signal processing
Similarity mapping
Simple

closed curve
connected domain
pole
zero

Sine
sin z
Fourier sine series
inverse

Singular point
essential
isolated
pole
removable
residue

Sink
Smooth curve



Solenoidal vector field
Source

image
Sphere of Riemann
Square root

branch
principal value
Riemann surface

Stability difference equation
Stagnation point
Steady state

difference equation
differential equation

Stereographic projection
Streamline curve
Subtraction of complex numbers
Sum partial
Table

integrals
Laplace transforms
properties
z-transform properties
z-transforms

tan z
Tangent vector
Tartaglia
Taylor series
Temperature steady state
Terminal point
Theorem

Argument Principle



Cauchy–Goursat
Cauchy integral formula
Cauchy Residue
Cauchy–Riemann
Deformation of contour
Fourier expansion
Fourier transform
Fundamental theorem algebra
Fundamental theorem calculus
Gauss Mean Value
Green’s
Laplace transform
Laurent’s
L’Hopital’s rule
Liouville’s
Morera’s
Poisson integral formula
Radius of convergence
Riemann
Rouche’s
Schwarz–Christoffel
Taylor’s
Liouville’s
Riemann Mapping
Uniqueness of power series
Weierstrass M-test
Winding Number

Transfer function
Transform

Fourier
Laplace



Transformation
zn

z1/2

z1/n

exp z
Log (z)
(z2 − 1)1/2

sin z
tan z
Arcsin z
bilinear
composition
conformal
Fourier
linear
Mobius
reciprocal
rotation
Schwarz–Christoffel
translation
trigonometric functions

Transient solution
difference equation
differential equation

Translation
Triangle

inequality
inequality for integrals

Trigonometric functions



derivatives
identities
integrals
inverses
mapping
zeros

Two-dimensional
electrostatics
fluid flow
models

u(x, y)
Unbounded set
Undamped
Uniform convergence
Uniqueness

analytic function
power series

Unit sample response
v(x, y)
Veblen, Oswald
Vector

complex number
Vector field

irrotational
solenoidal

Velocity
fluid flow
potential

Vibrations Mechanical
Wallis, John
Weierstrass M-test



Wessel, Caspar
Winding number

zn

z1/n

zc

Zero
function
number of
order k
pole plot
polynomial
simple
trigonometric function

z-transform
admissible
convolution
initial conditions
inverse
properties
table
table of properties
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