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throughout the text to introduce and explain some of the
fundamental theorems in calculus, such as the Intermediate
Value Theorem and the Mean Value Theorem.
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current interest into my examples and exercises to keep the book relevant to all of my

readers.
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Preface

Throughout my teaching career I have always enjoyed teaching calculus and helping
students to see the elegance and beauty of calculus. So when I was approached by my
editor to write this series, I welcomed the opportunity. Upon reflecting, I see that I
started this project from a strong vantage point. I have written an Applied Mathemat-
ics series, and over the years I have gotten a lot of feedback from many professors and
students using the books in the series. The wealth of suggestions that I gained from
them coupled with my experience in the classroom served me well when I embarked
upon this project.

In writing the Calculus series, I have constantly borne in mind two primary objec-
tives: first, to provide the instructor with a book that is easy to teach from and yet has
all the content and rigor of a traditional calculus text, and second, to provide students
with a book that motivates their interest and at the same time is easy for them to read.
In my experience, students coming to calculus for the first time respond best to an intu-
itive approach, and I try to use this approach by introducing abstract ideas with con-
crete, real-life examples that students can relate to, wherever appropriate. Often a sim-
ple real-life illustration can serve as motivation for a more complex mathematical
concept or theorem. Also, I have tried to use a clear, precise, and concise writing style
throughout the book and have taken special care to ensure that my intuitive approach
does not compromise the mathematical rigor that is expected of an engineering calcu-
lus text.

In addition to the applications in mathematics, engineering, physics, and the other
natural and social sciences, I have included many other examples and exercises drawn
from diverse fields of current interest. The solutions to all the exercises in the book are
provided in a separate manual. In keeping with the emphasis on conceptual understand-
ing, I have included concept questions at the beginning of each exercise set. In each
end-of-chapter review section I have also included fill-in-the-blank questions for a
review of the concepts. I have found these questions to be an effective learning tool to
help students master the definitions and theorems in each chapter. Furthermore, I have
included many questions that ask for the interpretation of graphical, numerical, and
algebraic results in both the examples and the exercise sets.

Unique Approach to the Presentation of Limits

Finally, I have employed a unique approach to the introduction of the limit concept.
Many calculus textbooks introduce this concept via the slope of a tangent line to a
curve and then follow by relating the slope to the notion of the rate of change of one
quantity with respect to another. In my text I do precisely the opposite: I introduce the
limit concept by looking at the rate of change of the maglev (magnetic levitation train).
This approach is more intuitive and captures the interest of the student from the very
beginning—it shows immediately the relevance of calculus to the real world. I might
add that this approach has worked very well for me not only in the classroom; it has
also been received very well by the users of my applied calculus series. This intuitive
approach (using the maglev as a vehicle) is carried into the introduction and explana-
tion of some of the fundamental theorems in calculus, such as the Intermediate Value
Theorem and the Mean Value Theorem. Consistently woven throughout the text, this
idea permeates much of the text—from concepts in limits, to continuity, to integration,
and even to inverse functions.

Soo T. Tan



and form the Riemann sum of the function over with respect to this parti-
tion:

where is an evaluation point in the subinterval and . The
th term of this sum gives the area of a rectangle with height and width

. As you can see in Figure 3, this area is an approximation of the area of the subre-
gion of that lies between the graphs of and on .[x k 1, x k]tfS
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Tan Calculus Series
The Tan Calculus series includes the following textbooks:

Calculus © 2010 (ISBN 0-534-46579-X)
Single Variable Calculus © 2010 (ISBN 0-534-46566-8)
Multivariable Calculus © 2010 (ISBN 0-534-46575-7)
Calculus: Early Transcendentals © 2011 (ISBN 0-534-46554-4)
Single Variable Calculus: Early Transcendentals © 2011 (ISBN 0-534-46570-6)

Features
An Intuitive Approach . . . Without Loss of Rigor

Beginning with each chapter opening vignette and carrying through each chapter, Soo
Tan’s intuitive approach links the abstract ideas of calculus with concrete, real-life
examples. This intuitive approach is used to advantage to introduce and explain many
important concepts and theorems in calculus, such as tangent lines, Rolles’s Theorem,

absolute extrema, increasing and decreasing
functions, limits at infinity, and parametric equa-
tions. In this example from Chapter 5 the dis-
cussion of the area between two curves is moti-
vated with a real-life illustration that is followed
by the precise discussion of the mathematical
concepts involved.

A Real-Life Interpretation

Two cars are traveling in adjacent lanes along a straight stretch of a highway. The veloc-
ity functions for Car and Car are and , respectively. The graphs
of these functions are shown in Figure 1.

√ t(t)√ f(t)BA

FIGURE 1
The shaded area gives the 
distance that Car is ahead 

of Car at time .t bB
A
S

The area of the region under the graph of from to gives the total dis-
tance covered by Car in seconds over the time interval . The distance cov-
ered by Car over the same period of time is given by the area under the graph of 
on the interval . Intuitively, we see that the area of the (shaded) region between
the graphs of and on the interval gives the distance that Car will be ahead
of Car at time .

i h f h i d h h f ibf
t bB

A[0, b]tf
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tB
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The Area Between Two Curves

Suppose and are continuous functions with for all in , so that
the graph of lies on or above that of on . Let’s consider the region bounded
by the graphs of and between the vertical lines and as shown in Fig-
ure 2. To define the area of , we take a regular partition of ,
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Unique Applications in the Examples and Exercises

Our relevant, unique applications are designed to illustrate mathematical concepts and
at the same time capture students’ interest.

69. Constructing a New Road The following figures depict three
possible roads connecting the point to the point

via the origin. The functions describing the
dashed center lines of the roads follow:

Show that is not differentiable on the interval
, is differentiable but not twice dif-

ferentiable on , and is twice differentiable
on . Taking into consideration the dynamics
of a moving vehicle, which proposal do you think is most
suitable?

( 1000, 1000)
h( 1000, 1000)

t( 1000, 1000)
f

 h(x) e0 if 1000 x 0

0.000001x3 if 0 x 1000

 t(x) e0 if 1000 x 0

0.001x2 if 0 x 1000

 f(x) e0 if 1000 x 0

x if 0 x 1000

B(1000, 1000)
A( 1000, 0)

(b)

y  t(x)

A( 1000, 0)

B(1000, 1000)

y (ft)

x (ft)

(c)

y h(x)

A( 1000, 0)

B(1000, 1000)
B(1000, 1000)

y (ft)

x (ft)

(a)

y  f (x)

A( 1000, 0)

y (ft)

x (ft)

1000

1000
1000

Connections

One particular example—the maglev (magnetic levitation) train—is used as a common
thread throughout the development of calculus from limits through integration. The
goal here is to show students the connection between the important theorems and con-
cepts presented. Topics that are introduced through this example include the Interme-
diate Value Theorem, the Mean Value Theorem, the Mean Value Theorem for Definite
Integrals, limits, continuity, derivatives, antiderivatives, initial value problems, inverse
functions, and indeterminate forms.

A Real-Life Example

A prototype of a maglev (magnetic levitation train) moves along a straight monorail.
To describe the motion of the maglev, we can think of the track as a coordinate line.
From data obtained in a test run, engineers have determined that the maglev’s displace-
ment (directed distance) measured in feet from the origin at time (in seconds) is given
by

(1)

where is called the position function of the maglev. The position of the maglev at
time , measured in feet from its initial position, is

, , , , ,

(See Figure 1.)

f(30) 3600pf(3) 36f(2) 16f(1) 4f(0) 0

t 0, 1, 2, 3, p , 30
f

0 t 30s f(t) 4t 2

t

FIGURE 1
A maglev moving along an 

elevated monorail track s (ft)3600361640
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Precise Figures That Help Students Visualize the Concepts

Carefully constructed art helps the student to visualize the mathematical ideas under
discussion.

FIGURE 11
When a vertical rectangle is revolved

about the -axis, it generates a 
washer of outer radius ,

inner radius , and width .xt(x)
f(x)

x

x
Δx

Δx

0

y

y  f(x)

y  t(x)

t(x)
f(x)

ba x

y

x

R

Concept Questions

Designed to test student understanding of the
basic concepts discussed in the section, these
questions encourage students to explain learned
concepts in their own words.

Exercises

Each exercise section contains an ample set of
problems of a routine computational nature,
followed by a set of application-oriented prob-
lems (many of them sourced) and true/false
questions that ask students to explain their
answer.

Graphing Utility and CAS Exercises

Indicated by and icons next to the
corresponding exercises, these exercises offer
practice in using technology to solve problems
that might be difficult to solve by hand.
Sourced problems using real-life data are often
included.

has a positive root . Show that the equation

has a positive root smaller than .
Hint: Use Rolle’s Theorem.

30. Suppose where is a constant, for all values 
of . Show that must be a linear function of the form

for some constant .
Hint: Use the corollary to Theorem 3.

31. Let .
a. Use Rolle’s Theorem to show that has exactly two 

distinct zeros.
b. Plot the graph of using the viewing window

.

32. Let

f(x) • x sin 
p

x
if x 0

0 if x 0

[ 3, 3] [ 5, 5]
f

f
f(x) x4 4x 1

df(x) cx d
fx

cf ¿(x) c,

r

nanx
n 1 (n 1)an 1x

n 2 p  a1 0

r

anx an 1x   a1x 0
39. Complete the proof of Rolle’s Theorem by considering the

case in which for some number in .

40. Let be continuous on and differentiable on . Put
.

a. Use the Mean Value Theorem to show that there exists at
least one number that satisfies such that

b. Find in the formula in part (a) for the function
.

41. . teL
a. Show that satisfies the hypotheses of Rolle’s Theorem

on the interval .
b. Use a calculator or a computer to estimate all values of 

accurate to five decimal places that satisfy the conclusion
of Rolle’s Theorem.

c. Plot the graph of and the (horizontal) tangent lines to
the graph of at the point(s) for the values of 
found in part (b).

c(c, f(c))f
f

c
[ 1, 2]

f
f(x) x4 2x3 x 2

f(x) x2
u

f(a h) f(a)

h
f ¿(a uh)

0 u 1u

h b a
(a, b)[a, b]f

(a, b)xf(x) d
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1. State Rolle’s Theorem and give a geometric interpretation 
of it.

2. State the Mean Value Theorem, and give a geometric inter-
pretation of it.

3. Refer to the graph of .
a. Sketch the secant line through the points and 

. Then draw all lines parallel to this secant line 
that are tangent to the graph of .

b. Use the result of part (a) to estimate the values of that
satisfy the Mean Value Theorem on the interval .[0, 9]

c
f

(9, 8)
(0, 3)

f

3.2 CONCEPT QUESTIONS

In Exercises 1–8, verify that the function satisfies the hypotheses
of Rolle’s Theorem on the given interval, and find all values of 
that satisfy the conclusion of the theorem.

1. ;

2. ;

3. ;

4. ;

5. ;

6. ;

7. ;

8. ;

In Exercises 9–16, verify that the function satisfies the hypothe-
ses of the Mean Value Theorem on the given interval, and find
all values of that satisfy the conclusion of the theorem.

9. ; 10. ;

11. ; 12. ;

13. ;

14. ;

15. ; 16. ;

17. Flight of an Aircraft A commuter plane takes off from the Los
Angeles International Airport and touches down 30 min later
at the Ontario International Airport. Let (in feet) be theA(t)

C0, p2 Dt(t) sin t

1 cos t
Cp2 , p Df(x) x sin x

C0, p2 Df(x) sin x

[0, 4]h(x) x22x 1

[ 2, 0]t(t) t

t 1
[1, 3]h(x)

1
x

[ 1, 2]f(x) x3 2x2[0, 2]f(x) x2 1

c

[0, p]f(x) cos 2x 1

[0, p]h(t) sin2 t

[0, 6]f(t) t 2>3(6 t)1>3 [ 1, 1]f(x) x21 x2

[0, 7]h(x) x3(x 7)4

[ 2, 0]f(x) x3 x2 2x

[ 3, 3]t(x) x3 9x

[1, 3]f(x) x2 4x 3

c
altitude of the plane at time (in minutes), where .
Use Rolle’s Theorem to explain why there must be at least
one number with such that . Interpret
your result.

18. Breaking the Speed Limit A trucker drove from Bismarck to
Fargo, a distance of 193 mi, in 2 hr and 55 min. Use the
Mean Value Theorem to show that the trucker must have
exceeded the posted speed limit of 65 mph at least once 
during the trip.

19. Test Flights In a test flight of the McCord Terrier, an experi-
mental VTOL (vertical takeoff and landing) aircraft, it was
determined that sec after takeoff, when the aircraft was
operated in the vertical takeoff mode, its altitude was

Use Rolle’s Theorem to show that there exists a number 
satisfying such that . Find the value of
, and explain its significance.

20. Hotel Occupancy The occupancy rate of the all-suite Wonder-
land Hotel, located near a theme park, is given by the func-
tion

where is measured in months with corresponding to
the beginning of January. Show that there exists a number 
that satisfies such that . Find the value
of , and explain its significance.c

r¿(c) 00 c 12
c

t 0t

0 t 12r(t)
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 t 3 10

3
 t 2 200

9
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3.2 EXERCISES

Videos for selected exercises are available online at www.academic.cengage.com/login.V

0

y

x

8

7

6

5

4

3

2

1

011 98765432

y  f (x)

cas

www.academic.cengage.com/login


Problem-Solving Techniques

At the end of selected chapters the author dis-
cusses problem-solving techniques that pro-
vide students with the tools they need to make
seemingly complex problems easier to solve.

Concept Review Questions

Beginning each end of chapter review, these
questions give students a chance to check their
knowledge of the basic definitions and con-
cepts from the chapter.

Review Exercises

Offering a solid review of the chapter mate-
rial, these exercises contain routine computa-
tional exercises as well as applied problems.

xiv Preface

Concept Review 1141

CHAPTER 13 REVIEW

In Exercises 1–17, fill in the blanks.

1. a. A function of two variables, and , is a 

that assigns to each ordered pair in the domain

of , exactly one real number .

b. The number is called a variable,

and and are variables. The totality of the

numbers is called the of the function .

c. The graph of is the set .

2. a. The curves with equation , where is a con-

stant in the range of , are called the 

of .

b. A level surface of a function of three variables is the

graph of the equation , where is a constant in

the range of .

3. means there exists a number

such that can be made as close to 

as we please by restricting to be sufficiently close to

.

4. If approaches as approaches along one

path, and approaches as approaches 

along another path with , then 

exist.

5. a. is continuous at if 

.

b. is continuous on a region if is continuous at

every point in .

6. a. A polynomial function is continuous ; a rational

function is continuous at all points in its .

b. If is continuous at and is continuous at ,

then the composite function is continuous at

.

7. a. The partial derivative of with respect to is

if the limit exists. The partial derivative

gives the slope of the tangent line to 

the curve obtained by the intersection of the plane

and the graph of at ; 

it also measures the rate of change of in the

-direction with held at .

b. To compute where is a function of and , treat

as a constant and differentiate with respect to

in the usual manner.

8. If and its partial derivatives , , , and are con-

tinuous on an open region , then for

all in .R(x, y)

fxy(x, y) �R
fyxfxyfyfxf(x, y)

yxf�f>�x
y

f(x, y)

z � f(x, y)

(�f>�x)(a, b)

xf(x, y)

h � t � f
f(a, b)t(a, b)f

(x, y)

fRf(x, y)

lim(x, y)→(a, b) f(x, y) �(a, b)f(x, y)

lim(x, y)→(a, b) f(x, y)L1 � L2

(a, b)(x, y)L2f(x, y)

(a, b)(x, y)L1f(x, y)

(x, y)

f(x, y)

lim(x, y)→(a, b) f(x, y) � L

k
f

f
f

kf(x, y) � k

S �f
fz

yx
z � f(x, y)

f(x, y)f

yxf

9. a. The total differential of is 

.

b. If , then 

.

c. , where 

and are functions of and 

such that and

.

d. The function is differentiable at if 

can be expressed in the form , where

and as .

10. a. If is a function of and , and and are continuous

on an open region , then is in .

b. If is differentiable at , then is at .

11. a. If , , and , then under suitable

conditions the Chain Rule gives .

b. If , , and , then

.

c. If , where is differentiable, then 

, provided that .

d. If where is differentiable, and defines

implicitly as a function of and , then 

and , provided that

.

12. a. If is a function of and and is a unit

vector, then the directional derivative of in the direction

of is if the limit exists.

b. The directional derivative measures the rate of

change of at in the direction of .

c. If is differentiable, then .

d. The gradient of is .

e. In terms of the gradient, .

13. a. The maximum value of is , and this

occurs when has the same direction as .

b. The minimum value of is , and this

occurs when has the direction of .

14. a. is to the level curve at .

b. is to the level surface at .

c. The tangent plane to the surface at the

point is ; the normal line passing

through has symmetric equations .

15. a. If for all points in an open disk contain-

ing , then has a at .

b. If for all points in the domain of , then 

has an at .(a, b)

fff(x, y) � f(a, b)

(a, b)f(a, b)

f(x, y) � f(a, b)

P(a, b, c)

P(a, b, c)

F(x, y, z) � 0

PF(x, y, z) � 0§F
Pf(x, y) � c§f

u
Du f(x, y)

u
Du f(x, y)

Du f(x, y) �
§f(x, y) �f(x, y)

Du f(x, y) �f
f

Du f(a, b)

Du f(x, y) �u
f

u � u1i � u2 jyxf

�z>�y �
�z>�x �yxz

FFF(x, y, z) � 0, 

dy>dx �FF(x, y) � 0

�w>�u �
y � h(u, √)x � t(u, √)w � f(x, y)

dw>dt �
y � h(t)x � t(t)w � f(x, y)

(a, b)f(a, b)f
RfR

fyfxyxf

(�x, �y) →
�z �

�z(a, b)z � f(x, y)

lim(�x, �y)→(0, 0) e2 �
lim(�x, �y)→(0, 0) e1 �

e2e1

�z � fx(x, y) �x � fy(x, y) �y � e1 �x � e2 �y

�z ��z � f(x � �x, y � �y) � f(x, y)

dz �z � f(x, y)dz

CONCEPT REVIEW

In Exercises 1–4, sketch the curve with the given vector equa-
tion, and indicate the orientation of the curve.

1.

2. ;

3.

4. ;

5. Find the domain of .

6. Find , where .

7. Find the interval in which

is continuous.

8. Find if .

In Exercises 9–12, find and .

9.

10.

11.

12.

In Exercises 13 and 14, find parametric equations for the tan-
gent line to the curve with the given parametric equations at the
point with the given value of .

13. , , ;

14. , , ;

In Exercises 15 and 16, evaluate the integral.

15.

16.

In Exercises 17 and 18, find for the vector function or
and the given initial condition(s).

17. ;

18 r¿(0) i � kr�(t) 2i � tj � �tk

r(0) � i � 2jr¿(t) � 21t i � 3 cos 2ptj � e�tk

r�(t)
r¿(t)r(t)

�
1

0
(2ti � t 2j � t 3>2k) dt

� a1t i � e�2tj �
1

t � 1
kb dt

t �
p

2
z � t 2y � t sin t � cos tx � t cos t � sin t

t � 0z � t 3 � 1y � 2t � 3x � t 2 � 1

t

r(t) � �t sin t, t cos t, e2t�

r(t) � (t 2 � 1)i � 2tj � ln tk

r(t) � e�ti � t cos tj � t sin tk

r(t) � 1t i � t 2j �
1

t � 1
k

r�(t)r¿(t)

r(t) � c�
t

0
cos2 u dudi � c�

t2

0
sin u dud jr¿(t)

r(t) � 1t � 1 i �
et

12 � t
j �

t 2

(t � 1)2 k

r(t) �
1t

1 � t 2 i �
t 2

sin t
j �

et � 1

t
klim

t→0�
r(t)

r(t) �
1

15 � t
i �

sin t

t
j � ln(1 � t)k

0 � t � 2pr(t) � 2 cos ti � 3 sin tj � t 2k

r(t) � (cos t � 1)i � (sin t � 2)j � 2k

0 � t � 2r(t) � t 3i � t 2j

r(t) � (2 � 3t)i � (2t � 1)j

In Exercises 19 and 20, find the unit tangent and the unit normal
vectors for the curve defined by for the given value of .

19. ;

20. ;

In Exercises 21 and 22, find the length of the curve.

21. ;

22. ;

In Exercises 23 and 24, find the curvature of the curve.

23.

24.

In Exercises 25 and 26, find the curvature of the plane curve,
and determine the point on the curve at which the curvature is
largest.

25. 26.

In Exercises 27 and 28, find the velocity, acceleration, and speed
of the object with the given position vector.

27.

28.

In Exercises 29 and 30, find the velocity and position vectors of
an object with the given acceleration and the given initial veloc-
ity and position.

29. ; ,

30. ; ,

In Exercises 31–34, find the scalar tangential and normal compo-
nents of acceleration of a particle with the given position vector.

31.

32.

33.

34.

35. A Shot Put In a track and field meet, a shot putter heaves a
shot at an angle of 45° with the horizontal. As the shot
leaves her hand, it is at a height of 7 ft and moving at a
speed of 40 ft/sec. Set up a coordinate system so that the
shot putter is at the origin.

r(t) � 12 ti � etj � e�tk

r(t) � cos ti � sin 2tj

r(t) � 2 cos ti � 3 sin tj � tk

r(t) � i � tj � t 2k

r(0) � i � kv(0) � 2ia(t) � eti � e�tj � tk

r(0) � 0v(0) � 2i � 3j � ka(t) � ti �
1

3
t 2j � 3k

r(t) � te�ti � cos 2tj � sin 2tk

r(t) � 2ti � e�2tj � cos tk

y � e�xy � x �
1

4
x2

r(t) � t sin ti � t cos tj � tk

r(t) � ti � t 2j � t 3k

1 � t � 2r(t) � 12 ti �
1

2
t 2j � ln tk

0 � t � 2r(t) � 2 sin 2ti � 2 cos 2tj � 3tk

t � 0r(t) � 2 cos ti � 2 sin tj � etk

t � 1r(t) � ti � t 2j � t 3k

tr(t)C

REVIEW EXERCISES

Review Exercises 1029

The following example shows that rewriting a function in an alternative form some-
times pays dividends.

PROBLEM-SOLVING TECHNIQUES

EXAMPLE Find if .

Solution Our first instinct is to use the Quotient Rule to compute , , and so
on. The expectation here is either that the rule for will become apparent or that at
least a pattern will emerge that will enable us to guess at the form for . But 
the futility of this approach will be evident when you compute the first two derivatives
of .

Let’s see whether we can transform the expression for before we differentiate.
You can verify that can be written as

f(x)
x

x2 1

1
2(x 1) 1

2(x 1)

(x 1)(x 1)

1

2
 c 1

x 1

1

x 1
d

f(x)
f(x)

f

f (n)(x)
f (n)

f (x)f ¿(x)

f(x)
x

x2 1
f (n)(x)
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Challenge Problems

Providing students with an opportunity to
stretch themselves, the Challenge Problems
develop their skills beyond the basics. These
can be solved by using the techniques devel-
oped in the chapter but require more effort
than the problems in the regular exercise sets
do.

1. Find .

2. Find the derivative of .

3. a. . taht yfireV

b. Find if .

4. Find the values of for which is differentiable.
.b.a

5. Find if .

Hint: . taht wohS

6. Find if .

7. Suppose that is differentiable and 
for all real numbers and . Show that 
for all .x

f ¿(x) f ¿(0)f(x)ba
f(a b) f(a)f(b)f

f(x)
ax b

cx d
f (n)(x)

f(x)
2

11 x
11 x

f(x)
1 x

11 x
f (10)(x)

f(x) sin xf(x) sin x
fx

f(x)
2x 1

x2 x 2
f (n)(x)

2x 1

x2 x 2

1

x 2

1

x 1

y 3x 2x 1x

lim
x→2

 
x10 210

x5 25

8. Suppose that for every in an interval and
for some in . Show

that for all in .

9. Let , where is a differentiable func-
tion. Find .

10. Determine the values of and such that the parabola
is tangent to the graph of at the

point . Plot the graphs of both functions on the same
set of axes.

11. Suppose is defined on and satisfies
for all and . Show that is a

constant function.
Hint: Look at .

12. Use the definition of the derivative to find the derivative of
.

13. Find at the point if

2x2 2xy xy2 3x 3y 7 0

(1, 2)y

f(x) tan ax

f ¿(x)

fyxf(x) f(y) (x y)2
( , )f

1p6 , 12 2 y sin xy x2 bx c
cb

F¿(x)
fF(x) f 121 x2 2 (a, b)xf(x) 0

(a, b)cf(c) f ¿(c) p  f (n 1)(c) 0
(a, b)xf (n)(x) 0

CHALLENGE PROBLEMS

Theorem 1 states that a relative extremum of can occur only at a critical number
of . It is important to realize, however, that the converse of Theorem 1 is false. In
other words, you may not conclude that if is a critical number of , then must
have a relative extremum at . (See Example 3.)c

ffc
f

f!

Biographies to Provide Historical Context

Historical biographies provide brief looks at the people who contributed to the devel-
opment of calculus, focusing not only on their discoveries and achievements, but on
their human side as well.

Videos to Help Students Draw Complex Multivariable Calculus Artwork

Unique to this book, Tan’s Calculus provides video lessons for the multivariable sec-
tions of the text that help students learn, step-by-step, how to draw the complex sketches
required in multivariable calculus. Videos of these lessons will be available at the text’s
companion website.

BLAISE PASCAL
(1623–1662)

A great mathematician who was not

acknowledged in his lifetime, Blaise Pascal

came extremely close to discovering calcu-

lus before Leibniz (page 157) and Newton

(page 179), the two people who are most

commonly credited with the discovery. Pas-

cal was something of a prodigy and pub-

lished his first important mathematical dis-

covery at the age of sixteen. The work

consisted of only a single printed page, but

it contained a vital step in the development

of projective geometry and a proposition

called Pascal’s mystic hexagram that dis-

cussed a property of a hexagon inscribed

in a conic section. Pascal’s interests varied

widely, and from 1642 to 1644 he worked on

the first manufactured calculator, which he

designed to help his father with his tax

work. Pascal manufactured about 50 of the

machines, but they proved too costly to

continue production. The basic principle of

Pascal’s calculating machine was still used

until the electronic age. Pascal and Pierre

de Fermat (page 307) also worked on the

mathematics in games of chance and laid

the foundation for the modern theory of

probability. Pascal’s later work, Treatise on
the Arithmetical Triangle, gave important

results on the construction that would later

bear his name, Pascal’s Triangle.

Historical Biography

Sh
ei

la
 T

er
ry

/P
ho

to
 R

es
ea

rc
he

rs
, I

nc
.

Guidance When Students Need It

The caution icon advises students how to avoid common mistakes and misunderstand-
ings. This feature addresses both student misconceptions and situations in which stu-
dents often follow unproductive paths.
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Instructor Resources
Instructor’s Solutions Manual for Single Variable Calculus (ISBN 0-534-46569-2)
Instructor’s Solutions Manual for Multivariable Calculus (ISBN 0-534-46578-1)
Prepared by Soo T. Tan

These manuals provide worked-out solutions to all problems in the text.

PowerLecture CD (ISBN 0-534-49443-9)
This comprehensive CD-ROM includes the Instructor’s Solutions Manual; PowerPoint
slides with art, tables, and key definitions from the text; and ExamView computer-
ized testing, featuring algorithmically generated questions to create, deliver, and cus-
tomize tests. A static version of the test bank will also be available online.

Solution Builder (ISBN 0-534-41829-5)
The online Solution Builder lets instructors easily build and save personal solution
sets either for printing or for posting on password-protected class websites. Contact
your local sales representative for more information on obtaining an account for
this instructor-only resource.

Enhanced WebAssign (ISBN 0-534-41830-9)
Instant feedback and ease of use are just two reasons why WebAssign is the most
widely used homework system in higher education. WebAssign allows instructors to
assign, collect, grade, and record homework assignments via the Web. Now this
proven homework system has been enhanced to include links to textbook sections,
video examples, and problem-specific tutorials. Enhanced WebAssign is more than
a homework system—it is a complete learning system for math students.

Student Resources
Student Solutions Manual for Single Variable Calculus (ISBN 0-534-46568-4)
Student Solutions Manual for Multivariable Calculus (ISBN 0-534-46577-3)
Prepared by Soo T. Tan

Providing more in-depth explanations, this insightful resource includes fully worked-
out solutions for the answers to select exercises included at the back of the textbook,
as well as problem-solving strategies, additional algebra steps, and review for selected
problems.

CalcLabs with Maple: Single Variable Calculus, 4e by Phil Yasskin and Art 
Belmonte (ISBN 0-495-56062-6)

CalcLabs with Maple: Multivariable Calculus, 4e by Phil Yasskin and Art 
Belmonte (ISBN 0-495-56058-8)

CalcLabs with Mathematica: Single Variable Calculus, 4e by Selwyn Hollis
(ISBN 0-495-56063-4)

CalcLabs with Mathematica: Multivariable Calculus, 4e by Selwyn Hollis 
(ISBN 0-495-82722-3)

Each of these comprehensive lab manuals helps students learn to effectively use the
technology tools that are available to them. Each lab contains clearly explained exer-
cises and a variety of labs and projects to accompany the text.
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Note to the Student
The invention of calculus is one of the crowning intellectual achievements of mankind.
Its roots can be traced back to the ancient Egyptians, Greeks, and Chinese. The inven-
tion of modern calculus is usually credited to both Gottfried Wilhelm Leibniz and Isaac
Newton in the seventeenth century. It has widespread applications in many fields,
including engineering, the physical and biological sciences, economics, business, and
the social sciences. I am constantly amazed not only by the wonderful mathematical
content in calculus but also by the enormous reach it has into every practical field of
human endeavor. From studying the growth of a population of bacteria, to building a
bridge, to exploring the vast expanses of the heavenly bodies, calculus has always
played and continues to play an important role in these endeavors.

In writing this book, I have constantly kept you, the student, in mind. I have tried
to make the book as interesting and readable as possible. Many mathematical concepts
are introduced by using real-life illustrations. On the basis of my many years of teach-
ing the subject, I am convinced that this approach makes it easier for you to under-
stand the definitions and theorems in this book. I have also taken great pains to include
as many steps in the examples as are needed for you to read through them smoothly.
Finally, I have taken particular care with the graphical illustrations to ensure that they
help you to both understand a concept and solve a problem.

The exercises in the book are carefully constructed to help you understand and
appreciate the power of calculus. The problems at the beginning of each exercise set
are relatively straightforward to solve and are designed to help you become familiar
with the material. These problems are followed by others that require a little more effort
on your part. Finally, at the end of each exercise set are problems that put the material
you have just learned to good use. Here you will find applications of calculus that are
drawn from many fields of study. I think you will also enjoy solving real-life problems
of general interest that are drawn from many current sources, including magazines and
newspapers. The answers often reveal interesting facts.

However interesting and exciting as it may be, reading a calculus book is not an
easy task. You might have to go over the definitions and theorems more than once in
order to fully understand them. Here you should pay careful attention to the conditions
stated in the theorems. Also, it’s a good idea to try to understand the definitions, the-
orems, and procedures as thoroughly as possible before attempting the exercises. Some-
times writing down a formula is a good way to help you remember it. Finally, if you
study with a friend, a good test of your mastery of the material is to take turns explain-
ing the topic you are studying to each other.

One more important suggestion: When you write out the solutions to the problems,
make sure that you do so neatly, and try to write down each step to explain how you
arrive at the solution. Being neat helps you to avoid mistakes that might occur through
misreading your own handwriting (a common cause of errors in solving problems), and
writing down each step helps you to work through the solution in a logical manner and
to find where you went wrong if your answer turns out to be incorrect. Besides, good
habits formed here will be of great help when you write reports or present papers in
your career later on in life.

Finally, let me say that writing this book has been a labor of love, and I hope that
I can convince you to share my love and enthusiasm for the subject.

Soo T. Tan



LINES PLAY AN important role in calculus, albeit indirectly. So we begin our study of

calculus by looking at the properties of lines in the plane. Next, we turn our atten-

tion to the discussion of functions. More specifically, we will see how functions can

be combined to yield other functions; we will see how functions can be represented

graphically; and finally, we will see how functions afford us a way to describe real-

world phenomena in mathematical terms.

In this chapter we also look at some of the ways in which graphing calculators

and computer algebra systems can help us in our study of calculus.

0 Preliminaries

Clark County in Nevada—
dominated by greater 

Las Vegas—was the fastest-
growing metropolitan area in
the United States from 1990
through the early 2000s. In

this chapter, we will construct
a mathematical model that 

can be used to describe 
how the population of Clark

County grew over that period. Jo
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2 Chapter 0 Preliminaries

0.1 SELF-CHECK DIAGNOSTIC TEST
1. Find an equation of the line passing through the points and

.

2. Find an equation of the line that passes through the point and is
perpendicular to the line with equation .

3. Determine whether the points , , and lie on a
straight line.

4. Find an equation of the line that has an -intercept of 4 and a -intercept
of 6.

5. Find an equation of the line that is parallel to the line and
passes through the point of intersection of the lines and

.

Answers to Self-Check Diagnostic Test 0.1 can be found on page ANS 1.

2x � 3y � �5
4x � 5y � 1

3x � 4y � 6

yx

C(3, �4)B(1, 1)A(�1, 4)

2x � 3y � 6
(3, �2)

(2, �4)
(�1, 3)

0.1 Lines

Figure 1a depicts a ladder leaning against a vertical wall, and Figure 1b depicts the tra-
jectory of an aircraft flying along a straight line shortly after takeoff. How do we meas-
ure the steepness of the ladder (with respect to the ground) and the steepness of the
flight path of the plane (with respect to the horizontal)? To answer these questions, we
need to define the steepness or the slope of a straight line. (We will solve the problems
posed here in Examples 2 and 3, respectively.)

FIGURE 1

Slopes of Lines

DEFINITION Slope

Let be a nonvertical line in a coordinate plane. If and are
any two distinct points on , then the slope of is

(1)

(See Figure 2.) The slope of a vertical line is undefined.

m �
�y

�x
�

y2 � y1

x2 � x1

LL
P2(x2, y2)P1(x1, y1)L

The diagnostic tests that appear at the
beginning of each section in Chapter 0
(other than Section 0.5) are designed
to allow you to determine whether you
should spend time reviewing the mate-
rial in that section or should skip it
and move on.

(a) How steep is the ladder? (b) How steep is the path of the plane?
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FIGURE 2
The slope of the line is 

.m �
�y

�x
�

y2 � y1

x2 � x1
�

rise

run

L

The quantity ( is read “delta ”) measures the change in from
to and is called the rise; the quantity measures the change in 

from to and is called the run. Thus, the slope of a line is the ratio of its rise to
its run.

Since the ratios of corresponding sides of similar triangles are equal, we see from
Figure 3 that the slope of a line is independent of the two distinct points that are used
to compute it; that is,

m �
y2 � y1

x2 � x1
�

yœ
2 � yœ

1

x œ
2 � x œ

1

P2P1

x�x � x2 � x1P2P1

yy�y�y � y2 � y1

FIGURE 3
The slope of a nonvertical straight 

line is independent of the two 
distinct points used to compute it.

The slope of a straight line is a numerical measure of its steepness with respect to
the positive -axis. In fact, if we take to be equal to 1 in Equation (1),
then we see that

gives the change in y per unit change in .
Figure 4 shows four lines with different slopes. By taking a run of 1 unit to com-

pute each slope, you can see that the larger the absolute value of the slope is, the larger
the change in per unit change in is and, therefore, the steeper the line is. We also
see that if , the line slants upward; if , the line slants downward; and
finally, if , the line is horizontal.m � 0

m � 0m � 0
xy

x

m �
�y

�x
�

�y

1
� �y � y2 � y1

�x � x2 � x1x

y

0 x

�y � y2 � y1 (rise)

�x � x2 � x1
(run)

P2(x2, y2)

P1(x1, y1)

L

x

y

P2(x2, y2)

y2 � y1

x2 � x1

y2 � y1

x2 � x1

P1(x1, y1)

P1(x1, y1)

P2(x2, y2)

� � �

� � �

� �

� �

0

L

FIGURE 4
The slope of a line is a numerical

measure of its steepness.

m �

m � �1

m � 2

�1

1

1
1

1

1

2

1

m � �3

�3

1
2

1
2

0
x

y
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EXAMPLE 1 Find the slope of the line passing through (a) the points and
and (b) the points and .

Solution
a. Using Equation (1), we obtain the required slope as

This tells us that increases by 2 units for each unit increase in (see Figure 5a).
b. Equation (1) gives the required slope as

This tells us that decreases by unit for each unit increase in or, equivalently,
decreases by 1 unit for each increase of 2 units in (see Figure 5b).xy

x1
2y

m �
2 � 3

3 � 1
� �

1

2

xy

m �
5 � 1

3 � 1
� 2

P2(3, 2)P1(1, 3)P2(3, 5)
P1(1, 1)

FIGURE 5

EXAMPLE 2 A 20-ft ladder leans against a wall with its top located 12 ft above the
ground. What is the slope of the ladder?

Solution The situation is depicted in Figure 6, where denotes the distance of the
base of the ladder from the wall. By the Pythagorean Theorem we have

 x2 � 256

 x2 � 122 � 202

x

FIGURE 6
A ladder leaning against a wall

Note In Example 1 we arbitrarily labeled the point and the point .
Suppose we had labeled the points and instead. Then Equation (1)
would give

as before. In general, relabeling the points and simply changes the sign of both
the numerator and denominator of the ratio in Equation (1) and therefore does not
change the value of . Therefore, when we compute the slope of a line using Equa-
tion (1), it does not matter which point we label as and which point we label 
as .P2

P1

m

P2P1

m �
1 � 5

1 � 3
� 2

P2(1, 1)P1(3, 5)
P2(3, 5)P1(1, 1)

x

y

1

2

3

4

5

6

1

2

3

4

5

6

1

2

2

(a) The slope of the line is 2.

31 4 5 6 x

y

2 31 4 5 6

P2(3, 5)

P1(1, 3)

P2(3, 2)

P1(1, 1)

1
�1_

2

�(b) The slope of the line is       .1_
2

0 0

12 ft
20 ft

x ft
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or . The slope of the ladder is

rise

run

12

16
�  

3

4

x � 16

EXAMPLE 3 Shortly after takeoff a plane climbs along a straight path. The plane
gains altitude at the rate of 300 ft for each 1000 ft it travels horizontally, that is, par-
allel to the ground. What is the slope of the trajectory of the plane? What is the alti-
tude gained by the plane after traveling 5000 ft horizontally?

Solution The flight path is depicted in Figure 7. We see that the slope of the flight
path of the plane is

This tells us that the plane gains an altitude of ft for each foot traveled by the plane
horizontally. Therefore, the altitude gained after traveling 5000 ft horizontally is

or 1500 ft.

Equations of Vertical Lines
Let be a vertical line in the -plane. Then must intersect the axis at some point

as shown in Figure 8. If is any point on , then must be equal to 
, whereas may take on any value, depending on the position of . In other words,

the only conditions on the coordinates of the point on are and
. Conversely, we see that the set of all points where and 

is arbitrary is precisely the vertical line . We have found an algebraic representation
of a vertical line in a coordinate plane.

L
yx � a(x, y)�� � y � �

x � aL(a, y)
Pya

xLP(x, y)(a, 0)
LxyL

3

10
� 5000 � 1500

3
10

rise

run

300

1000
�

3

10

FIGURE 7
The flight path of the plane along a
straight line

300 ft

1000 ft

FIGURE 8
Every point on the vertical line has 
an -coordinate that is equal to .ax

L

DEFINITION Equation of a Vertical Line

An equation of the vertical line passing through the point is

(2)x � a

(a, b)

EXAMPLE 4 The graph of is the vertical line passing through . An
equation of the vertical line passing through is . This is an equation of the
-axis (see Figure 9).

Equations of Nonvertical Lines
If a line is nonvertical, then it has a well-defined slope . But specifying the slope
of a line alone is not enough to pin down a particular line, because there are infinitely
many lines with a given slope (Figure 10). However, if we specify a point 
through which a line passes in addition to its slope , then is uniquely determined.

To derive an equation of the line passing through a given point and hav-
ing slope , let be any point distinct from lying on . Using Equation (1)LP1P(x, y)m

P1(x1, y1)
LmL

P1(x1, y1)

mL

y
x � 0(0, 4)

(�3, 0)x � �3

FIGURE 9
The graphs of the equations 
and x � 0

x � �3

x

y

P(x, y)

(a, 0)

L

0

x

y

x � 0x � �3

1

1

�1 0

FIGURE 10
There are infinitely many lines with
slope but only one that passes
through the point with 
slope .m

P1(x1, y1)
m

x

y

P1(x1, y1)

0
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and the points and , we can write the slope of as

But the slope of is . So

or, upon multiplying both sides of the equation by ,

(3)

Observe that and also satisfy Equation (3), so all points on satisfy 
this equation. We leave it as an exercise to show that only the points that satisfy Equa-
tion (3) can lie on .

Equation (3) is called the point-slope form of an equation of a line because it uti-
lizes a point on the line and its slope.

L

Ly � y1x � x1

y � y1 � m(x � x1)

x � x1

y � y1

x � x1
� m

mL

y � y1

x � x1

LP(x, y)P1(x1, y1)

DEFINITION Point-Slope Form of an Equation of a Line

An equation of the line passing through the point and having slope 
is

y � y1 � m(x � x1)

m
P1(x1, y1)

EXAMPLE 5 Find an equation of the line passing through the point and hav-
ing slope .

Solution Using Equation (3) with , , and , we find

or

y � �
1

2
 x � 2

y � 1 � �
1

2
 (x � 2)

m � �1
2y1 � 1x1 � 2

m � �1
2

(2, 1)

EXAMPLE 6 Find an equation of the line passing through the points and
.

Solution We first calculate the slope of the line, obtaining

Then using Equation (3) with (the other point will also do, as you can ver-
ify) and , we obtain

 y �
5

3
 x �

5

3
� 2

 y � (�2) �
5

3
 [x � (�1)]

m � 5
3

P1(�1, �2)

m �
3 � (�2)

2 � (�1)
�

5

3

(2, 3)
(�1, �2)

RENÉ DESCARTES
(1596–1650)

I think, therefore I am.

Mathematician, philosopher, and soldier,
René Descartes is credited with making a
connection between algebra and geometry
that led to an explosion of mathematical
discoveries in the seventeenth and eigh-
teenth centuries. Born on March 31, 1596, in
LaHaye (now Descartes) in the province of
Touraine, France, Descartes was raised by
his maternal grandmother until the age of
10, at which time he was sent to a Jesuit
school. Because of his weak health,
Descartes was allowed to spend the morn-
ings in bed in deep thought.

As an adult, Descartes spent some
time in the army and eventually had a
vision that convinced him of his divine
mission to devise a new philosophical
structure that would connect all branches
of the sciences through mathematics and
logic. During this period he began his most
influential works: Le Geometrie and later
the Meditations. The insights in Descartes’
work Le Geometrie laid the essential foun-
dation for the work of Newton (page 179),
Leibniz (page 157), and others in develop-
ing physics and calculus.

In 1649, at the age of 53, Descartes
accepted a tutoring position with Queen
Christina of Sweden, which required him to
meet with her at five o’clock in the morn-
ing. The cool temperatures and early morn-
ings proved too much for him, and he died
in 1650, most likely of pneumonia.

Historical Biography
Sh
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or

A nonvertical line crosses the -axis at some point . The number is called
the -intercept of the line. (See Figure 11.) If we use the point in Equation (3),
we obtain

or

which is called the slope-intercept form of an equation of a line.

y � mx � b

y � b � m(x � 0)

P1(0, b)y
b(0, b)yL

 y �
5

3
 x �

1

3

FIGURE 11
The line with -intercept and slope

has equation .y � mx � bm
byL

DEFINITION Slope-Intercept Form of an Equation of a Line

An equation of the line with slope and -intercept is

(4)y � mx � b

bym

EXAMPLE 7 Find an equation of the line with slope and -intercept 4.

Solution We use Equation (4) with and , obtaining the equation

The General Equation of a Line
An equation of the form

(5)

where , , and are constants and and are not both zero, is called a first-degree
equation in and . You can verify the following result.yx

BACBA

Ax � By � C � 0

y �
3

4
 x � 4

b � 4m � 3
4

y3
4

THEOREM 1 General Equation of a Line

Every first-degree equation in and has a straight line for its graph in the 
-plane; conversely, every straight line in the -plane is the graph of a first-

degree equation in and .yx
xyxy

yx

Because of this theorem, Equation (5) is often referred to as a general equation
of a line or a linear equation in and .yx

x

y

0

(0, b)
L

b

EXAMPLE 8 Find the slope of the line with equation .

Solution Rewriting the equation in the slope-intercept form by solving it for in terms
of , we obtain

3y � �2x � 5

x
y

2x � 3y � 5 � 0
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FIGURE 12
The -intercept of is , and the 
-intercept of is .bLy

aLx

EXAMPLE 9 Sketch the graphs of

a. b.

Solution
a. Setting gives the -intercept as 3. Next, setting gives the -intercept

as 2. Plotting the points and and drawing the line passing through
them, we obtain the desired graph (see Figure 13a).

b. Setting gives as the -intercept. Next, setting gives as
the -intercept. Thus, the line passes through the origin. In this situation we need
to find another point through which the line passes. If we pick, say, and
substitute this value of into the equation and solve the resulting
equation for , we obtain as the -coordinate. Plotting the points 
and and drawing the line through them, we obtain the desired graph 
(Figure 13b).

(3, 1)
(0, 0)yy � 1y

x � 3y � 0x
x � 3

y
y � 0x � 0xx � 0y � 0

(0, 2)(3, 0)
yx � 0xy � 0

x � 3y � 02x � 3y � 6 � 0

or

Comparing this equation with Equation (4), we see immediately that the slope of the
line is .

Note Example 8 illustrates one advantage of writing an equation of a line in the slope-
intercept form: The slope of the line is given by the coefficient of .

Drawing the Graphs of Lines
We have already mentioned that the -intercept of a straight line is the -coordinate 
of the point at which the line crosses the -axis. Similarly, the -intercept 
of a straight line is the -coordinate of the point at which the line crosses the
-axis (see Figure 12). To find the -intercept of a line , we set in the equa-

tion for because every point on the -axis must have its -coordinate equal to zero.
Similarly, to find the -intercept of , we set . The easiest way to sketch a
straight line is to find its - and -intercepts, when possible, as the following exam-
ple shows.

yx
x � 0Ly

yxL
y � 0Lxx

(a, 0)x
xy(0, b)

yy

x

m � �2
3

y � �
2

3
 x �

5

3

x

y

0

(0, b)

(a, 0)

L

b

a

FIGURE 13

x

y

1

0 0

(a) The graph of 2x � 3y � 6 � 0

1 x

y

1

1

(b) The graph of x � 3y � 0
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DEFINITION Angle of Inclination

The angle of inclination of a line is the smaller angle (the Greek letter 
phi) measured in a counterclockwise direction from the direction of the positive
-axis to (see Figure 14).Lx

fL

Angles of Inclination

Notes
1. Although Figure 15 illustrates Equation (6) for the case in which ,

it can be shown that the equation also holds when . We leave it
as an exercise.

2. Observe that the angle of inclination of a vertical line is 90°. Since is
undefined, we see that the slope of a vertical line is undefined, as was noted 
earlier.

tan 90°

90° � f � 180°
0° 	 f � 90°

FIGURE 14
The angle of inclination is measured 
in a counterclockwise direction from

the direction of the positive -axis.x

Note The angle of inclination satisfies or, in radian measure,
.

The relationship between the slope of a line and the angle of inclination of the line
can be seen from examining Figure 15. Letting denote the slope of and its angle
of inclination, we have

fLm

0 	 f � p
0° 	 f � 180°f

FIGURE 15

The slope of is .m �
�y

�x
� tan fL

(6)m � tan f

x

y

L
L

0 0 x

ƒ
ƒ

y

x

y

0

�x

�yƒ

ƒ

P1(x1, y1)

P2(x2, y2)

L

EXAMPLE 10 Refer to Example 3. Find the angle of the flight path of the plane. (Note:
This angle is referred to as the angle of climb.)

Solution From the result of Example 3 we see that . Therefore, the angle
of climb, , satisfies

from which we deduce that the angle of climb is

or approximately 17°.

f � tan�1 0.3 � 0.29 rad

tan f � 0.3

f

m � 3
10 � 0.3
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EXAMPLE 11

a. Find the slope of a line whose angle of inclination is 60° ( radians).
b. Find the angle of inclination of a line with slope .

Solution
a. Equation (6) immediately yields

as the slope of the line (see Figure 16).
b. Equation (6) gives

and we see that radians, or 135° (see Figure 16).f � 3p>4
�1 � tan f

m � tan 60° � 13

m � �1
p>3

FIGURE 16
has slope , and has angle

of inclination 135°.
L2m � 13L1

Parallel Lines and Perpendicular Lines
Two lines are parallel if and only if they have the same angle of inclination (see
Figure 17).

FIGURE 17
and are parallel if and 

only if their slopes are equal 
or both lines are vertical.

L2L1

Therefore, using Equation (6), we have the following result.

x

y

0
L1 L2

m � �1 m �

135

60


√3

x

y

0

Slope of L1 � m1 � tan ƒ1
Slope of L2 � m2 � tan ƒ2

L1 L2

ƒ1 ƒ2

Note If two lines are vertical, then they are parallel.

Suppose that and are two nonvertical perpendicular lines with slopes and
and angles of inclination and , respectively. The case in which is acute and
is obtuse is shown in Figure 18.
Since , is negative, so the length of the side is . The

two right triangles and are similar, and since the ratios of correspond-
ing sides of similar triangles are equal, we have

which may be rewritten as

or

This argument can be reversed to prove the converse: The lines are perpendicular if
.m1m2 � �1

m1m2 � �1m1 � �
1

m2

m1

1
�

1
�m2

�DAC�ABC
�m2BCm290° � f2 � 180°

f2

f1f2f1m2

m1L2L1

THEOREM 2
Two nonvertical lines are parallel if and only if they have the same slope.

FIGURE 18
and are similar.�DAC�ABC

x

y

0

L1

m1

�m2

L2
D

C

B

A 1

ƒ1

ƒ1

ƒ2

ƒ1



0.1 Lines 11

Note If a line is vertical (and hence has no slope), then another line is perpen-
dicular to it if and only if is horizontal (has zero slope), and vice versa.L2

L2L1

THEOREM 3 Slopes of Perpendicular Lines

Two nonvertical lines and with slopes and , respectively, are per-
pendicular if and only if or, equivalently, if and only if

or (7)

Thus, the slope of each is the negative reciprocal of the slope of the other.

m2 � �
1

m1
m1 � �

1
m2

m1m2 � �1
m2m1L2L1

EXAMPLE 12 Find an equation of the line that passes through the point and is
perpendicular to the line with equation .

Solution First we find the slope of the given line by rewriting the equation in the
slope-intercept form:

From this we see that its slope is . Since the required line is perpendicular to the
given line, its slope is

Therefore, using the point-slope form of an equation of a line with and 
, we obtain the required equation as

or

The Distance Formula
Another benefit that arises from using the Cartesian coordinate system is that the dis-
tance between any two points in the plane may be expressed solely in terms of their
coordinates. Suppose, for example, that and are any two points in the
plane (see Figure 19). Then the distance between these two points can be computed
using the following formula.

(x2, y2)(x1, y1)

y �
3

2
 x � 2

y � 7 �
3

2
 (x � 6)

P1(6, 7)
m � 3

2

�
1

�2
3

�
3

2

�2
3

y � �
2

3
 x � 4

2x � 3y � 12
(6, 7)

FIGURE 19
The distance between the 
points and (x2, y2)(x1, y1)

d

x

y

0

(x1, y1)

(x2, y2)

d

Distance Formula

The distance between two points and in the plane is given
by

(8)d �2(x2 � x1)
2 � (y2 � y1)

2

P2(x2, y2)P1(x1, y1)d
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In what follows, we give several applications of the distance formula.

EXAMPLE 13 Find the distance between the points and .

Solution Let and be points in the plane. Then, we have

, , ,

Using Formula (8), we have

 � 145 � 315

 �262 � 32

 d �2[2 � (�4)]2 � (6 � 3)2

y2 � 6x2 � 2y1 � 3x1 � �4

P2(2, 6)P1(�4, 3)

(2, 6)(�4, 3)

EXAMPLE 14 Let denote a point lying on the circle with radius and center
. (See Figure 20.) Find a relationship between and .

Solution By the definition of a circle, the distance between and is .
Using Formula (8), we have

which, upon squaring both sides, gives the equation

that must be satisfied by the variables and .

A summary of the result obtained in Example 14 follows.

yx

(x � h)2 � (y � k)2 � r 2

2(x � h)2 � (y � k)2 � r

rP(x, y)C(h, k)

yxC(h, k)
rP(x, y)

FIGURE 20
A circle with radius and center C(h, k)r

Equation of a Circle

An equation of the circle with center and radius is given by

(9)(x � h)2 � (y � k)2 � r 2

rC(h, k)

EXAMPLE 15 Find an equation of the circle with

a. Radius 2 and center .
b. Radius 3 and center located at the origin.

Solution
a. We use Formula (9) with , , and , obtaining

or

(See Figure 21a.)
b. Using Formula (9) with and , we obtain

or

(See Figure 21b.)

x2 � y2 � 9x2 � y2 � 32

h � k � 0r � 3

(x � 1)2 � (y � 3)2 � 4[x � (�1)]2 � (y � 3)2 � 22

k � 3h � �1r � 2

(�1, 3)

x

y

0

P(x, y)
r

C(h, k)
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FIGURE 21

In Exercises 1–4, find the slope of the line passing through the
pair of points.

1. and 2. and 

3. and 4. and 

5. Refer to the figure below.

a. Give the sign of the slope of each of the lines.
b. List the lines in order of increasing slope.

6. Find the slope of each of the lines shown in the accompany-
ing figure.

x

y
L1

L2

L3

0

�3

�4

5

5

x

y

L1

L2

L3

L4

0

(�3, 13)(�3, �3)(3.2, 1.4)(1.2, 3.6)

(�1, 3)(�4, �2)(2, 4)(1, �2)

7. Find if the line passing through and has
slope 5.

8. Find if the line passing through and has
slope .

In Exercises 9–14, find the slope of the line that has the angle of
inclination.

9. 45° 10. 135° 11. 30°

12. 13. 14.

In Exercises 15–20, find the angle of inclination of a line with
the given slope. You may use a calculator.

15. 16. 17.

18. 10 19. 20. 20

In Exercises 21–24, sketch the line through the given point with
the indicated slope.

21. ; 3 22. ;

23. ; 24. ; 4

In Exercises 25–28, determine whether the lines through the
given pairs of points are parallel or perpendicular to each other.

25. , and ,

26. , and ,

27. , and ,

28. , and ,

29. If the line passing through the points and is
parallel to the line passing through the points and

, what must the value of be?a(�5, a � 2)
(3, 6)

(3, �1)(�1, a)

(3, �2)(9, �6)(3, 4)(�1, �2)

(3, 6)(�1, �2)(4, 2)(�2, 5)

(�1, 8)(�1, 5)(4, �2)(4, 6)

(�1, 1)(1, 5)(�3, �10)(1, �2)

(�2, 3)�1(�1, �2)

�2(2, 3)(1, 2)

�
1

13

13
1

2
�1

2p

3

p

3

p

4

�3
(�9, 3)(2, a)a

(�4, a)(1, 3)a

0.1 EXERCISES

Videos for selected exercises are available online at www.academic.cengage.com/login.V

x

y

0

0
(�1, 3)

2
3

1

�1

(a) The circle with radius 2 and

x

y

(b) The circle with radius 3 and
center (�1, 3) center (0, 0)

www.academic.cengage.com/login
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30. If the line passing through the points and is
perpendicular to the line passing through the points

and , what must the value of be?

31. The point lies on the line passing through the point
and perpendicular to a line with slope 3. Find .

32. Show that the triangle with vertices , , and
is a right triangle.

33. A line passes through and the midpoint of the line
segment joining and . Show that this line is
perpendicular to the line segment.

In Exercises 34 and 35, determine whether the given points lie
on a straight line.

34. , , and 

35. , , and 

In Exercises 36–41, write the equation in the slope-intercept
form, and then find the slope and -intercept of the correspond-
ing lines.

36. 37.

38. 39. ,

40. 41.

In Exercises 42–45, find the angle of inclination of the line 
represented by the equation.

42. 43.

44. 45.

In Exercises 46–59, find an equation of the line satisfying the
conditions. Write your answer in the slope-intercept form.

46. Is perpendicular to the -axis and passes through the point

47. Passes through with slope 2

48. Passes through and has slope 0

49. Passes through and 

50. Passes through and 

51. Passes through and 

52. Has slope and -intercept 3

53. Has slope 3 and -intercept 

54. Has -intercept 3 and -intercept 

55. Passes through and is parallel to the line with equa-
tion 

56. Is perpendicular to the line with equation and
has -intercept 7

57. Passes through and is perpendicular to the line
with equation 3x � y � 4 � 0

(�2, �4)

y
y � �3x � 5

2x � 3y � 12
(3, �5)

�5yx

�5y

y�2

(2, 28)(2, 5)

(3, �4)(�1, �2)

(3, 8)(2, 4)

(�3, 3)

(4, �3)

(p, p2)
x

x � y � 8 � 0x � 13y � 5 � 0

13x � y � 4 � 04x � 7y � 8 � 0

12x � 13y � 4
x

3
�

y

4
� 1

B � 0Ax � By � Cy � 4 � 0

�3x � 4y � 8 � 02x � 3y � 12 � 0

y

C(6, 0)B(3, 3)A(�3, 6)

C(4, 13)B(1, 7)A(�2, 1)

(3, 9)(�1, 1)
(3, 4)

C(�3, 4)
B(2, 2)A(�2, �8)

k(1, 3)
(�5, k)

a(3, �4)(a � 4, 8)

(1, a)(�2, 4) 58. Passes through and is perpendicular to the line
through and 

59. Passes through and has an angle of inclination of 
radians

In Exercises 60–63, determine whether the pair of lines repre-
sented by the equations are parallel, perpendicular, or neither.

60. and

61. and

62. and

63. and

In Exercises 64–65, find the point of intersection of the lines
with the given equations.

64. and

65. and

66. Find the distance between the points.
a. and 
b. and 
c. and 
d. and 

67. Find an equation of the circle that satisfies the conditions.
a. Radius 5 and center 
b. Center at the origin and passes through 
c. Center and passes through 
d. Center and radius 

68. Show that the two lines with equations 
and , respectively, are parallel if and
only if .

69. Show that an equation of the line that passes through the
points and with and can be written
in the form

This is called the intercept form of the equation of .

70. Use the result of Exercise 69 to find an equation of the line
with -intercept 2 and -intercept 5.

71. Use the result of Exercise 69 to find an equation of the line
passing through the points and .

72. Find an equation of the line passing through and the
midpoint of the line segment joining and .

73. Find the distance from the point to the line with equa-
tion .
Hint: Find the point of intersection of the given line and the line
perpendicular to it that passes through .(5, 3)

2x � y � 3 � 0
(5, 3)

(3, 9)(�1, 1)
(5, 2)

(0, �1)(�4, 0)

yx

L

x

a
�

y

b
� 1

b � 0a � 0(0, b)(a, 0)
L

a1b2 � b1a2 � 0
a2x � b2y � c2 � 0

a1x � b1y � c1 � 0

2a(�a, a)
(5, 2)(2, �3)

(2, 3)
(2, �3)

(10, 6)(�2, 1)
(4, 9)(�1, 3)

(4, 4)(1, 0)
(4, 7)(1, 3)

4x � 3y � 11x � 3y � �1

3x � 2y � 122x � y � 1

x

b
�

y

a
� 1

x

a
�

y

b
� 1

3x � 2y � 6 � 02x � 3y � 12 � 0

y � 5 � 0x � 3 � 0

6x � 8y � 103x � 4y � 8

p>6(2, 3)

(3, 6)(�1, 2)
(3, �4)
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80. Social Security Contributions For wages less than the maximum
taxable wage base, Social Security contributions by employ-
ees are 7.65% of the employee’s wages.
a. Find an equation that expresses the relationship between

the wages earned and the Social Security taxes paid
by an employee who earns less than the maximum

taxable wage base.
b. For each additional dollar that an employee earns, by

how much is his or her Social Security contribution
increased? (Assume that the employee’s wages are less
than the maximum taxable wage base.)

c. What Social Security contributions will an employee who
earns $75,000 (which is less than the maximum taxable
wage base) be required to make?

Source: Social Security Administration.

81. Weight of Whales The equation ,
, which expresses the relationship between the

length (in feet) and the expected weight (in British
tons) of adult blue whales, was adopted in the late 1960s by
the International Whaling Commission.
a. What is the expected weight of an 80-ft whale?
b. Sketch the straight line that represents the equation.

82. The Narrowing Gender Gap Since the founding of the Equal
Employment Opportunity Commission and the passage of
equal-pay laws, the gap between men’s and women’s earn-
ings has continued to close gradually. At the beginning of
1990 , women’s wages were 68% of men’s wages;
and by the beginning of 2000 , women’s wages
were projected to be 80% of men’s wages. If this gap
between women’s and men’s wages continued to narrow 
linearly, what percent of men’s wages were women’s wages
at the beginning of 2004?
Source: Journal of Economic Perspectives.

83. Show that only those points satisfying Equation (3) can lie
on the line passing through with slope .

84. Show that Equation (6) also holds when .

In Exercises 85–88, determine whether the statement is true or
false. If it is true, explain why. If it is false, explain why or give
an example that shows it is false.

85. Suppose the slope of a line is and is a given point
on . If is the point on lying 4 units to the left of ,
then lies 2 units above .

86. The line with equation , where ,
and the line with equation , where ,
are parallel if .

87. If the slope of the line is positive, then the slope of a line
perpendicular to must be negative.

88. The lines with equations and
, where and , are per-

pendicular to each other.
b � 0a � 0bx � ay � c2 � 0

ax � by � c1 � 0

L1L2

L1

Ab � aB � 0
b � 0ax � by � c � 0

B � 0Ax � By � C � 0

PQ
PLQL

P�1
2L

90° � f � 180°

mP1(x1, y1)L

(t � 10)
(t � 0)

WL
70 	 L 	 100

W � 3.51L � 192

(y)
(x)

x (ft)

y (ft)

3

O 9.56

CD

A B

3.51.75

78. Temperature Conversion The relationship between the tempera-
ture in degrees Fahrenheit (°F) and the temperature in
degrees Celsius (°C) is

a. Sketch the line with the given equation.
b. What is the slope of the line? What does it represent?
c. What is the -intercept of the line? What does it repre-

sent?

79. Nuclear Plant Utilization The United States is not building
many nuclear plants, but the ones that it has are running full
tilt. The output (as a percent of total capacity) of nuclear
plants is described by the equation

where is measured in years, with corresponding to
the beginning of 1990.
a. Sketch the line with the given equation.
b. What are the slope and the -intercept of the line found

in part (a)?
c. Give an interpretation of the slope and the -intercept of

the line found in part (a).
d. If the utilization of nuclear power continued to grow 

at the same rate and the total capacity of nuclear plants
in the United States remained constant, by what year
were the plants generating at maximum capacity?

Source: Nuclear Energy Institute.

y

y

t � 0t

y � 1.9467t � 70.082

F

F �
9

5
 C � 32

74. The top of a ladder leaning against a wall is 9 ft above the
ground. The slope of the ladder with respect to the ground is

. What is the length of the ladder?

75. A plane flying along a straight path loses altitude at the rate
of 1000 ft for each 6000 ft covered horizontally. What is the
angle of descent of the plane?

76. A plane flies along a straight line that has a slope of 0.22. If
the plane gains altitude of 1000 ft over a certain period of
time, what will be the horizontal distance covered by the
plane over that period?

77. Truss Bridges Simple trusses are common in bridges. The fol-
lowing figure depicts such a truss superimposed on a coordi-
nate system. Find an equation of the line containing the line
segments (a) , (b) , (c) , and (d) .BCACADOD

317>7
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0.2 Functions and Their Graphs

Definition of a Function
In many situations, one quantity depends on another. For example:

The area of a circle depends on its radius.
The distance fallen by an object dropped from a building depends on the length of
time it has fallen.
The initial speed of a chemical reaction depends on the amount of substrate used.
The size of the population of a certain culture of bacteria after the introduction of
a bactericide depends on the time elapsed.
The profit of a manufacturer depends on the company’s level of production.

To describe these situations, we use the concept of a function.

0.2 SELF-CHECK DIAGNOSTIC TEST
1. If

find , , and .

2. If , find and simplify .

3. Find the domain of .

4. Find the domain and range, and sketch the graph of

5. Determine whether is odd, even, or neither.

Answers to Self-Check Diagnostic Test 0.2 can be found on page ANS 1.

f(x) �
2x3 � x

x2 � 1

if x � 0

if x � 0
f(x) � e�2x � 1

2x � 1

f(x) �
12x � 1

x2 � x � 2

f(x � h) � f(x)

h
f(x) � x2 � 2x

f(9)f(0)f(�4)

if x � 0

if x � 0
f(x) � e1�x

1x � 1

DEFINITION Function

A function from a set to a set is a rule that assigns to each element in
one and only one element in .ByA

xBAf

Let’s consider an example that illustrates why there can be only one element in
for each in . Suppose that is the set of items on sale in a department store and

is a “pricing” function that assigns to each item in its selling price in . Then
for each there should be exactly one . Note that the definition does not preclude the
possibility of more than one element in being associated with an element in . In
the context of our present example, this could mean that two or more items would have
the same selling price.

BA
yx

ByAxf
AAxB

y
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The set is called the domain of the function. The element in , called the value
of at , is written and read “ of .” The set of all values as varies over
the domain of is called the range of . If and are subsets of the set of real num-
bers, then both and are also real numbers. In this case we refer to the function

as a real-valued function of a real variable.
We can think of a function as a machine or processor. In this analogy the domain

of consists of the set of “inputs,” the rule describes how the “inputs” are to be processed
by the machine, and the range is made up of the set of “outputs” (see Figure 1).

f
f

f
f(x)x

BAff
xy � f(x)xff(x)xf

ByA

FIGURE 1
A function machine

As an example, consider the function that associates with each nonnegative num-
ber its square root, . We can view this function as a square root extracting machine.
Its domain is the set of all nonnegative numbers, and so is its range. Given the input
4, for example, the function extracts its square root and yields the output 2.

Another way of viewing a function is to think of the function from a set to a
set as a mapping or transformation that maps an element in onto its image 
in (Figure 2). For example, the “square root” function is a function from the set of
nonnegative real numbers to the set of real numbers. This function maps the number
4 onto the number 2, the number 7 onto the number , and so on.17

B
f(x)AxB

Af
14

1xx

f f(x)x

Processor

Input Output

f
A

B
x f (x)

RangeDomain
FIGURE 2

maps a point in its domain 
onto its image in its range.f(x)

xf

Note The range of is contained in the set but need not be equal to . For exam-
ple, consider the function that associates with each real number its square, , from
the set of real numbers to the set of real numbers (so ). Then the range
of is the set of nonnegative numbers, a proper subset of .

Describing Functions
Functions can be described in many ways. Earlier, we defined the square root function
by giving a verbal description of the rule. Functions can also be described by giving a
table of values describing the relationship between and . This method of describ-
ing a function is particularly effective when both the domain and the range of con-
tain a small number of elements. For example, the function giving the Manhattan
hotel occupancy rate in each of the years 1999 through 2006 can be defined
by the data given in Table 1.

Here, the domain of is and the range of is
. Observe that we can also describe the rule for by writ-

ing , , , .f(7) � 85.1pf(1) � 83.7f(0) � 81.1
fB � {74.5, 75.0, p , 85.1}

fA � {0, 1, 2, 3, 4, 5, 6, 7}f

(x � 0)
f

f
f(x)x

Bf
A � B � RRR

x2xf
BBf

TABLE 1 The function giving the
Manhattan hotel occupancy rate in 
year x

f

(year)x (percent)y � f(x)

0

1

2

3

4

5

6

7

81.1

83.7

74.5

75.0

75.9

83.2

84.9

85.1

Source: PricewaterhouseCoopers LLP.
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Notes
1. We often use letters other than to denote a function. For example, we might

speak of the area function , the population function , the function , and 
so on.

2. Strictly speaking, it is improper to refer to a function as (recall that is
the value of at ), but it is conventional to do so.

If a function is described by an equation , we call the independent
variable and the dependent variable because (the value of at ) is dependent
upon the choice of . Here, represents a number in the domain of and the unique
number in the range of associated with .

Evaluating Functions
Let’s look again at the square root function defined by the rule . We could
very well have defined this function by giving the rule as or . In
other words, it doesn’t matter what letter we choose to represent the independent vari-
able when describing the rule for a function. Indeed, we can describe the rule for 
using the expression

To find the value of at , we simply insert into the blank spaces inside the parenthe-
ses! As another example, consider the function defined by the rule .
We can describe the rule for by

obtained by replacing each in the expression for by a pair of parentheses. To
find the value of at , insert the number 2 in the blank spaces inside each pair
of parentheses to obtain

t(2) � 2(2)2 � 2 � 10

x � 2t

t(x)x

t( ) � 2( )2 � ( )

t

t(x) � 2x2 � xt

xxf

f( ) � 1( ) � ( )1>2

f

f(u) � 1uf(t) � 1t
f(x) � 1xf

xf
yfxx

xfyy
xy � f(x)f

xf
f(x)f(x)f

FPA
f

A function can also be described graphically, as shown in Figure 3. Here, the func-
tion gives the annual yield in percent for two-year Treasury notes, , for the first
three months of 2008.

f(t)f

FIGURE 3
The function gives the annual yield
for two-year Treasury notes in the first
three months of 2008.
Source: Financial Times.

f

EXAMPLE 1 The function defined by the formula , or , is just
the square root function mentioned earlier. The domain of this function is the set of all
values of in the interval . For example, if , then is
the square root of 16. The range of consists of all the square roots of nonnegative
numbers and is therefore the set of all numbers in . (See Figure 4.)[0, �)

f
f(16) � 116 � 4x � 16[0, �)x

f(x) � 1xy � 1xf

FIGURE 4

t (months)

y (%)

1

0.5

1.0

1.5

2.0

2.5

3.0

3.5

0 2 3
[

[
x

Input Output

(a) The square root machine (b) The function f maps x onto √

√
y

B

x
A

1 2 30 4 5 6

0 1–1–2–3

Range of f

Domain of f

2 √x

x.

√x x

2 3 4

√
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LEONHARD EULER
(1707–1783)

Much of the mathematical notation we use
today is the result of the work of Leonhard
Euler. These notations include for the
base of the natural logarithm, for the
square root of �1, and our commonly used
function notation . Euler made major
contributions to every field of the mathe-
matics of his time, and many of the con-
cepts he developed bear his name today.

Euler had a remarkable memory and
was able to perform extremely complex
calculations mentally. Johann Bernoulli
(1667–1748) (page 636), his childhood tutor,
recognized Euler’s exceptional mathemati-
cal ability and encouraged him to pursue a
career in mathematics. Despite Euler’s
father’s wish to hand down to his son the
pastorship in Reichen, the Bernoulli family
was able to convince Pastor Euler that his
son should pursue his mathematical tal-
ents. Euler eventually secured a position at
St. Petersburg Academy of Sciences and
continued to make major contributions to
mathematics even after developing
cataracts and losing his sight.

f(x)

i
e

Historical Biography

St
oc

k 
M

on
ta

ge
/S

up
er

St
oc

k

EXAMPLE 2 Let . Find

a.
b.
c. , where is a real number
d. , where is a real number
e.

Solution We think of as

Then

a.
b.
c.
d.
e.

Finding the Domain of a Function
Sometimes the domain of a function is determined by the nature of a problem. For
example, the domain of the function that gives the area of a circle in terms
of its radius is the interval , since must be positive.r(0, �)

A(r) � pr 2

f(2x) � (2x)2 � 2(2x) � 1 � 4x2 � 4x � 1
f(x � h) � (x � h)2 � 2(x � h) � 1 � x2 � 2xh � h2 � 2x � 2h � 1
f(t) � (t)2 � 2(t) � 1 � t 2 � 2t � 1
f(p) � (p)2 � 2(p) � 1 � p2 � 2p � 1
f(�1) � (�1)2 � 2(�1) � 1 � �2

f( ) � ( )2 � 2( ) � 1

f(x)

f(2x)
hf(x � h)

tf(t)
f(p)
f(�1)

f(x) � x2 � 2x � 1

EXAMPLE 3 A man wants to enclose a vegetable garden in his backyard with a rect-
angular fence. If he has 100 ft of fencing with which to enclose his garden, find a func-
tion that gives the area of the garden in terms of its length (see Figure 5). (Assume
that he uses all of the fencing.) What is the domain of this function?

Solution From Figure 5, we see that the perimeter of the rectangle, ft, must
be equal to 100 ft. Thus, we have the equation

(1)

The area of the rectangle is given by

(2)

Solving Equation (1) for in terms of , we obtain . Substituting this value
of into Equation (2) yields

Since the sides of the rectangle must be positive, we have and ,
which is equivalent to . Therefore, the required function is

with domain .

Unless we specifically mention the domain of a function , we will adopt the con-
vention that the domain of is the set of all numbers for which is a real number.f(x)f

f

(0, 50)

A(x) � �x2 � 50x

0 � x � 50
50 � x � 0x � 0

 � �x2 � 50x

 A � x(50 � x)

y
y � 50 � xxy

A � xy

2x � 2y � 100

(2x � 2y)

x

FIGURE 5
A rectangular garden with dimensions 

ft by ftyx

x

y
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EXAMPLE 4 Find the domain of each function:

a. b.

Solution
a. Since division by zero is prohibited and the denominator of is equal to zero

if , or or , we conclude that the
domain of is the set of all numbers except and 2. Equivalently, the domain
of is the set .

b. We begin by looking at the numerator of . Because the expression under the
radical sign must be nonnegative, we see that , or . Next,
since division by zero is not allowed, we see that . But 
if , so . Therefore, the domain of is the set .C�1, 12 2 � 112, � 2fx � 1

2x � 1
2

2x � 1 � 02x � 1 � 0
x � �1x � 1 � 0

f(x)
(��, �1) � (�1, 2) � (2, �)f

�1f
x � 2x � �1x2 � x � 2 � (x � 2)(x � 1) � 0

f(x)

f(x) �
x � 1x � 1

2x � 1
f(x) �

2x � 1

x2 � x � 2

DEFINITION Graph of a Function

The graph of a function is the set of all points such that , where
lies in the domain of .fx

y � f(x)(x, y)f

The graph of provides us with a way of visualizing a function (see Figure 6).

Note If the function is defined by the equation , then the domain of is the
set of all -values, and the range of is the set of all -values.yfx

fy � f(x)f

f

FIGURE 6
The graph of a function f

EXAMPLE 5 The graph of a function is shown in Figure 7.

a. What is ? ?
b. What is the distance of the point from the -axis? The point 

from the -axis?
c. What is the domain of ? The range of ?

Solution
a. From the graph of , we see that when , and we conclude that

. Similarly, we see that .
b. Since the point lies below the -axis, we see that the distance of the point

from the -axis is units. The point lies
above the -axis, and its distance is , or 3 units.

c. Observe that may take on all values between and , inclusive, so
the domain of is . Next, observe that as takes on all values in the
domain of , takes on all values between and 7, inclusive. (You can see this
by running your index finger along the -axis from to and observ-
ing the corresponding values assumed by the -coordinate of each point on the
graph of .) Therefore, the range of is .[�2, 7]ff

y
x � 7x � �1x

�2yf
x[�1, 7]f

x � 7x � �1x
f(5)x

(5, f(5))�f(3) � �(�2) � 2x(3, f(3))
x(3, �2)

f(5) � 3f(3) � �2
x � 3y � �2f

ff
x

(5, f(5))x(3, f(3))
f(5)f(3)

f

FIGURE 7
The graph of a function f

y

y

0

Range

Domain

(x, y)

y � f(x)

xx

x

y

0

y � f(x)

�1

�3

�5

1

3

5

7

�1 1 3 5 7

EXAMPLE 6 Sketch the graph of the function . What is the range of ?

Solution The domain of is . From the following table of values
for corresponding to some selected values of , we obtain the graph of shown
in Figure 8.

fxy � f(x)
(��, 0) � (0, �)f

ff(x) �
1
x
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x 1
3

1
2 1 2 3 �3 �2 �1 �1

2 �1
3

y 3 2 1 1
2

1
3 �1

3 �1
2 �1 �2 �3

FIGURE 8
The graph of f(x) �

1
x

Setting gives , or , where . This shows that corre-
sponding to any nonzero value of there is an in the domain of that is mapped onto
. So the range of is .

The Vertical Line Test
Consider the equation . Solving for in terms of , we obtain

(3)

Since each positive value of is associated with two values of —for example, the
number 3 is mapped onto the two images and —we see that the equation

does not define as a function of . The graph of is shown in Figure 9.
Note that the vertical line intersects the graph of at the two points

and , verifying geometrically our earlier observation that the num-
ber is associated with the two values and . These observa-
tions lead to the following criterion for determining when the graph of an equation is
a function.

y � 13y � �13x � 3
(3, 13)(3, �13)

y2 � xx � 3
y2 � xxyy2 � x
13�13

yx

y � 1x

xyy2 � x

(��, 0) � (0, �)fy
fxy

y � 0x � 1>y1>x � yf(x) � y
x

y

0

y � x 1

2

3

4

1

�1 1 2 3 4�2�3�4
�1

�2

�3

�4

FIGURE 9
The number 3 has two images,
and .13

�13 The Vertical Line Test

A curve in the -plane is the graph of a function defined by the equation
if and only if no vertical line intersects the curve at more than one point.y � f(x)

fxy

Piecewise Defined Functions
In certain situations, a function is defined by several equations, each valid over a cer-
tain portion of the domain of the function.

x

y

0

y2 � x

x � 3

1

2

1 2 3 4 5

�1

�2
√3�

√3

EXAMPLE 7 Sketch the graph of the absolute value function .

Solution We can plot a few points lying on the graph of and draw a suitable curve
passing through them. Alternatively, we can proceed as follows. Recall that

This shows that the function is defined piecewise over its domain .
In the subdomain the rule for is . So the graph of coincides with that
of for . But the latter is the right half of the line with equation . In
the subdomain the rule for is , and we see that the graph of over
this portion of its domain coincides with the left half of the line with equation .
The graph of is sketched in Figure 10.f

y � �x
ff(x) � �xf(��, 0)

y � xx � 0y � x
ff(x) � xf[0, �)

(��, �)f(x) � �x �

if x � 0

if x � 0
�x � � ex

�x

f

f(x) � �x �

FIGURE 10
The graph of consists of 
the left half of the line and 
the right half of the line .y � x

y � �x
f(x) � �x �

x

y

0

y � |x|
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The graph of is shown in Figure 11.

Note Be sure that you use the correct equation when you evaluate a function that 
is defined piecewise. For instance, to find in the preceding example, we note thatf 112 2

f

EXAMPLE 8 Sketch the graph of the function

Solution The function is defined piecewise and has domain . In the sub-
domain the rule for is , so the graph of over this portion of its
domain is the half-line with equation . In the subdomain the rule for is

. To sketch the graph of over this subdomain, we use the following
table.

ff(x) � 1
4 x

2 � 1
f[1, �)y � x

ff(x) � xf(��, 1)
(��, �)f

if x � 1

if x � 1f(x) � e x
1
4 x

2 � 1

x 1 2 3 4

f(x) � 1
4 x

2 � 1 �3
4 0 5

4 3

FIGURE 11

lies in the subdomain . So the correct rule here is giving 
. To compute , we use the rule , which gives .

Even and Odd Functions
A function that satisfies for every in its domain is called an even 
function. The graph of an even function is symmetric with respect to the -axis 
(see Figure 12a). An example of an even function is , since 

.
A function that satisfies for every in its domain is called an 

odd function. The graph of an odd function is symmetric with respect to the 
origin (see Figure 12b). An example of an odd function is , since 

.(�x)3 � �x3 � �f(x)
f(�x) �f(x) � x3

xf(�x) � �f(x)f
(�x)2 � x2 � f(x)

f(�x) �f(x) � x2
y

xf(�x) � f(x)f

f(5) � 21
4f(x) � 1

4 x
2 � 1f(5)f 112 2 � 1

2

f(x) � x(��, 1)x � 1
2

FIGURE 12

EXAMPLE 9 Determine whether the function is even, odd, or neither even nor odd:

a. b. c.

Solution
a. . Therefore, is an odd

function.
ff(�x) � (�x)3 � (�x) � �x3 � x � �(x3 � x) � �f(x)

h(x) � x � 2x2
t(x) � x4 � x2 � 1f(x) � x3 � x

x

y

0

1
1

�1
�1

x�x x

�x x

y

(a) f is even.

0

x

y

(b) f is odd.

0

f(x)
y � f(x) y � f(x)

f(x)

f(�x) � �f(x)

f(�x) � f(x)



0.2 Functions and Their Graphs 23

b. , and we see that is even.tt(�x) � (�x)4 � (�x)2 � 1 � x4 � x2 � 1 � t(x)

FIGURE 13

c. , which is neither equal to nor ,
and we conclude that is neither even nor odd.

The graphs of the functions , , and are shown in Figure 13.htf

h
�h(x)h(x)h(�x) � (�x) � 2(�x)2 � �x � 2x2

Videos for selected exercises are available online at www.academic.cengage.com/login.V

1. If , find , , , , ,
, , and .

2. If , find , , , ,
and .

3. If , find , , , ,

and .

4. If , find , , and .

5. If , find , , , ,

and .

6. If , find , , ,

and .

7. If

find , , and .

8. If

find , , and .

9. If , find and simplify , where .x � 1
f(x) � f(1)

x � 1
f(x) � x2

f(0)f(�1)f(�2)

f(x) � •
x

x � 1
if x � �1

1 � 1x � 1 if x � �1

f(1)f(0)f(�2)

f(x) � ex2 � 1 if x 	 0

1x if x � 0

f(x � 2h)

f(x � h)f(x � h)f(4)f(x) �
1x

x2 � 1

f a1
x
b

f(1x)f(x2)f(0)f(�1)f(x) � 2x3 � x

f(2x � 1)f(x � 1)f(2)f(t) �
2t 2

1t � 1

1

t(3)

t(a � h)t(a2)t(13)t(�2)t(x) � �x2 � 2x

f(a � h)
f ax

2
bf(2t � 1)f(t � 1)f(�12)f(x) � 2x � 1

f(x � 1)f(1a)f(2a)
f(a � 1)f(�a)f(a)f(�4)f(0)f(x) � 3x � 4

10. If , find and simplify ,
where .

11. If , find and simplify ,
where .

12. If , find and simplify ,
where .

13. a. If and , find .
b. If and , find .

14. If , find and if it is known that 
and .

In Exercises 15–26, find the domain of the function.

15. 16.

17. 18.

19. 20.

21.

22.

23.

24. f(x) �
23 x2 � x � 1

x2 � 1

f(x) �
1x � 2 � 12 � x

x3 � x

f(x) �
1x � 1

x2 � x � 6

f(x) � 1x � 2 � 14 � x

F(x) �2x2 � 2x � 3f(x) �29 � x2

h(x) � 12x � 3t(t) �
t � 1

2t 2 � t � 1

f(x) �
2x � 1

x � 1
f(x) �

3x � 1

x2

f(2) � 15
f(1) � 1baf(x) � ax3 � b

kt(�1) � 0t(t) � � t � 1 � � k
kf(1) � 3f(x) � x2 � 2x � k

h � 0

f(a � h) � f(a)

h
f(x) � 1x

h � 0

f(x � h) � f(x)

h
f(x) � x � x2

h � 0

f(1 � h) � f(1)

h
f(x) � 2x2 � 1

0.2 EXERCISES

1 2�2

1

�1

(a) f(x) � x3 � x

x

y

0

1 2�2 �1

2

3

(b) g(x) � x4 � x2 � 1

x

y

0

2�1

1

�2

�3

�4

(c) h(x) � x � 2x2

x

y

0

�1 1

1�1

www.academic.cengage.com/login
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25. 26.

27. Refer to the graph of the function in the following figure.

a. Find .
b. Find the value of for which (i) and 

(ii) .
c. Find the domain of .
d. Find the range of .

28. Refer to the graph of the function in the following figure.

a. Find .
b. Find the values of corresponding to the point(s) on the

graph of located at a height of 5 units above the -axis.
c. Find the point on the -axis at which the graph of 

crosses it. What is at this point?
d. Find the domain and range of .

In Exercises 29–30, determine whether the point lies on the
graph of the function.

29. ;

30. ; f(t) �
� t � 1 �

t 3 � 2
P1�3, � 1

13 2
f(x) �

x � 1

2x2 � 7
� 2P(3, 3)

f
f(x)

fx
xf

x
f(7)

x

y

0

�3

1

3

5

2

4

6

7

1�1�2 2 3 4 5 6 7 8 9 10

y � f(x)

f

f
f

f(x) � 0
f(x) � 3x

f(0)

x

y

0
�1

�2

1

3

5

2

4

6

1 3 52 4 6

y � f(x)

f

f(x) �
1

2�x � � x
f(x) �

x3 � 1

x2x2 � 1

In Exercises 31–38, find the domain and sketch the graph of the
function. What is its range?

31. 32.

33. 34.

35. 36.

37.

38.

In Exercises 39–42, use the vertical line test to determine
whether the curve is the graph of a function of .

39. 40.

41. 42.

43. Refer to the curve for Exercise 39. Is it the graph of a func-
tion of ? Explain.

44. Refer to the curve for Exercise 40. Is it the graph of a func-
tion of ? Explain.

In Exercises 45–48, determine whether the function whose graph
is given, is even, odd, or neither.

45. 46.

x

y

0

1

�1 1
�1

x

y

0

y

y

x

y

0x

y

0

x

y

0
x

y

0

x

f(x) � •
�x � 1 if x � �1

0 if �1 	 x 	 1

x � 1 if x � 1

f(x) � e�x � 1 if x 	 1

x2 � 1 if x � 1

f(t) �
� t � 1 �

t � 1
h(x) �2x2 � 1

f(x) � �x � � 1t(x) � 1x � 1

f(x) �
1

2
 x2 � 1f(x) � �2x � 1
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47. 48.

In Exercises 49–54, determine whether the function is even, odd,
or neither.

49.

50.

51.

52.

53.

54.

55. The following figure shows a portion of the graph of a func-
tion defined on the interval . Sketch the complete
graph of if it is known that (a) is even, (b) is odd.

56. The following figure shows a portion of the graph of a func-
tion defined on the interval .
a. Can be odd? Explain. If so, complete the graph of .
b. Can be even? Explain. If so, complete the graph of .

57. The function , whose graph is shown in the follow-
ing figure, gives the distance the Jacksons were from their
home on a recent trip they took from Boston to Niagara
Falls as a function of time ( corresponds to 7 A.M.).t � 0t

y � f(t)

x

y

1

2

1�1�2 20

ff
ff

[�2, 2]f

x

y

1

1�1 20

�1

fff
[�2, 2]f

f(x) �2x2 � x � 1 �2x2 � x � 1

f(x) �
�x � � 1

x4 � 2x2 � 3

f(x) � 2x1>3 � 3x2

f(x) � 2x3 � 3x � 1

f(x) �
x

x2 � 1

f(x) � 1 � 2x2

x

y

0
x

y

0

The 500-mi trip took a total of 8 hr. What does the graph
tell us about the trip?

58. A plane departs from Logan Airport in Boston bound for
Heathrow Airport in London, a 6-hr, 3267-mi flight. After
takeoff, the plane climbs to a cruising altitude of 35,000 ft,
which it maintains until its descent to the airport. While at
its cruising altitude, the plane maintains a ground speed of
550 mph. Let denote the distance (in miles) flown
by the plane as a function of time (in hours), and let

denote the altitude (in feet) of the plane.
a. Sketch a graph of that could describe the situation.
b. Sketch a graph of that could describe the situation.

59. Oxygen Content of a Pond When organic waste is dumped into
a pond, the oxidation process that takes place reduces the
pond’s oxygen content. However, given time, nature will
restore the oxygen content to its natural level. Let 
denote the oxygen content (as a percentage of its normal
level) days after organic waste has been dumped into the
pond. Sketch a graph of that could depict the process.

60. The Gender Gap The following graph shows the ratio of
women’s earnings to men’s from 1960 through 2000.

a. Write the rule for the function giving the ratio of
women’s earnings to men’s in year , with corre-
sponding to 1960.
Hint: The function is defined piecewise and is linear over each
of four subintervals.

f

t � 0t
f

t (yr)

y

0.55

0.60

0.65

0.70

0.75
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10 20

(0, 0.61)
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30 400
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f
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D � f(t)
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y
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b. In what decade(s) was the gender gap expanding?
Shrinking?

c. Refer to part (b). How fast was the gender gap (the ratio
per year) expanding or shrinking in each of these
decades?

Source: U.S. Bureau of Labor Statistics.

61. Prevalence of Alzheimer’s Patients On the basis of a study con-
ducted in 1997, the percentage of the U.S. population by age
afflicted with Alzheimer’s disease is given by the function

where is measured in years, with corresponding to
age 65. What percentage of the U.S. population at age 65 is
expected to have Alzheimer’s disease? At age 90?
Source: Alzheimer’s Association.

62. U.S. Health Care Information Technology Spending As health care
costs increase, payers are turning to technology and out-
sourced services to keep a lid on expenses. The amount of
health care information technology spending by payer is
approximated by

where is measured in billions of dollars and is mea-
sured in years with corresponding to 2004. What was
the amount spent by payers on health care IT in 2004? What
amount was spent by payers in 2008?
Source: U.S. Department of Commerce.

63. Hotel Rates The average daily rate of U.S. hotels from 2001
through 2006 is approximated by the function

where is measured in dollars and corresponds to
2001.
a. What was the average daily rate of U.S. hotels from

2001 through 2003?
b. What was the average daily rate of U.S. hotels in 2004?

In 2005? In 2006?
c. Sketch the graph of .
Source: Smith Travel Research.

64. Postal Regulations In 2007 the postage for packages sent by
first-class mail was raised to $1.13 for the first ounce or
fraction thereof and 17¢ for each additional ounce or frac-
tion thereof. Any parcel not exceeding 13 oz may be sent by
first-class mail. Letting denote the weight of a parcel in
ounces and letting denote the postage in dollars, com-
plete the following description of the “postage function” :

a. What is the domain of ?
b. Sketch the graph of .f

f

f(x) � d1.13 if 0 � x 	 1

1.30 if 1 � x 	 2

o  

? if 12 � x 	 13

f
f(x)

x

f

t � 1f(t)

f(t) � e82.95 if 1 	 t 	 3

0.95t 2 � 3.95t � 86.25 if 3 � t 	 6

t � 0
tS(t)

0 	 t 	 4S(t) � �0.03t 3 � 0.2t 2 � 0.23t � 5.6

x � 0x

0 	 x 	 25P(x) � 0.0726x2 � 0.7902x � 4.9623

65. Harbor Cleanup The amount of solids discharged from the
Massachusetts Water Resources Authority sewage treatment
plant on Deer Island (near Boston Harbor) is given by the
function

where is measured in tons/day and is measured in
years, with corresponding to 1989.
a. What amount of solids were discharged per day in 1989?

In 1992? In 1996?
b. Sketch the graph of .
Source: Metropolitan District Commission.

66. Rising Median Age Increased longevity and the aging of the
baby boom generation—those born between 1946 and
1965—are the primary reasons for a rising median age. The
median age (in years) of the U.S. population from 1900
through 2000 is approximated by the function

where is measured in decades, with corresponding to
the beginning of 1900.
a. What was the median age of the U.S. population at the

beginning of 1900? At the beginning of 1950? At the
beginning of 1990?

b. Sketch the graph of .
Source: U.S. Census Bureau.

67. Suppose a function has the property that whenever is in
the domain of , then so is . Show that can be written as
the sum of an even function and an odd function.

68. Prove that a nonzero polynomial function

where is a nonnegative integer and are real
numbers with , can be expressed as the sum of an
even function and an odd function.

In Exercises 69–72, determine whether the statement is true or
false. If it is true, explain why. If it is false, explain why or give
an example that shows that it is false.

69. If , then .

70. If , then .

71. If is a function, then .

72. A curve in the -plane can be simultaneously the graph of
a function of and the graph of a function of .yx

xy

f(a � b) � f(a) � f(b)f

a � bf(a) � f(b)

f(a) � f(b)a � b

an � 0
a0, a1, p , ann

f(x) � anx
n � an�1x

n�1 � p � a2x
2 � a1x � a0

f�xf
x

f

t � 0t

f(t) � •
1.3t � 22.9 if 0 	 t 	 3

�0.7t 2 � 7.2t � 11.5 if 3 � t 	 7

2.6t � 9.4 if 7 � t 	 10

f

t � 0
tf(t)

f(t) � e130 if 0 	 t 	 1

�30t � 160 if 1 � t 	 2

100 if 2 � t 	 4

�5t 2 � 25t � 80 if 4 � t 	 6

1.25t 2 � 26.25t � 162.5 if 6 � t 	 10
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0.3 The Trigonometric Functions

In this section we review the basic properties of the trigonometric functions and their
graphs. The emphasis is placed on those topics that we will use later in calculus.

Angles
An angle in the plane is generated by rotating a ray about its endpoint. The starting
position of the ray is called the initial side of the angle, the final position of the ray is
called the terminal side, and the point of intersection of the two sides is called the ver-
tex of the angle (see Figure 1a).

0.3 SELF-CHECK DIAGNOSTIC TEST
1. Given that and , find .

2. Determine whether the function is even, odd, or 
neither.

3. Verify the identity .

4. Using the substitution , where and , express
in terms of .

5. Solve the equation , where .

Answers to Self-Check Diagnostic Test 0.3 can be found on page ANS 2.

0 	 u � 2pcos u � 2 sin2 u � 1 � 0

ua2 � x2
�p2 	 u 	 p

2a � 0x � a sin u

cot x � 1

1 � tan x
� cot x

f(x) �
sin 2x

21 � cos2 x � 1

tan u0 	 u � p
2sec u � 5

3

FIGURE 1

x

y

0

x

y

0

(b) A positive angle in standard position (c) A negative angle in standard position(a) An angle

Initial side

Initial side

Initial side
Vertex

Terminal side

Terminal side

Terminal side

¨ ¨

In a rectangular coordinate system an angle (the Greek theta) is in standard posi-
tion if its vertex is centered at the origin and its initial side coincides with the positive
-axis. An angle is positive if it is generated by a counterclockwise rotation and neg-

ative if it is generated by a clockwise rotation (Figure 1b–c).

Radian Measure of Angles
We can express the magnitude of an angle in either degrees or radians. In calculus, how-
ever, we prefer to use the radian measure of an angle because it simplifies our work.

x

u
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DEFINITION Radian Measure of an Angle

If is the length of the arc subtended by a central angle in a circle of radius
, then

(1)

is the radian measure of (see Figure 2).u

u �
s

r

r
us

For convenience we often work with the unit circle, that is, the circle of radius 1
centered at the origin. On the unit circle, an angle of 1 radian is subtended by an arc
of length 1 (see Figure 3). To specify the units of measure for the angle in Figure 3,
we write radian or . By convention, if the unit of measure is not specifi-
cally stated, we assume that it is radians.

Since the circumference of the unit circle is and the central angle subtended by
one complete revolution is 360°, we see that

or

(2)

and

(3)

These relationships suggest the following useful conversion rules.

1° �
p

180
 rad

1 rad � a180
p
b°

2p radians (rad) � 360°

2p

u � 1u � 1
u

FIGURE 2

FIGURE 3
The unit circle x2 � y2 � 1

Converting Degrees and Radians

To convert degrees to radians, multiply by .

To convert radians to degrees, multiply by .
180
p

p

180

EXAMPLE 1 Convert each of the following to radian measure:

a. 60° b. 300° c.

Solution

a. , or rad

b. , or rad

c. , or rad�
5p

4
�225 �

p

180
� �

5p

4

5p

3
300 �

p

180
�

5p

3

p

3
60 �

p

180
�
p

3

�225°

x

y

r

s
Arc length

¨
0

x

y

1
Arc length

1

1

¨
0



0.3 The Trigonometric Functions 29

EXAMPLE 2 Convert each of the following to degree measure:

a. rad b. rad c. rad

Solution

a. , or 60°

b. , or 135°

c. , or 

More than one angle may have the same initial and terminal sides. We call such
angles coterminal. For example the angle has the same initial and terminal sides
as the angle (see Figure 4).u � �2p>3 4p>3

�315°�
7p

4
�

180
p

� �315

3p

4
�

180
p

� 135

p

3
�

180
p

� 60

�
7p

4

3p

4

p

3

FIGURE 4
Coterminal angles

An angle may be greater than rad. For example, an angle of rad is gener-
ated by rotating a ray in a counterclockwise direction through one and a half revolu-
tions (Figure 5a). Similarly, an angle of radians is generated by rotating a ray
in a clockwise direction through one and a quarter revolutions (Figure 5b).

�5p>2
3p2p

x

y

(a) ¨ �

x

y

(b) ¨ � �

4π
3

4π
3

2π
3

¨ � 2π
3¨ � �

x

y

(a) ¨ � 3π

x

y

(b) ¨ � �5π
2

¨ � 3π 5π
2¨ � �

FIGURE 5
Angles generated by more 

than one revolution
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By rewriting Equation (1), , we obtain the following formula, which gives
the length of a circular arc.

u � s>r

Degrees 0° 30° 45° 60° 90° 120° 135° 150° 180° 270° 360°

Radians 0
p

6

p

4

p

3

p

2

2p

3

3p

4

5p

6
p

3p

2
2p

TABLE 1

Length of a Circular Arc

(4)s � ru

Another related formula that we will use later in calculus gives the area of a circular
sector.

Area of a Circular Sector

(5)A �
1

2
 r 2u

EXAMPLE 3 What is the length of the arc subtended by radians in a 
circle of radius 3? What is the area of the circular sector determined by ?

Solution To find the length of the arc, we use Equation (4) to obtain

The area of the sector is obtained by using Equation (5). Thus,

The Trigonometric Functions
Two approaches are generally used to define the six trigonometric functions. We sum-
marize each approach here.

 �
21p

4

 A �
1

2
 r 2u �

1

2
 (3)2a7p

6
b

s � 3a7p

6
b �

7p

2

u

u � 7p>6
Note In Equations (4) and (5) must be expressed in radians.u

The radian and degree measures of several common angles are given in Table 1.
Be sure that you familiarize yourself with these values.
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THE TRIGONOMETRIC FUNCTIONS
The Right Triangle Definition

For an acute angle (see Figure 6),

The Unit Circle Definition

Let denote an angle in standard position, and let denote the point where
the terminal side of meets the unit circle. (See Figure 7.) Then

, ,

, , y � 0cot u �
x

y
x � 0tan u �

y

x

x � 0sec u �
1
x

y � 0csc u �
1
y

cos u � xsin u � y

u

P(x, y)u

cot u �
adj

opp
tan u �

opp

adj
sec u �

hyp

adj

csc u �
hyp

opp
cos u �

adj

hyp
sin u �

opp

hyp

u

FIGURE 6

FIGURE 7
The unit circle

Referring to the point on the unit circle (Figure 7), we see that the coordi-
nates of can also be written in the form

and (6)

Note and are not defined when . Also, and are not defined
when .

Table 2 lists the values of the trigonometric functions of certain angles. Since these
values occur very frequently in problems involving trigonometry, you will find it help-
ful to memorize them. The right triangles shown in Figure 8 can be used to help jog
your memory.

y � 0
cot ucsc ux � 0sec utan u

y � sin ux � cos u

P
P(x, y)

TABLE 2

(radians)U (degrees)U sin U cos U tan U

p

6
30°

1

2

13

2

13

3

p

4
45°

12

2

12

2
1

p

3
60°

13

2

1

2
13

Adjacent side

Hypotenuse Opposite
side

¨

xx

y

y

P(x, y)

1

¨

2

60


30


45


45


1

1

1

√3

√2

FIGURE 8
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The sign of a trigonometric function of an angle is determined by the quadrant
in which the terminal side of lies. Figure 9 shows a helpful way of remembering the
functions that are positive in each quadrant. The signs of the other functions are easy
to remember, since they are all negative.

u

u

FIGURE 9
The trigonometric functions that 
are positive in each quadrant can 

be remembered with the mnemonic
device ASTC: All Students Take

Calculus. The functions that are not
listed in each quadrant are negative.

FIGURE 10

The next example illustrates how we find the trigonometric functions of an angle.

EXAMPLE 4 Find the sine, cosine, and tangent of .

Solution We first determine the reference angle for the given angle. As is indicated
in Figure 11, the reference angle is , or 45°. Since 
and the sine is negative in Quadrant III, we conclude that . Sim-
ilarly, since and the cosine is negative in Quadrant III, we conclude
that . Finally, since and the tangent is positive in
Quadrant III, we conclude that .

The values of the trigonometric functions that we found in Example 4 are exact.
The approximate value of any trigonometric function can be found by using a calcu-
lator. If you use a calculator, be sure to set the mode correctly. For example, to find

tan(5p>4) � 1
tan 45° � 1cos(5p>4) � �12>2cos 45° � 12>2 sin(5p>4) � �12>2sin 45° � 12>2(5p>4) � p � p>4

5p>4

FIGURE 11
The reference angle for is

, or 45°.p>4 u � 5p>4

x

y

0

I
All positive

II
sin

(csc)

IV
cos

(sec)

III
tan

(cot)

x

(a) Reference angle is ¨.

y

¨
x

(b) Reference angle is π � ¨.

y

¨
x

(c) Reference angle is ¨ � π.

y

¨
x

(d) Reference angle is 2π � ¨.

y

¨

¨
x

y

π
4Reference angle:

To evaluate the trigonometric functions in quadrants other than the first quadrant,
we use a reference angle. A reference angle for an angle is the acute angle formed
by the -axis and the terminal side of . Reference angles for each quadrant are depicted
in Figure 10.

ux
u
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, first set the calculator in radian mode and then enter . The result
will be

The number of digits in your answer will depend on the calculator that you use. As we
saw in Example 4, the exact value of is . Notice that we do not need
to use reference angles when we use a calculator.

Graphs of the Trigonometric Functions
Referring once again to the unit circle, which is reproduced in Figure 12, we see that an
angle of rad corresponds to one complete revolution on the unit circle. Since

is the point where the terminal side of intersects the unit cir-
cle, we see that the values of and repeat themselves in subsequent revolutions.cos usin u

uP(x, y) � (cos u, sin u)
2p

�12>2sin(5p>4)

sin
5p

4
� �0.7071068

sin(5p>4)sin(5p>4)

FIGURE 12
The and coordinates of the point 

are the same for and .u � 2pu

Pyx

DEFINITION Periodic Function

A function is periodic if there is a number such that

for all in the domain of . The smallest such number is called the period
of .f

pfx

f(x � p) � f(x)

p � 0f

¨ � 2π

x

y

P(x, y) � (cos ¨, sin ¨)

1

The graphs of the six trigonometric functions are shown in Figure 13. Note that we
have denoted the independent variable by instead of . Here, the real number denotes
the radian measure of an angle. As their graphs indicate, the six trigonometric func-
tions are all periodic. The sine and cosine functions, as well as their reciprocals, the

xux

Therefore,

and (7a)

and

and (7b)

for every real number and every integer , and we say that the sine and cosine func-
tions are periodic with period .

More generally, we have the following definition of a periodic function.
2p

nu

cos(u � 2np) � cos usin(u � 2np) � sin u

cos(u � 2p) � cos usin(u � 2p) � sin u
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FIGURE 13
Graphs of the six trigonometric functions

FIGURE 14

cosecant and secant functions, have period . The period of the tangent and cotan-
gent functions, however, is .

Let’s look more closely at the graphs shown in Figure 13a–b. Notice that the graphs
of and oscillate between and . In general, the graphs
of the functions and oscillate between and ,
and we say that their amplitude is . The graphs of and are
shown in Figure 14a–b. Observe that the factor 4 in has the effect of
“stretching” the graph of between the values of and 4, whereas the fac-
tor in has the effect of “compressing” the graph between and .1

4�1
4y � 1

4 sin x1
4

�4y � sin x
y � 4 sin x

y � 1
4 sin xy � 4 sin x�A �

y � Ay � �Ay � A cos xy � A sin x
y � 1y � �1y � cos xy � sin x

p

2p

x

y

0

1

π
2

3π 2π

2π

2

3π
2

3π
2

π
2

�1

1

�1

��π x x

y y

0

1

π
2

3π 2ππ

Domain: x �    � nπ
Range: (��, �)
Period: π

Domain: (��, �)
Range: [�1, 1]
Period: 2π

Domain: (��, �)
Range: [�1, 1]
Period: 2π

(a) y � sin x (b) y � cos x (c) y � tan x

2
π
2

�1
� π

2
π
2��π �π π

x

y

Domain: x � nπ
Range: (��, �1] � [1, �)
Period: 2π

(d) y � csc x (e) y � sec x (f) y � cot x

π
2

�π π �

1

�1 x

y

Domain: x �    � nπ
Range: (��, �1] � [1, �)
Period: 2π

π
2

π
2

π
2

�π π
x

y

Domain: x � nπ
Range: (��, �)
Period: π

π
2

�π π

x

y

0

1

4

2ππ

(a) The graph of y � 4 sin x superimposed upon
      the graph of y � sin x

y � 4 sin x

y � sin x

�4

�2π �π x

y

0

1

2ππ

(b) The graph of y �    sin x superimposed upon
      the graph of y � sin x

y � sin x

y �    sin x

�1

��2π �π 1
4

1
4

1
4

1
4



BARTHOLOMEO PITISCUS
(1561–1613)

Mathematician Bartholomeo Pitiscus was
born in Grunberg, Silesia (now Zielona
Gora, Poland), and died on July 2, 1613, in
Heidelberg, Germany; beyond this, not
much is known of his childhood or of his
mathematical education. What is known is
that in 1595, when Pitiscus titled his book
Trigonometria: sive de solutione triangulo-
rum tractatus brevis et perspicuus, he
introduced the term trigonometry—a term
that would become the recognized name
for an entire area of mathematics. His
book is divided into three parts, including
chapters on plane and spherical geometry,
tables for all six of the trigonometric func-
tions, and problems in geodesy, the scien-
tific discipline that deals with the measure-
ment and representation of the earth.

Historical Biography
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FIGURE 15

We now summarize these definitions.

DEFINITION Period and Amplitude of and 

The graphs of

and

where and , have period and amplitude .�A �2p>�B �B � 0A � 0

f(x) � A cos Bxf(x) � A sin Bx

A cos BxA sin Bx

EXAMPLE 5 Sketch the graph of .

Solution The function has the form , where and
. This tells us that the amplitude of the graph is 3 and the period is .2p>� 1

2
� � 4pB � 1

2

A � 3y � A sin Bxy � 3 sin 1
2 x

y � 3 sin 1
2 x

Next, let’s compare the graphs of and with the graph of
(see Figure 15a–b). Notice here that the factor of 2 has the effect of “speed-

ing up” the graph of the cosine: The period is decreased from to . In contrast, the
factor of has the effect of “slowing down” the graph of the cosine: The period is
increased from to . In general, the period of both and is

if .B � 02p>�B �
y � cos Bxy � sin Bx4p2p

1
2

p2p
y � cos x

y � cos(x>2)y � cos 2x

x

y

0

1

π

(a) The graph of y � cos 2x superimposed upon
      the graph of y � cos x

y � cos xy � cos 2x

�1

�2π 2π�π

(b) The graph of y � cos     superimposed upon
      the graph of y � cos x

x
2

x
2

x

y

0

1

π

y � cos
y � cos x

�1

�2π 2π�π

FIGURE 16
The graph of has

amplitude 3 and period .4p
y � 3 sin 1

2 x

x

y

0

3

Period � 4π

Amplitude � 3

�3

�4π �2π 2π 6π 8π4π

Using the graph of the sine curve, we sketch the graph of over one period
. (See Figure 16.) Next, the periodic properties of the sine function allow us to

extend the graph in either direction by completing another cycle as shown.
[0, 4p]

y � 3 sin 1
2 x
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The Trigonometric Identities
By comparing the angles and in Figure 17, we see that the points and have
the same -coordinates and that their -coordinates differ only in sign. Thus,

(8)

and

(9)

We conclude that the cosine function is even and the sine function is odd. Similarly,
we can show that the cosecant, tangent, and cotangent functions are odd, while the
secant function is even. These results are also confirmed by the symmetry of the graph
of each function (see Figure 13).

Equations such as Equations (8) and (9) that express a relationship between trigono-
metric functions are called trigonometric identities. Each identity holds true for every
value of in the domain of the specified trigonometric functions.

Referring once again to the point on the unit circle (see Figure 7), we see
that the equation can also be written in the form

(10)

Note Recall that . In general, is usually written . The
same convention applies to the other trigonometric functions.

The addition and subtraction formulas for the sine and cosine are

(11)

and

(12)

If we let in Formulas (11) and (12), we obtain the double-angle formulas

(13)

and

(14a)

(14b)

(14c)

Solving (14b) and (14c) for and , respectively, we obtain the half-angle
formulas

(15)

and

(16)

These and several other trigonometric identities are summarized in Table 3.

sin2 A �
1

2
 (1 � cos 2A)

cos2 A �
1

2
 (1 � cos 2A)

sin2 Acos2 A

 � 1 � 2 sin2 A

 � 2 cos2 A � 1

 cos 2A � cos2 A � sin2 A

sin 2A � 2 sin A cos A

A � B

cos(A  B) � cos A cos B � sin A sin B

sin(A  B) � sin A cos B  cos A sin B

sinn u(sin u)nsin2 u � (sin u)2

cos2 u � sin2 u � 1

x2 � y2 � 1
P(x, y)

u

sin u � y � �sin(�u)

cos u � x � cos(�u)

yx
P¿P�uu

FIGURE 17
The angles and have the same
magnitude but opposite signs.

�uu

P(x, y)

P�(x, �y)

�¨

¨

x

y
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Pythagorean identities Half-angle formulas Addition and subtraction formulas

cot2 u � 1 � csc2 u

tan2 u � 1 � sec2 u

cos2 u � sin2 u � 1

sin2 A � 1
2(1 � cos 2A)

cos2 A � 1
2(1 � cos 2A)

cos(A  B) � cos A cos B � sin A sin B

sin(A  B) � sin A cos B  cos A sin B

Double-angle formulas Cofunctions of complementary angles

 � 1 � 2 sin2 A
cos u � sin1p2 � u 2 cos 2A � cos2 A � sin2 A � 2 cos2 A � 1

sin u � cos1p2 � u 2sin 2A � 2 sin A cos A

TABLE 3 Trigonometric Identities

EXAMPLE 6 Find the solutions of the equation that lie in the
interval .

Solution Using the identity (14b), we make the substitution ,
obtaining

Thus,

and , , 0, and are the solutions in the interval .[0, 2p]2p4p>3x � 2p>3
cos x � �

1

2
  or  cos x � 1

 2 cos x � 1 � 0  or  cos x � 1 � 0

 (2 cos x � 1)(cos x � 1) � 0

 2 cos2 x � cos x � 1 � 0

 (2 cos2 x � 1) � cos x � 0

 cos 2x � cos x � 0

cos 2x � 2 cos2 x � 1

[0, 2p]
cos 2x � cos x � 0

A more complete list of trigometric identities can be found in the reference pages at
the front of the book.

Videos for selected exercises are available online at www.academic.cengage.com/login.V

In Exercises 1–8, convert each angle to radian measure.

1. 150° 2. 210° 3. 330° 4. 405°

5. 6. 7. 8.

In Exercises 9–16, convert each angle to degree measure.

9. 10. 11. 12.

13. 14. 15. 16. �
11p

3
�

13p

4
�

11p

6
�
p

2

9p

4

5p

6

3p

4

p

3

�495°�75°�225°�120°

In Exercises 17–24, find the exact value of the trigonometric
functions at the indicated angle.

17. , , and for 

18. , , and for 

19. , , and for 

20. , , and for 

21. , , and for 

22. , , and for 

23. , , and for t � 17p>6cot tsec tcsc t

a � �3p>2csc acot acos a

a � pcsc atan asin a

x � 5p>6csc xcot xsin x

x � 2p>3sec xtan xcos x

u � �p>4csc ucos usin u

u � p>3tan ucos usin u

0.3 EXERCISES

www.academic.cengage.com/login
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24. , , and for 

25. Given that and , find the five other
trigonometric functions of .

26. Given that and , find the five other
trigonometric functions of .

27. If , find , , , , and .

28. If

find , , and .

In Exercises 29 and 30, find the domain of the function.

29. 30.

In Exercises 31–32, determine whether the functions are even,
odd, or neither.

31. a. 32. a.

b. b.

c. c.

In Exercises 33–42, verify the identity.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

In Exercises 43 and 44, find the domain and sketch the graph of
the function. What is its range?

43. 44.

In Exercises 45–58, determine the amplitude and the period for
the function. Sketch the graph of the function over one period.

45. 46. y � cos(x � p)y � sin(x � p)

f(t) � �cos t �h(u) � 2 sin pu

tan
t

2
�

1 � cos t

sin t

sin 2u � 2 sin3 u cos u � 2 sin u cos3 u

sin 3t � 3 sin t � 4 sin3 t

csc t � sin t � cos t cot t

cos u tan u � sin u

tan u
� 2 cos u

tan A � tan B �
sin(A � B)

cos A cos B

(sin x)(csc x � sin x) � cos2 x

sin y

csc y
�

cos y

sec y
� 1

2 csc 2u � sec u csc u

sec t � cos t � tan t sin t

y � 2 sec xy � �csc x

y � 2 sin
x

2
y � �

cos2 x

x

y � cot xy � 2 sin x

f(x) �
x

2 � sin x
f(t) � 1sin t � 1

f(2)f(1)f(0)

f(x) � e2 � 11 � x if x 	 1

2 cos 2px if x � 1

f 1a � p
2 2f(3p)f 1�p3 2f 1p4 2f(0)f(x) � sin x

u

p
2 	 u 	 pcot u � �5

3

u

p
2 	 u 	 psin u � 3

5

t � �11p>3cot ttan tsin t 47. 48.

49. 50.

51. 52.

53. 54.

55. 56.

57. 58.

In Exercises 59–66, find the solutions of the equation in .

59. 60.

61. 62.

63. 64.

65.

66.

67. After takeoff, an airplane climbs at an angle of 20° at a
speed of 200 ft/sec. How long does it take for the airplane
to reach an altitude of 10,000 ft?

68. A man located at a point on one bank of a river that is
1000 ft wide observed a woman jogging on the opposite
bank. When the jogger was first spotted, the angle between
the river bank and the man’s line of sight was 30°. One
minute later, the angle was 40°. How fast was the woman
running if she maintained a constant speed?

In Exercises 69–74, determine whether the statement is true or
false. If it is true, explain why. If it is false, explain why or give
an example that shows it is false.

69. The graph of is the same as the graph of
.

70. The product is an odd function of .

71. The graph of is the same as the graph of
.

72. The graph of is the same as the graph ofy � cos1x � p
4 2

y � �cos x
y � cos(x � p)

xy � (sin x)(cos x)

y � cos(�x)
y � cos x

A

1000 ft

30°
40°

A

(sin 2x)(sin x) � 0

2 cos2 x � 3 cos x � 1 � 0

csc2 x � cot x � 1 � 0cos2 x � sin x cos x � 0

tan2 x � sec x � 1 � 0cos t � 2 sec t � �3

tan 2u � �1sin 2x � 1

[0, 2p)

y � �3 sin(px � p)y � 3 cos 2x

y � �3 sin(�4x)y � �2 cos 3x

y � cos2 x � sin2 xy � 2 sin x cos x

y � cos12x � p
4 2y � 2 sin12x � p

2 2
y � 2 � sin xy � cos x � 2

y � cos1x � p
4 2y � sin1x � p

2 2

.

73. The graph of is symmetric with respect to the 
-axis.

74. The function is an odd function.y � sin2 x

y
y � csc x

y � �sin1x � p
4 2
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0.4 SELF-CHECK DIAGNOSTIC TEST

1. If and , find , , , and . What is the

domain of each function?

2. Find if and . What is its domain?

3. Find functions and such that if . 

(Note: The answer is not unique.)

4. The graph of is to be shifted horizontally to the right by 2
units, stretched vertically by a factor of 3, and shifted downward by 5
units. Find the function for the transformed graph.

5. Find if .

Answers to Self-Check Diagnostic Test 0.4 can be found on page ANS 3.

f(x � 1) � 2x2 � 5x � 2f(x)

f(x) � 1x

h(x) �
10

23x2 � 1
h � t � ftf

t(x) �
x

x � 1
f(x) � 1x � 1t � f

f>tftf � tf � tt(x) �
1

x � 1
f(x) � 2x

0.4 Combining Functions

Arithmetic Operations on Functions
Many functions are built up from other, and generally simpler, functions. Consider, for
example, the function defined by . Note that the value of at is
the sum of two terms. The first term, , may be viewed as the value of the function 
defined by at , and the second term, , may be viewed as the value of the
function defined by at . These observations suggest that can be viewed
as the sum of the functions and , , defined by

The domain of is , the intersection of the domains of and .
Note that the plus sign on the left side of this equation denotes an operation (addition
in this case) on two functions.

Since the value of at is the sum of the values of and at , we see
that the graph of can be obtained from the graphs of and by adding the -coordi-
nates of and at to obtain the corresponding -coordinate of at . This technique
is used to sketch the graph of , the sum of and , discussed above
(see Figure 1). We show the graph of only in the first quadrant.h

t(x) � 1>xf(x) � xh
xhyxtf

ytfh
xtfxh � f � t

tf(��, 0) � (0, �)f � t

( f � t)(x) � f(x) � t(x) � x �
1
x

f � ttf
hxt(x) � 1>xt

1>xxf(x) � x
fx

xhh(x) � x � (1>x)h

xx

y

0

x
1

f(x)

f(x)

g(x)

g(x)

1

3

2

1 32 4

f(x) � g(x)

f(x) � x

h(x) � x �

x
1g(x) �

FIGURE 1
The graphs of , , and htf
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The difference, product, and quotient of two functions are defined in a similar
manner.

DEFINITION Operations on Functions

Let and be functions with domains and , respectively. Then their sum
, difference , product , and quotient are defined as follows:

with domain (1a)

with domain (1b)

with domain (1c)

with domain (1d){x � x � A � B and t(x) � 0}a f

t
b (x) �

f(x)

t(x)

A � B( ft)(x) � f(x)t(x)

A � B( f � t)(x) � f(x) � t(x)

A � B( f � t)(x) � f(x) � t(x)

f>tftf � tf � t

BAtf

EXAMPLE 1 Let and be functions defined by and .
Find the domain and the rule for each of the functions , , , and .

Solution The domain of is , and the domain of is . Therefore, the
domain of , , and is

The rules for these functions are

By Equation (1a)

By Equation (1b)

and

By Equation (1c)

For the domain of we must exclude the value of for which 
or . Therefore, is defined by

By Equation (1d)

with domain .

Notes
1. To determine the domain of the product or quotient of two functions, begin by

examining the domains of the functions to be combined. One common mistake 
is to try to deduce the domain of the combined function by studying its rule. 
For example, suppose and . Then, if , we have

. On the basis of the rule for alone, we
might be tempted to conclude that its domain is . But bearing in mind
that is a product of the functions with domain and with domain

, we see that the domain of is .
2. Equations (1a–d) can be extended to the case involving more than two functions.

For example, is just the function with rule

( ft � h)(x) � f(x)t(x) � h(x)

ft � h

[0, �)h[0, �)
t[0, �)fh

(��, �)
hh(x) � f(x)t(x) � (1x)(21x) � 2x

h � ftt(x) � 21xf(x) � 1x

[0, 3)

a f

t
b (x) �

f(x)

t(x)
�

1x

13 � x
� B

x

3 � x

f>tx � 3
t(x) � 13 � x � 0xf>t

( ft)(x) � f(x)t(x) � 1x13 � x �23x � x2

( f � t)(x) � f(x) � t(x) � 1x � 13 � x

( f � t)(x) � f(x) � t(x) � 1x � 13 � x

[0, �) � (��, 3] � [0, 3]

ftf � tf � t

(��, 3]t[0, �)f

f>tftf � tf � t

t(x) � 13 � xf(x) � 1xtf



Composition of Functions
There is another way in which certain functions are built up from simpler functions.
For example, consider the function . Let be the function defined by

, and let be the function defined by . Then

In other words, the value of at can be obtained by evaluating the function at 
. This method of combining two functions is called composition. More specifically,

we say that the function is the composition of and , and we denote it by (read
“ circle ”).ft

t � ffth
f(x)

txh

h(x) � 12x � 1 � 1f(x) � t( f(x))

t(x) � 1xtf(x) � 2x � 1
fh(x) � 12x � 1
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Figure 2 shows an interpretation of the composition , in which the functions 
and are viewed as machines. Notice that the output of , , must lie in the domain
of for to be an input for .tf(x)t

f(x)ft

ft � f

DEFINITION Composition of Two Functions

Given two functions and , the composition of and , denoted by , is the
function defined by

(2)

The domain of is the set of all in the domain of for which is in the
domain of .t

f(x)fxt � f

(t � f )(x) � t( f(x))

t � fftft

FIGURE 2
The output of is the input 

for (in this order).t

f f f(x) g(f(x))x
Input Output

g

Figure 3 shows how the composition can be viewed in terms of transforma-
tions or mappings. The point in the domain of is mapped onto the image 
that lies in the domain of . The function then maps onto its image . Thus,
we may view the function as a transformation that maps a point in its domain
onto its image in two steps: from to via the function , then from to

via the function .tt( f(x))
f(x)ff(x)xt( f(x))

xt � f
t( f(x))f(x)tt

f(x)t � fx
t � f

FIGURE 3
maps onto in two steps:

via , then via .tf
t( f(x))xt � f

f

f(x)
g(f(x))

g

g ° f 

x

EXAMPLE 2 Let and be functions defined by and . Find
the functions and . What is the domain of ?

Solution The rule for is found by evaluating at . Thus,

To find the domain of , recall that must lie in the domain of . Since the domain
of consists of all nonnegative numbers and the range of is the set of all numbers

, we require that or . Therefore, the domain of is
. Note that all are in the domain of .

The rule for is found by evaluating at . Thus,

We leave it to you to show that the domain of is .[0, �)f � t

( f � t)(x) � f(t(x)) � t(x) � 1 � 1x � 1

t(x)ff � t

fx[�1, �)
t � fx � �1x � 1 � 0f(x) � x � 1

ft

tf(x)t � f

(t � f )(x) � t( f(x)) � 1f(x) � 1x � 1

f(x)tt � f

t � ff � tt � f
t(x) � 1xf(x) � x � 1tf
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Note In general, , as was demonstrated in Example 2. Thus, the order in
which functions are composed is important. For example, in the composition ,
remember that is applied first, followed by .tf

t � f
t � f � f � t

EXAMPLE 3 Let and . Find the functions and .
What are their domains?

Solution . Since the range of is
and this interval lies in , the domain of , we see that the domain of

is given by the domain of , namely, . Next,

The range of is , and this is also the domain of . So the domain of is
given by the domain of , namely, .(��, �)t

f � tf(��, �)t

( f � t)(x) � f(t(x)) � f(1 � 2x) � sin(1 � 2x)

(��, �)ft � f
t(��, �)[�1, 1]

f(t � f )(x) � t( f(x)) � 1 � 2f(x) � 1 � 2 sin x

f � tt � ft(x) � 1 � 2xf(x) � sin x

EXAMPLE 4 Find two functions and such that if .

Solution The expression can be evaluated in two steps. First, given any value
of , add 2 to it. Second, raise this result to the fourth power. This suggests that we
take

Remember that is applied first in .

and

Then

so , as required.

Note There is always more than one way to write a function as a composition of func-
tions. In Example 4 we could have taken and . However,
there is usually a “natural” way of decomposing a complicated function.

Composite functions play an important role in describing practical situations in
which one variable quantity depends on another, which in turn depends on a third, as
the following example shows.

t(x) � x2f(x) � (x � 2)2

F � t � f

(t � f )(x) � t( f(x)) � [ f(x)]4 � (x � 2)4 � F(x)

t(x) � x4

t � fff(x) � x � 2

x
(x � 2)4

F(x) � (x � 2)4F � t � ftf

EXAMPLE 5 Oil Spills In calm waters, the oil spilling from the ruptured hull of a
grounded tanker spreads in all directions. Assuming that the area polluted is a circle
and that its radius is increasing at the rate of 2 ft/sec, find the area as a function of
time.

Solution The circular polluted area is described by the function , where 
is the radius of the circle, measured in feet. Next, the radius of the circle is described
by the function , where is the time elapsed, measured in seconds. Therefore,
the required function describing the polluted area as a function of time is 
defined by

A(t) � (t � f )(t) � t( f(t)) � p[ f(t)]2 � p(2t)2 � 4pt 2

A � t � fA
tf(t) � 2t

rt(r) � pr 2
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The composition of functions can be extended to include the composition of three
or more functions. For example, the composite function is found by applying
, , and in that order. Thus,

(h � t � f )(x) � h(t( f(x)))

htf
h � t � f

EXAMPLE 6 Let , , and . Find
.

Solution . But

So

(h � t � f )(x) �21 � cos21x � p
2 2

t( f(x)) � 1 � cos2[ f(x)] � 1 � cos21x � p
2 2

(h � t � f )(x) � h(t( f(x))) � 1t( f(x))

h � t � f
h(x) � 1xt(x) � 1 � cos2 xf(x) � x � (p>2)

EXAMPLE 7 Suppose . Find functions , , and such thathtfF(x) �
1

12x � 3 � 1

y

0 xx

c

c

y � f(x) � c

y � f(x) � c

y � f(x)

FIGURE 4
The graphs of and

, where , are
obtained by translating the graph of

vertically upward and
downward, respectively.
y � f(x)

c � 0y � f(x) � c
y � f(x) � c

.

Solution The rule for says that as a first step, we multiply by 2 and add 3 to it.
This suggests that we take . Next, we take the square root of this result
and add 1 to it. This suggests that we take . Finally, we take the recip-
rocal of the last result, so let . Then

Graphs of Transformed Functions
Sometimes it is possible to obtain the graph of a relatively complicated function by
transforming the graph of a simpler but related function. We will describe some of
these transformations here.

1. Vertical Translations

The graph of the function defined by , where is a positive constant,
is obtained from the graph of by shifting the latter vertically upward by units (see
Figure 4). This follows by observing that for each in the domain of (which is the
same as the domain of ) the point on the graph of lies precisely units
above the point on the graph of . Similarly, the graph of the function defined
by , where is a positive constant, is obtained from the graph of by
shifting the latter vertically downward by units (see Figure 4). These results are also
evident if you think of as the sum of the function and the constant function 
and use the graphical interpretation of the sum of two functions described earlier.

2. Horizontal Translations

The graph of the function defined by , where is a positive constant,
is obtained from the graph of by shifting the latter horizontally to the left by unitscf

ct(x) � f(x � c)t

h(x) � cft

c
fct(x) � f(x) � c

tf(x, f(x))
ct(x, f(x) � c)f

tx
cf

ct(x) � f(x) � ct

� h(t(2x � 3)) � h(12x � 3 � 1) �
1

12x � 3 � 1

 F(x) � (h � t � f )(x) � h(t( f(x)))

h(x) � 1>x t(x) � 1x � 1
f(x) � 2x � 3

xF

F � h � t � f
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(see Figure 5a). To see this, observe that the number lies units to the right of 
. Therefore, for each in the domain of , on the graph of has pre-

cisely the same -coordinate as the point on the graph of located units to the right
of (measured horizontally). Similarly, the graph of the function ,
where is a positive constant, is obtained from the graph of by shifting the
latter horizontally to the right by units (see Figure 5b). We summarize these results
in Table 1.

c
y � f(x)c

t(x) � f(x � c)x
cfy

t(x, f(x � c))txx
cx � c

FIGURE 5
The graphs of and

, where , are
obtained by shifting the graph 
of horizontally to the 

left and right, respectively.
y � f(x)

c � 0y � f(x � c)
y � f(x � c)

TABLE 1 Vertical and Horizontal Translations

If , then we have the following:

Function The graph of is obtained by 
shifting the graph of 

Upward by a distance of units

Downward by a distance of units

To the left by a distance of units

To the right by a distance of unitsct(x) � f(x � c)

ct(x) � f(x � c)

ct(x) � f(x) � c

ct(x) � f(x) � c

f
gg

c � 0

y

0

(a)

xx � cx

y � f(x � c)
y � f(x)

y

0

(b)

xx � c x

y � f(x � c)

y � f(x)

3. Vertical Stretching and Compressing

The graph of the function defined by , where is a constant with ,
is obtained from the graph of by stretching the latter vertically by a factor of . This
can be seen by observing that for each in the domain of (and therefore in the domain
of ), the point on the graph of has a -coordinate that is times as large
as the -coordinate of the point on the graph of (see Figure 6). Similarly, if

then the graph of is obtained from that of by compressing the latter ver-
tically by a factor of (see Figure 6).

4. Horizontal Stretching and Compressing

The graph of the function defined by , where is a constant with 
, is obtained from the graph of by stretching the graph of the latter hori-

zontally by a factor of (see Figure 7). To see this, observe that if , the num-
ber lies to the left of . Therefore, for each in the domain of , the point

on the graph of has precisely the same -coordinate as the point
on the graph of located at the point with -coordinate . (We leave it to you to ana-
lyze the case in which .) Similarly if , then the graph of is obtained from
that of by compressing the latter horizontally by a factor of . We summarize these
results in Table 2.

cf
tc � 1x � 0

cxxf
yt(x, t(x)) � (x, f(cx))

txxcx
x � 01>c f0 � c � 1

ct � f(cx)t

1>c ft0 � c � 1
f(x, f(x))y

cyt(x, cf(x))f
tx

cf
c � 1ct(x) � cf(x)t

FIGURE 6
The graph of is obtained
from the graph of by
stretching it (if ) or compressing
it (if ).0 � c � 1

c � 1
y � f(x)

y � cf(x)

y

0 x

y � c f(x)

y � c f(x)    (c  > 1)

(0 < c  < 1)

y � f(x)



0.4 Combining Functions 45

FIGURE 7
The graph of is obtained from
the graph of by compressing it
if and stretching it if .0 � c � 1c � 1

y � f(x)
y � f(cx)

TABLE 2 Vertical and Horizontal Stretching and Compressing

a. If then we have the following:

Function The graph of is obtained by

Stretching the graph of vertically by a factor of 

Compressing the graph of horizontally by a factor of 

b. If , then we have the following:

Function The graph of is obtained by

Compressing the graph of vertically by a factor of 

Stretching the graph of horizontally by a factor of 1>cft(x) � f(cx)

1>cft(x) � cf(x)

gg

0 � c � 1

cft(x) � f(cx)

cft(x) � cf(x)

gg

c � 1

y

0 x

y � f(cx)
    (0 < c  < 1)

y � f(cx)    (c  > 1)

y � f(x)

5. Reflecting

The graph of the function defined by is obtained from the graph of by
reflecting the latter with respect to the -axis (see Figure 8a). This follows from the
observation that for each in the domain of , the point on the graph of 
is the mirror reflection of the point with respect to the -axis. Similarly, the
graph of is obtained from the graph of by reflecting the latter with
respect to the -axis (see Figure 8b). These results are summarized in Table 3.y

ft(x) � f(�x)
x(x, f(x))

t(x, �f(x))tx
x

ft(x) � �f(x)

TABLE 3 Reflecting

Function The graph of is obtained by 
reflecting the graph of 

With respect to the -axis

With respect to the -axisyt(x) � f(�x)

xt(x) � �f(x)

f
gg

FIGURE 8
The graphs of and

are obtained from the 
graph of by reflecting it 

with respect to the -axis and with
respect to the -axis, respectively.y

x
y � f(x)

y � f(�x)
y � �f(x)

y

0

y

x
0 x

(a) g(x) � �f(x)         (b) g(x) � f(�x)         

y � �f(x)(x, �f(x))

(x, f(x)) y � f(x)
y � f(x)

y � f(�x)

EXAMPLE 8 By translating the graph of , sketch the graphs of ,

, , and .

Solution The graph of is shown in Figure 9a. The graph of is
obtained from the graph of by translating the latter vertically upward by 2 units
(see Figure 9b). The graph of is obtained by translating the graph of 
vertically downward by 2 units (see Figure 9c). The graph of is obtained
by translating the graph of horizontally to the left by 2 units (see Figure 9d).
Finally, the graph of is obtained by translating the graph of to the
right by 2 units (see Figure 9e).

y � x2y � (x � 2)2
y � x2

y � (x � 2)2
y � x2y � x2 � 2

y � x2
y � x2 � 2y � x2

y � (x � 2)2y � (x � 2)2y � x2 � 2

y � x2 � 2y � x2
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EXAMPLE 9 Sketch the graph of the function defined by .

Solution By completing the square, we can rewrite the given equation in the form

We see that the required graph can be obtained from the graph of by shifting it
2 units to the right and 2 units upward (see Figure 10). Compare this with Example 8.

y � x2

 � (x � 2)2 � 2

 y � [x2 � 4x � (�2)2] � 6 � (�2)2

f(x) � x2 � 4x � 6f

FIGURE 10
The graph of can 
be obtained by shifting the graph of

.y � x2

y � (x � 2)2 � 2

EXAMPLE 10 By stretching or compressing the graph of , sketch the graphs
of , , , and .

Solution The graph of is shown in Figure 11a. The graph of is
obtained from the graph of by stretching the latter vertically by a factor of 2
(see Figure 11b). The graph of is obtained by compressing the graph of

vertically by a factor of 2 (see Figure 11c). The graph of is obtained
from the graph of by compressing the graph of the latter horizontally by a
factor of 2. In fact, the period of is , whereas the period of is (see
Figure 11d). Finally, the graph of is obtained from the graph of 
by stretching the latter horizontally by a factor of 2 (see Figure 11e).

y � sin xy � sin(x>2)
psin 2x2psin x

y � sin x
y � sin 2xy � sin x

y � 1
2 sin x

y � sin x
y � 2 sin xy � sin x

y � sin(x>2)y � sin 2xy � 1
2 sin xy � 2 sin x

y � sin x

FIGURE 9

x

y

2

4

6

8

10

12

0

(a)

y � x2

�2�4 2 4 x

y

2
4

6
8

10

12
14

0

(b)

y � x2 � 2

�2�4 2 4

x

y

2

4

6

8

10

0

(c)

y � x2 � 2

�2
�2

�4 2 4
x

y

2

4

6

8

10

0

(d)

y � (x � 2)2 y � (x � 2)2

�2�4�6 2 x

y

2

4

6

8

10

0

(e)

�2 2 864

y � (x � 2)2 � 2
y � x2

x

y

2

4

6

8

10

0�2�4 2 864
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FIGURE 11

EXAMPLE 11 By reflecting the graph of , sketch the graphs of and
.

Solution The graph of is shown in Figure 12a. To obtain the graph of
, we reflect the graph of with respect to the -axis (see Figure 12b).

To obtain the graph of , we reflect the graph of with respect to the
-axis (see Figure 12c).y

y � 1xy � 1�x
xy � 1xy � �1x

y � 1x

y � 1�x
y � �1xy � 1x

FIGURE 12

The next example involves the use of another transformation of interest.

�2π

x

y

y

2

1

�1

(a)

y � sin x

�π�3π 2ππ 3π

x

1

�1

�

(c) Vertical compression

y �    sin x

�π�3π 2ππ 3π x

�1

1

(d) Horizontal compression

�π�3π 2ππ 3π

1
21

2

1
2

yy

x

1

�1

(e) Horizontal stretching

y � sin

�π�3π 2ππ 3π

x
2

x

y

2

1

�2

(b) Vertical stretching

y � 2 sin x

y � sin 2x

�π�3π 2ππ 3π

√x √x √�x

y

x

1

2

3

0

(a) The graph of y �

8642

y

x

�2

�1

�3

0

(b) The graph of y � �

8642

y

x

1

2

3

0

(c) The graph of y �

�2�4�6�8



48 Chapter 0 Preliminaries

FIGURE 14

In Exercises 1–4, find (a) , (b) , (c) , and (d) .
What is the domain of the function?

1. ,

2. , t(x) � 1 � 1xf(x) � x2 � 1

t(x) � x2 � 1f(x) � 3x

f>tftf � tf � t 3. ,

4. , t(x) �
x

x � 1
f(x) �

1

x � 1

t(x) � 1x � 1f(x) � 1x � 1

0.4 EXERCISES

Videos for selected exercises are available online at www.academic.cengage.com/login.V

EXAMPLE 12

a. Explain how you can obtain the graph of given the graph of .
b. Use the method you devised in part (a) to sketch the graph of .

Solution
a. By the definition of the absolute value, we have

So to obtain the graph of from that of (Figure 13a), we retain
the portion of the graph of that lies above the axis and reflect the portion
of the graph of that lies below the -axis with respect to the -axis (see
Figure 13b).

xxy � f(x)
y � f(x)

y � f(x)y � � f(x) �

� f(x) � � ef(x) if f(x) � 0

�f(x) if f(x) � 0

y � � �x � � 1�
y � f(x)y � � f(x) �

FIGURE 13

b. We begin by sketching the graph of as shown in Figure 14a. Next, we
sketch the graph of by translating the graph of vertically
downward by 1 unit (see Figure 14b). Finally, using the method of part (a), we
obtain the desired graph (see Figure 14c).

y � �x �y � �x � � 1
y � �x �

y

x0

(a) y � f(x)

y

x0

(b) y � � f(x)�

y

x0

(a)

y

x0

(b)

y

x0

(c)

1

1

�1 1

1 1

�1 1�1

�1

y � � x � y � � x � �1 y � � � x � �1�

www.academic.cengage.com/login


In Exercises 5–8, find and , and give their domains.

5. ,

6. ,

7. ,

8. ,

In Exercises 9–10, evaluate , where .

9. ,

10. ,

11. Let

and let . Find
a. , and sketch its graph.
b. , and sketch its graph.

12. Suppose the function is defined on the interval . 
Find the domain of if (a) and 
(b) .

13. Let and . Find
a. b.
c. d.

14. Let and . Find

a. b.

c. d.

In Exercises 15–16, find .

15. , ,

16. , ,

In Exercises 17–22, find functions and such that .
(Note: The answer is not unique.)

17.

18.

19.

20.

21.

22. h(t) �
tan t

1 � cot t

h(t) � sin(t 2)

h(x) � 12x � 1 �
1

12x � 1

h(x) �
1

2x2 � 4

h(x) � �x2 � 2x � 3 �
h(x) � (3x2 � 4)3>2

h � t � ftf

h(x) � cos xt(x) � a � bxf(x) �
1
x

h(x) � x2 � 1t(x) � 2x � 1f(x) � 1x

f � t � h

( f � f )1p2 2f 1t1p2 2 2
(t � f )1p2 2t( f(0))

t(x) �
2 sin x

1 � cos x
f(x) �

p

2
� x

(t � t)(1)( f � t)(4)
(t � f )(2)(t � f )(0)

t(x) � 2x2 � 1xf(x) � x � 2

h(x) � f(2x2)
h(x) � f(2x � 3)h

[0, 1]f

f � t

t � f
t(x) � x2

f(x) � ex � 1 if x � 0

x � 1 if x � 0

t(x) � 2 sin x � 3 cos xf(x) �
px

4

t(x) � 3x3 � 1f(x) �23 x2 � 1

h � t � fh(2)

t(x) �
1

x � 1
f(x) � 1x � 1

t(x) �
x � 1

x � 1
f(x) �

1
x

t(x) � 1 � x2f(x) � 1x

t(x) � 2x � 3f(x) � x2

t � ff � t In Exercises 23–24, find functions , , and such that
. (Note: The answer is not unique.)

23. a. b.

24. a.

b.

25. Use the following table to evaluate each composite function.
a. b.
c. d.
e. f. t(t(1))f( f(2))

t( f(0))f(t(2))
(t � f )(2)( f � t)(1)

F(x) �
1x � 1 � 1

1x � 1 � 1

F(x) �
1

(2x2 � x � 3)3

F(x) � sin3(2x � 3)F(x) �21 � 1x

F � f � t � h
htf
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x 0 1 2 3 4 5

f(x) 1 12 2 4 3 1

g(x) 2 3 5 6 7 9

26. Use the graphs of and to estimate the values of 
for , and 3. Then use these values to
make a rough sketch of the graph of .

In Exercises 27–30 the graph of is given. Match the other
graphs with the given function(s).

27. ,

y � f(x)

x

y

2

3

5

1

4

0 21 43

2
1

y � f(x) � 1y � f(x) � 1

f

y � f(x)

y � g(x)

x

y

2

3

1

�1

�2

4

0�2 �1 2 51 43

t � f
x � �2, �1, 0, 1, 2

(t � f )(x)tf
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28. ,

29. ,

30. , , ,

In Exercises 31–40, the graph of the function is to be trans-
formed as described. Find the function for the transformed
graph.

31. ; shifted vertically upward by 3 units

32. ; shifted vertically downward by 2 units

33. ; shifted horizontally to the left by 3 units

34. ; shifted horizontally to the right by 4 units

35. ; stretched vertically by a factor of 3f(x) �
1x

x2 � 1

f(x) �
sin x

1 � cos x

f(x) � x �
1

1x

f(x) � x � 1x � 1

f(x) � x3 � x � 1

f

y � f(x)

x

y

0

2

1

4

3

y �
1

2
 f(�x)y � 2f(x)y � �f(x)y � f(�x)

y � f(x)

x

y

2

3

1

421�1�2�4

2
1

y � f ax

2
by � f(2x)

y � f(x)

x

y

2

3

5

1

4

0 42 86

21

y � f(x � 2)y � f(x � 2) 36. ; compressed vertically by a factor of 2

37. ; stretched horizontally by a factor of 2

38. ; compressed horizontally by a factor of 3

39. ; shifted horizontally to the right by 2 units,
compressed horizontally by a factor of 2, and shifted verti-
cally upward by 1 unit

40. ; shifted horizontally to the left by 1 unit,
compressed horizontally by a factor of 3, stretched vertically
by a factor of 3, and shifted vertically downward by 2 units

41. The graph of the function follows.

Use it to sketch the following graphs.
a. b.
c. d.
e. f.
g. h.

42. The graph of the function follows.

Use it to sketch the following graphs.

a. b.

c. d.

e. f.

g.

In Exercises 43–54, sketch the graph of the first function by plot-
ting points if necessary. Then use transformation(s) to obtain the
graph of the second function.

43. ,

44. , y � (x � 2)2y � x2

y � x2 � 2y � x2

y � �2f(�x) � 1

y �
(� f(x) � � f(x))

2
y � f(�x)

y �
� f(x) �

f(x)
y � � f(x) �

y � f ax

2
by � f(x � 1)

y

x

1

�1

�2

2

0 31�1�2 2

f

y � �2f(x � 1) � 3y � 2f(x � 1) � 2
y � f(�x)y � �f(x)
y � f(2x)y � 2f(x)
y � f(x � 2)y � f(x) � 1

y

x

1

0 31�1 2

f

f(x) � 1x � 1

f(x) �24 � x2

f(x) � 5 sin 4x

f(x) � x sin x

f(x) �2x2 � 4
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45. ,

46. ,

47. ,

48. ,

49. ,

50. ,

51. ,

52. ,

53. ,

54. ,

55. a. Describe how you would construct the graph of 
from the graph of .

b. Use the result of part (a) to sketch the graph of .

56. Find if .

57. a. If and , find a function 
such that .

b. If and , find a function 
such that .

58. Let , and let . Find a function 

such that .

59. Let , and let . Find a
function such that .

60. Determine whether is even, odd, or neither, given
that
a. both and are even.
b. is even and is odd.
c. is odd and is even.
d. both and are odd.

61. Let be a function defined by on the
interval .
a. Find an even function defined on the interval

such that for all in .
b. Find an odd function defined on the interval 

such that for all in .

62. a. Show that if a function is defined at whenever it is
defined at , then the function defined by

is an even function and the function
defined by is an odd function.

b. Use the result of part (a) to show that any function 
defined on an interval can be written as a sum of
an even function and an odd function.

(�a, a)
f

h(x) � f(x) � f(�x)h
t(x) � f(x) � f(�x)

tx
�xf

[0, 2p]xh(x) � f(x)
[�2p, 2p]h

[0, 2p]xt(x) � f(x)[�2p, 2p]
t

[0, 2p]
f(x) � 1x � sin xf

ft

ft

ft

ft

h � t � f

h � t � ft

h(x) � 6x2 � 3x � 1f(x) � 2x2 � x

h � t � ff

h(x) �
2x � 2

4x � 1
t(x) �

x � 1

2x � 1

h � t � f
fh(x) � 4x � 8t(x) � 3x � 4

h � t � f
th(x) � 2x � 3f(x) � x � 1

f(x � 1) � 2x2 � 7x � 4f(x)

y � sin�x �
y � f(x)

f(�x �)

y � tanax �
p

3
by � tan x

y � �x2 � 2x � 1 �y � x2

y �
1

2
cosax �

p

4
by � cos x

y � 2 sin
x

2
y � sin x

y � �x2 � 1 �y � x2

y � 2x2 � 4x � 1y � x2

y � �2x � 1 � � 1y � �x �
y � 2�x � 1 � � 1y � �x �
y � 21x � 1 � 1y � 1x

y �
1

x � 1
y �

1
x

c. Rewrite the function

as a sum of an even function and an odd function.

63. Spam Messages The total number of email messages per day
(in billions) between 2003 and 2007 is approximated by

where is measured in years, with corresponding to
2003. Over the same period the total number of spam mes-
sages per day (in billions) is approximated by

a. Find the rule for the function . Compute ,
and explain what it measures.

b. Find the rule for the function . Compute ,
and explain what it means.

Source: Technology Review.

64. Global Supply of Plutonium The global stockpile of plutonium
for military applications between 1990 and 2003

stood at a constant 267 tons. On the other hand,
the global stockpile of plutonium for civilian use was

tons in year over the same period.
a. Find the function giving the global stockpile of pluto-

nium for military use from 1990 through 2003 and the
function giving the global stockpile of plutonium for
civilian use over the same period.

b. Find the function giving the total global stockpile of
plutonium between 1990 and 2003.

c. What was the total global stockpile of plutonium in
2003?

Source: Institute for Science and International Security.

65. Motorcycle Deaths Suppose that the fatality rate (deaths per
100 million miles traveled) of motorcyclists is given by ,
where is the percentage of motorcyclists who wear hel-
mets. Next, suppose that the percentage of motorcyclists
who wear helmets at time ( measured in years) is ,
where corresponds to the year 2000.
a. If and , find , and

interpret your result.
b. If and , find , and

interpret your result.
c. Comment on the results of parts (a) and (b).
Source: NHTSA.

66. Fighting Crime Suppose that the reported serious crimes
(crimes that include homicide, rape, robbery, aggravated
assault, burglary, and car theft) that end in arrests or in the
identification of suspects is percent, where denotes
the total number of detectives. Next, suppose that the total

xt(x)

(t � f )(6)t(0.51) � 42f(6) � 0.51

(t � f )(0)t(0.64) � 26f(0) � 0.64
t � 0

f(t)tt

x
t(x)

h

t

f
t2t 2 � 46t � 733

(t � 13)
(t � 0)

P(4)P � t>f
D(4)D � f � t

0 	 t 	 4t(t) � 1.21t 2 � 6t � 14.5

t � 0t

0 	 t 	 4f(t) � 1.54t 2 � 7.1t � 31.4

�1 � x � 1f(x) �
x � 1

x � 1
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number of detectives in year is , where corre-
sponds to 2001.
a. If and , find , and inter-

pret your result.
b. If and , find , and inter-

pret your result.
c. Comment on the results of parts (a) and (b).
Source: Boston Police Department.

67. Overcrowding of Prisons The 1980s saw a trend toward old-
fashioned punitive deterrence of crime in contrast to the
more liberal penal policies and community-based corrections
that were popular in the 1960s and early 1970s. As a result,
prisons became more crowded, and the gap between the
number of people in prison and the prison capacity widened.
The number of prisoners (in thousands) in federal and state
prisons is approximated by the function

where is measured in years, with corresponding to
1983. The number of inmates for which prisons were
designed is given by

where is measured in thousands and has the same
meaning as before.
a. Find an expression that shows the gap between the num-

ber of prisoners and the number of inmates for which the
prisons were designed at any time .

b. Find the gap at the beginning of 1983 and at the begin-
ning of 1986.

Source: U.S. Department of Justice.

t

tC(t)

0 	 t 	 10C(t) � 24.3t � 365

t � 0t

0 	 t 	 10N(t) � 3.5t 2 � 26.7t � 436.2

(t � f )(6)t(326) � 18f(6) � 326

(t � f )(1)t(406) � 23f(1) � 406

t � 0f(t)t 68. Hotel Occupancy Rate The occupancy rate of the all-suite Won-
derland Hotel, located near an amusement park, is given by
the function

where is measured in months and corresponds to the
beginning of January. Management has estimated that the
monthly revenue (in thousands of dollars) is approximated
by the function

where (percent) is the occupancy rate.
a. What is the hotel’s occupancy rate at the beginning of

January? At the beginning of July?
b. What is the hotel’s monthly revenue at the beginning of

January? At the beginning of July?

In Exercises 69–74, determine whether the statement is true or
false. If it is true, explain why. If it is false, explain why or give
an example that shows it is false.

69. If and are both linear functions of , then so are and
.

70. If is a polynomial function of and is a rational func-
tion, then and are rational functions.

71. If and are both even (odd), then is even (odd).

72. If is even and is odd, then is neither even nor odd.

73. If and are both even, then is even.

74. If and are both odd, then is odd.fttf

fttf

f � ttf

f � ttf

f � tt � f
txf

t � f
f � txtf

r

0 	 r 	 100R(r) � �
3

5000
 r 3 �

9

50
 r 2

t � 0t

0 	 t 	 11r(t) �
10

81
 t 3 �

10

3
 t 2 �

200

9
 t � 55

0.5 Graphing Calculators and Computers

The graphing calculator and the computer are indispensable tools in helping us to solve
complex mathematical problems. In this book we will use them to help us explore ideas
and concepts in calculus both graphically and numerically. But the amount and accu-
racy of the information obtained by using a graphing utility depend on the experience
and sophistication of the user. As you progress through this text, you will see that the
more knowledge of calculus you gain, the more effective the graphing utility will prove
to be as a tool for problem solving. But there are pitfalls in using the graphing utility,
and we will point them out when the opportunity arises.

In this section we will look at some basic capabilities of the graphing calculator
and the computer that we will use later.

Finding a Suitable Viewing Window
The first step in plotting the graph of a function with a graphing utility is to select a
suitable viewing window that displays the portion of the graph of the
function in the rectangular set . For example, you might{(x, y) � a 	 x 	 b, c 	 y 	 d}

[a, b] � [c, d]
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EXAMPLE 1 Plot the graph of in the standard viewing window
.

Solution The graph of , shown in Figure 1a, is a parabola. Figure 1b shows a typi-
cal window screen, and Figure 1c shows a typical equation screen.

f

[�10, 10] � [�10, 10]
f(x) � 2x2 � 4x � 5

FIGURE 1

EXAMPLE 2 Let .

a. Plot the graph of in the standard viewing window.
b. Plot the graph of in the window .

Solution
a. The graph of in the standard viewing window is shown in Figure 2. Since 

the graph does not appear to be complete, we need to adjust the viewing 
window.

b. The graph of in the window , shown in Figure 3, is an
improvement over the previous graph. (Later, we will be able to show that the 
figure does in fact give a rather complete view of the graph of .)

Evaluating a Function

A graphing utility can be used to find the value of a function with minimal effort, as
the following example shows.

f

[�1, 5] � [�40, 40]f

f

[�1, 5] � [�40, 40]f
f

f(x) � x3(x � 3)4

first plot the graph using the standard viewing window . If nec-
essary, you then might adjust the viewing window by enlarging it, reducing it, or even
changing it altogether to obtain a sufficiently complete view of the graph or at least
the portion of the graph that is of interest.

[�10, 10] � [�10, 10]

�10 10

WINDOW
Xmin � �10

Plot1 Plot2 Plot3

Xmax � 10
Xsc1 � 1
Ymin � �10
Ymax � 10
Ysc1 � 1
Xres � 1

10

�10

\Y1�2X^2�4X�5
\Y2�
\Y3� 
\Y4� 
\Y5� 
\Y6� 
\Y7� 

(a) The graph of f(x) � 2x2 � 4x � 5 in
      [�10, 10] � [�10, 10]

(b) A window screen on a
      graphing calculator

(c) An equation screen on
      a graphing calculator

FIGURE 2
An incomplete sketch of

on
[�10, 10] � [�10, 10]
f(x) � x3(x � 3)4

�10 10

10

�10

FIGURE 3
A more complete sketch of

is shown by using
the window .[�1, 5] � [�40, 40]
f(x) � x3(x � 3)4

�1 5

40

�40
EXAMPLE 3 Let .

a. Plot the graph of in the standard viewing window.
b. Find using a calculator, and verify your result by direct computation.
c. Find .f(4.215)

f(3)
f

f(x) � x3 � 4x2 � 4x � 2
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EXAMPLE 4 Number of Alzheimer’s Patients The number of patients with Alzhei-
mer’s disease in the United States is approximated by

where is measured in millions and is measured in decades, with correspond-
ing to the beginning of 1990.

a. Use a graphing utility to plot the graph of in the viewing window
.

b. What is the anticipated number of Alzheimer’s patients in the United States at the
beginning of 2010 ? At the beginning of 2030 ?

Solution
a. The graph of is shown in Figure 5.
b. Using the evaluation function of the graphing utility and the value 2 for , we see

that the anticipated number of Alzheimer’s patients at the beginning of 2010 is
given by , or approximately 5 million. The anticipated number of
Alzheimer’s patients at the beginning of 2030 is given by , or
approximately 7.1 million.

Finding the Zeros of a Function
There will be many occasions when we need to find the zeros of a function. This task
is greatly simplified if we use a graphing calculator or a computer algebra system
(CAS).

f(4) � 7.1101
f(2) � 5.0187

x
f

(t � 4)(t � 2)

[0, 6] � [0, 12]
f

t � 0tf(t)

0 	 t 	 6f(t) � �0.0277t 4 � 0.3346t 3 � 1.1261t 2 � 1.7575t � 3.7745

FIGURE 5
The graph of in the viewing window
[0, 6] � [0, 12]

f

EXAMPLE 5 Let . Find the zero of using (a) a graphing calcu-
lator and (b) a CAS.

Solution
a. The graph of in the window is shown in Figure 6. Using

TRACE and ZOOM or the function for finding the zero of a function, we find the
zero to be approximately .

b. In Maple we use the command

;

and in Mathematica we use the command

to obtain the solution .x � �0.682328

Solve[x^3�x�1��0,x]

solve(x^3�x�1�0,x)

�0.6823278

[�2, 2] � [�5, 5]f

ff(x) � x3 � x � 1

FIGURE 6
The graph of intersects the -axis at

.x � �0.6823278
xf

FIGURE 4
The graph of

in 
the standard viewing window
f(x) � x3 � 4x2 � 4x � 2

Solution
a. The graph of is shown in Figure 4.
b. Using the evaluation function of the graphing utility and the value 3 for , we

find . This result is verified by computing

c. Using the evaluation function of the graphing utility and the value 4.215 for , we
find . Thus, . The efficacy of the
graphing utility is clearly demonstrated here!

f(4.215) � 22.679738375y � 22.679738375
x

f(3) � 33 � 4(3)2 � 4(3) � 2 � 27 � 36 � 12 � 2 � 5

y � 5
x

f

�10 10

10

�10

0 6

12

�2 2

5

�5
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Finding the Point(s) of Intersection of Two Graphs
A graphing calculator or a CAS can be used to find the point(s) of intersection of the
graphs of two functions. Although the points of intersection of the graphs of the func-
tions and can be found by finding the zeros of the function , it is often more
illuminating to proceed as in Example 6.

f � ttf

EXAMPLE 6 Find the points of intersection of the graphs of 
and .

Solution The graphs of both and in the standard viewing window are shown in Fig-
ure 7a. Using TRACE and ZOOM or the function for finding the points of intersection of
two graphs on your graphing utility, we find the point(s) of intersection, accurate to four
decimal places, to be (Figure 7b) and (Figure 7c).(5.5587, �1.5125)(�2.4158, 2.1329)

tf

t(x) � �0.4x2 � 0.8x � 6.4
f(x) � 0.3x2 � 1.4x � 3

FIGURE 7

Constructing Functions from a Set of Data
A graphing calculator or a CAS can often be used to find the function that fits a given
set of data points “best” in some sense. For example, if the points corresponding to the
given data are scattered about a straight line, then we use linear regression to obtain a
function that approximates the data at hand. If the points seem to be scattered about a
parabola (the graph of a quadratic function), then we use second-degree polynomial
regression, and so on.

We will exploit these capabilities of graphing calculators and computer algebra sys-
tems in Section 0.6, where we will see how “mathematical models” are constructed
from raw data. The solution to the following example is obtained by using linear regres-
sion. (Consult the manual that accompanies your calculator for instructions for using
linear regression. If you are using a CAS, consult your HELP menu for instructions.)

�10 10

10

�10

�10 10

10

�10

�5 14

6

�15

(a) The graphs of f  and g in the
     standard viewing window

(b) An intersection screen

Intersection
X= -2.415796 Y= 2.1329353

Intersection
X= 5.5586531 Y= -1.512527

(c) An intersection screen

EXAMPLE 7

a. Use a graphing calculator or computer algebra system to find a linear function
whose graph fits the following data “best” in the sense of least squares:

x 1 2 3 4 5

y 3 5 5 7 8
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b. Plot the data points for the values of and given in the table (the graph is
called a scatter diagram) and the graph of the least-squares line (called the
regression line) on the same set of axes.

Solution
a. We first enter the data and then use the linear regression function on the calcula-

tor or computer to obtain the graph shown in Figure 8. We also find that the
equation of the least-squares regression line is .

b. See Figure 8.
y � 1.2x � 2

yx(x, y)

FIGURE 8
The scatter diagram and least-squares
line for the data set.

In Exercises 1–4, plot the graph of the function in (a) the 
standard viewing window and (b) the indicated window.

1. ;

2. ;

3. ;

4. ;

In Exercises 5–16, plot the graph of the function in an appro-
priate viewing window. (Note: The answer is not unique.)

5.

6. 7.

8. 9.

10. 11.

Hint: Stay close to the origin.

12. 13.

14. 15.

16.

In Exercises 17–22, find the zero(s) of the function to five 
decimal places.

17. 18.

19. 20. f(x) � 2x4 � 4x2 � 1f(x) � x4 � 2x3 � 3x � 1

f(x) � x3 � 9x � 4f(x) � 2x3 � 3x � 2

f

f(x) � x2 � 0.1x

f(x) � x � 0.01 sin 50xf(x) �
1

2
sin 2x � cos x

f(x) �
sin 1x

1x
f(x) �

1

2 � cos x

f(x) � x2 sin
1
x

f(x) �
5x

x � 1
� 5x

f(x) � 13 x � 13 x � 1f(x) �
2x4 � 3x

x2 � 1

f(x) �
x3

x3 � 1
f(x) � �2x4 � 5x2 � 4

f(x) � 2x4 � 3x3 � 5x2 � 20x � 40

f

[�5, 5] � [�5, 5]f(x) �
4

x2 � 8

[�3, 3] � [�2, 2]f(x) � x24 � x2

[�2, 2] � [6, 10]f(x) � x4 � 2x2 � 8

[�20, 20] � [�1200, 100]f(x) � x3 � 20x2 � 8x � 10

f

0.5 EXERCISES

Videos for selected exercises are available online at www.academic.cengage.com/login.V

0 6

10

21. 22. f(x) � x2 � 2x � 2 sin x � 1f(x) � sin 2x � x2 � 1

In Exercises 23–28, find the point(s) of intersection of the graphs of
the functions. Express your answers accurate to five decimal places.

23. ; t(x) � �0.4x2 � 0.9x � 6.7f(x) � 0.3x2 � 1.7x � 3.2

24. ;

25. ;

26. ;

27. ;

28. ;

29. Let .

a. Plot the graph of using the viewing window
.

b. Plot the graph of using the viewing window
.

c. Explain why the two displays obtained in parts (a) and (b)
taken together give a complete description of the graph of .

30. a. Plot the graph of . Is odd or even?
b. Verify your answer to part (a) analytically.

31. a. Plot the graph of and .
b. Are the functions and identical? Why or why not?

32. a. Plot the graph of using the viewing
window .

b. Plot the graph of using the viewing
window .

c. In what interval are the functions and identical?
d. Verify your observation in part (c) analytically.

33. Let and .
a. Plot the graph of and using the same viewing 

window: .
b. Plot the graph of and using the same viewing window:

.
c. Explain why the graphs of and that you obtained in

part (b) seem to coalesce as increases or decreases
without bound.

Hint: Write and study its 

behavior for large values of .x

f(x) � 2x3a1 �
5

2x
�

1

2x2
�

1

x3
b

x
tf

[�50, 50] � [�100,000, 100,000]
tf

[�5, 5] � [�5, 5]
tf

t(x) � 2x3f(x) � 2x3 � 5x2 � x � 2

tf
[�5, 5] � [�5, 5]

t(x) � 1x(x � 1)
[�5, 5] � [�5, 5]

f(x) � 1x1x � 1

tf
t(x) � 1f(x) � x>x

ff(x) � cos(sin x)

f

[�0.1, 0.1] � [�0.1, 0.1]
f

[�10, 10] � [�10, 10]
f

f(x) � x �
1

100
sin 100x

t(x) �2x2 � x4f(x) � sin2 x

t(x) � 2 �
1

2
 x2f(x) � 2 sin x

t(x) � �0.2x2 � 0.8x � 2.1
f(x) � �0.2x3 � 1.2x2 � 1.2x � 2

t(x) � 2.1x � 4.2f(x) � 0.3x3 � 1.8x2 � 2.1x � 2

t(x) � 0.2x2 � 1.2x � 4.8f(x) � �0.3x2 � 0.6x � 3.2

www.academic.cengage.com/login


34. Let , where .

a. Plot the graph of using the window ,
and then using the window . Does 
appear to approach a unique number as gets larger 
and larger?

b. Use the evaluation function of your graphing utility to fill
in the accompanying table. Use the table of values to
estimate, accurate to five decimal places, the number that

seems to approach as increases without bound.
Note: We will see in Section 6.3 that this number, written , is
given by 2.71828 . . .

e
xf(x)

x
f(x)[0, 100] � [0, 3]

[0, 10] � [0, 3]f

x � 0f(x) � a1 �
1
x
bx
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x f(x)

10

100

1000

10,000

100,000

1,000,000

10,000,000

100,000,000

1,000,000,000
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0.6 SELF-CHECK DIAGNOSTIC TEST
1. Give an example of each of the following.

a. a linear function

b. a polynomial function of degree 4

c. a rational function

d. a power function

e. an algebraic function

f. a trigonometric function

2. The book value of an asset at time (measured in years) being depreciated
linearly over a period of years is given by

where and (in dollars) give the initial and scrap value of the asset,
respectively.

a. What is the -intercept? Interpret your result.

b. By how much is the asset being depreciated annually?

3. By cutting away identical squares from each corner of a square piece of
cardboard with sides 12 in. long and then folding up the resulting flaps,
an open box can be made. If the square cutaways have dimensions in.
by in., find a function giving the volume of the resulting box.

Answers to Self-Check Diagnostic Test 0.6 can be found on page ANS 6.

12 � 2x

12

x
x

x
x

V

SC

V(t) � C �
C � S

n
 t

n
t
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1. Formulate. Given a real-world problem, our first task is to formulate the prob-
lem using the language of mathematics. This mathematical description of the
real-world phenomenon is called a mathematical model. The many techniques
that are used in constructing mathematical models range from theoretical consid-
eration of the problem on the one extreme to an interpretation of data associated
with the problem on the other. For example, the mathematical model that gives
the accumulated amount at any time after a certain sum of money has been
deposited in the bank can be derived theoretically (see Section 6.4, pp. 562–
564). On the other hand, the mathematical models in Examples 2 and 3 of this
section are constructed by requiring that they fit the data associated with the
problem “best” according to some specified criterion. In calculus we are prima-
rily concerned with how one (dependent) variable depends on one or more
(independent) variables. Consequently, most of our mathematical models will
involve functions of one or more variables or equations defining these functions
(implicitly).

2. Solve. Once a mathematical model has been constructed, we can use the appro-
priate mathematical techniques, which we will develop throughout this text, to
solve the problem.

3. Interpret. Bearing in mind that the solution obtained in Step 2 is just the solu-
tion of the mathematical model, we need to interpret these results in the context
of the original real-world problem.

4. Test. Some mathematical models of real-world applications describe the situa-
tions with complete accuracy. For example, the model describing a deposit in a
bank account gives the exact accumulated amount in the account at any time.
But other mathematical models give, at best, an approximate description of the
real-world problem. In such cases we need to test the accuracy of the model by
observing how well it describes the original real-world problem and how well it
predicts past and/or future behavior. If the results are unsatisfactory, then we
might have to reconsider the assumptions that were made in the construction of
the model or, in the worst case, return to Step 1.

Modeling with Functions
Many real-world phenomena, such as the speed at which a screwdriver falls after being
accidentally dropped from a building under construction, the speed of a chemical reac-
tion, the population of a certain strain of bacteria, the life expectancy of a female infant
at birth in a certain country, and the demand for a product, can be modeled by an appro-
priate function.

Mathematical modeling is a process that enables us to use mathematics as a tool to
analyze and understand real-world phenomena. The four steps in this process are illus-
trated in Figure 1.

FIGURE 1

Solution of
mathematical model

Mathematical
model

Solve

Solution of
real-world problem

Real-world
problem

Test

Formulate

Interpret



In what follows, we will recall some familiar functions and give examples of real-
world phenomena that are modeled by using these functions.

Polynomial Functions
A polynomial function of degree is a function of the form

where is a nonnegative integer and the numbers , , , are constants called
the coefficients of the polynomial function. For example, the functions

are polynomial functions of degree 5 and 3, respectively. Observe that a polynomial
function is defined for every value of , so its domain is .

A polynomial function of degree 1 has the form

and is an equation of a straight line in the slope-intercept form with slope and
-intercept (see Section 0.1). For this reason a polynomial function of degree

1 is called a linear function.
Linear functions are used extensively in mathematical modeling for two important

reasons. First, some models are linear by nature. For example, the formula for convert-
ing temperature from Celsius (°C) to Fahrenheit (°F) is , and is a lin-
ear function of for in any feasible prescribed domain (see Figure 2a). Second,
some natural phenomena exhibit linear characteristics over a small range of values and
can therefore be modeled by a linear function that is restricted to a small interval. For
example, according to Hooke’s Law, the magnitude of a force required to stretch a
spring by an elongation beyond its unstretched length is given by , provided
that the elongation is not too great. If stretched beyond a certain point, called the
elastic limit, the spring will become permanently deformed and will not return to its
natural length when the force is removed. The constant is called the spring constant
or the stiffness of the spring. In this instance we have to restrict our interest to the por-
tion of the graph that is linear (see Figure 2b).

k

x
F � kxx

F

CC
FF � 9

5 C � 32

b � a0y
m � a1

a1 � 0y � f(x) � a1x � a0

(n � 1)
(��, �)x

t(x) � 0.001x3 � 0.2x2 � 10x � 200

f(x) � 2x5 � 3x4 �
1

2
 x3 � 12x2 � 6

anpa1a0n

an � 0f(x) � anx
n � an�1x

n�1 � p � a2x
2 � a1x � a0

n
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FIGURE 2
The graph of a linear function 

and the graph of a function that 
is linear over a small interval

In the following example we assume that Hooke’s Law applies.

C (
C)

F (
F)

20

60

80

0

(a) F is linear in C.

20 40 x (ft)

Elastic limit

F (lb)

0

(b) F is linear for small values of x.
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EXAMPLE 1 Force Required to Stretch a Spring A force of 3.18 lb is required to
stretch a spring by 2.4 in. beyond its unstretched length (see Figure 3).

a. Use Hooke’s Law to find a mathematical model that describes the force 
required to stretch the spring by feet beyond its unstretched length.

b. What is the spring constant?
c. Find the force required to stretch the spring by 1.8 in. beyond its unstretched

length.

Solution
a. By Hooke’s Law, , where is the spring constant. Next, using the given

data, we find

2.4 in. is equal to 0.2 ft

from which we deduce that . Therefore, the required mathematical
model is .

b. From the result of part (a) we see that the spring constant is 15.9 lb/ft.
c. We first note that 1.8 in. is equal to 0.15 ft. Then, using the model obtained in

part (a), we see that the required force is

or approximately 2.39 lb.

In Example 1 the model was constructed by using the data obtained from one meas-
urement. In practice, one normally takes a set of measurements and then uses these
data to construct a mathematical model. This practice generally results in a more accu-
rate model.

F � (15.9)(0.15) � 2.385

F � 15.9x
k � 15.90

3.18 � 0.2k

kF � kx

x
F

FIGURE 3
The spring in part (a) is stretched by an
elongation of feet beyond its natural
length by a weight in part (b).

x

EXAMPLE 2 Force Required to Stretch a Spring Table 1 gives the force required
to stretch the spring (Example 1) by an elongation ft beyond its unstretched length.
As Hooke’s Law predicts, the data points in the scatter plot associated with these data
appear to lie close to a straight line passing through the origin (see Figure 4).

x
F

(ft)x 0 0.1 0.2 0.3 0.4 0.5

(lb)F 0 1.68 3.18 4.84 6.36 8.02

TABLE 1

FIGURE 4
The data points are scattered 

about a line through the origin.

x

(b) (a) 

x (ft)

F (lb)
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To find a mathematical model based on these data, we use the method of least
squares to find a function of the form (as suggested by Hooke’s Law) that
fits the data “best” in the sense of least squares. (See Exercises 3.7, Problems 68 and
69.) We obtain the function

as the required model. Incidentally, this model also tells us that the spring constant is
approximately 16.02 lb/ft.

Notes
1. If you use the linear least-squares regression program that is built into most

graphing calculators and computers to find a mathematical model using the data
in Example 2, you will obtain a different model, namely, .
This occurs because the program finds the “best” fit for the data (in the sense of
least squares) using the most general linear function, that is, one having the form

.
2. Since must be equal to zero if is equal to zero, we see that the class of func-

tions chosen to fit the data should have the form , that is, with .
Therefore, the model that we found in Example 2 should be regarded
as being a more accurate mathematical model than the model suggested by

, in which . As a consequence, we
should accept the spring constant to be 16.02 lb/ft found in Example 2 rather than
the figure of 15.94 that is found by using the function as the model.

A polynomial function of degree 2 has the form

or, more simply, and is called a quadratic function. The graph of
a quadratic function is a parabola (see Figure 5). The parabola opens upward if 
and downward if . To see this, we rewrite

x � 0f(x) � ax2 � bx � c � x2aa �
b

x
�

c

x2
b

a � 0
a � 0

y � ax2 � bx � c

a2 � 0y � f(x) � a2x
2 � a1x � a0

t

t(0) � 0.028 � 0t(x) � 15.94x � 0.028

F � 16.02x
b � 0f(x) � ax

xF
f(x) � ax � b

t(x) � 15.94x � 0.028

f(x) � 16.02x

f(x) � kx

FIGURE 5
The graph of a quadratic 

function is a parabola.

x

y

0

(a) If a > 0, the parabola opens upward.

x

y

0

(b) If a < 0, the parabola opens downward.

Observe that if is large in absolute value, then the expression inside the parenthe-
ses is close to , so behaves like for large values of . Therefore, for large
values of , is large and positive if (the parabola opens upward) and
is large in magnitude and negative if (the parabola opens downward). The high-
est point on a parabola that opens downward or the lowest point on a parabola that
opens upward is called the vertex of the parabola. The vertex of the parabola with

a � 0
a � 0y � f(x)x

xax2f(x)a
x
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equation , where , is , since .
You can verify this fact by using the method of completing the square (see Exer-
cise 30).

Quadratic functions serve as mathematical models for many phenomena. For exam-
ple, Newton’s Second Law of Motion can be used to show that the distance covered
by a falling object dropped near the surface of the earth is given by whereD � 1

2 tt 2

y � f(x)f(�b>(2a)))(�b>(2a)a � 0y � ax2 � bx � c

, the gravitational constant at sea level at the equator, is approximately 32.088 ft/sec2.
In fact, a model for this motion can be found, experimentally, as the following exam-
ple shows.

t

EXAMPLE 3 A steel ball is dropped from a height of 10 ft. The distance covered by
the ball at intervals of one tenth of a second is measured and recorded in Table 2. A
scatter plot of the data is shown in Figure 6. You can see from the figure that the points
associated with the data do lie close to a parabola with equation for some con-
stant , as was suggested earlier.a

y � at 2

Time (sec) 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

Distance (ft) 0 0.1608 0.6416 1.4444 2.5672 4.0108 5.7760 7.8614

TABLE 2

FIGURE 6

To find a mathematical model to describe this motion, we use the method of least
squares to find a function of the form that fits the data “best.” We obtain the
function

(See Exercises 3.7, Problems 70 and 71.) On the basis of this model, the ball will hit
the ground when . Solving the equation gives .
Rejecting the negative root, we conclude that the ball will hit the ground approximately
0.79 sec after it is dropped. Thus, a complete description of the mathematical model
for this motion is

where is the distance covered by the ball after sec.tD

0 	 t 	 0.79D � 16.044t 2

t � 0.789516.044t 2 � 10y � 10

y � 16.044t 2

y � at 2

t (sec)

y (ft)

2

4

8

6

0 0.2 0.30.1 0.4 0.5 0.6 0.7



Notes
1. Observe that even though the function is defined on , we

need to restrict its domain to the interval to obtain a mathematical model
for the motion of the ball. Once the ball reaches the ground, the function no
longer describes its motion.

2. If you use the quadratic regression program that is found in most graphing calcu-
lators and in computers, you will find the quadratic model

which is not very satisfactory, since we know that when . Besides, as
you will be able to confirm later, this model implies that the ball started out with
an initial velocity of 0.00075 ft/sec. But we know that the steel ball had an initial
velocity of 0 ft/sec.

A polynomial of degree three is called a cubic polynomial, one of degree four is
called a quartic polynomial, and one of degree five is called a quintic polynomial. In
general, the higher the degree of the polynomial function, the more its graph wiggles.
Figure 7a–c shows the graph of a cubic, a quartic, and a quintic, respectively.

t � 0D � 0

D � 16.0425t 2 � 0.00075t � 0.000075

f
[0, 0.79]

(��, �)f(t) � 16.044t 2

0.6 Mathematical Models 63

FIGURE 7

Cubic polynomials lend themselves to modeling some phenomena in business and
economics. For example, let denote the total cost incurred when units of a cer-
tain commodity are produced. A typical graph of the function is shown in Figure 8.
As the level of production increases, the cost per unit drops, so increases but at a
slower pace. However, a level of production is soon reached at which the cost per unit
begins to increase dramatically (because of overtime, a shortage of raw materials, and
breakdown of machinery due to excessive stress and strain), so continues to increase
at a faster pace. The graph of a cubic polynomial can exhibit precisely the character-
istics just described.

The following example shows how we can use a quartic function to describe the
assets of the Social Security system.

C

Cx
C

xC(x)

FIGURE 8
A total cost function is often modeled
by using a cubic function.
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y
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(a) y � x3 � x2 � 2x � 2
(a cubic)

2 4�4 �2
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(b) y � x4 � 6x2 � x � 2
(a quartic)
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y
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(c) y � 2x5 � 80x3 � 400x
(a quintic)

2 64�6 �4
�1000

�2000

x

C (x)
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EXAMPLE 4 Social Security Trust Fund Assets The projected assets of the Social
Security trust fund (in trillions of dollars) from 2008 through 2040 are given in 
Table 3. The scatter plot associated with these data is shown in Figure 9a, where 
corresponds to 2008. A mathematical model giving the approximate value of the assets
in the trust fund (in trillions of dollars) in year is

A(t) � �0.00000268t 4 � 0.000356t 3 � 0.00393t 2 � 0.2514t � 2.4094

tA(t)

t � 0



a. The first baby boomers will turn 65 in 2011. What will the assets of the Social
Security system trust fund be at that time? The last of the baby boomers will turn
65 in 2029. What will the assets of the trust fund be at that time?

b. Unless payroll taxes are increased significantly and/or benefits are scaled back
dramatically, it is only a matter of time before the assets of the current system are
depleted. Use the graph of the function to estimate the year in which the cur-
rent Social Security system is projected to go broke.

Solution
a. The assets of the Social Security trust fund in 2011 will be

or approximately $3.19 trillion. The assets of the trust fund in 2029 will
be

or approximately $5.60 trillion.
b. From Figure 9b we see that the graph of crosses the -axis at approximately

. So unless the current system is changed, it is projected to go broke in
2040. (At this time the first of the baby boomers will be 94, and the last of the
baby boomers will be 76.)

Note Observe that the model in Example 4 utilizes only a small portion of the graph
of , as is often the case in practice. A more complete picture of the graph of is shown
in Figure 10.

ff

t � 32
tA

 � 0.00393(21)2 � 0.2514(21) � 2.4094 � 5.60

 A(21) � �0.00000268(21)4 � 0.000356(21)3

(t � 21)

 � 0.00393(3)2 � 0.2514(3) � 2.4094 � 3.19

 A(3) � �0.00000268(3)4 � 0.000356(3)3

(t � 3)

A(t)
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Year 2008 2011 2014 2017 2020 2023 2026 2029 2032 2035 2038 2040

Assets $2.4 $3.2 $4.0 $4.7 $5.3 $5.7 $5.9 $5.6 $4.9 $3.6 $1.7 0

TABLE 3

FIGURE 9
Source: Social Security Administration.

FIGURE 10
The graph of in the viewing window
[�40, 40] � [�10, 10]

f
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The graph of is shown in Figure 9b.A
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Power Functions
A power function is a function of the form , where is a real number. If 
is a nonnegative integer, then is just a polynomial function of degree with one term
(a monomial). Examples of other power functions are

, , , and

whose graphs are shown in Figure 11.

f(x) � x1>3 � 13 xf(x) � x1>2 � 1xf(x) � x�1 �
1
x

f(x) � x�2 �
1

x2

af
aaf(x) � xa

FIGURE 11
The graphs of some power functions

Power functions serve as mathematical models in many fields of study. For exam-
ple, according to Newton’s Law of Gravitation, the force exerted by a particle of mass

on another particle of mass a distance away is directed toward and has
magnitude

where is the universal gravitational constant. The graph of is similar to that of
for (see Figure 12).

Rational Functions
A rational function is a quotient of two polynomials. Examples of rational functions
are

and

In general, a rational function has the form

where and are polynomial functions. The domain of a rational function is the set
of all real numbers except the zeros of , that is, the roots of the equation .
Thus, the domain of is , and the domain of is . A mathemat-
ical model involving a rational function is suggested by the experiments conducted by
A.J. Clark on the response of a frog’s heart muscle to the injection of units ofxR(x)

{x � x � 1}t{x � x � 2}f
Q(x) � 0Q

QP

f(x) �
P(x)

Q(x)

t(x) �
x2 � 1

x2 � 1
f(x) �

3x3 � x2 � x � 1

x � 2

x � 0f(x) � x�2
FG

F �
Gm1m2

r 2

m1rm2m1

FIGURE 12
The magnitude of a gravitational 
force F
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acetylcholine (as a percentage of the maximum possible effect of the drug). His results
show that has the form

where is a positive constant that depends on the particular frog (see Figure 13).

Algebraic Functions
Algebraic functions are functions that can be expressed as sums, differences, prod-
ucts, quotients, or roots of polynomial functions. By definition, rational functions are
algebraic functions. The function

is another example of an algebraic function. The following example from the special
theory of relativity involves an algebraic function.

f(x) � 2x3 � 31x �
x23 x2 � 1

x(x � 1x)

b

x � 0R(x) �
100x

b � x

R

FIGURE 13

The graph of R(x) �
100x

b � x

EXAMPLE 5 Special Theory of Relativity According to the special theory of relativ-
ity, the relativistic mass of a particle moving with a speed is

where is the rest mass (the mass at zero speed) and m/sec is the
speed of light in a vacuum. What is the speed of a particle whose relativistic mass is
twice that of its rest mass?

Solution We solve the equation

for , obtaining

or approximately 0.866 times the speed of light (approximately m/sec).2.596 � 108

 √ �
13

2
 c

 
√2

c2
�

3

4

 1 �
√2

c2
�

1

4

 B1 �
√2

c2
�

1

2

 2 �
1

B1 �
√2

c2

√

2m0 �
m0

B1 �
√2

c2

c � 2.9979 � 108m0

m � f(√) �
m0

B1 �
√2

c2

√

x

R(x)

0
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Trigonometric Functions
Trigonometric functions were reviewed in Section 0.3. The characteristics of the
trigonometric functions make them suitable for modeling phenomena that exhibit cycli-
cal, or almost cyclical, behavior such as the motion of sound waves, the vibration of
strings, and the motion of a simple pendulum.

EXAMPLE 6 Average Temperature Table 4 gives the average monthly temperature
in degrees Fahrenheit recorded in Boston.

Month Jan. Feb. March April May June July Aug. Sept. Oct. Nov. Dec.

Temp (°F) 28.6 30.3 38.6 48.1 58.2 67.7 73.5 71.9 64.8 54.8 45.3 33.6

TABLE 4

To find a model describing the average temperature in month , we assume that is
a sine function with period 12 and amplitude given by . A pos-
sible model is

where corresponds to January. The graph of is shown in Figure 14.Tt � 1

T � 51.05 � 22.45 sinCp6 (t � 4.3) D

1
2(73.5 � 28.6) � 22.45

TtT

Source: The Boston Globe.

FIGURE 14
A model of the average 

temperature in Boston is
.T � 51.05 � 22.45 sinCp6 (t � 4.3) D t (months)
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Other functions, such as exponential and logarithmic functions, also play an impor-
tant role in modeling and will be studied in later chapters.

Constructing Mathematical Models
We close this section by showing how some mathematical models can be constructed
by using elementary geometric and algebraic arguments.

The following guidelines can be used to construct mathematical models.

Guidelines for Constructing Mathematical Models

1. Assign a letter to each variable mentioned in the problem. If appropriate,
draw and label a figure.

2. Find an expression for the quantity that is being sought.
3. Use the conditions given in the problem to write the quantity being sought

as a function of one variable. Note any restrictions to be placed on the
domain of from physical considerations of the problem.f

f
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EXAMPLE 7 Enclosing an Area The owner of Rancho Los Feliz has 3000 yd of fenc-
ing with which to enclose a rectangular piece of grazing land along the straight por-
tion of a river. Fencing is not required along the river. Letting denote the width of
the rectangle, find a function in the variable giving the area of the grazing land if
she uses all of the fencing (see Figure 15).

xf
x

FIGURE 15
The rectangular grazing land 

has width and length .yx

Solution
1. This information is given in the statement of the problem.
2. The area of the rectangular grazing land is . Next, observe that the

amount of fencing is and that this must be equal to 3000, since all the
fencing is to be used; that is,

3. From the equation we see that . Substituting this value of into
the expression for gives

Finally, observe that both and must be positive, since they represent the
width and length of a rectangle, respectively. Thus, and , but the lat-
ter is equivalent to , or . So the required function is

with domain .0 � x � 1500f(x) � 3000x � 2x2
x � 15003000 � 2x � 0

y � 0x � 0
yx

A � xy � x(3000 � 2x) � 3000x � 2x2

A
yy � 3000 � 2x

2x � y � 3000

2x � y
A � xy

x 

y

EXAMPLE 8 Charter Flight Revenue If exactly 200 people sign up for a charter
flight, Leisure World Travel Agency charges $300 per person. However, if more than
200 people sign up for the flight (assume that this is the case), then each fare is reduced
by $1 for each additional person. Letting denote the number of passengers above 200,
find a function giving the revenue realized by the company.

Solution
1. This information is given.
2. If there are passengers above 200, then the number of passengers signing up

for the flight is . Furthermore, the fare will be dollars per
passenger.

3. The revenue will be

number of passengers fare per passenger

Clearly, must be positive, and , or . So the required func-
tion is with domain .(0, 300)f(x) � �x2 � 100x � 60,000

x � 300300 � x � 0x

 � �x2 � 100x � 60,000

� R � (200 � x)(300 � x) 

(300 � x)200 � x
x

x
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In Exercises 1 and 2, classify each function as a polynomial
function (state its degree), a power function, a rational function,
an algebraic function, a trigonometric function, or other.

1. a.

b.

c.

d.

e.

f.

2. a.

b.

c.

d.

e.

f.

3. Instant Messaging Accounts The number of enterprise instant
messaging (IM) accounts is approximated by the function

where is measured in millions and is measured in
years with corresponding to 2006.
a. How many enterprise IM accounts were there in 2006?
b. How many enterprise IM accounts are there projected to

be in 2010?
Source: The Radical Group.

4. Average Single-Family Property Tax On the basis of data from
298 of Massachusetts’ 351 cities and towns, the average 
single-family tax bill from 1997 through 2007 in that state 
is approximated by the function

where is measured in dollars and is measured in years
with corresponding to 1997.
a. What was the average property tax on a single-family

home in Massachusetts in 1997?
b. If the trend continued, what would the average property

tax be in 2010?
Source: Massachusetts Department of Revenue.

5. Testosterone Use Fueled by the promotion of testosterone as
an antiaging elixir, use of the hormone by middle-aged and
older men grew dramatically. The total number of prescrip-
tions for testosterone from 1999 through 2002 is given by

0 	 t 	 3N(t) � �35.8t 3 � 202t 2 � 87.8t � 648

t � 0
tT(t)

0 	 t 	 10T(t) � 7.26t 2 � 91.7t � 2360

t � 0
tN(t)

0 	 t 	 5N(t) � 2.96t 2 � 11.37t � 59.7

h(x) � (3x � 1)2 � 4

f(x) � tan 2x

h(x) �
sin x

1 � tan x

f(x) �
1x

x2 � 1

t(x) � 221 � x2

f(t) � 2t 4 � 3t 2 � 21t

f(x) � sin x � cos x

h(x) �
1x � 1

1x � 1

f(t) � 3t �2 � 2t �1 � 4

t(x) �
x

x2 � 4

f(x) �23 x2

f(x) � 2x3 � 3x2 � x � 4

where is measured in thousands and is measured in
years with corresponding to 1999. Find the total 
number of prescriptions for testosterone in 1999, 2000,
2001, and 2002.
Source: IMS Health.

6. Aging Drivers The number of driver fatalities due to car
crashes, based on the number of miles driven, begins to
climb after the driver is past age 65 years. Aside from
declining ability as one ages, the older driver is more frag-
ile. The number of driver fatalities per 100 million vehicle
miles driven is approximately

where denotes the age group of drivers, with corre-
sponding to those aged 50–54 years, corresponding 
to those aged 55–59, corresponding to those aged 
60–64, . . . , and corresponding to those aged 85–89.
What is the driver fatality rate per 100 million vehicle miles
driven for an average driver in the 50–54 age group? In the
85–89 age group?
Source: U.S. Department of Transportation.

7. Obese Children in the United States The percentage of obese
children aged 12–19 years in the United States is approxi-
mately

where is measured in years, with corresponding to
the beginning of 1970. What was the percentage of obese
children aged 12–19 years at the beginning of 1970? At the
beginning of 1985? At the beginning of 2000?
Source: Centers for Disease Control and Prevention.

8. Rwandan Genocide The population of Rwanda in millions from
1990 through 2002 is approximated by the function

where is measured in years, with corresponding to
1990. The genocide that the majority Hutus committed against
the Tutsis and moderate Hutus resulted in almost a million
deaths and mass migration of the population out of the coun-
try. Eventually, most of the refugees returned to the country.
a. Sketch the graph of the population function .
b. What was the population in 1993? In 1995? In 2002?
c. In what year was the population of Rwanda at the lowest

level?
d. Did the population eventually recover to at least its previ-

ous level?
Source: CIA World Factbook.

P

t � 0t

P(t) � d0.17t � 6.99 if 0 	 t � 3

�0.9t � 10.2 if 3 	 t � 5

0.7t � 2.2 if 5 	 t � 7

0.12t � 6.26 if 7 	 t 	 12

t � 0t

P(t) � e0.04t � 4.6 if 0 	 t � 10

�0.01005t 2 � 0.945t � 3.4 if 10 	 t 	 30

x � 7
x � 2

x � 1
x � 0x

0 	 x 	 7N(x) � 0.0336x3 � 0.118x2 � 0.215x � 0.7

t � 0
tN(t)
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9. Linear Depreciation In computing income tax, businesses are
allowed by law to depreciate certain assets, such as build-
ings, machines, furniture, and automobiles, over a period 
of time. The linear depreciation method, or straight-line
method, is often used for this purpose. Suppose an asset has
an initial value of $ and is to be depreciated linearly over

years with a scrap value of $ . Show that the book value
of the asset at any time , where , is given by the
linear function

Hint: Find an equation of the straight line that passes through the
points and . Then rewrite the equation in the slope-
intercept form.

10. Cricket Chirping and Temperature Entomologists have discovered
that a linear relationship exists between the number of
chirps of crickets of a certain species and the air tempera-
ture. When the temperature is 70°F, the crickets chirp at the
rate of 120 times/min; when the temperature is 80°F, they
chirp at the rate of 160 times/min.
a. Find an equation giving the relationship between the air

temperature and the number of chirps per minute, , of
the crickets.

b. Find as a function of , and use this formula to deter-
mine the rate at which the crickets chirp when the tem-
perature is 102°F.

11. Reaction of a Frog to a Drug Experiments conducted by A.J.
Clark suggest that the response of a frog’s heart muscle
to the injection of units of acetylcholine (as a percent of
the maximum possible effect of the drug) can be approxi-
mated by the rational function

where is a positive constant that depends on the particular
frog.
a. If a concentration of 40 units of acetylcholine produces a

response of 50% for a certain frog, find the response
function for this frog.

b. Using the model found in part (a), find the response of
the frog’s heart muscle when 60 units of acetylcholine
are administered.

12. Outsourcing of Jobs According to a study conducted in 2003,
the total number of U.S. jobs (in millions) that were pro-
jected to leave the country by year , where corre-
sponds to 2000, is

How many jobs were projected to be outsourced in 2005? In
2010?
Source: Forrester Research.

0 	 t 	 15N(t) � 0.0018425(t � 5)2.5

t � 0t

b

x � 0R(x) �
100x

b � x

x
R(x)

tN

Nt

(n, S)(0, C)

V(t) � C �
C � S

n
 t

0 	 t 	 nt
Sn

C

13. Online Video Viewers As broadband Internet grows more popu-
lar, video services such as YouTube will continue to expand.
The number of online video viewers (in millions) is pro-
jected to grow according to the rule

where corresponds to 2003.
a. Sketch the graph of .
b. How many online video viewers will there be in 2010?
Source: eMarketer.com.

14. Cost, Revenue, and Profit Functions A manufacturer of indoor-
outdoor thermometers has fixed costs (executive salaries,
rent, etc.) of $ /month, where is a positive constant. The
cost for manufacturing its product is $ /unit, and the product
sells for $ /unit.
a. Write a function that gives the total cost incurred by

the manufacturer in producing thermometers/month.
b. Write a function that gives the total revenue realized

by the manufacturer in selling thermometers.
c. Write a function that gives the total monthly profit

realized by the manufacturer in selling thermometers/
month.

d. Refer to your answer in part (c). Find , and interpret
your result.

e. How many thermometers should the manufacturer pro-
duce per month to have a break-even operation?
Hint: Solve .

15. Global Warming The increase in carbon dioxide in the atmo-
sphere is a major cause of global warming. The Keeling
Curve, named after Dr. Charles David Keeling, a professor
at Scripps Institution of Oceanography, gives the average
amount of carbon dioxide measured in parts per mil-
lion volume (ppmv), in the atmosphere from 1958 
through 2007 . (Even though data were available for
every year in this time interval, we will construct the curve
only on the basis of the following randomly selected data
points.)

(t � 50)
(t � 1)

(CO2)

P(x) � 0

P(0)

x
P(x)

x
R(x)

x
C(x)

s
c

FF

N
t � 1

1 	 t 	 10N(t) � 52t 0.531

Year 1958 1970 1974 1978 1985 1991 1998 2003 2007

Amount 315 325 330 335 345 355 365 375 380

a. Use a graphing utility to find a second-degree polynomial
regression model for the data.

b. Plot the graph of the function that you found in part (a),
using the viewing window .

c. Use the model to estimate the average amount of atmo-
spheric carbon dioxide in 1980 .

d. Assume that the trend continues, and use the model to
predict the average amount of atmospheric carbon diox-
ide in 2010.

Source: Scripps Institution of Oceanography.

(t � 23)

[1, 50] � [310, 400]
f
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16. Population Growth in Clark County Clark County in Nevada,
dominated by greater Las Vegas, is one of the fastest-
growing metropolitan areas in the United States. The 
population of the county from 1970 through 2000 is 
given in the following table.

a. Use a graphing utility to find a third-degree polynomial
regression model for the data, letting correspond to
1999.

b. Plot the scatter diagram and the graph of the function 
that you found in part (a).

c. Compute the values of for , and 6.
d. How many measles deaths were there in 2004?
Source: Centers for Disease Control and Prevention, World Health
Organization.

19. Nicotine Content of Cigarettes Even as measures to discourage
smoking have been growing more stringent in recent years,
the nicotine content of cigarettes has been rising, making it
more difficult for smokers to quit. The following table gives
the average amount of nicotine in cigarette smoke from
1999 through 2004.

t � 0, 2f

f

t � 0

Year 1970 1980 1990 2000

Population 273,288 463,087 741,459 1,375,765

a. Use a graphing utility to find a third-degree polynomial
regression model for the data. Let be measured in years,
with corresponding to the beginning of 1970.

b. Plot the graph of the function that you found in part
(a), using the viewing window .

c. Compare the values of at , and 30 with the
given data.

Source: U.S. Census Bureau.

17. Hiring Lobbyists Many public entities such as cities, counties,
states, utilities, and Indian tribes are hiring firms to lobby
Congress. One goal of such lobbying is to place earmarks—
money directed at a specific project—into appropriation
bills. The amount (in millions of dollars) spent by public
entities on lobbying from 1998 through 2004 is shown in the
following table.

t � 0, 10, 20f
[0, 30] � [0, 1,500,000]

f
t � 0

t

Year 1998 1999 2000 2001 2002 2003 2004

Amount 43.4 51.7 62.5 76.3 92.3 101.5 107.7

a. Use a graphing utility to find a third-degree polynomial
regression model for the data, letting correspond to
1998.

b. Plot the scatter diagram and the graph of the function 
that you found in part (a).

c. Compare the values of at , and 6 with the given
data.

Source: Center for Public Integrity.

18. Measles Deaths Measles is still a leading cause of vaccine-
preventable death among children, but because of improve-
ments in immunizations, measles deaths have dropped glob-
ally. The following table gives the number of measles deaths
(in thousands) in sub-Saharan Africa from 1999 through 2005.

t � 0, 3f

f

t � 0

Year 1999 2001 2003 2005

Number 506 338 250 126

Year 1999 2000 2001 2002 2003 2004

Yield per cigarette (mg) 1.71 1.81 1.85 1.84 1.83 1.89

a. Use a graphing utility to find a fourth-degree polynomial
regression model for the data. Let correspond to
1999.

b. Plot the graph of the function that you found in part (a),
using the viewing window .

c. Compute the values of for , and 5.
Source: Massachusetts Tobacco Control Program.

20. Periods of Planets The following table gives the mean distance
between a planet and the sun measured in astronomical

units (an AU is the mean distance between the earth and the
sun), and its period , measured in years, of some planets of
the solar system.

T

D

t � 0, 1, 2, 3, 4f(t)
[0, 5] � [1, 3]

f

t � 0

Planet D T

Mercury

Venus

Earth

Mars

Jupiter

Saturn

0.39

0.72

1.00

1.52

5.20

9.54

0.24

0.62

1.00

1.88

11.9

29.5

a. Use a graphing utility to find a power regression model,
, for the data.

b. Does the model that you obtained in part (a) confirm
Kepler’s Third Law of Planetary Motion? (The squares of
the periods of the planets are proportional to the cubes of
their mean distances from the sun.)

T(D)



21. Enclosing an Area Patricia wishes to have a rectangular-shaped
garden in her backyard. She has 80 ft of fencing with which
to enclose her garden. Letting denote the width of the gar-
den, find a function in the variable that gives the area of
the garden. What is its domain?

22. Enclosing an Area Ramon wishes to have a rectangular-shaped
garden in his backyard. But Ramon wants his garden to have
an area of 250 ft2. Letting denote the width of the garden,
find a function in the variable that gives the length of the
fencing required to construct the garden. What is the domain
of the function?

23. Packaging By cutting away identical squares from each cor-
ner of a rectangular piece of cardboard and folding up the
resulting flaps, an open box can be made. If the cardboard 
is 15 in. long and 8 in. wide and the square cutaways have
dimensions of in. by in., find a function that gives the
volume of the resulting box.

24. Construction Costs A rectangular box is to have a square base
and a volume of 20 ft3. The material for the base costs
30¢/ft2, the material for the sides costs 10¢/ft2, and the
material for the top costs 20¢/ft2. Letting denote the length
of one side of the base, find a function in the variable that
gives the cost of materials for constructing the box.

y

x
x

x
x

8 � 2x

15 � 2x

8

15

x

x

x

x

xx

xx

xx
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x

x

y
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x
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25. Area of a Norman Window A Norman window has the shape of
a rectangle surmounted by a semicircle. Suppose a Norman
window is to have a perimeter of 28 ft. Find a function in
the variable that gives the area of the window.

26. Yield of an Apple Orchard An apple orchard has an average
yield of 36 bushels of apples per tree if tree density is 22
trees per acre. For each unit increase in tree density, the
yield decreases by 2 bushels per tree. Letting denote the
number of trees beyond 22 per acre, find a function of that
gives the yield of apples.

27. Book Design A book designer decided that the pages of a
book should have 1-in. margins at the top and bottom and 
-in. margins on the sides. She further stipulated that each

page should have an area of 50 in.2. Find a function in the
variable , giving the area of the printed page (see the fig-
ure). What is the domain of the function?

28. Profit of a Vineyard Phillip, the proprietor of a vineyard, esti-
mates that if 10,000 bottles of wine are produced this sea-
son, then the profit will be $5 per bottle. But if more than
10,000 bottles are produced, then the profit per bottle for the
entire lot will drop by $0.0002 for each bottle sold. Assume
that at least 10,000 bottles of wine are produced and sold,
and let denote the number of bottles produced and sold
above 10,000.
a. Find a function giving the profit in terms of .
b. What is the profit that Phillip can expect from the sale of

16,000 bottles of wine from his vineyard?

29. Charter Revenue The owner of a luxury motor yacht that sails
among the 4000 Greek islands charges $600 per person per
day if exactly 20 people sign up for the cruise. However, if
more than 20 people (up to the maximum capacity of 90)
sign up for the cruise, then each fare is reduced by $4 per
day for each additional passenger. Assume at least 20 people
sign up for the cruise, and let denote the number of pas-
sengers above 20.
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a. Find a function giving the revenue per day realized
from the charter.

b. What is the revenue per day if 60 people sign up for the
cruise?

c. What is the revenue per day if 80 people sign up for the
cruise?

R 30. Show that the vertex of the parabola ,
where , is .
Hint: Complete the square.

(�b>(2a), f(�b>(2a)))a � 0
f(x) � ax2 � bx � c

CHAPTER 0 REVIEW

In Exercises 1–4, find the slope of the line satisfying the given
condition.

1. Passes through the points and 

2. Has the same slope as the line 

3. Has the same slope as the line perpendicular to the line

4. Has an angle of inclination of 120°

In Exercises 5–10, find an equation of the line satisfying the con-
ditions.

5. Passes through and is parallel to the -axis

6. Passes through and has slope 

7. Passes through and 

8. Passes through and is parallel to the line

9. Passes through and is parallel to the line passing
through the points and 

10. Passes through and is perpendicular to the line

11. Find an equation of the line passing through the point
and the point of intersection of the lines 

and .

12. Dial-up Internet Households The number of U.S. dial-up Inter-
net households stood at 42.5 million at the beginning of
2004 and was projected to decline at the rate of 3.9 million
households per year for the next 6 years.
a. Find a linear function giving the projected U.S. dial-up

Internet households (in millions) in year , where 
corresponds to the beginning of 2004.

b. What is the projected number of U.S. dial-up Internet
households at the beginning of 2010?

Source: Strategy Analytics, Inc.

t � 0t
f

2x � 3y � 13
x � 2y � 3(2, �1)

2x � 3y � 24 � 0
(�2, �4)

(2, 1)(�3, 4)
(�1, 3)

3x � 4y � 8 � 0
(2, 3)

(4, �5)(�2, 3)

�4(1, 3)

x(�2, �4)

�2x � 4y � �6

2x � 3y � 8

(2, �4)(�1, 3)

13. Satellite TV Subscribers The following table gives the number
of satellite TV subscribers in the United States (in millions)
from 1998 through 2005 ( corresponds to 1998).x � 0

REVIEW EXERCISES

Year, x 0 1 2 3 4 5 6 7

Number, y 8.5 11.1 15.0 17.0 18.9 21.5 24.8 27.4

a. Plot the number of satellite TV subscribers in the United
States versus the year .

b. Draw the line through the points and .
c. Find an equation of the line .
d. Assuming that this trend continues, estimate the number

of satellite TV subscribers in the United States in 2006.
Sources: National Cable & Telecommunications Association,
Federal Communications Commission.

14. If , find and simplify .

15. If , find , , , , and .

16. Let 

Find

a.

b.

c. ,

d. ,

In Exercises 17–21, find the domain of the function.

17. 18. t(x) �2x2 � 4f(x) �
x

x2 � 4

h � 0
f(2 � h) � f(2)

h

h � 0
f(�1 � h) � f(�1)

h

f(1)

f(�4)

f(x) � e1�x if  x 	 0

x2 � x if x � 0

f(p)f 1p3 2f 1p4 2f 1p6 2f(0)f(x) � tan x

f(x � h) � f(x)

h
f(x) � x2 � x � 1

L
(7, 27.4)(0, 8.5)L

(x)(y)
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19. 20.

21.

In Exercises 22–23, find the domain and sketch the graph of the
function. What is its range?

22. 23.

In Exercises 24–25, determine whether the function is even, odd,
or neither.

24. 25. ,

26. Convert the angle to radian measure.
a. 120° b. 450° c.

27. Convert the angle to degree measure.

a. radians b. radians c. radians

28. If , find , , , and .

29. Find all values of that satisfy the equation over the interval
.

a. b.

30. Verify the identity.
a.

b.

31. Find the solutions of the equation in .
a. b.

32. If and , find the functions 

, , , , and .

33. Find if and . What is its
domain?

34. Find functions and such that , where
.

35. Find functions , , and such that if F � f � t � hhtf

h(x) � cos2(px)
h � t � ftf

t(x) � 1x � 1f(x) � x2 � 1t � f

t>ff>tftt � ff � t

t(x) �
x

2x2 � 1
f(x) � 2x � 3

sin x � sin 2x � 0cot2 x � cot x � 0
[0, 2p)

sec u � cos u

tan u
� sin u

(sec u � tan u)(1 � sin u) � cos u

cot u � �13cos u �
1

2

[0, 2p)
u

f 1a � p
2 2f(3p)f 1�p4 2f 1p4 2f(0)f(x) � cos x

�
7p

4
�

5p

2

11p

6

�225°

x � 0t(x) �
sin x

x
f(x) � �3x7 � 4x3 � 2x

t(t) � � sin t � � 1f(x) � 11 � x

f(x) �
sin x

2 � cos x

f(x) � sec pxh(x) �
1x � 1

x(x � 2)

43. Plot the graph of .

44. Plot the graph of .

45. Use a calculator or computer to find the zeros of
accurate to five decimal

places.

46. Find the point(s) of intersection of the graphs of
and accurate to five 

decimal places.

47. Find the zero(s) of accurate to
five decimal places.

48. Find the point(s) of intersection of the graphs of
and accurate to four decimal

places.

49. Clark’s Rule Clark’s Rule is a method for calculating pediatric
drug dosages on the basis of a child’s weight. If denotes
the adult dosage (in milligrams) and is the weight of the
child (in pounds), then the child’s dosage is given by

If the adult dose of a substance is 500 mg, how much
should a child who weighs 35 lb receive?

50. Population Growth A study prepared for a Sunbelt town’s
chamber of commerce projected that the population of the
town in the next 3 years will grow according to the rule

where denotes the population months from now. By
how much will the population increase during the next 9
months? The next 16 months?

51. Thurstone Learning Curve Psychologist L.L. Thurstone discov-
ered the following model for the relationship between the
learning time and the length of a list :

where and are constants that depend on the person and
the task. Suppose that for a certain person and a certain task,

and . Compute , , , , and use
this information to sketch the graph of the function . Inter-
pret your results.

52. Forecasting Sales The annual sales of Crimson Drug Store are
expected to be given by

million dollars years from now, whereas the annual sales of
Cambridge Drug Store are expected to be given by

million dollars years from now. When will the annual sales
of Cambridge first surpass the annual sales of Crimson?

t

S2(t) � 1.2 � 0.6t

t

S1(t) � 2.3 � 0.4t

f
f(12)pf(5)f(4)b � 4A � 4
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T � f(n) � An1n � b

nT

tP(t)

P(t) � 50,000 � 30t 3>2 � 20t

D(w) �
aw

150

w
a

t(x) � 3x2 � 2f(x) � sin 2x

f(x) � 2x5 � 3x3 � x2 � 2

t(x) � 0.1x2f(x) � cos2 x

f(x) � x5 � 4x3 � x2 � x � 1

f(x) � x3 � 0.01x2

f(x) � x5 � 3x2 � x � 1

.

36. If and , find such that .

In Exercises 37–42, use a transformation to sketch the graph of
the function.

37. 38.

39. 40.

41. 42. y � � sin x �y � 3 cos
x

2

y �
1

x � 1
y � 2 � 1x

y � 3(x � 2)2y � x3 � 2

h � t � fth(x) � 4x2 � 1f(x) � 2x

F(x) � cos2(1 � 1x � 2)
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53. Oil Spills The oil spilling from the ruptured hull of a
grounded tanker spreads in all directions in calm waters.
Suppose that the area polluted after sec is a circle of radius

and the radius is increasing at the rate of 2 ft/sec.
a. Find a function giving the area polluted in terms of .
b. Find a function giving the radius of the polluted area in

terms of .
c. Find a function giving the area polluted in terms of .
d. What is the size of the polluted area 30 sec after the hull

was ruptured?

54. Film Conversion Prices PhotoMart transfers movie films to
DVDs. The fees charged for this service are shown in the
following table. Find a function relating the cost to
the number of feet of film transferred. Sketch the graph of
the function .C

x
C(x)C

th
t

t

rf
r

t

55. Packaging An open box is made from a square piece of card-
board by cutting away identical squares from each corner of
the cardboard and folding up the resulting flaps. The length
of one side of the cardboard is 10 in. Let the square cut-
aways have dimensions in. by in.
a. Draw and label an appropriate figure.
b. Find a function of giving the volume of the resulting box.
c. What is the volume of the box if the cutaway is 1 in. by

1 in.?

56. A closed cylindrical can has a volume of 54 in.3. Find a
function giving the total area of the cylindrical can in
terms of , the radius of the base. What is the total surface
area of a closed cylindrical can of radius 4 in.?

57. A man wishes to construct a cylindrical barrel with a capac-
ity of ft3. The cost of the material for the side of the
barrel is $4/ft2, and the cost of the material for the top and
bottom is $8/ft2.
a. Draw and label an appropriate figure.
b. Find a function in terms of the radius of the barrel giving

the total cost for constructing the barrel.
c. What is the total cost for constructing a barrel of radius 

2 ft?

58. Linear Depreciation A farmer purchases a new machine for
$10,000. The machine is to have a salvage value of $2000
after 5 years. Assuming linear depreciation, find a function
giving the book value of the machine after years, where

.0 	 t 	 5
tV

32p

r
S

x

xx

Length of film, (ft)x Cost for conversion ($)

x � 400

300 � x 	 400

200 � x 	 300

100 � x 	 200

1 � x 	 100 5.00

9.00

12.50

15.00

7.00 � 0.02x
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THE NOTION OF a limit permeates much of our work in calculus. We begin with an

intuitive introduction to limits. We then develop techniques that will allow us to find

limits much more easily than would be the case if we had to use the definition. The

limit of a function allows us to define a very important property of functions: that of

continuity. Finally, the limit plays a central role in the study of the rate of change of

one quantity with respect to another—the central theme of calculus.

1 Limits

A maglev is a train that uses elec-
tromagnetic force to levitate, guide,

and propel it. Compared to the
more conventional steel-wheel and

track trains, the maglev has the
potential to reach very high speeds,
perhaps 600 mph. In Section 1.1 we
use the maglev as a vehicle to help

us introduce the concept of the
limit of a function. Specifically, we

will see how the limit concept
enables us to find the velocity of
the maglev knowing only its posi-

tion as a function of time. Then,
generalizing, we use the limit to

define the derivative of a function,
the fundamental tool in differential
calculus, which we will use to solve

many practical problems in the
ensuing chapters. Ch
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78 Chapter 1 Limits

1.1 An Intuitive Introduction to Limits

A Real-Life Example
A prototype of a maglev (magnetic levitation train) moves along a straight monorail.
To describe the motion of the maglev, we can think of the track as a coordinate line.
From data obtained in a test run, engineers have determined that the maglev’s displace-
ment (directed distance) measured in feet from the origin at time (in seconds) is given
by

(1)

where is called the position function of the maglev. The position of the maglev at
time , measured in feet from its initial position, is

, , , , ,

(See Figure 1.)

f(30) � 3600pf(3) � 36f(2) � 16f(1) � 4f(0) � 0

t � 0, 1, 2, 3, p , 30
f

0 � t � 30s � f(t) � 4t 2

t

FIGURE 1
A maglev moving along an 

elevated monorail track

It appears that the maglev is accelerating over the time interval and, there-
fore, that its velocity varies over time. This raises the following question: Can we find
the velocity of the maglev at any time in the interval using only Equation (1)?
To be more specific, can we find the velocity of the maglev when, say, ?

For a start, let’s see what quantities we can compute. We can certainly compute the
position of the maglev for some selected values of by using Equation (1), as we did
earlier. Using these values of , we can then compute the average velocity of the maglev
over any interval of time. For example, to compute the average velocity of the train
over the time interval , we first compute the displacement of the train over that
interval, , and then divide this quantity by the time elapsed. Thus,

or 24 ft/sec. Although this is not quite the velocity of the maglev at , it does pro-
vide us with an approximation of its velocity at that time.

Can we do better? Intuitively, the smaller the time interval we pick (with as
the left endpoint), the more closely the average velocity over that time interval will
approximate the actual velocity of the maglev at .*

Now let’s describe this process in general terms. Let . Then the average veloc-
ity of the maglev over the time interval is given by

(2)√av �
f(t) � f(2)

t � 2
�

4t 2 � 4(2)2

t � 2
�

4(t 2 � 4)

t � 2

[2, t]
t � 2

t � 2

t � 2

t � 2

displacement

time elapsed
�

f(4) � f(2)

4 � 2
�

4(4)2 � 4(2)2

2
�

64 � 16

2
� 24

f(4) � f(2)
[2, 4]

f
t

t � 2
(0, 30)

[0, 30]

*Actually, any interval containing will do.t � 2

s (ft)3600361640
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By choosing the values of closer and closer to 2, we obtain a sequence of numbers
that gives the average velocities of the maglev over smaller and smaller time intervals.
As we observed earlier, this sequence of numbers should approach the instantaneous
velocity of the train at .

Let’s try some sample calculations. Using Equation (2) and taking the sequence
, 2.1, 2.01, 2.001, and 2.0001, which approaches 2, we find

The average velocity over is ft/sec

The average velocity over is ft/sec

and so forth. These results are summarized in Table 1. From the table we see that the
average velocity of the maglev seems to approach the number 16 as it is computed over
smaller and smaller time intervals. These computations suggest that the instantaneous
velocity of the train at is 16 ft/sec.t � 2

4(2.12 � 4)

2.1 � 2
� 16.4[2, 2.1]

4(2.52 � 4)

2.5 � 2
� 18[2, 2.5]

t � 2.5

t � 2

t

TABLE 1 The average velocity of the maglev

t 2.5 2.1 2.01 2.001 2.0001

over [2, t]av 18 16.4 16.04 16.004 16.0004

Note We cannot obtain the instantaneous velocity for the maglev at by substi-
tuting into Equation (2) because this value of is not in the domain of the aver-
age velocity function.

Intuitive Definition of a Limit
Consider the function defined by

which gives the average velocity of the maglev (see Equation (2)). Suppose that we
are required to determine the value that approaches as approaches the (fixed)
number 2. If we take a sequence of values of approaching 2 from the right-hand side,
as we did earlier, we see that approaches the number 16. Similarly, if we take a
sequence of values of approaching 2 from the left, such as , 1.9, 1.99, 1.999,
and 1.9999, we obtain the results in Table 2.

t � 1.5t
t(t)

t
tt(t)

t(t) �
4(t 2 � 4)

t � 2

t

tt � 2
t � 2

TABLE 2 The values of as approaches 2 
from the left

tt

t 1.5 1.9 1.99 1.999 1.9999

g(t) 14 15.6 15.96 15.996 15.9996

Observe that approaches the number 16 as approaches 2—this time from the
left-hand side. In other words, as approaches 2 from either side of 2, approaches
16. In this situation we say that the limit of as approaches 2 is 16, written

lim
t→2

t(t) � lim
t→2

4(t 2 � 4)

t � 2
� 16

tt(t)
t(t)t

tt(t)
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The graph of the function , shown in Figure 2, confirms this observation.t

FIGURE 2
As approaches 2, approaches 16.t(t)t

Note Observe that the number 2 does not lie in the domain of . (For this reason the
point is not on the graph of , and we indicate this by an open circle on the
graph.) Notice, too, that the existence or nonexistence of at plays no role in
our computation of the limit.

t � 2t(t)
t(2, 16)

t

DEFINITION Limit of a Function at a Number

Let be a function defined on an open interval containing , with the possible
exception of itself. Then the limit of as approaches is the number ,
written

(3)

if can be made as close to as we please by taking to be sufficiently close 
to .a

xLf(x)

lim
x→a

f(x) � L

Laxf(x)a
af

EXAMPLE 1 Use the graph of the function shown in Figure 3 to find the given limit,
if it exists.

a. b. c. d. e. lim
x→10

f(x)lim
x→7

f(x)lim
x→5

f(x)lim
x→3

f(x)lim
x→1

f(x)

f

FIGURE 3
The graph of the function f

Solution
a. The values of can be made as close to 2 as we please by taking to be suffi-

ciently close to 1. So .
b. The values of can be made as close to 3 as we please by taking to be suffi-

ciently close to 3. So . Observe that , but this has no
bearing on the answer.

f(3) � 1limx→3 f(x) � 3
xf

limx→1 f(x) � 2
xf

tt

y � g(t)

f(t)

y

20

16

12

8

4

1 2�1�2 3 40

x

y

5

4

1

2

3

1 2 3 4 5 6 7 8 9 10 150
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c. No matter how close is to 5, there are values of , corresponding to values of 
smaller than 5, that are close to 1; and there are values of , corresponding to

values of greater than 5, that are close to 4. In other words, there is no unique
number that approaches as approaches 5. Therefore, does not
exist. Observe that , but, again, this has no bearing on the existence or
nonexistence of the limit.

d. No matter how close is to 7, there are values of that are close to 2 (corre-
sponding to values of less than 7) and values of that are close to 4 (corre-
sponding to values of greater than 7). So does not exist. Observe
that is not in the domain of , but this does not affect our answer.

e. As approaches 10 from the right, increases without bound. Therefore,
cannot approach a unique number as approaches 10, and does not
exist. Here, , but this fact plays no role in our determination of the
limit.

Note Example 1 shows that when we evaluate the limit of a function as approaches
, it is immaterial whether is defined at . Furthermore, even if is defined at ,

the value of at , , has no bearing on the existence or the value of the limit in
question.

f(a)af
afafa

xf

f(10) � 1
limx→10 f(x)x

f(x)f(x)x
fx � 7

limx→7 f(x)x
fx
fx

f(5) � 1
limx→5 f(x)xf(x)

x
fx

fx

EXAMPLE 2 Find if it exists, where is the piecewise-defined function

Solution From the graph of shown in Figure 4, we see that . If you
compare the function with the function discussed earlier (page 80), you will see
that the values of are identical to the values of except at (Figures 2 and 4).
Thus, the limits of and as approaches 2 are equal, as expected. We can see
why the graphs of the two functions coincide everywhere except at by writing

Use instead of .

Assume that .

which is equivalent to the rule defining when .x � 2f

x � 2 � 4(x � 2)

 �
4(x � 2)(x � 2)

x � 2

tx t(x) �
4(x2 � 4)

x � 2
 

x � 2
xt(x)f(x)

x � 2tf
tf

limx→2 f(x) � 16f

f(x) � e4x � 8 if x � 2

4 if x � 2

flimx→2 f(x)

FIGURE 4
The graph of coincides with the graph
of the function shown in Figure 2,
except at .x � 2

t

f

EXAMPLE 3 The Heaviside Function The Heaviside function (the unit step func-
tion) is defined by

This function, named after Oliver Heaviside (1850–1925), can be used to describe the
flow of current in a DC electrical circuit that is switched on at time . Show that

does not exist.

Solution The graph of is shown in Figure 5. You can see from the graph that no
matter how close is to 0, takes on the value 1 or 0, depending on whether is
to the right or to the left of 0. Therefore, cannot approach a unique number as

approaches 0, and we conclude that does not exist.limt→0 H(t)t
LH(t)
tH(t)t

H

limt→0 H(t)
t � 0

H(t) � e0 if t � 0

1 if t 	 0

H

y

x

y � f(x)
20

16

12

8

4

1 2�1�2 3 40

FIGURE 5
does not exist.limt→0 H(t)

t

y

1

0
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One-Sided Limits
Let’s reexamine the Heaviside function. We have shown that does not exist,
but what can we say about the behavior of at values of that are close to but
greater than 0? If you look at Figure 5 again, it is evident that as approaches 0 through
positive values (from the right of 0), approaches 1. In this situation we say that
the right-hand limit of as approaches 0 is 1, written

More generally, we have the following:

lim
t→0�

H(t) � 1

tH
H(t)

t
tH(t)

limt→0 H(t)

DEFINITION Right-Hand Limit of a Function

Let be a function defined for all values of close to but greater than . Then
the right-hand limit of as approaches is equal to , written

(4)

if can be made as close to as we please by taking to be sufficiently close
to but greater than .a

xLf(x)

lim
x→a�

f(x) � L

Laxf(x)
axf

Note Equation (4) is just Equation (3) with the further restriction .

The left-hand limit of a function is defined in a similar manner.

x � a

DEFINITION Left-Hand Limit of a Function

Let be a function defined for all values of close to but less than . Then the
left-hand limit of as approaches is equal to , written

(5)

if can be made as close to as we please by taking to be sufficiently close
to but less than .a

xLf(x)

lim
x→a�

f(x) � L

Laxf(x)
axf

For the function of Example 3 we have .
The right-hand and left-hand limits of a function, and ,

are often referred to as one-sided limits, whereas is called a two-sided
limit.

For some functions it makes sense to look only at one-sided limits. Consider, for
example, the function defined by , whose domain is . Here it
makes sense to talk only about the right-hand limit of as approaches 1. Also,
from Figure 6, we see that .limx→1� f(x) � 0

xf(x)
[1, �)f(x) � 1x � 1f

limx→a f(x)
limx→a� f(x)limx→a� f(x)

limt→0� H(t) � 0H

FIGURE 6
The right-hand limit of 
as approaches 1 is 0.x

f(x) � 1x � 1

x

y

1

2

3

1 2 3 40
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EXAMPLE 4 Let . Find and .

Solution The graph of is the upper semicircle shown in Figure 7. From this graph
we see that and .

Theorem 1 gives the connection between one-sided limits and two-sided limits.

limx→2� f(x) � 0limx→�2� f(x) � 0
f

limx→2� f(x)limx→�2� f(x)f(x) �24 � x2

FIGURE 7
We can approach only from the
right and 2 only from the left.

�2
THEOREM 1 Relationship Between One-Sided and Two-Sided Limits

Let be a function defined on an open interval containing , with the possible
exception of itself. Then

if and only if (6)lim
x→a�

f(x) � lim
x→a�

f(x) � Llim
x→a

f(x) � L

a
af

Thus, the (two-sided) limit exists if and only if the one-sided limits exist and are equal.

EXAMPLE 5 Sketch the graph of the function defined by

Use your graph to find , and .

Solution From the graph of , shown in Figure 8, we see that

and

Since the one-sided limits are equal, we conclude that . Notice that
, but this has no effect on the value of the limit.f(1) � 1

limx→1 f(x) � 2

lim
x→1�

f(x) � 2lim
x→1�

f(x) � 2

f

limx→1 f(x)limx→1� f(x), limx→1� f(x)

f(x) � •
3 � x if x � 1

1 if x � 1

2 � 1x � 1 if x � 1

f

y

x

y � 4 � x2
2

2�2 0

FIGURE 8
lim

x→1�
f(x) � lim

x→1�
f(x) � lim

x→1
f(x) � 2

EXAMPLE 6 Let . Use your calculator to complete the following table.f(x) �
sin x

x

x 
1 
0.5 
0.1 
0.05 
0.01 
0.005 
0.001

sin x
x

Then sketch the graph of , and use your graph to guess at the value of ,
, and .

Solution Using a calculator, we obtain Table 3. (Remember to use radian mode!) The
graph of is shown in Figure 9. We find

, , and so

We will prove in Section 1.2 that our guesses here are correct.

lim
x→0

f(x) � 1lim
x→0�

f(x) � 1lim
x→0�

f(x) � 1

f

limx→0 f(x)limx→0� f(x)
limx→0� f(x)f

y

x

4

3

1

2

1 2�1�3 �2 3 4 50
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x
sin x

x


0.001


0.005


0.01


0.05


0.1


0.5


1 0.841470985

0.958851077

0.998334166

0.999583385

0.999983333

0.999995833

0.999999833
FIGURE 9
The graph of f(x) �

sin x

x

TABLE 3

EXAMPLE 7 Let . Evaluate the limit, if it exists.

a. b. c.

Solution Some values of the function are listed in Table 4, and the graph of is shown
in Figure 10.

f

lim
x→0

f(x)lim
x→0�

f(x)lim
x→0�

f(x)

f(x) �
1

x2

x
1

x2


0.001


0.01


0.05


0.1


0.5


1 1

4

100

400

10,000

1,000,000

FIGURE 10
As from the left (or from the
right), increases without bound.f(x)

x → 0

TABLE 4

x

y

1

1�1 0

f(x) �
x2
1

x

y

1

1�1 0

a. As approaches 0 from the left, increases without bound and does not
approach a unique number. Therefore, does not exist.

b. As approaches 0 from the right, increases without bound and does not
approach a unique number. Therefore, does not exist.

c. From the results of parts (a) and (b) we conclude that does not exist.

Note Even though the limit does not exist, we write 
to indicate that increases without bound as approaches 0. We will study “infinite
limits” in Section 3.5.

xf(x)
limx→0 (1>x2) � �limx→0 f(x)

limx→0 f(x)
limx→0� f(x)

f(x)x
limx→0� f(x)

f(x)x

JOHN WALLIS
(1616–1703)

The first mathematician to use the symbol
to indicate infinity, John Wallis con-

tributed to the earliest forms, notations,
and terms of calculus and other areas of
mathematics. Born November 23, 1616, in
the borough of Ashford, in Kent, England,
Wallis attended boarding school as a child,
and his exceptional mathematical ability
was evident at an early age. He mastered
arithmetic in two weeks and was able to
solve a problem such as the square root of
a 53-digit number to 17 places without
notation. Considered to be the most influ-
ential British mathematician before Isaac
Newton (page 179), Wallis published his
first major work, Arithmetica Infinitorum,
in 1656. It became a standard reference
and is still recognized as a monumental
text in British mathematics.
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Using Graphing Utilities to Evaluate Limits
In Example 6 we employed both a numerical and a graphical approach to help us con-
jecture that

Either or both of these approaches can often be used to estimate the limit of a func-
tion as approaches a specified value. But there are pitfalls in using graphing utilities,
as the following examples show.

x

lim
x→0

sin x

x
� 1

EXAMPLE 8 Use a graphing utility to find

Solution We first investigate the problem numerically by constructing a table of val-
ues of corresponding to values of that approach 0 from either
side of 0. Table 5a shows the values of for close to but to the left of 0, and Table
5b shows the values of for close to but to the right of 0.

If you look at evaluated at the first nine values of shown in each column, we
are tempted to conclude that the required limit is . But how do we reconcile this result
with the last two values of in each column? Upon reflection we see that this discrep-
ancy can be attributed to a phenomenon known as loss of significance.

f

1
4

xf
xf

xf
xf(x) � (1x � 4 � 2)>x

lim
x→0

1x � 4 � 2
x

x 1x � 4 � 2
x

�10�13

�10�12

�10�11

�10�10

�10�9

�10�8

�10�7

�10�6

�10�5

�0.0001

�0.001 0.250015627

0.250001562

0.25000016

0.25

0.25

0.25

0.25

0.25

0.25

0.3

0

x 1x � 4 � 2
x

10�13

10�12

10�11

10�10

10�9

10�8

10�7

10�6

10�5

0.0001

0.001 0.249984377

0.249998438

0.24999984

0.25

0.25

0.25

0.25

0.25

0.25

0.2

0

TABLE 5 Values of for close to 0xf

(a) approaches 0 from the left.x (b) approaches 0 from the right.x

When is very small, the computed values of are very close to 2. For
or (and values that are smaller in absolute value) the calcu-

lator rounds off the value of to 2 and gives the value of as 0. Fig-
ures 11a–b show the graphs of using the viewing windows and

, respectively. Both these graphs reinforce the earlier
observation that the required limit is . The graph of using the viewing window

, shown in Figure 11c, proves to be of no help
because of the problem with loss of significance stated earlier.
[�10�11, 10�11] � [0.24995, 0.25005]

f1
4

[�10�3, 10�3] � [0.2, 0.3]
[�2, 2] � [0.2, 0.3]f

f(x)1x � 4
x � 10�13x � �10�13

1x � 4x



Having recognized the source of the difficulty, how can we remedy the situation?
Let’s find another expression for that does not involve subtracting numbers that
are so close to each other that it results in a loss of significance. Rationalizing the
numerator, we obtain

 �
1

1x � 4 � 2
  x � 0

 �
(x � 4) � 4

x(1x � 4 � 2)

 f(x) �
1x � 4 � 2

x
�
1x � 4 � 2

x
�
1x � 4 � 2

1x � 4 � 2

f(x)
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(a � b)(a � b) � a2 � b2

FIGURE 11
The graphs of in different viewing windowsf(x) �

1x � 4 � 2
x

Observe that the use of the last expression avoids the pitfalls that we encountered with
the original expression. We leave it as an exercise to show that both a numerical analy-
sis and a graphical analysis of

suggest that a good guess for

is , a result that can be proved analytically using the techniques to be developed in
the next section.

1
4

lim
x→0

1x � 4 � 2
x

� lim
x→0

1

1x � 4 � 2

lim
x→0

1

1x � 4 � 2

EXAMPLE 9 Find .

Solution Let . The graph of using the viewing window
does not seem to be of any help to us in finding the required

limit (see Figure 12). To obtain a more accurate graph of , note that the
sine function is bounded by and 1. Thus, the graph of lies between the horizon-
tal lines and . Next, observe that the sine function has period . Since

increases without bound (decreases without bound) as approaches 0 from the
right (from the left), we see that undergoes more and more cycles as 
approaches 0. Thus, the graph of oscillates between and 1, as shown
in Figure 13. Therefore, it seems reasonable to conjecture that the limit does not exist.
Indeed, we can demonstrate this conclusion by constructing Table 6.

�1f(x) � sin(1>x)
xsin(1>x)

x1>x 2py � 1y � �1
f�1

f(x) � sin(1>x)
[�1, 1] � [�1.2, 1.2]

ff(x) � sin(1>x)

lim
x→0

sin 
1
x

FIGURE 12
The graph of in the
viewing window [�1, 1] � [�1.2, 1.2]

f(x) � sin(1>x)

�2 2

(a) [�2, 2] � [0.2, 0.3] (b) [�10�3, 10�3] � [0.2, 0.3] (c) [�10�11, 10�11] � [0.24995, 0.25005]

.30

.20
�.001 .001

�10�11 10�11

.30

.20

.25005

.24995

�1 1

1.2

�1.2



1.1 An Intuitive Introduction to Limits 87

Note that the values of approach 0 from the right. From the table we see that no
matter how close is to 0 (from the right), there are values of corresponding to these
values of that are equal to 1 or . Therefore, cannot approach any fixed num-
ber as approaches 0. A similar result is true if the values of approach 0 from the
left. This shows that

does not exist.

lim
x→0

sin
1
x

xx
f(x)�1x

fx
x

FIGURE 13
The graph of f(x) � sin(1>x)

TABLE 6

x
2
p

2

3p

2

5p

2

7p

2

9p

2

11p
p

sin
1
x

1 �1 1 �1 1 �1 p
x

y
1

�1

1�1 0

1. Explain what is meant by the statement .
2. a. If , what can you say about ?

Explain.
b. If , what can you say about ?

Explain.
limx→2 f(x)f(2) � 6

f(3)limx→3 f(x) � 5
limx→2 f(x) � 3 3. Explain what is meant by the statement .

4. Suppose and .
a. What can you say about ? Explain.
b. What can you say about ? Explain.f(1)

limx→1 f(x)
limx→1� f(x) � 4limx→1� f(x) � 3

limx→3� f(x) � 2

1.1 CONCEPT QUESTIONS

Videos for selected exercises are available online at www.academic.cengage.com/login.V

In Exercises 1–6, use the graph of the function to find each
limit.

1. 2.

a. a.

b. b.

c. c. lim
x→2

f(x)lim
x→2

f(x)

lim
x→2�

f(x)lim
x→2�

f(x)

lim
x→2�

f(x)lim
x→2�

f(x)

x

y

1

3

�2

�1
1 2 3 4�1�2�3 0x

y

1

3

�2

�1
1 2 3�1�2�3 0

f 3. 4.

a. a.

b. b.

c. c. lim
x→3

f(x)lim
x→1

f(x)

lim
x→3�

f(x)lim
x→1�

f(x)

lim
x→3�

f(x)lim
x→1�

f(x)

x

y

1

3

2

1 2 3�1 0
x

y

1

3

4

2

1 2 3 4�1�2�3�4 0

1.1 EXERCISES

www.academic.cengage.com/login
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5.

a. b. c.

6.

a. b. c.

7. Use the graph of the function to determine whether each
statement is true or false. Explain.

a. b.

c. d.

e. does not exist f.

8. Use the graph of the function to determine whether each
statement is true or false. Explain.

y � f(x)

x

y

1

2

3

1 2 3 4 5�1�2�3 0

f

lim
x→4

f(x) � 2lim
x→4�

f(x)

lim
x→4�

f(x) � 3lim
x→2

f(x) � 1

lim
x→0

f(x) � 2lim
x→�3�

f(x) � 2

y � f(x)

x

y

1

2

3

4

1 2 3 4 5 6�1�2�3 0

f

lim
x→0

f(x)lim
x→0�

f(x)lim
x→0�

f(x)

x

y

1

2

3

1 2 3�1
�1

�2

�3

0

lim
x→�1

f(x)lim
x→�1�

f(x)lim
x→�1�

f(x)

x

y

2

1 2 3

�2

�2�3 0

a. b.

c. d.

e. does not exist f.

In Exercises 9–16, complete the table by computing at the
given values of , accurate to five decimal places. Use the results
to guess at the indicated limit, if it exists.

9. lim
x→1

x � 1

x2 � 3x � 2

x
f(x)

lim
x→5�

f(x) � 3lim
x→3

f(x)

lim
x→2�

f(x) � 3lim
x→2�

f(x) � 2

lim
x→0

f(x) � f(0)lim
x→�3�

f(x) � 1

x 0.9 0.99 0.999 1.001 1.01 1.1

f(x)

10. lim
x→1

x � 1

x2 � x � 2

x 0.9 0.99 0.999 1.001 1.01 1.1

f(x)

x 1.9 1.99 1.999 2.001 2.01 2.1

f(x)

x 1.9 1.99 1.999 2.001 2.01 2.1

f(x)

x �0.1 �0.01 �0.001 0.001 0.01 0.1

f(x)

11. lim
x→2

1x � 2 � 2

x � 2

12. lim
x→0

13 � x � 13 � x

x

13. lim
x→2

1

12 � x
�

1

2

x � 2

14. lim
x→3

31x � 1 � 2x

x(x � 3)

x 2.9 2.99 2.999 3.001 3.01 3.1

f(x)
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15. lim
x→0

x

sin x

x �0.1 �0.01 �0.001 0.001 0.01 0.1

f(x)

16. lim
x→0

(x � 1) cos x � 1

(x � 1) sin x

x �0.1 �0.01 �0.001 0.001 0.01 0.1

f(x)

In Exercises 17–22, sketch the graph of the function and evalu-
ate (a) , (b) , and (c) for the
given value of .

17. ;

18. ;

19. ;

20. ;

21. ;

22. ;

The symbol denotes the greatest integer function defined by
the greatest integer such that . For example,

, and . In Exercises 23–28, use the graph
of the function to find the indicated limit, if it exists.

23. 24.

25. 26.

27. 28. lim
x→2.4

Œ2x œlim
x→3.1

Œx œ
lim

x→�1
Œx œlim

x→�1�
Œx œ

lim
x→3�

Œx œlim
x→3�

Œx œ

Œ�2.7 œ � �3Œ2.8 œ � 2
n � xnŒx œ �

Œ  œ

a � 1f(x) � •
�2x � 4 if x � 1

4 if x � 1

x2 � 1 if x � 1

a � 1f(x) � •
x if x � 1

2 if x � 1

�x � 2 if x � 1

a � 0f(x) � ex2 � 1 if x � 0

1 if x � 0

a � 0f(x) � e�x2 � 4 if x � 0

2 if x � 0

a � 4f(x) � e2x � 4 if x � 4

x � 2 if x 	 4

a � 3f(x) � ex � 1 if x � 3

�2x � 8 if x � 3

a
limx→a f(x)limx→a� f(x)limx→a� f(x)

f

29. Let

(As approaches 0 from the right, oscillates more and
more.) Use the figure and construct a table of values to
guess at , and . Justify
your answer.

30. Let

Use the figure, and construct a table of values to guess at
, , and . Justify your

answer.

31. Let

a. Sketch the graph of .
b. Find all values of in the domain of at which the limit

of exists.
c. Find all values of in the domain of at which the left-

hand limit of exists.
d. Find all values of in the domain of at which the right-

hand limit of exists.f
fx

f
fx

f
fx

f

f(x) � d1
x

if x � 0

sin x if 0 � x � p

0 if x 	 p

limx→0 f(x)limx→0� f(x)limx→0� f(x)

x

y

y � �x y � x

f(x) � •
0 if x � 0

x sin
1
x

if x � 0

limx→0 f(x)limx→0� f(x), limx→0� f(x)

yx

x

y

1

�1

0

f(x) � •
0 if x � 0

sin
1
x

if x � 0
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32. Let

a. Sketch the graph of .
b. Find all values of in the domain of at which the limit

of exists.
c. Find all values of in the domain of at which the left-

hand limit of exists.
d. Find all values of in the domain of at which the right-

hand limit of exists.

33. The Heaviside Function A generalization of the unit step func-
tion or Heaviside function of Example 3 is the function

defined by

where is a constant and . Show that if , then
does not exist.

34. The Square-Wave Function The square-wave function can be
expressed in terms of the Heaviside function (Exercise 33)
as follows:

Referring to the following figure, show that does
not exist for , 2, 3, .

t

y

k

2k 3k 4k 5kk0

pn � 1
limt→nk f(t)

 � Hk(t � 3k) � Hk(t � 4k) � p
 f(t) � Hk(t) � Hk(t � k) � Hk(t � 2k)

f

limt→t0 Hc(t � t0)
c � 0t0 	 0c

Hc(t � t0) � e0 if t � t0

c if t 	 t0

Hc

H

f
fx

f
fx

f
fx

f

f(x) � •
�x2 if x � 0

tan x if 0 � x � p
2

1 if x 	 p
2

35. Let , and assume that 
exists. (We will establish this in Chapter 6.) Find its value 
to four decimal places of accuracy by computing for

, 0.01, 0.001, 0.0001, 0.00001, 0.000001, and
0.0000001.

36. Let . By computing for ,
, and , accurate to five decimal places, guess at

.

In Exercises 37–42, plot the graph of . Then use the graph to
guess at the specified limit (if it exists).

37. ;

38. ;

39. ;

40. ;

41. ;

42. ;

In Exercises 43–46, determine whether the statement is true or
false. If it is true, explain why. If it is false, explain why or give
an example that shows it is false.

43. If , then .

44. If is defined at , then exists.

45. If , then .

46. If both and exist, then 
exists.

limx→a f(x)limx→a� f(x)limx→a� f(x)

f(a) � t(a)limx→a f(x) � limx→a t(x)

limx→a f(x)af

f(a) � climx→a f(x) � c

lim
x→0

f(x)f(x) �
sin 2x

tan 4x

lim
x→0

f(x)f(x) �
cos x � 1

x2

lim
x→0

f(x)f(x) �
tan x

x

lim
x→1

f(x)f(x) �
x3 � x2 � 3x � 1

�x � 1 �

lim
x→3

f(x)f(x) �
x � 3

1x � 1 � 2

lim
x→2

f(x)f(x) �
2x2 � x � 6

x � 2

f

limu→0 (tan u � u)>u3

0.001
0.01

u � 
0.1f(u)f(u) � (tan u � u)>u3

h � 0.1
f(h)

limh→0 (1 � h)1>hf(h) � (1 � h)1>h

1.2 Techniques for Finding Limits

Computing Limits Using the Laws of Limits
In Section 1.1 we used tables of functional values and graphs of functions to help us
guess at the limit of a function, if it exists. This approach, however, is useful only in
suggesting whether the limit exists and what its value might be for simple functions.
In practice, the limit of a function is evaluated by using the laws of limits that we now
introduce.

LAW 1 Limit of a Constant Function 

If is a real number, then

lim
x→a

c � c

c

f(x) � c



EXAMPLE 1 , , and .limx→0 2p � 2plimx→�1 3 � 3limx→2 5 � 5

LAW 2 Limit of the Identity Function 

lim
x→a

x � a

f(x) � x

FIGURE 2
If is the identity function ,
then .limx→a f(x) � a

f(x) � xf

EXAMPLE 2 , , and .

The following limit laws allow us to find the limits of functions algebraically.

limx→�p x � �plimx→0 x � 0limx→4 x � 4

You can see this intuitively by studying the graph of the constant function 
shown in Figure 1. You will be asked to prove this law in Exercise 15, Section 1.3.

f(x) � c

FIGURE 1
For the constant function ,

.limx→a f(x) � c
f(x) � c

1.2 Techniques for Finding Limits 91

Again, you can see this intuitively by examining the graph of the identity function
. (See Figure 2.) You will also be asked to prove this law in Exercise 16, Sec-

tion 1.3.
f(x) � x

y

x

y � c

a0

x

y
y � x

a

a

0

LIMIT LAWS
If and , then

LAW 3 Sum Law

LAW 4 Product Law

LAW 5 Constant Multiple Law

, for every 

LAW 6 Quotient Law

, provided that 

LAW 7 Root Law

, provided that is a positive integer,
and if is evennL � 0

nlim
x→a
1n f(x) � 1n L

M � 0lim
x→a

f(x)

t(x)
�

L

M

clim
x→a

[cf(x)] � cL

lim
x→a

[ f(x)t(x)] � LM

lim
x→a

[ f(x) 
 t(x)] � L 
 M

limx→a t(x) � Mlimx→a f(x) � L

In words, these laws say the following:

3. The limit of the sum (difference) of two functions is the sum (difference) of
their limits.

4. The limit of the product of two functions is the product of their limits.
5. The limit of a constant times a function is the constant times the limit of the

function.
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6. The limit of a quotient of two functions is the quotient of their limits, provided
that the limit of the denominator is not zero.

7. The limit of the th root of a function is the th root of the limit of the function,
provided that is a positive integer and if is even.

(We will prove the Sum Law in Section 1.3. The other laws are proved in Appen-
dix B.)

Although the Sum Law and the Product Law are stated for two functions, they are
also valid for any finite number of functions. For example, if

, , ,

then

and
(1)

If we take , then Equation (1) gives the following
result for powers of .f

f1(x) � f2(x) � p � fn(x) � f(x)

lim
x→a

[ f1(x)f2(x) p fn(x)] � L1L2
p Ln

lim
x→a

[ f1(x) � f2(x) � p � fn(x)] � L1 � L2 � p � Ln

lim
x→a

fn(x) � Lnplim
x→a

f2(x) � L2lim
x→a

f1(x) � L1

nL � 0n
nn

LAW 8 If is a positive integer and , then .limx→a[ f(x)]n � Lnlimx→a f(x) � Ln

Next, if we take , then Equation (1) and Law 8 give the following result.f(x) � x

LAW 9 , where is a positive integer.nlimx→a xn � an

EXAMPLE 3 Find .

Solution
Law 3

Law 5

Law 9

Limits of Polynomial and Rational Functions
The method of solution that we used in Example 3 can be used to prove the following.

 � 3

 � 2(2)3 � 4(2)2 � 3

 � 2 lim
x→2

x3 � 4 lim
x→2

x2 � lim
x→2

3

 lim
x→2

(2x3 � 4x2 � 3) � lim
x→2

2x3 � lim
x→2

4x2 � lim
x→2

3

limx→2(2x3 � 4x2 � 3)

LAW 10 Limits of Polynomial Functions

If is a polynomial function, then

lim
x→a

p(x) � p(a)

p(x) � anx
n � an�1x

n�1 � p � a0
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Thus, the limit of a polynomial function as approaches is equal to the value of
the function at .

PROOF Applying the (generalized) sum law and the constant multiple law repeatedly,
we find

Next, using Laws 1, 2, and 9, we obtain

In light of this, we could have solved the problem posed in Example 3 as follows:

lim
x→2

(2x3 � 4x2 � 3) � 2(2)3 � 4(2)2 � 3 � 3

lim
x→a

p(x) � ana
n � an�1a

n�1 � p � a0 � p(a)

 � an(lim
x→a

xn) � an�1(lim
x→a

xn�1) � p � lim
x→a

a0

 lim
x→a

p(x) � lim
x→a

(anx
n � an�1x

n�1 � p � a0)

a
ax

EXAMPLE 4 Find .

Solution

Law 8

Law 10

The following result follows from the Quotient Law for limits and Law 10.

 � 25 � 32

 � [3(�1)2 � 2(�1) � 1]5

 lim
x→�1

(3x2 � 2x � 1)5 � [ lim
x→�1

(3x2 � 2x � 1)]5

limx→�1(3x2 � 2x � 1)5

LAW 11 Limits of Rational Functions

If is a rational function defined by , where and are
polynomial functions and , then

lim
x→a

f(x) � f(a) �
P(a)

Q(a)

Q(a) � 0
Q(x)P(x)f(x) � P(x)>Q(x)f

Thus, the limit of a rational function as approaches is equal to the value of the
function at provided the denominator is not zero at .

PROOF Since and are polynomial functions, we know from Law 10 that

and

Since , we can apply the Quotient Law to conclude that

lim
x→a

f(x) � lim
x→a

P(x)

Q(x)
�

lim
x→a

P(x)

lim
x→a

Q(x)
�

P(a)

Q(a)
� f(a)

Q(a) � 0

lim
x→a

Q(x) � Q(a)lim
x→a

P(x) � P(a)

QP

aa
ax
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EXAMPLE 5 Find .

Solution Using Law 11, we obtain

lim
x→3

4x2 � 3x � 1

2x � 4
�

4(3)2 � 3(3) � 1

2(3) � 4
�

28

2
� 14

lim
x→3

4x2 � 3x � 1

2x � 4

EXAMPLE 6 Find .

Solution

Law 7

Law 11

Lest you think that we can always find the limit of a function by substitution, con-
sider the following example.

 � 13 8 � 2

 � B3
2(1) � 14

12 � 1

 lim
x→1B3

2x � 14

x2 � 1
� B3 lim

x→1
 
2x � 14

x2 � 1

lim
x→1B3

2x � 14

x2 � 1

EXAMPLE 7 Find .

Solution Because the denominator of the rational expression is 0 at , we can-
not find the limit by direct substitution. However, by factoring the numerator, we obtain

so if , we can cancel the common factors. Thus,

In other words, the values of the function defined by coin-
cide with the values of the function defined by for all values of except

. Since the limit of as approaches 2 depends only on the values of other
than 2, we can find the required limit by evaluating the limit of as approaches
2 instead. Thus,

In certain instances the technique that we used in Example 7 can be applied to find
the limit of a quotient in which both the numerator and denominator of the quotient
approach 0 as approaches . The trick here is to use the appropriate algebraic manip-
ulations that will enable us to replace the original function by one that is identical to
that function except perhaps at . The limit is then found by evaluating this function
at .a

a

ax

lim
x→2

x2 � 4

x � 2
� lim

x→2
(x � 2) � 2 � 2 � 4

xt(x)
xxf(x)x � 2

xt(x) � x � 2t

f(x) � (x2 � 4)>(x � 2)f

x � 2
x2 � 4

x � 2
� x � 2

x � 2

x2 � 4

x � 2
�

(x � 2)(x � 2)

x � 2

x � 2

lim
x→2

x2 � 4

x � 2
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Notes
1. If the numerator does not approach 0 but the denominator does, then the limit of

the quotient does not exist. (See Example 7 in Section 1.1.)
2. A function whose limit at can be found by evaluating it at is said to be con-

tinuous at . (We will study continuous functions in Section 1.4.)a
aa

EXAMPLE 8 Find .

Solution Notice that both the numerator and the denominator of the quotient approach
0 as approaches , so Law 6 is not applicable. Instead, we proceed as follows:

 �
�3 � 1

�3 � 1
� 2

 � lim
x→�3

x � 1

x � 1
  x � �3

 lim
x→�3

x2 � 2x � 3

x2 � 4x � 3
� lim

x→�3

(x � 3)(x � 1)

(x � 3)(x � 1)

�3x

lim
x→�3

 
x2 � 2x � 3

x2 � 4x � 3

EXAMPLE 9 Find .

Solution Both the numerator and the denominator of the quotient approach 0 as 
approaches 0, so we cannot evaluate the limit using Law 6. Let’s rationalize the numer-
ator of the quotient by multiplying both the numerator and the denominator by

. Thus,

 � lim
x→0

1

11 � x � 1
�

1

2
  x � 0

 � lim
x→0

1 � x � 1

x(11 � x � 1)

 � lim
x→0

(11 � x � 1)(11 � x � 1)

x(11 � x � 1)

 lim
x→0

11 � x � 1
x

� lim
x→0

11 � x � 1
x

�
11 � x � 1

11 � x � 1

11 � x � 1

x

lim
x→0

11 � x � 1
x

Difference of two squares

All of the limit laws stated for two-sided limits in this section also hold true for
one-sided limits.

EXAMPLE 10 Let

Find if it exists.limx→2 f(x)

f(x) � e�x � 3 if x � 2

1x � 2 � 1 if x 	 2
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FIGURE 3
, so

.limx→2 f(x) � 1
limx→2� f(x) � limx→2� f(x) � 1

EXAMPLE 11 Show that does not exist.

Solution The graph of the greatest integer function is shown in Figure 4. Observe that
if , then , and therefore,

Next, observe that if , then , so

Since these one-sided limits are not equal, we conclude by Theorem 1, Section 1.1,
that does not exist.

Limits of Trigonometric Functions
So far, we have dealt with limits involving algebraic functions. The following theorem
tells us that if is a number in the domain of a trigonometric function, then the limit
of that function as approaches can be found by substitution.ax

a

limx→2 Œx œ

lim
x→2�

Œx œ � lim
x→2�

1 � 1

Œx œ � 11 � x � 2

lim
x→2�

Œx œ � lim
x→2�

2 � 2

Œx œ � 22 � x � 3

lim
x→2
Œx œ

FIGURE 4
The graph of y � Œx œ

THEOREM 1 Limits of Trigonometric Functions

Let be a number in the domain of the given trigonometric function. Then

a. b.

c. d.

e. f. lim
x→a

csc x � csc alim
x→a

sec x � sec a

lim
x→a

cot x � cot alim
x→a

tan x � tan a

lim
x→a

cos x � cos alim
x→a

sin x � sin a

a

The proofs of Theorem 1a and Theorem 1b are sketched in Exercises 97 and 98.
The proofs of the other parts follow from Theorems 1a and 1b and the limit laws.

Solution The function is defined piecewise. For the rule for is
. Letting approach 2 from the right, we obtain

Sum Law

For , , and

Sum Law

The right-hand and left-hand limits are equal. Therefore, the limit exists and

The graph of is shown in Figure 3.

The next example involves the greatest integer function defined by ,
where is the greatest integer such that . For example, , ,

, , , and so on. As an aid to finding the value of
the greatest integer function, think of “rounding down.”

Œ�12 œ � �2Œ�4.6 œ � �5Œp œ � 3
Œ2.4 œ � 2Œ3 œ � 3n � xnŒx œ f(x) � Œx œ

f

lim
x→2

f(x) � 1

 � �2 � 3 � 1

 lim
x→2�

(�x � 3) � lim
x→2�

(�x) � lim
x→2�

3

f(x) � �x � 3x � 2

 � 0 � 1 � 1

 lim
x→2�

(1x � 2 � 1) � lim
x→2�

1x � 2 � lim
x→2�

1

xf(x) � 1x � 2 � 1
fx 	 2f

x

y

y � f(x)

4

3

1

2

1 2 3 4 50

x

y

y � “x‘
1

2

1 2 3 4�1�2

�2

0
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EXAMPLE 12 Find

a. b.

Solution

a.

b.

The Squeeze Theorem
The techniques that we have developed so far do not work in all situations. For exam-
ple, they cannot be used to find

For limits such as this we use the Squeeze Theorem.

lim
x→0

x2 sin
1
x

 �
p2

8
� 1 �

p2 � 8

8

 � 2ap
4
b2

� cot 
p

4

 lim
x→p>4(2x2 � cot x) � lim

x→p>4 2x2 � lim
x→p>4 cot x

lim
x→p>2 x sin x � Q lim

x→p>2 xRQ lim
x→p>2 sin xR �

p

2
sin
p

2
�
p

2

lim
x→p>4(2x2 � cot x)lim

x→p>2 x sin x

THEOREM 2 The Squeeze Theorem

Suppose that for all in an open interval containing , except
possibly at , and

Then

lim
x→a

t(x) � L

lim
x→a

f(x) � L � lim
x→a

h(x)

a
axf(x) � t(x) � h(x)

The Squeeze Theorem says that if is squeezed between and near 
and both and approach as approaches , then must approach as
well (see Figure 5). A proof of this theorem is given in Appendix B.

Lt(x)axLh(x)f(x)
ah(x)f(x)t(x)

FIGURE 5
An illustration of the Squeeze Theorem

x

y

y � f(x)

y � g(x)

y � h(x)

L

a0
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EXAMPLE 13 Find .

Solution Since for every real number , we have

for every . Therefore,

Let , , and . Then . Since

and

the Squeeze Theorem implies that

(See Figure 6.)

The property of limits given in Theorem 3 will be used later. (Its proof is given in
Appendix B.)

lim
x→0

t(x) � lim
x→0

x2 sin
1
x

� 0

lim
x→0

h(x) � lim
x→0

x2 � 0lim
x→0

f(x) � lim
x→0

(�x2) � 0

f(x) � t(x) � h(x)h(x) � x2
t(x) � x2 sin(1>x)f(x) � �x2

x � 0�x2 � x2 sin
1
x

� x2

x � 0

�1 � sin
1
x

� 1

t�1 � sin t � 1

lim
x→0

x2 sin 
1
x

FIGURE 6

lim
x→0

t(x) � lim
x→0

x2 sin
1
x

� 0

THEOREM 3
Suppose that for all in an open interval containing , except pos-
sibly at , and

and

Then

L � M

lim
x→a

t(x) � Mlim
x→a

f(x) � L

a
axf(x) � t(x)

The Squeeze Theorem can be used to prove the following important result, which
will be needed in our work later on.

THEOREM 4

lim
u→0

sin u

u
� 1

PROOF First, suppose that . Figure 7 shows a sector of a circle of radius 1.
From the figure we see that

1

2
 base � heightArea of �OAC �

1

2
 (1)(tan u) �

1

2
tan u

1

2
 r 2uArea of sector OAB �

1

2
 (1)2u �

1

2
 u

1

2
 base � heightArea of �OAB �

1

2
 (1)(sin u) �

1

2
 sin u

0 � u � p
2

FIGURE 7

x

y

y � x2 siny � x2

y � �x2

1
x

0 0.6�0.6

�0.3

0.3

1O A

C
B

tan ¨sin ¨

¨
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Since area of area of sector area of , we have

Multiplying through by and keeping in mind that and 
for , we obtain

or, upon taking reciprocals,

(2)

If , then , and Inequality (2) gives

or, since and , we have

which is just Inequality (2). Therefore, Inequality (2) holds whenever lies in the inter-
vals and .

Finally, let , , and , and observe that

and

Then the Squeeze Theorem implies that

lim
u→0

t(u) � lim
u→0

sin u

u
� 1

lim
u→0

h(u) � lim
u→0

1 � 1

lim
u→0

f(u) � lim
u→0

cos u � 1

h(u) � 1t(u) � (sin u)>uf(u) � cos u
10, p2 21�p2 , 0 2 u

cos u �
sin u

u
� 1

sin(�u) � �sin ucos(�u) � cos u

cos(�u) �
sin(�u)

�u
� 1

0 � �u � p
2�p2 � u � 0

cos u �
sin u

u
� 1

1 �
u

sin u
�

1

cos u

0 � u � p
2

cos u � 0sin u � 02>(sin u)

0 �
1

2
sin u �

1

2
 u �

1

2
tan u

�OACOAB ��OAB �0 �

EXAMPLE 14 Find .

Solution We first rewrite

as

Then, making the substitution and observing that as , we find

Use Theorem 4. �
2

3

 �
2

3
lim
u→0

sin u

u

 lim
x→0

sin 2x

3x
� lim
u→0
a2

3
b sin u

u

x → 0u → 0u � 2x

a2

3
b sin 2x

2x

sin 2x

3x

lim
x→0

sin 2x

3x
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PROOF We use the identity to write

Let .

Then

Note: as .

 � 0 � 1 � 0

u → 0
u

2
 → 0 � �Q lim

u→0
sin u2R qlim

u→0

sin u2
u
2

r

 � lim
u→0
1�sin u2 2 qsin u2

u
2

r

 lim
u→0

cos u � 1

u
� lim
u→0
q�2 sin2 1u2 2

u
r

x �
u

2
1 � cos u � 2 sin2 au

2
b

sin2 x � 1
2(1 � cos 2x)

EXAMPLE 15 Find .

Solution

Theorem 5 is a consequence of Theorem 4.

 � 1

 � (1)(1)

 � alim
x→0

sin x

x
b alim

x→0

1
cos x

b

 lim
x→0

tan x

x
� lim

x→0
asin x

x
�

1
cos x

b

lim
x→0

tan x

x

THEOREM 5

lim
u→0

cos u � 1

u
� 0

1. State the Sum, Product, Constant Multiple, Quotient, and
Root Laws for limits at a number.

2. Find the limit and state the limit law that you use at each
step.

a. b. lim
x→3

x2 � 4

2x � 3
lim
x→2

(3x2 � 2x � 1)

3. Find the limit and state the limit law that you use at each
step.

a. b.

4. State the Squeeze Theorem in your own words, and give a
graphical interpretation.

lim
x→1
a2x2 � x � 5

x4 � 1
b3>2

lim
x→4
1x(2x2 � 1)

1.2 CONCEPT QUESTIONS
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In Exercises 1–22, find the indicated limit.

1. 2.

3.

4.

5. 6.

7. 8.

9. 10.

11. 12.

13. 14.

15. 16.

17. 18.

19. 20.

21. 22.

In Exercises 23–28, you are given that ,
, and . Find the indicated

limit.

23. 24.

25. 26. lim
x→a

f(x)t(x)

1t(x) � 5
lim
x→a

f(x)

1t(x)

lim
x→a

f(x) � t(x)

2h(x)
lim
x→a

[2f(x) � 3t(x)]

limx→a h(x) � �1limx→a t(x) � 4
limx→a f(x) � 2

lim
x→p>4

tan2 x

1 � cos x
lim
x→p
12 � cos x

lim
x→0

sec 2x

1x � 4
lim

x→p>4
sin x

x

lim
x→p>4 (x tan x)lim

x→1
sin
px

2

lim
w→0

1w � 1 �2w2 � 4

(w � 2)2 � (w � 1)2lim
u→�2B3

3u2 � 2u

3u3 � 3

lim
t→4

t �1>2(t 2 � 3t � 4)3>2lim
x→0�

1 � 1x

1x � 4

lim
x→�2

(x � 3)224x2 � 8lim
x→�1�

(x3 � 2x2 � 5)2>3
lim
x→3
22x3 � 3x � 7lim

x→2
122x3 � 12x 2

lim
t→�1

t 3 � 1

t 3 � 2t � 4
lim
x→1

x � 2

x2 � x � 1

lim
t→3

(2t � 1)2(t 2 � 2t)3lim
x→1

(3x2 � 4x � 2)4

lim
x→2

(x2 � 1)(2x2 � 4)

lim
h→�1

(h4 � 2h3 � 2h � 1)

lim
x→2

(3x2 � 2x � 8)lim
t→2

(3t � 4)

In Exercises 31–36, use the graphs of and that follow to find
the indicated limit, if it exists. If the limit does not exist, explain
why.

tf

1.2 EXERCISES

Videos for selected exercises are available online at www.academic.cengage.com/login.V

27. 28.

In Exercises 29 and 30, suppose that and
. Find the indicated limit.

29.

30. lim
x→�2

x f(x)

1 � x2

lim
x→�2

[x f(x) � (x2 � 1)t(x)]

limx→�2 t(x) � 3
limx→�2 f(x) � 2

lim
x→a

13 f(x)t(x)

1f(x)t(x) � 1
lim
x→a

{[h(x)]2 � f(x)t(x)}

x

y

1

3

4

5

2

�2

�1
1 2

The graph of f

The graph of g

3 4�1�2�3�4 0

x

y

y � g(x)

y � f(x)

1

3

4

5

2

�2

�1
1 2�1�2 0

31. 32.

33. 34.

35. 36.

37. Is the following argument correct?

Therefore, . Explain your
answer.

38. Is the following argument correct?

Explain your answer. Compare it with Exercise 37.

lim
x→�3

x2 � 9

x � 3
� lim

x→�3

(x � 3)(x � 3)

x � 3
� lim

x→�3
(x � 3) � �6

limx→�3 f(x) � f(�3) � �6

f(x) �
x2 � 9

x � 3
�

(x � 3)(x � 3)

x � 3
� x � 3

lim
x→0�

f(x)

t(x)
lim

x→0�
[2f(x) � 3t(x)]

lim
x→2

f(x)

t(x)
lim
x→1

[ f(x)t(x)]

lim
x→0

[ f(x) � t(x)]lim
x→�1

[ f(x) � t(x)]

www.academic.cengage.com/login
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39. Give an example to illustrate the following: If
and , then

does not exist.

40. Give examples to illustrate the following: If 
and , then might or might
not exist.

In Exercises 41–76, find the limit, if it exists.

41. 42.

43. 44.

45. 46.

47. 48.

49. 50.

51. 52.

53. 54.

55. 56.

57. 58.

59. 60.

61. 62.

63. 64.

65. 66.

67. 68.

69. 70.

71. 72.

73. 74.

75. 76. lim
x→0�B

tan x � sin x

x2lim
x→0

sin 3x

sin 2x

lim
u→0

u

cos1u � p
2 2lim

x→p>4
sin x � cos x

1 � tan x

lim
x→0

x

1 � cos2 x
lim
u→0

cos u � 1

u2

lim
x→0

cos x � 1

sin x
lim
x→0

tan2 x

x

lim
x→0

tan 2x

3x
lim
h→0

sin 3h

4h

lim
x→0

sin 2x

x
lim
x→0

sin x

3x

lim
x→3�

Œx � 1 œlim
x→2�

(x � Œx œ )
lim

x→�5�
Œx œlim

x→7�
Œx œ

lim
h→0

(2 � h)�1 � 2�1

h
lim
x→1

15 � x � 2

12 � x � 1

lim
h→0

1a � h � 1a

h
lim
x→0

1x � 3 � 13
x

lim
t→0

t

12t � 1 � 1
lim
t→1

1t � 1

t � 1

lim
x→4

x � 4

1x � 2
lim
t→1

1t � 1

t � 1

lim
√→2

√4 � 16

√2 � 4
lim
x→1

x3 � 1

x � 1

lim
t→1

3t 3 � 4t � 1

(t � 1)(2t 2 � 1)
lim
t→0

2t 3 � 3t 2

3t 4 � 2t 2

lim
x→�5

x2 � 25

2x2 � 6x � 20
lim

x→�1

x2 � x � 2

x2 � 4x � 3

lim
x→2

x2 � x � 2

x � 2
lim
x→1

x2 � 2x � 3

x2 � 1

lim
x→2�

x � 1

x � 2
lim
t→1

t � 1

(t � 1)2

lim
x→5

5 � x

x2 � 25
lim
x→2

x2 � 4

x � 2

limx→a [ f(x)>t(x)]limx→a t(x) � 0
limx→a f(x) � 0

limx→a [ f(x)>t(x)]
limx→a t(x) � 0limx→a f(x) � L � 0 77. Find .

Hint: Let .

78. Find .

Hint: Let .

79. Let .

a. Plot the graph of , and use it to estimate the value of
.

b. Construct a table of values of accurate to three deci-
mal places, and use it to estimate .

c. Find the exact value of analytically.
Hint: Make the substitution , and observe that 
as .

80. Let .

a. Plot the graph of , and use it to estimate the value of
.

b. Construct a table of values of accurate to three 
decimal places, and use it to estimate .

c. Find the exact value of analytically.
Hint: Make the substitution , and observe that 
as .

81. Special Theory of Relativity According to the special theory of
relativity, when force and velocity are both along a straight
line, resulting in straight-line motion, the magnitude of the
acceleration of a particle acted upon by the force is

where is its speed, is the magnitude of the force, is
the mass of the particle at rest, and is the speed of light.
a. Find the domain of , and use this result to explain why

we may consider only .
b. Find , and interpret your result.

82. Special Theory of Relativity According to the special theory of
relativity, the speed of a particle is

where is the rest energy and is the total
energy.
a. Find the domain of , use this result to explain why we

may consider only , and interpret your result.
b. Find , and interpret your result.

83. Use the Squeeze Theorem to find . Verify
your result visually by plotting the graphs of ,

, and in the same window.h(x) � xt(x) � x sin(1>x)
f(x) � �x

limx→0 x sin(1>x)

limE→E0
� √

limE→E0
� √

√

EE0 � m0c
2

√ � cB1 � aE0

E
b2

lim√→c� f(√)
lim√→c� f(√)

f
c

mF√

a � f(√) �
F

m
a1 �

√2

c2b
3>2

x → �2
t → 2x � 18 � t 4

limx→�2 f(x)
limx→�2 f(x)

f(x)
limx→�2 f(x)

f

f(x) �
x � 2

14 x � 18 � 2

x → 1
t → 2x � 7 � t 3

limx→1 f(x)
limx→1 f(x)

f(x)
limx→1 f(x)

f

f(x) �
x � 1

13 x � 7 � 2

t � 2x � p

lim
x→p>2

sin1x � p
2 2

2x � p

t � x � (p>2)

lim
x→p>2

cos x

x � p
2
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84. Use the Squeeze Theorem to find .
Verify your result visually.
Hint: See Exercise 83.

85. Let

a. Find and .
b. Does exist? Why?

86. Let

Does exist? If so, what is its value?

87. Let

Find and . Does exist?
Justify your answer.

88. Let

Find and . Does exist?
Justify your answer.

89. Let

Does exist? If so, what is its value?

90. Let

Does exist? If so, what is its value?

91. Let

Show that .

92. The Dirichlet Function The function

is called the Dirichlet function. For example, ,f 112 2 � 1

f(x) � e1 if x is rational

0 if x is irrational

limx→0 f(x) � 0

f(x) � ex2 if x is rational

�x2 if x is irrational

limx→1 f(x)

f(x) � e�x � if x � 1

Œx œ if x � 1

limx→2 f(x)

f(x) � e Œx œ if x � 2

1x � 2 � 1 if x 	 2

limx→1 f(x)limx→1� f(x)limx→1� f(x)

f(x) � •
11 � x � 2 if x � 1

1 if x � 1

1 � x3>2 if x � 1

limx→0 f(x)limx→0� f(x)limx→0� f(x)

f(x) � •
�x5 � x3 � x � 1 if x � 0

2 if x � 0

x2 � 1x � 1 if x � 0

limx→�2 f(x)

f(x) � •
x3 � 16

x
if x � �2

�x2 � 4x � 8 if x � �2

limx→�1 f(x)
limx→�1� f(x)limx→�1� f(x)

f(x) � ex � 2 if x � �1

x2 � 2x � 3 if x � �1

limx→0� 1x cos(1>x2) 93. Show by means of an example that 
may exist even though neither nor 
exists. Does this example contradict the Sum Law of 
limits?

94. Show by means of an example that may
exist even though neither nor 
exists. Does this example contradict the Product Law of
limits?

95. Suppose that for all in an open interval 
containing , except possibly at , and that both 

and exist. Does it follow that
? Explain.

96. The following figure shows a sector of radius 1 and angle
satisfying .

a. From the inequality , deduce that
.

b. Use the Squeeze Theorem to prove that
.

c. Use the result of part (a) to show that if ,
then . Conclude that .

d. Use the result of part (c) and the trigonometric identity
to show that .

97. Use the result of Exercise 96 to prove that
.

Hint: It suffices to show that . Use the
addition formula for the sine function.

98. Show that . (See the hint for
Exercise 97.)

In Exercises 99–102, determine whether the statement is true or
false. If it is true, explain why. If it is false, explain why or give
an example that shows it is false.

99. .

100.

101. If exists, then and
also exist.

102. If for all in an open interval contain-
ing , except possibly at , and both and

exist, then exists.limx→a t(x)limx→a h(x)
limx→a f(x)aa

xf(x) � t(x) � h(x)

limx→a t(x)
limx→a f(x)limx→a[ f(x) � t(x)]

lim
x→1

x2 � 3x � 4

x2 � 2x � 3
�

lim
x→1

x2 � 3x � 4

lim
x→1

x2 � 2x � 3

lim
x→2
a 3x

x � 2
�

2

x � 2
b � lim

x→2

3x

x � 2
� lim

x→2

2

x � 2

limx→a cos x � cos a

limh→0 sin(a � h) � sin a
limx→a sin x � sin a

limu→0 cos u � 1sin2 u � cos2 u � 1

limu→0 sin u � 0limu→0� sin u � 0
�p2 � u � 0

limu→0� sin u � 0

0 � sin u � u

�BC � � arc AB

1

O AC

B

¨

0 � u � p
2u

limx→a f(x) � limx→a t(x)
limx→a t(x)limx→a f(x)

aa
xf(x) � t(x)

limx→a t(x)limx→a f(x)
limx→a[ f(x)t(x)]

limx→a t(x)limx→a f(x)
limx→a[ f(x) � t(x)]

, , and . Show that for every
, does not exist.limx→a f(x)a

f(�p) � 0f(12) � 0f 120
21 2 � 1
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1.3 A Precise Definition of a Limit

Precise Definition of a Limit
The definition of the limit of a function given in Section 1.1 is intuitive. In this sec-
tion we give precise meaning to phrases such as “ can be made as close to as we
please” and “by taking to be sufficiently close to .” We will focus our attention on
the (two-sided) limit

(1)

where and are real numbers. (The precise definition of one-sided limits is given in
Exercise 28.)

Let’s begin by investigating how we might establish the result

(2)

with some degree of mathematical rigor. Here, , , and . We
need to show that “ can be made as close to 3 as we please by taking to be suf-
ficiently close to 2.”

Our first step is to establish what we mean by “ is close to 3.” For a start, sup-
pose that we invite a challenger to specify some sort of “tolerance.” For example, our
challenger might declare that is close to 3 provided that differs from 3 by no
more than 0.1 unit. Recalling that measures the distance from to 3, we
can rephrase this statement by saying that is close to 3 provided that

Equivalently, . (3)

(See Figure 1.)

2.9 � f(x) � 3.1� f(x) � 3 � � 0.1

f(x)
f(x)� f(x) � 3 �

f(x)f(x)

f(x)

xf(x)
L � 3a � 2f(x) � 2x � 1

lim
x→2

(2x � 1) � 3

La

lim
x→a

f(x) � L

ax
Lf(x)

(  
 )

2

4

32.9 < f (x) < 3.1

1 2

y � 2x � 1

y � 3.1
y � 2.9

y � 3

y

x0

FIGURE 1
All the values of satisfying

are “close” to 3.2.9 � f(x) � 3.1
f

Now let’s show that Inequality (3) is satisfied by all that are “sufficiently close
to 2.” Because measures the distance from to 2, what we need to do is to
show that there exists some positive number, call it (delta), such that

implies that

(The first half of the first inequality precludes the possibility of taking on the value
2. Remember that when we evaluate the limit of a function at a number , we are nota

x

� f(x) � 3 � � 0.10 � �x � 2 � � d

d

x�x � 2 �
x
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concerned with whether is defined at or its value there if it is defined.) To find ,
consider

Now, holds whenever

(4)

Therefore, if we pick , then implies that Inequality (4) holds.
This in turn implies that

as we set out to show. (See Figure 2.)

� f(x) � 3 � � 2�x � 2 � � 2(0.05) � 0.1

0 � �x � 2 � � dd � 0.05

�x � 2 � �
0.1

2
� 0.05

2�x � 2 � � 0.1

 � 2�x � 2 �

 � f(x) � 3 � � � (2x � 1) � 3 � � �2x � 4 � � �2(x � 2) �

daf

FIGURE 2
Whenever satisfies ,

satisfies .� f(x) � 3 � � 0.1f(x)
�x � 2 � � 0.05x

Have we established Equation (2)? The answer is a resounding no! What we have
demonstrated is that by restricting to be sufficiently close to 2, can be made “close
to 3” as measured by the norm, or tolerance, specified by one particular challenger.
Another challenger might specify that “ is close to 3” if the tolerance is ! If
you retrace these last steps, you can show that corresponding to a tolerance of ,
we can make by requiring that . (Choose

.)
To handle all such possible notions of closeness that could arise, suppose that a

tolerance is given by specifying a number (epsilon) that may be any positive num-
ber whatsoever. Can we show that is close to 3 (with tolerance ) by restricting 
to be sufficiently close to 2? In other words, given any number , can we find a
number such that

whenever

All we have to do to answer these questions is to repeat the earlier computations with
in place of 0.1. Consider

Now,

provided that �x � 2 � �
e

2
2�x � 2 � � e

� f(x) � 3 � � � (2x � 1) � 3 � � �2x � 4 � � 2�x � 2 �

e

0 � �x � 2 � � d� f(x) � 3 � � e

d � 0
e � 0

xef(x)
e

d � 5 � 10�21
0 � �x � 2 � � 5 � 10�21� f(x) � 3 � � 10�20

10�20
10�20f(x)

f(x)x

3
2.9

3.1

2

y � 2x � 1

y

x

1.95 2.05

(   )

(        )

0
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Therefore, if we pick , then implies that , which
implies that

Now, because is arbitrary, we have indeed shown that “ can be made as close to
3 as we please” by restricting to be sufficiently close to 2.

This analysis suggests the following precise definition of a limit.
x

f(x)e

� f(x) � 3 � � 2�x � 2 � � 2ae
2
b � e

�x � 2 � � e>20 � �x � 2 � � dd � e>2

DEFINITION (Precise) Limit of a Function at a Number

Let be a function defined on an open interval containing with the possible
exception of itself. Then the limit of as approaches is the number ,
written

if for every number , we can find a number such that

implies that � f(x) � L � � e0 � �x � a � � d

d � 0e � 0

lim
x→a

f(x) � L

Laxf(x)a
af

A Geometric Interpretation
Here is a geometric interpretation of the definition. Let be given. Draw 
the lines and . Since is equivalent to

, exists provided that we can find a number
such that if we restrict to lie in the interval with , then the

graph of lies inside the band of width determined by the lines 
and . (See Figure 3.) You can see from Figure 3 that once a number 
has been found, then any number smaller than will also satisfy the requirement.d

d � 0y � L � e
y � L � e2ey � f(x)

x � a(a � d, a � d)xd

limx→a f(x) � LL � e � f(x) � L � e

� f(x) � L � � ey � L � ey � L � e
e � 0

FIGURE 3
If or ,

then lies in the band defined 
by and .y � L � ey � L � e

f(x)
(a, a � d)x � (a � d, a)

y

(             )
x

L

a0

y � L � e

y � f (x)

y � L � e

a � ∂

L � e

L � e

a � ∂

(                )

Some Illustrative Examples

EXAMPLE 1 Prove that . (Recall that this limit gives the instan-

taneous velocity of the maglev at as described in Section 1.1.)x � 2

lim
x→2

4(x2 � 4)

x � 2
� 16
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SOPHIE GERMAIN
(1776-1831)

Overcoming great adversity, Sophie Germain
won acknowledgment for her mathematical
works from some of the most prominent
mathematicians of her day. Born in 1776 in
Paris to a prosperous bourgeois family, Ger-
main was able to devote herself to research
without financial concerns but also without
the education accorded to women of the
aristocracy. Germain became interested in
geometry, an interest that her family
deemed inappropriate for a woman. In an
effort to prevent her studying at night, her
family confiscated her candles and left her
bedroom fire unlit in order to keep her in
her bed. Determined, Germain would wait
until the family was asleep, wrap herself in
quilts, and study through the night by the
light of contraband candles. Despite having
to study alone and to teach herself Latin in
order to read the mathematics of Newton
(page 179) and Euler (page 19), Germain
eventually made important breakthroughs
in the fields of number theory and the the-
ory of elasticity. She anonymously entered
a paper into a contest sponsored by the
French Academy of Sciences. She won the
prize and became the first woman not
related to a member by marriage to attend
Academie des Sciences meetings and the
first woman invited to attend sessions at
the Institut de France.

Historical Biography
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FIGURE 4
If we pick , then 

0 � �x � 2 � � d1
d � e>4

Solution Let be given. We must show that there exists a such that

whenever . To find , consider

Therefore,

whenever

So we may take . (See Figure 4.)
By reversing the steps, we see that if , then

Thus,

lim
x→2

4(x2 � 4)

x � 2
� 16

` 4(x2 � 4)

x � 2
� 16 ` � 4�x � 2 � � 4a1

4
 eb � e

0 � �x � 2 � � d
d � e>4

�x � 2 � �
1

4
 e

` 4(x2 � 4)

x � 2
� 16 ` � 4�x � 2 � � e

 � 4�x � 2 �

 � �4(x � 2) � 16 � � �4x � 8 �  x � 2

 ̀
4(x2 � 4)

x � 2
� 16 ` � ` 4(x � 2)(x � 2)

x � 2
� 16 `

d0 � �x � 2 � � d

` 4(x2 � 4)

x � 2
� 16 ` � e

d � 0e � 0

( 
   

 )

(      )
x

y

1

16

12

8

4

2 30

y � 16 � e

y � 16 � e

2 � ∂

16 � e

2 � ∂

16 � e

y �
4(x2 � 4)________

x  � 2

EXAMPLE 2 Prove that .

Solution Let be given. We must show that there exists a such that

�x2 � 4 � � e

d � 0e � 0

limx→2 x2 � 4

.` 4(x2 � 4)

x � 2
� 16 ` � e
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FIGURE 5
If we pick to be the 

smaller of 1 and , then
.�x � 2 � � d1 �x2 � 4 � � e

e>5d

y

(              )
x

4

20

y � 4 � e

y � x2

y � 4 � e

4 � e

4 � e

2 � ∂ 2 � ∂

(                )

whenever . To find , consider

(5)

At this stage, one might be tempted to set

and then divide both sides of this inequality by to obtain

and conclude that we may take

But this approach will not work because cannot depend on x. Let us begin afresh
with Equation (5). On the basis of the experience just gained, we should obtain an
upper bound for the quantity ; that is, we want to find a positive number 
such that for all “close to 2.” As we observed earlier, once a has
been found that satisfies our requirement, then any number smaller than will also
do. This allows us to agree beforehand to take (or any other positive constant);
that is, we will consider only those values of that satisfy ; that is

, or . Adding 2 to each side of this last inequality, we
have ; ; thus, . So , and
Equation (5) gives

Now

whenever . Therefore, if we take to be the smaller of the numbers 1
and , we are guaranteed that implies that

This proves the assertion (see Figure 5).

�x2 � 4 � � 5�x � 2 � � 5ae
5
b � e

�x � 2 � � de>5 d�x � 2 � � e>5
5�x � 2 � � e

�x2 � 4 � � �x � 2 ��x � 2 � � 5�x � 2 �

k � 5�x � 2 � � 53 � x � 2 � 51 � 2 � x � 2 � 3 � 2
1 � x � 3�1 � x � 2 � 1

�x � 2 � � 1x
d � 1

d

dx�x � 2 � � k
k�x � 2 �

d

d �
e

�x � 2 �

�x � 2 � �
e

�x � 2 �

�x � 2 �

�x � 2 ��x � 2 � � e

 � �x � 2 ��x � 2 �

 �x2 � 4 � � � (x � 2)(x � 2) �

d�x � 2 � � d
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EXAMPLE 3 Let

Prove that does not exist.

Solution Suppose that the limit exists. We will show that this assumption leads to a
contradiction. It will follow, therefore, that the opposite is true, namely, the limit does
not exist.

So suppose that there exists a number such that

Then, for every there exists a such that

whenever

In particular, if we take , there exists a such that

whenever

If we take , which lies in the interval defined by , we have

This inequality is equivalent to

or

Next, if we take , which also lies in the interval defined by ,
we have

This inequality is equivalent to

or

But the number cannot satisfy both the inequalities

and

simultaneously. This contradiction proves that does not exist.

We end this section by proving the Sum Law for limits.

limx→0 f(x)

0 � L � 2�2 � L � 0

L

0 � L � 2

 �2 � �L � 0

 �1 � 1 � L � 1

` f ad
2
b � L ` � �1 � L � � 1

0 � �x � 0 � � dx � d>2
�2 � L � 0

 0 � �L � 2

 �1 � �1 � L � 1

` f a�d
2
b � L ` � ��1 � L � � 1

0 � �x � 0 � � dx � �d>2
0 � �x � 0 � � d� f(x) � L � � 1

d � 0e � 1

0 � �x � 0 � � d� f(x) � L � � e

d � 0e � 0

lim
x→0

f(x) � L

L

limx→0 f(x)

f(x) � e1 if x 	 0

�1 if x � 0
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EXAMPLE 4 Prove the Sum Law for limits: If and ,
then .

Solution Let be given. We must show that there exists a such that

whenever . But by the Triangle Inequality,*

(6)

and this suggests that we consider the bounds for and separately.
Since , we can take , which is a positive number, and be guar-

anteed that there exists a such that

whenever (7)

Similarly, since , we can find a such that

whenever (8)

If we take to be the smaller of the two numbers and so that is itself positive,
then both Inequalities (7) and (8) hold simultaneously if . Therefore,
by Inequality (6)

whenever , and this proves the Sum Law.0 � �x � a � � d

 �
e

2
�
e

2
� e

 � [ f(x) � t(x)] � (L � M) � � � f(x) � L � � �t(x) � M �

0 � �x � a � � d
dd2d1d

0 � �x � a � � d2�t(x) � M � �
e

2

d2 � 0limx→a t(x) � M

0 � �x � a � � d1� f(x) � L � �
e

2

d1 � 0
e>2limx→a f(x) � L

�t(x) � M �� f(x) � L �

 � � f(x) � L � � �t(x) � M �

 � [ f(x) � t(x)] � (L � M) � � � ( f(x) � L) � (t(x) � M) �

0 � �x � a � � d

� [ f(x) � t(x)] � (L � M) � � e

d � 0e � 0

limx→a[ f(x) � t(x)] � L � M
limx→a t(x) � Mlimx→a f(x) � L

*The Triangle Inequality is proved in Appendix A.�a � b � � �a � � �b �

1. State the precise definition of .
2. Write the precise definition of without

using absolute values.
3. Use the figure to find a number such that 

whenever .�x � 1 � � d

�x2 � 1 � � 1
2d

limx→a f(x) � L
limx→2(x3 � 5) � 13 4. Use the figure to find a number such that 

whenever .�x � 1 � � d

� 1
x � 1 � � 1

4d

1.3 CONCEPT QUESTIONS

6
2

2
2

2
1

2
3

x

y � x2

y

1

10

4
3

3
4

5
4

x
1

4
5

x

y �

y

1

10
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In Exercises 1–10 you are given and a toler-
ance . Find a number such that whenever

.

1. ;

2. ;

3. ;

4. ;

5. ;

6. ;

7. ;

8. ;

9. ;

10. ;

In Exercises 11–22, use the precise definition of a limit to prove
that the statement is true.

11. 12.

13. 14.

15. 16.

17. 18.

19. 20.

21. 22.

23. Let

Prove that does not exist.

24. Let

Prove that does not exist.limx→0 t(x)

t(x) � e�1 � x if x � 0

1 � x if x 	 0

limx→0 f(x)

f(x) � e�1 if x � 0

1 if x 	 0

lim
x→0

(x3 � 1) � 1lim
x→9
1x � 3

lim
x→0

x2 � 2x

x
� 2lim

x→2

x2 � 4

x � 2
� 4

lim
x→2

(x2 � 2) � 2lim
x→1

3x2 � 3

lim
x→a

x � alim
x→a

c � c

lim
x→�2

(2x � 3) � �7lim
x→3

2x � 6

lim
x→�2

p � plim
x→2

3 � 3

e � 0.05lim
x→2

1
x

�
1

2

e � 0.01lim
x→2

x2 � 4

x � 2
� 2

e � 0.01lim
x→4
1x � 2

e � 0.01lim
x→3

2x2 � 18

e � 0.005lim
x→�2

x2 � 4

x � 2
� �4

e � 0.02lim
x→3

x2 � 9

x � 3
� 6

e � 0.05lim
x→�2

(3x � 2) � �8

e � 0.01lim
x→1

(2x � 3) � 5

e � 0.001lim
x→�1

2x � �2

e � 0.01lim
x→2

3x � 6

0 � �x � a � � d

� f(x) � L � � ede

limx→a f(x) � L 25. Prove that does not exist, where is the Heavi-
side function

26. Let

Prove that does not exist.

27. Prove the Constant Multiple Law for limits:
If and is a constant, then

.

28. The precise definition of the left-hand limit,
, may be stated as follows: For every 

number there exists a number such that
whenever . Similarly, for 

the right-hand limit, if for every number
there exists a number such that 

whenever . Explain, with the aid of figures,
why these definitions are appropriate.

29. Use the definition in Exercise 28 to prove that

.

30. Use the definition in Exercise 28 to prove that
.

In Exercises 31–34, determine whether the statement is true or
false. If it is true, explain why. If it is false, explain why or give
an example that shows it is false.

31. The limit of as approaches is if there exists a
number such that for all , when-
ever .

32. If , then given the number 0.01, there 
exists a such that implies that

.

33. The limit of as approaches is if for all ,
there exists a such that whenever

.

34. The limit of as approaches is if for all ,
there exists an , such that whenever

.0 � �x � a � � d

� f(x) � L � � ee � 0
d � 0Laxf(x)

0 � �x � a � � d

� f(x) � L � � ed � 0
e � 0Laxf(x)

� f(x) � L � � 0.01
0 � �x � a � � dd � 0

limx→a f(x) � L

0 � �x � a � � d

� f(x) � L � � ed � 0e � 0
Laxf(x)

limx→2� 1x � 2 � 0

limx→2�24 4 � x2 � 0

a � x � a � d

� f(x) � L � � ed � 0e � 0
limx→a� f(x) � L

a � d � x � a� f(x) � L � � e
d � 0e � 0

limx→a� f(x) � L

limx→a[cf(x)] � cL
climx→a f(x) � L

limx→0 f(x)

f(x) � e0 if x is rational

1 if x is irrational 

H(x) � e0 if x � 0

1 if x 	 0

Hlimx→0 H(x)

1.3 EXERCISES

Videos for selected exercises are available online at www.academic.cengage.com/login.V

www.academic.cengage.com/login
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1.4 Continuous Functions

Continuous Functions
The graph of the function

giving the position of the maglev at any time (discussed in Section 1.1) is shown in
Figure 1. Observe that the curve has no holes or jumps. This tells us that the displace-
ment of the maglev must vary continuously with respect to time—it cannot vanish at
any instant of time, and it cannot skip a stretch of the track to reappear and resume its
motion somewhere else. The function is an example of a continuous function. Observe
that you can draw the graph of this function without lifting your pencil from the paper.

s

t

0 � t � 30s � f(t) � 4t 2

FIGURE 1
gives the position 

of the maglev at any time .t
s � f(t) � 4t 2

Functions that are discontinuous also occur in practical applications. Consider, for
example, the Heaviside function defined by

and first introduced in Example 3 in Section 1.1. You can see from the graph of that
it has a jump at (Figure 2). If we think of as describing the flow of current in
an electrical circuit, then corresponds to the time at which the switch is turned
on. The function is discontinuous at 0.

Continuity at a Number
We now give a formal definition of continuity.

H
t � 0

Ht � 0
H

H(t) � e0 if t � 0

1 if t 	 0

H

FIGURE 2
The Heaviside function is
discontinuous at .t � 0

t (sec)

s � 4t2

s (ft)

2000

1000

3000

10 20 300

t

y

1

0

DEFINITION Continuity at a Number

Let be a function defined on an open interval containing all values of close
to . Then is continuous at if

(1)lim
x→a

f(x) � f(a)

afa
xf

If we write and note that approaches as approaches 0, we see that
the condition for to be continuous at is equivalent to

(2)lim
h→0

f(a � h) � f(a)

af
haxx � a � h
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Briefly, is continuous at if gets closer and closer to as approaches .
Equivalently, is continuous at if proximity of to implies proximity of to

. (See Figure 3.)f(a)
f(x)axaf

axf(a)f(x)af

y

xa x

y � f(x)
f(a)

f(x)

0FIGURE 3
As approaches , approaches .f(a)f(x)ax

If is defined for all values of close to but Equation (1) is not satisfied, then 
is discontinuous at or has a discontinuity at .

Note It is implicit in Equation (1) that is defined and the exists.
However, for emphasis we sometimes define continuity at by requiring that the
following three conditions hold: (1) is defined, (2) exists, and
(3) .limx→a f(x) � f(a)

limx→a f(x)f(a)
a

limx→a f(x)f(a)

afa
faxf

EXAMPLE 1 Use the graph of the function shown in Figure 4 to determine whether
is continuous at 0, 1, 2, 3, 4, and 5.f

FIGURE 4
The graph of f

x

y

1

2

3

1 2 3 4 50

Solution The function is continuous at 0 because

It is discontinuous at 1 because is not defined. It is discontinuous at 2 because

Since

we see that is continuous at 3. Next, we see that does not exist, so is
not continuous at 4. Finally, because does not exist, we see that is dis-
continuous at 5.

flimx→5 f(x)
flimx→4 f(x)f

lim
x→3

f(x) � 0 � f(3)

lim
x→2

f(x) � 2 � 1 � f(2)

f(1)

lim
x→0

f(x) � 1 � f(0)

f
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EXAMPLE 2 Let

Show that has a removable discontinuity at 2. Redefine at 2 so that it is continuous
everywhere.

Solution First, let’s find the limit of as approaches 2:

Because , we see that is discontinuous at 2. We can
remove this discontinuity and thus render continuous everywhere by redefining the
value of at 2 to be equal to 3. (See Figure 5.)f

f
flimx→2 f(x) � 3 � 1 � f(2)

 � lim
x→2

(x � 1) � 3

 lim
x→2

x2 � x � 2

x � 2
� lim

x→2

(x � 2)(x � 1)

x � 2

xf(x)

ff

f(x) � •
x2 � x � 2

x � 2
if x � 2

1 if x � 2

FIGURE 5
The discontinuity at 2 is removed 

by redefining at .x � 2f

Continuity at an Endpoint
When we defined continuity, we assumed that was defined for all values of close
to . Sometimes is defined only for those values of that are greater than or equal
to or for values of that are less than or equal to . For example, is defined
for , and is defined for . The following definition covers
these situations.

x � 3t(x) � 13 � xx 	 0
f(x) � 1xaxa

xf(x)a
xf(x)

Refer to the function in Example 1. The discontinuity at 1 and at 2, where the limit
exists, is called a removable discontinuity because can be made continuous at each of
these numbers by defining or redefining it there. For example, if we define , then

is made continuous at 1; if we redefine by specifying that , then is also
made continuous at 2.

The discontinuity at 4 is called a jump discontinuity, whereas the discontinuity at
5 is called an infinite discontinuity. Because the limit does not exist at a jump or at
an infinite discontinuity, the discontinuity cannot be removed by defining or redefin-
ing the function at the number in question.

ff(2) � 2f(2)f
f(1) � 1

f
f

y y

x

1

2

3

4

5

1�1 �1

(a) f has a removable
     discontinuity at 2.

2 30 x

1

2

3

4

5

1

(b) f is continuous at 2.

2 30
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DEFINITION Continuity from the Right and from the Left

A function is continuous from the right at if

(3a)

A function is continuous from the left at if

(3b)

(See Figure 6.)

lim
x→a�

f(x) � f(a)

af

lim
x→a�

f(x) � f(a)

af

FIGURE 6

EXAMPLE 3 The Heaviside Function Consider the Heaviside function defined by

Determine whether is continuous from the right at 0 and/or from the left at 0.

Solution Because

and this is equal to , is continuous from the right at 0. Next, because

and this is not equal to , is not continuous from the left at 0. (See Fig-
ure 7.)

Note It follows from the definition of continuity that a function is continuous at 
if and only if is simultaneously continuous from the right and from the left at .

Continuity on an Interval
You might have noticed that continuity is a “local” concept; that is, we say that is
continuous at a number. The following definition tells us what it means to say that a
function is continuous on an interval.

f

afa
f

HH(0) � 1

lim
t→0�

H(t) � lim
t→0�

(0) � 0

HH(0) � 1

lim
t→0�

H(t) � lim
t→0�

1 � 1

H

H(t) � e0 if t � 0

1 if t 	 0

H

FIGURE 7
The Heaviside function is continuous
from the right at the number 0.

H

x

y

(a) f is continuous from the
     right at a.

a0 x

y

(b) f is continuous from the
     left at a.

a0

t

y

1

0
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DEFINITION Continuity on Open and Closed Intervals

A function is continuous on an open interval if it is continuous at every
number in the interval. A function is continuous on a closed interval
if it is continuous on and is also continuous from the right at and from
the left at . A function is continuous on a half-open interval or 
if is continuous on and is continuous from the right at or is contin-
uous from the left at , respectively.b

faf(a, b)f
(a, b][a, b)fb

a(a, b)
[a, b]f

(a, b)f

EXAMPLE 4 Show that the function defined by is continuous on
the closed interval .

Solution We first show that is continuous on . Let be any number in 
. Then, using the laws of limits, we have

and this proves the assertion.
Next, let us show that is continuous from the right at and from the left at 2.

Again, by invoking the limit properties, we see that

and

and this proves the assertion. Therefore, is continuous on . The graph of is
shown in Figure 8.

f[�2, 2]f

lim
x→2�

f(x) � lim
x→2�

24 � x2 �2 lim
x→2�

(4 � x2) � 0 � f(2)

lim
x→�2�

f(x) � lim
x→�2�

24 � x2 �2 lim
x→�2�

(4 � x2) � 0 � f(�2)

�2f

lim
x→a

f(x) � lim
x→a
24 � x2 �2lim

x→a
(4 � x2) �24 � a2 � f(a)

(�2, 2)
a(�2, 2)f

[�2, 2]
f(x) �24 � x2f

FIGURE 8

The function is
continuous on .[�2, 2]

f(x) �24 � x2

x

y � 4 � x2

y

2

2�2 0

THEOREM 1 Continuity of a Sum, Product, and Quotient

If the functions and are continuous at , then the following functions are also
continuous at .

a.
b.
c. , where is any constant

d. , if t(a) � 0
f

t

ccf
ft
f 
 t

a
atf

We will prove Theorem 1b and leave some of the other parts as exercises. (See
Exercises 94–95.)

PROOF OF THEOREM 1b
Since and are continuous at , we have

and lim
x→a

t(x) � t(a)lim
x→a

f(x) � f(a)

atf
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By the Product Law for limits,

so is continuous at .

Note As in the case of the Sum Law and the Product Law, Theorems 1a and 1b can
be extended to the case involving finitely many functions.

The following theorem is an immediate consequence of Laws 10 and 11 for limits
from Section 1.2.

aft

lim
x→a

[ f(x)t(x)] � lim
x→a

f(x) � lim
x→a

t(x) � f(a)t(a)

THEOREM 2 Continuity of Polynomial and Rational Functions

a. A polynomial function is continuous on .
b. A rational function is continuous on its domain.

(��, �)

EXAMPLE 5 Find the values of for which the function

is continuous.

Solution We can think of the function as the sum of the polynomial function
and the rational function .

By Theorem 2 we see that is continuous on , whereas is continuous every-
where except at and 2. Therefore, is continuous on , , and 

.

If you examine the graphs of the sine and cosine functions, you can see that they
are continuous on . You will be asked to provide a rigorous demonstration of
this in Exercises 92 and 93. Since the other trigonometric functions are defined in terms
of these two functions, the continuity of the other trigonometric functions can be deter-
mined from them.

(��, �)

(2, �)
(�1, 2)(��, �1)f�1

h(��, �)t

h(x) � (x � 1)>[(x � 1)(x � 2)]t(x) � x8 � 3x4 � x � 4
f

f(x) � x8 � 3x4 � x � 4 �
x � 1

(x � 1)(x � 2)

x

THEOREM 3 Continuity of Trigonometric Functions

The functions , , , , , and are continuous at every
number in their respective domain.

cot xcsc xsec xtan xcos xsin x

For example, since , we see that tan is continuous every-
where except at the values of where ; that is, except at , where

is an integer. In other words, is continuous on

, , , , pap
2

, 
3p

2
ba�p

2
, 
p

2
ba�3p

2
, �
p

2
bp

f(x) � tan xn
p>2 � npcos x � 0x

xtan x � (sin x)>(cos x)
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EXAMPLE 6 Find the values at which the following functions are continuous.

a. b.

Solution
a. Since the functions and cos are continuous everywhere, we conclude that is

continuous on .
b. The function is continuous on . The function is continuous every-

where and has zeros at , where is an integer. It follows from Theorem 1d,
that is continuous at all positive values of that are not integral multiples of ;
that is, is continuous on .

Continuity of Composite Functions
The following theorem shows us how to compute the limit of a composite function

where is continuous.ff � t

(0, p), (p, 2p), (2p, 3p), pt

pxt

nnp
sin x[0, �)1x

(��, �)
fxx

t(x) �
1x

sin x
f(x) � x cos x

THEOREM 4 Limit of a Composite Function

If the function is continuous at and , then

lim
x→a

f(t(x)) � f(L)

limx→a t(x) � LLf

Intuitively, Theorem 4 is plausible because as approaches , approaches .
Since is continuous at , proximity of to implies proximity of to ,
which is what the theorem asserts. Theorem 4 is proved in Appendix B.

Note Theorem 4 states that the limit symbol can be moved through a continuous func-
tion. Thus,

It follows from Theorem 4 that compositions of continuous functions are also con-
tinuous.

lim
x→a

f(t(x)) � f(lim
x→a

t(x)) � f(L)

f(L)f(t(x))Lt(x)Lf
Lt(x)ax

THEOREM 5 Continuity of Composite Functions

If the function is continuous at and the function is continuous at , then
the composition is continuous at .af � t

t(a)fat

PROOF We compute

Theorem 4

Since is continuous at 

which is precisely the condition for to be continuous at .af � t

 � ( f � t)(a)

at � f(t(a))

 � f(lim
x→a

t(x))

 lim
x→a

( f � t)(x) � lim
x→a

f(t(x))
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EXAMPLE 7

a. Show that is continuous everywhere.
b. Use the result of part (a) to evaluate

Solution
a. Since for all , we can view as , where and

. Now is continuous on , and for all in .
Also, is continuous on . Therefore, Theorem 5 says that is con-
tinuous on .

b. By the continuity of the absolute value function established in part (a) and Theo-
rem 4, we find

. � � limx→1
(�1)(x � 2) � � ��3 � � 3

 � ` lim
x→1

 
�(x � 1)(x � 2)

x � 1
`

 lim
x→1
` �x2 � x � 2

x � 1
` � ` lim

x→1
 
�x2 � x � 2

x � 1
`

(��, �)
h � f � t[0, �)f

(��, �)xt(x) 	 0(��, �)tf(x) � 1x
t(x) � x2h � f � thx�x � �2x2

lim
x→1
` �x2 � x � 2

x � 1
`

h(x) � �x �

EXAMPLE 8 Find the intervals where the following functions are continuous.

a. b.

Solution
a. We can view as a composition, , of the functions and

. Since each of these functions is continuous everywhere, we
conclude that is continuous on .

b. The function is the composition of the functions and
. Since is continuous everywhere and is continuous everywhere

except at 0, Theorem 5 says that the function is continuous on 
and . Also, the function is continuous everywhere. Therefore,
we conclude by Theorem 1b that , which is the product of and , is continu-
ous on and . The graph of is shown in Figure 9.t(0, �)(��, 0)

fFt

F(x) � x2(0, �)
(��, 0)f � h � k

khk(x) � 1>x h(x) � sin xf(x) � sin(1>x)
(��, �)f

h(x) � 13x � 4
t(x) � cos xt � hf

t(x) � x2 sin
1
x

f(x) � cos(13x � 4)

FIGURE 9
is continuous everywhere except at 0.t

x

y

0.06

�0.06

0.4�0.4 0

y � x2  sin 1
x

MARIN MERSENNE
(1588-1648)

Father Marin Mersenne was a close friend
of Descartes (page 6), Fermat (page 307),
and many other mathematicians, scientists,
and philosophers of the early 1600s.
Referred to as the “correspondent extraor-
dinaire,” he is best remembered for his
extensive exchanges of letters with the
brightest European scholars of the time.
Through Mersenne the French mathemati-
cians learned of one another’s thoughts on
newly developed mathematical concepts.
Mersenne’s name is also preserved in con-
nection with prime numbers of the form

, where is prime. The search for
such primes continues today through the
Great Internet Mersenne Prime Search
(GIMPS). In 2008 a German electrical engi-
neer discovered the largest known
Mersenne prime: 237,156,667 � 1. This number
is 11,185,272 digits long!

p2p � 1

Historical Biography
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Intermediate Value Theorem
Let’s look again at our model of the motion of the maglev on a straight stretch of track.
We know that the train cannot vanish at any instant of time, and it cannot skip portions
of the track and reappear someplace else. To put it another way, the train cannot occupy
the positions and without at least, at some time, occupying every intermediate
position (Figure 10). To state this fact mathematically, recall that the position of the
maglev as a function of time is described by

0 � t � 30s � f(t) � 4t 2

s2s1

FIGURE 10
Position of the maglev

Suppose that the position of the maglev is at some time and that its position is 
at some time . (See Figure 11.) Then if is any number between and giving an
intermediate position of the maglev, there must be at least one between and giv-
ing the time at which the train is at ; that is, .f( t ) � ss

t2t1t
s2s1st2

s2t1s1

FIGURE 11
If , then there 

must be at least one , where
, such that .f( t ) � st1 � t � t2

t
s1 � s � s2

This discussion carries the gist of the Intermediate Value Theorem.

s

Not possible

s1 s2 s

Possible

s1 s2

s � 4t2

t

s

s2

s1

s

t2t1 t0

THEOREM 6 The Intermediate Value Theorem

If is a continuous function on a closed interval and is any number
between and , inclusive, then there is at least one number in 
such that . (See Figure 12.)f(c) � M

[a, b]cf(b)f(a)
M[a, b]f

FIGURE 12
If is continuous on 

and , then 
there is at least one , where 

such that .f(c) � Ma � c � b
c

f(a) � M � f(b)
[a, b]f

y � f(x)

y � f(x)

x

y

f(b)

f(a)

M

a c b0

(a) f(c) � M

x

y

f(b)

f(a)

M

a c3c2c1 b0

(b) f(c1) � f(c2) � f(c3) � M
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To illustrate the Intermediate Value Theorem, let’s look at the example involving
the motion of the maglev again (see Figure 1 in Section 1.1). Notice that the initial
position of the train is and that the position at the end of its test run is

. Furthermore, the function is continuous on . So the Intermedi-
ate Value Theorem guarantees that if we arbitrarily pick a number between 0 and 3600,
say, 400, giving the position of the maglev, there must be a between 0 and 30 at which
time the train is at the position . To find the value of , we solve the equation

, or

giving . (Note that must lie between 0 and 30.)

Remember that when you use Theorem 6, the function must be continuous. The
conclusion of the Intermediate Value Theorem might not hold if is not continu-
ous (see Exercise 70).

The next theorem is an immediate consequence of the Intermediate Value Theo-
rem. It not only tells us when a zero of a function (root of the equation )
exists but also provides the basis for a method of approximating it.

f(x) � 0f

f
f

tt � 10

4t 2 � 400

f( t ) � s
ts � 400

t

[0, 30]ff(30) � 3600
f(0) � 0

!

THEOREM 7 Existence of Zeros of a Continuous Function

If is a continuous function on a closed interval and and have
opposite signs, then the equation has at least one solution in the inter-
val or, equivalently, the function has at least one zero in the interval

. (See Figure 13.)(a, b)
f(a, b)

f(x) � 0
f(b)f(a)[a, b]f

FIGURE 13
If and have opposite signs,
there must be at least one number ,

where , such that .f(c) � 0a � c � b
c

f(b)f(a)

f(c1) � f(c2) � f(c3) � 0
f(c) � 0

x

y

f(b)

f(a)

a c3c2c1 b0

(b)

x

y

f(b)

f(a)

a bc0

(a)

EXAMPLE 9 Let . Since is a polynomial, it is continuous every-
where. Observe that and , so Theorem 7 guarantees the existence
of at least one root of the equation in .* We can locate the root more
precisely by using Theorem 7 once again as follows: Evaluate at the midpoint of

. Thus,

Because and , Theorem 7 now tells us that a root must lie in
. Repeat the process: Evaluate at the midpoint of , which is

0.5 � 1

2
� 0.75

[0.5, 1]f(x)(0.5, 1)
f(1) � 0f(0.5) � 0

f(0.5) � �0.375

[0, 1]
f(x)

(0, 1)f(x) � 0
f(1) � 1f(0) � �1

ff(x) � x3 � x � 1

*It can be shown that has exactly one zero in (see Exercise 90).(0, 1)f
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Step Root of lies inf(x) � 0

1

2

3

4

5

6

7

8

9 (0.6796875, 0.68359375)

(0.6796875, 0.6875)

(0.671875, 0.6875)

(0.65625, 0.6875)

(0.625, 0.6875)

(0.625, 0.75)

(0.5, 0.75)

(0.5, 1)

(0, 1)

TABLE 1

1. Explain what it means for a function to be continuous 
(a) at a number , (b) from the right at , and (c) from the
left at . Give examples.

2. Explain what it means for a function to be continuous 
(a) on an open interval and (b) on a closed interval

. Give examples.
3. Determine whether each function is continuous or discon-

tinuous. Explain your answer.
a. gives the altitude of an airplane at time .
b. measures the total amount of rainfall at time over

the past 24 hr at the municipal airport.
tf(t)

tf(t)

f
[a, b]

(a, b)
f

a
aa

f c. is the price of admission for an adult at a movie 
theater as a function of time on a weekday.

d. is the speed of a pebble at time when it is dropped
from a height of 6 ft into a swimming pool.

4. a. Suppose that and both exist
and is discontinuous at . Under what conditions does 

have a removable discontinuity at ?
b. Suppose that is continuous from the left at and con-

tinuous from the right at . What can you say about the
continuity of at ? Explain.af

a
af

af
af

limx→a� f(x)limx→a� f(x)

tf(t)

f(t)

1.4 CONCEPT QUESTIONS

Thus,

Because and , Theorem 7 tells us that a root is in .
This process can be continued. Table 1 summarizes the results of our computations
through nine steps. From Table 1 we see that the root is approximately 0.68, accurate
to two decimal places. By continuing the process through a sufficient number of steps,
we can obtain as accurate an approximation to the root as we please.

Note The process of finding the root of used in Example 9 is called the
method of bisection. It is crude but effective. Later, we will look at a more efficient
method, called the Newton-Raphson method, for finding the roots of .f(x) � 0

f(x) � 0

(0.5, 0.75)f(0.75) � 0f(0.5) � 0

f(0.75) � 0.171875

3.

x

y

2

�2

5

1�1

1.4 EXERCISES

Videos for selected exercises are available online at www.academic.cengage.com/login.V

In Exercises 1–6, use the graph to determine where the function
is discontinuous.

1. 2.

x

y

1

5

21 3�1�2�3 0

y

x

3

5

1�1 0

www.academic.cengage.com/login
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4.

5.

6.

In Exercises 7–26, find the numbers, if any, where the function is
discontinuous.

7. 8.

9. 10.

11. 12.

13. 14.

15. 16.

17. 18.

19.

20. f(x) � ex � 2 if x � 3

�2x � 11 if x 	 3

f(x) � e2x � 1 if x � 0

1 if x � 0

f(x) � Œx � 2 œf(x) � x � Œx œ
f(x) � 2x �

x � 1
�x � 1 �f(x) � ` x � 2

x2 � 2x
`

f(x) � �x3 � 2x � 1 �f(x) �
x2 � 3x � 2

x2 � 2x

f(x) �
x � 1

x2 � 2x � 3
f(x) �

x � 2

x2 � 4

f(x) �
2x

x2 � 1
f(x) �

1

x � 2

f(x) �
3

x2 � 1
f(x) � 2x3 � 3x2 � 4

x

y

y � �x y � x

0

x

y

1

21 3�1�2�3 0

x

y

2

3

1

�2

�3

�1
1 2 3�3 0

21.

22.

23.

24.

25.

26.

27. Let

Find the value of that will make continuous on .

28. Let

Find the value of that will make continuous on .

29. Let

Find the values of and that will make continuous on
.

30. Let

Find the value of that will make continuous on .

31. Let

Find the value of that will make continuous on .

32. Let

Find the value of that will make continuous at .x � 0fc

f(x) � ex cot kx if x � 0

x2 � c if x 	 0

(��, �)fc

f(x) � •
sin 2x

x
if x � 0

c if x � 0

(��, �)fk

f(x) � ekx � 1 if x � 2

kx2 � 3 if x � 2

(��, �)
fba

f(x) � •
ax � b if x � 1

4 if x � 1

2ax � b if x � 1

(��, �)fk

f(x) � •
x2 � 4

x � 2
if x � �2

k if x � �2

(��, �)fk

f(x) � ex � 2 if x � 1

kx2 if x � 1

f(x) � cot px

f(x) � sec 2x

f(x) � e��x � � 1 if x � 0

0 if x � 0

f(x) � •
1

x2 if x � 0

1 if x � 0

f(x) � •
x2 � x � 6

x � 2
if x � 2

5 if x � 2

f(x) � •
x2 � 1

x � 1
if x � �1

1 if x � �1
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In Exercises 33–36, determine whether the function is continuous
on the closed interval.

33. ,

34. ,

35. ,

36. ,

In Exercises 37–48, find the interval(s) where is continuous.

37. 38.

39. 40.

41. 42.

43. 44.

45. 46.

47. 48.

49. Find 50. Find 

In Exercises 51–56, define the function at so as to make it 
continuous at .

51. ,

52. ,

53. ,

54. ,

55. ,

56. ,

In Exercises 57 and 58, let , and let be the
signum (or sign) function defined by

57. Show that is continuous on . Does this contra-
dict Theorem 5?

58. Sketch the graph of the function , and determine where
is continuous.t � f

t � f

(��, �)f � t

t(x) � •
�1 if x � 0

0 if x � 0

1 if x � 0

tf(x) � x(1 � x2)

a � 0f(x) �
sin2 x

1 � cos x

a � 0f(x) �
tan x

x

a � 4f(x) �
4 � x

2 � 1x

a � 0f(x) �
1x � 1 � 1

x

a � 1f(x) �
2x3 � x � 3

x � 1

a � 0f(x) �
3x3 � 2x

5x

a
a

lim
x→�1

` x2 � x � 2

x � 1
`lim

x→2
` x2 � x � 6

x � 2
`

f(x) �
2 cos x

5 � 2 sin x
f(x) � sin x � csc x

f(x) �
sin x

x
f(x) � sin x2

f(x) �
1
x

�
31x

(x � 2)2f(x) �
1

x29 � x2

f(x) �2x2 � 4f(x) �29 � x2

h(x) � 1x �
1

1x
f(x) �2x2 � x � 1

f(x) � 1x(x � 5)4f(x) � (3x3 � 2x2 � 1)4

f

[�2, 2]h(t) �
1

t 2 � 9

[�2, 4]f(x) � ex � 1 if x � 0

2 � x if x 	 0

[�2, 1]t(x) � x �24 � x2

[�4, 4]f(x) �216 � x2

In Exercises 59–62, use the Intermediate Value Theorem to find
the value of such that .

59. on ;

60. on ;

61. on ;

62. on ;

In Exercises 63–66, use Theorem 7 to show that there is at least
one root of the equation in the given interval.

63. ;

64. ;

65. ;

66. ;

67. Let . Use the Intermediate Value Theorem to prove
that there is a number in the interval such that

. (This proves the existence of the number .)

68. Let .
a. Show that there is at least one number in the interval

such that .
b. Use a graphing utility to find all values of accurate to

five decimal places.
Hint: Find the point(s) of intersection of the graphs of and

.

69. Let .
a. Show that there is at least one number in the interval

such that .
b. Use a graphing utility to find all values of accurate to

five decimal places.
Hint: Find the point(s) of intersection of the graphs of and

.

70. Let

a. Show that is not continuous on .
b. Show that does not take on all values between 

and .f(1)
f(�1)f

[�1, 1]f

x

y

2

1

�1

�1 10

f(x) � e�x2 if x � 0

x � 1 if x � 0

t(x) � 12
f

c
f(c) � 12[0, 1]

c
f(x) � 1

2 x2 � cos px � 1

t(x) � 12
f

c
f(c) � 12[0, 2]

c
f(x) � x5 � 3x2 � 2x � 5

12f(c) � 2
[0, 2]c

f(x) � x2

(2, 3)x4 � 2x3 � 1x � 1

(1, 2)x5 � 2x � 7 � 0

(1, 2)x4 � 2x3 � 3x2 � 7 � 0

(0, 2)x3 � 2x � 1 � 0

M � 2[�4, �2]f(x) �
x � 1

x � 1

M � 10[0, 4]f(x) � x3 � 2x2 � x � 2

M � 3[0, 3]f(x) � x2 � 4x � 6

M � 7[�1, 4]f(x) � x2 � x � 1

f(c) � Mc
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71. Let

Does have a zero in the interval ? Explain your
answer.

72. Use the method of bisection to approximate the root of the
equation accurate to two decimal places.
(Refer to Example 9.)

73. Use the method of bisection to approximate the root of the
equation accurate to two decimal places.

74. Acquisition of Failing S&L’s The Tri-State Savings and Loan
Company acquired two ailing financial institutions in 2009.
One of them was acquired at time , and the other was
acquired at time . ( corresponds to the beginning
of 2009.) The following graph shows the total amount of
money on deposit with Tri-State. Explain the significance of
the discontinuities of the function at and .

75. Colliding Billiard Balls While moving at a constant speed of 
m/sec, billiard ball collides with another stationary ball
at time , hitting it “dead center.” Suppose that at the

moment of impact, ball comes to rest. Draw graphs
depicting the speeds of ball and ball (neglect friction).

76. Action of an Impulse on an Object An object of mass is at rest
at the origin on the -axis. At it is acted upon by an
impulse for a very short duration of time. The position of
the object is given by

Sketch the graph of , and interpret your results.

77. Joan is looking straight out of a window of an apartment build-
ing at a height of 32 ft from the ground. A boy throws a tennis
ball straight up by the side of the building where the window is
located. Suppose the height of the ball (measured in feet) from
the ground at time (in sec) is .
a. Show that and .
b. Use the Intermediate Value Theorem to conclude that the

ball must cross Joan’s line of sight at least once.
c. At what time(s) does the ball cross Joan’s line of sight?

Interpret your results.

h(2) � 68h(0) � 4
h(t) � 4 � 64t � 16t 2t

f

x � f(t) � •
0 if 0 � t � t0

P0(t � t0)

m
if t � t0

P0

t � t0x
m

BA
A

t1B
A√

t (months)T1 T2

y (millions of dollars)

200

400

600

800

10 1286420

T2T1

t � 0t � T2

t � T1

x5 � 2x � 7 � 0

x3 � x � 1 � 0

[�2, 2]f

f(x) � e�x � 2 if �2 � x � 0

�(x2 � 2) if 0 � x � 2

78. A Mixture Problem A tank initially contains 10 gal of brine
with 2 lb of salt. Brine with 1.5 lb of salt per gallon enters
the tank at the rate of 3 gal/min, and the well-stirred mixture
leaves the tank at the rate of 4 gal/min. It can be shown that
the amount of salt in the tank after min is lb, where

Show that there is at least one instant of time between 
and when the amount of salt in the tank is 5 lb.
Note: We will find the times(s) when the amount of salt in the tank
is 5 lb in Example 4 of Section 3.8.

79. Elastic Curve of a Beam The following figure shows the elastic
curve (the dashed curve in the figure) of a beam of length 

ft carrying a concentrated load of lb at its center. An
equation of the curve is

where the product is a constant called the flexural rigidity
of the beam. Show that the function describing the
elastic curve is continuous on .

80. Newton’s Law of Attraction The magnitude of the force exerted
on a particle of mass by a thin homogeneous spherical
shell of radius is

F(r) � •
0 if r � R

GMm

r 2 if r � R

R
m

y (ft)

x (ft)

W0

[0, L]
y � f(x)

EI

 � μ
W0

48EI
 (3L2x � 4x3) if 0 � x � L

2

W0

48EI
 (4x3 � 12Lx2 � 9L2x � L3) if L2 � x � L

 y � f(x)

W0L

t � 3
t � 0

0 � t � 3x � f(t) � 1.5(10 � t) � 0.0013(10 � t)4

xt
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where is the mass of the shell, is the distance from the
center of the shell to the particle, and is the gravitational
constant.

a. What is the force exerted on a particle just inside the
shell? Just outside the shell?

b. Sketch the graph of . Is a continuous function of ?

81. A couple leaves their house at 6 P.M. on Friday for a week-
end escape to their mountain cabin, where they arrive at 
8 P.M. On the return trip, the couple leaves the cabin at 
6 P.M. on Sunday and reverses the route they took on Friday,
arriving home at 8 P.M. Use the Intermediate Value Theorem
to show that there is a location on the route that the couple
will pass at the same time of day on both days.

82. a. Suppose that is continuous at and is discontinuous
at . Prove that the sum is discontinuous at .

b. Suppose that and are both discontinuous at . Is the
sum necessarily discontinuous at ? Explain.

83. a. Suppose that is continuous at and is discontinuous
at . Is the product necessarily discontinuous at ?
Explain.

b. Suppose that and are both discontinuous at . Is the
product necessarily discontinuous at ? Explain.

84. The Dirichlet Function The Dirichlet function is defined by

Show that is discontinuous at every real number.

85. Show that every polynomial equation of the form

with real coefficients and has at least one real
root.

86. Suppose that is continuous on and has a finite 
number of zeros , , , in , satisfying

. Show that has the same
sign within each of the intervals , , , .(xn, b)p(x1 x2)(a, x1)

f(x)a � x1 � x2 � p � xn � b
(a, b)xnpx2x1

[a, b]f

a2n�1 � 0

a2n�1x
2n�1 � a2nx

2n � p � a2x
2 � a1x � a0 � 0

f

f(x) � e0 if x is rational

1 if x is irrational

aft
atf

afta
taf

af � t

atf
af � ta

taf

rFF

R
r

G
rM 87. Let be a continuous function on an interval and

suppose whenever . Show that the
equation has at least one solution in the interval

. Give a geometric interpretation.
Hint: Apply the Intermediate Value Theorem to the function

.

In Exercises 88 and 89, plot the graph of . Then use the graph
to determine where the function is continuous. Verify your
answer analytically.

88.

89.

90. Show that has exactly one zero in .

91. Show that there is at least one root of the equation
in the interval .

92. Prove that is continuous everywhere.
Hint: Use the result of Exercise 97 in Section 1.2.

93. Prove that is continuous everywhere.

94. Prove that if and are continuous at , then is 
continuous at .

95. Prove that if and are continuous at with ,
then is continuous at .

In Exercises 96–100, determine whether the statement is true or
false. If it is true, explain why. If it is false, explain why or give
an example that shows it is false.

96. If is continuous at , then is continuous at .

97. If is discontinuous at , then is continuous at .

98. If is defined on the interval with and 
having opposite signs, then must have at least one zero 
in .

99. If is continuous and is continuous, then is 
continuous.

100. If is continuous on the interval , then is continuous
on the interval .(2, 4)

f(1, 5)f

tf � tf

(a, b)
f

f(b)f(a)[a, b]f

af 2af

afa� f �

af>t t(a) � 0atf

a
f � tatf

f(x) � cos x

f(x) � sin x

10, 3p2 2sin x � x � 2 � 0

(0, 1)f(x) � x3 � x � 1

f(x) �
� sin x �

sin x

f(x) � e x � 1

x11 � x
if x � 1

2 if x � 1

x4 � 1

x2 if  x � 1

f

f(x) � x � t(x)

[a, b]
cx � t(x)

a � x � ba � t(x) � b
[a, b]t
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1.5 Tangent Lines and Rates of Change

An Intuitive Look
One of the two problems that played a fundamental role in the development of calcu-
lus is the tangent line problem: How do we find the tangent line at a given point on a
curve? (See Figure 1a.) To gain an intuitive feeling for the notion of the tangent line
to a curve, think of the curve as representing a stretch of roller coaster track, and imag-
ine that you are sitting in a car at the point and looking straight ahead. Then the tan-
gent line to the curve at is just the line parallel to your line of sight (Figure 1b).PT

P

FIGURE 1

Observe that the slope of the tangent line at the point appears to reflect the
“steepness” of the curve at . In other words, the slope of the tangent line at the point

on the graph of provides us with a natural yardstick for measuring
the rate of change of one quantity with respect to another quantity .

Let’s see how this intuitive observation bears out in a specific example. The func-
tion gives the position of a maglev moving along a straight track at time
. We have drawn the tangent line to the graph of at the point in Figure 2.

Observe that the slope of is . This suggests that the quantity is chang-
ing at the rate of 16 units per unit change in ; that is, the velocity of the maglev at

is 16 ft/sec. You might recall that this was the figure we arrived at in our calcu-
lations in Section 1.1!
t � 2

t
s32>2 � 16T

(2, 16)sTt
s � f(t) � 4t 2

(x)(y)
y � f(x)P(x, f(x))
P

PT

(a) T is the tangent line to the curve at P.

x0

y
y � f (x)

T T

Line o
f s

ight

P(x, f (x))

(b) The line of sight is parallel to T.

x0

y
y � f (x)

FIGURE 2
The position of the maglev at time t

t (sec)

s � 4t2

T

s (ft)
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80

1 2 3 4

32

2
(2, 16)
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Estimating the Rate of Change of a Function from Its Graph

EXAMPLE 1 Automobile Fuel Economy According to a study by the U.S. Depart-
ment of Energy and the Shell Development Company, a typical car’s fuel economy as
a function of its speed is described by the graph of the function shown in Figure 3.
Assuming that the rate of change of the function at any value of is given by the
slope of the tangent line at the point , use the graph of to estimate the rate
of change of a typical car’s fuel economy, measured in miles per gallon (mpg), when
a car is driven at 20 mph and when it is driven at 60 mph.

fP(x, f(x))
xf

f

FIGURE 3
The fuel economy of a typical car

Source: U.S. Department of Energy 
and Shell Development Company.

Solution The slope of the tangent line to the graph of at is approxi-
mately

This tells us that the quantity is increasing at the rate of approximately 0.9 unit
per unit change in when . In other words, when a car is driven at a speed of
20 mph, its fuel economy typically increases at the rate of approximately 0.9 mpg per
1 mph increase in the speed of the car. The slope of the tangent line to the graph of

at is

This says that the quantity is decreasing at the rate of approximately 0.5 unit per unit
change in when . In other words, when a car is driven at a speed of 60 mph,
its fuel economy typically decreases at the rate of 0.5 mpg per 1 mph increase in the
speed of the car.

More Examples Involving Rates of Change
The discovery of the relationship between the problem of finding the slope of the tan-
gent line and the problem of finding the rate of change of one quantity with respect to
another spurred the development in the seventeenth century of the branch of calculus
called differential calculus and made it an indispensable tool for solving practical
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problems. A small sample of the types of problems that we can solve using differen-
tial calculus follows:

Finding the velocity (rate of change of position with respect to time) of a sports
car moving along a straight road
Finding the rate of change of the harmonic distortion of a stereo amplifier with
respect to its power output
Finding the rate of growth of a bacteria population with respect to time
Finding the rate of change of the Consumer Price Index with respect to time
Finding the rate of change of a company’s profit (loss) with respect to its level of
sales

Defining a Tangent Line
The main purpose of Example 1 was to illustrate the relationship between tangent lines
and rates of change. Ideally, the solution to a problem should be analytic and not rely,
as in Example 1, on how accurately we can draw a curve and estimate the position of
its tangent lines. So our first task will be to give a more precise definition of a tangent
line to a curve. After that, we will devise an analytical method for finding an equation
of such a line.

Let and be two distinct points on a curve, and consider the secant line pass-
ing through and . (See Figure 4.) If we let move along the curve toward , then
the secant line rotates about and approaches the fixed line . We define to be the
tangent line at on the curve.P

TTP
PQQP

QP

FIGURE 4
As approaches along the 

curve, the secant lines 
approach the tangent line .T

PQ

Let’s make this notion more precise: Suppose that the curve is the graph of a
function defined by . (See Figure 5.) Let be a point on the graph
of , and let be a point on the graph of distinct from . Then the -coordinate
of has the form , where is some appropriate nonzero number. If 

, then lies to the right of ; and if , then lies to the left of . The
corresponding -coordinate of is . In other words, we can specify 

in the usual manner by writing . Observe that we can make 
approach along the graph of by letting approach 0. This situation is illus-

trated in Figure 5b. (You are encouraged to sketch your own figures for the case
.)h � 0

hfPQ
Q(a � h, f(a � h))Q

y � f(a � h)Qy
PQh � 0PQh � 0

hx � a � hQ
xPfQf

P(a, f(a))y � f(x)f

x

T

Q

P

y

0



130 Chapter 1 Limits

Next, using the formula for the slope of a line, we can write the slope of the secant
line passing through and as

(1)

The expression on the right-hand side of Equation (1) is called a difference quotient.
As we observed earlier, if we let approach 0, then approaches and the secant

line passing through and approaches the tangent line . This suggests that if the
tangent line does exist at , then its slope should be the limit of obtained by
letting approach zero. This leads to the following definition.h

m secm tanP
TQP

PQh

m sec �
f(a � h) � f(a)

(a � h) � a
�

f(a � h) � f(a)

h

Q(a � h, f(a � h))P(a, f(a))

FIGURE 5

DEFINITION Tangent Line

Let be a point on the graph of a function . Then the tangent line at
(if it exists) on the graph of is the line passing through and having slope

(2)m tan � lim
h→0

f(a � h) � f(a)

h

PfP
fP(a, f(a))

Notes
1. If the limit in Equation (2) does not exist, then is undefined.
2. If the limit in Equation (2) exists, then we can find an equation of the tangent

line at by using the point-slope form of an equation of a line. Thus,
.y � f(a) � m tan(x � a)

P

m tan

EXAMPLE 2 Find the slope and an equation of the tangent line to the graph of 

at the point .

Solution To find the slope of the tangent line at the point , we use Equation (2)
with , obtaining

 � lim
h→0

(2 � h) � 2

 � lim
h→0

(1 � 2h � h2) � 1

h
� lim

h→0

2h � h2

h

 m tan � lim
h→0

f(1 � h) � f(1)

h
� lim

h→0

(1 � h)2 � 12

h

a � 1
P(1, 1)

P(1, 1)f(x) � x2

x

y

0

(b) As h approaches 0, Q approaches P.

x

y

a
a

P

Q

h
h h

0

(a) The points P(a, f(a)) and Q(a � h, f(a � h))

Q(a � h, f(a � h))

P(a, f(a))

a � h
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To find an equation of the tangent line, we use the point-slope form of an equation of
a line to obtain

or

The graphs of and the tangent line at are sketched in Figure 6.(1, 1)f

y � 2x � 1

y � 1 � 2(x � 1)

FIGURE 6
is the tangent line at the point 

on the graph of .y � x2
P(1, 1)T

EXAMPLE 3 Find the slope and an equation of the tangent line to the graph of the
equation at the point .

Solution The slope of the tangent line at the point is found by using Equa-
tion (2) with and . We have

An equation of the tangent line at is

or

The graphs of and the tangent line at are sketched in Figure 7.

The solution in Example 3 is fully expected if we recall that the graph of the equa-
tion is a parabola with vertex at . At the vertex the tangent line is
horizontal, and therefore its slope is zero.

Tangent Lines, Secant Lines, and Rates of Change
As we observed earlier, there seems to be a connection between the slope of the tan-
gent line at a given point on the graph of a function and the rate of change
of when . Let’s show that this is true.

Consider the function whose graph is shown in Figure 8a. You can see from Fig-
ure 8a that as changes from to changes from to . (We call

the increment in .) The ratio of the change in to the change in measures the
average rate of change of over the interval .[a, a � h]f

xf(x)xh
f(a � h)f(a)a � h, f(x)ax

f
x � af

fP(a, f(a))

(2, 4)y � �x2 � 4x

(2, 4)f

y � 4y � 4 � 0(x � 2)

P(2, 4)

 � lim
h→0

(�h) � 0

 � lim
h→0

�4 � 4h � h2 � 8 � 4h � 4 � 8

h
� lim

h→0
�

h2

h

 m tan � lim
h→0

f(2 � h) � f(2)

h
� lim

h→0

[�(2 � h)2 � 4(2 � h)] � [�(2)2 � 4(2)]

h

f(x) � �x2 � 4xa � 2
P(2, 4)

P(2, 4)y � �x2 � 4x

FIGURE 7
The tangent line at the point is
horizontal.
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DEFINITION Average Rate of Change of a Function

The average rate of change of a function over the interval is

(3)
f(a � h) � f(a)

h

[a, a � h]f
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FIGURE 8

Figure 8b depicts the graph of the same function . The slope of the secant line
passing through the points and is

But this is just Equation (1). Comparing the expression in (3) and that on the right-
hand side of Equation (1), we conclude that the average rate of change of f with respect
to over the interval has the same value as the slope of the secant line pass-
ing through the points and .

Next, by letting approach zero in the expression in (3), we obtain the (instanta-
neous) rate of change of at .af

h
(a � h, f(a � h))(a, f(a))

[a, a � h]x

m sec �
f(a � h) � f(a)

(a � h) � a
�

f(a � h) � f(a)

h

Q(a � h, f(a � h))P(a, f(a))
f

DEFINITION Instantaneous Rate of Change of a Function

The (instantaneous) rate of change of a function with respect to at is

(4)

if the limit exists.

lim
h→0

f(a � h) � f(a)

h

axf

But this expression also gives the slope of the tangent line to the graph of at
. Thus, we conclude that the instantaneous rate of change of f with respect

to at has the same value as the slope of the tangent line at the point .
Our earlier calculations suggested that the instantaneous velocity of the maglev at

is 16 ft/sec. We now verify this assertion.t � 2

(a, f(a))ax
P(a, f(a))

f

x

y

0

(b) msec �

x

y

a0

(a)

f(a � h)

f(a)

f(a � h)

f(a)

(change in x)

The average rate of change of f over [a, a + h] is given by

(c
ha

ng
e 

in
 y

)

f(a � h) � f(a)

P(a, f(a))

Q(a � h, f(a � h))

f(a � h) � f(a)
h

f(a � h) � f(a)
h

y � f(x) y � f(x)

a � h a a � h
h

EXAMPLE 4 The position function of the maglev at time is , where
. Then the average velocity of the maglev over the time interval 

is given by the average rate of change of the position function over , where
and lies in the interval . Using the expression in (3) with ,

we see that the average velocity is given by

 
f(2 � h) � f(2)

h
�

4(2 � h)2 � 4(2)2

h
�

16 � 16h � 4h2 � 16

h
� 16 � 4h

a � 2(2, 30)2 � hh � 0
[2, 2 � h]s

[2, 2 � h]0 � t � 30
s � f(t) � 4t 2t
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Next, using the expression in (4), we see that the instantaneous velocity of the maglev
at is given by

or 16 ft/sec, as observed earlier.

√ � lim
h→0

 
f(2 � h) � f(2)

h
� lim

h→0
(16 � 4h) � 16

t � 2

For Questions 1 and 2, refer to the following figure.

x

y

20

f(2 � h)

f(2)

Q(2 � h, f(2 � h))

f(2 � h) � f(2)
P(2, f(2))

y � f(x)

2 � h

h

1. Let and be points on the
graph of a function .
a. Find an expression for the slope of the secant line pass-

ing through and .
b. Find an expression for the slope of the tangent line pass-

ing through .
2. Refer to Question 1.

a. Find an expression for the average rate of change of 
over the interval .

b. Find an expression for the instantaneous rate of change
of at 2.

c. Compare your answers for parts (a) and (b) with those of
Question 1.

f

[2, 2 � h]
f

P

QP

f
Q(2 � h, f( 2 � h))P(2, f(2))

1.5 CONCEPT QUESTIONS

1. Traffic Flow Opened in the late 1950s, the Central Artery in
downtown Boston was designed to move 75,000 vehicles per
day. The following graph shows the average speed of traffic
flow in miles per hour versus the number of vehicles moved
per day. Estimate the rate of change of the average speed of
traffic flow when the number of vehicles moved per day is
100,000 and when it is 200,000. (According to our model,
there will be permanent gridlock when we reach 300,000
cars per day!)

Source: The Boston Globe.

Note: Since 2003 the city of Boston has ameliorated the situation
with the “Big Dig.”
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2. Forestry The following graph shows the volume of wood
produced in a single-species forest. Here, is measured 
in cubic meters per hectare, and is measured in years. By
computing the slopes of the respective tangent lines, esti-
mate the rate at which the wood grown is changing at the
beginning of year 10 and at the beginning of year 30.

Source: The Random House Encyclopedia.

3. TV-Viewing Patterns The graph on the following page shows
the percentage of U.S. households watching television during
a 24-hr period on a weekday ( corresponds to 6 A.M.).
By computing the slopes of the respective tangent lines,
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1.5 EXERCISES

Videos for selected exercises are available online at www.academic.cengage.com/login.V

www.academic.cengage.com/login
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estimate the rate of change of the percentage of households
watching television at 4 P.M. and 11 P.M.

Source: A.C. Nielsen Company.

4. Crop Yield Productivity and yield of cultivated crops are 
often reduced by insect pests. The following graph shows
the relationship between the yield of a certain crop, ,
as a function of the density of aphids . (Aphids are small
insects that suck plant juices.) Here, is measured in
kilograms per 4000 square meters, and is measured in
hundreds of aphids per bean stem. By computing the slopes
of the respective tangent lines, estimate the rate of change 
of the crop yield with respect to the density of aphids if the
density is 200 aphids per bean stem and if it is 800 aphids
per bean stem.

Source: The Random House Encyclopedia.

5. The velocities of car and car , starting out side by side
and traveling along a straight road, are given by 
and , respectively, where is measured in feet per
second and is measured in seconds.
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2 4 6 8 10 12 14 16 18 20

42.3

2

4
12.3

22 240

a. What can you say about the velocity and acceleration of
the two cars at ? (Acceleration is the rate of change of
velocity.)

b. What can you say about the velocity and acceleration of
the two cars at ?

6. Effect of a Bactericide on Bacteria In the figure below, gives
the population of a certain bacteria culture at time after
a portion of bactericide was introduced into the population
at . The graph of gives the population of a simi-
lar bacteria culture at time after a portion of bactericide 
was introduced into the population at .

a. Which population is decreasing faster at ?
b. Which population is decreasing faster at ?
c. Which bactericide is more effective in reducing the popu-

lation of bacteria in the short run? In the long run?

In Exercises 7–14, (a) use Equation (1) to find the slope 
of the secant line passing through the points and

; (b) use the results of part (a) and Equa-
tion (2) to find the slope of the tangent line at the point 

; and (c) find an equation of the tangent line to the
graph of at the point .

Function Function

7. 8.

9. 10.

11. 12.

13. 14.

In Exercises 15–20, find the instantaneous rate of change of the
given function when .

15. ;

16. ;

17. ;

18. ;

19. ;

20. ; a � 1f(x) �
1

x � 2

a � 1f(x) �
2
x

� x

a � 4f(x) � 1x

a � 2H(x) � x3 � x

a � �1t(x) � x2 � x � 2

a � 1f(x) � 2x2 � 1

x � a

11, 12 2f(x) �
1

x � 1
(1, 1)f(x) �

1
x

(2, 10)f(x) � x3 � x(2, 8)f(x) � x3

(2, 2)f(x) � x2 � x(2, 7)f(x) � 2x2 � 1

(1, 5)f(x) � 2x � 3(1, 5)f(x) � 5

(a, f(a))(a, f(a))

(a, f(a))f
(a, f(a))

(a � h, f(a � h))
(a, f(a))

t2

t1

tt1 t2

y

y � f(t)

y � g(t)

0

t � 0
Bt

P2t(t)t � 0
A

tP1

f(t)

t2

t1



1.5 Tangent Lines and Rates of Change 135

In Exercises 21–24, the position function of an object moving
along a straight line is given by . The average velocity
of the object over the time interval is the average rate of
change of over ; its (instantaneous) velocity at is
the rate of change of at .

21. The position of a car at any time is given by ,
, where is given in feet and in seconds.

a. Find the average velocity of the car over the time inter-
vals , , , , and .

b. Find the velocity of the car at .

22. Velocity of a Car Suppose the distance (in feet) covered by a
car moving along a straight road after sec is given by the
function .
a. Calculate the average velocity of the car over the time

intervals , , and .
b. Calculate the (instantaneous) velocity of the car when

.
c. Compare the results of part (a) with those of part (b).

23. Velocity of a Ball Thrown into the Air A ball is thrown straight up
with an initial velocity of 128 ft/sec, so its height (in feet)
after sec is given by .
a. What is the average velocity of the ball over the time

intervals , , and ?
b. What is the instantaneous velocity at time ?
c. What is the instantaneous velocity at time ? Is the

ball rising or falling at this time?
d. When will the ball hit the ground?

24. During the construction of a high-rise building, a worker
accidentally dropped his portable electric screwdriver from a
height of 400 ft. After sec the screwdriver had fallen a dis-
tance of ft.
a. How long did it take the screwdriver to reach the

ground?
b. What was the average velocity of the screwdriver during

the time it was falling?
c. What was the velocity of the screwdriver at the time it

hit the ground?

25. A hot air balloon rises vertically from the ground so that 
its height after seconds is feet, where

.
a. What is the height of the balloon after 40 sec?
b. What is the average velocity of the balloon during the

first 40 sec of its flight?
c. What is the velocity of the balloon after 40 sec?

26. Average Velocity of a Helicopter A helicopter lifts vertically
from its pad and reaches a height of feet after 

sec, where .
a. How long does it take for the helicopter to reach an alti-

tude of 200 ft?
b. What is the average velocity of the helicopter during the

time it takes to attain this height?
c. What is the velocity of the helicopter when it reaches

this height?

0 � t � 12t
h(t) � 0.2t 3

0 � t � 60
h(t) � 1

2 t 2 � 1
2 tt

s � f(t) � 16t 2
t

t � 5
t � 2

[2, 2.1][2, 2.5][2, 3]

s � f(t) � 128t � 16t 2t

t � 20

[20, 20.01][20, 20.1][20, 21]

s � f(t) � 2t 2 � 48t
t

s

t � 2
[2, 2.001][2, 2.01][2, 2.1][2, 2.5][2, 3]

ts0 � t � 10
s � f(t) � 1

4 t 2t

af
t � a[a, b]f

[a, b]
s � f(t)

27. a. Find the average rate of change of the area of a circle
with respect to its radius as increases from to

.
b. Find the rate of change of the area of a circle with

respect to when .

28. a. Find the average rate of change of the volume of a
sphere with respect to its radius as increases from

to .
b. Find the rate of change of the volume of a sphere with

respect to when .

29. Demand for Tents The quantity demanded of the Sportsman
tents, , is related to the unit price, , by the function

where is measured in dollars and is measured in units of
a thousand.
a. Find the average rate of change in the unit price of a tent

if the quantity demanded is between 5000 and 5050
tents; between 5000 and 5010 tents.

b. What is the rate of change of the unit price if the quan-
tity demanded is 5000?

30. At a temperature of 20°C, the volume (in liters) of 1.33 g
of is related to its pressure (in atmospheres) by the for-
mula .
a. What is the average rate of change of with respect to 

as increases from to ?
b. What is the rate of change of with respect to when

?

31. Average Velocity of a Motorcycle The distance (in feet) covered
by a motorcycle traveling in a straight line at any time (in
seconds) is given by the function

Calculate the motorcycle’s average velocity over the time
interval for , 0.1, 0.01, 0.001, 0.0001, and
0.00001, and use your results to guess at the motorcycle’s
instantaneous velocity at .

32. Rate of Change of a Cost Function The daily total cost 
incurred by Trappee and Sons for producing cases of
TexaPep hot sauce is given by

Calculate

for , 0.1, 0.01, 0.001, and 0.0001, and use your results
to estimate the rate of change of the total cost function when
the level of production is 100 cases per day.

h � 1

C(100 � h) � C(100)

h

C(x) � 0.000002x3 � 5x � 400

x
C(x)

t � 2

h � 1[2, 2 � h]

s(t) � �0.1t 3 � 2t 2 � 24t

t
s

p � 2
pV

p � 3p � 2p
pV

V(p) � 1>p pO2

V

xp

p � f(x) � �0.1x2 � x � 40

px5 � 7

r � 2r

r � 2r � 1
rr

r � 2r

r � 2
r � 1rr
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33. a. Plot the graph of

using the viewing window .
b. Use ZOOM and TRACE to find .
c. Verify analytically that the limit found in part (b) 

is where .

34. Use the technique of Exercise 33a–b to find 

if , using the viewing 

window .

In Exercises 35–40 the expression gives the (instantaneous) rate
of change of a function at some number . Identify and .

35. 36.

37. lim
h→0
c (4 � h)2 � 16

h
�
14 � h � 2

h
d

lim
h→0

214 16 � h � 4

h
lim
h→0

(1 � h)5 � 1

h

afaf

[�1, 1] � [0, 0.1]

f(x) � 13 xlim
h→0

f(8 � h) � f(8)

h

f(x) � x3lim
h→0

f(2 � h) � f(2)

h

limh→0 t(h)
[�1, 1] � [0, 20]

t(h) �
(2 � h)3 � 8

h

38. 39.

40.

In Exercises 41–44, determine whether the statement is true or
false. If it is true, explain why. If it is false, explain why or give
an example that shows it is false.

41. The slope of the secant line passing through the points
and measures the average rate of change 

of over the interval .

42. A tangent line to the graph of a function may intersect the
graph at infinitely many points.

43. There may be more than one tangent line at a given point on
the graph of a function.

44. The slope of the tangent line to the graph of at the point
is given by

lim
x→a

f(x) � f(a)

x � a

(a, f(a))
f

[a, b]f
(b, f(b))(a, f(a))

lim
x→p>2

sin x � 1

x � p
2

lim
x→1

x4 � 1

x � 1
lim
h→0

23�h � 8

h

In Exercises 1–8, fill in the blanks.

1. a. The statement means that there exists a
number such that the values of can
be made as close to as we please by taking 
to be sufficiently close to .

b. The statement is similar to
, but here we require that lie to the

of .
c. if and only if and

both and are equal to .
d. The precise meaning of is that given any

number , there exists a number such
that implies .

2. a. If and , then the Sum
Law states , the Product Law states ,
the Constant Multiple Law states , the Quotient
Law states , and the Root Law states

provided , if is even.
b. If is a polynomial function, then 

for every real number .a
limx→a p(x) �p(x)

nL � 0
M � 0

limx→a t(x) � Mlimx→a f(x) � L

� f(x) � L � � e0 � �x � a � � d

limx→a f(x) � L
limx→a� f(x)

limx→a� f(x)limx→a f(x) � L
a

xlimx→a f(x) � L
limx→a� f(x) � L

x

limx→a f(x) � L

c. If is a rational function, then ,
provided that is in the domain of .

3. Suppose that for all in an 
interval containing , except possibly at , and that

. Then the Squeeze 
Theorem says that .

4. a. If , then is said to be at .
b. If is discontinuous at but it can be made continuous

at by defining or redefining at , then has a
discontinuity at .

c. If and and ,
then has a discontinuity at .

d. If , then is continuous from the
at .

5. a. A polynomial function is continuous on .
b. A rational function is continuous on .
c. The composition of two continuous functions is a

function.

6. a. Suppose that is continuous on and
. Then the Intermediate Value f(a) � M � f(b)

[a, b]f

a
flimx→a� f(x) � f(a)

af
L � Mlimx→a� f(x) � Mlimx→a� f(x) � L

a
fafa

af
aflimx→a f(x) � f(a)

limx→a f(x) � limx→a h(x) � L
aa
xf(x) � t(x) � h(x)

a
limx→a r(x) � r(a)r(x)

CONCEPT REVIEW
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Theorem guarantees the existence of at least one 
number in such that .

b. If is continuous on and , then there
must be at least one solution of the equation 
in the interval .

7. a. The tangent line at to the graph of is the line
passing through and having slope .

b. If the slope of the tangent line at is , then
an equation of the tangent line at is .P

m tanP(a, f(a))
P

fP(a, f(a))

f(a)f(b) � 0[a, b]f
c

8. a. The slope of the secant line passing through 
and and the average rate of change
of over the interval are both given by

.
b. The slope of the tangent line at and the instan-

taneous rate of change of at are both given by
.

af
P(a, f(a))

[a, a � h]f
Q(a � h, f(a � h))

P(a, f(a))

In Exercises 1 and 2, use the graph of the function to find 
(a) , (b) , and (c) for the
given value of .

1.

2.

In Exercises 3–6, sketch the graph of , and evaluate 
(a) , (b) , and (c)
for the given value of .

3. ;

4. ; a � 2f(x) � •
�x � 2 �

x � 2
if x � 2

2 if x � 2

a � 3f(x) � e�x � 5 if x � 3

2x � 4 if x � 3

a
limx→a f(x)limx→a� f(x)limx→a� f(x)

f

x

y

a � 0

x

y

8

6

4

2

2 4�2�4�6 6 8 100

a � 4

a
limx→a f(x)limx→a� f(x)limx→a� f(x)

f
5. ;

6. ;

In Exercises 7–24, find the indicated limit if it exists.

7. 8.

9. 10.

11. 12.

13. 14.

15. 16.

17. 18.

19. 20.

21. 22.

23. 24.

25. Prove that .

26. Suppose that for all . Find
.limx→0 f(x)

x1 � x2 � f(x) � 1 � x2

limx→0� x2 cos(1>1x) � 0

lim
x→0�
1x sin 

1
x

lim
x→0�

cos x

1x

lim
x→0

x cot 2xlim
x→0

2 sin 3x

x

lim
x→3�

1 � 12x � 6

x � 2
lim

x→3�
29 � x2

lim
x→2�

x � 2
�x � 2 �lim

h→0

(4 � h)�1 � 4�1

h

lim
x→4

x � 4

1x � 2
lim
x→3

2x2 � 5x � 3

3x2 � 10x � 3

lim
x→3�

x � 1

x � 3
lim
y→0

2y2 � 1

y3 � 2y2 � y � 2

lim
x→3

27 � x3

x � 3
lim
x→5

(x2 � 2)2>3

lim
t→1

t 2 � 1

1 � t
lim
x→3
2x2 � 2x � 3

lim
x→2

(x3 � 1)(x2 � 1)lim
h→3

(4h2 � 2h � 4)

a � 0f(x) � e�
1

2
 x � 1 if x � 0

0 if x � 0

�
1

x2 if x � 0

a � 2f(x) � e�x � 2 if x � 2

1x � 2 if x 	 2
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In Exercises 27 and 28, use the graph of the function to deter-
mine where the function is discontinuous.

27.

28.

In Exercises 29 and 30, use the graph of the function to deter-
mine whether is continuous on the given interval(s). Justify
your answer.

29. 30.

a. a.
b. b.
c. c.

d.

In Exercises 31–36, find the numbers, if any, where the function
is discontinuous.

31.

32. 33.

34. 35.

36. f(x) � ex2 � 1 if x � 0

�x � 1 if x 	 0

f(x) �
1

sin x
h(x) �

1

cos x

f(t) �
(t � 2)1>2

(t � 1)1>2t(x) �
3�x � 1 �

x2 � x � 6

f(x) � x2 � 3x � 1�x

(3, 6]
[2, 6](3, 5)
[0, 3](0, 1)
[0, 3)[1, 2)

x

y

1 2 3 4 5 6 7

1

3

5

0

y

x1 2 3 4 5 6

1

3

5

0

f
f

x

y

a b c d0

x

y

a b c0

f 37. Let

Find the value of such that will be continuous at 2.

38. True or false? The square of a discontinuous function is also
a discontinuous function. Justify your answer.

In Exercises 39 and 40, show that the equation has at least one
zero in the given interval.

39. ;

40. ;

41. Let

Is there a number in such that ? Why?

42. Find where the function

is continuous.

43. Use the precise definition of the limit to prove that
.

44. According to the special theory of relativity, the Lorentz 

contraction formula gives the relation-
ship between the length of an object moving with a speed

relative to an observer and its length at rest. Here, is
the speed of light.
a. Find the domain of , and use the result to explain why

one may consider only .
b. Evaluate , and interpret your result.

45. Temperature Changes The following graph shows the air tem-
perature over a 24-hr period on a certain day in November
in Chicago, with corresponding to 12 midnight. Using
the given data, compute the slopes of the respective tangent
lines, and estimate the rate of change of the temperature at 
8 A.M. and at 6 P.M.

t (hr)

T2

T1

y (�F)

20

30

40

50

60

2 4 6 8

7

4

13

3

10 12 14 16 18 20 22 240

t � 0

lim√→c� L
lim√→c� L

L

cL0√
L

L � L021 � (√2>c2)

limx→�1(2x � 3) � 1

f(x) � • x sin
1
x

if x � 0

0 if x � 0

f(c) � 0[�2, 2]c

f(x) � e�(x2 � 1) if �2 � x � 0

x2 � 1 if 0 � x � 2

10, 3p2 2sin x � x � 1 � 0

(1, 2)x4 � x � 5 � 0

fc

f(x) � •
x2 � 2x

x2 � 4
if x � 2

c if x � 2
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46. The position of an object moving along a straight line is
, where is measured in feet and is

measured in seconds.
a. Find the average velocity of the object over the time

intervals , , , and .
b. Find the instantaneous velocity of the object when .

47. Gravitational Force The magnitude of the gravitational force
exerted by the earth on a particle of mass at a distance 
from the center of the earth is

rm

t � 1
[1, 1.01][1, 1.1][1, 1.5][1, 2]

ts(t)s(t) � 2t 2 � t � 1

where is the mass of the earth, is its radius, and is
the gravitational constant.
a. Is a continuous function of ?
b. Sketch the graph of .F

rF

GRM

F(r) � μ
GMmr

R3 if r � R

GMm

r 2 if r 	 R

In this very first example in Problem-Solving Techniques, we illustrate the efficacy of
the method of substitution. When the right substitution is used, a problem which at first
glance seems impossible to solve, or as in this case, difficult to solve, is often reduced
to one that is familiar or is much easier to solve. In the Problem-Solving Techniques
sections throughout this book, we will showcase other problem-solving techniques.

PROBLEM-SOLVING TECHNIQUES

EXAMPLE Evaluate .

Solution The obvious approach is to use the Quotient Law for limits. But since the
numerator and the denominator approach zero as approaches 1, the law is not appli-
cable.

Drawing from experience in solving such problems, we might attempt to rational-
ize the denominator. Although this can be done directly, it is better to transform the
expression into a simpler one. A reasonable substitution is to put

so or . Observe that as approaches 1, approaches 2. There-
fore,

 � lim
t→2

3(t 2 � 2t � 4) � 36

 � lim
t→2

3(t � 2)(t 2 � 2t � 4)

t � 2

 lim
x→1

3x � 3

13 x � 7 � 2
� lim

t→2

3(t 3 � 7) � 3

t � 2
� lim

t→2

3t 3 � 24

t � 2
� lim

t→2

3(t 3 � 23)

t � 2

txx � t 3 � 7t 3 � x � 7

t � 13 x � 7

x

lim
x→1

3x � 3

13 x � 7 � 2



140 Chapter 1 Limits

1. Find .

2. a. Find and .

b. Find and .

3. Find .

4. Let be a point on the upper half of the cir-

cle and located in the first quadrant, and let

be another point on the circle in

the same quadrant.

a. Find an expression for the slope of the secant line
passing through and .

b. Evaluate , and show that this limit is the
slope of the tangent line to the circle at .

c. How would you establish a similar result for the case in
which and both lie in the third quadrant?

5. An -sided regular polygon is inscribed in a circle of radius
, and another is circumscribed in the same circle. The fig-

ure below illustrates the case in which .

a. Show that the perimeter of the circumscribing polygon is
and the perimeter of the inscribing polygon

is 
b. Use the Squeeze Theorem and the results of part (a) to

show that the circumference of a circle of radius is
.2pR

R

2Rn sin(p>n)
2Rn tan(p>n)

R

n � 6
R

n

QP

PT
limh→0 m sec

QP
m sec

0

T
Q

x

y

P

Q1c � h, 2a2 � (c � h)2 2x2 � y2 � a2

P1c, 2a2 � c2 2
lim

x→p>2
cos x

1 �
4x2

p2

lim
x→0�

� sin x �

sin x
lim

x→0�

� sin x �

sin x

lim
x→1�

x2 � 1
�x � 1 �lim

x→1�

x2 � 1
�x � 1 �

lim
x→0

13 x � 1 � 1
x

6. Find the values of at which the function is discontinuous.
a.
b.

7. A function is defined by

Determine the value of such that is continuous at 0.

8. Show that

is continuous at 0.

9. Let be a continuous function with domain and range
satisfying and . Show that there is at

least one point in such that . The point is
called a fixed point of .

10. Let . Determine where the composite function 

defined by is discontinuous.

11. Determine where the composite function defined

by and is discontinuous.

12. Let be a polynomial function of even degree, and suppose
that there is a number such that and the leading coef-
ficient of have opposite signs. Show that must have at
least two real roots.

13. Suppose that , , and are positive and that .
Show that the equation

has a root between and , and a root between and .

14. Suppose that is continuous on an interval and that 
, , , are any numbers in . Show that there

exists a number in such that

f(c) �
1
n

 [ f(x1) � f(x2) � p � f(xn)]

(a, b)c
(a, b)nxnpx2x1

(a, b)f

CBBA

a

x � A
�

b

x � B
�

c

x � C
� 0

A � B � Ccba

ff
f(c)c

f

t(x) �
1

x � 1
f(x) �

1

x2 � x � 2

h � f � t

t(x) � f{f [ f(x)]}t � f � f � f

f(x) �
1

1 � x

f
cf(c) � c(1, 3)c

f(3) � 4f(1) � 0[0, 4]
[1, 3]f

f(x) � • tan x cos
1
x

if x � 0

0 if x � 0

fc

f(x) � •
tan2 x

1 � cos x
if x � 0

c if x � 0

f

t(x) � Œx œ � Œ�x œf(x) � Œ1x œ x
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IN THIS CHAPTER we introduce the notion of the derivative of a function. The deriv-

ative is the principal tool that we use to solve problems in differential calculus. We

also develop rules of differentiation that will enable us to calculate, with relative

ease, the derivatives of complicated functions. The rest of the chapter will be

devoted to applications of the derivative.

2 The Derivative

M
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The photograph shows a space
shuttle being launched from

Cape Kennedy. Suppose a spec-
tator watches the launch from

an observation deck located at
a known distance from the

launch pad. If the speed of the
shuttle at a certain instant 

of time is known, can we find
the speed at which the dis-
tance between the shuttle 

and the spectator is changing?
The derivative allows us to

answer questions such as this.
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• Chapter lecture videos • Solutions to selected exercises
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2.1 The Derivative

The Derivative
In Section 1.5 we saw that the slope of the tangent line to the graph of a function

at the point has the same value as the rate of change of the quantity
with respect to at the number . Both values are given by

provided that the limit exists. Recall that in deriving this expression, the number was
fixed but otherwise arbitrary. Therefore, if we simply replace the constant by the vari-
able , we obtain a formula that gives us the slope of the tangent line at any point

on the graph of as well as the rate of change of the quantity with respect
to for any value of . The resulting function is called the derivative of , since it is
derived from the function .f

fxx
yf(x, f(x))

x
a

a

lim
h→0

f(a � h) � f(a)

h

axy
(a, f(a))y � f(x)

DEFINITION The Derivative

The derivative of a function with respect to is the function defined by the
rule

(1)

The domain of consists of all values of for which the limit exists.xf ¿

f ¿(x) � lim
h→0

f(x � h) � f(x)

h

f ¿xf

Two interpretations of the derivative follow.

1. Geometric Interpretation of the Derivative: The derivative of a function is
a measure of the slope of the tangent line to the graph of at any point ,
provided that the derivative exists.

2. Physical Interpretation of the Derivative: The derivative of a function 
measures the instantaneous rate of change of at .

(See Figure 1.)

xf
ff ¿

(x, f(x))f
ff ¿

FIGURE 1
is the slope of at ; is changing at the rate of units per unit change in at .xxf ¿(x)f(x)PTf ¿(x)

y � f(x) T

f�(x)

P(x, f(x))

0

1

xx

y
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Using the Derivative to Describe the Motion of the Maglev
Let’s look at these two interpretations of the derivative via an example involving the
motion of the maglev. Once again, recall that the position of the maglev at any time

is

The derivative of the function is

Thus, the rate of change of the position of the maglev with respect to time, at time ,
as well as the slope of the tangent line at the point on the graph of , is given
by

So in this setting, is just the velocity function giving the velocity of the maglev at
any time . In particular, the velocity of the maglev when is

or 16 ft/sec. Equivalently, the slope of the tangent line to the graph of at the point
is 16. The graph of is sketched in Figure 2.

From the velocity curve we see that the velocity of the maglev is steadily increas-
ing with respect to time. We can even say more. Because the equation is a lin-
ear equation in the slope-intercept form with slope 8, we see that is increasing at the
rate of 8 units per unit change in . Put another way, the maglev is accelerating at the
constant rate of 8 ft/sec/sec, usually abbreviated 8 ft/sec2. (Acceleration is the rate of
change of velocity.)

Starting from just a formula giving the position of the maglev, we have now been
able to give a complete description of the motion of the maglev, albeit just for this par-
ticular situation.

Differentiation
The process of finding the derivative of a function is called differentiation. We can
view this process as an operation on a function to produce another function . For
example, if we let denote the differential operator, then the process of differenti-
ation can be written

or Dx f(x) � f ¿(x)Dx f � f ¿

Dx

f ¿f

t
√

√ � 8t

f ¿P(2, 16)
f

f ¿(2) � 8(2) � 16

t � 2t
f ¿

0 � t � 30f ¿(t) � 8t

f(t, f(t))
t

 � 8t

 � lim
h→0

h(8t � 4h)

h
� lim

h→0
(8t � 4h)

 � lim
h→0

4t 2 � 8th � 4h2 � 4t 2

h

 � lim
h→0

4(t � h)2 � 4t 2

h

 f ¿(t) � lim
h→0

f(t � h) � f(t)

h

f

0 � t � 30s � f(t) � 4t 2

t
s

FIGURE 2
The graph of gives the
velocity of the maglev at any time and
is called a velocity curve.

t
√ � f ¿(t) � 8t

√ � f�(t) � 8t

0

20

16

40

60

80

t (sec)1 2 3 4 5 6 7 8

√ (ft/sec)
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Differentiation is always performed with respect to the independent variable. (Remem-
ber that we are concerned with the rate of change of the dependent variable with respect
to the independent variable.) Therefore, if the independent variable is , we write 
instead of . Another notation, and one that we will adopt, is

which is read “dee dee x of.” For example

or is read 
“ prime of .”

If we denote the dependent variable by so that , then the derivative is written

(read “dee y, dee x”) or, in an even more abbreviated form, as (read “ prime”).

is not a fraction.

The value of the derivative of at is denoted by . If the dependent variable
is denoted by a letter such as , then the value of the derivative at is denoted by

(read “dy/dx evaluated at x = a”). For example, since the position of the maglev is
denoted by the letter , where , the velocity of the maglev when 
may be written as or

Finding the Derivative of a Function

ds

dt
`
t�2

� 8t `
t�2

� 16

f ¿(2) � 16
t � 2s � f(t) � 4t 2s

dy

dx
`
x�a

ay
f ¿(a)af

dy>dx

yy¿

dy

dx

y � f(x)y

xf
f ¿(x)d

dx
 f(x) � Dx f(x) � f ¿(x)

d

dx
 f � Dx f � f ¿

d

dx

Dx

Dtt

EXAMPLE 1 Let .

a. Find , and determine its domain.
b. How fast is changing at ?
c. Find the slope and an equation of the tangent line to the graph of the equation

at the point where .

Solution Here, .

a.

Rationalize the numerator.

The domain of is .(0, �)dy>dx

 � lim
h→0

1

1x � h � 1x
�

1

21x

 � lim
h→0

(x � h) � x

h(1x � h � 1x)
� lim

h→0

h

h(1x � h � 1x)

 � lim
h→0

(1x � h � 1x)(1x � h � 1x)

h(1x � h � 1x)

 
dy

dx
� lim

h→0

f(x � h) � f(x)

h
� lim

h→0

1x � h � 1x

h

f(x) � 1x

x � 4y � 1x

x � 4y
dy>dx

y � 1x

!



2.1 The Derivative 145

b. The rate of change of with respect to at is

or unit per unit change in .
c. The slope of the tangent line to the graph of at the point where 

has the same value as the rate of change of with respect to at . From the
result of part (b), we find . Next, when , , giving 
as the point of tangency. Finally, using the point-slope form of an equation of a
line, we find

or as an equation of the tangent line.

The graph of and the tangent line at are sketched in Figure 3.(4, 2)y � 1x

y � 1
4 x � 1

y � 2 �
1

4
 (x � 4)

(4, 2)y � 14 � 2x � 4m � 1
4

x � 4xy
x � 4y � 1xm

x1
4

dy

dx
`
x�4

�
1

21x
`
x�4

�
1

214
�

1

4

x � 4xy

FIGURE 3
is the tangent line to the 

graph of at .(4, 2)y � 1x
T

EXAMPLE 2 Let .

a. Find .
b. What is the slope of the tangent line to the graph of at ?
c. How fast is changing when ?

Solution

a.

b. The required slope is given by

c. From the result of part (b), we see that is changing at the rate of 25 units per
unit change in when .x � 2x

f

f ¿(2) � 6(2)2 � 1 � 25

 � 6x2 � 1

 � lim
h→0

h(6x2 � 6xh � 2h2 � 1)

h
� lim

h→0
 (6x2 � 6xh � 2h2 � 1)

 � lim
h→0

(2x3 � 6x2h � 6xh2 � 2h3 � x � h) � (2x3 � x)

h

 f ¿(x) � lim
h→0

f(x � h) � f(x)

h
� lim

h→0

[2(x � h)3 � (x � h)] � (2x3 � x)

h

x � 2f
(2, 18)f

f ¿(x)

f(x) � 2x3 � x

0

1

2

3

x

T

2 4 6 8

y � √x

y
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EXAMPLE 3 Find if .

Solution If we write , then

Simplify the numerator.

Using the Graph of to Sketch the Graph of 
It was a simple matter to sketch the graph of the derivative function in the example
describing the motion of a maglev, because we were able to obtain the formula 
from the position function for the maglev. The next example shows how we can make
a rough sketch of the graph of using only the graph of . The method that is used is
based on the geometric interpretation of .f ¿

ff ¿
f

f ¿(t) � 8t
f ¿

f �f

 � lim
h→0

�
1

(x � h � 1)(x � 1)
� �

1

(x � 1)2

 � lim
h→0

x � 1 � (x � h � 1)

(x � h � 1)(x � 1)

h

 � lim
h→0

1

(x � h) � 1
�

1

x � 1

h

 
dy

dx
� f ¿(x) � lim

h→0

f(x � h) � f(x)

h

y � f(x)

y �
1

x � 1

dy

dx

EXAMPLE 4 The Trajectory of a Projectile The graph of the function shown in Fig-
ure 4 gives the ballistic trajectory of a projectile that starts from the origin and is con-
fined to move in the -plane. Use this graph to draw the graph of . Then use it 
to estimate the rate at which the altitude of the projectile is changing with respect
to (the distance traveled horizontally by the projectile) when and when

.x � 16,000
x � 5000x

(y)
f ¿xy

f

FIGURE 4
The trajectory of a projectile

Solution First we estimate the slopes of the tangent lines (drawn by sight) to
some points on the graph of using the techniques of Example 1 in Section 1.5. The
results are shown in Figure 5a. Next, we plot the points on the -coordinate
system placed directly below the -coordinate system. Finally, we draw a smooth curve
through these points, obtaining the graph of shown in Figure 5b. From the graph of

we see that the altitude of the projectile is increasing at the rate of approximatelyf ¿
f ¿

xy
xy¿(x, f ¿(x))

f
f ¿(x)

0

8000

6000

4000

2000

x (ft)1000 5000 10,000 15,000 20,000

y (ft)
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0.7 ft/ft when , and it is decreasing at the rate of approximately 1.3 ft/ft when
.x � 16,000

x � 5000

FIGURE 5
The graphs of and f ¿f

Differentiability
A function is said to be differentiable at a number if it has a derivative at that num-
ber. As we will soon see, a function may fail to be differentiable at one or more num-
bers in its domain. This should not surprise us because the derivative is the limit of a
function, and we have already seen that the limit of a function does not always exist
as we approach a number.

Loosely speaking, a function does not have a derivative at if the graph of does
not have a tangent line at , or if the tangent line does exist, then it is vertical.

In this text we will deal only with functions whose derivatives fail to exist at a finite
number of values of . Typically, these values correspond to points where the graph of

has a discontinuity, a corner, or a vertical tangent. These situations are illustrated in
the following examples.
f

x

a
faf

EXAMPLE 5 Show that the Heaviside function

which is discontinuous at 0, is not differentiable at 0 (Figure 6).

Solution Let’s show that the (left-hand) limit

h � 0lim
h→0�

H(0 � h) � H(0)

h

H(t) � e0 if t � 0

1 if t � 0

FIGURE 6
The Heaviside function is not
differentiable at 0.

0
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2000

1.0

0.5
0.7

�1.0
�1.3

�1.7

x (ft)

m � 1

m � 0.5
m � 0

m � �1.7

(a)

(b)

5000 7000 10,000 15,000

0 x (ft)5000 7000 10,000 15,000

17,500

17,500
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does not exist. This, in turn, will imply that

does not exist; that is, does not have a derivative at 0. Now

Since 

so does not exist, as asserted.

The next example shows that if has a sharp corner at , then is not differentiable
at .a

faf

H¿(0)

h � 0lim
h→0�

H(h) � H(0)

h
� lim

h→0�

0 � 1

h
� �

H

H¿(0) � lim
h→0

H(0 � h) � H(0)

h

EXAMPLE 6 Show that the function is differentiable everywhere except 
at 0.

Solution The graph of is shown in Figure 7. To prove that is not differentiable at
0, we will show that does not exist by demonstrating that the one-sided limits of
the quotient

as approaches 0 are not equal. First, suppose . Then , so

Next, if , then , and therefore,

Therefore,

does not exist, and is not differentiable at 0.
To show that is differentiable at all other numbers, we rewrite in the form

and then differentiate to obtain

Geometrically, this result is evident if you consider the graph of , which consists of
two rays (Figure 7). The slope of the half-line to the left of the origin is , and the
slope of the half-line to the right of the origin is 1. The graph of is shown in Fig-
ure 8.

f ¿
�1

f

f ¿(x) � e�1 if x � 0

1 if x 	 0

f(x)

f(x) � �x � � e�x if x � 0

x if x � 0

f(x)f
f

f ¿(0) � lim
h→0

f(0 � h) � f(0)

h
� lim

h→0

�h �
h

lim
h→0�

�h �
h

� lim
h→0�

�h

h
� lim

h→0�
(�1) � �1

�h � � �hh � 0

lim
h→0�

�h �
h

� lim
h→0�

h

h
� lim

h→0�
1 � 1

�h � � hh 	 0h

f(0 � h) � f(0)

h
�

f(h) � f(0)

h
�

�h � � 0

h
�

�h �
h

f ¿(0)
ff

f(x) � �x �

FIGURE 7
The function is continuous
everywhere and has a corner at 0.

f(x) � �x �

FIGURE 8
is not defined; therefore, is not

differentiable at 0.
ff ¿(0)

0 x

y

y � �x �

0

1

�1

x

y�
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EXAMPLE 7 Show that the function is not differentiable at 0.

Solution We compute

This shows that is not differentiable at 0. (See Figure 9.)

Differentiability and Continuity
Examples 6 and 7 show that a function can be continuous at a number yet not be dif-
ferentiable there. The next theorem shows that the requirement that a function is dif-
ferentiable at a number is stronger than the requirement that it be continuous there.

f

 � lim
h→0

h1>3 � 0

h
� lim

h→0

1

h2>3 � �

 lim
h→0

f(0 � h) � f(0)

h
� lim

h→0

f(h) � f(0)

h

f(x) � x1>3

FIGURE 9
The graph of has a vertical tangent
line at .(0, 0)

f

THEOREM 1
If is differentiable at , then is continuous at .afaf

PROOF If is in the domain of and , then we can write

We have

So,

and this shows that is continuous at , as asserted.af

 � lim
x→a

f(a) � lim
x→a

[ f(x) � f(a)] � f(a) � 0 � f(a)

 lim
x→a

f(x) � lim
x→a

[ f(a) � ( f(x) � f(a))]

 � f ¿(a) � 0 � 0

 � lim
x→a

f(x) � f(a)

x � a
� lim

x→a
(x � a)

 lim
x→a

[ f(x) � f(a)] � lim
x→a

f(x) � f(a)

x � a
� (x � a)

f(x) � f(a) �
f(x) � f(a)

x � a
 (x � a)

x 
 afx

0

1

�1

1�1 x

y � x1/3

y

The graph of a function has a vertical tangent line at , if is continuous
at and

or

The next example shows that the function is not differentiable at because the
graph of has a vertical tangent line at .af

af

lim
x→a

f ¿(x) � �lim
x→a

f ¿(x) � ��

a
fax � af
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1. a. Give a geometric and a physical interpretation of the
expression

b. Give a geometric and a physical interpretation of the
expression

lim
h→0

f(x � h) � f(x)

h

f(x � h) � f(x)

h

2. Under what conditions does a function fail to have a deriva-
tive at a number? Illustrate your answer with sketches.

2.1 CONCEPT QUESTIONS

In Exercises 1–14, use the definition of the derivative to find the
derivative of the function. What is its domain?

1. 2.

3. 4.

5. 6.

7. 8.

9. 10.

11. 12.

13. 14.

In Exercises 15–20, find an equation of the tangent line to the
graph of the function at the indicated point.

Function Point

15.

16.

17.

18.

19.

20.

21. a. Find an equation of the tangent line to the graph of
at the point .

b. Plot the graph of and the tangent line in successively
smaller viewing windows centered at until the
graph of and the tangent line appear to coincide.f

(1, 1)
f

(1, 1)f(x) � 2x � x3

(2, 1)f(x) �
2
x

(4, 13)f(x) � 1x � 1

(�1, �2)f(x) � 3x3 � x

(1, 2)f(x) � 2x3

(2, 6)f(x) � 3x2 � 4x � 2

(2, 5)f(x) � x2 � 1

f(x) � x � 1xf(x) �
3

2x � 1

f(x) � �
2

1x
f(x) �

1

x � 2

f(x) �
1
x

f(x) � 1x � 1

f(x) � 21xf(x) � 2x3 � x � 1

f(x) � x3 � xf(x) � 3x2 � x � 1

f(x) � 2x2 � xf(x) � 3x � 4

f(x) � 2x � 1f(x) � 5

22. a. In Example 6 we showed that is not differen-
tiable at . Plot the graph of using the viewing win-
dow . Then ZOOM IN using successively
smaller viewing windows centered at . What can
you say about the existence of a tangent line at ?

b. Plot the graph of

using the viewing window . Then
ZOOM IN using successively smaller viewing windows
centered at . Is differentiable at ?

In Exercises 23–26, find the rate of change of with respect to 
at the given value of .

23. ;

24. ;

25. ;

26. ;

In Exercises 27–30, match the graph of each function with the
graph of its derivative in (a)–(d).

27. 28.

0 x

y

0 x

y

x � �1y � x2 �
1
x

x � 2y � 12x

x � 2y � 2x3 � 2

x � 1y � �2x2 � x � 1

x
xy

x � 1f(1, 2)

[�2, 4] � [�2, 3]

f(x) � •
x � 1 if x � 1

2
x

if x 	 1

(0, 0)
(0, 0)

[�1, 1] � [�1, 1]
fx � 0

f(x) � �x �

2.1 EXERCISES
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29. 30.

In Exercises 31–36, sketch the graph of the derivative of the
function whose graph is given.

31.

32.

33.

x

y

�2 42
�1

�2

�3

1

2

3

4

0 x

y

�1�2 1 2

0.5

1.0

1.5

2.0

x

y

1�1�2�3 32
�1

1

2

3

4

5

f
f ¿

0 x

y�
(d)

0 x

y�
(c)

0 x

y�

1

1

(b)

�1
�1

0 x

y�
(a)

0 x

y

0 x

y

1

1�1

34.

35.

36.

37. Air Temperature and Altitude The air temperature at a height of
feet from the surface of the earth is degrees

Fahrenheit.
a. Give a physical interpretation of . Give units.
b. Generally speaking, what do you expect the sign of 

to be?
c. If you know that , estimate the 

change in the air temperature if the altitude changes 
from 1000 ft to 1001 ft.

38. Advertising and Revenue Suppose that the total revenue real-
ized by the Odyssey Travel Agency is thousand
dollars if thousand dollars are spent on advertising.
a. What does

measure? What are the units?
b. What does measure? Give units.
c. Given that , what is the approximate change in

the revenue if Odyssey increases its advertising budget
from $20,000 to $21,000?

39. Production Costs Suppose that the total cost in manufacturing
units of a certain product is dollars.

a. What does measure? Give units.
b. What can you say about the sign of ?
c. Given that , estimate the additional cost to

be incurred by the company in producing the 1001st unit
of the product.

C¿(1000) � 20
C¿

C¿(x)
C(x)x

f ¿(20) � 3
f ¿(x)

0 � a � b
f(b) � f(a)

b � a

x
R � f(x)

f ¿(1000) � �0.05

f ¿(h)
f ¿(h)

T � f(h)h

0 x

y

�2�4 42

1

2

3

4

x

y

�2�4 42
�1

�2

�3

�4

1

2

3

4

x

y

�2 42

1

2

3

4
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40. Range of a Projectile A projectile is fired from a cannon that
makes an angle of degrees with the horizontal. If the muz-
zle velocity is constant, then the range in feet of the projec-
tile is a function of , that is, .
a. What is the physical meaning of ? Give units.
b. What can you say about the sign of , where

?
c. Given that and , estimate the

range of a projectile if it is fired at an angle of elevation
of 41°.

41. Let .
a. Find the derivative of .
b. Find the point on the graph of where the tangent line to

the curve is horizontal.
c. Sketch the graph of and the tangent line to the curve at

the point found in part (b).
d. What is the rate of change of at this point?

42. Let .

a. Find the derivative of .
b. Find an equation of the tangent line to the curve at the

point .
c. Sketch the graph of and the tangent line to the curve at

the point .

In Exercises 43–48, use the graph of the function to find the
value(s) of at which is not differentiable.

43. 44.

45.

46.

0 x

y

1

2

1 2 3 4�1�2�3

0 x

y

2

2�2

0 x

y

1

2

1 2�1�2

0 x

y

1

1�1

fx
f

1�1, �1
2 2 f

1�1, �1
2 2

ff ¿

f(x) �
1

x � 1

f

f

f
ff ¿

f(x) � x2 � 2x � 1

f ¿(40) � 20f(40) � 10,000
0° � u � 90°

f ¿(u)
f ¿(u)

R � f(u)u

u

47.

48.

In Exercises 49–52, show that the function is continuous but not
differentiable at the given value of .

49. ;

50. ;

51. ;

52. ;

53. R & D Expenditure The graph of the function shown in the
figure gives the Department of Energy budget for research
and development for solar, wind, and other renewable energy
sources over a 12-year period. Use the slopes of at the indi-
cated values of and the technique of Example 4 to sketch
the graph of . Then use the graph of to estimate the rate
of change of the budget when and when .

Source: U.S. Department of Energy.
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f 

do
lla

rs

t � 5t � 1
f ¿f ¿

t
f

f

x � 0f(x) � • x sin
1
x

if x 
 0

0 if x � 0

x �
1

2
f(x) � �2x � 1 �

x � 0f(x) � ex � 1 if x � 0

x2 � 1 if x 	 0

x � 0f(x) � ex � 2 if x � 0

2 � 3x if x 	 0

x

0 x

y

2

1

4

21�2�1�3

x

y

2

�1

4

2 4�2�4



54. Velocity of a Model Car The graph of the function shown in
the figure gives the position of a model car moving
along a straight line as a function of time. Use the technique
of Example 4 to sketch the velocity curve for the car. (Recall
that the velocity of an object is given by the rate of change
(derivative) of its position.) Then use the graph of to esti-
mate the velocity of the car at and .t � 12t � 5

f ¿

s � f(t)
f 60. Let

a. Show that is continuous at 0, but not differentiable at 0.
b. Plot the graph of using the viewing window

.

61. Let

a. Show that is differentiable at 0. What is 
b. Plot the graph of using the viewing window

.

62. A function is called periodic if there exists a number
such that for all in the domain of .

Prove that the derivative of a differentiable periodic function
with period is also a periodic function with period .

63. Show that if exists, then

64. Use the result of Exercise 63 to find the derivative of 

(a) by taking and (b) by 

taking . (Compare with Examples 1 and 3.)

In Exercises 65–70, determine whether the statement is true or
false. If it is true, explain why it is true. If it is false, explain why
or give an example to show why it is false.

65. If is differentiable at , then the slope of the 
tangent line to the graph of at the point is

66. If is differentiable at , and is not differentiable at , then
the product is not differentiable at .

67. If both and are not differentiable at , then the product 
is not differentiable at .
Hint: Consider and .

68. If both and are not differentiable at , then the sum 
is not differentiable at .

69. The domain of is the same as that of .

70. If is a positive integer, then there exists a function such
that is differentiable everywhere except at numbers.nf

fn

ff ¿
a

f � tatf

t(x) � �x �f(x) � �x �
a

ftatf

aft
ataf

lim
h→0

f(3 � h) � f(3)

h

(3, f(3))f
x � 3f

n � 3

f(x) �
1

x � 1
n � 2f(x) � 1x

n 
 0, 1lim
h→0

f(x � nh) � f [x � (n � 1)h]

h
� f ¿(x)

f ¿(x)

TT

fxf(x � T) � f(x)T 	 0
f

[�0.5, 0.5] � [�0.1, 0.1]
f

f ¿(0)?f

f(x) � • x2 sin
1
x

if x 
 0

0 if x � 0

[�0.5, 0.5] � [�0.1, 0.1]
f

f

f(x) � • x1>3 sin
1
x

if x 
 0

0 if x � 0
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55. Let . For each real number , define

a. For each fixed value of , what does measure?
b. What function do you expect to approach as 

approaches zero?
c. Verify your answer to part (b) visually by plotting the

graph of the function you guessed at in part (b) and the
graph of the function for , and 0.1 in a
common viewing window.

56. Let .
a. Find .
b. Plot the graphs of and , where

using a common viewing window. Is the result expected?
Explain.

57. Let .
a. Sketch the graph of .
b. For what values of is differentiable?
c. Find a formula for .

58. Let .
a. Sketch the graph of .
b. For what values of is differentiable?
c. Find a formula for .

59. Suppose that , where is a continuous
function and . Show that is continuous at but
not differentiable at .a

atf(a) 
 0
ft(x) � �x � a � f(x)

f ¿(x)
fx

f
f(x) � x�x �

f ¿(x)
fx

f
f(x) � �x3 �

t(x) �
[(x � 0.01)3 � (x � 0.01)] � (x3 � x)

0.01

tf ¿
f ¿(x)

f(x) � x3 � x

h � 1, 0.5t(x)

ht(x)
t(x)h

t(x) �
(x � h)3 � x3

h

h 
 0f(x) � x3
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2.2 Basic Rules of Differentiation

Some Basic Rules
Up to now we have computed the derivative of a function using its definition. But as
you have seen, this process is tedious even for relatively simple functions. In this sec-
tion we will develop some rules of differentiation that will simplify the process of find-
ing the derivative of a function.

THEOREM 1 Derivative of a Constant Function

If is a constant, then

d

dx
 (c) � 0

c

PROOF Let . Then

This result is also evident geometrically (see Figure 1). The tangent line to a straight
line at any point on the line must coincide with the line itself. Since the constant func-
tion defined by is a horizontal line with slope 0, any tangent line to must
also have slope 0. Hence, for every .xf ¿(x) � 0

ff(x) � cf

f ¿(x) � lim
h→0

f(x � h) � f(x)

h
� lim

h→0

c � c

h
� lim

h→0
0 � 0

f(x) � c

FIGURE 1
The slope of the graph of is
zero at every point. Hence, .f ¿(x) � 0

f(x) � c

EXAMPLE 1

a. If , then .

b. If , then .

Next, we turn our attention to the rule for differentiating power functions 
with positive integral exponents . For the special case in which , we have 

. Its derivative is

This result is also evident geometrically because the graph of is the line with
slope 1 (see Figure 2) and hence for every . That is,xf ¿(x) � 1

y � x

f ¿(x) � lim
h→0

f(x � h) � f(x)

h
� lim

h→0

(x � h) � x

h
� lim

h→0
1 � 1

f(x) � x
n � 1n

f(x) � xn

f ¿(x) �
d

dx
 (�p2) � 0f(x) � �p2

f ¿(x) �
d

dx
 (19) � 0f(x) � 19

(1)
d

dx
 (x) � 1

We now state the general rule for finding the derivative of , where is a
positive integer.

nf(x) � xn

FIGURE 2
The graph of is the line with
slope 1. Hence, .f ¿(x) � 1

f(x) � x

0 x � h

(x � h, c)(x, c)

x x

y � c

y

0

10

5

�5

�10

x�5�10 5 10

y

f(x) � x
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THEOREM 2 The Power Rule

If is a positive integer and , then

f ¿(x) �
d

dx
 (xn) � nxn�1

f(x) � xnn

PROOF Let . Then

Now observe that

which can be verified by simply expanding the expression on the right-hand side. If
we use this equation with replaced by and replaced by , then we can write

 � nxn�1

 � xn�1 � xn�1 � p � xn�1 � xn�1

 � lim
h→0

[(x � h)n�1 � (x � h)n�2x � p � (x � h)xn�2 � xn�1]

 f ¿(x) � lim
h→0

[(x � h) � x][(x � h)n�1 � (x � h)n�2x � p � (x � h)xn�2 � xn�1]

h

xbx � ha

an � bn � (a � b)(an�1 � an�2b � p � abn�2 � bn�1)

f ¿(x) � lim
h→0

f(x � h) � f(x)

h
� lim

h→0

(x � h)n � xn

h

f(x) � xn

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭

termsn

Theorem 2 can also be proved by using the Binomial Theorem (see Exercise 73).

EXAMPLE 2

a. If , then .

b. If , then .

Although Theorem 2 was stated for the case in which the power is a positive inte-
ger, the Power Rule is true for all real numbers . For example, if we apply the more
general rule formally to finding the derivative of , we find

a result that we obtained in Example 1, Section 2.1, using the definition of the deriv-
ative.

We will demonstrate the validity of the Power Rule for negative integers in Sec-
tion 2.3. The rule will be extended to include rational powers in Section 2.7. Finally,
we will prove the general version of the Power Rule, where may be any real num-
ber, in Section 6.4. But for now, we will assume that the Power Rule is valid for all
real numbers and use it in our work.

n
n

n

f ¿(x) �
d

dx
 (x1>2) �

1

2
 x�1>2 �

1

21x

f(x) � 1x � x1>2n
n

t¿(u) �
d

du
 (u3) � 3u3�1 � 3u2

t(u) � u3

f ¿(x) �
d

dx
 (x10) � 10x10�1 � 10x9f(x) � x10
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THEOREM 3 The Power Rule (General Version)

If is any real number, then

d

dx
 (xn) � nxn�1

n

EXAMPLE 3

a. If , then .

b. If , then .

c. If , then .

The next theorem tells us that the derivative of a constant times a function is equal
to the constant times the derivative of the function.

t¿(x) �
d

dx
 (x0.12) � 0.12x0.12�1 � 0.12x�0.88 �

0.12

x0.88
t(x) � x0.12

dy

dx
�

d

dx
 (x3>2) �

3

2
 x (3>2)�1 �

3

2
 x1>2 �

31x

2
y � x3>2

f ¿(x) �
d

dx
 a 1

x3
b �

d

dx
 (x�3) � �3x�3�1 � �3x�4 � �

3

x4
f(x) �

1

x3

THEOREM 4 The Constant Multiple Rule

If is a differentiable function and is a constant, then

d

dx
 [cf(x)] � cf ¿(x)

cf

PROOF Let . Then

Constant Multiple Law for limits

 � cf ¿(x)

 � c lim
h→0

f(x � h) � f(x)

h

 � lim
h→0

cc f(x � h) � f(x)

h
d

 F¿(x) � lim
h→0

F(x � h) � F(x)

h
� lim

h→0

cf(x � h) � cf(x)

h

F(x) � cf(x)

EXAMPLE 4

a. If , then .

b. If , then .

The next theorem says that the derivative of the sum of two functions is the sum of
their derivatives.

dy

du
�

d

du
 (�2u3) � �2 

d

du
 (u3) � �2(3u2) � �6u2y � �2u3

f ¿(x) �
d

dx
 (3x5) � 3 

d

dx
 (x5) � 3(5x4) � 15x4f(x) � 3x5
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THEOREM 5 The Sum Rule

If and are differentiable functions, then

d

dx
 [ f(x) � t(x)] � f ¿(x) � t¿(x)

tf

PROOF Let . Then

Sum Law for limits

Notes
1. Since can be written as , Theorem 5 implies that

By Theorem 4 with 

and we see that Theorem 5 also applies to the difference of two functions.
2. The Sum (Difference) Rule is valid for any finite number of functions. For exam-

ple, if , , and are differentiable at , then so is , and

d

dx
 [ f(x) � t(x) � h(x)] � f ¿(x) � t¿(x) � h¿(x)

f � t � hxhtf

 � f ¿(x) � t¿(x)

c � �1 �
d

dx
 [ f(x)] �

d

dx
 [t(x)]

 
d

dx
 [ f(x) � t(x)] �

d

dx
 [ f(x)] �

d

dx
 [�t(x)]

f(x) � [�t(x)]f(x) � t(x)

 � f ¿(x) � t¿(x)

 � lim
h→0

f(x � h) � f(x)

h
� lim

h→0

t(x � h) � t(x)

h

 � lim
h→0
c f(x � h) � f(x)

h
�

t(x � h) � t(x)

h
d

 � lim
h→0

[ f(x � h) � t(x � h)] � [ f(x) � t(x)]

h

 F¿(x) � lim
h→0

F(x � h) � F(x)

h

F(x) � f(x) � t(x)

EXAMPLE 5 Find the derivative of .

Solution Using the generalized Sum Rule, we find that

 � 20x4 � 8x3 � 6x � 6

 � 4(5x4) � 2(4x3) � 3(2x) � 6(1) � 0

 � 4
d

dx
 (x5) � 2

d

dx
 (x4) � 3

d

dx
 (x2) � 6

d

dx
 (x) �

d

dx
 (1)

 �
d

dx
 (4x5) �

d

dx
 (2x4) �

d

dx
 (3x2) �

d

dx
 (6x) �

d

dx
 (1)

 f ¿(x) �
d

dx
 (4x5 � 2x4 � 3x2 � 6x � 1)

f(x) � 4x5 � 2x4 � 3x2 � 6x � 1

GOTTFRIED WILHELM LEIBNIZ
(1646–1716)

Displaying an early mathematical ability,
Gottfried Wilhelm Leibniz entered college
at the age of fifteen, earned his bachelor
degree at seventeen, and was awarded his
doctorate at the age of nineteen.

In 1684, Leibniz published a brief paper
entitled “A New Method for Maxima and
Minima, as Well as Tangents, Which is Nei-
ther Impeded by Fractional nor Irrational
Quantities and A Remarkable Type of Calcu-
lus.” This paper introduced differential cal-
culus; later, another of Leibniz’s papers
introduced integral calculus. Leibniz took
an algebraic approach in developing calcu-
lus, in contrast to the geometric approach
of Isaac Newton’s (page 179) work pub-
lished in 1689. In the early 1700s great con-
troversy broke out over which of the men
had developed the concepts first and
whether plagiarism was involved. Support-
ers of the two eventually drew Newton and
Leibniz into the quarrel, and at one point,
Leibniz was indirectly accused of plagiariz-
ing Newton’s ideas. Many scholars now
believe that the concepts were developed
independently and that Leibniz’s notation
and algebraic approach greatly aided the
continental mathematicians to move for-
ward more quickly than the British, who
continued working with the more cumber-
some geometric approach of Newton.

Historical Biography
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EXAMPLE 6 Find the derivative of .

Solution Using the generalized Sum Rule, we find

 �
5

4
 x3>2 �

3

2
 x1>2 �

1

4
 x�1>2 � x�3>2

 �
1

2
 a5

2
 x3>2b �

3

2
 x1>2 �

1

2
 a1

2
 x�1>2b � 2a�1

2
 x�3>2b

 �
d

dx
 a1

2
 x5>2 � x3>2 �

1

2
 x1>2 � 2x�1>2b

 
dy

dx
�

d

dx
 ax3 � 2x2 � x � 4

2x1>2 b

y �
x3 � 2x2 � x � 4

21x

EXAMPLE 7 Find the points on the graph of where the tangent
line is horizontal.

Solution At a point on the graph of where its tangent line is horizontal, the deriva-
tive of is zero. So we begin by finding

Setting leads to , giving , 0, or 1. Substituting each
of the numbers into gives the points , , and as the required
points. (See Figure 3.)

(1, 1)(0, 2)(�1, 1)f(x)
x � �14x(x2 � 1) � 0f ¿(x) � 0

f ¿(x) �
d

dx
 (x4 � 2x2 � 2) � 4x3 � 4x � 4x(x2 � 1)

f
f

f(x) � x4 � 2x2 � 2

FIGURE 3
The graph of has
horizontal tangent lines at ,

, and .(1, 1)(0, 2)
(�1, 1)

f(x) � x4 � 2x2 � 2

EXAMPLE 8 Carbon Monoxide in the Atmosphere The projected average global atmo-
spheric concentration of carbon monoxide is approximated by

where is measured in 40-year intervals with corresponding to the beginning of
1860 and is measured in parts per million by volume. How fast was the projected
average global atmospheric concentration of carbon monoxide changing at the begin-
ning of the year 1900 and at the beginning of 2000 ?
Source: Meadows et al., “Beyond the Limits.”

Solution The rate at which the concentration of carbon monoxide is changing at time
is given by

parts/million/(40 years). Therefore, the rate at which the concentration of carbon mon-
oxide was changing at the beginning of 1900 was

or approximately 3.4 parts/million/(40 years). At the beginning of the year 2000, it was

or approximately 105 parts/million/(40 years).

f ¿(3.5) � 3.52(3.5)3 � 4.38(3.5)2 � 1.4(3.5) � 2.88 � 105.045

f ¿(1) � 3.52(1) � 4.38(1) � 1.4(1) � 2.88 � 3.42

 � 3.52t 3 � 4.38t 2 � 1.4t � 2.88

 f ¿(t) �
d

dt
 (0.88t 4 � 1.46t 3 � 0.7t 2 � 2.88t � 293)

t

(t � 3.5)(t � 1)

f(t)
t � 0t

0 � t � 4f(t) � 0.88t 4 � 1.46t 3 � 0.7t 2 � 2.88t � 293

0

1

2
3

4

5

x�1�2 1 2

y
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1. State the rule of differentiation and explain it in your own
words.
a. The Power Rule
b. The Constant Multiple Rule
c. The Sum Rule

2. If and , find
a. if 
b. if F(x) � 2f(x) � 4t(x)F¿(2)

h(x) � 2f(x)h¿(2)
t¿(2) � �2f ¿(2) � 3

2.2 CONCEPT QUESTIONS

In Exercises 1–32, find the derivative of the function.

1. 2.

3. 4.

5. 6.

7. 8.

9. 10.

11. 12.

13. 14.

15.

16.

17.

18. 19.

20. 21.

22.

23. 24.

25. 26.

27.

28.

29. 30.

31. 32. f(u) �
1

1u
�

3

13 u
y � 13 x �

1

1x

f(t) � 2t 2 �2t 3f(x) � 2x � 51x

y � 0.0002t 3 � 0.4t 2 � 4 �
100

t 2

A � 0.001x2 � 0.4x � 5 �
200

x

f(x) �
5

x3 �
2

x2 �
1
x

� 200f(t) �
4

t 4 �
3

t 3 �
2

t

f(x) � �
1

3
 (x�3 � x6)f(x) � 3x�1 � 4x�2

f(x) � 5x4>3 �
2

3
 x3>2 � x2 � 3x � 1

f(x) � 4x4 � 3x5>2 � 2h(t) �
t 5 � 3t 3 � 2t 2

2t 2

f(x) �
x3 � 4x2 � 3

x
H(u) � (2u)3 � 3u � 7

t(x) � x2(2x3 � 3x2 � x � 4)

f(x) � 0.002x3 � 0.05x2 � 0.1x � 20

f(x) � 0.03x2 � 0.4x � 10

y � �
1

3
 (x3 � 2x2 � x � 1)f(r) � pr 2 � 2pr

t(x) � �
1

3
 x2 � 12xf(x) � x2 � 2x � 8

f(x) � 0.3x�1.2f(x) � 7x�12

f(u) �
2

1u
f(x) � 31x

f(x) � 9x1>3f(x) � x2.1

f(x) � �2x3f(x) � 3x2

f(x) � 3x � 4f(x) � 2.718

33. Let . Find
a. b. c.

34. Let . Find
a. b.

In Exercises 35–38, (a) find an equation of the tangent line to
the graph of the function at the indicated point, and (b) use a
graphing utility to plot the graph of the function and the tangent
line on the same screen.

35. ;

36. ;

37. ;

38. ;

In Exercises 39–42, find the point(s) on the graph of the function
at which the tangent line has the indicated slope.

39. ;

40. ;

41. ;

42. ;

A straight line perpendicular to and passing through a point of
tangency of the tangent line is called a normal line to the curve.
In Exercises 43 and 44, (a) find the equations of the tangent line
and the normal line to the curve at the given point, and (b) use
a graphing utility to plot the graph of the function, the tangent
line, and the normal line on the same screen.

43. The curve at the point .

44. The curve at the point .

45. Find the value(s) of at which is increasing
at the rate of 3 units per unit change in .x

y � 2x � (9>x)x

(1, 3)y � 2x � (1>1x)

(2, 3)y � x3 � 3x � 1

m tan � �
1

9
F(s) �

2s � 1
s

m tan � �2h(t) � 2t �
1

t

m tan � �1t(x) �
1

3
 x3 �

1

2
 x2 � x � 1

m tan � 0f(x) � 2x3 � 3x2 � 12x � 10

14, 52 2f(x) � 1x �
1

1x

(1, 0)f(x) � x4 � 3x3 � 2x2 � x � 1

1�1, �5
3 2f(x) � �

5

3
 x2 � 2x � 2

(2, 6)f(x) � 2x2 � 3x � 4

f ¿(16)f ¿(0)
f(x) � 4x5>4 � 2x3>2 � x

f ¿(2)f ¿(0)f ¿(�2)
f(x) � 2x3 � 4x

2.2 EXERCISES

Videos for selected exercises are available online at www.academic.cengage.com/login.V

www.academic.cengage.com/login
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46. Let . Find the values of for
which
a. b. c.

47. Let . Find the point(s) on the graph
of where the slope of the tangent line is equal to
a. b. 0 c.

48. Find the points on the graph of at which
the tangent line is parallel to the line .

49. Find the points on the graph of at which
the tangent line is perpendicular to the line .

50. Given that the line is tangent to the graph of
, find .

51. Find equations of the lines passing through the point 
that are tangent to the parabola .
Hint: Find two expressions for the slope of a tangent line.

52. Find an equation of the normal line to the parabola
that is perpendicular to the line passing

through the point and the vertex of the parabola.
(Refer to the directions given for Exercise 43.)

In Exercises 53–56, find the limit by evaluating the derivative of
a suitable function at an appropriate value of . (Hint: Use the
definition of the derivative.)

53. 54.

Hint: Let .

55.

56.

In Exercises 57 and 58, write the expression as a derivative of a
function of .

57.

58.

59. Temperature Changes The temperature (in degrees Fahrenheit)
on a certain day in December in Minneapolis is given by

where is measured in hours and corresponds to 
6 A.M. Determine the time of day when the temperature 
is increasing at the rate of 2.05°F/hr.

60. Traffic Flow Opened in the late 1950s, the Central Artery in
downtown Boston was designed to move 75,000 vehicles per
day. Suppose that the average speed of traffic flow inS

t � 0t

0 � t � 12T � �0.05t 3 � 0.4t 2 � 3.8t � 19.6

lim
h→0

1

x � h
� 1x � h �

1
x

� 1x

h

lim
h→0

2(x � h)7 � (x � h)2 � 2x7 � x2

h

x

lim
t→0

(8 � t)1>3 � 2

t

lim
h→0

3(2 � h)2 � (2 � h) � 10

h

h � x � 1

lim
x→1

x5 � 1

x � 1
lim
h→0

(1 � h)3 � 1

h

x

(1, 0)
y � x2 � 6x � 11

y � x2 � 2x
(3, 2)

cy � x2 � c
y � 2x

y � x � 2
y � 1

3 x3 � 2x � 5

y � 2x � 3
y � 1

3 x3 � 2x � 5

10x�2x
f
f(x) � 1

4 x4 � 1
3 x3 � x2

f ¿(x) � 12f ¿(x) � 0f ¿(x) � �12

xf(x) � 2
3 x3 � x2 � 12x � 6 miles per hour is related to the number of vehicles (in

thousands) moved per day by the equation

Find the rate of change of the average speed of traffic flow
when the number of vehicles moved per day is 100,000;
200,000. (Compare with Exercise 1 in Section 1.5.)
Source: The Boston Globe.

61. Spending On Medicare On the basis of the current eligibility
requirement, a study conducted in 2004 showed that federal
spending on entitlement programs, particularly Medicare,
would grow enormously in the future. The study predicted
that spending on Medicare, as a percentage of the gross
domestic product (GDP), will be

percent in year , where is measured in decades with 
corresponding to the year 2000.
a. How fast will the spending on Medicare, as a percentage

of the GDP, be growing in 2010? In 2020?
b. What will the predicted spending on Medicare, as a per-

centage of the GDP, be in 2010? In 2020?
Source: Congressional Budget Office.

62. Effect of Stopping on Average Speed According to data from a
study by General Motors, the average speed of a trip, (in
miles per hour), is related to the number of stops per mile
made on that trip, , by the equation

Compute for and , and interpret your
results.
Source: General Motors.

63. Health-Care Spending Health-care spending per person by the
private sector comprising payments by individuals, corpora-
tions, and their insurance companies is approximated by the
function

where is measured in dollars and is measured in years
with corresponding to the beginning of 1994. The cor-
responding government spending—including expenditures
for Medicaid, Medicare, and other federal, state, and local
government public health care—is

where is measured in dollars and in years.
a. Find a function that gives the difference between private

and government health-care spending per person at any
time .

b. How fast was the difference between private and govern-
ment expenditures per person changing at the beginning
of 1995? At the beginning of 2000?

Source: Health Care Financing Administration.

t

tt(t)

0 � t � 6t(t) � �1.12t 2 � 29.09t � 429

t � 0
tf(t)

0 � t � 6f(t) � 2.48t 2 � 18.47t � 509

x � 2x � 0.25dA>dx

A �
26.5

x0.45

x

A

t � 0tt

0 � t � 5P(t) � 0.27t 2 � 1.4t � 2.2

50 � x � 300S � �0.00075x2 � 67.5

x
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64. Fuel Economy of Cars According to data obtained from the
U.S. Department of Energy and the Shell Development
Company, a typical car’s fuel economy depends on the
speed it is driven and is approximated by the function

where is measured in miles per hour and is measured
in miles per gallon (mpg).
a. Use a graphing utility to graph the function on the

interval .
b. Use a calculator or computer to find the rate of change 

of when and when .
c. Interpret your results.
Source: U.S. Department of Energy and the Shell Development
Company.

65. Prevalence of Alzheimer’s Patients The projected number of
Alzheimer’s patients in the United States is given by

where is measured in millions and in decades, with
corresponding to the beginning of 1990.

a. Use a graphing utility to graph the function on the
interval .

b. Use a calculator or computer to find the rate at which the
number of Alzheimer’s patients in the United States is
anticipated to be changing at the beginning of 2010? At
the beginning of 2020? At the beginning of 2030?

c. Interpret your results.
Source: Alzheimer’s Association.

66. Hedge Fund Assets A hedge fund is a lightly regulated pool of
professionally managed money. The assets (in billions of
dollars) of hedge funds from the beginning of 1999 
through the beginning of 2004 are given in the following
table.

(t � 0)

[0, 6]
f

t � 0
tf(t)

0 � t � 6� 1.7575t � 3.7745

f(t) � �0.02765t 4 � 0.3346t 3 � 1.1261t 2

x � 50x � 20f

[0, 75]
f

f(x)x

0 � x � 75� 0.00287869x2 � 1.25986x

f(x) � 0.00000310315x4 � 0.000455174x3

67. Population Decline Political and social upheaval stemming
from Russia’s difficult transition from communism to capi-
talism is expected to contribute to the decline of the coun-
try’s population well into the next century. The following
table shows the total population at the beginning of each
year.

Year 1999 2000 2001 2002 2003 2004

Assets
(billions of dollars)

472 517 594 650 817 950

Year 1985 1990 1995 2000 2005

Population
(millions)

143.3 147.9 147.8 145.5 143.8

a. Use the regression capability of a calculator or computer
to find a third-degree polynomial function for the data,
letting correspond to the beginning of 1999.

b. Plot the graph of the function found in part (a).
c. Use a calculator or computer to find the rate at which the

assets of hedge funds were increasing at the beginning of
2000. At the beginning of 2003.

Sources: Hennessee Group, Institutional Investor.

t � 0

a. Use the regression capability of a calculator or computer
to find a fourth-degree polynomial function for the data,
letting correspond to the beginning of 1985, where

is measured in 5-year intervals.
b. Plot the graph of the function found in part (a).
c. Use a calculator or computer to find the rate at which 

the population was changing at the beginning of 1985?
At the beginning of 1995? At the beginning of 2030?

Sources: Population Reference Bureau, United Nations.

68. Newton’s Law of Gravitation According to Newton’s Law of
Gravitation, the magnitude (in newtons) of the force 
of attraction between two bodies of masses and 
kilograms is

where is a constant and is the distance between the two
bodies in meters. What is the rate of change of with
respect to ?

69. Period of a Satellite The period of a satellite in a circular orbit
of radius is given by

where is the earth’s radius and is the constant of accel-
eration. Find the rate of change of the period with respect to
the radius of the orbit.

70. Coast Guard Launch In the figure the -axis represents a
straight shoreline. A spectator located at the point 
observes a Coast Guard launch equipped with a search light
execute a turn. The path of the launch is described by the
parabola ( and are measured in hun-
dreds of feet). Find the distance between the launch and the

yxy � �2.5x2 � 10

P(2.5, 0)
x

tR

T �
2pr

R
 B

r

t

r

r
F

rG

F �
GmM

r 2

mM
F

t
t � 0

Year 2010 2015 2020 2025 2030

Population
(millions)

141.2 137.5 133.2 128.7 123.3
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spectator at the instant of time the bow of the launch is
pointed directly at the spectator.

71. Determine the constants , , and such that the parabola
passes through the point and is

tangent to the line at the point where .

72. Let

Find the values of and such that is continuous and 
differentiable at .

73. Prove the Power Rule ( , a positive integer)
using the Binomial Theorem

nf ¿(x) � nxn�1

a
fBA

f(x) � ex2 if x � a

Ax � B if x 	 a

x � 1y � x
(�1, 0)y � Ax2 � Bx � C

CBA

0

2

4

6

8

10

x (hundred feet)�1�2�3 1 2 3 4

P(2.5, 0)

y (hundred feet)

Compute

using the substitution and .

74. Find a formula for the sum .
Hint: Use the formula for the sum of a geometric progression

In Exercises 75–78, determine whether the statement is true or
false. If it is true, explain why it is true. If it is false, explain why
or give an example to show why it is false.

75. If , where is an integer, then .

76. If , then by the Power Rule.

77. If and are differentiable, then 

78. If , where is differentiable, then .t¿(x) � f ¿(x2)ft(x) � f(x2)

d

dx
 [2f(x) � 5t(x)] � 2f ¿(x) � 5t¿(x)

tf

f ¿(x) � x � 2x�1f(x) � 2x

f ¿(x) � 2nx2(n�1)nf(x) � x2n

x 
 11 � x � x2 � p � xn �
1 � xn�1

1 � x

1 � 2x � 3x2 � p � nxn�1

b � ha � x

f ¿(x) � lim
h→0

f(x � h) � f(x)

h
� lim

h→0

(x � h)n � xn

h

�
n(n � 1)

2
 an�2b2 � p � nabn�1 � bn

(a � b)n � an � nan�1b

2.3 The Product and Quotient Rules

In this section we study two more rules of differentiation: the Product Rule and the
Quotient Rule. We also consider higher-order derivatives.

The Product and Quotient Rules
In general, the derivative of the product of two functions is not equal to the product of
their derivatives. The following rule tells us how to differentiate a product of two func-
tions.

THEOREM 1 The Product Rule

If and are differentiable functions, then

d

dx
 [ f(x)t(x)] � f(x)t¿(x) � t(x)f ¿(x)

tf

PROOF Let . Then

F¿(x) � lim
h→0

F(x � h) � F(x)

h
� lim

h→0

f(x � h)t(x � h) � f(x)t(x)

h

F(x) � f(x)t(x)
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If we add the quantity , which is equal to zero, to the
numerator, we obtain

(1)

Since is assumed to be differentiable at , Theorem 1 of Section 2.1 tells us that it is
continuous there, so

Also, because does not involve , it is constant with respect to the limiting process
and

Therefore, Equation (1) reduces to

In words, the Product Rule states that the derivative of the product of two functions
is the first function times the derivative of the second, plus the second function times
the derivative of the first.

F¿(x) � f(x)t¿(x) � t(x)f ¿(x)

lim
h→0

t(x) � t(x)

ht(x)

lim
h→0

f(x � h) � f(x)

xf

 � lim
h→0

f(x � h) � lim
h→0

t(x � h) � t(x)

h
� lim

h→0
t(x) � lim

h→0

f(x � h) � f(x)

h

 � lim
h→0
ef(x � h) ct(x � h) � t(x)

h
d � t(x) c f(x � h) � f(x)

h
d f

 F¿(x) � lim
h→0

f(x � h)t(x � h) � f(x � h)g(x) � f(x � h)g(x) � f(x)t(x)

h

[�f(x � h)t(x) � f(x � h)t(x)]

EXAMPLE 1 Find the derivative of .

Solution Using the Product Rule, we find

Note Example 1 could also be solved by first multiplying the two factors and then
differentiating, but our purpose here is to illustrate the Product Rule. The full power
of the Product Rule will be seen later.

 � 3x(5x3 � 2x � 10)

 � 15x4 � 6x2 � 30x

 � (2 � 3x2)(3x2) � (x3 � 5)(6x)

 � (2 � 3x2) �
d

dx
 (x3 � 5) � (x3 � 5) �

d

dx
 (2 � 3x2)

 f ¿(x) �
d

dx
 [(2 � 3x2)(x3 � 5)]

f(x) � (2 � 3x2)(x3 � 5)

EXAMPLE 2 Find the derivative of .

Solution First, we express the function in exponential form, obtaining

f(x) � x3(x1>2 � 1)

f(x) � x3(1x � 1)
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PROOF Let . Then

 � lim
h→0

f(x � h)t(x) � f(x)t(x � h)

ht(x � h)t(x)

 � lim
h→0

f(x � h)

t(x � h)
�

f(x)

t(x)

h

 F¿(x) � lim
h→0

F(x � h) � F(x)

h

F(x) �
f(x)

t(x)

EXAMPLE 3 Suppose that and it is known that and
. Evaluate .

Solution Using the Product Rule, we find

Therefore,

Just as the derivative of a product of two functions is not the product of their deriv-
atives, the derivative of a quotient of two functions is not the quotient of their deriva-
tives! Rather, we have the following rule.

 � (5)(�1) � 4(3) � 7

 t¿(2) � (22 � 1)f ¿(2) � 2(2)f(2)

 � (x2 � 1)f ¿(x) � 2x ˇf(x)

 t¿(x) �
d

dx
 [(x2 � 1)f(x)] � (x2 � 1) 

d

dx
 [ f(x)] � f(x) 

d

dx
 (x2 � 1)

t¿(2)f ¿(2) � �1
f(2) � 3t(x) � (x2 � 1)f(x)

THEOREM 2 The Quotient Rule

If and are differentiable functions and , then

d

dx
 c f(x)

t(x)
d �

t(x)f ¿(x) � f(x)t¿(x)

[t(x)]2

t(x) 
 0tf

By the Product Rule,

 �
1

2
 x5>2 � 3x5>2 � 3x2 �

7

2
 x5>2 � 3x2

 � x3a1

2
 x�1>2b � (x1>2 � 1)(3x2)

 f ¿(x) � x3 
d

dx
 (x1>2 � 1) � (x1>2 � 1) 

d

dx
 (x3)
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Subtracting and adding in the numerator yield

(2)

As in the proof of the Product Rule, we see that

and

and, because is continuous at ,

Therefore, Equation (2) is

As an aid to remembering the Quotient Rule, observe that it has the following form:

F¿(x) �
t(x)f ¿(x) � f(x)t¿(x)

[t(x)]2

lim
h→0

t(x � h) � t(x)

xt

lim
h→0

f(x) � f(x)lim
h→0

t(x) � t(x)

 �

lim
h→0

t(x) � lim
h→0

 
f(x � h) � f(x)

h
� lim

h→0
f(x) � lim

h→0
 
t(x � h) � t(x)

h

lim
h→0

t(x � h) � lim
h→0

t(x)

 � lim
h→0

t(x) c f(x � h) � f(x)

h
d � f(x) ct(x � h) � t(x)

h
d

t(x � h)t(x)

 F¿(x) � lim
h→0

f(x � h)t(x) � f(x)g(x) � f(x)g(x) � f(x)t(x � h)

ht(x � h)t(x)

f(x)t(x)

!

EXAMPLE 4 Find the derivative of .

Solution Using the Quotient Rule, we have

Note Figure 1 shows the graph of and in the same viewing window. Observe
that the graph of has horizontal tangent lines at the points where and

.x � �0.24
x � �1.63f

f ¿f

 � �
2x4 � 2x3 � 4x � 1

(x3 � 1)2

 �
(4x4 � x3 � 4x � 1) � (6x4 � 3x3)

(x3 � 1)2

 �
(x3 � 1)(4x � 1) � (2x2 � x)(3x2)

(x3 � 1)2

 f ¿(x) �

(x3 � 1) 
d

dx
 (2x2 � x) � (2x2 � x) 

d

dx
 (x3 � 1)

(x3 � 1)2

f(x) �
2x2 � x

x3 � 1

d

dx
 c f(x)

t(x)
d �

(denominator)(derivative of numerator) � (numerator)(derivative of denominator)

(square of denominator)

Because of the presence of the minus sign in the numerator, the order of the terms
is important!

�3 3

2

�2.5

FIGURE 1
The graph of is shown in blue, and the
graph of is shown in red.f ¿

f
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EXAMPLE 5 Find an equation of the tangent line to the graph of

at the point where .

Solution The slope of the tangent line at any point on the graph of is given by

Observe that we have used the Product Rule on the first term in the numerator. In par-
ticular, the slope of the required tangent line is

Note that it was not necessary to simplify the expression for , since we need only
the value of at . Also, when ,

Therefore, the point of tangency is , and an equation of the tangent line is

or

The graph of and the tangent line to the graph at are shown in Figure 2.(1, 0)f

y �
9

5
 x �

9

5
y � 0 �

9

5
 (x � 1)

(1, 0)

y � f(1) �
(2 � 1)(0)

1 � 4
� 0

x � 1x � 1f ¿
f ¿(x)

f ¿(1) �
(1 � 4)[(2 � 1)(3) � 0] � (2 � 1)(0)(2)

(1 � 4)2
�

9

5

 �
(x2 � 4)[(2x2 � 1)(3x2) � (x3 � 1)(4x)] � (2x2 � 1)(x3 � 1)(2x)

(x2 � 4)2

 f ¿(x) �

(x2 � 4) 
d

dx
 [(2x2 � 1)(x3 � 1)] � (2x2 � 1)(x3 � 1) 

d

dx
 (x2 � 4)

(x2 � 4)2

f

x � 1

f(x) �
(2x2 � 1)(x3 � 1)

x2 � 4

FIGURE 2
The graph of and the tangent line to
the graph of at (1, 0)f

f

EXAMPLE 6 Rate of Change of DVD Sales The sales (in millions of dollars) of a DVD
recording of a hit movie years from the date of release are given by

a. Find the rate at which the sales are changing at time .
b. How fast are the sales changing at the time the DVDs are released ? Two

years from the date of release?

Solution
a. The rate at which the sales are changing at time is given by . Using the

Quotient Rule, we obtain

 � 5c t 2 � 1 � 2t 2

(t 2 � 1)2
d �

5(1 � t 2)

(t 2 � 1)2

 � 5c (t 2 � 1)(1) � t(2t)

(t 2 � 1)2
d

 S¿(t) �
d

dt
 c 5t

t 2 � 1
d � 5 

d

dt
 c t

t 2 � 1
d

S¿(t)t

(t � 0)
t

t � 0S(t) �
5t

t 2 � 1

t

�3 3

8

�8
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FIGURE 3
After a spectacular rise, the sales begin
to taper off.

b. The rate at which the sales are changing at the time the DVDs are released is
given by

That is, they are increasing at the rate of $5 million per year.
Two years from the date of release, the sales are changing at the rate of

That is, they are decreasing at the rate of $600,000 per year. The graph of the
function is shown in Figure 3.

You may have observed that the domain of the function in Example 6 is restricted,
for practical reasons, to the interval . Since the definition of the derivative of a
function at a number requires that be defined in an open interval containing , the
derivative of is not, strictly speaking, defined at 0. But notice that the function can,
in fact, be defined for all values of , and hence it makes sense to calculate . You
will encounter situations such as this throughout the book, especially in exercises per-
taining to real-world applications. The nature of the functions appearing in these appli-
cations obviates the necessity to consider “one-sided” derivatives.

Extending the Power Rule
The Quotient Rule can be used to extend the Power Rule to include the case in which

is a negative integer.n

S¿(0)t
SS
afaf

[0, �)
S

S

S¿(2) �
5(1 � 4)

(4 � 1)2
� �

3

5
� �0.6

S¿(0) �
5(1 � 0)

(0 � 1)2
� 5

0

2

1

3

t (years)2 4 6 8 10

S (t)

M
ill

io
ns

 o
f 

do
lla

rs

PROOF If is a positive integer, then the formula holds by Theorem 2 of Section 2.2.
If , the formula gives

which is true by Theorem 1 of Section 2.2. Next, suppose . Then , and
therefore, there is a positive integer such that . Write

f(x) � xn � x�m �
1

xm

n � �mm
�n 	 0n � 0

d

dx
 (x0) �

d

dx
 (1) � 0

n � 0
n

THEOREM 3 The Power Rule for Integral Powers

If , where is any integer, then

d

dx
 (xn) � nxn�1

nf(x) � xn
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Since , can be differentiated using Theorem 2 of Section 2.2. Applying the
Quotient Rule, we have

Use the Quotient Rule.

Substitute .

Higher-Order Derivatives
The derivative of a function is itself a function. As such, we may consider differ-
entiating the function . The derivative of , if it exists, is denoted by and is called
the second derivative of . Continuing in this fashion, we are led to the third, fourth,
fifth, and higher-order derivatives of , whenever they exist. Notations for the first, sec-
ond, third, and in general, the th derivative of are

, , , ,

or

, , , ,

or

, , , ,

respectively.
If we denote the dependent variable by , so that , then its first deriva-

tives are also written

, , , ,

or

, , , ,

or

, , , ,

respectively.

Dn
xyp D3

xyD2
xyDxy

dny

dxnp
d3y

dx3

d2y

dx2

dy

dx

y(n)py‡y�y¿

ny � f(x)y

Dn
x f(x)pD3

x f(x)D2
x f(x)Dxf(x)

dn

dxn [ f(x)]p
d3

dx3
 [ f(x)]

d2

dx2
 [ f(x)]

d

dx
 [ f(x)]

f (n)pf ‡f �f ¿

fn
f

f
f �f ¿f ¿

ff ¿

n � �m � nxn�1

 � �mx�m�1

 �
0 � mxm�1

x2m

 �

xm 
d

dx
 (1) � 1 �

d

dx
 (xm)

x2m

 f(x) �
d

dx
 (xn) �

d

dx
a 1

xmb

xmm 	 0
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EXAMPLE 7 Find the derivatives of all orders of .

Solution We have

and

 f (6)(x) � f (7)(x) � p � 0

 f (5)(x) �
d

dx
 f (4)(x) � 0

 f (4)(x) �
d

dx
 f ‡(x) � 24

 f ‡(x) �
d

dx
 f �(x) � 24x � 18

 f �(x) �
d

dx
 f ¿(x) � 12x2 � 18x � 2

 f ¿(x) � 4x3 � 9x2 � 2x � 2

f(x) � x4 � 3x3 � x2 � 2x � 8

EXAMPLE 8 Find the third derivative of .

Solution Rewriting the given equation in the form , we find

and hence

Just as the first derivative of a function at any point gives the rate of change
of at that point, the second derivative of , which is the derivative of at ,
gives the rate of change of at . The third derivative of gives the rate of
change of at , and so on. For example, if gives the population of a cer-
tain city at time , then gives the rate of change of the population of the city at time

and gives the rate of change of the rate of change of the population at time .
A geometric interpretation of the second derivative of a function will be given in

Chapter 3, and applications of higher-order derivatives will be given in Chapter 9.

tP �t
P¿t

P � f(t)xf �(x)
ff ‡(x)xf ¿(x)

xf ¿ff �(x)f(x)
xff ¿(x)

 y‡ �
d

dx
 (2x�3) � 2(�3x�4) � �6x�4 � �

6

x4

 y� �
d

dx
 (�x�2) � (�1)(�2x�3) � 2x�3

 y¿ �
d

dx
 (x�1) � �x�2

y � x�1

y �
1
x

1. State the rule of differentiation and explain it in your own
words.
a. The Product Rule
b. The Quotient Rule

2. If , , , and , find

a. if 

b. if F(x) �
f(x)

t(x)
F¿(1)

h(x) � f(x)t(x)h¿(1)

t¿(1) � 4f ¿(1) � �1t(1) � 2f(1) � 3

2.3 CONCEPT QUESTIONS
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In Exercises 1–6, use the Product Rule to find the derivative of
each function.

1.

2.

3.

4.

5.

6.

In Exercises 7–12, use the Quotient Rule to find the derivative of
each function.

7. 8.

9. 10.

11. 12.

In Exercises 13–16, find the derivative of each function in two
ways.

13.

14.

15.

16.

In Exercises 17–32, find the derivative of each function.

17.

18.

19.

20.

21.

22.

23.

24. f(r) �
(2r � 1)(r � 3)

3r � 1

f(x) �
(x � 1)(x2 � 1)

x � 2

y �
2t � 1

t 2 � 3t � 2

y �
2x2

x2 � x � 1

f(x) �
1x � 1

1x � 1

f(x) �
21x

x2 � 1

f(t) � (1 � 1t)(2t 2 � 3)

f(x) � (5x2 � 1)(21x � 1)

f(t) �
2t 2 � 3t 3>2

5t 1>2

t(t) � (t 3 � 1)(2t �2 � t �1)

h(t) �
t 5 � 3t 3 � 2t 2

2t 2

F(x) � (x � 2)(x2 � x � 1)

f(s) �
s2 � 4

s � 1
F(x) �

2x � 3

x2 � 5

P(t) �
2 � t

3 � 2t
h(x) �

2x � 1

3x � 2

t(x) �
2x

x2 � 1
f(x) �

x

x � 1

f(w) � (w3 � w2 � w � 1)(w3 � 2)

f(x) � (x3 � 12x)(3x2 � 2x)

f(x) � (3x � 1)(x2 � 2)

f(t) � (t � 1)(2t � 1)

F(x) � 3x2(x � 1)

f(x) � 2x(x2 � 1)
25. 26.

27. 28.

29. , constants

30. , constants

31.

32.

In Exercises 33–36, find the derivative of each function and eval-
uate at the given value of .

33. ;

34. ;

35. ;

36. ;

In Exercises 37 and 38, find the point(s) on the graph of where
the tangent line is horizontal.

37.

38.

In Exercises 39–40, find the point(s) on the graph of the function
at which the tangent line has the indicated slope.

39. ;

40. ;

In Exercises 41–44, (a) find an equation of the tangent line to
the graph of the function at the indicated point, and (b) use a
graphing utility to plot the graph of the function and the tangent
line on the same screen.

41. ;

42. ; (�1, �1)y �
2x

x2 � 1

(1, �1)y � (2x2 � 1)(x3 � 2x � 4)

m tan � �
1

5
F(s) �

2s � 1

s � 2

m tan � �2f(x) � (x2 � 6)(x � 5)

f(x) �
x

x2 � 1

f(x) � (x2 � 1)(2 � x)

f

x � �1f(x) �
x

x4 � 2x2 � 1

x � 4f(x) � (1x � 2x)(x3>2 � x)

x � 2f(x) �
2x � 1

2x � 1

x � 1f(x) � (2x � 1)(x2 � 3)

xf ¿(x)

t(t) � (2t � 1)at � 1 �
2

t � 1
b

f(x) � (x2 � 1)a2x � 1

3x � 1
b

a, bt(t) �
at 2

t 2 � b

a, b, c, dF(x) �
ax � b

cx � d

f(x) �
x

x2 � 4
�

x � 1

x2 � 4
f(x) �

x � 13x

3x � 1

y �

1 �
1
x

1 �
1
x

f(x) �

1 �
1

x

x � 2

2.3 EXERCISES

Videos for selected exercises are available online at www.academic.cengage.com/login.V

www.academic.cengage.com/login


43. ;

44. ;

The straight line perpendicular to and passing through the point
of tangency of the tangent line is called the normal line to the
curve. In Exercises 45 and 46, (a) find the equations of the tan-
gent line and the normal line to the curve at the given point, and
(b) use a graphing utility to plot the graph of the function, the
tangent line, and the normal line on the same screen.

45. The curve at the point .

46. The curve at the point .

In Exercises 47–50, suppose that and are functions that 
are differentiable at and that , ,

, and . Find .

47.

48.

49. 50.

In Exercises 51 and 52, find the limit by evaluating the deriva-
tive of a suitable function at an appropriate value of . (Hint:
Use the definition of the derivative.)

51. 52.

In Exercises 53–56, find .

53.

54.

55.

56.

In Exercises 57–60, find .

57.

58.

59.

60.

61. Find
a. if 

b. if y � 2x3 �
1
x

y� `
x�1

f(x) � 4x3 � 2x2 � 3f �(2)

y �
x

x2 � 1

y � (x � 2)3

y � x2ax �
1
x
b

y � x3 � 2x2 � 1

y�

f(x) �
x � 1

x � 1

f(x) � x�1 � 3x�2

f(x) � (2x)4 � (2x)2 � 1

f(x) � x8 � x4 � 2x2 � 1

f �(x)

lim
x→1

(x � 1)2 � 4

x � 1
lim
t→0

1 � (1 � t)2

t(1 � t)2

x

h(x) �
f(x)t(x)

f(x) � t(x)
h(x) �

xf(x)

x � t(x)

h(x) � (x2 � 1)t(x)

h(x) � f(x)t(x)

h¿(1)t¿(1) � 3t(1) � �2
f ¿(1) � �1f(1) � 2x � 1

tf

11, 12 2y � 1>(1 � x2)

(1, 2)f(x) � (x3 � 1)(3x2 � 4x � 2)

14, 13 2f(x) �
1x � 1

1x � 1

(�2, 4)y � x2 � 1 �
3

x � 1
62. Find

a. if 

b. if 

63. Find the derivatives of all order of .

64. Newton’s Second Law of Motion Consider a particle moving
along a straight line. Newton’s Second Law of Motion states
that the external force acting on the particle is equal to the
rate of change of its momentum. Thus,

where , the mass of the particle, and , the velocity of the
particle, are both functions of time.
a. Use the Product Rule to show that

b. Use the results of part (a) to show that if the mass of a
particle is constant, then , where is the acceler-
ation of the particle.

65. Formaldehyde Levels A study on formaldehyde levels in 
900 homes indicates that emissions of various chemicals 
can decrease over time. The formaldehyde level (parts per
million) in an average home in the study is given by

where is the age of the house in years. How fast is the
formaldehyde level of the average house dropping when 
the house is new? At the beginning of its fourth year?
Source: Bonneville Power Administration.

66. Oxygen Content of a Pond When organic waste is dumped into
a pond, the oxidization process that takes place reduces the
pond’s oxygen content. However, given time, nature will
restore the oxygen content to its natural level. Suppose that
the oxygen content days after organic waste has been
dumped into a pond is given by

where is the percentage of the oxygen content of the
pond prior to dumping.
a. Derive a general expression that gives the rate of change

of the pond’s oxygen level at any time .
b. How fast is the oxygen content of the pond changing one

day after organic waste has been dumped into the pond?
Ten days after? Twenty days after?

c. Interpret your results.

t

f(t)

f(t) � 100a t 2 � 10t � 100

t 2 � 20t � 100
b

t

t

0 � t � 12f(t) �
0.055t � 0.26

t � 2

aF � ma

F � m 
d√
dt

� √ 
dm

dt

√m

F �
d

dt
 (m√)

F

f(x) � 2x4 � 4x2 � 1

y � x�1y‡ `
x�1

f(x) � 8x7 � 6x5 � 4x3 � xf ‡(0)

2.3 The Product and Quotient Rules 171
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67. Importance of Time in Treating Heart Attacks According to the
American Heart Association, the treatment benefit for heart
attacks depends on the time until treatment and is described
by the function

where is measured in hours and is expressed as a 
percent.
a. Use a graphing utility to graph the function using the

viewing window .
b. Use the numerical derivative capability of a graphing

utility to find the derivative of when and .
c. Interpret the results obtained in part (b).
Source: American Heart Association.

68. Cylinder Pressure The pressure , volume , and temperature
of a gas in a cylinder are related by the van der Waals

equation

where , , and are constants. If the temperature of the gas
is kept constant, find .

69. Constructing a New Road The following figures depict three
possible roads connecting the point to the point

via the origin. The functions describing the
dashed center lines of the roads follow:

Show that is not differentiable on the interval
, is differentiable but not twice dif-

ferentiable on , and is twice differentiable
on . Taking into consideration the dynamics
of a moving vehicle, which proposal do you think is most
suitable?

(�1000, 1000)
h(�1000, 1000)

t(�1000, 1000)
f

 h(x) � e0 if �1000 � x � 0

0.000001x3 if 0 � x � 1000

 t(x) � e0 if �1000 � x � 0

0.001x2 if 0 � x � 1000

 f(x) � e0 if �1000 � x � 0

x if 0 � x � 1000

B(1000, 1000)
A(�1000, 0)

dP>dV
kba

P �
kT

V � b
�

ab

V2(V � b)
�

a

V(V � b)

T
VP

t � 2t � 0f

[0, 13] � [0, 120]
f

f(t)t

0 � t � 12f(t) �
�16.94t � 203.28

t � 2.0328

70. Obesity in America The body mass index (BMI) measures
body weight in relation to height. A BMI of 25 to 29.9 is
considered overweight, a BMI of 30 or more is considered
obese, and a BMI of 40 or more is morbidly obese. The per-
cent of the U.S. population that is obese is approximated by
the function

where is measured in years, with corresponding to
the beginning of 1991. Show that the rate of change of the
rate of change of the percent of the U.S. population that is
deemed obese was positive from 1991 to 2004. What does
this mean?
Source: Centers for Disease Control and Prevention.

t � 0t

0 � t � 13P(t) � 0.0004t 3 � 0.0036t 2 � 0.8t � 12

(b)

y � t(x)

A(�1000, 0)

B(1000, 1000)

y (ft)

x (ft)

(c)

y � h(x)

A(�1000, 0)

B(1000, 1000)

B(1000, 1000)

y (ft)

x (ft)

(a)

y � f (x)

A(�1000, 0)

y (ft)

x (ft)

1000

1000

1000
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71. Find if . Does exist?

72. a. Use the Product Rule twice to prove that if ,
where , , and are differentiable functions, then

b. Use the result of part (a) to find the derivative of

In Exercises 73–78, determine whether the statement is true or
false. If it is true, explain why it is true. If it is false, explain why
or give an example to show why it is false.

73. If and are differentiable, then

d

dx
 [ f(x)t(x)] � f ¿(x)t¿(x)

tf

h(x) � (2x � 5)(x � 3)(x2 � 4)

h¿ � u¿√w � u√¿w � u√w¿

w√u
h � u√w

f �(0)f(x) � �x3 �f �(x)
74. If is differentiable, then .

75. If and have second derivatives, then

76. If is a polynomial function of degree , then
.

77. If , where is differentiable, then
.

78. If , where is differentiable, then

t¿(x) � �
2f ¿(x)

[ f(x)]3

ft(x) � [ f(x)]�2

t¿(x) � 2f(x)f ¿(x)
ft(x) � [ f(x)]2

P (n�1)(x) � 0
nP

d

dx
 [ f(x)t¿(x) � f ¿(x)t(x)] � f(x)t�(x) � f �(x)t(x)

tf

d

dx
 [x f(x)] � f(x) � x f ¿(x)f

2.4 The Role of the Derivative in the Real World

In this section we will see how the derivative can be used to solve real-world prob-
lems. Our first example calls for interpreting the derivative as a measure of the slope
of a tangent line to the graph of a function. Before we look at the example, however,
we make the following observation: If denotes the angle that the tangent line to the
graph of at makes with the positive -axis, then or, equiva-
lently, . (See Figure 1.)a � tan�1(dy>dx)

tan a � dy>dxxP(x, f(x))f
a

FIGURE 1

tan a �
dy

dx

P(x, f(x))
dy
dx

�

�

0

1

x

y

EXAMPLE 1 Flight Path of a Plane After taking off from a runway, an airplane con-
tinues climbing for 10 sec before turning to the right. Its flight path during that time
period can be described by the curve in the -plane with equation

where is the distance along the ground in miles, is the height above the ground 
in miles, and the point at which the plane leaves the runway is located at the origin.
Find the angle of climb of the airplane when it is at the point on the flight path where

. (See Figure 2.)x � 0.5

yx

0 � x � 0.6y � �1.06x3 � 1.61x2

xy
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FIGURE 2
The flight path of the airplane

Solution The required angle of climb, , is given by

But

so

Therefore, and , giving the required angle of
climb of the airplane as approximately 39°.

We now turn our attention to real-world problems that require the interpretation of
the derivative as a measure of the rate of change of one quantity with respect to another.

Motion Along a Line
An example of motion along a straight line was encountered in Section 1.1, where we
studied the motion of a maglev. In considering such motion, we assume that it takes
place along a coordinate line. Then the position of a moving body may be specified
by giving its coordinate . Since varies with time , we write , where the func-
tion is called the position function of the body (see Figure 3). As we saw in Sec-
tion 1.1, the (instantaneous) velocity of a body at any time is the rate of change of
the position function with respect to .tf

t
f(t)

s � f(t)tss

a � tan�1 0.815 � 39.18°tan a � 0.815

dy

dx
`
x�0.5

� (�3.18x2 � 3.22x) � x�0.5 � 0.815

dy

dx
�

d

dx
 (�1.06x3 � 1.61x2) � �3.18x2 � 3.22x

tan a �
dy

dx
`
x�0.5

a

FIGURE 3
The position of a moving body at any
time is at the point on the
coordinate line.

s � f(t)t

DEFINITION Velocity

If , where is the position function of a body moving on a coordinate
line, then the velocity of the body at time is given by

√(t) �
ds

dt
� f ¿(t)

t
fs � f(t)

The function is called the velocity function of the body.
Observe that if at a given time , then is increasing, and the body is mov-

ing in the positive direction along the coordinate line at that instant of time (Figure 4a).
Similarly, if , then the body is moving in the negative direction at that instant
of time (Figure 4b).

√(t) � 0

st√(t) 	 0
√(t)

�

0 0.5 x (miles)

y (miles)

ss � f(t)s � 0
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FIGURE 4

Sometimes we merely need to know how fast a body is moving and are not con-
cerned with its direction of motion. In this instance we are asking for the magnitude
of the velocity, or the speed, of the body.

tf(t)

(a) If √(t) > 0, then the body is moving in the
      positive direction.

tf(t)

(b) If √(t) < 0, then the body is moving in the
      negative direction.

DEFINITION Speed

If is the velocity of a body at any time , then the speed of the body at time
is given by

�√(t) � � � f ¿(t) � � ` ds

dt
`

t
t√(t)

EXAMPLE 2 The position of a particle moving along a straight line is given by

where is measured in seconds and in feet.

a. Find an expression giving the velocity of the particle at any time . What are the
velocity and speed of the particle when ?

b. Determine the position of the particle when it is stationary.
c. When is the particle moving in the positive direction? In the negative direction?

Solution
a. The required velocity of the particle is given by

The velocity of the particle when is

or ft/sec. The speed of the particle when is ft/sec. In short,
the particle is moving in the negative direction at a speed of 12 ft/sec.

b. The particle is stationary when its velocity is equal to zero. Setting gives

and we see that the particle is stationary at and . Its position at 
is given by

or 11 ft

Its position at is given by

or ft�16f(4) � 2(4)3 � 15(4)2 � 24(4) � �16

t � 4

f(1) � 2(1)3 � 15(1)2 � 24(1) � 11

t � 1t � 4t � 1

√(t) � 6(t � 1)(t � 4) � 0

√(t) � 0

�√(2) � � 12t � 2�12

√(2) � 6(2 � 1)(2 � 4) � �12

t � 2

 � 6(t � 1)(t � 4)

 � 6t 2 � 30t � 24 � 6(t 2 � 5t � 4)

 √(t) � f ¿(t) �
d

dt
 (2t 3 � 15t 2 � 24t)

t � 2
t

st

t � 0s � f(t) � 2t 3 � 15t 2 � 24t
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A schematic of the motion of the particle is shown in Figure 6. The graph of the
position function is shown in Figure 7. Try to explain the
motion of the particle in terms of this graph.

If a body moves along a coordinate line, the acceleration of the body is the rate of
change of its velocity, and the jerk of the body is the rate of change of its acceleration.

s � f(t) � 2t 3 � 15t 2 � 24t

FIGURE 5
The sign diagram for 

determining the sign of √(t)

FIGURE 6
A schematic showing the 

position of the particle

FIGURE 7
The graph of 
gives the position of the particle versus
time . (Do not confuse this with the
path of the particle.)

t

s � 2t 3 � 15t 2 � 24t

DEFINITIONS Acceleration, Jerk

If and are the position and velocity functions, respectively, of a body
moving on a coordinate line, then the acceleration of the body at time is

and the jerk of the body at time is

j(t) � a¿(t) � √�(t) � f ‡(t)

t

a(t) � √¿(t) � f �(t)

t
√(t)f(t)

The jerk function is of particular interest to safety engineers of automobile com-
panies who are constantly performing jerk tests on various components of motor vehi-
cles. Large jerk conditions in automobiles not only lead to discomfort but may also
cause harm to the occupants, including whiplash.

j(t)

c. The particle is moving in the positive direction when and is moving in
the negative direction when . From the sign diagram shown in Figure 5,
we see that is positive in the intervals and 
and negative in . We conclude that the particle is moving to the right in the
time intervals and and to the left in the time interval .(1, 4)(4, �)(0, 1)

(1, 4)
(4, �)(0, 1)√(t) � 6(t � 1)(t � 4)

√(t) � 0
√(t) 	 0

t0 1 2 3 4

Sign of (t � 1) � � � � 0 � � � � � � � � � � � � � � � � � � � � �

Sign of (t � 4) � � � � � � � � � � � � � � � � 0 � � � � � � � � �

Sign of (t � 1)(t � 4) � � � � 0 � � � � � � � � � � � 0 � � � � � � � � �

s (ft)�16 �14 �12 �10 �8 �6 �4 �2 0 2 4 6 8 10 12

(t � 4)

(t � 0)
(t � 1)

0 t (sec)

s (ft)

�5

�10

�15

5

15

10

321 5 64

EXAMPLE 3 Consider the motion of the particle of Example 2 with position func-
tion

where is measured in seconds and in feet.

a. Find the acceleration function of the particle. What is the acceleration of the par-
ticle when ?

b. When is the acceleration zero? Positive? Negative?
c. Find the jerk function of the particle.

t � 2

st

t � 0s � f(t) � 2t 3 � 15t 2 � 24t
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Solution
a. From the solution to Example 2 we have . Therefore,

In particular, the acceleration of the particle when is

or ft/sec2

In other words, the particle is decelerating at 6 ft/sec2 when .
b. The acceleration of the particle is zero when , or

giving . Since when and when , we also
conclude that the acceleration is negative for and positive for .

c. Using the result of part (b), we find

or 12 ft/sec3.

j(t) �
d

dt
 [a(t)] �

d

dt
 (12t � 30) � 12

t 	 5
20 � t � 5

2

t 	 5
22t � 5 	 0t � 5

22t � 5 � 0t � 5
2

6(2t � 5) � 0

a(t) � 0
t � 2

�6a(2) � 6[2(2) � 5]

t � 2

 � 12t � 30 � 6(2t � 5)

 a(t) � √¿(t) �
d

dt
 (6t 2 � 30t � 24)

√(t) � 6t 2 � 30t � 24

EXAMPLE 4 The Velocity of Exploding Fireworks In a fireworks display, a shell is
launched vertically upward from the ground, reaching a height (in feet) of

after sec. The shell is designed to burst when it reaches its maximum altitude, simul-
taneously igniting a cluster of explosives.

a. At what time after the launch will the shell burst?
b. What will the altitude of the shell be at the instant it explodes?

Solution
a. At its maximum altitude the velocity of the shell is zero. But the velocity of the

shell at any time is

which is equal to zero when . Therefore, the shell will burst 8 sec after it
has been launched.

b. The altitude of the shell at the instant it explodes will be

or 1024 ft. A schematic of the motion of the shell and the graph of the function
are shown in Figure 8.s � �16t 2 � 256t

s � �16(8)2 � 256(8) � 1024

t � 8

 � �32t � 256 � �32(t � 8)

 √(t) �
ds

dt
�

d

dt
 (�16t 2 � 256t)

t

t

s � �16t 2 � 256t
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Marginal Functions in Economics
The derivative is an indispensable tool in the study of the rate of change of one eco-
nomic quantity with respect to another. Economists refer to this field of study as mar-
ginal analysis. The following example will help to explain the use of the adjective
marginal.

EXAMPLE 5 Cost Functions Suppose that the total cost in dollars incurred per week
by the Polaraire Corporation in manufacturing refrigerators is given by the total cost
function

a. What is the cost incurred in manufacturing the 201st refrigerator?
b. Find the rate of change of with respect to when .

Solution
a. The cost incurred in manufacturing the 201st refrigerator is the difference

between the total cost incurred in manufacturing the first 201 units and the total
cost incurred in manufacturing the first 200 units. Thus, the cost is

or $119.80.
b. The rate of change of with respect to is

In particular, when , we find

In other words, when the level of production is 200 units, the total cost function
is increasing at the rate of $120 per refrigerator.

C¿(200) � �0.4(200) � 200 � 120

x � 200

 � �0.4x � 200

 C¿(x) �
d

dx
 (�0.2x2 � 200x � 9000)

xC

 � 41119.8 � 41000 � 119.8

 � [�0.2(200)2 � 200(200) � 9000]

 C(201) � C(200) � [�0.2(201)2 � 200(201) � 9000]

x � 200xC

0 � x � 400C(x) � �0.2x2 � 200x � 9000

x

0 t (sec)

(b) Graph of the function s � �16t2 � 256t
      (The portion of interest is drawn with a solid line.)
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ISAAC NEWTON
(1643–1727)

Born three months after the death of his
father, Isaac Newton was small and un-
healthy at birth. His mother nursed him
back to health, and when he was three, she
remarried and sent him to be raised by his
maternal grandmother. At the age of twelve,
Newton began grammar school, where he
excelled, learning Latin along with his other
studies. When he was sixteen, his mother
called him home to take care of the family
farm, but Newton was inattentive to the 
animals and a poor farmer. Newton’s uncle
and the schoolmaster at the grammar
school convinced Newton’s mother to let
him return to his studies, and in 1661 he was
admitted to Cambridge University. There he
read the works of the great mathematicians
Euclid, Descartes (page 6), Galileo, and
Kepler (page 889) and he attained his bach-
elor degree in 1665. Starting that same year,
the plague shut Cambridge down for two
years, and Newton spent the time working
on the foundation for calculus, which he
called “fluxional method.” Newton’s geomet-
ric approach to calculus was not published
until 1689, several years after publication of
Leibniz’s (page 157) paper which presented
the same topic with a more algebraic
approach. However, Newton had made his
work known to a small group of mathemati-
cians in 1668, and a debate broke out as to
who had developed calculus first. This
caused great animosity between Newton
and Leibniz, which lasted until Leibniz’s
death in 1716.
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If you compare the results of parts (a) and (b) of Example 5, you will notice
that is a pretty good approximation to the cost incurred
in manufacturing an additional refrigerator when the level of production is already
200 units. To see why, let’s recall the definition of the derivative of a function and
write

Next, the definition of the limit tells us that if is small, then

In particular, by taking , we see that

as we wished to show.
Economists call the cost incurred in producing an additional unit of a commodity,

given that the plant is already operating at a certain level , the marginal cost. But
as we have just seen, this quantity may be suitably approximated by , where is
the total cost function associated with the process. Furthermore, as you can see from
the computations in Example 5, it is often much easier to calculate than to cal-
culate . For this reason, economists prefer to work with rather than

in marginal analysis. The derivative of the total cost function is called the mar-
ginal cost function.

The other marginal functions in economics are defined in a similar manner and have
similar meanings. For example, the marginal revenue function is the derivative of
the total revenue function , and gives an approximation of the change in revenue
that results when sales are increased by one unit from to .

A summary of these definitions follows.

Function Marginal Function

, cost function , marginal cost function

, revenue function , marginal revenue function

, profit function , marginal profit function

, average cost function , marginal average cost function

Note , the total cost incurred in producing units of a commodity
divided by the number of units produced.

xC(x) � C(x)>x
C¿C

P¿P

R¿R

C¿C

x � a � 1x � a
R¿R

R¿

C¿C
C¿C(a � 1) � C(a)

C¿(a)

CC¿(a)
x � a

C¿(200) �
C(200 � 1) � C(200)

1
� C(201) � C(200)

h � 1

C¿(200) �
C(200 � h) � C(200)

h

h

C¿(200) � lim
h→0

C(200 � h) � C(200)

h

C(201) � C(200),C¿(200)

EXAMPLE 6 Marginal Revenue Suppose the weekly revenue realized through the
sale of Pulsar cell phones is

dollars.

a. Find the marginal revenue function.
b. If the company currently sells 200 phones per week, by how much will the rev-

enue increase if sales increase by one phone per week?

0 � x � 800R(x) � �0.000078x3 � 0.0016x2 � 80x

x
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Solution
a. The marginal revenue function is

b. The company’s revenue will increase by approximately

or $70.

Other Applications
We close this section by looking at a few more examples involving applications of the
derivative in fields as diverse as engineering and the social sciences.

If the shape of an electric power line strung between two transmission towers is
described by the graph of , then the (acute) angle that the cable makes with
the horizontal at any point on the cable is given by

(See Figure 9.)

a � ` tan�1ady

dx
b `

P(x, f(x))
ay � f(x)

 � 70

 R¿(200) � �0.000234(200)2 � 0.0032(200) � 80

 � �0.000234x2 � 0.0032x � 80

 R¿(x) �
d

dx
 (�0.000078x3 � 0.0016x2 � 80x)

Engineering

FIGURE 9
The shape of the cable is 

described by .y � f(x)

If is the atmospheric pressure at an altitude , then gives the rate of change
of the atmospheric pressure with respect to altitude at an altitude .

Certain proteins, known as enzymes, serve as catalysts for chemical reactions in liv-
ing things. If gives the initial speed (in moles per liter per second) at which a
chemical reaction begins as a function of , the amount of substrate (the substance
being acted upon, measured in moles per liter), then measures the rate of change
of the initial speed at which the reaction begins with respect to the amount of substrate,
when the amount of substrate is moles/liter.

If denotes the rate of production in photosynthesis, where is the light intensity,
then measures the rate of change of the rate of production with respect to light
intensity, when the light intensity is .I

dR>dI
IR(I)

x

dV>dx
x

V(x)

h
P¿(h)hP(h)Meteorology

Chemistry

Biology

a

x
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Epidemiology

Life Sciences

If stands for the percentage of infected students in a university in week , then 
gives the rate of change of the percentage of infected students with respect to time at
time .

If gives the amount of radioactive substance remaining after years, then 
gives the rate of decay of that substance with respect to time at time .

If gives the concentration of a drug in a patient’s bloodstream hours after injec-
tion, then measures the rate at which the concentration of the drug is changing
with respect to time at time .

If is the total sales of a company when the amount spent on advertising its prod-
ucts and services is , then measures the rate of change of the sales level with
respect to the amount spent on advertising when the expenditure is .

If gives the population of the United States in year , then gives the rate of
change of the population with respect to time at time .t

P¿(t)tP(t)

x
S¿(x)x

S(x)

t
C¿(t)

tC(t)

t
A¿(t)tA(t)

t

dp>dttp(t)

Medicine

Business

Demographics

1. Let denote the position of an object moving along a
coordinate line, where is measured in feet and in 
seconds. Explain each of the following in terms of :
a. average velocity
b. velocity
c. speed
d. acceleration
e. jerk

2. Suppose that is a profit function giving the total profit
in dollars resulting from the sale of units of a certain

commodity. What does measure if is a given level of
sales?

3. The following figure shows the cross section of a narrow
tube of radius immersed in water. Because of a surface-
tension phenomenon called capillarity, the water rises until
it reaches an equilibrium height. The curved liquid surface is
called a meniscus, and the angle at which it meets theu

a

aP¿(a)
xP(x)

P

f
tf(t)

f(t) inner wall of the tube is called the contact angle. If the
meniscus is described by the function , what is the
contact angle ?

(a) Cross section of the tube and
      the meniscus

(b) The meniscus is
      described by y � f (x). 

x

y

0 q

(a, f (a))

u

y � f(x)

2.4 CONCEPT QUESTIONS

In Exercises 1–8, is the position function of a body moving
along a coordinate line; is measured in feet and in sec-
onds, where . Find the position, velocity, and speed of the
body at the indicated time.

1. ; (free fall on Mars)

2. ;

3. ;

4. ; 5. ;

6. ; 7. ; t � 1s(t) � (t 2 � 1)2t � 2s(t) �
t 2

t 2 � 1

t � 2s(t) �
2t

t 2 � 1
t � 0s(t) �

t

t � 1

t � 1s(t) � 2t 4 � 8t 2 � 4

t � 1s(t) � 2t 3 � 3t 2 � 4t � 1

t � 2s(t) � 1.86t 2

t � 0
ts(t)

s(t)
8. ;

In Exercises 9–16, is the position function of a body moving
along a coordinate line, where , and is measured in
feet and t in seconds. (a) Determine the times(s) and the posi-
tion(s) when the body is stationary. (b) When is the body moving
in the positive direction? In the negative direction? (c) Sketch a
schematic showing the position of the body at any time .

9. 10.

11. 12. s(t) �
1

3
 t 3 �

3

2
 t 2 � 1s(t) � 8 � 2t � t 2

s(t) � 4 � t 2s(t) � 2t � 3

t

s(t)t � 0
s(t)

t � 1s(t) �
t 3

t 3 � 1

2.4 EXERCISES

Videos for selected exercises are available online at www.academic.cengage.com/login.V

www.academic.cengage.com/login
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13.

14.

15. 16.

In Exercises 17–20, is the position function of a body mov-
ing along a coordinate line, where , and is measured 
in feet and in seconds. (a) Find the acceleration of the body.
(b) When is the acceleration zero? Positive? Negative?

17.

18.

19. 20.

In Exercises 21 and 22, is the position function of a body
moving along a coordinate line, where . If the mass of the
body is 20 kg and and are measured in meters and sec-
onds, respectively, find (a) the momentum of the body and
(b) the kinetic energy of the body at the indicated times.

21. ;

22. ;

23. Tiltrotor Plane The tiltrotor plane takes off and lands verti-
cally, but its rotors tilt forward for conventional cruising.
The figure depicts the graph of the position function of a
tiltrotor plane during a test flight in the vertical takeoff and
landing mode. Answer the following questions pertaining to
the motion of the plane at each of the times , , and :
a. Is the plane ascending, stationary, or descending?
b. Is the acceleration positive, zero, or negative?

t2t1t0

t � 1s(t) � t 3 � 3t 2 � 1

t � 2s(t) � 2t 2 � 3t � 1

112 m√2 2 (mv)
ts(t)

t � 0
s(t)

s(t) �
t 3

t 3 � 1
s(t) �

2t

t 2 � 1

s(t) � t 4 � 2t 2 � 2

s(t) � 2t 3 � 9t 2 � 12t � 2

t
s(t)t � 0

s(t)

s(t) �
t 3

t 3 � 1
s(t) �

2t

t 2 � 1

s(t) � (t 2 � 1)2

s(t) � 2t 4 � 8t 3 � 8t 2 � 1 a. When will the diver hit the water?
b. How fast will the diver be traveling at that time? (Ignore

the height of the diver and his outstretched arms.)

26. Stopping Distance of a Sports Car A test of the stopping distance
(in feet) of a sports car was conducted by the editors of an
auto magazine. For a particular test, the position function of
the car was

where is measured in seconds and corresponds to the
time when the brakes were first applied.
a. What was the car’s velocity when the brakes were first

applied?
b. What was the car’s stopping distance for that particular

test?
c. What was the jerk at time ? At the time when the brakes

were first applied?

27. Flight of a VTOL Aircraft In a test flight of McCord Aviation’s
experimental VTOL (vertical takeoff and landing) aircraft,
the altitude of the aircraft operating in the vertical takeoff
mode was given by the position function

where is measured in feet and is measured in seconds.
a. Find the velocity function.
b. What was the velocity of the VTOL at , , and

? Interpret your results.
c. What was the maximum altitude attained by the VTOL

during the test flight?

28. Rotating Fluid If a right circular cylinder of radius is filled
with water and rotated about its vertical axis with a constant
angular velocity , then the water surface assumes a shape
whose cross section in a plane containing the vertical axis is
a parabola. If we choose the -system so that the -axis is
the axis of rotation and the vertex of the parabola passes

yxy

v

a

t � 16
t � 8t � 0

th(t)

0 � t � 16h(t) �
1

64
 t 4 �

1

2
 t 3 � 4t 2

t

t � 0t

s(t) � 88t � 12t 2 �
1

6
 t 3

s(t)

10 m

(a) The graph of the position function
      of a tiltrotor plane

(b) A tiltrotor plane

t1 t2t0

s

t0

24. Explosion of a Gas Main An explosion caused by the ignition of
a leaking underground gas main blew a manhole cover verti-
cally into the air. The height of the manhole cover seconds
after the explosion was ft.
a. How high did the manhole cover go?
b. What was the velocity of the manhole cover when it

struck the ground?

25. Diving The position of a diver executing a high dive from a
10-m platform is described by the position function

where is measured in seconds and in meters.st

t � 0s(t) � �4.9t 2 � 2t � 10

s � 24t � 16t 2
t
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through the origin of the coordinate system, then the equa-
tion of the parabola is

where is the acceleration due to gravity. Find the angle 
that the tangent line to the water level makes with the -axis
at any point on the water level. What happens to as 
increases? Interpret your result.

va

x
at

y �
v2x2

2t

(shown dashed in the figure) is called the elastic curve. It
can be shown that an equation for the elastic curve is

where the product is a constant called the flexural rigidity.

a. Find the angle that the elastic curve makes with the 
positive -axis at each end of the beam in terms of 

, , and .
b. Show that the angle that the elastic curve makes with the

horizontal at is zero.
c. Find the deflection of the beam at . (We will

show that the deflection is maximal in Section 3.1,
Exercise 74.)

31. Flight Path of an Airplane The path of an airplane on its final
approach to landing is described by the equation 
with

where and are both measured in feet.
a. Plot the graph of using the viewing window

.
b. Find the maximum angle of descent during the landing

approach.
Hint: When is smallest?

32. Middle-Distance Race As they round the corner into the final
(straight) stretch of the bell lap of a middle-distance race,
the positions of the two leaders of the pack, and , are
given by

and

respectively, where the reference point (origin) is taken to be
the point located 300 feet from the finish line and is meas-
ured in feet and in seconds. It is known that one of the twot

s

t � 0sB(t) � 0.298t 2 � 24t

t � 0sA(t) � 0.063t 2 � 23t � 15

BA

dy>dx

[0, 24000] � [0, 3000]
f

yx

 0 � x � 24,000

f(x) � 4.3404 � 10�10x3 � 1.5625 � 10�5x2 � 3000

y � f(x)

x � L>2x � L>2
IEw

x

(a) The distorted beam

(b) The elastic curve in the xy-plane (The positive
      direction of the y-axis is directed downward.)

x

y

A B

L

EI

y �
w

24EI
 (x4 � 2Lx3 � L3x)

29. Motion of a Projectile A projectile is fired from a cannon
located on a horizontal plane. If we think of the cannon as
being located at the origin of an -coordinate system,
then the path of the projectile is

where and are measured in feet.

a. Find the value of (the angle of elevation of the gun).
b. At what point on the trajectory is the projectile traveling

parallel to the ground?
c. What is the maximum height attained by the projectile?
d. What is the range of the projectile (the distance 

along the -axis)?
e. At what angle with respect to the -axis does the projec-

tile hit the ground?

30. Deflection of a Beam A horizontal uniform beam of length is
supported at both ends and bends under its own weight 
per unit length. Because of its elasticity, the beam is dis-
torted in shape, and the resulting distorted axis of symmetry

w
L

x
x

OA

u

O

¨

x (ft)

y (ft)

A

yx

y � 13x �
x2

400

xyO

a

a

�a x0

y

a



184 Chapter 2 The Derivative

runners, and , was the winner of the race and the other
was the runner-up.
a. Show that won the race.
b. At what point from the finish line did overtake ?
c. By what distance did beat ?
d. What was the speed of each runner as he crossed the fin-

ish line?

33. Acceleration of a Car A car starting from rest and traveling in
a straight line attains a velocity of

feet per seconds after sec. Find the initial acceleration of
the car and its acceleration 10 sec after starting from rest.

34. Marginal Cost of Producing Compact Discs The weekly total cost
in dollars incurred by the BMC Recording Company in
manufacturing compact discs is

a. What is the actual cost incurred by the company in pro-
ducing the 2001st disc? The 3001st disc?

b. What is the marginal cost when ? When
?

35. Marginal Cost of Producing Microwave Ovens A division of Ditton
Industries manufactures the “Spacemaker” model microwave
oven. Suppose that the daily total cost (in dollars) of manu-
facturing microwave ovens is

What is the marginal cost when ? Compare the
result with the actual cost incurred by the company in 
manufacturing the 201st oven.

36. Marginal Average Cost of Producing Television Sets The Advance
Visual Systems Corporation manufactures a 19-inch LCD
HDTV. The weekly total cost incurred by the company in
manufacturing sets is

dollars.
a. Find the average cost function and the marginal

average cost function .
b. Compute and , and interpret your

results.
C¿(10,000)C¿(5000)

C¿(x)
C(x)

C(x) � 0.000002x3 � 0.02x2 � 120x � 70,000

x

x � 200

C(x) � 0.0002x3 � 0.06x2 � 120x � 6000

x

x � 3000
x � 2000

0 � x � 10,000C(x) � 4000 � 3x � 0.0001x2

x

t

√(t) �
110t

2t � 5

300 ft

Finish
line

B A

AB
AB

B

BA 37. Marginal Revenue of an Airline The Commuter Air Service real-
izes a revenue of

dollars per month when the price charged per passenger is 
dollars.
a. Find the marginal revenue function .
b. Compute , , and . What do your results

seem to imply?

38. Marginal Profit in Producing Television Sets The Advance Visual
Systems Corporation realizes a total profit of

dollars per week from the manufacture and sale of units of
their 26-in. LCD HDTVs.
a. Find the marginal profit function .
b. Compute and interpret your result.

39. Optics The equation

sometimes called a lens-maker’s equation, gives the rela-
tionship between the focal length of a thin lens, the dis-
tance of the object from the lens, and the distance of its
image from the lens. We can think of the eye as an optical
system in which the ciliary muscle constantly adjusts the
curvature of the cornea-lens system to focus the image on
the retina. Assume that the distance from the cornea to the
retina is 2.5 cm.

a. Find the focal length of the cornea-lens system if an
object located 50 cm away is to be focused on the retina.

b. What is the rate of change of the focal length with
respect to the distance of the object when the object is 
50 cm away?

40. Gravitational Force The magnitude of the gravitational force
exerted by the earth on a particle of mass at a distance 
from the center of the earth is

where is the mass of the earth, is its radius, and is
the gravitational constant.
a. Compute for , and interpret your result.
b. Compute for , and interpret your result.r 	 RF¿(r)

r � RF¿(r)

GRM

F(r) � dGMmr

R2 if r � R

GMm

r 2 if r � R

rm

2.5 cm

Image

Object

qp
f

1

f
�

1
p

�
1
q

P¿(2000)
P¿

x

P(x) � �0.000002x3 � 0.016x2 � 80x � 70,000

R¿(51)R¿(50)R¿(49)
R¿

x

R(x) � 10,000x � 100x2
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2.5 Derivatives of Trigonometric Functions

Many real-world problems are modeled using trigonometric functions. The motion of
a pendulum, for example, is periodic (or almost periodic) and can be described by using
a combination of sine and cosine functions. The motion of a shock absorber in a car
can also be described by using a combination of trigonometric functions and exponen-
tial functions.* You will see many other applications involving trigonometric functions
throughout the book. To analyze the mathematical models involving trigonometric func-
tions, we need to be able to find the derivatives of the trigonometric functions.

Before starting this section, you might wish to review Section 0.3 on trigonometric
functions. Keep in mind that all angles are measured in radians, unless otherwise stated.

Derivatives of Sines and Cosines
Our first result tells us how to find the derivative of .sin x

*We will study exponential functions in Chapter 6.

THEOREM 1 Derivative of 

d

dx
 (sin x) � cos x

sin x

PROOF Let . Then

Definition of the derivative

 � lim
h→0

sin x cos h � cos x sin h � sin x

h

 � lim
h→0

sin(x � h) � sin x

h

 f ¿(x) � lim
h→0

f(x � h) � f(x)

h

f(x) � sin x

Expand using the
Angle Addition Formula.

sin(x � h)

Use the Sum and Product Laws for limits.

But and because these expressions do not
involve and thus remain constant with respect to the limiting process. From Section
1.2 we have

and lim
h→0

sin h

h
� 1lim

h→0

cos h � 1

h
� 0

h
limh→0 cos x � cos xlimh→0 sin x � sin x

 � Q lim
h→0

sin xR alim
h→0

cos h � 1

h
b � Q lim

h→0
cos xR alim

h→0

sin h

h
b

 � lim
h→0
c(sin x)acos h � 1

h
b � (cos x)asin h

h
b d

 � lim
h→0
csin x cos h � sin x

h
�

cos x sin h

h
d
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FIGURE 1
The graphs of and 

its derivative f ¿(x) � cos x
f(x) � sin x

EXAMPLE 1 Find if .

Solution Using the Product Rule and Theorem 1, we obtain

 � x2 cos x � 2x sin x

 f ¿(x) �
d

dx
 (x2 sin x) � x2 

d

dx
 (sin x) � (sin x) 

d

dx
 (x2)

f(x) � x2 sin xf ¿(x)

y�

y

x

y � f(x) � sin x

y� � f�(x) � cos x

�1

1
�π

π� 2π 3π3π
2

�
3π
2

3π
2

5π
2�

π
2

π
2

x
�1

1

�π 2π 3π

3π
2

5π
2

�
π
2

π
2

The proof of this rule is similar to the proof of Theorem 1 and is left as an exer-
cise (Exercise 47).

Derivatives of Other Trigonometric Functions
The remaining trigonometric functions are defined in terms of the sine and cosine func-
tions. Thus,

, , , and cot x �
cos x

sin x
sec x �

1
cos x

csc x �
1

sin x
tan x �

sin x

cos x

THEOREM 2 Derivative of 

d

dx
 (cos x) � �sin x

cos x

Using these results, we see that

The relationship between the function and its derivative 
can be seen by sketching the graphs of both functions (see Figure 1). Here, we inter-
pret as the slope of the tangent line to the graph of at the point .(x, f(x))ff ¿(x)

f ¿(x) � cos xf(x) � sin x

f ¿(x) � (sin x)(0) � (cos x)(1) � cos x
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THEOREM 3 Rules for Differentiating Trigonometric Functions

d

dx
 (cot x) � �csc2 x

d

dx
 (sec x) � sec x tan x

d

dx
 (csc x) � �csc x cot x

d

dx
 (tan x) � sec2 x

d

dx
 (cos x) � �sin x

d

dx
 (sin x) � cos x

Therefore, their derivatives can be found by using Theorems 1 and 2 and the Quotient
Rule. For example,

Quotient Rule

that is,

A complete list of the rules for differentiating trigonometric functions follows. The
proofs of the remaining three rules are left as exercises. (See Exercises 48–50.)

d

dx
 (tan x) � sec2 x

 �
1

cos2 x
� sec2 x

 �
cos2 x � sin2 x

cos2 x

 �
(cos x)(cos x) � (sin x)(�sin x)

cos2 x

 �

(cos x) 
d

dx
 (sin x) � (sin x) 

d

dx
 (cos x)

cos2 x

 
d

dx
 (tan x) �

d

dx
 a sin x

cos x
b

Note As an aid to remembering the signs of the derivatives of the trigonometric func-
tions, observe that those functions beginning with a “c” ( , , and ) have
a minus sign attached to their derivatives.

cot xcsc xcos x

EXAMPLE 2 Differentiate .

Solution Using the Product Rule and Theorem 3, we have

sec2 x � 1 � tan2 x � (sec x)(2 � x tan x � 2 tan2 x)

 � (sec x)(1 � sec2 x � x tan x � tan2 x)

 � (sec x)(1 � sec2 x) � (x � tan x)(sec x tan x)

 � (sec x) 
d

dx
 (x � tan x) � (x � tan x) 

d

dx
 (sec x)

 
dy

dx
�

d

dx
 [(sec x)(x � tan x)]

y � (sec x)(x � tan x)
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EXAMPLE 3 Find the derivative of .

Solution Using the Quotient Rule and Theorems 1 and 2, we obtain

 �
1

cos x � 1

 �
cos x � cos2 x � sin2 x

(1 � cos x)2
�

cos x � 1

(1 � cos x)2

 �
(1 � cos x)(cos x) � (sin x)(sin x)

(1 � cos x)2

 �

(1 � cos x) 
d

dx
 (sin x) � (sin x) 

d

dx
 (1 � cos x)

(1 � cos x)2

 
dy

dx
�

d

dx
 a sin x

1 � cos x
b

y �
sin x

1 � cos x

EXAMPLE 4 Find an equation of the tangent line to the graph of at the
point where .

Solution The slope of the tangent line at any point on the graph of 
is given by

In particular, the slope of the tangent line at the point where is

The -coordinate of the point of tangency is

Using the point-slope form of an equation of a line, we find that

or

The graph of and the tangent line are shown in Figure 2.y � x sin x

y � xy �
p

2
� x �

p

2

 �
p

2
sin
p

2
�
p

2

 y `
x�p>2

� x sin x `
x�p>2

y

 �
p

2
 (0) � 1 � 1

 �
p

2
cos
p

2
� sin

p

2

 
dy

dx
`
x�p>2

� (x cos x � sin x) `
x�p>2

x � p>2
 � x cos x � sin x

 
dy

dx
�

d

dx
 (x sin x) � x 

d

dx
 (sin x) � (sin x) 

d

dx
 (x)

y � x sin x(x, y)

x � p>2 y � x sin x
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FIGURE 2
An equation of the tangent line to the

graph of at is .y � x1p2 , p2 2y � x sin x

EXAMPLE 5 Simple Harmonic Motion Suppose that a flexible spring is attached ver-
tically to a rigid support (Figure 3a). If a weight is attached to the free end of the spring,
it will settle in a certain equilibrium position (Figure 3b). Suppose that the weight is
pulled downward (a positive direction) and released from rest from a position that is
3 units below the equilibrium position at time (Figure 3c). Then, in the absence
of opposing forces such as air resistance, the weight will oscillate back and forth about
the equilibrium position. This motion is referred to as simple harmonic motion.

t � 0

FIGURE 3

0 x

y � x sin x

y

5

�5

642 108

(       ),2
π

2
π

s � 0

s
(a) Spring with no load (b) Spring with weight

attached and at rest
(c) Position of weight

prior to release (Note
that s is positive in the
downward direction.)

s � 3

Suppose that for a particular spring and weight, the motion is described by the equa-
tion

(See Figure 4.)

a. Find the velocity and acceleration functions describing the motion.
b. Find the values of when the weight passes the equilibrium position.
c. What are the velocity and acceleration of the weight at these values of ?t

t

t � 0s � 3 cos t

FIGURE 4

�3

3

(a) Extreme positions of the weight (b) The graph of the function s � 3 cos t
describing the simple harmonic motion
of the weight

s � 0

s

t

3
2π

�3
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Solution
a. The velocity of the weight at any time is

and its acceleration at any time is

b. When , the weight is at the equilibrium position. Solving the equation

we see that the required values of are , where , 1, 2, .
c. Using the results of parts (a) and (b), we then calculate the velocity and accelera-

tion of the weight as it passes the equilibrium position:

pn � 0t � p>2 � npt

s � 3 cos t � 0

s � 0

a(t) �
d√
dt

�
d

dt
 (�3 sin t) � �3 cos t

t 	 0

√(t) �
ds

dt
�

d

dt
 (3 cos t) � �3 sin t

t 	 0

t
p

2
3p

2

5p

2

7p

2
p

(t) �3 3 �3 3 p

a(t) 0 0 0 0 p

1. State the rules for differentiating , , , ,
, and .cot xsec x

csc xtan xcos xsin x 2. Find

a. b. lim
h→0

sec1p4 � h 2 � 12

h
lim
h→0

cos(a � h) � cos a

h

2.5 CONCEPT QUESTIONS

In Exercises 1–22, find the derivative of the function.

1. 2.

3. 4.

5. 6.

7. 8.

9. 10.

11. 12.

13. 14.

15. 16.

17. 18.

19. 20. s �
1 � tan t

1 � cot t
h(u) �

sin u � cos u

sin u � cos u

y �
sin x cos x

1 � csc x
f(x) �

1 � sin x

1 � cos x

y � cos 2xf(x) � sin 2x

f(x) �
cot x

1 � csc x
y �

x

1 � sec x

y �
cos u

1 � sin u
t(x) �

sin x

x

t(x) �
cos x

1 � x
f(u) � cos u(1 � sec u)

f(t) � sec t tan ts � sin x cos x

t(√) � sin √ � 2√ csc √f(u) � u cot u

y � 1x sin xh(t) � 3 tan t � 4 sec t

t(x) � x � tan xf(x) � 4 cos x � 2x � 1
21. 22.

In Exercises 23–28, find the second derivative of the function.

23. 24.

25.

26.

27. 28.

In Exercises 29–32, (a) find an equation of the tangent line to
the graph of the function at the indicated point, and (b) use a
graphing utility to plot the graph of the function and the tangent
line on the same screen.

29. ; 30. ;

31. ; 32. ; 1p2 , 2
p 2f(x) �

sin x

x
1p3 , 2 2f(x) � sec x

1p4 , 1 2f(x) � tan x1p6 , 12 2f(x) � sin x

w �
cos u

u
y � 1x cos x

h(t) � (t 2 � 1) sin t

y � 3 cos x � x sin x

t(x) � sec xf(x) � sin x

y �
a sin t

1 � b cos t
f(x) � x sin2 x

2.5 EXERCISES

Videos for selected exercises are available online at www.academic.cengage.com/login.V

www.academic.cengage.com/login


In Exercises 33–36, find the rate of change of with respect to 
at the indicated value of .

33. ;

34. ;

35. ; 36. ;

In Exercises 37–40, find the -coordinate(s) of the point(s) on the
graph of the function at which the tangent line has the indicated
slope.

37. ; 38. ;

39. ;

40. ;

41. Let . Compute for , 2, 3, . Then
use your results to show that for all . In other
words, the values of the sine function as well as all of its
derivatives lie between and 1.

42. Repeat Exercise 41 with the function .

43. Simple Harmonic Motion The position function of a body mov-
ing along a coordinate line is

where is measured in seconds and in feet. Find the
position, velocity, speed, and acceleration of the body when

.

44. Pure Resonance Refer to Example 5. Suppose that the system
shown in the figure is initially at rest in the equilibrium posi-
tion. Further, suppose that starting at , the system is
subjected to an external driving force that has the same fre-
quency as the natural frequency of the system. Then the
resulting motion of the body is described by the position
function

(The frequency is just the reciprocal of the period of the
position function, in this case, .)

(a) The support is subject to an
up-and-down motion whose
frequency is the same as the
natural frequency of the system.

(b) The resulting motion is one
in which the amplitude of the
wave gets larger and larger.

s

t0

1>(2p)

t � 0s(t) � sin t � t cos t

t � 0

t � p>2
s(t)t

t � 0s(t) � 2 sin t � 3 cos t

f(x) � cos x

�1

x� f (n)(x) � � 1
pn � 1f (n)(x)f(x) � sin x

m tan � �2f(x) � cot x

m tan � 0h(x) � csc x

m tan � 1t(x) � x � sin xm tan � 1f(x) � sin x

x

x � 0y �
x tan x

sec x
x �
p

2
y �

sin x

1 � cos x

x �
p

6
y � csc x � 2 cos x

x �
p

4
y � x2 sec x

x
xy a. By computing for , where , 2, 3, ,

show that gets larger and larger as increases. This
implies that the “amplitude” of the motion becomes
unbounded.

b. What is the velocity of the body when ,
, 1, 2, 3, ?

c. What is the acceleration of the body when , ,
2, 3, ?

This phenomenon is called pure resonance. A mechanical
system subjected to resonance will necessarily fail. For
example, a singer hitting the “right note” can induce
acoustic vibrations that will lead to the shattering of a wine
glass.

45. Evaluate .

46. Evaluate .

47. Prove .

48. Prove .

49. Prove .

50. Prove .

In Exercises 51–52, determine whether the statement is true or
false. If it is true, explain why it is true. If it is false, give an
example to show why it is false.

51. If , , is an integer then

.

52. If , where is a constant, then
.f ¿(x) � �sin(x � h)

hf(x) � cos(x � h)

f ¿(x) � 0

bnax 

p

4
�

np

2
f(x) �

1 � sin2 2x

cos2 2x

d

dx
 (sec x) � sec x tan x

d

dx
 (cot x) � �csc2 x

d

dx
 (csc x) � �csc x cot x

d

dx
 (cos x) � �sin x

lim
h→0

tan1p4 � h 2 � 1

h

lim
h→0

1

sin(x � h)
�

1

sin x

h

p
n � 1t � np

pn � 0
t � p>2 � np

t� s(t) �
pn � 1t � nps(t)

2.5 Derivatives of Trigonometric Functions 191
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2.6 The Chain Rule

Composite Functions
Suppose that we wish to differentiate the function defined by

If we use only the rules of differentiation developed so far, then a possible approach
might be to expand using the binomial theorem and differentiate the resulting
expression term by term. But the amount of work involved would be prodigious! How 

about the function defined by ?
You can convince yourself that the same differentiation rules cannot be applied

directly to compute . Observe that both and are composite functions. For
example, is the composition of and . Thus,

and is the composition of and . Thus,

Notice that each of the component functions and is easily differentiated by using
the rules of differentiation already available to us. The question, then, is whether we
can take advantage of this fact to compute the derivatives of the more complicated 
composite functions and . We will return to these examples later. But for now, let’s
turn our attention to the general problem of finding the derivative of a composite
function .

The Chain Rule
For each in the domain of , let and . Then, as
illustrated in Figure 1, we see that the composite function maps the number onto
the number in one step. Alternatively, we see that is also mapped onto in two
steps—via ( onto ) then via ( onto ). Since it might be too difficult to compute

directly, the following question arises: Can we find by somehow com-
bining and ?f ¿t¿

h¿h¿ � (t � f ) ¿
yutuxf

yxy
xh

y � t(u) � t[ f(x)]u � f(x)h � t � fx

h
h¿

GF

tf

 � 1f(x) �22x2 � 1

 G(x) � (t � f )(x) � t[ f(x)]

f(x) � 2x2 � 1t(x) � 1xG

 � [ f(x)]120 � (x2 � 1)120

 F(x) � (t � f )(x) � t[ f(x)]

f(x) � x2 � 1t(x) � x120F
GFG¿(x)

G(x) �22x2 � 1G

F(x)

F(x) � (x2 � 1)120

F

FIGURE 1
The function is composed of the
functions and : .h(x) � t[ f(x)]ft

h

Since is a function of , we can compute the derivative of with respect to ,
. Next, is a function of , and we can compute the derivative of withyuydu>dx � f ¿(x)

xuxu

y � g(u) � g[f(x)] � h(x)u � f(x)

h � g � f

f g

x
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respect to , . Because is composed of and , it seems reasonable to
expect that , or , must be a combination of and ( and ). But
how should we combine them?

Consider the following argument: Interpreting the derivative of a function as 
the rate of change of that function, suppose that changes twice as fast as

, and changes three times as fast as 
. Then we would expect to change six times as fast as ; that is,

or, equivalently,

Although it is far from being a proof, this argument does suggest how and
should be combined to obtain (that is, how and 

should be combined to obtain . We simply multiply them together.
The rule for calculating the derivative of a composite function follows.

dy>dx)
dy>dudu>dxh¿(x)t¿(u) � t¿[ f(x)]

f ¿(x)

dy

dx
�

dy

du
�

du

dx
� (3)(2) � 6

h¿(x) � t¿(u)f ¿(x) � (3)(2) � 6

xy � h(x)dy>du � 3]
u [t¿(u) �y � t(u)x [ f ¿(x) � du>dx � 2]

u � f(x)

dy>dudu>dxt¿f ¿dy>dxh¿
fthdy>du � t¿(u)u

THEOREM 1 The Chain Rule

If is differentiable at and is differentiable at , then the composition
defined by is differentiable at , and

(a)

Also, if we write and , then

(b)
dy

dx
�

dy

du
�

du

dx

y � t(u) � t[ f(x)]u � f(x)

h¿(x) � t¿[ f(x)] f ¿(x)

xh(x) � t[ f(x)]h � t � f
f(x)txf

The proof of the Chain Rule is given in Appendix B.

Notes
1. The “Inside-Outside” Rule: If we label the composite function in

the following way

“inside function”
↓

↑
“outside function”

then is just the derivative of the “outside function” evaluated at the “inside
function” times the derivative of the “inside function.”

2. When written in the form of Theorem 1b, the Chain Rule can be remembered by
observing that if we “cancel” the ’s on the right of the equation, we do obtain

.dy>dx
du

h¿(x)

h(x) � t[ f(x)]

h(x) � t[ f(x)]
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Applying the Chain Rule

EXAMPLE 1 Find if .

Solution As we observed earlier, can be viewed as the composite function defined
by , where and , or (remember
that and are dummy variables). The derivative of the “outside function” is

which, when evaluated at , yields

The derivative of the “inside function” is

Using Theorem 1a, we obtain

Alternative Solution Let and . Then, using 
Theorem 1b, we find

 � 240x(x2 � 1)119

 � 120u119 � (2x) � 240xu119

 F¿(x) �
dy

dx
�

dy

du
�

du

dx

y � t(u) � u120u � f(x) � x2 � 1

 � 240x(x2 � 1)119

 F¿(x) � t¿[ f(x)] f ¿(x) � 120(x2 � 1)119 � (2x)

f ¿(x) �
d

dx
 (x2 � 1) � 2x

t¿[ f(x)] � t¿(x2 � 1) � 120(x2 � 1)119

f(x) � x2 � 1

t¿(u) �
d

du
 [u120] � 120u119

ux
t(u) � u120

t(x) � x120f(x) � x2 � 1F(x) � t[ f(x)]
F

F(x) � (x2 � 1)120F¿(x)

EXAMPLE 2 Find if .

Solution We view as , where and (so
). Now

and

Therefore, if we use Theorem 1a, we obtain

 �
2x

22x2 � 1

 G¿(x) � t¿[ f(x)] f ¿(x) �
1

222x2 � 1
� (4x)

f ¿(x) �
d

dx
 (2x2 � 1) � 4x

 t¿[ f(x)] �
1

21f(x)
�

1

222x2 � 1

 t¿(u) �
d

du
 C1u D � 1

21u

t(u) � 1u
t(x) � 1xf(x) � 2x2 � 1G(x) � t[ f(x)]G(x)

G(x) �22x2 � 1G¿(x)
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Alternative Solution Let and . Then, using 
Theorem 1b, we find

 �
2x

22x2 � 1

 �
1

21u
� (4x) �

1

222x2 � 1
� (4x)

 G¿(x) �
dy

dx
�

dy

du
�

du

dx

y � t(u) � 1uu � f(x) � 2x2 � 1

EXAMPLE 3 Find if and .

Solution In this situation it is more convenient to use Theorem 1b. Thus,

If we wish, we could write in terms of as follows:

Note Of course, we could have worked Example 3 using Theorem 1a. In this event,
simply observe that and .

The General Power Rule
Although we have used the Chain Rule in its most general form to help us find the deriv-
atives of the functions in the previous examples, in many situations we need only use a
special version of the rule. For example, some functions, such as those in Examples 1 and
2, have the form . These functions are called generalized power functions.

To find a formula for computing the derivative of the generalized power function
, where is an integer, let so that . Using the Chain Rule,

we find

 � n[ f(x)]n�1f ¿(x)

 � nun�1 � f ¿(x)

 
dy

dx
�

dy

du
�

du

dx

y � unu � f(x)ny � [ f(x)]n

y � [ f(x)]n

u � f(x) � x3 � 1y � t(u) � u3 � u2 � u � 1

 � 3x2(3x6 � 4x3 � 2)

 
dy

dx
� [3(x3 � 1)2 � 2(x3 � 1) � 1](3x2)

xdy>dx

 � (3u2 � 2u � 1)(3x2)

 
dy

dx
�

dy

du
�

du

dx
�

d

du
 (u3 � u2 � u � 1) �

d

dx
 (x3 � 1)

u � x3 � 1y � u3 � u2 � u � 1
dy

dx

THEOREM 2 General Power Rule

Let , where is a differentiable function and is a real number.
Then

Equivalently,
dy

dx
� n[ f(x)]n�1 � f ¿(x)

dy

dx
� nun�1 

du

dx

nu � f(x)y � un
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Before looking at another example, let’s rework Example 1 using Theorem 2. We
have , which is a generalized power function with .
Therefore, using the General Power Rule, we obtain

as before.

 � 120(x2 � 1)119(2x) � 240x(x2 � 1)119

 � 120(x2 � 1)119 �
d

dx
 (x2 � 1)

 F¿(x) �
d

dx
 (x2 � 1)120

f(x) � x2 � 1F(x) � (x2 � 1)120

⎫⎪⎪⎬⎪⎪⎭

nun�1

⎫⎪⎬⎪⎭

du

dx

EXAMPLE 4 Find if .

Solution If we rewrite the given equation as , then an applica-
tion of the General Power Rule gives

Observe that the graph of has horizontal tangents at the points where , 0, and
and that these are the numbers on the -axis where the graph of crosses the axis.

(See Figure 2.)
y¿x1

2

x � �1
2y

 �
6x(1 � 4x2)

(2x4 � x2 � 1)4

 � �3(2x4 � x2 � 1)�4(8x3 � 2x)

 
dy

dx
� �3(2x4 � x2 � 1)�4 

d

dx
 (2x4 � x2 � 1)

y � (2x4 � x2 � 1)�3

y �
1

(2x4 � x2 � 1)3

dy

dx

FIGURE 2
The graph of is shown in blue, and
the graph of is shown in red.y¿

y

EXAMPLE 5 How fast is changing when ?

Solution The rate of change of at any value of is given by . To find ,
we use the General Power Rule, obtaining

Use the Quotient Rule.

 � �
10(t 2 � t � 1)(2t � 1)4

(t 2 � 1)6

 � 5a2t � 1

t 2 � 1
b4 c (t 2 � 1)(2) � (2t � 1)(2t)

(t 2 � 1)2
d

 � 5a2t � 1

t 2 � 1
b4 £ (t 2 � 1) 

d

dt
 (2t � 1) � (2t � 1) 

d

dt
 (t 2 � 1)

(t 2 � 1)2

§

 � 5a2t � 1

t 2 � 1
b4

�
d

dt
 a2t � 1

t 2 � 1
b

 
dy

dt
�

d

dt
 a2t � 1

t 2 � 1
b5

dy>dtdy>dtty

t � 1y � a2t � 1

t 2 � 1
b5

⎫⎪⎪⎬⎪⎪⎭

nun�1

⎫⎪⎬⎪⎭

du

dt

�1.25 1.25

4.25

�4.25



. Therefore, an application of the Chain Rule yields

,

Another approach to differentiating generalized trigonometric functions is to derive
the appropriate formulas using the Chain Rule. For example, we can find the formula
for differentiating the generalized sine function by letting so
that and then applying the Chain Rule to obtain

In a similar manner we obtain the following rules.

 � cos[ f(x)] � f ¿(x)

 � (cos u)f ¿(x)

 �
d

du
 (sin u) �

du

dx

 
dy

dx
�

dy

du
�

du

dx

y � sin u
u � f(x)y � sin[ f(x)]

 � cos(x2 � p) � (2x) � 2x cos(x2 � p)

t(x) � sin xf(x) � x2 � p � cos(x2 � p) �
d

dx
 (x2 � p)

 F¿(x) �
d

dx
[sin(x2 � p)]

f(x) � x2 � p
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In particular, when 

Therefore, is increasing at the rate of units per unit change in when .

The Chain Rule and Trigonometric Functions
In Section 2.5 we learned how to find the derivative of trigonometric functions such
as . How do we differentiate the function ? Observe
that is the composition of the functions and defined by andt(x) � sin xftt � fF

F(x) � sin(x2 � p)f(x) � sin x

t � 1t5
32y

dy

dt
`
t�1

� �
10(�1)(1)

26
�

5

32

t � 1

⎫⎪⎬⎪⎭

t¿[ f(x)]

⎫⎪⎬⎪⎭

f ¿(x)

THEOREM 3 Derivatives of Generalized Trigonometric Functions

d

dx
 (sec u) � sec u tan u �

du

dx

d

dx
 (cot u) � �csc2 u �

du

dx

d

dx
 (csc u) � �csc u cot u �

du

dx

d

dx
 (tan u) � sec2 u �

du

dx

d

dx
 (cos u) � �sin u �

du

dx

d

dx
 (sin u) � cos u �

du

dx
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EXAMPLE 6 Find the slope of the tangent line to the graph of at the
point where .

Solution The slope of the tangent line at any point on the graph is given by .
To find , we use Theorem 3, obtaining

Constant Multiple Rule

In particular, the slope of the tangent line to the graph of the given equation at the point
where is

Do not confuse with , usually written as .cos2 x(cos x)2cos x2

dy

dx
`
x�2p>2

� �6aB
p

2
b sin

p

2
� �6B

p

2

x � 1p>2
 � �6x sin x2

 � 3(�sin x2)(2x)

 � 3 
d

dx
 (cos x2)

 
dy

dx
�

d

dx
 (3 cos x2)

dy>dx
dy>dx

x � 1p>2 y � 3 cos x2

⎫⎪⎬⎪⎭

�sin f(x)
⎫⎬⎭

f ¿(x)

!

EXAMPLE 7 Find an equation of the tangent line at the point on the graph of

, where .

Solution The slope of the tangent line at any point on the graph of 
is given by . Using the Product Rule and Theorem 3, we obtain

In particular, the slope of the tangent line at the point where is

The point of tangency has -coordinate given by

Therefore, an equation of the required tangent line is

or

The graph of and its tangent line at are shown in Figure 3.1p2 , �p
2

4 2f

y � �px �
p2

4
y � a�p2

4
b � �pax �

p

2
b

y `
x�p>2

� x2 sin 3x `
x�p>2

� ap
2
b2

sin
3p

2
� �

p2

4

y

dy

dx
`
x�p>2

� 3ap
2
b2

cos
3p

2
� 2ap

2
b sin

3p

2
� 0 � p(�1) � �p

x � p>2
 � 3x2 cos 3x � 2x sin 3x

 � x2(cos 3x) �
d

dx
 (3x) � 2x sin 3x

 � x2 
d

dx
(sin 3x) � (sin 3x) 

d

dx
 (x2)

 
dy

dx
�

d

dx
 (x2 sin 3x)

dy>dx
y � x2 sin 3x(x, y)

x � p>2y � x2 sin 3x

FIGURE 3

�2 2

3

�4
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EXAMPLE 8 Find if .

Solution

Use the General Power Rule.

Use Theorem 3.

Notes
1. The function in Example 8 can be viewed as a composition of three functions.

For example, letting , , and , you can see
that is defined by

Now, if we compose with , we obtain

and this is just the expression for .
2. Suppose that . In this case the Chain Rule is

Equivalently, if we let and , then

dy

dx
�

dy

d√
�

d√
du

�
du

dx

√ � t(u)u � f(x)

dy

dx
� h¿{t[ f(x)]}t¿[ f(x)] f ¿(x)

y � [h � (t � f )](x) � h{t[ f(x)]}
y

[h � (t � f )](x) � h[(t � f )(x)] � h[tan(3x2 � 1)] � tan3(3x2 � 1)

t � fh

(t � f )(x) � t[ f(x)] � tan[ f(x)] � tan(3x2 � 1)

t � f
h(w) � w3

t(u) � tan uf(x) � 3x2 � 1

 � 18x tan2(3x2 � 1)sec2(3x2 � 1)

 � 3 tan2(3x2 � 1) � sec2(3x2 � 1) � 6x

 � 3 tan2(3x2 � 1) � sec2(3x2 � 1) �
d

dx
 (3x2 � 1)

 � 3[tan(3x2 � 1)]2 �
d

dx
[tan(3x2 � 1)]

 
dy

dx
�

d

dx
 [tan3(3x2 � 1)] �

d

dx
 [tan(3x2 � 1)]3

y � tan3(3x2 � 1)
dy

dx

Next we consider an example in which the Chain Rule is applied more than once
to differentiate a function.

EXAMPLE 9 Air Pollution According to data obtained by the South Coast Air Qual-
ity Management District, the level of nitrogen dioxide, a brown gas that impairs breath-
ing present in the atmosphere, on a certain day in May in downtown Los Angeles is
approximated by

where is measured in pollutant standard index and is measured in hours with
corresponding to 7 A.M. How fast is the level of nitrogen dioxide changing at 

9 A.M.?
Source: The Los Angeles Times.

t � 0
tI(t)

0 � t � 7I(t) � 0.03t 3(t � 7)4 � 60.3
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EXAMPLE 10 Path of a Boat A boat leaves the point (the origin) located on one
bank of a river traveling with a constant speed of 20 mph and always heading toward
a dock at the point , which is directly due east of the origin (see Figure 4).
The river flows north at a constant speed of 5 mph. It can be shown that the path of
the boat is

Find when and when . Interpret your results.x � 900x � 100dy>dx

0 � x � 1000y � 500c a1000 � x

1000
b3>4

� a1000 � x

1000
b5>4d

A(1000, 0)

O

FIGURE 4
The path of the boat

Solution The rate at which the level of nitrogen dioxide present in the atmosphere is
changing at any time is

Use the Product Rule.

Use the Chain Rule.

Using this result, we see that at 9 A.M. , the level of nitrogen dioxide present in
the atmosphere is changing at the rate of

or 105 pollutant standard index per hour.

I¿(2) � 0.03[4(2)3(2 � 7)3 � 3(2)2(2 � 7)4] � 105

(t � 2)

 � 0.03[4t 3(t � 7)3 � 3t 2(t � 7)4]

 � 0.03[(t 3)(4)(t � 7)3 
d

dt
 (t � 7) � (t � 7)4(3t 2)]

 � 0.03ct 3 
d

dt
 (t � 7)4 � (t � 7)4 

d

dt
 (t 3)d

 � 0.03 
d

dt
 [t 3(t � 7)4] �

d

dt
 (60.3)

 I¿(t) �
d

dt
 [0.03t 3(t � 7)4 � 60.3]

t

y (ft)

S

N
EW

O x (ft)A (1000, 0)

Solution We find

 �
1

2
 c5

4
a1000 � x

1000
b1>4

�
3

4
a1000 � x

1000
b�1>4d

 
dy

dx
� 500c3

4
a1000 � x

1000
b�1>4a� 1

1000
b �

5

4
a1000 � x

1000
b1>4a� 1

1000
b d
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So

This tells us that at the point on the path where , the boat is drifting north at
the rate of 0.22 ft per ft in the -direction. Next,

This tells us that at the point on the path where , the boat is drifting south at
the rate of 0.32 ft per ft in the -direction.x

x � 900

dy

dx
`
x�900

�
1

2
 c5

4
a 1

10
b1>4

�
3

4
(10)1>4d � �0.32

x
x � 100

dy

dx
`
x�100

�
1

2
 c5

4
a 9

10
b1>4

�
3

4
a10

9
b1>4d � 0.22

1. State the Chain Rule for differentiating the composite func-
tion . Explain it in your own words.

2. a. State the rule for differentiating the generalized power
function , where is any real number.

b. State the rule for differentiating the generalized trigono-
metric function

.h(x) � sec[ f(x)]

nt(x) � [ f(x)]n

h � t � f
3. Suppose the population of a certain bacteria culture is

given by , where is the temperature of the
medium. Further, suppose that the temperature is a func-
tion of time in seconds—that is, . Give an inter-
pretation of each of the following quantities:

a. b. c. d. e. f ¿(t(t))t¿(t)( f � t)(t)
dP

dt

dT

dt

dP

dT

T � t(t)t
T

TP � f(T)
P

2.6 CONCEPT QUESTIONS

Videos for selected exercises are available online at www.academic.cengage.com/login.V

In Exercises 1–6, identify the “inside function” and the
“outside function” . Then find using the Chain
Rule.

1. 2.

3. 4.

5. 6.

In Exercises 7–56, find the derivative of the function.

7. 8.

9. 10.

11. 12.

13. 14.

15. 16.

17. 18.

19. 20. f(x) � (x2 � 1x)6f(t) �
2t � 3

(t � 2t 2)3

f(x) �
x

2x2 � x � 2
t(u) � u21 � u2

t(t) � 1t � 2 � 14 � tf(x) �2x3 � 2x

h(x) � (2x � 1)2(x2 � 1)3h(u) � u3(2u2 � 1)4

f(x) � ax2 � 3
x
b�2

y � at �
2

t
b6

t(x) �
1

(x3 � 2x2 � 1)5f(t) � (2t 3 � t)�3

t(x) � (3x2 � x � 1)4>3f(x) � (2x � 1)5

y � sec 1xy � 1x � cos x

y � 2 sin pxy �
1

23 x2 � 1

y �2x2 � 4y � (2x � 4)3

dy>dxy � t(u)
u � f(x)

21. 22.

23. 24.

25. 26.

27. 28.

29. 30.

31.

32.

33. 34.

35. 36.

37. 38.

39. 40.

41. 42.

43. 44.

45. 46. t(t) � 1t � tan 3tf(x) � 1sin 2x � cos 2x

f(x) � x sin
1
x

y � sin
1
x

y �
x � sin 2x

2 � cos 3x
f(x) �

1 � cos 3x

1 � cos 3x

f(x) � 12 � 3 tan 2xy � 11 � 2 cos x

t(x) � tan2(x2 � x)h(x) � (x2 � sec px)�3

z � (1 � csc2 x)4f(x) � (1 � sin2 3x)2>3
f(x) � tan2 x � cot x2f(x) � sin3 x � cos3 x

y � cos(x2 � 3x � 1) � tana2
x
b

f(x) � sin 2x � tan 1x

y � cos(x3)f(x) � sin3 x

y � cot(2x � 1)t(t) � tan(pt � 1)

t(t) � 3 sec 2tf(x) � sin 3x

y �
(t � 1)3

(t 2 � 2t)2t(x) � a2x2 � 1

2x � 5
b1>3

f(x) � ax � 2

x � 3
b3>2

y(s) � 11 �21 � s2 25
2.6 EXERCISES
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47. 48.

49. 50.

51. 52.

53. 54.

55. 56.

In Exercises 57–60, find the second derivative of the function.

57. 58.

59. 60.

In Exercises 61–64, (a) find an equation of the tangent line to
the graph of the function at the indicated point, and (b) use a
graphing utility to plot both the graph of the function and the
tangent line on the same screen.

61. ;

62. ;

63. ;

64. ;

65. Suppose that and , , and
. Find .

66. Suppose that and , , andf ¿(3) � 6f(3) � 16F(x) � t[ f(x)]

F¿(2)t¿(5) � 75
f ¿(2) � 4f(2) � 5F � t � f

114, 1 2h(t) � 2 cos2 pt

(p, �1)f(x) � cos 3x

12, 1
27 2t(x) � ax � 1

x � 1
b3

(1, 12)f(x) � x2x2 � 1

y � x sin
1
x

f(t) � sin2 t � sin t 2

t(x) �
1

(2x � 1)2f(x) � x(2x2 � 1)4

y � 1sin(cos 2x)f(x) � cos3(sin px)

t(t) � tan(cos 2t)f(x) � sin(sin x)

y � x tan2(2x � 3)y � sec2 x tan 3x

f(t) �
cot 2t

1 � t 2f(x) �
cos 2x

21 � x2

y � sec3a 1x

1 � x
by � sin2a1 � x

1 � x
b 70. The graphs of and are shown in the figure. Find

a. if 

b. if 

c. if 

d. if 

In Exercises 71–74, find . Assume that all functions are 
differentiable.

71. , where and are real
numbers

72.

73.

74. , where is a real number

75. Find if and it is known that ,
, and .

76. Suppose that has second-order derivatives and
. Find in terms of ,

and .

77. The graph of the function

is called a bullet-nose curve.
a. What is the derivative of for ? Find the equations

of the tangent lines to the graph of at and .
b. Plot the graph of and the tangent lines found in part (a)

using the same viewing window.

78. Refer to Exercise 77. Explain why is not differentiable at 0.

79. Aging Population The population of Americans age 55 years
and over as a percent of the total population is approximated
by the function

where is measured in years, with corresponding to
the year 2000. At what rate was the percent of Americans
age 55 years and over changing at the beginning of 2000?
At what rate will the percent of Americans age 55 years and
over be changing at the beginning of 2010? What will be the
percent of the population of Americans age 55 years and
over at the beginning of 2010?
Source: U.S. Census Bureau.

80. Accumulation Years People from their mid-40s to their mid-50s
are in the prime investing years. Demographic studies of this
type are of particular importance to financial institutions.
The function

0 � t � 12N(t) � 34.4(1 � 0.32125t)0.15

t � 0t

0 � t � 20f(t) � 10.72(0.9t � 10)0.3

f

f
(1, 1)(�1, 1)f

x 
 0f

f(x) �
�x �

22 � x2

f �(x)
f(x), f ¿(x)t�(x)t(x) � x f(x2 � 1)

f

f �(4) � �1f ¿(4) � 1
f(4) � �2F(x) � x2f(2x)F �(2)

aF(x) � f(xa) � [ f(x)]a

F(x) � f(x2 � 1) � t(x2 � 1)

F(x) � a sin[ f(x)] � b cos[t(x)]

baF(x) � a[ f(sin x)] � b[t(cos x)]

F¿(x)

F(x) � f(2 sin x)F¿1p6 2
G(x) � f(x2 � 1)G¿(1)

H � f � fH¿(1)

h � t � th¿(1)

tf

. Find .

67. Let . Does it follow that ?

68. Suppose that . Does it follow that ?

In Exercises 69–70, refer to the following graph.

69. The graphs of and are shown in the figure. Let
and . Find , ,

and . If a derivative does not exist, explain why.F¿(2)
G¿(�1)F¿(1)G(x) � f [t(x)]F(x) � t[ f(x)]

tf

0 x

f

y g

2

3

6

5

1

4

21

(�4, 1)

(3, 6)

43�2 �1�3�4

h¿ � t¿ � f ¿h � t � f

F¿(x) � [ f ¿(x)]2F(x) � f [ f(x)]

F¿(3)t¿(16) � 1
8
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gives the projected number of people in this age group in
the United States (in millions) in year , where corre-
sponds to the beginning of 1996.
a How large was this segment of the population projected

to be at the beginning of 2005?
b. How fast was this segment of the population growing at

the beginning of 2005?
Source: U.S. Census Bureau.

81. Simple Harmonic Motion The position function of a body mov-
ing along a coordinate line is

where is measured in feet and in sec. Find the position,
velocity, speed, and acceleration of the body when .

82. Predator-Prey Population Model The wolf population in a certain
northern region is estimated to be

in month , and the caribou population in the same region is
given by

Find the rate of change of each population when .

83. Stock Prices The closing price (in dollars) per share of the
stock of Tempco Electronics on the th day it was traded 
is approximated by

where corresponds to the time the stock was first
listed on a major stock exchange. What was the rate of
change of the stock’s price at the close of the fifteenth day
of trading? What was the closing price on that day?

84. Shortage of Nurses The projected number of nurses (in mil-
lions) from the year 2000 through 2015 is given by

where corresponds to the year 2000, while the pro-
jected number of nursing jobs (in millions) over the same
period is

J(t) � e10.129t � 4 if 0 � t � 10

10.4t � 1.29 if 10 � t � 15

t � 0

N(t) � e1.9 if 0 � t � 5

10.123t � 2.995 if 5 � t � 15

t � 0

0 � t � 20� 4 sinapt

10
b � 3 sina2pt

15
b

P(t) � 20 � 12 sinapt

30
b � 6 sinapt

15
b

t

t � 12

PC(t) � 36,000 � 12,000 cos
pt

24

t

PW(t) � 9000 � 1000 sin
pt

24

t � p>4ts(t)

t � 0s(t) �
1

2
cos 2t �

3

4
sin 2t

t � 0t
a. Let be the function giving the gap between

the demand and the supply of nurses from the year 2000
through 2015. Find .

b. How fast was the gap between the demand and the sup-
ply of nurses changing in 2008? In 2012?

Source: Department of Health and Human Services.

85. Potential Energy A commonly used potential-energy function
for the interaction of two molecules is the Lennard-Jones 
6-12 potential, given by

where and are constants. The force corresponding to
this potential is . Find .

86. Mass of a Body Moving Near the Speed of Light According to the
special theory of relativity, the mass of a body moving at
a speed is given by

where is the mass of the body at rest and 
m/sec is the speed of light. How fast is the mass of an elec-
tron changing with respect to its speed when its speed is

? The rest mass of an electron is kg.

87. Motion Along a Line A body moves along a coordinate line in
such a way that its position function at any time is given by

where is measured in feet and in seconds. Find the
velocity and acceleration of the body when .

88. Surface Area of a Cone The lateral surface area of a right circu-
lar cone is

where is the radius of the base and is the height.
a. What is the rate of change of the lateral surface area with

respect to the height if the radius is constant?
b. What is the rate of change of the lateral surface area with

respect to the radius if the height is constant?

h

r

hr

S � pr2r 2 � h2

t � 1
2

ts(t)

0 � t � 1s(t) � t21 � t 2

t

9.11 � 10�310.999c

c � 3 � 108m0

m �
m0

B1 �
√2

c2

√
m

F(r)F(r) � �u¿(r)
su0

u(r) � u0c asr b
12

� as
r
b6d

G¿

G � J � N
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89. Path of a Boat Refer to Example 10. Suppose that the speed
of the boat is ft/sec and the river flows at a speed of 
ft/sec. Then it can be shown that the path of the boat is

where .
a. Plot the path of the boat (i) for (the speed of the

boat is greater than the speed of the river), (ii) (the
speed of the boat is equal to the speed of the river, and
(iii) (the speed of the boat is less than the speed
of the river). Interpret your results. (Observe that part (a)
was encountered in Example 10.)

b. Estimate the maximum distance the boat has drifted
downriver during its trip.

90. Path of a Boat Refer to Example 10. Find the angle that the
path of the boat makes with respect to the river bank when
the boat leaves the point . What is the angle of the path
with respect to the other river bank when the boat arrives at
the point ?

91. Electric Current in a Circuit The following figure shows an R-C
series circuit comprising a variable resistor, a capacitor, and
an electromotive force. If the resistance at any time is
given by ohms, where and , the
capacitance is farads, and the electromotive force is a con-
stant volts, then the charge at any time is given by

coulombs where the constant is the charge at . What
is the current at any time ?
Hint: .

92. Simple Harmonic Motion The equation of motion of a body 
executing simple harmonic motion is given by

where (in feet) is the displacement of the body, is the
amplitude, , is a constant, and (in slugs) is
the mass of the body. Find expressions for the velocity and
acceleration of the body at time .

93. Potential of a Charged Disk The potential on the axis of a uni-
formly charged disk is

V(r) �
s

2e0
 12r 2 � R2 � r2

t

mkv � 1k>m Ax

x(t) � A sin(vt � f)

E

C

i(t) � dq>dt
ti(t)

t � 0q0

q(t) � EC � (q0 � EC)a k1

k1 � k2t
b1>(Ck2)

tE
C

k2 	 0k1 	 0R � k1 � k2t
t

(1000, 0)A

O

k � 1.2

k � 1
k � 1

4

k � u>√
0 � x � 1000y � 500c a1000 � x

1000
b1�k

� a1000 � x

1000
b1�kd

u√
where and are constants. The force corresponding to
this potential is . Find .

94. Electric Potential Suppose that a ring-shaped conductor of
radius carries a total charge . Then the electrical poten-
tial at the point , a distance from the center and along the
line perpendicular to the plane of the ring through its center,
is given by

where is a constant called the permittivity of free space.
The magnitude of the electric field induced by the charge at
the point is , and the direction of the field is
along the -axis. Find .

95. Motion of a Conical Pendulum A metal ball is attached to a string
of length ft and is whirled in a horizontal circle as shown 

in the figure. The speed of the ball is 
ft/sec, where is the angle the string makes with the vertical.

a. Show that

and interpret your result.

d√
du

�
2Lt(tan2 u � 2)

21sec u

L
q

u

√ �2Lt sec u sin2 u

L

a

x
P

Q

x

Ex
E � �dV>dxP

e0

V(x) �
1

4pe0
 

Q

2x2 � a2

xP
Qa

r

P

R

F(r)F(r) � �V¿(r)
se0
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b. Find and if and rad. (Take
ft/sec2.)

c. Evaluate , and interpret your result.
d. Plot the graph of for to verify the result of

part (c) visually.

96. Orbit of a Satellite An artificial satellite moves around the
earth in an elliptic orbit. Its distance from the center of the
earth is approximated by

where . Here, is time and , , , and
are constants measuring the semimajor axis of the orbit,

the eccentricity of the orbit, the period of orbiting, and the
time taken by the satellite to pass the perigee, respectively.
Find , the radial velocity of the satellite.

97. Traffic Flow Opened in the late 1950s, the Central Artery in
downtown Boston was designed to move 75,000 vehicles per
day. The number of vehicles moved per day is approximated
by the function

where is measured in thousands and is measured in
decades, with corresponding to the beginning of 1959.
Suppose that the average speed of traffic flow in mph is
given by

where has the same meaning as before. What was the rate
of change of the average speed of traffic flow at the begin-
ning of 1999? What was the average speed of traffic flow at
that time?
Source: The Boston Globe.

98. Hotel Occupancy Rate The occupancy rate of the Paramount
Hotel, located near a theme park, over a certain 12-month
period is approximated by the function

where is measured in months and corresponds to
January 1. Suppose the monthly revenue (in thousands of
dollars per month) is approximated by the function

where is the occupancy rate. How fast is the monthly rev-
enue of the hotel changing at the beginning of January? At
the beginning of July?

r

0 � r � 100R(r) � �0.0006r 3 � 0.18r 2

t � 0t

0 � t � 12r(t) � �
5

216
 t 3 �

5

6
 t 2 �

25

2
 t � 60

x

75 � x � 350S � t(x) � �0.00075x2 � 67.5

t � 0
tx

0 � t � 5x � f(t) � 6.25t 2 � 19.75t � 74.75

dr>dt

tn

PeatM � (2p>P)(t � tn)

r � ac1 � e cos M �
e2

2
 (cos 2M � 1)d

r

0 � u � p
2√

limu→p>2� √
t � 32

u � p>6L � 4d√>du√ 99. Find if

Does exist?

100. Suppose that is a differentiable function of and
. Show that

Hint: .

In Exercises 101–104, use the result of Exercise 100 to find the
derivative of the function.

101. 102.

103. 104.

105. Let .
a. Find .
Hint: See Exercise 100.
b. Sketch the graph of and .

106. A function is called even if for all in the
domain of ; it is called odd if for all in
the domain of . Prove that the derivative of a differentiable
even function is an odd function and that the derivative of
a differentiable odd function is an even function.

In Exercises 107–110, determine whether the statement is true or
false. If it is true, explain why it is true. If it is false, give an
example to show why it is false.

107. If has a second-order derivative at , has a second-
order derivative at , and , then

.

108. If is differentiable and , then
.

109. If is differentiable, then

110. If is differentiable and , then
.h¿ � 2( f � f )( f ¿ � f )f ¿

h � ( f � f )2f

x 
 0
d

dx
 f a1

x
b � �

f ¿a1
x
b

x2

f

h¿(t) � bf ¿(a � bt) � bf ¿(a � bt)
h(t) � f(a � bt) � f(a � bt)f

h�(x) � t�[ f(x)] f �(x)
h(x) � t[ f(x)]f(x)

txf

f
xf(�x) � �f(x)f

xf(�x) � f(x)

f ¿f

f ¿(x)
f(x) �2� (x � 1)(x � 2) �

f(x) �
�x �

x2h(x) � � sin x �

t(x) � x�x2 � x �f(x) � �x � 1 �

�u � �2u2

u 
 0f ¿(x) �
u¿u
�u �

f(x) � �u �
xu

f �(0)

f(x) � • x2 sin
1
x

if x 
 0

0 if x � 0

f �(x)
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2.7 Implicit Differentiation

Implicit Functions
Up to now, the functions we have dealt with are represented by equations of the form

, in which the dependent variable has been expressed explicitly in terms of
the independent variable . Sometimes, however, a function is defined implicitly by
an equation . For example, the equation

(1)

defines as a function of . (Here, .) In fact, if we solve
the equation for in terms of , we obtain the explicit representation

(2)

You can verify that Equation (2) satisfies Equation (1); that is,

Suppose we are given Equation (1) and we wish to find . An obvious approach
would be to first find an explicit representation for the function , such as Equation (2),
and then differentiate this expression in the usual manner to obtain .

How about the equation

(3)

whose graph is shown in Figure 1? The Vertical Line Test shows that Equation (3) does
not define as a function of . But with suitable restrictions on and , Equation (3)
does define as a function of implicitly. Figure 2 shows the graphs (the solid curves)
of two such functions, and . In this instance we would be hard pressed to find explicit
representations for the functions and . So how do we go about computing in
this case?

dy>dxtf
tf

xy
yxxy

4x4 � 8x2y2 � 25x2y � 4y4 � 0

dy>dx � f ¿(x)
f

dy>dx

x2f(x) � f(x) � cos x � 1 � 0

y � f(x) �
cos x � 1

x2 � 1

xy
F(x, y) � x2y � y � cos x � 1xy

x2y � y � cos x � 1 � 0

F(x, y) � 0
fx

yy � f(x)

FIGURE 1
The graph of

is a bifolium.

4x4 � 8x2y2 � 25x2y � 4y4 � 0

0 x

y

FIGURE 2
and are defined implicitly by 

.4x4 � 8x2y2 � 25x2y � 4y4 � 0
tf

0

(a) The graph of f

x

y � f(x)

y

0

(b) The graph of g

x

y � g(x)

y

Thanks to the Chain Rule, there exists a method for finding the derivative of a func-
tion directly from the equation defining it implicitly. This method is called implicit
differentiation and will be demonstrated in the next several examples.

Implicit Differentiation

EXAMPLE 1

a. Find if .
b. Find an equation of the tangent line to the graph of at the point

.
c. Solve part (b) again, this time using an explicit representation of a function.

(1, 13)
x2 � y2 � 4

x2 � y2 � 4dy>dx
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Solution
a. Differentiating both sides of the equation with respect to , we obtain

Use the Sum Rule for derivatives.

To carry out the differentiation of the term , we note that is a function of .
Writing to remind us of this, we see that

Write .

Use the Chain Rule.

Return to using instead of .

Therefore, the equation

is equivalent to

Solving for yields

b. Using the result of part (a), we see that the slope of the required tangent line is

means evaluated at and .

Using the slope-intercept form of an equation of a line, we see that an equation
of the tangent line is

c. Solving the equation for in terms of gives the functions

and

among others. The graph of is the upper semicircle centered at the origin with
radius 2 (here, , whereas the graph of is the lower semicircle (here,

). (See Figure 3.) Since the point lies on the upper semicircle,
we will work with the function

f(x) �24 � x2 � (4 � x2)1>2

(1, 13)y � 0
ty � 0)

f

y � t(x) � �24 � x2y � f(x) �24 � x2

xyx2 � y2 � 4

 13y � 3 � �(x � 1)  or  x � 13y � 4 � 0

 y � 13 � �
1

13
 (x � 1)

y � bx � a
dy

dx

dy

dx
`
(a, b)

dy

dx
`
(1, 13)

� �
x

y
`
(1, 13)

� �
1

13

dy

dx
� �

x

y

dy>dx

2x � 2y 
dy

dx
� 0

d

dx
 (x2 � y2) �

d

dx
 (4)

f(x)y � 2y 
dy

dx

 � 2f(x)f ¿(x)

y � f(x) 
d

dx
 (y2) �

d

dx
 [ f(x)]2

y � f(x)
xyy2

 
d

dx
 (x2) �

d

dx
 (y2) � 0

 
d

dx
 (x2 � y2) �

d

dx
 (4)

x
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FIGURE 3
The graphs of 

and t(x) � �24 � x2
f(x) �24 � x2

Differentiating with the help of the Chain Rule gives

and this gives the slope of the tangent line at any point on the graph of . In
particular, the slope of the tangent line at is

as before. Continuing, we find that an equation of the tangent line is
, as obtained earlier.

Notes
1. You can verify that

so is the derivative of both and .
2. Even when it is possible to find an explicit representation for , it still can be eas-

ier to find by implicit differentiation. (See Example 1.)
3. In general, if is found by implicit differentiation, the expression for 

will usually involve both and .

Guidelines for differentiating a function implicitly follow.

yx
dy>dxdy>dx

f ¿(x)
f

tf�x>y
t¿(x) �

x

24 � x2
� �

x

y
�

dy

dx

x � 13y � 4 � 0

f ¿(1) � �
1

13

(1, 13)
f(x, y)

 � �
x

y

 � �
x

24 � x2

 �
1

2
 (4 � x2)�1>2(�2x)

 f ¿(x) �
1

2
 (4 � x2)�1>2 d

dx
 (4 � x2)

f(x)

0 x

y

y � √4 � x2
(1, √3)2

21�2 �1 0 x

y

y � �√4 � x2

21�2

�2

�1

The graph of f The graph of g

Finding by Implicit Differentiation

Suppose that a function is defined implicitly via an equation in and
. To compute :

1. Differentiate both sides of the equation with respect to . Make sure that
the derivative of any term involving includes the factor .

2. Solve the resulting equation for in terms of and .yxdy>dx
dy>dxy

x

dy>dxy
xy � f(x)

dy>dx
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EXAMPLE 2 Find if .

Solution Differentiating both sides of the given equation with respect to , we obtain

or

,

where we have used the Product Rule to differentiate the term . Next, recalling
that is a function of , we apply the Chain Rule to the first three terms on the left,
obtaining

If we wish to find at a specific point on the graph of a function defined
implicitly by an equation, we need not find a general expression for , as illus-
trated in Example 3.

dy>dx
(a, b)dy>dx

 
dy

dx
� �

3x2y2 � sin x

2y(2y2 � 3y � x3)

 (4y3 � 6y2 � 2x3y) 
dy

dx
� �3x2y2 � sin x

 4y3 
dy

dx
� 6y2 

dy

dx
� 2x3y 

dy

dx
� 3x2y2 � sin x � 0

xy
x3y2

d

dx
 (y4) � 2 

d

dx
 (y3) � x3 

d

dx
 (y2) � y2 

d

dx
(x3) �

d

dx
 (cos x) � 0

d

dx
 (y4) �

d

dx
 (2y3) �

d

dx
 (x3y2) �

d

dx
 (cos x) � 0

d

dx
 (y4 � 2y3 � x3y2 � cos x) �

d

dx
 (8)

x

y4 � 2y3 � x3y2 � cos x � 8
dy

dx

EXAMPLE 3 Find at the point if .

Solution Differentiating both sides of the equation with respect to , we obtain

Using the Product Rule on each term on the left, we have

Next, using the Chain Rule on the first, third, and fourth terms on the left, we obtain

or

 (x cos y) 
dy

dx
� sin y � 2y sin 2x � (cos 2x) 

dy

dx
� 2

 (x cos y) 
dy

dx
� sin y � y(�sin 2x) 

d

dx
 (2x) � (cos 2x) 

dy

dx
� 2

x 
d

dx
 (sin y) � (sin y) 

d

dx
 (x) � y 

d

dx
 (cos 2x) � (cos 2x) 

d

dx
 (y) � 2

 
d

dx
 (x sin y) �

d

dx
 (y cos 2x) � 2

 
d

dx
 (x sin y � y cos 2x) �

d

dx
 (2x)

x

x sin y � y cos 2x � 2x1p2 , p 2dy

dx
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EXAMPLE 4 Find an equation of the tangent line to the bifolium

at the point .

Solution The slope of the tangent line to the bifolium at any point is given by
. To compute , we differentiate both sides of the equation with respect to 

to obtain

Using the Product Rule on the second and third terms on the left, we find

With the aid of the Chain Rule, we obtain

By substituting and into the last equation, we obtain

or

Using the slope-intercept form for an equation of a line, we see that an equation of the
tangent line is

or

(See Figure 4.)

y � 3x � 5y � 1 � 3(x � 2)

dy

dx
� 3

16(8) � 16(4) 
dy

dx
� 32 � 25(4) 

dy

dx
� 100 � 16 

dy

dx
� 0

y � 1x � 2

16x3 � 16x2y 
dy

dx
� 16xy2 � 25x2 

dy

dx
� 50xy � 16y3 

dy

dx
� 0

16x3 � 8x2 
d

dx
 (y2) � y2 

d

dx
 (8x2) � 25x2 

d

dx
 (y) � y 

d

dx
 (25x2) �

d

dx
 (4y4) � 0

 
d

dx
 (4x4) �

d

dx
 (8x2y2) �

d

dx
 (25x2y) �

d

dx
 (4y4) � 0

 
d

dx
 (4x4 � 8x2y2 � 25x2y � 4y4) �

d

dx
 (0)

xdy>dxdy>dx
(x, y)

(2, 1)

4x4 � 8x2y2 � 25x2y � 4y4 � 0

Replacing by and by in the last equation gives

or

dy

dx
�

2

1 �
p

2

�
4

2 � p

 �
p

2
�

dy

dx
�

dy

dx
� 2

 ap
2

cos pb  
dy

dx
� sin p � 2p sin p � (cos p) 

dy

dx
� 2

pyp>2x

0 x

y y � 3x � 5

(2, 1)

1.5

0.5

1.0

21�2 �1

FIGURE 4
The graph of

The slope of the curve at the point
is

dy

dx
`
(2, 1)

� 3

(2, 1)

4x4 � 8x2y2 � 25x2y � 4y4 � 0



2.7 Implicit Differentiation 211

Derivatives of Rational Powers of 
In Section 2.3 we proved that

for integral values of . Using implicit differentiation, we can now prove that this for-
mula holds for rational powers of . Thus, if is a rational number, then

PROOF Let . Since is a rational number, it can be written in the form 
, where and are integers with . Thus,

or

Using the Chain Rule to differentiate both sides of this equation with respect to , we
obtain

Replace by .

Replace by .r
m

n
 �

m

n
 x (m>n)�1 � rxr�1

 �
m

n
 xm�1�m�(m>n)

 �
m

n
 xm�1x�m�(m>n)

xm>ny �
m

n
 xm�1(xm>n)�n�1

 
dy

dx
�

m

n
 xm�1y�n�1

 nyn�1 
dy

dx
� mxm�1

 
d

dx
 (yn) �

d

dx
 (xm)

x

yn � xm

y � xm>n
n 
 0nmr � m>n ry � xr

d

dx
 (xr) � rxr�1

rx
n

d

dx
 (xn) � nxn�1

x

1. a. Suppose that the equation defines as a
function of . Explain how implicit differentiation can be
used to find .

b. What is the role of the Chain Rule in implicit differentia-
tion?

dy>dx
x

yF(x, y) � 0 2. Suppose that the equation , where and
are differentiable functions, defines as a function of .

Find an expression for .dy>dx
xyt

fx t(y) � y f(x) � 0

2.7 CONCEPT QUESTIONS
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In Exercises 1–20, find by implicit differentiation.

1. 2.

3. 4.

5. 6.

7. 8.

9. 10.

11. 12.

13. 14.

15. 16.

17. 18.

19. 20.

In Exercises 21–24, use implicit differentiation to find an equa-
tion of the tangent line to the curve at the indicated point.

21. ; 22. ;

23. ; 24. ;

In Exercises 25–28, find the rate of change of with respect to 
at the given values of and .

25. ; ,

26. ; ,

27. ; ,

28. ; ,

In Exercises 29–32, find in terms of and .

29. 30.

31. 32.

In Exercises 33–38, find an equation of the tangent line to the
given curve at the indicated point.

33. ;

x

y
3

�3

2

Ellipse

�2

1�1, 313
2 2x2

4
�

y2

9
� 1

tan y � xy � 0sin x � cos y � 1

x3 � y3 � 8xy � x3 � 4

yxd2y>dx2

y �
p

8
x � 0tan(x � 2y) � sin x � 1

y �
p

6
x � 1x csc y � 2

y � 8x � 1x2>3 � y2>3 � 5

y � �1x � 1xy2 � x2y � 2 � 0

yx
xy

1p2 , 1 2y � sin xy(1, �1)x2>3 � y2>3 � 2

(�1, 1)x2y � y3 � 211, �13
2 2x2 � 4y2 � 4

x � y2 � cot xy21 � cos2 y � xy

x � sec 2ytan2(x3 � y3) � xy

x � y2 � cos xyy2 � sin(x � y)

1xy � x2 � 2y21x � 1y � 1

(2x2 � 3y2)5>2 � x(x � 1)2 � (y � 2)2 � 9

x � y

x � y
� y2 � 1

xy

x2 � y2 � x � 1

x3

y
�

y2

x2 � 3
1
x

�
1
y

� 1

x3y2 � 2x2y � 2x � 3x3 � 2y3 � y � x � 2

x2y � 2xy2 � x � 3 � 0xy2 � yx2 � 2 � 0

y2 � 3y � 2x2x2 � y2 � 4

dy>dx
34. ;

35. ;

36. ;

37. ;

x

y

4

�2

2

�4

Lemniscate

(3, 1)2(x2 � y2)2 � 25(x2 � y2)

x

y

1

1

�1

�1

Tschirnhausen’s cubic

(1, 1)2y2 � x3 � x2 � 0

x

y

1

x � 1

0

Cissoid of Diocles

112, 12 2y2 � xy2 � x3 � 0

x

y

2

�2

3

Hyperbola

�3

15, 83 2x2

9
�

y2

4
� 1

2.7 EXERCISES

Videos for selected exercises are available online at www.academic.cengage.com/login.V

www.academic.cengage.com/login
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38. ;

In Exercises 39–42, (a) find the equations of the tangent and the
normal lines to the curve at the indicated point. (The normal
line at a point on the curve is the line perpendicular to the tan-
gent line at that point.) (b) Then use a graphing utility to plot
the curve and the tangent and normal lines on the same screen.

39. ;

40. ;

41. ;

42. ;

43. The graph of the equation is called the
folium of Descartes.

a. Find .
b. Find an equation of the tangent line to the folium at the

point in the first quadrant where it intersects the line
.

c. Find the points on the folium where the tangent line is
horizontal.

44. The curve with equation is called an astroid.
Find an equation of the tangent line to the curve at the point

.

x

y

0 8�8

8

�8

(313, 1)

x2>3 � y2>3 � 4

y � x

y¿

x

y

0

x3 � y3 � 3xy

(1, 1)x5 � 2xy � y5 � 0

(�2, 3)4x3 � 3xy2 � 5xy � 8y2 � 9x � �38

(�1, 212)x2 � y2 � 9

13, 34 24xy � 9 � 0

x

y

4

�2

2

�4

The Conchoid of Nicomedes

(�213, 1)x2y2 � (y � 1)2(4 � y2) 45. Water flows from a tank of constant cross-sectional area 
50 ft2 through an orifice of constant cross-sectional area ft2

located at the bottom of the tank. Initially, the height of the
water in the tank was 20 ft, and sec later it was given by
the equation

How fast was the height of the water decreasing when its
height was 9 ft?

46. Watching a Rocket Launch At a distance of 2000 ft from the
launch site, a spectator is observing a rocket 120-ft long
being launched vertically. Let be her viewing angle of the
rocket, and let denote the altitude (measured in feet) of the
rocket. (Neglect the height of the spectator.)

a. Show that

b. What is the viewing angle when the rocket is on the
launching pad? When it is at an altitude of 10,000 feet?

c. Find the rate of change of the viewing angle when the
rocket is at an altitude of 10,000 feet.

d. What happens to the viewing angle when the rocket is at
a very great altitude?

tan u �
240,000

y2 � 120y � 4,000,000

2000 ft

¨

120 ft

y

y
u

h

0 � t � 5012021h �
1

25
 t � 2120 � 0

t

1
4
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Two curves are said to be orthogonal if their tangent lines are
perpendicular at each point of intersection of the curves. In
Exercises 47–50, show that the curves with the given equations
are orthogonal.

47. ,

48. ,

49. ,

50. ,

x

y

0 1 2 3�1�2�3

1

3

2

�2

�1

�3

x � cos yy � x �
p

2

x

y

0 1 2 3�1�2�3

1

3

2

�2

�1

�3

y � x3x2 � 3y2 � 4

2�2 x

y

0 4�4

2

4

�2

�4

xy � 2x2 � y2 � 3

x

y

0 2 31�2 �1�3

1

2

�1

x2 � 4yx2 � 2y2 � 6

Two families of curves are orthogonal trajectories of each other
if every curve of one family is orthogonal to every curve in the
other family. In Exercises 51–54, (a) show that the given families
of curves are orthogonal to each other, and (b) sketch a few
members of each family on the same set of axes.

51. , , , constants

52. , , , constants

53. , , , constants

54. , , , constants

55. The Path of Steepest Descent The contour lines of a topo-
graphic or contour map are curves that connect the con-
tiguous points of the same altitude. The figure gives the 
contour map of a hill. Suppose that you start at the point 
and you want to get to the point by taking the shortest
path.

a. Explain why the direction that you start out with at 
should be perpendicular to the tangent line to the contour
line passing through .

b. Using the observation made in part (a), explain why the
desired path should be the curve that is orthogonal to the
contour lines. Sketch this path from to . This path is
called the path of steepest descent.

56. Isobars are curves on a weather map that connect points
having the same air pressure. The figure shows a family of
isobars.

H

H

L

BA

A

A

A

B

600 500

400

300

200

100
50

B
A

kcy9 � kx49x2 � 4y2 � c2

kcy2 � kx2x2 � y2 � c

kcx2 � y2 � kyx2 � y2 � cx

kcy � kxx2 � y2 � c2
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a. Sketch several members of the family of orthogonal tra-
jectories of the family of isobars.

b. Use the fact that air flows from regions of high air pres-
sure to those of lower air pressure to give an interpreta-
tion of the role of the orthogonal family.

In Exercises 57 and 58, determine whether the statement is true
or false. If it is true, explain why it is true. If it is false, explain
why or give an example to show why it is false.

57. If and are differentiable and , then

and

58. If and are differentiable and , then

dy

dx
� �

f ¿(x)

t¿(y)

f(x) � t(y) � 0tf

t¿(y) 
 0f(x) 
 0
dy

dx
� �

f ¿(x)t(y)

f(x)t¿(y)

f(x)t(y) � 0tf

2.8 Related Rates

Related Rates Problems
The following is a typical related rates problem: Suppose that and are two quanti-
ties that depend on a third quantity and that we know the relationship between and

in the form of an equation. Can we find a relationship between and ? In
particular, if we know one of the rates of change at a specific value of , say, ,
can we find the other rate, , at that value of ?

As an example, consider this problem from the field of aviation: Suppose that 
and describe the - and -coordinates at time of a plane pulling out of a shallow
dive (Figure 1). The flight path of the plane is described by the equation

(1)

where and are both measured in feet.yx

y2 � x2 � 160,000

tyxy(t)
x(t)

tdy>dt
dx>dtt

dy>dtdx>dty
xt

yx

FIGURE 1
The flight path of a plane 

pulling out of a shallow dive

Suppose that and are both differentiable functions of , where is measured in sec-
onds. Then differentiating both sides of Equation (1) implicitly with respect to , we obtain

giving a relationship between the variables and and their rates of change 
and . Now suppose that at the point where and .
At that instant of time,

or . This says that the plane’s altitude is increasing at the rate of 300 ft/sec.dy>dt � 300

2(500) 
dy

dt
� 2(300)(500) � 0

y � 500x � 300dx>dt � 500dy>dt
dx>dtyx

2y 
dy

dt
� 2x 

dx

dt
� 0

t
ttyx

x (hundred ft)

y (hundred ft)

1 5�1�5

1

5
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Solving Related Rates Problems
In the last example we were given the relationship between and in the form of an
equation. In certain related rates problems we must first identify the variables and then
find a relationship between them before solving the problem. The following guidelines
can be used to solve these problems.

yx

BLAISE PASCAL
(1623–1662)

A great mathematician who was not
acknowledged in his lifetime, Blaise Pascal
came extremely close to discovering calcu-
lus before Leibniz (page 157) and Newton
(page 179), the two people who are most
commonly credited with the discovery. Pas-
cal was something of a prodigy and pub-
lished his first important mathematical dis-
covery at the age of sixteen. The work
consisted of only a single printed page, but
it contained a vital step in the development
of projective geometry and a proposition
called Pascal’s mystic hexagram that dis-
cussed a property of a hexagon inscribed
in a conic section. Pascal’s interests varied
widely, and from 1642 to 1644 he worked on
the first manufactured calculator, which he
designed to help his father with his tax
work. Pascal manufactured about 50 of the
machines, but they proved too costly to
continue production. The basic principle of
Pascal’s calculating machine was still used
until the electronic age. Pascal and Pierre
de Fermat (page 307) also worked on the
mathematics in games of chance and laid
the foundation for the modern theory of
probability. Pascal’s later work, Treatise on
the Arithmetical Triangle, gave important
results on the construction that would later
bear his name, Pascal’s Triangle.

Historical Biography
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Guidelines for Solving a Related Rates Problem

1. Draw a diagram, and label the variable quantities.
2. Write down the given values of the variables and their rates of change with

respect to .
3. Find an equation that relates the variables.
4. Differentiate both sides of this equation implicitly with respect to .
5. Replace the variables and derivative in the resulting equation by the values

found in Step 2, and solve this equation for the required rate of change.

t

t

EXAMPLE 1 The Speed of a Rocket During Liftoff At a distance of 12,000 feet from
the launch site, a spectator is observing a rocket being launched vertically. What is the
speed of the rocket at the instant when the distance of the rocket from the spectator is
13,000 ft and is increasing at the rate of 480 ft/sec?

Solution
Step 1 Let the altitude of the rocket and the distance of the rocket from

the spectator at any time . (See Figure 2.)
Step 2 We are given that at a certain instant of time

and

and are asked to find at that time.dy>dt

dz

dt
� 480z � 13,000

t
z �y �

FIGURE 2
We want to find the speed of 

the rocket when ft 
and ft/sec.dz>dt � 480

z � 13,000
12,000 ft

y
z

Step 3 Applying the Pythagorean Theorem to the right triangle in Figure 2, we find
that

(2)

Step 4 Differentiating Equation (2) implicitly with respect to , we obtain

(3)2z 
dz

dt
� 2y 

dy

dt

t

z2 � y2 � 12,0002
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Step 5 Using Equation (2) we see that if , then

Finally, substituting , , and in Equation (3),
we find

and

Therefore, the rocket is rising at the rate of 1248 ft/sec.

Don’t replace the variables in Equation (2) found in Step 3 by their values before
differentiating this equation. Look at Steps 3–5 in Example 1 once again, and make
sure you understand that this substitution takes place after the differentiation.

dy

dt
� 12482(13,000)(480) � 2(5000) 

dy

dt

dz>dt � 480y � 5000z � 13,000

y �213,0002 � 12,0002 � 5000

z � 13,000

!

EXAMPLE 2 Televising a Rocket Launch A major network is televising the launch-
ing of the rocket described in Example 1. A camera tracking the liftoff of the rocket is
located at point , as shown in Figure 3, where denotes the angle of elevation of the
camera at . When the rocket is 13,000 ft from the camera and this distance is increas-
ing at the rate of 480 ft/sec, how fast is changing?

Solution We are given that at a certain instant of time,

and

and are asked to find at that time. From Figure 3 we see that

Differentiating this equation implicitly with respect to , we obtain

(4)

Now when , we find that (the same value that was obtained in
Example 1). Therefore, at this instant of time,

Finally, substituting , , and into Equation (4), we
obtain

from which we deduce that

Therefore, the angle of elevation of the camera is increasing at the rate of approxi-
mately 0.09 rad/sec, or about 5°/sec.

df

dt
� 0.0886

�
5

13
 
df

dt
� �

12,000

13,0002
 (480)

dz>dt � 480sin f � 5>13z � 13,000

sin f �
5,000

13,000
�

5

13

y � 5000z � 13,000

(�sin f) 
df

dt
� �

12,000

z2
�

dz

dt

t

cos f �
12,000

z

df>dt

dz

dt
� 480z � 13,000

f

A
fA

FIGURE 3
A television camera tracking a rocket
launch

ƒ

12,000 ft

y
z

A
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FIGURE 4

Solution
Step 1 Let

and

at any time (in seconds).
Step 2 We are given that

and are asked to find when .
Step 3 The volume of water in the funnel is equal to the volume of the shaded cone

in Figure 4b. Thus,

but we need to express in terms of alone. To do this, we use similar tri-
angles and deduce that

or Ratio of corresponding sides

Substituting this value of into the expression for , we obtain

V �
1

3
 pah

2
b2

h �
1

12
 ph3

Vr

r �
h

2

r

h
�

2

4

hV

V �
1

3
 pr 2h

h � 2dh>dt

Rate of flow in minus
rate of flow out

dV

dt
� 1 �

1

2
�

1

2

t

 r � the radius of the surface of the water in the funnel

 h � the height of the water in the funnel

 V � the volume of the water in the funnel

(a) Water is poured into a
      conical funnel.

(b) We want to find the rate
      at which the water level
      is rising when h � 2.

h

r
4

2

EXAMPLE 3 Water is poured into a conical funnel at the constant rate of 1 in.3/sec
and flows out at the rate of in.3/sec (Figure 4a). The funnel is a right circular cone
with a height of 4 in. and a radius of 2 in. at the base (Figure 4b). How fast is the water
level changing when the water is 2 in. high?

1
2
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Step 4 Differentiating this last equation implicitly with respect to , we obtain

Step 5 Finally, substituting and into this equation gives

or

and we see that the water level is rising at the rate of 0.159 in./sec.

dh

dt
�

1

2p
� 0.159

1

2
�

1

4
 p(22) 

dh

dt

h � 2dV>dt � 1
2

dV

dt
�

1

4
 ph2 

dh

dt

t

EXAMPLE 4 A passenger ship and an oil tanker left port sometime in the morning;
the former headed north, and the latter headed east. At noon the passenger ship was
40 mi from port and moving at 30 mph, while the oil tanker was 30 mi from port and
moving at 20 mph. How fast was the distance between the two ships changing at that
time?

Solution
Step 1 Let

and

(See Figure 5.)
Step 2 We are given that at noon,

, , , and

and we are required to find at that time.
Step 3 Applying the Pythagorean Theorem to the right triangle in Figure 5, we find

that

(5)

Step 4 Differentiating Equation (5) implicitly with respect to , we obtain

or

Step 5 Using Equation (5) with and , we have

or .z � 50

z2 � 302 � 402 � 2500

y � 40x � 30

z 
dz

dt
� x 

dx

dt
� y 

dy

dt

2z 
dz

dt
� 2x 

dx

dt
� 2y 

dy

dt

t

z2 � x2 � y2

dz>dt

dy

dt
� 30

dx

dt
� 20y � 40x � 30

 z � the distance between the two ships

 y � the distance of the passenger ship from port

 x � the distance of the oil tanker from port

FIGURE 5
We want to find , the rate at which
the distance between the two ships is
changing at a certain instant of time.

dz>dt

S

N
EW

port tanker

passenger ship

y z

x
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Finally substituting , , , , and 
into the last equation of Step 4, we find

and

Therefore, at noon on the day in question, the ships are moving apart at the
rate of 36 mph.

dz

dt
� 36

50 
dz

dt
� (30)(20) � (40)(30)

dy>dt � 30dx>dt � 20z � 50y � 40x � 30

1. What is a related rates problem? 2. Give the steps involved in solving a related rates problem.

2.8 CONCEPT QUESTIONS

In Exercises 1–6, an equation relating the variables and , the
values of and , and the value of either or at a
particular instant of time are given. Find the value of the rate 
of change that is not specified.

1. ; , , ;

2. ; , , ;

3. ; , , ;
dy

dt
� ?

dx

dt
� 3y � 2x � 2x2y � 8

dx

dt
� ?

dy

dt
� �1y � �2x � 1y3 � 2x3 � �10

dy

dt
� ?

dx

dt
� 2y � �4x � 3x2 � y2 � 25

dy>dtdx>dtyx
yx b. At a certain instant of time, the radius and height of the

cylinder are 2 in. and 6 in. and are increasing at the rate
of 0.1 in./sec and 0.3 in./sec, respectively. How fast is the
volume of the cylinder increasing?

9. A point moves along the curve . When the
point is at , its -coordinate is increasing at the rate
of 2 units per second. How fast is its -coordinate changing
at that instant of time?

10. A point moves along the curve . When
the point is at ), its -coordinate is increasing at the
rate of 3 units per second. How fast is its -coordinate
changing at that instant of time?

11. Motion of a Particle A particle moves along the curve defined
by . Determine the values of at which the rate
of change of its -coordinate is (a) less than, (b) equal to,
and (c) greater than that of its -coordinate.

12. Rectilinear Motion The velocity of a particle moving along the
-axis is proportional to the square root of the distance, ,

covered by the particle. Show that the force acting on the
particle is constant.
Hint: Use Newton’s Second Law of Motion, which states that the
force is proportional to the rate of change of momentum.

13. Oil Spill In calm waters, the oil spilling from the ruptured
hull of a grounded tanker spreads in all directions. Assuming
that the polluted area is circular, determine how fast the area
is increasing when the radius of the circle is 60 ft and is
increasing at the rate of ft/sec?

14. Blowing a Soap Bubble Carlos is blowing air into a spherical
soap bubble at the rate of 8 cm3/sec. How fast is the radius

1
2

xx

x
y

xy � 1
6 x3 � x

y
x(1, �1

3y � 4y2 � 3x � 4

y
x(3, �4)

2x2 � y2 � 2

2.8 EXERCISES

Videos for selected exercises are available online at www.academic.cengage.com/login.V

4. ; , , ;
dx

dt
� ?

dy

dt
� �2y � �1x � 1y2 � xy � x2 � 1 � 0

5. ; , , ;

6. ; , , ;

7. The volume of a cube with sides of length inches is
changing with respect to time (in seconds).
a. Find a relationship between and .
b. When the sides of the cube are 10 in. long and increas-

ing at the rate of 0.5 in./sec, how fast is the volume of
the cube increasing?

8. The volume of a right circular cylinder of radius and
height is . Suppose that the radius and height of
the cylinder are changing with respect to time .
a. Find a relationship between , , and .dh>dtdr>dtdV>dt

t
V � pr 2hh

r

dx>dtdV>dt
t

xV

dy

dt
� ?

dx

dt
� 1y �

p

6
x �
p

6
4x cos y � p tan x � 0

dy

dt
� ?

dx

dt
�
23

2
y �
p

3
x �
p

4
sin2 x � cos y � 1

www.academic.cengage.com/login


of the bubble changing when the radius is 10 cm? How fast
is the surface area of the bubble changing at that time?

15. If a spherical snowball melts at a rate that is proportional to
its surface area, show that its radius decreases at a constant
rate.

16. Speed of a Race Car A race car is moving along a track
described by the equation

where both and are measured in miles. How fast is the
car moving in the -direction , when 
(mph) and the car is at the point in the first quadrant with
coordinate ?

17. The base of a 13-ft ladder that is leaning against a wall
begins to slide away from the wall. When the base is 12 ft
from the wall and moving at the rate of 8 ft/sec, how fast is
the top of the ladder sliding down the wall?

18. A 20-ft ladder leaning against a wall begins to slide. How
fast is the top of the ladder sliding down the wall at the
instant of time when the bottom of the ladder is 12 ft 
from the wall and sliding away from the wall at the rate 
of 5 ft/sec?

19. Demand for Compact Discs The demand equation for the Olym-
pus recordable compact disc is

where represents the number (in thousands) of 50-packs
demanded per week when the unit price is dollars. How
fast is the quantity demanded increasing when the unit price
per 50-pack is $14 and the selling price is dropping at the
rate of 10¢ per 50-pack per week?

p
x

100x2 � 9p2 � 3600

13 ft y

x

x

y

1

�1

2�2

x � 1

dx>dt � �20(dy>dt)y
yx

x4 � 4x2 � 2x2y2 � 4y2 � y4 � 0

20. Let denote the volume of a rectangular box of length 
inches, width inches, and height inches. Suppose 

that the sides of the box are changing with respect to 
time .
a. Find a relationship between , , , and

.
Hint: Write , and use the Product Rule.

b. At a certain instant of time, the length, width, and height
of the box are 3, 5, and 10 in., respectively. If the length,
width, and height of the box are increasing at the rate of
0.2, 0.3, and 0.1 in./sec, respectively, how fast is the vol-
ume of the box increasing?

21. Baseball Diamond The sides of a square baseball diamond are
90 ft long. When a player who is between the second and
third base is 60 ft from second base and heading toward
third base at a speed of 22 ft/sec, how fast is the distance
between the player and home plate changing?

22. Docking a Boat A boat is pulled into a dock by means of a
rope attached to the bow of the boat and passing through a
pulley on the dock. The pulley is located at a point on the
dock that is 2 m higher than the bow of the boat. If the rope
is being pulled in at the rate of 1 m/sec, how fast is the boat
approaching the dock when it is 12 m from the dock?

23. Tracking the Path of a Submarine The position of a sub-
marine moving in an -plane is described by the equation

where both and are measured in feet (see the figure).
How fast is the depth of the submarine changing when it is

yx

0 � x � 1500y � 10�10x3(x � 2000)

xy
P(x, y)

90 ft

Second
base

First
base

Third
base

Home
plate

D

x

V � x(yz)
dz>dt

dy>dtdx>dtdV>dt
t

zyx
V
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at the position and its speed in the -direction
is 50 ft/sec?

24. Length of a Shadow A man who is 6 ft tall walks away from 
a streetlight that is 15 ft from the ground at a speed of 
4 ft/sec. How fast is the tip of his shadow moving along the
ground when he is 30 ft from the base of the light pole?

25. A coffee pot that has the shape of a circular cylinder of
radius 4 in. is being filled with water flowing at a constant
rate. At what rate is the water flowing into the coffee pot
when the water level is rising at the rate of 0.4 in./sec?

26. A car leaves an intersection traveling west. Its position 4 sec
later is 20 ft from the intersection. At the same time, another
car leaves the same intersection heading north so that its posi-
tion 4 sec later is 28 ft from the intersection. If the speeds 
of the cars at that instant of time are 9 ft/sec and 11 ft/sec,
respectively, find the rate at which the distance between the
two cars is changing.

h

15 ft

shadow

0 1000

�100

�200

1500 2000 x (ft)

y (ft)

x(1000, �100) 27. A car leaves an intersection traveling east. Its position sec
later is given by ft. At the same time, another 
car leaves the same intersection heading north, traveling

ft in sec. Find the rate at which the distance
between the two cars will be changing 5 sec later.

28. A police cruiser hunting for a suspect pulls over and stops 
at a point 20 ft from a straight wall. The flasher on top of
the cruiser revolves at a constant rate of 90 deg/sec, and 
the light beam casts a spot of light as it strikes the wall.
How fast is the spot of light moving along the wall at a
point 30 ft from the point on the wall closest to the 
cruiser?

29. At 8:00 A.M. ship is 120 km due east of ship . Ship 
is moving north at 20 km/hr, and ship is moving east at 
25 km/hr. How fast is the distance between the two ships
changing at 8:30 A.M.?

30. Two ships leave the same port at noon. Ship moves north
at 18 km/hr, and ship moves northeast at 20 km/hr. How
fast is the distance between them changing at 1 P.M.?

port

45

A
B

B
A

B

A S

N
EW

B
ABA

20 ft

¨

ty � t 2 � 3t

x � t 2 � t
t



31. Adiabatic Process In an adiabatic process (one in which no
heat transfer takes place), the pressure and volume of 
an ideal gas such as oxygen satisfy the equation ,
where is a constant. Suppose that at a certain instant of
time, the volume of the gas is 4L, the pressure is 100 kPa,
and the pressure is decreasing at the rate of 5 kPa/sec. Find
the rate at which the volume is changing.

32. Electric Circuit The voltage in volts (V) in an electric cir-
cuit is related to the current in amperes (A) and the resist-
ance in ohms by the equation . When ,

, is increasing at the rate of 2 V/sec, and is in-
creasing at the rate of A/sec, how fast is the resistance
changing?

33. Mass of a Moving Particle The mass of a particle moving at a
velocity is related to its rest mass by the equation

where ( m/sec) is the speed of light. Suppose
that an electron of mass kg is being acceler-
ated in a particle accelerator. When its velocity is 
m/sec and its acceleration is m/sec2, how fast is
the mass of the electron changing?

34. Variable Resistors Two rheostats (variable resistors) are con-
nected in parallel as shown in the figure. If the resistances of
the rheostats are and ohms , then the single resis-
tor that could replace this combination has resistance ,
called the equivalent resistance, and is given by

Suppose that at a certain instant of time the first rheostat has
a resistance of that is increasing at the rate of 2 /sec,
while the second rheostat has a resistance of 90 that is
decreasing at the rate of 3 /sec. How fast is the resistance
of the equivalent resistor changing at that time?

R2

R1

�
�

�60 �

1

R
�

1

R1
�

1

R2

R
(�)R2R1

2.42 � 105
2.92 � 108

9.11 � 10�31
2.98 � 108c

m �
m0

B1 �
√2

c2

m0√
m

V

I

R

1
2

IVI � 2
V � 12V � IR(�)R

I
V

C
P5V7 � C

VP
35. Coast Guard Patrol Search Mission The pilot of a Coast Guard

patrol aircraft on a search mission had just spotted a dis-
abled fishing trawler and decided to go in for a closer look.
Flying in a straight line at a constant altitude of 1000 ft and
at a constant speed of 264 ft/sec, the aircraft passed directly
over the trawler. How fast was the aircraft receding from the
trawler when the aircraft was 1500 ft from the trawler?

36. Tracking a Plane with Radar Shortly after taking off, a plane 
is climbing at an angle of 30° and traveling at a constant
speed of 600 ft/sec as it passes over a ground radar tracking
station. At that instant of time, the altitude of the plane is
1000 ft. How fast is the distance between the plane and the
radar station increasing at that instant of time?

37. A piston is attached to a crankshaft of radius 3 in. by means
of a 7-in. connecting rod (see Figure a).

1000 ft

30

1000 ft
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(a) (b)

3 in. 7 in.

x in.

qqq

a. Let denote the position of the piston (Figure b). Use
the law of cosines to find an equation relating to .

b. If the crankshaft rotates counterclockwise at a constant
rate of 60 rev/sec, what is the velocity of the piston when

?

38. An aircraft carrier is sailing due east at a constant speed of
30 ft/sec. When the aircraft carrier is at the origin ,
a plane is launched from its deck with a flight path that is
described by the graph of where is the alti-
tude of the plane (in feet). Ten seconds later, when the plane

yy � 0.001x2

(t � 0)

u � p>3

ux
x
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is at the point and ft/sec, how fast
is the distance between the plane and the aircraft carrier
changing?

39. As a tender leaves an offshore oil rig, traveling in a straight
line and at a constant velocity of 20 mph, a helicopter
approaches the oil rig in a direction perpendicular to the
direction of motion of the tender. The helicopter, flying 
at a constant altitude of 100 ft, approaches the rig at a 
constant velocity of 60 mph. When the helicopter is 
1000 ft (measured horizontally) from the rig and the 
tender is 200 ft from the rig, how fast is the distance be-
tween the helicopter and the tender changing? (Recall 
that ft/sec.)

40. The following figure shows the cross section of a swimming
pool that is 30 ft wide. When the pool is being filled with
water at the rate of 600 gal/min and the depth at the deep
end is 4 ft, how fast is the water level rising? (1 gal
0.1337 ft3.)

�

60 mi/hr � 88

(position of aircraft carrier)
A(30t, 0)

P(x, y) (position of aircraft)

y � 0.001x2

0 x (ft)

y (ft)

dx>dt � 500(1000, 1000)

41. A hole is to be drilled into a block of Plexiglas. The 1-in.
drill bit is shown in Figure (a), and the cross section of the
Plexiglas block is shown in Figure (b). The drill press opera-
tor drives the drill bit into the Plexiglas at a constant speed
of 0.05 in./sec. At what rate is the Plexiglas being removed
10 sec after the drill bit first makes contact with the block of
Plexiglas?

Hint: First show that the amount of material removed when the 
drill bit is in. from the top surface of the Plexiglas block is

.

42. Home Mortgage Payments The Garcias are planning to buy
their first home within the next several months and estimate
that they will need a home mortgage loan of $250,000 to be
amortized over 30 years. At an interest rate of per year,
compounded monthly, the Garcias’ monthly repayment 
(in dollars) can be computed by using the formula

a. If the interest rate is currently 7% per year and they
secure the rate right now, what will the Garcias’ monthly
repayment on the mortgage be?

b. If the interest rate is currently increasing at the rate of 
per month, how fast is the monthly repayment on a mort-
gage loan of $250,000 increasing? Interpret your result.

1
4%

P �
250,000r

12c1 � a1 �
r

12
b�360d

P
r

V � [p(9h � 2)]>36
h

1 in.

in.1
3

(a) Cross section of drill bit (b) Cross section of Plexiglas block

h

30 ft

9 ft

13 ft42 ft5 ft

3 ft

2.9 Differentials and Linear Approximations

The Jacksons are planning to buy a house in the near future and estimate that they will
need a 30-year fixed-rate mortgage of $240,000. If the interest rate increases from the
present rate of 7% per year compounded monthly to 7.3% per year compounded
monthly between now and the time the Jacksons decide to secure the loan, approxi-
mately how much more per month will their mortgage be? (You will be asked to answer
this question in Exercise 38.)
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0 xx x � Îx

y

Îy

Îx

y � f(x)

f(x)

f(x � Îx)

Questions like this, in which we wish to estimate the change in the dependent vari-
able (monthly mortgage payment) corresponding to a small change in the independent
variable (interest rate per year), occur in many real-life applications. Here are a few
more examples:

An engineer would like to know the changes in the gaps between the rails in a
railroad track due to expansions caused by small fluctuations in temperature.
A chemist would like to know how a small increase in the amount of a catalyst
will affect the initial speed at which a chemical reaction begins.
An economist would like to know how a small increase in a country’s capital
expenditure will affect the country’s gross domestic product.
A bacteriologist would like to know how a small increase in the amount of a bac-
tericide will affect a population of bacteria.
A businesswoman would like to know how raising the unit price of a product by a
small amount will affect her profits.
A sociologist would like to know how a small increase in the amount of capital
investment in a housing project will affect the crime rate.

To calculate these changes and their approximate effect, we need the concept of
the differential of a function.

Increments
Let denote a variable quantity and suppose that changes from to . Then the
change in , called the increment in , is denoted by the symbol (delta ). Thus,

Final value minus initial value (1)

For example, if changes from 2 to 2.1, then ; and if changes
from 2 to 1.9, then .

Sometimes it is more convenient to express the change in in a slightly different
manner. For example, if we solve Equation (1) for , we find , where

is an increment in . Observe that plays precisely the role that played in our
earlier discussions.

Now, suppose that two quantities, and , are related by an equation ,
where is some function. If changes from to , then the corresponding change
in , or the increment in , is denoted by . It is the value of at minus
the value of at ; that is,

(2)

(See Figure 1.)

�y � f(x � �x) � f(x)

xf(x)
x � �xf(x)�yyy

x � �xxxf
y � f(x)yx

h�xx�x
x2 � x1 � �xx2

x
�x � 1.9 � 2 � �0.1

x�x � 2.1 � 2 � 0.1x

�x � x2 � x1

x�xxx
x2x1xx

FIGURE 1
An increment of in 
induces an increment of

in .y�y � f(x � �x) � f(x)

x�x
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EXAMPLE 1 Suppose that . Find and when (a) changes
from 3 to 3.01 and (b) changes from 3 to 2.98.

Solution

a. Here, . Next, letting , we see that

b. Here, . Also,

Differentials
To find a quick and simple way of estimating the change in , , due to a small change
in , , let’s look at the graph in Figure 2.�xx

�yy

 � �1.052816

 � [2(2.98)3 � 2.98 � 1] � [2(3)3 � 3 � 1]

 �y � f(x � �x) � f(x) � f(2.98) � f(3)

�x � 2.98 � 3 � �0.02

 � 0.531802

 � [2(3.01)3 � 3.01 � 1] � [2(3)3 � 3 � 1]

 �y � f(x � �x) � f(x) � f(3.01) � f(3)

f(x) � 2x3 � x � 1�x � 3.01 � 3 � 0.01

x
x�y�xy � 2x3 � x � 1

FIGURE 2
If is small, is a good

approximation of .�y
dy�x

We can see that the tangent line lies close to the graph of near the point of tan-
gency at . Therefore, if is small, the -coordinate of the point on is a good
approximation of . Equivalently, the quantity is a good approximation 
of .

Now consider the right triangle . We have

or . But the derivative of gives the slope of the tangent line , so we
have . Therefore,

The quantity is called the differential of .ydy

dy � f ¿(x)�x

tan u � f ¿(x)
Tfdy � (tan u)�x

dy

�x
� tan u

�PQR
�y

dyf(x � �x)
TRy�xP

fT

0 xx

dy

R

T

Q
P

x � Îx

y

Îy

Îx

y � f(x)

f(x)

f(x � Îx)

¨

¨
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Notes
1. For the independent variable , there is no difference between the differential 

and the increment ; both measure the change in from to .
2. For the dependent variable , the differential is an approximation of the

change in , , corresponding to a small change in from to .
3. The differential depends on both and . However, if is fixed, then 

is a linear function of .

Later, we will show that the approximation of by is very good when , or
, is small. First, let’s look at some examples.�x

dxdy�y

dx
dyxdxxdy

x � �xxx�yy
dyy

x � �xxx�x
dxx

DEFINITION Differential

Let where is a differentiable function. Then

1. The differential of the independent variable is , where is
an increment in .

2. The differential of the dependent variable is

(3)dy � f ¿(x)�x � f ¿(x) dx

ydy
x

�xdx � �xxdx

fy � f(x)

EXAMPLE 2 Consider the equation of Example 1. Use the differ-
ential to approximate when (a) changes from 3 to 3.01 and (b) changes from
3 to 2.98. Compare your results with those of Example 1.

Solution Let . Then

a. Here, and . Therefore,

and we obtain the approximation

b. Here, and . Therefore,

and we obtain the approximation

�y � �1.06

dy � [6(3)2 � 1](�0.02) � �1.06

dx � 2.98 � 3 � �0.02x � 3

�y � 0.53

dy � [6(32) � 1](0.01) � 0.53

dx � 3.01 � 3 � 0.01x � 3

dy � f ¿(x) dx � (6x2 � 1) dx

f(x) � 2x3 � x � 1

xx�ydy
y � 2x3 � x � 1

From Example 1 we know that the actual
value of is 0.531802.�y

From Example 1 we know that the
actual value of is .�1.052816�y

EXAMPLE 3 Estimating Fuel Costs of Operating an Oil Tanker The total cost incurred
in operating an oil tanker on an 800-mi run, traveling at an average speed of mph, is
estimated to be

dollars. Find the approximate change in the total operating cost if the average speed is
increased from 10 mph to 10.5 mph.

C(√) �
1,000,000

√
� 200√2

√



Solution Letting and , we find

So the total operating costs decrease by approximately $3000.

 � (�10,000 � 4000)(0.5) � �3000

 � �
1,000,000

√2
� 400√ `

√�10
� (0.5)

 �C � dC � C¿(10) d√

d√ � 0.5√ � 10
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EXAMPLE 4 The Rings of Neptune

a. A planetary ring has an inner radius of units and an outer radius of units,
where is small in comparison to (see Figure 3a). Use differentials to
estimate the area of the ring.

b. Observations including those of Voyager I and II showed that Neptune’s ring sys-
tem is considerably more complex than had been believed. For one thing, it is
made up of a large number of distinguishable rings rather than one continuous
great ring, as had previously been thought (see Figure 3b). The outermost ring,
1989N1R, has an inner radius of approximately 62,900 km (measured from the
center of the planet) and a radial width of approximately 50 km. Using these
data, estimate the area of the ring.

r(R � r)
Rr

FIGURE 3

Solution
a. Since the area of a circle of radius is , we have

where . So we see that the area of the ring is approximately
square units. In words, the area of the ring is approxi-

mately equal to

b. Applying the results of part (a) with and , we find that the
area of the ring is approximately , or 19,760,618 sq km, which is
approximately 4% of the earth’s surface.

2p(62,900)(50)
dr � 50r � 62,900

circumference of the inner circle � thickness of the ring

f ¿(r) dr � 2pr(R � r)
dr � R � r

 � f ¿(r) dr

 � dA

 � �A

 pR2 � pr 2 � f(R) � f(r)

A � f(x) � px2x

(b) Neptune and its rings

Remember that change in 
when changes from to .x � Rx � rx

f�A �

R

(a) The area of the ring can be approximated by
      the circumference of the inner circle times
      the thickness.

r

dr � R � r

N
AS

A
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Error Estimates
An important application of differentials lies in the calculation of error propagation.
For example, suppose that the quantities and are related by the equation ,
where is some function; then a small error or incurred in measuring the quan-
tity results in an error in the calculated value of .y�yx

dx�xf
y � f(x)yx

EXAMPLE 5 Estimating the Surface Area of the Moon Assume that the moon is a per-
fect sphere, and suppose that we have measured its radius and found it to be 1080 mi
with a possible error of 0.05 mi. Estimate the maximum error in the computed surface
area of the moon.

Solution The surface area of a sphere of radius is

We are given that the error in is mi and are required to find the error 
in . But if (equivalently, ) is small, then

Let . (4)

Substituting and in Equation (4), we obtain

Therefore, the maximum error in the calculated area is approximately 1357 mi2.

In Example 5 we calculated the error of a quantity . There are two other
common error measurements. They are

, the relative error in the measurement

and

, the percentage error in the measurement

The error, relative error, and percentage error are often approximated by

, , and

respectively.
The relative errors made when the surface area of the moon was calculated in Exam-

ple 5 are given by

and

A summary of these results and the approximate percentage errors follows.

relative error in S �
dS

S
�

8pr

4pr 2
 dr �

2
r
 dr � 0.0000926

relative error in r �
dr

r
�

0.05

1080
� 0.0000463

dq

q
 (100)

dq

q
dq

�q

q
 (100)

�q

q

q�q

�S � 8p(1080)(0.05) � 1357.17

dr � �r � 0.05r � 1080

f(r) � 4pr 2�S � dS � f ¿(r)�r � 8pr dr

dr�rS
�S�r � 0.05r

S � 4pr 2

r
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Variable Error Approximate relative error Approximate percentage error

S

r 0.05

1357.17

0.0000463

0.0000926

0.00463%

0.00926%

Note Example 5 illustrates why the relative error is so important. The (absolute) error
in is 1357.17 mi2. By itself, the error appears to be rather large (a little larger than
the area of the state of Rhode Island). But when the error is compared to the area of
the moon (approximately 14,657,415 mi2), it is a relatively small number.

S

EXAMPLE 6 The edge of a cube was measured and found to be 3 in. with a maxi-
mum possible error of 0.02 in. Find the approximate maximum percentage error that
would be incurred in computing the volume of the cube using this measurement.

Solution Let denote the length of an edge of the cube. Then the volume of the cube
is . The error in the measurement of its volume is approximated by the differ-
ential

Let , so .

But we are given that

and

so

Therefore, the approximate maximum percentage error that would be incurred in com-
puting the volume of the cube is

or 2%.

Linear Approximations
As you can see in Figure 4, the graph of lies very close to its tangent line near the
point of tangency. This suggests that the values of for near can be approxi-
mated by the corresponding values of , where is the linear function describing
the tangent line.

The function can be found by using the point-slope form of the equation of a
line. Indeed, the slope of the tangent line at is , and an equation of the
tangent line is

or

Next, if we replace by in Equation (2) and let , then

�y � f(x) � f(a)

�x � x � aax

y � L(x) � f(a) � f ¿(a)(x � a)

y � f(a) � f ¿(a)(x � a)

f ¿(a)(a, f(a))
L

LL(x)
axf(x)

f

�dV �
V

 (100) �
0.54

33
 (100) �

54

27
� 2

�dV � � 3x2�dx � � 3(3)2(0.02) � 0.54

x � 3�dx � � 0.02

f ¿(x)dx � 3x2dxf(x) � x3dV � 3x2dx

V � x3
x

FIGURE 4

0 xa

y

y � L(x)

y � f(x)
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so

By Equation (3)

or

(5)

provided that is small or, equivalently, is close to . But the expression on the
right of Equation (5) is . So for near . The approximation in Equa-
tion (5) is called the linear approximation of at . The linear function defined by

(6)

whose graph is the tangent line to the graph of at , is called the lineariza-
tion of at . Observe that the linearization of gives an approximation of over a
small interval containing .a

ffaf
(a, f(a))f

L(x) � f(a) � f ¿(a)(x � a)

Laf
axf(x) � L(x)L(x)

ax�x

f(x) � f(a) � f ¿(a)(x � a)

f(x) � f(a) � dy � f ¿(a)�x � f ¿(a)(x � a)

EXAMPLE 7

a. Find the linearization of at .
b. Use the result of part (a) to approximate the numbers , , , ,

, , and . Compare the results with the actual values obtained with a
calculator.

Solution
a. Here, . Since

we find . Also, . Using Equation (6), we see that the required
linearization of is

or

(See Figure 5.)

L(x) � 2 �
1

4
 (x � 4) �

1

4
 x � 1

L(x) � f(4) � f ¿(4)(x � 4)

f
f(4) � 2f ¿(4) � 1

4

f ¿(x) �
1

2
 x�1>2 �

1

21x

a � 4

181614.8
14.041413.9813.9

a � 4f(x) � 1x

FIGURE 5
The linear approximation of 

by L(x) � 1
4 x � 1f(x) � 1x

√x

0 x

y �

x � 1y �

y

1

2

3

632 41 875

4
1

b. Using the result of part (a), we see that

13.9 � f(3.9) � L(3.9) �
1

4
 (3.9) � 1 � 1.975
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Number x L(x) (actual value)f(x)

18

16

14.8

14.04

14

13.98

13.9 3.9

3.98

4

4.04

4.8

6

8

1.975

1.995

2

2.01

2.2

2.5

3

1.97484177

1.99499373

2.00000000

2.00997512

2.19089023

2.44948974

2.82842712 p
p
p
p
p
p
p

Error in Approximating by 
Through several numerical examples we have seen how closely the (true) increment

, where , is approximated by the differential . Let’s
demonstrate that this is no accident. We start by computing the error in the approxi-
mation

For fixed , the quantity in brackets depends only on . Furthermore, because

approaches as approaches 0, the bracketed quantity approaches 0 as 
approaches 0. Let’s denote this quantity, which is a function of , by .* Then
we have

Therefore, if is small, then

and is a very small number, which accounts for the closeness of the approximation.

�y � dy � (small number)(small number)

�x

�y � dy � e(�x)�x

e(�x)�x
�x�xf ¿(x)

f(x � �x) � f(x)

�x

�xx

 � c f(x � �x) � f(x)

�x
� f ¿(x)d�x

 � c f(x � �x) � f(x)

�x
d�x � f ¿(x)�x

 �y � dy � [ f(x � �x) � f(x)] � f ¿(x)�x

dyy � f(x)�y � f(x � �x) � f(x)

dy�y

We obtain the other approximations in a similar manner. The results are summa-
rized in the following table. You can see from the table that the approximations of

by are good if is close to 4 but are less accurate if is farther away
from 4.

xxL(x)f(x)

*We could have called this function of , or , say, but in mathematical literature the Greek letter is
often used to denote a small quantity. Since the functional value is small when is small, for
emphasis we chose the letter to denote that function.e

�xe(�x)
eht�x
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1. If , what is the differential of ? Write an expression
for the differential .dy

xy � f(x) 2. Let . What is the relationship between the actual
change in , , when changes from to and the
differential of at ? Illustrate this relationship graphically.xfdy

x � �xxx�yy
y � f(x)

2.9 CONCEPT REVIEW

1. Let .
a. Find and if changes from 2 to 2.02.
b. Find the differential , and use it to approximate if 

changes from 2 to 2.02.
c. Compute , the error in approximating by .

2. Let .
a. Find and if changes from 2 to 1.97.
b. Find the differential , and use it to approximate if 

changes from 2 to 1.97.
c. Compute , the error in approximating by .

3. Let .
a. Find and if changes from 3 to 3.1.
b. Find the differential , and use it to approximate if

changes from 3 to 3.1.
c. Compute , the error in approximating by .

4. Let .
a. Find and if changes from 1 to 1.02.
b. Find the differential , and use it to approximate if 

changes from 1 to 1.02.
c. Compute , the error in approximating by .

In Exercises 5–14, find the differential of the function at the 
indicated number.

5. ;

6. ;

7. ;

8. ;

9. ;

10. ;

11. ;

12. ;

13. ;

14. ; x �
p

6
f(x) � sin2 x

x �
p

2
f(x) � (1 � 2 cos x)1>2

x �
p

4
f(x) � x tan x

x �
p

4
f(x) � 2 sin x � 3 cos x

x � �1f(x) �
x2

x3 � 1

x � 3f(x) � x2(3x � 1)1>3
x � 2f(x) �22x2 � 1

x � 1f(x) � 2x1>4 � 3x�1>2
x � 0f(x) � x4 � 2x3 � 3

x � 1f(x) � 2x2 � 3x � 1

dy�y�y � dy

x�ydy
x�y�x

y � 1>x
dw�w�w � dw

u
�wdw

u�w�u
w � 12u � 3

dy�y�y � dy

x�ydy
x�y�x

y � 2x3 � x

dy�y�y � dy

x�ydy
x�y�x

y � x2 � 1 In Exercises 15–18, find the linearization of the function at .

15. ;

16. ;

17. ;

18. ;

19. Find the linearization of at , and use 
it to approximate the numbers and . Plot the
graphs of and on the same set of axes.

20. Find the linearization of at , and
use it to approximate the numbers and . Plot
the graphs of and on the same set of axes.

In Exercises 21–24, find the linearization of a suitable function,
and then use it to approximate the number.

21.

22.

23.

24.

25. The side of a cube is measured with a maximum possible
error of 2%. Use differentials to estimate the maximum 
percentage error in its computed volume.

26. Estimating the Area of a Ring of Neptune The ring 1989N2R of
the planet Neptune has an inner radius of approximately
53,200 km (measured from the center of the planet) and a
radial width of 15 km. Use differentials to estimate the area
of the ring.

27. Effect of Advertising on Profits The relationship between the
quarterly profits of the Lyons Realty Company, , and 
the amount of money spent on advertising per quarter is
described by the function

where both and are measured in thousands of dollars.
Use differentials to estimate the increase in profits when the
amount spent on advertising each quarter is increased from
$24,000 to $26,000.

xP(x)

0 � x � 50P(x) � �
1

8
 x2 � 7x � 32

x
P(x)

sin 0.1

15 31.08

163.8

1.0023

Lf
13 1.0513 0.95

a � 0f(x) � 13 1 � xL(x)

Lf
14.113.9

a � 1f(x) � 1x � 3

a �
p

4
f(x) � sin x

a � 8f(x) � x2>3
a � 3f(x) � 12x � 3

a � 1f(x) � x3 � 2x2

aL(x)

2.9 EXERCISES

Videos for selected exercises are available online at www.academic.cengage.com/login.V

www.academic.cengage.com/login
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28. Construction of a Storage Tank A storage tank for propane gas
has the shape of a right circular cylinder with hemispherical
ends. The length of the cylinder is 6 ft, and the radius of
each hemisphere is ft.

a. Show that the volume of the tank is ft3.
b. If the tank were constructed with a radius of 4.1 ft

instead of a specified radius of 4 ft, what would be the
approximate percentage error in its volume?

29. Unclogging Arteries Research done in the 1930s by the French
physiologist Jean Poiseuille showed that the resistance of
a blood vessel of length and radius is , where 
is a constant. Suppose that a dose of the drug TPA increases

by 10%. How will this affect the resistance ? (Assume
that is constant.)

30. Period of a Pendulum The period of a simple pendulum is
given by

where is the length of the pendulum in feet, is the con-
stant of acceleration due to gravity, and is measured in
seconds. Suppose that the length of a pendulum was meas-
ured with a maximum error of . What will be the maxi-
mum percentage error in measuring its period?

31. Period of a Satellite The period of a satellite in a circular orbit
of radius is given by

where is the earth’s mean radius and is the constant of
acceleration. Estimate the percentage change in the period 
if the radius of the orbit increases by 2%.

32. Surface Area of a Horse Animal physiologists use the formula

to calculate the surface area of an animal (in square meters)
from its mass (in kilograms), where is a constant that
depends on the animal under consideration. Suppose that a
physiologist calculates the surface area of a horse .
If the estimated mass of the horse is 280 kg with a maxi-
mum error in measurement of 0.5 kg, determine the maxi-
mum percentage error in the calculation of the horse’s sur-
face area.

(k � 0.1)

kW

S � kW2>3

tR

T �
2pr

R B
r

t

r

1
2 %

T
tL

T � 2pB
L

t

l
Rr

kR � kl>r 4rl
R

2
3pr 2(2r � 9)

6 ft

r

r

33. Child-Langmuir Law In a vacuum diode a steady current flows
between the cathode with potential 0 and anode which is
held at a positive potential . The Child-Langmuir Law
states that , where is a constant. Use differentials
to estimate the percentage change in the current correspond-
ing to a 10% increase in the positive potential.

34. Effect of Price Increase on Quantity Demanded The quantity 
demanded per week of the Alpha Sports Watch (in thou-
sands) is related to its unit price of dollars by the equation

Use differentials to find the decrease in the quantity of
watches demanded per week if the unit price is increased
from $40 to $42.

35. Range of an Artillery Shell The range of an artillery shell fired
at an angle of with the horizontal is

in feet, where is the muzzle speed of the shell. Suppose
that the muzzle speed of a shell is 80 ft/sec and the shell is
fired at an angle of 29.5° instead of the intended 30°. Esti-
mate how far short of the target the shell will land.

36. Range of an Artillery Shell The range of an artillery shell fired
at an angle of with the horizontal is

in feet, where is the muzzle speed of the shell and 
ft/sec2 is the constant of acceleration due to gravity.

Suppose the angle of elevation of the cannon is set at 45°.
Because of variations in the amount of charge in a shell, the
muzzle speed of a shell is subject to a maximum error of
0.1%. Calculate the effect this will have on the range of the
shell.

t � 32
√0

R �
√2

0

t
sin 2u

u°

¨

R ft

√0

R �
1

32
 √2

0 sin 2u

u°

0 � p � 50x � f(p) � 10B
50 � p

p

p

x

I

d

Cathode

0 V0

Anode

kI � kV0
3>2 V0

I
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37. Forecasting Commodity Crops Government economists in a cer-
tain country have determined that the demand equation for
soybeans is given by

where the unit price is expressed in dollars per bushel 
and , the quantity demanded per year, is measured in bil-
lions of bushels. The economists are forecasting a harvest 
of 2.2 billion bushels for the year, with a possible error of
10% in their forecast. Determine the corresponding error in
the predicted price per bushel of soybeans.

38. Financing a Home The Jacksons are considering the purchase
of a house in the near future and estimate that they will
need a loan of $240,000. Their monthly repayment for a 
30-year conventional mortgage with an interest rate of 
per year compounded monthly will be

dollars.
a. Find the differential of .
b. If the interest rate increases from the present rate of 7%

per year to 7.2% per year between now and the time
Jacksons decide to secure the loan, approximately how
much more per month will their mortgage payment be?
How much more will it be if the interest rate increases to
7.3% per year?

39. Period of a Communications Satellite According to Kepler’s
Third Law, the period (in days) of a satellite moving 
in a circular orbit mi above the surface of the earth is
given by

Suppose that a communications satellite is moving in a cir-
cular orbit 22,000 mi above the earth’s surface. Because of
friction, the satellite drops down to a new orbit 21,500 mi
above the earth’s surface. Estimate the decrease in the
period of the satellite to the nearest one-hundredth hour.

40. Effect of an Earthquake on a Structure To study the effect an
earthquake has on a structure, engineers look at the way a
beam bends when subjected to an earth tremor. The equation

where is the length of a beam and is the maximum de-
flection from the vertical, has been used by engineers to cal-
culate the deflection at a point on the beam ft from the
ground. Suppose that a 10-ft vertical beam has a maximum
deflection of ft when subjected to an external force. Using1

2

hD

aL

0 � h � LD � a � a cosaph

2L
b

T � 0.0588a1 �
x

3959
b3>2

x
T

P

P �
20,000r

1 � a1 �
r

12
b�360

r

x
p

p � f(x) �
55

2x2 � 1

differentials, estimate the difference in the deflection between
the point midway on the beam and the point ft above it.

41. Relative Error in Measuring Electric Current When measuring an
electric current with a tangent galvanometer, we use the for-
mula

where is the current, is a constant that depends on the
instrument, and is the angle of deflection of the pointer.
Find the relative error in measuring the current due to an
error in reading the angle . At what position of the pointer
can one obtain the most reliable results?

42. Percentage Error in Measuring Height From a point on level
ground 150 ft from the base of a derrick, Jose measures the
angle of elevation to the top of the derrick as 60°. If Jose’s
measurements are subject to a maximum error of 1%, find
the percentage error in the measured height of the derrick.

In Exercises 43–46, determine whether the statement is true or
false. If it is true, explain why it is true. If it is false, explain why
or give an example to show why it is false.

43. If , where and are constants, then .

44. If is differentiable at and is close to , then
.

45. If , where and are differentiable everywhere,
then .

46. If and , then .�y � dyf ¿(x) 	 0y � f(x)

h(x � �x) � t( f(x)) � t¿( f(x))f ¿(x)�x
fth � t � f

f(x) � f(a) � f ¿(a)(x � a)
axaf

�y � dybay � ax � b

150 ft

h ft

q °

f

I
f

kI

I � k tan f

D ft

h ft

1
10
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In Exercises 1–14, fill in the blanks.

1. a. The derivative of a function with respect to is the func-
tion defined by the rule .

b. The domain of consists of all values of for which the
exists.

c. The number gives the slope of the 
to the graph of at .

d. The number also measures the rate of change of
with respect to at .

e. If is differentiable at , then an equation of the tangent
line to the graph of at is .

2. a. A function might not be differentiable at a .
For example, the function fails to be differen-
tiable at .

b. If a function is differentiable at , then is at
. The converse is false. For example, the function

is continuous at but is not differen-
tiable at .

3. a. If is a constant, then .

b. If is any real number, then .

4. If and are differentiable functions and is a constant,
then the Constant Multiple Rule states that , the
Sum Rule states that , the Product Rule states 
that , and the Quotient Rule states that 

.

5. If , where is a differentiable function, and 
denotes the angle that the tangent line to the graph of at

makes with the positive -axis, then 
.

6. Suppose that gives the position of an object moving on
a coordinate line.
a. The velocity of the object is given by , its

acceleration is given by , and its jerk is given
by . The speed of the object is given by

.
b. The object is moving in the positive direction if 

and in the negative direction if .
It is stationary if .√(t) �

√(t)
√(t)

f(t)

tan a �x(x, f(x))
f
afy � f(x)

ctf

d

dx
 (xn) �n

d

dx
 (c) �c

a
faf

(a, f(a))f
af

f ¿(a)
f

f ¿(a)

xf ¿
f ¿

x

7. If , , , and denote the total cost function, the total
revenue function, the profit function, and the average cost
function, respectively, then the marginal total cost function
is given by , the marginal total revenue function
by , the marginal profit function by , and
the marginal average cost function by .

8. If is differentiable at and is differentiable at , then
the function is differentiable at , and

.

9. a. The General Power Rule states that 

.

b. If is differentiable, then ,

, ,

, ,

and .

10. Suppose that a function is defined implicitly by 
an equation in and . To find , we differentiate

of the equation with respect to and
then solve the resulting equation for . The derivative 
of a term involving includes as a factor.

11. In a related rates problem we are given a relationship
between a variable and a variable that depend
on a third variable . Knowing the values of , , and 
at , we want to find at .

12. Let and . If , then 
. If , then .

13. a. If a variable quantity changes from to , then the
increment in is .

b. If and changes from to , then the
increment in is .

14. If , where is a differentiable function, then the dif-
ferential of is , where is an
increment in , and the differential of is 

.
dy �ydy

dx �xdx
fy � f(x)

�y �y
x � �xxxy � f(x)

�x �x
x2x1x

dy>dt �xy � 1
dx>dt �x2 � y2 � 4x � t(t)y � f(t)

a
dx>dtyxt

x

y
dy>dx

x
dy>dxyx

y � f(x)

d

dx
 [cot f(x)] �

d

dx
 [csc f(x)] �

d

dx
 [sec f(x)] �

d

dx
 [tan f(x)] �

d

dx
 [cos f(x)] �

d

dx
 [sin f(x)] �f

d

dx
 [ f(x)]n �

h¿(x) �
h � t � f

f(x)txf

CPRC
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CHAPTER 2 REVIEW



Review Exercises 237

In Exercises 1 and 2, use the definition of the derivative to find
the derivative of the function.

1. 2.

In Exercises 3 and 4, sketch the graph of for the function 
whose graph is given.

3.

4.

5. The amount of money on fixed deposit at the end of 5 years
in a bank paying interest at the rate of per year is given by

(dollars).
a. What does measure? Give units.
b. What is the sign of ? Explain.
c. If you know that , estimate the change

in the amount after 5 years if the interest rate changes
from 6% to 7% per year.

6. Use the graph of the function to find the value(s) of at
which is not differentiable.

x

y

2
3

5
4

1

4 65321�4 �2 �1�3

f
xf

f ¿(6) � 60,775.31
f ¿(r)

f ¿(r)
A � f(r)

r

x

y

2

3

1

�1

�2

1 2 3�1

x

y

20

10

�10

�20

�30

2 4 6�2

ff ¿

f(x) � 2x3 � 3x � 2f(x) � x2 � 2x � 4

7. Find a function and a number such that

8. Evaluate .

In Exercises 9–38, find the derivative of the function.

9.

10.

11. 12.

13. 14.

15. 16.

17. 18.

19. 20.

21. 22.

23. 24.

25. 26.

27. 28.

29. 30.

31. 32.

33. 34.

35. 36.

37. 38. y �
sin(2x � 1)

2x � 1
f(u) �

cos u

u2

f(x) � tan(x2 � 1)�1>2w � cot3 x

√ � sec 2x � tan 3xu � tan 
2
x

h(x) � secax � 1

x � 1
by � x2 �

sin 2x

x

t(t) � t 2 sin(pt � 1)f(x) � cos(2x � 1)

h(x) �
1 � x

(2x2 � 1)2y �
2t

1t � 1

y � a1 � t 2

1 � t 2b
3>2

f(s) � s(s3 � s � 1)3>2

t(t) � at 2 �
1

t 2b
3

y � (t 3 � 2t � 1)�3>2

f(x) � (1 � 2x)7h(t) �
t cos t

1 � tan t

y �
1 � sin x

1 � sin x
f(x) � x sin x � x2 cos x

f(x) � x tan x � sec xt(u) � cos u � 2 sin u

u �
t 2

1 � 1t
h(u) �

1u

u2 � 1

h(x) �
x

2x2 � 3
t(t) �

t � 1

2t � 1

f(x) �
x � 1

x � 1
s � 2t 2 �

4

t
�

2

1t

t(x) � 2x4 � 3x1>2 � x�1>3 � x�4

f(x) �
1

3
 x6 � 2x4 � x2 � 5

lim
h→0

 
2(1 � h)3 � (1 � h)2 � 3

h

lim
h→0

 
3(4 � h)3>2 � 24

h
� f ¿(a)

af
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In Exercises 39 and 40, find .

39. ; 40. ;

In Exercises 41–50, find the second derivative of the function.

41. 42.

43. 44.

45. 46.

47.

48.

49. 50.

In Exercises 51 and 52, find .

51. ;

52. ;

In Exercises 53 and 54, suppose that and are functions that
are differentiable at and that , ,

, and . Find .

53. 54.

In Exercises 55 and 56, find in terms of , , , and .

55. 56.

In Exercises 57–66, find by implicit differentiation.

57. 58.

59. 60.

61. 62.

63. 64.

65. 66.

In Exercises 67 and 68, write the expression as a function of .

67.

68. lim
h→0

1x � h �
1

x � h
� 1x �

1
x

h

lim
h→0

 
2(x � h)5 � (x � h)3 � 2x5 � x3

h

x

cos2 x � sin2 y � 1sec xy � 8

csc x � x cot y � 1cos(x � y) � x sin y � 1

x sin x � y cos y � 3(x � y)3 � x3 � y3 � 0

x1y � y1x � 1 � 0
1

x2 �
1

y2 � 1

x3 � 3xy2 � y3 � 13x2 � 2y2 � 6

dy>dx

h(x) � t[sin f(x)]h(x) � B3
f(x)

t(x)

t¿f ¿tfh¿(x)

h(x) �
f(x)

t(x)
h(x) � f(x)t(x)

h¿(2)t¿(2) � 4t(2) � 2
f ¿(2) � �1f(2) � 3x � 2

tf

a �
p

4
f(x) � x tan x

a � 4f(x) � 12x � 1

f �(a)

h(x) � x2 cos 
1
x

f(t) � t cot t

u � cos(p � 2t) � sin(p � 2t)

y � cot 
u

2

f(x) � sin 
1
x

f(x) � cos2 x

f(x) �
x � 1

x2 � 1
y � x12x � 1

t(x) �
1

3x � 1
y � x3 � x2 �

1
x

a �
p

4
f(x) � sin(cos x)a � 4f(x) �

1x

x2 � 1

f ¿(a) In Exercises 69–74, find the differential of the function at the
indicated number.

69. ;

70. ;

71. ;

72. ;

73. ;

74. ;

In Exercises 75–76, find equations of the tangent line and nor-
mal line to the curve at the indicated point. Plot the graph and
the tangent lines.

75. ;

76. ;

In Exercises 77–78, find equations of the tangent line and nor-
mal line to the curve at the indicated point.

77. ;

78. ;

79. Find by implicit differentiation, given .

80. Find by implicit differentiation, given
.

81. Find the linearization of at .

82. Find the linearization of a suitable function, and then use it
to approximate .

83. Let .
a. Find the point on the graph of at which the slope of the

tangent line is equal to 2.
b. Find an equation of the tangent line of part (a).

84. Let .
a. Find the points on the graph of at which the slope of

the tangent line is equal to .
b. Find the equation(s) of the tangent line(s) of part (a).

85. Let . How fast is changing when ?

86. The position of a particle moving along a coordinate line is

where is measured in feet and in seconds.
a. Find the velocity and acceleration functions of the particle.
b. Determine the times(s) when the particle is stationary.
c. When is the particle moving in the positive direction and

when is it moving in the negative direction?

ts(t)

t � 0s(t) � t 3 � 12t � 1

x � p>4yy �
sec x

1 � tan x

�4
f

f(x) � 2x3 � 3x2 � 16x � 3

f
f(x) � x2 � 1

13 0.00096

p>6f(x) � cos2 xL(x)

sin 2x � cos 2y � 1
d2y>dx2

x3 � y3 � 1d2y>dx2

(2, 2)x � 1xy � y � 6

(1, 1)x2 � 5xy � y2 � 7 � 0

1p3 , 1 2y � 4 cos2 x

(1, 12)y � x21 � x2

x �
p

4
f(x) �

tan x

1 � cot x

x �
6
p

f(x) � x sin 
1
x

x �
p

4
f(x) � sec2 x

x � 1f(x) � x(2x2 � 1)1>3
x � 1f(x) �22x2 � x � 1

x � 4f(x) � 1x �
1

1x
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d. Construct a schematic showing the position of the body
at any time .

e. What is the total distance traveled by the particle in the
time interval ?

87. The position function of a body moving along a coordinate
line is

where is measured in feet and in seconds. Find the
velocity and acceleration functions for the body.

88. The position function of a particle moving along a coordi-
nate line is

where is measured in feet and in seconds.
a. Find the velocity and acceleration functions for the 

particle.
b. At what time does the particle first reach the origin?
c. What are the velocity and acceleration of the particle

when it first reaches the origin?

89. Velocity of Blood The velocity (in centimeters per second) of
blood cm from the central axis of an artery is given by

where is a constant and is the radius of the artery. Sup-
pose that and . Find , and 
and interpret your results.

90. Traffic Flow The average speed of traffic flow on a stretch of
Route 106 between 6 A.M. and 10 A.M. on a typical weekday
is approximated by the function

where is measured in miles per hour and is measured
in hours with corresponding to 6 A.M. How fast is the
average speed of traffic flow changing at 7 A.M.? At 8 A.M.?

91. Cable TV Subscribers The number of subscribers to CNT Cable
Television in the town of Ipswich is approximated by the
function

where denotes the number of subscribers at the begin-
ning of the th month after service is available. How fast
will the number of subscribers be increasing at the begin-
ning of the fifth month after service is available?

t
N(t)

1 � t � 30N(t) � 2000(1 � 3t)1>2

t � 0
tf(t)

0 � t � 4f(t) � 20t � 45t 0.45 � 50

R

√¿(0.1)√(0.1)R � 0.2k � 1000
Rk

√(r) � k(R2 � r 2)

r

ts(t)

t � 0s(t) � 5 cosat �
p

4
b

ts(t)

t � 0s(t) � 10t 2>3 � t 5>3

[0, 3]

t
92. Marginal Cost Functions The weekly total cost incurred by the

Electra Electronics Company in producing its Zephyr laser
jet printers is given by

dollars, where stands for the number of units produced.
a. Find the marginal cost function and the marginal aver-

age cost function .
b. Compute , and interpret your results.

93. Surface Area of a Human Body An empirical formula by E.F.
Dubois relates the surface area of a human body (in
square meters) to its mass in kilograms and its height 
in centimeters. The formula given by

is used by physiologists in metabolism studies. Suppose that
a man is 1.83 m tall. How fast does his surface area change
with respect to his mass when his mass is 80 kg?

94. Refer to Exercise 93. If the measurement of the mass of the
man is subject to a maximum error of 0.5 kg, what is the
percentage error in the calculation of the man’s surface area?

95. Number of Hours of Daylight The number of hours of daylight
on a particular day of the year in Boston is approximated by
the function

where corresponds to January 1. Compute , and
interpret your result.

96. Projected Profit The management of the company that makes
Long Horn Barbeque Sauce estimates that the daily profit
from the production and sale of cases of sauce is

dollars. Management forecasts that they will sell, on aver-
age, 900 cases of the sauce per day in the next several
months. If the forecast is subject to a maximum error of
10%, find the corresponding error in the company’s pro-
jected average daily profit.

97. The volume of a circular cone is , where is
the radius of the base and is the height.

h

r

h
rV � pr 2h>3

P(x) � �0.000002x3 � 6x � 350

x

f ¿(79)t � 0

f(t) � 3 sinc 2p
365

 (t � 79)d � 12

S � 0.007184W0.425H0.725

HW
S

C¿(5000)
C¿

C¿
x

C(x) � 0.000002x3 � 0.02x2 � 1000x � 120,000
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a. What is the rate of change of the volume with respect
to the height if the radius is constant?

b. What is the rate of change of the volume with respect
to the radius if the height is constant?

98. Range of a Projectile The range in meters of a projectile
fired over a level terrain with a muzzle speed of m/sec at
an angle of elevation of (in radians), where ,
is given by

where is the constant of acceleration ( m/sec2).
a. Compute .
b. Find the value of for which .
c. Show that if and if

.
d. What can you deduce from these results?

99. Given the equation , where and are both
functions of , find if , , and .dx>dt � 3y � 4x � 5dy>dtt

yxx2 � y2 � 9

a0 � a � p
2

dR>da � 00 � a � a0dR>da 	 0
dR>da � 0aa0

dR>da t � 9.8t

R �
√2

0

t
sin 2a

0 � a � p
2a

√0

R

100. Given the equation , where and are
both functions of , find if , , and

.

101. Watching a Boat Race A spectator is watching a rowing race
from the edge of a riverbank. The lead boat is moving in a
straight line that is 120 ft from the river bank. If the boat is
moving at a constant speed of 20 ft/sec, how fast will the
boat be moving away from the spectator when it is 50 ft
past her?

102. Watching a Space Shuttle Launch At a distance of 6000 ft from
the launch site, a spectator is observing a space shuttle
being launched. If the space shuttle lifts off vertically, at
what rate is the distance between the spectator and the
space shuttle changing with respect to the angle of eleva-
tion at the instant when the angle is 30° and the shuttle is
traveling at 600 mph (880 ft/sec)?

103. Let be a point on the hyperbola , and let 
be the point at which the normal to the hyperbola at inter-
sects the -axis. Show that the distance between the origin
and the point is the same as the distance between and .QPP

x
P

Qx2 � y2 � a2P

u

dy>dt � �1
y � 0x � p>2dx>dtt

yxsin 2x � cos 2y � 1

The following example shows that rewriting a function in an alternative form some-
times pays dividends.

PROBLEM-SOLVING TECHNIQUES

EXAMPLE Find if .

Solution Our first instinct is to use the Quotient Rule to compute , , and so
on. The expectation here is either that the rule for will become apparent or that at
least a pattern will emerge that will enable us to guess at the form for . But 
the futility of this approach will be evident when you compute the first two derivatives
of .

Let’s see whether we can transform the expression for before we differentiate.
You can verify that can be written as

There is actually a systematic method for obtaining the last expression for . It is
called partial fraction decomposition and will be taken up in Section 7.4. Differenti-
ating, we obtain

 �
1

2
 [(�1)(x � 1)�2 � (�1)(x � 1)�2]

 �
1

2
 c d

dx
 (x � 1)�1 �

d

dx
 (x � 1)�1d

 f ¿(x) �
1

2
 

d

dx
 c 1

x � 1
�

1

x � 1
d

f(x)

f(x) �
x

x2 � 1
�

1
2(x � 1) � 1

2(x � 1)

(x � 1)(x � 1)
�

1

2
 c 1

x � 1
�

1

x � 1
d

f(x)
f(x)

f

f (n)(x)
f (n)

f �(x)f ¿(x)

f(x) �
x

x2 � 1
f (n)(x)
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where and .0! � 1n! � n(n � 1)(n � 2) p (1)

 f (n)(x) �
(�1)nn!

2
 c 1

(x � 1)n�1
�

1

(x � 1)n�1
d

 o

 �
1

2
 [(�1)33!(x � 1)�4 � (�1)33!(x � 1)�4]

 f ‡(x) �
1

2
 [(�1)(�2)(�3)(x � 1)�4 � (�1)(�2)(�3)(x � 1)�4]

 f �(x) �
1

2
 [(�1)(�2)(x � 1)�3 � (�1)(�2)(x � 1)�3]

1. Find .

2. Find the derivative of .

3. a. Verify that .

b. Find if .

4. Find the values of for which is differentiable.
a. b.

5. Find if .

Hint: Show that .

6. Find if .

7. Suppose that is differentiable and 
for all real numbers and . Show that 
for all .x

f ¿(x) � f ¿(0)f(x)ba
f(a � b) � f(a)f(b)f

f(x) �
ax � b

cx � d
f (n)(x)

f(x) �
2

11 � x
� 11 � x

f(x) �
1 � x

11 � x
f (10)(x)

f(x) � � sin x �f(x) � sin �x �
fx

f(x) �
2x � 1

x2 � x � 2
f (n)(x)

2x � 1

x2 � x � 2
�

1

x � 2
�

1

x � 1

y � 3x �2x � 1x

lim
x→2

 
x10 � 210

x5 � 25

8. Suppose that for every in an interval and
for some in . Show

that for all in .

9. Let , where is a differentiable func-
tion. Find .

10. Determine the values of and such that the parabola
is tangent to the graph of at the

point . Plot the graphs of both functions on the same
set of axes.

11. Suppose is defined on and satisfies
for all and . Show that is a

constant function.
Hint: Look at .

12. Use the definition of the derivative to find the derivative of
.

13. Find at the point if

2x2 � 2xy � xy2 � 3x � 3y � 7 � 0

(1, �2)y�

f(x) � tan ax

f ¿(x)

fyx� f(x) � f(y) � � (x � y)2
(��, �)f

1p6 , 12 2 y � sin xy � x2 � bx � c
cb

F¿(x)
fF(x) � f 121 � x2 2

(a, b)xf(x) � 0
(a, b)cf(c) � f ¿(c) � p � f (n�1)(c) � 0

(a, b)xf (n)(x) � 0
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IN THIS CHAPTER we continue to explore the power of the derivative of a function

as a tool for solving problems. We will see how the first and second derivatives of a

function can be used to help us sketch the graph of the function. We will also see

how the derivative of a function can help us find the maximum and minimum values

of the function. Determining these values is important because many practical prob-

lems call for finding one or both of these extreme values. For example, an engineer

might be interested in finding the maximum horsepower a prototype engine can

deliver, and a businesswoman might be interested in the level of production of a 

certain commodity that will minimize the unit cost of producing that commodity.

3 Applications of the Derivative

Antarctic glaciers are calving
into the ocean with greater

frequency as a result of global
warming. A major cause of

global warming is the increase
of carbon dioxide in the atmos-

phere. We can use the deriva-
tive to help us study the rate

of change of the average
amount of atmospheric CO2. M
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3.1 Extrema of Functions

Absolute Extrema of Functions
The graph of the function in Figure 1 gives the altitude of a hot-air balloon over the
time interval . The point , the lowest point on the graph of , tells us
that the hot-air balloon attains its minimum altitude, , at time . The smallest
value attained by for all values of in the domain of , , is called the absolute min-
imum value of on . Similarly, the point , the highest point on the graph of ,
tells us that the balloon attains its maximum altitude, , at time . The largest value
attained by for all values of in is called the absolute maximum value of on .IfItf

t � df(d)
f(d, f(d))If

f(c)fItf
t � cf(c)

f(c, f(c))I � [a, d]
f

FIGURE 1
The altitude of a hot-air 

balloon for a � t � d
f(t)

DEFINITIONS Extrema of a Function 

A function has an absolute maximum at if for all in the domain
of . The number is called the maximum value of on . Similarly,

has an absolute minimum at if for all in . The number is
called the minimum value of on . The absolute maximum and absolute min-
imum values of on are called the extreme values, or extrema, of on .DfDf

Df
f(c)Dxf(x) � f(c)c

fDff(c)fD
xf(x) � f(c)cf

f

More generally, we have the following definitions.

EXAMPLE 1 Find the extrema of the function, if any, by examining its graph.

a. b. c. d.

Solution The graphs of the functions , , , and are shown in Figure 2.khtf

k(x) �
x

2x2 � 7
h(x) �

1
x

t(x) � �x2f(x) � x2

FIGURE 2

a db c0 t (hr)

(d, f (d ))

(c, f (c))

y (ft)

(a) f has a minimum at 0. (b) t has a maximum at 0. (c) h has no extrema. (d) k has no extrema.

x

y

x

y

x

y

y � x2 

y � �x2 

x

y

y � 1_
x y � x_______

x2 � 7√

y � 1

y � �1

0 0
0

0
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a. has a minimum value of 0 at 0. Next, since the values of are not bounded
above, has no maximum value.

b. has a maximum value of 0 at 0. Also, because the values of are not bounded
below, has no minimum value.

c. The values of are neither bounded above nor bounded below, so has no
absolute extrema.

d. As gets larger and larger, gets closer and closer to 1. But this value is
never attained; that is, a real number does not exist such that . There-
fore, has no maximum value. Similarly, you can show that has no minimum
value.

kk
k(c) � 1c

k(x)x

hh
t

tt

f
ff

EXAMPLE 2 Find the extrema of the function:

a.

b.

Solution
a. The graph of is shown in Figure 3a. We see that has a minimum value of 0 at

0. Next, observe that as approaches 2 through values less than 2, increases
and approaches 4. But never attains the value 4. Therefore, does not have a
maximum.

ff
f(x)x

ff

�1 � x � 2t(x) � x2

�1 � x � 2f(x) � x2

FIGURE 3

b. The graph of is shown in Figure 3b. As before, we see that has a minimum
value of 0 at 0. Next, because 2 lies in the domain of , we see that does attain
a largest value, namely, .

Relative Extrema of Functions
If you refer once again to the graph of the function giving the altitude of a hot-air
balloon over the interval shown in Figure 4, you will see that the point 
is the highest point on the graph of when compared to neighboring points. (For exam-
ple, it is the highest point when compared to the points , where .) This
tells us that is the highest altitude attained by the balloon when considered over a
small time interval containing . The value is called a relative (or local) max-
imum value of .f

f(b)t � b
f(b)

a � t � c(t, f(t))
f

(b, f(b))[a, d]
f

t(2) � 4
tt

tt

(a) f has a minimum at 0.

y � x2 

y

1

�1 1 2

(b) t has a minimum at 0 and a maximum at 2.

x

y � x2 

y

1

4 4

�1 1 2 x
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Similarly, the point is the lowest point on the graph of when compared
to points nearby. (For example, it is the lowest point when compared to the points

, where .) This tells us that the balloon attains the lowest altitude at
when considered over a small time interval containing . The value is

called a relative (or local) minimum value of . Recall that also happens to be the
(absolute) minimum value of , as we observed earlier.

More generally, we have the following definition.
f

f(c)f
f(c)t � ct � c

b � t � d(t, f(t))

f(c, f(c))

DEFINITIONS Relative Extrema of a Function

A function has a relative (or local) maximum at if for all val-
ues of in some open interval containing . Similarly, has a relative (or local)
minimum at if for all values of in some open interval contain-
ing .c

xf(c) � f(x)c
fcx

f(c) � f(x)cf

The function whose graph is shown in Figure 5 has a relative maximum at and
at and a relative minimum at and at . The graph of suggests that at a point cor-
responding to a relative extremum of , either the tangent line is horizontal or it does
not exist. Put another way, the values of that correspond to these points are precisely
the numbers in the domain of at which is zero or does not exist.f ¿f ¿f

x
f

fdbc
af

These observations suggest the following theorem, which tells us where the rela-
tive extrema of a function may occur.

THEOREM 1 Fermat’s Theorem

If has a relative extremum at , then either or does not exist.f ¿(c)f ¿(c) � 0cf

FIGURE 5
The function has relative extrema 
at , , , and . The tangent lines 

at and are horizontal. There 
are no tangent lines at and .dc

ba
dcba

f

FIGURE 4
The altitude of a hot-air 

balloon for a � t � d
a db c0 t (hr)

y (ft)

(c, f (c))

(b, f (b))

a b c d0

y

x
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PROOF First, suppose that has a relative maximum at . If is not differentiable at
, then there is nothing to prove. So let’s suppose that exists. Since has a rela-

tive maximum at , there exists an open interval, , such that for all in 
. This implies that if we pick to be positive and sufficiently small (so that lies

in ), then

or

Multiplying both sides of the latter inequality by , where , we obtain

Taking the right-hand limit of both sides of this inequality gives

By Theorem 3 of Section 1.2

Since exists, we have

and we have shown that .
Next, we pick to be negative and sufficiently small (so that lies in ). Then

or

Upon multiplying this last inequality by and reversing the direction of the inequal-
ity (because ), we have

Thus, we have shown that and , simultaneously. Therefore, .
This proves the theorem for the case in which has a relative maximum at . The 
case in which has a relative minimum at can be proved in a similar manner (see
Exercise 90).

The values of at which is zero or does not exist are given a special name.f ¿f ¿x

cf
cf

f ¿(c) � 0f ¿(c) � 0f ¿(c) � 0

f ¿(c) � lim
h→0

 
f(c � h) � f(c)

h
� lim

h→0�

f(c � h) � f(c)

h
� 0

1>h � 0
1>h

f(c � h) � f(c) � 0f(c � h) � f(c)

Ic � hh
f ¿(c) � 0

f ¿(c) � lim
h→0

 
f(c � h) � f(c)

h
� lim

h→0�

f(c � h) � f(c)

h

f ¿(c)

lim
h→0�

f(c � h) � f(c)

h
� lim

h→0�
0 � 0

f(c � h) � f(c)

h
� 0

h � 01>h
f(c � h) � f(c) � 0f(c � h) � f(c)

I
c � hhI

xf(x) � f(c)Ic
ff ¿(c)c

fcf

DEFINITION Critical Number of 

A critical number of a function is any number in the domain of at which
or does not exist.f ¿(c)f ¿(c) � 0

fcf

f

Theorem 1 states that a relative extremum of can occur only at a critical number
of . It is important to realize, however, that the converse of Theorem 1 is false. In
other words, you may not conclude that if is a critical number of , then must
have a relative extremum at . (See Example 3.)c

ffc
f

f!

EXAMPLE 3 Show that zero is a critical number of each of the functions 
and but that neither function has a relative extremum at 0.t(x) � x1>3

f(x) � x3
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Solution The graphs of and are shown in Figure 6. Since if ,
we see that 0 is a critical number of . But observe that if and 
if , and this tells us that cannot have a relative extremum at 0.fx � 0

f(x) � 0x � 0f(x) � 0f
x � 0f ¿(x) � 3x2 � 0tf

EXAMPLE 4 Find the critical numbers of .

Solution The derivative of is

Observe that is not defined at 0 and also if . Therefore, the criti-
cal numbers of are , 0, and 1.

We will develop a systematic method for finding the relative extrema of a function
in Section 3.3. For the rest of this section we will develop techniques for finding the
extrema of continuous functions defined on closed intervals.

Finding the Extreme Values of a Continuous 
Function on a Closed Interval

As you saw in the preceding examples, an arbitrary function might or might not have
a maximum value or a minimum value. But there is an important case in which the
extrema always exist for a function. The conditions are spelled out in Theorem 2.

�1f
x � 	1f ¿(x) � 0f ¿

f ¿(x) � 1 � x�2>3 �
x2>3 � 1

x2>3

f

f(x) � x � 3x1>3

THEOREM 2 The Extreme Value Theorem

If is continuous on a closed interval , then attains an absolute maximum
value for some number in and an absolute minimum value for
some number in .[a, b]d

f(d)[a, b]cf(c)
f[a, b]f

FIGURE 6
Both and have 0 as a critical 

number, but neither function 
has a relative extremum at 0.

tf

(a) The graph of f

x

y � x3 

y

1

�1

1�1

(b) The graph of t

x

y � x1/3 

y

1

�1

1�10 0

Next, we compute

Note that is not defined at 0, but is; so 0 is a critical number of . Observe that
if and if , so cannot have a relative extremum at 0.tx � 0t(x) � 0x � 0t(x) � 0

ttt¿

t¿(x) �
1

3
 x�2>3 �

1

3x2>3
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In certain applications, not only is a function continuous on a closed interval 
, but it is also differentiable, with the possible exception of a finite set of num-

bers, on the open interval . In such cases, the following procedure can be used to
find the extrema of the function.

(a, b)
[a, b]

Guidelines for Finding the Extrema of a Continuous Function on 

1. Find the critical numbers of that lie in .
2. Compute the value of at each of these critical numbers, and also compute

and .
3. The absolute maximum value of and the absolute minimum value of are

precisely the largest and the smallest numbers found in Step 2.
ff

f(b)f(a)
f

(a, b)f

[a, b]f

This procedure can be justified as follows: If an extremum of occurs at a number
in the open interval , then it must also be a relative extremum of ; hence it must
occur at a critical number of . Otherwise, the extremum of must occur at one or both
of the endpoints of the interval . (See Figure 7.)[a, b]

ff
f(a, b)

f

EXAMPLE 5 Find the extreme values of the function on
.

Solution Since is a polynomial function, it is continuous everywhere; in particular,
it is continuous on the closed interval . Therefore, we can use the Extreme Value
Theorem.

First, we find the critical numbers of in :

Observe that is continuous on . Next, setting gives or 
. Therefore, 0 and 1 are the only critical numbers of in .(�1, 2)fx � 1

x � 0f ¿(x) � 0(�1, 2)f ¿

 � 12x2(x � 1)

 f ¿(x) � 12x3 � 12x2

(�1, 2)f

[�1, 2]
f

[�1, 2]
f(x) � 3x4 � 4x3 � 8

a b0

y

x

(a) The extreme values of f  occur at the
endpoints.

a b0

y

x a b0

y

x

(b) The extreme values of f  occur at critical
numbers.

(c) The absolute minimum value of f  
occurs at both an endpoint and a critical 
number of f , whereas the absolute 
maximum value of f  occurs at an 
endpoint.

FIGURE 7
is continuous on .[a, b]f
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From the table we see that attains the absolute maximum value of 2 at 0 and the
absolute minimum value of approximately at . The graph of shown in Fig-
ure 9 confirms our results.

An Optimization Problem
The solution to many practical problems involves finding the absolute maximum or the
absolute minimum of a function. If we know that the function to be optimized is con-
tinuous on a closed interval, then the techniques of this section can be used to solve
the problem, as illustrated in the following example.

f7p>6�5.4
f

x 0
7p

6

11p

6
2p

f(x) 2 �5.40 �4.03 �4.28

FIGURE 9
The graph of 
on [0, 2p]

f(x) � 2 cos x � x

EXAMPLE 6 Find the extreme values of the function on
.

Solution The function is continuous everywhere; in particular, it is continuous on
the closed interval . Therefore, the Extreme Value Theorem is applicable.

First, we find the critical numbers of in . We have

Observe that is continuous on . Setting gives

Thus, or . (Remember lies in .) So and are the
only critical numbers of in .

Next, we compute the values of at these critical numbers as well as at the end-
points 0 and . These values are shown in the following table.2p

f
(0, 2p)f

11p>67p>6(0, 2p)x11p>6x � 7p>6
 sin x � �

1

2

 �2 sin x � 1 � 0

f ¿(x) � 0(0, 2p)f ¿

f ¿(x) � �2 sin x � 1

(0, 2p)f
[0, 2p]

f

[0, 2p]
f(x) � 2 cos x � x

FIGURE 8
The maximum value of is 8, and the
minimum value is .�9

f

x �1 0 1 2

f(x) �1 �8 �9 8

From the table we see that attains the absolute maximum value of 8 at 2 and the
absolute minimum value of at 1. The graph of shown in Figure 8 confirms our
results. (You don’t need to draw the graph to solve the problem.)

f�9
f

x

y

4

1 2(�1, �1)

(0, �8)

(1, �9)

(2, 8)
f (x) � 3x4 � 4x3 � 8

2

0 2π

�6

Next, we compute at these critical numbers as well as at the endpoints and
2. These values are shown in the following table.

�1f(x)
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EXAMPLE 7 Maximum Deflection of a Beam Figure 10 depicts a beam of length 
and uniform weight per unit length that is rigidly fixed at one end and simply sup-
ported at the other. An equation of the elastic curve (the dashed curve in the figure) is

where the product is a constant called the flexural rigidity of the beam. Show 
that the maximum deflection (the displacement of the elastic curve from the -axis)
occurs at and has a magnitude of approximatelyx � (15 � 133)L>16 � 0.578L

x
EI

y �
w

48EI
 (2x4 � 5Lx3 � 3L2x2)

w
L

FIGURE 10
The beam is rigidly fixed at 

and simply supported at . 
Note the orientation of the -axis.y

x � L
x � 0 y

x

L

0

.0.0054wL4>(EI)

Solution We wish to find the value of on the closed interval at which the
function defined by

attains its absolute maximum value. Since is continuous on , this value must be
attained at a critical number of in or at an endpoint of the interval. To find the
critical numbers of , we compute

Setting gives or

Because , we see that the sole critical number of in 
is . Evaluating at 0, , and , we obtain the 
following table of values.

L0.578Lfx � (15 � 133)L>16 � 0.578L
(0, L)f(15 � 133)L>16 � L

 �
15L 	 133L

16

 x �
15L 	2225L2 � 192L2

16

x � 0f ¿(x) � 0

 �
w

48EI
 x(8x2 � 15Lx � 6L2)

 f ¿(x) �
w

48EI
 (8x3 � 15Lx2 � 6L2x)

f
(0, L)f

[0, L]f

f(x) �
w

48EI
 (2x4 � 5Lx3 � 3L2x2)

f
[0, L]x

f(0) f(0.578L) f(L)

0 0.0054wL4

EI
0

We conclude that the maximum deflection occurs at x � (15 � 133)L>16 � 0.578L
and has a magnitude of approximately .0.0054wL4>(EI)
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x 0
p

3
p

3p

2

f(x) 0 313

2
0 �2

1. Explain each of the following terms: (a) absolute maximum
value of a function ; (b) relative maximum value of a func-
tion . Illustrate each with an example.

2. a. What is a critical number of a function ?
b. Explain the role of a critical number in determining the

relative extrema of a function.

f
f

f
3. a. Explain the Extreme Value Theorem in your own words.

b. Describe a procedure for finding the extrema of a contin-
uous function on a closed interval .[a, b]f

3.1 CONCEPT QUESTIONS

3

0

�3

3π__
2

EXAMPLE 8 Let .

a. Use a graphing utility to plot the graph of using the viewing window
. Find the approximate absolute maximum and absolute mini-C0, 3p2 D 
 [�3, 3]

f

f(x) � 2 sin x � sin 2x

mum values of on the interval .
b. Obtain the exact absolute maximum and absolute minimum values of analyti-

cally.

Solution
a. The required graph is shown in Figure 11. From the graph we see that the

absolute maximum value of is approximately 2.6 obtained when . The
absolute minimum value of is obtained when .x � 3p>2�2f

x � 1f

f
C0, 3p2 Df

Our final example shows how a graphing utility can be used to approximate the
maximum and minimum values of a continuous function defined on a closed interval.
But to obtain the exact values, we must solve the problem analytically.

b. The function is continuous everywhere and, in particular, on the interval .
We find

Since

if or , we see that or . From the following table we see
that the absolute maximum value of is and the absolute minimum value
of is .�2f

313>2f
px � p>31

2cos x � �1

2 cos2 x � cos x � 1 � (2 cos x � 1)(cos x � 1) � 0

 � 2(2 cos2 x � cos x � 1)

sin2 x � 1 � cos2 x � 2 cos x � 2(cos2 x � 1 � cos2 x)

cos 2x � cos2 x � sin2 x � 2 cos x � 2(cos2 x � sin2 x)

 f ¿(x) � 2 cos x � 2 cos 2x

C0, 3p2 Df

FIGURE 11
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In Exercises 1–6, you are given the graph of a function defined
on the indicated domain. Find the absolute maximum and
absolute minimum values of (if they exist) and where they are
attained.

1. defined on 2. defined on (��, �)f(0, 2]f

f

f

3. defined on (��, �)f

3.1 EXERCISES

Videos for selected exercises are available online at www.academic.cengage.com/login.V

x

1

321�3 �1�2

y

�1

1

2

3

y

x

�2

21

x3�1 1�2 2

y

3

2

�2

�1

y

x3 4�3�4 �1 1�2 2

1

4. defined on (�2, �)f

y

x3 41 2

30

20

40

10

�10 (5, �5)

(1, 37)

5. defined on [0, 5]f

6. defined on (�1, �)f

�1

1

y

�1

x1

In Exercises 7–24, sketch the graph of the function and find its
absolute maximum and absolute minimum values, if any.

7. on 8. on 

9. on 10. on 

11. on 12. on 

13. on 

14. on 

15. on 16. on 

17. on 18. on 

19. on 20. on 

21. on 22. on 

23.

24.

In Exercises 25–42, find the critical number(s), if any, of the
function.

25. 26.

27. 28.

29. 30.

31.

32.

33.

34.

35.

36.

37.

38. t(t) � 4t 1>3 � 3t 4>3
f(x) � x2>3
h(z) � z5 � 5z3 � 10z � 4

f(x) � 3x4 � 8x3 � 6x2 � 24x � 10

t(t) � 3t 4 � 4t 3 � 12t 2 � 8

h(x) � x4 � 4x3 � 12

f(x) �
1

3
 x3 �

1

2
 x2 � 2x � 3

f(x) � 2x3 � 6x � 7

t(t) � 2t 3 � 3t 2 � 12t � 4f(x) � x3 � 6x � 2

h(t) � 6t 2 � t � 2f(x) � 2x2 � 4x

t(x) � 4 � 3xf(x) � 2x � 3

f(x) � e24 � x2 if �2 � x � 0

�24 � x2 if 0 � x � 2

f(x) � ex if �1 � x � 0

2 � x if 0 � x � 2

C�p3 , p2 2t(u) � sec u1�p4 , p2 2f(u) � tan u

C14, 1 2h(t) � cos pt10, 3p2 2f(t) � 2 sin t

(0, 2]t(x) � �2x � 1 �[�2, 1)f(x) � �x �

(�1, 1)t(x) �
1
x

(0, 1]f(x) �
1
x

[0, 1)t(x) � 2x2 � 3x � 1

(��, �)f(x) � x2 � 4x � 3

(�2, 1]h(x) � x2 � 1(0, �)t(x) � x2 � 1

[�1, 0)f(t) � t 2 � 1(�1, 0)h(t) � t 2 � 1

(�1, 2]t(x) � �3x � 2[�1, �)f(x) � 2x � 3

www.academic.cengage.com/login
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39. 40.

41. 42.

In Exercises 43–60, find the absolute maximum and absolute
minimum values, if any, of the function.

43. on 

44. on 

45. on 

46. on 

47. on 

48. on 

49. on 

50. on 

51. on 52. on 

53. on 

54. on 

55. on 

56. on 

57. on 

58. on 

59. on 

60. on 

61. Maximizing Profit The total daily profit in dollars realized by
the TKK Corporation in the manufacture and sale of dozen
recordable DVDs is given by the total profit function

Find the level of production that will yield a maximum daily
profit.

62. Reaction to a Drug The strength of a human body’s reaction to
a dosage of a certain drug is given by

where is a positive constant. Show that the maximum reac-
tion is achieved if the dosage is units.

63. Traffic Flow The average speed of traffic flow on a stretch of
Route 124 between 6 A.M. and 10 A.M. on a typical weekday
is approximated by the function

0 � t � 4f(t) � 20t � 401t � 50

k
k

R � D2ak

2
�

D

3
b

D

0 � x � 2000

P(x) � �0.000001x3 � 0.001x2 � 5x � 500

x

[0, 2p]f(x) � x � sin x

C0, p2 Dt(t) � 2 sin t � t

[0, 2p]t(x) � cos x � sin x

C0, p2 Df(x) � 2 � 3 sin 2x

[0, 2]t(x) � x24 � x2

[�1, 2]f(x) � x2>3(x2 � 4)

[0, 9]f(t) �
1

8
 t 2 � 41t

[0, 9]f(x) � x � 21x

[�1, 3]f(x) � 2x �
1
x

[2, 4]t(√) �
√

√ � 1

[0, 2]t(u) �
1u

u2 � 1

[�1, 2]f(x) �
x

x2 � 1

[�2, 3]f(x) � 2x4 �
8

3
 x3 � 8x2 � 12

[�2, 1]t(x) � 3x4 � 4x3 � 1

[�2, 3]f(t) � �2t 3 � 3t 2 � 12t � 3

[�3, 2]h(x) � x3 � 3x2 � 1

[�1, 3]f(x) � �x2 � 4x � 3

[0, 2]f(x) � x2 � x � 2

t(u) � 2 sin u � cos 2uf(t) � cos2(2t)

t(x) �
x2

x2 � 3
h(u) �

u

u2 � 1

where is measured in miles per hour and is measured
in hours, with corresponding to 6 A.M. At what time in
the morning is the average speed of traffic flow highest? At
what time in the morning is it lowest?

64. Foreign-Born Medical Residents The percentage of foreign-born
medical residents in the United States from the beginning 
of 1910 to the beginning of 2000 is approximated by the
function

where is measured in decades with = 0 corresponding to
the beginning of 1910. Show that the percentage of foreign-
born medical residents was lowest in early 1970.
Source: Journal of the American Medical Association.

65. Brain Growth and IQs In a study conducted at the National
Institute of Mental Health, researchers followed the devel-
opment of the cortex, the thinking part of the brain, in
307 children. Using repeated magnetic resonance imaging
scans from childhood to the late teens, they measured the
thickness (in millimeters) of the cortex of children of age 

years with the highest IQs: 121 to 149. These data lead 
to the model

Show that the cortex of children with superior intelligence
reaches maximum thickness around age 11.
Source: Nature.

66. Brain Growth and IQs Refer to Exercise 65. The researchers at
the institute also measured the thickness (also in millime-
ters) of the cortex of children of age years who were of
average intelligence. These data lead to the model

Show that the cortex of children with average intelligence
reaches maximum thickness at age 6.
Source: Nature.

67. Maximizing Revenue The quantity demanded per month of the
Peget wristwatch is related to the unit price by the demand
equation

where is measured in dollars and is measured in units of
a thousand. How many watches must be sold by the manu-
facturer to maximize its revenue?
Hint: Recall that the revenue .

68. Poiseuille’s Law According to Poiseuille’s Law, the velocity
(in centimeters per second) of blood cm from the central
axis of an artery is given by

0 � r � R√(r) � k(R2 � r 2)

r

R � px

xp

0 � x � 20p �
50

0.01x2 � 1

5 � t � 19

A(t) � �0.00005t 3 � 0.000826t 2 � 0.0153t � 4.55

t

5 � t � 19

S(t) � 0.000989t 3 � 0.0486t 2 � 0.7116t � 1.46

t

tt

0 � t � 9P(t) � 0.04363t 3 � 0.267t 2 � 1.59t � 14.7

t � 0
tf(t)
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where is a constant and is the radius of the artery. Show
that the flow of blood is fastest along the central axis. Where
is the flow of blood slowest?

Rk 72. Air Pollution According to the South Coast Air Quality Man-
agement district, the level of nitrogen dioxide, a brown gas
that impairs breathing, that is present in the atmosphere
between 7 A.M. and 2 P.M. on a certain May day in down-
town Los Angeles is approximated by

where is measured in pollutant standard index (PSI) and
is measured in hours, with corresponding to 7 A.M.

Determine the time of day when the PSI is the lowest and
when it is the highest.
Source: The Los Angeles Times.

73. Office Rents After the economy softened, the sky-high office
space rents of the late 1990s started to come down to earth.
The function gives the approximate price per square foot
in dollars, , of prime space in Boston’s Back Bay and
Financial District from the beginning of 1997 to the
beginning of 2002 , where

Show that the office space rents peaked at about the middle
of the year 2000. What was the highest office space rent
during the period in question?
Source: Meredith & Grew Inc./Oncor.

74. Maximum Deflection of a Beam A uniform beam of length ft
and negligible weight rests on supports at both ends. When
subjected to a uniform load of lb/ft, it bends and has the
elastic curve (the dashed curve in the figure below) described
by the equation

where the product is a constant called the flexural rigidity
of the beam. Show that the maximum deflection of the beam
occurs at the midpoint of the beam and that its value is

.5w0L
4>(384EI)

EI

0 � x � Ly �
w0

24EI
 (x4 � 2Lx3 � L3x)

w0

L

0 � t � 5R(t) � �0.711t 3 � 3.76t 2 � 0.2t � 36.5

(t � 5)
(t � 0)

R(t)
R

t � 0t
I(t)

0 � t � 7I(t) � 0.03t 3(t � 7)4 � 60.2
R

69. Chemical Reaction In an autocatalytic chemical reaction the
product formed acts as a catalyst for the reaction. If is the
amount of the original substrate that is present initially and

is the amount of catalyst formed, then the rate of change
of the chemical reaction with respect to the amount of cata-
lyst present in the reaction is

where is a constant. Show that the rate of the chemical
reaction is greatest at the point at which exactly half of the
original substrate has been transformed.

70. Velocity of Airflow During a Cough When a person coughs, the
trachea (windpipe) contracts, allowing air to be expelled at a
maximum velocity. It can be shown that the velocity of
airflow during a cough is given by

where is the radius of the trachea in centimeters during 
a cough, is the normal radius of the trachea in centime-
ters, and is a constant that depends on the length of the
trachea. Find the radius for which the velocity of airflow 
is greatest.

71. A Mixture Problem A tank initially contains 10 gal of brine
with 2 lb of salt. Brine with 1.5 lb of salt per gallon enters
the tank at the rate of 3 gal/min, and the well-stirred mixture
leaves the tank at the rate of 4 gal/min. It can be shown that
the amount of salt in the tank after min is lb, where

What is the maximum amount of salt present in the tank at
any time?

0 � t � 10x � f(t) � 1.5(10 � t) � 0.0013(10 � t)4

xt

k
R

r

0 � r � R√ � f(r) � kr 2(R � r)

√

k

0 � x � QR(x) � kx(Q � x)

x

Q

L0

y (ft)

x (ft)

75. Use of Diesel Engines Diesel engines are popular in cars in
Europe, where fuel prices are high. The percentage of new
vehicles in Western Europe equipped with diesel engines is
approximated by the function

where is measured in years, with corresponding to
the beginning of 1996.

t � 0t

0 � t � 4

f(t) � 0.3t 4 � 2.58t 3 � 8.11t 2 � 7.71t � 23.75
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a. Plot the graph of using the viewing window
.

b. What was the lowest percentage of new vehicles
equipped with diesel engines for the period in question?

Source: German Automobile Industry Association.

76. Federal Debt According to data obtained from the Congres-
sional Budget Office, the national debt (in trillions of dol-
lars) is given by the function

where is measured in years, with corresponding to
the beginning of 1990.
a. Plot the graph of using the viewing window

.
b. When was the federal debt at the highest level over the

period under consideration? What was that level?
Source: Congressional Budget Office.

77. A cylindrical tank of height is filled with water. Suppose a
jet of water flows through an orifice on the tank. According
to Torricelli’s law, the velocity of flow of the jet of water is
given by where is the gravitational constant. It
can be shown that the range (in feet) of the jet of water is
given by . Where should the orifice be
located so that the jet of water will have the maximum
range?

R � 21x(h � x)
R

tV � 12tx

h

[0, 20] 
 [0, 14]
f

t � 0t

0 � t � 20f(t) � 0.0022t 3 � 0.0465t 2 � 0.506t � 3.27

[0, 4] 
 [0, 40]
f

79. Path of a Boat A boat leaves the point (the origin) located
on one bank of a river, traveling with a constant speed of 
20 mph and always heading toward a dock located at the
point , which is due east of the origin (see the
figure). The river flows north at a constant speed of 5 mph.
It can be shown that the path of the boat is

Find the maximum distance the boat has drifted north during
its trip.

0 � x � 1000

y � 500 c a1000 � x

1000
b3>4

� a1000 � x

1000
b5>4d

A (1000, 0)

O

x

h

R

0

y (%)

100

t (days)

y � P(t)

P
75

y (ft)

S

N
EW

O x (ft)A (1000, 0)

a

x

y
q

78. Water Pollution When organic waste is dumped into a pond,
the oxidation process that takes place reduces the pond’s
oxygen content. However, given time, nature will restore 
the oxygen content to its natural level. In the accompanying
graph, gives the oxygen content (as a percentage of its
normal level) days after organic waste has been dumped
into the pond. Suppose that the oxygen content days after
the organic waste has been dumped into the pond is given by

percent of its normal level. Find the coordinates of the point
, and explain its significance.P

P(t) � 100 a t 2 � 10t � 100

t 2 � 20t � 100
b

t
t

P(t)

80. Construction of an AC Transformer In constructing an AC trans-
former, a cross-shaped iron core is inserted into a coil (see
the figure). If the radius of the coil is , find the values of 
and such that the iron core has the largest surface area.
Hint: Let and . Then maximize the function

on the interval .0 � u � p
4

 � 4a2(sin 2u � sin2 u)

 S � 4xy � 4y(x � y) � 8xy � 4y2

y � a sin ux � a cos u
y

xa



0

y (ft)

x (ft)

W 

1
3

q

81. A body of mass moves in an elliptical path with a con-
stant angular speed (see the figure). It can be shown that
the force acting on the body is always directed toward the
origin and has magnitude given by

where and are constants with . Find the points on
the path where the force is greatest and where it is smallest.
Does your result agree with your intuition?

a � bba

t � 0F � mv22a2 cos2 vt � b2 sin2 vt

v

m
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82. The object shown in the figure is a crate full of office equip-
ment that weighs lb. Suppose you try to move the crate
by tying a rope around it and pulling on the rope at an angle

to the horizontal. Then the magnitude of the force that
is required to set the crate in motion is

where is a constant called the coefficient of static friction.
a. Find the angle at which is minimized.
b. What is the magnitude of the force found in part (a)?
c. Suppose and . Plot the graph of as a

function of on the interval . Then verify the result
obtained in parts (a) and (b) for this special case.

C0, p2 Du

Fm � 0.4W � 60

Fu

m

0 � u � p
2F �

mW

m sin u � cos u

Fu

W

83. A uniform beam of length 3 ft and negligible weight is sup-
ported at both ends. When subjected to a concentrated load

at a distance 1 ft from one end, it bends and has the elas-
tic curve (the dashed curve in the figure) described by the
equation

if 0 � x � 1

if 1 � x � 3

y � d W

9EI
 (5x � x3)

W

18EI
 (x3 � 9x2 � 19x � 3)

W

0 xa�a

b

�b

y

where the product is a constant called the flexural rigidity
of the beam. Find the maximum deflection of the beam.
Hint: Maximize over each interval and sepa-
rately. Then combine your results.

[1, 3][0, 1]y � f(x)

EI

84. Let

Show that is discontinuous at but attains an absolute
maximum value and an absolute minimum value on .
Does this contradict the Extreme Value Theorem?

85. Let

Show that attains an absolute maximum value and an
absolute minimum value on the open interval . Does
this contradict the Extreme Value Theorem?

86. Show that the function has no relative
extrema on .

87. Find the critical numbers of the greatest integer function
.

88. Find the absolute maximum value and the absolute mini-
mum value (if any) of the function , where

is the greatest integer function.

89. Show that the function has infinitely many
critical numbers in any open interval that contains the origin.

90. a. Suppose has a relative minimum at . Show that the
function defined by has a relative maxi-
mum at .

b. Use the result of (a) to prove Theorem 1 for the case in
which has a relative minimum at .

In Exercises 91–94, plot the graph of and use the graph to esti-
mate the absolute maximum and absolute minimum values of in
the given interval.

91. on 

92. on 

93. on 

94. on [0, 2]f(x) �
x � cos x

1 � 0.5 sin x

[0, 4]f(x) �
0.2x2

3x4 � 2x2 � 1

[0, 2]f(x) � 0.3x6 � 2x4 � 3x2 � 3

[�2, 2]f(x) � �0.02x5 � 0.3x4 � 2x3 � 6x � 4

f
f

cf

c
t(x) � �f(x)t

cf

f(x) � sin(1>x)

f(x) � Œx œ t(x) � x � Œx œ
f(x) � Œx œ

(��, �)
f(x) � x3 � x � 1

(�1, 4)
f

f(x) � ex2 � 1 if �1 � x � 2

2 if 2 � x � 4

[�1, 1]
x � 0f

f(x) � e�x if �1 � x � 0

x � 1 if 0 � x � 1
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In Exercises 95–98, (a) plot the graph of in the given viewing
window and find the approximate absolute maximum and absolute
minimum values accurate to three decimal places, and (b) obtain
the exact absolute maximum and absolute minimum values of 
analytically.

95. on 

96. on 

97. on 

98. on C0, p2 D 
 [0, 1]f(x) � 2 sin x � x

[0, 1] 
 [0.8, 1]f(x) �
x � 1

1x � 1

[�1, 1] 
 [�2, 2]f(x) � x �21 � x2

[�1, 2] 
 [0, 8]f(x) �
1

2
 x4 �

3

2
 x � 2

f

f In Exercises 99–102, determine whether the statement is true or
false. If it is true, explain why it is true. If it is false, explain why
or give an example to show why it is false.

99. If , then has a relative maximum or a relative
minimum at .

100. If has a relative minimum at , then .

101. If is defined on the closed interval , then has an
absolute minimum value in .

102. If is continuous on the interval , then attains an
absolute minimum value at some number in .(a, b)c

f(a, b)f

[a, b]
f[a, b]f

f ¿(c) � 0cf

c
ff ¿(c) � 0

The Mean Value Theorem

Rolle’s Theorem
The graph of the function shown in Figure 1 gives the depth of a radical new twin-
piloted submarine during a test dive. The submarine is on the surface at 
when it commences its dive. It resurfaces at , the end of the test run.
As you can see from the graph of , there is at least one point on the graph of at which
the tangent line to the curve is horizontal.

ff
[ f(b) � 0]t � b

[ f(a) � 0]t � a
f

3.2

FIGURE 1
gives the depth of the submarine at time .tf(t)

We can convince ourselves that there must exist at least one such point on the graph
of through the following intuitive argument: Since we know that the submarine
returned to the surface, there must be at least one point on the graph of that corre-
sponds to the time when the submarine stops diving and begins to resurface. The tan-
gent line to the graph of at this point must be horizontal.

A mathematical description of this phenomenon is contained in Rolle’s Theorem,
named in honor of the French mathematician Michel Rolle (1652–1719).

f

f
f

THEOREM 1 Rolle’s Theorem

Let be continuous on and differentiable on . If , then
there exists at least one number in such that .f ¿(c) � 0(a, b)c

f(a) � f(b)(a, b)[a, b]f

0

y (ft)

t (min)a bMICHEL ROLLE
(1652–1719)

It is interesting to note that the theorem
that bears Michel Rolle’s name—which was
originally included in a 1691 book on geom-
etry and algebra—is the basis for so many
concepts in calculus, given that Rolle him-
self was skeptical of the topic’s validity.
Rolle attacked as a set of untruths what
were then the newly developing infinitesi-
mal methods, now known as calculus. Even-
tually convinced of the validity of calculus
by Pierre Varignon (1654–1722), Rolle later
voiced his support for the subject. Shortly
thereafter, the general opposition to calcu-
lus collapsed, followed by many new
advances in the content area. Rolle’s Theo-
rem is now found in the development of
many of the introductory topics of differ-
ential calculus.

Historical Biography
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FIGURE 3
The numbers and

satisfy as
guaranteed by Rolle’s Theorem.

f ¿(c) � 0c2 � 13>3 c1 � �13>3

EXAMPLE 2 A Real-Life Illustration of Rolle’s Theorem During a test dive of a pro-
totype of a twin-piloted submarine, the depth in feet of the submarine at time in min-
utes is given by , where .

a. Use Rolle’s Theorem to show that there is some instant of time between 0
and 7 when .

b. Find the number and interpret your results.c
h¿(c) � 0

t � c

0 � t � 7h(t) � t 3(t � 7)4
t

PROOF Let . There are two cases to consider (see Figure 2).f(a) � f(b) � d

Case 1 for all in (see Figure 2a).
In this case, for all in , so for any number in .

Case 2 for at least one in (see Figure 2b).
In this case there must be a number in where or . First, sup-
pose that . Since is continuous on , the Extreme Value Theorem implies
that attains an absolute maximum value at some number in . The number 
cannot be an endpoint because , and we have assumed that 
for some number in . Therefore, must be in . Since is differentiable on

, exists, and by Fermat’s Theorem .
The proof for the case in which is similar and is left as an exercise (Exer-

cise 39).
f(x) � d

f ¿(c) � 0f ¿(c)(a, b)
f(a, b)c(a, b)x

f(x) � df(a) � f(b) � d
c[a, b]cf

[a, b]ff(x) � d
f(x) � df(x) � d(a, b)x

[a, b]xf(x) � d

(a, b)cf ¿(c) � 0(a, b)xf ¿(x) � 0
[a, b]xf(x) � d

EXAMPLE 1 Let for in .

a. Show that satisfies the hypotheses of Rolle’s Theorem on .
b. Find the number(s) in such that as guaranteed by Rolle’s 

Theorem.

Solution
a. The polynomial function is continuous and differentiable on . In partic-

ular, it is continuous on and differentiable on . Furthermore,

and

and the hypotheses of Rolle’s theorem are satisfied.
b. Rolle’s Theorem guarantees that there exists at least one number in 

such that . But , so to find , we solve

obtaining . In other words, there are two numbers, and
, in for which (Figure 3).f ¿(c) � 0(�1, 1)c2 � 13>3 c1 � �13>3c � 	13>3

3c2 � 1 � 0

cf ¿(x) � 3x2 � 1f ¿(c) � 0
(�1, 1)c

f(1) � 13 � 1 � 0f(�1) � (�1)3 � (�1) � 0

(�1, 1)[�1, 1]
(��, �)f

f ¿(c) � 0(�1, 1)c
[�1, 1]f

[�1, 1]xf(x) � x3 � x

0 0x

y

(a) Case 1

a c1 c2

y = d

b x

y

(b) Case 2

a c1 c2

y = f (x)

b

dd

FIGURE 2
Geometric interpretations 

of Rolle’s Theorem

x

y

1

�1

1�1

y  � x3 � x

  3__
3�   3__

3

0
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Solution
a. The polynomial function is continuous on and differentiable on .

Furthermore, and , so the hypotheses of Rolle’s Theorem 
are satisfied. Therefore, there exists at least one number in such that

.
b. To find the value of , we first compute

Setting gives , 3, or 7. Since 3 is the only number in the interval
such that , we see that . Interpreting our results, we see 

that the submarine is on the surface initially (since ) and returns to the
surface again after 7 minutes (since ). The vertical component of the
velocity of the submarine is zero at , at which time the submarine attains 
the greatest depth of ft. The graph of is shown in
Figure 4.

Rolle’s Theorem is a special case of a more general result known as the Mean Value
Theorem.

hh(3) � 33(3 � 7)4 � 6912
t � 3
h(7) � 0

h(0) � 0
c � 3h¿(3) � 0(0, 7)

t � 0h¿(t) � 0

 � 7t 2(t � 7)3(t � 3)

 � t 2(t � 7)3[3(t � 7) � 4t]

 h¿(t) � 3t 2(t � 7)4 � t 3(4)(t � 7)3

c
h¿(c) � 0

(0, 7)c
h(7) � 0h(0) � 0

(0, 7)[0, 7]h

FIGURE 4
The submarine is at a depth of feet
at time minutes.t

h(t)

THEOREM 2 The Mean Value Theorem

Let be continuous on and differentiable on . Then there exists at
least one number in such that

(1)f ¿(c) �
f(b) � f(a)

b � a

(a, b)c
(a, b)[a, b]f

To interpret this theorem geometrically, notice that the quotient in Equation (1) is
just the slope of the secant line passing through the points and 
lying on the graph of (Figure 5). The quantity on the left, however, gives the
slope of the tangent line to the graph of at . The Mean Value Theorem tells us
that under suitable conditions on , there is always at least one point on the
graph of for such that the tangent line to the graph of at this point is 
parallel to the secant line passing through and . Observe that if , then
Theorem 2 reduces to Rolle’s Theorem.

f(a) � f(b)QP
fa � c � bf

(c, f(c))f
x � cf

f ¿(c)f
Q(b, f(b))P(a, f(a))

FIGURE 5
The tangent line at is parallel

to the secant line through and .QPS
(c, f(c))T

y  � t3(t  � 7)4

(3, 6912)

y (ft)

730 t (min)

7000

0 x

y

a c b

P(a, f (a))

Q(b, f (b))

S

T

(c, f (c))
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PROOF If you examine Figure 5, you will see that the vertical distance between the
graph of and the secant line passing through and is maximal at . This
observation gives a clue to the proof of the Mean Value Theorem: Find a function whose
absolute value gives the vertical distances between the graph of and the secant line.
Then optimize this function.

Now an equation of the secant line can be found by using the point-slope form of
the equation of a line with slope and the point . Thus,

or

Define the function by

(2)

Notice that gives the vertical distance between the graph of and the secant line
through and (Figure 6). The function is continuous on and differentiable
on , so we can use Rolle’s Theorem on . First, we note that .
Therefore, there exists at least one number in such that . But

so implies that

or

as was to be shown.

f ¿(c) �
f(b) � f(a)

b � a

0 � f ¿(c) �
f(b) � f(a)

b � a

D¿(c) � 0

D¿(x) � f ¿(x) �
f(b) � f(a)

b � a

D¿(c) � 0(a, b)c
D(a) � D(b) � 0D(a, b)

[a, b]DQP
f�D(x) �

D(x) � f(x) � cf(b) �
f(b) � f(a)

b � a
� (x � b)d

D

y � f(b) �
f(b) � f(a)

b � a
� (x � b)

y � f(b) �
f(b) � f(a)

b � a
� (x � b)

(b, f(b))[ f(b) � f(a)]>(b � a)

f

x � cQPSf

P(a, f (a))

P(a, f (a))Q(b, f (b))

Q(b, f (b))

y � f (x)

y � f (x)

�D(x)�

�D(x)�

0

y

x 0

y

x

y � f (b) � (x � b)
f (b) � f (a)

b � a

y � f (b) � (x � b)
f (b) � f (a)

b � a

FIGURE 6
gives the vertical distance between the graph of and the secant line passing through and .QPf�D(x) �



262 Chapter 3 Applications of the Derivative

EXAMPLE 3 Let .

a. Show that satisfies the hypotheses of the Mean Value Theorem on .
b. Find the number(s) in that satisfy Equation (1) as guaranteed by the

Mean Value Theorem.

Solution
a. is a polynomial function, so it is continuous and differentiable on . In

particular, is continuous on and differentiable on . So the
hypotheses of the Mean Value Theorem are satisfied.

b. , so . With and , Equation (1) gives

or

and . So there are two numbers, and , in
that satisfy Equation (1). (See Figure 7.)

The next example gives an interpretation of the Mean Value Theorem in a real-life
setting.

(�1, 1)
c2 � 13>3c1 � �13>3c � 	13>3

 1 � 3c2

 
1 � (�1)

1 � (�1)
� 3c2

f(1) � f(�1)

1 � (�1)
� f ¿(c)

b � 1a � �1f ¿(c) � 3c2f ¿(x) � 3x2

(�1, 1)[�1, 1]f
(��, �)f

(�1, 1)c
[�1, 1]f

f(x) � x3

FIGURE 7
The numbers and

satisfy Equation (1),
as guaranteed by the Mean Value
Theorem.

c2 � 13>3 c1 � �13>3

EXAMPLE 4 The Mean Value Theorem and the Maglev The position of a maglev mov-
ing along a straight, elevated monorail track is given by , ,
where is measured in feet and is measured in seconds. Then the average velocity of
the maglev during the first 4 sec of the run is

(3)

or 16 ft/sec. Next, since is continuous on and differentiable on , the Mean
Value Theorem guarantees that there is a number in such that

(4)

But , so using Equation (3), we see that Equation (4) is equivalent to

or . Since measures the instantaneous velocity of the maglev at any time ,
the Mean Value Theorem tells us that at some time between and (in this
case, ) the maglev must attain an instantaneous velocity equal to the average veloc-
ity of the maglev over the time interval .

Some Consequences of the Mean Value Theorem
An important application of the Mean Value Theorem is to establish other mathemat-
ical results. For example, we know that the derivative of a constant function is zero.
Now we can show that the converse is also true.

[0, 4]
t � 2

t � 4t � 0t
tf ¿(t)c � 2

16 � 8c

f ¿(t) � 8t

f(4) � f(0)

4 � 0
� f ¿(c)

(0, 4)c
(0, 4)[0, 4]f

f(4) � f(0)

4 � 0
�

64 � 0

4
� 16

ts
0 � t � 30s � f(t) � 4t 2

x

y

1

�1

1�1

y  � x3

  3__
3

�   3__
3

(�1, f (�1))

(1, f (1))
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COROLLARY TO THEOREM 3
If for all in an interval , then and differ by a constant on

; that is, there exists a constant such that for all in
.(a, b)

xf(x) � t(x) � cc(a, b)
tf(a, b)xf ¿(x) � t¿(x)

PROOF Let . Then

for every in . By Theorem 3, is constant; that is, is constant on .
Thus, for some constant and for all in .

Determining the Number of Zeros of a Function
Our final example brings together two important theorems—the Intermediate Value
Theorem and Rolle’s Theorem—to help us determine the number of zeros of a func-
tion in a given interval .[a, b]f

(a, b)xf(x) � t(x) � ccf(x) � t(x) � c
(a, b)f � th(a, b)x

h¿(x) � f ¿(x) � t¿(x) � 0

h(x) � f(x) � t(x)

EXAMPLE 5 Show that the function has exactly one zero in the
interval .

Solution First, observe that is continuous on and that and
. Therefore, by the Intermediate Value Theorem, there must exist at least one

number that satisfies such that . In other words, has at least
one zero in .

To show that has exactly one zero, suppose, on the contrary, that has at least two
distinct zeros, and . Without loss of generality, suppose that . Then

. Because is differentiable on , an application of Rolle’s The-
orem tells us that there exists a number between and such that . But

can never be zero in . This contradiction establishes the
result.

The graph of is shown in Figure 8.f

(x1, x2)f ¿(x) � 3x2 � 1 � 1
f ¿(c) � 0x2x1c

(x1, x2)ff(x1) � f(x2) � 0
x1 � x2x2x1

ff
(�2, 0)

ff(c) � 0�2 � c � 0c
f(0) � 1

f(�2) � �9[�2, 0]f

[�2, 0]
f(x) � x3 � x � 1

FIGURE 8
The graph shows the zero of .f

THEOREM 3
If for all in an interval , then is constant on .(a, b)f(a, b)xf ¿(x) � 0

PROOF Suppose that for all in . To prove that is constant on 
, it suffices to show that has the same value at every pair of numbers in .

So let and be arbitrary numbers in with . Since is differentiable
on , it is also differentiable on and continuous on . Therefore, the
hypotheses of the Mean Value Theorem are satisfied on the interval . Applying
the theorem, we see that there exists a number in such that

(5)

But by hypothesis, for all in , so . Therefore, Equation (5)
implies that , or ; that is, has the same value at any
two numbers in . This completes the proof.(a, b)

ff(x1) � f(x2)f(x2) � f(x1) � 0
f ¿(c) � 0(a, b)xf ¿(x) � 0

f ¿(c) �
f(x2) � f(x1)

x2 � x1

(x1, x2)c
[x1, x2]

[x1, x2](x1, x2)(a, b)
fx1 � x2(a, b)x2x1

(a, b)f(a, b)
f(a, b)xf ¿(x) � 0

10

�10

�2 2
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1. State Rolle’s Theorem and give a geometric interpretation 
of it.

2. State the Mean Value Theorem, and give a geometric inter-
pretation of it.

3. Refer to the graph of .
a. Sketch the secant line through the points and 

. Then draw all lines parallel to this secant line 
that are tangent to the graph of .

b. Use the result of part (a) to estimate the values of that
satisfy the Mean Value Theorem on the interval .[0, 9]

c
f

(9, 8)
(0, 3)

f

3.2 CONCEPT QUESTIONS

In Exercises 1–8, verify that the function satisfies the hypotheses
of Rolle’s Theorem on the given interval, and find all values of 
that satisfy the conclusion of the theorem.

1. ;

2. ;

3. ;

4. ;

5. ;

6. ;

7. ;

8. ;

In Exercises 9–16, verify that the function satisfies the hypothe-
ses of the Mean Value Theorem on the given interval, and find
all values of that satisfy the conclusion of the theorem.

9. ; 10. ;

11. ; 12. ;

13. ;

14. ;

15. ; 16. ;

17. Flight of an Aircraft A commuter plane takes off from the Los
Angeles International Airport and touches down 30 min later
at the Ontario International Airport. Let (in feet) be theA(t)

C0, p2 Dt(t) �
sin t

1 � cos t
Cp2 , p Df(x) � x � sin x

C0, p2 Df(x) � sin x

[0, 4]h(x) � x22x � 1

[�2, 0]t(t) �
t

t � 1
[1, 3]h(x) �

1
x

[�1, 2]f(x) � x3 � 2x2[0, 2]f(x) � x2 � 1

c

[0, p]f(x) � cos 2x � 1

[0, p]h(t) � sin2 t

[0, 6]f(t) � t 2>3(6 � t)1>3
[�1, 1]f(x) � x21 � x2

[0, 7]h(x) � x3(x � 7)4

[�2, 0]f(x) � x3 � x2 � 2x

[�3, 3]t(x) � x3 � 9x

[1, 3]f(x) � x2 � 4x � 3

c
altitude of the plane at time (in minutes), where .
Use Rolle’s Theorem to explain why there must be at least
one number with such that . Interpret
your result.

18. Breaking the Speed Limit A trucker drove from Bismarck to
Fargo, a distance of 193 mi, in 2 hr and 55 min. Use the
Mean Value Theorem to show that the trucker must have
exceeded the posted speed limit of 65 mph at least once 
during the trip.

19. Test Flights In a test flight of the McCord Terrier, an experi-
mental VTOL (vertical takeoff and landing) aircraft, it was
determined that sec after takeoff, when the aircraft was
operated in the vertical takeoff mode, its altitude was

Use Rolle’s Theorem to show that there exists a number 
satisfying such that . Find the value of
, and explain its significance.

20. Hotel Occupancy The occupancy rate of the all-suite Wonder-
land Hotel, located near a theme park, is given by the func-
tion

where is measured in months with corresponding to
the beginning of January. Show that there exists a number 
that satisfies such that . Find the value
of , and explain its significance.c

r¿(c) � 00 � c � 12
c

t � 0t

0 � t � 12r(t) �
10

81
 t 3 �

10

3
 t 2 �

200

9
 t � 56

c
h¿(c) � 00 � c � 8

c

0 � t � 8h(t) �
1

16
 t 4 � t 3 � 4t 2

t

A¿(c) � 00 � c � 30c

0 � t � 30t

3.2 EXERCISES

Videos for selected exercises are available online at www.academic.cengage.com/login.V
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x
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1 1098765432

y � f (x)

www.academic.cengage.com/login
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21. Let Show that there is no number in
such that even though .

Why doesn’t this contradict Rolle’s Theorem?

22. Let , , and . Show that there is
no number in such that

Doesn’t this contradict the Mean Value Theorem? Explain.

23. Let

Does satisfy the hypotheses of the Mean Value Theorem on
? Explain.

24. Prove that has at least one zero in the
interval .
Hint: Apply Rolle’s Theorem to the function 
on .

25. Prove that has exactly one zero in
.

26. Prove that the equation has exactly
one real root.

27. Prove that the function , where is any
real number, has at most one zero in .

28. Use the Mean Value Theorem to prove that
for all real numbers and .

29. Suppose that the equation 

has a positive root . Show that the equation

has a positive root smaller than .
Hint: Use Rolle’s Theorem.

30. Suppose where is a constant, for all values 
of . Show that must be a linear function of the form

for some constant .
Hint: Use the corollary to Theorem 3.

31. Let .
a. Use Rolle’s Theorem to show that has exactly two 

distinct zeros.
b. Plot the graph of using the viewing window

.

32. Let

f(x) � • x sin 
p

x
if x � 0

0 if x � 0

[�3, 3] 
 [�5, 5]
f

f
f(x) � x4 � 4x � 1

df(x) � cx � d
fx

cf ¿(x) � c,

r

nanx
n�1 � (n � 1)an�1x

n�2 � p � a1 � 0

r

anx
n � an�1x

n�1 � p � a1x � 0

ba� sin a � sin b � � �a � b �

[0, 1]
cf(x) � x5 � 12x � c

x7 � 6x5 � 2x � 6 � 0

(��, �)
f(x) � x5 � 6x � 4

[0, 1]
t(x) � x4 � 2x2 � x

(0, 1)
f(x) � 4x3 � 4x � 1

[0, 2]
f

f(x) � ex2 if x � 1

2 � x if x � 1

f ¿(c) �
f(b) � f(a)

b � a

(a, b)c
b � 8a � �1f(x) � 1 � x2>3

f(�1) � f(1) � 0f ¿(c) � 0(�1, 1)
cf(x) � �x � � 1. Use Rolle’s Theorem to prove that the derivative is

equal to zero at an infinite set of numbers in the interval
. Plot the graph of using the viewing window

.

33. Prove the formula

Hint: Let . Show that on .
Use Theorem 3 to conclude that , where is a constant.
Determine .

34. Suppose that and are continuous on an interval and
differentiable on the interval . Furthermore, suppose
that and for . Prove that

for 
Hint: Apply the Mean Value Theorem to the function .

35. Let , and let be an arbitrary
interval. Show that the number in the Mean Value Theo-
rem applied to the function lies at the midpoint of the
interval .

36. Let . Prove that has
exactly three real zeros.

37. A real number such that is called a fixed point of
the function . Geometrically, a fixed point of is a point
that is mapped by onto itself. Prove that if is differen-
tiable and for all in an interval , then has at
most one fixed point in .

38. Use the result of Exercise 37 to show that 
has exactly one fixed point in the interval . What is
the fixed point?

39. Complete the proof of Rolle’s Theorem by considering the
case in which for some number in .

40. Let be continuous on and differentiable on . Put
.

a. Use the Mean Value Theorem to show that there exists at
least one number that satisfies such that

b. Find in the formula in part (a) for the function
.

41. Let .
a. Show that satisfies the hypotheses of Rolle’s Theorem

on the interval .
b. Use a calculator or a computer to estimate all values of 

accurate to five decimal places that satisfy the conclusion
of Rolle’s Theorem.

c. Plot the graph of and the (horizontal) tangent lines to
the graph of at the point(s) for the values of 
found in part (b).

c(c, f(c))f
f

c
[�1, 2]

f
f(x) � x4 � 2x3 � x � 2

f(x) � x2
u

f(a � h) � f(a)

h
� f ¿(a � uh)

0 � u � 1u

h � b � a
(a, b)[a, b]f

(a, b)xf(x) � d

(0, �)
f(x) � 1x � 6

I
fIxf ¿(x) � 1

ff
ff

f(c) � cc

f ¿f(x) � 2(x � 1)(x � 2)(x � 3)(x � 4)

[a, b]
f

c
[a, b]f(x) � Ax2 � Bx � C

h � f � t

a � x � b.f(x) � t(x)
a � x � bf ¿(x) � t¿(x)f(a) � t(a)

(a, b)
[a, b]tf

C
Cf(x) � C

(��, �)f ¿(x) � 0f(x) � cos2 x � 1
2 cos 2x

cos2 x �
1 � cos 2x

2

[0, 1] 
 [�1, 1]
f(0, 1)

f ¿(x)
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42. Let .
a. Show that satisfies the hypotheses of Rolle’s Theorem

on the interval .
b. Use a calculator or a computer to estimate all value(s) of

accurate to five decimal places that satisfy the conclu-
sion of Rolle’s Theorem.

c. Plot the graph of and the (horizontal) tangent lines to
the graph of at the point(s) for the value(s) of 

found in part (b).

43. Let .
a. Use a calculator or a computer to estimate all values of 

accurate to three decimal places that satisfy the con-
clusion of the Mean Value Theorem for on the interval

.
b. Plot the graph of , the secant line passing through the

points and , and the tangent line to the
graph of at the point(s) for the value(s) of 
found in part (a).

44. Let .
a. Use a calculator or a computer to estimate all values of 

accurate to three decimal places that satisfy the con-
clusion of the Mean Value Theorem for on the interval

.
b. Plot the graph of , the secant line passing through thef
C0, p

2

4 D
f

c

f(x) � sin 1x

c(c, f(c))f
(2, 10)(0, 2)
f

[0, 2]
f

c

f(x) � x4 � 2x2 � 2

c
(c, f(c))f

f

c

[0, p]
f

f(x) � x2 sin x In Exercises 45–50, determine whether the statement is true or
false. If it is true, explain why it is true. If it is false, explain why
or give an example to show why it is false.

45. Suppose that is continuous on and differentiable 
on . If for at least one in , then

.

46. Suppose that is continuous on but is not differen-
tiable on . Then there does not exist a number in

such that

47. If for all , then is a constant function.

48. If for all , then

for all numbers and .

49. There does not exist a continuous function defined on 
the interval and differentiable on satisfying

on and for all 
in .

50. If is continuous on , differentiable on , and sat-
isfies , , then there exists a number satis-
fying , such that .f ¿(c) � 3

21 � c � 3
cf(3) � 5f(1) � 2

(1, 3)[1, 3]f

(2, 5)
x� f ¿(x) � � 2[2, 5]� f(5) � f(2) � � 6

(2, 5)[2, 5]

x2x1

� f(x1) � f(x2) � � �x1 � x2 �

x� f ¿(x) � � 1

fxf ¿(x) � 0

f ¿(c) �
f(b) � f(a)

b � a

(a, b)
c(a, b)

[a, b]f

f(a) � f(b)
(a, b)cf ¿(c) � 0(a, b)

[a, b]f

points and , and the tangent line to the graph
of at the point(s) for the value(s) of found in
part (b).

c(c, f(c))f
1p2

4 , 1 2(0, 0)

3.3 Increasing and Decreasing Functions and the First Derivative Test

Increasing and Decreasing Functions
Among the important factors in determining the structural integrity of an aircraft is its
age. Advancing age makes the parts of a plane more likely to crack. The graph of the
function in Figure 1 is referred to as a “bathtub curve” in the airline industry. It gives
the fleet damage rate (damage due to corrosion, accident, and metal fatigue) of a typ-
ical fleet of commercial aircraft as a function of the number of years of service.

f

FIGURE 1
The “bathtub curve” gives the number
of planes in a fleet that are damaged as

a function of the age of the fleet.
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The function is decreasing on the interval , showing that the fleet damage rate
is dropping as problems are found and corrected during the initial shakedown period.
The function is constant on the interval , reflecting that planes have few struc-(4, 10)

(0, 4)
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tural problems after the initial shakedown period. Beyond this, the function is increas-
ing, reflecting an increase in structural defects due mainly to metal fatigue.

These intuitive notions involving increasing and decreasing functions can be
described mathematically as follows.

DEFINITIONS Increasing and Decreasing Functions

A function is increasing on an interval , if for every pair of numbers and
in ,

implies that See Figure 2a.

is decreasing on if, for every pair of numbers and in ,

implies that See Figure 2b.

is monotonic on if it is either increasing or decreasing on .IIf

f(x1) � f(x2)x1 � x2

Ix2x1If

f(x1) � f(x2)x1 � x2

Ix2

x1If

FIGURE 2

x

y

(a) f is increasing on I.

x1 x2

(b) f is decreasing on I.

y � f (x)

f (x1)

f (x2)

x

y

x1 x2

y � f (x)
f (x2)

f (x1)

0 0

Since the derivative of a function measures the rate of change of that function, it
lends itself naturally as a tool for determining the intervals where a differentiable func-
tion is increasing or decreasing. As you can see in Figure 3, if the graph of has tan-
gent lines with positive slopes over an interval, then the function is increasing on that
interval. Similarly, if the graph of has tangent lines with negative slopes over an inter-
val, then the function is decreasing on that interval. Also, we know that the slope of
the tangent line at and the rate of change of at are given by . There-
fore, is increasing on an interval where and decreasing on an interval where

.f ¿(x) � 0
f ¿(x) � 0f

f ¿(x)xf(x, f(x))

f

f

FIGURE 3
is increasing on an interval 

where and decreasing 
on an interval where .f ¿(x) � 0

f ¿(x) � 0
f

y � f (x)

Slope is
positive

Slope is
positive

Slope is negative

x

y

0
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PROOF
a. Let and be any two numbers in with . Since is differentiable

on , it is continuous on [ ] and differentiable on . By the Mean
Value Theorem, there exists a number in such that

or, equivalently,

(1)

Now, by assumption, and because . Therefore,
, or . This shows that is increasing on .

b. The proof of (b) is similar and is left as an exercise (see Exercise 60).
c. This was proved in Theorem 3 in Section 3.2.

Theorem 1 enables us to develop a procedure for finding the intervals where a func-
tion is increasing, decreasing, or constant. In this connection, recall that a function can
only change sign as we move across a zero or a number at which the function is dis-
continuous.

(a, b)ff(x1) � f(x2)f(x2) � f(x1) � 0 
x1 � x2x2 � x1 � 0f ¿(c) � 0

f(x2) � f(x1) � f ¿(c)(x2 � x1)

f ¿(c) �
f(x2) � f(x1)

x2 � x1

(x1, x2)c
(x1, x2)x1, x2(a, b)

fx1 � x2(a, b)x2x1

THEOREM 1 Suppose is differentiable on an open interval .

a. If for all in , then is increasing on .
b. If for all in , then is decreasing on .
c. If for all in , then is constant on .(a, b)f(a, b)xf ¿(x) � 0

(a, b)f(a, b)xf ¿(x) � 0
(a, b)f(a, b)xf ¿(x) � 0

(a, b)f

These intuitive observations lead to the following theorem.

Determining the Intervals Where a Function Is Increasing or Decreasing

1. Find all the values of for which or does not exist. Use
these values of to partition the domain of into open intervals.

2. Select a test number in each interval found in Step 1, and determine the
sign of in that interval.
a. If then is increasing on that interval.
b. If then is decreasing on that interval.
c. If then is constant on that interval.ff ¿(c) � 0, 

ff ¿(c) � 0, 
ff ¿(c) � 0, 

f ¿(c)
c

fx
f ¿(x)f ¿(x) � 0x

EXAMPLE 1 Determine the intervals where the function is
increasing and where it is decreasing.

Solution We first compute

from which we see that is continuous everywhere and has zeros at 0 and 2. These
zeros of partition the domain of into the intervals , , and .(2, �)(0, 2)(��, 0)ff ¿

f ¿

f ¿(x) � 3x2 � 6x � 3x(x � 2)

f(x) � x3 � 3x2 � 2
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Using these results, we obtain the sign diagram for shown in Figure 4. We con-
clude that is increasing on and and decreasing on . The graph
of is shown in Figure 5.f

(0, 2)(2, �)(��, 0)f
f ¿(x)

FIGURE 4
The sign diagram for f ¿

FIGURE 5
is increasing on , decreasing

on , and increasing on .(2, �)(0, 2)
(��, 0)f EXAMPLE 2 Determine the intervals where the function is increas-

ing and where it is decreasing.

Solution The derivative of is

from which we see that is continuous everywhere except at and has zeros
at and . These values of partition the domain of into the intervals

, , , and . By evaluating at each of the test numbers
, and 2, we find

, , , and

giving us the sign diagram of shown in Figure 6. We conclude that is increas-
ing on and and decreasing on and . The graph of is
shown in Figure 7.* Note that does not change sign as we move across the point
of discontinuity.

Finding the Relative Extrema of a Function
We will now see how the derivative of a function can be used to help us find the rel-
ative extrema of . If you examine Figure 8, you can see that the graph of is rising to
the left of the relative maximum that occurs at and falling to the right of it. Like-
wise, at the relative minima of at and , you can see that the graph of is falling
to the left of these critical numbers and rising to the right of them. Finally, look at the
behavior of the graph of at the critical numbers and . These numbers do not give
rise to relative extrema. Notice that is either increasing or decreasing on both sides
of these critical numbers.

f
ecf

fdaf
b

ff
f

f ¿(x)
f(0, 1)(�1, 0)(1, �)(��, �1)

ff ¿(x)

f ¿(2) �
3

4
f ¿a1

2
b � �3f ¿a�1

2
b � �3f ¿(�2) �

3

4

x � �2, �1
2, 

1
2

f ¿(x)(1, �)(0, 1)(�1, 0)(��, �1)
fxx � 1x � �1

x � 0f ¿(x)

f ¿(x) � 1 �
1

x2
�

x2 � 1

x2
�

(x � 1)(x � 1)

x2

f

f(x) � x � 1>x

*The graph of approaches the dashed line as . The dashed line is called a slant asymptote and will
be discussed in Section 3.6.

x → 	�f

Interval Test number c f �(c) Sign of f �(c)

(2, �)

(0, 2)

(��, 0)

1

3

�1 9

9

�3

�

�

�

x20

0 0++ +++++++ ++++++–– –––––

y = x3 � 3x2 � 2

x

y

4

321

3

2

1

�1

�2

�3

�2 �1

x1�1

00++ ++++++ ++++++ +++––––

0

f � not defined at x � 0 

FIGURE 6
The sign diagram for f ¿

FIGURE 7
The graph of f

x

y

4

3

2

1

�1
1�1�2�3�4 2 3 4

y � x  � 1_
x

To determine the sign of on each of these intervals, we evaluate at a con-
venient test number in each interval. These results are summarized in the following
table.

f ¿(x)f ¿(x)
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x

y

0 a b c d e

f �(d ) does
not exist

f �(e) does
not exist

f �(c) � 0

f �(b) � 0

f �(a) � 0

FIGURE 8
, , , , and are critical numbers 

of , but only the critical numbers ,
, and give rise to relative extrema.db

af
edcba

This discussion leads to the following theorem.

THEOREM 2 The First Derivative Test

Let be a critical number of a continuous function in the interval and
suppose that is differentiable at every number in with the possible excep-
tion of itself.

a. If on and on , then has a relative maximum
at (Figure 9a).

b. If on and on , then has a relative minimum
at (Figure 9b).

c. If has the same sign on and , then does not have a rela-
tive extremum at (Figure 9c).c

f(c, b)(a, c)f ¿(x)
c

f(c, b)f ¿(x) � 0(a, c)f ¿(x) � 0
c

f(c, b)f ¿(x) � 0(a, c)f ¿(x) � 0

c
(a, b)f

(a, b)fc

a c b0

y

x

(a) Relative maximum at c (b) Relative minimum at c (c) No relative extrema at c

f �(x) > 0

) )( )((

f �(x) < 0

a c b0

y

x

f �(x) < 0

f �(x) > 0

a c b0

y

x

f �(x) > 0

f �(x) > 0

FIGURE 9

PROOF We will prove part (a) and leave the other two parts for you to prove (see
Exercise 61). Suppose changes sign from positive to negative as we pass through 
. Then there are numbers and such that for all in and 

for all in . By Theorem 1 we see that is increasing on and decreasing
on . Therefore, for all in . We conclude that has a relative
maximum at .

The following procedure for finding the relative extrema of a continuous function
is based on Theorem 2.

c
f(a, b)xf(x) � f(c)(c, b)

(a, c)f(c, b)x
f ¿(x) � 0(a, c)xf ¿(x) � 0bac

f ¿



3.3 Increasing and Decreasing Functions and the First Derivative Test 271

Finding the Relative Extrema of a Function

1. Find the critical numbers of .
2. Determine the sign of to the left and to the right of each critical 

number.
a. If changes sign from positive to negative as we move across a criti-

cal number , then is a relative maximum value.
b. If changes sign from negative to positive as we move across a criti-

cal number , then is a relative minimum value.
c. If does not change sign as we move across a critical number ,

then is not a relative extremum.f(c)
cf ¿(x)

f(c)c
f ¿(x)

f(c)c
f ¿(x)

f ¿(x)
f

EXAMPLE 3 Find the relative extrema of .

Solution The derivative of ,

is continuous everywhere. Therefore, the zeros of , which are 0 and 3, are the only
critical numbers of . The sign diagram of is shown in Figure 10. Since has the
same sign on and , the First Derivative Test tells us that does not have
a relative extremum at 0. Next, we note that changes sign from negative to positive
as we move across 3, so 3 does give rise to a relative minimum of . The relative min-
imum value of is . The graph of is shown in Figure 11 and confirms
these results.

ff(3) � �15f
f

f ¿
f(0, 3)(��, 0)

f ¿f ¿f
f ¿

f ¿(x) � 4x3 � 12x2 � 4x2(x � 3)

f

f(x) � x4 � 4x3 � 12

FIGURE 10
The sign diagram of f ¿

FIGURE 11
The graph of f

EXAMPLE 4 Find the relative extrema of .

Solution The derivative of is

Note that is discontinuous at 0 and has a zero at 2, so 0 and 2 are critical numbers
of . Referring to the sign diagram of (Figure 12) and using the First Derivative Test,
we conclude that has a relative minimum at 0 and a relative maximum at 2. The rel-
ative minimum value is , and the relative maximum value is

The graph of is shown in Figure 13.f

f(2) � 15(2)2>3 � 3(2)5>3 � 14.29

f(0) � 0
f

f ¿f
f ¿

f ¿(x) � 10x�1>3 � 5x2>3 � 5x�1>3(2 � x) �
5(2 � x)

x1>3

f

f(x) � 15x2>3 � 3x5>3

FIGURE 12
The sign diagram of f ¿

432�1�2

00 ++ ++–– – – – – – – ––– – – – – – – –

10 x

x

y

10

�10

�1 41

(3, �15)

y � x4 � 4x3 � 12

0

x1 2�1�2

0++++–––––– –––––– –––––

0

f� not defined at x � 0 

FIGURE 13
The graph of f

x

y

10

20

�10

�1 51

y � 15x2/3 � 3x5/3

EXAMPLE 5 Motion of a Projectile A projectile starts from the origin of the -
coordinate system, and its motion is confined to the -plane. Suppose the trajectory
of the projectile is

where measures the height in feet and measures the horizontal distance in feet cov-
ered by the projectile.

a. Find the interval where is increasing and the interval where is decreasing.
b. Find the relative extrema of .
c. Interpret the results obtained in part (a) and part (b).

f
yy

xy

0 � x � 27,496y � f(x) � 1.732x � 0.000008x2 � 0.000000002x3

xy
xy
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FIGURE 14
The sign diagram of f ¿

x27,496Å15,709

0++ +++++++ –– –––– ––––

20,000

0
30,000

FIGURE 15
The trajectory of the projectile

1. Explain each of the following statements: (a) is increasing
on an interval , (b) is decreasing on an interval , and (c) 
is monotonic on an interval .I

fIfI
f 2. Describe a procedure for determining where a function is

increasing and where it is decreasing.
3. Describe a procedure for finding the relative extrema of a

function.

3.3 CONCEPT QUESTIONS

Solution
a. Observe that

is continuous everywhere. Setting gives

Using the quadratic formula to solve this equation, we obtain

We reject the negative root, since must be nonnegative. So the critical number
of is approximately 15,709. From the sign diagram for shown in Figure 14,
we see that is increasing on and decreasing on .

b. From part (a) we see that has a relative maximum at with value

c. After leaving the origin, the projectile gains altitude as it travels downrange. It
reaches a maximum altitude of approximately 17,481 ft after it has traveled
approximately 15,709 ft downrange. From this point on, the missile descends
until it strikes the ground (after traveling approximately 27,496 ft horizontally). 
The trajectory of the projectile is shown in Figure 15.

y � 1.732x � 0.000008x2 � 0.000000002x3 � x�15,709 � 17,481

x � 15,709y
(15,709, 27,496)(0, 15,709)y

f ¿y
x

 � �18,376 or 15,709

 x �
�0.000016 	2(0.000016)2 � 4(0.000000006)(�1.732)

2(0.000000006)

0.000000006x2 � 0.000016x � 1.732 � 0

dy>dx � 0

dy

dx
� 1.732 � 0.000016x � 0.000000006x2

2. 3. y

x21

1

�1�2

y

x2

2

�2

�2

3.3 EXERCISES

In Exercises 1–6 you are given the graph of a function . 
(a) Determine the intervals on which is increasing, constant,
or decreasing. (b) Find the relative maxima and relative 
minima, if any, of .

1. y

x321

1

2

�1�2�3

f

f
f

Videos for selected exercises are available online at www.academic.cengage.com/login.V

www.academic.cengage.com/login
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4. 5.

6.

In Exercises 7 and 8 you are given the graph of the derivative 
of a function . (a) Determine the intervals on which is increas-
ing, constant, or decreasing. (b) Find the -coordinates of the 
relative maxima and relative minima of .

7.

8.

In Exercises 9–38, (a) find the intervals on which is increasing
or decreasing, and (b) find the relative maxima and relative min-
ima of .

9. 10.

11. 12.

13.

14.

15. 16. f(x) � �x4 � 2x2 �  1f(x) � x4 � 4x3 � 6

f(x) � x3 � 3x2 � 9x � 6

f(x) � 2x3 � 3x2 � 12x � 5

f(x) � �x3 � 3x2 � 1f(x) � x3 � 6x � 1

f(x) � �x2 � 4x � 2f(x) � x2 � 2x

f

f

x

y �

2 4�4 �2

20

10

�10

x

y �

�5 5

0.1

0.5

�0.1

f
x

ff
f ¿

x

y

1 3�1�3

1

�1

x

y

1�1

1

�1

y

x21�1�2

1_
2

� 1_
2

17. 18.

19. 20.

21. 22.

23. 24.

25. 26.

27. 28.

29. 30.

31. ,

32. ,

33. ,

34. ,

35. ,

36. ,

37. ,

38. ,

39. The Boston Marathon The graph of the function shown in 
the accompanying figure gives the elevation of that part 
of the Boston Marathon course that includes the notorious
Heartbreak Hill. Determine the intervals (stretches of the
course) where the function is increasing (the runner is
laboring), where it is constant (the runner is taking a
breather), and where it is decreasing (the runner is coasting).

Source: The Boston Globe.

40. The Flight of a Model Rocket The altitude (in feet) attained by a
model rocket sec into flight is given by the function

When is the rocket ascending, and when is it descending?
What is the maximum altitude attained by the rocket?

0 � t � 7h(t) � 0.1t 2(t � 7)4

t

y  (ft)

x  (mi)20.620.219.6 21.1 21.821.7 22.7

300

200

100

0

E
le

va
tio

n

f

f

0 � x � 2pf(x) �
1

1 � cos x

�p2 � x � p
2f(x) � tan (x2 � 1)

0 � x � 2pf(x) �
sin x

1 � sin2 x

0 � x � 2pf(x) � x sin x � cos x

0 � x � pf(x) � sin2 2x

0 � x � 2pf(x) � cos2 x

0 � x � 2pf(x) � x � cos x

0 � x � 2pf(x) � x � 2 sin x

f(x) �
x

2x2 � 1
f(x) � x2x � x2

f(x) � x14 � xf(x) � x2>3(x � 3)

f(x) �
x2 � 3x � 2

x2 � 2x � 1
f(x) �

2x � 3

x2 � 4

f(x) �
x

x2 � 1
f(x) �

x2

x � 1

f(x) �
x

x � 1
f(x) � x �

1
x

f(x) � x3(x � 6)4f(x) � x2(x � 2)3

f(x) � x1>3 � x2>3f(x) � x1>3 � 1
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41. Morning Traffic Rush The speed of traffic flow on a certain
stretch of Route 123 between 6 A.M. and 10 A.M. on a typi-
cal weekday is approximated by the function

where is measured in miles per hour and is measured
in hours, with corresponding to 6 A.M. Find the inter-
val where is increasing, the interval where is decreasing,
and the relative extrema of . Interpret your results.

42. Air Pollution The amount of nitrogen dioxide, a brown gas
that impairs breathing, that is present in the atmosphere on 
a certain day in May in the city of Long Beach is approxi-
mated by

where is measured in pollutant standard index (PSI) and
is measured in hours with corresponding to 7 A.M.

When is the PSI increasing, and when is it decreasing? At
what time is the PSI highest, and what is its value at that
time?
Source: The Los Angeles Times.

43. Finding the Lowest Average Cost A subsidiary of the Electra
Electronics Company manufactures an MP3 player. Manage-
ment has determined that the daily total cost of producing
these players (in dollars) is given by

When is the average cost function , defined by
, decreasing, and when is it increasing? At

what level of production is the average cost lowest? What is
the average cost corresponding to this level of production?
Hint: is a root of the equation .

44. Cantilever Beam The figure below depicts a cantilever beam
clamped at the left end and free at its right end

. If a constant load is uniformly distributed along
its length, then the deflection is given by

where the product is a constant called the flexural rigidity
of the beam. Show that is increasing on the interval 
and, therefore, that the maximum deflection of the beam
occurs at . What is the maximum deflection?x � L

(0, L)y
EI

y �
w

24EI
 (x4 � 4Lx3 � 6L2x2)

y
w(x � L)

(x � 0)

C¿(x) � 0x � 500

C(x) � C(x)>x C

C(x) � 0.0001x3 � 0.08x2 � 40x � 5000

t � 0t
A(t)

0 � t � 11A(t) �
136

1 � 0.25(t � 4.5)2 � 28

f
ff

t � 0
tf(t)

0 � t � 4f(t) � 20t � 401t � 52

45. Water Level in a Harbor The water level in feet in Boston 
Harbor during a certain 24-hr period is approximated by 
the formula

where corresponds to 12 A.M. When is the water level
rising and when is it falling? Find the relative extrema of 
and interpret your results.
Source: SMG Marketing Group.

46. Spending on Fiber-Optic Links U.S. telephone company spending
on fiber-optic links to homes and businesses from the begin-
ning of 2001 to the beginning of 2006 is approximated by

billion dollars in year , where is measured in years with
corresponding to the beginning of 2001.

a. Plot the graph of in the viewing window
.

b. Plot the graph of in the viewing window
. What conclusion can you 

draw from your result?
c. Verify your result analytically.
Source: RHK, Inc.

47. Surgeries in Physicians’ Offices Driven by technological
advances and financial pressures, the number of surgeries
performed in physicians’ offices nationwide has been
increasing over the years. The function

gives the number of surgeries (in millions) performed in
physicians’ offices in year , with corresponding to 
the beginning of 1986.
a. Plot the graph of in the viewing window

.
b. Prove that is increasing on the interval .
Source: SMG Marketing Group.

48. Age of Drivers in Crash Fatalities The number of crash fatalities
per 100,000 vehicle miles of travel (based on 1994 data) is
approximated by the model

where is the age of the driver in years, with corre-
sponding to age 16. Show that is decreasing on and
interpret your result.
Source: National Highway Traffic Safety Administration.

49. Sales of Functional Food Products The sales of functional food
products—those that promise benefits beyond basic nutri-
tion—have risen sharply in recent years. The sales (in bil-
lions of dollars) of foods and beverages with herbal and
other additives is approximated by the function

0 � t � 4S(t) � 0.46t 3 � 2.22t 2 � 6.21t � 17.25

(0, 11)f
x � 0x

0 � x � 11f(x) �
15

0.08333x2 � 1.91667x � 1

[0, 15]f
[0, 15] 
 [0, 10]

f

t � 0t

0 � t � 15

f(t) � �0.00447t 3 � 0.09864t 2 � 0.05192t � 0.8

[0, 5] 
 [0, 175]
S¿

[0, 5] 
 [0, 600]
S

t � 0
tt

0 � t � 5S(t) � �2.315t 3 � 34.325t 2 � 1.32t � 23

H
t � 0

0 � t � 24H � 4.8 sin a p
6

 (t � 10)b � 7.6

y (ft)

x (ft)L0

The beam is fixed at and free at . 
(Note that the positive direction of is downward.)y

x � Lx � 0
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where is measured in years, with corresponding to
the beginning of 1997.
a. Plot the graph of in the viewing window

.
b. Show that sales were increasing over the 4-year period

beginning in 1997.
Source: Frost & Sullivan.

50. Prove that the function is increasing
everywhere.

51. a. Plot the graphs of for 
and , using the viewing window .

b. Use the results of part (a) to guess at the values of 
such that is increasing on .

c. Prove your conjecture analytically.

52. Find the values of such that is
decreasing everywhere.

53. Show that the equation has no positive root if
and has one positive root if .

Hint: Show that is increasing and that
if and if .

54. Prove that if .
Hint: Let and show that is increasing on .

55. Prove that if .
Hint: Show that is decreasing on .

56. Let . Determine the constants and 
such that has a relative maximum at and the relative
maximum value is 4.

57. Let . Determine the constants 
and such that has a relative minimum at and a
relative maximum at .

58. Let , where , , , and are con-
stants. Show that has no relative extrema if .

59. Let

Show that has a relative minimum at 0, although its first
derivative does not change sign as we move across .
Does this contradict the First Derivative Test?

60. Prove part (b) of Theorem 1.

61. Prove parts (b) and (c) of Theorem 2.

62. Prove that if .
Hint: To prove the left inequality, let , and
show that is increasing on the interval .(0, �)f

f(x) � sin x � x � x3>6
x � 0x � x3>6 � sin x � x

x � 0
f

f(x) � •
1

x2 if x � 0

x2 if x � 0

ad � bc � 0f
dcbaf(x) � (ax � b)>(cx � d)

x � 2
x � �1fb

af(x) � ax3 � 6x2 � bx � 4

x � 2f
baf(x) � �2x2 � ax � b

10, p2 2f(x) � (sin x)>x
0 � x � p

22x>p � sin x � x

10, p2 2ff(x) � tan x � x
0 � x � p

2x � tan x

b � 0f(0) � 0b � 0f(0) � 0
f(x) � x � sin x � b

b � 0b � 0
x � sin x � b

f(x) � cos x � ax � ba

(��, �)f
a

[�2, 2] 
 [�2, 2]2
a � �2, �1, 0, 1,f(x) � x3 � ax

f(x) � 2x5 � x3 � 2x

[0, 4] 
 [15, 40]
S

t � 0t 63. Let .
a. Plot the graph of using the viewing window

. Can you determine from the graph 
of the intervals where is increasing or decreasing?

b. Plot the graph of using the viewing window
. Using this graph and the result

of part (a), determine the intervals where is increasing
and where is decreasing.

64. Let

a. Plot the graph of . Use ZOOM to obtain successive mag-
nifications of the graph in the neighborhood of the ori-
gin. Can you see that is not monotonic on any interval
containing the origin?

b. Prove the observation made in part (a).

65. Let

a. Plot the graph of . Use ZOOM to obtain successive mag-
nifications of the graph in the neighborhood of the ori-
gin. Can you see that has a relative minimum at 0 but is
not monotonic to the left or to the right of ?

b. Prove the observation made in part (a).
Hint: For , show that if and

if .

In Exercises 66–71, determine whether the statement is true or
false. If it is true, explain why it is true. If it is false, explain why
or give an example to show why it is false.

66. If and are increasing on an interval , then is also
increasing on .

67. If is increasing on an interval and is decreasing on the
same interval , then is increasing on .

68. If and are increasing functions on an interval , then their
product is also increasing on .

69. If and are positive on an interval , is increasing on , and
is decreasing on , then the quotient is increasing on .

70. If is increasing on an interval , then for
every in .

71. If for every in the interval , then
for every in .(a, b)xf(x) � t(x)

(a, b)xf ¿(x) � t¿(x)

(a, b)x
f ¿(x) � 0(a, b)f

If>tIt

IfItf

Ift
Itf

If � tI
tIf

I
f � tItf

x � 1>((2n � 1)p)f ¿(x) � 0
x � 1>(2np)f ¿(x) � 0x � 0

x � 0
f

f

f(x) � • a2 � sin 
1
x
b �x � if x � 0

0 if x � 0

f

f

f(x) � •
1

2
 x � x2 sin 

1
x

if x � 0

0 if x � 0

f
f

[�0.5, 0.5] 
 [�0.5, 0.5]
f

ff
[�2, 2] 
 [�6, 6]

f
f(x) � 3x5 � 8x3 � x



276 Chapter 3 Applications of the Derivative

FIGURE 1

Observe, however, that the graph shown in Figure 1a opens upward, whereas the
graph shown in Figure 1b opens downward. How do we interpret the way the curves
bend in terms of the motion of the cars? To answer this question, let’s look at the slopes
of the tangent lines at various points on each graph (Figure 2).

FIGURE 2
The slopes of the tangent lines to the

graph of are increasing, whereas
those to the graph of are decreasing.s2

s1

In Figure 2a you can see that the slopes of the tangent lines to the graph increase
as increases. Since the slope of the tangent line at the point measures the
velocity of car at time , we see not only that the car is moving forward, but also
that its velocity is increasing on the time interval . In other words, car is accelerat-
ing over the interval . A similar analysis of the graph in Figure 2b shows that car 
is moving forward as well but decelerating over the time interval .

We can describe the way a curve bends using the notion of concavity.
I

BI
AI

tA
(t, s1(t))t

y

tI0

y � s1(t)

( )

(a) s1 is increasing on I.

y

tI0

y � s2(t)

( )

(b) s2 is increasing on I.

y

tI0

y � s1(t)

( )

y

tI0

y � s2(t)

( )

(a) (b) The graph of s1 is concave upward. The graph of s2 is concave downward.

3.4 Concavity and Inflection Points

Concavity
The graphs of the position functions and of two cars and traveling along a
straight road are shown in Figure 1. Both graphs are rising, reflecting the fact that both
cars are moving forward, that is, moving with positive velocities.

BAs2s1



3.4 Concavity and Inflection Points 277

DEFINITIONS Concavity of the Graph of a Function

Suppose is differentiable on an open interval . Then

a. the graph of is concave upward on if is increasing on .
b. the graph of is concave downward on if is decreasing on .If ¿If

If ¿If

If

Note It can be shown that if the graph of is concave upward on an open interval ,
then it lies above all of its tangent lines (Figure 2a), and if the graph is concave down-
ward on , then it lies below all of its tangent lines (Figure 2b). A proof of this is given
in Appendix B.

Figure 3 shows the graph of a function that is concave upward on the intervals
, , and and concave downward on and .(e, t)(b, c)(d, e)(c, d)(a, b)

I

If

If a function has a second derivative , we can use it to determine the intervals
of concavity of the graph of . Indeed, since the second derivative of measures the
rate of change of the first derivative of , we see that is increasing on an open inter-
val if for all in and that is decreasing on if 
for all in . Thus, we have the following result.(a, b)x

f �(x) � 0(a, b)f ¿(a, b)xf �(x) � 0(a, b)
f ¿f

ff
f �f

FIGURE 3
The interval is divided 

into subintervals showing where 
the graph of is concave upward and

where it is concave downward.
f

[a, t]

THEOREM 1
Suppose has a second derivative on an open interval .

a. If for all in , then the graph of is concave upward on .
b. If for all in , then the graph of is concave downward on .IfIxf �(x) � 0

IfIxf �(x) � 0

If

The following procedure, based on the conclusions of Theorem 1, can be used to
determine the intervals of concavity of a function.

Determining the Intervals of Concavity of a Function

1. Find all values of for which or does not exist. Use these
values of to partition the domain of into open intervals.

2. Select a test number in each interval found in Step 1 and determine the
sign of in that interval.
a. If , the graph of is concave upward on that interval.
b. If , the graph of is concave downward on that interval.ff �(c) � 0

ff �(c) � 0
f �(c)

c
fx

f �(x)f �(x) � 0x

y

x0

y � f (x)

tedcba
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FIGURE 4
The sign diagram of f �

FIGURE 5
The graph of is concave upward on

and on and concave
downward on .(0, 2)

(2, �)(��, 0)
f

EXAMPLE 2 Determine the intervals where the graph of is concave
upward and where it is concave downward.

Solution We find

and

Observe that is continuous everywhere except at 0. From the sign diagram of 
shown in Figure 6, we conclude that the graph of is concave downward on 
and on (Figure 7).(0, �)

(��, 0)f
f �f �

 f �(x) � �
2

9
 x�4>3 � �

2

9x4>3

 f ¿(x) �
2

3
 x�1>3

f(x) � x2>3
FIGURE 6
The sign diagram of f �

FIGURE 7
The graph of is concave downward on

and on .(0, �)(��, 0)
f

x20

0 0++ +++++++ +++ +++++–– ––––

x

y

10

�10

�1 31

y � x4 � 4x3 � 12

0

0

–– – – – – – – – – ––– – – – – – – – – –

f  not defined here

x

x

y

1

1�1�2�3�4 2 3 4

y � x2/3

JOSEPH-LOUIS LAGRANGE
(1736–1813)

Of French and Italian heritage, Joseph-
Louis Lagrange was the youngest of eleven
children and one of only two to survive
beyond infancy. Lagrange’s work was
known for its aesthetic quality and so was
often more interesting to the pure mathe-
matician than to the practical engineer.
Lagrange was a member on the committee
of the Académie des Sciences at the time
of the proposed reform of weights and
measures that led to the development of
the metric system in 1799. He made many
contributions to the development and writ-
ing of emerging mathematical concepts in
the 1700s and 1800s, and it is to Lagrange
that we owe the commonly used notation

, , , and so on for the various
orders of derivatives.

f ‡(x)f �(x)f¿(x)

Historical Biography
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.
Note In developing this procedure, we have once again used the fact that a function
(in this case, the function ) can change sign only as we move across a zero or a num-
ber at which the function is discontinuous.

f �

EXAMPLE 1 Determine the intervals where the graph of is
concave upward and the intervals where it is concave downward.

Solution We first calculate the second derivative of :

Next, we observe that is continuous everywhere and has zeros at 0 and 2. Using this
information, we draw the sign diagram of (Figure 4). We conclude that the graph of

is concave upward on and on and concave downward on . The
graph of is shown in Figure 5. Observe that the concavity of the graph of changes
from upward to downward at the point and from downward to upward at the
point .(2, �4)

(0, 12)
ff

(0, 2)(2, �)(��, 0)f
f �

f �

 f �(x) � 12x2 � 24x � 12x(x � 2)

 f ¿(x) � 4x3 � 12x2

f

f(x) � x4 � 4x3 � 12
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Inflection Points
The graph of the position function of a car traveling along a straight road is shown
in Figure 8. Observe that the graph of is concave upward on and concave down-
ward on . Interpreting the graph, we see that the car is accelerating for 
( for in ) and decelerating for ( for in ). Its
acceleration is zero when , at which time the car also attains the maximum veloc-
ity in the time interval . The point on the graph of at which the con-
cavity changes is called an inflection point or point of inflection of .

More generally, we have the following definition.
s

s(c, s(c))(a, b)
t � c

(c, b)ts�(t) � 0c � t � b(a, c)ts�(t) � 0
a � t � c(c, b)

(a, c)s
s

FIGURE 8
The point at which the
concavity of the graph of changes 
is called an inflection point of .s

s
(c, s(c))

DEFINITION Inflection Point

Let the function be continuous on an open interval containing the point , and
suppose the graph of has a tangent line at . If the graph of changes
from concave upward to concave downward (or vice versa) at , then the point

is called an inflection point of the graph of .fP
P

fP(c, f(c))f
cf

Observe that the graph of a function crosses its tangent line at a point of inflection
(Figure 9).

y

t0

y � s (t)

c ba

(c, s (c))

y

x0

Concave
upwardConcave

downward

y

x0

Concave
upward

Concave
downward

y

x0

Concave
upward

Concave
downward

Finding Inflection Points

1. Find all numbers in the domain of for which or does
not exist. These numbers give rise to candidates for inflection points.

2. Determine the sign of to the left and to the right of each number 
found in Step 1. If the sign of changes, then the point is an
inflection point of , provided that the graph of has a tangent line at .Pff

P(c, f(c))f �(x)
cf �(x)

f �(c)f �(c) � 0fc

FIGURE 9
At a point of inflection the graph of a function crosses its tangent line.

EXAMPLE 3 Find the points of inflection of .

Solution We compute

and f �(x) � 12x2 � 24x � 12x(x � 2)f ¿(x) � 4x3 � 12x2

f(x) � x4 � 4x3 � 12

The following procedure can be used to find the inflection points of a function that
has a second derivative, except perhaps at isolated numbers.
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FIGURE 10
The sign diagram of f �

FIGURE 11
and are inflection

points.
(2, �4)(0, 12)

EXAMPLE 4 Find the points of inflection of .

Solution We find

and

We see that is continuous everywhere except at 1, where it is not defined. Further-
more, has no zeros, so 1 gives rise to the only candidate for an inflection point of 
. From the sign diagram of shown in Figure 12, we see that does change sign

from positive to negative as we move across 1. Therefore, is indeed an inflec-
tion point of . Observe that the graph of has a vertical tangent line at that point. (See
Figure 13.)

ff
(1, 0)

f �(x)f �f
f �

f �

 f �(x) � �
2

9
 (x � 1)�5>3 � �

2

9(x � 1)5>3

 f ¿(x) �
1

3
 (x � 1)�2>3

f(x) � (x � 1)1>3

FIGURE 12
The sign diagram of f �

FIGURE 13
has an inflection point at .(1, 0)f

We see that is continuous everywhere and has zeros at 0 and 2. These numbers give
rise to candidates for the inflection points of . From the sign diagram of shown in
Figure 10, we see that changes sign from positive to negative as we move across
0. Therefore, the point is an inflection point of . Also, changes sign from
negative to positive as we move across 2, so is also an inflection point of .
These inflection points are shown in Figure 11, where the graph of is sketched.f

f(2, �4)
f �(x)f(0, 12)

f �(x)
f �f

f �

x2

00++ +++++++ ++++ ++ ++–– – – – –

0

x

y

10

�10

�1 1 (2, �4)

(0, 12)

y � x4 � 4x3 � 12

x1

+++++++++++++ ––– –––––

0

f  not defined here x

y

4

3

2

1

�1
�1�2�3�4 2 3 4

y � (x  � 1)1/3
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Remember that the numbers where or where is discontinuous give rise
only to candidates for inflection points of . For example, you can show that if

, then , but the point is not an inflection point of (Fig-
ure 14). Also, if , then is discontinuous at 0, as we saw in Exam-
ple 2, but the point is not an inflection point of (Figure 15).t(0, 0)

t�t(x) � x2>3 f(0, 0)f �(0) � 0f(x) � x4
f

f �f �(x) � 0!

Examples 5 and 6 provide us with two practical interpretations of the inflection
point of a function.

EXAMPLE 5 Test Dive of a Submarine Refer to Example 2 in Section 3.2. Recall that
the depth (in feet) at time (measured in minutes) of the prototype of a twin-piloted
submarine is given by

Find the inflection points of , and explain their significance.

Solution We have

Observe that is continuous everywhere and, therefore, on . Setting 
gives , or . Using the quadratic formula to solve the last
equation, we obtain

t �
6 	 136 � 28

2
� 3 	 12

t 2 � 6t � 7 � 0t � 7t � 0
h�(t) � 0[0, 7]h�

 � 42t(t � 7)2(t 2 � 6t � 7)

 � 21t(t � 7)2[(t � 2)(t � 7) � t(t � 3)]

 � 7[3t(t � 2)(t � 7)3 � 3t 2(t � 3)(t � 7)2]

 � 7[(3t 2 � 6t)(t � 7)3 � (t 3 � 3t 2)(3)(t � 7)2]

 h�(t) �
d

dt
 [7(t 3 � 3t 2)(t � 7)3]

 � 7t 2(t � 3)(t � 7)3

 h¿(t) � 3t 2(t � 7)4 � t 3(4)(t � 7)3 � t 2(t � 7)3(3t � 21 � 4t)

h

0 � t � 7h(t) � t 3(t � 7)4

t

x

y

2

1

1�1

y  � x4

0 x

y

1

1�1�2�3�4 2 3 4

y � x2/3

FIGURE 14
, but is not an

inflection point of .f
(0, 0)f �(0) � 0

FIGURE 15
is discontinuous at 0, but 

is not an inflection point of .t

(0, 0)t�
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To interpret our results, observe that the graph of is concave upward on
. This says that the submarine is accelerating downward to a depth 

of ft over the time interval . (Verify!) The graph of is 
concave downward on , and this says that the submarine is decel-
erating downward from to its lowest point. Then it is accelerating upward until

. From until , the submarine decelerates upward until it reaches
the surface, 7 min after the start of the test dive. The rate of descent of the submarine
is greatest at and is approximately , or 3951 ft/min.
Also the rate of ascent of the submarine is greatest at and is approx-
imately or 3335 ft/min.�h¿(3 � 12),

t � 3 � 12 � 4.4
h¿(3 � 12)t � 3 � 12 � 1.6

t � 7t � 4.4t � 4.4
t � 1.6

(3 � 12, 3 � 12)
f(0, 1.6)h(3 � 12) � 3427

(0, 3 � 12)
h

EXAMPLE 6 Effect of Advertising on Revenue The total annual revenue of the
Odyssey Travel Agency, in thousands of dollars, is related to the amount of money 
that the agency spends on advertising its services by the formula

where is measured in thousands of dollars. Find the inflection point of and inter-
pret your results.

Solution

and

which is continuous everywhere. Setting gives , and this number gives
rise to a candidate for an inflection point of . Moreover, because for

and for , we see that the point is an inflec-
tion point of the function . The graph of appears in Figure 18.RR

(50, 2700)50 � x � 100R � � 00 � x � 50
R� � 0R

x � 50R � � 0

R � � �0.06x � 3

R¿ � �0.03x2 � 3x

Rx

0 � x � 100R � �0.01x3 � 1.5x2 � 200

x
R

Since both of these roots lie inside the interval , they give rise to candi-
dates for the inflection points of . From the sign diagram of we see that

and do indeed give rise to inflection points
of (Figure 16). The graph of is reproduced in Figure 17.hh

t � 3 � 12 � 4.41t � 3 � 12 � 1.59
h�h

(0, 7)

432

00 +++++++++ –– – –– – – – – – –

10 x

√23 � √23 �

y  � t3(t  � 7)4

y (thousand feet)

70 t (min)

7

4

3 � √23 � √2

FIGURE 16
The sign diagram for h�

FIGURE 17
The graph of has inflection points at 
and .(3 � 12, h(3 � 12))

(3 � 12, h(3 � 12))h
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FIGURE 18
The graph of has an 

inflection point at .x � 50
R

y  � R(x)

y (thousand dollars)

(50, 2700)

100806040200 x (thousand dollars)

6000

5000

4000

3000

2000

1000

To interpret these results, observe that the revenue of the agency increases rather
slowly at first. As the amount spent on advertising increases, the revenue increases rap-
idly, reflecting the effectiveness of the company’s ads. But a point is soon reached
beyond which any additional advertising expenditure results in increased revenue but
at a slower rate of increase. This level of expenditure is commonly referred to as the
point of diminishing returns and corresponds to the -coordinate of the inflection point
of .

The Second Derivative Test
The second derivative of a function can often be used to help us determine whether a
critical number gives rise to a relative extremum. Suppose that is a critical number of

and suppose that . Then the graph of is concave downward on some inter-
val containing . Intuitively, we see that must be the largest value of for
all in . In other words, has a relative maximum at (Figure 19a). Similarly, if

at a critical number , then has a relative minimum at (Figure 19b).cfcf �(c) � 0
cf(a, b)x

f(x)f(c)c(a, b)
ff �(c) � 0f

c

R
x

FIGURE 19

These observations suggest the following theorem.

y

x0

f �(c) � 0

f (c) � 0

( )

(a) f has a relative maximum at c.

ca b
( )
a c b

y

x0

f �(c) � 0

f (c) � 0

(b) f has a relative minimum at c.

THEOREM 2 The Second Derivative Test

Suppose that has a continuous second derivative on an interval contain-
ing a critical number of .

a. If , then has a relative maximum at .
b. If , then has a relative minimum at .
c. If , then the test is inconclusive.f �(c) � 0

cff �(c) � 0
cff �(c) � 0

fc
(a, b)f
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PROOF We will give an outline of the proof for (a). The proof for (b) is similar and
will be omitted. So suppose that . Then the continuity of implies that

on some open interval containing . This means that the graph of is 
concave downward on . Therefore, the graph of lies below its tangent line at the 
point . (See the note on page 277.) But this tangent line is horizontal because

, and this shows that for all in (Figure 19a). So has a relative
maximum at as asserted.c

fIxf(x) � f(c)f ¿(c) � 0
(c, f(c))

fI
fcIf �(x) � 0

f �f �(c) � 0

EXAMPLE 7 Find the relative extrema of using the
Second Derivative Test.

Solution

Setting , we see that and 4 are critical numbers of . Next, we compute

Evaluating at the critical number , we find

and the Second Derivative Test implies that gives rise to a relative maximum of 
. Also

so 4 gives rise to a relative minimum of . The graph of is shown in Figure 20.

The Second Derivative Test is not useful if at a critical number . For
example, each of the functions , , and has a critical
number 0. Notice that ; but as you can see from the graphs
of these functions (Figure 21), has a relative maximum at 0, has a relative mini-
mum at 0, and has no extremum at 0.h

tf
f �(0) � t�(0) � h�(0) � 0

h(x) � x3
t(x) � x4f(x) � �x4

cf �(c) � 0

ff

f �(4) � 6(4 � 1) � 18 � 0

f
�2

f �(�2) � 6(�2 � 1) � �18 � 0

�2f �(x)

f �(x) � 6x � 6 � 6(x � 1)

f�2f ¿(x) � 0

f ¿(x) � 3x2 � 6x � 24 � 3(x � 4)(x � 2)

f(x) � x3 � 3x2 � 24x � 32

FIGURE 20
has a relative maximum at 

and a relative minimum at .(4, �48)
(�2, 60)f

FIGURE 21
The Second Derivative Test is not
useful when the second derivative 

is zero at a critical number .c

What are the pros and cons of using the First Derivative Test (FDT) and the Sec-
ond Derivative Test (SDT) to determine the relative extrema of a function? First, because
the SDT can be used only when exists, it is less versatile than the FDT. For exam-
ple, the SDT cannot be used to show that has a relative minimum at 0. Fur-
thermore, the SDT is inconclusive if is equal to zero at a critical number of , whereas
the FDT always yields positive conclusions. The SDT is also inconvenient to use when

is difficult to compute. However, on the plus side, the SDT is easy to apply if is
easy to compute. (See Example 7.) Also, the conclusions of the SDT are often used in
theoretical work.

f �f �

ff �
f(x) � x2>3f �

x

y

30

�50

�2 2

y � x3 � 3x2 � 24x � 32(�2, 60)

(4, �48)

x

y � x4 y � x3 

y � �x4 

y

1

�1

1�1 0 x

y

1

�1

1�1 0 x

y

1

�1

1�1 0



TABLE 1

Signs of and Properties of the graph of General shape of the graph of 

increasing

concave upward

increasing

concave downward

decreasing

concave upward

decreasing

concave downwardff �(x) � 0

ff ¿(x) � 0

ff �(x) � 0

ff ¿(x) � 0

ff �(x) � 0

ff ¿(x) � 0

ff �(x) � 0

ff ¿(x) � 0

fff �f �
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The Roles of and in Determining the Shape of a Graph
Let’s summarize our discussion of the properties of the graph of a function that are
determined by its first and second derivatives: The first derivative tells us where is
increasing and where is decreasing, whereas the second derivative tells us where
the graph of is concave upward and where it is concave downward. Each of these
properties is determined by the signs of and in the interval of interest and is
reflected in the shape of the graph of . Table 1 gives the characteristics of the graph
of for the various possible combinations of the signs of and .f �f ¿f

f
f �f ¿

f
f �f

ff ¿
f

f �f �

1. Explain what it means for the graph of a function to be 
(a) concave upward and (b) concave downward on an open
interval . Given that has a second derivative on (except
at isolated numbers), how do you determine where the graph
of is concave upward and where it is concave downward?f

IfI

f 2. What is an inflection point of the graph of a function ?
How do you find the inflection points of the graph of a func-
tion whose rule is given?

3. State the Second Derivative Test. What are the pros and cons
of using the First Derivative Test and the Second Derivative
Test?

f

f

3.4 CONCEPT QUESTIONS

Videos for selected exercises are available online at www.academic.cengage.com/login.V

In Exercises 1–6 you are given the graph of a function . Deter-
mine the intervals where the graph of is concave upward and
where it is concave downward. Find all inflection points of .

1. 2.

x

y

1

1�1

1_
2

1_
2

�

x

y

1

321

�1

�1�2

f
f

f 3.

x

y

1

1 2 3 4�1�2�3�4

�1

3.4 EXERCISES

www.academic.cengage.com/login
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4.

5. 6.

In Exercises 7 and 8 you are given the graph of the second
derivative of a function . (a) Determine the intervals where
the graph of is concave upward and the intervals where it is
concave downward. (b) Find the -coordinates of the inflection
points of .

7.

8.

x

y 

1

�1

�2

1 2 3�1�3 �2

x

y 

50

�50

1 2�1�2

f
x

f
ff �

x

y

1

2

1 20

x

y

1

2

3

1 2�1�2

x

y

1

2

1 2�1

�1

�2

x

y

2

1 2 3�1�2

(a)

x

y

2

1

1 2 3�1�2

(b)

x

y

5

2

1 2 3�1�2

(c)

10. is decreasing on and increasing on , the
graph of is concave upward on , and has inflection
points at and .x � 1x � 0

f(1, �)f
(2, �)(��, 2)f

x

y

1

1 2

(a)

0 x

y

1

1 2

(b)

0

x

y

1

1 2

(c)

0

In Exercises 9–10, determine which graph—(a), (b), or (c)—is
the graph of the function with the specified properties. Explain.

9. is undefined, is decreasing on , the graph of 
is concave downward on , and has an inflection point
at .x � 3

f(0, 3)
f(��, 0)ff ¿(0)

f
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In Exercises 11–32, determine where the graph of the function is
concave upward and where it is concave downward. Also, find
all inflection points of the function.

11. 12.

13. 14.

15. 16.

17. 18.

19. 20.

21. 22.

23. 24.

25. ,

26. ,

27. ,

28. ,

29. ,

30. ,

31. ,

32. ,

In Exercises 33–36, plot the graph of , and find (a) the approxi-
mate intervals where the graph of is concave upward and
where it is concave downward and (b) the approximate coordi-
nates of the point(s) of inflection accurate to 1 decimal place.

33.

34.

35.

36.

In Exercises 37–48, find the relative extrema, if any, of the func-
tion. Use the Second Derivative Test, if applicable.

37.

38. h(x) � 2x3 � 3x2 � 12x � 2

h(t) �
1

3
 t 3 � 2t 2 � 5t � 10

�2 � x � 2f(x) � cos(sin x)

f(x) �
x

2x2 � 1

f(x) �
x3 � x2 � x � 1

x3 � 1

f(x) � x5 � 2x4 � 3x2 � 5x � 4

f
f

�p2 � x � 3p
2f(x) �

sin x

1 � sin x

�p � x � ph(x) �
sin x

1 � cos x

0 � x � 2pt(x) �
1

1 � cos x

�p � x � pf(x) � tan 2x

0 � x � 4pf(x) � x � sin x

0 � t � 2ph(t) � sin t � cos t

0 � x � 2pt(x) � cos2 x

0 � x � pf(x) � sin 2x

f(x) �
x2 � 9

1 � x2f(u) �
u

u2 � 1

f(x) �
x

x � 1
h(x) � x2 �

1

x2

t(x) � x �
1
x

h(x) �2x2 � x4

f(x) � x �21 � x2h(t) �
1

3
 t 2 �

3

5
 t 5>3

t(x) � 2x � x1>3f(x) � 1 � 3x1>3
h(x) � 3x4 � 4x3 � 1f(t) � t 4 � 2t 3

t(x) � x3 � 6x2 � 2x � 3f(x) � x3 � 6x

39. 40.

41.

42.

43.

44.

45. ,

46. ,

47. ,

48. ,

In Exercises 49–52, sketch the graph of a function having the
given properties.

49.
on 
on 
on 
on 

50. ,
does not exist

on 
on 
on 

51.
,
on 
on 
on 1��, �2

3 2 � (0, �)f �(x) � 0
(�1, �)f ¿(x) � 0
(��, �1)f ¿(x) � 0

f ¿(0) � 0f(0) � 1
f(�1) � 0, f ¿(�1) � 0

(��, 0) � (0, �)f �(x) � 0
(0, �)f ¿(x) � 0
(��, 0)f ¿(x) � 0

f ¿(0)
f(�1) � f(1) � 0f(0) � �1

(��, �1) � (1, �)f �(x) � 0
(�1, 1)f �(x) � 0
(0, �)f ¿(x) � 0
(��, 0)f ¿(x) � 0

f(0) � 0, f ¿(0) � 0

0 � t � 2ph(t) �
1

1 � cos t

0 � x � pf(x) � 2 sin x � sin 2x

0 � x � 3p
2f(x) � sin2 x

0 � x � p
2f(x) � sin x � cos x

f(x) � x24 � x2

t(t) �
t

t 2 � 1

h(t) � t 2 �
1

t

f(t) � 2t �
1

t

f(x) � 2x4 � 8x � 4f(x) � x4 � 4x3

on 

52.
on 
on 

on 

53. Effect of Advertising on Bank Deposits The CEO of the Madison
Savings Bank used the graphs on the following page to
illustrate what effect a projected promotional campaign
would have on its deposits over the next year. The functions

and give the projected amount of money on deposit
with the bank over the next 12 months with and without the
proposed promotional campaign, respectively.
a. Determine the signs of , , , and on

the interval .(0, 12)
Dfl

2(t)Dfl
1(t)Dœ

2(t)Dœ
1(t)

D2D1

(��, 0) � (0, �)f �(x) � 0

lim
x→0

f(x) � �
(�1, 0) � (1, �)f ¿(x) � 0
(��, �1) � (0, 1)f ¿(x) � 0

f(�1) � f(1) � 2, f ¿(�1) � f ¿(1) � 0

1�2
3, 02f �(x) � 0
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b. What can you conclude about the rate of change of the
growth rate of the money on deposit with the bank with
and without the proposed promotional campaign?

54. Assembly Time of a Worker In the following graph, gives
the number of satellite radios assembled by the average
worker by the th hour, where corresponds to 8 A.M.
and . The point is an inflection point of .
a. What can you say about the rate of change of the rate of

the number of satellite radios assembled by the average
worker between 8 A.M. and 10 A.M.? Between 10 A.M.
and 12 P.M.?

b. At what time is the rate at which the satellite radios are
being assembled by the average worker greatest?

55. Water Pollution When organic waste is dumped into a pond,
the oxidation process that takes place reduces the pond’s
oxygen content. However, given time, nature will restore the
oxygen content to its natural level. In the following graph,

gives the oxygen content (as a percentage of its normal
level) days after organic waste has been dumped into the
pond. Explain the significance of the inflection point .

56. Effect of Budget Cuts on Drug-Related Crimes A police commis-
sioner used the following graphs to illustrate what effect a
budget cut would have on crime in the city. The number

gives the projected number of drug-related crimes in
the next 12 months. The number gives the projected
number of drug-related crimes in the same time frame if
next year’s budget is cut.

N2(t)
N1(t)

t (days)

y (%)

0

100 y � P(t)

Q

t0

Q
t

P(t)

t (hr)

y

0

y � N(t)

1 2 3 4

P

NP0 � t � 4
t � 0t

N(t)

t

y

0 12

y � D1(t)

y � D2(t)

a. Explain why and are both positive on the
interval .

b. What are the signs of and on the interval
?

c. Interpret the results of part (b).

57. In the figure below, water is poured into the vase at a con-
stant rate (in appropriate units), and the water level rises to 
a height of units at time as measured from the base of
the vase. Sketch the graph of , and explain its shape, indi-
cating where it is concave upward and concave downward.
Indicate the inflection point on the graph, and explain its
significance.

58. In the figure below, water is poured into an urn at a constant
rate (in appropriate units), and the water level rises to a
height of units at time as measured from the base of
the urn. Sketch the graph of , and explain its shape, indicat-
ing where it is concave upward and concave downward.
Indicate the inflection point on the graph, and explain its
significance.

59. Effect of Smoking Bans The sales (in billions of dollars) in
restaurants and bars in California from the beginning of
1993 to the beginning of 2000 are approxi-
mated by the function

0 � t � 7S(t) � 0.195t 2 � 0.32t � 23.7

(t � 7)(t � 0)

f (t)

f
tf(t)

f (t)

f
tf(t)

t

y

0 12

y � N2(t)

y � N1(t)

(0, 12)
N fl

2(t)N fl
1(t)

(0, 12)
N œ

2(t)N œ
1(t)
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a. Show that the sales in restaurants and bars continued to
rise after smoking bans were implemented in restaurants
in 1995 and in bars in 1998.
Hint: Show that is increasing on the interval .

b. What can you say about the rate at which the sales were
rising after smoking bans were implemented?

Source: California Board of Equalization.

60. Global Warming The increase in carbon dioxide in the atmos-
phere is a major cause of global warming. Using data
obtained by Charles David Keeling, professor at Scripps
Institution of Oceanography, the average amount of in
the atmosphere from 1958 through 2007 is approximated by

where corresponds to the beginning of 1958 and
.

a. What can you say about the rate of change of the aver-
age amount of atmospheric from 1958 through
2007?

b. What can you say about the rate of the rate of change 
of the average amount of atmospheric from 1958
through 2007?

Source: Scripps Institution of Oceanography.

61. Population Growth in Clark County Clark County in Nevada,
which is dominated by greater Las Vegas, is one of the
fastest-growing metropolitan areas in the United States. 
The population of the county from 1970 through 2000 is
approximated by the function

where is measured in decades, with corresponding to
the beginning of 1970.
a. Show that the population of Clark County was always

increasing over the time period in question.
b. Show that the population of Clark County was increasing

at the slowest pace some time around the middle of
August 1976.

Source: U.S. Census Bureau.

62. Air Pollution The level of ozone, an invisible gas that irritates
and impairs breathing, that was present in the atmosphere 
on a certain day in May in the city of Riverside is approxi-
mated by

where is measured in pollutant standard index (PSI) and
is measured in hours, with corresponding to 7 A.M.

Use the Second Derivative Test to show that the function 
has a relative maximum at approximately . Interpret
your results.
Source: The Los Angeles Times.

63. Women’s Soccer Starting with the youth movement that took
hold in the 1970s and buoyed by the success of the U.S.

t � 9
A

t � 0t
A(t)

0 � t � 11A(t) � 1.0974t 3 � 0.0915t 4

t � 0t

0 � t � 3

P(t) � 44,560t 3 � 89,394t 2 � 234,633t � 273,288

CO2

CO2

1 � t � 50
t � 1

A(t) � 0.010716t 2 � 0.8212t � 313.4

CO2

(2, 7)S

national women’s team in international competition in recent
years, girls and women have taken to soccer in ever-growing
numbers. The function

gives the number of participants in women’s soccer in year 
with corresponding to the beginning of 1985.
a. Verify that the number of participants in women’s soccer

has been increasing from 1985 through 2000.
b. Show that the number of participants in women’s soccer

has been growing at an increasing rate from 1985
through 2000.

Source: NCCA News.

64. Surveillance Cameras Research reports indicate that surveil-
lance cameras at major intersections dramatically reduce the
number of drivers who barrel through red lights. The cam-
eras automatically photograph vehicles that drive into inter-
sections after the light turns red. Vehicle owners are then
mailed citations instructing them to pay a fine or sign an
affidavit that they were not driving at the time. The function

gives the number, , of U.S. communities using surveil-
lance cameras at intersections in year with corre-
sponding to the beginning of 2003.
a. Show that is increasing on .
b. When was the number of communities using surveillance

cameras at intersections increasing least rapidly? What
was the rate of increase?

Source: Insurance Institute for Highway Safety.

65. Measles Deaths Measles is still a leading cause of vaccine-
preventable death among children, but because of improve-
ments in immunizations, measles deaths have dropped glob-
ally. The function

gives the number of measles deaths (in thousands) in sub-
Saharan Africa in year with corresponding to the
beginning of 1999.
a. What was the number of measles deaths in 1999? In

2005?
b. Show that on . What does this say about

the number of measles deaths from 1999 through 2005?
c. When was the number of measles deaths decreasing most

rapidly? What was the rate of measles death at that
instant of time?

Source: Centers for Disease Control and World Health Organization.

66. Oxygen Content of a Pond Refer to Exercise 55. When organic
waste is dumped into a pond, the oxidation process that
takes place reduces the pond’s oxygen content. However,

(0, 6)N¿(t) � 0

t � 0t

0 � t � 6

N(t) � �2.42t 3 � 24.5t 2 � 123.3t � 506

(0, 4)N

t � 0t
N(t)

0 � t � 4

N(t) � 6.08t 3 � 26.79t 2 � 53.06t � 69.5

t � 0
t

0 � t � 16

N(t) � �0.9307t 3 � 74.04t 2 � 46.8667t � 3967
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given time, nature will restore the oxygen content to its nat-
ural level. Suppose that the oxygen content days after the
organic waste has been dumped into the pond is given by

percent of its normal level. Show that an inflection point of 
occurs at .

67. a. Determine where the graph of is
concave upward and where it is concave downward.

b. Does the graph of have an inflection point at ?
Explain.

c. Sketch the graph of .

68. Show that the graph of the function has an
inflection point at but does not exist.

69. Find the values of such that the graph of

is concave upward everywhere.

70. Find conditions on the coefficients , , and such that the
graph of has inflection
points.

71. If the graph of a function is concave upward on an open
interval , must the graph of the function also be concave
upward on ?
Hint: Study the function on . Plot the graphs
of and on the same set of axes.

72. Suppose is twice differentiable on an open interval . If is
positive and the graph of is concave upward on , show
that the graph of the function is also concave upward.
(Compare with Exercise 71.)

f 2
If

fIf

f 2f
(�1, 1)f(x) � x2 � 1

I
f 2I

f

f(x) � ax4 � bx3 � cx2 � dx � e
cba

f(x) � x4 � 2x3 � cx2 � 2x � 2

c

f �(0)(0, 0)
f(x) � x�x �

f

x � 1f

f(x) � 2 � �x3 � 1 �
t � 20

f

f(t) � 100a t 2 � 10t � 100

t 2 � 20t � 100
b

t
73. Show that a polynomial function of odd degree greater than

or equal to three has at least one inflection point.

74. Show that the graph of a polynomial function of the form

where is a positive integer and the coefficients 
are positive, is concave upward everywhere and that has an
absolute minimum.

75. Suppose that the point is a point of inflection of the
graph of . Prove that the number gives rise to a
relative extremum of the function .

76. a. Suppose that is continuous and , but
. Show that the graph of has an inflection

point at .
b. Find the relative maximum and minimum values of

c. Verify the result of part (b) by plotting the graph of 
using the viewing window .

In Exercises 77–80, determine whether the statement is true or
false. If it is true, explain why it is true. If it is false, explain why
or give an example to show why it is false.

77. If has an inflection point at , then .

78. If exists everywhere except at and changes
sign as we move across , then has an inflection point at .

79. A polynomial function of degree 3 has exactly one inflection
point.

80. If the graph of a function that has a second derivative is
concave upward on an open interval , then the graph of the
function is concave downward.�f

I
f

afa
f �(x)x � af �(x)

f ¿(a) � 0af

[�2, 2] 
 [�1.5, 1.5]
f

f(x) � cos x � 1 �
x2

2
�

x3

6

a
ff ‡(a) � 0

f ¿(a) � f �(a) � 0f �

f ¿
ay � f(x)

(a, f(a))

f
a0, a2, p , a2nn

f(x) � a2nx
2n � a2n�2x

2n�2 � p � a2x
2 � a0

3.5 Limits Involving Infinity; Asymptotes

Infinite Limits
In Section 1.1 we were concerned primarily with whether or not the functional values
of approach a number as approaches a number . Even if does not approach
a (finite) limit, there are situations in which it is useful to describe the behavior of 
as approaches . Recall that the function does not have a limit as 
approaches 0 because becomes arbitrarily large as gets arbitrarily close to 0. (See
Example 7 in Section 1.1.) The graph of is reproduced in Figure 1. We described this
behavior by writing

with the understanding that this is not a limit in the usual sense.
More generally, we have the following definitions concerning the behavior of func-

tions whose values become unbounded as approaches .ax

lim
x→0

 
1

x2
� �

f
xf(x)

xf(x) � 1>x2ax
f(x)

f(x)axLf

FIGURE 1
gets larger and larger without

bound as gets closer and closer to 0.x
f(x)

x

y

0

y � 1__
x2
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DEFINITIONS Infinite Limits

Let be a function defined on an open interval containing with the possible
exception of itself. Then

if all the values of can be made arbitrarily large (as large as we please) by 
taking sufficiently close to but not equal to . Similarly,

if all the values of can be made as large in absolute value and negative as we
please by taking sufficiently close to but not equal to .ax

f

lim
x→a

f(x) � ��

ax
f

lim
x→a

f(x) � �

a
af

These definitions are illustrated graphically in Figure 2.

FIGURE 3
has one-sided infinite limits as approaches .axf

Similar definitions can be given for the one-sided limits

(1)

(see Figure 3). The expression is read “the limit of as approaches
is infinity.” The expression is read “the limit of as approaches
is negative infinity.”a

xf(x)limx→a f(x) � ��a
xf(x)limx→a f(x) � �

lim
x→a�

f(x) � ��lim
x→a�

f(x) � ��

lim
x→a�

f(x) � �lim
x→a�

f(x) � �

y

x0

y

x0

y

x
0

y

x0

x � a

x � ax � a x � a

(a) lim f (x) � �
xra�

(b) lim f (x) � �
xra�

(c) lim f (x) � ��
xra�

(d) lim f (x) � ��
xra�

FIGURE 2
has an infinite limit as approaches .axf

y y

x

x

0

0

x � a

x � a

(a) lim f (x) � �
xra xra

(b) lim f (x) � ��
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!

DEFINITION Vertical Asymptote

The line is a vertical asymptote of the graph of a function if at least
one of the following statements is true:

fx � a

EXAMPLE 1 Find and , and the vertical asymptote of thelim
x→1�

1

x � 1
lim

x→1�

1

x � 1

; ; lim
x→a

f(x) � � (or ��)lim
x→a�

f(x) � � (or ��)lim
x→a�

f(x) � � (or ��)

The “infinite limits” that are defined here are not limits in the sense defined in Sec-
tion 1.1. They are simply expressions used to indicate the direction (positive or neg-
ative) taken by the unbounded values of as approaches .

Vertical Asymptotes
Each vertical line shown in Figures 2a–b and 3a–d is called a vertical asymp-
tote of the graph of . Note that an asymptote does not constitute part of the graph of
, but it is a useful aid for sketching the graph of .ff

f
x � a

axf(x)

graph of .

Solution From the graph of shown in Figure 4, we see that

and

The line is a vertical asymptote of the graph of .fx � 1

lim
x→1�

1

x � 1
� �lim

x→1�

1

x � 1
� ��

f(x) � 1>(x � 1)

f(x) �
1

x � 1

FIGURE 4

and lim
x→1�

1

x � 1
� �lim

x→1�

1

x � 1
� ��

x f(x)

1.1

1.01

1.001

10

100

1000

Alternative Solution Observe that if is close to but less than 1, then is a
small negative number. The numerator, however, remains constant with value 1. There-
fore, is a number that is large in absolute value and negative. Consequently,1>(x � 1)

(x � 1)x

x f(x)

0.9

0.99

0.999 �1000

�100

�10

x

y

2

�2

21

�2

x � 1
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EXAMPLE 2 Special Theory of Relativity According to Einstein’s special theory of
relativity, the mass of a particle moving with speed is

(2)

where is the speed of light (approximately m/sec) and is the rest mass.

a. Evaluate .

b. Sketch the graph of , and interpret your result.

Solution
a. Observe that as approaches from the left, approaches 1 through values√2>c2c√

f

lim√→c� f(√)

m03 
 108c

m � f(√) �
m0

B1 �
√2

c2

√m

as approaches 1 from the left, becomes larger and larger in absolute value
and negative; that is,

Similarly, if is close to but greater than 1, then is a small positive number,
and we see that is a large positive number. Thus,

lim
x→1�

1

x � 1
� �

1>(x � 1)
(x � 1)x

lim
x→1�

1

x � 1
� ��

1>(x � 1)x

less than 1 and approaches zero. Thus, the denominator of Equa-
tion (2) approaches zero through positive values, and the numerator remains 
constant, so increases without bound. Thus, we have

b. From the result of part (a) we see that is a vertical asymptote of the graph
of . The graph of is shown in Figure 5. This mathematical model tells us that
the mass of a particle grows without bound as its speed approaches the speed of
light. This is why the speed of light is called the “ultimate speed.”

If a function is the quotient of two functions, and , that is,

then the zeros of the denominator provide us with candidates for the vertical asymp-
totes of the graph of , as the following example shows.f

h(x)

f(x) �
t(x)

h(x)

htf

ff
√ � c

lim
√→c�

f(√) � lim
√→c�

m0

B1 �
√2

c2

� �

f(√)

1 � (√2>c2)

FIGURE 5

m

√0 c
m

0

EXAMPLE 3 Find the vertical asymptotes of the graph of

f(x) �
x

x2 � x � 2
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Solution By factoring the denominator, we can rewrite in the form

Notice that the denominator of is equal to zero when or . The lines
and are candidates for vertical asymptotes of the graph of . To see

whether is, in fact, a vertical asymptote of the graph of , let’s evaluate

If is close to but less than , then is a small negative number. Furthermore,
is close to , so is a small positive number. Also, the numer-

ator of is close to when is close to . Therefore, is a
number that is large in absolute value and negative. Thus,

We conclude that is a vertical asymptote of the graph of . We leave it to you
to show that

which also confirms that is a vertical asymptote of the graph of .
Next, notice that if is close to but less than 2, then is a small nega-

tive number. Furthermore, is close to 3, so is a small neg-
ative number. Also, the numerator of is close to 2 when is close to 2. There-
fore,

We conclude that is also a vertical asymptote of the graph of . We leave it to
you to show that

The graph of is shown in Figure 6. Don’t worry about sketching it at this time. We
will study curve sketching in Section 3.6.

f

lim
x→2�

x

(x � 1)(x � 2)
� �

fx � 2

lim
x→2�

x

(x � 1)(x � 2)
� ��

xf(x)
[(x � 1)(x � 2)](x � 1)

(x � 2)x
fx � �1

lim
x→�1�

x

(x � 1)(x � 2)
� �

fx � �1

lim
x→�1�

x

(x � 1)(x � 2)
� ��

x>[(x � 1)(x � 2)]�1x�1f(x)
[(x � 1)(x � 2)]�3(x � 2)

(x � 1)�1x

lim
x→�1�

f(x)

fx � �1
fx � 2x � �1

x � 2x � �1f(x)

f(x) �
x

(x � 1)(x � 2)

f(x)

FIGURE 6
The graph of

has a vertical asymptote at 
and another at .x � 2

x � �1

y �
x

x2 � x � 2

EXAMPLE 4 Find the vertical asymptotes of the graph of .

Solution We write

Since if , where is an integer, we see that the vertical
lines are candidates for vertical asymptotes of the graph of . Con-
sider the line , where . If is close to but less than , then is
close to 1, but is positive and close to 0. Therefore, is positive and
large. Thus,

lim
x→(p>2)�

tan x � �

(sin x)>(cos x)cos x
sin xp>2xn � 0x � p>2 fx � (2n � 1)p>2 nx � (2n � 1)p>2cos x � 0

f(x) � tan x �
sin x

cos x

f(x) � tan x

x

y
15

�15

x � �1 x � 2

0
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FIGURE 7
The lines ( , an
integer) are vertical asymptotes of the
graph of .f

nx � (2n � 1)p>2

x

y

3

2

1

�2

�3

π�π

y � tan x

0π_
2� π_

2
3π__
2� 3π__

2

Next, if is close to but greater than , then is close to 1, and is neg-
ative and close to 0. Therefore, is negative and large in absolute value.
Thus,

This shows that the line is a vertical asymptote of the graph of . Similarly,
you can show that the lines , where is an integer, are vertical asymp-
totes of the graph of (see Figure 7).

Limits at Infinity
Up to now we have studied the limit of a function as approaches a finite number

. Sometimes we wish to know whether approaches a unique number as 
increases without bound. Consider, for example, the function giving the number
of fruit flies (Drosophila melanogaster) in a container under controlled laboratory
conditions as a function of time . The graph of is shown in Figure 8. You can see
from the graph of that as increases without bound (tends to infinity),
approaches the number 400. This number, called the carrying capacity of the envi-
ronment, is determined by the amount of living space and food available, as well as
other environmental factors.

P(t)tP
Pt

P
xf(x)a

x

f
nx � (2n � 1)p>2 fx � p>2

lim
x→(p>2)�

tan x � ��

(sin x)>(cos x)
cos xsin xp>2x

FIGURE 8
The graph of gives the population

of fruit flies in a laboratory experiment.
P(t)

More generally, we have the following intuitive definition of the limit of a function
at infinity.

DEFINITION Limit of a Function at Infinity

Let be a function that is defined on an interval . Then the limit of 
as approaches infinity (increases without bound) is the number , written

if all the values of can be made arbitrarily close to by taking to be suffi-
ciently large.

xLf

lim
x→�

f(x) � L

Lx
f(x)(a, �)f

t (days)

y (number of fruit flies)

400

300

200

100

10 20 30 40 50 60

y � P(t)

y � 400

0

This definition is illustrated graphically in Figure 9.
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FIGURE 9

y y

x0

y � L

x0

y � L

(a) lim f (x) � L
xr�

lim f (x) � L
xr�

(b) 

We define the limit at negative infinity in a similar manner.

DEFINITION Limit of a Function at Negative Infinity

Let be a function that is defined on an interval . Then the limit of 
as approaches negative infinity (decreases without bound) is the number ,
written

if all the values of can be made arbitrarily close to by taking to be suffi-
ciently large in absolute value and negative. (See Figure 10.)

xLf

lim
x→��

f(x) � L

Lx
f(x)(��, a)f

FIGURE 10

Horizontal Asymptotes
Each horizontal line shown in Figures 9a–b and 10a–b is called a horizontal
asymptote of the graph of .f

y � L

DEFINITION Horizontal Asymptote

The line is a horizontal asymptote of the graph of a function if

or

(or both).

lim
x→��

f(x) � Llim
x→�

f(x) � L

fy � L

y

x

y � L

0

y

x

y � L

0

(a) lim f (x) � L
xr��

(b) lim f (x) � L
xr��
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EXAMPLE 5 Find , , and the horizontal asymptote of the graphlim
x→��

1

x � 1
lim
x→�

1

x � 1

of .

Solution We have

and

We conclude that is a horizontal asymptote of (Figure 11).

The following theorem is useful for evaluating limits at infinity. We also point out
that the laws of limits in Section 1.2 are valid if we replace by or

.x → �
x → ��x → a

fy � 0

lim
x→��

1

x � 1
� 0lim

x→�

1

x � 1
� 0

f(x) �
1

x � 1

FIGURE 11

, ,

and, therefore, is a horizontal 
asymptote of the graph of .f

y � 0

lim
x→��

1

x � 1
� 0lim

x→�

1

x � 1
� 0

x

y

2

�2

21

�2

x � 1

y � 1_____
x  � 1

THEOREM 1
Let be a rational number. Then

Also, if is defined for all , then

lim
x→��

1

xr � 0

xxr

lim
x→�

1

xr � 0

r � 0

EXAMPLE 6 Let . Find and , and findlimx→�� f(x)limx→� f(x)f(x) �
2x2 � x � 1

3x2 � 2x � 1
all horizontal asymptotes of the graph of .

Solution If we divide both the numerator and denominator by , the highest power
of in the denominator, we obtain

 �
2 � 0 � 0

3 � 0 � 0
�

2

3

 �

lim
x→�

2 � lim
x→�

 
1
x

� lim
x→�

 
1

x2

lim
x→�

3 � lim
x→�

 
2
x

� lim
x→�

 
1

x2

 �

lim
x→�
a2 �

1
x

�
1

x2
b

lim
x→�
a3 �

2
x

�
1

x2
b

 lim
x→�

2x2 � x � 1

3x2 � 2x � 1
� lim

x→�

2 �
1
x

�
1

x2

3 �
2
x

�
1

x2

x
x2

f
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EXAMPLE 7 Find the horizontal asymptotes of the graph of the function

Solution First, let’s investigate . We may assume that . In this case 

. Dividing the numerator and the denominator by , the highest power of in
the denominator, we find

Therefore,

We conclude that is a horizontal asymptote of the graph of . Next, we investi-fy � 3

 �
3

B lim
x→�

1 � lim
x→�

 
1

x2

�
3

11 � 0
� 3

 �
lim
x→�

3

lim
x→�

 B1 �
1

x2

 lim
x→�

f(x) � lim
x→�

3

B1 �
1

x2

 �
3

B
1

x2
 (x2 � 1)

�
3

B1 �
1

x2

 f(x) �

1
x

 (3x)

1
x

 2x2 � 1

�
3

1

2x2
 2x2 � 1

xx2x2 � x

x � 0limx→� f(x)

f(x) �
3x

2x2 � 1

In a similar manner, we can show that

We conclude that is a horizontal asymptote of the graph of .fy � 2
3

lim
x→��

2x2 � x � 1

3x2 � 2x � 1
�

2

3

gate . In this case we may assume that . Then .
Dividing both the numerator and the denominator of by , we obtain

f(x) �

�
1
x

 (3x)

�
1
x

 2x2 � 1

�
�3

1

2x2
 2x2 � 1

�
�3

B
1

x2
 (x2 � 1)

�
�3

B1 �
1

x2

�xf(x)
2x2 � �x � � �xx � 0limx→�� f(x)



3.5 Limits Involving Infinity; Asymptotes 299

Therefore,

and we see that is also a horizontal asymptote of the graph of . The graph of
is sketched in Figure 12.

Infinite Limits at Infinity
The notation

is used to indicate that becomes arbitrarily large as increases without bound
(approaches infinity). For example,

(See Figure 13.) Similarly, we can define

, ,

For example, an examination of Figure 13 once again will confirm that

lim
x→��

x3 � ��

lim
x→��

f(x) � ��lim
x→��

f(x) � �lim
x→�

f(x) � ��

lim
x→�

x3 � �

xf(x)

lim
x→�

f(x) � �

f
fy � �3

lim
x→��

f(x) � lim
x→��

�3

B1 �
1

x2

� �3

x

y

1

1�1

y � 3x_______
x2 � 1√

y � 3

y � �3

FIGURE 12
and are horizontal

asymptotes of the graph of .f
y � �3y � 3

FIGURE 13
and lim

x→��
x3 � ��lim

x→�
x3 � �

x f(x) � x3

�1000

�100

�10

�1

�1000000000

�1000000

�1000

�1

x f(x) � x3

1

10

100

1000

1

1000

1000000

1000000000

x

y

2

4

�2

�4

�2 2

y � x3

EXAMPLE 8 Find and .

Solution We rewrite

2x3 � x2 � 1 � x3a2 �
1
x

�
1

x3
b

limx→��(2x3 � x2 � 1)limx→�(2x3 � x2 � 1)



300 Chapter 3 Applications of the Derivative

EXAMPLE 9 Find .

Solution Dividing both the numerator and the denominator by (the largest power
of in the denominator), we obtain

If is very large in absolute value and negative, then the denominator of this last expres-
sion is close to 1, whereas the numerator is large in absolute value and negative. Thus,
the quotient is large in absolute value and negative. We conclude that

Precise Definitions
We begin by giving a precise definition of an infinite limit as approaches a number .ax

lim
x→��

x2 � 1

x � 2
� ��

x

lim
x→��

x2 � 1

x � 2
� lim

x→��

x �
1
x

1 �
2
x

x
x

lim
x→��

x2 � 1

x � 2

DEFINITION Infinite Limit

Let be a function defined on an open interval containing , with the possible
exception of itself. We write

if for every number we can find a number such that for all sat-
isfying

then .f(x) � M

0 � �x � a � � d

xd � 0M � 0

lim
x→a

f(x) � �

a
af

0

y � M

a � ∂ a � ∂

(  )
a x

y

FIGURE 14
If ,
then .f(x) � M

x � (a � d, a) � (a, a � d)

and note that if is very large, then is close to 2 and is very large.

This shows that

Next, note that if is large in absolute value and negative, so is . Furthermore,

is close to 2. Therefore, is numerically very large

and negative. So

lim
x→��

(2x3 � x2 � 1) � ��

x3a2 �
1
x

�
1

x3
ba2 �

1
x

�
1

x3
b

x3x

lim
x→�

(2x3 � x2 � 1) � �

x3a2 �
1
x

�
1

x3
bx

For a geometric interpretation, let be given. Draw the line shown
in Figure 14. You can see that there exists a such that whenever lies in the
interval , the graph of lies above the line . You can alsoy � My � f(x)(a � d, a � d)

xd � 0
y � MM � 0
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see from the figure that once you have found a number called for in the defi-
nition, then any positive number smaller than will also satisfy the requirement in
the definition.

d

d � 0

EXAMPLE 10 Prove that .

Solution Let be given. We want to show that there exists a such that

whenever To find , consider

or

This suggests that we may take to be or any positive number less than or equal
to . Reversing the steps, we see that if , then

so

Therefore,

The precise definition of is similar to that of .limx→a f(x) � �limx→a f(x) � ��

lim
x→0

1

x2
� �

1

x2
�

1

d2
� M

x2 � d2

0 � �x � � d1>1M
1>1Md

�x � �
1

1M

x2 �
1

M

1

x2
� M

d0 � �x � 0 � � d.

1

x2
� M

d � 0M � 0

lim
x→0

1

x2
� �

DEFINITION Infinite Limit

Let be a function defined on an open interval containing , with the possible
exception of itself. We write

if for every number , we can find a number such that for all sat-
isfying

then .f(x) � N

0 � �x � a � � d

xd � 0N � 0

lim
x→a

f(x) � ��

a
af

(See Figure 15 for a geometric interpretation.)

FIGURE 15
If ,
then .f(x) � N

x � (a � d, a) � (a, a � d)

0

y � N

a � ∂ a � ∂

(        )
a

x

y
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The precise definitions for one-sided infinite limits are similar to the previous def-
initions. For example, in defining

we must restrict so that . Otherwise, the definition is similar to that for

We now turn our attention to the precise definition of the limit of a function at 
infinity.

lim
x→a

f(x) � �

x � ax

lim
x→a�

f(x) � �

DEFINITION Limit at Infinity

Let be a function defined on an interval . We write

if for every number there exists a number such that for all satisfying
then .� f(x) � L � � ex � N

xNe � 0

lim
x→�

f(x) � L

(a, �)f

As Figure 16 illustrates, the definition states that given any number we can
find a number such that implies that all the values of lie inside the band of
width determined by the lines and .

Finally, infinite limits at infinity can also be defined precisely. For example, the
precise definition of follows.limx→� f(x) � �

y � L � ey � L � e2e
fx � NN

e � 0, 

FIGURE 16
If , then lies in the band
defined by and .y � L � ey � L � e

f(x)x � N

DEFINITION Infinite Limit at Infinity

Let be a function defined on an interval . We write

if for every number there exists a number such that for all satisfy-
ing , then .f(x) � Mx � N

xNM � 0

lim
x→�

f(x) � �

(a, �)f

FIGURE 17
If , then .f(x) � Mx � N

1. Explain what is meant by the statements 
(a) and (b) .

2. Explain what is meant by the statements 
(a) and (b) .

3. Explain the following terms in your own words:
a. Vertical asymptote
b. Horizontal asymptote

limx→� f(x) � �5limx→�� f(x) � 2

limx→2� f(x) � ��limx→3 f(x) � �
4. a. How many vertical asymptotes can the graph of a func-

tion have? Explain using graphs.
b. How many horizontal asymptotes can the graph of a

function have? Explain, using graphs.
5. State the precise definition of 

(a) and (b) .lim
x→�

 
2x2 � x � 1

3x2 � 4
�

2

3
lim
x→2

 
3

(x � 2)2 � �

f

f

3.5 CONCEPT QUESTIONS

Figure 17 gives a geometric illustration of this definition. The precise definitions
for , , and are similar.limx→�� f(x) � ��limx→�� f(x) � �limx→� f(x) � ��

y � L � ´

y � L � ´

y � L

N

L

0

( 
  )

x

y

y

x0 N

y � M
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Videos for selected exercises are available online at www.academic.cengage.com/login.V

In Exercises 1–6, use the graph of the function to find the given
limits.

1. a. b.

c. d.

2. a. b.

c. d.

3. a. b. c.

4. a. b.

x

y

1

2 31�3 �2 �1

lim
x→�

f(x)lim
x→��

f(x)

x

y

4

1
2
3

�2
�1

�3

2�4 �2

lim
x→�

f(x)lim
x→��

f(x)lim
x→0

f(x)

x

y

4

10

�10
2 31�3 �2 �1

lim
x→��

f(x)lim
x→�

f(x)

lim
x→0�

f(x)lim
x→0�

f(x)

x

y

3

3

2

1

1 2�3 �2

lim
x→��

f(x)lim
x→�

f(x)

lim
x→0�

f(x)lim
x→0�

f(x)

f

3.5 EXERCISES

5. for 

6. a. b.

In Exercises 7–36, find the limit.

7. 8.

9. 10.

11. 12.

13. 14.

15. 16.

17. 18.

19. 20.

21. 22.

23. 24.

25. 26.

27. 28.

29. 30. lim
s→��

a s

s � 1
�

s2

2s2 � 1
blim

t→�
a t � 1

2t � 1
�

2t 2 � 1

1 � 3t 2b

lim
x→�
a1 �

1
x
b ax2 � 1

x2 � 1
blim

x→�
 

�2x4

3x4 � 3x2 � x � 1

lim
x→��

x4 � 1

x3 � 1
lim
x→�
a x3

3x2 � 2
�

x2

3x � 1
b

lim
x→��

2x3 � x2 � 3

x � 1
lim

x→��

1 � 2x2

x3 � 1

lim
x→�

 
2x2 � 1

4x2 � 1
lim

x→��

3x � 4

2x � 3

lim
x→�

 
x � 1

x � 5
lim

t→�(3>2)�
sec pt

lim
x→0�

cot 2xlim
x→(p>2)�

 
2

cos x

lim
x→0�

 
1

sin x
lim

x→�2�
a 1

x � 3
�

x

x � 2
b

lim
x→�1�

a1
x

�
1

x � 1
blim

x→0�
 

x � 1

1x(x � 1)2

lim
t→1

 
t 3

(t 2 � 1)2lim
u→4�

 
u2 � 1

u � 4

lim
x→1�

 
x � 1

1 � x
lim

x→1�
 
1 � x

1 � x

lim
t→�3�

t

t � 3
lim

x→�1�
 

1

x � 1

x

y

�π π 2ππ_
2�π_2

3π__
2�3π__

2

1

lim
x→�

f(x)lim
x→��

f(x)

x

y

�2π 2π 4π

1_
2

0

n � 0, 1, 2, plim
x→2np

f(x)

www.academic.cengage.com/V
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31. 32.

33. 34.

35. 36.

37. Let

Find , , , and
.

38. Let

(See the graph of .) Find and .

39. Let .

a. Show that , for .

b. Use the results of (a) and the Squeeze Theorem (which 

also holds for limits at infinity) to find .

c. Plot the graphs of , , and 

using the viewing window .

40. Let . Find .

In Exercises 41–44, (a) find an approximate value of the limit 
by plotting the graph of an appropriate function , (b) find an
approximate value of the limit by constructing a table of values
of , and (c) find the exact value of the limit.

41. 42.

43.

44. lim
x→�

13x � 2 � 13x

12x � 1 � 12x

lim
x→�
122x2 � 3x � 4 �22x2 � x � 1 2

lim
x→��
1x �2x2 � 5x 2lim

x→�
x12x2 � 1 � x2

f

f

limx→� t(x)t(x) �
cos x2

1x

[0, 20] 
 C�1
2, 

1
2 Dh(x) �

1
x

t(x) �
sin x

x
f(x) � �

1
x

lim
x→�

 
sin x

x

x � 0�
1
x

�
sin x

x
�

1
x

f(x) �
sin x

x

x

y

1

�1

π_
2� π_

4
3π__
4

5π__
4

7π__
4

π

limx→� f(x)limx→�� f(x)f

f(x) � •
1
p

 x2 � x if x � 0

sin 2x if x � 0

limx→� f(x)
limx→�� f(x)limx→0� f(x)limx→0� f(x)

f(x) � •
1
x

if x � 0

1 if x � 0

lim
x→�

 
x

3x � cos x
lim
x→�

x sin 
1
x

lim
x→�

cos 
1
x

lim
x→�

 
cos 2x

x

lim
t→��

 
2t 2

2t 4 � t 2
lim
x→�

 
2x

23x2 � 1

In Exercises 45–48 you are given the graph of a function . Find
the horizontal and vertical asymptotes of the graph of .

45. 46.

47.

48.

In Exercises 49–56, find the horizontal and vertical asymptotes
of the graph of the function. Do not sketch the graph.

49. 50.

51. 52.

53. 54.

55. 56.

In Exercises 57–60, sketch the graph of a function having the
given properties.

57. , , on , on
, ,

58. , does not exist, ,
on ,

limx→�� f(x) � limx→� f(x) � �p>2(��, 0) � (0, �)f �(x) � 0
f(�1) � f(1) � 0f ¿(0)f(0) � p>2

limx→� f(x) � 1limx→�� f(x) � �1(0, �)
f �(x) � 0(��, 0)f �(x) � 0f ¿(0) � 1f(0) � 0

f(x) �
2x3

23x6 � 2
f(t) �

t 2 � 2

t 2 � 4

h(x) �
2 � x2

x2 � x
f(x) �

2x

x2 � x � 6

f(t) �
t 2

t 2 � 4
h(x) �

x � 1

x � 1

t(x) �
x

x � 1
f(x) �

1

x � 2

x

y

2

�2

2�2

x

y

2

�2
2�2

x

y

2

�2

2�2
x

y

1

�1

10�10

f
f
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59. Domain of is , ,
, on ,

, ,

60. , , on ,
on , , ,

, on
, on 

61. Chemical Pollution As a result of an abandoned chemical
dump leaching chemicals into the water, the main well of 
a town has been contaminated with trichloroethylene, a 
cancer-causing chemical. A proposal submitted by the
town’s board of health indicates that the cost, measured 
in millions of dollars, of removing percent of the toxic
pollutant is given by

a. Evaluate , and interpret your results.
b. Plot the graph of using the viewing window

.

62. Driving Costs A study of driving costs of a 2008 medium-
sized sedan found that the average cost (car payments, gas,
insurance, upkeep, and depreciation) is given by the function

where is measured in cents per mile and denotes the
number of miles (in thousands) the car is driven in a year.
Compute , and interpret your results.
Source: American Automobile Association.

63. City Planning A major developer is building a 5000-acre com-
plex of homes, offices, stores, schools, and churches in the
rural community of Marlboro. As a result of this develop-
ment, the planners have estimated that Marlboro’s popula-
tion (in thousands) years from now will be given by

a. What will the population of Marlboro be in the long run?
Hint: Find .

b. Plot the graph of using the viewing window
.

64. Oxygen Content of a Pond When organic waste is dumped into
a pond, the oxidation process that takes place reduces the
pond’s oxygen content. However, given time, nature will
restore the oxygen content to its natural level. Suppose that
the oxygen content days after the organic waste has been
dumped into the pond is given by

percent of its normal level.

f(t) � 100a t 2 � 10t � 100

t 2 � 20t � 100
b

t

[0, 20] � [0, 30]
P

limt→� P(t)

P(t) �
25t 2 � 125t � 200

t 2 � 5t � 40

t

limx→� C(x)

xC(x)

C(x) �
1735.2

x1.72 � 38.6

[0, 100] � [0, 10]
C

limx→100� C(x)

C(x) �
0.5x

100 � x

x

(3, �)f �(x) � 0(��, 0) � (0, 3)
f �(x) � 0limx→�� f(x) � limx→� f(x) � 1

limx→0� f(x) � ��limx→0� f(x) � ��(0, 2)f ¿(x) � 0
(��, 0) � (2, �)f ¿(x) � 0f ¿(2) � 0f(2) � 3

limx→� f(x) � ��
limx→1� f(x) � ��limx→�1� f(x) � ��

(��, �1) � (1, �)f �(x) � 0f ¿(�2) � 0
f(�2) � �1(��, �1) � (1, �)f a. Evaluate and interpret your result.

b. Plot the graph of using the viewing window
.

65. Terminal Velocity A skydiver leaps from the gondola of a hot-
air balloon. As she free-falls, air resistance, which is propor-
tional to her velocity, builds up to a point at which it bal-
ances the force due to gravity. The resulting motion may be
described in terms of her velocity as follows: Starting at rest
(zero velocity), her velocity increases and approaches a con-
stant velocity, called the terminal velocity. Sketch a graph of
her velocity versus time .

66. Terminal Velocity A skydiver leaps from a helicopter hovering
high above the ground. Her velocity sec later and before
deploying her parachute is given by

where is measured in meters per second.
a. Complete the following table, giving her velocity at the

indicated times.

√(t)

√(t) � 52[1 � (0.82)t]

t

t√

[0, 200] � [70, 100]
f

limt→� f(t)

(sec)t 0 10 20 30 40 50 60

(m/sec)√√ (t)

b. Plot the graph of using the viewing window
.

c. What is her terminal velocity?
Hint: Evaluate .

67. Mass of a Moving Particle The mass of a particle moving at a
speed is related to its rest mass by the equation

where , a constant, is the speed of light. Show that

thus proving that the line is a vertical asymptote of
the graph of versus . Make a sketch of the graph of 
as a function of .

68. Special Theory of Relativity According to the special theory of
relativity

where is the rest energy and is the total
energy.
a. Find .
b. Sketch the graph of .
c. What do your results say about the speed of light?

√
limE→� √

EE0 � m0c
2

√ � cB1 � aE0

E
b2

√
m√m

√ � c

lim
√→c�

m0

B1 �
√2

c2

� �

c

m �
m0

B1 �
√2

c2

m0√
m

limt→� √(t)

[0, 60] � [0, 60]
√
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69. Let .
a. Plot the graph of , and use it to estimate to

one decimal place.
b. Use a table of values to estimate .
c. Find the exact value of analytically.

70. Let

a. Plot the graph of , and use it to estimate to
one decimal place.

b. Use a table of values to estimate .
c. Find the exact value of analytically.

71. Escape Velocity An object is projected vertically upward from
the earth’s surface with an initial velocity of magnitude
less than the escape velocity (the velocity that a projectile
should have in order to break free of the earth forever). If
only the earth’s influence is taken into consideration, then
the maximum height reached by the rocket is

where is the radius of the earth and is the acceleration
due to gravity.
a. Show that the graph of has a vertical asymptote at

, and interpret your result.
b. Use the result of part (a) to find the escape velocity. Take

the radius of the earth to be 4000 mi ( ft/sec2).
c. Sketch the graph of as a function of .

72. Determine the constants and such that

73. Let

P(x) �
anx

n � an�1x
n�1 � p � a0

bmxm � bm�1x
m�1 � p � b0

lim
x→�
a2x2 � 3

x � 1
� ax � bb � 0

ba

√0H
t � 32

√0 � 12tR
H

tR

H �
√2

0R

2tR � √2
0

√0

limx→� f(x)
limx→� f(x)

limx→� f(x)f

f(x) �23 x3 � 2x2 � 3x � 1 �23 x3 � 3x2 � x � 4

limx→� f(x)
limx→� f(x)

limx→� f(x)f
f(x) �23x � 1x �23x � 1x where , and , , are positive integers. Show

that

74. Prove that .

75. Use the result of Exercise 74 to find .

76. Use the result of Exercise 74 to find .

In Exercises 77–82, use the appropriate precise definition to
prove the statement.

77. 78.

79. 80.

81. 82.

In Exercises 83–88, determine whether the given statement is
true or false. If it is true, explain why it is true. If it is false,
explain why or give an example to show why it is false.

83.

84. for any real number .

85. If is a horizontal asymptote of the graph of the func-
tion , then the graph of cannot intersect .

86. If the denominator of a rational function is equal to zero at
, then is a vertical asymptote of the graph of .

87. The graph of a function can have two distinct horizontal
asymptotes.

88. If is defined on and , then
.limx→� f(1>x) � 1>L limx→0� f(x) � L(0, �)f

fx � aa
f

y � Lff
y � L

climx→� c � c

lim
x→2

 
1

x � 2
� �

lim
x→�

3x � �lim
x→��

 
x

x � 1
� 1

lim
x→�

 
x

x2 � 1
� 0lim

x→0�
 
1
x

� ��

lim
x→0�

 
1

1x
� �lim

x→0
 
2

x4 � �

limx→� x tan(1>x)

limx→� x sin(1>x)

limx→� f(x) � limt→0� f(1>t)

lim
x→�

P(x) � d	� if n � m
an

bm
if n � m

0 if n � m

nman � 0, bm � 0

3.6 Curve Sketching

The Graph of a Function
We have seen on many occasions how the graph of a function can help us to visualize
the properties of the function. From a practical point of view, the graph of a function
also gives, at one glance, a complete summary of all the information captured by the
function.

Consider, for example, the graph of the function giving the Dow-Jones Industrial
Average (DJIA) on Black Monday: October 19, 1987 (Figure 1). Here, corre-
sponds to 9:30 A.M., when the market was open for business, and correspondst � 6.5

t � 0
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FIGURE 1
The Dow-Jones Industrial 

Average on Black Monday
Source: The Wall Street Journal.

The graph is decreasing rapidly from to , reflecting the sharp drop in
the index in the first hour of trading. The point is a relative minimum point
of the function, and this turning point coincides with the start of an aborted recovery.
The short-lived rally, represented by the portion of the graph that is increasing on the
interval , quickly fizzled out at (11:30 A.M.). The relative maximum point

marks the highest point of the recovery. The function is decreasing on the
rest of the interval. The point is an inflection point of the function; it shows
that there was a temporary respite at (1:30 P.M.). However, selling pressure con-
tinued unabated, and the DJIA continued to fall until the closing bell. Finally, the graph
also shows that the index opened at the high of the day ( is the absolute
maximum of the function) and closed at the low of the day ( is the absolute
minimum of the function), a drop of 508 points, or approximately 23%, from the pre-
vious close.

Guide to Curve Sketching
A systematic approach to sketching the graph of a function begins with an attempt
to gather as much information as possible about . The following guidelines provide us
with a step-by-step procedure for doing this.

f
f

f 113
2 2 � 1739

f(0) � 2164

t � 4
(4, 2006)

(2, 2150)
t � 2(1, 2)

(1, 2047)
t � 1t � 0

y  (DJIA)

t  (hr)0 1 2 3 4 5 6 7

2200

1700

1800

1900

2000

2100
2164

(1, 2047)

(2, 2150)

(4, 2006)

PIERRE DE FERMAT
(1601–1665)

A lawyer who studied mathematics for
relaxation and enjoyment, Fermat con-
tributed much to the field in the 1600s.
Although it is commonly believed that ana-
lytic geometry was the invention of Rene
Descartes (1596–1650; see page 6), it was
Fermat, working with the “restoration” of
lost works, who made the connection that
led to a fundamental principle of analytic
geometry, and he wrote of his finding a
year before publication of Descartes’s La
géométrie. Fermat is best known for his
statement in the margin of a book “For 
an integer greater than 2, there are no
positive integral values , , such that

.” Fermat also wrote that he
had a marvelous proof but that the margin
was too narrow to contain it. No one ever
found his proof, and the theorem became
known as Fermat’s last theorem. It would
be another 300 years before it would be
proved.

xn � yn � zn
zyx

n

Historical Biography

Guidelines for Curve Sketching

1. Find the domain of .
2. Find the - and -intercepts of .
3. Determine whether the graph of is symmetric with respect to the -axis

or the origin.
4. Determine the behavior of for large absolute values of .
5. Find the asymptotes of the graph of .
6. Find the intervals where is increasing and where is decreasing.
7. Find the relative extrema of .
8. Determine the concavity of the graph of .
9. Find the inflection points of .

10. Sketch the graph of .f
f

f
f

ff
f

xf

yf
fyx

f

Be
ttm

an
n/

Co
rb

is

to 4 P.M., the closing time. The following information can be gleaned from studying
the graph.
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EXAMPLE 1 Sketch the graph of the function .

Solution First, we obtain the following information about .
1. Since is a polynomial function of degree 3, the domain of is .
2. By setting , we see that the -intercept is 12. Since the cubic equation

is not readily solved, we will not attempt to find the
-intercept.*

3. Since is not equal to or , the graph
of is not symmetric with respect to the -axis or the origin.

4. Since

and

we see that decreases without bound as decreases without bound and 
increases without bound as increases without bound.

5. Because is a polynomial function (a rational function whose denominator is 1
and is therefore never zero), we see that the graph of has no vertical asymp-
totes. From part (4), we see that the graph of has no horizontal asymptotes.

6. and is continuous
everywhere. Setting gives and 2 as critical numbers. The sign dia-
gram for shows that is increasing on and on , and decreas-
ing on . (See Figure 2.)

7. From the results of part (6), we see that and 2 are critical numbers of . 
Furthermore, from the sign diagram of , we see that has a relative maximum
at with value

and a relative minimum at 2 with value

8.

Setting gives . The sign diagram for shows that the graph of 
is concave downward on and concave upward on . (See Figure 3.)112, � 21��, 12 2 ff �x � 1

2f �(x) � 0

f �(x) � 12x � 6 � 6(2x � 1)

f(2) � 2(2)3 � 3(2)2 � 12(2) � 12 � �8

f(�1) � 2(�1)3 � 3(�1)2 � 12(�1) � 12 � 19

�1
ff ¿

f�1
(�1, 2)

(2, �)(��, �1)ff ¿
�1f ¿(x) � 0

f ¿(x) � 6x2 � 6x � 12 � 6(x2 � x � 2) � 6(x � 1)(x � 2)
f

f
f

x
fxf

lim
x→�

f(x) � �lim
x→��

f(x) � ��

yf
�f(x)f(x)f(�x) � �2x3 � 3x2 � 12x � 12

x
2x3 � 3x2 � 12x � 12 � 0

yx � 0
(��, �)ff

f

f(x) � 2x3 � 3x2 � 12x � 12

*If the equation is difficult to solve, disregard finding the -intercepts.xf(x) � 0

210

00 +++ ++ ++++++++ –– – –– – – – –

�1 x

FIGURE 2
The sign diagram for f ¿

FIGURE 3
The sign diagram for f �

1_
2

210

0 +++ ++ ++ ++ +++–– – –––– – – – –

x

9. From the results of part (8) we see that has an inflection point when . Next,

so is the inflection point of .
10. The following table summarizes this information.

f112, 11
2 2

f 112 2 � 2112 23 � 3112 22 � 12112 2 � 12 � 11
2

x � 1
2f

Domain

Intercepts

Symmetry

End behavior

Asymptotes

Intervals where is or 

Relative extrema

Concavity

Point of inflection

xzf

-intercept: 12

None

and

None

on and on ; on 

Rel. max. at ; rel. min. at 

Downward on ; upward on 112, 11
2 2 112, � 21��, 12 2

(2, �8)(�1, 19)

(�1, 2)x(2, �)(��, �1)z

lim
x→�

f(x) � �lim
x→��

f(x) � ��

y

(��, �)
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We begin by plotting the intercepts, the inflection point, and the relative extrema
of as shown in Figure 4. Then, using the rest of the information, we complete the
graph of as shown in Figure 5.f

f

FIGURE 4
First plot the -intercept, the relative extrema, and
the inflection point.

y
FIGURE 5
The graph of y � 2x3 � 3x2 � 12x � 12

EXAMPLE 2 Sketch the graph of the function .

Solution
1. The denominator of the rational function is equal to zero if

, that is, if or . Therefore, the
domain of is .

2. Setting gives 0 as the -intercept. Next, setting gives or
. So the -intercept is 0.

3.

and this shows that the graph of is symmetric with respect to the -axis.

4.

5. Because the denominator of is equal to zero at and 1, the lines 
and are candidates for the vertical asymptotes of the graph of . Since

and

we see that and are indeed vertical asymptotes. From part (4) we
see that is a horizontal asymptote of the graph of .

6.

 �
(x2 � 1)(2x) � x2(2x)

(x2 � 1)2
� �

2x

(x2 � 1)2

 f ¿(x) �

(x2 � 1) 
d

dx
 (x2) � x2 

d

dx
 (x2 � 1)

(x2 � 1)2

fy � 1
x � 1x � �1

lim
x→1�

x2

x2 � 1
� ��lim

x→�1�

x2

x2 � 1
� �

fx � 1
x � �1�1f(x)

lim
x→��

x2

x2 � 1
� lim

x→�

x2

x2 � 1
� 1

yf

f(�x) �
(�x)2

(�x)2 � 1
�

x2

x2 � 1
� f(x)

xx � 0
x2 � 0, f(x) � 0yx � 0

(��, �1) � (�1, 1) � (1, �)f
x � 1x � �1x2 � 1 � (x � 1)(x � 1) � 0

f

f(x) �
x2

x2 � 1

x

y

10

20

�3

(�1, 19)

(2, �8)

(0, 12)

�2 �1 1 32

�20

�10

Relative maximum

Relative minimum

y-intercept

Inflection point

(       ),1_
2

11__
2

x

y

10

20

�3 �2 �1 1 32

�20

�10
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Notice that is continuous everywhere except at and that it has a zero when
. The sign diagram of is shown in Figure 6.f ¿x � 0

	1f ¿

FIGURE 6
The sign diagram for f ¿ x10

0+++++++++ ––– ––– ––– ––

f � not defined here

�1

FIGURE 7
The sign diagram for f � x10

+++++++ +++++++–––––––

f  not defined here

�1

From the diagram we see that is increasing on and on and
decreasing on and on .

7. From the results of part (6) we see that 0 is a critical number of . The numbers
and 1 are not in the domain of and, therefore, are not critical numbers of .

Also, from Figure 6 we see that has a relative maximum at . Its value is
.

8.

Notice that is continuous everywhere except at and that has no zeros.
From the sign diagram of shown in Figure 7, we see that the graph of is
concave upward on and on and concave downward on .(�1, 1)(1, �)(��, �1)

ff �
f �	1f �

 �
2(x2 � 1)[�(x2 � 1) � 4x2]

(x2 � 1)4
�

2(3x2 � 1)

(x2 � 1)3

 �
(x2 � 1)2(�2) � (�2x)(2)(x2 � 1)(2x)

(x2 � 1)4

 f �(x) �
d

dx
 c �2x

(x2 � 1)2
d

f(0) � 0
x � 0f

ff�1
f

(1, �)(0, 1)
(�1, 0)(��, �1)f

9. has no inflection points. Remember that and 1 are not in the domain of .
10. The following table summarizes this information.

f�1f

Domain

Intercepts

Symmetry

Asymptotes

End behavior

Intervals where is or 

Relative extrema

Concavity

Point of inflection

xzf

- and -intercepts: 0

With respect to the -axis

Vertical: and
Horizontal:

on and on ; on and
on 

Rel. max. at 

Downward on ; upward on and on

None

(1, �)
(��, �1)(�1, 1)

(0, 0)

(1, �)
(0, 1)x(�1, 0)(��, �1)z

lim
x→��

x2

x2 � 1
� lim

x→�

x2

x2 � 1
� 1

y � 1
x � 1x � �1

y

yx

(��, �1) � (�1, 1) � (1, �)
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We begin by plotting the relative maximum of and drawing the asymptotes of the
graph of as shown in Figure 8. In this case, plotting a few additional points will ensure
a more accurate graph. For example, from the table

f
f

x 1
2

3
2 2

f(x) �1
3

9
5

4
3

we see that the points , , and and, by symmetry, , ,1�3
2, 

9
5 21�1

2, �
1
3 212, 43 2132, 95 2112, �1

3 2

FIGURE 8
First plot the -intercept, relative maximum, and
asymptotes. Then plot a few additional points.

y
FIGURE 9
The graph of f(x) �

x2

x2 � 1

and lie on the graph of . Finally, using the rest of the information about , we
sketch its graph as shown in Figure 9.

ff1�2, 43 2

x

y

y � 1

x � –1 x � 1

1

2

�3 �2 �1 21 3

Asymptote

AsymptoteAsymptote
�2

�1

Intercept, relative
maximum

(          ), –

(       ),

(       )2,

3_
2

4_
3

1_
3

1_
2

9_
5

x

y

1

2

�3 �2 2 3

�2

�1

EXAMPLE 3 Sketch the graph of the function .

Solution
1. The denominator of is equal to zero if ; that is, if 

or . Therefore, the domain of isfx � (3p>2) � 2np (n � 0, 	1, 	2, p )
sin x � �11 � sin x � 0f(x)

f(x) �
1

1 � sin x

2. Setting gives 1 as the -intercept. Since , there are no -intercepts.

3.

and is equal to neither nor . Therefore, is not symmetric with respect
to the -axis or the origin.

4. and do not exist.

5. The denominator of is equal to zero when , that is, when
(see part (1)). Since

lim
x→(3p>2)�2np

c 1

1 � sin x
d � �

x � (3p>2) � 2np (n � 0, 	1, 	2, p )
1 � sin x � 0f(x)

lim
x→�
c 1

1 � sin x
dlim

x→��
c 1

1 � sin x
d

y
f�f(x)f(x)

sin(�x) � �sin xf(�x) �
1

1 � sin(�x)
�

1

1 � sin x

xy � 0yx � 0

p 1�p2 , 3p2 2 � 13p2 , 7p2 2 � p .
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x0

0 00 ++ ++++++++ ++++ ++++++ +++++++––– –– ––––– ––– –– –––––––– –– –
f � not defined here

�π π 2ππ_
2�π_2

3π__
2

5π__
2�3π__

2

7. From the results of part (6) we see that are
critical numbers of . From Figure 10 we see that these numbers give rise to the
relative minima of , each with value , since

8.

Because for all values of , we see that whenever it is
defined. From the sign diagram of shown in Figure 11, we conclude that the
graph of is concave upward on , , and on .13p2 , 7p2 2 p1�p2 , 3p2 2p 1�5p

2 , �p2 2f
f �

f �(x) � 0x� sin x � � 1

 � �
(sin x � 2)(sin x � 1)

(1 � sin x)3
�

2 � sin x

(1 � sin x)2

 �
sin x � sin2 x � 2(1 � sin2 x)

(1 � sin x)3
� �

sin2 x � sin x � 2

(1 � sin x)3

 �
sin x � sin2 x � 2 cos2 x

(1 � sin x)3

 � (1 � sin x)�3[(sin x)(1 � sin x) � 2 cos2 x]

 � (sin x)(1 � sin x)�2 � (cos x)(�2)(1 � sin x)�3(cos x)

 f �(x) �
d

dx
 [�(cos x)(1 � sin x)�2]

f 1p2 � 2np 2 �
1

1 � sin1p2 � 2np2 �
1

1 � sin p2
�

1

2

1
2f

f
(p>2) � 2np (n � 0, 	1, 	2, p )

FIGURE 10
The sign diagram for f ¿

we see that the lines are vertical
asymptotes of the graph of . From part (4) we see that there are no horizontal
asymptotes.

6.

Use the Chain Rule.

Notice that is continuous everywhere except at 
and has zeros at .

The sign diagram of is shown in Figure 10. We see that is increasing on 
, , and on and decreasing on ,

, and on .13p2 , 5p2 2 p1�p2 , p2 2
p 1�5p

2 , �3p
2 215p2 , 7p2 2 p1p2 , 3p2 2p 1�3p

2 , �p2 2 ff ¿
(n � 0, 	1, 	2, p )x � (p>2) � 2np(n � 0, 	1, 	2, p )

x � (3p>2) � 2npf ¿

 � �
cos x

(1 � sin x)2

 � �(1 � sin x)�2(cos x)

 f ¿(x) �
d

dx
 (1 � sin x)�1

f
x � (3p>2) � 2np (n � 0, 	1, 	2, p )

FIGURE 11
The sign diagram for f �

x

++ +++++++++++++++ ++ ++++++++++++++++++++ ++++++++++ +++++++
f  not defined here

0�π π 2ππ_
2�π_2

3π__
2

5π__
2�3π__

2
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The graph of is shown in Figure 12.f

9. has no inflection points.
10. The following table summarizes this information.

f

Domain

Intercept

Symmetry

End behavior

Asymptotes

Intervals where is or 

Relative extrema

Concavity

Point of inflection

xzf

-intercept: 1

None (with respect to the -axis or the origin)

and do not exist.

Vertical:

on and on 

on and on 

Rel. min:

Upward on and on 

None
1�p2 , 3p2 2 pp 1�5p

2 , �p2 2
p 1�3p

2 , 12 2, 1p2 , 12 2, 15p2 , 12 2 p
13p2 , 5p2 2 pp 1�p2 , p2 2x

1p2 , 3p2 2 pp 1�3p
2 , �p2 2z

x � 3p
2 � 2np (n � 0, 	1, 	2, p )

lim
x→�
c 1

1 � sin x
dlim

x→��
c 1

1 � sin x
d

y

y

p 1�p2 , 3p2 2 � 13p2 , 7p2 2 � p

FIGURE 12

The graph of f(x) �
1

1 � sin x
x

y

1

π_
2� π_

2
3π__
2� 3π__

2� 5π__
2

π�π�2π 2π0

1_
2

Slant Asymptotes
The graph of a function may have an asymptote that is neither vertical nor horizon-
tal but slanted. We call the line with equation a slant or oblique (right)
asymptote of the graph of if

and (1)

Observe that the second equation in (1) is equivalent to the statement
. Since measures the vertical distance

between the graph of and the line , the second equation in (1) simply
states that the graph of approaches the line with equation as approaches
infinity. (See Figure 13.)

Similarly, if

and (2)

then the line is called a slant (left) asymptote of the graph of . Note that
a horizontal asymptote of the graph of may be considered a special case of a slant
asymptote where .m � 0

f
fy � mx � b

lim
x→��

[ f(x) � mx] � blim
x→��

f(x)

x
� m

xy � mx � bf
y � mx � bf(x)

� f(x) � mx � b �limx→�[ f(x) � mx � b] � 0

lim
x→�

[ f(x) � mx] � blim
x→�

f(x)

x
� m

f
y � mx � b

f

FIGURE 13
The graph of has a slant asymptote.f

y

x0

y � f (x)

y � mx � b
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Before looking at the next example, we point out that the graph of a rational func-
tion has a slant asymptote if the degree of its numerator exceeds the degree of its
denominator by 1 or more. In fact, if the degree of the numerator exceeds the degree
of the denominator by 1, the slant asymptote is a straight line as the next example
shows; if it exceeds the denominator by 2, then the slant asymptote is parabolic, and
so forth.

EXAMPLE 4 Find the slant asymptotes of the graph of .

Solution We compute

Next, taking , we compute

So, taking , we see that the line with equation is a slant asymptote
of the graph of . You can show that the computations using the equations in (2) lead
to the same conclusion (see Exercise 35), so is the only slant asymptote
of the graph of . The graph of is sketched in Figure 14.ff

y � 2x � 4
f

y � 2x � 4b � 4

 � lim
x→�

4x � 3

x � 2
� lim

x→�

4 �
3
x

1 �
2
x

� 4

 � lim
x→�

2x2 � 3 � 2x2 � 4x

x � 2

 lim
x→�

[ f(x) � mx] � lim
x→�
a2x2 � 3

x � 2
� 2xb

m � 2

 � 2

 � lim
x→�

2 �
3

x2

1 �
2
x

 lim
x→�

f(x)

x
� lim

x→�

2x2 � 3

x � 2

x
� lim

x→�

2x �
3
x

x � 2

f(x) �
2x2 � 3

x � 2

Divide the numerator and the 
denominator by .x

FIGURE 14
is a slant asymptote 

of the graph of .f
y � 2x � 4

x

y

10

1

y � 2x � 4

0

f (x) � 2x2 � 3_______
x  � 2
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Finding Relative Extrema Using a Graphing Utility
Although we found the relative extrema of the functions in the previous examples ana-
lytically, these relative extrema can also be found with the aid of a graphing utility. For
instance, the relative extrema of the graphs of the functions in Examples 3 and 4 are
easily identified (see Figures 15 and 16).

FIGURE 15
The graph of the function f(x) �

1

1 � sin x

FIGURE 16
The graph of the function f(x) �

2x2 � 3

x � 2

FIGURE 17

For more complicated functions, however, it could prove to be rather difficult to
find their relative extrema by using only a graphing utility. Consider, for example, the
function

The graph of in the viewing window is shown in Figure 17.[�10, 10] 
 [�10, 10]f

f(x) �
(x � 2)(x � 3)

(x � 2)(x � 3)

�0.25

2

7.5�10

35

�4 4

�15

10

�10

�10 10

A cursory examination of the graph seems to indicate that has no relative extrema, at
least for in the interval .

Let’s look at the problem analytically. We compute

 �
10(x � 16)(x � 16)

(x � 2)2(x � 3)2

 �
(x2 � 5x � 6)(2x � 5) � (x2 � 5x � 6)(2x � 5)

(x � 2)2(x � 3)2
�

10(x2 � 6)

(x � 2)2(x � 3)2

 f ¿(x) �
d

dx
 c (x � 2)(x � 3)

(x � 2)(x � 3)
d �

d

dx
 ax2 � 5x � 6

x2 � 5x � 6
b

(�10, 10)x
f
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FIGURE 19
The relative maximum at an be seen in part (a). The same relative maximum is
shown in close-up view in part (b).

�16

x0

0 0

1 2 3 4

++ +++++++++++ +++ ++ ++++++++++

f � not defined here

�4 �3 �2� �1√6 √6

–– –––––– –––– –– ––– –––– –– ––

�5 5

100

�300

100

�300

�3 �2

(a) (b)

Our calculations also indicate that there is a relative minimum at with value
. This relative minimum point shows up when we use the

viewing window . (See Figure 20.) You can use the graphing util-
ity to approximate the point .

This example shows that a combination of analytical and graphical techniques some-
times forms a powerful team when it comes to solving calculus problems.

(16, f(16))
[0, 3] 
 [�0.02, 0.01]

(16, f(16))f(16) � �0.01
16

FIGURE 20
The relative minimum at can be
seen using the viewing window

.[0, 3] 
 [�0.02, 0.01]

16

0.01

�0.02

0 3

FIGURE 18
The sign diagram for f ¿

We see that has two critical numbers, and . Note that is discontinu-
ous at and , but because these numbers are not in the domain of , they do not
qualify as critical numbers. From the sign diagram of (Figure 18) we see that has
a relative maximum at with value and a relative minimum
at with value . These calculations tell us that we need to adjust the
viewing window to see the relative maximum of . Figure 19a shows the graph of 
using the viewing window . A close-up of the relative maxi-
mum is shown in Figure 19b, where the viewing window is
used. The point can be estimated by using the function for finding
the maximum on your graphing utility.

(�16, f(�16))
[�3, �2] 
 [�300, 100]

[�5, 5] 
 [�300, 100]
ff

f(16) � �0.0116
f(�16) � �97.99 �16

ff ¿
f�3�2

f ¿16�16f

1. Give the guidelines for sketching a curve.
2. Let .

a. Show that if is very large, then behaves like
.t(x) � x2

f(x)�x �
f(x) � x2 � 1>x2

b. Show that .
c. Use the guidelines for curve sketching and the results of

parts (a) and (b) to sketch the graph of .f

limx→0 f(x) � �

3.6 CONCEPT QUESTIONS
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In Exercises 1–4, use the information summarized in the table to
sketch the graph of .

1. f(x) � x3 � 3x2 � 1

f

2. f(x) �
1

9
 (x4 � 4x3)

3.6 EXERCISES

Domain

Intercepts

Symmetry

Asymptotes

Intervals where is or 

Relative extrema

Concavity

Point of inflection

xzf

-intercept: 1

None

None

on and on ; 
on 

Rel. max. at ; 
rel. min. at 

Downward on ;
upward on 

(1, �1)

(1, �)
(��, 1)

(2, �3)
(0, 1)

(0, 2)x

(2, �)(��, 0)z

y

(��, �)

Domain

Intercepts

Symmetry

Asymptotes

Intervals where is or 

Relative extrema

Concavity

Points of inflection

xzf

-intercepts: 0, 4
-intercept: 0

None

None

on ; 
on 

Rel. min. at 

Downward on ; 
upward on and on

and 12, �16
9 2(0, 0)

(2, �)
(��, 0)

(0, 2)

(3, �3)

(��, 3)x

(3, �)z

y
x

(��, �)

3. f(x) �
4x � 4

x2

4. f(x) � x � 3x1>3

Domain

Intercepts

Symmetry

Asymptotes

Intervals where is or 

Relative extrema

Concavity

Point of inflection

xzf

-intercept: 1

None

-axis; -axis

on ; on 
and on 

Rel. max. at 

Downward on and
on ; upward on 13, 89 2

(3, �)(0, 3)
(��, 0)

(2, 1)

(2, �)
(��, 0)x(0, 2)z

yx

x

(��, 0) � (0, �)

Domain

Intercepts

Symmetry

Asymptotes

Intervals where is or 

Relative extrema

Concavity

Point of inflection

xzf

-intercepts: , 0; 
-intercept: 0

With respect to the origin

None

on and on
; on 

Rel. max. at ; 
rel. min. at 

Downward on 
upward on 

(0, 0)

(0, �)
(��, 0)

(1, �2)
(�1, 2)

(�1, 1)x(1, �)
(��, �1)z

y
	313x

(��, �)

Videos for selected exercises are available online at www.academic.cengage.com/login.V

In Exercises 5–30, sketch the graph of the function using the
curve-sketching guidelines on page 307.

5. 6.

7.

8.

9.

10. 11.

12. 13.

14. 15.

16. 17.

18. 19.

20. 21.

22. 23.

24.

25. ,

26. ,

27. ,

28. ,

29.

30. , �p2 � x � p
2f(x) � 2x � tan x

t(x) �
sin x

1 � sin x

�p � x � py � cos2 x

�2p � x � 2pf(x) �
1

1 � cos x

0 � x � 2pt(x) � 2 sin x � sin 2x

0 � x � 2pf(x) � x � sin x

f(x) � x29 � x2

h(x) �
1

x2 � x � 2
t(x) �

x2 � 9

x2 � 4

f(x) �
x2

x2 � 1
f(t) �

t

t 2 � 1

h(x) �
x

x2 � 9
t(x) �

x � 1

x � 1

f(x) �
x

x � 1
f(t) �2t 2 � 4

y � (x � 2)3>2 � 1t(x) �
1

2
 x � 1x

f(x) � 4x5 � 5x4f(x) � (x � 2)4 � 1

t(x) � x4 � 2x3 � 2f(t) � 3t 4 � 4t 3

f(x) � 2x3 � 9x2 � 12x � 3

y � 2t 3 � 15t 2 � 36t � 20

f(x) � x3 � 6x2 � 9x � 2

f(x) � x3 � 3x2 � 2f(x) � 4 � 3x � 2x3

www.academic.cengage.com/login
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In Exercises 31–34, find the slant asymptotes of the graphs of
the function. Then sketch the graph of the function.

31.

32.

33.

34.

35. Refer to Example 4. Show that

and

so is a (left) slant asymptote of the graph of 

.

36. Find the (right) slant asymptote and the (left) slant asymp-

tote of the graph of the function . Plot 
the graph of together with the slant asymptotes.

37. Worker Efficiency An efficiency study showed that the total
number of cell phones assembled by the average worker at
Alpha Communications hours after starting work at 8 A.M.
is given by

Sketch the graph of the function , and interpret your result.

38. Crime Rate The number of major crimes per 100,000 people
committed in a city from the beginning of 2002 to the
beginning of 2009 is approximated by the function

where denotes the number of crimes per 100,000 peo-
ple committed in year and corresponds to the begin-
ning of 2002. Enraged by the dramatic increase in the crime
rate, the citizens, with the help of the local police, organized
Neighborhood Crime Watch groups in early 2007 to combat
this menace. Sketch the graph of the function , and inter-
pret your results. Is the Neighborhood Crime Watch program
working?

39. Air Pollution The level of ozone, an invisible gas that irritates
and impairs breathing, that is present in the atmosphere on a
certain day in June in the city of Riverside is approximated
by

0 � t � 11S(t) � 1.0974t 3 � 0.0915t 4

N

t � 0t
N(t)

0 � t � 7N(t) � �0.1t 3 � 1.5t 2 � 80

N

0 � t � 4N(t) � �
1

2
 t 3 � 3t 2 � 10t

t

f
f(x) �21 � x2 � 2x

f(x) �
2x2 � 3

x � 2

y � 2x � 4

lim
x→��

[ f(x) � 2x] � 4lim
x→��

f(x)

x
� 2

f(x) �
x2 � 2x � 2

x � 1

f(x) �
x2 � 2x � 3

2x � 2

h(x) �
x3 � 1

x(x � 1)

t(u) �
u3 � 1

u2 � 1

where is measured in Pollutant Standard Index (PSI)
and is measured in hours with corresponding to 
7 A.M. Plot the graph of , and interpret your results.
Source: The Los Angeles Times.

40. Production Costs The total daily cost in dollars incurred by
the TKK Corporation in manufacturing multipacks of
DVDs is given by the function

Plot the graph of , and interpret your results.

41. A Mixture Problem A tank initially contains 10 gal of brine
with 2 lb of salt. Brine with 1.5 lb of salt per gallon enters
the tank at the rate of 3 gal/min, and the well-stirred mixture
leaves the tank at the rate of 4 gal/min. It can be shown that
the amount of salt in the tank after min is lb, where

Plot the graph of , and interpret your result.

42. Traffic Flow Analysis The speed of traffic flow in miles per
hour on a stretch of Route 123 between 6 A.M. and 10 A.M.
on a typical workday is approximated by the function

where is measured in hours and corresponds to 
6 A.M. Sketch the graph of and interpret your results.

43. Einstein’s Theory of Special Relativity The mass of a particle
moving at a velocity is related to its rest mass by the
equation

where is the speed of light. Sketch the graph of the func-
tion , and interpret your results.f

c

m � f(√) �
m0

B1 �
√2

c2

m0√

f
t � 0t

0 � t � 4f(t) � 20t � 401t � 52

f

0 � t � 10

x � f(t) � 1.5(10 � t) � 0.0013(10 � t)4

xt

f

0 � x � 3000

f(x) � 0.000001x3 � 0.003x2 � 5x � 500

x

S
t � 0t

S(t)
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44. Harbor Water Level The water level (in feet) at Boston Harbor
during a certain 24-hour period is approximated by the func-
tion

where corresponds to 12 A.M. Plot the graph of , and
interpret your results.

In Exercises 45–48, plot the graph of the function.

45.

46.

47. ,

48. , �2p � x � 2ph(x) � 2 sin x � 3 cos 2x � sin 3x

�2p � t � 2pt(t) � t 2 � 3 sin 2t

f(x) �
x2 � x

3x2 � x � 1

f(t) �
2t 2 � 1

t � 1

ft � 0

0 � t � 24H � f(t) � 4.8 sin ap
6

 (t � 10)b � 7.6

49. Flight Path of a Plane The function

where both and are measured in units of 1000 ft,
describes the flight path of a plane taking off from the origin
and climbing to an altitude of 15,000 ft. Plot the graph of 
to visualize the trajectory of the plane.

50. Let

a. Plot the graphs of for , and 1000. Do
these graphs approach a “limiting” graph as approaches
infinity?

b. Can you prove this result analytically?

n
n � 1, 5, 10, 100f

f(x) �
x2n � 1

x2n � 1

f

f(x)x

if 0 � x � 1

 

if 1 � x � 10

if 10 � x � 11

f(x) � d0�0.0411523x3 � 0.679012x2

  � 1.23457x � 0.596708

15

3.7 Optimization Problems

We first encountered optimization problems in Section 3.1. There, we solved certain
problems by finding the absolute maximum value or the absolute minimum value of a
continuous function on a closed, bounded interval. Thanks to the Extreme Value The-
orem, we saw that these problems always have a solution.

In practice, however, there are optimization problems that are solved by finding the
absolute extremum value of a continuous function on an arbitrary interval. If the inter-
val is not closed, there is no guarantee that the function to be optimized has an absolute
maximum value or an absolute minimum value on that interval (see Example 1 in Sec-
tion 3.1). Thus, for these problems, a solution might not exist. But if the function to
be maximized (minimized) has exactly one relative maximum (relative minimum) inside
that interval, then there is a solution to the problem. In fact, as Figure 1 suggests, the
relative extremum value at a critical number turns out to be the absolute extremum
value of the function on the interval. Thus, the solutions to such problems are found
by finding the relative extreme values of the function in that interval.

FIGURE 1
has only one critical 

number on an interval .I
f

y

x

I
0 c c

(a) The relative maximum value f (c) is the
absolute maximum value.

y

x

I
0

( ) ( )

(b) The relative minimum value f (c) is the
absolute minimum value.

(c,  f (c))

(c,  f (c))

Before proceeding further, let us summarize this important observation.
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Guidelines for Solving Optimization Problems

1. Assign a letter to each variable. Draw and label a figure (if appropriate).
2. Find an expression for the quantity to be maximized or minimized.
3. Use the conditions given in the problem to express the quantity to be opti-

mized as a function of one variable. Note any restrictions to be placed on
the domain of .

4. Optimize the function over its domain using the guidelines of Section 3.1
and the guidelines on this page.

f
f

f

EXAMPLE 1 A Fencing Problem A man has 100 ft of fencing to enclose a rectangu-
lar garden in his backyard. Find the dimensions of the garden of largest area he can
have if he uses all of the fencing.

Solution
Step 1 Let and denote the length and width of the garden (in feet) and let 

denote its area (see Figure 2).
Step 2 The area of the rectangle is

(1)

and is the quantity to be maximized.
Step 3 The perimeter of the rectangle is ft, and this must be equal to 

100 ft. Therefore, we have the equation

(2)2x � 2y � 100

(2x � 2y)

A � xy

Ayx

FIGURE 2
The area of the rectangle is .A � xy

Armed with these guidelines and the guidelines for finding the absolute extrema 
of functions on closed intervals, we are ready to tackle a large class of optimization
problems.

Formulating Optimization Problems
If you reexamine the optimization problems in Section 3.1, you will see that the func-
tions to be optimized were given to you. More often than not, we first need to find an
appropriate function and then optimize it. The following guidelines can be used to for-
mulate these optimization problems.

y

x

Guidelines for Finding the Absolute Extrema of a Continuous Function 
on an Arbitrary Interval

Suppose that a continuous function has only one critical number in an inter-
val .

1. Use the First Derivative Test or the Second Derivative Test to ascertain
whether has a relative maximum (minimum) value at .

2. a. If has a relative maximum value at , then the number is also the
absolute maximum value of on .

b. If has a relative minimum value at , then the number is also the
absolute minimum value of on .If

f(c)cf
If

f(c)cf
cf

I
cf

f
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relating the variables and . Solving Equation (2) for in terms of , we have

(3)

which, when substituted into Equation (1), yields

(Remember, the function to be optimized must involve just one variable.)
Because the sides of the rectangle must be positive, and ,
giving us the inequality . Thus, the problem is reduced to that 
of finding the value of in at which attains the
largest value.

Step 4 To find the critical number(s) of , we compute

Setting , yields 25 as the only critical number of . Since
, we see, by the Second Derivative Test, that has a relative

maximum at . But 25 is the only critical number in , so we
conclude that attains its largest value of at . From
Equation (3) the corresponding value of is 25. Thus, the man would have 
a garden of maximum area (625 ft2) if it were in the form of a square with
sides of length 25 ft.

y
x � 25f(25) � 625f

(0, 50)x � 25
ff �(x) � �2 � 0

ff ¿(x) � 0

f ¿(x) � �2x � 50 � �2(x � 25)

f

f(x) � �x2 � 50x(0, 50)x
0 � x � 50

y � 50 � x � 0x � 0

 � �x2 � 50x

 A � x(50 � x)

y � 50 � x

xyyx

EXAMPLE 2 Finding the Maximum Area Find the dimensions of the rectangle of great-
est area that has its base on the -axis and is inscribed in the parabola .

Solution
Step 1 Consider the rectangle of width 2 and height as shown in Figure 3. Let 

denote its area.
Step 2 The area of the rectangle is and is the quantity to be maximized.
Step 3 Because the point lies on the parabola, it must satisfy the equation of

the parabola; that is, . Therefore,

Furthermore, implies that or, equivalently, .
Also, , since the side of a rectangle must be positive. Therefore, the
problem is equivalent to the problem of finding the value of in for
which attains the largest value.

Step 4 To find the critical numbers of , we compute

Setting yields . We consider only the critical number 
, since lies outside the interval . Since and

, we see, by the Second Derivative Test, that has a
relative maximum at . Since has only one critical number in ,
we see that attains its largest value at . Substituting this value of 
into gives . Thus, the dimensions of the desired rectangle
are by 6 and its area is .1213213

y � 6y � 9 � x2
xx � 13f

(0, 3)fx � 13
ff �(13) � �1213 � 0

f �(x) � �12x(0, 3)�1313
x � 	13f ¿(x) � 0

f ¿(x) � �6x2 � 18 � �6(x2 � 3)

f
f(x) � �2x3 � 18x

(0, 3)x
x � 0

�3 � x � 39 � x2 � 0y � 0

 � �2x3 � 18x

 � 2x(9 � x2)

 A � 2xy

y � 9 � x2
(x, y)

A � 2xy

Ayx

y � 9 � x2x

FIGURE 3
The area of the rectangle is

.2xy � 2x(9 � x2)

x

y

10

(x, y)

1�1�2�3 2 3

y � 9 � x2

2x

y
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FIGURE 4
The cable connects the marine biology station at to the power relay station at . The cable
from to will be laid under water, and the cable from to will be laid over land.SPPE

SE

EXAMPLE 3 Minimizing the Cost of Laying Cable In Figure 4, the point gives the
location of a power relay station on a straight coast, and the point gives the location
of a marine biology experimental station on an island. The point is located 7 mi west
of the point , and the point is 3 mi south of the point . A cable is to be laid con-
necting the relay station with the experimental station. If the cost of running the cable
along the shoreline is $10,000/mi and the cost of running the cable under water is
$30,000/mi, where should the point be located to minimize the cost of laying the
cable?

P

EQS
Q

E
S

3 mi

7 mi

x 7 � x

PQ S

E S

N
EW

Land

Solution
Step 1 It is clear that the point should lie between and , inclusive. Let 

denote the distance between and (in miles), and let denote the cost of
laying the cable (in thousands of dollars).

Step 2 The length of the cable to be laid under water is given by the distance
between and . Using the Pythagorean Theorem, we find that this length 

is mi. So the cost of laying the cable under water is 
thousand dollars. Next, we see that the length of cable to be laid over land is

mi. So the cost of laying this stretch of the cable is thou-
sand dollars. Therefore, the total cost incurred in laying the cable is

thousand dollars, and this is the quantity to be minimized.
Step 3 Because the distance between and is 7 mi, we see that must satisfy the

constraint . So the problem is that of finding the value of in 

at which attains the smallest value.
Step 4 Observe that is continuous on the closed interval . So the absolute

minimum value of must be attained at an endpoint of or at a critical
number of in the interval. To find the critical numbers of , we compute

 � 10c 3x

2x2 � 9
� 1d

 � (30)a1

2
b (x2 � 9)�1>2(2x) � 10

 f ¿(x) �
d

dx
 [30(x2 � 9)1>2 � 10(7 � x)]

ff
[0, 7]f

[0, 7]f
f(x) � 302x2 � 9 � 10(7 � x)[0, 7]

x0 � x � 7
xSQ

C � 302x2 � 9 � 10(7 � x)

10(7 � x)(7 � x)

302x2 � 92x2 � 9

PE

CQP
xSQP
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Setting gives

or

We reject the root because it lies outside the interval . We
are left with as the only critical number of . Finally, from 
the following table we see that attains its smallest value of 154.85 at

. We conclude that the cost of laying the cable will be
minimized (approximately $155,000) if the point is located at a distance
of approximately 1.06 miles from .Q

P
x � 312>4 � 1.06

f(x)
fx � 312>4 [0, 7]�312>4

x � 	
3

212
� 	

312

4
� 	1.06

 8x2 � 9

 9x2 � x2 � 9

 3x �2x2 � 9

 
3x

2x2 � 9
� 1 � 0

f ¿(x) � 0

f(0) f(312>4) f(7)

160 154.85 228.47

EXAMPLE 4 Packaging The Betty Moore Company requires that its beef stew con-
tainers have a capacity of 64 in.3, have the shape of right circular cylinders, and be
made of aluminum. Determine the radius and height of the container that requires the
least amount of metal.

Solution
Step 1 Let and denote the radius and height, respectively, of a container 

(Figure 5). The amount of aluminum required to construct a container is
given by the total surface area of the cylinder, which we denote by .

Step 2 The area of the base or top of the cylinder is in.2, and the area of its 
lateral surface is in.2. Therefore,

(4)

and this is the quantity to be minimized.
Step 3 The requirement that the volume of the container be 64 in.3 translates into

the equation

(5)

Solving Equation (5) for in terms of , we obtain

(6)h �
64

pr 2

rh

pr 2h � 64

S � 2pr 2 � 2prh

2prh
pr 2

S

hr

FIGURE 5
We want to minimize the amount of
material used to construct the container.

h

r
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which, when substituted into Equation (4), yields

The domain of is . The problem has been reduced to one of finding the
value of in at which attains the smallest value.

Step 4 Observe that is continuous on . Following the guidelines given at the
beginning of this section, we first find the critical number of ,

Setting gives

or

as the only critical number of .
To see whether this critical number gives rise to a relative extremum of ,

we use the Second Derivative Test. Now

so

Therefore, has a relative minimum value at Finally, because
has only one critical number in , we conclude that attains the

absolute minimum value at this number. Using Equation (6), we find that the
corresponding value of is

 � 2r

 �
64

pa32
p
b

� a32
p
b1>3

 h �
64

pa32
p
b2>3 �

64

pa32
p
b2>3 �

a32
p
b1>3

a32
p
b1>3

h

f(0, �)f
r � (32>p)1>3.f

f � a32
p
b1>3

 � 4p �
256

32
p

� 12p � 0

f �(r) � 4p �
256

r 3

f
f

r � a32
p
b1>3

� 2.17

 r 3 �
32
p

 4pr 3 � 128 � 0

 4pr �
128

r 2
� 0

f ¿(r) � 0

f ¿(r) � 4pr �
128

r 2

f
(0, �)f

f(r) � 2pr 2 � (128>r)(0, �)r
(0, �)S

 � 2pr 2 �
128

r

 S � 2pr 2 � 2pr a 64

pr 2
b

FIGURE 6

The graph of S � 2pr 2 �
128

r

250

0
5

Q R
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EXAMPLE 5 Finding the Minimum Distance Figure 7 shows an aerial view of a race-
track composed of two sides of a rectangle and two semicircles. It also shows the
position of a spectator watching a race from the roof of his car. Find the point 
on the track that is closest to the spectator. What is the distance between these two
points?

Solution
Step 1 Clearly, the required point must lie on the lower left semicircular stretch of

the racetrack. Let us set up a rectangular coordinate system as shown in 
Figure 8. To find an equation describing this curve, begin with the equation

of the circle with center at the origin and radius 1. Solving for
in terms of and observing that both and must be nonpositive, we are

led to the following representation of the curve:

(7)

Next, let denote the distance between and a point lying
on the curve described by Equation (7).

Step 2 Using the distance formula, we see that the distance between and is
given by

Thus,

(8)

Since is minimal if and only if is minimal, we will minimize 
instead of .

Step 3 Substituting Equation (7) into Equation (8), we obtain

So the problem is reduced to that of finding the value of in at 

which attains the smallest value.
Step 4 Observe that is continuous on . So the absolute minimum value of 

must be attained at an endpoint of or at a critical number of in that
interval. To find the critical numbers of , we compute

 � 4 � 3a1

2
b (1 � x2)�1>2(�2x) � 4 �

3x

21 � x2

 f ¿(x) �
d

dx
 c4x � 3(1 � x2)1>2 �

29

4
d

f
f[�1, 0]

f[�1, 0]f
f(x) � 4x � 321 � x2 � (29>4)

[�1, 0]x

 � 4x � 321 � x2 �
29

4

 D2 � x2 � 4x � 4 � (1 � x2) � 321 � x2 �
9

4

D
D2D2D

 � x2 � 4x � 4 � y2 � 3y �
9

4

 D2 � (x � 2)2 � ay �
3

2
b2

D � B (x � 2)2 � ay �
3

2
b2

QPD

Q(x, y)P1�2, �3
2 2D

�1 � x � 0y � �21 � x2

yxxy
x2 � y2 � 1

QP

FIGURE 7
The diagram shows the position of a
spectator, , in relation to a racetrack.P

Q

P

2 km

2 km

1 km

km1_
2

y

x

Q(x, y)

1

�2

2

�1�2

y � � √1� x2

3_
2P(�2, �  )

FIGURE 8
We want to minimize the distance
between and .QP

Thus, the required container has a radius of approximately 2.17 in. and a
height twice the size of its radius, or approximately 4.34 in. The graph of 
is shown in Figure 6.

S
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Setting and solving for , we obtain

or . Only is a solution of ; so it is the only critical num-
ber of interest. Finally, from the following table

f ¿(x) � 0�4
5x � 	4

5

 25x2 � 16

 9x2 � 16(1 � x2)

 3x � �421 � x2

 4 �
3x

21 � x2
� 0

xf ¿(x) � 0

EXAMPLE 6 Minimizing Length Figure 9a depicts a cross section of a high-rise build-
ing. A ladder from a fire engine to the front wall of the building must clear the canopy,
which extends 12 ft from the building. Find the length of the shortest ladder that will
enable the firefighters to accomplish this task.

FIGURE 9

Solution
Step 1 Let denote the length of the ladder, and let be the angle the ladder

makes with the horizontal.
uL

10 ft
12 ft

10
12d

1

d
2

(a) The ladder touches the edge of the canopy. (b) The length of the ladder is L � d1 � d2.

q

q

f(�1) f 1�4
5 2 f(0)

13
4 � 3.25 9

4 � 2.25 17
4 � 4.25

we see that attains its smallest value of 2.25 at . Using Equation
(7), we find that the corresponding value of is

We conclude that the point is the point on the track closest to the 
spectator. The distance between the spectator and the point is

or 1.5 km.

Bf a�4

5
b �C4a�4

5
b � 3B1 � a�4

5
b2

�
29

4
� A

9

4
�

3

2

1�4
5, �

3
5 2

y � �B1 � a�4

5
b2

� �
3

5

y
x � �4

5f
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Step 2 From Figure 9b we see that

and

and this is the quantity to be minimized.

Step 3 The domain of is . So the problem is to find the value of in 

for which has the smallest value.

Step 4 Observe that is continuous on . Following the guidelines given at the
beginning of this section, we first find the critical numbers of . Thus,

Setting gives

or . The sign diagram for shown in Figure 10 tells
us that has a relative minimum value at . Since has only one
critical number in , this value is also the absolute minimum value of .
Finally, , so we conclude that the ladder must be at least
31.1 ft long.

f(0.76) � 31.07
f10, p2 2 ftan�1 13 5>6f

f ¿u � tan�1 13 5>6 � 0.76

 tan3 u �
5

6

 
sin3 u

cos3 u
�

10

12

 12a 1

cos u
b a sin u

cos u
b � 10a 1

sin u
b acos u

sin u
b

 12 sec u tan u � 10 csc u cot u

f ¿(u) � 0

f ¿(u) � �10 csc u cot u � 12 sec u tan u

f
10, p2 2f

f(u) � 10 csc u � 12 sec u
10, p2 2u10, p2 2L

sec u �
d2

12
csc u �

d1

10
 � 10 csc u � 12 sec u

 L � d1 � d2

FIGURE 10
The sign diagram for f ¿

( )
0

0

tan�1(  )1/3

++++++

π_
2

5_
6

– –––––

q

1. Give the procedure for finding the absolute extrema of a
continuous function on (a) a closed interval and on (b) an
arbitrary interval in which possesses only one critical num-
ber at which an extremum occurs.

f
f

2. Give the guidelines for solving optimization problems.

3.7 CONCEPT QUESTIONS

1. Find two positive numbers whose sum is 100 and whose
product is a maximum.

2. Find two numbers whose difference is 50 and whose product
is a minimum.

3. The product of two positive numbers is 54. Find the num-
bers if the sum of the first number plus the square of the
second number is as small as possible.

3.7 EXERCISES

Videos for selected exercises are available online at www.academic.cengage.com/login.V

4. The sum of a positive number and its reciprocal is to be as
small as possible. What is the number?

5. Find the dimensions of a rectangle with a perimeter of 
100 m that has the largest possible area.

6. Find the dimensions of a rectangle of area 144 ft2 that has
the smallest possible perimeter.

www.academic.cengage.com/login
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7. A Fencing Problem A rancher has 400 ft of fencing with which
to enclose two adjacent rectangular parts of a corral. What
are the dimensions of the parts if the area enclosed is to be
as large as possible and she uses all of the fencing available?

8. A Fencing Problem The owner of the Rancho Grande has 
3000 yd of fencing with which to enclose a rectangular
piece of grazing land situated along the straight portion 
of a river. If fencing is not required along the river, what 
are the dimensions of the largest area he can enclose? 
What is the area?

9. Packaging An open box is made from a rectangular piece of
cardboard of dimensions by cutting out identical
squares from each corner and bending up the resulting flaps.
Find the dimensions of the box with the largest volume that
can be made.

10 � 2x

10 � 2x

x

x

x

x

16 � 2x

16 � 2x

x

x x

x x

10

16

16 
 10 in.

10. Packaging If an open box is made from a metal sheet 10 in.
square by cutting out identical squares from each corner and
bending up the resulting flaps, determine the dimensions of
the box with the largest volume that can be made. 

11. Packaging An open box constructed from a tin sheet has a
square base and a volume of 216 in.3. Find the dimensions
of the box, assuming that the minimum amount of material
was used in its construction. 

12. Satisfying Postal Regulations Postal regulations specify that a
parcel sent by priority mail may have a combined length and
girth of no more than 108 in. Find the dimensions of a rec-
tangular package that has a square cross section and largest
volume that may be sent by priority mail. What is the vol-
ume of such a package?

Hint: The length plus the girth is .

13. Satisfying Postal Regulations Postal regulations specify that a
package sent by priority mail may have a combined length
and girth of no more than 108 in. Find the dimensions of 
a cylindrical package with the greatest volume that may 
be sent by priority mail. What is the volume of such a 
package?

Hint: The length plus the girth is .

14. Packaging A container for a soft drink is in the form of a
right circular cylinder. If the container is to have a capacity
of 12 fluid ounces (fl oz), find the dimensions of the con-
tainer that can be constructed with a minimum of material.
Hint: 1 fl oz 1.805 in.3.

15. Designing a Loudspeaker The rectangular enclosure for a loud-
speaker system is to have an internal volume of 2.4 ft3. For
aesthetic reasons the height of the enclosure is to be 1.5 times
its width. If the top, bottom, and sides of the enclosure are to
be constructed of veneer costing 80 cents per square foot and
the front and rear are to be constructed of particle board cost-

�

2pr � l

r l

4x � l

x

x
x

lx



ing 40 cents per square foot, find the dimensions of the
enclosure that can be constructed at a minimum cost.

16. Book Publishing A production editor at Weston Publishers
decided that the pages of a book should have a 1-in. margin
at the top and the bottom, and a -in. margin on each side of
the page. She further stipulated that each page of the book
should have an area of 50 in.2. Determine the dimensions of
the page that will result in the maximum printed area on the
page.

In Exercises 17–20, find the dimensions of the shaded region so
that its area is maximized.

17. 18.

19. 20.

21. Find the point on the line that is closest to the
origin.

22. Find the points on the hyperbola that are
closest to the point .

23. Find the approximate location of the points on the hyperbola
that are closest to the point .

24. Let be a point lying on the axis of the parabola 
at a distance from its vertex. Find the -coordinate(s) of
the point(s) on the parabola that are closest to .

25. Find the dimensions of the rectangle of maximum possible
area that can be inscribed in a semicircle of radius 4.

P
xa

y2 � 2pxP

(�1, 1)xy � 1

(0, 3)
x2>4 � y2>9 � 1

y � 2x � 5

x

y

3

3

�3

y � √9 � x2

0 x

y

2

1
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A(0, 2)

B(3, 0)

x

y

3

�3

3�3

y � √9 � x2

x

y

2

�2

2�2

y � √4 � x2

y

1 in.

 in.

x

1_
2

1
2

26. Find the point on the graph of that is closest to
.

27. Find the point on the graph of the parabola that
is closest to the point .

28. Optimal Driving Speed A truck gets miles per gallon
(mpg) when driven at a constant speed of mph, where

. If the price of fuel is $2.80/gal and the driver
is paid $12/hr, at what speed is it most economical for the
trucker to drive?

29. Maximizing Yield An apple orchard has an average yield of 
36 bushels of apples per tree if tree density is 22 trees per
acre. For each unit increase in tree density, the yield
decreases by 2 bushels per tree. How many trees per acre
should be planted to maximize the yield?

30. Packaging A rectangular box is to have a square base and a
volume of 20 ft3. If the material for the base costs $0.30 per
square foot, the material for the sides costs $0.10 per square
foot, and the material for the top costs $0.20 per square
foot, determine the dimensions of the box that can be con-
structed at minimum cost.

31. Packaging A rectangular box having a top and square base 
is to be constructed at a cost of $2. If the material for the
bottom costs $0.30 per square foot, the material for the top
costs $0.20 per square foot, and the material for the sides
costs $0.15 per square foot, find the dimensions and volume
of the box of maximum volume that can be constructed.

32. Maximizing Revenue If exactly 200 people sign up for a 
charter flight, the operators of a charter airline charge $300
for a round-trip ticket. However, if more than 200 people
sign up for the flight, then each fare is reduced by $1 for
each additional person. Assuming that more than 200 people
sign up, determine how many passengers will result in a
maximum revenue for the travel agency. What is the maxi-
mum revenue? What would the fare per person be in this
case?

33. Optimal Subway Fare A city’s Metropolitan Transit Authority
(MTA) operates a subway line for commuters from a certain
suburb to downtown. Currently, an average of 6000 passen-
gers a day take the trains, paying a fare of $3.00 per ride.
The board of the MTA, contemplating raising the fare to
$3.50 per ride to generate a larger revenue, engages the
services of a consulting firm. The firm’s study reveals that
for each $0.50 increase in fare, the ridership will be reduced
by an average of 1000 passengers a day. Therefore, the con-
sulting firm recommends that the MTA stick to the current
fare of $3.00 per ride, which already yields a maximum rev-
enue. Show that the consultants are correct.

34. Strength of a Beam A wooden beam has a rectangular cross
section of height and width . The strength of the beam
is directly proportional to its width and the square of its

Swh

40 � x � 80
x

600>x
(�3, �4)

y � 4 � x2

(3, 2)
x � y � 1
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height. Find the dimensions of the cross section of such a
beam of maximum strength that can be cut from a round log
of diameter 24 in.

Hint: , where is the constant of proportionality.

35. Stiffness of a Beam The stiffness of a wooden beam with a
rectangular cross section is proportional to its width and
the cube of its height . Find the dimensions of the cross
section of the beam of maximum stiffness that can be cut
from a round log of diameter 23 in.
Hint: , where is the constant of proportionality.

36. Maximizing Drainage Capacity The cross section of a drain is 
a trapezoid as shown in the figure. The sides and the 
bottom of the trapezoid each have length 5 ft. Determine 
the angle such that the drain will have a maximal cross-
sectional area.

37. Designing a Conical Figure A cone is constructed by cutting 
out a sector of central angle from a circular sheet of radius
12 in. and then gluing the edges of the remaining piece
together. Find the value of that will result in a cone of
maximal volume. What is the maximal volume?

38. A Norman Window A Norman window has the shape of a rec-
tangle surmounted by a semicircle. Find the dimensions of a
Norman window of perimeter 28 ft that will admit the great-
est possible amount of light.

12

q

u

u

5 ft
5  ft 5ft

qq

u

kS � kwh3

h
w

S

kS � kh2w

w

h12 in. 39. Designing a Grain Silo A grain silo has the shape of a right 
circular cylinder surmounted by a hemisphere. If the silo 
is to have a volume of ft3, determine the radius and
height of the silo that requires the least amount of material
to build.

Hint: The volume of the silo is , and the surface 
area of the silo (including the floor) is .

40. Racetrack Design The figure below depicts a racetrack 
with ends that are semicircular. The length of the track 
is 1760 ft . Find and so that the area of the rectan-
gular portion of the region enclosed by the racetrack is as
large as possible. What is the area enclosed by the track in
this case?

41. Packaging A container of capacity 64 in.3 is to be made in
the form of a right circular cylinder. The top and the bottom
of the can are to be cut from squares, whereas the side is to
be made by bending a rectangular sheet so that the ends

r

l

rl113 mi2

p(3r 2 � 2rh)
pr 2h � 2

3 pr 3

h

r

504p
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match. Find the radius and height of the can that can be
constructed with the least amount of material.

42. A Fencing Problem Joan has 50 ft of interlocking stone avail-
able for fencing off a flower bed in the form of a circular
sector. Find the radius of the circle that will yield a flower
bed with the largest area if Joan uses all of the stone.

43. Constructing a Marina The figure below shows the position of
two islands located off a straight stretch of coastal highway.
A marina is to be constructed at the point on the highway
to serve both island communities. Determine the location of

if the total distance from both the islands to is as small
as possible.

44. Flights of Birds During daylight hours some birds fly more
slowly over water than over land because some of their

2 mi

12 mi

M

5 mi

O
Land

MM

M

r

h h

2r

2rtop

bottom

side

2πr

energy is expended in overcoming the downdrafts of air over
open bodies of water. Suppose a bird that flies at a constant
speed of 4 mph over water and 6 mph over land starts its
journey at the point on an island and ends at its nest 
on the shore of the mainland, as shown in the figure. Find
the location of the point that allows the bird to complete
its journey in the minimum time (solve for ).

45. Avoiding a Collision Upon spotting a disabled and stationary
boat, the driver of a speedboat took evasive action. Suppose
that the disabled boat is located at the point (0, 2) in an 

-coordinate system (both scales measured in miles) and
the path of the speedboat is described by the graph of

a. Find an expression that gives the distance between
the speedboat and the disabled boat.

b. Plot the graph of , and use it to determine how close
the speedboat came to the disabled boat before it
changed its path.

46. Minimizing Costs Suppose that the cost incurred in operating 
a cruise ship for 1 hr is dollars, where and are
positive constants and is the ship’s speed in miles per hour.
At what speed should the ship be operated between two
ports to minimize the cost?

47. Maximum Power Output Suppose that the source of current in
an electric circuit is a battery. Then the power output (in
watts) obtained if the circuit has a resistance of ohms is
given by

where is the electromotive force in volts and is the inter-
nal resistance of the battery in ohms. If and are constant,
find the value of that will result in the greatest power out-
put. What is the maximum power output? 
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48. Optimal Inventory Control The equation

gives the annual cost of ordering and storing (as yet unsold)
merchandise. Here, is the size of each order, is the cost
of placing each order, is the unit cost of the product, is
the number of units of the product sold per year, and is
the annual cost for storing each unit. Determine the size 
of each order such that the annual cost is as small as
possible.

49. Velocity of a Wave In deep water a wave of length travels
with a velocity 

where and are positive constants. Find the length of the
wave that has a minimum velocity.

50. Show that the isosceles triangle of maximum area that can
be inscribed in a circle of fixed radius is equilateral.

51. Show that the rectangle of maximum area that can be
inscribed in a circle of fixed radius is a square.

52. Find the dimensions of the cylinder of largest volume that
will fit inside a right circular cone of radius 3 in. and height
5 in. Assume that the axis of the cylinder coincides with the
axis of the cone.

53. A right circular cylinder is inscribed in a cone of height 
and base radius so that the axis of the cylinder coincides
with the axis of the cone. Determine the dimensions of the
cylinder with the largest lateral surface area.

H
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R
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54. Find the radius and height of a right circular cylinder with
the largest possible lateral surface area that can be inscribed
in a sphere of radius .

55. Find an equation of the line passing through the point 
such that the area of the triangle formed by this line and the
positive coordinate axes is as small as possible.

56. Range of a Projectile The range of an artillery shell fired at an
angle of with the horizontal is 

feet, where is the muzzle velocity of the shell in feet per
second, and is the constant of acceleration due to gravityt

√0

R �
√2

0

t
sin 2u

u°

(1, 2)

r

ah

a

(32 ft/sec2). Find the angle of elevation of the gun that will
give it a maximum range. 

57. Optimal Illumination A hobbyist has set up a railroad track on
a circular table to display a recently acquired model railroad
locomotive. The radius of the track is 5 ft, and the display is
to be illuminated by a light source suspended from an 8-ft
ceiling located directly above the center of the table (see the
figure). How high above the table should the light source be
placed in order to achieve maximum illumination on the
railroad track?

Hint: The intensity of light at is proportional to the cosine of the
angle that the incident light makes with the vertical and inversely
proportional to the square of the distance between and the light
source.

58. Cells of a Honeycomb The accompanying figure depicts a sin-
gle prism-shaped cell in a honeycomb. The front end of the
prism is a regular hexagon, and the back is formed by the
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sides of the cell coming together at a point. It can be shown
that the surface area of a cell is given by

where is the angle between one of the (three) upper sur-
faces and the altitude. The lengths of the sides of the hexa-
gon, , and the altitude, , are both constants.
a. Show that the surface area is minimized if ,

or . (Measurements of actual honeycombs have
confirmed that this is, in fact, the angle found in beehives.)

b. Using a graphing utility, verify the result of part (a) by
finding the absolute minimum of

59. Maximizing Length A metal pipe of length 16 ft is to be car-
ried horizontally around a corner from a hallway 8 ft wide
into a hallway 4 ft wide. Can this be done?

Hint: Find the length of the largest pipe that can be carried horizon-
tally around the corner.

60. Distance Between Two Aircraft Two aircraft approach each other,
each flying at a speed of 500 mph and at an altitude of
35,000 ft. Their paths are straight lines that intersect at an
angle of 120°. At a certain instant of time, one aircraft is
200 mi from the point of intersection of their paths, while
the other is 300 mi from it. At what time will the aircraft be
closest to each other, and what will that distance be?

4 ft

8  ft

0 � u � p
2f(u) �

13 � cos u

sin u

a

b

q

u � 54.7°
cos u � 1>13
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0 � u � p
2S(u) � 6ab �

3

2
 b2 a13 � cos u
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b

61. Storing Radioactive Waste A cylindrical container for storing
radioactive waste is to be constructed from lead and have a
thickness of 6 in. (see the figure). If the volume of the out-
side cylinder is to be ft3, find the radius and the height
of the inside cylinder that will result in a container of maxi-
mum storage capacity.

Hint: Show that the storage capacity (inside volume in ft3) is given by

62. Electrical Force of a Conductor A ring-shaped conductor of
radius carrying a total charge induces an electrical force
of magnitude 

where is a constant called the permittivity of free space,
at a point , a distance from the center, along the line per-
pendicular to the plane of the ring through its center. Find
the value of for which is greatest.

63. Energy Expended by a Fish It has been conjectured that the total
energy expended by a fish swimming a distance of ft at a
speed of ft/sec relative to the water and against a current
flowing at the rate of ft/sec is given by

where is measured in foot-pounds (ft-lb) and is a con-
stant.
a. Find the speed at which the fish must swim to minimize

the total energy expended.
b. Sketch the graph of .
Note: This result has been verified by biologists.

64. Resonance A spring system comprising a weight attached to a
spring and a dashpot damping device (see the accompanying
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figure) is acted on by an oscillating external force. Its motion
for large values of is described by the equation

where , , , and are constants. ( is the amplitude of
the external force, is a phase angle, is associated with
the frequency of the external force, and and are associ-
ated with the stiffness of the spring and the degree of resist-
ance of the dashpot damping device, respectively.) Show
that the amplitude of the motion of the system

has a maximum value at . When the fre-g1 �2v2 � 2l2

t(g) �
F

2(v2 � g2)2 � 4l2g2

lv

gu

FulvF

x(t) �
F

(v2 � g)2 � 4l2g2 sin(gt � u)

t
66. Flow of Blood Suppose that some of the fluid flowing along a

pipe of radius is diverted to a pipe of smaller radius 
attached to the former at an angle (see the figure). Such is
the case when blood flowing along an artery is pumped into
an arteriole. What should the angle be so that the energy
loss due to friction in moving the fluid is minimal? Solve
the problem via the following steps.

a. Use Poiseuille’s Law, which states that the loss of energy
due to friction in nonturbulent flow is proportional to the
length of the path and inversely proportional to the fourth
power of the radius, to show that the energy loss in mov-
ing the fluid from to via is

where is a constant.
b. Suppose and are fixed. Find and in terms of 

and . Then use this result together with the result from
part (a) to show that

c. Using the technique of this section, show that is mini-
mized when

67. Snell’s Law of Refraction The following figure shows the path
of a ray of light traveling in air from the source to the
point and then from to the point in water. Let 
denote the velocity of light in air, and let denote the
velocity of light in water. Use Fermat’s Principle, which
states that a ray of light will travel from one point to another
in the least time, to prove that
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quency of the external force is , the system
is said to be in resonance. The figure below shows a typical
resonance curve.

The external force imparts an oscillatory vertical motion on
the support.

65. A woman is on a lake in a rowboat located one mile from
the closest point of a straight shoreline (see the figure).
She wishes to get to a point , 10 miles along the shore
from , by rowing to a point between and and then
walking the rest of the distance. If she can row at a speed 
of 3 mph and walk at a speed of 4 mph, how should she
pick the point to get to as quickly as possible? How
much time does she require?
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68. Least Squares Approximation Suppose we are given data points

that are scattered about the graph of a straight line with
equation (see the figure). The error in approximating

by the value of the function at is

a. Show that the sum of the squares of the errors in approx-
imating by for is

b. Show that is minimized if 

Note: The straight line with equation , where is the number
found in part (b), is called the least-squares, or regression, line asso-
ciated with the given data and is a line that fits the data “best” in
the sense of least squares.

69. Calculating a Spring Constant The following table gives the
force required to stretch a spring by an elongation beyond
its unstretched length.

x

ay � ax

0

y � ax

P1

P3

P2

Pn

x

y

x1 x2 x3
… xn

a �
x1y1 � x2y2 � p � xnyn

x2
1 � x2

2 � p � x2
n

t

t(a) � (y1 � ax1)
2 � (y2 � ax2)

2 � p � (yn � axn)
2

1 � i � nf(x i)yi

1 � i � n[yi � f(x i)]

x if(x) � axyi

y � ax

P1(x1, y1), P2(x2, y2), p , Pn(xn, yn)

n

A air

water

Normal

B 

C

q 1

q 2

c. Using Hooke’s Law, which states that , where is
the spring constant, what does the result of part (b) give
as the spring constant?

70. Least Squares Approximation Suppose we are given data
points

that are scattered about the graph of a parabola with equa-
tion (see the figure). The error in approximating 
by the value of the function at is

a. Show that the sum of the squares of the errors in approx-
imating by for is

b. Show that is minimized if 

Note: The curve with equation , where is the number
found in part (b), is called the least-squares curve associated with
the data given and is a curve that fits the data “best” in the sense of
least squares.

71. Calculating the Constant of Acceleration A steel ball is dropped
from a height of 10 ft. The distance covered by the ball at
intervals of one tenth of a second is measured and recorded
in the following table.

ay � ax2

0

y � ax2

P1

P3

P2

Pi

Pn

x

y

x1 x2 x3 xi
… xn

a �
x2

1y1 � x2
2y2 � p � x2

nyn

x4
1 � x4

2 � p � x4
n

t

t(a) � 1 y1 � ax2
1 22 � 1 y2 � ax2

2 22 � p � 1 yn � ax2
n 22

1 � i � nf(x i)yi

1 � i � n[yi � f(x i)]

x if(x) � ax2
yiy � ax2

P1(x1, y1), P2(x2, y2), p , Pn(xn, yn)

n

kF � kx
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(ft)x 0 0.1 0.2 0.3 0.4 0.5

Force, (lb)y 0 1.68 3.18 4.84 6.36 8.02

Time (sec)t 0.0 0.1 0.2 0.3

Distance (ft)y 0 0.1608 0.6416 1.4444

Time (sec)t 0.4 0.5 0.6 0.7

Distance (ft)y 2.5672 4.0108 5.7760 7.8614

a. Use the result of Exercise 68 to find the straight line
that fits the data “best” in the sense of least

squares.
b. Plot the data points and the least squares line found in

part (a) on the same set of axes.

y � ax

a. Use the result of Exercise 70 to find the parabola 
that fits the data “best” in the sense of least squares.

b. Plot the data points and the least-squares curve found in
part (a) on the same set of axes.

c. Using the fact that a free-falling object acted upon only
by the force of gravity covers a distance of ft
after sec, what does the result of part (a) give as the
constant of acceleration ?t

t
s � 1

2 tt 2

y � at 2



FIGURE 1
Starting with an initial estimate ,
Newton’s method gives a better
approximation to the root .rx1

x0

y

x0

y � f (x)
T

x
1

r

x
0

(x
0
, f (x

0
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3.8 Newton’s Method

There are many occasions when we need to find one or more zeros of a function .
For example, the -intercepts of a function are precisely the values of that satisfy

; the critical numbers of include the roots of the equation ; and
the -coordinates of the candidates for the inflection points of include the roots of
the equation .

If is a linear or quadratic function, the zeros are easily found. But, if is a poly-
nomial function of degree three or higher, the task of finding its zeros is difficult unless
the polynomial is easily factored.* We encounter similar difficulties when we try to
solve transcendental equations such as

In such situations, we have to settle for approximations of the roots of the equation.
Actually, in many practical applications we often have a rough idea as to where the

zero(s) of interest are located. We can also determine the approximate location of a
zero by making a rough sketch of the graph of and noting where the graph crosses
the -axis. Now, once a crude approximation of the desired zero has been found, a pro-
cedure is needed that will yield an approximation of the zero to the desired accuracy.
Newton’s method (also called the Newton-Raphson method) provides us with one such
procedure.

Newton’s Method
Suppose has a zero at that we want to approximate (see Figure 1). Let be an
approximation of obtained, for example, from a rough sketch of the graph of or by
using the Intermediate Value Theorem, and let denote the tangent line to the graph
of at .

Because of the proximity of the points on to the graph of near , one
may expect that if is close to , then the -intercept of (call it ) will be close to

as well. As it turns out, often provides us with an even better approximation to 
than does (such is the situation depicted in Figure 1).

To find a formula for in terms of , we first find an equation for . Since the
slope of is and its point of tangency is , we see that such an equa-
tion is

(1)

Now, if , then setting in Equation (1) and solving for gives the 
-intercept of , . Thus,

(2)x1 � x0 �
f(x0)

f ¿(x0)

x1Tx
xy � 0f ¿(x0) � 0

y � f(x0) � f ¿(x0)(x � x0)

(x0, f(x0))f ¿(x0)T
Tx0x1

x0

rx1r
x1Txrx0

(x0, f(x0))fT
(x0, f(x0))f

T
fr

x0rf

x
f

x � 0x � tan x � 0

ff
f �(x) � 0

fx
f ¿(x) � 0ff(x) � 0

xfx
f

*Although formulas exist for solving third- and fourth-degree polynomial equations, they are seldom used
because of their complexity. No formula exists for finding the roots of a general polynomial equation of
degree five or higher. This fact was demonstrated by the Norwegian mathematician Niels Henrik Abel
(1802–1829).
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If we repeat the process, this time letting play the role of , we obtain yet
another approximation of :

Continuing in this manner, we generate a sequence of approximations ,
with

(3)

provided that 
The sequence obtained through the repetitive use, or iteration, of Equation (3) fre-

quently converges to the root of . Our discussion leads us to the following
algorithm for finding an approximation to the root of .f(x) � 0r

f(x) � 0r

f ¿(xn) � 0.

xn�1 � xn �
f(xn)

f ¿(xn)

xn�1, p ,
x1, x2, p xn

x2 � x1 �
f(x1)

f ¿(x1)

r
x0x1

The Newton Algorithm

1. Pick an initial estimate of the root .
2. Generate a sequence of estimates using the iterative formula

(4)

3. Compute . If this number is less than a prescribed number,
stop. The required approximation to the root is xn�1.r

�xn � xn�1 �

xn�1 � xn �
f(xn)

f ¿(xn)
  n � 0, 1, 2, p

rx0

Note The initial estimate is normally taken to be a guess of the root . For exam-
ple, a rough sketch of the graph of could reveal what a good choice of might be.

Applying Newton’s Method

x0f
rx0

EXAMPLE 1 In Example 9 in Section 1.4, we saw that a zero of 
lies in the interval . Use Newton’s method with to obtain an approxi-
mation of this root. Stop the iteration when 

Solution We have

and

so the iterative formula (4) becomes

(5) �
2x3

n � 1

3x2
n � 1

 xn�1 � xn �
f(xn)

f ¿(xn)
� xn �

x3
n � xn � 1

3x2
n � 1

f ¿(x) � 3x2 � 1

f(x) � x3 � x � 1

�xn � xn�1 � � 0.000001.
x0 � 0.5(0, 1)

f(x) � x3 � x � 1
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EXAMPLE 2 Use Newton’s method to find an approximation to the root of the equa-
tion accurate to eight decimal places.

Solution By writing the given equation in the form

we see that the root of the equation is just the -coordinate of the point of intersection
of the graphs of and . This observation enables us to obtain an initial
estimate of the root of graphically (Figure 2).

From Figure 2 we see that is a reasonable approximation. Writing

we have

and the required iterative formula is 

With we obtain the sequence

Therefore, the root of is approximately 0.73908513.cos x � x � 0

 x5 � 0.739085133

 x4 � 0.739085133

 x3 � 0.739085134

 x2 � 0.739141666

 x1 � 0.755222417

x0 � 0.5

 �
xn sin xn � cos xn

sin xn � 1

 xn�1 � xn �
f(xn)

f ¿(xn)
� xn �

cos xn � xn

�sin xn � 1

f ¿(x) � �sin x � 1

f(x) � cos x � x

x0 � 0.5
cos x � x � 0

y � xy � cos x
x

cos x � x

cos x � x � 0

FIGURE 2
Our initial estimate of the root of the
equation is .x0 � 0.5cos x � x

x

y

1

πr

y � cos x

y � x

0 π_
2

3π__
2

Letting in Equation (5) and using , we obtain

Next, with and the value of just obtained, we find

Continuing with the iteration, we obtain

and

Since

the process is terminated, and we find the required root to be approximately 0.682328.
Note that is very close to zero.f(0.682328) � 4.7 
 10�7

�x3 � x4 � � 0.000000619 � 0.000001

x4 � 0.682327804x3 � 0.682328423

x2 �
2(0.714285714)3 � 1

3(0.714285714)2 � 1
� 0.683179724

x1n � 1

x1 �
2(0.5)3 � 1

3(0.5)2 � 1
� 0.714285714

x0 � 0.5n � 0
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EXAMPLE 3 Approximating the Square Root of a Positive Number Observe that 
the positive root of the positive number A can be found by solving the equation

. Thus, an approximation of can be obtained by using Newton’s method
to solve the equation .

a. Find the iterative formula for solving the equation .
b. Compute using this formula with , terminating the process when two

successive approximations differ by less than 0.00001.

Solution
a. We have and , so by Equation (4)

b. With and , we find

Since , we terminate the process. The sequence
that was generated converges to , which is one of the two roots of the equa-
tion . Note that the value of to six places is 1.414214.12x2 � 2 � 0

12
�x3 � x4 � � 0.000002 � 0.00001

 x4 �
(1.414216)2 � 2

2(1.414216)
� 1.414214

 x3 �
(1.416667)2 � 2

2(1.416667)
� 1.414216

 x2 �
(1.5)2 � 2

2(1.5)
� 1.416667

 x1 �
12 � 2

2(1)
� 1.5

x0 � 1A � 2

xn�1 � xn �
f(xn)

f ¿(xn)
� xn �

x2
n � A

2xn
�

x2
n � A

2xn

f ¿(x) � 2xf(x) � x2 � A

x0 � 112
x2 � A � 0

f(x) � x2 � A � 0
1Ax2 � A � 0

EXAMPLE 4 A Mixture Problem A tank initially contains 10 gal of brine with 2 lb of
salt. Brine with 1.5 lb of salt per gallon enters the tank at the rate of 3 gal/min, and
the well-stirred mixture leaves the tank at the rate of 4 gal/min (see Figure 3). It can
be shown that the amount of salt in the tank after min is lb, where

Find the time(s) when the amount of salt in the tank is 5 lb.

Solution We solve the equation

or

Let’s make the substitution . Then the above equation becomes

Put

t(u) � u4 � 1153.846154u � 3846.153846

u4 � 1153.846154u � 3846.153846 � 0

u � 10 � t

(10 � t)4 � 1153.846154(10 � t) � 3846.153846 � 0

1.5(10 � t) � 0.0013(10 � t)4 � 5

t

0 � t � 10x � f(t) � 1.5(10 � t) � 0.0013(10 � t)4

xt

FIGURE 3
Brine enters the tank at the rate of 
3 gal/min, and the mixture exits at 
the rate of 4 gal/min.



340 Chapter 3 Applications of the Derivative

FIGURE 4

Then

and the Newton iteration formula becomes

A rough sketch of the graph of on the interval [0, 10] shows that has zeros near
and . Taking as an initial guess, we obtain the following sequence:

, , ,

Therefore, .
Next, taking as an initial guess, we obtain 

, , , ,

Therefore, .
So 5 lb of salt are in the tank approximately 1 min and approximately 6.5 min after

the brine enters the tank.

When Newton’s Method Does Not Work
Now that we have seen how effective Newton’s method can be for finding the zeros of
a function, we wish to point out that there are situations in which the method fails and
that care must be exercised in applying it. Figure 4a illustrates a situation in which

for some (in this case, ). Since the iterative formula (4) involves
division by , it should be clear why the method fails to work in this case. How-
ever, we are sometimes able to salvage the situation by choosing a different initial esti-
mate (see Figure 4b).

The situation shown in Figure 5 is more serious, and Newton’s method will not
work for any choice of the initial estimate other than the actual zero of the function

As you can see from the figure, the sequence actually moves farther
and farther away with each iteration, and thus the method fails.

x1, x2, x3, pf(x).
x0

x0

f ¿(xn)
n � 2nf ¿(xn) � 0

t � 10 � 8.98716 � 1.01284 � 1.01

u5 � 8.98716u4 � 8.98716u3 � 8.98780u2 � 9.03541u1 � 9.44116

u0 � 8
t � 10 � 3.45713 � 6.54287 � 6 .54

u4 � 3.45713u3 � 3.45713u2 � 3.45677u1 � 3.38563

u0 � 2u � 9u � 3
tt

 �
3u4

n � 3846.153846

4u3
n � 1153.846154

 un�1 � un �
t(un)

t¿(un)
� un �

u4
n � 1153.846154un � 3846.153846

4u3
n � 1153.846154

t¿(u) � 4u3 � 1153.846154

FIGURE 5
Newton’s method fails here because the
sequence of estimates diverges.

y

x0

(a) Newton’s method fails to work because
 f �(x

2
) � 0.

f �(x
2
) � 0

x
2

x
0

x
1

y

x0 x
2

x
0

x
1

(b) The situation in part (a) is remedied by
selecting a different initial estimate x

0
.

x
2

x
0

x
1

x
3

y

x
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1. Give a geometric description of Newton’s method for find-
ing the zeros of a function . Illustrate graphically.

2. Describe Newton’s algorithm for finding the zero of a func-
tion .f

f
3. Does Newton’s method always work for any choice of the

initial estimate of the root of ? Explain graphi-
cally.

f(x) � 0x0

3.8 CONCEPT QUESTIONS

In Exercises 1–4, use Newton’s method to find the zero(s) of to
four decimal places by solving the equation . Use the
initial estimate(s) 

1. ,

2. ,

3. , and 

x

y

15

�5�2 3

x0 � 3x0 � 1f(x) �
3

2
 x4 � 2x3 � 6x2 � 8

x

y

10

20

�10

�1 1 2 3 4

x0 � 1f(x) � 2x3 � 15x2 � 36x � 20

x

y

1

2

3

4

�2

�1
�2 �1 21

x0 � 1f(x) � �x3 � 2x � 2

x0.
f(x) � 0

f 4. ,

In Exercises 5–8, use Newton’s method to find the point of inter-
section of the graphs to four decimal places of accuracy by solv-
ing the equation . Use the initial estimate for
the -coordinate.

5. , ,

6. , ,

x

y

2

π_
2� π_

2

21�1

�2

�2

y � tan xy � 1 � x

x0 � 1t(x) � 1 � xf(x) � tan x

x

y

π
y � sin x

1

y � x2

π_
2

π_
2�

x0 � 1t(x) � sin xf(x) � x2

x
x0f(x) � t(x) � 0

x

y

1

�1

�1 1

x0 � 0.5f(x) � x �21 � x2

3.8 EXERCISES

Videos for selected exercises are available online at www.academic.cengage.com/login.V

www.academic.cengage.com/login
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7. , ,

8. , ,

Hint: Use symmetry.

In Exercises 9–14, use Newton’s method to approximate the indi-
cated zero of the function. Continue with the iteration until two
successive approximations differ by less than 0.0001.

9. The zero of between and .
Take .

10. The zero of between and
. Take 

11. The zero of between and .
Take 

12. The zero of between and
. Take .

13. The zero of between and
. Take .

14. The zero of between and
. Take .

In Exercises 15–18, approximate the zero of the function in the
indicated interval to six decimal places.

15. in 

16. in 

17. in 

18. in 

19. What can you say about the sequence of approximations
obtained using Newton’s method if your initial estimate,

[0, p]f(x) � 2x � sin x � 2

C0, p2 Df(x) � cos x � x

[1, 2]f(x) � x3 � x � 1

[�2, 0]f(x) � x3 � 3x2 � 3

x0 � 1x � 2
x � 0f(x) � x � sin x � 0.5

x0 � 0.5x � 1
x � 0f(x) � 5x � cos x � 5

x0 � 0.5x � 1
x � 0f(x) � x5 � 2x4 � 2x � 4

x0 � 0.5.
x � 1x � 0f(x) � x5 � x � 1

x0 � 1.5.x � 2
x � 1f(x) � x3 � 2x2 � x � 6

x0 � 1
x � 2x � 0f(x) � x3 � x � 4

x

y

y � sin x

π�π

1

�1

y �    x1_
5

x0 � 2t(x) �
1

5
 xf(x) � sin x

x

y

π_
2�

1_
2�

π_
2

1_
2

1_
2y �    cos x

y � x

x0 � 0.5t(x) � xf(x) �
1

2
cos x

through a stroke of luck, happens to be the root you are
seeking?

20. Let . Use the Intermediate
Value Theorem to prove that has a zero between 
and , and then use Newton’s method to find it.

21. Let . Use the Intermediate Value Theo-
rem to prove that has a zero between and ,
and then use Newton’s method to find it.

In Exercises 22–25, estimate the value of the radical accurate to
four decimal places by using three iterations of Newton’s method
to solve the equation with initial estimate .

22. ;

23. ;

24. ;

25. ;

26. Approximating the kth Root of a Positive Number
a. Apply Newton’s method to the solution of the equation

to show that an approximation of 
can be found by using the iteration

b. Use this iteration to find accurate to four decimal
places.

27. The graph of accompanies Exercise 4.
Explain why cannot be used as an initial estimate for
solving the equation using Newton’s method. Can
you explain this analytically? How about the initial estimate

28. The temperature at 6 A.M. on a certain December day in
Chicago was 15.6°F. As a cold front moved in gradually,
the temperature in the next hours was given by

degrees Fahrenheit, where . At what time was the
temperature 0°F?

29. Tracking a Submarine A submarine traveling along a path
described by the equation (both and are
measured in miles) is being tracked by a sonobuoy (sound
detector) located at the point in the figure.

x (mi)

(x, y)

sonobuoy

y (mi)

2

�2 �1 321

y  � x2 � 1

(3, 0)

yxy � x2 � 1

0 � t � 15

T(t) � �0.05t 3 � 0.4t 2 � 3.8t � 15.6

t

x0 � 0?

f(x) � 0
x0 � 1
f(x) � x �21 � x2

10150

xn�1 �
1

k
 c(k � 1)xn �

A

xk�1
n

d

k1Af(x) � xk � A � 0

f(x) � x4 � 20; x0 � 2.114 20

f(x) � x3 � 7; x0 � 213 7

f(x) � x2 � 6; x0 � 2.516

f(x) � x2 � 3; x0 � 1.513

x0f(x) � 0

x � 2x � 1f
f(x) � x3 � 3x � 1

x � 1
x � 0f

f(x) � 2x3 � 9x2 � 12x � 2
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Show that can be found by performing the iteration

Hint: Apply Newton’s method to solve the equation

32. Financing a Home Refer to Exercise 31. The McCoys secured
a loan of $360,000 from a bank to finance the purchase of a
house. They have agreed to repay the loan in equal monthly
installments of $2106 over 25 years. The bank charges inter-
est at the rate of per year, compounded monthly. Find .

33. Financing a Home Refer to Exercise 31. The Wheatons bor-
rowed a sum of $200,000 from a bank to help finance the
purchase of a house. The bank charges interest at the rate of

per year on the unpaid balance, compounded monthly. The
Wheatons have agreed to repay the loan in equal monthly
installments of $1287.40 over 30 years. What is the rate of
interest charged by the bank?

34. a. Show that Newton’s method fails when it is used to find
the zero of with any initial guess 

b. Illustrate the result graphically in the special case in
which by plotting the graph of at the points

and . Use the viewing window
.

35. For a concrete interpretation of a situation similar to that
depicted in Figure 4a, consider the function

a. Show that Newton’s method fails to work if we choose
or for an initial estimate.

b. Using the initial estimates , and
, show that the three roots of are

, and 3.186141, respectively.
c. Plot the graph of using the viewing window

.[�3, 4] 
 [�10, 7]
f

�2, 0.313859
f(x) � 0x0 � 2.5

x0 � �2.5, x0 � 1
x0 � 2x0 � �1

f(x) � x3 � 1.5x2 � 6x � 2

[�5, 5] 
 [�2, 2]
(x1, f(x1))(x0, f(x0))

fx0 � 1

x0 � 0.f(x) � x1>3

r

r

rr

Ar � 12kc a1 �
r

12
b�12N

� 1d � 0

rn�1 � rn �

Arn � 12kc a1 �
rn

12
b�12N

� 1d
A � 12Nka1 �

rn

12
b�12N�1

ra. Show that the submarine is closest to the sonobuoy if 
satisfies the equation 
Hint: Minimize the square of the distance between the points

and .
b. Use Newton’s method to solve the equation

.
c. What is the distance between the submarine and the

sonobuoy at the closest point of approach?
d. Plot the graph of the function giving the distance

between the submarine and the sonobuoy using the view-
ing window . Then use it to verify the
result that you obtained in parts (b) and (c).

30. Finding the Position of a Planet As shown in the accompanying
figure, the position of a planet that revolves about the sun
with an elliptical orbit can be located by calculating the cen-
tral angle . Suppose the central angle sustained by a planet
on a certain day satisfies the equation 
Using Newton’s method, find an approximation of to five
decimal places.
Hint: A rough sketch of the graphs of and 
will show that an initial estimate of may be taken to be 
(radians).

31. Loan Amortization The size of the monthly repayment that
amortizes a loan of dollars in years at an interest rate 
of per year, compounded monthly, on the unpaid balance
is given by

k �
Ar

12c1 � a1 �
r

12
b�12Nd

r
NA

k

planet

sun

q 

u0 � 1.5u

y � 1
2 sin xy � x � 1

u

u � 0.5 sin u � 1.
u

[0, 1] 
 [2, 4]

t(x)

2x3 � 3x � 3 � 0

(x, y)(3, 0)

2x3 � 3x � 3 � 0.
x
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In Exercises 1–12, find the absolute maximum value and the
absolute minimum value, if any, of the function.

1. on 

2. on 

3. on [2, 5]h(x) � x3 � 6x2

[0, 2]t(x) �
1

3
 x3 � x2 � 1

[�1, 3]f(x) � �x2 � 4x � 3

4. on 

5. on 

6. on 

7. on (0, 3]f(x) � �2x3 � 9x2 � 12x � 6

[�1, 1]t(x) � x21 � x2

[1, 3]f(x) � 4x �
1

x2

[0, 5]f(t) �
t

t 2 � 1

REVIEW EXERCISES

In Exercises 1–9, fill in the blanks.

1. a. A function has an absolute maximum at if 
for all in the domain of . The number is called
the of on .

b. A function has a relative minimum at if for
all values of in some containing .

2. a. A critical number of a function is any number in the
of at which or 

.
b. If has a relative extremum at , then must be a

of .
c. If is a critical number of , then may or may not have

a at .

3. The Extreme Value Theorem states that if is on
a closed interval , then attains an 

for some number in and an 
for some number in .

4. Suppose that is continuous on and differentiable on
.

a. If , then Rolle’s Theorem states that there
exists at least one number in such that

.
b. The Mean Value Theorem states that there exists at least

one number in such that .

5. a. A function is increasing on an interval if for every
pair of numbers and in , implies that

.
b. A function is monotonic if it is either or

on .
c. If is differentiable on an open interval and if 

for all in , then is decreasing 
on .(a, b)

f(a, b)xf ¿(x)
(a, b)f

I
f

x1 � x2Ix2x1

If

f ¿(c) �(a, b)c

c
f(a) � f(b)

(a, b)
[a, b]f

[a, b]df(d)
[a, b]cf(c)

f[a, b]
f

c
ffc

f
ccf

f ¿(c)f ¿(c)f
f

cx
cf

Df
f(c)fDx

cf

6. a. The graph of a differentiable function is concave
upward on an interval if is increasing on .

b. If has a second derivative on an open interval and
on , then the graph of is concave

upward on .
c. Suppose that the graph of has a tangent line at

and the graph of changes concavity from
to or vice versa at ; then is

called an inflection point of the graph of .
d. Suppose that has a continuous second derivative on an

interval , containing a critical number of . If
, then has a at . If
, then may or may not have a 
at .

7. a. The statement means that all the
of can be made by 

taking sufficiently close but not equal to .
b. The statement means that all the

of can be made arbitrarily close 
by taking .

c. The statement means that all the 
values of can be made as 

without bound.

8. a. The line is a vertical asymptote of the graph of 
if at least one of the following is true: ,

, or .
b. The line is a horizontal asymptote of the graph of

if or .

9. a. The precise definition of is: Given any
number , we can find a number such
that implies that .

b. The precise definition of means for
every number , there exists a number 
such that implies that .

limx→�� f(x) � �
0 � �x � a � � d

limx→a f(x) � �

f
y � L

fx � a

xf
limx→�� f(x) � �

x
f

limx→� f(x) � L
x

f
limx→a f(x) � �

c
ff �(c) � 0

cff �(c) � 0
fc(a, b)

f
f

PP
fP(c, f(c))

f
I

fIf �(x)
If

II
f
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8. on 

9. on 

10. on 

11. on 

12. on 

In Exercises 13–18, verify that the function satisfies the hypothe-
ses of the Mean Value Theorem on the given interval, and find
all values of that satisfy the conclusion of the theorem.

13. ; 14. ;

15. ; 16. ;

17. ; 18. ;

19. Let . Show that there is no value of in 

such that

Why doesn’t this contradict the Mean Value Theorem?

20. Let . Show that there is no value in 
such that

Why doesn’t this contradict the Mean Value Theorem?

In Exercises 21–30, (a) find the intervals where the function 
is increasing and where it is decreasing, (b) find the relative
extrema of , (c) find the intervals where the graph of is con-
cave upward and where it is concave downward, and (d) find 
the inflection points, if any, of .

21.

22.

23. 24.

25. 26.

27. 28.

29. 30.

31. Prove that the equation has only one real
root.

32. Prove that the equation has exactly
one real root.

x5 � 3x3 � x � 2 � 0

x5 � 5x � 2 � 0

f(x) � �
1

1 � x2f(x) �
2x

x � 1

f(x) � x1x � 1f(x) � (1 � x)1>3
f(x) �2x � 1f(x) �

x2

x � 1

f(x) � x �
4
x

f(x) � x4 � 2x2

f(x) � (x � 2)3

f(x) �
1

3
 x3 � x2 � x � 6

f

ff

f

f ¿(c) �
f(2) � f(0)

2 � 0

[0, 2]cf(x) � �x � 1 �

f ¿(c) �
f(0) � f(�2)

0 � (�2)

[�2, 0]

cf(x) �
x

x � 1

C0, p2 Dt(x) � cos 2xC0, p2 Df(x) � x � sin x

[0, 3]f(x) �
1

1x � 1
[1, 3]h(x) � x �

1
x

[0, 4]t(x) � 1x[�2, 1]f(x) � x3

c

1�p2 , p2 2f(x) � x tan x

10, p2 2f(x) �
x

2
� sin x

[�p, p]f(x) � sin 2x � 2 sin x

[0, 2p]f(x) � cos x � sin x

(�1, 3)t(x) � x3 � 2x2 � 4x � 4 In Exercises 33–42, find the limit.

33. 34.

35. 36.

37. 38.

39. 40.

41. 42.

In Exercises 43–44, find the horizontal and vertical asymptotes
of the graph of each function. Do not sketch the graph.

43. 44.

In Exercises 45–56, use the guidelines on page 307 to sketch the
graph of the function.

45. 46.

47. 48.

49. 50.

51. 52.

53.

54. ,

55. ,

56. ,

57. Spread of an Epidemic The incidence (number of new cases 
per day) of a contagious disease that is spreading in a popu-
lation of people is given by

where is a positive constant and denotes the number of
people already infected. Show that the incidence is great-
est when half the population is infected.

58. Maximizing Profit The management of the company that makes
Long Horn Barbecue Sauce estimates that the daily profit
from the production and sale of cases (each case contains
24 bottles of the sauce) is

dollars. Determine the largest possible daily profit the com-
pany can realize.

P(x) � �0.000002x3 � 6x � 350

x

R
xk

R(x) � kx(M � x)

M

�3p
2 � x � 5p

2f(x) �
1

1 � sin x

 0 � x � 2ph(x) � 2 sin x � sin 2x

0 � x � 2pt(x) � x � cos x

f(x) � (1 � x)1>3
f(x) �

x2

x4 � 1
f(x) �

x2

x2 � 1

f(x) �
2

1 � x2f(x) � x2 �
1
x

h(x) � 2x �
3
x

t(x) � 3x4 � 4x3

f(x) � 2x3 � 6x2 � 6x � 3f(x) � x2 � 4x � 3

f(x) �
x2 � x

x(x � 1)
f(x) �

1

2x � 3

lim
x→��

x

sin x � 2x
lim

x→��

12 � x

x � 2

lim
x→�

x � 4

2x2 � 1
lim
x→�

1 � 2x � 3x2

x2 � 1

lim
x→(p>2)�

2x � sin x

(tan x)2lim
x→0�

1x

sin x

lim
x→2�

x2 � x � 1

x2 � x � 2
lim
x→3

2 � 3x

(x � 3)2

lim
x→�2�

1 � 2x

x2 � 4
lim

x→2�

x2

x � 2
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59. Senior Workforce The percent of women age 65 years and
older in the workforce from the beginning of 1970 to the
beginning of 2000 is approximated by the function

where is measured in years, with corresponding to
the beginning of 1970.
a. Find the interval where is decreasing and the interval

where is increasing.
b. Find the absolute minimum of .
c. Interpret the results of parts (a) and (b).
Source: U.S. Census Bureau.

60. Find the point on the graph of that is closest to
the point .

61. Find the dimensions of the rectangle of maximum area, with
sides parallel to the coordinate axes, that can be inscribed in
the ellipse with equation

62. The sum of two numbers is 8. Find the numbers if the sum
of their cubes is as small as possible.

63. Find the point on the parabola that is closest
to the origin.

64. Find the point on the parabola that is closest to the
point .

65. Demand for Electricity The demand for electricity from 1 A.M.
through 7 P.M. on August 1, 2006, in Boston is described by
the function

where is measured in megawatts (MW), with 
corresponding to 1 A.M. Driven overwhelmingly by air-
conditioning and refrigeration systems, the demand for 
electricity reached a new record high that day.
a. Plot the graph of in the viewing window

.
b. Show that the demand for electricity did not exceed the

system capacity of 31,000 MW, thus negating the neces-
sity for imposing rolling blackouts if electricity demand
were to exceed supply.

Source: ISO New England.

66. Sickouts In a sickout by pilots of American Airlines in Feb-
ruary 1999, the number of canceled flights from February 6

through February 14 is approximated by the
function

where is measured in days. The sickout ended after the
union was threatened with millions of dollars in fines.

t

0 � t � 8

N(t) � 1.2576t 4 � 26.357t 3 � 127.98t 2 � 82.3t � 43

(t � 8)(t � 0)

[0, 18] 
 [20,000, 30,000]
D

t � 0D(t)

0 � t � 18

D(t) � �11.3975t 3 � 285.991t 2 � 1467.73t � 23,755

(5, �1)
y � x2

y � (x � 3)2

x2

100
�

y2

16
� 1

(3, 1)
y � x2 � 1

P
P

P

t � 0t

0 � t � 30P(t) � �0.0002t 3 � 0.018t 2 � 0.36t � 10

a. Plot the graph of in the viewing window
.

b. Show that the number of canceled flights was increasing
at the fastest rate on February 8.

c. Estimate the maximum number of canceled flights in a
day during the sickout.

Source: Associated Press.

67. Air Inhaled During Respiration Suppose that the volume of air
inhaled by a person during respiration is given by

liters at time (in seconds). At what time is the rate of flow
of air at a maximum? At a minimum?

68. A box with an open top is to be constructed from a square
piece of cardboard, 8 in. wide, by cutting out a square from
each of the four corners and bending up the sides. What is
the largest volume of such a box?

69. Packaging A closed rectangular box with a volume of 4 ft3 is
to be constructed. The length of the base of the box will be
twice as long as its width. The material for the top and bot-
tom of the box costs 30 cents per square foot, and the mate-
rial for the sides of the box costs 20 cents per square foot.
Find the dimensions of the least expensive box that can be
constructed.

70. Minimizing Construction Costs A man wishes to construct a
cylindrical barrel with a capacity of 32 ft3. The cost per
square foot of the material for the side of the barrel is half
that of the cost per square foot for the top and bottom. Help
him find the dimensions of the barrel that can be constructed
at a minimum cost in terms of material used.

71. Maximizing Light Intensity A light is suspended over the center
of a 2 ft by 2 ft table. The intensity of the light striking a
point on the table is directly proportional to the sine of the
angle the path of the light makes with the table and
inversely proportional to the square of the distance between
the point and the light. How high above the table should the
light be positioned to maximize the light intensity at the cor-
ners of the table?

72. Minimizing Length Two towers, one 120 ft high, the other 300 ft
high, and standing 500 ft apart, are to be stayed by two wires
(among others) running from the top of the towers to the
ground between them. Where should the stake on the ground
be placed if we want to minimize the length of wire used?

300 ft

500 ft

120 ft

p

t

V(t) �
6

5p
 a1 � cos

pt

2
b

[0, 8] 
 [0, 1200]
N



In Exercises 73–75, use three iterations of Newton’s method to
approximate the indicated zero of the given function accurate to
4 decimal places.

73. The zero of between and .
Take .

74. The zero of between and .
Take .

75. The zero of between and
. Take .

76. On what interval is the quadratic function

increasing? On what interval is decreasing?

77. Let . Determine the constants and 
such that has a relative minimum at and the relative
minimum value is 7.

x � 2f
baf(x) � x2 � ax � b

f

a � 0f(x) � ax2 � bx � c

x0 � p>4x � p>2 x � p>6f(x) � x2 � sin x

x0 � 1
x � 2x � 0f(x) � x4 � x � 4

x0 � �0.5
x � 0x � �1f(x) � x3 � 2x � 2

78. Find the values of such that the graph of

is concave upward everywhere.

79. Let , where , , , and are
positive constants. Can the graph of have any inflection
points? Explain.

80. Let

a. Compute , and show that it does not change sign as
we move across .

b. Show that has a relative maximum at . Does this
contradict the first derivative test? Explain your answer.

x � 0f
x � 0

f ¿(x)

f(x) � ex3 � 1 if x � 0

2 if x � 0

f
dcbaf(x) � ax6 � bx4 � cx2 � d

f(x) � x4 � 2x3 � cx2 � 2x � 2

c
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As a first step in analyzing functions involving absolute values, we often rewrite the
function as an equivalent piecewise defined function. This is illustrated in the follow-
ing example.

PROBLEM-SOLVING TECHNIQUES

EXAMPLE Find the absolute minimum value of the function .

Solution We write

Differentiating, we obtain

Since , we see that exists at 0. Similarly, you
can show that exists at 2. We see that for and for .
Next, observe that for , if

so is a critical number of . The sign diagram of follows.f ¿fx � 1

3x2 � 3(x � 2)2 � 3x2 � 3x2 � 12x � 12 � 12(x � 1) � 0

f ¿(x) � 00 � x � 2
x � 2f ¿(x) � 0x � 0f ¿(x) � 0f ¿

f ¿limx→0� f ¿(x) � �12 � limx→0� f ¿(x)

if x � 0

if 0 � x � 2

if x � 2

f ¿(x) � •
�3x2 � 3(x � 2)2

3x2 � 3(x � 2)2

3x2 � 3(x � 2)2

if x � 0

if 0 � x � 2

if x � 2

f(x) � �x �3 � �x � 2 �3 � •
�x3 � (x � 2)3

x3 � (x � 2)3

x3 � (x � 2)3

f(x) � �x �3 � �x � 2 �3

The sign diagram for f ¿
210

0 +++ ++ ++ ++ +++–– – –––– – – – –

x

From the sign diagram for we see that has a relative minimum at , where 
takes on the value . Therefore, the absolute minimum value of is 2.ff(1) � 2

fx � 1ff ¿
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1. Find the absolute minimum value of .

2. Find the relative extrema of

3. Find the highest and the lowest points on the graph of the
equation .

4. Use the Mean Value Theorem to prove the inequalities

for , where is a natural number.

5. a. Show that if and then
.

b. Use the result of part (a) to show that 
for all positive numbers and and .

c. Use the result of part (b) to show that
if .

6. Find the maximum of defined on the part of the eight
curve that lies in the first quadrant.x4 � x2 � y2

x � y

n � 11n a � b � 1n a � 1n b

0 � p � 1ba
(a � b)p � ap � bp

(1 � x)p � 1 � xp
x � 0, 0 � p � 1

n0 � x � y

nxn�1(y � x) � yn � xn � nyn�1(y � x)

x2 � xy � y2 � 3

a � b � 0f(x) �
(x � a)(x � b)

(x � a)(x � b)

f(x) � �x �3 � �x � 1 �3 10. A generalization of the Mean Value Theorem is Cauchy’s
Theorem: If and are continuous on and differen-
tiable on , for all in , and ,
then there exists a number in such that

a. Explain what is wrong with the following proof of
Cauchy’s Theorem: Since all the conditions of the Mean
Value Theorem are satisfied by and , there exists a
number in such that

and

Therefore, dividing the first expression by the second
gives the desired result.

b. Prove Cauchy’s Theorem by applying Rolle’s Theorem to
the function 

11. Prove that if are real numbers such that

then the polynomial function 
has at least one zero in the interval .

12. Suppose that is continuous on and that it has a
derivative for all in , and suppose that , where

, are real numbers satisfying

Show that there exist numbers in , in
in such that

13. Let be defined and have a continuous derivative of order
, , on an interval and a derivative of

order , , on the interval . Furthermore, let

Show that there exists at least one number in such
that .f (n)(c) � 0

(a, b)c

x0 � a � x1 � x2 � p � xn � b

f(x0) � f(x1) � p � f(xn)

(a, b)f (n)(x)n
[a, b]f (n�1)(x)(n � 1)

f

 � p � f(cn)(xn � xn�1)

 F(b) � F(a) � f(c1)(x1 � x0) � f(c2)(x2 � x1)

[xn�1, xn][x1, x2], p , cn

c2[x0, x1]c1

x0 � a � x1 � x2 � p � xn � b

0 � i � n
xi(a, b)xf

[a, b]F

(0, 1)anx
n

f(x) � a0 � a1x � a2x
2 � p  �

a0

1
�

a1

2
�

a2

3
� p �

an

n � 1
� 0

a0, a1, a2, p , an

h(x) � f(x) � f(a) �
f(b) � f(a)

t(b) � t(a)
 [t(x) � t(a)]

t(b) � t(a)

b � a
� t¿(c)

f(b) � f(a)

b � a
� f ¿(c)

(a, b)c
tf

f(b) � f(a)

t(b) � t(a)
�

f ¿(c)

t¿(c)

(a, b)c
t(a) � t(b)(a, b)xt¿(x) � 0(a, b)

[a, b]tf

CHALLENGE PROBLEMS

x

y

7. Show that the equation does not have two
roots between 0 and 1 for any .

8. The equation

is called Rivlin’s equation and arises in the study of incom-
pressible material. Specifically, gives the factor by which 
a rubber cube is stretched in two directions and the factor 
by which it is contracted in the other when the material is
pulled on all faces with a force . The positive constant 
is analogous to the spring constant for a spring. Show that
Rivlin’s equation has no positive root if and two
positive roots if .

9. Prove that between any two roots of the polynomial function
there exists a root

of the polynomial function .t(x) � nanx
n�1 � p � 2a2x � a1

f(x) � anx
n � an�1x

n�1 � p � a1x � a0

T � 313 2a
T � 313 2a

aT

n

n3 �
Tn2

2a
� 1 � 0

c
x5 � 5x � c � 0



4 Integration

In Chapter 2, we saw how 
the derivative of a function
enabled us to calculate the

velocity of the maglev knowing
only its position function. In

this chapter, we will see how
the knowledge of the velocity

of the maglev at time will
enable us to calculate its posi-

tion at any time . The tool
used here is the antiderivative

of a function. As it turns out,
the derivative of a function

and the antiderivative of the
function are intimately

related—one of the fundamen-
tal results of this chapter.
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IN THIS CHAPTER we begin the study of the other major branch of calculus, known
as integral calculus. Historically, the development of integral calculus, like the devel-
opment of differential calculus, was motivated by a geometric problem. In this case
the problem is that of finding the area of a region in the plane.

The principal tool in the study of integral calculus is the definite integral, which,
as in the case of the derivative, is defined by using the notion of a limit. As we shall
see in the ensuing chapters, the concept of the integral allows us to solve not only
the area problem, but also other geometric problems, such as finding the lengths of
curves and the volumes and surface areas of solids. The integral also proves to be
an all-important tool in solving problems in physics, chemistry, biology, engineering,
economics, and other fields.

Although the two branches of calculus seem at first sight to be unconnected,
they are, in fact, intimately related. This relationship is established via the Funda-
mental Theorem of Calculus, which is the main result of this chapter. This theorem
also simplifies the calculations involved in solving many problems.

This symbol indicates that one of the following video types is available for enhanced student learning 
at www.academic.cengage.com/login:
• Chapter lecture videos • Solutions to selected exercises

V

www.academic.cengage.com/login
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4.1 Indefinite Integrals

Antiderivatives
Let’s return to the example involving the motion of the maglev (see Figure 1). In
Chapter 2 we discussed the following problem: If we know the position of the maglev
at all times , can we find its velocity at any time ? As it turns out, if the position
of the maglev is described by the position function , then its velocity at any time

is given by . Here , the velocity function of the maglev, is just the derivative
of .f

f ¿f ¿(t)t
f

tt

FIGURE 1

Now, in Chapters 4 and 5 we will consider precisely the opposite problem: If we
know the velocity of the maglev at all times , can we find its position at any time ?
Stated another way, if we know the velocity function of the maglev, can we find its
position function ? To solve this problem, we need the concept of an antiderivative
of a function.

f
f ¿

tt

DEFINITION Antiderivative

A function is an antiderivative of a function on an interval if 
for all in .Ix

F¿(x) � f(x)IfF

Thus, an antiderivative of a function is a function whose derivative is .fFf

EXAMPLE 1 Show that , , and are anti-
derivatives of . How about the function , where is any 
constant?

Solution You can easily verify that for all in
. Therefore, by the definition of an antiderivative, , , and are all anti-

derivatives of , as was asserted.
Next, we find

so is also an antiderivative of .fG

 � 3x2 � 0 � 3x2 � f(x)

 G¿(x) �
d

dx
 (x3 � C)

f
F3F2F1(��, �)

xF œ
1(x) � F œ

2(x) � F œ
3(x) � 3x2 � f(x)

CG(x) � x3 � Cf(x) � 3x2
F3(x) � x3 � pF2(x) � x3 � 1F1(x) � x3

s (ft)3600361640
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Example 1 suggests the following more general result: If is an antiderivative of
on , then so is every function of the form , where is an arbitrary

constant. To prove this, we find

Are there any antiderivatives of other than those that are obtained in this manner?
To answer this question, suppose that is any other antiderivative of on . Then

Since two functions having the same derivative on an interval differ only by a constant,
(by the corollary to the Mean Value Theorem, page 260), we have ,
where is a constant. Equivalently, .H(x) � F(x) � CC

H(x) � F(x) � C

F¿(x) � H¿(x) � f(x)

IfH
f

G¿(x) �
d

dx
 [F(x) � C] �

d

dx
 [F(x)] �

d

dx
 (C) � F¿(x) � 0 � F¿(x) � f(x)

CG(x) � F(x) � CIf
F

THEOREM 1
If is an antiderivative of on an interval , then every antiderivative of on 
has the form

where is a constant.C

G(x) � F(x) � C

IfIfF

EXAMPLE 2 Let .

a. Show that is an antiderivative of on .
b. Find all antiderivatives of on .

Solution
a. , and this proves that is an antiderivative of .
b. By Theorem 1 the antiderivatives of have the form , where is

an arbitrary constant.

Figure 2 shows the graphs of some antiderivatives of . These graphs con-
stitute part of a family of infinitely many parallel lines, each having slope 1. This result
is expected, because an antiderivative of satisfies , and there are
infinitely many straight lines that have slope 1. The antiderivatives , where

is a constant, are precisely the functions representing this family of straight lines.C
G(x) � x � C

G¿(x) � f(x) � 1fG

f(x) � 1

CG(x) � x � Cf
fFF¿(x) � 1 � f(x)

(��, �)f
(��, �)fF(x) � x

f(x) � 1

FIGURE 2
The graphs of the antiderivatives 

of constitute a family 
of straight lines, each with slope 1.

f(x) � 1G

0

1

2

3

4

�1
x�1�2�3 1 2 3

y G(x) � x � 3 (C � 3)

G(x) � x � C � 3
2

G(x) � x (C � 0)
G(x) � x � 1 (C � �1)

3
2 ( )
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The Indefinite Integral
The process of finding all antiderivatives of a function is called antidifferentiation or
integration. We can view this process as an operation on a function to produce the
entire family of antiderivatives of . The integral operator is denoted by the integral
sign , and the process of integration is indicated by the expression

which is read “the indefinite integral of with respect to equals plus .”
The function to be integrated is called the integrand. The differential reminds us
that the integration is performed with respect to the variable . The function is an
antiderivative of , and the constant is called a constant of integration. Using this
notation, the result of Example 2 is written

Basic Rules of Integration
Because integration and differentiation are, in a sense, reverse operations, we can dis-
cover many of the rules of integration by guessing at an antiderivative of an inte-
grand and then verifying that is an antiderivative of by demonstrating that

. For example, to find the indefinite integral of , we first recall
the Power Rule for differentiating . Thus,

In writing the derivative , we followed these steps:

Step 1 Diminish the power of by 1 to obtain .
Step 2 Multiply by the “old” power to obtain .

Now, if we reverse the operation in each step, we have

Step 1 Increase the power of by 1 to obtain .

Step 2 Divide by the “new” power to obtain .

This argument suggests that

To verify that this formula is correct, we compute

In a similar manner we obtain the following integration formulas by studying the
corresponding differentiation formulas.

d

dx
 c xn�1

n � 1
� Cd �

n � 1

n � 1
 x (n�1)�1 � xn

n � �1� xn dx �
xn�1

n � 1
� C

xn�1

n � 1
n � 1xn�1

xn�1xn

nxn�1nxn�1
xn�1xn

nxn�1

f ¿(x) �
d

dx
 (xn) � nxn�1

f(x) � xn
f(x) � xnF¿(x) � f(x)
fFf

F

�1 dx � x � C

Cf
Fx

dxf
CF(x)xf(x)

� f(x) dx � F(x) � C

�
f

f
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Note The formulas for integrals such as and are not as easily
found. We will learn how to find formulas for such integrals later on.

� sec x dx� tan x dx

Basic Integration Formulas

Differentiation Formula Integration Formula

1.

2.

3.

4.

5.

6.

7.

8. � csc2 x dx � �cot x � C
d

dx
 (cot x) � �csc2 x

� csc x cot x dx � �csc x � C
d

dx
 (csc x) � �csc x cot x

� sec x tan x dx � sec x � C
d

dx
 (sec x) � sec x tan x

� sec2 x dx � tan x � C
d

dx
 (tan x) � sec2 x

� sin x dx � �cos x � C
d

dx
 (cos x) � �sin x

� cos x dx � sin x � C
d

dx
 (sin x) � cos x

n � �1� xn dx �
xn�1

n � 1
� C

d

dx
 (xn) � nxn�1

�0 dx � C
d

dx
 (C) � 0

EXAMPLE 3 Using Formula 2 for integration, we see that

a. Here, .

b.

c. Here, .

d. Here, .

Note We can check our answers by differentiating each indefinite integral and show-
ing that the result is equal to the integrand. Thus, to verify the result of Example 3d,
we compute

d

dx
 a4

5
 x5>4 � Cb �

4

5
�

5

4
 x5>4�1 � x1>4

n �
1

4� x1>4 dx �
x1>4�1

1
4 � 1

� C �
4

5
 x5>4 � C

n � �3� 1

x3
 dx � � x�3 dx �

x�3�1

�3 � 1
� C � �

1

2x2
� C

� x2 dx �
x2�1

2 � 1
� C �

1

3
 x3 � C

n � 0�1 dx � � x0 dx �
x0�1

0 � 1
� C � x � C

Rules of Integration

1. , where is a constant

2. � [ f(x) � t(x)] dx � � f(x) dx � � t(x) dx

c� c f(x) dx � c� f(x) dx
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Thus, the indefinite integral of a constant multiple of a function is equal to the con-
stant multiple of the indefinite integral, and the indefinite integral of the sum (differ-
ence) of two functions is equal to the sum (difference) of their indefinite integrals.

Also, Rule 2 is valid for any finite number of functions; that is,

� [ f1(x) � p � fn(x)] dx � � f1(x) dx � � f2(x) dx � p � � fn(x) dx

EXAMPLE 4 Find

a. b.

Solution

a. Rule 1

Formula 2

where is a constant of integration. Since is arbitrary, so is , and we can
write , where is an arbitrary number. Therefore,

b. Rule 2

Rule 1

Formulas 2 and 4

where is an arbitrary constant.

From now on, we will use a single letter to represent any combination of con-
stants of integration.

C

C � 2C1 � 3C2

 � x2 � 3 cos x � C

 � x2 � 2C1 � 3 cos x � 3C2

 � 2 c1
2

 x2 � C1d � 3[�cos x � C2]

 � 2� x dx � 3� sin x dx

 � (2x � 3 sin x) dx � �2x dx � �3 sin x dx

�2x3 dx �
1

2
 x4 � C

C2C1 � C
2C1C1C1

 �
1

2
 x4 � 2C1

 � 2 a1

4
 x4 � C1b

 �2x3 dx � 2� x3 dx

� (2x � 3 sin x) dx�2x3 dx

EXAMPLE 5 Find .

Solution Using the generalized sum rule, we have

 �
1

2
 x6 �

1

2
 x4 � 2x �

9

2
 x2>3 � C

 � 3 ax6

6
b � 2 ax4

4
b � 2x � 3 ax2>3

2
3

b � C

 � (3x5 � 2x3 � 2 � 3x�1>3) dx � 3� x5 dx � 2� x3 dx � 2�1 dx � 3� x�1>3 dx

� (3x5 � 2x3 � 2 � 3x�1>3) dx



4.1 Indefinite Integrals 355

Sometimes we need to rewrite the integrand in a different form before integrating,
as is illustrated in the next example.

EXAMPLE 6 Find

a. b. c.

Solution

a.

b.

c. � sin t

cos2 t
 dt � � 1

cos t
�

sin t

cos t
 dt � � sec t tan t dt � sec t � C

� 2x2 � 1

x2
 dx � � a2 �

1

x2
b  dx � � (2 � x�2 ) dx � 2x � x�1 � C � 2x �

1
x

� C

� (x � 1)(x2 � 2) dx � � (x3 � x2 � 2x � 2) dx �
1

4
 x4 �

1

3
 x3 � x2 � 2x � C

� sin t

cos2 t
 dt� 2x2 � 1

x2
 dx� (x � 1)(x2 � 2) dx

Differential Equations
Let’s return to the problem posed at the beginning of the section: Given the derivative
of a function, , can we find the function ? As an example, suppose that we are given
the function

(1)

and we wish to find . From what we now know, we can find by integrating Equa-
tion (1). Thus,

(2)

where is an arbitrary constant. So there are infinitely many functions having the
derivative ; these functions differ from each other by a constant.

Equation (1) is called a differential equation. In general, a differential equation is
an equation that involves the derivative or differential of an unknown function. (In
Equation (1) the unknown function is .) A solution of a differential equation on an
interval is any function that satisfies the differential equation on . Thus, Equation (2)
gives all solutions of the differential equation (1) on and is, accordingly, called
the general solution of the differential equation .

The graphs of for selected values of are shown in Figure 3.
These graphs have one property in common: For any fixed value of , the tangent lines
to these graphs have the same slope. This follows because any member of the family

must have the same slope at , namely, . (We will study dif-
ferential equations in greater depth in Chapter 8.)

Although there are infinitely many solutions to the differential equation 
, we can obtain a particular solution by specifying the value that the function

must assume at a certain value of . For example, suppose we stipulate that the solu-
tion must satisfy the condition . Then, we find that

and . Thus, the particular solution is (see Figure 3). The 
condition is an example of an initial condition. More generally, an initial 
condition is a condition that is imposed on the value of at a number . Geo-
metrically, this means that the graph of the particular solution passes through the point

.(a, f(a))

x � af
f(1) � 3

f(x) � x2 � x � 3C � 3

f(1) � 1 � 1 � C � 3

f(1) � 3f(x) � x2 � x � C
x

2x � 1
f ¿(x) �

2x � 1xf(x) � x2 � x � C

x
Cf(x) � x2 � x � C

f ¿(x) � 2x � 1
(��, �)

II
f

f ¿
C

f(x) � � f ¿(x) dx � � (2x � 1) dx � x2 � x � C

ff(x)

f ¿(x) � 2x � 1

ff ¿

FIGURE 3
The graphs of some functions having
the derivative f ¿(x) � 2x � 1

0

1

2

3
(1, 3)

�1

x�1 1 2 3

y

C � 2

C � 1

C � 3

C � 0

C � �1
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Initial Value Problems
In an initial value problem we are required to find a function satisfying (1) a differ-
ential equation and (2) one or more initial conditions. The following are examples.

EXAMPLE 7 Finding the Position of a Maglev In a test run of a maglev along a straight
elevated monorail track, data obtained from reading its speedometer indicated that the
velocity of the maglev at time can be described by the velocity function

Find the position function of the maglev. Assume that the maglev is initially located at
the origin of a coordinate line.

Solution Let denote the position of the maglev at time , where . Then
. So we have the initial value problem

Integrating both sides of the differential equation , we obtain

where is an arbitrary constant. To evaluate , we use the initial condition 
to write

or

Therefore, the required position function is , where .0 � t � 30s(t) � 4t 2

C � 0s(0) � 4(0) � C � 0

s(0) � 0CC

s(t) � � s¿(t) dt � �8t dt � 4t 2 � C

s¿(t) � 8t

es¿(t) � 8t

s(0) � 0

s¿(t) � √(t)
0 � t � 30ts(t)

0 � t � 30√(t) � 8t

t

EXAMPLE 8 Describing the Path of a Pop-Up In a baseball game, one of the batters
hit a pop-up. Suppose that the initial velocity of the ball was 96 ft/sec and the initial
height of the ball was 4 ft from the ground.

a. Find the position function giving the height of the ball at any time .
b. How high did the ball go?
c. How long did the ball stay in the air after being struck?

Solution
a. Let denote the position of the ball at time , and let represent the 

(initial) time when the ball was struck. The only force acting on the ball during
the motion is the force of gravity; taking the acceleration due to this force as 

ft/sec2, we see that must satisfy

When ,

Initial height was 4 ft.

and

Initial velocity was 96 ft/sec.

To solve this initial value problem, we integrate the differential equation
with respect to , obtaining

s¿(t) � � s�(t) dt � ��32 dt � �32t � C1

ts�(t) � �32

s¿(0) � 96

s(0) � 4

t � 0

s�(t) � �32

s�32

t � 0ts(t)

t
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where is an arbitrary constant. To determine the value of , we use the initial
condition . We find

which gives . Therefore,

Integrating again, we have

where is an arbitrary constant. To evaluate , we use the initial condition
to obtain

or

Therefore, the required position function is

b. At the highest point, the velocity of the ball is zero. But from part (a) the velocity
of the ball at any time is . So setting , we
obtain , or . Substituting this value of into the position
function gives

or 148 ft as the maximum height attained by the ball. (See Figure 4.)
c. The ball hits the ground when . Solving this equation, we have

or

Next, using the quadratic formula, we obtain

or 6.04

Since must be positive, we see that the ball hit the ground when .
Therefore, after the ball was struck, it remained in the air for approximately 
6 sec.

t � 6.04t

t �
24 � 1576 � 16

8
�

24 � 4137

8
� �0.04

4t 2 � 24t � 1 � 0

�16t 2 � 96t � 4 � 0

s(t) � 0

s(3) � �16(32) � 96(3) � 4

tt � 3�32t � 96 � 0
√(t) � 0√(t) � s¿(t) � �32t � 96t

s(t) � �16t 2 � 96t � 4

C2 � 4s(0) � �16(0) � 96(0) � C2 � 4

s(0) � 4
C2C2

s(t) � � s¿(t) dt � � (�32t � 96) dt � �16t 2 � 96t � C2

s¿(t) � �32t � 96

C1 � 96

s¿(0) � �32(0) � C1 � 96

s¿(0) � 96
C1C1

FIGURE 4
The ball attains a maximum 
height of 148 ft and stays in 
the air approximately 6 sec.

4

148

t � 0
t � 6.04

1. What is an antiderivative of a function ? Give an example.
2. If for all in an interval , what is the relation-

ship between and ?
3. What is the difference between an antiderivative of and the

indefinite integral of ?f
f

tf
Ixf ¿(x) � t¿(x)
f 4. Define each of the following:

a. A differential equation
b. A solution of a differential equation
c. A general solution of a differential equation
d. A particular solution of a differential equation
e. An initial value problem

4.1 CONCEPT QUESTIONS
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In Exercises 1–30, find the indefinite integral, and check your
answer by differentiation.

1. 2.

3. 4.

5. 6.

7. 8.

9. 10.

11. 12.

13. 14.

15. 16.

17. 18.

19. 20.

21. 22.

23. 24.

25. 26.

27.

Hint: Use the identity .

28.

Hint: Rewrite the integrand.

29. 30.

In Exercises 31–34, (a) find the indefinite integral, and (b) plot
the graphs of the antiderivatives corresponding to , ,
, , and ( is the constant of integration).

31. 32. � (3x2 � x � 1) dx� (x � 3) dx

C210
�1C � �2

� cot2 x dx� dx

1 � sin x

� tan2 x dx

sin2 x � cos2 x � 1

� 1

sin2 x cos2 x
 dx

� cos 2x

cos x � sin x
 dx� 1 � 2 cot2 x

cos2 x
 dx

� sin 2x

cos x
 dx� cos x

1 � cos2 x
 dx

� sec u (tan u � sec u) du� (csc2 x � 1x) dx

� (csc u cot u � 3 sec2 u) du� (3 sin x � 4 cos x) dx

� (2t � 3 cos t) dt� (2x � 1)(x � 3)2 dx

� (p2 � p � 1) dx� x2 � 2x � 3

1x
 dx

� t 2 � 21t � 1

t 2  dt� 3x4 � 2x2 � 1

x4  dx

� x2 � 1

x2  dx� 3

1u
 du

� 1

x3 dx� t 1>3(t � 1)2 dt

� x2>3(x � 1) dx� a1x �
3

1x
b  dx

� (2x2>3 � 4x1>3 � 4) dx� (2x9 � 4x6 � 4) dx

� (x3 � 2x2 � x � 1) dx� (3 � 2x � x2) dx

� (6x2 � 2x � 1) dx� (x � 2) dx

33.

34.

In Exercises 35–46, find by solving the initial value problem.

35. ,

36. ,

37. ,

38. ,

39. ,

40. ,

41. ; ,

42. ; ,

43. ; ,

44. ; ,

45. ; ,

46. ; ,

47. Find the function given that the slope of the tangent line to
the graph of at any point is and the
graph of passes through the point .

48. Find the function given that it satisfies 
and its graph has a horizontal tangent line at the point .

In Exercises 49–50, identify which of the two graphs 1 and 2 is
the graph of the function and the graph of its antiderivative.
Give a reason for your choice.

49.

0

1

�1

�2

�3

x1 2 3 4 5 6

y

1

2

f

(0, 1)
f �(x) � 36x2 � 24xf

(1, 2)f
x2 � 2x � 3(x, f(x))f

f

f ¿ap
2
b � 2f ap

2
b � 1f �(t) � 2 sin t � 3 cos t

f ¿(4) � 3f(4) � 1f �(t) � t �3>2
f ¿(1) �

1

2
f(1) � 1f �(x) �

1

x3

f ¿(�1) � 2f(�1) �
1

2
f �(x) � 6x2 � 6x � 2

f ¿(0) � 1f(0) � 5f �(x) � 2x � 1

f ¿(1) � 2f(1) � 4f �(x) � 6

f ap
4
b � 12f ¿(t) � sec2 t � 2 cos t

f(0) � 0f ¿(x) � x � sin x

f(1) � 2f ¿(x) � 1 �
1

x2

f(4) � 2f ¿(x) �
1

1x

f(2) � 4f ¿(x) � 3x2 � 6x

f(1) � 3f ¿(x) � 2x � 1

f

� (1 � sec2 x) dx

� (2x � sin x) dx

4.1 EXERCISES

Videos for selected exercises are available online at www.academic.cengage.com/login.V
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50.

In Exercises 51–56, find the position function of a particle mov-
ing along a coordinate line that satisfies the given condition(s).

51. ,

52. ,

53. , ,

54. , ,

55. , ,

56. , ,

57. Velocity of a Maglev The velocity of a maglev is
(ft/sec), where . At the

maglev is at the station. Find the function that gives the
position of the maglev at time assuming that the motion
takes place along a straight stretch of the track.

58. A ball is thrown straight up from a height of 3 ft with an
initial velocity of 40 ft/sec. How high will the ball go? 
(Take ft/sec2.)

59. Ballast Dropped from a Balloon A ballast is dropped from a sta-
tionary hot-air balloon that is at an altitude of 400 ft. Find
(a) an expression for the altitude of the ballast after sec-
onds, (b) the time when it strikes the ground, and (c) its
velocity when it strikes the ground. (Disregard air resistance
and take ft/sec2.)

ballast

t � 32

t

t � 32

t

t � 00 � t � 120√(t) � 0.2t � 3

√(0) � �4s(p) � pa(t) � 6 sin t

 √(0) � 0s(0) � 3a(t) � sin t � 2 cos t

√(1) � 4 s(1) �
7

6
a(t) � �6t 2 � 4t � 8

√(0) � 4s(0) � �2a(t) � 6t � 4

s(0) � �2√(t) � 2 sin t � 3 cos t

s(1) � �1√(t) � 6t 2 � 4t � 1

0

5

10

�5

x0.5 1�1�2

y

1

2

60. Ballast Dropped from a Balloon Refer to Exercise 59. Suppose
that the hot-air balloon is rising vertically with a velocity of
16 ft/sec at an altitude of 128 ft when the ballast is dropped.
How long will it take for the ballast to strike the ground?
What will its impact velocity be?

61. A particle located at the point on a coordinate line is
given an initial velocity of ft/sec and a constant accelera-
tion of ft/sec2. Show that its position at any time is

62. Refer to Exercise 61. Show that the velocity of the particle
at any time satisfies

63. Flight of a Model Rocket A model rocket is fired vertically
upward from a height of ft above the ground with a
velocity of ft/sec. If air resistance is negligible, show that
its height (in feet) after seconds is given by

(Take ft/sec2.)

64. Kaitlyn drops a stone into a well. Approximately 4.22 sec
later, she hears the splash made by the impact of the stone
in the water. How deep is the well? (The speed of sound is
approximately 1128 ft/sec.)

65. Jumping While on Mars The acceleration due to gravity on
Mars is approximately 3.72 m/sec2. If an astronaut jumps
straight up on the surface of the planet with an initial veloc-
ity of 4 m/sec, what height will she attain? Find the compa-
rable height that she would jump on the earth. (The constant
of acceleration due to gravity on the earth is 9.8 m/sec2.)

66. Acceleration of a Car A car traveling along a straight road at
66 ft/sec accelerated to a speed of 88 ft/sec over a distance
of 440 ft. What was the acceleration of the car, assuming
that the acceleration was constant?

67. Stopping Distance of a Car To what constant deceleration
would a car moving along a straight road be subjected if
the car were brought to rest from a speed of 88 ft/sec in 
9 sec? What would the stopping distance be?

68. Acceleration of a Car A car traveling along a straight road at a
constant speed was subjected to a constant acceleration of 
12 ft/sec2. It reached a speed of 60 mph after traveling 242 ft.
What was the speed of the car just prior to the acceleration?

69. Crossing the Finish Line After rounding the final turn in the 
bell lap, two runners emerged ahead of the pack. When run-
ner is 200 ft from the finish line, his speed is 22 ft/sec, a
speed that he maintains until he crosses the line. At that
instant of time, runner , who is 20 ft behind runner and
running at a speed of 20 ft/sec, begins to spurt. Assuming
that runner sprints with a constant acceleration, what min-
imum acceleration will enable him to cross the finish line
ahead of runner ?A

B

AB

A

t � 32

s(t) � �16t 2 � √0t � s0

t
√0

s0

√2 � √2
0 � 2a(x � x0)

t
√

x � x0 � √0t �
1

2
 at 2

ta
√0

x � x0
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70. Velocity of a Car Two cars, side by side, start from rest and
travel along a straight road. The velocity of car is given
by , and the velocity of car is given by .
The graphs of and are shown in the following figure. Are
the cars still side by side after sec? If not, which car is
ahead of the other? Justify your answer.

71. Bank Deposits Madison Finance opened two branches on 
September 1 . Branch is located in an established
industrial park, and branch is located in a fast-growing
new development. The net rates at which money was
deposited into branch and branch in the first 180 busi-
ness days are given by the graphs of and , respectively.
Which branch has a larger amount on deposit at the end of
180 business days? Justify your answer.

72. Collision of Two Particles Two points and are located 100 ft
apart on a straight line. A particle moves from toward 
with an initial velocity of 10 ft/sec and an acceleration of 

ft/sec2. Simultaneously, a particle moves from toward 
with an initial velocity of 5 ft/sec and an acceleration 

of ft/sec2. When will the two particles collide? At what
distance from will the collision take place?

73. Revenue The monthly marginal revenue of Commuter Air
Service is dollars per passenger,
where stands for the fare per passenger. Find the monthly
total revenue function if .R(0) � 0R

x
R¿(x) � 10,000 � 200x

A

3
4

A
B1

2

BA
BA

R
at

e 
of

 d
ep

os
it

(t
ho

us
an

ds
 o

f 
do

lla
rs

/d
ay

)

t (days)180

y �
 f(

t)

y � g(t)

y

tf
BA

B
A(t � 0)

0 t (sec)T

√ � f(t)

√ � g(t)

√ (ft/sec)

T
tf

√ � t(t)B√ � f(t)
A

74. Total Cost Function The weekly marginal cost of the Electra
Electronics Company in producing its Zephyr laser jet 
printers is given by

dollars per printer, where stands for the number of printers
manufactured. Find the weekly total cost function if the
fixed cost of the company is $120,000 per week.

75. Risk of Down Syndrome The rate at which the risk of Down
syndrome is changing is approximated by the function

where is measured in percent of all births per year and
is the maternal age at delivery.

a. Find a function giving the risk as a percentage of all
births when the maternal age at delivery is years, given
that the risk of Down syndrome at age 30 is 0.14% of all
births.

b. What is the risk of Down syndrome when the maternal
age at delivery is 40 years? 45 years?

Source: New England Journal of Medicine.

76. Online Ad Sales In a study conducted in 2004, it was found
that the share of online advertisement worldwide, as a per-
centage of the total ad market, was expected to grow at the
rate of

percent per year at time (in years), with correspond-
ing to the beginning of 2000. The online ad market at the
beginning of 2000 was 2.9% of the total ad market.
a. What is the projected online ad market share at any time ?
b. What was the projected online ad market share at the

beginning of 2006?
Source: Jupiter Media Metrix, Inc.

77. Ozone Pollution The rate of change of the level of ozone, an
invisible gas that is an irritant and impairs breathing, present
in the atmosphere on a certain May day in the city of River-
side is given by

(measured in pollutant standard index per hour). Here, is
measured in hours, with corresponding to 7 A.M. Find
the ozone level at any time , assuming that at 7 A.M. it
is 34.
Source: The Los Angeles Times.

tA(t)
t � 0

t

0 � t � 11R(t) � 3.2922t 2 � 0.366t 3

t

t � 0t

0 � t � 6R(t) � �0.033t 2 � 0.3428t � 0.07

x
f

x
r(x)

20 � x � 45r(x) � 0.004641x2 � 0.3012x � 4.9

C
x

C¿(x) � 0.000006x2 � 0.04x � 1000



78. U.S. Sales of Organic Milk The sales of organic milk from 1999
through 2004 grew at the rate of approximately

million dollars per year, where is measured in years with
corresponding to 1999. Sales of organic milk in 1999

totaled $108 million.
a. Find an expression giving the total sales of organic milk

by year , where .
b. According to this model, what were the total sales of

organic milk in 2004?
Source: Resource, Inc.

79. Water Level of a Tank A tank has a constant cross-sectional
area of 50 ft2 and an orifice of constant cross-sectional area
of ft2 located at the bottom of the tank. If the tank is filled
with water to a height of ft and allowed to drain, then the
height of the water decreases at a rate that is described by
the equation

Find an expression for the height of the water at any time 
if its height initially is 20 ft.

80. The Elastic Curve of a Beam A horizontal, uniform beam of
length , supported at its ends, bends under its own weight,

per unit length. The elastic curve of the beam (the shape
that it assumes) has equation satisfying

where and are positive constants that depend on the
material and the cross section of the beam.

IE

EIy � �
wx2

2
�

wLx

2

y � f(x)
w

L

h

t

0 � t � 50120
dh

dt
� �

1

25
 a120 �

t

50
b

h

1
2

0 � t � 5t

t � 0
t

0 � t � 5

R(t) � 3t 3 � 17.9445t 2 � 28.7222t � 26.632

a. Find an equation of the elastic curve.
Hint: at and at .

b. Show that the maximum deflection of the beam occurs at
.

In Exercises 81–86, determine whether the statement is true or
false. If it is true, explain why it is true. If it is false, explain why
or give an example to show why it is false.

81.

82. , where and 

83. , where 

84. If and are antiderivatives of and , respectively, then

85. If is a rational function, then

86. ,

where and F¿ � fG¿ � F

� c� f(x) dxd  dx � G(x) � C1x � C2

�R(x) dx �
�P(x) dx

�Q(x) dx

R(x) � P(x)>Q(x)

� [2f(x) � 3t(x)] dx � 2F(x) � 3G(x) � C

tfGF

F¿ � f� x f(x) dx � x� f(x) dx � x F(x) � C

G¿ � tF¿ � f� f(x)t(x) dx � F(x)G(x) � C

� f ¿(x) dx � f(x) � C

x � L>2
x � Lx � 0y � 0

(a) The distorted beam

(b) The elastic curve in the xy-plane (The positive
      direction of the y-axis is downward.)

x

y

A B

L0
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4.2 Integration by Substitution

In this section we introduce a technique of integration that will enable us to integrate
a large class of functions. This method of integration, like the integration formulas of
Section 4.1, is obtained by reversing a differentiation rule—in this case the Chain Rule.

How the Method of Substitution Works
Consider the indefinite integral

(1)

You can convince yourself that this integral cannot be evaluated as it stands by using
any of the integration formulas that we are now familiar with.

Let’s try to simplify the indefinite integral (1) by making a change of variable from
to a new variable as follows. Write

with differential

If we formally substitute these quantities into the indefinite integral (1), we obtain

�2x2x2 � 3 dx � �2x2 � 3 (2x dx) � �1u du

du � 2x dx

u � x2 � 3

ux

�2x2x2 � 3 dx

Now the integral is in a form that is easily integrated by using Formula (2) of Sec-
tion 4.1. Thus,

Finally, replacing by , we see that

To verify that this solution is correct, we compute

Use the Chain Rule.

which is the integrand. This proves the assertion.

The Technique of Integration by Substitution
As was shown in the preceding example, it is sometimes possible to transform one
indefinite integral into another that is easier to integrate by using a suitable change of
variable. Now, by letting and , so that , we cant¿(x) � 2xt(x) � x2 � 3f(x) � 1x

 � 2x2x2 � 3

 
d

dx
 c2

3
 (x2 � 3)3>2 � Cd �

2

3
�

3

2
 (x2 � 3)1>2(2x)

�2x2x2 � 3 dx �
2

3
 (x2 � 3)3>2 � C

x2 � 3u

�1u du � �u1>2 du �
2

3
 u3>2 � C

↑⏐⏐
Rewriting

↑⏐⏐

eu � x2 � 3

du � 2x dx
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see that the indefinite integral (1) is a special case of an indefinite integral of the 
form

(2)

Let’s show that the integral (2) can always be rewritten in the form

(3)

where is differentiable on an interval and is continuous on the range of .
Suppose that is an antiderivative of . By the Chain Rule we have

or, equivalently,

Writing and making the substitution , we have

as was to be shown.
Before looking at an example, let’s summarize the steps used in this method.

� f(t(x))t¿(x) dx � F(u) � C � �F¿(u) du � � f(u) du

u � t(x)F¿ � f

�F¿(t(x))t¿(x) dx � F(t(x)) � C

d

dx
 [F(t(x))] � F¿(t(x))t¿(x)

fF
uf(a, b)u

� f(u) du

� f(t(x))t¿(x) dx

Integration by Substitution: Evaluating 

Step 1 Let , where is part of the integrand, usually, the “inside
function” of the composite function .

Step 2 Compute .
Step 3 Use the substitution and to transform the inte-

gral into one that involves only : .
Step 4 Find the resulting integral.
Step 5 Replace by so that the final solution is in terms of .xt(x)u

� f(u) duu
du � t¿(x) dxu � t(x)

du � t¿(x) dx
f(t(x))

t(x)u � t(x)

� f(g(x))g�(x) dx

EXAMPLE 1 Find .

Solution
Step 1 If you examine the integrand, you will see that it involves the composite

function , with “inside function” . So let us choose
.

Step 2 We compute .
Step 3 Making the substitution and or , we

obtain

� x2(x3 � 2)4 dx � � (x3 � 2)4 x2 dx � �u4 a1

3
 dub �

1

3
 �u4 du

x2dx � 1
3 dudu � 3x2 dxu � x3 � 2

du � 3x2 dx
u � x3 � 2

t(x) � x3 � 2(x3 � 2)4

�x2(x3 � 2)4 dx

↑⏐⏐
Rewriting

an integral involving only the variable .u
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Step 4 We find

Step 5 Replacing by , we find

� x2(x3 � 2)4 dx �
1

15
 (x3 � 2)5 � C

x3 � 2u

1

3
 �u4 du �

1

3
 au5

5
b � C �

1

15
 u5 � C

EXAMPLE 2 Find .

Solution First rewrite the integral in the form

Step 1 In the composite function , the “inside function” is
. So let .

Step 2 We find .
Step 3 Substituting and or into the integral yields

an integral involving only the variable .
Step 4 We integrate

Step 5 Replacing by gives

� dx

(2x � 4)3
� �

1

4(2x � 4)2
� C

2x � 4u

1

2
 �u�3 du �

1

2
 au�2

�2
b � C � �

1

4u2
� C

u

� (2x � 4)�3 dx � �u�3 a1

2
 dub �

1

2
 �u�3 du

dx � 1
2 dudu � 2 dxu � 2x � 4

du � 2 dx
u � 2x � 4t(x) � 2x � 4

(2x � 4)�3

� (2x � 4)�3 dx

� dx

(2x � 4)3

EXAMPLE 3 Find .

Solution First, rewrite the integral in the form

Step 1 Examining the integrand, we spot the composite function , which
has the “inside function” . So let .

Step 2 We find .
Step 3 We use the substitution and or . Because of

the factor in the integrand, we need to solve for , obtain-
ing . Therefore,

an integral involving only the variable .u

 �
1

4
 � (u3>2 � 3u1>2) du

 � (x � 1)(2x � 1)1>2 dx � � a1

2
 u �

1

2
� 1bu1>2 a1

2
 dub �

1

2
 � a1

2
 u3>2 �

3

2
 u1>2b  du

x � 1
2 u � 1

2

xu � 2x � 1x � 1
dx � 1

2 dudu � 2 dxu � 2x � 1
du � 2 dx

u � 2x � 1t(x) � 2x � 1
(2x � 1)1>2

� (x � 1)(2x � 1)1>2 dx

� (x � 1)12x � 1 dx
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EXAMPLE 4 Find .

Solution Let , so that or . Substituting these quantities into
the integral gives

� (sin u) 
1

5
 du �

1

5
 � sin u du � �

1

5
cos u � C � �

1

5
cos 5x � C

dx � 1
5 dudu � 5 dxu � 5x

�sin 5x dx

EXAMPLE 5 Find .

Solution Let . (Here, is the “inside function” of the composite func-
tion .) Then

or

Substituting these quantities into the integral yields

� (cos u) 2 du � 2� cos u du � 2 sin u � C � 2 sin1x � C

dx

1x
� 2 dudu �

1

2
 x�1>2 dx �

dx

21x

y � cos1x
1xu � 1x � x1>2

� cos1x

1x
 dx

Step 4 Integrating, we find

Step 5 Replacing by , we have

Now that we are familiar with this procedure, we will drop the practice of label-
ing the steps as we work through the next several examples.

� (x � 1)12x � 1 dx �
1

10
 (2x � 1)5>2 �

1

2
 (2x � 1)3>2 � C

2x � 1u

 �
1

10
 u5>2 �

1

2
 u3>2 � C

 
1

4
 � (u3>2 � 3u1>2) du �

1

4
 a2

5
 u5>2 � 2u3>2b � C

EXAMPLE 6 Find .

Solution The integrand contains the composite function . So let’s
put . Then , so

� sin3 x cos x dx � �u3du �
1

4
 u4 � C �

1

4
sin4 x � C

du � cos x dxu � sin x
y � sin3 x � (sin x)3

�sin3 x cos x dx

EXAMPLE 7 Solve the initial value problem , .

Solution We have

f(x) � � f ¿(x) dx � � x3(x2 � 1)1>2 dx

f(0) � 0f ¿(x) � x3(x2 � 1)1>2
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EXAMPLE 8 Flight of a Projectile Suppose that a projectile is launched vertically
upward from the earth’s surface with an initial velocity equal to the escape velocity.
(The escape velocity is the velocity the projectile must attain to escape from the earth’s
gravitational pull.) Then, if we neglect the gravitational influence of the sun and other
planets, the rotation of the earth, and air resistance, it can be shown that the differen-
tial equation governing the motion of the projectile is

where is the time in seconds, is the distance of the projectile from the surface of
the earth, is the radius of the earth (approximately 4000 mi), and is the gravita-tR

xt

dt

dx
�
1x � R

R12t

tional constant of acceleration (approximately 32 ft/sec2). (See Figure 1.) Find the time
it takes for the projectile to travel a distance of miles. How long would it take the
projectile to cover 100,000 mi?

Solution Integrating the given equation with respect to , we obtain

t � � dt

dx
 dx � � 1x � R

R12t

 dx �
1

R12t

 � (x � R)1>2 dx

x

x
FIGURE 1
The projectile is launched vertically
upward from the earth’s surface.

To find this integral, we let , so that or . Before
making the substitution, however, let’s rewrite the integral

Now there is no difficulty in replacing and with expressions involv-
ing . But how about the factor in the integrand? Fortunately, from the choice of

, we are able to find . So, proceeding with the substitution, we
have

Finally, using the initial condition gives

or

Therefore,

f(x) �
1

5
 (x2 � 1)5>2 �

1

3
 (x2 � 1)3>2 �

2

15

C �
2

15
f(0) �

1

5
 (1) �

1

3
 (1) � C � 0

f(0) � 0

 �
1

5
 (x2 � 1)5>2 �

1

3
 (x2 � 1)3>2 � C

 �
1

2
 a2

5
 u5>2 �

2

3
 u3>2b � C

 � � (u � 1)u1>2 a1

2
 dub �

1

2
 � (u3>2 � u1>2) du

 f(x) � � x3(x2 � 1)1>2 dx � � x2(x2 � 1)1>2(x dx)

x2 � u � 1u � x2 � 1
x2u

x dx(x2 � 1)1>2
� x3(x2 � 1)1>2 dx � � x2(x2 � 1)1>2 (x dx)

x dx � 1
2 dudu � 2x dxu � x2 � 1

R

x



Let , so that . Then

where is the constant of integration. To determine the value of , we use the condi-
tion that when . This gives

or

Therefore,

and this is the time it takes for the projectile to cover a distance . Finally, to find the
time it takes for the projectile to travel 100,000 mi, we substitute

(ft)

and

(ft)

into the expression for , obtaining

So it takes approximately 50,000 sec, or 14 hr, to cover 100,000 mi.

t �
2

3(21,120,000)164
 (549,120,0003>2 � 21,120,0003>2) � 50,389.2

t

x � 100,000(5280) � 528,000,000

R � 4000(5280) � 21,120,000

x

t �
2(x � R)3>2

3R12t

�
2R3>2

3R12t

�
2

3R12t

 [(x � R)3>2 � R3>2]

C � �
2R3>2

3R12t

0 �
2R3>2

3R12t

� C

x � 0t � 0
CC

t �
1

R12t

 �u1>2 du �
2u3>2

3R12t

� C �
2(x � R)3>2

3R12t

� C

du � dxu � x � R
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1. Explain how the method of integration by substitution works
by showing the steps that are used to find .� f(t(x))t¿(x) dx

2. Explain why the method of substitution works for the integral
. Does it work for ?� x cos(x3 � 1) dx� x2 cos(x3 � 1) dx

4.2 CONCEPT QUESTIONS

Videos for selected exercises are available online at www.academic.cengage.com/login.V

In Exercises 1–6, find the integral using the indicated substitution.

1. ,

2. ,

3. ,

4. ,

5. ,

6. , u � cos x� sin x

cos2 x
 dx

u � tan x� tan3 x sec2 x dx

 u � 5x� cos 5x dx

u � x2 � 1� x

2x2 � 1
 dx

u � x3 � 2� x22x3 � 2 dx

u � 2x � 3� (2x � 3)5 dx

In Exercises 7–44, find the indefinite integral.

7. 8.

9. 10.

11. 12.

13.

14.

15. 16. �2x23 1 � 4x2 dx�11 � 2x dx

� (x2 � 1)(x3 � 3x)3 dx

� (x2 � x � 1)3(2x � 1) dx

� x2(2x3 � 1)�4 dx�3x(2x2 � 3)5 dx

� (1 � 3x)1.4 dx� (2x � 4)3>5 dx

� x2(2x3 � 1)4 dx�2x(x2 � 1)4 dx

4.2 EXERCISES

www.academic.cengage.com/login
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17. 18.

19. 20.

21. 22.

23. 24.

25. 26.

27. 28.

29. 30.

31. 32.

33. 34.

35. 36.

37. 38.

39. 40.

41.

42.

43. � sin2 px dx

� sec2(x � 1)11 � tan(x � 1) dx

� sec x tan x

(sec x � 1)2 dx

� (csc2 x)(cot x � 1)3 dx� cos 2t

12 � sin 2t
 dt

� sin1x

1x
 dx� csc2 3x

cot3 3x
 dx

� sin x

(1 � cos x)3 dx� sin u�1

u2  du

�1sin u cos u du� tan 3x sec 3x dx

� cot3 x csc2 x dx� sin px cos px dx

� x2 sec2 x3 dx� x cos px2 dx

� x sin x2 dx�2 cos
x

2
 dx

� (2x � 3)1x � 1 dx� x5

21 � x2
 dx

� 2x2 � 1

23 2x3 � 3x � 1
 dx� x

1x � 1
 dx

�21 � u�1

u2  du� 4u

24 � u2
 du

� x2 � 2
3

(x3 � 2x)2 dx� x

(2x2 � 3)3 dx

� x�1>32x2>3 � 1 dx� s3(s4 � 1)3>2 ds 50.

Hint: Let .

51. Find the function given that its derivative isf

x � 1>t
�2a2 � x2

x4  dx

Hint:

44.

In Exercises 45–50, find the indefinite integral.

45. 46.

47. 48.

49.

Hint: First rationalize the denominator of the integrand.

� dx

1x � 1x � 1

� x � 1

(1x � 1)3>2 dx� x3(x2 � 1)5>2 dx

� x2(1 � x)7 dx� x1x � 4 dx

� 1 � sin x

cos2 x
 dx

sin2 u �
1 � cos 2u

2

and that its graph passes through 
the point .

52. The slope of the tangent line at any point on the graph of 

is , and the graph of passes through the pointf
x

(2x2 � 1)3>2

f

(0, 1)
f ¿(x) � x21 � x2

. Find .

53. Rectilinear Motion A body moves along a coordinate line in
such a way that its velocity at any time , where ,
is given by

Find its position function if the body is initially located at
the origin.

54. Population Growth The population of a certain city is projected
to grow at the rate of

people per year years from now. The current population is
60,000. What will be the population 5 years from now?

55. Life Expectancy of a Female Suppose that in a certain country
the life expectancy at birth of a female is changing at the
rate of

years per year. Here, is measured in years, with cor-
responding to the beginning of 1900. Find an expression 
giving the life expectancy at birth (in years) of a female in
that country if the life expectancy at the beginning of 1900
is 50.02 years. What is the life expectancy at birth of a
female born at the beginning of 2000 in that country?

56. Revenue The weekly marginal revenue of a company selling
units (in lots of 100) of a portable hair dryer is given by

dollars per lot. Find the weekly total revenue function.
Hint: .

57. Respiratory Cycle Suppose that the rate at which air is inhaled
by a person during respiration is

liters per second, at time . Find , the volume of inhaled
air in the lungs at any time . Assume that .V(0) � 0t

V(t)t

r(t) �
3

5
sin
pt

2

R(0) � 0

R¿(x) �
225 � 10x

1225 � 5x

x

t(t)
t � 0t

t¿(t) �
5.45218

(1 � 1.09t)0.9

t

0 � t � 5r(t) � 400a1 �
2t

224 � t 2
b

√(t) � t216 � t 2

0 � t � 4t

f12, �1
6 2
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58. Revenue The total revenue of McMenamy’s Fish Shanty at 
a popular summer resort is changing at the rate of approxi-
mately

thousand dollars per week, where is measured in weeks,
with corresponding to the beginning of June. Find the
total revenue of the Shanty at the end of weeks after its
opening on June 1.

59. Simple Harmonic Motion The acceleration function of a body
moving along a coordinate line is

Find its velocity and position functions at any time if the
body is located at the origin and has an initial velocity of 

m/sec.

60. Special Theory of Relativity According to Einstein’s special the-
ory of relativity, the mass of a particle is given by

m �
m0

B1 �
√2

c2

3
2

t

t 	 0a(t) � �4 cos 2t � 3 sin 2t

tR
t � 0

t

0 � t � 12R¿(t) � 2 a5 � 4 cos 
pt

6
b

where is the rest mass of the particle, is its velocity,
and is the speed of light. Suppose that a particle starts
from rest at and moves along a straight line under the
action of a constant force . Then, according to Newton’s
second law of motion, the equation of motion is

Find the velocity and position functions of the particle.
What happens to the velocity of the particle as time goes
by?

In Exercises 61 and 62, determine whether the statement is true
or false. If it is true, explain why it is true. If it is false, explain
why or give an example to show why it is false.

61. If is continuous, then , where
.

62. If is continuous, then .� f(ax � b) dx � � f(x) dxf

u � x2
� x f(x2) dx � 1

2 � f(u) duf

F � m0 
d

dt
 °

√

B1 �
√2

c2

¢

F
t � 0

c
√m0

4.3 Area

An Intuitive Look
Consider a car moving on a straight road with a velocity function given by

where is measured in seconds and in feet per second. Since , it also gives
the speed of the car over this time interval. The distance traveled by the car between

and is

or 176 ft. If you examine the graph of shown in Figure 1, you will see that this dis-
tance is just the area of the rectangular region bounded above by the graph of , below
by the -axis, and to the left and right by the vertical lines and , respec-
tively.

Suppose that the same car moves along a straight road but this time with a veloc-
ity function that is positive but not necessarily constant over an interval of time. What
is the distance traveled by the car between and ? We might be tempted to
conjecture that it is given by the “area” of the region bounded above by the graph of
, below by the -axis, and to the left and right by the vertical lines and ,

respectively (see Figure 2). Later, we will show that this is indeed the case.
This example raises two questions:

1. What do we mean by the “area” of a region such as the one shown in Figure 2?
2. How do we find the area of such a region?

t � 5t � 1t√

t � 5t � 1
√

t � 5t � 1t
√

√

constant speed � time elapsed(44)(5 � 1)

t � 5t � 1

√(t) 
 0√(t)t

0 � t � 10√(t) � 44

FIGURE 1
The distance traveled by the car can be
represented by the area of the rectangular
region.

0 1 2 3 4 5

√(t) � 44

t � 1 t � 5

√ (ft/sec)

t (sec)

0 1 2 3 4 5

√  � √(t)

t � 1 t � 5

√ (ft/sec)

t (sec)

FIGURE 2
The distance covered by the car is given
by the “area” of the shaded region.
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The Area Problem
Here, we have touched upon the second fundamental problem in calculus: How do we
find the area of the region bounded above by the graph of a nonnegative function ,
below by the -axis, and to the left and right by the vertical lines and , as
shown in Figure 3? We refer to the area of this region as the area under the graph 
of on the interval .[a, b]f

x � bx � ax
f

FIGURE 3
The shaded region is the area 
under the graph of on .[a, b]f

Defining the Area of the Region Under the Graph of a Function
When we defined the slope of the tangent line to the graph of a function at a point on
the graph, we first approximated it with the slopes of secant lines (quantities that we
could compute). We then took the limit of these approximations to give us the slope
of the tangent line. We will now adopt a parallel approach to define the area of the
region under the graph of a function.

The idea here is to approximate the area of a region by using the sums of the areas
of rectangles (quantities that we can compute).* We can then find the desired area by
taking the limit of these sums. Let’s begin by looking at a specific example.

EXAMPLE 1 Consider the region bounded above by the parabola , below
by the -axis, and to the left and right by the vertical lines and , respec-
tively (see Figure 4). As you can see, the area of the region can be approximated
by the area of the rectangle with base lying on the interval and height given
by the value of evaluated at the midpoint of . Thus,

A � A1 � 1 � f a1

2
b � (1)a1

2
b2

�
1

4

[0, 1]f(x) � x2
[0, 1]R1A1

SA
x � 1x � 0x

f(x) � x2S

*Until a formal definition of area is given, the term area will refer to our intuitive notion of area.

FIGURE 4
The area of the region in part (a) 

is approximated by the area of 
the rectangle in part (b).R1

S

0 a b

y � f(x)

x � a x � b

y

x

(a)

y � x2

0 1

1

y

S

(b)

y � x2

f 1
2

1
2

0 1

R1
( )

x x

y
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We have used the midpoint of the interval to compute the height of the approx-
imating rectangle because it seems to be a logical choice. But you should convince
yourself that any other point in the interval, including the endpoints, would also serve
our purpose. Of course, the approximation obtained will be different depending on your
choice.

Can we do better? Let’s divide the interval into two subintervals and 
, each of (equal) length . Figure 5a shows the region expressed as the union of

two nonoverlapping subregions and with bases lying on the subintervals and
, respectively. Figure 5b shows the rectangle with base lying on and height

, the value of evaluated at the midpoint of , and the rectangle with baseR2C0, 12 Dff 114 2 C0, 12 DR1C12, 1 D
C0, 12 DS2S1

S1
2C12, 1 D

C0, 12 D[0, 1]

[0, 1]

FIGURE 5
The subregions and in 

part (a) are approximated by the
rectangles and in part (b).R2R1

S2S1

The resulting subintervals are

, , , and

Figure 6a shows the region expressed as the union of four nonoverlapping subregions
, , , and with bases lying on these subintervals. The midpoints of the subin-

tervals are

, , , and

respectively. The rectangles , , , and with bases lying on these subintervals
and having heights evaluated at their respective midpoints are shown in Figure 6b.

R4R3R2R1

c4 �
7

8
 c3 �

5

8
c2 �

3

8
c1 �

1

8

S4S3S2S1

S

C34, 1 DC12, 34 DC14, 12 DC0, 14 D

lying on and height , where is the midpoint of . If we approxi-
mate the area of by the area of and the area of by the area of and denote
the sum of the areas of the two rectangles by , we obtain

or 0.3125. Continuing with this process, we divide the interval into four subin-
tervals of equal length using the five points

, , , , and x4 � 1x3 �
3

4
x2 �

1

2
x1 �

1

4
x0 � 0

1
4

[0, 1]

 �
1

2
 a 1

16
�

9

16
b �

5

16

 �
1

2
 a1

4
b2

�
1

2
 a3

4
b2

 A � A2 �
1

2
 f a1

4
b �

1

2
 f a3

4
b

A2

R2S2R1S1

C12, 1 Dx � 3
4f 134 2C12, 1 D

(a)

y � x2

0 1

1

y

x

S2

S1

(b)

y � x2

f 3
4

1
2

1
4

3
4

1
2

0 1

1
y

x

R2
R1

( )

f 1
4( )
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Approximating the area of the subregion by the area of the rectangle , where
, and letting denote the sum of the areas of the four rectangles, we obtain

yet another approximation of the area of :

or 0.328125.
We can keep going. Figure 7a shows what happens if we use eight rectangles to

approximate the area of the region , and Figure 7b shows the situation if sixteen rec-
tangles are used.

S

 �
1

4
 a 1

64
�

9

64
�

25

64
�

49

64
b �

21

64

 �
1

4
 a1

8
b2

�
1

4
 a3

8
b2

�
1

4
 a5

8
b2

�
1

4
 a7

8
b2

 A � A4 �
1

4
 f a1

8
b �

1

4
 f a3

8
b �

1

4
 f a5

8
b �

1

4
 f a7

8
b

SA
A41 � i � 4

RiSi

FIGURE 6
The area of subregion in part (a) is approximated by the area of rectangle for .1 � i � 4RiSi

FIGURE 7
As the number of rectangles used increases, the approximation of the area of the region seems
to improve.

S

SONYA KOVALEVSKAYA
(1850–1891)

Karl Weierstrass’s (page 657) favorite stu-
dent, Sonya Kovalevskaya was born Janu-
ary 15, 1850, in Moscow. A room of her fam-
ily’s estate was wallpapered with sheets of
Mikhailo Ostrogradsky’s lithographed lec-
tures on differential and integral calculus,
and as a child Kovalevskaya spent hours
trying to decipher the formulas. At the age
of 15 she astonished her tutor with how
easily she understood calculus and its
foundation. Kovalevskaya desperately
wanted to attend a university and secure a
degree in mathematics, but her father
would not allow it, so she entered a mar-
riage of convenience to a man who allowed
her to travel and continue her studies.
After three semesters at the University of
Heidelberg, Germany, she traveled to Berlin
in search of the renowned mathematician
Weierstrass. Weierstrass agreed to teach
Kovalevskaya privately, as the university
would not allow women to attend his lec-
tures. By 1874 she had written three
degree-worthy dissertations, and Weier-
strass submitted the most profound of
these to the University of Göttingen.
Kovalevskaya was awarded her doctorial
summa cum laude in 1874, becoming the
first woman to earn a doctorate in mathe-
matics. Unfortunately, as a woman, she
could not find a university position until
1884. Kovalevskaya died of influenza in 1891
at the height of her mathematical career.

Historical Biography

SP
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c.

(a)

y � x2 y � x2

0 1

1 1
y

x

S1 S2

S3

S4

R4

R3R2
R1

(b)

1
2

1
4

3
4

5
8

3
8

1
8

7
8

1

y

x

f 7
8( )

f 5
8( )

f 3
8( )

f 1
8( )

(a) n � 8

y � x2

0 1

1

y

x

(b) n � 16

y � x2

0 1

1

y

x

With the aid of a computer we can find the approximations of the area of the
region using approximating rectangles. In the following table, denotes the approx-AnnS

A
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imation of when rectangles are used. The results include approximations obtained
earlier and are rounded off to seven decimal places.(n � 1, 2, 4)

nA

n An

1

2

4

8

16

50

100

500

1000

0.25

0.3125

0.328125

0.3320313

0.3330078

0.3333000

0.3333250

0.3333330

0.3333333

These results seem to suggest that approaches as gets larger and larger; that
is, . This in turn suggests that we could take the area of the region to
be .

Sigma Notation
Before confirming this result, we will digress a little to introduce a notation that will
provide us with a shorthand method for writing sums involving a large number of terms.
The notation uses the uppercase Greek letter sigma and is accordingly called sigma
notation.

�

1
3

Slimn→� An � 1
3

n1
3An

DEFINITION Sigma Notation

The sum of the terms , , , , is abbreviated . Thus,

The variable is called the index of summation, the term is called the th
term of the sum, and the numbers and 1 are called the upper and lower 
limits of summation, respectively.

n
kakk

a
n

k�1
ak � a1 � a2 � a3 � p � ak � p � an

a
n

k�1
akanpa3a2a1n

The sum is read “the sum of where runs from 1 to .”nkak�n
k�1 ak

EXAMPLE 2 Write each of the following sums in expanded form:

a. b. c. d. e.

Solution

a. Here, , so , , , , and .a5 � 5a4 � 4a3 � 3a2 � 2a1 � 1ak � ka
5

k�1
k � 1 � 2 � 3 � 4 � 5

a
10

k�1
sinakp

4
ba

15

k�1
(�1)kk3

a
20

k�1
 

1

(k � 1)2a
10

k�1
k2

a
5

k�1
k
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b. Here, , so , , .

c. Here, .

d.

e.

So far, we have used as the index of summation, but any letter will do. For exam-
ple, each of the following

, , and

represents the sum . Sometimes it is more convenient to use a
lower limit of summation other than 1. For example, we can write

which is equivalent to

Also, if the upper and lower indices of summation are the same, then the sum consists
of just one term. For example,

runs from 1 to 1.

In the next example, keep in mind that the upper limit of summation is constant
with respect to the summation.

n

ka
1

k�1

1

k
�

1

1
� 1

a
5

k�1
(2k � 3) � 5 � 7 � 9 � 11 � 13

a
6

k�2
(2k � 1) � 5 � 7 � 9 � 11 � 13

a1 � a2 � a3 � a4 � a5

a
5

j�1
aja

5

i�1
aia

5

k�1
ak

k

a
10

k�1
sinakp

4
b � sin

p

4
� sin

2p

4
� sin

3p

4
 � p � sin

10p

4

 � �1 � 23 � 33 � p � 153

 a
15

k�1
(�1)kk3 � (�1)113 � (�1)223 � (�1)333 � p � (�1)15153

ak �
1

(k � 1)2a
20

k�1
 

1

(k � 1)2
�

1

22
�

1

32
�

1

42
 � p � 

1

212

pa2 � 22a1 � 12ak � k2
a
10

k�1
k2 � 12 � 22 � 32 � p � 102

EXAMPLE 3 Write each of the following sums in expanded form:

a. b. c.

Solution

a.

 �
1
n

�
3
n

�
5
n

 � p � 
2n � 1

n

 a
n

k�1

1
n

 (2k � 1) �
1
n

 (2 � 1) �
1
n

 (4 � 1) �
1
n

 (6 � 1) � p � 
1
n

 (2n � 1)

a
n�1

k�1
sinakp

n
ba

n

k�1
a1 �

k

n
b3a1

n
ba

n

k�1
 
1
n

 (2k � 1)
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PROOF All three rules can be proved by writing the respective sums in expanded
form. For example, to prove Rule 1, we write

Use the distributive property.

The proof of Rules 2 and 3 are left as exercises.

 � ca
n

k�1
ak

 a
n

k�1
cak � ca1 � ca2 � p � can � c(a1 � a2 � p � an)

Rules of Summation

1. , where is a constant

2.

3. a
n

k�1
(ak � bk) � a

n

k�1
ak � a

n

k�1
bk

a
n

k�1
(ak � bk) � a

n

k�1
ak � a

n

k�1
bk

ca
n

k�1
cak � ca

n

k�1
ak

EXAMPLE 4 Use the rules of summation to expand each sum:

a. b.

Solution

a.

b.

 � (2 � 3 � p � 8) � 3(23 � 33 � p � 83)

 a
8

k�2
(k � 3k3) � a

8

k�2
k � a

8

k�2
3k3 � a

8

k�2
k � 3a

8

k�2
k3

a
10

k�1
3k2 � 3a

10

k�1
k2 � 3(12 � 22 � 32 � p � 102)

a
8

k�2
(k � 3k3)a

10

k�1
3k2

b.

c.

Summation Formulas
The following rules are useful in manipulating sums written using sigma notation.

a
n�1

k�1
sinakp

n
b � sin

p

n
� sin

2p
n

� sin
3p
n

 � p � sin
(n � 1)p

n

 � a1
n
b ca1 �

1
n
b3

� a1 �
2
n
b3

� a1 �
3
n
b3

 � p � 23d

 � a1 �
3
n
b3a1

n
b  � p � a1 �

n

n
b3a1

n
b

 a
n

k�1
a1 �

k

n
b3a1

n
b � a1 �

1
n
b3a1

n
b � a1 �

2
n
b3a1

n
b
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EXAMPLE 6 Evaluate .

Solution

 � 18,150 � 1155 � 19,305

 � 6 c10(10 � 1)

2
d2 � 3 c10(10 � 1)(20 � 1)

6
d

 � 6a
10

k�1
k3 � 3a

10

k�1
k2

 a
10

k�1
3k2(2k � 1) � a

10

k�1
(6k3 � 3k2)

a
10

k�1
3k2(2k � 1)

THEOREM 1 Summation Formulas

a. , a constant

b.

c.

d. a
n

k�1
k3 � cn(n � 1)

2
d2

a
n

k�1
k2 �

n(n � 1)(2n � 1)

6

a
n

k�1
k �

n(n � 1)

2

ca
n

k�1
c � nc

We will omit the proofs.

EXAMPLE 5 Use Theorem 1 to evaluate each sum:

a. b. c.

Solution

a. Use Theorem 1a.

b. Use Theorem 1b.

c.

Use Theorem 1c.�
50(50 � 1)(2 � 50 � 1)

6
� 42,925

a
50

k�1
k2 � 12 � 22 � 32 � p � 502

a
20

k�1
k � 1 � 2 � 3 � p � 20 �

20(20 � 1)

2
� 210

a
10

k�1
3 � 3 � 3 � 3 � p � 3 � 10(3) � 30

a
50

k�1
k2

a
20

k�1
ka

10

k�1
3

The following summation formulas will be used later.

⎫⎪⎪⎪⎬⎪⎪⎪⎭

10 terms
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EXAMPLE 7 Evaluate

Solution

 � lim
n→�
c 4

n3
 a

n

k�1
k2 �

8
n

 a
n

k�1
1d

 � lim
n→�

 a
n

k�1
a4k2

n3
�

8
n
b

 lim
n→�

 a
n

k�1
c ak

n
b2

� 2d a4
n
b

lim
n→�

 a
n

k�1
c ak

n
b2

� 2d a4
n
b

Remember that is constant with
respect to the summations.

n

 � lim
n→�
c 4

n3
�

n(n � 1)(2n � 1)

6
�

8
n

� nd Use Theorems
1a and 1c.

An Intuitive Look at Area (Continued)
We are now ready to resume the discussion of the area concept.

 �
2

3
 (1)(2) � 8 �

28

3

 � lim
n→�
c2
3

 a1 �
1
n
b a2 �

1
n
b � 8d

 � lim
n→�
c2
3

 an

n
b an � 1

n
b a2n � 1

n
b � 8d

EXAMPLE 8 Following the procedure of Example 1, we can obtain an expression,
, for approximating the area of the region under the graph of on the inter-

val using rectangles. Then, by letting take on increasingly larger values, we
will show that

To find such an expression, let’s divide the interval into subintervals of equal
length using the points

, , , , , , ,

The subintervals are

 xn � 1pxk �
k

n
px3 �

3
n

x2 �
2
n

x1 �
1
n

x0 � 0

(n � 1)1>n n[0, 1]

lim
n→�

An �
1

3

nn[0, 1]
f(x) � x2An

,c0, 
1
n
d ,c1

n
, 

2
n
d ,c2

n
, 

3
n
d ,p ,ck � 1

n
, 

k

n
d ,p cn � 1

n
, 1d

1st subinterval 2nd subinterval 3rd subinterval kth subinterval nth subinterval

Next, we note that the midpoints of these subintervals are

, , , , , , cn �
2n � 1

2n
pck �

2k � 1

2n
pc3 �

5

2n
c2 �

3

2n
c1 �

1

2n



378 Chapter 4 Integration

Factor out .
1

nUse sigma notation.

Expand the expression following the summation sign.

is constant with respect to summation.

Use the rules of summation.

Use Theorems 1a, 1b, and 1c.

 �
4n2 � 1

12n2

 �
1

4n3
�

n(4n2 � 1)

3

 �
1

4n3
 c4n(n � 1)(2n � 1)

6
�

4n(n � 1)

2
� nd

 �
1

4n3
 c4a

n

k�1
k2 � 4a

n

k�1
k � a

n

k�1
1d

n �
1

4n3
 a

n

k�1
(4k2 � 4k � 1)

 �
1
n

 a
n

k�1
a4k2 � 4k � 1

4n2
b

f(x) � x2 �
1
n

 a
n

k�1
a2k � 1

2n
b2

 �
1
n

 a
n

k�1
f a2k � 1

2n
b

so the heights of the corresponding rectangles are

, , , , , ,

(See Figure 8.) Letting denote the sum of the areas of the rectangles, we have

 �
1
n

 cf a 1

2n
b � f a 3

2n
b � f a 5

2n
b  � p � f a2k � 1

2n
b  � p � f a2n � 1

2n
b d

 An �
1
n

 f a 1

2n
b �

1
n

 f a 3

2n
b �

1
n

 f a 5

2n
b  � p � 

1
n

 f a2k � 1

2n
b  � p � 

1
n

 f a2n � 1

2n
b

nAn

f a2n � 1

2n
bpf a2k � 1

2n
bpf a 5

2n
bf a 3

2n
bf a 1

2n
b

n

y � x2

0

1

2k � 1
2n

1
2n

3
2n

5
2n

k � 1
n

k
n

3
n

2
n

1
n

2n � 1
2n

1

y

x

. . .

. . .

. . .

. . .

By letting take on the values 4, 10, and 100, for example, we see that

Compare this with Example 1.

 A10 �
4(10)2 � 1

12(10)2
� 0.3325

 A4 �
4(4)2 � 1

12(4)2
� 0.328125

n

FIGURE 8
The area of the first rectangle 

is , the area of 

the second rectangle is 

, , and the 

area of the th rectangle 

is .
1
n

� f a2n � 1

2n
b

n

p
1
n

� f a 3

2n
b

1
n

� f a 1

2n
b
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and

Our computations seem to show that approaches as gets larger and larger. This
result is confirmed by the following calculation:

The results of Example 8 suggest that we define the area of the region under the
graph of on the interval to be .

Defining the Area of the Region Under the Graph of a Function
Example 8 paves the way to defining the area of the region under the graph of a con-
tinuous nonnegative function on an interval . (See Figure 9.) We begin by par-
titioning the interval using equally spaced points

This is called a regular partition of . The resulting subintervals are

, , , ,

with and . The width of each subinterval is

This partitioning leads to the subdivision of the region into nonoverlapping subre-
gions , , , , , where is the subregion under the graph of on ,
is the subregion under the graph of on , and so on. (See Figure 10.)[x1, x2]f

S2[x0, x1]fS1SnpS3S2S1

nS

�x �
b � a

n

xn � bx0 � a

[xn�1, xn]p[x2, x3][x1, x2][x0, x1]

[a, b]

a � x0 � x1 � x2 � x3 � p � xn�1 � xn � b

n � 1[a, b]
[a, b]f

1
3[0, 1]f(x) � x2

S

 �
1

3

 � lim
n→�
a1

3
�

1

12n2
b

 lim
n→�

An � lim
n→�

4n2 � 1

12n2

n1
3An

 A100 �
4(100)2 � 1

12(100)2
� 0.333325

FIGURE 9
The region under the graph of on

.[a, b]
fS

FIGURE 10
The region is the union of 

nonoverlapping subregions.
nS

Next, we approximate the area of the subregion by the area of the rectangle 
with base and height , where is an arbitrarily chosen point in the subin-
terval . (See Figure 11.) Thus,

area of S1 � area of R1 � f(c1)�x

[x0, x1]
c1f(c1)[x0, x1]

R1S1

0

y � f(x)

x � a x � b

S

y

x

0

y � f(x)

x0 � a x1 x2 x3 xn � bxkxk�1 xn�1

S1 S2 S3 Sk Sn

y

x

. . .

. . .

. . .

. . .
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Similarly, we approximate the area of the subregion by the area of the rectangle 
with base and height , where is an arbitrary point in . Thus,

In general, we approximate the area of the subregion by the area of the rectangle
with base and height , where is an arbitrary point in . Thus,

If we denote the area of the region by and the sum of the areas of the rectangles
by , then, intuitively, we see that

If we let the number of partition points, , increase, then the number of subregions
increases, and, as shown in Figure 12, the approximations seem to improve.

n

A � An � f(c1)�x � f(c2)�x � p � f(cn)�x � a
n

k�1
 f(ck)�x

An

nAS

area of Sk � area of Rk � f(ck)�x

[xk�1, xk]ckf(ck)[xk�1, xk]Rk

Sk

area of S2 � area of R2 � f(c2)�x

[x1, x2]c2f(c2)[x1, x2]
R2S2

FIGURE 12
As increases the approxi-

mation seems to improve.
n

DEFINITION Area of the Region Under the Graph of a Function

Let be a continuous, nonnegative function defined on an interval . Sup-
pose that is divided into subintervals of equal length 
by means of equally spaced points

Then the area of the region that lies under the graph of on is

(1)

where lies in the th subinterval .[xk�1, xk]kck

A � lim
n→�

An � lim
n→�

 a
n

k�1
 f(ck)�x

[a, b]fS

a � x0 � x1 � x2 � p � xn � b

(n � 1)
�x � (b � a)>nn[a, b]

[a, b]f

S

FIGURE 11
The area of the subregion in 
Figure 10 is approximated by 

the area of the rectangle .Rk

Sk
0

. . . . . .

. . . . . .

y � f(x)

f(c1)

f(c2)

(ck, f(ck))

x0 � a x1 x2 x3

c1 c2 c3

xn � bxk

ck cn

xk�1 xn�1

R1 R2 R3 Rk Rn

y

x

0

y � f(x)

x0 � a x1 x2 x3 x4 x5 � b

y y

x

(a) n � 5

0

y � f(x)

x0 � a x10 � b
x1 x2 x3 x4 x5 x6 x7 x8 x9 x

(b) n � 10

This observation suggests that we define the area of the region as follows.SA
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Because of the supposition that is continuous, it can be shown that the limit (1)
in the definition always exists, regardless of how the points in , where

, are chosen. In Exercises 47 and 48 you will be asked to compute the area
of the region under the graph of on choosing to be (1) the left end-
point of the subinterval , that is, , for , and (2) the right
endpoint of the subinterval , that is, , for . You will see that
the results are indeed the same as those obtained in Example 8, where was chosen
to be the midpoint of the subinterval .[xk�1, xk]

ck

1 � k � nck � xk[xk�1, xk]
1 � k � nck � xk�1[xk�1, xk]

ck[0, 1]f(x) � x2
1 � k � n

[xk�1, xk]ck

f

EXAMPLE 9 Find the area of the region under the graph of on the
interval .

Solution Observe that is continuous and nonnegative on . The region under
consideration is shown in Figure 13. If we partition the interval into subinter-
vals of equal length by means of points, then the width of each subinterval is

and the partition points are

, , , ,

,

Since is continuous, we have a free hand at picking in . So let’s pick 
to be the right endpoint of the subinterval; that is,

Using the definition of the area of the region under a graph of a function, we find the
required area to be

 � 18 �
9

2
 (2) � 9

 � lim
n→�
c18a1 �

1
n
b �

9

2
 a1 �

1
n
b a2 �

1
n
b d

Use Theorems
1b and 1c.

 � lim
n→�

3
n

 c12
n

�
n(n � 1)

2
�

9

n2
�

n(n � 1)(2n � 1)

6
d

 � lim
n→�

3
n

 c12
n

 a
n

k�1
k �

9

n2
 a

n

k�1
k2d

 � lim
n→�

3
n

 a
n

k�1
a4 � 4 �

12k

n
�

9k2

n2
b

f(x) � 4 � x2 � lim
n→�

 a
n

k�1
c4 � a�2 �

3k

n
b2d a3

n
b

 � lim
n→�

 a
n

k�1
 f a�2 �

3k

n
b a3

n
b

 A � lim
n→�

 a
n

k�1
 f(ck)�x

ck � xk � �2 �
3k

n

ck[xk�1, xk]ckf

xn � 1p ,xk � �2 � ka3
n
b

px2 � �2 � 2a3
n
b x1 � �2 �

3
n

x0 � �2

�x �
b � a

n
�

1 � (�2)

n
�

3
n

(n � 1)
n[�2, 1]

[�2, 1]f

[�2, 1]
f(x) � 4 � x2

FIGURE 13
The region under the graph of

on [�2, 1]f(x) � 4 � x2

�1�2 1 2

y � 4 � x2

y

x
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Note In Exercise 49 you will be asked to solve Example 9 again, this time choosing
the midpoint for . Of course, you should obtain the same answer.

Area and Distance
We now show that if is a (continuous) velocity function of a car traveling in a straight
line and on , then the distance covered by the car between and

is numerically equal to the area of the region under the graph of the velocity
function on . (See Figure 14.) Let’s divide the time interval into subin-
tervals each of equal length by means of equally spaced points

, , , , tn � bp ,tk � a � k(�t)p ,t2 � a � 2(�t)t1 � a � �tt0 � a

(n � 1)�t � (b � a)>n n[a, b][a, b]
t � b

t � a[a, b]√(t) 	 0
√

ck

FIGURE 14
is the velocity function on .[a, b]√

Observe that if is large, then the time intervals , , , are uni-
formly small.

Let’s focus our attention on the first subinterval . Because is continuous,
we see that the speed of the car does not vary appreciably in that interval and can be
approximated by the constant speed , where is an arbitrary point in .*
Therefore, the distance covered by the car from to may be approximated
by

distance constant speed time elapsed

In a similar manner we see that the distance covered by the car from to is approx-
imately

where is an arbitrary point in . Continuing, we see that the distance covered
by the car from to is approximately

where is an arbitrary point in . Therefore, the distance traveled by the car
from to is approximately

(2)√(c1)�t � √(c2)�t � p � √(cn)�t � a
n

k�1
√(ck)�t

t � bt � a
[tk�1, tk]ck

√(ck)�t

tktk�1

[t1, t2]c2

√(c2)�t

t2t1

��√(c1)�t

t � t1t � t0

[t0, t1]c1√(c1)

√[t0, t1]

[tn�1, tn]p[t1, t2][t0, t1]n

*Recall that if a function is continuous at , then a small change in implies a small change in .f(t)ttf

0

. . . . . .

. . . . . .

√ � √(t)

(ck, √(ck))

t0 � a tn � btk tn�1tk�1t1 t2 t

√
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As gets larger and larger, the length of the time subintervals gets smaller and
smaller. Intuitively, we expect that the approximations will improve. It seems reason-
able, therefore, to define the distance covered by the car to be

But as you can see from Figure 14, this quantity also gives the area of the region under
the graph of on .[a, b]√

lim
n→�

 a
n

k�1
√(ck)�t

n

EXAMPLE 10 Distance Covered by a Cyclist The speed of a cyclist is measured at 
4-sec intervals over a 32-sec time span and recorded in the following table.

Time (sec) 0 4 8 12 16 20 24 28 32

Speed (ft/sec) 2 4 6 10 12 14 10 8 6

If we let denote the velocity function associated with the motion of the cyclist over
the time interval , then the values of are available to us only at a discrete set
of numbers, even though is clearly a continuous function defined on the interval.
Using Equation (2), find the approximate distance covered by the cyclist from 
to using

a. Eight rectangles and choosing to be the left endpoint of the th sub-
interval

b. Eight rectangles and choosing to be the right endpoint of the th
subinterval

c. Four rectangles and choosing to be the midpoint of the th subinterval.

Solution An approximation to the graph of is shown in Figure 15. (Remember that
we know the values of at only .)

a. Using eight rectangles with , , , , and ,
, , , , we see that the required approximate distance is

or 264 ft.
b. Using the same partition as in part (a) and

, , , ,

we find

or 280 ft.

 � 280

 � 4 � 4 � 6 � 4 � 10 � 4 � 12 � 4 � 14 � 4 � 10 � 4 � 8 � 4 � 6 � 4

 � √(4) � 4 � √(8) � 4 � √(12) � 4 � p � √(32) � 4

 D � a
8

k�1
√(ck)�t � a

8

k�1
√(tk)�t � √(t1) � 4 � √(t2) � 4 � p � √(t8) � 4

c8 � 32pc3 � 12c2 � 8c1 � 4

 � 264

 � 2 � 4 � 4 � 4 � 6 � 4 � 10 � 4 � 12 � 4 � 14 � 4 � 10 � 4 � 8 � 4

 � √(0) � 4 � √(4) � 4 � √(8) � 4 � p � √(28) � 4

 D � a
8

k�1
√(ck)�t � a

8

k�1
√(tk�1)�t � √(t0) � 4 � √(t1) � 4 � p � √(t7) � 4

c8 � 28pc3 � 8c2 � 4
c1 � 0t8 � 32pt2 � 8t1 � 4t0 � 0

t � 0, 4, 8, p , 32√
√

kck(n � 4)

kck(n � 8)

kck(n � 8)

t � 32
t � 0D

√
√[0, 32]

√

FIGURE 15
An approximation of the graph of on
[0, 32]

√

0 4

2
4
6
8

10
12
14

8 12 16 20 24 28 32 t  (sec)

√ (ft/sec)
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c. We use four rectangles with , , , , and and

, , , and

obtaining

or 288 ft.

 � 288

 � 4 � 8 � 10 � 8 � 14 � 8 � 8 � 8

 � √(4) � 8 � √(12) � 8 � √(20) � 8 � √(28) � 8

 D � a
4

k�1
√(ck)�t � √(c1) � 8 � √(c2) � 8 � √(c3) � 8 � √(c4) � 8

c4 � 28c3 � 20c2 � 12c1 � 4

t4 � 32t3 � 24t2 � 16t1 � 8t0 � 0

1. Let on the interval . Divide the interval
into four subintervals of length 1 using the points

, , , , and

Write the sum to approximate the area of the
region under the graph of on , choosing in the
subinterval , where , to be (a) the left
endpoint of the subinterval, ; (b) the right endpoint
of the subinterval; ; and (c) the midpoint of theck � xk

ck � xk�1

1 � k � 4[xk�1, xk]
ck[1, 5]fS

�4
k�1 f(ck)�x

x4 � 5x3 � 4x2 � 3x1 � 2x0 � 1

[1, 5]
[1, 5]f(x) � x � 1 subinterval, . Sketch the

graph of and the approximating rectangles for parts (a)–(c).
2. Refer to Exercise 1. Find the area of the region under the

graph of in by calculating ,
where is chosen to be (a) the left endpoint, (b) the right
endpoint, and (c) the midpoint of the subinterval ,
where . Verify your result by using elementary
geometry to find the area of the region .S

1 � k � n
[xk�1, xk]

ck

limn→� �n
k�1 f(ck)�x[1, 5]f

S
f

ck � 1
2(xk�1 � xk) � xk�1 � 1

2 �x

4.3 CONCEPT QUESTIONS

Videos for selected exercises are available online at www.academic.cengage.com/login.V

In Exercises 1–12 you are given a function , an interval ,
the number of subintervals into which is divided (each 
of length ), and the point in , where

. (a) Sketch the graph of and the rectangles with
base on and height , and (b) find the approxima-
tion of the area of the region under the graph 
of on .

1. , , , is the left endpoint

2. , , , is the midpoint

3. , , , is the right endpoint

4. , , , is the left endpoint

5. , , , is the midpoint

6. , , , is the right endpoint

7. , , , is the midpoint

8. , , , is the left endpoint

9. , , , is the right endpoint

10. , , , is the left endpoint

11. , , , is the left endpoint

12. , , , is the midpoint ckn � 4C0, p2 Df(x) � cos x

ckn � 10[1, 2]f(x) �
1
x

ckn � 8[0, 4]f(x) �2x

ckn � 5[1, 3]f(x) � 16 � x2

 ckn � 8[0, 2]f(x) � 4 � x2

 ckn � 4[1, 3]f(x) � x2

ckn � 5[0, 1]f(x) � x2

 ckn � 4[1, 3]f(x) � 8 � 2x

ckn � 5[0, 1]f(x) � 3 � 2x

ckn � 5[0, 4]f(x) � 2x � 3

 ckn � 6[1, 4]f(x) � x

ckn � 5[0, 1]f(x) � x

[a, b]f
S�n

k�1 f(ck)�x
f(ck)[xk�1, xk]

f1 � k � n
[xk�1, xk]ck�x � (b � a)>n [a, b]n

[a, b]f In Exercises 13–20, expand and then evaluate the sum.

13. 14.

15. 16.

17. 18.

19. 20.

In Exercises 21–30, rewrite the sum using sigma notation. Do
not evaluate.

21.

22.

23.

24.
1

5
�

2

5
�

3

5
�

4

5
 � p � 

8

5

3 � 5 � 7 � 9 � p � 23

2 � 1 � 2 � 2 � 2 � 3 � p � 2 � 10

2 � 4 � 6 � 8 � p � 60

a
4

k�1
k sin 

kp

2a
4

k�1
2k

a
5

k�1

1

ka
5

k�1
k2

a
5

k�1
k(k � 1)a

5

k�1
(2k � 1)

a
5

k�1
2ka

10

k�1
1
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25.

26.

27.

28.

29.

30.

In Exercises 31–38, use the rules of summation and the 
summation formulas to evaluate the sum.

31. 32.

33. 34.

35. 36.

37. 38.

In Exercises 39–44, evaluate the limit after first finding the sum
(as a function of ) using the summation formulas.

39. 40.

41. 42.

43. 44. lim
n→�

 a
n

k�1
a1 �

2k � 1

2n
b a1

n
blim

n→�
 a

n

k�1
a1 �

2k

n
b2a1

n
b

lim
n→�

 a
n

k�1
c1 � 2ak

n
b2d a2

n
blim

n→�
 a

n

k�1
ak

n
� 2b a3

n
b

lim
n→�

 a
n

k�1
 
1

n3 (2k � 1)2lim
n→�

 a
n

k�1
 
2k

n2

n

a
n

k�1
 
1
n

 a1 �
k

n
b2

a
n

k�1
(2k � 1)2

a
n

k�1
 
1

n2 (2k � 1)a
10

k�1
k(2k � 1)2

a
40

k�1
k(k2 � k)a

10

k�1
k(k � 2)

a
8

k�1
(3 � k2)a

10

k�1
(2k � 1)

� 
1
n

sec2a1 �
3
n
b  � p � 

1
n

sec2a1 �
n

n
b

1
n

sec2a1 �
1
n
b �

1
n

sec2a1 �
2
n
b

� 
1
n

sina1 �
3
n
b  � p � 

1
n

sina1 �
n

n
b

1
n

sina1 �
1
n
b �

1
n

sina1 �
2
n
b

� cB
2
n

� 1d a1
n
b  � p � cB

n � 1
n

� 1d a1
n
b

cB
0
n

� 1d a1
n
b � cB

1
n

� 1d a1
n
b

� c2a3
n
b3

� 1d a1
n
b  � p � c2an

n
b3

� 1d a1
n
b

c2a1
n
b3

� 1d a1
n
b � c2a2

n
b3

� 1d a1
n
b

� c a3

4
b2

� 1d a1

4
b � c a4

4
b2

� 1d a1

4
b

ca1

4
b2

� 1d a1

4
b � c a2

4
b2

� 1d a1

4
b

� c2a4

5
b � 1d � c2a5

5
b � 1d

c2a1

5
b � 1d � c2a2

5
b � 1d � c2a3

5
b � 1d In Exercises 45–52, use the definition of area (page 380) to find

the area of the region under the graph of on using the
indicated choice of .

45. , , is the left endpoint

46. , , is the midpoint

47. , , is the left endpoint

48. , , is the right endpoint

49. , , is the midpoint

50. , , is the right endpoint

51. , , is the right endpoint

52. , , is the right endpoint

In Exercises 53–56, (a) express the area of the region under the
graph of the function over the interval as the limit of a sum
(use the right endpoints), (b) use a computer algebra system
(CAS) to find the sum obtained in part (a) in compact form, and
(c) evaluate the limit of the sum found in part (b) to obtain the
exact area of the region.

53. ;

54. ;

55. ;

56. ;

57. A regular -sided polygon is inscribed in a circle of radius 
as shown in the figure with .

a. Show that the area of the polygon is
.

b. Evaluate to obtain the area of the circle
.

Hint: Use the result .

58. Refer to Exercise 57.
a. Show that the perimeter of the polygon is

.
b. Evaluate to obtain the circumference of the

circle .C � 2pr
limn→� Cn

Cn � 2nr sin(p>n)

lim
x→0

sin x

x
� 1

A � pr 2
limn→� An

An � 1
2 nr 2 sin(2p>n)

r

n
π

n � 6
rn

C0, p2 Df(x) � sin x

[2, 5]f(x) � x4 � 2x2 � x

[0, 2]f(x) � x5

[0, 2]f(x) � x4

f

ck[0, 1]f(x) � 2x � x3

ck[�1, 1]f(x) � x2 � 2x � 2

ck[�2, 1]f(x) � x � x2

ck[�2, 1]f(x) � 4 � x2

ck[0, 1]f(x) � x2

ck[0, 1]f(x) � x2

ck[1, 3]f(x) � 3x � 1

ck[0, 2]f(x) � 2x � 1

ck

[a, b]f
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59. Real Estate Figure (a) shows a vacant lot with a 100-ft
frontage in a development. To estimate its area, we introduce
a coordinate system so that the -axis coincides with the
edge of the straight road forming the lower boundary of the
property, as shown in Figure (b). Then, thinking of the upper
boundary of the property as the graph of a continuous func-
tion over the interval , we see that the problem is
mathematically equivalent to that of finding the area of the
region under the graph of on . To estimate the area
of the lot using the sum of the areas of rectangles, we divide
the interval into five equal subintervals of length 
20 ft. Then, using surveyor’s equipment, we measure the
distance from the midpoint of each of these subintervals to
the upper boundary of the property. These measurements
give the values of at , 30, 50, 70, and 90. What
is the approximate area of the lot?

60. Hot-Air Balloon The rate of ascent or descent of a hot-air bal-
loon is measured at certain instants of time from to

as summarized in the following table. The dashed
curve in the figure is an estimate of the graph of the velocity
function on the time interval .[0, 45]

t � 45
t � 0

(a)

Road

y (ft)

(b)

0 10 20 30 40 50 60 70 80 90 100 x (ft)

80 100 110 100 80

x � 10f(x)

[0, 100]

[0, 100]f

[0, 100]f

x

Using nine rectangles determined by the 10 points

, , ,

and choosing to be the left endpoint of the th subinter-
val, estimate the total height gained by the balloon over the
time period from to .
Note: Here, the partition points are not spaced equally apart, so the
subintervals are not of equal length.

61. Prove that .

62. Prove that .

In Exercises 63–66, determine whether the statement is true or
false. If it is true, explain why it is true. If it is false, explain why
or give an example to show why it is false.

63. If is a nonnegative function such that is strictly posi-
tive for some value of in , is partitioned into 

subintervals of equal length, and lies in the th subinter-
val , then must be strictly positive.
Hint: Study the Dirichlet function of Exercise 92 in Section 1.2.

64. ,

where and are constants

65.

66. a
n

k�1
(ak � bk)

2 � a
n

k�1
a2

k � a
n

k�1
b2

k

aa
n

k�1
akb aa

n

k�1
bkb � a

n

k�1
akbk

dc

a
n

k�1
(cak � dbk) � ca

n

k�1
ak � da

n

k�1
bk

�n
k�1 f(ck)�x[xk�1, xk]

kckn
[a, b][a, b]x

f(x)f

�n
k�1(ak � bk) � �n

k�1 ak � �n
k�1 bk

�n
k�1(ak � bk) � �n

k�1 ak � �n
k�1 bk

t � 45t � 0

kck

t9 � 45p ,t2 � 6t1 � 3t0 � 0

0 3

5

10

15

20

6 10 16 24 32 38 43 45 t  (sec)

√ (ft/sec)

Time (sec) 0 3 6 10 16 24 32 38 43 45

Velocity (ft/sec) 5 10 16 18 20 18 14 17 14 15
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4.4 The Definite Integral

Definition of the Definite Integral
In Section 4.3 we saw that the area of the region under the graph of a continuous, non-
negative function on an interval is defined by a limit of the form

(1)

where and is in . We also saw that the distance covered
by an object moving along a straight line with a positive velocity is found by evaluat-
ing a similar limit.

In this section we will look at limits defined by Equation (1) in which may take
on both positive and negative values. We will give a geometric interpretation for this
general case later on. We will also interpret such limits in terms of the position of an
object that moves with both positive and negative velocities. Looking ahead, we will
see that limits of this type arise when we try to find the length and mass of a curved
wire, the center of mass of a body, the volume of a solid, the area of a surface, the
pressure exerted by a fluid against the wall of a container, the amount of oil consumed
over a certain period of time, the net sales of a department store over a certain period,
and the total number of AIDS cases diagnosed over a certain period of time, just to
name a few applications.

In the following definition we will assume, as before, that is continuous. This
allows for a relatively simple development of the material ahead of us.

f

f

[xk�1, xk]ck�x � (b � a)>n
lim
n→�

 a
n

k�1
 f(ck)�x � lim

n→�
[ f(c1)�x � f(c2)�x � p � f(cn)�x]

[a, b]f

DEFINITION Definite Integral

Let be a continuous function defined on an interval . Suppose that 
is divided into subintervals of equal length by means of

equally spaced points

Let , , , be arbitrary points in the respective subintervals with lying
in the th subinterval . Then the definite integral of on , denoted
by , is

(2)�
b

a

f(x) dx � lim
n→�

 a
n

k�1
 f(ck)�x

�b
a f(x) dx

[a, b]f[xk�1, xk]k
ckcnpc2c1

a � x0 � x1 � x2 � p � xn � b

(n � 1)
�x � (b � a)>nn

[a, b][a, b]f

We also say that is integrable on if the limit (2) exists. The process of eval-
uating a definite integral is called integration. The number in the definition is called
the lower limit of integration, and the number is called the upper limit of integra-
tion. Together, the numbers and are referred to as the limits of integration. As in
the case of the indefinite integral, the function to be integrated is called the integrand.

The sum in the definition is called a Riemann sum in honor of the
German mathematician Bernhard Riemann (1826–1866). Actually, this sum is a spe-
cial case of a more general form of a Riemann sum in which no assumption is made
requiring that be continuous on or that the interval be partitioned in such a way
that the resulting subintervals have equal length. For completeness we will discuss this
general case at the end of this section.

[a, b]f

�n
k�1 f(ck)�x

f
ba

b
a

[a, b]f

BERNHARD RIEMANN
(1826–1866)

Bernhard Riemann was one of the few
mathematicians to impress his contempo-
rary Carl Friedrich Gauss, and his work con-
tinues to deeply influence modern mathe-
matics. Born the son of a poor country
pastor in Northern Germany, Riemann was
raised without family money to support his
education. Nevertheless, he was able to
secure a solid education and showed
exceptional mathematical insight at an
early age. While still in secondary school,
he studied the works of Euler (page 19) and
Legendre, mastering Legendre’s treatise on
number theory in less than a week. He
obtained his doctorate in 1851 from the Uni-
versity of Göttingen after writing a thesis
involving the theory of functions of a com-
plex variable. In 1854, upon his appoint-
ment as Privatdozent (unpaid lecturer), Rie-
mann was required to give a lecture to the
current professors. He submitted three top-
ics to then department chair Gauss, who, in
past situations, had chosen whichever
topic was listed first. But Riemann had sub-
mitted the foundations of geometry as his
third topic, one that so interested Gauss
that it was the topic chosen. After two
months of preparation, Riemann presented
his lecture, and that work is now consid-
ered one of the great classical master-
pieces of mathematics. It was documented
that even Gauss was impressed. Riemann’s
famous conjecture, the Riemann Hypothe-
sis, remains unresolved to this day, and the
search for a solution to that problem is
still very active. The problem has been des-
ignated one of seven Prize Problems by the
Clay Mathematics Institute, and $1,000,000
will be awarded to the person who finds a
solution.

Historical Biography
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Notes
1. The assumption that is continuous on guarantees that the definite integral

always exists. In other words, the limit in Equation (2) exists and is unique for all
choices of the evaluation points . Furthermore, if is nonnegative, then the defi-
nite integral gives the area of the region under the graph of on since the
limit in Equation (2) reduces to the limit in Equation (1), page 380, in Section 4.3.

2. The symbol in the definition of the definite integral is the same as that used to
denote the indefinite integral of a function. (Remember that the definite integral is
a number, in contrast to the indefinite integral, which is a family of functions (the
antiderivatives of ).)f

�

[a, b]f
fck

[a, b]f

EXAMPLE 1 Compute the Riemann sum for on using five
subintervals and choosing the evaluation points to be the midpoints of the
subintervals.

Solution Here, , , and . So the length of each subinterval is

The partition points are

, , ,

, , and

The midpoints of the subintervals are given by , or

, , , , and

(See Figure 1.)
Therefore, the required Riemann sum is

The Riemann sum computed in Example 1 is the sum of five terms. As you can
see in Figure 1, these terms are associated with the areas of the five rectangles shown.
The positive terms give the areas of the rectangles that lie above the -axis, while the
negative term is the negative of the area of the rectangle that lies below the -axis.x

x

 � 6.88

 � a4

5
b (3.64 � 3.96 � 3 � 0.76 � 2.76)

 � c4 � a9

5
b2d � c4 � a13

5
b2d f

 � a4

5
b e c4 � a�3

5
b2d � c4 � a1

5
b2d � [4 � (1)2]

 � cf a�3

5
b � f a1

5
b � f(1) � f a9

5
b � f a13

5
b d�x

 a
5

k�1
 f(ck)�x � f(c1)�x � f(c2)�x � f(c3)�x � f(c4)�x � f(c5)�x

c5 �
13

5
c4 �

9

5
c3 � 1c2 �

1

5
c1 � �

3

5

ck � 1
2 (xk � xk�1)

x5 � 3x4 �
11

5
x3 �

7

5

x2 � �1 � 2a4

5
b �

3

5
x1 � �1 �

4

5
� �

1

5
x0 � �1

�x �
b � a

n
�

3 � (�1)

5
�

4

5

n � 5b � 3a � �1

(n � 5)
[�1, 3]f(x) � 4 � x2

FIGURE 1
The positive terms of the Riemann sum
are associated with the rectangles that
lie above the -axis; the negative term
is associated with the rectangle that lies
below the -axis.x

x

�1

1

3

�2�3

�4

1 2 43

y � 4 � x2

c2
c3 c4

c5

c1

y

x
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EXAMPLE 2 Evaluate .

Solution Here, and . Furthermore, is continuous on
, so is integrable on . To evaluate the given definite integral, let’s sub-

divide the interval into equal subintervals of length

The partition points are

, , , ,

, , ,

Next, we pick to be the right endpoint of the subinterval so that

Then

(Compare this with the approximate value of obtained in Example 1.)�3
�1(4 � x2) dx

 � 12 � 16 �
64

3
�

20

3
� 6

2

3

 � lim
n→�
c12 � 16a1 �

1
n
b �

32

3
 a1 �

1
n
b a2 �

1
n
b d

 � lim
n→�
c4
n

 (3n) �
32

n2
�

n(n � 1)

2
�

64

n3
�

n(n � 1)(2n � 1)

6
d

 � lim
n→�
c4
n

 a
n

k�1
3 �

32

n2
 a

n

k�1
k �

64

n3
 a

n

k�1
k2d

 � lim
n→�
a4

n
b a

n

k�1
a3 �

8k

n
�

16k2

n2
b

f(x) � 4 � x2 � lim
n→�

 a
n

k�1
c4 � a�1 �

4k

n
b2d a4

n
b

 � lim
n→�

 a
n

k�1
 f a�1 �

4k

n
b a4

n
b

 �
3

�1
(4 � x2)dx � �

3

�1
f(x) dx � lim

n→�
 a

n

k�1
 f(ck)�x

ck � xk � �1 � ka4
n
b � �1 �

4k

n

[xk�1, xk]ck

xn � 3pxk � �1 � ka4
n
bxk�1 � �1 � (k � 1)a4

n
b

px2 � �1 � 2a4
n
bx1 � �1 �

4
n

x0 � �1

�x �
b � a

n
�

3 � (�1)

n
�

4
n

n[�1, 3]
[�1, 3]f[�1, 3]

f(x) � 4 � x2b � 3a � �1

�
3

�1
(4 � x2) dx

EXAMPLE 3 Show that .

Solution Let’s subdivide the interval into subintervals of length

�x �
b � a

n

n[a, b]

�
b

a

x dx �
1

2
 (b2 � a2)
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The partition points are

, , , ,

, ,

Next we choose the evaluation point to be the right endpoint of the subinterval
, where ; that is, we pick for each . Then

 �
1

2
 (b � a)(b � a) �

1

2
 (b2 � a2)

 � (b � a)aa �
b � a

2
b � (b � a)a2a � b � a

2
b

 � (b � a) ca � ab � a

2
b lim

n→�

n � 1
n
d

 � (b � a) lim
n→�
ca � ab � a

2
b �

n(n � 1)

n2
d

 � (b � a) lim
n→�

1
n

 cna � ab � a

n
b �

n(n � 1)

2
d

 � (b � a) lim
n→�

1
n

 ca
n

k�1
a � ab � a

n
b a

n

k�1
kd

 � (b � a) lim
n→�

1
n

 a
n

k�1
ca � ab � a

n
bkd

 � lim
n→�

 a
n

k�1
ca � ab � a

n
bkd ab � a

n
b

 �
b

a

x dx � lim
n→�

 a
n

k�1
 f(ck)�x

1 � k � nck � xk1 � k � n[xk�1, xk]
ck

xn � bpxk � a � kab � a

n
b

px2 � a � 2ab � a

n
bx1 � a �

b � a

n
x0 � a

EXAMPLE 4 Divide the interval into subintervals of equal length, and let 
be any point in . Write

as an integral.

Solution Comparing the given expression with Equation (2), we see that it is the limit 

of a Riemann sum of the function on the interval . Next, since 

is continuous on , the limit exists, so by Equation (2),

Geometric Interpretation of the Definite Integral
As was pointed out earlier, if is a continuous, nonnegative function on , then the
definite integral gives the area of the region under the graph of on .
(See Figure 2.)

[a, b]f�b
a f(x) dx

[a, b]f

lim
n→�

 a
n

k�1
21 � (ck)

2 �x � �
5

2
21 � x2 dx

[2, 5]f

[2, 5]f(x) �21 � x2

lim
n→�

 a
n

k�1
21 � (ck)

2 �x

[xk�1, xk]
ckn[2, 5]

FIGURE 2
If on , then 
gives the area of the region under the
graph of on .[a, b]f

�b
a f(x) dx[a, b]f(x) 	 0

0 a b

y � f(x)

A � f(x) dx

y

x

a

by
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EXAMPLE 5 Evaluate the definite integral by interpreting it geometrically:

a. b.

Solution
a. The graph of the integrand on is the straight line segment

shown in Figure 3. Since on , we can interpret the integral as the
area of the triangle shown. Thus,

area base height

b. The integrand is the positive root obtained by solving the equa-
tion for , which represents the circle of radius 4 centered at the
origin; therefore, it represents the upper semicircle shown in Figure 4. Since

on , we can interpret the integral as the area of that part of the cir-
cle lying in the first quadrant. Since this area is , we see that

Next we look at a geometric interpretation of the definite integral for the case in
which assumes both positive and negative values on . Consider a typical Rie-
mann sum of the function ,

corresponding to a partition with points of subdivision

and evaluation points in . The sum consists of terms in which a positive
term corresponds to the area of a rectangle of height lying above the -axis, and
a negative term corresponds to the area of a rectangle of height lying below the
-axis. (See Figure 5, where .)n � 6x

�f(ck)
xf(ck)

n[xk�1, xk]ck

a � x0 � x1 � x2 � p � xk�1 � xk � p � xn�1 � xn � b

P

a
n

k�1
 f(ck)�x

f
[a, b]f

�
4

0
216 � x2 dx � 4p

1
4 p(42) � 4p

[0, 4]f(x) 	 0

yx2 � y2 � 16
f(x) �216 � x2

��
1

2�
2

0
(4 � 2x) dx �

1

2
 (2)(4) � 4

[0, 2]f(x) 	 0
[0, 2]f(x) � 4 � 2x

�
4

0
216 � x2 dx�

2

0
(4 � 2x) dx

FIGURE 3
area of the triangle.�2

0 (4 � 2x) dx �

FIGURE 4
represents the upper

semicircle.
f(x) �216 � x2

0 1

1

2

3

4

2

y � 4 � 2x

y

x

0

4

4�4

y � √16 � x2

y

x

0

y � f(x)

a � x0 x1 x2 x5x4

x3

c1 c2

c3 c4

c5 c6

x6 � b

y

x

FIGURE 5
The positive (negative) terms in 
the Riemann sum are associated 
with the areas of the rectangles 

that lie above (below) the -axis.x

As gets larger and larger, the sums of the areas of the rectangles lying above the
-axis seem to give a better and better approximation of the area of the region lying

above the -axis. Similarly, the sums of the area of the rectangles lying below the x
x

n
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-axis seem to give a better and better approximation of the area of the region lying
below the -axis. (See Figure 6, where .)n � 12x
x

FIGURE 6
Approximating 

with 12 rectangles
�b

a f(x) dx

FIGURE 7

area of S2 � area of S3

�b
a f(x) dx � area of S1 �

Now suppose that assumes both positive and negative values on . (See
Figure 9.)

[a, b]√(t)

0

y � f(x)

a b

y

x

0

S1

S2

S3

y � f(x)

a b

y

x

ss(a) s(b)

y
a

b

 √ (t) dt  

FIGURE 8
The position of the car at 

is .s(b) � s(a) � �b
a √(t) dt

t � b

This observation suggests that we interpret the definite integral

as a difference of areas. Specifically,

where is the region lying above the graph of and below the -axis. (See Figure 7.)
More generally,

The Definite Integral and Displacement
In Section 4.3 we showed that if is a nonnegative velocity function of a car trav-
eling in a straight line, then the distance covered by the car between and 
is given by the area of the region under the graph of the velocity function on the time
interval . Since the area of the region under the graph of a nonnegative function

on is just the definite integral of on , we can write

If we denote the position of the car at any time by , then its position at is
. So we can then write its final position at as

(See Figure 8.)

s(b) � s(a) � �
b

a

√(t) dt

t � bs(a)
t � as(t)t

�
b

a

√(t) dt � displacement of the car between t � a and t � b

[a, b]√[a, b]√(t)
[a, b]

t � bt � a
√(t)

�
b

a

f(x) dx � areas of the regions above [a, b] � areas of the regions below [a, b]

xfS2

�
b

a

f(x) dx � area of S1 � area of S2 � area of S3

�
b

a

f(x) dx � lim
n→�

 a
n

k�1
 f(ck)�x
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FIGURE 9
The area of and the area of give
the distance the car moves in the
positive direction, whereas the area of

gives the distance it moves in the
negative direction.
S2

S3S1

0

S1

S2

S3

√ � √(t)

a b

√

t

Then

In other words, the final position of the car at is

as before.

s(b) � s(a) � �
b

a

√(t) dt

t � b

 � displacement of the car between t � a and t � b

 by the car in the negative direction
 � distance covered by the car in the positive direction � distance covered

 �
b

a

√(t) dt � area of the regions above [a, b] � area of the region below [a, b]

EXAMPLE 6 The velocity function of a car moving along a straight road is given by
for , where is measured in feet per second and in sec-

onds. Show that at the car will be in the same position as it was initially.

Solution The graph of is shown in Figure 10. We have

 � 200 � 200 � 0

 �
1

2
 (20)(20) �

1

2
 (20)(20)

 �
40

0
√(t) dt � area of S2 � area of S1

√

t � 40
t√(t)0 � t � 40√(t) � t � 20

FIGURE 10
The area of is equal to the area of .S2S1

Therefore,

so the net change in the position of the car is zero, as was to be shown.
We interpret this result as follows: The car moves a total of 200 ft in the negative

direction in the first 20 sec and then moves a total of 200 ft in the positive direction
in the next 20 sec, resulting in no net change in its position.

Alternative Solution Let denote the position of the car at any time . Then

ds

dt
� √(t)

ts(t)

s(40) � s(0) � �
40

0
√(t) dt � s(0)

0

S1

S2

√(t) � t � 20

10 20

�20

20

30 40

√ (ft/sec)

t  (sec)
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But , so

Integrating with respect to , we have

an arbitrary constant

The position of the car at is , and this condition gives

or

Therefore, the position of the car at any time is

In particular, the position of the car at is

its position at , as was to be shown.

Note The method used in the alternative solution of the problem in Example 6 hints
at the relationship between the definite integral of a function and the indefinite inte-
gral of the function. We will exploit this relationship in the next section.

Properties of the Definite Integral
When we defined the definite integral , we assumed that . We now
extend the definition to cover the cases and .a 
 ba � b

a � b�b
a f(x) dx

t � 0

s(40) �
1

2
 (402) � 20(40) � s(0) � s(0)

t � 40

s(t) �
1

2
 t 2 � 20t � s(0)

t

C � s(0)s(0) �
1

2
 (0) � 20(0) � C

s(0)t � 0

C �
1

2
 t 2 � 20t � C

 s(t) � � (t � 20) dt

t

ds

dt
� t � 20

√(t) � t � 20

DEFINITIONS Two Special Definite Integrals

1.

2. , if a 
 b�
b

a

f(x) dx � ��
a

b

f(x) dx

�
a

a

f(x) dx � 0

The first definition is compatible with the definition of the definite integral if we
observe that here,

�x �
b � a

n
�

a � a

n
� 0
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The second definition is also compatible with the definition by observing that if we
interchange and , then the sign of the resulting Riemann sum changes because

�x �
b � a

n
� �

a � b

n

ba

EXAMPLE 7 Evaluate the definite integral:

a. b.

Solution

a.

b. using the result of Example 2.

In the expression the variable of integration, , is a dummy variable in
the sense that it may be replaced by any other letter without changing the value of the
integral. As an illustration, the results of Example 2 may be written

Suppose that . Interpreting as the area of the region under the graph
of on gives

(See Figure 11.)
We will now look at some properties of the definite integral that will prove help-

ful later on when we evaluate integrals. Here we assume, as we did earlier, that all of
the functions under consideration are continuous.

�
b

a

c dx � c(b � a)

[a, b]f(x) � c
�b

a c dxc 
 0

�
3

�1
(4 � x2) dx � �

3

�1
(4 � u2) du � �

3

�1
(4 � s2) ds � 6

2

3

x�b
a f(x) dx

�
�1

3
(4 � x2) dx � ��

3

�1
(4 � x2) dx � �6

2

3

�
2

2
(x2 � 2x � 4) dx � 0

�
�1

3
(4 � x2) dx�

2

2
(x2 � 2x � 4) dx

FIGURE 11
If , then interpreting 
as the area of the region under the
graph of on gives

.�b
a f(x) dx � c(b � a)

[a, b]f(x) � c

�b
a c dxc 
 0

The Definite Integral of a Constant Function

If is a real number, then

(3)�
b

a

c dx � c(b � a)

c

The special case where was discussed earlier.c 
 0

c dx

0

y � c

a b x

y

a

by

EXAMPLE 8 Evaluate .

Solution We use Equation (3) with , , and , obtaining

�
7

2
3 dx � 3(7 � 2) � 15

b � 7a � 2c � 3

�
7

2
3 dx
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Properties of the Definite Integral

1. Sum (Difference)

2. Constant Multiple

, where is any constantc�
b

a

cf(x) dx � c�
b

a

f(x) dx

�
b

a

[ f(x) � t(x)] dx � �
b

a

f(x) dx � �
b

a

t(x) dx

Property 1 states that the integral of the sum (difference) is the sum (difference) of
the integrals. Property 2 states that the integral of a constant times a function is equal
to the constant times the integral of the function. Thus, a constant (and only a con-
stant!) can be moved in front of the integral sign. These properties are derived by using
the corresponding limit laws. For example, to prove Property 2, we use the definition
of the definite integral to write

 � c�
b

a

f(x) dx

Constant Multiple
Law for limits

 � c lim
n→�

 a
n

k�1
 f(ck)�x

 �
b

a

cf(x) dx � lim
n→�

 a
n

k�1
cf(ck)�x

The next two properties of the definite integral are analogous to the rules of inte-
gration for indefinite integrals (see Section 4.1).

EXAMPLE 9 Use the result of Example 8 in Section 4.3 to evaluate

a. b.

Solution

a. Property 1

b. Property 2

 � 5 a1

3
b �

5

3

 �
1

0
5x2 dx � 5�

1

0
x2 dx

 � �
11

3

 �
1

3
� 4(1)

 �
1

0
(x2 � 4) dx � �

1

0
x2 dx � �

1

0
4 dx

�
1

0
5x2 dx�

1

0
(x2 � 4) dx

�
1

0
x2 dx �

1

3
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Suppose that is continuous and nonnegative on . Then gives the
area of the region under the graph of on . Next, if , then �c

a f(x) dxa � c � b[a, b]f
�b

a f(x) dx[a, b]f

and give the area of the region under the graph of on and ,
respectively. Therefore, as you can see in Figure 12,

This observation suggests the following property of definite integrals.

�
b

a

f(x) dx � �
c

a

f(x) dx � �
b

c

f(x) dx

[c, b][a, c]f�b
c f(x) dx

FIGURE 12

�
b

a

f(x) dx � �
c

a

f(x) dx � �
b

c

f(x) dx Property of the Definite Integral

3. If is any number in , then

�
b

a

f(x) dx � �
c

a

f(x) dx � �
b

c

f(x) dx

[a, b]c

Note The conclusion of Property 3 holds for any three numbers , , and .cba

f(x) dx

f(x) dx

y � f(x)

0 a c b x

y

c

by

a

cy

EXAMPLE 10 Suppose that and . What is ?

Solution Using Property 3, we have

from which we see that

The next three properties of the definite integral involve inequalities.

�
4

1
f(x) dx � �

6

1
f(x) dx � �

6

4
f(x) dx � 8 � 5 � 3

�
6

1
f(x) dx � �

4

1
f(x) dx � �

6

4
f(x) dx

�4
1 f(x) dx�6

4 f(x) dx � 5�6
1 f(x) dx � 8

Properties of the Definite Integral

4. If on , then

5. If on , then

6. If on , then

m(b � a) � �
b

a

f(x) dx � M(b � a)

[a, b]m � f(x) � M

�
b

a

f(x) dx 	 �
b

a

t(x) dx

[a, b]f(x) 	 t(x)

�
b

a

f(x) dx 	 0

[a, b]f(x) 	 0

The plausibility of Property 4 stems from the observation that the area of the region
under the graph of a nonnegative function is nonnegative. Also, if we assume that 
and therefore are both nonnegative on , then Property 5 is a statement that the[a, b]f

t
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area of the region under the graph of is larger than the area of the region under the
graph of . (See Figure 13.) The plausibility of Property 6 is suggested by Figure 14,
where and are the absolute minimum and absolute maximum values of , respec-
tively, on : The area of the region under the graph of on , , is
greater than the area of the rectangle with height , , and smaller than the
area of the rectangle with height , .M(b � a)M

m(b � a)m
�b

a f(x) dx[a, b]f[a, b]
fMm

t

f

FIGURE 13
If on , then the area of the
region under the graph of is greater than the
area of the region under the graph of .t

f
[a, b]f(x) 	 t(x)

FIGURE 14
The area of the region under the graph of 

is greater than or equal to and 
less than or equal to  .M(b � a)

m(b � a)f

0 xba

y � f(x)
y � g(x)

y

0 xba

m

M

y � f(x)

Absolute maximum

Absolute minimum

y

It should be mentioned that all of the properties of the definite integral can be proved
with mathematical rigor and without any assumption regarding the sign of (see
Exercise 60).

f(x)

EXAMPLE 11 Use Property 6 to estimate .

Solution The integrand is increasing on . Therefore, its
absolute minimum value occurs at (the left endpoint of the interval), and its
absolute maximum value occurs at (the right endpoint of the interval). If we take

, , , and , then Property 6 gives

More General Definition of the Definite Integral
As was pointed out earlier, the points that make up a partition of an interval need
not be chosen to be equally spaced. In general, a partition of is any set

satisfying

The subintervals corresponding to this partition of are

, , , , , [xn�1, xn]p[xk�1, xk]p[x1, x2][x0, x1]

[a, b]

a � x0 � x1 � x2 � p � xn�1 � xn � b

P � {x0, x1, p , xn}
[a, b]

[a, b]

 4 � �
3

1
23 � x2 dx � 423

 2(3 � 1) � �
3

1
23 � x2 dx � 213(3 � 1)

b � 3a � 1M � f(3) � 213m � f(1) � 2
x � 3

x � 1
[1, 3]f(x) �23 � x2

�
3

1
23 � x2 dx
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FIGURE 15
A possible partition of [a, b]

The length of the th subinterval is

Figure 15 shows one possible partition of .[a, b]

�xk � xk � xk�1

k

FIGURE 16
A possible partition of [0, 2]

If the points of a partition of are chosen to be equally spaced so that
the resulting subintervals have equal length, then the partition is regular. In a regu-
lar partition, the norm satisfies

For a general partition ,

or

From this inequality we see that as the norm of a partition approaches 0, the number
of subintervals approach infinity. The converse, however, is false. For example, the par-
tition of the interval in Figure 17 is given by

has norm for any positive integer . Therefore, does not imply that .
But for a regular partition,

if and only if

a fact that we will use shortly.
We are now in a position to give a more general definition of the definite integral,

but first we observe that a function is bounded on an interval if there exists
some positive real number such that for all in .[a, b]x� f(x) � � MM

[a, b]f

n → �7P 7 → 0

7P 7 → 0n → �n1
2

0 �
1

2
�

3

4
�

7

8
 � p � 1 �

1

2n�1
� 1 �

1

2n � 1

[0, 1]P

n 	
b � a

7P 77P 7 	 b � a

n

P

7P 7 � �x �
b � a

n

n
[a, b](n � 1)

�x2�x1 �x3 �xk �xn

xxn � bxn�1xk�1 xkx0 � a x3x2x1

x

11
8

1
4

1
2

5
4

3
2

7
4x0 � 0 x3 � 1 x8 � 2

x5 �

x1 � x2 � x4 � x6 � x7 �

FIGURE 17
As the number of subintervals approach
infinity, does not approach 0.7 P 7

x1
2

3
4

7
8

0 1. . .

The length of the largest subinterval, denoted by , is called the norm of . For
example, in the partition shown in Figure 16,

, , , ,

, , , and

so its norm is .1
2

�x8 �
1

4
�x7 �

1

4
�x6 �

1

8
�x5 �

1

8

�x4 �
1

4
�x3 �

1

2
�x2 �

1

4
�x1 �

1

4

P7P 7
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It can be shown that if is continuous on , then the definite integral of on
always exists. Therefore, the limit (4) exists for all choices of and . In par-

ticular, the limit exists if we choose a regular partition, as was done in our earlier pres-
entation. In fact, for regular partitions, if and only if . So the limit (4)
is equivalent to

which is the definition of the definite integral given earlier.
Finally, we note the following precise definition of the definite integral.

�
b

a

f(x) dx � lim
n→�

 a
n

k�1
 f(ck)�x

n → �7P 7 → 0

ckP[a, b]
f[a, b]f

DEFINITION Definite Integral (General Definition)

Let be a bounded function defined on an interval . Then the definite inte-[a, b]f

gral of on , denoted by , is

(4)

if the limit exists for all partitions of and all choices of in .[xk�1, xk]ck[a, b]P

�
b

a

f(x) dx � lim7P 7→0
 a

n

k�1
 f(ck)�x

�
b

a

f(x) dx[a, b]f

DEFINITION Precise Definition of the Definite Integral

The definite integral of on is

if for every number there exists a number such that for every par-
tition of with and every choice of points in , the
inequality

holds.

` a
n

k�1
 f(ck)�xk � �

b

a

f(x) dx ` � e

[xk�1, xk]ck7P 7 � d[a, b]P
d 
 0e 
 0

�
b

a

f(x) dx

[a, b]f

1. What is a Riemann sum of a continuous function on an
interval ? Illustrate graphically the case in which 
assumes both positive and negative values on .

2. Define the definite integral of a continuous function on the
interval . Give a geometric interpretation of 
for the case in which (a) is nonnegative on and (b) 
assumes both positive and negative values on . Illus-
trate your answers graphically.

[a, b]
f[a, b]f

�b
a f(x) dx[a, b]

[a, b]
f[a, b]

f 3. The following figure depicts the graph of the velocity func-
tion of an object traveling along a coordinate line over 
the time interval . The numbers , , and satisfy

. The areas of the regions , , , and
are , , , and respectively. Assume that the object

is located at the origin at .t � a
A4A3A2A1S4

S3S2S1a � c � d � e � b
edc[a, b]

√

4.4 CONCEPT QUESTIONS



0

S1

S4
S2

S3

a c d e b

√ (ft/sec)

t (sec)

a. Write the displacement of the object at , ,
, and (i) in terms of , , , and and

(ii) in terms of definite integrals.
b. Write the distances covered by the object over the time

intervals and . Express your answer using ,
, , and and also using definite integrals.A4A3A2

A1[a, b][a, d]

A4A3A2A1t � bt � e
t � dt � c
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Videos for selected exercises are available online at www.academic.cengage.com/login.V

1. The graph of a function on the interval is shown in
the figure. Compute the Riemann sum for on using
four subintervals of equal length and choosing the evaluation
points to be (a) the left endpoints, (b) the right endpoints,
and (c) the midpoints of the subintervals.

2. The graph of a function on the interval is shown
in the figure. Compute the Riemann sum for on 
using six subintervals of equal length and choosing the eval-
uation points to be (a) the left endpoints, (b) the right end-
points, and (c) the midpoints of the subintervals.

0

1

2

�1

�1�2

�2

x1 2 3 4

y

[�2, 4]t

[�2, 4]t

1

2

3

4

5

�1

�2

�3

�4

x1 2 3 4 5 6 7 8

y

[0, 8]f
[0, 8]f In Exercises 3–6 you are given a function defined on an 

interval , the number of subintervals of equal length
, and the evaluation points in . 

(a) Sketch the graph of and the rectangles associated with the
Riemann sum for on , and (b) find the Riemann sum.

3. , , , is the midpoint

4. , , , is the left endpoint

5. , , , is the right endpoint

6. , , , is the right endpoint

In Exercises 7–12, use Equation (2) to evaluate the integral.

7. 8.

9. 10.

11. 12.

In Exercises 13–16, the given expression is the limit of a 
Riemann sum of a function on . Write this expression 
as a definite integral on .

13. ,

14. ,

15. ,

16. , C0, p2 Dlim
n→�

 a
n

k�1
ck(cos ck)�x

[1, 2]lim
n→�

 a
n

k�1
 

2ck

c2
k � 1

 �x

[0, 3]lim
n→�

 a
n

k�1
2ck(1 � ck)

2�x

[�3, �1]lim
n→�

 a
n

k�1
(4ck � 3)�x

[a, b]
[a, b]f

�
1

�2
(x3 � 2x) dx�

2

1
(3 � 2x2) dx

�
1

�1
(2x � 1) dx�

3

�1
(x � 2) dx

�
2

�1
x2 dx�

2

0
x dx

ck n � 5C0, 5p4 Df(x) � 2 sin x

ckn � 6[0, 3]f(x) � 1x � 1

ckn � 6[�1, 2]f(x) � �2x � 1

ckn � 4[0, 2]f(x) � 2x � 3

[a, b]f
f

[xk�1, xk]ck�x � (b � a)>n n[a, b]
f

4.4 EXERCISES
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17. Use the graph of shown in the figure to evaluate the inte-
gral by interpreting it geometrically.

a. b.

c. d.

18. The graph of shown in the figure consists of straight line
segments and a semicircle. Evaluate each integral by inter-
preting it geometrically.

a. b.

c. d.

In Exercises 19–26 you are given a definite integral .
Make a sketch of on . Then use the geometric interpreta-
tion of the integral to evaluate it.

19. 20.

21. 22.

23. 24.

25. 26. �
2

0
2�x2 � 2x dx�

3

0
�29 � x2 dx

�
2

�2
24 � x2 dx�

2

�1

�x � 1 � dx

�
2

�1

�x � dx�
3

0
(�3x � 6) dx

�
3

�2
(2x � 1) dx�

4

�2
3 dx

[a, b]f
�b

a f(x) dx

�
8

�4
 f(x) dx�

8

5
f(x) dx

�
5

1
f(x) dx�

1

�4
 f(x) dx

2

4

5

1

3

�2

�3

�1
�1�4 �3 �2 x2 4 6 81 3 5 7

y

f

�
9

�4
 f(x) dx�

9

4
f(x) dx

�
4

�1
 f(x) dx�

�1

�4
f(x) dx

2

4

1

3

�2

�3

�1
�1�4 �3 �2 x2 4 6 81 3 5 7 9 10

y

f 27. Given that and , evaluate
the following integrals.

a. b.

c. d.

28. Given that and , evaluate the
following integrals.

a. b.

c. d.

29. Given that and , evaluate
the following integrals.

a.

b.

c.

30. Given that and , evaluate the
following integrals.

a.

b.

c.

31. Evaluate .

32. Evaluate if it is known that .

33. Show that by interpreting the definite inte-
gral geometrically.

34. Show that

by interpreting the definite integral geometrically.

In Exercises 35–38, use the properties of the integral to prove
the inequality without evaluating the integral.

35. 36. �
1

0
x2 dx � �

1

0
1x dx�

1

0
 
2x3 � x

x2 � 1
dx 	 0

0 � x � a

�
x

0
2a2 � t 2 dt �

1

2
 x2a2 � x2 �

a2

2
sin�1ax

a
b

�p0 cos 2x dx � 0

�2
5 f(x) dx � �10�5

2 f(x) dx

�2
2 23 x2 � x � 1 dx

�
0

2
3f(x) dx � �

�2

0
2f(x) dx

�
0

�2
[ f(x) � 3] dx

�
0

2
f(x) dx

�2
0 f(x) dx � 2�2

�2 f(x) dx � 3

�
3

�1
[3f(x) � 2t(x)] dx

�
3

�1
[t(x) � f(x)] dx

�
3

�1
[ f(x) � t(x)] dx

�3
�1 t(x) dx � �2�3

�1 f(x) dx � 5

�
2

2
3f(x) dx�

1

3
�2f(x) dx

�
1

6
f(x) dx�

1

3
2f(x) dx

�6
3 f(x) dx � 2�3

1 f(x) dx � 4

�
5

2
[ f(x) � 4] dx�

2

0
2f(x) dx

�
2

5
f(x) dx�

5

0
f(x) dx

�5
2 f(x) dx � �1�2

0 f(x) dx � 3



37.

38.

In Exercises 39–44, use Property 6 of the definite integral to
estimate the definite integral.

39. 40.

41. 42.

43. 44.

45. a. Plot the graph of on the interval
.

b. Prove that the area of the region above the -axis is equal
to the area of the region below the -axis.

c. Use the result of part (b) to show that 

.

46. a. Plot the graph of on the interval .
b. Prove that the area of the region above the -axis is equal

to the area of the region below the -axis.
Hint: Look at for .

c. Use the result of part (b) to show that .

47. Suppose that is continuous on and on .
Prove that .

48. Suppose that is continuous on . Prove that

Hint: .

49. Use the result of Exercise 48 to show that
, where .

Hint: Use the result of Example 3.

50. Suppose that is continuous and increasing and its graph 
is concave upward on the interval . Give a geometric
argument to show that

51. a. Plot the graphs of and using 

the viewing window .
b. Prove that .
c. Use the result of part (b) and Property 5 to show that

Hint: Use the result of Example 3.

0 � �
1

0
 

x

21 � x5
 dx �

1

2

0 � f(x) � t(x)
[0, 1] � [0, 1]

t(x) � xf(x) �
x

21 � x5

(b � a)f(a) � �
b

a

f(x) dx �
1

2
 (b � a)[ f(a) � f(b)]

[a, b]
f

0 � a � b� �b
a x sin 2x dx � � 1

2(b2 � a2)

�� f(x) � � f(x) � � f(x) �

` �
b

a

f(x) dx ` � �
b

a

� f(x) � dx

[a, b]f

�b
a f(x) dx � 0

[a, b]f(x) � 0[a, b]f

�2p
0 sin3 x dx � 0

0 � t � pf(p � t)
x

x
[0, 2p]f(x) � sin3 x

�1
�1 x2x4 � 1 dx � 0

x
x

[�1, 1]
f(x) � x2x4 � 1

�
p>2

p>4
x sin x dx�

p>4

p>6
sin x dx

�
2

0
 
x2 � 5

x2 � 2
dx�

2

�1
(x2 � 2x � 2) dx

�
3

1

1
x

dx�
2

1
21 � 2x3 dx

�
p>2

0
cos x dx � �

p>2

0
(x2 � 1) dx

�
p>4

0
sin2 x cos x dx � �

p>4

0
sin2 x dx

52. a. Plot the graphs of and using the
viewing window .

b. Prove that .
c. Use the result of part (b) and Property 5 to show that

Hint: Use the result of Example 3.
Note: The upper bound obtained here is better than that obtained
in Exercise 43.

In Exercises 53 and 54, use Property 5 to prove the inequality.

53. 54.

55. Estimate the integral using (a) Property 6 of
the definite integral and (b) the result of Exercise 50. Which
estimate is better? Explain.

56. Show that .

57. Find the constant such that is as large as
possible. Explain your answer.

58. Define the function by for in
.

a. Plot the graph of on .
b. Use the result of part (a) to find the interval where is

increasing and where is decreasing on .

59. Determine whether the Dirichlet function

is integrable on the interval . Explain.

60. Prove Properties 4, 5, and 6 of the definite integral.

In Exercises 61–66, determine whether the statement is true or
false. If it is true, explain why it is true. If it is false, explain why
or give an example to show why it is false.

61. If and are continuous on and is constant, then

62. If and are continuous on , then

63. If is continuous on , then .

64. If is continuous on and , then must
be positive on .

65. If is continuous and decreasing on , then
.

66. If is nonnegative and continuous on and
, then .�d

c f(x) dx � �b
a f(x) dxa � c � d � b
[a, b]f

(b � a)f(b) � �b
a f(x) dx � (b � a)f(a)

[a, b]f

[a, b]
f�b

a f(x) dx � 0[a, b]f

�b
a xf(x) dx � x�b

a f(x) dx[a, b]f

�
b

a

f(x) t(x) dx � c�
b

a

f(x) dxd c�
b

a

t(x) dxd
[a, b]tf

�
b

a

[ f(x) � ct(x)] dx � �
b

a

f(x) dx � c�
b

a

t(x) dx

c[a, b]tf

[0, 1]

f(x) � e1 if x is rational

0 if x is irrational

(�1, 2)F
F

[�1, 2]f(t) � t 4 � 2t 3
[�1, 2]

xF(x) � �x
�1 (t 4 � 2t 3) dtF

�b
0 (21x � x) dxb

�b
a x2 dx � 1

3(b3 � a3)

�1
0 21 � x2 dx

�
p>4

0
x sin x dx �

p3

192�
4

2
2x4 � x dx 	

56

3

0 � �
p>4

p>6
sin x dx �

5p2

288

0 � f(x) � t(x)
C0, p2 D � [0, 2]

t(x) � xf(x) � sin x
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4.5 The Fundamental Theorem of Calculus

How Are Differentiation and Integration Related?
In Section 4.4 we defined the definite integral of a function by taking the limit of its
Riemann sums. But as we saw, the actual process of finding the definite integral of a
function based on this definition turned out to be rather tedious even for simple func-
tions. This is reminiscent of the process of finding the derivative of a function by find-
ing the limit of the difference quotient of the function. Fortunately, there are better and
easier ways of evaluating definite integrals.

In this section we will look at what is undoubtedly the most important theorem in
calculus. Because it establishes the relationship between differentiation and integration,
it is called the Fundamental Theorem of Calculus. It was discovered independently
by Sir Isaac Newton (1643–1727) in England and by Gottfried Wilhelm Leibniz (1646–
1716) in Germany. Before looking at this theorem, we need the results of the follow-
ing theorem.

The Mean Value Theorem for Definite Integrals
Suppose that the velocity of a maglev traveling along a straight track is ft/sec for 
between and , where is measured in seconds. What is the average veloc-
ity of the maglev over the time interval ?

To answer this question, let’s assume that is continuous on . We begin by
partitioning the interval into equal subintervals of length

by means of equally spaced points

Next, we choose the evaluation points , , , lying in the subintervals ,
, , , respectively, and compute the velocities of the maglev at these

points:

, , ,

The average of these numbers

gives an approximation of the average velocity of the maglev over . Since

we can rewrite the expression in the form

By letting get larger and larger, we are approximating the average velocity of
the maglev using measurements of its velocity at more and more points over smaller

n

1
n

 a
n

k�1
√(ck) �

1

b � a

�t

 a
n

k�1
√(ck) �

1

b � a
 a

n

k�1
√(ck)�t

n �
b � a

�t

[a, b]

√(c1) � √(c2) � p � √(cn)

n
�

1
n

 a
n

k�1
√(ck)

n

√(cn)p√(c2)√(c1)

[tn�1, tn]p[t1, t2]
[t0, t1]cnpc2c1

a � t0 � t1 � t2 � p � tn � b

�t �
b � a

n

n[a, b]
[a, b]√

[a, b]
tt � bt � a

t√(t)
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and smaller time intervals. Intuitively, the approximations should improve with increas-
ing . This suggests that we define the average velocity of the maglev over the time
interval to be

But by the definition of the definite integral, we have

Thus, we are led to define the average velocity of the maglev over the time interval
to be

More generally, we have the following definition of the average value of a function 
over an interval .[a, b]

f

1

b � a
 �

b

a

√(t) dt

[a, b]

 �
1

b � a
 �

b

a

√(t) dt

 lim
n→�

1

b � a
 a

n

k�1
√(ck)�t �

1

b � a
lim

n→�
 a

n

k�1
√(ck)�t

lim
n→�

1

b � a
 a

n

k�1
√(ck)�t

[a, b]
n

If we assume that is nonnegative, then we have the following geometric interpre-
tation for the average value of a function over . Referring to Figure 1, we see that

is the height of the rectangle with base lying on the interval and having the
same area as the area of the region under the graph of on .[a, b]f

[a, b]fav

[a, b]
f

DEFINITION Average Value of a Function

If is integrable on , then the average value of over is the number

(1)fav �
1

b � a
 �

b

a

f(x) dx

[a, b]f[a, b]f

FIGURE 1
The area of the rectangle is

area 
of the region under the graph of .f

(b � a)fav � �b
a f(x) dx � 0 a b

fav

y

y � f(x)

x

Returning to the example involving the motion of the maglev, we see that if 
we assume that on , then the distance covered by the maglev over the
time period is , the area of the region under the graph of on .
But this area is equal to , where is the average value of the velocity func-
tion . Thus, we can cover the distance traveled by the maglev at a speed of ft/sec
from to by traveling at a constant speed, namely, at the average speed 

ft/sec over the same time interval.√av

t � bt � a
√(t)√

√av(b � a)√av

[a, b]√�b
a √(t) dt[a, b]

[a, b]√(t) 	 0
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FIGURE 2

fav �
1

b � a
 �

b

a

f(x) dx

THEOREM 1 The Mean Value Theorem for Integrals

If is continuous on , then there exists a number in such that

f(c) �
1

b � a
 �

b

a

f(x) dx

[a, b]c[a, b]f

PROOF Since is continuous on the interval , the Extreme Value Theorem tells
us that attains an absolute minimum value at some number in and an absolute
maximum value at some number in . So for all in .

By Property 6 of integrals we have

If , then, upon dividing by , we obtain

Because the number

lies between and , the Intermediate Value Theorem guarantees the existence of at
least one number in such that

as was to be shown.

f(c) �
1

b � a
 �

b

a

f(x) dx

[a, b]c
Mm

1

b � a
 �

b

a

f(x) dx

m �
1

b � a
 �

b

a

f(x) dx � M

(b � a)b 
 a

m(b � a) � �
b

a

f(x) dx � M(b � a)

[a, b]xm � f(x) � M[a, b]M
[a, b]mf

[a, b]f

EXAMPLE 1 Find the average value of over the interval [ .

Solution Using Equation (1) with , , and , we find

Use the result of Example 2 in Section 4.4.

If you look at Figure 1 again, you will see that there is a number on such
that . (See Figure 2.)

The following theorem guarantees that is always attained at (at least) one num-
ber in an interval if is continuous.f[a, b]

fav

f(c) � fav

[a, b]c

 �
5

3

 �
1

4
 a20

3
b

 �
1

3 � (�1)
  �

3

�1
(4 � x2) dx

 fav �
1

b � a
  �

b

a

f(x) dx

f(x) � 4 � x2b � 3a � �1

�1, 3]f(x) � 4 � x2

0 a c b

fav � f(c)

f(c)

y

x

y � f(x)
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EXAMPLE 2 Find the value of guaranteed by the Mean Value Theorem for Inte-
grals for on the interval .

Solution The function is continuous on the interval . Therefore,
the Mean Value Theorem for Integrals states that there is a number in such that

where and . Thus,

but

See Example 5a in Section 4.4.

So we have

or . (See Figure 3.)

The Fundamental Theorem of Calculus, Part I
Suppose that is a continuous, nonnegative function defined on the interval . If 
is any number in , let us put

(We use the dummy variable because we are using to denote the upper limit of inte-
gration.) Since is nonnegative, we can interpret to be the area of the region under
the graph of on , as shown in Figure 4. Since the number is unique for each

in , we see that is a function of with domain .
Let’s look at a specific example. Suppose that on the interval . If we

use the result of Example 3 in Section 4.4, with and , we obtain

This result is also evident if you refer to Figure 5 and interpret the integral as
the area of the shaded triangle. Observe that

so is an antiderivative of . Now if this result,

is true for all continuous functions , then it is quite astounding because it provides a
link between the processes of differentiation and integration. Roughly speaking, this

f

d

dx
 �

x

a

f(t) dt � f(x)

f(x) � xA(x)

A¿(x) �
d

dx
 �

x

0
t dt �

d

dx
 a1

2
 x2b � x � f(x)

�x
0 t dt

0 � x � 1A(x) � �
x

0
t dt �

1

2
 x2

b � xa � 0
[0, 1]f(x) � x

[a, b]xA[a, b]x
A(x)[a, x]f

A(x)f
xt

A(x) � �
x

a

f(t) dt

[a, b]
x[a, b]f

c � 1

1

2
 (4) � 4 � 2c

�
2

0
(4 � 2x) dx � 4

1

2 � 0
 �

2

0
(4 � 2x) dx � 4 � 2c

b � 2a � 0

1

b � a
 �

b

a

f(x) dx � f(c)

[0, 2]c
[0, 2]f(x) � 4 � 2x

[0, 2]f(x) � 4 � 2x
c

FIGURE 3
The number in gives

as guaranteed by the Mean
Value Theorem for Integrals.
f(c) � fav

[0, 2]c � 1

0 1 2 3

f(1) � fav

y � 4 � 2x

c � 1

1

2

3

4

y

x

FIGURE 4
gives the area of the

region under the graph of on .[a, x]f
A(x) � �x

a f(t) dt

0 a x b

y � f(x)

A(x)

y

x

y � t

0

y

tx

FIGURE 5
The area of the triangle is

.1
2 (x)(x) � 1

2 x
2
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equation says that differentiation undoes what integration does: The two operations are
inverses of one another. Thus, the two seemingly unrelated problems of differential cal-
culus (that of finding the slope of a tangent line to a curve) and integral calculus (that
of finding the area of the region bounded by a curve) are indeed intimately related.

As it turns out, the result is true. Because of its importance, it is called the Funda-
mental Theorem of Calculus.

THEOREM 2 The Fundamental Theorem of Calculus, Part 1

If is continuous on , then the function defined by

is differentiable on , and

(2)F¿(x) �
d

dx
 �

x

a

f(t) dt � f(x)

(a, b)

a � x � bF(x) � �
x

a

f(t) dt

F[a, b]f

PROOF Fix in , and suppose that is in , where . Then

By Property 3

By the Mean Value Theorem for Integrals there exists a number between and 
such that

Therefore,

Next, observe that as approaches 0, the number , which is squeezed between and
, approaches , and by continuity, approaches . Therefore,

which is the desired result.

F¿(x) � lim
h→0

F(x � h) � F(x)

h
� lim

h→0

1

h
 �

x�h

x

f(t) dt � lim
h→0

f(c) � f(x)

f(x)f(c)xx � h
xch

F(x � h) � F(x)

h
�

1

h
 �

x�h

x

f(t) dt �
f(c) � h

h
� f(c)

�
x�h

x

f(t) dt � f(c) � h

x � hxc

 � �
x�h

x

f(t) dt

 � �
x

a

f(t) dt � �
x�h

x

f(t) dt � �
x

a

f(t) dt

 F(x � h) � F(x) � �
x�h

a

f(t) dt � �
x

a

f(t) dt

h � 0(a, b)x � h(a, b)x

EXAMPLE 3 Find the derivative of the function:

a. b. G(x) � �
3

x

21 � t 2 dtF(x) � �
x

�1
 

1

1 � t 2
 dt
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Solution
a. The integrand

is continuous everywhere. Using the Fundamental Theorem of Calculus, Part 1,
we find

b. The integrand is continuous everywhere. Therefore,

 � �21 � x2

 � �
d

dx
 �

x

3
21 � t 2 dt

�
b

a

f(x) dx � ��
a

b

f(x) dx G¿(x) �
d

dx
 �

3

x

21 � t 2 dt �
d

dx
 c��

x

3
21 � t 2 dtd

21 � t 2

F¿(x) �
d

dx
 �

x

�1
 

1

1 � t 2
 dt � f(x) �

1

1 � x2

f(t) �
1

1 � t 2

EXAMPLE 4 If , what is ?

Solution Notice that the upper limit of integration is not , so the Fundamental The-
orem of Calculus, Part 1, is not applicable as the problem now stands. Let’s put

so

Using the Chain Rule and the Fundamental Theorem of Calculus, Part 1, we have

Fundamental Theorem of Calculus, Part 2
The following theorem, which is a consequence of Part 1 of the Fundamental Theo-
rem of Calculus, shows how to evaluate a definite integral by finding an antiderivative
of the integrand, rather than relying on evaluating the limit of a Riemann sum, thus
simplifying the task greatly.

 � (cos u2)(3x2) � 3x2 cos x6

 
dy

dx
�

dy

du
�

du

dx
� c d

du
 �

u

0
cos t 2 dtd �

du

dx

du

dx
� 3x2u � x3

x

dy

dx
y � �

x3

0
cos t 2 dt

THEOREM 3 The Fundamental Theorem of Calculus, Part 2

If is continuous on , then

(3)

where is any antiderivative of , that is, .F¿ � ffF

�
b

a

f(x) dx � F(b) � F(a)

[a, b]f
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PROOF Let . By Theorem 2 we know that is an antiderivative 
of . If is any other antiderivative of , then Theorem 1 in Section 4.1 tells us that 
and differ by a constant. In other words, . To determine , we put

to obtain

Therefore, evaluating at , we have

from which we conclude that

When applying the Fundamental Theorem of Calculus, it is convenient to use the
notation

CF(x) Db
a

� F(b) � F(a)

F(b) � F(a) � �
b

a

f(x) dx

F(b) � G(b) � C � �
b

a

f(t) dt � F(a)

bF

�
a

a

f(x) dx � 0F(a) � G(a) � C � �
a

a

f(t) dt � C � C

x � a
CF(x) � G(x) � CG

FfFf
GG(x) � �x

a f(t) dt

“ evaluated at minus 
evaluated at .”a

F(x)bF(x)

For example, by using this notation, Equation (3) is written

Also, by the Fundamental Theorem of Calculus, if is any antiderivative
of , then

This result shows that we can drop the constant of integration when we use the Fun-
damental Theorem of Calculus.

From now on, thanks to the Fundamental Theorem of Calculus, Part 2, we can use
our knowledge for finding antiderivatives to help us evaluate definite integrals.

 � F(b) � F(a) � CF(x) Db
a

 � [F(b) � C] � [F(a) � C]

 �
b

a

f(x) dx � CF(x) � C Db
a

f
F(x) � C

�
b

a

f(x) dx � CF(x) Db
a

� F(b) � F(a)

EXAMPLE 5 Evaluate

a. b. c.

Solution

a.

b. �
4

0
21x dx � �

4

0
2x1>2 dx � c4

3
 x3>2d4

0
�

4

3
 (4)3>2 �

4

3
 (0) �

32

3

 � a4 �
16

3
� 2b � a1

4
�

2

3
� 1b �

1

12

 �
2

1
(x3 � 2x2 � 1) dx � c1

4
 x4 �

2

3
 x3 � xd2

1

�
p>2

0
cos x dx�

4

0
21x dx�

2

1
(x3 � 2x2 � 1) dx
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FIGURE 6

�
2

�2
f(x) dx � �

0

�2
f(x) dx � �

2

0
f(x) dx

EXAMPLE 7 Evaluate .

Solution Method I: Consider the corresponding indefinite integral

Let , so that or . Substituting these quantities into
the integral gives

Armed with the knowledge of the antiderivative of the function , we
can evaluate the given integral as follows:

Solution Method II: Changing the Limits of Integration As before, we make the
substitution , so that or . Next, we make the follow-
ing intuitive observation: The given integral has lower and upper limits of integration
0 and 2, respectively, and hence a range of integration given by the interval . In[0, 2]

x dx � 1
2 dudu � 2x dxu � x2 � 4

�
2

0
x2x2 � 4 dx � c1

3
 (x2 � 4)3>2d2

0
�

1

3
 (8)3>2 �

1

3
 (4)3>2 �

8

3
 (212 � 1)

f(x) � x2x2 � 4

I � � 1

2
 u1>2 du �

1

3
 u3>2 � C �

1

3
 (x2 � 4)3>2 � C

x dx � 1
2 dudu � 2x dxu � x2 � 4

I � � x2x2 � 4 dx � � x(x2 � 4)1>2 dx

�
2

0
x2x2 � 4 dx

EXAMPLE 6 Evaluate , where

Solution The graph of is shown in Figure 6. Observe that is continuous on .
Since is defined by different rules for in the two subintervals and , we
use Property 3 of definite integrals to write

Evaluating Definite Integrals Using Substitution
The next two examples show how the method of substitution can be used to help us
evaluate definite integrals.

 � 0 � a8

3
� 2b � (4 � 2) � 0 �

16

3

 � c�1

3
 x3 � xd0

�2
� c1

4
 x4 � xd2

0

 � �
0

�2
(�x2 � 1) dx � �

2

0
(x3 � 1) dx

 �
2

�2
f(x) dx � �

0

�2
f(x) dx � �

2

0
f(x) dx

[0, 2][�2, 0)xf
[�2, 2]ff

f(x) � e�x2 � 1 if x � 0

x3 � 1 if x 	 0

�
2

�2
f(x) dx

c.

The next example shows how to evaluate the definite integral of a function that is
defined piecewise.

�
p>2

0
cos x dx � Csin x Dp>2

0
� 1 � 0 � 1

1

5

9

�3

x2�2

y

y � f(x)
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making the substitution , the original integral is transformed into another
integral in which the integration is carried out with respect to the new variable .

To obtain the new limits of integration, we note that if , then .
This gives the lower limit of integration when integrating with respect to . Similarly,
if , then , and this gives the upper limit of integration. Thus, the
range of integration when the integration is performed with respect to is . In
view of this, we can write

as was obtained earlier.

 �
1

3
 (8)3>2 �

1

3
 (4)3>2 �

8

3
 (212 � 1)

 �
2

0
x(x2 � 4)1>2 dx � �

8

4
 
1

2
 u1>2 du � c1

3
 u3>2d8

4

[4, 8]u
u � 4 � 4 � 8x � 2

u
u � 0 � 4 � 4x � 0

u
u � x2 � 4

EXAMPLE 8 Evaluate .

Solution Let , so that or . Also, if
, then , and if , then , giving 1 and 0 as the lower and upper

limits of integration with respect to . Making these substitutions, we obtain

Note Do not let the fact that the limits of integration with respect to run from 1 to
0 alarm you. This is not uncommon when we integrate using the method of substitu-
tion. Of course,

as you can verify.

Definite Integrals of Odd and Even Functions
The following theorem makes use of the symmetry properties of the integrand to help
us evaluate a definite integral.

�
b

a

f(x) dx � ��
a

b

f(x) dx�
0

1
u3a�1

2
 dub � ��

1

0
u3a�1

2
 dub

u

 � 0 � a�1

8
b �

1

8

 � �
1

8
 u4 `0

1

 �
p>4

0
cos3 2x sin 2x dx � �

0

1
u3a�1

2
 dub

u
u � 0x � p>4u � 1x � 0

sin 2x dx � �1
2 dudu � �2 sin 2x dxu � cos 2x

�
p>4

0
cos3 2x sin 2x dx

THEOREM 4 Integrals of Odd and Even Functions

Suppose that is continuous on .

a. If is even, then .

b. If is odd, then .�
a

�a

f(x) dx � 0f

�
a

�a

f(x) dx � 2�
a

0
f(x) dxf

[�a, a]f
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PROOF We write

(4)

For the integral

let’s make the substitution , so that . Also, if , then , and
if , then . So

Therefore, Equation (4) can be written as

(5)

If is even, then , so, using Equation (5), we have

If is odd, then , so Equation (5) gives

Figure 7 gives a geometric interpretation of Theorem 4. In Figure 7a the area of the
region under the graph of the nonnegative function from to 0 is the same as that
under the graph of from 0 to , so the area of the region under the graph of from 
to is equal to twice that from 0 to . But each of these areas is given by an appropriate
integral, leading to the first result in the theorem. In Figure 7b the area of the region above
the graph of and under the -axis from to 0 is equal to the area of the region under
the graph of from 0 to ; the former is given by the negative of the integral from 0 to .aaf

�axf

aa
�afaf

�af

�
a

�a

f(x) dx � �
a

0
[�f(x) � f(x)] dx � 0

f(�x) � �f(x)f

�
a

�a

f(x) dx � �
a

0
[ f(x) � f(x)] dx � 2�

a

0
f(x) dx

f(�x) � f(x)f

�
a

�a

f(x) dx � �
a

0
f(�x) dx � �

a

0
f(x) dx � �

a

0
[ f(�x) � f(x)] dx

�
�a

0
f(x) dx � �

a

0
f(�u)(�du) � ��

a

0
f(�x) dx

u � ax � �a
u � 0x � 0du � �dxu � �x

�
�a

0
f(x) dx

�
a

�a

f(x) dx � �
0

�a

f(x) dx � �
a

0
f(x) dx � ��

�a

0
f(x) dx � �

a

0
f(x) dx

FIGURE 7
The integral of (a) an even function 

and (b) an odd function

EXAMPLE 9 Evaluate

a. b.

Solution
a. Here, , so is even. Therefore, by Theorem 4,

�
1

�1
(x2 � 2) dx � 2�

1

0
(x2 � 2) dx � 2a1

3
 x3 � 2xb `1

0
� 2a1

3
� 2b �

14

3

ff(�x) � (�x)2 � 2 � x2 � 2 � f(x)

�
2

�2
 

sin x

21 � x2
 dx�

1

�1
(x2 � 2) dx

0

(a)

a�a

y

x

0
f(x) dx � 2 f(x) dx

0

(b)

a�a

y

x

�a

ay f(x) dx � 0
�a

ayay



414 Chapter 4 Integration

b. Here,

so is odd. Therefore, by Theorem 4,

The Definite Integral as a Measure of Net Change
In real-world applications we are often interested in the net change of a quantity over
a period of time. For example, suppose that is a function giving the population,

, of a city at time . Then the net change in the population over the period from
to is given by

Population at minus population at 

If has a continuous derivative on , then we can invoke the Fundamental The-
orem of Calculus, Part 2, to write

is an antiderivative of .

Thus, if we know the rate of change of the population at any time , then we can cal-
culate the net change in the population from to by evaluating an appropri-
ate definite integral.

t � bt � a
t

P¿PP(b) � P(a) � �
b

a

P¿(t) dt

[a, b]P¿P

t � at � bP(b) � P(a)

t � bt � a
tP(t)

P

�
2

�2

sin x

21 � x2
 dx � 0

f

f(�x) �
sin(�x)

21 � (�x)2
� �

sin x

21 � x2
� �f(x)

EXAMPLE 10 Population Growth in Clark County Clark County in Nevada, dominated
by Las Vegas, is one of the fastest-growing metropolitan areas in the United States.
From 1970 through 2000 the population was growing at the rate of

people per decade, where corresponds to the beginning of 1970. What was the
net change in the population over the decade from the beginning of 1980 to the begin-
ning of 1990?
Source: U.S. Census Bureau.

Solution The net change in the population over the decade from the beginning of
1980 to the beginning of 1990 is given by , where denotes
the population in the county at time . But , so

so the net change is 278,371 people.

 � 278,371

 � [44,560 � 89,394 � 234,633]

 � [44,560(23) � 89,394(22) � 234,633(2)]

 � C44,560t 3 � 89,394t 2 � 234,633t D2
1

 � �
2

1
(133,680t 2 � 178,788t � 234,633) dt

 P(2) � P(1) � �
2

1
P¿(t) dt � �

2

1
R(t) dt

P¿ � Rt
PP(2) � P(1)(t � 2)(t � 1)

t � 0

0 � t � 4R(t) � 133,680t 2 � 178,788t � 234,633
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More generally, we have the following result. We assume that has a continuous
derivative, even though the integrability of is sufficient.f ¿

f

As another example of the net change of a function, let’s consider the motion of
an object along a straight line. Suppose that the position function and the velocity func-
tion of the object are and , respectively. Since , Equation (6) gives

the net change in the position of the object over the time interval . This net change
of position is the displacement of the object between and . (Recall that this
result was also discussed in Section 4.4.)

To calculate the distance covered by the object between and , we
observe that if on an interval , then the distance covered by the object
between and is given by its displacement . On the other hand, if

on an interval , then the distance covered by the object between 
and is given by the negative of its displacement, that is, by . But

. Since

we see that in either case the distance covered by the object is obtained by integrating
the speed of the object. Therefore, the distance covered by an object between

and is

(7)

Figure 8 gives a geometric interpretation of the displacement of an object and the
distance covered by an object.

�
b

a

�√(t) � dt

t � bt � a
�√(t) �

�√(t) � � e√(t) if √(t) 	 0

�√(t) if √(t) � 0

��d
c √(t) dt � �d

c �√(t) dt
��d

c √(t) dtt � d
t � c[c, d]√(t) � 0

�d
c √(t) dtt � dt � c

[c, d]√(t) 	 0
t � bt � a

t � bt � a
[a, b]

s(b) � s(a) � �
b

a

s¿(t) dt � �
b

a

√(t) dt

s¿(t) � √(t)√s

FIGURE 8
Displacement is area of

area of area of , and
distance covered is area
of area of area of .S3S2 �S1 �

�b
a

�√(t) � dt �
S3S2 �S1 �

�b
a √(t) dt �

0

S1

S2

S3

a b

√

t

EXAMPLE 11 A car moves along a straight road with velocity function

where is measured in feet per second.

a. Find the displacement of the car between and .
b. Find the distance covered by the car during this period of time.

Solution
a. Using Equation (6), we see that the displacement is

That is, at the car is ft to the right of its position at .t � 1101
2t � 4

 � c1
3

 t 3 �
1

2
 t 2 � 6td4

1
� 10

1

2

 s(4) � s(1) � �
4

1
√(t) dt � �

4

1
(t 2 � t � 6) dt

t � 4t � 1

√(t)

0 � t � 10√(t) � t 2 � t � 6

Net Change Formula

The net change in a function over an interval is given by

(6)

provided that is continuous on .[a, b]f ¿

f(b) � f(a) � �
b

a

f ¿(x) dx

[a, b]f
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FIGURE 9
if , and 
if .t � [2, 4]√(t) 	 0

t � [1, 2]√(t) � 0

b. Writing , we see that on and
on . (See Figure 9.) Using the integral in (7), we see that the dis-

tance covered by the car between and is given by

or ft.145
6

 � 14
5

6

 � c�1

3
 t 3 �

1

2
 t 2 � 6td2

1
� c1

3
 t 3 �

1

2
 t 2 � 6td4

2

 � �
2

1
(�t 2 � t � 6) dt � �

4

2
(t 2 � t � 6) dt

 �
4

1

�√(t) � dt � �
2

1
(�√(t)) dt � �

4

2
√(t) dt

t � 4t � 1
[2, 4]√(t) 	 0

[1, 2]√(t) � 0√(t) � t 2 � t � 6 � (t � 2)(t � 3)

1. Define the average value of a function over an interval
. Give a geometric interpretation.

2. State the Mean Value Theorem for Integrals. Give a geo-
metric interpretation.

3. State both parts of the Fundamental Theorem of Calculus.
4. State the Net Change Formula, and use it to answer the fol-

lowing:
a. If water is flowing through a pipe at the rate of ft3/min,

what does measure, where and are meas-
ured in minutes with ?t1 � t2

t2t1� t2
t1

R(t) dt
R

[a, b]
f b. If an object is moving along a straight line with an accel-

eration of ft/sec2, what does measure if
?

5. Suppose that a particle moves along a coordinate line with 
a velocity of ft/sec. Explain the difference between

and .�b
a

�√(t) � dt�b
a √(t) dt

√(t)

t1 � t2

� t2
t1

a(t) dta(t)

4.5 CONCEPT QUESTIONS

Videos for selected exercises are available online at www.academic.cengage.com/login.V

1. Let .
a. Use Part 1 of the Fundamental Theorem of Calculus to

find .
b. Use Part 2 of the Fundamental Theorem of Calculus to

integrate to obtain an alternative expression for
.

c. Differentiate the expression for found in part (b),
and compare the result with that obtained in part (a).
Comment on your result.

2. Repeat Exercise 1 with .

In Exercises 3–12, find the derivative of the function.

3. 4.

5. 6.

7. 8. G(x) � �
x2

0
t sin t dtF(x) � �

p

x

sin 2t dt

h(x) � �
3

x

 
t

1t � 1
 dtt(x) � �

x

2
 

1

t 2 � 1
 dt

G(x) � �
x

�1
t 2t 2 � 1 dtF(x) � �

x

0
13t � 5 dt

G(x) � �x
0 13t � 1 dt

F(x)
F(x)

�x
2 t 2 dt

F¿(x)

F(x) � �x
2 t 2 dt

9. 10.

11. 12.

In Exercises 13–32, evaluate the integral.

13. 14.

15. 16.

17. 18.

19. 20.

21. 22. �
0

1
(t 1>2 � t 5>2) dt�

9

4
 
x � 1

1x
 dx

�
2

1
 
3x4 � 2x2 � 1

2x2  dx�
4

1
 

1

1x
 dx

�
2

1
 
3

x3 dx�
1

�2
(3t � 2)2 dt

�
2

0
(2 � 4u � u2) du�

1

�1
(t 2 � 4) dt

�
0

�2
(2x � 3) dx�

2

�3
4 dx

G(x) � �
5

1x

 
sin t 2

t
 dtF(x) � �

cos x

1
 

t 2

t � 1
 dt

h(x) � �
x2

0
sin t 2 dtt(x) � �

1x

2

sin t

t
 dt

4.5 EXERCISES

0

2

6

10

14

�6

t1 2 3 4

√

√ � t2 � t � 6

www.academic.cengage.com/login
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23. 24.

25. 26.

27. 28.

29. 30.

31. where 

32. where 

In Exercises 33–48, evaluate the integral.

33. 34.

35. 36.

37. 38.

39. 40.

41. 42.

43. 44.

45. 46.

47.

48.

49. a. Prove that .

b. Use a calculator or a computer to find the value of the
integral accurate to five decimal places.

50. a. Prove that .

b. Use a calculator or a computer to find the value of the
integral accurate to five decimal places.

In Exercises 51–56, find the area of the region under the graph
of on .

51. ;

52. ; [0, 1]f(x) � x3 � x

[�1, 2]f(x) � x2 � 2x � 2

[a, b]f

0 � �
1

0
 

dx

24 � 3x � x2
�

2

3

0 � �
1

0
 

x5

23 1 � x4
 dx �

1

6

�
p>4

�p>4
 

tan3 x

1 � x2 dx

�
3

0
 

x

1x � 1 � 15x � 1
 dx

�
p

�p

 
x2 sin x

21 � x2
 dx�

2>p

1>p
 
sin 1x
x2  dx

�
p>2

p>6
csc2 u cot u du�

1>4

�1>4
sec pt tan pt dt

�
p>2

0
1cos u sin u du�

p

p>2
cosa1

2
 xb  dx

�
p>2

p>4
sin 2x dx�

4

1
 

1

1x(1x � 1)2 dx

�
2

1
 

x

2x2 � 1
 dx�

4

1
13 5 � u du

�
5

1
12x � 1 dx�

2

1
8t(t 2 � 1)7 dt

�
2

0
(t � 1)0.2 dt�

1

0
(3 � 2x)4 dx

f(x) � ex2 � 1 if x � 0

cos x if x 
 0�
p>2

�p

f(x) dx

f(x) � e�x � 1 if x � 0

2x2 � 1 if x 
 0�
1

�1
f(x) dx

�
p

0
2sin x � sin3 x dx�

p>3

p>4
 

dx

sin2 x cos2 x

�
p

0

�cos x � dx�
p

0
sin 2x cos x dx

�
p>4

p>6
csc u cot u du�

p>4

p>6
sec2 t dt

�
p>2

0
(sin x � 1) dx�

0

2
1x(x � 1)(x � 2) dx 53. ;

54. ;

55. ;

56. ;

57. Let .
a. Plot the graph of .
b. Find the -intercepts of accurate to three decimal places.
c. Use the results of parts (a) and (b) to find the area of the

region under the graph of and above the -axis.

58. Let .
a. Plot the graph of .
b. Find the -intercepts of accurate to three decimal

places.
c. Use the results of parts (a) and (b) to find the area of the

region under the graph of and above the -axis.

In Exercises 59–62, evaluate the limit by interpreting it as the
limit of a Riemann sum of a function on the interval .

59. ;

60. ;

61. ;

62. ;

In Exercises 63–68, find the average value of the function
over the indicated interval.

63. ;

64. ;

65. ;

66. ;

67. ;

68. ;

In Exercises 69–72, (a) find the number whose existence is
guaranteed by the Mean Value Theorem for Integrals for the
function on , and (b) sketch the graph of on and
the rectangle with base on that has the same area as that
of the region under the graph of .

69. ;

70. ;

71. ;

72. ; C�p3 , p3 Df(x) � cos x

[1, 6]f(x) � 1x � 3

[0, 2]f(x) � x3

[0, 1]f(x) � x2 � 2x

f
[a, b]

[a, b]f[a, b]f

c

Cp3 , p2 Df(x) � csc2 x

[0, p]f(x) � sin x

[0, 3]f(x) �
x

2x2 � 1

[0, 2]f(x) � x2x2 � 4

[0, 4]f(x) � 1 � 1x

[�1, 2]f(x) � 2x2 � 3x

fav

C0, p2 Dlim
n→�

p

2n
 a

n

k�1
cosakp

2n
b

[2, 4]lim
n→�

2
n

 a
n

k�1
a2 �

2k

n
b2

[0, 1]lim
n→�

1
n

 a
n

k�1
ak

n
b1>3

[0, 1]lim
n→�

1

n5 a
n

k�1
k4

[a, b]

xf

fx
f

f(x) � �x2 � x � cos x

xf

fx
f

f(x) � �2x4 � x2 � 2x

C�p2 , p Df(x) � � sin x �
C0, p4 Df(x) � sec2 x

[0, 3]f(x) � 2 � 1x � 1

[1, 2]f(x) �
1

x2

cas

cas
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73. Distance Covered by a Car A car moves along a straight road
with velocity function

where is measured in feet per second.
a. Find the displacement of the car between and .
b. Find the distance covered by the car during this period of

time.

74. Average Acceleration of a Car A car moves along a straight road
with velocity function and acceleration function .
The average acceleration of the car over the time interval

is

Show that is equal to the average value of on .

75. Velocity of a Falling Hammer During the construction of a high-
rise apartment building, a construction worker accidentally
drops a hammer that falls vertically a distance of ft. The
velocity of the hammer after falling a distance of ft is 

ft/sec, where . Show that the average 0 � x � h√ � 12tx
x
h

[t1, t2]a(t)a

a �
√(t2) � √(t1)

t2 � t1

[t1, t2]

a(t)√(t)

t � 3t � 0
√(t)

0 � t � 8√(t) � 2t 2 � t � 6

that impairs breathing, present in the atmosphere on a cer-
tain June day in downtown Los Angeles is approximated by

where is measured in pollutant standard index and is
measured in hours with corresponding to 7 A.M. What
is the average level of nitrogen dioxide present in the atmos-
phere from 7 A.M. to 2 P.M. on that day?
Source: The Los Angeles Times.

80. Water Level in Boston Harbor The water level (in feet) in Boston
Harbor during a certain 24-hr period is approximated by the
formula

where corresponds to 12 A.M. What is the average
water level in Boston Harbor over the 24-hr period on that
day?

81. Predator-Prey Populations The wolf and caribou populations in
a certain northern region are given by

and

respectively, at time , where is measured in months. What
are the average wolf and caribou populations over the time
interval ?

82. Daylight Hours in Chicago The number of hours of daylight at
any time in Chicago is approximated by

where is measured in days and corresponds to Janu-
ary 1. What is the daily average number of hours of daylight
in Chicago over the year? Over the summer months from
June 21 through September 20 ?

83. Global Warming The increase in carbon dioxide in the atmos-
phere is a major cause of global warming. Using data
obtained by Dr. Charles David Keeling, professor at Scripps
Institution of Oceanography, the average amount of carbon
dioxide in the atmosphere from 1958 through 2007 is
approximated by

where is measured in parts per million volume (ppmv)
and in years with corresponding to the beginning of
1958. Find the average amount of carbon dioxide in the
atmosphere from 1958 through 2007.
Source: Scripps Institution of Oceanography.

t � 1t
A(t)

1 � t � 50A(t) � 0.010716t 2 � 0.8212t � 313.4

(t � 262)(t � 171)

t � 0t

L(t) � 2.8 sinc 2p
365

(t � 79)d � 12

t

[0, 6]

tt

P2(t) � 40,000 � 12,000 cos
pt

24

P1(t) � 8000 � 1000 sin
pt

24

t � 0

0 � t � 24H � 4.8 sincp
6

(t � 10)d � 7.6

t � 0
tA(t)

0 � t � 7A(t) � 0.03t 3(t � 7)4 � 62.7

velocity of the hammer over this path is .

76. Flow of Water in a Canal Water at a depth of ft in a wide rec-
tangular canal flows at a velocity of

feet per second, where is the velocity of the water on the
surface, is the depth of the canal, and is its gradient.
Find the average velocity of flow in a cross section of the
canal.

77. Flow of Blood in an Artery The velocity (in centimeters per sec-
ond) of blood cm from the central axis of an artery is
given by , where is a constant and is
the radius of the artery. Suppose that and .
Find the average velocity of the blood across a cross section
of the artery.

78. Hotel Occupancy The occupancy rate of the all-suite Wonder-
land Hotel, located near a theme park, is approximated by
the function

where is measured in months with corresponding to
January 1. What is the average occupancy rate of the hotel
over the year?

79. Air Pollution According to the South Coast Air Quality Man-
agement District, the level of nitrogen dioxide, a brown gas

t � 0t

0 � t � 12r(t) �
10

81
 t 3 �

10

3
 t 2 �

200

9
 t � 56

R

R � 0.2k � 1000
Rk√(r) � k(R2 � r 2)

r

sh
√0

√ � √0 � 201hs ax

h
b2

x

√ � 2
312th
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84. Projected U.S. Gasoline Use The White House wants to cut
gasoline use from 140 billion gallons per year in 2007 to
128 billion gallons per year in 2017. But estimates by the
Department of Energy’s Energy Information Agency suggest
that this will not happen. In fact, the agency’s projection of
gasoline use from the beginning of 2007 to the beginning of
2017 is given by

where is measured in billions of gallons per year and 
is in years with corresponding to the beginning of
2007.
a. According to the agency’s projection, what will be the

gasoline consumption at the beginning of 2017?
b. What will be the average consumption per year from the

beginning of 2007 to the beginning of 2017?
Source: U.S. Department of Energy, Energy Information Agency.

85. Air Purification To test air purifiers, engineers ran a purifier in
a smoke-filled 10-ft 20-ft room. While conducting a test
for a certain brand of air purifier, it was determined that the
amount of smoke in the room was decreasing at the rate of

percent of the (original) amount of smoke per minute,
min after the start of the test, where is given by

How much smoke was left in the room 5 min after the start
of the test? How much smoke was left in the room 10 min
after the start of the test?
Source: Consumer Reports

86. Voltage in AC Circuits The voltage in an AC circuit is given by

a. Show that the average (mean) voltage from to
(a half-cycle) is , which is 
times the maximum voltage .

b. Show that the average voltage over a complete cycle is 0.
Explain.

87. If feet of fencing are used to enclose a rectangular garden,
show that the average area of such a garden is ft2.

88. Find if 

89. Find the -coordinates of the relative extrema of the function

90. Find all functions on such that is continuous on
and

for every x � (0, 1)�
x

0
f(t) dt � �

1

x

f(t) dt

[0, 1]
f[0, 1]f

x 
 0F(x) � �
x

0
 
sin t

t
 dt

x

�
x

0
13 � 2 cos t dt � �

y

0
sin t dt � 0

dx>dy

a2>24
a

V01about 23 2 2>pVav � (2>p)V0t � p>v t � 0

V � V0 sin vt

0 � t � 20

R(t) � 0.00032t 4 � 0.01872t 3 � 0.3948t 2 � 3.83t � 17.63

Rt
R(t)

�

t � 0
tA(t)

0 � t � 10A(t) � 0.014t 2 � 1.93t � 140

91. Let

a. Find .
b. Plot the graph of , and show that it is continuous on

.
c. Where is differentiable? Where is differentiable?

92. Evaluate .

93. Evaluate .

94. Evaluate .

95. Evaluate .

96. Show that

97. a. Show that .
Hint: Use the substitution .

b. Use the result of part (a) to evaluate .

98. a. If is even, what can you say about 
and if is an integer? Explain.

b. If is odd, what can you say about 
and ? Explain.

99. Use the identity

to show that

100. a. Show that if is a continuous function, then

and give a geometric interpretation of this result.
b. Use the result of part (a) to prove that

where is an integer.
c. Plot the graph of

for , 2, 3, and 4. Do these graphs support the
result of part (b)?

k � 1

f(x) �
sin 2kx

sin x

k

�
p

0
 
sin 2kx

sin x
 dx � 0

�
a

0
f(x) dx � �

a

0
f(a � x) dx

f

�
p

0
 
sin1n � 1

2 2 x
sin x

2

 dx � p

sin1n � 1
2 2 x

2 sin x
2

�
1

2
� cos x � cos 2x � p � cos nx

�p�p f(x) sin nx dx
�p�p f(x) cos nx dxf

n�p�p f(x) sin nx dx
�p�p f(x) cos nx dxf

�p0 x sin x dx
x � p � u

�p0 x f(sin x) dx � (p>2) �p0 f(sin x) dx

�
1

�1

2x2 � 1 sec x dx � 2�
1

0
 2x2 � 1 sec x dx

�
p>4

�p>4
(cos x � 1) tan3 x dx

�
1

�1
 
2x5 � x4 � 3x3 � 2x2 � 8x � 1

x2 � 1
 dx

�
1>2

�1>2
 
x7 � 2x5 � 3x3 � 2x2 � x � 2

x2 � 1
 dx

lim
h→0

 
1

h
 �

2�h

2
 25 � t 2 dt

Ff
[0, 3]

F
F(x) � �x

0 f(t) dt

f(x) � e1 � x if 0 � x � 1

x � 1 if 1 � x � 3
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d. Prove that the graph of

on is antisymmetric with respect to the line
by showing that for
, and use this result to explain part (b).

101. A car travels along a straight road in such a way that the
average velocity over any time interval is equal to
the average of its velocities at and at .
a. Show that its velocity satisfies

(1)

b. Show that for some constants and .
Hint: Differentiate Equation (1) with respect to and with
respect to .

102. Let be continuous on . Show that

�
b

a

f(x � h) dx � �
b�h

a�h

f(x) dx

(��, �)f

b
a

dc√(t) � ct � d

�
b

a

√(t) dt �
1

2
 [√(a) � √(b)](b � a)

√(t)
ba
[a, b]

0 � x � p
2

f 1x � p
2 2 � �f 1x � p

2 2x � p>2[0, p]

f(x) �
sin 2kx

sin x

103. Let be continuous on , and let be a constant.
Show that

In Exercises 104–107, determine whether the statement is true or
false. If it is true, explain why it is true. If it is false, explain why
or give an example to show why it is false.

104. Assuming that the integral exists, then
.

105. Assuming that the integral exists and that is even, then
.

106. Assuming that the integral exists and that is odd, then
.

107. Assuming that the integral exists and that is even and is
odd, then

�
a

�a

f(x)[t(x)]2 dx � 2�
a

0
f(x)[t(x)]2 dx

tf

�a
�a f(x3) dx � 0

f

�a
�a f(x3) dx � 2�a

0 f(x3) dx
f

�a
�a f(x2) dx � 2�a

0 f(x2) dx

�
cb

ca

f(x) dx � c�
b

a

f(cx) dx

c(��, �)f

4.6 Numerical Integration

Approximating Definite Integrals
Table 1 gives the daily consumption of oil in the United States in millions of barrels,
in two-year intervals from 1987 through the year 2007. Suppose that we want to deter-
mine the average daily consumption of oil over the period in question. From our ear-
lier work, we know that the solution is obtained by computing

where is the oil consumption in year and corresponds to 1987. But the prob-
lem here is that we do not know the algebraic rule defining the integrand for all val-
ues of in . We are given its values only at a discrete set of points in that inter-
val! Here, the Fundamental Theorem of Calculus cannot be used to help us evaluate
the integral, since we cannot find an antiderivative of . Other situations also arise (for
example, in which, although the integrand of a definite integral is defined
algebraically, we are not able to find its antiderivative in terms of elementary functions.
In each of these situations the best we can do is to obtain an approximation to the def-
inite integral. (We will return to the problem of finding the average daily consumption
of petroleum in Example 5.)

f(t) � sin t 2)
f

[0, 20]t
f

t � 0tf(t)

1

20
 �

20

0
 f(t) dt

Year 1987 1989 1991 1993 1995 1997 1999 2001 2003 2005 2007

Consumption 16.7 17.3 16.7 17.2 17.7 18.6 19.5 19.6 20.0 20.8 20.7

TABLE 1

Source: U.S. Energy Information Administration.
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A Riemann sum gives us a good approximation of a definite integral of an inte-
grable function if the norm of the partition is sufficiently small. But there are better
methods for finding approximate values of definite integrals. In this section we will
look at two such methods.

The Trapezoidal Rule
The Trapezoidal Rule uses the sum of the areas of trapezoids to approximate the defi-
nite integral . To derive this rule, let’s assume that is continuous and non-
negative on .* We begin by subdividing the interval into subintervals, each
of equal length . Because is nonnegative, the definite integral 
gives the area of the region under the graph of on . (See Figure 1.) This area
is given by the sum of the areas of the nonoverlapping subregions , , , , where

represents the region under the graph of on , represents the region under
the graph of on , , and represents the region under the graph of on

.[xn�1, xn]
fRnp[x1, x2]f

R2[x0, x1]fR1

RnpR2R1

[a, b]fR
�b

a f(x) dxf�x � (b � a)>n n[a, b][a, b]
f�b

a f(x) dx

*Actually, the nonnegativity condition is not necessary, but this assumption will simplify the derivation of
the Trapezoidal Rule.

The basis for the Trapezoidal Rule lies in the approximation of each of the subre-
gions , , , by a suitable trapezoid. For example, consider the subregion 
reproduced in Figure 2. You can see that the area of may be approximated by the
area of the trapezoid having width and parallel sides of lengths 
and . The area of this trapezoid is

c f(x0) � f(x1)

2
d�x

f(x1)
f(x0)�x � x1 � x0

R1

R1RnpR2R1

FIGURE 1
the sum of the areas

of the subregions , , , RnpR2R1

�b
a f(x) dx �

Similarly, the area of the subregion may be approximated by the area of the
trapezoid having width and sides of length and :

Finally, the area of the subregion is approximately

c f(xn�1) � f(xn)

2
d�x

Rn

c f(x1) � f(x2)

2
d�x

f(x2)f(x1)�x
R2

FIGURE 2
The area of is approximated by the
area of a trapezoid.

R1

average of the lengths of the 
parallel sides the width�

0

y � f(x)

xn � bxn�1
. . .

. . .

a � x0 x1 x2 x3

R1 R2 R3 Rn

y

x

0

f(x1)

f(x0)

x0

�x

x2x1

y

x



422 Chapter 4 Integration

Therefore, the area of the region is approximated by the sum of the areas of the 
trapezoids:

where .�x � (b � a)>n
 �

�x

2
 [ f(x0) � 2f(x1) � 2f(x2) � p � 2f(xn�1) � f(xn)]

 �
b

a

f(x) dx � �xc f(x0) � f(x1)

2
�

f(x1) � f(x2)

2
 � p � 

f(xn�1) � f(xn)

2
d

nR

The Trapezoidal Rule

(1)

where and , for .0 � i � nx i � a � i�x�x � (b � a)>n
�

b

a

f(x) dx �
�x

2
 [ f(x0) � 2f(x1) � 2f(x2) � p � 2f(xn�1) � f(xn)]

EXAMPLE 1 Use the Trapezoidal Rule with to approximate .

Solution Here, , , and , so

Also,

, , , , , ,

The Trapezoidal Rule yields

In Chapter 6 we will show that

Natural logarithm of 2

Thus, the Trapezoidal Rule with yields an approximation with an error of ap-
proximately 0.000624.

The Error in the Trapezoidal Rule
The error in the approximation of by the Trapezoidal Rule is defined
to be , where

An upper bound for this error follows.

Tn �
�x

2
 [ f(x0) � 2f(x1) � 2f(x2) � p � 2f(xn�1) � f(xn)]

En � I � Tn

I � �b
a f(x) dx

n � 10

 � 0.693147

 �
2

1
 
dx

x
� ln 2

 � 0.693771

 �
2

1
 
dx

x
�

0.1

2
c1 � 2a 1

1.1
b � 2a 1

1.2
b � 2a 1

1.3
b  � p � 2a 1

1.9
b �

1

2
d

x10 � 2x9 � 1.9px3 � 1.3x2 � 1.2x1 � 1.1x0 � 1

�x �
b � a

n
�

2 � 1

10
� 0.1

n � 10b � 2a � 1

�
2

1

dx

x
n � 10
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Note Observe that as , , as our intuition tells us.En → 0n → �

Error Bound for the Trapezoidal Rule

If is continuous on , then the error in approximating by
the Trapezoidal Rule satisfies

(2)

where is a positive number such that for all in .[a, b]x� f �(x) � � MM

�En � �
M(b � a)3

12n2

�b
a f(x) dxEn[a, b]f �

EXAMPLE 2 Find an upper bound for the error in the approximation of using
the Trapezoidal Rule with (see Example 1).

Solution Here . So

and

Since is positive and decreasing on , it attains its maximum value at the left end-
point of the interval. So if we take , then for all in .
Finally, using Inequality (2) with this value of and , , and , we
obtain

The actual error is approximately 0.000624 (as we computed in Example 1), and this
is less than the upper bound that we just found.

�E10 � �
2(2 � 1)3

12(10)2
�

1

600
� 0.0016667

n � 10b � 2a � 1M
[1, 2]x� f �(x) � � 2M � f �(1) � 2

(1, 2)f �

f �(x) �
2

x3
f ¿(x) � �

1

x2

f(x) � 1>x
n � 10

�
2

1

dx

x

EXAMPLE 3 Use the Trapezoidal Rule to approximate with an error that
is less than 0.01.

Solution First, we determine the number of subintervals, , required in the Trape-
zoidal Rule to ensure that the error will be less than 0.01. To find the value of called
for in Inequality (2), we compute the second derivative of . Thus,

and

Using the triangle inequality, we have

because and both and cannot exceed 1. Therefore, we can
take .

Using Inequality (2) with , , and and observing the requirement
that the error in the approximation be less than 0.01, we have

, , or n 
 150 � 7.07n2 

100

2

6(1 � 0)3

12n2
� 0.01

M � 6b � 1a � 0
M � 6

� sin x2 ��cos x2 �0 � x � 1

� f �(x) � � 2�cos x2 � � 4x2� sin x2 � � 2 � 4 � 6

f �(x) � 2(cos x2 � 2x2 sin x2)

f ¿(x) � 2x cos x2

f(x) � sin x2
M

n

�1
0 sin x2 dx
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So by taking , the smallest integer exceeding 7.07, we are guaranteed that the
error in the approximation will be smaller than that prescribed.

To obtain the approximation, we compute

Then with

, , , ,

, , , , and

the Trapezoidal Rule yields

Simpson’s Rule
Before deriving Simpson’s Rule, let’s look at the two methods that we currently have
for approximating the definite integral from a fresh point of view. Let 
be a continuous, nonnegative function on .* Suppose that the interval is par-
titioned into subintervals of equal length by means of equally spaced points

, , , , , where is a positive integer, so that the length of each
subinterval is . (See Figure 3.)�x � (b � a)>n nxn � bpx2x1x0 � a

n � 1n
[a, b][a, b]

f�b
a f(x) dx

 � 0.3117

 � 2 sin
25

64
� 2 sin

9

16
� 2 sin

49

64
� sin 1b

 �
1

16
 asin 0 � 2 sin

1

64
� 2 sin

1

16
� 2 sin

9

64
� 2 sin

1

4

 � 2f a5

8
b � 2f a3

4
b � 2f a7

8
b � f(1)d

 �
1

0
sin x2 dx �

1
8

2
 cf(0) � 2f a1

8
b � 2f a1

4
b � 2f a3

8
b � 2f a1

2
b

x8 � 1x7 �
7

8
x6 �

3

4
x5 �

5

8
x4 �

1

2

x3 �
3

8
x2 �

1

4
x1 �

1

8
x0 � 0

�x �
b � a

n
�

1 � 0

8
�

1

8

n � 8

*Again, the nonnegativity condition is not necessary for our results but will be assumed here to simplify the
ensuing discussion.

FIGURE 3
The area of the region under the graph
of on is given by the sum of the
areas of the subregions , , , .RnpR2R1

[a, b]f

y � f(x)

0 xn � bxn�1
. . .

. . .

a � x0 x1 x2 x3

R1 R2 R3 Rn

y

x
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Figure 4 shows the approximation of using a Riemann sum consisting
of terms that are just the areas of the rectangles shown shaded. Here is another
view of that method: Approximate on by the constant function ,
where is any point in ; approximate on by the constant function

, where is any point in ; and so on. Then the area of the region
under the graph of on , , is approximated by the area of the region
under the graph of the approximating “step function” on .[a, b]S(x)

�b
a f(x) dx[a, b]f

[x1, x2]p2y � f(p2)
[x1, x2]f(x)[x0, x1]p1

y � f(p1)[x0, x1]f(x)
nn
�b

a f(x) dx

FIGURE 4
is approximated by the step function .Sf

S(x) � d f(p1) for x0 � x � x1

f(p2) for x1 � x � x2

o
f(pn) for xn�1 � x � xn

y � f(x)

0 xn � bxn�1
. . .

. . .

a � x0 x1 x2 x3

R1 R2 R3 Rn

p1 p2 p3 pn

y

x

Next, Figure 5 shows the approximation of using the Trapezoidal Rule.
Another view of this method follows: Approximate on by the linear func-
tion whose graph is the line passing through the two points and ;
approximate on by the linear function whose graph is the line passing
through the points and ; and so on. Then the area of the region
under the graph of on , , is approximated by the area of the region
under the graph of the approximating “polygonal function” on whose graph
is a polygonal curve.

[a, b]P(x)
�b

a f(x) dx[a, b]f
(x2, f(x2))(x1, f(x1))

[x1, x2]f(x)
(x1, f(x1))(x0, f(x0))

[x0, x1]f(x)
�b

a f(x) dx

FIGURE 5
is approximated by the “polygonal function” .Pf

P(x) � g
f(x0) �

f(x1) � f(x0)

x1 � x0
 (x � x0) for x0 � x � x1

f(x1) �
f(x2) � f(x1)

x2 � x1
 (x � x1) for x1 � x � x2

o

f(xn�1) �
f(xn) � f(xn�1)

xn � xn�1
 (x � xn�1) for xn�1 � x � xn

A natural extension of the method used to approximate is to approxi-
mate sections of the graph of by sections of the graphs of second-degree polynomi-
als (parts of parabolas). We begin by showing that the area of the region under the
parabola on is

(3)A �
h

3
 (y0 � 4y1 � y2)

[�h, h]y � ax2 � bx � c

f
�b

a f(x) dx

y � f(x)

0 xn � bxn�1
. . .

. . .

a � x0 x1 x2 x3

y

x
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where , , and are the -coordinates of the points lying on the parabola with 
-coordinates , 0, and , respectively. (See Figure 6.)

The area under the parabola on is

Since the parabola passes through the three points , , and , the
equation must be satisfied at each of these points. This yields the
following system of three equations:

from which we obtain

Adding the last two equations gives

These expressions for and enable us to express in terms of , , and as
follows:

as was to be shown.
To derive Simpson’s Rule for approximating , we divide the interval 

into an even number of subintervals of width . If we approximate the
area under the region of the graph of on by the area of the region under the
parabola passing through the three points , , and on

(Figure 7) and use Equation (3) with , , , and
, we obtain

In a similar manner we approximate the area of the region under the graph of on
by the area of the region under the parabola passing through the three points

, , and to obtain

�
x4

x2

f(x) dx �
�x

3
 [ f(x2) � 4f(x3) � f(x4)]

(x4, f(x4))(x3, f(x3))(x2, f(x2))
[x2, x4]

f

�
x2

x0

f(x) dx �
�x

3
 [ f(x0) � 4f(x1) � f(x2)]

y2 � f(x2)
y1 � f(x1)y0 � f(x0)h � �x[x0, x2]

(x2, f(x2))(x1, f(x1))(x0, f(x0))
[x0, x2]f

�x � (b � a)>n [a, b]�b
a f(x) dx

A �
h

3
 (2ah2 � 6c) �

h

3
 (y0 � 2y1 � y2 � 6y1) �

h

3
 (y0 � 4y1 � y2)

y2y1y0Ac2ah2

2ah2 � y0 � 2y1 � y2

 ah2 � bh � y2 � y1

 ah2 � bh � y0 � y1

c � y1

 ah2 � bh � c � y2

 c � y1

 ah2 � bh � c � y0

y � ax2 � bx � c
(h, y2)(0, y1)(�h, y0)

 �
2ah3

3
� 2ch �

h

3
 (2ah2 � 6c)

 A � �
h

�h

(ax2 � bx � c) dx � ca
3

 x3 �
b

2
 x2 � cxdh

�h

[�h, h]y � ax2 � bx � c
h�hx

yy2y1y0

FIGURE 6
The area of the region under the
parabola on 

is .A � h
3 (y0 � 4y1 � y2)[�h, h]

y � ax2 � bx � c

0

(�h, y0)

(h, y2)

(0, y1)

h�h

y

x

y � ax2 � bx � c

0

(x1, f(x1))

(x2, f(x2))

(x0, f(x0))

Parabola

x0 x2x1

y

x

FIGURE 7
Simpson’s Rule approximates portions
of the area of the region under the
curve by the area of the regions under
parabolas.
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Continuing, we approximate the area of the region under the graph of on using
the sum of the areas of the regions under parabolas. Thus,

Let’s summarize this result.

 � 2f(xn�2) � 4f(xn�1) � f(xn)]

 �
�x

3
 [ f(x0) � 4f(x1) � 2f(x2) � 4f(x3) � p

 � 
�x

3
 [ f(xn�2) � 4f(xn�1) � f(xn)]

 �
�x

3
 [ f(x0) � 4f(x1) � f(x2)] �

�x

3
 [ f(x2) � 4f(x3) � f(x4)] � p

 �
b

a

f(x) dx � �
x2

x0

f(x) dx � �
x4

x2

f(x) dx � p � �
xn

xn�2

f(x) dx

n>2 [a, b]f

Simpson’s Rule

(4)

where , and is even.n�x � (b � a)>n
 � 2f(xn�2) � 4f(xn�1) � f(xn)]

 �
b

a

f(x) dx �
�x

3
 [ f(x0) � 4f(x1) � 2f(x2) � 4f(x3) � p

Simpson’s rule is named after the English mathematician Thomas Simpson (1710–
1761).

The Error in Simpson’s Rule
If we denote the expression on the right of the approximation in (4) by , then the
error in approximating by Simpson’s Rule is defined to be . An
upper bound for this error follows. We omit the proof, which can be found in more
advanced textbooks.

I � SnI � �b
a f(x) dx

Sn

Error Bound for Simpson’s Rule

If is continuous on , then the error in approximating by
Simpson’s Rule satisfies

(5)

where is a positive number such that for all in .[a, b]x� f 4(x) � � MM

�En � �
M(b � a)5

180n4

�b
a f(x) dxEn[a, b]f (4)

THOMAS SIMPSON
(1710–1761)

Born the son of a weaver in Leicestershire,
England, on August 20, 1710, Thomas Simp-
son began to train in his father’s trade, but
in 1724 a solar eclipse inspired him to learn
mathematics. He became an usher at a
school, listening to the lectures and work-
ing independently to improve his mathe-
matical education. Simpson also delved
into astrology. In 1733, after he and his
assistant frightened a girl by dressing up
as the devil during an astrology session,
Simpson was forced to flee to Derby. Hav-
ing later moved to London, Simpson wrote
a well-received algebra text, Treatise of
Algebra; a geometry text, Elements of
Plane Geometry; and several other mathe-
matical works. He also lectured in coffee
houses, which were often referred to as
Penny Universities because of the cheap
education they offered. Oddly, the numeri-
cal method known as Simpson’s Rule is due
to Newton (page 179); on the other hand,
the so-called Newton-Raphson method is,
in its present form, due to Simpson. Simp-
son’s work The Doctrine and Application of
Fluxions (1750) is considered to be the best
work on Newton’s version of the calculus
published in the eighteenth century.
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EXAMPLE 4 Use Simpson’s Rule to approximate

with an error that is less than 0.001.

�
2

0
 

1

1x � 1
 dx
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Solution We first determine the number of subintervals, , required in Simpson’s Rule
to guarantee that the error will be less than 0.001. To find the value of that is called
for in Inequality (5), we compute the fourth derivative of . Thus,

, ,

and

Because is decreasing on , we see that . So we may 
take . Using Inequality (5) with , , and and observing the
requirement that the error in the approximation be less than 0.001, we have

, , or

So by taking (which is even), we are guaranteed that the error in the approxi-
mation will be less than 0.001.

To obtain the approximation, we compute

Then, with

, , , , , , and

Simpson’s Rule yields

The actual value of the definite integral to six decimal places is 1.464102 and can be
found by using the method of substitution.

In the next example we solve the oil consumption problem posed at the beginning
of this section.

 � 1.46421

 �
1

9
 a1 �

4

24
3

�
2

25
3

�
4

12
�

2

27
3

�
4

28
3

�
1

13
b

 �
2

0
 

dx

1x � 1
�

1
3

3
 cf(0) � 4f a1

3
b � 2f a2

3
b � 4f(1) � 2f a4

3
b � 4f a5

3
b � f(2)d

x6 � 2x5 �
5

3
x4 �

4

3
x3 � 1x2 �

2

3
x1 �

1

3
x0 � 0

�x �
2 � 0

6
�

1

3

n � 6

n 
 a3500

3
b1>4

� 5.84n4 

3500

3

105(2 � 0)5

16(180n4)
� 0.001

M � 105
16b � 2a � 0M � 105

16

� f (4)(x) � � � f (4)(0) � � 105
16(0, 2)f (4)

f (4)(x) �
105

16
 (x � 1)�9>2 �

105

16(x � 1)9>2

f ‡(x) � �
15

8
 (x � 1)�7>2f �(x) �

3

4
 (x � 1)�5>2f ¿(x) � �

1

2
 (x � 1)�3>2

f(x) � (x � 1)�1>2M
n

EXAMPLE 5 U.S. DAILY OIL CONSUMPTION Table 2 gives the daily consumption of
oil in the United States, in millions of barrels, measured in two-year intervals, from
the beginning of 1987 to the beginning of 2007. Use Simpson’s Rule to estimate the
average daily consumption of oil over the period in question.

Year 1987 1989 1991 1993 1995 1997 1999 2001 2003 2005 2007

Consumption 16.7 17.3 16.7 17.2 17.7 18.6 19.5 19.6 20.0 20.8 20.7

TABLE 2

Source: U.S. Energy Information Administration
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Solution The average daily consumption from the beginning of 1987 to the begin-
ning of 2007 is given by

where is measured in years, with corresponding to 1987. Using Simpson’s 
Rule with , , and , so that , we have ,

, , , . Therefore,

and we conclude that the average daily oil consumption in the United States from 1987
through 2007 is approximately 18.6 million barrels per day.

 � 18.64

 � 2(19.5) � 4(19.6) � 2(20.0) � 4(20.8) � 20.7]

 �
1

30
 [16.7 � 4(17.3) � 2(16.7) � 4(17.2) � 2(17.7) � 4(18.6)

 
1

20
 �

20

0
f(t) dt � a 1

20
b a2

3
b[ f(0) � 4f(2) � 2f(4) � 4f(6) � p � 4f(18) � f(20)]

t10 � 20pt3 � 4t1 � 2
t0 � 0�t � (20 � 0)>10 � 2n � 10b � 20a � 0

t � 0t

1

20
 �

20

0
f(t) dt

1. Describe (a) the Trapezoidal Rule and (b) Simpson’s Rule.
What are the main differences in approximating 
using a Riemann sum, using the Trapezoidal Rule, and using
Simpson’s Rule?

2. Explain why can be odd or even in the Trapezoidal Rule,
but it must be even in Simpson’s Rule.

n

�b
a f(x) dx

3. Explain, without alluding to the error formulas, why the
Trapezoidal Rule gives the exact value of if is a
linear function and why Simpson’s Rule gives the exact
value of the integral if is a quadratic function.f

f�b
a f(x) dx

4.6 CONCEPT QUESTIONS

In Exercises 1–8, use (a) the Trapezoidal Rule and (b) Simpson’s
Rule to approximate the integral. Compare your results with the
exact value of the integral.

1. ; 2. ;

3. ; 4. ;

5. ;

6. ;

7. ;

8. ; n � 6�
p>2

0
cos 2x dx

 n � 4�
p

0
sin x dx

n � 8�
4

0
1x dx

n � 6�
2

0
x22x2 � 1 dx

n � 4�
2

1
 
1

x2 dxn � 6�
2

1
x3 dx

n � 6�
3

1
(x2 � 1) dxn � 4�

2

0
x2 dx

In Exercises 9–14, use the Trapezoidal Rule to approximate the
integral with answers rounded to four decimal places.

9. ; 10. ;

11. ; 12. ;

13. ; 14. ;

In Exercises 15–20, use Simpson’s Rule to approximate the inte-
gral with answers rounded to four decimal places.

15. ; 16. ;

17. ; 18. ; n � 4�
2

0

x2

11 � x
 dxn � 6�

1

�1
2x2 � 1 dx

 n � 4�
1

0

dx

x2 � 1
n � 6�

2

0
2x3 � 1 dx

n � 6�
0.6

0
x tan x dxn � 5�

2

1
1x sin x dx

 n � 6�
1

0
cos x2 dxn � 6�

2

0

dx

2x3 � 1

n � 5�
3

1
2x2 � 1 dxn � 7�

1

0
 

dx

2x � 1

4.6 EXERCISES

Videos for selected exercises are available online at www.academic.cengage.com/login.V

www.academic.cengage.com/login
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19. ;

20. ;

In Exercises 21–26, find a bound on the error in approximating
the integral using (a) the Trapezoidal Rule and (b) Simpson’s
Rule with subintervals.

21. ; 22. ;

23. ; 24. ;

25. ; 26. ;

In Exercises 27–32, use a calculator or a computer and the
error formula for the Trapezoidal Rule to find such that the
error in the approximation of the integral using the Trapezoidal
Rule is less than 0.001.

27. 28.

29. 30.

31. 32.

In Exercises 33–38, use a calculator or a computer and the
error formula for Simpson’s Rule to find such that the error in
the approximation of the integral using Simpson’s Rule is less
than 0.001.

33. 34.

35. 36.

37. 38.

39. Velocity of a Sports Car The velocity function for a sports car
traveling on a straight road is given by

where is measured in seconds and in feet per second.
Use Simpson’s Rule with to estimate the average
velocity of the car over the time interval .[0, 16]

n � 8
√(t)t

0 � t � 16√(t) �
80t 3

t 3 � 100

�
1

0
sin x2 dx�

p>2

0
x sin x dx

�
3

0
1x � 1 dx�

2

0
 

dx

x2 � 4

�
3

1
 
dx

x�
4

1
2x3>2 dx

n

�
1

0
cos x2 dx�

p>2

0
x cos x dx

�
2

0
2x2 � 1 dx�

4

1
1x dx

�
2

0
 

dx

x2 � 1�
2

1
 
dx

x

n

n � 6�
1

0
cos x2 dxn � 6�

p>2

0
x sin x dx

n � 6�
2

0
 

dx

1x � 1
n � 8�

4

1
1x dx

n � 8�
1

0
 

dx

x � 1
n � 6�

2

�1
x3 dx

n

n � 6�
2

1
 
sin x

x
 dx

n � 6�
p>2

0
21 � sin2 x dx

40. Air Pollution The amount of nitrogen dioxide, a brown gas
that impairs breathing, present in the atmosphere on a cer-
tain May day in the city of Long Beach is approximated by

where is measured in pollutant standard index and is
measured in hours, with corresponding to 7 A.M. Use
the Trapezoidal Rule with to find the approximate
average level of nitrogen dioxide present in the atmosphere
from 7 A.M. to 6 P.M. on that day.
Source: The Los Angeles Times.

41. U.S. Strategic Petroleum Reserves According to data from the
American Petroleum Institute, the U.S. Strategic Petroleum
Reserves from the beginning of 1981 to the beginning of
1990 can be approximated by the function

where is measured in millions of barrels and in years,
with corresponding to the beginning of 1981. Using
the Trapezoidal Rule with , estimate the average petro-
leum reserves from the beginning of 1981 to the beginning
of 1990.
Source: American Petroleum Institute.

42. Velocity of an Attack Submarine The following data give the
velocity of an attack submarine taken at 10-min intervals
during a submerged trial run.

n � 9
t � 0

tS(t)

0 � t � 9S(t) �
613.7t 2 � 1449.1

t 2 � 6.3

n � 11
t � 0

tA(t)

0 � t � 11A(t) �
136

1 � 0.25(t � 4.5)2 � 28

Time (hr)t 0 1
6

1
3

1
2

2
3

5
6 1

Velocity (mph) 14.2 24.3 40.2 45.0 38.5 27.6 12.8

cas

cas

Use Simpson’s Rule to estimate the distance traveled by the
submarine during the 1-hr submerged trial run.

43. Flow of Water in a River At a certain point, a river is 78 ft wide
and its depth, measured at 6-ft intervals across the river, is
recorded in the following table.

x 0 6 12 18 24 30 36

y 0.8 2.6 5.8 6.2 8.2 10.1 10.8

x 42 48 54 60 66 72 78

y 9.8 7.6 6.4 5.2 3.9 2.4 1.4
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Here, denotes the distance (in feet) from one bank of the
river, and (in feet) is the corresponding depth. If the aver-
age rate of flow through this section of the river is 4 ft/sec,
estimate the rate of the volume of flow of water in the river.
Use the Trapezoidal Rule with .

44. Measuring Cardiac Output Eight milligrams of a dye are
injected into a vein leading to an individual’s heart. The
concentration of the dye in the aorta (in milligrams per liter)
measured at 2-sec intervals is shown in the accompanying
table. Use Simpson’s Rule with and the formula

to estimate the person’s cardiac output, where is the quan-
tity of dye injected in milligrams, is the concentration
of the dye in the aorta, and is measured in liters per
minute.

R
C(t)

D

R �
60D

�
24

0
C(t) dt

n � 12

n � 13

y
x

In Exercises 45–46, determine whether the statement is true or
false. If it is true, explain why it is true. If it is false, explain why
or give an example to show why it is false.

45. If is a polynomial of degree greater than one, then the
error in approximating by the Trapezoidal
Rule must be nonzero.

46. If is nonnegative and concave upward on and is an
approximation of using the Trapezoidal Rule, then

.A 
 �b
a f(x) dx

�b
a f(x) dx

A[a, b]f

�b
a f(x) dxEn

f

t 0 2 4 6 8 10 12

C(t) 0 0 2.8 6.1 9.7 7.6 4.8

t 14 16 18 20 22 24

C(t) 3.7 1.9 0.8 0.3 0.1 0

CHAPTER 4 REVIEW

In Exercises 1–10, fill in the blanks.

1. a. A function is an antiderivative of on an interval if
for all in .

b. If is an antiderivative of on an interval , then every
antiderivative of on has the form .

2. a. .
b. .

3. a. A differential equation is an equation that involves the
derivative or differential of an function.

b. A solution of a differential equation on an interval is
any that satisfies the differential equation.

4. If we let , then , and the substitution
transforms the integral into the integral

involving only .

5. a. If is continuous and nonnegative on an interval ,
then the area of the region under the graph of on 
is given by .

b. If is continuous on an interval , then is
equal to the area(s) of the regions lying above the -axis
and bounded by the graph of on the[a, b]f

x
�b

a f(x) dx[a, b]f

[a, b]f
[a, b]f

u
� f(t(x))t¿(x) dx
du �u � t(x)

I

� [ f(x) � t(x)] dx �
� c f(x) dx �

If
IfF

Ix
fF

area(s) of the regions lying below the -axis and bounded
by the graph of on .

6. a. If is continuous on , then the average value of 
over is the number .

b. If is a continuous and nonnegative function on ,
then the number may be thought of as the 
of the rectangle with base lying on the interval and
having the same as the area of the region
under the graph of on .

7. a. The Fundamental Theorem of Calculus, Part 1, states that
if is continuous on , then is dif-
ferentiable on , and .

b. The Fundamental Theorem of Calculus, Part 2, states that
if is continuous on , then ,
where is an of .

c. The net change in a function over an interval is
given by , provided that is
continuous on .

8. Let be continuous on . If is even, then
, and if is odd, then 

.
�a

�a f(x) dx �f�a
�a f(x) dx �

f[�a, a]f

[a, b]
f ¿f(b) � f(a) �

[a, b]f
fF

�b
a f(x) dx �[a, b]f

F¿(x) �(a, b)
F(x) � �x

a f(t) dt(a, b)f

[a, b]f

[a, b]
fav

[a, b]f
fav �[a, b]

f[a, b]f

[a, b]f
x
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9. The Mean Value Theorem for Integrals states that if is con-
tinuous on , then there exists at least one point in

such that .

10. a. The Trapezoidal Rule states that ,
where . The error in approximating

by the Trapezoidal Rule satisfies �En � ��b
a f(x) dx

En�x � (b � a)>n �b
a f(x) dx �

[a, b]
c[a, b]
f , where is a positive number such that

for all in .
b. Simpson’s Rule states that , where

and is . The error in
approximating by Simpson’s Rule satisfies

, where is a positive number such
that for all in .[a, b]x� f (4)(x) � � M

M�En � �
�b

a f(x) dx
Enn�x � (b � a)>n �b

a f(x) dx �
[a, b]x� f �(x) � � M

M

In Exercises 1–20, find the indefinite integral.

1.

2. 3.

4. 5.

6. 7.

8. 9.

10. 11.

12. 13.

14. 15.

16. 17.

18. 19.

20.

In Exercises 21–32, evaluate the definite integral.

21. 22.

23. 24.

25. 26.

27. 28.

29. 30. �
p>2

0
sin u12 � 7 cos u du�

p>8

0
 

sin 2x

cos2 2x
 dx

�
4

1
 
(1x � 1)5

1x
 dx�

1

0
(x � 1)(2x � 3)2 dx

�
12

0

x

2x2 � 2
 dx�

4

0
 

1

11 � 2x
 dx

�
2

0
t 2 2t 3 � 1 dt�

2

1
a 1

x2 �
1

x3b  dx

�
1

�1
13 8x dx�

2

0
(3x � 5) dx

� sec 3x tan 3x dx

� x csc x2 cot x2 dx� cos3 u � 1

cos2 u
 du

� cos u

11 � sin u
 du� sec2 x

1tan x
 dx

� cos4 t sin t dt� (p2 � 1x � 1) dx

� 3x � 1

(3x2 � 2x)3 dx�2x3 2x4 � 1 dx

� (x � x�1)2 dx�13 2u � 1 du

� (3t � 4)8 dt� (1 � x)2

1x
 dx

� (1 � 2t)3 dt� x2 � x � 1x

13 x
 dx

� ax2>3 �
2

x4 � 3b  dx� x1>3(2x2 � 3x � 1) dx

� (x5>3 � 2x2>5) dx� x5 � 3x � 2

x3  dx

� (2x3 � 4x2 � 3x � 4) dx
31.

32.

In Exercises 33–36, find the average value of the function over
the given interval.

33. ;

34. ;

35. ;

36. ;

37. Evaluate by using the Trapezoidal Rule with

.

38. Evaluate by using Simpson’s Rule with .

In Exercises 39 and 40, find a bound on the error in approxi-
mating each definite integral using (a) the Trapezoidal Rule 
and (b) Simpson’s Rule with subintervals.

39. ; 40. ;

41. Find the function given that its derivative is
and that its graph passes through the

point .

42. A ball is thrown straight up from the ground with an initial
velocity of 64 ft/sec. How long will it take for the ball to
reach its highest point, and what will its height be at this
point?

43. An electric drill rolls off the edge of a 128-ft-tall structure
under construction.
a. Find the position of the electric drill after sec.
b. Determine when it strikes the ground.
c. What is its velocity at impact?

t

(0, 2)
f ¿(x) � 1x � sin x

f

n � 10�
3

1
ln x dxn � 8�

2

0
 

1

11 � x
 dx

n

n � 4�
2

1
 
1x

1 � x2 dx

n � 5

�
1

0
21 � x2 dx

C0, p2 Df(x) � sin2 x cos x

[0, 4]f(t) � t 3>2
[1, 3]f(x) �

1

1x � 1

[0, 2]f(x) � x3

�
2

1
 

sin 
p

x

x2
 dx

�
p>4

p>6
(csc u � cot u)(1 � cos u) du
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44. A stone is dropped from a height of ft above the ground.
Show that the speed at which the stone strikes the ground is

ft/sec, where is the gravitational constant.

45. A car traveling along a straight road undergoes constant
deceleration that reduces its speed from 44 ft/sec to 22 ft/sec
in 8 sec. How far will the car travel if it is brought to rest
from 44 ft/sec at that rate of deceleration?

46. Median House Price The median price of a house in a south-
western state between January 1, 2000, and January 1, 2005,
is approximated by the function

where is measured in thousands of dollars and is
expressed in years ( corresponds to the beginning of
2000). Determine the average median price of a house over
that time interval.

47. Traffic Flow The traffic department of a certain city estimates
that years from now the number of vehicles (in thousands)
in the city will be

Find the estimated average number of motor vehicles in the
city over the next 5 years.

48. An electromotive force (emf), , is given by

where is the period in seconds and is the amplitude of
the emf. Find the average value of the emf over one period
(the time interval ).

49. Hotel Occupancy Rate The occupancy rate over a certain 12-
month period at the Paramount Hotel, located near a theme
park, is approximated by the function

where is measured in months, is measured in percent,
and corresponds to January 1. Find the average occu-
pancy rate of the hotel over the year.

50. Total Cost The weekly marginal cost of the Advanced Visuals
Systems Corporation in manufacturing its 42-in. plasma tele-
vision sets is given by

dollars per set, where stands for the number of sets manu-
factured. Find the weekly total cost function if the fixed
cost of the company is $70,000 per week.

51. Total Profit The weekly marginal profit of the Advanced Visu-
als Systems Corporation is given by

P¿(x) � �0.000006x2 � 0.04x � 200

C
x

C¿(x) � 0.000006x2 � 0.04x � 120

t � 0
√(t)t

0 � t � 12√(t) � �
5

216
 t 3 �

5

6
 t 2 �

25

2
 t � 60

[0, T ]

E0T

E � E0 sin 
2pt

T

E

0.2t 4 � 4t � 84

t

t � 0
tf(t)

0 � t � 5f(t) � t 3 � 7t 2 � 17t � 310

t12th

h dollars per set where stands for the number of 
42-in. plasma television sets sold. Find the weekly total
profit function if .

52. Hotel Occupancy Rate The occupancy rate at a large hotel in
Maui in month is described by the function

where is measured in months, is measured in percent,
and corresponds to the beginning of June. Find the
average occupancy rate of the hotel over a 1-year period.

Hint:

53. TV on Mobile Phones The number of people watching TV on
mobile phones is expected to grow at the rate of

million per year. The number of people watching TV 
on mobile phones at the beginning of 2007 was 
11.9 million.
a. Find an expression giving the number of people watching

TV on mobile phones in year .
b. According to this projection, how many people will be

watching TV on mobile phones at the beginning of
2011?

Source: International Data Corporation, U.S. forecast.

54. Net Investment Flow The net investment flow of a giant 
conglomerate, which is the rate of capital formation, is 

projected to be million dollars per year years
from now. Find the accruement on the company’s capital
stock after 2 years; that is, compute

55. Respiratory Cycles The volume of air inhaled by a person dur-
ing respiration is given by

liters at time (in seconds). What is the average volume of
air inhaled by a person over one cycle from to ?

56. Average Temperature The average daily temperature (in
degrees Fahrenheit) on the th day at a tourist resort in
Cameron Highlands is approximated by

( corresponds to the beginning of the year). What is the
average daily temperature in Cameron Highlands over the
year?

t � 0

T � 62 � 18 cos 
2p(t � 23)

365

t

t � 4t � 0
t

V(t) �
6

5p
 a1 � cos 

pt

2
b

�
2

0
t22t 2 � 1 dt

tt22t 2 � 1

t

(t � 0)

0 � t � 4N¿(t) �
5.4145

11 � 0.91t
 dt

sin2 x �
1 � cos 2x

2

t � 0
√(t)t

0 � t � 12R(t) � 60 � 37 sin2 apt

12
b

t

P(0) � �80,000P

x
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57. Average Temperature The following graph shows the daily
mean temperatures recorded during a certain month at
Frazer’s Hill. Using (a) the Trapezoidal Rule and (b) Simp-
son’s Rule with , estimate the average temperature
during that month.

y (F)

0 3

50

60

70

6 9 12 15 18 21 24 27 30

72 70 69 66 64 64 62 57 58
55

t (days)

n � 10

58. Find the derivative of .

59. Show that .
d

dx
 �

c

x

f(t) dt � �f(x)

F(x) � �
x3

x2

sin t dt

The following example introduces a technique for transforming a definite integral into
another having the same value as the original integral. This technique is then used to
evaluate a definite integral without the need to find an antiderivative associated with
the integral.

PROBLEM-SOLVING TECHNIQUES

EXAMPLE

a. Show that if is a continuous function, then

b. Use the result of part (a) to show that .

c. Use the result of part (b) to evaluate and .

Solution
a. Let us evaluate the integral on the right-hand side by using the substitution

, so that . To obtain the limits of integration, observe that if
, then , and if , then . Substituting, we obtain

This proves the assertion.
There is a simple geometric explanation for this result. It stems from the fact

that the graph of on the interval is the mirror image of the graph of
on the same interval with respect to the vertical line . In fact,

if the point lies on the -axis and has -coordinate , then the point that is
its mirror image with respect to the line has -coordinate .
Therefore, . (See Figure 1.) Since congruent
figures have equal areas, the result follows from interpreting definite integrals as
areas.

f(a � x¿) � f(a � (a � x)) � f(x)
x¿ � a � xxx � a>2 A¿xxxA

x � a>2f(a � x)
[0, a]f

�
a

0
f(a � x) dx � ��

0

a

f(u) du � �
a

0
f(u) du � �

a

0
f(x) dx

u � 0x � au � ax � 0
du � �dxu � a � x

�p>20 cos2 x dx�p>20 sin2 x dx

�p>20 sinm x dx � �p>20 cosm x dx

�
a

0
f(x) dx � �

a

0
f(a � x) dx

f

FIGURE 1
The graphs of and are
mirror images with respect to .x � a>2f(a � x)f(x)

0

a
2

xx�x

y � f(x)

y � f(a � x)

x �

y
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b. Using the result of part (a), we see that

c. Using the result of part (b) with , we have

Therefore,

and hence .I � p>4
 � �

p>2

0
(sin2 x � cos2 x) dx � �

p>2

0
dx �

p

2

 2I � �
p>2

0
sin2 x dx � �

p>2

0
cos2 x dx

I � �
p>2

0
sin2 x dx � �

p>2

0
cos2 x dx

m � 2

 � �
p>2

0
cosm x dx

 � �
p>2

0
asin

p

2
cos x � cos

p

2
sin xbm

 dx

 �
p>2

0
sinm x dx � �

p>2

0
sinmap

2
� xb  dx

1. Evaluate , where .

2. Show that , where

is the greatest integer function.

3. Evaluate .

4. By interpreting the integral geometrically, evaluate

5. Evaluate .

6. a. Show that , and 
give a geometric interpretation of the result.

b. Use the result of part (a) to show that
.

7. Show that .

8. a. Suppose that is continuous and and are differen-
tiable. Show that

d

dx
 �

h(x)

  (x)
f(t)dt � f [h(x)]h¿(x) � f [t(x)]t¿(x)

htf

� t
0 f(x)t(t � x) dx � � t

0 t(x)f(t � x) dx

�p0 f(sin x) cos x dx � 0

�b
a f(x) dx � �b

a f(a � b � x) dx

�
1

�1
 
3x6 � 2x5 � 4x3 � 3x2 � 5x

x2 � 1
 dx

�
13>2

12>2
21 � x2 dx

�
10p

0
11 � cos 2x dx

Œx œ
�

x

0
Œ t œ  dt �

Œx œ 1 Œx œ � 12
2

� Œx œ 1x � Œx œ 2
a � b�

b

a

 
�x �

x
 dx

b. Use the result of part (a) to find if

9. Prove that if and are continuous functions on , then

This is known as Schwarz’s inequality.
Hint: Consider the function , where is a real
number.

10. a. Use Schwarz’s inequality (see Exercise 9) to prove that

b. Is this estimate better than the one obtained by using the
Mean Value Theorem for Integrals?

11. Find the values of at which

has relative extrema.

F(x) � �
x2

0
 
t 2 � 5t � 4

t 2 � 1
 dt

x

�
1

0
21 � x3 dx �

15

2

tF(x) � [ f(x) � tt(x)]2

` �
b

a

f(x)t(x) dx ` � B�
b

a

[ f(x)]2 dx�
b

a

[t(x)]2 dx

[a, b]tf

x 
 0t(x) � �
1x

1>x
sin t 2 dt

t¿(x)
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12. Suppose that is continuous on an interval . Show that

13. a. Prove that

Thus, an integral with interval of integration can
be transformed into one with interval of integration

by means of the substitution .
b. Use the result of part (a) to evaluate

14. Suppose that is a continuous periodic function with 
period .
a. Prove that if is any real number, then

�
a

0
f(x) dx � �

a�p

p

f(x) dx

a
p

f

�
�4

�3
cos(x � 4)2 dx � 3�

2>3

1>3
cosc9ax �

2

3
b2d  dx

x � (b � a)t � a[0, 1]

[a, b]

�
b

a

f(x) dx � (b � a)�
1

0
f [(b � a)t � a] dt

lim
n→�

 
1
n

 a
n

k�1
 f ca �

k(b � a)

n
d �

1

b � a
 �

b

a

f(x) dx

[a, b]f b. Use the result of part (a) to show that if is any real
number, then

15. Let be continuous on an interval .
a. Show that .

b. What can you say about ?

16. The Fresnel function is defined by the integral

a. Sketch the graphs of and on the
same set of axes for . Interpret your results.

b. Sketch the graph of on the interval .

17. Let be continuous on an interval and satisfy
for all in . Show that 

on .

18. Find all continuous, nonnegative functions defined on
, where , satisfying the equation

.[ f(x)]2 � 2�x
0 f(t) dt
b 
 0[0, b]

f

[a, b]
f(x) � 0[a, b]x�x

a f(t) dt � �b
x f(t) dt

[a, b]f

[�10, 10]S
0 � x � 3

S(x)f(x) � sin(px2>2)

S(x) � �
x

0
sinapt 2

2
b  dt

S

�a
�a f(x2)sin x dx

�a
�a f(x2) dx � 2�a

0 f(x2) dx
[�a, a]f

�
p

0
f(x) dx � �

a�p

a

f(x) dx

a



IN THIS CHAPTER we continue to exploit the integral as a tool for solving a variety

of problems. More specifically, we will use the techniques of integration to find the

areas of regions between curves, the volumes of solids, the arc lengths of plane

curves, and the areas of surfaces. We will also show how the integral is used to com-

pute the work done by a force acting on an object and the force exerted on an

object by a hydrostatic force. Finally, we will use integration to find the moments

and the centers of mass of thin plates.

5 Applications of the 
Definite Integral

The photograph shows the
Jacqueline Kennedy Onassis

Reservoir (formerly the Central
Park Reservoir). Built between

1858 and 1862, it is located
between 86th Street and 

96th Street in the borough of
Manhattan in New York City. In

this chapter we will use cal-
culus to help us estimate the
surface area of the reservoir. Am
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5.1 Areas Between Curves

A Real-Life Interpretation
Two cars are traveling in adjacent lanes along a straight stretch of a highway. The veloc-
ity functions for Car and Car are and , respectively. The graphs
of these functions are shown in Figure 1.

√ � t(t)√ � f(t)BA

FIGURE 1
The shaded area gives the 
distance that Car is ahead 

of Car at time .t � bB
A
S

The area of the region under the graph of from to gives the total dis-
tance covered by Car in seconds over the time interval . The distance cov-
ered by Car over the same period of time is given by the area under the graph of 
on the interval . Intuitively, we see that the area of the (shaded) region between
the graphs of and on the interval gives the distance that Car will be ahead
of Car at time .

Since the area of the region under the graph of on is

and the area of the region under the graph of on is

we see that the area of the region is given by

Therefore, the distance that Car will be ahead of Car at is

This example suggests that some applied problems can be solved by finding the
area of a region between two curves, which in turn can be found by evaluating an
appropriate definite integral. Let’s make this notion more precise.

The Area Between Two Curves
Suppose and are continuous functions with for all in , so that
the graph of lies on or above that of on . Let’s consider the region bounded
by the graphs of and between the vertical lines and as shown in Fig-
ure 2. To define the area of , we take a regular partition of ,

a � x0 � x1 � x2 � x3 � p � xn � b

[a, b]S
x � bx � atf

S[a, b]tf
[a, b]xf(x) � t(x)tf

�
b

0
[ f(t) � t(t)] dt

t � bBA

�
b

0
f(t) dt � �

b

0
t(t) dt � �

b

0
[ f(t) � t(t)] dt

S

�
b

0
t(t) dt

[0, b]t

�
b

0
f(t) dt

[0, b]f
t � bB

A[0, b]tf
S[0, b]

tB
[0, b]bA
t � bt � 0f

t0

√ √ � f(t)

√ � t(t)

b

B

A
S
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and form the Riemann sum of the function over with respect to this parti-
tion:

where is an evaluation point in the subinterval and . The
th term of this sum gives the area of a rectangle with height and width

. As you can see in Figure 3, this area is an approximation of the area of the subre-
gion of that lies between the graphs of and on .[xk�1, xk]tfS
�x

[ f(ck) � t(ck)]k
�x � (b � a)>n[xk�1, xk]ck

a
n

k�1
[ f(ck) � t(ck)]�x

[a, b]f � t

FIGURE 2
The region between the graphs of 
and on [a, b]t

fS

FIGURE 3
The th term of the Riemann sum of gives 
the area of the th rectangle of width .�xk

f � tk

Therefore, the Riemann sum provides us with an approximation of what we might
intuitively think of as the area of (see Figure 4). As gets larger and larger, we might
expect the approximation to get better and better. This suggests that we define the area

of by

(1)

Since is continuous on , the limit in Equation (1) exists and is equal to the
definite integral of from to . This leads us to the following definition of the
area of .SA

baf � t

[a, b]f � t

A � lim
n→�

 a
n

k�1
[ f(ck) � t(ck)]�x

SA

nS

FIGURE 4
The Riemann sum of approxi-
mates the area of .S

f � t

0 xb

S

a

x � a x � b

y � f(x)

y � g(x)

y

0 xb
a xk�1 xk

�x

ck

y � f (x)

y � g(x)

(ck, g(ck))

(ck, f (ck))

f (ck) � g(ck)

y

0 xba

y

y � f (x)

y � g(x)

Notes
1. If for all in , then the region is just the region under the graph

of on , and its area is

as expected (see Figure 5a).

�
b

a

[ f(x) � 0] dx � �
b

a

f(x) dx

[a, b]f
S[a, b]xt(x) � 0

DEFINITION Area of a Region Between Two Curves

Let and be continuous on , and suppose that for all in
. Then the area of the region between the graphs of and and the verti-

cal lines and is

(2)A � �
b

a

[ f(x) � t(x)] dx

x � bx � a
tf[a, b]

xf(x) � t(x)[a, b]tf
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FIGURE 5

Finding the Area Between Two Curves

1. Sketch the region between the graphs of and on .
2. Draw a representative rectangle with height and width 

and note that its area is

3. Observe that the height of the rectangle, , is the integrand in
Equation (2). The width reminds us to integrate with respect to . Thus,

(See Figure 6.)

A � �
b

a

[ f(x) � t(x)] dx

x�x
[ f(x) � t(x)]

�A � [ f(x) � t(x)]�x

�x[ f(x) � t(x)]
[a, b]tf

FIGURE 6
The area of the vertical rectangle 

is .�A � [ f(x) � t(x)]�x

2. If for all in , then the region lies on or below the -axis, and its
area is

This shows that we can interpret the definite integral of a negative function as the
negative of the area of the region above the graph of on (see Figure 5b).[a, b]t

�
b

a

[0 � t(x)] dx � ��
b

a

t(x) dx

xS[a, b]xf(x) � 0

The following guidelines are useful in setting up the integral in Equation (2).

0 xb

S

S

a

y

y � f (x)

x � bx � a

y � g(x) � 0 y � f (x) � 0

0 x

b
a

y
x � bx � a

y � g(x)

(a) If g(x) � 0 on [a, b], then ya  f (x) dx
      gives the area of S.

b
(b) If f(x) � 0 on [a, b], then �ya g(x) dx gives the
      area of S.

b

0 xba

�x

y � f(x)

y � g(x)

(x, g(x))

(x, f(x))

f(x) � g(x)

x � bx � ay

GILLES PERSONE DE ROBERVAL
(1602–1675)

Born near Beauvais, France, Gilles Persone
(sometimes spelled Personier) took the
name de Roberval from the village where he
was born. He began studying mathematics
at the age of 14, later earned a living as a
traveling teacher of mathematics, and was
eventually appointed Chair of Mathematics
at the Royal College of France. This competi-
tive position required the current chair to
periodically propose mathematical questions
and request solutions. If a submitted solu-
tion was found to be better than the solu-
tion presented by the current chair, he was
required to resign. Roberval was able to
keep the chair for the remainder of his life—
41 years—but he published very few of his
discoveries, preferring to keep them private
so he could pose problems that others could
not solve. One of his many significant contri-
butions was the discovery of a method of
deriving one curve from another that can be
applied to find finite areas between certain
curves and their asymptotes.

Historical Biography
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EXAMPLE 1 Find the area of the region between the graphs of and
and the vertical lines and .

Solution First, we make a sketch of the region and draw a representative rectangle.
(See Figure 7.) Observe that the graph of lies above that of .
Therefore, if we let and , then on . Also,
from the figure we see that the area of the vertical rectangle is

(upper function lower function)

So the area of the required region is

 � a8

3
� 2 � 6b � a�1

3
�

1

2
� 3b �

21

2
 or 10 

1

2

 � c1
3

 x3 �
1

2
 x2 � 3xd2

�1

 A � �
b

a

[ f(x) � t(x)] dx � �
2

�1
(x2 � x � 3) dx

�x�

�A � [ f(x) � t(x)]�x � [(x2 � 2) � (x � 1)]�x � (x2 � x � 3)�x

[�1, 2]f(x) � t(x)t(x) � x � 1f(x) � x2 � 2
y � x � 1y � x2 � 2

x � 2x � �1y � x � 1
y � x2 � 2

FIGURE 7
The graph of lies above
that of on .[�1, 2]t(x) � x � 1

f(x) � x2 � 2

EXAMPLE 2 Find the area of the region bounded by the graphs of and
.

Solution We first make a sketch of the desired region and draw a representative rec-
tangle. (See Figure 8.) The points of intersection of the two graphs are found by solv-
ing the equations and simultaneously. Substituting the second 
equation into the first yields

giving and as the -coordinates of the points of intersection. We can
think of the region in question as being bounded by the vertical lines and 

. This gives the limits of integration as and in Equation (2). Next,
if we let and , then on , and the represen-
tative rectangle has area

Therefore, the area of the required region is

 � a�8

3
� 2 � 4b � a1

3
�

1

2
� 2b �

27

6
 or 4

1

2

 � c�1

3
 x3 �

1

2
 x2 � 2xd2

�1

 A � �
b

a

[ f(x) � t(x)] dx � �
2

�1
(�x2 � x � 2) dx

�A � [ f(x) � t(x)]�x � [(2 � x2) � (�x)]�x � (�x2 � x � 2)�x

[�1, 2]f(x) � t(x)t(x) � �xf(x) � 2 � x2
b � 2a � �1x � 2

x � �1
xx � 2x � �1

 (x � 1)(x � 2) � 0

 x2 � x � 2 � 0

 �x � 2 � x2

y � �xy � 2 � x2

y � �x
y � 2 � x2

0 x

y � x � 1

y � x2 � 2x � 2
x � �1

�1 1 2 3 4�2

y

�2

3

5

0 x

x � 2

y � 2 � x2

x � �1

y � �x

�1 1 2

(2, �2)

(�1, 1)

y

�1

�2

1

2

FIGURE 8
The graph of lies above
that of on .[�1, 2]t(x) � �x

f(x) � 2 � x2
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EXAMPLE 3 Find the area of the region bounded by the graphs of and
.

Solution The region is shown in Figure 9. The points of intersection of the two
curves are found by solving the equations and simultaneously. Sub-
stituting the first equation into the second yields

giving and as the -coordinates of the points of intersection. The cor-
responding -coordinates are and .

Observe that for a representative rectangle lies between the half
parabola described by the function (solve for ) and the half
parabola described by the function ; whereas for a representa-
tive rectangle lies between the straight line and the half parabola,

. This observation suggests that we consider the area of to be the
sum of the areas of and .

The area of a representative rectangle in is

Therefore, the area of the region is

Similarly, the area of a representative rectangle in is

This tells us that the area of is

Therefore, the area of the region is

Integrating with Respect to 
Sometimes it is easier to find the area of a region by integrating with respect to rather
than with respect to . Consider, for example, the region bounded by the graphs of

and , where , and the horizontal lines and ,
where , as shown in Figure 10.c � d

y � dy � cf(y) � t(y)x � t(y)x � f(y)
Sx

y

y

 �
4

3
� a16

3
� 8 � 8b � a2

3
�

1

2
� 2b �

9

2
 or 4

1

2

 � c4
3

 x3>2d1
0

� c2
3

 x3>2 �
1

2
 x2 � 2xd4

1

 A1 � A2 � 2 �
1

0
1x dx � �

4

1
(1x � x � 2) dx

S

A2 � �
4

1
(1x � x � 2) dx

S2

�A � [ f(x) � h(x)]�x � [1x � (x � 2)]�x � (1x � x � 2)�x

S2

A1 � �
1

0
21x dx

S1

�A � [ f(x) � t(x)]�x � [1x � (�1x)]�x � 21x �x

S1

S2S1

Sy � f(x) � 1x
y � h(x) � x � 2

1 � x � 4f(x) � 1x
yx � y2

t(x) � �1x
0 � x � 1

x � 4x � 1x
yy � 2y � �1

 (y � 1)(y � 2) � 0

 y2 � y � 2 � 0

 y � y2 � 2

y � x � 2x � y2
S

y � x � 2
x � y2

FIGURE 9
The region is the union of the two
nonoverlapping regions and .S2S1

S

0 x

y � x � 2

x � y2

S2
S1

2 3 4

(4, 2)

(1, �1)

y

�1

�2

1

2
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Observe that the condition implies that the graph of lies to the right
of the graph of . Considering the horizontal rectangle of length and
width , we see that its area is

This suggests that the area of is

(3)

Since a rigorous derivation of Equation (3) proceeds along lines that are virtually
identical to that of Equation (2), it will be omitted here.

A � �
d

c

[ f(y) � t(y)] dy

S

�A � [ f(y) � t(y)]�y

�y
[ f(y) � t(y)]t

ff(y) � t(y)

FIGURE 10
The region is bounded on the left by
the graph of and on the right
by that of on .[c, d]x � f(y)

x � t(y)
S

0 x
f(y) � g(y)

x � f(y)

S

c

d
x � g(y)

y � d

y � c

�y

y

EXAMPLE 4 Find the area of the region of Example 3 by integrating with respect 
to .

Solution We view the region as being bounded by the graphs of the functions
(solve for ), , and the horizontal lines and

. See Figure 11. Observe that for in . The area of the rep-
resentative horizontal rectangle is

(right function left function)

This implies that

Note Sometimes we prefer to use Equation (3) instead of Equation (2) or vice versa.
In general, the choice of the formula depends on the shape of the region. Often one
would integrate with respect to the variable that results in the minimal splitting of the
region. But sometimes the use of one formula leads to an integral(s) that is difficult to
evaluate, in which case the other formula should be used.

What Happens When the Curves Intertwine?
Sometimes we are required to find the area of a region between two curves in which
the graph of one function lies above that of another function for some values of 

and lies below it for other values of . You will be asked
to give a physical interpretation of a problem involving precisely such a situation in
Exercise 46.

To find the area of the region , we divide it into subregions , , , , each of
which is described by the sole condition or . Figure 12 illus-
trates the case in which . We then use the guidelines developed earlier to calcu-
late the area of each subregion. Adding up these areas gives the area of . Thus, theS

n � 3
f(x) � t(x)f(x) � t(x)

SnpS2S1S

( f(x) � t(x))x( f(x) � t(x))
xtf

S

 � a2 � 4 �
8

3
b � a1

2
� 2 �

1

3
b �

9

2
 or 4

1

2

 A � �
2

�1
(y � 2 � y2) dy � c1

2
 y2 � 2y �

1

3
 y3d2

�1

�y�

�A � [ f(y) � t(y)]�y � [(y � 2) � y2]�y � (y � 2 � y2)�y

[�1, 2]yf(y) � t(y)y � 2
y � �1t(y) � y2xy � x � 2f(y) � y � 2

S

y

FIGURE 11
The horizontal rectangle has area

.[ f(y) � t(y)]�y

0 x

y � x � 2 ( f (y) � y � 2)

x � y2
�y

(g(y) � y2)

1 2 3 4

y

�1

�2

1

2

S



444 Chapter 5 Applications of the Definite Integral

area of the region shown in Figure 12 between the graphs of and and between the
vertical lines and is

A � �
c

a

[ f(x) � t(x)] dx � �
d

c

[t(x) � f(x)] dx � �
b

d

[ f(x) � t(x)] dx

x � bx � a
tfS

FIGURE 12
The region is the union of , where

; , where ,
and , where .f(x) � t(x)S3

f(x) � t(x)S2f(x) � t(x)
S1S

EXAMPLE 5 Find the area of the region bounded by the graphs of and
and the vertical lines and .

Solution The region is shown in Figure 13. To find the points of intersection of the
graphs of and , we solve the two equations simultaneously.
Substituting the first equation into the second, we obtain

By inspecting the graphs, we see that is the only solution of the equation.x � p>2
cos x �

2
p

 x � 1

y � (2>p)x � 1y � cos x
S

x � px � 0y � (2>p)x � 1
y � cos xS

FIGURE 13
The area of is the sum of the areas 
of and .S2S1

S

Therefore, the point of intersection is . Let and .
Referring to Figure 13, we see that the areas and of the subregions and are

 � csin x �
1
p

 x2 � xdp>2
0

� 1 �
1
p

 ap
2
b2

�
p

2
�

4p � p2 � 2p2

4p
�

4 � p

4

 � �
p>2

0
 ccos x � a 2

p
 x � 1b d dx � �

p>2

0
acos x �

2
p

 x � 1b dx

f(x) � t(x) A1 � �
p>2

0
[ f(x) � t(x)] dx

S2S1A2A1

t(x) � (2>p)x � 1f(x) � cos x1p2 , 0 2

0 x

x � a

c d

x � b

y � g(x)

y � f (x)

S1 S2 S3

y

x

y � x � 1

�1

1

S1

S2

y � cos x

0

x � π

ππ
2

π
2

y

Since

we can also write in the abbreviated form

(4)

When using Equation (4), however, we still need to determine the subintervals of 
where and/or where and write as the sum of integrals giving
the areas of the subregions on these subintervals.

At(x) � f(x)f(x) � t(x)
[a, b]

A � �
b

a

� f(x) � t(x) � dx

A

� f(x) � t(x) � � e f(x) � t(x) if f(x) � t(x)

t(x) � f(x) if f(x) � t(x)
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and

Therefore, the required area is

The following example, drawn from the field of study known as the theory of elastic-
ity, gives yet another physical interpretation of the area between two curves.

A � A1 � A2 �
4 � p

4
�

4 � p

4
�

4 � p

2
� 2 �

p

2

 � p � p �
p

4
�
p

2
� 1 �

4 � p

4

 � c 1
p

 x2 � x � sin xdp
p>2

� c 1
p

 (p2) � p � 0d � c 1
p

 ap
2
b2

�
p

2
� 1d

 � �
p

p>2
a 2
p

 x � 1 � cos xb dx

t(x) � f(x) A2 � �
p

p>2
[t(x) � f(x)] dx

EXAMPLE 6 Elastic Hysteresis Figure 14 shows a stress–strain curve for a sample
of vulcanized rubber that has been stretched to seven times its original length. The
function whose graph is the upper curve gives the relationship between the stress and
the strain as the load (the stress) is applied to the material. Because the material is elas-
tic, the rubber returns to its original length when the load is removed. However, when
the load is decreased, the graph of is not retraced. Instead, the stress–strain curve
given by the graph of the function is obtained.t

f

f

FIGURE 14
A stress–strain curve for a 

sample of vulcanized rubber: The 
upper curve shows what happens 
when the load is applied, and the 
lower curve shows what happens 

when the load is decreased.
0 x (%)

y � f (x)

y � g(x)

y (kg)

Strain

St
re

ss

700

The lack of coincidence of the curves for increasing and decreasing stress is known
as elastic hysteresis. The graphs of and on the interval form the hysteresis
loop for the material. It can be shown that the area of the region enclosed by the hys-
teresis loop is proportional to the energy dissipated within the rubber. Thus, the elas-
tic hysteresis of the rubber is given by

Since on 

Certain types of rubber have large hysteresis, and these materials are often used as
vibration absorbers. Most of the internal energy is dissipated in the form of heat, thereby
minimizing the transmission of the energy of vibration to the mediums to which the
machinery is mounted.

[0, 700]f(x) � t(x)�
700

0
[ f(x) � t(x)] dx

[0, 700]tf
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1. Write an expression that gives the area of the region com-
pletely enclosed by the graphs of and in Figures 1 and 2
in terms of (a) a single integral and (b) two integrals.

FIGURE 1

FIGURE 2

0

x � f( y)

x � g( y)

x
c

d

e

y

0

y � f (x)

y � g(x)

ca b x

y

tf
2. Two cars start out side by side moving down a straight road.

The velocity functions for Car and Car are and ,
respectively. Their graphs are shown in Figure 3. Suppose
that and are measured in feet per second and in
seconds, where lies in the interval . Answer the fol-
lowing questions using definite integral(s) if appropriate.

FIGURE 3

a. By what distance is Car ahead of Car after 3 sec?
After 7 sec? After 10 sec?

b. Is one car always ahead of the other after the start of
motion?

c. What is the greatest distance between the two cars over
the 10-sec interval?

BA

0 10

y � f(t)

y � g(t)

t (sec)

y (ft/sec)

3 7

[0, 10]t
tt(t)f(t)

tfBA

5.1 CONCEPT QUESTIONS

5.1 EXERCISES

Videos for selected exercises are available online at www.academic.cengage.com/login.V

In Exercises 1–6, find the area of the shaded region.

1.

2.

0

1
2
3
4

�2
�3

x�2 �1 21

y � x � 2

y � x3 � 4

y

0

1
2

3

�2

�3

�4

�5

x�3�2�1 321

y � x � 1

y � �x2 � 1

y

3.

4.

0

�1

1

x1�1

y � x2

y � x1/3

y

0

1

2

3

4

x2 3 41

y � x � 2

y � �x2 � 4x

√x

y

www.academic.cengage.com/login


5.

6.

7. Oil Production Shortfall Energy experts disagree about when
global oil production will begin to decline. In the following
figure, the function gives the annual world oil production
in billions of barrels from 1980 to 2050 according to the
U.S. Department of Energy projection. The function gives
the world oil production in billions of barrels per year over
the same period according to longtime petroleum geologist
Colin Campbell. Find an expression in terms of definite inte-
grals involving and giving the shortfall in the total oil
production over the period in question heeding Campbell’s
dire warnings.

Source: U.S. Department of Energy and Colin Campbell.

8. Rate of Change of Revenue The rate of change of the revenue
of Company over the (time) interval is dollars
per week, whereas the rate of change of the revenue of
Company over the same period is dollars per week.
Suppose the graphs of and are as depicted in the follow-
ing figure. Find an expression in terms of definite integrals
involving and giving the additional revenue that Com-
pany will have over Company in the period .[0, T]AB

tf

tf
t(t)B

f(t)[0, T]A

0 t1990 2000 2010 2020 2030 2040 2050
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B
ill
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 o
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s/

ye
ar

10

20

30

40

50

60

y � g(t)

y � f(t)
y � f(t)

y

tf

t

f

0

�1

1

x1 2�1

x � y4 � 2y2 � 2

x � �y2/3 y

0

1

x1�1

y � x3

x � 2y2 � 1

y

In Exercises 9–38, sketch the region bounded by the graphs of
the given equations and find the area of that region.

9. , , ,

10. , , ,

11. ,

12. ,

13. ,

14. ,

15. ,

16. ,

17. ,

18. ,

19. , , ,

20. ,

21. , ,

22. ,

23. ,

24. ,

25. , ,

26. , , ,

27. , , ,

28. ,

29. ,

30. ,

31. ,

32. , , ,

33. , , , x �
p

2
x �
p

6
y � cos xy � sin 2x

x �
p

2
x � �

p

2
y �

2
p

 x � 1y � sin x

y � x2 � 2y � �x �
x � y � 11x � 1y � 1

y � x4 � 1y � �x3 � x

x � 2y � 3x � y2

y � 2y � �1x � y � 3x � y2

y � 2y � �1x � 0x � y2 � 1

x � 3y � 0y �
x

216 � x2

y � 0y � x24 � x2

y � x2 � 5y � �x2 � 6x � 5

y � x1x � 1y � 2x

x � 3y � x2y �
1

x2

y � �1xy � 21x � x

x � 4x � 1y � �
1

2
 x � 1y � 1x

y � x2 � 3xy � x3 � 6x2 � 9x

y � x2y � 1x

y � x4y � x2

y � x3y � x

y � 4 � x2y � (x � 2)2

y � �x2 � 2x � 3y � x2 � 4x � 3

y � �x � 4y � x2 � 4x

y � 3x � 4y � �x2 � 4

x � 1x � �1y � x � 1y � x3 � 1

x � 1x � �1y � x � 1y � x2 � 3

0 T1 T

y � f(t)

y � g(t)

t (week)

y ($/week)
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34. , , ,

35. , , ,

36. , , ,

37. , , ,

38. , , ,

39. Find the area of the region in the first quadrant bounded 
by the parabolas and and the line .

40. Find the area of the region enclosed by the curve
.

In Exercises 41 and 42, use integration to find the area of the
triangle with the given vertices.

41. , ,

42. , ,

In Exercises 43 and 44, find the area of the region bounded 
by the given curves (a) using integration with respect to and
(b) using integration with respect to .

43. , ,

44. , , ,

45. Effect of Advertising on Revenue In the accompanying figure,
the function gives the rate of change of Odyssey Travel’s
revenue with respect to the amount it spends on advertis-
ing with its current advertising agency. By engaging the
services of a different advertising agency, Odyssey expects
its revenue to grow at the rate given by the function . Give
an interpretation of the area of the region , and find an
expression for in terms of a definite integral involving 
and .

46. Two cars start out side by side and travel along a straight
road. The velocity of Car is ft/sec, and the velocity of
Car is ft/sec over the interval , where .
Furthermore, suppose that the graphs of and are as de-tf

0 � T1 � T[0, T]t(t)B
f(t)A

0 b

R � f (x)

S 

R � g(x)

x ($)

D
ol

la
rs

 p
er

 d
ol

la
r

R

t

fA
SA

t

x
f

y � 2y � 1y �
1

2
 xy � 1x

x � 0y � 2x � 4y � x3

y
x

(6, 2)(0, �2)(�2, 4)

(4, 2)(1, 6)(0, 0)

y2 � x2(1 � x2)

y � 2y � 1
4 x2y � x2

y �
p

2
y � 0x � 0x � sin y � cos 2y

x � px � 0y � 0y � 2 sin x � sin 2x

x �
p

3
x � �

p

3
y � cos xy � sec2 x

x �
p

4
x � �

p

4
y � 2y � sec2 x

x �
3p

2
x � 0y � sin xy � cos 2x

picted in the figure. Let and denote the areas of the
regions shown shaded.

a. Write the number

in terms of and .
b. What does the number obtained in part (a) represent?

In Exercises 47–52, use a graphing utility to (a) plot the graphs
of the given functions and (b) find the -coordinates of the points
of intersection of the curves. Then find an approximation of the
area of the region bounded by the curves using the integration
capabilities of the graphing utility.

47. ,

48. ,

49. ,

50. ,

51. ,

52. ,

53. Turbocharged Engine Versus Standard Engine In tests conducted
by Auto Test Magazine on two identical models of the
Phoenix Elite, one equipped with a standard engine and the
other with a turbocharger, it was found that the acceleration
of the former (in ft/sec2) is given by

sec after starting from rest at full throttle, whereas the
acceleration of the latter (in ft/sec2) is given by

How much faster is the turbocharged model moving than 
the model with the standard engine at the end of a 10-sec
test run at full throttle?

54. Velocity of Dragsters Two dragsters start out side by side. The
velocity of Dragster , , and the velocity of Dragster ,

, for the first 8 sec of the race are shown in the following
table, where and are measured in feet per second. Use 
Simpson’s Rule with to estimate how far Dragster 
is ahead of Dragster 8 sec after the start of the race.B

An � 8
VBVA

VB

BVAA

0 � t � 12a � t(t) � 4 � 1.2t � 0.03t 2

t

0 � t � 12a � f(t) � 4 � 0.8t

y � �x �y � cos x

y � sin xy � x2

y � 4 � x2y � x4 � 2x2 � 2

y � x3 � 9xy � x3 � 4x2

y � x2 � 4y � x3 � 3x2 � 1

y � 4 � x4y � x2

x

A2A1

�
T

T1

[t(t) � f(t)] dt � �
T1

0
[ f(t) � t(t)] dt

0 T1

A1

A2

T

y � f (t)
y � g(t)

t (sec)

y (ft/sec)

A2A1
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55. Surface Area of the Jacqueline Kennedy Onassis Reservoir The
reservoir located in Central Park in New York City has the
shape depicted in the figure below. The measurements
shown were taken at 206-ft intervals. Use Simpson’s Rule
with to estimate the surface area of the reservoir.

Source: The Boston Globe

56. Estimating the Rate of Flow of a River A stream is 120 ft wide.
The following table gives the depths of the river measured
across a section of the river in intervals of 6 ft. Here,
denotes the distance from one bank of the river, and 
denotes the corresponding depth (in feet). The average 
rate of flow of the river across this section of the river 
is 4.2 ft/sec. Use Simpson’s Rule to estimate the rate of 
flow of the river.

y
x

1030 ft 1498 ft 1910 ft 2304 ft 2323 ft

1349 ft 1817 ft 1985 ft 2585 ft 1592 ft

n � 10

57. Profit Functions The weekly total marginal cost incurred by
the Advance Visuals Systems Corporation in manufacturing

19-inch LCD HDTVs is

dollars per set. The weekly marginal revenue realized by the
company from the sale of sets is

dollars per set.
a. Plot the graphs of and using the viewing window

.
b. Find the area of the region bounded by the graphs of 

and and the vertical lines and .
Interpret your result.

58. Find the area of the region bounded by the curve
and the line .

59. Find the area of the region bounded by the graph of
, the -axis, and the tangent line to the graph of 

at .

60. Find the number such that the area of the region bounded
by the graph of and the line is .

61. Find the area of the region bounded by the -axis and the
graph of and to the right of the vertical line
that passes through the point at which attains its absolute
minimum.

62. The area of the region in the right half plane bounded by 
the -axis, the parabola , and a line tan-
gent to the parabola is . Find the coordinates of the point 
of tangency.

63. The region is bounded by the graphs of , the 
-axis, and the line .

a. Find such that the line divides into two sub-
regions of equal area.

b. Find such that the line divides into two sub-
regions of equal area.

64. Find the value of such that the parabola divides
the region bounded by the parabola , and the lines

, and into two subregions of equal area.

65. Let denote the area of the region in the first quadrant
completely enclosed by the graphs of andf(x) � xm

A(x)

x � 0y � 2
y � 1

9 x
2

y � cx2c

Sy � bb

Sx � aa
x � 4x

y � 1xS

8
3

y � �x2 � 2x � 3y

f
f(x) � x4 � 2x3

x

9
2x � ax � (y � 1)2

a

(1, 1)
fyf(x) � 1x

x � 2y2 � x3 � x2

x � 5000x � 2000R¿
C¿

[0, 10,000] 	 [0, 300]
R¿C¿

R¿(x) � �0.008x � 200

x

C¿(x) � 0.000006x2 � 0.04x � 120

x

(sec)t 0 1 2 3 4 5 6 7 8

(ft/sec)VA 0 22 46 70 94 118 142 166 190

(ft/sec)VB 0 20 44 66 88 112 138 160 182

(ft)x 0 6 12 18 24 30 36 42 48 54 60

(ft)y 0.8 1.2 3.0 4.1 5.8 6.6 6.8 7.0 7.2 7.4 7.8

(ft)x 66 72 78 84 90 96 102 108 114 120

(ft)y 7.6 7.4 7.0 6.6 6.0 5.1 4.3 3.2 2.2 1.1

, where is a positive integer.
a. Find an expression for .
b. Evaluate and . Give a geomet-

ric interpretation.
c. Verify your observations in part (b) by plotting the

graphs of and .tf

limm→� A(m)limm→1 A(m)
A(m)

mt(x) � x1>m
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66. Let and .

a. Plot the graphs of and using the viewing window
. Find the points of intersection of the

graphs of and accurate to three decimal places.
b. Use a calculator or computer and the result of part (a) to

find the area of the region bounded by the graphs of 
and .

67. The curve with equation is called a 
piriform.
a. Plot the curve using the viewing window

.
b. Find the area of the region enclosed by the curve accu-

rate to five decimal places.

68. The curve with equation is
called a right strophoid.
a. Plot the curve using the viewing window

.
b. Find the area of the region enclosed by the loop of the

curve.

[�1.5, 1.5] 	 [�0.5, 0.5]

4y2 � 4xy2 � x2 � x3 � 0

[�1, 1] 	 [�1, 1]

y2 � 4x3 � 4x4 � 0

t

f

tf
[�1, 1] 	 [0, 1.5]

tf

t(x) � �x �f(x) �
1

x2 � 1

In Exercises 69–72, determine whether the statement is true or
false. If it is true, explain why it is true. If it is false, explain why
or give an example to show why it is false.

69. If denotes the area bounded by the graphs of and on
, then

70. If and are continuous on and ,
then for all in .

71. Two cars start out traveling side by side along a straight
road at . Twenty seconds later, Car is 30 ft behind
Car . If and are continuous velocity functions for 
Car and Car , respectively, where and are
measured in feet per second, then

72. Suppose that the acceleration of Car and Car along a
straight road are ft/sec2 and ft/sec2, respectively,
over the time interval , where and are continuous
functions with on . Then at time ,
Car will be traveling ft/sec faster than
Car . (Assume that is measured in seconds.)tB

� t2
t1

[a1(t) � a2(t)] dtA
t � t2[t1, t2]a1(t) � a2(t)

a2a1[t1, t2]
a2(t)a1(t)

BA

�
20

0
√2(t) dt � �

20

0
√1(t) dt � 30

√2(t)√1(t)BA
√2√1B

At � 0

[a, b]tf(t) � t(t)
�b

a [ f(t) � t(t)] dt 
 0[a, b]tf

A2 � �
b

a

[ f(x) � t(x)]2 dx

[a, b]
tfA

5.2 Volumes: Disks, Washers, and Cross Sections

In Section 5.1 we saw the role played by the definite integral in finding the area of
plane regions. In the next two sections we will see how the definite integral can be
used to help us find the volumes of solids such as those shown in Figure 1.

FIGURE 1

Figure 1c depicts a pontoon for a seaplane. In designing a pontoon, the engineer
needs to know the volume of water displaced by the part of the pontoon that lies
below the waterline in order to determine the buoyancy of the pontoon (Archimedes’
Principle).

(a) Wine barrel (b) Pyramid (c) Pontoon
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FIGURE 2

The Disk Method
To define the volume of a solid of revolution and to devise a method for computing 
it, let’s consider the solid generated by the region shown in Figure 3a. Let

be a regular partition of . This partition divides the region
into nonoverlapping subregions , , , . When these regions are revolved

about the -axis, they give rise to the nonoverlapping solids , , , , whose
union is . (See Figure 3b.)S

SnpS2S1nx
RnpR2R1nR

[a, b]P � {x0, x1, p , xn}
RS

FIGURE 3
A partition of produces 

subregions , , ,
that are revolved about the -axis 

to obtain the solids , , ,
that together form . (Here .)n � 8S

SnpS2S1n
x

RnpR2R1n
[a, b]

Solids of Revolution
A solid of revolution is a solid obtained by revolving a region in the plane about a
line in the plane. The line is called the axis of revolution. For example, if the region

under the graph of on the interval shown in Figure 2a is revolved about the
-axis, we obtain the solid of revolution shown in Figure 2b. Here, the axis of revo-

lution of the solid is the -axis.x
Sx

[a, b]fR

x0

y

y � f(x)

R

ba x0

y

S

(a) Region R under the graph of f (b) Solid obtained by revolving R about the x-axis

x0

y

y � f(x)

R1 R2 Rk Rn S1 S2     · · · Sk     · · · Sn

· · · xn � bx0 � a x1 x2 · · ·
xk�1 xk

x0

y

(a) The region R (b) The solid S

Let’s concentrate on the part of the solid of revolution that is generated by the region
under the graph of on the interval . This region is shown enlarged for the

sake of clarity in Figure 4. If is an evaluation point in , then the area of 
is approximated by the rectangle of height and width . If this rec-
tangle is revolved about the -axis, it generates the disk having radius and width

; therefore, its volume is

p(radius)2 � width�Vk � p[ f(ck)]
2 �x

�x
f(ck)Dkx

�x � (b � a)>nf(ck)
Rk[xk�1, xk]ck

[xk�1, xk]fRk
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Just as we were able to recall the formulas for finding the area under a curve by
looking at the area of a representative rectangle, so can we recall Formula (1) by look-
ing at the volume of the disk obtained by revolving a representative rectangle about
the -axis.

We proceed as follows: Having made a sketch of the region under the graph of
on , draw a representative vertical rectangle of height , or , corre-yf(x)[a, b]y � f(x)

R
x

FIGURE 4
The region , shown shaded, is

approximated by the rectangle. 
The volume of is approximated 

by the volume of the disk .Dk

Sk

Rk

The volume of provides us with an approximation of the volume of . There-
fore, by approximating the volume of each solid , , , with the volume of a
corresponding disk , , , , we see that the volume of is approximated by
the sum of the volumes of these disks. (See Figure 5.) Thus,

V � a
n

k�1
�Vk � a

n

k�1
p[ f(ck)]

2 �x

SVDnpD2D1

SnpS2S1

SkDk

FIGURE 5
The volume of the solid of revolution

is approximated by the sum of the
volume of the disks , , .DnpD1n

S
V

DEFINITION Volume of a Solid of Revolution
(Region revolved about the -axis)

Let be a continuous nonnegative function on , and let be the region
under the graph of on the interval . The volume of the solid of revolution
generated by revolving about the -axis is

(1)V � lim
n→�

 a
n

k�1
p[ f(ck)]

2 �x � �
b

a

p[ f(x)]2 dx

xR
[a, b]f

R[a, b]f

x

D1 D2        · · · Dk      · · · Dn

0

y

x

Δx

xk�1 xk

Rk Sk

The kth region and the
approximating rectangle

The kth solid of
revolution

The kth disk

ck

Δx

Dk f (ck)

Δx

Recognizing this sum to be the Riemann sum of the function on the interval ,
we see that

lim
n→�

 a
n

k�1
p[ f(ck)]

2 �x � �
b

a

p[ f(x)]2 dx

[a, b]pf 2
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FIGURE 6
If a representative vertical rectangle is

revolved about the -axis, it generates a
disk of radius , or , and width .�xyf(x)

x

From now on, when we introduce a notion and/or derive a formula through the use
of Riemann sums, we will often use the heuristic approach of looking at a representa-
tive element associated with the general term of the Riemann sum (without the sub-
scripts) to help us recall the appropriate formula.

EXAMPLE 1 Find the volume of the solid obtained by revolving the region under the
graph of on about the -axis.

Solution From the graph of sketched in Figure 7a, we see that the radius of
the representative disk corresponding to a particular value of in (the height of
the representative rectangle) is , or . Therefore, the volume of the disk is

Here .

 � p(1x)2 �x � px(�x)

y � f(x) � 1x �V � py2 �x

1xy
[0, 2]x

y � 1x

x[0, 2]y � 1x

FIGURE 7
If is revolved about the -axis,

we obtain the solid of revolution .S
xR

sponding to a value of in , and width . (See Figure 6.) We can regard this
disk with volume

as representing an element of volume of a solid. Now observe that the expression next
to , , is the integrand in Formula (1).py2�x

p(radius)2 � width�V � p[ f(x)]2 �x � py2 �x

�x[a, b]x

x

y � f (x)

R
f (x) or y

Δx

Δx

y

0 a b

x

Δx

y

0

R

2

y

y � √x

x

y

0

S

(a) The region R (b) The solid S

Volume by Disk Method (Region revolved about the -axis)

f � 0V � p�
b

a

[ f(x)]2 dx � p�
b

a

y2 dx

x
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Summing the volumes of the disks and taking the limit, we find that the volume of the
solid is

 �
1

2
 px2 ` 2

0
�

1

2
 p(4 � 0) or 2p

 V � �
2

0
px dx � p�

2

0
x dx

EXAMPLE 2 By revolving the region under the graph of on ,
show that the volume of a sphere of radius is .

Solution The graph of is a semicircle, as shown in Figure 8a. We can
see that the radius of a representative disk is , the height of the vertical rectangle.
Therefore, the volume of the disk is

Since y �2r 2 � x2 � p(r 2 � x2)�x

 �V � py2 �x

y
y �2r 2 � x2

V � 4
3 pr 3r

[�r, r]y �2r 2 � x2

FIGURE 8
By revolving the region about the 

-axis, we obtain the sphere of radius .rx
R

Summing the volumes of the disks and taking the limit, we obtain the required volume
as

Use the symmetry of the region.

 �
4

3
 pr 3

 � 2par 3 �
1

3
 r 3b

 � 2pcr 2x �
1

3
 x3dr

0

 � 2p�
r

0
(r 2 � x2) dx

 � p�
r

�r

(r 2 � x2) dx

 V � �
r

�r

p(r 2 � x2) dx

x

Δx

y

R

r�r

r

y

y � √r2 � x2 

x

y

(a) The region R (b) The solid S
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Formula (1) is used to find the volume of a solid of revolution when the axis of
revolution is the -axis. To derive a formula for the volume of a solid of revolution
obtained by revolving a region about the -axis, consider the region bounded by the
graphs of , , , and as shown in Figure 9.

If is revolved about the -axis, then a representative horizontal rectangle (per-
pendicular to the axis of revolution) with length , or , and width generates a
disk with volume

Summing the volumes of the disks and taking the limit, we obtain the following formula.

�V � p[t(y)]2 �y � px2 �y

�yt(y)x
yR

y � dy � cx � 0x � t(y)
Ry

Vx

FIGURE 9
If a representative horizontal 

rectangle is revolved about the 
-axis, it generates a disk of 

radius , or , and width �yxt(y)
y

and hence volume .�V � px2 �y

EXAMPLE 3 Find the volume of the solid obtained by revolving the region bounded
by the graphs of , , and about the -axis.

Solution The region in question together with the solid generated by revolving that
region about the -axis is shown in Figure 10. A representative horizontal rectangle
sweeps out a disk of radius and width . Therefore, its volume is

Solve for .

 � py2>3 �y

xy � x3 � p(y1>3)2 �y

 �V � px2 �y

�yx
y

R

yx � 0y � 8y � x3

FIGURE 10
If a horizontal rectangle is revolved 

about the -axis, it generates a disk of y

x

x � t(y)

t(y)

x
or
t(y)

Δy

c

d

R

y

Δy

x

y

0

x

y

R

Δy

x

y � x3 or x � y1/3

y � 88

0 x

y

radius , or , and width .�yxt(y) � y1>3

Volume by Disk Method (Region revolved about the -axis)

t � 0V � p�
d

c

[t(y)]2 dy � p�
d

c

x2 dy

y

Copyright 2009 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.
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FIGURE 11
When a vertical rectangle is revolved

about the -axis, it generates a 
washer of outer radius ,

inner radius , and width .�xt(x)
f(x)

x

Summing the volumes of the washers and taking the limit, we see that the volume 
of the solid is given by the following.S

V

EXAMPLE 4 Find the volume of the solid obtained by revolving the region bounded
by and about the -axis.

Solution The region bounded by and is shown in Figure 12. The curves
and intersect at and , as may be verified by solving the equa-

tions simultaneously. The outer and inner radius of the washer generated by the repre-
sentative vertical rectangle shown are and , respectively. Therefore,
its volume is

 � p(x � x2)�x

 �V � p{[ f(x)]2 � [t(x)]2}�x

t(x) � xf(x) � 1x

(1, 1)(0, 0)y � xy � 1x
y � xy � 1x

xy � xy � 1x

If we sum the volume of these disks and take the limit, we find that the required vol-
ume is

The Washer Method
Let be the region between the graphs of the functions and and between the ver-
tical lines and , where on . If is revolved about
the -axis, we obtain a solid of revolution with a hole in it. (See Figure 11.) Observe
that when a representative vertical rectangle between the curves is revolved about the
-axis, the resultant element of volume of the solid has the shape of a washer with

outer radius and inner radius . Therefore, the volume of this element is

 � p{[ f(x)]2 � [t(x)]2}�x

p(outer radius)2 � width � p(inner radius)2 � width

 �V � p[ f(x)]2 �x � p[t(x)]2 �x

t(x)f(x)
x

x
R[a, b]f(x) � t(x) � 0x � bx � a

tfR

 �
3

5
 py5>3 ` 8

0
�

3

5
 p(85>3) or 96p

5

 V � p�
8

0
y2>3 dy

x
Δx

Δx

0

y

y � f(x)

y � t(x)

t(x)
f(x)

ba x

y

x

R

Volume by Washer Method (Region revolved about the -axis)

f � t � 0V � p�
b

a

{[ f(x)]2 � [t(x)]2} dx

x
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FIGURE 12
If a vertical rectangle is revolved 

about the -axis, it generates a 
washer with outer radius ,
inner radius , and width .�xx

1x
x

EXAMPLE 5 Find the volume of the solid generated by revolving the region of Exam-
ple 4 about the line .

Solution The region and the resulting solid of revolution are shown in Figure 13. If
a representative vertical rectangle is revolved about the line , the resultant solid
is a washer with outer radius , inner radius , and width . Therefore,
its volume is

 � p(x2 � 5x � 41x)�x

p[(outer radius)2 � (inner radius)2]�x

 �V � p[(2 � x)2 � (2 � 1x)2]�x

�x2 � 1x2 � x
y � 2

y � 2

FIGURE 13
If a vertical rectangle is revolved about the line , it generates a washer with outer radius

, inner radius , and width .�x2 � 1x2 � x
y � 2

1 (1, 1)

xΔx0

y

y �
y � x

x

1 x

y

√x

√x

Summing the volumes of the washers and taking the limit, we find that the required
volume is

 � pc1
2

 x2 �
1

3
 x3d1

0
� pa1

2
�

1

3
b or p

6

 � p�
1

0
(x � x2) dx

 V � �
1

0
p(x � x2) dx

1

3

4

xΔx0

y

y � x

y � 2

2 �2 � x

x

1 x

√x

√x

y � √x

EVANGELISTA TORRICELLI
(1608–1647)

Evangelista Torricelli was born to a family
that had no money to educate him. Fortu-
nately, his uncle was a Camaldolese monk,
who, through his connections with the
church, was able to send Torricelli to Rome
to study under Benedictine Benedetto
Castelli, a professor of mathematics at the
Collegio della Sapienza. Castelli introduced
Torricelli to the works of Galileo, which led
to Torricelli’s corresponding with Galileo
and eventually traveling to France to work
with him until Galileo’s death three months
later. Torricelli established many connec-
tions supporting the inverse relationship
between the tangent and quadrature prob-
lems that were later developed as differen-
tiation and integration. He also invented
the barometer and a figure known as
Gabriel’s Horn (also called Torricelli’s Trum-
pet), which has infinite surface area but
finite volume. The name Gabriel’s Horn
refers to the horn blown by the biblical
archangel Gabriel to announce Judgment
Day, associating the infinite with the
divine.
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Summing the volumes of the washers and taking the limit, we find that the volume of
the solid is

The Method of Cross Sections
We now turn to the more general problem of defining the volume of an irregularly
shaped object. Consider, for example, the solid that is the part of a pontoon that lies
below the waterline. The side view of one such pontoon is shown in Figure 15. A cross
section of the pontoon (by a plane perpendicular to the -axis) at the point is shown
on the right.

xx

 � pc1
3

 y3 �
1

5
 y5d1

0
� pa1

3
�

1

5
b or 2p

15

 V � �
1

0
p(y2 � y4) dy � p�

1

0
(y2 � y4) dy

FIGURE 14
If a horizontal rectangle is revolved 

about the -axis, it generates a 
washer with outer radius ,

inner radius , and width .�yy2
y

y

FIGURE 15
is the area of a cross 

section of a pontoon at .x
A(x)

Summing the volumes of the washers and taking the limit, we find that the required
volume is

 � pa1

3
�

5

2
�

8

3
b or p

2

 � pc1
3

 x3 �
5

2
 x2 �

8

3
 x3>2d1

0

 V � �
1

0
p(x2 � 5x � 41x) dx

EXAMPLE 6 Find the volume of the solid generated by revolving the region of Exam-
ple 4 about the -axis.

Solution The region together with the solid of revolution is shown in Figure 14. When
a horizontal rectangle is revolved about the -axis, the resultant solid is a washer with
outer radius , inner radius , and width . Therefore, the volume of the solid is

�V � p(y2 � y4)�y

�yy2y
y

y

1

x x0 0

y

y � (x � y2)

y � x

1�1

y2

y

y

√x

x
(waterline)

y

a
x

b

A (x)



5.2 Volumes: Disks, Washers, and Cross Sections 459

If we add up these terms, we obtain an approximation to the volume of the pon-
toon. We can expect the approximations to get better and better as . Recogniz-
ing this sum to be the Riemann sum of the function on the interval , we are
led to the following definition.

[a, b]A(x)
n → �

Vn

To find the volume of the pontoon, let’s take a regular partition 
of the interval . The planes that are perpendicular to the -axis at the partition
points will slice the pontoon into “slabs” much like the way one slices a loaf of bread.
The volume of the th slab between and is approximated by the
volume of the cylinder with constant cross-sectional area and height , where

lies in . (See Figure 16.) Thus,

�V � A(ck)�x

[xk�1, xk]ck

�xA(ck)
x � xkx � xk�1k�V

x[a, b]
P � {x0, x1, p , xn}

FIGURE 16
The volume of the th “slab”

is approximately .A(ck)�x
k

DEFINITION Volume of a Solid with Known Cross Section

Let be a solid bounded by planes that are perpendicular to the -axis at 
and . If the cross-sectional area of at any point in is , where

is continuous on , then the volume of is

(2)V � lim
n→�

 a
n

k�1
A(ck)�x � �

b

a

A(x) dx

S[a, b]A
A(x)[a, b]xSx � b

x � axS

EXAMPLE 7 A solid has a circular base of radius 2. Parallel cross sections of the
solid perpendicular to its base are equilateral triangles. What is the volume of the solid?

Solution Suppose that the base of the solid is bounded by the circle with equation
. The solid is shown in Figure 17a, where we have highlighted a typical

cross section. To find the area of the cross section, observe that the base of the trian-
gular cross section is 2 , as shown in Figure 17b. Using the Pythagorean Theorem, we
see that the height of the cross section is (see Figure 17c). Therefore, the area

of a typical cross section is

y2 � 4 � x2A(x) �
1

2
 (2y)(13y) � 13y2 � 13(4 � x2)

A(x)
13y

y

x2 � y2 � 4

FIGURE 17

Δx

A(ck)

(a) The solid (b) The base of a cross section (c) A cross section

2

�2

2�2 xx

y

y

y

x2 � y2 � 4 (x, y) 

2y

2y√3y
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EXAMPLE 8 Find the volume of a right pyramid with a square base of side and
height .

Solution Let’s place the center of the base of the pyramid at the origin as shown in
Figure 18a. A typical cross section of the pyramid perpendicular to the -axis is a square
of dimension 2 by 2 . From Figure 18b we see by similar triangles that

or

x �
b

2h
 (h � y)

x

b

2

�
h � y

h

xx
y

h
b

FIGURE 18

Therefore, the area of the cross section is

The pyramid lies between and . Therefore, its volume is

 � c� b2

3h2
 (h � y)3dh

0
� 0 � a� b2

3h2
b (h3) �

1

3
 b2h

 V � �
h

0
A(y) dy � �

h

0
 
b2

h2
 (h � y)2 dy

y � hy � 0

A(y) � (2x)(2x) � 4x2 �
b2

h2
 (h � y)2

Using Formula (2), we see that the volume of the solid is

The integrand is even.

 � 213 c4x �
1

3
 x3d2

0
�

3213

3

 V � �
2

�2
 A(x) dx � �

2

�2
13(4 � x2) dx � 2�

2

0
13(4 � x2) dx

xx

y

y

h – y

(x,y)
(x,y)

y

(a) A right pyramid (b) A side view of the pyramid

h

 b__
2 
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1. Write the integral that gives the volume of a solid of revolu-
tion using (a) the disk method and (b) the washer method.
Illustrate each case graphically by drawing the region ,
indicating the axis of revolution, and drawing a representa-
tive rectangle that helps you to derive the formula.

R

2. Write the integral that gives the volume of a solid using the
method of cross sections.

5.2 CONCEPT QUESTIONS

9. 10.

11. 12.

In Exercises 13–30, find the volume of the solid generated by
revolving the region bounded by the graphs of the equations
and/or inequalities about the indicated axis.

13. , , ; the -axis

14. , , ; the -axis

15. , ; the -axis

16. , , , ; the -axis

17. , , , ; the -axis

18. , , ; the -axis

19. , , ; the -axis

20. , ; the -axis

21. , , , ; the -axis

22. , , , ; the -axisxx � 3x � 0y � 0y �
1

(x � 1)3>2

yy � 2y � �2x � 0x2 � y2 � 4

yx � 0x � �y2 � 2y

yy � 0x � 0x �24 � y2

yy � 1x � 0x � y3>2
yy � 2y � 1x � 0x �

1
y

xx � 5x � 2y � 0y � 1x � 1

xy � 0y � �x2 � 2x

xx � 1y � 0y � x3

xx � 2y � 0y � x2

y � x3

y � x

0 1

1

3
2y �

x

y

y � x3

y � x

0 1

1

3
2

3
2 y �

x

y

0 21

3

4

2

1

y2 � 8x

y � x2

x

y

0 21

3

2

1

x � y2 � 4y � 5

x

y

5.2 EXERCISES

Videos for selected exercises are available online at www.academic.cengage.com/login.V

In Exercises 1–12, find the volume of the solid that is obtained
by revolving the region about the indicated axis or line.

1. 2.

3. 4.

5. 6.

7. 8.

0 2�2

4

2
y � x2

x2 � 21
2y �

x

y

0 1

1

y � x3
y � x2

x

y

0 1

1

y � x3
y � x2

x

y

0 1

x � tan y

π
4

x

y

0

1

2

4

3

1 2

y � 4 � x2

x

y

0

2

4

6

1 2�1

y � (x � 1)2 � 2

x

y

0

1

1�1�2�3

y �

x

y

√1 � x

0

1

1 2

y � 1
2 x

x

y

www.academic.cengage.com/login
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23. , ; the -axis

24. , , ; the -axis

25. , , , ; the -axis

26. , ; the -axis

27. , ; the -axis

28. , ; the -axis

29. , , ; the -axis;

(the smaller region)

30. , ; the -axis; (the smaller region)

In Exercises 31 and 32 use a graphing utility to (a) plot the
graphs of the given functions and (b) find the approximate 
-coordinates of the points of intersection of the graphs. Then 

find an approximation of the volume of the solid obtained by
revolving the region bounded by the graphs of the functions
about the -axis.

31. , 32. ,

In Exercises 33–38, find the volume of the solid generated by
revolving the region bounded by the graphs of the equations
about the indicated line.

33. , ; the line 

34. , ; the line 

35. , ; the line 

36. , ; the line 

37. , ; the line 

38. , ; the line 

In Exercises 39–42, sketch a plane region, and indicate the axis
about which it is revolved so that the resulting solid of revolu-
tion has the volume given by the integral. (The answer is not
unique.)

39. 40.

41. 42.

43. Find the volume of the solid generated by revolving the
region enclosed by the graph of and 
the coordinate axes about the -axis.x

x1>2 � y1>2 � a1>2

p�
1

0
[(�1)2 � (x2 � 1)2] dxp�

1

0
(x2 � x4) dx

p�
1

0
y2>3 dyp�

p>2

0
sin2 x dx

x � 2y2 � 8xy � x2

x � �1x � 2x � y2 � 4y � 5

y � 5y �
1

2
 x2 � 2y � x2

y � 5y � 0y � 4 � x2

y � 2y � x2y � x

y � 2y � 0y � �x2 � 2x

y � sin(x2)y � x5y � 2x2 � x3y �
1

2
 x5

x

x

yy2 �
3

2
 xx2 � y2 � 1

xy � 0y2 �
3

2
 xx2 � y2 � 1

xy � 2 � x2y � x2

xy � 1xy � x2

xy � xy � x2

xx �
p

2
y � 0x � 0y � cos x

xx �
p

2
y � 0y � 1sin x

yx � 0x � y24 � y2 44. a. Find the volume of the solid (a prolate spheroid) 
generated by revolving the upper half of the ellipse

about the -axis.
b. Find the volume of the solid (an oblate spheroid) 

generated by revolving the right half of the ellipse
about the -axis.

45. Find the volume of the solid obtained by revolving the
region enclosed by the curve , where 

, about the -axis.

46. Find the volume of the solid generated by revolving the
region enclosed by the astroid about the 
-axis.

47. The function is defined by

Find the volume of the solid generated by revolving the
region under the graph of on about the -axis.

48. Verify the formula for the volume of a right circular cone by
finding the volume of the solid obtained by revolving the tri-
angular region with vertices , , and about
the -axis.

49. Find the volume of a frustum of a right circular cone with
height , lower base radius , and upper radius .

50. Verify the formula for the volume of a sphere of radius by
finding the volume of the solid obtained by revolving the
region bounded by the graph of , , and
the -axis about the -axis.yy

x � 0x2 � y2 � r 2

r

h

r

R

rRh

x
(h, 0)(0, r)(0, 0)

x[0, 2]f

f � e1x if 0 � x � 1

x2 � 2x � 2 if 1 � x � 2

f

0 a�a

�a

a

x

y

x
x2>3 � y2>3 � a2>3

xy � 0
y2 � 1

4(2x3 � x4)

y9x2 � 25y2 � 225

x9x2 � 25y2 � 225
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51. Find the volume of a cap of height formed from a sphere of
radius .

52. Newton’s Wine Barrel Find the capacity of a wine barrel with
the shape of a solid that is obtained by revolving the region
bounded by the graphs of , , ,
and about the -axis.

In Exercises 53–56, find the volume of the solid with the given
base and the indicated shape of every cross section taken per-
pendicular to the -axis.

53. Cross section: a square

54. Cross section: a semicircle

x2 � y2 � 4

R

�2

2

2

�2 x

y

x

y

R

4

2

�2

x � y2

x
R

x xR0

y y

x � R � ky2

h__
2�

h__
2

yy � h>2 y � �h>2x � 0x � R � ky2

h

r

r
h 55. Cross section: an equilateral triangle

56. Cross section: a quarter circle

57. The curve defined by is called a hyper-
ellipse.
a. Plot the curve using the viewing window

.
b. Estimate the volume of the solid obtained by revolving

the region enclosed by the hyperellipse for about
the -axis.

c. Use a calculator or computer to find accurate to four
decimal places.

Hint: The hyperellipse is almost rectangular in shape.

58. A solid has a circular base of radius 2, and its parallel cross
sections perpendicular to its base are rectangles of height 2.
Find the volume of the solid.

59. The curve defined by is called a
Tschirnhausen’s cubic.
a. Plot the curve using the viewing window

.
b. Find the volume of the solid obtained by revolving the

region enclosed by the loop of the curve about the -axis.

60. A solid has a circular base of radius 2, and its parallel cross
sections perpendicular to its base are isosceles right triangles
oriented so that the endpoints of the hypotenuse of a triangle
lie on the circle. Find the volume of the solid.

61. The base of a solid is the region bounded by the graphs of
and . The cross sections perpendicular to

the -axis are equilateral triangles. Find the volume of the
solid.

62. The base of a solid is an isosceles triangle with a base of 
6 in. and a height of 8 in. The cross sections perpendicular
to the altitude of the triangle are semicircles. Find the vol-
ume of the solid.

y
y � 0y � 4 � x2

x

[�1.5, 1.5] 	 [�1.5, 1.5]

2y2 � x3 � x2 � 0

V
x

y � 0
V

[�3, 3] 	 [�2, 2]

y4 � 1 � 0 x>2 0 4
 x  � 4 � y2

�2

2

4 x

y

R

y  � x � 2

 y  � x2

1�1

4

2

y

R
(�1, 1)

(2, 4)

x
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63. The base of a wooden wedge is in the form of a semicircle
with radius , and its top is a plane that passes through the
diameter of the base and makes a 45° angle with the plane
of the base. Find the volume of the wedge.

64. The axes of two right cylinders, each of radius , intersect at
right angles. Find the volume of the resulting solid that is
common to both cylinders. (The figure shows one eighth of
the solid.)

65. Cavalieri’s Theorem Cavalieri’s Theorem states that if two
solids have equal altitudes and all cross sections parallel to
their bases and at equal distance from their bases have the
same area, then the solids have the same volume.

a. Prove Cavalieri’s Theorem.
b. Use Cavalieri’s Theorem to find the volume of the

oblique circular cylinder shown in part (b) of the figure.

66. Capacity of a Fuel Tank The external fuel tank for a fighter 
aircraft is 8 m long. The areas of the cross sections in

h

rR1     R2 

(a) area of R1 = area of R2 (b) An oblique circular cylinder

r

a

Use Simpson’s Rule to estimate the capacity (in liters) of
the fuel tank.

67. The Volume of a Pontoon A pontoon is 12 ft long. The areas of
the cross sections in square feet measured from the blueprint
at intervals of 2 ft from the front to the back of the part of
the pontoon that is under the waterline are summarized in
the following table.

(distance 
from front)
x

0 1 2 3 4

A(x) 0 0.3041 0.6206 0.8937 0.8937

(distance 
from front)
x

5 6 7 8

A(x) 0.8937 0.6206 0.3041 0

x 0 2 4 6 8 10 12

A(x) 0 3.82 4.78 3.24 2.64 1.80 0

Use Simpson’s Rule to estimate the volume of the pontoon.

68. a. Let be a solid bounded by planes that are perpendicular
to the -axis at and . If the cross-sectional
area of at any point in is , where is a
polynomial of degree less than or equal to three, show
that the volume of the solid is

b. Use the result of part (a) to verify the result of Exercise 50.

V �
h

6
 cA(0) � 4Aah

2
b � A(h)d

AA(x)[0, h]xS
x � hx � 0x

S

square meters measured from the front to the back of the
tank at 1-m intervals are summarized in the following table.
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As you can see from the figure, is the outer radius and is the inner radius
of the washer generated by revolving a representative horizontal rectangle about the 
-axis. Therefore, the volume of the solid is given by

where is the maximum value of on . Using the techniques
of Section 3.1, we can show that . So finding the interval of integration does not,
at least in this case, pose much difficulty. But finding the functions and is an entirelytf

b � 4
[0, 3]F(x) � �x3 � 3x2b

p�
b

0
{[ f(y)]2 � [t(y)]2} dy

y

t(y)f(y)

5.3 Volumes Using Cylindrical Shells

In Section 5.2 we saw how the volume of a solid of revolution can be found by using
the method of disks or the method of washers. Sometimes these methods are difficult
or inconvenient to use. For example, suppose that we want to find the volume of the
solid generated by revolving the region bounded by the graphs of the equations

, , , and about the -axis. (See Figure 1.)yx � 3x � 0y � 0y � �x3 � 3x2
R

FIGURE 1
The washer generated by 

revolving the representative 
horizontal rectangle about 
the -axis has outer radius 

and inner radius .t(y)f(y)
y

different matter. Here, we need to solve the cubic equation for , a
far more complicated task. Fortunately, there is another method that will allow us to
find the volumes of such solids with relative ease. We will complete the solution of
this problem in Example 1 after introducing the method of cylindrical shells.

The Method of Cylindrical Shells
As the name suggests, the method of cylindrical shells makes use of the volumes of
cylindrical shells (or tubes) to approximate the volume of a solid of revolution. We
begin with the derivation of an expression for the volume of a cylindrical shell.

Suppose a shell has outer radius , inner radius , and height as shown in Fig-
ure 2. The volume of the shell can be found by subtracting the volume of the inner
cylinder from the volume of the outer cylinder. Thus,

 � 2par2 � r1

2
b (r2 � r1)h

 � p(r2 � r1)(r2 � r1)h

 � pr 2
2h � pr 2

1h � p(r 2
2 � r 2

1)h

 V � V2 � V1

V2

V1V
hr1r2

xx3 � 3x2 � y � 0

y � �x3 � 3x2

x � f(y)

f(y)

x � t(y)
R

t(y)

x

y

3

4

�3

FIGURE 2
A cylindrical shell of outer 
radius , inner radius , and 
height h

r1r2

r1

r2

h

Δr
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Now let be the region under the graph of on the interval , where ,
shown in Figure 3a. If this region is revolved about the -axis, we obtain the solid
shown in Figure 3b.

yR
a � 0[a, b]fR

Let be a regular partition of the interval , and let 
be the midpoint of the subinterval ; that is,

If the vertical rectangle with base and height is revolved about the 
-axis, we obtain a cylindrical shell with average radius , height , and thickness

. (See Figure 4.) Therefore, by Formula (1) the volume of the shell is

�Vk � 2pck f(ck)�x

�x � (b � a)>n f(ck)cky
f(ck)[xk�1, xk]

ck �
1

2
 (xk � xk�1)

[xk�1, xk]
ck[a, b]P � {x0, x1, x2, p , xn}

FIGURE 3

FIGURE 4
If the vertical rectangle in (a) 

is revolved about the -axis, we 
obtain the cylindrical shell (b). The
volume of is approximated by the

volumes of the nested shells (c).
S

y

This last equation can be written in the form

(1)

where is the average radius of the shell and is the thick-
ness of the shell. Formula (1) may also be written in the following form.

�r � r2 � r1r � (r1 � r2)>2
V � 2prh �r

0 x

R

y

ba x

S

y

(a) The region R (b) The solid S

x
xk�1 xk

a bck

y � f(x)

f(ck)

y

xΔx

ck

y

(a) A representative
rectangle

x

y

(c) Nested shells(b) A cylindrical shell

0

S

Volume of a Cylindrical Shell

V � 2p(average radius)(height)(thickness)



As before, there is a convenient aid to help us recall this method. Draw a represen-
tative vertical rectangle of height , or , and width . Here we pick to be the mid-
point of the base of the rectangle. Observe that this rectangle is parallel to the axis of
revolution. When this rectangle is revolved about the -axis, it generates a cylindrical
shell of radius , height , and thickness . (See Figure 5.) Therefore, its volume is

Summing the volume of the shells and taking the limit, we obtain

V � �
b

a

2pxf(x) dx

�V � 2pxf(x)�x

�xf(x)x
y

x�xyf(x)
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FIGURE 5
If a representative vertical rectangle is
revolved about the -axis, it generates 

a cylindrical shell of radius , height
, and thickness and hence

volume .�V � 2px f(x)�x
�xf(x)

x
y

The volume of is approximated by the sum of the volumes of these shells (Figure 4c).
Thus,

Recognizing this sum to be the Riemann sum of the function on the interval
, we see that

This discussion leads to the following definition.

lim
n→�

 a
n

k�1
2pck f(ck)�x � �

b

a

2pxf(x) dx � 2p�
b

a

xf(x) dx

[a, b]
2pxf(x)

V � a
n

k�1
�Vk � a

n

k�1
2pck f(ck)�x

SV

xa bx

y � f(x)
f(x)

y

xΔx

Δx x

x

y

0

Applying the Method of Cylindrical Shells

EXAMPLE 1 The region under the graph of on is revolved
about the -axis. Find the volume of the resulting solid.

Solution The region and the resulting solid of revolution are shown in Figure 6. If a
representative vertical rectangle is revolved about the -axis, the resulting cylindricaly

y
[0, 3]y � �x3 � 3x2

Method of Cylindrical Shells (Region revolved about the -axis)

Let be a continuous nonnegative function on , where , and let
be the region under the graph of on the interval . The volume of the

solid of revolution generated by revolving about the -axis is

(2)V � lim
n→�

 a
n

k�1
2pck f(ck)�x � �

b

a

2pxf(x) dx

yR
V[a, b]fR

0 � a � b[a, b]f

y



468 Chapter 5 Applications of the Definite Integral

EXAMPLE 2 Let be the region bounded by the graphs of , ,
and . Find the volume of the solid that is obtained by revolving about the -axis
using (a) the method of washers and (b) the method of cylindrical shells.

Solution The region is shown in Figure 7a.R

yRx � 1
y � �x � 1y � x2 � 1R

FIGURE 7
If each of the horizontal rectangles 

in part (b) is revolved about the 
-axis, the resulting solid is a washer. 

If the vertical rectangle in part (c) 
is revolved about the -axis, the

resulting solid is a cylindrical shell.
y

y

FIGURE 6
If a representative rectangle is

revolved about the -axis, it 
generates a cylindrical shell 
of volume .�V � 2pxy �x

y

Summing the volumes of the cylindrical shells and taking the limit, we find that the
volume of the solid is

Sometimes one method is preferable to another. In the next example the method of
cylindrical shells is more convenient to use than the method of washers.

 � 2pa�243

5
�

243

4
b or 243p

10

 � 2pc�1

5
 x5 �

3

4
 x4d3

0

 V � �
3

0
2p(�x4 � 3x3) dx � 2p�

3

0
(�x4 � 3x3) dx

shell has an average radius , height , and thickness . Therefore, its vol-
ume is

 � 2p(�x4 � 3x3)�x

 �V � 2px(�x3 � 3x2)�x

�x�x3 � 3x2x

xy � �x3 � 3x2

Δx
Δx

x

y

y

3�3

0

1

2 2

1

(a) The region R (b) The method of washers

x �

x

y

0

1

1 x

y

√y � 1

y � �x � 1 x � 1 � y

y � x2 � 1

R

0

1

2

1

(c) The method of shells

x

y

y � �x � 1

y � x2 � 1

RR1

R2

a. To use the method of washers, we regard the region as being made up of two
subregions and . (See Figure 7b.) Observe that if a representative horizontalR2R1

R
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rectangle lying in is revolved about the -axis, we obtain a washer with outer
radius and inner radius (obtained by solving the equation

for ). Therefore, its volume is

Here, and .

Summing the volumes of the washers and taking the limit, we see that the vol-
ume of the solid obtained by revolving the subregion about the -axis is

Similarly, we see that if a representative horizontal rectangle lying in is
revolved about the -axis, we obtain a washer with outer radius and inner
radius (obtained by solving the equation for ), where

. Therefore, its volume is

Here, and .

Summing the volumes of the washers and taking the limit, we see that the vol-
ume of the solid obtained by revolving the subregion about the -axis is

Therefore, the required volume is

b. If a representative vertical rectangle is revolved about the -axis, the resulting
cylindrical shell has an average radius of , height , or

, and thickness (Figure 7c). Therefore, its volume is

Summing the volumes of the cylindrical shells and taking the limit, we find that
the volume of the solid is

 � 2pc1
4

 x4 �
1

3
 x3d1

0
� 2pa1

4
�

1

3
b or 7p

6

 V � �
1

0
2p(x3 � x2) dx � 2p�

1

0
(x3 � x2) dx

 � 2p(x3 � x2)�x

 �V � 2px(x2 � x)�x

�xx2 � x
[(x2 � 1) � (�x � 1)]x

y

 � pa1 �
1

3
b � pe c2(2) �

1

2
 (4)d � c2 �

1

2
d f �

7p

6

 � pcy2 �
1

3
 y3d1

0
� pc2y �

1

2
 y2d2

1

 V1 � V2 � �
1

0
p(2y � y2) dy � �

2

1
p(2 � y) dy

V2 � �
2

1
p(2 � y) dy

yR2

 � p(2 � y)�y

t(y) � 1y � 1f(y) � 1 � p[1 � (1y � 1)2]�y

 �V2 � p{[ f(y)]2 � [t(y)]2}�y

x � 0
xy � x2 � 1x � 1y � 1

x � 1y
R2

V1 � �
1

0
p(2y � y2) dy

yR1

 � p(2y � y2)�y

t(y) � 1 � yf(y) � 1 � p[1 � (1 � y)2]�y

 �V1 � p{[ f(y)]2 � [t(y)]2}�y

xy � �x � 1
x � 1 � yx � 1

yR1
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FIGURE 8
If a horizontal rectangle is revolved
about the -axis, it generates a
cylindrical shell of volume

.�V � 2pyf(y)�y

x

EXAMPLE 3 Let be the region bounded by the graphs of and 
. Find the volume of the solid obtained by revolving about the -axis.

Solution The region is shown in Figure 9. If a representative horizontal rectangle
is revolved about the -axis, the resulting cylindrical shell has an average radius of ,
a height of , or , and a thickness . Therefore, its volume is

Summing the volumes of the cylindrical shells and taking the limit, we find the vol-
ume of the solid to be

 � 2pc�1

4
 y4 � 2y3d6

0
� 2p(�324 � 432) � 216p

 V � �
6

0
2p(�y3 � 6y2) dy � 2p�

6

0
(�y3 � 6y2) dy

 � 2p(�y3 � 6y2)�y

 �V � 2py(�y2 � 6y)�y

�y�y2 � 6yx
yx

R

xRx � 0
x � �y2 � 6yR

FIGURE 9
If a horizontal rectangle is revolved
about the -axis, it generates a
cylindrical shell of volume

.�V � 2pyx �y

x

Note Figure 7 reveals, once again, an intrinsic difference between the method of wash-
ers and the method of cylindrical shells. In the method of washers a representative rec-
tangle is always perpendicular to the axis of revolution of the solid. In the method of
cylindrical shells a representative rectangle is always parallel to the axis of revolution.

Shells Generated by Revolving a Region About the -axis
The method of cylindrical shells can also be used to find the volume of a solid obtained
by revolving a region about the -axis. For example, suppose that the region bounded
by the graphs of , , , and , where and , is revolved
about the -axis. (See Figure 8.) Then the volume of the resulting solid is given by the
following formula.

x
c � df � 0y � dy � cx � 0x � f(y)

Rx

x

Equation (3) follows from Equation (2) if we interchange the roles of and . It
also follows from this observation: The solid generated by revolving the representative
rectangle shown in Figure 8 is a cylindrical shell of average radius , height , thick-
ness , and therefore volume . Summing the volumes of the shells
and taking the limit, we obtain

V � �
d

c

2pyf(y) dy

�V � 2pyf(y)�y�y
f(y)y

yx

d

c
x � f(y)R

y

x

Δy

y

6

0 9 x

R

y

x � �y2 � 6y
�y

Volume by Cylindrical Shells (Region revolved about the -axis)

(3)V � �
d

c

2pyf(y) dy

x
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EXAMPLE 4 Let be the region bounded by the graphs of the equations 
and . Find the volume of the solid obtained by revolving about the line

.

Solution The region is shown in Figure 10. If a representative vertical rectangle is
revolved about the line , it generates a cylindrical shell of average radius ,
height or , and thickness . Therefore, its volume
is . Summing the volumes of the cylindrical shells
and taking the limit, we find the volume of the solid to be

 � 2pc a4 �
40

3
� 4 � 16b � a1

4
�

5

3
� 1 � 8b d �

63p

2

 � 2pc1
4

 x4 �
5

3
 x3 � x2 � 8xd2

�1

 V � �
2

�1
2p(4 � x)(�x2 � x � 2) dx � 2p�

2

�1
(x3 � 5x2 � 2x � 8) dx

�V � 2p(4 � x)(�x2 � x � 2)�x
�x�x2 � x � 2(4 � x2) � (�x � 2)

4 � xx � 4
R

x � 4
Ry � �x � 2

y � 4 � x2R

FIGURE 10
If a vertical rectangle is revolved about

the line , it generates a cylindrical
shell with average radius , height

, and thickness .�x(4 � x2) � (�x � 2)
4 � x

x � 4

1. Let be the solid obtained by revolving the region shown in
the figure about the -axis.
a. Sketch representative horizontal rectangles, and use them

to help you set up the integrals giving the volume of 
using the disk and/or washer method.

b. Sketch a representative vertical rectangle, and use it to
help you set up an integral giving the volume of using
the shell method.

c. Find the volume of . Which method is easier?

0 21

2

4

6

8

x

y

y � 2x � 4

y � x3

S

S

S

y
S 2. Let be the solid that is obtained by revolving the region

shown in the figure about the -axis.
a. Is it desirable to use the disk method to find the volume

of ? Explain.
b. Use the shell method to find the volume of .

0 1

1
2

x

y

y � x 1 � x3

S
S

y
S

5.3 CONCEPT QUESTIONS

0 4

4

321�1�2 x
x

R

y

(4 � x2) � (�x � 2)

y � �x � 2 y � 4 � x2

4 � x

x � 4
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Videos for selected exercises are available online at www.academic.cengage.com/login.V

In Exercises 1–6, use the method of cylindrical shells to find the
volume of the solid generated by revolving the region about the
indicated axis or line.

1. 2.

3. 4.

5. 6.

In Exercises 7–20, use the method of cylindrical shells to find
the volume of the solid generated by revolving the region
bounded by the graphs of the equations and/or inequalities
about the indicated axis. Sketch the region and a representative
rectangle.

7. , , ; the -axis

8. , , ; the -axis

9. , ; the -axis

10. , , ; the -axis

11. , , , ; the -axis

12. , ; the -axis

13. , , ; the -axisxy � 0x � 0x �29 � y2

xx � 0x � �y2 � 4y

yx � 2x � 1y � 0y �
1
x

yx � 5y � 0y � 1x � 1

yy � 0y � �x2 � 2x

yx � 1y � 0y � x3

yx � 2y � 0y � x2

0 1 2 3

1

2

3

4

x

y

y � x2 � 21
2

y � x2

x � 3

0 21

1

2

3

4

x

y

y � x2

y2 � 8x

0 4321

1

2

x

y

y � √x

0 1

1

x

y

y � x2

y � x

0 2

2

x

y

y � √4 � x2

0 1 2

1
1
2

x

y

y � x

14. , , ; the -axis

15. , , ; the -axis

16. , ; the -axis

17. , ; the -axis

18. , , , ; the -axis

19. ; , ; the -axis;

(the smaller region)

20. , ; the -axis

In Exercises 21 and 22, use a graphing utility to (a) plot 
the graphs of the given functions, (b) find the approximate 
-coordinates of the points of intersection of the graphs, and 

(c) find an approximation of the volume of the solid obtained 
by revolving the region bounded by the graphs of the functions
about the -axis.

21. , ;

22. ,

In Exercises 23–28, use the method of disks or washers, or the
method of cylindrical shells to find the volume of the solid gen-
erated by revolving the region bounded by the graphs of the
equations about the indicated axis. Sketch the region and a 
representative rectangle.

23. , , ; the -axis

24. , ; the -axis

25. , , ; the -axis

26. , ; the -axis

27. , , ; the -axis

28. , , ; the -axis

In Exercises 29–34, find the volume of the solid generated by
revolving the region bounded by the graphs of the equations
about the indicated line. Sketch the region and a representative
rectangle.

29. , , ; the line 

30. , , , ; the line 

31. , ; the line 

32. , , ; the line 

33. , ; the line 

34. , ; the line y � 2y � x2y � x

x � 3y � x � 1y � 1x � 1

y � 2x � 4y � 0y � 1x

x � �2y � 0y � 4 � x2

x � 3x � 2x � 0y � 0y � x2 � 1

x � 4x � 2y � 0y � x

yx � 0y �
2

3
 29 � x2y �29 � x2

xy � 0y � x � 1y � 2x2

xy � �x � 1y �21 � x2

yy � 4y � 2x � 1y � x2

xy � x � 1y � (x � 1)2

xy � 0y � x � 2y � 1x

y � x2y � sin x

x � 0y � x5 � x2y � x

y

x

yy � x � 1y � 1x � 1

xy � 0x2 � y2 � 1y2 �
3

2
 x

yx � 1px � 0y � 0y � sin x2

yy � �x � 1y �21 � x2

yy �
1

2
 x2y � x

yy � 5x � 0y � x2 � 1

xx � 0y � 6y � 3x

5.3 EXERCISES

www.academic.cengage.com/V


In Exercises 35–38, sketch a plane region and indicate the axis
about which it is revolved so that the resulting solid of revolu-
tion (found using the shell method) is given by the integral.
(Answers may not be unique.)

35. 36.

37. 38.

39. Verify the formula for the volume of a right circular cone by
applying the method of cylindrical shells to find the volume
of the solid obtained by revolving the triangular region with
vertices , , and about the -axis.

40. Verify the formula for the volume of a sphere of radius by
applying the method of cylindrical shells to find the volume
of the solid obtained by revolving the semicircular region

, where , about the -axis.

41. Use the method of cylindrical shells to find the volume of
the ellipsoid obtained by revolving the elliptical region
enclosed by the graph of

about the -axis.

42. Find the volume of the solid that remains after a circular
hole of radius is bored through the center of a solid sphere
of radius .

43. A torus (a doughnut-shaped object) is formed by revolving
the circle about the vertical line , where

. Find its volume.

44. Find the volume of the solid obtained by revolving the
region bounded by the graphs of and 
on about the -axis.yC0, p2 D

y � cos x2y � sin x2

x

y
 x  � b

x2 � y2 � a2

0 � a � b
x � bx2 � y2 � a2

a

r

r 
 a
a

y

x � 0
x2

a2 �
y2

b2 � 1

yx � 0x2 � y2 � r 2

r

x(0, r)(h, 0)(0, 0)

2p�
1

0
(x � 1)x2 dx2p�

1

0
y(y1>3 � y) dy

2p�
1

0
y4>3 dy2p�

p

0
x sin x dx

45. Volume of Liquid in a Rotating Container A cylindrical container
of radius 2 ft and height 4 ft is partially filled with a liquid.
When the container is rotated about its axis of symmetry 
at a constant angular speed , the surface of the liquid as-
sumes a parabolic cross section. Suppose that the parabola 
is given by

Find the volume of the liquid in the rotating container if the
liquid reaches a height of 3 ft on the side of the container.

46. The Clepsydra or Water Clock A container having the shape 
of a solid of revolution obtained by revolving the graph of

, , about the -axis is made with a transparent
material. A small hole is drilled in the bottom of the con-
tainer to allow water to flow out.
a. Find the volume of water in the container as a func-

tion of , the height of the water at time .
b. Use the Chain Rule and Torricelli’s Law—which states

that the rate of flow of water is , where 
is a negative constant, is the area of the hole at the
bottom of the container, and is the height of the
water—to show that the water level in the container
drops at a constant rate.

c. Explain why this property allows us to construct a water
clock.

47. Capacity of an Artificial Lake A circular artificial lake has a
diameter of 4000 ft. The following figure gives the depth 
of the water measured in 200-ft intervals starting from the

y � kx4

x

y

0

h
A

kdV>dt � kA1h

th
V(h)

yk 
 0y � kx4

3 ft
4 ft

x

y

y � 2 � 
w 2x2
____

2t

�2 2

y � 2 �
v2x2

2t

v
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center of the lake. Assume that readings taken along other
radial directions produce similar data, so that the capacity 
of the lake can be approximated by the volume of the 
solid obtained by revolving the region bounded above by 
the -axis and below by the graph of about the 
-axis. Use Simpson’s Rule to approximate this capacity.

0 2 4 6 8 1210 2014 16 18

�10

�20 �46 �45 �41 �40
�36 �29�25

�19
�8

�30

�40

�50

x (hundred ft)

y (ft)

y � f(x)

y
y � f(x)x

48. Land Reclamation A hill will be leveled, and the earth will be
used in a land reclamation project that includes the construc-
tion of additional landing strips for an existing airport. The
hill resembles the solid of revolution obtained by revolving
the region under the graph of the function on 
about the -axis. Use Simpson’s Rule to approximate the
amount of earth that can be recovered.

0 40 80 120 160 240200

160

120

146 104 88

44 20

80

40

x (ft)

y (ft)

y
[0, 240]f

5.4 Arc Length and Areas of Surfaces of Revolution

Upon leaving port, an oil tanker sails along a course given by the curve shown in
Figure 1, where the port is taken to be located at the origin of a coordinate system.
What is the distance traveled by the tanker when it reaches a point on the course that
is located 4 mi to the east and 2 mi to the north of the port?

C

FIGURE 1
The curve gives the course 

taken by an oil tanker.
C

Intuitively, we see that this distance is given by the length of the curve between
the points and . So to answer this question, we must (a) define what we mean by
the length of a curve and (b) devise a way of computing it. (We will solve this prob-
lem in Example 1.)

Definition of Arc Length
Suppose that is the graph of a continuous function on a closed interval . Let

be a regular partition of . If , then the points 
divide into arcs that we denote by , , , . (See Fig-

ure 2.)
Pn�1Pn+pP1P2+P0P1+nCPk(xk, yk)

yk � f(xk)[a, b]P � {x0, x1, p , xn}
[a, b]fC

PO
C

x (mi)

y (mi)

2

1

21 3 4

P(4, 2)
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Note is also called the arc length of the graph of on the interval .

Length of a Smooth Curve
A function is smooth on an interval if its derivative is continuous on that interval.
The continuity of implies that a small change in produces a small change in the
slope of the tangent line to the graph of at any point . Consequently, the
graph of cannot have an abrupt change in direction. In other words, the graph of has
no cusps or corners and is a smooth curve. (See Figure 3.)

ff
(x, f(x))ff ¿(x)

xf ¿
f ¿f

[a, b]fL

FIGURE 2
The graph of on is the union 

of the arcs , , , .Pn�1Pn+pP1P2+P0P1+

[a, b]f

Since these arcs are disjoint (except for their endpoints), we see that the length 
of from to is just the sum of the lengths of these arcs. Now the length of the
arc can be approximated by the length of the line segment joining

and (shown in red in Figure 2). Therefore, approximating the length of each
arc with the length of the corresponding line segment, we see that

This approximation improves as gets larger and larger. This observation suggests that
we define the length of as follows.C

n

L � a
n

k�1
d(Pk�1Pk)

PkPk�1

d(Pk�1Pk)Pk�1Pk+

PnP0C
L

DEFINITION Arc Length of a Curve

Let be a continuous function defined on , and let be
a regular partition of . The arc length of the graph of from to

is

(1)

if the limit exists.

L � lim
n→�

 a
n

k�1
d(Pk�1Pk)

Q(b, f(b))
P(a, f(a))f[a, b]

P � {x0, x1, p , xn}[a, b]f

FIGURE 3

0 a � x0 x1
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(a) The function f is smooth.

a b

y � f(x)
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0
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(b) The function f is not smooth.

a b

y � f(x)

x

y
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Note If the equation defining the function is expressed in the form , then
Equation (2) is sometimes written

(3)L � �
b

a B1 � ady

dx
b2

 dx

y � f(x)f

EXAMPLE 1 Distance Traveled by a Tanker The graph of the equation 
gives the course taken by an oil tanker after leaving port, which is taken to be located
at the origin of a coordinate system. (See Figure 4.) Find the distance traveled by the
tanker when it reaches a point on the course that is located 4 mi to the east and 2 mi
to the north of the port.

y � 1
4 x

3>2C

FIGURE 4
The course taken by the oil tanker

The length of the graph of a smooth function can be found by integration. To derive
a formula for finding the length of such a graph, suppose is a smooth function
defined on the closed interval and is a regular partition of

. Then by Equation (1),

Using the distance formula, we have

Applying the Mean Value Theorem to on the interval , we see that

where is a number in the interval . Therefore,

So

Recognizing this expression as the Riemann sum of the continuous function 

leads to the following result.t(x) �21 � [ f ¿(x)]2
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The Arc Length Formula

Let be smooth on . Then the arc length of the graph of from 
to is

(2)L � �
b

a

21 � [ f ¿(x)]2 dx

Q(b, f(b))
P(a, f(a))f[a, b]f
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Solution The required distance is given by the length of the curve from to
. To use Equation (3), we first find

and

Then

So the oil tanker will have traveled approximately 4.52 mi when it reaches the point
in question.
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x � 4
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EXAMPLE 2 Find the length of the graph on the interval .

Solution The graph of is sketched in Figure 5.
We first find

Using Equation (2) with

we see that the required length is

By interchanging the roles of and in Equation (2), we obtain the following for-
mula for finding the arc length of the graph of a smooth function defined by 
on the interval . (See Figure 6.)[c, d]

x � t(y)
yx

 � �
3

1
ax2 �

1

4
 x�2b dx � c1

3
 x3 �

1

4x
d3

1
� a9 �

1

12
b � a1

3
�

1

4
b �

53

6

 L � �
3

1
21 � [ f ¿(x)]2 dx � �

3

1 B
(4x4 � 1)2

16x4
 dx � �

3

1
 
4x4 � 1

4x2
 dx

 �
(4x4 � 1)2

16x4

 � 1 �
16x8 � 8x4 � 1

16x4
�

16x8 � 8x4 � 1

16x4

 1 � [ f ¿(x)]2 � 1 � ax2 �
1

4x2
b2

� 1 � a4x4 � 1

4x2
b2

f ¿(x) �
d

dx
 c1

3
 x3 �

1

4
 x�1d � x2 �

1

4x2

f

[1, 3]f(x) �
1

3
 x3 �

1

4x

FIGURE 5
The graph of f(x) �

1

3
 x3 �

1

4x

WILLIAM NEILE
(1637–1670)

Englishman William Neile, at the age of 19,
was the first to give what was called the
rectification of a curve. Rectification of a
curve is the concept of constructing a
straight line segment that is equal in length
to a given curve, and prior to Neile’s discov-
ery in 1657 it was thought to be impossible
for algebraic curves. Neile’s work on this
appeared in mathematician John Wallis’s De
Cycloide in 1659 and was a major advance in
the development of what would become
infinitesimal calculus. Neile was a very tal-
ented and promising mathematician, but,
unfortunately, his personal life derailed his
professional life. His father would not
approve of Neile’s proposed marriage, and
Neile never recovered from the emotional
devastation this caused. He did not publish
any additional works and died at the age of
32. The curve he worked with was ,
now known as the Neilian parabola.

y2 � x3

Historical Biography

0 1 42 3

4

8

12

x

y

f(x) � x3 �1
3

1
4x

FIGURE 6
The curve is the graph of 
for .c � y � d

x � t(y)C

0

c

C

d

x

y

x � g(y)
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EXAMPLE 3 Find the length of the graph of from to .

Solution The graph of is shown in Figure 7. Here is a function of , so
we use Equation (4). First, we compute

Then observing that runs from to and using Equation (4), we find that
the required length is

The Arc Length Function
Suppose that is the graph of a smooth function defined by on the closed
interval . If is a point in , we can use Equation (2) to express the length
of the arc of the graph of from to . (See Figure 8.) Denoting this
length by (since it depends on ), we have

This equation enables us to define the following function.

s(x) � �
x

a

21 � [ f ¿(t)]2 dt

xs(x)
Q(x, f(x))P(a, f(a))f

[a, b]x[a, b]
y � f(x)fC

 � c1
3

 y3 �
1

4y
d2

1
� c a8

3
�

1

8
b � a1

3
�

1

4
b d �

59

24

 L � �
2

1 B ay
2 �

1

4y2
b2

dy � �
2

1
ay2 �

1

4y2
b dy

y � 2y � 1y

 � ay2 �
1

4y2
b2

 � 1 � y4 �
1

2
�

1

16y4
� y4 �

1

2
�

1

16y4

 1 � adx

dy
b2

� 1 � ay2 �
1

4y2
b2

yxx � t(y)

Q167
24, 2 2P1 7

12, 1 2x �
1

3
 y3 �

1

4y

FIGURE 7
The graph of the function 

x � t(y) �
1

3
 y3 �

1

4y

FIGURE 8
is the length of the arc of the graph

of from to .Q(x, f(x))P(a, f(a))f
s(x)

DEFINITION Arc Length Function

Let be smooth on . The arc length function for the graph of is defined
by

(5)

with domain .[a, b]

s(x) � �
x

a

21 � [ f ¿(t)]2 dt

fs[a, b]f

0 1 2 3

1

2

x

y

P 17
12(       ),

Q 267
24(       ),

0 a x b x

y

P(a, f (a))

Q(x, f (x))
y � f (x)

s(x)

C

Arc Length: Integrating with Respect to 

(4)L � �
d

c

21 � [t¿(y)]2 dy � �
d

c B1 � adx

dy
b2

dy

y
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If we use the Fundamental Theorem of Calculus, Part 1, to differentiate Equation
(5), we obtain

(6)

The quantity is the differential of arc length. In view of Equation (6) we
can express in the following forms.ds

ds � s¿(x) dx

s¿(x) �
d

dx
 �

x

a

21 � [ f ¿(t)]2 dt �21 � [ f ¿(x)]2 � B1 � ady

dx
b2

Figure 9 gives a geometric interpretation of the differential of arc length in terms
of the differentials and . Observe that if is small, then affords a
good approximation of the arc length of the graph of corresponding to the change,

, in .x�x
f

dsdx � �xdydxFIGURE 9
The relationship between , , and 
follows from the Pythagorean Theorem.

dxdyds

EXAMPLE 4 Use differentials to obtain an approximation of the arc length of the
graph of from to .

Solution Using Equation (7), we find

Letting and , we obtain the approximation

Note The expression in Equation (8) provides us with an easy way of recalling the
formula for the arc length of the graph of a function on . From

we see that

and

Therefore,

L � s(b) � �
b

a

ds � �
b

a B1 � ady

dx
b2

dx � �
b

a

21 � [ f ¿(x)]2 dx

s(x) � �
x

a

ds

ds � B1 � ady

dx
b2

dx

(ds)2 � (dy)2 � (dx)2

[a, b]fL

ds �21 � 52(0.1) � 0.1126 � 0.51

dx � 0.1x � 1

ds � B1 � ady

dx
b2

 dx �21 � (4x � 1)2 dx

Q(1.1, 3.52)P(1, 3)y � 2x2 � x

0 x

y

y � f(x)

dx

dy
ds

Arc Length Differentials

(7)

or, equivalently,

(8)(ds)2 � (dy)2 � (dx)2

ds � B1 � ady

dx
b2

dx
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Our immediate objective is to devise a formula for finding the surface area of .
To do this, we need the formula for the lateral surface area of a frustum of a right cir-
cular cone (Figure 11).

If the upper and lower radii of a frustum are and , respectively, and its slant
height is , then the surface area of the frustum is

(9)

where is the average radius of the frustum. (You will be asked to estab-
lish this formula in Exercise 53.)

Next, consider the surface generated by revolving the graph of a smooth non-
negative function about the -axis from to . Let 
be a regular partition of . If , then the points divide into 
disjoint (except at their endpoints) arcs , , , whose union is (Fig-
ure 12a). The surface is the union of the surfaces , , , obtained by revolv-
ing these arcs about the -axis (Figure 12b).x

SnpS2S1S
CPn�1Pn+pP1P2+P0P1+

nCPk(xk, yk)yk � f(xk)[a, b]
P � {x0, x1, p , xn}x � bx � axf
CS

r � 1
2(r1 � r2)

S � 2prl

Sl
r2r1

S

FIGURE 10
If we revolve the graph of 
about the -axis in (a), we 
obtain the surface in (b).S

x
f

FIGURE 11
The frustum of a cone obtained 
by cutting off its top using a 
plane parallel to its base

FIGURE 12
(a) A partition of produces 

arcs , , , ,
which, when revolved about the 

-axis, give surfaces , , , ,
which together form . (b) Here, .n � 5S

SnpS2S1nx

Pn�1Pn+pP1P2+P0P1+

n[a, b]

Surfaces of Revolution
A surface of revolution is a surface that is obtained by revolving the graph of a con-
tinuous function about a line. For example, if the graph of the function on the inter-
val shown in Figure 10a is revolved about the -axis, we obtain the surface of
revolution shown in Figure 10b.S

x[a, b]
fC

x0

y y = f(x)

C

ba ba x0

y

S

(a) (b)

l

r1

r2

x0

y y � f(x)

ba x0

y

S1 S2 S3 S4 S5

 xn � b

x0 � a

P0

P1
P2

x1 x2· · · xk�1

Pk�1

Pk

xk· · ·xn�1

Pn�1
Pn

�P0P1
�P1P2

�Pn�1Pn

�Pk�1Pk

(a) (b)
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Let’s concentrate on the part of the surface generated by the arc of the graph of 
on the interval . This arc is shown in Figure 13. If is small, then the arc 

may be approximated by the line segment joining and . This suggests
that the surface area of the frustum that is generated by revolving this line segment
about the -axis will provide us with a good approximation of the surface area of .
(See Figure 13.)

Skx

PkPk�1Pk�1Pk+

�x[xk�1, xk]
f

FIGURE 13
In part (a) the arc is 

approximated by the line segment 
joining to . So the area of 

the surface generated by in
(b) is approximated by the lateral 

surface area of the frustum generated
by the line segment in (c).

Pk�1Pk+

PkPk�1

Pk�1Pk+

Since the frustum has an average radius of and a slant height
of , Formula (9) tells us that its surface area is

But as in the computations leading to Equation (2), we have

where is a number in the interval . Also, if is small, the continuity of 
implies that and . Therefore,

Approximating the area of each surface by the area of the corresponding frustum,
we see that*

This approximation can be expected to improve as gets larger and larger. Finally, rec-n

S � a
n

k�1
2pf(ck)21 � [ f ¿(ck)]

2 �x

Sk

�S � 2pc f(ck) � f(ck)

2
d21 � [ f ¿(ck)]

2 �x

f(xk) � f(ck)f(xk�1) � f(ck)
f�x(xk�1, xk)ck

d(Pk�1Pk) �21 � [ f ¿(ck)]
2 �x

�S � 2pc f(xk�1) � f(xk)

2
d d(Pk�1Pk)

l � d(Pk�1Pk)
r � 1

2[ f(xk�1) � f(xk)]

xxk�1

Δx

Pk�1

xk

Pk

Pk�1

Sk

Pk

(a) (b)

Pk�1

Pk

(c)

f (xk�1)
f (xk)

*It is conventional to denote the area of a surface by , and we will do so here even though we have used
this very letter to denote the surface of revolution itself.

S

ognizing this sum to be the Riemann sum of the function 
on the interval , we see that

This discussion leads to the following definition.

lim
n→�

 a
n

k�1
2pf(ck)21 � [ f ¿(ck)]

2 �x � �
b

a

2pf(x)21 � [ f ¿(x)]2 dx

[a, b]
t(x) � 2pf(x)21 � [ f ¿(x)]2
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Note If we use Equation (7), then we can write Equation (10) in the form

(11)

which is the arc length differential form of Equation (10).

This formula can be remembered as follows: If is small, the differential of arc
length, , gives an approximation of the slant height of the frustum of a cone of aver-
age radius approximated by (or ). So represents an element of area of the
surface (Figure 14). By summing and taking the limit, we then obtain Equation (11).

2py dsf(x)y
ds

�x

S � 2p�
b

a

y ds

DEFINITION Surface Area of a Surface of Revolution

Let be a nonnegative smooth function on . The surface area of the sur-
face obtained by revolving the graph of about the -axis is

(10)S � 2p�
b

a

f(x)21 � [ f ¿(x)]2 dx

xf
[a, b]f

FIGURE 14
If is small, approximates 
the slant height of the frustum,

and approximates the 
average height of the frustum.

f(x)

ds�x

EXAMPLE 5 Find the area of the surface obtained by revolving the graph of
on the interval about the -axis.

Solution The graph of and the resulting surface of revolution are shown in Figure 15.
We have

Using Equation (10), we find that the required area is given by

 � p�
2

0
14x � 1 dx

 � 2p�
2

0
1x B1 � a 1

21x
b2

dx � 2p�
2

0
1x B1 �

1

4x
 dx

 S � 2p�
2

0
f(x)21 � [ f ¿(x)]2 dx

f ¿(x) �
1

21x

f

x[0, 2]f(x) � 1x

FIGURE 15
The graph of on and 
the resulting surface of revolution
obtained by revolving the graph 
about the -axisx

[0, 2]y � 1x

x

y

f (x)

x

ds

x � Δx0

Δx

x

y

1 20

y � √x
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We evaluate this integral using the method of substitution with , so that
or . The lower and upper limits of integration with respect to 

are 1 and 9, respectively. We obtain

By interchanging the roles of and in Equation (10), we obtain the following for-
mula for finding the area of the surface obtained by revolving the graph of a smooth
function defined by on the interval about the -axis.y[c, d]x � t(y)

yx

S �
p

4
 �

9

1
1u du �

p

4
 c2

3
 u3>2d9

1
�
p

4
 a18 �

2

3
b �

13p

3

udx � 1
4 dudu � 4 dx

u � 4x � 1

EXAMPLE 6 Find the area of the surface obtained by revolving the graph of 
on the interval about the -axis.

Solution Here, and so . Therefore, Equation(12) gives the
required surface area as

To evaluate the integral, we use the method of substitution with so that
. The lower and upper limits of integration are 1 and 10, respectively. We

obtain

The surface is shown in Figure 16.

S �
2p

36
 �

10

1
1u du �

p

18
 c2

3
 u3>2d10

1
�
p

18
 a2

3
 103>2 �

2

3
b �

p

27
 (10110 � 1)

du � 36y3 dy
u � 1 � 9y4

 � 2p�
1

0
y321 � (3y2)2 dy � 2p�

1

0
y321 � 9y4 dy

 S � 2p�
1

0
t(y)21 � [t¿(y)]2 dy

t¿(y) � 3y2x � t(y) � y3

y[0, 1]
x � y3

FIGURE 16
The graph of on and 
the surface obtained by revolving 
it about the -axisy

[0, 1]x � y3

y

x

1

1

x � y3

1. a. Write an integral that gives the arc length of (1) a
smooth function on the interval and (2) a
smooth function on the interval .

b. Write two different integrals that give the arc length of
the curve defined by the equation from the
point to the point . Which integral
would you choose to compute ? Explain. Then use your
choice of integral to compute .L

L
Q(515, 4)P(0, �1)

y � x2>3 � 1
L

[c, d]x � t(y)
[a, b]y � f(x)

2. Write the formulas for finding the surface area of a surface
of revolution obtained by (a) revolving the graph of a non-
negative smooth function on the interval 
about the -axis and (b) revolving the graph of a smooth
function on the interval about the -axis.y[c, d]x � t(y)

x
[a, b]y � f(x)

5.4 CONCEPT QUESTIONS

Surface Area: Integrating with Respect to 

(12)S � 2p�
d

c

t(y)21 � [t¿(y)]2 dy � 2p�
d

c

x ds

y
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In Exercises 1–4, find the arc length of the graph from to .

1. 2.

3. 4.

In Exercises 5 and 6, find the length of the line segment joining
the two given points by finding the equation of the line and 
using Equation (2). Then check your answer by using the dis-
tance formula.

5. and 

6. and 

In Exercises 7–14, find the arc length of the graph of the given
equation from to or on the specified interval.

7. ; ,

8. ; ,

9. ; ,

10. ; ,

11. ;

12. ;

13. ; ,

14. ; [1, 3]y �
x3

3
�

1

4x

Q(2, 13)P(�2, �3)(y � 3)2 � 4(x � 2)3

[1, 2]y � (2 � x2>3)3>2
[1, 4]y �

2

3
 (x2 � 1)3>2

Q1129
32 , 2 2P138, 1 2x �

1

4
 y4 �

1

8y2

Q(5, 16)P(1, 0)y � 2(x � 1)3>2
Q(9, 17)P14, 13

3 2y �
2

3
 x3>2 � 1

Q(2, �1)P(�1, 5)y � �2x � 3

QP

(3, 6)(�1, �2)

(3, 8)(0, 0)

10 2 3

x � �

1

2

3

x

y

B 212
19( ),

6
y3

2y
1

A 13
2( ),A (0, 1)

B (8, 5)

20 4 6 8

y � x2/3 � 1
2

4

6

x

y

A (0, 0) 0.5 1.0 1.5 2.0

y � x2/3

0.5

1.0

1.5

x

y

B
9

8
3
4( ),√3

0 1 2 3 4

y � x3/2 � 1

2

4

6

8

x

y

A (1, 2)

B (4, 9)

BA In Exercises 15–20, write an integral giving the arc length of the
graph of the equation from to or over the indicated interval.
(Do not evaluate the integral.)

15. ; ,

16. ;

17. ; ,

18. ;

19. ; ,

20. ; ,

In Exercises 21–24, (a) plot the graph of the function , (b) write
an integral giving the arc length of the graph of the function
over the indicated interval, and (c) find the arc length of the
curve accurate to four decimal places.

21. ;

22. ;

23. ;

24. ;

25. The graph of the equation , where  ,
shown in the following figure, is called an astroid. Find the
arc length of the astroid.
Hint: By symmetry the arc length is equal to 8 times the length of
the curve joining to . To find the coordinates of , find the
point of intersection of the astroid with the line .

26. Use the fact that the circumference of a circle of radius 1 is
to evaluate the integral

Hint: Interpret , where .y �21 � x2�12>2
0 21 � (y¿)2 dx

�
12>2

0

dx

21 � x2

2p

0 a

P

�a

�a

a

x

y

y � x

x2/3 � y2/3 � a2/3

Q(a, 0)

y � x
PQ(a, 0)P

a 
 0x2>3 � y2>3 � a2>3
[0, 1]f(x) �

x2

1 � x4

[0, 4]f(x) � x � 21x

[0, 1]f(x) �2x2 � x4

[0, 2]f(x) � 2x3 � x4

f

Q(1, 0)P112, �p4 2x � sec y

Q1p4 , 1 2P(0, 0)y � tan x

[0, p]y � cos x

Q12, 15 2P1�1, 12 2y �
1

x2 � 1

[0, 1]y � x3 � 1

Q(2, 4)P(�1, 1)y � x2

QP

5.4 EXERCISES

Videos for selected exercises are available online at www.academic.cengage.com/login.V

www.academic.cengage.com/login


5.4 Arc Length and Areas of Surfaces of Revolution 485

In Exercises 27 and 28, use differentials to approximate the arc
length of the graph of the equation from to .

27. ; ,

28. ; ,

In Exercises 29–38, find the area of the surface obtained by
revolving the given curve about the indicated axis.

29. for ; -axis

30. on ; -axis

31. on ; -axis

32. on ; -axis

33. on ; -axis

34. for ; -axis

35. for ; -axis

36. on ; -axis

37. on ; -axis

38. on ; -axis

In Exercises 39 and 40, write an integral giving the area of the
surface obtained by revolving the curve about the -axis. (Do not
evaluate the integral.)

39. on 40. on 

41. Refer to Exercise 21. Use a calculator or computer to find
the area of the surface formed by revolving the graph of

, where , about the -axis, accu-
rate to four decimal places.

42. Refer to Exercise 22. Use a calculator or computer to find
the area of the surface formed by revolving the graph of 

, where , about the -axis, accu-
rate to four decimal places.

43. Verify that the lateral surface area of a right circular cone of 

height and base radius is by evaluat-
ing a definite integral.
Hint: The cone is generated by revolving the region bounded by

, , and about the -axis.

44. Verify that the surface area of a sphere of radius is
by evaluating a definite integral.

Hint: Generate this sphere by revolving the semicircle ,
where , about the -axis.

45. Find the area of the surface obtained by revolving the graph 

of on about the -axis. This surface is
called a spherical zone.

x[0, 1]y �24 � x2

xy � 0
x2 � y2 � r 2

S � 4pr 2
r

yx � 0y � hy � (h>r)x

S � pr2r 2 � h2rh

x0 � x � 1f(x) �2x2 � x4

x0 � x � 2f(x) � 2x3 � x4

C0, p2 Dy � sin x[1, 2]y �
1
x

x

y0 � y � 3x �
1

3
 2y(3 � y)2

x[0, 1]y �
1

212
 2x2 � x4

x[1, 2]y �
1

4
 x4 �

1

8x2

y�2 � y � 12x � 3y � 6

y1 � y � 2x �
1

6
 y3 �

1

2y

y[0, 2]y � 4 � x2

y[1, 8]y � x1>3
x[0, 1]y � x3

x[4, 9]y � 1x

x0 � x � 2y �
1

2
 x � 2

Q(4.3, 3.074)P(4, 3)y � 1x � 1

Q(1.2, 2.728)P(1, 2)y � x3 � 1

QP
46. Find the area of the spherical zone formed by revolving the 

graph of on , where ,
about the -axis.

47. A Pursuit Curve The graph of the function 

gives the path taken by Boat as it pursues and eventually
intercepts Boat . Initially, Boat was at the origin,
and Boat was at the point , heading due north. Find
the distance traveled by Boat during the pursuit.

48. Motion of a Projectile Refer to Exercise 29 in Section 2.4. A
projectile is fired from a cannon located on a horizontal
plane. If we think of the cannon as being located at the 
origin of an -coordinate system, then the path of the
projectile is

where and are measured in feet. Estimate the distance
traveled by the projectile in the air.

O

¨

x (ft)

y (ft)

A

yx

y � 13x �
x2

400

xyO

x (mi)

y (mi)

20

C

A

B

A
(2, 0)B

A(x � 2)B
A

y �
2

3
 a1 �

x

2
b3>2

� 2a1 �
x

2
b1>2

�
4

3

C

a

b

r

x
0 � a � b � r[a, b]y �2r 2 � x2
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49. Flight Path of an Airplane The path of an airplane on its final ap-
proach to landing is described by the equation with

where and are both measured in feet. Estimate the dis-
tance traveled by the airplane during the landing approach.

50. Area of a Roof A hangar is 100 ft long and has a uniform cross
section that is described by the equation ,
where both and are measured in feet. Estimate the area of
the roof of the hangar.

51. Manufacturing Corrugated Sheets A manufacturer of aluminum
roofing products makes corrugated sheets as shown in the
figure. The cross section of the corrugated sheets can be
described by the equation

where and are measured in inches.If the corrugated sheets
are made from flat sheets of aluminum using a stamping
machine that does not stretch the metal, find the width of a
flat aluminum sheet that is needed to make a 30-in. panel.

w 30 in.

w

yx

0 � x � 30y � sinapx

10
b

x

y

10

0

yx
y � 10 � 0.0001x4

yx

 0 � x � 24,000

f(x) � 4.3403 	 10�10x3 � 1.5625 	 10�5x2 � 3000

y � f(x)
52. Let be a smooth nonnegative function on . Show that

the area of the surface obtained by revolving the graph of 
about the line is given by

53. Show that the lateral surface area of a frustrum of a right
circular cone of upper and lower radii and , respectively,
and slant height is , where .

54. Let denote the length of the graph of connecting
the points and , and let (see the fig-
ure). Show that 

assuming that is continuous on .

0 l

y � f (x)

x

y

(0, l)y¿

1

2�
l

0

(y¿)2

21 � (y¿)2
 dx � D �

1

2�
l

0
(y¿)2 dx

D � L � l(l, 0)(0, 0)
y � f(x)L

r � 1
2(r1 � r2)S � 2prll

r2r1

x
a b

y

y � f (x)

y � L

0

S � 2p�
b

a

� f(x) � L �21 � [ f ¿(x)]2 dx

y � L
f

[a, b]f

5.5 Work

The term work, as used in physics and engineering, is the transference of energy that
results when the application of a force causes a body to move. Scientists and engineers
need to know precisely how much energy is required to perform certain tasks. For
example, a rocket scientist needs to know the amount of energy required to put an arti-
ficial satellite into an orbit around the earth, and a power engineer needs to know the
amount of energy derived from water flowing through a dam.

Work Done by a Constant Force
We begin by defining the work done by a constant force in moving an object along a
straight line.
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The unit of work in any system is the unit of force times the unit of distance. In the
English system the unit of force is the pound (lb), the unit of distance is the foot (ft),
and so the unit of work is the foot-pound (ft-lb). In the International System of Units,
abbreviated SI (for Système international d’unités), the unit of force is the newton (N),
the unit of distance is the meter (m), and so the unit of work is the newton-meter 
(N-m). A newton-meter is also called a joule (J).

DEFINITION Work Done by a Constant Force

The work done by a constant force in moving a body a distance in the
direction of the force is

work � force � distanceW � Fd

dFW

EXAMPLE 1

a. Find the work done in lifting a 25-lb object 4 ft off the ground.
b. Find the work done in lifting a 2.4-kg package 0.8 m off the ground. (Take

m/sec2.)

Solution
a. The force required to do the job is 25 lb (the weight of the object). Therefore,

the work done by the force is

or 100 ft-lb.
b. The magnitude of the force required is , or 23.52 N.

So the work done is

or 18.8 J.

Work Done by a Variable Force
Suppose that a body moves along the -axis in the positive direction from to

under the action of a force that depends on . Suppose also that the func-
tion is continuous on the interval with the graph depicted in Figure 1. Next,
let be a regular partition of .[a, b]P � {x0, x1, p , xn}

[a, b]F
xF(x)x � b

x � ax

W � Fd � (23.52)(0.8) � 18.8

F � mt � (2.4)(9.8) � 23.52

W � Fd � 25(4) � 100

F

t � 9.8

FIGURE 1
The graph of a variable force 

defined by the function F
0 x0 � a x1 x2

y � F(x)

F(ck)

ck

xk�1 xn�1xk
... . . . xn � b x

y

Let’s concentrate on the subinterval . If is small, then
the continuity of guarantees that the values of at any two points in [xk�1, xk]F(x)F

�x � (b � a)>n[xk�1, xk]



do not differ by much. Therefore, if is any point in , we can approximate
by for all in . Physically, we are saying that the force is

approximately constant when measured over a small distance. So if we assume that
in , then the work done by in moving the body along the 

-axis from to is

(This is the area of a rectangle of height and width .) It follows that the work
done by in moving the body from to is

Intuitively, we see that the approximation improves as gets larger and larger. This
suggests that we define the work done by by taking the limit of the sum

as . But this sum is just the Riemann sum of on the interval . Therefore,
our discussion leads to the following definition.

[a, b]Fn → �

a
n

k�1
F(ck)�x

F
n

W � a
n

k�1
F(ck)�x

x � bx � aFW
�xF(ck)

constant force � distance�Wk � F(ck)�x

x � xkx � xk�1x
F[xk�1, xk]F(x) � F(ck)

F(x)[xk�1, xk]xF(ck)F(x)
[xk�1, xk]ck
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DEFINITION Work Done by a Variable Force

Suppose that a force , where is continuous on , acts on a body moving
it along the -axis. Then the work done by the force in moving the body from

to is

(1)W � lim
n→�

 a
n

k�1
F(ck)�x � �

b

a

F(x) dx

x � bx � a
x

[a, b]FF

Note When we derived Equation (1), we assumed that . This condition is not
necessary and may be dropped.

b 
 a

EXAMPLE 2 Find the work done by the force (measured in pounds)
in moving a particle along the -axis from to (measured in feet).

Solution Here, , so the work done by in moving the body from
to is

or 62 ft-lb.

Hooke’s Law
As another application of Equation (1), let’s find the work done in stretching or com-
pressing a spring. Recall that Hooke’s Law states that the force required to stretch
or compress a spring units past its natural length is proportional to . That is,

where , the constant of proportionality, is called the spring constant, or the stiffness.
Hooke’s Law is valid provided that is not too large.�x �

k

F(x) � kx

xx
F

W � �
4

2
F(x) dx � �

4

2
(3x2 � x) dx � cx3 �

1

2
 x2d4

2
� 72 � 10 � 62

x � 4x � 2
FF(x) � 3x2 � x

x � 4x � 2x
F(x) � 3x2 � x
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EXAMPLE 3 A force of 30 N is required to stretch a spring 4 cm beyond its natural
length of 18 cm. Find the work required to stretch the spring from a length of 20 cm
to a length of 24 cm.

Solution Suppose that the spring is placed on the -axis with the free end at the ori-
gin as shown in Figure 2. According to Hooke’s Law, the force required to stretch
the spring meters beyond its natural length is . Since a 30-N force is required
to stretch the spring 4 cm, or 0.04 m, beyond its natural length, we see that

or

that is, 750 N/m. Therefore, for this spring. Using Equation (1), we find
that the work required to stretch the spring from 20 cm to 24 cm is

or 1.2 J.

Moving Nonrigid Matter
The next two examples involve the computation of the work involved in moving non-
rigid matter, such as the evacuation of fluid from a container and the hoisting of an
object.

 � 375[(0.06)2 � (0.02)2] � 1.2

 W � �
0.06

0.02
750x dx � 750c1

2
 x2d0.06

0.02

F(x) � 750x

k � 75030 � k(0.04)

F(x) � kxx
F(x)

x

FIGURE 2

EXAMPLE 4 A tank has the shape of an inverted right circular cone with a base of
radius 5 ft and a height of 12 ft. If the tank is filled with water to a height of 8 ft, find
the work required to empty the tank by pumping the water over the top of the tank.
(Water weighs 62.4 lb/ft3).

Solution We think of the tank as being placed on a coordinate system with its vertex
at the origin and its axis along the -axis as shown in Figure 3a. Think of the water as
being subdivided into slabs by planes perpendicular to the -axis from to .
The volume of a representative slab is approximated by a disk of radius and width

, that is,

You can see how to express in terms of by referring to Figure 3b. By similar triangles,

or x �
5

12
 y

x

5
�

y

12

yx

�V � px2 �y

�y
x�V

y � 8y � 0y
y

x

x

(a) The unstretched spring

(b) The spring stretched x units beyond its
natural length

0

0 x

x

12 ft

8 ft

x

y

Δy

x

x

y y

12 � y

5 5

12

(a) (b)

FIGURE 3
We wish to find the amount of work

required to pump all of the water 
out of the top of the conical tank.
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so

Since water weighs 62.4 lb/ft3, or lb/ft3, the weight of a representative slab (the
force required to lift this slab) is

Since this slab is transported a distance of approximately ft, the work done
by the force is

Finally, summing the work done in lifting each slab to the top of the tank and taking
the limit, we see that the work required to empty the tank is

or approximately 34,851 ft-lb.

 �
65p

6
 c4y3 �

1

4
 y4d8

0
�

65p

6
 (1024)

 �
65p

6
 �

8

0
(12y2 � y3) dy

 W � �
8

0
 
65p

6
 y2(12 � y) dy

 �
65p

6
 y2(12 � y) �y

 �W � �F(12 � y)

(12 � y)

�F � 62 
2

5
�

25p

144
 y2 �y �

65p

6
 y2 �y

62 2
5

�V � pa 5

12
 yb2

�y �
25p

144
 y2 �y

20 ft

y

y � 0

y � 0

20
(20 � y) ft

y
Δy

y

0

(b)(a)

FIGURE 4
The anchor is hoisted to the top of 

the ship by means of a cable chain.

EXAMPLE 5 A ship’s anchor, weighing 800 lb, is attached to a chain that weighs 
10 lb per running foot. Find the work done by the winch if the anchor is pulled in from
a height of 20 ft. (See Figure 4.)

Solution The work done by the winch is , where is the work
required to hoist the anchor to the top of the ship and is the work required to pull
the cable to the top of the ship. To find , observe that the force required to lift the
anchor is 800 lb and that it will be applied over a distance of 20 ft. Therefore,

or 16,000 ft-lb.

WA � (800)(20) � 16,000

WA

WC

WAW � WA � WC
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To find , think of the chain as being subdivided into pieces. The length of a rep-
resentative piece is ft, and its weight is lb (weight per running foot times
length). This element is to be lifted a distance of approximately ft, so the
work required is

Summing the work done in lifting each piece of the chain to the top and taking the
limit, we see that the work required is

or 2000 ft-lb. So the work required to pull in the anchor from a height of 20 ft is

or 18,000 ft-lb.

Note A 2-horsepower winch with a capacity of 1100 ft-lb/sec can pull in this anchor
in approximately 16 sec.

Work Done by an Expanding Gas

W � WA � WC � 16,000 � 2,000 � 18,000

 � 10c20y �
1

2
 y2d20

0
� 2000

 WC � �
20

0
10(20 � y) dy

�WC � 10 �y(20 � y)

(20 � y)
10 �y�y

WC

EXAMPLE 6 Figure 5 shows the cross section of a cylindrical casing of internal ra-
dius . When the confined gas expands, the resulting increase in pressure exerts a force
against the piston, moving it and thus causing work to be done. If the confined gas has
a pressure of lb/in.2 and the gas expands from a volume of in.3 to in.3, show
that the work done by the expanding gas is

W � �
V1

V0

p dV

V1V0p

r

FIGURE 5
Work is done by the expand-

ing gas against the piston.

gas

r

Solution Draw the -axis parallel to the side of the casing as shown in Figure 6, and
suppose that the piston has initial and final positions and , respectively.x � bx � a

x

FIGURE 6
The work done by the expanding 

gas in moving the piston from 
to is , which is 

approximately .p(x)(pr 2)�x
�Wx � �xx

xx x � Δx0
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The force exerted by the expanding gas against the piston head at is

so the work done by the force in moving the piston a distance of from to is

Summing the work done by the force in moving the piston over each of the subin-
tervals in the interval and taking the limit, we see that the work done is

To express this integral in terms of the volume of the gas, observe that the volume 
of the gas is related to by , so . Furthermore, observe that
when , , and when , . Therefore,

W � �
V1

V0

p dV

V � V1x � bV � V0x � a
dV � pr 2 dxV � pr 2xx

V

W � �
b

a

p(x)pr 2 dx

[a, b]

constant force � distance�W � p(x)(pr 2)�x

x � �xx�x

pressure � areaF(x) � p(x)(pr 2)

x (a � x � b)

1. a. A force of 3 lb moves an object along a coordinate line
from to ( is measured in feet). What is
the work done by the force on the object?

b. A force of magnitude 3 lb acts on an object in the nega-
tive direction with respect to a coordinate line as the
object moves from to ( is measured in
feet). What is the work done by the force on the object?

c. As an object moves in the coordinate plane from the
point to the point along the -axis, axB(10, 0)A(0, 0)

xx � 10x � 0

xx � 10x � 0
force of magnitude 5 lb acts on the body in the positive 
-direction. What is the work done by the force on the

object? Explain.
2. a. Can the work done on a body by a force be negative?

Explain with an example.
b. A force acts on an object situated on a coordinate line. If

the work done by the force on the object is 0 ft-lb, does
this mean that the force has magnitude 0 and/or the dis-
tance moved by the object is 0 ft? Explain.

y

5.5 CONCEPT QUESTIONS

1. Find the work done in lifting a 50-lb sack of potatoes to a
height of 4 ft above the ground.

2. How much work is done in lifting a 4-kg bag of rice to a
height of 1.5 m above the ground?

3. A particle moves a distance of 100 ft along a straight line.
As it moves, it is acted upon by a constant force of magni-
tude 5 lb in a direction opposite to that of the motion. What
is the work done by the force?

4. An engine crane is used to raise a 400-lb engine a vertical
distance of 2 ft so that it can be placed in an engine dolly.
Find the work done by the crane.

5. Find the work done by the force (measured
in pounds) in moving an object along the -axis from

to ( is measured in feet).xx � 4x � �2
x

F(x) � 2x � 1

6. Find the work done by the force (measured in
pounds) in moving a particle along the -axis from to

( is measured in feet).

7. When a particle is at the point on the -axis, it is acted
upon by a force of newtons. Find the work done by
the force in moving the particle from the origin to the point

( is measured in meters).

8. A particle moves along the -axis from to . As
it moves, it is acted upon by a force . If 
is measured in meters and is measured in newtons, find
the work done by the force.

9. When a particle is at the point on the -axis, it is acted
upon by a force of newtons. Find the work done by
the force in moving the particle from to ( is
measured in meters).

xx � 2x � 1
sin px

xx

F(x)
xF(x) � �3x2 � x

x � 3x � 1x

xx � 3

x2 � 2x
xx

xx � 6
x � 1x

f(x) � 4>x2

5.5 EXERCISES

Videos for selected exercises are available online at www.academic.cengage.com/login.V

www.academic.cengage.com/login


10. A force of 8 lb is required to stretch a spring 2 in. beyond
its natural length. Find the work required to stretch the
spring 3 in. beyond its natural length.

11. A force of 20 N is required to stretch a spring 3 cm beyond
its natural length of 24 cm. Find the work required to stretch
the spring from 30 to 35 cm.

12. Suppose that it takes 3 J of work to stretch a spring 5 cm
beyond its natural length. How much work is required to
stretch the spring from 2 cm beyond its natural length to 
4 cm beyond its natural length?

13. A spring has a natural length of 8 in. If it takes a force of
14 lb to compress the spring to a length of 6 in., how much
work is required to compress the spring from its natural
length to 7 in.?

14. A chain with length 5 m and mass 30 kg is lying on the
ground. Find the work done in pulling one end of the chain
vertically upward to a height of 2 m.

15. A chain weighing 5 lb/ft hangs vertically from a winch
located 12 ft above the ground, and the free end of the chain
is just touching the ground. Find the work done by the
winch in pulling in the whole chain.

16. A chain weighing 5 lb/ft hangs vertically from a winch
located 16 ft above the ground, and the free end of the chain
is 3 ft from the ground. Find the work done by the winch in
pulling in 4 ft of the chain.

17. A steel girder weighing 200 lb is hoisted from ground 
level to the roof of a 60-ft building using a chain that
weighs 2 lb/running foot. Find the work done.

18. An aquarium has the shape of a rectangular tank of length 
4 ft, width 2 ft, and height 3 ft. If the tank is filled with
water weighing 62.4 lb/ft3, find the work required to empty
the tank by pumping the water over the top of the tank.

19. A tank having the shape of a right-circular cylinder with a
radius of 4 ft and a height of 6 ft is filled with water weigh-
ing 62.4 lb/ft3. Find the work required to empty the tank by
pumping the water over the top of the tank.

20. Leaking Bucket A bucket weighing 4 lb when empty and
attached to a rope of negligible weight is used to draw 
water from a well that is 30 ft deep. Initially, the bucket
contains 40 lb of water, but as it is pulled up at a constant
rate of 2 ft/sec, the water leaks out of the bucket at the rate
of 0.2 lb/sec. Find the work done in pulling the bucket to
the top of the well.

21. Leaking Bucket A bucket weighing 4 lb when empty and
attached to a rope of negligible weight is used to draw water
from a well that is 40 ft deep. Initially, the bucket contains
40 lb of water and is pulled up at a constant rate of 2 ft/sec.

Halfway up, the bucket springs a leak and begins to lose
water at the rate of 0.2 lb/sec. Find the work done in pulling
the bucket to the top of the well.

22. A tank having the shape of a right circular cylinder with a
radius of 5 ft and a height of 6 ft is filled with water weigh-
ing 62.4 lb/ft3. Find the work required to empty the tank by
pumping the water out of the tank through a pipe that
extends to a height of 2 ft beyond the top of the tank.

23. A tank has the shape of an inverted right circular cone with
a base radius of 2 m and a height of 5 m. If the tank is filled
with water to a height of 3 m, find the work required to
empty the tank by pumping the water over the top of the
tank. (The mass of water is 1000 kg/m3.)

24. Consider the tank described in Exercise 23. If water is
pumped in through the bottom of the tank, find the work
required to fill the empty tank to a depth of 2 m.

25. Emptying a Storage Tank A gasoline storage tank in the shape
of a right cylinder of radius 3 ft and length 12 ft is buried in
the ground in a horizontal position. If the top of the tank is
4 ft below the surface, find the work required to empty a
full tank of gasoline weighing 42 lb/ft3 by pumping it
through a pipe that extends to a height of 2 ft above the
ground.

26. Emptying a Trough An 8-ft-long trough has ends that are equi-
lateral triangles with sides that are 2 ft long. If the trough is
full of water weighing 62.4 lb/ft3, find the work required to
empty it by pumping the water through a pipe that extends 
1 ft above the top of the trough.

2 ft

1 ft

8 ft

12 ft

3 ft

4 ft

2 ft
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27. Emptying a Trough An 8-ft-long trough has ends that are semi-
circles of radius 2 ft. If the trough is full of water weighing
62.4 lb/ft3, find the work required to empty it by pumping
the water through a pipe that extends 1 ft above the top of
the trough.

28. A boiler has the shape of a (lower) hemisphere of radius 
5 ft. If it is filled with water weighing 62.4 lb/ft3, find the
work required to empty the boiler by pumping the water
over the top of the boiler.

29. Refer to Example 6. Suppose that the pressure and vol-
ume of the steam in a steam engine are related by the law

, where is measured in pounds per square
inch and is measured in cubic inches. Find the work done
by the steam as it expands from a volume of 100 in.3 to a
volume of 400 in.3.

30. Refer to Example 6. The pressure and volume of 
the steam in a steam engine are related by the equation

, where is a constant. If the initial pressure of
the steam is lb/in.2 and its initial volume is in.3, find 
an expression for the work done by the steam as it expands
to a volume of four times its initial volume.

31. Launching a Rocket Newton’s Law of Gravitation states that
two bodies having masses and attract each other with
a force

where is the gravitational constant and is the distance
between the two bodies. Assume that the mass of the earth
is kg and is concentrated at the center of the
earth, the radius of the earth is m, and

N-m2/kg2. Find the work required to
launch a rocket of mass 500,000 kg vertically upwards 
to a height of 10,000 km.

32. Launching a Rocket Show that the work required to launch
a rocket of mass from the ground vertically upward to a
height is given by the formula

where is the radius of the earth.
Hint: Use Newton’s Law of Gravitation given in Exercise 31 
and follow these steps: (i) Let and denote the mass of theMm

R

W �
mtRh

R � h

h
m

W

G � 6.67 	 10�11
6.37 	 106

5.97 	 1024

rG

F � G 
m1m2

r 2

m2m1

V0P0

kPV1.2 � k

VP

V
PPV1.4 � 100,000

V
P

2 ft1 ft 8 ft

rocket and the earth, respectively, so that , where
. At the force will be the weight of the rocket,

that is, . Therefore, , so . 
(ii) .

33. Launching a Lunar Landing Module A lunar landing module with
a weight of 20,000 lb, as measured on the earth, is to be
launched vertically upward from the surface of the moon 
to a height of 20 mi. Taking the radius of the moon to be
1100 mi and its gravitational force to be one sixth that of
the earth, find the work required to accomplish the task.
Hint: See Exercise 32.

34. Work Done by a Repulsive Charge Coulomb’s Law states that the
force exerted on two point charges and separated by a
distance is given by

where is a constant known as the permittivity of free
space. Suppose that an electrical charge is concentrated 
at the origin of the coordinate line and that it repulses a like
charge from the point to the point . Show
that the work done by the repulsive force is given by

35. Work Done by a Repulsive Charge An electric charge distrib-
uted uniformly along a ring-shaped conductor of radius 
repulses a like charge along the line perpendicular to the
plane of the ring, through its center. The magnitude of the
force acting on the charge when it is at the point is
given by

and the force acts in the direction of the positive -axis.
Find the work done by the force of repulsion in moving the
charge from to .

36. The following table shows the force (in pounds)
exerted on an object as it is moved along a coordinate axis
from to ( is measured in feet). Use Simp-
son’s Rule to estimate the work done by the force.

xx � 10x � 0

F(x)

x

R

a qQ b

x � bx � aq

x

F �
1

4pe0
�

qQx

(x2 � R2)3>2

xq

q
a

Q

W �
q1q2

4pe0
 a1

a
�

1

b
b

W
x � bx � aq2

q1

e0

F �
1

4pe0
 
q1q2

r 2

r
q2q1

h

R

W � �R�h
R F dr

F � mtR2>r 2G � tR2>Mmt � GmM>R2

r � RR � r � R � h
F � GmM>r 2
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(ft)x 0 1 2 3 4 5

(lb)F(x) 0 0.69 1.61 2.28 2.88 3.20

(ft)x 6 7 8 9 10

(lb)F(x) 3.58 3.95 4.20 4.38 4.64

37. Work and Kinetic Energy A force acts on a body of 
mass moving it along a coordinate axis. Show that the
work done by the force in moving the body from 
to is

W � �
x2

x1

F(x) dx �
1

2
 m√2

2 �
1

2
 m√2

1

x � x2

x � x1

m
F(x)

where and are the velocities of the body when it is at
and , respectively.x � x2x � x1

√2√1

Hint: Use Newton’s Second Law of Motion and the
Chain Rule to write

The quantity is the kinetic energy of a body of mass 
moving with a velocity . Thus, the work done by the force
is equal to the net change in the kinetic energy of the body.

38. Refer to Exercise 37. A 4-kg block is attached to a horizon-
tal spring with a spring constant of 400 N/m. The spring is
compressed 5 cm from equilibrium and released from rest.
Find the speed of the block when the spring is at its equilib-
rium position.

√
m1

2 m√2

d√
dt

�
d√
dx

�
dx

dt
� √ 

d√
dx

aF � m 
d√
dt
b

Fluid Pressure
Consider a thin horizontal plate of area ft2 submerged to a depth of ft in a liquid
of weight density lb/ft3 (Figure 2a). The force acting on the surface of the plate is
just the weight of the column of liquid above it (Figure 2b). Since the volume of this
column of liquid is ft3 and its weight density is lb/ft3, we see that the force exerted
on the plate by the liquid is given by

weight density � volumeF � dAh

dAh

d

hA

5.6 Fluid Pressure and Force

Whether designing a hydroelectric dam, an aquarium, or a submarine, an engineer must
consider the pressure exerted by the water on the walls or surfaces of the object. (See
Figure 1.)

FIGURE 1

A A

h h

(a) (b)

FIGURE 2
The force exerted by the fluid on 

the horizontal plate (a) is the weight 
of the column of liquid above it.
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The pressure exerted by the liquid on the horizontal plate is

force divided by area

in lb/ft2.

P � dh

EXAMPLE 1 A rectangular fish aquarium has a base measuring 2 ft by 4 ft. (See Fig-
ure 3.) Find the pressure and the force exerted on the base of the tank when the tank
is filled with water to a height of ft. (The weight density of water is 62.4 lb/ft3.)11

2

FIGURE 3
A rectangular fish aquarium 

with base 2 ft 4 ft	

1   ft

4 ft

2 ft1__
2

Solution The pressure exerted by the water on the base of the tank is

or 93.6 lb/ft2.
Since the area of the base of the tank is (4)(2) or 8 ft2, we see that the force exerted

on the base of the tank is

or 748.8 lb.

In the study of hydrostatics we are guided by the following important physical law:
The pressure at any point in a liquid is the same in all directions. Thus, the water pres-
sure at a point on the wall of a swimming pool ft from the surface of the water is
the same as that at a point located away from the sides of the pool and ft from the
surface of the water. (See Figure 4.) The pressure is lb/ft2 and is the same in every
direction. This physical law, known as Pascal’s Principle, is named after the French
mathematician Blaise Pascal (1623–1662).

dh
h

h

 � 748.8

pressure � area F � PA � (93.6)(8)

P � dh � (62.4)(1.5) � 93.6

FIGURE 4
A cross section of a swimming pool

P
Q

h
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Referring once again to Figure 4, you can see that as we move vertically down-
ward along the wall of the swimming pool, the depth of the water increases, and, there-
fore, the water pressure on the wall increases as well. Thus, unlike the case of a thin
horizontal plate, in which the pressure is constant at every point on the plate, we have
here a situation in which the pressure varies as we proceed down the vertical wall. How
do we find the force exerted by the water against the wall?

To answer this question, let’s consider the more general situation in which a thin
vertical plate is submerged in a liquid with weight density lb/ft3 as shown in Fig-
ure 5.

d

FIGURE 5
gives the length of 

the vertical plate at .y
L(y)

Let be a regular partition of , and let be any point in
. If is small, then the depth of the th (representative) rec-

tangular strip, shown shaded in Figure 5, is approximately . Its length is approx-
imately , where is the horizontal length of the plate at . Therefore, the force
exerted by the liquid on this representative rectangular strip is

and so the sum

provides us with an approximation of the force exerted by the liquid on the vertical
plate. Recognizing this sum to be a Riemann sum of the function on

, we have the following definition.[c, d]
t(y) � dh(y)L(y)

F

a
n

k�1
 �Fk � a

n

k�1
 dh(ck)L(ck)�y

pressure � area�Fk � dh(ck)L(ck)�y

yL(y)L(ck)
h(ck)

k�y � (d � c)>n[yk�1, yk]
ck[c, d]P � {y0, y1, p , yn}

0

yk�1

yk

y

�y

d

c

h(ck)

ck

L(ck)

L(y)

(water level)

x

y

DEFINITION Force Exerted by a Fluid

The force exerted by a fluid of constant weight density on one side of a
submerged vertical plate from to , where , is given by

(1)

where is the depth of the fluid at and is the horizontal length of the
plate at .y

L(y)yh(y)

F � lim
n→�

 a
n

k�1
dh(ck)L(ck)�y � d�

d

c

h(y)L(y) dy

c � dy � dy � c
dF
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EXAMPLE 2 Fluid Pressure The vertical wall on the deep end of a rectangular swim-
ming pool is 20 ft wide and 8 ft high. If water in the swimming pool is filled to a height
of 7 ft as measured from the bottom of the wall, find the force exerted on the wall by
the water. (The weight density of water is 62.4 lb/ft3.)

Solution Imagine that the wall is placed on a coordinate system with the bottom of
the wall lying along the -axis, as shown in Figure 6. Here, the width of the wall is
constant, so the length of the thin horizontal strip at is . The depth of the
fluid at is . Therefore, the force exerted by the water on the wall is

or 30,576 lb.

 � 1248c7y �
1

2
 y2d7

0
� 30,576

 � 62.4�
7

0
(7 � y)(20) dy � 1248�

7

0
(7 � y) dy

 F � d�
d

c

h(y)L(y) dy

h(y) � 7 � yy
L(y) � 20y

x

FIGURE 6
We want to find the force exerted on the

wall of a swimming pool by the water.
Here, the width of the wall is constant.

8
7

20

Water level

y (ft)

0 x (ft)

h (y) � 7 � y

Δy

EXAMPLE 3 Fluid Pressure The vertical gate of a dam has the shape of a trape-
zoid as shown in Figure 7. What is the force on the gate when the surface of the water
is 2 ft above the top of the gate?

FIGURE 7
We want to find the force exerted 

on the gate of the dam by the water.
Here, the width of the gate varies.

4 ft

12 ft

8 ft

2 ft

Solution Let’s introduce a coordinate system so that the -axis coincides with the
water level, as shown in Figure 8. The length of the horizontal strip is .
To find , refer to Figure 8b. By similar triangles we have

or t �
1

2
 (6 � y)

t

2
�

6 � y

4

t
L(y) � 8 � 2t

x
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FIGURE 8

So

The depth of the fluid at is . Therefore, the force exerted by the water on
the gate is

or 9651.2 lb.

 � 62.4c a�28 �
8

3
b � (�252 � 72)d � 9651.2

 � 62.4c�7y2 �
1

3
 y3d�2

�6

 F � d�
d

c

h(y)L(y) dy � 62.4�
�2

�6
(�y)(14 � y) dy

h(y) � �yy

L(y) � 8 � 2t � 8 � 6 � y � 14 � y

EXAMPLE 4 The viewing port of a modern submersible used in oceanographic
research has a radius of 1 ft. If the vertical viewing port is 100 ft under water as meas-
ured from its center, find the force exerted on it by the water.

Solution Let’s choose a coordinate system so that its origin coincides with the center
of the viewing port. Then the viewing port is described by the equation .
(See Figure 9.)

x2 � y2 � 1

0 1�1�2�3�4�5�6

�y

2

(a) The length of the strip is 8 � 2t. (b) We use similar triangles to find t.

2

3 4

4

5 6
�1

�3

�5

�7

x

t t

(6 � y)

y

(100 � y)

x2 � y2 �1

Δy
100 ft

0

y

L(y)

x

y

FIGURE 9
The viewing port of a 

modern submersible N
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The length of a thin horizontal strip at is , and the depth of
the fluid at is . Therefore, the force exerted by the water on the view-
ing port is

The second integral on the right is zero because the integrand is an odd function (see
Theorem 4 in Section 4.5). To evaluate the first integral, observe that it represents the
area of a semicircular disk with radius 1. Therefore,

or 19,604 lb.

F � 12,480�
1

�1
21 � y2 dy � 12,480a1

2
 pb (1)2 � 6240p � 19,604

 � 12,480�
1

�1
 21 � y2 dy � 124.8�

1

�1
 y21 � y2 dy

 F � d�
d

c

h(y)L(y) dy � 62.4�
1

�1
(100 � y)(2)21 � y2 dy

h(y) � 100 � yy
L(y) � 2x � 221 � y2y

1. Explain Pascal’s Principle.
2. a. A thin vertical plate is submerged in a fluid of constant

weight density . Its length at a depth of is for
. Write an integral giving the force exerted 

on one side of the plate.
c � y � d

L(y)yd

b. If the plate described in part (a) is submerged in the fluid
so that the plate is parallel to the surface of the liquid at
a depth of feet, what is the force exerted on the plate?h

5.6 CONCEPT QUESTIONS

Videos for selected exercises are available online at www.academic.cengage.com/login.V

1. An aquarium is 3 ft long, 1 ft wide, and 1 ft deep. If the
aquarium is filled with water, find the force exerted by the
water (a) on the bottom of the aquarium, (b) on the longer
side of the aquarium, and (c) on the shorter side of the
aquarium.

2. A rectangular swimming pool is 40 ft long, 15 ft wide, and
9 ft deep. If the pool is filled with water to a depth of 8 ft,
find the force exerted by the water (a) on the bottom of the
pool and (b) on one end of the pool.

In Exercises 3–10, you are given the shape of the vertical ends
of a trough that is completely filled with water. Find the force
exerted by the water on one end of the trough.

3. 4.

3 ft

4 ft

2 ft

5 ft

4 ft

5. 6.

7. 8.

9. 10.

1 ft

1 ft

4 ft

2 ft

3 ft

2 ft

6 ft

�3 0 3

y � ��2

x

√9 � x22
3

y (ft)

�2 0 2

y � x2 � 4

�4

x

y (ft)

3 ft

5 ft

6 ft

10 ft

5.6 EXERCISES

www.academic.cengage.com/login


In Exercises 11–14, a vertical plate is submerged in water (the
surface of the water coincides with the -axis). Find the force
exerted by the water on the plate.

11. 12.

13. 14.

15. A trough has vertical ends that are equilateral triangles with
sides of length 2 ft. If the trough is filled with water to a
depth of 1 ft, find the force exerted by the water on one end
of the trough.

16. A trough has vertical ends that are trapezoids with parallel
sides of length 4 ft (top) and 2 ft (bottom) and a height of 3
ft. If the trough is filled with water to a depth of 2 ft, find
the force exerted by the water on one end of the trough.

17. A cylindrical drum of diameter 4 ft and length 8 ft is lying
on its side, submerged in water 12 ft deep. Find the force
exerted by the water on one end of the drum.

18. A cylindrical oil storage tank of diameter 4 ft and length 
8 ft is lying on its side. If the tank is half full of oil that
weighs 50 lb/ft3, find the force exerted by the oil on one 
end of the tank.

19. The first figure shows a vertical dam with a parabolic gate, and
the second figure shows an enlargement of the parabolic gate.

20 ft

4

x

y

3�3

4_
9y � �  x2 � 4

0 1 2 3 4

�4

�3

�2

�1
x

y

0 1 2 3 4

�4

�3

�2

�1
x

y

0 1 2 3 4

�4

�3

�2

�1
x

y

0 1 2 3 4

�4

�3

�2

�1
x

y

x
a. Find the force exerted by the water on the gate when the

water is 10 ft deep.
b. The gate is designed to withstand twice the force that the

water will exert on it under flood conditions (when the
water level is 20 ft deep). What is this force?

20. Redo Exercise 19 for a semicircular gate as shown in the
figure.

21. A rectangular tank has width 2 ft, height 3 ft, and length 
6 ft. It is filled with equal volumes of water and oil. The oil
has a weight density of 50 lb/ft3 and floats on the water. Find
the force exerted by the mixture on one end of the tank.

22. A rectangular swimming pool is 25 ft wide, 60 ft long, and
4 ft deep at the shallow end and 9 ft deep at the deep end.
Its bottom is an inclined plane. If the pool is completely
filled with water, find the force exerted by the water on each
side of the pool.

23. Refer to Exercise 22. Find the force exerted by the water on
the bottom of the pool.

24. A vertical plate is submerged in water as shown in the figure
below. The widths of the plate taken at -ft intervals are
recorded in the following table.

1
2

60 ft

4 ft

9 ft

25 ft

�3 0 3

3 y �

x

y

√9 � x2

5.6 Fluid Pressure and Force 501

Depth (ft) 2.0 2.5 3.0 3.5 4.0 4.5 5.0

Width of plate (ft) 0 2.9 3.4 3.0 2.2 1.7 0

Use Simpson’s Rule with to estimate the force
exerted by the water on one side of the plate.

3 ft

2 ft

n � 6
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5.7 Moments and Center of Mass

As every juggler knows, many objects will remain in equilibrium if supported at a cer-
tain point. As an example, for a homogeneous circular plate, this point is located at the
center of the plate and is called the center of mass of the plate. (See Figure 1.)

The knowledge of the location of the center of mass of a body or a system of bod-
ies is important in physics and engineering. As a matter of practical interest, every
motorist knows that a car wheel must be balanced when a new tire is installed. Because
of defects in the tire-manufacturing process, a wheel is seldom balanced when a new
tire is installed; that is, the center of mass of the wheel is not located at “dead center.”
An unbalanced wheel causes the car to shimmy.

Before we learn how to find the center of mass of plane regions, we need to recall
some basic notions from physics.

Measures of Mass
The mass of a body is the quantity of matter in the body. In the English system the
unit of mass is the slug; in the international system (SI) the unit of mass is the kilo-
gram; and in the centimeter-gram-second system (cgs) the unit of mass is the gram.
On the surface of the earth, where the constant of acceleration due to gravity, , ist

FIGURE 1
The center of mass of a circular 
plate is located at the center of 
the plate.

approximately 32 ft/sec2 in the English system, 9.8 m/sec2 in the international system,
and 980 cm/sec2 in the cgs system, Newton’s Second Law of Motion tells
us that

a body of mass slugs has a weight of pounds,

a body of mass kilograms has a weight of newtons, and

a body of mass grams has a weight of dynes.

Center of Mass of a System on a Line
Consider a simple system consisting of two particles of mass and connected by
a rod of negligible mass. If we place this system on a fulcrum as shown in Figure 2,
then equilibrium is achieved if

(1)

where and are the distances (called moment arms) between the particles and the
fulcrum. The quantity , called the moment of about the fulcrum, is a measure
of the tendency of to rotate the system about the fulcrum (in this case in the coun-
terclockwise direction). On the other hand, the moment is a measure of the ten-
dency of to rotate the system about the fulcrum (in a clockwise direction). Balance
is achieved when these moments are equal, that is, when Equation (1) holds.

m2

m2d2

m1

m1m1d1

d2d1

m1d1 � m2d2

m2m1

980mm

9.8mm

32mm

(F � ma)

m1

d1 d2

m2

FIGURE 2
The condition for equilibrium 

of the system is .m1d1 � m2 d2

We can use Equation (1) to derive a formula for calculating the center of mass of
the system. Place the system on a coordinate line, and suppose that the coordinates of

, , and the fulcrum are , , and , respectively, as shown in Figure 3. You can
see immediately that the distance between and the fulcrum is and thatd1 � x � x1m1

xx2x1m2m1
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the distance between and the fulcrum is . Therefore, Equation (1) gives

and

(2)x �
m1x1 � m2x2

m1 � m2

 m1x � m2x � m1x1 � m2x2

 m1(x � x1) � m2(x2 � x )

d2 � x2 � xm2

FIGURE 3
The system placed on a coordinate line

The numbers and in Equation (2) are called the moments of the masses 
and about the origin.

In general, if is a mass located at the point on a coordinate line, then is
called the moment of the mass about the origin. If you think of the mass as
being connected to the origin by a rod of negligible mass, then measures the ten-
dency of to rotate the rod about the origin. Observe that Equation (2) says that to
find the coordinate of the center of mass of a system comprising two masses, and

, add the moments of the masses about the origin and divide the sum by the total
mass . A similar analysis of a system comprising particles located on a coor-
dinate line, as shown in Figure 4, leads to the definition of the center of mass of that
system.

nm1 � m2

m2

m1

m
mx

mm
mxxm

m2

m1m2x2m1x1

x1 x
d1 � x � x1 d2 � x2 � x

0 x2

m1 m2

x

FIGURE 4
A system of masses con-

nected by a rod of negligible 
mass on a coordinate line

n

DEFINITION The Center of Mass of a System of Masses on a Line

Let denote a system of masses , , , located at , , , , lying
on a line, respectively, and let denote the total mass of the system.

1. The moment of about the origin is

(3a)

2. The center of mass of is located at

(3b)x �
M

m
�

1
m

 a
n

k�1
mk xk

S

M � a
n

k�1
mk xk

S

m � �n
k�1mk

xnpx2x1mnpm2m1nS

n

x1 0 xn

m1

x2

m2

x3 . . .

m3 mn

x

Note If we write Equation (3b) in the form , we obtain the following inter-
pretation of the center of mass: Think of the total mass of the system as being concen-
trated at the center of mass . Then the moment of this mass about the origin will be
the same as the moment of the system about the origin.

x

mx � M



FIGURE 5
If the system is suspended at 

, it will hang in equilibrium
horizontally.
x � 7

5

x

4
6 kg

4 kg

2 kg

3 kg

0

�3

7_
5x � �2

1

�1
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EXAMPLE 1 Find the center of mass of a system of four objects located at the points
, , 2, and 4, on the -axis ( in meters), with masses 3, 2, 4, and 6 kilograms,

respectively.

Solution Using Equation (3b) with , , , and and
, , , and gives the coordinate of the center of mass of

the system as

or 1.4 m

Interpreting Our Results

Think of the four masses as being connected by a rod of length 7 m and of mass very
small in comparison to the mass of the four given objects. If the system is suspended
by a string at , then the system will hang in equilibrium horizontally. (See Figure 5.)

Center of Mass of a System in the Plane
Consider a particle of mass located at the point in a coordinate plane. (See
Figure 6.) If you think of this mass as being connected to the -axis by a rod perpen-
dicular to the axis and of negligible mass, then the quantity measures the tendency
of the mass to rotate the system about the -axis. This quantity is called the moment
of the mass about the -axis and is denoted by . Similarly, we define the moment
of the mass about the -axis to be . To find the moments about the - and
-axes of a system comprising particles in the plane, we simply add the respective

moments of each mass. (See Figure 7.)
This leads to the following definition.

ny
xMy � mxym

Mxxm
xm

my
x

P(x, y)m

x

x �
3(�3) � 2(�1) � 4(2) � 6(4)

3 � 2 � 4 � 6
�

21

15
�

7

5

x4 � 4x3 � 2x2 � �1x1 � �3
m4 � 6m3 � 4m2 � 2m1 � 3

xx�1�3

FIGURE 6
A particle of mass located at the
point P(x, y)

m

0 x

x

y

y

m
P(x, y)

0 x

y

y2

y3

m2

m3

x2

x3

x1

y1

m1

FIGURE 7
A system with three masses (n � 3)

DEFINITION The Center of Mass of a System of Particles in a Plane

Let denote a system of particles with masses , , , located at the
points , , , , respectively, and let denote
the total mass of the system.

1. The moment of about the -axis is

(4a)

2. The moment of about the -axis is

(4b)

3. The center of mass of is located at the point where

and (4c)y �
Mx

m
�

1
m

 a
n

k�1
mkykx �

My

m
�

1
m

 a
n

k�1
mk xk

(x, y)S

My � a
n

k�1
mk xk

yS

Mx � a
n

k�1
mkyk

xS

m � �n
k�1mk(xn, yn)p(x2, y2)(x1, y1)

mnpm2m1nS

n

Note The center of mass of a system of particles in the plane is the point at which,
if the total mass of the system were concentrated, it would generate the same moments
as the system. This can be seen by writing Equation (4c) in the form and

.my � Mx

mx � My

m
n
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EXAMPLE 2 Find the center of mass of a system comprising three particles with
masses 2, 3, and 5 slugs, located at the points , , and , respectively.
(Assume that all distances are measured in feet.)

Solution We first compute the moments

or 18 slug-ft, and

or 7 slug-ft. Since , an application of Equation (4c) yields

and

feet. Therefore, the center of mass of the system is located at .

Interpreting Our Results

Think of the three particles as being connected by rods of negligible mass to the cen-
ter of mass, . If the system is suspended by a string at , then it will rest in a hori-
zontal position, much like a mobile. (See Figure 8.)

Center of Mass of Laminas
We now turn our attention to the problem of finding the center of mass of a lamina (a
thin, flat plate). We will assume that the laminas we consider are homogeneous, that
is, that they have uniform mass density (the Greek letter rho), where is a positive
constant.

Let’s begin by assuming that the lamina has the shape of the region under the
graph of a continuous nonnegative function on the interval , as shown in Fig-
ure 9.

[a, b]f
RL

rr

PP

195, 7
10 2

y �
Mx

m
�

7

10
x �

My

m
�

18

10
�

9

5

m � 2 � 3 � 5 � 10

Mx � 2(2) � 3(6) � 5(�3) � 7

My � 2(�2) � 3(4) � 5(2) � 18

(2, �3)(4, 6)(�2, 2)

x

4

4

2 kg

5 kg P
3 kg

2

2

�2

�2

�4

�4 y6

FIGURE 8
When the system is suspended by a
string at , it will rest in a horizontal
position.

P

FIGURE 9
The lamina has the shape of the region

. The th lamina is highlighted.kR
a

R

bxk�1 xk

f(ck)

(ck, f(ck))

ck

ck,    f(ck)
1
2

1
2

x0

y

( )

Let be a regular partition of . This partition divides into
nonoverlapping subregions , each of which is again a lamina. The th sub-

region is approximated by the th rectangle of width and height ,
where is the midpoint of the th subinterval , that is, .
The area of the th rectangle is , so the mass of the th lamina is approximately

Next, since the center of mass of a rectangular lamina is located at its center, we
conclude that the center of mass of the th lamina is located at the point .1ck, 

1
2 f(ck) 2k

density � arear f(ck)�x

kf(ck)�xk
ck � (xk � xk�1)>2[xk�1, xk]kck

f(ck)�x � (b � a)>nk
kR1, p , Rnn

R[a, b]P � {x0, x1, p , xn}
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This tells us that the moment arm of the th lamina with respect to the -axis is and,
therefore, that the moment of the th lamina about the -axis is

Adding the moments of the laminas and taking the limit of the associated Riemann
sum as lead to the following definition of the moment of about the -axis:

Similarly, by observing that the moment arm of the th rectangle about the -axis
is , we see that the moment of about the -axis may be defined as

(See Figure 9.) Finally, the mass of may be defined as

m � lim
n→�

 a
n

k�1
r f(ck)�x � r�

b

a

f(x) dx

L

Mx � lim
n→�

 a
n

k�1
r �

1

2
 [ f(ck)]

2 �x � r�
b

a

 
1

2
 [ f(x)]2 dx

xL1
2 f(ck)

xk

My � lim
n→�

 a
n

k�1
rck f(ck)�x � r�

b

a

xf(x) dx

yLn → �
n

mass � moment arm[r f(ck)�x]ck � rck f(ck)�x

yk
ckyk

DEFINITION Moments and Center of Mass of a Lamina

Let denote a lamina of constant mass density , and suppose that has the
shape of the region under the graph of a nonnegative continuous function on

.

1. The mass of is

(5a)

where is the area of .
2. The moments of about the - and the -axis are

(5b)

and

(5c)

3. The center of mass of is located at , where

and (5d)y �
Mx

m
�

1

A
 �

b

a

 
1

2
 [ f(x)]2 dxx �

My

m
�

1

A�
b

a

xf(x) dx

(x, y)L

My � r�
b

a

xf(x) dx

Mx � r�
b

a

 
1

2
 [ f(x)]2 dx

yxL
RA � �b

a f(x) dx

m � r�
b

a

f(x) dx � rA

L

[a, b]
fR

LrL

EXAMPLE 3 A lamina of uniform area density has the shape of the region 
under the graph of on . (See Figure 10.) Find the mass of , the moments
of about each of the coordinate axes, and the center of mass of .

Solution Using Equation (5a), we find that the mass of the lamina is

m � r�
2

0
x2 dx � rc1

3
 x3d2

0
�

8r

3

LL
L[0, 2]f(x) � x2

RrL
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FIGURE 10
The center of mass of a representative
rectangle is .1x, y

2 2

To find the moment of about the -axis, we can use Equation (5b), or we can
proceed as follows: Draw a representative rectangle of width and height (Figure
10). The moment arm of this rectangle with respect to the -axis is

and the mass of the representative rectangle is

So the moment of this element about the -axis is

Summing and taking the limit of the Riemann sum, we have

To find , we can use Equation (5c) or proceed as before, observing that the
moment arm of the representative rectangle is . Thus,

Finally, using Equation (5d), we see that the coordinates of the center of mass of 
are

and

Interpreting Our Results

If the lamina is suspended by a string at , it will hang in equilibrium horizontally.
(See Figure 11.)

Observe that Equation (5d) does not involve , the density of the lamina. This is
always true when the lamina has uniform density. In other words, the center of mass
of such a lamina depends only on the shape of the region that it occupies in the plane
and not on its density. The point at which the center of mass of such a lamina
is located is called the centroid of the region .R

(x, y)
R

r

132, 65 2

y �
Mx

m
�

16r

5
8r

3

�
6

5
x �

My

m
�

4r
8r

3

�
3

2

L

My � �
2

0
xrx2 dx � r�

2

0
x3 dx � cr

4
 x4d2

0
� 4r

x
My

Mx � �
2

0
ax2

2
brx2 dx �

r

2
 �

2

0
x4 dx � c r

10
 x5d2

0
�

16r

5

moment arm � massax2

2
brx2 �x

y

density � areary �x � rf(x)�x � rx2 �x

y

2
�

f(x)

2
�

x2

2

x
y�x

xLMx

R

1

2

3

1 2

y
2

4

x

x

�x

0

y

FIGURE 11
If the lamina is suspended at ,
it will hang horizontally.

132, 65 2
x

432

2

11
y

EXAMPLE 4 Find the centroid of the region under the graph of on the
interval . (See Figure 12.)

Solution The area of the region is

Using Equation (5d), we have

x �
1

A
 �

4

0
x f(x) dx �

3

16
 �

4

0
x3>2 dx �

3

16
 c2

5
 x5>2d4

0
� a 3

16
b a64

5
b �

12

5

A � �
4

0
1x dx � c2

3
 x3>2d4

0
�

16

3

R

[0, 4]
y � 1xR

0

1

2

x2 3 41

y �

R

√x

y

12
5

3
4)( ,

FIGURE 12
The centroid of the region is .112

5 , 34 2R
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and

Therefore, the centroid of is .

We can use the following heuristic argument to derive the formulas for the centroid
of a region between the graphs of two functions. Suppose that is bounded by the
graphs of two continuous functions and , where on an interval ,
and to the left and right by the lines and . (See Figure 13.) Then let be
a lamina of uniform density that has the shape of . Draw a representative rectangle
of width and height and, therefore, area . Its
mass is

density � arear�A � r[ f(x) � t(x)]�x

�A � [ f(x) � t(x)]�x[ f(x) � t(x)]�x
R

Lx � bx � a
[a, b]f(x) � t(x)tf

RR

112
5 , 34 2R

y �
1

A
 �

4

0
 
1

2
 [ f(x)]2 dx �

3

16
 �

4

0
 
1

2
 x dx �

3

16
 c1

4
 x2d4

0
� a 3

16
b (4) �

3

4

FIGURE 13
The region lies between the 

graphs of and on .[a, b]tf
R

Therefore, the mass of is

where is the area of .
Next, the moment of the rectangle about the -axis is

and this gives

The moment of the rectangle about the -axis is

and this gives

Since the center of mass of (also called the centroid of ) is given by , where
and , we have the following result.y � Mx>mx � My>m

(x, y)RL

My � r�
b

a

x[ f(x) � t(x)] dx

xr[ f(x) � t(x)]�x

y

Mx � r�
b

a
 c f(x) � t(x)

2
d[ f(x) � t(x)] dx �

r

2
 �

b

a

{[ f(x)]2 � [t(x)]2} dx

moment arm � mass
1

2
 [ f(x) � t(x)]r[ f(x) � t(x)]�x

x
RA

m � r�
b

a

[ f(x) � t(x)] dx � rA

R

0

1
2

�x

[f(x) � g(x)]

1
2[ f(x) � g(x)])(x,R

a b

y � g(x)

y � f(x)

x

x

y
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DEFINITION The Centroid of a Region Between Two Curves

Let be a region bounded by the graphs of two continuous functions and 
on , where for all in . Then the centroid of is
given by

(6a)

and

(6b)

where

A � �
b

a

[ f(x) � t(x)] dx

y �
1

A
 �

b

a

 
1

2
 {[ f(x)]2 � [t(x)]2} dx

x �
1

A
 �

b

a

x[ f(x) � t(x)] dx

R(x, y)[a, b]xf(x) � t(x)[a, b]
tfR

EXAMPLE 5 Find the centroid of the region bounded by the graphs of 

and .

Solution The region in question is shown in Figure 14. The points of intersection
of the two graphs are and . If we let and

, then on , so the area of is

Next, using Equations (6a) and (6b), we have

The Theorem of Pappus
Suppose that a solid of revolution is obtained by revolving a plane region about a
line. The Theorem of Pappus enables us to find the volume of the solid in terms of the
centroid of the region. (See Figure 15.) The theorem is named after the Greek mathe-
matician Pappus of Alexandria, who lived in the fourth century A.D.

R

 �
1

9
 c�1

2
 x4 �

4

3
 x3 � x2 � 4xd2

�1
� �

1

2

 y �
1

A
 �

2

�1
 
1

2
 [(�x2 � 2x � 1)2 � (x2 � 3)2] dx �

1

9
 �

2

�1
(�2x3 � 4x2 � 2x � 4) dx

 �
1

9
 c�1

2
 x4 �

2

3
 x3 � 2x2d2

�1
�

1

2

 x �
1

A
 �

2

�1
x[ f(x) � t(x)] dx �

1

9
 �

2

�1
(�2x3 � 2x2 � 4x) dx

 � �
2

�1
(�2x2 � 2x � 4) dx � c�2

3
 x3 � x2 � 4xd2

�1
� 9

 A � �
2

�1
[ f(x) � t(x)] dx

RA[�1, 2]f(x) � t(x)t(x) � x2 � 3
f(x) � �x2 � 2x � 1(2, 1)(�1, �2)

R

y � �x2 � 2x � 1

y � x2 � 3

FIGURE 14
The region bounded by the graphs of

and 
has centroid .112, �1

2 2y � �x2 � 2x � 1y � x2 � 3
R

0 x

y � x2 � 3

y � �x2 � 2x � 1

�1�2 1 32

(�1, �2)

y

R

�1

�2

�3

1

2

(2, 1)
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FIGURE 15
The volume of the solid generated by 

revolving about is (area of ).R(2pr)LR

The Theorem of Pappus

Let be a plane region that lies entirely on one side of a line in the same
plane. If is the distance between the centroid of and the line , then 
the volume of the solid of revolution obtained by revolving about is
given by

where is the area of .RA

V � 2prA

LRV
LRr

LR

Note that is the distance traveled by the centroid as the region is revolved
about the line .L

R2pr

L

R

Centroid of R

r

0

L

0x x

Solution The centroid of the circular region is the center of the circle. So the dis-
tance traveled by the centroid during one revolution of the circular region is .
Since the area of the region is , the Theorem of Pappus says that the volume of
the torus is

V � 2pbA � (2pb)(pa2) � 2p2a2b

pa2
2pb

EXAMPLE 6 Volume of a Torus A torus (a doughnut-shaped solid) is formed by
revolving a circular region of radius about a line lying in the same plane as the cir-
cle and at a distance from the center of the circle. (See Figure 16.) Find the
volume of the torus.

(b 
 a)b
a

FIGURE 16
If the circular region in part (a) 
is revolved about , the resulting 
solid of revolution is a torus (b).

L
R

L

R

b

a

(a) (b)

0

L

x x
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1. a. Let be a system of masses , , , located at
, , , on a coordinate line, respectively. What is

the center of mass of ?
b. Let be a system of masses , , , located at

, , , in the plane. What is the
moment of about the -axis? About the -axis? What is
the center of mass of ?S

yxS
(xn, yn)p(x2, y2)(x1, y1)

mnpm2m1nS
S

xnpx2x1

mnpm2m1nS 2. Let denote a lamina having the shape of a region under
the graph of a nonnegative continuous function on 
and having uniform mass density . What is the center of
mass of ?

3. Let be a region bounded by the graphs of two continuous
functions and on , where . What is the
centroid of ?

4. State the Theorem of Pappus.
R

f(x) � t(x)[a, b]tf
R

L
r

[a, b]f
RL

5.7 CONCEPT QUESTIONS

In Exercises 1–4, find the center of mass of the system compris-
ing masses located at the points on a coordinate line.
Assume that mass is measured in kilograms and distance is
measured in meters.

1. , , ; , ,

2. , , , ; ,
, ,

3. , , , , ;
, , , ,

4. , , , , ;
, , , ,

In Exercises 5–8, find the center of mass of the system compris-
ing masses located at the points in a coordinate plane.
Assume that mass is measured in grams and distance is meas-
ured in centimeters.

5. , , ; , ,

6. , , ; , ,

7. , , , ; ,
, ,

8. , , , ; ,
, ,

In Exercises 9–24, find the centroid of the region bounded by the
graphs of the given equations.

9. , ,

10. , , ,

11. ,

12. , , ,

13. , , , x � 1x � �1y � 0y � �x �21 � x2

x � 4x � 1y � 0y � 1x

y � 0y � 4 � x2

x � 2x � 1y � 0y � x2

x � 0y � 0y � �
2

3
 x � 2

P4(4, �3)P3(1, 4)P2(�1, 4)
P1(�2, 3)m4 � 5m3 � 2m2 � 1m1 � 4

P4(4, �2)P3(2, 3)P2(�2, 3)
P1(�3, �2)m4 � 5m3 � 6m2 � 4m1 � 3

P3(3, �1)
P2(2, 1)P1(�2, 2)m3 � 1m2 � 4m1 � 2

P3(2, 4)
P2(�1, 2)P1(�3, �2)m3 � 5m2 � 3m1 � 4

Pkmk

x5 � 6x4 � 3x3 � 0x2 � �2x1 � �4
m5 � 4m4 � 8m3 � 5m2 � 4m1 � 6

x5 � 4x4 � 2x3 � �2x2 � �3x1 � �5
m5 � 8m4 � 4m3 � 2m2 � 3m1 � 4

x4 � 3x3 � 1x2 � �1
x1 � �4m4 � 6m3 � 5m2 � 1m1 � 3

x3 � 4
x2 � �1x1 � �3m3 � 6m2 � 4m1 � 2

xkmk

14. , ,

15. ,

16. ,

17. , ,

18. , ,

19. ,

20. , , ,

21. , , ,

22. , , ,

23. ,

24. ,

In Exercises 25–28, find the centroid of the region shown in the
figure.

25. 26.

27. 28.

0 x�1

�2

1

Semicircle

y

1

0 x�1

�2

1

Semicircle

y

1

0 x�1�2 1 2

Quarter circle

y

2

0 x�1�2 1 2

y

2

y � x2 � 2x � 1y � �x2 � 3

y � 3 � 2xy � 6 � x2

x � 2x � 1y � 0y �
1

x3

x � 1x � 0y � 13 xy � x3

x � 1x � 0y � xy � x3

y � 1xy � x2

x � 0y � 4y � x2>3
x � 8y � 0y � x2>3

y � 0y �21 � x2

y � 0y � 2x � x2

x � 3y � 0y � x3

5.7 EXERCISES

Videos for selected exercises are available online at www.academic.cengage.com/login.V

www.academic.cengage.com/login


0 x�2 4

y

�1

1

In Exercises 29–32, find the centroid of the region shown in the
figure. (You can solve the problem without using integration.)

29. 30.

31. 32.

0 x�2 2

y

�1

1

0 x1 2 3 4 5

y

1

2

3

4

0 x1 2 3 4 5

y

1

2

3

4
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In Exercises 39–42, use the Theorem of Pappus to find the vol-
ume of the given solid.

39. The torus formed by revolving the region bounded by the
circle about the -axis

40. A cone of radius and height 

41. The solid obtained by revolving the region bounded by the
graphs of , , and about the -axis

42. The solid obtained by revolving the region bounded by the
graphs of , , and about the -axis

43. Use the Theorem of Pappus to find the centroid of the 

region bounded by the upper semicircle and
the -axis.

44. Use the Theorem of Pappus to show that the -coordinate of
the centroid of a triangular region is located at the point that
is one third of the distance along the altitude from the base
of the triangle.
Hint: Suppose the vertices of the triangle are located at , ,
and .

In Exercises 45 and 46, is a curve that is the graph of a 
continuous function on the interval , and the
moments and of about the - and -axis are defined yxCMyMx

[a, b]y � f(x)
C

(b, h)
(a, 0)(0, 0)

y

x
y �2R2 � x2

yx � 6y � 0y � 1x � 2

yx � 2y � 4y � 4 � x2

hr

y(x � 4)2 � y2 � 9

by and , respectively, where 

is the element of arc length. The coordi-
nates of the centroid of are and , where 

is the arc length of . Find the centroid of .

45. , (upper semicircle)

46. , , (astroid in the
first quadrant)

47. Find the centroid of the region under the graph of 
on the interval . Find the exact values of and .

48. Find the centroid of the region under the graph of
on the interval .[�1, 1]y � 1>(1 � x2)

yx[0, 1]
y � sin px

y � 00 � x � aC: x2>3 � y2>3 � a2>3
�a � x � aC: y �2a2 � x2

CCL
y � Mx>Lx � My>LC

ds �21 � (y¿)2 dx

My � �b
a x dsMx � �b

a y ds

In Exercises 1–12, fill in the blanks.

1. a. If and are continuous on and for all
in , then the area of the region between the graphs

of and and the vertical lines and is 
.

b. If and are continuous on , then the area of the
region bounded by the graphs of and and the vertical
lines and is .A �x � bx � a

tf
[a, b]tf

A �x � bx � atf
[a, b]x

f(x) � t(x)[a, b]tf

2. a. If is a continuous nonnegative function on , then
the volume of the solid obtained by revolving the region

under the graph of on about the -axis is 
.

b. If is a continuous nonnegative function on , then
the volume of the solid obtained by revolving the region

between the graph of and the -axis on 
about the -axis is .V �y

[c, d]yx � t(y)R

[c, d]t

V �x[a, b]fR

[a, b]f

CONCEPT REVIEW

CHAPTER 5 REVIEW

33. Find the center of mass of the lamina of Exercise 31 if the
density of the circular lamina is twice that of the square
lamina.

34. Find the center of mass of the lamina of Exercise 32 if the
density of the circular laminae is 3 times that of the square
lamina.

35. Find the centroid of the region bounded by the graphs of
, , and .

36. Find the centroid of the region bounded by the graph of the
equation and the coordinate axes.

37. Prove that the centroid of a triangular region is located at
the point of intersection of the medians of the triangle.
Hint: Suppose that the vertices of the triangle are located at ,

, and .

38. Find the centroid of the region bounded by the graphs of 

and .y � 1 � xy �21 � x2

(b, h)(a, 0)
(0, 0)

x1>2 � y1>2 � a1>2

y � 0x � 0x>a � y>b � 1
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In Exercises 1–16, sketch the region bounded by the graphs of
the equations and find the area of the region.

1. , , ,

2. , , ,

3. , , ,

4. , , ,

5. ,

6. ,

7. , , ,

8. ,

9. ,

10. , , ,

11. ,

12. , , ,

13. , , , x �
p

2
x � 0y � �sin xy � cos x

x �
p

2
x � �

p

2
y � 1 �

2
p

 xy � cos x

x � 1 � yx � y2 � 1

y � 2x � 0x � yx � 1y � 1

x � 1x � (y � 1)2

y � x � 1y � (x � 1)3

x � 0y � 0y � 2y � 1x � 1

x � y3y � x3

y � 3x2 � 2x � 4y � 2x2 � 2x � 3

x � 2x � 1y � x � 1y � 2x3 � 1

x � 1x � 0y � x � 1y � x2 � 2

x � 2x � 1y � 0y �
1

1x

x � 2x � 1y � 0y �
1

x3

14. , , ,

15. ,

16. ,

In Exercises 17–24, find the volume of the solid generated by
revolving the region bounded by the graphs of the equations
about the indicated line.

17. , , ; the -axis

18. , ; the -axis

19. , ; the -axis

20. , ; the line 

21. , ; the line 

22. , , , ; the -axis

23. , , ; the -axis

24. , ; the line 

25. Find the area of the region completely enclosed by the
parabola and the line passing through the
point and the vertex of the parabola.(1, 0)

y � x2 � 6x � 11

x � �2y � �x � 1y � 1 � x2

yy � 0x � 0y � cos x2

yx � 1x � 0y � 0y �
1

21 � x2

x � 2y � x3y � x2

y � 2y � x3y � x2

yy � xy � x1>3
xy � 0y � x � x2

xx � 3y � 0y � 1x � 1

x � 1(y � x)2 � x3

x � y � 11x � 1y � 1

x �
p

4
x � �

p

4
y � sin xy � sec2 x

REVIEW EXERCISES

3. If and are continuous on and 
for all in , then the volume of the solid obtained 
by revolving the region between the graphs of and on

about the -axis is .

4. If is a solid bounded by planes that are perpendicular to
the -axis at and and the cross sectional area 
of at any point in is , where is continuous
on , then the volume of is .

5. a. If is a continuous nonnegative function on and 
is the region under the graph of on , then the vol-
ume of the solid obtained by revolving about the -axis
is .

b. If the region bounded by the graphs of ,
where is nonnegative, , , and , is
revolved about the -axis, where , then the 
volume of the resulting solid is .

6. a. If is smooth on , then the arc length of the graph
of from to is .

b. If is smooth on , then the arc length of the 
graph of from to is 

.

7. If is smooth on , then the arc length function for 
the graph of is defined by with domain

. The arc length differential is or
.(ds)2 �

ds �
s(x) �f

s[a, b]f

L �
Q(t(d), d)P(t(c), c)x � t(y)

[c, d]t

L �Q(b, f(b))P(a, f(a))f
[a, b]f

V �
0 � c � dx

y � dy � cx � 0f
x � f(y)R

V �
yR

[a, b]f
R[a, b]f

V �S[a, b]
AA(x)[a, b]xS

x � bx � ax
S

V �x[a, b]
tf

[a, b]x
f(x) � t(x) � 0[a, b]tf 8. a. If is a nonnegative smooth function on , then the

surface area of the surface obtained by revolving the
graph of about the -axis is .

b. If is a smooth function on with , then
the surface area of the surface obtained by revolving the
graph of about the -axis is .

9. If is continuous on , then the work done by the 
force in moving a body from to is 

.

10. The force exerted by a fluid of constant weight density 
on one side of a submerged vertical plate from to

, where , is given by , where 
is the horizontal length of the plate at and is 

the depth of the fluid at .

11. If denotes a lamina of constant mass density and has
the shape of the region under the graph of a nonnegative
continuous function on , then
a. The mass of is .
b. The moments of about the -axis and -axis are 

and .
c. The center of mass of is located at , where 

and .

12. If is the region bounded by the graphs of two continuous
functions and on , where for all in

, then the centroid of is given by 
, and , where .A �y �

x �R(x, y)[a, b]
xf(x) � t(x)[a, b]tf

R

y �
x �(x, y)L

My �
Mx �yxL

L
[a, b]f

R
LrL

y
h(y)yL(y)

F �c � dy � d
y � c

dF

W �x � bx � aF(x)
[a, b]F

S �yt

t(y) � 0[c, d]t

S �xf

[a, b]f
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26. The base of a solid is a circular disk of radius 2, and the
cross sections perpendicular to the base are isosceles right
triangles with the hypotenuse lying on the base. Find the
volume of the solid.

27. A monument stands 50 m high. A horizontal cross section 
m from the top is an equilateral triangle with sides m.

What is the volume of the monument?

28. Write an integral giving the arc length of the graph of 
the function on . Do not evaluate the
integral.

29. Find the length of the graph of on the
interval .

30. Find the length of the graph of

31. Find the area of the surface obtained by revolving the por-
tion of the graph of that lies below about the
-axis.

32. Find the area of the surface formed by revolving the graph
of , , about the -axis, accurate to
four decimal places.

33. Write an integral giving the area of the surface obtained by 

revolving the graph of on about the 

-axis. Do not evaluate the integral.

34. When a particle is at the point on the -axis, it is acted
upon by a force of dynes. Find the work done
by the force in moving the particle from to ,
where is measured in centimeters.x

x � 2x � 1
x � cos px

xx

x

[1, 2]f(x) � x2 �
1
x

x0 � x � 2y � 21x � x

y
y � 3

2y � 1
2 x

2

1 � x � 16y � �
x

1
2t 3>2 � 1 dt

[1, 27]
y � (9 � x2>3)3>2

[0, 1]f(x) � x2 � x3

x>5x

35. A force of 6 lb is required to stretch a spring in. beyond
its natural length. Find the work required to stretch the
spring 2 in. beyond its natural length.

36. A 1200-lb elevator at a construction site is suspended by a
cable that weighs 10 lb/ft. How much work is done in rais-
ing the elevator from the ground to a height of 20 ft?

37. A tank having the shape of an inverted right circular cone
with a base radius of 10 ft and a height of 15 ft is filled
with water weighing 62.4 lb/ft3. Find the work required to
empty the tank by pumping the water over the rim of the
tank.

38. A semicircular plate of radius is submerged vertically in 
a liquid weighing 50 lb/ft3 in such a way that the diameter
of the plate is flush with the surface of the liquid. Find the
force exerted by the liquid on one side of the plate.

39. A rectangular swimming pool is 50 ft long, 20 ft wide, and
3 ft deep at the shallow end and 7 ft deep at the deep end.
Its bottom is an inclined plane. If the pool is completely
filled with water, find the force exerted by the water on each
vertical wall of the swimming pool.

In Exercises 40–43, find the centroid of the region bounded by
the graphs of the equations.

40. ,

41. ,

42. ,

43. , y � 2x � x2y � 2x2 � 4x

y � 0y �29 � x2

y � 0y � x2 � 2x

y �
1

2
 xy � 1x

r

11
2

In the following example we invoke a rule of differentiation to solve a problem involv-
ing integration.

PROBLEM-SOLVING TECHNIQUES

EXAMPLE Height Reached by a Projectile A projectile is launched vertically
upward from the earth’s surface with an initial velocity of magnitude less than the
escape velocity. If only the earth’s influence is taken into consideration, then the dif-
ferential equation governing its motion is

where is in seconds, is the distance of the projectile from the surface of the earth
in miles, is the radius of the earth, and is the constant of acceleration due to grav-tR

xt

d2x

dt 2
� �

tR2

(x � R)2

√0

ity. Show that the maximum height reached by the projectile is √2
0R>(2tR � √2

0).

R
x
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Solution At first glance, we are tempted to integrate the given equation with respect
to . But the right-hand side of the equation is a function of the unknown variable !
The trick here is to use the Chain Rule to rewrite the left-hand side of the differential
equation. Thus,

The given equation now reads

Integrating both sides with respect to , we obtain

or

We have used the substitution to find the integral on the right-hand side.
To find , we use the initial condition if , obtaining

or

Therefore,

At the maximum height, , so we have

as was to be shown.

 �
√2

0R

2tR � √2
0

 x �
2tR2

2tR � √2
0

� R �
2tR2 � 2tR2 � √2

0R

2tR � √2
0

 x � R �
2tR2

2tR � √2
0

 
2tR2

x � R
� 2tR � √2

0

 0 �
2tR2

x � R
� √2

0 � 2tR

√ � 0

√2 �
2tR2

x � R
� √2

0 � 2tR

C � √2
0 � 2tR√2

0 �
2tR2

R
� C

x � 0√ � √0C
u � x � R

 √2 �
2tR2

x � R
� C

 
1

2
 √2 �

tR2

x � R
� C

 � √ 
d√
dx

 dx � �tR2� (x � R)�2dx

x

√ 
d√
dx

� �
tR2

(x � R)2

d2x

dt 2
�

d

dt
 adx

dt
b �

d√
dt

�
d√
dx

�
dx

dt
�

d√
dx

 √

xt
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1. The figure shows the region bounded by the parabola
, the line tangent to it at the point ,

and the -axis. If the area of the region is 9 square units,
what are the values of and ?

2. Find the area of the region completely enclosed by the
parabolas and .

3. Let be the region bounded by the graph of the function 

and the positive -axis. Find the parabola
that divides into two subregions of equal area.

4. A trough has a cross section in the form of a parabola with
base ft and depth ft. What is the average depth of the
trough?

5. Let be a nonnegative, continuous function on the interval
. Suppose that the arc length of the graph of from
to is and that . Find the func-

tion .

6. A solid has a circular base of radius , and its parallel cross
sections perpendicular to its base are parabolas of height .
Find the volume of the solid.

7. Find the area of the region bounded by the graph of the
function , the -axis, and the vertical lines
passing through the inflection point and the relative mini-
mum of .f

xf(x) � x3 � 6x2

h
R

f
f(0) � 2

3b � 2
3 b

3x � bx � 0
f[0, �)

f

ha

0 0.2 0.4 0.6 0.8 1

y � cx2

R

y � x 1 � x2

0.2

0.4

0.6

0.8

1

x

y

√

Ry � cx2
xf(x) � x21 � x2

R

x � 3
4 y2 � 1x � y2

0 x

R

y

P(a, b)

ba
y

P(a, b)y � x2 � 2x � 2
8. A semicircle of radius is revolved about an axis parallel to

the straight edge of the semicircle and located at a distance
from the edge. Find the volume of the resulting solid

of revolution.

9. The region bounded by the hyperbola ,
the line , and the -axis is revolved about the
-axis. What is the volume of the resulting solid of revolu-

tion?

10. A solid ball of mass and radius rotates with an angular
velocity about an axis through its center. Calculate the
work required to stop the ball.
Hint: Calculate the kinetic energy of the ball.

11. The rate at which water evaporates from a pond is propor-
tional to its surface area. Show that the depth of the water
decreases at a constant rate and is not dependent on the
shape of the pond.
Hint: If denotes the volume of water in the pond at time and

the surface area of the pond when the water has depth , then
, where is the constant of proportionality.

12. Buffon’s Needle Problem A needle of length is dropped onto a
board that is covered with parallel lines spaced at a distance

units apart where . What is the probability that the
needle will intersect one of the lines? To solve the problem,
refer to the figure and observe that the needle intersects one
of the lines if and only if , where is the
distance from the center of the needle to the nearest line.

We can think of the set of all positions assumed by the 
needle as being associated with the rectangular region

and . The set of 
all positions assumed by the needle when it intersects 
a line can then be associated with the region

and . We
define the probability that the needle intersects a line to be
the ratio of all “favorable” outcomes to “all” outcomes. Thus,

Show that .p � 2l>(pw)

p �
area of R

area of S

p
0 � u � 2p}R � {(y, u) � 0 � y � � (l>2) cos u �

0 � u � 2p}S � {(y, u) � 0 � y � w
2

w

y

q

l__
2

y� (l>2) cos u � 
 y

w 
 lw

l

kdV>dt � �kA(x)
xA(x)
tV(t)

112 m√2 2
v

RM

x
xbx � 2ay � 0

x2>a2 � y2>b2 � 1

b 
 a

a

CHALLENGE PROBLEMS



6 The Transcendental Functions

One of the problems 
mountaineers face at very 
high altitudes is having to

breathe the rarified air caused
by lower atmospheric pressure

at those altitudes. In Section
6.3 we will learn how to calcu-

late the rate at which atmos-
pheric pressure changes with

respect to altitude. Fl
irt
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WE BEGIN THIS chapter with the definition of the natural logarithmic function in

terms of a definite integral. This approach affords a simple yet rigorous way of

establishing the properties of the function.

Next, we show that certain functions give rise to other functions that bear a

special relationship to the original function. These functions are inverses of each

other. The inverse of the natural logarithmic function is the natural exponential

function. Also, the trigonometric functions, with suitably restricted domains, give

rise to inverse trigonometric functions.

Finally, we consider certain combinations of exponential functions that arise so

frequently in applications that they are given special names: the hyperbolic functions.

The functions that we consider in this chapter are used to describe the shape of

cables hanging under their own weight, the way a culture of bacteria grows and a sam-

ple of radioactive material decays, the motion of an object through a viscous medium,

and the way money on deposit in a bank grows—just to name a few applications.

This symbol indicates that one of the following video types is available for enhanced student learning 
at www.academic.cengage.com/login:
• Chapter lecture videos • Solutions to selected exercises
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6.1 The Natural Logarithmic Function

In this section we use the Fundamental Theorem of Calculus, Part 1, to define an impor-
tant function: the natural logarithmic function. This approach affords a simple yet rig-
orous way of establishing all the properties of this function.

Recall that the Fundamental Theorem of Calculus, Part 1, states that if is a con-
tinuous function on an open interval and if is any number in , then we can define
a differentiable function by

Now consider the function defined by on the interval . (See Figure 1.)(0, �)f(t) � 1>tf

x � IF(x) � �
x

a

f(t) dt

F
IaI

f

FIGURE 1
The function 
is continuous on .(0, �)

f(t) � 1>t

The expression , read “ell-en of ,” is called the natural logarithm of because
it has all the properties of logarithmic functions, as we shall see.

Note You might recall that the power rule for integrals,

is valid only for , since would be undefined if . With then � �11>(n � 1)n � �1

�
x

a

t n dt �
t n�1

n � 1
` x
a

�
1

n � 1
 (xn�1 � an�1)

xxln x

DEFINITION The Natural Logarithmic Function

The natural logarithmic function, denoted by , is the function defined by

(1)

for all .x � 0

ln x � �
x

1
 
1

t
dt

ln

definition of the integral for the function , we now have a formula for
integrating when . Thus,

If , we can interpret as the area of the region under the graph of 
on the interval . (See Figure 2.)[1, x]

y � 1>tln xx � 1

�
x

a

t n dt � •
1

n � 1
 (xn�1 � an�1) if n � �1

ln x � ln a if n � �1, x � 0, and a � 0

n � �1f(t) � t n
f(t) � 1>t � t �1

0 t

y �

1 2

1
t

y

1

2

Since is continuous on , the Fundamental Theorem of Calculus, Part 1, guar-
antees that we can define a differentiable function on as follows.(0, �)

(0, �)f
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For we have

If , then

so can be interpreted as the negative of the area of the region under the graph of
on the interval (Figure 2b).

The Derivative of 
Recall that the Fundamental Theorem of Calculus, Part 1, states that if is continuous
on an open interval and the function is defined by

then . Applying this theorem to the function gives

(2)

Next, using the Chain Rule, we see that if is a differentiable function of , then

(3)

Laws of Logarithms
The laws for differentiating the logarithmic function can be used to prove the follow-
ing familiar laws of logarithms.

u � 0
d

dx
ln u �

1
u

 
du

dx

xu

x � 0
d

dx
ln x �

d

dx
 �

x

1
 
1

t
dt �

1
x

f(t) � 1>tF¿(x) � f(x)

a � IF(x) � �
x

a

f(t) dt

FI
f

ln x

[x, 1]y � 1>tln x

ln x � �
x

1
 
1

t
dt � ��

1

x

 
1

t
dt � 0

0 � x � 1

ln 1 � �
1

1
 
1

t
dt � 0

x � 1

FIGURE 2
interpreted in terms of arealn x

THEOREM 1 Laws of Logarithms

Let and be positive numbers and let be a rational number. Then

a. b.

c. d. ln xr � r ln xln
x

y
� ln x � ln y

ln xy � ln x � ln yln 1 � 0

ryx

0 tx x

y �

1 2 3

1
t y � 1

t

1
t1

x

y

1

(a) If x > 1, ln x � dty 1
t

1

x
(b) If 0 < x < 1, ln x � � dty

2

0 t

y �

1 2 3

1
t

y

1

2

3 3



520 Chapter 6 The Transcendental Functions

PROOF
a. Law was proved on page 519.
b. Define the function , where is a positive constant. Then, using

Equation (3), we have

But by Equation (2) we have

Therefore, and have the same derivative and, by Theorem 1 of Section
4.1, must differ by a constant; that is,

Letting in this equation and recalling that , we have

Therefore,

Since can be any positive number, we have shown that

c. Using the result of part (b) with , we have

so

Using the result of part (b) once again, we obtain

as desired.
d. Define the functions and by and , respectively.

Then using Equation (3), we have

Next, using Equation (2), we find

Therefore, and must differ by a constant; that is,

ln xr � r ln x � C

GF

G¿(x) �
r

x

F¿(x) �
1

xr � rxr�1 �
r

x

G(x) � r ln xF(x) � ln xrGF

ln
x

y
� lnax �

1
y
b � ln x � ln

1
y

� ln x � ln y

ln
1
y

� �ln y

ln
1
y

� ln y � lna1
y

� yb � ln 1 � 0

x � 1>y
ln xy � ln x � ln y

a

ln ax � ln x � ln a

ln a � ln 1 � C � C

ln 1 � 0x � 1

F(x) � ln ax � ln x � C

ln xF(x)

d

dx
ln x �

1
x

F¿(x) �
d

dx
 (ln ax) �

1
ax

 
d

dx
 (ax) �

a

ax
�

1
x

aF(x) � ln ax
a
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Letting in this equation gives

or , so

as was to be shown.

ln xr � r ln x

C � 0

ln 1 � r ln 1 � C

x � 1

EXAMPLE 1 Expand the expression:

a. b.

Solution

a. Use Theorem 1c.

Use Theorem 1d.

b.

Use Theorem 1b.

 � 3 ln x � 2 ln cos px �
1

2
ln(x2 � 1)

 � ln x3 � ln(cos px)2 � ln(x2 � 1)1>2
 ln

x3 cos2 px

2x2 � 1
� ln

x3(cos px)2

(x2 � 1)1>2

 � ln(x2 � 1) �
1

2
ln x

 ln
x2 � 1

1x
� ln

x2 � 1

x1>2 � ln(x2 � 1) � ln x1>2

ln
x3 cos2 px

2x2 � 1
ln

x2 � 1

1x

EXAMPLE 2 Write as a single logarithm.

Solution

The Graph of the Natural Logarithmic Function
To help us draw the graph of the natural logarithmic function, we first note that

has the following properties:

1. The domain of is , by definition.
2. is continuous on , since it is differentiable there.

3. is increasing on , since on .(0, �)f ¿(x) �
1
x

� 0(0, �)f

(0, �)f
(0, �)f

f(x) � ln x

ln x �
1

3
ln y � ln x � ln y1>3 � ln xy1>3 � ln x13 y

ln x �
1

3
ln y

4. The graph of is concave downward on since on .

Next, using the Trapezoidal Rule or Simpson’s Rule, we have

Then, using Theorem 1d, we obtain the following table of values.

f(2) � ln 2 � �
2

1
 
1

t
dt � 0.693

(0, �)f �(x) � �
1

x2
� 0(0, �)f

x 4 8 1
2

1
4

1
8

f(x) 1.386 2.079 �0.693 �1.386 �2.079
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Using the properties of , the sample values just obtained, and the results

and

which we will establish at the end of this section, we sketch the graph of ,
as shown in Figure 3.

The Derivatives of Logarithmic Functions
The rule for differentiating the natural logarithmic function was established earlier (see
Equations (2) and (3)). This rule holds in a more general setting, as stated in the fol-
lowing theorem.

f(x) � ln x

lim
x→�

ln x � �lim
x→0�

ln x � ��

f(x) � ln x

FIGURE 3
The graph of the natural logarithmic
function y � ln x

THEOREM 2 Derivative of the Natural Logarithmic Function

Let be a differentiable function of . Then

a. b. u � 0
d

dx
ln �u � �

1
u

�
du

dx
x � 0

d

dx
ln �x � �

1
x

xu

PROOF
a. If , then , so by Equation (2) we have

If , then , so by Equation (3) we have

b. This follows from the Chain Rule.

d

dx
ln �x � �

d

dx
ln(�x) � �

1
x

 
d

dx
 (�x) � �

1
x

 (�1) �
1
x

�x � � �x � 0x � 0

d

dx
ln �x � �

d

dx
ln x �

1
x

�x � � xx � 0

EXAMPLE 3 Find the derivative of

a. b. c.

Solution

a.

b. Use the Product Rule.

c.

If an expression contains a natural logarithm, it can be helpful to use the laws 
of logarithms to simplify the expression before differentiating, as illustrated in Exam-
ples 4 and 5.

dy

dx
�

d

dx
ln �cos x � �

1
cos x

 
d

dx
 (cos x) � �

sin x

cos x
� �tan x

 � x2a 1

2x
b (2) � (ln 2x)(2x) � x(1 � 2 ln 2x)

 t¿(x) �
d

dx
 (x2 ln 2x) � x2 

d

dx
 (ln 2x) � (ln 2x) 

d

dx
 (x2)

f ¿(x) �
d

dx
ln(2x2 � 1) �

1

2x2 � 1
 

d

dx
 (2x2 � 1) �

4x

2x2 � 1

y � ln �cos x �t(x) � x2 ln 2xf(x) � ln(2x2 � 1)

0 x

y � ln x

1 2 3 4 5

y

1
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JOHN NAPIER
(1550–1617)

John Napier is famous for his invention of
the logarithm, which was described in two
of his publications: Mirifici logarithmorum
canonis descriptio (“A Description of the
Wonderful Canon of Logarithms”), published
in 1614, and Mirifici logarithmorum canonis
constructio (“The Construction of the Won-
derful Canon of Logarithms”), published in
1619. Born in 1550 at Merchiston Castle near
Edinburgh, Scotland, Napier came from a
line of influential noblemen. At 13 years of
age he entered the University of St.
Andrews in Scotland, but he left after a
short time to study in Europe. It was during
this time that he developed a passion for
astronomy and mathematics, but he con-
sidered these pursuits a hobby, as theology
was his main interest. However, astronomy
so intrigued him that over the course of
two decades he developed logarithms to
work with the calculation of the extremely
large numbers that he needed to do
research in that area. Later, with Napier’s
consent, Henry Briggs made improvements
to Napier’s logarithms, such as using base
10. Napier and Briggs’s important work was
essential to Johannes Kepler’s (page 889)
study of planetary motion and therefore
ultimately to the work of Isaac Newton
(page 179). The work done by Napier and
Briggs also led to the standard form of the
logarithmic tables that remained in com-
mon use until the electronic age of calcula-
tors and computers.
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EXAMPLE 4 Find the derivative of .

Solution We first rewrite the given expression as

Differentiating this function, we obtain

 �
1

2
�

1

x2 � 1
 

d

dx
 (x2 � 1) �

1

2
�

1

x2 � 1
 (2x) �

x

x2 � 1

 f ¿(x) �
d

dx
 c1

2
ln(x2 � 1)d �

1

2
�

d

dx
 [ln(x2 � 1)]

f(x) � ln(x2 � 1)1>2 �
1

2
ln(x2 � 1)

f(x) � ln2x2 � 1

EXAMPLE 5 Find the rate of change of

when .

Solution The rate of change of for any value of is given by . To find ,
we first rewrite

Then, we have

from which we see that the rate of change of at is

or units per unit change in .

Logarithmic Differentiation
Having seen how the laws of logarithms can help to simplify the work involved in dif-
ferentiating logarithmic expressions, we now look at a procedure that takes advantage
of these same laws to help us differentiate functions that at first blush do not necessar-
ily involve logarithms. This method, called logarithmic differentiation, is especially
useful for differentiating functions involving products, quotients, and/or powers that
can be simplified by using logarithms.

x25
4

f ¿(1) � 2 �
12

3
�

1

4

x � 1f(x)

 �
2
x

�
12x

2x2 � 1
�

x

5 � x2

 f ¿(x) �
2
x

�
3

2x2 � 1
 

d

dx
 (2x2 � 1) �

1

2(5 � x2)
 

d

dx
 (5 � x2)

f(x) � lncx2(2x2 � 1)3

(5 � x2)1>2 d � 2 ln x � 3 ln(2x2 � 1) �
1

2
ln(5 � x2)

f ¿(x)f ¿(x)xf(x)

x � 1

f(x) � lncx2(2x2 � 1)3

25 � x2
d
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Finding by Logarithmic Differentiation

Suppose that we are given the equation . To compute :

1. Take the logarithm of both sides of the equation, and use the laws of loga-
rithms to simplify the resulting equation.

2. Differentiate implicitly with respect to .
3. Solve the equation found in Step 2 for .
4. Substitute for .y

dy>dx
x

dy>dxy � f(x)

dy>dx

Integration Involving Logarithmic Functions
By reversing the rule

we obtain the following rule of integration.

d

dx
ln �u � �

1
u

 
du

dx

EXAMPLE 6 Find the derivative of .

Solution We begin by taking the natural logarithm on both sides of the equation,
getting

or

Use the laws of logarithms.

Next, we differentiate implicitly with respect to , obtaining

Multiplying both sides of this equation by gives

Substitute for .

Here is a summary of this procedure.

 �
15(2x � 1)(2x � 1)2

2(3x � 1)3>2

y �
15(2x � 1)

2(2x � 1)(3x � 1)
�

(2x � 1)3

13x � 1

 y¿ �
15(2x � 1)

2(2x � 1)(3x � 1)
� y

y

 �
15(2x � 1)

2(2x � 1)(3x � 1)

 �
6

2x � 1
�

3

2(3x � 1)
�

6(2)(3x � 1) � 3(2x � 1)

2(2x � 1)(3x � 1)

 
1
y

 (y¿) �
3

2x � 1
 (2) �

1

2(3x � 1)
 (3)

x

 ln y � 3 ln(2x � 1) �
1

2
ln(3x � 1)

 ln y � ln
(2x � 1)3

(3x � 1)1>2

y �
(2x � 1)3

13x � 1
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THEOREM 3 The Rule for Integrating 

Let , where is differentiable, and suppose that . Then

� 1
u

du � ln �u � � C

t(x) � 0tu � t(x)

1
u

EXAMPLE 7 Find .

Solution Let , so that or . Making these substitutions,
we have

 �
1

2
ln �2x � 1 � � C

 � 1

2x � 1
dx �

1

2
 � 1

u
du �

1

2
ln �u � � C

dx � 1
2 dudu � 2 dxu � 2x � 1

� 1

2x � 1
dx

EXAMPLE 8 Find .

Solution Let , so that . Then

 �
2

3
 (ln x)3>2 � C

 � 1ln x

x
dx � �1u du � �u1>2 du �

2

3
 u3>2 � C

du �
1
x

dxu � ln x

� 1ln x

x
dx

EXAMPLE 9 Find .

Solution We first rewrite

Then we use the substitution , so that or ,
giving

Therefore,

or

We can obtain the formula for in a similar manner by observing that
.cot x � (cos x)>(sin x)

� cot x dx

ln � sec x � � C� tan x dx � �ln �cos x � � C

� sin x

cos x
dx � �� 1

u
du � �ln �u � � C

sin x dx � �dudu � �sin x dxu � cos x

� tan x dx � � sin x

cos x
dx

� tan x dx
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EXAMPLE 10 Find .

Solution Multiplying both the numerator and denominator of the integrand by
gives

Next, use the substitution

so that

This gives

We can find the formula for by using the same technique. The results of
Examples 9 and 10 are summarized in the following theorem, which completes our list
of formulas for integrating the trigonometric functions.

� csc x dx

� sec x dx � � 1
u

 du � ln �u � � C � ln � sec x � tan x � � C

du � (sec x tan x � sec2 x) dxu � sec x � tan x

� sec x dx � � sec x 
sec x � tan x

sec x � tan x
 dx � � sec2 x � sec x tan x

sec x � tan x
dx

sec x � tan x

� sec x dx

THEOREM 4 Integrals of Trigonometric Functions

a.

b.

c.

d. � csc u du � ln �csc u � cot u � � C

� sec u du � ln � sec u � tan u � � C

� cot u du � ln � sin u � � C

� tan u du � ln � sec u � � C

EXAMPLE 11 Find .

Solution Let , so that or . Making these substitutions,
we obtain

 �
1

2
ln � sec x2 � tan x2 � � C

 � x sec x2 dx �
1

2
 � sec u du �

1

2
ln � sec u � tan u � � C

x dx � 1
2 dudu � 2x dxu � x2

� x sec x2 dx

EXAMPLE 12 The Weber-Fechner Law

describes the relationship between a stimulus and the resulting response . Here,
and are positive constants; is the threshold level, the lowest level of stimulation
at which sensation is detected; and depends on the subject being tested. Compute

, and interpret your result.dR>dS
k

S0S0

kRS

R � k ln
S

S0
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Solution We have

So

This says that the rate of change of the reaction with respect to the stimulus is
inversely proportional to the stimulus, with as the constant of proportionality. Thus,
the rate of change of decreases as increases. This agrees with common experience—
one is more apt to detect the change in the volume or sound pressure level when it is
increased from 20 decibels (average whisper) to 22 decibels than when it is increased
from 70 decibels (busy street traffic) to 72 decibels. The graph of is
shown in Figure 4.

R � k ln(S>S0)

SR
k

 �
k

S

 
dR

dS
�

d

dS
 (k ln S � k ln S0)

R � k ln
S

S0
� k(ln S � ln S0) � k ln S � k ln S0

FIGURE 4
The graph illustrating the Weber-
Fechner Law

EXAMPLE 13 Drug Concentration in the Bloodstream The concentration of a certain
drug (in mg/cc) in a patient’s bloodstream hr after injection is

Determine the average concentration of the drug in the patient’s bloodstream over the
first 4 hr after the drug is injected.

Solution The average concentration of the drug over the time interval is given by

To evaluate this definite integral, we make the substitution

so that or

Observe that when , , and when , , giving
and as the lower and upper limits of integration with respect to , respec-

tively. We have

or approximately 0.071 mg/cc.

We close this section by proving the following results.

 �
1

20
 a1

2
b  �

17

1
 
1
u

du � c 1

40
ln ud17

1
�

1

40
(ln 17 � ln 1)

 A �
1

20
 �

4

0
 

t

t 2 � 1
 dt

uu � 17u � 1
u � 42 � 1 � 17t � 4u � 02 � 1 � 1t � 0

t dt �
du

2
du � 2t dtu � t 2 � 1

A �
1

4 � 0
 �

4

0
C(t) dt �

1

4
 �

4

0
 

0.2t

t 2 � 1
dt

[0, 4]

C(t) �
0.2t

t 2 � 1

t

0 S

R � k ln

S0

R

S
S0

THEOREM 5
a. b. lim

x→0�
ln x � ��lim

x→�
ln x � �
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PROOF
a. By Law (d) of logarithms (Theorem 1), we have for any positive

integer . Since , as we demonstrated earlier, we see that as
. But is an increasing function, so

as was to be shown.
b. Let . Then as . Therefore, using part (a), we have

lim
x→0�

ln x � lim
t→�

lna1

t
b � lim

t→�
(�ln t) � ��

x → 0�t → �t � 1>x
lim
x→�

ln x � �

ln xn → �
ln 2n → �ln 2 � 0n

ln 2n � n ln 2

1. Define the natural logarithmic function . What are
its domain and range?

2. State the laws of logarithms.

f(x) � ln x 3. Let and . Are and identical?
Explain.

4. Is the function odd, even, or nei-
ther odd nor even? Explain.

f(x) � ln1x �21 � x2 2
tft(x) � 2 ln xf(x) � ln x2

6.1 CONCEPT QUESTIONS

In Exercises 1–4, given that , , and
, use the laws of logarithms to approximate each

expression.

1. a. b.

2. a. b.

3. a. b.

4. a. b.

In Exercises 5–10, use the laws of logarithms to expand the
expression.

5. 6.

7. 8.

9. 10.

In Exercises 11–14, use the laws of logarithms to write the
expression as the logarithm of a single quantity.

11. 12.

13.

14.
1

2
 [2 ln(x � 1) � ln x � ln(x � 1)]

3 ln 2 �
1

2
ln(x � 1)

ln(x2 � 1) � 2 ln(x � 1)ln 4 � ln 6 � ln 12

lnC1x �cos x �(x � 1)�1>3 Dlnax � 1

x � 1
b1>3

ln1x22x2 � 1 2ln
x1>3y2>3

z1>2

ln
xy

z
ln

213

5

ln
5

9
ln

1

125

ln 7.5ln 30

lna15

2
b1>3

ln
20

13

ln
3

2
ln 6

ln 5 � 1.6094
ln 3 � 1.0986ln 2 � 0.6931 In Exercises 15–20, use the graph of as an aid to sketch

the graph of the function.

15. 16.

17. 18.

19. 20.

In Exercises 21–24, find the domain of the function.

21. 22.

23. 24.

25. a. Plot the graphs of and
using the same viewing window.

b. For what values of is ? Prove your assertion.

26. a. For what values of is if andf(x) � ln1x>(x � 1)f � tx

f � tx
t(x) � ln x(x � 1)

f(x) � ln x � ln(x � 1)

h(x) � lnax � 1

x � 1
bt(x) � ln(cos x)

t(x) � ln(�x)f(x) � ln(2x � 1)

h(x) � ln �x �t(x) � ln(x � 1)

f(x) � ln 2xy � 1 � ln x

t(x) � �ln xf(x) � 2 ln x

y � ln x

6.1 EXERCISES

Videos for selected exercises are available online at www.academic.cengage.com/login.V

?
b. Verify the result of part (a) graphically by plotting the

graphs of and .

In Exercises 27–48, differentiate the function.

27. 28.

29. 30.

31. 32.

33. 34.

35. 36. y � lnax � 1

x � 1
b2>3

t(x) �
ln x

x � 1

f(x) � ln1x �2x2 � 12y � x(ln x)2

t(t) � t ln 2tt(u) � ln
u

u � 1

y � 1ln xh(x) � ln1x

t(x) � ln(x2 � 4)2f(x) � ln(2x � 3)

tf

t(x) � 1
2 [ln x � ln(x � 1)]

www.academic.cengage.com/login
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In Exercises 71–84, find or evaluate the integral.

71. 72.

73. 74.

75. 76.

77. 78.

79. 80.

81. 82.

83. 84.

85. Find the area of the region bounded by the graphs of 

, , and .

86. The region under the graph of on the inter-
val is revolved about the -axis. Find the volume of
the resulting solid.

87. Find the length of the graph of 

on the interval .

88. Find the length of the graph of on the interval
.

89. Find the centroid of the region bounded by the graphs of
, , , and .

90. Show that .

91. Find if , where .

92. Let , where .

a. Find by finding the integral and then differentiat-
ing the result.

b. Find using the Fundamental Theorem of Calculus,
Part 1.

93. A sports sedan traveling along a straight road attains a
velocity of ft/sec after sec. How 
far does it travel in the first 20 sec?

94. Flight of a Rocket A rocket having mass kg and carrying
fuel of mass kg takes off vertically from the earth’s sur-
face. The fuel is burned at the constant rate of kg/sec, and
the gas is expelled at a constant velocity of m/sec relativeb

a
m

M

t√(t) � 1056t>(t 2 � 36)

dy>dx

dy>dx

x � 2y � �
x2

2>x
 
dt

t

x � 0y � �
x2

x

ln t dt
dy

dx

�
1>2

�1>2 x
2 ln

1 � x

1 � x
dx � 0

x � 2x � 1y � 0y � 1>x
C0, p4 D

y � ln cos x

[1, 3]

y �
1

2
 Cx2x2 � 1 � ln1x �2x2 � 1 2 D

y[0, 2]
y � 1>(x2 � 1)

x � 1y � �
1

2
 x2y �

x

x2 � 1

� (ln x)11 � ln x

x
dx� 1 � ln x

2 � x ln x
dx

� sin 2x

1 � sin2x
dx� (sec u � cos u) du

� sec2 3x

4 � tan 3x
dx� cos x

1 � sin x
dx

� 11 � ln x

x
dx� 1

x ln x
dx

�
3

1
 
ln x

x
dx� 1

x2>3(x1>3 � 1)
dx

�
3

1
 
x2 � x � 3

x
dx�

1

0
 

x2

3x3 � 1
dx

� 1

2x � 3
dx� 2

3x
dx

37. 38.

39. 40.

41. 42.

43. 44.

45. 46.

47. 48.

In Exercises 49–52, use implicit differentiation to find .

49. 50.

51. 52.

In Exercises 53 and 54, show that the function is a
solution of the given differential equation.

53. ;

54. ;

55. Find an equation of the tangent line to the graph of
at .

56. Find an equation of the tangent line to the curve
at .

In Exercises 57 and 58, find the absolute extrema of the function
on the indicated interval.

57. ;

58. ;

In Exercises 59–62, use the guidelines of Section 3.6 to sketch
the graph of the function.

59.

60.

61.

62. ,

In Exercises 63 and 64, use Newton’s method to find the roots of
the equation correct to five decimal places.

63. 64.

In Exercises 65–68, use logarithmic differentiation to find the
derivative of the function.

65. 66.

67. 68.

69. Find if . 70. Find if .y � xxx
y¿y � xxy�

y �
sin2 x

x211 � tan x
y � B3

x � 1

x2 � 1

y �
x212x � 4

(x � 1)2y � (2x � 1)2(3x2 � 4)3

ln x � x � 3 � 0x ln x � 1 � 0

�p2 � x � p
2f(x) � ln(cos x)

f(x) � ln(x2 � 1)

f(x) � x ln x � x

f(x) � x � ln x

C12, 3 Df(x) �
ln x � 1

x

C12, 2 Df(x) � x ln x � x

(1, 0)y � ln(x2 � y2) � 0

(1, 0)y � x ln x

x2y� � xy¿ � 5y � 0y � x cos(2 ln x) � 3x sin(2 ln x)

x2y� � 3xy¿ � 4y � 0y � 2x2 � 3x2 ln x

y � f(x)

ln(x � y) � cos y � x2 � 0ln
x

y
� x � y2 � 0

ln xy � y2 � 5ln y � x ln x � �1

dy>dx

t(x) � ln B
x cos x

(2x � 1)3t(t) � ln ` sin t � 1

cos t � 2
`

f(x) � sec[ln(2x � 3)]h(u) � ln � sec u �
t(u) � ln � tan 3u �f(x) � x2 ln cos x

h(t) � t sin(ln 2t)t(x) � sin(ln x)

f(x) � ln[x ln(x � 2)]f(x) � ln(x ln x)

h(t) �
ln t

ln 2t
f(x) � ln(ln x)
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to the rocket, where and . If the external force
acting on the rocket is a constant gravitational field, then the
height of the rocket seconds after liftoff is

a. Find expressions for the velocity and acceleration of the
rocket at any time after liftoff.

b. What are the velocity and acceleration of the rocket at
burnout (that is, when ).

95. Distance Traveled by a Motorboat The distance (in feet) trav-
eled by a motorboat moving in a straight line sec after the
engine of the moving boat has been cut off is given by

where is a constant and is the speed of the boat at .
a. Find expressions for the velocity and acceleration of the

boat at any time after the engine has been cut off.
b. Show that the acceleration of the boat is in the direction

opposite to that of its velocity and is directly propor-
tional to the square of its velocity.

c. Use the results of part (a) to show that the velocity of the
boat after traveling a distance of ft is given by

96. Growth of a Tumor The rate at which a tumor grows with
respect to time is given by

for , where and are positive constants and 
is the radius of the tumor.
a. Plot the graph of for the case .
b. Use the graph of part (a) to estimate the radius of the

tumor when the tumor is growing most rapidly with
respect to time.

97. Annuities At the time of retirement, Christine expects to have
a sum of $500,000 in her retirement account. Her accountant
pointed out to her that if she made withdrawals in monthly
installments amounting to dollars per year ,
assuming that the account earns interest at the rate of 5% per
year compounded continuously, then the time required to
deplete her savings would be years, where

a. Plot the graph of , using the viewing window
.

b. How much should Christine plan to withdraw from her
retirement account each year if she wants it to last for 
25 years?

c. Evaluate . Is the result expected? Explain.limx→25,000� f(x)

[25,000, 50,000] � [0, 100]
f

x � 25,000T � f(x) � 20 lna x

x � 25,000
b

T

(x � 25,000)x

A � B � 10R

xBA0 � x � B

R � Ax ln
B

x

√ � √0e
�kx

x

t

t � 0√0k

x �
1

k
ln(√0kt � 1)

t
x

t � m>a
t

0 	 t 	 m
a

x � bt �
b

a
 (M � m � at)lnaM � m � at

M � m
b �

1

2
 tt 2

t

b � 0a � 0 98. Strain on Vertebrae The strain (percentage of compression)
on the lumbar vertebral disks in an adult human as a func-
tion of the load (in kilograms) is given by

What is the rate of change of the strain with respect to the
load when the load is 100 kg? When the load is 500 kg?
Source: Benedek and Villars, Physics with Illustrative Examples
from Medicine and Biology.

99. Predator-Prey Model The relationship between the number of
rabbits and the number of foxes at any time is
given by

where , , , , and are constants. This relationship 
is based on a model by Lotka (1880–1949) and Volterra
(1860–1940) for analyzing the ecological balance between
two species of animals, one of which is a prey species and
the other of which is a predator species. Use implicit dif-
ferentiation to find the relationship between the rate of
change of the rabbit population in terms of the rate of
change of the fox population.

100. Work Done by an Expanding Gas In Example 6 in Section 5.5
we showed that the work done by an expanding gas against
a piston as its volume expands from to is given by

where is the pressure of the gas. If the pressure and vol-
ume of a gas are related by the equation , where 
is a positive constant, show that .

As the gas expands, work is done by 
the expanding gas against the piston.

101. Work Done by an Expanding Gas Refer to Exercise 100. At 
high pressure, the relationship between the volume and
pressure of gases is approximated by the van der Waals
equation:

where is the gas constant, is the number of moles, and
and are constants having different values for different

gases. (In the special case in which , we have
the ideal gas equation.) Calculate the work done by a van
der Waals gas when it undergoes isothermal expansion
( constant) from a volume of to a volume of .
Reconcile your result with that of Exercise 100 when

(that is, when expansion occurs under normal
pressure).
a � b � 0

V1V0T �

a � b � 0
ba

nR

aP �
an2

V2 b (V � nb) � nRT

P
V

gas

W � k ln(V1>V0)
kpV � k

p

W � �
V1

V0

p dV

V1V0

EDCBA

�C ln y � Dy � A ln x � Bx � E

tx(t)y(t)

f(x) � 7.2956 ln(0.0645012x0.95 � 1)

x
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102. Force Exerted by an Electric Charge An electric charge is
distributed uniformly along a line of length 2 , lying along
the -axis, as shown in the figure. A point charge lies on
the -axis, at a distance from the origin. It can be shown
that the magnitude of the total force that exerts on 
(in the direction of the -axis) is , where

, a constant

Show that

A line of charge with length 2 and total charge exerts 
an electrostatic force on the point charge .

103. Average Temperature A homogenous hollow metallic ball of
inner radius and outer radius is in thermal equilib-
rium. The temperature at a distance from the center of
the ball is given by

where is the temperature on the inner surface and is
the temperature on the outer surface. Find the average tem-
perature of the ball in a radial direction between 
and .

104. Motion of a Submersible A submersible moving in a straight
line through water is subjected to a resistance that is pro-
portional to its velocity. Suppose that the submersible trav-
els with its engine shut off. Then the time it takes for the
submersible to slow down from a velocity of to a veloc-
ity of is

where is the mass of the submersible and is a constant.
Find the time it takes the submersible to slow down from a
velocity of 16 ft/sec to 8 ft/sec if its mass is 1250 slugs
and (slug/sec).k � 20

km

T � ��
√2

√1

 
m

k√
d√

√2

√1

R

r � r2

r � r1

T2T1

r1 	 r 	 r2T � T1 �
r1r2(T2 � T1)

(r1 � r2)
 a1

r
�

1
r1
b

rT
r2r1

q
Qa

0 xx

q F

Q
a

�a

y

F �
qQ

4pe0
 

1

x2x2 � a2

e0V(x) �
1

4pe0
 
Q

2a
ln
2a2 � x2 � a

2a2 � x2 � a

F � �q dV>dxx
qQF

xx
qy

a
Q 105. Rate of a Catalytic Chemical Reaction A catalyst is a substance

that either accelerates a chemical reaction or is necessary
for the reaction to occur. Suppose that an enzyme (a 
catalyst) combines with a substrate (a reacting chemical)
to form an intermediate product , which then produces a
product and releases the enzyme. If initially there are 
moles per liter of and there is no , then on the basis of
the theory of Michaelis and Menten, the concentration of 

, , after hours is given by the equation

where the constant is the maximum possible speed of 
the reaction and the constant is called the Michaelis 
constant for the reaction. Find the rate of change of the
formation of the product in this reaction.

106. Heights of Children For children between the ages of 5 and
13 years, the Ehrenberg equation

gives the relationship between the weight (in kilograms)
and the height (in meters) of a child. Use differentials to
estimate the change in the weight of a child who grows
from 1 m to 1.1 m.

107. Use Simpson’s Rule with to find an approximation
of . Give an upper bound for the error incurred
in this approximation.
Hint: Use Equation (5) of Section 4.6.

108. Plot the graph of on the interval .
Then, using a computer or a calculator, find the approxi-
mate length of the graph.

In Exercises 109–116, determine whether the statement is true or
false. If it is true, explain why it is true. If it is false, give an
example to show why it is false.

109. for all positive numbers
.

110. for all in .

111. The domain of is .

112. If and , then .

113. The function is continuous on .

114. If , then .

115.

116. �
2

�2
 
dx

x
� ln �x � `2

�2
� ln �2 � � ln ��2 � � ln 2 � ln 2 � 0

�
3

1

dx

x � 2
� ��

1

3
 

dx

x � 2

f ¿(x) � 1
5f(x) � ln 5

(1, �)f(x) � 1>(ln x)

f(a) � f(b)0 � a � bf(x) � ln x

(��, 0) � (0, �)f(x) � ln �x �
(0, �)x(ln x)3 � 3 ln x

a � b � 0
ln a � ln b � ln(a � b)

[1, 2]y � cos(p ln x)

�2
1 ln x2 dx

n � 8

h
W

ln W � ln 2.4 � 1.84h

P

k
V

Vt � p � k lna1 �
p

x0
b

tp(t)P

PS
x0P

X
S

E
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6.2 Inverse Functions

The Inverse of a Function
Consider the position function

(1)

giving the position of a maglev at any time in its domain . The graph of is
shown in Figure 1. Equation (1) enables us to compute algebraically the position of
the maglev at any given time . Geometrically, we can find the position of the maglev
at any given time by following the path indicated in Figure 1, which associates the
given time with the desired position .f(t)t

t
t

f[0, 30]t

0 	 t 	 30s � f(t) � 4t 2

FIGURE 1
Each in the domain of is associated with the (unique) position of the maglev.s � f(t)ft

Now consider the reverse problem: Knowing the position function of the maglev,
can we find some way of obtaining the time it takes for the maglev to reach a given
position? Geometrically, this problem is easily solved: Locate the point on the 
-axis corresponding to the given position. Follow the path considered earlier but

traced in the opposite direction. This path associates the given position with the
desired time .

Algebraically, we can obtain a formula for the time it takes for the maglev to get
to the position by solving Equation (1) for in terms of . Thus,

(we reject the negative root, since lies in ). Observe that the function de-
fined by

has domain (the range of ) and range (the domain of ). The graph
of is shown in Figure 2.t

f[0, 30]f[0, 3600]

t � t(s) �
1

2
 1s

t[0, 30]t

t �
1

2
 1s

sts
t

t
s

s

0 t (sec)t

s � 4t2

10 20
Domain of f

Range of f

30

s (ft)

f(t)

1000

2000

3000

3600
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The functions and have the following properties:

1. The domain of is the range of and vice versa.
2. They satisfy the relationships

and

In other words, one undoes what the other does. This is to be expected because maps
onto and maps back onto .

The functions and are said to be inverses of each other. More generally, we have
the following definition.

tf
ts � f(t)ts � f(t)t

f

( f � t)(t) � f [t(t)] � 4[t(t)]2 � 4a1

2
 1tb2

� t

(t � f )(t) � t[ f(t)] �
1

2
 1f(t) �

1

2
 24t 2 � t

ft

tf

FIGURE 2
Each in the domain of is associated

with the (unique) time .t � t(s)
ts

DEFINITION Inverse Functions

A function is the inverse of the function if

for every in the domain of 

and

for every in the domain of 

Equivalently, is the inverse of if the following condition is satisfied:

if and only if

for every in the domain of and for every in its range.yfx

x � t(y)y � f(x)

ft

fxt[ f(x)] � x

txf [t(x)] � x

ft

Note The inverse of is normally denoted by (read “ inverse”), and we will use
this notation throughout the text.

Do not confuse with .[ f(x)]�1 �
1

f(x)
f �1(x)

ff �1f

!

0

t (sec)

s

t � g(s)

1000 2000
Domain of g

Range of g

3000 s (ft)

g(s)

10

20

30
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EXAMPLE 1 Show that the functions and are inverses of each
other.

Solution First, observe that the domain and range of both and are . There-
fore, both the composite functions and are defined. Next, we compute

and

Since for all in , and for all in , we(��, �)xt[ f(x)] � x(��, �)xf [t(x)] � x

(t � f )(x) � t[ f(x)] � [ f(x)]3 � (x1>3)3 � x

( f � t)(x) � f [t(x)] � [t(x)]1>3 � (x3)1>3 � x

t � ff � t

(��, �)tf

t(x) � x3f(x) � x1>3

FIGURE 3
The functions and 
are inverses of each other.

y � x3y � x1>3

FIGURE 4
The graph of f �1

0

y
y � x

y � x3

y � x1/3

1�1�2 2 x

1

2

�2

�1

0

y

y � x

y � f(x)

y � f �1(x)

a

(a, b)

(b, a)

b x

b

a

The Graphs of Inverse Functions

The graph of is the reflection of the graph of with respect to the line 
and vice versa.

y � xff �1

EXAMPLE 2 Sketch the graph of . Then reflect the graph of with
respect to the line to obtain the graph of .

Solution The graphs of both and are sketched in Figure 5.

Which Functions Have Inverses
Does every function have an inverse? Consider, for example, the function defined by

with domain and range . From the graph of shown in Figure 6,
you can see that each value of in the range of of is associated with exactly
two numbers in the domain of (except for ). This impliesy � 0f(��, �)x � 
1y

f[0, �)y
f[0, �)(��, �)y � x2

f

f �1f

f �1y � x
ff(x) � 1x � 1

FIGURE 5
The graph of is obtained by
reflecting the graph of with 
respect to the line .y � x

f
f �1

0

1

2

3

1 2 3 4

y

y � x

y � x � 1

y � f�1(x)

x

√

conclude that and are inverses of each other. In short, .

Interpreting Our Results

We can view as a cube root extracting machine and as a “cubing” machine. In this
light, it is easy to see that one function does undo what the other does. So and are
indeed inverses of each other.

The Graphs of Inverse Functions
The graphs of and are shown in Figure 3. They seem to sug-
gest that the graphs of inverse functions are mirror images of each other with respect
to the line . This is true in general, as we will now show.

Suppose that is any point on the graph of a function . (See Figure 4.) Then
, and we have

This shows that is on the graph of (Figure 4). Similarly, we can show that
if lies on the graph of , then must be on the graph of . But the point

, as you can see in Figure 4, is the reflection of the point with respect to
the line . We have proved the following.y � x

(a, b)(b, a)
f(a, b)f �1(b, a)

f �1(b, a)

f �1(b) � f �1[ f(a)] � a

b � f(a)
f(a, b)

y � x

f �1(x) � x3f(x) � x1>3

tf
tf

f �1(x) � x3
tf
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that does not have an inverse, since the uniqueness requirement of a function cannot
be satisfied in this case. Observe that any horizontal line , where , inter-
sects the graph of at more than one point.

Next, consider the function defined by the same rule as that of , namely, ,
but with domain restricted to . From the graph of shown in Figure 7, you can
see that each value of in the range of is mapped onto exactly one number

in the domain of . Thus, in this case we can define the inverse func-
tion of , from the range of , onto the domain of . To find the rule for t[0, �)t[0, �)t

t[0, �)x � 1y
t[0, �)y

t[0, �)
y � x2ft

f
c � 0y � c

f

FIGURE 6
Each value of is associated with two
values of .x

y

, we solve the equation for in terms of . Thus, , since , sox � 0x � 1yyxy � x2
t

�1

, or, since is a dummy variable, we can write . Also, observe
that every horizontal line intersects the graph of at no more than one point.

Our analysis of the functions and reveals the following important difference
between the two functions that enables to have an inverse but not . Observe that 
takes on the same value twice; that is, there are two values of that are mapped onto
each value of (except ). On the other hand, never takes on the same value
more than once; that is, any two values of have different images. The function is
said to be one-to-one.

tx
ty � 0y

x
fft

tf
t

t
�1(x) � 1xyt

�1(y) � 1y
0

y

y

y � x2

x
y√� y√

FIGURE 7
Each value of is associated 
with exactly one value of .x

y

DEFINITION One-to-One Function

A function with domain is one-to-one if no two numbers in have the same
image; that is,

whenever x1 � x2f(x1) � f(x2)

DDf

Geometrically, a function is one-to-one if every horizontal line intersects its graph
at no more than one point. This is called the horizontal line test.

We have the following important theorem concerning the existence of an inverse
function.

THEOREM 1 The Existence of an Inverse Function

A function has an inverse if and only if it is one-to-one.

You will be asked to prove this theorem in Exercise 59.

0

y

y

y � x2

x
y√

EXAMPLE 3 Determine whether the function has an inverse.

a. b.

Solution
a. Refer to Figure 3, page 534. Using the horizontal line test, we see that is one-

to-one on . Therefore, has an inverse on .
b. The graph of is shown in Figure 8. Observe that the horizontal line inter-

sects the graph of at three points, so does not pass the horizontal line test.
Therefore, is not one-to-one. In fact, the three points , 0, and 
are mapped onto the point 1. Therefore, by Theorem 1, does not have an
inverse.

f
13x � �13f

ff
y � 1f

(��, �)f(��, �)
f

f(x) � x3 � 3x � 1f(x) � x1>3

0

y

y � x3 � 3x � 1

y � 1

x
3

�1

3

√� 3√

FIGURE 8
is not one-to-one because it fails the

horizontal line test.
f
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Finding the Inverse of a Function
Before looking at the next example, let’s summarize the steps for finding the inverse
of a function, assuming that it exists.

Guidelines for Finding the Inverse of a Function

1. Write .
2. Solve this equation for in terms of (if possible).
3. Interchange and to obtain .y � f �1(x)yx

yx
y � f(x)

EXAMPLE 4 Find the inverse of the function defined by .

Solution The graph of shown in Figure 9 shows that is one-to-one and so 
exists. To find the rule for this inverse, write

and then solve the equation for :

Square both sides.

Take reciprocals.

and

Finally, interchanging and , we obtain

giving the rule for as

The graphs of both and are shown in Figure 9.

Continuity and Differentiability of Inverse Functions
Because of the reflective property of inverse functions, we might expect that and 
have similar properties. More specifically, we have the following theorem whose proof
is given in Appendix B.

f �1f

f �1f

f �1(x) �
3x2 � 1

2x2

f �1

y �
3x2 � 1

2x2

yx

 x �
3y2 � 1

2y2

 2x �
1

y2
� 3 �

3y2 � 1

y2

 2x � 3 �
1

y2

 y2 �
1

2x � 3

x

y �
1

12x � 3

f �1ff

f(x) �
1

12x � 3

FIGURE 9
The graphs of and . Notice that
they are reflections of each other with
respect to the line .y � x

f �1f

0 1 2 3

y y � f �1(x) � 3x2 � 1
2x2

y � f(x) � 1

y � x

x

2x � 3

3

2

1
√
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THEOREM 2 Continuity and Differentiability of Inverse Functions

Let be one-to-one, so that it has an inverse .

1. If is continuous on its domain, then is continuous on its domain.
2. If is differentiable at and , then is differentiable at .f(c)f �1f ¿(c) � 0cf

f �1f

f �1f

The next theorem shows us how to compute the derivative of an inverse function.

THEOREM 3 The Derivative of an Inverse Function

Let be differentiable on its domain and have an inverse function . Then
the derivative of is given by

(2)

provided that .f ¿[t(x)] � 0

t¿(x) �
1

f ¿[t(x)]

t

t � f �1f

PROOF By Theorem 2, is differentiable. Next, using the definition of the inverse
function, we have

Differentiating both sides of this equation with respect to using the Chain Rule, we
find

from which we see that

Note If we write , then , and we can write Equation (2) in
the form

(3)
dy

dx
�

1

dx

dy

x � f(y)y � f �1(x) � t(x)

t¿(x) �
1

f ¿[t(x)]

1 �
d

dx
 f [t(x)] � f ¿[t(x)]t¿(x)

x

x � f [t(x)]

t

EXAMPLE 5 Let for in .

a. Show that the point lies on the graph of .
b. Find , where is the inverse of .

Solution
a. Since , we conclude that the point does lie on the graph of .
b. Since , Equation (2) gives

t¿(4) �
1

f ¿[t(4)]
�

1

f ¿(2)
�

1

2x
`
x�2

�
1

2(2)
�

1

4

f ¿(x) � 2x
f(2, 4)f(2) � 4

ftt¿(4)
f(2, 4)

[0, �)xf(x) � x2
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1. a. What is a one-to-one function? Give an example.
b. Explain how the horizontal line test is used to determine

whether a curve in the plane is the graph of a one-to-one
function. Illustrate with a figure.

2. Suppose that is a one-to-one function with domain 
and range .
a. How is defined?
b. What are the domain and range of ? Illustrate with a

figure.
f �1

f �1
[c, d]

[a, b]f

3. Suppose that is a one-to-one function defined by .
a. Describe how to find the rule for . Give an example.
b. Describe the relationship between the graph of and that

of .
4. Suppose that is differentiable and has an inverse . How do

you find ?t¿
tf

f �1
f

f �1
y � f(x)f

6.2 CONCEPT QUESTIONS

In Exercises 1–6, show that and are inverses of each other by
verifying that and .

1. ;

2. ;

3. ;

4. ;

5. , where ;

, where 

6. ;

In Exercises 7–12, you are given the graph of a function .
Determine whether is one-to-one.

7. 8.

9. 10.

0

y

x0

y

x

0

y

x0

y

x

f
f

t(x) �
x � 1

x � 1
f(x) �

1 � x

1 � x

x � 0t(x) �
1

8
 (x3>2 � 8)

x � �1f(x) � 4(x � 1)2>3
t(x) � �1x � 1(x 	 0)f(x) � x2 � 1

t(x) �
x � 3

2
f(x) � 2x � 3

t(x) �
1
x

f(x) �
1
x

t(x) � 13 3xf(x) �
1

3
x3

t[ f(x)] � xf [t(x)] � x
tf 11. 12.

In Exercises 13–18, determine whether the function is one-to-
one.

13.

14.

15.

16.

17.

18.

19. Suppose that is a one-to-one function such that .
Find .

20. Suppose that is a one-to-one function such that .
Find .

In Exercises 21–26, find for the function and the real
number .

21. ;

22. ;

23. ; ;

24. , ;

25. , ;

26. , ; a � 1x � 3
4f(x) �

1

2
� Bx �

3

4

a � 00 � x � p
2f(x) � cot(2x)

a � 2�1 � x � 1f(x) � 2 � tanapx

2
b

a � 1�p2 � x � p
2f(x) �

3
p

 x � sin x

a � 2f(x) � 2x5 � 3x3 � 2

a � �1f(x) � x3 � x � 1

a
ff �1(a)

f [ f �1(7)]
f(3) � 7f

f �1(5)
f(2) � 5f

f(x) � �x � 1 � � �x �
f(x) � �x4 � 16

f(x) � x3 � x � 2

f(x) � 11 � x

f(x) � �x2 � 2x � 3

f(x) � 4x � 3

0

y

x
0

y

x

6.2 EXERCISES

Videos for selected exercises are available online at www.academic.cengage.com/login.V

www.academic.cengage.com/login
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27. The graph of is given. Sketch the graph of on the same
set of axes.

28. The graph of the inverse of a function , , is given.
Sketch the graph of on the same set of axes.

In Exercises 29–34, find the inverse of . Then sketch the graphs
of and on the same set of axes.

29. 30. ,

31. 32.

33. ,

34.

In Exercises 35–38, find the inverse of . Then use a graphing
utility to plot the graphs of and using the same viewing
window.

35.

36.

37. ,

38. ,

39. Let

Find , and state its domain.f �1(x)

f(x) � μ
2x � 1 if x � 1

1x if 1 	 x � 4

1

2
 x2 � 6 if x � 4

�1 	 x 	 1f(x) �
x

2x2 � 1

�1
2 	 x 	 1

2f(x) �
x

x2 � 1

f(x) � 1 �
1
x

f(x) � 13 x � 1

f �1f
f

f(x) � x3>5 � 1

x � 0f(x) �29 � x2

f(x) � 21x � 3f(x) � x3 � 1

x 	 0f(x) � x2f(x) � 3x � 2

f �1f
f

0

y � f �1(x)

x1

y

1

f
f �1f

x

y � f (x)

�1 1

y

1

�1

f �1f 40. a. Show that on and 

on are inverses of each
other.

b. Solve the equation .
Hint: Use the result of part (a).

41. Temperature Conversion The formula ,
where , gives the temperature (in degrees) 
on the Fahrenheit scale as a function of the temperature 
(in degrees) on the Celsius scale.
a. Find a formula for , and interpret your result.
b. What is the domain of ?

42. Motion of a Hot Air Balloon A hot air balloon rises vertically
from the ground so that its height after sec is

, where is measured in feet and .
a. Find the inverse of the function and

explain what it represents.
b. Use the result of part (a) to find the time when the 

balloon is between an altitude of 120 ft and 210 ft.

43. Aging Population The population of Americans age 55 and
over as a percent of the total population is approximated 
by the function

where is measured in years and corresponds to the
year 2000.
a. Find the rule for .
b. Evaluate , and interpret your result.
Source: U.S. Census Bureau.

44. Special Theory of Relativity Refer to Example 2, page 293.
According to the special theory of relativity, the relativistic
mass of a particle moving with speed is

where is the rest mass (the mass at zero speed) and
m/sec is the speed of light in a vacuum.

a. Find , and interpret your result.
b. What is the speed of a particle when its relativistic mass

is four times its rest mass?

45. Suppose that for in , and let be the
inverse of .
a. Compute using Equation (2).
b. Find by first computing .

46. Let , and let be the inverse of .
a. Find using Equation (2).
b. Find by first computing .t(x)t¿(x)

t¿(x)
ftf(x) � x1>3

t(x)t¿(x)
t¿(x)

f
t[0, �)xf(x) � x2

f �1
c � 2.9979 � 108

m0

m � f(√) �
m0

B1 �
√2

c2

√

f �1(25)
f �1

t � 0t

0 	 t 	 25f(t) � 10.72(0.9t � 10)0.3

f(t) � 1
2 t 2 � 1

2 t
0 	 t 	 60hh � 1

2 t 2 � 1
2 t

t

f �1
f �1

C
FC � �273.15

F � f(C) � 9
5 C � 32

�x2 � x � 1 � 1
2 �25

4 � x

1��, 54 2t(x) � 1
2 �25

4 � x

C12, � 2f(x) � �x2 � x � 1
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In Exercises 47–54, let denote the inverse of the function . 
(a) Show that the point lies on the graph of . (b) Find

.

47. ; 48. ;

49. ;

50. ; 51. ;

52. ;

53. , where ;

54. , where ;

55. Suppose that is the inverse of a function . If and
, find .

56. Suppose that is the inverse of a differentiable function t

t¿(4)f ¿(2) � 3
f(2) � 4ft

11, 12
2 2x � 0f(x) �

1

2x2 � 1

12, 15 2x � 0f(x) �
1

1 � x2

(7, 0)f(x) � 2 � 13 x � 1

(1, 8)f(x) � (x3 � 1)3(1, 2)f(x) �
x � 1

2x � 1

(0, �1)f(x) � x5 � 2x3 � x � 1

(1, 4)f(x) � x3 � x � 2(2, 5)f(x) � 2x � 1

t¿(b)
f(a, b)

ft b. Use the result of part (a) to show that if is increasing
on and the graph of is concave upward on ,
then the graph of is concave downward on .

In Exercises 61–68, determine whether the statement is true or
false. If it is true, explain why it is true. If it is false, explain why
or give an example to show why it is false.

61. If is one-to-one on , then if is a
real number.

62. If is one-to-one and differentiable on and is any
real number, then 

63. The function has an inverse on any interval
, where , not containing the origin.

64. If is defined by , then has an F¿F(x) � �
x

0
 23 1 � t 2 dtF

a � b(a, b)
f(x) � 1>x2

( f �1) ¿(a) �
1

f ¿(a)

a(��, �)f

af �1( f(a)) � a(��, �)f

(a, b)t

(a, b)f(a, b)
f

and . If , , , and
, find .

57. If , where , what is ?

58. Prove that if has an inverse, then .

59. Prove that a function has an inverse if and only if it is one-
to-one.

60. Suppose that is one-to-one and twice-differentiable on an
open interval . Let be the inverse of .
a. Show that

f ¿(t(x)) � 0t�(x) � �
f �[t(x)]

[ f ¿(t(x))]3

ft(a, b)
f

( f �1)�1 � ff

( f �1) ¿(0)x � �1f(x) � �
x

2
 

dt

21 � t 3

H¿(3)f ¿(5) � 2
f ¿(4) � 1

2t(4) � 5f(4) � 3H � t � tf

6.3 Exponential Functions

In Section 6.1 we saw that the natural logarithm function defined by is con-
tinuous and increasing on the interval . Also, from Figure 3, page 522, we can
see that is one-to-one on and, hence, has an inverse. This inverse function
is called the natural exponential function and is defined as follows.

(0, �)ln x
(0, �)

y � ln x

DEFINITION The Natural Exponential Function

The natural exponential function, denoted by , is the function satisfying
the conditions:

1. for all in .
2. for all in .

Equivalently,

if and only if ln y � xexp(x) � y

(0, �)xexp(ln x) � x
(��, �)xln(exp x) � x

exp

inverse on .

65. The inverse of a discontinuous function must be a discontin-
uous function.

66. If a function is not monotonic, then it has no inverse.

67. If , where ,
, , are nonnegative numbers , then

exists.

68. There is no function such that .f �1 � 1>ff

f �1
(a2n�1 � 0)a2n�1pa3

a1f(x) � a2n�1x
2n�1 � a2n�1x

2n�1 � p � a1x

(0, �)
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That the domain of is and its range is follows because the range
of is and its domain is . The graph of can be obtained by
reflecting the graph of about the line . (See Figure 1.)

The Number 
We begin by recalling that the natural logarithmic function is continuous and one-
to-one and that its range is . Therefore, by the Intermediate Value Theorem
there must be a unique real number such that . Let’s denote by . In
view of the definition of , the number can be defined as follows.eln

ex0ln x0 � 1x0

(��, �)
ln

e

y � xy � ln x
y � exp(x)(0, �)(��, �)ln

(0, �)(��, �)exp

FIGURE 1
The graph of is obtained by
reflecting the graph of with
respect to the line .y � x

y � ln x
y � exp(x)

DEFINITION The Number 

The number is the number such that

ln e � �
e

1
 
1

t
dt � 1

e

e

Figure 2 gives a geometric interpretation of the number . It can be shown that the
number is irrational and has the following approximation:

You can verify this using a graphing calculator. Plot the graphs of the functions 
and . Then use the function for finding the intersection of two curves to esti-
mate the -coordinate of the point of intersection.

We will look at another way of defining in the next section.

Defining the Natural Exponential Function
Using Law (d) of logarithms (Theorem 1 in Section 6.1), we see that if is a rational
number, then

Equivalently, if and only if . The equation can be used to moti-
vate the definition of for every real number .xex

ln er � rln y � rer � y

ln er � r ln e � r(1) � r

r

e
x

y2 � 1
y1 � ln x

e � 2.718281828

e
e

FIGURE 2
The area of the region under the 
graph of on is 1.[1, e]f(t) � 1>t

0 x

y � ln x

y � exp(x)

y � x

1

y

1

0 te

y �

1 2 3

1
t

1
t1

e

y

1 area � dt � 1y

2

DEFINITION
If is any real number, then

if and only if ln y � xex � y

x

ex

Now, by definition of the natural exponential function we have

if and only if

Comparing this definition with the definition of gives the following rule for defin-
ing the natural exponential function.

ex

ln y � xexp(x) � y
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DEFINITION The Natural Exponential Function

The natural exponential function, , is defined by the rule

exp(x) � ex

exp

In view of this, we have the following theorem, which gives us another way of
expressing the fact that and are inverse functions.lnexp

THEOREM 1
a. , for b. , for x � (0, �)eln x � xx � (��, �)ln ex � x

EXAMPLE 1 Solve .

Solution Taking the natural logarithm of both sides of the equation gives

Apply Theorem 1a.

Use a calculator. � 0.0694

 x �
1

3
 (2 � ln 6)

 3x � 2 � ln 6

 2 � 3x � ln 6

 ln e2�3x � ln 6

e2�3x � 6

EXAMPLE 2 Solve .

Solution By the definition of a logarithm we have

Apply Theorem 1b.

Use a calculator.

The graph of the natural exponential function was sketched earlier (Fig-
ure 1). We summarize the important properties of this function.

y � ex

 � 24.80

 x �
1

2
 (e4 � 5)

 2x � e4 � 5

 2x � 5 � e4

 eln(2x�5) � e4

ln(2x � 5) � 4

Properties of the Natural Exponential Function

1. The domain of is , and its range is .
2. The function is continuous and increasing on .
3. The graph of is concave upward on .
4. and .lim

x→�
ex � �lim

x→��
ex � 0

(��, �)f(x) � ex
(��, �)f(x) � ex

(0, �)(��, �)f(x) � ex



6.3 Exponential Functions 543

EXAMPLE 3 Find .

Solution Since both the numerator and the denominator approach infinity as approaches
infinity, the quotient rule for limits is not applicable. Dividing the numerator and denom-
inator by , we obtain

Using the fact that

we find

The Laws of Exponents
The following laws of exponents are useful when working with exponential functions.

lim
t→�

e2t � 1

e2t � 1
� lim

t→�

1 � e�2t

1 � e�2t
�

1 � 0

1 � 0
� 1

lim
t→�

e�2t � lim
t→�

1

e2t
�

1

lim
t→�

e2t
� 0

lim
t→�

e2t � 1

e2t � 1
� lim

t→�

1 � e�2t

1 � e�2t

e2t

t

lim
t→�

e2t � 1

e2t � 1

THEOREM 2 Laws of Exponents

Let and be real numbers and be a rational number. Then

a. b. c. (ex)r � erxex

ey � ex�yexey � ex�y

ryx

PROOF We will prove Law (a). The proofs of the other two laws are similar and will
be omitted. We have

Since the natural logarithmic function is one-to-one, we see that

The Derivatives of Exponential Functions
Since the inverse function of a differentiable function is itself differentiable, we see
that the natural exponential function is differentiable. In fact, as the following theorem
shows, the natural exponential function is its own derivative!

exey � ex�y

ln(exey) � ln ex � ln ey � x � y � ln ex�y

THEOREM 3 The Derivatives of Exponential Functions

Let be a differentiable function of . Then

a. b.
d

dx
eu � eu 

du

dx

d

dx
ex � ex

xu
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PROOF
a. Let , so that . Differentiating both sides of the last equation implic-

itly with respect to gives

or

b. This follows from part (a) by using the Chain Rule.

dy

dx
� y � ex1

y
 
dy

dx
� 1

x
ln y � xy � ex

EXAMPLE 4 Find the derivative of

a. b.

Solution

a.

b.

 �
e1x�1

21x � 1

 
dy

dx
�

d

dx
 e1x�1 � e1x�1 

d

dx
 (x � 1)1>2 � e1x�1a1

2
b (x � 1)�1>2 d

dx
 (x)

f ¿(x) �
d

dx
 e�x2

� e�x2
 

d

dx
 (�x2) � �2xe�x2

y � e1x�1f(x) � e�x2

EXAMPLE 5 Find the derivative of .

Solution Using the rule for differentiating the natural logarithmic function gives

 �
2(e2x � e�2x)

e2x � e�2x

 �
1

e2x � e�2x
 (2e2x � 2e�2x)

 �
1

e2x � e�2x
 

d

dx
 (e2x � e�2x)

 
dy

dx
�

d

dx
ln(e2x � e�2x)

y � ln(e2x � e�2x)

EXAMPLE 6 Use the guidelines for curve sketching (Section 3.6) to sketch the graph

of the function .

Solution First, we obtain the following information on the function .

1. The domain of is .(��, �)f

f

f(x) � e�x2

2. Setting gives 1 as the -intercept. Next, since is never zero,
there are no -intercepts.

3. Since

we see that the graph of is symmetric with respect to the -axis.yf

f(�x) � e�(�x)2 � e�x2
� f(x)

x
e�x2

� 1>ex2
yx � 0



6.3 Exponential Functions 545

4 and 5. Since

we see that is a horizontal asymptote of the graph of .

6.

Setting gives . The sign diagram of shows that is increasing
on and decreasing on . (See Figure 3.)

7. From the results of Step 6 we see that 0 is the sole critical number of . Further-
more, from the sign diagram of , we see that has a relative maximum at

with value .

8.

Use the Product Rule and the Chain Rule.

Setting gives or . The sign diagram of f �x � 
12>22x2 � 1 � 0f �(x) � 0

 � 2(2x2 � 1)e�x2

 � �2e�x2
� 2xe�x2

(�2x)

 f �(x) �
d

dx
 C�2xe�x2 D

f(0) � e0 � 1x � 0
ff ¿

f
(0, �)(��, 0)

ff ¿x � 0f ¿(x) � 0

f ¿(x) �
d

dx
 e�x2

� e�x2
 

d

dx
 (�x2) � �2xe�x2

fy � 0

lim
x→��

e�x2
� lim

x→��

1

ex2
� 0 � lim

x→�
e�x2

FIGURE 3
The sign diagram for f ¿

x0

0��������� �� ���������

9. From the results of Step 8 we see that has inflection points at .x � 
12>2f

FIGURE 4
The sign diagram for f �

FIGURE 5
The graph of y � e�x2

y � e�x2

x0
� √

2
√
2

22

y

1

x0

� � � � � � � � � � � � � ���

�

������

√
2
22√

2

shows that is concave upward on and on and concave112
2 , � 21��, �12

2 2f

THEOREM 4
Let be a differentiable function of . Then

� eu du � eu � C

xu

EXAMPLE 7 Find

a. b. � e2>x
x2

dx� e5x dx

downward on . (See Figure 4.)1�12
2 , 12

2 2

Since , we see that and are112
2 , e�1>2 21�12

2 , e�1>2 2f 1�12
2 2 � e�1>2 � f 112

2 2
inflection points of .

10. The graph of is sketched in Figure 5.

Integration of the Natural Exponential Function
Since the derivative of the natural exponential function is the function itself, the fol-
lowing theorem is immediate.

f(x) � e�x2

f
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EXAMPLE 8 Evaluate .

Solution Let , so that . If , then ; and if , then
. This gives the lower and upper limits of integration with respect to . We

have

�
1

0
 

ex

1 � ex dx � �
1�e

2
 
1
u

 du � Cln u D1�e

2
� ln(1 � e) � ln 2 � 0.620

uu � 1 � e
x � 1u � 2x � 0du � ex dxu � 1 � ex

�
1

0
 

ex

1 � ex dx

EXAMPLE 9 Find .

Solution Let , so that or . Making these substi-
tutions, we obtain

 � �ln � sec e�x � tan e�x � � C

 � e�x sec e�x dx � �� sec u du � �ln � sec u � tan u � � C

e�x dx � �dudu � �e�x dxu � e�x

� e�x sec e�x dx

EXAMPLE 10 Find the area of the region bounded by the graphs of ,
, , and .

Solution The region is shown in Figure 6. Since the graph of always lies
above the graph of on , we see that the required area is

 � e �
3

2
� 1.22

 � cex �
1

2
 x2d1

0
� ae �

1

2
b � (1 � 0)

 A � �
1

0
[ f(x) � t(x)] dx � �

1

0
(ex � x) dx

[0, 1]t(x) � x
f(x) � exR

x � 1x � 0t(x) � x
f(x) � exR

FIGURE 6
The graph of lies above that of

on .[0, 1]y � x
y � ex

Solution
a. Let , so that , or . Making these substitutions, we

obtain

b. Let , so that

or

Making these substitutions, we obtain

� e2>x
x2

 dx � �
1

2
 � eu du � �

1

2
 eu � C � �

1

2
 e2>x � C

dx

x2
� �

1

2
 dudu � �

2

x2
 dx

u � 2>x
� e5x dx �

1

5
 � eu du �

1

5
 eu � C �

1

5
 e5x � C

dx � 1
5 dudu � 5 dxu � 5x

y � x

y � ex

x

R

0

y

1

1
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EXAMPLE 11 A Spring System The equation of motion of a weight attached to a
spring and a dashpot damping device is

where , measured in feet, is the displacement from the equilibrium position of the
spring system and is measured in seconds. (See Figure 7.) Find the initial position
and the initial velocity of the weight.

t
x(t)

x(t) � e�ta�2 cos 3t �
2

3
sin 3tb

FIGURE 7
The system in equilibrium (The
positive direction is downward.)

Solution The initial position of the spring system is given by

This tells us that the spring system is 2 ft above the equilibrium position.
The velocity of the spring system at any time is given by

Use the Product Rule.

In particular, its initial velocity is

that is, it is released from rest.

√(0) �
20

3
 e0 sin 0 � 0

 �
20

3
 e�t sin 3t

 � �e�ta�2 cos 3t �
2

3
sin 3tb � e�t(6 sin 3t � 2 cos 3t)

 √(t) �
d

dt
 ce�ta�2 cos 3t �

2

3
sin 3tb d

t

x(0) � e0a�2 cos 0 �
2

3
sin 0b � �2

m
x � 0 (equilibrium position)

EXAMPLE 12 A Falling Ballast A ballast is dropped from a balloon at a height of
10,000 ft. The velocity at any time (until it reaches the ground) is given by

where the velocity is measured in feet per second and is measured in seconds.t

√(t) � 320(e�0.1t � 1)

t
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FIGURE 8
The graph of
s(t) � �320(t � 10e�0.1t) � 13,200

a. Find an expression for the height of the ballast at any time . ( is meas-
ured from the ground.)

b. What is the terminal velocity of the ballast?
c. Estimate the time it takes for the ballast to hit the ground.

Solution
a. The velocity of the ballast is

Therefore, its height at any time is

 � 320a� 1

0.1
 e�0.1t � tb � C

 s(t) � � √(t) dt � �320(e�0.1t � 1) dt

t

s¿(t) � √(t) � 320(e�0.1t � 1)

s(t)ts(t)

0 50

13000

Use integration by substitution
with .u � �0.1t

To determine , we use the initial condition , obtaining

or

Therefore,

b. The terminal velocity is given by

or ft/sec.
c. The ballast hits the ground when . Using the result of part (a), we have

(1)

This equation is not easily solved for , but we can obtain an approximation of 
by observing that if is large, then the term is relatively small in compar-
ison to . So, dropping this term, we solve the equation

getting . Therefore, the ballast hits the ground approximately 41 sec after it
has been jettisoned. The graph of is shown
in Figure 8.

Notes
1. Let’s show that the approximation obtained in part (c) of Example 12 is reason-

ably accurate by computing the position of the ballast 41 sec after it was jetti-
soned. Thus,

or 27 ft above the ground. If greater accuracy is required, one can use Newton’s
method to solve the equation . (See Exercise 81.)

2. To obtain a more accurate estimate of the time of impact of the ballast, we can
use a graphing utility to find the zero of . We find , accurate to three
decimal places.

t � 41.086f

s(t) � 0

s(41) � �320(41 � 10e�4.1) � 13,200 � 27

s(t) � �320(t � 10e�0.1t) � 13,200
t � 41

�320t � 13,200 � 0

t
10e�0.1tt

tt

�320(t � 10e�0.1t) � 13,200 � 0

s(t) � 0
�320

 � 320 lim
t→�

(e�0.1t � 1) � �320

 lim
t→�

√(t) � lim
t→�

320(e�0.1t � 1)

s(t) � �320(t � 10e�0.1t) � 13,200

C � 13,200s(0) � �3200 � C � 10,000

s(0) � 10,000C

 � �320(t � 10e�0.1t) � C
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1. Define the number . What is its approximate value?
2. Define the natural exponential function . What are

its domain and range?
3. State the laws of exponents.
4. What is the relationship between the graph of and

that of ? Sketch the graphs on the same set of
axes.

t(x) � ln x
f(x) � ex

f(x) � ex
e 5. Let and . Are and identical? Explain.

6. Is the function odd, even, or neither odd nor

even? Explain.

f(x) � x 
ex � 1

ex � 1

tft(x) � eln xf(x) � x

6.3 CONCEPT QUESTIONS

In Exercises 1–4, simplify the expression.

1. a. b.

2. a. b.

3. a. b.

4. a. b.

In Exercises 5–10, solve the equation.

5. a. b.

6. a. b.

7. a. b.

8. a. b.

9. a. b.

10. a. b.

In Exercises 11–14, show that the functions are inverses of each
other. Sketch the graphs of each pair of functions on the same
set of axes.

11. and

12. and

13. and

14. and

In Exercises 15–20, find the limit.

15. 16.

17. 18.

19. 20.

In Exercises 21–40, differentiate the function.

21. 22.

23. 24. y � x2e�2xf(t) � e1t

y � ex2�xf(x) � e�4x

lim
x→0�

e1>ln x

2 � cos(pe�x)
lim

x→(p>2)�

2etan x

2x � p

lim
x→0�

1

1 � e1>xlim
t→�
a3t 2 � 1

2t 2 � 1
be�0.1t

lim
t→��

e�t � 2e2t

e�2t � 3e2tlim
x→�

2ex � 1

3ex � 2

t(x) � 1 � ln xf(x) � ex�1

t(x) � 2 ln xf(x) � ex>2
t(x) � �ln xf(x) � e�x

t(x) � ln 1xf(x) � e2x

x1>ln x � x2 � 1 � 0ln(x �2x2 � 1) � 2

e2x � 5ex � 6 � 0
50

1 � 4e0.2x � 20

2e�0.2x � 2 � 8ln x � ln(x � 1) � ln 2

ln 1x � 1 � 12ex�2 � 5

ln x2 � 5ln(2x � 1) � 3

ln e�2x � 3eln x � 2

e2 ln x�cos xln ex2�1

eln 1xe2 ln 3

ln e1eln 1e

ln ex2
ln e3

25. 26.

27. 28.

29. 30.

31. 32.

33. 34.

35. 36.

37. 38.

39. 40.

In Exercises 41–44, use implicit differentiation to find .

41. 42.

43. 44.

In Exercises 45–48, show that the function is a solution
of the differential equation.

45. ;

46. ;

47. ;

48. ;

49. Find an equation of the tangent line to the graph of
at .

50. Find an equation of the tangent line to the curve
at .

In Exercises 51 and 52, find the absolute extrema of the function
on the indicated interval.

51. ; 52. ;

In Exercises 53–56, use the curve-sketching guidelines of
Section 3.6 to sketch the graph of the function.

53. 54.

55. 56. f(x) � ex � xf(x) �
ex � e�x

2

f(x) � xexf(x) � xe�x

[�2, 0]f(x) � e2x � ex[�1, 2]f(x) � xe�x

(1, 0)xey � 2x � y � 3

(1, e�1)y � xe�x

y� � 4y¿ � 13y � 0y � e2x(2 cos 3x � sin 3x)

y� � 2y¿ � 17y � 0y � ex(cos 4x � 2 sin 4x)

y� � 4y¿ � 4y � 0y � e�2x � 3xe�2x

4y� � 4y¿ � 3y � 0y � 2e�x>2 � 5e3x>2

y � f(x)

x ln y � e�x � yey � 0ex sec y � xy2 � 0

exy � x2 � y2 � 5xe2y � x3 � 2y � 5

dy>dx

y � ecos x2
tan(e2x � x)f(x) � (e2x � ln 3x)3>2

y � e�x tan exf(x) � x2 ln(e2x � 1)

h(x) � tan(e2x � ln x)y � (ex � ln x2)3

t(x) � ln(ex � e�x)f(x) � cos e2x

h(x) � (e2x � e�3x)5h(t) � et ln t

y � e�1>xy � ecos x

t(x) � e�2x cos 3xf(x) �2ex � e�x

h(t) �
et � e�t

et � e�tt(x) �
e2x

1 � e�x

6.3 EXERCISES

Videos for selected exercises are available online at www.academic.cengage.com/login.V

www.academic.cengage.com/login
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In Exercises 57 and 58, plot the graph of .

57.

58. ;

59. Over-100 Population On the basis of data obtained from 
the Census Bureau, the number of Americans over age 
100 years is expected to be

where is measured in millions and is measured in
decades, with corresponding to the beginning of 2000.
a. What was the population of Americans over age 

100 years at the beginning of 2000? What will it 
be at the beginning of 2030?

b. How fast was the population of Americans over age 
100 years changing at the beginning of 2000? How 
fast will it be changing at the beginning of 2030?

Source: U.S. Census Bureau.

60. World Population Growth After its fastest rate of growth ever
during the 1980s and 1990s, the rate of growth of world
population is expected to slow dramatically, in the twenty-
first century. The function

gives the projected average percent population growth/
decade in the th decade, with corresponding to the
beginning of 2000.
a. What will the projected average population growth rate

be at the beginning of 2020 ?
b. How fast will the projected average population growth

rate be changing at the beginning of 2020?
Source: U.S. Census Bureau.

61. Epidemic Growth During a flu epidemic the number of chil-
dren in the Woodhaven Community School System who
contracted influenza by the th day is given by

( corresponds to the date when data were first collected.)
a. How many students were stricken by the flu on the first

day?
b. How fast was the flu spreading on the third day ?
c. When was the flu being spread at the fastest rate?
d. How many children eventually contracted the flu?

62. Blood Alcohol Level The percentage of alcohol in a person’s
bloodstream hr after drinking 8 fluid oz of whiskey is
given by

a. What is the percentage of alcohol in a person’s blood-
stream after hr? After 8 hr?

b. How fast is the percentage of alcohol in a person’s
bloodstream changing after hr? After 8 hr?

Source: Encyclopedia Britannica.

1
2

1
2

0 � t � 12A(t) � 0.23te�0.4t

t

(t � 2)

t � 0

N(t) �
5000

1 � 99e�0.8t

t

(t � 3)

t � 1t

G(t) � 1.58e�0.213t

t � 0
tP(t)

0 � t � 4P(t) � 0.07e0.54t

x � 0f(x) � 2e�0.1x(cos 2x � sin 2x)

f(x) � x2e�2x

f 63. Polio Immunization Polio, a once-feared killer, declined
markedly in the United States in the 1950s after Jonas Salk
developed the inactivated polio vaccine and mass immuniza-
tion of children took place. The number of polio cases in the
United States from the beginning of 1959 to the beginning
of 1963 is approximated by the function

where gives the number of polio cases (in thousands)
and is measured in years with corresponding to the
beginning of 1959.
a. Show that the function is decreasing over the time

interval under consideration.
b. How fast was the number of polio cases decreasing 

at the beginning of 1959? At the beginning of 1962?
Note: Since the introduction of the oral vaccine developed by 
Dr. Albert B. Sabin in 1963, polio in the United States has, for 
all practical purposes, been eliminated.

64. Von Bertalanffy Functions The mass (in kilograms) of 
the average female African elephant at age (in years) can
be approximated by a von Bertalanffy function

a. What is the mass of a newborn female elephant?
b. If a female elephant has a mass of 1600 kg, what is her

approximate age?
c. How fast does a newborn female elephant gain weight?

A 1600 kg female elephant?
d. At what age does a female elephant gain weight at the

fastest rate?
e. Find , and interpret your result.

65. A Motorcyclist’s Turn A motorcyclist weighing 180 lb 
traveling at a constant speed of 30 mph executes a turn 
on a road described by the graph of , where

. It can be shown that the magnitude of the
normal force acting on the motorcyclist is approximately

pounds. Find the maximum force acting on the motorcyclist
as he makes the turn.

0 x

y

y � 100e0.01x

50�100�200

100

200

F �
10,890e0.1x

(1 � 100e0.2x)3>2

�200 � x � 50
y � 100e0.01x

limt→� W(t)

W(t) � 2600(1 � 0.51e�0.075t)3

t
W(t)

N

t � 0t
N(t)

0 � t � 4N(t) � 5.3e0.095t2�0.85t
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66. Length of Fish The length (in centimeters) of a typical Pacific
halibut years old is approximately

a. Plot the graph of using the viewing window
. What is the maximum length that a

typical Pacific halibut can attain?
b. Prove your assertion in part (a).

Hint: Evaluate .
c. Suppose that a Pacific halibut caught by Mike measures

140 cm. What is its approximate age?
d. What is the approximate average length of a typical

Pacific halibut between the ages of 5 and 10 years old?

67. Death Due to Strokes Before 1950, little was known about
strokes. By 1960, however, risk factors such as hypertension
had been identified. In recent years, CAT scans used as a
diagnostic tool have helped to prevent strokes. As a result,
deaths due to strokes have fallen dramatically. The function

gives the number of deaths per 100,000 people from the
beginning of 1950 to the beginning of 2010, where is
measured in decades, with corresponding to the 
beginning of 1950.
a. How many deaths due to strokes per 100,000 people

were there at the beginning of 1950?
b. How fast was the number of deaths due to strokes per

100,000 people changing at the beginning of 1950? At
the beginning of 1960? At the beginning of 1970? At the
beginning of 1980?

c. When was the decline in the number of deaths due to
strokes per 100,000 people greatest?

d. If the trend continues, how many deaths due to strokes
per 100,000 people will there be at the beginning of
2010?

Source: American Heart Association, Centers for Disease Control
and Prevention, and National Institutes of Health.

68. Absorption of Drugs A liquid carries a drug into an organ 
of volume cm3 at the rate of cm3/sec and leaves at 
the same rate. The concentration of the drug in the 
entering liquid is g/cm3. Letting denote the concen-
tration of the drug in the organ at any time , we have

, where is a positive constant that
depends on the organ.
a. Show that is an increasing function on .
b. Sketch the graph of .

69. Absorption of Drugs Refer to Exercise 68. Suppose that the
maximum concentration of the drug in the organ must not
exceed g/cm3, where . Show that the liquid must
not be allowed to enter the organ for a time longer than

minutes.

T � aV

a
blna c

c � m
b

m � cm

x
(0, �)x

ax(t) � c(1 � e�at>V)
t

x(t)c

aV

t � 0
t

0 	 t 	 6N(t) � 130.7e�0.1155t2 � 50

limt→� f(t)

[0, 20] � [0, 200]
f

f(t) � 200(1 � 0.956e�0.18t)

t
70. Bimolecular Reaction In a bimolecular reaction ,

moles per liter of and moles per liter of are com-
bined. The number of moles per liter that have reacted after
time is given by

where the positive number is called the velocity constant.
Find if (a) and (b) . Interpret your
results.

71. Bimolecular Reaction Consider the second-order bimolecular
reaction

in which one molecule of the substrate (reacting chemi-
cal) combines with one molecule of the substrate to give
one molecule of the product . Suppose that the initial con-
centration of is 4 moles/L, the initial concentration of 
is 2 moles/L, no product is present initially, and .
Then it can be shown that the concentration of the product

in moles per liter sec after the reaction begins is

a. Show that is always increasing.
b. Evaluate and interpret your result.

72. A Swinging Door The figure shows the top of a swinging door
equipped with a spring that acts to close the door and a
hydraulic mechanism that acts as a damper opposing the
movement of the door. The door is released from rest at 
an angle of radians from the equilibrium position, and 
the angle of the door sec after release is described by the
equation

a. How fast is changing half a second after the door is
released?

b. Evaluate , and interpret your result.
c. Plot the graph of and interpret your result.u

limt→� u(t)

u

q
Equilibrium position

u(t) �
4

9
 pe�t �

1

9
 pe�4t

t
p>3

limt→� p(t)
p(t)

p(t) �
4(e4t � 1)

2e4t � 1

tp(t)

k � 2P
S2S1

P
S2

S1

S1 � S2 ⎯→
k  

P

a � ba � blimt→� x
k

x �
ab[1 � e(b�a)kt]

a � be(b�a)kt

t

BbAa
A � B → M
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73. A Swinging Door Refer to Exercise 72. Suppose the angle of
the door sec after release is described by the equation

Answer the three questions posed in Exercise 72.

74. Atmospheric Pressure In the troposphere (lower part of the
atmosphere), the atmospheric pressure is related to the
height from the earth’s surface by the equation

where is the pressure at the earth’s surface, is the tem-
perature at the earth’s surface, is the molecular mass for
air, is the constant of acceleration due to gravity, is the
ideal gas constant, and is called the lapse rate of tempera-
ture.
a. Find for m (the altitude at the summit of

Mount Everest), taking kg/mol,
, m/sec2, J/mol K, and
K/m. Explain why mountaineers experience

difficulty in breathing at very high altitudes.
b. Find the rate of change of the atmospheric pressure with

respect to altitude when m.
Hint: Use logarithmic differentiation.

75. A Sliding Chain A chain of length 6 m is held on a table with
1 m of the chain hanging down from the table. Upon
release, the chain slides off the table. Assuming that there is
no friction, the edge of the chain that initially was 1 m from
the edge of the table is given by the function

where m/sec2 and is measured in seconds.
a. Find the time it takes for the chain to slide off the table.
b. What is the speed of the chain at the instant of time

when it slides off the table?

76. Increase in Juvenile Offenders The number of youths aged 15 to
19 years increased by 21% between 1994 and 2005, pushing
up the crime rate. According to the National Council on
Crime and Delinquency, the number of violent crime arrests
of juveniles under age 18 in year is given by

where is measured in thousands and in years, with
corresponding to the beginning of 1989. According to

the same source, if trends such as inner-city drug use and
wider availability of guns continues, then the number of vio-
lent crime arrests of juveniles under age 18 in year will be
given by

t(t) � e�0.438t 2 � 9.002t � 107 if 0 	 t � 4

99.456e0.07824t if 4 	 t 	 13

t

t � 0
tf(t)

0 	 t 	 13f(t) � �0.438t 2 � 9.002t � 107

t

tt � 9.8

s(t) �
1

2
 1e1t>6 t � e�1t>6 t2

y � 8882

a � 0.006
�R � 8.314t � 9.8T0 � 300 K

M � 28.8 � 10�3
y � 8882p

a

Rt

M
T0p0

lna p

p0
b �

Mt

Ra
lnaT0 � ay

T0
b

y
p

u(t) �
p

3
 e�2t(cos 12t � 12 sin 12t)

t
where is measured in thousands and corresponds
to the beginning of 1989.
a. Compute and , and interpret your results.
b. Compute and , and interpret your results.
Source: National Council on Crime and Delinquency.

77. Percent of Females in the Labor Force Based on data from the
U.S. Census Bureau, the following model giving the percent
of the total female population in the civilian labor force,

, at the beginning of the th decade ( corresponds
to the year 1900) was constructed.

a. What was the percent of the total female population in
the civilian labor force at the beginning of 2000?

b. What was the growth rate of the percentage of the total
female population in the civilian labor force at the begin-
ning of 2000?

Source: U.S. Census Bureau.

78. Income of American Families On the basis of data from the 
Census Bureau, it is estimated that the number of American
families (in millions) who earned thousand dollars in
1990 is given by the equation

a. Plot the graph of the equation in the viewing window
.

b. How fast is changing with respect to when ?
When ? Interpret your results.

Source: House Budget Committee, House Ways and Means Com-
mittee, and U.S. Census Bureau.

79. An Extinction Situation The number of saltwater crocodiles 
in a certain area of northern Australia years from now is
given by

a. How many crocodiles were in the population initially?
b. Show that .
c. Plot the graph of in the viewing window

.
Note: This phenomenon is referred to as an extinction situation.

80. Consider the equation .
a. Show that this equation has one positive root in the 

interval .
b. Use Newton’s method to compute the root accurate to

five decimal places.

81. Refer to Example 12. Use Newton’s method to solve the
equation

accurate to five decimal places.

320(t � 10e�0.1t) � 13,200 � 0

(0, 1)

xex � 2

[0, 200] � [0, 70]
P

limt→� P(t) � 0

P(t) �
300e�0.024t

5e�0.024t � 1

t

x � 50
x � 10xy

[0, 150] � [0, 2]

x � 0y � 0.1584xe�0.0000016x3�0.00011x2�0.04491x

xy

0 	 t 	 11P(t) �
74

1 � 2.6e�0.166t�0.04536t2�0.0066t3

t � 0tP(t)

t¿(11)f ¿(11)
t(11)f(11)

t � 0t(t)



In Exercises 82–99, find or evaluate the integral (accurate to five
decimal places).

82. 83.

84. 85.

86. 87.

88. 89.

90. 91.

92. 93.

94. 95.

96. 97.

98. 99.

100. Evaluate .

101. Evaluate .

102. Find the area of the region under the graph of on
.

103. Let .

a. Plot the graph of using the viewing window
.

b. Find the area of the region under the graph of over the
interval .

c. Verify your answer to part (b) using a calculator or a
computer.

104. Find the area of the region bounded by the graphs of
, , , and .

105. The region bounded by the graphs of , , ,
and is revolved about the -axis. Find the volume of
the resulting solid.

106. The region bounded by the graphs of , ,
, and is revolved about the -axis. Find the

volume of the resulting solid.

107. Find the arc length of the graph of on
.[0, ln 2]

y � 1
2(ex � e�x)

yx � 1x � 0
y � 0y � e�x2

xx � 1
x � 0y � 0y � ex

x � 1x � �1y � �ex � 1y � x2 � 2x � 1

[0, ln 3]
f

[�5, 5] � [�1, 1]
f

f(x) �
ex � 1

ex � 1

[�1, 2]
y � e�x>2

�
e

1
 
ln x

x
 e(ln x)2 dx

�
1

0
xex2

eex2
 dx

�
p>4

0

etan x

cos2 x
dx� esin x cos x dx

� ex ln(ex � 1)

ex � 1
dx� ex sin ex dx

� e1x

1x
 dx�

0

�1

1

1 � e�2x dx

� (ex � 1)2

e�x dx� e�1>x
x2  dx

� ex � e�x

ex � e�x dx� e�x

1 � e�x dx

�21 � 2exex dx� (ex � e�x)2 dx

�
1

0
xe�x2>2 dx� (x2 � 1

3)ex3�x dx

� xe�x2
 dx� (et � t e) dt

�
0

�1
e�x dx� e�3x dx

108. Find the arc length of the graph of 

on .

109. Find the area of the surface formed by revolving the graph
of on about the -axis.

110. Newton’s Law of Cooling A bottle of white wine at room tem-
perature (68°F) is placed in a refrigerator at 4 P.M. Its tem-
perature after hr is changing at the rate of °F/hr.
By how many degrees will the temperature of the wine
have dropped by 7 P.M.? What will the temperature of the
wine be at 7 P.M.?

111. Depreciation: Double Declining Balance Method Suppose that a
tractor purchased at a price of $60,000 is to be depreciated
by the double declining balance method over a 10-year
period. It can be shown that the rate at which the book
value will be decreasing is given by

dollars per year at year . Find the amount by which the
book value of the tractor will depreciate over the first 5
years of its life.

112. Canadian Oil-Sands Production The production of oil (in mil-
lions of barrels per day) extracted from oil sands in Canada
is projected to be

where is measured in years, with corresponding to
the beginning of 2005. What will the total oil production of
oil from oil sands be over the years from the beginning of
2005 until the beginning of 2020 ?
Source: Canadian Association of Petroleum Producers.

113. Lengths of Infants Medical records of infants delivered at
Kaiser Memorial Hospital show that the percentage of
infants whose length at birth is between 19 and 21 in. is
given by

Use a calculator or computer to estimate .

114. Absorption of Drugs The concentration of a drug in an organ
at any time , in seconds) is given by

where is measured in grams per cubic centimeter
(g/cm3). Find the average concentration of the drug in the
organ over the first 30 sec after it is administered.

C(t)

C(t) � e0.3t � 18(1 � e�t>60) if 0 	 t 	 20

18e�t>60 � 12e�(t�20)>60 if t � 20

t

P

P � 100�
21

19

1

2.612p
 e�(1>2)[(x�20)>2.6]2 dx

(t � 15)

t � 0t

0 	 t 	 15P(t) �
4.76

1 � 4.11e�0.22t

t

0 	 t 	 10R(t) � 13,388.61e�0.22314t

�18e�0.6tt

x[0, ln 2]y � 1
2(ex � e�x)

[0, a)

y � 2a ln 
1a � 1x

1a � 1x
� 41ax
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115. Serum Cholesterol Levels The percentage of a current
Mediterranean population with serum cholesterol levels
between 160 and 180 mg/dL is estimated to be

Estimate .

116. Find if .

117. Use a computer algebra system (CAS) to find the relative 

extrema of .

118. Worldwide PC Shipments The number of worldwide PC ship-
ments (in millions of units) from 2005 through 2009,
according to data from the International Data Corporation,
are given in the following table.

F(x) � �
x

1
(t 2 � 1)e�t2 dt

�
y

0
et dt � �

x

0
cos t dt � 0

dy

dx

P

P � B
2
p

 �
180

160
e�(1>2)[(x�160)>50]2 dx

cas

Year 2005 2006 2007 2008 2009

PCs 207.1 226.2 252.9 283.3 302.4

Hour 0 3 6 9 12 15

Inches 0.1 0.4 3.6 6.5 9.1 14.4

Hour 18 21 24 27 30 33

Inches 19.5 22 23.6 24.8 26.6 27

By using the logistic curve-fitting capability of a graphing
calculator, it can be verified that a regression model for
this data is given by

where is measured in years and corresponds to 2005.
a. Plot the scatter diagram and the graph of the function 

found in part (a), using the viewing window
.

b. How fast were the worldwide PC shipments increasing
in 2006? In 2008?

Source: International Data Corporation.

119. Snowfall Accumulation The snowfall accumulation at Logan
Airport hr after a 33-hr snowstorm in Boston in 1995 is
given in the following table.

t

[0, 4] � [200, 300]

f
t � 0t

f(t) �
544.65

1 � 1.65e�0.1846t

6.4 General Exponential and Logarithmic Functions

Exponential Functions with Base 
The natural exponential function defined by has base . We will now con-
sider exponential functions that have bases other than . To define these functions,
recall that

for every Theorem 1 in Section 6.3

and

Theorem 2 in Section 6.3(e p)r � e pr

x � 0eln x � x

e
ef(x) � ex

a

By using the logistic curve-fitting capability of a graphing
calculator, it can be verified that a regression model for
this data is given by

where is measured in hours, corresponds to noon of
February 6, and is measured in inches.
a. Plot the scatter diagram and the graph of the function 

using the viewing window .
b. How fast was the snowfall accumulating at midnight on

February 6? At noon on February 7?
c. At what time during the storm was the snowfall accu-

mulating at the greatest rate? What was the rate of
accumulation?

Source: The Boston Globe.

In Exercises 120–125, determine whether the statement is true or
false. If it is true, explain why it is true. If it is false, give an
example to show why it is false.

120. The inverse of is .

121. is not defined at .

122. on 123.

124. 125. � eln x dx �
1

2
 xeln x � C�

2

1
 
e�x

x
 dx � 0

d

dx
 ex � xex�1(0, �)e3 ln x � x3

x � 0f(x) �
cos x

ex

f �1(x) � 2 ln xf(x) � ex>2

[0, 36] � [0, 30]
f

f(t)
t � 0t

f(t) �
26.71

1 � 31.74e�0.24t



where is a real number and is a rational number. Using these relationships, we see
that if is a positive real number, then

This equation suggests the following definition.

ar � (eln a)r � er ln a

a
rp
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DEFINITION Exponential Functions with Base 

Let be a positive real number with . The exponential function with base
is the function defined by

for every real number .x

f(x) � ax � ex ln a

fa
a � 1a

a

EXAMPLE 1 Evaluate the expression accurate to five decimal places.

a. b.

Solution
a. By definition, .
b.

Note As a consequence of this definition, we can show that the fourth law of loga-
rithms,

that we have already proved for rational numbers (Theorem 1d in Section 6.1), holds
true for all real exponents. By the definition of and Theorem 1a of Section 6.3, we
see that if is any real number, then

The following theorem states that exponential functions with base have the usual
laws of exponents.

a

ln ay � ln ey ln a � y ln a

y
ax

r

ln xr � r ln x

2p � ep ln 2 � 8.82498
312 � e12 ln 3 � 4.72880

2p312

THEOREM 1 Laws of Exponents

Let and be positive numbers. If and are real numbers, then

a. b. c.

d. e. aa

b
bx

�
ax

bx

ax

ay � ax�y

(ab)x � axbx(ax)y � axyaxay � ax�y

yxba

PROOF We will prove the first law and leave the proofs of the other laws as exer-
cises. We have

By definition

By Theorem 2a in Section 6.3

By definition � ax�y

 � e(x�y)ln a

 � ex ln a�y ln a

 axay � ex ln aey ln a
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THEOREM 2 Derivatives of and 

Let be a positive number with , and let be a differentiable function 
of . Then

a. b.
d

dx
 au � (ln a)au 

du

dx

d

dx
 ax � (ln a)ax

x
ua � 1a

auax

PROOF To prove Theorem 2a, we use the definition of and Theorem 3b of Sec-
tion 6.3 to obtain

Theorem 2b follows from the Chain Rule.

Note These rules differ from the rules for differentiating the natural exponential func-
tion and the function by the constant factor ln . If , then
these rules are identical, as we might expect. This observation also suggests why, when-
ever possible, we prefer to use the base when working with exponential functions.e

a � eat(x) � euf(x) � ex

d

dx
 ax �

d

dx
 ex ln a � ex ln a 

d

dx
 (x ln a) � ex ln a(ln a) � (ln a)ax

ax

EXAMPLE 2 Find the derivative of

a. b. c.

Solution

a.

b.

c.

Graphs of 
If , then , and therefore,

This shows that the graph of is rising on . If , then ,
and

d

dx
 (ax) � ax ln a � 0

ln a � 00 � a � 1(��, �)y � ax

d

dx
 (ax) � ax ln a � 0

ln a � 0a � 1

y � ax

 � �2(ln 10)(sin 2x)10cos 2x

 
dy

dx
�

d

dx
 10cos 2x � (ln 10)10cos 2x 

d

dx
cos 2x � (ln 10)10cos 2x(�sin 2x) 

d

dx
 (2x)

t¿(x) �
d

dx
 31x � (ln 3)31x 

d

dx
 x1>2 � (ln 3)31x a1

2
 x�1>2b �

(ln 3)31x

21x

f ¿(x) �
d

dx
 2x � (ln 2)2x

y � 10cos 2x
t(x) � 31xf(x) � 2x

The Derivatives of and 
The following theorem tells us how to differentiate exponential functions that have
bases other than .e

auax
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FIGURE 1
The graph of is 

rising on if 
and falling if .0 � a � 1

a � 1(��, �)
y � ax

EXAMPLE 3 Sketch the graphs of (a) and (b) .

Solution
a. The graph of is shown in Figure 2.y � 2x

y � 2�xy � 2x

FIGURE 2
The graph of 

is rising on .(��, �)
y � 2x

x y

0

1

2

3

�1

�2

1

2

4

8

1
2

1
4

This implies that if , the graph of is falling on . The gen-
eral shape of the graphs of are shown in Figure 1.y � ax

(��, �)y � ax0 � a � 1

0

(a) a > 1

y

y � ax

x

1

0

(b) 0 < a < 1

y

y � ax

x

1

0

y

y � 2x

x

2

�1 1 2 3�2

4

6

8

b. Observe that

and its graph is falling as shown in Figure 3.

y � 2�x �
1

2x � a1

2
bx

FIGURE 3
The graph of 
is falling on .(��, �)

y � 2�x

x y

0

1

2

3

�1

�2 4

2

1

1
8

1
4

1
2

0

y

y � 2�x

x

2

�1 1 2 3�2

4

6

8

Be careful to distinguish between a power function that has the form

in which the exponent (power) is a constant, and the function

, a � 1a � 0h(x) � af(x)

t(x) � [ f(x)]n
!
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EXAMPLE 4 Find the derivative of .

Solution Let . Taking the natural logarithm on both sides, we obtain

Differentiating both sides of this equation with respect to , we obtain

Use the Product Rule.

Therefore, upon multiplying both sides by , we obtain

Alternative Solution

So

Integrating 
The formula for integrating an exponential function with base follows from revers-
ing the differentiation formula in Theorem 2.

a

ax

 � (1 � ln x)ex ln x

 y¿ �
d

dx
 (ex ln x) � (ex ln x) 

d

dx
 (x ln x) � ex ln xcln x � xa1

x
b d

y � xx � ex ln x

y¿ � (1 � ln x)y � (1 � ln x)xx

y

y¿
y

�
d

dx
 (x ln x) � x 

d

dx
 (ln x) � (ln x) 

d

dx
 (x)

x

ln y � ln xx � x ln x

y � xx

f(x) � xx

EXAMPLE 5 Evaluate .

Solution

�
3

0
2x dx �

2x

ln 2
`3
0

�
23

ln 2
�

20

ln 2
�

7

ln 2
� 10.1

�
3

0
2x dx

in which the base is a constant. The power function is differentiated by using the
Power Rule. On the other hand, the derivative of the exponential function is found
by using the rule for differentiating such functions (Theorem 2).

The function

in which both the base and the exponent are functions of , is differentiated by using
logarithmic differentiation, as illustrated in the next example.

x

t(x)F(x) � [ f(x)]

The Integral of 

and (1)a � 1a � 0�ax dx �
ax

ln a
� C

ax
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DEFINITION Logarithmic Function with Base 

The logarithmic function with base , denoted by , is the function satis-
fying the relationship

if and only if x � ayy � loga x

logaa

a

Observe that if , then this definition reduces to the relationship between the
natural logarithmic function and the natural exponential function .

To find an expression for in terms of , consider or, equiva-
lently, . Taking the natural logarithm of both sides of the last equation yields

Thus, we have the following formula for expressing a logarithm with any base in terms
of the natural logarithm.

 y �
ln x

ln a

 ln x � ln ay � y ln a

x � ay
y � loga xln xloga x

expln
a � e

Change of Base Formula

and (2)a � 1a � 0loga x �
ln x

ln a

EXAMPLE 6 Evaluate the expression accurate to five decimal places.

a. b.

Solution
a. Using Equation (2), we find

b.

The Power Rule (General Form)
Now that we have defined numbers with powers that are real numbers, we can prove
the general version of the Power Rule.

logp 5 �
ln 5

ln p
� 1.40595

log4 7 �
ln 7

ln 4
� 1.40368

logp 5log4 7

Logarithmic Functions with Base 
If is a positive real number with , then the function defined by is
one-to-one on , and its range is . Therefore, it has an inverse on .
This function is called the logarithmic function with base and is denoted by .logaa

(0, �)(0, �)(��, �)
f(x) � axfa � 1a

a
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PROOF Let and consider the equation

Taking the natural logarithm on both sides of the equation, we obtain

which, upon differentiation with respect to , yields

or

y¿ �
ny

x
�

nxn

x
� nxn�1

y¿
y

�
n

x

x

ln �y � � n ln �x �

x � 0�y � � �xn � � �x �n
y � xn

EXAMPLE 7 Find the derivative of .

Solution Using the General Power Rule and the Chain Rule, we have

The Derivatives of Logarithmic Functions with Base 
The rules for differentiating logarithmic functions with base follow immediately from
the rules for differentiating the natural logarithmic function and the Chain Rule.

a

a

f ¿(x) � 12(x � cos x)12�1(1 � sin x)

f(x) � (x � cos x)12

THEOREM 4 Derivatives of the Logarithmic Function with Base 

Let be a differentiable function of . Then

a.

b. u � 0
d

dx
loga �u � �

1

u ln a
�

du

dx

x � 0
d

dx
loga �x � �

1

x ln a

xu

a

EXAMPLE 8 Find the derivative of (a) and (b) .

Solution

a. f ¿(x) �
d

dx
log3 x �

1

x ln 3

y � log2 � tan x �f(x) � log3 x

THEOREM 3 The Power Rule (General Form)

If is a real number, then

d

dx
 (xn) � nxn�1

n
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EXAMPLE 9 Find the derivative of .

Solution We use the Product Rule, obtaining

The Definition of the Number as a Limit
If we use the definition of the derivative as a limit to compute , where ,
we obtain

Use the continuity of .

But

so

or

(3)lim
h→0

(1 � h)1>h � e

lnClimh→0
(1 � h)1>hD � 1

f ¿(1) � c d

dx
ln xd

x�1
� c1

x
d

x�1
� 1

ln � lnClimh→0
(1 � h)1>hD

 � lim
h→0

ln(1 � h)1>h

ln 1 � 0 � lim
h→0

ln(1 � h) � ln 1

h
� lim

h→0

ln(1 � h)

h

 f ¿(1) � lim
h→0

f(1 � h) � f(1)

h

f(x) � ln xf ¿(1)

e

 � 2x log(e2x � 1) �
2x2e2x

(e2x � 1)ln 10

 � 2x log(e2x � 1) �
x2

(e2x � 1)ln 10
�

d

dx
 (e2x � 1)

 � c d

dx
 (x2)d log(e2x � 1) � x2 

d

dx
log(e2x � 1)

 f ¿(x) �
d

dx
 [x2 log(e2x � 1)]

f(x) � x2 log(e2x � 1)

b.

Logarithms with base 10 are called common logarithms and are written rather
than .log10

log

 �
csc x sec x

ln 2

 �
1

(ln 2)tan x
� sec2 x �

cos x

(ln 2)sin x
�

1

cos2 x

 
dy

dx
�

d

dx
log2 � tan x � �

1

(ln 2)tan x
�

d

dx
tan x
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Equation (3) is sometimes used to define the number . Table 1 gives the values of
for small values of . To six decimal places, . If we let n � 1>he � 2.718282h(1 � h)1>h e

TABLE 1

h (1 � h)1>h h (1 � h)1>h

0.1

0.01

0.001

0.0001

0.00001

0.000001

0.0000001

2.5937425

2.7048138

2.7169239

2.7181459

2.7182682

2.7182805

2.7182817 �0.0000001

�0.000001

�0.00001

�0.0001

�0.001

�0.01

�0.1 2.8679720

2.7319990

2.7196422

2.7184178

2.7182954

2.7182832

2.7182820

Compound Interest
An important application of exponential functions is found in computations involving
interest—charges on borrowed money.

Simple interest is interest that is computed on the original principal only. Thus, if
denotes the interest on a principal (in dollars) at an interest rate of per year for 

years, then

The accumulated amount , the sum of the principal and interest after years, is given
by

(5)

and is a linear function of .
In contrast to simple interest, earned interest that is periodically added to the prin-

cipal and thereafter itself earns interest at the same rate is called compound interest.
To find a formula for the accumulated amount, suppose that dollars (the principal)
is deposited in a bank for a term of years, earning interest at the rate of per year
(called the nominal or stated rate) compounded annually. Then, using Equation (5),
we see that the accumulated amount at the end of the first year is

To find the accumulated amount at the end of the second year, we use Equation (5)
again, this time with , since the principal and interest now earn interest over
the second year. We obtain

Continuing, we see that the accumulated amount after years is

(6)A � P(1 � r)t

tA

A2 � A1(1 � rt) � P(1 � rt)(1 � rt) � P(1 � rt)2

P � A1

A2

A1 � P(1 � rt)

rt
P

t

 � P(1 � rt)

 A � P � I � P � Prt

tA

I � Prt

trPI

in Equation (3), then as , and this gives the following equivalent defi-
nition of :

(4)lim
n→�
a1 �

1
n
bn

� e

e
h → 0�n → �
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Equation (6) was derived under the assumption that interest was compounded annu-
ally. In practice, however, interest is usually compounded more than once a year. The
interval of time between successive interest calculations is called the conversion period.

If interest at a nominal rate of per year is compounded times a year on a prin-
cipal of dollars, then the simple interest rate per conversion period is

For example, if the nominal rate is 8% per year and interest is compounded
quarterly , then

or 2% per period.
To find a general formula for the accumulated amount when a principal of dol-

lars is deposited in a bank for a term of years and earns interest at the (nominal) rate
of per year compounded times per year, we proceed as before, using Equation (6)
repeatedly with the interest rate . We see that the accumulated amount at the
end of each period is as follows:

First period:

Second period:

th period:

But there are periods in years (number of conversion periods times the term).
Therefore, the accumulated amount at the end of years is given by

(7)A � Pa1 �
r

m
bmt

t
tn � mt

An � An�1(1 � i) � [P(1 � i)n�1](1 � i) � P(1 � i)nn

oo

A2 � A1(1 � i) � [P(1 � i)](1 � i) � P(1 � i)2

A1 � P(1 � i)

i � r>mmr
t

P

i �
r

m
�

0.08

4
� 0.02

(m � 4)
(r � 0.08)

annual interest rate

number of periods per year
i �

r

m

P
mr

EXAMPLE 10 Find the accumulated amount after 3 years if $1000 is invested at 8%
per year compounded annually, semiannually, quarterly, monthly, and daily. (Assume
that there are 365 days in a year.)

Solution We use Equation (7) with , , and , 2, 4, 12, and
365 in succession to obtain the results summarized in Table 2.

m � 1r � 0.08P � 1000

TABLE 2 The accumulated
amount after 3 years when
interest is converted times/yearm

A

m (dollars)A

1

2

4

12

365

1259.71

1265.32

1268.24

1270.24

1271.22
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The results of Example 10 suggest that as interest is converted more and more fre-
quently, the accumulated amount over a fixed term seems to increase but ever so slowly.
This raises the question: Does the accumulated amount grow without bound, or does
it approach a limit as interest is computed more and more frequently?

To answer this question, we let approach infinity in Equation (7), obtaining

If we make the substitution and observe that as , then

But the limit in this expression is equal to the number (see Equation (4)). Therefore,

(8)

Equation (8) gives the accumulated amount of dollars over a term of years and
earning interest at the rate of per year compounded continuously.r

tP

A � Pert

e

 � Pc lim
u→�
a1 �

1
u
budrt

 A � lim
u→�

Pc a1 �
1
u
burd t � lim

u→�
Pc a1 �

1
u
budrt

m → �u → �u � m>r
 � lim

m→�
Pc a1 �

r

m
bmd t

 A � lim
m→�

Pa1 �
r

m
bmt

m

EXAMPLE 11 Find the accumulated amount after 3 years if $1000 is invested at 8%
per year compounded continuously.

Solution We use Equation (8) with , , and , obtaining

or $1271.25.

Observe that the accumulated amount corresponding to interest compounded daily
(see Example 10) and interest compounded continuously differ by very little, and it is
easier to find the accumulated amount by using Equation (8).

A � 1000e(0.08)(3) � 1271.25

t � 3r � 0.08P � 1000

1. a. Define the exponential function , where 
and . What are its domain and range?

b. Make a rough sketch of the graph of for the
case in which and for the case in which

. Describe the graph of when .
2. a. Define the logarithmic function , where

and . What are its domain and range?
b. Make a rough sketch of the graph of for

the case in which and the case in which
.a � 1

0 � a � 1
f(x) � loga x

a � 1a � 0
f(x) � loga(x)

a � 1fa � 1
0 � a � 1

f(x) � ax
a � 1

a � 0f(x) � ax 3. Make a rough sketch of the graphs of and
for on the same set of axes.a � 1t(x) � loga x

f(x) � ax

6.4 CONCEPT QUESTIONS

4. Let and . Are and identical?
Explain.

5. Is the function , where , odd, even, or

neither odd nor even? Explain.

k � 0f(x) �
1 � a�kx

1 � a�kx

tft(x) � 10log xf(x) � x
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In Exercises 1–4, write the expression as an exponent with base .

1. 2.

3. 4.

In Exercises 5–8, evaluate the expression.

5. 6.

7. 8.

In Exercises 9 and 10, write the exponential equation as an
equation using logarithms.

9. a. b.

10. a. b.

In Exercises 11 and 12, write the logarithmic equation as an
equation using exponents.

11. a. b.

12. a. b.

13. Plot the graphs of for (a) , (b) ,
(c) , (d) , and (e) using the same 
viewing window. What happens to the graph of 
as increases?

14. Plot the graphs of for (a) , (b) , (c) ,
and (d) using the same viewing window. What hap-
pens to the graph of as decreases?

In Exercises 15–18, sketch the graph of the function by reflecting
the graph of an appropriate (exponential) function with respect
to the line .

15. 16.

17. 18.

19. Use Equation (2) to evaluate (accurate to three decimal
places)
a. b. c.

20. Find the domain of

a. b.

In Exercises 21–36 differentiate the function.

21. 22.

23. 24. f(u) � 2u2

y � x(53x)

h(t) � 4t�1f(x) � 3x

f(x) � log
x2 � 3x � 4

x2 � 2x � 4
f(x) �

1

log(1 � x)

log12 plog2 8log3 6

y � log xy � log1>2 x

f(x) � log3 xf(x) � log2 x

y � x

by � bx
b � 1

5

b � 1
4b � 1

3b � 1
2y � bx

b
y � bx

b � 4b � 3b � e
b � 2b � 1.5y � bx

log 0.01 � �2log49 7 �
1

2

log1>3 9 � �2log
1

1000
� �3

16�3>4 �
1

8
82>3 � 4

5�3 �
1

125
34 � 81

log3 3plog125 25

log3
1

81
log10 100

x cos x2tan x

31x213

e 25. 26.

27. 28.

29. 30.

31. 32.

33.

34.

35.

36.

In Exercises 37–42, use logarithmic differentiation to find the
derivative of the function.

37. 38.

39. 40.

41. 42.

In Exercises 43–50, find or evaluate the integral.

43. 44.

45. 46.

47. 48.

49. 50.

51. Intensity of an Earthquake The magnitude of an earthquake on
the Richter scale is given by

where is the intensity of the earthquake being measured
and is the standard reference intensity.
a. Express the intensity of an earthquake of magnitude

in terms of the standard intensity .
b. Express the intensity of an earthquake of magnitude

in terms of the standard intensity . How does the
intensity of an earthquake of magnitude 8 compare with
the intensity of an earthquake of magnitude 5?

c. The greatest loss of life attributable to an earthquake in
modern times occurred in eastern China in 1976. Known
as the Tangshan earthquake, it registered 8.2 on the
Richter scale. How does the intensity of this earthquake
compare with the intensity of the 1989 earthquake in San
Francisco which had a magnitude of 6.9?

I0R � 8
I

I0R � 5
I

I0

I

R � log
I

I0

� 1log x

x
dx� 3x

1 � 3x dx

�
4

1
 
31x

1x
dx�2x sin 2x dx

�
1

0
(3t � t 3) dt� (x � 1)3x2�2x dx

�2�x dx�
1

0
3x dx

y � sin x tan xy � (1cos x)x

y � (x2 � x)1xy � (x � 2)1>x
y � xx2

y � 3x

y � x2 log22x2 � 1

f(t) � log2t 2 � 1

h(x) � log3 �2x � 1 �
f(x) � log2(x2 � x � 1)

t(x) �
2x

23x � 1
y � 2cot x

h(x) � 2tan xf(x) �
23x

x

t(x) � xeexf(x) � xe � ex

h(x) � (2x � 3�x)6f(√) � (cos √)(71>√)

6.4 EXERCISES

Videos for selected exercises are available online at www.academic.cengage.com/login.V

www.academic.cengage.com/login


566 Chapter 6 The Transcendental Functions

52. Radioactivity The radioactive element polonium decays
according to the law

where is the initial amount and is measured in days.
a. If the amount of polonium left after 280 days is 20 mg,

what was the initial amount present?
b. How fast is the amount of polonium changing at any

time ?

53. Halley’s Law Halley’s Law states that the barometric pressure
(in inches of mercury) at an altitude of miles above sea
level is approximated by

a. If a hot-air balloonist measures the barometric pressure
as 20 in. of mercury, what is the balloonist’s altitude?

b. If the barometric pressure is decreasing at the rate of 
1 in./hr at that altitude, how fast is the balloon rising?

54. Chemical Mixtures Two chemicals react to form another chem-
ical. Suppose that the amount of the chemical formed in
time (in hours) is given by

where is measured in pounds.
a. Plot the graph of using the viewing window

.
b. Find the rate at which the chemical is formed when

.
c. How many pounds of the chemical are formed eventually?

55. Forensic Science Forensic scientists use the following formula
to determine the time of death of accident or murder vic-
tims. If denotes the temperature of a body hr after death,
then

where is the air temperature and is the body tempera-
ture (in degrees Fahrenheit) at the time of death. John Doe
was found murdered at midnight in his house, when the
room temperature was 70°F. Assume that his body tempera-
ture at the time of death was 98.6°F.
a. Plot the graph of using the viewing window

.
b. How fast was the temperature of John Doe’s body drop-

ping 2 hr after his death?
c. If the temperature of John Doe’s body was 80°F when it

was found, when was he killed? Solve the problem ana-
lytically, and then verify it using a graphing calculator.

56. Loan Amortization The Sotos plan to secure a loan of
$160,000 to purchase a house. They are considering 
a conventional 30-year home mortgage at 9% per year 

[0, 40] � [70, 100]
T

T1T0

T � T0 � (T1 � T0)(0.97)t

tT

t � 1

[0, 10] � [0, 16]
x

x(t)

x(t) �
15C1 � 123 23t D

1 � 1
4 123 23t

t

x � 0p(x) � 29.92e�0.2x

x

t

tQ0

Q(t) � Q0 � 2�(t>140)

on the unpaid balance. It can be shown that the Sotos 
will have an outstanding principal of

dollars after making monthly payments of $1287.40.
a. Plot the graph of , using the viewing window

.
b. Compute and , and interpret your results; com-

pute and , and interpret your results.

57. Find an equation of the line tangent to the graph of
at the point .

58. Find an equation of the line tangent to the graph of
at the point .

59. Find the intervals where is increasing and
where it is decreasing.

60. Find the intervals where is concave upward
or where it is concave downward.

61. Find the area of the region under the graph of 
on the interval .

62. Find the area of the region bounded by the graphs of ,
, , and .

63. The region under the graph of on the interval 
is revolved about the -axis. Find the volume of the solid
generated.

64. Complete the following table to show that Equation (4),

appears to be valid.

lim
n→�
a1 �

1
n
bn

� e

y
[0, 1]y � 3x2

x � 2x � �2y � 2�x
y � 2x

[1, 10]
y � (log x)>x

f(x) � log3 �x �

f(x) � (log x)>x
(1, 0)y � x log x

(0, 2)y � 2x � 1

B¿(180)B(180)
B¿(0)B(0)

[0, 360] � [0, 160,000]
B(x)
x

B(x) �
160,000(1.0075360 � 1.0075x)

1.0075360 � 1

n 1 10 102 103 104 105 106

a1 �
1
n
bn

65. Find the accumulated amount after 5 years on an invest-
ment of $5000 earning interest at the rate of 10% per year
compounded (a) annually, (b) semiannually, (c) quarterly,
(d) monthly, (e) daily, and (f) continuously.

66. Find the accumulated amount after 10 years on an invest-
ment of $10,000 earning interest at the rate of 12% per year
compounded (a) annually, (b) semiannually, (c) quarterly,
(d) monthly, (e) daily, and (f) continuously.

67. Annual Return of an Investment A group of private investors
purchased a condominium complex for $2.1 million and
sold it 6 years later for $4.4 million. Find the annual rate 
of return (compounded continuously) on their investment.
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68. Establishing a Trust Fund The parents of a child wish to estab-
lish a trust fund for the child’s college education. If they
need an estimated $96,000 8 years from now and they are
able to invest the money at 8.5% compounded continuously
in the interim, how much should they set aside in trust now?

69. Effect of Inflation on Salaries Mr. Gilbert’s current annual salary
is $75,000. Ten years from now, how much will he need to
earn to retain his present purchasing power if the rate of
inflation over that period is 5% per year? Assume that infla-
tion is compounded continuously.

70. Complete the proof of the Laws of Exponents (Theorem 1).

71. a. Show that if .
b. Show that if .

Hint: Show that is increasing for
.

72. a. Show that for any fixed number .
Thus, eventually grows faster than any power of .
Hint: Use the result of part (b) of Exercise 71 to show that if

, then . For the general case, introduce
the variable defined by if .

b. Sketch the graph of using the viewing
window , thus verifying the result
of part (a) for the special case in which .

c. Find the value of at which the graph of even-
tually overtakes that of .t(x) � x10

f(x) � exx
a � 10

[0, 40] � [0, 460,000]
f(x) � (x10>ex)

a � 0x � ayy
limx→� (x>ex) � 0a � 1

xex
alimx→�(xa>ex) � 0

x � 0
f(x) � ex � 1 � x � x2>2

x � 0ex � 1 � x � x2>2x � 0ex � 1 � x

73. Prove that

74. Find if , where and is a positive
constant.

In Exercises 75–80, determine whether the statement is true or
false. If it is true, explain why it is true. If it is false, explain why
or give an example to show why it is false.

75. If , , , and , then 

76. If , then .

77. , where 

78.

79.

80. 1 � �
1

0
2x2

dx � 2

lim
x→0

log(3 � x) � log 3

x
�

1

3 ln 10

d

dx
loga 1x �

1

(ln a)1x

a � 0lim
x→0

ax � 1
x

� ln a

b � a1>log 2a � 2log b

x � 1
logb x

loga x
�

ln a

ln b

b � 1b � 0a � 1a � 0

bx � 1y � logx bdy>dx

�
1>2

�1>2
 2cos x dx � 2�

1>2

0
 2cos x dx

6.5 Inverse Trigonometric Functions

In this section we look at the six inverse trigonometric functions. Generally speak-
ing, the trigonometric functions, being periodic, are not one-to-one and, therefore,
do not have inverse functions. For example, you can see by examining the graph of

shown in Figure 1 that this function is not one-to-one, since it fails the hor-
izontal line test. But observe that by restricting the domain of the function 
to the interval , it is one-to-one and its range is (Figure 2a). There-
fore, by Theorem 1 of Section 6.2, has an inverse function with domain and
range . This function is called the inverse sine function or arcsine functionC�p2 , p2 D

[�1, 1]f
[�1, 1]C�p2 , p2 D

f(x) � sin x
y � sin x

and is denoted by arcsin or . Thus,

if and only if

where and . The graph of is shown in Figure 3a.y � sin�1 x�p2 	 y 	 p
2�1 	 x 	 1

sin y � xy � sin�1 x

sin�1

FIGURE 1
The horizontal line cuts the graph of

at infinitely many points,
so the sine function is not one-to-one.

y � sin x

0 2π�2π π

y

y � sin x

3π�π x
2

3π
2

π
2

π
2

1

�1

��
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Similarly, by suitably restricting the domains of the other five trigonometric func-
tions, each function can also be made one-to-one, and therefore, each function also has
an inverse. Figure 2 shows the graphs of the six trigonometric functions and their
restricted domains.

FIGURE 2
When restricted to the indicated domains, each of the six trigonometric functions is one-to-one.

DEFINITION Inverse Trigonometric Functions

Domain

if and only if (1a)

if and only if (1b)

if and only if (1c)

if and only if (1d)

if and only if (1e)

if and only if (1f)(��, �)x � cot yy � cot�1 x

(��, �1] � [1, �)x � sec yy � sec�1 x

(��, �1] � [1, �)x � csc yy � csc�1 x

(��, �)x � tan yy � tan�1 x

[�1, 1]x � cos yy � cos�1 x

[�1, 1]x � sin yy � sin�1 x

The graphs of the six inverse trigonometric functions are shown in Figures 3a–3f.

0

y

(a) y � sin x

Domain:

Range: [�1, 1] Domain: [0, π]

Range: [�1, 1]

�[ ],

x 0 xπ π2 π
2

π
2

π
2

π
2
π
2 Domain:

Range: (��, �)

�( ),
π
2
π
2

π
2

1

�1

y

(b) y � cos x (c) y � tan x

1

�1

0 x

y

2
1

3

�1�

�2
�3

�

0

y

(d) y � csc x

Domain:

Range: (��, �1] � [1, �)

�[ ]) (, 0 0,�

x 0 xπ π π
2 π

2

π
2

π
2

π
2

Domain:

Range: (��, �1] � [1, �)

[ ]) ( , π0, �
π
2

π
2 Domain: (0, π)

Range: (��, �)
π
2

1

�1

y

(e) y � sec x (f) y � cot x

1

�1

0 x

y

�

With these restrictions the corresponding trigonometric inverse functions are defined
as follows.
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FIGURE 3

EXAMPLE 1 Evaluate

a. b. c. d.

Solution
a. Let . Then by Formula (1a), . Since must lie in the interval

, we see that . Therefore,

b. Let so that, by Formula (1b), . Since must
be in the interval , we see that . Therefore,

c. Let so that . Since must lie in the interval ,
we see that . Therefore,

d. Here, we use a calculator to find

Remember to set the cal-
culator in the radian mode.cos�1 0.6 � 0.9273

tan�1 13 �
p

3

y � p>3 1�p2 , p2 2ytan y � 13y � tan�1 13

cos�1a�13

2
b �

5p

6

y � 5p>6[0, p]
ycos y � �13>2y � cos�1 (�13>2)

sin�1 
1

2
�
p

6

y � p>6C�p2 , p2 D
ysin y � 1

2y � sin�1 12

cos�1 0.6tan�1 13cos�1 a�13

2
bsin�1 

1

2

0

y

(a) y � sin�1 x

Domain: [�1, 1]

Range:

Domain: [�1, 1]

Range: [0, π]
�[ ],

x

0 x

x

π

π
2

π
2

π
2

π
2
π
2

π
2

Domain: (��, �)

Range: �( ),
π
2
π
2

π
2

1�1

y

(b) y � cos�1 x (c) y � tan�1 x

�1 1

0 x

y

�1 1

�

�

0

y

(d) y � csc�1 x

Domain: (��, �1] � [1, �)

Range: �[ ]) (, 0 0,�

x

0

π π
π

2

π
2 π

2

π
2

π
2 Domain: (��, �1] � [1, �)

Range: [ ]) ( , π0, �
π
2

π
2 Domain: (��, �)

Range: (0, π)

π
2

1�1

y

(e) y � sec�1 x (f) y � cot�1 x

1 1�1 �1 0 x

y

�
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Remember that these properties hold only for the specified values of . For ex-
ample, , but a careless application of the property

with —which does not lie in the interval —leads to
the erroneous result .sin�1(sin p) � p

C�p2 , p2 Dx � psin�1(sin x) � x
sin�1(sin p) � sin�1(0) � 0

x

EXAMPLE 2 Evaluate .

Solution Let . Then is the angle in the right triangle with opposite side
of length 1 and hypotenuse of length 3. (See Figure 4.) Therefore, by the Pythagorean
Theorem the length of the adjacent side of the right triangle is

and

Recall that if and are inverses of each other, then

and

For the trigonometric functions sine, cosine, and tangent (and similarly for the other
three trigonometric functions) these relationships translate into the following properties.

f �1( f(x)) � xf( f �1(x)) � x

f �1f

cotasin�1 1

3
b � cot u �

212

1
� 212

19 � 1 � 212

uu � sin�1 13

cot1sin�1 13 2

FIGURE 4
The right triangle associated with 
the equation u � sin�1 13

Inverse Properties of Trigonometric Functions

for (2a)

for (2b)

for (2c)

for (2d)

for (2e)

for (2f)�p2 � x � p
2tan�1(tan x) � x

�� � x � �tan(tan�1 x) � x

0 	 x 	 pcos�1(cos x) � x

�1 	 x 	 1cos(cos�1 x) � x

�p2 	 x 	 p
2sin�1(sin x) � x

�1 	 x 	 1sin(sin�1 x) � x

!

EXAMPLE 3 Evaluate

a. b.

Solution
a. Since 0.7 lies in the interval , we conclude, by Formula (2a), that

b. Notice that does not lie in the interval , so we may not use Formula
(2d). But observe that , and since 0 lies in the interval , we
have

cos�1acos
3p

2
b � cos�1 0 �

p

2

[�1, 1]cos(3p>2) � 0
[0, p]3p>2

sin(sin�1 0.7) � 0.7

[�1, 1]

cos�1(cos(3p>2))sin(sin�1 0.7)

2

3

¨

1

2√
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PROOF We will prove the first of these formulas and leave the proofs of the others
as an exercise. Let so that for . Differentiating the
latter equation implicitly with respect to , we obtain

or

Now , since , so we can write

Recall that .

Therefore,

Finally, if is a differentiable function of , then the Chain Rule gives

d

dx
sin�1 u �

1

21 � u2
 
du

dx

xu

 �1 � x � 1
dy

dx
�

1
cos y

�
1

21 � x2

x � sin ycos y �21 � sin2 y �21 � x2

�p2 	 y 	 p
2cos y � 0

dy

dx
�

1
cos y

(cos y) 
dy

dx
� 1

x
�p2 	 y 	 p

2sin y � xy � sin�1 x

Derivatives of Inverse Trigonometric Functions
The rules for differentiating the inverse trigonometric functions follow. Here,
is a differentiable function of .x

u � t(x)

EXAMPLE 4 Find the derivative of

a. b. c.

Solution

a.

 � �
1

21 � (3x)2
�

d

dx
 (3x) � �

3

21 � 9x2

u � 3x f ¿(x) �
d

dx
cos�1 3x

y � sec�1 e�2x
t(x) � tan�1 12x � 3f(x) � cos�1 3x

Derivatives of Inverse Trigonometric Functions

d

dx
 (cot�1 u) � �

1

1 � u2
 
du

dx

d

dx
 (tan�1 u) �

1

1 � u2
 
du

dx

d

dx
 (sec�1 u) �

1

�u �2u2 � 1
 
du

dx

d

dx
 (cos�1 u) � �

1

21 � u2
 
du

dx

d

dx
 (csc�1 u) � �

1

�u �2u2 � 1
 
du

dx

d

dx
 (sin�1 u) �

1

21 � u2
 
du

dx
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EXAMPLE 5 Watching a Helicopter Take Off A spectator standing 200 ft from a hel-
icopter pad watches a helicopter take off. The helicopter rises vertically with a con-
stant acceleration of 8 ft/sec2 and reaches a height (in feet) of after sec,
where . (See Figure 5.) As the helicopter rises, increases, slowly at
first, then faster, and finally it slows down again. The spectator perceives the helicop-
ter to be rising at the greatest speed when is maximal. Determine the height of
the helicopter at the moment the spectator perceives it to be rising at the greatest speed.

du>dt

du>dt0 	 t 	 10
th(t) � 4t 2

FIGURE 5
The helicopter attains a height 

of after sec.th(t) � 4t 2

b.

c.

 �
�2e�2x

e�2x2e�4x � 1
� �

2

2e�4x � 1

 �
1

e�2x2(e�2x)2 � 1
 

d

dx
 e�2x

u � e�2x 
dy

dx
�

d

dx
sec�1 e�2x

 �
1

2(x � 2)12x � 3

 �
1

1 � 2x � 3
�

1

2
 (2x � 3)�1>2 d

dx
 (2x)

 �
1

1 � [(2x � 3)1>2]2
�

d

dx
 (2x � 3)1>2

u � (2x � 3)1>2 t¿(x) �
d

dx
tan�1(2x � 3)1>2

h(t)

200 ft
Spectator

q

Solution The angle of elevation of the spectator’s line of sight at time is

Therefore,

 �
100t

2500 � t 4

 
du

dt
�

1

1 � a t 2

50
b2 �

d

dt
 a t 2

50
b �

2500

2500 � t 4
�

2t

50

u(t) � tan�1ah(t)

200
b � tan�1a 4t 2

200
b � tan�1a t 2

50
b

t
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To find when is maximal, we first compute

Then, setting gives as the sole critical number of
. Using either the First or Second Derivative Test, we can show that this critical

number gives rise to a maximum for . The height of the helicopter at this instant
of time is

or approximately 115 ft.

Integration Involving Inverse Trigonometric Functions
If you examine the derivatives of the six inverse trigonometric functions more closely,
you will see that the derivatives of three of them are equal to the negative of the other
three. So it is necessary to concern ourselves only with the following three integration
formulas involving inverse trigonometric functions.

h(14 2500>3) � 4(14 2500>3)2 � 412500>3 � 115.47

du>dt
du>dt

t � (2500>3)1>4 � 5.37d2u>dt 2 � 0

d2u

dt 2
�

(2500 � t 4)100 � 100t(4t 3)

(2500 � t 4)2
�

100(2500 � 3t 4)

(2500 � t 4)2

du>dt

Integrals Involving Inverse Trigonometric Functions

(3a)

(3b)

(3c)� 1

�u �2u2 � 1
du � sec�1 �u � � C

� 1

1 � u2
du � tan�1 u � C

� 1

21 � u2
du � sin�1 u � C

EXAMPLE 6 Find

a. b.

Solution
a. Comparing the integral with Formula (3a) suggests the substitution . Then

or . Therefore,

 �
1

3
sin�1 u � C �

1

3
sin�1(3x) � C

 �
1

3
 � 1

21 � u2
du

 � 1

21 � 9x2
dx � � 1

21 � (3x)2
dx

dx � 1
3 dudu � 3 dx

u � 3x

� 1

24 � x2
dx� 1

21 � 9x2
dx
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EXAMPLE 7 Find

a. b.

Solution
a. Let so that . Then

b. Let . Then , or . Making these substitutions, we find

Replace by .

Next, we let so that or . Then

 �
1

8
sec�1 √ � C �

1

8
sec�1ax2

4
b � C

 �
1

8
 � 1

√2√2 � 1
d√

 � 1

x2x4 � 16
dx � a1

8
b4� 1

4√2√2 � 1
d√

du � 4 d√d√ � 1
4 du√ � u>4

 �
1

2
�

1

4
 � 1

uB a
u

4
b2

� 1

du

ux2 �
1

2
 � 1

u2u2 � 16
du

 � 1

x2x4 � 16
dx �

1

2
 � 1

x22u2 � 16
du

dx �
du

2x
du � 2x dxu � x2

 � tan�1 u � C � tan�1 ex � C

 � ex

e2x � 1
dx � � 1

u2 � 1
du

du � ex dxu � ex

� 1

x2x4 � 16
dx� ex

e2x � 1
dx

EXAMPLE 8 Refer to Figure 6. Find the area of the region enclosed by the graphs of

and y �
8

x2 � 4
y �

1

4
 x2

b. Once again, comparing the integral with Formula (3a) suggests that we write

Next, we let so that or . Then

 � sin�1 u � C � sin�1ax

2
b � C

 � 1

24 � x2
dx �

1

2
 (2)� 1

21 � u2
du

dx � 2 dudu � 1
2 dxu � x>2

� 1

24 � x2
dx � � 1

2B1 � ax

2
b2

dx
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FIGURE 6
The region bounded by the graphs of 

and y �
x2

4
y �

8

x2 � 4

Solution We first find the -coordinates of the points of intersection of the two graphs
by solving the system

simultaneously. We have

giving . Next, observing that the graph of lies above that off(x) � 8>(x2 � 4)x � 
2

 (x2 � 8)(x2 � 4) � 0

 x4 � 4x2 � 32 � 0

 
1

4
 x2 �

8

x2 � 4

cy � 1
4 x

2

y �
8

x2 � 4

x

on , we find the required area to be

The integrand is even.

 � 2a4 tan�1 1 �
8

12
b � 2p �

4

3

 � 2c4 tan�1 
x

2
�

1

12
 x3d2

0

 � 2�
2

0
a 8

x2 � 4
�

x2

4
bdx

 A � �
2

�2
a 8

x2 � 4
�

x2

4
bdx

[�2, 2]t(x) � x2>4

x0

4
1x2 � 4

8

y

1

2

3

4

�2 2 4�4

x2y �
y �

1. For each of the following inverse trigonometric functions,
(a) give its definition, (b) give its domain and range, and (c)
sketch its graph:
(i) (ii) (iii)

2. For each of the following inverse trigonometric functions,
(a) give its definition, (b) give its domain and range, and (c)
sketch its graph:
(i) (ii) (iii)

3. Write the derivative with respect to of (a) ,
(b) , and (c) .tan�1 ucos�1 u

sin�1 ux
f(x) � cot�1 xf(x) � sec�1 xf(x) � csc�1 x

f(x) � tan�1 xf(x) � cos�1 xf(x) � sin�1 x

4. Complete each of the following equations:

a.

b.

c. � 1

u2u2 � 1
du �

� 1

1 � u2 du �

� 1

21 � u2
du �

6.5 CONCEPT QUESTIONS

In Exercises 1–24, find the exact value of the given expression.

1. 2.

3. 4.

5. 6. tan�1(�1)tan�1 1

cos�1 
1

2
sin�1 

1

2

cos�1 0sin�1 0

7. 8.

9. 10.

11. 12. cot�1(�13)tan�1a 1

13
b

cos�1a� 1

12
bsin�1a13

2
b

cot�1(�1)tan�1 13

6.5 EXERCISES

Videos for selected exercises are available online at www.academic.cengage.com/login.V

www.academic.cengage.com/login
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13. 14.

15. 16.

17. 18.

19. 20.

21. 22.

23. 24.

In Exercises 25–32, write the expression in algebraic form.

25. 26.

27. 28.

29. 30.

31. 32.

In Exercises 33–58, find the derivative of the function.

33. 34.

35. 36.

37. 38.

39. 40.

41.

42.

43.

44.

45. 46.

47. 48.

49. 50.

51. 52.

53. 54.

55.

56.

57.

58. f(x) � x tan x sec�1 x

f(t) �
1

4
ln(1 � 4t 2) � t tan�1 2t

f(x) �
1

2
 atan�1 x �

1

2
lnax � 1

x � 1
bb

f(u) � (sec�1 u)�1

y � sin�1a sin x

1 � cos x
bh(x) � cot(cos�1 x2)

y � etan�1 2tf(x) � sin�1(e2x)

h(u) � tan�1acos u

2
by � tan�1(sin 2x)

f(x) � cos�1(sin 2x)t(t) � tan�1a t � 1

t � 1
b

f(x) � tan�1 13x � 1y � (x2 � 1) tan�1 x

y � sec�1 x � csc�1 x

t(x) � tan�1 x � x cot�1 x

f(x) � sin�1 2x � cos�1 3x

h(x) � sin�1 x � 2 cos�1 x

t(u) �
sec�1 u

u
f(u) � sec�1 2u

y � sin�1a1
x
bt(t) � t tan�1 3t

f(t) � sin�1 12t � 1f(x) � tan�1 x2

t(x) � cos�1(2x � 1)f(x) � sin�1 3x

csc(cot�1 x)sin(2 tan�1 x)

cot(sec�1 x)sec(sin�1 x)

tan(sin�1 x)tan(tan�1 x)

sin(cos�1 x)cos(sin�1 x)

sec(tan�1 2)secasin�1 
3

5
b

tanacos�1 
1

2
btanasin�1 

12

2
b

cosa2 sin�1 
1

2
bcosasin�1 

13

2
b

cosasin�1 
1

2
bsinasin�1 

1

12
b

tan�1a� 1

13
bsin�1a�1

2
b

csc�1 12sec�1 2 In Exercises 59 and 60, find an equation of the tangent line to
the graph of the function at the indicated point. Graph the func-
tion and the tangent line in the same viewing window.

59. ; P112, p12 2f(x) � x sin�1 x

60. ;

In Exercises 61 and 62, find the relative extrema of the function.

61. 62.

In Exercises 63 and 64, find the point(s) of inflection of the
graph of the function.

63. 64.

In Exercises 65–86, find or evaluate the given integral.

65. 66.

67. 68.

69. 70.

71. 72.

73. 74.

75. 76.

77. 78.

79. 80.

81. 82.

83. 84.

85. 86.

87. Find the area of the region under the graph of 
on the interval .

88. The region under the graph of

on the interval is revolved about the -axis. Find the
volume of the resulting solid.

x[3, 4]

y �
1

1x(x2 � 4)1>4

[0, 1]
y �

1

4 � x2

� 1

x[9 � (ln x)2]
dx� 1

4 � (x � 2)2 dx

� ex

21 � e2x
dx� 1

1x (4 � x)
dx

� 1

(x � 1)2(x � 1)2 � 9
dx� tan�1 x

1 � x2 dx

�
12>2

0 B
cos�1 x

1 � x2 dx�
13>2

0

sin�1 x

21 � x2
dx

� dx

�x �(sec�1 x)3 2x2 � 1
�

1

0
 

x3

1 � x8 dx

� cos 3x

1 � sin2 3x
dx� sin x

24 � cos2 x
dx

� x2 � 1

x2 � 1
dx�

1

0
 

e2x

1 � e4x dx

�
1

�1
 

1

4 � (t � 1)2 dt� 1

t2t 6 � 16
dt

� 1

x29x2 � 1
dx� 1

x2x4 � 81
dx

�
413

0

1

x2 � 16
dx�

1>2

0

1

1 � 4x2 dx

�
1>4

0

1

21 � 4x2
dx� 1

216 � x2
dx

f(x) � (tan�1 x)2f(x) � sin�1 x

f(x) � 3 tan�1 x � 2xf(x) � sin�1 x � 2x

P112
2 , p4 2f(x) � sec�1 2x
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89. The region under the graph of

on the interval is revolved about the -axis. Find the
volume of the resulting solid.

90. Find the length of the graph of on the interval
.

91. a. Plot the graph of and the graph of the
secant line passing through and .

b. Use the Pythagorean Theorem to estimate the arc length
of the graph of on the interval .

c. Use a calculator or a computer to find the arc length of
the graph of .

92. A 20-ft ladder leaning against a wall begins to slide. How
fast is the angle between the ladder and the wall changing at
the instant of time when the bottom of the ladder is 12 ft
from the wall and sliding away from the wall at the rate of 
5 ft/sec?

93. A restaurateur has a choice of a site for a restaurant to be
constructed between two jetties. The two jetties lie along a
straight stretch of a coastal highway and are 1000 ft apart.
How far from the longer jetty should the restaurant be
located in order to have the largest unobstructed view 
of the ocean?

94. A poster of height 36 in. is mounted on a wall so that its
lower edge is 12 in. above the eye level of an observer. How
far from the wall should the observer stand so that the view-
ing angle subtended at his eye by the poster is as large as
possible?

u

150 ft

1000 ft

40 ft

x  ftx  ft

xx

y

20
q

f(x) � tan�1 x

[0, 1]f

11, p4 2(0, 0)
f(x) � tan�1 x

[0, 2]
y �24 � x2

y[1, 2]

y �
1

x(x2 � 4)

95. An observer stands on a straight path that is parallel to a
straight test track. At a Formula 1 car is directly op-
posite her and 200 ft away. As she watches, the car moves
with a constant acceleration of 20 ft/sec2, so it is at a dis-
tance of ft from the starting position after sec, where

. As the car moves, increases, slowly at
first, then faster, and finally it slows down again. The ob-
server perceives the car to be moving at the fastest speed
when is maximal. Determine the position of the car 
at the moment she perceives it to be moving at the fastest
speed.

96. Consider the portion of the unit circle lying in the first 
quadrant.

a. By considering the area of the shaded region, show that

�
x

0
21 � t 2 dt �

1

2
sin�1 x �

x

2
21 � x2

xx

y

P

0

y

1

q

200 ft

du>dt

du>dt0 	 t 	 15
t10t 2

t � 0

36 in.

12 in.q
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and hence

b. By differentiating the last equation in part (a) with
respect to , show that

97. A trough of length feet has a cross section in the shape 
of a semicircle with radius feet. When the trough is filled
with water to a level that is feet as measured from the top
of the trough, the volume of the water is

Suppose that a trough with and springs a leak
at the bottom and that at a certain instant of time, ft
and ft3/sec. Find the rate at which is chang-
ing at that instant of time.

98. The graph of is called a bullet-nosed curve. 

Find the volume of the solid obtained by revolving the 
bullet-nosed curve about the -axis for .

99. a. Prove that

b. Use a computer or calculator to find the value of the
integral accurate to five decimal places.

0.5 � �
1

0

dx

24 � x2 � x4
� 0.524

0 x�1 1

y

4

8

12

16

0 	 y 	 12y

y �
�x �

22 � x2

hdV>dt � �0.2
h � 0.4

r � 1L � 10

r

L
h

V � Lc1
2

 pr 2 � r 2 sin�1ah

r
b � h2r 2 � h2d

h
r

L

d

dx
 (sin�1 x) �

1

21 � x2

x

sin�1 x � 2�
x

0
21 � t 2 dt � x21 � x2

100. a. Prove that

b. Use a computer or calculator to find the value of the
integral accurate to five decimal places.

101. Use Newton’s method to obtain an approximation of 
the root of accurate to three decimal
places.

102. Use Newton’s method to find the point of intersection of
the graphs of and accurate to
three decimal places.

103. Use Simpson’s Rule with to find an approximation
of . (Round your answer to three decimal
places.)

104. Use a calculator or computer to find the centroid of the
region under the graph of on accurate
to three decimal places.

105. Use Simpson’s Rule with to approximate the length
of the graph of on . (Round your
answer to five decimal places.)

106. Verify each differentiation formula.

a.

b.

c.

d.

e.

In Exercises 107–112, determine whether the statement is true or
false. If it is true, explain why it is true. If it is false, explain why
or give an example to show why it is false.

107.

108.

109.

110. is an odd function.

111. is a decreasing function.

112. for all in .(0, p)x
d

dx
[cos�1(cos x)] � 1

f(x) � cos�1 x

f(x) � tan�1 x

(sin�1 x)2 � (cos�1 x)2 � 1

cot�1 x �
cos�1 x

sin�1 x

sin�1 x �
1

sin x

d

dx
cot�1 u � �

1

1 � u2 
du

dx

d

dx
sec�1 u �

1

�u � 2u2 � 1
 
du

dx

d

dx
csc�1 u � �

1

�u � 2u2 � 1
 
du

dx

d

dx
tan�1 u �

1

1 � u2 
du

dx

d

dx
cos�1 u � �

1

21 � u2
 
du

dx

[0, 0.8]y � cos�1 x
n � 8

[0, 1]y � tan�1 xR

�1
0 cot�1 x dx

n � 10

y � cos�1 xy � tan�1 x

cos�1 x � x � 0

0.785 � �
1

0

dx

1 � x8 � 1
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6.6 Hyperbolic Functions

Figure 1 depicts a uniform flexible cable, such as a telephone or power line, suspended
between two poles. The shape assumed by the cable is called a catenary, from the Latin
word catena, which means “chain.” Figure 1b shows the path taken by a heat-seeking
missile as it locks onto and intercepts an aircraft. We assume here that the aircraft is
flying along a straight line at a constant height and at a constant speed and that the
missile, also flying at a constant speed is always pointed at the aircraft. The trajectory
of the missile is called a pursuit curve.

FIGURE 1

The analysis of problems such as these involves combinations of exponential func-
tions of the form and , where is a constant. Because combinations of these
functions arise so frequently in mathematics and its applications, they have been given
special names. These combinations—the hyperbolic sine, the hyperbolic cosine, the
hyperbolic tangent, and so on—are referred to as hyperbolic functions and are so
called because they have many properties in common with the trigonometric functions.

cecxe�cx

x0 0

y

x

y

(b) The trajectory of the missile is
called a pursuit curve.

(a) The hanging cable takes the shape of
      a catenary.

Note The expression is pronounced “cinch ,” and is pronounced “kosh
,” which rhymes with “gosh .”

The Graphs of the Hyperbolic Functions
The graph of can be drawn by first sketching the graphs of and

and then adding the -coordinates of the points on these graphs correspond-
ing to each to obtain the -coordinates of the points on (Figure 2a). Sim-
ilarly, the graph of can be drawn by first sketching the graphs of 
and and then adding the -coordinates of the points on these graphs corre-
sponding to each to obtain the -coordinates of the points on (Figure 2b).y � cosh xyx

yy � 1
2 e

�x
y � 1

2 e
xy � cosh x

y � sinh xyx
yy � �1

2 e
�x

y � 1
2 e

xy � sinh x

xx
cosh xxsinh x

DEFINITIONS The Hyperbolic Functions

, , x � 0coth x �
cosh x

sinh x
sech x �

1

cosh x
x � 0csch x �

1

sinh x

tanh x �
sinh x

cosh x
cosh x �

ex � e�x

2
sinh x �

ex � e�x

2

JOHANN HEINRICH LAMBERT
(1728–1777)

Not being from a wealthy family, Johann
Lambert had to leave school at the age of
12 to work with his father as a tailor to
help support his family. Lambert continued
to study in the evenings and took a variety
of jobs over the next several years, includ-
ing clerk at an ironworks and secretary to
the editor of a Basel newspaper. His father
died in 1747. Shortly thereafter, Lambert
was hired by the von Salis family to tutor
their children and, with more time to
devote to study, his scientific career took
off. The scientific community eventually
noticed Lambert’s work in astronomy, and
he was given a series of increasingly pres-
tigious academic positions. He became a
member of the Prussian Academy of Sci-
ences in 1761 and so became a colleague of
Leonhard Euler (page 19) and Joseph-Louis
Lagrange (page 278). While he was with the
Prussian Academy, Lambert wrote more
than 150 papers. In 1776, he published a
book on non-Euclidean geometry, and
many of his results are still of interest
today. Among Lambert’s many important
contributions is the first systematic devel-
opment of the hyperbolic functions ,

, and .tanh xcosh x
sinh x

Historical Biography
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Hyperbolic Identities
The hyperbolic functions satisfy certain identities that look very much like those sat-
isfied by trigonometric functions. For example, the analog of is

. To prove this identity, we simply compute

A list of frequently used hyperbolic identities is given in Table 1.

sinh(�x) �
e(�x) � e�(�x)

2
�

e�x � ex

2
� �

ex � e�x

2
� �sinh x

sinh(�x) � �sinh x
sin(�x) � �sin x
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The graphs of the other four hyperbolic functions are shown in Figure 3.

FIGURE 2
The graphs of the hyperbolic 

sine and cosine functions

FIGURE 3
The graphs of the hyperbolic 

tangent, cosecant, secant,
and cotangent functions

x
1
2

Domain: (��, �)
Range: (��, �)

ex � e�x

2

y

(a) y � sinh x �

y � � e�x

1
2y � ex

1�1

�1

1

x

1
2

Domain: (��, �)
Range: [1, �)

ex � e�x

2

y

(b) y � cosh x �

y � e�x 1
2

1
2

y � ex

1�1

1

x0

Domain: (��, �)
Range: (�1, 1)

sinh x
cosh x

y

(a) y � tanh x �

2�2

�1

1

x0

Domain: (��, 0) � (0, �)
Range: (��, 0) � (0, �)

1
sinh x

y

(b) y � csch x �

2

�2

�2

2

x0

Domain: (��, �)
Range: (0, 1]

1
cosh x

y

(c) y � sech x �

2�2

1

x0

Domain: (��, 0) � (0, �)
Range: (��, �1) � (1, �)

1
tanh x

y

(d) y � coth x �

2�2
�1

1
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We will prove the identity in Example 1. The proofs of the
others will be left as exercises.

cosh2 x � sinh2 x � 1

TABLE 1 Hyperbolic Identities

cosh2 x � 1
2 (1 � cosh 2x)

sinh 2x � 2 sinh x cosh x

sinh(x � y) � sinh x cosh y � cosh x sinh y

cosh2 x � sinh2 x � 1

sinh(�x) � �sinh x

sinh2 x � 1
2 (�1 � cosh 2x)

cosh 2x � cosh2 x � sinh2 x

cosh(x � y) � cosh x cosh y � sinh x sinh y

sech2 x � 1 � tanh2 x

cosh(�x) � cosh x

EXAMPLE 1 Prove the identity .

Solution We compute

and this establishes the identity.

Derivatives and Integrals of Hyperbolic Functions
Since the hyperbolic functions are defined in terms of and , their derivatives are
easily computed. For example,

Similarly, we can show that

Then, using these results, we can compute

Following are the differentiation formulas together with the corresponding integra-
tion formulas for the six hyperbolic functions. We have assumed that , where

is a differentiable function, and we have used the Chain Rule. The proofs of these
formulas are left as exercises.
t

u � t(x)

 �
cosh2 x � sinh2 x

cosh2 x
�

1

cosh2 x
� sech2 x

 
d

dx
 (tanh x) �

d

dx
 
sinh x

cosh x
�

cosh x 
d

dx
 (sinh x) � sinh x 

d

dx
 (cosh x)

cosh2 x

d

dx
 (cosh x) � sinh x

d

dx
 (sinh x) �

d

dx
 aex � e�x

2
b �

ex � e�x

2
� cosh x

e�xex

 �
4

4
� 1

 �
e2x � 2 � e�2x

4
�

e2x � 2 � e�2x

4

 cosh2 x � sinh2 x � aex � e�x

2
b2

� aex � e�x

2
b2

cosh2 x � sinh2 x � 1
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Derivatives and Integrals of Hyperbolic Functions

� csch2 u du � �coth u � C
d

dx
 (coth u) � �(csch2 u) 

du

dx

� sech u tanh u du � �sech u � C
d

dx
 (sech u) � �(sech u tanh u) 

du

dx

� csch u coth u du � �csch u � C
d

dx
 (csch u) � �(csch u coth u) 

du

dx

� sech2 u du � tanh u � C
d

dx
 (tanh u) � (sech2 u) 

du

dx

� sinh u du � cosh u � C
d

dx
 (cosh u) � (sinh u) 

du

dx

� cosh u du � sinh u � C
d

dx
 (sinh u) � (cosh u) 

du

dx

EXAMPLE 2

a.

b.

  �
2
x

cosh(ln 2x)sinh(ln 2x)

 � 2 cosh(ln 2x)sinh(ln 2x) 
d

dx
ln 2x

 
d

dx
cosh2(ln 2x) � 2 cosh(ln 2x) 

d

dx
cosh(ln 2x)

d

dx
sinh(x2 � 1) � cosh(x2 � 1) 

d

dx
 (x2 � 1) � 2x cosh(x2 � 1)

EXAMPLE 3 Find .

Solution Let so that or . Then

Next, let so that . Then

So

Inverse Hyperbolic Functions
If you examine Figures 2a and 3a, you will notice that both and are one-
to-one on and hence have inverse functions that we denote by and

, respectively. Also, an examination of Figure 2b shows that is one-to-cosh xtanh�1 x
sinh�1 x(��, �)

tanh xsinh x

� cosh2 3x sinh 3x dx �
1

9
cosh3 3x � C

1

3
 � cosh2 u sinh u du �

1

3
 � √2 d√ �

1

9
 √3 � C

d√ � sinh u du√ � cosh u

� cosh2 3x sinh 3x dx �
1

3
 � cosh2 u sinh u du

dx � 1
3 dudu � 3 dxu � 3x

�cosh2 3x sinh 3x dx
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DEFINITIONS Inverse Hyperbolic Functions

Domain

if and only if

if and only if

if and only if

if and only if

if and only if

if and only if (��, �1) � (1, �)x � coth yy � coth�1 x

(0, 1]x � sech yy � sech�1 x

(��, 0) � (0, �)x � csch yy � csch�1 x

(�1, 1)x � tanh yy � tanh�1 x

[1, �)x � cosh yy � cosh�1 x

(��, �)x � sinh yy � sinh�1 x

The graphs of , , and are shown in Figure 4.y � tanh�1 xy � cosh�1 xy � sinh�1 x

FIGURE 4

Since the hyperbolic functions are defined in terms of exponential functions, it
seems natural that the inverse hyperbolic functions should be expressible in terms of
logarithmic functions.

one on , so, if restricted to this domain, it has an inverse, . By examin-
ing the graphs of the other hyperbolic functions and making the necessary restrictions
on their domains, we are able to define the other inverse hyperbolic functions.

cosh�1 x[0, �)

x0

Domain: (��, �)
Range: (��, �)

y

(a) y � sinh�1 x

1 x0

Domain: [1, �)
Range: [0, �)

y

(b) y � cosh�1 x

x0

Domain: (�1, 1)
Range: (��, �)

y

(c) y � tanh�1 x

1�1

EXAMPLE 4 Show that .

Solution Let . Then

or

On multiplying both sides of this equation by , we obtain

e2y � 2xey � 1 � 0

ey

ey � 2x � e�y � 0

x � sinh y �
ey � e�y

2

y � sinh�1 x

sinh�1 x � ln1x �2x2 � 1 2
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Derivatives of Inverse Hyperbolic Functions
The derivatives of the inverse hyperbolic functions can be found by differentiating the
function in question directly. For example,

Alternatively, we may proceed as follows:

if and only if x � sinh yy � sinh�1 x

 �
1

2x2 � 1

 �
1

x �2x2 � 1
�
2x2 � 1 � x

2x2 � 1

 �
1

x �2x2 � 1
 c1 �

1

2
 (x2 � 1)�1>2(2x)d

 
d

dx
sinh�1 x �

d

dx
ln1x �2x2 � 1 2

Representations of Inverse Hyperbolic Functions 
in Terms of Logarithmic Functions

Domain

(�1, 1)tanh�1 x �
1

2
lna1 � x

1 � x
b

[1, �)cosh�1 x � ln1x �2x2 � 12
(��, �)sinh�1 x � ln1x �2x2 � 12

which is a quadratic in . Using the quadratic formula, we have

Only the root is admissible. To see why, observe that , but

, since . Therefore, we have

so

that is,

Proceeding in a similar manner, we can obtain the representations of the other five
inverse hyperbolic functions in terms of logarithmic functions. Three such representa-
tions follow.

sinh�1 x � ln1x �2x2 � 1 2
y � ln1x �2x2 � 12

ey � x �2x2 � 1

x �2x2 � 1x �2x2 � 1 � 0

ey � 0x �2x2 � 1

ey �
2x 
24x2 � 4

2
� x 
2x2 � 1

ey
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Derivatives of Inverse Hyperbolic Functions

d

dx
coth�1 u �

1

1 � u2
 
du

dx

d

dx
sech�1 u � �

1

u21 � u2
 
du

dx

d

dx
csch�1 u � �

1

�u �2u2 � 1
 
du

dx

d

dx
tanh�1 u �

1

1 � u2
 
du

dx

d

dx
cosh�1 u �

1

2u2 � 1
 
du

dx

d

dx
sinh�1 u �

1

2u2 � 1
 
du

dx

Differentiating this last equation implicitly with respect to , we obtain

or

as before.
Using techniques such as these, we obtain the following formulas for differentiat-

ing the inverse hyperbolic functions (once again, , where is a differentiable
function).

tu � t(x)

 
dy

dx
�

1

cosh y
�

1

2sinh2 y � 1
�

1

2x2 � 1

 1 � (cosh y) 
dy

dx

 
d

dx
 (x) �

d

dx
 (sinh y)

x

EXAMPLE 5 Find the derivative of .

Solution We have

Use the Product Rule.

An Application

 � 2x sech�1 3x �
x

21 � 9x2

 � 2x sech�1 3x � x2c 1

3x21 � 9x2
d  d

dx
 (3x)

 
dy

dx
� sech�1 3x �

d

dx
 (x2) � x2 

d

dx
sech�1 3x

y � x2 sech�1 3x

EXAMPLE 6 Length of a Power Line A power line is suspended between two tow-
ers as depicted in Figure 5. The shape of the cable is a catenary with equation

where is measured in feet. Find the length of the cable.x

�100 	 x 	 100y � 80 cosh 
x

80
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FIGURE 5
The shape of the hanging 

cable is a catenary.

Solution Taking advantage of the symmetry of the situation, we see that the required
length is given by

But

So

Therefore,

Use the substitution .

or approximately 256 ft.

 � 160 sinh 
100

80
� 160 sinh 

5

4

u �
x

80
 � 2c80 sinh 

x

80
d100

0

 L � 2�
100

0
cosh 

x

80
dx

 � Bcosh2a x

80
b � cosh 

x

80

 B1 � ady

dx
b2

� B1 � sinh2a x

80
b � B1 � cosh2a x

80
b � 1

dy

dx
�

d

dx
 c80 cosh 

x

80
d � 80 sinh 

x

80
�

d

dx
a x

80
b � sinh 

x

80

L � 2�
100

0 B1 � ady

dx
b2

dx

1. Define (a) , (b) , and (c) .
2. State the derivative of (a) , (b) , and (c) .
3. Write an antiderivative of (a) , (b) , and

(c) .csch2 u
sech u tanh usech2 u

tanh xcosh xsinh x
tanh xcosh xsinh x 4. Define (a) , (b) , and (c) .

5. Write (a) , (b) , and (c) in terms of
logarithmic functions.

6. State the derivative of (a) , (b) , and 
(c) with respect to .xtanh�1 u

cosh�1 usinh�1 u

tanh�1 xcosh�1 xsinh�1 x
coth�1 xsech�1 xcsch�1 x

6.6 CONCEPT QUESTIONS

x (ft)

y (ft)

�100 0 100

80
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In Exercises 1–6, find the value of the expression accurate to
four decimal places.

1. a. b. c.

2. a. b. c.

3. a. b. c.

4. a. b. c.

5. a. b. c.

6. a. b. c.

In Exercises 7–16, prove the identity.

7. 8.

9. 10.

11. 12.

13.

14.

15.

16.

17. If , find the values of the other hyperbolic func-
tions at .

18. If , find the values of the other hyperbolic func-
tions at .

In Exercises 19–54, find the derivative of the function.

19. 20.

21. 22.

23. 24.

25. 26.

27. 28.

29. 30.

31. 32.

33. 34.

35.

36. y � esinh 2t

f(x) � (cosh x � sinh x)2>3
y � cosh23 x2 � 1f(x) � tanh(e2x � 1)

F(t) � cosh22t 2 � 1t(√) � √ sinh √2

f(x) � sinh 2x cosh 4xf(t) � cosh2(3t 2 � 1)

h(s) � coth(cosh 2s)t(u) � tanh(cosh u2)

y � ln(sinh 3x)F(x) � ln(cosh x)

y � coth 
1
x

f(t) � et sinh t

h(x) � sech(x2)t(x) � tanh(1 � 3x)

f(x) � cosh(2x � 1)f(x) � sinh 3x

x
cosh x � 5

4

x
sinh x � 4

3

tanh(x � y) �
tanh x � tanh y

1 � tanh x tanh y

cosh(x � y) � cosh x cosh y � sinh x sinh y

sinh(x � y) � sinh x cosh y � cosh x sinh y

cosh 2x � cosh2 x � sinh2 x

sinh 2x � 2 sinh x cosh xcosh2 x �
1 � cosh 2x

2

sinh2 x �
cosh 2x � 1

2
sech2 x � tanh2 x � 1

tanh(�x) � �tanh xcosh(�x) � cosh x

tanh�1(sinh 0)cosh�1(ln 5)tanh�1a�1

2
b

coth�1 
3

2
csch�1(�2)csch�1 2

sech�1 
1

3
cosh�1 2sinh�1 1

csch(ln 2)sech(�1)cosh 0

coth 5tanh(�2)csch 3

sech 3cosh 4sinh 2

37.

38.

39. 40.

41. 42.

43. 44.

45. 46.

47. 48.

49. 50.

51. 52.

53.

54.

In Exercises 55–62, find the given integral.

55. 56.

57. 58.

59. 60.

61.

62.

63. Find the volume of the solid obtained by revolving the
region under the graph of the catenary 
on the interval about the -axis.

64. The arc of the catenary for between
and is revolved about the -axis. Show that 

the surface area and the volume of the resulting solid 
of revolution are related by the formula .

65. Refer to Figure 5. Suppose that the cable has a constant
weight density of lb/ft. Then the tension on the cable is

where is the tension at the lowest point. Find the average
tension on the cable.

T0

�b 	 x 	 bT � T0 cosh 
Wx

T0

W

S � 2V>aVS
xx � bx � 0

xy � a cosh(x>a)

x(b � 0)[�b, b]
y � a cosh(x>a)

�secha1
x
btanha1

x
b

x2 dx

� sinh x

1 � cosh x
dx

� sech2(3x � 1) dx� coth 3x dx

� tanh x dx�1sinh x cosh x dx

� sinh 1x

1x
dx� cosh(2x � 3) dx

y � 2x coth�1 2x � ln21 � 4x2

y �29x2 � 1 � 3 cosh�1 3x

h(x) � cosh�1(sinh x)f(x) � sech�1 1x

t(x) � ln(tanh�1 x)y � x cosh�1 x2

y � ex sech�1 xf(x) � sech�1 12x � 1

f(x) � sech�1 x3y �2cosh�1 2x

t(x) � tanh�1 
x

2
f(x) � sinh�1 3x

f(x) � e�x sech 2xy �
cosh�1 t

1 � tanh 2t

t(x) �
sinh x

x
f(x) �

sinh x

1 � cosh x

f(x) � 12 � coth 3x

t(x) � tanh�1(cosh x)

6.6 EXERCISES

Videos for selected exercises are available online at www.academic.cengage.com/login.V

www.academic.cengage.com/login
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66. The velocity of a body of mass falling from rest through a
viscous medium is given by

where is the acceleration of gravity and is a positive
constant that depends on the viscosity of the medium.
a. Find .
b. Plot the graph of taking , , and .
Note: This limiting velocity of the body is called the terminal 
velocity.

67. Damped Harmonic Motion The equation of motion of a weight
attached to a spring and a dashpot damping device is

where , measured in feet, is the displacement from the
equilibrium position of the spring system and is measured
in seconds.
a. Find the initial position and the initial velocity of the

weight.
b. Plot the graph of .

The system in equilibrium (The positive 
direction is downward.)

68. Heat-Seeking Missiles In a test conducted on a heat-seeking
Missile , the target missile , which is initially at a dis-
tance of miles from Missile , is launched vertically up-
ward. Assume that Missile travels at a constant speed ,
that Missile travels at a constant speed ( ), and
that Missile , which is launched from the origin, is always
pointed at Missile . Then the trajectory of Missile is

where .c � √B>√A

y �
b

2
 
£ a1 �

x

b
b1�c

1 � c
�

a1 �
x

b
b1�c

1 � c

§
�

bc

1 � c2

AB
A

√A � √B√BB
√AA

Ab
BA

m
x � 0 (equilibrium position)

x(t)

t
x(t)

x(t) � �
1

12
 e�4t sinh 212t

k � 8t � 32m � 2√
limt→� √(t)

kt

√(t) � B
mt

k
tanh aB

tk

m
 tb

m

The trajectory of Missile is a pursuit 
curve.

a. Find the point at which Missile intercepts Missile .
b. Show that

c. Suppose that and . Show that the distance 
traveled by Missile for the intercept is mi.

Hint:

d. Plot the graph of the trajectory of the heat-seeking 
missile taking and .

69. The minimum-surface-of-revolution problem may be stated as
follows: Of all curves joining two fixed points, find the one
that, when revolved about the -axis, will generate a surface of
minimum area. It can be shown that the solution to the prob-
lem is a catenary. The resulting surface of revolution is called
a catenoid. Suppose a catenary described by the equation

is revolved about the -axis. Find the surface area of the
resulting catenoid.

Hint: Use the identity .

Note: A soap bubble formed by two parallel circular rings that are
close to each other is an example of a catenoid.

cosh2 x �
1 � cosh 2x

2

x
0

y

x

a 	 x 	 by � cosh x

x

c � 1
2b � 1

D � �
1

0 B1 � ady

dx
b2

dx

1 13A
Dc � 1

2b � 1

dy

dx
� �sinhcc lna1 �

x

b
b d

BA

A

x (mi)
b0

B

A

y (mi)



70. Find the volume of the solid of revolution that is obtained by
revolving the region bounded by the graph of ,
the -axis, and the lines and , about the -axis.
Hint: Use the substitution .

71. Find the centroid of the region under the graph of
on .

72. A power line is suspended between two towers that are 
200 ft apart, as shown in the figure. The shape of the 
cable is a catenary with equation

where is measured in feet. What is the angle that the line
makes with the pole?

q

x (ft)

y (ft)

�100 0 100

80

ux

�100 	 x 	 100y � 80 cosh 
x

80

[�a, a]f(x) � cosh x

x � cosh u
xx � 2x � 1x

y � (x2 � 1)3>4 73. Prove that .

74. Prove that .

75. Prove that .

76. Prove that .

In Exercises 77–80, determine whether the statement is true or
false. If it is true, explain why it is true. If it is false, explain why
or give an example to show why it is false.

77. for all in .

78.

79.

80. �
3

�3
x2 sech x dx � 2�

3

0
x2 sech x dx

�
p

�p

(cos x)sinh x dx � 0

d

dx
 (coth2 x � csch2 x)5 � 0

(��, �)x(sinh x � cosh x)3 � 0

d

dx
coth u � �(csch2 u) 

du

dx

d

dx
sech u � �(sech u tanh u) 

du

dx

d

dx
csch u � �(csch u coth u) 

du

dx

d

dx
cosh u � (sinh u) 

du

dx
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6.7 Indeterminate Forms and l’Hôpital’s Rule

In Section 1.1 we encountered the limit

(1)

when we attempted to find the velocity of the maglev at time , and in Section 1.2
we studied the limit

(2)

Observe that both the numerator and the denominator of expression (1) approach zero
as approaches 2. Similarly, both the numerator and denominator of expression (2) also
approach zero as approaches zero.

More generally, if and , then the limit

is called an indeterminate form of the type . As the name implies, the undefined
expression does not provide us with a definitive answer concerning the existence
of the limit or its value, if the limit exists.

Recall that we evaluated the limit in (1) through algebraic sleight of hand. Thus,

lim
t→2

4(t 2 � 4)

t � 2
� lim

t→2

4(t � 2)(t � 2)

t � 2
� lim

t→2
4(t � 2) � 16

0>0 0>0
lim
x→a

f(x)

t(x)

limx→a t(x) � 0limx→a f(x) � 0
x

t

lim
x→0

sin x

x

t � 2

lim
t→2

4(t 2 � 4)

t � 2
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This method, however, will not work in evaluating the limit in (2). In Section 1.2 we
used a geometric argument to show that

These examples raise the following question: Given an indeterminate form of the
type , is there a more general and efficient method for resolving whether the limit

exists, and if so, what is the limit?

The Indeterminate Forms and 
To gain insight into the nature of an indeterminate form of the type , let’s consider
the following limits:

a. b. c.

Each of these limits is an indeterminate form of the type . We can evaluate each
limit as follows:

a.

b.

c.

Let’s examine each limit in greater detail. In (a) the numerator goes to
zero faster than the denominator , when is close to zero. So it is plausible
that the ratio should approach 0 as approaches 0. In (b) the numeratorxf1(x)>t1(x)

xt1(x) � x
f1(x) � x2

lim
x→0�

x

x2
� lim

x→0�

1
x

� �

lim
x→0�

2x

3x
� lim

x→0�

2

3
�

2

3

lim
x→0�

x2

x
� lim

x→0�
x � 0

0>0
lim

x→0�

x

x2
lim

x→0�

2x

3x
lim

x→0�

x2

x

0>0
�>�0>0

lim
x→a

f(x)

t(x)

0>0

lim
x→0

sin x

x
� 1

the answer seems reasonable. Finally, in (c) the denominator goes to zero
faster than the numerator , and consequently, we expect the ratio to “blow up.”

These three examples show that the existence or nonexistence of the limit as well
as the value of the limit depend on how fast the numerator and the denominator

go to zero. This observation suggests the following technique for evaluating these
indeterminate forms: Because both and go to 0 as approaches 0, we cannot
determine the limit of the quotient by using the Quotient Rule for limits. So we might
consider the limit of the ratio of their derivatives, and , since the derivatives
measure how fast and change. In other words, it might be plausible that if
both and as , then

Let’s try this on the limits in (1) and (2). For the limit in (1) we have

lim
t→2

4(t 2 � 4)

t � 2
� lim

t→2

d

dt
 [4(t 2 � 4)]

d

dt
 (t � 2)

� lim
t→2

8t

1
� 16

lim
x→0

f(x)

t(x)
� lim

x→0

f ¿(x)

t¿(x)

x → 0t(x) → 0f(x) → 0
t(x)f(x)

t¿(x)f ¿(x)

xt(x)f(x)
t(x)

f(x)

f3(x) � x
t3(x) � x2

goes to zero at the rate at which goes to zero, sot2(x) � 3x(2x)>(3x) � 2
3f2(x) � 2x
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which is the value we obtained before! For the limit in (2) we find

which we demonstrated in Section 1.2.
This method, which we have arrived at intuitively, is given validity by the theorem

known as l’Hôpital’s Rule. The theorem is named after the French mathematician Guil-
laume Francois Antoine de l’Hôpital (1661–1704), who published the first calculus text
in 1696. But before stating l’Hôpital’s Rule, we need to define another type of inde-
terminate form.

If and , then the limit

is said to be an indeterminate form of the type , , , or . To
see why this limit is an indeterminate form, we simply write

which has the form and, therefore, is indeterminate. We refer to each of these 
limits as an indeterminate form of the type , since the sign provides no useful
information.

�>�0>0

lim
x→a

f(x)

t(x)
� lim

x→a

1

t(x)

1

f(x)

��>���>����>��>�
lim
x→a

f(x)

t(x)

limx→a t(x) � 
�limx→a f(x) � 
�

lim
x→0

 
sin x

x
� lim

x→0
 

d

dx
 (sin x)

d

dx
 (x)

� lim
x→0

 
cos x

1
� 1

THEOREM 1 l’Hôpital’s Rule

Suppose that and are differentiable on an open interval that contains , with 

the possible exception of itself, and for all in . If is an

indeterminate form of the type or , then

provided that the limit on the right-hand side exists or is infinite.

lim
x→a

f(x)

t(x)
� lim

x→a

f ¿(x)

t¿(x)

�>�0>0
lim
x→a

f(x)

t(x)
Ixt¿(x) � 0a

aItf

G. F. A. DE L’HÔPITAL 
(1661–1704)

The wealthy Guillaume François Antoine de
l’Hôpital (also spelled l’Hospital) commis-
sioned mathematician Johann Bernoulli
(page 636) to teach him differential and
integral calculus and even to sell Bernoulli’s
own mathematical discoveries to l’Hôpital in
exchange for a regular salary. Although it
seems surprising to us, Bernoulli agreed to
this arrangement, and l’Hôpital thereafter
presented many of Bernoulli’s results as his
own. In fact l’Hôpital used one of Bernoulli’s
most impressive contributions in the first
textbook to be written on differential cal-
culus, Analyse des infiniment petits pour
l’intelligence des lignes courbes (1696).
l’Hôpital’s writing style was exceptional, and
his text appeared in numerous editions
throughout the next century. l’Hôpital did
acknowledge Bernoulli in the preface to his
text, but he did not make clear the great
extent to which the work was actually due
to Bernoulli. Bernoulli kept silent during
l’Hôpital’s life, but after l’Hôpital’s death
Bernoulli accused him of plagiarism.
Bernoulli’s claims were not taken seriously
at the time, and the rule on indeterminate
forms has been known as l’Hôpital’s Rule
since 1696. Only after historical research
and the publication of the correspondence
between Bernoulli and l’Hôpital has it been
substantiated that the rule is actually the
result of Johann Bernoulli’s insight.

Historical Biography
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We will prove this theorem in Appendix B.

The expression is the ratio of the derivatives of and —it is not
obtained from by using the Quotient Rule.

Notes
1. l’Hôpital’s Rule is also valid for one-sided limits as well as limits at infinity or

negative infinity; that is, we can replace “ ” by any of the symbols ,
, , or .x → ��x → �x → a�

x → a�x → a

f>t t(x)f(x)f ¿(x)>t¿(x)!
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EXAMPLE 1 Evaluate .

Solution We have an indeterminate form of the type . Applying l’Hôpital’s Rule,
we obtain

(See Figure 1.)

lim
x→0

ex � 1

2x
� lim

x→0

d

dx
 (ex � 1)

d

dx
 (2x)

� lim
x→0

ex

2
�

1

2

0>0
lim
x→0

ex � 1

2x

FIGURE 1
The graph of gives a visual 

confirmation of the result of Example 1.

y �
ex � 1

2x

EXAMPLE 2 Evaluate .

Solution We have an indeterminate form of the type . Applying l’Hôpital’s Rule,
we obtain

(See Figure 2.)

lim
x→�

ln x

x
� lim

x→�

d

dx
 (ln x)

d

dx
 (x)

� lim
x→�

1
x

� 0

�>�
lim
x→�

ln x

x

FIGURE 2
The graph of shows that 

as .x → �y → 0

y �
ln x

x

EXAMPLE 3 Evaluate .

Solution We have an indeterminate form of the type . Applying l’Hôpital’s Rule,
we obtain

(See Figure 3.)

 � 0

 � lim
x→1�

2p(cos px)1x � 1

 lim
x→1�

sin px

(x � 1)1>2 � lim
x→1�

p cos px
1
2(x � 1)�1>2

0>0
lim

x→1�

sin px

1x � 1

FIGURE 3
The graph of shows that 

.lim
x→1�

sin px

(x � 1)1>2 � 0

y �
sin px

(x � 1)1>2

2. Before applying l’Hôpital’s Rule, check to see that the limit does have one of the
indeterminate forms. For example, as , so

If we had applied l’Hôpital’s Rule to evaluate the limit without first ascertaining
that it had an indeterminate form, we would have obtained the erroneous result

lim
x→0�

cos x

x
� lim

x→0�

�sin x

1
� 0

lim
x→0�

cos x

x
� �

x → 0�cos x → 1

0 x1�1�2 2

y

0.5

1.0

1.5

2.0

0 x10080604020

y

0.1

0.2

0.3

0.4

�0.1

�0.2

0 x5432

1

y

�1.0

�1.5

�0.5

0.5
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Sometimes we need to apply l’Hôpital’s Rule more than once to resolve a limit
involving an indeterminate form. This is illustrated in the next two examples.

EXAMPLE 4 Evaluate .

Solution Applying l’Hôpital’s Rule (three times), we obtain

Type:

Type:

(See Figure 4.)

 � lim
x→�

6

8e2x
� 0

�>� � lim
x→�

6x

4e2x

�>� lim
x→�

x3

e2x
� lim

x→�

3x2

2e2x

lim
x→�

x3

e2x

FIGURE 4
The graph of shows that 

as .x → �

y → 0y �
x3

e2x

EXAMPLE 5 Evaluate .

Solution We have an indeterminate form of the type . Using l’Hôpital’s Rule,
repeatedly, we obtain

Type:

Type:

(See Figure 5.)

The Indeterminate Forms and 
If and , then the limit

is said to be an indeterminate form of the type . An indeterminate form of
this type can often be expressed as one of the type or by algebraic manipu-
lation. This is illustrated in the following example.

�>�0>0� � �

lim
x→a

[ f(x) � t(x)]

limx→a t(x) � �limx→a f(x) � �

0 �����

 � lim
x→0

6

�4 sec2 x tan2 x � 2 sec4 x
�

6

�2
� �3

0>0 � lim
x→0

6x

�2 sec2 x tan x

0>0 lim
x→0

x3

x � tan x
� lim

x→0

3x2

1 � sec2 x

0>0
lim
x→0

x3

x � tan x

0 x5 64321

y

0.05

0.10

0.15

0.20

FIGURE 5
The graph of shows that 

as . Note that is not
defined at .x � 0

yx → 0y → �3

y �
x3

x � tan x

0 x�1 321

y

�2

�4

4

2

EXAMPLE 6 Evaluate .

Solution We have an indeterminate form of the type . By writing the ex-
pression in parentheses as a single fraction, we obtain an indeterminate form of 

� � �

lim
x→0�
a1

x
�

1

ex � 1
b
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the type . This enables us to evaluate the resulting expression using l’Hôpital’s
Rule:

Type:

Apply l’Hôpital’s Rule.

Apply l’Hôpital’s Rule again.

(See Figure 6.)

If and , then is said to be an
indeterminate form of the type . An indeterminate form of this type also can
be expressed as one of the type or by algebraic manipulation, as illustrated
in the following example.

�>�0>00 � �
limx→a f(x)t(x)limx→a t(x) � 
�limx→a f(x) � 0

 � lim
x→0�

ex

(x � 2)ex �
1

2

 � lim
x→0�

ex � 1

ex � 1 � xex

0>0 lim
x→0�
a1

x
�

1

ex � 1
b � lim

x→0�

ex � x � 1

x(ex � 1)

0>0

EXAMPLE 7 Evaluate .

Solution We have an indeterminate form of the type . By writing

the given limit can be cast in an indeterminate form of the type . Then, applying
l’Hôpital’s Rule, we obtain

Type:

(See Figure 7.)

The Indeterminate Forms , , and 
The limit

t(x)

is said to be an indeterminate form of the type

if and 

if and 

if and lim
x→a

t(x) � 
�lim
x→a

f(x) � 11�

lim
x→a

t(x) � 0lim
x→a

f(x) � ��0

lim
x→a

t(x) � 0lim
x→a

f(x) � 000

lim
x→a

[ f(x)]

1��000

 � lim
x→0�

1
x

�
1

x2

� lim
x→0�

(�x) � 0

�>� lim
x→0�

x ln x � lim
x→0�

ln x

1
x

�>�

x ln x �
ln x

1
x

0 � �

limx→0� x ln x

FIGURE 7
The graph of gives a visual
verification of the result in Example 7.

y � x ln x

FIGURE 6
The graph of shows 

that .lim
x→0�
a1

x
�

1

ex � 1
b �

1

2

y �
1
x

�
1

ex � 1

0 x�2 �1 54321

y

1.0

0.4

0.2

0.8

0.6

0 x1.00.5 2.01.5 2.5

y

�0.5

�1.0

2.0

0.5

1.5

1.0
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EXAMPLE 8 Evaluate .

Solution We have an indeterminate form of the type . Let

Then

and using the result of Example 7, we obtain

Finally, using the identity and the continuity of the exponential function, we
have

(See Figure 8.)

lim
x→0�

xx � lim
x→0�

y � lim
x→0�

eln y � e
lim

x→0�
ln y

� e0 � 1

y � eln y

lim
x→0�

ln y � lim
x→0�

x ln x � 0

ln y � ln xx � x ln x

y � xx

00

limx→0� xx

FIGURE 8
The graph of 

shows that .lim
x→0�

xx � 1
y � xx

EXAMPLE 9 Evaluate .

Solution We have an indeterminate form of the type . Let

Then

and

lim
x→0�

ln y � lim
x→0�

(sin x)ln 
1
x

ln y � lna1
x
bsin x

� (sin x)ln 
1
x

y � a1
x
bsin x

�0

lim
x→0�
a1

x
bsin x

These indeterminate forms can usually be converted to indeterminate forms of the
type by taking logarithms or by using the identity

t(x) t(x)ln f(x)� e[ f(x)]

0 � �

0 x1.00.5 1.5

y

2.0

0.5

1.5

1.0
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This last limit is an indeterminate form of the type . By writing

we can transform it into an indeterminate form of the type and hence use l’Hôpi-
tal’s Rule. We have

Type:

Rewrite .

Apply l’Hôpital’s Rule.

Therefore,

since the exponential function is continuous. (See Figure 9.)

lim
x→0�
a1

x
bsin x

� lim
x→0�

y � lim
x→0�

eln y � e
lim

x→0� 
ln y

� e0 � 1

lim
x→0�

sin x

x
� 1 � lim

x→0�
asin x

x
b (tan x) � 0

 � lim
x→0�

�
1
x

�
cos x

sin2 x

� lim
x→0�

sin2 x

x cos x

lna1

x
b � lim

x→0�
�

ln x

1

sin x

�>� lim
x→0�

ln y � lim
x→0�

ln 
1
x

1

sin x

�>�

(sin x)lna1
x
b �

ln 
1
x

1

sin x

0 � �

FIGURE 9

The graph of 

shows that .lim
x→0�

ln y � 1

y � a1
x
bsin x

EXAMPLE 10 Evaluate .

Solution We have an indeterminate form of the type . Let

Then

ln y � lna1 �
1
x
bx

� x lna1 �
1
x
b

y � a1 �
1
x
bx

1�

lim
x→�
a1 �

1
x
bx

0 x1.0 2.00.5 1.5

y
2.0

0.5

1.5

1.0
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so

has an indeterminate form of the type . Rewriting and using l’Hôpital’s Rule, we
obtain

Type:

Type:

Apply l’Hôpital’s Rule.

Therefore,

since the exponential function is continuous. (See Figure 10.)

lim
x→�
a1 �

1
x
bx

� lim
x→�

y � lim
x→�

eln y � e
lim

x→�
ln y

� e1 � e

 � lim
x→�

1

1 �
1
x

� 1

 � lim
x→�
≥
a 1

1 �
1
x

b a� 1

x2
b

�
1

x2

¥

0>0 � lim
x→�

lna1 �
1
x
b

1
x

0 � � lim
x→�

ln y � lim
x→�

x lna1 �
1
x
b

0 � �

lim
x→�

ln y � lim
x→�

x lna1 �
1
x
b

FIGURE 10
The graph of shows that 

as .x → �y → e � 2.718

y � a1 �
1
x
bx

In Exercises 1–8, evaluate the limit or classify the type of inde-
terminate form to which it gives rise.

1. if and 

2. if and , where 

3. if 

4. if and 

5. if 

6. t(x) if and where 

f(x) � 0

lim
x→�

t(x) � �lim
x→�

f(x) � 0lim
x→�

[ f(x)]

lim
x → 3

f(x) � 8lim
x→3
c f(x)

(x � 3)2 �
2

�x � 3 � d
lim
x→a

t(x) � ��lim
x→a

f(x) � �lim
x→a

[ f(x) � t(x)]

lim
x→a

f(x) � �lim
x→a�

f(x)

x � a

t(x) � 0lim
x→a

t(x) � 0lim
x→a

f(x) � 4lim
x→a

f(x)

t(x)

lim
x→a

t(x) � �lim
x→a

f(x) � 1lim
x→a

f(x)

t(x)

7. if 

8.
t(x)

if and where 

9. a. State l’Hôpital’s Rule.
b. Explain how l’Hôpital’s Rule can be used to evaluate

(i) if and 

(ii) if and 

(iii) t(x) if and , where

f(x) � 0

lim
x→a

t(x) � 0lim
x→a

f(x) � 0lim
x→a

[ f(x)]

lim
x→a

t(x) � ��

lim
x→a

f(x) � ��lim
x→a

[ f(x) � t(x)]

lim
x→a

t(x) � 0lim
x→a

f(x) � �lim
x→a

f(x)t(x)

f(x) � 0

lim
x→a

t(x) � 0lim
x→a

f(x) � 0lim
x→a
c 2

f(x)
d

lim
x→�

f(x) � �lim
x→�
c x

2x2 � 5
d f(x)

6.7 CONCEPT QUESTIONS

0 x105 15 20

y
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In Exercises 1–60, evaluate the limit using l’Hôpital’s Rule if
appropriate.

1. 2.

3. 4.

5. 6.

7. 8.

9. 10.

11. 12.

13. 14.

15. 16.

17. 18.

19. 20.

21. 22.

23. 24.

25. 26.

27. 28.

29. 30.

31. 32.

33. 34.

35. 36.

37. 38. lim
x→0
aex � cos x � tan x

x � tan x � sin x
blim

x→1
a 1

ln x
�

1

x � 1
b

lim
t→p>2(tan t � sec t)lim

x→0�
a1

x
�

1

1 � cos x
b

lim
x→0

 
x3

tanh x
lim
u→0

 
sinh u

sin u

lim
x→0

 
1 � cosh x

x2lim
x→0

 
(sin x)2

1 � sec x

lim
x→0

 
sin�1 x � x

tan�1 x � x
lim
x→0
acot x �

1
x
b

lim
x→0

 
2x

tan�1(3x)
lim
x→0

 
sin�1(2x)

x

lim
x→0

 
ex2

� 1

1 � cos x
lim
x→0

 
sin x � x

ex � e�x � 2x

lim
x→0

 
ln(1 � x) � tan x

x2lim
x→0�

 
ex2

� x � 1

1 �21 � x2

lim
x→0

 
ln(x2 � 1)

cos x � 1
lim

x→�1
 
1x � 2 � x

13 2x � 1 � 1

lim
x→1

 
aln x � x

ln x
lim
x→�

 
ln(1 � ex)

x2

lim
x→1

 
x1>2 � x1>3

x � 1
lim
x→�

 
(ln x)3

x2

lim
x→�

 
ex

x4lim
x→�

 
1x

ln x

lim
u→p

 
2 sin2 u

1 � cos u
lim
x→0

 
sin x � x cos x

tan3 x

lim
u→0

 
u � sin u

tan u
lim
x→�

 
x � cos x

2x � 1

lim
x→0

 
sin 2x

x
lim
u→0

 
tan 2u

u

lim
x→0

 
ex � 1

x � sin x
lim
t→p

 
sin t

p � t

lim
x→1

 
ln x

x � 1
lim
x→0

 
ex � 1

x2 � x

lim
x→1

 
x7 � 1

x4 � 1
lim
x→2

 
x3 � 8

x � 2

lim
x→�1

 
x2 � 2x � 3

x � 1
lim
x→1

 
x � 1

x2 � 1

39.

40. 41.

42. 43.

44. 45.

46. 47.

48. 49.

50. 51.

52. 53.

54. 55.

56. 57.

58. ,

59. 60.

In Exercises 61 and 62, l’Hôpital’s Rule is used incorrectly. Find
where the error is made, and give the correct solution.

61.

62.

63. Continuous Compound Interest Formula See Section 6.4. Use
l’Hôpital’s Rule to derive the continuous compound interest
formula

where is the accumulated amount, is the principal,
is the time in years, and is the nominal interest rate 

per year compounded continuously, from the compound
interest formula

where is the nominal interest rate per year compounded 
times per year.

64. Velocity of a Ballast A ballast of mass slugs is dropped from
a hot-air balloon with an initial velocity of ft/sec. If the√0

m

mr

A � Pa1 �
r

m
bmt

rt
PA

A � Pert

lim
x→0

 
e3x � x � 1

ex � 1
� lim

x→0
 
3e3x � 1

ex � lim
x→0

 
9e3x

ex � 9

lim
x→1

 
x5 � 1

x2 � 1
� lim

x→1
 
5x4

2x
� lim

x→1
 
20x3

2
� 10

lim
x→�

(a1>x � 1)xlim
x→0�

 
ln x

2 � 3 ln(sin x)

a, b � 0lim
x→0

 
ax � bx

x

lim
x→�

 
2 tan�1 x � p

e1>x2
� 1

lim
x→�

(2 tan�1 x � p)ln x

lim
x→�

(x �2x2 � 1)lim
x→p

2
�
(sin x)tan x

lim
x→�
a2x � 1

2x � 1
b1x

lim
x→�
a1 �

1
x
bx

lim
x→�
a1 �

1
x
bx3

lim
x→�

x tan(1>x)

lim
x→p

2
�
(tan x)cos xlim

x→�
(x2 � ex)1>x

lim
x→0�
a1

x
b tanh x

lim
x→�

(e2x � 1)1>x

lim
x→�

(ln x)1>xlim
x→0�

(x � sin x)1x

lim
x→0�

(1 � cos x)tan xlim
x→0�

x sin x

lim
x→�
a1

x
be�xlim

x→p>2[(p � 2x)sec x]

lim
x→0�

[csc x � ln(1 � sin x)]
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ballast is subjected to air resistance that is directly proportional
to its instantaneous velocity, then its velocity at time is

feet per second, where is the constant of proportional-
ity and is the constant of acceleration. Find an expression
for the velocity of the ballast at any time , assuming that
there is no air resistance.
Hint: Find .

65. Current in a Circuit A series circuit including a resistor 
and inductance is shown in the schematic. Suppose that
the electromotive force is volts, the resistance is 
ohms, and the inductance is henries, where , , and 
are positive constants. Then the current at time is given by

amperes. Using l’Hôpital’s Rule, evaluate to find
an expression for the current in a circuit in which the resis-
tance is 0 ohms.

66. Resonance Refer to Section 2.5. A weight of mass is
attached to a spring suspended from a support. The weight
is then set in motion by an oscillatory force 
acting on the support. Here, and are positive constants,
and is time. In the absence of frictional and damping
forces, the position of the weight from its equilibrium posi-
tion at time is given by

with , where is the spring constant. Show that
if approaches , the resulting oscillations of the mass
increase without bound. This phenomenon is known as pure
resonance.

m

v0v

kv0 � 1k>m
x(t) �

F0(�v sin v0t � v0 sin vt)

v0(v2
0 � v2)

t

t
vF0

f(t) � F0 sin vt

m

Switch

E(t) I(t)

R L

�

�

limR→0� I

I(t) �
V

R
 11 � e�Rt>L2

t
LRVL
RVE(t)

L
RRL

limk→0 √(t)

t
t

k � 0

√(t) �
mt

k
� a√0 �

mt

k
be�kt>m

t
67. Bimolecular Reaction In a bimolecular reaction ,

moles per liter of and moles per liter of are combined.
The number of moles per liter that have reacted after time 
is given by

where the positive number is called the velocity constant.
Find an expression for if , and find . Inter-
pret your results.

68. Prove that for every positive constant . This

shows that the natural exponential function approaches 
infinity faster than any power function.

69. Prove that for every positive constant . This

shows that the natural logarithmic function approaches 
infinity slower than any power function.

70. Prove that . Can l’Hôpital’s Rule be used to 

compute this limit?

71. Show that

Can l’Hôpital’s Rule be used to compute this limit?

72. Use l’Hôpital’s Rule to show that if is continuous, then

and that if is continuous, then

The integrals and are called Fresnel inte-
grals. They are used to explain the phenomenon of light diffrac-
tion. In Exercises 73–76, evaluate the given limits.

73.

74.

75.

76. lim
x→0�

 
1

x3>2 �
1x

0
sin t 2 dt

lim
x→0

 
1

x3 �
x

0
sin t 2 dt

lim
x→0

 
1

x5 c�
x

0
cos t 2dt � xd

lim
x→0

 
1
x

 �
x

0
cos t 2 dt

�x
0 sin t 2dt�x

0 cos t 2 dt

lim
h→0

 
f(x � h) � 2f(x) � f(x � h)

h2 � f �(x)

f �

lim
h→0

 
f(x � h) � f(x � h)

2h
� f ¿(x)

f ¿

lim
x→0

 

x2 sina1
x
b

sin x
� 0

lim
x→p>2 

tan x

sec x
� 1

klim
x→�

 
ln x

xk � 0

klim
x→�

 
xk

ex � 0

limt→� xa � bx
k

a � bx �
ab[1 � e(b�a)kt]

a � be(b�a)kt

t
BbA

aA � B → M
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In Exercises 77–80, plot the graph the function and use it to
guess at the limit. Verify your result using l’Hôpital’s Rule.

77. 78.

79.

80. lim
x→0

 
1
x

 [(1 � x)1>x � e]

lim
x→1
a 1

ln x
�

1

x � 1
b

lim
x→0�
a1

x
b tan x

lim
x→0

 
ex � e�2x

ln(1 � x)

In Exercises 81–82, determine whether the statement is true or
false. If it is true, explain why it is true. If it is false, give an
example to show why it is false.

81. If and , then 

.

82. lim
x→p�

 
sin x

1 � cos x
� lim

x→p�
 
cos x

sin x
� �

lim
x→a

 
f(x)

t(x)
� lim

x→a
 

d

dx
 c f(x)

t(x)
d

lim
x→a

t(x) � 0lim
x→a

f(x) � 0

In Exercises 1–12, fill in the blanks.

1. The natural logarithmic function is defined by 
.

2. If and are positive numbers and is a rational number,

then , and 

.

3. Let . (a) The domain of is . (b) The
range of is . (c) is continuous on . 
(d) is increasing on . (e) is concave 

on . (f) 
(g) .

4. If is a differentiable function of , then (a) 

, and (b) .

5. A function is the inverse of the function if and
. Equivalently, if and only if .

The graph of is the of the graph of with
respect to the line .

6. A function with domain is one-to-one if 
whenever for all and in . A function has 
an inverse if and only if it is .

Dx2x1x1 � x2

Df

ff �1
y � f(x)

ft

� 1
u

du �

d

dx
ln �u � �xu

limx→0� f(x) �
limx→� f(x) �

ff
ff

ff(x) � ln x

ln xr �ln 
x

y
�ln xy �

ryx

ln x �

7. If is differentiable on its domain and has an inverse
, then if .

8. The natural exponential function exp is defined by the rule
; its domain is ; its range is

; it is continuous and increasing on ; its
graph is concave on ; 

, and .

9. If and are real numbers and is a rational number, then
(a) , (b) , and (c) 

.

10. If is a differentiable function of , then (a) 

and (b) .

11. If and , then ; if is a dif-

ferentiable function of , then , and 

.

12. The Power Rule for real exponents states that 

. If is a differentiable function of , then 

.
d

dx
loga �u � �

xu

d

dx
 xn �

� au du �

d

dx
 au �x

uax �a � 1a � 0

� eu du �

d

dx
 eu �xu

(ex)r �ex�y �ex�y �
ryx

limx→� exp x �
limx→�� exp x �

f(x) �

f ¿(t(x)) � 0t¿(x) �t � f �1
f

CONCEPT REVIEW

CHAPTER 6 REVIEW

In Exercises 1–14, solve the equation for .

1. 2.

3. 4.

5. 6. ex2
� 15e1x � 4

log8(x � 3) �
2

3
log3 x � 2

ex � 3ln x �
2

5

x 7. 8.

9. 10.

11. 12.

13. 14. cos�1(sin x) � 0tan�1 x � 1

ln xe � 232x � 12 � 3x � 27 � 0

50

1 � 4e0.2x � 20ln x � ln(x � 2) � 0

ln x � �1 � ln(x � 2)2 � 3e�x � 6

REVIEW EXERCISES



Review Exercises 601

In Exercises 15 and 16, solve the equation for in terms of .

15. 16.

In Exercises 17 and 18, expand the expression. Assume all 
variables are positive.

17. 18.

In Exercises 19 and 20, write the expression as a single loga-
rithm.

19.

20.

In Exercises 21–52, find .

21. 22.

23. 24.

25.

26.

27. 28.

29. 30.

31. 32.

33. 34.

35. 36.

37. 38.

39. 40.

41. 42.

43. 44.

45. 46.

47. 48.

49. 50.

51. 52.

53. Find the intervals where is increasing and
where it is decreasing.

54. Find the intervals where is increasing and
where it is decreasing.

55. Find an equation of the tangent line to the graph of
at the point .(e, 2e)y � (2x)>(ln x)

f(x) � x2e�x

f(x) � 2x2 � ln x

y � (sin x)cos xy � eax cosh bx

y � sin�1(tanh x)x cosh y � esinh y � 10

y � tan�1(cos�11x)y � sin�1ax � 1

x � 2
b

y � tan�12x2 � 1y � tan(cos�1 2x)

y � sinh�1(tanh x)y � x sec�1 x

y � etanh 3xy � ln(sinh 2x)

y � x2 ln(x � sin�1 x)y � 3x cot x

y � 2esec�1 xye�x � xey2
� 8

y � (2e)x>2y � eex

y � x � 3x2�1y � ecsc x

y � ln � sec 2x � tan 2x �y �
ex

21 � e�x

y � ln(tan x)y � ln(x2e�2x)

ln(x � y) � sin y � x2 � 0x ln y � y ln x � 3

y �
1x(x � 2)3

1x � 3

y � e�x(cos 2x � 3 sin 2x)

y � x2e1xy � 1x ln x

y � ln 
x(x � 1)

x � 2
y � ln 1x � 1

dy>dx

3 ln x �
1

3
ln(yz) � 6 ln1xy

2 ln x � ln 
x3

y2 � 4 ln1x � y

ln 
1x

y23 x2 � y2
ln x3 2y>z2

y �
ex � e�x

2
y � e2x � 2

yx 56. Find an equation of the tangent line to the graph of
that is parallel to the line .

57. Find the absolute extrema of on .

58. Find the absolute extrema of on
.

In Exercises 59–62, use the curve-sketching guidelines of 
Section 3.6 to sketch the graph of the function.

59. 60.

61. 62.

In Exercises 63–78, find or evaluate the integral.

63. 64.

65. 66.

67. 68.

69. 70.

71. 72.

73. 74.

75. 76.

77. 78.

In Exercises 79 and 80, use the properties of integrals to prove
the inequality.

79.

80.

In Exercises 81 and 82, find .

81.

82. , where 

83. Find the area of the region under the graph of on
.

84. Find the area of the region bounded by the graphs of
, , , and .x � 2x � 1y � �1>xy � e2x

[0, 4]
y � xe�x2

x � 0f(x) � �
1x

ln x

sinh t dt

f(x) � �
x2

0

et

t 2 � 1
dt

f ¿(x)

1 � �
1

0
ex2

dx � e

�
1

0
21 � e4x dx �

1

2
 (e2 � 1)

� sinh 2t dt� sec t tan t

1 � sec t
dt

� tan�1 2x

1 � 4x2 dx� sin�1 x

21 � x2
dx

� tan1x

1x
dx�

1

0

e3x

1 � e3x dx

� e1>x
x2 dx� sin(ln x)

x
dx

� ex

ex � 1
dx� t � 2t2

dt

� (ln x)3

x
dx� 2x � 1

3x � 2
dx

� cos x

2 � 3 sin x
dx�

2

1
 
x3 � 2x � 1

x2 dx

�
1

0
 

x

2x2 � 1
dx� 1

5x � 3
dx

f(x) � sin�1a1
x
bf(x) �

3

1 � e�x

f(x) � 2 � e�xf(x) � x ln x

C 1
13

, 13 D f(x) � tan�1 x � 1
2 ln x

[1, 5]f(x) � (ln x)>x
x � y � 3 � 0y � xe�x
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85. Find the average value of on the interval
.

86. The region under the graph of on the
interval is revolved about the -axis. Find the volume
of the resulting solid.

In Exercises 87–99, evaluate the limit.

87. 88.

89. 90.

91. 92.

93.

94.

95.

96.

97. 98.

99.

100. Cost of Housing The Brennans are planning to buy a house 
4 years from now. Housing experts in their area have esti-
mated that the cost of a home will increase at a rate of 3%
per year during that 4-year period. If their predictions are
correct, how much can the Brennans expect to pay for a
house that currently costs $300,000?

101. Yahoo! in Europe Yahoo! is putting more emphasis on West-
ern Europe, where the number of online households is
expected to grow steadily. In a study conducted in 2004,
the number of online households (in millions) in Western
Europe was projected to be

where corresponds to the beginning of 2004.
a. What was the projected number of online households in

Western Europe at the beginning of 2005?
b. How fast was the projected number of online house-

holds in Western Europe increasing at the beginning 
of 2005?

Source: Jupiter Research.

102. Depreciation of Equipment For assets such as machines, whose
market values drop rapidly in the early years of usage,
businesses often use the double declining balance method.
In practice, a business firm normally employs the double
declining balance method for depreciating such assets for a

t � 0

0 	 t 	 2N(t) � 34.68 � 23.88 ln(1.05t � 5.3)

lim
x→0

 
sin x � x

x � tan x

lim
x→0�

xn ln xlim
x→�

(1x � 1 � 1x � 1)

lim
x→�

x2acosh 
1
x

� 1b
lim

x→0�
a1

x
�

1

ex � 1
b

lim
x→(p>2)

(sin x)tan x

lim
x→0
acsc x �

1
x
b

lim
x→(p>2)�

(cos x)tan xlim
x→�

e�x cos x

lim
x→�

 
e2x

ex � x2lim
x→0

 
sin 2x

sin 3x

lim
x→2

 
1x � 12

x � 2
lim
x→1

 
x3 � 2x2 � x

x5 � 1

y[0, 1]
y � x2>(1 � x4)

[1, 2]
f(x) � (ln x2)>x certain number of years and then switches over to the lin-

ear method. The double declining balance formula is

where denotes the book value of the assets at the end
of years and is the number of years over which the
asset is depreciated.
a. Find .
b. What is the relative rate of change of ?

103. Show that if the equation of motion of an object is
, where and are constants, then its

acceleration is numerically equal to the distance covered
by the object.

104. The equation of motion of a mass attached to a spring and
a dashpot damping device is

where , measured in feet, is the displacement from the
equilibrium position of the spring system and is measured
in seconds. Find expressions for the velocity and accelera-
tion of the mass.

105. Path of an Acrobatic Plane In a fly-by, the path of an acrobatic
plane may be described by the equation

where and are both measured in feet.

How close to the ground does the plane get?

106. The distance traveled by a steel ball sec after it has been
dropped into a viscous medium is given by

where and is the acceleration due to gravity. Find
expressions for the velocity and acceleration of the steel
ball.

107. Find the arc length of the graph of on
.[1, 2]

y � 1
4 x2 � 1

2 ln x

tk � 0

x(t) �
m

k
ln cosh B

tk

m
 t

t

0 x

y

50�50 100

100

200

300

400

500

600

700

yx

y � 200(e0.01x � e�0.02x)

t
x(t)

x(t) � e�2t(2 cos 4t � 3 sin 4t)

bax(t) � aet � be�t

V(n)
V¿(n)

Nn
V(n)

V(n) � C a1 �
2

N
bn



108. Find the arc length of the graph of on .

109. a. Prove that

b. Use a computer or a calculator to find the value of the
integral in part (a) with accurate to six decimal
places.

110. Absorption of Drugs Jane took 100 mg of a drug in the morn-
ing and another 100 mg of the same drug at the same time

n � 6

n � 10.5 � �
1>2

0

dx

21 � x2n
� 0.524

[1, 2]y � ln 
ex � 1

ex � 1

the following morning. The amount of the drug in her body
days after the first dosage was taken is given by

a. How fast was the amount of drug in Jane’s body chang-
ing after 12 hr ? After 2 days?

b. When was the amount of drug in Jane’s body a maxi-
mum?

c. What was the maximum amount of drug in Jane’s
body?

1t � 1
2 2

A(t) � e100e�1.4t if 0 	 t � 1

100(1 � e1.4)e�1.4t if t � 1

t

Challenge Problems 603

1. Prove that the function is not differentiable at
.

2. Let be the inverse function of . Show that if has
derivatives of order 3, then

3. Let be positive and differentiable. Prove that the graphs of
and are tangent to each other at

their points of intersection.

4. a. Prove that on the interval ,
where .
Hint: Show that is decreasing on .

b. Use the result of part (a) to prove the inequality

5. Let be defined by

Is differentiable at ? Explain.
Hint: Use the definition of the derivative.

6. Prove the inequality for .

7. Find .

8. Find if , where and are differentiable
functions with and for all values of .

9. Evaluate .

Hint: Relate the limit to the limit of a Riemann sum of an appropri-
ate function.

10. Prove the inequality for .x � 0
x

1 � x2 � tan�1 x � x

lim
n→�

 a
n

k�1
 

n

n2 � k2

xt(x) � 0f(x) � 0
tfy � logf(x) t(x)y¿

� 1

sin2 x cos4 x
dx

x � 0x>(x � 1) 	 ln(x � 1) 	 x

x � 0f

f(x) � •
2x

3 � e1>x if x � 0

0 if x � 0

f

R � 0�
p>2

0
e�R sin x dx �

p

2R
 (1 � e�R)

10, p2 2f(x) � sin x>x
R � 0

10, p2 2e�R sin x � e(�2R>p)x

y � f(x) sin axy � f(x)
f

f ¿ � 0t‡ �
3( f �)2 � f ¿̌f ‡

( f ¿)5

fft � f �1

x � 1
f(x) � � ln x �

11. Find , where .

Hint: Use the substitution .

12. a. Use the Mean Value Theorem to show that

b. Find , using a calculator.

13. Evaluate

14. Evaluate , where is a continuous 

function.

15. Evaluate .

16. Evaluate .

17. Suppose that the function is differentiable and that is
continuous. Prove that the limit

exists and is equal to .

18. Evaluate 

.

19. Let for .
a. Evaluate and .
b. Find the absolute extrema of on .(0, 1)f

limx→1� f(x)limx→0� f(x)
0 � x � 1f(x) � xx(1 � x)1�x

2n xn � bn�1x
n�1 � p � b0 2

limx→�12n xn � an�1x
n�1 � p � a0 �

f ¿(x)

lim
h→0

 
2f(x � h) � f(x) � f(x � h)

3h

f ¿f

lim
x→0

 
tan 3x2

ln cos(3x2 � x)

limx→0� x sin x

flim
b→a

 
1

b � a
 �

b

a

f(x) dx

lim
x→0

 
�

x3

0
tan t 1>3 dt

�
2x2

0
t dt

tan�1 0.9

p

4
� 0.06 � tan�1 0.9 �

p

4
� 0.05

u �
x � cos a

sin a

0 � �a � � p� dx

1 � 2x cos a � x2
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UP TO NOW we have relied on the basic integration formulas and the method of 

substitution to help us evaluate integrals. In this chapter we will look at some 

techniques of integration that will enable us to evaluate the integrals of more 

complicated functions.

We begin by introducing the method of integration by parts, which, like the

method of substitution, is a general technique of integration. We then look at special

methods for integrating trigonometric functions and rational functions. We also see

how a table of integrals and a computer algebra system can help us to evaluate very

general integrals.

Finally, we look at improper integrals, integrals in which the interval of integra-

tion is infinite or the integrand is unbounded (or both).

7 Techniques of Integration

There is a minimum speed that
a rocket must attain in order

to escape from the gravita-
tional field of a planet. This
speed is called the escape

velocity for the planet. In this
chapter, we will learn how to
calculate the escape velocity

for the earth. Br
an
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606 Chapter 7 Techniques of Integration

7.1 Integration by Parts

As we have seen, a rule of integration can often be found by reversing a correspond-
ing rule of differentiation. In this section we will look at a method of integration that
is obtained by reversing the Product Rule for differentiation.

The Method of Integration by Parts
Recall that the Product Rule states that if and are differentiable functions, then

If we integrate both sides of this equation with respect to , we obtain

or

which may be written in the form

(1)

Formula (1) is called the formula for integration by parts. We use this formula to
express one integral in terms of another that is easier to integrate.

Formula (1) can be simplified by using differentials. Let and so
that and . Substituting these quantities into Formula (1) leads
to the following version of the formula for integration by parts.

d√ � t¿(x) dxdu � f ¿(x) dx
√ � t(x)u � f(x)

� f(x)t¿(x) dx � f(x)t(x) � � t(x) f ¿(x) dx

f(x)t(x) � � f(x)t¿(x) dx � � t(x) f ¿(x) dx

� d

dx
 [ f(x)t(x)] dx � � [ f(x)t¿(x) � t(x) f ¿(x)] dx

x

d

dx
 [ f(x)t(x)] � f(x)t¿(x) � t(x) f ¿(x)

tf

Integration by Parts Formula

(2)�u d√ � u√ � � √ du

EXAMPLE 1 Find .

Solution Let’s use Formula (2) by choosing

and

so that

and
Any antiderivative will
do—see the Note fol-
lowing the example.

√ � � ex dx � exdu � dx

d√ � ex dxu � x

� xex dx
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This gives

Notes
1. In finding from the expression for , we don’t need to include the constant of

integration (that is, we may take ). To see why, suppose that we replace 
in Formula (2) by . Then we obtain

In other words, the constant “drops out.”
2. The success of the method of integration by parts depends on a judicious choice

of and . For instance, had we chosen and in Example 1,
then and and Formula (2) would have yielded

Since the integral on the right-hand side of this equation is more complicated
than the original integral, we have not made a good choice of and .d√u

 �
1

2
 x2ex � � 1

2
 x2ex dx

 � xex dx � u√ � � √ du

√ � x2>2du � ex dx
d√ � x dxu � exd√u

C

 � u√ � Cu � � √ du � Cu � u√ � � √ du

 � u d√ � u(√ � C) � � (√ � C) du � u√ � Cu � � √ du � �C du

√ � C
√C � 0

d√√

 � xex � ex � C � (x � 1)ex � C

 � xex � � ex dx

 � xex dx � u√ � � √ du

Guidelines for Choosing and 

Choose and so that

1. is simpler than (if possible).
2. is easily integrated.d√

udu

d√u

du

EXAMPLE 2 Find .

Solution Let

and

so that

and √ � � x dx �
1

2
 x2du �

1
x

dx

d√ � x dxu � ln x

� x ln x dx

Our original choice of and in Example 1 suggests the following general guide-
lines.

d√u
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Then Formula (2) gives

Sometimes we need to apply the integration by parts formula more than once to
find an integral, as illustrated in the next two examples.

 �
1

2
 x2 ln x �

1

4
 x2 � C �

1

4
 x2(2 ln x � 1) � C

 � x ln x dx �
1

2
 x2 ln x � � 1

2
 x2a1

x
b dx

EXAMPLE 3 Find .

Solution Let

and

so that

and

Then Formula (2) yields

(3)

Observe that the integral on the right-hand side, although not readily integrable, is 
simpler than the original integral. In fact, the power in in the integrand is 1 instead
of 2. This suggests that integrating by parts again might be a move in the right direc-
tion. So let’s apply the formula once again to evaluate . Let

and

so that

and

It follows from Formula (2) that

(4)

Finally, substituting Equation (4) into Equation (3) gives

� x2 sin x dx � �x2 cos x � 2x sin x � 2 cos x � C

�2x cos x dx � 2x sin x � �2 sin x dx � 2x sin x � 2 cos x � C

√ � � cos x dx � sin xdu � 2 dx

d√ � cos x dxu � 2x

� 2x cos x dx

x

� x2 sin x dx � �x2 cos x � �2x cos x dx

√ � � sin x dx � �cos xdu � 2x dx

d√ � sin x dxu � x2

� x2 sin x dx

EXAMPLE 4 Find .

Solution Let

and

so that

and √ � � sin 2x dx � �
1

2
cos 2xdu � ex dx

d√ � sin 2x dxu � ex

� ex sin 2x dx



7.1 Integration by Parts 609

(In this case the choice and will work equally well.) Substitut-
ing this value into Formula (2) yields

(5)

The integral on the right-hand side is not readily integrable. But notice that it is cer-
tainly no more complicated than the original integral. So let’s integrate by parts again
and see where this leads us. Let

and

so that

and

On using Formula (2), we find that

(6)

Substituting Equation (6) into Equation (5) yields

Since the integral on the right-hand side is, except for the constant of integration, a
constant multiple of the (original) integral on the left side, we can combine them to
yield

so the required result is

Note We leave it for you to show that if we had chosen and 
in finding the integral on the right-hand side of Equation (5), then our final result would
have been . This is certainly a true statement, but it is of
no help to us in evaluating the given integral.

� ex sin 2x dx � � ex sin 2x dx

d√ � ex dxu � cos 2x

 �
1

5
 ex(sin 2x � 2 cos 2x) � C

C �
4

5
 C1 � ex sin 2x dx � �

2

5
 ex cos 2x �

1

5
 ex sin 2x � C

5

4
 � ex sin 2x dx � �

1

2
 ex cos 2x �

1

4
 ex sin 2x � C1

� ex sin 2x dx � �
1

2
 ex cos 2x �

1

4
 ex sin 2x �

1

4
 � ex sin 2x dx

� ex cos 2x dx �
1

2
 ex sin 2x �

1

2
 � ex sin 2x dx

√ � � cos 2x dx �
1

2
sin 2xdu � ex dx

d√ � cos 2x dxu � ex

� ex sin 2x dx � �
1

2
 ex cos 2x �

1

2
 � ex cos 2x dx

d√ � ex dxu � sin 2x

EXAMPLE 5 Evaluate .

Solution We first find the indefinite integral

Let

and

so that

and √ � � sec2 x dx � tan xdu � sec x tan x dx

d√ � sec2 x dxu � sec x

� sec3 x dx � � sec x � sec2 x dx

�
p>4

0
sec3 x dx
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Using Formula (2), we obtain

Combining the integrals, we obtain

or

Finally, using this result, we find

Since is positive on , we can interpret the integral in this example
as the area of the region under the graph of on . (See Figure 1.)

An alternative method for evaluating a definite integral using integration by parts is
based on the following formula. Here we assume that both and are continuous.
Then the Fundamental Theorem of Calculus, Part 2, gives

Letting and and keeping in mind that the limits of integration are
stated for , we have the following.x

√ � t(x)u � f(x)

�
b

a

f(x)t¿(x) dx � f(x)t(x) `b
a

� �
b

a

t(x)f ¿(x) dx

t¿f ¿

C0, p4 Df
C0, p4 Df(x) � sec3 x

 �
1

2
 [12 � ln(12 � 1)] � 1.148

 � c1
2

 (12)(1) �
1

2
ln �12 � 1 �d � c1

2
 (1)(0) �

1

2
ln 1d

 �
p>4

0
sec3 x dx � c1

2
sec x tan x �

1

2
ln � sec x � tan x �dp>4

0

C �
1

2
 C1� sec3 x dx �

1

2
sec x tan x �

1

2
ln � sec x � tan x � � C

2� sec3 x dx � sec x tan x � ln � sec x � tan x � � C1

 � sec x tan x � ln � sec x � tan x � � � sec3 x dx

 � sec x tan x � � sec3 x dx � � sec x dx

sec2 x � 1 � tan2 x � sec x tan x � � (sec2 x � 1)sec x dx

 � sec3 x dx � sec x tan x � � tan2 x sec x dx

FIGURE 1
The area of the shaded region is given
by .�p>40 sec3 x dx

Integration by Parts Formula for a Definite Integral

(7)�
b

a

 u d√ � Cu√ Db
a

� �
b

a

 √ du

0

1

2

3

y

y � sec3 x

xπ
4

π
4�
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We illustrate the use of this formula in the next example.

EXAMPLE 6 Find the centroid of the region under the graph of on .

Solution The region under consideration is shown in Figure 2. The area of is
given by

We integrate by parts, letting

and

so that

and

Using Formula (7), we obtain

and

Then, using Equation (6) of Section 5.7, we find

Use the result of Example 2.

and

We integrate by parts, letting

and 

so that

and √ � xdu �
2 ln x

x
dx

d√ � dxu � (ln x)2

 �
1

2
 �

e

1
(ln x)2 dx

 y �
1

A
 �

b

a

 
1

2
 [ f(x)]2 dx �

1

1
 �

e

1
 
1

2
 (ln x)2 dx

 �
1

4
 e2(2 ln e � 1) �

1

4
 (2 ln 1 � 1) �

1

4
 (e2 � 1)

 � c1
4

 x2(2 ln x � 1)de
1

 x �
1

A
 �

b

a

xf(x) dx �
1

1
 �

e

1
x ln x dx

 � 1

ln 1 � 0ln e � 1 � e � (e � 1)

 � (e ln e � ln 1) � x `e
1

 A � Cx ln x De
1

� �
e

1
dx

√ � xdu �
1
x

dx

d√ � dxu � ln x

A � �
e

1
ln x dx

RR

[1, e]f(x) � ln x

FIGURE 2
The region R

0 1

1

2 3e

R

y

y � ln x

x
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We obtain

because , as we saw earlier. Therefore, the centroid of is located at the

point .

Reduction Formulas
We can use the integration by parts formula to derive reduction formulas for evalu-
ating certain integrals. These formulas enable us to express such integrals in terms of
integrals whose integrands involve lower powers. In the next two examples we derive
these formulas and then show how they are used.

114 (e
2 � 1), 12 e � 1 2 R�e
1 ln x dx � 1

 �
1

2
 e � 1

 �
1

2
 eCe(ln e)2 � 1(ln 1)2 D � 2�

e

1
ln x dxf

 y �
1

2
 eCx(ln x)2 De

1
� �

e

1
2 ln x dxf

EXAMPLE 7 Find a reduction formula for , where is an integer.

Solution We first rewrite

and then integrate by parts, letting

and

so that

and

This gives

Since , we can write

Transposing the last term on the right to the left-hand side gives

or

� sinn dx � �
1
n

sinn�1 x cos x �
n � 1

n
 � sinn�2 x dx

n� sinn x dx � �sinn�1 x cos x � (n � 1)� sinn�2 x dx

� sinn x dx � �sinn�1 x cos x � (n � 1)� sinn�2 x dx � (n � 1)� sinn x dx

cos2 x � 1 � sin2 x

 � �sinn�1 x cos x � (n � 1)� sinn�2 x cos2 x dx

 � sinn x dx � u√ � � √ du

√ � �cos xdu � (n � 1)sinn�2 x cos x dx

d√ � sin x dxu � sinn�1 x

� sinn x dx � � sinn�1 x sin x dx

n � 2� sinn x dx

MARY FAIRFAX SOMERVILLE
(1780–1872)

Mary Fairfax Somerville was born in Scot-
land during a time when girls were not for-
mally educated; her earliest education con-
sisted of reading the Bible. Later, to keep
her from roaming the Scottish coast,
Somerville’s parents sent her to boarding
school. She was there for only 12 months,
but during that time Somerville was intro-
duced to arithmetic, grammar, and French,
and she developed an interest in reading.
Her curiosity eventually lead her to the
study of algebra and Euclid’s Elements of
Geometry, but her father forbade her to
study mathematics, so it was not until
after she was widowed at the age of 27
that she was free to pursue her studies
seriously. Somerville remarried in 1812, and
her new husband encouraged her to con-
tinue her studies and to publish her writ-
ings. In 1831 her first book, The Mechanism
of the Heavens, which explained Pierre
Simon Laplace’s book on celestial mechan-
ics, was published, and it received rave
reviews. Many other successful books fol-
lowed, and her last major book was pub-
lished in 1869. As a result of her work,
Mary Somerville was one of the first
women to be admitted to the Royal Astro-
nomical Society. She lived to be 92 years
old and was actively working on mathe-
matics up to the day she died.

Historical Biography
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EXAMPLE 8 Use the reduction formula obtained in Example 7 to find .

Solution We use the reduction formula with to obtain

Applying the reduction formula once more to the integral on the right-hand side with
, we have

Therefore,

where .C � 3
4 C1

 � �
1

4
sin3 x cos x �

3

8
sin x cos x �

3

8
 x � C

 � sin4 x dx � �
1

4
sin3 x cos x �

3

4
 a�1

2
sin x cos x �

1

2
 x � C1b

 � �
1

2
sin x cos x �

1

2
 x � C1

 � sin2 x dx � �
1

2
sin x cos x �

1

2
 � dx

n � 2

� sin4 x dx � �
1

4
sin3 x cos x �

3

4
 � sin2 x dx

n � 4

� sin4 x dx

1. Write the formula for integration by parts for (a) indefinite
integrals and (b) definite integrals.

2. Explain how you would choose and when using the
integration by parts formula. Illustrate your answer with the
integral .� xe�x dx

d√u

7.1 CONCEPT QUESTIONS

In Exercises 1–44, find or evaluate the integral.

1. 2.

3. 4.

5. 6.

7. 8.

9. 10.

11. 12. � sin�1 x dx� tan�1 x dx

� x2 sin 2x dx� x2 cos x dx

� t 3et dt� x2e�x dx

� x3 ln x dx� x ln 2x dx

� x cos 2x dx� x sin x dx

� xe�x dx� xe2x dx

13. 14.

15. 16.

17. 18.

19. 20.

21. 22.

23. 24.

25. 26. � x sinh x dx� sec5 u du

� csc3 u du�1x cos1x dx

� cos(ln x) dx� x tan2 x dx

� u csc2 u du�u sin(2u � 1) du

�
1

0
x tan�1 x dx� e2x cos 3x dx

� e�x sin x dx� x sec2 x dx

� ln t

1t
dt�1t ln t dt

7.1 EXERCISES

Videos for selected exercises are available online at www.academic.cengage.com/login.V

www.academic.cengage.com/login
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27. 28.

29. 30.

31. 32.

33. 34.

35. 36.

37. 38.

39. 40.

41. 42.

43. 44.

45. Find the area of the region under the graph of on
the interval .[1, e]

y � (ln x)2

�
1

0
tan�1 1x dx�

p>3

p>4
u

sin2 u
du

�
p2>4

0
sin1x dx�

1

0
ln(1 � t 2) dt

�
p>2

0
(x � x cos x) dx�

2

1
x sec�1 x dx

�
p>2

0
e2x cos x dx�

e

1e

x�2 ln x dx

�
p

0
x sin 2x dx�

1>2

0
cos�1 x dx

�
2

0
ln(x � 1) dx�

e

1
x2 ln x dx

�
1

0
(t � 1)e�2t dt� ln x

11 � x
dx

� (x2 � 1)cos x dx� e�x ln(ex � 1) dx

� x cosh 2x dx� x3 sinh x dx 51. The region under the graph of on the interval
is revolved about the -axis. Find the volume of the

solid generated.

52. The region bounded by the graphs of , ,
, and is revolved about the -axis. Find the 

volume of the solid generated.

53. The region bounded by the graphs of , ,
, and is revolved about the -axis. Find the

volume of the solid generated.

54. Find the volume of the solid generated by revolving the
region enclosed by the graphs of , , and

about the -axis.

55. The region bounded by the graphs of , ,
, and is revolved about the line . Find

the volume of the solid generated.

56. Find the centroid of the region bounded by the graphs of
and on .

57. Energy Production To satisfy increased worldwide demand, the
Metro Mining Company plans to increase its production of
steam coal, the boiler-firing fuel used for generating electric-
ity. Currently 20 million metric tons are produced per year;
however, the company plans to increase production by

million metric tons per year, where is measured 
in years, for the next 10 years. Find a function that describes
the company’s total production of steam coal at the end of 

years. How much coal will the company have produced
over the next 10 years if its production goals are met?

58. Alcohol-Related Traffic Accidents The number of alcohol-related
accidents in a certain state, months after the passage of a
series of strict anti-drunk-driving laws, has been decreasing
at the rate of accidents per month. There
were 882 alcohol-related accidents for the year before enact-
ment of the laws. Determine how many alcohol-related acci-
dents were expected to occur during the first year after pas-
sage of the laws.

59. Damped Harmonic Motion Consider the system shown in the
accompanying figure. Here, the weight is attached to a

R(t) � 20 � te0.1t

t

t

t2te�0.05t

0 1

1

32 π

y

y � sin x

xπ
2

2
πy �

R

x

C0, p2 Dy � (2>p)xy � sin x
R

x � �1x � px � 0
y � 0y � sin x

yy � 1
x � 0y � sin x

xx � p>2y � 0
x � 0y � ex>2 cos x

xx � ex � 1
y � 0y � ln x

x[0, 1]
y �2cos�1 x

46. Find the area of the region under the graph of 
on the interval .

47. Find the area of the region bounded by the graphs of
and .

Hint: The graphs intersect at and .

48. Find the area of the region bounded by the graph of
and the -axis for in the interval .

49. Let and .
a. Plot the graphs of and using the viewing window

. Find the -coordinates of the
points of intersection of the graphs of and accurate 
to three decimal places.

b. Use the result of part (a) and integration by parts to find
the approximate area of the region bounded by the
graphs of and .

50. Let and .
a. Plot the graphs of and using the viewing window

. Find the -coordinates of the points
of intersection of the graphs of and accurate to three
decimal places.

b. Use the result of part (a) and integration by parts to find
the approximate area of the region bounded by the
graphs of and .tf

tf
x[0, 3] � [�0.7, 0.5]

tf
t(x) � �1x cos1xf(x) � e�x sin x

tf

tf
x[�1.2, 1] � [�1, 1.5]

tf
t(x) � 1 � x2f(x) � x1x � 1

C0, 3p2 Dxxy � e�x cos x

11, p4 2(0, 0)
y � (p>4)xy � tan�1 x

[0, 1]
y �

xex

(1 � x)2



spring and a dashpot damping device. Suppose that at ,
the weight is set in motion from its equilibrium position so
that its velocity at any time is

Find the position function of the body.

60. A Mixture Problem Two tanks are connected in tandem as
shown in the figure. Each tank contains 60 gal of water.
Starting at time , brine containing 3 lb/gal of salt flows
into Tank 1 at the rate of 2 gal/min. The mixture then enters
and leaves Tank 2 at the same rate. The mixtures in both
tanks are stirred uniformly. It can be shown that the amount
of salt in Tank 2 after min is given by

where is measured in pounds.
a. What is the initial amount of salt in Tank 2?
b. What is the amount of salt in Tank 2 after 3 hr?
c. What is the average amount of salt in Tank 2 over the

first 3 hr?

61. The Charge in an Electric Current The following figure shows an
series electrical circuit comprising an inductor, a resis-

tor, and a capacitor with inductance in henries, resistance
in ohms, and capacitance in farads, respectively. CR

L
LRC

Tank 1

Tank 2

A(t)

A(t) � 180(1 � e�t>30) � 6te�t>30

t

t � 0

x � 0 

x x (t)

(a) System in equilibrium
position

(b) System in motion

x(t)

√(t) � 3e�4t(1 � 4t)

t

t � 0

Here is the electromotive force in volts. Suppose that
the current in the system at time is

amperes. Find the charge on the capacitor at any time 
if the initial charge in the capacitor is coulombs.

Hint:

62. Damped Harmonic Motion Refer to Exercise 59. Suppose that
. The weight is set in motion from a point ft below

the equilibrium position so that its velocity at any time is

Find the position function of the body.

63. A Rocket Launch A rocket with a mass (including fuel) is
launched vertically upward from the surface of the earth

. If the fuel is consumed at a constant rate during
the interval and the speed of the exhaust gas rela-
tive to the rocket is a constant , then the velocity of the
rocket at time is given by

where is its initial velocity and is the gravitational con-
stant. Find the height of the rocket at any time before
burnout .

64. Growth of HMOs The membership of the Cambridge Commu-
nity Health Plan, a health maintenance organization, is pro-
jected to grow at the rate of thousand
people per year years from now. If the HMO’s current
membership is 50,000, what will the membership be 5 years
from now?

65. Diffusion A cylindrical membrane with inner radius cm
and outer radius cm containing a chemical solution is
introduced into a salt bath with constant concentration 

moles/L. If the concentration of the chemical inside 
the membrane is kept constant at a different concentration 
of moles/L, then the concentration of chemical across 
the membrane will be given by

r1 � r � r2c(r) � a c1 � c2

ln r1 � ln r2
b (ln r � ln r2) � c2

c1

c2

r2

r1

t
91t � 1 ln 1t � 1

(t � T)
th(t)

t√0

√(t) � √0 � tt � s lna1 �
r

m
 tb

t
s

0 � t � T
r(t � 0)

m

√(t) � e�2t(cos 4t � 3 sin 4t)

t

1
2t � 0

i �
dq

dt

q0

tq(t)

i(t) � �
200

3
 e�20t sin 60t

t
E(t)

E(t) R

L

C
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moles/L. Find the average concentration of the chemical
across the membrane from to .

66. Mechanical Resonance Refer to Example 5 of Section 2.5. Sup-
pose that an external force is applied to the spring so that
the velocity of the weight at time is .
a. Find the position function of the weight if it is at the

equilibrium position at .
b. Plot the graph of the position function found in part (a).
c. Show that and hence the motion is one

of resonance (see Exercise 44 of Section 2.5).

67. Suppose that is continuous on and ,
, , and . Evaluate .�3

1 x f �(x) dxf ¿(3) � 5f ¿(1) � 2f(3) � �1
f(1) � 2[1, 3]f �

limt→� � s(t) � � �

t � 0

√ � 8t sin 2tt

r2

r1

r � r2r � r1

68. Consider the following “proof” that . Integrate
by parts by letting and so that

and . This gives

Therefore, . What is wrong with this argument?

In Exercises 69 and 70, determine whether the statement is true
or false. If it is true, explain why it is true. If it is false, explain
why or give an example to show why it is false.

69.

70. �u√ dw � u√w � �uw d√ � � √w du

� exf ¿(x) dx � exf(x) � � exf(x) dx

0 � 1

 � a1
x
bx � � xa� 1

x2b dx � 1 � � dx

x

 � dx

x
� u√ � � √ du

√ � xdu � (�1>x2) dx
d√ � dxu � 1>x� (dx)>x 0 � 1

7.2 Trigonometric Integrals

In this section we develop techniques for evaluating integrals involving combinations
of trigonometric functions. Examples of such integrals are

, , and

As you will see, these techniques rely on the use of the appropriate trigonometric iden-
tities.

Integrals of the Form 
We begin by looking at integrals of the form

(1)

where

1. and/or is an odd positive integer.
2. and are both even nonnegative integers.

Examples 1 and 2 illustrate how an integral belonging to category 1 is evaluated,
and Example 3 shows how to evaluate an integral belonging to category 2.

nm
nm

� sinm x cosn x dx

� sinm x cosn x dx

� sin 5x cos 4x dx� csc 4x cot4 x dx� sin5 x cos2 x dx
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EXAMPLE 1 Find .

Solution Here (the power of ) is an odd positive integer. Let’s write

Retain a factor of .

Then

If we make the substitution , then , so

 � �
1

3
cos3 x �

2

5
cos5 x �

1

7
cos7 x � C

 � �a1

3
 u3 �

2

5
 u5 �

1

7
 u7b � C

 � �� (u2 � 2u4 � u6) du

 � sin5 x cos2 x dx � � (u2 � 2u4 � u6)(�du)

du � �sin x dxu � cos x

 � � (cos2 x � 2 cos4 x � cos6 x)sin x dx

 � sin5 x cos2 x dx � � cos2 x(1 � 2 cos2 x � cos4 x)sin x dx

 � (1 � 2 cos2 x � cos4 x)sin x

 � (1 � cos2 x)2 sin x

 � (sin2 x)2 sin x

sin x sin5 x � (sin4 x)(sin x)

sin xm

� sin5 x cos2 x dx

Use the identity to convert
the other factor to a function of .cos x

sin2 x � cos2 x � 1

EXAMPLE 2 Find .

Solution Here (the power of ) is an odd positive integer. Let’s write

Retain a factor of .

Then

Let so that . Then

 �
1

5
sin5 x �

1

7
sin7 x � C

 �
1

5
 u5 �

1

7
 u7 � C

 � sin4 x cos3 x dx � � (u4 � u6) du

du � cos x dxu � sin x

 � � (sin4 x � sin6 x)cos x dx

 � sin4 x cos3 x dx � � sin4 x(1 � sin2 x)cos x dx

 � (1 � sin2 x)cos x

cos x cos3 x � (cos2 x)(cos x)

cos xn

� sin4 x cos3 x dx

Use the identity to con-
vert the other factor to a function of .sin x

sin2 x � cos2 x � 1
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EXAMPLE 3 Find .

Solution Here, and . So both and are even nonnegative integers. In
this case we use the half-angle formula for :

to write

Applying the half-angle formula,

to in the last equation leads to

Therefore,

In general, we have the following guidelines for evaluating integrals of the form
.� sinm x cosn x dx

 �
3

8
 x �

1

4
sin 2x �

1

32
sin 4x � C

 � sin4 x dx �
1

4
 � a3

2
� 2 cos 2x �

1

2
cos 4xb dx

 �
1

4
 a3

2
� 2 cos 2x �

1

2
cos 4xb

 sin4 x �
1

4
 a1 � 2 cos 2x �

1

2
�

1

2
cos 4xb

cos2 2x

cos2 x �
1

2
 (1 � cos 2x)

 �
1

4
 (1 � 2 cos 2x � cos2 2x)

 � c1
2

 (1 � cos 2x)d2
 sin4 x � (sin2 x)2

sin2 x �
1

2
 (1 � cos 2x)

sin2 x
nmn � 0m � 4

� sin4 x dx

Guidelines for Evaluating 

1. If the power of is odd and positive , retain a factor of
, and use the identity to write

Then integrate using the substitution .u � cos x

 � � (1 � cos2 x)k cosn x sin x dx

 � sin2k�1 x cosn x dx � � (sin2 x)k cosn x sin x dx

sin2 x � 1 � cos2 xsin x
(m � 2k � 1)sin x

� sinm x cosn x dx
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2. If the power of is odd and positive , retain a factor of
, and use the identity to write

Then integrate using the substitution .
3. If the powers of and are both even and nonnegative, use the

half-angle formulas (repeatedly, if necessary) to write

and cos2 x �
1

2
 (1 � cos 2x)sin2 x �

1

2
 (1 � cos 2x)

cos xsin x
u � sin x

 � � sinm x (1 � sin2 x)k cos x dx

 � sinm x cos2k�1 x dx � � sinm x (cos2 x)k cos x dx

cos2 x � 1 � sin2 xcos x
(n � 2k � 1)cos x

EXAMPLE 4 Evaluate .

Solution The power of is odd and positive. So we retain a factor of . Thus,

Let so that . Note that when , , the lower
limit of integration with respect to ; when , , the upper
limit of integration with respect to . Making these substitutions, we obtain

Since is nonnegative on , we can interpret the integral in
this example as the area of the region under the graph of on . (See Figure 1.)

Integrals of the Form and 
The techniques for evaluating integrals of the form

are developed in a similar manner. We have the following guidelines for evaluating
such integrals.

� tanm x secn x dx

�cotm x cscn x dx� tanm x secn x dx

C0, p2 Df
C0, p2 Df(x) � sin3 x cos1>2 x

 � c�2

3
 u3>2 �

2

7
 u7>2d0

1
� c0 � a�2

3
�

2

7
b d �

8

21

 �
p>2

0
sin3 x cos1>2 x dx � �

0

1
(u1>2 � u5>2)(�du) � ��

0

1
(u1>2 � u5>2) du

u
u � cos(p>2) � 0x � p>2u

u � cos 0 � 1x � 0du � �sin x dxu � cos x

 � �
p>2

0
(cos1>2 x � cos5>2 x)sin x dx

 � �
p>2

0
(1 � cos2 x)cos1>2 x sin x dx

 �
p>2

0
sin3 x cos1>2 x dx � �

p>2

0
sin2 x cos1>2 x sin x dx

sin xsin x

�
p>2

0
sin3 x cos1>2 x dx

0

0.5

�0.5

y
y � sin3 x cos1/2 x

xπ
2

π
2�

FIGURE 1
The area of the shaded region is given
by .�p>20 sin3 x cos1>2 x dx
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The guidelines for evaluating are similar to those for evaluating
.� tanm x secn x dx

� cotm x cscn x dx

Guidelines for Evaluating � tanm x secn x dx

EXAMPLE 5 Find .

Solution Here, (the power of ) is an odd positive integer. Let’s retain the fac-
tor from the integrand and write

Then

Let so that . Then

 �
1

9
sec9 x �

1

7
sec7 x � C

 �
1

9
 u9 �

1

7
 u7 � C

 � tan3 x sec7 x dx � � (u8 � u6) du

du � sec x tan x dxu � sec x

� tan3 x sec7 x dx � � (sec8 x � sec6 x)sec x tan x dx

 � (sec8 x � sec6 x)sec x tan x

 � (sec2 x � 1)sec6 x(sec x tan x)

 tan3 x sec7 x � tan2 x sec6 x(sec x tan x)

sec x tan x
tan xm

� tan3 x sec7 x dx

Use the identity to con-
vert the other factors to a function of .sec x

tan2 x � sec2 x � 1

1. If the power of is odd and positive , retain a factor of
and use the identity to write

Then integrate using the substitution .
2. If the power of is even and positive , retain a factor of

and use the identity to write

Then integrate using the substitution .u � tan x

 � � tanm x (1 � tan2 x)k�1 sec2 x dx

 � tanm x sec2k x dx � � tanm x (sec2 x)k�1 sec2 x dx

sec2 x � 1 � tan2 xsec2 x
(n � 2k, k � 2)sec x

u � sec x

 � � (sec2 x � 1)k secn�1 x sec x tan x dx

 � tan2k�1 x secn x dx � � (tan2 x)k secn�1 x sec x tan x dx

tan2 x � sec2 x � 1tan xsec x
(m � 2k � 1)tan x
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EXAMPLE 6 Evaluate .

Solution Here, (the power of ) is an even positive integer. So let’s retain a fac-
tor of . Thus,

Let so that . The lower and upper limits of integration with
respect to are (set ) and (set ), respectively. Making these
substitutions, we obtain

Integrals of the form may be evaluated in a similar manner, as
the following example illustrates.

� cotm x cscn x dx

 �
2

3
�

4

7
�

2

11
�

328

231

 � c2
3

 u3>2 �
4

7
 u7>2 �

2

11
 u11>2d1

0

 �
p>4

0
1tan x sec6 x dx � �

1

0
(u1>2 � 2u5>2 � u9>2) du

x � p>4u � 1x � 0u � 0u
du � sec2 x dxu � tan x

 � �
p>4

0
(tan1>2 x � 2 tan5>2 x � tan9>2 x)sec2 x dx

sec2 x � 1 � tan2 x � �
p>4

0
(tan1>2 x)(1 � tan2 x)2 sec2 x dx

 �
p>4

0
1tan x sec6 x dx � �

p>4

0
tan1>2 x sec4 x sec2 x dx

sec2 x
sec xn

�
p>4

0
1tan x sec6 x dx

EXAMPLE 7 Evaluate .

Solution Here, the power of is an odd positive integer. So we retain the factor
from the integrand. Thus,

Let so that . Then

 � �
1

9
csc9 x �

2

7
csc7 x �

1

5
csc5 x � C

 � �
1

9
 u9 �

2

7
 u7 �

1

5
 u5 � C

 � cot5 x csc5 x dx � �� (u8 � 2u6 � u4) du

du � �csc x cot x dxu � csc x

 � � (csc8 x � 2 csc6 x � csc4 x) csc x cot x dx

cot2 x � csc2 x � 1 � � (csc2 x � 1)2 csc4 x csc x cot x dx

 � cot5 x csc5 x dx � � cot4 x (csc4 x)(csc x cot x) dx

csc x cot x
cot x

� cot5 x csc5 x dx
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EXAMPLE 8 Find .

Solution We have

Let .

Integrals of the Form , ,� sin mx cos nx dx� sin mx sin nx dx

u � sin x �
1

2
sin2 x � C

 � tan x

sec2 x
dx � � a sin x

cos x
bcos2 x dx � � sin x cos x dx

� tan x

sec2 x
dx

and 
Integrals in which the integrand is a product of sines and cosines of two different angles
can be evaluated with the help of the following identities.

� cos mx cos nx dx

EXAMPLE 9 Find .

Solution Using Formula (2b), we have

 �
1

2
 acos x �

1

9
cos 9xb � C

 �
1

2
 � (�sin x � sin 9x) dx

 � sin 4x cos 5x dx � � 1

2
 [sin(�x) � sin 9x] dx

� sin 4x cos 5x dx

1. Explain how you would find if (a) is
odd and positive, (b) is odd and positive, and (c) and 
are both nonnegative and even.

2. Explain how you would find if (a) is
odd and positive and (b) is even and positive.n

m� tanm x secn x dx

nmn
m� sinm x cosn x dx 3. Explain how you would find if (a) is

odd and positive and (b) is even and positive.
4. Explain how you would find (a) ,

(b) , and (c) .� cos mx cos nx dx� sin mx sin nx dx
� sin mx cos nx dx

n
m� cotm x cscn x dx

7.2 CONCEPT QUESTIONS

Converting to Sines and Cosines
For integrals involving powers of trigonometric functions that are not covered by the for-
mulas just considered, we are sometimes able to evaluate the integral by converting the
integrand to an expression involving sines and cosines, as the following example illustrates.

Trigonometric Identities

(2a)

(2b)

(2c)cos mx cos nx �
1

2
 [cos(m � n)x � cos(m � n)x]

sin mx cos nx �
1

2
 [sin(m � n)x � sin(m � n)x]

sin mx sin nx �
1

2
 [cos(m � n)x � cos(m � n)x]
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In Exercises 1–48, find or evaluate the integral.

1. 2.

3. 4.

5. 6.

7. 8.

9. 10.

11. 12.

13. 14.

15. 16.

17. 18.

Hint: Integrate by parts. Hint: Integrate by parts.

19. 20.

21. 22.

23. 24.

25. 26.

27. 28.

29. 30.

31. 32.

Hint: Integrate by parts. Hint: Integrate by parts.

33. 34.

35. 36.

37. 38. � (1 � cot x)2 csc x dx�
p>4

0

1

cos4 x
dx

� cot3 x csc4 x dx� cot6 t dt

� csc4 u cot4 u du� csc4 t dt

� csc5 x dx� csc3 x dx

�
p>2

p>4
cot3 x dx� cot2 2x dx

� sec4ax

2
btan4ax

2
bdx� sec4 u1tan u du

� sec4(p � x)tan(p � x) dx� sec4 3x tan2 3x dx

�
p>4

0
sec2 x tan2 x dx� sec2(px)tan3(px) dx

� tan5 x sec3 x dx� tan5 x

2
dx

� tan3(p � x) dx�
p>4

0
tan2 x dx

� x cos2 x dx� x sin2 x dx

� u sin2(u2)cos2(u2) du� x cos4(x2) dx

� sin6 u du�
p

0
sin2 x cos4 x dx

� cos4 x sin4 x dx� sin2ax

2
bcos2ax

2
b dx

� sin2 2x cos4 2x dx�
1

0
sin4 px dx

� cos4 x dx�
p

0
cos2 x

2
dx

� cos3 2x dx� sin3 x dx

�
p>2

0
1cos x sin3 x dx� cos3 2x sin5 2x dx

� sin3 x cos2 x dx� sin3 x cos x dx
39. 40.

41. 42.

43. 44.

45. 46.

47. 48.

49. Find the average value of over the interval
.

50. Find the average value of over the 
interval .

51. Find the area of the region under the graph of 
on the interval .

52. Find the area of the region bounded by the graphs of
, , , and .

53. Let and .
a. Plot the graphs of and using the viewing window

. Find the -coordinates of the points of
intersection of the graphs of and accurate to three
decimal places.

b. Use the result of part (a) and the method of this section
to find the approximate area of the region bounded by
the graphs of and .

54. Let and .
a. Plot the graphs of and using the viewing windowtf

t(x) � 1xf(x) � cos 2x cos 4x

tf

tf
x[�1, 1] � [0, 1]

tf
t(x) � 1 � x2f(x) � sin4 x

x � p>4x � 0y � cos4 xy � sin4 x

[0, 1]
y � sin2 px

[0, p]
f(x) � cos2 x sin3 x

[0, 2p]
f(x) � cos2 x

� cos 2u

cos u � sin u
du� 1 � tan2 x

sec2 x
dx

� 1

csc x cot2 x
dx� tan3 1t sec21t

1t
dt

�
p>2

0

sin t

1 � cos t
dt� cos2 2u cot 2u du

� sin3 x

sec2 x
dx� cos 2u cos 4u du

� sin 3u sin 4u du�
p>2

0
sin x cos 2x dx

7.2 EXERCISES

Videos for selected exercises are available online at www.academic.cengage.com/login.V

. Find the -coordinate of the point of 
intersection of the graphs of and accurate to three
decimal places.

b. Use the result of part (a) and the method of this section
to find the approximate area of the region bounded by
the graphs of and and the -axis.

55. The region under the graph of on the interval
is revolved about the -axis. Find the volume of the

solid generated.

56. The region under the graph of on the interval
is revolved about the -axis. Find the volume of the

solid generated.

57. Find the centroid of the region under the graph of
on the interval .C0, p2 Dy � cos x

R

y[0, p]
y � sin3 x

xC0, p4 D
y � tan2 x

ytf

tf
xC0, 12 D � [0, 1]

www.academic.cengage.com/login
www.academic.cengage.com/login
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58. Find the centroid of the region bounded by the graphs of
and on .

59. The velocity of a particle sec after leaving the origin, mov-
ing along a coordinate line, is ft/sec. What is
the distance traveled by the particle during the first 6 sec?
What is its position at ?

60. Find the volume of the solid generated by revolving the
region bounded by the graphs of and 
about the -axis.

61. Find the volume of the solid generated by revolving the
region under the graph of on 
about the -axis.

62. Interval Training As part of her speed training, a long-distance
runner runs in spurts for a minute. Suppose that she runs
along a straight line so that her velocity sec after passing a
marker is given by the velocity function

where is measured in feet per second. Find the position
function as measured from the marker.

63. Alternating Current Intensity Find the average value of the
alternating current intensity described by

where , , and are constants, over the time interval .

64. Electromotive Force An electromotive force (emf), , is given
by

where is the period in seconds and is the amplitude of
the emf. Find the average value of the square of the emf, ,
over the time interval .

65. Heat Generated by an Alternating Current According to the Joule-
Lenz Law, the amount of heat generated by an alternating
current

I � I0 sina2pt

T
� fb

[0, T]
E2

E0T

E � E0 sin
2pt

T

E

C0, pv DavI0

I � I0 cos(vt � a)

√(t)

0 � t � 60√(t) � 5 � 100 sin2a p
16

 tbcos2a p
16

 tb

t

x
C0, p4 Df(x) � (sin x)>(cos3 x)

x
y � (2>p)xy � sin x

t � 6

√(t) � sin3 pt
t

0 1

1

2

y

y � cos x

xπ
2

2
πy � 1 � x

C0, p2 Dy � 1 � (2>p)xy � cos x
R flowing in a conductor with resistance ohms from 

to is given by

joules. Find the amount of heat generated during a cycle
(from to ).

66. Fabricating Corrugated Metal Sheets A certain brand of corru-
gated metal sheets comes in 20 in. 48 in. sizes. The cross
section of the sheets can be described by the graph of

Use a calculator or computer to find the approximate length
of the flat metal sheet before fabrication.

67. Plot the graph of for . Then
use a calculator or computer to approximate the volume of
the solid generated by revolving the region under the graph
of on about (a) the -axis and (b) the -axis.

68. Refer to Exercise 62. Use a calculator or computer to
approximate the distance traveled by the athlete in her 
60-sec speed exercise.

69. Prove that if and are positive integers, then

70. Prove that if and are positive integers, then

71. Prove that if and are positive integers, then

72. Finite Fourier Series Prove that if

 � b2 sin 2x � p � an cos nx � bn sin nx

 �
a0

2
� a1 cos x � b1 sin x � a2 cos 2x

 f(x) �
a0

2
� a

n

k�1
(ak cos kx � bk sin kx)

�
p

�p

cos mx cos nx dx � e0 if m 	 n

p if m � n

nm

�
p

�p

sin mx sin nx dx � e0 if m 	 n

p if m � n

nm

�
p

�p

sin mx cos nx dx � 0

nm

yx[0, 2]f

0 � x � 2f(x) � e�x sin (px>2)

20 t

y

0 � t � 20y � sin
p

2
 t

�

t � Tt � 0

Q � 0.24R�
T2

T1

I 2 dt

t � T2

t � T1R
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then

,  ak �
1
p

 �
p

�p

f(x) cos kx dxa0 �
1
p

 �
p

�p

f(x) dx

and

Hint: Use the results of Exercises 69–71.

k � 1, 2, p , nbk �
1
p

 �
p

�p

f(x) sin kx dx

7.3 Trigonometric Substitutions

Figure 1a depicts an aerial view of a scenic drive along the coast. We can approximate
the part of the road between Point and Point by the graph of on the
interval , where both and are measured in miles (see Figure 1b). How far
is the drive between and ?BA

f(x)x[0, 1]
f(x) � 1

2 x
2BA

FIGURE 1

To answer this question, we need to find the arc length of the graph of from
to . Now, from Section 5.4 we know that the required arc length is given

by

(1)

To evaluate this integral, observe that the integrand can be written in the form 
—the square root of the sum of two squares. This brings to mind the Pythagorean The-
orem. In fact, we can think of this quantity as being associated with the length of the
hypotenuse of the right triangle shown in Figure 2. This suggests that we try the sub-
stitution

or

We then have

 � sec u

 21 � x2 �21 � tan2 u �2sec2 u

x � tan utan u �
x

1

212 � x2

L � �
1

0
21 � [ f ¿(x)]2 dx � �

1

0
21 � x2 dx

B11, 12 2A(0, 0)
fL

FIGURE 2
The right triangle associated with 
the integrand of Equation (1)

A

A (0, 0)

B

B (1,   )

(a) A stretch of coastal road (b) The graph of the function describing the road

y (mi)

x (mi)1

f (x) �   x21__
2

1__
2

1__
2

1

¨

x
1 � x2√
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provided that . Proceeding with the substitution so that
, we see that the indefinite integral

See Example 5 in Section 7.1.

Finally, referring to Figure 2 again, we see that

hypotenuse/adjacent

so

Therefore, the distance of the drive between and is given by

or approximately 1.15 mi.

Trigonometric Substitution
The techniques that we used in solving our introductory example involve trigonomet-
ric substitution. In general, this method can be used to evaluate integrals involving
the radicals

, , and

where .
The key to this technique lies in making an appropriate trigonometric substitution

using one of the trigonometric identities

and

to transform the given integral into one that is radical free. The resulting trigonomet-
ric integral can then be evaluated by using the techniques developed earlier. Finally,
the answer is written in terms of the original variable by converting from ’s to ’s.

The trigonometric substitutions for evaluating integrals involving the indicated rad-
icals are listed in Table 1.

Note that in each case the restriction on ensures that the function in the substi-
tution is one-to-one and, therefore, has an inverse. This enables us to solve for

in terms of and, hence, to express the answer in terms of the original variable .xxu

x � t(u)
tu

xu

sec2 u � 1 � tan2 u

cos2 u � 1 � sin2 u

a 
 0

2x2 � a22a2 � x22a2 � x2

 �
1

2
 C12 � ln(12 � 1) D � 1.148

 L � �
1

0
21 � x2 dx �

1

2
 Cx21 � x2 � ln121 � x2 � x2 D10

BA

�21 � x2 dx �
1

2
 121 � x2 � x � ln �21 � x2 � x � 2 � C

sec u �21 � x2

 �
1

2
 1sec u tan u � ln � sec u � tan u �2 � C

 � � sec3 u du

 �21 � x2 dx � � sec u (sec2 u) du

dx � sec2 u du
x � tan u�p

2 � u � p
2



For integrals involving Use the substitution Use the identity
Right triangle associated with
the substitution

,

,

, a 
 02x2 � a2

a 
 02a2 � x2

a 
 02a2 � x2 ,

,

, or p
2 � u � p0 � u � p

2x � a sec u

�p2 � u � p
2x � a tan u

�p2 � u � p
2x � a sin u

sec2 u � 1 � tan2 u

1 � tan2 u � sec2 u

1 � sin2 u � cos2 u
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TABLE 1 Trigonometric Substitutions

¨

x
a

a2 � x2√

¨

x

a

a2 � x2√

¨

x

a

x2 � a2√

EXAMPLE 1 Find .

Solution Note that the integrand involves a radical of the form , where
. This suggests that we use the trigonometric substitution

so that

where . In this example we have the further restriction to ensure
that (the integrand is not defined at these points). Making these substitutions,
we have

Use a half-angle formula.

To express this result in terms of the original variable , observe that sin u � x>3x

 �
9

2
 au �

1

2
sin 2ub � C

 �
9

2
 � (1 � cos 2u) du

 � 9� sin2 u du

 � x2

29 � x2
dx � � 9 sin2 u

29 � 9 sin2 u
(3 cos u du)

x 	 �3
u 	 �p>2�p2 � u � p

2

dx � 3 cos u dux � 3 sin u

a � 3
2a2 � x2

� x2

29 � x2
dx

implies that . Next, observe that . With the help
of Figure 3, we find

sin 2u � 2(sin u)(cos u) � 2ax

3
b a29 � x2

3
b

sin 2u � 2 sin u cos uu � sin�1(x>3)
¨

3
x

9 � x2√
FIGURE 3
The right triangle associated 
with the substitution x � 3 sin u
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Therefore,

� x2

29 � x2
dx �

9

2
 csin�1ax

3
b �

1

9
 x29 � x2d � C

EXAMPLE 2 Find the area enclosed by the ellipse .

Solution The ellipse is shown in Figure 4. By symmetry we see that the area 
enclosed by the ellipse is just four times its area in the first quadrant. Next, to find the
function describing the ellipse in this quadrant, we solve the given equation for . Thus,

or

Since in this quadrant, the required function is for in
the interval . Therefore, the desired area is given by

To evaluate this integral, we let

so that

Note that when , , so is the lower limit of integration with respect
to ; when , , giving as the upper limit of integration. Also,

since . Therefore,

Use a half-angle formula.

or .

Note For a circle, , where is the radius of the circle, and the result of
Example 2 gives as the area of the circle, as expected.pr 2

ra � b � r

pab

 � 2abcu �
1

2
sin 2udp>2

0
� 2abc ap

2
� 0b � 0d

 � 4ab�
p>2

0
 
1

2
 (1 � cos 2u) du

 � 4ab�
p>2

0
cos2 u du

 A �
4b

a
 �

a

0
2a2 � x2 dx �

4b

a
 �
p>2

0
a cos u � a cos u du

0 � u � p
2

2a2 � x2 �2a2 � a2 sin2 u � a21 � sin2 u � a2cos2 u � a �cos u � � a cos u

u � p>2sin u � 1x � au

u � 0sin u � 0x � 0

dx � a cos u dux � a sin u

A � 4�
a

0
 
b

a
 2a2 � x2 dx �

4b

a
 �

a

0
2a2 � x2 dx

A[0, a]
xf(x) � (b>a)2a2 � x2y 
 0

y � �
b

a
2a2 � x2y2

b2
� 1 �

x2

a2
�

a2 � x2

a2

y

A

x2

a2
�

y2

b2
� 1

FIGURE 4
The area enclosed by the ellipse is four
times its area in the first quadrant.

x0

b2
y2

a2
x2

y

a

b
� 1�

EXAMPLE 3 Find .

Solution Observe that the denominator of the integrand can be written as 124 � x2 23
� 1

(4 � x2)3>2 dx

and thus involves a radical of the form with . Hence, we make the

substitution

so that dx � 2 sec2 u dux � 2 tan u

a � 22a2 � x2



EXAMPLE 4 Find .

Solution Here, the integrand involves a radical of the form , where .
So we make the substitution

so that

Then

Therefore,

Since or , we see that . Furthermore, by in-
specting the right triangle associated with the substitution, we see that

(See Figure 6.) Therefore,

Sometimes we can use the technique of completing the square to rewrite an inte-
grand that involves a quadratic expression in the appropriate form before making a
trigonometric substitution. This is illustrated in the next example.

�2x2 � 16
x

dx �2x2 � 16 � 4 sec�1ax

4
b � C

tan u �
2x2 � 16

4

u � sec�1(x>4)sec u � x>4x � 4 sec u

 � 4 tan u � 4u � C

 � 4� (sec2 u � 1) du � 4� sec2 u du � 4�du

 � 4� tan2 u du

 �2x2 � 16
x

dx � � 4 tan u

4 sec u
� 4 sec u tan u du

2x2 � 16 �216 sec2 u � 16 � 42sec2 u � 1 � 42tan2 u � 4 tan u

dx � 4 sec u tan u dux � 4 sec u

a � 42x2 � a2

�2x2 � 16
x

dx

FIGURE 6
The right triangle associated with 
the substitution x � 4 sec u
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FIGURE 5
The right triangle associated 
with the substitution x � 2 tan u

Then

Therefore,

Finally, from the right triangle associated with the substitution , we see that

. (See Figure 5.) Therefore,

� 1

(4 � x2)3>2 dx �
x

424 � x2
� C

sin u � x>24 � x2

x � 2 tan u

 �
1

4
sin u � C

 �
1

4
 � cos u du

 � 1

(4 � x2)3>2 dx � � 1

(2 sec u)3
� 2 sec2 u du

24 � x2 �24 � 4 tan2 u � 221 � tan2 u � 22sec2 u � 2 sec u

¨
2

x
4 � x2√

¨
4

x
x2 � 16√
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FIGURE 7
The right triangle associated with 
the substitution u � 13 tan u

EXAMPLE 6 Hydrostatic Force on a Window A cylindrical oil storage tank of radius
3 ft and length 10 ft is lying on its side. If the tank is filled to a height of 5 ft with oil
having a weight density of 50 lb/ft3, find the force exerted by the oil on one end of the
tank.

Solution Let’s introduce a coordinate system in such a way that the end of the tank
(a disk of radius 3 ft) has its center at the origin. Then the circle in question is described
by the equation . (See Figure 8.) The length of a representative horizon-

tal rectangle is . Therefore, the area of a horizontal rectan-
gle is

�A � L(y)�y � 229 � y2 �y

L(y) � 2x � 229 � y2

x2 � y2 � 9

FIGURE 8
One end of a cylindrical oil storage
tank

EXAMPLE 5 Find .

Solution By completing the square for the expression under the radical sign, we obtain

If we let , then

and

so we can write

Observe that the integrand has the form , where . This
suggests that we make the substitution

so that

Then

Therefore,

From we see that . Also, from the right triangle associ-

ated with the substitution , we see that . (See Fig-

ure 7.) Therefore,

so

C � lna C1

13
b� dx

2x2 � 4x � 7
� ln �2x2 � 4x � 7 � x � 2 � � C

� du

2u2 � 3
� ln `2u2 � 3

13
�

u

13
` � ln C1

sec u �2u2 � 3>13u � 13 tan u

tan u � u>13u � 13 tan u

 � ln � sec u � tan u � � C

 � du

2u2 � 3
� � 13 sec2 u

13 sec u
du � � sec u du

2u2 � 3 �23 tan2 u � 3 � 132tan2 u � 1 � 132sec2 u � 13 sec u

du � 13 sec2 u duu � 13 tan u

a � 132u2 � a22u2 � 3

� dx

2x2 � 4x � 7
� � du

2u2 � 3

du � dxx2 � 4x � 7 � u2 � 3

u � x � 2

x2 � 4x � 7 � [x2 � 4x � (2)2] � 7 � 4 � (x � 2)2 � 3

� dx

2x2 � 4x � 7

¨

u
u2 � 3√

3√

0

�3

�3 3

2

3

y

y

x2 � y2 � 9

2 � y
�y

x
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The pressure exerted by the oil on the rectangle is

density depth

Therefore, the force exerted by the oil on the rectangle is

pressure area

Summing the forces on these rectangles and taking the limit, we find that the force
exerted by the oil on the end of the storage tank is

The second integral can be evaluated by making the substitution ,
whereas the first integral can be evaluated by using the trigonometric substitution

. We will leave the evaluation of these integrals as an exercise (Exercise 58).
You will find that the force is approximately 2890 lb.
y � 3 sin u

u � 9 � y2

 � 200�
2

�3
29 � y2 dy � 100�

2

�3
y29 � y2 dy

 F � �
2

�3
100(2 � y)29 � y2 dy

 � 100(2 � y)29 � y2 �y

� d(2 � y)�A � 50(2 � y)(2)29 � y2 �y

�d(2 � y) � 50(2 � y)

1. What substitution would you use to find an integral whose

integrand involves the expression (a) , ; 

(b) , ; and (c) , ?a 
 02x2 � a2a 
 02a2 � x2

a 
 02a2 � x2

2. How would you find an integral whose integrand involves

the expression ?2ax2 � bx � c

7.3 CONCEPT QUESTIONS

In Exercises 1–32, find or evaluate the integral using an appro-
priate trigonometric substitution.

1. 2.

3. 4.

5. 6.

7. 8.

9. 10.

11. 12.

13. 14. � (4 � x2)3>2 dx� 1

(x2 � 9)3>2 dx

�
3>4

0

x2

29 � 4x2
dx� x3

2x2 � 9
dx

� x3 24 � x2 dx� x3 21 � x2 dx

� 1

x3 2x2 � 4
dx� 1

x2 2x2 � 4
dx

� x3 21 � x2 dx� 1

x24 � x2
dx

� 1

x2 21 � x2
dx� x24 � x2 dx

�24 � x2

x2 dx� x

29 � x2
dx

15. 16.

17. 18.

19. 20.

21. 22.

23. 24.

25. 26.

27. 28. �24x � x2 dx�
13>2

1>2
dx

x21 � x2

� et 21 � e2t dt� ex 24 � e2x dx

� 2x � 3

21 � x2
dx�

13

1

1

(1 � x2)3>2 dx

�
4

2
 
2x2 � 4

x4 dx�
13

�13
24 � x2 dx

� 1

(9 � x2)2 dx� 1

x29x2 � 4
dx

�29x2 � 4

x4 dx�21 � x2

x4 dx

� x2

23 � x2
dx�216x2 � 9

x
dx

7.3 EXERCISES

Videos for selected exercises are available online at www.academic.cengage.com/login.V

www.academic.cengage.com/login
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29. 30.

31. 32.

33. Find the area of the region under the graph of 

on the interval .

34. Find the area of the region enclosed by the hyperbola
and the line .

35. Find the average value of the positive -coordinates of 

the ellipse .

36. The region under the graph of on the inter-

val is revolved about the -axis. Find the volume of 
the resulting solid.

37. The region under the graph of on the inter-

val is revolved about the -axis. Find the volume of 
the resulting solid.

38. The graph of between and is revolved
about the -axis. Find the surface area of the resulting solid.

39. Find the arc length of the graph of on the interval
.

40. Find the arc length of the graph of from
to .

41. Force Exerted on a Viewing Port The circular viewing port of a
modern submersible used in oceanographic research has a
radius of 1 ft. If the viewing port is partially submerged 
so that three fourths of it is under water, find the force
exerted on it by the water. Note that the density of sea 
water is 64 lb/ft3.

42. Find the area of the region enclosed by the parabola 

and the witch of Agnesi: .

43. Let and .

a. Plot the graphs of and using the viewing window
. Find the -coordinates of the

points of intersection of the graphs of and accurate 
to three decimal places.

tf
x[�1.5, 1.5] � [0, 1.2]

tf

t(x) � 1 � x2f(x) �
1

(4 � x2)3>2

0 2

2

�2

y

x

1
4y � x2

8
x2 � 4

y �

y �
8

x2 � 4
y � 1

4 x
2

Q(2, 2)P(0, 0)
y � �1

2 x
2 � 2x

[1, 13]
y � ln 2x

x
x � 1x � 0y � ex

y[0, 2]

y �
x

216 � x2

x[0, 4]

y �
x

(9 � x2)1>4

x2

a2 �
y2

b2 � 1

y

x � 516x2 � 9y2 � 144

[1, 12]y �
1

x24 � x2

� 1

(3 � 2x � x2)5>2 dx� 1

(x2 � 4x � 8)2 dx

� t 2

24t � t 2
dt� 1

22t � t 2
dt

b. Use the result of part (a) and trigonometric substitution
to find the approximate area of the region bounded by
the graphs of and .

44. Let and .

a. Plot the graphs of and using the viewing window
. Find the -coordinates of the points 

of intersection of the graphs of and accurate to three
decimal places.

b. Use the result of part (a) and trigonometric substitution
to find the approximate area of the region bounded by
the graphs of and .

45. Find the surface area of the ellipsoid formed by revolving 

the ellipse , , about the -axis.

46. Find the force exerted by a liquid of constant weight density 

on a vertical ellipse whose center is sub-

merged in the liquid to a depth , where .

47. Air Pollution The amount of nitrogen dioxide, a brown gas
that impairs breathing, present in the atmosphere on a cer-
tain day in May in the city of Long Beach is approximated
by

where is measured in pollutant standard index (PSI) and
is measured in hours with corresponding to 7 A.M.

What is the average amount of the pollutant present in the
atmosphere between 7 A.M. and noon on that day in the
city?
Source: The Los Angeles Times.

48. Work Done by a Repulsive Charge An electric charge distrib-
uted uniformly along a line of length lying along the 
-axis repulses a like charge from the point 

to the point , where . The magnitude of the force
acting on the charge when it is at the point is given by

and the force acts in the direction of the positive -axis.
Find the work done by the force of repulsion.

x0 a bq

F

Q
c

�c

y

x

F(x) �
1

4pe0
 

qQ

x2x2 � c2

xq
b 
 ax � b

x � a (a 
 0)qy
2c

Q

t � 0t
A(t)

0 � t � 11A(t) �
544

4 � (t � 4.5)2 � 28

h � bh

x2

a2 �
y2

b2 � 1d

xa 
 b
x2

a2 �
y2

b2 � 1

tf

tf
x[0, 1.2] � [0, 0.4]

tf

t(x) �
0.2

(1 � x2)3>2f(x) � x321 � x2

tf
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49. Work Done by a Magnetic Field The force of a circular electric
current acting on a small magnet with its axis perpendicular
to the plane of the circle and passing through its center has
magnitude given by

where is the radius of the circle, is a constant, and is
the distance from the center of the circle to the magnet in
the direction along the axis. Find the work done by the mag-
netic field in moving the magnet along the axis from 
to .

The electric current flowing in the loop establishes 
a magnetic field that acts on the magnet.

50. Average Illumination Two lamp posts, each ft tall, are located
ft apart. (See the figure.) If the intensity of each light is 
lumens, find the average intensity of light along the

straight line connecting the bases of the lamp posts.

Hint: The intensity of light at a point from the base of the lamp
post is proportional to the cosine of the angle that the incident light
makes with the vertical and inversely proportional to the square of
the distance between and the light source.P

P

d

h

I
d

h

I

x
a

I
Magnet x

x � 2a
x � 0

xka

0 � x � �F �
k

(x2 � a2)3>2

In Exercises 51–54, use a trigonometric substitution to derive
the formula.

51.

52.

53.

54.

55. a. Use trigonometric substitution to show that

b. Use integration by parts and the result of part (a) to find

56. Evaluate

,

Hint: Use the substitution .

57. Prove that

where , by interpreting the integral geometrically.

58. Refer to Example 6. Show that

F � 200�
2

�3
29 � y2 dy � 100�

2

�3
 y29 � y2 dy � 2890

0 � x � a

�
x

0
2a2 � u2 du �

1

2
 x2a2 � x2 �

a2

2
sin�1 

x

a
� C

u � tan x

b 
 0a 
 0�
p>4

0
 

dx

a2 cos2 x � b2 sin2 x

� x tan�1 x

21 � x2
dx

� dx

x2 � a2 � ln1x �2x2 � a2 2 � C

�2u2 � a2

u2 du � �
2u2 � a2

u
� ln �u �2u2 � a2 � � C

� du

u2a2 � u2
� �

1
a

ln `2a2 � u2 � a

u
` � C

�2a2 � u2

u
 du �2a2 � u2 � a ln ` a �2a2 � u2

u
` � C

�2a2 � u2 du �
u

2
 2a2 � u2 �

a2

2
sin�1 

u

a
� C

7.4 The Method of Partial Fractions

Partial Fractions
In algebra we learned how to combine two or more rational expressions (fractions)
into a single expression by putting them together over a common denominator. For
example,

(1)
2

x � 3
�

1

x � 1
�

2(x � 1) � (x � 3)

(x � 3)(x � 1)
�

x � 5

(x � 3)(x � 1)
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Sometimes, however, it is advantageous to reverse the process, that is, to express a
complicated expression as a sum or difference of simpler ones. As an example, sup-
pose that we wish to evaluate the integral

(2)

Thanks to Equation (1), we can write the integrand in the form

(3)

so that upon integrating both sides with respect to , we obtain

The expression on the right-hand side of Equation (3) is called the partial frac-
tion decomposition of , and each of the terms is called a par-
tial fraction. The technique of integration that we have used to evaluate the integrand
in (2) is called the method of partial fractions and can be used to integrate any
rational function.

Suppose that is a rational function defined by

where and are polynomials. If the degree of is greater than or equal to the degree
of , we can use long division to express in the form

(4)

where is a polynomial and the degree of is less than that of . For example, if

then using long division, we can write

Now suppose that we want to integrate . Using Equation (4), we have

The first integral on the right is easily evaluated since its integrand is a polynomial.
To evaluate the second integral, we decompose into a sum of partial fractions
and integrate the resulting expression term by term. That can be so decom-
posed is guaranteed by the following results from algebra, which we state without proof:

1. Every polynomial can be factored into a product of linear factors (of the form
) and irreducible quadratic factors (of the form where

).b2 � 4ac � 0
ax2 � bx � cax � b

Q

R(x)>Q(x)
R(x)>Q(x)

� f(x) dx � �S(x) dx � � R(x)

Q(x)
dx

f

f(x) � x � 4 �
4x � 9

x2 � 1

f(x) �
x3 � 4x2 � 3x � 5

x2 � 1

QRS

f(x) � S(x) �
R(x)

Q(x)

f(x)Q
PQP

f(x) �
P(x)

Q(x)

f

(x � 5)>(x2 � 2x � 3)

 � 2 ln �x � 3 � � ln �x � 1 � � C

 � x � 5

x2 � 2x � 3
dx � � a 2

x � 3
�

1

x � 1
b dx

x

x � 5

x2 � 2x � 3
�

x � 5

(x � 3)(x � 1)
�

2

x � 3
�

1

x � 1

� x � 5

x2 � 2x � 3
dx
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2. Every rational function where the degree of is less than the degree
of can be decomposed into a sum of partial fractions of the form

or

The form the partial fraction decomposition of the rational function takes
depends on the form of and can be illustrated through examining four cases.Q(x)

R(x)>Q(x)

Ax � B

(ax2 � bx � c)k

A

(ax � b)k

Q
RR(x)>Q(x)

EXAMPLE 1 Find .

Solution The degree of the numerator of the integrand is less than that of the denom-
inator, and no long division is required in this case. The denominator can be written
in the form , a product of three distinct linear factors. Therefore, a par-
tial fraction decomposition of the form

exists. To determine , , and , we multiply both sides of the equation by
, obtaining

If we expand the terms on the right and collect like powers of , the equation can be
written in the form

Because the two polynomials are equal, the coefficients of like powers of must be
equal. Equating, in turn, the coefficients of , , and leads to the following sys-
tem of linear equations in , , and :

Solving this system, we find , , and . Therefore, the partial frac-
tion decomposition of the integrand is

4x2 � 4x � 6

x3 � x2 � 6x
� �

1
x

�
2

x � 3
�

3

x � 2

C � 3B � 2A � �1

 �6A � 6

 �A � 2B � 3C � �4

 A � B � C � 4

CBA
x0x1x2

x

4x2 � 4x � 6 � (A � B � C)x2 � (�A � 2B � 3C)x � 6A

x

4x2 � 4x � 6 � A(x � 3)(x � 2) � Bx(x � 2) � Cx(x � 3)

x(x � 3)(x � 2)
CBA

4x2 � 4x � 6

x(x � 3)(x � 2)
�

A

x
�

B

x � 3
�

C

x � 2

x(x � 3)(x � 2)

� 4x2 � 4x � 6

x3 � x2 � 6x
dx

Case 1: Distinct Linear Factors

If

where all the factors , , 2, , , are distinct, then there exist con-
stants , , such that

R(x)

Q(x)
�

A1

a1x � b1
�

A2

a2x � b2
 � p � 

An

anx � bn

AnpA1, A2

npk � 1akx � bk

R(x)

Q(x)
�

R(x)

(a1x � b1)(a2x � b2) p (anx � bn)



636 Chapter 7 Techniques of Integration

Finally, integrating both sides of this equation gives

where is the constant of integration.

Note There is another way of finding the coefficients , , and in Example 1. Our
starting point is the equation

which holds for all values of . If we let , then the second and third terms on the
right are equal to zero, giving or . Next, letting , so that the
first and third terms are equal to zero, we find that , giving . Finally,
letting gives or .C � 330 � 10Cx � �2

B � 230 � 15B
x � 3A � �16 � �6A

x � 0x

4x2 � 4x � 6 � A(x � 3)(x � 2) � Bx(x � 2) � Cx(x � 3)

CBA

k

 � �ln �x � � 2 ln �x � 3 � � 3 ln �x � 2 � � k

 � 4x2 � 4x � 6

x3 � x2 � 6x
dx � � a�1

x
�

2

x � 3
�

3

x � 2
b dx

EXAMPLE 2 Find .

Solution Since the degree of the numerator of the integrand is greater than that of the
denominator, we use long division to write

(5)

Next, we decompose into a sum of partial fractions. Factor-(8x � 3)>(2x2 � x � 3)

4x3 � x

2x2 � x � 3
� 2x � 1 �

8x � 3

2x2 � x � 3

� 4x3 � x

2x2 � x � 3
dx

ing, we see that is a product of two distinct linear
factors. Therefore,

Multiplying through by gives

If we let , then or . Next, letting yields , or
. Therefore,

Substituting the right-hand side of this equation into Equation (5) and integrating both
sides of the resulting expression with respect to , we get the desired result:

Observe that we have used the substitution to evaluate the integral of the
third term on the right and the substitution to evaluate the last term on the
right.

u � x � 1
u � 2x � 3

 � x2 � x � 3 ln �2x � 3 � � ln �x � 1 � � k

 � 4x3 � x

2x2 � x � 3
dx � � a2x � 1 �

6

2x � 3
�

1

x � 1
b dx

x

8x � 3

2x2 � x � 3
�

6

2x � 3
�

1

x � 1

A � 6
�15 � �5

2 Ax � �3
2B � 15 � 5Bx � 1

8x � 3 � A(x � 1) � B(2x � 3)

(2x � 3)(x � 1)

8x � 3

2x2 � x � 3
�

8x � 3

(2x � 3)(x � 1)
�

A

2x � 3
�

B

x � 1

(2x2 � x � 3) � (2x � 3)(x � 1)

JOHANN BERNOULLI
(1667–1748)

Despite his father’s wish for him to become
a merchant, Johann Bernoulli studied
mathematics privately with his brother
Jacob, who was a professor of mathemat-
ics at the University of Basel. Johann
became so engrossed in mathematics that
by the age of 25 he had composed two
textbooks on calculus. These texts were
not published until much later, and in the
intervening years he became a tutor to
Guillaume François Antoine, Marquis de
l’Hôpital (page 591). l’Hôpital commissioned
Bernoulli to sell his mathematical findings
in exchange for a regular salary. In fact,
one of Johann Bernoulli’s greatest contri-
butions to calculus was presented in
l’Hôpital’s book Analyse des infiniment
petits pour l’intelligence des lignes
courbes (1696), and this contribution has
since been known as l’Hôpital’s Rule.
Bernoulli carried on an extensive corre-
spondence with Liebniz (page 157) and was
a firm supporter of Leibniz’s methods over
those of Isaac Newton (page 179). Among
Bernoulli’s many contributions to calculus
is the method of partial fractions, which
aids in the integration of some rational
functions. Johann Bernoulli attained great
fame during his lifetime and was known as
the “Archimedes of his age.” Mathematical
talent ran deep in the Bernoulli family; in
addition to his older brother Jacob, three
of Johann Bernoulli’s sons became mathe-
maticians.
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EXAMPLE 3 Find .

Solution The degree of the numerator of the integrand is less than that of the denom-
inator, and no long division is necessary. Note that

Since is a zero of multiplicity 2 (here, ), the partial fraction decomposition
of the integrand has the form

Multiplying both sides of this equation by , we obtain

If we let , then we obtain , which yields . Next, letting ,
we have , so . Finally, to determine , we let (which is the
most convenient choice), obtaining . Using the values of and 
that we obtained earlier, we see that . Therefore,

Recall that a quadratic expression is irreducible if it cannot be 
written as a product of linear factors with real roots. For example, is 
irreducible.

3x2 � x � 1
ax2 � bx � c

 �
3

x � 1
� ln ` (x � 1)3

x � 1
` � k

 � �ln �x � 1 � �
3

x � 1
� 3 ln �x � 1 � � k

 � 2x2 � 3x � 7

x3 � x2 � x � 1
dx � � a� 1

x � 1
�

3

(x � 1)2
�

3

x � 1
b dx

A � �B � C � 7 � �1
CB7 � �A � B � C

x � 0AB � �36 � �2B
x � �1C � 312 � 4Cx � 1

2x2 � 3x � 7 � A(x � 1)(x � 1) � B(x � 1) � C(x � 1)2

(x � 1)2(x � 1)

2x2 � 3x � 7

(x � 1)2(x � 1)
�

A

x � 1
�

B

(x � 1)2
�

C

x � 1

r � 2�1

 � (x � 1)(x � 1)2

 Q(x) � x3 � x2 � x � 1 � x2(x � 1) � (x � 1) � (x � 1)(x2 � 1)

� 2x2 � 3x � 7

x3 � x2 � x � 1
dx

Case 2: Repeated Linear Factors

If contains a factor with , then the partial fraction decom-
position of contains a sum of partial fractions of the form

where each is a real number.Ak

A1

ax � b
�

A2

(ax � b)2
 � p � 

Ar

(ax � b)r

rR(x)>Q(x)
r 
 1(ax � b)rQ(x)

For example,

2x4 � 3x2 � x � 4

x(x � 1)(2x � 3)3
�

A

x
�

B

x � 1
�

C

2x � 3
�

D

(2x � 3)2
�

E

(2x � 3)3
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For example,

3x3 � 8x2 � 7x � 5

(x2 � 1)(x2 � 2x � 2)
�

Ax � B

x2 � 1
�

Cx � D

x2 � 2x � 2

Case 3: Distinct Irreducible Quadratic Factors

If

where all the factors , , 2, , , are distinct and irreduc-
ible, then there exist constants , , , , , , , such that

R(x)

Q(x)
�

A1x � B1

a1x2 � b1x � c1

�
A2x � B2

a2x2 � b2x � c2

� p �
Anx � Bn

anx2 � bnx � cn

BnpB2B1AnpA2A1

npk � 1akx2 � bkx � ck

R(x)

Q(x)
�

R(x)

(a1x2 � b1x � c1)(a2x2 � b2x � c2) p (anx2 � bnx � cn)

EXAMPLE 4 Find .

Solution Since the degree of the numerator is not less than the degree of the denom-
inator, we use long division to write

Notice that the quadratic is irreducible because its discriminant

Since the quadratic factors are distinct, we can write

Multiplying both sides of the equation by gives

Equating the coefficients of like powers of yields the system

5B � 4D � 21

5A � 2B � 4C � 6

2A � B � D � 5

A � C � 1

x

 � (5A � 2B � 4C)x � (5B � 4D)

 � (A � C)x3 � (2A � B � D)x2

 x3 � 5x2 � 6x � 21 � (Ax � B)(x2 � 2x � 5) � (Cx � D)(x2 � 4)

(x2 � 4)(x2 � 2x � 5)

x3 � 5x2 � 6x � 21

(x2 � 4)(x2 � 2x � 5)
�

Ax � B

x2 � 4
�

Cx � D

x2 � 2x � 5

b2 � 4ac � 22 � 4(1)(5) � �16 � 0

x2 � 2x � 5

 � 1 �
x3 � 5x2 � 6x � 21

(x2 � 4)(x2 � 2x � 5)

 
x4 � 3x3 � 14x2 � 14x � 41

(x2 � 4)(x2 � 2x � 5)
�

x4 � 3x3 � 14x2 � 14x � 41

x4 � 2x3 � 9x2 � 8x � 20

�  
x4 � 3x3 � 14x2 � 14x � 41

(x2 � 4)(x2 � 2x � 5)
dx
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The solution of the system is , , , and . Therefore,

To evaluate the integral on the right, we complete the square in the denominator 
of the integrand. Thus, . Next, using the substitution

so that and , we obtain

So

� x �
1

2
tan�1ax

2
b �

1

2
ln(x2 � 2x � 5) �

3

2
tan�1ax � 1

2
b � C

�  
x4 � 3x3 � 14x2 � 14x � 41

(x2 � 4)(x2 � 2x � 5)
dx

 �
1

2
ln(x2 � 2x � 5) �

3

2
tan�1ax � 1

2
b � C1

 �
1

2
ln(u2 � 4) �

3

2
tan�1au

2
b � C1

 � �  
u

u2 � 4
du � �  

3

u2 � 4
du

 �  
x � 4

x2 � 2x � 5
dx � �  

x � 4

(x � 1)2 � 4
dx � �  

(u � 1) � 4

u2 � 4
du � �  

u � 3

u2 � 4
 du

x � u � 1du � dxu � x � 1
x2 � 2x � 5 � (x � 1)2 � 4

 � x �
1

2
tan�1ax

2
b � �  

x � 4

x2 � 2x � 5
dx

 �  
x4 � 3x3 � 14x2 � 14x � 41

(x2 � 4)(x2 � 2x � 5)
dx � � a1 �

1

x2 � 4
�

x � 4

x2 � 2x � 5
b dx

D � 4C � 1B � 1A � 0

For example,

�
A

x
�

B

x � 1
�

C

(x � 1)2
�

Dx � E

x2 � 1
�

Fx � G

(x2 � x � 1)
�

Hx � I

(x2 � x � 1)2

x4 � 3x3 � x � 1

x(x � 1)2(x2 � 1)(x2 � x � 1)2

Case 4: Repeated Irreducible Quadratic Factors

If contains a factor with , where is
irreducible, then the partial fraction decomposition of contains a sum
of partial fractions of the form

where and are real numbers.BkAk

A1x � B1

ax2 � bx � c
�

A2x � B2

(ax2 � bx � c)2
 � p � 

Ar x � Br

(ax2 � bx � c)r

r
R(x)>Q(x)

ax2 � bx � cr 
 1(ax2 � bx � c)rQ(x)
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EXAMPLE 5 Find .

Solution The partial fraction decomposition of the integrand has the form

Multiplying both sides of the equation by gives

Equating the coefficients of like powers of yields the system

The solution of this system is , , , , and . Therefore,

To find the integral on the right-hand side, we make the substitution

so that

Also, . So

See Figure 1.

 �
1

2
 atan�1 x �

x

x2 � 1
b � k

 �
1

2
 atan�1 x �

x

2x2 � 1
�

1

2x2 � 1
b � k

sin 2u � 2 sin u cos u �
1

2
 (u � sin u cos u) � k

 �
1

2
 � (1 � cos 2u) du �

1

2
 au �

1

2
sin 2ub � k

 � 1

(x2 � 1)2
dx � � 1

sec4 u
� sec2 u du � � cos2 u du

x2 � 1 � tan2 u � 1 � sec2 u

dx � sec2 u dux � tan u

 � 2 ln �x � � ln(x2 � 1) � tan�1 x �
2

x2 � 1
� 2� 1

(x2 � 1)2
dx

 � 2� dx

x
� 2� x

x2 � 1
dx � � dx

x2 � 1
� 4� x

(x2 � 1)2
dx � 2� 1

(x2 � 1)2
dx

 � � a2
x

�
�2x � 1

x2 � 1
�

�4x � 2

(x2 � 1)2
b dx

� x3 � 2x2 � 3x � 2

x(x2 � 1)2
dx

E � 2D � �4C � 1B � �2A � 2

A � 2

C � E � 3

2A � B � D � �2

C � 1

A � B � 0

x

 � (A � B)x4 � Cx3 � (2A � B � D)x2 � (C � E)x � A

 � A(x4 � 2x2 � 1) � B(x4 � x2) � C(x3 � x) � Dx2 � Ex

 x3 � 2x2 � 3x � 2 � A(x2 � 1)2 � (Bx � C)x(x2 � 1) � (Dx � E)x

x(x2 � 1)2

x3 � 2x2 � 3x � 2

x(x2 � 1)2
�

A

x
�

Bx � C

x2 � 1
�

Dx � E

(x2 � 1)2

� x3 � 2x2 � 3x � 2

x(x2 � 1)2
dx

FIGURE 1
The right triangle associated 
with the substitution x � tan u

1

¨

x
1 � x2√
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Therefore, the desired result is

Note Certain integrals involving rational functions can be more easily evaluated by
using the method of substitution. For example, the integral

can be evaluated by letting

Then , so

However, such integrals rarely occur in practice.

 � ln(x3 � x2 � x)2 � C

 � 2 ln �u � � C

 � 6x2 � 4x � 2

x(x2 � x � 1)
dx � � 2

u
du

du � (3x2 � 2x � 1) dx

u � x(x2 � x � 1) � x3 � x2 � x

� 6x2 � 4x � 2

x(x2 � x � 1)
dx

 � ln 
x2

x2 � 1
� 2 tan�1 x �

x � 2

x2 � 1
� K

 � x3 � 2x2 � 3x � 2

x(x2 � 1)2
dx � ln 

x2

x2 � 1
� tan�1 x �

2

x2 � 1
� tan�1 x �

x

x2 � 1
� K

EXAMPLE 6 Waste Disposal When organic waste is dumped into a pond, the oxi-
dization process that takes place reduces the pond’s oxygen content. However, in time,
nature will restore the oxygen content to its natural level. Suppose that the oxygen con-
tent days after organic waste has been dumped into a pond is given by

percent of its normal level. Find the average content of oxygen in the pond over the
first 10 days after organic waste has been dumped into it.

Solution The average content is given by

Note that the degree of the numerator in the integrand is the same as that of the denom-
inator, so long division is required here. Carrying through with the division, we find

Next, observe that . Therefore, we can write

10t

t 2 � 20t � 100
�

10t

(t � 10)2
�

A

t � 10
�

B

(t � 10)2

t 2 � 20t � 100 � (t � 10)2

t 2 � 10t � 100

t 2 � 20t � 100
� 1 �

10t

t 2 � 20t � 100

C �
1

10
 �

10

0
f(t) dt � 10�

10

0
 
t 2 � 10t � 100

t 2 � 20t � 100
dt

f(t) � 100a t 2 � 10t � 100

t 2 � 20t � 100
b

t
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where and are real numbers to be determined. Multiplying both sides of this equa-
tion by , we obtain

Equating the coefficients of like powers of yields and . Substi-
tuting into the second equation then gives . Therefore,

or approximately 81%.

 � 10[(10 � 10 ln 20 � 5) � (0 � 10 ln 10 � 10)] � 80.69

 � 10 ct � 10 ln(t � 10) �
100

t � 10
d10

0

 C � 10�
10

0
a1 �

10

t � 10
�

100

(t � 10)2
b dt

B � �100A � 10
10A � B � 0A � 10x

10t � A(t � 10) � B

(t � 10)2
BA

Let be a rational function in which the degree
of is less than the degree of . What is the form of the partial
fraction decomposition of :
1. If has only distinct linear factors?Q

f
QP

f(x) � P(x)>Q(x) 2. If contains a factor with that is repeated?
3. If contains a factor with that is not

repeated?
r � 1(ax2 � bx � c)rQ

r 
 1(ax � b)rQ

7.4 CONCEPT QUESTIONS

In Exercises 1–6, write the form of the partial fraction decom-
position of the rational expression. Do not find the numerical
values of the constants.

1. a. b.

2. a. b.

3. a. b.

4. a. b.

5. a. b.

6. a. b.

In Exercises 7–51, find or evaluate the integral.

7. 8.

9. 10. � 2x � 1

2x2 � x
dx� t � 3

t(t � 1)
dt

� 3x � 2

x(x � 2)
dx� dx

x(x � 4)

2x4 � 3x2 � 8x � 1

(x � 1)2(x2 � x � 1)3

2x3 � 3x � 5

x2(x � 1)3

x2 � x � 27

2x3 � x2 � 8x � 4

x3 � 2x � 1

x4 � 16

8x

x3 � 5x2

2x � 1

x3 � x

7

x2 � 3x � 4

2x2 � 1

x3 � x2

x � 4

x2 � 4x � 3

2x � 1

x2 � x � 2

2x

(x � 1)(3x � 2)

3

x(x � 5)

11. 12.

13. 14.

15. 16.

17. 18.

19. 20.

21. 22.

23. 24.

25. 26.

27. 28.

29. 30. � x2 � 16x � 7

x3 � x2 � x � 3
 dx� 6x2 � 28x � 28

x3 � 4x2 � x � 6
dx

� x2

(x2 � 4x � 3)2 dx� dx

x(x2 � 1)2

� 4x2

(x2 � 4)2 dx� x3 � x � 2

x3 � 2x2 � x
dx

�
2

1
 
x2 � 10x � 36

x(x � 3)2 dx� √3 � 1

√(√ � 1)3 d√

�
4

2

3x � 5

(x � 1)2 dx� 4x2 � 3x � 2

x3 � x2 dx

� x4 � 3x2 � 3x � 2

x3 � x2 � 2x
dx� 2x2 � 3x � 3

x3 � 2x2 � x
dx

�
3

2
 
x3 � 2x � 7

x2 � x � 2
dx� 2x2 � x � 1

x2 � x
dx

�  
x2 � 2x � 8

x3 � 4x
dx� 2x2 � 3x � 6

(x � 3)(x2 � 4)
dx

�
1

0

2u � 3

u2 � 4u � 3
du� x � 1

x2 � x � 2
dx

� 1

4x2 � 9
dx�

4

3

1

x2 � 4
dx

7.4 EXERCISES

Videos for selected exercises are available online at www.academic.cengage.com/login.V

www.academic.cengage.com/login


31. 32.

33.

34.

35.

36. 37.

38. 39.

40. 41.

42. 43.

44. 45.

46. 47.

48. 49.

50. 51.

Hint: Let .

52. An integral of the form , where is a
rational function of and , can be converted into 
an integral involving an ordinary rational function of by
means of the substitution . Prove this by show-
ing that if , where , then

, ,

Hint: Sketch a right triangle.

In Exercises 53–60, use the result of Exercise 52 to find the 
integral.

53.

54.

55. � 1

5 � sin x � 3 cos x
dx

� 1

3 sin x � 4 cos x
dx

� 1

1 � cos x
dx

dx �
2

1 � u2 dusin x �
2u

1 � u2cos x �
1 � u2

1 � u2

�p � x � pu � tan (x>2)
u � tan (x>2)

u
cos xsin x

R� R(sin x, cos x) dx

u � x1>3
� x1>3

1 � x
dx� dx

ex(1 � e2x)

� e4t

(et � 2)(e2t � 1)
dt� ex

e2x � 2ex � 8
dx

� et

(et � 1)(et � 2)
dt� sec2 u

tan u (tan u � 1)
du

� sin x

cos3 x � cos2 x
dx� cos x

sin2 x � sin x � 6
dx

� 3x2 � x � 4

(2x3 � x2 � 8x � 4)2 dx� t 4

t 4 � 1
dt

� 3x2 � x � 2

(x2 � x � 1)2 dx� 3x � x2

(x2 � 1)(x2 � 2)
dx

�
1

0
 
3x3 � 5x2 � 5x � 1

(x � 1)2(x2 � 1)
dx� x2 � x � 21

2x3 � x2 � 8x � 4
dx

� x

x3 � 1
dx� x2 � 1

x3 � 1
dx

� 8 � 3x

(x � 1)(x2 � 4x � 6)
dx

� 13x � 4

(x � 2)(x2 � 2x � 2)
dx

� 5x3 � 3x2 � 7x � 3

(x2 � 1)2 dx

� 2r 2 � 3r � 4

(r 2 � 2)2 dr� x3 � 3

(x � 1)(x2 � 1)
dx 56.

57.

58.

59.

60.

61. Find the area of the region under the graph of 

on the interval .

62. Find the area of the region under the graph of 

on the interval .

63. Let and .

a. Plot the graphs of and using the viewing window
. Find the -coordinate of the point of

intersection of the graphs of and accurate to three
decimal places.

b. Use the result of part (a) to find the approximate area of
the region bounded by the graphs of and and the ver-
tical line .

64. Let and .

a. Plot the graphs of and using the viewing windowtf

t(x) �
1

3
 x3f(x) �

x

x3 � 1

x � 1
tf

tf
x[0, 3] � [�1, 3]

tf

t(x) � ln xf(x) �
x � 3

x(x � 1)

[0, 2]

y �
x3

x3 � 1

[1, 2]

y �
1

x(x � 1)

�
p>6

0

sin x

cos x (1 � sin x)
dx

� 1

1 � tan x
dx

�
p>4

0

tan x

1 � cos x
dx

�
p>2

0

1

1 � cos x � sin x
dx

� 1

sin x (2 � cos x � 2 sin x)
dx

7.4 The Method of Partial Fractions 643

. Find the -coordinate of the point of
intersection of the graphs of and accurate to three
decimal places.

b. Use the result of part (a) to find the approximate area of
the region enclosed by the graphs of and .

65. The region under the graph of on the interval 

is revolved about the -axis. Find the volume of the
resulting solid.

66. The region under the graph of on the interval 

is revolved about the -axis. Find the volume of the
resulting solid.

67. Find the length of the graph of from 

to .

68. Find the centroid of the region under the graph of 

on .[0, 2]y �
2x

x2 � 1

B11, 2 ln 43 2A(0, 0)

y � 2 lna 4

4 � x2b

x[0, 2]

y �
2x

x2 � 1

x[1, 2]

y �
1

x(x � 1)

tf

tf
x[0, 2] � C�1

2, 1 D
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69. Let .

a. Find .
Hint: One root of is .

b. Use a CAS to find the partial fraction decomposition of

c. Use a CAS to find .

70. Let

a. Use a CAS to find the partial fraction decomposition of

b. Use a CAS to find .

71. City Planning A major corporation is building a 4325-acre
complex of homes, offices, stores, schools, and churches in
the rural community of Glen Cove. As a result of this devel-
opment the planners have estimated that Glen Cove’s popu-
lation (in thousands) years from now will be given by

What will the average population of Glen Cove be over the
next 10 years?

72. Work Done in Moving a Charged Particle Suppose that a particle
of charge is placed on a coordinate line between two�1

P(t) �
3t 2 � 130t � 270

t 2 � 6t � 45

t

I

f(x) �
8x5 � 3x4 � 2x2 � 1

36x6 � 108x5 � 105x4 � 72x3 � 58x2 � 12x � 9

I � � 8x5 � 3x4 � 2x2 � 1

36x6 � 108x5 � 105x4 � 72x3 � 58x2 � 12x � 9
 dx

I

f(x) �
x2 � 1

x4 � 6x3 � 12x2 � 11x � 6

�2x4 � 6x3 � 12x2 � 11x � 6 � 0
I

I � � x2 � 1

x4 � 6x3 � 12x2 � 11x � 6
dx

particles, each of charge , as shown in the figure. Then,
according to Coulomb’s Law, there is an electrical force 
acting on the particle of charge given by

where is a positive constant. Find the work required to
move the particle of charge along the coordinate line
from to .

In Exercises 73–76, determine whether the statement is true or
false. If it is true, explain why it is true. If it is false, explain why
or give an example to show why it is false.

73. can be written in the form .

74. can be written in the form 

.

75. can be written in the form .

76. can be written in the form 

.
A

x2 � 1
�

B

(x2 � 1)2

4x3 � x2 � 4x � 2

(x2 � 1)2

A

x
�

B

(x � 1)2

1

x(x � 1)2

A

x
�

B

x � 5
�

C

x � 1

4x2 � 15x � 1

x(x2 � 4x � 5)

A

x � 1
�

B

x � 2

x3 � 2x

(x � 1)(x � 2)

x0 1 2 3

q � �1q � �1 q � 1

x � 2x � 1
�1

k

F(x) � k c 2x � 3

x2(x � 3)2 d
�1

�1

cas

cas

7.5 Integration Using Tables of Integrals and a CAS; a Summary of Techniques

The techniques of integration that we have developed so far enable us to integrate a
wide variety of functions. But in practice, there are many functions for which these
techniques will not work or, if they do, work inefficiently. Other techniques have been
developed that enable us to integrate many complicated functions. By using these tech-
niques, extensive lists of integration formulas have been compiled. A small sample of
such formulas can be found in the Table of Integrals on the reference pages at the back
of this book. These formulas are grouped according to the following basic forms of the

integrand: , , , , , trigonometric,
inverse trigonometric, exponential, logarithmic, and hyperbolic functions.

Using a Table of Integrals
The Table of Integrals provides us with a quick and convenient way of integrating com-
plicated functions. The idea is to match the integrand of the integral to be found with
the integrand of an appropriate integral appearing in the table (whose antiderivative is
known). Sometimes we need to recast the given integral by making an appropriate sub-
stitution or by using the integration by parts formula before we can use the Table of
Integrals.

22au � u22u2 � a22a2 � u21a � bua � bu
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EXAMPLE 1 Use the Table of Integrals to find .

Solution We first write

Scanning the Table of Integrals for integrands involving , we see that For-
mula 28,

is the proper choice. With , , and we obtain

 � 2(x � 4)12 � x � C

 � 3x

12 � x
dx � 3c2

3
 (x � 4)12 � xd � C

u � xb � 1a � 2

� u

1a � bu
du �

2

3b2
 (bu � 2a)1a � bu � C

1a � bu

� 3x

12 � x
dx � 3� x

12 � x
dx

� 3x

12 � x
dx

EXAMPLE 2 Use the Table of Integrals to find .

Solution Looking at the Table of Integrals for integrands involving , we
find that Formula 49,

is closest to the form of the given integral. Comparison of the two integrands suggests
that we make the substitution and , obtaining

Then, using Formula 49 with , we obtain

 � �
23 � 4x2

x
� 2 sin�1a 2x

13
b � C

 �23 � 4x2

x2
dx � 2�23 � u2

u2
du � 2c�1

u
 23 � u2 � sin�1 

u

13
d � C

a � 13

�23 � 4x2

x2
dx � �23 � u2

(u>2)2
 adu

2
b � 2�23 � u2

u2
du

du � 2 dxu � 2x

�2a2 � u2

u2
du � �

1
u

 2a2 � u2 � sin�1 
u

a
� C

2a2 � u2

�23 � 4x2

x2
dx

EXAMPLE 3 Use the Table of Integrals to find .

Solution Looking in the section of the Table of Integrals for integrands involving
trigonometric functions, we find Formula 78, a reduction formula.

Using the formula with , we obtain

� x3 cos x dx � x3 sin x � 3� x2 sin x dx

n � 3

�un cos u du � un sin u � n�un�1 sin u du

� x3 cos x dx
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EXAMPLE 4 Use the Table of Integrals to evaluate .

Solution Let’s begin by evaluating the corresponding indefinite integral, which can
also be rewritten as

No formula in the Table of Integrals has either of these forms, so let’s consider mak-
ing a substitution. Letting , so that , we find

Looking in the Table of Integrals for integrands involving leads to Formula 28,

with and . We obtain

Therefore,

Since 

So

 �
613 � 8

3

 �
2

3
 (3)13 � 0 �

2

3
 (1 � 3)13 � 2 � 213 �

8

3

 �
p>2

0

sin 2x

13 � 2 cos x
dx � c2

3
 (cos x � 3)13 � 2 cos xdp>2

0

u � cos x �
2

3
 (cos x � 3)13 � 2 cos x � C

 � sin 2x

13 � 2 cos x
dx �

2

3
 (u � 3)13 � 2u � C

�2� u

13 � 2u
du � �2 a 2

12
b (�2u � 6)13 � 2u � C �

2

3
 (u � 3)13 � 2u � C

b � �2a � 3

� u

1a � bu
du �

2

3b2
 (bu � 2a)1a � bu � C

1a � bu

� sin 2x

13 � 2 cos x
dx � �2� cos x (�sin x)

13 � 2 cos x
dx � �2� u

13 � 2u
du

du � �sin x dxu � cos x

� sin 2x

13 � 2 cos x
dx � � 2 sin x cos x

13 � 2 cos x
dx

�
p>2

0

sin 2x

13 � 2 cos x
dx

EXAMPLE 5 The region under the graph of on the interval is
revolved about the -axis. Find the volume of the resulting solid.y

[0, 1]y � cos�1 xR

Next, using Formulas 77 and 76, we obtain

Using Tables of Integrals to Evaluate Definite Integrals

 � x3 sin x � 3x2 cos x � 6x sin x � 6 cos x � C

 � x3 sin x � 3x2 cos x � 6(cos x � x sin x) � C

 � x3 cos x dx � x3 sin x � 3c�x2 cos x � 2� x cos x dxd
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FIGURE 1
The region under on
[0, 1]

y � cos�1 xR

0 1 x

y

R

π
2

Solution The region is shown in Figure 1. Using the method of cylindrical shells,
we see that the required volume is

We use Formula 91 from the Table of Integrals to evaluate this integral, obtaining

Graphing Calculators and CAS
Most of the graphing calculators that are available today will perform numerical inte-
gration; that is, the calculator will give a numerical approximation to the value of 
a definite integral. The more sophisticated graphing calculators, such as the TI-89 or
TI-92, will even do symbolic integration; that is, the calculator will find an antideriv-
ative of a given function.

A computer equipped with the appropriate software, such as Mathematica, Maple,
or Derive, can be used to perform both tasks. If you use these programs, bear in mind
that the commands are different for different programs and, more important, the answers
may appear in different forms even though they are equivalent.

 �
p2

4

 � 2p c1
4

cos�1 1 � a�1

4
cos�1 0b d � 2p c1

4
 (0) �

1

4
 ap

2
b d

 V � 2p�
1

0
x cos�1 x dx � 2p c2x2 � 1

4
cos�1 x �

x21 � x2

4
d1

0

V � 2p�
1

0
x cos�1 x dx

R

EXAMPLE 6 Find using (a) the TI-89 and (b) CAS with Maple and
Mathematica.

Solution
a. Using the TI-89:

b. Using Mathematica:

Using Maple:

Note that none of these programs include the constant of integration in their
answers. Of course, we can find the integral under consideration by using the
method of substitution. You can easily verify that your result is the same as that
obtained by using the TI-89. The output obtained by using both Maple and Math-
ematica is in a more cumbersome form, but it is equivalent to the more compact
answer obtained by using the TI-89. You can see this by expanding the latter using
the Binomial Theorem.

� x(x2 � 3)6 dx �
1

14
x14 �

3

2
x12 �

27

2
x10 �

135

2
x8 �

405

2
x6 �

729

2
x4 �

729

2
x2

� x(x2 � 3)6 dx �
729x2

2
�

729x4

2
�

405x6

2
�

135x8

2
�

27x10

2
�

3x12

2
�

x14

14

� x(x2 � 3)6 dx �
(x2 � 3)7

14

� x(x2 � 3)6 dx
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EXAMPLE 7 Find by using (a) the TI-89 and (b) CAS with Maple and

Mathematica.

Solution
a. Using the TI-89:

b. Using Mathematica:

Using Maple:

Summary of Integration Techniques
Our first table gives a summary of the basic integration formulas that were covered in
this and the previous chapters.

� cos4 x

sin3 x
dx � �

cos(x)5

2 sin(x)2
�

1

2
cos(x)3 �

3

2
cos(x) �

3

2
ln(csc(x) � cot(x))

� cos4 x

sin3 x
dx � �cos x �

1

8
 cscax

2
b2

�
3

2
lnacos 

x

2
b �

3

2
lnasin 

x

2
b �

1

8
 secax

2
b2

�
3(sin2 x) � ln(�cos x � 1 �) � 3(sin2 x � ln(� sin x �) � (2(sin2 x) � 1) � cos x

2 sin2 x

� cos4 x

sin3 x
dx

� cos4 x

sin3 x
dx

BASIC INTEGRATION FORMULAS

1. ,

2.

3.

4.

5.

6.

7.

8. � csc2 u du � �cot u � C

� sec2 u du � tan u � C

� cos u du � sin u � C

� sin u du � �cos u � C

�au du �
au

ln a
� C

� eu du � eu � C

� 1
u

du � ln �u � � C

n 	 �1�un du �
un�1

n � 1
� C 9.

10.

11.

12.

13.

14.

15.

16. � du

u2u2 � 1
� sec�1�u � � C

� du

21 � u2
� sin�1 u � C

� cot u du � ln � sin u � � C

� tan u du � ln � sec u � � C

� csc u du � �ln �csc u � cot u � � C

� sec u du � ln � sec u � tan u � � C

� csc u cot u du � �csc u � C

� sec u tan u du � sec u � C 17.

18.

19.

20.

21.

22.

23. � csch2 u du � �coth u � C

� sech u tanh u du � �sech u � C

� csch u coth u du � �csch u � C

� sech2 u du � tanh u � C

� cosh u du � sinh u � C

� sinh u du � cosh u � C

� du

1 � u2 � tan�1 u � C

The next table lists the methods of integration developed in Chapter 4 (Integration
by Substitution) and this chapter.
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METHODS OF INTEGRATION

Integration Method of integration Section

1. � f(t(x))t¿(x) dx Use the substitution .u � t(x) Section 4.2

2. � f(x)t¿(x) dx Use the integration by parts formula:

or � u d√ � u√ � � √ du� f(x)t¿(x) dx � f(x)t(x) � � t(x) f ¿(x) dx

Section 7.1

Note: Apply the method to integrals of the form , , , where is a polynomial,

, , , , , , and so on.� eax sin bx� eax cos bx dx(m 
 0 and m odd)� secm x dx� tan�1 x dx� sin�1 x dx� ln x dx

P(x)� P(x)cos ax dx� P(x)sin ax dx� P(x)eax dx

3. a. , where or 

is a positive integer

nm� sinm x cosn x dx a. If is odd and positive, use the substitution .

b. If is odd and positive, use the substitution .

c. If and are even and nonnegative use the formulas

, cos2 x �
1 � cos 2x

2
sin2 x �

1 � cos 2x

2

nm

u � sin xn

u � cos xm

b. , where or 

is a positive integer.

nm� tanm x secn x dx a. If is odd and positive, use the substitution .

b. If is even and positive, use the substitution .u � tan xn

u � sec xm

Note: Also try converting the integrand to one involving sines and cosines.

Use the identities:

c.

� cos mx cos nx dx

� sin mx cos nx dx

� sin mx sin nx dx

cos mx cos nx � 1
2 [cos(m � n)x � cos(m � n)x]

sin mx cos nx � 1
2 [sin(m � n)x � sin(m � n)x]

sin mx sin nx � 1
2 [cos(m � n)x � cos(m � n)x]

4. , where involvesf� f(x) dx Section 7.3

2x2 � a2

2a2 � x2

2a2 � x2 Use the substitution , where .

Use the substitution , where .

Use the substitution , where or .p
2 � u � p0 � u � p

2x � a sec u

�p2 � u � p
2x � a tan u

�p2 � u � p
2x � a sin u

5. , where and 

 p (ax2 � bx � c)m p
 Q(x) � (p1x � q1)

k(p2x � q2)
l

deg P � deg Q� P(x)

Q(x)
dx Write the integrand as a sum of partial fractions:

 �
Mmx � Nm

(ax2 � bx � c)m � p

 � p � 
M1x � N1

ax2 � bx � c
�

M2x � N2

(ax2 � bx � c)2 � p

 �
B1

p2x � q2
�

B2

(p2x � q2)
2 � p � 

Bl

(p2x � q2)
l

 
P(x)

Q(x)
�

A1

p1x � q1
�

A2

(p1x � q1)
2 � p � 

Ak

(p1x � q1)
k

Section 7.4
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EXAMPLE 8 Indicate the method of integration that you would use to find the inte-
gral. Explain how you arrive at your choice.

a. b. c.

d. e.

Solution
a. We use the substitution so that . Then

which is easily integrated.
b. The integrand involves , so we try the method of integration by parts with

and

so that

and

We obtain

c. We use the trigonometric identities of Section 7.2. Thus,

So

which is readily integrated.

� sin x sin 2x cos 3x dx �
1

4
 � (cos 2x � cos 4x � cos 6x � 1) dx

 �
1

4
 (cos 2x � cos 4x � 1 � cos 6x)

 �
1

2
 [(cos x)(cos 3x) � (cos 3x)(cos 3x)]

 �
1

2
 (cos x � cos 3x)cos 3x

 sin x sin 2x cos 3x � [(sin x)(sin 2x)]cos 3x

 � �(sin�1 x)21 � x2 � x � C

 � x sin�1 x

21 � x2
dx � �(sin�1 x)21 � x2 � �21 � x2

21 � x2
dx

√ � � x

21 � x2
dx � �21 � x2du �

1

21 � x2
dx

d√ �
x

21 � x2
dxu � sin�1 x

sin�1 x

 � �� (u30 � 2u31 � u32) du

 � x2(1 � x)30 dx � �� (1 � u)2u30 du � �� (1 � 2u � u2)u30 du

du � �dxu � 1 � x

� x � 4

(x � 1)(x2 � 1)2
dx� cos4 x

sin3 x
dx

� sin x sin 2x cos 3x dx� x sin�1 x

21 � x2
dx� x2(1 � x)30 dx
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d. We rewrite

Letting , we have , and this gives

To complete the solution, we first perform long division and then use the method
of partial fractions.

e. The integrand is a rational function whose numerator has degree less than that of
the denominator. So we use the method of partial fractions. The form of the
decomposition is

A

x � 1
�

Bx � C

x2 � 1
�

Dx � E

(x2 � 1)2

 � �� u4

(1 � u2)2
du

 I � � cos4 x sin x

(sin2 x)2
dx � � cos4 x sin x

(1 � cos2 x)2
dx

du � �sin x dxu � cos x

I � � cos4 x

sin3 x
dx � � cos4 x sin x

sin4 x
dx

Videos for selected exercises are available online at www.academic.cengage.com/login.V

In Exercises 1–36, use the Table of Integrals to evaluate the 
integral.

1. 2.

3. 4.

5. 6.

7. 8.

9. 10.

11. 12.

13. 14.

15. 16.

17. 18.

19. 20.

Hint: Let . Hint: Let .u � 1xu � 1x

� cos�11x

1x
dx�

1

0
sin�11x dx

� x2 tan�1 3x dx� x3 sin(x2 � 1) dx

� csc5 u du� x cos�1 2x dx

� x4 sin x dx� ex

(1 � e2x)3>2 dx

� 1

x22x2 � 5
dx�2x2 � 3

x
dx

�29 � 2x2

x2 dx�22 � x2

x
dx

� x224 � 3x2 dx� 1

x23 � 2x2
dx

� x2

29 � 4x2
dx� 13 � 2x

x2 dx

� 1

x14 � x
dx� x2

(1 � 2x)2 dx

� x

12 � 3x
dx� x11 � 2x dx

21. 22.

23. 24.

25. 26.

27. 28.

29. 30.

31. 32.

33.

34.

Hint: Let .

35. 36.

37. Find the area of the region under the graph of 
on the interval .

38. Find the length of the graph of from to
.B(e, 1)

A(1, 0)f(x) � ln x

[1, e]
y � x2 ln x

� e2x ln(1 � ex) dx� ecos x sin 2x dx

u � tan x

a 
 0, b 
 0�
p>4

0

1

a2 cos2 x � b2 sin2 x
dx

�
e2

1

ln t

t11 � ln t
dt

� e2x ln(1 � e2x) dx� x2

28x � 3x2
dx

�24x � 2x2

x
dx�26x � x2 dx

� 1

x ln1x
dx� x3 ln 5x dx

� sec31x

1x
dx� sin x

1 � cos2 x
dx

� 1

21 � e2x
dx� x3e�2x dx

� e2x sin�1 ex dx� e�2x sin 3x dx

7.5 EXERCISES

www.academic.cengage.com/login
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39. The region under the graph of on is
revolved about the -axis. Find the volume of the resulting
solid of revolution.

40. The region under the graph of on is
revolved about the -axis. Find the volume of the resulting
solid of revolution.

41. Find the centroid of the region under the graph of
on .

42. Find the work done by the force 
(measured in pounds) in moving a particle along the -axis
from to (measured in feet).

43. Theme Park Attendance The management of Astro World 
(“The Amusement Park of the Future”) estimates that visi-
tors enter the park hours after opening time at 8 A.M. at 
the rate of

thousand people per hour. Determine the number of visitors
admitted by noon.

44. Voter Registration The number of voters in a certain district of
a city is expected to grow at the rate of

people per year years from now. If the number of voters 
at present is 20,000, how many voters will be in the district
5 years from now?

45. Growth of Fruit Flies On the basis of data collected during an
experiment, a biologist found that the number of fruit flies
(Drosophila melanogaster) with a limited food supply could
be approximated by the exponential model

where denotes the number of days since the beginning of
the experiment. Find the average number of fruit flies in the
colony in the first 10 days of the experiment and in the first
20 days.

46. Average Mass of an Electron According to the special theory of
relativity, the mass of a particle moving at a velocity is
given by

where is the mass of the body at rest and 
m/sec is the speed of light. If an electron is accelerated from
a speed of m/sec to a speed of m/sec, find an expres-
sion for the average mass of the electron between 
and .√ � √2

√ � √1

√2√1

c � 3 � 108m0

m �
m0

B1 �
√2

c2

√m

t

N(t) �
1000

1 � 24e�0.02t

t

R(t) �
3000

24 � t 2

R(t) �
60

(2 � t 2)3>2

t

x � 4x � 0
x

F(x) � x2>(1 � 2x)2

C0, p2 Dy � cos2 x

y
[0, 1]y � sin�1 x

x
C0, p2 Dy � cos2 x 47. Find the area of the surface generated by revolving the

graph of for about the -axis.

48. Find the centroid of the region enclosed by the graph of
.

In Exercises 49–52, verify the integration formula.

49.

50.

51. ,

52. ,

In Exercises 53–62, use a CAS to find the integral.

53. 54.

55. 56.

57. 58.

59. 60.

61. 62.

In Exercises 63–100, find or evaluate the integral.

63. 64.

65. 66. �21 � 2 cos2 x sin 2x dx�
cos 

1
x

x2 dx

� t 3

21 � t 2
dt� x

23 2 � x
dx

� x sin�1 x dx� e2x

2ex � 1
dx

� x3e�2x dx� x5ex dx

� tan5 x dx� cos4 x dx

� x2 � x � 1

x3 � 1
dx� x � 1

x1x � 2
dx

� x

11 � 2x
dx� x1x � 2 dx

n 	 �1�un ln u du �
un�1

(n � 1)2 [(n � 1)ln u � 1] � C

n 	 �1

�un tan�1 u du �
1

n � 1
 cun�1 tan�1 u � � un�1

1 � u2 dud
� 1

u2(a � bu)
du � �

1
au

�
b

a2 ln ` a � bu

u
` � C

�2a2 � u2

u2 du � �
1
u

 2a2 � u2 � sin�1 
u

a
� C

x0.2 0.4 0.6 0.8 1

y

�0.1

�0.2

�0.3

0.1

0.2

0.3

0

y2 � x3 � x4

x0 � x � 1y � x2

cas
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67. 68.

69. 70.

71. 72.

73. 74.

75. 76.

77. 78.

79. 80.

81. 82.

83. 84. � ex sin2 x dx� x tan2 x dx

� sin2 x cos5 x dx�
2

1
 
ln x

x2 dx

� x2e3x dx�
15

2
2x2 � 4 dx

�
e

1
sin(ln x) dx� x sin�1 x dx

� tan�1 x dx� x2(3x3�1) dx

� ex

21 � ex
dx�

e

1
 
2ln x � 3

x
dx

� e1x dx� dx

x21 � (ln x)2

�
1>12

0
 
(sin�1 x)2

21 � x2
dx�

1

0

x

x4 � 3
dx

� x � 3

25 � 4x � x2
dx�

1>2

0

x � 1

21 � x2
dx 85. 86.

87. 88.

89. 90.

91. 92.

93. 94.

95. 96.

97. 98.

99. 100. �
p>4

0

sin x

1 � 4 cos2 x
dx� xex2�ex2

dx

� x4

(1 � x)3 dx� dx

x4 � x2 � 1

�
1

0

x3

(x � 1)2(x2 � x � 1)
dx� dx

x3 � 1

�
p>4

0
tan3>2 x sec4 x dx�2x2 � 9

x
dx

�29 � 4x2

x
dx� cot4(2x) dx

�
p>2

0

sin x

1 � 1cos x
dx� dx

2x2 � 6x

� dx

1 � tan x� dx

x � 1 � 1x � 1

� sin 3x cos 4x dx�
p>3

0
11 � cos x dx

7.6 Improper Integrals

In defining the definite integral , we required that the interval of integration
be finite and that be bounded. In many applications, one or both of these con-

ditions do not hold. In this section we will extend the concept of the definite integral
to include these cases:

1. The interval of integration is infinite (Figure 1a).
2. is unbounded (Figure 1b).f

f[a, b]
�b

a f(x) dx

FIGURE 1

Integrals that have infinite intervals of integration or unbounded integrands are called
improper integrals.

0 xa c

y � f(x) y � f(x)

a b

y

(a) The interval of integration [a, ) is
      infinite.

(b) f is unbounded on [a, b] because it
      has an infinite discontinuity at
      c: f(x)  as x c�.

0 x

y
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Infinite Intervals of Integration
Suppose that we want to find the area of the unbounded region under the graph of

on the interval as shown in Figure 2a. Because the interval 
is infinite, the definition of the integral that we have used thus far is not applicable,
and a new approach to solving the problem is required. But observe that if , then

can be approximated by the area of the region under the graph of on 
(Figure 2b).

[1, b]fA(b)A
b 
 1

[1, �)[1, �)f(x) � 1>x2
A

FIGURE 2
The shaded area in part (a) is approxi-

mated by the shaded area in part (b).

FIGURE 3
As increases, the approximation of by the definite integral improves.Ab

The approximation seems to get better and better as gets larger and larger (see
Figure 3). Since is finite, we see that

A(b) � �
b

1
f(x) dx � �

b

1

1

x2
dx � �

1
x
`b
1

� �
1

b
� 1

[1, b]
b

1 b

(a) The area of A of the region under
      the graph of y � 1/x2 on [1, ).

(b) The area A(b) of the region under
      the graph of y � 1/x2 on [1, b].

0 xx

y

y �
x2
1

10

y

y �
x2
1

0 x1

1

2

y �

y

(a) Area of region under the graph
      of f on [1, 2]

x2
1

0 x1

1

2

y �

y

(b) Area of region under the graph
      of f on [1, 3]

x2
1

0 x1

1

2

y �

y

(c) Area of region under the graph
      of f on [1, 4]

x2
1

2 3 4 5 62 3 4 5 62 3 4 5 6

Letting , we obtain

This suggests that we define the area to be 1 and write

A � �
�

1

1

x2
dx � lim

b→�
 �

b

1

1

x2
dx � 1

A

lim
b→�

A(b) � lim
b→�
a�1

b
� 1b � 1

b → �
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DEFINITIONS Improper Integrals with Infinite Limits of Integration

1. If is continuous on , then

(1)

provided that the limit exists.
2. If is continuous on , then

(2)

provided that the limit exists.
3. If is continuous on , then

(3)

where is any real number, provided that both improper integrals on the
right-hand side exist.

Convergence and Divergence

Each improper integral in Equation (1) and Equation (2) is convergent if the
limit exists and divergent if the limit does not exist. The improper integral on
the left-hand side in Equation (3) is convergent if both improper integrals on
the right are convergent and divergent if one or both of the improper integrals
on the right is divergent.

c

�
�

��

f(x) dx � �
c

��

f(x) dx � �
�

c

f(x) dx

(��, �)f

�
b

��

f(x) dx � lim
a→��

 �
b

a

f(x) dx

(��, b]f

�
�

a

f(x) dx � lim
b→�

 �
b

a

f(x) dx

[a, �)f

EXAMPLE 1 Evaluate .

Solution By Equation (1) we have

Therefore, the given improper integral is divergent.

Let’s compare the integral of Example 1 with the integral 
that we considered earlier. If we interpret each integral as the area of the region under
the graph of a function on the infinite interval , then the result ��

1 (1>x2) dx � 1[1, �)

��
1 (1>x2) dx��

1 (1>x) dx

 � lim
b→�

(ln b � ln 1) � �

 �
�

1

1
x

dx � lim
b→�

 �
b

1

1
x

dx � lim
b→�
Cln x Db

1

�
�

1

1
x

dx

tells us that the area under the graph of is equal to 1 and hence finite, whereas
the result tells us that the area under the graph of is infinite.y � 1>x��

1 (1>x) dx � �
y � 1>x2

Observe that the graphs of and are similar. (See Figure 4.) Both 1>x2y � 1>xy � 1>x2

and approach zero as approaches infinity, but approaches zero faster than
does.1>x 1>x2x1>x

This example shows how we can define an integral over an infinite interval as the
limit of integrals over finite intervals. More precisely, we have the following defini-
tions. (Note that need not be positive in the interval under consideration.)f
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These examples reveal the fine line between convergence and divergence of an
improper integral. But a word of caution: It is not even necessary for to approach
zero as approaches infinity for an integral to converge (see Challenge Prob-
lem 16 at the end of this chapter).

��
a f(x) dxx

f(x)

FIGURE 4

EXAMPLE 2 Find the values of for which is convergent.

Solution From the result of Example 1 we see that the integral is divergent if .
So let’s assume that . We have

If , then , so

Therefore, the integral diverges. If , then , so

Therefore, the integral converges to . To summarize

�
�

1

1

xp dx � •
1

p � 1
if p 
 1

diverges if p � 1

1>(p � 1)

lim
b→�

 
1

b p�1
� 0

p � 1 
 0p 
 1

lim
b→�

 
1

b p�1
� lim

b→�
b1�p � �

1 � p 
 0p � 1

 �
1

1 � p
lim
b→�

 c 1

bp�1
� 1d

 � lim
b→�

 c x�p�1

�p � 1
db

1

 �
�

1

1

xp dx � lim
b→�

 �
b

1
x�p dx

p 	 1
p � 1

�
�

1

1

xp dxp

0 x1

1 1

1

y �

y

(a) The unbounded region has finite area.

x2

(b) The unbounded region has infinite area.

0

1

x

y

y � x
1

EXAMPLE 3 Evaluate

a. b. �
�

0
cos x dx�

�

�1
e�x dx
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KARL THEODOR WILHELM WEIERSTRASS
(1815–1887)

Now considered one of the greatest mathe-
maticians of the nineteenth century, Karl
Weierstrass did not receive acclaim until
1854. His father wanted him to pursue a
career as a bureaucrat, and in 1834 Weier-
strass entered the University of Bonn to
study law, finance, and economics. How-
ever, he had already developed a deep
interest in mathematics, and while at Bonn
he did not take his studies seriously.
Instead, he spent his time socializing and
fencing, and after four years he had not
earned a degree. Weierstrass’s father was
shamed by his failure, and to salvage the
family name he encouraged Weierstrass to
earn his teaching certificate. It was during
this time that Weierstrass’ academic dedi-
cation and interest in mathematics
reemerged. Weierstrass became an excel-
lent teacher and lecturer and became
prominent among mathematicians upon
the publication of his paper on Abelian
functions in 1854. He received an honorary
doctorate from the University of Königs-
berg, and in 1856 he became a professor of
mathematics at the Royal Polytechnic
School in Berlin. Weierstrass’ students
included many who went on to become
some of the most famous mathematicians
of the nineteenth century. Among them
was Sonya Kovalevskaya (page 372), whom
he tutored privately because women were
prohibited from attending lectures at the
University.
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Solution

a.

b.

Since does not exist, we conclude that the given integral is diver-
gent. (To see why, just examine the graph of .)y � sin x

limb→� sin b

�
�

0
cos x dx � lim

b→�
 �

b

0
cos x dx � lim

b→�
Csin x Db

0
� lim

b→�
(sin b � 0)

�
�

�1
e�x dx � lim

b→�
 �

b

�1
e�x dx � lim

b→�
C�e�x Db

�1
� lim

b→�
(�e�b � e1) � e

EXAMPLE 4 Evaluate .

Solution By Equation (2) we have

From the result of Example 1 in Section 7.1 we have

Therefore,

To evaluate the limit on the right-hand side, note that

and, by l’Hôpital’s Rule,

Indeterminate form:

Therefore,

 � �1 � 0 � 0 � �1

 � lim
a→��

(�1) � lim
a→��

aea � lim
a→��

ea

 �
0

��

xex dx � lim
a→��

(�1 � aea � ea)

 � lim
a→��

 
1

�e�a � 0

��>� lim
a→��

aea � lim
a→��

 
a

e�a

lim
a→��

ea � 0

 � lim
a→��

[�1 � (a � 1)ea]

 �
0

��

xex dx � lim
a→��

�
0

a

xex dx � lim
a→��

C (x � 1)ex D0
a

� xex dx � xex � � ex dx � (x � 1)ex � C

�
0

��

xex dx � lim
a→��

 �
0

a

xex dx

�
0

��

xex dx

EXAMPLE 5 Evaluate , and interpret your result geometrically.�
�

��

 
1

1 � x2
dx
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FIGURE 5
The area of the region under the graph 

of on is .p(��, �)y �
1

1 � x2

EXAMPLE 6 A Rocket Launch Find the work done in launching a rocket weighing
pounds, vertically upward from the surface of the earth so that the rocket completely

escapes the earth’s gravitational field.

Solution According to Newton’s Law of Gravitation, the rocket is attracted to the
earth by a force given by

where is the mass of the rocket, is the mass of the earth, is the distance between
the rocket and the center of the earth, and is the universal gravitational constant.
Writing , we have

where is the radius of the earth. Since the rocket weighs pounds on the surface of
the earth, we have

This gives , and therefore

(See Figure 6.) Therefore, the work required to propel the rocket to an infinite height
(to escape the earth’s gravitational field) is

 � lim
b→�
a�PR2

b
�

PR2

R
b � PR

 � lim
b→�

 �
b

R

PR2

x2
dx � lim

b→�
c�PR2

x
db

R

 W � �
�

R

F(x) dx � �
�

R

PR2

x2
dx

F(x) �
PR2

x2

k � PR2

F(R) �
k

R2
� P

PR

R � x � �F(x) �
k

x2

k � GmM
G

xMm

F(x) �
GmM

x2

F(x)

P

Solution By Equation (3) we have

Because the integrand is nonnegative on , we can interpret
the value of the improper integral as the area of the region under the graph of on

. (See Figure 5.)(��, �)
f(p)

(��, �)f(x) � 1>(1 � x2)

 � c0 � a�p
2
b d � ap

2
� 0b � p

 � lim
a→��

(tan�1 0 � tan�1 a) � lim
b→�

(tan�1 b � tan�1 0)

 � lim
a→��

Ctan�1 x D0
a

� lim
b→�
Ctan�1 x Db

0

 � lim
a→��

 �
0

a

1

1 � x2
dx � lim

b→�
 �

b

0

1

1 � x2
dx

For convenience we have
chosen c � 0. �

�

��

1

1 � x2
dx � �

0

��

1

1 � x2
dx � �

�

0

1

1 � x2
dx

0

1

y

x

1
1 � x2y �

FIGURE 6
The force attracting the rocket to the
earth when it is at a distance is

, where .R � x � �F � PR2>x2
x

R
x
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For example, if the rocket weighs 20 tons (40,000 lb) on the ground and the radius 
of the earth is approximately 4000 mi (21,120,000 ft), then the work required is

or ft-lb.

Improper Integrals with Infinite Discontinuities
As we mentioned earlier, there is another kind of improper integral: those having
integrands that are unbounded on the interval of integration (Figure 1b). To see how
we define this type of integral, consider the problem of finding the area of the
unbounded region under the graph of on the interval shown in
Figure 7a.

(0, 4]f(x) � 1>1x
A

8.448 � 1011W � 40,000 � 21,120,000

FIGURE 7
The area of the shaded region in part (a) is approximated by the area of the
shaded region in part (b).

Because the integrand is unbounded on the interval (that is, as1>1x → �(0, 4]
, the definition of the integral given in Chapter 4 cannot be used to find . But

observe that if is any number such that , then can be approximated by
the area of the region under the graph of on (Figure 7b). Observe that the
approximation appears to get better and better as approaches 0 from the right. Since

is bounded on the finite interval , we see that

Letting , we obtain

This suggests that we define the area to be 4 and write

This example shows how we can define an integral whose integrand has an infinite
discontinuity at a point as the limit of integrals whose integrands are bounded. More
precisely, we have the following definitions. (Again, note that need not be positive in
the interval under consideration.)

f

A � �
4

0

1

1x
dx � lim

c→0�
 �

4

c

1

1x
dx � 4

A

lim
c→0�

A(c) � lim
c→0�

(4 � 21c) � 4

c → 0�

A(c) � �
4

c

f(x) dx � �
4

c

1

1x
dx � 21x `4

c
� 4 � 21c

[c, 4]f(x) � 1>1x
c

[c, 4]fA(c)
A0 � c � 4c

Ax → 0�)

0 x1 2 3 4

y

(a) The area A of the region under
      the graph of y � 1/ on (0, 4]

(b) The area A(c) of the region under
      the graph of y � 1/

y �
1
x√

0 x1c 2 3 4

y

y �
1
x√

x√ on [c, 4]x√
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DEFINITIONS Improper Integrals Whose Integrands Have Infinite
Discontinuities

1. If is continuous on and has an infinite discontinuity at , then

(4)

provided that the limit exists (Figure 8a).
2. If is continuous on and has an infinite discontinuity at , then

(5)

provided that the limit exists (Figure 8b).
3. If has an infinite discontinuity at , where , but is continuous

elsewhere on , then

(6)

provided that both improper integrals on the right exist (Figure 8c).

Convergence and Divergence

Each improper integral in Equations (4) and (5) is convergent if the limit exists
and divergent if the limit does not exist. The improper integral on the left in
Equation (6) is convergent if both improper integrals on the right are conver-
gent and divergent if one or both improper integrals on the right is divergent.

�
b

a

f(x) dx � �
c

a

f(x) dx � �
b

c

f(x) dx

[a, b]
fa � c � bcf

�
b

a

f(x) dx � lim
c→a�

 �
b

c

f(x) dx

af(a, b]f

�
b

a

f(x) dx � lim
c→b�

 �
c

a

f(x) dx

bf[a, b)f

FIGURE 8

0 xa b

y

(a) f has an infinte discontinuity
     at b.

0 xa b

y

(b) f has an infinite discontinuity
     at a.

0 xa c b

y � f(x) y � f(x) y � f(x)

y

(c) f has an infinite discontinuity
     at c.

EXAMPLE 7 Evaluate , and interpret your result geometrically.

Solution The integrand has an infinite discontinuity at , as
shown in Figure 9. Using Equation (4), we have

 � lim
c→4�

(�214 � c � 212) � 212

 � lim
c→4�
C�214 � x Dc

2

 �
4

2

1

14 � x
dx � lim

c→4�
 �

c

2

1

14 � x
dx

x � 4f(x) � 1>14 � x

�
4

2

1

14 � x
dx

FIGURE 9
The area of the region under the graph
of on is .212[2, 4]y � 1>14 � x

0 x1

1

2

2 3 4

y

y �
1

4 � x√

Integrate using the substitution
.u � 4 � x
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EXAMPLE 8 Evaluate .

Solution The integrand has an infinite discontinuity at . Using Equation (5),
we have

and we conclude that the given improper integral is divergent.

�
1

0

dx

x2
� lim

a→0�
 �

1

a

dx

x2
� lim

a→0�
c�1

x
d1

a
� lim

a→0�
a�1 �

1
a
b � �

x � 01>x2

�
1

0

dx

x2

Since the integrand is positive on , we can interpret the value of the improper
integral as the area of the region under the graph of on .[2, 4)f

[2, 4)

EXAMPLE 9 Evaluate .

Solution The integrand has an infinite discontinuity at . (See Figure 10.) There-
fore, we write

To evaluate the limit on the right, we apply l’Hôpital’s Rule, obtaining

Therefore,

�
1

0
ln x dx � lim

a→0�
(�1 � a ln a � a) � �1 � 0 � 0 � �1

lim
a→0�

a ln a � lim
a→0�

 
ln a

1
a

� lim
a→0�

 

1
a

�
1

a2

� lim
a→0�

(�a) � 0

 � lim
a→0�

(0 � 1 � a ln a � a)

 � lim
a→0�
Cx ln x � x D1

a

 �
1

0
ln x dx � lim

a→0��
1

a

ln x dx

x � 0

�
1

0
ln x dx

Integrate by parts with 
and .d√ � dx

u � ln x

y � ln x

0 x

y

1

FIGURE 10
The integrand approaches

as approaches 0 from the right.x��
f(x) � ln x

EXAMPLE 10 Evaluate .

Solution The integrand has an infinite discontinuity at . (See Fig-
ure 11.) Using Equation (6), we have

Now, using the result of Example 8, we see that the second integral on the right is diver-
gent; that is,

Therefore, the given improper integral is divergent. Note that it is not necessary to eval-
uate the first integral on the right.

�
1

0

dx

x2
� �

�
1

�1

dx

x2
� �

0

�1

dx

x2
� �

1

0

dx

x2

x � 0f(x) � 1>x2

�
1

�1
 
dx

x2

FIGURE 11
The integrand approaches

as approaches 0.x�
f(x) � 1>x2

0 x�1�2
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5
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20
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Note If we had not realized that has an infinite discontinuity at ,
then we might have proceeded as follows:

giving a wrong answer. After all, a positive integrand could not possibly yield an inte-
gral whose value is negative!

�
1

�1

dx

x2
� �

1
x
`1
�1

� �1 � (�1) � �2

x � 0f(x) � 1>x2

EXAMPLE 11 Length of a Pursuit Curve The graph of the equation

gives the path taken by a coast guard patrol boat (Boat ) as it pursued and eventually
intercepted boat that was suspected of carrying contraband. (See Figure 12.) Initially,
the patrol boat was at point , and Boat was at the origin, heading north. At the time
of interception both boats were at point . Find the distance traveled by the patrol boat
during the pursuit.

Q
BP

B
A

y �
1

3
 1x(x � 3) �

2

3

C

FIGURE 12
The pursuit curve gives the path taken by patrol boat .AC

Solution The distance traveled by the patrol boat is given by the length of the curve
from to . To use Equation (5), we first compute

and

 �
4x � x2 � 2x � 1

4x
�

x2 � 2x � 1

4x
�

(x � 1)2

4x

 1 � ady

dx
b2

� 1 �
1

4
 (x1>2 � x�1>2)2 � 1 �

1

4
 (x � 2 � x�1)

 �
1

2
 x1>2 �

1

2
 x�1>2 �

1

2
 (x1>2 � x�1>2)

 
dy

dx
�

d

dx
 c1

3
 x3>2 � x1>2 �

2

3
d

x � 1x � 0C
L

x (mi)

y (mi)

Q (point of interception)

B

A

C P

0 P (1, 0)

S

N
EW
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Then

The second integral on the right has an infinite discontinuity at . So we write

Therefore, the patrol boat traveled miles from the time Boat was spotted until the
time it was intercepted.

The next example involves both an infinite limit of integration and an infinite dis-
continuity.

B4
3

 �
1

3
�

1

2
lim
t→0�

(2 � 2t 1>2) �
1

3
� 1 �

4

3

 � a1

2
b a2

3
 x3>2b `1

0
�

1

2
lim
t→0�
c2x1>2d1

t

 L �
1

2
 �

1

0
x1>2 dx �

1

2
lim
t→0�

 �
1

t

x�1>2 dx

x � 0

 �
1

2
 �

1

0
x1>2 dx �

1

2
 �

1

0
x�1>2 dx

 L � �
1

0 B1 � ady

dx
b2

dx � �
1

0 B
(x � 1)2

4x
dx �

1

2
 �

1

0
 
x � 1

1x
dx

EXAMPLE 12 Evaluate .

Solution We write

A Comparison Test for Improper Integrals
Sometimes it is impossible to find the exact value of an improper integral. In such
instances we need to determine whether the integral is convergent or divergent. If we
can ascertain that the improper integral is convergent, then we can proceed to obtain a
sufficiently accurate approximation of its value, which, in practice, is all that is required.
The following theorem is stated without proof, but its plausibility should be evident by
examining Figure 13.

 � �2e�1 � 2 � 2e�1 � 2

 � lim
t→0�
1�2e�1 � 2e�1t 2 � lim

b→�
1�2e�1b � 2e�1 2

 � lim
t→0� 
c�2e�1xd1

t
� lim

b→�  
c�2e�1xdb

1

 � lim
t→0�

 �
1

t

e�1x

1x
dx � lim

b→�
 �

b

1

e�1x

1x
dx

 �
�

0

e�1x

1x
dx � �

1

0

e�1x

1x
dx � �

�

1

e�1x

1x
dx

�
�

0

e�1x

1x
dx
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THEOREM 1 A Comparison Test for Improper Integrals

Let and be continuous, and suppose that for all ; that
is, dominates on .

a. If is convergent, then so is .

b. If is divergent, then so is .�
�

a

f(x) dx�
�

a

t(x) dx

�
�

a

t(x) dx�
�

a

f(x) dx

[a, �)tf
x � af(x) � t(x) � 0tf

Before looking at the next example, let’s note that the functions that we have dealt
with up until now have been functions such as polynomial, rational, power, exponen-
tial, logarithmic, trigonometric, and inverse trigonometric functions or functions
obtained from this list by combining them using the operations of addition, subtrac-
tion, multiplication, division, and composition. Such functions are called elementary
functions.

EXAMPLE 13 Show that is convergent.

Solution We cannot evaluate the integral directly because it turns out that the anti-
derivative of is not an elementary function. To show that this integral is conver-
gent, let’s write

Observe that the first integral on the right is a proper integral, and therefore, it has a
finite value, even though we don’t know what that value is. For the second integral we
note that for , so on . (See Figure 14.) Now

So if we take and , the Comparison Test tells us that ��
1 e�x2

dxt(x) � e�x2
f(x) � e�x

�
�

1
e�x dx � lim

b→�
 �

b

1
e�x dx � lim

b→�  
C�e�x Db

1
� lim

b→�
(�e�b � e�1) �

1
e

[1, �)e�x2
� e�xx � 1x2 � x

�
�

0
e�x2

dx � �
1

0
e�x2

dx � �
�

1
e�x2

dx

e�x2

�
�

0
e�x2

dx

0 x1

1

2 3

y

y � e�x2

y � e�x

1. Define the following improper integrals:

a. b. c. �
�

��

f(x) dx�
�

a

f(x) dx�
b

��

f(x) dx

2. Define the improper integral if

a. has an infinite discontinuity at .
b. has an infinite discontinuity at .
c. has an infinite discontinuity at , where .

3. State the Comparison Test for improper integrals.
a � c � bcf

bf
af

�
b

a

f(x) dx

7.6 CONCEPT QUESTIONS

0 xa

y

y � f(x)

y � g(x)

FIGURE 13
The function dominates the function 
on .[a, �)

tf

FIGURE 14
We use the Comparison Test to show that 

is convergent.

�
�

0
 e�x2

dx � �
1

0
 e�x2

dx � �
�

1
 e�x2

dx

is convergent. Therefore, is convergent.��
0 e�x2

dx



7.6 Improper Integrals 665

In Exercises 1–6, find the area of the shaded region, if it exists.

1. 2.

3. 4.

5. 6.

In Exercises 7–42, determine whether the improper integral 
converges or diverges, and if it converges, find its value.

7. 8.

9. 10.

11. 12.

13. 14.

15. 16.

17. 18.

19. 20.

21. 22. �
�

��

cos2 x dx�
�

��

ex

1 � e2x dx

�
�

��

xe�x2
dx�

�

��

1

x2 � 4
dx

�
0

��

 
1

x2 � 2x � 5
dx�

�

0

x

1 � x2 dx

�
�

0
e�x sin x dx�

�

0
sin x dx

�
�

e

1

x ln2 x
dx�

�

1
e�2x dx

�
�

2

1

13 x � 1
dx�

�

1

1

(x � 2)3>2 dx

�
�

0

1

(x � 1)2 dx�
�

1

1

x1.01 dx

�
�

1

1

x0.99 dx�
�

1

1

x3 dx

0�1�2

1

x

y

y �
(x � 1)2/3

1

0 x

y �

y � 1

1 � x2
x2

0 x

y

y � e2x � ex

0 x

1

y

y � e�2x

0 x1

1

2

2 3 4

y

y �
1

(4 � x)3/2

0 x1

1

2

2 3 4

y

y �
1

x � 1√

23. 24.

25. 26.

27. 28.

29. 30.

31. 32.

33. 34.

35. 36.

37. 38.

39. 40.

41. 42.

In Exercises 43–48, use the Comparison Test to determine
whether the integral is convergent or divergent by comparing 
it with the second integral.

43. ;

44. ;

45. ;

46. ;

47. ;

48. ;

49. Evaluate .

50. Find the area of the region bounded by the graph of
and the -axis.xy � 1> 112 x

2 � x � 12
��

0 x5e�x2
dx

�
�

1

1

x2 dx�
�

1

1

21 � x2 � x4
dx

�
�

1

1

1x
dx�

�

1

2 � cos x

1x
dx

�
�

1

1

1 � x
dx�

�

1

dx

x � sin2 x

�
�

1

1

x2 dx�
�

1

cos2 x

x2 dx

�
�

1

1

x3>2 dx�
�

1

1

2x3 � 1
dx

�
�

1

1

x2 dx�
�

1

1

1 � x2 dx

�
�

1

dx

x2x2 � 1
�

1

0

ln x

1x
dx

�
�

0

1

ex � 1
dx�

�

��

 
1

x4>3 dx

�
�

0

2tan�1 x

1 � x2 dx�
�

1

ln x

x3>2 dx

�
p>2

0
tan2 x dx�

p>2

p>6
cos x

11 � sin x
dx

�
p

0
sec2 x dx�

1

0
x ln x dx

�
e

0
ln x dx�

4

0

1

1x � 1
dx

�
2

0

1

x2 � 2x
dx�

4

1

1

(4 � x)2>3 dx

�
2

0

1

2x � 3
dx�

1

�8

1

13 x
dx

�
1

�2

1

x2 dx�
1

0

1

x2>3 dx

�
�

��

e��x�
dx�

�

��

x

(x2 � 1)3>2 dx

7.6 EXERCISES

Videos for selected exercises are available online at www.academic.cengage.com/login.V
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51. Find the volume of the solid obtained by revolving the 

region under the graph of on about 

the -axis.

52. Find the area of the surface obtained by revolving the graph
of on about the -axis.

53. Find the volume of the solid obtained by revolving the
region under the graph of on about the 
-axis.

54. Find the volume of the solid obtained by revolving the
region under the graph of on about the 
-axis.

55. Find the area of the region bounded by the graphs of 

, , , and .

56. Gabriel’s Horn The solid obtained by revolving the unbounded
region under the graph of on the interval 
about the -axis is called Gabriel’s Horn. Show that this
solid has a finite volume but an infinite surface area. Thus,
Gabriel’s Horn describes a can that does not hold enough
paint to cover its outside surface!

Hint: The surface area is

Use the substitution , and integrate using Formula 40 from
the Table of Integrals.

57. Cissoid of Diocles Find the area of the region bounded by the
cissoid of Diocles

and its asymptote .

0 1 x

y

x � 1

y � �
x3>2
11 � x

dx

u � x2

S � 2p�
�

1

21 � x4

x3
dx

x

y

1

–1

1 2 3

x
[1, �)f(x) � 1>x

x � 1x � 0y � 0y � 1>21 � x2

y
[0, �)y � e�x

x
[0, �)y � e�x

x[0, �)y � e�x

x

[1, �)y � 2a 1

x2 �
1

x4b
Hint: The area is

Use the substitution followed by the substitution .

58. Find the length of the astroid , where
.

59. Work Done by a Repulsive Force An electric charge located at
the origin of a coordinate line repulses a like charge from
the point , where , an infinite distance to the
right. Find the work done by the force of repulsion.
Hint: The magnitude of force acting on the charge when it is at
the point is given by 

60. Elastic Deformation of a Long Beam The graph of the function

where and are constants, gives the shape of a beam of
infinite length lying on an elastic foundation and acted upon
by a concentrated load applied to the beam at the origin.
Before application of the force, the beam lies on the -axis.
Find the potential energy of elastic deformation using the
formula

where and are constants.

Note: This model provides a good approximation in working with
long beams.

61. Work Done by a Repulsive Charge An electric charge distrib-
uted uniformly along a line of length 2 lying along the -
axis repulses a like charge from the point , where

, an infinite distance to the right. The magnitude of thea 
 0
x � aq

yc
Q

0

y

x

eE

W � Ee�
�

0
(y�)2 dx

W
x

P

ka

y �
Pa

2k
 e�a�x�

(cos ax � sin a�x �)

C

F(x) �
1

4pe0
 
qQ

x2

x
q

a 
 0x � a
q

Q

0 a

x2/3 � y2/3 � a2/3

�a

�a

a

y

x

a 
 0
x2>3 � y2>3 � a2>3

u � sin uu � 1x

2�
1

0

x3>2
11 � x

dx



force acting on the charge when it is at the point is
given by

and the force acts in the direction of the positive -axis.
Find the work done by the force of repulsion.

62. Escape Velocity of a Rocket The escape velocity is the mini-
mum speed a rocket must attain in order to escape from the
gravitational field of a planet. Use Newton’s Law of Gravita-
tion to find the escape velocity for the earth (see Exercise 32
in Section 5.5).
Hint: The work required to launch a rocket from the surface of the
earth upward to escape from the earth’s gravitational field is

Equate with the initial kinetic energy of the rocket.

63. Capital Value of Property The capital value (present sale value)
of a property that can be rented on a perpetual basis of

dollars annually is given by

where is the prevailing interest rate per year compounded
continuously.
a. Show that .
b. Find the capital value of a property that can be rented

out for $10,000 annually when the prevailing interest rate
is 10% per year.

64. Average Power in AC Circuits If is defined on , then the
average value of over is defined to be

Suppose that the voltage and current in an AC circuit are

and

so that the voltage and current differ by an angle . Then
the power output is . Show that the average power
output is .
Note: The factor is called the power factor. When and are
in phase , the average power output is , but when and

are out of phase , then the average power output is zero.(f � 90°)I
V1

2 IV(f � 0°)
IVcos f

Pav � 1
2I0V0 cos f

P � VI
f

I � I0 cos(vt � f)V � V0 cos vt

fav � lim
b→�

 
1

b
 �

b

0
f(x) dx

[0, �)f
[0, �)f

CV � R>i
i

CV � �
�

0
Re�it dt

R
CV

1
2 m√2

0W

W � �
�

R

mtR2

r 2
dr

√0

x0 x q

F

Q
c

�c

y

x

F(x) �
1

4pe0
 

qQ

x2x2 � c2

xq 65. Serum Cholesterol Population Study The percentage of a current
Mediterranean population with serum cholesterol levels at or
above 200 mg/dL is estimated to be

Use a CAS to find .

66. Find the arc length of the loop defined by 
from to .

67. Find the value of the constant for which

converges. Then evaluate the integral for this value of .

68. Let .

a. Use the substitution to show that

b. Use the substitution to show that 

.

c. Use the result of part (b) to show that

69. Find the values of for which the integral 
converges and the values of for which it diverges.

70. Consider the integral .

a. Plot the graphs of andf(x) �
1

1x(x � 1)(x � 2)

I � �
�

3
 

dx

1x(x � 1)(x � 2)

p
�1

0 1>xp dxp

�
�

0

x2

x4 � 1
dx �

12 p

4

I �
1

2
 �

�

��

 
d√

√2 � 2

√ � x �
1
x

I �
1

2
 �

�

0

x2 � 1

x4 � 1
dx �

1

2
 �

�

0

1 �
1

x2

x2 �
1

x2

dx

u � 1>x
I � �

�

0

x2

x4 � 1
dx

C

�
�

1
a 1

1x
�

C

1x � 1
b dx

C

x � 1x � 0
3y2 � x(x � 1)2

P

P �
1

2012p
 �

�

200
e(�1>2)[(x�160)>20]2

dx
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cas

using the viewing window 

to see that for all in .
b. Prove the assertion in part (a).
c. Prove that converges.

71. Prove that converges.

72. Observe that .

a. Show that so that 

.

b. Use a calculator or computer to obtain an estimate for
.��

0 e�x2

dx

��
0 e�x2

dx � �4
0 e�x2

dx
��

4 e�x2

dx � 10�7

��
0 e�x2

dx � �4
0 e�x2

dx � ��
4 e�x2

dx

�
1

0

sin 
1

1x
1x

dx

I

(3, �)xf(x) � t(x)

[0, 6] � [0, 1.8]t(x) �
312

2x3>2
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In Exercises 73 and 74, (a) find a “test integral” to be used in
determining the convergence or divergence of the improper inte-
gral, (b) verify the result of part (a) by plotting the graphs of
both integrands in the same viewing window, and (c) determine
the convergence or divergence of the integral.

73. 74.

Let be continuous for . The Laplace transform of is
the function defined by

provided that the integral exists. In Exercises 75–79, use this
definition.

75. Find the Laplace transform of .

76. Find the Laplace transform of , where is a con-
stant.

77. Find the Laplace transform of .

78. Show that the Laplace transform of is 

.

79. Suppose that is continuous for and satisfies 
the condition . Show that the Laplace
transform of for , denoted by , satisfies

, where and is the Laplace
transform of .f

Fs 
 0G(s) � sF(s) � f(0)
Gt 
 0f ¿(t)

limt→� e�stf(t) � 0
ft 
 0f ¿

F(s) �
s

s2 � v2

f(t) � cos vt

f(t) � t

af(t) � eat

f(t) � 1

F(s) � �
�

0
f(t)e�st dt

F
ft 
 0f(t)

�
�

1

1 � 4 sin 2x

x3 � x1>3 dx�
�

1

2t 3 � t 2 � 1

t 5 � t � 2
dt

In Exercises 80–87, determine whether the statement is true or
false. If it is true, explain why it is true. If it is false, explain why
or give an example to show why it is false.

80. If is continuous on , then
.

81. If is continuous on and , then
is convergent.

82. If is convergent, then and
must both be convergent.

83. If and are both convergent, then
is convergent.

84. If both and are divergent, then
must also be divergent.

85. If for all in and diverges,
then may converge.

86. If for all in and converges,
then also converges.

87. Suppose that is continuous on and has an infinite
discontinuity at . Furthermore, suppose that is
convergent, where is a number between and . Then

is convergent.�b
a f(x) dx

bac
�b

c f(x) dxb
f[a, b)f

��
a t(x) dx

��
a f(x) dx[a, �)xf(x) � t(x)

��
a f(x) dx

��
a t(x) dx[a, �)xf(x) � t(x)

��
a [ f(x) � t(x)] dx

��
a t(x) dx��

a f(x) dx

��
a [ f(x) � t(x)] dx

��
a t(x) dx��

a f(x) dx

��
a t(x) dx

��
a f(x) dx��

a [ f(x) � t(x)] dx

��
0 f(x) dx

limx→� f(x) � 0[0, �)f

��
��

f(x) dx � limt→� � t
�t f(x) dx

(��, �)f

In Exercises 1–8, fill in the blanks.

1. The integration by parts formula is obtained by reversing 
the Rule. The formula for indefinite integrals is

. In choosing and , we want to be
simpler than and to be . The
formula for definite integrals is .

2. To integrate , where and are positive inte-
gers, we use the substitution (a) if is

and (b) if is . If and
are both even and nonnegative, we use the half-angle for-

mulas and .

3. To integrate , where and are positive inte-
gers, we use the substitution (a) if is

and (b) if is .nu �
mu �

nmtanm x secn x

cos2 x �sin2 x �
n

mnu �
mu �

nmsinm x cosn x

�b
a  f(x)t¿(x) dx �

d√
dud√u� u d√ �

4. To integrate , we use the identity
; to integrate , we

use the identity ; to integrate
, we use the identity 

.

5. a. If an integral involves , we use the substitution
.

b. If an integral involves , we use the substitution
.

c. If an integral involves , we use the substitution
.x �

2x2 � a2
x �

2a2 � x2
x �

2a2 � x2

cos mx cos nx �cos mx cos nx
sin mx cos nx �

sin mx cos nxsin mx sin nx �
sin mx sin nx

CONCEPT REVIEW

CHAPTER 7 REVIEW



6. The method of partial fractions is used to integrate 
functions. As a first step, the integrand 
should be written as where the
degree of is than the degree of . 
is decomposed into a sum of partial fractions involving

and irreducible factors. As an example,

the form of the decomposition for 

is . The integral of is then found by 
this last expression.

f

2x4 � 3x2 � 8x � 5

(x � 1)3(x2 � x � 1)2

R(x)>Q(x)QR
f(x) � S(x) � R(x)>Q(x)

f(x) � P(x)>Q(x)
7. The improper integrals are defined by 

; ; .
If , where , then the improper 
integral . If is continuous on 
except that has an infinite discontinuity at , where

, then .

8. If and are continuous and for all ,
then if converges, converges and if

diverges, diverges.��
a t(x) dx

��
a f(x) dx

x � af(x) � t(x) � 0tf

�b
a f(x) dx �a � c � b

cf
[a, b]f�b

a f(x) dx �
a � blimx→b� f(x) � ��

��
��

f(x) dx ���
a f(x) dx �

�b
��

f(x) dx �
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In Exercises 1–42, evaluate or find the integral.

1. 2.

3. 4.

5. 6.

7. 8.

9. 10.

11. 12.

13. 14.

15. 16.

17. 18.

19. 20.

21. 22.

23. 24.

25. 26.

27. 28.

29. 30. � cosh�1 x dx� sin x cos 3x dx

� 1

x2 � 4x � 20
dx� sec2 x ln(tan x) dx

� tan3 x sec3 x dx� 1

x14x � 1
dx

� 1

3 sin u � 4 cos u
du� (ln x)3

x
dx

� ex cos 2x dx� cos x

1 � cos x
dx

�
2

0
24x � x2 dx� sec4 2x tan6 2x dx

�
�

1
sin(ln x) dx� x � 2

(x2 � x)(x2 � 1)
dx

� x2 � 4x

x3 � x2 � x � 1
dx�

ep

1
cos(ln x) dx

�24 � x2 dx� u sin�1 u du

�
1

0
cos4 px dx�2x2 � 4 dx

� sec3 x tan5 x dx� x � 1

x4 � 6x3 � 9x2 dx

� 1

1 � sin x
dx� 1

1 � cos u
du

� 2x � 1

x(x2 � 4)
dx� x2 ln x dx

� cos3 x

sin x
dx� x3

29 � x2
dx

� x2 cos 3x dx� 2x

x � 1
dx

31. 32.

33. 34.

35. 36.

37. 38.

39. 40.

41. 42.

In Exercises 43–50, evaluate the integral or show that it is 
divergent.

43. 44.

45. 46.

47. 48.

49. 50.

In Exercises 51–56, use the Table of Integrals to find the 
integral.

51. 52.

53. 54.

55. 56. � tan x

11 � 2 cos x
dx� sec4 x dx

� (ln x)3 dx� dx

(x � 1)ln(1 � x)

� e2x 25 � 2ex dx� x223 � x2 dx

�
2

0

x

24 � x2
dx�

e

1

1

x(ln x)1>3 dx

�
�

e

1

x ln4 x
dx�

1

�8

1

13 x
dx

�
3

0

1

13 � x
dx�

�

��

x

1 � x2 dx

�
�

0

1

(x � 1)3>2 dx�
0

��

ex dx

�
1

0

(sin�1 x)3>2

21 � x2
dx� 1

24x2 � 4x � 10
dx

� csc4 2x dx� e�x cosh x dx

�
4

1

e1>x
x2 dx� x cos�1 2x dx

� (x � 1)e2x dx� 1x

1x � 1
dx

� x cos2 x dx� sin2 t cos4 t dt

�2x2 � 4

x2 dx� 1

21 � (2x � 3)2
dx

REVIEW EXERCISES
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57. Find , where is continuous.

58. Find the area of the region under the graph of

on the interval .

59. Find the area of the region bounded by the graphs of
, , , and .

60. Find the area of the region bounded by the graphs of
, , , and .

61. Find the area of the region enclosed by the ellipse
.

62. Let .

a. Plot the graph of using the viewing

window .
b. Evaluate using the Table of Integrals.

63. Consider the integral .

a. Plot the graphs of and 
using the viewing window to see that

for all in .
b. Prove the assertion in part (a).
c. Prove that converges.I

(0, �)xf(x) � t(x)
[0, 5] � [�1, 3]

t(x) � (2>x2)f(x) � 1 � cos(2>x)

I � �
�

1
a1 � cos 

2
x
b dx

I
[�5, 5] � [0, 20]

f(x) �
x2

216 � x2

I � �
4

�4

x2

216 � x2
dx

9x2 � 4y2 � 36

x � px � 0 y � sin3 xy � sin2 x

x � 1x � �1y � 0y � 1>x2>3

[1, 2]

y �
24 � x2

x2

f ¿� exf(x) dx � � f ¿(x) ex dx 64. The region under the graph of on the interval
is revolved about the -axis. Find the volume of the

resulting solid.

65. The region under the graph of on the interval
is revolved about the -axis. Find the volume of the

resulting solid.

66. The region under the graph of on the interval
is revolved about the -axis. Find the volume of the

resulting solid.

67. Find the length of the graph of from to
.

68. Use the Comparison Test to determine whether the integral

is convergent.

69. Velocity of a Dragster The velocity of a dragster sec after
leaving the starting line is ft/sec. What is the
distance traveled by the dragster during the first 10 sec?

70. Drug Concentration in the Bloodstream The concentration of a
certain drug (in mg/mL) in the bloodstream of a patient 
hours after it has been administered is given by

What is the average concentration of the drug in the patient’s
bloodstream over the first 12 hr after administration of the
drug?

C(t) � 2te�t>3

t

√(t) � 80te�0.2t
t

�
�

1

1 � 2 cos x

x3 � 1x
dx

113, 32 2 (0, 0)y � 1
2 x

2

y[0, 1]
y � tan�1 x

y[1, e]
y � x ln x

xC0, p4 D
y � tan x

The following example shows that by making a suitable substitution, we can some-
times evaluate a definite integral whose indefinite integral cannot be expressed in terms
of elementary functions, that is, as a sum, difference, product, quotient, or composi-
tion of the functions we have studied thus far.

PROBLEM-SOLVING TECHNIQUES

EXAMPLE 1 Evaluate .

Solution Let or . Then . Furthermore, if , then
, and if , then . Making these substitutions, we have

Next, we observe that

 cos(p � u) � cos p cos u � sin p sin u � �cos u

 sin(p � u) � sin p cos u � cos p sin u � sin u

 � �
p

0

(p � u)sin(p � u)

1 � cos2(p � u)
du

 I � �
p

0

x sin x

1 � cos2 x
dx � ��

0

p

(p � u)sin(p � u)

1 � cos2(p � u)
du

u � 0x � pu � p
x � 0du � �dxx � p � uu � p � x

I � �
p

0

x sin x

1 � cos2 x
dx
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and this leads to

But the second integral on the right-hand side is the same as . Therefore, we have

or

In this form, is easily evaluated. In fact, letting so that and
observing that if , then , and if , then , we have

If you look at the result of finding the integral of the form , where is a
polynomial function and is a constant, you will see that ,
where is a polynomial having the same degree as that of . A similar observation
reveals that using the integration by parts formula gives

and

where , , , and are polynomial functions having the same degree as that 
of .

These observations reduce the problem of finding integrals of the aforementioned
form to one of solving an algebraic problem: that of solving a system of equations for
the “undetermined” coefficients of a polynomial or polynomials.

P
Q2Q1P2P1

�P(x)cos ax dx � P2(x)cos ax � Q2(x)sin ax � C

�P(x)sin ax dx � P1(x)sin ax � Q1(x)cos ax � C

PQ
� P(x)eax dx � Q(x)eax � Ca

P� P(x)eax dx

 � �
p

2
 a�p

4
�
p

4
b �

p2

4

 I � �
p

2
 �

�1

1

dt

1 � t 2
� �

p

2
tan�1 t `�1

1
� �

p

2
 [tan�1(�1) � tan�1(1)]

t � �1u � pt � 1u � 0
dt � �sin u dut � cos uI

I �
p

2
 �
p

0

sin u

1 � cos2 u
du

2I � p�
p

0

sin u

1 � cos2 u
du

I

I � �
p

0

(p � u)sin u

1 � cos2 u
du � p�

p

0

sin u

1 � cos2 u
du � �

p

0

u sin u

1 � cos2 u
du

EXAMPLE 2 Find .

Solution . Differentiat-
ing both sides of the equation with respect to yields

 2x3 � 3x2 � 8 � 2Ax3 � (3A � 2B)x2 � (2B � 2D)x � (D � 2E)

 (2x3 � 3x2 � 8)e2x � (3Ax2 � 2Bx � D)e2x � 2(Ax3 � Bx2 � Dx � E)e2x

x
� (2x3 � 3x2 � 8)e2x dx � (Ax3 � Bx2 � Dx � E)e2x � C

I � � (2x3 � 3x2 � 8)e2x dx
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1. Evaluate .

Hint: Take logarithms and interpret the sum as an integral.

2. Find .

3. a. Show that

is continuous on .
b. Evaluate .

4. Let , where .

a. Show that .

b. Use the result of part (a) to show that

5. Find

Hint: Interpret the sum as an integral.

6. Find

Hint: Use the substitution .

7. Prove that .` �
a

0

cos bx

1 � x2 dx ` � p
2

u � sin�11x

� dx

(1 � 1x)2x � x2

lim
n→�
a 1

24n2 � 1
�

1

24n2 � 22
 � p � 

1

24n2 � n2
b

�2a2 � x2 dx �
x

2
 2a2 � x2 �

a2

2
arcsin 

x

a
� C

In �
x(a2 � x2)n

2n � 1
�

2na2

2n � 1
 In�1

n 
 0In � � (a2 � x2)n dx

�1
0 f(x) dx

[0, 1]

f(x) � • x lna1 �
1
x
b if 0 � x � 1

0 if x � 0

� ln(11 � x � 11 � x) dx

lim
n→�

1n n!
n

8. Find the area of the region lying between the cissoid

and its asymptote.

9. Prove that

where is a positive integer.
Hint: Denote the integral by , and show that

10. Find the area enclosed by the ellipse with equation
as shown in the figure.

0

y

x

20 √

10 √

2x2 � 13xy � y2 � 20

In � a2 
2n

2n � 1
 In�1

In

n

�
a

0
(a2 � x2)n dx �

22na2n�1(n!)2

(2n � 1)!

x � 2a

0 2a

y

x

y2 �
x3

2a � x

CHALLENGE PROBLEMS

Since this equation holds for all values of , the coefficients of like terms must be equal.
This observation leads to the system

Solving this system, we find , , , and . So

� (2x3 � 3x2 � 8) e2x dx � ax3 � 3x2 � 3x �
5

2
be2x � C

E � 5
2D � 3B � �3A � 1

 D � 2E � 8

 2B � 2D � 0

 3A � 2B � �3

 2A � 2

x
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11. Show that

where is a positive integer and .

12. Show that .

Hint: Write

and use the substitution on the second integral on the right.

13. Suppose that is continuous on and 
exists.
a. Show that exists.
b. If is continuous and bounded on , that is, there

exists a positive number such that for all 
in , show that exists.

c. Use the result of part (b) to show that .

14. Find the area of the surface obtained by revolving the ellipse
about the -axis.

15. Consider the Dirichlet integral , which may be 

written as the sum of the integrals

and

a. Show that exists and is finite.
b. Show that converges.
c. Conclude that the Dirichlet integral converges.

16. The integrals and are called Fres-
nel integrals and are used in the study of light diffraction.
Show that a Fresnel integral is convergent.
Hint: Use the substitution and write the resulting integral as
the sum of two integrals as in Exercise 15.
Note: A Fresnel integral shows that an improper integral can con-
verge even though the integrand does not approach zero as 
approaches infinity.

x

u � x2

��
0 cos x2 dx��

0 sin x2 dx

I2

I1

I2 � �
�

p>2
sin x

x
dxI1 � �

p>2

0

sin x

x
dx

�
�

0

sin x

x
dx

y4x2 � y2 � 4

�
�

��

sin x

x2 � 1
dx � 0

��
��

f(x) t(x) dx(��, �)
x�t(x) � � MM

(��, �)t

��
��

f(x) dx

��
��

� f(x) � dx(��, �)f

u � 1>x
�

�

0

ln x

1 � x2
dx � �

1

0

ln x

1 � x2
dx � �

�

1

ln x

1 � x2
dx

�
�

0

ln x

1 � x2 dx � 0

m 
 �1n

�
1

0
xm(ln x)n dx �

(�1)nn!

(m � 1)n�1

17. a. Use the result of Exercise 16 to show that the integral
converges.

Hint: Use the substitution .
b. Show that the integrand is unbounded.

Note: This integral shows that an improper integral can converge
even though the integrand is unbounded.

18. The Path of a Water Skier A water skier is pulled along by
means of a 40-ft tow rope attached to a boat. Initially, the
boat is located at the origin and the skier is located at the
point . As the boat moves along the -axis, the tow
rope is kept taut at all times. The path followed by the skier
is a curve called a tractrix and has the property that the rope
is tangent to the curve.

a. Show that the path followed by the skier is the graph of
, where satisfies the equation

b. Solve the equation in part (a) to show that the path fol-
lowed by the skier is

19. Refer to Exercise 18. Find the distance covered by the water
skier after the boat has traveled 100 ft from its starting
point, which is located at the origin.

y � �21600 � x2 � 40 ln c40 �21600 � x2

x
d

dy

dx
� �

21600 � x2

x

yy � f(x)

0

y

x40 

y(40, 0)

f(x) � 2x cos x4
x2 � u

��
0 2x cos x4 dx





A DIFFERENTIAL EQUATION is one that involves the derivative, or differential, of one

or more unknown functions. In this chapter we give a brief introduction to the all-

important field of differential equations by looking at first-order differential equa-

tions and their applications. The applications of differential equations are many and

varied and appear in virtually every field of study. Examples are the study of motion,

population growth, radioactive decay, calculations involving compound interest, elec-

trostatic and electromagnetic fields, carbon dating, chemical reactions, concentra-

tion of a drug in the bloodstream, and the spread of a disease.

8 Differential Equations

Once a skydiver jumps out of 
a plane, the force of gravity
acts on the skydiver, accele-

rating her fall to earth. But 
air resistance builds up quickly
as she falls and soon matches

the force due to gravity. The
result is that her rate of fall

approaches a constant (maxi-
mum) rate, called the terminal

velocity. We will see how the
motion of the skydiver is
described by the solution 
of a differential equation. St
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676 Chapter 8 Differential Equations

8.1 Differential Equations: Separable Equations

We first encountered differential equations in Section 4.1, and you might want to review
the material there before proceeding.

First-order Differential Equations and Solutions
Recall that a differential equation is an equation that involves the derivative or dif-
ferential of an unknown function. The order of a differential equation is the order of
the highest derivative that occurs in the equation. Thus, a first-order differential equa-
tion is one that involves only derivatives of order one. If we solve the equation for the
derivative, it can be written in the form

(1)

In Section 4.1 we considered first-order differential equations of the form

where is a function of alone and, therefore, can be solved by integration. In fact, as
we have seen, the general solution of this equation is

where is an arbitrary constant.
In the general case in which involves both and , the solution is not so easily

obtained, and more sophisticated methods of solution are needed. Before going fur-
ther, let’s recall that a solution of the differential equation (1) is a differentiable func-
tion defined on an open interval such that satisfies the equation on . Thus,
for Equation (1) a solution is a function that satisfies

for all in the interval.x

d

dx
 [y(x)] � f(x, y(x))

y(x)
IyIy � y(x)

yxf
C

y � � f(x) dx � C

xf

dy

dx
� f(x)

dy

dx
� f(x, y)

EXAMPLE 1 Show that the function , where is an arbitrary con-
stant, is a solution of the differential equation .

Solution The function is defined and differentiable on the interval
. To show that the differential equation is satisfied, we compute

Next, substituting the expression for into the right-hand side of the differential equa-
tion gives

which is the same as the left-hand side of the differential equation for all values of 
in . Therefore, is a solution of the given differential equa-
tion on .(��, �)

y � x � 1 � Cex(��, �)
x

y � x � x � 1 � Cex � x � 1 � Cex

y

y¿ �
d

dx
 (x � 1 � Cex) � 1 � Cex

(��, �)
y � x � 1 � Cex

y¿ � y � x
Cy � x � 1 � Cex



8.1 Differential Equations: Separable Equations 677

In general, a first-order differential equation will have a solution involving one arbi-
trary constant. Such a solution is called the general solution of the differential equa-
tion. For example, the solution is called the general solution of the
equation . Graphically, the general solution of the differential equation rep-
resents a family of curves called the solution or integral curves of the differential
equation. Figure 1 shows six solution curves of the differential equation for selected
values of the parameter .

We can obtain a particular solution of a differential equation by choosing a partic-
ular value of the arbitrary constant. This is usually done by requiring that the differen-
tial equation satisfy a side condition . Geometrically, the solution of the
initial-value problem

is the solution curve of the differential equation that passes through the point .(x0, y0)

•
dy

dx
� f(x, y)

y(x0) � y0

y(x0) � y0

C

y¿ � y � x
y � x � 1 � Cex

FIGURE 1
Some solution curves of y¿ � y � x

EXAMPLE 2 Solve the initial-value problem

Solution In Example 1 we saw that is a one-parameter solution of
the equation . To determine , we use the initial condition , or

, when . We obtain

or

Therefore, the required solution is . The graph of this function is shown
in Figure 2. If you compare this with the family of solution curves of this differential
equation shown in Figure 1, you will see that the particular solution obtained here is
the solution curve that passes through the origin .

The Laws of Natural Growth and Decay
When free of constraints, certain quantities in nature grow or decay at a rate that is
proportional to their current size. Examples of such phenomena are

the growth of a population of bacteria under ideal conditions,
the decay of a radioactive substance, and
the discharge of an electrical condenser.

Even quantities that occur outside the realm of nature sometimes exhibit this type of
growth or decay. For example, the accumulated amount of money on deposit with a
bank, earning interest at a fixed rate compounded continuously, grows in this manner
(see Example 9).

We can describe these phenomena mathematically. Suppose that the size or mag-
nitude of a quantity at any time is given by .* Since the rate of change of with
respect to , , is proportional to its size at any time , we have

(2)
dy

dt
� ky

tydy>dtt
yy(t)ty

(0, 0)

y � x � 1 � ex

C � �10 � 0 � 1 � Ce0

x � 0y � 0
y(0) � 0Cy¿ � y � x

y � x � 1 � Cex

e y¿ � y � x

y(0) � 0

FIGURE 2
The particular solution of 
satisfying y(0) � 0

y¿ � y � x

x1�2�3 2 3

(C � 0)

(C � �1)

(C � �2)(C � �3)

(C � 1)
(C � 2)y

�1

�2

�3

1

2

3

0

x1�2�3 2 3

y � x � 1 � ex

y

�1

�2

�3

1

2

3

0

*We use the letter to denote the function in question.y
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where is a constant. If , this equation is called the law of natural growth; and
if , it is called the law of natural decay. Also, since the equation involves the
derivative of an unknown function, it is a differential equation. If the amount present
initially is , then we have the initial-value problem

(3)

The differential equation is an example of a first-order separable differ-
ential equation. It is separable because can be written as a function of times
a function of . In general, a first-order separable differential equation in and is one
that can be written in the form

(4)

where is a function of alone and is a function of alone. Equivalently, a separa-
ble equation is one that can be written in differential form as

(5)

where is a function of alone and is a function of alone. For example, the dif-
ferential equation in system (3) is easily seen to be separable if we put and

.
As another example, the equation

has the form of the differential equation in (5) with and ,
so it is separable. On the other hand, the differential equation

is not separable, nor is the equation

We will return to the solution of the initial-value problem (3) later on.

The Method of Separation of Variables
First-order separable differentiable equations can be solved by using the method of sep-
aration of variables. If , we write differential equation (4) in the form

When it is written in this form, the variables and are said to be separated. Integrat-
ing both sides of the equation with respect to then gives

or

(6)� 1

h(y)
dy � � t(x) dx

� 1

h(y)
 
dy

dx
dx � � t(x) dx

x
yx

1

h(y)
 
dy

dx
� t(x)

h(y) � 0

(x � y) dx � xy dy � 1

dy

dx
� xy2 � 2

H(y) � 1>yG(x) � x2 � 1

(x2 � 1) dx �
1
y

dy � 0

h(y) � y
t(t) � k

yHxG

G(x) dx � H(y) dy � 0

yhxt

dy

dx
� t(x)h(y)

yxy
tdy>dt

dy>dt � ky

•
dy

dt
� ky

y(0) � y0

y0

k � 0
k � 0k

LUDWIG VON BERTALANFFY
(1901–1972)

Born near Vienna, Austria, to an aristo-
cratic family whose genealogy went back
to sixteenth century Hungarian nobility,
Ludwig von Bertalanffy was an only child.
He was educated by private tutors until the
age of 10, at which time he entered the
gymnasium (grammar school), where he
continued to supplement his education by
studying on his own. A neighbor who was a
famous biologist inspired von Bertalanffy
and set an example for him. Upon graduat-
ing from the gymnasium, von Bertalanffy
entered the University of Innsbruck to
study philosophy and art history. He soon
switched to the University of Vienna and
later decided to study biology rather than
philosophy. His many contributions to
knowledge in various fields include the von
Bertalanffy growth model (see Exercise 58
in this section), as well as research in biol-
ogy, cybernetics, education, history, philos-
ophy, psychiatry, psychology, and sociol-
ogy. Today he is best known for the
development of general systems theory, a
theory with applications to many areas of
study such as ecology and population
dynamics. Von Bertalanffy held professor-
ships at many prestigious schools through-
out his career. He died of a heart attack 
in 1972.

Historical Biography
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Carrying out the integration on each side of Equation (6) with respect to the appropri-
ate variable gives the solution to the differential equation expressed implicitly by an
equation in and . In some cases we may be able to solve for explicitly in terms 
of .

To justify the method of separation of variables, let’s consider the separable Equa-
tion (4) in the general form:

If , we may rewrite the equation in the form

Now, suppose that is an antiderivative of and is an antiderivative of . Using
the chain rule, we see that

Therefore,

and so

, a constant

But the last equation is equivalent to

or

which is precisely Equation (6).

� dy

h(y)
� � t(x) dxH(y) � G(x) � C

CH(y) � G(x) � C

d

dx
 [H(y) � G(x)] � 0

d

dx
 [H(y) � G(x)] � H¿(y) 

dy

dx
� G¿(x) �

1

h(y)
 
dy

dx
� t(x)

tG1>hH

1

h(y)
 
dy

dx
� t(x) � 0

h(y) � 0

dy

dx
� t(x)h(y)

x
yyx

EXAMPLE 3 Solve the differential equation .

Solution First, observe that is a solution of the separable equation. To find other
solutions, assume that , separate variables, and integrate each side of the result-
ing equation with respect to the appropriate variable to obtain

or

where is a nonzero but otherwise arbitrary constant. We write rather than an
arbitrary constant because we can then more readily apply the laws of logarithms.
Proceeding, we have

ln �y � � ln1 �C1 � � �x �2 � ln �C1x �

C2

ln �C1 �C1

ln �y � � ln �x � � ln �C1 �

� dy

y
� � dx

x

y � 0
y � 0

dy

dx
�

y

x
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or, upon exponentiating using the base ,

Since is also a solution, we see that the general solution can be written in the
form , where is an arbitrary constant.Cy � Cx

y � 0

 y � �C1x

C1 � 0 �y � � �C1x �

e

EXAMPLE 4 Solve the differential equation .

Solution First, observe that is a solution of the differential equation. Next, write
the given equation in the form

which is separable. Separating variables and integrating, we have

where represents the combined constants of integration. We have

or

Since is also a solution of the differential equation, we conclude that the gen-
eral solution is

where is an arbitrary constant. Figure 3 shows six solution curves of the differential
equation for selected values of .C

C

y � C2x2 � 1

y � 0

y � �C12x2 � 1

 � ln �C12x2 � 1 �

 ln �y � � ln(x2 � 1)1>2 � ln �C1 �

ln �C1 �

C1 � 0 ln �y � �
1

2
ln(x2 � 1) � ln �C1 �

 � dy

y
� � x

x2 � 1
dx

dy

dx
� a x

x2 � 1
by � t(x)h(y)

y � 0

y¿ �
xy

x2 � 1

FIGURE 3
Solution curves for 

for , , �3�2C � �1

y¿ �
xy

x2 � 1

EXAMPLE 5 Find the particular solution of the differential equation

that satisfies the condition .

Solution The equation is separable. By inspection we see that is a solution of
the differential equation. But this solution does not satisfy the initial condition 
and is rejected. Next, suppose that . Separating variables and integrating, we have

C2 � 2C1 y2 � ln y2 � �2ex � C2

 
1

2
 y2 � ln �y � � �ex � C1

 � ay �
1
y
b dy � �� ex dx

 � y2 � 1

y
dy � �� ex dx

y � 0
y(0) � 1

y � 0

y(0) � 1

yex dx � (y2 � 1) dy � 0

�3 3

8

�8
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Using the condition , we have

or

Therefore, the required solution is

Note that the solution of the differential equation in Example 3 is obtained in the
form of an implicit equation in and .

We now turn to the solution of the initial-value problem (3) posed earlier:

The differential equation is separable. Separating variables and integrating,
we obtain

Using the initial condition gives . Therefore, the solution is .y � y0e
kty0 � Cy(0) � y0

C � �C2 � Cekt

 y � �C2e
kt

C2 � eC1 �y � � ekt�C1 � C2e
kt

 ln �y � � kt � C1

 � dy

y
� � k dt

dy>dt � ky

•
dy

dt
� ky

y(0) � y0

yx

y2 � ln y2 � �2ex � 3

C2 � 31 � ln 1 � �2 � C2

y(0) � 1

THEOREM 1 Natural Law of Exponential Growth (Decay)

The initial-value problem

has the unique solution .y � y0e
kt

•
dy

dt
� ky  k, a constant

y(0) � y0

The solution curves for the initial-value problem are shown in Figure 4.

FIGURE 4
Graphs of y � y0e

kt

t

(a) Exponential growth (k > 0)

y � y0ekt (k > 0)

y � y0ekt (k < 0)

y

y0

y0

0 t

(b) Exponential decay (k < 0)

y

0
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EXAMPLE 6 Growth of Bacteria The population of bacteria in a culture grows at a
rate that is proportional to the number present. Suppose that there are 1000 bacteria
present initially in a culture and 3000 present 2 hr later. How many bacteria will there
be in the culture after 4 hr?

Solution Let denote the number of bacteria present in the culture after hr.
Then and . Since the rate of growth of bacteria in the culture
is proportional to the number present, the quantity satisfies the initial-value problem

By Theorem 1,

Next, using the condition , we have

or

Therefore, the number of bacteria present after hr is

In particular, the number of bacteria present in the culture after 4 hr is

Notice that it is not necessary to determine the value of , the growth constant,
which depends on the strain of the bacteria. However, if desired, its value can be found
by solving the equation

Thus,

The graph of , or , is shown in Figure 5.y � 1000e0.5493ty � 1000(3t>2)

 k �
1

2
ln 3 � 0.5493

 2k � ln 3

 2k ln e � ln 3

 ln e2k � ln 3

e2k � 3

k

y(4) � 1000(34>2) � 9000

y(t) � 1000ekt � 1000(ek)t � 1000(3t>2)
t

ek � (e2k)1>2 � 31>2

 e2k �
3000

1000
� 3

 y(2) � 1000e2k � 3000

y(2) � 3000

y(t) � y0e
kt � 1000ekt

•
dy

dt
� ky

y(0) � 1000

y
y(2) � 3000y(0) � 1000

ty � y(t)

FIGURE 5
The graph of shows
the population of bacteria at time .t

y � 1000e0.5493t

EXAMPLE 7 Radioactive Decay Radioactive substances decay at a rate that is propor-
tional to the amount present. The half-life of a substance is the time required for a given
amount to be reduced by one-half. It is known that the half-life of radium-226 is approx-
imately 1602 years. Suppose that initially there are 100 mg of radium in a sample.

a. Find a formula that gives the amount of radium-226 present after years.
b. Find the amount of radium-226 present after 1000 years.
c. How long will it take for the radium-226 to be reduced to 40 mg?

t

t (hr)1 2 3 4

y (thousands)

8

10

2

4

6

0
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Solution
a. Let denote the amount of radium-226 present in the sample after years.

Then and . Since the rate of decay of the radium is 
proportional to the amount present, the quantity satisfies the initial-value 
problem

By Theorem 1,

Next, we use the condition to write

or

Therefore, the amount of radium-226 present after years is

b. The amount of radium-226 present after 1000 years is given by

or approximately 64.9 mg.
c. We want to find the value of such that ; that is,

Taking the natural logarithm on both sides, we obtain

So it will take approximately 2118 years for the radium-226 to decay to 40 mg.
The graph of is shown in Figure 6.y � 100 112 2t>1602

 t � 1602 a ln 25
ln 12
b � 2118

 
t

1602
ln a1

2
b � ln 

2

5

 ln a1

2
b t>1602

� ln 
2

5

 a1

2
b t>1602

�
40

100
�

2

5

 100 a1

2
b t>1602

� 40

y(t) � 40t

y(1000) � 100 a1

2
b1000>1602

� 64.88

y(t) � 100ekt � 100(ek)t � 100 a1

2
b t>1602

t

ek � a1

2
b1>1602

 e1602k �
1

2

 y(1602) � 100e1602k � 50

y(1602) � 50

y(t) � y0e
kt � 100ekt

•
dy

dt
� ky

y(0) � 100

y
y(1602) � 50y(0) � 100

ty(t)
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FIGURE 6
The graph of shows

how the radium-226 decays.
y � 100 112 2t>1602

EXAMPLE 8 Newton’s Law of Cooling Newton’s Law of Cooling states that the tem-
perature of a body drops at a rate that is proportional to the difference between the
temperature of the body and the temperature of the surrounding medium. An apple
pie is taken out of an oven at a temperature of 200°F and placed on the counter 
in a room where the temperature is 70°F. The temperature of the pie is 160°F after 
15 min.

a. What is the temperature of the pie after 30 min?
b. How long will it take for the pie to cool to 120°F?

Solution
a. Let denote the temperature of the apple pie min after it was placed on the

counter. Then Newton’s Law of Cooling gives

where is the constant of proportionality. The initial temperature of the pie is
200°F, and this translates into the condition . So we have the initial-
value problem

Observe that the differential equation here does not have the same form as that in
Theorem 1. Let’s define the function by . Then

Making these substitutions, we obtain

Using Theorem 1, we obtain the solution

Recall .

or

y(t) � 70 � (200 � 70)ekt � 70 � 130ekt

u(t) � y(t) � 70 y(t) � 70 � [y(0) � 70]ekt

 u(t) � u(0)ekt

du

dt
� ku

du

dt
�

dy

dt

u(t) � y(t) � 70u

•
dy

dt
� k(y � 70)

y(0) � 200

y(0) � 200
k

dy

dt
� k(y � 70)

ty(t)

t (years)1000 2000

Half-life (1602 years)

3000

y (mg)

100

50

0
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Next, we use the condition to write

or

Therefore, the temperature of the pie after min is

In particular, the temperature of the pie after 30 min is

or approximately 132°F.
b. We need to find the value of for which , that is,

Use the value of from part (a).

Taking the natural logarithm on both sides, we obtain

or

So it will take approximately 39 min for the pie to cool to 120°F. The graph of
is shown in Figure 7.y(t) � 70 � 1301 9

13 2t>15

t �
15 ln 5

13

ln 9
13

� 39

t

15
ln 

9

13
� ln 

5

13

ek a 9

13
b t>15

�
5

13

 (ek)t �
5

13

 130ekt � 50

 70 � 130ekt � 120

y(t) � 120t

y(30) � 70 � 130 a 9

13
b30>15

� 70 � 130 a 9

13
b2

� 132.3

y(t) � 70 � 130 a 9

13
b t>15

t

ek � a 9

13
b1>15

 130e15k � 90

 y(15) � 70 � 130e15k � 160

y(15) � 160

FIGURE 7
The graph of 

gives the temperature of the 
pie as a function of time.

y(t) � 70 � 130 1 9
13 2t>15

t (min)

y � 70

10 20 30 40 50 60 70

y (	F)

200

100

0

Note The differential equation in Example 8 is separable and can
be solved directly without using Theorem 1.

dy>dt � k(y � 70)
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EXAMPLE 9 Continuously Compounded Interest Suppose that money deposited into
a bank grows at a rate that is proportional to the amount accumulated. If the amount on
deposit initially is dollars, find an expression for the accumulated amount after 
years. Reconcile your result with the continuous compound interest formula, .

Solution Since the rate of growth of the money is proportional to the amount pres-
ent, we have the initial-value problem

By Theorem 1,

Therefore, the accumulated amount after years is given by

dollars.
If we compare this result with the formula , we see that the formulas are

identical when the growth constant is taken to be equal to , the nominal interest rate.
This shows that money deposited into a bank with interest compounded continuously
grows according to the law of natural growth.

Suppose all the curves of one family intersect all the curves of another family at
right angles. Then the curves of the first family are said to be orthogonal trajectories
of the other family, and vice versa. For example, the straight lines passing through the
origin are the orthogonal trajectories of the concentric circles with center at the origin
and vice versa. (See Figure 8.) Orthogonal trajectories occur in physics and engineer-
ing. For example, in electrostatics and electromagnetics the field lines are orthogonal
to the equipotential curves.

rk
A � Pert

A(t) � Pekt

t

A(t) � A(0)ekt � Pekt

•
dA

dt
� kA

A(0) � P

A � Pert
tAP

FIGURE 8
The concentric circles are the
orthogonal trajectories of the 
lines, and vice versa.

EXAMPLE 10 Find the orthogonal trajectories of the family of curves given by

, where is an arbitrary constant.

Solution First, recall that the slope of the tangent line to a curve in the given family
at a point is given by . To find , we differentiate the given equation
to obtain

Next, we eliminate from this equation. Solving for in the given equation gives
. Substituting this value of into the equation for , we obtain

Since the required family is orthogonal to the given family, the slope of the tangent line
to each member of the required family is given by the negative reciprocal of . There-
fore, the orthogonal trajectories satisfy the differential equation

dy

dx
� �

x

2y

2y>x

dy

dx
� 2 a y

x2
b x �

2y

x

dy>dxCC � y>x2
CC

dy

dx
� 2Cx

dy>dxdy>dx(x, y)

Cy � Cx2

x

y
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Separating variables and integrating with respect to the appropriate variable, we obtain

where is an arbitrary constant. We recognize this family to be a family of ellipses.
(See Figure 9.)

k

 y2 �
1

2
 x2 � k

 �2y dy � � x dx � 0

FIGURE 9
Each parabola is orthogonal to each
ellipse, and vice versa.

x

y

1. a. What is a first-order separable differential equation?
b. Is the equation separable?

Explain.

2. a. Is a separable differential equation?

Explain.
b. Is a separable differential

equation? Explain.
(x2 � y2)dx � xy3dy � 4

x 
dy

dx
� y � ey

f(x)t(y)dx � F(x)G(y)dy � 0
3. Describe a method for solving a separable differential equa-

tion.
4. a. Write a differential equation to describe the natural law

of exponential growth (decay).
b. Write a differential equation to describe Newton’s Law

of Cooling.

8.1 CONCEPT QUESTIONS

1. Show that is a solution of the differential equa-

tion on any interval that does not contain 
.

2. Show that is a solution of the differential
equation on .

3. Show that is a solution of the initial-value
problem , on .

4. Show that is a solution of the initial-value 

problem , on the interval

.

5. Assume that the differential equation has a solution
of the form .
a. Find the value of .
b. Plot the solution curves of on the same set of

axes for , and 3.
c. Find the solution of that satisfies the initial con-

dition . Is the solution curve for this solution
among those in part (b)?

y(0) � 2
y¿ � 3y

C � �3, �2, �1, 0, 1, 2
y¿ � 3y

m
y � Cemx

y¿ � 3y

(��, �)

y(0) � �1cos x 
dy

dx
� y sin x � 1

y � sin x � cos x

(��, �)y(1) � 4xy¿ � 3y � x4
y � x4 � 3x3

(��, �)y¿ � 2y � 3ex
y � Ce�2x � ex

x � 0
xy¿ � 2y � 1

y �
1

2
�

3

x2

6. Suppose that a solution of the second-order differential
equation has the form .
a. Find an equation that must satisfy.
b. Solve the equation found in part (a).
c. Write two solutions of the differential equation.
d. Verify the results of part (c) directly.

In Exercises 7 and 8, the general solution of a differential equa-
tion is given. (a) Find the particular solution that satisfies the
given initial condition. (b) Plot the solution curves correspond-
ing to the given values of . Indicate the solution curve that 
corresponds to the solution found in part (a).

7. , ; ;

8. , ; ;

C � �2, �1, 0, 1, 2

y(0) � 1y2 � e2x � Cy 
dy

dx
� e2x � 0

C � �2, �1, 0, 1, 2

y(1) �
5

4
y �

C

x
�

x3

4
x 

dy

dx
� y � x3

C

m
y � emxy� � y¿ � 2y � 0

8.1 EXERCISES

Videos for selected exercises are available online at www.academic.cengage.com/login.V

www.academic.cengage.com/login
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In Exercises 9–18, solve the differential equation.

9. 10.

11. 12.

13. 14.

15. 16.

17. 18.

In Exercises 19–26, solve the initial-value problem.

19. ,

20. ,

21. ,

22. ,

23. ,

24. ,

25. ,

26. ,

27. Find an equation defining a function given that (a) the
slope of the tangent line to the graph of at any point

on the graph is given by

and (b) the graph of passes through the point .

28. Find an equation of a curve given that it passes through the
point and that the slope of the tangent line to the
curve at any point is given by

In Exercises 29–32, find the orthogonal trajectories of the family
of curves. Use a graphing utility to draw several members of
each family on the same set of axes.

29. 30.

31. 32. y � ln(cx)y � cex

y2 � cx3xy � c

dy

dx
� �

4x

9y

P(x, y)
12, 215

3 2
(1, 3)f

dy

dx
�

3x2

2y

P(x, y)
f

f

u ap
3
b � 2cos u 

du

du
� u tan u

I(0) � 0
dI

dt
� 2I � 4

y ap
4
b �

p

4
sin2 y dx � cos2 x dy � 0

y(0) � 1y¿ � 3x2e�y

y(3) � 1
dy

dx
�

y2

x � 2

y(1) � 1y¿ � x2y�1>2
y(0) � 1

dy

dx
� xe�y

y(0) � 1
dy

dx
� 3xy � 2x

dy

dt
� 1 � t � y � tyxy¿ � y2 ln x

(1 � cos u) 
dr

du
� r sin ucos y 

dy

dx
� sec2 x

y¿ � ex�yy¿ �
2y � 3

x2

dy

dx
� �

xy

x � 1

dy

dx
� x2y

dy

dx
�

x � 1

y2

dy

dx
�

2y

x

33. Find the constant such that the curves and
are orthogonal trajectories of each other.

34. Growth of Bacteria The population of bacteria in a culture
grows at a rate that is proportional to the number present.
Initially, there are 600 bacteria, and after 3 hr there are
10,000 bacteria.
a. What is the number of bacteria after hr?
b. What is the number of bacteria after 5 hr?
c. When will the number of bacteria reach 24,000?

35. Growth of Bacteria The population of bacteria in a culture grows
at a rate that is proportional to the number present. After 2 hr
there are 800 bacteria present. After 4 hr there are 3200 bacte-
ria present. How many bacteria were there initially?

36. Growth of Bacteria The population of bacteria in a certain 
culture grows at a rate that is proportional to the number
present. If the original population increases by 50% in hr,
how long will it take for the population to triple in size?

37. Lambert’s Law of Absorption According to Lambert’s Law of
Absorption, the percentage of incident light , absorbed in
passing through a thin layer of material , is proportional to
the thickness of the material. For a certain material, if in.
of the material reduces the light to half of its intensity, how
much additional material is needed to reduce the intensity to
one fourth of its initial value?

38. Savings Accounts An amount of money deposited in a savings
account grows at a rate proportional to the amount present.
(Thus it earns interest compounded continuously (see
Example 9).) Suppose that $10,000 is deposited in a fixed
account earning interest at the rate of 10% compounded
continuously.
a. What is the accumulated amount after 5 years?
b. How long does it take for the original deposit to double

in value?

39. Chemical Reactions In a certain chemical reaction a substance
is converted into another substance at a rate proportional to
the square of the amount of the first substance present at any
time . Initially , 50 g of the first substance was pres-
ent; 1 hr later, only 10 g of it remained. Find an expression
that gives the amount of the first substance present at any
time . What is the amount present after 2 hr?

40. Radioactive Decay Phosphorus-32 has a half-life of 14.3 days.
If 100 g of this substance is present initially, find the amount
present after days. What amount will be left after 7.1 days?
How fast is the phosphorus-32 decaying when ?

41. Nuclear Fallout Strontium-90, a radioactive isotope of stron-
tium, is present in the fallout resulting from nuclear explo-
sions. It is especially hazardous to animal life, including
humans, because when contaminated food is ingested, the
strontium-90 is absorbed into the bone structure. Its half-life
is 28.9 years. If the amount of strontium-90 in a certain area
is found to be four times the “safe” level, find how much
time must elapse before an “acceptable” level is reached.

t � 7.1
t

t

(t � 0)t

1
2

x
L

1
2

t

y3 � C2x
x2 � ay2 � C1a
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42. Carbon-14 Dating Wood deposits recovered from an archeolog-
ical site contain 20% of the carbon-14 they originally con-
tained. How long ago did the tree from which the wood was
obtained die? (The half-life of carbon C-14 is 5730 years.)

43. Carbon-14 Dating Skeletal remains of the so-called Pittsburgh
Man unearthed in Pennsylvania had lost 82% of the carbon-
14 they originally contained. Determine the approximate age
of the bones. (The half-life of carbon C-14 is 5730 years.)

44. Newton’s Law of Cooling Newton’s Law of Cooling states that
the rate at which the temperature of an object changes is
directly proportional to the difference in temperature between
the object and that of the surrounding medium. A horseshoe
that has been heated to a temperature of 600°C is immersed
in a large tank of water at a (constant) temperature of 30°C
at time . Two minutes later, the temperature of the
horseshoe is reduced to 70°C. Derive an expression that
gives the temperature of the horseshoe at any time . What 
is the temperature of the horseshoe 3 min after it has been
immersed in the water?

45. Newton’s Law of Cooling Newton’s Law of Cooling states that
the rate at which the temperature of an object changes is
directly proportional to the difference in temperature of the
object and that of the surrounding medium. A cup of coffee
is prepared with boiling water (212°F) and left to cool on a
counter in a room where the temperature is 72°F. If the tem-
perature of the coffee is 140°F after 2 min, when will the
coffee will be cool enough to drink (say, 110°F)?

46. Newton’s Law of Heating A thermometer is taken from a room
where the temperature is 70°F to a patio. After 1 min the
thermometer reads 50°F, and after 2 min it reads 40°F. What
is the outdoor temperature?

47. Motion of a Motorboat A motorboat is traveling at a speed of
12 mph in calm water when its motor is cut off. Twenty sec-
onds later, the boat’s speed drops to 8 mph. Assuming that
the water resistance on the boat is directly proportional to
the speed of the boat, what will its speed be 2 min after the
motor was cut off?

48. Learning Curves The American Court Reporter Institute finds
that the average student taking elementary machine short-
hand will progress at a rate given by

in a 20-week course, where is a positive constant and 
measures the number of words of dictation a student

can take per minute after weeks in the course. If the aver-
age student can take 50 words of dictation per minute after
10 weeks in the course, how many words per minute can 
the average student take after completing the course?

t
Q(t)

k

dQ

dt
� k(80 � Q)

t

t � 0

49. Effect of Immigration on Population Growth Suppose that a coun-
try’s population at any time grows in accordance with the
rule

where denotes the population at any time , is a positive
constant reflecting the natural growth rate of the population,
and is a constant giving the (constant) rate of immigration
into the country.
a. If the total population of the country at time is ,

find an expression for the population at any time .
b. The population of the United States in the year 1980

was 226.5 million. Suppose that the natural
growth rate is 0.8% annually and that net
immigration is allowed at the rate of 0.5 million people
per year . What will the U.S. population be in
2010?

50. Chemical Reaction Rates Two chemical solutions, one contain-
ing molecules of chemical and another containing 
molecules of chemical , are mixed together at time .
The molecules from the two chemicals combine to form
another chemical solution containing molecules. The
rate at which the molecules are formed, , is called
the reaction rate and is jointly proportional to and

. Thus,

where is a constant. (We assume that the temperature 
of the chemical mixture remains constant during the inter-
action.) Solve this differential equation with the side condi-
tion , assuming that and .
Hint: Use the identity

51. A Falling Raindrop As a raindrop falls, it picks up more mois-
ture, and as a result, its mass increases. Suppose that the
rate of change of its mass is directly proportional to its cur-
rent mass.

a. Using Newton’s Law of Motion, ,

where is the mass of the raindrop at time , is 
its velocity (positive direction is downward), and is 
the acceleration due to gravity, derive the (differential)
equation of motion of the raindrop.

b. Solve the differential equation of part (a) to find the
velocity of the raindrop at time . Assume that .

c. Find the terminal velocity of the raindrop, that is, find
.limt→� √(t)

√(0) � 0t

t

√tm(t)

d

dt
 (m√) � F � mt

1

(N � y)(M � y)
�

1

M � N
 a 1

N � y
�

1

M � y
b

M � y � 0N � y � 0y(0) � 0

k

dy

dt
� k(N � y)(M � y)

(M � y)
(N � y)

dy>dtAB
y AB

t � 0B
MAN

(I � 0.5)

(k � 0.008)
(t � 0)

t
P0t � 0

I

ktP

dP

dt
� kP � I

t
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52. Discharging Water from a Tank A container that has a constant
cross section is filled with water to height . The water is
discharged through an opening of cross section at the base
of the container. By using Torricelli’s Law, it can be shown
that the height of the water at time satisfies the initial-
value problem

a. Find an expression for .
b. Find the time it takes for the tank to empty.
c. Find if (ft2), (in.2), (ft), and

(ft/sec2).

53. Doomsday Equation Suppose that the population satisfies the
differential equation , where is a positive
constant and .
a. Solve the initial-value problem.
b. Suppose that . Plot the graph of .
c. Why is called the “doomsday equation”?

54. Stefan’s Law Stefan’s Law states that the rate of change of 
the temperature of a body is directly proportional to the
difference of the fourth power of and the fourth power of
the temperature of the surrounding medium . Thus,

where is the constant of proportionality. Stefan’s Law
holds over a greater temperature range than does Newton’s
Law of Cooling. Show that is given by the implicit 
equation

55. Concentration of a Drug in the Bloodstream Suppose that the rate
at which the concentration of a drug in the bloodstream
decreases is proportional to the concentration at time . 
Initially, there is no drug in the bloodstream. At time 
a drug having a concentration of g/mL is introduced into
the bloodstream.
a. What is the concentration of drug in the bloodstream at

the end of hr?
b. If at time another dosage having the concentration of

g/mL is infused into the bloodstream, what is the 
concentration of the drug at the end of hr?

c. If the process were continued, what would the concentra-
tion of the drug be at the end of hr?NT

2T
C0

T
T

C0

t � 0
t

T � TmlnaT � Tm

T � Tm
b � 2 tan�1a T

Tm
b � �4T3

mkt � C

T

k

dT

dt
� k(T4 � T4

m)

Tm

T
T

dP>dt � kP1.01
P(t)k � 0.1

P(0) � 1
kdP>dt � kP1.01

P

H ft

A ft2

B ft2

t � 32
H � 16B � 1A � 4T

T
h

h(0) � H
dh

dt
� �

B

A
 12th

t

B
HA

d. Find the concentration of the drug in the bloodstream in
the long run.
Hint: Evaluate , where denotes the concen-
tration of the drug at the end of hr.

56. Spread of Disease A simple mathematical model in epidemiol-
ogy for the spread of a disease assumes that the rate at
which the disease spreads is jointly proportional to the num-
ber of infected people and the number of uninfected people.
Suppose that there are a total of people in the population,
of whom are infected initially. Show that the number of
infected people after weeks, , is given by

where is a positive constant.

57. Spread of Disease Refer to Exercise 56. Suppose that there are
8000 students in a college and 400 students had contracted
the flu at the beginning of the week.
a. If 1200 had contracted the flu at the end of the week,

how many will have contracted the flu at the end of 2, 3,
and 4 weeks?

b. How long does it take for 80% of the student population
to become infected?

c. Plot the graph of the function .

58. Von Bertalanffy Growth Model The von Bertalanffy growth
model is used to predict the length of commercial fish. 
The model is described by the differential equation

where is the length of the fish at time , is a positive
constant called the von Bertalanffy growth rate, and is the
maximum length of the fish.
a. Find given that the length of the fish at is .
b. At the time the larvae hatch, the North Sea haddock are

about 0.4 cm long, and the average haddock grows to a
length of 10 cm after 1 year. Find an expression for the
length of the North Sea haddock at time .

c. Plot the graph of . Take (cm).
d. On average, the haddock that are caught today are

between 40 cm and 60 cm long. What are the ages of the
haddock that are caught?

In Exercises 59–62, determine whether the statement is true or
false. If it is true, explain why. If it is false, explain why or give
an example that shows it is false.

59. If is a solution of a first-order differential equation, then so
is , where is a constant.

60. The differential equation is separable.

61. The differential equation is separable.

62. The curves and are
orthogonal to each other.

x2 � y2 � ln y2 � kcx2 � y2 � 1

y¿ � xy � 2x � y � 2

y¿ � x2 � y2

ccf
f

L � 100x
t

x0t � 0x(t)

L
ktx(t)

dx

dt
� k(L � x)

x(t)

k

x(t) �
N

1 � aN � N0

N0
be�kNt

x(t)t
N0

N

NT
y(NT)limN→� y(NT)

cas



8.2 Direction Fields and Euler’s Method 691

8.2 Direction Fields and Euler’s Method

In Section 8.1 we considered differential equations with solutions that could be found
analytically. Armed with these solutions, we were able to draw the solution curves of
these first-order differential equations.

In this section we will describe a way to visualize the general solution of a differ-
ential equation without actually solving the equation. This is especially useful when
we are unable to find an exact solution of the equation. We will also describe a method
for constructing an approximation for the solution curve of an initial-value problem.

Direction Fields
Suppose that we are given a first-order differential equation of the form

(1)

If is any point on a solution curve of Equation (1), then the slope of the tangent
line to this curve at is given by

(See Figure 1a.) If we retain a small portion of the tangent line at , then we have
a small line segment called a lineal element that indicates the direction of the solution
curve at that point (Figure 1b).

(a, b)

y¿�(a, b) � f(a, b)

(a, b)
(a, b)

y¿ � f(x, y)

FIGURE 1
A short tangent line at gives the

direction of the solution curve at .(a, b)
(a, b)

If is defined in a region in the -plane, then we can draw a lineal element at each
point in the region. A set of lineal elements drawn at various points is called a slope
field or direction field of the differential equation. For example, the direction field for the
differential equation (see Example 1 in Section 8.1) is shown in Figure 2.y¿ � y � x

(x, y)
xyf

FIGURE 2
A direction field for y¿ � y � x

x

(a) The tangent line at (a, b)

(a, b)

y

0 x

(b) A lineal element at (a, b)

(a, b)

y

0

x

y

�3 �2 �1 21

�2

�1

3

2

1
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FIGURE 3
A few solution curves of 
superimposed over its direction field

y¿ � y � x

EXAMPLE 1 Consider the differential equation .

a. Sketch the lineal elements at , , , , , ,
, and .

b. Use a calculator or computer to draw a direction field with more lineal elements.
c. Use the slope field to sketch the solution that passes through the point .

Solution
a. Here, . The slope of the lineal element at is

We summarize the results of the other calculations in the table.

f(�1, 0) � �1 � 2(0) � �1

(�1, 0)f(x, y) � x � 2y

(0, 1)

(2, 1)(2, �1)
(1, 2)(1, 1)(1, �1)(0, 0)(�1, 1)(�1, 0)

y¿ � x � 2y

The lineal elements for the given ordered pairs are shown in Figure 4.
b. The required direction field is shown in Figure 5. Note that the lineal elements

that we obtained in part (a) are contained in the direction field, as expected.
c. To sketch the solution curve passing through the point , we draw a curve

starting out at and extend it first to the right, then to the left, always requir-
ing that it be parallel to nearby lineal elements as we proceed. The resulting
approximating solution curve is shown in Figure 6 superimposed over the direc-
tion field of the differential equation.

(0, 1)
(0, 1)

(x, y) (�1, 0) (�1, 1) (0, 0) (1, �1) (1, 1) (1, 2) (2, �1) (2, 1)

y¿ � f(x, y) �1 1 0 �1 3 5 0 4

FIGURE 4
The lineal elements at selected points

FIGURE 5
The direction field for y¿ � x � 2y

x

y

�3 �2 �1 21

�2

�1

3

2

1

Since the small line segments represent tangent lines to the solution curves of the
differential equation at these points, we see that a direction field indicates the general
shape of the solution curves. Figure 3 shows a few solution curves of the differential
equation superimposed over its direction field.y¿ � y � x

x1�2 �1 2 3

y

�1

�2

1

2

0

x

y

�3 �2 �1 21

�2

�1

3

2

1

FIGURE 6
The solution curve of 
passing through (0, 1)

y¿ � x � 2y

x

y

�3 �2 �1 21

�2

�1

3

2

1

In physical applications involving differential equations, the direction fields of the
equations can shed much light on the nature of their solution. Suppose that an object
of constant mass falls vertically downward under the influence of gravity. Assum-m
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FIGURE 7
Here, is the position of 
the object, , and the 
positive direction is downward.

√ � dx>dt
x(t)

EXAMPLE 2 A Parachute Jump A paratrooper and his equipment have a combined
weight of 192 lb. At the instant that the parachute is deployed, he is traveling vertically
downward at a speed of 30 ft/sec. Assume that air resistance is proportional to the instan-
taneous velocity with constant of proportionality and that (ft/sec2).

a. Write an equation of motion, and draw a direction field associated with it.
b. Sketch the solution curve superimposed over the direction field.
c. What velocity does the paratrooper approach as increases without bound?

(The velocity found in part (c) is called the terminal velocity.)

Solution
a. Here, , or 6 slugs. Therefore, using Equation (2), we have the equation of

motion

or

At , , so we have the initial-value problem

A direction field for the differential equation is shown in Figure 8.√¿ � 32 � 2
3 √

•
d√
dt

� 32 �
2

3
 √

√(0) � 30

√ � 30t � 0

d√
dt

� 32 �
2

3
 √6 

d√
dt

� 192 � 4√

m � 192
32

t

t � 32k � 4

ing that air resistance is proportional to the velocity of the object at any instant during
the fall, then according to Newton’s Second Law of Motion,

where is the net force acting on the object in the positive (downward) direction. (See
Figure 7.) But is given by the weight of the object (acting downward) minus the
air resistance (acting upward), where is the constant of proportionality; that
is, . Therefore, the equation of motion is

(2)m 
d√
dt

� mt � k√

F � mt � k√
k � 0k√

mtF
F

F � ma � m 
d√
dt

x

t � 0

t � t

FIGURE 8
A direction field for √¿ � 32 � 2

3 √
t

√

302520151050

50

60

40

30

20

10

b. The solution curve of the initial-value problem superimposed over the direction
field is shown in Figure 9.
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FIGURE 9
The solution curve passing 

through the point (0, 30)

c. From the solution curve of part (b), we see that as , seems to approach
48, and we conclude that the terminal velocity of the paratrooper is 48 ft/sec.

Euler’s Method
The technique that we used to sketch the solution curves of a differential equation
helps to reveal the nature of the solution of the equation, but it does not provide us
with an accurate solution of the problem. We now turn our attention to a method that
provides us with a more accurate approximation to the solution of the initial-value
problem

(3)

Euler’s method, named after the Swiss mathematician Leonard Euler (1707–1783),
calls for approximating the actual solution at certain selected values of . The
values of between two adjacent values of are then found by linear interpolation.
This situation is depicted geometrically in Figure 10. As you can see, the actual solu-
tion of the differential equation is approximated by a suitable polygonal curve.

xf
xy � f(x)

y(x0) � y0

dy

dx
� F(x, y)

√(t)t → �

t

√

302520151050

50

60

40

30

20

10

FIGURE 10
In using Euler’s method, the 

actual solution curve of the dif-
ferential equation is approxi-
mated by a polygonal curve.

xx0 x1 x2 x3 x4

y

0

Approximate
solution

Actual solution
y � f(x)

To describe the method, let be a small positive number, and let

That is,

, , , px3 � x0 � 3hx2 � x0 � 2hx1 � x0 � h

n � 1, 2, 3, pxn � x0 � nh

h
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Observe that the points , , , , are spaced evenly apart, and the distance
between any two adjacent points is units.

We begin by finding an approximation to the value of the actual solution, ,
at . Observe that the initial condition tells us that the point 
lies on the solution curve. Euler’s method calls for approximating the part of the graph
of on the interval by the straight-line segment that is tangent to the graph of

at . (See Figure 11.) To find an equation of this straight-line segment, observe
that the slope of this line segment is equal to . So using the point-slope form
of an equation of a line, we see that the required equation is

or

Therefore, the approximation to is obtained by replacing by . Thus,

Since 

This situation is depicted in Figure 11.

x1 � x0 � h � y0 � F(x0, y0)h

 y1 � y0 � F(x0, y0)(x1 � x0)

x1xf(x1)y1

y � y0 � F(x0, y0)(x � x0)

y � y0 � F(x0, y0)(x � x0)

F(x0, y0)
(x0, y0)f

[x0, x1]f

(x0, y0)y(x0) � y0x � x1

f(x1)y1

h
px3x2x1x0

FIGURE 11
is 

an approximation of .f(x1)
y1 � y0 � hF(x0, y0)

Next, to find an approximation to the value of the actual solution, , at 
, we repeat the above procedure, this time taking the slope of the straight-line

segment on to be . We obtain

(See Figure 12.)

y2 � y1 � hF(x1, y1)

F(x1, y1)[x1, x2]
x � x2

f(x2)y2

xx0 x1

y

0

Actual solution
y � f (x)

(x1, f(x1))

(x1, y1)

FIGURE 12
is the number 

used to approximate .f(x2)
y2 � y1 � hF(x1, y1) xx0 x1 x2

y

0

Actual solution
y � f (x)

(x1, f (x1))

(x2, f (x2))

(x1, y1)

(x2, y2)
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Continuing in this manner, we see that can be found by the general 
formula

We now summarize this procedure.

n � 1, 2, pyn � yn�1 � hF(xn�1, yn�1)

y1, y2, p , yn

Euler’s Method

Suppose that we are given the differential equation

subject to the initial condition , and we wish to find an approxima-
tion of , where is a number greater than and is a positive integer.
Compute

and

Then gives an approximation of the true value of the solution to the 
initial-value problem at .x � b

y(b)yn

 yn � yn�1 � hF(xn�1, yn�1) xn � x0 � nh � b

 o o

 y2 � y1 � hF(x1, y1) x3 � x0 � 3h

 y1 � y0 � hF(x0, y0) x2 � x0 � 2h

 y0 � y(x0) x1 � x0 � h

 h �
b � x0

n

nx0by(b)
y(x0) � y0

dy

dx
� F(x, y)

EXAMPLE 3 Use Euler’s method with (a) and (b) to approximate the
solution of the initial-value problem

on the interval . Find the actual solution of the initial-value problem. Finally,
sketch the graphs of the approximate solutions and the actual solution for 
on the same set of axes.

Solution
a. Here, and . Taking , we find

and , , , , , and . Also,

and

Therefore

 y1 � y0 � hF(x0, y0) � 1 � 0.1(�2)(0)(1)2 � 1

 y0 � y(0) � 1

y0 � y(0) � 1F(x, y) � �2xy2

x5 � b � 0.5x4 � 0.4x3 � 0.3x2 � 0.2x1 � 0.1x0 � 0

h �
0.5 � 0

5
� 0.1

n � 5b � 0.5x0 � 0

0 
 x 
 0.5
[0, 0.5]

y(0) � 1y¿ � �2xy2

n � 10n � 5
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b. Here, and Taking , we find

and , , , , , and . Proceed-
ing as in part (a), we obtain the approximate solutions listed in the following
table.

x10 � 0.5 � bx9 � 0.45px2 � 0.10x1 � 0.05x0 � 0

h �
0.5 � 0

10
� 0.05

n � 10b � 0.5x0 � 0

 y5 � y4 � hF(x4, y4) � 0.8884 � 0.1(�2)(0.4)(0.8884)2 � 0.8253

 y4 � y3 � hF(x3, y3) � 0.9416 � 0.1(�2)(0.3)(0.9416)2 � 0.8884

 y3 � y2 � hF(x2, y2) � 0.98 � 0.1(�2)(0.2)(0.98)2 � 0.9416

 y2 � y1 � hF(x1, y1) � 1 � 0.1(�2)(0.1)(1)2 � 0.98

xn 0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

yn 1.0000 1.0000 0.9950 0.9851 0.9705 0.9517 0.9291 0.9032 0.8746 0.8440 0.8119

To obtain the actual solution of the differential equation, we separate variables,
obtaining

Integrating each side of the last equation with respect to the appropriate variable,
we have

or

Using the condition , we have

or

Therefore, the required solution is given by

The graphs of the approximate solutions and the actual solution are sketched in
Figure 13.

y �
1

x2 � 1

C � 1
1

0 � C
� 1

y(0) � 1

 y �
1

x2 � C

C � �C1 
1
y

� x2 � C

 �
1
y

� �x2 � C1

� dy

y2
� ��2x dx

dy

y2
� �2x dx
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FIGURE 13
The approximate solutions 

and the actual solution to 
the initial-value problem

EXAMPLE 4 Parachute Jump Refer to Example 2. There, we showed that the dif-
ferential equation describing the motion of a paratrooper was

where is the velocity of the paratrooper at time . Use Euler’s method with 
to estimate the velocity of the paratrooper 2 sec after his parachute was deployed.

Solution Here, . With a step size of , we find

, , , , , ,

, , , ,

Therefore,

Carrying on, we find

, , , and

So his velocity 2 sec after deployment of the parachute is ft/sec.√10 � 43.70

√10 � 43.69678√9 � 43.03475√8 � 42.27087√7 � 41.38946

 √6 � √5 � hF(t5, √5) � 39.19898 � 0.2c32 �
2

3
 (39.19898)d � 40.37245

 √5 � √4 � hF(t4, √4) � 37.84498 � 0.2c32 �
2

3
 (37.84498)d � 39.19898

 √4 � √3 � hF(t3, √3) � 36.28267 � 0.2c32 �
2

3
 (36.28267)d � 37.84498

 √3 � √2 � hF(t2, √2) � 34.48 � 0.2c32 �
2

3
 (34.48)d � 36.28267

 √2 � √1 � hF(t1, √1) � 32.4 � 0.2c32 �
2

3
 (32.4)d � 34.48

 √1 � √0 � hF(t0, √0) � 30 � 0.2c32 �
2

3
 (30)d � 32.4

 √0 � 30

t10 � 2.0t9 � 1.8t8 � 1.6t7 � 1.4t6 � 1.2

t5 � 1.0t4 � 0.8t3 � 0.6t2 � 0.4t1 � 0.2t0 � 0

0.2 (n � 10)F(t, √) � 32 � 2
3 √

h � 0.2t√

√(0) � 30
d√
dt

� 32 �
2

3
 √

x0.1 0.2 0.3 0.4 0.5

Actual
solution n � 10

n � 5

y

0.8

1.0

0.9

0
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1. a. What is the direction field of the differential equation
?

b. Explain how you would use the direction field of part (a)
to sketch a solution curve passing through the point

.(x0, y0)

y¿ � f(x, y)
2. Explain how Euler’s method is used to approximate the

solution of an initial-value problem.

8.2 CONCEPT QUESTIONS

In Exercises 1–4, match the differential equation with the direc-
tion field labeled (a)–(d). Give a reason for your choice.

1. 2.

3. 4.

x

y

�2�4 2 4

�2

�4

2

4

(d)

x

y

�2�4 2 4

�2

�4

2

4

(c)

x

y

1�1�2�3 2 3

1

�2

�3

�1

2

3

(b)

x

y

1�1�2�3 2 3

1

�2

�3

�1

2

3

(a)

y¿ � sin x cos yy¿ � 2x � y

y¿ � 1 � xyy¿ � 1 �
y

2

In Exercises 5–8 a direction field for the differential equation is
given. Sketch the solution curves that satisfy the initial condition.

5.
a. b. c. d.

6.

a. b. c.

x

y

2 4 6 8

�2

2

4

6

8

y(0) � 6y(0) � 4y(0) � 1

y¿ � 1 �
1

4
 y

x

y

�1�2 1 2

�1

�2

1

2

3

y(1) � 0y(0) � 1y(0) � 0y(�2) � 0
y¿ � x2 � y

8.2 EXERCISES

Videos for selected exercises are available online at www.academic.cengage.com/login.V

www.academic.cengage.com/login
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7.
a. b. c.

8.
a. b. c.

In Exercises 9–16, use a computer algebra system (CAS) to draw
a direction field for the differential equation. Then sketch
approximate solution curves passing through the given points by
hand superimposed over the direction field. Compare your sketch
with the solution curve obtained by using a CAS.

9.
a. b. c.

10.
a. b. c.

11.
a. b. c.

12.

a. b. c. (1, 3)(0, 1)(0, �2)

y¿ �
1

4
 x2 � y

(0, 1)(0, 0)(0, �2)
y¿ � x � y � 1

(0, 4)(0, 2)(0, 1)
y¿ � y � 2

(0, 1)(0, 0)(0, �1)
y¿ � y

x

y

1�1�2�3 2 3

1

�2

�3

�1

2

3

y(0) � 1y(0) � 0y(0) � �1
y¿ � sin x sin y

x

y

�1�2 1 2

�1

�2

1

2

y(0) � 2y(0) � 1y(0) � 0
y¿ � x2 � y2

13.

a. b. c.

14.
a. b. c.

15.
a. b. c.

16.
a. b. c.

In Exercises 17–26, use Euler’s method with (a) and 
(b) to estimate , where is the solution of the 
initial-value problem (accurate to two decimal places).

17. , ;

18. , ;

19. , ;

20. , ;

21. , ;

22. , ;

23. , ;

24. , ;

25. , ;

26. , ;

In Exercises 27 and 28, (a) sketch a few solution curves of the
differential equation on the direction field, (b) solve the initial-
value problem, and (c) sketch the solution curve found in part
(b) on the direction field.

27. ,

x

y

�2�4 2 4

�2

�4

2

4

y(2) � 213
dy

dx
� �

x

y

b � 1y(0) � 1y¿ � xy1>3
b � 1y(0) � 1y¿ �

x

y

b � 1y(0) � 1y¿ � (x2 � y2)�1

b � 1.5y(0) � 1y¿ �2x � y

b � 0.8y(0) � 1y¿ � 1 � xy2

b � 0.5y(0) � 1y¿ � �2xy2

b � 0.5y(0) � 1y¿ � 2xy

b � 2y(0) � 2y¿ � 2x � y � 1

b � 2y(0) � 1y¿ � x � 2y

b � 1y(0) � 1y¿ � x � y

yy(b)n � 6
n � 4

(2, 1)(0, 1)(0, 0)
y¿ � ex�y

(0, 1)(0, 0)(0, �1)
y¿ � cos x � y tan x

(0, 4)(0, 2)(0, �1)
y¿ � x(2 � y)

(0, 4)(2, 0)(�1, 1)

y¿ � �
x

y

cas
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28. ,

29. Gompertz Growth Curves The differential equation
, where and are constants,

is called a Gompertz differential equation. This 
differential equation occurs in the study of population
growth and the growth of tumors.
a. Take in the Gompertz differential equation,

and use a CAS to draw a direction field for the differen-
tial equation.

b. Use the direction field of part (a) to sketch the approxi-
mate curves for solutions satisfying the initial conditions

and .
c. What can you say about as tends to infinity? If the

limit exists, what is its approximate value?

30. Restricted Population Growth The differential equation
, where and are constants, is called a

logistic equation. This differential equation is used in the
study of restricted population growth.
a. Take and , and use a CAS to draw a direc-

tion field for the differential equation.
b. Use the direction field of part (a) to sketch the approxi-

mate solution curves passing through the points ,
, and .

c. Suppose that . For what values of does
exist? What is the value of the limit?

31. Parachute Jump A skydiver, together with her parachute and
equipment, have a combined weight of 160 lb. At the instant
of deployment of the parachute, she is falling vertically
downward at a speed of 30 ft/sec. Suppose that the air
resistance varies directly as the instantaneous velocity and
that the air resistance is 30 lb when her velocity is 30 ft/sec.
a. Use Euler’s method with to estimate her velocity

2 sec after deployment of her parachute.
b. Find the exact solution of the separable differential equa-

tion, and compute . Compare the answers obtained in
parts (a) and (b).

√(2)

n � 10

limt→� P(t)
cP(0) � c

(0, 3)(0, 1)
(0, �1)

b � 1a � 2

baP¿ � P(a � bP)

tP(t)
P(0) � 4P(0) � 1

a � b � 1

baP¿ � P(a � b ln P)

x

y

1�1�2�3 2 3

1

�2

�3

�1

2

3

y(0) � 1
dy

dx
� y � xy

32. R-C Series Circuit The figure shows an R-C series circuit con-
taining a resistor with a resistance of ohms, and a capaci-
tor with a capacitance of farads. The voltage drop across
the capacitor is , where is the charge (in coulombs)
in the capacitor. Using Kirchhoff’s Second Law, we have

where is the electromotive force (emf) in volts. But
, and this gives

Suppose that an emf of 100 volts is applied to an R-C series
circuit in which the resistance is 50 ohms and the capaci-
tance is 0.001 farad.
a. Draw a direction field for this differential equation.
b. Sketch the solution curve passing through the point 

.
c. Using Euler’s method with , estimate the charge

0.1 sec after the switch is closed.
d. Find the charge at time by solving the separable

differential equation if the initial charge is 0 coulomb.
Sketch the graph of , and compare this result with that
obtained in part (b).

In Exercises 33–36, determine whether the statement is true or
false. If it is true, explain why. If it is false, explain why or give
an example that shows it is false.

33. At each point on a solution curve of the differential
equation , a small line segment that contains the
point and has slope is drawn. The result is a
direction field of the differential equation.

34. The lineal elements in the direction field of a differential
equation constitute parts of the solution curve of the differ-
ential equation.

35. The lineal elements in the direction field of a differential
equation of the form at the point are paral-
lel to each other for all values of and each fixed .

36. The lineal elements in the direction field of a differential
equation of the form at the point are paral-
lel to each other for all values of and each fixed .x0y

(x0, y)y¿ � f(x)

y0x
(x, y0)y¿ � f(y)

f(x, y)(x, y)
y¿ � f(x, y)

(x, y)

Q

tQ(t)

n � 10
(0, 0)

E

R

C

R 
dQ

dt
�

1

C
 Q � E(t)

I � dQ>dt
E(t)

RI �
Q

C
� E(t)

QQ(t)>C C
R

cas

cas
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8.3 The Logistic Equation

In Section 8.1 we considered a model for population growth in which the rate of change
of the population at any time is proportional to the current population. Thus,

(1)

where is the population at time , and , the positive constant of proportionality,
is the growth constant. Unfortunately, this model describing unrestricted growth is not
very realistic. In the real world, one might expect that the population would grow rap-
idly at first and then eventually slow down because of overcrowding, scarcity of food,
and other environmental factors. Indeed, one might expect that the population would
eventually stabilize at a level that is compatible with the life-support capacity of the
environment. In this section we will study a population model that exhibits precisely
these characteristics.

The Logistic Model
We can rewrite Equation (1) in the form

This tells us that the relative growth rate of the population in the unrestricted growth
model is a (positive) constant . Suppose that the population cannot exceed a number

, called the carrying capacity of the environment. Then it is reasonable to assume
that the relative growth rate of the population starts out at when is small and
approaches zero when is close to . In other words, we want a model of the form

where satisfies and . The simplest function satisfying these con-
ditions is the linear function whose graph is the straight line passing through the points

and . (See Figure 1.) You can verify that the desired function is

This discussion leads to the following model for restricted population growth,
known as the logistic differential equation:

(2)

Observe that if is small relative to , then is small and ; that is, the
logistic model behaves like the unrestricted growth model. But as approaches , then

approaches 1, and the rate of growth of , , approaches 0. Thus, the logis-
tic differential equation exhibits both the property of rapid growth initially and that of
saturation eventually. Also, note that if the (initial) population exceeds the carrying
capacity , then is negative and , so the population decreases.dP>dt � 01 � (P>L)L

P

dP>dtPP>L LP
dP>dt � kPP>LLP

dP

dt
� kPa1 �

P

L
b

f(P) � ka1 �
P

L
b

(L, 0)(0, k)

ff(L) � 0f(0) � kf

dP

dt

P
� f(P)

LP
Pk

L
k

dP

dt

P
� k

ktP(t)

dP

dt
� kP

PL

k

f (P)

0

FIGURE 1
The graph of the linear function 
satisfying and f(L) � 0f(0) � k

f
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The following example of the logistic differential equation verifies these properties
graphically.

FIGURE 2

EXAMPLE 1 Logistic Growth Function Sketch the direction field for the logistic dif-
ferential equation with and . Then draw the approximate solution
curves of the equation satisfying the initial conditions , , and

superimposed upon the direction field.

Solution The logistic differential equation under consideration is

Using a graphing utility, we obtain the direction field for this equation shown in Fig-
ure 2a. Note that the slopes are the same along any horizontal line. This occurs because
the logistic differential equation is autonomous; that is, depends on alone. The
solution curves satisfying the initial conditions , , and

are shown in Figure 2b–d.P(0) � 1000
P(0) � 1400P(0) � 100

PP¿

dP

dt
� 0.05Pa1 �

P

1000
b

P(0) � 1000
P(0) � 1400P(0) � 100

L � 1000k � 0.05

t

P

15010050

1200

1400

1000

800

600

400

200

(a) Direction field for P � � 0.05P 1 � P____
1000(             )

t

P

15010050

1200

1400

1000

800

600

400

200

(b) Solution curve with P(0) � 100 

t

P P

15010050

1200

1400

1000

800
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400

200

(c) Solution curve with P(0) � 1400  

t15010050

1200

1400

1000

800

600

400

200

(d) Solution curve with P(0) � 1000 
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EXAMPLE 2 Solve the logistic differential equation

Solution First, and are solutions, as you can verify by substituting these
values into the differential equation. Next, suppose that and . Observe that
the equation is separable. Separating variables leads to

Integrating each side of this equation with respect to the appropriate variable, we obtain

or (3)

To find the integral on the left-hand side, we use partial fraction decomposition (see
Section 7.4) to write

This leads to

Multiply each side by .

or

(4)
L � P

P
� Ce�kt

C2 � e�C1 ̀
L � P

P
` � e�kt�C1 � e�C1e�kt � C2e

�kt

 ln ` L � P

P
` � �kt � C1

�1 ln �L � P � � ln �P � � �kt � C1

 ln �P � � ln �L � P � � kt � C1

 � a 1

P
�

1

L � P
b dP � � k dt

L

P(L � P)
�

1

P
�

1

L � P

� L

P(L � P)
 dP � k�dt� dP

Pa1 �
P

L
b

� � k dt

dP

Pa1 �
P

L
b

� k dt

P � LP � 0
P � LP � 0

P(0) � P0
dP

dt
� kPa1 �

P

L
b

Note that in the two cases in which the initial populations do not begin at 1000,
the carrying capacity of the environment, both populations tend to 1000 as increases
without bound. But in the case in which the initial population is 1000, the population
remains steady at that level for all values of .

Analytic Solution of the Logistic Differential Equation
The logistic differential equation (2) is separable and can be solved by using the method
of Section 8.1.

t

t
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where . We can solve for in Equation (4) as follows:

and

To determine , we use the initial condition , where is the initial popula-
tion. Putting and in Equation (4) yields

Thus, the solution of the initial-value problem is

(5)

Note that

(6)

as expected. The graph of Equation (5) is called the logistic curve.

Logistic Curve
Example 1 suggests the shape of the logistic curve. We are now in the position to con-
firm this observation analytically.

We begin by determining the intervals where is increasing and where it is decreas-
ing. To do this, we could compute from Equation (5), but this would be tedious
and unnecessary. Instead, we will work with Equation (2), which expresses in terms
of . Observe that

(7)

is a continuous function of on and has zeros at and . The sign
diagram for is shown in Figure 3.P¿

P � LP � 0(��, �)P

P¿ � kPa1 �
P

L
b

P
P¿

P¿(t)
P

lim
t→�

P(t) � lim
t→�

 
L

1 � a L

P0
� 1be�kt

� L

P(t) �
L

1 � a L

P0
� 1be�kt

L � P0

P0
� Ce0 � C

P � P0t � 0
P0P(0) � P0C

P �
L

1 � Ce�kt

 
L

P
� 1 � Ce�kt

 
L

P
� 1 � Ce�kt

PC � �C2

JEAN LE ROND D’ALEMBERT
(1717–1783)

Jean le Rond d’Alembert was a man of var-
ied interests, and he is remembered as a
mathematician, physicist, and philosopher.
In mathematics, d’Alembert is best known
for his method of solving the so-called
wave equation, an important differential
equation that is used to describe the
behavior of a large class of waves. Aban-
doned as an infant on the steps of St. Jean
Baptiste le Rond, near Notre-Dame de
Paris, d’Alembert was baptized and put in
foster care to be raised by Madame
Rousseau, the wife of a glazier. d’Alem-
bert’s biological parents were later found
to be an artillery general and the socially
prominent sister of a Cardinal. However,
d’Alembert always regarded his foster
mother as his real mother, and he contin-
ued to live with her until he reached the
age of 47. d’Alembert’s schooling was paid
for by his biological father, and he
excelled, becoming a celebrated mathe-
matician. He wrote more than 1500 works,
including the famous Discours preliminaire
(1751) for Denis Diderot’s Encyclopedie, an
introduction that explained the structure
and philosophy of the articles in the Ency-
clopedie and gave a thorough review of
the intellectual history behind those arti-
cles and the philosophy of the French
Enlightenment.

Historical Biography
M

us
ee

 C
ar

na
va

le
t/

Ro
ge

r-V
io

le
t/

Th
e 

Im
ag

e 
W

or
ks

P0 L

00 �������������� �����
FIGURE 3

The sign diagram for P¿

Observe that this sign diagram is not the same as the sign diagrams that we encoun-
tered in Chapter 3. Here, is the dependent variable, and it lies on the vertical axis.P
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Observe that , as a function of , is continuous on and has zeros at ,
, and . The sign diagram of is shown in Figure 4. From the sign diagram forP �LL>2 P � 0(��, �)PP �

FIGURE 4
The sign diagram for P �

FIGURE 5
Two possible logistic curves

Suppose that a population at any time satisfies the logistic differential 
equation (2) and that the initial population at is .

1. If , the population stays at zero at all times
2. If , then the population increases and approaches the limiting

value , called the carrying capacity of the environment, asymptotically.
The population increases most rapidly at the instant of time when it
reaches .

3. If , the population at any later time remains at .
4. If , then the population decreases and approaches the carrying

capacity asymptotically.L
P0 � L

LP0 � L

1
2 L

L
0 � P0 � L
P0 � 0

P0t � 0
t

In Exercise 9 you will be asked to show that the time referred to in part (2) when
the population increases most rapidly is given by

(8)

Note The constant solutions and are called equilibrium solutions.P � LP � 0

T �

ln a L

P0
� 1b

k

From the sign diagram for we conclude that is increasing for and is
decreasing for . Next, we compute

Use Equation (7).

 � ka1 �
2P

L
bP¿ � k2Pa1 �

2P

L
b a1 �

P

L
b

 P� �
d

dt
 ckPa1 �

P

L
b d � k 

d

dt
 aP �

P2

L
b

P � L
P0 � P � LPP¿

P0 L L

0

2

0 ���������� 0�������

t

P

0

L

L P � L

2

(P > L)

(0 < P < L)

we conclude that the graph of is concave upward for and and
is concave downward for . Also, has an inflection point at . We
have two cases. Referring to the sign diagrams for and , we see the following:

1. If , then is increasing, concave upward for , and 
concave downward for . Also, the graph of has an inflection 
point at . (See Figure 5.)

2. If , then is decreasing and concave upward.

It can be shown, although we will not do so here, that none of these curves can cross
the horizontal lines and .

Let’s summarize our results.
P � LP � 0

PP � L
P � L>2 PL

2 � P � L
0 � P � L

2P0 � P � L

P �P¿
P � L>2PL

2 � P � L
P � L0 � P � L

2PP �
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EXAMPLE 3 Logistic Growth Function Refer to Example 1. Suppose that the popu-
lation satisfies the logistic differential equation

a. What is the population at any time if the initial population is 1000?
b. What is the population at any time if the initial population is 1400?
c. What is the population at any time if the initial population is 100?

Solution Using Equation (5) with and , we see that the popula-
tion at time is

(9)

a. Here, , so Equation (9) gives

That is, the population stays at the equilibrium level for all . (See Figure 6a.)
b. Here, , so Equation (9) gives

(See Figure 6b.) The population decreases to 1000 asymptotically.
c. Here, , so Equation (9) gives

(See Figure 6c.) The population increases to 1000 asymptotically.

P(t) �
1000

1 � 11000
100 � 1 2e�0.05t

�
1000

1 � 9e�0.05t

P0 � 100

P(t) �
1000

1 � 11000
1400 � 1 2e�0.05t

�
1000

1 � 2
7 e

�0.05t

P0 � 1400
t

P(t) �
1000

1 � 11000
1000 � 12e�0.05t

� 1000

P0 � 1000

P(t) �
L

1 � a L

P0
� 1be�kt

�
1000

1 � a1000

P0
� 1be�0.05t

t
L � 1000k � 0.05

t
t
t

dP

dt
� 0.05Pa1 �

P

1000
b

P(t)

FIGURE 6
Logistic curves for 

dP

dt
� 0.05Pa1 �

P

1000
b

t
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14012010080604020

P

1500
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0 t

(b) P(0) � 1400

14012010080604020
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1500
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0 t
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14012010080604020

P

1500
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0

EXAMPLE 4 Logistic Growth Function Refer to Example 3. Suppose that the popu-
lation satisfies the logistic differential equation

dP

dt
� 0.05Pa1 �

P

1000
b

P(t)
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where is measured in days and the initial population is 100.

a. What is the population at ? At ?
b. At what time is the population increasing most rapidly?
c. At what time is the population equal to 800?

Solution
a. The population at any time was obtained in part (c) of Example 3. We have

The population at is

The population at is

b. The population increases most rapidly at the instant it reaches half the carrying
capacity of the environment. Therefore, we can find the required time by solving
the equation

for . Alternatively, we can use Equation (8) to find

So the population increases most rapidly on approximately the 44th day.
c. The required time is found by solving

for . We have

Take the natural logarithms.

So the population reaches 800 when is approximately 72, or approximately after
72 days.

The graph of is shown in Figure 7.P

t

 t �
ln 36

0.05
� 71.67

 �0.05t � ln 
1

36
� �ln 36

 e�0.05t �
1

36

 9e�0.05t �
1

4

 1 � 9e�0.05t �
1000

800
�

5

4

t

800 �
1000

1 � 9e�0.05t

T �

ln a L

P0
� 1b

k
�

ln a1000

100
� 1b

0.05
� 43.944

t

500 �
1000

1 � 9e�0.05t

P(50) �
1000

1 � 9e�0.05(50)
� 575

t � 50

P(30) �
1000

1 � 9e�0.05(30)
� 332

t � 30

P(t) �
1000

1 � 9e�0.05t

t

t � 50t � 30

t

FIGURE 7
The graph of P(t) �

1000

1 � 9e�0.05t

200

1000

0
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EXAMPLE 5 Rate of Growth of a Fish Population A fish farm is stocked with 100 fish.
Suppose that the fish population satisfies the logistic equation and that the carrying
capacity of the pond is 2000.

a. Find an expression for the fish population after years if the number of fish
increased to 250 in the first year.

b. How long will it take for the fish population to reach 1000?

Solution
a. Using Equation (5), we see that the population after years is

Here, and , so

To determine , we use the condition . This leads to

so

b. We solve the equation for ; that is,

So it takes approximately 2.9 years for the fish population to reach 1000.

The graph of is shown in Figure 8.P

 t � 2.949

 �0.9985t � ln a 1

19
b

 e�0.9985t �
1

19

 1 � 19e�0.9985t � 2

 1000 �
2000

1 � 19e�0.9985t

tP(t) � 1000

P(t) �
2000

1 � 19e�0.9985t

 k � �ln 
7

19
� 0.9985

 e�k �
7

19

 19e�k � 7

 1 � 19e�k �
2000

250
� 8

 P(1) �
2000

1 � 19e�k
� 250

P(1) � 250k

P(t) �
2000

1 � a2000

100
� 1be�kt

�
2000

1 � 19e�kt

P0 � P(0) � 100L � 2000

P(t) �
L

1 � a L

P0
� 1be�kt

t

t

10

2000

0

FIGURE 8
The graph of P(t) �

2000

1 � 19e�0.9985t
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1. Consider the logistic differential equation .

a. What does represent? What does represent?
b. Write two constant solutions of the equation, and explain

their meaning.
c. What can you say about the rate of change of the popula-

tion if the initial population is greater than ? If it is
greater than zero but less than ? Interpret your answers.L

L

Lk

dP

dt
� kPa1 �

P

L
b 2. a. Verify by direct computation that

is a solution of the initial-value problem

b. Describe the solution of the logistic differential equation
of part (a) with the aid of a graph. Assume that .P0 � 0

P(0) � P0
dP

dt
� kPa1 �

P

L
b

P(t) �
L

1 � a L

P0
� 1be�kt

8.3 CONCEPT QUESTIONS

Videos for selected exercises are available online at www.academic.cengage.com/login.V

In Exercises 1–4, a logistic differential equation describing pop-
ulation growth is given. Use the equation to find (a) the growth
constant and (b) the carrying capacity of the environment.

1.

2.

3.

4.

5. A direction field of a logistic differential equation describing
population growth is shown in the figure.

a. What is the carrying capacity of the environment?
b. What are the constant solutions?
c. Sketch the solution curve with an initial population of 200.
d. Sketch the solution curve with an initial population of 100.
e. Sketch the solution curve with an initial population of 10.

t

P

10080 120 140 160604020

150

50

100

200

150,000 
dP

dt
� 3P(2000 � P)

dP

dt
� Pa0.5 �

P

1000
b

dP

dt
� 0.03P � 0.000006P2

dP

dt
� 0.02Pa1 �

P

1000
b

6. A direction field of a modified logistic differential equation
describing population growth is shown in the figure.

a. What is the carrying capacity of the environment?
b. What are the constant solutions?
c. Sketch the solution curve with an initial population 

of 120.
d. Sketch the solution curve with an initial population 

of 60.
e. Sketch the solution curve with an initial population 

of 10.

In Exercises 7 and 8, use the given logistic equation to find 
(a) the growth constant, (b) the carrying capacity of the en-
vironment, and (c) the initial population.

7.

8. P(t) �
100e0.2t

e0.2t � 19

P(t) �
8000

2 � 798e�0.02t

t

P

10080 120 140 160604020

150

50

25

75

125

175

100

200

8.3 EXERCISES
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9. Consider the logistic differential equation .

a. Show that grows most rapidly when .
b. Show that grows most rapidly at time

where is the initial population.

10. Spread of an Epidemic During a flu epidemic the number of
children in the Woodbridge Community School System who
contracted influenza after days was given by

a. How many children were stricken by the flu after the first
day?

b. How many children had the flu after 10 days?
c. How many children eventually contracted the disease?

11. Lay Teachers at Roman Catholic Schools The change from reli-
gious to lay teachers at Roman Catholic schools has been
partly attributed to the decline in the number of women and
men entering religious orders. The percentage of teachers
who are lay teachers is given by

where is measured in decades, with corresponding to
the beginning of 1960.
a. What percentage of teachers were lay teachers at the

beginning of 1990?
b. Find the year when the percentage of lay teachers was

increasing most rapidly.
Source: National Catholic Education Association and the Depart-
ment of Education.

12. People Living with HIV On the basis of data compiled by the
World Health Organization, it is estimated that the number
of people living with HIV worldwide from 1985 through
2006 is

where is measured in millions and in years with 
corresponding to the beginning of 1985.
a. How many people were living with HIV worldwide at

the beginning of 1985? At the beginning of 2005?
b. Assuming that the trend continued, how many people

were living with HIV worldwide at the beginning of
2008?

Source: World Health Organization.

13. Growth of a Fruit Fly Population Initially, there were 10 fruit
flies (Drosophila melanogaster) in an experiment. Because

t � 0tN(t)

0 
 t 
 21N(t) �
39.88

1 � 18.94e�0.2957t

t � 0t

0 
 t 
 4f(t) �
98

1 � 2.77e�t

Q(t) �
1000

1 � 199e�0.8t

t

P0

T �

ln a L

P0
� 1b

k

P(t)
P � L>2P(t)

dP

dt
� kPa1 �

P

L
b of a limit to be placed on the amount of food available, the

maximum population of fruit flies was estimated to be 100.
a. Suppose that the pattern of growth followed the logistic

curve and that the population was 34 after 30 days. Find
an expression for the fruit fly population days after the
start of the experiment.

b. How long did it take the population to reach 80?

14. Rate of Growth for a Plant The rate of growth of a certain type
of plant is described by a logistic differential equation.
Botanists have estimated the maximum theoretical height of
such plants to be 30 in. At the beginning of an experiment,
the height of a plant was 5 in., and the plant grew to 12 in.
after 20 days.
a. Find an expression for the height of the plant after 

days.
b. What was the height of the plant after 30 days?
c. How long did it take for the plant to reach 80% of its

maximum theoretical height?

15. Logistic Growth Function Consider the logistic growth function

Suppose that the population is when and when
. Show that the value of is

16. Logistic Growth Function The carrying capacity of a colony of
fruit flies (Drosophila melanogaster) is 600. The population
of fruit flies after 14 days is 76, and the population after 
21 days is 167. What is the value of the growth constant ?
Hint: Use the result of Exercise 15.

17. Rate of Growth of a Fish Population Let denote the popula-
tion of a certain species of fish in a lake, where is meas-
ured in weeks. Then can be described by the modified
logistic differential equation

where is the growth rate, is the carrying capacity of the
environment, and is the constant rate at which fish are
being removed because of fishing. Suppose that ,

, and .
a. Draw a direction field for the resulting differential 

equation.
b. Use the direction field that was obtained in part (a) to

find the equilibrium solutions. Verify your results alge-
braically.

c. Sketch the solution curves for the solutions with initial
populations of 100, 300, and 700, and describe what hap-
pens to the fish population in each case.

c � 30L � 800
k � 0.2

c
Lk

dP

dt
� kPa1 �

P

L
b � c

P
t

P(t)

k

k �
1

t2 � t1
ln cP2(L � P1)

P1(L � P2)
d

kt � t2

P2t � t1P1

P(t) �
L

1 � a L

P0
� 1be�kt

t

t
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18. Gompertz Growth Curves The Gompertz differential equation,
a model for restricted population growth, is obtained by
modifying the logistic differential equation and is given by

where is a constant and is the carrying capacity of the
environment.
a. Find the equilibrium solution of the differential 

equation.
b. Illustrate graphically the solutions of the equation 

with initial conditions , where (i) ,
(ii) , and (iii) .

19. Gompertz Growth Curves Refer to Exercise 18. Consider the
Gompertz differential equation with and .
a. Draw a direction field for the differential equation.
b. Identify the equilibrium solution.
c. Plot the solution curve with initial conditions

and .

20. Gompertz Growth Curves Refer to Exercises 18 and 19. 
Consider the Gompertz differential equation

where is a positive constant and is the carrying capacity
of the environment.
a. Solve the differential equation.
b. Find .
c. Show that is increasing most rapidly when .
d. Show that is increasing most rapidly when 

21. A Goldfish Population Refer to Exercise 20. A population of 
20 goldfish was introduced into a pond that has an estimated
carrying capacity of 200 fish. After 1 month, the population

t �

ln ln a L

P0
b

c

P(t)
P � L>eP(t)

limt→� P(t)

Lc

dP

dt
� cP ln aL

P
b

P(0) � 100P(0) � 1200

c � 0.02L � 1000

0 � P0 � LP0 � L
P0 � LP(0) � P0

Lc

dP

dt
� cP ln aL

P
b

of goldfish had grown to 80. If the pattern of growth of the
population followed the Gompertz curve, how many goldfish
were in the pond after 3 months?

22. Cyclical Models Some populations are subject to seasonal fluc-
tuations. The population in a vacation resort serves as one
example. A model for describing such situations is the dif-
ferential equation

where is a constant and is measured in months.
a. Find the solution of the differential equation subject to

.
b. Let , and plot the graphs of for , 500,

and 600.
c. What happens to for large values of ?

In Exercises 23–26, determine whether the statement is true or
false. If it is true, explain why. If it is false, explain why or give
an example that shows it is false.

23. If is the solution of the initial-value problem 

, , then is 

decreasing on the interval .

24. If is the solution of the initial-value problem 

, , then is 

increasing on the interval .

25. If is the solution of the initial-value problem 

, , then the graph 

of has an inflection point.

26. If is the solution of the initial-value problem 

, , then

.limt→� P(t) � 1000

P(0) � 1000P¿ � 0.02Pa1 �
P

1000
b

P

P

P(0) � 10P¿ � 0.5Pa1 �
P

50
b

P

(0, �)

P(t)P(0) � 0P¿ � 0.3Pa1 �
P

20
b

P

(0, �)

P(t)P(0) � 150P¿ � 0.2Pa1 �
P

100
b

P

tP(t)

P0 � 400Pk � 0.2
P(0) � P0

tk

dP

dt
� (k cos t)P

8.4 First-Order Linear Differential Equations

We now consider another class of first-order differential equations. A first-order 
linear differential equation is one that can be written in the form

(1)

where and are continuous functions of on a given interval. The equation is so
named because it is linear in the unknown function and its derivative. A linear equa-
tion written in the form of Equation (1) is said to be in standard form. For example,
the differential equation

x 
dy

dx
� y � x3 � 0

xQP

dy

dx
� P(x)y � Q(x)
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is a linear equation, since it is linear in both and . By dividing through by 
and rearranging terms, we obtain the equation in standard form, namely,

Here, and . On the other hand, the equations

and

are not linear because of the nonlinear term in the first equation and the non-
linear term in the second equation.

Method of Solution
First-order linear differential equations can be solved by multiplying both sides of the
equation

by a suitable function that transforms the equation into one that can be solved
by integration. To find , let’s consider the equation that is obtained by putting

. The resulting equation

(2)

is called a homogeneous linear equation. Observe that Equation (2) is a separable equa-
tion and, therefore, can be solved using the method of separation of variables. We find

(3)

The solution of the homogeneous equation associated with Equation (1) points the way
to solving the nonhomogeneous equation (1) itself. We rewrite Equation (3) in the form

Let’s differentiate this last equation using the Fundamental Theorem of Calculus, Part 1.
Thus,

Use the Fundamental
Theorem of Calculus,
Part 1.

 
dy

dx
 e� x P(t) dt � ye� x P(t) dt � P(x) � 0

Use the Product Rule
and the Chain Rule.

 
dy

dx
 e� x P(t) dt � ye� x P(t) dt �

d

dx
 �

x

P(t) dt � 0

Rewrite the integral
using the dummy
variable t.*

 
d

dx
 cye� x P(t) dtd �

d

dx
 (C)

ye� P(x) dx � C

C � �eC1 y � Ce�� P(x) dx

 �y � � eC1e�� P(x) dx

 ln �y � � ��P(x) dx � C1

 � dy

y
� ��P(x) dx

dy

dx
� P(x)y � 0

Q(x) � 0
u(x)

u(x)

dy

dx
� P(x)y � Q(x)

cos y
y(dy>dx)

dy

dx
� 2 cos y � x3y 

dy

dx
� 2y � ex

Q(x) � x2P(x) � �
1
x

dy

dx
�

1
x

 y � x2

xdy>dxy

*Henceforth, we will usually write in the form to conform with the more standard practice.e� P(x) dxe� x P(t) dt



Solving a First-Order Linear Differential Equation

1. Rewrite the equation in standard form if necessary.

2. Find an integrating factor .

3. Multiply both sides of the equation by . The result-
ing equation can be written in the form

Unknown Integrating
function factor

which can then be integrated.

d

dx
 (yu) � uQ

u(x)y¿ � P(x)y � Q(x)

u(x) � e� P(x) dx

y¿ � P(x)y � Q(x)
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or

Observe that the expression within the square brackets is just the expression on the
left-hand side of Equation (1). This suggests that by multiplying both sides of Equa-
tion (1) by , we have

which in turn can be written in the form

(4)

The expression on the left of Equation (4) is easily integrated because it is the deriv-
ative of a function. Since the function on the right does not involve the unknown func-
tion, it can also be integrated. Thus, the function that we are seeking is

This function is called an integrating factor because multiplying Equation (1) by ,
as we have just seen, enables us to solve the problem by integration. Before looking
at an example, let’s summarize the steps in solving a linear differential equation.

u

u(x) � e� P(x) dx

u

d

dx
 cye� P(x) dxd � e� P(x) dxQ(x)

e� P(x) dxcdy

dx
� P(x)yd � e� P(x) dxQ(x)

e� P(x) dx

e� x P(t) dtcdy

dx
� P(x)yd � 0

EXAMPLE 1 Solve the equation , where .

Solution

Step 1 We rewrite the equation in standard form

(5)

and identify and 
Step 2 We find

u(x) � e� P(x) dx � e�� (1>x) dx � e�ln x � eln x�1
�

1
x

Q(x) � x2P(x) � �1>x

dy

dx
�

1
x

 y � x2

x � 0x 
dy

dx
� y � x3 � 0
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Step 3 Multiplying both sides of Equation (5) by , we obtain

which can be written in the form

Integrating Unknown
factor function

Integrating both sides with respect to , we obtain

so .

Note If we integrate Equation (4), we can obtain a formula for the solution to the
problem. Thus,

or

But it is preferable to use the method of solution just described.

y � e�� x P(t) dt�
x

e�u P(t) dtQ(u) du � Ce�� x P(t) dt

ye� x P(t) dt � �
x

e�u P(t) dtQ(u) du � C

y � 1
2 x3 � Cx

1
x

 y � � x dx �
1

2
 x2 � C

x

d

dx
 c1

x
 yd � x

1
x

 
dy

dx
�

1

x2
 y � x

u(x) � 1>x

JACOB BERNOULLI
(1654–1705)

Going against his father’s wish that he
enter the ministry, Jacob Bernoulli followed
his personal interests and studied mathe-
matics and astronomy. He eventually
founded a school for science and mathe-
matics, where he lectured on mathematics
and mechanics and carried out experi-
ments in physics. He was the first in his
mathematically talented family to pursue a
career in mathematics. He was followed by
his younger brother Johann and three of
Johann’s sons. Jacob’s own two children
did not pursue careers in mathematics or
the sciences. In 1687, Jacob Bernoulli was
named professor of mathematics at the
University of Basel, a seat that he held
until his death in 1705. He was among the
first mathematicians of his time to fully
understand the newly developing calculus.
One of his many contributions to mathe-
matics was a method to solve differential
equations of the form ,
a type of differential equation that is now
known as Bernoulli’s differential equation
(see Exercise 23 in this section). Bernoulli
also made important contributions to the
theory of probability and to the study of
mechanics.

y¿ � P(x)y � Q(x)yn

Historical Biography
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ie
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EXAMPLE 2 Solve the initial-value problem

Solution First, we rewrite the differential equation in standard form by dividing both
sides by , obtaining

(6)

An integrating factor is

Multiplying both sides of Equation (6) by gives

which can be rewritten in the form

d

dx
 (x3y) � xe�x2

x3y¿ � 3x2y � xe�x2

x3

u(x) � e� (3>x) dx � e3 ln x � eln x3
� x3

y¿ �
3
x

 y �
e�x2

x2

x2

e x2y¿ � 3xy � e�x2  x � 0

y(1) � 0



716 Chapter 8 Differential Equations

EXAMPLE 3 Mixture Problem A tank initially contains 400 gal of water in which
50 lb of salt has been dissolved. Brine containing 2 lb of salt per gallon enters the tank
at the rate of 3 gal/min. The well-stirred solution drains from the tank at the rate of
5 gal/min. How much salt is in the tank after 30 min? (See Figure 1.)

Solution Let denote the amount of salt in the tank (in pounds) at time (in min-
utes). Then the rate of change of the amount of salt at time is

But the volume of brine at time is given by

So the rate of salt exiting is

Therefore,

dy

dt
� 6 �

5y

400 � 2t

400 � 2t � 0
y

400 � 2t
� 5 �

5y

400 � 2t

 � 400 � (3 � 5)t � 400 � 2t

 � (initial volume) � (rate of flow in minus rate of flow out)t

(initial volume) � (net change in volume)

t

 � a amount of salt in the tank at time t

volume of brine in the tank at time t
b � (rate of flow out)

 rate of salt exiting � (concentration of brine in tank) � (rate of flow out)

lb

gal
�

gal

min
�

lb

min
 � (2)(3) � 6 lb/min

 rate of salt entering � (concentration of brine entering) � (rate of flow in)

dy

dt
� (rate of salt entering) � (rate of salt exiting)

t
ty(t)

FIGURE 1

Integrating both sides with respect to yields

Since , we have

or

Therefore, the required solution is

Our first application of first-order linear differential equations is a mixture problem.

y � �
e�x2

2x3
�

1

2ex3

C �
1

2e
�

e�1

2
� C � 0

y(1) � 0

 y � �
e�x2

2x3
�

C

x3

 x3y � � xe�x2
dx � �

1

2
 e�x2

� C

x
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The condition that there are 50 lb of salt in the tank initially translates into the initial
condition . The mathematical formulation has led to the initial-value problem

To solve the first-order linear differential equation, we first write it in standard form

(7)

and identify . An integrating factor is

Multiplying both sides of Equation (7) by , we obtain

which we can write as

Integrating both sides with respect to yields

or

To determine the value of , we use the initial condition when , giving

or

Therefore,

The amount of salt in the tank after 30 min is given by

or approximately 180 lb.

First-order linear differential equations also arise in the analysis of electrical cir-
cuits. For example, suppose that we are given an electric circuit consisting of a battery

y(30) � 4(200 � 30) �
750

4005>2 (400 � 60)5>2 � 180.42

y � 4(200 � t) �
750

4005>2 (400 � 2t)5>2

 C � �
750

4005>2

 4(200) � C(400)5>2 � 50

t � 0y � 50C

 y � 4(200 � t) � C(400 � 2t)5>2

 � 6a�1

2
b a�2

3
b (400 � 2t)�3>2 � C

 (400 � 2t)�5>2y � 6� (400 � 2t)�5>2 dt

t

d

dt
 [(400 � 2t)�5>2y] � 6(400 � 2t)�5>2

(400 � 2t)�5>2 dy

dt
� (400 � 2t)�5>2a 5

400 � 2t
by � 6(400 � 2t)�5>2

u(t)

u(t) � e� [5>(400�2t)] dt � e�(5>2)ln(400�2t) � (400 � 2t)�5>2
P(t) � 5>(400 � 2t)

dy

dt
�

5

400 � 2t
 y � 6

•
dy

dt
� 6 �

5y

400 � 2t
  0 
 t � 200

y(0) � 50

y(0) � 50
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or generator having an electromotive force (emf) of volts in series with a resistor
having a resistance of ohms and an inductor having an inductance of henries. (See
Figure 2.) According to Kirchhoff’s Second Law, the emf that is supplied is equal
to the voltage drop across the inductor plus the voltage drop across the resis-
tor , where is the current in amperes at time . Thus, the differential equation
for the circuit is a first-order linear equation

(8)L 
dI

dt
� RI � E

tI(t)(RI)
(L dI>dt)

(E)
LR

E(t)

FIGURE 2
A single-loop series circuit

EXAMPLE 4 Electric Circuits A 12-volt battery is connected in series with a 10-ohm
resistor and an inductor of 2 henries. If the switch is closed at time , determine
(a) the current at time , (b) the current second after the switch is closed, and (c) the
current after a long time.

Solution
a. We put , , and in Equation (8) and let to obtain the

initial-value problem

Rewriting the first-order linear equation in standard form, we obtain

An integrating factor for this equation is

Multiplying the differential equation by gives

Since , we have , or . Therefore,

b. The current second after the switch is closed is given by

or approximately 0.5 amp.

I a 1

10
b �

6

5
 (1 � e�5>10) � 0.47

1
10

I(t) �
6

5
 (1 � e�5t)

C � �6
5

6
5 � C � 0I(0) � 0

 I(t) �
6

5
� Ce�5t

 e5tI � �6e5tdt �
6

5
 e5t � C

 
d

dt
 (e5tI) � 6e5t

 e5t 
dI

dt
� 5e5tI � 6e5t

u(t)

u(t) � e� 5 dt � e5t

dI

dt
� 5I � 6

•2 
dI

dt
� 10I � 12

I(0) � 0

I(0) � 0E � 12R � 10L � 2

1
10t

t � 0

Switch

E(t) I(t)

R L

�

�



8.4 First-Order Linear Differential Equations 719

c. The current after a long time (called the steady-state current) is given by

or 1.2 amp.

The graph of is shown in Figure 3.I

 �
6

5
� 0 �

6

5

 �
6

5
�

6

5
 lim
t→�

e�5t

 lim
t→�

I(t) � lim
t→�

 
6

5
 (1 � e�5t)

FIGURE 3
The current approaches the 

steady-state current as .t → �
I(t)

EXAMPLE 5 Electric Circuits Suppose that the battery in the circuit of Example 4
is replaced by a generator having an emf of volts. Find . What is the
maximum current in the circuit?

Solution The only difference between this problem and that of Example 4 is that
is replaced by . We have

or

We use the same integrating factor as before, obtaining

Since , we have or . Therefore,

To find the maximum current in the circuit, we set

I¿(t) � �
20

3
 e�2t �

50

3
 e�5t � 0

I(t) �
10

3
 e�2t �

10

3
 e�5t

C � �10
3

10
3 � C � 0I(0) � 0

 I(t) �
10

3
 e�2t � Ce�5t

 e5tI � �10e3t dt �
10

3
 e3t � C

 
d

dt
 (e5tI) � 10e3t

 e5t 
dI

dt
� 5e5tI � e5t � 10e�2t � 10e3t

dI

dt
� 5I � 10e�2t2 

dI

dt
� 10I � 20e�2t

E � 20e�2tE � 12

I(t)E(t) � 20e�2t

t (sec)

I �

1
2

6
5

0

I (amp)
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obtaining

This is the only critical value of on the interval . Since and

we see that the maximum current occurs at and has a value of approximately

that is, approximately 1.1 amp. The graph of is shown in Figure 4.I

 I(0.3054) �
10

3
 e�2(0.3054) �

10

3
 e�5(0.3054) � 1.09

t � 0.3054

lim
t→�

I(t) � lim
t→�
a10

3
 e�2t �

10

3
 e�5tb � 0

I(0) � 0[0, �)I

 t �
1

3
ln 

5

2
� 0.3054

 3t � ln 
5

2

 ln e3t � ln 
5

2

 e3t �
50

20

 
20

3
 e�2t �

50

3
 e�5t

FIGURE 4

The graph of I(t) �
10

3
 e�2t �

10

3
 e�5t

t (sec)

I(t) (amp)

0

1.09

0.3

FIGURE 5
The positive direction is downward.

x

t � 0

t

Our final example looks at an application of first-order linear differential equations
to the motion of an object. Suppose that an object of constant mass falls vertically
downward under the influence of gravity. If we assume that air resistance is propor-
tional to the speed of the object at any instant during the fall, then according to New-
ton’s second law of motion, , where is the net force acting on
the object in the positive (downward) direction. (See Figure 5.) But is given by the
weight of the object (acting downward) minus the air resistance (acting upward),
where is the constant of proportionality; that is, . Therefore, the
equation of motion is

(9)m 
d√
dt

� mt � k√

F � mt � k√k � 0
k√mt

F
FF � ma � m(d√>dt)

m
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EXAMPLE 6 Parachute Jump A paratrooper and his equipment have a combined
weight of 192 lb. At the instant that the parachute is deployed, he is traveling verti-
cally downward at a speed of 30 ft/sec. Assume that air resistance is proportional to
the instantaneous velocity with constant of proportionality .

a. Determine the velocity and position of the paratrooper at any time.
b. Find his limiting velocity by evaluating .

Solution
a. Here, , or 6 slugs. Therefore, using Equation (9) we have the equation of

motion

or

At , , so we have the initial-value problem

An integrating factor for this equation is

Multiplying the differential equation by gives

Since , we have , or . Therefore,

The position of the paratrooper at time is

Since , we have , or . Therefore,

(See Figure 6 on the following page.)
b. The paratrooper’s limiting (terminal) velocity is

or 48 ft/sec. (See Figure 7 on the following page.)

lim
t→�

√(t) � lim
t→�

(48 � 18e�(2>3)t) � 48 � lim
t→�

18e�(2>3)t � 48

x(t) � 48t � 27e�(2>3)t � 27

C1 � �2727 � C1 � 0x(0) � 0

x(t) � � √(t) dt � � (48 � 18e�(2>3)t) dt � 48t � 27e�(2>3)t � C1

t

√(t) � 48 � 18e�(2>3)t

C � �18√(0) � 48 � C � 30√(0) � 30

 √(t) � 48 � Ce�(2>3)t

 e(2>3)t√ � 32� e(2>3)t dt � 48e(2>3)t � C

 
d

dt
 (e(2>3)t√) � 32e(2>3)t

 e(2>3)t 
d√
dt

�
2

3
 e(2>3)t√ � 32e(2>3)t

u(t)

u(t) � e� (2>3) dt � e(2>3)t

•
d√
dt

�
2

3
 √ � 32

√(0) � 30

√ � 30t � 0

d√
dt

� 32 �
2

3
 √6 

d√
dt

� 192 � 4√

m � 192
32

limt→� √(t)

k � 4
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FIGURE 6
The position of the paratrooper at time t

FIGURE 7
The velocity of the paratrooper at time t

1. a. Write a first-order linear differential equation in standard
form.

b. Is the differential equation ,
where , a first-order linear differential equation?a0(x) � 0

a0(x)y¿ � a1(x)y � t(x)

2. a. What is an integrating factor for a first-order linear dif-
ferential equation?

b. Describe a method for solving a first-order linear differ-
ential equation.

8.4 CONCEPT QUESTIONS

In Exercises 1–4, determine whether the differential equation is
linear.

1. 2.

3.

4.

In Exercises 5–16, solve the differential equation.

5. 6.

7. 8.

9. 10.

11. 12.
Hint: Consider .

13. ,

14.

15.

16.

Hint: Consider .x � f(y)

dy

dx
�

y

x � y3

xy¿ � (2x � 1)y � xe�2x

xy¿ � (1 � x)y � e�x(1 � cos 2x)

t � �1(t � 1) 
dy

dt
� y � t

x � f(y)
(cos y � xey) dy � ey dxxy¿ � y � 2x(ln x)2

dy

dx
� y cot x � cos x

dy

dx
�

2y

x
� x2 cos 3x

y sin x � y¿ cos x � 1xy¿ � y � x3

x 
dy

dx
� 3y � 2

dy

dx
� 2y � e2x

y2 
dx

dy
� 3x � tan y

y cos y �
1
x

 
dy

dx
� ln x � 0

x2y¿ � exy � 4
dy

dx
� xy2 � cos x

In Exercises 17–22, solve the initial-value problem.

17. ,

18. ,

19. ,

20. ,

21. ,

22. ,

23. The equation

where is a constant, is called Bernoulli’s differential 
equation.
a. Show that the Bernoulli equation reduces to a linear

equation if or 1.
b. Show that if or 1, then changing the dependent

variable from to using the transformation 
reduces the Bernoulli equation to the linear equation

d√
dx

� (1 � n)P(x)√ � (1 � n)Q(x)

√ � y1�n√y
n � 0

n � 0

n

dy

dx
� P(x)y � Q(x)yn

y(0) �
1

2
(1 � ex) 

dy

dx
� exy � sin x

y(1) �
1

2
x(x � 1)y¿ � xy � ln x

r(1) � 1
dr

du
� u �

r

3u

y(0) � 1
dy

dx
� 2xy � x

y(1) � 5xy¿ � 3y � x4

y(0) � �1
dy

dx
� y � 1

8.4 EXERCISES

Videos for selected exercises are available online at www.academic.cengage.com/login.V
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24. Use the method of Exercise 23 to solve .

25. Use the method of Exercise 23 to solve the initial-value
problem

26. a. Show that the differential equation

can be solved by using the transformation .
b. Use the result of part (a) to solve .

27. The slope of the tangent line to the graph of a function
at the point is . If the graph passes

through the point , find .

28. Mixture Problem A tank initially holds 16 gal of water in which
4 lb of salt has been dissolved. Brine that contains 6 lb of salt
per gallon enters the tank at the rate of 2 gal/min, and the
well-stirred mixture leaves at the same rate.
a. Find a function that gives the amount of salt in the tank

at time .
b. Find the amount of salt in the tank after 5 min.
c. How much salt is in the tank after a long time?

29. Mixture Problem A tank initially holds 30 gal of pure water.
Brine that contains 3 lb of salt per gallon enters the tank at
the rate of 2 gal/min, and the well-stirred mixture leaves at
the same rate.
a. How much salt is in the tank at any time ?
b. When will the tank hold 80 lb of salt?

30. Mixture Problem A tank initially holds 10 gal of water in which
2 lb of salt has been dissolved. Brine containing 1.5 lb of salt
per gallon enters the tank at the rate of 2 gal/min, and the
well-stirred mixture leaves at the rate of 3 gal/min.
a. Find the amount of salt in the tank at time .
b. Find the amount of salt in the tank after 10 min.
c. Plot the graph of .
d. At what time is the amount of salt in the tank greatest?

How much salt is in the tank at that time?

31. Mixture Problem A tank initially holds 40 gal of pure water.
Brine that contains 2 lb of salt per gallon enters the tank at
the rate of 1.5 gal/min, and the well-stirred mixture leaves 
at the rate of 2 gal/min.
a. Find the amount of salt in the tank at time .
b. Find the amount of salt in the tank after 20 min.
c. Find the amount of salt when the tank holds 20 gal of

brine.
d. Find the maximum amount of salt present.

32. Electric Circuit A 24-volt battery is connected in series with a
20-ohm resistor and an inductor of 4 henries. If the switch 
is closed at time , determine (a) the current at time ,
(b) the current after 0.2 sec, and (c) the current after a long
time.

tt � 0

t

y

ty(t)

t

t

f(1, 1)
1 � y>x(x, y)y � f(x)

xy¿ � 2x2y � y ln y
y � e√

dy

dx
� P(x)y � Q(x)y ln y

y(1) � 13x2y¿ � 2xy � 4y3

y¿ � y � xy2 33. Electric Circuit The figure shows an electric circuit consisting
of a battery or generator of volts in series with a resistor
of ohms and a capacitor of farads. The voltage drop
across the capacitor is where is the charge (in
coulombs), so by Kirchhoff’s Second Law,

But , so we have the differential equation

Suppose that a circuit consists of a battery having a constant
emf of 12 volts in series with a resistor of 10 ohms and a
capacitor of 0.02 farad. The charge on the capacitor at 
is 0.05 coulomb. Find the charge and the current at time 
after the switch is closed.

34. Electric Circuit Suppose that the battery in the electric circuit
of Exercise 33 is replaced by a generator having an emf of

volts. If the charge in the capacitor
is 0 coulomb at , find the maximum charge on the
capacitor.

35. Falling Weight An 8-lb weight is dropped from rest from a
cliff. Assume that air resistance is equal to the weight’s
instantaneous velocity.
a. Find the velocity of the weight at time .
b. What is the velocity of the weight after 1 sec?
c. How long does it take for the weight to reach a speed of

4 ft/sec?

36. Parachute Jump A skydiver and his equipment have a com-
bined weight of 192 lb. At the instant that his parachute is
deployed, he is traveling vertically downward at a speed of
112 ft/sec. Assume that air resistance is proportional to the
instantaneous velocity with a constant of proportionality of

. Determine the position and velocity of the skydiver
sec after his parachute is deployed. What is his limiting

velocity?

37. Sinking Boat As a boat weighing 1000 lb sinks in water from
rest, it is acted upon by a buoyant force of 200 lb and a
force of water resistance in pounds that is numerically 
equal to , where is in feet per second. Find the dis-
tance traveled by the boat after 4 sec. What is its limiting
velocity?

38. An object of mass is thrown vertically upward with an
initial velocity of . Air resistance is proportional to its√0

m

√100√

t
k � 12

t

t � 0
E(t) � 30e�2t � 10e�6t

t
t � 0

R 
dQ

dt
�

1

C
 Q � E

I � dQ>dt

E R

C

RI �
1

C
 Q � E

QQ>C CR
E
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instantaneous velocity with constant of proportionality .
Show that the maximum height attained by the object is

39. Electric Circuit An electromotive force of volts,
where and are constants, is applied to a series circuit
consisting of a resistor of constant resistance ohms and an
inductor of constant inductance henries. If we use Ohm’s
Law, the current , where is time in seconds, satisfies the
first-order linear differential equation

If the current is 0 ampere initially, find an expression for
the current at any time .

40. Market Equilibrium The quantity demanded of a certain com-
modity, , is related to its unit price , in dollars, by
the demand equation , where 
denotes time. The quantity of the commodity made available
by the supplier, , is related to the unit price , in dol-
lars, by the supply equation .
Both and are measured in units of a thousand. 
Market equilibrium prevails when the demand is equal 
to the supply.
a. If market equilibrium prevails, find the equilibrium price at

time if the price of the commodity is 10 dollars at .
b. What happens to the price as ?

Note: If exists, we say that there is price stability.limt→� p(t)
t → �

t � 0t

s(t)d(t)
s(t) � 22 � 2p(t) � 3p¿(t)

p(t)s(t)

td(t) � 40 � p(t) � 2p¿(t)
p(t)d(t)

E

R

C

t
I

L 
dI

dt
� RI � E0 cos vt

tI(t)
L

R
vE0

E0 cos vt

m√0

k
�

m2
t

k2 lna1 �
k√0

mt
b

k 41. Suppose that is a solution of and is
a solution of . Show that is a
solution of for all constants 
and .

42. a. Find the general solution of

and

b. Use the result of Exercise 41 to write down the general
solution of

In Exercises 43–47, determine whether the statement is true or
false. If it is true, explain why it is true. If it is false, explain why
or give an example to show why it is false.

43. is a first-order linear differential 

equation.

44. A first-order differential equation can be both separable and
linear.

45. An integrating factor for the equation 

is .

46. If is a solution of the homogeneous equation 
associated with the nonhomogeneous equation 
and is a solution of the nonhomogeneous equation, then

is a solution of the nonhomogeneous equation,
where is any constant.

47. The function is a solution of
the differential equation .y¿ � y � sin x

f(x) � 2ex � 1
2 (cos x � sin x)

c
y � cy1 � y2

y2

y¿ � Py � f
y¿ � Py � 0y1

e� [a1(x)>a0(x)] dx

a0(x)y¿ � a1(x)y � f(x)

y2 
dx

dy
� eyx � y cos y

y¿ �
2
x

 y �
2ex

x
�

3e�x

x

y¿ �
2
x

 y �
e�x

x
y¿ �

2
x

 y �
ex

x

c2

c1y¿ � P(x)y � c1 f(x) � c2t(x)
c1y1 � c2y2y¿ � P(x)y � t(x)

y2y¿ � P(x)y � f(x)y1

In Exercises 1–8, fill in the blanks.

1. a. A differential equation is one that involves the 
or of a(n) function.

b. The order of a differential equation is the order of the
derivative that occurs in the equation.

2. a. A solution of the differential equation is
a function defined on an interval 
such that satisfies the on .

b. Graphically, the general solution of a differential 
equation represents a family of called the

or of the differential
equation.

Iy
Iy � y(x)

dy>dx � f(x, y)

CONCEPT REVIEW

CHAPTER 8 REVIEW
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3. A first-order separable differential equation is one that can
be written in the form ; the differential
equation is .

4. a. The initial-value problem , has the
unique solution .

b. The initial-value problem in part (a) is a model for expo-
nential growth or decay; it is an exponential growth
model if and is an exponential decay model
if .

5. a. A lineal element is a small portion of the 
at a point on a solution curve of the 

differential equation .
b. A set of lineal elements drawn at various points is called

a field or field of the differential
equation.

y¿ � f(x, y)
(a, b)

k
k

y �
y(0) � y0dy>dt � ky

G(x) dx � H(y) dy � 0
dy>dx �

6. a. The logistic differential equation has the form .
b. The solution of the logistic differential equation with ini-

tial condition is .
c. If , the population stays at at all

times; if , then the population and
the limiting value asymptotically; 

if , the population at any time later remains at
; if then the population 

and approaches asymptotically.

7. a. A first-order linear differential equation is one that can
be written in the form .

b. An integrating factor for the first-order linear differential
equation in part (a) is .

8. To solve a first-order linear differential equation, (a) rewrite
the equation in form, (b) multiply both sides of
the resulting equation by the , then 
(c) both sides of the resulting equation.

P0 � L, 
P0 � L

0 � P0 � L
P(0) � 0

P(0) � P0

1. Determine whether is a solution of the
differential equation .

2. Determine whether is a solution of the 
initial-value problem , .

In Exercises 3–6, solve the differential equation.

3. 4.

5. 6.

In Exercises 7–10, solve the initial-value problem.

7. , 8. ,

9. , 10. ,

11. Find the equation of a curve given that it passes through the
point and that the slope of the tangent line to the 1p4 , 1 2

y(1) � 0
dy

dx
�

1 � x

eyy(0) � 2
dy

dx
� �

x

y

y(0) � 0
dy

dx
� 3y � 6y(0) �

1

2

dy

dx
� x2y3

x 
dy

dx
� y2 � 1

dy

dx
� ey�x

dy

dx
�

x

y2

dy

dx
� 2xy2

y(0) � 1y¿ � 3y � 6
y � �2 � 3e3t

(cos x)y¿ � (sin x)y � 1
y � C cos x � sin x

curve at any point is given by .

12. Find the orthogonal trajectories of the family of curves
given by . Use a graphing utility to draw several
members of each family on the same set of axes.

13. Bacteria Growth A certain culture of bacteria grows at a rate
that is proportional to the number present. If there are 1000
bacteria present initially and 4000 after 3 hr, find (a) an
expression giving the number of bacteria in the culture after

hr, (b) the number of bacteria in the culture after 6 hr, and
(c) the time it takes for the number of bacteria to reach
400,000.

t

y2 � x � C

dy>dx � 4(y2 � 1)P(x, y)

REVIEW EXERCISES

14. Radioactivity If 4 g of a radioactive substance is present at
time (years) and 1 g at , how much was present
initially? What is the half-life of the substance?

15. Radioactivity The radioactive element radium-226 has a half-
life of 1602 years. What is its decay constant?

16. Rate of Return A conglomerate purchased a hotel for $4.5
million and sold it five years later for $8.2 million. Find the
annual rate of return (compounded continuously).

17. Cost of Housing The Brennans are planning to buy a house 
4 years from now. Housing experts in their area have esti-
mated that the cost of a home will increase at a rate of 3%
per year compounded continuously over that 4-year period.
If their predictions are correct, how much can the Brennans
expect to pay for a house that currently costs $300,000?

18. Newton’s Law of Cooling Newton’s Law of Cooling (heating)
states that the rate at which the temperature of an object
changes is directly proportional to the difference in the tem-
perature of the object and that of the surrounding medium.
A thermometer is taken from the patio, where the tempera-
ture is 40°F, into a room where the temperature is 70°F.
After 1 min, the thermometer read 52°F. How long did it
take for the thermometer to reach 64°F?

19. Newton’s Law of Cooling Refer to Exercise 18. A cup of coffee
had a temperature of 200°F when it was removed from a
microwave oven and placed on a counter in a room that was
kept at a temperature of 70°F. The temperature of the coffee
was 180°F after 5 min.
a. What was the temperature of the coffee after 10 min?
b. How long did it take for the coffee to cool to 120°F?

t � 6t � 1
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20. A motorboat is traveling in calm water when its motor is
suddenly cut off. Ten seconds later, the boat’s speed is 
10 mph; and another 10 sec later, its speed is 4 mph. What
was its speed at the instant of time when the motor was cut
off if the resistance of the water is proportional to the speed
of the boat?

21. Future Value of an Annuity The future value of an annuity (a
stream of payments made continuously) satisfies the equa-
tion

where denotes the interest rate compounded continuously
and is a positive constant giving the rate at which pay-
ments are made into the account.
a. If the future value of an annuity at time is , find

an expression for the future value of the annuity at any
time .

b. If the future value of an annuity at is $10,000, the
interest rate is 6% compounded continuously, and a con-
stant stream of payments of $2000 per year are made
into the account, what is the future value of the annuity
after 5 years?

22. A direction field for the differential equation 
follows. Sketch the solution curves that satisfy the given ini-
tial conditions.
a.
b.
c.
d.

23. A direction field for the differential equation is
shown in the figure.
a. Sketch the solution curve for the initial-value problem

y(0) � 1y¿ � x2 � y

y¿ � x2 � y

x

y

0.5�0.5�1.0�1.5 1.0

1.0

0.5

�0.5

�1.0

�1.5

1.5

2.0

y(�1) � 1.4
y(0) � 1
y(0) � 0.4
y(�1) � �0.5

y¿ � y(1 � y)

t � 0
t

$S0t � 0

d
r

dS

dt
� rS � d

S

b. Use the graph of part (a) to estimate the value of when
.

24. Use Euler’s method with to estimate , where 
is the solution of the initial-value problem

25. Use Euler’s method with to estimate , where 
is the solution of the initial-value problem

26. Dissemination of Information Three hundred students attended
the dedication ceremony of a new building on a college
campus. The president of the college announced a new
expansion program that included plans to make the college
coeducational. The number of students who learned of the
new program hr later is given by the function

If 600 students on campus had heard about the new program
2 hr after the ceremony, how many students had heard about
the policy after 4 hr? How fast was the news spreading 4 hr
after the announcement?

In Exercises 27–30, solve the differential equation.

27. 28.

29. 30.

In Exercises 31–34, solve the initial-value problem.

31. ,

32. ,

33. ,

34. , y(1) � exy¿ � y � x2ex

yap
2
b � 0xy¿ � y � x2 cos x

y(0) � 0y¿ � y � 3x2ex

y(�1) � 23y¿ � y � 0

y 
dx

dy
� x � 2y

dy

dx
� y � e�x cos 2x

y¿ � 2xy � 3xxy¿ � 2y � 4x2

f(t) �
3000

1 � Be�kt

t

y(0) � 1y¿ � 2x2y

yy(0.5)n � 5

y(0) � 1y¿ � y2 � x

yy(0.6)n � 6

x

y

1.00.5�0.5�1.0�1.5 1.5 2.0

1.0

0.5

�0.5

�1.0

1.5

2.0

x � 1
y
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35. Trout Population Marine biologists released 400 trout into a
lake that has an estimated carrying capacity of 10,000. The
trout population after the first year was 1000. Suppose that
the pattern of growth of the trout population follows a logis-
tic curve.
a. Find an equation giving the trout population after years.
b. What was the trout population after 6 years?
c. How long did it take for the population to reach 8000?

t

36. Mixture Problem A tank initially holds 200 gal of water in
which 20 lb of salt has been dissolved. Brine containing 2 lb
of salt per gallon enters the tank at the rate of 2 gal/min.
The well-stirred solution drains from the tank at the rate of
3 gal/min. How much salt is in the tank after 20 min?

1. As a boat crosses the finish line in a regatta, the athlete
stops rowing and allows the boat to coast to a stop. Assum-
ing that the race takes place in a calm lake and that water
resistance to the boat is directly proportional to its velocity,
with constant of proportionality , and that the velocity of
the boat at the instant it crosses the finish line is , show
that the distance covered by the boat before it comes to a
stop is , where is the combined mass of the boat
and the athlete.
Hint: Find an expression for , the distance covered by the boat at
time after crossing the finish line, and evaluate .

2. A first-order homogeneous differential equation is one of the
form

a. Show that the substitution reduces a homoge-
neous equation to a separable equation in the variables 
and .

b. Solve .

3. Population Growth Consider the logistic function

giving the population at time (see Example 2 in Sec-
tion 8.3). Here, is the growth constant, is the carrying
capacity of the environment, and is the initial population.
Suppose that and , where and are
constants.
a. Show that

and L �
P1(P0P1 � 2P0P2 � P1P2)

P2
1 � P0P2

e�k �
P0(P2 � P1)

P2(P1 � P0)

P2P1P(2) � P2P(1) � P1

P0

Lk
t

P(t) �
L

1 � a L

P0
� 1be�kt

dy

dx
�

y � x

y � x

x
u

u � y>x

dy

dx
� f ay

x
b

limt→� s(t)t
s(t)

mm√0>k
√0

k

b. The following table gives the population of the United
States from the year 1900 through the year 2000.

CHALLENGE PROBLEMS

Year 1900 1910 1920 1930 1940 1950

Population
(millions)

76.21 92.23 106.02 123.20 132.16 151.33

Year 1960 1970 1980 1990 2000

Population
(millions)

179.32 203.30 226.54 248.71 281.42

By taking , and ,
find an expression giving the population of the United
States in year , where is measured in 50-year intervals
and corresponds to 1900.

c. Plot the graph of .
d. Use the result of part (b) or part (c) to estimate the popu-

lation of the United States in 2020.
Source: U.S. Census Bureau.

4. Find the orthogonal trajectories of the family of curves
. Sketch a few members of each family.

5. a. Suppose that and are two different solutions of

Show that

b. Use the result of part (a) to solve by
observing that is a solution.

c. Use the technique of Section 8.4 to verify the solution
that you obtained in part (b).

y � x
y¿ � xy � x2 � 1

y2 � y1(1 � Ce�� [Q(x)>y1(x)] dx )

dy

dx
� P(x)y � Q(x)

y2y1

x2 � y2 � 2ax

P(t)
t � 0

tt

P2 � 281.42P1 � 151.33, P0 � 76.21
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6. The differential equation

is called the Riccati equation. This equation occurs in elec-
tromagnetic theory and the study of optics. Suppose that one
solution, , of the Riccati equation is known.
a. Show that the substitution reduces the Ric-

cati equation to the first-order linear differential equation

b. Verify that is a solution of

Then use the result of part (a) to find the general solution.

7. Radioactive Decay A radioactive substance decays into
another substance at a rate that is proportional to theB

A

dy

dx
� y2 �

2

x2

y1 � 1>x

du

dx
� (2Py1 � Q)u � �P

y � y1 � 1>uy1(x)

dy

dx
� P(x)y2 � Q(x)y � R(x)

amount present at time . The new substance in turn
decays into yet another substance at a rate that is propor-
tional to the amount present at time . If the amount of sub-
stance present initially is and there is no substance 
present initially, show that the amount of substance pres-
ent at time is given by

where and are the decay constants for substance and
substance , respectively, and .

8. Show that the function defined by

satisfies the differential equation

y� � y �
1
x

f(x) �
1

2
 �

x

0
 
ex�t

t
 dt �

1

2
 �

x

0
 
et�x

t
dt

a � bB
Aba

B(t) �
aA0

b � a
(e�at � e�bt)

t
B

BA0A
t

C
Bt



IF WE ALLOW the number of terms of a sequence of real numbers to grow indefi-

nitely, we obtain an infinite sequence. Infinite sequences that are convergent are of

practical and theoretical interest. Indeed, it is the concept of a convergent sequence

that allows us to define the sum of an infinite series (a series that is obtained by

letting the number of terms of a series grow indefinitely). In this chapter we will see

how a special type of infinite series called a power series affords us yet another way

of representing a function. By representing a function in this manner, we are able to

solve problems that we might otherwise not be able to solve.

9 Infinite Sequences and Series

What percentage of the non-
farm workforce in a country

will be in the service industries
one decade from now? In this

chapter, we will see how a
Taylor polynomial can be used
to help answer this question. Ho
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9.1 Sequences

An idealized superball is dropped from a height of 1 m onto a flat surface. Suppose
that each time the ball hits the surface, it rebounds to two thirds of its previous height.
If we let denote the initial height of the ball, denote the maximum height attained
on the first rebound, denote the maximum height attained on the second rebound,
and so on, then we have

, , , ,

(See Figure 1.) This array of numbers, , , is an example of an infinite
sequence, or simply a sequence. If we define the function by and allow

to take on the positive integral values then we see that the
sequence , , may be viewed as the functional values of at these numbers.
Thus,

pf(n) � a2

3
bn�1

pf(3) �
4

9
f(2) �

2

3
f(1) � 1

fa3, p ,a2a1

n, p ,x � 1, 2, 3, p ,x
f(x) � 123 2 x�1f

a3, p ,a2a1

pa4 �
8

27
a3 �

4

9
a2 �

2

3
a1 � 1

a3

a2a1

FIGURE 1
The ball rebounds to two 

thirds of its previous height 
upon hitting the surface.

This discussion motivates the following definition.

DEFINITION Sequence

A sequence is a function whose domain is the set of positive integers. The
functional values , , , are the terms of the sequence, and the
term is called the th term of the sequence.nan

pana3, p ,a2a1

{an}

Notes
1. The sequence is also denoted by .
2. Sometimes it is convenient to begin a sequence with . In this case the sequence

is , and its terms are , , .an, pak�2, p ,ak�1ak{an}
�
n�k

ak

{an}
�
n�1{an}

EXAMPLE 1 List the terms of the sequence.

a. b. c. d. esin
np

3
f�

n�0
{(�1)n1n � 2}�

n�2e 1n

2n�1
fe n

n � 1
f

pana3a2a1

⏐
↓

⏐
↓

⏐
↓

⏐
↓

4
9

2
3

8
27

n

y (m)

0 1 2 3 4 5

1
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Solution

a. Here, . Thus,

, , ,

and we see that the given sequence can be written as

b.

c.

Notice that starts from 2 in this example. (See Note 2 on page 730.)

d.

Once again, refer to Note 2.

We can often determine the th term of a sequence by studying the first few terms
of the sequence and recognizing the pattern that emerges.

n

 � e0, 
13

2
, 
13

2
, 0, �

13

2
,�
13

2
, p , sin

np

3
, pf

 esin
np

3
f�

n�0
� esin 0, sin

p

3
, sin

2p

3
, sin

3p

3
, sin

4p

3
, sin

5p

3
, p , sin

np

3
, pf

n

 � {0, �11, 12, �13, p , (�1)n1n � 2, p}

 (�1)513, p , (�1)n1n � 2, p}

 {(�1)n1n � 2}�
n�2 � {(�1)210, (�1)311, (�1)412,

e 1n

2n�1
f � e11

20
, 
12

21
, 
13

22
, 
14

23
, p , 

1n

2n�1
, pf

e n

n � 1
f � e1

2
, 

2

3
, 

3

4
, 

4

5
, p , 

n

n � 1
, pf

pa3 � f(3) �
3

3 � 1
�

3

4
a2 � f(2) �

2

2 � 1
�

2

3
a1 � f(1) �

1

1 � 1
�

1

2

an � f(n) �
n

n � 1

EXAMPLE 2 Find an expression for the th term of each sequence.

a. b. c.

Solution
a. The terms of the sequence may be written in the form

, , , ,

from which we see that .

b. Here,

, , , ,

so .

c. Note that is equal to 1 if is an even integer and if is an odd integer.
Using this result, we obtain

, , , ,

We conclude that the th term is .an � (�1)n�1>nn

pa4 �
(�1)3

4
a3 �

(�1)2

3
a2 �

(�1)1

2
a1 �

(�1)0

1

r�1r(�1)r

an �
1

n3

pa4 �
1

43
a3 �

1

33
 a2 �

1

23
a1 �

1

13

an �
n � 1

1n

pa4 �
4 � 1

14
a3 �

3 � 1

13
a2 �

2 � 1

12
a1 �

1 � 1

11

e1, �
1

2
, 

1

3
, �

1

4
, pfe1, 

1

8
, 

1

27
, 

1

64
, pfe2, 

3

12
, 

4

13
, 

5

14
, pf

n
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Some sequences are defined recursively; that is, the sequence is defined by spec-
ifying the first term or the first few terms of the sequence and a rule for calculating
any other term of the sequence from the preceding term(s).

EXAMPLE 3 List the first five terms of the recursively defined sequence ,
, and for .

Solution The first two terms of the sequence are given as and . To find
the third term of the sequence, we put in the recursion formula to obtain

Next, putting and in succession in the recursive formula gives

and

Since a sequence is a function, we can draw its graph. The graphs of the sequences
and are shown in Figure 2. They are just the graphs of the func-

tions and for .n � 1, 2, 3, pt(n) � (�1)nf(n) � n>(n � 1)
{(�1)n}{n>(n � 1)}

a5 � 2a4 � a3 � 2 � 8 � 6 � 10a4 � 2a3 � a2 � 2 � 6 � 4 � 8

n � 4n � 3

a3 � 2a2 � a1 � 2 � 4 � 2 � 6

n � 2
a2 � 4a1 � 2

n � 2an�1 � 2an � an�1a2 � 4
a1 � 2

FIGURE 2

Limit of a Sequence
If you examine the graph of the sequence sketched in Figure 2a, you will
see that the terms of the sequence seem to get closer and closer to 1 as gets larger
and larger. In this situation we say that the sequence converges to the
limit 1, written

In general, we have the following informal definition of the limit of a sequence.

lim
n→�

n

n � 1
� 1

{n>(n � 1)}
n

{n>(n � 1)}

DEFINITION Limit of a Sequence

A sequence has the limit , written

if can be made as close to as we please by taking sufficiently large. If
exists, we say that the sequence converges. Otherwise, we say that

the sequence diverges.
limn→� an

nLan

lim
n→�

an � L

L{an}

0

0

n1

1

2 3 4 5 6 7

f(n) g(n)

y � 1

a1

�1

n1

1

2 3 4 5 6 7

a2
a4
a6

a1
a3
a5

a2

a3

a4

(a) The graph of { }n
n � 1 (b) The graph of {(�1)n}
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To illustrate this definition, suppose that a challenger selects an . Then we
must show that there exists a positive integer such that all points on the graph
of , where , lie inside a band of width about the line . (See Fig-
ure 3.)

y � L2en � N{an}
(n, an)N
e � 0

A more precise definition of the limit of a sequence follows.

DEFINITION (Precise) Limit of a Sequence

A sequence converges and has the limit , written

if for every there exists a positive integer such that when-
ever .n � N

�an � L � � eNe � 0

lim
n→�

an � L

L{an}

FIGURE 3
If , then 

or, equivalently, .�an � L � � e
L � e � an � L � en � N

To reconcile this definition with the intuitive definition of a limit, recall that is
arbitrary. Therefore, by choosing very small, the challenger ensures that is “close”
to . Furthermore, if corresponding to each choice of , we can produce an such that

implies that , then we have shown that can be made as close to
as we please by taking sufficiently large.

Notice that the definition of the limit of a sequence is very similar to the definition
of the limit of a function at infinity given in Section 3.5. This is expected, since the
only difference between a function defined by on the interval and the
sequence defined by is that is an integer. (See Figure 4.) This obser-
vation tells us that we can often evaluate by evaluating , where

is defined on and .an � f(n)(0, �)f
limx→� f(x)limn→� an

nan � f(n){an}
(0, �)y � f(x)f

nL
an�an � L � � en � N

NeL
ane

e

0 n1

L

2 3 4 5 6

(N)

7 8 9 10 11

y

y � L � �

y � L � �

y � L

FIGURE 4
The graph of comprises 

the points that lie 
on the graph of .y � f(x)

(n, f(n))
{an}

0 x, n1

L

2 3 4 5 6 7 8 9 10 11 12 13

y, an

y � f(x)
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The following limit laws for sequences are the analogs of the limit laws for func-
tions studied in Section 1.2 and are proved in a similar manner.

THEOREM 1
If and is a sequence defined by , where is a
positive integer, then .limn→� an � L

nan � f(n){an}limx→� f(x) � L

You will be asked to prove Theorem 1 in Exercise 75.

EXAMPLE 4 Find if .

Solution Since , we choose , where . By Theorem 1 in
Section 3.5 we have

Using Theorem 1 of this section, we conclude that

(See Figure 5.)

The converse of Theorem 1 is false. Consider, for example, the sequence
. This sequence evidently converges to 0, since every term of the

sequence is 0. But does not exist. (See Figure 6.)limx→� sin px
{sin np} � {0}

lim
n→�

1

nr � 0

lim
x→�

1

xr � 0

x � 0f(x) � 1>xran � 1>nr

r � 0lim
n→�

1

nr

FIGURE 5
The graph of for , 2, 3, 4,
and . The graph of is
shown with a dashed curve.

f(x) � 1>xrr � 1
n � 1{1>nr}

!

FIGURE 6
The graph of for 

, 1, 2, , 10. The 
graph of is 

shown with a dashed curve.
f(x) � sin px

pn � 0
{sin np}

THEOREM 2 Limit Laws for Sequences

Suppose that and and that is a constant. Then

1.

2.

3.

4. , provided that and 

5. , if and an � 0p � 0lim
n→�

ap
n � Lp

M 	 0bn 	 0lim
n→�

 
an

bn
�

L

M

lim
n→�

anbn � LM

lim
n→�

(an 
 bn) � L 
 M

lim
n→�

can � cL

climn→� bn � Mlimn→� an � L

x, n

y, an

0 1 2 3 4

3

2

1

0 x, n

1

�1

2 4 6 8 10

y, an
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EXAMPLE 5 Determine whether the sequence converges or diverges.

a. b.

Solution
a. Both the numerator and the denominator of approach infinity as 

approaches infinity. So their limits do not exist, and we cannot use Law 4 of 
Theorem 2. But we can divide the numerator and denominator by and then
apply Law 4 to evaluate the resulting limit. Thus,

and we conclude that the sequence converges to 1. (See Figure 2a.)
b. The terms of the sequence are

The sequence evidently does not approach a unique number, and we conclude
that it diverges. (See Figure 2b.)

�1, 1, �1, 1, p

lim
n→�

n

n � 1
� lim

n→�

1

1 �
1
n

� 1

n

nn>(n � 1)

{(�1)n}e n

n � 1
f

EXAMPLE 6 Find

a. b.

Solution
a. Observe that both the numerator and the denominator of approach infin-

ity as . Therefore, we may not use Law 4 of Theorem 2 directly. Since
, we consider the function . Using l’Hôpital’s

Rule, we find

Therefore, by Theorem 1 we conclude that

(See Figure 7.)
b. Once again both and approach infinity as . Choose , and

use l’Hôpital’s Rule twice to find that

from which we see that

and we conclude that the sequence is divergent. (See Figure 8.)

The Squeeze Theorem has the following counterpart for sequences. (The proof is
similar to that of the Squeeze Theorem and will be omitted.)

{en>n2}

lim
n→�

en

n2
� �

lim
x→�

ex

x2
� lim

x→�

ex

2x
� lim

x→�

ex

2
� �

f(x) � ex>x2n → �n2en

lim
n→�

ln n

n
� 0

lim
x→�

ln x

x
� lim

x→�

1>x
1

� lim
x→�

1
x

� 0

f(x) � (ln x)>xan � f(n) � (ln n)>nn → �
(ln n)>n

lim
n→�

en

n2
lim
n→�

ln n

n

x, n

y, an

0 10 20 30 40

0.5

0.2

0.3

0.4

0.1

FIGURE 7
The graph of for , 10,
15, 40. The graph of 
is shown with a dashed curve.

f(x) � (ln x)>x p ,
n � 5{(ln n)>n}

x, n

y, an

0 2 4 61 3 5 7

25

10

15

20

30

5

FIGURE 8
The graph of . The graph of

is shown with a dashed
curve.
f(x) � ex>x2

{en>n2}
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You are asked to prove Theorem 4 in Exercise 76.

THEOREM 3 Squeeze Theorem for Sequences

If there exists some integer such that for all and
, then .limn→� bn � Llimn→� an � limn→� cn � L

n � Nan � bn � cnN

(See Figure 9.)

FIGURE 9
The sequence is squeezed between

the sequences and .{cn}{an}
{bn}

EXAMPLE 7 Find , where (read “ factorial”) is defined by

Solution Let . The first few terms of are

, ,

and its th term is

Therefore,

Since , the Squeeze Theorem implies that

The next theorem is an immediate consequence of the Squeeze Theorem.

lim
n→�

an � lim
n→�

n!

nn � 0

limn→� 1>n � 0

0 � an �
1
n

an �
n!

nn �
n(n � 1) � p � 3 � 2 � 1

n � n � p � n � n � n
� an

n
b an � 1

n
b � p � a3

n
b a2

n
b a1

n
b �

1
n

n

a3 �
3!

33
�

3 � 2 � 1

3 � 3 � 3
a2 �

2!

22
�

2 � 1

2 � 2
a1 �

1!

1
� 1

{an}an � n!>nn

n! � n(n � 1)(n � 2) p 1

nn!lim
n→�

n!

nn

THEOREM 4
If , then .limn→� an � 0limn→� �an � � 0

0 n

an

bn

cn

L

an
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EXAMPLE 8 Find .

Solution Since

we conclude by Theorem 4 that

The graph of the sequence confirms this result. (See Figure 10.){(�1)n>n}

lim
n→�

(�1)n

n
� 0

lim
n→�
` (�1)n

n
` � lim

n→�

1
n

� 0

lim
n→�

(�1)n

n

FIGURE 10
The terms of the sequence 

oscillate between the 
graphs of and .y � �1>xy � 1>x{(�1)n>n}

If we take the composition of a function with a sequence , we obtain another
sequence . The following theorem shows how to compute the limit of the lat-
ter. The proof will be given in Appendix B.

{f(an)}
{an}f

x, n

1

2

�1

�2

2 4 6

1
x

1
x

8 10

y, an

a2

a1

a4

a5a3

y � �

y �

THEOREM 5
If and the function is continuous at , then

lim
n→�

f(an) � f( lim
n→�

an) � f(L)

Lflimn→� an � L

Note Compare this theorem with Theorem 4 in Section 1.4.

EXAMPLE 9 Find .

Solution Observe that , where and . Since

and is continuous at 0, Theorem 5 gives .limn→� esin(1>n) � e
lim

n→�
sin(1>n)

� e0 � 1f

lim
n→�

sin
1
n

� 0

an � sin(1>n)f(x) � exesin(1>n) � f(an)

limn→� esin(1>n)
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Bounded Monotonic Sequences
Up to now, the convergent sequences that we have dealt with had limits that are read-
ily found. Sometimes, however, we need to show that a sequence is convergent even
if its precise limit is not readily found. Our immediate goal here is to find conditions
that will guarantee that a sequence converges. To do this, we need to make use of two
further properties of sequences.

EXAMPLE 10 Show that the sequence is increasing.

Solution Let . We must show that for all ; that is,

or

To show that this inequality is true, we obtain the following equivalent inequalities:

Cross-multiply.

which is true for . Therefore, , so is increasing.

Alternative Solution Here, . So consider the function 
. Since

if

we see that is increasing on . Therefore, the given sequence is increasing.(0, �)f

x � 0f ¿(x) �
(x � 1)(1) � x(1)

(x � 1)2
�

1

(x � 1)2
� 0

x>(x � 1)
f(x) �an � f(n) � n>(n � 1)

{an}an � an�1n � 1

 0 � 1

 n2 � 2n � n2 � 2n � 1

 n(n � 2) � (n � 1)(n � 1)

n

n � 1
�

n � 1

n � 2

n

n � 1
�

n � 1

(n � 1) � 1

n � 1an � an�1an � n>(n � 1)

e n

n � 1
f

EXAMPLE 11 Show that the sequence is decreasing.e n

enf

DEFINITION Monotonic Sequence

A sequence is increasing if

and decreasing if

A sequence is monotonic if it is either increasing or decreasing.

a1 � a2 � a3 � p � an � an�1 � p

a1 � a2 � a3 � p � an � an�1 � p
{an}
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DEFINITION Bounded Sequence

A sequence is bounded above if there exists a number such that

for all 

A sequence is bounded below if there exists a number such that

for all 

A sequence is bounded if it is both bounded above and bounded below.

n � 1m � an

m

n � 1an � M

M{an}

Solution We must show that for ; that is,

Divide both sides by .

which is true for all , so is decreasing.

Next, we explain what is meant by a bounded sequence.

{n>en}n � 1

 n(e � 1) � 1

en ne � n � 1

 nen�1 � (n � 1)en

 
n

en �
n � 1

en�1

n � 1an � an�1

For example, the sequence is bounded below by 0, but it is not bounded above.
The sequence is bounded below by and above by 1 and is therefore
bounded. (See Figure 2a.)

A bounded sequence need not be convergent. For example, the sequence 
is bounded, since ; but it is evidently divergent. (See Figure 2b.) Also,
a monotonic sequence need not be convergent. For example, the sequence is increas-
ing and evidently divergent. However, if a sequence is both bounded and monotonic,
then it must be convergent.

{n}
�1 � (�1)n � 1

{(�1)n}

1
2{n>(n � 1)}

{n}

THEOREM 6 Monotone Convergence Theorem for Sequences

Every bounded, monotonic sequence is convergent.

The plausibility of Theorem 6 is suggested by the sequence whose
graph is reproduced in Figure 11. This sequence is increasing and bounded above by

{n>(n � 1)}

n

1

0 2 4 61 3 5 7

yn

a1
a2

a3

a4
y � 1

FIGURE 11
The increasing, bounded sequence

is convergent.{n>(n � 1)}
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any number . Therefore, as increases, the terms approach a number (which
is no larger than ) from below. In this case the number is 1, which is also the limit
of this sequence. (A proof of Theorem 6 is given at the end of this section.)

Theorem 6 can be used to find the limit of a convergent sequence indirectly, as 
the next example shows. It will also play an important role in infinite series (Sec-
tions 9.2–9.9).

M
annM � 1

EXAMPLE 12 Show that is convergent and find its limit.

Solution Here, . The first few terms of the sequence are

, , , , ,

, ,

These terms suggest that the sequence is decreasing from onward. To prove this,
we compute

(1)

So

if

Thus, if , and this proves the assertion. Since all of the terms of the
sequence are positive, is bounded below by 0. Therefore, the sequence is decreas-
ing and bounded below, and Theorem 6 guarantees that it converges to a nonnegative
limit .

To find , we first use Equation (1) to write

(2)

Since , we also have . Taking the limit on both sides
of Equation (2) and using Law (3) for limits of sequences, we obtain

We conclude that .

Alternative Solution Observe that

, , ,

and

an �
2 � 2 � 2 � p � 2

n � (n � 1) � (n � 2) � p � 1
� 2a2

3
bn�2

a5 �
2 � 2 � 2 � 2 � 2

5 � 4 � 3 � 2 � 1
� a2

5
b a2

4
b a2

3
b2 � 2a2

3
b3

a4 �
2 � 2 � 2 � 2

4 � 3 � 2 � 1
� a2

4
b a2

3
b2 � 2a2

3
b2

a3 �
2 � 2 � 2

3 � 2 � 1
� 2a2

3
ba2 �

2 � 2

2 � 1
� 2

limn→� 2n>n! � 0

L � lim
n→�

an�1 � lim
n→�
a 2

n � 1
 anb � lim

n→�
 

2

n � 1
� lim

n→�
an � 0 � L � 0

limn→� an�1 � Llimn→� an � L

an�1 �
2

n � 1
 an

L
L

{an}
n � 1an�1 � an

n � 1
an�1

an
� 1

an�1

an
�

2n�1

(n � 1)!

2n

n!

�
2n�1n!

2n(n � 1)!
�

2n!

(n � 1)n!
�

2

n � 1

n � 2

 a10 � 0.000282pa6 � 0.088889

a5 � 0.266667a4 � 0.666667a3 � 1.333333a2 � 2a1 � 2

an � 2n>n!

e2n

n!
f
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Therefore

Since , the Squeeze Theorem gives the desired result.

The next example contains some important results that we will derive here using
the Squeeze Theorem. (You will also be asked to demonstrate their validity using the
properties of exponential functions in Exercise 77.)

limn→�123 2n�2 � 0

0 � an � 2a2

3
bn�2

EXAMPLE 13 Show that if .

Solution If , then each term of the sequence is 0, and the sequence con-
verges to 0. Now suppose that . Then is greater than 1. So there exists
a positive number such that

Using the Binomial Theorem, we have

Thus,

But

so by the Squeeze Theorem

Finally, using Theorem 4, we conclude that .

If , then for all , and the sequence evidently converges to 1. If
, then the sequence is divergent. (See Example 5b.) If ,

then for some positive number . Using the Binomial Theorem again, we
have

Since , . This shows that diverges if .
A summary of these results follows.

� r � � 1{r n}limn→� np � �p � 0

� r �n � (1 � p)n � np

p� r � � 1 � p
� r � � 1{r n} � {(�1)n}r � �1

{r n}nr n � 1r � 1

limn→� r n � 0

lim
n→�

� r �n � 0

lim
n→�

1
np

� 0

0 � � r �n �
1

(1 � p)n �
1
np

(1 � p)n � 1 � np �
n(n � 1)

2!
 p2 � p � pn � np

1
� r � � 1 � p

p
1>� r �0 � � r � � 1

{r n}r � 0

� r � � 1limn→� r n � 0

Properties of the Sequence 

The sequence converges if and

It diverges for all other values of .r

lim
n→�

r n � e0 if �1 � r � 1

1 if r � 1

�1 � r � 1{r n}

{r n}



To show this, let be given. Then is not an upper bound of (since 
is the least upper bound of ). Therefore, there exists an integer such that

. But the sequence is increasing, so for every . In other
words, if , we have . Since ,

This shows that

whenever , so .
The proof is similar for the case in which is decreasing, except that we use

the greatest lower bound instead.
{an}

limn→� an � Ln � N

�L � an � � e

0 � L � an � e

an � Lan � L � en � N
n � Nan � aNaN � L � e

NSL
SL � ee � 0
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Proof of Theorem 6
The proof of Theorem 6 depends on the Completeness Axiom for the real number sys-
tem, which states that every nonempty set S of real numbers that is bounded above has
a least upper bound. Thus, if for all in , then there must be a real number 
such that is an upper bound of ( for all ), and if is any upper bound
of , then . For example, if is the interval , then the number 4 (or any
number greater than 3) is an upper bound of and 3 is the least upper bound of . As
a consequence of this axiom, it can be shown that every nonempty set of real numbers
that is bounded below has a greatest lower bound. The Completeness Axiom merely
states that the real number line has no gaps or holes.

PROOF Suppose that is an increasing sequence. Since is bounded, the set
is bounded above, and by the Completeness Axiom it has a least upper

bound . (See Figure 12.) We claim that is the limit of the sequence.LL
S � {an � n � 1}

{an}{an}

SS
(�2, 3)SN � bS

Nx � Sx � bSb
bSxx � M

FIGURE 12
An increasing sequence bounded above
must converge to its least upper bound.

1. Explain each of the following terms in your own words, and
give an example of each.
a. Sequence
b. Convergent sequence
c. Divergent sequence
d. Limit of a sequence

2. Explain each of the following terms in your own words, and
give an example of each.
a. Bounded sequence
b. Monotonic sequence

9.1 CONCEPT QUESTIONS

n

L

L � �

N � 1
N � 2N

0 21 3

an

a3
a2

an

a1
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Videos for selected exercises are available online at www.academic.cengage.com/login.V

In Exercises 1–6, write the first five terms of the sequence 
whose th term is given.

1. 2.

3. 4.

5. 6. ,

In Exercises 7–12, find an expression for the th term of the
sequence. (Assume that the pattern continues.)

7. 8.

9.

10.

11.

12.

In Exercises 13–42, determine whether the sequence con-
verges or diverges. If it converges, find its limit.

13. 14.

15. 16.

17. 18.

19. 20.

21. 22.

23. 24.

25. 26.

27. 28.

29. 30.

31. 32. an �
ln n2

1n
an � tanh n

an � tan�1 n2an �
sin 1n

1n

an � sina np

2n � 1
ban � sin 

np

2

an � cos np � 2an �
n1>2 � n1>3

n � 2n2>3

an � 1 � a�2
e
bn

an �
2n

1n � 1

an �
22n2 � 1

n
an �

2 � (�1)n

n

an � (�1)n 
n � 2

3n � 1
an �

2n2 � 3n � 4

3n2 � 1

an �
n2 � 1

2n2 � 1
an �

n � 1
n

�
2n � 1

n2

an � 1 �
(�1)n

n3>2an � 1 � 2(�1)n

an � 1n � 1an �
2n

n � 1

{an}

e1

2
, 

1 � 3

2 � 4
, 

1 � 3 � 5

2 � 4 � 6
, 

1 � 3 � 5 � 7

2 � 4 � 6 � 8
, 

1 � 3 � 5 � 7 � 9

2 � 4 � 6 � 8 � 10
, pf

e 1

1 � 2
, 

2

2 � 3
, 

3

3 � 4
, 

4

4 � 5
, 

5

5 � 6
, p f

{0, 2, 0, 2, 0, p}

e�1, 
1

2
, �

1

6
, 

1

24
, �

1

120
, pf

e3

4
, 

4

9
, 

5

16
, 

6

25
, 

7

36
, pfe1

2
, 

2

3
, 

3

4
, 

4

5
, 

5

6
, pf

n

an�1 � 3an � 1a1 � 2an �
2n

(2n)!

an �
1 � 3 � 5 � p � (2n � 1)

n!
an � sin

np

2

an �
(�1)n�12n

n � 1
an �

n � 1

2n � 1

n
{an} 33. 34.

35. 36. ,

37. 38.

39.

40.

41.

42.

In Exercises 43–48, (a) graph the sequence with a graphing
utility, (b) use your graph to guess at the convergence or diver-
gence of the sequence, and (c) use the properties of limits to 
verify your guess and to find the limit of the sequence if it 
converges.

43. 44.

45. 46.

47. 48.

49. Evaluate

Hint: Use Theorem 1.

50. Evaluate

Hint: Use Theorem 1.

In Exercises 51–58, determine whether the sequence is
monotonic. Is the sequence bounded?

51. 52.

53. 54. an � 2 �
(�1)n

n
an � 3 �

1
n

an �
2n

n � 1
an �

3

2n � 5

{an}

lim
n→�

na1 � B7 1 �
1
n
b

lim
n→�

 

1 � a1 �
1
n
b9

1 � a1 �
1
n
b

an � a1 �
2
n
bn

an � n sin 
1
n

an � 2 tan�1an � 1

n � 3
ban �

n!

nn

an � (�1)n 
2n � 1

n � 3
an �

n � 1

n � 2

{an}

an �
1 � 2 � 3 � p � n

n � 2
�

n

2

an �
1

n2 �
2

n2 �
3

n2 � p �
n

n2

an �
1 � 3 � 5 � p � (2n � 1)

n!

an �
sin2 n

1n

an �
(�2)n

n!
an � a1 �

2
n
b1>n

p � 0an �
np

enan � 1n � 1 � 1n

an �
2n � 1

enan �
2n

3n � 1

9.1 EXERCISES
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55. 56.

57. 58.

59. Compound Interest If a principal of dollars is invested in 
an account earning interest at the rate of per year com-
pounded monthly, then the accumulated amount at the
end of months is

a. Write the first six terms of the sequence if
and . Interpret your results.

b. Does the sequence converge or diverge?

60. Quality Control Half a percent of the microprocessors manu-
factured by Alpha Corporation for use in regulating fuel
consumption in automobiles are defective. It can be shown
that the probability of finding at least one defective micro-
processor in a random sample of microprocessors is

. Consider the sequence defined by
.

a. Write the terms , , and .
b. Evaluate , and interpret your result.

61. Annuities An annuity is a sequence of payments made at 
regular intervals. Suppose that a sum of $200 is deposited 
at the end of each month into an account earning interest 
at the rate of 12% per year compounded monthly. Then the
amount on deposit (called the future value of the annuity) at
the end of the th month is .
Consider the sequence defined by .
a. Find the 24th term of the sequence , and interpret

your result.
b. Evaluate , and interpret your result.

62. Continuously Compounded Interest If dollars is invested in an
account paying interest at the rate of per year compounded 

times per year, then the accumulated amount at the end 
of years is

a. Find the limit of the sequence .
b. Interpret the result in part (a).

Note: In this situation, interest is said to be compounded 
continuously.

c. What is the accumulated amount at the end of 3 years if
$1000 is invested in an account paying interest at the rate
of 10% per year compounded continuously?

63. Find the limit of the sequence . Confirm your

results visually by plotting the graph of

f(x) � a1 �
2
x
b3x

ea1 �
2
n
b3nf

{Am}

m � 1, 2, 3, pAm � Pa1 �
r

m
bmt

t
m

r
P

limn→� an

{an}
an � f(n){an}

f(n) � 20,000[(1.01)n � 1]n

limn→� an

a1000a100a10

an � f(n)
{an}f(n) � 1 � (0.995)n

n

{An}
r � 0.105P � 10,000

{An}

An � Pa1 �
r

12
bn

n
An

r
P

an �
ln n

n
an �

n

2n

an � tan�1 nan �
sin n

n

64. Define the sequence recursively by and
for .n � 1an�1 � 1an

a0 � 2{an}

a. Show that .
b. Evaluate .
c. Verify the result of part (b) graphically.

65. Newton’s Method Suppose that . Applying Newton’s
method to the solution of the equation leads to
the sequence defined by

a. Show that if exists, then .
Hint:

b. Find accurate to four decimal places.

66. Finding the Roots of an Equation Suppose that we want to find a
root of . Newton’s method provides one way of
finding it. Here is another method that works under suitable
conditions.
a. Write in the form , where is continu-

ous. Then generate the sequence by the recursive
formula , where is arbitrary.

b. Show that if the sequence converges to a number ,
then is a solution of .
Hint:

c. Use this method to find the root of 
(accurate to four decimal places) that lies in the interval

.
Hint: Write in the form . Take

.

67. A Floating Object A sphere of radius 1 ft is made of wood that
has a specific gravity of . If the sphere is placed in water, it
sinks to a depth of ft. It can be shown that satisfies the
equation

Use the method described in Exercise 66 to find accurate
to three decimal places.
Hint: Show that the equation can be written in the form

.

68. Find the limit of the sequence

Hint: Show that .

69. Consider the sequence defined by and
for . Assuming that the sequence

converges, find its limit.
Note: Using the principle of mathematical induction, it can be
shown that is increasing and bounded by 2 and, hence, by 
Theorem 6 is convergent.

{an}

n � 2an � 12 � an�1

a1 � 12{an}

an � 2(2n�1)>2n
� 21�1>2n

512, 2212, 322212, p6
h � 1

323h3 � 8

h

h3 � 3h2 �
8

3
� 0

hh

2
3

x0 � 0
x � 1

9 (3x3 � 2)3x3 � 9x � 2 � 0
(0, 1)

f(x) � 3x3 � 9x � 2

lim
n→�

xn�1 � r
f(x) � 0r

r{xn}
x0xn�1 � t(xn)

{xn}
tx � t(x)f(x) � 0

f(x) � 0

15

lim
n→�

xn�1 � L

L � 1AL � limn→� xn

x0 � 0xn�1 �
1

2
 axn �

A

xn
b

{xn}
x2 � A � 0

A � 0

limn→� an

an � 21>2n
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78. Fibonacci Sequence The Fibonacci sequence is defined
by , , and for . Let

. Assuming that is convergent, show that

Hint: First, show that . Then use the fact that if
, then .

Note: The number , which is approximately 1.6, has the
following special property: A picture with a ratio of width to height
equal to this number is especially pleasing to the eye. The ancient
Greeks used this “golden” ratio in designing their beautiful temples
and public buildings, such as the Parthenon.

The front of the Parthenon has a ratio of width to
height that is approximately 1.6 to 1.

In Exercises 79–86, determine whether the statement is true or
false. If it is true, explain why it is true. If it is false, explain why
or give an example to show why it is false.

79. If and are divergent, then is divergent.

80. If is divergent, then is divergent.

81. If converges to and converges to 0, then 
converges to 0.

82. If converges and converges, then converges.

83. If is bounded and converges, then converges.

84. If is bounded, then converges to 0.

85. If exists, then both and 
exist.

86. If exists, then exists.limn→� anlimn→� �an �

limn→� bnlimn→� anlimn→� anbn

{an>n}{an}

{anbn}{bn}{an}

{an>bn}{bn}{an}

{anbn}{bn}L{an}

{�an �}{an}

{an � bn}{bn}{an}

1
2 (1 � 15)

limn→� an�2 � limn→� an�1 � Llimn→� an � L
an�1 � 1 � 1>an�2

lim
n→�

an �
1

2
 (1 � 15)

{an}an � Fn�1>Fn

n � 2Fn�1 � Fn � Fn�1F2 � 1F1 � 1
{Fn}70. Show that if and , then

.

71. Let the sequence be defined by

a. Show that is increasing.
b. Show that is bounded above by establishing that

for .

Hint: , for 

c. Using the results of parts (a) and (b), what can you
deduce about the convergence of ?

72. Let the sequence be defined by

a. Show that is increasing.
b. Show that is bounded above.
c. Using the results of parts (a) and (b), what can you

deduce about the convergence of ?

73. Let the sequence be defined by

, ,

, ,

where .
a. Show that is convergent.
b. Find the limit of .

74. Use the Squeeze Theorem for Sequences to prove that

Hint: For sufficiently large, .

75. Prove Theorem 1: If and is a sequence
defined by , where is a positive integer, then

.

76. Prove Theorem 4: If , then .

77. Prove the properties of the sequence given on 
page 741 using the results if 
and if .a � 1limx→� ax � �

0 � a � 1limx→� ax � 0
{r n}

limn→� an � 0limn→� �an � � 0

limn→� an � L
nan � f(n)

{an}limx→� f(x) � L

1>n � a � nn

a � 0lim
n→�
1n a � 1

{an}
{an}

an � 0

pan �
an�1

2 � an�1
p ,a3 �

a2

2 � a2

a2 �
a1

2 � a1
a1 �

a0

2 � a0

{an}

{an}

{an}
{an}

an �
1

2 � 1
�

1

22 � 2
� p �

1

2n � n

{an}

{an}

n � 2
1

n2
�

1

n(n � 1)
�

1

n � 1
�

1

n

n � 2an � 2 � 1>n{an}
{an}

an � 1 �
1

22 �
1

32 � p �
1

n2

{an}

limn→� an � L
limn→� a2n�1 � Llimn→� a2n � L

Th
e 

Ga
lle

ry
 C

ol
le

ct
io

n/
Co
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is
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In general, an expression of the form

is called an infinite series or, more simply, a series. The numbers are
called the terms of the series; is called the th term, or general term, of the series;
and the series itself is denoted by the symbol

or simply .� an

a
�

n�1
an

nan

a1, a2, a3, p

a1 � a2 � a3 � p � an � p

9.2 Series

Consider again the example involving the bouncing ball. Earlier we found a sequence
describing the maximum height attained by the ball on each rebound after hitting a sur-
face. The question that follows naturally is: How do we find the total distance traveled
by the ball? To answer this question, recall that the initial height and the heights attained
on each subsequent rebound are

1, , , ,

meters, respectively. (See Figure 1.) Observe that the distance traveled by the ball when
it first hits the surface is 1 m. When it hits the surface the second time, it will have
traveled a total distance of

or

meters. When it hits the surface the third time, it will have traveled a distance of

or

meters. Continuing in this fashion, we see that the total distance traveled by the ball is

(1)

meters. Observe that this last expression involves the sum of infinitely many terms.

1 � 2a2

3
b � 2a2

3
b2

� 2a2

3
b3

� p

1 �
4

3
�

8

9
1 � 2a2

3
b � 2a2

3
b2

1 �
4

3
1 � 2a2

3
b

pa2

3
b3a2

3
b22

3

FIGURE 1

4
9

2
3

8
27

n

y (m)

0 1 2 3 4 5

1
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How do we define the “sum” of an infinite series, if it exists? To answer this ques-
tion, we use the same technique that we have employed several times before: using
quantities that we can compute to help us define new ones. For example, in defining
the slope of the tangent line to the graph of a function, we take the limit of the slope
of secant lines (quantities that we can compute); and in defining the area under the
graph of a function, we take the limit of the sum of the area of rectangles (again, quan-
tities that we can compute). Here, we define the sum of an infinite series as the limit
of a sequence of finite sums (quantities that we can compute).

We can get an inkling of how this may be done from examining the series (1) giv-
ing the total distance traveled by the ball. Define the sequence by

giving the total vertical distance traveled by the ball when it hits the surface the first
time, the second time, the third time, , and the th time, respectively. If the series
(1) has a sum (the total distance traveled by the ball), then the terms of the sequence

form a sequence of increasingly accurate approximations to S. This suggests that
we define

We will complete the solution to this problem in Example 5.
Motivated by this discussion, we define the sum of an infinite series.

S � lim
n→�

Sn

{Sn}
S

np

 Sn � 1 � 2a2

3
b � 2a2

3
b2

� p � 2a2

3
bn�1

 o

 S3 � 1 � 2a2

3
b � 2a2

3
b2

 S2 � 1 � 2a2

3
b

 S1 � 1

{Sn}

DEFINITION Convergence of Infinite Series

Given an infinite series

the th partial sum of the series is

If the sequence of partial sums converges to the number , that is, if
, then the series converges and has sum , written

If diverges, then the series diverges.� an{Sn}

a
�

n�1
an � a1 � a2 � a3 � p � an � p � S

S� anlimn→� Sn � S
S{Sn}

Sn � a
n

k�1
ak � a1 � a2 � a3 � p � an

n

a
�

n�1
an � a1 � a2 � a3 � p � an � p
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EXAMPLE 1 Determine whether the series converges. If the series converges, find
its sum.

a. b.

Solution
a. The th partial sum of the series is

Since

we conclude that the limit does not exist and diverges.
b. The th partial sum of the series is

Removing the parentheses, we see that all the terms of , except for the first and
last, cancel out. So

Since

we conclude that the series converges and has sum 1, that is,

The series in Example 1b is called a telescoping series.

a
�

n�1
a1

n
�

1

n � 1
b � 1

lim
n→�

Sn � lim
n→�
a1 �

1

n � 1
b � 1

Sn � 1 �
1

n � 1

Sn

Sn � a1 �
1

2
b � a1

2
�

1

3
b � a1

3
�

1

4
b � p � a 1

n � 1
�

1
n
b � a1

n
�

1

n � 1
b

n
��

n�1 n

lim
n→�

Sn � lim
n→�

 
n(n � 1)

2
� �

Sn � 1 � 2 � 3 � p � n �
n(n � 1)

2

n

a
�

n�1
a1

n
�

1

n � 1
ba

�

n�1
n

EXAMPLE 2 Show that the series is convergent, and find its sum.

Solution First, we use partial fraction decomposition to rewrite the general term
:

an �
4

4n2 � 1
�

4

(2n � 1)(2n � 1)
�

2

2n � 1
�

2

2n � 1

an � 4>(4n2 � 1)

a
�

n�1
 

4

4n2 � 1

Be sure to note the difference between a sequence and a series. A sequence is a
succession of terms, whereas a series is a sum of terms.

!
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Then we write the th partial sum of the series as

This is a telescoping series.

Since

we conclude that the given series is convergent and has sum 2; that is,

Geometric Series
Geometric series play an important role in mathematical analysis. They also arise fre-
quently in the field of finance. The convergence or divergence of a geometric series is
easily established.

a
�

n�1
 

4

4n2 � 1
� 2

lim
n→�

Sn � lim
n→�
a2 �

2

2n � 1
b � 2

 � 2 �
2

2n � 1

 � a2

1
�

2

3
b � a2

3
�

2

5
b � a2

5
�

2

7
b � p � a 2

2n � 1
�

2

2n � 1
b

 Sn � a
n

k�1
 

4

4k2 � 1
� a

n

k�1
a 2

2k � 1
�

2

2k � 1
b

n

The following theorem tells us the conditions under which a geometric series is
convergent.

DEFINITION Geometric Series

A series of the form

is called a geometric series with common ratio .r

a 	 0a
�

n�1
ar n�1 � a � ar � ar 2 � p � ar n�1 � p

THEOREM 1
If , then the geometric series

converges, and its sum is . The series diverges if .� r � � 1a
�

n�1
ar n�1 �

a

1 � r

a
�

n�1
ar n�1 � a � ar � ar 2 � p � ar n�1 � p

� r � � 1

PROOF The th partial sum of the series is

Multiplying both sides of this equation by gives

rSn � ar � ar 2 � ar 3 � p � ar n

r

Sn � a � ar � ar 2 � p � ar n�1

n



FIGURE 2
(a) The geometric series converges
      because | r | � 1.

{Sn}
{Sn}

{an}
{an}

(b) The geometric series diverges
      because | r | � 1.
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Subtracting the second equation from the first then yields

If , we can solve the last equation for , obtaining

From Example 13 on page 741 we know that if , so

This implies that

If , then the sequence diverges, so does not exist. This means
that the geometric series diverges. We leave it as an exercise to show that diverges
if , so the series also diverges for these values of .rr � 
1

{Sn}
limn→� Sn{r n}� r � � 1

� r � � 1a
�

n�1
ar n�1 �

a

1 � r

lim
n→�

Sn � lim
n→�

 
a(1 � r n)

1 � r
�

a

1 � r

� r � � 1lim
n→�

r n � 0

Sn �
a(1 � r n)

1 � r

Snr 	 1

(1 � r)Sn � a � ar n � a(1 � r n)

EXAMPLE 3 Determine whether the series converges or diverges. If it converges, find
its sum.

a.

b.

Solution
a. This is a geometric series with and common ratio . Since ,

Theorem 1 tells us that the series converges and has sum

The graphs of and for this series are shown in Figure 2a.
b. This is a geometric series with and common ratio . Since ,

Theorem 1 tells us that the series is divergent. The graphs of and for
this series are shown in Figure 2b.

{Sn}{an}

4
3 � 1r � 4

3a � 5
{Sn}{an}

a
�

n�1
3a�1

2
bn�1

�
3

1 � 1�1
2 2 � 2

��1
2
� � 1r � �1

2a � 3

a
�

n�1
5a4

3
bn�1

� 5 �
20

3
�

80

9
�

320

27
� p

a
�

n�1
3a�1

2
bn�1

� 3 �
3

2
�

3

4
�

3

8
� p
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EXAMPLE 4 Express the number as a rational number.

Solution We rewrite the number as

The expression after the first term is a geometric series with and . Using
Theorem 1, we have

 �
32

10
�

14

990
�

3182

990

 3.2141414 p �
32

10
�

14
1000

1 � 1
100

r � 1
100a � 14

1000

 �
32

10
� a

�

n�1
a 14

103
b a 1

102
bn�1

 �
32

10
�

14

103
c1 �

1

102
�

1

104
� pd

 3.2141414 p � 3.2 �
14

103
�

14

105
�

14

107
� p

3.214 � 3.2141414 p

EXAMPLE 5 Complete the solution of the bouncing ball problem that was introduced
at the beginning of this section. Recall that the total vertical distance traveled by the
ball is given by

meters.

Solution If we let denote the total vertical distance traveled by the ball, then

The expression after the first term is a geometric series with and . Using
Theorem 1, we obtain

and conclude that the total distance traveled by the ball is 5 m.

The Harmonic Series
The series

is called the harmonic series. Before showing that this series is divergent, we make
this observation: If a sequence is convergent, then any subsequence obtained by
deleting any number of terms from the parent sequence must also converge to the
same limit. Therefore, to show that a sequence is divergent, it suffices to produce a
subsequence of the parent sequence that is divergent.

{bn}
{bn}

a
�

n�1
 
1
n

� 1 �
1

2
�

1

3
�

1

4
� p

d � 1 �
4
3

1 � 2
3

� 1 � 4 � 5

r � 2
3a � 4

3

d � 1 � a
�

n�1
a4

3
b a2

3
bn�1

d

1 � 2a2

3
b � 2a2

3
b2

� 2a2

3
b3

� p
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THEOREM 2
If converges, then .limn→� an � 0��

n�1 an

PROOF We have , so .
Since is convergent, the sequence is convergent. Let . Then

The Divergence Test is an important consequence of Theorem 2.

lim
n→�

an � lim
n→�

(Sn � Sn�1) � lim
n→�

Sn � lim
n→�

Sn�1 � S � S � 0

limn→� Sn � S{Sn}��
n�1 an

an � Sn � Sn�1Sn � a1 � a2 � p � an�1 � an � Sn�1 � an

THEOREM 3 The Divergence Test

If does not exist or , then diverges.��
n�1 anlimn→� an 	 0limn→� an

In keeping with this strategy, let us show that the subsequence

of the sequence of partial sums of the harmonic series is divergent. We have

4 terms 8 terms

and, in general, . Therefore,

so is divergent. This proves that the harmonic series is divergent.

The Divergence Test
The next theorem tells us that the terms of a convergent series must ultimately approach
zero.

{Sn}

lim
n→�

S2n � �

S2n � 1 � n112 2
 � 1 �

1

2
�

1

2
�

1

2
�

1

2
� 1 � 4a1

2
b

⎫⎪⎪⎪⎬⎪⎪⎪⎭⎫⎪⎪⎬⎪⎪⎭
 � 1 �

1

2
� a1

4
�

1

4
b � a1

8
� p �

1

8
b � a 1

16
� p �

1

16
b

 S16 � 1 �
1

2
� a1

3
�

1

4
b � a1

5
� p �

1

8
b � a1

9
� p �

1

16
b

 � 1 �
1

2
� a1

4
�

1

4
b � a1

8
�

1

8
�

1

8
�

1

8
b � 1 �

1

2
�

1

2
�

1

2
� 1 � 3a1

2
b

 S8 � 1 �
1

2
� a1

3
�

1

4
b � a1

5
�

1

6
�

1

7
�

1

8
b

 S4 � 1 �
1

2
� a1

3
�

1

4
b � 1 �

1

2
� a1

4
�

1

4
b � 1 � 2a1

2
b

 S2 � 1 �
1

2

{Sn}

S2, S4, S8, S16, p , S2n, p
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The Divergence Test does not say that if , then must con-
verge. In other words, the converse of Theorem 2 is not true in general. For example,

, yet the harmonic series is divergent. In short, the Diver-
gence Test rules out convergence for a series whose th term does not approach zero
but yields no information if does approach zero—that is, the series might or might
not converge.

an

n
��

n�1 1>nlimn→� 1>n � 0

��
n�1 anlimn→� an � 0

EXAMPLE 6 Show that the following series are divergent.

a. b.

Solution
a. Here, , and

does not exist. We conclude by the Divergence Test that the series diverges.

b. Here, , and

so by the Divergence Test, the series diverges.

Properties of Convergent Series
The following properties of series are immediate consequences of the corresponding
properties of the limits of sequences. We omit the proofs.

lim
n→�

an � lim
n→�

 
2n2 � 1

3n2 � 1
� lim

n→�
 

2 �
1

n2

3 �
1

n2

�
2

3
	 0

an �
2n2 � 1

3n2 � 1

lim
n→�

an � lim
n→�

(�1)n�1

an � (�1)n�1

a
�

n�1
 
2n2 � 1

3n2 � 1a
�

n�1
(�1)n�1

THEOREM 4 Properties of Convergent Series

If and are convergent and is any real number, then
and are also convergent, and

a. b. a
�

n�1
(an 
 bn) � a

�

n�1
an 
 a

�

n�1
bn � A 
 Ba

�

n�1
can � ca

�

n�1
an � cA

��
n�1(an 
 bn)��

n�1 can

c��
n�1 bn � B��

n�1 an � A

EXAMPLE 7 Show that the series is convergent, and find its
sum.

Solution First, consider the series . Using partial fraction decom-
position, we can write this series in the form

a
�

n�1
 

1

n(n � 1)
� a

�

n�1
a1

n
�

1

n � 1
b

��
n�1 1>[n(n � 1)]

a
�

n�1
 c 2

n(n � 1)
�

4

3n d
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Using the result of Example 1, we see that

Next, observe that is a geometric series with and , so

Therefore, by Theorem 4 the given series is convergent, and

 � 2 � 1 � 2 � 0

 a
�

n�1
c 2

n(n � 1)
�

4

3n d � 2a
�

n�1
 

1

n(n � 1)
� a

�

n�1
 
4

3n

a
�

n�1
 
4

3n �
4
3

1 � 1
3

� 2

r � 1
3a � 4

3a
�

n�1
 
4

3n

a
�

n�1
 

1

n(n � 1)
� 1

1. Explain the difference between
a. A sequence and a series
b. A convergent sequence and a convergent series
c. A divergent sequence and a divergent series
d. The limit of a sequence and the sum of a series

2. Suppose that .
a. Evaluate , where is the th partial sum of

.
b. Find if it is known that .a1 � 1

2��
n�2 an

��
n�1 an

nSnlimn→� Sn

��
n�1 an � 6

9.2 CONCEPT QUESTIONS

Videos for selected exercises are available online at www.academic.cengage.com/login.V

In Exercises 1–6, find the th partial sum of the telescoping
series, and use it to determine whether the series converges or
diverges. If it converges, find its sum.

1. 2.

3. 4.

5. 6.

In Exercises 7–14, determine whether the geometric series 
converges or diverges. If it converges, find its sum.

7. 8.

9. 10.

11. 12.

13. 14. a
�

n�1
(�1)n�13n21�n

a
�

n�0
2n3�n�1

a
�

n�1
 

en

3n�1a
�

n�0
2a� 1

12
bn

1 �
4

3
�

16

9
�

64

27
� p5

3
�

5

9
�

5

27
�

5

81
� p

�
1

2
�

1

4
�

1

8
�

1

16
� p4 �

8

3
�

16

9
�

32

27
� p

a
�

n�1
 

2

1n � 1 � 1na
�

n�2
a 1

ln n
�

1

ln(n � 1)
b

a
�

n�1
a �8

4n2 � 4n � 3
ba

�

n�1
 

4

(2n � 3)(2n � 5)

a
�

n�1
a 1

2n � 3
�

1

2n � 1
ba

�

n�2
a 1

n � 1
�

1
n
b

Snn In Exercises 15–22, show that the series diverges.

15. 16.

17. 18.

19. 20.

21. 22.

In Exercises 23–28, (a) compute as many terms of the sequence
of partial sums, , as is necessary to convince yourself that 
the series converges or diverges. If it converges, estimate its sum.
(b) Plot to give a visual confirmation of your observation 
in part (a). (c). If the series converges, find the exact sum. If it
diverges, prove it, using the Divergence Theorem.

23. 24.

25. 26.

27. 28. a
�

n�1
a 1

2n �
1

3nba
�

n�1
sin n2

a
�

n�1
5a�2

3
bn�1

a
�

n�1
3a7

8
bn�1

a
�

n�1
 

2n

2n2 � 1
a
�

n�1
 

6

n(n � 1)

{Sn}

Sn

a
�

n�1
 

n

22n2 � 1
a
�

n�1
 

1

2 � 3�n

a
�

n�0
 
(�1)n3n

2n�1a
�

n�1
2(1.5)n

a
�

n�1
 

n2

2n2 � 1a
�

n�1
 

2n

3n � 1

1 �
3

2
�

9

4
�

27

8
� p1

2
�

2

3
�

3

4
� p

9.2 EXERCISES
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In Exercises 29–54, determine whether the given series 
converges or diverges. If it converges, find its sum.

29. 30.

31. 32.

33. 34.

35. 36.

37. 38.

39. 40.

41. 42.

43.

44. 45.

46. 47.

48. 49.

50. 51.

52. 53.

54.

In Exercises 55–58, express each number as a rational number.

55. 56.

57. 58.

In Exercises 59–62, find the values of for which the series con-
verges, and find the sum of the series. (Hint: First show that the
series is a geometric series.)

59. 60.

61. 62.

63. Distance Traveled by a Bouncing Ball A rubber ball is dropped
from a height of 2 m onto a flat surface. Each time the ball
hits the surface, it rebounds to half its previous height. Find
the total distance the ball travels.

a
�

n�0
 
x2n

3na
�

n�1
2n(x � 1)n

a
�

n�0
(x � 2)n

a
�

n�0
(�x)n

x

3.14234 � 3.142343434 p1.213 � 1.213213213 p
�0.23 � �0.232323 p0.4 � 0.444 p

a
�

n�1
a1 �

2
n
bn

a
�

n�2
 

n

ln na
�

n�1
 

sin n

1 � e�n

a
�

n�1
n sin 

1
na

�

n�1
sin2 n

a
�

n�1
tan�1 na

�

n�1
a2n � 5n

3n b
a
�

n�0
a2n � 3n

6n ba
�

n�0
c a� 3
p
bn

� ae

3
bn�1d

a
�

n�1
[2(0.1)n � 3(�1)n(0.2)n]a

�

n�1

n!

2n

a
�

n�1
ccosa1

n
b � cosa 1

n � 1
b d

a
�

n�1
lna n

n � 1
ba

�

n�1
 

2

1 � (0.2)n

a
�

n�1
c 2n

3n�1 �
(�1)n�12n

3n�1 da
�

n�1
c 1
2n �

1

n(n � 1)
d

a
�

n�1
 
3n � 1

3n�1a
�

n�0
3(1.01)n

a
�

n�0
 
2n2 � n � 1

3n2 � 2a
�

n�1
 
2n � 1

3n � 1

a
�

n�1
2�n5n�1

a
�

n�0
 
(�3)n

2n�1

a
�

n�0
 
3n�1

5na
�

n�0
 
2n

5n

a
�

n�2
 

1

n2 � 1a
�

n�1
 

1

n(n � 2)

64. Finding the Coefficient of Restitution The coefficient of restitu-
tion for steel onto steel is measured by dropping a steel ball
onto a steel plate. If the ball is dropped from a height and
rebounds to a height , then the coefficient of restitution is

. Suppose that a steel ball is dropped from a height of
1 m onto a steel plate. Each time the ball hits the plate, it
rebounds to times it previous height . If the
ball travels a total distance of 2 m, find the coefficient of
restitution for steel on steel.

65. Probability of Winning a Dice Toss Peter and Paul take turns toss-
ing a pair of dice. The first person to throw a 7 wins. If
Peter starts the game, then it can be shown that his chances
of winning are

Find .

66. Multiplier Effect of a Tax Cut Suppose that the average wage
earner saves 9% of his or her take-home pay and spends the
other 91%. What is the estimated impact that a proposed
$30 billion tax cut will have on the economy over the long
run because of the additional spending generated by the pro-
posed tax cut?
Note: This phenomenon in economics is known as the multiplier
effect.

67. Perpetuities An annuity is a sequence of payments that are
made at regular time intervals. If the payments are allowed
to continue indefinitely, then it is a perpetuity.
a. Suppose that dollars is paid into an account at the

beginning of each month and that the account earns
interest at the rate of per year compounded monthly.
Then the present value of the perpetuity (that is, the
value of the perpetuity in today’s dollars) is

V
r

P

p

p �
1

6
� a1

6
b a5

6
b2

� a1

6
b a5

6
b4

� p

(0 � r � 1)r

1h>H h
H

V � Pa1 �
r

12
b�1

� Pa1 �
r

12
b�2

� p � Pa1 �
r

12
b�n

� p

Show that .
b. Mrs. Thompson wishes to establish a fund to provide a

university medical center with a monthly research grant
of $150,000. If the fund will earn interest at the rate of
9% per year compounded monthly, use the result of part
(a) to find the amount of the endowment she is required
to make now.

68. Residual Concentration of a Drug in the Bloodstream Suppose that
a dose of units of a certain drug is administered to a
patient and that the fraction of the dose remaining in the
patient’s bloodstream hr after the dose is administered is
given by , where is a positive constant.
a. Show that the residual concentration of the drug in the

bloodstream after extended treatment when a dose of 
units is administered at intervals of hr is given by

R �
Ce�kt

1 � e�kt

t
C

kCe�kt
t

C

V � 12P>r
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b. If the highest concentration of this particular drug that is
considered safe is units, find the minimal time that
must exist between doses.
Hint:

69. Capital Value of a Perpetuity The capital value of a perpetuity
involving payments of dollars paid at the end of each
investment period into a fund that earns interest at the rate
of per year compounded continuously is given by

Find an expression for that does not involve an infinite
series.

70. Sum of Areas of Nested Squares An infinite sequence of nested
squares is constructed as follows: Starting with a square
with a side of length 2, each square in the sequence is con-
structed from the preceding square by drawing line segments
connecting the midpoints of the sides of the square. Find the
sum of the areas of all the squares in the sequence.

71. Sum of Areas of Nested Triangles and Circles An infinite sequence
of nested equilateral triangles and circles is constructed as
follows: Beginning with an equilateral triangle with a side of
length 1, inscribe a circle followed by a triangle, followed
by a circle, and so on, ad infinitum. Find the total area of
the shaded regions.

A

A � Pe�r � Pe�2r � Pe�3r � p
r

P

C � R � S

S
72. Prove or disprove: If and are both divergent, then

is divergent.

73. Suppose that is convergent. Prove that 
is divergent.

74. Suppose that is convergent and is divergent. Prove
that is divergent.
Hint: Prove by contradiction, using Theorem 4.

75. Suppose that is divergent and . Prove that 
is divergent.
Hint: Prove by contradiction, using Theorem 4.

76. Prove that if the sequence converges, then the series
converges. Conversely, prove that if
converges, then converges.

77. Show that converges and .

Hint: See Exercise 71 in Section 9.1.

78. Prove that converges by showing that is 

increasing and bounded above, where is the th partial
sum of the series.

In Exercises 79–84, determine whether the statement is true or
false. If it is true, explain why it is true. If it is false, explain why
or give an example to show why it is false.

79. If , then converges.

80. If , then the telescoping series
converges and has sum .

81. converges for all in .

82. provided that .

83. If the sequence of partial sums of a series is bounded
above, then must converge.

84. If converges, then both and must 
converge.

� bn� an�(an � bn)

� an

� an

� r � � 1a
�

n�p
ar n �

ar p

1 � r

[0, 2p]x��
n�1 sinn x

L � a1��
n�1(an�1 � an)
limn→� an � L

��
n�1 anlimn→� an � 0

nSn

{Sn}a
�

n�1
 

1

2n � 1

3

2
� a

�

n�1
 
1

n2 � 2a
�

n�1
 
1

n2

{an}�(an�1 � an)
�(an�1 � an)

{an}

� canc 	 0� an

�(an � bn)
� bn� an

� 1>an(an 	 0)� an

�(an � bn)
� bn� an

9.3 The Integral Test

The convergence or divergence of a telescoping or geometric series is relatively easy to
determine because we are able to find a simple formula involving a finite number of
terms for the th partial sum of these series. As we saw in Section 9.2, we can find
the actual sum of a convergent series in this case by simply evaluating . How-
ever, it is often very difficult or impossible to obtain a simple formula for the th par-
tial sum of an infinite series, and we are forced to look for alternative ways to inves-
tigate the convergence or divergence of the series.

n
limn→� Sn

Snn
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In this and the next two sections we will develop several tests for determining the
convergence or divergence of an infinite series by examining the th term of the
series. These tests will confirm the convergence of a series without yielding a value for
its sum. From the practical point of view, however, this is all that is required. Once it
has been ascertained that a series is convergent, we can approximate its sum to any
degree of accuracy desired by adding up the terms of its th partial sum , provided
that is chosen large enough. The convergence tests that are given here and in Sec-
tion 9.4 apply only to series with positive terms.

The Integral Test
The Integral Test ties the convergence or divergence of an infinite series to the
convergence or divergence of the improper integral , where .f(n) � an��

1 f(x) dx
��

n�1 an

n
Snn

ann

THEOREM 1 The Integral Test

Suppose that is a continuous, positive, and decreasing function on . If
for , then

and

either both converge or both diverge.

�
�

1
f(x) dxa

�

n�1
an

n � 1f(n) � an

[1, �)f

PROOF If you examine Figure 1a, you will see that the height of the first rectangle is
. Since this rectangle has width 1, the area of the rectangle is also .

Similarly, the area of the second rectangle is , and so on. Comparing the sum of the
areas of the first inscribed rectangles with the area of the region under the
graph of over the interval , we see that

which implies that

(1)Sn � a1 � a2 � a3 � p � an � a1 � �
n

1
f(x) dx

a2 � a3 � p � an � �
n

1
f(x) dx

[1, n]f
(n � 1)

a3

a2 � f(2)a2 � f(2)

(a) a2 � a3 � ��� � an �

n � 1 n

a2 a3 a4 a5 an

f (x) dx � a1 � a2 � ��� � an�1f (x) dx (b)

xx1 2 3 4 50

y

y � f (x)

y
1

n

(n, an)

(2, a2)

(3, a3)

n � 1 n

a1 a2 a3 a4 an�1

1 2 3 4 50

y

y � f (x)

(n � 1, an�1)

(2, a2)

(1, a1)

y
1

n
FIGURE 1
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If is convergent and has value , then

This shows that is bounded above. Also,

Because 

shows that is increasing as well. Therefore, by Theorem 6, Section 9.1, is
convergent. In other words, is convergent.

Next, by examining Figure 1b, we can see that

(2)

So if diverges (to infinity because ), then limn→� Sn�1 �f(x) � 0��
1 f(x) dx

�
n

1
f(x) dx � a1 � a2 � p � an�1 � Sn�1

��
n�1 an

{Sn}{Sn}

an�1 � f(n � 1) � 0Sn�1 � Sn � an�1 � Sn

{Sn}

Sn � a1 � �
n

1
f(x) dx � a1 � L

L��
1 f(x) dx

EXAMPLE 1 Use the Integral Test to determine whether converges or
diverges.

Solution Here, , so we consider the function f(x) �an � f(n) � 1>(n2 � 1)

a
�

n�1
 

1

n2 � 1

. Since is continuous, positive, and decreasing on , we may use the
Integral Test. Next,

Since converges, we conclude that converges as
well.

��
n�1 1>(n2 � 1)��

1 1>(x2 � 1) dx

 � lim
b→�

(tan�1 b � tan�1 1) �
p

2
�
p

4
�
p

4

 �
�

1
 

1

x2 � 1
dx � lim

b→�
 �

b

1
 

1

x2 � 1
dx � lim

b→�
Ctan�1 x Db

1

[1, �)f1>(x2 � 1)

EXAMPLE 2 Use the Integral Test to determine whether converges or
diverges.

Solution Here, , so we consider the function . Observe
that is continuous and positive on . Next, we compute

f ¿(x) �

xa1
x
b � ln x

x2
�

1 � ln x

x2

[1, �)f
f(x) � (ln x)>xan � (ln n)>n

a
�

n�1
 
ln n

n

, and is divergent.

Notes
1. The Integral Test simply tells us whether a series converges or diverges. If it indi-

cates that a series converges, we may not conclude that the (finite) value of the
improper integral used in conjunction with the test is the sum of the convergent
series (see Exercise 54).

2. Since the convergence of an infinite series is not affected by adding or subtracting
a finite number of terms to the series, we sometimes study the series 

rather than the series . In this case the series is compared
with the improper integral , as we will see in Example 2.��

N f(x) dx
��

n�1 anaN � aN�1 � p
��

n�N an �

��
n�1 anlimn→� Sn � �
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DEFINITION -Series

A -series is a series of the form

where is a constant.p

a
�

n�1
 

1

np � 1 �
1

2p �
1

3p � p

p

p

Observe that if , the -series is just the harmonic series .
The conditions for the convergence or divergence of the -series can be found by

applying the Integral Test to the series.
p

��
n�1 1>npp � 1

THEOREM 2 Convergence of the -Series

The -series converges if and diverges if .p � 1p � 1a
�

n�1
 

1

npp

p

PROOF If , then . If , then . In either
case, , so the -series diverges by the Divergence Test.

If , then the function is continuous, positive, and decreasing on
. In Example 2 in Section 7.6 we found that converges if andp � 1��

1 1>xp dx[1, �)
f(x) � 1>xpp � 0
plimn→�(1>np) 	 0

limn→�(1>np) � 1p � 0limn→�(1>np) � �p � 0

EXAMPLE 3 Determine whether the given series converges or diverges.

a. b. c.

Solution
a. This is a -series with , and hence it converges by Theorem 2.
b. Rewriting the series in the form , we see that the series is a -seriesp��

n�1 1>n1>2p � 2 � 1p

a
�

n�1
n�1.001

a
�

n�1
 

1

1na
�

n�1
 
1

n2

with , and hence it diverges by Theorem 2.
c. We rewrite the series in the form , which we recognize to be a 

-series with and conclude that the series converges.p � 1.001 � 1p
��

n�1 1>n1.001
p � 1

2 � 1

Note that if , that is, if . This shows that is decreasing on
. Therefore, we may use the Integral Test:

and we conclude that diverges.

The -Series
The following series will play an important role in our work later on.

p

��
n�1(ln n)>n

 � lim
b→�

 
1

2
 [(ln b)2 � (ln 3)2] � �

 �
�

3
 
ln x

x
dx � lim

b→�
 �

b

3
 
ln x

x
dx � lim

b→�
c1
2

 (ln x)2db
3

[3, �)
fx � eln x � 1f ¿(x) � 0

diverges if . Using this result and the Integral Test, we conclude that 
converges if and diverges if . Therefore, converges if 
and diverges if .p � 1

p � 1��
n�1 1>np0 � p � 1p � 1

��
n�1 1>npp � 1
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1. Consider the series .

Let .

a. Sketch a figure similar to Figure 1a for this series and
function, and compute , , ,

, .

b. Explain why 

.

c. By evaluating the improper integral in part (b), show that
for each . Then use the Monotone 

Convergence Theorem (Section 9.1) to show that 
converges.

Note: The Swiss mathematician Leonhard Euler showed that the sum
of this series is .p2>6

a
�

n�1
 
1

n2

n � 1, 2, 3, pSn � 2

� 
1

12 � �
n

1
 
1

x2 dx � 1 � �
�

1
 
1

x2 dx

Sn �
1

12 �
1

22 �
1

32 � p �
1

n2

an � f(n)p 
a3 � f(3)a2 � f(2)a1 � f(1)

f(x) �
1

x2

a
�

n�1
 
1

n2 �
1

12 �
1

22 �
1

32 �
1

42 �
1

52 � p 2. Consider the series .

Let .

a. Sketch a figure similar to Figure 1b for this series and
function, and compute , , ,

, .

b. Explain why .

c. Show that is divergent, and conclude that 

diverges.
Note: This is the harmonic series that was shown to be divergent in
Section 9.2.

a
�

n�1
 
1
n�

�

1
 
1
x

dx

Sn�1 �
1

1
�

1

2
�

1

3
� p �

1

n�1
� �

n

1
 
1
x

dx

an � f(n)p 
a3 � f(3)a2 � f(2)a1 � f(1)

f(x) �
1
x

a
�

n�1
 
1
n

�
1

1
�

1

2
�

1

3
�

1

4
�

1

5
� p

9.3 CONCEPT QUESTIONS

Videos for selected exercises are available online at www.academic.cengage.com/login.V

In Exercises 1–8, use the Integral Test to determine whether the
series is convergent or divergent.

1. 2.

3. 4.

5.

6.

7. 8.

In Exercises 9–14, determine whether the -series is convergent
or divergent.

9. 10.

11. 12.

13. 14.

In Exercises 15–32 determine whether the given series is 
convergent or divergent.

15. 16. a
�

n�1
 

n

22n2 � 1
a
�

n�0
 

1

1n � 1

a
�

n�1
n�0.98

a
�

n�1
n�p

a
�

n�1
 
1

nea
�

n�1
 

1

n1.01

a
�

n�1
 

1

n2>3a
�

n�1
 
1

n3

p

a
�

n�2
 

1

n1ln na
�

n�1
 

n

(n2 � 1)3>2

1

3
�

1

7
�

1

11
�

1

15
�

1

19
� p

1

2
�

1

5
�

1

10
�

1

17
�

1

26
� p

a
�

n�1
ne�n

a
�

n�1
e�n

a
�

n�1
 

3

2n � 1a
�

n�1
 
1

n4

17. 18.

19. 20.

21. 22.

23. 24.

25. 26.

27. 28.

29. 30.

31. 32.

In Exercises 33 and 34, find the values of for which the series
is convergent.

33. 34.

35. Find the value(s) of for which the series

converges. Justify your answer.a
�

n�1
c a

n � 1
�

1

n � 2
d
a

a
�

n�1
 
ln n

npa
�

n�2
 

1

n(ln n)p

p

a
�

n�1
 

1

2n2 � 7n � 3a
�

n�1
 

1

n2 � 2n � 5

a
�

n�1
 

1

e�n � 1a
�

n�1
 
tan�1 n

n2 � 1

a
�

n�1
 
n

2na
�

n�1
 

1

4n2 � 1

a
�

n�1
 

1

1n � 4a
�

n�1
 

sina1
n
b

n2

a
�

n�1
 
e1>n
n2a

�

n�2
 

1

n(ln n)2

a
�

n�2
 
ln n

n2a
�

n�2
 
ln n

n

a
�

n�1
c a2

3
bn

�
1

n3>2 da
�

n�1
a 1

n1n
�

2

n2b
a
�

n�1
n�0.75

a
�

n�1
 

1

n1n
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36. a. Show that if is the th partial sum of the harmonic
series, then .
Hint: Use Inequality (1), page 757, with .

b. Use part (a) to show that the sum of the first 1,000,000
terms of the harmonic series is less than 15. The har-
monic series diverges very slowly!

37. Euler’s Constant
a. Show that

and therefore,

Hence, deduce that the sequence defined by

is bounded below.
Hint: Use Inequality (2), page 758, with .

b. Show that

and use this result to show that the sequence 
defined in part (a) is decreasing.
Hint: Draw a figure similar to Figure 1.

c. Use the Monotone Convergence Theorem to show that
is convergent.

Note: The number

whose value is , is called Euler’s constant.

38. Riemann Zeta Function The Riemann zeta function for real
numbers is defined by

What is the domain of the function?

39. Let , where is a continuous, positive, and 
decreasing function on , and suppose that 
is convergent.
a. Show, by sketching appropriate figures, that if

, where and , then

Note: is the error estimate for the Integral Test.
b. Use the result of part (a) to deduce that

Sn � �
�

n�1
 f(x) dx � S � Sn � �

�

n

f(x) dx

Rn

�
�

n�1
 f(x) dx � Rn � �

�

n

f(x) dx

Sn � �n
k�1 akS � ��

n�1 anRn � S � Sn

��
n�1 an[n, �)

fak � f(k)

j(x) � a
�

n�1
n�x

0.5772 p

g � lim
n→�

an � lim
n→�
a1 �

1

2
� p �

1

n
� ln nb

{an}

{an}

1

n � 1
� �

n�1

n

 
1
x

dx � ln(n � 1) � ln n

f(x) � 1>x

an � 1 �
1

2
� p �

1
n

� ln n

{an}

0 � ln(n � 1) � ln n � 1 �
1

2
� p �

1
n

� ln n

ln(n � 1) � 1 �
1

2
� p �

1
n

f(x) � 1>x
Sn � 1 � ln n

nSn 40. Consider the series , which is a convergent -series pa
�

n�1
 
1

n2
.

a. Use the result of Exercise 39b to show that

where is the th partial sum of .

b. In Exercise 77 in Section 9.2 you were asked to show
that

Confirm this result, using the result of part (a).
c. Use the result of Exercise 39a to find the upper and

lower bounds on the error incurred in approximating 

using the 100th partial sum of the series.

d. It can be shown that . Use a calculator or

computer to verify this.

In Exercises 41–44, use the result of Exercise 39 to find the max-
imum error if the sum of the series is approximated by .

41. ; 42. ;

43. ; 44. ;

In Exercises 45–48, use the result of Exercise 39 to find the num-
ber of terms of the series that is sufficient to obtain an approxi-
mation of the sum of the series accurate to two decimal places.

45. 46.

47. 48.

In Exercises 49 and 50, use the result of Exercise 39 to find the
sum of the series accurate to three decimal places using the th
partial sum of the series.

49. 50.

51. a. Show that

b. Use the results of part (a) to evaluate 

a
�

n�1
 

1

n(n � 1)(n � 2)

a
�

n�1
 

1

n(n � 1)(n � 2)
� a

�

n�1
c 1

2n(n � 1)
�

1

2(n � 1)(n � 2)
d

a
�

n�1
 

1

n9>2a
�

n�1
 
1

n4

n

a
�

n�2
 

1

n(ln n)2a
�

n�1
 
tan�1 n

1 � n2

a
�

n�1
 
1

n3a
�

n�1
 
1

n2

S3a
�

n�1
ne�n2

S50a
�

n�1
 

1

n2 � 1

S20a
�

n�1
 

1

n5>2S40a
�

n�1
 
2

n2

Sn

a
�

n�1
 
1

n2 �
p2

6

a
�

n�1
 
1

n2

3

2
� a

�

n�1
 
1

n2 � 2

a
�

n�1
 
1

n2nSn � a
n

k�1
 
1

k2

Sn �
1

n � 1
� a

�

n�1
 
1

n2 � Sn �
1
n

(p � 2)

cas
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52. Evaluate accurate to four decimal places by estab-

lishing parts (a) and (b) and using the results of Exercise 51.

a.

b. can be approximated with an accuracy of

four decimal places by using six terms of the series.
Hint: Show that

if , and use the result of Exercise 39.

53. Use the Integral Test to show that 

converges if and diverges if .

54. Consider the series .
a. Evaluate , and deduce from the Integral Test

that the given series is convergent.
��

0 e�x dx
��

n�0 e�n

p � 1p � 1

a
�

n�3
 

1

n(ln n)[ln(ln n)]p

n � 2

1

n3(n2 � 1)
�

2

n5

a
�

n�2
 

1

n3(n2 � 1)

a
�

n�1
 
1

n3 � 1 � a
�

n�2
 

1

(n � 1)n(n � 1)
� a

�

n�2
 

1

n3(n2 � 1)

a
�

n�1
 
1

n3

b. Show that the given series is a geometric series, and find
its sum.

c. Conclude that although the convergence of 
implies convergence of the infinite series, its value does
not give the sum of the infinite series.

In Exercises 55–58, determine whether the statement is true or
false. If it is true, explain why it is true. If it is false, explain why
or give an example to show why it is false.

55. Suppose that is a continuous, positive, and decreasing
function on . If for and is
convergent, then .

56. Suppose that is a continuous, positive, and decreasing
function on . If for and

, where is a positive integer, then 
diverges.

57.

58. If is a convergent series with positive terms, then
must also converge.��

n�11an

��
n�1 an

�
�

1
 

dx

x(x � 1)
� �

��
n�1 anN��

N f(x) dx � �
n � 1f(n) � an[1, �)

f

��
n�1 an � a1 � ��

1 f(x) dx
��

n�1 ann � 1f(n) � an[1, �)
f

��
0 e�x dx

9.4 The Comparison Tests

The rationale for the comparison tests is that the convergence or divergence of a given
series can be determined by comparing its terms with the corresponding terms of
a test series whose convergence or divergence is known. The series that we will con-
sider in this section have positive terms.

The Comparison Test
Suppose that the terms of a series are smaller than the corresponding terms of a
series . This situation is illustrated in Figure 1, where the respective terms of each
series are represented by rectangles, each of width 1 and having the appropriate height.

If is convergent, the total area of the rectangles representing this series is finite.
Since each rectangle representing the series is contained in a corresponding rect-
angle representing the terms of , the total area of the rectangles representing 
must also be finite; that is, the series must be convergent. A similar argument sug-
gests that if all the terms of a series are larger than the corresponding terms of a
series that is known to be divergent, then must itself be divergent. These
observations lead to the following theorem.

� an� bn

� an

� an

� an� bn

� an

� bn

� bn

� an

� an

FIGURE 1
Each rectangle representing is con-
tained in the rectangle representing .bn

an

a1 a3a2 a4 a5 a6

b6

b5

b4

b3
b2

b1

n1 2 3 4 5 6 70

an

THEOREM 1 The Comparison Test

Suppose that and are series with positive terms.

a. If is convergent and for all , then is also convergent.
b. If is divergent and for all , then is also divergent.� annan � bn� bn

� annan � bn� bn

� bn� an
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PROOF Let

and

be the th terms of the sequence of partial sums of and , respectively. Since
both series have positive terms, and are increasing.

a. If is convergent, then there exists a number such that and
for all . Since for all , we have , and this implies that
for all . We have shown that is increasing and bounded above, so by

the Monotone Convergence Theorem for Sequences of Section 9.1, converges.
b. If is divergent, then , since is increasing. But 

for all , and this implies that , which in turn implies that .
Therefore, diverges.

To use the Comparison Test, we need a catalog of test series whose convergence
or divergence is known. For the moment we can use the geometric series and the -
series as test series.

p

� an

limn→� Sn � �Sn � Tnn
an � bn{Tn}limn→� Tn � ���

n�1 bn

� an

{Sn}nSn � L
Sn � Tnnan � bnnTn � L

limn→� Tn � LL��
n�1 bn

{Tn}{Sn}
� bn� ann

Tn � a
n

k�1
bkSn � a

n

k�1
ak

EXAMPLE 1 Determine whether the series converges or diverges.

Solution Let

If is large, behaves like , so behaves like

This observation suggests that we compare with the test series , which is a
convergent -series with . Now,

and the given series is indeed “smaller” than the test series . Since the test series� 1>n2

n � 10 �
1

n2 � 2
�

1

n2

p � 2p
� bn� an

bn �
1

n2

ann2n2 � 2n

an �
1

n2 � 2

a
�

n�1
 

1

n2 � 2

converges, we conclude by the Comparison Test that also converges.� 1>(n2 � 2)

EXAMPLE 2 Determine whether the series converges or diverges.

Solution Let

If is large, behaves like , so behaves like . This observation sug-bn � 112 2nan2n3 � 2nn

an �
1

3 � 2n

a
�

n�1
 

1

3 � 2n

gests that we compare with . Now the series is a geometric series
with , so it is convergent. Since

the Comparison Test tells us that the given series is convergent.

n � 1an �
1

3 � 2n �
1

2n � bn

r � 1
2 � 1

� 1
2n � � 112 2n� bn� an
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EXAMPLE 3 Determine whether the series is convergent or divergent.

Solution Let

If is large, behaves like , so behaves like

Now the series

is a -series with , so it is divergent. Since

for 

the Comparison Test implies that the given series is divergent.

The Limit Comparison Test
Consider the series

If is large, behaves like , so the th term of the given series

behaves like

Since the series is a divergent -series with , we expect
the series to be divergent as well. But the inequality

tells us that is “smaller” than a divergent series, and this is of no help if we
try to use the Comparison Test!

In situations like this, the Limit Comparison Test might be applicable. The ration-
ale for this test follows: Suppose that and are series with positive terms and� bn� an

��
n�1 an

n � 1an �
1

1n � 1
�

1

1n
� bn

��
n�1 1>(1n � 1)

p � 1
2p��

n�1 bn � ��
n�1 1>1n

bn �
1

1n

an �
1

1n � 1

n1n1n � 1n

a
�

n�1
 

1

1n � 1

n � 2an �
1

1n � 1
�

1

1n
� bn

p � 1
2 � 1p

a
�

n�2
bn � a

�

n�2
 

1

1n
� a

�

n�2
 

1

n1>2

bn �
1

1n

an1n1n � 1n

an �
1

1n � 1

a
�

n�2
 

1

1n � 1

Note Since the convergence or divergence of a series is not affected by the omission
of a finite number of terms of the series, the condition (or ) for all 
can be replaced by the condition that these inequalities hold for all for some
integer .N

n � N
nan � bnan � bn



PROOF Since , there exists an integer such that 
implies that

or

If converges, so does . Therefore, the right side of the last inequality implies
that converges by the Comparison Test. On the other hand, if diverges, so
does , and the left side of the last inequality implies by the Comparison Test
that diverges as well.� an

� 1
2 Lbn

� bn� an

� 3
2 Lbn� bn

1

2
 Lbn � an �

3

2
 Lbn

1

2
 L �

an

bn
�

3

2
 L

` an

bn
� L ` � 1

2
 L

n � NNlimn→�(an>bn) � L � 0

9.4 The Comparison Tests 765

THEOREM 2 The Limit Comparison Test

Suppose that and are series with positive terms and

where is a positive number. Then either both series converge or both diverge.L

lim
n→�

 
an

bn
� L

� bn� an

EXAMPLE 4 Show that the series is divergent.

Solution As we saw earlier, behaves like if is large. This sug-
gests that we use the Limit Comparison Test with and .
Thus,

Since is divergent it is a -series with , we conclude that the given
series is divergent as well.

Note You can still use the Comparison Test to solve the problem. Simply observe that

for 

This suggests picking , where , for the test series.bn � 1>(21n)� bn

n � 1
1

1n � 1
�

1

1n � 1n
�

1

21n

p � 1
2 2p1��

n�1 1>1n

lim
n→�

 
an

bn
� lim

n→�
 

1

1n � 1
1

1n

� lim
n→�

 
1n

1n � 1
� lim

n→�
 

1

1 �
1

1n

� 1

bn � 1>1nan � 1>(1n � 1)
n1>1n1>(1n � 1)

a
�

n�1
 

1

1n � 1

suppose that , where is a positive constant. If is large,
or . It is reasonable to conjecture that the series and must both con-
verge or both diverge.

� bn� anan � Lbn

an>bn � LnLlimn→�(an>bn) � L
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EXAMPLE 6 Determine whether the series converges or diverges.

Solution If is large, behaves like . You can see this by comparing
the derivatives of and :

and

Observe that approaches zero faster than approaches zero, as . Thisx → �f ¿(x)t¿(x)

t¿(x) �
1
x

f ¿(x) �
1

21x

t(x) � ln xf(x) � 1x
1n1n � ln nn

a
�

n�1
 
1n � ln n

n2 � 1

shows that grows faster than . Also, if is large, behaves like . There-
fore,

behaves like

1n

n2
�

1

n3>2 � bn

an �
1n � ln n

n2 � 1

n2n2 � 1nln x1x

EXAMPLE 5 Determine whether the series converges or diverges.

Solution If is large, behaves like , and behaves like . There-
fore,

behaves like

Now

Divide numerator and 
denominator by .

Since converges it is a -series with , the given series converges, by
the Limit Comparison Test.

p � 3
2 2p1� 1>n3>2

 � 1

n7>2 � lim
n→�

 

2 �
1
n

a4 �
3

n7
b1>2

 � lim
n→�

 
2n7>2 � n5>2
(4n7 � 3)1>2

 lim
n→�

 
an

bn
� lim

n→�
 

2n2 � n

(4n7 � 3)1>2 �
n3>2

1

2n2

24n7
�

2n2

2n7>2 �
1

n3>2 � bn

an �
2n2 � n

24n7 � 3

4n74n7 � 32n22n2 � nn

a
�

n�1
 

2n2 � n

24n7 � 3
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Next, we compute

Divide the numerator and 
denominator by .

In evaluating this limit, we need to compute

Use l’Hôpital’s Rule.

(Incidentally, this result supports the observation made earlier that grows faster
than .) Using this result, we find

Since converges it is a -series with , the given series converges, by
the Limit Comparison Test.

p � 3
2 2p1� 1>n3>2

lim
n→�

 
an

bn
� lim

n→�
 

1 �
ln n

n1>2

1 �
1

n2

� 1

ln x
1x

lim
x→�

 
ln x

x1>2 � lim
x→�

 

1
x

1
2 x�1>2 � lim

x→�
 

2

1x
� 0

n2
 � lim

n→�
 

1 �
ln n

n1>2

1 �
1

n2

 � lim
n→�

 
n2 � n3>2 ln n

n2 � 1

 lim
n→�

 
an

bn
� lim

n→�
 
n1>2 � ln n

n2 � 1
�

n3>2
1

1. a. State the Comparison Test and the Limit Comparison
Test.

b. When is the Comparison Test used? When is the Limit
Comparison Test used?

2. Let and be series with positive terms.
a. If is convergent and for all , what can you

say about the convergence or divergence of ? Give
examples.

b. If is divergent and for all , what can you
say about the convergence or divergence of ? Give
examples.

� an

nan � bn� bn

� an

nan � bn� bn

� bn� an

In Exercises 3 and 4, let , , and be series with pos-
itive terms.

3. If is convergent and for all , what can
you say about the convergence or divergence of and

?
4. If is divergent and for all , what can you

say about the convergence or divergence of and ?� cn� bn

nbn � cn � an� an

� cn

� bn

nbn � cn � an� an

� cn� bn� an

9.4 CONCEPT QUESTIONS

Videos for selected exercises are available online at www.academic.cengage.com/login.V

In Exercises 1–12, use the Comparison Test to determine
whether the series is convergent or divergent.

1. 2. a
�

n�1
 

1

n2 � 2na
�

n�1
 

1

2n2 � 1

3. 4.

5. 6. a
�

n�0
 

1

2n3 � 1
a
�

n�2
 

1

2n2 � 1

a
�

n�2
 

1

n2>3 � 1
a
�

n�3
 

1

n � 2
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7. 8.

9. 10.

11. 12.

In Exercises 13–24, use the Limit Comparison Test to determine
whether the series is convergent or divergent.

13. 14.

15. 16.

17. 18.

19. 20.

21. 22.

23. 24.

In Exercises 25–40, determine whether the series is convergent
or divergent.

25. 26.

27. 28.

29. 30.

31. 32.

33. 34.

35. 36.

37. 38.

39. 40.

41. Let and be series with , and suppose
that is convergent with sum . Then the Comparison
Test implies that also converges, say, with sum . Put

and , where is the th-partial
sum of . Show that the remainders and satisfy

.Rn � Tn

TnRn� bn

nUnTn � T � UnRn � S � Sn

S� an

T� bn

0 � an � bn� bn� an

a
�

n�1
 

2n2 � n

23n7 � ln n
a
�

n�1
 
1n � ln n

2n2 � 3

a
�

n�1
 

1

1 � 2 � 3 � p � na
�

n�1
 
n!

nn

a
�

n�1
 
n2

n!a
�

n�0
 
1

n!

a
�

n�1
 

ln n

n � 2a
�

n�2
 

1

ln n

a
�

n�1
 
tan�1n

n3 � 1a
�

n�1
 

sin2 n

n1n � 1

a
�

n�1
 

1

n �2n2 � 1
a
�

n�1
 

2n�1

n2 � n

a
�

n�1
 

n � 1

2n3 � 1a
�

n�1
 
n � 1

n3 � 2

a
�

n�1
 

n

2n5 � n
a
�

n�1
 

n � 1

(n � 2)(2n2 � 1)

a
�

n�1
tan 

1
na

�

n�1
sin 

1
n

a
�

n�2
 

ln n

n3 � 1a
�

n�1
 

n

2n � 1

a
�

n�2
 

1

2n � 3a
�

n�2
 

1

2n3 � n � 1

a
�

n�1
 

n2 � 1

n2(n � 3)a
�

n�1
 

3n2 � 1

2n5 � n � 2

a
�

n�1
 

2n � 1

3n2 � n � 1a
�

n�2
 

n

2n5 � 1

a
�

n�1
 

1

1n � 2a
�

n�2
 

n

n2 � 1

a
�

n�1
 
1

nna
�

n�1
 
2 � sin n

3n

a
�

n�1
 
cos2 n

n2a
�

n�2
 
ln n

n

a
�

n�3
 

3n

2n � 4a
�

n�0
 

2n

3n � 1

In Exercises 42–45, use the result of Exercise 41 to find an
approximation of the sum of the series using its partial sum,
accurate to two decimal places.

42. 43.

44. 45.

46. Suppose that is a convergent series with positive terms.
Show that is also convergent.

47. Suppose that and are convergent series with posi-
tive terms. Show that is convergent.
Hint: There exists an integer such that implies that ,
and therefore, for .

48. Suppose that is a convergent series with positive terms
and is a sequence of positive numbers that converges to
zero. Prove that is convergent.
Hint: There exists an integer such that implies that ,
where is a positive number, and therefore, for .

49. Prove that if and converges, then also con-
verges. Is the converse true? Explain.

50. Using the result of Exercise 48 or otherwise, show that
is convergent if .

51. a. Suppose that and are series with positive terms
and is convergent. Show that if ,
then is convergent.

b. Use part (a) to show that is convergent.

52. Give an example of a pair of series and with 
positive terms such that , is divergent,
but is convergent. (Compare this with the result of
Exercise 51.)

53. a. Show that if is a convergent series with positive
terms, then is also convergent.

b. If diverges can converge? Explain.

54. Prove that (a) converges and 

(b) diverges.

In Exercises 55–58, determine whether the statement is true or
false. If it is true, explain why it is true. If it is false, explain why
or give an example to show why it is false.

55. If and converges, then diverges.

56. If and diverges, then diverges.

57. If and and converges, then and
both converge.

58. If and and converges, then 
and both converge.� bn

� an�2a2
n � b2

nbn � 0an � 0

� bn

� an� anbnbn � 0an � 0

� an� bn0 � an � bn

� bn� an0 � an � bn

�
�

1
 

1

1x(x � 1)
dx

�
�

1
 

1

1x(x � 1)(x � 2)
dx

� sin an� an

� sin an

� an

� an

� bnlimn→� an>bn � 0
� bn� an

a
�

n�1
 
ln n

n2

� an

limn→� an>bn � 0� bn

� bn� an

p � 1��
n�2 1>(np ln n)

� a2
n� anan � 0

n � Nancn � LanL
cn � Ln � NN

� ancn

{cn}
� an

n � Nanbn � an

bn � 1n � NN

� anbn

� bn� an

�(an>n)
� an

a
�

n�1
 
tan�1 n

2na
�

n�1
 

1

3n � 1

a
�

n�1
 
sin n � 2

n4a
�

n�1
 

1

n3 � 2n
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9.5 Alternating Series

Up to now, we have dealt mainly with series that have positive terms, and the conver-
gence tests that we have developed are applicable only to these series. In this section
and Section 9.6 we will consider series that contain both positive and negative terms.
Series whose terms alternate in sign are called alternating series.

Examples are the alternating harmonic series

and the series

More generally, an alternating series is a series of the form

or

where is a positive number. We use the Alternating Series Test to determine conver-
gence for these series.

an

a
�

n�1
(�1)nana

�

n�1
(�1)n�1an

a
�

n�1
 
(�1)n n2

(n � 1)!
� �

1

2!
�

4

3!
�

9

4!
�

16

5!
�

25

6!
� p

a
�

n�1
 
(�1)n�1

n
� 1 �

1

2
�

1

3
�

1

4
�

1

5
�

1

6
� p

THEOREM 1 The Alternating Series Test

If the alternating series

satisfies the conditions

1. for all 

2.

then the series converges.

lim
n→�

an � 0

nan�1 � an

an � 0a
�

n�1
(�1)n�1an � a1 � a2 � a3 � a4 � a5 � a6 � p

The plausibility of Theorem 1 is suggested by Figure 1, which shows the first few
terms of the sequence of partial sums of the alternating series

plotted on the number line. The point lies to the left of the number 
, since it is obtained by subtracting the positive number from . But the

number also lies to the right of the origin because . The number
is obtained by adding to , and hence it lies to the

right of . But because , lies to the left of . Continuing in this fashion,
we see that numbers corresponding to the partial sums oscillate. Because

, the steps get smaller and smaller. Thus, it appears that the sequence
will approach a limit. In particular, observe that the even terms of the sequence
are increasing, whereas the odd terms of the sequence are decreasing. This sug-

gests that the subsequence will approach the limit from below and the subse-
quence will approach from above. These observations form the basis of the
proof of Theorem 1.

S{S2n�1}
S{S2n}

{Sn}
{Sn}
limn→� an � 0

{Sn}
S1S3a3 � a2S2

S2a3S3 � a1 � a2 � a3 � S2 � a3

a2 � a1S2

S1a2S1 � a1

S2 � a1 � a2

a
�

n�1
(�1)n�1an � a1 � a2 � a3 � p

{Sn}

FIGURE 1
The terms of oscillate in smaller
and smaller steps, and this suggests that

.limn→� Sn � S

{Sn}

S2 S4

�a1

�a3

�a5

�a4

�a2

S5 S3 S1S0
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PROOF OF THEOREM 1 We first consider the subsequence comprising the even
terms of . Now,

Since 

Since 

and, in general,

Since 

This shows that

that is, is increasing. Next, we write in the form

and observe that every expression within the parenthesis is nonnegative (again, because
). Thus, we see that for all . This shows that the sequence 

is bounded above as well. Therefore, by the Monotone Convergence Theorem for
Sequences of Section 9.1, the sequence is convergent; that is, there exists a num-
ber such that .

Next, we consider the subsequence comprising the odd terms of . Since
and by assumption, we have

Since the subsequences and of the sequence of partial sums both
converge to , we have , so the series converges.limn→� Sn � SS

{Sn}{S2n�1}{S2n}

 � S

 � lim
n→�

S2n � lim
n→�

a2n�1

 lim
n→�

S2n�1 � lim
n→�

(S2n � a2n�1)

limn→� a2n�1 � 0S2n�1 � S2n � a2n�1

{Sn}{S2n�1}
limn→� S2n � SS

{S2n}

{S2n}nS2n � a1an�1 � an

S2n � a1 � (a2 � a3) � (a4 � a5) � p � (a2n�2 � a2n�1) � a2n

S2n{S2n}

0 � S2 � S4 � p � S2n � p

a2n�1 � a2n�2S2n�2 � S2n � (a2n�1 � a2n�2) � S2n

a3 � a4S4 � S2 � (a3 � a4) � S2

a1 � a2S2 � a1 � a2 � 0

{Sn}
{S2n}

EXAMPLE 1 Show that the alternating harmonic series

converges.

Solution This is an alternating series with , so we use the Alternating Series
Test. We need to verify that (1) and (2) . But the first condi-
tion follows from the computation

while the second condition follows from

Therefore, by the Alternating Series Test, the given series converges.

lim
n→�

an � lim
n→�

 
1
n

� 0

an�1 �
1

n � 1
�

1
n

� an

limn→� an � 0an�1 � an

an � 1>n

a
�

n�1
 
(�1)n�1

n
� 1 �

1

2
�

1

3
�

1

4
� p
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EXAMPLE 2 Determine whether the series converges or diverges.

a. b.

Solution Since both series are alternating series we use the Alternating Series Test.
a. Here, . Because

we see that condition (2) in the Alternating Series Test is not satisfied. In fact,
this computation shows that

does not exist, and the divergence of the series follows from the Divergence 
Test.

b. Here . First we show that for all . We can do thisnan � an�1an � 3n>(4n2 � 1)

lim
n→�

(�1)n 
2n

4n � 1

lim
n→�

 
2n

4n � 1
�

1

2
	 0

an � 2n>(4n � 1)

a
�

n�1
(�1)n�1 

3n

4n2 � 1a
�

n�1
(�1)n 2n

4n � 1

by showing that is decreasing for . We compute

and the desired conclusion follows. Next, we compute

Since both conditions of the Alternating Series Test are satisfied, we conclude
that the series is convergent.

Notes
1. Example 2a reminds us once again that it is a good idea to begin investigating 

the convergence of a series by checking for divergence using the Divergence 
Test.

2. Because the behavior of a finite number of terms will not affect the convergence
or divergence of a series, the first condition in the Alternating Series Test can be
replaced by the condition for , where is some positive integer.

Approximating the Sum of an Alternating Series by 
Suppose that we can show that the series is convergent so that it has a sum . If

is the sequence of partial sums of , then or, equivalently,

lim
n→�

(S � Sn) � 0

limn→� Sn � S� an{Sn}
S� an

Sn

Nn � Nan�1 � an

lim
n→�

an � lim
n→�

 
3n

4n2 � 1
� lim

n→�
 

3
n

4 �
1

n2

� 0

 �
�12x2 � 3

(4x2 � 1)2
� 0

 f ¿(x) �
(4x2 � 1)(3) � (3x)(8x)

(4x2 � 1)2

x � 0f(x) � 3x>(4x2 � 1)
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Thus, the sum of a convergent series can be approximated to any degree of accuracy
by its th partial sum , provided that is taken large enough. To measure the accu-
racy of the approximation, we introduce the quantity

called the remainder after terms of the series . The remainder measures the
error incurred when is approximated by .

In general, it is difficult to determine the accuracy of such an approximation, but
for alternating series the following theorem gives us a simple way of estimating the
error.

SnS
��

n�1 ann

Rn � S � Sn � a
�

k�1
ak � a

n

k�1
ak � a

�

k�n�1
ak � an�1 � an�2 � an�3 � p

nSnn

THEOREM 2 Error Estimate in Approximating an Alternating Series

Suppose is an alternating series satisfying

1. for all 

2.

If is the sum of the series, then

In other words, the absolute value of the error incurred in approximating by
is no larger than , the first term omitted.an�1Sn

S

�Rn � � �S � Sn � � an�1

S

lim
n→�

an � 0

n0 � an�1 � an

��
n�1(�1)n�1 an

PROOF We have

Next,

Since for all 

So

Since every expression within each parenthesis is nonnegative, we see that
.

This error estimate holds only for alternating series.

�S � Sn � � an�1

 � an�1 � (an�2 � an�3) � (an�4 � an�5) � p
 �S � Sn � � an�1 � an�2 � an�3 � an�4 � an�5 � p

nan�1 � an � 0

 � (an�1 � an�2) � (an�3 � an�4) � p
 an�1 � an�2 � an�3 � an�4 � p

 � (�1)n(an�1 � an�2 � an�3 � p)

 � (�1)nan�1 � (�1)n�1an�2 � (�1)n�2an�3 � p

 S � Sn � a
�

k�1
(�1)k�1ak � a

n

k�1
(�1)k�1ak � a

�

k�n�1
(�1)k�1ak

!
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EXAMPLE 3 Show that the series is convergent, and find its sum cor-
rect to three decimal places.

Solution Since

for all and

we conclude that the series converges by the Alternating Series Test.
To see how many terms of the series are needed to ensure the specified accuracy

of the approximation, we turn to Theorem 2. It tells us that

We require that , which is satisfied if

or

The smallest positive integer that satisfies the last inequality is . Hence, the
required approximation is

 � 0.368

 � 1 � 1 �
1

2
�

1

6
�

1

24
�

1

120
�

1

720

 S � S6 �
1

0!
�

1

1!
�

1

2!
�

1

3!
�

1

4!
�

1

5!
�

1

6!

n � 6

(n � 1)! �
1

0.0005
� 2000

1

(n � 1)!
� 0.0005

�Rn � � 0.0005

�Rn � � �S � Sn � � an�1 �
1

(n � 1)!

lim
n→�

an � lim
n→�

 
1

n!
� 0

n

an�1 �
1

(n � 1)!
�

1

n!(n � 1)
�

1

n!
� an

a
�

n�0
(�1)n 

1

n!

1. a. What is an alternating series? Give an example.
b. State the Alternating Series Test, and use it to determine

whether the series in your example converges or
diverges.

c. What is the maximum error that can occur if you approx-
imate the sum of a convergent alternating series by its 
th partial sum?n

9.5 CONCEPT QUESTIONS

In Exercises 1–24, determine whether the series converges or
diverges.

1. 2.

3. 4. a
�

n�1
 
(�1)n�1n2

2n2 � 1a
�

n�1
 
(�1)n�1

n2

a
�

n�1
 
(�1)nn

3n � 1a
�

n�1
 
(�1)n�1

n � 2

5. 6.

7. 8.

9. 10. a
�

n�1
 
(�1)n ln(n � 1)

n � 2a
�

n�2
 
(�1)n n

ln n

a
�

n�2
 
(�1)n�1

ln na
�

n�2
 
(�1)n�11n � 1

n � 1

a
�

n�1
 
(�1)n�1n

2n2 � 1
a
�

n�1
 
(�1)n�1

1n

9.5 EXERCISES

Videos for selected exercises are available online at www.academic.cengage.com/login.V

www.academic.cengage.com/login
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11. 12.

13. 14.

15. 16.

17. 18.

19. 20.

21. 22.

23. 24.

In Exercises 25 and 26, find the values of for which the series
is convergent.

25. 26.

In Exercises 27–30, determine the number of terms sufficient to
obtain the sum of the series accurate to three decimal places.

27. 28.

29. 30.

In Exercises 31–34, find an approximation of the sum of the
series accurate to two decimal places.

31. 32.

33. 34. a
�

n�1
 
(�1)n�1

n � 2na
�

n�1
 
(�1)n�1(n � 1)

2n

a
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n�0
 
(�1)n

(2n)!a
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(�1)n

n3

a
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n�2
 
(�1)n�1

n ln na
�
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(�2)n�3

(n � 1)!

a
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n�1
 
(�1)n�1

1na
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n�1
 
(�1)n�1

n2 � 1

a
�

n�2
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(ln n)p

na
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n�2
 
(�1)n

(ln n)p

p

a
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1n na
�
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1n � 1n � 1

a
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(�1)n�11ln n

na
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(�1)n ln n

en

a
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(�1)n n!

nna
�

n�1
(�1)n n sinap

n
b

a
�

n�1
(�1)n cosap

n
ba

�

n�1
 

sinanp

2
b

2n3 � 1

a
�

n�2
(ln n) sin 

(2n � 1)p

2a
�

n�1
 

1

1n
sin 

(2n � 1)p

2

a
�

n�1
 
cos np

na
�

n�0
 
(�1)n�1 en

pn�1

a
�

n�1
 
(�1)n�1

ne�na
�

n�1
 
(�1)n n

2n

35. Show that the series

converges, and find its sum. Why isn’t the Alternating Series
Test applicable?

36. Show that the series

diverges. Why isn’t the Alternating Series Test applicable?

37. a. Suppose that and are both convergent. Does 
it follow that must be convergent? Justify your
answer.

b. Suppose that and are both divergent. Does 
it follow that must be divergent? Justify your
answer.

38. Find all values of for which converges.

39. a. Show that converges.

b. Find the sum of the series of part (a).

40. a. Show that converges.

b. Denote the sum of the infinite series in part (a) by .
Show that is irrational.
Hint: Use Theorem 2.

In Exercises 41–44, determine whether the statement is true or
false. If it is true, explain why it is true. If it is false, explain why
or give an example to show why it is false.

41. If the alternating series , where ,
is divergent, then the series is also divergent.

42. Let be an alternating series, where .
If , then converges.

43. If the alternating series , where , con-
verges, then both the series and converge.

44. Let be an alternating series, where .
If for all , then converges.��

n�1(�1)n�1 annan�1 � an

an � 0��
n�1(�1)n�1 an

��
n�1 a2n��

n�1 a2n�1

an � 0��
n�1(�1)n�1 an

��
n�1(�1)n�1 anlimn→� an � 0

an � 0��
n�1(�1)n�1 an

��
n�1 an

an � 0��
n�1(�1)n�1 an

S
S
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n!

a
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(�1)n(2n � 1)

n(n � 1)

a
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nss

� anbn

� bn� an

� anbn

� bn� an

1 �
1

4
�

1

3
�

1
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1

5
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1

36
� p �

1

2n � 1
�

1

(2n)2 � p

1

2
�

1

3
�

1

4
�

1

9
�

1

8
�

1

27
� p �

1

2n �
1

3n � p

9.6 Absolute Convergence; the Ratio and Root Tests

Absolute Convergence
Up to now, we have considered series whose terms are all positive and series whose
terms alternate between being positive and negative. Now, consider the series

a
�

n�1
 
sin 2n

n2
� sin 2 �

sin 4

22
�

sin 6

32
� p
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DEFINITION Absolutely Convergent Series

A series is absolutely convergent if the series is convergent.� �an �� an

Notice that if the terms of the series are positive, then . In this case
absolute convergence is the same as convergence.

�an � � an� an

EXAMPLE 1 Show that the series

is absolutely convergent.

Solution Taking the absolute value of each term of the series, we obtain

which is a convergent -series . Hence the series is absolutely convergent.(p � 2)p

a
�

n�1
` (�1)n�1

n2
` � a

�

n�1
 
1

n2
� 1 �

1

22
�

1

32
�

1

42
� p

a
�

n�1
 
(�1)n�1

n2
� 1 �

1

22
�

1

32
�

1

42
� p

EXAMPLE 2 Show that the alternating harmonic series

is not absolutely convergent.

Solution Taking the absolute value of each term of the series leads to

which is the divergent harmonic series. This shows that the series is not absolutely 
convergent.

In Example 2 we saw that the alternating harmonic series is not absolutely conver-
gent; but as we proved earlier, it is convergent. Such a series is said to be condition-
ally convergent.

a
�

n�1
` (�1)n�1

n
` � a

�

n�1
 
1
n

� 1 �
1

2
�

1

3
� p

a
�

n�1
 
(�1)n�1

n
� 1 �

1

2
�

1

3
�

1

4
� p

With the aid of a calculator you can verify that the first term of this series is positive,
the next two terms are negative, and the next term is positive. Therefore, this series is
neither a series with positive terms nor an alternating series. To study the convergence
of such series, we introduce the notion of absolute convergence.

Suppose that is any series. Then we can form the series

by taking the absolute value of each term of the given series. Since this series contains
only positive terms, we can use the tests developed in Sections 9.3 and 9.4 to deter-
mine its convergence or divergence.

a
�

n�1

�an � � �a1 � � �a2 � � �a3 � � p

��
n�1 an
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DEFINITION Conditionally Convergent Series

A series is conditionally convergent if it is convergent but not absolutely
convergent.

� an

THEOREM 1
If a series is absolutely convergent, then it is convergent.� an

The following theorem tells us that absolute convergence is, loosely speaking,
stronger than convergence.

PROOF Using an absolute value property, we have

Adding to both sides of this inequality yields

If we let , then the last inequality becomes . If is
absolutely convergent, then is convergent, which in turn implies, by Theorem 4a
of Section 9.2, that is convergent. Therefore, is convergent by the Com-
parison Test. Finally, since , we see that is con-
vergent by Theorem 4b of Section 9.2.

As an illustration, the series of Example 1 is an alternating series that
can be shown to be convergent by the Alternating Series Test. Alternatively, we can
show that the series is absolutely convergent (as was done in Example 1) and conclude
by Theorem 1 that it must be convergent.

�(�1)n�1>n2

� an � � bn � � �an �an � bn � �an �
� bn� 2 �an �

� �an �
� an0 � bn � 2 �an �bn � an � �an �

0 � an � �an � � 2 �an �

�an �

��an � � an � �an �

EXAMPLE 3 Determine whether the series

converges or diverges.

Solution As was pointed out at the beginning of this section, this series contains both
positive and negative terms, but it is not an alternating series because the first term is
positive, the next two terms are negative, and the next term is positive.

Let’s show that the series is absolutely convergent. To do this, we consider the series

Since for all , we see that

Now, because is a convergent -series, the Comparison Test tells us thatp� 1>n2

� sin 2n �

n2
�

1

n2

n� sin 2n � � 1

a
�

n�1
` sin 2n

n2
` � a

�

n�1
 
� sin 2n �

n2

a
�

n�1
 
sin 2n

n2
� sin 2 �

sin 4

22
�

sin 6

32
� p

is convergent. This shows that the given series is absolutely conver-
gent, and we conclude by Theorem 1 that it is convergent.
��

n�1� sin 2n �>n2



9.6 Absolute Convergence; the Ratio and Root Tests 777

The Ratio Test
The Ratio Test is a test for determining whether a series is absolutely convergent. Of
course, for series that contain only positive terms, the Ratio Test will just be yet another
test for convergence. To gain insight into why the Ratio Test works, consider the ratios
of the consecutive terms of the series :

, , ,

If the terms of this sequence are ultimately less than 1, then the terms of the series 
ultimately behave roughly like the terms of a geometric series with ,
and we can expect the series to be convergent. On the other hand, if the terms of the
series are ultimately greater than 1, then we can expect the series to be divergent.

0 � r � 1� ar n
� �an �

p�a4 �
�a3 �

�a3 �
�a2 �

�a2 �
�a1 �

� �an �

THEOREM 2 The Ratio Test

Let be a series with nonzero terms.

a. If , then converges absolutely.

b. If , or , then diverges.

c. If , the test is inconclusive, and another test should be used.lim
n→�
` an�1

an
` � 1

a
�

n�1
anlim

n→�
` an�1

an
` � �lim

n→�
` an�1

an
` � L � 1

a
�

n�1
anlim

n→�
` an�1

an
` � L � 1

� an

PROOF
a. Suppose that

Let be any number such that . Then there exists an integer 
such that

whenever or, equivalently,

whenever . Letting take on the values , , , successively,
we obtain

and, in general,

for all 

Since the series

(1)a
�

k�1

�aN � r k � �aN � r � �aN � r 2 � �aN � r 3 � p

k � 1�aN�k � � �aN � r k

�aN�3 � � �aN�2 � r � �aN � r 3

�aN�2 � � �aN�1 � r � �aN � r 2

�aN�1 � � �aN � r

p ,N � 2N � 1Nnn � N

�an�1 � � �an � r

n � N

` an�1

an
` � r

N0 � L � r � 1r

lim
n→�
` an�1

an
` � L � 1
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is a convergent geometric series with and each term of the series

(2)

is less than the corresponding term of the geometric series (1), the Comparison
Test then implies that series (2) is convergent. Since convergence or divergence is
unaffected by the omission of a finite number of terms, we see that the series

is also convergent.
b. Suppose that

Let be any number such that . Then there exists an integer such
that

whenever . This implies that when . Thus,
, and is divergent by the Divergence Test.

c. Consider the series and . For the first series we have

and for the second series we have

Thus,

for both series. The first series is the divergent harmonic series, whereas the 
second series is a convergent -series with . Thus, if , the series 
may converge or diverge, and the Ratio Test is inconclusive.

L � 1p � 2p

lim
n→�
` an�1

an
` � 1

lim
n→�
` an�1

an
` � lim

n→�
 

1

(n � 1)2
�

n2

1
� lim

n→�
 

1

a1 �
1
n
b2

� 1

lim
n→�
` an�1

an
` � lim

n→�
 

1

n � 1
�

n

1
� lim

n→�
 

1

1 �
1
n

� 1

��
n�1 1>n2��

n�1 1>n� anlimn→� an 	 0
n � N�an�1 � � �an �n � N

` an�1

an
` � r � 1

NL � r � 1r

lim
n→�
` an�1

an
` � L � 1

��
n�1 �an �

a
�

k�1

�aN�k � � �aN�1 � � �aN�2 � � �aN�3 � � p

0 � r � 1

EXAMPLE 4 Determine whether the series is absolutely conver-
gent, conditionally convergent, or divergent.

Solution We use the Ratio Test with . We have

Therefore, by the Ratio Test, the series is absolutely convergent.

 � lim
n→�

 
1

2
an2 � 2n � 2

n2 � 1
b �

1

2
� 1

 lim
n→�
` an�1

an
` � lim

n→�
 ` (�1)n[(n � 1)2 � 1]

2n�1
�

2n

(�1)n�1(n2 � 1)
`

an � (�1)n�1(n2 � 1)>2n

a
�

n�1
(�1)n�1 

n2 � 1

2n
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EXAMPLE 5 Determine whether the series is convergent or divergent.

Solution Let . Then

Since and are positive

Therefore, the series converges, by the Ratio Test.

 � lim
n→�

 
1

an � 1
n
bn � lim

n→�
 

1

a1 �
1
n
bn �

1

lim
n→�
a1 �

1
n
bn �

1
e

� 1

 � lim
n→�
a n

n � 1
bn

 � lim
n→�

 
(n � 1)n!

(n � 1)(n � 1)n �
nn

n!

 � lim
n→�

 
(n � 1)!

(n � 1)n�1
�

nn

n!

an�1an lim
n→�
` an�1

an
` � lim

n→�
 
an�1

an

an � n!>nn

a
�

n�1
 
n!

nn

EXAMPLE 6 Determine whether the series is absolutely convergent,
conditionally convergent, or divergent.

Solution Let . Then

and we conclude that the given series is divergent by the Ratio Test.

Alternative Solution Observe that for ,

Therefore, does not exist, so the Divergence Test
implies that the series must diverge.

The Root Test
The following test is especially useful when the th term of a series involves the th
power. Since the proof is similar to that of the Ratio Test, it will be omitted.

nn

limn→� an � limn→�(�1)nn!>3n

n!

3n �
n � (n � 1) � p � 3 � 2 � 1

3 � 3 � p � 3 � 3 � 3
�

2 � 1

3 � 3
�

2

9
	 0

n � 2

 � lim
n→�

 
n � 1

3
� �

 lim
n→�
` an�1

an
` � lim

n→�
` (�1)n�1(n � 1)!

3n�1
�

3n

(�1)nn!
`

an � (�1)n n!>3n

a
�

n�1
(�1)n 

n!

3n

THEOREM 3 The Root Test

Let be a series.

a. If , then converges absolutely.

b. If or , then diverges.

c. If , the test is inconclusive, and another test should be used.limn→�2n �an � � 1

��
n�1 anlimn→�2n �an � � �limn→�2n �an � � L � 1

��
n�1 anlimn→�2n �an � � L � 1

��
n�1 an
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EXAMPLE 7 Determine whether the series is absolutely con-

vergent, conditionally convergent, or divergent.

Solution We apply the Root Test with . We have

and conclude that the series is absolutely convergent.

Summary of Tests for Convergence and Divergence of Series
We have developed several ways of determining whether a series is convergent or diver-
gent. Next, we give a summary of the available tests and suggest when it might be
advantageous to use each test.

 � lim
n→�

 
21�3>n
n � 1

� 0 � 1

 lim
n→�
2n �an � � lim

n→�B
n ` (�1)n�1 

2n�3

(n � 1)n ` � lim
n→�
` 2n�3

(n � 1)n `
1>n

an � (�1)n�12n�3>(n � 1)n

a
�

n�1
(�1)n�1 

2n�3

(n � 1)n

Summary of the Convergence and Divergence Tests for Series

1. The Divergence Test often settles the question of convergence or diver-
gence of a series simply and quickly:

If , then the series diverges.

2. If you recognize that the series is
a. a geometric series , then it converges with sum if

. If , the series diverges.
b. a telescoping series, then use partial fraction decomposition (if neces-

sary) to find its th partial sum . Next determine convergence or
divergence by evaluating .

c. a -series , then the series converges if and diverges if
.

Sometimes a little algebraic manipulation might be required to cast the
series into one of these forms. Also, a series might involve a combination
(for example, a sum or difference) of these series.

3. If for , where is a continuous, positive, decreasing func-
tion on and readily integrable, then we may use the Integral Test:

converges if converges and diverges if diverges.

4. If is positive and behaves like the th term of a geometric or -series 
for large values of , then the Comparison Test or Limit Comparison Test
may be used. The tests and conclusions follow:
a. If for all and converges, then converges.
b. If for all and diverges, then diverges.
c. If is positive and , then both series converge

or both diverge.
The comparison tests can also be used on to test for absolute conver-
gence.

� �an �

limn→�(an>bn) � L � 0bn

� an� bn � 0nan � bn � 0
� an� bnnan � bn

n
pnan

��
1 f(x) dx��

1 f(x) dx��
n�1 an

[1, �)
fn � 1f(n) � an

p � 1
p � 1��

n�1 1>npp
limn→� Sn

Snn

� r � � 1� r � � 1
a>(1 � r)��

n�1 ar n�1

limn→� an 	 0

� an
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5. If the series is an alternating series, or , then
the Alternating Series Test should be considered:

If for all and , then the series converges.

6. The Ratio Test is useful if involves factorials or th powers. The series

a. converges absolutely if .

b. diverges if or .

The test is inconclusive if .

7. The Root Test is useful if involves th powers. The series

a. converges absolutely if .

b. diverges if or .

The test is inconclusive if .
8. If the series involves terms that are both positive and negative but it 

is not alternating, then one sometimes can prove convergence of the series
by proving that is convergent.� �an �

� an

limn→�2n �an � � 1

limn→�2n �an � � �limn→�2n �an � � 1

limn→�2n �an � � 1

nan

lim
n→�
` an�1

an
` � 1
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an
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an
` � 1
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n→�
` an�1

an
` � 1

nan

limn→� an � 0nan � an�1

��
n�1(�1)n�1 an��

n�1(�1)n an

Rearrangement of Series
A series with a finite number of terms has the same sum regardless of how the terms
of the series are rearranged. The situation gets a little more complicated, however, when
we deal with infinite series. The following example shows that a rearrangement of a
convergent series could result in a series with a different sum!

EXAMPLE 8 Consider the alternating harmonic series that converges to (see
Problem 57 in Exercises 9.8):

If we rearrange the series so that every positive term is followed by two negative terms,
we obtain

Thus, rearrangement of the alternating harmonic series has a sum that is one half that
of the original series!
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You might have noticed that the alternating harmonic series in Example 8 is con-
ditionally convergent. In fact, for such series, Riemann proved the following result:

If is any real number and is conditionally convergent, then there is a
rearrangement of that converges to .

A proof of this result can be found in more advanced textbooks.
Riemann’s result tells us that for conditionally convergent series, we may not

rearrange their terms, lest we end up with a totally different series, that is, a series with
a different sum. Actually, for conditionally convergent series, one can find rearrange-
ments of the series that diverge to infinity, diverge to minus infinity, or oscillate between
any two prescribed real numbers!

So what kind of convergent series will have rearrangements that converge to the
same sum as the original series? The answer is found in the following result, which
we state without proof:

If converges absolutely and is any rearrangement of , then
converges and .

Finally, since a convergent series with positive terms is absolutely convergent, its
terms can be written in any order, and the resultant series will converge and have the
same sum as the original series.

��
n�1 an � ��

n�1 bn��
n�1 bn

��
n�1 an��

n�1 bn��
n�1 an

x��
n�1 an

��
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EXAMPLE 9 Indicate the test(s) that you would use to determine whether the series
converges or diverges. Explain how you arrived at your choice.

a. b. c.

d. e. f.

g. h. i.

Solution
a. Since

we use the Divergence Test.
b. The series is the difference of a geometric series and a telescoping series, so we

use the properties of these series to determine convergence.

c. Here, is a -series, so we use the properties of a -series to

study its convergence.

d. The function is continuous, positive, and decreasing on and

is integrable, so we choose the Integral Test.
e. Here,

and we use the Comparison Test with the test series .� bn

an �
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�
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f. is positive and behaves like

for large values of , so we use the Limit Comparison Test with test series
.

g. This is an alternating series, and we use the Alternating Series Test.

h. Here, involves the th power, so the Root Test is a candidate. 

In fact, here and the series converges.

i. The series involves both positive and negative terms and is not an alternating
series, so we use the test for absolute convergence.

lim
n→�

 2n �an � � lim
n→�

 
1n n

2
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2
� 1

nan �
n

2n � an1>n
2
bn

��
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(n3)1>2

n4
�

n3>2
n4

�
1

n5>2

an �
(n3 � 2)1>2

n4 � 3n2 � 1

1. a. What is an absolutely convergent series? Give an 
example.

b. What is a conditionally convergent series? Give an 
example.

2. a. State the Ratio Test and the Root Test.
b. Give an example of a convergent series and an example

of a divergent series for which the Ratio Test is incon-
clusive.

c. Give an example of a convergent series and an example
of a divergent series for which the Root Test is incon-
clusive.

9.6 CONCEPT QUESTIONS

In Exercises 1–34, determine whether the series is convergent,
absolutely convergent, conditionally convergent, or divergent.

1. 2.

3. 4.

5. 6.

7. 8.

9. 10.

11. 12.
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15. 16.

17. 18.

19. 20.

21. 22.

23. 24.

25. 26.

27. 28.
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31.

32.

33.

34.

35. Find all values of for which the series (a) con-

verges absolutely and (b) converges conditionally.

36. Show that the Ratio Test is inconclusive for the -series.

37. Show that the Root Test is inconclusive for the -series.

38. a. Show that if converges absolutely, then con-
verges.

b. Show that the converse of the result in part (a) is false by
finding a series for which converges, but 
diverges.

39. Show that if diverges, then diverges.

40. Show that if converges absolutely, then .

41. Suppose that and are convergent. Show that
is absolutely convergent.

Hint: Show that by looking at and
.

42. Prove that .

Hint: Show that is convergent.a
�
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nn
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a
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2n

3 � 5 � 7 � p � (2n � 1)

a
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3 � 5 � 7 � p � (2n � 1)

1 � 4 � 7 � p � (3n � 2)

43. a. Show that the series , where , is con-
vergent.

b. Show that its sum is .

Hint: Find an expression for .

44. Average Number of Coin Tosses An unbiased coin is tossed until
the coin lands heads and the number of throws in the experi-
ment is recorded. As more and more experiments are per-
formed, the average number of tosses obtained from these
experiments approaches . Use the result of Exer-
cise 43 to find this number.

45. Show that if converges, then so does
.

46. Show that if is absolutely convergent, then
.

In Exercises 47–50, determine whether the statement is true or
false. If it is true, explain why it is true. If it is false, explain why
or give an example to show why it is false.

47. If and converge absolutely, then
converges absolutely.

48. If for and converges, then
converges.

49. If converges, then and con-
verge absolutely.

50. If for any and converges absolutely,

then diverges.a
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9.7 Power Series

Power Series
Until now, we have dealt with series with constant terms. In this section we will study
infinite series of the form

where is a variable. More generally, we will consider series of the formx

a
�

n�0
anx

n � a0 � a1x � a2x
2 � a3x

3 � p � anx
n � p

a
�

n�0
an(x � c)n � a0 � a1(x � c) � a2(x � c)2 � a3(x � c)3 � p � an(x � c)n � p

from which may be obtained as a special case by putting . We may
view such series as generalizations of the notion of a polynomial to an infinite series.

Examples of power series are

a
�

n�0
xn � 1 � x � x2 � x3 � p

c � 0��
n�0 anx

n
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and

Observe that if we truncate each of these series, we obtain a polynomial.
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Notes
1. A power series in is also called a power series centered at or a power

series about . Thus, a power series in is just a series centered at the origin.
2. To simplify the notation used for a power series, we have adopted the convention

that , even when .

We can view a power series as a function defined by the rule

The domain of is the set of all for which the power series converges, and the range
of comprises the sums of the series obtained by allowing to take on all values in
the domain of . If a function is defined in this manner, we say that is represented
by the power series .��

n�0 an(x � c)n
fff

xf
xf

f(x) � a
�

n�0
an(x � c)n

f

x � c(x � c)0 � 1

xc
c(x � c)

DEFINITION Power Series

Let be a variable. A power series in is a series of the form

where the ’s are constants and are called the coefficients of the series. More
generally, a power series in , where is a constant, is a series of the
form

 � a3(x � c)3 � p � an(x � c)n � p
 a

�

n�0
an(x � c)n � a0 � a1(x � c) � a2(x � c)2

c(x � c)
an

a
�

n�0
anx

n � a0 � a1x � a2x
2 � a3x

3 � p � anx
n � p

xx

EXAMPLE 1 As an example, consider the power series

(1)

Recognizing that this is a geometric series with common ratio , we see that it con-
verges for . Thus, the power series (1) is a rule for a function with inter-
val as its domain; that is,

There is a simple formula for the sum of the geometric series (1), namely, ,1>(1 � x)

f(x) � a
�

n�0
xn � 1 � x � x2 � x3 � p � xn � p

(�1, 1)
f�1 � x � 1

x

a
�

n�0
xn � 1 � x � x2 � x3 � p � xn � p
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FIGURE 1
The function 
represents the function 

on only.(�1, 1)t(x) �
1

1 � x

f(x) � ��
n�0 xn

FIGURE 2
Observe that 
approximates better and 

better as for .�1 � x � 1n → �
t(x)

Sn(x) � �n
k�0 xk

THEOREM 1 Convergence of a Power Series

Given a power series , exactly one of the following is true:

a. The series converges only at .
b. The series converges for all .
c. There is a number such that the series converges for 

and diverges for .�x � c � � R
�x � c � � RR � 0

x
x � c

��
n�0 an(x � c)n

and we see that the function represented by the series is the function

Even though the domain of the function is the set of all real num-
bers except , the power series (1) represents the function only
in the interval of convergence of the series. (See Figure 1.) Observe that the 
th partial sum of approximates better and

better as increases for . But outside this interval, diverges from
. (See Figure 2.)t(x)

Sn(x)�1 � x � 1n
t(x)��

n�0 xnSn(x) � 1 � x � x2 � p � xnn
(�1, 1)

t(x) � 1>(1 � x)x � 1
t(x) � 1>(1 � x)

�1 � x � 1f(x) �
1

1 � x

x

y

0 21
( )

�1�2

2

y � f (x)

x

S1

S0

S3S2y
y � g(x)

0 2 31�1�2

4

�4

2

�2

A proof of Theorem 1 is given in Appendix B.

Example 1 reveals one shortcoming in representing a function by a power series.
But as we will see later on, the advantages far outweigh the disadvantages.

Interval of Convergence
How do we find the domain of a function represented by a power series? Suppose that

is the function represented by the power series

(2)

Since , we see that the domain of always contains at least one number (the
center of the power series) and is therefore nonempty. The following theorem, which
we state without proof, tells us that the domain of a power series is always an interval
with as its center. In the extreme cases the domain consists of the infinite inter-
val or just the point , which may be regarded as a degenerate interval.x � c(��, �)

x � c

ff(c) � a0

 � a3(x � c)3 � p � an(x � c)n � p
 f(x) � a

�

n�0
an(x � c)n � a0 � a1(x � c) � a2(x � c)2

f
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The number referred to in Theorem 1 is called the radius of convergence of the
power series. The radius of convergence is in case (a) and in case (b).
The set of all values for which the power series converges is called the interval of con-
vergence of the power series. Thus, Theorem 1 tells us that the interval of convergence
of a power series centered at is (a) just the single point , (b) the interval ,
or (c) the interval . (See Figure 3.) But in the last case, Theorem 1 does
not tell us whether the endpoints and are included in the inter-
val of convergence. To determine whether they are included, we simply replace in
the power series (2) by and in succession and use a convergence test on
the resultant series.

c � Rc � R
x

x � c � Rx � c � R
(c � R, c � R)

(��, �)cc

R � �R � 0
R

FIGURE 3
The power series 

converges for 
and diverges for .�x � c � � R

�x � c � � R
��

n�0 an(x � c)n

EXAMPLE 2 Find the radius of convergence and the interval of convergence of
.

Solution We can think of the given series as , where . Applying the
Ratio Test, we have

whenever , and we conclude that the series diverges whenever . Therefore,
the series converges only when , and its radius of convergence is accordingly

.R � 0
x � 0

x 	 0x 	 0

lim
n→�
` un�1

un
` � lim

n→�
` (n � 1)! xn�1

n! xn ` � lim
n→�

(n � 1)�x � � �

un � n! xn��
n�0 un

��
n�0 n! xn

c � R c � Rc

R
Series converges

Series
diverges

Series
diverges

( )
x

EXAMPLE 3 Find the radius of convergence and the interval of convergence of

Solution Let

Then

for each fixed value of , so by the Ratio Test, the given series converges for all val-
ues of . Therefore, the radius of convergence of the series is , and its interval
of convergence is .(��, �)

R � �x
x

 � lim
n→�

 
x2

(2n � 1)(2n � 2)
� 0 � 1

 lim
n→�
` un�1

un
` � lim

n→�
` (�1)n�1 x2n�2

(2n � 2)!
�

(2n)!

(�1)n x2n
`

un �
(�1)n x2n

(2n)!

a
�

n�0
 
(�1)n x2n

(2n)!
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EXAMPLE 4 Find the radius of convergence and the interval of convergence of

.

Solution Let . Then

By the Ratio Test, the series converges if , that is, if . Therefore,
the radius of convergence of the series is . To determine the interval of conver-
gence of the power series, we need to examine the behavior of the series at the end-
points and . Now, if , the series becomes

which is the convergent alternating harmonic series, and we see that is in the
interval of convergence of the power series. If , we obtain the harmonic series

, which is divergent, so is not in the interval of convergence. We con-
clude that the interval of convergence of the given power series is , as shown
in Figure 4.

[�1, 1)
x � 1��

n�11>n
x � 1

x � �1

a
�

n�1
 
(�1)n

n

x � �1x � 1x � �1

R � 1
�1 � x � 1�x � � 1

lim
n→�
` un�1

un
` � lim

n→�
` xn�1

n � 1
�

n

xn ` � lim
n→�
a n

n � 1
b �x � � �x �

un � xn>n
a
�

n�1
 
xn

n

FIGURE 4
The interval of convergence 
of is the interval 
with center and radius .R � 1c � 0

[�1, 1)��
n�1 xn>n

EXAMPLE 5 Find the radius of convergence and the interval of convergence of

.

Solution Letting

we have

By the Ratio Test, the series converges if or . The last
inequality tells us that the radius of convergence of the given series is and that
the power series converges for in the interval .

Next, we check the endpoints and . If , the power series
becomes

which is a convergent alternating series. Therefore, is in the interval of con-
vergence. Next, if , we obtain

a
�

n�1
 

3n

n2 � 3n
� a

�

n�1
 
1

n2

x � 5
x � �1

a
�

n�1
 
(�3)n

n2 � 3n
� a

�

n�1
 
(�1)n

n2

x � �1x � 5x � �1
(�1, 5)x

R � 3
�x � 2 � � 3�x � 2 �>3 � 1

 � lim
n→�
a n

n � 1
b2

 
�x � 2 �

3
�

�x � 2 �
3

 lim
n→�
` un�1

un
` � lim

n→�
` (x � 2)n�1

(n � 1)23n�1
�

n2 � 3n

(x � 2)n `

un �
(x � 2)n

n2 � 3n

a
�

n�1
 
(x � 2)n

n2 � 3n

�1 10
[ )

x
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�1 520
[ ]

x

FIGURE 5
The interval of convergence of 

is the interval 

with center and radius .R � 3c � 2

[�1, 5]a
�

n�1
 
(x � 2)n

n2 � 3n

FRIEDRICH WILHELM BESSEL
(1784–1846)

The first person to use the term light-years
as a way to express extreme distances,
Friedrich Bessel astounded other astron-
omers when he proved that one of the
nearest stars to the earth, 61 Cygni, was
about 10 light-years (more that 60 trillion
miles) away. He was able to apply his
method of computation to compile a cata-
log of the positions of 50,000 stars. This
was no small task for a mathematician and
astronomer who did not have a university
education. Born in Minden, Germany, on
July 22, 1784, Bessel began to study naviga-
tion, geography, and foreign languages
after he decided to enter foreign trade.
From the study of navigation, his interest
of astronomy blossomed, and his mathe-
matical and analytical talents quickly sur-
faced. He made many discoveries in astron-
omy, and his mathematical discoveries
were often derived from his work in that
field. The so-called Bessel functions (see
Exercise 32 in this section) were studied
extensively by Bessel and are still impor-
tant in mathematics, with important appli-
cations in areas such as geology, physics,
and engineering.

Historical Biography
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EXAMPLE 6 Find the radius of convergence and the interval of convergence of

.

Solution Let

Then

By the Ratio Test, the series converges if or . The last inequality 
tells us that the radius of convergence of the power series is , and the series con-
verges in the interval .1�1

2, 
1
2 2 R � 1

2

�x � � 1
22 �x � � 1

 � lim
n→�

2 B
n � 1

n � 2
 �x � � 2 �x � lim

n→�
 B

1 � (1>n)

1 � (2>n)
� 2 �x �

 lim
n→�
` un�1

un
` � lim

n→�
` (�1)n�12n�1xn�1

1n � 2
�
1n � 1

(�1)n2nxn `

un �
(�1)n2nxn

1n � 1

a
�

n�0
 
(�1)n2nxn

1n � 1

Next, we check the endpoints and . If , the power series
becomes

which can be shown to be divergent by the Limit Comparison Test. (Compare it with
the -series .) Next, if , we have

which converges, by the Alternating Series Test. Therefore, the interval of convergence
of the power series is .

Differentiation and Integration of Power Series
Suppose that is a function represented by a power series centered at , that is,

where lies in the interval of convergence of the series (domain of ). The following
question arises naturally: Can we differentiate and integrate , and if so, what are the
series representations of the derivative and integral of ? The next theorem answers this
question in the affirmative and tells us that the series representations of the derivative
and integral of are found by differentiating and integrating the power series represen-
tation of term by term. (We omit its proof.)f

f

f
f

fx

f(x) � a
�

n�0
an(x � c)n

cf

1�1
2, 

1
2 D

a
�

n�0
 
(�1)n2n112 2n
1n � 1

� a
�

n�0
 

(�1)n

1n � 1

x � 1
2��

n�1 1>n1>2p

a
�

n�0
 
(�1)n2n1�1

2 2n
1n � 1

� a
�

n�0
 

1

1n � 1

x � �1
2x � 1

2x � �1
2

which is a convergent -series. Therefore, is also in the interval of convergence.
We conclude, accordingly, that the interval of convergence of the given power series
is , as shown in Figure 5.[�1, 5]

x � 5p
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THEOREM 2 Differentiation and Integration of Power Series

Suppose that the power series has a radius of convergence 
. Then the function defined by

for all in is both differentiable and integrable on
. Moreover, the derivative of and the indefinite integral of are

a.

b.

 � a
�

n�0
an 

(x � c)n�1

n � 1
� C

 � f(x) dx � C � a0(x � c) � a1 
(x � c)2

2
� a2 

(x � c)3

3
� p

f ¿(x) � a1 � 2a2(x � c) � 3a3(x � c)2 � p � a
�

n�1
nan(x � c)n�1

ff(c � R, c � R)
(c � R, c � R)x

f(x) � a
�

n�0
an(x � c)n � a0 � a1(x � c) � a2(x � c)2 � a3(x � c)3 � p

fR � 0
��

n�0 an(x � c)n

Notes
1. The series in parts (a) and (b) of Theorem 2 have the same radius of convergence,

, as the series . But the interval of convergence may change.
More specifically, you may lose convergence at the endpoints when you differen-
tiate (Exercise 38) and gain convergence there when you integrate (Example 9).

2. Theorem 2 implies that a function that is represented by a power series in an
interval is continuous on that interval. This follows from Theo-
rem 1 in Section 2.1.

(c � R, c � R)

��
n�0 an(x � c)nR

EXAMPLE 7 Find a power series representation for on by differ-
entiating a power series representation of .

Solution Recalling that is the sum of a geometric series, we have

Differentiating both sides of this equation with respect to and using Theorem 2, we
obtain

f ¿(x) �
1

(1 � x)2
� 1 � 2x � 3x2 � p � a

�

n�1
nxn�1

x

�x � � 1f(x) �
1

1 � x
� 1 � x � x2 � x3 � p � a

�

n�0
xn

1>(1 � x)

f(x) � 1>(1 � x)
(�1, 1)1>(1 � x)2

EXAMPLE 8 Find a power series representation for on .

Solution We start with the equation

Integrating both sides of this equation with respect to and using Theorem 2, we obtain

� 1

1 � x
 dx � � (1 � x � x2 � x3 � p) dx

x

�x � � 1
1

1 � x
� 1 � x � x2 � x3 � p � a

�

n�0
xn

(�1, 1)ln(1 � x)
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or

To determine the value of , we set in this equation to obtain .
Using this value of , we see that

�x � � 1ln(1 � x) � �x �
1

2
 x2 �

1

3
 x3 � p � �a

�

n�1
 
xn

n

C
�ln 1 � 0 � Cx � 0C

�ln(1 � x) � x �
1

2
 x2 �

1

3
 x3 � p � C

EXAMPLE 9 Find a power series representation for by integrating a power
series representation of .

Solution Observe that we can obtain a power series representation of by replacing
with in the equation

Thus,

Since the geometric series converges for , we see that this series converges for
, that is, or . Finally, integrating this equation, we have, by

Theorem 2,

To find , we use the condition to obtain . Therefore,

We leave it for you to show that the interval of convergence of the series is .[�1, 1]

tan�1 x � x �
x3

3
�

x5

5
�

x7

7
� p � a

�

n�0
(�1)n 

x2n�1

2n � 1

0 � Ctan�1 0 � 0C

 � C � x �
x3

3
�

x5

5
�

x7

7
� p

 tan�1 x � � 1

1 � x2
dx � � (1 � x2 � x4 � x6 � p) dx

�x � � 1x2 � 1��x2 � � 1
�x � � 1

 � 1 � x2 � x4 � x6 � p � a
�

n�0
(�1)n x2n

 
1

1 � x2
�

1

1 � (�x2)
� 1 � (�x2) � (�x2)2 � (�x2)3 � p

�x � � 1
1

1 � x
� 1 � x � x2 � p

�x2x
f

f(x) � 1>(1 � x2)
tan�1 x

1. a. Define a power series in .
b. Define a power series in .

2. a. What is the radius of convergence of a power series?
b. What is the interval of convergence of a power series?
c. How do you find the radius and the interval of conver-

gence of a power series?

(x � c)
x 3. Suppose that has radius of convergence 2. What

can you say about the convergence or divergence of
?

4. Suppose that diverges for . What can
you say about the convergence or divergence of 
What about ��

n�0 an2
n?

��
n�0 an5

n?
x � 0��

n�0 an(x � 2)n
��

n�0 an132 2n
��

n�0 an xn

9.7 CONCEPT QUESTIONS
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In Exercises 1–30, find the radius of convergence and the 
interval of convergence of the power series.

1. 2.

3. 4.

5. 6.

7. 8.

9. 10.

11. 12.

13. 14.

15. 16.

17. 18.

19. 20.

21. 22.

23. 24.

25. 26.

27.

28.

29.

30.

31. Consider the series and the (sum) function
represented by the series for .

a. Find the remainder , where
is the th partial sum of 

and is fixed.x
��

n�0 xnnSn(x) � �n
k�0 xk

Rn(x) � f(x) � Sn(x)
�1 � x � 1f(x) � 1>(1 � x)

��
n�0 xn

a
�

n�1
 
(�1)n 2 � 4 � 6 � p � 2n(x � p)n

n!

a
�

n�1
 

(�1)n 2n n! xn

5 � 8 � 11 � p � (3n � 2)

a
�

n�1
 

(�1)n n! (x � 1)n

1 � 3 � 5 � p � (2n � 1)

a
�

n�1
 

2 � 4 � 6 � p � 2n

3 � 5 � 7 � p � (2n � 1)
 x2n�1

a
�

n�1
 
nn(3x � 5)n

(2n)!a
�

n�2
 

xn

n(ln n)2

a
�

n�2
 
(�1)n(x � 2)n

(ln n)na
�

n�2
 
(�1)n(3x � 5)n

n ln n

a
�

n�1
 
(3x � 1)n

n3 � na
�

n�1
 
2n(x � 2)n

nn

a
�

n�0
 
(�1)n(3x � 2)2n

(2n)!a
�

n�0
 
(�1)n(x � 2)2n�1

(2n � 1)!

a
�

n�0
 

n(x � 2)n

(n2 � 1)2na
�

n�0
 
(�1)n n(x � 1)n

n2 � 1

a
�

n�1
 
n(2x � 1)n

2na
�

n�1
 
(�1)n�1(x � 2)n

n � 3n

a
�

n�1
1n(2x � 3)n

a
�

n�1
 
(�1)n(x � 3)n

1n

a
�

n�0
 
(�1)n n! xn

2na
�

n�1
 
en xn

n

a
�

n�2
(x ln n)n

a
�

n�2
 

xn

ln n

a
�

n�0
 
n! xn

(2n)!a
�

n�1
(nx)n

a
�

n�1
 
(�1)n xn

n � 3na
�

n�0
 
(2x)n

n!

a
�

n�1
 
xn

n2a
�

n�1
 

xn

1n

a
�

n�1
(�1)n�1 nxn

a
�

n�0
 

xn

n � 1

9.7 EXERCISES

Videos for selected exercises are available online at www.academic.cengage.com/login.V

b. Evaluate for each fixed in the interval
. What happens to for ?

c. Plot the graphs of for , 2, 3, , 5, and 20
using the viewing window .

32. A Bessel Function The function defined by

is called the Bessel function of order 0.
a. What is the domain of ?
b. Plot the graph of in the viewing window

, and plot the graphs 
of for , 1, 2, 3, and 4 in the viewing 
window .

33. A Bessel Function The function defined by

is called the Bessel function of order 1. What is its domain?

34. If is a constant, find the radius and the interval of conver-
gence of the power series .

35. If the radius of convergence of the power series is ,
what is the radius of convergence of the power series ?

36. Suppose that and . Show that
the radius of convergence of the power series is .

37. Suppose that and . What is the
radius of convergence of the power series ?

38. Let . Show that the domain of is

but the domain of is .

39. Let . Find and . What are the inter-

vals of convergence of , , and ?

40. Show that the series converges for all values 

of , but diverges for all values of . Does

this contradict Theorem 2? Explain your answer.

41. Find the sum of the series , .
Hint: Differentiate the geometric series .

42. a. Find the sum of the series , .
Hint: See the hint for Exercise 41.

b. Use the result of part (a) to find the sum of .

43. Suppose that the interval of convergence of the series
is . Prove that the series 

is conditionally convergent at .c � R
(c � R, c � R]��

n�0 an(x � c)n

a
�

n�1
 
n

2n

�x � � 1��
n�1 nxn

��
n�0 xn

�x � � 1��
n�1 nxn�1

xa
�

n�1
 

d

dx
csin(n3x)

n2 dx

a
�

n�1
 
sin(n3x)

n2

f �f ¿f

f �(x)f ¿(x)f(x) � a
�

n�1
 
xn

n2

[�1, 5)f ¿[�1, 5]

ff(x) � a
�

n�1
 
(x � 2)n

n23n

� anx
n

L 	 0limn→�2n �an � � L

1>L� anx
n

L 	 0limn→� �an�1>an � � L

� anx
2n

R� anx
n

��
n�0 an(x � c)n

a

J1(x) � a
�

n�0
 

(�1)n x2n�1

n!(n � 1)! 22n�1

J1

[�8, 8]  [�2, 2]
n � 0Sn(x)

[�10, 10]  [�0.5, 1.2]
J0

J0

J0(x) � a
�

n�0
 
(�1)n x2n

22n(n!)2

J0

[�2, 2]  [�10, 5]
pn � 1Rn(x)

�x � � 1limn→� Rn(x)(�1, 1)
xlimn→� Rn(x)

www.academic.cengage.com/login
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44. Suppose that the series is absolutely conver-
gent at one endpoint of its interval of convergence. Prove
that the series is also absolutely convergent at the other end-
point.

45. a. Find a power series representation for .
b. Use the result of part (a) to find a power series represen-

tation of using the relationship

What is the radius of convergence of the series?

46. Use the result of Example 8

to obtain an approximation of accurate to five decimal
places.
Hint: Use Theorem 2 in Section 9.5.

47. Use the result of Example 9,

to obtain an approximation of accurate to five decimal
places.
Hint: Use Theorem 2 in Section 9.5.

48. Motion Along an Inclined Plane An object of mass is thrown
up an inclined plane that makes an angle of with the hori-
zontal. If air resistance proportional to the instantaneous

a

m

p

tan�1 x � a
�

n�0
(�1)n 

x2n�1

2n � 1

ln 1.2

ln(1 � x) � �a
�

n�1
 
xn

n

tanh�1 x � �
x

0

1

1 � t 2 dt

tanh�1 x

1>(1 � t 2)

��
n�0 an(x � c)n velocity is taken into consideration, then the object reaches a

maximum distance up the incline given by

where is the constant of proportionality and is the con-
stant of acceleration due to gravity.
a. Show that can be written as

Hint: Use the result of Example 8.
b. Use the result of part (a) to show that in the absence of

air resistance the object reaches a maximum distance of
up the incline.

In Exercises 49–52, determine whether the statement is true or
false. If it is true, explain why it is true. If it is false, explain why
or give an example to show why it is false.

49. If the power series converges for , then it
converges for .

50. If the power series converges for in ,
then is continuous on .

51. If the interval of convergence of is , then
the interval of convergence of is .

52. If the radius of convergence of is , then the 

radius of convergence of the power series in , ,

is .
1

R

a
�

n�0
 
an

xn

1
x

R � 0��
n�0 anx

n

[1, 5)��
n�0 an(x � 3)n

[�2, 2)��
n�0 anx

n

(�1, 1)f(x) � ��
n�0 anx

n
(�1, 1)x��

n�0 anx
n

x � �2
x � 3��

n�0 anx
n

√2
0>(2t sin a)

D �
1

2
 

√2
0

t sin a
�

1

3
 

√3
0

m(t sin a)2 k �
1

4
 

√4
0

m2(t sin a)3 k2 � p

D

tk

D �
m√0

k
�

m2
t

k2  (sin a)lna1 �
k√0

mt sin a
b

9.8 Taylor and Maclaurin Series

In Section 9.7 we saw that every power series represents a function whose domain is
precisely the interval of convergence of the series. We also touched upon the converse
problem: Given a function defined on an interval containing a point , is there a power
series centered at that represents , and if so, how do we find it? There, we were able
to look only at functions whose power series representations are obtained by manipu-
lating the geometric series.

We now look at the general problem of finding power series representations for
functions. The problem centers on finding the answers to two questions:

1. What form does the power series representation of the function take? (In other
words, what does look like?)

2. What conditions will guarantee that such a power series will represent ?

We will consider the first question here and leave the second for Section 9.9.

Taylor and Maclaurin Series
Suppose that is a function that can be represented by a power series that is centered
at and has a radius of convergence . If , we have�x � c � � RR � 0c

f

f
an

f

fc
cf

f(x) � a0 � a1(x � c) � a2(x � c)2 � a3(x � c)3 � a4(x � c)4 � p � an(x � c)n � p
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Applying Theorem 2 of Section 9.7 repeatedly, we obtain

 o

 f (n)(x) � n(n � 1)(n � 2)(n � 3) � p � 2an � p
 o

 f ‡(x) � 3 � 2a3 � 4 � 3 � 2a4(x � c) � p � n(n � 1)(n � 2)an(x � c)n�3 � p
 f �(x) � 2a2 � 3 � 2a3(x � c) � 4 � 3a4(x � c)2 � p � n(n � 1)an(x � c)n�2 � p
 f ¿(x) � a1 � 2a2(x � c) � 3a3(x � c)2 � 4a4(x � c)3 � p � nan(x � c)n�1 � p

Each of these series is valid for satisfying . Substituting in each
of the above expressions, we obtain

, , ,

, , ,

from which we find

, , ,

, , ,

We have proved that if has a power series representation, then the series must
have the form given in the following theorem.

f

pan �
f (n)(c)

n!
pa3 �

f ‡(c)

3!

a2 �
f �(c)

2!
a1 � f ¿(c)a0 � f(c)

p f (n)(c) � n! anpf ‡(c) � 3! a3

f �(c) � 2a2 f ¿(c) � a1f(c) � a0

x � c�x � c � � Rx

THEOREM 1 Taylor Series of at 

If has a power series representation at , that is, if

then exists for every positive integer and

Thus,

(1)

 � f(c) � f ¿(c)(x � c) �
f �(c)

2!
 (x � c)2 �

f ‡(c)

3!
 (x � c)3 � p

 f(x) � a
�

n�0
 
f (n)(c)

n!
 (x � c)n

an �
f (n)(c)

n!

nf (n)(c)

�x � c � � Rf(x) � a
�

n�0
an(x � c)n

cf

cf

BROOK TAYLOR
(1685–1731)

Born to a family of minor nobility, Brook
Taylor was tutored at home until he was
admitted to St. John’s College in Cam-
bridge, England, in 1703. There, he com-
pleted a bachelor of law degree in 1709,
but he had already written his first paper
in mathematics. In 1712 he was elected to
the Royal Society, where he was appointed
to a committee to decide whether Newton
(page 179) or Leibniz (page 157) had first
invented the calculus. Taylor wrote numer-
ous articles during his time with the Royal
Society, among them a work entitled
Methodus incrementorum directa et
inversa. This work contained the theorem
for which Taylor is most remembered: the
so-called Taylor series. Other mathemati-
cians had developed such series for spe-
cific functions, but none before Taylor had
given a general series expansion for func-
tions of a single variable. Taylor’s mathe-
matical work was of great depth, but his
writing style was concise and hard to fol-
low. He often left much for the reader to
work out, and this delayed the acknowledg-
ment of the majority of his accomplish-
ments until after his death.

Historical Biography

To
ph

am
/T

he
 Im

ag
e 

W
or

ks

A series of this form is called the Taylor series of the function at after the
English mathematician Brook Taylor (1685–1731).

In the special case in which , the Taylor series becomes

(2)f(x) � a
�

n�0
 
f (n)(0)

n!
 xn � f(0) � f ¿(0)x �

f �(0)

2!
 x2 �

f ‡(0)

3!
 x3 � p

c � 0

cf
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This series is just the Taylor series of centered at the origin. It is called the Maclau-
rin series of in honor of the Scottish mathematician Colin Maclaurin (1698–1746).

Note Theorem 1 states that if a function has a power series representation at , then
the (unique) series must be the Taylor series at . The converse is not necessarily true.
Given a function with derivatives of all orders at , we can compute the Taylor coef-
ficients of at ,

and, therefore, the Taylor series of at (Equation (1)). But the series that is obtained
formally in this fashion need not represent . Situations such as these, however, are rare.
(We give an example of such a function in Exercise 75.) In view of this we will assume,
in the rest of this section, that the Taylor series of a function does represent the func-
tion, unless otherwise noted.

f
cf

n � 0, 1, 2, p
f (n)(c)

n!

cf
cf

c
cf

f
f

EXAMPLE 1 Let . Find the Maclaurin series of , and determine its radius
of convergence.

Solution The derivatives of are , , and, in general,
, where . So

, , , , ,

Therefore, if we use Equation (2), the Maclaurin series of (the Taylor series of 
at 0) is

To determine the radius of convergence of the power series, we use the ratio test with
. Since

we conclude that the radius of convergence of the series is .R � �

lim
n→�
` un�1

un
` � lim

n→�
` xn�1

(n � 1)!
�

n!

xn ` � lim
n→�

 
�x �

n � 1
� 0

un � xn>n!

a
�

n�0
 
f (n)(0)

n!
 xn � a

�

n�0
 
1

n!
 xn � 1 � x �

x2

2!
�

x3

3!
� p �

xn

n!
� p

ff

p f (n)(0) � 1pf �(0) � 1f ¿(0) � 1f(0) � 1

n � 1f (n)(x) � ex
f �(x) � exf ¿(x) � exf(x) � ex

ff(x) � ex

EXAMPLE 2 Find the Taylor series for at 1, and determine its interval of
convergence.

Solution We compute the values of and its derivatives at 1. Thus,

 f (n)(1) � (�1)n�1(n � 1)! f (n)(x) � (�1)n�1(n � 1)! x�n

 o o

 f (4)(1) � �3 � 2 f (4)(x) � �3 � 2x�4

 f ‡(1) � 2 f ‡(x) � 2x�3

 f �(1) � �1 f �(x) � �x�2

 f ¿(1) � 1 f ¿(x) �
1
x

� x�1

 f(1) � ln 1 � 0 f(x) � ln x

f

f(x) � ln x
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Then using Equation (1), we obtain the Taylor series of :

To find the interval of convergence of the series, we use the Ratio Test with
. Since

we see that the series converges for in the interval . Next, we notice that if 
, the series becomes

Since this is the negative of the harmonic series, it is divergent. If , the series
becomes

This is the alternating harmonic series and, hence, is convergent. Therefore, the Tay-
lor series for at 1 has interval of convergence .(0, 2]f(x) � ln x

a
�

n�1
 
(�1)n�1

n

x � 2

a
�

n�1
 
(�1)2n�1

n
� �a

�

n�1
 
1
n

x � 0
(0, 2)x

 � lim
n→�

�x � 1 �a n

n � 1
b � �x � 1 � lim

n→�
 

1

1 �
1
n

� �x � 1 �

 lim
n→�
` un�1

un
` � lim

n→�
` (�1)n(x � 1)n�1

n � 1
�

n

(�1)n�1(x � 1)n
`

un � (�1)n�1(x � 1)n>n

 � a
�

n�1
(�1)n�1 

(x � 1)n

n

 � (x � 1) �
(x � 1)2

2
�

(x � 1)3

3
�

(x � 1)4

4
� p

 � (x � 1) �
1

2!
 (x � 1)2 �

2

3!
 (x � 1)3 �

3!

4!
 (x � 1)4 � p

 a
�

n�0
 
f (n)(1)

n!
 (x � 1)n � f(1) � f ¿(1)(x � 1) �

f �(1)

2!
 (x � 1)2 �

f ‡(1)

3!
 (x � 1)3 � p

f(x) � ln x

EXAMPLE 3 Find the Maclaurin series of , and determine its interval of
convergence.

Solution To find the Maclaurin series of , we compute the values of and
its derivatives at . We obtain

 f (4)(0) � 0 f (4)(x) � sin x

 f ‡(0) � �1 f ‡(x) � �cos x

 f �(0) � 0 f �(x) � �sin x

 f ¿(0) � 1 f ¿(x) � cos x

 f(0) � 0 f(x) � sin x

x � 0
ff(x) � sin x

f(x) � sin x
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EXAMPLE 4 Find the Maclaurin series of .

Solution We could proceed as in Example 3, but it is easier to make use of Theo-
rem 2 of Section 9.7 to differentiate the expression for that we obtained in Exam-
ple 3. Thus,

Since the Maclaurin series for sin converges for all , Theorem 2 of Section 9.7 tells
us that this series converges in as well.(��, �)

xx

 � a
�

n�0
 
(�1)n

(2n)!
 x2n

 � 1 �
x2

2!
�

x4

4!
�

x6

6!
� p

 f(x) � cos x �
d

dx
 (sin x) �

d

dx
 ax �

x3

3!
�

x5

5!
�

x7

7!
� pb

sin x

f(x) � cos x

EXAMPLE 5 Find the Maclaurin series for , where is a real number.

Solution We compute the values of and its derivatives at , obtaining

 f (n)(0) � k(k � 1) p (k � n � 1) f (n)(x) � k(k � 1) p (k � n � 1)(1 � x)k�n

 o o

 f ‡(0) � k(k � 1)(k � 2) f ‡(x) � k(k � 1)(k � 2)(1 � x)k�3

 f �(0) � k(k � 1) f �(x) � k(k � 1)(1 � x)k�2

 f ¿(0) � k f ¿(x) � k(1 � x)k�1

 f(0) � 1 f(x) � (1 � x)k

x � 0f

kf(x) � (1 � x)k

We need not go further, since it is clear that successive derivatives of follow this same
pattern. Then, using Equation (2), we obtain the Maclaurin series of :

To find the interval of convergence of the series, we use the Ratio Test with
. Since

we conclude that the interval of convergence of the series is .(��, �)

 � lim
n→�

 
�x �2

(2n � 2)(2n � 3)
� 0 � 1

 lim
n→�
` un�1

un
` � lim

n→�
` (�1)n�1x2n�3

(2n � 3)!
�

(2n � 1)!

(�1)nx2n�1
`

un � (�1)nx2n�1>(2n � 1)!

 � a
�

n�0
 

(�1)n

(2n � 1)!
 x2n�1

 � x �
x3

3!
�

x5

5!
�

x7

7!
� p

 a
�

n�0
 
f (n)(0)

n!
 xn � f(0) � f ¿(0)x �

f �(0)

2!
 x2 �

f ‡(0)

3!
 x3 �

f (4)(0)

4!
 x4 � p

f(x) � sin x
f



798 Chapter 9 Infinite Sequences and Series

Notes
1. The coefficients in the binomial series are referred to as binomial coefficients

and are denoted by

,

2. If is a positive integer and , then the binomial coefficient contains a factor
, so for . The binomial series then reduces to a polynomial

of degree :

In other words, the expression can be represented by a finite sum if is
a positive integer and by an infinite series if is not a positive integer. Thus, we
can view the binomial series as an extension of the Binomial Theorem to the case
in which is not a positive integer.k

k
k(1 � x)k

(1 � x)k � 1 � kx �
k(k � 1)

2!
 x2 � p � xk � a

k

n�0
ak

n
bxn

k
n � k1kn 2 � 0(k � k)

n � kk

ak

0
b � 1n � 1ak

n
b �

k(k � 1) p (k � n � 1)

n!

The Binomial Series

If is any real number and , then

(3)(1 � x)k � 1 � kx �
k(k � 1)

2!
 x2 �

k(k � 1)(k � 2)

3!
 x3 � p �a

�

n�0
ak

n
bxn

�x � � 1k

So the Maclaurin series of is

Observe that if is a positive integer, then the series is infinite (by the Binomial The-
orem), and so it converges for all .

If is not a positive integer, then we use the Ratio Test to find the interval of con-
vergence. Denoting the th term of the series by , we findunn

k
x

k

 � a
�

n�0
 
k(k � 1)(k � 2) p (k � n � 1)

n!
 xn

 � 1 � kx �
k(k � 1)

2!
 x2 �

k(k � 1)(k � 2)

3!
 x3 � p

 a
�

n�0
 
f (n)(0)

n!
 xn � f(0) � f ¿(0)x �

f �(0)

2!
 x2 �

f ‡(0)

3!
 x3 � p

f(x) � (1 � x)k

 � lim
n→�

 
�k � n �
n � 1

 �x � � lim
n→�

 

` k
n

� 1 `
1 �

1
n

 �x � � �x �

 lim
n→�
` un�1

un
` � lim

n→�
` k(k � 1) p (k � n � 1)(k � n)xn�1

(n � 1)!
�

n!

k(k � 1) p (k � n � 1)xn `

and we see that the series converges for in the interval .

The series in Example 5 is called the binomial series.

(�1, 1)x
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EXAMPLE 6 Find a power series representation for the function .

Solution Using Equation (3) with , we obtain

This representation is valid for .
The graph of and the first three partial sums , , and

are shown in Figure 1. Observe that the partial sums of ,
, approximate better and better in the interval of convergence of the series as 

increases.

Techniques for Finding Taylor Series
The Taylor series of a function can always be found by using Equation (1). But as
Examples 7, 8, and 9 of Section 9.7 and Example 4 of this section show, it is often
easier to find the series by algebraic manipulation, differentiation, or integration of
some well-known series. We now elaborate further on such techniques. First, we list
some common functions and their power series representations in Table 1.

nfPn(x)
fP3(x) � 1 � 1

2 x � 1
8 x2

P2(x) � 1 � 1
2 xP1(x) � 1f

�x � � 1

 � 1 �
1

2
 x � a

�

n�2
(�1)n�1 

1 � 3 � 5 � p � (2n � 3)

n! 2n  xn

 � (�1)n�1 
1 � 3 � 5 � p � (2n � 3)

n! 2n  xn � p

 � 1 �
1

2
 x �

1

2 � 22
 x2 �

1 � 3

3! 23
 x3 � p

 �

1
2112 � 1 2 p 112 � n � 1 2

n!
 xn � p

 f(x) � (1 � x)1>2 � 1 �
1

2
 x �

1
2112 � 12

2!
 x2 �

1
2112 � 1 2 112 � 2 2

3!
 x3 � p

k � 1
2

f(x) � 11 � x

FIGURE 1
The graphs of and the
first three partial sums of the binomial
series

f(x) � 11 � x

3. Even though the binomial series always converges for , its conver-
gence at the endpoints or depends on the value of . It can be
shown that the series converges at if and at both endpoints

if .
4. We have derived Equation (3) under the assumption that has a power

series representation. In Exercise 78 we outline a procedure for deriving
Equation (3) without this assumption.

(1 � x)k
k � 0x � �1

�1 � k � 0x � 1
kx � 1x � �1

�1 � x � 1

P1

P3

P2
y

f(x) � 1 � x

0�1

1

x1

√

TABLE 1

Maclaurin Series Interval of Convergence

1.

2.

3.

4. (��, �)cos x � 1 �
x2

2!
�

x4

4!
�

x6

6!
� p � a

�

n�0
(�1)n 

x2n

(2n)!

(��, �)sin x � x �
x3

3!
�

x5

5!
�

x7

7!
� p � a

�

n�0
(�1)n 

x2n�1

(2n � 1)!

(��, �)ex � 1 � x �
x2

2!
�

x3

3!
� p � a

�

n�0
 
xn

n!

(�1, 1)
1

1 � x
� 1 � x � x2 � x3 � p � a

�

n�0
xn

(continued)
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TABLE 1 (continued)

Maclaurin Series Interval of Convergence

5.

6.

7.

8. (�1, 1)(1 � x)k � a
�

n�0
ak

n
bxn � 1 � kx �

k(k � 1)

2!
 x2 �

k(k � 1)(k � 2)

3!
 x3 � p

[�1, 1]tan�1 x � x �
x3

3
�

x5

5
�

x7

7
� p � a

�

n�0
(�1)n 

x2n�1

2n � 1

[�1, 1]sin�1 x � x �
x3

2 � 3
�

1 � 3x5

2 � 4 � 5
� p � a

�

n�0
 

(2n)! x2n�1

(2n n!)2(2n � 1)

(�1, 1]ln(1 � x) � x �
x2

2
�

x3

3
�

x4

4
� p � a

�

n�1
(�1)n�1 

xn

n

EXAMPLE 8 Find the Maclaurin series for .

Solution If we replace by in Formula (3) in Table 1, we obtain

 � 2x �
23x3

3!
�

25x5

5!
�

27x7

7!
� p � a

�

n�0
(�1)n 

22n�1x2n�1

(2n � 1)!

 sin 2x � (2x) �
(2x)3

3!
�

(2x)5

5!
�

(2x)7

7!
� p

2xx

f(x) � x2 sin 2x

EXAMPLE 7 Find the Taylor series representation of at .

Solution We first rewrite so that it includes the expression . Thus,

Then, using Formula (1) in Table 1 with replaced by , we obtain

The series converges for , that is, or . You can
verify that the series diverges at both endpoints.

�1 � x � 5�x � 2 � � 3� (x � 2)>3 � � 1

 �
1

3
�

1

32
 (x � 2) �

1

33
 (x � 2)2 �

1

34
 (x � 2)3 � p � a

�

n�0
(�1)n 

(x � 2)n

3n�1

 �
1

3
c1 � ax � 2

3
b � ax � 2

3
b2

� ax � 2

3
b3

� pd

 �
1

3
e1 � c�ax � 2

3
b d � c�ax � 2

3
b d2 � c�ax � 2

3
b d3 � pf

 f(x) �
1

3
•

1

1 � c�ax � 2

3
b d ¶

�(x � 2)>3x

f(x) �
1

1 � x
�

1

3 � (x � 2)
�

1

3c1 � ax � 2

3
b d

�
1

3
�

1

1 � ax � 2

3
b

(x � 2)f(x)

x � 2f(x) �
1

1 � x

All of the formulas in the table except Formulas (5) and (6) have been derived in
this and the previous sections. (See note on page 795.) Formula (5) follows from the
result of Example 8 in Section 9.7 by replacing by . Formula (6) will be derived
in Example 14.

x�x
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EXAMPLE 9 Find the Taylor series for at .

Solution We write

Then using Formulas 3 and 4 with in place of , we obtain

which converges for all in .

The power series representations of certain functions can also be found by adding,
multiplying, or dividing the Maclaurin or Taylor series of some familiar functions as
the following examples show.

(��, �)x

f(x) �
13

2
 a

�

n�0
 

(�1)n

(2n � 1)!
ax �

p

6
b2n�1

�
1

2
 a

�

n�0
 
(�1)n

(2n)!
ax �

p

6
b2n

xx � (p>6)

 �
13

2
sinax �

p

6
b �

1

2
cosax �

p

6
b

 � sinax �
p

6
bcos 

p

6
� cosax �

p

6
bsin 

p

6

 f(x) � sin x � sinc ax �
p

6
b �

p

6
d

x � p>6f(x) � sin x

which is valid for all in . Therefore, using Theorem 4a of Section 9.2, we
obtain

which converges for all in .

The next example shows how the use of trigonometric identities can help us find
the Taylor series of a trigonometric function.

(��, �)x

 � a
�

n�0
(�1)n 

22n�1x2n�3

(2n � 1)!

 � 2x3 �
23x5

3!
�

25x7

5!
�

27x9

7!
� p

 f(x) � x2 sin 2x � x2a2x �
23x3

3!
�

25x5

5!
�

27x7

7!
� pb

(��, �)x

EXAMPLE 10 Find the Maclaurin series representation for .

Solution We have

Since the Maclaurin series of both and converge for in , we see that
this representation of is also valid for all values of .xsinh x

(��, �)xe�xex

 � x �
x3

3!
�

x5

5!
� p � a

�

n�0
 

x2n�1

(2n � 1)!

 �
1

2
 a1 � x �

x2

2!
�

x3

3!
� pb �

1

2
 a1 � x �

x2

2!
�

x3

3!
� pb

 f(x) � sinh x �
1

2
 (ex � e�x) �

1

2
 ex �

1

2
 e�x

f(x) � sinh x
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EXAMPLE 11 Find the first three terms of the Maclaurin series representation for
.

Solution Using Formulas (2) and (4) in Table 1, we can write

Multiplying and collecting like terms, we obtain

 � 1 � x �
x3

3
� p

  � 
x6

48
� p �

x3

6
�

x5

12
� p

 � 1 �
x2

2
�

x4

24
� p � x �

x3

2
�

x5

24
� p �

x2

2
�

x4

4

  � 
x2

2
 a1 �

x2

2
�

x4

24
� pb �

x3

6
 a1 �

x2

2
� pb � p

 f(x) � (1)a1 �
x2

2
�

x4

24
� pb � xa1 �

x2

2
�

x4

24
� pb

f(x) � ex cos x � a1 � x �
x2

2
�

x3

6
� pb a1 �

x2

2
�

x4

24
� pb

f(x) � ex cos x

EXAMPLE 12 Find the first three terms of the Maclaurin series representation for
.

Solution Using Formulas (3) and (4) in Table 1, we have

By long division we find

Therefore,

In both Examples 11 and 12 we computed only the first three terms of each series. In
practice, the retention of just the first few terms of a series is sufficient to obtain an
acceptable approximation to the solution of a problem.

f(x) � tan x � x �
1

3
x3 �

2

15
x5 � p

2
15 x5 � p

1
3 x3 � 1

6 x5 � p

1
3 x3 � 1

30 x5 � p

x � 1
2 x3 � 1

24 x5 � p
x � 1

6 x3 � 1
120 x5 � p1 � 1

2 x2 � 1
24 x4 � p

x � 1
3 x3 � 2

15 x5 � p

f(x) � tan x �
sin x

cos x
�

x �
x3

3!
�

x5

5!
� p

1 �
x2

2!
�

x4

4!
� p

f(x) � tan x

b
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We can also use Taylor series to integrate functions whose antiderivatives cannot
be found in terms of elementary functions (see page 818). Examples of such functions
are and . In particular, the use of Taylor series enables us to obtain approx-
imations to definite integrals involving such functions, as illustrated in the following
example.

sin x2e�x2

EXAMPLE 13

a. Find .

b. Find an approximation of accurate to four decimal places.

Solution
a. Replacing in Formula (2) in Table 1 by gives

Integrating both sides of this equation with respect to , we obtain, by Theo-
rem 2,

Since the power series representation of converges for in , this
result is valid for all values of .

b. Using the result from part (a), we obtain

Since this series is alternating and its terms decrease to 0, we know, by Theo-
rem 2 of Section 9.5, that the error incurred in the approximation does not 
exceed

So the result is accurate to within four decimal places, as desired.

1

9 � 4!
 a1

2
b9

�
1

110592
� 0.000009 � 0.00005

 � 0.4613

 �
1

2
�

1

24
�

1

320
�

1

5376
�

1

110592
� p

 �
1

2
�

1

3
 a1

2
b3

�
1

5 � 2!
 a1

2
b5

�
1

7 � 3!
 a1

2
b7

�
1

9 � 4!
 a1

2
b9

� p

 �
0.5

0
e�x2

dx � cx �
1

3
 x3 �

1

5 � 2!
 x5 �

1

7 � 3!
 x7 �

1

9 � 4!
 x9 �

1

11 � 5!
 x11 � pd1>2

0

x
(��, �)xe�x2

 � C � a
�

n�0
(�1)n 

1

(2n � 1) � n!
 x2n�1

 � C � x �
1

3
 x3 �

1

5 � 2!
 x5 �

1

7 � 3!
 x7 � p

 � e�x2
dx � � a1 � x2 �

x4

2!
�

x6

3!
� pb dx

x

e�x2
� 1 � x2 �

x4

2!
�

x6

3!
� p � a

�

n�0
(�1)n 

x2n

n!

�x2x

�
0.5

0
e�x2

dx

� e�x2
dx
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EXAMPLE 14 Find a power series representation for .

Solution Observe that

Using Equation (3) with and , we havex � �t 2k � �1
2

sin�1 x � �
x

0
 

1

21 � t 2
dt

sin�1 x

 � 1 �
1

2
 t 2 �

1 � 3

2! 22
 t 4 � p �

1 � 3 � 5 � p � (2n � 1)

n! 2n  t 2n � p

 � 
�1

21�1
2 � 1 2 p 1�1

2 � n � 1 2
n!

 (�t 2)n � p

 
1

21 � t 2
� (1 � t 2)�1>2 � 1 � a�1

2
b (�t 2) �

�1
21�1

2 � 1 2
2!

 (�t 2)2 � p

Therefore,

It can be shown that the series converges in .[�1, 1]

 � a
�

n�0
 

(2n)! x2n�1

(2n n!)2(2n � 1)

 � x � a
�

n�1
 
1 � 3 � 5 � p � (2n � 1)

2 � 4 � 6 � p � (2n)
�

x2n�1

2n � 1

 sin�1 x � �
x

0
 

1

21 � t 2
dt � x �

1

2 � 3
 x3 �

1 � 3

2! 22 � 5
 x5 � p

EXAMPLE 15 Einstein’s Special Theory of Relativity According to Einstein’s special
theory of relativity, a body of mass at rest has a rest energy due to the
mass itself. (Here, the constant denotes the speed of light.) The same body, moving
at a speed , has total energy

The kinetic energy, the energy of motion, is the difference between the total energy
and the rest energy and is therefore given by

Show that if is very small in comparison to , the kinetic energy of the body assumes
the classical form .

Solution We have

K �
m0 c2

B1 �
√2

c2

� m0 c2 � m0 c2c a1 �
√2

c2
b�1>2

� 1d

K � 1
2 m0 √2

c√

K � E � E0 �
m0 c2

B1 �
√2

c2

� m0 c2

E �
m0 c2

B1 �
√2

c2

√
c

E0 � m0 c2m0
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Using Equation (3) with and , we obtain

Therefore, the kinetic energy is

For speeds much less than the speed of light ( much smaller than ), all the terms
after the first are very small in comparison to the first and may be neglected, leading
to

the classical expression for kinetic energy.

K �
1

2
 m0 √2

c√

 � m0 c2a1

2
�

√2

c2
�

3

8
�

√4

c4
� pb

 K � m0 c2c a1 �
1

2
�

√2

c2
�

3

8
�

√4

c4
� pb � 1d

 � 1 �
1

2
�

√2

c2
�

3

8
�

√4

c4
� p

 a1 �
√2

c2
b�1>2

� 1 �
1

2
 a�√2

c2
b �
1�1

2 2 1�1
2 � 1 2

2!
 a�√2

c2
b2

� p

x � �√2>c2k � �1
2

1. a. What is a Taylor series? What is a Maclaurin series?
b. What is the difference between a Taylor series and a

Maclaurin series?
2. a. Suppose for in , where 

. What is ?
b. The Taylor series of at is 

What is ?
3. a. What is a binomial series?

b. What is the th term of a binomial series?
c. What is the radius of convergence of a binomial series if

the exponent is a nonnegative integer?

n

f (5)(1)

a
�

n�0
(�1)n 

(x � 1)n�1

n � 1

x � 1f(x)
f (n)(c)R � 0

(�R, R)xf(x) � ��
n�0 an(x � c)n

4. a. Consider the function , where is nega-
tive. What can you say about ?

b. Consider the function , where is posi-
tive but not an integer. What can you say about the deriv-
ative or higher derivatives of at ? Illustrate with an
example.

c. Use the results of parts (a) and (b) to explain why we
can only assert, in general, that the binomial series con-
verges for .�x � � 1

�1f

kf(x) � (1 � x)k
f(�1)

kf(x) � (1 � x)k

9.8 CONCEPT QUESTIONS

Videos for selected exercises are available online at www.academic.cengage.com/login.V

Note: In this exercise set, assume that all the functions have
power series representations.

In Exercises 1–10, use Equation (1) to find the Taylor series of 
at the given value of . Then find the radius of convergence of
the series.

1. , 2. ,

3. , 4. , c � 3f(x) � e�2xc � 2f(x) � ex

c � 0f(x) � e�3xc � 0f(x) � e2x

c
f

5. , 6. ,

7. , 8. ,

9. , 10. , c � 0f(x) � sinh xc � 2f(x) � ln x

c � �1f(x) �
1
x

c � �
p

6
f(x) � cos x

c �
p

4
f(x) � sin xc � 0f(x) � sin 2x

9.8 EXERCISES

www.academic.cengage.com/login
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In Exercises 11–28, use the power series representations of func-
tions established in this section to find the Taylor series of at
the given value of . Then find the radius of convergence of the
series.

11. ,

12. ,

13. ,

14. ,

15. ,

16. ,

17. ,

18. ,

19. ,

20. ,

21. ,

Hint:

22. ,

Hint:

23. ,

24. ,

25. ,

26. ,

27. ,

28. ,

In Exercises 29–34, use the binomial series to find the power
series representation of the function. Then find the radius of 
convergence of the series.

29. 30.

31. 32.

33. 34. f(x) �
x

(1 � x)2f(x) � (1 � x)3>5

f(x) �
1

13 8 � x
f(x) �21 � x2

f(x) � 13 1 � xf(x) �
1

(1 � x)2

c � 0f(x) � lna1 � x

1 � x
b

c � 0f(x) � ln(1 � x2)

c � 0f(x) � (1 � x2)tan�1 x

c � 0f(x) � 1x sin�1 x

 c �
p

6
f(x) � cos x

c �
p

3
f(x) � sin x

sin2 x �
1

2
 (1 � cos 2x)

c � 0f(x) � sin2 x

cos2 x �
1

2
 (1 � cos 2x)

c � 0f(x) � cos2 x

c � 0f(x) � x cos 3x

c � 0f(x) � x2 cos x

c � �1f(x) � e2x

c � 0f(x) � xe�x

c � 0f(x) �
1

4 � x2

c � 0f(x) �
x2

x2 � 1

c � 2f(x) �
1

1 � 3x

c � 1f(x) �
1

1 � 2x

c � �2f(x) �
1

1 � x

c � 1f(x) �
1

1 � x

c
f

In Exercises 35–40, find the first three terms of the Taylor series
of at the given value of .

35. , 36. ,

37. , 38. ,

39. , 40. ,

In Exercises 41 and 42, (a) find the power series representation
for the function; (b) write the first three partial sums , , and

; and (c) plot the graphs of and , , and using a view-
ing window that includes the interval of convergence of the
power series.

41.

42.

43. Use the Maclaurin series for to calculate accurate
to five decimal places.

44. Use the Maclaurin series for to calculate accu-
rate to five decimal places.

In Exercises 45–50, find a power series representation for the
indefinite integral.

45. 46.

47. 48.

49. 50.

In Exercises 51–56, use a power series to obtain an approxima-
tion of the definite integral to four decimal places of accuracy.

51. 52.

53. 54.

55. 56.

In Exercises 57–62, find the sum of the given series. (Hint: Each
series is the Maclaurin series of a function evaluated at an
appropriate point.)

57. 58.

59. 60. a
�

n�0
(�1)n 

p2n�1

(2n � 1)! 22n�1a
�

n�0
(�1)n 

p2n

(2n)!

a
�

n�0
 
(�1)n

n! 2na
�

n�1
 (�1)n�1 

1
n

�
0.5

0
tan�1 x3 dx�

0.5

0
x cos x3 dx

�
1

0
sin x2 dx�

0.5

0
cos x2 dx

�
0.5

0
x2e�x2

dx�
1

0
e�x2

dx

� sin x

x
dx� ln(1 � x)

x
dx

� x tan�1 x dx� sin x2 dx

� e�1x dx� 1

1 � x3 dx

cos 3°cos x

e�0.01e�x2

f(x) �
1

19 � x

f(x) � 13 1 � x

P3P2P1fP3

P2P1

c � 0f(x) � ex tan xc � 0f(x) � e�x sin x

c � 1f(x) � tan�1 xc �
1

2
f(x) � sin�1 x

c � 0f(x) � sec xc �
p

4
f(x) � tan x

cf



61. 62.

63. Evaluate .

Hint: Use the Maclaurin series representation of .

64. Evaluate .

Hint: Use the Maclaurin series representation of .

65. Evaluate .

Hint: Use the result of Example 12.

66. Evaluate .

Hint: Use the Taylor series representation of at 1.

67. a. Find the power series representation for .

b. Use the result of part (a) to find a power series represen-
tation of

What is the radius of convergence of the series?

68. a. Find a power series representation of .
b. Use the result of part (a) to find .

69. Force Exerted by a Charge Distribution Suppose that a charge 
is distributed uniformly along the positive -axis from 
to and that a negative charge is distributed uni-
formly along the negative -axis from to . If a
positive charge is placed on the positive -axis a distance
of units from the origin, then the force exerted by
the charge distribution on has magnitude

and direction along the positive -axis.

Show that if is large, then

F �
qQa

2pe0x
3

x

y

0�a a q

Q�Q

x

x

F �
qQ

4pe0a
 c 1

x � a
�

1

x � a
�

2
x
d

q
(x � a)x

xq
x � 0x � �ax

�Qx � a
x � 0x

Q

f (6)(0)
f(x) �23 1 � x2

sin�1 x � �
x

0
 

1

21 � t 2
dt

1

21 � u2

ln x

lim
x→1

 
ln x

x � 1

lim
x→0

 
tan x � x � 1

3 x3

x5

cos x2

lim
x→0

 
cos x2 � 1 � 1

2 x4

x8

sin x

lim
x→0

 
sin x � x � 1

6 x3

x5

a
�

n�0
 

(�1)n

2n � 1a
�

n�1
(�1)n�1 

1

n2n

70. Speed of a Wave A wave of water of length travels across a
body of water of depth , as illustrated in the figure below.
The speed of the wave is given by

where is the constant of acceleration due to gravity.
a. Show that in deep water, , and hence the

speed of the wave is independent of the depth of the
body of water.

b. Show that in shallow water, , so the speed of
the wave is independent of the length of the wave.
Hint: Find the first three nonzero terms of the Maclaurin series
for .

71. Gravitational Force Between Two Masses Suppose that a mass 
is distributed uniformly over a disk of radius . Then it can
be shown that the attractive gravitational force between the
disk-shaped mass and a point mass located a distance of 
units above the center of the disk has magnitude

Here, is the gravitational constant. Show that if is large,
then

Thus, from this distance the disk “looks” like a point mass.

72. Force of Attraction of a Cylinder on a Point It can be shown that
the magnitude of the force of attraction of a homogeneous
right-circular cylinder upon a point on its axis is

F � 2psCh �2R2 � a2 �2(R � h)2 � a2 D
P

a M

m

x

F �
GmM

x2

xt

F �
2GmM

a2  c1 �
x

2x2 � a2
d

xm

a
M

L

d

f(x) � tanh x

√ � 1td

√ � 1tL>(2p)
t

√ � a tL

2p
tanh 

2pd

L
b1>2

d
L
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where and are the height and radius of the cylinder, is
the distance between and the top of the cylinder, and is
the (constant) density of the solid. Show that if is large in
comparison to and , then

where is the mass of the cylinder.

73. Volume of Water in a Trough A trough of length feet has a
cross section in the shape of a semicircle with radius feet.
When the trough is filled with water to a level that is feet
as measured from the top of the trough, the volume of the
water is

Show that if is small in comparison to (that is, is
small), then

74. Formula (5) in Table 1 can be used to compute the value of
for . However, the restriction on and the

slow convergence of the series limit its effectiveness from
the computational point of view. A more effective formula,
first obtained by the Scottish mathematician James Gregory
(1638–1675), follows.
a. Use Formula (5) to show that

�1 � x � 1lna1 � x

1 � x
b � 2ax �

x3

3
�

x5

5
�

x7

7
� pb

x�1 � x � 1ln x

h

r

L

V � Lc1
2

 pr 2 � 2rh �
1

2
�

h3

r
d

h>rrh

V � Lc1
2

 pr 2 � r 2 sin�1ah

r
b � h2r 2 � h2d

h
r

L

R

h

P

a

M � pa2hs

F �
M

R2

ha
R

sP
Rah b. To compute the natural logarithm of a positive number ,

let and show that

c. Use parts (a) and (b) to find accurate to four decimal
places.

75. Let be the function defined by

Show that cannot be represented by a Maclaurin series.

76. a. Find the Taylor series for at 
.

b. Show that the Taylor series and are equal.
c. What can you say about a Taylor series for a polynomial

function? Justify your answer.

77. Show that for all and .

78. Prove that ,

where is any real number and , by verifying the
following steps.
a. Let

Differentiate the equation with respect to to show that

b. Define the function by and show
that .t¿(x) � 0

t(x) � f(x)>(1 � x)k
t

f ¿(x)(1 � x) � kf(x) � 0

x

 �
k(k � 1) p (k � n � 1)

n!
 xn � p

 f(x) � a
�

n�0
ak

n
bxn � 1 � kx �

k(k � 1)

2!
x2 � p

�x � � 1k

(1 � x)k � a
�

n�0
ak

n
bxn � a

�

n�0
 

k!

n!(k � n)!
 xn

n � 1x � 0(1 � x)n � 1 � nx

f(x)
x � 1

f(x) � 2x3 � 3x2 � 1

f

f(x) � ee�1>x2
if x 	 0

0 if x � 0

f

ln 2

�1 � x � 1x �
p � 1

p � 1

p � (1 � x)>(1 � x)
p

c. Deduce that .

In Exercises 79–84, determine whether the statement is true or
false. If it is true, explain why it is true. If it is false, explain why
or give an example to show why it is false.

79. If is a polynomial function of degree , then the
Maclaurin series for is .

80. Suppose that for in , where
and is odd. Then for .

81. The function has a Maclaurin series.

82. The Taylor series of at is .

83. The Maclaurin series for is .

84. If is a positive integer, then the Maclaurin series for
is a polynomial of degree .kf(x) � (1 � x)k

k

a
�

n�0
ak

n
b2k�n xnf(x) � (2 � x)k

(x � 1)7x � 1f(x) � (1 � x)7

f(x) � x5>3
n � 0a2n � 0fR � 0

(�R, R)xf(x) � ��
n�0 anx

n

PP
nP(x)

f(x) � (1 � x)k
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9.9 Approximation by Taylor Polynomials

In Section 9.8 we saw how Maclaurin and Taylor series of functions can be used to
help us find the values of the functions they represent. We also saw how we can use
these series to find the antiderivatives as well as the values of definite integrals of func-
tions that we could not otherwise evaluate. You will recall that in each instance we
were able to obtain satisfactory approximations to the actual values of these quantities
by retaining just the first few terms of the series. These truncated series—the th 
partial sums of the power series representations of the functions—are polynomials. The
th partial sum of the Taylor series of centered at ,

(1)

is called the th-degree Taylor polynomial of at . If , we have the th-degree
Maclaurin polynomial of .

The accuracy with which the Taylor polynomials approximate a function in a
neighborhood of is demonstrated graphically in Figure 1. Here, the function 
with Maclaurin series

is approximated by the Maclaurin polynomials of degrees 1, 2, and 3:

, , and P3(x) � 1 � x �
1

2
 x2 �

1

6
 x3P2(x) � 1 � x �

1

2
 x2P1(x) � 1 � x

f(x) � 1 � x �
x2

2!
�

x3

3!
� p �

xn

n!
� p

f(x) � exc
f

f
nc � 0cfn

 � f(c) �
f ¿(c)

1!
 (x � c) �

f �(c)

2!
 (x � c)2 � p �

f (n) (c)

n!
 (x � c)n

 Pn(x) � a
n

k�0
 
f (k) (c)

k!
 (x � c)k

cfn

n

y

y � 1 � x

y � 1 � x � x2

0�2

2

x1

y

0

2

x1

y

0�1�1

2

x1

1_
2

y � 1 � x � x2 � x31_
2

1_
6

(a) P1 (b) P2 (c) P3

FIGURE 1
As increases, gives a better and better approximation of in a neighborhood of .x � 0f(x)Pn(x)n

Observe that the graph of

is a straight line that is tangent to the graph of at . [ and 
]. The graph of

P2(x) � 1 � x �
1

2
 x2

P œ
1(0) � f ¿(0)

P1(0) � f(0)(0, 1)f

P1(x) � 1 � x
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is a parabola that passes through , has a tangent line that coincides
with that of at , and has concavity that matches that of the graph
of at . The graph of

provides an even better approximation to the graph of than that of near 
. Not only does it have the same tangent line and concavity as that of at 

and , but both and satisfy the condition
.

In general, you can show that if is the th-degree Taylor polynomial of at ,
then the derivatives of at agree with the derivatives of at up to and including
those of order (see Exercise 48). This explains why the graph of more closely con-
forms to the graph of near as gets larger and larger.

Figure 2 illustrates how the Maclaurin polynomials , , , and of 
approximate with increasing accuracy the function . For fixed the accuracy in the
approximation decreases as we move away from the center .c

nf
f(x) � cos xP8P6P4P2

nx � cf
Pnn

cfcPn

cfnPn

P3
Ô(0) � f ‡(0)

fP3P fl
3(0) � f �(0)][P œ

3(0) � f ¿(0)(0, 1)
f(0, 1)

P2(x)f

P3(x) � 1 � x �
1

2
 x2 �

1

6
 x3

[P fl
2(0) � f �(0)](0, 1)f

[P œ
2(0) � f ¿(0)](0, 1)f

[P2(0) � f(0)](0, 1)

FIGURE 2
As increases, approximates with greater and greater accuracy.f(x)P2n(x)n

To obtain the same degree of accuracy for farther away from the center, we need
to use an approximating polynomial of higher degree. Figure 3 shows the approxima-
tion of using a Maclaurin polynomial of degree 24.P24(x)f(x) � cos x

x

FIGURE 3
Approximating using a Maclaurin polynomial of degree 24f(x) � cos x

y

�2�4 1

(a) P2 (b) P4 (c) P6 (d) P8

x

y

1

x

y

�1 �1

1
2
3
4

x

y

1
2
3
4

x

y

�1

�2π 2π�4π 4π�3π 3π�π π

1

x
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Taylor’s Formula with Remainder
Two important questions arise when a function is approximated by a Taylor polyno-
mial :

1. How good is the approximation?
2. How large should be taken to ensure that a specified degree of accuracy is

obtained?

To answer these questions, we need the following theorem, which gives the relation-
ship between and .Pnf

n

Pn

f

COLIN MACLAURIN
(1698–1746)

For all of the original work produced by
Colin Maclaurin in the areas of mathemat-
ics and applied physics, it is interesting
that his name is most often remembered in
connection with a series that many other
mathematicians worked on and that is a
specific case of the more general Taylor
series. Maclaurin began his formal studies
at the University of Glasgow, where the
mathematics professor Robert Simson
inspired him to focus on geometry. In 1715
Maclaurin presented his thesis “On the
Power of Gravity.” In this thesis, written
when he was 14 years old, he developed
aspects of Newton’s (page 179) theories. In
1717 Maclaurin was appointed professor of
mathematics at the University of Aberdeen,
where he continued his interest in Newton-
ian physics. In 1719 Maclaurin traveled to
London to meet some of the scientists and
mathematicians of that time, among them
Newton himself. The following year, Maclau-
rin published Geometrica organica, sive
descriptio linearum curvarum universalis,
which presented explanations of higher
plane curves and conic sections. This work
also proved many of Newton’s proposed
theories. Maclaurin later wrote an essay
entitled “On the Tides,” which presented
the theory of tides based on Newton’s Prin-
cipia. Throughout his career, Maclaurin was
an advocate for Newton’s work, and he
defended it until his death at the age of 48.

Historical Biography
M

ar
y 

Ev
an

s 
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THEOREM 1 Taylor’s Theorem

If has derivatives up to order in an interval containing , then for each
in , there exists a number between and such that

where

(2)Rn(x) �
f (n�1)(z)

(n � 1)!
 (x � c)n�1

 � Pn(x) � Rn(x)

 f(x) � f(c) � f ¿(c)(x � c) �
f �(c)

2!
 (x � c)2 � p �

f (n)(c)

n!
 (x � c)n � Rn(x)

cxzIx
cIn � 1f

PROOF Let be any point in that is different from and define

where is the th-degree Taylor polynomial of at . For any point in , define
the function by

If we differentiate both sides of this equation with respect to , then the expression on
the right side of the resulting equation will be a telescoping finite series (to see this,
just write out the first several terms). Canceling like terms, we obtain the following
expression for :

We now apply Rolle’s Theorem to the function defined on the interval 
or , depending on whether or . In either case we see that .
Furthermore,

By the definition of 

 � 0

Rn(x) � f(x) � Pn(x) � [ f(x) � Pn(x)]

 � f(x) � Pn(x) � Rn(x)

 t(c) � f(x) � f(c) � f ¿(c)(x � c) � p �
f (n)(c)

n!
 (x � c)n � Rn(x) 

(x � c)n�1

(x � c)n�1

t(x) � 0c � xc � x[x, c]
[c, x]t

t¿(t) � �
f (n�1)(t)

n!
 (x � t)n � (n � 1)Rn(x) 

(x � t)n

(x � c)n�1

t¿(t)

t

t(t) � f(x) � f(t) � f ¿(t)(x � t) � p �
f (n)(t)

n!
 (x � t)n � Rn(x) 

(x � t)n�1

(x � c)n�1

t

ItcfnPn(x)

Rn(x) � f(x) � Pn(x)

cIx
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Therefore, satisfies the conditions of Rolle’s Theorem, so there exists a number 
between and such that . Using the expression for obtained earlier, we
have

Solving for , we obtain

Finally, since , we have

or

The expression is called the Taylor remainder of at . If , is
called the Maclaurin remainder of . We can regard

as the error that is incurred when is approximated by the th-degree Taylor poly-
nomial of at . Since we usually don’t know the value of in Equation (2)—all 
we know is that it lies between and —we often use Equation (2) to find a bound
for the error in the approximation rather than attempting to find the actual error itself.
Incidentally, the presence of the factor in Equation (2) explains why (for
fixed ) gives a better approximation when is closer to .cxPn(x)n

(x � c)n�1

cx
zcf

nf(x)

Rn(x) � f(x) � Pn(x)

f
Rn(x)c � 0cfRn(x)

f(x) � f(c) � f ¿(c)(x � c) � p �
f (n)(c)

n!
 (x � c)n � Rn(x)

0 � f(x) � f(c) � f ¿(c)(x � c) � p �
f (n)(c)

n!
 (x � c)n � Rn(x)

t(c) � 0

Rn(x) �
f (n�1)(z)

(n � 1)!
 (x � c)n�1

Rn(x)

t¿(z) � �
f (n�1)(z)

n!
 (x � z)n � (n � 1)Rn(x) 

(x � z)n

(x � c)n�1
� 0

t¿t¿(z) � 0xc
zt

EXAMPLE 1 Let .

a. Find the fourth-degree Taylor polynomial of at , and use it to approximate
.

b. Estimate the accuracy of the approximation that you obtained in part (a).

Solution
a. The first five derivatives of are

, , , and

and the values of and its first four derivatives at are

, , , , and

Using Equation (1) with and , we obtain

 � (x � 1) �
1

2
 (x � 1)2 �

1

3
 (x � 1)3 �

1

4
 (x � 1)4

 P4(x) � f(1) � f ¿(1)(x � 1) �
f �(1)

2!
 (x � 1)2 �

f ‡(1)

3!
 (x � 1)3 �

f (4)(1)

4!
 (x � 1)4

c � 1n � 4

f (4)(1) � �3!f ‡(1) � 2f �(1) � �1f ¿(1) � 1f(1) � 0

x � 1f(x)

f (5)(x) �
4!

x5
f (4)(x) � �

3!

x4
f ‡(x) �

2

x3
f ¿(x) �

1
x

, f �(x) � �
1

x2

f(x) � ln x

ln 1.1
c � 1f

f(x) � ln x
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Replacing by 1.1 then gives the required approximation

b. The error in the approximation is found by using Equation (2) with , ,
and . Thus,

where . The largest possible value of is obtained when .
(The denominator of is smallest for this value of in the interval .)
Therefore,

so the error in the approximation is less than 0.000002.

Alternative Solution By replacing by in Formula (5) in Section 9.8, we obtain
the following power series representation of :f(x)

x � 1x

R4(1.1) �
(0.1)5

5
� 0.000002

[1, 1.1]zR4(1.1)
z � 1R4(1.1)1 � z � 1.1

R4(1.1) �
f (5)(z)

5!
 (1.1 � 1)5 �

(0.1)5

5z5

x � 1.1
c � 1n � 4

 � 0.09530833

 ln 1.1 � 0.1 �
1

2
 (0.1)2 �

1

3
 (0.1)3 �

1

4
 (0.1)4

x

0 � x � 2ln x � (x � 1) �
1

2
 (x � 1)2 �

1

3
 (x � 1)3 �

1

4
 (x � 4)4 �

1

5
 (x � 1)5 � p

Therefore,

If we use just the first four terms of the series on the right to approximate , we
obtain the approximation of by . Next, since the series is an alternating
series with terms decreasing to 0, the error in this approximation is no larger than

, the first term that is omitted—that is, no larger than 0.000002, which is in
agreement with the result that we obtained earlier.

1
5 (0.1)5

P4(1.1)ln 1.1
ln 1.1

ln 1.1 � 0.1 �
1

2
 (0.1)2 �

1

3
 (0.1)3 �

1

4
 (0.1)4 �

1

5
 (0.1)5 � p

EXAMPLE 2 Let .

a. Find the Taylor polynomial of degree 2 at .
b. What is the maximum error incurred if is approximated by on the interval

?

Solution
a. The first two derivatives of are

and

and the values of and its first two derivatives at are

, , and f �(4) � �
1

32
f ¿(4) �

1

4
f(4) � 2

x � 4f(x)

f �(x) � �
1

4
 x�3>2f ¿(x) �

1

2
 x�1>2

f(x) � 1x

[3, 5]
P2(x)f

c � 4P2(x)

f(x) � 1x
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EXAMPLE 3 Determine the degree of the Maclaurin polynomial of that
allows us to find the value of to within an accuracy of 0.0001. Then use the poly-
nomial to obtain the approximation.

Solution We are required to estimate the value of . Since1e � e1>2 � f 112 2
1e

f(x) � ex

Therefore, the required Taylor polynomial is

b. The Taylor remainder is

where lies between 4 and . But

so

Now, if lies in the interval , then , so , or
. Furthermore, since , we see that

so a bound on the error incurred in approximating by on the interval is

�R2(x) � �
�x � 4 �3

16z5>2 �
1

16 � 15
� 0.0042

[3, 5]P2f

z5>2 � 35>2 � 15

z � 3�x � 4 � � 1
�1 � x � 4 � 13 � x � 5[3, 5]x

R2(x) �
3

8
 z�5>2 (x � 4)3

3!
�

(x � 4)3

16z5>2

f ‡(x) �
3

8
 x�5>2

xz

R2(x) �
f ‡(z)

3!
 (x � 4)3

 � 2 �
1

4
 (x � 4) �

1

64
 (x � 4)2

 P2(x) � f(4) � f ¿(4)(x � 4) �
f �(4)

2!
 (x � 4)2

for all , we see that the error in approximating by is

where lies between and . We are interested in approximating , so we take
. Then, . Because is an increasing function of , we see that

Therefore,

Let’s try . We obtain

R4a1

2
b �

1

5! 24
� 0.0005

n � 4

Rna1

2
b �

e1>2
(n � 1)!

a1

2
bn�1

�
2

(n � 1)! 2n�1
�

1

(n � 1)! 2n

ez � e1>2 � 41>2 � 2

zt(z) � ez0 � z � 1
2x � 1

2

e1>2xc � 0z

Rn(x) �
f (n�1)(z)

(n � 1)!
 xn�1 �

ez

(n � 1)!
 xn�1

Pn(x)f(x)nf (n)(x) � ex
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Since this bound is not within the specified error bound of 0.0001, we next try ,
obtaining

This bound is less than the prescribed error bound, so we can use

for the approximation, obtaining

As we saw earlier, the approximation of a function by the Taylor polynomial 
of centered at diminishes in accuracy as we move away from the center. Therefore,
in approximating by Taylor polynomials of , it is best to pick the center as
close to as possible. This is illustrated in the following example.x0

cff(x0)
cf

Pnf

 � 1.64870

 e1>2 � P5a1

2
b � 1 �

1

2
�

1

2!
 a1

2
b2

�
1

3!
 a1

2
b3

�
1

4!
 a1

2
b4

�
1

5!
 a1

2
b5

P5(x) � 1 � x �
x2

2!
�

x3

3!
�

x4

4!
�

x5

5!

R5a1

2
b �

1

6! 25
� 0.00004

n � 5

EXAMPLE 4 Suppose that we want to approximate using the second-order
Taylor polynomial of with center at . (Note that

is close to .)

a. Find .
b. Find the maximum error in the approximation when

.
c. Use the results of parts (a) and (b) to find . How accurate is your estimate?

Solution
a. Since

, , , and

we find

, , and

Therefore, the required Taylor polynomial is

b. The error in the approximation is

R2(x) �
f ‡(z)

3!
 ax �

p

4
b3

�
sin z

6
 ax �

p

4
b3

f(x) � P2(x)

 �
1

12
 c1 � ax �

p

4
b �

1

2
 ax �

p

4
b2d

 �
1

12
�

1

12
 ax �

p

4
b �

1

212
 ax �

p

4
b2

 P2(x) � f ap
4
b � f ¿ap

4
b ax �

p

4
b �

1

2
 f �ap

4
b ax �

p

4
b2

f �ap
4
b � �

1

12
f ¿ap

4
b � �

1

12
f ap

4
b �

1

12

f ‡(x) � sin xf �(x) � �cos xf ¿(x) � �sin xf(x) � cos x

cos 50°
�x � (p>4) � � 0.1

f(x) � P2(x)
P2(x)

50°p>4 rad � 45°
x � p>4f(x) � cos xP2(x)

cos 50°



PROOF As was noted earlier, is the th partial sum of the Taylor series of at .
By Taylor’s Theorem, , and therefore,

for all in . Thus, the sequence of partial sums converges to for each in , and
the theorem is proved.

Ixf(x)Ix

 � f(x) � lim
n→�

Rn(x) � f(x) � 0 � f(x)

 lim
n→�

Pn(x) � lim
n→�

[ f(x) � Rn(x)] � lim
n→�

f(x) � lim
n→�

Rn(x)

Pn(x) � f(x) � Rn(x)
cfnPn(x)
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where lies between and . Now for any , and if
, then

Therefore, the maximum error in approximating by for satisfying
is less than 0.0002.

c. Since

we see that

Therefore, using the result of part (a), we have

Since , the results of part (b) guarantee that the error in the
approximation that we just obtained is accurate to three decimal places. The true
value of is approximately 0.642787610.

Representing a Function by a Series
We now turn our attention to finding the conditions under which the function has a
power series representation. These conditions are spelled out in the following theorem.

f

cos 50°

p>36 � 0.0873 � 0.1

cos 50° � cosap
4

�
p

36
b �

1

12
 c1 �

p

36
�

1

2
 a p

36
b2d � 0.643

50° � 45° � 5° �
p

4
�
p

36

5° �
5p

180
�
p

36

�x � (p>4) � � 0.1
xP2(x)f(x)

�R2(x) � �
� sin z �

6
` x �

p

4
`3 �

(0.1)3

6
� 0.000167 � 0.0002

�x � (p>4) � � 0.1
z� sin z � � 1xp>4z

THEOREM 2
Suppose that has derivatives of all order on an interval containing and that

is the Taylor remainder of at . If

for every in , then is represented by the Taylor series of at ; that is,

f(x) � a
�

n�0
 
f (n)(c)

n!
 (x � c)n

cff(x)Ix

lim
n→�

Rn(x) � 0

cfRn(x)
cIf
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THEOREM 3
If is any real number, then

lim
n→�

 
�x �n

n!
� 0

x

PROOF In Example 1 in Section 9.8 we proved that the power series is
absolutely convergent for every real number . Since the th term of a convergent series
must approach zero as approaches infinity (Theorem 2 in Section 9.2), we conclude
that

lim
n→�

 
�x �n

n!
� 0

n
nx

��
n�0 xn>n!

EXAMPLE 5 Show that the Maclaurin series of the function 
does represent .

Solution We use Taylor’s Theorem with . Since , we see that

where is a number between 0 and . If , then , since the function 
is increasing. Therefore,

By Theorem 3,

so the Squeeze Theorem implies that

If , then , and hence . Therefore,

and once again, the Squeeze Theorem implies that

It follows from Theorem 2 that the Maclaurin series of represents the func-
tion for all . Finally, the series represents at , since , and
this is also the value of the sum of the series at 0.

f(0) � e0 � 1x � 0fx 	 0f
f(x) � ex

lim
n→�

Rn(x) � 0

0 � �Rn(x) � � ` xn�1

(n � 1)!
` � �x �n�1

(n � 1)!

ez � e0 � 1z � 0x � 0

lim
n→�

Rn(x) � 0

lim
n→�

 
ex

(n � 1)!
 xn�1 � ex lim

n→�
 

xn�1

(n � 1)!
� 0

0 � Rn(x) �
ex

(n � 1)!
 xn�1

f(x) � exez � exx � 0xz

Rn(x) �
f (n�1)(z)

(n � 1)!
 xn�1 �

ez

(n � 1)!
 xn�1

f (n�1)(x) � exc � 0

f
f(x) � ex��

n�0 xn>n!

Before looking at an application of Theorem 2, we state the following result, which
will be used in the solution.
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EXAMPLE 6 Show that the Maclaurin series of the function
does represent .

Solution Using Taylor’s Theorem with , we have

where is a number between 0 and . But is either or for any
( , 1, 2, ). Therefore, , so

By Theorem 3,

so the Squeeze Theorem implies that

It follows from Theorem 2 that

as was to be shown.

The next example shows how a Taylor polynomial can be used to approximate an
integral that involves an integrand whose antiderivative cannot be expressed as an ele-
mentary function.

f(x) � a
�

n�0
(�1)n 

x2n�1

(2n � 1)!

lim
n→�

Rn(x) � 0

lim
n→�

 
�x �n�1

(n � 1)!
� 0

�Rn(x) � �
� f (n�1)(z) �

(n � 1)!
 �x �n�1 �

�x �n�1

(n � 1)!

� f (n�1)(z) � � 1pn � 0n

cos x
sin xf (n�1)(x)xz

Rn(x) �
f (n�1)(z)

(n � 1)!
 xn�1

c � 0

ff(x) � sin x
a
�

n�0
(�1)n 

x2n�1

(2n � 1)!

EXAMPLE 7 Growth of the Service Industries It has been estimated that service
industries, which currently make up 30% of the nonfarm workforce in a certain coun-
try, will continue to grow at the rate of

percent per decade, decades from now. Estimate the percentage of the nonfarm work-
force in the service industries one decade from now.

Solution The percentage of the nonfarm workforce in the service industries decades
from now will be given by

This integral cannot be expressed in terms of an elementary function. To obtain an
approximate solution to the problem at hand, let’s first make the substitution

u �
1

t � 1

P(0) � 30P(t) � �5e1>(t�1) dt

t

t

R(t) � 5e1>(t�1)
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So that

and

giving

The integral becomes

Next, let’s approximate at by a fourth-degree Taylor polynomial. Using
Formula 2 in Section 9.8, we have

Thus,

Therefore,

Using the condition , we find

or . SoC � 27.99

30 � P(0) � �5a�1 � ln 1 �
1

2
�

1

12
�

1

72
b � C

P(0) � 30

P(t) � �5c�(t � 1) � lna 1

t � 1
b �

1

2(t � 1)
�

1

12(t � 1)2
�

1

72(t � 1)3
d � C

 � �5a�1
u

� ln u �
1

2
u �

u2

12
�

u3

72
b � C

 � �5� a 1

u2
�

1
u

�
1

2
�

u

6
�

u2

24
b du

 F(u) � �5� 1

u2
 a1 � u �

u2

2
�

u3

6
�

u4

24
b du

eu � 1 � u �
u2

2!
�

u3

3!
�

u4

4!

u � 0eu

F(u) � 5� eua�du

u2
b � �5� eu

u2
du

dt � �
1

u2
du

t �
1
u

� 1t � 1 �
1
u

In particular, the percentage of the nonfarm workforce in the service industries one
decade from now will be given by

or approximately 40.1%.

P(1) � �5c�2 � lna1

2
b �

1

4
�

1

48
�

1

576
d � 27.99 � 40.09

P(t) � �5c�(t � 1) � lna 1

t � 1
b �

1

2(t � 1)
�

1

12(t � 1)2
�

1

72(t � 1)3
d � 27.99
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1. What is the th-degree Taylor polynomial of at ? What is
the th-degree Maclaurin polynomial of ?

2. Match each of the Taylor polynomials with the graph of the
appropriate function , , or .

a.

b.

c.

y

0

1

x

f

1

(1)

1 �
1

4
 (x � 1)2 �

1

8
 (x � 1)3

1 �
1

8
 (x � 1)2 �

1

8
 (x � 1)3

1 �
2

3
 (x � 1) �

1

9
 (x � 1)2 �

4

81
 (x � 1)3

htf

fn
cfn

3. Write the expression for the Taylor remainder of at .
4. State the conditions under which a function will have a

power series representation at .c
f

cfRn(x)

h

(3)
y

0

1

x1

g

(2)
y

0

1

x1

9.9 CONCEPT QUESTIONS

Videos for selected exercises are available online at www.academic.cengage.com/login.V

In Exercises 1 and 2, find the th-order Taylor polynomial 
at for the function and the values of . Then plot the graphs
of and the approximating polynomials on the same set of axes.

1. , ,

2. , ,

In Exercises 3–16, find the Taylor polynomial and the 
Taylor remainder for the function and the values of 

and .

3. , ,

4. , ,

5. , ,

6. , ,

7. , ,

8. , ,  n � 3c � 4f(x) � 1x

 n � 2c �
p

4
f(x) � tan x

n � 3c �
p

6
f(x) � cos x

 n � 3c �
p

2
f(x) � sin x

n � 4 c � �1f(x) � x4 � 3x3 � 2x � 3

n � 4c � 1f(x) � 2x3 � 3x2 � x � 1

nc
fRn(x)

Pn(x)

n � 1, 2, 3, 4 c � 0f(x) � sin x

 n � 1, 2, 3c � 0f(x) � e�x

f
nfc

Pn(x)n 9. , ,

10. , ,

11. , ,

12. , ,

13. , ,

14. , ,

15. , ,

16. , ,

In Exercises 17–28, find the Taylor or Maclaurin polynomial
for the function with the given values of and . Then

give a bound on the error that is incurred if is used to
approximate on the given interval.

17. , , ,

18. , , , C0, p3 Dn � 5c �
p

6
f(x) � sin x

[0.8, 1.2]n � 2c � 1f(x) � x4 � 1

f(x)
Pn(x)

ncfPn(x)

n � 3c �
p

6
f(x) � ln sin x

n � 2c �
p

6
f(x) � ex cos 2x

n � 2c � 0f(x) � ex sin x

n � 3c � �1f(x) � xex

n � 3c � 4f(x) � ln x

n � 2c � 1f(x) � tan�1 x

n � 5c � �1f(x) �
1
x

n � 3c � �8f(x) � 13 x
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19. , , ,

20. , , ,

21. , , ,

22. , , ,

23. , , ,

24. , , ,

25. , , ,

26. , , ,

27. , , ,

28. , , ,

In Exercises 29–38, find the Taylor polynomial of smallest degree
of an appropriate function about a suitable point to approximate
the given number to within the indicated accuracy.

29. , 0.0001

30. , 0.0002

31. , 0.00005

32. , 0.000005

33. , 0.0005

34. , 0.0001

35. , 0.00001

36. , 0.0005

37. ,

38. ,

In Exercises 39–44, prove that the given Taylor (Maclaurin)
series does represent the function.

39. ,

40. ,

41. ,

42. ,

43. , f(x) � cosh xa
�

n�0
 

x2n

(2n)!

f(x) � sinh xa
�

n�0
 

x2n�1

(2n � 1)!

f(x) � sin x
1

12
 a

�

n�0
(�1)n(n�1)>2 

1x � p
4 2n

n!

f(x) � cos xa
�

n�0
(�1)n 

x2n

(2n)!

f(x) � e�x
a
�

n�0
(�1)n 

xn

n!

0.0001sin 69°

0.0001cos 32°

cos 0.5

sin 0.1

ln 1.2

�
1

2.1

13 �8.2

19.01

e�1>2
e0.2

[�1, 1]n � 5c � 0f(x) � cosh x

[2, 4]n � 3c � 3f(x) � ln(x � 1)

C0, p6 Dn � 2c � 0f(x) � sec x

C0, p4 Dn � 3c � 0f(x) � tan x

[0.9, 1.1]n � 5c � 1f(x) �
1
x

[8, 10]n � 3c � 9f(x) � 1x

[0, 0.1]n � 2c � 0f(x) � e�x2

[1, 1.1]n � 4c � 1f(x) � e2x

[0.8, 1.2]n � 3c � 1f(x) � x1>3
C0, p2 Dn � 4c �

p

4
f(x) � cos x

44. ,

45. Growth of Service Industries It has been estimated that service
industries, which currently make up 30% of the nonfarm
workforce in a certain country, will continue to grow at the
rate of

percent per decade, decades from now. Estimate the per-
centage of the nonfarm workforce in service industries two
decades from now.

46. Concentration of Carbon Monoxide in the Air According to a joint
study conducted by a certain city’s Environmental Manage-
ment Department and a state government agency, the con-
centration of carbon monoxide (CO) in the air due to auto-
mobile exhaust years from now is given by

parts per million. Use the second Taylor polynomial of at
to obtain an approximation of the average level of

concentration of CO in the air between and .

47. Show that , where is the first-order Taylor poly-
nomial of at , is an equation of the tangent line to the
graph of at the point .

48. Let be the th-order Taylor polynomial of at . Show
that and have the same derivatives at up to order .

49. Prove that

if .
Hint: Use Taylor’s theorem with and and .

50. Show that the error that is incurred in approximating
by does not exceed .

In Exercises 51–54, determine whether the statement is true or
false. If it is true, explain why it is true. If it is false, explain why
or give an example to show why it is false.

51. If is a polynomial function of degree , then the Maclaurin
polynomial of degree of is itself.

52. If and is the th-degree Maclaurin polyno-
mial of , then for some positive integer .

53. The inequality holds for all real values of .

54. The binomial expansion in the Binomial Theorem is the
Maclaurin polynomial of , where is a posi-
tive integer.

nf(x) � (1 � x)n

x1 � x � ex

nPn(0.1) � e0.1f
nPn(x)f(x) � ex

ffn
nf

h2>2sin c � h cos csin(c � h)

n � 2n � 1c � 0
x � 0

x �
x2

2
� ln(1 � x) � x

ncfPn

cfnPn(x)

(c, f(c))f
cf

P1y � P1(x)

t � 2t � 0
t � 0

C

C(t) � 0.01(0.2t 2 � 4t � 64)2>3
t

t

R(t) � 6e1>(2t�1)

f(x) � sin x

13

2
 a

�

n�0
(�1)n 

1x � p
6 22n�1

(2n � 1)!
�

1

2
 a

�

n�0
(�1)n 

1x � p
6 22n

(2n)!
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In Exercises 1–10, fill in the blanks.

1. a. A sequence is a whose domain is the set of
positive . The term is called the 

of the sequence.
b. If can be made as close to the number as we please

by taking sufficiently large, then is said to
to .

c. The precise definition of a limit states that
if there exists

a such that when-
ever .

2. a. If , , and is any real num-
ber, then ,

, , and 

, provided that .
b. If there exists some integer such that for

all and , then
.

3. a. A series converges and has sum if its sequence
of converges to .

b. The series , , is called a 
series. It converges if and diverges if

.

4. a. If converges, then . If
does not exist or , then 

.
b. If , , and is any real number,

then .

5. a. If is positive, continuous, and decreasing, and if
, then and are either both
or .

b. The -series has the form and converges if
and diverges if .

6. a. If and are series with positive terms with
for all , then converges implies that 

. If diverges and for all , then
also diverges.� an

n� bn

� an� bnnan � bn

� bn� an

p

��
1 f(x) dx��

n�1 anan � f(n)
f

��
n�1(can � bn) �

c��
n�1 bn � B��

n�1 an � A

��
n�1 anlimn→� an 	 0limn→� an

limn→� an ���
n�1 an

� r � �

� r � �
a 	 0��

n�1 ar n�1
S

S��
n�1 an

limn→� bn � L
� Llimn→� an �n � N

an � bn � cnN

lim
n→�

an

bn
�limn→� anbn �

limn→�(an � bn) �limn→� can �
climn→� bn � Mlimn→� an � L

�an � L � � eN
e � 0limn→� an � L

L
{an}n

Lan

an

b. If and are series with positive terms and 

, where is ,

then either both series or both .

7. a. The series is called 
series. It converges if both the conditions 

for all and are satisfied.
b. If both the conditions in part (a) are satisfied, then the

error that is incurred in approximating the sum of the
alternating series by is no larger than .

8. a. A series is absolutely convergent if the series
converges.

b. A series is convergent if it is convergent
but not convergent.

c. A(n) convergent series is convergent.
d. Suppose that . Then if , the

series ; if or , the series 
; and if , the Ratio Test is .

e. Suppose that . Then if , the series
; if or , the series ; and

if , the Root Test is .

9. a. A power series in is a series of the form
.

b. For a power series in , exactly one of the follow-
ing is true: It converges only at , it converges
for all , or it converges for , where

is the radius of convergence of the series. In the last
case the series diverges for .

10. a. The Taylor series of a function at has the form
.

b. The th-degree Taylor polynomial of at is the th
of the Taylor series at .

c. Taylor’s Theorem states that if has derivatives up 
to order in an interval containing ,
then for each in there exists a number 
between such that

where .
d. If has derivatives of all order in and ,

then is represented by the of at .cff
limn→� Rn(x) � 0If

Rn(x) �f(x) � Pn(x) � Rn(x)

zx
In � 1

f
c

ncfPnn

cf

�x � c � � R
R

�x � c � � R

(x � c)

(x � c)

L � 1
L � �L � 1

L � 1limn→�2n �an � � L

L � 1
L � �L � 1

L � 1limn→� �an�1>an � � L

� an

� an

Sn

limn→� an �nan

an�1

��
n�1(�1)n�1an

Llim
n→�

an

bn
� L

� bn� an
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Review Exercises 823

In Exercises 1–8, determine whether the sequence with the given
th term converges or diverges. If it converges, find the limit.

1. 2.

3. 4.

5. 6.

7. 8.

In Exercises 9–12, find the sum of the series.

9. 10.

11. 12.

In Exercises 13–26, determine whether the series is convergent
or divergent.

13. 14.

15. 16.

17. 18.

19. 20.

21. 22.

23. 24.

25.

26.

In Exercises 27–32, determine whether the series is absolutely
convergent, conditionally convergent, or divergent.

27. 28.

29. 30. a
�

n�1
 
(�1)n tan�1 n

n2 � 1a
�

n�2
 

(�1)n

(ln n)n>2

a
�

n�2
 
(�1)n

n ln na
�

n�1
 
(�1)n�1

2n � 1

a
�

n�1

1 � 3 � 5 � p � (2n � 1)

n! 3n

a
�

n�1
 
1 � 3 � 5 � p � (2n � 1)

2 � 5 � 8 � p � (3n � 1)

a
�

n�1
 

tan�1 n

2n2 � 1
a
�

n�2
 

1

n(ln n)2

a
�

n�1
 

en

(n � 1)2na
�

n�1
 
(�1)n 3n

n � 2n

a
�

n�2
 
(�1)n ln n

na
�

n�1
 
n � cos n

n3 � 1

a
�

n�1
 

sin n

n2 � 1a
�

n�1
 

1

2n3 � n

a
�

n�1
 

(�1)n

13 n � 1a
�

n�1
 
n3

2n

a
�

n�1
 

n3 � 1

2n3 � 1a
�

n�1
 

n

2n3 � 1

a
�

n�1
 c a3

5
bn

�
1

n(n � 1)
da

�

n�1
 

1

n(n � 3)

a
�

n�0
a 1

3n �
1

4n�1ba
�

n�0
a2

3
bn

an � a1 �
3
n
b2n

an �
cos n

n

an �
ln(n2 � 1)

n
an �

n

ln n

an � 10(�1.01)nan � 2 � 3(0.9)n

an �
n � 1

2n2an �
n

3n � 2

n 31.

32.

33. Express as a rational number.

34. Find an approximation of the sum of the series 

accurate to three decimal places.

35. True or false? If , then may converge
conditionally but not absolutely.

36. True or false? If and diverges, then 
diverges.

37. True or false? If diverges, then also diverges.

38. True or false? If diverges and for every ,
then .

39. Find all values of for which the series con-
verges.

40. Show that if 
Hint: Show that is convergent.

41. Show that is convergent if and only if the
sequence of partial sums of , , are bounded for 

42. If is a nonzero constant and diverges, prove that
diverges.

In Exercises 43–48, find the radius of convergence and the inter-
val of convergence of the power series.

43. 44.

45. 46.

47. 48.

In Exercises 49–54, find the Taylor series of at the given value
of .

49. , 50. ,

51. , 52. ,

53. , 54. ,

55. Find the radius of convergence of the series .a
�

n�1
 
(2n)!

(n!)2 xn

c �
p

6
f(x) � cos xc � 0f(x) �21 � x2

c � 3f(x) � ln xc � 0f(x) � cos x2

c � 0f(x) � xe�x2

c � 0f(x) �
x3

1 � x

c
f

a
�

n�1
 

(�1)n n!(x � 1)n

2 � 4 � 6 � p � (2n)a
�

n�2
 

xn

n(ln n)2

a
�

n�1
 
(x � 2)n

nna
�

n�0
 
(�2x)n

n2 � 1

a
�

n�1
 
n2(x � 2)n

2na
�

n�0
 
(�1)n xn

n � 1

��
n�1 can

��
n�1 anc

n � 1.Sn� an

(an � 0)��
n�1 an

��
n�1 nxn

�x � � 1.limn→� nxn � 0

��
n�1(cos x)nx

limn→� Sn � limn→� �n
k�1 ak � �

nan � 0��
n�1 an

��an �� an

� an� bn0 � an � bn

� anlimn→� an 	 0

a
�

n�1
 
(�1)n�1

n3

1.3617 � 1.3617617617 p

a
�

n�1
(�1)n 

1 � 3 � 5 � p � (2n � 1)

2 � 5 � 8 � p � (3n � 2)

a
�

n�1
 
(�1)n1n

2n � 1

REVIEW EXERCISES
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56. Find the radius of convergence of the series 

.

57. Find a power series representation of .

58. Find a power series representation of .

59. Approximate to three decimal places of 

accuracy.

60. Approximate to three decimal places of 

accuracy.

In Exercises 61 and 62, use a Taylor polynomial to approximate
the number with an error of less than 0.001.

61. 62.

In Exercises 63–66, find the Taylor polynomial and the
Taylor remainder for the given function and the given
values of and .

63. , ,

64. , ,

65. , ,

66. , ,

67. Suppose that and are both convergent series
with positive terms. Show that also converges.
Hint:

68. Show that the series

diverges. Is the Alternating Series Test applicable? Explain.

69. It can be shown that the magnetic field at a point a dis-
tance above the center of a circular loop of radius and
carrying a steady current is directed upward and has mag-
nitude

B �
m0I

2
�

R2

(R2 � y2)3>2

I
Ry

P

1

12 � 1
�

1

12 � 1
�

1

13 � 1
�

1

13 � 1
� p

(1an � 1bn)
2 � 0

��
n�1 1an bn

��
n�1 bn��

n�1 an

n � 2c �
p

6
f(x) � ln cos x

n � 2c �
p

2
f(x) � csc x

n � 3c �
p

3
f(x) � cos x

n � 3c � 1f(x) � 1x

nc
fRn(x)
Pn(x)

sin 2°e�0.25

�
0.1

0
cos 1x dx

�
0.2

0
21 � x2 dx

� ex � 1
x

dx

� e�x

x
dx

a
�

n�1
 

nn

(2n)!
 (x � 1)n

where is a constant called the permeability of free space
(see the figure). Show that

if is large in comparison to .

70. Electric Field Induced by a Line Charge The figure below shows a
straight line segment of length that carries a uniform line
charge . It can be shown that the electric field induced by
this line charge at a distance above the origin is directed
along the -axis and has magnitude

where is a constant called the permittivity of free space.
Show that the formula becomes

if is large in comparison to . This suggests that the line
charge “looks” like a point charge from this dis-
tance, so the field reduces to that induced by a point charge
, namely, .

y

0

(0, y)

�L L x

q>(4pe0)y
2q

q � 2lL
Ly

E �
1

4pe0
�

2lL

y2

e0

E �
1

4pe0
�

2lL

y2y2 � L2

y
y

l

2L

y

P

R

I

Ry

B �
m0IR

2

2y3

m0

Although l’Hôpital’s Rule is a powerful tool for evaluating limits involving an inde-
terminate form, it is not always the ideal choice. The following technique illustrates
the usefulness of the Taylor series in solving such problems.

PROBLEM-SOLVING TECHNIQUES



Challenge Problems 825

EXAMPLE Find .

Solution Evaluating the limit, we are led to the indeterminate form . An obvious
approach is to use l’Hôpital’s Rule to find the limit. But we would soon be deterred
by the number of calculations (of derivatives) involved in the process. Alternatively,
we can solve the problem with the aid of the power series representations of functions.

Displaying terms up to those of degree five, we find

� lim
x→0

 

41

120
 x5 � p

x5
�

41

120
� 0.342

� lim
x→0

 

x �
x3

6
�

x5

120
� x3 �

x5

6
�

x5

2
 � p � x �

5

6
 x3

x5

� lim
x→0

 

a1 � x2 �
x4

2!
 � p b ax �

x3

6
�

x5

120
 � p b � x �

5

6
 x3

x5

lim
x→0

 
ex2

sin x � x11 � 5
6 x2 2

x5

0>0
lim
x→0

 
ex2

sin x � x11 � 5
6 x2 2

x5

1. Let . Find

.
Hint: Show that , where and 

, and use the Squeeze Theorem.

2. Define by

a. Find a rule for that does not involve a limit.
b. Sketch the graph of .

3. Cantor Set Start with the interval , and remove the open
middle third . Next, remove the open middle third from
each of the two remaining closed intervals, then the open
middle third from each of the four remaining closed inter-
vals, and so on.
a. Find an expression for , the sum of the lengths of the

intervals remaining after steps.
b. Show that . The set remaining after all

the deletions is called the Cantor middle-third set and
can be said to have total length zero.

4. Find .limn→� 4n12n2 � 1 � n 2
climn→� cn � 0

n
cn

113, 23 2 [0, 1]

f
f

f(x) � lim
n→�

 
x2n � 1

x2n � 1

f

zn �
n

2n2 � 1

yn �
n

2n2 � n
yn � xn � zn

limn→� xn

xn �
1

2n2 � 1
�

1

2n2 � 2
 � p � 

1

2n2 � n

5. Let , and define the sequence by

, , ,

radicals
Assuming that exists, what is the limit?

6. Find the largest term in the sequence , where 

.

7. Show that .

8. Let be a convergent series with positive terms. 

Show that converges.

Hint: Consider .

9. Show that if and is any positive integer, then 

.

Hint: Show that the series converges.a
�

n�1

nk

an

lim
n→�

 
nk

an � 0

ka � 1

a
N

n�1
a1an �

1

n
b2

a
�

n�1

1an

n

a
�

n�1
an

lim
n→�

 
1

n2 a
n

k�1
�kx� �

x

2

an �
2n2

3n3 � 400

{an}

limn→� xn

n

⎫⎪⎪⎪⎬⎪⎪⎪⎭xn � 3a �2a � p � 1a

px3 � 3a �2a � 1ax2 �2a � 1ax1 � 1a

{xn}a � 0

CHALLENGE PROBLEMS
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10. Let , , , , denote the areas of the regions , ,
, , bounded by the -axis and the graph of

for .
a. Show that

b. Integrate by parts to show that

c. Using the results of parts (a) and (b), show that

d. Using the results of part (c), find the sum of the areas of
the regions .
Hint: is a geometric series.

11. Evaluate .lim
x→0

 
1 �21 � x2 cos x

x4

��
n�0 An

A0, A1, A2, A3, p

n � 0, 1, 2, pAn �
b

a2 � b2 e�nap>b(1 � e�ap>b)

� e�ax sin bx dx � �
e�ax

a2 � b2 (a sin bx � b cos bx) � C

n � 0, 1, 2, 3, pAn � (�1)n�
(n�1)p>b

np>b
e�ax sin bx dx

x � 0(a � 0)f(x) � e�ax sin bx
xpR3R2

R1R0pA3A2A1A0
12. Evaluate .

13. Find the Maclaurin series of .

14. Determine whether is convergent or
divergent.

15. Find the values of for which the series 
converges.

16. Suppose that , , and are continuous in an interval con-
taining . Show that

17. Find the Maclaurin series of up to the 
term.

x3f(x) � (1 � x)x

lim
h→0

 
f(x � 2h) � 2f(x � h) � f(x)

h2 � f �(x)

x
f �f ¿f

a
�

n�1
 
(�1)n�1

n � x2x

��
n�1 n100 e�n sin n

f(x) �
1

1 � x � x2 � x3

lim
n→�
a1 � 2 � 3 � 4 � p � 2n

24n2 � 1
b



10 Conic Sections, Plane Curves,
and Polar Coordinates

The shape assumed by the
cable in a suspension bridge is

a parabola. The parabola, like
the ellipse and hyperbola, is 
a curve that is obtained as a
result of the intersection of 

a plane and a double-napped
cone, and is, accordingly,

called a conic section. Conic
sections appear in various

fields of study such as astron-
omy, physics, engineering, and

navigation. Ja
m
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CONIC SECTIONS ARE curves that can be obtained by intersecting a double-napped

right circular cone with a plane. Our immediate goal is to describe conics using alge-

braic equations. We then turn to applications of conics, which range from the design

of suspension bridges to the design of satellite-signal receiving dishes and to the

design of whispering galleries, in which a person standing at one spot in a gallery

can hear a whisper coming from another spot in the gallery. The orbits of celestial

bodies and human-made satellites can also be described by using conics.

Parametric equations afford a way of describing curves in the plane and in space.

We will study these representations and use them to describe the motion of projec-

tiles and the motion of other objects.

Polar coordinates provide an alternative way of representing points in the plane.

We will see that certain curves have simpler representations with polar equations

than with rectangular equations. We will also make use of polar equations to help us

find the arc length of a curve, the area of a region bounded by a curve, and the area

of a surface obtained by revolving a curve about a given line.

This symbol indicates that one of the following video types is available for enhanced student learning 
at www.academic.cengage.com/login:
• Chapter lecture videos • Solutions to selected exercises

V

www.academic.cengage.com/login


828 Chapter 10 Conic Sections, Plane Curves, and Polar Coordinates

In this section we give the geometric definition of each conic section, and we derive
an equation for describing each conic section algebraically.

Parabola
We first consider a conic section called a parabola.

10.1 Conic Sections

Figure 1 shows the reflector of a radio telescope. The shape of the surface of the reflec-
tor is obtained by revolving a plane curve called a parabola about its axis of symme-
try. (See Figure 2a.) Figure 2b depicts the orbit of a planet around the sun, . This
curve is called an ellipse. Figure 2c depicts the trajectory of an incoming alpha parti-
cle heading toward and then repulsed by a massive atomic nucleus located at the point

. The trajectory is one of two branches of a hyperbola.F

SP

FIGURE 1
The reflector of a radio telescope

These curves—parabolas, ellipses, and hyperbolas—are called conic sections or,
more simply, conics because they result from the intersection of a plane and a double-
napped cone, as shown in Figure 3.

FIGURE 2

FIGURE 3
The conic sections

DEFINITION Parabola

A parabola is the set of all points in a plane that are equidistant from a fixed
point (called the focus) and a fixed line (called the directrix). (See Figure 4.)FIGURE 4

The distance between a point on a
parabola and its focus is the same 
as the distance between and the
directrix of the parabola.l

P
F

P

Ph
ot

od
is

c/
Ge

tty
 Im

ag
es

Axis

P (planet)

S (sun)

(a) The cross section of a radio
      telescope is part of  a
      parabola.

(b) The orbit of a planet around
      the sun is an ellipse.

(c) The trajectory of an alpha
      particle in a Rutherford
      scattering is part of a branch
      of a hyperbola.

Alpha particleF (nucleus)

(a) Parabola (b) Ellipse (c) Hyperbola

Axis

Parabola

l (directrix)

F (focus)

V (vertex)

P

d
d

By definition the point halfway between the focus and directrix lies on the parabola.
This point is called the vertex of the parabola. The line passing through the focusV

Copyright 2009 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.



10.1 Conic Sections 829

and perpendicular to the directrix is called the axis of the parabola. Observe that the
parabola is symmetric with respect to its axis.

To find an equation of a parabola, suppose that the parabola is placed so that its
vertex is at the origin and its axis is along the -axis, as shown in Figure 5. Further,
suppose that its focus is at , and its directrix is the line with equation .
If is any point on the parabola, then the distance between and is

whereas the distance between and the directrix is . By definition these dis-
tances are equal, so

Squaring both sides and simplifying, we obtain

 x2 � 4py

 x2 � y2 � 2py � p2 � y2 � 2py � p2

 x2 � (y � p)2 � �y � p �2 � (y � p)2

2x2 � (y � p)2 � �y � p �

�y � p �P

d(P, F) �2x2 � (y � p)2

FPP(x, y)
y � �p(0, p)F

y

FIGURE 5
The parabola with focus and

directrix , where p � 0y � �p
F(0, p)

Standard Equation of a Parabola

An equation of the parabola with focus and directrix is

(1)x2 � 4py

y � �p(0, p)

If we write , then Equation (1) becomes . Observe that the
parabola opens upward if and opens downward if . (See Figure 6.) Also,
the parabola is symmetric with respect to the -axis (that is, the axis of the parabola co-
incides with the -axis), since Equation (1) remains unchanged if we replace by .�xxy

y
p � 0p � 0

y � ax2a � 1>(4p)

0

P(x, y)

F(0, p)

d(P, F )

y � �p

 �y � p �

x

y

0

F(0, p)

(a) p > 0 (b) p < 0

y � �p
x

y

0

F(0, p)

y � �p

x

y

FIGURE 6
The parabola opens upward

if and downward if .p � 0p � 0
x2 � 4py
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Interchanging and in Equation (1) gives

(2)

which is an equation of the parabola with focus and directrix . The
parabola opens to the right if and opens to the left if . (See Figure 7.) In
both cases the axis of the parabola coincides with the -axis.x

p � 0p � 0
x � �pF(p, 0)

y2 � 4px

yx

FIGURE 7
The parabola opens to the

right if and to the left if .p � 0p � 0
y2 � 4px

EXAMPLE 1 Find the focus and directrix of the parabola , and make a
sketch of the parabola.

Solution Rewriting the given equation in the form and comparing it with
Equation (2), we see that or . Therefore, the focus of the parabola is 

, and its directrix is . The parabola is sketched in Figure 8.x � 3
2F1�3

2, 0 2 p � �3
24p � �6

y2 � �6x

y2 � 6x � 0

FIGURE 8
The parabola y2 � 6x � 0

EXAMPLE 2 Find an equation of the parabola that has its vertex at the origin with
axis of symmetry lying on the -axis, and passes through the point . What are
the focus and directrix of the parabola?

Solution An equation of the parabola has the form . To determine the value
of , we use the condition that the point lies on the parabola to obtain the
equation giving . Therefore, an equation of the parabola is

To find the focus of the parabola, observe that it has the form . Now

Therefore, the focus is . Its directrix is , or . The
graph of the parabola is sketched in Figure 9.

The parabola has many applications. For example, the cables of certain suspension
bridges assume shapes that are parabolic.

y � 9
16y � �p � �1� 9

16 2F10, � 9
16 2

p �
1

4a
�

1

41�4
9 2 � �

9

16

F(0, p)

y � �
4

9
 x2

a � �4
9�4 � a(3)2

P(3, �4)a
y � ax2

P(3, �4)y

FIGURE 9
The parabola y � �4

9 x2

Note A parabola with vertex at the origin and axis of symmetry lying on the -axis
or -axis is said to be in standard position. (See Figures 6 and 7.)y

x

F(p, 0)

(a) p > 0 (b) p < 0

x � �p

0 0

F(p, 0)

x � �p

x x

y y

0 x

y

y2 � 6x � 0

�3 �2 �1
�1

� , 0( ) 1

2

�2

1 2

3
2x �

3
2F

0 x

y

(3, �4)

�3 �2 �1
�1

0, �( )�2

�3

�4

1 2 3

9
16

9
16

y �

F
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EXAMPLE 3 Suspension Bridge Cables Figure 10 depicts a bridge, suspended by a
flexible cable. If we assume that the weight of the cable is negligible in comparison to
the weight of the bridge, then it can be shown that the shape of the cable is described
by the equation

where is the weight of the bridge in pounds per foot and is the tension at the low-
est point of the cable in pounds (the origin). (See Exercise 89.) Suppose that the span
of the cable is ft and the sag is ft.

a. Find an equation describing the shape assumed by the cable in terms of and .
b. Find the length of the cable if the span of the cable is 400 ft and the sag is 

80 ft.

ha

h2a

HW

y �
Wx2

2H

FIGURE 10
A bridge of length 

suspended by a flexible cable
2a

Solution
a. We can write the given equation in the form , where . Since

the point lies on the parabola , we have

or , so the required equation is .
b. With and an equation that describes the shape of the cable is

Next, the length of the cable is given by

But , so

The easiest way to evaluate this integral is to use Formula 37 from the Table of
Integrals found on the reference pages of this book:

�2a2 � u2 du �
u

2
2a2 � u2 �

a2

2
ln �u �2a2 � u2 � � C

s � 2�
200

0 B1 � a x

250
b2

dx �
1

125
 �

200

0
22502 � x2 dx

y¿ � x>250

s � 2�
200

0
21 � (y¿)2 dx

y �
80x2

2002
�

x2

500

h � 80a � 200
y � hx2>a2k � h>a2

h � ka2

y � kx2(a, h)
k � W>(2H)y � kx2

xa�a

h (sag)

2a
(span)

y
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If we let and , thenu � xa � 250

FIGURE 11
The reflective property states that

.a � b

FIGURE 12
Applications of the reflective 

property of a parabola

The reflective property of the parabola is also used in the design of headlights of
automobiles. Here, a light bulb is placed at the focus of the parabola. A ray of light
emanating from the light bulb will strike the surface of the reflector and be reflected
outward along a direction parallel to the axis of the parabola (see Figure 12b).

Ellipses
Next, we consider a conic section called an ellipse.

 �
4

5
1102500 � 250 lna200 � 1102500

250
b � 439

 �
1

125
 C100162500 � 40000 � 31250 ln �200 � 162500 � 40000 � � 31250 ln 250 D

 s �
1

125
 cx

2
22502 � x2 �

2502

2
ln �x �22502 � x2 �d200

0

or 439 ft.

Other applications of the parabola include the trajectory of a projectile in the absence
of air resistance.

Reflective Property of the Parabola
Suppose that is any point on a parabola with focus , and let be the tangent line
to the parabola at . (See Figure 11.) The reflective property states that the angle 
that lies between and the line segment is equal to the angle that lies between 
and the line passing through and parallel to the axis of the parabola. This property
is the basis for many applications. (An outline of the proof of this property is given in
Exercise 105.)

As was mentioned earlier, the reflector of a radio telescope has a shape that is
obtained by revolving a parabola about its axis. Figure 12a shows a cross section of
such a reflector. A radio wave coming in from a great distance may be assumed to be
parallel to the axis of the parabola. This wave will strike the surface of the reflector
and be reflected toward the focus , where a collector is located. (The angle of inci-
dence is equal to the angle of reflection.)

F

P
lbFPl
aP

lFP

0 F

P

å

∫

 l

x

y

AxisCollector AxisFocus

(a) A cross section of a radio telescope (b) A cross section of a headlight
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DEFINITION Ellipse

An ellipse is the set of all points in a plane the sum of whose distances from
two fixed points (called the foci) is a constant.

Figure 13 shows an ellipse with foci and . The line passing through the foci
intersects the ellipse at two points, and , called the vertices of the ellipse. The
chord joining the vertices is called the major axis, and its midpoint is called the cen-
ter of the ellipse. The chord passing through the center of the ellipse and perpendicu-
lar to the major axis is called the minor axis of the ellipse.

V2V1

F2F1

FIGURE 13
An ellipse with foci and . A 

point is on the ellipse if 
and only if .d1 � d2 � a constant

P(x, y)
F2F1

Note We can construct an ellipse on paper in the following way: Place a piece of
paper on a flat wooden board. Next, secure the ends of a piece of string to two points
(the foci of the ellipse) with thumbtacks. Then trace the required ellipse with a pencil
pushed against the string, as shown in Figure 14, making sure that the string is kept
taut at all times.

To find an equation for an ellipse, suppose that the ellipse is placed so that its major
axis lies along the -axis and its center is at the origin, as shown in Figure 15. Then
its foci and are at the points and , respectively. Let the sum of the
distances between any point on the ellipse and its foci be . Then,
by the definition of an ellipse we have

that is,

or

Squaring both sides of this equation, we obtain

or, upon simplification,

Squaring both sides again, we have

a2(x2 � 2cx � c2 � y2) � a4 � 2a2cx � c2x2

a2(x � c)2 � y2 � a2 � cx

x2 � 2cx � c2 � y2 � 4a2 � 4a2(x � c)2 � y2 � x2 � 2cx � c2 � y2

2(x � c)2 � y2 � 2a �2(x � c)2 � y2

2(x � c)2 � y2 �2(x � c)2 � y2 � 2a

d(P, F1) � d(P, F2) � 2a

2a � 2c � 0P(x, y)
(c, 0)(�c, 0)F2F1

x
FIGURE 14
Drawing an ellipse on paper using
thumbtacks, a string, and a pencil

Minor axis

Center

Major axis

P(x, y)

F1 (focus)
V1 (vertex) V2 (vertex)

F2 (focus)

d1 d2

F1 F2

P(x, y)

F1(�c, 0) F2(c, 0)0 x

y

FIGURE 15
The ellipse with foci and
F2(c, 0)

F1(�c, 0)
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which yields

Recall that , so . Let with . Then the equa-
tion of the ellipse becomes

or, upon dividing both sides by , we obtain

By setting , we obtain , which gives and as the ver-
tices of the ellipse. Similarly, by setting , we see that the ellipse intersects the 
-axis at the points and . Since the equation remains unchanged if is

replaced by and is replaced by , we see that the ellipse is symmetric with
respect to both axes.

Observe, too, that , since

So as the name implies, the length of the major axis, , is greater than the length of
the minor axis, . Finally, observe that if the foci coincide, then and , so
the ellipse is a circle with radius .

Placing the ellipse so that its major axis lies along the -axis and its center is at the
origin leads to an equation in which the roles of and are reversed. To summarize,
we have the following.

yx
y

r � a � b
a � bc � 02b

2a

b2 � a2 � c2 � a2

b � a

�yy�x
x(0, b)(0, �b)y

x � 0
(a, 0)(�a, 0)x � �ay � 0

x2

a2
�

y2

b2
� 1

a2b2

b2x2 � a2y2 � a2b2

b � 0b2 � a2 � c2a2 � c2 � 0a � c

(a2 � c2)x2 � a2y2 � a2(a2 � c2)

Standard Equation of an Ellipse

An equation of the ellipse with foci and vertices is

(3)

and an equation of the ellipse with foci and vertices is

(4)

where . (See Figure 16.)c2 � a2 � b2

a � b � 0
x2

b2
�

y2

a2
� 1

(0, �a)(0, �c)

a � b � 0
x2

a2
�

y2

b2
� 1

(�a, 0)(�c, 0)

FIGURE 16
Two ellipses in standard position 

with center at the origin

ab

cF1(�c, 0) F2(c, 0)

(0, b)

(0, �b)

V2(a, 0)

V1(�a, 0)

(a) The major axis is along the x-axis.

0 x

y

b

a
c

F1(0, c)

F2(0, �c)

V2(0, �a)

V1(0, a)

(b, 0)(�b, 0)

(b) The major axis is along the y-axis.

0 x

y
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EXAMPLE 4 Sketch the ellipse . What are the foci and vertices?

Solution Here, and , so and . Setting and 
in succession gives the - and -intercepts as and , respectively. Also, from

we obtain and conclude that the foci of the ellipse are . Its vertices
are . The ellipse is sketched in Figure 17.(�4, 0)

(�17, 0)c � 17

c2 � a2 � b2 � 16 � 9 � 7

�3�4yx
x � 0y � 0b � 3a � 4b2 � 9a2 � 16

x2

16
�

y2

9
� 1

FIGURE 17

The ellipse 
x2

16
�

y2

9
� 1

Note An ellipse with center at the origin and foci lying along the -axis or the -axis
is said to be in standard position. (See Figure 16.)

yx

(0, 3)

(0, �3)

(�4, 0) 7, 0)(� (4, 0)0 x

y

√ 7, 0)(√

EXAMPLE 5 Find an equation of the ellipse with foci and vertices .

Solution Since the foci and therefore the major axis of the ellipse lie along the -axis,
we use Equation (4). Here, and , so

Therefore, the standard form of the equation for the ellipse is

or

Reflective Property of the Ellipse
The ellipse, like the parabola, has a reflective property. To describe this property, con-
sider an ellipse with foci and as shown in Figure 18. Let be a point on the
ellipse, and let be the tangent line to the ellipse at . Then the angle between the
line segment and is equal to the angle between the line segment and .
You will be asked to establish this property in Exercise 106.

lF2PblF1P
aPl

PF2F1

4x2 � 3y2 � 48

x2

12
�

y2

16
� 1

b2 � a2 � c2 � 16 � 4 � 12

a � 4c � 2
y

(0, �4)(0, �2)

FIGURE 18
The reflective property 

states that .a � b

0

y

x

P

F1 F2

∫
å

l

The reflective property of the ellipse is used to design whispering galleries—rooms
with elliptical-shaped ceilings, in which a person standing at one focus can hear the
whisper of another person standing at the other focus. A whispering gallery can be
found in the rotunda of the Capitol Building in Washington, D.C. Also, Paris subway
tunnels are almost elliptical, and because of the reflective property of the ellipse, whis-
pering on one platform can be heard on the other. (See Figure 19.)
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FIGURE 19
A cross section of a Paris subway

tunnel is almost elliptical.

Yet another application of the reflective property of the ellipse can be found in the
field of medicine in a procedure for removing kidney stones called shock wave
lithotripsy. In this procedue an ellipsoidal reflector is positioned so that a transducer is
at one focus and a kidney stone is at the other focus. Shock waves emanating from the
transducer are reflected according to the reflective property of the ellipse onto the kid-
ney stone, pulverizing it. This procedure obviates the necessity for surgery.

Eccentricity of an Ellipse
To measure the ovalness of an ellipse, we introduce the notion of eccentricity.

DEFINITION Eccentricity of an Ellipse

The eccentricity of an ellipse is given by the ratio .e � c>a

The eccentricity of an ellipse satisfies , since . The closer is
to zero, the more circular is the ellipse.

Hyperbolas
The definition of a hyperbola is similar to that of an ellipse. The sum of the distances
between the foci and a point on an ellipse is fixed, whereas the difference of these dis-
tances is fixed for a hyperbola.

e0 � c � a0 � e � 1

DEFINITION Hyperbola

A hyperbola is the set of all points in a plane the difference of whose distances
from two fixed points (called the foci) is a constant.

Figure 20 shows a hyperbola with foci and . The line passing through the
foci intersects the hyperbola at two points, and , called the vertices of the hyper-
bola. The line segment joining the vertices is called the transverse axis of the hyper-
bola, and the midpoint of the transverse axis is called the center of the hyperbola.
Observe that a hyperbola, in contrast to a parabola or an ellipse, has two separate
branches.

V2V1

F2F1

FIGURE 20
A hyperbola with foci and . A
point is on the hyperbola if and
only if is a constant.�d1 � d2 �

P(x, y)
F2F1

Center

Transverse axis
F2F1 V2V1

d1
d2

P(x, y)
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The derivation of an equation of a hyperbola is similar to that of an ellipse. Consider,
for example, the hyperbola with center at the origin and foci and 
on the -axis. (See Figure 21.) Using the condition , where

is a positive constant, it can be shown that if is any point on the hyperbola,
then an equation of the hyperbola is

where or .
Observe that the -intercepts of the hyperbola are , giving and 

as its vertices. But there are no -intercepts, since setting gives , which
has no real solution. Also, observe that the hyperbola is symmetric with respect to both
axes.

If we solve the equation

for , we obtain

Since or, equivalently, or , we see that the hyperbola actu-
ally consists of two separate branches, as was noted earlier. Also, observe that if is
large in magnitude, then , so . This heuristic argument sug-
gests that both branches of the hyperbola approach the slant asymptotes 
as increases or decreases without bound. (See Figure 22.) You will be asked in Exer-
cise 101 to demonstrate that this is true.

Finally, if the foci of a hyperbola are on the -axis, then by reversing the roles of
and , we obtain

as an equation of the hyperbola.

y2

a2
�

x2

b2
� 1

yx
y

x
y � �(b>a)x

y � �(b>a)xx2 � a2 � x2
x

x � ax 	 �ax2 � a2 � 0

y � �
b

a
 2x2 � a2

y

x2

a2
�

y2

b2
� 1

y2 � �b2x � 0y
(a, 0)(�a, 0)x � �ax

c �2a2 � b2b �2c2 � a2

x2

a2
�

y2

b2
� 1

P(x, y)a
d(P, F1) � d(P, F2) � 2ax

F2(c, 0)F1(�c, 0)

F2(c, 0)

P(x, y)

F1(�c, 0)

(�a, 0) (a, 0)

d1

d2

x

y

FIGURE 21
An equation of the hyperbola with
center and foci and 

is 
x2

a2 �
y2

b2 � 1

(c, 0)(�c, 0)(0, 0)

FIGURE 22
Two hyperbolas in standard position with center at the origin

(�a, 0)
(a, 0)

(0, b)

(0, c)

(0, �c)

(0, �a)

(0, a)

(�b, 0) (b, 0)

b
a

(0, �b)

(�c, 0) (c, 0)

y � � x

(a)

x

y

(b)� 1 (The transverse axis is along the x-axis.) � 1 (The transverse axis is along the y-axis.)

x

y

y2

b2�
x2

a2
x2

b2�
y2

a2

b
ay � x

a
by � � x a

by � x
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The line segment of length joining the points and or and
is called the conjugate axis of the hyperbola.(b, 0)

(�b, 0)(0, b)(0, �b)2b

EXAMPLE 6 Find the foci, vertices, and asymptotes of the hyperbola .

Solution Dividing both sides of the given equation by 36 leads to the standard equation

of a hyperbola. Here, and , so and . Setting gives 
as the -intercepts, so are the vertices of the hyperbola. Also, we have 

, and conclude that the foci of the hyperbola are .
Finally, the asymptotes of the hyperbola are

When you sketch this hyperbola, draw the asymptotes first so that you can then use
them as guides for sketching the hyperbola itself. (See Figure 23.)

y � �
b

a
 x � �

2

3
 x

(�113, 0)c �2a2 � b2 � 113

(�3, 0)x
�3y � 0b � 2a � 3b2 � 4a2 � 9

x2

9
�

y2

4
� 1

4x2 � 9y2 � 36

FIGURE 23
The graph of the hyperbola
4x2 � 9y2 � 36

EXAMPLE 7 A hyperbola has vertices and passes through the point .
Find an equation of the hyperbola. What are its foci and asymptotes?

Solution Here, the foci lie along the -axis, so the standard equation of the hyperbola
has the form

Note that .

To determine , we use the condition that the hyperbola passes through the point 
to write

 
4

b2
�

25

9
� 1 �

16

9

 
25

9
�

4

b2
� 1

(2, 5)b

a � 3
y2

9
�

x2

b2
� 1

y

(2, 5)(0, �3)

13, 0)(�√ 13, 0)(√

2
3

2

2

2�2

�2

3y � � x

x

y

y � x

Standard Equation of a Hyperbola

An equation of the hyperbola with foci and vertices is

(5)

where . The hyperbola has asymptotes . An equation
of the hyperbola with foci and vertices is

(6)

where . The hyperbola has asymptotes .y � �(a>b)xc �2a2 � b2

y2

a2
�

x2

b2
� 1

(0, �a)(0, �c)
y � �(b>a)xc �2a2 � b2

x2

a2
�

y2

b2
� 1

(�a, 0)(�c, 0)
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or . Therefore, a required equation of the hyperbola is

or, equivalently, . To find the foci of the hyperbola, we compute

or , from which we see that the foci are . Finally,10, �315
2 2c � �145>4 � �315>2

c2 � a2 � b2 � 9 �
9

4
�

45

4

y2 � 4x2 � 9

y2

9
�

x2

9
4

� 1

b2 � 9
4

the asymptotes are obtained by substituting and into the equations 
, giving . The graph of the hyperbola is shown in Figure 24.y � �2x�(a>b)x

y �b � 3
2a � 3

FIGURE 24
The graph of the hyperbola
y2 � 4x2 � 9

EXAMPLE 8 A Rutherford Scattering A massive atomic nucleus used as a target for
incoming alpha particles is located at the point , as shown in Figure 25. Sup-
pose that an alpha particle approaching the nucleus has a trajectory that is a branch of
the hyperbola shown with asymptotes and foci . Find an equation
of the trajectory.

Solution The asymptotes of a hyperbola with center at the origin and foci lying on
the -axis have equations of the form . Since the asymptotes of the tra-
jectory are , we see that

or

Next, since the foci of the hyperbola are , we know that . But 
, and this gives

or , so . Therefore, an equation of the trajectory is

or , where .x � 03x2 � y2 � 3

x2

1
�

y2

3
� 1

b � 13a � 1

4 � a2 � (13a)2 � a2 � 3a2 � 4a2

a2 � b2
c2 �c � 2(�2, 0)

b � 13a
b

a
� 13

y � �13x
y � �(b>a)xx

(�2, 0)y � �13x

(�2, 0)

FIGURE 25
The trajectory of an alpha particle in a
Rutherford scattering is a branch of a
hyperbola.

2

5

2�2
�2

�5

y � �2x y � 2x

x

y

3

2

Nucleus

Alpha particle

�2

�3

y � � 3x

x

y
√ y � 3x√

Since , the eccentricity of a hyperbola satisfies . The larger the eccen-
tricity is, the flatter are the branches of the hyperbola.

Shifted Conics
By using the techniques in Section 0.4, we can obtain the equations of conics that are
translated from their standard positions. In fact, by replacing by and by 
in their standard equations, we obtain the equation of a parabola whose vertex is trans-
lated from the origin to the point and the equation of an ellipse (or hyperbola)
whose center is translated from the origin to the point .

We summarize these results in Table 1. Figure 26 shows the graphs of these conics.
(h, k)

(h, k)

y � kyx � hx

e � 1c � a

DEFINITION Eccentricity of a Hyperbola

The eccentricity of a hyperbola is given by the ratio .e � c>a
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TABLE 1

Conic Orientation of axis Equation of conic

Parabola

Parabola

Ellipse

Ellipse

Hyperbola

Hyperbola

Axis horizontal

Axis vertical

Major axis horizontal

Major axis vertical

Transverse axis 
horizontal

Transverse axis
vertical

(7) (See Figure 26a.)

(8) (See Figure 26b.)

(9) (See Figure 26c.)

(10) (See Figure 26d.)

(11) (See Figure 26e.)

(12) (See Figure 26f.)
(y � k)2

a2 �
(x � h)2

b2 � 1

(x � h)2

a2 �
(y � k)2

b2 � 1

(x � h)2

b2 �
(y � k)2

a2 � 1

(x � h)2

a2 �
(y � k)2

b2 � 1

(x � h)2 � 4 p(y � k)

(y � k)2 � 4 p(x � h)

FIGURE 26
Shifted conics with centers at (h, k)

Observe that if , then each of the equations listed in Table 1 reduces to
the corresponding standard equation of a conic centered at the origin, as expected.

h � k � 0

(h, k)

0

(a) (b) (c)

(d) (e) (f)

x

y

(h, k)

0 x

y

(h, k)

0 x

y

(h, k)

(h, k) (h, k)

0 x

y

0
0x

y

x

y

EXAMPLE 9 Find the standard equation of the ellipse with foci at and 
and major axis of length 6. Sketch the ellipse.

Solution Since the foci and have the same -coordinate, we see that they
lie along the line parallel to the -axis. The midpoint of the line segment join-
ing to is , and this is the center of the ellipse. From this we can see
that the distance from the center of the ellipse to each of the foci is 2, so . Next,c � 2

(3, 2)(5, 2)(1, 2)
xy � 2

y(5, 2)(1, 2)

(5, 2)(1, 2)



10.1 Conic Sections 841

since the major axis of the ellipse is known to have length 6, we have , or 
. Finally, from the relation , we obtain , or .

Therefore, using Equation (9) from Table 1 with , , , and ,
we obtain the desired equation:

The ellipse is sketched in Figure 27.

If you expand and simplify each equation in Table 1, you will see that these equa-
tions have the general form

where the coefficients are real numbers. Conversely, given such an equation, we can
obtain an equivalent equation in the form listed in Table 1 by using the technique of
completing the square. The latter can then be analyzed readily to obtain the properties
of the conic that it represents.

Ax2 � By2 � Dx � Ey � F � 0

(x � 3)2

9
�

(y � 2)2

5
� 1

b � 15a � 3k � 2h � 3
b2 � 54 � 9 � b2c2 � a2 � b2a � 3

2a � 6

FIGURE 27

The ellipse 
(x � 3)2

9
�

(y � 2)2

5
� 1

EXAMPLE 10 Find the standard equation of the hyperbola

Find its foci, vertices, and asymptotes, and sketch its graph.

Solution We complete the squares in and :

Then, dividing both sides of this equation by 12 gives the desired equation

Comparing this equation with Equation (11) in Table 1, we see that it is an equation
of a hyperbola with center and transverse axis parallel to the -axis. We also see
that and , from which it follows that . We can
think of this hyperbola as one that is obtained by shifting a similar hyperbola, centered
at the origin, one unit to the left and two units upward. Then the required foci, vertices,
and asymptotes are obtained by shifting the foci, vertices, and asymptotes of this latter
hyperbola accordingly. The results are as follows:

c2 � a2 � b2 � 4 � 3 � 7b2 � 3a2 � 4
x(�1, 2)

(x � 1)2

4
�

(y � 2)2

3
� 1

 3(x � 1)2 � 4(y � 2)2 � 12

 3[x2 � 2x � (1)2] � 4[y2 � 4y � (�2)2] � 25 � 3 � 16

 3(x2 � 2x) � 4(y2 � 4y) � 25

yx

3x2 � 4y2 � 6x � 16y � 25 � 0

0

1

2

3

�1

x

y

(1, 2) (5, 2)

(3, 2)

1 2 3 4 5 6

Foci and (17 � 1, 2)(�17 � 1, 2)

Vertices and (1, 2)(�3, 2)

Asymptotes y � 2 � �13
2 (x � 1)

The hyperbola is sketched in Figure 28.
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FIGURE 28
The hyperbola

3x2 � 4y2 � 6x � 16y � 25 � 0

FIGURE 29
In the LORAN navigational system the
position of a ship is the point of inter-
section of two branches of hyperbolas.

0

y � 2 �
3
2

x

y

√

(�

(�3, 2)

(x � 1) y � 2 � �
3
2

√ (x � 1)

(1, 2)

7 �1, 2)√ ( 7 �1, 2)√

P (ship)

Sea

Land
F1

F2

G2

G1

1. a. Give the definition of a parabola. What are the focus,
directrix, vertex, and axis of a parabola? Illustrate with a
sketch.

b. Write the standard equation of (i) a parabola whose axis
lies on the -axis and (ii) a parabola whose axis lies on
the -axis. Illustrate with sketches.

2. a. Give the definition of an ellipse. What are the foci, ver-
tices, center, major axis, and minor axis of an ellipse?
Illustrate with a sketch.

b. Write the standard equation of (i) an ellipse with foci
and vertices and (ii) an ellipse with foci
and vertices . Illustrate with sketches.(0, �a)(0, �c)

(�a, 0)(�c, 0)

x
y

3. a. Give the definition of a hyperbola. What are the center,
the foci, and the transverse axis of the hyperbola? Illus-
trate with a sketch.

b. Write the standard equation of (i) a hyperbola with foci
and vertices and (ii) a hyperbola with

foci and vertices . Illustrate with
sketches.

(0, �a)(0, �c)
(�a, 0)(�c, 0)

10.1 CONCEPT QUESTIONS

The properties of the hyperbola are exploited in the navigational system LORAN
(Long Range Navigation). This system utilizes two sets of transmitters: one set located
at and and another set located at and . (See Figure 29.) Suppose that syn-
chronized signals sent out by the transmitters located at and reach a ship that is
located at . The difference in the times of arrival of the signals are converted by an
onboard computer into the difference in the distance . Using the
definition of the hyperbola, we see that this places the ship on a branch of a hyperbola
with foci and (Figure 29). Similarly, we see that the ship must also lie on a branch
of a hyperbola with foci and . Thus, the position of is given by the intersec-
tion of these two branches of the hyperbolas.

PG2G1

F2F1

d(P, F1) � d(P, F2)
P

F2F1

G2G1F2F1
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In Exercises 1–8, match the equation with one of the conics
labeled (a)–(h). If the conic is a parabola, find its vertex, focus
and directrix. If it is an ellipse or a hyperbola, find its vertices,
foci, and eccentricity.

1. 2.

3. 4.

5. 6.

7. 8.

1�1

�2

2

(f)

x

y

0

�3
�4

�2

2
3
4
5

(e)

�3�4�5 �1�2 x

y

(d)

�3

3

y

42�4 �2 x
�2

�4

�6

(c)

2 40 x

2

4

6

y

�1

�3

1

3

(b)

21 3�3 �1�2 0 x

y

8

10

5 10�10 �5 0

(a)

2

4

6

x

y

y2 �
x2

4
� 1

x2

16
�

y2

9
� 1

x2 �
y2

4
� 1

x2

9
�

y2

4
� 1

x � �
1

4
 y2y2 � 8x

y �
x2

8
x2 � �4y

In Exercises 9–14, find the vertex, focus, and directrix of the
parabola with the given equation, and sketch the parabola.

9. 10.

11. 12.

13. 14.

In Exercises 15–20, find the foci and vertices of the ellipse, and
sketch its graph.

15. 16.

17. 18.

19. 20.

In Exercises 21–26, find the vertices, foci, and asymptotes of the
hyperbola, and sketch its graph using its asymptotes as an aid.

21. 22.

23. 24.

25. 26.

In Exercises 27–30, find an equation of the parabola that satis-
fies the conditions.

27. Focus , directrix 

28. Focus , directrix 

29. Focus , directrix 

30. Focus , directrix 

In Exercises 31–38, find an equation of the ellipse that satisfies
the given conditions.

31. Foci , vertices 

32. Foci , vertices (0, �5)(0, �3)

(�3, 0)(�1, 0)

y � �3
210, 32 2

x � 5
21�5

2, 0 2
y � 2(0, �2)

x � �3(3, 0)

x2 � 2y2 � 8y2 � 5x2 � 25

4y2 � x2 � 4x2 � y2 � 1

y2

16
�

x2

81
� 1

x2

25
�

y2

144
� 1

2x2 � y2 � 4x2 � 4y2 � 4

25x2 � 16y2 � 4004x2 � 9y2 � 36

x2

16
�

y2

9
� 1

x2

4
�

y2

25
� 1

y2 � �40x5y2 � 12x

y2 � �8xx � 2y2

x2 � �12yy � 2x2

(h)

�2�4 2 4 x

2

�2

�4

�6

y
(g)

�2 2 x

2

�2

y

10.1 EXERCISES

Videos for selected exercises are available online at www.academic.cengage.com/login.V

www.academic.cengage.com/login
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33. Foci , length of major axis 6

34. Vertices , length of minor axis 5

35. Vertices , passing through 

36. Passes through and and its center is at 

37. Passes through with vertices at 

38. -intercepts , -intercepts 

In Exercises 39–44, find an equation of the hyperbola centered
at the origin that satisfies the given conditions.

39. foci , vertices 

40. foci , vertices 

41. foci , conjugate axis of length 4

42. vertices passing through 

43. vertices , asymptotes 

44. -intercepts , asymptotes 

In Exercises 45–48, match the equation with one of the conic
sections labeled (a)–(d).

45. 46.

47. 48.

In Exercises 49–66, find an equation of the conic satisfying the
given conditions.

49. Parabola, focus , directrix 

50. Parabola, focus , directrix 

51. Parabola, vertex , focus 132, 2 2(2, 2)

y � 5(�2, 3)

x � 1(3, 1)

(d)

�2�1 1 2 3 4
�1

�2

�3

�4

�5

x

y
(c)

�2�1 1 2 3�3 x

1

3

5

7

9
y

(b)

�2�1�3�4�5�6 1 x

2
3
4

�2

y
(a)

21 x

3
2
1

�1�2

y

(y � 1)2 � �4(x � 2)
(y � 3)2

16
�

(x � 1)2

9
� 1

(x � 2)2

16
�

(y � 3)2

4
� 1(x � 3)2 � �2(y � 4)

y � � 1
212

x�1y

y � �3
2 x(�2, 0)

15, 94 2(�4, 0)

(0, �5)

(0, �4)(0, �8)

(�3, 0)(�5, 0)

�1
2y�3x

(0, �5)12, 313
2 2

(0, 0)(2, 4)(1, 5)

(1, 12)(�3, 0)

(0, �5)

(0, �1) 52. Parabola, vertex , directrix 

53. Parabola, axis parallel to the -axis, passes through ,
, and 

54. Parabola, axis parallel to the -axis, passes through ,
, and 

55. Ellipse, foci , vertices 

56. Ellipse, foci and , vertices and 

57. Ellipse, foci , length of major axis 8

58. Ellipse, foci , length of minor axis 2

59. Ellipse, center , focus , vertex 

60. Ellipse, foci and , passes
through 

61. Hyperbola, foci and , vertices and 

62. Hyperbola, foci and , vertices 
and 

63. Hyperbola, foci and , asymptotes

64. Hyperbola, foci and , asymptotes 
and 

65. Hyperbola, vertices and , asymptotes

66. Hyperbola, vertices and , asymptotes
and 

In Exercises 67–72, find the vertex, focus, and directrix of the
parabola, and sketch its graph.

67. 68.

69. 70.

71.

72.

In Exercises 73–78, find the center, foci, and vertices of the
ellipse, and sketch its graph.

73.

74.

75.

76.

77.

78.

In Exercises 79–84, find the center, foci, vertices, and equations
of the asymptotes of the hyperbola with the given equation, and
sketch its graph using its asymptotes as an aid.

79.

80.

81. 2x2 � 3y2 � 4x � 12y � 8 � 0

4x2 � 9y2 � 16x � 54y � 79 � 0

3x2 � 4y2 � 8y � 16 � 0

9x2 � 36y2 � 36x � 48y � 43 � 0

4x2 � 9y2 � 18x � 27 � 0

2x2 � y2 � 12x � 6y � 25 � 0

x2 � 4y2 � 2x � 16y � 13 � 0

2x2 � y2 � 20x � 2y � 43 � 0

(x � 1)2 � 4(y � 2)2 � 1

9x2 � 6x � 9y � 8 � 0

4y2 � 4y � 32x � 31 � 0

2x2 � 8x � y � 5 � 0x2 � 6x � y � 11 � 0

y2 � 4y � 2x � 4 � 0y2 � 2y � 4x � 9 � 0

x � y � 4x � �y
(4, �2)(0, �2)

y � 1 � �3
2(x � 4)

(4, 4)(4, �2)

x � 6 � y
x � �2 � y(2, 6)(2, 2)

y � 3 � �4
3(x � 1)

(�4, �3)(6, �3)

(�4, �7)
(�4, �3)(�4, �15)(�4, 5)

(6, 2)(0, 2)(8, 2)(�2, 2)

(2, 0)
(2 � 13, �1)(2 � 13, �1)

(5, 1)(0, 1)(2, 1)

(1, �3)

(�1, 2)

(5, 2)(�1, 2)(4, 2)(0, 2)

(�3, 3)(�1, 3)

(2, 2)(0, 0)
(�6, 6)x

(1, �6)10, �5
2 2 (�3, 2)y

y � 1(1, �2)



82.

83.

84.

85. Parabolic Reflectors The following figure shows the cross sec-
tion of a parabolic reflector. If the reflector is 2 ft wide at
the opening and 1 ft deep, how far from the vertex should
the light source be placed along the axis of symmetry of the
parabola?

86. Length of Suspension Bridge Cable The figure below depicts a
suspension bridge. The shape of the cable is described by
the equation

where ft is the span of the bridge and ft is the sag. (See
Example 3.) Assuming that the sag is small in comparison to
the span (that is, is small), show that the length of the
cable is

Use this approximation to estimate the length of the cable in
Example 3, where and . Compare your
result with that obtained in the example.
Hint: Retain the first two terms of a binomial series.

xa�a

y

h (sag)

2a
(span)

h � 80a � 200

s � 2aa1 �
2h2

3a2b

h>a
h2a

y �
hx2

a2

2 ft

1 ft

4x2 � 3y2 � 12y � 3 � 0

4x2 � 2y2 � 8x � 8y � 12 � 0

4y2 � 9x2 � 18x � 16y � 43 � 0 87. Length of Suspension Bridge Cable The cable of the suspension
bridge shown in the figure below has the shape of a
parabola. If the span of the bridge is 600 ft and the sag 
is 60 ft, what is the length of the cable?

88. Surface Area of a Satellite Dish An 18-in. satellite dish is
obtained by revolving the parabola with equation 
about the -axis. Find the surface area of the dish.

89. Shape of a Suspension Bridge Cable Consider a bridge of weight
lb/ft suspended by a flexible cable. Assume that the

weight of the cable is negligible in comparison to the weight
of the bridge. The following figure shows a portion of such
a structure with the lowest point of the cable located at the
origin. Let be any point on the cable, and suppose that the
tension of the cable at is lb and lies along the tangent at

(this is the case with flexible cables).

Referring to the figure, we see that

dy

dx
� tan f �

sin f

cos f
�

T sin f

T cos f

xx0











T

T cos

T sin
P

H

y

P
TP

P

W

x8642�8 �6 �4 �2

y

y
y � 4

81 x2

xa�a

y

60 ft (sag)

600 ft
(span)
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But since the bridge is in equilibrium, the horizontal compo-
nent of must be equal to , the tension at the lowest point
of the cable (the origin); that is, . Similarly, the
vertical component of must be equal to , the load car-
ried over that section of the cable from 0 to ; that is,

. Therefore,

Finally, since the lowest point of the cable is located at the
origin, we have . Solve this initial-value problem to
show that the shape of the cable is a parabola.
Note: Observe that in a suspension bridge, the cable supports a load
that is uniformly distributed horizontally. A cable supporting a load
distributed uniformly along its length (for example, a cable support-
ing its own weight) assumes the shape of a catenary, as we saw in
Section 6.6.

90. Shape of a Suspension Bridge Cable Refer to Exercise 89. Sup-
pose that the span of the cable is ft and the sag is ft.
(See Figure 10.) Show that the tension (in pounds) at the
highest point of the cable has magnitude

91. Arch of a Bridge A bridge spanning the Charles River has
three arches that are semielliptical in shape. The base of the
center arch is 24 ft across, and the maximum height of the
arch is 8 ft. What is the height of the arch 6 ft from the cen-
ter of the base?

T �
Wa2a2 � 4h2

2h

h2a

y(0) � 0

dy

dx
�

Wx

H

T sin f � Wx
P

WxT
T cos f � H

HT
95. Show that an equation of the tangent line to the ellipse

at the point can be written in the form

96. Use the result of Exercise 95 to find an equation of the
tangent line to the ellipse

at the point .

97. Show that an equation of the tangent line to the hyperbola

at the point can be written in the form

98. Use the result of Exercise 97 to find an equation of the
tangent line to the hyperbola

at the point .

99. Show that the ellipse

and the hyperbola

intersect at right angles.

100. Use the definition of a hyperbola to derive Equation (5) for
a hyperbola with foci and and vertices

and .

101. Show that the lines and are slant
asymptotes of the hyperbola

102. A transmitter is located 200 miles due east of a transmit-
ter on a straight coastline. The two transmitters send out
signals simultaneously to a ship that is located at . Sup-
pose that the ship receives the signal from , 800
microseconds ( sec) before it receives the signal from .
a. Assuming that radio waves travel at a speed of 

980 ft/ sec, find an equation of the hyperbola on
which the ship lies (see page 842).
Hint: .d(P, A) � d(P, B) � 2a

m

Am

B
P

A
B

x2

a2 �
y2

b2 � 1

y � �(b>a)xy � (b>a)x

V2(�a, 0)V1(a, 0)
F2(c, 0)F1(�c, 0)

x2

a2 � b2 �
2y2

b2 � 1

x2

a2 �
2y2

b2 � 1

(4, 313)

x2

4
�

y2

9
� 1

xx0

a2 �
yy0

b2 � 1

(x0, y0)

x2

a2 �
y2

b2 � 1

11, 513
2 2

x2

4
�

y2

25
� 1

xx0

a2 �
yy0

b2 � 1

(x0, y0)

x2

a2 �
y2

b2 � 1

24 ft
(maximum

width of arch)

8 ft (maximum
height of arch)

92. a. Find an equation of the tangent line to the parabola
at the point where .

b. Use the result of part (a) to show that the -intercept of
this tangent line is .

c. Use the result of part (b) to draw the tangent line.

93. Prove that any two distinct tangent lines to a parabola must
intersect at one and only one point.

94. a. Show that an equation of the tangent line to the parabola
at the point can be written in the form

b. Use the result of part (a) to show that the -intercept of
this tangent line is .

c. Use the result of part (b) to draw the tangent line for
.p � 0

�x0

x

y0y � 2p(x � x0)

(x0, y0)y2 � 4px

x0>2
x

x � x0y � ax2
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b. If the ship is sailing in a direction parallel to and 20 mi
north of the coastline, locate the position of the ship at
that instant of time.

103. Use a computer algebra system (CAS) to find an approxi-
mation of the circumference of the ellipse 

104. The dwarf planet Pluto has an elliptical orbit with the sun
at one focus. The length of the major axis of the ellipse is

miles, and the length of the minor axis is
miles. Use a CAS to approximate the distance

traveled by the planet during one complete orbit around the
sun.

105. The Reflective Property of the Parabola The figure shows a
parabola with equation . The line is tangent to
the parabola at the point .

Show that by establishing the following:

a. b.

c.

Hint:

106. The Reflective Property of the Ellipse Establish the reflective
property of the ellipse by showing that in Figure 18,
page 835.
Hint: Use the trigonometric formula

tan(u1 � u2) �
tan u1 � tan u2

1 � tan u1 tan u2

a � b

tan a �
tan f � tan b

1 � tan f tan b

tan a �
2p

y0

tan f �
y0

x0 � p
tan b �

2p

y0

a � b

F(p, 0)

P(x0, y0)

0 x

l

∫
∫

å
ƒ

y

P(x0, y0)
ly2 � 4px

7.08 � 109
7.33 � 109

4x2 � 25y2 � 100

xB(100, 0)

P

A(�100, 0)

 y

0

107. Reflective Property of the Hyperbola The hyperbola also has the
reflective property that the other two conics enjoy. Consider
a mirror that has the shape of one branch of a hyperbola as
shown in Figure (a). A ray of light aimed at a focus will
be reflected toward the other focus, . To establish the
reflective property of the hyperbola, let be a point
on the hyperbola with foci and ,
and let and be the angles between the lines and

, as shown in Figure (b). Show that .

108. Reflecting Telescopes The reflective properties of the
parabola and the hyperbola are exploited in designing a
reflecting telescope. A hyperbolic mirror and a parabolic
mirror are placed so that one focus of the hyperbola coin-
cides with the focus of the parabola, as shown in the fig-
ure. Use the reflective properties of the two conics to
explain why rays of light coming from great distances are
finally focused at the eyepiece placed at , the other focus
of the hyperbola.

Focus of parabola
and hyperbola

Hyperbolic mirror

Parabolic mirror

F

F�

F¿

F

(a)

(b)

P(x0, y0)

Tangent line
at P

xF2F1

∫

å

å

0

y

P

Tangent line
at P

F2F1

∫

å

å

a � bPF2

PF1ba

F2F1x2>a2 � y2>b2 � 1
P(x0, y0)

F1

F2

cas

cas
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In Exercises 109–114, determine whether the statement is true or
false. If it is true, explain why it is true. If it is false, give an
example to show why it is false.

109. The graph of is a hyperbola, provided
that .

110. The graph of , where , is a parabola.

111. The ellipse , where , is 
contained in the circle and contains the 
circle .x2 � y2 � b2

x2 � y2 � a2
a � b � 0b2x2 � a2y2 � a2b2

a � 0y4 � 16ax2

F  0
2x2 � y2 � F � 0

112. The asymptotes of the hyperbola are
perpendicular to each other if and only if .

113. If and are both positive constants, then

is an ellipse.

114. If and have opposite signs, then

is a hyperbola.

Ax2 � Cy2 � Dx � Ey � F � 0

CA

Ax2 � Cy2 � Dx � Ey � F � 0

CA

a � b
x2>a2 � y2>b2 � 1

10.2 Plane Curves and Parametric Equations

Why We Use Parametric Equations
Figure 1a gives a bird’s-eye view of a proposed training course for a yacht. In Figure 1b
we have introduced an -coordinate system in the plane to describe the position of
the yacht. With respect to this coordinate system the position of the yacht is given 
by the point , and the course itself is the graph of the rectangular equation

, which is called a lemniscate. But representing the lemniscate in
terms of a rectangular equation in this instance has three major drawbacks.
4x4 � 4x2 � y2 � 0

P(x, y)

xy

FIGURE 1

First, the equation does not define explicitly as a function of or as a function
of . You can also convince yourself that this is not the graph of a function by apply-
ing the vertical and horizontal line tests to the curve in Figure 1b (see Section 0.2).
Because of this, we cannot make direct use of many of the results for functions devel-
oped earlier. Second, the equation does not tell us when the yacht is at a given point

. Third, the equation gives no inkling as to the direction of motion of the yacht.
To overcome these drawbacks when we consider the motion of an object in the

plane or plane curves that are not graphs of functions, we turn to the following repre-
sentation. If is a point on a curve in the -plane, we write

where and are functions of an auxiliary variable with (common) domain some
interval . These equations are called parametric equations, is called a parameter,
and the interval is called a parameter interval.I

tI
ttf

y � t(t)x � f(t)

xy(x, y)

(x, y)

y
xxy

x (mi)

y (mi)

1

�1

1�1

P(x, y)

(b) An equation of the curve C is 4x4 � 4x2  � y2 � 0.  (a) The dots give the position of markers.
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FIGURE 2
As increases from to , the particle

traces the curve from to
in a specific direction.( f(b), t(b))

( f(a), t(a))
bat

We can also interpret the parametric equations in geometric terms as follows: We
take the line segment and, by a process of stretching, bending, and twisting, make
it conform geometrically to the curve .

Sketching Curves Defined by Parametric Equations
Before looking at some examples, let’s define the following term.

C
[a, b]

DEFINITION Plane Curve

A plane curve is a set of ordered pairs defined by the parametric equa-
tions

and

where and are continuous functions on a parameter interval .Itf

y � t(t)x � f(t)

(x, y)C

EXAMPLE 1 Sketch the curve described by the parametric equations

and

Solution By plotting and connecting the points for selected values of (Table 1),
we obtain the curve shown in Figure 3.

t(x, y)

�1 	 t 	 2y � 2tx � t 2 � 4

If we think of on the closed interval as representing time, then we can inter-
pret the parametric equations in terms of the motion of a particle as follows: At 
the particle is at the initial point of the curve or trajectory . As increases
from to , the particle traverses the curve in a specific direction called the
orientation of the curve, eventually ending up at the terminal point of
the curve. (See Figure 2.)

( f(b), t(b))
t � bt � a

tC( f(a), t(a))
t � a

[a, b]t

Parameter interval is [a, b].

t ta b 0

( f(t), g(t))

( f(b), g(b))
( f(a), g(a))

x

C

y

t �1 �1
2 0 1

2 1 2

(x, y) (�3, �2) 1�15
4 , �1 2 (�4, 0) 1�15

4 , 1 2 (�3, 2) (0, 4)

TABLE 1
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Alternative Solution We eliminate the parameter by solving the second of the two
given parametric equations for , obtaining . We then substitute this value of 
into the first equation to obtain

or

This is an equation of a parabola that has the -axis as its axis of symmetry and its
vertex at . Now observe that gives as the initial point of the
curve and that gives as the terminal point of the curve. So tracing the graph
from the initial point to the terminal point gives the desired curve, as obtained earlier.

We will adopt the convention here, just as we did with the domain of a function,
that the parameter interval for and will consist of all values of for
which and are real numbers, unless otherwise noted.t(t)f(t)

ty � t(t)x � f(t)

(0, 4)t � 2
(�3, �2)t � �1(�4, 0)

x

x �
1

4
 y2 � 4x � a1

2
 yb2

� 4

tt � 1
2 yt

t

EXAMPLE 2 Sketch the curves represented by

a. and 
b. and 

Solution
a. We eliminate the parameter by squaring the first equation to obtain . Sub-

stituting this value of into the second equation, we obtain , which is an
equation of a parabola. But note that the first parametric equation implies that

, so . Therefore, the desired curve is the right portion of the parabola
shown in Figure 4. Finally, note that the parameter interval is , and as 
increases from 0, the desired curve starts at the initial point and moves
away from it along the parabola.

(0, 0)
t[0, �)

x � 0t � 0

y � x2t
x2 � tt

y � t 2x � t
y � tx � 1t

t (x, y)

0

1

2

4 (2, 4)

(12, 2)

(1, 1)

(0, 0)
FIGURE 4

As increases from 0, the curve 
starts out at and follows 

the right portion of the parabola 
with indicated orientation.

(0, 0)
t

2

3

1

4 (0, 4)

(�3, �2)

�2�3�1 210

�2

�1

�3

C

xt

y

FIGURE 3
As increases from to 2, the curve

is traced from the initial point
to the terminal point .(0, 4)(�3, �2)

C
�1t

2

3

1

4

(t � 0)

(t � 1)

(t � 4)

0 1 2

Parameter interval is [0, �).

xtt

y
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b. Substituting the first equation into the second yields . Although the rectan-
gular equation is the same as that in part (a), the curve described by the paramet-
ric equations here is different from that of part (a), as we will now see. In this
instance the parameter interval is . Furthermore, as increases from 
to , the curve runs along the parabola from left to right, as you can see
by plotting the points corresponding to, say, , 0, and 1. You can also see
this by examining the parametric equation , which tells us that increases as

increases. (See Figure 5.)t
xx � t

t � �1
y � x2�

��t(��, �)

y � x2

t (x, y)

0

1

�1

(1, 1)

(0, 0)

(�1, 1)

FIGURE 5
As increases from to ,

the entire parabola is traced 
out, from left to right.

���t

EXAMPLE 3 Describe the curves represented by the parametric equations

and

with parameter intervals

a.
b.
c.

Solution We have and . So

giving us

This tells us that each of the curves under consideration is contained in a circle of
radius , centered at the origin.

a. If , then and , giving as the initial point on the curve. As
increases from 0 to , the required curve is traced out in a counterclockwise

direction, terminating at the point . (See Figure 6a.)
b. Here, the curve is a complete circle that is traced out in a counterclockwise direc-

tion, starting at and terminating at the same point (see Figure 6b).
c. The curve here is a circle that is traced out twice in a counterclockwise direction

starting at and terminating at the same point (see Figure 6c).(a, 0)

(a, 0)

(�a, 0)
pu

(a, 0)y � 0x � au � 0

a

x2 � y2 � a2

1 � cos2 u � sin2 u � ax

a
b2

� ay

a
b2

sin u � y>acos u � x>a
[0, 4p]
[0, 2p]
[0, p]

a � 0y � a sin ux � a cos u

2

3

1

4

(t � 0)

(t � 1)(t � �1)

0 1 2

Parameter interval is (��, �).

x

y

t

For problems involving motion, it is natural to use the parameter to represent time.
But other situations call for different representations or interpretations of the parame-
ters, as the next two examples show. Here, we use an angle as a parameter.

t
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FIGURE 6
The curve is (a) a semicircle, (b) a complete circle, and (c) a complete circle traced out twice.
All curves are traced in a counterclockwise direction.

EXAMPLE 4 Describe the curve represented by

and

Solution Solving the first equation for and the second equation for gives

and

Squaring each equation and adding the resulting equations, we obtain

Since , we end up with the rectangular equation

From this we see that the curve is contained in an ellipse centered at the origin. If
, then and , giving as the initial point of the curve. As increases

from 0 to , the elliptical curve is traced out in a counterclockwise direction, termi-
nating at . (See Figure 7.)(4, 0)

2p
u(4, 0)y � 0x � 4u � 0

x2

16
�

y2

9
� 1

cos2 u � sin2 u � 1

cos2 u � sin2 u � ax

4
b2

� ay

3
b2

sin u �
y

3

cos u �
x

4

sin ucos u

0 	 u 	 2py � 3 sin ux � 4 cos u

(¨ � 0)¨(¨ � π)

0 a�a

(a)

x¨π

y

(¨ � 0, 2π)¨
0 a�a

(b)

x¨2π

y

(¨ � 0, 2π, 4π)¨
0 a�a

(c)

x¨4π

y

Parameter interval

MARIA GAËTANA AGNESI
(1718–1799)

Maria Gaetana Agnesi’s exceptional aca-
demic talents surfaced at an early age, and
her wealthy father provided her with the
best tutors. By the age of nine, she had
learned many languages in addition to her
native Italian, including Greek and Hebrew.
At that same age, she translated into Latin
an article her tutor had written in Italian
defending higher education for women. She
then delivered it, from memory, to one of
the gatherings of intellectuals her father
hosted in their home. Agnesi developed a
deep interest in Newtonian physics, but her
primary interests became religion and
mathematics. After Agnesi wrote a book on
differential calculus, her talents attracted
the attention of Pope Benedict XIV, who
appointed her to a position at the Univer-
sity of Bologna. Despite being offered the
chair of mathematics at Bologna, Agnesi
left the academic world in 1752 so that she
could fulfill a desire to serve others. She
devoted the rest of her life to religious
charitable projects, including running a
home for the poor.

Later, in Exercises 10.2, you will learn
that the curve in Problem 41 is called the
witch of Agnesi. Why was this given such
a peculiar name? It is actually because of a
mistranslation of Maria Agnesi’s 1748 work
Instituzione analitiche ad uso della
gioventu italiana. In her discussion of the
curve represented by the rectangular
equation  , Agnesi used
the Italian word versiera, which is derived
from the Latin vertere, meaning “to turn.”
However, this word was confused with
avversiera, meaning “witch” or “devil’s
wife,” and the curve became known as the
witch of Agnesi.

y(x2 � a2) � a3

Historical Biography
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FIGURE 7
As increases from 0 to ,
the curve that is traced out in 
a counterclockwise direction 

beginning and ending at 
is an ellipse.(4, 0)

2pu

(¨ � π) (¨ � 0, 2π)

(̈  � )π2

(̈  � )3π
2

�2

�1

1

2

�1�2�3�4 43210 x

y

EXAMPLE 5 A proposed training course for a yacht is represented by the paramet-
ric equations

and

where and are measured in miles.

a. Show that the rectangular equation of the course is .
b. Describe the course.

Solution
a. Using the trigonometric identity , we rewrite the second of

the parametric equations in the form

Since 

Solving for , we have

Then, using the identity , we obtain

or

b. From the results of part (a) we see that the required curve is symmetric with
respect to the -axis, the -axis, and the origin. Therefore, it suffices to concen-
trate first on drawing the part of the curve that lies in the first quadrant and then
make use of symmetry to complete the curve. Since both and are non-
negative only for , we first sketch the curve corresponding to values of 
in . With the help of the following table we obtain the curve shown in Fig-
ure 8. The direction of the yacht is indicated by the arrows.
C0, p2 D

t0 	 t 	 p
2

sin 2tsin t

yx

4x4 � 4x2 � y2 � 0

 x2 �
y2

4x2
� 1

 x2 � a y

2x
b2

� 1

sin2 t � cos2 t � 1

cos t �
y

2x

cos t

x � sin ty � 2 sin t cos t � 2x cos t

sin 2t � 2 sin t cos t

4x4 � 4x2 � y2 � 0

yx

0 	 t 	 2py � sin 2tx � sin t

t 0 p
6

p
4

p
3

p
2

(x, y) (0, 0) 112, 13
2 2 112

2 , 1 2 113
2 , 13

2 2 (1, 0)
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EXAMPLE 6 Cycloids Let be a fixed point on the rim of a wheel. If the wheel is
allowed to roll along a straight line without slipping, then the point traces out a curve
called a cycloid (see Figure 9). Suppose that the wheel has radius and rolls along the
-axis. Find parametric equations for the cycloid.x

a
P

P

FIGURE 9
The cycloid is the curve 

traced out by a fixed point 
on the rim of a rolling wheel.

P

Solution Suppose that the wheel rolls in a positive direction with the point initially
at the origin of the coordinate system. Figure 10 shows the position of the wheel after
it has rotated through radians. Because there is no slippage, the distance the wheel
has rolled from the origin is

giving its center as . Also, from Figure 10 we see that the coordinates of 
satisfy

and

Although these results are derived under the tacit assumption that , it can
be demonstrated that they are valid for other values of . Therefore, the required para-
metric equations of the cycloid are

and

The cycloid provides the solution to two famous problems in mathematics:

1. The brachistochrone problem: Find the curve along which a moving particle
(under the influence of gravity) will slide from a point to another point ,
not directly beneath , in the shortest time (see Figure 11a).

2. The tautochrone problem: Find the curve having the property that it takes the
same time for a particle to slide to the bottom of the curve no matter where the
particle is placed on the curve (see Figure 11b).

The brachistochrone problem—the problem of finding the curve of quickest
descent—was advanced in 1696 by the Swiss mathematician Johann Bernoulli. Off-
hand, one might conjecture that such a curve should be a straight line, since it yields

A
BA

�� � u � �y � a(1 � cos u)x � a(u � sin u)

u

0 � u � p
2

y � d(C, M) � a cos u � a � a cos u � a(1 � cos u)

x � d(O, M) � a sin u � au � a sin u � a(u � sin u)

P(x, y)C(au, a)

d(O, M) � length of arc PM � au

u

P

FIGURE 10
The position of the wheel after it has
rotated through radiansu

FIGURE 8
The training course for the yacht

(t � )π6
(t � )π4

(t � )π3
(t �

(t � 0)
)π2

�1

1

�1 1 x (mi)

y (mi)

P
a

C(a¨, a)
a

xMx

P
a sin ¨

a cos ¨

a¨

¨

y

y
O
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the shortest distance between the two points. But the velocity of the particle moving
on the straight line will build up comparatively slowly, whereas if we take a curve that
is steeper near , even though the path becomes longer, the particle will cover a large
portion of the distance at a greater speed. The problem was solved by Johann Bernoulli,
his older brother Jacob Bernoulli, Leibniz, Newton, and l’Hôpital. They found that the
curve of quickest descent is an inverted arc of a cycloid (Figure 11a). As it turns out,
this same curve is also the solution to the tautochrone problem.

A

FIGURE 11
The cycloid provides the solution 

to both the brachistochrone 
and the tautochrone problem.

B

P

(a) The brachistochrone problem (b) The tautochrone problem

A

P

1. What is a plane curve? Give an example of a plane curve
that is not the graph of a function.

2. What is the difference between the curve with parametric
representation and , where ,
and the curve with parametric representation 
and , where ?0 	 t 	 2py � cos t

x � sin tC2

0 	 t 	 2py � sin tx � cos t
C1

3. Describe the relationship between the curve with para-
metric equations and , where ,
and the curve with parametric equations and

, where .0 	 t 	 1y � t(1 � t)
x � f(1 � t)C2

0 	 t 	 1y � t(t)x � f(t)
C1

10.2 CONCEPT QUESTIONS

In Exercises 1–28, (a) find a rectangular equation whose graph
contains the curve with the given parametric equations, and
(b) sketch the curve and indicate its orientation.

1. ,

2. , ;

3. ,

4. , ;

5. , ;

6. ,

7. , ;

8. ,

9. , ;

10. , ;

11. , ;

12. , ;

13. , ; 0 	 u 	 2py � 3 sin u � 1x � 2 cos u � 2

0 	 u 	 2py � sin u � 2x � cos u � 1

0 	 u 	 2py � 3 cos ux � 2 sin u

0 	 u 	 2py � 3 sin ux � cos 2u

0 	 u 	 2py � 2 cos ux � 2 sin u

y � t � 1x � 1 �
1

t

�2 	 t 	 2y � t 3x � t 2

y � 2t � 1x � t 3

�2 	 t 	 2y � 2t 2 � 1x � t 2 � 1

0 	 t 	 3y � t � 1x � t 2

y � 9 � tx � 1t

�1 	 t 	 5y � 2t � 1x � t � 2

y � t � 3x � 2t � 1

C
C

10.2 EXERCISES

Videos for selected exercises are available online at www.academic.cengage.com/login.V

14. , ;

15. ,

16. ,

17. , ;

18. ,

19. , ;

20. ,

21. ,

22. ,

23. ,

24. ,

25. ,

26. ,

27. , ;

28. , y �
1 � t 2

1 � t 2x �
2t

1 � t 2

1 	 t 	 2y � (t � 1)3x � (t � 1)2

y � 2 cosh tx � 3 sinh t

y � sinh tx � cosh t

y � ln tx � et

y � t 2x � ln 2t

y � 3 ln tx � t 3

y � e2tx � �et

y � e�tx � et

0 	 u 	 p
2y � sin4 ux � sin2 u

y � sin3 ux � cos3 u

�p2 � u � p
2y � tan ux � sec u

y � cos ux � sec u

y � cos 2ux � cos u

0 	 u 	 2py � 3 cos u � 1x � sin u � 3

www.academic.cengage.com/login
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In Exercises 29–34, the position of a particle at time is .
Describe the motion of the particle as varies over the time
interval .

29. , ;

30. , ;

31. , ;

32. , ;

33. , ;

34. , ;

35. Flight Path of an Aircraft The position of an aircraft fly-
ing in a fixed direction seconds after takeoff is given by

and , where and 
are measured in miles. Sketch the flight path of the aircraft
for .

36. Trajectory of a Shell A shell is fired from a howitzer with a
muzzle speed of ft/sec. If the angle of elevation of the
howitzer is , then the position of the shell after sec is
described by the parametric equations

and

where is the acceleration due to gravity (32 ft/sec2).
a. Find the range of the shell.
b. Find the maximum height attained by the shell.
c. Show that the trajectory of the shell is a parabola by

eliminating the parameter .

37. Let and be two distinct points in the
plane. Show that the parametric equations

and

describe (a) the line passing through and if
and (b) the line segment joining 

and if .

38. Show that

and

are parametric equations of an ellipse with center at 
and axes of lengths and .

39. Show that

and

are parametric equations of a hyperbola with center at 
and transverse and conjugate axes of lengths and ,
respectively.

40. Let be a point located a distance from the center of a
circle of radius . The curve traced out by as the circlePr

dP

2b2a
(h, k)

t � 1�p2 , p2 2 � 1p2 , 3p2 2
y � b tan t � kx � a sec t � h

2b2a
(h, k)

0 	 t 	 2py � b sin t � kx � a cos t � h

0 	 t 	 1P2

P1�� � t � �
P2P1

y � y1 � (y2 � y1)tx � x1 � (x2 � x1)t

P2(x2, y2)P1(x1, y1)

t

t

y � (√0 sin a)t �
1

2
 tt 2x � (√0 cos a)t

ta

√0

0 	 t 	 40
3

yxy � sec(0.025pt) � 1x � tan(0.025pt)
t

(x, y)

[0, �)y � e2t�1x � e�t

[0, 3p]y � sin2 tx � sin t

[0, 2p]y � 2 � 4 sin 2tx � 1 � 2 sin 2t

[0, 2p]y � 2 � sin tx � 1 � cos t

[0, 6]y � cos ptx � sin pt

[0, 4]y � 1tx � t � 1

[a, b]
t

(x, y)t rolls without slipping along a straight line is called a tro-
choid. (The cycloid is the special case of a trochoid with

.) Suppose that the circle rolls along the -axis in the
positive direction with when the point is at one of
the lowest points on the trochoid. Show that the parametric
equations of the trochoid are

and

where is the same parameter as that for the cycloid.
Sketch the trochoid for the cases in which and .

41. The witch of Agnesi is the curve shown in the following
figure. Show that the parametric equations of this curve are

and

42. If a string is unwound from a circle of radius in such a
way that it is held taut in the plane of the circle, then its end

will trace a curve called the involute of the circle. Refer-
ring to the following figure, show that the parametric equa-
tions of the involute are

and

In Exercises 43–46, use a graphing utility to plot the curve with
the given parametric equations.

43. , ;

44. , ;

45. , ;

46. , ; 0 	 t 	 2py � 3 sin t � sin 3tx � 3 cos t � cos 3t

0 	 t 	 2py � 2 sin t � sin 2tx � 2 cos t � cos 2t

0 	 t 	 2py � 6 cos t � 5 sin 3tx � cos t � 5 cos 3t

t � 0y � 3 sin 1.5tx � 2 sin 3t

P(x, y)

0

String

(a, 0)

¨
x

y

y � a(sin u � u cos u)x � a(cos u � u sin u)

P

a

P(x, y)(0, a)

0

y � 2a

¨
x

y

y � 2a sin2 ux � 2a cot u

d � rd � r
u

y � r � d cos ux � ru � d sin u

Pu � 0
xd � r
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47. The butterfly catastrophe curve, which is described by the
parametric equations

and

occurs in the study of catastrophe theory. Plot the curve with
and for in the parameter interval

.

48. The swallowtail catastrophe curve, which is described by
the parametric equations

and

occurs in the study of catastrophe theory. Plot the curve with
and for in the parameter interval

.

49. The Lissajous curves, also known as Bowditch curves,
have applications in physics, astronomy, and other sciences.
They are described by the parametric equations

, a rational number, and

Plot the curve with and for in the parame-
ter interval .

50. The prolate cycloid is the path traced out by a fixed point at
a distance from the center of a rolling circle, where ab � a

[0, 8p]
tb � 0a � 0.75

y � sin tax � sin(at � bp)

[�1.25, 1.25]
tc � 0.5a � �2

y � c(at 2 � 3t 4)x � c(�2at � 4t 3)

[�1.629, 1.629]
tc � 0.03a � �7

y � c(�6at 2 � 15t 4)x � c(8at 3 � 24t 5)

is the radius of the circle. The prolate cycloid is described
by the parametric equations

and

Plot the curve with , , , and for
in the parameter interval .

In Exercises 51–54, determine whether the statement is true or
false. If it is true, explain why it is true. If it is false, give an
example to show why it is false.

51. The parametric equations and , where
, have the same graph as .

52. The graph of a function can always be represented
by a pair of parametric equations.

53. The curve with parametric equations and
is obtained from the curve with parametric

equations and by shifting the latter hori-
zontally and vertically.

54. The ellipse with center at the origin and major and minor
axes and , respectively, can be obtained from the circle
with equations and by mul-
tiplying and by appropriate nonzero constants.t(t)f(t)

y � t(t) � sin tx � f(t) � cos t
ba

y � t(t)x � f(t)
Cy � t(t) � b

x � f(t) � a

y � f(x)

x � y � 1�� � t � �
y � sin2 tx � cos2 t

[�10, 10]t
d � 2c � 0.25b � 2a � 0.1

y � c(1 � d cos t)x � a(t � b sin t)

10.3 The Calculus of Parametric Equations

Tangent Lines to Curves Defined by Parametric Equations
Suppose that is a smooth curve that is parametrized by the equations and

with parameter interval and we wish to find the slope of the tangent line 
to the curve at the point . (See Figure 1.) Let be the point in that corresponds to

, and let be the subinterval of containing corresponding to the highlighted
portion of the curve in Figure 1. This subset of is the graph of a function of , as
you can verify using the Vertical Line Test. (The general conditions that and must
satisfy for this to be true are given in Exercise 66.)

tf
xCC

t0I(a, b)P
It0P

Iy � t(t)
x � f(t)C

FIGURE 1
We want to find the slope of the tangent

line to the curve at the point .P Parameter interval

toa b t f(b)f(a)

( f(a), g(a))

( f(b), g(b))

P( f(to), g(to))

C

x

y
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EXAMPLE 1 Find an equation of the tangent line to the curve

at the point where . (See Figure 2.)

Solution The slope of the tangent line at any point on the curve is

In particular, the slope of the tangent line at the point where is

Also, when , we have and giving
as the point of tangency. Finally, using the point-slope form of the equation

of a line, we obtain the required equation:

or y � 12x � 1y � 1 � 12(x � 12)

(12, 1)
y � tan(p>4) � 1x � sec(p>4) � 12t � p>4

dy

dx
`
t�p>4

�

sec 
p

4

tan 
p

4

�
12

1
� 12

t � p>4
 �

sec2 t

sec t tan t
�

sec t

tan t

 
dy

dx
�

dy

dt

dx

dt

(x, y)

t � p>4
�p2 � t � p

2y � tan tx � sec t

FIGURE 2
The tangent line to the curve 
at (12, 1)

Let’s denote this function by so that , where . Since
and , we may rewrite this equation in the form

Using the Chain Rule, we obtain

Replace by .

If , we can solve for , obtaining

which can also be written

F¿(x) �
t¿(t)
f ¿(t)

F¿(x)f ¿(t)  0

xf(t) � F¿(x)f ¿(t)

 t¿(t) � F¿[ f(t)] f ¿(t)

t(t) � F[ f(t)]

y � t(t)x � f(t)
f(a) � x � f(b)y � F(x)F

1

2

2

0 x

y

2, 1)(√
(t � )π

4

if (1)
dx

dt
 0

dy

dx
�

dy

dt

dx

dt

The required slope of the tangent line at is then found by evaluating Equation (1) at
. Observe that Equation (1) enables us to solve the problem without eliminating .tt0

P
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Horizontal and Vertical Tangents
A curve represented by the parametric equations and has a hori-
zontal tangent at a point on where and and a vertical
tangent where and , so that is undefined there. Points where
both and are equal to zero are candidates for horizontal or vertical tangents
and may be investigated by using l’Hôpital’s rule.

dx>dtdy>dt
dy>dxdy>dt  0dx>dt � 0

dx>dt  0dy>dt � 0C(x, y)
y � t(t)x � f(t)C

EXAMPLE 2 A curve is defined by the parametric equations and
.

a. Find the points on where the tangent lines are horizontal or vertical.
b. Find the - and -intercepts of .
c. Sketch the graph of .

Solution
a. Setting gives , or . Since at these

values of , we conclude that has horizontal tangents at the points on corre-
sponding to , that is, at and . Next, setting gives

, or . Since for this value of , we conclude that has a
vertical tangent at the point corresponding to , or at .

b. To find the -intercepts, we set , which gives , or
, and . Substituting these values of into the expression for 

gives 0 and 3 as the -intercepts. Next, setting gives , which, when
substituted into the expression for , gives 0 as the -intercept.

c. Using the information obtained in parts (a) and (b), we obtain the graph of 
shown in Figure 3.

Finding from Parametric Equations
Suppose that the parametric equations and define as a twice-yy � t(t)x � f(t)

d2y>dx2

C
yy

t � 0x � 0x
xt13t � �13, 0

t 3 � 3t � t(t 2 � 3) � 0y � 0x
(0, 0)t � 0

Ctdy>dt  0t � 02t � 0
dx>dt � 0(1, 2)(1, �2)t � �1

CCt
dx>dt � 2t  0t � �13t 2 � 3 � 0dy>dt � 0

C
Cyx

C

y � t 3 � 3t
x � t 2C

FIGURE 3
The graph of , ,
and the tangent lines at t � �1

y � t 3 � 3tx � t 2

differentiable function of over some suitable interval. Then may be found
from Equation (1) with another application of the Chain Rule.

d2y>dx2x

if (2)
dx

dt
 0

d2y

dx2
�

d

dx
 ady

dx
b �

d

dt
 ady

dx
b

dx

dt

Higher-order derivatives are found in a similar manner.

2 31

2

�2

0 x

y

C

EXAMPLE 3 Find if and .

Solution First, we use Equation (1) to compute

dy

dx
�

dy

dt

dx

dt

�
3t 2 � 3

2t

y � t 3 � 3tx � t 2 � 4
d2y

dx2
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Then, using Equation (2), we obtain

Use the Quotient Rule.

The Length of a Smooth Curve
In Section 5.4 we showed that the length of the graph of a smooth function on an
interval can be found by using the formula

(3)

We now generalize this result to include curves defined by parametric equations.
We begin by explaining what is meant by a smooth curve defined parametrically. Sup-
pose that is represented by and on a parameter interval . Then 
is smooth if and are continuous on and are not simultaneously zero, except pos-
sibly at the endpoints of . A smooth curve is devoid of corners or cusps. For exam-
ple, the cycloid that we discussed in Section 10.2 (see Figure 9 in that section) has
sharp corners at the values and, therefore, is not smooth. However, it is
smooth between these points.

Now let be a regular partition of the parameter interval .
Then the point lies on , and the length of is approximated by the
length of the polygonal curve with vertices , , , . (See Figure 4.) Thus,

(4)

where

d(Pk�1, Pk) �2[ f(tk) � f(tk�1)]
2 � [t(tk) � t(tk�1)]

2

L � a
n

k�1
d(Pk�1, Pk)

PnpP1P0

CCPk( f(tk), t(tk))
[a, b]P � {t0, t1, p , tn}

x � 2npa

I
It¿f ¿

CIy � t(t)x � f(t)C

L � �
b

a

21 � [ f ¿(x)]2 dx

[a, b]
fL

 �
6t 2 � 6

8t 3
�

3(t 2 � 1)

4t 3

 �

(2t)(6t) � (3t 2 � 3)(2)

4t 2

2t

 
d2y

dx2
�

d

dt
 ady

dx
b

dx

dt

�

d

dt
 a3t 2 � 3

2t
b

2t

FIGURE 4
The length of is approximated by the length of the polygonal curve (the red lines).C

Parameter interval

t2t1a � t0 b � tntktk�1
t 0

Pn( f(tn), g(tn))

Pn�1( f(tn�1), g(tn�1))

Pk�1( f(tk�1), g(tk�1))

P0( f(t0), g(t0))

P1( f(t1), g(t1))

P2( f(t2), g(t2))

Pk( f(tk), g(tk))

C

x

y
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Now, since and both have continuous derivatives, we can use the Mean Value The-
orem to write

and

where and are numbers in . Substituting these expressions into Equa-
tion (4) gives

(5)

As in Section 5.4, we define

(6)

The sum in Equation (6) looks like a Riemann sum of the function , but
it is not, because is not necessarily equal to . But it can be shown that the limit
in Equation (6) is the same as that of an expression in which . Therefore,

and we have the following result.

L � �
b

a

2[ f ¿(t)]2 � [t¿(t)]2 dt

t *
k � t **

k

t **
kt *

k

2[ f ¿]2 � [t¿]2

 � lim
n→�

 a
n

k�1
2[ f ¿(t *

k)]
2 � [t¿(t **

k )]2 �t

 L � lim
n→�

 a
n

k�1
d(Pk�1, Pk)

L � a
n

k�1
d(Pk�1, Pk) � a

n

k�1
2[ f ¿(t *

k)]
2 � [t¿(t **

k )]2 �t

(tk�1, tk)t **
kt *

k

t(tk) � t(tk�1) � t¿(t **
k )(tk � tk�1)

f(tk) � f(tk�1) � f ¿(t *
k)(tk � tk�1)

tf

THEOREM 1 Length of a Smooth Curve

Let be a smooth curve represented by the parametric equations and
with parameter interval . If does not intersect itself, except pos-

sibly for and , then the length of is

(7)L � �
b

a

2[ f ¿(t)]2�[t¿(t)]2 dt � �
b

a B a
dx

dt
b2

� ady

dt
b2

dt

Ct � bt � a
C[a, b]y � t(t)

x � f(t)C

Note Equation (7) is consistent with Equation (4) of Section 5.4. Both have the form
, where .(ds)2 � (dx)2 � (dy)2L � � ds

EXAMPLE 4 Find the length of one arch of the cycloid

(See Example 6 in Section 10.2.)

Solution One arch of the cycloid is traced out by letting run from 0 to . Now

and
dy

du
� a sin u

dx

du
� a(1 � cos u)

2pu

y � a(1 � cos u)x � a(u � sin u)
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Therefore, using Equation (7), we find the required length to be

To evaluate this integral, we use the identity with . This
gives , so

on 

The Area of a Surface of Revolution
Recall that the formulas and (Formulas 11 and 12 of Sec-
tion 5.4) give the area of the surface of revolution that is obtained by revolving the graph
of a function about the - and -axes, respectively. These formulas are valid for finding
the area of the surface of revolution that is obtained by revolving a curve described by
parametric equations about the - and the -axes, provided that we replace the element
of arc length by the appropriate expression. These results, which may be derived by
using the method used to derive Equation (7), are stated in the next theorem.

ds
yx

yx

S � 2p� x dsS � 2p� y ds

 � �4a(�1 � 1) � 8a

 � �4accos 
u

2
d2p

0

[0, 2p]sin 
u

2
� 0 � 2a�

2p

0
sin 
u

2
du

 L � a�
2p

0 B4 sin2 
u

2
du

1 � cos u � 2 sin2(u>2)
u � 2xsin2 x � 1

2 (1 � cos 2x)

sin2 u � cos2 u � 1 � a�
2p

0
12(1 � cos u) du

 � �
2p

0
2a2 � 2a2 cos u � a2 cos2 u � a2 sin2 u du

 L � �
2p

0 B a
dx

du
b2

� ady

du
b2

du � �
2p

0
2a2(1 � cos u)2 � a2 sin2 u du

THEOREM 2 Area of a Surface of Revolution

Let be a smooth curve represented by the parametric equations and
with parameter interval , and suppose that does not intersect

itself, except possibly for and . If for all in , then the
area of the surface obtained by revolving about the -axis is

(8)

If for all in , then the area of the surface that is obtained by
revolving about the -axis is

(9)S � 2p�
b

a

x2[ f ¿(t)]2 � [t¿(t)]2 dt � 2p�
b

a

xB a
dx

dt
b2

� ady

dt
b2

dt

yC
S[a, b]tf(t) � 0

S � 2p�
b

a

y2[ f ¿(t)]2 � [t¿(t)]2 dt � 2p�
b

a

yB a
dx

dt
b2

� ady

dt
b2

dt

xCS
[a, b]tt(t) � 0t � bt � a

C[a, b]y � t(t)
x � f(t)C

EXAMPLE 5 Show that the surface area of a sphere of radius is .

Solution We obtain this sphere by revolving the semicircle

0 	 t 	 py � r sin tx � r cos t

4pr 2r
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about the -axis. Using Equation (8), the surface area of the sphere is

 � 2pr 2C�cos t Dp
0

� 2pr 2[�(�1) � 1] � 4pr 2

sin2 t � cos2 t � 1 � 2pr�
p

0
r sin t dt

 � 2pr�
p

0
sin t2r 2(sin2 t � cos2 t) dt

 S � 2p�
p

0
r sin t2(�r sin t)2 � (r cos t)2 dt

x

1. Suppose that is a smooth curve with parametric equations
and and parameter interval . Write an

expression for the slope of the tangent line to at the point
corresponding to in .

2. Suppose that is a smooth curve with parametric equations
and and parameter interval . Further-

more, suppose that does not cross itself, except possibly
for . Write an expression giving the length of .

3. Suppose that is a smooth curve with parametric equations
and and parameter interval . Suppose,[a, b]y � t(t)x � f(t)

C
Ct � a

C
[a, b]y � t(t)x � f(t)

C
It0(x0, y0)

C
Iy � t(t)x � f(t)

C further, that does not intersect itself, except possibly for
and .

a. Write an integral giving the area of the surface obtained
by revolving about the -axis assuming that 
for all in .

b. Write an integral giving the area of the surface obtained
by revolving about the -axis assuming that 
for all in .[a, b]t

f(t) � 0yC

[a, b]t
t(t) � 0xC

t � bt � a
C

10.3 CONCEPT QUESTIONS

Videos for selected exercises are available online at www.academic.cengage.com/login.V

In Exercises 1–6, find the slope of the tangent line to the curve
at the point corresponding to the value of the parameter.

1. , ;

2. , ;

3. , ;

4. , ;

5. , ;

6. , ;

In Exercises 7 and 8, find an equation of the tangent line to the
curve at the point corresponding to the value of the parameter.

7. , ;

8. , ; u �
p

2
y � u sin ux � u cos u

t � 1y � t 3 � t 2x � 2t � 1

u �
p

6
y � 2(1 � cos u)x � 2(u � sin u)

u �
p

4
y � 3 cos ux � 2 sin u

t � 1y � ln tx � e2t

t � 1y �
1

t
x � 1t

t � 2y � t 2 � 2t � 2x � t 3 � t

t � 1y � t 2 � tx � t 2 � 1

In Exercises 9 and 10, find an equation of the tangent line to the
curve at the given point. Then sketch the curve and the tangent
line(s).

9. , ;

10. , ;

In Exercises 11 and 12, find the points on the curve at which the
slope of the tangent line is .

11. , ;

12. , ;

In Exercises 13–16, find the points on the curve at which the
tangent line is either horizontal or vertical. Sketch the curve.

13. ,

14. ,

15. ,

16. , y � sin 2tx � sin t

y � 2 � 2 sin tx � 1 � 3 cos t

y � t 2x � t 3 � 3t

y � t 3 � 3tx � t 2 � 4

m � 1y � t 2 � tx � t 3

m � 3y � t 3x � 2t 2 � 1

m

(1, 1)y � e�tx � et

(0, 2)y � t 2 � t 3x � t 2 � t

10.3 EXERCISES

www.academic.cengage.com/login
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In Exercises 17–24, find and .

17. , 18. ,

19. , 20. ,

21. ,

22. ,

23. ,

24. ,

25. Let be the curve defined by the parametric equations
and (see Example 2). Find , and

use this result to determine the intervals where is concave
upward and where it is concave downward.

26. Show that the curve defined by the parametric equations
and crosses itself. Find equations of the

tangent lines to the curve at that point (see Example 2).

27. The parametric equations of the astroid 
are and . (Verify this!) Find an
expression for the slope of the tangent line to the astroid in
terms of . At what points on the astroid is the slope of the
tangent line equal to ? Equal to 1?

28. Find and if

and

29. The function is defined by the parametric equations

and

Find the absolute maximum and the absolute minimum 
values of .

30. Find the points on the curve with parametric equations
and at which the tangent line is parallel to

the line with parametric equations and .

In Exercises 31–36, find the length of the curve defined by the
parametric equations.

31. , ;

32. , ; 0 	 t 	 4y � 3t � 1x � 2t 3>2
0 	 t 	 1y � 3t 3x � 2t 2

y � 2t � 4x � 2t
y � t 2x � t 3 � t

f

�2 	 t 	 2

y � 2t 3 � 3t 2 � 12t � 1x � t 5 � 5t 3 � 10t � 2

y � f(x)

y � �
ln t

2
eu dux � �

t

1
 
sin u

u
du

d2y>dx2dy>dx

�a

�a a

a

x

y

�1
t

y � a sin3 tx � a cos3 t
x2>3 � y2>3 � a2>3

y � t 3 � 3tx � t 2

C
d2y>dx2y � t 3 � 3tx � t 2

C

y � t ln tx �2t 2 � 1

y � sinh tx � cosh t

y � e2tx � e�t

y � u � sin ux � u � cos u

y � cos 2tx � sin 2ty �
1

t
x � 1t

y � t 3 � 2t 2x � t 3 � ty � 2t 3x � 3t 2 � 1

d2y>dx2dy>dx 33. , ;

34. , ;

35. , ;

36. , ;

37. Find the length of the cardioid with parametric equations

and

38. Find the length of the astroid with parametric equations

and

(See the figure for Exercise 27. Compare with Exercise 25
in Section 5.4.)

39. The position of an object at any time is , where
and , . Find the distance

covered by the object as runs from to .

40. The following figure shows the course taken by a yacht dur-
ing a practice run. The parametric equations of the course are

where and are measured in miles. Find the length of the
course.

41. Path of a Boat Two towns, and , are located directly oppo-
site each other on the banks of a river that is 1600 ft wide
and flows east with a constant speed of 4 ft/sec. A boat leav-
ing Town travels with a constant speed of 18 ft/sec always
aimed toward Town . It can be shown that the path of the
boat is given by the parametric equations

Find the distance covered by the boat in traveling from 
to .BA

0 	 t 	 1y � 1600tx � 800(t 7>9 � t 11>9)

B
A

BA

x (mi)

y (mi)

1

�1

�4 �2 2 4

yx

0 	 t 	 2py � sin 2tx � 412 sin t

t � 2pt � 0t
0 	 t 	 2py � sin2 tx � cos2 t

(x, y)t

y � a sin3 tx � a cos3 t

y � a(2 sin t � sin 2t)x � a(2 cos t � cos 2t)

0 	 t 	 p
y � (2 � t 2)cos t � 2t sin tx � (t 2 � 2)sin t � 2t cos t

0 	 t 	 p
2y � a(sin t � t cos t)x � a(cos t � t sin t)

0 	 t 	 py � et sin tx � et cos t

0 	 t 	 py � cos 2tx � sin2 t

A

B
y

0 x
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42. Trajectory of an Electron An electron initially located at the
origin of a coordinate system is projected horizontally into 
a uniform electric field with magnitude and directed
upward. If the initial speed of the electron is , then its 
trajectory is

where is the charge of the electron and is its mass.
Show that the trajectory of the electron is a parabola.

Note: The deflection of electrons by an electric field is used to con-
trol the direction of an electron beam in an electron gun.

43. Refer to Exercise 42. If a screen is placed along the vertical
line , at what point will the electron beam hit the
screen?

44. Find the point that is located one quarter of the way along
the arch of the cycloid

as measured from the origin. What is the slope of the tan-
gent line to the cycloid at that point? Plot the arch of the
cycloid and the tangent line on the same set of axes.

45. The cornu spiral is a curve defined by the parametric equa-
tions

where and are the Fresnel functions discussed in Sec-
tion 6.7.
a. Plot the spiral. Describe the behavior of the curve as

and as .
b. Find the length of the spiral from to .

46. Suppose that the graph of a nonnegative function on an
interval is represented by the parametric equations

and for in . Show that the area of
the region under the graph of is given by

or �
a

b

t(t)f ¿(t) dt�
b

a

t(t)f ¿(t) dt

F
[a, b]ty � t(t)x � f(t)

[a, b]
F

t � at � 0
t → ��t → �

SC

y � S(t) � �
t

0
sin(pu2>2) dux � C(t) � �

t

0
cos(pu2>2) du

0 	 t 	 2py � a(1 � cos t)x � a(t � sin t)

x � a

0

Screen

x

y

me

y � �
1

2
 aeE

m
bt 2x � √0t

√0

E

47. Use the result of Exercise 46 to find the area of the region
under one arch of the cycloid ,

.

48. Use the result of Exercise 46 to find the area of the region
enclosed by the ellipse with parametric equations

, , where .

49. Use the result of Exercise 46 to find the area of the region
enclosed by the astroid , . (See the
figure for Exercise 27.)

50. Use the result of Exercise 46 to find the area of the region
enclosed by the curve , .

51. Use the result of Exercise 46 to find the area of the region
lying inside the course taken by the yacht of Exercise 40.

In Exercises 52–57, find the area of the surface obtained by
revolving the curve about the -axis.

52. , ;

53. , ;

54. , ;

55. , ;

56. , ;

57. , ;

In Exercises 58–61, find the area of the surface obtained by
rotating the curve about the -axis.

58. , ;

59. , ;

60. , ;

61. , ;

62. Find the area of the surface obtained by revolving the cardioid

about the -axis.

63. Find the area of the surface obtained by revolving the astroid

about the -axis.

64. Find the areas of the surface obtained by revolving one arch
of the cycloid , about the
- and -axes.yx

y � a(1 � cos u)x � a(u � sin u)

x

y � a sin3 tx � a cos3 t

x

y � a(2 sin t � sin 2t)x � a(2 cos t � cos 2t)

0 	 t 	 1y � 4et>2x � et � t

�p2 	 t 	 p
2y � b sin tx � a cos t

0 	 t 	 1y � 2t 3x � 3t 2

0 	 t 	 4y � 2tx � t

y

0 	 t 	 2py � 1 � cos tx � t � sin t

0 	 t 	 p
2y � et cos tx � et sin t

0 	 t 	 212y � 4 �
1

2
 t 2x �

1

3
 t 3

0 	 t 	 1y � t � t 3x � 13t 2

0 	 t 	 1y � t 2x � t 3

0 	 t 	 2y � 2 � tx � t

x

y � b sin 2tx � a sin t

y � a sin3 ux � a cos3 u

0 	 u 	 2py � b sin ux � a cos u

0 2πa x

y

y � a(1 � cos u)
x � a(u � sin u)
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65. Find the surface area of the torus obtained by revolving the
circle about the -axis.
Hint: Represent the equation of the circle in parametric form:

, , .

66. Show that if is continuous and for ,
then the parametric curve defined by and 
for can be put in the form .

In Exercises 67–70, (a) plot the curve defined by the parametric
equations and (b) estimate the arc length of the curve accurate
to four decimal places.

67. , ;

68. , ;

69. , ;

70. , ;

(swallowtail castastrophe)

71. Use a calculator or computer to approximate the area of the
surface obtained by revolving the curve

about the -axis.

72. a. Find an expression for the arc length of the curve defined
by the parametric equations

where and has continuous third-order deriva-
tives.

b. Use the result of part (a) to find the arc length 
of the curve and

, where .

73. Show that

where and , are parametric equations of
a circle. What are its center and radius?

�� � t � �a � 0

y �
a(1 � t 2)

1 � t 2x �
2at

1 � t 2

0 	 t 	 1y � �6t sin t � 3t 2 cos t
x � 6t cos t � 3t 2 sin t

fa 	 t 	 b

y � �f �(t)sin t � f ¿(t)cos tx � f �(t)cos t � f ¿(t)sin t

x

0 	 t 	 p
6y � 2 cos 3tx � 4 sin 2t

�2 � t � 2y � �t 2a1 �
3

2
 t 2bx � 2t(1 � t 2)

0 	 t 	 p
y � 0.2(6 sin t � sin 6t)x � 0.2(6 cos t � cos 6t)

0 � t 	 4py � sin tx � sin(0.5t � 0.4p)

0 	 t 	 1y � t � t 3x � 2t 2

y � F(x)a 	 t 	 b
y � t(t)x � f(t)

a 	 t 	 bf ¿(t)  0f ¿
0 	 t 	 2py � b � r sin tx � r cos t

xx2 � (y � b)2 � r 2 (0 � r � b)
74. Use the parametric representation of a circle in Exercise 73

to show that the circumference of a circle of radius is 
.

75. Find parametric equations for the Folium of Descartes,
with parameter .

76. Use the parametric representation of the Folium of Descartes
to estimate the length of the loop.

77. Show that the length of the ellipse , ,
, where , is given by

where

is the eccentricity of the ellipse.
Note: The integral is called an elliptical integral of the second kind.

78. Use a computer or calculator and the result of Exercise 77
to estimate the circumference of the ellipse

accurate to three decimal places.

In Exercises 79–80, determine whether the statement is true or
false. If it is true, explain why it is true. If it is false, give an
example to show why it is false.

79. If and , and have second-order deriva-
tives, and , then 

80. The curve with parametric equations and is
a line if and only if and are both linear functions of .ttf

y � t(t)x � f(t)

d2y

dx2 �
f ¿(t)t�(t) � t¿(t)f �(t)

[ f ¿(t)]2

f ¿(t)  0
tfy � t(t)x � f(t)

x2

100
�

y2

36
� 1

e �
c

a
�
2a2 � b2

a

L � 4a�
p>2

0
21 � e2 sin2 t dt

a � b � 00 	 t 	 2p
y � b sin tx � a cos t

t � y>xx3 � y3 � 3axy

2pa
a

cas

cas

cas

cas

cas

10.4 Polar Coordinates

The curve shown in Figure 1a is a lemniscate, and the one shown in Figure 1b is called
a cardioid. The rectangular equations of these curves are

and

respectively. As you can see, these equations are somewhat complicated. For example,
they will not prove very helpful if we want to calculate the area enclosed by the two
loops of the lemniscate shown in Figure 1a or the length of the cardioid shown in Fig-
ure 1b.

x4 � 2x3 � 2x2y2 � 2xy2 � y2 � y4 � 0(x2 � y2)2 � 4(x2 � y2)
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FIGURE 1
A rectangular equation of the lemniscate in part (a) is , and an equation
of the cardioid in part (b) is .x4 � 2x3 � 2x2y2 � 2xy2 � y2 � y4 � 0

(x2 � y2)2 � 4(x2 � y2)

A question that arises naturally is: Is there a coordinate system other than the rect-
angular system that we can use to give a simpler representation for curves such as the
lemniscate and cardioid? One such system is the polar coordinate system.

The Polar Coordinate System
To construct the polar coordinate system, we fix a point called the pole (or origin)
and draw a ray (half-line) emanating from called the polar axis. Suppose that is
any point in the plane, let denote the distance from to , and let denote the angle
(in degrees or radians) between the polar axis and the line segment . (See Figure 2.)
Then the point is represented by the ordered pair , also written , where
the numbers and are called the polar coordinates of .

The angular coordinate is positive if it is measured in the counterclockwise
direction from the polar axis and negative if it is measured in the clockwise direction.
The radial coordinate may assume positive as well as negative values. If , then

is on the terminal side of and at a distance from the origin. If , then
lies on the ray that is opposite the terminal side of and at a distance of 

from the pole. (See Figure 3.) Also, by convention the pole is represented by the
ordered pair for any value of . Finally, a plane that is endowed with a polar
coordinate system is referred to as an -plane.ru

u(0, u)
O

� r � � �ruP(r, u)
r � 0ruP(r, u)
r � 0r

u

Pur
P(r, u)(r, u)P

OP
uPOr

PO
O

FIGURE 2

�2

�1

2

(a) A lemniscate

x

y

2

(b) A cardioid

1

x

y

Pole Polar axis

P (r, ¨)

¨

r

O

FIGURE 3 (a) r > 0

P (r, ¨)

¨
r

O

(b) r < 0

(�r, ¨)

P (r, ¨)

¨
r

|r|
O

EXAMPLE 1 Plot the following points in the -plane.

a. b. c. d. (2, �3p)1�2, p3 212, �p4 211, 2p3 2
ru
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FIGURE 5
Representation of points using 

polar coordinates is not unique.

Unlike the representation of points in the rectangular system, the representation of
points using polar coordinates is not unique. For example, the point can also be
written as or , where is any integer. Figures 5a
and 5b illustrate this for the case and , respectively.n � 0n � 1

n(�r, u � (2n � 1)p)(r, u � 2np)
(r, u)

Solution The points are plotted in Figure 4.

FIGURE 4
The points in Example 1

(a)

0
0 0

1 1 1

1

(b) (c) (d)

(2, �3π)

�3π

(1, )
2π
3

π�4

π
3

2π
3

(2, � )π
4

(�2, )π
3

(a) n � 1 (b) n � 0

r

¨ � 2π

¨ � π

¨ ¨

(r, ¨) � (r, ¨ � 2π) (r, ¨) � (�r, ¨ � π)

Relationship Between Polar and Rectangular Coordinates
To establish the relationship between polar and rectangular coordinates, let’s superim-
pose an -plane on an -plane in such a way that the origins coincide and the posi-
tive -axis coincides with the polar axis. Let be any point in the plane other than the
origin with rectangular representation and polar representation . Figure 6a
shows a situation in which , and Figure 6b shows a situation in which . If

, we see immediately from the figure that

sin u �
y

r
cos u �

x

r

r � 0
r � 0r � 0

(r, u)(x, y)
Px

ruxy

FIGURE 6
The relationship between polar 

and rectangular coordinates (a) r > 0

0

¨
r

(b) r < 0

P (�x, �y)

P (r, ¨)
P (x, y)

P (r, ¨)
P (x, y)

|r|

y

x 0

¨

y

x
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so and . If , we see by referring to Figure 6b that

so again and . Finally, in either case we have

and if x  0tan u �
y

x
x2 � y2 � r 2

y � r sin ux � r cos u

sin u �
�y
� r � �

�y

�r
�

y

r
cos u �

�x
� r � �

�x

�r
�

x

r

r � 0y � r sin ux � r cos u

EXAMPLE 2 The point is given in polar coordinates. Find its representation
in rectangular coordinates.

Solution Here, and . Using Equation (1), we obtain

Therefore, the given point has rectangular representation .(213, 2)

 y � r sin u � 4 sin 
p

6
� 4 �

1

2
� 2

 x � r cos u � 4 cos 
p

6
� 4 �

13

2
� 213

u � p>6r � 4

14, p6 2

EXAMPLE 3 The point is given in rectangular coordinates. Find its repre-
sentation in polar coordinates.

Solution Here, and . Using Equation (2), we have

and

Let’s choose to be positive; that is, . Next, observe that the point 
lies in the second quadrant and so we choose (other choices are

, where is an integer). Therefore, one representation of the givennu � (3p>4) � 2np
u � 3p>4 (�1, 1)r � 12r

tan u �
y

x
� �1

r 2 � x2 � y2 � (�1)2 � 12 � 2

y � 1x � �1

(�1, 1)

point is .

Graphs of Polar Equations
The graph of a polar equation or, more generally, is the set of
all points whose coordinates satisfy the equation.(r, u)

F(r, u) � 0r � f(u)

112, 3p4 2

Relationship Between Rectangular and Polar Coordinates
Suppose that a point (other than the origin) has representation in polar
coordinates and in rectangular coordinates. Then

and (1)

and if (2)x  0tan u �
y

x
r 2 � x2 � y2

y � r sin ux � r cos u

(x, y)
(r, u)P
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EXAMPLE 4 Sketch the graphs of the polar equations, and reconcile your results by
finding the corresponding rectangular equations.

a. b.

Solution
a. The graph of consists of all points where and can assume

any value. Since gives the distance between and the pole , we see that the
graph consists of all points that are located a distance of 2 units from the pole; 
in other words, the graph of is the circle of radius 2 centered at the pole.
(See Figure 7a.) To find the corresponding rectangular equation, square both sides
of the given equation obtaining . But by Equation (2), , and
this gives the desired equation . Since this is a rectangular equation
of a circle with center at the origin and radius 2, the result obtained earlier has
been confirmed.

x2 � y2 � 4
r 2 � x2 � y2r 2 � 4

r � 2

OPr
ur � 2P(r, u)r � 2

u �
2p

3
r � 2

FIGURE 7

b. The graph of consists of all points where and can
assume any value. Since measures the angle the line segment makes with
the polar axis, we see that the graph consists of all points that are located on the
straight line passing through the pole and making an angle of radians
with the polar axis. (See Figure 7b.) Observe that the half-line in the second
quadrant consists of points for which , whereas the half-line in the fourth
quadrant consists of points for which . To find the corresponding rectangu-
lar equation, we use Equation (2), , to obtain

or

or . This equation confirms that the graph of is a straight
line with slope .

As in the case with rectangular equations, we can often obtain a sketch of the graph
of a simple polar equation by plotting and connecting some points that lie on the graph.

�13
u � 2p>3y � �13x

y

x
� �13tan 

2p

3
�

y

x

tan u � y>xr � 0
r � 0

2p>3O

OPu

ru � 2p>3P(r, u)u � 2p>3
(a) The graph of r � 2

2

(b) The graph of ¨ � 2π
3

r � 2

O O

y

x

y

x

2π
3

¨ � 2π
3

P (r, ¨)

EXAMPLE 5 Sketch the graph of the polar equation . Find a correspond-
ing rectangular equation and reconcile your results.

Solution The following table shows the values of corresponding to some convenient
values of . It suffices to restrict the values of to those lying between and , since
values of beyond will give the same points again.(r, u)pu

p0uu

r

r � 2 sin u
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U 0 p
6

p
4

p
3

p
2

2p
3

3p
4

5p
6 p

r 0 1 12 � 1.4 13 � 1.7 2 13 � 1.7 12 � 1.4 1 0

The graph of is sketched in Figure 8. To find a corresponding rectan-
gular equation, we multiply both sides of by to obtain and
then use the relationships (Equation (2)) and (Equation (1)),
to obtain the desired equation

or

Finally, completing the square in , we have

or

which is an equation of the circle with center and radius 1, as obtained earlier.

It might have occurred to you that in the last several examples we could have
obtained the graphs of the polar equations by first converting them to the correspond-
ing rectangular equations. But as you will see, some curves are easier to graph using
polar coordinates.

Symmetry
Just as the use of symmetry is helpful in graphing rectangular equations, its use is
equally helpful in graphing polar equations. Three types of symmetry are illustrated in
Figure 9. The test for each type of symmetry follows.

(0, 1)

x2 � (y � 1)2 � 1

x2 � y2 � 2y � (�1)2 � 1

y

x2 � y2 � 2y � 0x2 � y2 � 2y

y � r sin ur 2 � x2 � y2
r 2 � 2r sin urr � 2 sin u

r � 2 sin u

FIGURE 8
The graph of is a circle. To
plot the points, first draw the ray with
the desired angle, then locate the point
by measuring off the required distance
from the pole.

r � 2 sin u

O

2,

,1( )

( )
π
6

,2( )π
2

3π
4

1,( )5π
6

3,√

√

( )2π
3 3,√( )π

3

2,√( )π
4

FIGURE 9
Symmetries of graphs 

of polar equations
(a) Symmetry with respect to
      the polar axis

¨
¨�¨

(b) Symmetry with respect to
      the line ¨ =

(r, ¨)
(r, ¨)

(r, ¨)

(�r, ¨)

¨

(r, π � ¨)

π � ¨

(r, �¨)

O
O O

π
2

¨ = π
2

(c) Symmetry with respect to
      the pole

Tests for Symmetry

a. The graph of is symmetric with respect to the polar axis if the
equation is unchanged when is replaced by .

b. The graph of is symmetric with respect to the vertical line
if the equation is unchanged when is replaced by .

c. The graph of is symmetric with respect to the pole if the equa-
tion is unchanged when is replaced by or when is replaced by

.u � p
u�rr

r � f(u)
p � uuu � p>2 r � f(u)

�uu

r � f(u)
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To illustrate the use of the tests for symmetry, consider the equation of
Example 5. Here, , and since

we conclude that the graph of is symmetric with respect to the vertical line
(Figure 8).u � p>2 r � 2 sin u

f(p � u) � 2 sin(p � u) � 2(sin p cos u � cos p sin u) � 2 sin u � f(u)

f(u) � 2 sin u
r � 2 sin u

EXAMPLE 6 Sketch the graph of the polar equation . This is the polar
form of the rectangular equation of the car-
dioid that was mentioned at the beginning of this section (Figure 1b).

Solution Writing and observing that

we conclude that the graph of is symmetric with respect to the polar
axis. In view of this, we need only to obtain that part of the graph between and

. We can then complete the graph using symmetry.
To sketch the graph of for , we can proceed as we did in

Example 5 by first plotting some points lying on that part of the graph, or we may pro-
ceed as follows: Treat and as rectangular coordinates, and make use of our knowl-
edge of graphing rectangular equations to obtain the graph of on
the interval . (See Figure 10a.) Then recalling that is the angular coordinate
and is the radial coordinate, we see that as increases from 0 to , the points on 
the respective rays shrink to . (See Figure 10b, where the corresponding points are
shown.)

0
pur

u[0, p]
r � f(u) � 1 � cos u

ur

0 	 u 	 pr � 1 � cos u
u � p

u � 0
r � 1 � cos u

f(�u) � 1 � cos(�u) � 1 � cos u � f(u)

f(u) � 1 � cos u

x4 � 2x3 � 2x2y2 � 2xy2 � y2 � y4 � 0
r � 1 � cos u

FIGURE 10
Two steps in sketching the graph of the polar equation r � 1 � cos u

(a) r � f(¨), treating r and ¨ as rectangular coordinates (b) r � f(¨), treating r and ¨ as polar coordinates

¨

2

1

π
2

π
4

3π π
4

3π
4

, 1 � 2
2

√( )

, 1 � 2
2

√( )

π
4

, 1( )π
2

r

ed

c

b

a

O

¨ � π
2 ¨ � π

4¨ � 3π
4

2 ¨ � 0

1

e
d

c
b

a

Finally, using symmetry, we complete the graph of , as shown in Fig-
ure 11. It is called a cardioid because it is heart-shaped.

r � 1 � cos u

FIGURE 11
The graph of 
is a cardioid.

r � 1 � cos u

2

1

�1

EXAMPLE 7 Sketch the graph of the polar equation .

Solution Write , and observe that

and

 � 2[cos 2p cos 2u � sin 2p sin 2u] � 2 cos 2u � f(u)

 f(p � u) � 2 cos 2(p � u) � 2 cos(2p � 2u)

f(�u) � 2 cos 2(�u) � 2 cos 2u � f(u)

f(u) � 2 cos 2u

r � 2 cos 2u
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FIGURE 12
Two steps in sketching the 

graph of r � 2 cos 2u

Finally, using the symmetry that was established earlier (Figure 13a), we complete
the graph of as shown in Figure 13b. This graph is called a four-leaved
rose.

r � 2 cos 2u

FIGURE 13
The graph of 

is a four-leaved rose.
r � 2 cos 2u

Therefore, the graph of the given equation is symmetric with respect to both the polar
axis and the vertical line . It suffices, therefore, to obtain an accurate sketch
of that part of the graph for and then complete the sketch of the graph using
symmetry. Proceeding as in Example 6, we first sketch the graph of for

treating and as rectangular coordinates (Figure 12a), and then transcribe
the information contained in this graph onto the graph in the -plane for .
(See Figure 12b.)

0 	 u 	 p
2ru

ur0 	 u 	 p
2

r � 2 cos 2u
0 	 u 	 p

2

u � p>2

(a) r � f(¨) treating r and ¨ as
      rectangular coordinates

(b) r � f(¨), treating r and ¨ as
      polar coordinates

¨

¨ � π
2

¨ � π
4

¨ � π
8

¨ � 3π
8

2

�2 �2

2

1

0.5

�1

π
4

π
2

π
8

3π
8

r

b

c

d
e

e

d

c

b

a

a

2, √( )π
8

2, √�( )3π
8

(a) (b)

2

2

�2

�2

The next example shows how the graph of a rectangular equation can be sketched
more easily by first converting it to polar form.

EXAMPLE 8 Sketch the graph of the equation by first con-
verting it to polar form. This is an equation of the lemniscate that was mentioned at
the beginning of this section.

Solution To convert the given equation to polar form, we use Equations (1) and (2),
obtaining

 r 4 � 4r 2 cos 2u

 � 4r 2(cos2 u � sin2 u)

 (r 2)2 � 4(r 2 cos2 u � r 2 sin2 u)

(x2 � y2)2 � 4(x2 � y2)
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FIGURE 14
Two steps in sketching the graph of r � 21cos 2u

FIGURE 15
The graph of is a
lemniscate.

r � 21cos 2u

or

Observe that is defined for and . Also,
observe that and . (These computations are similar to
those in Example 7.) So the graph of is symmetric with respect to the
polar axis and the line . The graph of for , where and 
are treated as rectangular coordinates, is shown in Figure 14a. This leads to the part of
the required graph for shown in Figure 14b. Then, using symmetry, we
obtain the graph of and, therefore, that of , as
shown in Figure 15.

(x2 � y2)2 � 4(x2 � y2)r � 21cos 2u
0 	 u 	 p

4

ur0 	 u 	 p
4r � f(u)u � p>2

r � 21cos 2u
f(p � u) � f(u)f(�u) � f(u)

3p
4 	 u 	 5p

4�p4 	 u 	 p
4f(u) � 21cos 2u

r 2 � 4 cos 2u

(a)

2

2¨

¨ � π
4

π
4

(b)

r

2�2

Tangent Lines to Graphs of Polar Equations
To find the slope of the tangent line to the graph of at the point , let

be the rectangular representation of . Then

We can view these equations as parametric equations for the graph of with
parameter . Then, using Equation (1) of Section 10.3, we have

if (3)

and this gives the slope of the tangent line to the graph of at any point .
The horizontal tangent lines to the graph of are located at the points where

and . The vertical tangent lines are located at the points where
and (so that is undefined). Also, points where both 

and are equal to zero are candidates for horizontal or vertical tangent lines,
respectively, and may be investigated using l’Hôpital’s Rule.

Equation (3) can be used to help us find the tangent lines to the graph of 
at the pole. To see this, suppose that the graph of passes through the pole when 

. Then . If , then Equation (3) reduces to

dy

dx
�

f ¿(u0) sin u0 � f(u0) cos u0

f ¿(u0) cos u0 � f(u0) sin u0
�

sin u0

cos u0
� tan u0

f ¿(u0)  0f(u0) � 0u � u0

f
r � f(u)

dx>du dy>dudy>dxdy>du  0dx>du � 0
dx>du  0dy>du � 0

r � f(u)
P(r, u)r � f(u)

dx

du
 0

dy

dx
�

dy

du

dx

du

�

dr

du
sin u � r cos u

dr

du
cos u � r sin u

u

r � f(u)

y � r sin u � f(u) sin u

x � r cos u � f(u) cos u

PP(x, y)
P(r, u)r � f(u)
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EXAMPLE 9 Consider the cardioid of Example 6.

a. Find the slope of the tangent line to the cardioid at the point where .
b. Find the points on the cardioid where the tangent lines are horizontal and where

the tangent lines are vertical.

Solution
a. The slope of the tangent line to the cardioid at any point is

given by

At the point on the cardioid where , the slope of the tangent line is

b. Observe that if

that is, if or . This gives

, , or

Next, if

that is, if or . This gives

, , , or
4p

3

2p

3
pu � 0

cos u � �1
2sin u � 0

 sin u (2 cos u � 1) � 0

 2 sin u cos u � sin u � 0

 sin 2u � sin u � 0

dx>du � 0

5p

3
pu �

p

3

cos u � �1cos u � 1
2

 (2 cos u � 1)(cos u � 1) � 0

 2 cos2 u � cos u � 1 � 0

 cos 2u � cos u � 0

dy>du � 0

dy

dx
`
u�p>6

� �

cosap
3
b � cosap

6
b

sinap
3
b � sinap

6
b

� �

1

2
�
13

2

13

2
�

1

2

� �1

u � p>6
 �

(cos2 u � sin2 u) � cos u

�2 sin u cos u � sin u
� �

cos 2u � cos u

sin 2u � sin u

 
dy

dx
�

dr

du
 sin u � r cos u

dr

du
cos u � r sin u

�
(�sin u)(sin u) � (1 � cos u)cos u

(�sin u)(cos u) � (1 � cos u)sin u

P(r, u)r � 1 � cos u

u � p>6
r � 1 � cos u

This shows that is a tangent line to the graph of at the pole .
The following summarizes this discussion.

(0, u0)r � f(u)u � u0

is a tangent line to the graph of at the pole if and
.f ¿(u0)  0

f(u0) � 0r � f(u)u � u0
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In view of the remarks following Equation (3), we see that and
give rise to horizontal tangents. To investigate the candidate ,

where both and are equal to zero, we use l’Hôpital’s Rule. Thus,

Similarly, we see that

Therefore, also gives rise to a horizontal tangent. Thus, the horizontal tan-
gent lines occur at

, , and

The vertical tangent lines occur at , , and . The points are ,(2, 0)4p>32p>3u � 0

132, 5p3 2(0, p)132, p3 2
u � p

lim
u→p�

 
dy

dx
� 0

 � � lim
u→p�

 
�2 sin 2u � sin u

2 cos 2u � cos u
� 0

 lim
u→p�

 
dy

dx
� � lim

u→p�
 
cos 2u � cos u

sin 2u � sin u

dx>dudy>du u � pu � 5p>3 u � p>3

, and . These tangent lines are shown in Figure 16.112, 4p3 2112, 2p3 2
FIGURE 16
The horizontal and vertical tangents to
the graph of r � 1 � cos u

0

1
2

(0, π)

2

(2, 0)

�1

1

,( )

3
2 ,( )

2π
3

1
2 ,( )4π

3

3
2 ,( )5π

3

π
3

EXAMPLE 10 Find the tangent lines of at the origin.

Solution Setting , we find that

, , , or

or

, , , or

Next, we compute . Since for each of these values of , we
see that and (that is, and ) are tangent lines to the
graph of at the pole (see Figure 17).r � cos 2u

y � �xy � xu � 3p>4u � p>4 uf ¿(u)  0f ¿(u) � �2 sin 2u

7p

4

5p

4

3p

4
u �
p

4

7p

2

5p

2

3p

2
2u �

p

2

f(u) � cos 2u � 0

r � cos 2u

FIGURE 17
The tangent lines to the graph of

at the originr � cos 2u

(y � x)(y � �x)

¨ � π
4¨ � 3π

4

1. Let be a point in the plane with polar coordinates 
and . Find all possible representations of .

2. Suppose that has representation in polar coordinates
and in rectangular coordinates. Express (a) and in
terms of and and (b) and in terms of and .

3. Explain how you would determine whether the graph of
is symmetric with respect to (a) the polar axis,

(b) the vertical line , and (c) the pole.u � p>2r � f(u)

yxurur
yx(x, y)

(r, u)P
P(r, u)u

rP(r, u) 4. Suppose that , where is differentiable.
a. Write an expression for .
b. How do you find the points on the graph of 

where the tangent lines are horizontal and where the tan-
gent lines are vertical?

c. How do you find the tangent lines to the graph of
(if they exist) at the pole?r � f(u)

r � f(u)
dy>dx

fr � f(u)

10.4 CONCEPT QUESTIONS
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In Exercises 1–8, plot the point with the polar coordinates. Then
find the rectangular coordinates of the point.

1. 2.

3. 4.

5. 6.

7. 8.

In Exercises 9–16, plot the point with the rectangular coordi-
nates. Then find the polar coordinates of the point taking 
and .

9. 10.

11. 12.

13. 14.

15. 16.

In Exercises 17–24, sketch the region comprising points whose
polar coordinates satisfy the given conditions.

17. 18.

19. 20.

21. 22. ,

23. ,

24. ,

In Exercises 25–32, convert the polar equation to a rectangular
equation.

25. 26.

27. 28.

29. 30.

31. 32.

In Exercises 33–38, convert the rectangular equation to a polar
equation.

33. 34.

35. 36.

37. 38.

In Exercises 39–64, sketch the curve with the polar equation.

39. 40.

41. 42.

43. 44.

45. 46.

47. 48. r � 1 � sin ur � 1 � cos u

r � 2 sin u � 4 cos ur � 3 cos u � 2 sin u

r � �4 sin ur � 3 cos u

u � �
p

6
u �
p

3

r � �2r � 3

y2 � x2 � 42x2 � y2xy � 4

x2 � y2 � 1x2 � y2 � 9

x � 2y � 3x � 4

r �
3

4 � 5 cos u
r �

1

1 � sin u

r 2 � sin 2ur 2 � 4r cos u

r sin u � 2r cos u2r cos u � 3r sin u � 6

r sin u � �3r cos u � 2

�p2 � u � p
22 � r � 4

�p6 	 u 	 p
61 	 r 	 3

0 	 u 	 p
30 	 r 	 30 	 u 	 p

4

1 	 r � 20 	 r 	 2

r � 1r � 1

(3, �1)(5, �12)

(213, �2)(�13, �13)

(3, �4)(0, 5)

(1, �1)(2, 2)

0 	 u � 2p
r � 0

15, �5p
6 21�4, �3p

4 2
1�1, p3 21�12, p4 2
(6, 3p)14, 3p2 2
12, p6 214, p4 2

49. 50.

51. 52.

53. , (spiral)

54. (spiral)

55. , (logarithmic spiral)

56. (lituus)

57. (lemniscate)

58. (limaçon)

59. (limaçon)

60. (four-leaved rose)

61. (three-leaved rose)

62. (eight-leaved rose)

63. (eight-leaved rose)

64. (five-leaved rose)

In Exercises 65–72, find the slope of the tangent line to the
curve with the polar equation at the point corresponding to the
given value of .

65. , 66. ,

67. ,

68. ,

69. , 70. ,

71. , 72. ,

In Exercises 73–78, find the points on the curve with the given
polar equation where the tangent line is horizontal or vertical.

73. 74.

75. 76.

77. 78.

79. Show that the rectangular equation 

is an equation of the cardioid with polar equation
.

80. Show that the polar equation , where 
and are nonzero, represents a circle. What are the center
and radius of the circle?

b
ar � a sin u � b cos u

r � 1 � cos u

x4 � 2x3 � 2x2y2 � 2xy2 � y2 � y4 � 0

r � 1 � sin ur � 1 � 2 cos u

r 2 � 4 cos 2ur � sin 2u

r � sin u � cos ur � 4 cos u

u �
p

4
r � 2 sec uu �

p

6
r 2 � 4 cos 2u

u �
p

3
r � sin 3uu � pr � u

u �
p

2
r � 1 � 3 cos u

u �
p

4
r � sin u � cos u

u �
p

4
r � 3 sin uu �

p

3
r � 4 cos u

u

r � 2 sin 5u

r � 4 sin 4u

r � 2 cos 4u

r � sin 3u

r � sin 2u

r � 3 � 2 sin u

r � 1 � 2 cos u

r 2 � 4 sin 2u

r 2 �
1

u

u � 0r � eu

r �
1

u

u � 0r � u

r � �3 sec ur � 2 csc u

r � 3 � 3 cos ur � 4(1 � sin u)

10.4 EXERCISES

Videos for selected exercises are available online at www.academic.cengage.com/login.V

www.academic.cengage.com/login
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81. a. Show that the distance between the points with polar
coordinates and is given by 

b. Find the distance between the points with polar coordi-
nates and .

82. Show that the curves with polar equations and
intersect at right angles.

83. a. Plot the graphs of the cardioids and
.

b. Show that the cardioids intersect at right angles except at
the pole.

84. Let be the angle between the radial line and the tan-
gent line to the curve with polar equation at (see
the figure). Show that

Hint: Observe that . Then use the trigonometric identity

r � f(¨)

¨ ƒ

�

O

P

y

x

tan(a � b) �
tan a � tan b

1 � tan a tan b

c � f � u

tan c � r
du

dr

Pr � f(u)
OPc

r � a(1 � cos u)
r � a(1 � cos u)

r � a cos u
r � a sin u

12, p3 214, 2p3 2
d �2r 2

1 � r 2
2 � 2r1r2 cos(u1 � u2)

(r2, u2)(r1, u1)
In Exercises 85–92, use a graphing utility to plot the curve with
the polar equation.

85. ,

86. ,

87. ,

(nephroid of Freeth)

88. ,

89. , (hippopede curve)

90. , (devil’s curve)

91. , (epi-spiral)

92. , (cochleoid)

In Exercises 93–95, determine whether the statement is true or
false. If it is true, explain why it is true. If it is false, give an
example to show why it is false.

93. If and represent the same point in polar
coordinates, then .

94. If and represent the same point in polar
coordinates, then .

95. The graph of has a horizontal tangent line at a
point on the graph if , where .y � f(u)sin udy>du � 0

r � f(u)

u1 � u2

P(r2, u2)P(r1, u1)

r1 � r2

P(r2, u2)P(r1, u1)

�6p 	 u � 6pr �
sin u

u

0 	 u � pr �
0.1

cos 3u

0 	 u � 2pr 2 �

1
4 sin2 u � 3.6 cos2 u

sin2 u � cos2 u

0 	 u � 2pr 2 � 0.8(1 � 0.8 sin2 u)

0 	 u � 2pr �
1 � 10 cos u

1 � 10 cos u

0 	 u � 4pr � 0.3c1 � 2 sinau
2
b d
0 	 u � 2pr � 3 sin u cos2 u

0 	 u � 2pr � cos u(4 sin2 u � 1)

10.5 Areas and Arc Lengths in Polar Coordinates

In this section we see how the use of polar equations to represent curves such as lem-
niscates and cardioids will simplify the task of finding the areas of the regions enclosed
by these curves as well as the lengths of these curves.

Areas in Polar Coordinates
To develop a formula for finding the area of a region bounded by a curve defined by
a polar equation, we need the formula for the area of a sector of a circle

(1)

where is the radius of the circle and is the central angle measured in radians. (See
Figure 1.) This formula follows by observing that the area of a sector is times
that of the area of a circle; that is,

A �
u

2p
� pr 2 �

1

2
 r 2u

u>(2p)
ur

A �
1

2
 r 2u

2π

¨ Ar

FIGURE 1
The area of a sector of a 
circle is .A � 1

2 r 2u



10.5 Areas and Arc Lengths in Polar Coordinates 879

Now let be a region bounded by the graph of the polar equation and 
the rays and , where is a nonnegative continuous function and

, as shown in Figure 2a. Let be a regular partition of the interval
:

a � u0 � u1 � u2 � p � un � b

[a, b]
P0 	 b � a � 2p

fu � bu � a
r � f(u)R

FIGURE 2

The rays divide into subregions , , , of area , , ,
, respectively. If we choose in the interval , then the area of of the

th subregion bounded by the rays and is approximated by the sector
of a circle with central angle 

and radius (highlighted in Figure 2b). Using Equation (1), we have

Therefore, an approximation of the area of is

(2)

But the sum in Equation (2) is a Riemann sum of the continuous function over the
interval . Therefore, it is true, although we will not prove it here, that

A � lim
n→�

 a
n

k�1
 
1

2
 [ f(u*

k)]
2 �u � �

b

a

 
1

2
 [ f(u)]2 du

[a, b]

1
2 f 2

A � a
n

k�1
�Ak � a

n

k�1

1

2
 [ f(u*

k)]
2 �u

RA

�Ak �
1

2
 [ f(u*

k)]
2 �u

f(u*
k)

�u �
b � a

n

u � uku � uk�1k
�Ak[uk�1, uk]u*

k�An

p�A2�A1RnpR2R1nRu � uk

THEOREM 1 Area Bounded by a Polar Curve

Let be a continuous, nonnegative function on where .
Then the area of the region bounded by the graphs of , , and

is given by

A � �
b

a

 
1

2
 [ f(u)]2 du � �

b

a

 
1

2
 r 2 du

u � b
u � ar � f(u)A

0 	 b � a � 2p[a, b]f

Note When you determine the limits of integration, keep in mind that the region 
is swept out in a counterclockwise direction by the ray emanating from the origin, start-
ing at the angle and terminating at the angle .ba

R

(a) The region R

0

¨ � ∫

¨ � å

r � f(¨)

R

(b) The k th subregion

0

¨ � ∫

Î¨

¨ � å

rk � f(¨k)
¨ � ¨k

*

¨ � ¨k

¨ � ¨k�1

*

*
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EXAMPLE 1 Find the area of the region enclosed by the lemniscate .
This lemniscate has rectangular equation , as you
can verify.

Solution The lemniscate is shown in Figure 3. Making use of symmetry, we see that
the required area is four times that of the area swept out by the ray emanating from
the origin as increases from 0 to . In other words,

 � C4 sin 2u Dp>4
0

� 4

 A � 4�
p>4

0
 
1

2
 r 2 du � 8�

p>4

0
cos 2u du

p>4u

A

x4 � 2x2y2 � 4x2 � 4y2 � y4 � 0
r 2 � 4 cos 2u

FIGURE 3
The region enclosed by the lemniscate
r 2 � 4 cos 2u

EXAMPLE 2 Find the area of the region enclosed by the cardioid .

Solution The graph of the cardioid , sketched previously in Example 6
in Section 10.4, is reproduced in Figure 4. Observe that the ray emanating from the
origin sweeps out the required region exactly once as increases from 0 to . There-
fore, the required area is

 �
1

2
 c3

2
 u � 2 sin u �

1

4
sin 2ud2p

0
�

3

2
 p

 �
1

2
 �

2p

0
a3

2
� 2 cos u �

1

2
cos 2ub du

 �
1

2
 �

2p

0
a1 � 2 cos u �

1 � cos 2u

2
b du

 �
1

2
 �

2p

0
(1 � 2 cos u � cos2 u) du

 A � �
2p

0
 
1

2
 r 2 du � �

2p

0
 
1

2
 (1 � cos u)2 du

A
2pu

r � 1 � cos u

r � 1 � cos u

FIGURE 4
The region enclosed by the 
cardioid r � 1 � cos u

EXAMPLE 3 Find the area inside the smaller loop of the limaçon .

Solution We first sketch the limaçon (Figure 5). Observe that the
region of interest is swept out by the ray emanating from the origin as runs from

to . We can also take advantage of symmetry by observing that the required
area is double the area of the smaller loop lying below the polar axis. Since this region
is swept out by the ray emanating from the origin as runs from to , we see
that the required area is

 � �
p

2p>3 c1 � 4 cos u � 4a1 � cos 2u

2
b d du

 � �
p

2p>3
(1 � 4 cos u � 4 cos2 u) du

 � �
p

2p>3
(1 � 2 cos u)2 du

 A � 2�
p

2p>3
 
1

2
 r 2 du � �

p

2p>3
r 2 du

p2p>3u

4p>32p>3 u

r � 1 � 2 cos u

r � 1 � 2 cos u

FIGURE 5
The limaçon r � 1 � 2 cos u

2�2

¨ � π
4

2

1

�1

r � 1 � 2 cos ¨

¨ � 0

¨ � 2π
3

¨ � 4π
3
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FIGURE 6
is the region bounded by the 

graphs of and for
.a 	 u 	 b

r � t(u)r � f(u)
R

Area Bounded by Two Graphs
Consider the region bounded by the graphs of the polar equations and 

, and the rays and , where and .
(See Figure 6.) From the figure we can see that the area of is found by subtract-
ing the area of the region inside from the area of the region inside .
Using Theorem 1, we obtain the following theorem.

r � f(u)r � t(u)
RA

0 	 b � a � 2pf(u) � t(u) � 0u � bu � ar � t(u)
r � f(u)R

 � 3p � a2p � 4 �
13

2
�
13

2
b � p �

313

2

 � C3u � 4 sin u � sin 2u Dp
2p>3

 � �
p

2p>3
(3 � 4 cos u � 2 cos 2u) du

R

0

¨ � ∫

¨ � å

r � g(¨)

r � f(¨)

THEOREM 2 Area Bounded by Two Polar Curves

Let and be continuous on , where and 
. Then the area of the region bounded by the graphs of

, , , and is given by

A �
1

2
 �
b

a

{[ f(u)]2 � [t(u)]2} du

u � bu � ar � f(u)r � t(u)
A0 	 b � a � 2p

0 	 t(u) 	 f(u)[a, b]tf

EXAMPLE 4 Find the area of the region that lies outside the circle and inside
the cardioid .

Solution We first sketch the circle and the cardioid . The
required region is shown shaded in Figure 7.

To find the points of intersection of the two curves, we solve the two equations
simultaneously. We have or , which gives . Since
the region of interest is swept out by the ray emanating from the origin as varies from

to , we see that the required area is, by Theorem 2,

where , , and . If we
take advantage of symmetry, we can write

 � a�p � 8a13

2
b �

13

2
b �

913

2
� p

 � C�3u � 8 sin u � sin 2u Dp>3
0

 � �
p>3

0
(�3 � 8 cos u � 2 cos 2u) du

 � �
p>3

0
a�5 � 8 cos u � 4 �

1 � cos 2u

2
b du

 � �
p>3

0
(4 � 8 cos u � 4 cos2 u � 9) du

 A � 2a1

2
b�
p>3

0
{[2(1 � cos u)]2 � 32} du

b � p>3t(u) � 3, a � �p>3f(u) � 2 � 2 cos u � 2(1 � cos u)

A �
1

2
 �
b

a

{[ f(u)]2 � [t(u]2} du

p>3�p>3 u

u � �p>3cos u � 1
22 � 2 cos u � 3

r � 2 � 2 cos ur � 3

r � 2 � 2 cos u
r � 3

FIGURE 7
is the region outside the circle 

and inside the cardioid .r � 2 � 2 cos u
r � 3R

3 4�3

2

3

�3

�2

r � f(¨)

R

r � g(¨)

∫ � π
3

¨ � �π
3
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Arc Length in Polar Coordinates
To find the length of a curve defined by a polar equation for ,
we use Equation (1) in Section 10.4 to write the parametric equations

and

for the curve, regarding as the parameter. Then

and

Therefore,

 adx

du
b2

� ady

du
b2

� [ f ¿(u)]2 cos2 u � 2f ¿(u) f(u) cos u sin u � [ f(u)]2 sin2 u

dy

du
� f ¿(u) sin u � f(u) cos u

dx

du
� f ¿(u) cos u � f(u) sin u

u

a 	 u 	 by � r sin u � f(u) sin ux � r cos u � f(u) cos u

a 	 u 	 br � f(u)C

THEOREM 3 Arc Length

Let be a function with a continuous derivative on an interval . If the graph
of is traced exactly once as increases from to , then the length
of is given by

L � �
b

a

2[ f ¿(u)]2 � [ f(u)]2 du � �
b

a B a
dr

du
b2

� r 2 du

CL
baur � f(u)C

[a, b]f

EXAMPLE 5 Find the length of the cardioid .

Solution The cardioid is shown in Figure 8. Observe that the cardioid is traced exactly
once as runs from to . However, we can also take advantage of symmetry to see
that the required length is twice that of the length of the cardioid lying above the polar
axis. Thus,

But , so

Therefore,

 � 2�
p

0
2sin2 u � 1 � 2 cos u � cos2 u du

 L � 2�
p

0
2(�sin u)2 � (1 � cos u)2 du

dr

du
� �sin u

r � 1 � cos u

L � 2�
p

0 B a
dr

du
b2

� r 2 du

2puu

r � 1 � cos u

FIGURE 8
The cardioid r � 1 � cos u

Consequently, if is continuous, then Theorem 1 in Section 10.3 gives the arc length
of as

L � �
b

a B a
dx

du
b2

� ady

du
b2

du � �
b

a

2[ f ¿(u)]2 � [ f(u)]2 du

C
f ¿

sin2 u � cos2 u � 1 � [ f ¿(u)]2 � [ f(u)]2

 � [ f ¿(u)]2 sin2 u � 2f ¿(u) f(u) cos u sin u � [ f(u)]2 cos2 u

2

1

�1
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Area of a Surface of Revolution
The formulas for finding the area of a surface obtained by revolving a curve defined
by a polar equation about the polar axis or about the line can be derived by
using Equations (8) and (9) of Section 10.3 and the equations and

.y � r sin u
x � r cos u

u � p>2

 � c4(2) sin 
u

2
dp

0
� 8

cos 
u

2
� 0 on [0, p] � 4�

p

0
 ` cos 

u

2
` du � 4�

p

0
cos 
u

2
du

 � 212 �
p

0
11 � cos u du � 212 �

p

0 B2 cos2 
u

2
du

sin2 u � cos2 u � 1 � 2�
p

0
12 � 2 cos u du

THEOREM 4 Area of a Surface of a Revolution

Let be a function with a continuous derivative on an interval . If the graph
of is traced exactly once as increases from to , then the area of

the surface obtained by revolving about the indicated line is given by

a. (about the polar axis)

b. (about the line )u � p>2S � 2p�
b

a

r cos uB a
dr

du
b2

� r 2 du

S � 2p�
b

a

r sin uB a
dr

du
b2

� r 2 du

C
baur � f(u)C
[a, b]f

EXAMPLE 6 Find the area of the surface obtained by revolving the circle 
about the line . (See Figure 9.)

Solution Observe that the circle is traced exactly once as increases from 0 to .
Therefore, using Theorem 4 with , , and , we obtain

 � pcu �
sin 2u

2
dp

0
� p2

 � 2p�
p

0
cos2 u du � p�

p

0
(1 � cos 2u) du

 � 2p�
p

0
cos u(cos u)2(�sin u)2 � (cos u)2 du

 S � 2p�
b

a

f(u) cos uB a
dr

du
b2

� r 2 du

b � pa � 0r � cos u
pu

u � p>2 r � cos uS

FIGURE 9
The solid obtained by revolving 
the circle (a) about 
the line is a torus (b).u � p>2r � cos u

(a)

r �cos ¨

1

(b)

0

π__
2

Note In using Theorem 4, we must choose so that the surface is only traced
once when is revolved about the line.C

[a, b]

Copyright 2009 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.
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Points of Intersection of Graphs in Polar Coordinates
In Example 4 we were able to find the points of intersection of two curves with rep-
resentations in polar coordinates by solving a system of two equations simultaneously.
This is not always the case. Consider for example, the graphs of the cardioid

and the circle shown in Figure 10. Solving the two equa-
tions simultaneously, we obtain

(3)

or and . Therefore, the points of intersection are and . But
one glance at Figure 10 shows the pole as a third point of intersection that is not revealed
in our calculation. To see how this can happen, think of the cardioid as being traced
by the point satisfying

with as a parameter. If we think of as representing time, then as runs from 
through , the point starts at (2, 0) and traverses the cardioid in a counter-
clockwise direction, eventually returning to the point . (See Figure 11a.) Simi-
larly, the circle is traced twice in the counterclockwise direction, by the point ,
where

and the parameter , once again representing time, runs from through 
(see Figure 11b).

u � 2pu � 0u

0 	 u 	 2pr � t(u) � 3 cos u

(r, u)
(2, 0)

(r, u)u � 2p
u � 0uuu

0 	 u 	 2pr � f(u) � 1 � cos u

(r, u)

132, 5p3 2132, p3 25p>3u � p>3
 cos u �

1

2

 3 cos u � 1 � cos u

r � 3 cos ur � 1 � cos u

FIGURE 10
The graphs of the cardioid

and the circle
r � 3 cos u
r � 1 � cos u

(        ),3_
2

5π__
3

(       ),3_
2

π_
3

1

�1

1 2 3

FIGURE 11

Observe that the point tracing the cardioid arrives at the point on the cardioid132, p3 2
at precisely the same time that the point tracing the circle arrives at the point on132, p3 2
the circle. A similar observation holds at the point on each of the two curves.
These are the points of intersection found earlier.

Next, observe that the point tracing the cardioid arrives at the origin when .
But the point tracing the circle first arrives at the origin when and then again
when . In other words, these two points arrive at the origin at different times,
so there is no (common) value of corresponding to the origin that satisfies both Equa-
tions (3) simultaneously. Thus, although the origin is a point of intersection of the two
curves, this fact will not show up in the solution of the system of equations. For this
reason it is recommended that we sketch the graphs of polar equations when finding
their points of intersection.

u

u � 3p>2 u � p>2 u � p

132, 5p3 2

(a)

(0, π) (2, 0) (3, 0)

(b)

, 5π
3( )3

2

, 2π
3( )3

2

,
π
3( )

0,
π
2( )

,
π
3( )3

2

3
2

�
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EXAMPLE 7 Find the points of intersection of and .

Solution We solve the system of equations

We set and use the identity . We obtain

So

or

that is,

, , or 0

These values of give , , and as the points of intersection. Since
both graphs also pass through the pole, we conclude that the pole is also a point of
intersection. (See Figure 12.)

(1, 0)1�1
2, 

4p
3 21�1

2, 
2p
3 2u

4p

3
u �

2p

3

cos u � 1cos u � �
1

2

 (2 cos u � 1)(cos u � 1) � 0

 2 cos2 u � cos u � 1 � 0

cos 2u � 2 cos2 u � 1cos u � cos 2u

 r � cos 2u

 r � cos u

r � cos 2ur � cos u

�1

1

�1

�

1

(1, 0)

, 4π
3( )1

2

� , 2π
3( )1

2

FIGURE 12

1. a. Let be nonnegative and continuous on , where
. Write an integral giving the area of

the region bounded by the graphs of , ,
and . Make a sketch of the region.

b. If and are continuous on and ,
where , write an integral giving the area
of the region bounded by the graphs of ,

, , and . Make a sketch of the region.u � bu � ar � f(u)
r � t(u)

0 	 a 	 b 	 2p
0 	 t(u) 	 f(u)[a, b]tf

u � b
u � ar � f(u)

0 	 b � a � 2p
[a, b]f 2. Suppose that has a continuous derivative on an interval

. If the graph of is traced exactly once 
as increases from to , write an integral giving the
length of .

3. Suppose that is a function with a continuous derivative on
and the graph of is traced exactly once as

increases from to . Write an integral giving the area of
the surface obtained by revolving about (a) the polar axis,

, and (b) the line , .x � 0u � p>2y � 0
C

bau

r � f(u)C[a, b]
f

C
bau

r � f(u)C[a, b]
f

10.5 CONCEPT QUESTIONS

1. a. Find a rectangular equation of the circle , and
use it to find its area.

b. Find the area of the circle of part (a) by integration.

2. a. By finding a rectangular equation, show that the polar
equation represents a circle. Then
find the area of the circle.

b. Find the area of the circle of part (a) by integration.

In Exercises 3–8, find the area of the region bounded by the
curve and the rays.

3. , , u � pu � 0r � u

r � 2 cos u � 2 sin u

r � 4 cos u
4. , ,

5. , ,

6. , ,

7. , ,

8. , , u �
p

16
u � 0r � cos 2u

u �
p

2
u � 0r � 1cos u

u �
p

4
u � 0r � e�2u

u � 0u � �
p

2
r � eu

u �
p

3
u �
p

6
r �

1

u

10.5 EXERCISES

Videos for selected exercises are available online at www.academic.cengage.com/login.V

www.academic.cengage.com/login
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In Exercises 9–12, find the area of the shaded region.

9. 10.

11. 12.

In Exercises 13–18, sketch the curve, and find the area of the
region enclosed by it.

13. 14.

15. 16.

17. 18.

In Exercises 19–22, find the area of the region enclosed by one
loop of the curve.

19. 20.

21. 22.

In Exercises 23–24, find the area of the region described.

23. The inner loop of the limaçon 

24. Between the loops of the limaçon 

In Exercises 25–28, find the area of the shaded region.

25. 26.

r � 1, r � 1 � sin ¨

�1 1

�1

2

1

r � sin ¨, r � cos ¨

�0.5 1

�0.5

1

r � 1 � 2 sin u

r � 1 � 2 cos u

r � 2 cos 4ur � sin 4u

r � 2 cos 3ur � cos 2u

r � 2 sin 3ur � 2 sin 2u

r 2 � 3 sin 2ur 2 � sin u

r � 2(1 � cos u)r � 3 sin u

r � 2 cos 3¨

�1 1 2

1.5

�1.5

r � 1 � cos ¨

2

1

�1

a�a

r � a cos 2¨√

�2�1

1

�2
�3
�4

2 4 6

r � ¨

27. 28.

In Exercises 29–34, find all points of intersection of the given
curves.

29. and

30. and

31. and

32. and

33. and

34. and

In Exercises 35–40, find the area of the region that lies outside
the first curve and inside the second curve.

35. ,

36. ,

37. ,

38. ,

39. ,

40. ,

In Exercises 41–46, find the area of the region that is enclosed
by both of the curves.

41. ,

42. ,

43. ,

44. ,

45. ,

46. ,

In Exercises 47–54, find the length of the given curve.

47.

48. ;

49. ;

50. ;

51. ; 0 � u � pr � sin3 
u

3

0 � u � 2pr � 1 � sin u

 0 � u � 4pr � e�u

0 � u � 2pr � 2u

r � 5 sin u

r � 1 � cos ur � 13 sin u

r � 12r 2 � 4 cos 2u

r � 1 � cos ur � cos u

r � 1 � sin ur � sin u

r � 13 sin ur � cos u

r � 2 sin ur � 1

r � 1r � 2 cos 3u

r �
3

2
r � 1 � cos u

r � 2 � sin ur � 3 sin u

r � 2r � 4 cos u

r � 1r � 1 � sin u

r � 3 cos ur � 1 � cos u

r � cos 2ur � cos u

r � sin 2ur � sin u

r 2 � 2 cos 2ur � 1

r � 4 cos 2ur � 2

r � 2 � 2 cos ur � 3

r � 1 � cos ur � 1

r � 2 cos 3¨, r � 2 cos ¨

�1 21

�1

1

r � 1 � cos ¨, r �

�1 21

�1

1

cos 2¨√



52. 53.

54. ;

In Exercises 55–60, find the area of the surface obtained by
revolving the given curve about the given line.

55. about the polar axis

56. about the line 

57. about the polar axis

58. about the polar axis

59. about the line 

60. , about the line 

In Exercises 61 and 62, find the area of the region enclosed by
the given curve. (Hint: Convert the rectangular equation to a
polar equation.)

61. 62.

63. Let be a point other than the origin lying on the curve
. If is the angle between the tangent line to the cr � f(u)

P

x4 � y4 � 4(x2 � y2)(x2 � y2)3 � 16x2y2

u �
p

2
0 	 u 	 p

2r � eau

u �
p

2
r 2 � cos 2u

r 2 � cos 2u

r � 2 � 2 cos u

u �
p

2
r � 2 cos u

r � 4 cos u

 0 	 u 	 p
3r � sec u

r � a sin4 
u

4
r � cos2 

u

2
66. Plot the curve , and find an approximation

of the area enclosed by the curve accurate to four decimal
places.

In Exercises 67–69, (a) plot the curve, and (b) find an approxi-
mation of its length accurate to two decimal places.

67. , where (involute of a circle)

68. , where (parabolic spiral)

69. , where (bifolia)

70. a. Let be a function with a continuous derivative in an
interval . If the graph of is traced
exactly once as increases from to , show that the
rectangular coordinates of the centroid of are 

and

Hint: See the directions for Exercises 45 and 46 in Exercises 5.7.
b. Use the result of part (a) to find the centroid of the upper

semicircle , where and .

71. a. Plot the curve with polar equation where
.

b. Find the Cartesian coordinates of the centroid of the
region bounded by the curve of part (a).

72. a. Plot the graphs of and for
, treating and as rectangular coordinates.

b. Refer to page 884. Reconcile your results with the dis-
cussion of finding the points of intersection of graphs in
polar coordinates.

In Exercises 73 and 74, (a) find the polar representation of the
curve given in rectangular coordinates, (b) plot the curve, and
(c) find the area of the region enclosed by a loop (or loops) of
the curve.

73. (folium of Descartes)

74. (rhodenea)

In Exercises 75 and 76, determine whether the statement is true
or false. If it is true, explain why it is true. If it is false, give an
example to show why it is false.

75. If there exists a such that , then the graphs of
and have at least one point of intersection.

76. If is a point of intersection of the graphs of and
, then there must exist a such that .f(u0) � t(u0)u0r � t(u)

r � f(u)P

r � t(u)r � f(u)
f(u0) � t(u0)u0

(x2 � y2)1>2 � cosc4 tan�1ay

x
b d � 0

x3 � 3xy � y3 � 0

ur0 	 u 	 2p
r � 3 cos ur � 1 � cos u

�p2 	 u 	 p
2

r � 2 cos3 u

0 	 u 	 pa � 0r � a

y �
�
b

a

r sin u2(r¿)2 � r 2 du

�
b

a

2(r¿)2 � r 2 du

x �
�
b

a

r cos u2(r¿)2 � r 2 du

�
b

a

2(r¿)2 � r 2 du

C
bau

r � f(u)C[a, b]
f

0 	 u 	 pr � 3 sin u cos2 u

0 	 u 	 6pr � 0.21u � 1

0 	 u 	 2pr �21 � u2

r � sin(3 cos u)
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cas

cas

cas

cas

cas

curve at and the radial line , then . (See
Section 10.4, Exercise 84.)

a. Show that the angle between the tangent line to the loga-
rithmic spiral and the radial line at the point of
tangency is a constant.

b. Suppose the curve with polar equation has the
property that at any point on the curve, the angle 
between the tangent line to the curve at that point and
the radial line from the origin to that point is a constant.
Show that , where and are constants.

64. Find the length of the logarithmic spiral between
the point and the point , and use this result to
deduce that the length of a logarithmic spiral is proportional
to the difference between the radial coordinates of the
points.

65. Show that the length of the parabola on the
interval is the same as the length of the spiral 
for .0 	 r 	 a

r � pu[0, a]
y � (1>2p)x2

(r, u)(r0, u0)
r � aemu

mCf(u) � Cemu

c

r � f(u)

r � emu

P

O

ƒ

�r � f(¨)

¨

tan c �
r

dr>duOPP
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10.6 Conic Sections in Polar Coordinates

In Section 10.1 we obtained representations of the conic sections—the parabola, the
ellipse, and the hyperbola—in terms of rectangular equations. In this section we will
show that all three types of conic sections can be represented by a single polar equa-
tion. As you saw in the preceding sections, some problems can be solved more easily
using polar coordinates rather than rectangular coordinates.

We begin by proving the following theorem, which gives an equivalent definition
of each conic section in terms of its focus and directrix. As a corollary, we will obtain
the desired representation of the conic sections in polar form.

THEOREM 1
Let be a fixed point, let be a fixed line in the plane, and let be a fixed pos-
itive number. Then the set of all points in the plane satisfying

is a conic section. The point is the focus of the conic section, and the line 
is its directrix. The number , which is the ratio of the distance between and

and the distance between and , is called the eccentricity of the conic. The
conic is an ellipse if , a parabola if , or a hyperbola if .e � 1e � 1e � 1

lPF
Pe

lF

d(P, F)

d(P, l)
� e

P
elF

The three types of conics are illustrated in Figure 1.

FIGURE 1

PROOF Observe that if , then . That is, the distance between
a point on the curve and the focus is equal to the distance between the point and
the directrix. But this is just the definition of a parabola, so the curve is a conic
section.

In what follows, we will assume that . Refer to Figure 2, where we have
placed the focus at the origin and the directrix parallel to and units to the left of
the -axis. Therefore, the directrix has equation , where . If is any
point lying on the curve, then you can see from Figure 2 that

and d(P, l) � d � r cos ud(P, F) � r

P(r, u)d � 0x � �dy
dlF

e  1

d(P, F) � d(P, l)e � 1

FIGURE 2

(a) � e < 1 (ellipse)
d(P, F)

P

F

l

d(P, l)

x

y

(b) � e � 1 (parabola)
d(P, F)

P

F

P

F

d(P, l)

x

y

(c) � e > 1 (hyperbola)
d(P, F)

l

d(P, l)

x

y

l

P(r, ¨)

r cos ¨

r

x � �d

¨
F

d

l (directrix)

x

y
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Therefore, the condition or, equivalently, ,
implies that

(1)

Converting this equation to rectangular coordinates gives

which, upon squaring, yields

or

Completing the square in , we obtain

(2)

Now, if , then . Dividing both sides by , we can
write Equation (2) in the form

where

, , and (3)

This is an equation of an ellipse centered at the point on the -axis.
Next, we compute

(4)

from which we obtain

Recalling that the foci of an ellipse are located at a distance from its center, we
have shown that is indeed the focus of the ellipse. It also follows from Equations (3)
and (4) that the eccentricity of the ellipse is given by

(5)

where .
If , then . Proceeding in a similar manner as before, we can write

Equation (2) in the form

(x � h)2

a2
�

y2

b2
� 1

1 � e2 � 0e � 1
c2 � a2 � b2

e �
c

a

F
c

c �
e2d

1 � e2
� h

c2 � a2 � b2 �
e4d2

(1 � e2)2

x(h, 0)

b2 �
e2d2

1 � e2
a2 �

e2d2

(1 � e2)2
h �

e2d

1 � e2

(x � h)2

a2
�

y2

b2
� 1

e2d2>(1 � e2)21 � e2 � 0e � 1

ax �
e2d

1 � e2
b2

�
y2

1 � e2
�

e2d2

1 � e2
�

e4d2

(1 � e2)2
�

e2d2

(1 � e2)2

x

x2 � a 2e2d

1 � e2
bx �

y2

1 � e2
�

e2d2

1 � e2

 (1 � e2)x2 � 2de2x � y2 � e2d2

 x2 � y2 � e2(d � x)2 � e2(d2 � 2dx � x2)

2x2 � y2 � e(d � x)

r � e(d � r cos u)

d(P, F) � e � d(P, l)d(P, F)>d(P, l) � e

JOHANNES KEPLER
(1571–1630)

Born in 1571 in Weil der Stadt, Germany,
Johannes Kepler was introduced to the
wonders of the universe at a young age
when his mother took him to observe the
comet of 1577. Kepler completed a master’s
degree in theology at the University of
Tübingen and established a reputation as a
talented mathematician and astronomer, but
an unorthodox Lutheran. Given the volatile
religious situation of the time, Kepler was
advised not to pursue a career in the min-
istry and was instead recommended for a
position teaching mathematics and astron-
omy at a school in Graz. He took that posi-
tion in 1594, and a year later he published
his first major work, Mysterium cosmo-
graphicum (“The Mystery of the Cosmos”).
In this work, he explained his discovery of
the three laws of planetary motion that
now bear his name (see page 893), and he
became the first person to correctly explain
planetary orbits within our solar system.
Kepler’s First Law is that every planet’s
orbit is an ellipse with the sun at one focus.

While Kepler was writing his famous
work The Harmony of the World (1619), his
mother was charged with witchcraft. Kepler
enlisted the help of the legal faculty at the
University of Tübingen in his effort to pre-
vent his mother from being convicted.
Katharina Kepler was eventually released as
the result of technical objections on the
part of the defense, arising from the author-
ities’ failure to follow the legal procedures
of the time regarding the use of torture.

Historical Biography
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which is an equation of a hyperbola. We also see that the eccentricity of the hyper-
bola is

(6)

where .
If we solve Equation (1) for , we obtain the polar equation

of the conic shown in Figure 2. If the directrix is chosen so that it lies to the right of
the focus, say, , where , then the polar equation of the conic is

Similarly, we can show that if the directrix is chosen to be parallel to the polar
axis, then the polar equation of the conic is

(See Exercises 28–30.)

The conics are illustrated in Figure 3.

r �
ed

1 � e sin u

y � �d

r �
ed

1 � e cos u

d � 0x � d

r �
ed

1 � e cos u

r
c2 � a2 � b2

e �
c

a

FIGURE 3
Polar equations of conics

THEOREM 2
A polar equation of the form

or

represents a conic section with eccentricity . The conic is a parabola if ,
an ellipse if , and a hyperbola if .e � 1e � 1

e � 1e

r �
ed

1 � e sin u
r �

ed

1 � e cos u

EXAMPLE 1 Find a polar equation of a parabola that has its focus at the pole and
the line as its directrix.y � 2

(a) r �

x � d

ed

F

1 � e cos ¨

x

y

(b) r �

x � �d

ed

F

1 � e cos ¨

x

y

(c) r �

y � d

y � �d

ed

F

1 � e sin ¨

x

y

(d) r � ed

F

1 � e sin ¨

x

y
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EXAMPLE 2 A conic has polar equation

Find the eccentricity and the directrix of the conic section, and sketch the conic section.

Solution We begin by rewriting the given equation in standard form by dividing both
its numerator and denominator by 3, obtaining

Then using Theorem 2, we see that . Since , we have

Since , we conclude that the conic section is an ellipse with focus at the pole and
major axis lying along the polar axis. Its directrix has rectangular equation . Set-
ting and successively gives and , giving the vertices of the
ellipse in polar coordinates as and . The center of the ellipse is the mid-
point in polar coordinates of the line segment joining the vertices. Since the
length of the major axes of the ellipse is 18, we have , or . Finally, since

, we find that

So

or

The graph of the conic is sketched in Figure 4.

b � 315

b2 � a2 � c2 � 81 � 36 � 45

c � ae � 9a2

3
b � 6

e � c>a a � 92a � 18
(6, p)

(15, p)(3, 0)
r � 15r � 3u � pu � 0

x � 15
2

e � 1

d �
5
e

�
5
2
3

�
15

2

ed � 5e � 2
3

r �
5

1 � 2
3 cos u

r �
15

3 � 2 cos u

Solution Since this conic section is a parabola, we see that . Next, observe that
its directrix, , is parallel to and lies above the polar axis. So letting and
referring to Figure 3c, we see that a required equation of the parabola is

r �
2

1 � sin u

d � 2y � 2
e � 1

(15, π)

(6, π)

Focus

x �

Directrix

x

y
15
2

53√

FIGURE 4
The graph of r �

15

3 � 2 cos u

EXAMPLE 3 Sketch the graph of the polar equation

Solution By dividing the numerator and the denominator of the given equation by 2,
we obtain the equation

r �
10

1 � 3
2 sin u

r �
20

2 � 3 sin u
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in standard form. We see that , so the equation represents a hyperbola with one
focus at the pole. Comparing this equation with the equation associated with Figure 3c,
we see that the transverse axis of the hyperbola lies along the line . To findu � p>2

e � 3
2

the vertices of the hyperbola, we set and successively, giving 14, p2 2u � 3p>2u � p>2
and as the required vertices in polar coordinates. The center of the hyper-1�20, 3p2 2

FIGURE 5
The graph of r �

20

2 � 3 sin u

FIGURE 6
The ellipse is almost 

circular if is close to 0 and 
is very flat if is close to 1.e

e

If , then the conic is a parabola. We leave it to you to perform a similar analy-
sis in the case in which (so that the conic is a hyperbola).

In Figure 7 we show two hyperbolas: In part (a) the eccentricity is close to but
greater than 1. In part (b) the eccentricity is much larger than 1.e

e
e � 1

e � 1

FIGURE 7
The eccentricity of the hyperbola 

in part (a) is close to 1, whereas 
the eccentricity of the hyperbola 
in part (b) is much larger than 1.

bola in polar coordinates is the midpoint of the line segment joining the ver-
tices. The -intercepts (we superimpose the Cartesian system over the polar system)
are found by setting and , giving the -intercepts as 10 and . The
required graph may be sketched in two steps; first, we sketch the lower branch of the
hyperbola, making use of the -intercepts that we just found. Then, using symmetry,
we sketch the upper branch of the hyperbola. (See Figure 5.)

Eccentricity of a Conic
As we saw in Theorem 1, the nature of a conic section is determined by its eccentric-
ity . To see in greater detail the role that is played by the eccentricity of a conic, let’s
first consider the case in which , so that the conic under consideration is an ellipse.
Now by Equation (5) we have

If is close to 0, then is close to 0, or is close to . This means that
the ellipse is almost circular (see Figure 6a). On the other hand, if is close to 1, then 

, , or is small. This means that the ellipse is very flat
(see Figure 6b).

ba2 � b2 � a22a2 � b2 � a

e
ba2a2 � b2e

e �
c

a
�
2a2 � b2

a

e � 1
e

x

�10xu � pu � 0
x

112, p2 2
�10 10 x

y

�20,( )
,4( )π

2

3π
2

(a) e is close to 0.

�c�a

�b

�b

b

ac

b

x

y

(b) e is close to 1.

�c�a ac x

y

(a)

x

y

(b)

x

y
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Motion of Celestial Bodies
In the last few sections we have seen numerous applications of conics. Yet another
important application of the conics arises in the motion of celestial bodies.

Figure 8 shows a body a distance from the origin 0 moving with a speed and
in a direction perpendicular to the line passing through 0 and . It can be shown,
although we will not do so here, that the orbit of the body about the origin depends on
the magnitude of . For the planets in the solar system (with the sun at the origin) and
for certain comets such as Halley’s comet, the speed is such that they remain cap-
tive and will never leave the system; their orbits are ellipses. However, if the speed 
of a body is sufficiently large, then its orbit about the sun is a parabola or a
branch of a hyperbola . In both these cases the body makes but a single pass
about the sun!

The orbits of the planets about the sun, moreover, are described by Kepler’s Laws.

(e � 1)
(e � 1)

√0

√0

√0

√0

√0r0

FIGURE 8
The speed determines 
the orbit of the body.

√0

e � 0

e � 1

0

e � 1

e � 1

√0

r0

Hyperbola
Parabola

Ellipse

Circle

The positions of a planet that are closest to and farthest from the sun are called the
perihelion and aphelion, respectively.

FIGURE 9
Equal areas are swept out in equal times, , where is the period.TT2 � a3

Kepler’s Laws

1. Planets move in orbits that are ellipses with the sun at one focus.
2. The line from the sun to a planet sweeps out equal areas in equal times.

(See Figure 9.)
3. The square of a planet’s period is proportional to the cube of the length of

the semimajor axis of its orbit.

a Sun
PerihelionAphelion

EXAMPLE 4 The Orbit of Halley’s Comet Halley’s comet has an elliptical orbit 
with an eccentricity of 0.967. Its perihelion distance (shortest distance from the sun)
is km.

a. Find a polar equation for the orbit.
b. Find the distance of the comet from the sun when it is at the aphelion.

Solution
a. Suppose that the axis is horizontal as shown in Figure 10. Then the polar equa-

tion can be chosen to have the form

The distance of the comet from the sun when it is at the perihelion is given by

a � c � a � ea � a(1 � e)

r �
ed

1 � e cos u

8.9 � 107
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FIGURE 10
In actuality the trajectory is much flatter.

1. Consider the polar equations

and

Explain the role of the numbers and . Illustrate each with
a sketch.

ed

r �
ed

1 � e sin u
r �

ed

1 � e cos u

2. Give a classification of the conics in terms of their eccen-
tricities.

3. Identify the conic:

a. b.

c. d. r �
5

3 � 2 sin u
r �

2

3(1 � cos u)

r �
6

3 � cos u
r �

3

1 � 2 sin u

10.6 CONCEPT QUESTIONS

In Exercises 1–8, write a polar equation of the conic that has a
focus at the origin and the given properties. Identify the conic.

1. Eccentricity 1, directrix 

2. Eccentricity , directrix x � 31
3

x � �2

3. Eccentricity , directrix 

4. Eccentricity 1, directrix 

5. Eccentricity , directrix 

6. Eccentricity , directrix y � �25
4

x � 13
2

y � �3

y � �21
2

10.6 EXERCISES

Videos for selected exercises are available online at www.academic.cengage.com/login.V

But we are given that at the perihelion the distance from the sun is km
and . So

or

Next, from Equation (3) we see that

So the required equation is

b. The aphelion distance (farthest distance from the sun) is

kilometers.

a � c � a � ea � a(1 � e) � (2.697 � 109)(1 � 0.967) � 5.305 � 109

r �
1.75 � 108

1 � 0.967 cos u

 � (2.697 � 109)(1 � 0.9672) � 1.75 � 108

 ed � a(1 � e2)

a �
8.9 � 107

1 � 0.967
� 2.697 � 109

a(1 � 0.967) � 8.9 � 107

e � 0.967
8.9 � 107

r
¨

Comet

Sun

www.academic.cengage.com/login


7. Eccentricity 0.4, directrix 

8. Eccentricity , directrix 

In Exercises 9–20, (a) find the eccentricity and an equation of
the directrix of the conic, (b) identify the conic, and (c) sketch
the curve.

9. 10.

11. 12.

13. 14.

15. 16.

17. 18.

19. 20.

In Exercises 21–26, use Equation (5) or Equation (6) to find the
eccentricity of the conic with the given rectangular equation.

21. 22.

23. 24.

25.

26.

27. Show that the parabolas with polar equations

and

intersect at right angles.

28. Show that a conic with focus at the origin, eccentricity ,
and directrix has polar equation

29. Show that a conic with focus at the origin, eccentricity ,
and directrix has polar equation

r �
ed

1 � e sin u

y � d
e

r �
ed

1 � e cos u

x � d
e

r �
d

1 � sin u
r �

c

1 � sin u

2x2 � y2 � 4x � 6y � 7 � 0

x2 � 9y2 � 2x � 54y � 105

9x2 � 25y2 � 225x2 � y2 � 1

x2

5
�

y2

3
� 1

x2

9
�

y2

16
� 1

r � �
2

cos u � 3
r � �

6

sin u � 2

r �
1

1 � cos u
r �

1

1 � sin u

r �
12

3 � cos u
r �

1

3 � 2 cos u

r �
5

2 � 2 sin u
r �

5

2 � 2 cos u

r �
10

4 � 6 cos u
r �

10

4 � 6 cos u

r �
8

6 � 2 sin u
r �

8

6 � 2 sin u

r � �2 sec u1
2

y � 0.4 30. Show that a conic with focus at the origin, eccentricity ,
and directrix has polar equation

31. a. Show that the polar equation of an ellipse with one focus
at the pole and major axis lying along the polar axis is
given by

where is the eccentricity of the ellipse and is the
length of its major axis.

b. The planets revolve about the sun in elliptical orbits with
the sun at one focus. The points on the orbit where a
planet is nearest to and farthest from the sun are called
the perihelion and the aphelion of the orbit, respectively.
Use the result of part (a) to show that the perihelion dis-
tance (minimum distance from the planet to the sun) is

.

In Exercises 32 and 33, use the results of Exercise 31 to find a
polar equation describing the approximate orbit of the given
planet and to find the perihelion and aphelion distances.

32. Earth: , mi

33. Saturn: , km

34. The dwarf planet Pluto revolves about the sun in an ellipti-
cal orbit. The eccentricity of the orbit is 0.249, and its peri-
helion distance is km. Use the results of Exer-
cise 31 to find a polar equation for the orbit of Pluto and
find its aphelion distance.

35. The planet Mercury revolves about the sun in an elliptical
orbit. Its perihelion distance is approximately km,
and its aphelion distance is approximately km.
Use the results of Exercise 31 to estimate the eccentricity of
Mercury’s orbit.

7.0 � 107
4.6 � 107

4.43 � 109

a � 1.427 � 109e � 0.056

a � 92.957 � 106e � 0.017

r

¨

Planet

Sun
AphelionPerihelion

a(1 � e)

2ae

r �
a(1 � e2)

1 � e cos u

r �
ed

1 � e sin u

y � �d
e
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In Exercises 1–16, fill in the blanks.

1. a. A parabola is the set of all points in the plane that are
from a fixed and a fixed .

The fixed is called the , and the fixed
is called the .

b. The point halfway between the focus and the directrix 
of a parabola is called its . The axis of the
parabola is the line passing through the and
perpendicular to the .

2. a. An equation of a parabola with focus and directrix
is .

b. An equation of a parabola with focus and
directrix is .

3. a. An ellipse is the set of all points in a plane the 
of whose distances from two fixed points (called the

) is a .
b. The vertices of an ellipse are the points of intersection 

of the line passing through the and the ellipse.
The chord joining the vertices is called the 

, and its midpoint is called the of 
the ellipse. The chord passing through the center of the
ellipse and perpendicular to the major axis is called the

of the ellipse.

4. a. An equation of the ellipse with foci and vertices
is , where .

b. An equation of the ellipse with foci and ver-
tices is .

5. a. A hyperbola is the set of all points in a plane the
of whose distances from two fixed points

(called the ) is a .
b. The line passing through the foci intersects the hyperbola

at two points called the of the hyperbola. The
line segment joining the vertices is called the 
axis of the hyperbola, and the midpoint of the 
axis is called the of the hyperbola. A hyper-
bola has branches.

6. a. An equation of a hyperbola with foci and ver-
tices is , where . The
hyperbola has asymptotes .

b. An equation of the hyperbola with foci and
vertices is , where 

. The hyperbola has asymptotes .
c2 �y2>a2 � x2>b2 � 1

c2 �(�a, 0)
(�c, 0)

x2>b2 � y2>a2 � 1

c2 �(�a, 0)
(�c, 0)

y2 � 4px

y � �p
(0, p)

7. A plane curve is a set of ordered pairs defined by
the parametric equations , where and are con-
tinuous functions on an interval ; is called the 
interval.

8. a. If and , where and are differentiable
and , then .

b. If and define as a twice-differentiable
function of over some suitable interval, then

.

9. a. A curve represented by and on a
parameter interval is smooth if and 
are continuous on and are not ,
except possibly at the of .

b. If is a smooth curve represented by and
with parameter interval , then the length of

is .

10. If is a smooth curve as described in Question 9b, does
not intersect itself, except possibly at , and

, then the area of the surface obtained by revolving
about the -axis is . If for all in

, then the area of the surface obtained by revolving 
about the -axis is .

11. a. The rectangular coordinates of a point are related
to the polar coordinates of by the equations 

and .
b. The polar coordinates of a point are related to

the rectangular coordinates of by the equations 
and .

12. The horizontal tangent lines to the graph of are
located at the points where and 

. The vertical tangent lines are located at the
points where and . Hori-
zontal and vertical tangent lines may also be located at
points where and are both equal to .

13. a. If is nonnegative and continuous on , where
, then the area of the region bounded

by the graphs of , and is given by
.

b. Let and be continuous on , where
and . Then 

the area of the region bounded by the graphs 
of , , , and is given 
by .

u � bu � ar � f(u)r � t(u)

0 	 a � b 	 2p0 	 t(u) 	 f(u)
[a, b]tf

u � br � f(u), u � a
0 	 a � b 	 2p

[a, b]f

dx>dudy>du
dy>dudx>du

dx>dudy>du r � f(u)

tan u �
r 2 �P

P(r, u)
y �

x �P
P(x, y)

S �y
C[a, b]

tf(t) � 0S �xC
t(t) � 0

CC

L �C
[a, b]y � t(t)

x � f(t)C
I

I
I

y � t(t)x � f(t)C

d2y>dx2 �
x

yy � t(t)x � f(t)
dy>dx �f ¿(t)  0

tfy � t(t)x � f(t)

II
tf

(x, y)C

CONCEPT REVIEW
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14. Suppose that has a continuous derivative on . If 
the graph of is traced exactly as 
increases from to , then the length of is given by

.

15. Let be a fixed point, let be a fixed line in the plane,
and let be a fixed positive number. Then a conic section
defined by the equation is an ellipse if satisfiese

e
lF

Cba

ur � f(u)C
[a, b]f , a parabola if satisfies , and a hyper-

bola if satisfies .

16. A conic section can be represented by a polar equation of
the form or . It is an ellipse, a parabola,
or a hyperbola depending on whether satisfies ,

, or , respectively.
e

e
e

In Exercises 1–6, find the vertices and the foci of the conic and
sketch its graph.

1. 2.

3. 4.

5.

6.

In Exercises 7–12, find a rectangular equation of the conic satis-
fying the given conditions.

7. parabola, focus , directrix 

8. parabola, vertex , directrix 

9. ellipse, vertices , foci 

10. ellipse, foci , major axis has length 8

11. hyperbola, foci , vertices 

12. hyperbola, vertices and , asymptotes 

13. Show that if is any real number, then there is exactly one
line of slope that is tangent to the parabola and
its equation is .

14. Show that if is any real number, then there are exactly
two lines of slope that are tangent to the ellipse

and their equations arex2>a2 � y2>b2 � 1
m

m

y � mx � pm2
x2 � 4pym

m

y � �
3

2
 x(2, 0)(�2, 0)

(0, �3)10, �3
215 2

(�2, 3)

(�2, 0)(�7, 0)

y � 4(�2, 2)

x � 2(�2, 0)

4x2 � 25y2 � 16x � 50y � 59 � 0

y2 � 9x2 � 8y � 7 � 0

y2 � 2y � 8x � 15 � 0x2 � 9y2 � 9

(x � 1)2

2
�

(y � 1)2

4
� 1

x2

4
�

y2

9
� 1

21. , ;

22. , ;

In Exercises 23 and 24, find and .

23. ,

24. ,

In Exercises 25 and 26, find the points on the curve with the
given parametric equations at which the tangent lines are verti-
cal or horizontal.

25. ,

26. ,

In Exercises 27 and 28, find the length of the curve defined by
the given parametric equations.

27. , ;

28. , ;

29. The position of a body at time is , where
and . Find the distance 

covered by the body as runs from 0 to .

30. The course taken by an oceangoing racing boat during a
practice run is described by the parametric equations

and

where and are measured in miles. Sketch the path of the
boat, and find the length of the course.

In Exercises 31 and 32, find the area of the surface obtained by
revolving the given curve about the x-axis.

31. , ;

32. , ;

In Exercises 33–38, sketch the curve with the given polar equation.

33. 34. r � 3 � 4 cos ur � 2 sin u

0 	 t 	 p
3y � cos tx � ln(sec t � tan t) � sin t

0 	 t 	 13y �
t

3
 (3 � t 2)x � t 2

yx

0 	 t 	 2

y � (t � 1) � (t � 1)3x � 13(t � 1)2

p>2t
y � e�t sin tx � e�t cos t

(x, y)t

� 1 	 t 	 1y � t � t 3x � 13t 2

0 	 t 	 14 8y � 2 �
1

4
 t 4x �

1

6
 t 6

y � 1 � 2 sin tx � 1 � 2 cos t

y � t 2 � 2x � t 3 � 4t

y � et cos tx � et sin t

y � t 4 � 2t 2x � t 3 � 1

d2y>dx2dy>dx

t �
p

4
y � cos3 tx � 1 � sin2 t

t � 0y �
1

t 2 � 1
x � te�t

REVIEW EXERCISES

.

In Exercises 15–18, (a) find a rectangular equation whose graph
contains the curve with the given parametric equations, and
(b) sketch the curve and indicate its orientation.

15. ,

16. ,

17. ,

18. ,

In Exercises 19–22, find the slope of the tangent line to the
curve at the point corresponding to the value of the parameter.

19. , ;

20. , ; t � 0y � 116 � tx � 1t � 1

t � 1y � 2t 2 � 1x � t 3 � 1

y � 4 sin3 tx � cos3 t

y � 3 � 2 cos tx � 1 � 2 sin t

y � e�2tx � et

y � 3 � 2tx � 1 � 2t

C
C

y � mx �2a2m2 � b2
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35. 36.

37. 38.

In Exercises 39 and 40, find the slope of the tangent line to the
curve with the given polar equation at the point corresponding
to the given value of .

39. , 40. ,

In Exercises 41 and 42, find the points of intersection of the
given curves.

41. ,

42. ,

43. Find the area of the region enclosed by the curve with polar
equation .

44. Find the area of the region enclosed by the curve with polar
equation .

45. Find the area of the region that is enclosed between the 
petals of the curves with polar equations and

.

46. Find the area of the region that is enclosed between the
curves with polar equations and 

In Exercises 47 and 48, find the length of the given curve.

47. ,

48. ,

In Exercises 49 and 50, find the area of the surface obtained by
revolving the curve about the given line.

49. about the polar axis

50. , , about the line 

In Exercises 51 and 52, sketch the curve with the given equation.

51. 52. r �
16

3 � 5 cos u
r �

1

1 � sin u

u �
p

2
0 	 u 	 p

4r � 1cos 2u

r � 2 sin u

0 	 u 	 2pr � 2(sin u � cos u)

0 	 u 	 2pr � u2

r � 2.r � 3 � 2 sin u

r � 2 cos 2u
r � 2 sin 2u

r � 1 � sin u

r � 2 � cos u

r � cos 2ur � cos u

r � 1 � sin ur � sin u

u �
p

2
r � 2 � sin uu �

p

2
r � e2u

u

r � 2 sin u cos2 ur 2 � cos 2u

r � e�ur � 2 cos 5u In Exercises 53–54, plot the curve with the parametric 
equations.

53. , ;
(hypotrochoid)

54. , ;
(butterfly catastrophe)

In Exercises 55–57, plot the curve with the polar equation.

55. where 

56. where (epi-spiral)

57. where (spiral of Poinsot)

58. An ant crawls along the curve ,
starting at the point and ending at the point ,
where and are measured in feet. Find the distance trav-
eled by the ant.

59. An egg has the shape of a solid obtained by revolving the
upper half of the ellipse about the -axis.
What is the surface area of the egg?

60. A piston is attached to a crankshaft by means of a connect-
ing rod of length , as shown in the figure. If the disk is of
radius , find the parametric equations giving the position of
the point using the angle as a parameter.

x

L

q
r

P(x, y)

Piston

y

uP
r

L

xx2 � 2y2 � 2

yx
112, 13 210, 13 2 y � 1

3(2t � 1)3>2x � 1
2t 2

�2p 	 u 	 2pr �
1

2 sinh u

0 	 u 	 2pr �
0.1

cos 4u

0 	 u 	 15p
2r � 0.1e0.1u

�1.629 	 t 	 1.629
y � 0.09(14t 2 � 5t 4)x � 0.24(�7t 3 � 3t 5)

0 	 t 	 2p
y � 0.15(2 sin t � 3 sin 2t)x � 0.15(2 cos t � 3 cos 2t)

1. a. In the following figure, the axes of an -coordinate 
system have been rotated about the origin through an
angle of to produce a new -coordinate system.

P(x, y) � P(x�, y�)

¨
x

x�

y�

y

x¿y¿u

xy Show that

b. Show that the equation ,
where , will have the form 

in the -coordinate system obtained by rotating
the -system through an angle given by

c. Sketch the ellipse .2x2 � 13xy � y2 � 20 � 0

cot 2u �
A � C

B

uxy
x¿y¿F � 0

(A¿x¿)2 � (C¿y¿)2 �B  0
Ax2 � Bxy � Cy2 � F � 0

y � x¿ sin u � y¿ cos ux � x¿ cos u � y¿ sin u
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2. a. Show that the area of the ellipse

where , is given by

b. Find the area of the ellipse .

3. Find the length of the curve with parametric equations

between the origin and the nearest point from the vertical
tangent line.

4. Find the area of the surface obtained by revolving one branch
of the lemniscate about the line .

5. The curve with equation , where is a
nonzero constant, is called the folium of Descartes.

�a

�a

x

y

ax3 � y3 � 3axy

¨ � π
4

π
4

y

r � a cos 2¨√

u � p>4r � a1cos 2u

y � �
t

1

sin u

u
dux � �

t

1

cos u

u
du

2x2 � 13xy � y2 � 20

S � �
2pF

24AC � B2

B2 � 4AC � 0

Ax2 � Bxy � Cy2 � F � 0

a. Show that the polar equation of the curve is 

b. Find the area of the region enclosed by the loop of the
curve.

6. Find the rectangular coordinates of the centroid of the
region that is completely enclosed by the curve .

7. An ant is placed at each corner of a square with sides of
length . Starting at the same instant of time, all four ants
begin to move counterclockwise at the same speed and in
such a way that each ant moves toward the next at all times.
The resulting path of each ant is a spiral curve that con-
verges to the center of the square.

a. Taking the pole to be the center of the square, find the
polar equation describing the path taken by one of the ants.
Hint: The line passing through the position of two adjacent ants
is tangent to the path of one of them.

b. Find the distance traveled by an ant as it moves from a
corner of the square to its center.

a a

a

a

a

�1

1

10 2 3 x

y

r � 3 cos3 u

r �
3a sec u tan u

1 � tan3 u
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11 Vectors and the Geometry 
of Space

The photograph shows an
Olympian throwing a javelin.

Once the javelin has been
launched, its direction of

motion and speed at any point
in its flight through the air can

be described by a vector at
that point. In this chapter we

will study vectors—objects that
possess both magnitude and

direction—and look at some of
their applications. St
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IN THIS CHAPTER we will study vectors, quantities that have both direction and

magnitude. Vectors can be used to describe the position, velocity, and acceleration

of a body moving in a plane or in space. Since a force is determined by the direction

along which it acts and by its magnitude, we can also represent a force by a vector.

There are two ways in which vectors can be multiplied together. These operations

on vectors enable us to find the work that is done by a force in moving an object from

one point in space to another point, to find the angle between two lines, to compute

the volume of a parallelpiped, and to find the torque exerted by a person pushing on a

leveraged-impact lug wrench when changing a tire—just to mention a few applications.

Vectors also facilitate the algebraic representation of lines and planes in space.

Using such representations, we can easily find the distance between a point in space

and a plane and the distance between two skew lines (lines that are neither parallel nor

intersect). Finally, we introduce two alternative coordinate systems in space: the cylin-

drical coordinate system and the spherical coordinate system. Each of these systems

enables us to obtain relatively simple algebraic representation of certain surfaces.

This symbol indicates that one of the following video types is available for enhanced student learning 
at www.academic.cengage.com/login:
• Chapter lecture videos • Solutions to selected exercises

This symbol indicates that step-by-step video lessons for hand-drawing certain complex figures are available.
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902 Chapter 11 Vectors and the Geometry of Space

11.1 Vectors in the Plane

Vectors
Some physical quantities, such as force and velocity, possess both magnitude (size) and
direction. These quantities are called vectors and can be represented by arrows or
directed line segments. The arrow points in the direction of the vector, and the length
of the arrow gives the magnitude of the vector.

Figure 1a gives an aerial view of a tugboat trying to free a cruise liner that has run
aground in shallow waters. The magnitude and direction of the force exerted by the
tugboat are represented by the vector shown in the figure.

FIGURE 1

In Figure 1b the vectors (arrows) give the magnitude and direction of blood cells
flowing through an artery. Observe that the lengths of the vectors vary; this reflects the
fact that the blood cells near the central axis have a greater velocity than those near
the walls of the artery.

Vectors are customarily denoted by lowercase boldface type such as and . How-
ever, if a vector is defined by a directed line segment from the initial point of the
vector to the terminal point of the vector, then it is written . (See Figure 2.)*

Two vectors, and , that have the same magnitude and direction are said to be
equal, written . Thus, the vectors and shown in Figure 3 are
equal.

Scalar Multiples
In contrast to a vector, a scalar is a quantity that has magnitude but no direction. Real
numbers and complex numbers are examples of scalars. In this text, however, the term
scalar will always refer to a real number. A vector can be multiplied by a scalar. If

is a scalar and is a vector, then the scalar multiple of and is a vector .
The magnitude of is times the magnitude of , and the direction of is the same
as that of if and opposite that of if . (See Figure 4.) Observe that two
nonzero vectors are parallel if they are scalar multiples of one another.

For convenience we define the zero vector, denoted by , to be the vector with
length zero and having no direction. If , then for any vector .vcv � 0c � 0

0

c � 0vc � 0v
cvv�c �cv

cvvcvc � 0

w � CD
!

v � AB
!

v � w
wv

v � AB
!

B
Av
wv

*If the vector is handwritten, it is more convenient to write it in the form .√
!

v

FIGURE 2
is the directed line 

segment from to .BA
v

FIGURE 3
and have the same 

length and direction.
wv

FIGURE 4
Scalar multiples of v

(a) The vector represents the force exerted by a
      tugboat on a ship.

(b) The vectors represent the velocity of
      blood cells flowing through an artery.

Axis

v � AB

B

A

v � AB

v � w

B

A

D

C

w � CD

v

�v
� v

2v

1
2
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Vector Addition: The Parallelogram Law
Two vectors may be added together. To see how, consider the two nonzero vectors 
and shown in Figure 5a. Translate the vector (move without changing its mag-
nitude or direction) so that the initial point of coincides with the terminal point 
of . (See Figure 5b.) Then the sum of and , written , is the vector repre-
sented by the arrow with tail at the initial point of and head at the terminal point 
of (Figure 5c). If you examine Figure 5d, you will see that the line segment repre-
senting the vector coincides with the diagonal of the parallelogram determined
by and . For this reason we say that vector addition obeys the Parallelogram Law.
Try to translate the vector instead of , and convince yourself that the result is the same.wv

wv
v � w

w
v

v � wwvv
w

www
v

FIGURE 5
Geometric construction of v � w

The difference of two vectors and , written , is defined by

Difference of two vectors

To describe this operation geometrically, consider once again the two vectors and 
of Figure 5a, which are reproduced in Figure 6a. If we translate , reverse it to obtain

, and then use the parallelogram law to add to , we obtain , as shown
in Figure 6b.

v � w�wv�w
w

wv

v � w � v � (�w)

v � wwv

FIGURE 6
Geometric construction of v � w

v v v � wv

w

v

w w

w

(a) The vectors v and w (b) w translated (c) v � w

v � w

(d) v � w lies on the diagonal of the
      parallelogram determined by v and w.

v v

�w

w

(a) The vectors v and w (b) The vector v � w

v � w

w

Vectors in the Coordinate Plane
Just as the introduction of a rectangular coordinate system in the plane enabled us to
describe geometric objects in algebraic terms, we will see that the introduction of a
rectangular coordinate system in a “vector space” will enable us to represent vectors
algebraically.

EXAMPLE 1 Let be a vector with initial point and terminal point ,
and let be a vector with initial point and terminal point . Show that

.

Solution The vectors and are shown in Figure 7. To show that 
, we need to show that both vectors have the same length and direction. Using

the distance formula, we find

length of AB
!
�2(3 � 0)2 � (2 � 0)2 � 19 � 4 � 113

a � b
b � CD

!
a � AB

!
a � b

D(4, 5)C(1, 3)b
B(3, 2)A(0, 0)a

FIGURE 7
because both vectors have 

the same length and direction.
a � b

b

a

x

y

4

5

5 6

3

2

1

4321

C(1, 3)

B(3, 2)

D(4, 5)

A(0, 0)
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FIGURE 8
Any vector in the plane can 
be represented by a vector 
emanating from the origin.

a
b

DEFINITIONS A Vector in the Coordinate Plane

A vector in the plane is an ordered pair of real numbers, and 
, called the scalar components of . The zero vector is .0 � �0, 0�aa2

a1a � �a1, a2�

We have also established the following result.

DEFINITION
Given the points and , the vector is represented by the
position vector

(1)a � P1P2

!
� �x2 � x1, y2 � y1�

P1P2

!
P2(x2, y2)P1(x1, y1)

Thus, the components of a vector are found by subtracting the respective coordi-
nates of its initial point from the coordinates of its terminal point.

and

so and have the same length. Next, we find

and

so and have the same direction. This proves that .

In Example 1 we saw that the vector may be represented by the vector that has
its initial point at the origin. In general, it is true that any vector in the plane can be
represented by such a vector. To see this, suppose that is any vector with ini-
tial point and terminal point . (See Figure 8.) Let and

. Then the vector with and is the required vec-
tor, since the length of is

which is also the length of . Similarly, the slope of is

which is also the slope of . (We leave the proof of the case in which to you.)
The vector with initial point at the origin and terminal point is called

the position vector of the point and is denoted by . Thus, we have
shown that any vector in a coordinate plane is equal to a position vector. Since the zero
vector has length zero, its terminal point must coincide with its initial point; therefore,
it is equal to the position vector of the point .(0, 0)

�a1, a2�P(a1, a2)
P(a1, a2)a

x1 � x2b

x1 � x2

a2

a1
�

y2 � y1

x2 � x1

ab � P1P2

!
2a2

1 � a2
2 �2(x2 � x1)

2 � (y2 � y1)
2

b
P(a1, a2)O(0, 0)a � OP

!
a2 � y2 � y1

a1 � x2 � x1P2(x2, y2)P1(x1, y1)
b � P1P2

!
ab

a � bba

slope of CD
!
�

5 � 3

4 � 1
�

2

3

slope of AB
!
�

2 � 0

3 � 0
�

2

3

ba

length of CD
!
�2(4 � 1)2 � (5 � 3)2 � 19 � 4 � 113

b

a

x

y

P2(x2, y2)

P1(x1, y1)

P(a1, a2)

0
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EXAMPLE 2 Find the vector with initial point and terminal point 
.

Solution Using Equation (1), we find the vector to be

Length of a Vector
The length or the magnitude of a vector , denoted by the symbol , is
found by using the Pythagorean Theorem. (See Figure 9.)

�a �a � �a1, a2�

a � �3 � (�1), 2 � (�2)� � �4, 4�

a

B(3, 2)
A(�1, �2)a

Vector Addition in the Coordinate Plane
Vector addition is carried out componentwise. To add the two vectors and

, we add their components. (See Figure 10.)b � �b1, b2�
a � �a1, a2�

DEFINITION
The length or magnitude of is

(2)�a � �2a2
1 � a2

2

a � �a1, a2�

FIGURE 9
The length of is .�a � �2a1

2 � a2
2a

Parallelogram Law for Vector Addition

If and , then

(3)a � b � �a1 � b1, a2 � b2�

b � �b1, b2�a � �a1, a2�

a

x

y

�a2�

0 �a1�

FIGURE 10
If and , then

.a � b � �a1 � b1, a2 � b2�
b � �b1, b2�a � �a1, a2�

EXAMPLE 3 If , and , then

a � b � �3, �2� � ��1, 3� � �3 � (�1), �2 � 3� � �2, 1�

b � ��1, 3�a � �3, �2�

Scalar Multiplication

If and is a scalar, then

(4)

(See Figure 11.)

ca � �ca1, ca2�

ca � �a1, a2�

a � b

(a1 � b1, a2 � b2)

a

b

x

y

a1 � b1

a2 � b2

b2

b1

a2

a1
0

FIGURE 11
If , then .ca � �ca1, ca2�a � �a1, a2�

(ca1, ca2)

a

ca

x

y

0

ca1

ca2

a2

a1

Recall that the difference of and is defined by , so if
and , then

Vector subtraction � �a1 � b1, a2 � b2�

 a � b � a � (�b) � a � (�1)b � �a1, a2� � ��b1, �b2�

b � �b1, b2�a � �a1, a2�
a � b � a � (�b)ba

EXAMPLE 4 Let and . Find

a. b. c. d. e. �3a � 2b �3a � 2b5aa � ba � b

b � ��2, 5�a � �1, �2�
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THEOREM 1 Rules for Vector Addition and Scalar Multiplication

Suppose that , , and are vectors and that and are scalars. Then

1.
2.
3.
4.
5.
6.
7.
8. 1a � a

(c � d)a � ca � da
c(da) � (cd)a
c(a � b) � ca � cb
a � (�a) � 0
a � 0 �  0 � a � a
(a � b) � c � a � (b � c)
a � b � b � a

dccba

We will prove the first of these rules and leave the proofs of the others as exercises.

PROOF OF 1 Let and . Then

Unit Vectors
A unit vector is a vector of length 1. Unit vectors are primarily used as indicators of
direction. For example, if is a nonzero vector, then the vector

is a unit vector having the same direction as . (See Figure 12.) Furthermore, by writ-
ing in the form

(5)

Magnitude of Direction of 

the two properties of magnitude and direction that define a vector are clearly dis-
played.

aa

a � �a �a a
�a �b � �a � u

a
a

u �
a

�a �

a

 � �b1 � a1, b2 � a2� � b � a

 a � b � �a1, a2� � �b1, b2� � �a1 � b1, a2 � b2�

b � �b1, b2�a � �a1, a2�

CASPAR WESSEL
(1745–1818)

Because Caspar Wessel was a surveyor and
map maker, not a professional mathemati-
cian, his fundamental paper “Om directio-
nens analytiske betegning” (“On the Analytic
Representation of Direction”), published in
1799, drew little attention. Much of the credit
for the ideas that Wessel presented was
given instead to Carl Friedrich Gauss (page
936) and Jean-Robert Argand, both of whom
published their work after Wessel’s paper. In
his paper Wessel presented the concept of a
graphical representation of complex numbers
and advanced the idea of adding vectors in a
three-dimensional space. He recognized that
nonparallel vectors can be added by placing
the initial point of the second vector at the
terminal point of the first vector. Then the
sum of the two vectors is the vector from
the initial point of the first vector to the ter-
minal point of the second. Wessel’s contribu-
tion to mathematics did not get the notice it
deserved until it was republished in French
in 1897, eighty years after Wessel’s death. An
English translation of the paper was not pub-
lished until 1999, exactly 200 years after its
original publication.

However, during his lifetime, Wessel did
receive recognition for his work as a geog-
rapher. The Royal Danish Academy of Sci-
ences awarded him a medal, and in 1815 he
was made a Knight of the Order of Dan-
nebrog, a great honor for the Danish-born
Norwegian surveyor.

Historical Biography
Solution
a.
b.
c.
d.
e. Use part (d).

Properties of Vectors
The operations of vector addition and scalar multiplication obey the following rules.

 � 11 � 16 � 117

 �2(�1)2 � 42

 �3a � 2b � � � ��1, 4� �
3a � 2b � 3�1, �2� � 2��2, 5� � �3, �6� � ��4, 10� � ��1, 4�
5a � 5�1, �2� � �5(1), 5(�2)� � �5, �10�
a � b � �1, �2� � ��2, 5� � �1 � (�2), �2 � 5� � �3, �7�
a � b � �1, �2� � ��2, 5� � �1 � 2, �2 � 5� � ��1, 3�

FIGURE 12
The unit vector indicates the 
direction of .a

u

u

a

1

�a
�

— —
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EXAMPLE 5 Let be a vector describing a force acting on a particle.
Express in terms of its magnitude (in dynes) and a unit vector having the same direc-
tion as .

Solution The magnitude of is

or 5 dynes. Its direction is

So

(See Figure 13.)

Standard Basis Vectors
There are two unit vectors in the coordinate plane that are singled out for a special role.
They are the vectors and defined by

and

The vector points in the positive -direction, whereas the vector points in the posi-
tive -direction. (See Figure 14.)

Let be a vector in the coordinate plane. Then

By the definition of vector addition

By the definition of scalar multiplication

This shows that any vector in the plane can be expressed in terms of the vectors 
and . (See Figure 15.) For this reason the vectors and are referred to as standard
basis vectors. The vectors and are the horizontal and vertical vector compo-
nents of . We also say that is resolved into a (vector) sum of and .a2 ja1iaa

a2 ja1i
jij

i

 � a1i � a2 j

 � a1�1, 0� � a2�0, 1�

 a � �a1, a2� � �a1, 0� � �0, a2�

a � �a1, a2�
y

jxi

j � �0, 1�i � �1, 0�

ji

F � �3, 4� � 5h3

5
, 

4

5
i

u �
F

�F � �
1

5
 �3, 4� � h3

5
, 

4

5
i

�F � �232 � 42 � 19 � 16 � 5

F

F
F

F � �3, 4�

FIGURE 13
The vector can be written in
the alternate form , where is
the unit vector in the direction of .F

uF � 5u
F � �3, 4�

FIGURE 14
The unit vectors and point in the
positive - and -direction, respectively.yx

ji

x

y

4

5

3

2

�2

1

�1
4321

�F � � 5u

F � �3, 4� � 5u � 5 3_
5

4_
5�       �,

x

y

0

j

i (1, 0)

(0, 1)

x

y

0

j

a

i

a1i

a2j

FIGURE 15
Any vector in the plane can 
be expressed in terms of the 
standard basis vectors and .ji EXAMPLE 6 Let be the force vector of Example 5. Express in terms of

the standard basis vectors and , and identify the horizontal and vertical vector com-
ponents of .

Solution Since

the horizontal vector component of is 3 , and the vertical vector component of 
is .

Note By using standard basis vectors, we are able to express any vector in the coor-
dinate plane in two ways:

and

We will use these representations interchangeably.

a � a1i � a2 ja � �a1, a2�

4j
FiF

 � 3i � 4j

 F � �3, 4�

F
ji

FF � �3, 4�



Solution With respect to the coordinate system shown in Figure 17, we can represent
and as

Velocity of the planev � (500 cos 45°)i � (500 sin 45°)j

wv
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Angular Form of the Unit Vector
Let be the angle that the unit vector makes with the positive -axis. (See Figure 16.)
Then resolving into a sum of horizontal and vertical vector components gives

(6)u � (cos u)i � (sin u)j

u
xuu

FIGURE 16
Every unit vector can be expressed 
in the form .u � (cos u)i � (sin u)j

u

EXAMPLE 7 Find an expression for the vector of length 5 that makes an angle of
radians with the positive axis.

Solution Using Equation (6), we see that the unit vector making an angle of with
the positive axis is

Therefore, the required expression is

a � 5u �
5

2
 (13i � j)

u � acos 
p

6
bi � asin 

p

6
bj �

13

2
 i �

1

2
 j �

1

2
 (13i � j)

p>6
p>6 a

EXAMPLE 8 Finding the True Course and Ground Speed of an Airplane An airplane,
on level flight, is headed in a direction that makes an angle of 45° with the north (meas-
ured in a clockwise direction) and has an airspeed of 500 mph. It is subjected to a tail-
wind blowing at 80 mph in a direction that makes an angle of 75° with the north. (See
Figure 17.) The true course and ground speed of the airplane are given by the direc-
tion and magnitude of the resultant , where is the velocity of the plane and 
is the velocity of the wind. (See Figure 18.) Find the true course and ground speed of
the airplane.

wvv � w

FIGURE 17
is the velocity of the plane and is the

velocity of the wind.
wv

FIGURE 18
gives the true course and

ground speed of the airplane.
v � w

x

y

j u

i

(sin ¨)j

(cos ¨)i

¨
(1, 0)0

(0, 1)

N

E

v

w

45º

75º

x

y

v � wv

0

w
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and

Velocity of the wind

Therefore,

The magnitude of is

and this gives the ground speed of the airplane. To find its true course, we compute the
unit vector having the same direction as . Thus,

If we write in the form then we see that

or

Since is measured from the positive -axis, we conclude that the true course of the
airplane is approximately , or 49° with the north.(90 � 41)°

xu

u � cos�1 0.7549 � 41.0°cos u � 0.7549

u � (cos u)i � (sin u)ju

u �
v � w

�v � w � �
1

570.7
 (430.8i � 374.3j) � 0.7549i � 0.6559j

v � wu

�v � w � �2(430.8)2 � (374.3)2 � 570.7

v � w

 � 430.8i � 374.3j

 � (500 cos 45° � 80 cos 15°)i � (500 sin 45° � 80 sin 15°)j

 v � w � [(500 cos 45°)i � (500 sin 45°)j] � [(80 cos 15°)i � (80 sin 15°)j]

w � (80 cos 15°)i � (80 sin 15°)j

1. a. What is a vector? Give examples.
b. What is the scalar multiple of a vector and a scalar ?

Give a geometric interpretation.
c. How are two nonzero vectors added? Illustrate geometri-

cally.
d. What is the difference of the vectors and ? Illustrate

geometrically.
2. a. What is a vector in the -plane? Give an example.

b. What is the position vector of the vector with initial
point and terminal point ?

c. What is the length of the vector of part (b)?
P2(b1, b2)P1(a1, a2)

P1P2

!xy

wv

cv
3. State the rule for vector addition and scalar multiplication.
4. a. What is a unit vector?

b. If , write in terms of its magnitude and direction.
c. What are the standard basis vectors in the -plane?
d. If the vector has magnitude 3 and makes an angle of

radians with the positive -axis, what are its hori-
zontal and vertical vector components? Make a sketch.

x2p>3 a
xy

aa � 0

11.1 CONCEPT QUESTIONS

1. Which quantity is a vector and which is a scalar? Explain.
a. The amount of water in a swimming pool
b. The speed and direction of a jet stream (a current of rap-

idly moving air found in the upper levels of the atmos-
phere) at a certain point

c. The population of Los Angeles
d. The initial speed and direction of a bullet as it leaves a gun

2. Classify each of the following as a scalar or a vector.
a. temperature b. momentum
c. specific heat d. weight
e. work f. density

3. State whether the expression makes sense. Explain your
answer.
a. b.

c. d.

e. , f. , a � 0
�a � b � �b � a

�a �2
b � 0

a
�b �

a
b

2a � b � 0

�a � ba � c

11.1 EXERCISES

Videos for selected exercises are available online at www.academic.cengage.com/login.V

www.academic.cengage.com/login
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In Exercises 4–7, show that the vector and the position vector
are equal.

4.

5.

6.

7.

a b

x

y

2

1

�2

�1

�3

�4

4321�1�2�3�4�5

(2, �3)

(�2, 1)

(4, �4)

a

b

x

y

4

5

3

2

1

�2

�1

�3

43 65210

(4, 1)

(0, �3)

(4, 4)

b

a

x

y

4

3

2

1

�1

�2

4321�1�2�3�4�5

(3, 1)

(�5, 3)

(�2, 4)

b

a

x

y

4

5

5 6

3

2

1

4321

(1, 2)
(5, 2)

0

(6, 4)

b
a In Exercises 8–11, find the vector . Then sketch the position

vector that is equal to .

8.

9.

10.

11.

x

y

2

1

4

3

�1
4321�1�2�3

A(�3, 4)

B(0, 0)

x

y

4

3

2

1

�2

�1
43 65210

B(5, �2)

A(2, 1)

x

y

4

2

1

�1
4321�1�2�3�4�5

B(�3, 3) A(2, 3)3

x

y

4

3

2

1

�2

�1
43 65210

A(0, �2)

B(4, 2)

AB
! AB

!



In Exercises 12–15, use the geometric interpretation of scalar
multiplication and the parallelogram law of vector addition to
sketch the indicated vector.

12. 13.

14. 15.

In Exercises 16–19, express the vector in terms of the vectors
shown.

16. 17.

18. 19.

In Exercises 20–23, find the vector . Sketch and the posi-
tion vector that is equal to .

20.

21.

22.

23.

24. Suppose that and . Find .

25. Suppose that and . Find .AB(0, 2)AB
!
� ��1, 4�

BA(�1, 1)AB
!
� �2, 3�

A(0.1, 0.5), B(�0.2, 0.4)

A1�1
2, �

3
2 2, B12, 12 2

A(3, 4), B(1, 3)

A(1, 3), B(3, 4)

AB
! AB

!
AB

!

b

a

v

�v � 1
3

2b

a

v

c

a

b

v

a

b

v

v

a

b

c

a

b

(a � 2b) � c
1

2
 a � b

aba

b

2a � 3ba � 2b

In Exercises 26–31, find , , , and .

26. and

27. and

28. and

29. and

30. and

31. and

32. If and and if is a scalar, what are
and ?

In Exercises 33 and 34, find and .

33. and

34. and

35. Let , , and . Find and if
.

36. Let , and . Find and if
.

In Exercises 37–42, determine whether is parallel to
.

37. 38.

39. 40.

41. 42.

43. Determine the value of such that and
are parallel.

44. Prove that and are parallel if and
only if .

In Exercises 45–48, find a unit vector that has (a) the same
direction as and (b) a direction opposite to that of .

45. 46.

47. 48.

In Exercises 49–52, find a vector with the given length and
having the same direction as .

49. ; 50. ;

51. ; 52. ;

53. Let and . Find a vector with length 3
and having the same direction as .

54. Let and . Find a vector with length
4 and having a direction opposite to that of .a � 3b

b � ��1, 3�a � �1, �2�

2a � 3b
b � �1, 2�a � ��3, 4�

b � �13, �1��a � � 4b � 3i�a � � 13

b � �3i � 4j�a � � 2b � �1, 1��a � � 5

b
a

a � �0, 3�a � ��13, 1�

a � �3i � 4ja � �2, 1�

aa

a1b2 � a2b1 � 0
b � �b1, b2�a � �a1, a2�

b � �4i � 3j
a � ci � 2jc

b � 6 ��1, 2� � 4�3, �4�b � ��1, 2� � 4�1, �1�

b � 6i � 5jb � i � j

b � �
3

2
 i � jb � 9i � 6j

a � 3i � 2j
b

au � bv � 2w
baw � �2, 4�v � �3, �1�u � �2, 1�

au � bv � w
baw � �6, 4�v � �2, 4�u � ��1, 3�

b � 2i � ja � 2i � 4j

b � �6ja � 2i

1
2 a � 1

3 b2a � 3b

c(a � 2b)a � b
cb � �b1, b2�a � �a1, a2�

b �
3

4
 i �

1

4
 ja �

1

2
 i �

3

2
 j

b � ��1, 0.4�a � �1, 2.4�

b � 2ia � 3i � 2j

b � 3i � ja � 2i � j

b � �3, 1�a � ��1, 2�

b � ��2, 1�a � �1, 3�

�2a � b �a � ba � b2a

11.1 Vectors in the Plane 911
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In Exercises 55–58, represents a force acting on a particle.
Express in terms of its magnitude and direction. What are the
horizontal and vertical vector components of ?

55. 56.

57. 58.

In Exercises 59–62, find a vector that has the given length and
makes an angle with the positive -axis.

59. ; 60. ;

61. ; 62. ;

63. Production Planning The Acrosonic Company manufactures
two different loudspeaker systems in two locations. Suppose
that it produced Model systems and Model sys-
tems in Location I last year. Then we can record this data by
writing the production vector . Suppose further
that the company also produced Model systems and 
Model systems in Location II in the same year. Then we
can record this using the vector .
a. Find , and interpret your result.
b. For the next year the company wishes to boost the pro-

duction of both speaker systems by 10%. Write a vector
reflecting the desired level of output.

64. Pulling a Sled A child’s sled is pulled with a constant force 
of magnitude 10 lb that makes an angle of 30° with the hor-
izontal. Find the horizontal and vertical vector components

and of the force.F2F1

F

v1 � v2

v2 � �a2, b2�
B

b2Aa2

v1 � �a1, b1�

Bb1Aa1

u �
p

2
�a � � 1u �

5p

3
�a � � 3

u �
p

3
�a � � 5u � 0�a � � 2

xu

a

F � �0, �5�F � 13i � 6j

F � ��3, 4�F � �3, 1�

F
F

F 66. Towing a Cruise Ship The following figure gives an aerial view
of two tugboats attempting to free a cruise ship that ran
aground during a storm. Tugboat I exerts a force of magni-
tude 3000 lb, and Tugboat II exerts a force of magnitude
2400 lb.
a. Find expressions for the forces and .
b. Find the resultant force acting on the cruise ship.
c. Find the angle and the magnitude of if acts along

the positive -axis.

67. An object located at the origin is acted upon by three forces,
, , and , as shown in the following figure. Find if

the object is in equilibrium.

68. A model airplane on display in a hobby store is suspended
by two wires attached to the ceiling as shown in the follow-
ing figure. The model airplane weighs 2 lb. Find the ten-
sions and of the wires.T2T1

F1

F2

F3

x

y

30 lb

15 lb

45�30�

¨

F3F3F2F1

x

I

II

F1

F2

sand
bank

y

30º

q

x
FFu

F
F2F1

F

F1

F2
30º

x

y

65. Velocity of a Shell A shell is fired from a howitzer at an angle
of elevation of 45° and with an initial speed of 800 ft/sec.
Find the horizontal and vertical vector components of its
velocity.

69. A river mi wide flows parallel to the shore at the rate of 
5 mph. If a motorboat can move at 10 mph in still water,
at what angle with respect to the shore should the boat be
pointed to move in a direction perpendicular to the shore?
How long will the boat take to cross the river?

1
2
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70. Finding the True Course and Ground Speed of an Airplane An air-
plane on level flight has an airspeed of 300 mph and is
headed in a direction that makes an angle of 30° with the
north (measured in a clockwise direction). The plane is sub-
jected to a headwind blowing at 60 mph in a direction that
makes an angle of 270° with the north. Find the true course
and ground speed of the plane.

71. Finding the True Course and Ground Speed of an Airplane An air-
plane pilot wishes to maintain a true course in the direction
that makes an angle of 60° with the north (measured in a
clockwise direction) and a ground speed of 240 mph when
the wind is blowing directly west at 40 mph. Find the
required airspeed and compass heading of the airplane.

72. Use vectors to prove that the line segment joining the mid-
points of two sides of a triangle is parallel to the third side
and half its length.

73. Use vectors to prove that the diagonals of a parallelogram
bisect each other.

74. The opposite sides of a quadrilateral are parallel and of
equal length. Use vectors to prove that the other two sides
must be parallel and of equal length.

In Exercises 75–82, prove the stated property if ,
, , and and are scalars.

75. (a � b) � c � a � (b � c)

dcc � �c1, c2�b � �b1, b2�
a � �a1, a2�

76. 77.

78. 79.

80. 81.

82. if and only if or

In Exercises 83–88, determine whether the statement is true or
false. If it is true, explain why. If it is false, explain why or give
an example that shows it is false.

83. .

84. If , then .

85. If is a unit vector having the same direction as , then
.

86. If , , and , then .

87. If , where not both and are equal to zero,
then

are two unit vectors having the same direction as .

88. If and are distinct points and the vector 

is parallel to , then there exists a nonzero
constant such that and .y2 � y1 � 2cx2 � x1 � cc

v � �1, 2�P1P2

! P2(x2, y2)P1(x1, y1)

v

u � 	a a

2a2 � b2
 i �

b

2a2 � b2
 jb

bav � ai � bj

a � b � 0v � ww � bi � ajv � ai � bj

v � �v � u
vu

v � w�v � � �w �
v � v � 0

a � 0c � 0ca � 0

1a � a(c � d)a � ca � da

c(da) � (cd)ac(a � b) � ca � cb

a � (�a) � 0a � 0 � a

11.2 Coordinate Systems and Vectors in 3-Space

Coordinate Systems in Space
The plane curve shown in Figure 1a gives the path taken by an aircraft as it taxis to
the runway. The position of the plane may be specified by the coordinates of the point

lying on the curve . Figure 1b shows the flight path of the plane shortly after
takeoff. Because the aircraft is now in the air, we also need to specify its altitude when
giving its position. This can be done by introducing an axis that is perpendicular to the
- and -axes at the origin. The position of the plane may then be specified by giving

the three coordinates , , and of the point represented by the ordered triple
. Here, the number gives the altitude of the plane.z(x, y, z)

Pzyx
yx

CP(x, y)

C

FIGURE 1

y

y

x

x

z

z

y

y

x

x0

C

C

P(x, y, z)

P(x, y)

0

(a) The path of a plane taxiing
      on the ground

(b) The plane’s path after takeoff
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The three positive axes that we have just drawn in Figure 1b are part of a three-
dimensional coordinate system. Figure 2 shows a three-dimensional rectangular coor-
dinate system along with the points , , and .C(�2, �3, 3)B(3, �4, �2)A(2, 4, 5)

FIGURE 2
The points , ,

and C(�2, �3, 3)
B(3, �4, �2)A(2, 4, 5)

The coordinate systems shown in Figure 1 and Figure 2 are right-handed: If you
start by pointing the fingers of your right hand in the direction of the positive -axis
and then curl them toward the positive -axis, your thumb will point in the positive
direction of the -axis (see Figure 3).

The three coordinate axes determine the three coordinate planes: The -plane is
determined by the - and -axes, the -plane is determined by the - and -axes, and
the -plane is determined by the - and -axes. (See Figure 4.) These coordinate planes
divide 3-space into eight octants. The first octant is the one determined by the posi-
tive axes.

Just as an equation in and represents a curve in the plane, an equation in , ,
and represents a surface in 3-space. The simplest surfaces in 3-space, other than the
coordinate planes, are the planes that are parallel to the coordinate planes.

z
yxyx

zxxz
zyyzyx
xy

z
y

x

FIGURE 4
The three coordinate planes

EXAMPLE 1 Sketch the surface represented by the equation

a. b.

Solution
a. The equation tells us that the surface consists of the set of points in 

3-space whose -coordinate is held fast at 3 while and are allowed to range
over all real numbers, written . This surface is the plane that is
parallel to the -plane and located three units in front of it. (See Figure 5.)

b. Similarly, we see that the equation represents the set and
is the plane that is parallel to the -plane and located four units above it.xy

{(x, y, z) � z � 4}z � 4
yz

{(x, y, z) � x � 3}
zyx

x � 3

z � 4x � 3

FIGURE 5
The planes and z � 4x � 3

x

z

y

A(2, 4, 5)

C(�2, �3, 3)

�1
�2�3

B(3, �4, �2)

�4

21
3 4 5

1

2

3

4

5

�2
�3

�4

�1
�23

2
�1

y

x

z

FIGURE 3
The right-handed system

y

yz-plane

xy-plane

xz-plane

x

z

y

y

x
x

zz

z = 4

1

1
2

3
2
3

4

x = 3
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Keep in mind the dimensions you are working in. In the -plane (2-space) the
equation represents the vertical line parallel to the -axis; in the -plane
(3-space) the equation represents a plane parallel to the -plane, as we have
just seen.

In general, if is a constant, then represents a plane that is parallel to the 
-plane; represents a plane that is parallel to the -plane; and represents

a plane that is parallel to the -plane.

The Distance Formula
To find a formula for the distance between two points and 
in 3-space, refer to Figure 6. First, apply the distance formula in 2-space to see that
the distance between and , the respective projections of

and onto the -plane, is

But this is also the distance between the points and 
. Then applying the Pythagorean Theorem to the right triangle , we

have

which is equivalent to the following.

[d(P1, P2)]
2 � [d(P1, Q)]2 � [d(P2, Q)]2 � (x2 � x1)

2 � (y2 � y1)
2 � (z2 � z1)

2

P1QP2Q(x2, y2, z1)
P1(x1, y1, z1)d(P1, Q)

d(P œ
1, P

œ
2) �2(x2 � x1)

2 � (y2 � y1)
2

xyP2(x2, y2, z2)P1(x1, y1, z1)
P œ

2(x2, y2, 0)P œ
1(x1, y1, 0)

P2(x2, y2, z2)P1(x1, y1, z1)

xy
z � kxzy � kyz

x � kk

yzx � 3
xyzyx � 3

xy!

x

z

y

P2(x2, y2, z2)

(x2 � x1)2 � (y2 � y1)2

P1(x1, y1, z1)

P
2(x2, y2, 0)

P
1(x1, y1, 0)

Q(x2, y2, z1)

√

�z2 � z1�

FIGURE 6

The Distance Formula

(1)d(P1, P2) �2(x2 � x1)
2 � (y2 � y1)

2 � (z2 � z1)
2

EXAMPLE 2 Find the distance between and .

Solution Using the distance formula (1) with and , we find that
the required distance is

The Midpoint Formula
The formula for finding the coordinates of the midpoint of the line segment joining
two points and in 3-space is just an extension of that for
finding the coordinates of the midpoint of the line segment joining two points in the
plane. (See Exercise 77.)

P2(x2, y2, z2)P1(x1, y1, z1)

 � 14 � 4 � 4 � 112 � 213

 d �2(1 � 3)2 � [0 � (�2)]2 � (3 � 1)2

P2(1, 0, 3)P1(3, �2, 1)

(1, 0, 3)(3, �2, 1)

The Midpoint Formula

(2)ax1 � x2

2
, 

y1 � y2

2
, 

z1 � z2

2
b
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EXAMPLE 3 Find the midpoint of the line segment joining and .

Solution Using the midpoint formula (2) with and , we find
that the midpoint is

or

As the next example illustrates, we can also use the distance formula to help us
find an equation of a sphere.

(2, �1, 2)a3 � 1

2
, 

�2 � 0

2
, 

1 � 3

2
b

P2(1, 0, 3)P1(3, �2, 1)

(1, 0, 3)(3, �2, 1)

EXAMPLE 4

a. Find an equation of the sphere with center and radius .
b. Find an equation of the sphere that has a diameter with endpoints and

.

Solution
a. The sphere is the set of all points whose distance from is ,

or, equivalently, the square of the distance from to is . Using the distance
formula, we see that an equation of the sphere is

b. From Example 2 we see that the distance between and is 
, so the radius of the sphere is , or . Next, from Example 3 

we see that the midpoint of the line segment joining and is
. This point is the center of the sphere. Finally, using the result of 

part (a), we obtain the equation of the sphere:

The equation that we obtained in Example 4a is called the standard equation of a
sphere.

(x � 2)2 � (y � 1)2 � (z � 2)2 � 3

(2, �1, 2)
(1, 0, 3)(3, �2, 1)

131
2 (213)213

(1, 0, 3)(3, �2, 1)

(x � h)2 � (y � k)2 � (z � l)2 � r 2

r 2CP
rC(h, k, l)P(x, y, z)

(1, 0, 3)
(3, �2, 1)

rC(h, k, l)

The Standard Equation of a Sphere with Center and Radius 

(3)(x � h)2 � (y � k)2 � (z � l)2 � r 2

r(h, k, l)

The graph of this equation appears in Figure 7.

FIGURE 7
The sphere with center and
radius r

C(h, k, l)

EXAMPLE 5 Show that is an equation of a
sphere, and find its center and radius.

Solution By completing the squares in , , and , we can write the given equation
in the form

or

Comparing this equation with Equation (3), we conclude that it is an equation of the
sphere of radius 3 with center at .(2, �1, �3)

(x � 2)2 � (y � 1)2 � (z � 3)2 � 32

[x2 � 4x � (�2)2] � (y2 � 2y � 1) � (z2 � 6z � 9) � �5 � 4 � 1 � 9

zyx

x2 � y2 � z2 � 4x � 2y � 6z � 5 � 0

y
x

z

r

(h, k, l )

0
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Vectors in 3-Space
A vector in 3-space is an ordered triple of real numbers

where , , and are the components of the vector. In particular, the position vec-
tor of a point is the vector with initial point at the ori-
gin and terminal point . (See Figure 8.)

The basic definitions and operations of vectors in 3-space are natural generaliza-
tions of those of vectors in the plane.

P(x1, y1, z1)
OP

!
� �x1, y1, z1�P(x1, y1, z1)

a3a2a1

a � �a1, a2, a3�

FIGURE 8
The position vector has initial point

and terminal point .PO
OP

!

DEFINITION Vectors in 3-Space

If and are vectors in 3-space and is a scalar,
then

1. if and only if , and Equality

2. Vector addition

3. Scalar multiplication

4. Length�a � �2a2
1 � a2

2 � a2
3

ca � �ca1, ca2, ca3�

a � b � �a1 � b1, a2 � b2, a3 � b3�

a3 � b3a2 � b2a1 � b1a � b

cb � �b1, b2, b3�a � �a1, a2, a3�

x

z

y

P(x1, y1, z1)

x1
y1

z1
O

OP

Also, the rules of vector addition and scalar multiplication stated in Theorem 1 of Sec-
tion 11.1 are valid for vectors in 3-space. The proofs are similar.

The following representation of a vector in 3-space is a natural extension of the
representation of vectors in the plane.

a

The vector with initial point and terminal point is

(4)P1P2

!
� �x2 � x1, y2 � y1, z2 � z1�

P2(x2, y2, z2)P1(x1, y1, z1)

Thus, we can find the components of a vector by subtracting the respective coordinates
of its initial point from the coordinates of its terminal point, as illustrated in Figure 9.
The vectors and are the position vectors of the point and

. As a natural extension of the definition of vector subtraction in 2-space
into 3-space, we have

P1P2

!
� OP2

!
� OP1

!
� �x2, y2, z2� � �x1, y1, z1� � �x2 � x1, y2 � y1, z2 � z1�

P2(x2, y2, z2)
P1(x1, y1, z1)OP2

!
OP1

!

FIGURE 9

is represented by the position 

vector of the point
.P(x2 � x1, y2 � y1, z2 � z1)

OP
!

P1P2

!
� �x2 � x1, y2 � y1, z2 � z1�

x

z

y

P2(x2, y2, z2)

P(x2 � x1, y2 � y1, z2 � z1)

P1(x1, y1, z1)

O
OP

P1P2

OP2

OP1



918 Chapter 11 Vectors and the Geometry of Space

By considering the parallelogram in Figure 9, you can convince yourself that

is represented by the position vector of the point .(x2 � x1, y2 � y1, z2 � z1)OP
!

P1P2

! OPP2P1

EXAMPLE 6 Let and be two points in 3-space.

a. Find the vector .
b. Find .
c. Find a unit vector having the same direction as .

Solution
a. Using Equation (4) with and , we have

b. Using the result of part (a), we have

c. Using the results of parts (a) and (b), we obtain the unit vector

The vector , the position vector which equals , and the unit (position)
vector are shown in Figure 10.u

PQ
!

aPQ
!

u �
PQ

!

�PQ
!
�

�
1

135
 ��1, 5, 3�

�PQ
!
� �2(�1)2 � 52 � 32 � 135

PQ
!
� �1 � 2, 4 � (�1), 5 � 2� � ��1, 5, 3�

P2 � QP1 � P

PQ
!�PQ

!
�

PQ
!

Q(1, 4, 5)P(2, �1, 2)

FIGURE 10
The vector , its equivalent 

position vector , and the 
(position) unit vector u

a
PQ

!

x

z

y

P(2, �1, 2)

Q(1, 4, 5)

a � ��1, 5, 3�

u � ��1, 5, 3�

3 4

1

5

√35

Standard Basis Vectors in Space
In Section 11.1 we saw that any vector in the plane can be expressed in terms of the
standard basis vectors and . In three-dimensional space, the 3-space
vectors

, , and

form a basis for the space, in the sense that any vector in the space can be expressed
in terms of these vectors. In fact, if is a vector in 3-space, we can write

 � a1i � a2 j � a3k

 � a1�1, 0, 0� � a2�0, 1, 0� � a3�0, 0, 1�

 a � �a1, a2, a3� � �a1, 0, 0� � �0, a2, 0� � �0, 0, a3�

a � �a1, a2, a3�

k � �0, 0, 1�j � �0, 1, 0�i � �1, 0, 0�

j � �0, 1�i � �1, 0�
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FIGURE 11

EXAMPLE 7 Write and in terms of the standard basis
vectors , , and . Then compute 2 .

Solution We have

and

Next, we find

Add components.

which can also be written .��8, 4, �18�

 � �8i � 4j � 18k

 � �2i � 4j � 6k � 6i � 12k

 2a � 3b � 2(�i � 2j � 3k) � 3(2i � 4k)

b � �2, 0, 4� � 2i � 0j � 4k � 2i � 4k

a � ��1, 2, �3� � �i � 2j � 3k

a � 3bkji
b � �2, 0, 4�a � ��1, 2, �3�

x

z

y

a1i

i

j

k a3k

a2j
a

(a) The standard basis vectors i, j, and k

x

z

y

(b) The vectors a1i, a2j, and a3k are the vector
      components of a in the x-, y-, and z-directions.

1. a. What is a right-handed rectangular coordinate system in
a three-dimensional space? Plot the point in
this system.

b. What is the distance between the points and
?

c. What is the point midway between and of part (b)?
2. What is the standard equation of a sphere with center

and radius ? What happens if ? If ?r � 0r � 0rC(h, k, l)

P2P1

P2(a2, b2, c2)
P1(a1, b1, c1)

(�2, 3, 4)
3. a. If and , what is the sum of

and , the scalar multiple of by the scalar , and the
length of ?

b. If and are points in 3-space,

what is ? ? How are the two vectors related?
4. a. What are the standard basis vectors in a three-dimen-

sional space? Make a sketch.
b. If and are points in 3-space,

write in terms of the standard basis vectors.P1P2

! P2(b1, b2, b3)P1(a1, a2, a3)

P2P1

!
P1P2

! P2(b1, b2, b3)P1(a1, a2, a3)
a

caba
b � �b1, b2, b3�a � �a1, a2, a3�

11.2 CONCEPT QUESTIONS

The standard basis vectors , , and are shown in Figure 11a. Figure 11b shows the
vector and its three vector components , , and in the -, -, and -directions,
respectively.

zyxa3ka2 ja1ia
kji
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Videos for selected exercises are available online at www.academic.cengage.com/login.V

In Exercises 1–6, plot the given points in a three-dimensional
coordinate system.

1. 2.

3. 4.

5. 6.

In Exercises 7 and 8, find the coordinates of the indicated points.

7.

8.

In Exercises 9–12, sketch the plane in three-dimensional space
represented by the equation.

9. 10.

11. 12.

In Exercises 13–16, describe the region in three-dimensional
space represented by the inequality.

13. 14.

15. 16.

17. Air Traffic Control Suppose that the control tower of a munici-
pal airport is located at the origin of a three-dimensional
coordinate system with orientation as shown in the figure. At
an instant of time, Plane is 1000 ft west and 2000 ft south
of the tower and flying at an altitude of 3000 ft, and Plane B

A

y � 4z � 3

y � �4x � 3

z � �4z � 4

x � �4y � 5

x

z

y3

B

C

D

4

4
A

x

z

y

A

3
2

B

�4

5

5

1
�1

�2

�3

(�2, 0, 4)(�3, �2, 4)

(0, 2, 4)(3, �1, 4)

(2, 3, 2)(3, 2, 4)

is 4000 ft east and 1000 ft north of the tower and flying at
an altitude of 1000 ft.

a. Write the coordinates of Plane and Plane .
b. How far apart are the planes at that instant of time?

18. After holding a short conversation with each other, Jack and
Jill proceeded to return to their downtown offices. Jack
walked 1 block east, then 2 blocks north, then took the ele-
vator to the thirtieth floor. At the moment Jack emerged
from the elevator, Jill had walked blocks south and 
blocks west. If the length of a city block is 1000 ft and a
story in Jack’s office building is 10 ft high, how far apart are
Jack and Jill at that moment?

In Exercises 19–22, find the length of each side of the triangle
and determine whether the triangle is an isosceles triangle,

a right triangle, both, or neither.

19. , ,

20. , ,

21. , ,

22. , ,

In Exercises 23 and 24, determine whether the given points are
collinear.

23. , , and 

24. , , and 

In Exercises 25 and 26, find the midpoint of the line segment
joining the given points.

25. and 26. and 

In Exercises 27–30, find the standard equation of the sphere with
center and radius .

27. ; 28. ;

29. ; 30. ; r � 5C(1, 12, �2)r � 4C(3, �1, 2)

r � 13C(3, 2, 0)r � 3C(2, 1, 3)

rC

132, 2, �4 2112, �4, 22(�4, 2, 4)(2, 4, �6)

C(8, �3, 1)B(2, 1, �1)A(�1, 3, �2)

C(4, 4, 1)B(�4, 0, 5)A(2, 3, 2)

C(�3, 1, �2)B(1, �1, 2)A(�1, 5, 2)

C(1, 1, 1)B(1, 1, �1)A(�1, 0, 1)

C(3, 1, 2)B(4, 4, 6)A(3, 4, 1)

C(3, 4, 5)B(4, 3, 3)A(0, 1, 2)

ABC

11
411

2

BA

z (thousand)

y (thousand)

x (thousand)

A

S
N

EW

B

11
2

3

2 3 4

1

2

3

11.2 EXERCISES

www.academic.cengage.com/V


31. Find an equation of the sphere that has the points 
and at opposite ends of its diameter.

32. Find an equation of the sphere centered at the point
and tangent to the -plane.

33. Find an equation of the sphere that contains the point
and is centered at the point .

34. Find an equation of the sphere centered at the point 
and tangent to the sphere with equation .

In Exercises 35–40, find the center and the radius of the sphere
that has the given equation.

35.

36.

37.

38.

39.

40.

In Exercises 41–44, describe the region in 3-space satisfying the
inequality or inequalities.

41.

42.

43.

44. ,

In Exercises 45–48, find the vector . Then sketch the position
vector that is equal to .

45.

46.

x

z

y

B(1, 4, 3)

A(1, �3, 3)

x

z

y
A(3, 2, 1)

B(1, 4, 5)

AB
! AB

!
z � 0x2 � y2 � z2 � 4

1 � x2 � y2 � z2 � 9

x2 � y2 � z2 � 2x � 4y � 2z � 5 � 0

x2 � y2 � z2 � 4

3x2 � 3y2 � 3z2 � 6z � 1

2x2 � 2y2 � 2z2 � 6x � 4y � 2z � 1

x2 � y2 � z2 � y

x2 � y2 � z2 � 4x � 6y � 0

x2 � y2 � z2 � 4x � 5y � 2z � 5 � 0

x2 � y2 � z2 � 2x � 4y � 6z � 10 � 0

x2 � y2 � z2 � 9
(2, 3, 6)

(�1, 2, 4)(1, 3, 5)

xy(2, �3, 4)

(3, 2, 1)
(2, �3, 4) 47.

48.

In Exercises 49 and 50, find the vector . Then sketch and
the position vector that is equal to .

49. ,

50. ,

51. Suppose that and . Find .

52. Suppose that and . Find the
midpoint of the line segment joining and .

In Exercises 53–56, find , , , , and
.

53. and

54. and

55. and

56. and

57. Let , , and .
Find , , and if .

58. Refer to Exercise 57. Show that cannot be written
in the form for any choice of and .

In Exercises 59–62, determine whether is parallel to
.

59. 60.

61. 62. b � ��2, 4, �10�b � 2i � 3j � 10k

b �
1

3
 i �

2

3
 j �

5

3
 kb � �3, �6, 15�

a � i � 2j � 5k
b

baau � bv
�2, 0, 2�

au � bv � cw � �2, 0, 2�cba
w � �3, �2, 1�v � �2, 1, 4�u � ��1, 3, �2�

b � 2j � ka � �2i � 4k

b � �1, 4.1, �5.6�a � �0, 2.1, 3.4�

b � 3i � 2ka � 2i � j � k

b � �2, 3, �1�a � ��1, 2, 0�

�a � b �
��2b ��3a � 2a � 3ba � b

BA
A(�1, �2, �4)AB

!
� �3, 0, 4�

AB(2, �3, 1)AB
!
� ��1, 3, 4�

B(1, 3, 4)A(�2, �1, 2)

B(1, 4, 5)A(2, 1, 0)

AB
! AB

!
AB

!
x

z

y

A(3, 4, 4)

B(�2, 4, 4)

x

z

y

A(�2, 3, 0)

B(2, �2, 5)

11.2 Coordinate Systems and Vectors in 3-Space 921
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In Exercises 63–66, find a unit vector that has (a) the same
direction as and (b) a direction opposite to that of .

63. 64.

65. 66.

In Exercises 67–70, find a vector that has the given length and
the same direction as .

67. ; 68. ;

69. ; 70. ;

71. Let and . Find a vector that
has length 2 and the same direction as .

72. Let and . Find a vector that has
length and a direction opposite to that of .

In Exercises 73 and 74, represents a force acting on a parti-
cle. Express in terms of its magnitude and direction.

73. 74.

75. Refer to the figure below. Show that

where is the angle between and .

76. Refer to the figure below. Show that

where is the angle between and .

x

z

y

a

b

a � b¨

0

bau

�a � b �2 � �a �2 � �b �2 � 2 �a ��b � cos u

x

z

y

a

b

a � b
¨

0

bau

�a � b �2 � �a �2 � �b �2 � 2 �a ��b � cos u

F � 2i � 3j � 4kF � ��3, 4, 5�

F
F

a � b�2a � b �
b � �3, 4, 1�a � �1, 0, �2�

a � 2b
b � �1, 0, �1�a � �3, �1, 2�

b � ��1, 0, 1��a � � 4b � 2i � 4j�a � � 3

b � i � 2j � 3k�a � � 2b � �1, 1, 1��a � � 10

b
a

a � �2�0, �3, 4�a � �i � 3j � k

a � �3i � 4j � 5ka � �1, 2, 2�

aa
77. Prove that the midpoint of the line segment joining the

points and is

78. A person standing on a bridge watches a canoe go by. The
canoe moves at a constant speed of 5 ft/sec in a direction
parallel to the -axis. Find a formula for the distance
between the spectator and the canoe. How fast is this dis-
tance changing when the canoe is 60 ft from the
bridge?

79. Newton’s Law of Gravitation Newton’s law of gravitation states
that every particle of matter in the universe attracts every
other particle with a force whose magnitude is proportional
to the product of the masses of the particles and inversely
proportional to the square of the distance between them.
Show that if a particle of mass is located at a point 
and a particle of mass is located at a point , then the
force of attraction exerted by the particle located at on 
the particle located at is

where is a positive constant.

80. Refer to Exercise 79. Suppose that two particles of mass 
and are located at the origin and the point , respec-
tively, in a two-dimensional coordinate system. Further, sup-

(d, 0)m2

m1

x

z

A

B
m2

m1

y

F

0

G

F �
Gm1m2

�BA
!
�3

 BA
!

B
A

Bm2

Am1

y

x

z

(0, 0, 15)

(20, y, 0)

(y � 60)

y

ax1 � x2

2
, 

y1 � y2

2
, 

z1 � z2

2
b

P2(x2, y2, z2)P1(x1, y1, z1)
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pose that a third particle of mass is located at the point
.

a. Write a vector giving the force exerted by the particles
of mass and , respectively, on .

b. Where should the mass be located so that the system
is in equilibrium?

81. Coulomb’s Law Coulomb’s law states that the force of attrac-
tion or repulsion between two point charges (that is, charged
bodies whose sizes are small in comparison to the distance
between them) is directly proportional to the product of the
charges and inversely proportional to the square of the dis-
tance between them. Show that if the charges and are
located at the points and (see the figure below), respec-
tively, then the force exerted by the charge located at 
on the charge located at is given by

and the force exerted by the charge located at on the
charge located at is given by

where is the constant of proportionality.

82. Refer to Exercise 81. Suppose that point charges 
, , , are placed at the points , , , ,

respectively.

x

z

q2
q3

q1

q

P
P2P3

P1

(n � 3)

y

0

PnpP2P1qnpq2q1

x

z

A

B

q1

q2

y

F2

F1

0

k

F2 �
kq1q2

�BA
!
�3

 BA
!

A
BF2

F1 �
kq1q2

�AB
!
�3

 AB
!

B
AF1

BA
q2q1

m
mm2m1

F
P(x, y)

m According to the principle of superposition, the total force 
exerted by these charges on the charge located at the point

is given by

where is a constant of proportionality.
a. Four equal charges are placed at the points ,

, , and , where 
(see the following figure). Find the total force exerted
by these charges on the charge placed at the point

on the -axis.
b. Does the result of part (a) agree with what you might

expect if is very large in comparison to ?

In Exercises 83–86, determine whether the statement is true or
false. If it is true, explain why. If it is false, explain why or give
an example that shows it is false.

83. The equation , where ,
, and are constants, cannot be that of a sphere.

84. The set of points satisfying
and
is the empty set.

85. If , , and are points in 3-space and ,
then and .

86. If and , then .c � 1>�a �a � 0�ca � � 1

P2 � Q2P1 � Q1

P1P2

!
� Q1Q2

!
Q2Q1P2P1

(x � 1)2 � (y � 2)2 � (z � 3)2 � 2
(x � 1)2 � (y � 2)2 � (z � 3)2 � 1

(x, y, z)

GF
Ex2 � 2y2 � z2 � Ex � Fy � G � 0

x

z

q0

q

q
q

q

P1(d, 0, 0)

P3(�d, 0, 0)

(0, 0, z)

P4(0, �d, 0)

P2(0, d, 0)
y

dz

z(0, 0, z)
q0

F
d � 0P4(0, �d, 0)P3(�d, 0, 0)P2(0, d, 0)

P1(d, 0, 0)
k

 � kqa
n

i�1
 

qi

�PiP
!
�3

 PiP
!

 F � kqa q1

�P1P
!
�3

 P1P
!
�

q2

�P2P
!
�3

 P2P
!
� p �

qn

�PnP
!
�3

 PnP
!b

P
q

F
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11.3 The Dot Product

Finding the Dot Product
So far, we have looked at two operations involving vectors: vector addition and scalar
multiplication. In vector addition, two vectors are combined to yield another vector,
and in scalar multiplication a scalar and a vector are combined to yield another vec-
tor. In this section we will look at another way of combining two vectors. This opera-
tion, called the dot product, combines two vectors to yield a scalar. As we shall see
shortly, the dot product plays a role in the computation of many quantities: the length
of a vector, the angle between two vectors, and the work done by a force in moving
an object from one point to another, just to mention a few.

DEFINITION Dot Product

Let and be any two vectors in space. Then the
dot product of and is the number defined by

a � b � a1b1 � a2b2 � a3b3

a � bba
b � �b1, b2, b3�a � �a1, a2, a3�

Thus, we can find the dot product of the two vectors and by adding the products
of their corresponding components.

Notes
1. The dot product of two vectors is also called the inner product, or scalar prod-

uct, of the two vectors.
2. The definition just given pertains to the dot product of two three-dimensional vec-

tors. For vectors in two-dimensional space, the definition is

a � b � �a1, a2� � �b1, b2� � a1b1 � a2b2

ba

EXAMPLE 1 Find the dot product of each pair of vectors:

a. and b. and

Solution
a.

b.

The dot product obeys the following rules.

 � (1)(�1) � (�2)(�2) � (4)(3) � 15
 a � b � �1, �2, 4� � ��1, �2, 3�

 � (1)(�1) � (3)(2) � 5
 a � b � �1, 3� � ��1, 2�

b � ��1, �2, 3�a � �1, �2, 4�b � ��1, 2�a � �1, 3�

Properties of the Dot Product

Let , , and be vectors in 2- or 3-space and let be a scalar. Then

1.
2.
3.
4.
5. 0 � a � 0

a � a � �a �2
(ca) � b � c(a � b) � a � (cb)
a � (b � c) � a � b � a � c
a � b � b � a

ccba
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We will prove Properties 1 and 4 here and leave the proofs of the other three as an
exercise.

PROOF OF 1 Let and . Then

PROOF OF 4 Let . Then

Property 4 of dot products gives us the following formula for computing the length
of a vector in terms of the dot product of with itself. Thus,

(1)�a � � 1a � a

aa

 � a2
1 � a2

2 � a2
3 � �a �2

 a � a � �a1, a2, a3� � �a1, a2, a3�

a � �a1, a2, a3�

 � �b1, b2, b3� � �a1, a2, a3� � b � a

 � a1b1 � a2b2 � a3b3 � b1a1 � b2a2 � b3a3

 a � b � �a1, a2, a3� � �b1, b2, b3�

b � �b1, b2, b3�a � �a1, a2, a3�

EXAMPLE 2 Let , , and . Compute

a. b. c. d.

Solution
a. . Therefore,

b. . Therefore,

c. . Therefore,

d. . 
Therefore,

The Angle Between Two Vectors
The angle between two nonzero vectors is the angle between their corresponding
position vectors, where . (See Figure 1.)

Notes
1. If two vectors are parallel, then or .
2. The angle between the zero vector and another vector is not defined.

u � pu � 0

0 � u � p
u

 � 19 � 36 � 4 � 149 � 7

 �a � 2b � � 1(a � 2b) � (a � 2b) � 1�3, 6, �2� � �3, 6, �2�

a � 2b � �1, 2, 4��2��1, �2, 3� � �1, 2, 4� � ��2, �4, 6� � �3, 6, �2�

(a � b)c � 7�3, 1, 2� � �21, 7, 14�

a � b � �1, 2, 4� � ��1, �2, 3� � 1(�1) � 2(�2) � 4(3) � 7

(3a) � c � �3, 6, 12� � �3, 1, 2� � 3(3) � 6(1) � 12(2) � 39

3a � 3�1, 2, 4� � �3, 6, 12�

(a � b) � c � �0, 0, 7� � �3, 1, 2� � 0(3) � 0(1) � 7(2) � 14

a � b � �1, 2, 4� � ��1, �2, 3� � �0, 0, 7�

�a � 2b �(a � b)c(3a) � c(a � b) � c

c � �3, 1, 2�b � ��1, �2, 3�a � �1, 2, 4�

x

z

y

a
b

¨
0

FIGURE 1
The angle between and is the 
angle between their corresponding
position vectors.

ba

THEOREM 1 The Angle Between Two Vectors

Let be the angle between two nonzero vectors and . Then

(2)cos u �
a � b
�a ��b �

bau
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PROOF Consider the triangle determined by the vectors , , and as shown in
Figure 2. Using the law of cosines, we have

But

Equation (1)

so we have

or

Note Because of Equation (2), the dot product of two vectors and can also be
defined by the equation , where is the angle between and .baua � b � �a ��b � cos u

ba

cos u �
a � b
�a ��b �

 �2a � b � �2 �a ��b � cos u

 �a �2 � 2a � b � �b �2 � �a �2 � �b �2 � 2 �a ��b � cos u

a � b � b � a � �a �2 � 2a � b � �b �2
 � a � a � a � b � b � a � b � b

 �a � b �2 � (a � b) � (a � b)

c2 � a2 � b2 � 2ab cos C�a � b �2 � �a �2 � �b �2 � 2 �a ��b � cos u

a � bba

FIGURE 2
The angle between and is .uba

EXAMPLE 3 Find the angle between the vectors and .

Solution We have

and

so upon using Equation (2), we have

and

Orthogonal Vectors
Two nonzero vectors and are said to be perpendicular, or orthogonal, if the angle
between them is a right angle. Now, suppose that and are orthogonal so that the
angle between them is . Then Equation (2) gives

Conversely, if , then (because and are both nonzero), so
. We have proved the following.u � p>2

�b ��a �cos u � 0a � b � 0

a � b � �a ��b � cos 
p

2
� 0

p>2 ba
ba

u � cos�1a 10

114 117
b � 49.6°

cos u �
a � b
�a ��b � �

10

114117

a � b � 2(3) � 1(�2) � 3(2) � 10

�b � �232 � (�2)2 � 22 � 117�a � �222 � 12 � 32 � 114

b � �3, �2, 2�a � �2, 1, 3�

THEOREM 2
Two nonzero vectors and are orthogonal if and only if .a � b � 0ba

x

z

y

a

b

a � b

¨
0
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The standard basis vectors , , and are mutu-
ally orthogonal; that is, any two of them are orthogonal. This is evident if you exam-
ine Figure 3.

For example,

and j � k � �0, 1, 0� � �0, 0, 1� � 0i � j � �1, 0, 0� � �0, 1, 0� � 0

k � �0, 0, 1�j � �0, 1, 0�i � �1, 0, 0�

FIGURE 3
The standard basis vectors , ,
and are mutually orthogonal.k

ji

x

z

y

k j

i

EXAMPLE 4 Determine whether the vectors and 
are orthogonal.

Solution We compute

and conclude that and are indeed orthogonal.

Direction Cosines
We can describe the direction of a nonzero vector by giving the angles , , and 
that makes with the positive -, -, and -axes, respectively. (See Figure 4.) These
angles are called the direction angles of . The cosines of these angles, , ,
and , are called the direction cosines of the vector .

Let be a nonzero vector in 3-space. Then

So

Similarly,

and

By squaring and adding the three direction cosines, we obtain

cos2 a � cos2 b � cos2 g �
a2

1

�a �2
�

a2
2

�a �2
�

a2
3

�a �2
�

�a �2

�a �2
� 1

cos g �
a3

�a �cos b �
a2

�a �

cos a �
a � i
�a �� i � �

a1

�a �

i � i � 1, j � i � k � i � 0a � i � (a1i � a2 j � a3k) � i � a1

a � a1i � a2 j � a3k
acos g

cos bcos aa
zyxa

gbaa

ba

 � 2(3) � 3(�4) � 3(2) � 0

 a � b � (2i � 3j � 3k)(3i � 4j � 2k)

4j � 2k
b � 3i �a � 2i � 3j � 3k

FIGURE 4
The direction angles of a vector

x

z

y

a©

∫

å
0

THEOREM 3
The three direction cosines of a nonzero vector in 3-space
are

(3)

The direction cosines satisfy

(4)cos2 a � cos2 b � cos2 g � 1

cos g �
a3

�a �cos b �
a2

�a �cos a �
a1

�a �

a � a1i � a2 j � a3k
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Notes
1. If is nonzero, then the unit vector having the same direction

as is

(5)

This shows that the direction cosines of are the components of the unit vector
in the direction of . This augments the statement made earlier that the direction
cosines of a vector define the direction of that vector.

2. From Equation (5) we see that

↑ ↑
⎥ ⎥

Magnitude Direction

a � �a � C (cos a)i � (cos b)j � (cos g)k D

a
a

 � (cos a)i � (cos b)j � (cos g)k

 u �
a

�a � �
a1

�a � i �
a2

�a � j �
a3

�a � k

a
a � a1i � a2 j � a3k

EXAMPLE 5 Find the direction angles of the vector .

Solution We have

so by Equation (3),

Therefore,

Vector Projections and Components
Figure 5a depicts a child pulling a sled with a constant force represented by the vec-
tor . The force can be expressed as the sum of two forces: a horizontal component

and a vertical component , as shown in Figure 5b.F2F1

FF

g � cos�1a 1

114
b � 74°b � cos�1a 3

114
b � 37°a � cos�1a 2

114
b � 58°

cos g �
1

114
cos b �

3

114
cos a �

2

114

�a � �222 � 32 � 12 � 114

a � 2i � 3j � k

¨

(a) F makes an angle q   with the line of motion. (b) F � F1 � F2

¨

F
F

F1

F2

FIGURE 5

Observe that acts in the direction of motion, whereas acts in a direction per-
pendicular to the direction of motion. We will see why it is useful to look at in this
way when we study the work done by in moving the sled.

More generally, we are interested in the component of one vector in the direc-
tion of another nonzero vector . The vector that is obtained by projecting onto theba

b
F

F
F2F1
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line containing the vector is called the vector projection of onto (also called the
vector component of along ) and denoted by

(See Figure 6.)
The scalar projection of onto (also called the scalar component of along

) is the length of if the projection has the same direction as and the negative
of the length of if the projection has the opposite direction. We denote this scalar
projection by

As you can see from Figure 7, it is just the number . Observe that if
, then is negative. We encourage you to make a sketch of this sit-

uation.
Since

we can write

Therefore, the scalar component of along isab

�b � cos u �
�b �(b � a)

�b ��a � �
b � a
�a �

cos u �
b � a
�b ��a �

�b � cos up
2 � u � p

�b � cos u

compab

projab
aprojaba

bab

projab

ab
aba

FIGURE 6
is the vector 

projection of onto .ab
projab�1PQ

! 2

FIGURE 7 
compab � �b � cos u

a

b
Q

P

R

projab

a

b

¨
Q

P
�b � cos ¨

(6)compab �
b � a
�a �

Note Writing

we see that the scalar component of along can also be calculated by taking the dot
product of with the unit vector in the direction of .

The vector projection of onto is the scalar component of along times the
direction of . (See Figures 6 and 7.) Thus, we havea

abab

ab
ab

b � a
�a � � b � a a

�a �b

(7)projab � ab � a
�a � b a

�a � � ab � a
�a �2
ba � ab � a

a � a
ba

(See Figure 8.)

FIGURE 8
points in the same direction 

as if is acute and points in the
opposite direction as if is obtuse.ua

ua
projab

a

b

¨
projab

(a) ¨ is acute.

a

b

¨

projab

(b) ¨ is obtuse.
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EXAMPLE 6 Let , and let . Find the scalar com-
ponent of along and the vector projection of onto .

Solution The scalar component of along is

Next, we compute the unit vector in the direction of . Thus,

Therefore,

Using vector projections, we can express any vector as the sum of a vector par-
allel to a vector and a vector perpendicular to . In fact, from Figure 9 we see that

(8)

Parallel to Orthogonal to aa

⎫⎪⎪⎬⎪⎪⎭⎫⎪⎬⎪⎭

 � ab � a
a � a

ba � cb � ab � a
a � a

bad
 b � projab � (b � projab)

aa
b

 � �
6

7
 i �

4

7
 j �

2

7
 k

 � �
4

114
�

1

114
 (3i � 2j � k)

 projab � ab � a
�a � b a

�a �

a
�a � �

3i � 2j � k

114
�

1

114
 (3i � 2j � k)

a

compab �
b � a
�a � �

2(3) � (3)(�2) � (�4)(1)

232 � (�2)2 � 12
� �

4

114

ab

abab
a � 3i � 2j � kb � 2i � 3j �  4k

FIGURE 9
The vector can be written as 
the sum of a vector parallel to 

and a vector orthogonal to .aa

b

EXAMPLE 7 Write as the sum of a vector parallel to 
and a vector perpendicular to .

Solution Using Equation (8) with

and

gives

Parallel to Perpendicular to aa

⎫⎪⎪⎬⎪⎪⎭⎫⎪⎪⎬⎪⎪⎭

 � a3i �
3

2
 j �

3

2
 kb � a1

2
 j �

1

2
 kb

 �
9

6
 (2i � j � k) � c3i � j � 2k �

9

6
 (2i � j � k)d

 b � ab � a
a � a

ba � cb � ab � a
a � a

bad

a � a � 22 � (�1)2 � 12 � 6

b � a � (3)(2) � (�1)(�1) � (2)(1) � 9

aj � k
a � 2i �b � 3i � j � 2k

a

b

projab

b � projab



FIGURE 10
The work done by in moving an
object from to is .F � dQP

F

EXAMPLE 8 A force moves a particle along the line segment
from the point to the point . (See Figure 11.) Find the work done
by the force if is measured in newtons and is measured in meters.�d ��F �

Q(3, 6, 5)P(1, 2, 1)
F � 2i � 3j � 4k

FIGURE 11
The force moves the particle 

from the point to the point .QP
F

Solution The displacement vector is . Therefore,
using Equation (9), we see that the work done by is

or 32 joules.
 � 4 � 12 � 16 � 32

 F � d � (2i � 3j � 4k) � (2i � 4j � 4k)

F
d � PQ

!
� �2, 4, 4� � 2i � 4j � 4k
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Work
One application of vector projections lies in the computation of the work done by a
force. Recall that the work done by a constant force acting along the line of motion
in moving an object a distance is given by . But if the constant force 
acts in a direction that is different from the direction of motion, as in the case we men-
tioned earlier of a child pulling a sled, then work is done only by that component of
the force in the direction of motion.

To derive an expression for the work done in this situation, suppose that moves
an object from to . (See Figure 10.) Then, letting denote the displacement vec-
tor , we see that the work done by in moving an object from to is given by

component of along distance moved

(9)

Thus, the work done by a constant force in moving an object through a displacement
is the dot product of and .dFd

F

 � F � d

 � �F ��d � cos u

d �F W � 1 �F � cos u 2 �d �

QPFPQ
! dQP

F

FW � �F � dd
FW

F
¨

d � PQ
P Q

x

z

y

P

F
Q

3 6

0

5

1. a. What is the dot product of the vectors 
and ?

b. State the properties of the dot product.
c. Express in terms of the dot product.
d. What is the angle between two nonzero vectors and 

in terms of the dot product?
2. a. What does it mean for two nonzero vectors to be 

orthogonal?
b. State the condition(s) for two nonzero vectors to be

orthogonal.

ba
�a �

b � �b1, b2, b3�
a � �a1, a2, a3� 3. a. What are the direction cosines of a vector in 3-space?

b. Write the nonzero vector in terms of its magnitude and
its direction cosines.

4. a. What is the scalar component of along the nonzero
vector ? Illustrate with a diagram.

b. What is the vector projection of onto ? Illustrate.
5. What is the work done by a constant force in moving an

object along a straight line from the point to the point ?QP
F
ab

a
b

a
a

11.3 CONCEPT QUESTIONS
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Videos for selected exercises are available online at www.academic.cengage.com/login.V

1. State whether the expression makes sense. Explain.
a. b.
c. d.

e. f.

2. a. If and , what can you say about ?
b. If and , what can you say about ?

In Exercises 3–8, find .

3. ,

4. ,

5. ,

6. ,

7. ,

8. ,

In Exercises 9–16, , , and
. Find the indicated quantity.

9. 10.

11. 12.

13. 14.

15. 16.

In Exercises 17–22, find the angle between the vectors.

17. ,

18. ,

19. ,

20. ,

21. ,

22. ,

23. Find the value of such that the angle between 
and is 45°.

24. Find the value(s) of such that the angle between
and is 60°.

In Exercises 25–30, determine whether the vectors are orthogo-
nal, parallel, or neither.

25. ,

26. , b � �4, 3�a � �3, �4�

b � �3, 0�a � �1, 2�

b � �i � 2j � ka � i � cj � 2k
c

b � �1, 2�
a � �1, c�c

b � ��3, 2, 1�a � ��2, 1, 1�

b � i � j � 2ka � �2j � 3k

b � 8i � 4j � 3ka � i � 2j � k

b � �2, 3, �6�a � �1, 1, 1�

b � �i � 2ja � i � 3j

b � �3, 4�a � �2, 1�

aa � b
b � b

bb�a � b �2 � �a � b �2

(a � b)c � (b � c)a(a � b)c

(a � b) � (a � b)(2a � 3b) � (3c)

b � (a � c)a � (b � c)

c � �2, �4, 1�
b � ��2, 4, 1�a � �1, �3, 2�

b � �i � 0.2j � 13ka � 2i � 3k

b � �10, p, �p�a � �0, 1, �3�

b � �i � 2j � 2ka � 2i � 3j � k

b � i � 2ja � 2i � 3j

b � ��1, 1, �1�a � �1, 3, �2�

b � �2, �1�a � �1, 3�

a � b

ba � b � 0a � a � 0
ba � b � 0a � a � 0

a � a b
�b �b�a � b � (a � b)a

a � b � �a ��b �a � b � c
a � (b � c)(a � b)c

11.3 EXERCISES

27. ,

28. ,

29. ,

30. ,

31. Find a value of such that and are
orthogonal.

32. Find a unit vector that is orthogonal to both 
and .

In Exercises 33–36, find the direction cosines and direction
angles of the vector.

33. 34.

35. 36.

37. A vector has direction angles and . Find
the direction angle .

38. Find a unit vector whose direction angles are all equal.

In Exercises 39–44, find (a) and (b) .

39. ,

40. ,

41. ,

42. ,

43. ,

44. ,

In Exercises 45–48, write as the sum of a vector parallel to 
and a vector perpendicular to .

45. ,

46. ,

47. ,

48. ,

In Exercises 49 and 50, find the work done by the force in
moving a particle from the point to the point .

49. ; ;

50. ; ;

51. Find the angle between a diagonal of a cube and one of its
edges.

52. Find the angle between a diagonal of a cube and a diagonal
of one of its sides.

Q(�1, 2, �4)P(2, 3, 1)F � �1, 4, 5�

Q(2, 1, 5)P(�1, �2, 2)F � 2i � 3j � k

QP
F

b � 2i � ja � i � 2k

b � 2i � j � ka � i � 2j � 3k

b � 2i � 3ja � �i � 2j

b � �2, 4�a � �1, 3�

a
ab

b � �0, 3, 1�a � ��1, 3, �2�

b � �0, 1, 0�a � ��3, 4, �2�

b � ��3, 0, �4�a � �1, 2, 0�

b � 3i � ka � 2i � j � 4k

b � �3i � 4ja � �i � 2j

b � �1, 4�a � �2, 3�

projbaprojab

b

g � p>4a � p>3
a � �3, �4, 5�a � �i � 3j � 5k

a � 2i � 2j � ka � �1, 2, 3�

b � �2i � k
a � i � j � k

�2, 3, c��c, 2, �1�c

b � � 4
3, 2, �2�a � �2, 3, �3�

b � �2, �1, 1�a � �2, 3, �1�

b � 6i � 12j � 3ka � 2i � 4j � k

b � 3i � 2j � 2ka � i � 2j � k

www.academic.cengage.com/V
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53. Refer to the following figure. Find the angles and .

54. Bond Angle of a Molecule of Methane The following figure gives
the configuration of a molecule of methane, . The four
hydrogen atoms are located at the vertices of a regular tetra-
hedron and the carbon atom is located at the centroid. The
bond angle for the molecule is the angle between the line
segments joining the carbon atom to two of the hydrogen
atoms. Show that this angle is approximately 109.5°
Hint: The centroid of the tetrahedron is .

55. A passenger in an airport terminal pulls his luggage with a
constant force of magnitude 24 lb. If the handle makes an
angle of 30° with the horizontal surface, find the work done
by the passenger in pulling the luggage a distance of 50 ft.

56. A child pulls a toy wagon up a straight incline that makes
an angle of 15° with the horizontal. If the handle makes an

30º

x

z

y

H

H

H

H
(k, k, 0)

(0, k, k)

(k, 0, k)

C

1 k2, k
2, k

2 2

CH4

x

z

y

¨



cu angle of 30° with the incline and she exerts a constant force
of 15 lb on the handle, find the work done in pulling the
wagon a distance of 30 ft along the incline.

57. The following figure gives an aerial view of two tugboats
attempting to free a cruise ship that ran aground during a
storm. Tugboat I exerts a force of magnitude 3000 lb, and
Tugboat II exerts a force of magnitude 2400 lb. If the result-
ant force acts along the positive -axis and the cruise ship is
towed a distance of 100 ft in that direction, find the work
done by each tugboat. (See Exercise 66 in Section 11.1.)

58. Prove Property 2 of the dot product:
.

59. Prove Property 3 of the dot product:
.

60. Prove that if is orthogonal to both and , then is
orthogonal to for any scalars and . Give a geo-
metric interpretation of this result.

61. Let and be nonzero vectors. Then the vector 
is called the vector component of orthogonal to .
a. Make a sketch of the vectors , , and 

.
b. Show that is orthogonal to .

62. Refer to Exercise 61. Let and .
a. Find .
b. Sketch the vectors , , and .
c. Show that is orthogonal to .ab � projab

b � projabprojabba
b � projab

b � �4, 5�a � �2, 1�

ab � projab
b � projab

projabba
ab

b � projabba

qppb � qc
acba

(ca) � b � c(a � b) � a � (cb)

a � (b � c) � a � b � a � c

x

I

II

F1

F2

sand
bank

y

30º

¨

x

F

F1

F2

30º

q
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63. a. Show that the vector is orthogonal to the line
.

b. Use the result of part (a) to show that the distance from a
point to the line is

Hint: Let be a point on the line, and consider the scalar
projection of onto .nP1P2

!P2(x2, y2)

P1(x1, y1)

P2(x2, y2)

n

ax � by � c � 0

�ax1 � by1 � c �

2a2 � b2

ax � by � c � 0P1(x1, y1)

ax � by � c � 0
n � �a, b� c. Use the formula found in part (b) to find the distance

from the point to the line .

64. Prove that is orthogonal to , where ,
, and are any three vectors.

In Exercises 65–68, determine whether the statement is true or
false. If it is true, explain why. If it is false, explain why or give
an example that shows it is false.

65.

66. If , and , then .

67. If , , and are nonzero vectors, and both and are
orthogonal to , then is orthogonal to .

68. If and are nonzero vectors, then if and only
if is orthogonal to .ba

projab � 0ba

w2u � 3vw
vuwvu

b � ca � b � a � ca � 0

(a � b)2 � �a �2�b �2

cb
ab(a � b)c � (b � c)a

2x � 3y � 6 � 0(1, �3)

11.4 The Cross Product

The Cross Product of Two Vectors
In the preceding section we saw how an operation called the dot product combines two
vectors to yield a scalar. In this section we will look at yet another operation on vec-
tors. This operation, called the cross product, combines two vectors to yield a vector.

DEFINITION The Cross Product of Two Vectors in Space

Let and be any two vectors in space.
Then the cross product of and is the vector

(1)a � b � (a2b3 � a3b2)i � (a3b1 � a1b3)j � (a1b2 � a2b1)k

ba
b � b1i � b2 j � b3ka � a1i � a2 j � a3k

The cross product is used in computing quantities as diverse as the volume of a paral-
lelepiped and the rate of rotation of an incompressible fluid.

Before giving a geometric interpretation of the cross product of two vectors, let’s
find a simpler way to remember the cross product. Recall that a determinant of order
2 is defined by

For example,

` 2 1

3 �4
` � 2(�4) � 1(3) � �11

` a b

c d
` � ad � bc
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A determinant of order 3 is defined in terms of second-order determinants as follows:

In this definition the determinant is said to be expanded about the first row. Observe
that each term on the right involves the product of a term from the first row and a
second-order determinant that is obtained by deleting the row and column containing
that term. Also note how the signs of the terms alternate.

As an example,

As a mnemonic device for remembering the expression for the cross product of 
and , where and , let’s expand the follow-
ing expression as if it were a determinant. (Technically it is not a determinant, because
, , and are not real numbers.) Thus,

Comparing the last expression with Equation (1), we are led to the following result.

 � (a2b3 � a3b2)i � (a3b1 � a1b3)j � (a1b2 � a2b1)k

 †
i j k

a1 a2 a3

b1 b2 b3

† � i ` a2 a3

b2 b3
` � j ` a1 a3

b1 b3
` � k ` a1 a2

b1 b2
`

kji

b � b1i � b2 j � b3ka � a1i � a2 j � a3kb
a

 � 1(�3 � 0) � 2(9 � 8) � 4(0 � 4) � 11

 †
1 2 4

3 �1 2

4 0 3
† � 1 `�1 2

0 3
` � 2 ` 3 2

4 3
` � 4 ` 3 �1

4 0
`

†
a1 a2 a3

b1 b2 b3

c1 c2 c3

† � a1 ` b2 b3

c2 c3
` � a2 ` b1 b3

c1 c3
` � a3 ` b1 b2

c1 c2
`

Note the order in which the scalar components of the vectors are written.!

EXAMPLE 1 Let and . Find and .

Solution

 � �i � j � k

 a � b � †
i j k
2 1 �1

�3 �2 1
† � i ` 1 �1

�2 1
` � j ` 2 �1

�3 1
` � k ` 2 1

�3 �2
`

b � aa � bb � �3i � 2j � ka � 2i � j � k

Let and . Then

(2)a � b � †
i j k

a1 a2 a3

b1 b2 b3

†

b � b1i � b2 j � b3ka � a1i � a2 j � a3k
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and

Note that in Example 1. This is true in general if we recall the
property of determinants that states that if two rows of a determinant are interchanged,
then the sign of the determinant is changed.

Geometric Properties of the Cross Product
The cross product being a vector, has both magnitude and direction. The fol-
lowing theorem tells us the direction of the vector .a � b

a � b

b � a � �a � b

 � i � j � k

 b � a � †
i j k

�3 �2 1

2 1 �1
† � i `�2 1

1 �1
` � j `�3 1

2 �1
` � k `�3 �2

2 1
`

JOHANN KARL FRIEDRICH GAUSS
(1777–1855)

A child prodigy, Johann Carl Friedrich
Gauss is said to have corrected his father’s
addition mistake when the child was just
three years old. When he was eight years
old, his class was given the assignment to
add the natural numbers from 1 to 100, and
Gauss completed the task in a very short
time by pairing up the numbers in sums of
101. He reasoned that there were 50 pairs
of numbers that sum to 101, so the total
would be 5050. His teacher was aston-
ished.

Gauss made major contributions to
many areas of mathematics. His work in
algebra and geometry laid much of the
foundation for later work in probability
theory, topology, and vector analysis. He
also advanced number theory with his for-
mulation of the complex number system.
Gauss earned many awards during his life-
time and was recognized as the greatest
mathematician in the world. He was not
impressed by his own achievements, how-
ever, and he often made light of the
awards as he went on with his work.

His work in applied mathematics aided
Gauss in rediscovering an asteroid that had
been deemed “lost.” He calculated the
orbit and accurately predicted where the
asteroid would reappear, a success that
furthered his fame.

Gauss died of a heart attack in 1855
after having suffered from an enlarged
heart for a long time. He was laid to rest in
Göttingen, Germany, next to his mother’s
simple grave.

Historical Biography
Ph
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THEOREM 1
Let and be nonzero vectors in 3-space. Then is orthogonal to both 
and .b

aa � bba

PROOF Let and . Then by Equation (1) or
by expanding Equation (2), we have

Therefore,

which shows that is orthogonal to . Similarly, by showing that ,
we prove that is orthogonal to . Therefore, is orthogonal to both 
and .

Let and be vectors in 3-space, and suppose that and have the same initial
point. Then Theorem 1 tells us that has a direction that is perpendicular to the
plane determined by and . (See Figure 1.) The direction of is determined by
the right-hand rule: Point the fingers of your open right hand in the direction of , then
curl them towards the vector . Your thumb will then point in the direction of .a � bb

a
a � bba

a � b
baba

b
aa � bba � b

(a � b) � b � 0aa � b

 � a1a2b3 � a1b2a3 � b1a2a3 � a1a2b3 � a1b2a3 � b1a2a3 � 0

 � (a2b3 � a3b2)a1 � (a3b1 � a1b3)a2 � (a1b2 � a2b1)a3

 � (a1i � a2 j � a3k)

 (a � b) � a � [(a2b3 � a3b2)i � (a3b1 � a1b3)j � (a1b2 � a2b1)k]

a � b � (a2b3 � a3b2)i � (a3b1 � a1b3)j � (a1b2 � a2b1)k

b � b1i � b2 j � b3ka � a1i � a2 j � a3k

FIGURE 1
The vector is orthogonal 

to both and with direction
determined by the right-hand rule.

ba
a � b

b

a

a � b
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The next theorem gives the magnitude of .a � b

THEOREM 2
Let and be vectors in 3-space. Then

where is the angle between and and .0 � u � pbau

�a � b � � �a ��b � sin u

ba

PROOF Let and . Then, from Equation (1)
we have

Next, using Property (4) of dot products we have

Use Equation (2) of Section 11.3.

Finally, taking the square root on both sides and observing that for 
, we obtain

We can combine the results of Theorems 1 and 2 to express the vector in
the following form.

a � b

�a � b � � �a ��b � sin u

0 � u � p
sin u � 0

 � �a �2�b �2 (1 � cos2 u) � �a �2�b �2 sin2 u

 � �a �2�b �2 � �a �2�b �2 cos2 u

 � �a �2�b �2 � (a � b)2

 � (a2
1 � a2

2 � a2
3)(b2

1 � b2
2 � b2

3) � (a1b1 � a2b2 � a3b3)
2

 � a2
1b

2
2 � 2a1a2b1b2 � a2

2b
2
1

 � a2
2b

2
3 � 2a2a3b2b3 � a2

3b
2
2 � a2

3b
2
1 � 2a1a3b1b3 � a2

1b
2
3

 �a � b �2 � (a � b) � (a � b)

a � b � (a2b3 � a3b2)i � (a3b1 � a1b3)j � (a1b2 � a2b1)k

b � b1i � b2 j � b3ka � a1i � a2 j � a3k

An Alternative Definition of 

Direction of 
Length of 

where is the angle between and , and is a unit vector orthogonal to both
and . (See Figure 2.)ba

nbau

a � b
a � b↑

⎫⎪⎬⎪⎭a � b � (�a ��b � sin u) n

a � b

FIGURE 2
The vector has length

and direction given by ,
the unit vector perpendicular to the

plane determined by and .ba

n�a ��b � sin u
a � b

�  a ��  b � sin ¨  b

n

a

a � b

¨
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Note Since we see that the vector has the same length as
but points in the direction opposite to that of .a � ba � b

b � ab � a � �a � b

EXAMPLE 2 Let and .

a. Find a unit vector that is orthogonal to both and .
b. Express in terms of and .

Solution
a. A vector that is orthogonal to both and is

The length of is

Therefore, a unit vector that is orthogonal to both and is

b. We can write as

The vectors , , and are shown in Figure 3.na � bba

 � 129a 3

129
 i �

2

129
 j �

4

129
 kb

 a � b � �a � b � n

a � b

n �
a � b

�a � b � �
3

129
 i �

2

129
 j �

4

129
 k

ba

�a � b � �232 � (�2)2 � 42 � 129

a � b

a � b � †
i j k
2 3 0

0 2 1
† � 3i � 2j � 4k

ba

n�a � b �a � b
ban

b � 2j � ka � 2i � 3j

FIGURE 3
The vector and the unit vector 

are orthogonal to both and .ban
a � b

EXAMPLE 3 An Application in Mechanics Figure 4a depicts a force applied at a
point (the terminal point of the position vector ) on a wrench. This force produces a
torque that acts along the axis of the bolt and has the effect of driving the bolt forward.
To derive an expression for the torque, we recall that the magnitude of the torque is
given by

 � �r ��F � sin u

 �� � � the length of the moment arm � the magnitude of the vertical component of F

�

r
F

FIGURE 4

r

r ¨ ¨
F

��

F  �  F � sin ¨  

(a) The force F applied on the wrench produces
      a torque that acts along the axis of the bolt.

(b) The torque � � r � F

x

z

3

3

4
a � 2i � 3j

b � 2j � k

a � b � 3i � 2j � 4k

n

y

(See Figure 4b.) Since the direction of the torque is along the axis of the bolt (which
is orthogonal to the plane determined by and ), we conclude that . For� � r � FFr
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example, if a force of magnitude 3 lb is applied to the wrench at a point ft from the
bolt at an angle of 60°, then the magnitude of the torque exerted on the bolt will be

or ft-lb

The following test for determining whether two vectors are parallel is an immedi-
ate consequence of Theorem 2.

913

4
a3

2
b (3) sin 60°

11
2

PROOF Two nonzero vectors and are parallel if and only if or . In either
case, , so .

Finding the Area of a Triangle
Consider the parallelogram determined by the vectors and shown in Figure 5a. The
altitude of the parallelogram is and the length of its base is , so its area is

By Theorem 2

Thus, the length of the cross product and the area of the parallelogram deter-
mined by and have the same numerical value. (See Figure 5b.)ba

a � b

A � �a ��b � sin u � �a � b �

�a ��b � sin u
ba

a � b � 0�a � b � � �a ��b � sin u � 0
pu � 0ba

FIGURE 5

Therefore, the area of the triangle determined by and is .1
2
�a � b �ba

(a) The parallelogram determined by a and b (b) The length of a � b is numerically equal to the
       area of the parallelogram determined by a and b.

�  a ��  b � sin ¨  

�  b � sin ¨  

b

a

¨

b

a

¨

a � b

�  a ��  b � sin ¨  

EXAMPLE 4 Find the area of the triangle with vertices , , and
.

Solution The area of is half the area of the parallelogram determined by the

vectors and . Now and , so

 � 23i � 6j � 8k

 � i ` 5 2

1 5
` � j `�2 2

�2 5
` � k `�2 5

�2 1
`

 PQ
!
� PR

!
� †

i j k
�2 5 2

�2 1 5
†

PR
!
� ��2, 1, 5�PQ

!
� ��2, 5, 2�PR

!
PQ

! ^PQR

R(1, �2, 5)
Q(1, 2, 2)P(3, �3, 0)

Test for Parallel Vectors

Two nonzero vectors and are parallel if and only if .a � b � 0ba
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Therefore, the area of the parallelogram is

so the area of the required triangle is or approximately 12.5. (See Figure 6.)1
21629

�PQ
!
� PR

!
� �2232 � 62 � 82 � 1629 � 25.1

FIGURE 6
The triangle with vertices 
at , ,

and R(1, �2, 5)
Q(1, 2, 2)P(3, �3, 0)

THEOREM 3 Properties of the Cross Product

If , , and are vectors and is a scalar, then

1.
2.
3.
4.
5.
6.
7.
8. a � (b � c) � (a � c)b � (a � b)c

a � (b � c) � (a � b) � c
a � a � 0
a � 0 � 0 � a � 0
c(a � b) � (ca) � b � a � (cb)
(a � b) � c � a � c � b � c
a � (b � c) � a � b � a � c
a � b � �b � a

ccba

PROOF Each of these properties may be proved by applying the definition of the 
cross product. For example, to prove Property 1, let and

. Then

and

So . See Example 1 for an illustration of this property.

The proofs of the other properties are left as exercises.

a � b � �b � a

b � a � †
i j k

b1 b2 b3

a1 a2 a3

† � (b2a3 � b3a2)i � (b1a3 � b3a1)j � (b1a2 � b2a1)k

a � b � †
i j k

a1 a2 a3

b1 b2 b3

† � (a2b3 � a3b2)i � (a1b3 � a3b1)j � (a1b2 � a2b1)k

b � b1i � b2 j � b3k
a � a1i � a2 j � a3k

x

z

y
4

5

5

Q(1, 2, 2)

R(1, �2, 5)

P(3, �3, 0)

Properties of the Cross Product
The cross product obeys the following rules.
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EXAMPLE 5 By direct computation or using Property 6 of Theorem 3, we can show
that

, , and (3)

Next, by direct computation, we can verify that

, , and (4)

so by Property 1 of Theorem 3 we also have

, , and (5)

These results are also evident if you interpret each of the cross products (3)–(5) geo-
metrically while looking at Figure 7.

You can use a simple mnemonic device to help remember the cross products 
(3)–(5). Consider the circle shown in Figure 8. The cross product of two consecutive
vectors in the counterclockwise direction is the next vector, and its direction is posi-
tive. Likewise, the cross product of two consecutive vectors in the clockwise direction
is the next vector but with a negative direction.

The Scalar Triple Product
Suppose that , , and are three vectors in three-dimensional space. The dot product
of and , , is called the scalar triple product. If we write

, , and , then by direct
computation,

(6)

(We leave it as an exercise for you to verify this computation.)
The geometric significance of the scalar triple product can be seen by examining

the parallelepiped determined by the vectors , , and . (See Figure 9.) The base of
the parallelepiped is a parallelogram with adjacent sides determined by and with
area . If is the angle between and , then the height of the parallelepiped
is given by . Therefore, the volume of the parallelepiped is

area of base height

By Equation (2) of Section 11.3 � �a � (b � c) �

� V � �b � c ��a ��cos u �

h � �a ��cos u �
b � cau�b � c �

cb
cba

a � (b � c) � †
a1 a2 a3

b1 b2 b3

c1 c2 c3

†

c � c1i � c2 j � c3kb � b1i � b2 j � b3ka � a1i � a2 j � a3k
a � (b � c)b � ca

cba

i � k � �jk � j � �ij � i � �k

k � i � jj � k � ii � j � k

k � k � 0j � j � 0i � i � 0

FIGURE 7
Using the right-hand rule, we 
can see the validity of the 
relationships in Example 5.

FIGURE 8
The cross product of two consecutive
vectors in the counterclockwise
direction is the next vector and has a
positive direction; in the clockwise
direction it is the next vector and has a
negative direction. For example,

and .j � i � �ki � j � k

x

z

y

k j

i

k

j
i

FIGURE 9
The volume of the parallelepiped 

is equal to .�a � (b � c) �
V

h � �  a ��cos ¨  �

b

c

a

b � c

¨



942 Chapter 11 Vectors and the Geometry of Space

We have established the following result.

THEOREM 4 Geometric Interpretation of the Scalar Triple Product

The volume of the parallelepiped determined by the vectors , , and is
given by

V � �a � (b � c) �

cbaV

EXAMPLE 6 Find the volume of the parallelepiped determined by the vectors
, , and .

Solution By Theorem 4 the volume of the parallelepiped is . But
by Equation (6),

Therefore, the required volume is , or 23.

Because the volume of a parallelepiped is zero if and only if the vectors , , and
forming the adjacent sides of the parallelepiped are coplanar, we have the following

result.
c

ba

�23 �

 � 1(1) � 2(�5) � 3(4) � 23

 a � (b � c) � †
1 2 3

1 �1 1

3 1 �2
† � 1 `�1 1

1 �2
` � 2 ` 1 1

3 �2
` � 3 ` 1 �1

3 1
`

V � �a � (b � c) �

c � 3i � j � 2kb � i � j � ka � i � 2j � 3k

1. a. Give the definition of .
b. What is the length or magnitude of in terms of the

angle between and ? Give a geometric interpretation
of .

c. What is the direction of ?
d. Write in terms of , , and (the angle between 

and ).b
aubaa � b

a � b
�a � b �

ba
a � b

a � b 2. a. How would you use the cross product of two nonzero
vectors and to determine whether and are 
parallel?

b. What can you say about the three nonzero vectors , ,
and if ?(c � b) � a � 0c

ba

baba

11.4 CONCEPT QUESTIONS

Test for Coplanar Vectors

The vectors , , and 
are coplanar if and only if

a � (b � c) � †
a1 a2 a3

b1 b2 b3

c1 c2 c3

† � 0

c2 j � c3k
c � c1i �b � b1i � b2 j � b3ka � a1i � a2 j � a3k
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Videos for selected exercises are available online at www.academic.cengage.com/login.V

1. State whether the expression makes sense. Explain.
a. b.
c. d.
e. f.

2. If and what can you say about 
and ?

In Exercises 3–10, find .

3. ,

4. ,

5. ,

6. ,

7. ,

8. ,

9. ,

10. ,

In Exercises 11 and 12, find and .

11. ,

12. ,

In Exercises 13 and 14, find two vectors that are orthogonal to
both and .

13. ,

14. ,

In Exercises 15 and 16, find two unit vectors that are orthogonal
to both and .

15. ,

16. ,

In Exercises 17–20, find the area of the triangle with the given
vertices.

17. , ,

18. , ,

19. , ,

20. , , R(�1, �2, 3)Q(1, 3, 2)P(0, 0, 0)

R(�2, 3, 4)Q(2, 3, 1)P(1, �1, 2)

R(2, 2, 3)Q(1, 2, 1)P(1, 1, 1)

R(0, 0, 1)Q(0, 1, 0)P(1, 0, 0)

b � �0, 3, 4�a � ��1, 1, �1�

b � i � j � ka � �3i � j � 2k

ba

b � �2, 3, �4�a � �1, �2, 1�

b � �i � j � 2ka � 2i � 3j � 4k

ba

b � ��1, 3, �1�a � �1, 1, 2�

b � 2i � j � ka � i � 2j � 3k

b � aa � b

b � �1
2, 2, �1

2�a � �1, 1, 2�

b �
2

3
 i �

1

3
 j � ka � 2i � j � 3k

b � ��3, 0, 2�a � �0, 1, 0�

b � �3i � 2j � ka � 2i � 3k

b � �i � 2j � 3ka � 2i � 3j � 4k

b � �3, 1, �2�a � �1, �2, 1�

b � �2, 1, 3�a � �0, 1, 2�

b � 2j � 3ka � i � j

a � b

b
aa � b � 0a � b � 0

(a � b) � (c � d)a � [(b � c)d]
(a � b) � (c � d)(a � b) � (c � d)
a � (b � c)(a � b) � c

In Exercises 21–26, let , , and
. Find the indicated quantity.

21. 22.

23. 24.

25. 26.

In Exercises 27 and 28, find the volume of the parallelepiped
determined by the vectors, , , and .

27. , ,

28. , ,

In Exercises 29 and 30, find the volume of the parallelepiped
with adjacent edges , , and .

29. , , ,

30. , , ,

31. Find the height of a parallelepiped determined by
, , and 

if its base is determined by and .

32. Find such that , , and
are coplanar.

33. Determine whether the vectors ,
, and are coplanar.

34. Find the value of such that the vectors ,
, and are coplanar.

35. Determine whether the points , ,
, and are coplanar.

36. Find the area of the parallelogram shown in the figure in
terms of , , , and .

x

y

d

c

a b0

dcba

S123, �1, 12R(�1, 2, �3)
Q(2, 3, 1)P(1, 0, 1)

w � 2i � 3j � ckv � i � 2j � k
u � i � 2j � 3kc

c � j � kb � �2i � 3j � k
a � i � 2j � 4k

c � i � 3j � ck
b � i � 2j � 3ka � 2i � 3j � kc

ba
c � i � j � 3kb � 2i � j � ka � i � 2j � k

S(4, �1, 2)R(�1, 0, 3)Q(2, 1, 3)P(1, 1, 1)

S(1, 1, 4)R(1, 2, 2)Q(3, �2, 1)P(0, 0, 0)

PSPRPQ

c � �1, �1, �2�b � �2, �1, 3�a � �1, 3, 2�

c � i � 2j � 3kb � j � 2ka � i � j

cba

(3a) � (a � 2b � 3c)(a � b) � c

a � (b � c)(a � b) � c

(a � b) � c(2a) � b

c � �i � j � 2k
b � 2i � 3j � ka � i � j � k

11.4 EXERCISES

www.academic.cengage.com/V
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37. A force of magnitude 50 lb is applied at the end of an 18-in.-
long leveraged-impact lug wrench in the direction as shown
in the figure. Find the magnitude of the torque about .P

41. Let and
. Prove that

42. Prove that .

43. Prove that .

44. Prove that

45. Prove Lagrange’s identity:

46. Refer to the following figure.

a. Show that .
b. Show that , and hence deduce

the law of sines for plane triangles:

, ,

In Exercises 47–52, prove the given property of the cross-
product.

47.

48.

49.

50.

51.

52.

53. Angular Velocity Consider a rigid body rotating about a fixed
axis with a constant angular speed . The angular velocity
is represented by a vector of magnitude lying along the
axis of rotation as shown in the figure. If we place the origin
0 on the axis of rotation and let denote the position vector
of a particle in the body, then the velocity of the particle
is given by

v � � � R

v
R

v�
v

a � (b � c) � (a � c)b � (a � b)c

(a � b) � c � a � c � b � c

a � a � 0

a � 0 � 0 � a � 0

c(a � b) � (ca) � b

a � (b � c) � a � b � a � c

c � �c �b � �b �a � �a �sin A

a
�

sin B

b
�

sin C

c

a � b � b � c � c � a
a � b � c � 0

c B

C

A

b a

�a � b �2 � �a �2�b �2 � (a � b)2

(a � b) � (c � d) � ` a � c b � c
a � d b � d

`

a � (b � c) � b � (c � a) � c � (a � b) � 0

(a � b) � (a � b) � 2(b � a)

a � (b � c) � (a � b) � c � †
a1 a2 a3

b1 b2 b3

c1 c2 c3

†

c � c1i � c2 j � c3k
a � a1i � a2 j � a3k, b � b1i � b2 j � b3k

15 lb

15 lb3.5 in.

15º

15º 75ºP P

39. Force on a Proton Moving Through a Magnetic Field The force 
acting on a charge moving with velocity in a magnetic
field is given by , where is measured in
coulombs, in tesla, and in meters per second. Sup-
pose that a proton beam moves through a region of space
where there is a uniform magnetic field . The pro-
tons have velocity

Find the force on a proton if its charge is
.

40. Find and given that ,
, and . Does the associative law

hold for vector products?
c � i � kb � 3i � j � k

a � 2i � ja � (b � c)(a � b) � c

x

z

y

B

v

0

Directions of v and B

q � 1.6 � 10�19 C

v � a3

2
� 105bi � a313

2
� 105bk

B � 2k

�v ��B �
qF � qv � BB

vq
F

P

9 in.

50 lb
60º

38. A 15-lb force is applied to a stapler at the point shown. Find
the magnitude of the torque about .P
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Suppose that the axis of rotation is parallel to the vector
. What is the speed of a particle at the instant it

passes through the point ?

54. Find a unit vector in the plane that contains the vectors
and , and is perpendic-

ular to the vector .c � 3i � j � 2k
b � �i � 2j � 4ka � i � 3j � 2k

(3, 5, 2)
2i � 2j � k

0

�

R

v

55. Find and if and are parallel.

56. Find and such that , where
and .

In Exercises 57–62, determine whether the statement is true or
false. If it is true, explain why. If it is false, explain why or give
an example that shows it is false.

57.

58.

59.

60. if and only if

61.

62. If , , and then .b � ca � b � a � ca � b � a � ca � 0

(a � b) � (a � b) � 2a � b

b � ca � b � a � c

a � (a � b) � 0

[(a � b) � c] � [(a � b) � c] � 0

a � b � b � a � 0

b � �1, 3, 4�a � �2, 1, 3�
(a � b) � a � s a � t bts

b � �2, 3, b�a � ��1, a, 3�ba

11.5 Lines and Planes in Space

Equations of Lines in Space
Figure 1 depicts an airplane flying in a straight line above a ground radar station. How
fast is the distance between the airplane and the radar station changing at any time?
How close to the radar station does the airplane get? To answer questions such as these,
we need to be able to describe the path of the airplane. More specifically, we want to
be able to represent a line in space algebraically.

In this section we will see how lines as well as planes in space can be described
in algebraic terms. We begin by considering a line in space. Such a line is uniquely
determined by specifying its direction and a point through which it passes. The direc-
tion may be specified by a vector that has the same direction as the line. So suppose
that the line passes through the point and has the same direction as the
vector . (See Figure 2.)

Let be any point on . Then the vector is parallel to . But two vec-
tors are parallel if and only if one is a scalar multiple of the other. Therefore, there
exists some number , called a parameter, such that

or, since , we have

Equating the corresponding components of the two vectors then yields

, , and

Solving these equations for , , and , respectively, gives the following standard para-
metric equations of the line .L

zyx

z � z0 � tcy � y0 � tbx � x0 � ta

�x � x0, y � y0, z � z0� � t�a, b, c� � �ta, tb, tc�

P0P
!
� �x � x0, y � y0, z � z0�

P0P
!
� tv

t

vP0P
!

LP(x, y, z)
v � �a, b, c�

P0(x0, y0, z0)L
FIGURE 1
The path of the airplane is a straight
line.

y

x

z

0

x

z

L

y

P0(x0, y0, z0) P(x, y, z)

v

0

FIGURE 2
The line passes through and is
parallel to the vector .v

P0L

DEFINITION Parametric Equations of a Line

The parametric equations of the line passing through the point and
parallel to the vector are

, , and (1)z � z0 � cty � y0 � btx � x0 � at

v � �a, b, c�
P0(x0, y0, z0)
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Note Suppose and both and are not equal to zero, then the parametric equa-
tions of the line take the form

, , and z � z0 � cty � y0 � btx � x0

cba � 0

Each value of the parameter corresponds to a point on . As takes on
all values in the parameter interval , the line is traced out. (See Figure 3.)L(��, �)

tLP(x, y, z)t

FIGURE 3
As runs through all values 

in the parameter interval 
, is traced out.L(��, �)

t

EXAMPLE 1 Find parametric equations for the line passing through the point
and parallel to the vector .

Solution We use Equation (1) with , and
, obtaining

, , and

The line in question is sketched in Figure 4.

Suppose that the vector defines the direction of a line . Then the
numbers , , and are called the direction numbers of . Observe that if a line is
described by a set of parametric equations (1), then the direction numbers of are pre-
cisely the coefficients of in each of the parametric equations.

There is another way of describing a line in space. We start with the parametric
equations of the line ,

, , and

If the direction numbers , , and are all nonzero, then we can solve each of these
equations for . Thus,

, , and

which gives the following symmetric equations of .L

t �
z � z0

c
t �

y � y0

b
t �

x � x0

a

t
cba

z � z0 � cty � y0 � btx � x0 � at

L

t
L

LLcba
Lv � �a, b, c�

L

z � 3 � 2ty � 1 � 2tx � �2 � t

c � �2
x0 � �2, y0 � 1, z0 � 3, a � 1, b � 2

v � �1, 2, �2�P0(�2, 1, 3)

FIGURE 4
The line and some points on corre-
sponding to selected values of . Note
the orientation of the line.

t
LL

DEFINITION Symmetric Equations of a Line

The symmetric equations of the line passing through the point 
and parallel to the vector are

(2)
x � x0

a
�

y � y0

b
�

z � z0

c

v � �a, b, c�
P0(x0, y0, z0)L

x

z
L

y

t
t 0

P(x, y, z)

Parameter interval

x

z

y
L

P0(�2, 1, 3)   (t � 0)

(t � 1)

(t � 2)

v � �1, 2, �2�

3

5

3
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and the line lies in the plane (parallel to the -plane). Solving the second and
third equations for leads to

,

which are the symmetric equations of the line. We leave it to you to consider and inter-
pret the other cases.

y � y0

b
�

z � z0

c
x � x0

t
yzx � x0

EXAMPLE 2

a. Find parametric equations and symmetric equations for the line passing through
the points and .

b. At what point does intersect the -plane?

Solution
a. The direction of is the same as that of the vector . Since 

passes through , we can use Equation (1) with , ,
, , , and , to obtain the parametric equations

, , and

Next, using Equation (2), we obtain the following symmetric equations for :

b. At the point where the line intersects the -plane, we have . So setting
in the third parametric equation, we obtain . Substituting this value 

of into the other parametric equations gives the required point as . 
(See Figure 5.)

1�4
3, 

5
3, 0 2t

t � 1
3z � 0

z � 0xy

x � 3

5
�

y � 3

�4
�

z � 2

6

L

z � �2 � 6ty � 3 � 4tx � �3 � 5t

z0 � �2y0 � 3x0 � �3c � 6
b � �4a � 5P(�3, 3, �2)

LPQ
!
� �5, �4, 6�L

xyL
Q(2, �1, 4)P(�3, 3, �2)

L

FIGURE 5
The line intersects the 

-plane at the point .1�4
3, 

5
3, 0 2xy

L
x

z

yL

P(�3, 3, �2)

Q(2, �1, 4)

� , 0

3
4

0

5

3
4( ), 3

5

Suppose that and are lines having the same directions as the vectors and
, respectively. Then is parallel to if is parallel to .v2v1L2L1v2

v1L2L1

EXAMPLE 3 Let be the line with parametric equations

, , and

and let be the line with parametric equations

, , and

a. Show that the lines and are not parallel to each other.
b. Do the lines and intersect? If so, find their point of intersection.L2L1

L2L1

z � �3 � 4t y � 1 � 4tx � 3 � 4t

L2

z � 2 � t y � 2 � 3tx � 1 � 2t

L1
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Solution
a. By inspection the direction numbers of are , , and . Therefore, has the

same direction as the vector . Similarly, we see that has direc-
tion given by the vector . Since is not a
scalar multiple of , the vectors are not parallel, so and are not parallel as
well.

b. Suppose that and intersect at the point . Then there must exist
parameter values and such that

, , and
corresponds to on .

and

, , and
corresponds to on .

This leads to the system of three linear equations

that must be satisfied by and . Adding the first two equations gives
, or . Substituting this value of into either the first or 

the second equation then gives . Finally, substituting these values of 
and into the third equation gives , which shows that
the third equation is also satisfied by these values. We conclude that and 
do indeed intersect at a point.

To find the point of intersection, substitute into the parametric equa-
tions defining , or, equivalently substitute into the parametric equations
defining . In both cases we find that , , and , so the point
of intersection is . (See Figure 6.)

Two lines in space are said to be skew if they do not intersect and are not paral-
lel. (See Figure 7.)

(�1, 5, 1)
z0 � 1y0 � 5x0 � �1L2

t2 � 1L1

t1 � �1

L2L1

2 �1 � �3 � 4(1) � 1t2

t1t2 � 1
t1t1 � �13 � t1 � 4

t2t1

 2 � t1 � �3 � 4t2

 2 � 3t1 � 1 � 4t2

 1 � 2t1 � 3 � 4t2

L2P0t2

z0 � �3 � 4t2y0 � 1 � 4t2x0 � 3 � 4t2

L1P0t1

z0 � 2 � t1y0 � 2 � 3t1x0 � 1 � 2t1

t2t1

P0(x0, y0, z0)L2L1

L2L1v2

v1v2 � ��4, 4, 4� � �4�1, �1, �1�
L2v1 � �2, �3, 1�

L11�32L1

FIGURE 6
The lines and intersect at the
point .(�1, 5, 1)

L2L1

FIGURE 7
The lines and are skew lines.L2L1

x

z

y

L1

L2
(�1, 5, 1)

4

0

5

5

L
1

L
2

EXAMPLE 4 Flight Path of Two Airplanes As two planes fly by each other, their flight
paths are given by the straight lines

:

and

:

Show that the lines are skew and, therefore, that there is no danger of the planes col-
liding.

Solution The directions of and are given by the directions of the vectors
and , respectively. Since one vector is not a scalar

multiple of the other, the lines and are not parallel. Next, suppose that the two
lines do intersect at some point . Then

z0 � 4 � t1y0 � �2 � 3t1x0 � 1 � t1

P0(x0, y0, z0)
L2L1

v2 � ��2, 3, 4�v1 � ��1, �3, 1�
L2L1

z � 1 � 4ty � �4 � 3tx � 2 � 2tL2

z � 4 � ty � �2 � 3tx � 1 � tL1



11.5 Lines and Planes in Space 949

and

for some and . Equating the values of , and then gives

Solving the first two equations for and yields and . Substituting these 

values of and into the third equation gives , a contradiction. This shows
that there are no values of and that satisfy the three equations simultaneously.
Thus, and do not intersect. We have shown that and are skew lines, so there
is no possibility of the planes colliding.

Equations of Planes in Space
A plane in space is uniquely determined by specifying a point lying in
the plane and a vector that is normal (perpendicular) to it. (See Figure 8.)
To find an equation of the plane, let be any point in the plane. Then the vec-
tor must be orthogonal to . But two vectors are orthogonal if and only if their
dot product is equal to zero. Therefore, we must have

(3)

Since , we can also write Equation (3) as

or

a(x � x0) � b(y � y0) � c(z � z0) � 0

�a, b, c� � �x � x0, y � y0, z � z0� � 0

P0P
!
� �x � x0, y � y0, z � z0�

n � P0P
!
� 0

nP0P
! P(x, y, z)

n � �a, b, c�
P0(x0, y0, z0)

L2L1L2L1

t2t1

37
9 � 29

9t2t1

t2 � 5
9t1 � 1

9t2t1

 4 � t1 � 1 � 4t2

 �2 � 3t1 � �4 � 3t2

 1 � t1 � 2 � 2t2

z0x0, y0t2t1

z0 � 1 � 4t2y0 � �4 � 3t2x0 � 2 � 2t2

FIGURE 8
The vector lying in the 

plane must be orthogonal to the 
normal so that .n � P0P

!
� 0n

P0P
!

n
n

P
0
(x

0
, y

0
, z

0
)

P(x, y, z)

DEFINITION The Standard Form of the Equation of a Plane

The standard form of the equation of a plane containing the point 
and having the normal vector is

(4)a(x � x0) � b(y � y0) � c(z � z0) � 0

n � �a, b, c�
P0(x0, y0, z0)

EXAMPLE 5 Find an equation of the plane containing the point and hav-
ing a normal vector . Find the -, -, and -intercepts, and make a sketch
of the plane.

zyxn � �4, 2, 3�
P0(3, �3, 2)



950 Chapter 11 Vectors and the Geometry of Space

FIGURE 9
The portion of the plane

in the 
first octant
4x � 2y � 3z � 12

EXAMPLE 6 Find an equation of the plane containing the points ,
, and .

Solution To use Equation (4), we need to find a vector normal to the plane in question.
Observe that both of the vectors and lie in the plane,
so the vector is normal to the plane. Denoting this vector by , we have

Finally, using the point in the plane (any of the other two points will 
also do) and the normal vector just found, with , , , ,

, and , Equation (4) gives

or, upon simplification,

The plane is sketched in Figure 10.

13x � 3y � 11z � 47

13(x � 3) � 3(y � 1) � 11(z � 1) � 0

z0 � 1y0 � �1
x0 � 3c � 11b � 3a � 13n

P(3, �1, 1)

n � PQ
!
� PR

!
� †

i j k
�2 5 1

�3 2 3
† � 13i � 3j � 11k

nPQ
!
� PR

! PR
!
� ��3, 2, 3�PQ

!
� ��2, 5, 1�

R(0, 1, 4)Q(1, 4, 2)
P(3, �1, 1)

Solution We use Equation (4) with , , , , , and 
, obtaining

or

To find the -intercept, we note that any point on the -axis must have both its - 
and -coordinates equal to zero. Setting in the equation of the plane, we 
find that . Therefore, 3 is the -intercept. Similarly, we find that the - and 
-intercepts are 6 and 4, respectively. By connecting the points , , and

with straight line segments, we obtain a sketch of that portion of the plane
lying in the first octant. (See Figure 9.)
(0, 0, 4)

(0, 6, 0)(3, 0, 0)z
yxx � 3

y � z � 0z
yxx

4x � 2y � 3z � 12

4(x � 3) � 2(y � 3) � 3(z � 2) � 0

z0 � 2
y0 � �3x0 � 3c � 3b � 2a � 4

y

x

z

(0, 6, 0)
(3, 0, 0)

(0, 0, 4)

y

x

z

P(3, –1, 1)

Q(1, 4, 2)

R(0, 1, 4)

4

4

4

PR

n

PQ

FIGURE 10
The normal to the plane 

is .n � PQ
!
� PR

!

By expanding Equation (4) and regrouping the terms, as we did in Examples 5 and
6, we obtain the general form of the equation of a plane in space,

(5)ax � by � cz � d
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where . Conversely, given with , , and 
not all equal to zero, we can choose numbers , , and such that

. For example, if , we can pick and arbitrarily and
solve the equation for , obtaining .
Therefore, with these choices of , and , Equation (5) takes the form

or

which we recognize to be an equation of the plane containing the point and
having a normal vector . (See Equation (4).) An equation of the form

, with , , and not all zero, is called a linear equation in the
three variables , , and .zyx

cbaax � by � cz � d
n � �a, b, c�

(x0, y0, z0)

a(x � x0) � b(y � y0) � c(z � z0) � 0

ax � by � cz � ax0 � by0 � cz0

z0x0, y0

z0 � (d � ax0 � by0)>cz0ax0 � by0 � cz0 � d
y0x0c � 0ax0 � by0 � cz0 � d

z0y0x0

cbaax � by � cz � dd � ax0 � by0 � cz0

THEOREM 1
Every plane in space can be represented by a linear equation ,
where , , and are not all equal to zero. Conversely, every linear equation

represents a plane in space having a normal vector .�a, b, c�ax � by � cz � d
cba

ax � by � cz � d

Note Notice that the coefficients of , , and are precisely the components of the
normal vector . Thus, we can write a normal vector to a plane by simply
inspecting its equation.

Parallel and Orthogonal Planes
Two planes with normal vectors and are parallel to each other if and are par-
allel; the planes are orthogonal if and are orthogonal. (See Figure 11.)nm

nmnm

n � �a, b, c�
zyx

FIGURE 11
Two planes are parallel if and 

are parallel and orthogonal 
if and are orthogonal.nm

n
m

(a) Parallel planes (b) Orthogonal planes

m

n

m

n

EXAMPLE 7 Find an equation of the plane containing and parallel to the
plane defined by 2 .

Solution By Theorem 1 the normal vector of the given plane is . Since
the required plane is parallel to the given plane, it also has as a normal vector. There-
fore, using Equation (4), we obtain

2(x � 2) � 3(y � 1) � 4(z � 3) � 0

n
n � �2, �3, 4�

x � 3y � 4z � 6
P(2, �1, 3)
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FIGURE 12
The angle between two planes is the
angle between their normal vectors.

EXAMPLE 8 Find the angle between the two planes defined by and
.

Solution The normal vectors of these planes are

and

Therefore, the angle between the planes is given by

Use Equation (2) of Section 11.3.

or

u � cos�1a 1

14
b � 86°

 �
�3, �1, 2� � �2, 3, �1�

19 � 1 � 4 14 � 9 � 1
�

3(2) � (�1)(3) � 2(�1)

114 114
�

1

14

 cos u �
n1 � n2

�n1 ��n2 �

u

n2 � �2, 3, �1�n1 � �3, �1, 2�

2x � 3y � z � 4
3x � y � 2z � 1

or

as an equation of the plane.

The Angle Between Two Planes
Two distinct planes in space are either parallel to each other or intersect in a straight
line. If they do intersect, then the angle between the two planes is defined to be the
acute angle between their normal vectors (see Figure 12).

2x � 3y � 4z � 19P2

P1

¨
¨

n1

n2

EXAMPLE 9 Find parametric equations for the line of intersection of the planes de-
fined by and .

Solution We need the direction of the line of intersection as well as a point on .
To find the direction of , we observe that a vector is parallel to if and only if it
is orthogonal to the normal vectors of both planes. (See Figure 13 for the general case.)
In other words, , where and are the normal vectors of the two planes.
Here, the normal vectors are and , so the vector is
given by

To find a point on , let’s set in both of the equations defining the planes. (This
will give us the point where intersects the -plane.) We obtain

and

Solving these equations simultaneously gives and . Finally, by using Equa-
tion (1), the required parametric equations are

, , and z � 11ty �
10

11
� 7tx �

7

11
� 5t

y � 10
11x � 7

11

2x � 3y � 43x � y � 1

xyL
z � 0L

v � n1 � n2 � †
i j k
3 �1 2

2 3 �1
† � �5i � 7j � 11k

vn2 � �2, 3, �1�n1 � �3, �1, 2�
n2n1v � n1 � n2

LvL
LL

2x � 3y � z � 43x � y � 2z � 1

FIGURE 13
The vector has the same
direction as , the line of intersection 
of the two planes.

L
n1 � n2

L

n1

n2

n1 � n2P2

P1
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The Distance Between a Point and a Plane
To find a formula for the distance between a point and a plane, suppose that 
is a point not lying in the plane . Let be any point lying
in the plane. Then, as you can see in Figure 14, the distance between and the
plane is given by the length of the vector projection of onto the normal vector

of the plane. Equivalently, is the absolute value of the scalar com-
ponent of along . Using Equation (6) of Section 11.3 (and taking the absolute
value), we obtain

D �
�P0P1

!
� n �

�n �

nP0P1

! Dn � �a, b, c�
P0P1

! P1D
P0(x0, y0, z0)ax � by � cz � d

P1(x1, y1, z1)

FIGURE 14
The distance from to the plane is the length of .projn P0P1

!
P1

n

P0(x0 , y0 , z0)

P1(x1, y1, z1)

ax � by � cz � d

D
P0P1projn

But , so we have

Since lies in the plane, its coordinates must satisfy the equation of the
plane, that is, ; so we can write in the following form:

(6)D �
�ax1 � by1 � cz1 � d �

2a2 � b2 � c2

Dax0 � by0 � cz0 � d
P0(x0, y0, z0)

 �
�ax1 � by1 � cz1 � (ax0 � by0 � cz0) �

2a2 � b2 � c2

 �
�a(x1 � x0) � b(y1 � y0) � c(z1 � z0) �

2a2 � b2 � c2

 D �
� �x1 � x0, y1 � y0, z1 � z0� � �a, b, c� �

2a2 � b2 � c2

P0P1

!
� �x1 � x0, y1 � y0, z1 � z0�

EXAMPLE 10 Find the distance between the point and the plane 
.

Solution Using Equation (6) with , , , , ,
and , we obtain

D �
�2(�2) � 3(1) � 1(3) � 1 �

222 � (�3)2 � 12
�

5

114
�

5114

14

d � 1
c � 1b � �3a � 2z1 � 3y1 � 1x1 � �2

3y � z � 1
2x �(�2, 1, 3)
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1. a. Write the parametric equations of the line passing
through the point and having the same
direction as the vector .

b. What are the symmetric equations of the line of part (a)?
c. Write the parametric and symmetric equations of the line

that passes through the point and has the
same direction as the vector .

2. If you are given two lines and in space, how do 
you determine whether they are (a) parallel to each other,
(b) perpendicular to each other, or (c) skew?

L2L1

v � �a, b, 0�
P(x0, y0, z0)

v � �a, b, c�
P0(x0, y0, z0)

3. a. Write the standard form of an equation of the plane 
containing the point and having the normal
vector .

b. What is the general form of the equation of a plane in
space?

4. a. What is the angle between two planes in space? How do
you find it?

b. Write the formula giving the distance between a point
and a plane in space.

n � �a, b, c�
P0(x0, y0, z0)

11.5 CONCEPT QUESTIONS

Videos for selected exercises are available online at www.academic.cengage.com/login.V

In Exercises 1 and 2 describe in your own words the strategy
you might adopt to solve the problem. For example, to find the
parametric equations of the line passing through two distinct
points, you might use this strategy: Let and denote the two
points, and write the vector that gives the direction numbers
of the line. Then using this information and either or , write
the desired equations using Equation (1).

1. Find parametric equations of a line, given that the line
a. Passes through a given point and is parallel to a given

line.
b. Passes through a given point and is perpendicular to two

distinct lines passing through that point.
c. Passes through a given point lying in a given plane and

is perpendicular to the plane.
d. Is the intersection of two given nonparallel planes.

2. Find an equation of a plane, given that the plane
a. Contains three distinct points.
b. Contains a given line and a point not lying on the line.
c. Contains a given point and is parallel to a given plane.
d. Contains two intersecting nonparallel lines.
e. Contains two parallel and distinct lines.

In Exercises 3–6, find parametric and symmetric equations for
the line passing through the point that is parallel to the 
vector .

3. ;

4. ;

5. ;

6. ;

In Exercises 7–10, find parametric and symmetric equations for
the line passing through the given points.

7. and 

8. and (3, 4, 4)(3, �2, 1)

(1, 3, 7)(2, 1, 4)

v � �2, �3, 4�P(0, 1, 3)

v � 2i � j � 3kP(3, 0, �2)

v � 2i � 3j � kP(1, �4, 2)

v � �2, 4, 5�P(1, 3, 2)

v
P

QP
PQ

! QP

9. and 

10. and 

11. Find parametric and symmetric equations of the line passing
through the point and parallel to the line with
parametric equations , , and

. At what points does the line intersect the
coordinate planes?

12. Find parametric equations of the line passing through the
point and parallel to the line with symmetric
equation

At what point does the line intersect the -plane?

13. Determine whether the point lies on the line 
passing through the point and parallel to the 
vector .

14. Find parametric equations of the line that is parallel to the
line with equation

and contains the point of intersection of the lines

:

:

In Exercises 15–18, determine whether the lines and are
parallel, are skew, or intersect each other. If they intersect, find
the point of intersection.

15. : , ,
: , ,

16. : , ,
: , , z � 3 � ty � �2 � 2tx � �3 � tL2

z � �2 � t y � �1 � 3tx � 1 � 2tL1

z � 4 � ty � �2 � 6tx � 1 � 4tL2

z � 3 � ty � �2 � 3tx � �1 � 3tL1

L2L1

z � �3 � ty � 11 � 4tx � 6 � 2tL2

z � �1 � 2ty � 5 � tx � 4 � tL1

x � 1

4
�

y � 4

5
�

z � 1

2

v � �i � j � k
(�1, 4, 3)

L(�3, 6, 1)

yz

x � 2

3
�

y � 1

�3
� z � 2

(�1, 3, �2)

z � �2 � 3t
y � 2 � 2tx � �1 � t

(1, 2, �1)

112, �1
3, 34 2112, �1

3, 
1
4 2

11, 32, �3 21�1, �2, �1
2 2

11.5 EXERCISES
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17. : ,

:

18. :

:

In Exercises 19–22, determine whether the lines and inter-
sect. If they do intersect, find the angle between them.

19. : , ,
: , ,

20. : , ,
: , ,

21. :

:

22. :

: ,

In Exercises 23–26, find an equation of the plane that has the
normal vector and passes through the given point.

23. ;

24. ;

25. ;

26. ;

In Exercises 27–30, find an equation of the plane that passes
through the given point and is parallel to the given plane.

27. ;

28. ;

29. ;

30. ;

In Exercises 31 and 32, find an equation of the plane that passes
through the three given points.

31. , ,

32. , ,

In Exercises 33–36, find an equation of the plane that passes
through the given point and contains the given line.

33. ; , ,

34. ; , , z � 3 � ty � �2 � 3tx � �1 � 2t(�1, 2, 3)

z � 3 � 2ty � �1 � 2tx � 1 � t(1, 3, 2)

(�1, 2, 4)(1, �2, 3)(2, 3, �1)

(2, 3, 0)(1, 3, 2)(1, 0, �2)

1

2
 x �

1

3
 y �

1

4
 z � 2(0, 2, �1)

x � 3z � 1(�1, �2, �3)

x � 2y �3z � 1(2, �1, 0)

2x � 3y � z � 4(3, 6, �2)

n � �0, 0, 1�(3, 0, 3)

n � 2i �  4k(1, 3, 0)

n � i � 2j � k(�1, 3, �2)

n � �1, 2, 4�(2, 1, 5)

n

z � 4
x � 32

6
�

y � 8

�2
L2

x � 4

3
�

y � 1

�2
�

z � 3

3
L1

x � 2

2
�

y � 4

4
� z � 3L2

x � 1

�3
�

y � 2

2
�

z � 1

4
L1

z � �4 � 5ty � 1 � tx � �3 � tL2

z � 3 � ty � �2 � 2tx � 2 � 3tL1

z � 1 � ty � 3 � 2tx � 2 � 3tL2

z � t y � 3 � 2tx � 1 � tL1

L2L1

x � 1

2
�

y � 1

�4
�

z � 5

�1
L2

x � 4

�1
�

y � 1

6
� z � 4L1

x � 2

2
�

y � 3

2
� z � 1L2

y � 3
x � 2

4
�

z � 1

�1
L1 35. ;

36. ; ,

In Exercises 37 and 38, find an equation of the plane passing
through the given points and perpendicular to the given plane.

37. and ;

38. and ;

In Exercises 39–42, determine whether the planes are parallel,
orthogonal, or neither. If they are neither parallel nor orthogo-
nal, find the angle between them.

39. ,

40. ,

41. ,

42. ,

In Exercises 43 and 44, find the angle between the plane and 
the line.

43. ; , ,

44. ;

In Exercises 45 and 46, find parametric equations for the line of
intersection of the planes.

45. ,

46. ,

47. Find parametric equations of the line that passes through the 
point and is perpendicular to the plane

.

48. Find an equation of the plane that passes through the point
and is perpendicular to the line

49. Find an equation of the plane that contains the lines given by

50. Find an equation of the plane that passes through the point
and contains the line of intersection of the planes

and .

51. Find an equation of the plane that is orthogonal to the plane
and contains the line of intersection of

the planes and .

52. Find an equation of the plane that is parallel to the line of inter-
section of the planes and 
and contains the points and .(3, 4, 1)(2, 3, 5)

2x � 3y � z � 4x � y � 2z � 3

x � 2y � 3z � 52x � 3y � z � 3
3x � 2y � 4z � 7

2x � 3y � z � 2x � y � 2z � 1
(3, 4, 1)

z � 5 � 3ty � 1 � 2tx � 2 � t

z � 1 � ty � 2 � 3tx � �1 � 2t

x � 1

�2
�

y � 2

3
�

z � 4

4

(3, �2, 4)

2x � 4y � 3z � 4
(2, 3, �1)

2x � y � 3z � 63x � y � 2z � 4

x � 4y � 2z � 72x � 3y � 4z � 3

x � 1

2
�

y � 1

3
�

z

2
2x � 3y � 4z � 12

z � �1 � ty � 2 � tx � 1 � tx � y � 2z � 6

3x � 2y � 2z � 54x � 4y � 2z � 7

2x � 3y � z � 43x � y � 2z � 2

6x � 3y � 12z � �12x � y � 4z � 7

2x � 3y � 4z � 3x � 2y � z � 1

3x � 4y � 5z � 1(2, �1, 4)(�1, 3, 0)

2x � 3y � 4z � 3(�1, 3, 2)(2, 1, 1)

z � 2
x � 4

�3
�

y � 3

5
(1, 3, 0)

x � 2

2
�

y � 1

�3
�

z � 3

5
(3, �4, 5)
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In Exercises 53 and 54, find the point of intersection, if any, of
the plane and the line.

53. ; , ,

54. ;

In Exercises 55 and 56, find the distance between the point and
the plane.

55. ;

56. ;

In Exercises 57 and 58, show that the two planes are parallel
and find the distance between them.

57. ,

58. ,

59. Let be a point that is not on the line . Show that the dis-
tance between the point and the line is

where is a vector having the same direction as , and is
any point on .

In Exercises 60 and 61, use the result of Exercise 59 to find the
distance between the point and the line.

60. ; , ,

61. ;

62. Find the distance between the point and the line
passing through the points and .(1, 2, 3)(�1, 3, �1)

(1, 4, 2)

x � 2

3
�

y � 1

1
�

z � 3

2
(1, �2, 3)

z � 3 � ty � 1 � 2tx � 2 � t(3, 4, 6)

L
QLu

D �
�QP

!
� u �

�u �

LPD
LP

4x � 6y � 2z � 82x � 3y � z � 2

x � 2y � 4z � 7x � 2y � 4z � 1

3x � y � z � 2(�1, 3, �2)

2x � 3y � 4z � 7(3, 1, 2)

x � 1

3
�

y � 2

4
� z � 1x � y � 2z � 13

z � 3 � 2t
y � �1 � tx � 2 � 3t2x � 3y � z � 9

63. Show that the distance between the parallel planes
and is

In Exercises 64 and 65, find the distance between the skew lines.
(Hint: Use the result of Exercise 63.)

64. , , and
, ,

65. and

66. Find the distance between the line given by

, , and

and the plane that passes through the point and is
perpendicular to the line containing the points and

.

In Exercises 67–72, determine whether the statement is true or
false. If it is true, explain why. If it is false, explain why or give
an example that shows it is false.

67. If the lines and are both perpendicular to the line ,
then must be parallel to .

68. If the lines and do not intersect, then they must be
parallel to each other.

69. If the planes and are both perpendicular to the plane 
, then must be perpendicular to .

70. If the planes and are both parallel to a line , then 
and must be parallel to each other.

71. There always exists a unique plane passing through a given
point and a given line.

72. Given any two lines that are not coincident, there is a plane
containing the two lines.

P2

P1LP2P1

P2P1P3

P2P1

L2L1

L2L1

L3L2L1

(4, 4, 10)
(2, 1, 4)

(2, 3, 1)

z � �1 � 2ty � 2 � 6tx � 1 � 3t

x � 2 �
y � 2

�5
�

z � 1

�3

x � 1

�2
�

y � 4

�6
�

z � 3

�2

z � 1 � ty � �1 � 2tx � 1 � t
z � 2 � 3ty � �1 � 2tx � 1 � 5t

D �
�d1 � d2 �

2a2 � b2 � c2

ax � by � cz � d2ax � by � cz � d1

D

11.6 Surfaces in Space

In Section 11.5 we saw that the graph of a linear equation in three variables is a plane
in space. In general, the graph of an equation in three variables, , is a sur-
face in 3-space. In this section we will study surfaces called cylinders and quadric sur-
faces.

The paraboloidal surface shown in Figure 1a is an example of a quadric surface. A
uniformly rotating liquid acquires this shape as a result of the interaction between the
force of gravity and centrifugal force. As was explained in Section 10.1, this surface
is ideal for radio and optical telescope mirrors. (See Figure 1b.) Mathematically, a
paraboloid is obtained by revolving a parabola about its axis of symmetry. (See Fig-
ure 1c.)

F(x, y, z) � 0
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Traces
Just as we can use the - and -intercepts of a plane curve to help us sketch the graph
of a plane curve, so can we use the traces of a surface in the coordinate planes to help
us sketch the surface itself. The trace of a surface in a plane is the intersection of
the surface and the plane. In particular, the traces of in the -plane, the -plane,
and the -plane are called the -trace, the -trace and the -trace, respectively.

To find the -traces, we set and sketch the graph of the resulting equation
in the -plane. The other traces are obtained in a similar manner. Of course, if the sur-
face does not intersect the plane, there is no trace in that plane.

xy
z � 0xy

xzyzxyxz
yzxyS

S

yx

FIGURE 1

EXAMPLE 1 Consider the plane with equation . (See Example 5
in Section 11.5.) Find the traces of the plane in the coordinate planes, and sketch the
plane.

Solution To find the -trace, we first set in the given equation to obtain 
the equation . Then we sketch the graph of this equation in the 

-plane. (See Figure 2a.) To find the -trace, we set to obtain the equation
, whose graph in the -plane gives the required trace. (See Figure 2b.)

The -trace is obtained in a similar manner. (See Figure 2c.) The graph of the plane
in the first octant is sketched in Figure 2d.

xz
yz2y � 3z � 12

x � 0yzxy
4x � 2y � 12

z � 0xy

4x � 2y � 3z � 12

FIGURE 2
The traces of the plane in the coordinate planes are shown in parts (a)–(c).4x � 2y � 3z � 12

(a) Surface of rotating liquid (b) Surface of a radio telescope (c) Surface obtained by revolving a
      parabola about its axis

Axis of
symmetry

Parabola

y
x

z

0

(a) xy-trace (b) yz-trace (c) xz-trace (d) The plane in the first octant

3

4 4

6 6 3 3

4

6y
x

z

0

y
x

z

0

y
x

z

0

Sometimes it is useful to obtain the traces of a surface in planes that are parallel
to the coordinate planes, as illustrated in the next example.

V
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FIGURE 3
The traces of the surface S

HERMANN MINKOWSKI
(1864–1909)

Hermann Minkowski spent much of his
childhood in Königsberg, Germany, and
eventually attended the University of
Königsberg. While he was at the university,
his exceptional mathematical talent sur-
faced. In 1881 he submitted a proof for a
problem that had been posed by the Paris
Académie Royale des Sciences. Although
his 140-page proof was not the only one
submitted, it was deemed better formu-
lated than that of British mathematician 
H. J. Smith. The prize was awarded to
Minkowski when he was just 19 years old.

Minkowski received his doctorate from
the University of Königsberg in 1885 and
began a career in teaching. He taught at
the University of Zurich, the University of
Bonn, and the University of Königsberg.

Some of his mathematical achieve-
ments were the geometry of numbers, his
geometrical concept of volume, his investi-
gation of ternary quadratic forms, and a
generalization of this technique to ellip-
soids and other convex shapes such as
cylinders. Minkowski had an exceptional
grasp of geometrical concepts, and in 
1905, when participating in a seminar on
electron theory, he linked the theory with
that of subatomic particles proposed by
Einstein and Hendrik Lorentz. Minkowski
identified the need to visualize space as a
four-dimensional, non-Euclidian space-time
continuum. This 4-space concept became
the basis of the theory that Einstein used
in his general theory of relativity.

Minkowski died of a ruptured appendix
when he was just 44 years old.

Historical Biography
SP

L/
Ph

ot
o 

Re
se

ar
ch

er
s,

 In
c.

EXAMPLE 2 Let be the surface defined by .

a. Find the traces of in the coordinate planes.
b. Find the traces of in the plane , where is a constant.
c. Sketch the surface .

Solution
a. Setting gives , from which we see that the -trace is the 

origin . (See Figure 3a.) Next, setting gives , from which we
see that the -trace is a parabola. (See Figure 3b.) Finally, setting gives 

, so the -trace is also a parabola. (See Figure 3c.)
b. Setting , we obtain , from which we see that the trace 

of in the plane is a circle of radius centered at the point of 
intersection of the plane and the -axis, provided that . (See Figure 3d.)
Observe that if , the trace is the point (degenerate circle) obtained 
in part (a).

c. The graph of sketched in Figure 3e is called a circular paraboloid
because its traces in planes parallel to the coordinate planes are either circles or
parabolas.

z � x2 � y2

(0, 0)k � 0
k � 0z

1kz � kS
x2 � y2 � kz � k

xzz � x2
y � 0yz

z � y2x � 0(0, 0)
xyx2 � y2 � 0z � 0

S
kz � kS

S

z � x2 � y2S

0

y

x

z

y

x

y

x

z

y

x

z

y

x

z

z

z � k

xz-trace

yz-trace

xy-trace

(a) xy-trace is a point. (b) yz-trace is a parabola. (c) xz-trace is a parabola.

(d) If z � k, the trace is a circle. (e) The surface z � x2 � y2 

V
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DEFINITION Cylinder

Let be a curve in a plane, and let be a line that is not parallel to that plane.
Then the set of all points generated by letting a line traverse while parallel to

at all times is called a cylinder. The curve is called the directrix of the cylin-
der, and each line through parallel to is called a ruling of the cylinder. (See
Figure 4.)

lC
Cl

C
lC

FIGURE 4
Two cylinders. The curve is the

directrix. The rulings are parallel to .l
C

Cylinders in which the directrix lies in a coordinate plane and the rulings are per-
pendicular to that plane have relatively simple algebraic representations. Consider, for
example, the surface with equation . The -trace of is the graph of
the equation in the -plane. (See Figure 5a.) Next, observe that if 
is any point on , then the point must satisfy the equation for any
value of (since is not present in the equation). But all such points lie on the line
perpendicular to the -plane and pass through the point . This shows that the
surface is a cylinder with directrix and rulings that are parallel to the
direction of the axis of the missing variable . (See Figure 5b.)z

f(x, y) � 0S
(x, y, 0)xy

zz
f(x, y) � 0(x, y, z)C

(x, y, 0)xyf(x, y) � 0
CSxyf(x, y) � 0S

FIGURE 5
The surface is a 

cylinder with directrix defined 
by in the -plane 

and with rulings parallel to 
the direction of the axis 

of the missing variable .z

xyf(x, y) � 0
C

f(x, y) � 0

EXAMPLE 3 Sketch the graph of .

Solution The given equation has the form , where .
Therefore, its graph is a cylinder with directrix given by the graph of in
the -plane and rulings parallel to the -axis (corresponding to the variable missing in
the equation). The graph of in the -plane is the parabola shown in Fig-
ure 6a. The required cylinder is shown in Figure 6b. It is called a parabolic cylinder.

xyy � x2 � 4
zxy

y � x2 � 4
f(x, y) � x2 � y � 4f(x, y) � 0

y � x2 � 4

Cylinders
We now turn our attention to a class of surfaces called cylinders.

Rulings

C (directrix)

C

l
l

y

x

z

(x, y, z)

(x, y, 0)

0

C C

S

y

x

z

(a) C is the xy-trace. (b) C is the directrix of the cylinder S.
      The rulings are parallel to the z-axis.
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EXAMPLE 4 Sketch the graph of .

Solution The given equation has the form , where

Its graph is a cylinder with directrix given by

and rulings parallel to the -axis. The graph of

in the -plane is the ellipse shown in Figure 7a. The required cylinder is shown in
Figure 7b. It is called an elliptic cylinder.

yz

y2

4
�

z2

9
� 1

x

y2

4
�

z2

9
� 1

f(y, z) �
y2

4
�

z2

9
� 1

f(y, z) � 0

y2

4
�

z2

9
� 1

FIGURE 7

y

x

z

x

y

4

2

2

�2

�4

�4

y � x2 � 4

(a) The directrix shown in the xy-plane (b) The parabolic cylinder y � x2 � 4 

FIGURE 6
The graph of is sketched in two steps.y � x2 � 4

y

�3

2

33

�3

�2 2

x
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(b) The cylinder      �      � 1(a) The directrix      �      � 1 shown in the yz-plane 
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––
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––
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Note that, while an equation in two variables represents a curve in 2-space, the
same equation represents a cylinder when we are working in 3-space. For exam-
ple, the equation represents a circle in the plane, but the same equa-
tion represents a right circular cylinder in 3-space.

Quadric Surfaces
The equation of a sphere given in Section 11.2 and the equations in Examples 1, 2,
and 3 in this section are special cases of the second-degree equation in , , and 

where are constants. The graph of this equation is a quadric surface.
By making a suitable translation and/or rotation of the coordinate system, a quadric
surface can always be put in standard position with respect to a new coordinate sys-
tem. (See Figure 9.) With respect to the new system the equation will assume one of
the two standard forms

or

For this reason we will restrict our study of quadric surfaces to those represented by
the equations

or

When we sketch the following quadric surfaces, we will find it useful to look at their
traces in the coordinate planes as well as planes that are parallel to the coordinate planes.

In the remainder of this section, unless otherwise noted, , , and denote posi-
tive real numbers.

Ellipsoids The graph of the equation

x2

a2
�

y2

b2
�

z2

c2
� 1

cba

AX2 � BY2 � IZ � 0AX2 � BY2 � CZ2 � J � 0

AX2 � BY2 � IZ � 0AX2 � BY2 � CZ2 � J � 0

A, B, C, p , J

Ax2 � By2 � Cz2 � Dxy � Exz � Fyz � Gx � Hy � Iz � J � 0

zyx

x2 � y2 � 1

FIGURE 8

!

FIGURE 9
By translating and rotating the -
system, we have the -system in
which the paraboloid is in standard
position with respect to the latter.

XYZ
xyz

EXAMPLE 5 Sketch the graph of .

Solution The given equation has the form , where .
Therefore, its graph is a cylinder with directrix given by the graph of in the

-plane and rulings parallel to the -axis. The graph of the directrix in the -plane is
shown in Figure 8a, and the graph of the cylinder is sketched in Figure 8b.

xzyxz
z � cos x

f(x, z) � z � cos xf(x, z) � 0

z � cos x

(a) The directrix shown in the xz-plane (b) The cylinder z � cos x 

y

x

z

3π__
2�

3π__
2

π_
2� π_

2

x

z

1

�1

z

Z

Y

X

x

y
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is an ellipsoid because its traces in the planes parallel to the coordinate planes are
ellipses. In fact, its trace in the plane , where , is the ellipse

and, in particular, its trace in the -plane is the ellipse

shown in Figure 10a.
Similarly, you may verify that its traces in the planes and

are ellipses and, in particular, that its - and -traces are the
ellipses

and

respectively. (See Figures 10b–c.) The ellipsoid is sketched in Figure 10d.

x2

a2
�

z2

c2
� 1

y2

b2
�

z2

c2
� 1

xzyzy � k (�b � k � b)
x � k (�a � k � a)

x2

a2
�

y2

b2
� 1

xy

x2

a2
�

y2

b2
� 1 �

k2

c2

�c � k � cz � k

FIGURE 10
The traces in the coordinate planes and the ellipsoid 

x2

a2 �
y2

b2 �
z2

c2 � 1

Note that if , then the ellipsoid is in fact a sphere of radius with center at
the origin.

Hyperboloids of One Sheet The graph of the equation

is a hyperboloid of one sheet. The -trace of this surface is the ellipse

x2

a2
�

y2

b2
� 1

xy

x2

a2
�

y2

b2
�

z2

c2
� 1

aa � b � c

y
bbb

�b

x

z

(a) xy-trace (b) yz-trace (c) xz-trace (d) The ellipsoid

y

x

z

y

x

z

y

x

z

a
a

a

�a

cc c
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The -axis is called the axis of the hyperboloid. Note that the orientation of the
axis of the hyperboloid is associated with the term that has a minus sign in front of it.
Thus, if the minus sign had been in front of the term involving , then the surface would
have been a hyperboloid of one sheet with the -axis as its axis.

Hyperboloids of Two Sheets The graph of the equation

is a hyperboloid of two sheets. The - and -traces are the hyperbolas

and

sketched in Figures 12a–b. The trace of the surface in the plane is an ellipse

provided that . There are no values of and that satisfy the equation if 
, so the surface is made up of two parts, as shown in Figure 12c: one part lying

on or above the plane and the other part lying on or below the plane .
The axis of the hyperboloid is the -axis. Observe that the sign associated with the

variable is positive. Had the positive sign been in front of one of the other variables,
then the surface would have been a hyperboloid of two sheets with its axis along the
axis associated with that variable.

z
z

z � �cz � c
�k � � c

yx�k � � c

x2

a2
�

y2

b2
�

k2

c2
� 1

z � k

�
y2

b2
�

z2

c2
� 1�

x2

a2
�

z2

c2
� 1

yzxz

�
x2

a2
�

y2

b2
�

z2

c2
� 1

x
x

z

FIGURE 11
The traces in the coordinate plane and the hyperboloid of one sheet 

x2

a2 �
y2

b2 �
z2

c2 � 1

(Figure 11a) whereas both the - and -traces are hyperbolas (Figures 11b–c), as you
may verify. The trace of the surface in the plane is an ellipse

As increases, the ellipses grow larger and larger. The hyperboloid is sketched in
Figure 11d.

�k �

x2

a2
�

y2

b2
� 1 �

k2

c2

z � k
xzyz

(a) xy-trace (b) yz-trace (c) xz-trace (d) A hyperboloid of one sheet
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y
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z
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b a b
a�b

�a

a
�b

b
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Cones The graph of the equation

is a double-napped cone. The - and -traces are the lines and
, respectively. (See Figures 13a–b.) The trace in the plane is an ellipse,

As increases, so do the lengths of the axes of the resulting ellipses. The traces in
planes parallel to the other two coordinate planes are hyperbolas. The cone is sketched
in Figure 13c. The axis of the cone is the -axis.z

�k �

x2

a2
�

y2

b2
�

k2

c2

z � kz � 	(c>b)y
z � 	(c>a)xyzxz

x2

a2
�

y2

b2
�

z2

c2
� 0

FIGURE 13
The traces in the - and -planes and the cone 

x2

a2 �
y2

b2 �
z2

c2 � 0yzxz

Paraboloids The graph of the equation

x2

a2
�

y2

b2
� cz

FIGURE 12
The traces in the - and -planes and the hyperboloid of two sheets �

x2

a2 �
y2

b2 �
z2

c2 � 1yzxz

y

x

z

(a) xz-trace (b) yz-trace (c) A hyperboloid of two sheets

y

x

z

y
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z

�c�c�c

c c c
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x

z

(a) xz-trace (b) yz-trace (c) A cone
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FIGURE 14

Hyperbolic Paraboloids The graph of the equation

where is a real number, is called a hyperbolic paraboloid because the - and 
-traces are parabolas and the traces in planes parallel to the -plane are hyperbolas.

The graph of a hyperbolic paraboloid with is shown in Figure 14b.c � 0
xyyz

xzc

x2

a2
�

y2

b2
� cz

where is a real number, is called an elliptic paraboloid because its traces in planes
parallel to the -coordinate plane are ellipses and its traces in planes parallel to the
other two coordinate planes are parabolas. If , the surface is called a circular
paraboloid. We will let you verify these statements. The graph of an elliptic parabo-
loid with is sketched in Figure 14a. The axis of the paraboloid is the -axis, and
its vertex is the origin.

zc � 0

a � b
xy

c

y

x

z

y

x

z

(a) An elliptic paraboloid (b) A hyperbolic paraboloid

�      � cz,    c � 0
x2

––
a2

y2

––
b2 �      � cz,    c � 0

x2

––
a2

y2

––
b2

EXAMPLE 6 Identify and sketch the surface .

Solution Rewriting the equation in the standard form

we see that it represents a hyperboloid of two sheets with the -axis as its axis.
To sketch the surface, observe that the surface intersects the -axis at the points

and , as you can verify by setting in the given equation.
Next, let’s find the trace in the plane . We obtain

In particular, the trace in the plane is the ellipse

or

A sketch of this trace is shown in Figure 15a. The completed sketch of the hyperboloid
of two sheets is shown in Figure 15b.

x2

8
�

z2

24
� 1

x2

1
�

z2

3
� 8

y � 6

x2

1
�

z2

3
�

k2

4
� 1

y � k
x � z � 0(0, 2, 0)(0, �2, 0)

y
y

�
x2

1
�

y2

4
�

z2

3
� 1

12x2 � 3y2 � 4z2 � 12 � 0
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FIGURE 15
Steps in sketching a 

hyperboloid of two sheets

EXAMPLE 7 Identify and sketch the surface .

Solution Rewriting the equation in the standard form,

we see that it represents a paraboloid with the -axis as its axis. To sketch the surface,
let’s find the trace in the plane . We obtain

Letting , we see that the trace in the plane is the ellipse with equation
or, in standard form,

A sketch of this trace is shown in Figure 16a. The completed sketch of the paraboloid
is shown in Figure 16b.

y2

4
�

z2

1
� 1

12 � 3y2 � 12z2
x � 3k � 3

4k � 3y2 � 12z2

x � k
x

4x � 3y2 � 12z2

4x � 3y2 � 12z2 � 0

FIGURE 16

We now give a summary of the quadric surfaces and their general shapes, and we
also suggest an aid for sketching these surfaces. Note that in many instances, finding
the intercepts and using a judiciously chosen trace will be sufficient to help you obtain
a good sketch of the surface.

y

x

z

y

x

z

(a) The trace in the plane y � 6 (b) The hyperboloid 12x2 � 3y2 � 4z2 � 12 � 0  

y � 6

y

x

z

y

x

z

(a) The trace in the plane x � 3 (b) The paraboloid 4x � 3y2 � 12z2  � 0  

x � 3

V

V
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Equation Surface (computer generated) Aid for Sketching the Figure

Ellipsoid

Note: All signs are positive.

x2

a2 �
y2

b2 �
z2

c2 � 1

Find -, -, and -intercepts, and then
sketch.

zyx

Hyperboloid of One Sheet

Notes:

1. One sign is negative.
2. The axis lies along the coordinate axis

associated with the variable with the
negative coefficient.

x2

a2 �
y2

b2 �
z2

c2 � 1

Sketch the trace on the plane (in
this case) for an appropriate value of 
and for . Then use symmetry.z � 0

k
z � k

Hyperboloid of Two Sheets

Notes:

1. Two signs are negative.
2. The axis lies along the coordinate axis

associated with the variable with the
positive coefficient.

�
x2

a2 �
y2

b2 �
z2

c2 � 1

Sketch the trace on the plane (in
this case) for an appropriate value of .
Find the -intercept (in this case) and use
symmetry.

z
k

z � k

y

x

z

y

x

z

�c

�b �a

c

a b

y

x

z

y

x

z

z � k

y

x

z
z � k

y

x

z

(continued)



968 Chapter 11 Vectors and the Geometry of Space

Equation Surface (computer generated) Aid for Sketching the Figure

Cone

Notes:

1. One sign is negative.
2. The constant term is zero.
3. The axis lies along the coordinate axis

associated with the variable with the
negative coefficient.

x2

a2 �
y2

b2 �
z2

c2 � 0

Sketch the trace on the plane (in
this case) for an appropriate value of .
Then use symmetry.

k
z � k

Paraboloids

Notes:

1. There are two positive signs.
2. The axis lies along the coordinate 

axis associated with the variable of
degree 1.

3. It opens upward if and opens
downward if .c � 0

c � 0

x2

a2 �
y2

b2 � cz

Sketch the trace on the plane (in
this case) for an appropriate value of .k

z � k

y

x

z

y

x

z

z � k

y

x

z

y

x

z

z � k
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Equation Surface (computer generated) Aid for Sketching the Figure

Hyperbolic Paraboloid

Note: There is one positive and one nega-
tive sign.

x2

a2 �
y2

b2 � cz

a. For the case , sketch the parabolas

and

b. Sketch the hyperbola

for an appropriate value of .

c. Complete your sketch.

k

x2

a2 �
y2

b2 � ck

z � �
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cb2z �
x2

ca2

c � 0
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1. What is the trace of a surface in a plane? Illustrate by show-
ing the trace of the surface in the plane .

2. What is a cylinder? Illustrate by sketching the cylinder
.x � y2 � 4

z � 4z � x2 � y2
3. a. What is a quadric surface?

b. Write a standard equation for (1) an ellipsoid, (2) a
hyperboloid of one sheet, (3) a hyperboloid of two
sheets, (4) a cone, (5) an elliptic paraboloid, and (6) a
hyperbolic paraboloid.

11.6 CONCEPT QUESTIONS

In Exercises 1–12, sketch the graph of the cylinder with the
given equation.

1. 2.

3. 4.

5. 6.

7. 8.

9. 10.

11. 12. ,

In Exercises 13–20, match each equation with one of the graphs
labeled (a)–(h).

13. 14.

15. 16.

17. 18.

19. 20.

5

32

(b)

y

x

z

y

x

z

2

4
1

(a)

x2 � z2 � �y
x2

4
�

y2

9
�

z2

25
� 1

x2 �
y2

4
� �zx2 �

z2

4
� y

x2 � y2 � z2 � 0�2x2 � 2y2 � z2 � 1

x2 �
y2

9
� z2 � 9x2 �

y2

16
�

z2

4
� 1

�p2 � x � p
2y � sec xz � cos y

y2 � x2 � 1yz � 1

x2 � 4z2 � 169x2 � 4y2 � 36

y � z2 � 9z � 4 � x2

y � 4x2x2 � z2 � 16

y2 � z2 � 9x2 � y2 � 4

In Exercises 21–44, write the given equation in standard form
and sketch the surface represented by the equation.

21.

22.

23.

24.

25. 4x2 � 4y2 � z2 � 4

36x2 � 100y2 � 225z2 � 900

9x2 � 4y2 � z2 � 36

4x2 � 4y2 � z2 � 16

4x2 � y2 � z2 � 4

(h)

y

x

z(g)

y

x

z

(f)

y

x

33

1

z

y

x

z(e)

(d)

y

x

z(c)

y

x

z

3

33

11.6 EXERCISES

Videos for selected exercises are available online at www.academic.cengage.com/login.V
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26. 27.

28. 29.

30. 31.

32.

33. 34.

35. 36.

37. 38.

39. 40.

41. 42.

43. 44.

In Exercises 45–50, sketch the region bounded by the surfaces
with the given equations.

45. , , , and

46. and

47. , , , , and

48. , , , , and

49. and

50. and

In Exercises 51 and 52, find an equation of the surface satisfying
the conditions. Identify the surface.

51. The set of all points equidistant from the point 
and the plane .

52. The set of all points whose distance from the -axis is twice
its distance from the -plane.

53. Show that the curve of intersection of the surfaces
and 

lies in a plane.
4x2 � 2y2 � 6z2 � 4x � 42x2 � y2 � 3z2 � 2y � 6

xz
y

x � 3
(�3, 0, 0)

z � 2 � x2 � y2z � x2 � y2

z � 9 � x2 � y2z �2x2 � y2

z �  0y � 0x � 0x2 � z2 � 1y2 � z2 � 1

z �  0y � 0x � 0x � z � 2x2 � y2 � 4

z �  2z �2x2 � y2

z �  0y � 0x � 0x � 3y � 2z � 6

x2 � y2 � zy2 � x2 � z

z � x2 � 4y2 � 4z � x2 � y2 � 4

x2 � z2 � y � 1x2 � 9y2 � z

y2 � z2 � xx2 � y2 � z

x2 � 4y2 � 16z2 � 09x2 � 4y2 � z2 � 0

y2 � z2 � x2x2 � y2 � z2 � 0

4x2 � 3y2 � 12z2 � 12 � 0

4x2 � y2 � 2z2 � 4 � 0y2 � x2 � 9z2 � 9

z2 � x2 � y2 � 19x2 � 9y2 � 4z2 � 36

x2 � 4y2 � z2 � 49x2 � 9z2 � 4y2 � 36 54. Show that the straight lines 
: and 
: ,

passing through each point on the hyperbolic
paraboloid , both lie entirely on the surface.
Note: This shows that the hyperbolic paraboloid is a ruled surface,
that is, a surface that can be swept out by a line moving in space.
The only other quadric surfaces that are ruled surfaces are cylinders,
cones, and hyperboloids of one sheet.

In Exercises 55–60, use a computer algebra system (CAS) to plot
the surface with the given equation.

55. 56.

57. 58.

59.

60.

In Exercises 61–64, determine whether the statement is true or
false. If it is true, explain why. If it is false, explain why or give
an example that shows it is false.

61. The graph of in 3-space is a line lying in the 
-plane.

62. The graph of and is the graph of an
ellipse lying in the -plane.

63. The surface is an ellipsoid obtained 

by stretching the ellipsoid by a factor 

of 2 in each of the -, -, and -directions.

64. The surface is obtained by translating

the paraboloid vertically.
x2

a2 �
y2

b2 � cz

x2

a2 �
y2

b2 � c(z � z0)

zyx

x2

a2 �
y2

b2 �
z2

c2 � 1

x2

a2 �
y2

b2 �
z2

c2 � 4

xz
y � 09x2 � 4z2 � 1

xy
y � x � 3

x2 � 2x � 4y2 � 16y � z � 0

�x2 � y2 � z � 0

�x2 � 3y2 � z2 � 0�2x2 � 9y2 � z2 � 1

�x2 � 4y2 � z2 � 22x2 � 3y2 � 6z2 � 36

z � y2 � x2
(a, b, b2 � a2)

x � a � t, y � b � t, z � b2 � a2 � 2(b � a)tL2

x � a � t, y � b � t, z � b2 � a2 � 2(b � a)tL1

cas

11.7 Cylindrical and Spherical Coordinates

Just as certain curves in the plane are described more easily by using polar coordinates
than by using rectangular coordinates, there are some surfaces in space that can be
described more conveniently by using coordinates other than rectangular coordinates.
In this section we will look at two such coordinate systems.

The Cylindrical Coordinate System
The cylindrical coordinate system is just an extension of the polar coordinate system
in the plane to a three-dimensional system in space obtained by adding the (perpen-
dicular) -axis to the system (see Figure 1).

A point in this system is represented by the ordered triple , where and
are the polar coordinates of the projection of onto the -plane and is the directed

distance from to .P(r, u, 0)
zxyPu

r(r, u, z)P
z

x

x
r

y

z

z

y

P(r, ¨, z)

(r, ¨, 0)

¨
0

FIGURE 1
The cylindrical coordinate system
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The relationship between rectangular coordinates and cylindrical coordinates can
be seen by examining Figure 1. If has representation in terms of rectangu-
lar coordinates, then we have the following equations for converting cylindrical coor-
dinates to rectangular coordinates and vice versa.

(x, y, z)P

Converting Cylindrical to Rectangular Coordinates

(1)z � zy � r sin ux � r cos u

Converting Rectangular to Cylindrical Coordinates

(2)z � ztan u �
y

x
r 2 � x2 � y2

EXAMPLE 1 The point is expressed in cylindrical coordinates. Find its rect-
angular coordinates.

Solution We are given that , , and . Using the equations in (1),
we have

and

Therefore, the rectangular coordinates of the given point are . (See Fig-
ure 2.)

1312
2 , 312

2 , 3 2
z � 3

 y � r sin u � 3 sin 
p

4
�

312

2

 x � r cos u � 3 cos 
p

4
�

312

2

z � 3u � p>4r � 3

13, p4 , 3 2

FIGURE 2
The point can be written as 

in rectangular coordinates.1312
2 , 312

2 , 3 2P

EXAMPLE 2 The point is expressed in rectangular coordinates. Find
its cylindrical coordinates.

Solution We are given that , , and . Using the equations in
(2), we have

and

So , and

where is an integer; and .z � 2n

u � tan�1(�1) � np �
3

4
 p � np

r � 	2

tan u �
y

x
�
12

�12
� �1

r 2 � x2 � y2 � (�12)2 � (12)2 � 2 � 2 � 4

z � 2y � 12x � �12

(�12, 12, 2)

x

z

y

P

2
1

1 2

3

2

1

4
π

2
3

3, 4
π( ), 0

3, 4
π( ), 3 , ( ), 3

√2

2
3√2

2
3√2

2
3√2
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FIGURE 3
The point can be written as 

or , among 
others, in cylindrical coordinates.

1�2, 7p4 , 2 212, 3p4 , 2 2 P

FIGURE 4
The circular cylinder has the simple
representation in cylindrical
coordinates.

r � c

We have two choices for and infinitely many choices for . For example, we have
the representations

If we pick 

and

If we pick 

The point is shown in Figure 3. Note that neither the combination and 
nor and in Example 2 will do. (Why?)

Cylindrical coordinates are especially useful in describing surfaces that are sym-
metric about the -axis. For example, the circular cylinder with rectangular equation

has the simple representation in the cylindrical coordinate system.
(See Figure 4.)

r � cx2 � y2 � c2
z

u � 3p>4r � �2
u � 7p>4r � 2

r � 0a�2, 
7p

4
, 2b

r � 0a2, 
3p

4
, 2b

ur

x

z

y

r

P

2

2

2
2

(�√2,

�

¨ √2

√2

√2, 2)

(c, 0, 0)

(0, c, 0)

z

x

y

EXAMPLE 3 Find an equation in cylindrical coordinates of the surface with the given
rectangular equation.

a. b. c.

Solution In each case we use the relationship .
a. We obtain as the required equation.
b. Here, .
c. Here we have ,

The surfaces are shown in Figure 5.

9r 2 � 4z2 � 36

9(x2 � y2) � 4z2 � 36
r 2 � z2

r 2 � 9z
r 2 � x2 � y2

9x2 � 9y2 � 4z2 � 36x2 � y2 � z2x2 � y2 � 9z

FIGURE 5

(a)  x2 � y2 � 9z; r � 3   z    (paraboloid)   

y

x

z

y

x

z

y

x

z

√ (b)  x2 � y2 � z2; r � z    (cone)   (c)  9x2 � 9y2 � 4z2 � 36; z2 � 9 �   r2    (ellipsoid)   9__
4

2

2

3

EXAMPLE 4 Find an equation in rectangular coordinates for the surface with the
given cylindrical equation.

a. b. r 2 cos 2u � z2 � 4u �
p

4
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FIGURE 6

The Spherical Coordinate System
In the spherical coordinate system a point is represented by an ordered triple

, where is the distance between and the origin, is the same angle as the
one used in the cylindrical coordinate system, and is the angle between the positive
-axis and the line segment . (See Figure 7.) Note that the spherical coordinates sat-

isfy , , and .
The relationship between rectangular coordinates and spherical coordinates can be

seen by examining Figure 7. If has representation in terms of rectangular
coordinates, then

and

Since
and

we have the following equations for converting spherical coordinates to rectangular
coordinates and vice versa.

z � r cos fr � r sin f

y � r sin ux � r cos u

(x, y, z)P

0 � f � p0 � u � 2pr � 0
OPz

f

uPr(r, u, f)
P

FIGURE 7
The spherical coordinate system

Solution
a. Using the equations in (2), we have

or

b. First, we use the trigonometric identity to rewrite the
given equation in the form

Using the equations in (1), we then obtain

The surfaces are shown in Figure 6. Note that Figure 6a shows only the part of the
plane in the first octant.

x2 � y2 � z2 � 4

 r 2 cos2 u � r 2 sin2 u � z2 � 4

 r 2(cos2 u � sin2 u) � z2 � 4

cos 2u � cos2 u � sin2 u

y � x

y

x
� tan u � tan 

p

4
� 1

y

x

z

00

y

x

z

(b)  r2 cos 2¨  � z2 � 4; x2 � y2 � z2 � 4    (hyperboloid of two sheets)   (a)  ¨  �   ;  y � x    (vertical plane)   

π__
4

π_
4

x

x
z

r

y

z

y

P(®, ¨, ƒ)ƒ ®
O

¨
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Converting Spherical to Rectangular Coordinates

(3)z � r cos fy � r sin f sin ux � r sin f cos u

Converting Rectangular to Spherical Coordinates

(4)cos f �
z

r
tan u �

y

x
r2 � x2 � y2 � z2

EXAMPLE 5 The point is expressed in spherical coordinates. Find its rect-
angular coordinates.

Solution Using the equations in (3) with , , and , we have

and

Thus, in terms of rectangular coordinates the given point is .1312
4 , 316

4 , 312
2 2

z � r cos f � 3 cos 
p

4
� 3a12

2
b �

312

2

 y � r sin f sin u � 3 sin 
p

4
sin 
p

3
� 3a12

2
b a13

2
b �

316

4

 x � r sin f cos u � 3 sin 
p

4
cos 
p

3
� 3a12

2
b a1

2
b �

312

4

f � p>4u � p>3r � 3

13, p3 , p4 2

EXAMPLE 6 The point is given in rectangular coordinates. Find its spher-
ical coordinates.

Solution We use the equations in (4). First, we have

so . (Remember that .) Next, from

we see that . Finally, from

we see that . Therefore, in terms of spherical coordinates, the given point isf � p>3
cos f �

z

r
�

2

4
�

1

2

u � p>3
tan u �

y

x
�

3

13
� 13

r � 0r � 4

r2 � x2 � y2 � z2 � (13)2 � 32 � 22 � 3 � 9 � 4 � 16

(13, 3, 2)

.

Spherical coordinates are particularly useful in describing surfaces that are 
symmetric about the origin. For example, the sphere with rectangular equation

has the simple representation in the spherical coordinate sys-
tem. (See Figure 8a.) Also, shown in Figures 8b–8c are surfaces described by the equa-
tions and , where .0 � c � p

2f � cu � c

r � cx2 � y2 � z2 � c2

14, p3 , p3 2
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FIGURE 8

EXAMPLE 7 Find an equation in spherical coordinates for the paraboloid with rect-
angular equation .

Solution Using the equations in (3), we obtain

or

r sin2 f � 4 cos f

 � r2 sin2 f

 � r2 sin2 f(cos2 u � sin2 u)

 4r cos f � r2 sin2 f cos2 u � r2 sin2 f sin2 u

4z � x2 � y2

EXAMPLE 8 Find an equation in rectangular coordinates for the surface with spher-
ical equation .

Solution Multiplying both sides of the given equation by gives

Then, using the equations in (4), we have

or, upon completing the square in , we obtain

which is an equation of the sphere with center and radius 2.(0, 0, 2)

x2 � y2 � (z � 2)2 � 4

z

x2 � y2 � z2 � 4z

r2 � 4r cos f

r

r � 4 cos f

1. Sketch the cylindrical coordinate system, and use it as an
aid to help you give the equations (a) for converting cylin-
drical coordinates to rectangular coordinates and (b) for con-
verting rectangular coordinates to cylindrical coordinates.

2. Sketch the spherical coordinate system, and use it as an aid
to help you give the equations (a) for converting spherical
coordinates to rectangular coordinates and (b) for converting
rectangular coordinates to spherical coordinates.

11.7 CONCEPT QUESTIONS

y

x

z

(c) ƒ � c    (half-cone)

y

x

z

0

y

x

z

(b)  ¨ � c    (vertical plane)   (a) ® � c    (sphere)   

¨  � c

® � c

ƒ � c
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Videos for selected exercises are available online at www.academic.cengage.com/login.V

In Exercises 1–6, the point is expressed in cylindrical coordi-
nates. Write it in terms of rectangular coordinates.

1. 2.

3. 4.

5. 6.

In Exercises 7–12, the point is expressed in rectangular coordi-
nates. Write it in terms of cylindrical coordinates.

7. 8.

9. 10.

11. 12.

In Exercises 13–18, the point is expressed in spherical coordi-
nates. Write it in terms of rectangular coordinates.

13. 14.

15. 16.

17. 18.

In Exercises 19–24, the point is expressed in rectangular coordi-
nates. Write it in terms of spherical coordinates.

19. 20.

21. 22.

23. 24.

In Exercises 25–30, the point is expressed in cylindrical coordi-
nates. Write it in terms of spherical coordinates.

25. 26.

27. 28.

29. 30.

In Exercises 31–36, the point is expressed in spherical coordi-
nates. Write it in terms of cylindrical coordinates.

31. 32.

33. 34.

35. 36.

37. Find the distance between and , where the
points are given in cylindrical coordinates.

38. Find the distance between and , where the
points are given in spherical coordinates.

In Exercises 39–58, identify the surface whose equation is given.

39. 40.

41. 42.
(spherical 
coordinates)u �

p

6
r � 2

z � 2r � 2

13, p, p2 214, p2 , 2p3 2
(1, p, 2)12, p3 , 0 2

15, p4 , 3p4 211, p4 , p3 2
14, �p6 , p6 212, 3p2 , p2 2
15, p6 , p2 2(3, 0, 0)

112, p2 , 5 214, p6 , 6 2
(12, p, 5)14, p3 , �42
12, p2 , �2212, p4 , 0 2

(13, 1, 213)(0, 213, 2)

(�2, 213, 4)(13, 0, 1)

(1, 1, 1)(�2, 0, 0)

11, p, p2 215, p6 , p4 2
13, p4 , 3p4 212, 0, p4 2
12, p2 , p6 2(5, 0, 0)

(13, �1, 4)(13, 1, �2)

(12, �12, 4)(1, 13, 5)

(3, 3, 3)(2, 0, 3)

(1, p, p)13, �p6 , 22
12, p3 , 5 2112, p4 , 132
(4, 0, �3213, p2 , 2 2

43. 44.

45. 46.

47. 48.

49. 50.

51. 52.

53. 54.

55. 56.

57. 58.

In Exercises 59–66, write the given equation (a) in cylindrical
coordinates and (b) in spherical coordinates.

59. 60.

61. 62.

63. 64.

65. 66.

In Exercises 67–70, sketch the region described by the inequalities.

67. 68.

69. , ,

70. ,

71. Spherical Coordinate System for the Earth A spherical coordinate
system for the earth can be set up as follows. Let the origin
of the system be at the center of the earth, and choose the
positive -axis to pass through the point of intersection of
the equator and the prime meridian and the positive -axis to
pass through the North Pole. Recall that the parallels of lati-
tude are measured from 0° to 90° degrees north and south of
the equator and the meridians of longitude are measured
from 0° to 180° east and west of the prime meridian.

a. Express the locations of Los Angeles (latitude 34.06°
North, longitude 118.25° West) and Paris (latitude 48.52°
North, longitude 2.20° East) in terms of spherical coordi-
nates. Take the radius of the earth to be 3960 miles.

P(®, ¨, ƒ)

y

x

z

Equator (0° latitude) 

0

Greenwich
(England)

Prime meridian (0° longitude) 

z
x

r � 20 � f � p
4

0 � r � a sec f0 � f � p
60 � u � 2p

r 2 � z � 4 � r 2r � z � 2

x2 � y2 � z2 � 1x2 � z2 � 4

x2 � y2 � 4y2x � 3y � 4z � 12

x2 � y2 � 9x2 � y2 � 2z

x2 � y2 � z2 � 4x2 � y2 � z2 � 4

r2 � 4r � 3 � 0r 2 � 3r � 2 � 0

r2(sin2 f � 2 cos2 f) � 1r � 2 csc f sec u

3r 2 � 4z2 � 12r 2 � z2 � 16

r � 4 cos fz � r 2 sin2 u

r � �csc ur sec u � 4

r sin f � 3r cos f � 3

r � 6 sin uz � 4 � r 2

z � 4r 2f �
p

4
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b. Express the points found in part (a) in terms of rectangu-
lar coordinates.

c. Find the great-circle distance between Los Angeles and
Paris. (A great circle is the circle obtained by intersect-
ing a sphere with a plane passing through the center of
the sphere.)

72. A geodesic on a surface is the curve that minimizes the dis-
tance between any two points on the surface. Suppose a
cylinder of radius is oriented so that its axis coincides with
the -axis of a cylindrical coordinate system. If 
and are two points on the cylinder, show that the
length of the geodesic joining to is

2r 2(u2 � u1)
2 � (z2 � z1)

2

P2P1

P2(r, u2, z2)
P1(r, u1, z1)z

r

In Exercises 73–76, determine whether the statement is true or
false. If it is true, explain why. If it is false, explain why or give
an example that shows it is false.

73. The representation of a point in the cylindrical coordinate
system is not unique.

74. The equation in cylindrical coordinates represents
the plane with rectangular equation .

75. The equation , where is a constant, in cylindrical
coordinates and the equation in spherical coordinates
represent different surfaces.

76. The surface defined by the spherical equation is
the same as the surface defined by the rectangular equation

.x2 � y2 � z2

f � p>4
u � c

cu � c

y � x
u � p>4

In Exercises 1–14, fill in the blanks.

1. a. A vector is a quantity that possesses both and
.

b. A vector can be represented by an ; the
points in the of the vector, and the
of the arrow gives its magnitude.

c. The vector has point and
point .

d. Two vectors and are equal if they have the same
and .

2. a. The scalar multiple of a scalar and a vector is the
vector whose magnitude is times
that of and the direction is the same as that of if

and opposite that of if .
b. The vector is represented by the arrow with tail at

the point of and head at the point
of .

c. The vector is defined to be the vector .

3. a. A vector in the plane is an ordered pair 
of real numbers and , called 
the components of . The zero vector is 

.
b. If and , then .

If and is a scalar, then .

4. a. If , then a unit vector having the same direction as
is .

b. The vectors and are called
the vectors. If is any vector in the
plane, then can be expressed in terms of and as

.a �
jia

a
j �i �

u �a
a � 0

ca �ca � �a1, a2�
a � b �b � �b1, b2�a � �a1, a2�

0 �
a

a �

v � w
w

v
v � w

v
vv

vc

wv

v � AB
!

c. If is the angle that the unit vector makes with the
positive -axis, then can be written in terms of as

.

5. a. The standard equation of a sphere with center 
and radius is

.
b. The midpoint of the line segment joining the points

and is .

6. a. The vector with initial point and terminal
point is .

b. A vector in 3-space can be written in
terms of the basis vectors , ,
and as .

7. a. The dot product of and is
and is a .

b. The magnitude of a vector can be written in terms of
the dot product as .

c. The angle between two nonzero vectors and is given
by .

8. a. Two nonzero vectors and are orthogonal if and only
if .

b. The angles , , and that a nonzero vector makes
with the positive -, -, and -axes, respectively, are
called the angles of .

c. The direction cosines of a nonzero vector
satisfy .

9. a. The vector obtained by projecting onto the line con-
taining the vector is called the 
of onto ; it is also called the 
of along .ab

ab
a

b

a � ai � bj � ck

a
zyx

agba

ba

cos u �
ba

�a � �
a

a � b �
b � �b1, b2, b3�a � �a1, a2, a3�

a �k �
j �i �

a � �a1, a2, a3�
P1P2

!
�P2(x2, y2, z2)

P1(x1, y1, z1)

P2(x2, y2, z2)P1(x1, y1, z1)

(x � h)2 � (y � k)2 � (z � l)2 � r 2

u �
uux

uu

CONCEPT REVIEW
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b. The length of is called the 
of along .

c. .
d. The work done by a constant force in moving 

an object along a straight line from to is 
.

10. a. If and are nonzero vectors in 3-space, then is
to both and .

b. If is the angle between and , then
.

c. Two nonzero vectors and are parallel if and only if
.

11. a. The scalar triple product of , , and is .
b. The volume of the parallelepiped determined by , ,

and is .

12. a. The parametric equations of the line passing through
and parallel to are .v � �a, b, c�P0(x0, y0, z0)

V �c
baV

cba

a � b �
ba

�a � b � �
ba0 � u � p

ba
a � bba

W �
QP

F
projab �

ab
projab b. The symmetric equations of the line passing through

and parallel to are .

13. a. The standard form of the equation of the plane contain-
ing the points and having the normal vector

is .
b. The linear equation represents a

in space having the normal vector .
The acute angle between two intersecting planes is the
angle between their .

14. a. If a point has rectangular coordinates and 
cylindrical coordinates , then ,

, and ; and ,
, and .

b. If a point has rectangular coordinates and 
spherical coordinates , then ,

, and ; and ,
, .cos f �tan u �

r2 �z �y �
x �(r, u, f)

(x, y, z)
z �tan u �

r 2 �z �y �
x �(r, u, z)
(x, y, z)

ax � by � cz � d
n � �a, b, c�

P0(x0, y0, z0)

v � �a, b, c�P0(x0, y0, z0)

In Exercises 1–17, let , , and
. Find the given quantities.

1. 2.

3. 4.

5. 6.

7. 8.

9.

10. The angle between and 

11. Two unit vectors having the same direction as 

12. A vector having twice the magnitude of and direction
opposite to that of 

13. The direction cosines of 

14. The scalar projection of onto 

15. The vector projection of onto 

16. The scalar projection of onto 

17. The volume of the parallelepiped determined by , , and 

18. Which of the following are legitimate operations?
a.
b.
c.

19. Show that and are
orthogonal.

20. Find the value of such that and
are orthogonal.

21. Find such that , , and
are coplanar.

22. Find two unit vectors that are orthogonal to and
.�2, 3, �2�

�3, 1, �2�

c � i � 3j � ck
b � i � 2j � 3ka � 2i � 3j � kc

2xi � 3j � 6k
3i � xj � 2kx

b � 3i � 6j � 3ka � 2i � 3j � 4k

(�a �b � �b � a � c)
a � (b � c)
a � (b � c)

cba

ab � c

ab

ab

b

a
a

c

ba

a � (b � c)

�a � a �a � (b � c)

�b � (c � a) �a � c

�a � � �c ��3a � 2b �
a � (b � c)2a � 3b

c � 3i � 2j � k
b � i � 2j � ka � 2i � j � 3k 23. Find the acute angle between two diagonals of a cube.

24. Find the volume of the parallelepiped with adjacent sides
, , and , where , , ,

and .

25. a. Find a vector perpendicular to the plane passing through
the points , , and .

b. What is the area of the triangle with vertices , ,
and ?

26. A force moves an object along the line
segment from to . Find the work done
by the force if the distance is measured in feet and the force
is measured in pounds.

27. A constant force has a magnitude of 20 newtons and acts in
the direction of the vector . If this force
moves a particle along the line segment from to

and the distance is measured in meters, find the
work done by the force.

28. Two men wish to push a crate in the -direction as shown in
the figure. If one man pushes with a force of magnitude
80 N in the direction indicated in the figure and the second
man pushes in the indicated direction, find the force with
which he must push.

x

F1

F2

30º

60º

F2

F1

x

(2, 1, 4)
(1, 2, 1)

a � 2i � j � 3k

(2, 1, 1)(�3, �1, 1)
F � i � 2j � 4k

R
QP

R(3, 2, 1)Q(2, 3, 1)P(�1, 2, �2)

D(5, �2, 0)
C(4, �1, 1)B(2, 0, 1)A(2, �1, 1)ADACAB

REVIEW EXERCISES
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29. Two forces and with magnitude 10 N and 8 N, respec-
tively, are applied to a bar as shown in the figure. Find the
resultant torque about the point 0.

In Exercises 30–33, find (a) parametric equations and (b) sym-
metric equations for the line satisfying the given conditions.

30. Passes through and has the direction of

31. Passes through and 

32. Passes through and is parallel to the line with
parametric equations , ,

33. Passes through and is perpendicular to
and 

In Exercises 34–37, find an equation of the plane satisfying the
given conditions.

34. Passes through and has a normal vector

35. Passes through and is parallel to the plane with
equation 

36. Passes through , , and 

37. Passes through and is parallel to the -plane

38. Find the point of intersection (if any) of the line with para-
metric equations , , and 
and the plane 

39. Find the distance between the point and the plane

40. Determine whether the lines with parametric equations
, , , and ,
, are parallel, are skew, or intersect. 

If they intersect, find the point of intersection.

41. Show that the lines with symmetric equations

and

intersect, and find the angle between the two lines.

42. Determine whether the planes and
are parallel, perpendicular, or neither. 

If they are neither parallel nor perpendicular, find the angle
between them.

2x � 3y � 5z � 8
2x � 3y � 4z � 12

x � 2

�3
�

y � 1

1
�

z � 1

3

x � 1

�2
�

y � 3

�1
�

z

2

z � 2 � ty � 2 � 3t
x � 1 � 2tz � 3 � 2ty � �1 � 2tx � 3 � 3t

2x � 3y � 4z � 12
(2, 1, 4)

2x � 3y � 4z � 6
z � 2 � 3ty � �1 � tx � 1 � 2t

xz(3, 2, 2)

(3, 1, 5)(2, �2, 4)(�2, 1, 1)

2x � 4y � 3z � 12
(�2, 4, 3)

2i � 3j � 5k
(�1, 2, 3)

v � �3, 2, 5�u � �1, �2, 1�
(1, 2, 4)

z � �1 � ty � 2 � 3tx � 1 � 2t
(2, �1, 3)

(2, �1, 3)(�1, 2, �4)

v � i � 2j � 3k
(2, 3, 1)

3 m

30º

F1

F2

4 m

0

F2F1 In Exercises 43 and 44, find the distance between the parallel
planes.

43. ;

44. ;

45. Find the distance between the point and the plane
.

46. Find the curve of intersection of the plane and
the cylinder .

In Exercises 47–50, describe and sketch the region in 3-space
defined by the inequality or inequalities.

47.

48.

49. , , ,

50. ,

In Exercises 51–58, identify and sketch the surface represented
by the given equation.

51. 52.

53. 54.

55.

56.

57.

58.

59. The point is expressed in rectangular coordinates.
Write it in terms of cylindrical and spherical coordinates.

60. The point is expressed in cylindrical coordinates.
Write it in terms of rectangular and spherical coordinates.

61. The point is expressed in spherical coordinates.
Write it in terms of rectangular and cylindrical coordinates.

In Exercises 62–66, identify the surface whose equation is given.

62. 63.
(spherical 
coordinates)

64. 65.

66.

In Exercises 67–70, write the given equation (a) in cylindrical
coordinates and (b) in spherical coordinates.

67. 68.

69. 70.

In Exercises 71 and 72, sketch the region described by the given
inequalities.

71. ,

72. , r � 20 � f � p
3

0 � u � p
20 � r � z

x2 � y2 � z2 � 2yx2 � y2 � 2z2 � 1

x2 � y2 � z2 � 9x2 � y2 � 2

r � 2 sec f

r � 2 sin uf �
p

3

u �
p

3
z � �2

12, p4 , p3 2
12, p6 , 4 2
(1, 1, 12)

z � sin y

x2 � z2 � y

225x2 � 100y2 � 36z2 � 900

4x2 � 9z2 � y2

9x2 � 4y2 � z2 � 36x � y2 � z2

x � 9 � y22x � y � 6

0 � z � 29x2 � 4y2 � 36

0 � z � 10 � y � 10 � x � 1y � x

1 � x2 � z2 � 4

x2 � y2 � 4

x2 � y2 � 9
x � z � 5

2x � 4y � 3z � 12
(3, 4, 5)

6x � 9y � 3z � 102x � 3y � z � 2

2x � 4y � 6z � 6x � 2y � 3z � 2
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1. Prove the Cauchy-Schwarz inequality , with-
out using trigonometry, by demonstrating the following:
a. for all values

of 
b.

Hint: Recall the relationship between the discriminant 
of the quadratic equation and the nature of
the roots of the equation.

2. Use vectors to prove that if and are endpoints of a
diameter of a circle and is any other point on the circle,
then the triangle is a right triangle.

3. Let and be 
nonparallel vectors in three-dimensional space, and let

be a vector that is perpendicular to 
both and .
a. Show that , , and satisfy the system of two equations

b. Solving the system in part (a) for and in terms of ,
show that

and

c. Show that can be written in the form

(This is the definition of the cross-product of and given
in Section 11.4.)

4. The area of a triangle with sides of lengths , , and is
given by

A � 1s(s � a)(s � b)(s � c)

cba

ba

 � a � b

 � (a2b3 � a3b2)i � (a3b1 � a1b3)j � (a1b2 � a2b1)k

 c � xi � yj � zk

c

y �
a3b1 � a1b3

a1b2 � a2b1
 zx �

a2b3 � a3b2

a1b2 � a2b1
 z

zyx

 b1x � b2y � b3z � 0

 a1x � a2y � a3z � 0

zyx
ba

c � xi � yj � zk

b � b1i � b2 j � b3ka � a1i � a2 j � a3k

B

C

0
A

^ABC
C

BA

at 2 � bt � c � 0
b2 � 4ac

4(a � b)2 � 4�a �2�b �2 � 0
t

� ta � b �2 � �a �2t 2 � 2(a � b)t � �b �2 � 0

�a � b � � �a ��b � where is the semiperimeter of the trian-
gle. Derive this formula, known as Heron’s formula.
Hint: Let and denote two sides of the triangle. Then

. Use the result of Exercise 44 in Section 11.4.

5. a. Let , , and be noncoplanar vectors and let be an
arbitrary vector. Show that there exist constants , and

such that .
Hint: To find , take the dot product of with .

b. Let , , and .
Express in terms of , , and as suggested
in part (a).

6. a. Consider the portion of the plane 
lying in the first octant, where , , and , are positive
real constants. Show that its area is given by

b. Use the result of part (a) to find the area of the plane
that lies in the first octant.

7. Find the points of intersection of the line

and the elliptic paraboloid .

8. a. Let , , and be vectors in 3-space. Show that there
exist scalars and such that

b. Let , , and .
Use the result of part (a) to write in the
form , where and are scalars.tssb � tc

a � (b � c)
c � ��2, 4, 5� b � �2, 3, 2�a � �1, �2, 4�

a � (b � c) � sb � tc

ts
c ba

z � 4x2 � y2

x � 2 �
y

2
�

z � 24

16

z

y

x

x � 2y � 3z � 6

d22a2 � b2 � c2

2abc

cba
ax � by � cz � d

cbav � �3, 2, 4�
c � �3, 1, 2�b � �2, �1, 1�a � �1, 3, 1�

b � cva

v � aa � bb � gcg

a, b
vcba

A � 1
2
�a � b �

ba

s � 1
2 (a � b � c)

CHALLENGE PROBLEMS





IN THIS CHAPTER we will study functions whose values are vectors in the plane or 

in space. These vector-valued functions can be used to describe plane curves and

space curves, and they also allow us to study the motion of objects along such

curves.

We will also develop formulas for computing the arc length of plane and space

curves and for finding the curvature of a curve. (The curvature measures the rate 

at which a curve bends.)

We end the chapter by demonstrating how vector calculus can be used to prove

Kepler’s laws of planetary motion.

12 Vector-Valued Functions

The “human cannonball” is a
popular attraction at circuses.

The trajectory of the person
shot out of the cannon can be

described by a vector
function—a function whose

domain is a set of real num-
bers and whose range is a set
of vectors. We will look at an

exercise involving a human
cannonball in Section 12.4. An

th
on

y 
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s
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984 Chapter 12 Vector-Valued Functions

12.1 Vector-Valued Functions and Space Curves

In Section 10.2 we saw that the position of an object such as a boat or a car moving
in the -plane can be described by a pair of parametric equations

where and are continuous functions on a parameter interval .
Using vector notation, we can denote the position of the object in an equivalent

and somewhat abbreviated form via its position vector as follows: For each in 
, the position vector of the object is the vector with initial point at the origin and

terminal point . In other words,

As takes on increasing values, the terminal point of traces the path of the object
which is a plane curve . This is illustrated in Figure 1 for the parameter interval

.I � [a, b]
C

r(t)t

t � Ir(t) � � f(t), t(t)� � f(t)i � t(t)j

( f(t), t(t))
rI

tr

Itf

y � t(t)x � f(t)

xy

FIGURE 1
As increases from to , the terminal

point of traces the curve .Cr
bat

Similarly, in 3-space we can describe the position of an object such as a plane or
a satellite using the parametric equations

where , , and are continuous functions on a parameter interval . Equivalently, we
can describe its position using the position vector defined by

As takes on increasing values, the terminal point of traces the path of the object,
which is a space curve . (See Figure 2.)C

r(t)t

t � Ir(t) � � f(t), t(t), h(t)� � f(t)i � t(t)j � h(t)k

r
Ihtf

z � h(t)y � t(t)x � f(t)

FIGURE 2
As increases from to , the terminal

point of traces the curve .Cr
bat

The function is called a vector-valued function, or vector function, of a real
variable because its value is a vector and its domain (parameter interval) is a
subset of the real numbers.

r(t)t
r

C

x

y

0

( f(a), g(a))

Parameter interval [a, b]

( f(t), g(t))
( f(b), g(b))

r(a) r(t)
r(b)tta b

[ ]

C

0

z

( f(a), g(a), h(a))

( f(t), g(t), h(t))

( f(b), g(b), h(b))r(a)
r(t)

r(b)tta b
[ ]

x

yParameter interval [a, b]
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Unless otherwise specified, the parameter interval will be taken to be the intersec-
tion of the domains of the real-valued functions , , and .htf

DEFINITION Vector Function

A vector-valued function, or vector function, is a function defined by

where the component functions , , and of are real-valued functions of the
parameter lying in a parameter interval I.t

rhtf

r(t) � f(t)i � t(t)j � h(t)k

r

EXAMPLE 1 Find the domain (parameter interval) of the vector function

Solution The component functions of are , , and 
. Observe that is defined for all values of except , is defined for

all , and is defined for all . Therefore, , , and are all defined if ,
and we conclude that the domain of is .

Curves Defined by Vector Functions
As was mentioned earlier, a plane or space curve is the curve traced out by the termi-
nal point of of a vector function as takes on all values in a parameter interval.trr(t)

[1, �)r
t � 1htft � 0ht � 1

tt � 0tfh(t) � ln t
t(t) � 1t � 1f(t) � 1>tr

r(t) � h1

t
, 1t � 1, ln ti

EXAMPLE 2 Sketch the curve defined by the vector function

Solution The parametric equations for the curve are

and

Solving the first equation for and the second equation for and using the iden-
tity , we obtain the rectangular equation

The curve described by this equation is the ellipse shown in Figure 3. As increases
from 0 to , the terminal point of traces the ellipse in a clockwise direction.r2p

t

x2

9
�

y2

4
� 1

cos2 t � sin2 t � 1
sin tcos t

y � �2 sin tx � 3 cos t

0 � t � 2pr(t) � �3 cos t, �2 sin t�

FIGURE 3
As increases from 0 to , the

terminal point of the vector traces 

the ellipse in a clockwise 

direction, starting and ending at .(3, 0)

x2

9
�

y2

4
� 1

r(t)
2pt

x

y

0

(t � 0, 2π)

3π
2t �

(3 cos t, �2 sin t)

( )

( )Parameter interval [0, 2π]

r(t)(t � π)

2

�2

�3 3

t0 2π
[ ]

π
2t �
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EXAMPLE 3 Sketch the curve defined by the vector function

Solution The parametric equations for the curve are

which are parametric equations of the line passing through the point with
direction numbers , 3, and 2. Because the parameter interval is the closed interval

, we see that the curve is a straight line segment: Its initial point is the
terminal point of the vector , and its terminal point is
the terminal point of the vector . (See Figure 4.)r(1) � �2i � 2j � 5k

(�2, 2, 5)r(0) � 2i � j � 3k
(2, �1, 3)[0, 1]

�4
(2, �1, 3)

z � 3 � 2ty � �1 � 3tx � 2 � 4t

0 � t � 1r(t) � (2 � 4t)i � (�1 � 3t)j � (3 � 2t)k

FIGURE 4
As increases from 0 to 1, the tip of

traces the straight line segment
from to .(�2, 2, 5)(2, �1, 3)

r(t)
t

EXAMPLE 4 Sketch the curve defined by the vector function

Solution The parametric equations for the curve are

Eliminating from the second and third equations, we obtain

Since the -coordinate of any point on the curve must always be 3, as implied by the
equation , we conclude that the desired curve is contained in the parabola

, which lies in the plane . In fact, as runs from to 2, the termi-
nal point of traces the part of the parabola starting at the point [since

] and ending at the point [since ], as shown
in Figure 5.

r(2) � 3i � 2j(3, 2, 0)r(�2) � 3i � 2j
(3, �2, 0)r

�2tx � 3z � 4 � y2
x � 3
x

z � 4 � y2

t

z � 4 � t 2y � tx � 3

�2 � t � 2r(t) � 3i � tj � (4 � t 2)k

FIGURE 5
As increases from to 2, the termi-
nal point of traces the part of the
parabola lying in the plane from
the point to the point

.(3, 2, 0)
(3, �2, 0)

x � 3
r(t)

�2t

EXAMPLE 5 Sketch the curve defined by the vector function

Solution The parametric equations for the curve are

z � ty � 2 sin tx � 2 cos t

0 � t � 2pr(t) � 2 cos ti � 2 sin tj � tk

(�2, 2, 5)

(2, �1, 3)

Parameter interval [0, 1]

r(0)
r(t)

r(1)

t0 1

5

11 2
2 3

3

[ ]

x

z

y

C

r(t)

z

y2

4

x
3

(3, 2, 0)

(3, �2, 0)
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FIGURE 6
As increases from 0 to , the
terminal point of traces the 
helix beginning at and
terminating at .(2, 0, 2p)

(2, 0, 0)
r(t)

2pt

EXAMPLE 6 Find a vector function that describes the curve of intersection of the

cylinder and the plane . (See Figure 7.)x � y � 2z � 4x2 � y2 � 4

FIGURE 7

Solution If is any point on the curve of intersection , then the - and 
-coordinates lie on the right circular cylinder of radius 2 and axis lying along the 
-axis. Therefore,

and

To find the -coordinate of the point, we substitute these values of and into the
equation of the plane, obtaining

or

So a required vector function is

You might have noticed that the space curves in Examples 4, 5, and 6 are relatively
easy to sketch by hand. This is partly because they are relatively simple and partly
because they lie in a plane. For more complicated curves we turn to computers.

0 � t � 2pr(t) � 2 cos ti � 2 sin tj � (2 � cos t � sin t)k

z � 2 � cos t � sin t2 cos t � 2 sin t � 2z � 4

yxz

y � 2 sin tx � 2 cos t

z
y

xCP(x, y, z)

From the first two equations we obtain

or

This says that the curve lies on the right circular cylinder of radius 2, whose axis is
the -axis. At , , and this gives as the starting point of the curve.
Since , the -coordinate of the point on the curve increases (linearly) as increases,
and the curve spirals upward around the cylinder in a counterclockwise direction,
terminating at the point . The curve, called a helix, is
shown in Figure 6.

[r(2p) � 2i � 2pk](2, 0, 2p)

tzz � t
(2, 0, 0)r(0) � 2it � 0z

x2 � y2 � 4ax

2
b2

� ay

2
b2

� cos2 t � sin2 t � 1
(2, 0, 2π)
(t � 2π)

(2, 0, 0)
(t � 0)

z

(0, 2,    )π__2r(t)

x

y

(a) Intersection of the plane and the cylinder (b) Curve of intersection

x � y � 2z � 4

x2 � y2 � 4

4
4

4

4
4

4

C

y

x x

z

y

z

EXAMPLE 7 Use a computer to plot the curve represented by

0 � t � 2p

 r(t) � (0.2 sin 20t � 0.8) cos ti � (0.2 sin 20t � 0.8) sin tj � 0.2 cos 20tk
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FIGURE 8
The curve in Example 7 is 

called a toroidal spiral
because it lies on a torus.

Limits and Continuity
Because the range of the vector function is a subset of vectors in two- or three-
dimensional space, the properties of vectors given in Chapter 11 can be used to study
the properties of vector functions. For example, we add two vector functions compo-
nentwise. Thus, if

and

then

Similarly, if is a scalar, then the scalar multiple of by is

Next, because the components , , and of the vector function are real-valued
functions, we can investigate the notions of limits and continuity involving using the
properties of such functions. As you might expect, the limit of is defined in terms
of the limits of its component functions.

r(t)
r

rhtf

(cr)(t) � cr(t) � cf(t)i � ct(t)j � ch(t)k

crc

(r1 � r2)(t) � r1(t) � r2(t) � [ f1(t) � f2(t)]i � [t1(t) � t2(t)]j � [h1(t) � h2(t)]k

r2(t) � f2(t)i � t2(t)j � h2(t)kr1(t) � f1(t)i � t1(t)j � h1(t)k

r

DEFINITION The Limit of a Vector Function

Let be a function defined by . Then

provided that the limits of the component functions exist.

lim
t→a

r(t) � C lim
t→a

f(t)D i � C lim
t→a

t(t)D j � C lim
t→a

h(t)Dk
r(t) � f(t)i � t(t)j � h(t)kr

To obtain a geometric interpretation of , suppose that the limit exists.
Let , , and , and let 

. Then, by definition, . This says that as approaches , the vector
approaches the constant vector . (See Figure 9.)Lr(t)

atlimt→a r(t) � LL3k
L � L1i � L2 j �limt→a h(t) � L3limt→a t(t) � L2limt→a f(t) � L1

limt→a r(t)

1.0

0.0
0.5

�0.5
�1.0

�1.0

�0.5

0.2

1.0

0.5

0.0

0.0

�0.2

z

x

y

Solution The curve is shown in Figure 8.
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FIGURE 9
means that as approaches , approaches .Lr(t)atlimt→a r(t) � L

JOSIAH WILLARD GIBBS
(1839–1903)

Josiah Willard Gibbs, an American mathe-
matician and physicist, did not attain the
level of fame that his European contempo-
raries enjoyed until his work was trans-
lated into German in 1891. He made many
contributions to the study of vector analy-
sis, thermodynamics, and electromagnetics
and provided a firm mathematical founda-
tion for statistical mechanics. Because of
the depth and application of his work,
Albert Einstein referred to Gibbs as “the
greatest mind in American history.” Gibbs’s
mother was an amateur ornithologist, and
his father was a professor of sacred litera-
ture at Yale. Gibbs, who began school at
the age of 9, eventually attended Yale him-
self. He earned a bachelor’s degree at the
age of 19 and showed promise that he
would follow his father into the area of
philology. At the time, the American acad-
emy awarded doctorates in only applied
science and mathematics, yet Gibbs’s doc-
toral thesis was written on spur gear
design. As a result of this thesis, he was
awarded the first doctorate of engineering
in the United States. In 1866 he embarked
on a three-year trip abroad, where he
attended lectures in physics at many Euro-
pean universities. Upon his return to the
United States, Gibbs was appointed to a
position of professor of mathematical
physics at Yale. He presented his first work
of vector analysis while teaching there.
Gibbs’s courses included the first college-
level vector analysis course. Using Gibbs’s
class notes, Edwin Wilson wrote a textbook,
published in 1901, that was titled Gibbs’
Vector Analysis. This textbook reached a
wider audience than Gibbs’s own publica-
tions did, and it led to Gibbs receiving
many awards, including honorary doctor of
science degrees from Erlangen, Williams
College, and Princeton University.

Historical Biography
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EXAMPLE 8 Find , where .

Solution

The notion of continuity is extended to vector functions via the following definition.

 � 12i � k

 lim
t→0

r(t) � C lim
t→0
1t � 2 D i � C lim

t→0
t cos 2tD j � C lim

t→0
e�tDk

r(t) � 1t � 2 i � t cos 2tj � e�tklimt→0 r(t)

DEFINITION Continuity of a Vector Function

A vector function is continuous at if

A vector function is continuous on an interval if it is continuous at every
number in .I

Ir

lim
t→a

r(t) � r(a)

ar

It follows from this definition that a vector function is continuous at if and only
if each of its component functions is continuous at .a

a

EXAMPLE 9 Find the interval(s) on which the vector function defined by

is continuous.

Solution The component functions of are , , and
. Observe that is continuous for , is continuous for all values of 

except , and is continuous for . Therefore, is continuous on the inter-
vals and .(1, �)(0, 1)

rt � 0ht � �1
ttt � 0fh(t) � ln t

t(t) � 1>(t 2 � 1)f(t) � 1tr

r(t) � 1t i � a 1

t 2 � 1
bj � ln tk

r

0

r(t)

L

tt a
[ ]

x

z

y

Parameter interval
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1. a. What is a vector-valued function?
b. Give an example of a vector function. What is the 

parameter interval of the function that you picked?
2. Let be a vector function defined by

.
a. Define .
b. Give an example of a vector function such that

does not exist.limt→1 r(t)
r(t)

limt→a r(t)
r(t) � � f(t), t(t), h(t)�

r(t)

3. a. What does it mean for a vector function to be con-
tinuous at ? Continuous on an interval ?

b. Give an example of a function that is defined on the
interval but fails to be continuous at 0.(�1, 1)

r(t)
Ia
r(t)

12.1 CONCEPT QUESTIONS

Videos for selected exercises are available online at www.academic.cengage.com/login.V

In Exercises 1–6, find the domain of the vector function.

1.

2.

3. 4.

5.

6.

In Exercises 7–12, match the vector functions with the curves
labeled (a)–(f). Explain your choices.

7.

8.

9.

10. ,

11. ,

12.

y

x

z

0

(b)

y

x

z

0

(a)

r(t) � cos ti � sin tj � sin 3tk

t � 0r(t) � 2 cos ti � 3 sin tj � e0.1t k

0 � t � 10pr(t) � t sin ti � t cos tj � tk

r(t) � ti � tj � a 1

t 2 � 1
bk

r(t) � 2 cos 2ti � tj � 2 sin 2tk

r(t) � t 2i � t 2j � t 2k

r(t) � 13 t i � e1>tj �
1

t � 2
 k

r(t) � ln ti � cosh tj � tanh tk

r(t) � h 1

1t � 1
, e�tir(t) � h1t, 

1

t � 1
, ln ti

r(t) � cos ti � 2 sin tj � 1t � 1k

r(t) � ti �
1

t
 j

In Exercises 13–26, sketch the curve with the given vector func-
tion, and indicate the orientation of the curve.

13. ,

14. ,

15. ,

16. ,

17. ,

18. ,

19. ,

20. ,

21. , t � 0r(t) � �t, t 2, t 3�

0 � t � 1r(t) � (2 � t)i � (3 � 2t)j � (2 � 4t)k

�� 	 t 	 �r(t) � (1 � t)i � (2 � t)j � (3 � 2t)k

0 � t � 2pr(t) � �1 � 2 cos t, 3 � 2 sin t�

�� 	 t 	 �r(t) � eti � e2tj

0 � t � 2pr(t) � 2 sin ti � 3 cos tj

�1 � t � 2r(t) � �t 2, t 3�

t � 0r(t) � 1t i � (4 � t)j

�1 � t � 2r(t) � 2ti � (3t � 1)j

y
x

z

0

(f )

y

x

z

0

(e)

y

x

z

0

(d)

y

x

z

0

(c)

12.1 EXERCISES
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22. ,

23. ,

24. ,

25. ,
Hint: Show that it lies on a cone.

26. ,

In Exercises 27–30 use a computer to graph the curve described
by the function.

27. ,

28. ,

29. ,

(rotating sine wave)

30. ,

(Fresnel integral spiral)

31. a. Show that the curve

lies on a sphere.
b. Graph the curve described by for .

32. a. Show that the curve 

lies on a cone.
b. Graph the curve described by for .

In Exercises 33–36, find a vector function describing the curve
of intersection of the two surfaces.

33. The cylinder and the plane 

34. The cylinder and the surface 

35. The cone and the plane 

36. The paraboloid and the sphere 

In Exercises 37–42, find the given limit.

37.

38.

39.

40. lim
t→0� 
ccos ti �

tan t

t
 j � t ln tkd

lim
t→2  
c1t i � a t 2 � 4

t � 2
bj � a t

t 2 � 1
bkd

lim
t→0  
he�t, 

sin t

t
, cos ti

lim
t→0  

[(t 2 � 1)i � cos tj � 3k]

x2 � y2 � z2 � 1z � x2 � y2

x � y � z � 1z �2x2 � y2

z � xyx2 � y2 � 4

x � y � 2z � 1x2 � y2 � 1

0 � t � 2pr(t)

 � (1 � cos 12t)k

 r(t) � (1 � cos 12t) cos ti � (1 � cos 12t) sin tj

0 � t � 2pr(t)

 � 21 � 0.09 cos2 10t sin tj � 0.3 cos 10tk

 r(t) �21 � 0.09 cos2 10t cos ti

0 � t � 10pr(t) �
1

2
sin ti �

1

2
cos tj �

t 2

100p2 k

�2p � t � 2pr(t) � sin 3t cos ti � sin 3t sin tj �
t

2p
 k

�3 � t � 3r(t) � (t 2 � t � 1)i � (t 2 � 1)j � t 3k

0 � t � 10r(t) � 2 sin pti � 3 cos ptj � 0.1tk

�� 	 t 	 �r(t) � et cos ti � et sin tj � et k

�� 	 t 	 �r(t) � �t cos t, t sin t, t�

�� 	 t 	 �r(t) � ti � 2tj � sin 2tk

0 � t � 2pr(t) � 2 cos ti � 4 sin tj � tk

0 � t � 2pr(t) � 2 cos ti � 4 sin tj � 3k
41.

42.

In Exercises 43–48 find the interval(s) on which the vector func-
tion is continuous.

43.

44.

45.

46.

47.

48.

49. Trajectory of a Plane An airplane is circling an airport in a
holding pattern. Suppose that the airport is located at the
origin of a three-dimensional coordinate system and that 
the trajectory of the plane traveling at a constant speed is
described by

where the distance is measured in feet and the time is 
measured in hours. What is the distance covered by the
plane over a 2-min period?

50. Temperature at a Point Suppose that the temperature at a 
point in 3-space is 
and that the position of a particle at time is described 
by . What is the temperature at the point
occupied by the particle when ?

In Exercises 51–54, suppose that and are vector functions
such that and exist and is a constant.
Prove the given property.

51.

52.

53.

54.

55. a. Prove that if is a vector function that is continuous at 
, then is also continuous at .

b. Show that the converse is false by exhibiting a vector
function such that is continuous at but is not
continuous at .a

ra�r �r

a�r �a
r

lim
t→a  

[u(t) 
 v(t)] � lim
t→a

u(t) 
 lim
t→a

v(t)

lim
t→a  

[u(t) � v(t)] � lim
t→a

u(t) � lim
t→a

v(t)

lim
t→a

cu(t) � c lim
t→a

u(t)

lim
t→a  

[u(t) � v(t)] � lim
t→a

u(t) � lim
t→a

v(t)

climt→a v(t)limt→a u(t)
vu

t � 1
r(t) � �t, t 2, et�

t
T(x, y, z) � x2 � 2y2 � 3z2(x, y, z)

r(t) � 44,000 cos 60ti � 44,000 sin 60tj � 10,000k

r(t) �
1

1t
 i � tan tj � e�t cos tk

r(t) � e�t i � cos14 � t j �
1

t 2 � 1
 k

r(t) � a 2t

t 2 � 4
bi � sin�1 tj � 13 tk

r(t) � hcos t � 1

t
, 
1t

1 � 2t
, te�1>ti

r(t) � sin ti � cos tj � tan�1 tk

r(t) � 1t � 1 i �
1

t
 j

lim
t→��  

c a t � 1

2t � 1
bi � e2t j � tan�1 tkd

lim
t→�  
h e�t, 

1

t
, 

2t 2

t 2 � 1
i

cas
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56. Evaluate

57. Evaluate

58. a. Find a vector function describing the curve of intersec-
tion of the plane and the paraboloid

.
b. Find the point(s) on the curve of part (a) that are closest

to and farthest from the origin.

z � x2 � y2
x � y � 2z � 2

lim
t→0
c sin t

t
 i �

1 � cos t

t 2  j �
ln(1 � t 2)

cos t � e�t kd

lim
h→0 
h (t � h)2 � t 2

h
, 

cos(t � h) � cos t

h
, 

et�h � et

h
i

In Exercises 59–62, determine whether the statement is true or
false. If it is true, explain why. If it is false, explain why or give
an example to show that it is false.

59. The curve defined by is the same as
the curve defined by .

60. If , , and are linear functions of for in , then
defines a line in 3-space.

61. The curve defined by , where is a
constant, is a curve lying in the plane .

62. If is continuous on an interval and if is any number in
, then .limt→a r(t) � r(a)I

aIr

z � c
cr(t) � f(t)i � t(t)j � ck

r(t) � f(t)i � t(t)j � h(t)k
(��, �)tthtf

r2(u) � ui � uj � uk
r1(t) � t 2i � t 2j � t 2k

12.2 Differentiation and Integration of Vector-Valued Functions

The Derivative of a Vector Function
The derivative of a vector function is defined in much the same way as the derivative
of a real-valued function of a real variable.

DEFINITION Derivative of a Vector Function

The derivative of a vector function r is the vector function defined by

provided that the limit exists.

r¿(t) �
dr
dt

� lim
h→0

 
r(t � h) � r(t)

h

r¿

To obtain a geometric interpretation of this derivative, let be a vector function,
and let be the curve traced by the tip of . Let be a fixed but otherwise arbitrary
number in the parameter interval . If , then the vector lies on
the secant line passing through the points and , the terminal points of the vectors

and , respectively. (See Figure 1.)r(t � h)r(t)
QP

r(t � h) � r(t)h � 0I
trC

r

FIGURE 1
As approaches 0, approaches along , and the vector approaches the tangent vector .r¿(t)

r(t � h) � r(t)

h
CPQh

0

r(t)

r�(t)

r(t � h)

r(t � h) � r(t)

r(t � h) � r(t)
h

(a)

tt t � h

x

z

y

Q

P

C C0

(b)

x

z

y

Q

P

Parameter interval
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The vector , which is a scalar multiple of , also
lies on the secant line. (See Figure 1b.) As approaches 0, the number approaches

along the parameter interval, and the point , in turn, approaches the point along
the curve . As a consequence, the vector approaches the fixed
vector , which lies on the tangent line to the curve at . In other words, the deriv-
ative of the vector may be interpreted as the tangent vector to the curve defined
by at the point , provided that . If we divide by its length, we obtain
the unit tangent vector

which has unit length and the direction of .
The following theorem tells us that the derivative of a vector function can be

found by differentiating the components of .r
r¿

r¿

T(t) �
r¿(t)

�r¿(t) �

r¿(t)r¿(t) � 0Pr
rr¿

Pr¿(t)
[r(t � h) � r(t)]>hC

PQt
t � hh

r(t � h) � r(t)[r(t � h) � r(t)]>h

THEOREM 1 Differentiation of Vector Functions

Let , where , , and are differentiable functions of
. Then

r¿(t) � f ¿(t)i � t¿(t)j � h¿(t)k

t
htfr(t) � f(t)i � t(t)j � h(t)k

PROOF We compute

We use instead of so as not to confuse the increment 
of with the component function .

 � f ¿(t)i � t¿(t)j � h¿(t)k

 � c lim
�t→0

 
f(t � �t) � f(t)

�t
di � c lim

�t→0
 
t(t � �t) � t(t)

�t
d j � c lim

�t→0
 
h(t � �t) � h(t)

�t
dk

 � lim
�t→0 

c f(t � �t) � f(t)

�t
 i �

t(t � �t) � t(t)

�t
 j �

h(t � �t) � h(t)

�t
 kd

 � lim
�t→0 

c f(t � �t)i � t(t � �t)j � h(t � �t)k � [ f(t)i � t(t)j � h(t)k]

�t
d

ht
h�t

 r¿(t) � lim
�t→0

 
r(t � �t) � r(t)

�t

EXAMPLE 1

a. Find the derivative of .
b. Find the point of tangency and the unit tangent vector at the point on the curve

corresponding to .

Solution
a. Using Theorem 1, we obtain

b. Since , we see that the point of tangency is . Next, since
, we find the unit tangent vector at to be

T(0) �
r¿(0)

�r¿(0) � �
�j � 2k

11 � 4
� �

1

15
 j �

2

15
 k

(1, 1, 0)r¿(0) � �j � 2k
(1, 1, 0)r(0) � i � j

r¿(t) � 2ti � e�tj � 2 cos 2tk

t � 0

r(t) � (t 2 � 1)i � e�tj � sin 2tk
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and has the same direction as the tangent vector . Using Equation (1) of Sec-
tion 11.5, we see that the parametric equations of this line are

, , and

Higher-Order Derivatives
Higher-order derivatives of vector functions are obtained by successive differentiation
of the lower-order derivatives of the function. For example, the second derivative of

is

r�(t) �
d

dt
 r¿(t) � f �(t)i � t�(t)j � h�(t)k

r(t)

z �
p

6
� ty � 1 � 13tx �

313

2
�

3

2
 t

r¿(p>6)

EXAMPLE 2 Find the tangent vectors to the plane curve defined by the vector func-
tion at the points where and . Make a sketch
of , and display the position vectors and and the tangent vectors 
and .

Solution The tangent vector to the curve at any point is given by

In particular, the tangent vectors at the points where and are

and

These vectors are shown emanating from their points of tangency at and 
in Figure 2.

132, 13 2(3, 0)

r¿ap
3
b � �

313

2
 i � jr¿(0) � 2j

t � p>3t � 0

r¿(t) � �3 sin ti � 2 cos tj

C

r¿(p>3)
r¿(0)r(p>3)r(0)C

t � p>3t � 0r(t) � 3 cos ti � 2 sin tj
C

FIGURE 2
The vectors and are tan-
gent to the curve at the points 
and , respectively.132, 132 (3, 0)

r¿(p>3)r¿(0)

EXAMPLE 3 Find parametric equations for the tangent line to the helix with para-
metric equations

at the point where .

Solution The vector function that describes the helix is

The tangent vector at any point on the helix is

In particular, the tangent vector at the point , where , is

Finally, we observe that the required tangent line passes through the point 1313
2 , 1, p6 2

r¿ap
6
b � �

3

2
 i � 13 j � k

t � p>61313
2 , 1, p6 2

r¿(t) � �3 sin ti � 2 cos tj � k

r(t) � 3 cos ti � 2 sin tj � tk

t � p>6
z � ty � 2 sin tx � 3 cos t

EXAMPLE 4 Find if .

Solution We have

r¿(t) � 6e3t i �
1

t
 j � cos tk

r(t) � 2e3t i � ln tj � sin tkr�(t)

r(0)

r�(0)

r�

(3, 0)0

1

�2

x

y

C

π
3 √3,3

2
( )

r π3( )

( )
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THEOREM 2 Rules of Differentiation

Suppose that and are differentiable vector functions, is a differentiable real-
valued function, and is a scalar. Then

1.

2.

3.

4.

5.

6. Chain Rule
d

dt
 [u( f(t))] � u¿( f(t))f ¿(t)

d

dt
 [u(t) 
 v(t)] � u¿(t) 
 v(t) � u(t) 
 v¿(t)

d

dt
 [u(t) � v(t)] � u¿(t) � v(t) � u(t) � v¿(t)

d

dt
 [ f(t)u(t)] � f ¿(t)u(t) � f(t)u¿(t)

d

dt
 [cu(t)] � cu¿(t)

d

dt
 [u(t) � v(t)] � u¿(t) � v¿(t)

c
fvu

and

Rules of Differentiation
The following theorem gives the rules of differentiation for vector functions. As you
might expect, some of the rules are similar to the differentiation rules of Chapter 2.

r�(t) � 18e3t i �
1

t 2
 j � sin tk

We will prove Rule 4 and leave the proofs of the other rules as exercises.

PROOF Let

and

Then

Therefore

 � u¿(t) � v(t) � u(t) � v¿(t)

 � [ f1(t)f œ
2(t) � t1(t)tœ

2(t) � h1(t)hœ
2(t)]

 
d

dt
 [u(t) � v(t)] � [ f œ

1(t)f2(t) � t
œ
1(t)t2(t) � hœ

1(t)h2(t)]

u(t) � v(t) � f1(t)f2(t) � t1(t)t2(t) � h1(t)h2(t)

v(t) � f2(t)i � t2(t)j � h2(t)ku(t) � f1(t)i � t1(t)j � h1(t)k

EXAMPLE 5 Suppose that is a differentiable vector function of constant length .
Show that . In other words, the vector and its tangent vector must be
orthogonal.

Solution The condition on implies that

v � v � �v �2 � c2

v

v¿vv � v¿ � 0
cv
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EXAMPLE 6 Let , where . Find .

Solution Using the Chain Rule, we obtain

Replace by .

Integration of Vector Functions
As with the differentiation of vector functions, integration of vector functions is done
component-wise, so we have the following definitions.

t 2s � �8t sin 2t 2i � 12t cos 2t 2j � 8tk

 � (�4 sin 2si � 6 cos 2sj � 4k)(2t)

 
d

dt
 [r(s)] �

d

ds
 (2 cos 2si � 3 sin 2sj � 4sk)ads

dt
b

dr
dt

s � f(t) � t 2r(s) � 2 cos 2si � 3 sin 2sj � 4sk

DEFINITIONS Integration of Vector Functions

Let , where , , and are integrable. Then

1. The indefinite integral of with respect to is

2. The definite integral of over the interval is

�
b

a

r(t) dt � c�
b

a

f(t) dtdi � c�
b

a

t(t) dtd j � c�
b

a

h(t) dtdk
[a, b]r

� r(t) dt � c� f(t) dtdi � c� t(t) dtd j � c�h(t) dtdk
tr

htfr(t) � f(t)i � t(t)j � h(t)k

EXAMPLE 7 Find if .

Solution

 � a1

2
 t 2 � t � C1bi � a1

2
sin 2t � C2bj � a1

3
 e3t � C3bk

 � c� (t � 1) dtdi � c� cos 2t dtd j � c� e3t dtdk
 � r(t) dt � � [(t � 1)i � cos 2tj � e3tk] dt

r(t) � (t � 1)i � cos 2tj � e3tk� r(t) dt

Differentiating both sides of this equation with respect to and using Rule 4 of differ-
entiation, we obtain

But , so we have

or

The result of Example 5 has the following geometric interpretation: If a curve lies
on a sphere with center at the origin, then the tangent vector is always perpendic-
ular to the position vector .r(t)

r¿(t)

v � v¿ � 02v � v¿ � 0

v¿ � v � v � v¿

d

dt
 (v � v) � v � v¿ � v¿ � v �

d

dt
 (c2) � 0

t
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where , , and are constants of integration. We can rewrite the last expres-
sion as

or, upon letting ,

where is a constant (vector) of integration.

Note In general, the indefinite integral of can be written as

where is an arbitrary constant vector and .R¿(t) � r(t)C

� r(t) dt � R(t) � C

r

C

� r(t) dt � a1

2
 t 2 � tbi �

1

2
sin 2tj �

1

3
 e3tk � C

C � C1i � C2 j � C3k

a1

2
 t 2 � tbi �

1

2
sin 2tj �

1

3
 e3tk � C1i � C2 j � C3k

C3C2C1

EXAMPLE 8 Find the antiderivative of satisfying the
initial condition .

Solution We have

where is a constant (vector) of integration. To determine , we use the condition
to obtain

from which we find . Therefore,

 � (1 � sin t)i � (3 � e�t)j � a3 �
2

3
 t 3>2bk

 r(t) � sin ti � e�tj �
2

3
 t 3>2k � i � 3j � 3k

C � i � 3j � 3k

r(0) � 0i � j � 0k � C � i � 2j � 3k

r(0) � i � 2j � 3k
CC

 � sin ti � e�tj �
2

3
 t 3>2k � C

 r(t) � � r¿(t) dt � � (cos ti � e�tj � t 1>2k) dt

r(0) � i � 2j � 3k
r¿(t) � cos ti � e�tj � 1tk

EXAMPLE 9 Evaluate if .

Solution

 �
1

3
 i � ln 2j � a1 �

1
e
bk

 � c1
3

 t 3d1
0
i � Cln(t � 1) D1

0
j � C�e�t D1

0
k

 � c�
1

0
t 2dtdi � c�

1

0

1

t � 1
 dtd j � c�

1

0
e�t dtdk

 �
1

0
r(t) dt � �

1

0
at 2i �

1

t � 1
 j � e�tkb dt

r(t) � t 2i �
1

t � 1
 j � e�tk�

1

0
r(t) dt
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1. a. What is the derivative of a vector function?
b. If , what is ?
c. Give an example of a function such that does

not exist.
2. If , what is ? Assume that , ,

and are all differentiable.f
vuw¿(t)w(t) � u( f(t)) 
 v( f(t))

r¿(0)r(t)
r¿(t)r(t) � f(t)i � t(t)j � h(t)k

3. Let .
a. What is the indefinite integral of with respect to ?
b. What is the definite integral of over the interval ?[a, b]r

tr
r(t) � f(t)i � t(t)j � h(t)k

12.2 CONCEPT QUESTIONS

In Exercises 1–8, find and .

1.

2.

3.

4.

5.

6.

7.

8.

In Exercises 9–16, (a) find and at the given value of .
(b) Sketch the curve defined by and the vectors and 
on the same set of axes.

9. ;

10. ;

11. ;

12. ;

13. ;

14. ;

15. ;

16. ;

In Exercises 17–20, find the unit tangent vector at the point
corresponding to the given value of the parameter .

17. ;

18. ;

19. ; t �
p

6
r(t) � 2 sin 2ti � 3 cos 2tj � 3k

 t � 0r(t) � �et, te�t, (t � 1)e2t�

t � 1r(t) � ti � 2tj � 3tk

t
T(t)

a �
p

4
r(t) � b cos3 ti � b sin3 tj

a �
p

4
r(t) � sec ti � 2 tan tj

a � 0r(t) � �et, e�2t�

a � 1r(t) � (2 � 3t)i � (1 � 2t)j

a � 1r(t) � t 2i � t 3j

a �
p

3
r(t) � �4 cos t, 2 sin t�

a �
p

4
r(t) � sin ti � cos tj

a � 2r(t) � 1t i � (t � 4)j

r¿(a)r(a)r
ar¿(a)r(a)

r(t) � �sin�1 t, sec t, ln � t ��

r(t) � e�t sin ti � e�t cos tj � tan�1 tk

r(t) � e�t i � tet j � e�2t k

r(t) � �t cos t � sin t, t sin t � cos t�

r(t) � �t cos t, t sin t, tan t�

r(t) � �t 2 � 1, 2t 2 � 1�

r(t) � 1t i �
1

t
 j � ln tk

r(t) � ti � t 2j � t 3k

r�(t)r¿(t) 20. ;

In Exercises 21–26, find parametric equations for the tangent
line to the curve with the given parametric equations at the point
with the indicated value of .

21. , , ;

22. , , ;

23. , , ;

24. , , ;

25. , , ;

26. , , ;

In Exercises 27–34, find or evaluate the integral.

27.

28.

29.

30.

31.

32.

33.

34. � c 1

1 � t 2 i �
t

1 � 2t 2 j �
1

21 � t 2
 kd dt

� (t cos ti � t sin t 2j � tet2k) dt

� (tet i � 2j � sec2 tk) dt

� (sin 2ti � cos 2tj � e�tk) dt

�
2

1
 c1t � 1 i �

1

1t
 j � (2t � 1)5kd dt

� a1t i �
1

t
 j � t 3>2kb dt

�
1

0
(ti � t 2j � t 3k) dt

� (ti � 2t 2j � 3k) dt

t � 0z � sin�1ty � e�t sin tx � e�t cos t

t �
p

6
z � tety � t sin tx � t cos t

t �
p

4
z � 2 sin ty � t 2x � 2 cos t

t � 2z �
2

t 2 � 4
y �

1

t � 1
x � 1t � 2

t � 4z � 1ty � t 2 � 4x � 1 � t

t � 1z � t 3y � t 2x � t

t

t �
p

2
r(t) � t sin ti � t cos tj � tk

12.2 EXERCISES

Videos for selected exercises are available online at www.academic.cengage.com/login.V

www.academic.cengage.com/login


In Exercises 35–40, find satisfying the given conditions.

35. ;

36. ;

37. ;

38. ;

39. ; ,

40. ; ,

In Exercises 41–46, let ,
, and .

41. Show that .

42. Show that .

43. Show that .

44. Show that .

45. Show that .

46. Show that .

In Exercises 47–52, suppose and are differentiable vector
functions, is a differentiable real-valued function, and is a
scalar. Prove each rule.

47.

48.

49.

50.

51.

52.

53. Prove that .
d

dt
 [r(t) 
 r¿(t)] � r(t) 
 r�(t)

d

dt
 [u( f(t))] � u¿( f(t))f ¿(t)

d

dt
 [u(t) 
 v(t)] � u¿(t) 
 v(t) � u(t) 
 v¿(t)

d

dt
 [ f(t)u(t)] � f ¿(t)u(t) � f(t)u¿(t)

d

dt
 [cu(t)] � cu¿(t)

d

dt
 [u(t) � v(t)] � u¿(t) � v¿(t)

d

dt
 [u(t) � v(t)] � u¿(t) � v¿(t)

cf
vu

d

dt
 [u( f(t))] � u¿[ f(t)]f ¿(t)

d

dt
 [u(t) 
 v(t)] � u¿(t) 
 v(t) � u(t) 
 v¿(t)

d

dt
 [u(t) � v(t)] � u¿(t) � v(t) � u(t) � v¿(t)

d

dt
 [ f(t)u(t)] � f ¿(t)u(t) � f(t)u¿(t)

d

dt
 [3u(t)] � 3u¿(t)

d

dt
 [u(t) � v(t)] � u¿(t) � v¿(t)

f(t) � e2tv(t) � cos ti � sin tj � t 2k
u(t) � t 2i � 2tj � 2k

r(0) � 2i � j � k
r¿(0) � i � 2jr�(t) � 3 cos 2ti � 4 sin 2tj � k

r(0) � 2i � j � k
r¿(0) � i � kr�(t) � 1t i � sec2 tj � et k

r(3) � i � j � 2kr¿(t) � 1t � 1 i �
t

t 2 � 1
 j �

1

t
 k

r(0) � i � j � kr¿(t) � 2e2t i � 3e�t j � et k

r(0) � i � 2j �
1

2
 kr¿(t) � 2 sin 2ti � 3 cos 2tj � tk

r(0) � i � kr¿(t) � 2i � 4tj � 6t 2k

r(t) 54. Prove that

In Exercises 55–58, find the indicated derivative.

55.

56.

57.

58.

In Exercises 59 and 60, suppose that and are integrable on
and that is a scalar. Prove each property.

59.

60.

61. a. Suppose that is integrable on and that is a con-
stant vector. Prove that

b. Verify this property directly for the vector function

,

, and ,

In Exercises 62–65, determine whether the statement is true or
false. If it is true, explain why. If it is false, explain why or give
an example to show that it is false.

62. If is a constant vector, then .

63.

64. If , then , where is an arbitrary constant
vector.

65. If is differentiable and for all , then must
have constant length.

rtr(t) � r¿(t) � 0r

cr(t) � cr¿(t) � 0

d

dt
 (�u �2) � 2u � u¿

d

dt
 (c) � 0c

b � pa � 0c � 2i � 3j � k

r(t) � sin ti � cos tj � tk

�
b

a

c � r(t) dt � c � �
b

a

r(t) dt

c[a, b]r

�
b

a

cu(t) dt � c�
b

a

u(t) dt

�
b

a

[u(t) � v(t)] dt � �
b

a

u(t) dt � �
b

a

v(t) dt

c[a, b]
vu

d

dt
 {u(t) 
 [v(t) 
 w(t)]}

d

dt
 [r(t) � (r¿(t) 
 r�(t))]

d

dt
 [r(2t) � r(t 2)]

d

dt
 cr(�t) � ra1

t
b d

� r(t) � [u(t) 
 v¿(t)]

� r¿(t) � [u(t) 
 v(t)] � r(t) � [u¿(t) 
 v(t)]

d

dt
 [r(t) � (u(t) 
 v(t))]

12.2 Differentiation and Integration of Vector-Valued Functions 999
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FIGURE 1
The length of the arc of the helix 
for is .215p0 � t � 2p

12.3 Arc Length and Curvature

Arc Length
In Section 10.3 we saw that the length of the plane curve given by the parametric equa-
tions and , where , is

Now, suppose that is described by the vector function 
instead. Then

and

from which we see that can also be written in the form

A similar formula for calculating the length of a space curve is contained in the fol-
lowing theorem.

L � �
b

a

�r¿(t) � dt

L

�r¿(t) � �2r¿(t) � r¿(t) �2[ f ¿(t)]2 � [t¿(t)]2

r¿(t) � f ¿(t)i � t¿(t)j

r(t) � f(t)i � t(t)jC

L � �
b

a B a
dx

dt
b2

� ady

dt
b2

dt � �
b

a

2[ f ¿(t)]2 � [t¿(t)]2 dt

a � t � by � t(t)x � f(t)

THEOREM 1 Arc Length of a Space Curve

Let be a curve given by the vector function

where , , and are continuous. If is traversed exactly once as increases
from to , then its length is given by

L � �
b

a

2[ f ¿(t)]2 � [t¿(t)]2 � [h¿(t)]2 dt � �
b

a

�r¿(t) � dt

ba
tCh¿t¿f ¿

a � t � br(t) � f(t)i � t(t)j � h(t)k

C

EXAMPLE 1 Find the length of the arc of the helix given by the vector function
, where , as shown in Figure 1.

Solution We first compute

Then, using Theorem 1, we see that the length of the arc in question is

 � �
2p

0
15 dt � 215p

 L � �
2p

0

�r¿(t) � dt � �
2p

0
24 sin2 t � 4 cos2 t � 1 dt

r¿(t) � �2 sin ti � 2 cos tj � k

0 � t � 2pr(t) � 2 cos ti � 2 sin tj � tk
C

z

C

x

y
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Smooth Curves
A curve that is defined by a vector function on a parameter interval is said to be
smooth if is continuous and for all in with the possible exception of
the endpoints. For example, the plane curve defined by is smooth
everywhere except at the point corresponding to . To see this, we compute

and note that . The curve is shown in Figure 2. The point
where the curve has a sharp corner is called a cusp.

Arc Length Parameter
The curve described by the vector function with parameter in some parameter
interval is said to be parametrized by . A curve can have more than one param-
etrization. For example, the helix represented by the vector function

with parameter is also represented by the function

with parameter , where and are related by .
A useful parametrization of a curve is obtained by using the arc length of as

its parameter. To see how this is done, we need the following definition.
CC

t � euutu

ln 2p � u � ln 4pr2(u) � 2 cos eui � 3 sin euj � euk

t

2p � t � 4pr1(t) � 2 cos ti � 3 sin tj � tk

CtI
tr(t)C

(0, 0)
r¿(0) � 0r¿(t) � 3t 2i � 2tj

t � 0(0, 0)
r(t) � t 3i � t 2j

Itr¿(t) � 0r¿(t)
Ir

FIGURE 2
The curve defined by 
is smooth everywhere except at .(0, 0)

r(t) � t 3i � t 2j

DEFINITION Arc Length Function

Suppose that is a smooth curve described by ,
where . Then the arc length function is defined by

(1)s(t) � �
t

a

�r¿(u) � du

sa � t � b
r(t) � f(t)i � t(t)j � h(t)kC

Thus, is the length of that part of (shown in red) between and . (See
Figure 3.) Because , we see that the length of from to is

s(b) � �
b

a

�r¿(t) � dt

t � bt � aCLs(a) � 0
r(t)r(a)Cs(t)

FIGURE 3
The arc length function gives the

length of that part of corresponding
to the parameter interval .[a, t]

C
s(t)

Cusp
x

y

r(b)

r(t)

r(a)

ta bt
[ ]

x

z

0

C

y

Parameter interval
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If we differentiate both sides of Equation (1) with respect to and use the Fundamen-
tal Theorem of Calculus, Part 2, we obtain

(2)

or, in differential form,

(3)

The following example shows how to parametrize a curve in terms of its arc length.

ds � �r¿(t) � dt

ds

dt
� �r¿(t) �

t

EXAMPLE 2 Find the arc length function for the circle in the plane described
by

Then use your result to find a parametrization of in terms of .

Solution We first compute , and then compute

Using Equation (1), we obtain

Writing for , we have , where , which when solved for , yields
. Substituting this value of into the equation for gives

Finally, since and , we see that the parameter interval for this
parametrization by the arc length is . (See Figure 4.)[0, 4p]s

s(2p) � 4ps(0) � 0

r(t(s)) � 2 cosa s

2
bi � 2 sina s

2
bj

r(t)tt � t(s) � s>2 t0 � t � 2ps � 2ts(t)s

0 � t � 2ps(t) � �
t

0

�r¿(u) � du � �
t

0
2 du � 2t

�r¿(t) � �24 sin2 t � 4 cos2 t � 2

r¿(t) � �2 sin ti � 2 cos tj

sC

0 � t � 2pr(t) � 2 cos ti � 2 sin tj

Cs(t)

FIGURE 4
The curve is described by

,
where , and

,
where .0 � s � 4p

r(t(s)) � 2 cos(s>2)i � 2 sin(s>2)j
0 � t � 2p

r(t) � 2 cos t i � 2 sin tj
C

One reason for using the arc length of a curve as the parameter stems from the
fact that its tangent vector has unit length; that is, is a unit tangent vector.
Consider the circle of Example 2. Here,

so

�r¿(s) � � Bsin2a s

2
b � cos2a s

2
b � 1

r¿(s) � �sina s

2
bi � cosa s

2
bj

r¿(s)r¿(s)
C

x

y

�2 2

C

Parameter interval for r(t)

t0 2π
[ ]

Parameter interval for r(s)

s0 4π
[ ]
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Curvature
Figure 5 depicts the flight path of an aerobatic plane as it executes a maneuver. Sup-
pose that the smooth curve is defined by the vector function , where is the arc
length parameter. Then the unit tangent vector function gives the direc-
tion of the plane at the point on corresponding to the parameter value .

In Figure 5 we have drawn the unit tangent vector to corresponding to sev-
eral values of . Observe that turns rather slowly along a stretch of the flight path
that is relatively straight but turns more quickly along a stretch of the curve where the
plane executes a sharp turn.

To measure how quickly a curve bends, we introduce the notion of the curvature
of a curve. Specifically, we define the curvature at a point on a curve to be the mag-
nitude of the rate of change of the unit tangent vector with respect to arc length at that
point.

C

T(s)s
CT(s)

sC
T(s) � r¿(s)

sr(s)C
C

FIGURE 5
The unit tangent vector turns
faster along the stretch of the path
where the turn is sharper.

T(s)

DEFINITION Curvature

Let be a smooth curve defined by , where is the arc length of the param-
eter. Then the curvature of at is

where is the unit tangent vector.T

k(s) � ` dT
ds
` � �T¿(s) �

sC
sr(s)C

Note The Greek letter is read “kappa.”

Although the use of the arc length parameter provides us with a natural way for
defining the curvature of a curve, it is generally easier to find the curvature in terms
of the parameter . To see how this is done, let’s apply the Chain Rule (Rule 6 in Sec-
tion 12.2) to write

Then

Since by Equation (2), we are led to the following formula:

(4)k(t) �
�T¿(t) �
�r¿(t) �

ds>dt � �r¿(t) �

k(s) � ` dT
ds
` �
` dT

dt
`

` ds

dt
`

dT
dt

�
dT
ds

 
ds

dt

t

s

k

y

x

z

0

C

EXAMPLE 3 Find the curvature of a circle of radius .

Solution Without loss of generality we may take the circle with center at the ori-
gin. This circle is represented by the vector function

0 � t � 2pr(t) � a cos ti � a sin tj

C

a
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THEOREM 2 Formula for Finding Curvature

Let be a smooth curve given by the vector function . Then the curvature of
at any point on corresponding to is given by

k(t) �
�r¿(t) 
 r�(t) �

�r¿(t) �3

tCC
rC

PROOF We begin by recalling that

Since , we have

Differentiating both sides of this equation with respect to and using Rule 3 in Sec-
tion 12.2, we obtain

r�(t) �
d2s

dt 2
 T(t) �

ds

dt
 T¿(t)

t

r¿(t) �
ds

dt
 T(t)

�r¿(t) � � ds>dt

T(t) �
r¿(t)

�r¿(t) �

Now

so

Therefore,

Next, we compute

and

Finally, using Equation (4), we obtain

Therefore, the curvature at every point on the circle of radius is . This result
agrees with our intuition: A big circle has a small curvature and vice versa.

The following formula expresses the curvature in terms of the vector function and
its derivatives.

r

1>aa

k(t) �
�T¿(t) �
�r¿(t) � �

1
a

�T¿(t) � �2cos2 t � sin2 t � 1

T¿(t) � �cos ti � sin tj

T(t) �
r¿(t)

�r¿(t) � � �sin ti � cos tj

�r¿(t) � �2a2 sin2 t � a2 cos2 t � a

r¿(t) � �a sin ti � a cos tj
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Next, we use the fact that (Property 6 of Theorem 3 in Section 11.4) to
obtain

Also, for all implies that and are orthogonal. (See Example 5 in
Section 12.2.) Therefore, using Theorem 2 in Section 11.4, we have

Upon solving for , we obtain

from which we deduce that

k(t) �
�T¿(t) �
�r¿(t) � �

�r¿(t) 
 r�(t) �
�r¿(t) �3

�T¿(t) � �
�r¿(t) 
 r�(t) �

ads

dt
b2

�
�r¿(t) 
 r�(t) �

�r¿(t) �2

�T¿(t) �

�r¿(t) 
 r�(t) � � ads

dt
b2

�T(t) 
 T¿(t) � � ads

dt
b2

�T(t) ��T¿(t) � � ads

dt
b2

�T¿(t) �

T¿(t)T(t)t�T(t) � � 1

r¿(t) 
 r�(t) � ads

dt
b2

(T(t) 
 T¿(t))

T 
 T � 0

EXAMPLE 4 Find the curvature of the “twisted cubic” described by the vector func-
tion

Solution Since

and

we have

so

Also,

Therefore,

k(t) �
�r¿(t) 
 r�(t) �

�r¿(t) �3
�
2t 4 � 4t 2 � 1

(t 4 � t 2 � 1)3>2

�r¿(t) � �21 � t 2 � t 4 �2t 4 � t 2 � 1

�r¿(t) 
 r�(t) � �2t 4 � 4t 2 � 1

r¿(t) 
 r�(t) � †
i j k
1 t t 2

0 1 2t
† � t 2i � 2tj � k

r�(t) � j � 2tk

r¿(t) � i � tj � t 2k

r(t) � ti �
1

2
 t 2j �

1

3
 t 3k
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If a plane curve happens to be contained in the graph of a function defined by
, then we can use the following formula to compute its curvature.y � f(x)

C

THEOREM 3 Formula for the Curvature of the Graph of a Function

If is the graph of a twice differentiable function , then the curvature at the
point where is given by

(5)k(x) �
� f �(x) �

[1 � [ f ¿(x)]2]3>2 �
�y� �

[1 � (y¿)2]3>2

y � f(x)(x, y)
fC

PROOF Using as the parameter, we can represent by the vector function 
. Differentiating with respect to successively, we obtain

and

from which we obtain

and

Also,

Therefore,

k(x) �
�r¿(x) 
 r�(x) �

�r¿(x) �3
�

� f �(x) �

[1 � [ f ¿(x)]2]3>2

�r¿(x) � �21 � [ f ¿(x)]2

�r¿(x) 
 r�(x) � � � f �(x) �

r¿(x) 
 r�(x) � †
i j k
1 f ¿(x) 0

0 f �(x) 0
† � f �(x)k

r�(x) � 0i � f �(x)j � 0kr¿(x) � i � f ¿(x)j � 0k

xr(x)xi � f(x)j � 0k
r(x) �Cx

EXAMPLE 5

a. Find the curvature of the parabola at the points where and .
b. Find the point(s) where the curvature is largest.

Solution
a. We first compute and . Then using Theorem 3, we find the curva-

ture at any point on the parabola to be

In particular, the curvature at the point , where , is

and the curvature at the point , where , is

k(1) �
4

(4 � x2)3>2 `
x�1

�
4

53>2 � 0.358

x � 111, 14 2
k(0) �

4

(4 � x2)3>2 `
x�0

�
1

2

x � 0(0, 0)

k(x) �
�y� �

[1 � (y¿)2]3>2 �
1
211 � 1
4 x2 23>2 �

4

(4 � x2)3>2

y � 1
2 x2(x, y)

y� � 1
2y¿ � 1

2 x

x � 1x � 0y � 1
4 x2
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b. To find the value of at which is largest, we compute

Setting yields the sole critical point . We leave it to you to show
that does give the absolute maximum value of .

The graph of is shown in Figure 6.

Radius of Curvature
Suppose that is a plane curve with curvature at the point . Then the reciprocal of
the curvature, , is called the radius of curvature of at . The radius of cur-
vature at any point on a curve is the radius of the circle that best “fits” the curve
at that point. This circle, which lies on the concave side of the curve and shares a com-
mon tangent line with the curve at , is called the circle of curvature or osculating
circle. (See Figure 7.)

The center of the circle is called the center of curvature. As an example, the cur-
vature of the parabola of Example 5 at the point was found to be .
Therefore, the radius of curvature of the parabola at is . The cir-r � 1>(1/2) � 2(0, 0)

1
2(0, 0)y � 1

4 x2

P

CP
PCr � 1>k PkC

y � 1
4 x2

k(x)x � 0
x � 0k¿(x) � 0

k¿(x) �
d

dx
 [4(4 � x2)�3>2] � �6(4 � x2)�5>2(2x) � �

12x

(4 � x2)5>2

kx

FIGURE 6
The graph of y � 1

4 x2

FIGURE 7
The radius of curvature at is the
radius of the circle that best fits the
curve at .PC

P

42

1

2

3

4

�4 �2 0 x

y

cle of curvature is shown in Figure 8. Its equation is .x2 � (y � 2)2 � 4

FIGURE 8
The circle of curvature is tangent to the
parabola.

0 x

C

P
®

y

42

1

2

3

�4 �2 0 x

y

1. Give the formula for finding the arc length of the curve 
defined by for . What con-
dition, if any, must be imposed on ?

2. a. What is a smooth curve?
b. Give an example of a curve in 3-space that is not

smooth.
3. a. What is the arc length function associated with

, where ?
b. If a curve is parametrized in terms of its arc length, what

is the unit tangent vector ? What is , where is
not the arc length parameter?

tT(t)T(s)

a � t � br(t) � � f(t), t(t), h(t)�

C
a � t � br(t) � � f(t), t(t), h(t)�

C 4. a. What is the curvature of a smooth curve at , where 
is the arc length parameter?

b. If is not the arc length parameter, what is the curvature
of at ?

c. What is the radius of curvature of a curve at a point 
on ?C

PC
tC

t

ssC

12.3 CONCEPT QUESTIONS
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In Exercises 1–8, find the length of the curve.

1. ,

2. ,

3. ,

4. ,

5. ,

6. ,

7. ,

8. ,

In Exercises 9 and 10, use a calculator or computer to graph the
curve represented by , and find the length of the curve for 
defined on the indicated interval.

9. ;

10. ;

In Exercises 11–14, find the arc length function for the curve
defined by . Then use this result to find a parametrization of

in terms of .

11. ,

12. ,

13. ,

14. ,

In Exercises 15–20, use Theorem 2 to find the curvature of the
curve.

15.

16.

17.

18.

19.

20.

In Exercises 21–26, use Theorem 3 to find the curvature of the
curve.

21. 22.

23. 24.

25. 26.

27. Find the point(s) on the graph of at which the 
curvature is zero.

28. Find an equation of the circle of curvature for the graph of
at the point . Sketch the graph of 

and the circle of curvature.
f(1, 2)f(x) � x � (1>x)

y � e�x2

y � sec xy � e�x2

y � ln xy � sin 2x

y � x4y � x3 � 1

r(t) � �et cos t, et sin t, et�

r(t) � 2 sin ti � 2 cos tj � 2tk

r(t) � (1 � t)i � (1 � t)j � 3t 2k

r(t) � ti � 1
2 t 2j � t 2k

r(t) � ti � j � t 2k

r(t) � 2ti � 2tj � k

0 � t � p
2r(t) � a cos3 ti � a sin3 tj � k

t � 0r(t) � et cos ti � et sin tj � etk

t � 0r(t) � 4 sin ti � 4 cos tj � 3tk

t � 0r(t) � (1 � t)i � (1 � 2t)j � 3tk

sC
r(t)

s(t)

[0, 2p]r(t) � 2 sin ti � 2 cos tj � 1
2 t 2k

[0, 2p]r(t) � t sin ti � t cos tj � tk

tr(t)

0 � t � p
2

r(t) � (cos t � t sin t)i � (sin t � t cos t)j � t 2k

1 � t � er(t) � 2ti � t 2j � ln tk

0 � t � 1r(t) � t 2i � t cos tj � t sin tk

0 � t � 2pr(t) � �et cos t, et sin t, et�

0 � t � 2pr(t) � a cos ti � a sin tj � btk

0 � t � 2pr(t) � 4 sin ti � 3tj � 4 cos tk

0 � t � 2r(t) � �5t, 3t 2, 4t 2�

0 � t � 4r(t) � ti � 2tj � 3tk

12.3 EXERCISES

Videos for selected exercises are available online at www.academic.cengage.com/login.V

In Exercises 29–32, find the point(s) on the curve at which the
curvature is largest.

29. 30.

31. 32.

In Exercises 33–36, match the curve with the graph of its curva-
ture in (a)–(d).

33. 34.

35. 36.

In Exercises 37 and 38, find the curvature function of the
curve. Then use a calculator or computer to graph both the
curve and its curvature function on the same set of axes.

37. 38. y � ln(1 � x2)y � e�x2

k(x)

k(x)

31 2

(d)

8

6

4

�3 �1�2 0 x

y

31 2

(c)

8

6

4

2

�3 �1�2 0 x

y

42

(b)

0.4

0.6

0.8

1.0

�4 �2 0 x

y

21

(a)

1

2

3

�2 �1 0 x

y

42

1

4

8

�4 �2 0 x

y

21

1

2

3

�2 �1 0 x

y

105

1

2

3

4

�10 �5 0 x

y

42

1
2
3
4
5

�4 �2 0 x

y

y � k(x)

4x2 � 9y2 � 36xy � 1

y � ln xy � ex

www.academic.cengage.com/login
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39. Suppose that is a smooth curve with parametric equations
, . Using Theorem 2, show that the curvature

at the point corresponding to any value of is

In Exercises 40 and 41, use the formula in Exercise 39 to find
the curvature of the curve.

40. ,

41. ,

42. a. The curvature of the curve at shown in the figure is
2. Sketch the osculating circle at . (Use the tangent line
shown at as an aid.)

b. What is the curvature of at ?

43. a. Find the curvature at the point on the ellipse

b. Find the curvature and the equation of the osculating 
circle at the points and .

c. Sketch the graph of the ellipse and the osculating circles
of part (b).

44. Find the curvature for the curve with parametric 
equations

and

What happens to as approaches 0?
Note: The curve is not smooth at .

45. The spiral of cornu is defined by the parametric equations

and was encountered in Exercise 45 of Section 10.3. Its
graph follows.

a. Find and .

b. Find the curvature of the spiral.
Note: The curvature increases from at a constant rate with
respect to as increases from . This property of the spiralt � 0tt

0k(t)

d2y

dx2

dy

dx

y � �
t

0
sinapu2

2
b dux � �

t

0
cosapu2

2
b du

t � 0
tk(t)

y � t 3x � t 2

k(t)

(0, 2)(3, 0)

x2

9
�

y2

4
� 1

(x, y)

0

in.5
8

x

C
P

Q

y

QC
P

P
PC

y � 1 � cos tx � t � sin t

y � t sin tx � cos t

k(t) �
� f ¿(t)t�(t) � t¿(t)f �(t) �

{[f ¿(t)]2 � [t¿(t)]2}3>2

t(x, y)
y � t(t)x � f(t)

C of cornu makes the curve useful in highway design: It provides
a gradual transition from a straight road (zero curvature) to a
curved road (with positive curvature), such as an exit ramp.

46. Suppose that the curve is described by a polar equation
. Show that the curvature at the point is 

given by

Hint: Represent by .

In Exercises 47 and 48, use the formula in Exercise 46 to find
the curvature of the curve.

47. 48.

49. Show that the curvature at every point on the helix

where , is given by .

50. Find the curvature at the point on an elliptic helix
with parametric equations

where , , and are positive and .

51. Find the arc length of , where
.

52. Find the curvature of the graph of (folium 
of Descartes) at the point accurate to four decimal
places.

In Exercises 53–58, determine whether the statement is true or
false. If it is true, explain why. If it is false, explain why or give
an example to show that it is false.

53. If is a smooth curve in the -plane defined by
on a parameter interval , then 

is defined at every point on the curve.

54. The curve defined by is smooth.r(t) � �t, � t ��

dy>dx
Ir(t) � x(t)i � y(t)j

xyC

(2, 4)
x3 � y3 � 9xy

0 � t � 2p
r(t) � t cos ti � t sin tj � tk

a � bcba

z � cty � b sin tx � a cos t

(x, y, z)

k(t) � a>(a2 � b2)a � 0

z � bty � a sin tx � a cos t

r � eur � 1 � sin u

r(u) � r cos ui � r sin ujC

k(u) �
�2(r¿)2 � rr � � r 2 �

[(r¿)2 � r 2]3>2

(r, u)r � f(u)
C

x

y
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55. If the graph of a twice differentiable function has an inflec-
tion point at , then the curvature at the point is
zero.

56. If is the curve defined by the parametric equations

then , where is the unit tangent vector to .CTdT>ds � 0

z � 4ty � 2 � 3tx � 1 � 2t

C

(a, f(a))a
f 57. The radius of curvature of the plane curve is

constant at each point on the curve.

58. If is continuous for all in an interval , then defines
a smooth curve.

rItr¿(t)

y �2a2 � x2

12.4 Velocity and Acceleration

Velocity, Acceleration, and Speed
The curve in Figure 1 is the flight path of a fighter plane. We can represent by the
vector function

where we think of the parameter interval as a time interval and use to indicate
the position of the plane at time .t

r(t)I

t � Ir(t) � f(t)i � t(t)j � h(t)k

CC

From Sections 12.2 and 12.3 we know that the vector has the following prop-
erties:

1. is tangent to at the point corresponding to time .

2. .

Since is the rate of change of the distance (measured along the arc) with respect
to time, it measures the speed of the plane. Thus, the vector gives both the speed
and the direction of the plane. In other words, it makes sense to define the velocity vec-
tor of the plane at time to be , the rate of change of its position vector with respect
to time. Similarly, we define the acceleration vector of the plane at time to be ,
the rate of change of its velocity vector with respect to time.

To gain insight into the nature of the acceleration vector, let’s refer to Figure 2.
Here, is fixed, and is a small number. The vector is tangent to the flight path
at the tip of the position vector , and is tangent to the flight path at the
tip of . The vector

r¿(t � h) � r¿(t)
h

r(t � h)
r¿(t � h)r(t)

r¿(t)ht

r�(t)t
r¿(t)t

r¿(t)
ds>dt

�r¿(t) � �
ds

dt

tPCr¿(t)

r¿(t)

FIGURE 1
The position vector gives 

the position of a fighter plane at 
time , and its derivative gives 

the plane’s velocity at time .t
r¿(t)t

r(t)
[ ]

bta t

Parameter interval (time interval)

y

x

z

r(t)

r �(t)

0

C

P
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FIGURE 2
To find ,
translate so that 
its tail is at the tip of .r(t)

r¿(t � h)
r¿(t � h) � r¿(t)

points in the general direction in which the plane is turning. Therefore, the accelera-
tion vector

points toward the concave side of the flight path as long as the direction of is
changing, in agreement with our intuition.

r¿(t)

r�(t) �
d

dt
 r¿(t) � lim

h→0
 
r¿(t � h) � r¿(t)

h

Let’s summarize these definitions.

y

x

z

r(t)

r(t � h)

r �(t � h)

r �(t)

r �(t � h) � r �(t)

0

Cr �(t � h) � r �(t)
h

___________

DEFINITIONS Velocity, Acceleration, and Speed

Let be the position vector of an object. If , , and
are twice differentiable functions of , then the velocity vector , acceler-

ation vector , and speed of the object at time are defined by

 �v(t) � � �r¿(t) � �2[ f ¿(t)]2 � [t¿(t)]2 � [h¿(t)]2

 a(t) � r�(t) � f �(t)i � t�(t)j � h�(t)k

 v(t) � r¿(t) � f ¿(t)i � t¿(t)j � h¿(t)k

t�v(t) �a(t)
v(t)th

tfr(t) � f(t)i � t(t)j � h(t)k

EXAMPLE 1 The position of an object moving in a plane is given by

Find its velocity, acceleration, and speed when . Sketch the path of the object and
the vectors and .

Solution The velocity and acceleration vectors of the object are

and

a(t) � r�(t) � 2i

v(t) � r¿(t) � 2ti � j

a(2)v(2)
t � 2

t � 0r(t) � t 2i � tj
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FIGURE 3
The path of the object and the 
vectors and a(2)v(2)

C

Therefore, its velocity, acceleration, and speed when are

and

respectively.
To sketch the path of the object, observe that the parametric equations of the curve

described by are and . By eliminating from these equations, we obtain
the rectangular equation , where , which tells us that the path of the object
is contained in the graph of the parabola . This path together with the vectors

and is shown in Figure 3.a(2)v(2)
x � y2

y � 0x � y2
ty � tx � t 2r(t)

�v(2) � � 116 � 1 � 117

 a(2) � 2i

 v(2) � 4i � j

t � 2

a(2)

v(2)

1

1

2

2 3 40 x

C

y

EXAMPLE 2 Find the velocity vector, speed, and acceleration vector of an object that
moves along the plane curve described by the position vector

Solution The velocity vector is

The speed of the object at time is

Finally, the acceleration vector is

which shows the acceleration is directed toward the origin (see Figure 4).

a(t) � �3 cos ti � 2 sin tj � �r(t)

�v(t) � �29 sin2 t � 4 cos2 t

t

v(t) � �3 sin ti � 2 cos tj

r(t) � 3 cos ti � 2 sin tj

C

FIGURE 4
The acceleration vector points toward
the origin.

a

a(t)

v(t)

3�3

�2

2

0 x

y

EXAMPLE 3 Find the velocity vector, acceleration vector, and speed of a particle
with position vector

Solution The required quantities are

and

Suppose that we are given the velocity or acceleration vector of a moving object.
Then it is possible to find the position vector of the object by integration, as is shown
in the next example.

�v(t) � � B
1

4t
� 4t 2 � 4e4t �

21 � 16t 3 � 16te4t

21t

 a(t) � r�(t) � �
1

4
 t �3>2i � 2j � 4e2tk � �

1

42t 3
 i � 2j � 4e2tk

 v(t) � r¿(t) �
1

2
 t �1>2i � 2tj � 2e2tk �

1

21t
 i � 2tj � 2e2tk

t � 0r(t) � 1t i � t 2j � e2tk



HERMANN GÜNTHER GRASSMANN
(1809–1877)

A productive scholar whose work spanned
mathematics, linguistics, theology, and
botany, Hermann Günther Grassmann did
not focus his attention on mathematics
until the age of 31. As a student at the Uni-
versity of Berlin, he took courses in theol-
ogy, classical languages, and literature, but
he appears not to have taken any courses
in mathematics or physics. After complet-
ing his university studies in 1830, Grass-
mann spent a year undertaking research in
mathematics and preparing himself to
teach in gymnasiums (secondary schools).
He did not do well on the exams and was
qualified to teach only at the lower levels.
However, during this time he had made sig-
nificant mathematical discoveries that
would eventually appear in his 1844 work
Die Lineale Ausdehnungslehre. This was a
truly groundbreaking work. In it he intro-
duced many concepts and techniques that
are of central importance in contemporary
mathematics, such as n-dimensional vector
spaces and multilinear algebra. However,
this work was far ahead of its time, and
Grassmann’s writing style was not clear or
well polished. The mathematical commu-
nity dismissed Die Lineale Ausdehnung-
slehre. In spite of this, Grassmann contin-
ued to work on his ideas about geometric
calculus and republished the paper in 1862.
Still not understood by others, he turned
to studies in linguistics and other areas of
science. Before his death in 1877 he had
written a third version of his paper. It was
published after his death, and it was then
that Grassmann’s discoveries were recog-
nized. Today, Grassmann is credited with
the invention of linear algebra.

Historical Biography
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EXAMPLE 4 A moving object has an initial position and an initial velocity given 
by the vectors and . Its acceleration at time is

. Find its velocity and position at time .

Solution Since , we can obtain by integrating both sides of this equa-
tion with respect to . Thus,

Letting in this expression and using the initial condition , we obtain

Therefore, the velocity of the object at any time is

Next, integrating the equation with respect to gives

Letting in and using the initial condition , we have

Therefore, the position of the object at any time is

Motion of a Projectile
A projectile of mass is fired from a height with an initial velocity and an angle
of elevation . If we describe the position of the projectile at any time by the posi-
tion vector , then its initial position may be described by the vector

and its initial velocity by the vector

(1)

(See Figure 5.)

√0 � �v0 �v(0) � v0 � (√0 cos a)i � (√0 sin a)j

r(0) � hj

r(t)
ta

v0hm

 � (t 3 � t � 1)i � a1

2
 t 2 � 2bj � (t � 1)2k

 � (t 3 � t � 1)i � a1

2
 t 2 � 2bj � (t 2 � 2t � 1)k

 r(t) � (t 3 � t)i �
1

2
 t 2j � (t 2 � 2t)k � (i � 2j � k)

t

r(0) � D � i � 2j � k

r(0) � i � 2j � kr(t)t � 0

 � (t 3 � t)i �
1

2
 t 2j � (t 2 � 2t)k � D

 r(t) � �v(t) dt � � [(3t 2 � 1)i � tj � 2(t � 1)k] dt

tr¿(t) � v(t)

 � (3t 2 � 1)i � tj � 2(t � 1)k

 v(t) � (3t 2i � tj � 2tk) � i � 2k

t

v(0) � C � i � 2k

v(0) � i � 2kt � 0

v(t) � �a(t) dt � � (6ti � j � 2k) dt � 3t 2i � tj � 2tk � C

t
v(t)v¿(t) � a(t)

ta(t) � 6ti � j � 2k
tv(0) � i � 2kr(0) � i � 2j � k

12.4 Velocity and Acceleration 1013
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If we assume that air resistance is negligible and that the only external force act-
ing on the projectile is due to gravity, then the force acting on the projectile during its
flight is

where is the acceleration due to gravity (32 ft/sec2 or 9.8 m/sec2). By Newton’s 
Second Law of Motion this force is equal to , where is the acceleration of the pro-
jectile. Therefore,

giving the acceleration of the projectile as

To find the velocity of the projectile at any time , we integrate the last equation with
respect to to obtain

Setting and using the initial condition , we obtain

Therefore, the velocity of the projectile at any time is

Integrating this equation then gives

Setting and using the initial condition , we obtain

Therefore, the position of the projectile at any time is

or, upon using Equation (1),

 � (√0 cos a)ti � ch � (√0 sin a)t �
1

2
 tt 2d j

 r(t) � �
1

2
 tt 2j � [(√0 cos a)i � (√0 sin a)j]t � hj

r(t) � �
1

2
 tt 2j � v0t � hj

t

r(0) � D � hj

r(0) � hjt � 0

r(t) � � (�ttj � v0) dt � �
1

2
 tt 2j � v0t � D

v(t) � �ttj � v0

t

v(0) � C � v0

v(0) � v0t � 0

v(t) � ��tj dt � �ttj � C

t
t

a(t) � �tj

ma � �mtj

ama
t

F � �mtj

FIGURE 5
The initial position of the projectile 
is , and its initial velocity 

is .v0 � (√0 cos a)i � (√0 sin a)j
r(0) � hj

r(0) � hj

v0 � (√0 cos å)i � (√0 sin å)j

√0 cos å

√0 sin å

r(t)

0

�mgj

x

h

å

y
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DEFINITION Position Function for a Projectile

The trajectory of a projectile fired from a height with an initial speed and
an angle of elevation is given by the position vector function

(2)

where is the constant of acceleration due to gravity.t

r(t) � (√0 cos a)ti � ch � (√0 sin a)t �
1

2
 tt 2d j

a

√0h

EXAMPLE 5 Motion of a Projectile A shell is fired from a gun located on a hill 
100 m above a level terrain. The muzzle speed of the gun is 500 m/sec, and its angle
of elevation is 30°.

a. Find the range of the shell.
b. What is the maximum height attained by the shell?
c. What is the speed of the shell at impact?

Solution Using Equation (2) with , , , and , we see
that the position of the shell at any time is given by

The corresponding parametric equations are

and

a. We first find the time when the shell strikes the ground by solving the equation

obtained by setting . Using the quadratic formula, we have

or 51.4 sec. Substituting this value of into the expression for we find that the
range of the shell is approximately

or 22,257 m.
b. The height of the shell at any time is given by

To find the maximum value of , we solve

to obtain . Since , the Second Derivative Test implies that
at approximately 25.5 sec into flight, the shell attains its maximum height

or 3289 m.

y `
t�25.5

� 100 � 250(25.5) � 4.9(25.5)2 � 3289

y� � �9.8 	 0t � 25.5

y¿ � 250 � 9.8t � 0

y

y � 100 � 250t � 4.9t 2

t

25013 (51.4) � 22,257

xt

We reject the
negative root.t �

250 � 162,500 � 1960

9.8
� 51.4

y � 0

4.9t 2 � 250t � 100 � 0

y � 100 � 250t � 4.9t 2x � 25013t

 � 25013 ti � (100 � 250t � 4.9t 2)j

 r(t) � (500 cos 30°)ti � [100 � (500 sin 30°)t � 4.9t 2] j

t
t � 9.8a � 30°√0 � 500h � 100
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c. By differentiating the position function

we obtain the velocity of the shell at any time . Thus,

From part (a) we know that the time of impact is . So at the time of
impact the velocity of the shell is

Therefore, its speed at impact is

or 502 m/sec. The trajectory of the shell is shown in Figure 6.

�v(51.4) � �2(25013)2 � (253.7)2 � 502

 � 25013 i � 253.7j

 v(51.4) � 25013 i � [250 � 9.8(51.4)] j

t � 51.4

v(t) � r¿(t) � 25013 i � (250 � 9.8t)j

t

r(t) � 25013 ti � (100 � 250t � 4.9t 2)j

FIGURE 6
The trajectory of the shell

1. a. What are the velocity, acceleration, and speed of an
object with position vector ?

b. Give the expressions for the quantities in part (a) if the
position vector has the form .r(t) � f(t)i � t(t)j � h(t)k

r(t)
2. A projectile of mass is fired from a height with an ini-

tial velocity and an angle of elevation . Write a vector
representing
a. Its initial position.
b. Its initial velocity in terms of and .
c. Its velocity at time .
d. Its position at time .t

t
a√0 � �v0 �

av0

hm

12.4 CONCEPT QUESTIONS

Videos for selected exercises are available online at www.academic.cengage.com/login.V

In Exercises 1–6, find the velocity, acceleration, and speed of an
object with the position function for the given value of . Sketch
the path of the object and its velocity and acceleration vectors.

1. ;

2. ;

3. ;

4. ;

5. ;

6. ;

In Exercises 7–12, find the velocity, acceleration, and speed of
an object with the given position vector.

7.

8.

9. r(t) � ti � t 2j �
1

t
 k

r(t) � �1t, 1 � 1t, t�

r(t) � ti � t 2j � (t 2 � 4)k

t � 1r(t) � �t, t 2, t 3�

t �
p

2
r(t) � cos ti � sin tj � tk

t � 0r(t) � eti � e�tj

t �
p

4
r(t) � cos ti � 3 sin tj

t � 1r(t) � �t 2 � 4, 2t�

t � 1r(t) � ti � (4 � t 2)j

t
10.

11.

12.

In Exercises 13–18, find the velocity and position vectors of an
object with the given acceleration, initial velocity, and position.

13. , ,

14. , ,

15. , ,

16. , ,

17. , ,

18. , ,

19. An object moves with a constant speed. Show that the
velocity and acceleration vectors associated with this motion
are orthogonal.
Hint: Study Example 5 in Section 12.2.

20. Suppose that the acceleration of a moving object is always 
. Show that its motion is rectilinear (that is, along a straight

line).
0

r(0) � �1, 0, 0�v(0) � �0, 1, 1�a(t) � �cosh t, sinh t, 0�

r(0) � iv(0) � 2ka(t) � �cos ti � sin tj � k

r(0) � �3, 1, 2�v(0) � �1, 2, 0�a(t) � �et, 0, e�t�

r(0) � j � kv(0) � i � ka(t) � i � tj � (1 � t)k

r(0) � 0v(0) � ka(t) � 2i � tk

r(0) � 128kv(0) � i � 2ja(t) � �32k

r(t) � t cos ti � t sin tj � t 2k

r(t) � et�cos t, sin t, 1�

r(t) � eti � e�tj � t 2k

12.4 EXERCISES
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21. A particle moves in three-dimensional space in such a way
that its velocity is always orthogonal to its position vector.
Show that its trajectory lies on a sphere centered at the 
origin.

22. A particle moves in three-dimensional space in such a way
that its velocity is always parallel to its position vector.
Show that its trajectory lies on a straight line passing
through the origin.

23. Motion of a Projectile A projectile is fired from ground level
with an initial speed of 1500 ft/sec and an angle of elevation
of 30°.
a. Find the range of the projectile.
b. What is the maximum height attained by the projectile?
c. What is the speed of the projectile at impact?

24. Motion of a Projectile Rework Exercise 23 if the projectile is
fired with an angle of elevation of 60°.

25. Motion of a Projectile Rework Exercise 23 if the projectile 
is fired with an angle of elevation of from a height of
200 ft above a level terrain.

26. Motion of a Projectile A shell is fired from a gun situated on 
a hill 500 ft above level ground. If the angle of elevation 
of the gun is 0° and the muzzle speed of the shell is 
2000 ft/sec, when and where will the shell strike the
ground?

27. Motion of a Projectile A mortar shell is fired with a muzzle
speed of 500 ft/sec. Find the angle of elevation of the mortar
if the shell strikes a target located 1200 ft away.

28. Path of a Baseball A baseball player throws a ball at an angle
of 45° with the horizontal. If the ball lands 250 ft away,
what is the initial speed of the ball? (Ignore the height of
the player.)

29. An object moves in a circular path described by the position
vector

where is the constant angular velocity of the
object.
a. Find the velocity vector, and show that it is orthogonal 

to .
b. Find the acceleration vector, and show that it always

points toward the center of the circle.
c. Find the speed and the magnitude of the acceleration

vector of the object.

30. An object located at the origin is to be projected at an initial
speed of m/sec and an angle of elevation of so that it
will strike a target located at the point . Neglecting air
resistance, find the required angle .

31. Human Cannonball The following figure shows the trajectory
of a “human cannonball” who will be shot out of a cannon
located at ground level onto a net. If the angle of elevation
of the cannon is 60° and the initial speed of the man is 

a

(r, 0)
a√0

r(t)

v � du>dt

r(t) � a cos vti � a sin vtj

30°

ft/sec, determine the range of values of that will allow
the man to land on the net. Neglect air resistance.

32. Cycloid Motion A particle of charge is released at rest from
the origin in a region of uniform electric and magnetic fields
described by and .

a. Use the Lorentz Force Law, where
is the velocity of the particle, to show that

b. Use the result of part (a) and Newton’s Second Law of
Motion to show that the equations of motion of the parti-
cle take the form

where and is the mass of the particle.

c. Show that the general solution of the system in part (b) 
is ,

, and .
d. Use the initial conditions 

, ,

and

to determine , , , and hence show that the 
trajectory of the particle is the cycloid ,

, and .
(See Section 10.2.)

z(t) � (E(vB))(1 � cos vt)(E>(vB))(vt � sin vt)
y(t) �x(t) � 0

C6pC2C1

z(0) �
dz

dt
 (0) � 0

y(0) �
dy

dt
 (0) � 0x(0) �

dx

dt
 (0) � 0

z(t) � C4 cos vt � C3 sin vt � C6(E>B)t � C5

y(t) � C3 cos vt � C4 sin vt �x(t) � C1t � C2

mv �
QB

m

d2z

dt 2 � vaE

B
�

dy

dt
bd2y

dt 2 � v 
dz

dt

d2x

dt 2 � 0

F � QB 
dz

dt
 j � QaE � B 

dy

dt
bk

v
F � Q[E � (v 
 B)]

0

E � Ek

B � Bi
x

z

y

B � BiE � Ek

Q

x

y

0

150 ft 30 ft

60°

√0√0
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33. Newton’s Law of Inertia As a model train moves along a
straight track at a constant speed of ft/sec, a ball 
bearing is ejected vertically from the train at an initial 
speed of ft/sec. Show that at some later time the ball
bearing will return to the location on the train from which 
it was released.
Note: This experiment demonstrates Newton’s Law of Inertia.

34. Let be the position vector of a moving particle and let
.

a. Show that .
b. What can you say about the orbit of the particle if 

is perpendicular to ?
c. What can you say about the relationship between the

velocity vector and the position vector of the particle if
the orbit is circular?

35. A particle has position given by at time for
. At time the particle departs the curve and

flies off along the line tangent to the curve at . If the
particle maintains a constant speed given by , what is
the trajectory of the particle for ? What is its position
at ?t � 2

t � 1
�v(1) �
r(1)

t � 10 � t � 1
tr(t) � �t, t 2, t 3�

r
v � r¿

r � r¿ � rr¿
r(t) � �r(t) �

r(t)

√1

√0

36. Motion of a Projectile Suppose that a projectile is fired from
the origin of a two-dimensional coordinate system at an
angle of elevation of and an initial speed of .
a. Show that the position function of the projectile is

equivalent to the parametric equations 
and .

b. Eliminate in the equations in part (a) to find an equa-
tion in and describing the trajectory of the projectile.
What is the shape of the trajectory?

In Exercises 37–38, determine whether the statement is true or
false. If it is true, explain why. If it is false, explain why or give
an example to show that it is false.

37. If gives the position of a particle at time , then
, where is the unit tangent vector 

to the curve described by at and .

38. If a particle moves in such a way that its speed is always
constant, then its acceleration is zero.

r¿(t) � 0tr
T(t)r¿(t) � �r¿(t) �T(t)

tr(t)

yx
t

 y(t) � (√0 sin a)t � (1>2)tt 2
x(t) � (√0 cos a)t

r(t)
√0a

12.5 Tangential and Normal Components of Acceleration

The Unit Normal
Suppose that is a smooth space curve described by the vector function . Then,
as we saw earlier,

is the unit tangent vector to the curve at the point corresponding to . Since 
for every , the result of Example 5 in Section 12.2 tells us that the vector is
orthogonal to . Therefore, if is also smooth, we can normalize to obtain a
unit vector that is orthogonal to . This vector

is called the principal unit normal vector (or simply the unit normal) to the curve
at the point corresponding to . (See Figure 1.)tC

N(t) �
T¿(t)

�T¿(t) �

T(t)
T¿(t)r¿T(t)

T¿(t)t
�T(t) � � 1tC

r¿(t) � 0T(t) �
r¿(t)

�r¿(t) �

r(t)C

FIGURE 1
At each point on the curve , the unit
normal vector is orthogonal to

and points in the direction the
curve is turning.
T(t)

N(t)
C

EXAMPLE 1 Let be the helix defined by

Find and . Sketch and the vectors and .

Solution Since

and
�r¿(t) � �24 sin2 t � 4 cos2 t � 1 � 15

r¿(t) � �2 sin ti � 2 cos tj � k

N(p>2)T(p>2)CN(t)T(t)

t � 0r(t) � 2 cos ti � 2 sin tj � tk

C

0

T(t)

r(t)

N(t)

x

z

y

C
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we have

Next, differentiating , we obtain

Since

it follows that

In particular, at we have

and

The curve and the unit vectors and are shown in Figure 2. Note
that, in general, the principal normal vector is parallel to the -plane and points
toward the -axis.

Tangential and Normal Components of Acceleration
Let’s return to the study of the motion of an object moving along the curve described
by the vector function defined on the parameter interval . Recall that the speed of
the object at any time is . But

so we can write

(1)

which expresses the velocity of the object in terms of its speed and direction. (See 
Figure 3.)

v(t) � r¿(t) � �r¿(t) �T � √T

T �
r¿(t)

�r¿(t) �

√ � �v(t) � � �r¿(t) �t
√Ir

C

z
xyN(t)

N(p>2)T(p>2)C

Nap
2
b � �(cos ti � sin tj) `

t�p>2
� �j

Tap
2
b �

1

15
 (�2 sin ti � 2 cos tj � k) `

t�p>2
� �

2

15
 i �

1

15
 k

t � p>2
N(t) �

T¿(t)
�T¿(t) � � �(cos ti � sin tj)

�T¿(t) � �
2

15
 2 cos2 t � sin2 t �

2

15

T¿(t) �
1

15
 (�2 cos ti � 2 sin tj) � �

2

15
 (cos ti � sin tj)

T

T(t) �
r¿(t)

�r¿(t) � �
1

15
 (�2 sin ti � 2 cos tj � k)

FIGURE 2
The unit vectors and 

at the point 
on the helix

10, 2, p2 2N(p>2)
T(p>2)

z

C

x

y

T
π__
2

N
π__
2

(   )
(   )

FIGURE 3
The velocity of the object 

at time is .v(t) � √Tt

0

 v(t) � √T
√

T

r(t)

x

z

y
ta bt

[ ]
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The acceleration of the object at time is

To obtain an expression for , recall that

so . Now we need an expression for . But from Equation (4) in Section
12.3 we have

where is the curvature of . This gives

so .
Therefore,

(2)

This result shows that the acceleration vector can be resolved into the sum of two
vectors—one along the tangential direction and the other along the normal direction.
The magnitude of the acceleration along the tangential direction is called the tangen-
tial scalar component of acceleration and is denoted by , whereas the magnitude
of the acceleration along the normal direction is called the normal scalar component
of acceleration and is denoted by . Thus,

(3)

where
and (4)

(See Figure 4.)
The following theorem gives formulas for calculating and directly from and

its derivatives.
raNaT

aN � k√2aT � √¿

a � aTT � aNN

aN

aT

a

 � √¿T � k√2N

 a � √¿T � √(k√N)

T¿ � �T¿ �N � k√N

�T¿ � � k�r¿ � � k√

Ck

k �
�T¿ �
�r¿ �

�T¿ �T¿ � �T¿ �N

N �
T¿

�T¿ �

T¿

a � v¿ �
d

dt
 (√T) � √¿T � √T¿

t

FIGURE 4
The acceleration has a component

in the tangential direction and 
a component in the normal
direction.

aNN
aTT

a

THEOREM 1 Tangential and Normal Components of Acceleration

Let be the position vector of an object moving along a smooth curve .
Then

where

and aN �
�r¿(t) 
 r�(t) �

�r¿(t) �aT �
r¿(t) � r�(t)

�r¿(t) �

a � aTT � aNN

Cr(t)

PROOF If we take the dot product of and as given by Equations (1) and (2), we
obtain

 � √√¿T � T � k√3T � N

 v � a � (√T) � (√¿T � k√2N)

av

0

a

N
T

x

z

y

C

aT

aN
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But , since is a unit vector, and , since and are or-
thogonal. Therefore,

or, in view of Equation (4),

Next, using Equation (4) and the formula for curvature (Theorem 2 in Section 12.3),
we have

aN � k√2 �
�r¿(t) 
 r�(t) �

�r¿(t) �3
 �r¿(t) �2 �

�r¿(t) 
 r�(t) �
�r¿(t) �

aT � √¿ �
v � a

√
�

r¿(t) � r�(t)
�r¿(t) �

v � a � √√¿

NTT � N � 0TT � T � �T �2 � 1

EXAMPLE 2 A particle moves along a curve described by the vector function
. Find the tangential scalar and normal scalar components of

acceleration of the particle at any time .

Solution We begin by computing

Then, using Theorem 1, we obtain

Next, we compute

Then, using Theorem 1, we have

aN �
�r¿(t) 
 r�(t) �

�r¿(t) � �
236t 4 � 36t 2 � 4

21 � 4t 2 � 9t 4
� 2B

9t 4 � 9t 2 � 1

9t 4 � 4t 2 � 1

r¿(t) 
 r�(t) � †
i j k
1 2t 3t 2

0 2 6t
† � 6t 2i � 6tj � 2k

aT �
r¿(t) � r�(t)

�r¿(t) � �
4t � 18t 3

21 � 4t 2 � 9t 4

 r�(t) � 2j � 6tk

 r¿(t) � i � 2tj � 3t 2k

t
r(t) � ti � t 2j � t 3k

EXAMPLE 3 Motion of a Projectile Refer to Example 5 in Section 12.4. The posi-
tion function of a shell is given by

a. Find the tangential and normal scalar components of acceleration of the shell at
any time .

b. Find and for , 12.75, 25.5, and 38.25.
c. Is the shell accelerating or decelerating in the tangential direction at the values of

specified in part (b)?

Solution
a.

 r�(t) � �9.8j

 r¿(t) � 25013 i � (250 � 9.8t)j

t

t � 0aN(t)aT(t)
t

r(t) � 25013 ti � (100 � 250t � 4.9t 2)j
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The tangential scalar component acceleration of the shell is

Next

So the normal scalar component of acceleration of the shell is

b. The values of and for the specified values of are shown in Table 1.taN(t)aT(t)

aN(t) �
�r¿(t) 
 r�(t) �

�r¿(t) � �
245013

296.04t 2 � 4900t � 250,000

r¿(t) 
 r�(t) � †
i j k

25013 250 � 9.8t 0

0 � 9.8 0
† � �245013k

aT(t) �
r¿(t) � r�(t)

�r¿(t) � �
�9.8(250 � 9.8t)

296.04t 2 � 4900t � 250,000

c. Since , the shell is decelerating at . Since 
, the shell is decelerating at but not by as much as it was at

. Since , the shell is neither accelerating nor decelerating at
(when the shell is at its maximum height). Finally, since 

, the shell is accelerating at as it continues to plunge toward 
the earth.

Kepler’s Laws of Planetary Motion
We close this chapter by demonstrating how calculus can be used to derive Kepler’s
Laws of Planetary Motion. After laboring for more than 20 years analyzing the empir-
ical data obtained by the Danish astronomer Tycho Brahe, the German astronomer
Johannes Kepler (1571–1630) formulated the following three laws describing the
motion of the planets around the sun.

t � 38.252.7 � 0
aT(38.25) �t � 25.5

aT(25.5) � 0t � 0
t � 12.75�2.7 	 0

aT(12.75) �t � 0aT(0) � �4.9 	 0

t 0 12.75 25.5 38.25

aT(t) �4.9 �2.7 0 2.7

aN(t) 8.5 9.4 9.8 9.4

TABLE 1

Kepler’s Laws

1. The orbit of each planet is an ellipse with the sun at one focus. (See
Figure 5a.)

2. The line joining the sun to a planet sweeps out equal areas in equal inter-
vals of time. (See Figure 5b.)

3. The square of the period of revolution of a planet is proportional to the
cube of the length of the major axis of its orbit; that is, , where

is a constant.k
T2 � ka3a

T
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FIGURE 5

Focus

Sun

Focus

Planet

Planet

r(t3)
r(t2)

r(t1)

A2
A1

r(t4)

Sun

(a) The orbit of a planet is an ellipse. (b) If the time intervals [t1, t2] and [t3, t4] are of equal
      length, then the area of A1 is equal to the area of A2.

Sir Isaac Newton proved these laws approximately 50 years after they were formu-
lated. He showed that they were consequences of his own Law of Universal Gravita-
tion and the Second Law of Motion. We will prove Kepler’s First Law and leave the
derivation of the other two laws as exercises. (See Exercises 37 and 38.)

Derivation of Kepler’s First Law
We begin by showing that the orbit of a planet lies in a plane. Let’s place the sun at
the origin of a coordinate system. By Newton’s Law of Gravitation the force of grav-
itational attraction exerted by the sun on the planet is given by

where and are the masses of the sun and the planet, respectively; is the position
vector of the planet; is the gravitational constant; ; and is the unit
vector having the same direction as . This force, which is always directed toward a
fixed point O, is an example of a central force. But by Newton’s Second Law of Motion
the acceleration, , of the planet is related to the force, , to which it is subjected by

Equating these two expressions for gives

or, upon dividing through by ,

Next, we will show that for any central force, and satisfy . To see this,
we compute

Using this result, we have

d

dt
 (r 
 v) � r¿ 
 v � r 
 v¿ � v 
 v � r 
 a � 0 � 0 � 0

 � �
GM

r 2
 ar 


r
�r �b � �

GM

r 3
 (r 
 r) � 0

 r 
 a � r 
 a�GM

r 2
 ub � �

GM

r 2
 (r 
 u)

r 
 a � 0ar

a � �
GM

r 2
 u

m

ma � �
GMm

r 2
 u

F

F � ma

Fa

r
u � r>�r �r � �r �G

rmM

F � �
GMm

r 2
 u

F
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Integrating both sides of this equation with respect to yields

where is a constant vector. By the definition of the cross-product, is orthogonal to
both and , and we conclude that both and lie in a fixed plane containing
the point . This shows that the orbit of the planet is a plane curve, as was claimed
earlier. (See Figure 6.)

O
v(t)r(t)vr

cc

r 
 v � c

t

FIGURE 6
The orbit of the planet lies in 
the plane passing through the 

origin and orthogonal to .c

To show that this curve is an ellipse with the sun at one focus, we observe that

.

Therefore,

See Theorem 3 in Section 11.4.

Since , we see that . (See Example 5 in Section 12.2.) So
the last equation reduces to

But can also be written as

Therefore,

Integrating both sides of this equation with respect to gives

(5)

where is a constant vector that depends on the initial conditions. If we take the dot
product of both sides of the last equation with , we have

But

See Theorem 3 in Section 11.4.

 � c � c � �c �2
 r � (v 
 c) � c � (r 
 v)

 � GM(ru � u) � r � b � GMr � r � b

 r � (v 
 c) � r � (GMu � b) � GMr � u � r � b

r
b

v 
 c � GMu � b

t

d

dt
 (v 
 c) � GMu¿ �

d

dt
 (GMu)

Remember that c is a
constant vector.a 
 c � v¿ 
 c �

d

dt
 (v 
 c)

a 
 c

a 
 c � GMu¿

u � u¿ � 0u � u � �u �2 � 1

 � �GM[(u � u¿)u � (u � u)u¿]

 a 
 c � a�GM

r 2
 ub 
 [r 2(u 
 u¿)] � �GM[u 
 (u 
 u¿)]

u 
 u � 0 � r 2(u 
 u¿)

 � (ru) 
 (ru¿ � r¿u) � r 2(u 
 u¿) � rr¿(u 
 u)

 c � r 
 v � r 
 r¿ � (ru) 
 (ru) ¿

v

r

c

O
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So

(6)

where . If , then Equation (6) reduces to

or

and the orbit of the planet is a circle. Note that none of the orbits of the planets in our
solar system has such an orbit. So we may assume that for planets in our solar
system. In this case, letting be the angle between and and writing , we
can write Equation (6) in the form

or

(7)

Dividing both the numerator and denominator of Equation (7) by , we obtain

where . Finally, if we write , we obtain the equation

(8)

Since and are both orthogonal to , we see from Equation (5) that is orthog-
onal to . Therefore, in the plane determined by and (see Figure 7), we can regard

and as polar coordinates of a point on the orbit of the planet. Comparing Equa-
tion (8) with that of Theorem 2 in Section 10.6, we see that it is the polar equation of
a conic section with focus at the origin and eccentricity . Since the orbit of the planet
is a closed curve, we know that the conic must be an ellipse. This completes the proof
of Kepler’s First Law.

e

Pur
rbc

bcrv 
 c

r �
ed

1 � e cos u

d � c2>be � b>GM

r �

c2

GM

1 � a b

GM
b cos u

�

ec2

b

1 � e cos u

GM

r �
c2

GM � b cos u

 GMr � rb cos u � c2

 GMr � �r ��b � cos u � c2

�c � � cbru

b � 0

r �
c2

GM

GMr � c2

b � 0c � �c �

GMr � r � b � �c �2 � c2

FIGURE 7
In the plane determined by and 
, and are polar coordinates.urc

r

P(r, ¨)

v

c

b r
¨

1. a. What are the unit tangent and the unit normal vectors at
a point on a curve? Illustrate with a sketch.

b. Suppose that a curve is described by the vector function
. Give formulas for computing the quantities in

part (a).
r(t)

2. a. What are the tangential and normal components of accel-
eration of an acceleration vector? Illustrate with a sketch.

b. Write expressions for the quantities in part (a) in terms
of and its derivatives.r(t)

12.5 CONCEPT QUESTIONS
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Videos for selected exercises are available online at www.academic.cengage.com/login.V

In Exercises 1–4, find the unit tangent and unit normal vector
and for the curve defined by . Sketch the graph

of , and show and for the given value of .

1. ;

2. ;

3. ;

4. ;

In Exercises 5–10, find the unit tangent and unit normal vectors
and for the curve defined by .

5. 6.

7.

8.

9. 10.

In Exercises 11–18, find the scalar tangential and normal compo-
nents of acceleration of a particle with the given position vector.

11. 12.

13.

14. ;

15.

16.

17. 18.

19. The accompanying figure shows the path of an object mov-
ing in the plane and its acceleration vector , its unit tangent
vector , and its unit normal vector at the points and .
a. Sketch the vectors and at and .
b. Is the particle accelerating or decelerating at ? At ?

20. At a certain instant of time, the position, velocity, and accel-
eration of a particle moving in the plane are ,

, and , respectively.
a. Sketch , , and .
b. Is the particle accelerating or decelerating at that instant

of time? Explain.
c. Verify your assertion by computing .aT

avr
a � 5i � 5jv � 3i � 4j

r � 4i � 2j

N

N

T

T

a

a

0 x

C

A

B

y

BA
BAaNNaTT

BANT
a

r(t) � �t cos t, t sin t, 4�r(t) � et�cos t, sin t, 1�

r(t) � cos2 ti � sin2 tj � tk

r(t) � 2 sin ti � 2 cos tj � tk

t � 0r(t) � t 2i � t 3j � t 2k

r(t) � ti � t 2j � t 3k

r(t) � (2t 2 � 1)i � 2tjr(t) � ti � (t 2 � 4)j

r(t) � 2ti � t 2j � ln tkr(t) � et�cos t, sin t, 1�

r(t) � 2 cos ti � j � 2 sin tk

r(t) � �sin 2t, cos 2t, 3t�

r(t) � ti � t 2j �
2

3
 t 3kr(t) � i � tj � t 2k

r(t)CN(t)T(t)

t �
p

4
r(t) � (2 � cos t)i � (3 � sin t)j

t � 1r(t) � t 2i � t 3j

t � 1r(t) � t 2i � 2tj

t � 1r(t) � ti � 2t 2j

tN(t)T(t)C
r(t)CN(t)T(t)

21. At a certain instant of time, the velocity and acceleration of
a particle are and ,
respectively.
a. Find and .
b. Is the particle accelerating or decelerating?

22. At a certain instant of time, the velocity and acceleration of
a particle at that time are and ,
respectively.
a. Find and .
b. Is the particle accelerating or decelerating?

23. The position of a particle at time is .
a. Show that the path of the particle is a circular orbit with

center at the origin.
b. Show that , where is the acceleration vector

of the particle. 
Hint: Show that .

24. Trajectory of a Shell A shell is fired from a howitzer with a
muzzle speed of m/sec at angle of elevation of . What
are the scalar tangential and normal components of accelera-
tion of the shell?

25. A particle moves along a curve with a constant speed. Show
that the acceleration of the particle is always normal to .

26. An object moves along a curve with a constant speed.
Show that the magnitude of the acceleration of the object is
directly proportional to the curvature of .

27. Suppose that a particle moves along a plane curve that is the
graph of a function whose second derivative exists. Show
that its normal component of acceleration is zero when the
particle is at an inflection point of the graph of .

Let be a smooth curve defined by , and let and 
be the unit tangent vector and unit normal vector to corre-
sponding to . The plane determined by and is called the
osculating plane. In Exercises 28 and 29, find an equation of 
the osculating plane of the curve described by at the point
corresponding to the given value of .

28. ;

29. ; t � 0r(t) � �et, e�t, 12t�

t � 1r(t) � ti � 2t 2j � t 3k

r

TN

C
Osculating plane

y

x

z

0

t
r(t)

NTt
C

N(t)T(t)r(t)C

f

f

C

C

C
C

a√0

a � r � v � v � 0

ar � a � 0

r(t) � �cos t 2, sin t 2�t

aNaT

a � ��6, �4, 3�v � �2, 3, 6�

aNaT

a � �6i � 4j � 3kv � 2i � 3j � 6k

12.5 EXERCISES
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Let be a smooth curve defined by , and let and 
be the unit tangent vector and unit normal vector to corre-
sponding to . The vector defined by is orthogonal
to and and is called the unit binormal vector. The vectors,

, , and form a right-handed set of orthogonal unit vectors.
In Exercises 30 and 31, find for the curve described by .

30.

31.

32. Refer to Exercises 30 and 31. Show that can be expressed
in terms of and its derivatives by the formula

33. Rework Exercise 30 using the formula for in Exercise 32.

34. Let , , and be the unit tangent, unit normal, and unit
binormal, respectively, associated with a smooth curve 
described by .
a. Show that is orthogonal to and to .
b. Use the result of part (a) to show that for

some scalar . (The number is called the torsion
of the curve. It measures the rate at which the curve
twists out of its osculating plane (the definition of an
osculating plane is given on page 1026). We define to
be equal to 0 for a straight line.)

c. Use the result of part (b) to show that the torsion of a
plane curve is zero.

The torsion of a curve defined by is given by

In Exercises 35 and 36, find the torsion of the curve defined 
by .

35.

36.

37. Kepler’s Second Law Prove Kepler’s Second Law using the fol-
lowing steps. (All notation is the same as that used in the text).
a. Show that if is the area swept out by the radius 

vector in the time interval , then

dA

dt
�

1

2
 r 2 

du

dt

[t0, t]r(t)
A(t)

r(t) � (t � sin t)i � (1 � cos t)j � tk

r(t) � cos ti � sin tj � tk

r(t)

t �
(r¿ 
 r�) � r‡

�r¿ 
 r� �2

r(t)

t

t(t)t(t)
dB>ds � tN

BTdB>ds
r(t)

C
BNT

B

B �
r¿ 
 r�

�r¿ 
 r� �

r
B

r(t) � 2 cosh ti � 2 sinh tj � 2tk

r(t) � ti � 2t 2j � t 3k

0

r

T

x

z

y

C
B

N

r(t)B
BNT

NT
B � T 
 NBt

C
N(t)T(t)r(t)C (See the figure below.)

b. Show that , so .

c. Conclude that , so the rate at which the area is 

swept out is constant. This is precisely Kepler’s Second
Law.

38. Kepler’s Third Law Prove Kepler’s Third Law by using the fol-
lowing steps. In addition, suppose that the lengths of the
major and minor axes of the elliptical orbit are and ,
respectively. (All notation is the same as that used in the
text.)
a. Use the result of part (c) Exercise 37 and the fact that the

area of the ellipse is square units to show that
.

b. Show that .
c. Using the result of parts (a) and (b), show that ,

where .

39. Period of the Earth’s Orbit The period of the earth’s orbit about
the sun is approximately 365.26 days. Also, the mass of the
sun is approximately kg, and the gravitational
constant is Nm2/kg2. Find the length of
the major axis of the earth’s orbit.

40. Artificial Satellites A communications relay satellite is to be
placed in geosynchronous orbit; that is, its circular orbit
about the earth is to have a period of revolution of 24 hr so
that the satellite appears to be stationary in the sky. Use the
fact that the moon has a period of 27.32 days in a circular
orbit of radius 238,850 mi from the center of the earth to
determine the radius of the satellite’s orbit.

41. Motion of a Projectile A projectile is fired from a height with
an initial speed and an angle of elevation .
a. What are the scalar tangential and normal components of

acceleration of the projectile?
b. What are the scalar tangential and normal components of

acceleration of the projectile when the projectile is at its
maximum height?

42. Trajectory of a Shell A shell is fired from a gun located on a
hill 50 m above a level terrain. The muzzle speed of the gun
is 500 m/sec, and its angle of elevation is 45°.
a. Find the scalar tangential and normal components of

acceleration of the shell.
Hint: Use the result of Exercise 41.

b. When is the shell accelerating, and when is it decelerating?

a√0

h

G � 6.67 
 10�11
1.99 
 1030

k � 4p2>(GM)
T2 � ka3

c2>(GM) � ed � b2>aT � 2pab>c pab

2b2a

r(t)
r(t0)A(t)

x

y

dA

dt
�

1

2
 c

r 2 
du

dt
� cc � r 2 

du

dt
 k
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43. Derive the following formula for calculating the 
radius of curvature of a curve represented by

:

44. Use the result of Exercise 43 to find the radius 
of curvature of the space curve with position vector

.r(t) � ti � sin tj � cos tk

r �
(x¿(t))2 � (y¿(t))2 � (z¿(t))2

2(x�(t))2 � (y�(t))2 � (z�(t))2 � (√¿(t))2

r(t) � x(t)i � y(t)j � z(t)k
Cr

In Exercises 45–48, determine whether the statement is true or
false. If it is true, explain why it is true. If it is false, explain why
or give an example to show why it is false.

45. If , where is a nonzero constant, then the unit nor-
mal to the curve defined by is given by .

46. If motion takes place along the -axis, then .

47. If is the position vector of a particle with respect to
time and is the position vector of the particle with
respect to arc length, then is a scalar multiple of .

48. If is the position vector of a particle moving along a
smooth curve , then , where is the
radius of curvature.

ra � √¿T � (√2>r)NC
r(t)

r�(s)r�(t)
r(s)t

r(t)

aT � d2x>dt 2x

N � r�>�r� �r(t)C
c�r¿(t) � � c

In Exercises 1–11, fill in the blanks.

1. a. A vector function is a function of the form 
, where , , and are functions 

of a variable , called a .
b. The domain of , called the is a

subset of the .

2. a. A space curve is traced out by the point of 
as takes on all values in the interval .

b. The terminal point of corresponds to the 
point of the curve, and the terminal point of gives
the point of the curve.

3. a. If , then exists if and
only if , , and exist.

b. A vector function is continuous at if 
. The function is on if it is continu-

ous at each point in .

4. a. The derivative of is , provided that the
limit exists.

b. If , then .

5. a. If and are differentiable, then 

, and .

b. If is differentiable and is differentiable, then 

.

6. If , , and are integrable and , then
a. .
b. .

7. The length of the curve , , where
, is given by .L �a � t � b

r(t) � � f(t), t(t), h(t)�C

�b
a r(t) dt �

� r(t) dt �
r(t) � � f(t), t(t), h(t)�htf

d

dt
 [u( f(t))] �

fu

d

dt
 [u(t) 
 v(t)] �

d

dt
 [u(t) � v(t)] �vu

r¿(t) �r(t) � � f(t), t(t), h(t)�

r¿(t) �r

I
I
limt→a r(t) �ar

limt→a r(t)r(t) � � f(t), t(t), h(t)�

r(b)
r(a)

[a, b]t
r(t)

r(t)

htf
r(t) �

8. a. A curve described by with parameter is said to
be by .

b. The arc length function associated with a smooth curve
described by is .

c. The curve has arc length parametrization if it is param-
etrized by the function .

9. a. If a smooth curve is described by , where is the
arc length parameter, then the curvature of is 

.
b. If is parametrized by , then .
c. The curvature of is also given by .
d. If is a plane curve, then .
e. For a plane curve , the reciprocal of the curvature at 

the point is called the 
of at , and the circle with this that shares 
a common with the curve at is
called the .

10. If the position vector of a particle is , then its velocity 
is , its speed is , and its acceleration 
is . The acceleration vector points toward the

side of the trajectory of the particle.

11. a. If is a smooth curve described by the vector function
, then the unit tangent vector is ,

and the principal unit normal vector is .
b. The acceleration of a particle can be resolved into the

sum of two vectors—one along the direction of
and the other along the direction of .

In fact, , where and
; the former is called the scalar 

component of acceleration, and the latter is called the
scalar component of acceleration.

c. In terms of and its derivatives, , and
.aN �

aT �r

aN �
aT �a � aTT � aNN

N(t) �
T(t) �r(t)

C

r(t)

P
PC

P
C

k(x) �C
k(t) �C

k(t) �tC

k(s) �C
sr(s)C

s(t)
C

s(t) �r(t)C
s

t
tr(t)C
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In Exercises 1–4, sketch the curve with the given vector equa-
tion, and indicate the orientation of the curve.

1.

2. ;

3.

4. ;

5. Find the domain of .

6. Find , where .

7. Find the interval in which

is continuous.

8. Find if .

In Exercises 9–12, find and .

9.

10.

11.

12.

In Exercises 13 and 14, find parametric equations for the tan-
gent line to the curve with the given parametric equations at the
point with the given value of .

13. , , ;

14. , , ;

In Exercises 15 and 16, evaluate the integral.

15.

16.

In Exercises 17 and 18, find for the vector function or
and the given initial condition(s).

17. ;

18. ; ,
r(0) � 2i � j � 3k

r¿(0) � i � kr�(t) � 2i � tj � e�tk

r(0) � i � 2jr¿(t) � 21t i � 3 cos 2ptj � e�tk

r�(t)
r¿(t)r(t)

�
1

0
(2ti � t 2j � t 3>2k) dt

� a1t i � e�2tj �
1

t � 1
 kb dt

t �
p

2
z � t 2y � t sin t � cos tx � t cos t � sin t

t � 0z � t 3 � 1y � 2t � 3x � t 2 � 1

t

r(t) � �t sin t, t cos t, e2t�

r(t) � (t 2 � 1)i � 2tj � ln tk

r(t) � e�t i � t cos tj � t sin tk

r(t) � 1t i � t 2j �
1

t � 1
 k

r�(t)r¿(t)

r(t) � c�
t

0
cos2 u dudi � c�

t2

0
sin u dud jr¿(t)

r(t) � 1t � 1 i �
et

12 � t
 j �

t 2

(t � 1)2 k

r(t) �
1t

1 � t 2 i �
t 2

sin t
 j �

et � 1

t
 klim

t→0�
r(t)

r(t) �
1

15 � t
 i �

sin t

t
 j � ln(1 � t)k

0 � t � 2pr(t) � 2 cos ti � 3 sin tj � t 2k

r(t) � (cos t � 1)i � (sin t � 2)j � 2k

0 � t � 2r(t) � t 3i � t 2j

r(t) � (2 � 3t)i � (2t � 1)j

In Exercises 19 and 20, find the unit tangent and the unit normal
vectors for the curve defined by for the given value of .

19. ;

20. ;

In Exercises 21 and 22, find the length of the curve.

21. ;

22. ;

In Exercises 23 and 24, find the curvature of the curve.

23.

24.

In Exercises 25 and 26, find the curvature of the plane curve,
and determine the point on the curve at which the curvature is
largest.

25. 26.

In Exercises 27 and 28, find the velocity, acceleration, and speed
of the object with the given position vector.

27.

28.

In Exercises 29 and 30, find the velocity and position vectors of
an object with the given acceleration and the given initial veloc-
ity and position.

29. ; ,

30. ; ,

In Exercises 31–34, find the scalar tangential and normal compo-
nents of acceleration of a particle with the given position vector.

31.

32.

33.

34.

35. A Shot Put In a track and field meet, a shot putter heaves a
shot at an angle of 45° with the horizontal. As the shot
leaves her hand, it is at a height of 7 ft and moving at a
speed of 40 ft/sec. Set up a coordinate system so that the
shot putter is at the origin.
a. What is the position of the shot at time ?
b. How far is her put?

t

r(t) � 12 ti � etj � e�tk

r(t) � cos ti � sin 2tj

r(t) � 2 cos ti � 3 sin tj � tk

r(t) � i � tj � t 2k

r(0) � i � kv(0) � 2ia(t) � eti � e�tj � tk

r(0) � 0v(0) � 2i � 3j � ka(t) � ti �
1

3
 t 2j � 3k

r(t) � te�ti � cos 2tj � sin 2tk

r(t) � 2ti � e�2tj � cos tk

y � e�xy � x �
1

4
 x2

r(t) � t sin ti � t cos tj � tk

r(t) � ti � t 2j � t 3k

1 � t � 2r(t) � 12 ti �
1

2
 t 2j � ln tk

0 � t � 2r(t) � 2 sin 2ti � 2 cos 2tj � 3tk

t � 0r(t) � 2 cos ti � 2 sin tj � etk

t � 1r(t) � ti � t 2j � t 3k

tr(t)C
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CHALLENGE PROBLEMS

1. a. Show that the curve defined by the vector functionC 4. Motion of a Projectile A projectile of mass is fired from the
origin of a coordinate system at an angle of elevation . As-
sume that air resistance acting on the projectile is proportional
to its velocity. Then by Newton’s Second Law of Motion the
motion of the projectile is described by the equation

(1)

where is the position vector of the projectile and 
is the constant of proportionality.
a. By integrating Equation (1), obtain the equation

(2)

where .
b. Multiply both sides of Equation (2) by , and show

that the left-hand side of the resulting equation can be 

written as . Make use of this observation to

find an expression for .

5. Motion of a Projectile Refer to Exercise 4.
a. If the initial speed of the projectile is , show that the

position function is equivalent to the parametric
equations

b. Solve the first equation in part (a) for to obtain

Then substitute this value into the second equation in
part (a) to obtain

(3)

c. Suppose that a projectile of weight 1600 lb is fired from
the origin with an initial speed of 1200 mph and at an
angle of elevation of 30°. Draw the trajectories of the
projectile for values of equal to 0.01, 0.1, 0.5, and 1,
using the viewing rectangle .
Comment on the shape of the trajectories.

d. Expand the expression for in Equation (3) as a power
series to show that

y

[0, 100,000] 
 [0, 15,000]
k

y � a mt

k√0 cos a
� tan abx �

m2
t

k2 lna1 �
kx

m√0 cos a
b

t �
m

k
ln 

m√0 cos a

m√0 cos a � kx

t

 y(t) � am2
t

k2 �
m√0 sin a

k
b (1 � e�(k>m)t) �

mt

k
 t

 x(t) �
m√0 cos a

k
 (1 � e�(k>m)t)

r(t)
√0

r(t)

d

dt
 [e(k>m)t r(t)]

e(k>m)t
v0 � v(0) � r¿(0)

r¿ �
k

m
 r � �ttj � v0

k � 0r(t)

mr� � �mtj � kr¿

a

m

r(t) � (a1t
2 � b1t � c)i � (a2t

2 � b2t � c)j � (a3t
2 � b3t � c)k

lies in a plane.
b. Show that the plane of part (a) can be written in the form

2. Tracking Planes in a Holding Pattern at an Airport Suppose that an
airport is located at the origin of a three-dimensional coordi-
nate system and two airplanes are circling the airport in a
holding pattern at an altitude of 2 mi. The planes fly at a
constant speed of 300 mph along circular paths of radius 
10 mi and are separated by 90°, as shown in the figure.

a. Show that the position vectors of the planes are

and

respectively.
b. Let . Interpret your results.
c. Find , and interpret your result.
d. Find , and interpret your result.

3. Hitting a Moving Target A target is located at a height over
level ground, and a gun, located at ground level and at a 
distance from the point directly below the target, is aimed
directly at the target. Suppose that the gun is fired at the
instant the target is released.
a. Show that the bullet will hit the target if its initial speed

satisfies

b. Assuming that the condition in part (a) is satisfied, find
the distance the target has fallen before it was hit.

√0 � B
t(d2 � h2)

2h

√0

d

h

r�
r¿

r � r2 � r1

r2(t) � �10 sin 30t i � 10 cos 30t j � 2k

r1(t) � 10 cos 30t i � 10 sin 30t j � 2k

0

r1

r2

y

x

z

†
x � c y � c z � c

a1 a2 a3

b1 b2 b3

† � 0

and hence deduce that if is very small, then the trajec-
tory of the projectile is almost parabolic.

k

y � (tan a)x �
1

2
 

t

(√0 cos a)2 x2 �
1

3
 

kt

m(√0 cos a)3 x3 � p



6. A particle moves in a circular orbit in the plane given by
, where is a constant. At a 

certain instant of time, the particle is to be released so 
that it will strike a target located at the point , where

. Find the time at which the particle is to be
released.

7. Coriolis Acceleration Consider the motion of a particle in the
-plane in which the position of the particle is given in

polar coordinates and .

a. If and are unit vectors that point in the direction of
the position vector and at right angles to it (in the direc-
tion of increasing ), respectively, show that

b. If is the position vector of a particle located at
, show that its velocity vector is given by

v(t) � r¿(t) �
dr

dt
 ur � r 

du

dt
 u�

(r, u)
r � rur

 u� � �sin ui � cos uj

 ur � cos ui � sin uj

u

u�ur

r

u ur

(r, ¨)

¨
0 x

y

ur
xy

r

(a, b)

0

R

x

y

a2 � b2 � R2
(a, b)

Rr(t) � R cos ti � R sin tj
and its acceleration vector is given by

Note: The fourth term in the expression for 

is called the Coriolis acceleration. It is due partly to the change
in the direction of the radial component of velocity and partly to
the change in the transverse component of velocity.

8. Kepler’s Second Law of Planetary Motion Use the result of Exer-
cise 7(b) to prove Kepler’s Second Law of Planetary
Motion: The radius vector in a central force field (that is,
one in which the force is always directed radially toward or
away from the origin) sweeps over area at a constant rate.
Hint: Use Newton’s Second Law of Motion, , to show that 

, where is constant, and use the fact that the area 

swept out by is

9. Coriolis Acceleration A turntable rotates at a constant angular
velocity of 30 rev/min. An ant walks from the center of the
turntable outward toward the edge at a speed of 2 cm/sec
(relative to the turntable).
a. What are the speed and the magnitude of the acceleration

of the ant 3 sec later?
b. What is the magnitude of the Coriolis acceleration at that

time?
Hint: Use the results of Challenge Problem 7.

10. Path of a Boat The path of a boat is given by

The shoreline lies along the positive -axis. All distances are
measured in miles and time is measured in minutes.
a. Plot the path of the boat.
b. At what time is the boat closest to the shoreline? What is

the distance of the boat from the shoreline at that time?
c. What is the velocity, speed, and acceleration of the boat

at the time it is closest to the shoreline?

x

0 � t � 3r(t) �
1

5
 (t 2 � 4t � 8)i �

1

5
 (3t 2 � 6t � 4)j

dA

dt
�

1

2
 r 2 

du

dt

r

Cmr 2 
du

dt
� C

F � ma

2 
dr

dt
 
du

dt
 u�

a(t)

a(t) �
dv
dt

� cd2r

dt 2 � radu

dt
b2dur � cr 

d2u

dt 2 � 2 
dr

dt
 
du

dt
du�
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UP TO NOW we have dealt primarily with functions involving one independent vari-

able. In this chapter we consider functions involving two or more independent vari-

ables. The related notions of limits, continuity, differentiability, and optimization of a

function of one variable have their counterparts in the case of a function of several

variables, and we will develop these concepts in this chapter. As we will see, many

real-life applications of mathematics involve more than one independent variable.

13 Functions of Several Variables

The rules for the new 
International America’s 

cup class include a formula
that governs the basic yacht

dimensions. This formula 
balances the rated length, the

sail area, and the displacement
of the yacht. It is an example

of an expression involving
three variables. We will use
this formula in this chapter. Sh
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13.1 Functions of Two or More Variables

Functions of Two Variables
Up to now, we have dealt only with functions of one variable. In practice, however, we
often encounter situations in which one quantity depends on two or more quantities.
For example, consider the following:

The volume of a right circular cylinder depends on its radius and its height
.

The volume of a rectangular box depends on its length , width , and height
.

The revenue from the sale of commodities , , , and at the unit prices of
10, 14, 20, and 30 dollars, respectively, depends on the number of units , , ,
and of commodities , , , and sold .

Just as we used a function of one variable to describe the dependency of one vari-
able on another, we can use the notion of a function of several variables to describe
the dependency of one variable on several variables. We begin with the definition of a
function of two variables.

(R � 10x � 14y � 20z � 30w)DCBAw
zyx

DCBAR
h (V � lwh)

wlV
h (V � pr 2h)

rV

DEFINITION Function of Two Variables

Let be a subset of the -plane. A function of two vari-
ables is a rule that assigns to each ordered pair of real numbers in a
unique real number . The set is called the domain of , and the set of corre-
sponding values of is called the range of .fz

fDz
D(x, y)

fxyD � {(x, y) � x, y � R}

The number is usually written . The variables and are independent
variables, and is the dependent variable.

As in the case of a function of a single variable, a function of two or more vari-
ables can be described verbally, numerically, graphically, or algebraically.

z
yxz � f(x, y)z

EXAMPLE 1 Home Mortgage Payments In a typical housing loan, the borrower
makes periodic payments toward reducing indebtedness to the lender, who charges
interest at a fixed rate on the unpaid portion of the debt. In practice, the borrower is
required to repay the lender in periodic installments, usually of the same size over a
fixed term, so that the loan (principal plus interest charges) is amortized at the end 
of the term. Table 1 gives the monthly loan repayment on a loan of $1000, ,
where is the term of the loan in years and is the interest rate per annum (%/year)
compounded monthly. Referring to the table, we see that the monthly installment 
for a 30-year loan of $1000 when the current interest rate is 7%/year is given by

(dollars). Therefore, if the amount borrowed is $350,000, the monthly
repayment is 350(6.6530), or $2328.55.
f(30, 7) � 6.6530

rt
f(t, r)
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Although the monthly installments based on a $1000 loan are displayed in the form
of a table for selected values of and in Example 1, an algebraic expression for com-
puting also exists:

But as in the case of a single variable, we are primarily interested in functions that can
be described by an equation relating the dependent variable to the independent
variables and . Also, as in the case of a single variable, unless otherwise specified,
the domain of a function of two variables is the set of all points for which

is a real number.z � f(x, y)
(x, y)

yx
z

f(t, r) �
10r

12c1 � a1 �
0.01r

12
b�12td

f(t, r)
rt

TABLE 1

Interest rate %/year

t
r 6 6 1

4 6 1
2 6 3

4 7 7 1
4 7 1

2 7 3
4 8

5 19.3328 19.4493 19.5661 19.6835 19.8012 19.9194 20.0379 20.1570 20.2764

10 11.1021 11.2280 11.3548 11.4824 11.6108 11.7401 11.8702 12.0011 12.1328

15 8.4386 8.5742 8.7111 8.8491 8.9883 9.1286 9.2701 9.4128 9.5565

20 7.1643 7.3093 7.4557 7.6036 7.7530 7.9038 8.0559 8.2095 8.3644

25 6.4430 6.5967 6.7521 6.9091 7.0678 7.2281 7.3899 7.5533 7.7182

30 5.9955 6.1572 6.3207 6.4860 6.6530 6.8218 6.9921 7.1641 7.3376

35 5.7019 5.8708 6.0415 6.2142 6.3886 6.5647 6.7424 6.9218 7.1026

40 5.5021 5.6774 5.8546 6.0336 6.2143 6.3967 6.5807 6.7662 6.9531Te
rm

 o
f 

th
e 

lo
an

 (
ye

ar
s)

EXAMPLE 2 Let . Find the domain of , and evaluate ,
, , , and .

Solution Since is a real number whenever is an ordered pair of
real numbers, we see that the domain of is the entire -plane. Next, we have

and

 � 2(y2 � xy � x � y)

 � x2 � 2xy � y2 � x2 � y2 � 2x � 2y

 f(x � y, x � y) � (x � y)2 � (x � y)(x � y) � 2(x � y)

 f(x2, y) � (x2)2 � (x2)(y) � 2y � x4 � x2y � 2y

 f(t, 2t) � t 2 � (t)(2t) � 2(2t) � �t 2 � 4t

 f(2, 1) � 22 � (2)(1) � 2(1) � 4

 f(1, 2) � 12 � (1)(2) � 2(2) � 3

xyf
(x, y)x2 � xy � 2y

f(x � y, x � y)f(x2, y)f(t, 2t)f(2, 1)
f(1, 2)ff(x, y) � x2 � xy � 2y
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EXAMPLE 3 Find and sketch the domain of the function:

a. b.

Solution
a. is a real number provided that . Therefore, the domain of is

To sketch the region , we first draw the curve , or , which 
is a parabola (Figure 1a). Observe that this curve divides the -plane into two
regions: the points satisfying and the points satisfying .
To determine the region of interest, we pick a point in one of the regions, say,
the point . Substituting the coordinates and into the inequality

, we obtain , which is false. This shows that the test point
is not contained in the required region. Therefore, the region that does not contain
the test point together with the curve is the required domain (Figure 1a).

b. Because the logarithmic function is defined only for positive numbers, we must
have . Furthermore, the denominator of the expression cannot be
zero, so , or . Therefore, the domain of is

To sketch the domain of , we first draw the graph of the equation

which is a straight line. The dashed line is used to indicate that points on the line
are not included in . This line divides the -plane into two half-planes. If we
pick the test point and substitute the coordinates and into 
the inequality , we obtain , which is true. This computation
tells us that the upper half-plane containing the test point satisfies the inequality

. Next, because , all the points lying on the line in this
half-plane must be excluded from . Again, we indicate this with a dashed line
(Figure 1b).

Graphs of Functions of Two Variables
Just as the graph of a function of one variable enables us to visualize the function, so
too does the graph of a function of two variables.

D
y � xy � xx � y � 1 � 0

2 � 0x � y � 1 � 0
y � 0x � 1(1, 0)

xyD

x � y � 1 � 0

D

D � {(x, y) � x � y � 1 � 0 and y � x}

ty � xy � x � 0
x � y � 1 � 0

x � y2

0 � 1 � 0y2 � x � 0
y � 0x � 1(1, 0)

y2 � x � 0y2 � x � 0
xy

y2 � xy2 � x � 0D

D � {(x, y) � y2 � x � 0}

fy2 � x � 0f(x, y)

t(x, y) �
ln(x � y � 1)

y � x
f(x, y) �2y2 � x

FIGURE 1

y

x

1

10

�1

�1

(a) The domain of f(x, y) � √y2 � x

(b) The domain of g(x, y) �
ln(x � y � 1)

y � x

x � y � 1 � 0

Test point (1, 0)

y � x

x

y

1

1 320
�1

Test point (1, 0)

x � y2

FIGURE 2
The graph of is the surface 

consisting of all points ,
where and .(x, y) � Dz � f(x, y)

(x, y, z)S
f

z � f (x, y)

0

y

z

x

S

D

(x, y, z)

(x, y)

DEFINITION Graph of a Function of Two Variables

Let be a function of two variables with domain . The graph of is the set

S � {(x, y, z) � z � f(x, y), (x, y) � D}

fDf

Since each ordered triple may be represented as a point in three-
dimensional space, , the set is a surface in space (see Figure 2).SR3

(x, y, z)
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FIGURE 3

The graph of 
is the upper hemisphere of radius 3,

centered at the origin.

f(x, y) �29 � x2 � y2

z

x

y

0

(0, 0, 3)

(0, 3, 0)
(3, 0, 0)

EXAMPLE 4 Sketch the graph of . What is the range of ?

Solution The domain of is , the disk with radius 3, cen-
tered at the origin. Writing , we have

or

The last equation represents a sphere of radius 3 centered at the origin. Since ,
we see that the graph of is just an upper hemisphere (Figure 3). Furthermore, must
be less than or equal to 3, so the range of is .[0, 3]f

zf
z � 0

x2 � y2 � z2 � 9

 z2 � 9 � x2 � y2

 z �29 � x2 � y2

z � f(x, y)
D � {(x, y) � x2 � y2 	 9}f

ff(x, y) �29 � x2 � y2

Computer Graphics
The graph of a function of two variables can be sketched with the aid of a graphing
utility. In most cases the techniques that are used involve plotting the traces of a sur-
face in the vertical planes and for equally spaced values of . The pro-
gram uses a “hidden line” routine that determines what parts of certain traces should
be eliminated to give the illusion of the surface in three dimensions. In the next exam-
ple we sketch the graph of a function of two variables and then show a computer-
generated version of it.

ky � kx � k

EXAMPLE 5 Let .

a. Sketch the graph of . b. Use a CAS to plot the graph of .

Solution
a. We recognize that the graph of the function is the surface , which is

the elliptic paraboloid

Using the drawing skills developed in Section 11.6, we obtain the sketch shown
in Figure 4a.

x2

1
�

y2

a1

2
b2

� z

z � x2 � 4y2

ff

f(x, y) � x2 � 4y2

V
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b. The computer-generated graph of is shown in Figure 4(b).f

FIGURE 4
The graph of f(x, y) � x2 � 4y2

FIGURE 5
Some computer-generated

graphs of functions of 
two variables

z

y y

x

1

2
1

2

1
21

2

4

z

x

(b)(a)

Figure 5 shows the computer-generated graphs of several functions.

(a) f (x, y) � x3 � 3y2x (b) f (x, y) � 

(c) f (x, y) � x2y2e�x2� y2 (d) f (x, y) � ln(x2 � 2y2 � 1)

(              )cos x2 � 2y2
___________
1 � x2 � 2y2

z

y

x

z

yx

z

y

x

z

y
x

V
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Level Curves
We can visualize the graph of a function of two variables by using level curves. To
define the level curve of a function of two variables, let and consider the
trace of in the plane ( , a constant), as shown in Figure 6a. If we project this
trace onto the -plane, we obtain a curve with equation , called a level
curve of (Figure 6b).f

f(x, y) � kCxy
kz � kf

z � f(x, y)f

FIGURE 6

z � k

f (x, y) � k

(b)The level curve C with equation f(x, y) � k
is the projection of the trace of f in the
plane z � k onto the xy-plane.

The level curve C(a)

y

C

f (x, y) � k

C

z

0

x

z � f (x, y)

x

y

0

Notice that the level curve with equation is the set of all points in the
domain of corresponding to the points on the surface having the same
height or depth . By drawing the level curves corresponding to several admissible val-
ues of , we obtain a contour map. The map enables us to visualize the surface repre-
sented by the graph of : We simply lift or depress the level curve to see the
“cross sections” of the surface. Figure 7a shows a hill, and Figure 7b shows a contour
map associated with that hill.

z � f(x, y)
k

k
z � f(x, y)f

f(x, y) � k

DEFINITION Level Curves

The level curves of a function of two variables are the curves in the -plane
with equations , where is a constant in the range of .fkf(x, y) � k

xyf

(b)A hill A contour map of the hill(a)

y

z

200
0

x x

y

0

200

0

600
400

400

600

800

FIGURE 7
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EXAMPLE 6 Sketch a contour map for the surface described by ,
using the level curves corresponding to , and 16.

Solution The level curve of corresponding to each value of is a circle 
of radius , centered at the origin. For example, if , the level curve is the cir-
cle with equation , centered at the origin and having radius 2. The required
contour map of comprises the origin and the four concentric circles shown in Figure 8a.
The graph of is the paraboloid shown in Figure 8b.f

f
x2 � y2 � 4

k � 41k
x2 � y2 � kkf

k � 0, 1, 4, 9
f(x, y) � x2 � y2

FIGURE 8

z

y

x

(a) Contour map for f (x, y) � x2 � y2 (b) The graph of z � x2 � y2 

y

x

k � 0
  k � 1
    k � 4
      k � 9
        k � 16

z � x2 � y2

0

EXAMPLE 7 Sketch a contour map for the hyperbolic paraboloid defined by
.

Solution The level curve corresponding to each value of is the graph of the equa-
tion . For the level curves have equations

or

These curves are a family of hyperbolas with asymptotes and vertices 
. For example, if , then the level curve is the hyperbola

with vertices .
If , the level curves have equations or , which can

be put in the standard form

and represent a family of hyperbolas with asymptotes . The contour map com-
prising the level curves corresponding to , and is sketched in
Figure 9a. The graph of is shown in Figure 9b.z � y2 � x2


8k � 0, 
2, 
4, 
6
y � 
x

x2

(1�k)2
�

y2

(1�k)2
� 1

x2 � y2 � �ky2 � x2 � kk � 0
(0, 
2)

y2

4
�

x2

4
� 1

k � 4(0, 
1k)
y � 
x

y2

(1k)2
�

x2

(1k)2
� 1

y2

k
�

x2

k
� 1

k � 0y2 � x2 � k
k

f(x, y) � y2 � x2

V
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FIGURE 9

FIGURE 10
The graphs of some functions and their level curves

z

y
x

0

(a) Contour map for f (x, y) � y2 � x2 (b) The graph of z � y2 � x2 

y

x

k � 0

k � 0

Figure 10 shows some computer-generated graphs of functions of two variables and
their corresponding level curves.

V

(a) Graph of f (x, y) � cos x2 � 2y2
________

4(                ) (c) Graph of f (x, y) � �xye�x2� y2 

(f) Level curves of f (x, y) � �xye�x2� y2 (e) Level curves of f (x, y) � y4 � 8y2 � 4x2

(d) Level curves of f (x, y) � cos
x2 � 2y2
________

4(                )

y

x

y

x

y

x

z z

y

y
x

x

(b) Graph of f (x, y) � y4 � 8y2 � 4x2

z

y
x
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Aside from their use in constructing topographic maps of mountain ranges, level
curves are found in many areas of practical interest. For example, if denotes the
temperature at a location within the continental United States with longitude and lat-
itude at a certain time of day, then the temperature at the point is the height
(or depth) of the surface with equation . In this context the level curve

is a curve superimposed on the map of the United States connecting all
points that have the same temperature at a given time (Figure 11). These level curves
are called isotherms. Similarly, if measures the barometric pressure at the loca-
tion , then the level curves of the function are called isobars. All points on an
isobar have the same barometric pressure at a given time.P(x, y) � k

P(x, y)
P(x, y)

T(x, y) � k
z � T(x, y)

(x, y)y
x

T(x, y)

FIGURE 11
Isotherms: level curves connecting

points that have the same temperature

30
30

40

50

70

70

80

80

80

80

70

60

50 40

60

EXAMPLE 8 Find the domain of the function defined by

Solution is a real number provided that or, equivalently,
. Therefore, the domain of is

This is the half-space consisting of all points lying on or below the plane .

Since the graph of a function of three variables is composed of the points 
, where , lying in four-dimensional space, we cannot draw the

graphs of such functions. But by examining the level surfaces, which are the surfaces
with equations

, a constant

we are often able to gain some insight into the nature of .f

kf(x, y, z) � k

w � f(x, y, z)(x, y, z, w)

z � x � y

D � {(x, y, z) � z 	 x � y}

fz 	 x � y
x � y � z � 0f(x, y, z)

f(x, y, z) � 1x � y � z � xeyz

f

Functions of Three Variables and Level Surfaces
A function of three variables is a rule that assigns to each ordered triple in a
domain a unique real number denoted by . For
example, the volume of a rectangular box of length , width , and height can be
described by the function defined by .f(x, y, z) � xyzf

zyxV
f(x, y, z)wD � {(x, y, z) � x, y, z � R}

(x, y, z)f
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EXAMPLE 9 Find the level surfaces of the function defined by

Solution The required level surfaces of are the graphs of the equations
, where . These surfaces are concentric spheres of radius 

centered at the origin (see Figure 12). Observe that has the same value for all points
lying on any such sphere.(x, y, z)

f
1kk � 0x2 � y2 � z2 � k

f

f(x, y, z) � x2 � y2 � z2

f

FIGURE 12
The level surfaces of

corresponding to k � 1, 4, 9
f(x, y, z) � x2 � y2 � z2

x

k � 4
k � 9

k � 1

y

z

1. What is a function of two variables? Give an example of
one by stating its rule, domain, and range.

2. What is the graph of a function of two variables? Illustrate
with a sketch.

3. What is a level curve of a function of two variables? Illus-
trate with a sketch.

4. What is a level surface of a function of three variables? If
gives the temperature of a point in

three-dimensional space, what does the level surface 
describe?

w � k
(x, y, z)w � T(x, y, z)

13.1 CONCEPT QUESTIONS

1. Let . Find
a. b.
c. d.
e.

2. Let . Find

a. b.
c. d.
e.

3. Let . Find
a. b.
c. d.
e.

4. Let . Find
a. b.
c. d.
e.

In Exercises 5–14, find the domain and the range of the function.

5. 6.

7. 8. h(x, y) � 1x � 2yf(u, √) �
u√

u � √

t(x, y) � x2 � 2y2 � 3f(x, y) � x � 3y � 1

t(r � h, s � k, t � l)
t(t, t, t)t(�1, �1, �1)
t(1, ln 3, 1)t(2, 0, 3)

t(r, s, t) � res>t
f(�x, x, �2x)

f(u, u � 1, u � 1)f(t, �t, t)
f(0, 2, �1)f(1, 2, 3)

f(x, y, z) �2x2 � 2y2 � 3z2

t(u � √, √)
t(2, a)t(u, �√)
t(2, �1)t(�1, 2)

t(x, y) �
2xy

2x2 � 3y2

f(x, y � k)
f(x � h, y)f(2h, 3k)
f(2, 1)f(1, 2)

f(x, y) � x2 � 3xy � 2x � 3 9. 10.

11.

12.

13.

14.

In Exercises 15–22, find and sketch the domain of the function.

15. 16.

17. 18.

19.

20.

21.

22. t(x, y, z) �
24 � x2 � y2

z � 3

f(x, y, z) �29 � x2 � y2 � z2

h(x, y) �
ln(y � x)

1x � y � 1

f(x, y) � x ln y � y ln x

h(x, y) � 1xy � 1f(u, √) �
u√

u2 � √2

t(x, y) �
xy

2x � y
f(x, y) � 1y � 1x

f(x, y, z) �
1

24 � x2 � y2 � z2

h(u, √, w) � tan u � √ cos w

t(x, y, z) �
x

y � z

f(x, y, z) �29 � x2 � y2 � z2

h(x, y) � ln(xy � 1)t(x, y) �24 � x2 � y2

13.1 EXERCISES

Videos for selected exercises are available online at www.academic.cengage.com/login.V

www.academic.cengage.com/login
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In Exercises 23–30, sketch the graph of the function.

23.

24.

25.

26.

27.

28.

29.

30.

31. The figure shows the contour map of a hill. The numbers in
the figure are measured in feet. Use the figure to answer the
questions below.

a. What is the altitude of the point on the hill correspond-
ing to the point ? The point ?

b. If you start out from the point on the hill corresponding
to point and move north, will you be ascending or
descending? What if you move east from the point on the
hill corresponding to point ?

c. Is the hill steeper at the point corresponding to or at
the point corresponding to ? Explain.

32. A contour map of a function is shown in the figure. Use it
to estimate the value of at and .

4

420�2�4

2 23.5

�3.6
�9.3 �19.9

�26.7

18.4
12.5

8.0

�3.8

P

30

�2

�4

y

x

Q 

�14.5

QPf
f

C
A

B

A

BA

B

S

A

C
S

N
EW

200
300

400
500

100

f(x, y) � cos x

f(x, y) �
1

2
 236 � 9x2 � 36y2

f(x, y) �2x2 � y2

h(x, y) � 9 � x2 � y2

t(x, y) � y2

f(x, y) � x2 � y2

f(x, y) � 6 � 2x � 3y

f(x, y) � 4

In Exercises 33–38, match the function with one of the graphs
labeled a through f.

33. 34.

35. 36.

37. 38.

In Exercises 39–42, use a computer or calculator to plot the
graph of the function.

39.

40.

41.

42. f(x, y) �
1 � 2 sin(x2 � y2)

x2 � y2

f(x, y) � cos x � cos y

f(x, y) � (4x2 � 9y2)e�x2�y2

f(x, y) � 3x2 � 3y2 � 2

f(x, y) � �
x

2(x2 � y2)
f(x) � e�x2�y2

f(x, y) � (x2 � y2)e�x2�y2
f(x, y) � cos

x

2
cos y

f(x, y) � cos(x2 � y2)f(x, y) � 2x2 � y3

z

yx

(f)

z

y

x

(e)

(d)

z

y

x

z

y

x

(c)

z

x
y

(b)

y

x

z

(a)

cas
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In Exercises 43–52, sketch the level curves of the
function for the indicated values of .

43. ;

44. ;

45. ;

46. ;

47. ;

48. ;

49. ;

50. ;

51. ;

52. ;

In Exercises 53–56, describe the level surfaces of the function.

53.

54.

55.

56.

In Exercises 57–62, match the graph of the surface with one of
the contour maps labeled a through f.

y

x

(d)

y

x

(c)

y

x

(b)

y

x

(a)

f(x, y, z) � �x2 � y2 � z � 2

f(x, y, z) � x2 � y2 � z2

f(x, y, z) � 2x2 � 3y2 � 6z2

f(x, y, z) � 2x � 4y � 3z � 1

k � �2, �1, 0, 1, 2f(x, y) � x � sin y

k � �2, �1, 0, 1, 2f(x, y) � y � x2

k � �2, �1, 0, 1, 2f(x, y) �
x

y

k � �2, �1, 0, 1, 2f(x, y) � ln(x � y)

k � �2, �1, 0, 1, 2f(x, y) � y2 � x2

k � �2, 0, 1, 2f(x, y) �
x � y

x � y

k � 0, 1, 2, 3, 4f(x, y) �216 � x2 � y2

k � �2, �1, 0, 1, 2f(x, y) � xy

k � 0, 1, 2, 3, 4f(x, y) � x2 � 4y2

k � �2, �1, 0, 1, 2f(x, y) � 2x � 3y

k
f(x, y) � k

57.

58.

59. z

y

x

f(x, y) � cos2x2 � y2

z

y

x

f(x, y) � x � y2

z

y

x

f(x, y) � e1�2x2�4y2

y

x

(f)

y

x

(e)
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60.

61.

62.

In Exercises 63–66, (a) use a computer or calculator to plot the
graph of the function , and (b) plot some level curves of and
compare them with the graph obtained in part (a).

63. 64.

65.

66.

67. Find an equation of the level curve of 
that contains the point .(3, 4)

f(x, y) �2x2 � y2

f(x, y) � ye1�x2�y2

f(x, y) �
xy(x2 � y2)

x2 � y2

f(x, y) �
xy

2x2 � y2
f(x, y) � �x � � �y �

ff

z

y

x

f(x, y) � ln(2x2 � y2)

z

y
x

f(x, y) � sin(x � y)

z

y

x

f(x, y) � sin x � sin y 68. Find an equation of the level surface of 
that contains the point .

69. Can two level curves of a function of two variables and 
intersect? Explain.

70. A level set of is the set , where is
in the range of . Let

Sketch the level set of for and 3.

71. Refer to Exercise 70. Let

(a) Sketch the graph of and (b) describe the level set of 
for , , 1, and 3.

72. Body Mass The body mass index (BMI) is used to identify,
evaluate, and treat overweight and obese adults. The BMI
value for an adult of weight (in kilograms) and height 
(in meters) is defined to be

According to federal guidelines, an adult is overweight if he
or she has a BMI value between 25 and 29.9 and is “obese”
if the value is greater than or equal to 30.
a. What is the BMI of an adult who weighs in at 80 kg and

stands 1.8 m tall?
b. What is the maximum weight of an adult of height 1.8 m

who is not classified as overweight or obese?

73. Poiseuille’s Law Poiseuille’s Law states that the resistance ,
measured in dynes, of blood flowing in a blood vessel of
length and radius (both in centimeters) is given by

where is the viscosity of blood (in dyne-sec/cm2). What is
the resistance, in terms of , of blood flowing through an
arteriole with radius 0.1 cm and length 4 cm?

74. Surface Area of a Human Body An empirical formula by 
E.F. Dubois relates the surface area of a human body (in
square meters) to its weight (in kilograms) and its height

(in centimeters). The formula, given by

is used by physiologists in metabolism studies.
a. Find the domain of the function .
b. What is the surface area of a human body that weighs 

70 kg and has a height of 178 cm?

75. Cobb-Douglas Production Function Economists have found that
the output of a finished product, , is sometimes
described by the function

f(x, y) � axby1�b

f(x, y)

S

S � 0.007184W0.425H0.725

h
W

S

k
k

R � f(l, r) �
kl

r 4

rl

R

M � f(w, h) �
w

h2

hw

1
2k � 0

ff

f(x, y) � e1 �2x2 � y2 if x2 � y2 � 1

x2 � y2 � 1 if x2 � y2 � 1

k � 0f

f(x, y) � e0 if x2 � y2 � 1

x2 � y2 � 1 if x2 � y2 � 1

f}
kS � {(x, y) � f(x, y) � kf

yxf

(�1, 2, �3)3y2 � z
f(x, y, z) � 2x2 �

cas
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where stands for the amount of money expended for labor,
stands for the amount expended on capital, and and 

are positive constants with .
a. If is a positive number, show that .
b. Use the result of part (a) to show that if the amount of

money expended for labor and capital are both increased
by percent, then the output is also increased by percent.

76. Continuous Compound Interest If a principal of dollars is
deposited in an account earning interest at the rate of /year
compounded continuously, then the accumulated amount at
the end of years is given by

dollars. Find the accumulated amount at the end of 3 years
if $10,000 is deposited in an account earning interest at the
rate of 10%/year.

77. Home Mortgages Suppose a home buyer secures a bank loan
of dollars to purchase a house. If the interest rate charged
is /year and the loan is to be amortized in years, then the
principal repayment at the end of months is given by

Suppose the Blakelys borrow $280,000 from a bank to 
help finance the purchase of a house and the bank charges
interest at a rate of 6%/year, compounded monthly. If the
Blakelys agree to repay the loan in equal installments over
30 years, how much will they owe the bank after the sixtieth
payment (5 years)? The 240th payment (20 years)?

78. Wilson Lot-Size Formula The Wilson lot-size formula in eco-
nomics states that the optimal quantity of goods for a
store to order is given by

where is the cost of placing an order, is the number of
items the store sells per week, and is the weekly holding
cost for each item. Find the most economical quantity of
ten-speed bicycles to order if it costs the store $20 to place
an order and $5 to hold a bicycle for a week and the store
expects to sell 40 bicycles a week.

79. Force Generated by a Centrifuge A centrifuge is a machine
designed for the specific purpose of subjecting materials to a
sustained centrifugal force. The magnitude of a centrifugal
force in dynes is given by

where is in revolutions per minute (rpm), is the mass in
grams, and is the radius in centimeters. Find the centrifu-
gal force generated by an object revolving at the rate of
600 rpm in a circle of radius 10 cm. Express your answer 
as a multiple of the force of gravity. (Recall that 1 gram of
force is equal to 980 dynes.)

R
MS

F � f(M, S, R) �
p2S2MR

900

F

h
NC

Q � f(C, N, h) � B
2CN

h

Q

0 	 i 	 12tB � f(A, r, t, i) � A c 11 � r
12 2i � 1

11 � r
12 212t � 1

d
i

tr
A

A � f(P, r, t) � Pert

t

r
P

rr

f( px, py) � pf(x, y)p
0 � b � 1

bay
x 80. Temperature of a Thin Metal Plate A thin metal plate located in

the -plane has a temperature of

degrees Celsius at the point . Describe the isotherms 
of , and sketch those corresponding to ,
and 20.

81. International America’s Cup Class Drafted by an international
committee in 1989, the rules for the new International
America’s cup class includes a formula that governs the
basic yacht dimensions. The formula ,
where

balances the rated length (in meters), the rated sail area 
(in square meters) and the displacement (in cubic meters).
All changes in the basic dimensions are tradeoffs. For 
example, if you want to pick up speed by increasing the 
sail area, you must pay for it by decreasing the length or
increasing the displacement, both of which slow the boat
down. Show that yacht A of rated length 20.95 m, rated sail
area 277.3 m2, and displacement 17.56 m3, and the longer
and heavier yacht B with , , and

both satisfy the formula.

82. Ideal Gas Law According to the ideal gas law, the volume 
of an ideal gas is related to its pressure and temperature 
by the formula

where is a positive constant. Describe the level curves of 
, and give a physical interpretation of your result.

83. Newton’s Law of Gravitation According to Newton’s Law of
Gravitation a body of mass located at the origin of an

-coordinate system attracts another body of mass 
located at the point with a force of magnitude 
given by

where is the universal constant of gravitation. Describe
the level surfaces of , and give a physical interpretation of
your result.

84. Equipotential Curves Consider the crescent-shaped region (in
the following figure) that lies inside the disk

and outside the disk

D2 � {(x, y) � (x � 1)2 � y2 	 1}

D1 � {(x, y) � (x � 2)2 � y2 	 4}

R

F
G

F �
Gm1m2

x2 � y2 � z2

(x, y, z)
m2xyz

m1

V
k

V �
kT

P

TP
V

D � 22.48
S � 311.78L � 21.87

D
SL

f(L, S, D) �
L � 1.25S1>2 � 9.80D1>3

0.388

f(L, S, D) 	 42

T � 120, 60, 40T
(x, y)

T(x, y) �
120

1 � 2x2 � y2

xy



1048 Chapter 13 Functions of Several Variables

If the electrostatic potential along the inner circle is kept at
50 volts and the electrostatic potential along the outer circle
is kept at 100 volts, then the electrostatic potential at any
point in the region is given by

Show that the equipotential curves of are arcs of circles
that have their centers on the positive -axis and pass
through the origin. Sketch the equipotential curve corre-
sponding to a potential of 75 volts.

85. The Doppler Effect Suppose that a sound with frequency is
emitted by an object moving along a straight line with speed

and that a listener is traveling along the same line in the
opposite direction with speed . Then the frequency heard
by the listener is given by

F � a c � √
c � u

b f

F√
u

f

x
f

f(x, y) � 150 �
200x

x2 � y2

R(x, y)

R
D2

D1

1

2

1 2 3 40

�1

�2

ƒ � 50 ƒ � 100

x

y where is the speed of sound in still air, about 1100 ft/sec.
(This phenomenon is called the Doppler effect.) Suppose 
a railroad train is traveling at 100 ft/sec (approximately 
68 mph) in still air and the frequency of a note emitted by
the locomotive whistle is 500 Hz. What is the frequency of
the note heard by a passenger in a train moving at 50 ft/sec
in the opposite direction to the first train?

86. A function is homogeneous of degree if it satisfies
the equation for all . Show that

is homogeneous of degree 1.

In Exercises 87–90, determine whether the statement is true or
false. If it is true, explain why it is true. If it is false, give an
example to show why it is false.

87. is a function of and if and only if for any two 
points and in the domain of ,

implies that .

88. The equation defines at least two func-
tions of and .

89. The level curves of a function of two variables, ,
exist for all values of .

90. The level surfaces of the function 
consist of a family of parallel planes that are orthog-

onal to the vector .n � ai � bj � ck
cz � d

f(x, y, z) � ax � by �

k
f(x, y) � kf

yx
x2 � y2 � z2 � 4

P1(x1, y1) � P2(x2, y2)f(x1, y1) � f(x2, y2)
fP2(x2, y2)P1(x1, y1)

yxf

f(x, y) �
xy � y2

2x � y

tf(tx, ty) � t nf(x, y)
nf(x, y)

c

13.2 Limits and Continuity

An Intuitive Definition of a Limit
Figure 1 shows the graph of a function of two variables. This figure suggests that

is close to the number if the point is close to the point .(a, b)(x, y)Lf(x, y)
f

f (x, y)

z � f (x, y)

y

0

x

z

L

(a, b) (x, y)

(x, y, f (x, y))

FIGURE 1
The functional value is close 

to if is close to .(a, b)(x, y)L
f(x, y)
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At first glance, there appears to be little difference between this definition and the
definition of the limit of a function of one variable, with the exception that the points

and lie in the plane. But there are subtle differences. In the case of a func-
tion of one variable, the point can approach the point from only two direc-
tions: from the left and from the right. As a consequence, the function has a limit 
as approaches if and only if approaches from the left and
from the right , a fact that we observed in Section 1.1.

The situation is a little more complicated in the case of a function of two variables
because there are infinitely many ways in which we can approach a point in the
plane (Figure 2). Thus, if has a limit as approaches , then must
approach along every possible path leading to .

To see why this is true, suppose that

as

along a path and that

as

along another path , where . Then no matter how close is to ,
will assume values that are close to and also values that are close to depend-

ing on whether is on or on . Therefore, cannot be made as close as
we please to a unique number by restricting to be sufficiently close to ;
that is, cannot exist.

An immediate consequence of this observation is the following criterion for demon-
strating that a limit does not exist.

lim(x, y)→(a, b) f(x, y)
(a, b)(x, y)L

f(x, y)C2C1(x, y)
L2L1f(x, y)

(a, b)(x, y)L1 � L2C2

(x, y) → (a, b)f(x, y) → L2

C1

(x, y) → (a, b)f(x, y) → L1

(a, b)L
f(x, y)(a, b)(x, y)Lf
(a, b)

(limx→a� f(x) � L)
(limx→a� f(x) � L)Lf(x)ax

Lf
x � ax

(a, b)(x, y)

FIGURE 2
There are infinitely many paths the
point could take in approaching
the point .(a, b)

(x, y)

DEFINITION Limit of a Function of Two Variables at a Point

Let be a function that is defined for all points close to the point 
with the possible exception of itself. Then the limit of as 
approaches is , written

if can be made as close to as we please by restricting to be suf-
ficiently close to .(a, b)

(x, y)Lf(x, y)

lim
(x, y)→(a, b)

f(x, y) � L

L(a, b)
(x, y)f(x, y)(a, b)
(a, b)(x, y)f

(a, b)

0 x

y

Technique for Showing That Does Not Exist

If approaches two different numbers as approaches along two
different paths, then does not exist.lim(x, y)→(a, b) f(x, y) � L

(a, b)(x, y)f(x, y)

lim(x, y)→(a, b) f(x, y)

EXAMPLE 1 Show that does not exist.

Solution The function is defined everywhere except at
. Let’s approach along the -axis (see Figure 3). On the path , , so

lim
(x, y)→(0, 0)

along C1

f(x, y) � lim
x→0

f(x, 0) � lim
x→0

x2

x2
� lim

x→0
1 � 1

y � 0C1x(0, 0)(0, 0)
f(x, y) � (x2 � y2)>(x2 � y2)

lim
(x, y)→(0, 0)

x2 � y2

x2 � y2
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Next, let’s approach along the -axis. On the path , (Figure 3), so

Since approaches two different numbers as approaches along two
different paths, we conclude that the given limit does not exist.

(0, 0)(x, y)f(x, y)

lim
(x, y)→(0, 0)

along C2

f(x, y) � lim
y→0

f(0, y) � lim
y→0

�y2

y2
� lim

y→0
(�1) � �1

x � 0C2y(0, 0)

0 x

C1

C2

y

(0, y)

(x, 0)

FIGURE 3
A point on has the form , and 
a point on has the form .(0, y)C2

(x, 0)C1

EXAMPLE 2 Show that does not exist.

Solution The function is defined everywhere except at .
Let’s approach along the -axis (Figure 4). On the path , , so

Similarly, you can show that also approaches 0 as approaches along
the -axis, path (Figure 4).

Now consider yet another approach to , this time along the line (Fig-
ure 4). On the path , = , so

Since approaches two different numbers as approaches along two
different paths, we conclude that the given limit does not exist.

The graph of shown in Figure 5 confirms this result visually. Notice the ridge that
occurs above the line because for all points on that line except
at the origin.

(x, y)f(x, y) � 1
2y � x

f

(0, 0)(x, y)f(x, y)

lim
(x, y)→(0, 0)

along C3

f(x, y) � lim
x→0

f(x, x) � lim
x→0

x2

x2 � x2
� lim

 x→0

1

2
�

1

2

xyC3

y � x(0, 0)
C2y

(0, 0)(x, y)f(x, y)

lim
(x, y)→(0, 0)

along C1

f(x, y) � lim
x→0

f(x, 0) � lim
x→0

0

x2
� lim

x→0
0 � 0

y � 0C1x(0, 0)
(0, 0)f(x, y) � xy>(x2 � y2)

lim
(x, y)→(0, 0)

xy

x2 � y2

0 x

C1

C2
C3

y

(0, y)

(x, 0)

y � x

(x, x)

FIGURE 4
as along 

and , but as
along , so

does not exist.lim(x, y)→(0, 0) f(x, y)
C3(x, y) → (0, 0)

f(x, y) → 1
2C2C1

(x, y) → (0, 0)f(x, y) → 0

FIGURE 5

The graph of f(x, y) �
xy

x2 � y2

z

y

x

Although the method of Examples 1 and 2 is effective in demonstrating when a
limit does not exist, it cannot be used to prove the existence of the limit of a function
at a point. Using this method, we would have to show that approaches a unique
number as approaches the point along every path, which is clearly an impos-
sible task. Fortunately, the Limit Laws for a function of a single variable can be extended
to functions of two or more variables. For example, the Sum Law, the Product Law,
the Quotient Law, and so forth, all hold. So does the Squeeze Theorem.

(x, y)L
f(x, y)
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EXAMPLE 3 Evaluate

a.

b.

Solution
a. We have

b. We have

The next example utilizes the Squeeze Theorem to show the existence of a limit.

 � B3
8(2)(4)

2(2) � 4
� 13 8 � 2

 lim
(x, y)→(2, 4)B3

8xy

2x � y
� B3 lim

(x, y)→(2, 4)
 

8xy

2x � y

 � 7

 lim
(x, y)→(1, 2)

(x3y2 � x2y � x2 � 2x � 3y) � (1)3(2)2 � (1)2(2) � (1)2 � 2(1) � 3(2)

lim(x, y)→(2, 4)B3
8xy

2x � y

lim(x, y)→(1, 2)(x
3y2 � x2y � x2 � 2x � 3y)

EXAMPLE 4 Find if it exists.

Solution Observe that the numerator of the rational function has degree 3, whereas
the denominator has degree 2. This suggests that when and are both close to zero,
the numerator is much smaller than the denominator, and we suspect that the limit
might exist and that it is equal to zero.

To prove our assertion, we observe that , so . Therefore,

Let , , and . Then

and

By the Squeeze Theorem,

and this, in turn, implies that

Continuity of a Function of Two Variables
The definition of continuity for a function of two variables is similar to that for a func-
tion of one variable.

lim
(x, y)→(0, 0)

2x2y

x2 � y2
� 0

lim
(x, y)→(0, 0)

t(x, y) � lim
(x, y)→(0, 0)

` 2x2y

x2 � y2
` � 0

lim
(x, y)→(0, 0)

h(x, y) � lim
(x, y)→(0, 0)

2 �y � � 0lim
(x, y)→(0, 0)

f(x, y) � lim
(x, y)→(0, 0)

0 � 0

h(x, y) � 2 �y �t(x, y) � ` 2x2y

x2 � y2
`f(x, y) � 0

0 	 ` 2x2y

x2 � y2
` � 2x2 �y �

x2 � y2
	 2 �y �

x2>(x2 � y2) 	 1y2 � 0

yx

lim
(x, y)→(0, 0)

2x2y

x2 � y2
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Thus, is continuous at if approaches as approaches 
along any path. Loosely speaking, a function is continuous at a point if the graph
of does not have a hole, gap, or jump at . If is not continuous at , then 
is said to be discontinuous there. For example, the functions , , and whose graphs
are shown in Figure 6 are discontinuous at the indicated points.

htf
f(a, b)f(a, b)f

(a, b)f
(a, b)(x, y)f(a, b)f(x, y)(a, b)f

DEFINITION Continuity at a Point

Let be a function that is defined for all points close to the point .
Then is continuous at the point if

lim
(x, y)→(a, b)

f(x, y) � f(a, b)

(a, b)f
(a, b)(x, y)f

(c, d)
y y

f is not defined at (a, b).(a)

z

z � f (x, y) z � g(x, y)

(a, b)

0 0 0

 g(x, y) � g(c, d)(b)

z
(c, d, g(c, d))

(c)

x

y

xx

z � h(x, y)

z

lim
(x, y) → (c, d)

h(x, y) does not exist.lim 
(x, y) → (0, 0)

FIGURE 6

Continuity on a Set
Let’s digress a little to introduce some terminology. We define the -neighborhood
about to be the set

Thus, is just the set of all points lying inside the circle of radius centered at 
(see Figure 7).

Let be a plane region. A point is said to be an interior point of if there
exists a -neighborhood about that lies entirely in (Figure 8). A point is
called a boundary point of if every -neighborhood of contains points in and
also points not in .

A region is said to be an open region if every point of is an interior point of
. A region is closed if it contains all of its boundary points. Finally, a region that con-

tains some but not all of its boundary points is neither open nor closed. For example,
the regions

,

and

C � e(x, y) ` x2

9
�

y2

4
	 1; y � 0f  d  e(x, y) ` x2

9
�

y2

4
� 1; y � 0f

B � e(x, y) ` x2

9
�

y2

4
	 1fA � e(x, y) ` x2

9
�

y2

4
� 1f

R
RR

R
RRdR

(a, b)R(a, b)d

R(a, b)R

(a, b)dNd

Nd � {(x, y) �2(x � a)2 � (y � b)2 � d}

(a, b)
D

0 x

y

(a, b)
N∂

∂

FIGURE 7
The -neighborhood about (a, b)d

0

R

Interior
point

Boundary
point

x

y

FIGURE 8
An interior point and a boundary point of R
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0 x

A

y

(a) A is open.

0 x

B

y

(b) B is closed.

0 x

C

y

(c) C is neither open nor closed.

FIGURE 9
Every point in is an interior point; contains all of its boundary points; 

contains some but not all of its boundary points.C
BA

shown in Figure 9a–c are open, closed, and neither open nor closed, respectively.
As we mentioned in Section 1.3, continuity is a “local” concept. The following def-

inition explains what we mean by continuity on a region.

DEFINITION Continuity on a Region

Let be a region in the plane. Then is continuous on if is continuous at
every point in . If is a boundary point, the condition for continu-
ity is modified to read

where , that is, is restricted to approach along paths lying
inside .R

(a, b)(x, y)(x, y) � R

lim
(x, y)→(a, b)

f(x, y) � f(a, b)

(a, b)R(x, y)
fRfR

EXAMPLE 5 Show that the function defined by is contin-
uous on the closed region , which is the set of all points lying
on and inside the circle of radius 3 centered at in the -plane.

Solution Observe that the set is precisely the domain of . Now, if is any inte-
rior point of , then

This shows that is continuous at .
Next, if is a boundary point of and is restricted to lie inside , we

obtain

as before, thus showing that is continuous at as well.
The graph of is the upper hemisphere of radius 3 centered at the origin together

with the circle in the -plane having equation . (See Figure 10.)x2 � y2 � 9xy
f

(c, d)f

lim
(x, y)→(c, d)

f(x, y) � f(c, d)

R(x, y)R(c, d)
(a, b)f

 � f(a, b)

 �29 � a2 � b2

 �2 lim
(x, y)→(a, b)

(9 � x2 � y2)

 lim
(x, y)→(a, b)

f(x, y) � lim
(x, y)→(a, b)

29 � x2 � y2

R
(a, b)fR

xy(0, 0)
R � {(x, y) � x2 � y2 	 9}

f(x, y) �29 � x2 � y2f
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z

x

y

0
3

3

3 z � f (x, y)

The following theorem summarizes the properties of continuous functions of 
two variables. The proofs of these properties follow from the limit laws and will be 
omitted.

FIGURE 10

The graph of 
has no holes, gaps, or jumps.

f(x, y) �29 � x2 � y2

THEOREM 1 Properties of Continuous Functions of Two Variables

If and are continuous at , then the following functions are also contin-
uous at .

a. b. c. , a constant d. t(a, b) � 0f>tccfftf 
 t

(a, b)
(a, b)tf

A consequence of Theorem 1 is that polynomial and rational functions are con-
tinuous.

A polynomial function of two variables is a function whose rule can be expressed
as a finite sum of terms of the form , where is a constant and and are non-
negative integers. For example, the function defined by

is a polynomial function in the two variables and . A rational function is the quo-
tient of two polynomial functions. For example, the function defined by

is a rational function.

t(x, y) �
x3 � xy � y2

x2 � y2

t

yx

f(x, y) � 2x2y5 � 3xy3 � 8xy2 � 3y � 4

f
nmccxmyn

THEOREM 2 Continuity of Polynomial and Rational Functions

A polynomial function is continuous everywhere (that is, in the whole plane).
A rational function is continuous at all points in its domain (that is, at all points
where its denominator is defined and not equal to zero).

EXAMPLE 6 Determine where the function is continuous:

a. b. t(x, y) �
1

y � x2
f(x, y) �

xy(x2 � y2)

x2 � y2
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Solution
a. The function is a rational function and is therefore continuous everywhere

except at , where its denominator is equal to zero (Figure 11).
b. The function is a rational function and is continuous everywhere except alongt

(0, 0)
f

the curve , where its denominator is equal to zero (Figure 12).y � x2

FIGURE 11
The graph of has a hole at the origin.f

FIGURE 12
As approaches the curve 

from the region ,
approaches infinity; as 

approaches the curve from 
the region , approaches 

minus infinity.
zy � x2
y � x2

(x, y)
z � f(x, y)y � x2

y � x2(x, y)

z

y

x

y

x

(b) The graph of z � 
(            )xy x2 � y2

__________
x2 � y2(a) The domain of f

0

z

y

x

(b) The graph of z � 
1_______

y � x2(a) The domain of t

y

x

y � x2 

0

The next theorem tells us that the composite function of two continuous functions
is also a continuous function.

THEOREM 3 Continuity of a Composite Function

If is continuous at and is continuous at , then the composite func-
tion defined by is continuous at .(a, b)h(x, y) � t( f(x, y))h � t � f

f(a, b)t(a, b)f

EXAMPLE 7 Determine where the function is continuous:

a. b. G(x, y) �
1
2 cos(2x2 � y2)

1 � 2x2 � y2
F(x, y) � sin xy
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Solution
a. We can view the function as the composition of the functions and 

defined by and . Thus,

Since is continuous on the whole plane and is continuous on , we con-
clude that is continuous everywhere. The graph of is shown in Figure 13a.

b. The function is the quotient of and 
. The function in turn involves the composition of t(t) � 1

2 cos tp1 � 2x2 � y2
q(x, y) �p(x, y) � 1

2 cos(2x2 � y2)G
FF

(��, �)tf

F(x, y) � t( f(x, y)) � sin ( f(x, y)) � sin xy

t(t) � sin tf(x, y) � xy
tft � fF

and . Since both and are continuous everywhere, we 
see that is continuous everywhere. The function is continuous everywhere 
as well and is never zero. Therefore, by Theorem 3, is continuous everywhere.
The graph of is shown in Figure 13b.G

G
qp

tff(x, y) � 2x2 � y2

z z

x
x

y

y

(b) G(x, y) � (a) F(x, y) � sin xy is continuous everywhere.  is continuous everywhere.
(              )  cos 2x2 � y2

____________
1 � 2x2 � y2

1_
2FIGURE 13

Functions of Three or More Variables
The notions of the limit of a function of three or more variables and that of the conti-
nuity of a function of three or more variables parallel those of a function of two vari-
ables. For example, if is a function of three variables, then we write

to mean that there exists a number such that can be made as close to as
we please by restricting to be sufficiently close to .(a, b, c)(x, y, z)

Lf(x, y, z)L

lim
(x, y, z)→(a, b, c)

f(x, y, z) � L

f

EXAMPLE 8 Evaluate .

Solution

A function of three variables is continuous at if

lim
(x, y, z)→(a, b, c)

f(x, y, z) � f(a, b, c)

(a, b, c)f

lim
(x, y, z)→(p2 , 0, 1)

e2y(sin x � cos y)

1 � y2 � z2
�

e0[sin (p>2) � cos 0]

1 � 0 � 1
�

2

2
� 1

lim
(x, y, z)→(p2 , 0, 1)

e2y(sin x � cos y)

1 � y2 � z2
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Geometrically speaking, has the limit at if given any , we can find
a circle of radius centered at such that for all inte-
rior points of the circle (Figure 14).(x, y) � (a, b)

L � e � f(x, y) � L � e(a, b)d

e � 0(a, b)Lf

EXAMPLE 9 Determine where is continuous.

Solution We require that and ; that is, and
. So is continuous on the set and 

, which is the set of points above the -plane and inside the upper hemisphere
with center at the origin and radius 1.

The Definition of a Limit (Optional)
The notion of the limit of a function of two variables given earlier can be made more
precise as follows.

E-D

xyz � 0}
{(x, y, z) � x2 � y2 � z2 � 1fx2 � y2 � z2 � 1

z � 01 � x2 � y2 � z2 � 0z � 0

f(x, y, z) �
ln z

21 � x2 � y2 � z2

DEFINITION Limit of 

Let be a function of two variables that is defined for all points on a disk
with center at with the possible exception of itself. Then

if for every , there exists a such that

whenever 0 �2(x � a)2 � (y � b)2 � d� f(x, y) � L � � e

d � 0e � 0

lim
(x, y)→(a, b)

f(x, y) � L

(a, b)(a, b)
(x, y)f

f(x, y)

∂

z � f(x, y)

y

0

x

z

L

(a, b)

L + ´

L − ´

f(x, y)

(x, y)

(x, y, f(x, y))

FIGURE 14
lies in the interval

whenever
is in the 

-neighborhood of .(a, b)d

(x, y) � (a, b)
(L � e, L � e)
f(x, y)

EXAMPLE 10 Prove that .

Solution Let be given. We need to show that there exists a such that

whenever is in the -neighborhood about . To find such a , con-
sider

Thus, if we pick , we see that and that implies
that as was to be shown. Since is arbitrary, the proof is complete.e� f(x, y) � a � � e

2(x � a)2 � (y � b)2 � dd � 0d � e

� f(x, y) � a � � �x � a � �2(x � a)2 	2(x � a)2 � (y � b)2

d(a, b)d(x, y) � (a, b)

� f(x, y) � a � � e

d � 0e � 0

lim(x, y)→(a, b) x � a

EXAMPLE 11 Prove that . (See Example 4.)

Solution Let be given. Consider

If we pick , then , and implies that .
Since is arbitrary, the proof is complete.e

� f(x, y) � 0 � � e2x2 � y2 � dd � 0d � e>2
 	 2 �y � � 22y2 	 22x2 � y2

(x, y) � (0, 0) � f(x, y) � 0 � � ` 2x2y

x2 � y2
` � 2 �y �a x2

x2 � y2
b

e � 0

lim
(x, y)→(0, 0)

2x2y

x2 � y2
� 0
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1. a. Explain what it means for a function of two variables to
have a limit at .

b. Describe a technique that you could use to show that the
limit of as approaches does not exist.

2. Explain what it means for a function of two variables to be
continuous (a) at a point and (b) on a region in the
plane.

3. Determine whether each function is continuous or discon-
tinuous. Explain your answer.
a. measures the volume of a balloon ascending into

the sky as a function of the atmospheric pressure and
the air temperature .T

P
f(P, T )

f

(a, b)

(a, b)(x, y)f(x, y)

(a, b)
f b. measures the surface area of a human body as a

function of its height and weight .
c. measures the fare as a function of distance and

time for taking a cab from O’Hare Airport to downtown
Chicago.

d. measures the volume of a certain mass of gas as a
function of the temperature and the pressure .

4. Suppose has the property that it is not defined at the point
but . Can you define so

that is continuous at ? If so, what should the value of
be?f(1, 2)

(1, 2)f
f(1, 2)lim(x, y)→(1, 2) f(x, y) � 3(1, 2)

f
PT

f(T, P)

t
df(d, t)

WH
f(H, W)

13.2 CONCEPT QUESTIONS

In Exercises 1–12, show that the limit does not exist.

1. 2.

3. 4.

5. 6.

7.

8.

9.

10.

11.

Hint: Approach along the curve with parametric equations
, , .

12.

In Exercises 13–26, find the given limit.

13.

14.

15. 16. lim
(x, y)→(�1, 3)

 
x � 2y2

(x � 1)(y � 1)
lim

(x, y)→(1, 2)
 

2x2 � 3y3 � 4

3 � xy

lim
(x, y)→(1, �1)

(2x2 � xy � 3y � 1)

lim
(x, y)→(1, 2)

(x2 � 2y2)

lim
(x, y, z)→(0, 0, 0)

 
xy

x2 � y2 � z2

z � ty � t 2x � t 2

(0, 0, 0)

lim
(x, y, z)→(0, 0, 0)

 
xz2 � 2y2

x2 � 2y2 � z4

lim
(x, y, z)→(0, 0, 0)

 
2xyz

x3 � y3 � z3

lim
(x, y, z)→(0, 0, 0)

 
xy � yz � xz

x2 � y2 � z2

lim
(x, y)→(0, 0)

 
xy3 cos x

2x2 � y6

lim
(x, y)→(1, 0)

 
2xy � 2y

x2 � y2 � 2x � 1

lim
(x, y)→(0, 0)

 
sin xy

x2 � y2lim
(x, y)→(0, 0)

 
2xy

2x4 � y4

lim
(x, y)→(0, 0)

 
xy2

x2 � y4lim
(x, y)→(0, 0)

 
3xy

3x2 � y2

lim
(x, y)→(0, 0)

2x2 � 3xy � 4y2

2x2 � 3y2lim
(x, y)→(0, 0)

 
x2 � y2

2x2 � y2

17. 18.

19. 20.

21. 22.

23. 24.

25.

26.

In Exercises 27–30, use polar coordinates to find the limit. Hint:
If and , then if and only if

.

27. 28.

29.

30.

In Exercises 31–40, determine where the function is continuous.

31. 32.

33.

34. 35. F(x, y) � 1xex>yh(x, y) � sin(2x � 3y)

t(x, y) � 1x � y � 1x � y

f(x, y) �
x3 � xy � y3

x2 � y2f(x, y) �
2xy

2x � 3y � 1

lim
(x, y)→(0, 0)

 
tan(2x2 � 2y2)

tanh(3x2 � 3y2)

lim
(x, y)→(0, 0)

 (x2 � y2) ln(x2 � y2)

lim
(x, y)→(0, 0)

sin(2x2 � 2y2)

x2 � y2lim
(x, y)→(0, 0)

 
x3 � y3

x2 � y2

r → 0�
(x, y) → (0, 0)y � r sin ux � r cos u

lim
(x, y, z)→(0, 3, 1)

[esin px � ln(cos p(y � z))]

lim
(x, y, z)→(1, 2, 3)

 
xy � yz � xz

xyz � 3

lim
(x, y)→(3, 4)

e2x2�y2

lim
(x, y)→(2, 1)

ln(x2 � 3y)

lim
(x, y)→(0, 1)

e�x sin�1(y � x)lim
(x, y)→(1, 1)

 

tan�1ax

y
b

cos�1(x � 2y)

lim
(x, y)→(0, 1) 

sin�1ax

y
b

1 �
x

y

lim
(x, y)→(0�, 0�)

 
e1x�y

x � y � 1

lim
(x, y)→11, 122 x

2 sin p(2x � y)lim
(x, y)→(1, �2)

 
3xy

2x2 � y2

13.2 EXERCISES

Videos for selected exercises are available online at www.academic.cengage.com/login.V

www.academic.cengage.com/login
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36.

37.

38.

39.

40.

41. Let

a. Determine all the points where is continuous.
b. Plot the graph of . Does the graph give a visual confir-

mation of your conclusion in part (a)?

42. Let

a. Determine all the points where is continuous.
b. Plot the graph of . Does the graph give a visual confir-

mation of your conclusion in part (a)?

In Exercises 43–48, find , and determine
where is continuous.

43.

44.

45.

46. f(x, y) � x � 2y � 3, t(t) � 1t �
1

t

f(x, y) � 2x � y, t(t) �
t � 2

t � 1

f(x, y) � x3 � xy � xy2 � y3, t(t) � te�t

f(x, y) � x2 � xy � y2, t(t) � t cos t � sin t

h
h(x, y) � t( f(x, y))

f
f

f(x, y) � •
x

sin x
� y if x � 0

1 � y if x � 0

f
f

f(x, y) � •
sin xy

xy
if xy � 0

1 if xy � 0

F(x, y, z) � x tan 
y

z

h(x, y, z) � x ln(yz � 1)

t(x, y, z) � 1x � cos1y � z

f(x, y, z) �
xyz

x2 � y2 � z2 � 4

G(x, y) � ln(2x � y) 47.

48.

49. Use the precise definition of a limit to prove that
where is a constant.

50. Use the precise definition of a limit to prove that
.

51. Use the precise definition of a limit to prove that

52. Use the precise definition of a limit to prove that if
and is a constant, then

.

In Exercises 53–58, determine whether the statement is true or
false. If it is true, explain why it is true. If it is false, give an
example to show why it is false.

53. If , then
, where is any path leading

to .

54. If and is defined at , then
.

55. If , where and are continuous at and
, respectively, then is continuous at .

56. If , then .

57. If is continuous at and , then
.

58. If is continuous at and is continuous at ,
then .lim(x, y)→(a, b) t( f(x, y)) � t( f(a, b))

f(a, b)t(a, b)f

lim(x, y)→(3, �1) f(x, y) � 2
f(3, �1) � 2(3, �1)f

lim(x, y)→(1, 3) f(x, y) � 4f(1, 3) � 4

(a, b)fb
ahtf(x, y) � t(x)h(y)

f(a, b) � L
(a, b)flim(x, y)→(a, b) f(x, y) � L

(a, b)
Clim(x, y)→(a, b) along C f(x, y) � L

lim(x, y)→(a, b) f(x, y) � L

lim(x, y)→(a, b) cf(x, y) � cL
clim(x, y)→(a, b) f(x, y) � L

lim
(x, y)→(0, 0)

3xy3

x2 � y2 � 0

lim(x, y)→(a, b) y � b

clim(x, y)→(a, b) c � c

f(x, y) � y ln x, t(t) � et2

f(x, y) � x tan y, t(t) � cos t

cas

cas

13.3 Partial Derivatives

Partial Derivatives of Functions of Two Variables
For a function of one variable , there is no ambiguity when we speak of the rate of
change of with respect to . The situation becomes more complicated, however,
when we study the rate of change of a function of two or more variables. For exam-
ple, for the function of two variables defined by the equation , both the inde-
pendent variables and may be allowed to vary in some arbitrary fashion, thus mak-
ing it unclear what we mean by the phrase “the rate of change of with respect to 
and .”

One way of getting around this difficulty is to hold one variable constant and con-
sider the rate of change of with respect to the other variable. This approach might be
familiar to anyone who has used the expression “everything else being equal” while
debating the merits of a complicated issue.

f

y
xz

yx
z � f(x, y)

xf(x)
x
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Specifically, suppose that is a point in the domain of . Fix . Then the
function that is defined by is a function of the single variable . Its graph
is the curve formed by the intersection of the vertical plane and the surface

(Figure 1).
Therefore, the quantity

(1)

if it exists, measures both the slope of the tangent line to the curve at the point
as well as the rate of change of with respect to (in the -

direction) with held constant when and .
Similarly, the quantity

(2)

if it exists, measures the slope of the tangent line to the curve (formed by the inter-
section of the vertical plane and the surface at , and the
rate of change of with respect to (in the -direction) with held constant when

and (Figure 2).
In expressions (1) and (2) the point is fixed but otherwise arbitrary. There-

fore, we may replace by , leading to the following definitions.(x, y)(a, b)
(a, b)

y � bx � a
xyyf(x, y)

(a, b, f(a, b))z � f(x, y)x � a
CT

lim
h→0

f(a, b � h) � f(a, b)

h

y � bx � ay
xxf(x, y)(a, b, f(a, b))

CT

lim
h→0

f(a � h, b) � f(a, b)

h

z � f(x, y)
y � bC

xz � f(x, b)
y � bf(a, b)

FIGURE 1

measures 

the slope of and the rate of change 
of in the -direction when 

and .y � bx � a
xf(x, y)

T

lim
h→0

f(a � h, b) � f(a, b)

h

(a, b)

z � f (x, y)

y � b

0

y

z

x

T

C

(a, b, f (a, b))

(a, b)

x � a

y

x

0

z

z � f (x, y)
C

T

(a, b, f (a, b))

FIGURE 2

measures 

the slope of and the rate of change 
of in the -direction when 

and .y � bx � a
yf(x, y)

T

lim
h→0

f(a, b � h) � f(a, b)

h

DEFINITIONS Partial Derivatives of a Function of Two Variables

Let . Then the partial derivative of with respect to is

and the partial derivative of with respect to is

provided that each limit exists.

�f

�y
� lim

h→0

f(x, y � h) � f(x, y)

h

yf

�f

�x
� lim

h→0

f(x � h, y) � f(x, y)

h

xfz � f(x, y)

Computing Partial Derivatives
The partial derivatives of can be calculated by using the following rules.f

Computing Partial Derivatives

To compute , treat as a constant and differentiate in the usual manner
with respect to (an operation that we denote by ).

To compute , treat as a constant and differentiate in the usual man-
ner with respect to (an operation that we denote by ).�>�yy

x�f>�y
�>�xx

y�f>�x
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EXAMPLE 1 Find and if .

Solution To compute , we think of the variable as a constant and differenti-
ate with respect to . Let’s write

where the variable to be treated as a constant is shown in color. Then

To compute , we think of the variable as a constant and differentiate with
respect to . In this case,

and

Before looking at more examples, let’s introduce some alternative notations for the
partial derivatives of a function. If , then

and
�

�y
 f(x, y) �

�f

�y
� fy � zy

�

�x
 f(x, y) �

�f

�x
� fx � zx

z � f(x, y)

�f

�y
� 6x2y2 � 6xy � 6y

f(x, y) � 2x2y3 � 3xy2 � 2x2 � 3y2 � 1

y
x�f>�y

�f

�x
� 4xy3 � 3y2 � 4x

y

f(x, y) � 2x2y3 � 3xy2 � 2x2 � 3y2 � 1

x
y�f>�x

f(x, y) � 2x2y3 � 3xy2 � 2x2 � 3y2 � 1
�f

�y

�f

�x

EXAMPLE 2 Find and if .

Solution To compute , we think of the variable as a constant and differentiate with
respect to . Thus,

and

Use the Product Rule.

Use the Chain Rule on the first term.

Next, to compute , we treat as a constant and differentiate with respect to .
Thus,

and

 � x(�sin xy2) 
�

�y
 (xy2) � 0 � �2x2y sin xy2

 fy �
�

�y
 (x cos xy2) � x 

�

�y
 (cos xy2) � (cos xy2) 

�

�y
 (x)

f(x, y) � x cos xy2

yxfy

 � �xy2 sin xy2 � cos xy2

 � x(�sin xy2) 
�

�x
 (xy2) � cos xy2

 fx �
�

�x
 (x cos xy2) � x 

�

�x
 (cos xy2) � (cos xy2) 

�

�x
 (x)

f(x, y) � x cos xy2

x
yfx

f(x, y) � x cos xy2fyfx
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EXAMPLE 3 Let . Find the slope of the tangent line at the
point on the curve formed by the intersection of the surface and

a. the plane b. the plane 

Solution
a. The slope of the tangent line at any point on the curve formed by the intersection

of the plane and the surface is given by

In particular, the slope of the required tangent line is

b. The slope of the tangent line at any point on the curve formed by the intersection
of the plane and the surface is given by

In particular, the slope of the required tangent line is

(See Figure 3.)

�f

�y
`
(1, 1)

� �2(1) � �2

�f

�y
�

�

�y
 (4 � 2x2 � y2) � �2y

z � 4 � 2x2 � y2x � 1

�f

�x
`
(1, 1)

� �4(1) � �4

�f

�x
�

�

�x
 (4 � 2x2 � y2) � �4x

z � 4 � 2x2 � y2y � 1

x � 1y � 1

z � f(x, y)(1, 1, 1)
f(x, y) � 4 � 2x2 � y2

The slope of the tangent line is −4.(a) The slope of the tangent line is −2.(b)

x

y

z z

C

C

x � 1
y � 1

y

x

T

0

(1, 1, 1) (1, 1, 1)

T

0

FIGURE 3

EXAMPLE 4 Electrostatic Potential Figure 4 shows a crescent-shaped region 
that lies inside the disk and outside the disk

. Suppose that the electrostatic potential along the
inner circle is kept at 50 volts and the electrostatic potential along the outer circle is
kept at 100 volts. Then the electrostatic potential at any point in is given by

volts.

U(x, y) � 150 �
200x

x2 � y2

R(x, y)

D2 � {(x, y) � (x � 1)2 � y2 	 1}
D1 � {(x, y) � (x � 2)2 � y2 	 4}R
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a. Compute and .
b. Compute and and interpret your results.

Solution

a.

b. and

This tells us that the rate of change of the electrostatic potential at the point 
in the -direction is 16 volts per unit change in with held fixed at 1, and the
rate of change of the electrostatic potential at the point in the -direction 
is 12 volts per unit change in with held fixed at 3.xy

y(3, 1)
yxx

(3, 1)

Uy(3, 1) �
400(3)(1)

(9 � 1)2
� 12Ux(3, 1) �

200(9 � 1)

(9 � 1)2
� 16

 � 200x(x2 � y2)�2(2y) �
400xy

(x2 � y2)2

 � �200x(�1)(x2 � y2)�2 
�

�y
 (x2 � y2)

 � �200x 
�

�y
 (x2 � y2)�1

 Uy(x, y) �
�

�y
 c150 �

200x

x2 � y2
d � �

�

�y
 a 200x

x2 � y2
b

 � �
200(x2 � y2) � 200x(2x)

(x2 � y2)2
�

200(x2 � y2)

(x2 � y2)2

 � �

(x2 � y2) 
�

�x
 (200x) � 200x 

�

�x
 (x2 � y2)

(x2 � y2)2

 Ux(x, y) �
�

�x
 c150 �

200x

x2 � y2
d � �

�

�x
 a 200x

x2 � y2
b

Uy(3, 1)Ux(3, 1)
Uy(x, y)Ux(x, y)

2 40

U � 50

D1D2

U � 100

x

y

FIGURE 4
The electrostatic potential inside the
crescent-shaped region is .U(x, y)

EXAMPLE 5 A Production Function The production function of a certain country is
given by

billion dollars, when billion dollars of labor and billion dollars of capital are spent.

a. Compute and .
b. Compute and , and interpret your results.
c. Should the government encourage capital investment rather than investment in

labor to increase the country’s productivity?

Solution

a.

 fy(x, y) �
�

�y
 (20x2>3y1>3) � (20x2>3)a1

3
 y�2>3b �

20

3
 ax

y
b2>3

 fx(x, y) �
�

�x
 (20x2>3y1>3) � (20)a2

3
 x�1>3b (y1>3) �

40

3
 ay

x
b1>3

fy(125, 27)fx(125, 27)
fy(x, y)fx(x, y)

yx

f(x, y) � 20x2>3y1>3
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b.

This says that the production is increasing at the rate of $8 billion per billion dol-
lar increase in labor expenditure when the labor expenditure stands at $125 bil-
lion (capital expenditure held constant at $27 billion).

Next,

This tells us that production is increasing at the rate of approximately $18.5 bil-
lion per billion dollar increase in capital outlay when the capital expenditure
stands at $27 billion (with labor expenditure held constant at $125 billion).

c. Yes. Since a unit increase in capital expenditure results in a greater increase in
production than a unit increase in labor, the government should encourage spend-
ing on capital rather than on labor.

Sometimes we have available only the contour map of a function . In such instances
we can use the contour map to help us estimate the partial derivatives of at a speci-
fied point, as the following example shows.

f
f

fy(125, 27) �
20

3
 a125

27
b2>3

�
20

3
 a25

9
b � 18 

14

27

fx(125, 27) �
40

3
 a 27

125
b1>3

�
40

3
 a3

5
b � 8

EXAMPLE 6 Figure 5 shows the contour map of a function . Use it to estimate
and .fy(3, 1)fx(3, 1)

f

x

y

�1 0 2

4

6

8

12

14

10
2

0 2 4 6
16

FIGURE 5
A contour map of f

Solution To estimate , we start at the point , where the value of at 
can be read off from the contour map: . Then we proceed along the posi-
tive -axis until we arrive at the point on the next level curve whose location is approx-
imately . Using the definition of the partial derivative, we find

Similarly, starting at the point and moving along the positive -axis, we find

fy(3, 1) �
f(3, 3) � f(3, 1)

3 � 1
�

6 � 8

2
� �1

y(3, 1)

fx(3, 1) �
f(3.8, 1) � f(3, 1)

3.8 � 3
�

10 � 8

0.8
� 2.5

(3.8, 1)
x

f(3, 1) � 8
(3, 1)f(3, 1)fx(3, 1)
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Implicit Differentiation

EXAMPLE 7 Suppose is a differentiable function of and that is defined implic-

itly by . Find and .

Solution Differentiating the given equation implicitly with respect to , we find

and

Next, differentiating the given equation with respect to , we obtain

and

Partial Derivatives of Functions of More Than Two Variables
The partial derivatives of a function of more than two variables are defined in much
the same way as the partial derivatives of a function of two variables. For example,
suppose that is a function of three variables defined by . Then the par-
tial derivative of with respect to is defined as

where and are held fixed, provided that the limit exists. The other two partial deriv-
atives, and , are defined in a similar manner.�f>�z�f>�y

zy

�w

�x
�

�f

�x
� lim

h→0

f(x � h, y, z) � f(x, y, z)

h

xf
w � f(x, y, z)f

�z

�y
�

3y2 � 2z2

1 � 4yz

 3y2 �
�z

�y
 (1 � 4yz) � 2z2 � 0

 3y2 �
�z

�y
� 2ya2z 

�z

�y
b � 2z2 � 0

 
�

�y
 (x2 � y3 � z � 2yz2) �

�

�y
 (5)

y

�z

�x
�

2x

1 � 4yz

 
�z

�x
 (4yz � 1) � 2x � 0

Remember that y is
treated as a constant.

 2x �
�z

�x
� 2ya2z 

�z

�x
b � 0

 
�

�x
 (x2 � y3 � z � 2yz2) �

�

�x
 (5)

x

�z>�y�z>�xx2 � y3 � z � 2yz2 � 5

yxz

Finding the Partial Derivative of a Function of More Than Two Variables

To find the partial derivative of a function of more than two variables with respect
to a certain variable, say , we treat all the other variables as if they are con-
stants and differentiate with respect to in the usual manner.x

x
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EXAMPLE 8 Find

a. if b. if 

Solution
a. To find , we treat and as constants and differentiate with respect to to

obtain

b. To find , we treat , , and as constants and differentiate with respect to ,
obtaining

Use the Quotient Rule.

Use the Chain Rule.

Higher-Order Derivatives
Consider the function of two variables. Each of the partial derivatives 
and are functions of and . Therefore, we may take the partial derivatives of
these functions to obtain the four second-order partial derivatives

, , , and

(See Figure 6.)

�2f

�y2
�

�

�y
 a �f

�y
b�2f

�x �y
�

�

�x
 a �f

�y
b�2f

�y �x
�

�

�y
 a �f

�x
b�2f

�x2
�

�

�x
 a �f

�x
b

yx�f>�y
�f>�xz � f(x, y)

 �
2xw(y � sin zw) � xw2z cos zw

(y � sin zw)2
�

xw(2y � 2 sin zw � wz cos zw)

(y � sin zw)2

 �

(y � sin zw)(2xw) � xw2c0 � cos zw �
�

�w
 (zw)d

(y � sin zw)2

 �

(y � sin zw) 
�

�w
 (xw2) � xw2 

�

�w
 (y � sin zw)

(y � sin zw)2

 hw �
�

�w
 a xw2

y � sin zw
b

whzyxhw

fx �
�

�x
 (x2y � y2z � xz) � 2xy � z

xfzyfx

h(x, y, z, w) �
xw2

y � sin zw
hwf(x, y, z) � x2y � y2z � xzfx

∂y
∂

∂y
∂

∂x
∂

∂x
∂

∂x2
∂2f

∂x
∂f

∂y
∂

∂x
∂

∂x
∂

∂x
∂f

∂y
∂f

f

=( )

∂y
∂

∂y ∂x

∂2f
∂x
∂f

=( )

∂x
∂

∂x ∂y

∂2f
∂y
∂f

=( )

∂y
∂

∂y2
∂2f

∂y
∂f

=( )
FIGURE 6

The differential operators are shown 
on the limbs of the tree diagram.

Before we turn to an example, let’s introduce some additional notation for the
second-order partial derivatives of :

�2f

�y2
� fyy

�2f

�x �y
� fyx

�2f

�y �x
� fxy

�2f

�x2
� fxx

f
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Note the order in which the derivatives are taken: Using the notation , we
differentiate first with respect to —the independent variable that appears first when
read from right to left. In the notation we also differentiate first with respect to —
the independent variable that appears first when read from left to right. The derivatives

and are called mixed partial derivatives.

Note If is defined by the equation , then the four partial derivatives of 
are also written

and zyyzyxzxyz xx

fz � f(x, y)f

fyxfxy

xfxy

x
�2f>(�y �x)

EXAMPLE 9 Find the second-order partial derivatives of

Solution We first compute the first-order partial derivatives

and

Then differentiating each of these functions, we obtain

Notice that the mixed derivatives and in Example 9 are equal. The following
theorem, which we state without proof, gives the conditions under which this is true.

fyxfxy

 fyy �
�

�y
 fy �

�

�y
 (4xy � 3xy2) � 4x � 6xy

 fyx �
�

�x
 fy �

�

�x
 (4xy � 3xy2) � 4y � 3y2

 fxy �
�

�y
 fx �

�

�y
 (2y2 � 6x � y3) � 4y � 3y2

 fxx �
�

�x
 fx �

�

�x
 (2y2 � 6x � y3) � �6

fy �
�

�y
 (2xy2 � 3x2 � xy3) � 4xy � 3xy2

fx �
�

�x
 (2xy2 � 3x2 � xy3) � 2y2 � 6x � y3

f(x, y) � 2xy2 � 3x2 � xy3.

THEOREM 1 Clairaut’s Theorem

If and its partial derivatives , , , and are continuous on an open
region , then

for all in .R(x, y)

fxy(x, y) � fyx(x, y)

R
fyxfxyfyfxf(x, y)

A function of two variables and is called a harmonic function if 
for all in the domain of . Harmonic functions are used in the study of heat con-
duction, fluid flow, and potential theory. The partial differential equation
is called Laplace’s equation, named for Pierre Laplace (1749–1827).

uxx � uyy � 0
u(x, y)

uxx � uyy � 0yxu

ALEXIS CLAUDE CLAIRAUT
(1713–1765)

Alexis Claude Clairaut was one of twenty
children born to his mother but the only to
survive to adulthood. His father, a mathe-
matics teacher in Paris, educated his son
at home with very high standards: Alexis
was taught to read using Euclid’s Elements.
As a result of both nature and nurture,
Clairaut turned out to be a very precocious
mathematician. He studied calculus by the
age of 10 and wrote an original mathemati-
cal paper at 13. At 18 he published his first
paper; he also became the youngest mem-
ber ever admitted to the prestigious Acad-
emie des Sciences. Clairaut excelled in
many areas of mathematics, including
geometry, calculus, and celestial mechan-
ics. He was the first to prove the prediction
by Isaac Newton and the astronomer Chris-
tiaan Huygens that the earth is an oblate
ellipsoid. Clairaut also accurately predicted
the return of Halley’s comet in 1759, a pre-
diction that made him famous. Clairaut
developed the notation for partial deriva-
tives that we still use today, and he was
the first to prove that mixed second-order
partial derivatives of a function at a point
are equal if the derivatives are continuous
at that point.

Historical Biography
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EXAMPLE 10 Show that the function is harmonic in the -plane.

Solution We find

,

,

Therefore,

This holds for all in the plane, so is harmonic there.

Partial derivatives of order three and higher are defined in a similar manner. For
example,

and

Also, Theorem 1 is valid for mixed derivatives of higher order. For example, if the third
partial derivatives of are continuous, then the order in which the differentiation is
taken does not matter.

f

fxyx �
�

�x
 fxy fxxy �

�

�y
 fxxfxxx �

�

�x
 fxx

u(x, y)

uxx � uyy � ex cos y � ex cos y � 0

 uyy �
�

�y
 (�ex sin y) � �ex cos y uxx �

�

�x
 (ex cos y) � ex cos y

 uy �
�

�y
 (ex cos y) � �ex sin y ux �

�

�x
 (ex cos y) � ex cos y

xyu(x, y) � ex cos y

EXAMPLE 11 Let . Compute and .

Solution We have

so

Next, we have

so

Observe that both and are continuous everywhere and are equal.fyxzfxzy

fyxz �
�

�z
 fyx �

�

�z
 (zeyz) � eyz � yzeyz � (1 � yz)eyz

 fyx �
�

�x
 fy �

�

�x
 (xzeyz) � zeyz

 fy �
�

�y
 (xeyz) � xzeyz

fxzy �
�

�y
 fxz �

�

�y
 (yeyz) � eyz � yzeyz � (1 � yz)eyz

 fxz �
�

�z
 fx �

�

�z
 (eyz) � yeyz

 fx �
�

�x
 (xeyz) � eyz

fyxzfxzyf(x, y, z) � xeyz
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1. a. Define the partial derivatives of a function of two vari-
ables, and , with respect to and with respect to .

b. Give a geometric and a physical interpretation of .
2. Let be a function of and . Describe a procedure for find-

ing and .fyfx

yxf
fx(x, y)

yxyx
3. Suppose defines implicitly as a function of 

and ; that is, . Describe a procedure for finding
. Illustrate with an example of your choice.

4. If is a function of and , give a condition that will guaran-
tee that for all in some open region.(x, y)fxy(x, y) � fyx(x, y)

yxf
�x>�z

x � f(y, z)z
yxF(x, y, z) � 0

13.3 CONCEPT QUESTIONS

1. Let .
a. Find and .
b. Interpret the numbers in part (a) as slopes.
c. Interpret the numbers in part (a) as rates of change.

2. Let .
a. Find and .
b. Interpret the numbers in part (a) as slopes.
c. Interpret the numbers in part (a) as rates of change.

3. Determine the sign of and at the points , ,
and on the graph of the function shown in the figure.

4. The graphs of a function and its partial derivatives and 
are labeled (a), (b), and (c). Identify the graphs of , , and

, and give a reason for your answer.

�2�1012

�2
�1

0
1

2

�0.5

0

0.5
z

x

y

(a)

fy

fxf
fyfxf

x

y

z

Q

P R

fR
QP�f>�y�f>�x

fy(1, 2)fx(1, 2)
f(x, y) � 9 � x2 � xy � 2y2

fy(2, 1)fx(2, 1)
f(x, y) � x2 � 2y2

�2

�2�101
2

�2
�1

0
1

z

x

y
2

0

2

(c)

�2
�10

1
2

�2
�1

0

z

x

y 1
2

0.0
0.5
1.0
1.5
2.0

(b)

13.3 EXERCISES

Videos for selected exercises are available online at www.academic.cengage.com/login.V

5. The figure below shows the contour map of the function 
(measured in degrees Fahrenheit) giving the temperature at each
point on an 8 in. � 5 in. rectangular metal plate. Use it 
to estimate the rate of change of the temperature at the point

in the positive -direction and in the positive -direction.

100110 105 95 85

75

90

80

1

2

3

5

4

0 87654321 x (in.)

y (in.)

yx(3, 2)

(x, y)

T

www.academic.cengage.com/login
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In Exercises 6–29, find the first partial derivatives of the 
function.

6. 7.

8.

9. 10.

11. 12.

13. 14.

15. 16.

17.

18. 19.

20. 21.

22. 23.

24.

25. 26.

27. 28.

29.

In Exercises 30–33, use implicit differentiation to find and
.

30. 31.

32.

33.

In Exercises 34–39, find the second partial derivatives of the
function.

34.

35.

36.

37.

38. 39.

In Exercises 40–45, find the indicated partial derivative.

40. ;

41. ;

42. ;

43. ;

44. ;

45. ; hzzyh(x, y, z) � ex cos(y � 2z)

�3p

�u �w �√
p � eu√w

�3z

�x �y �x
z � x cos y � y sin x

fyxzf(x, y, z) � ln(x2 � y2 � z2)

fxyxf(x, y) � x4 � 2x2y2 � xy3 � 2y4

fxxxf(x, y) � x3 � y3 � 3x2y2 � 2x � 3y � 4

h(x, y) � tan�1 
y

x
z �2x2 � y2

w � cos(2u � √) � sin(2u � √)

z � xe2y � ye2x

t(x, y) � x3y2 � xy3 � 2x � 3y � 1

f(x, y) � x4 � 2x2y3 � y4 � 3x

ln(x2 � z2) � yz3 � 2x2 � 10

2 cos(x � 2y) � sin yz � 1 � 0

xey � ye�x � ez � 10x2y � xz � yz2 � 8

�z>�y
�z>�x

f(r, s, t) � rs ln st

u � x sin 
y

x � z
u � xey>z � z2

f(u, √, w) � ue√ � √eu � weu
t(x, y, z) � 1xyz

f(x, y, z) � 2x3 � 3xy � 2yz � z2

f(x, y) � �
y

x

te�t
 dtf(x, y) � �

y

x

cos t dt

f(x, y) � yxz � ln(ex � y2)

t(x, y) � x2 cosh
x

y
f(x, y) � sinh xy

t(u, √) �
u√

u2 � √3

f(x, y) �23 � 2x2 � y2z � tan�1(x2 � y2)

f(x, y) � ex cos y � ey sin xf(x, y) � xey>x
h(u, √) � ln(u2 � √2)t(r, s) � 1r � s2

f(x, y) � (2x2 � y3)4z � x1y

z � 2x3 � 3x2y3 � xy2 � 2x

f(x, y) � 2x2 � 3xy � y2f(x, y) � 3x � 4y � 2

In Exercises 46–49, show that the mixed partial derivatives 
and are equal.

46. 47.

48. 49.

In Exercises 50–53, show that the mixed partial derivatives ,
, and are equal.

50.

51.

52.

53.

54. The figure shows the contour map of a function . Use it to
determine the sign of (a) , (b) , (c) , (d) , and (e) 
at the point .

In Exercises 55 and 56, show that the function satisfies the 
one-dimensional heat equation .

55. 56.

In Exercises 57 and 58, show that the function satisfies the 
one-dimensional wave equation .

57.

58.

In Exercises 59–64, show that the function satisfies the 
two-dimensional Laplace’s equation .

59. 60.

61. 62.

63.

64.

In Exercises 65 and 66, show that the function satisfies the 
three-dimensional Laplace’s equation .

65.

66. u � (x2 � y2 � z2)�1>2
u � x2 � 3xy � 2y2 � 3z2 � 4xyz

uxx � uyy � uzz � 0

u � cosh y sin x � sinh y cos x

u � tan�1 
y

x

u � e�x cos y � e�y cos xu � ln2x2 � y2

u �
x

x2 � y2u � 3x2y � y3

uxx � uyy � 0

u � sin(kct) sin(kx)

u � cos(x � ct) � 2 sin(x � ct)

utt � c2uxx

u � e�c2k2t cos kxu � e�t sin 
x

c

ut � c2uxx

y

x

P

0

10
8
6
4

2

P
fyyfxyfxxfyfx

f

f(x, y, z) � e�x cos yz

f(x, y, z) � ln(x � 2y � 3z)

f(x, y, z) �29 � x2 � 2y2 � z2

f(x, y, z) � x2y3 � y2z3

fzyxfyxz

fxyz

f(x, y) � tan�1(x2 � y3)f(x, y) � e�2x cos 3y

f(x, y) � x sin2 y � y2 cos xf(x, y) � x2 � 2x2y � y3

fyx

fxy



13.3 Partial Derivatives 1071

67. Show that the function satisfies thez �2x2 � y2 tan�1 
y

x
a. Compute , and interpret your result.
b. Find the rate of change of the temperature at the point

in the -direction.

75. Electric Potential A charge (in coulombs) located at the ori-
gin of a three-dimensional coordinate system produces an
electric potential (in volts) given by

where is a positive constant and , , and are measured
in meters. Find the rate of change of the potential at the
point in the -direction.

76. Surface Area of a Human The formula

gives the surface area of a human body (in square meters)
in terms of its weight (in kilograms) and its height (in
centimeters). Compute and when 
and , and interpret your results.

77. Arson Study A study of arson for profit conducted for a 
certain city found that the number of suspicious fires is
approximated by the formula

,

where denotes the number of persons per census tract and
denotes the level of reinvestment in conventional mort-

gages by the city’s ten largest banks measured in cents per
dollars deposited. Compute and when

and , and interpret your results.

78. Production Functions The productivity of a Central American
country is given by the function

when units of labor and units of capital are used.
a. What are the marginal productivity of labor and the 

marginal productivity of capital when the amounts
expended on labor and capital are 256 units and 
16 units, respectively?

b. Should the government encourage capital investment
rather than increased expenditure on labor at this time 
to increase the country’s productivity?

yx

f(x, y) � 20x3>4y1>4

y � 20x � 100
�N>�y�N>�x

y
x

5 	 y 	 350 	 x 	 150

N(x, y) �
12021000 � 0.03x2y

(5 � 0.2y)2

H � 180
W � 70�S>�H�S>�W

HW
S

S � 0.007184W0.425H0.725

xP(1, 2, 3)

zyxk

V(x, y, z) �
kQ

2x2 � y2 � z2

V

Q

x

y

1

T � 100

T � 50�1 0

yP112, 12 2
Tx112, 12 2

equation .x 
�z

�x
� y 

�z

�y
� z

68. Show that the function satisfies the equation

.

69. According to the ideal gas law, the volume (in liters) 
of an ideal gas is related to its pressure (in pascals) and
temperature (in kelvins) by the formula

where is a constant. Compute and if
, , and , and interpret your

results.

70. Refer to Exercise 69. Show that

71. The total resistance (in ohms) of three resistors with
resistances of , , and ohms connected in parallel 
is given by the formula

Find and interpret your result.

72. The height of a hill (in feet) is given by

where is the distance (in miles) east and the distance 
(in miles) north of Bolton. If you are at a point on the hill 
1 mile north and 1 mile east of Bolton, what is the rate of
change of the height of the hill (a) in a northerly direction
and (b) in an easterly direction?

73. Profit Versus Inventory and Floor Space The monthly profit (in
dollars) of the Barker Department Store depends on its level
of inventory (in thousands of dollars) and the floor space 
(in thousands of square feet) available for display of its mer-
chandise, as given by the equation

Find and when and , and
interpret your result.

74. Steady-State Temperature Consider the upper half-disk
(see the figure). If the

temperature at points on the upper boundary is kept at
100°C and the temperature at points on the lower boundary
is kept at 50°C, then the steady-state temperature at any
point inside the half-disk is given by

T(x, y) � 100 �
100
p

tan�1 
1 � x2 � y2

2y

(x, y)

H � {(x, y) � x2 � y2 	 1, y � 0}

y � 200x � 5000�P>�y�P>�x

P(x, y) � �0.02x2 � 15y2 � xy � 39x � 25y � 15,000

yx

yx

h(x, y) � 20(16 � 4x2 � 3y2 � 2xy � 28x � 18y)

�R>�R1

1

R
�

1

R1
�

1

R2
�

1

R3

R3R2R1

R

�V

�T
�

�T

�P
�

�P

�V
� �1

P � 125T � 300k � 8.314
�V>�P�V>�Tk

V �
kT

P

T
P

V

x 
�u

�x
� y 

�u

�y
� 2u

u � 20x2 cos 
y

x



1072 Chapter 13 Functions of Several Variables

79. Wind Chill Factor A formula that meteorologists use to 
calculate the wind chill temperature (the temperature that
you would feel in still air that is the same as the actual 
temperature when the presence of wind is taken into con-
sideration) is

where is the air temperature in degrees Fahrenheit and is
the wind speed in mph.
a. What is the wind chill temperature when the actual air

temperature is 32°F and the wind speed is 20 mph?
b. What is the rate of change of the wind chill temperature

with respect to the wind speed if the temperature is 32°F
and the wind speed is 20 mph?

80. Wind Chill Factor The wind chill temperature is the tempera-
ture that you would feel in still air that is the same as the
actual temperature when the presence of wind is taken into
consideration. The following table gives the wind chill tem-
perature in degrees Fahrenheit in terms of the
actual air temperature in degrees Fahrenheit and the wind
speed in mph.s

t
T � f(t, s)

st

s � 1

T � f(t, s) � 35.74 � 0.6125t � 35.75s0.16 � 0.4275ts0.16

82. a. Use the result of Exercise 81 to find if
.

b. Verify the result of part (a) by evaluating at .

In Exercises 83 and 84, use the result of Exercise 81 and a cal-
culator or computer to find the partial derivative.

83. if 

84. if 

85. Cobb-Douglas Production Function Show that the Cobb-Douglas
production function , where , satis-
fies the equation

Note: This equation is called Euler’s equation.

86. Let be the surface with equation , where has
continuous first-order partial derivatives and is 
a point on (see the figure). Let and be the curves
obtained by the intersection of the surface with the planes

and , respectively. Let and be the tangent
lines to the curves and at . Then the tangent plane to
the surface at the point is the plane that contains both
tangent lines and .

a. Show that the vectors and
are parallel to and , respectively.

b. Using the result of part (a), find a vector that is normal
to both and .

c. Use the result of part (b) to show that an equation of the
tangent plane to at is

87. Use the result of Exercise 86 to find an equation of the tan-
gent plane to the paraboloid at the point

.

88. Engine Efficiency The efficiency of an internal combustion
engine is given by

E � a1 �
√
V
b0.4

(1, 2, 2)
z � x2 � 1

4 y2

z � z0 � fx(x0, y0)(x � x0) � fy(x0, y0)(y � y0)

PS

v2v1

n
T2T1v2 � j � fy(x0, y0)k

v1 � i � fx(x0, y0)k

z

C2

x0

y0

C1

T2

y
x

0

(x0, y0)

n v1

T1

v2P

S

T2T1

PS
PC2C1

T2T1y � y0x � x0

S
C2C1S

P(x0, y0, z0)
fz � f(x, y)S

x 
�P

�x
� y 

�P

�y
� P

0 � a � 1P � kxay1�a

f(x, y) �
sin pxy

11 �2x2 � y3 23>2fy(2, 1)

f(x, y) � ln1exy � cos2x2 � y2 2fx(2, 1)

11, p2 2fx(x, y)
f(x, y) � x2 cos xy

fx11, p2 2

Wind speed (mph)

t
s 10 15 20 25 30 35 40

30 21.2 19.0 17.4 16.0 14.9 13.9 13.0

32 23.7 21.6 20.0 18.7 17.6 16.6 15.8

34 26.2 24.2 22.6 21.4 20.3 19.4 18.6

36 28.7 26.7 25.2 24.0 23.0 22.2 21.4

38 31.2 29.3 27.9 26.7 25.7 24.9 24.2

40 33.6 31.8 20.5 29.4 28.5 27.7 26.9

A
ct

ua
l a

ir
te

m
pe

ra
tu

re
 (

ºF
)

a. Estimate the rate of change of the wind chill temperature
with respect to the actual air temperature when the

wind speed is constant at 25 mph and the actual air 
temperature is 34°F.
Hint: Show that it is given by

b. Estimate the rate of change of the wind chill temperature
with respect to the wind speed when the actual air 

temperature is constant at 34°F and the wind speed is 
25 mph.
Source: National Weather Service.

81. Let be a function of two variables.
a. Put , and use the definition of the deriv-

ative of a function of one variable to show that
.

b. Put , and show that .fy(a, b) � h¿(b)h(y) � f(a, y)
fx(a, b) � t¿(a)

t(x) � f(x, b)
f

T

�T

�t
 (34, 25) �

f(36, 25) � f(34, 25)

2

T

cas
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where and are the respective maximum and minimum
volumes of air in each cylinder.
a. Show that , and interpret your result.
b. Show that , and interpret your result.

89. A semi-infinite strip has faces that are insulated. If the edges
and of the strip are kept at temperature zero

and the base of the strip is kept at temperature 1, then the
steady-state temperature (that is, the temperature after a long
time) is given by

Find and , and interpret your results.

90. Let

f(x, y) � •
xy(x2 � y2)

x2 � y2 if (x, y) � (0, 0)

0 if (x, y) � (0, 0)

y

T � 1

T � 0T � 0

π0 x

�T

�y
 1p2 , 1 2�T

�x
 1p2 , 1 2

T(x, y) �
2
p

tan�1 
sin x

sinh y

x � px � 0

�E>�√ � 0
�E>�V � 0

√V a. Find and for .
b. Use the definition of partial derivatives to find 

and .
c. Show that and .
d. Does the result of part (c) contradict Theorem 1? Explain.

91. Does there exist a function of two variables and 
with continuous second-order partial derivatives 
such that and

? Explain.

92. Show that if a function of two variables and has contin-
uous third-order partial derivatives, then .

In Exercises 93–96, determine whether the statement is true or
false. If it is true, explain why it is true. If it is false, give an
example to show why it is false.

93. If has a partial derivative with respect to at the
point , then

94. If , then the tangent line to the curve
formed by the intersection of the plane and the 
surface at the point is horizontal;
that is, it is parallel to the -plane.

95. If is defined for all and and for 
all in the interval , then the curve formed by the
intersection of the plane and the surface 
is concave downward on .

96. If , then for all in
.D � {(x, y) � xy � 0}

(x, y)fxy(x, y) � fyx(x, y)f(x, y) � ln xy

(a, b)
z � f(x, y)y � b

C(a, b)x
fxx(a, b) � 0yxfxx(x, y)

xy
(a, b, f(a, b))z � f(x, y)

x � a
�f>�y (a, b) � 0

�f

�x
 (a, b) � lim

x→a
 
f(x, b) � f(a, b)

x � a

(a, b)
xz � f(x, y)

fxyx � fyxx � fxxy

yxf

fy(x, y) � �ye2x sin xy
fx(x, y) � e2x(2 cos xy � y sin xy)

yxf

fyx(0, 0) � 1fxy(0, 0) � �1
fy(0, 0)

fx(0, 0)
(x, y) � (0, 0)fy(x, y)fx(x, y)

13.4 Differentials

Increments
Recall that if is a function of one variable defined by , then the increment in

is defined to be

where is an increment in (Figure 1a). The increment of a function of two or more
variables is defined in an analogous manner. For example, if is a function of two vari-
ables defined by , then the increment in produced by increments of 
and in the independent variables and , respectively, is defined to be

(1)

(See Figure 1b.)

�z � f(x � �x, y � �y) � f(x, y)

yx�y
�xzz � f(x, y)

z
x�x

�y � f(x � �x) � f(x)

y
y � f(x)f
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The increment Δy is the change in y as x
changes from x to x � Δx.

(a) The increment Δz is the change in z as x
changes from x to x � Δx and y changes
from y to y � Δy.

(b)

(x, y)

Δy � f (x � Δx) � f (x)

Δz � f (x � Δx, y � Δy) � f (x, y)

(x � Δx, y � Δy)

(x, y, f (x, y))

z � f (x, y)y � f (x)

(x � Δx, y � Δy, f (x � Δx, y � Δy))

(x � Δx, y � Δy)

x x � Δx (x, y)
(x, y � Δy)

y

z

0

x
x

y

0

FIGURE 1

EXAMPLE 1 Let . Find . Then use your result to find the
change in if changes from to .

Solution Using Equation (1), we obtain

Next, to find the increment in if changes from to , we note
that and . Therefore, using the result
obtained earlier with , , , and , we obtain

You can verify the correctness of this result by computing the quantity
.

The Total Differential
Recall from Section 2.9 that if is a function of one variable defined by , then
the differential of at is defined by

where is the differential in . Furthermore,

(2)

if is small (see Figure 2).�x

�y � dy

xdx � �x

dy � f ¿(x) dx

xf
y � f(x)f

f(0.98, 1.03) � f(1, 1)

 � �0.0886

 �z � [4(1) � 1](�0.02) � (1)(0.03) � 2(�0.02)2 � (�0.02)(0.03)

�y � 0.03�x � �0.02y � 1x � 1
�y � 1.03 � 1 � 0.03�x � 0.98 � 1 � �0.02

(0.98, 1.03)(1, 1)(x, y)z

 � (4x � y) �x � x �y � 2(�x)2 � �x �y

 � 2x2 � 4x �x � 2(�x)2 � xy � x �y � y �x � �x �y � 2x2 � xy

 � [2(x � �x)2 � (x � �x)(y � �y)] � (2x2 � xy)

 �z � f(x � �x, y � �y) � f(x, y)

(0.98, 1.03)(1, 1)(x, y)z
�zz � f(x, y) � 2x2 � xy
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For an analog of this result for a function of two variables, we begin with the fol-
lowing definition.

Relationship between dy and Δy(a) Relationship between dz and Δz. The tangent
plane is the analog of the tangent line T in the
one-variable case.

Tangent plane

(b)

Δy

(x � Δx, y � Δy)

z � f (x, y)y � f (x)

(x � Δx, y � Δy, f (x � Δx, y � Δy))

x x � Δx (x, y)

y

z

0

x

dy

Δz
dz

x

T

y

0

FIGURE 2

DEFINITION Differentials

Let , and let and be increments of and , respectively. The
differentials and of the independent variables and are

and

The differential , or total differential, of the dependent variable is

dz �
�f

�x
 dx �

�f

�y
 dy � fx(x, y) dx � fy(x, y) dy

zdz

dy � �ydx � �x

yxdydx
yx�y�xz � f(x, y)

Later in this section, we will show that

where and are functions of and that approach 0 as and approach 0.
This implies that

(3)

if both and are small.
Figure 2b shows the geometric relationship between and . Observe that as 

changes from to and changes from to , measures the change
in the height of the graph of , whereas measures the change in the height of the
tangent plane.*

dzf
�zy � �yyyx � �xx

xdz�z
�y�x

�z � dz

�y�x�y�xe2e1

�z � dz � e1 �x � e2 �y

*For now, we will rely on our intuitive definition of the tangent plane. We will define the tangent plane in
Section 13.7.
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EXAMPLE 2 Let .

a. Find the differential .
b. Compute the value of if changes from to , and com-

pare your result with the value of obtained in Example 1.

Solution

a.

b. Here , , , and . Therefore,

The value of obtained in Example 1 was , so is a good approxima-
tion of in this case. Observe that it is easier to compute than to compute .�zdz�z

dz�0.0886�z

dz � [4(1) � 1](�0.02) � 1(0.03) � �0.09

dy � �y � 0.03dx � �x � �0.02y � 1x � 1

dz �
�f

�x
 dx �

�f

�y
 dy � (4x � y) dx � x  dy

�z
(0.98, 1.03)(1, 1)(x, y)dz

dz

z � f(x, y) � 2x2 � xy

EXAMPLE 3 A storage tank has the shape of a right circular cylinder. Suppose that
the radius and height of the tank are measured at 1.5 ft and 5 ft, respectively, with a
possible error of 0.05 ft and 0.1 ft, respectively. Use differentials to estimate the max-
imum error in calculating the capacity of the tank.

Solution The capacity (volume) of the tank is . The error in calculating the
capacity of the tank is given by

Since the errors in the measurement of and are at most 0.05 ft and 0.1 ft, respec-
tively, we have and . Therefore, taking , , ,
and , we obtain

Thus, the maximum error in calculating the volume of the storage tank is approxi-
mately , or 3.1, ft3.0.975p

 � 2p(1.5)(5)(0.05) � p(1.5)2(0.1) � 0.975p

 dV � 2prh dr � pr 2 dh

dh � 0.1
dr � 0.05h � 5r � 1.5dh � 0.1dr � 0.05

hr

�V � dV �
�V

�r
 dr �

�V

�h
 dh � 2prh  dr � pr 2 dh

V � pr 2h

EXAMPLE 4 The Error in Computing the Range of a Projectile If a projectile is fired
with an angle of elevation and initial speed of ft/sec, then its range (in feet) is

where is the constant of acceleration due to gravity. (See Figure 3.) Suppose that a
projectile is launched with an initial speed of 2000 ft/sec at an angle of elevation of

radians and that the maximum percentage errors in the measurement of and 
are 0.5% and 1%, respectively.

a. Estimate the maximum error in the computation of the range of the projectile.
b. Find the maximum percentage error in computing the range of this projectile.

u√p>12

t

R �
√2 sin 2u

t

√u
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Solution
a. The error in the computation of is

The maximum error in the computation of is or 10 ft/sec; that is,
. Also, the maximum error in the computation of is radi-

ans. In other words, . Therefore, the maximum error in com-
puting the range of the projectile is approximately

or approximately 1192 ft.
b. Using and , we find the range of the projectile to be

Therefore, the maximum percentage error in computing the range of the projectile is

or approximately 1.91%.

Error in Approximating by 
The following theorem tells us that gives a good approximation of if and 
are small, provided that both and are continuous.fyfx

�y�x�zdz

dz�z

100 ` �R

R
` � 100a 1192

62,500
b

R �
√2 sin 2u

t
�

(2000)2 sin ap
6
b

32
� 62,500

u � p>12√ � 2000

 � 1192

 �

2(2000) sin ap
6
b

32
 (10) �

2(2000)2 cos ap
6
b

32
 a0.01p

12
b

 ��R � � �dR � 	
2√ sin 2u

t
 �d√ � �

2√2 cos 2u
t

 �du �

�du � 	 0.01(p>12)
(0.01)(p>12)u�d√ � 	 10

(0.005)(2000)√

�R � dR �
�R

�√
 d√ �

�R

�u
 du �

2√ sin 2u
t

 d√ �
2√2 cos 2u

t
 du

R

R

q 
FIGURE 3

We want to find the range of a
projectile fired with an angle of

elevation and initial speed of ft/sec.√u

R

THEOREM 1
Let be a function defined on an open region . Suppose that the points 
and are in and that and are continuous at . Then

where and are functions of and such that

and lim
(�x, �y)→(0, 0)

e2 � 0lim
(�x, �y)→(0, 0)

e1 � 0

�y�xe2e1

�z � fx(x, y) �x � fy(x, y) �y � e1 �x � e2 �y

(x, y)fyfxR(x � �x, y � �y)
(x, y)Rf
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PROOF Fix and . By adding and subtracting to , we have

where is the change in as changes from to and is the
change in as changes from to . (See Figure 4a.)(x � �x, y � �y)(x � �x, y)(x, y)z

�z2(x � �x, y)(x, y)(x, y)z�z1

 � �z1 � �z2

 � [ f(x � �x, y) � f(x, y)] � [ f(x � �x, y � �y) � f(x � �x, y)]

 �z � f(x � �x, y � �y) � f(x, y)

�zf(x � �x, y)yx

Δz1 � f (x � Δx, y) � f (x, y) and
Δz2 � f (x � Δx, y � Δy) � f (x � Δx, y)

(a)

C(x � Δx, y � Δy)

C(x � Δx, y � Δy)

A(x, y) A(x, y)

B(x � Δx, y)

B(x � Δx, y)
y

z

0

x

The points A, B, and C shown in the
xy-plane.

(b)

(x1, y)

(x � Δx, y1)

x

y

0

(x � Δx, y, f (x � Δx, y))

(x, y, f (x, y))

(x � Δx, y � Δy, f (x � Δx, y � Δy))

Δz2

Δz1

FIGURE 4

On the interval between and , is constant, so the function defined by
for is a function of one variable. (See Figure 4b.) There-

fore, by the Mean Value Theorem, there exists a point with 
such that

Since , we have

Next, on the interval between and , both and are constant, so the function
defined by for is a function of one variable. (See

Figure 4b.) Therefore, by the Mean Value Theorem there exists a point 
with such that

Since , we have

Therefore,

 � fx(x1, y) �x � fy(x � �x, y1) �y

 �z � �z1 � �z2

 � h(y � �y) � h(y) � h¿(y1) �y � fy(x � �x, y1) �y

 �z2 � f(x � �x, y � �y) � f(x � �x, y)

h¿(y1) � fy(x � �x, y1)

h(y � �y) � h(y) � h¿(y1) �y

y � y1 � y � �y
(x � �x, y1)

y 	 t 	 y � �yh(t) � f(x � �x, t)h
�xxCB

 � t¿(x1) �x � fx(x1, y) �x    x � x1 � x � �x

 �z1 � f(x � �x, y) � f(x, y) � t(x � �x) � t(x)

t¿(x1) � fx(x1, y)

t(x � �x) � t(x) � t¿(x1) �x

x � x1 � x � �x(x1, y)
x 	 t 	 x � �xt(t) � f(t, y)

tyBA
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Adding and subtracting to the right-hand side of the previous
equation and rearranging terms, we obtain

fx(x, y) �x � fy(x, y) �y

 � fx(x, y) �x � fy(x, y) �y � e1 �x � e2 �y

 �z � fx(x, y) �x � fy(x, y) �y � [ fx(x1, y) � fx(x, y)] �x � [ fy(x � �x, y1) � fy(x, y)] �y

where

and

Observe that as and . Therefore, the continuity of 
and implies that

and

and this proves the result.

Note Observe that the conclusion of Theorem 1 can be written as

Therefore, if and are both small, then

and this quantity is a very small number, which accounts for the closeness of the
approximation. Compare this with the case of a function of one variable discussed in
Section 2.9.

Differentiability of a Function of Two Variables
The conclusion of Theorem 1 can be written as

(4)

where and as . We define a function of two variables
to be differentiable if satisfies Equation (4).z � f(x, y)

(�x, �y) → (0, 0)e2 → 0e1 → 0

�z � dz � e1 �x � e2 �y

�z � dz � (small number)(small number) � (small number)(small number)

�y�x

�z � dz � e1 �x � e2 �y

lim
(�x, �y)→(0, 0)

e2 � 0lim
(�x, �y)→(0, 0)

e1 � 0

fy

fxy1 → y(�x, �y) → (0, 0), x1 → x

e2 � fy(x � �x, y1) � fy(x, y)

e1 � fx(x1, y) � fx(x, y)

DEFINITION Differentiability of a Function of Two Variables

Let . The function is differentiable at if can be expressed
in the form

where and as . The function is differentiable
in a region if it is differentiable at each point of .RR

f(�x, �y) → (0, 0)e2 → 0e1 → 0

�z � fx(a, b) �x � fy(a, b) �y � e1 �x � e2 �y

�z(a, b)fz � f(x, y)

EXAMPLE 5 Show that the function defined by is differentiable
in the plane.

Solution Write , and let be any point in the plane. Then
using the result of Example 1, we have

�z � (4x � y) �x � x �y � 2(�x)2 � �x �y

(x, y)z � f(x, y) � 2x2 � xy

f(x, y) � 2x2 � xyf
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Since and , we can write

where and . Since and as , it fol-
lows that is differentiable at . But is any point in the plane, so is differ-
entiable in the plane.

The next theorem, which is an immediate consequence of Theorem 1, guarantees
when a function of two variables is differentiable.

f(x, y)(x, y)f
(�x, �y) → (0, 0)e2 → 0e1 → 0e2 � ��xe1 � 2 �x

�z � fx �x � fy �y � e1 �x � e2 �y

fy � �xfx � 4x � y

THEOREM 2 Criterion for Differentiability

Let be a function of the variables and . If and exist and are continuous
on an open region , then is differentiable in .RfR

fyfxyxf

For the function of Example 5, we have and
, both of which are continuous everywhere. Therefore, by Theorem 2 we

conclude that is differentiable in the plane, as demonstrated earlier.

Remember that the mere existence of the partial derivatives and of a function
at a point is not enough to guarantee the differentiability of at . (See

Exercise 43.)

Differentiability and Continuity
Just as a differentiable function of one variable is continuous, the following theorem
shows that a differentiable function of two variables is also continuous.

(x, y)f(x, y)f
fyfx

f
fy(x, y) � �x

fx(x, y) � 4x � yf(x, y) � 2x2 � xy

THEOREM 3 Differentiable Functions Are Continuous

Let be a function of two variables. If is differentiable at , then is con-
tinuous at .(a, b)

f(a, b)ff

!

PROOF Using the result of Theorem 1, we have

Writing and , we have

Noting that and as , we see that

as

Equivalently,

Therefore, is continuous at .(a, b)f

lim
(x, y)→(a, b)

f(x, y) � f(a, b)

(�x, �y) → (0, 0)f(x, y) � f(a, b) → 0

(�x, �y) → (0, 0)e2 → 0e1 → 0

f(x, y) � f(a, b) � [ fx(a, b) � e1](x � a) � [ fy(a, b) � e2](y � b)

y � b � �yx � a � �x

 � fx(a, b) �x � fy(a, b) �y � e1 �x � e2 �y

 �z � f(a � �x, b � �y) � f(a, b)
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Functions of Three or More Variables
The notions of differentiability and the differential of functions of more than two vari-
ables are similar to those of functions of two variables. For example, suppose that is
a function of three variables that is defined by . Then the increment 
of corresponding to increments of , , and of , , and , respectively, is

The function is differentiable at if can be written in the form

where , and are functions of , and that approach zero as
.

The differential of the dependent variable is defined to be

where , , and are the differentials of the independent vari-
ables, , , and . If has continuous partial derivatives and , , and are all small,
then .�w � dw

dzdydxfzyx
dz � �zdy � �ydx � �x

dw �
�w

�x
 dx �

�w

�y
 dy �

�w

�z
 dz

wdw
(�x, �y, �z) → (0, 0, 0)

�z�x, �ye3e1, e2

�w � fx(x, y, z) �x � fy(x, y, z) �y � fz(x, y, z) �z � e1 �x � e2 �y � e3 �z

�w(x, y, z)f

�w � f(x � �x, y � �y, z � �z) � f(x, y, z)

zyx�z�y�xw
�ww � f(x, y, z)
f

EXAMPLE 6 Maximum Error in Calculating Centrifugal Force A centrifuge is a
machine designed for the specific purpose of subjecting materials to a sustained cen-
trifugal force. The magnitude of a centrifugal force in dynes is given by

where is in revolutions per minute (rpm), is the mass in grams, and is the radius
in centimeters. If the maximum percentage errors in the measurement of , , and 
are 0.1%, 0.4%, and 0.2%, respectively, use differentials to estimate the maximum per-
centage error in calculating .

Solution The error in calculating is , and

Therefore,

and

Since

, , and ` dR

R
` 	 0.002` dS

S
` 	 0.004` dM

M
` 	 0.001

` �F

F
` � ` dF

F
` 	 ` dM

M
` � 2 ` dS

S
` � ` dR

R
`

�F

F
�

dF

F
�

dM

M
� 2 

dS

S
�

dR

R

 �
p2S2R

900
 dM �

2p2SMR

900
 dS �

p2S2M

900
 dR

 �F � dF �
�F

�M
 dM �

�F

�S
 dS �

�F

�R
 dR

�FF

F

RSM
RMS

F � f(M, S, R) �
p2S2MR

900

F
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we have

Thus, the maximum percentage error in calculating the centrifugal force is approxi-
mately 1.1%.

` dF

F
` 	 0.001 � 2(0.004) � 0.002 � 0.011

1. If , what is the differential of ? The differential
of ? What is the total differential of ?

2. Let . What is the relationship between the actual
change , when changes from to and changes
from to , and the total differential of at ?

3. a. What does it mean for a function of two variables and
to be differentiable at ? To be differentiable in a

region ?R
(a, b)y

xf
(x, y)fdzy � �yy

yx � �xxx�z
z � f(x, y)

zy
xz � f(x, y) b. Give a condition that guarantees that a function of two

variables and is differentiable in an open region .
c. If a function of two variables and is differentiable 

at , what can you say about the continuity of at
?(a, b)

f(a, b)
yxf

Ryx
f

13.4 CONCEPT QUESTIONS

Videos for selected exercises are available online at www.academic.cengage.com/login.V

1. Let , and suppose that changes from
to .

a. Compute . b. Compute .
c. Compare the values of and .

2. Let , and suppose that changes
from to .
a. Compute . b. Compute .
c. Compare the values of and .

In Exercises 3–20, find the differential of the function.

3. 4.

5. 6.

7. 8.

9. 10.

11. 12.

13. 14.

15. 16.

17. 18.

19. 20.

In Exercises 21–24, use differentials to approximate the 
change in due to the indicated change in the independent 
variables.

21. ; changes from
to .(1.98, 2.01)(2, 2)

(x, y)f(x, y) � x4 � 3x2y2 � y3 � 2y � 4

f

w � x cosh yzw � x2ey � y ln z

w � e�x2
sin(2y � 3z)w � x2e�yz

w �2x2 � xy � z2w � x2 � xy � z2

w � tan�1ay

x
bz � e2x cos 3y

z � x2 sin 2yw � x2 ln(x2 � y2)

z � ln(2x � 3y)w � yex2�y2

z �22x2 � 3y2z � (2x2y � 3y3)3

w �
xy

1 � x2z �
x � y

x � y

z � x4 � 2x2y2 � 3xy2 � y3z � 3x2y3

dz�z
dz�z

(1.97, 1.02)(2, 1)
(x, y)z � x2 � 2xy � 3y2

dz�z
dz�z

(2.01, �0.98)(2, �1)
(x, y)z � 2x2 � 3y2 22. ; changes from to

.

23. ; changes from
to .

24. ; changes from to
.

25. The dimensions of a closed rectangular box are measured as
30 in., 40 in., and 60 in., with a maximum error of 0.2 in. in
each measurement. Use differentials to estimate the maxi-
mum error in calculating the volume of the box.

26. Use differentials to estimate the maximum error in calculat-
ing the surface area of the box of Exercise 25.

27. A piece of land is triangular in shape. Two of its sides are
measured as 80 and 100 ft, and the included angle is mea-
sured as rad. If the sides are measured with a maximum
error of 0.3 ft and the angle is measured with a maximum
error of rad, what is the approximate maximum error
in the calculated area of the land?

28. Production Functions The productivity of a certain country is
given by the function

when units of labor and units of capital are utilized.
What is the approximate change in the number of units pro-
duced if the amount expended on labor is decreased from
243 to 240 units and the amount expended on capital is
increased from 32 units to 35 units?

29. The pressure (in pascals), the volume (in liters), and the
temperature (in kelvins) of an ideal gas are related by theT

VP

yx

f(x, y) � 30x4>5y1>5

p>180

p>3

(0.98, 2.97, 2.01)
(1, 3, 2)(x, y, z)f(x, y, z) � x2y cos pz

(2.01, 2.97, 0.04)(2, 3, 0)
(x, y, z)f(x, y, z) � ln(2x � y) � e2xz

(2.96, 1.02)

(3, 1)(x, y)f(x, y) � 12x � 3y �
x

y

13.4 EXERCISES
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equation . Use differentials to find the approxi-
mate change in the pressure of the gas if its volume in-
creases from 20 L to 20.2 L and its temperature decreases
from 300 K to 295 K.

30. Consider the ideal gas law equation of Exer-
cise 29. If and are measured with maximum errors of
0.6% and 0.4%, respectively, determine the maximum per-
centage error in calculating the value of .

31. Surface Area of Humans The surface area of humans is
related to their weight and height by the formula

. If and are measured with max-
imum errors of 3% and 2%, respectively, find the approxi-
mate maximum percentage error in the measurement of .

32. Specific Gravity The specific gravity of an object with density
greater than that of water can be determined by using the
formula

where and are the weights of the object in air and in
water, respectively. If the measurements of an object are

lb and lb with maximum errors of 0.02 lb
and 0.04 lb, respectively, find the approximate maximum
error in calculating .

33. Flow of Blood The flow of blood through an arteriole meas-
ured in cm3/sec is given by

where is the length of the arteriole in centimeters, is the
radius in centimeters, is the difference in pressure between
the two ends of the arteriole in dyne-sec/cm2, and is the
viscosity of blood in dyne-sec/cm2. Find the approximate
maximum percentage error in measuring the flow of blood if
an error of at most 1% is made in measuring the length of
the arteriole and an error of at most 2% is made in measur-
ing its radius. Assume that and are constant.

34. The figure below shows two long, parallel wires that are at 
a distance of m apart, carrying currents of and amps.
It can be shown that the force of attraction per unit length
between the two wires as a result of magnetic fields gener-
ated by the currents is given by

teslas per meter, where /amp2) is a con-
stant called the permeability of free space. Use differentials
to find the approximate percentage change in if increases
by 2%, decreases by 2%, and decreases by 5%.

I2

I1

d

DI2

I1f

N(4p � 10�7m0

f �
m0

2p
a I1I2

D
b

I2I1d

kP

k
P

RL

F �
pPR4

8kL

S

W � 1.8A � 2.2

WA

S �
A

A � W

S

HWS � 0.1091W0.425H0.725
HW

S

V

PT
PV � 8.314T

PV � 8.314T 35. Error in Measuring the Period of a Pendulum The period of a
simple pendulum executing small oscillations is given by

, where is the length of the pendulum and 
is the constant of acceleration due to gravity. If is com-
puted by using ft and 32 ft/sec2, find the approxi-
mate percentage error in if the true values for and are
4.05 ft and 32.2 ft/sec2.

36. Error in Calculating the Power of a Battery Suppose the source 
of current in an electric circuit is a battery. Then the power
output (in watts) obtained if the circuit has a resistance 
of ohms is given by

where is the electromotive force (EMF) in volts and is the
internal resistance of the battery. Estimate the maximum per-
centage error in calculating the power if an EMF of 12 volts
is applied in a circuit with a resistance of 100 ohms, the inter-
nal resistance of the battery is 5 ohms, and the possible maxi-
mum percentage errors in measuring , , and are 2%, 3%,
and 1%, respectively.

37. Error in Measuring the Resistance of a Circuit The total resistance
(in ohms) of three resistors with resistances of , , and
ohms connected in parallel is given by

If , , and are measured as 20, 30, and 50 ohms,
respectively, with a maximum error of 0.5 in each measure-
ment, estimate the maximum error in the calculated value 
of .

38. A container with a constant cross section of ft2 is filled
with water to a height of ft. The water is then allowed to
flow out through an orifice of cross section in.2 located at
the base of the container. It can be shown that the time (in
seconds) that it takes to empty the tank is given by

where is the constant of acceleration. Suppose that thet

T � f(A, a, h) �
A

a
 B

2h

t

a
h

A

R

R3R2R1

1

R
�

1

R1
�

1

R2
�

1

R3

R3

R2R1R

rRE

rE

P �
E2R

(R � r)2

R
P

tLT
t �L � 4

T
tLT � 2p2L>t

T

measurements of , , and are 5 ft2, 2 in.2, and 16 ft with
errors of 0.05 ft2, in.2, and 0.2 ft, respectively. Find
the error in computing . (Take to be 32 ft/sec2.)

h ft

A ft2

a in.2

tT
�0.04

haA
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39. Suspension Bridge Cables The supports of a cable of a suspen-
sion bridge are at the same level and at a distance of ft
apart. The supports are feet higher than the lowest point of
the cable (see the figure). If the weight of the cable is negli-
gible and the bridge has a uniform weight of lb/ft, then
the tension (in lb) in the cable at its lowest point is given by

If , , and are measured with possible maximum errors
of 1%, 2%, and 2%, respectively, determine the maximum
percentage error in calculating .

40. Flight of a Projectile A projectile is fired with a muzzle veloc-
ity of ft/sec at an angle radians above the horizontal. If
the launch site is located at a height of ft above the target
(see the figure below), then the time of the flight of the pro-
jectile in seconds is given by

Suppose that the projectile is fired with an initial speed of
800 ft/sec at an angle of elevation of radians from a sitep>4

h

T �
√ sin a �2(√ sin a)2 � 2th

t

h
a√

a

L

H

aLW

H �
WL2

8a

W

a
L

that is located 400 ft above the target. If the initial speed of
the projectile, the angle of elevation of the cannon, and the
height of the site above the target are measured with maxi-
mum possible percentage errors of 0.05%, 0.02%, and 0.5%,
respectively, find the maximum error in computing the time
of flight of the projectile. (Take to be 32 ft/sec2.)

In Exercises 41 and 42, show that the function is differentiable
in the plane. (See Example 5.)

41.

42.

43. Let be defined by

Show that and both exist but that is not dif-
ferentiable at .
Hint: Use the result of Theorem 3.

In Exercises 44–47, determine whether the statement is true or
false. If it is true, explain why it is true. If it is false, give an
example to show why it is false.

44. If and for all and and for all differen-
tials and , then and for all 
and .

45. If is differentiable at , then
.

46. If , where and are differentiable 
in the interval , then is differentiable on

.

47. The function

is differentiable everywhere.

f(x, y) � ex2 � y2 if (x, y) � (0, 0)

1 if (x, y) � (0, 0)

R � {(x, y) � a � x � b, a � y � b}
F(a, b)

tfF(x, y) � f(x) � t(y)

f(a, b) � lim(x, y)→(a, b) f(x, y)
(a, b)f(x, y)

y
xfy(x, y) � 0fx(x, y) � 0dydx

yxdz � 0z � f(x, y)

(0, 0)
ffy(0, 0)fx(0, 0)

f(x, y) � •
xy

x2 � y2 if (x, y) � 0

0 if (x, y) � (0, 0)

f

f(x, y) � 2xy � y2

f(x, y) � x2 � y2

t

13.5 The Chain Rule

The Chain Rule for Functions Involving One Independent Variable
In this section we extend the Chain Rule to functions of two or more variables. First,
let’s recall the Chain Rule for functions of one variable: If is a differentiable func-
tion of and is a differentiable function of (so that is a function of ), then

This rule is easily recalled by using the diagram shown in Figure 1.
We begin by looking at the Chain Rule for the case in which a variable depends

on two intermediate variables and , which in turn depend on a third variable (so
is a function of one independent variable ).tw

tyx
w

dy

dt
�

dy

dx

dx

dt

tytxx
y

FIGURE 1
To find , compute 
( depends on ), compute 
( depends on ), and then multiply 
the two quantities together.

tx
dx>dtxy

dy>dxdy>dt

dx
dy

dt
�

dy
dx
dy

dt
dx

dt
dx

xy t
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Note Observe that the derivative of with respect to is written with an ordinary 
rather than a curly , since is a function of the single variable .

PROOF Let change from to . This produces a change

in from to and a change

in from to . Since and are differentiable, they are continuous at , so
both and approach zero as approaches zero.

Next, observe that the changes of in and in in turn produce a change 
in from to . Since is differentiable, we have

where and as . Dividing both sides of this equation
by , we have

Letting , we have

The tree diagram in Figure 2 will help you recall this version of the Chain Rule.
There are two “limbs” on this tree leading from to . To find , multiply the par-
tial derivatives along each limb, and then add the products of these partial derivatives.

dw>dttw

 �
�w

�x
 
dx

dt
�

�w

�y
 
dy

dt

 �
�w

�x
 
dx

dt
�

�w

�y
 
dy

dt
� 0 �

dx

dt
� 0 �

dy

dt

 �
�w

�x
 lim
�t→0

�x

�t
�

�w

�y
 lim
�t→0

�y

�t
� lim

�t→0
e1 lim

�t→0

�x

�t
� lim

�t→0
e2 lim

�t→0

�y

�t

 
dw

dt
� lim

�t→0

�w

�t

�t → 0

�w

�t
�

�w

�x
 
�x

�t
�

�w

�y
 
�y

�t
� e1

�x

�t
� e2

�y

�t

�t
(�x, �y) → (0, 0)e2 → 0e1 → 0

�w �
�w

�x
 �x �

�w

�y
 �y � e1 �x � e2 �y

fw � �www
�wy�yx�x

�t�y�x
thty � �yyy

�y � h(t � �t) � h(t)

x � �xxx

�x � t(t � �t) � t(t)

t � �ttt

tw(�)d(d)
dtw

THEOREM 1 The Chain Rule for Functions Involving 
One Independent Variable

Let , where is a differentiable function of and . If and
, where and are differentiable functions of , then is a differen-

tiable function of , and
dw

dt
�

�w

�x
 
dx

dt
�

�w

�y
 
dy

dt

t
wthty � h(t)

x � t(t)yxfw � f(x, y)

dt
dx

dt
dy

∂y
∂w

∂x
∂w

tw

y

x

FIGURE 2
depends on via and .yxtw
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EXAMPLE 1 Let , where and . Find and its
value when .

Solution Observe that is a function of and and that both these variables are
functions of . Thus, we have the situation depicted in the schematic in Figure 2. Using
the Chain Rule, we have

To find the value of when , we first observe that if , then x � cos 0 � 1t � 0t � 0dw>dt

 � y(y2 � 2x)sin t � x(x � 3y2)et

 � (2xy � y3)(�sin t) � (x2 � 3xy2)et

 
dw

dt
�

�w

�x
 
dx

dt
�

�w

�y
 
dy

dt

t
yxw

t � 0
dw>dty � etx � cos tw � x2y � xy3

FIGURE 3
depends on via .x1, x2, p , xntw

and . So

The Chain Rule in Theorem 1 can be extended to the case involving a function of
any finite number of intermediate variables. For example, if , where

is a differentiable function of and , ,
where are differentiable functions of , then

This is easier to recall if you look at Figure 3, which shows the dependency of the vari-
ables involved: Multiply the derivatives along each limb leading from to , and add
the products of these derivatives.

tw

dw

dt
�

�w

�x1
 
dx1

dt
�

�w

�x2
 
dx2

dt
� p �

�w

�xn
 
dxn

dt

tf1, f2, p , fn
x2 � f2(t), p , xn � fn(t)x1 � f1(t)x1, x2, p , xnf

w � f(x1, x2, p , xn)

dw

dt
`
t�0

� 0 � 1(1 � 3)e0 � �2

y � e0 � 1

dt

dx1

dt

dx2

dt

dxn

∂x1

∂w

∂x2

∂w

∂xn

∂w

t
w

xn

x1

x2

..
.

..
.

..
.

EXAMPLE 2 Tracking a Missile Cruiser Figure 4 depicts an AWACS (Airborne Warn-
ing and Control System) aircraft tracking a missile cruiser. The flight path of the plane
is described by the parametric equations

, ,

and the course of the missile cruiser is given by

, ,

where , and , , and are measured in miles and in hours. How fast is the
distance between the AWACS plane and the missile cruiser changing when ?t � 0

tzyx0 	 t 	 1

z � 0y � 40 � 10t 2x � 30 � 20t

z � 3y � 20 sin 12tx � 20 cos 12t
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Solution At time the position of the AWACS plane is given by the point 
and the position of the missile cruiser is given by the point , so the distance

between the plane and the cruiser is

We want to compute when . To find , we note that is a func-
tion of the four variables , , , and —all of which are functions of the single
variable (Figure 5). By the Chain Rule we have

But

,

,

If , , , , and , then

Thus,

, ,

,

and

, , ,
dy2

dt
� 0

dy1

dt
� 240

dx2

dt
� 20

dx1

dt
� 0

�D

�y2
�

40

11709
� 0.97

�D

�y1
� �

40

11709
� �0.97

�D

�x2
�

10

11709
� 0.24

�D

�x1
� �

10

11709
� �0.24

2(x2 � x1)
2 � (y2 � y1)

2 � 9 �2(30 � 20)2 � (40 � 0)2 � 9 � 11709

y2 � 40x2 � 30y1 � 0x1 � 20t � 0

 
dx1

dt
� �240 sin 12t,  dx2

dt
� 20,  dy1

dt
� 240 cos 12t,   and  dy2

dt
� 20t

 
�D

�y2
�

y2 � y1

2(x2 � x1)
2 � (y2 � y1)

2 � 9
 
�D

�y1
�

�(y2 � y1)

2(x2 � x1)
2 � (y2 � y1)

2 � 9

 
�D

�x2
�

x2 � x1

2(x2 � x1)
2 � (y2 � y1)

2 � 9
 
�D

�x1
�

�(x2 � x1)

2(x2 � x1)
2 � (y2 � y1)

2 � 9

dD

dt
�

�D

�x1
 
dx1

dt
�

�D

�x2
 
dx2

dt
�

�D

�y1
 
dy1

dt
�

�D

�y2
 
dy2

dt

t
y2y1x2x1

DdD>dtt � 0dD>dt

 �2(x2 � x1)
2 � (y2 � y1)

2 � 9

 D �2(x2 � x1)
2 � (y2 � y1)

2 � (z2 � z1)
2

D
(x2, y2, z2)

(x1, y1, z1)t

FIGURE 4
An AWACS aircraft tracking a missile cruiser.

z

y

x

(x1, y1, z1)

(x2, y2, z2)

D
0

t
D

x1

x2

y1

y2

FIGURE 5
depends on via the variables , ,
, and .y2y1

x2x1tD
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Therefore, when ,

that is, the distance between the AWACS aircraft and the missile cruiser is decreasing
at the rate of 228 mph at that instant of time.

The Chain Rule for Functions Involving Two Independent Variables
We now look at the Chain Rule for the case in which a variable depends on two
intermediate variables and , each of which in turn depends on two variables and

(so that is a function of two independent variables and ). More specifically, we
have the following theorem.

√uw√
uyx

w

 � �228

 
dD

dt
� (�0.24)(0) � (0.24)(20) � (�0.97)(240) � (0.97)(0)

t � 0

THEOREM 2 The Chain Rule for Functions Involving 
Two Independent Variables

Let , where is a differentiable function of and . Suppose that
and and the partial derivatives , , , and

exist. Then

and

�w

�√
�

�w

�x
 
�x

�√
�

�w

�y
 
�y

�√

�w

�u
�

�w

�x
 
�x

�u
�

�w

�y
 
�y

�u

�h>�√
�h>�u�t>�√�t>�uy � h(u, √)x � t(u, √)

yxfw � f(x, y)

PROOF For we think of as a constant, so and are differentiable functions
of . Then the result follows from Theorem 1. The expression is derived in a
similar manner.

The tree diagram shown in Figure 6 will help you to recall the Chain Rule given
in Theorem 2.

To obtain , observe that is connected to by two “limbs,” one from to
via and the other from to via . Multiply the partial derivatives along each of

these limbs, and add the product of these partial derivatives together to get . The
expression for is found in a similar manner.�w>�√

�w>�u
yuwxu

wuw�w>�u

�w>�√u
ht√�w>�u

∂y
∂w ∂u

∂y

∂√
∂y

∂√
∂x

∂u
∂x

∂x
∂w

y

x

u

√

u

√

w

FIGURE 6
depends on and via and .yx√uw

EXAMPLE 3 Let , where and . Find and
.

Solution Observe that is a function of and and that both of these variables are
functions of and . Thus, we have the situation depicted in Figure 6. Using the Chain
Rule (Theorem 2), we have

 � 4xy(2u) � 2x2(2u) � 4xu(2y � x)

 
�w

�u
�

�w

�x
 
�x

�u
�

�w

�y
 
�y

�u

√u
yxw

�w>�√
�w>�uy � u2 � √2x � u2 � √2w � 2x2y
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and

The General Chain Rule
The Chain Rule in Theorem 2 can be extended to the case involving any finite 
number of intermediate variables and any finite number of independent variables. 
For example, if , where is a differentiable function of inter-
mediate variables, , and , , ,

, where are differentiable functions of variables,
, then

(See Figure 7.)

 
�w

�tm
�

�w

�x1
 
�x1

�tm
�

�w

�x2
 
�x2

�tm
� p �

�w

�xn
 
�xn

�tm

 o

 
�w

�t2
�

�w

�x1
 
�x1

�t2
�

�w

�x2
 
�x2

�t2
� p �

�w

�xn
 
�xn

�t2

 
�w

�t1
�

�w

�x1
 
�x1

�t1
�

�w

�x2
 
�x2

�t1
� p �

�w

�xn
 
�xn

�t1

t1, t2, p , tm

mf1, f2, p , fnxn � fn(t1, t2, p , tm)
px2 � f2(t1, t2, p , tm)x1 � f1(t1, t2, p , tm)x1, x2, p , xn

nfw � f(x1, x2, p , xn)

 � 4xy(2√) � 2x2(�2√) � 4x√(2y � x)

 
�w

�√
�

�w

�x
 
�x

�√
�

�w

�y
 
�y

�√

∂x1

∂w

∂x2

∂w

∂xn

∂w

∂tm

∂x1

∂t2

∂x1∂t1

∂x1

w

xn

tm

t2

t1

x1

x2

tm

t2

t1

tm

t2

t1
..

. ..
.

..
.

..
.

FIGURE 7
depends on via .x1, x2, p , xnt1, t2, p , tmw

EXAMPLE 4 Let , where , , and . Find
the value of when and .

Solution Observe that is a function of , , and , which in turn are functions of 
and (Figure 8).s

rzyxw

s � 0r � 1�w>�s
z � resy � r sin sx � r cos sw � x2y � y2z3
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Multiplying the partial derivatives on the limbs that connect to on the tree diagram
and adding the products of these derivatives, we obtain

When and , we have , , and , so

�w

�s
� 2(1)(0)(0) � (1)(1) � 3(0)(1)(1) � 1

z � 1y � 0x � 1s � 0r � 1

 � 2xy(�r sin s) � (x2 � 2yz3)(r cos s) � 3y2z2(res)

 
�w

�s
�

�w

�x
 
�x

�s
�

�w

�y
 
�y

�s
�

�w

�z
 
�z

�s

sw

EXAMPLE 5 If and is differentiable, show that satisfies
the equation

Solution Introduce the intermediate variables and . Then
(Figure 9).

Using the Chain Rule, we have

and

Therefore,

y 
�w

�x
� x 

�w

�y
� a2xy 

�w

�u
� 2xy 

�w

�√
b � a�2xy 

�w

�u
� 2xy 

�w

�√
b � 0

�w

�y
�

�w

�u
 
�u

�y
�

�w

�√
 
�√
�y

�
�w

�u
 (�2y) �

�w

�√
 (2y)

�w

�x
�

�w

�u
 
�u

�x
�

�w

�√
 
�√
�x

�
�w

�u
 (2x) �

�w

�√
 (�2x)

w � t(x, y) � f(u, √)
√ � y2 � x2u � x2 � y2

y 
�w

�x
� x 

�w

�y
� 0

wfw � f(x2 � y2, y2 � x2)

w

√

y

x

u

y

x

EXAMPLE 6 Let , where has continuous second-order partial deriva-
tives, and let and . Find .

Solution We begin by calculating . Using the Chain Rule, we have

(See Figure 10.) Next, we apply the Product Rule to to obtain

(1)

To compute the partial derivatives appearing in the last two terms of Equation (1), we
observe that since is a function of and via the intermediate variables and , the
same is true of and (Figure 11).�w>�y�w>�x

yxsrw

 � 2 
�w

�x
� 2r 

�

�r
 a�w

�x
b � 2s 

�

�r
 a�w

�y
b

 
�2w

�r 2
�

�

�r
 a2r 

�w

�x
� 2s 

�w

�y
b

�w>�r

�w

�r
�

�w

�x
 
�x

�r
�

�w

�y
 
�y

�r
�

�w

�x
 (2r) �

�w

�y
 (2s)

�w>�r

�2w>�r 2y � 2rsx � r 2 � s2
fw � f(x, y)

w

y

s

r

x

s

r

FIGURE 10
depends on and via the

intermediate variables and .yx
srw

FIGURE 9
depends on and via the

intermediate variables and .√u
yxw

∂x
∂w

∂y
∂w

∂z
∂w

∂r
∂z

∂s
∂z

w

z

s

r

∂r
∂y

∂s
∂yy

s

r

∂r
∂x

∂s
∂xx

s

r

FIGURE 8
depends on and via , , and .zyxsrw
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Using the Chain Rule once again, we have

and

Substituting these expressions into Equation (1) and observing that because
they are continuous, we have

Implicit Differentiation
The Chain Rule for a function of several variables can be used to find the derivative
of a function implicitly. We will consider two situations.

First, suppose that the equation , where is a differentiable function,
defines a differentiable function of via the equation . If we differentiate
both sides of with respect to , we obtain

(see Figure 12) which implies that

if 

Let’s summarize this result.

Fy � 0
dy

dx
� �

�F

�x

�F

�y

� �
Fx

Fy

�w

�x
�

�F

�x
�

�F

�y
 
dy

dx
� 0

xw � F(x, y) � 0
y � f(x)xf

FF(x, y) � 0

 � 2 
�w

�x
� 4r 2 

�2w

�x2
� 8rs 

�2w

�x �y
� 4s2 

�2w

�y2

 
�2w

�r 2
� 2 

�w

�x
� 2r a2r 

�2w

�x2
� 2s 

�2w

�y �x
b � 2s a2r 

�2w

�x �y
� 2s 

�2w

�y2
b

fxy � fyx

 �
�2w

�x �y
 (2r) �

�2w

�y2
 (2s)

 
�

�r
 a�w

�y
b �

�

�x
 a�w

�y
b  

�x

�r
�

�

�y
 a�w

�y
b  

�y

�r

 �
�2w

�x2
 (2r) �

�2w

�y �x
 (2s)

 
�

�r
 a�w

�x
b �

�

�x
 a�w

�x
b  

�x

�r
�

�

�y
 a�w

�x
b  

�y

�r

FIGURE 11
Both and depend 
on and via the intermediate 
variables and .yx

sr
�w>�y�w>�x

∂x
∂w

x

y

r

s

r

s

∂y
∂w

x

y

r

s

r

s

x

x

w

y
FIGURE 12
Tree diagram showing dependency of 
on directly and via yx

w

THEOREM 3 Implicit Differentiation: One Independent Variable

Suppose that the equation , where is differentiable, defines implic-
itly as a differentiable function of . Then

if (2)Fy(x, y) � 0
dy

dx
� �

Fx(x, y)

Fy(x, y)

x
yFF(x, y) � 0
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EXAMPLE 7 Find if .

Solution The given equation can be rewritten as

Then Equation (2) immediately gives

As a second application of the Chain Rule to implicit differentiation, suppose that
the equation , where is a differentiable function, defines a differentiable
function of and via the equation . Differentiating both sides of

with respect to , we obtain

(see Figure 13) which gives

provided that .
Similarly, we see that

if Fz � 0
�z

�y
� �

Fy

Fz

Fz � 0

�z

�x
� �

Fx

Fz

�w

�x
�

�F

�x
�

�F

�z
 
�z

�x
� Fx � Fz 

�z

�x
� 0

xw � F(x, y, z) � 0
z � f(x, y)yxf

FF(x, y, z) � 0

dy

dx
� �

Fx

Fy
� �

3x2 � y

x � 2y

F(x, y) � x3 � xy � y2 � 4 � 0

x3 � xy � y2 � 4
dy

dx

x

w y

x

y

z

FIGURE 13
depends on and directly and via .zyxw

THEOREM 4 Implicit Differentiation: Two Independent Variables

Suppose the equation , where is differentiable, defines implic-
itly as a differentiable function of and . Then

and if (3)Fz(x, y, z) � 0
�z

�y
� �

Fy(x, y, z)

Fz(x, y, z)

�z

�x
� �

Fx(x, y, z)

Fz(x, y, z)

yx
zFF(x, y, z) � 0

EXAMPLE 8 Find and if .

Solution Here, , and Equation (3) gives

and

�z

�y
� �

Fy(x, y, z)

Fz(x, y, z)
� �

�6xy � z

2x2 � y
�

6xy � z

2x2 � y

�z

�x
� �

Fx(x, y, z)

Fz(x, y, z)
� �

4xz � 3y2

2x2 � y
�

3y2 � 4xz

2x2 � y

F(x, y, z) � 2x2z � 3xy2 � yz � 8 � 0

2x2z � 3xy2 � yz � 8 � 0
�z

�y

�z

�x
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1. Suppose that , , and , where , ,
and are differentiable functions. Write an expression for

. Illustrate with a tree diagram.
2. Suppose that , , and ,

where , , and are differentiable functions. Write an
expression for . Illustrate with a tree diagram.

3. Suppose that , ,
, , where , ,f1fxn � fn(t1, t2, p , tm)px2 � f2(t1, t2, p , tm)

x1 � f1(t1, t2, p , tm)w � f(x1, x2, p , xn)
�w>�√
htf

y � h(u, √)x � t(u, √)w � f(x, y)
dw>dt

h
tfy � h(t)x � t(t)w � f(x, y) are differentiable functions. Write an expression for

, where . Illustrate with a tree diagram.
4. a. Suppose that defines implicitly as a func-

tion of and is differentiable. Write an expression for
. Illustrate with a tree diagram.

b. Suppose that defines implicitly as a func-
tion of and and is differentiable. Write an expres-
sion for . Illustrate with a tree diagram.�z>�x

Fyx
zF(x, y, z) � 0

dy>dx
Fx

yF(x, y) � 0
1 	 i 	 m�w>�ti

f2, p , fn

13.5 CONCEPT QUESTIONS

In Exercises 19–26, use the Chain Rule to find the indicated
derivative.

19. , , ,

;

20. , , ;

if and 

21. , , ;

22. , , ;

and if , , and 

23. , , , ; and 

24. , , ; and 

25. , , , ; and 

if , , and 

26. , , , ;

and 

27. Given the system

find , , and .

28. Given the system

find , , and .�√>�y�√>�x�u>�y�u>�x

• x �
1

2
 (u2 � √2)

y � u√

�√>�y�√>�x�u>�y�u>�x

e x � u2 � √2

y � u2 � √2

�w

�t

�w

�r

z � s tan ty � r sin sx � r cos sw �
x � y

x � z

t � 0s � 2r � 1

�w

�t

�w

�r
z � ersty � sertx � restw �

x2y

z2

�w

�u

�w

�r
y � s2tux � r 2stw � cos(2x � 3y)

�u

�t

�u

�s
z �

s

t 2 y � s2tx � rsu � x csc yz

z � 1y � 1x � 0
�w

�z

�w

�x

√ � x cos p(y � z)u � x � 2y � 3zw �
u

2u2 � √2

du

dt
`
t�0

y � tan tx � sec 2tu �
x

x2 � y2

t � 1s � 4
�z

�t

y � s2 � 7tx � 2s � tz � x1y � 1x

dw

dt
z � cos 2t

y � etx � 2tw � x2 � xy � y2 � z3

13.5 EXERCISES

Videos for selected exercises are available online at www.academic.cengage.com/login.V

In Exercises 1–8, use the Chain Rule to find .

1. , ,

2. , ,

3. , ,

4. , ,

5. , , ,

6. , , ,

7. , , ,

8. , , ,

In Exercises 9–14, use the Chain Rule to find and .

9. , ,

10. , ,

11. , ,

12. , ,

13. , , ,

14. , , ,

In Exercises 15–18, write the Chain Rule for finding the indicated
derivative with the aid of a tree diagram.

15. , , , ,

;

16. , , ;

17. , , ,

;

18. , , ;
�w

�r
y � h(u, √, r, s)x � t(u, √, r, s)w � f(x, y)

�w

�t
z � p(r, s, t)

y � h(r, s, t)x � t(r, s, t)w � f(x, y, z)

�w

�√
y � h(u, √, t)x � t(u, √, t)w � f(x, y)

dw

dt
√ � q(t)

u � p(t)s � h(t)r � t(t)w � f(r, s, u, √)

z �
u

√

y � ln(u � 1)x � u2 � √2w � x cosh y � y sinh z

z � √ cos uy � e�2√x � 1uw � x tan�1 yz

y � ue√x � ln uw � x ln y � 2y

y � 1u√x � ln(u2 � √2)w � ex cos y

y � 1√x � (u � √)3w � sin xy

y � 2u√x � u2 � √2w � x3 � y3

�w>�√�w>�u

z � e�t sin ty � e�t cos tx �
1

t
w � x2y2 � z2

z � sinh ty � t 2x � tw � tan�1 xz �
z

y

r �
t

t 2 � 1
q � sin 2tp � 1tw � peqr

z � t sin ty � cos tx � tw � 2x3y2z

y � sec tx � tan tw � ln(x � y2)

s � t 3 � 2tr � e�2tw � r cos s � s sin r

y � 12t � 1x � 1tw �2x2 � 2y2

y � t 3 � tx � t 2 � 1w � x2 � y2

dw>dt

www.academic.cengage.com/login
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In Exercises 29–32, use Equation (2) to find .

29. 30.

31. 32.

In Exercises 33–36, use Equation (3) to find and .

33.

34.

35.

36.

37. Find if .

38. The radius of a right circular cylinder is increasing at the
rate of 0.1 cm/sec while its height is decreasing at the rate
of 0.2 cm/sec. Find the rate at which the volume of the
cylinder is changing when its radius is 60 cm and its height
is 130 cm.

39. The radius of a right circular cone is decreasing at the rate
of 0.2 in./min while its height is increasing at the rate of 
0.1 in./min. Find the rate at which the area of its lateral 
surface is changing when its radius is 10 in. and its height 
is 18 in.

40. The pressure (in pascals), the volume (in liters), and the
temperature (in kelvins) of 1 mole of an ideal gas are
related by the equation . Find the rate at which
the pressure of the gas is changing when its volume is 20 L
and is increasing at the rate of 0.2 L/sec and its temperature
is 300 K and is increasing at the rate of 0.3 K/sec.

41. Car is approaching an intersection from the north, and car
is approaching the same intersection from the east. At a

certain instant of time car is 0.4 mile from the intersection
and approaching it at 45 mph, while car is 0.3 mile from
the intersection and approaching it at a speed of 30 mph.
How fast is the distance between the two cars changing?

42. The position of boat at time is given by the parametric
equations

,

and the position of boat at time is given by

,

where , and , , , are measured in feet
and is measured in seconds. How fast is the distance
between the two boats changing when ?

43. The total resistance (in ohms) of resistors with resis-
tances ohms connected in parallel is given by
the formula

Show that

�R

�Rk
� a R

Rk
b2

1

R
�

1

R1
�

1

R2
� p �

1

Rn

R1, R2, p , Rn

nR

t � 10
t

y2x2y1x10 � t � 15

y2 � 2t � t 2x2 � 5t

tB

y1 � 5tx1 � �5t

tA

B
A

B
A

PV � 8.314T
T

VP

x3 � y3 � 3axy � 0, a � 0dy>dx

ln(x2 � y2) � x ln z � cos(xyz) � 0

xey � yexz � x2ex>y � 10

x2 � y2 � z2 � xy � yz � xz � 1

x2 � xy � x2z � yz2 � 0

�z>�y�z>�x

x sec y � y cos x � 12x2 � 31xy � 2y � 4

x4 � 2x2y2 � 3xy � x � 5x3 � 2xy � y3 � 4

dy>dx 44. The Doppler Effect Suppose a sound with frequency is emit-
ted by an object moving along a straight line with speed 
and a listener is traveling along the same line in the opposite
direction with speed . Then the frequency heard by the
listener is given by

where is the speed of sound in still air—about 1100 ft/sec.
(This phenomenon is called the Doppler effect.) Suppose
that a railroad train is traveling at 100 ft/sec in still air 
and accelerating at the rate of 3 ft/sec2 and that a note 
emitted by the locomotive whistle is 500 Hz. If a passenger
is on a train that is moving at 50 ft/sec in the direction
opposite to that of the first train and accelerating at the rate
of 5 ft/sec2, how fast is the frequency of the note he hears
changing?

45. Rate of Change in Temperature The temperature at a point
is given by

where is measured in degrees Fahrenheit and , , and 
are measured in feet. Suppose the position of a flying

insect is

where is measured in seconds and the distance is measured
in feet. Find the rate of change in temperature that the insect
experiences at .

46. If , where and , show 
that

47. If , where and , show
that

48. If , where and , show
that

49. If , where and , show 
that

50. If , where and , show that

a �z

�x
b2

� a �z

�y
b2

�
�z

�u

�z

�√

y � u � √x � u � √z � f(x, y)

�z

�u
�

�z

�√
� 0

y � √ � ux � u � √z � f(x, y)

�2u

�x2 �
�2u

�y2 � e�2r c �2u

�r 2 �
�2u

�u2 d

y � er sin ux � er cos uu � f(x, y)

a�u

�x
b2

� a�u

�y
b2

� e�2r c a �u

�r
b2

� a �u

�u
b2d

y � er sin ux � er cos uu � f(x, y)

a �z

�x
b2

� a �z

�y
b2

� a�z

�r
b2

�
1

r 2 a �z

�u
b2

y � r sin ux � r cos uz � f(x, y)

t � 2

t

0 	 t 	 5r(t) � 2t i � t 2j � t 3k

z
yxT

T(x, y, z) �
60

1 � x2 � y2 � z2

(x, y, z)

c

F � a c � √
c � u

b f

F√

u
f
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51. If , show that satisfies the wave
equation

Hint: Let and .

52. If , show that

Hint: Let .

53. If , where and , show that

Assume that all second-order partial derivatives are continuous.

54. If , where and , show that

Assume that all second-order partial derivatives are continuous.

55. A function is homogeneous of degree if 
for every , where is an integer. Show that if 

is homogeneous of degree , then

Hint: Differentiate both sides of the given equation with respect to .

In Exercises 56–59, find the degree of homogeneity of and show
that satisfies the equation

See Exercise 55.

56.

57. 58.

59.

60. Suppose that the functions and satisfy
the Cauchy-Riemann equations

and

If and , show that and satisfy

and

the polar coordinate form of the Cauchy-Riemann equations.
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�u
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√uy � r sin ux � r cos u
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√ � t(x, y)u � f(x, y)

f(x, y) � ex>y

f(x, y) � tan�1ay

x
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xy2
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�√
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�
�2z
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�x
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�
�z

�u
 
�2u
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�z

�√
 
�2√
�x2

�2z
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�u2 a�u

�x
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� a �2z
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�

�2z

�u �√
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�u

�x
 
�√
�x

√ � h(x, y)u � t(x, y)z � f(u, √)

u � x2 � y2

ya �z

�x
b � xa �z

�y
b � 0

z � f(x2 � y2)

√ � x � atu � x � at

�2z

�t 2 � a2 
�2z

�x2

zz � f(x � at) � t(x � at) 61. Show that the functions and 

satisfy the Cauchy-Riemann equations 

(see Exercise 60).

62. a. Let be a point on the curve defined by the equa-
tion . Show that if the curve has a tangent line
at , then an equation of the tangent line can be
written in the form

b. Find an equation of the tangent line to the ellipse

at the point .

63. a. Use implicit differentiation to find an expression for
given the implicit equation . (Assume

that has continuous second partial derivatives.)
b. Use the result of part (a) to find if

. What is its domain?

64. Course Taken by a Yacht The following figure depicts a bird’s-
eye view of the course taken by a yacht during an outing.
The pier is located at the origin and the course is described
by the equation

where and are measured in miles. When the yacht was at
the point , it was sailing in an easterly direction at the
rate of 16 mph. How fast was it moving in the northerly
direction at that instant of time?

In Exercises 65–66, determine whether the statement is true or
false. If it is true, explain why it is true. If it is false, give an
example to show why it is false.

65. If , where is differentiable, then

provided that .

66. If for and and , where is
an integer, then

provided that .�x>�z � 0

�z

�x
�

1

�x>�z

nxy � npy � 0x � 0z � cos xy

Fx(x, y) � 0

dx

dy
� �

Fy(x, y)

Fx(x, y)

FF(x, y) � 0

0 x (mi)

y (mi)

(2, 4)
yx

x � 0, y � 0x3 � y3 � 9xy � 0

x3 � y3 � 3xy � 0
d2y>dx2

f
f(x, y) � 0d2y>dx2

11, 313
2 2

x2

4
�

y2

9
� 1

fx(a, b)(x � a) � fy(a, b)(y � b) � 0

P(a, b)
f(x, y) � 0
P(a, b)

√ � tan�1 ay

x
b

u � ln2x2 � y2



FIGURE 1
The temperature at the point 

is .T � f(x, y)(x, y)

x

y

0

(x, y)
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13.6 Directional Derivatives and Gradient Vectors

To study the heat conduction properties of a certain material, heat is applied to one
corner of a thin rectangular sheet of that material. Suppose that the heated corner of
the sheet is located at the origin of the -coordinate plane, as shown in Figure 1 and
that the temperature at any point on the sheet is given by .T � f(x, y)(x, y)

xy

From our previous work we can find the rate at which the temperature is changing
at the point in the -direction by computing . Similarly, gives the
rate of change of in the -direction. But how fast does the temperature change if we
move in a direction other than those just mentioned?

In this section we will attempt to answer questions of this nature. More generally,
we will be interested in the problem of finding the rate of change of a function in a
specified direction.

The Directional Derivative
Let’s look at the problem from an intuitive point of view. Suppose that is a function
defined by the equation , and let be a point in the domain of .
Furthermore, let be a unit (position) vector having a specified direction. Then the
vertical plane containing the line passing through and having the same direc-
tion as will intersect the surface along a curve (Figure 2). Intuitively,
we see that the rate of change of at the point with respect to the distance
measured along is given by the slope of the tangent line to the curve at the point

.P¿(a, b, f(a, b))
CTL

P(a, b)z
Cz � f(x, y)u

P(a, b)L
u

fDP(a, b)z � f(x, y)
f

f

yT
�f>�y�f>�xx(x, y)

y

T

L

z

u

x

P(a, b)

C

z � f (x, y)

P'(a, b, f (a, b))

0
FIGURE 2

The rate of change of at 
with respect to the distance measured

along is given by the slope of .TL

P(a, b)z
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Let’s find the slope of . First, observe that may be specified by writing
for appropriate components and . Equivalently, we may specify 

by giving the angle that it makes with the positive -axis, in which case 
and (Figure 3).

Next, let be any point distinct from lying on the line 
passing through and having the same direction as (Figure 4).

Since the vector is parallel to , it must be a scalar multiple of . In other
words, there exists a nonzero number such that

But is also given by , and therefore,

, , and

So the point can be expressed as . Therefore, the slope of the
secant line passing through the points and (see Figure 5) is given by

(1)

Observe that Equation (1) also gives the average rate of change of from
to in the direction of .uQ(a � �x, b � �y) � Q(a � hu1, b � hu2)P(a, b)

z � f(x, y)

�z

h
�

f(a � hu1, b � hu2) � f(a, b)

h

Q¿P¿S
Q(a � hu1, b � hu2)Q

h �2(�x)2 � (�y)2�y � hu2�x � hu1

�xi � �yjPQ
!

PQ
!
� hu � hu1i � hu2 j

h
uuPQ

! uP
LP(a, b)Q(a � �x, b � �y)

u2 � sin u
u1 � cos uxu

uu2u1u � u1i � u2 j
uT

FIGURE 3
Any direction in the plane can be
specified in terms of a unit vector .u

FIGURE 4
The point lies on 
and is distinct from .P(a, b)

LQ(a � �x, b � �y)

0

u

xu1 � cos ¨

u2 � sin ¨
¨

y

0

u

x

Q(a � Îx, b � Îy)

Îy

Îx

P(a, b)

L
y

y

T

S

z

u

x

P(a, b)

C
Q(a � hu1, b � hu2)

Q'(a � hu1, b � hu2, f (a � hu1, b � hu2))
z � f (x, y)

P'(a, b, f (a, b))

0

FIGURE 5
The secant line passes through the

points and on the curve .CQ¿P¿
S

If we let approach zero in Equation (1), we see that the slope of the secant line
approaches the slope of the tangent line at . Also, the average rate of change of 

approaches the (instantaneous) rate of change of at in the direction of . This
limit, whenever it exists, is called the directional derivative of at in the direc-
tion of . Since the point is arbitrary, we can replace it by and define
the directional derivative of at any point as follows.f

P(x, y)P(a, b)u
(a, b)f

u(a, b)z
zP¿S

h

DEFINITION Directional Derivative

Let be a function of and and let be a unit vector. Then the
directional derivative of at in the direction of is

(2)

if this limit exists.

Du f(x, y) � lim
h→0

f(x � hu1, y � hu2) � f(x, y)

h

u(x, y)f
u � u1i � u2 jyxf



1098 Chapter 13 Functions of Several Variables

Note If and , then Equation (2) gives

That is, the directional derivative of in the -direction is the partial derivative of in
the -direction, as expected. Similarly, you can show that .

The following theorem helps us to compute the directional derivatives of func-
tions without appealing directly to the definition of the directional derivative. More
specifically, it gives the directional derivative of in terms of its partial derivatives

and .fyfx

f

Dj f(x, y) � fy(x, y)x
fxf

Di f(x, y) � lim
h→0

f(x � h, y) � f(x, y)

h
� fx(x, y)

u2 � 0)(u1 � 1u � i

THEOREM 1 If is a differentiable function of and , then has a directional
derivative in the direction of any unit vector and

(3)Du f(x, y) � fx(x, y)u1 � fy(x, y)u2

u � u1i � u2 j
fyxf

PROOF Fix the point . Then the function defined by

is a function of the single variable . By the definition of the derivative,

Next, observe that may be written as where and
. Therefore, by the Chain Rule we have

In particular, when , we have , , so

Comparing this expression for with the one obtained earlier, we conclude that

Finally, since is arbitrary, we may replace it by and the result follows.(x, y)(a, b)

Du f(a, b) � fx(a, b)u1 � fy(a, b)u2

t¿(0)

t¿(0) � fx(a, b)u1 � fy(a, b)u2

y � bx � ah � 0

t¿(h) �
�f

�x
 
dx

dh
�

�f

�y
 
dy

dh
� fx(x, y)u1 � fy(x, y)u2

y � b � hu2

x � a � hu1t(h) � f(x, y)t

 � Du f(a, b)

 t¿(0) � lim
h→0

t(h) � t(0)

h
� lim

h→0

f(a � hu1, b � hu2) � f(a, b)

h

h

t(h) � f(a � hu1, b � hu2)

t(a, b)

EXAMPLE 1 Find the directional derivative of at the point
in the direction of the unit vector that makes an angle of radians with the

positive -axis.

Solution Here

u � cosap
3
b  i � sinap

3
b  j �

1

2
 i �

13

2
 j

x
p>3u(1, 1)

f(x, y) � 4 � 2x2 � y2

ADRIEN-MARIE LEGENDRE
(1752–1833)

Born to a wealthy family, Adrien-Marie
Legendre was able to study at the College
Mazarin in Paris, where he received
instruction from highly regarded mathe-
maticians of the time. In 1782 Legendre
won a prize offered by the Berlin Academy
to “determine the curve described by can-
nonballs and bombs” and to “give rules for
obtaining the ranges corresponding to dif-
ferent initial velocities and to different
angles of projection.” This work was
noticed by the famous mathematicians
Pierre Lagrange and Simon Laplace, which
led to the beginning of Legendre’s research
career. Legendre went on to produce
important results in celestial mechanics,
number theory, and the theory of elliptic
functions. In 1794 Legendre published Ele-
ments de geometrie, which was a simplifi-
cation of Euclid’s Elements. This book
became the standard textbook on elemen-
tary geometry for the next 100 years in
both Europe and the United States.
Legendre was strongly committed to
Euclidean geometry and refused to accept
non-Euclidean geometries. For nearly thirty
years, he attempted to prove Euclid’s paral-
lel postulate. Legendre’s research met
many obstacles, including the French Revo-
lution, Laplace’s jealousy, and Legendre’s
arguments with Carl Friedrich Gauss over
priority. In 1824 Legendre refused to vote
for the government’s candidate for the
Institut National des Sciences et des Arts;
as a result his government pension was
stopped, and he died in poverty in 1833.

Historical Biography
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so and . Using Equation (3), we find that

In particular,

(See Figure 6.)

Du f(1, 1) � �(2 � 13) � �3.732

 � (�4x)a1

2
b � (�2y)a13

2
b � �(2x � 13y)

 Du f(x, y) � fx(x, y)u1 � fy(x, y)u2

u2 � 13
2u1 � 1

2

z � 4 � 2x2 � y2

y

z

C

u

T

x

(1, 1, 1)

 
3

FIGURE 6
The slope of the tangent line to the
curve at is .� �3.732(1, 1, 1)C

EXAMPLE 2 Find the directional derivative of at the point 
in the direction of .

Solution The unit vector that has the same direction as is

Using Equation (3) with and , we have

In particular,

The Gradient of a Function of Two Variables
The directional derivative can be written as the dot product of the unit 
vector

and the vector

Thus,

The vector plays an important role in many other computations and
is given a special name.

fx(x, y)i � fy(x, y)j

Du f(x, y) � (u1i � u2 j) � [fx(x, y)i � fy(x, y)j] � fx(x, y)u1 � fy(x, y)u2

fx(x, y)i � fy(x, y)j

u � u1i � u2 j

Du f(x, y)

Du f a0, 
p

4
b � ae0 cos

p

2
b a 2

113
b � 2(e0)asin

p

2
b a 3

113
b � �

6

113
� �

6113

13

 � (ex cos 2y)a 2

113
b � (�2ex sin 2y)a 3

113
b

 Du f(x, y) � fx(x, y)u1 � fy(x, y)u2

u2 � 3>113u1 � 2>113

u �
v

�v � �
2

113
 i �

3

113
 j

vu

v � 2i � 3j
10, p4 2f(x, y) � ex cos 2y

DEFINITION Gradient of a Function of Two Variables

Let be a function of two variables and . The gradient of is the vector 
function

§f(x, y) � fx(x, y)i � fy(x, y)j

fyxf
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Notes
1. is read “del f.”
2. is sometimes written grad .f(x, y)§f(x, y)

§f

EXAMPLE 3 Find the gradient of at the point .

Solution Since

and 

we have

So the gradient of at is

Theorem 1 can be rewritten in terms of the gradient of as follows.f

 �
p

e
 i � (1 � e)j

 §f(e, p) � asin p �
p

e
b  i � (e cos p � ln e)j

(e, p)f

 � asin y �
y

x
b  i � (x cos y � ln x)j

 §f(x, y) � fx(x, y)i � fy(x, y)j

fy(x, y) � x cos y � ln xfx(x, y) � sin y �
y

x

(e, p)f(x, y) � x sin y � y ln x

THEOREM 2
If is a differentiable function of and , then has a directional derivative in
the direction of any unit vector , and

(4)Du f(x, y) � §f(x, y) � u

u
fyxf

To give a geometric interpretation of Equation (4), suppose that is a fixed
point in the -plane. Then

since 

so by Equation (6) of Section 11.3 we see that can be viewed as the scalar
component of along (Figure 7).u§f(a, b)

Du f(a, b)

�u � � 1Du f(a, b) � §f(a, b) � u �
§f(a, b) � u

�u �

xy
(a, b)

0

u

u

x

◊ f (a, b)

Du f(a, b)

(a, b)

y

FIGURE 7
The directional derivative of at 
in the direction of is the scalar
component of the gradient of at 
along .u

(a, b)f
u

(a, b)f

EXAMPLE 4 Let .

a. Find the gradient of at the point .
b. Use the result of (a) to find the directional derivative of at in the direc-

tion from to .

Solution
a. The gradient of at any point is

b. The gradient of at the point is

§f(1, �2) � (2 � 4)i � 2j � 6i � 2j

(1, �2)f

§f(x, y) � (2x � 2y)i � 2xj

(x, y)f

Q(2, 3)P(�1, 2)
(1, �2)f

(1, �2)f

f(x, y) � x2 � 2xy
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The desired direction is given by the direction of the vector . A unit
vector that has the same direction as is

Using Equation (4), we obtain

or a change in of 5.1 per unit change in the direction of the vector . The gradi-
ent vector , the unit vector , and the geometrical interpretation of

are shown in Figure 8.Du f(1, �2)
u§f(1, �2)

uf

 �
18

110
�

2

110
�

16

110
� 5.1

 � (6i � 2j) � a 3

110
 i �

1

110
 jb

 Du f(1, �2) � §f(1, �2) � u

u �
3

110
 i �

1

110
 j

PQ
! PQ

!
� 3i � j

x

y

1

1 70
�1

�1�2

u

u

◊f (1, �2) � 6i � 2j

Du f(1, �2)

P(�1, 2) Q(2, 3)

(1, �2)FIGURE 8
viewed as the scalar

component of along .u§f(1, �2)
Du f(1, �2)

Properties of the Gradient
The following theorem gives some important properties of the gradient of a function.

THEOREM 3 Properties of the Gradient

Suppose is differentiable at the point .

1. If , then for every .
2. The maximum value of is , and this occurs when has

the same direction as .
3. The minimum value of is , and this occurs when 

has the direction of .�§f(x, y)
u�� §f(x, y) �Du f(x, y)

§f(x, y)
u� §f(x, y) �Du f(x, y)

uDu f(x, y) � 0§f(x, y) � 0

(x, y)f

PROOF Suppose . Then for any , we have

Next, if , then

where is the angle between and . Since the maximum value of is 1
and this occurs when , we see that the maximum value of is � §f(x, y) �Du f(x, y)u � 0

cos uu§f(x, y)u

Du f(x, y) � §f(x, y) � u � � §f(x, y) ��u � cos u � � §f(x, y) � cos u

§f(x, y) � 0

Du f(x, y) � §f(x, y) � u � (0i � 0j) � (u1i � u2 j) � 0

u � ui i � u2 j§f(x, y) � 0
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and this occurs when both and have the same direction. Similarly, Property
(3) is proved by observing that has a minimum value of when .

Notes
1. Property (2) of Theorem 3 tells us that increases most rapidly in the direction of

. This direction is called the direction of steepest ascent.
2. Property (3) of Theorem 3 says that decreases most rapidly in the direction of

. This direction is called the direction of steepest descent.�§f(x, y)
f

§f(x, y)
f

u � p�1cos u
u§f(x, y)

EXAMPLE 5 Quickest Descent Suppose a hill is described mathematically by using
the model , where , , and are measured in
feet. If you are at the point on the hill, in what direction should you aim
your toboggan if you want to achieve the quickest descent? What is the maximum rate
of decrease of the height of the hill at this point?

Solution The gradient of the “height” function is

Therefore, the direction of greatest increase in when you are at the point 
is given by the direction of

So by pointing the toboggan in the direction of the vector

you will achieve the quickest descent.
The maximum rate of decrease of the height of the hill at the point 

is

or approximately 1.41 ft/ft. The graph of and the direction of greatest descent are
shown in Figure 9.

f

� §f(50, 100) � � ��i � j � � 12

(50, 100, 225)

�§f(50, 100) � �(�i � j) � i � j

§f(50, 100) � �i � j

(50, 100, 225)z

§f(x, y) � fx(x, y)i � fy(x, y)j � �0.02xi � 0.01yj

(50, 100, 225)
zyxz � f(x, y) � 300 � 0.01x2 � 0.005y2

y

z

x

(50, 100, 225)

Direction of �  f(50, 100)

(50, 100)

0

FIGURE 9
The direction of greatest descent is in
the direction of .�§f(50, 100)

EXAMPLE 6 Path of a Heat-Seeking Object A heat-seeking object is located at the 
point on a metal plate whose temperature at a point is 

. Find the path of the object if it moves continuously in the direction
of maximum increase in temperature at each point.

Solution Let the path of the object be described by the position function

where

Since the object moves in the direction of maximum increase in temperature, its veloc-
ity vector at time has the same direction as the gradient of at time . Therefore,
there exists a scalar function of , , such that . But

v(t) � r¿(t) �
dx

dt
 i �

dy

dt
 j

v(t) � k§T(x, y)kt
tTt

r(0) � 2i � 3j

r(t) � x(t)i � y(t)j

30 � 8x2 � 2y2
T(x, y) �(x, y)(2, 3)
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and . So we have

or, equivalently, the system

Therefore

or

This is a first-order separable differential equation. The solution of this equation is
, where is a constant. (See Section 8.1.) Using the initial condition ,

we have , or . So

The path of the heat-seeking object is shown in Figure 10.

In Figure 10 observe that at each point where the path intersects a level curve that
is part of the contour map of , the gradient vector is perpendicular to the level
curve at that point. To see why this makes sense, refer to Figure 11, where we show
the level curve of a function for some and a point lying on the
curve. If we move away from along the level curve then the values of remain
constant (at ). It seems reasonable to conjecture that by moving away in a direction
that is perpendicular to the tangent line to the level curve at , will increase
at the fastest rate. But this direction is given by the direction of . This will
be demonstrated in Section 13.7.

Functions of Three Variables
The definitions of the directional derivative and the gradient of a function of three or
more variables are similar to those for a function of two variables. Also, the algebraic
results that are obtained for the case of a function of two variables carry over to the
higher-dimensional case and are summarized in the following theorem.

§f(x0, y0)
fP(x0, y0)

k
fP(x0, y0)

P(x0, y0)kff(x, y) � k

§TT

x �
2y4

81

C � 2>(81)2 � C(34)
y(2) � 3Cx � Cy4

dy

dx
�

y

4x

dy

dx
�

dy

dt

dx

dt

�
�4ky

�16kx

dy

dt
� �4ky

dx

dt
� �16kx

dx

dt
 i �

dy

dt
 j � �16kx i � 4ky j

§T � �16x i � 4y j

x

y

FIGURE 10
The path of the heat-seeking object

0 x

◊◊ f (x0, y0)

P(x0, y0)

f (x, y) � k
(level curve)

y

FIGURE 11
is perpendicular to the level

curve at .P(x0, y0)f(x, y) � k
§f(x0, y0)

THEOREM 4 Directional Derivative and Gradient of a Function 
of Three Variables

Let be a differentiable function of , , and , and let be
a unit vector. The directional derivative of in the direction of is given by

The gradient of is

We also write

Du f(x, y, z) � §f(x, y, z) � u

§f(x, y, z) � fx(x, y, z)i � fy(x, y, z)j � fz(x, y, z)k

f

Du f(x, y, z) � fx(x, y, z)u1 � fy(x, y, z)u2 � fz(x, y, z)u3

uf
u � u1i � u2 j � u3kzyxf
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The properties of the gradient given in Theorem 3 for a function of two variables
are also valid for a function of three or more variables. For example, the direction 
of greatest increase of coincides with that of the gradient of and has magnitude

.� §f(x, y, z) �
ff

EXAMPLE 7 Electric Potential Suppose a point charge (in coulombs) is located
at the origin of a three-dimensional coordinate system. This charge produces an elec-
tric potential (in volts) given by

where is a positive constant and , , and are measured in meters.

a. Find the rate of change of the potential at the point in the direction of
the vector .

b. In which direction does the potential increase most rapidly at , and what is the
rate of increase?

Solution
a. We begin by computing the gradient of . Since

and by symmetry

and

we obtain

In particular,

A unit vector that has the same direction as is

By Theorem 4 the rate of change of at in the direction of is

In other words, the potential is increasing at the rate of volts/m.114kQ>294

 � �
kQ

(3)(14)114
 (2 � 2 � 6) �

kQ

21114
�
114kQ

294

 DuV(1, 2, 3) � §V(1, 2, 3) � u � �
kQ

143>2 (i � 2j � 3k) �
(2i � j � 2k)

3

vP(1, 2, 3)V

u � 1
3 (2i � j � 2k)

v � 2i � j � 2ku

§V(1, 2, 3) � �
kQ

143>2 (i � 2j � 3k)

 � �
kQ

(x2 � y2 � z2)3>2 (x i � y j � zk)

 §V(x, y, z) � Vx i � Vy j � Vzk

Vz � �
kQz

(x2 � y2 � z2)3>2Vy � �
kQy

(x2 � y2 � z2)3>2

 � �
kQx

(x2 � y2 � z2)3>2

 Vx �
�

�x
 [kQ(x2 � y2 � z2)�1>2] � kQ1�1

2 2(x2 � y2 � z2)�3>2(2x)

V

P
v � 2i � j � 2k

P(1, 2, 3)

zyxk

V(x, y, z) �
kQ

2x2 � y2 � z2

V

Q
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b. The maximum rate of change of occurs in the direction of the gradient of ,
that is, in the direction of the vector . Observe that this vector
points toward the origin from . The maximum rate of change of at

is given by

or volts/m.kQ>14

 �
kQ

143>2 11 � 4 � 9 �
kQ

14

 � §V(1, 2, 3) � � `� kQ

143>2 (i � 2j � 3k) `
P(1, 2, 3)

VP(1, 2, 3)
�(i � 2j � 3k)

VV

1. a. Let be a function of and , and let be
a unit vector. Define the directional derivative of in the
direction of . Why is it necessary to use a unit vector to
indicate the direction?

b. If is a differentiable function of , , and and
is a unit vector, express

in terms of the partial derivatives of and the
components of .

2. a. What is the gradient of a function of two variables
and ?yx

f(x, y)
u

fDu f(x, y, z)
u � u1i � u2 j � u3k

zyxf

u
f

u � u1i � u2 jyxf b. What is the gradient of a function of three vari-
ables , , and ?

c. If is a differentiable function of and and is a unit
vector, write in terms of and .

d. If is a differentiable function of , , and and is a
unit vector, write in terms of and .

3. a. If is a differentiable at , what can you say about
if ?

b. What is the maximum (minimum) value of ,
and when does it occur?

Du f(x, y)
§f(x, y) � 0Du f(x, y)

(x, y)f
ufDu f(x, y, z)

uzyxf
ufDu f(x, y)

uyxf
zyx

f(x, y, z)

13.6 CONCEPT QUESTIONS

Videos for selected exercises are available online at www.academic.cengage.com/login.V

In Exercises 1–4, find the directional derivative of the function 
at the point in the direction of the unit vector that makes the
angle with the positive -axis.

1. ; ,

2. ; ,

3. ; ,

4. ; ,

In Exercises 5–10, find the gradient of at the point .

5. ;

6. ;

7. ;

8. ;

9. ;

10. ; P(1, 1, 1)f(x, y, z) � ln(x2 � y2 � z2)

P(1, 0, 2)f(x, y, z) � xeyz

P(1, 2, 3)f(x, y, z) �
x � y

x � z

P1p4 , p2 2f(x, y) � x sin y � y cos x

P(1, 2)f(x, y) �
1

x2 � y2

P(2, 1)f(x, y) � 2x � 3xy � 3y � 4

Pf

u � �
p

4
P(1, 0)f(x, y) � sin xy

u �
p

2
P(3, 0)f(x, y) � (x � 1)ey

u �
3p

4
P(4, 5)f(x, y) �2y2 � x2

u �
p

6
P(1, 2)f(x, y) � x3 � 2x2 � y3

xu

P
f In Exercises 11–28, find the directional derivative of the function

at the point in the direction of the vector .

11. ; ,

12. ; ,

13. ; ,

14. ; ,

15. ; ,

16. ; ,

17. ; ,

18. ; ,

19. ; ,

20. ; ,

21. ; ,

22. ; , v � 2i � kP(2, 3, �1)f(x, y, z) �2xy2 � 6y2z2

v � 2i � 4j � 4kP(4, 2, 2)f(x, y, z) � 1xyz

v � i � 2j � 2k
P(2, 1, �1)f(x, y, z) � x2 � 2xy2 � 2yz3

v � i � j � kP(3, �2, 1)f(x, y, z) � x2y3z4

v � i � jP(1, 1)f(x, y) � tan�1 
y

x

v � �2i � 3jP1�1, p4 2f(x, y) � x sin2 y

v � 2i � jP(2, 0)f(x, y) � xexy

v � �i � 3jP(2, 1)f(x, y) �
x � y

x � y

v � 3i � 4jP(2, 2)f(x, y) �2x2 � y2 � 1

v � �iP(3, 1)f(x, y) �
y

x

v �
1

12
 (i � j)P(2, 1)f(x, y) � x3 � y3

v � i � 2jP(1, �1)f(x, y) � x3 � x2y2 � xy � y2

vPf

13.6 EXERCISES

www.academic.cengage.com/login
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23. ; ,

24. ; ,

25. ; ,

26. ; ,

27. ; ,

28. ; ,

In Exercises 29–32, find the directional derivative of the function
at the point in the direction from to the point .

29. ; ,

30. ; ,

31. ; ,

32. ; ,

In Exercises 33–36, find a vector giving the direction in which
the function increases most rapidly at the point . What is the
maximum rate of increase?

33. ;

34. ;

35. ;

36. ;

In Exercises 37–40, find a vector giving the direction in which
the function decreases most rapidly at the point . What is the
maximum rate of decrease?

37. ;

38. ;

39. ; P(1, �1, 2)f(x, y, z) �
x

y
�

y

z

P(1, 0)f(x, y) � xe�y2

P(0, 0)f(x, y) � tan�1(2x � y)

Pf

P(1, 2, �1)f(x, y, z) � ln(x2 � 2y2 � 3z2)

P(�1, 3, 2)f(x, y, z) � x3 � 2xz � 2yz2 � z3

P10, p4 2f(x, y) � e�2x cos y

P(3, 2)f(x, y) �22x � 3y2

Pf

Q(3, 2, �2)P(2, 1, 1)f(x, y, z) �
x � y

y � z

 Q13, p2 , �p4 2P11, p4 , �p
12 2f(x, y, z) � x sin(2y � 3z)

 Q(�1, 2)P(2, 0)f(x, y) � xe�y

Q(2, 5)P(1, 2)f(x, y) � x3 � y3

QPPf

v �
1

13
 (i � j � k)P(2, 1, 0)f(x, y, z) � x2 sin�1 yz

v � i � 2j � kP(3, �2, 2)f(x, y, z) � x tan�1ay

z
b

v � 2i � j � 3k
P11, p6 , p6 2f(x, y, z) � ex(2 cos y � 3 sin z)

v � i � j � kP1�1, 2, p4 2f(x, y, z) � x2y cos 2z

v � �3i � 2j � k
P(1, 2, �1)f(x, y, z) � ln(x2 � y2 � z2)

v � i � 2j � 3kP(2, 3, 0)f(x, y, z) � x2eyz

Note: This path is called the path of steepest ascent.

43. Path of Steepest Descent The figure shows a topographical
map of a 620-ft hill with contours at 100-ft intervals.

a. If you start from and proceed in a southwesterly direc-
tion, will you be ascending, descending, or neither
ascending nor descending? What if you start from ?

b. If you start from and proceed in a westerly direction,
will you be ascending, descending, or neither ascending
nor descending?

c. If you start from , in what direction should you proceed
to have the steepest ascent?

d. If you want to climb to the summit of the hill using the
gentlest ascent, would you start from the east or the west?

44. Steady-State Temperature Consider the upper half-disk
(see the figure). If the

temperature at points on the upper boundary is kept at
100°C and the temperature at points on the lower boundary
is kept at 50°C, then the steady-state temperature at any
point inside the half-disk is given by

x

y

1

T � 100

T � 50�1 0

T(x, y) � 100 �
100
p

tan�1 
1 � x2 � y2

2y

(x, y)

H � {(x, y) � x2 � y2 	 1, y � 0}

D

C
B

A

A

C

D

B

S

N
EW

200300400500600620

P

S 600
500

400

300

200

40. ;

41. The height of a hill (in feet) is given by

where is the distance (in miles) east and the distance (in
miles) north of Bolton. In what direction is the slope of the
hill steepest at the point 1 mile north and 1 mile east of
Bolton? What is the steepest slope at that point?

42. Path of Steepest Ascent The following figure shows the con-
tour map of a hill with its summit denoted by . Draw the
curve from to that is associated with the path you will
take to reach the summit by ascending the direction of the
greatest increase in altitude.
Hint: Study Figure 10.

SP
S

yx

h(x, y) � 20(16 � 4x2 � 3y2 � 2xy � 28x � 18y)

P14, 1, p4 2f(x, y, z) � 1xy cos z
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Find the rate of change of the temperature at the point
in the direction of the vector .

45. Steady-State Temperature Consider the upper half-disk
(see the figure). If the

temperature at points on the upper boundary is kept at
100°C and the temperature at points on the lower boundary
is kept at 0°C, then the steady-state temperature at any point

inside the half-disk is given by

a. Find the gradient of at the point , and interpret
your result.

b. Sketch the isothermal curve of passing through theT

117
4 , 14 2T

T(x, y) �
200
p

tan�1 
2y

1 � x2 � y2

(x, y)

H � {(x, y) � x2 � y2 	 1, y � 0}

v � 2i � 3jP112, 12 2 50. Cobb-Douglas Production Function The output of a finished prod-
uct is given by the production function

where stands for the number of units of labor and stands
for the number of units of capital. Currently, the amount
being spent on labor is 500 units, and the amount being
spent on capital is 250 units. If the manufacturer wishes to
expand production by injecting an additional 10 units into
labor, how much more should be put into capital to maxi-
mize the increase in output?

51. The figure shows the contour map of a function of two
variables and . Use it to estimate the directional deriva-
tive of at in the indicated direction.

Hint: If is a unit vector having indicated direction, then

when is the value of at and is the dis-
tance between and .

52. A rectangular metal plate of dimensions 8 in. � 4 in. is
placed on a rectangular coordinate system with one corner at
the origin and the longer side along the positive -axis. The
figure shows the contour map of the function describing
the temperature of the plate in degrees Fahrenheit. Use the
contour map to estimate the rate of change of the tempera-
ture at the point in the direction from the point 
toward the point .

Hint: See Exercise 51.

53. Suppose that is differentiable, and suppose that the direc-
tional derivative of at the origin attains a maximum value
of 5 in the direction of the vector from the origin to the
point . Find .§f(0, 0)(�3, 4)

f
f

1

2

3

4

0 8765432

90 85 80 75
65

60

(5, 4)

(3, 1)
70

1 x (in.)

y (in.)

(5, 4)
(3, 1)(3, 1)

f
x

P1P0

d(P0, P1)(i � 0, 1)Piff(Pi)

Du f(P0) �
f(P1) � f(P0)

d(P0, P1)

u

1

2

3

4

0 8

40

35

25
30

20

97654321 x

y

P0

P1

P0f
yx

f

yx

f(x, y) � 100x0.6y0.4

point and the gradient vector at that point on
the same coordinate system.

46. The temperature at a point of a solid ball 
of radius 4 with center at the origin is given by

. Find the direction in which 
is increasing most rapidly at .

47. Let represent the temperature at a point 
of a region in space. If the isotherms of are concentric
spheres, show that the temperature gradient points either
toward or away from the center of the spheres.
Hint: Recall that the isotherms of are the sets on which is con-
stant.

48. Suppose the temperature at the point on a thin sheet of
metal is given by

degrees Fahrenheit. In what direction will the temperature be
increasing most rapidly at the point ? In what direction
will it be decreasing most rapidly?

49. The temperature (in degrees Fahrenheit) at a point on
a metal plate is

An insect located at the point crawls in the direction
in which the temperature drops most rapidly.
a. Find the path of the insect.
b. Sketch a few level curves of and the path found in 

part (a).
T

(1, 1)

T(x, y) � 90 � 6x2 � 2y2

(x, y)

(1, 2)

T(x, y) �
100(1 � 3x � 2y)

1 � 2x2 � 3y2

(x, y)

TT

§T
TR

P(x, y, z)T(x, y, z)

P(1, 1, 2)T
T(x, y, z) � xy � yz � xz

P(x, y, z)

x

y

1

T � 100

T � 0�1 0

§T117
4 , 14 2
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54. Find unit vector(s) such that the directional
derivative of at the point in the
direction of has value 1.

In Exercises 55 and 56, (a) Plot several level curves of each 
pair of functions and using the same viewing window, and 
(b) Show analytically that each level curve of intersects all
level curves of at right angles.

55. ,

56. ,

57. Let , and let . Find the
direction in which increases most rapidly and the direction
in which increases most rapidly at . Is Theorem 3
applicable here?

(0, 0)t

f
t(x, y) � x2 � y2f(x, y) � x2 � y2

t(x, y) � ex sin yf(x, y) � ex cos y

t(x, y) � xyf(x, y) � x2 � y2

t

f
tf

u
(1, 0)f(x, y) � x2 � e�xy

u � �u1, u2� In Exercises 58–62, determine whether the statement is true or
false. If it is true, explain why it is true. If it is false, give an
example to show why it is false.

58. If is differentiable at each point, then the directional deriv-
ative of exists in all directions.

59. If is differentiable at each point, then the value of the
directional derivative at any point in a given direction
depends only on the direction and the partial derivatives 

and at that point.

60. If and , then .

61. The maximum value of is .

62. If is known, then we can determine completely.f§f

2f 2
x(x, y) � f 2

y(x, y)Du f(x, y)

§f(a, b) � 0fy(a, b) � 0fx(a, b) � 0

fyfx

f

f
f

cas

13.7 Tangent Planes and Normal Lines

One compelling reason for studying the tangent line to a curve is that the curve may be
approximated by its tangent line near a point of tangency (Figure 1). Answers to ques-
tions about the curve near a point of tangency may be obtained indirectly by analyzing
the tangent line, a relatively simple task, rather than by studying the curve itself. As you
might recall, both the approximation of the change in a function using its differential
and Newton’s method for finding the zeros of a function are based on this observation.

Our motivation for studying tangent planes to a surface in space is the same as that
for studying tangent lines to a curve: Near a point of tangency, a surface may be approx-
imated by its tangent plane (Figure 1). We will show later that approximating the change
in using the differential is tantamount to approximating this change by the
change in on the tangent plane.z

z � f(x, y)

The tangent line to a curve(a) The tangent plane to a surface(b)

y � f (x)

x

T

y

0

z

y
x

0

z � f (x, y)

FIGURE 1
Near a point of tangency, the tangent
line approximates the curve, and the

tangent plane approximates the surface.

Geometric Interpretation of the Gradient
We begin by looking at the geometric interpretation of the gradient of a function. This
vector will play a central role in our effort to find the tangent plane to a surface.

Suppose that the temperature at any point in the plane is given by the func-
tion ; that is, . Then the level curve , where is a constant, gives
the set of points in the plane that have temperature (Figure 2). Recall that such a
curve is called an isothermal curve.

c
cf(x, y) � cT � f(x, y)f

(x, y)T
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If we are at the point , in what direction should we move if we want to expe-
rience the greatest increase in temperature? Since the temperature remains constant if
we move along , it seems reasonable to conjecture that proceeding in the direction
perpendicular to the tangent line to at will result in the greatest increase in tem-
perature. But as we saw in Section 13.6, the function (and hence the temperature)
increases most rapidly in the direction given by its gradient . These observa-
tions suggest that the gradient is perpendicular to the tangent line to the level
curve at . That this is indeed the case can be demonstrated as follows:

Suppose that the curve is represented by the vector function

where and are differentiable functions, and , and lies in the
parameter interval (Figure 3). Since the point lies on , we have

for all in the parameter interval.t

f(t(t), h(t)) � c

C(x, y) � (t(t), h(t))
t0b � h(t0)a � t(t0)ht

r(t) � t(t)i � h(t)j

C
Pf(x, y) � c

§f(a, b)
§f(a, b)

f
PC

C

P(a, b)

FIGURE 2
The level curve defined by

is an isothermal curve.f(x, y) � c
C

FIGURE 3
The curve may be represented by

.r(t) � xi � yj � t(t)i � h(t)j
C

0 x

P
C

f (x, y) � c

(a, b)

y

0

r(t)

r�(t0)

t0
xt

◊f (a, b)

P(a, b)

f (x, y) � c

C

y

Differentiating both sides of this equation with respect to and using the Chain
Rule for a function of two variables, we obtain

Recalling that

and

we can write this last equation in the form

In particular, when , we have

Thus, if , the vector is orthogonal to the tangent vector at
. Loosely speaking, we have demonstrated the following:P(a, b)

r�(t0)§f(a, b)r�(t0) � 0

§f(a, b) � r�(t0) � 0

t � t0

§f(x, y) � r�(t) � 0

r�(t) �
dx

dt
 i �

dy

dt
 j§f(x, y) �

�f

�x
 i �

�f

�y
 j

�f

�x
 
dx

dt
�

�f

�y
 
dy

dt
� 0

t

is orthogonal to the level curve at . See Figure 3.Pf(x, y) � c§f

EXAMPLE 1 Let . Find the level curve of passing through the point
. Also, find the gradient of at that point, and make a sketch of both the level

curve and the gradient vector.
f(5, 3)

ff(x, y) � x2 � y2
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EXAMPLE 2 Refer to Example 1. Find equations of the normal line and the tangent
line to the curve at the point .

Solution We think of the curve as the level curve of the
function for . From Example 1 we see that 

. Since this gradient is normal to the curve at (see Fig-
ure 4), we see that the slope of the required normal line is

Therefore, an equation of the normal line is

or

The slope of the required tangent line is

so an equation of the tangent line is

or

Next, suppose that is the level surface of a differentiable function
defined by . You may think of the function as giving the tempera-

ture at any point in space and interpret the following argument in terms of this
application.

Suppose that is a point on and let be a smooth curve on passing
through . Then can be described by the vector function

where , , , and is a point in the parameter interval (Fig-
ure 5).

t0h(t0) � ct(t0) � bf(t0) � a

r(t) � f(t)i � t(t)j � h(t)k

CP
SCSP(a, b, c)

(x, y, z)
FT � F(x, y, z)F

SF(x, y, z) � k

y �
5

3
 x �

16

3
y � 3 �

5

3
 (x � 5)

m2 � �
1

m1
�

5

3

y � �
3

5
 x � 6y � 3 � �

3

5
 (x � 5)

m1 � �
6

10
� �

3

5

(5, 3)x2 � y2 � 1610i � 6j
§f(5, 3) �k � 16f(x, y) � x2 � y2

f(x, y) � kx2 � y2 � 16

(5, 3)x2 � y2 � 16

x

y

4

4�4 0

�4 ◊◊ f (5, 3)

(5, 3)

Tangent
line

FIGURE 4
The gradient is orthogonal to
the level curve at .(5, 3)x2 � y2 � 16

§f(5, 3)

FIGURE 5
The curve is described by

with
corresponding to .t0P(a, b, c)

r(t) � f(t)i � t(t)j � h(t)k
C t0

t

z

y
x

0

S

P(a, b, c)

F(a, b, c)

r'(t0)

C

Solution Since , the required level curve is the hyperbola
. The gradient of at any point is

and, in particular, the gradient of at is

The level curve and are shown in Figure 4.§f(5, 3)

§f(5, 3) � 10i � 6j

(5, 3)f

§f(x, y) � 2x i � 2y j

(x, y)fx2 � y2 � 16
f(5, 3) � 25 � 9 � 16



13.7 Tangent Planes and Normal Lines 1111

Since the point lies on , we have

for all in the parameter interval. If is differentiable, then we can use the Chain Rule
to differentiate both sides of this equation to obtain

This is the same as

or, in an even more abbreviated form,

In particular, at we have

This shows that if , then the gradient vector is orthogonal to
the tangent vector to at (Figure 6). Since this argument holds for any dif-
ferentiable curve passing through on , we have shown that is
orthogonal to the tangent vector of every curve on passing through . Thus, loosely
speaking, we have demonstrated the following result.

PS
§F(a, b, c)SP(a, b, c)

PCr�(t0)
§F(a, b, c)r�(t0) � 0

§F(a, b, c) � r�(t0) � 0

t � t0

§F(x, y, z) � r�(t) � 0

[Fx(x, y, z)i � Fy(x, y, z)j � Fz(x, y, z)k] � cdx

dt
 i �

dy

dt
 j �

dz

dt
 kd � 0

�F

�x
 
dx

dt
�

�F

�y
 
dy

dt
�

�F

�z
 
dz

dt
� 0

rt

F( f(t), t(t), h(t)) � k

S(x, y, z) � ( f(t), t(t), h(t))

FIGURE 6
The gradient is orthogonal
to the tangent vector of every curve 
on passing through .P(a, b, c)S

§F(a, b, c)

F(a, b, c)

z

y
x

0

P

r'(t)

C

is orthogonal to the level surface at .PF(x, y, z) � 0§F

Note Interpreting the function as giving the temperature at any point in
space as was suggested earlier, we see that the level surface gives all
points in space whose temperature is . The result that was just derived sim-
ply states that if you are at any point on this surface, then moving away from it in a
direction of (perpendicular to the surface at that point) will result in the greatest
increase in temperature.

§F

k(x, y, z)
F(x, y, z) � k

(x, y, z)F

EXAMPLE 3 Let . Find the level surface that contains the
point . Also, find the gradient of at that point, and make a sketch of both the
level surface and the gradient vector.

Solution Since , the required level surface is the sphere
with center at the origin and radius 5. The gradient of at any

point is

so the gradient of at is

The level surface and are sketched in Figure 7.§F(0, 3, 4)

§F(0, 3, 4) � 6j � 8k

(0, 3, 4)F

§F(x, y, z) � 2xi � 2yj � 2zk

(x, y, z)
Fx2 � y2 � z2 � 25

F(0, 3, 4) � 0 � 9 � 16 � 25

F(0, 3, 4)
F(x, y, z) � x2 � y2 � z2

FIGURE 7
The gradient is orthogonal
to the level surface 
at .(0, 3, 4)

x2 � y2 � z2 � 25
§F(0, 3, 4)

z
�F(0, 3, 4)

x

y5

5

5
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Tangent Planes and Normal Lines
We are now in a position to define a tangent plane to a surface in space. But before
doing so, let’s digress a little to talk about the representation of surfaces in space. Up
to now, we have assumed that a surface in space is described by a function with
explicit representation .

Another way of describing a surface in space is via a function that is represented
implicitly by the equation

(1)

Here, is a function of the three variables , , and described by the equation
. Thus, we can think of Equation (1) as representing a level surface

of .
For a surface that is given explicitly by , we define

This shows that we can also view as the level surface of given by Equation (1).
For example, the surface described by can be viewed as the level
surface of defined by , where .

To define a tangent plane, let be a surface described by , and let
be a point on . Then, as we saw earlier, the gradient at is

orthogonal to the tangent vector of every curve on passing through (Figure 8). This
suggests that we define the tangent plane to at to be the plane passing through 
and containing all these tangent vectors. Equivalently, the tangent plane should have

as a normal vector.§F(a, b, c)

PPS
PS

P§F(a, b, c)SP(a, b, c)
F(x, y, z) � 0S

F(x, y, z) � z � x2 � 2y2 � 1F(x, y, z) � 0F
z � x2 � 2y2 � 1

FS

F(x, y, z) � z � f(x, y)

z � f(x, y)S
F

w � F(x, y, z)
zyxF

F(x, y, z) � 0

z � f(x, y)
f

F(a, b, c)

z

y
x

0

P
S

F(x, y, z)

t0
tFIGURE 8

The tangent plane to at contains 
the tangent vectors to all curves 

on passing through .PS

PS

DEFINITIONS Tangent Plane and Normal Line

Let be a point on the surface described by , where 
is differentiable at , and suppose that . Then the tangent plane
to at is the plane that passes through and has normal vector .
The normal line to at is the line that passes through and has the same
direction as .§F(a, b, c)

PPS
§F(a, b, c)PPS

§F(a, b, c) � 0P
FF(x, y, z) � 0SP(a, b, c)

Using Equation (4) from Section 11.5, we see that an equation of the tangent plane
is

(2)Fx(a, b, c)(x � a) � Fy(a, b, c)(y � b) � Fz(a, b, c)(z � c) � 0
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and using Equation (2) of Section 11.5, we see that the equations of the normal line
(in symmetric form) are

(3)
x � a

Fx(a, b, c)
�

y � b

Fy(a, b, c)
�

z � c

Fz(a, b, c)

EXAMPLE 4 Find equations of the tangent plane and normal line to the ellipsoid with 
equation at the point .

Solution The given equation can be written in the form , where
. The partial derivatives of are

, , and

In particular, at the point 

, , and

Then, using Equation (2), we find that an equation of the tangent plane to the ellipsoid 
at is

or . Next, using Equation (3), we obtain the following paramet-
ric equations of the normal line:

or

The tangent plane and normal line are shown in Figure 9.

x � 1

2
� y � 2 �

z � 12

212

x � 1

8
�

y � 2

4
�

z � 12

812

2x � y � 212z � 8

8(x � 1) � 4(y � 2) � 812(z � 12) � 0

(1, 2, 12)

Fz(1, 2, 12) � 812Fy(1, 2, 12) � 4Fx(1, 2, 12) � 8

(1, 2, 12)

Fz(x, y, z) � 8zFy(x, y, z) � 2yFx(x, y, z) � 8x

FF(x, y, z) � 4x2 � y2 � 4z2 � 16
F(x, y, z) � 0

(1, 2, 12)4x2 � y2 � 4z2 � 16

z

T

L

x

y

FIGURE 9
The tangent plane and normal line to
the ellipsoid 4x2 � y2 � 4z2 � 16
at .(1, 2, 12)

EXAMPLE 5 Find equations of the tangent plane and normal line to the graph of the
function defined by at the point where and .

Solution Here, the surface is defined by

and we recognize it to be a paraboloid. This equation can be rewritten in the form

where . The partial derivatives of are

, , and

If and , then . At the point we have

, , and

Then, using Equation (2), we find an equation of the tangent plane to the paraboloid
at to be

or . Next, using Equation (3), we find that the parametric equations
of the normal line at are

The tangent plane and normal line are shown in Figure 10.

x � 1

�8
�

y � 1

�2
�

z � 7

1

(1, 1, 7)
8x � 2y � z � 3

�8(x � 1) � 2(y � 1) � 1(z � 7) � 0

(1, 1, 7)

Fz(1, 1, 7) � 1Fy(1, 1, 7) � �2Fx(1, 1, 7) � �8

(1, 1, 7)z � f(1, 1) � 4 � 1 � 2 � 7y � 1x � 1

Fz(x, y, z) � 1Fy(x, y, z) � �2yFx(x, y, z) � �8x

FF(x, y, z) � z � 4x2 � y2 � 2

F(x, y, z) � z � f(x, y) � 0

z � f(x, y) � 4x2 � y2 � 2

y � 1x � 1f(x, y) � 4x2 � y2 � 2f

7

10011

777777

L

y

x

3

12

211

z

T

(1, 1, 7)

FIGURE 10
The tangent plane and normal line to
the paraboloid at

.(1, 1, 7)
z � 4x2 � y2 � 2

Copyright 2009 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.
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Using the Tangent Plane of to Approximate 
the Surface 

We conclude this section by showing that in approximating the change in 
as changes from to by the differential

, we are in effect using the tangent plane of near 
to approximate the surface near .

We begin by finding an expression for the tangent plane to the surface 
at . Writing in the form we see that

, , and

Using Equation (2), we find that the required equation is

or

(4)

But the expression on the right is just the differential of at . So Equation (4)
implies that ; that is, represents the change in height of the tangent
plane (Figure 11).

dzdz � z � f(a, b)
(a, b)f

c � f(a, b)z � f(a, b) � fx(a, b) �x � fy(a, b) �y

�fx(a, b)(x � a) � fy(a, b)(y � b) � (z � c) � 0

Fz(a, b, c) � 1Fy(a, b, c) � �fy(a, b)Fx(a, b, c) � �fx(a, b)

F(x, y, z) � z � f(x, y) � 0z � f(x, y)(a, b)
z � f(x, y)

P(a, b)z � f(x, y)
P(a, b)fdz � fx(a, b) �x � fy(a, b) �y

(a � �x, b � �y)(a, b)(x, y)z � f(x, y)
�z

z � f(x, y)
f

y

z

0

x

z � f (x, y)

(a � Δx, b � Δy, f (a � Δx, b � Δy))

Δz
dz

(a � Δx, b � Δy)

(a � Δx, b)

(a, b)

(a, b, f (a, b))

Tangent plane

FIGURE 11
The relationship between and dz�z

By Theorem 1 of Section 13.4 we have

or

where and are functions of and that approach 0 as and approach 0.
Therefore, as was pointed out in Section 13.4, if and are small. Recall-
ing the meaning of (see Figure 11), we see that we are using the tangent plane at

to approximate the surface when is close to .(a, b)(x, y)z � f(x, y)(a, b)
�z

�y�x�z � dz
�y�x�y�xe2e1

�z � dz � e1 �x � e2 �y

�z � fx(a, b) �x � fy(a, b) �y � e1 �x � e2 �y

1. a. Consider the level curve , where is differen-
tiable and is a constant. What can you say about at
a point on the level curve? Illustrate with a figure.

b. Repeat part (a) for a level surface .F(x, y, z) � c
P

§fc
ff(x, y) � c 2. a. Define the tangent plane to a surface described by

at the point on . Illustrate with
a figure and give an equation of the tangent plane.

b. Repeat part (a) for the normal line to at .PS

SP(a, b, c)F(x, y, z) � 0
S

13.7 CONCEPT QUESTIONS
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Videos for selected exercises are available online at www.academic.cengage.com/login.V

In Exercises 1–4, sketch (a) the level curve of the function that
passes through the point and (b) the gradient of at .

1. ;

2. ;

3. ;

4. ;

In Exercises 5–8, find equations of the normal and tangent lines
to the curve at the given point.

5. ;

6. ;

7. ;

8. ;

In Exercises 9–14, sketch (a) the level surface of the function 
that passes through the point and (b) the gradient of at .

9. ;

10. ;

11. ;

12. ;

13. ;

14. ;

In Exercises 15–32, find equations for the tangent plane and 
the normal line to the surface with the equation at the given
point.

15. ;

16. ;

17. ;

18. ;

19. ;

20. ;

21. ;

22. ;

23. ;

24. ;

25. ;

26. ;

27. ;

28. ; P(2, 2, 0)z � ln 
x

y

P(3, 0, 0)z � ln(xy � 1)

P(0, 1, 0)z � ex sin py

P(2, 0, 2)z � xey

P(1, 2, �1)x3 � xy2 � z3 � 2x � 6 � 0

P(�2, 1, 3)xz2 � yx2 � y2 � 2x � 3y � 6 � 0

P(2, 4, 8)z � y2 � 2x2

P(�1, 2, 25)z � 9x2 � 4y2

P(2, �1, 2)xyz � �4

P(1, 2, 3)xy � yz � xz � 11

P(1, 0, 2)x2 � y2 � z2 � 2xy � 4xz � x � y � 12

P(4, �2, �1)x2 � 2y2 � 4z2 � 4

P(2, �3, 1)2x2 � y2 � 3z2 � 2

P(2, 1, 1)x2 � 4y2 � 9z2 � 17

P12, 12, 0 2F(x, y, z) � xy

P(1, 3, 2)F(x, y, z) � �x2 � y2 � z2

P(2, 3, 1)F(x, y, z) � 2x � 3y � z

P(0, 2, 4)F(x, y, z) � x2 � y2

P(1, 1, 2)F(x, y, z) � z � x2 � y2

P(1, 2, 2)F(x, y, z) � x2 � y2 � z2

PFP
F

(1, 1)2x � y � ex�y � 2

(15, �1)x4 � 2x2y2 � y4 � 9x2 � 9y2 � 0

112, 13
4 2x4 � x2 � y2 � 0

1313
2 , 2 2x2

9
�

y2

16
� 1

P(�3, 4)f(x, y) � 2x � 3y

P(1, 3)f(x, y) � x2 � y

P113
2 , 1 2f(x, y) � 4x2 � y2

P(1, 2)f(x, y) � y2 � x2

PfP
f 29. ;

30. ;

31. ;

32. ;

33. Show that an equation of the tangent plane to the ellipsoid

at the point can be written as

34. Show that an equation of the tangent plane to the hyper-
boloid

at the point can be written as

35. Find an equation of the tangent plane to the hyperboloid of
two sheets

at the point , and express it in a form similar to
that of Exercise 34.

36. Show that an equation of the tangent plane to the elliptic
paraboloid

at the point can be written as

37. Find the points on the sphere at which
the tangent plane is parallel to the plane .

38. Find the points on the hyperboloid of two sheets
at which the tangent plane is parallel

to the plane .

39. Find the points on the hyperboloid of one sheet
at which the normal line is parallel to

the line passing through the points and .

40. Find the points on the surface 
at which the tangent plane is horizontal.

x2 � 4y2 � 3z2 � 2xy � 16

(3, 3, 3)(�1, 1, 2)
2x2 � y2 � z2 � 1

2x � 2y � 4z � 1
�x2 � 2y2 � z2 � 4

x � 2y � 3z � 12
x2 � y2 � z2 � 14

2xx0

a2 �
2yy0

b2 � c(z � z0)

(x0, y0, z0)

x2

a2 �
y2

b2 � cz

(x0, y0, z0)

x2

a2 �
y2

b2 �
z2

c2 � 1

xx0

a2 �
yy0

b2 �
zz0

c2 � 1

(x0, y0, z0)

x2

a2 �
y2

b2 �
z2

c2 � 1

xx0

a2 �
yy0

b2 �
zz0

c2 � 1

(x0, y0, z0)

x2

a2 �
y2

b2 �
z2

c2 � 1

P(0, 0, 2)ex(cos y � 1) � 2z � �2

P(0, 3, 1)sin xy � 3z � 3

Pa2, 
p

3
 , 1bz � x cos y � 0

Pa1, 1, 
p

4
bz � tan�1ay

x
b

13.7 EXERCISES
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41. Two surfaces are tangent to each other at a point if and
only if they have a common tangent plane at that point.
Show that the elliptic paraboloid 
and the sphere are
tangent to each other at the point .

42. Two surfaces are orthogonal to each other at a point of
intersection if and only if their normal lines at are
orthogonal. Show that the sphere 
and the elliptic paraboloid are
orthogonal to each other at the point .

43. Show that any line that is tangent to the ellipse
has the equation

where lies in the interval .

44. Suppose that two surfaces and 
intersect along a curve and that is a point on

. Show that the vector is
parallel to the tangent line to at . Illustrate with a sketch.

45. Refer to Exercise 44. Let be the intersection of the sphere
and the paraboloid . Find the z � x2 � y2x2 � y2 � z2 � 2

C

PC
§F(x0, y0, z0) � §G(x0, y0, z0)C

P(x0, y0, z0)C
G(x, y, z) � 0F(x, y, z) � 0

[0, 2p)u

(b cos u)x � (a sin  u)y � ab

(x2>a2) � (y2>b2) � 1

(1, 4, 0)
2x2 � y � 2z2 � 2 � 0

x2 � y2 � z2 � 17 � 0
PP

(1, 2, 1)
x2 � y2 � z2 � 6x � 8y � z � 17 � 0

2x2 � y2 � z � 5 � 0

P parametric equations of the tangent line to at the point

.

In Exercises 46–49, determine whether the statement is true or
false. If it is true, explain why it is true. If it is false, give an
example to show why it is false.

46. The tangent line at a point on the level curve 
is orthogonal to at .

47. The line with equations

is perpendicular to the plane with equation .

48. If an equation of the tangent plane at the point 
on the surface described by is

, then for some
scalar .

49. The vector equation of the normal line passing through the
point on the surface with equation

is .r(t) � �x0, y0, z0� � t §F(x0, y0, z0)F(x, y, z) � 0
P0(x0, y0, z0)

k
§F(x0, y0, z0) � k�a, b, c�ax � by � cz � d

F(x, y, z) � 0
P0(x0, y0, z0)

2x � 3y � z � 4

x � 2

4
�

y � 1

6
� �

z

2

P§f
f(x, y) � cP

1�12
2 , 12

2 , 12 C

13.8 Extrema of Functions of Two Variables

Relative and Absolute Extrema
In Chapter 3 we saw that the solution of a problem often reduces to finding the extreme
values of a function of one variable. A similar situation arises when we solve problems
involving a function of two or more variables.

For example, suppose that the Scandi Company manufactures computer desks in
both assembled and unassembled versions. Then its weekly profit is a function of
the number of assembled units, , and the number of unassembled units, , sold per
week; that is, . A question of paramount importance to the manufacturer is:
How many assembled desks and how many unassembled desks should the company
manufacture per week to maximize its weekly profit? Mathematically, the problem is
solved by finding the values of and that will make a maximum.

In this section and the next section we will focus our attention on finding the extrema
of a function of two variables. As in the case of a function of one variable, we distin-
guish between the relative (or local) extrema and the absolute extrema of a function of
two variables.

f(x, y)yx

P � f(x, y)
yx

P

DEFINITION Relative Extrema of a Function of Two Variables

Let be a function defined on a region containing the point . Then has
a relative maximum at if for all points in an open
disk containing . The number is called a relative maximum value.

Similarly, has a relative minimum at with relative minimum value
if for all points in an open disk containing .(a, b)(x, y)f(x, y) � f(a, b)f(a, b)

(a, b)f
f(a, b)(a, b)

(x, y)f(x, y) 	 f(a, b)(a, b)
f(a, b)Rf



13.8 Extrema of Functions of Two Variables 1117

Loosely speaking, has a relative maximum at if the point is
the highest point on the graph of when compared to all nearby points. A similar inter-
pretation holds for a relative minimum.

If the inequalities in this last definition hold for all points in the domain of 
, then has an absolute maximum (absolute minimum) at with absolute max-

imum value (absolute minimum value) . Figure 1 shows the graph of a func-
tion defined on a domain with relative maxima at and and a relative min-
imum at . The absolute maximum of occurs at , and the absolute minimum
of occurs at .(h, i)f

(e, t)f(c, d)
(e, t)(a, b)D

f(a, b)
(a, b)ff

(x, y)

f
(a, b, f(a, b))(a, b)f

FIGURE 1
The relative and absolute extrema of

the function over the domain Df

FIGURE 2
At a relative extremum of , either

or one or both partial
derivatives do not exist.

fx � fy � 0
f

Absolute
minimum

(a, b)

(c, d)(h, i)

Relative
minimum

Relative
maximum

Absolute maximum
(also a relative
maximum)

(e, t)
D

y

x

z

Critical Points—Candidates for Relative Extrema
Figure 2a shows the graph of a function with a relative maximum at a point 
lying inside the domain of . As you can see, the tangent plane to the surface 
at the point is horizontal. This means that all the directional derivatives
of at , if they exist, must be zero. In particular, and .
Next, Figure 2b shows the graph of a function with a relative maximum at a point 

. Note that both and do not exist because the surface 
has a point that looks like a jagged mountain peak.(a, b, f(a, b))

z � f(x, y)fy(a, b)fx(a, b)(a, b)

fy(a, b) � 0fx(a, b) � 0(a, b)f
(a, b, f(a, b))

z � f(x, y)f
(a, b)f

You are encouraged to draw similar graphs of functions having relative minima at
points lying inside the domain of the functions. All of these points are critical points
of a function of two variables.

fx � fy � 0 fx and fy do not exist.(a) (b)

y

z

0

x

(a, b, f (a, b))

(a, b)y

z

0

x

 fx(a, b) � 0  fy(a, b) � 0
(a, b, f (a, b))

(a, b)

Copyright 2009 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.
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The next theorem tells us that the relative extremum of a function defined on an
open region can occur only at a critical point of .f

f

DEFINITION Critical Points of a Function

Let be defined on an open region containing the point . We call 
a critical point of if

a. and/or do not exist at or
b. both and .fy(a, b) � 0fx(a, b) � 0

(a, b)fyfx

f
(a, b)(a, b)Rf

THEOREM 1 The Critical Points of f Are Candidates for Relative Extrema

If has a relative extremum (relative maximum or relative minimum) at a point
in the domain of , then must be a critical point of .f(a, b)f(a, b)

f

PROOF If either or does not exist at , then is a critical point of . 
So suppose that both and exist. Let . If has a relative
extremum at , then has a relative extremum at , so by Theorem 1 of Section 3.1,

. But

Therefore, . Similarly, by considering the function , we obtain
. Thus, is a critical point of .f(a, b)fy(a, b) � 0

f(y) � f(a, y)fx(a, b) � 0

t¿(a) � lim
h→0

f(a � h, b) � f(a, b)

h
� fx(a, b)

t¿(a) � 0
at(a, b)

ft(x) � f(x, b)fy(a, b)fx(a, b)
f(a, b)(a, b)fyfx

EXAMPLE 1 Let . Find the critical point of , and
show that has a relative minimum at that point.

Solution To find the critical point of , we compute

and

Observe that both and are continuous for all values of and . Setting and 
equal to zero, we find that and , so is the only critical point of .
Next, to show that has a relative minimum at this point, we complete the squares in

and and write in the form

Notice that and , so for all in the domain
of . Therefore, is a relative minimum value of . In fact, we have shown
that 4 is the absolute minimum value of . The graph of shown in Figure 3 confirms
this result.

ff
ff(2, 3) � 4f

(x, y)f(x, y) � 4(y � 3)2 � 0(x � 2)2 � 0

f(x, y) � (x � 2)2 � (y � 3)2 � 4

f(x, y)yx
f

f(2, 3)y � 3x � 2
fyfxyxfyfx

fy(x, y) � 2y � 6 � 2(y � 3)fx(x, y) � 2x � 4 � 2(x � 2)

f

f
ff(x, y) � x2 � y2 � 4x � 6y � 17

y

z

0

x

(2, 3, 4)

(2, 3)

2 3

2

4
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z � f (x, y)

1

3

FIGURE 3
The function has a relative minimum
at .(2, 3)

f

EXAMPLE 2 Let . Show that is the only critical point
of and that is a relative maximum value of .

Solution The partial derivatives of are

and fy(x, y) � �
y

2x2 � y2
fx(x, y) � �

x

2x2 � y2

f

ff(0, 0) � 3f
(0, 0)f(x, y) � 3 �2x2 � y2
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Since both and are undefined at , we conclude that is a crit-
ical point of . Also, and are not both equal to zero at any point. This fy(x, y)fx(x, y)f

(0, 0)(0, 0)fy(x, y)fx(x, y)

FIGURE 4
The function has a relative maximum
at .(0, 0)

f

FIGURE 5
The point is a critical point 

of , but it does not
give rise to a relative extremum of .f

f(x, y) � y2 � x2
(0, 0)

z

z � 3 �    x2 � y2

y

x
3

3

3

(0, 0)

(0, 0, 3)

EXAMPLE 3 Show that the point is a critical point of but
that it does not give rise to a relative extremum of .

Solution The partial derivatives of ,

and

are continuous everywhere. Since and are both equal to zero at , we conclude
that is a critical point of and that it is the only candidate for a relative extremum
of . But notice that for points on the -axis we have , so if

; and for points on the -axis we have , so if . There-
fore, every open disk containing has points where takes on positive values as
well as points where takes on negative values. This shows that cannot be
a relative extremum of . The graph of is shown in Figure 5. The point is
called a saddle point.

(0, 0, 0)ff
f(0, 0) � 0f

f(0, 0)
y � 0f(x, y) � y2 � 0x � 0yx � 0

f(x, y) � �x2 � 0y � 0xf
f(0, 0)

(0, 0)fyfx

fy(x, y) � 2yfx(x, y) � �2x

f

f
f(x, y) � y2 � x2(0, 0)

z

y

x fx(0, 0) � 0
fy(0, 0) � 0

As we have observed, the critical point in Example 3 does not yield a relative
maximum or minimum. In general, a critical point of a differentiable function of two
variables that does not give rise to a relative extremum is called a saddle point. A sad-
dle point is the analog of an inflection point for the case of a function of one variable.

The Second Derivative Test for Relative Extrema
In Examples 1 and 3 we were able to determine, either by inspection or with the help
of simple algebraic manipulations, whether did or did not possess a relative extremum
at a critical point. For more complicated functions, the following test may be used.
This test is the analog of the Second Derivative Test for a function of one variable. Its
proof will be omitted.

f

(0, 0)

tells us that is the only critical point of . Finally, since for all
values of and , we see that for all points . We conclude that

is a relative (indeed, the absolute) maximum of . The graph of shown in
Figure 4 confirms this result.

As in the case of a function of one variable, a critical point of a function of two
variables is only a candidate for a relative extremum of the function. A critical point
need not give rise to a relative extremum, as the following example shows.

fff(0, 0) � 3
(x, y)f(x, y) 	 3yx
2x2 � y2 � 0f(0, 0)



1120 Chapter 13 Functions of Several Variables

THEOREM 2 The Second Derivative Test for a Function of Two Variables

Suppose that has continuous second-order partial derivatives on an open region
containing a critical point of . Let

a. If and , then is a relative maximum
value.

b. If and , then is a relative minimum value.
c. If , then is a saddle point.
d. If , then the test is inconclusive.D(a, b) � 0

(a, b, f(a, b))D(a, b) � 0
f(a, b)fxx(a, b) � 0D(a, b) � 0

f(a, b)fxx(a, b) � 0D(a, b) � 0

D(x, y) � fxx(x, y)fyy(x, y) � f 2
xy(x, y)

f(a, b)
f

EXAMPLE 4 Find the relative extrema of .

Solution First, we find the critical points of . Since

and

are both continuous for all values of and , the only critical points of , if any, are
found by solving the system of equations and , that is, by 
solving

and

From the second equation we obtain , which upon substitution into the first
equation yields

or

Therefore, or . Substituting each of these values of into the expression
for gives and , respectively. Therefore, the critical points of are 
and .

Next, we use the Second Derivative Test to determine the nature of each of these
critical points. We begin by computing , , , and

To test the point , we compute

from which we deduce that gives rise to the saddle point of .
Next, to test the critical point , we compute

which indicates that gives a relative extremum of . Since

we see that yields a relative minimum of . Its value is

The graph and contour map of are shown in Figures 6a and 6b.f

 � �15

 f(1, 5) � (1)3 � (5)2 � 2(1)(5) � 7(1) � 8(5) � 2

f(1, 5)

fxx(1, 5) � 6(1) � 6 � 0

f(1, 5)

D(1, 5) � 4(3 � 1) � 8 � 0

(1, 5)
f1�1

3, 
11
3 , �373

27 21�1
3, 

11
3 2

D1�1
3, 

11
3 2 � 4(�1 � 1) � �8 � 0

1�1
3, 

11
3 2

 � (6x)(2) � (�2)2 � 4(3x � 1)

 D(x, y) � fxx(x, y)fyy(x, y) � f 2
xy(x, y)

fxy(x, y) � �2fyy(x, y) � 2fxx(x, y) � 6x

(1, 5)
1�1

3, 
11
3 2fy � 5y � 11

3y
xx � 1x � �1

3

(3x � 1)(x � 1) � 03x2 � 2x � 1 � 0

y � x � 4

2y � 2x � 8 � 03x2 � 2y � 7 � 0

fy(x, y) � 0fx(x, y) � 0
fyx

fy(x, y) � 2y � 2x � 8fx(x, y) � 3x2 � 2y � 7

f

f(x, y) � x3 � y2 � 2xy � 7x � 8y � 2
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Saddle
point

Relative
minimum

�2

�2 �1 10 2

�1
0

1
2

2 4 6

6

7

5

4

3

2

�15

�14.3

�13.4

�12.7

0

�10

(a) The graph of f (x, y) � x3 � y2 � 2xy � 7x  � 8y � 2 (b) The contour plot of f  

y

x

FIGURE 6

FIGURE 7
The combined length and girth of 
the package is inches.x � 2y � 2z

EXAMPLE 5 Priority Mail Regulations Postal regulations specify that the combined
length and girth of a package sent by priority mail may not exceed 108 in. Find the
dimensions of a rectangular package with the greatest possible volume satisfying these
regulations.

Solution Let the length, width, and height of the package be , , and inches respec-
tively, as shown in Figure 7. Then the volume of the package is . Observe that
the combined length and girth of the package is inches. Clearly, we
should let this quantity be as large as possible, that is, we should let

With the help of this equation we can express as a function of two variables. For
example, solving the equation for in terms of and , we obtain

which, upon substitution into the expression for , gives

To find the critical points of , we set

and

Since and are both nonzero (otherwise, would be zero), we are led to the system

Multiplying the second equation by 2 gives . Then subtracting this
equation from the first equation gives , or . Substituting this value
of into either equation in the system then yields . Therefore, the only critical
point of is .(18, 18)f

y � 18z
z � 18�54 � 3z � 0

108 � 2y � 4z � 0

54 � y � 2z � 0

54 � 2y � z � 0

Vzy

fz � 108y � 2y2 � 4yz � 2y(54 � y � 2z) � 0

fy � 108z � 4yz � 2z2 � 2z(54 � 2y � z) � 0

f

V � f(y, z) � (108 � 2y � 2z)yz � 108yz � 2y2z � 2yz2

V

x � 108 � 2y � 2z

zyx
V

x � 2y � 2z � 108

(x � 2y � 2z)
V � xyz

zyx

z

y
x
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We could use the Second Derivative Test to show that the point gives 
a relative maximum of , or, as in this situation, we can simply argue from physical
considerations that must attain an absolute maximum at . Finally, from the
equation

found earlier, we see that when ,

Therefore, the dimensions of the required package are 

Finding the Absolute Extremum Values 
of a Continuous Function on a Closed Set

Recall that if is a continuous function of one variable on a closed interval , then
the Extreme Value Theorem guarantees that has an absolute maximum value and an
absolute minimum value. The analog of this theorem for a function of two variables
follows.

f
[a, b]f

18 in. � 18 in. � 36 in.

x � 108 � 2(18) � 2(18) � 36

y � z � 18

x � 108 � 2y � 2z

(18, 18)V
V

(18, 18)

THEOREM 3 The Extreme Value Theorem for Functions of Two Variables

If is continuous on a closed, bounded set in the plane, then attains an
absolute maximum value at some point in and an absolute min-
imum value at some point in .D(c, d)f(c, d)

D(a, b)f(a, b)
fDf

The following procedure for finding the extreme values of a function of two vari-
ables is the analog of the one for finding the extreme values of a function of one vari-
able discussed in Section 3.1.

Finding the Absolute Extremum Values of on a Closed, Bounded Set 

1. Find the values of at the critical points of in .
2. Find the extreme values of on the boundary of .
3. The absolute maximum value of and the absolute minimum value of are

precisely the largest and the smallest numbers found in Steps 1 and 2.
ff

Df
Dff

Df

The justification for this procedure is similar to that for a function of one variable
on a closed interval : If an absolute extremum of occurs in the interior of ,
then it must also be a relative extremum of , and hence it must occur at a critical point
of . Otherwise, the absolute extremum of must occur at a boundary point of .Dff

f
Df[a, b]

EXAMPLE 6 Find the absolute maximum and the absolute minimum values of the
function on the rectangle

Solution Since is a polynomial, it is continuous on the closed, bounded set . There-
fore, Theorem 3 guarantees the existence of an absolute maximum and an absolute
minimum value of on .Df

Df

D � {(x, y) � 0 	 x 	 3, 0 	 y 	 2}

f(x, y) � 2x2 � y2 � 4x � 2y � 3
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Step 1 To find the critical point of in , we set and
. Solving this system of equations gives as 

the only critical point of . The value of at this point is .
Step 2 Next, we look for extreme values of on the boundary of . We can think 

of this boundary as being made up of four line segments , , , and ,
as shown in Figure 8.

On : Here , so we have

To find the extreme values of the continuous function of one variable on
the closed bounded interval , we use the method of Section 3.1. Setting

gives as the only critical number of in . Evaluating 
at , as well as at the endpoints of the interval , gives ,

, and . Thus, has the absolute minimum value of 1
and the absolute maximum value of 9 on .

On : Here , so we have

Setting yields as the only critical number of
in . Evaluating at the endpoints of and at the criti-

cal number gives , , and . We see
that has the absolute minimum value of 8 and the absolute maximum value
of 9 on .

On : Here , so we have

Setting gives as the only critical number of
in . Since , , and , we see that
has the absolute minimum value of 1 and the absolute maximum

value of 9 on .
On : Here , so we have

Setting gives as the only critical number of
in . Since , , and , we see that
has the absolute minimum value of 2 and the absolute maximum

value of 3 on .
Step 3 Table 1 summarizes the results of our computations. Comparing the value of 

obtained at the various points, we conclude that the absolute minimum value of
on is 0 attained at the critical point of and that the absolute maxi-

mum value of on is 9 attained at the boundary points and .(3, 2)(3, 0)Df
f(1, 1)Df

f
L4

f(0, y)
f(0, 2) � 3f(0, 1) � 2f(0, 0) � 3(0, 2)f(0, y)

y � 1f ¿(0, y) � 2y � 2 � 0

0 	 y 	 2f(0, y) � y2 � 2y � 3

x � 0L4

L3

f(x, 2)
f(3, 2) � 9f(1, 2) � 1f(0, 2) � 3(0, 3)f(x, 2)

x � 1f ¿(x, 2) � 4x � 4 � 0

0 	 x 	 3f(x, 2) � 2x2 � 4x � 3

y � 2L3

L2

f
f(3, 2) � 9f(3, 1) � 8f(3, 0) � 9y � 1
[0, 2]f(3, y)(0, 2)f(3, y)

y � 1f ¿(3, y) � 2y � 2 � 0

0 	 y 	 2f(3, y) � y2 � 2y � 9

x � 3L2

L1

ff(3, 0) � 9f(1, 0) � 1
f(0, 0) � 3[0, 3]x � 1

f(x, 0)(0, 3)f(x, 0)x � 1

f ¿(x, 0) � 4x � 4 � 0

[0, 3]
f(x, 0)

0 	 x 	 3f(x, 0) � 2x2 � 4x � 3

y � 0L1

L4L3L2L1

Df
f(1, 1) � 0ff
(1, 1)fy � 2y � 2 � 0

fx � 4x � 4 � 0Df

FIGURE 8
The boundary of consists of the four
line segments , , , and .L4L3L2L1

D

1

2

0 321 x

L3

L2

L1

L4

y

TABLE 1

Critical 
point

Boundary 
point on L1

Boundary 
point on L2

Boundary 
point on L3

Boundary 
point on L4

(x, y) (1, 1) (1, 0) (3, 0) (3, 1) (3, 0) (3, 2) (1, 2) (3, 2) (0, 1) (0, 0) (0, 2)

Extreme
value: f(x, y) 0 1 9 8 9 9 1 9 2 3 3



1124 Chapter 13 Functions of Several Variables

1. a. What does it mean when one says that has a relative
maximum (relative minimum) at a point in the
domain of ? What is called in each case?

b. What does it mean when one says that has an absolute
maximum (absolute minimum) at ? What is 
called in each case?

2. a. What is a critical point of a function ?
b. What role does a critical point of a function play in the

determination of the relative extrema of the function?
c. State the Second Derivative Test for a function of two

variables.

f(x, y)

f(a, b)(a, b)
f

f(a, b)f
(a, b)

f 3. a. What can you say about the existence of a maximum
value and a minimum value of a continuous function of
two variables defined on a closed, bounded set on the
plane?

b. Describe a strategy for finding the absolute extreme val-
ues of a continuous function on a closed, bounded set in
the plane.

13.8 CONCEPT QUESTIONS

In Exercises 1–22, find and classify the relative extrema and 
saddle points of the function.

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18. , ,

19. , ,

20. , ,

21. , ,

22. , , 0 	 y 	 2p0 	 x 	 2pf(x, y) � sin x � sin y

0 	 y 	 2px � 0f(x, y) � e�x cos y

0 	 y 	 2px � 0f(x, y) � xex sin y

0 	 y 	 2px � 0f(x, y) � x sin y

 0 	 y 	 2px � 0f(x, y) � ex sin y

f(x, y) � e�x2�y2

f(x, y) � �
4y

x2 � y2 � 1

f(x, y) �
x2y2 � 2y � 4x

xy

f(x, y) � xy(3 � x � y)

f(x, y) � x2 � 6x � x1y � y

f(x, y) � x3 � 3xy � y3 � 3

f(x, y) � x2 � 5y2 � x2y � 2y3

f(x, y) � x2 � y2 � 2xy2 � 1

f(x, y) � x2 � 2y2 � x2y � 3

f(x, y) � x2 � 3y2 � 6xy � 2x � 4y

f(x, y) � 2x2 � y2 � 2xy � 8x � 2y � 2

f(x, y) � x2 � 3xy � 2y2 � 1

f(x, y) � x2 � 3xy � 3y2

f(x, y) � �2x2 � 3y2 � 6x � 4y � 6

f(x, y) � �x2 � 3y2 � 4x � 6y � 8

f(x, y) � 2x2 � y2 � 6x � 2y � 1

f(x, y) � x2 � y2 � 2x � 4y

In Exercises 23 and 24, (a) use the graph and the contour map
of to estimate the relative extrema and saddle point(s) of , and
(b) verify your guess analytically.

23. f(x, y) � x3 � 3xy2 � y4

ff

13.8 EXERCISES

Videos for selected exercises are available online at www.academic.cengage.com/login.V

y

x

z

0

�2.0

2.0

1.0�1.0�2.0 0 2.0

y

x

z

x
y

0

0.5

�0.5

�1.0

�1.5

1.0

1.5

1.0�1.0 0

y

x

24. f(x, y) � 3xy2 � x3

www.academic.cengage.com/login
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In Exercises 25–28, plot the graph and the contour map of , and
use them to estimate the relative maximum and minimum values
and the saddle point(s) of . Then find these values and saddle
point(s) analytically.

25.

26.

27.

28. (“Monkey Saddle”)

In Exercises 29–32, use a graphing calculator or computer 
to find the critical points of correct to three decimal places.
Then use these results to find the relative extrema of . Plot 
the graph of .

29.

30.

31.

32.

In Exercises 33–40, find the absolute extrema of the function on
the set .

33. ;

34. ;

35. ; is the closed triangular region
with vertices , , and .

36. ; is the closed triangular region
with vertices , , and .

37. ; is the region bounded by the parabola
and the line .

38. ; is the region bounded by the
parabola and the -axis.

39. ;

40. ;

41. Find the shortest distance from the origin to the plane
.

Hint: The square of the distance from the origin to any point 
on the plane is . 
Minimize .

42. Find the point on the plane that is closest to
the point .
Hint: Study the hint of Exercise 41.

43. Find the points on the surface that
are closest to the origin. What is the shortest distance from
the origin to the surface?

z2 � xy � x � 4y � 21

(2, 3, �1)
x � 2y � z � 5

d2 � f(x, y) � x2 � y2 � (4 � x � 2y)2

d2 � x2 � y2 � z2 � x2 � y2 � (4 � x � 2y)2

(x, y, z)
x � 2y � z � 4

D � {(x, y) � 4x2 � y2 	 1}f(x, y) � 4x2 � y2 � 2x � y

D � {(x, y) � x2 � y2 	 4}f(x, y) � x2 � 4y2 � 3x � 1

xy � 4 � x2
Df(x, y) � 4x2 � y2

y � 4y � x2
Df(x, y) � xy � x2

(1, 2)(1, �1)(�2, �1)
Df(x, y) � 3x2 � 2xy � y2

(3, 4)(3, 0)(0, 0)
Df(x, y) � 3x � 4y � 12

D � {(x, y) � �2 	 x 	 2, �1 	 y 	 1}
f(x, y) � x2 � xy � y2

D � {(x, y) � 0 	 x 	 2, �2 	 y 	 3}
f(x, y) � 2x � 3y � 6

D

f(x, y) � x4 � 2x2 � x � y2 � e�y

f(x, y) � �x4 � y4 � 2x2y � x2 � y � 2

f(x, y) � 2 � 2x2 � 5xy � 2y � y4

f(x, y) � 2x4 � 8x2 � y2 � 4x � 2y � 5

f
f

f

f(x, y) � 6xy2 � 2x3 � 3y4

f(x, y) � xy �
2
x

�
4
y

� 8

f(x, y) � (x2 � y2)e�y

f(x, y) �
1

2
 x4 � 2x3 � 4xy � y2

f

f 44. Find the points on the surface that are closest to
the origin. What is the shortest distance from the origin to
the surface?

45. Find three positive real numbers whose sum is 500 and
whose product is as large as possible.

46. Find the dimensions of an open rectangular box of maxi-
mum volume that can be constructed from 48 ft2 of card-
board.

47. Find the dimensions of a closed rectangular box of maxi-
mum volume that can be constructed from 48 ft2 of card-
board.

48. An open rectangular box having a volume of 108 in3. is to
be constructed from cardboard. Find the dimensions of such
a box if the amount of cardboard used in its construction is
to be minimized.

49. Find the dimensions of the rectangular box of maximum
volume with faces parallel to the coordinate planes that can
be inscribed in the ellipsoid

50. Solve the problem posed in Exercise 49 for the general case
of an ellipsoid with equation

where , , and are positive real numbers.

51. Find the dimensions of the rectangular box of maximum
volume lying in the first octant with three of its faces lying
in the coordinate planes and one vertex lying in the plane

. What is the volume of such a box?

52. Solve the problem posed in Exercise 51 for the general case
of a plane with equation

where , , and are positive real numbers.

53. An open rectangular box is to have a volume of 12 ft3. If 
the material for its base costs three times as much (per
square foot) as the material for its sides, what are the
dimensions of the box that can be constructed at a 
minimum cost?

54. A closed rectangular box is to have a volume of 16 ft3. If
the material for its base costs twice as much (per square
foot) as the material for its top and sides, find the dimen-
sions of the box that can be constructed at a minimum 
cost.

55. Locating a Radio Station The following figure shows the loca-
tions of three neighboring communities. The operators of a
newly proposed radio station have decided that the site

for the station should be chosen so that the sum ofP(x, y)

cba

x

a
�

y

b
�

z

c
� 1

2x � 3y � z � 6

cba

x2

a2 �
y2

b2 �
z2

c2 � 1

x2

4
�

y2

9
�

z2

16
� 1

xy2z � 4cas

cas
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the squares of the distances from the site to each community
is minimized. Find the location of the proposed radio station.

56. Parcel Post Regulations Postal regulations specify that a parcel
sent by parcel post may have a combined length and girth of
no more than 130 inches. Find the dimensions of a cylindri-
cal package of greatest volume that can be sent through the
mail. What is the volume of such a package?
Hint: The length plus the girth is .

57. Suppose a relationship exists between two quantities and 
and that we have obtained the following data relating to :xy

yx

r
l

2pr � l

10

20

0 2010 x

y
C(4, 24)

B(20, 8)

A(2, 4)

P(x, y)

One criterion for determining the straight line
that “best” fits the data calls for minimizing the

sum of the squares of the deviations , where 

. This sum is 
a function of and ; that is,

and it is minimized with respect to the variables and by
solving the system comprising the equations 
and for and . Show that this leads to the
system

This method of determining the equation is
called the method of least squares, and the line with equa-
tion is called a least squares or regression
line.

58. Use the method of least squares (Exercise 57) to find the
straight line that best fits the data points ,

, , , and . Plot the scatter diagram, and
sketch the graph of the regression line on the same set of
axes.

59. Information Security Software Sales Refer to Exercise 57. As
online attacks persist, spending on information security soft-
ware continues to rise. The following table gives the forecast
for the worldwide sales (in billions of dollars) of informa-
tion security software through 2007 ( corresponds to
2002).

x � 0

(5, 8)(4, 7)(3, 5)(2, 5)
(1, 3)y � mx � b

y � mx � b

y � mx � b

aa
n

k�1
x2

kbm � aa
n

k�1
xkbb � a

n

k�1
xkyk

aa
n

k�1
xkbm � nb � a

n

k�1
yk

bmtb(a, b) � 0
tm(a, b) � 0

bm

t(m, b) � a
n

k�1
(yk � mxk � b)2

bm
dk � yk � (mxk � b) � yk � mxk � b

a
n

k�1
d2

k

x x1 x2
p xn

y y1 y2
p yn

Year, x 0 1 2 3 4 5

Spending, y 6.8 8.3 9.8 11.3 12.8 14.9

Year, x 0 10 20 30 40 50

Years beyond 65, y 15.9 16.8 17.6 18.5 19.3 20.3

The figure below shows the points , , ,
plotted in the -plane. (This figure is called a

scatter diagram.) If the data points are scattered about a
straight line, as in this illustration, then it is reasonable to
describe the relationship between and in terms of a
linear equation .

x

y

(xk, mxk � b)

y � mx � b

(xk, yk)

(xn, yn)

(x1, y1)

(x2, y2)
dk

y � mx � b
yx

xy(xn, yn)
p(x2, y2)(x1, y1)

a. Find an equation of the least-squares line for these data.
b. Use the result of part (a) to forecast the spending on

information security software in 2010, assuming that this
trend continues.

Source: International Data Corp.

60. Male Life Expectancy At 65 Refer to Exercise 57. The projec-
tions of male life expectancy at age 65 in the United States
are summarized in the following table ( corresponds to
2000).

x � 0
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a. Find an equation of the least-squares line for these data.
b. Use the result of (a) to estimate the life expectancy at 65

of a male in 2040. How does this result compare with the
given data for that year?

c. Use the result of (a) to estimate the life expectancy at 65
of a male in 2030.

Source: U.S. Census Bureau.

61. Operations Management Consulting Spending Refer to Exer-
cise 57. The following table gives the projected operations
management consulting spending (in billions of dollars)
from 2005 through 2010. Here, corresponds to 2005.x � 5

63. Let .
a. Show that has no minimum value.
b. Find the maximum and minimum values of in the

region .
Hint: On the boundary of , let , for

.

64. Let where .
Find conditions in terms of , , and such that has a 
relative minimum at ; a relative maximum at ;
and a saddle point at .

In Exercises 65–68, determine whether the statement is true or
false. If it is true, explain why it is true. If it is false, give an
example to show why it is false.

65. If has a relative maximum at , then 
and .

66. Let , where and have second-order
derivatives. If the graph of is concave upward on 
and the graph of is concave downward on , then 
cannot have a relative maximum or a relative minimum at
any point.

67. If , then has a relative extremum at .

68. If has continuous second-order partial derivatives and
and for all , then 

cannot have a relative extremum.
f(x, y)fxy(x, y) � 0fxx(x, y) � fyy(x, y) � 0

f(x, y)

(a, b)f§f(a, b) � 0 

h(��, �)t

(��, �)f
tfh(x, y) � f(x) � t(y)

fy(a, b) � 0
fx(a, b) � 0(a, b)f(x, y)

(0, 0)
(0, 0)(0, 0)

fCBA
B2 � 4AC � 0f(x, y) � Ax2 � 2Bxy � Cy2, 

0 	 t 	 2p
y � sin tx � cos tD

D � {(x, y) � x2 � y2 	 1}
f

f
f(x, y) � �3x2 � 6x � 4y2 � 4y � 3

Year, x 5 6 7 8 9 10

Spending, y 40 43.2 47.4 50.5 53.7 56.8

a. Find an equation of the least-squares line for these data.
b. Use the results of part (a) to estimate the average rate of

change of operations management consulting spending
from 2005 through 2010.

c. Use the results of part (a) to estimate the amount of
spending on operations management consulting in 2011,
assuming that the trend continues.

Source: Kennedy Information.

62. Let .
a. Show that has no maximum or minimum values.
b. Find the maximum and minimum values of in the

region .
Hint: On the boundary of , let , for

.0 	 t 	 2p
y � sin tx � 2 cos tD

D � {(x, y) � x2 � 4y2 	 4}
f

f
f(x, y) � x2 � y2 � 2xy � 2

cas

cas

13.9 Lagrange Multipliers

Constrained Maxima and Minima
Many practical optimization problems involve maximizing or minimizing an objective
function subject to one or more constraints, or side conditions. In Example 5 of Sec-
tion 13.8 we discussed the problem of maximizing the (volume) function

subject to the constraint

In this case the constraint expresses the condition that the combined length plus girth
of a package is 108 in. (the maximum allowed by postal regulations).

As another example, consider a problem encountered in the construction of an AC
transformer. Here, we are required to find the cross-shaped iron core of largest surface
area that can be inserted into a coil of radius (Figure 1). In terms of and we see
that the surface area of the iron core is

S � 4xy � 4y(x � y) � 8xy � 4y2

yxa

t(x, y, z) � x � 2y � 2z � 108

V � f(x, y, z) � xyz
a y

y

x

FIGURE 1
We want to find the core of largest
surface area that can be inserted into 
a coil of radius .a
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Next, observe that and must satisfy the equation . Therefore, the prob-
lem is equivalent to one of maximizing the objective function

subject to the constraint

We will complete the solution of this problem in Example 2.
Figure 2a shows the graph of a function defined by the equation .

Observe that has an absolute minimum at and an absolute minimum value of
0. However, if the independent variables and are subjected to a constraint of the
form , then the points that satisfy both and 
lie on the curve , the intersection of the surface and the cylinder 
(Figure 2b). From the figure you can see that the absolute minimum of subject to the
constraint occurs at the point . Furthermore, has the constrained
absolute minimum value rather than the unconstrained absolute minimum value
of 0 at .(0, 0)

f(a, b)
f(a, b)t(x, y) � k

f
t(x, y) � kz � f(x, y)C
t(x, y) � kz � f(x, y)(x, y, z)t(x, y) � k

yx
(0, 0)f

z � f(x, y)f

t(x, y) � x2 � y2 � a2

f(x, y) � 8xy � 4y2

x2 � y2 � a2yx

(a) f is not subject to any constraints. f is subject to a constraint.(b)

x

y

z

z � f (x, y)

(0, 0)

x

y

z

C

z � f (x, y)

g(x, y) � k

(a, b, f (a, b))

(a, b)

FIGURE 2
The function has an unconstrained

minimum value of 0, but it has a
constrained minimum value of 

when subjected to the constraint
.t(x, y) � k

f(a, b)

f

The problem that we discussed at the beginning of this section (maximizing the
volume of a box subject to a given constraint) was first solved in Section 13.8. Recall
the method of solution that we used:

First, we solved the constraint equation

for in terms of and . We then substituted this expression for into the equation

thereby obtaining an expression for involving the variables and and satisfying the
constraint equation. Next, we found the maximum of by treating as an uncon-
strained function of and .

The major drawback of this method is that it relies on our ability to solve the con-
straint equation for one variable explicitly in terms of the other (or

for one variable explicitly in terms of the other two variables in the case
of a constraint involving three variables). This might not always be possible or con-
venient. Moreover, even when we are able to solve the constraint equation 
for explicitly in terms of , the resulting function of one variable that is obtained by
substituting this expression for into the objective function might turn out to
be unnecessarily complicated.

f(x, y)y
xy

t(x, y) � k

t(x, y, z) � k
t(x, y) � k

zy
VV

zyV

V � f(x, y, z) � xyz

xzyx

t(x, y, z) � x � 2y � 2z � 108
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The Method of Lagrange Multipliers
We will now consider a method, called the method of Lagrange multipliers (named
after the French mathematician Joseph Lagrange, 1736–1813), which obviates the need
to solve the constraint equation for one variable in terms of the other variables. To see
how this method works, let’s reexamine the problem of finding the absolute minimum
of the objective function subject to the constraint that we considered ear-
lier. Figure 3a shows the level curves of drawn in the -coordinate system. These
level curves are reproduced in the -plane in Figure 3b.xy

xyzf
t(x, y) � kf

FIGURE 3

x

y

z

C

z � f (x, y)

g(x, y) � k

g(x, y) � k

z � c1z � c2

z � f (a, b)
z � c3z � c4

z � c1

z � c2

z � f (a, b)

z � c3

z � c4

(a, b, f (a, b))

(a, b)

(a, b)

x

y

(a) The level curves of f in the xy-planeThe level curves of f in the xyz-plane (b)

Observe that the level curves of with equations , where ,
have no points in common with the graph of the constraint equation (for
example, the level curves and shown in Figure 3). Thus, points
lying on these curves are not candidates for the constrained minimum of .

On the other hand, the level curves of with equation , where 
, do intersect the graph of the constraint equation (such as the

level curves of and ). These points of intersection are candi-
dates for the constrained minimum of .

Finally, observe that the larger is for , the larger the value is for
lying on the level curve . This observation suggests that we can find

the constrained minimum of by choosing the smallest value of so that the level curve
still intersects the curve . At such a point the level curve

of just touches the graph of the constraint equation . That is, the two curves
have a common tangent at (see Figure 3b). Equivalently, their normal lines at
this point coincide. Putting it yet another way, the gradient vectors and 
have the same direction, so for some scalar (lambda).

A similar result holds for the problem of maximizing or minimizing a function of
three variables defined by and subject to the constraint .
In this situation, has a constrained maximum or constrained minimum at a point

where the level surface is tangent to the level surface
. But this means that the normals of these surfaces, and therefore their

gradient vectors, at the point must be parallel to each other. Thus, there is a
scalar such that .

These geometric arguments suggest the following theorem.
§f(a, b, c) � l§t(a, b, c)l

(a, b, c)
t(x, y, z) � k

f(x, y, z) � f(a, b, c)(a, b, c)
f

t(x, y, z) � kw � f(x, y, z)
f

l§f(a, b) � l§t(a, b)
§t(a, b)§f(a, b)

(a, b)
t(x, y) � kf

(a, b)t(x, y) � kf(x, y) � c
cf

t(x, y) � k(x, y)
f(x, y)c � f(a, b)c

f
f(x, y) � c4f(x, y) � c3

t(x, y) � kc � f(a, b)
f(x, y) � cf

f
f(x, y) � c2f(x, y) � c1

t(x, y) � k
c � f(a, b)f(x, y) � cf
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THEOREM 1 Lagrange’s Theorem

Let and have continuous first partial derivatives in some region in the plane.
If has an extremum at a point on the smooth constraint curve 
lying in and , then there is a real number such that

§f(a, b) � l§t(a, b)

l§t(a, b) � 0D
t(x, y) � c(a, b)f

Dtf

The number in Theorem 1 is called a Lagrange multiplier.

PROOF Suppose that the smooth curve described by is represented by
the vector function

,

where and are continuous on an open interval (Figure 4). Then the values assumed
by on are given by

for in . Suppose that has an extreme value at . If is the point in correspond-
ing to the point , then has an extreme value at . Therefore, . Using
the Chain Rule, we have

This shows that is orthogonal to . But as we demonstrated in Sec-
tion 13.7, is orthogonal to . Therefore, the gradient vectors and

are parallel, so there is a number such that .§f(a, b) � l§t(a, b)l§t(a, b)
§f(a, b)r�(t0)§t(a, b)

r�(t0)§f(a, b)

 � §f(a, b) � r�(t0) � 0

 � fx(a, b)x¿(t0) � fy(a, b)y¿(t0)

 h¿(t0) � fx(x(t0), y(t0))x¿(t0) � fy(x(t0), y(t0))y¿(t0)

h¿(t0) � 0t0h(a, b)
It0(a, b)fIt

h(t) � f(x(t), y(t))

Cf
Iy¿x¿

r�(t) � 0r(t) � x(t)i � y(t)j

t(x, y) � cC

l

FIGURE 4

0

r(t)

r�(t0)

t0
xt

◊◊g(a, b)

(a, b)

g(x, y) � cC

(a) The parameter interval I (b) The smooth curve C is represented by the
      vector function r(t).

y

The proof of Lagrange’s Theorem for functions of three variables is similar to that
for functions of two variables. In the case involving three variables, level surfaces rather
than level curves are involved. Lagrange’s Theorem leads to the following procedure
for finding the constrained extremum values of functions. We state it for the case of
functions of three variables.



13.9 Lagrange Multipliers 1131

Note Since

and

we see, by equating like components, that the vector equation

is equivalent to the three scalar equations

, , and

These scalar equations together with the constraint equation give a sys-
tem of four equations to be solved for the four unknowns , , , and .lzyx

t(x, y, z) � k

fz(x, y, z) � ltz(x, y, z)fy(x, y, z) � lty(x, y, z)fx(x, y, z) � ltx(x, y, z)

§f(x, y, z) � l§t(x, y, z)

§t(x, y, z) � tx(x, y, z)i � ty(x, y, z)j � tz(x, y, z)k

§f(x, y, z) � fx(x, y, z)i � fy(x, y, z)j � fz(x, y, z)k

The Method of Lagrange Multipliers

Suppose and have continuous first partial derivatives. To find the maximum
and minimum values of subject to the constraint (assuming that
these extreme values exist and that on ):

1. Solve the equations

and

for , , , and .
2. Evaluate at each solution point found in Step 1. The largest value yields

the constrained maximum of , and the smallest value yields the con-
strained minimum of .f

f
f

lzyx

t(x, y, z) � k§f(x, y, z) � l§t(x, y, z)

t(x, y, z) � k§t � 0
t(x, y, z) � kf

tf

EXAMPLE 1 Find the maximum and minimum values of the function 
subject to .

Solution The constraint equation is . Since

and

the equation becomes

Equating like components and rewriting the constraint equation lead to the follow-
ing system of three equations in the three variables , , and 

(1a)

(1b)

(1c)

From Equation (1a) we have

2x(1 � l) � 0

 x2 � y2 � 9

 �2 � 2ly

 2x � 2lx

l:yx

2xi � 2j � l(2x i � 2y j) � 2lx i � 2ly j

§f(x, y) � l§t(x, y)

§t(x, y) � 2x i � 2y j§f(x, y) � 2x i � 2j

t(x, y) � x2 � y2 � 9

x2 � y2 � 9x2 � 2y
f(x, y) �
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so , or . If , then Equation (1c) gives . If , then 
Equation (1b) gives , which upon substitution into Equation (1c) yields

. Therefore, has possible extreme values at the points , ,
, and . Evaluating at each of these points gives

, , , and

We conclude that the maximum value of on the circle is 10, attained at
the points and , and that the minimum value of on the cir-
cle is , attained at the point .

Figure 5 shows the graph of the constraint equation and some level
curves of the objective function . Observe that the extreme values of are attained at
the points where the level curves of are tangent to the graph of the constraint equation.f

ff
x2 � y2 � 9

(0, 3)�6
f(212, �1)(�212, �1)

x2 � y2 � 9f

f(212, �1) � 10f(�212, �1) � 10f(0, 3) � �6f(0, �3) � 6

f(212, �1)(�212, �1)
(0, 3)(0, �3)fx � 
212

y � �1
l � 1y � 
3x � 0l � 1x � 0

x

y

(0, 3)

0
(�2 √2, �1) (2 √2, �1)

f (x, y) � x2 � 2y � 0f (x, y) � x2 � 2y � �6

f (x, y) � x2 � 2y � 10

x2 � y2 � 9

EXAMPLE 2 Complete the solution to the problem posed at the beginning of this
section: Find the cross-shaped iron core of largest surface area that can be inserted into
a coil of radius (Figure 6).

Solution Recall that the problem reduces to one of finding the largest value of the ob-
jective function subject to the constraint .
Since

and

the equation becomes

Equating like components and rewriting the constraint equation, we get the following
system of three equations in the three variables , , and :

(2a)

(2b)

(2c)

Solving Equation (2a) for , we obtain . Substituting this expression for into
Equation (2b) gives

8x � 2lx �
1

2
 l2x

yy � 1
4 lxy

 x2 � y2 � a2

 8x � 8y � 2ly

 8y � 2lx

lyx

8y i � (8x � 8y)j � l(2x i � 2yj) � 2lx i � 2ly j

§f(x, y) � l§t(x, y)

§t(x, y) � 2x i � 2y j§f(x, y) � 8y i � (8x � 8y)j

t(x, y) � x2 � y2 � a2f(x, y) � 8xy � 4y2

a

FIGURE 5
The extreme values of occur at 
the points where the level curves 

of are tangent to the graph of 
the constraint equation (the circle).

f

f

FIGURE 6
A cross-shaped iron core of largest
surface area is to be inserted into the
coil.

a y

y

x
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or

Observe that ; otherwise, Equation (2a) implies that , so Equation (2c)
becomes , which is impossible. So we have . Using the quad-
ratic formula, we obtain

Observe that must be positive; otherwise, Equation (2a) implies that or must be
negative. So we choose . Next, substituting into
Equation (2c) gives

or

Recall that .

Finally,

Therefore, the core will have the largest surface area if and ,
where is the radius of the coil.

Figure 7 shows the graph of the constraint equation (the circle of
radius centered at the origin) and several level curves of the objective function .
Once again, observe that the maximum value of , ,
occurs at the point , where the level curve of is tangent to the graph
of the constraint equation.

f(0.8507a, 0.5258a)
f(0.8507a, 0.5258a) � 2.4725a2f

fa
x2 � y2 � a2

a
y � 0.5258ax � 0.8507a

y �
1

4
 lx �

1

4
 (2.4721)(0.8507a) � 0.5258a

 � 0.8507a

l � 2.4721 x �
4a

2l2 � 16
�

4

2(2.4721)2 � 16
 a

 x2al2 � 16

16
b � a2

 x2a1 �
l2

16
b � a2

 x2 �
1

16
 l2x2 � a2

y � 1
4 lxl � �2 � 215 � 2.4721

yxl

l �
�4 
 116 � 64

2
� �2 
 215

l2 � 4l � 16 � 00 � a2
y � 0x � 0

x(l2 � 4l � 16) � 0

FIGURE 7
The maximum value of occurs at the
point where the level curve of is
tangent to the level curve of the
constraint equation.

f
f

x

y

(0.8507a, 0.5258a)

�a a

EXAMPLE 3 Find the dimensions of a rectangular package having the greatest pos-
sible volume and satisfying the postal regulation that specifies that the combined length
and girth of the package may not exceed 108 inches. (See Example 5 in Section 13.8.)

Solution Recall that to solve this problem, we need to find the largest value of the vol-
ume function subject to the constraint .
To solve this problem using the method of Lagrange multipliers, observe that

and

so the equation becomes

yz i � xz j � xyk � l(i � 2j � 2k)

§f(x, y, z) � l§t(x, y, z)

§t(x, y, z) � i � 2j � 2k§f(x, y, z) � yz i � xz j � xyk

t(x, y, z) � x � 2y � 2z � 108f(x, y, z) � xyz
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Equating components and rewriting the constraint equation give the following system
of four equations in the four variables , , , and :

(3a)

(3b)

(3c)

(3d)

Substituting Equation (3a) into Equation (3b) yields

or

Since , we have . Next, substituting Equation (3a) into Equation (3c) gives

or

Since , we have . Equating the two expressions for just obtained gives

or

Finally, substituting the expressions for and into Equation (3d) gives

or

So and . Therefore, the dimensions of the package are
, as was obtained before.

Interpreting Our Results

Geometrically, this problem is one of finding the point on the plane 
at which has the largest value. The point is precisely the
point at which the level surface is tangent to the plane

.x � 2y � 2z � 108
xyz � f(36, 18, 18) � 11,664

(36, 18, 18)f(x, y, z) � xyz
x � 2y � 2z � 108

18 in. � 18 in. � 36 in.
x � 2(18) � 36y � 18

z � 182z � 2z � 2z � 108

yx

y � z2y � 2z

xx � 2zy � 0

y(x � 2z) � 0xy � 2yz

x � 2yz � 0

z(x � 2y) � 0xz � 2yz

 x � 2y � 2z � 108

 xy � 2l

 xz � 2l

 yz � l

lzyx

FIGURE 8
An open rectangular box of maximum
volume is to be constructed from a
piece of cardboard. What are the
dimensions of the box?

EXAMPLE 4 Find the dimensions of the open rectangular box of maximum volume
that can be constructed from a rectangular piece of cardboard having an area of 48 ft2.
What is the volume of the box?

Solution Let the length, width, and height of the box (in feet) be , , and , as shown
in Figure 8. Then the volume of the box is . The area of the bottom of the box
plus the area of the four sides is

square feet, and this is equal to the area of the cardboard; that is,

Thus, the problem is one of maximizing the objective function

subject to the constraint

Since

§f(x, y, z) � yz i � xz j � xyk

t(x, y, z) � xy � 2xz � 2yz � 48

f(x, y, z) � xyz

xy � 2xz � 2yz � 48

xy � 2xz � 2yz

V � xyz
zyx

z

y
x
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and

the equation becomes

Equating like components and rewriting the constraint equation give the following sys-
tem of four equations in the unknowns , , , and :

(4a)

(4b)

(4c)

(4d)

Multiplying Equations (4a), (4b), and (4c) by , , and , respectively, gives

(5a)

(5b)

(5c)

From Equations (5a) and (5b), we obtain

(6)

Observe that otherwise, Equations (4a), (4b), and (4c) would imply that
, thus contradicting Equation (4d). Dividing both sides of (6) by 

and simplifying give

or

Now ; otherwise, Equation (4a) would imply that , which, as was observed
earlier, is impossible. Therefore, .

Next, from Equations (5b) and (5c), we have

(7)

Dividing both sides of Equation (7) by and simplifying, we get

or

Since , we have . Finally, substituting into Equation (4d) gives

or (we reject the negative root, since must be positive). Therefore, ,
and the dimensions of the box are . Its volume is 32 ft3.

Interpreting Our Results

Geometrically, this problem is one of finding the point on the surface 
at which has the largest value. The point is precisely

the point at which the level surface is tangent to the surface
.

The next example shows how the method of Lagrange multipliers can be used to
help find the absolute extreme values of a function on a closed, bounded set.

xy � 2xz � 2yz � 48
xyz � f(4, 4, 2) � 32

(4, 4, 2)f(x, y, z) � xyz2yz � 48
xy � 2xz �

4 ft � 4 ft � 2 ft
x � y � 4zz � 2

4z2 � 4z2 � 4z2 � 48

x � y � 2zy � 2zx � 0

x(y � 2z) � 0xy � 2xz

l

l(xy � 2yz) � l(2xz � 2yz)

x � y
l � 0z � 0

2z(x � y) � 02xz � 2yz

lyz � xz � xy � 0
l � 0;

l(xy � 2xz) � l(xy � 2yz)

 xyz � l(2xz � 2yz)

 xyz � l(xy � 2yz)

 xyz � l(xy � 2xz)

zyx

 xy � 2xz � 2yz � 48

 xy � l(2x � 2y)

 xz � l(x � 2z)

 yz � l(y � 2z)

lzyx

yz i � xz j � xyk � l[(y � 2z)i � (x � 2z)j � (2x � 2y)k]

§f(x, y, z) � l§t(x, y, z)

§t(x, y, z) � (y � 2z)i � (x � 2z)j � (2x � 2y)k
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From the table we see that has an absolute minimum value of 0 attained at and
an absolute maximum value of 10 attained at and .

Optimizing a Function Subject to Two Constraints
Some applications involve maximizing or minimizing an objective function subject
to two or more constraints. Consider, for example, the problem of finding the extreme
values of subject to the two constraints

and

It can be shown that if has an extremum at subject to these constraints, then
there are real numbers (Lagrange multipliers) and such that

(9)§f(a, b, c) � l§t(a, b, c) � m§h(a, b, c)

ml

(a, b, c)f

h(x, y, z) � lt(x, y, z) � k

f(x, y, z)

f

(13, �1)(�13, �1)
(0, 1)f

EXAMPLE 5 Find the absolute extreme values of sub-
ject to the constraint .

Solution The inequality defines the disk , which is a closed, bounded
set with boundary given by the circle . So, following the procedure given
in Section 13.8, we first find the critical number(s) of inside . Setting

simultaneously gives as the only critical point of in .
Next, we find the critical numbers of on the boundary of using the method of

Lagrange multipliers. Writing , we have

and

The equation and the constraint equation give the system

(8a)

(8b)

(8c)
Equation (8a) gives

that is, or . If , then Equation (8c) gives . Next, if ,
then Equation (8b) gives

or

in which case . So has the critical points , , and
on the boundary of .

Finally, we construct the following table.
D(13, �1)

(�13, �1)(0, 2)(0, �2)fx � 
13

y � �12(y � 1) � 4y

l � 2y � 
2x � 0l � 2x � 0

2x(l � 2) � 0

x2 � y2 � 4

 2(y � 1) � 2ly

 4x � 2lx

§f(x, y) � lt(x, y)

§t(x, y) � 2xi � 2yj§f(x, y) � 4xi � 2(y � 1)j

t(x, y) � x2 � y2 � 4
Df

Df(0, 1)

 fy(x, y) � 2y � 2 � 2(y � 1) � 0

 fx(x, y) � 4x � 0

Df
x2 � y2 � 4

Dx2 � y2 	 4

x2 � y2 	 4
f(x, y) � 2x2 � y2 � 2y � 1

(x, y) f(x, y) � 2x2 � y2 � 2y � 1

(0, 2)

(0, �2)

(13, �1)

(�13, �1)

(0, 1) 0

10

10

9

1
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Geometrically, we are looking for the extreme values of on the curve of
intersection of the level surfaces and . Condition (9) is a
statement that at an extremum point , the gradient of must lie in the plane
determined by the gradient of and the gradient of . (See Figure 9.) The vector equa-
tion (9) is equivalent to three scalar equations. When combined with the two constraint
equations, this leads to a system of five equations that can be solved for the five
unknowns , , , , and .mlzyx

ht

f(a, b, c)
h(x, y, z) � lt(x, y, z) � k

f(x, y, z)h(x, y, z) � l

g(x, y, z) � k0

y

z

x

C

f

hμ
P

g¬

FIGURE 9
If has an extreme value at ,
then 

.m§h(a, b, c)
§f(a, b, c) � l§t(a, b, c) �

P(a, b, c)f

EXAMPLE 6 Find the maximum and minimum values of the function
subject to the constraints and .

Solution Write the constraint equations in the form

and

Then the equation becomes

Equating like components and rewriting the constraint equations lead to the following
system of five equations in the five variables, , , , , and :

(10a)

(10b)

(10c)

(10d)

(10e)

From Equation (10c) we have . Next, substituting this value of into Equations
(10a) and (10b) gives

or (11a)

and

or (11b)

Solving Equations (11a) and (11b) for and gives and . Substi-
tuting these values of and into Equation (10e) yields

or

Therefore, , so and . Using Equation (10d),
we have

 �
1

2
 a1 


6

117
b

 z �
1

2
 (1 � x � y) �

1

2
 a1 �

2

117



8

117
b

y � 
8>117x � 
2>117m � 
117>4
m2 �

17

16
 1 � 16 � 16m2

 a 1

2m
b2

� a 2
m
b2

� 4

yx
y � 2>mx � 1>(2m)yx

4 � 2my2 � �2 � 2my

1 � 2mx3 � 2 � 2mx

ll � 2

 x2 � y2 � 4

 x � y � 2z � 1

 4 � 2l

 2 � �l � 2my

 3 � l � 2mx

mlzyx

 � (l � 2mx)i � (�l � 2my)j � 2lk

 3i � 2j � 4k � l(i � j � 2k) � m(2x i � 2y j)

§f(x, y, z) � l§t(x, y, z) � m§h(x, y, z)

h(x, y, z) � x2 � y2 � 4t(x, y, z) � x � y � 2z � 1

x2 � y2 � 4x � y � 2z � 13x � 2y � 4z
f(x, y, z) �
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The value of at the point is

and the value of at the point is

Therefore, the maximum value of is , and the minimum value of is
.2(1 � 117)

f2(1 � 117)f

3a� 2

117
b � 2a� 8

117
b � 4a1

2
�

3

117
b � 2 �

34

117
� 2(1 � 117)

1� 2117
, � 8117

, 12 � 3117 2f

3a 2

117
b � 2a 8

117
b � 4a1

2
�

3

117
b � 2 �

34

117
� 2(1 � 117)

1 2117
, 8117

, 12 � 3117 2f

1. What is a constrained maximum (minimum) value problem?
Illustrate with examples.

2. Describe the method of Lagrange multipliers for finding the
extrema of subject to the constraint . State
the method for the case in which and are functions of
three variables.

3. The figure at the right shows the contour map of a function 
and the curve of the equation . Use the figure to
obtain estimates of the maximum and minimum values of 
subject to the constraint .t(x, y) � 4

f
t(x, y) � 4

f

tf
t(x, y) � cf(x, y)

x

y

2

4

4

g(x, y) � 4

2�2�4 0

�2

�4

k � �6 k � �4
k � �2

k � 2
k � 4

k � 6

13.9 CONCEPT QUESTIONS

Videos for selected exercises are available online at www.academic.cengage.com/login.V

In Exercises 1–4, use the method of Lagrange multipliers to find
the extrema of the function subject to the given constraint.
Sketch the graph of the constraint equation and several level
curves of . Include the level curves that touch the graph of the
constraint equation at the points where the extrema occur.

1. ;

2. ;

3. ;

4. ;

In Exercises 5–16, use the method of Lagrange multipliers to
find the extrema of the function subject to the given constraint.

5. ;

6. ;

7. ;

8. ;

9. ;

10. ;

11. ; x2 � 4y2 � z � 0f(x, y, z) � x � 2y � z

x4 � y4 � 1f(x, y) � x2 � y2

x2 � y2 � 8f(x, y) � x2 � xy � y2

4x2 � 9y2 � 36f(x, y) � 8x � 9y

x2 � 4y2 � 1f(x, y) � xy

x2 � y2 � 1f(x, y) � x2 � y2

2x � 3y � 6f(x, y) � xy

f

x2 � y2 � 4f(x, y) � xy

xy � 1f(x, y) � x2 � y2

2x � 4y � 5f(x, y) � x2 � y2

x2 � y2 � 1f(x, y) � 3x � 4y

f

f
12. ;

13. ;

14. ;

15. ;

16. ;

In Exercises 17–20, use the method of Lagrange multipliers to
find the extrema of the function subject to the given constraints.

17. ; ,

18. ; ,

19. ; ,

20. ; ,

In Exercises 21–22, use the method of Lagrange multipliers to find
the extrema of the function subject to the inequality constraint.

21. ;

22. ; 4x2 � y2 	 4f(x, y) � x2y

x2 � y2 	 9f(x, y) � 3x2 � 2y2 � 2x � 1

x � 2y � 3z � �4
2x � y � z � 2f(x, y, z) � x2 � y2 � z2

y2 � z2 � 1xz � 1f(x, y, z) � yz � xz

x � z � 2x2 � y2 � 1f(x, y, z) � x � y � z

 y2 � z2 � 9x � y � z � 1f(x, y, z) � 2x � y

x2 � y2 � z2 � 8f(x, y, z) � xy � xz

x2 � 2y2 �
1

2
 z2 � 6f(x, y, z) � xyz

y � x � 1f(x, y, z) � x2 � y2 � z2

x2 � 2y2 � 4z2 � 1f(x, y, z) � x � 2y � 2z

x2 � y2 � z2 � 1f(x, y, z) � x � y � z

13.9 EXERCISES

www.academic.cengage.com/login
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23. Find the point on the plane that is closest to
the origin.

24. Find the maximum and minimum distances from the origin
to the curve .

25. Find the point on the plane that is closest to
the point .

26. Find the points on the surface that
are closest to the origin. What is the shortest distance from
the origin to the surface?

27. Find the points on the surface that are closest to
the origin. What is the shortest distance from the origin to
the surface?

28. Find three positive real numbers whose sum is 500 and
whose product is as large as possible.

29. Find the dimensions of a closed rectangular box of maximum
volume that can be constructed from 48 ft2 of cardboard.

30. Find the dimensions of an open rectangular box of maximum
volume that can be constructed from 12 ft2 of cardboard.

31. An open rectangular box having a volume of 108 in3. is to
be constructed from cardboard. Find the dimensions of such
a box if the amount of cardboard used in its construction is
to be minimized.

32. Find the dimensions of the rectangular box of maximum
volume with faces parallel to the coordinate planes that can
be inscribed in the ellipsoid

33. Solve the problem posed in Exercise 32 for the general case
of an ellipsoid with equation

where , , and are positive real numbers.

34. Find the dimensions of the rectangular box of maximum
volume lying in the first octant with three of its faces lying
in the coordinate planes and one vertex lying in the plane

. What is the volume of the box?

35. Solve the problem posed in Exercise 34 for the general case
of a plane with equation

where , , and are positive real numbers.

36. An open rectangular box is to have a volume of 12 ft3. If the
material for its base costs three times as much (per square
foot) as the material for its sides, what are the dimensions of
the box that can be constructed at the minimum cost?

37. A rectangular box is to have a volume of 16 ft3. If the mate-
rial for its base costs twice as much (per square foot) as the
material for its top and sides, find the dimensions of the box
that can be constructed at the minimum cost.

cba

x

a
�

y

b
�

z

c
� 1

2x � 3y � z � 6

cba

x2

a2 �
y2

b2 �
z2

c2 � 1

x2

4
�

y2

9
�

z2

16
� 1

xy2z � 4

z2 � xy � x � 4y � 21

(2, 3, �1)
x � 2y � z � 5

5x2 � 6xy � 5y2 � 10 � 0

x � 2y � z � 4 38. Maximizing Profit The total daily profit (in dollars) realized by
Weston Publishing in publishing and selling its dictionaries
is given by the profit function

where stands for the number of deluxe editions and 
denotes the number of standard editions sold daily. Weston’s
management decides that publication of these dictionaries
should be restricted to a total of exactly 400 copies per day.
How many deluxe copies and how many standard copies
should be published each day to maximize Weston’s daily
profit?

39. Cobb-Douglas Production Function Suppose units of labor and
units of capital are required to produce

units of a certain product. If each unit of labor costs $200
and each unit of capital costs $300 and a total of $60,000 is
available for production, determine how many units of labor
and how many units of capital should be used to maximize
production.

40. a. Find the distance between the point and the 
line using the method of Lagrange
multipliers.

b. Use the result of part (a) to find the distance between the
point and the line .

41. Let and .
a. Use the method of Lagrange multipliers to find the

point(s) where may have a relative maximum or relative
minimum subject to the constraint .

b. Plot the graph of and the level curves of 
for , using the viewing window

. Then use this to explain why the
point(s) found in part (a) does not give rise to a relative
maximum or a relative minimum of 

c. Verify the observation made in part (b) analytically.

42. Let , and let .
a. Show that has no maximum or minimum values when

subjected to the constraint .
b. What happens when you try to use the method of

Lagrange multipliers to find the extrema of subject to
? Does this contradict Theorem 1?

43. Find the point on the line of intersection of the planes
and that is closest to the

origin.

44. Find the shortest distance from the origin to the curve with
equation . Explain why the method of
Lagrange multipliers fails to give the solution.

45. a. Find the maximum distance from the origin to the
Folium of Descartes, , where ,

and , using symmetry.
b. Verify the result of part (a), using the method of

Lagrange multipliers.

y � 0x � 0
a � 0x3 � y3 � 3axy � 0

y � (x � 1)3>2

2x � 3y � z � 4x � 2y � 3z � 9

t(x, y) � 1
f

t(x, y) � 1
f

t(x, y) � x � yf(x, y) � x2 � y2

f

[�4, 4] � [�4, 4]
k � �2, �1, 0, 1, 2

f(x, y) � kt

t(x, y) � 1
f

t(x, y) � x � x5 � yf(x, y) � x � y

2x � 3y � 6 � 0(2, �1)

ax � by � c � 0
P(x1, y1)

f(x, y) � 100x3>4y1>4
y

x

yx

P(x, y) � �0.005x2 � 0.003y2 � 0.002xy � 14x � 12y � 200
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In Exercises 46 and 47, use the fact that a vector in -space has
the form and the gradient of a function of 
variables, , is defined by .
Also, assume that Theorem 1 holds for the -dimensional case.

46. a. Find the maximum value of

subject to the constraints

and

b. Use the result of part (a) to show that if 
are any numbers, then

Hint: Put and .

Note: This inequality is called the Cauchy-Schwarz Inequality.
(Compare this with Exercise 9 in the Challenge Problems for 
Chapter 4.)

47. a. Let and be positive numbers satisfying
. Find the minimum value of

,

subject to the constraint , where is a constant.
b. Use the result of part (a) to show that if and are posi-

tive numbers, then

where and and .

48. a. Let be positive numbers. Find the maxi-
mum value of

subject to the constraint , where
is a constant.c

x1 � x2 � p � xn � c

f(x1, x2, p , xn) � 1n x1 x2
p xn

x1, x2, p , xn

(1>p) � (1>q) � 1q � 0p � 0

xp

p
�

yq

q
� xy

yx
cxy � c

y � 0x � 0f(x, y) �
xp

p
�

yq

q

(1>p) � (1>q) � 1
qp

yi �
bi

B a
n

i�1
b2

i

x i �
ai

B a
n

i�1
a2

i

a
n

i�1
aibi 	 B a

n

i�1
a2

i  B a
n

i�1
b2

i

b1, b2, p , bn

a1, a2, p , an,

a
n

i�1
y2

i � y2
1 � y2

2 � p � y2
n � 1

a
n

i�1
x2

i � x2
1 � x2

2 � p � x2
n � 1

� a
n

i�1
x iyi � x1y1 � x2y2 � p � xnyn

f(x1, x2, p , xn, y1, y2, p , yn)

n
§f � � fx1

, fx2
, p , fxn

�f(x1, x2, p , xn)
n√ � �√1, √2, p , √n�

n b. Use the result of part (a) to show that if are
positive numbers, then

This shows that the geometric mean of positive num-
bers cannot exceed the arithmetic mean of the numbers.

49. Snell’s Law of Refraction According to Fermat’s Principle in
optics, the path taken by a ray of light (see the figure
below) in traveling across the plane separating two optical
media is such that the time taken is minimal. Using this
principle, derive Snell’s Law of Refraction:

where is the angle of incidence, is the angle of refrac-
tion, and and are the speeds of light in the two media.

Hint: Show that the time taken by the ray of light in traveling from
to is

Then minimize subject to 
, where is a constant.

In Exercises 50–52, determine whether the statement is true or
false. If it is true, explain why it is true. If it is false, give an
example to show why it is false.

50. Suppose and have continuous first partial derivatives 
in some region in the plane. If has an extremum at a
point subject to the constraint , then there
exists a constant such that is a critical point of

; that is, , , and
.

51. If gives rise to a (constrained) extremum of subject
to the constraint , then also gives rise to an
unconstrained extremum of .

52. If gives rise to a (constrained) extremum of sub-
ject to the constraint , then and

simultaneously.fy(a, b) � 0
fx(a, b) � 0t(x, y) � 0

f(a, b)

f
(a, b)t(x, y) � 0

f(a, b)

Fl(a, b) � 0
Fy(a, b) � 0Fx(a, b) � 0F � f � lt

(a, b)l

t(x, y) � c(a, b)
fD

tf

kb tan u2 � k
a tan u1 �t � f(cos u1, cos u2)

t �
a

√1 cos u1
�

b

√2 cos u2

QP

k

a

P

b

Q

O

¨1

¨2

Medium I

Medium II

√2√1

u2u1

√1

sin u1
�

√2

sin u2

POQ

n

1n x1 x2
p xn 	

x1 � x2 � p � xn

n

x1, x2, p , xn
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CHAPTER 13 REVIEW

In Exercises 1–17, fill in the blanks.

1. a. A function of two variables, and , is a 
that assigns to each ordered pair in the domain
of , exactly one real number .

b. The number is called a variable,
and and are variables. The totality of the
numbers is called the of the function .

c. The graph of is the set .

2. a. The curves in the -plane with equation ,
where is a constant in the range of , are called the

of .
b. A level surface of a function of three variables is the

graph of the equation , where is a constant in
the range of .

3. means there exists a number
such that can be made as close to 

as we please by restricting to be sufficiently close to
.

4. If approaches as approaches along one
path, and approaches as approaches 
along another path with , then 

exist.

5. a. is continuous at if 
.

b. is continuous on a region if is continuous at
every point in .

6. a. A polynomial function is continuous ; a rational
function is continuous at all points in its .

b. If is continuous at and is continuous at ,
then the composite function is continuous at

.

7. a. The partial derivative of with respect to is
if the limit exists. The partial derivative

gives the slope of the tangent line to 
the curve obtained by the intersection of the plane

and the graph of at ; 
it also measures the rate of change of in the

-direction with held at .
b. To compute where is a function of and , treat

as a constant and differentiate with respect to
in the usual manner.

8. If and its partial derivatives , , , and are con-
tinuous on an open region , then for
all in .R(x, y)

fxy(x, y) �R
fyxfxyfyfxf(x, y)

yxf�f>�x
y

f(x, y)
z � f(x, y)

(�f>�x)(a, b)

xf(x, y)

h � t � f
f(a, b)t(a, b)f

(x, y)
fRf(x, y)

lim(x, y)→(a, b) f(x, y) �(a, b)f(x, y)

lim(x, y)→(a, b) f(x, y)L1 � L2

(a, b)(x, y)L2f(x, y)
(a, b)(x, y)L1f(x, y)

(x, y)
f(x, y)

lim(x, y)→(a, b) f(x, y) � L

k
f

f
fk

f(x, y) � kxy

S �f
fz

yx
z � f(x, y)

f(x, y)f

yxf

9. a. The total differential of is 
.

b. If , then 
.

c. , where 
and are functions of and 

such that and
.

d. The function is differentiable at if 
can be expressed in the form , where

and as .

10. a. If is a function of and , and and are continuous
on an open region , then is in .

b. If is differentiable at , then is at .

11. a. If , , and , then under suitable
conditions the Chain Rule gives .

b. If , , and , then
.

c. If , where is differentiable, then 
, provided that .

d. If where is differentiable, and defines
implicitly as a function of and , then 

and , provided that
.

12. a. If is a function of and and is a unit
vector, then the directional derivative of in the direction
of is if the limit exists.

b. The directional derivative measures the rate of
change of at in the direction of .

c. If is differentiable, then .
d. The gradient of is .
e. In terms of the gradient, .

13. a. The maximum value of is , and this
occurs when has the same direction as .

b. The minimum value of is , and this
occurs when has the direction of .

14. a. is to the level curve at .
b. is to the level surface at .
c. The tangent plane to the surface at the

point is ; the normal line passing
through has symmetric equations .

15. a. If for all points in an open disk contain-
ing , then has a at .

b. If for all points in the domain of , then 
has an at .(a, b)

fff(x, y) � f(a, b)
(a, b)f(a, b)

f(x, y) 	 f(a, b)

P(a, b, c)
P(a, b, c)

F(x, y, z) � 0
PF(x, y, z) � 0§F

Pf(x, y) � c§f

u
Du f(x, y)

u
Du f(x, y)

Du f(x, y) �
§f(x, y) �f(x, y)
Du f(x, y) �f

f
Du f(a, b)

Du f(x, y) �u
f

u � u1i � u2 jyxf

�z>�y �
�z>�x �yxz

FFF(x, y, z) � 0, 

dy>dx �FF(x, y) � 0
�w>�u �

y � h(u, √)x � t(u, √)w � f(x, y)
dw>dt �

y � h(t)x � t(t)w � f(x, y)

(a, b)f(a, b)f
RfR

fyfxyxf

(�x, �y) →
�z �

�z(a, b)z � f(x, y)
lim(�x, �y)→(0, 0) e2 �

lim(�x, �y)→(0, 0) e1 �
e2e1

�z � fx(x, y) �x � fy(x, y) �y � e1 �x � e2 �y

�z ��z � f(x � �x, y � �y) � f(x, y)

dz �z � f(x, y)dz

CONCEPT REVIEW
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c. If is defined on an open region containing the point
, then is a critical point of if (1) and/or 

at or (2) both
and equal .

d. If has a relative extremum at , then must be
a of .

e. To determine whether a critical point of does give rise
to a relative extremum, we use the 

.

16. a. If is continuous on a closed, bounded set in the
plane, then has an absolute maximum value 
at some point in , and has an absolute min-
imum value at some point in .

b. To find the absolute extreme values of on a closed,
bounded set , (1) find the values of at the 

in , (2) find the extreme
values of on the of . Then the largest and
smallest values found in (1) and (2) give the 
value of and the value of on .Dff

Df
D

fD
f

D
fD

f
Df

f
f

(a, b)(a, b)f
fy(a, b)fx(a, b)

(a, b)
fyfxf(a, b)(a, b)

Rf 17. a. If has an extremum at a point lying on the
curve with equation , then the extremum is
called a extremum.

b. If has an extremum at subject to the constraint
, then , where is a real

number called a Lagrange .
c. To find the maximum and minimum values of subject

to the constraint , we solve the system of
equations and for , ,
and . We then evaluate at each of the

found in the last step. The largest
value yields the constrained of , and the
smallest value yields the constrained of .f

f

l

yxt(x, y) � c§f(x, y) �
t(x, y) � c

f

l§f(a, b) �t(x, y) � c
(a, b)f

t(x, y) � c
(a, b)f(x, y)

In Exercises 1–4, find and sketch the domain of the function.

1. 2.

3.

4.

In Exercises 5 and 6, sketch the graph of the function.

5. 6.

In Exercises 7–10, sketch several level curves for the function.

7. 8.

9. 10.

In Exercises 11–14, find the limit or show that it does not exist.

11. 12.

13. 14.

In Exercises 15 and 16, determine where the function is 
continuous.

15.

16. f(x, y, z) � ex>y cos z � 1x � y

f(x, y) �
ln(x � y)

(x2 � y2)3>2

lim
(x, y, z)→(0, 0, 0)

 
x2 � 2y2 � 3z2

x2 � y2 � z2lim
(x, y)→(1, 0�)

 
x2y � x3

1x � 1y

lim
(x, y)→(0, 0)

 
x2y2

x4 � 3y4lim
(x, y)→(0, 0)

1xy � 4

2y � 3

f(x, y) � ln xyf(x, y) � ex2�y2

f(x, y) � y2 � x2f(x, y) � x2 � 2y

f(x, y) �21 � x2 � y2f(x, y) � 4 � x2 � y2

f(x, y) � ln(xy � 1)

f(x, y) � sin�1 x � tan�1 y

f(x, y) �
ln(x � 2y � 4)

y � x
f(x, y) �

29 � x2 � y2

x2 � y2

In Exercises 17–22, find the first partial derivatives of the 
function.

17. 18.

19. 20.

21. 22.

In Exercises 23–26, find the second partial derivatives of the 
function.

23.

24.

25.

26.

27. If show that

28. Show that the function satisfies the one-
dimensional heat equation .

In Exercises 29 and 30, show that the function satisfies Laplace’s
equation .

29. 30. u � z tan�1 
y

x
u � 2z2 � x2 � y2

uxx � uyy � uzz � 0

ut � c2uxx

u � e�t cos(x>c)

�2u

�x2 �
�2u

�y2 �
�2u

�z2 �
2
u

u �2x2 � y2 � z2, 

f(u, √, w) � ue�√ sin w

f(x, y, z) � x2yz3

f(x, y) � e�xy cos(2x � 3y)

f(x, y) � x4 � 2x2y3 � y2 � 2

f(r, s, t) � r cos st � s sinas

t
bf(x, y, z) �

x2 � y2

z2 � x2

f(u, √) � e2u cos(u2 � √2)f(r, s) � re�(r2�s2)

f(x, y) �
xy2

x2 � y2f(x, y) � 2x2y � 1x

REVIEW EXERCISES
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31. Find if .

32. Use differentials to approximate the change in
if changes from to

.

33. Use differentials to approximate .

34. Estimating Changes in Profit The total daily profit function (in
dollars) of Weston Publishing Company realized in publish-
ing and selling its English language dictionaries is given by

where denotes the number of deluxe copies and denotes
the number of standard copies published and sold daily. 
Currently, the number of deluxe and standard copies of the
dictionaries published and sold daily are 1000 and 1700,
respectively. Determine the approximate daily change in the
total daily profit if the number of deluxe copies is increased
to 1050 and the number of standard copies is decreased to
1650 per day.

35. Does a function such that exist? Explain.

36. According to Ohm’s Law, , where is the resis-
tance in ohms, is the electromotive force in volts, and 
is the current in amperes. If the errors in the measurements
made in a certain experiment in and are 2% and 1%,
respectively, use differentials to estimate the maximum 
percentage error in the calculated value of .

37. Let , where and . Use the
Chain Rule to find .

38. Let , where and
. Use the Chain Rule to find and .

39. Use partial differentiation to find if
.

40. Find and if .

In Exercises 41–44, find the gradient of the function at the 
indicated point.

41. ;

42. ;

43. ;

44. ;

In Exercises 45–48, find the directional derivative of the function
at the point in the indicated direction.

45. ; , in the direction of
.

46. ; , in the direction from 
to .

47. ; in the direction of
.v � i � 2j � 2k

P(2, 3, 4)f(x, y, z) � x2y2 � z2

Q(3, 1)
P(1, 3)P10, p2 2f(x, y) � e�x2

cos y

v � 3i � 4j
P(2, �1)f(x, y) � x3y2 � xy3

Pf

P(2, 1, 1)f(x, y, z) � x ln y � y ln z

P(2, 1, �3)f(x, y, z) � xy2 � yz2 � zx2

P10, p4 2f(x, y) � e�x tan y

P(1, 2)f(x, y) �2x2 � y2

f

x3z2 � yz3 � cos xz�z>�y�z>�x

x3 � 3x2y � 2xy2 � 2y3 � 9
dy>dx

�w>�√�w>�uy � 1u√
x � u2 � √2w � ex cos y � y sin ex

dz>dt
y � cos tx � e2tz � x2y � 1y

R

IV

IV
RR � V>I

§f � �yi � xjf

yx

P(x, y) � �0.0005x2 � 0.003y2 � 0.002xy � 14x � 12y � 200

(2.01)22(1.98)2 � (3.02)3

(1.9, �0.8)
(2, �1)(x, y)f(x, y) � x2 � 3xy � y2

z � x2 tan�1 y3dz 48. ; in the direction of
.

49. Find the direction in which increases
most rapidly at the point . What is the maximum rate
of increase?

50. Find the direction in which decreases most
rapidly at the point . What is the greatest rate of
decrease?

In Exercises 51–54, find equations for the tangent plane and the
normal line to the surface with the equation at the given point.

51. ;

52. ;

53. ;

54. ;

55. Let , and let .
a. Plot several level curves of and using the same view-

ing window.
b. Show analytically that each level curve of intersects all

level curves of at right angles.

56. Show that if , then an equation of the tangent
line to the level curve at the point 
is

In Exercises 57–60, find the relative extrema and saddle points
of the function.

57.

58.

59.

60.

In Exercises 61 and 62, find the absolute extrema of the function
on the set .

61. ;

62. ;

In Exercises 63–66, use the method of Lagrange multipliers to
find the extrema of the function subject to the constraints.

63. ;

64. ;

65. ;

66. ; ,
2x � y � z � 2

x � y � z � 1f(x, y, z) � 3x2 � 2y2 � z2

x � 2y � 3z � 1f(x, y, z) � xy � yz � xz

1

x2 �
1

y2 � 9f(x, y) �
1
x

�
1
y

x2 � y2 � 4f(x, y) � xy2

f

D � {(x, y) � x2 � y2 	 9}f(x, y) � (x2 � 3y2)e�x

D � {(x, y) � �1 	 x 	 1, 0 	 y 	 2}
f(x, y) � x2 � xy2 � y3

D

f(x, y) �
2
x

�
4
y

� xy

f(x, y) � x3 � 3xy � y2

f(x, y) � 8x3 � 6xy � y3

f(x, y) � x2 � xy � y2 � 5x � 8y � 5

fx(x0, y0)(x � x0) � fy(x0, y0)(y � y0) � 0

(x0, y0)f(x, y) � f(x0, y0)
§f(x0, y0) � 0

t

f

tf
t(x, y) � y2>x2f(x, y) � x2 � y2

P(1, 0, 1)z � xe�y

P(3, 1, 18)z � x2 � 3xy2

P(2, 3, 1)x2 � 2y2 � 3z2 � 19

P(1, 2, 1)2x2 � 4y2 � 9z2 � 27

(4, 3, 0)
f(x, y, z) � xeyz

(4, 1)
f(x, y) � 1x � xy2

v � �3, �1, 2�
P(2, 1, 0)f(x, y, z) � x2 ln y � xy2ez

cas
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67. Let . Show that
if has a relative maximum or a relative minimum at a point

, then and must satisfy the system of equations

simultaneously.

68. Let , where . For what value
of does have a relative minimum at ? A saddle
point at ? Are there any values of such that has a
relative maximum at ?

69. Find the point on the paraboloid

that is closest to the point .

70. Isothermal Curves Consider the upper half-disk
(see the figure). If the

temperature at points on the upper boundary is kept at
100°C and the temperature at points on the lower boundary
is kept at 50°C, then the steady-state temperature at
any point inside the disk is given by

T(x, y) � 100 �
100
p

tan�1 
1 � x2 � y2

2y

T(x, y)

H � {(x, y) � x2 � y2 	 1, y � 0}

(3, 0, 0)

z �
x2

4
�

y2

25

(0, 0)
fB(0, 0)

(0, 0)fB
B � 0f(x, y) � x2 � 2Bxy � y2

 Bx � 2Cy � E � 0

 2Ax � By � D � 0

y0x0(x0, y0)
f

f(x, y) � Ax2 � Bxy � Cy2 � Dx � Ey � F Show that the isothermal curves are arcs of cir-
cles that pass through the points . Sketch the isother-
mal curve corresponding to a temperature of 75°C.

In Exercises 71 and 72, determine whether the statement is true
or false. If it is true, explain why it is true. If it is false, give an
example to show why it is false.

71. The directional derivative of at the point in the
positive -direction is .

72. If we know the gradient of at the point ,
then we can compute the directional derivative of in any
direction at .P

f
P(a, b, c)f(x, y, z)

fx(a, b)x
(a, b)f(x, y)

x

y

1

T(x, y) � 50

T(x, y) � 100

�1 0

x � 
1
T(x, y) � k

1. Find and sketch the domain of

2. Describe the domain of

where , , and .

3. Suppose has continuous second partial derivatives 
in and . Then the second-order directional derivative
of in the direction of the unit vector is
defined to be

a. Find an expression in terms of the partial derivatives of 
for .

b. Find if and has the same
direction as .v � 2i � 3j

uf(x, y) � xy2 � exyD2
u f(1, 0)

D2
u f

f

D2
u f(x, y) � Du(Du f )

u � u1i � u2 jf
yx
f

e 	 fc 	 da 	 b

� 1d � y � 1z � e � 1f � z

H(x, y, z) � 1x � a � 1b � x � 1y � c

 � 
1

24x2 � 16x � 4y2 � 15

 � ln(x2 � 2x � y2)

 f(x, y) �236 � 4x2 � 9y2

4. Consider the quadratic polynomial function

Find conditions on the coefficients of such that has (a) a
relative maximum and (b) a relative minimum. What are the
coordinates of the point in terms of the coefficients of ?

5. Let , , and denote the sides of a triangle of area , and
let , , and denote the angles opposite them. If

, show that

where is the radius of the circumscribing circle.

b

R

c
a

© å

∫

R

�f

�a
�

1

2
 R cos a

A � f(a, b, c)
gba

Acba

f

ff

f(x, y) � Ax2 � 2Bxy � Cy2 � 2Dx � 2Ey � F

CHALLENGE PROBLEMS
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6. Linda has 24 feet of fencing with which to enclose a trian-
gular flower garden. What should the lengths of the sides of
the garden be if the area is to be as large as possible?
Hint: Heron’s formula states that the area of a triangle with sides ,

, and is given by , where
is the semiperimeter.

7. Find the directional derivative at of the function11, 2, p4 2
s � 1

2(a � b � c)
A � 1s(s � a)(s � b)(s � c)cb

a

10. Consider the problem of determining the maximum and 
the minimum distances from the point to the
ellipsoid

a. Show that the solutions are

, ,

where satisfies

b. Use the result of part (a) to solve the problem with
, , , and .(x0, y0, z0) � (3, 2, 4)c � 1b � 3a � 2

a2x2
0

(a2 � l)2 �
b2y2

0

(b2 � l)2 �
c2z2

0

(c2 � l)2 � 1

l

z �
c2z0

c2 � l
y �

b2y0

b2 � l
x �

a2x0

a2 � l

x2

a2 �
y2

b2 �
z2

c2 � 1

(x0, y0, z0)

in the direction of increasing 
along the curve in three-dimensional space described by 
the position vector at .

8. Let

Use the definition of partial derivatives to show that
and .

9. Show that Laplace’s equation in

cylindrical coordinates takes the form

�2u

�r 2 �
1
r

�
�u

�r
�

1

r 2 �
�2u

�u2 �
�2u

�z2 � 0

�2u

�x2 �
�2u

�y2 �
�2u

�z2 � 0

fyx(0, 0) � 1fxy(0, 0) � �1

f(x, y) � •
xy(x2 � y2)

x2 � y2 (x, y) � (0, 0)

0 (x, y) � (0, 0)

r(1)r(t) � �t, t 2, t 3�

tf(x, y, z) � x2 � y cos z





IN THIS CHAPTER we extend the notion of the integral of a function of one 

variable to the integral of a function of two or three variables. Applications of 

double and triple integrals include finding the area of a surface, finding the 

center of mass of a planar object, and finding the centroid of a solid. We end 

the chapter by looking at how certain multiple integrals can be more easily 

evaluated by a change of variables.

14 Multiple Integrals

A lawn sprinkler sprays water
in a circular pattern. If we

know the amount of the water
per hour that the sprinkler

delivers to any point within the
circular region, can we find the
total amount of water accumu-

lated per hour in that part of
the lawn? We will consider

such problems in this chapter. Ph
ot
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14.1 Double Integrals

An Introductory Example
Suppose a piece of straight, thin wire of length is placed on the -axis of a
coordinate system, as shown in Figure 1. Further suppose that the wire has linear mass
density given by at for , where is a nonnegative continuous function
on . Let , where and , be a regular parti-
tion of . Then the continuity of tells us that, for each in the th
subinterval , where is an evaluation point in , provided is large
enough. Therefore, the mass of the piece of wire lying on is

This leads to the definition of the mass of the wire as

Thus, the mass of the curve has the same numerical value as that of the area under the
graph of the (nonnegative) density function shown in Figure 1.

Now let’s consider a thin rectangular plate occupying the region

(See Figure 2.) If the plate is homogeneous (having a constant mass density of g/cm2),
then its mass is given by

mass density area�m � k(b � a)(d � c)

k

R � {(x, y) � a � x � b, c � y � d}

f

m � lim
n→�

 a
n

k�1
�mk � lim

n→�
 a

n

k�1
 f(ck) �x � �

b

a

f(x) dx

�x �
b � a

n
�mk � f(ck) �x

[xk�1, xk]
n[xk�1, xk]ck[xk�1, xk]

kxf(x) � f(ck)f[a, b]
b � xna � x0P � {x0, x1, x2, p , xn}[a, b]

fa � x � bxf(x)

x(b � a)

FIGURE 1
The mass of a straight wire of length

is given by , where
is the density of the wire at any

point for .a � x � bx
f(x)

�b
a f(x) dx(b � a)

FIGURE 2

Observe that has the same numerical value as that of the volume of the rectangular
box bounded above by the graph of the constant function and below by .
(See Figure 3a.) Next, instead of being constant, suppose that the mass density of the

Rf(x, y) � k
m

FIGURE 3
The mass of the plate is numerically
equal to that of the volume of the solid

region lying directly above and 
below the surface .z � f(x, y)

R

R

0 x

y � f(x)

a b

y

0

d

c

R

R

a b x

y

(b) The plate placed in the xy-plane(a) A thin rectangular plate

x

z

S

(a) (b)

y y

x

z

RR

z � f (x, y)
z � k
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plate is given by the mass density function . Then it seems reasonable to conjecture
that the mass of the plate is given by the “volume” of the solid region lying directly
above and below the graph of . (See Figure 3b.) We will show in Sec-
tion 14.4 that this is indeed the case.

Volume of a Solid Between a Surface and a Rectangle
We will now show that the volume of a solid can be defined as a limit of Riemann
sums. Suppose that is a nonnegative continuous function* of two variables that is
defined on a rectangle

and suppose that on . Let

be a regular partition of the interval into subintervals of length 
, and let

be a regular partition of the interval into subintervals of length .
The grid comprising segments of the vertical lines for and the horizon-
tal lines for partition into subrectangles , , , ,

, , where as
shown in Figure 4. The area of each subrectangle is . This partition is
called a regular partition of .R

�A � �x �y
Rij � [x i�1, x i] � [yj�1, yj] � {(x, y) � x i�1 � x � x i, yj�1 � y � yj}Rmnp 

RijpR12R11N � mnR0 � j � ny � yj

0 � i � mx � x i

�y � (d � c)>nn[c, d]

c � y0 � y1 � p � yj�1 � yj � p � yn � d

(b � a)>m �x �m[a, b]

a � x0 � x1 � p � x i�1 � x i � p � xm � b

Rf(x, y) � 0

R � [a, b] � [c, d] � {(x, y) � a � x � b, c � y � d}

f
S

z � f(x, y)R
S

f

*As in the case of the integral of a function of one variable, these assumptions will simplify the discussion.

FIGURE 4
A partition of RP � {Rij}

The partition divides the solid between the graph
of and into solids; the solid is bounded below by and
bounded above by the part of the surface that lies directly above . (See
Figure 5.)

Rijz � f(x, y)
RijSijN � mnRz � f(x, y)

SP � {R11, R12, p , Rij, p , Rmn}

0 x

y

d � yn

yj

c � y0

y1

yj�1

yn�1

y2

a � x0 x1 xi�1

Ri1

Ri2

Rm1

Rm2

Rij Rmj

Rin

R21

R22

R2j

R2n

R11

R12

R1j

R1n Rmn

xm�1. . .. . .

. . .. . .

. . .. . .

. . .. . .

. . .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

xm � bxi

�x

�y

x2

(xij, yij)* *
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Let be an evaluation point in . Then the parallelepiped with base ,
height , and volume

gives an approximation of the volume of . (See Figure 6.)
Therefore, the volume of is approximated by the volume of the sum of 

parallelepipeds; that is,

(1)

If we take and to be larger and larger, then, intuitively, we can expect the approx-
imation (1) to improve. This suggests the following definition.

nm

V � a
m

i�1
a

n

j�1
 f(x*ij , y*ij ) �A

N � mnSV
Sij

f(x*ij , y*ij ) �A

f(x*ij , y*ij )
RijRij(x*ij , y*ij )

FIGURE 6
The volume of is approximated 
by the volume of the parallelepiped
with base and height .f(x*ij , y*ij )Rij

Sij

DEFINITION Volume Under the Graph of 

Let be defined on the rectangle and suppose on . Then the vol-
ume of the solid that lies directly above and below the surface 
is

(2)

if the limit exists.

V � lim
m, n→�

 a
m

i�1
a

n

j�1
 f(x*ij , y*ij ) �A

z � f(x, y)RSV
Rf(x, y) � 0Rf

z � f(x, y)

Because of the assumption that be continuous, it can be shown that the limit in
Equation (2) always exists regardless of how the evaluation points in , for

and , are chosen.1 � j � n1 � i � m
Rij(x*ij , y*ij )

f

EXAMPLE 1 Approximate the volume of the solid lying under the graph of the
elliptic paraboloid and above the rectangle ,

. Use the partition of that is obtained by dividing into four subrec-
tangles with the lines and , and choose the evaluation point to be
the upper right-hand corner of . (See Figure 7.)Rij

(x*ij , y*ij )y � 1x � 1
2

RRP0 � y � 2}
R � {(x, y) � 0 � x � 1z � 8 � 2x2 � y2

V

FIGURE 5

x

z

S

(a) (b) A typical solid Sij

y y

x

z

Sij

Rij

The solid S is the union of N � mn 
solids (shown here with m � 3, n � 4)

(xij
*, yij

*, f (xij
*, yij

*))

Sij

Rij
(xij

*, yij
*)

f (xij
*, yij

*)
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Solution Here,

and

so . Also, , , and , and , , and

. Taking , ,

, and , we have(x*22, y*22) � (x2, y2) � (1, 2)(x*21, y*21) � (x2, y1) � (1, 1)

(x*12, y*12) � (x1, y2) � 112, 2 2(x*11, y*11) � (x1, y1) � 112, 1 2y2 � 2

y1 � 1y0 � 0x2 � 1x1 � 1
2x0 � 0�A � 112 2(1) � 1

2

�y �
2 � 0

2
� 1�x �

1 � 0

2
�

1

2

FIGURE 7

 � a13

2
b a1

2
b 	 a7

2
b a1

2
b 	 (5)a1

2
b 	 (2)a1

2
b �

17

2

 � f a1

2
, 1b �A 	 f a1

2
, 2b �A 	 f(1, 1) �A 	 f(1, 2) �A

 V � a
2

i�1
a

2

j�1
 f(x*ij , y*ij ) �A � f(x*11, y*11) �A 	 f(x*12, y*12) �A 	 f(x*21, y*21) �A 	 f(x*22, y*22) �A

The approximations to the volume in Example 1 get better and better as and 
increase, as shown in Figure 8.

nm

FIGURE 8
The approximation of using the sum of the volumes of 16 parallelepipeds in 
(a), 64 parallelepipeds in (b), and 256 parallelepipeds in (c).

V

Note Suppose that the mass density of a rectangular plate 
is g/cm2. Then the result of Example 1 tells us 

that the mass of the plate is approximately g.17
2

f(x, y) � 8 � 2x2 � y20 � y � 2}
R � {(x, y) � 0 � x � 1,

(a) (b)The region R is divided into 
four subrectangles

The solid lying under the graph of 
z � 8 � 2x2 � y2 and above R 

y

x
1

2
R11

R11

R21

R21

R22

R22

R12

R12

x

y z

 2 8

1

1

(1, 2)

(1, 1)
1_
2(      ), 1

1_
2(      ), 2
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Notes
1. If the double integral of over exists, then is said to be integrable over . It

can be shown, although we will not do so here, that if is continuous on , then 
is integrable over .

2. If is integrable, then the Riemann sum (3) is an approximation of the double
integral (4).

3. If on , then gives the volume of the solid lying
directly above and below the surface .

4. We use the (double) integral sign to denote the limit, whenever it exists, because
it is related to the definite integral, as you will see in Section 14.2.

z � f(x, y)R
��R

f(x, y) dARf(x, y) � 0

f
R

fRf
RfRf

DEFINITION Double Integral of Over a Rectangle 

Let be a continuous function of two variables defined on a rectangle . The
double integral of over is

(4)

if this limit exists for all choices of the evaluation point in .Rij(x*ij , y*ij )

��
R

 f(x, y) dA � lim
m, n→�

 a
m

i�1
a

n

j�1
f(x*ij , y*ij ) �A

Rf
Rf

Rf

EXAMPLE 2 Find an approximation for , where 
, using the Riemann sum of over with 

and taking the evaluation point to be the center of .

Solution Here,

and , , , , , . The partition is shown in Fig-

ure 9. Using Equation (3) with , , and�A � �x �y � (1)112 2 � 1
2f(x, y) � x � 4y

Py2 � 1y1 � 1
2y0 � 0x2 � 2x1 � 1x0 � 0

�y �
1 � 0

2
�

1

2
�x �

2 � 0

2
� 1

Rij(x*ij , y*ij )m � n � 2
Rf(x, y) � x � 4yx � 2, 0 � y � 1}

R � {(x, y) � 0 ���R
(x � 4y) dA

FIGURE 9
The partition 

of RP � {R11, R12, R21, R22}

DEFINITION Riemann Sum

Let be a continuous function of two variables defined on a rectangle , and let
be a regular partition of . A Riemann sum of over with respect

to the partition is a sum of the form

(3)

where is an evaluation point in .Rij(x*ij , y*ij )

a
m

i�1
a

n

j�1
 f(x*ij , y*ij ) �A

P
RfRP � {Rij}

Rf

The Double Integral Over a Rectangular Region
Thus far, we have assumed that on the rectangle . This condition was
imposed so that we could give a simple geometric interpretation for the limit in Equa-
tion (2). In the general situation we have the following.

Rf(x, y) � 0

0 x

R12 R22

R11 R21

211
2

3
2

1

1
2

y
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, , , and , we

obtain

Double Integrals Over General Regions
Next we will extend the definition of the double integral to more general functions and
regions. Suppose that is a bounded function defined on a bounded plane region . If
you like, you can think of as a mass density function for a thin plate occupying a
nonrectangular region (in which case on ) and of what follows as a way
of finding the mass of the plate. Since is bounded, it can be enclosed in a rectangle 

. Let be a regular partition of into subrectangles , , , , , . (See
Figure 10.)

Let’s define the function

Note that takes on the same value as if is in , but it takes on the value zero
if lies outside . (See Figure 11.)

Now let be an evaluation point in the subrectangle of for 
and . Then the sum

is a Riemann sum of over with respect to the partition . Taking the limit of these
sums as gives the double integral of over . Thus,

(5)

if the limit exists. Again, it can be shown that if is continuous, then the limit (5)
always exists regardless of how the evaluation points in are chosen.

Notes
1. If on , then gives the volume of the solid lying

directly above and below the surface .
2. If on , where is a mass density function, then gives

the mass of the thin plate occupying the plane region in the -plane. This will
be demonstrated in Section 14.4.

xyD
��D
r(x, y) dArDr(x, y) � 0

z � f(x, y)D
��D

f(x, y) dADf(x, y) � 0

Rij(x*ij , y*ij )
f

��
D

f(x, y) dA � lim
m, n→�

 a
m

i�1
a

n

j�1
 fD(x*ij , y*ij ) �A

Dfm, n → �
QDf

a
m

i�1
a

n

j�1
 fD(x*ij , y*ij ) �A

1 � j � n
1 � i � mQRij(x*ij , y*ij )

D(x, y)
D(x, y)ffD

fD(x, y) � ef(x, y) if (x, y) is in D

0 if (x, y) is in R but not in D

RmnpRijpR12R11RQR
D

Df(x, y) � 0D
f

Df

 � a�1

2
b a1

2
b 	 a�5

2
b a1

2
b 	 a1

2
b a1

2
b 	 a�3

2
b a1

2
b � �2

 � f a1

2
 , 

1

4
b1

2
	 f a1

2
 , 

3

4
b1

2
	 f a3

2
 , 

1

4
b1

2
	 f a3

2
 , 

3

4
b1

2

 � f(x*11, y*11) �A 	 f(x*12, y*12) �A 	 f(x*21, y*21) �A 	 f(x*22, y*22) �A

 ��
R

f(x, y) dA � a
2

i�1
a

2

j�1
f(x*ij , y*ij ) �A

(x*22, y*22) � 132, 34 2(x*21, y*21) � 132, 14 2(x*12, y*12) � 112, 34 2(x*11, y*11) � 112, 14 2

FIGURE 10
A partition of RQ

FIGURE 11
if lies in , but

if lies outside .D(x, y)fD(x, y) � 0
D(x, y)fD(x, y) � f(x, y)

0 x

RijR

D

y (xij , yij)* *

y

x

z

Graph of fD

D

EXAMPLE 3 Find an approximation for , where is the region
shown in Figure 12, using the Riemann sum of over with respect
to the partition obtained by dividing the rectangle {(x, y) � 0 � x � 2, 0 � y � 3}Q

Df(x, y) � x 	 2y
D��D

(x 	 2y) dA

0 x

D

R

211
2

3
2

2

1

3

y

FIGURE 12
if lies in , but

if lies outside .D(x, y)fD(x, y) � 0
D(x, y)fD(x, y) � f(x, y)
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 	 c5
4

	 2a3

2
b d 	 c7

4
	 2a1

2
b df � 11.875

 �
1

2
e c1

4
	 2a3

2
b d 	 c3

4
	 2a1

2
b d 	 c3

4
	 2a3

2
b d 	 c3

4
	 2a5

2
b d 	 c5

4
	 2a1

2
b d

 �
1

2
cf a1

4
, 

3

2
b 	 f a3

4
, 

1

2
b 	 f a3

4
, 

3

2
b 	 f a3

4
, 

5

2
b 	 a5

4
, 

1

2
b 	 f a5

4
, 

3

2
b 	 f a7

4
, 

1

2
b d

 	 fDa5

4
, 

1

2
b 	 fDa5

4
, 

3

2
b 	 fDa5

4
, 

5

2
b 	 fDa7

4
, 

1

2
b 	 fDa7

4
, 

3

2
b 	 fDa7

4
, 

5

2
b d �A

 � cfDa1

4
, 

1

2
b 	 fDa1

4
, 

3

2
b 	 fDa1

4
, 

5

2
b 	 fDa3

4
, 

1

2
b 	 fDa3

4
, 

3

2
b 	 fDa3

4
, 

5

2
b

f(x, y) � x 	 2y ��
D

(x 	 2y) dA � a
4

i�1
a

3

j�1
 fD(x*ij , y*ij ) �A

Properties of Double Integrals
Double integrals have many of the properties that single integrals enjoy. We list some
of them in the following theorem, the proof of which will be omitted.

THEOREM 1 Properties of the Definite Integral

Let and be defined on a suitably restricted region , so that both 
and exist, and let be a constant. Then

1.

2.

3. If on , then 

4. If on , then ��
D

f(x, y) dA � ��
D

t(x, y) dADf(x, y) � t(x, y)

��
D

f(x, y) dA � 0Df(x, y) � 0

��
D

[ f(x, y) 
 t(x, y)] dA � ��
D

f(x, y) dA 
 ��
D

t(x, y) dA

��
D

cf(x, y) dA � c��
D

f(x, y) dA

c��D
t(x, y) dA

��D
f(x, y) dADtf

into 12 subrectangles by taking and and taking the evaluation points to
be the center of .

Solution Here,

Next, define

Then

fD(x, y) � ef(x, y) if (x, y) is in D

0 if (x, y) is not in D

�A � (�x)(�y) � a2 � 0

4
b a3 � 0

3
b �

1

2

Rij

n � 3m � 4
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FIGURE 13
where .D1 � D2 � �D � D1 � D2

1. Let .
a. Complete the table of values for in the following

table.
f(x, y)

f(x, y) � x 	 2y b. Use the table of values from part (a) to estimate the vol-
ume of the solid lying under the graph of 
and above the rectangular region 
using a regular partition with and and
choosing the evaluation point to be the lower
left-hand corner of .

c. Repeat part (b), this time choosing the evaluation point
to be the center of .

2. a. Let be a continuous function defined on the rectangular
region . Define .

b. Suppose that , where is a constant. Find
for using your definition

from part (a).
R � [a, b] � [c, d]��R

k dA
kf(x, y) � k

��R
f(x, y) dA[a, b] � [c, d]

f
Rij(x*ij , y*ij )

Rij

(x*ij , y*ij )
n � 3m � 2

R � [0, 1] � [1, 4]
z � x 	 2y

14.1 CONCEPT QUESTIONS

x
y 1 3

2 2 5
2 3 7

2 4

0

1
4

1
2

3
4

1

5. If , where and are two nonoverlapping subregions
with the possible exception of their common boundaries, then

(See Figure 13.)

��
D

f(x, y) dA � ��
D1

f(x, y) dA 	 ��
D2

f(x, y) dA

D2D1D � D1 � D2

0 x

D1

D2 D

y

In Exercises 1–4, find an approximation for the volume 
of the solid lying under the graph of the elliptic paraboloid

and above the rectangular region
. Use a regular partition 

of with , and choose the evaluation point
as indicated in each exercise.

1. The lower left-hand corner of 

2. The upper left-hand corner of 

3. The lower right-hand corner of 

4. The center of 

In Exercises 5–8, find the Riemann sum 
of over the region with respect to the regular partition with
the indicated values of and .

5. ; ; , ;
is the lower left-hand corner of Rij(x*ij , y*ij )

n � 3m � 2R � [0, 1] � [0, 3]f(x, y) � 2x 	 3y

nm
PRf

�m
i�1 �n

j�1 f(x*ij , y*ij ) �A

Rij

Rij

Rij

Rij

(x*ij , y*ij )
m � n � 2RP

R � {(x, y) � 0 � x � 1, 0 � y � 2}
z � 8 � 2x2 � y2

V 6. ; ; , ;
is the upper right-hand corner of 

7. ; ; , ;
is the center of 

8. ; ; , ;
is the center of 

9. The figure on the following page shows a region enclosed
by a rectangular region and a partition of into subrec-
tangles with and . Suppose that is continuous
on and the values of at the evaluation points of that
lie in are as shown in the figure (next to the evaluation
points). Define

fD(x, y) � ef(x, y) if (x, y) is in D

0 if (x, y) is in R but not in D

D
QfD

fn � 3m � 5
RQR

D

Rij(x*ij , y*ij )
n � 4m � 4R � [�1, 1] � [�2, 2]f(x, y) � 2xy

Rij(x*ij , y*ij )
n � 4m � 4R � [�1, 3] � [0, 4]f(x, y) � x2 	 2y2

Rij(x*ij , y*ij )
n � 2m � 4R � [1, 5] � [1, 3]f(x, y) � x2 � 2y

14.1 EXERCISES

Videos for selected exercises are available online at www.academic.cengage.com/login.V

www.academic.cengage.com/login
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Compute .

10. Volume of Water in a Pond The following figure depicts a pond
that is 40 ft long and 20 ft wide. The depth of the pond is
measured at the center of each subrectangle in the imaginary
partition of the rectangle that is superimposed over the aerial
view of the pond. These measurements (in feet) are shown
in the figure. Estimate the volume of water in the pond.
Hint: See Exercise 9.

11. The figure shows the contour map of a function on 
the set . Estimate

using a Riemann sum with and
choosing the evalution point to be the center of .

12. Room Temperature The figure represents a part of a room with
a fireplace located at the origin. The curves shown are the
level curves of the temperature function , and are called
isothermals because the temperature is the same at all points
on an isothermal. Estimate the average temperature in this

T

0 21

10

20

30

4050

1

2

x

y

Rij(x*ij , y*ij )
m � n � 2��R

f(x, y) dA
R � {(x, y) � 0 � x � 2, 0 � y � 2}

f

0 5

1 3 2

2 6 8 8 6 4 3 2

2 4 6 6 5 3 2
1

0

0

3 3
1

1 2

10 15 20 25 30 35 40

5

10

15

20
DR

0 x

D

R

21 3

�1�2 1

0�1 2 3

32 43

1

54

(x, y)

2

1

3

y

�5
i�1 �3

j�1 fD(x*ij , y*ij ) �A part of the room using a regular partition with 
and choosing the evaluation point to be the center
of .

In Exercises 13–16, find the double integral by interpreting it as
the volume of a solid.

13. , where 

14. , where 

15. , where 

16. , where 

In Exercises 17 and 18, the double integral gives the volume of a
solid. Describe the solid.

17. , where 

18. , where 

In Exercises 19 and 20, the expression is the limit of a Riemann
sum of a function f over a rectangle . Write this expression as a
double integral over .

19. ,

20. ,

In Exercises 21 and 22, use a computer algebra system (CAS) to
obtain an approximate value of the double integral using a regu-

R � [0, 1] � [0, 2]lim
m, n→�

 a
m

i�1
a

n

j�1
2(x*ij )

2 	 2(y*ij )
2 �A

R � [�1, 2] � [1, 3]lim
m, n→�

 a
m

i�1
a

n

j�1
(3 � 2x*ij 	 y*ij ) �A

R
R

R � {(x, y) � 2x 	 3y � 12, x � 0, y � 0}

��
R

a3 �
1

2
 x �

3

4
 yb  dA

R � {(x, y) � 0 � y � x, 0 � x � 2}��
R

(4 � x2) dA

R � {(x, y) � x2 	 y2 � 9, x � 0, y � 0}

��
R

29 � x2 � y2 dA

R � {(x, y) � 0 � x � 4, 0 � y � 2}��
R

(6 � 2y) dA

R � {(x, y) � 0 � x � 2, 0 � y � 1}��
R

2x dA

R � [�1, 3] � [2, 5]��
R

2 dA

0 963

90�
86�

82�

78�

76�

74�

3

9

6

x (ft)

y (ft)

Rij

(x*ij , y*ij )
m � n � 3

cas
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lar partition with the given value of and and choosing the
evaluation point to be the center of .

21. , where ;

,

22. , where ;

,

23. Use Property 4 (in Theorem 1) of the double integral to
show that if and are integrable over , then

24. Use a geometric argument and Theorem 1 to show that if
, where is a constant, then

.

25. Let . Show that

.

26. Let . Show that 

.0 � ��R
sin(2x 	 3y) dA � 1

4

R � C0, 12 D � C0, 12 D
0 � ��R

e�x cos y dA � 1

R � {(x, y) � 0 � x � 1, 0 � y � 1}

��R
k dA � k � area of R

kf(x, y) � k

` ��
D

f(x, y) dA ` � ��
D

 
� f(x, y) � dA

D� f �f

n � 20m � 10

R � [0, 1] � [1, 3]��
R

 
1

1 	 exy dA

n � 10m � 10

R � [0, 1] � [0, 1]��
R

21 	 x2 	 y2 dA

Rij(x*ij , y*ij )
nm In Exercises 27–30, determine whether the statement is true or

false. If it is true, explain why. If it is false, explain why or give
an example that shows it is false.

27. If and are continuous on , then

28. If and are continuous on , then

29. , where 

30. If is nonnegative and continuous on

and

, then

��
D

f(x, y) dA � ��
E

f(x, y) dA

E � 5 1 (x, y2 � 0 � x � 1, 12 � y � 16D � {(x, y) � 0 � x � 1, 0 � y � 1}

f

R � {(x, y) � x2 	 y2 � 1}

��
R

 
2x2 	 xy 	 y2 	 1

cos(x2 	 y2)
dA � p

��
D

[ f(x, y)t(x, y)] dA � c��
D

f(x, y) dAd c��
D

t(x, y) dAd
Dtf

��
D

[2f(x, y) � 3t(x, y)] dA � 2��
D

f(x, y) dA � 3��
D

t(x, y) dA

Dtf

14.2 Iterated Integrals

Iterated Integrals Over Rectangular Regions
Just as it is difficult to find the value of an integral of a function of one variable directly
from its definition, the task is even harder in the case of double integrals. Fortunately,
as you will see, the value of a double integral can be found by evaluating two single
integrals.

We begin by looking at the simple case in which is a continuous function defined
on the rectangular region shown in Figure 1b.R � {(x, y) � a � x � b, c � y � b}

f

FIGURE 1

z � f (x, y)

S

a
c

d

b

(a) The graph of f (b) The domain R of f

x

z

R

d

c

R

a b x

y

y

y

x

(x, y)

If we fix , then is a function of the single variable for . As such,
we can integrate the function with respect to over the interval . This operation[c, d]y

c � y � dyf(x, y)x
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is called partial integration with respect to and is the reverse of the operation of par-
tial differentiation studied in Chapter 13. The result is the number

that depends on the value of in . In other words, the rule

(1)

defines a function of on . If we integrate the function with respect to over
, we obtain

(2)

The integral on the right-hand side of Equation (2) is usually written in the form

(3)

without the brackets and is called an iterated or repeated integral.
Similarly, by holding fixed and integrating the resulting function with respect to

over , we obtain a function of on the interval . If this function is then
integrated with respect to over , we obtain the iterated integral

(4)

Observe that when we evaluate an iterated integral, we work from the inside out.

�
d

c
�

b

a

f(x, y) dx dy � �
d

c

c�
b

a

f(x, y) dx d  dy

[c, d]y
[c, d]y[a, b]x

y

�
b

a
�

d

c

f(x, y) dy dx

�
b

a

A(x) dx � �
b

a

c�
d

c

f(x, y) dyd  dx

[a, b]
xA[a, b]xA

a � x � bA(x) � �
d

c

f(x, y) dy

[a, b]x

�
d

c

f(x, y) dy

y

EXAMPLE 1 Evaluate the iterated integrals:

a. b.

Solution
a. By definition,

Now the integral inside the brackets is found by integrating with respect to 
while treating as a constant. This gives

Therefore,

 � c1
2

 y2d2
1

�
3

2

 �
2

1
�

1

0
3x2y dx dy � �

2

1
y dy

�
1

0
3x2y dx � Cx3y D x�1

x�0 � y

y
x

�
2

1
�

1

0
3x2y dx dy � �

2

1
c�

1

0
3x2y dx d  dy

�
1

0
�

2

1
3x2y dy dx�

2

1
�

1

0
3x2y dx dy
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b. Here, we first integrate with respect to and then with respect to , obtaining

Fubini’s Theorem for Rectangular Regions
Observe that the two iterated integrals in Example 1 are equal. Thus, the example seems
to suggest that the order of integration of the iterated integrals does not matter. To see
why this might be true for continuous functions, consider the special case in which 
is nonnegative. Let’s calculate the volume of the solid lying under the graph of

and above the rectangular region .
Using the method of cross sections of Section 5.2, we see that

where is the area of the cross section of in the plane perpendicular to the -axis
at . (See Figure 2a.) But from the figure, you can see that is the area under the
graph of the function defined by for , where is fixed. So

fixed

Therefore,

Similarly, using cross sections perpendicular to the -axis (Figure 2b), you can show
that

V � �
d

c

c�
b

a

f(x, y) dxd  dy

y

V � �
b

a

A(x) dx � �
b

a

c�
d

c

f(x, y) dyd  dx

xA(x) � �
d

c

t(y) dy � �
d

c

f(x, y) dy

xc � y � dt(y) � f(x, y)C
A(x)x

xSA(x)

V � �
b

a

A(x) dx

R � {(x, y) � a � x � b, c � y � d}z � f(x, y)
SV

f

 � �
1

0
 
9

2
 x2 dx � c3

2
 x3d1

0
�

3

2

 � �
1

0
c3
2

 x2y2dy�2

y�1
dx

 �
1

0
�

2

1
3x2y dy dx � �

1

0
c�

2

1
3x2y dyd  dx

xy

z

y

x

a

A(x)

z = f(x, y)C

S

b

a

b
x

(a) A(x) is the area of a cross section of S in the 
    plane perpendicular to the x-axis.

z

y

x

dy
c

d
c

A(y)

z = f(x, y)
C

S

(b) A(y) is the area of a cross section of S in the 
     plane perpendicular to the y-axis.FIGURE 2

GUIDO FUBINI
(1879–1943)

Making contributions to analysis, group
theory, mathematical physics, and non-
Euclidean spaces, Guido Fubini was one of
Italy’s most productive and eclectic mathe-
maticians. He began his career with a doc-
toral thesis in differential geometry, but he
later made significant contributions in
analysis, differential geometry, mathemati-
cal physics, group theory, and even engi-
neering. His technical skills and geometric
intuition allowed him to discover simpler
expressions of very difficult results. For
example, he revisited the expression of
surface integrals and demonstrated that
they could be written in terms of two sim-
ple integrals. Fubini taught at the Univer-
sity of Catania in Sicily, the University of
Genoa, the Politecnico in Turin, and the
University of Turin. In 1938 Fubini was
forced to retire from his chair position in
Turin after Benito Mussolini published the
Manifesto of Fascist Racism and the subse-
quent anti-Semitism policy forced all Jews
from positions in government, banking, and
education. Fubini, who was of Jewish
descent, was worried about his sons’
future in Italy. The Institute for Advanced
Study in Princeton made him an offer in
1939, and, although Fubini and his family
did not wish to leave Italy, they decided to
emigrate to the United States to give their
sons better career opportunities. Fubini
was able to teach for a few years, but his
failing health overtook him, and he died of
heart problems in 1943.

Historical Biography
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Now, by definition,

Therefore, we have shown that

This discussion suggests the following theorem, which is named after the Italian
mathematician Guido Fubini (1879–1943). Its proof lies outside the scope of this book
and will be omitted.

��
R

f(x, y) dA � �
b

a
�

d

c

f(x, y) dy dx � �
d

c
�

b

a

f(x, y) dx dy

V � ��
R

f(x, y) dA

THEOREM 1 Fubini’s Theorem for Rectangular Regions

Let be continuous over the rectangle . Then

��
R

f(x, y) dA � �
b

a
�

d

c

f(x, y) dy dx � �
d

c
�

b

a

f(x, y) dx dy

R � {(x, y) � a � x � b, c � y � d}f

Fubini’s Theorem provides us with a practical method for finding double integrals
by expressing them in terms of iterated integrals that we can evaluate by integrating
with respect to one variable at a time. It also states that the order in which the integra-
tion is carried out does not matter, an important option, as you will see later on. Finally,
observe that Fubini’s Theorem holds for any continuous function; may assume
negative as well as positive values on .R

f(x, y)

EXAMPLE 2 Evaluate , where

Solution Using Fubini’s Theorem, we obtain

We leave it for you to verify that

as well.

��
R

(1 � 2xy2) dA � �
2

0
�

1

�1
(1 � 2xy2) dy dx �

4

3

 � a2 �
4

3
b � a�2 	

4

3
b �

4

3

 � �
1

�1
(2 � 4y2) dy � c2y �

4

3
 y3d1

�1

 � �
1

�1
 Cx � x2y2 D x�2

x�0 dy

 ��
R

(1 � 2xy2) dA � �
1

�1
 �

2

0
(1 � 2xy2) dx dy

R � {(x, y) � 0 � x � 2, �1 � y � 1}

��R
(1 � 2xy2) dA
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EXAMPLE 3 Find the volume of the solid lying under the elliptic paraboloid 

and above the rectangular region , . (See
Figure 3.) Compare with Example 1 in Section 14.1.

Solution Using Fubini’s Theorem, we see that the required volume is

 � �
2

0
a22

3
� y2b  

dy � c22

3
 y �

1

3
 y3d2

0
� 12

 � �
2

0
c8x �

2

3
 x3 � xy2dx�1

x�0
dy

 V � ��
R

(8 � 2x2 � y2) dA � �
2

0
�

1

0
(8 � 2x2 � y2) dx dy

0 � y � 2}R � {(x, y) � 0 � x � 12x2 � y2

z � 8 �

FIGURE 3

z = 8 – 2x2 – y2

(b) The region R(a) The solid between the graph of z = 8 – 2x2 – y2 
      and the rectangular region R

R

R

x

yz

y

x

2

2

2
1 1

4

6

8

Iterated Integrals Over Nonrectangular Regions
Fubini’s Theorem is valid for regions that are more general than rectangular regions.
More specifically, it is valid for the two types of regions that we will now describe. A
plane region is said to be -simple if it lies between two functions of ; that is,

where and are continuous on . (See Figure 4.)
An -simple region is one that lies between two functions of ; that is,

where and are continuous on . (See Figure 5.)[c, d]h2h1

R � {(x, y) � c � y � d, h1(y) � x � h2(y)}

yRx
[a, b]t2t1

R � {(x, y) � a � x � b, t1(x) � y � t2(x)}

xyR

FIGURE 4
A -simple regiony

0 x

y � g2(x)

y � g1(x)

R

a b

y

0 x

x � h2(y)
x � h1(y)

R

c

d

y

FIGURE 5
An -simple regionx
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THEOREM 2 Fubini’s Theorem for General Regions

Let be continuous on a region .

1. If is a -simple region, then

2. If is an -simple region, then

��
R

f(x, y) dA � �
d

c
�

h2(y)

h1(y)
f(x, y) dx dy

xR

��
R

f(x, y) dA � �
b

a
�

 2(x)

 1(x)
f(x, y) dy dx

yR

Rf

t

t

EXAMPLE 4 Find the volume of the solid lying under the graph of the surface 

and above the region in the -plane bounded by the line and
the parabola . (See Figure 6.)

Solution First, we make a sketch of the region . (See Figure 7a). We see that can
be viewed as a -simple region; that is,

where and . Observe that if we integrate over a -simple region,
we integrate with respect to first. The appropriate limits of integration can be found
by drawing a vertical arrow as shown in Figure 7a. The arrow begins at the lower
boundary of the region described by , giving the lower limit of integra-y � t1(x) � x2

y
yt2(x) � 2xt1(x) � x2

R � {(x, y) � 0 � x � 2, x2 � y � 2x}

y
RR

y � x2
y � 2xxyRz � x3 	 4y

S

FIGURE 6
The graph of the solid S

The following theorem tells us that a double integral over a -simple or an -
simple region can be found by evaluating an iterated integral.

xy

0

2.0

1.5

1.0
x

y

z

0.5

0.0 1
2

3
4

0

10

20

tion as , and terminates at the upper boundary of the region described by
, giving the upper limit of integration as . To find the limits

for integrating with respect to , observe that a vertical line sweeping from left to right
meets the extreme left point of when (the lower limit of integration) and meets
the extreme right point of when (the upper limit of integration). Using Fubini’s
Theorem for general regions, we obtain

Alternative Solution We can view the region as an -simple region

where and are obtained by solving and for 
in terms of , respectively. (See Figure 7b.) If we integrate over an -simple region, wexy

xy � x2y � 2xh2(y) � 1yh1(y) � y>2
R � 5 (x, y) � 0 � y � 4, y

2 � x � 1y6
xR

 � �
2

0
(8x2 � x5) dx � c8

3
 x3 �

1

6
 x6d2

0
�

32

3

 � �
2

0
Cx3y 	 2y2 D y�2x

y�x2 dx � �
2

0
[(2x4 	 8x2) � (x5 	 2x4)] dx

 V � ��
R

f(x, y) dA � �
2

0
�

2x

x2

(x3 	 4y) dy dx

x � 2R
x � 0R

x
t2(x) � 2xy � t2(x) � 2x

t1(x) � x2
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FIGURE 7

integrate with respect to first. A horizontal arrow starting from the left boundary of
described by and terminating at the right boundary of described by

gives the lower and upper limits of integration with respect to . The lim-
its of integration with respect to are found by letting a horizontal line sweep through
the region. This line meets the lowest point of when (the lower limit of inte-
gration) and the highest point of when (the upper limit of integration). Once
again using Fubini’s Theorem, we obtain

as before.

 � �
4

0
a�7

4
 y2 	 4y3>2 �

1

64
 y4b  

dy � c� 7

12
 y3 	

8

5
 y5>2 �

1

320
 y5d4

0
�

32

3

 � �
4

0
 c14 x4 	 4xydx�1y

x�y>2
dy � �

4

0
 c a1

4
 y2 	 4y3>2b � a 1

64
 y4 	 2y2b d dy

 V � ��
R

f(x, y) dA � �
4

0
�
1y

y>2
(x3 	 4y) dx dy

y � 4R
y � 0R

y
xh2(y) � 1y

Rh1(y) � y>2R
x

x

y � 2x

y � x2

R

21

1
2

1

2

3

4

x

x � y

R

21

1

(a) The region R viewed as a y-simple region (b) The region R viewed as an x-simple region

2

3

4

x � √y

y y

EXAMPLE 5 Evaluate , where is the region bounded by the parab-

ola and the straight line .

Solution The region is shown in Figure 8. It is both -simple and -simple. But
observe that it is more convenient to view it as an -simple region because the lower
boundary of consists of two curves when viewed as a -simple region. In fact, view-
ing as a -simple region (Figure 8a) and using Fubini’s Theorem, we find

��
R

(2x � y) dA � �
1

0
�
1x

�1x

 (2x � y) dy dx 	 �
4

1
�
1x

x�2
(2x � y) dy dx

yR
yR

x
xyR

x � y � 2x � y2

R��R
(2x � y) dA

FIGURE 8

x

y � x � 2 x � y 	 2

x � y2

R

3 4

1

�1

�2

2

(a) R viewed as a y-simple region

x

R

3 4

1

�1

�2

2

(b) R viewed as an x-simple region

y � √x

y � �√x

y y
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On the other hand, viewing as an -simple region (Figure 8b), we havexR

 � �
2

�1
(4 	 2y 	 y3 � y4) dy � c4y 	 y2 	

1

4
 y4 �

1

5
 y5d2

�1
�

243

20

 � �
2

�1
Cx2 � xy D x�y	2

x�y2 dy � �
2

�1
5 C (y 	 2)2 � y(y 	 2) D � Cy4 � y3 D 6 dy

 ��
R

(2x � y) dA � �
2

�1
 �

y	2

y2

(2x � y) dx dy

which is easier to evaluate.
The double integral gives the volume of the solid shown in Fig-

ure 9.

Example 5 shows that it is sometimes easier to integrate in one order rather than
the other because of the shape of . In certain instances the nature of the function dic-
tates the order of integration, as the next example shows.

R

S��R
(2x � y) dA

FIGURE 9
The solid S

EXAMPLE 6 Evaluate .

Solution Because

cannot be expressed in terms of elementary functions, the given integral cannot be eval-
uated as it stands. So let’s attempt to evaluate it by reversing the order of integration.
We begin by using Fubini’s Theorem to express the iterated integral as a double inte-
gral. The order of integration of the given integral suggests that

where is viewed as an -simple region (see Fig-
ure 10a).

xR � {(x, y) � 0 � y � 1, y � x � 1}

�
1

0
�

1

y

 
sin x

x
dx dy � ��

R

 
sin x

x
dA

�  
sin x

x
dx

�
1

0
�

1

y

 
sin x

x
 dx dy

FIGURE 10

�1

4

3

2
x

y

z

1

0
0

�0.5
0.5

1.5
1

2

0

2

4

6

x

x � y

x � 1

R

1

1

(a) R viewed as an x-simple region

x

y � x

x � 1

R

1

1

(b) R viewed as a y-simple region

y y
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Viewing as a -simple region (Figure 10b), we find, again by Fubini’s Theorem,
that

The double integral gives the volume of the solid shown in Figure 11.S�
1

0
�

1

y

 
sin x

x
dx dy

 � �
1

0
sin x dx � C�cos x D10 � �cos 1 	 1 � 0.46

 � �
1

0
�

x

0
 
sin x

x
dy dx � �

1

0
cy sin x

x
dy�x

y�0
dx

 �
1

0
�

1

y

 
sin x

x
dx dy � ��

R

 
sin x

x
dA

yR

FIGURE 11
The solid represented by the 

double integral �
1

0
�

1

y

 
sin x

x
dx dy

S

0.0
0.5

1.0
1.0

0.2

0.4

0.6

0.8

z

y

x

0.0
0.20.40.60.81.0

1. Suppose that is continuous on the rectangular region
.

a. Explain the difference between the iterated integrals

and

b. Give a geometric interpretation of each of the iterated
integrals in part (a), where is nonnegative.

c. What does Fubini’s Theorem say about the two iterated
integrals in part (a)?

f

�
d

c

c�
b

a

f(x, y) dxd  dy�
b

a

c�
d

c

f(x, y) dyd  dx

R � [a, b] � [c, d]
f 2. a. What is a -simple region, and what is an -simple

region?
b. Express as an iterated integral if is a 

-simple region. As an -simple region.
c. Explain why it is sometimes advantageous to reverse the

order of integration of an iterated integral.

xy
R��R

f(x, y) dA

xy

14.2 CONCEPT QUESTIONS

In Exercises 1–12, evaluate the iterated integral.

1. 2.

3. 4.

5. 6.

7. 8.

9. 10.

11. 12. �
p

0
�

ecos x

e�2x
 
ln y

y
dy dx�

1

�1
�

2x

x

ex	y dy dx

�
1

0
�
21�x2

0
(x 	 y) dy dx�

1

0
�
21�y2

0
x dx dy

�
1>2

0
�
11�x

0
2xy dy dx�

4

0
�
1x

0
2xy dy dx

�
p>2

0
�

ln 2

0
e�x sin y dx dy�

p

0
�
p

0
cos(x 	 y) dy dx

�
1

0
�

1

0

x

1 	 xy
dy dx�

2

0
�

4

1
y2x dy dx

�
1

�1
 �

3

0
(3x2 	 y) dx dy�

1

0
�

2

0
(x 	 2y) dy dx

In Exercises 13–32, evaluate the double integral.

13. , where 

14. , where 

15. , where 

16. , where R � {(x, y) � 0 � x � 1, 0 � y � 1}��
R

yexy dA

R � 5 (x, y) � 0 � x � p
2 , 0 � y � p

4 6
��
R

(x cos y 	 y sin x) dA

R � {(x, y) � �1 � x � 2, 0 � y � 2}

��
R

(3x2 	 2xy3) dA

R � {(x, y) � 0 � x � 1, �1 � y � 2}

��
R

(x 	 y2) dA

14.2 EXERCISES

Videos for selected exercises are available online at www.academic.cengage.com/login.V

www.academic.cengage.com/login
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17. , where 

18. , where 

19. , where 

20. , where 

21. , where 

22. , where 

23. , where 

24. , where 

25. , where is the region bounded by the graphs of 

, , , and 

26. , where is the region bounded by the graphs of 

, , and 

27. , where is the region bounded by the 

graphs of , , , and 

28. , where is the region bounded by the 

graphs of , , and 

29. , where is the region bounded by the graphs of 

and 

30. , where is the region bounded by the graphs of 

and x � 3 � 2y2x � y2

R��
R

2xy2 dA

y � �x 	 3y � (x � 1)2

R��
R

4x3 dA

y � 0x � 1x � 0y � x2 	 2

R��
R

(x2 	 y) dA

x � p>2x � 0y � 0y � cos x

R��
R

(sin x � y) dA

x � 0y � 1y � x3

R��
R

xy dA

x � 2x � 1y � 2xy � x

R��
R

x2y dA

R � {(x, y) � 1 � y � e, y � x � y2}��
R

 
1
xy

dA

R � 5 (x, y) � 0 � y � p
2 , 0 � x � sin y6

��
R

x cos y dA

R � {(x, y) � 0 � y � 1, �y � 1 � x � y � 1}

��
R

(x2 	 y2) dA

R � {(x, y) � 0 � y � 1, y � x � 2y}

��
R

(1 	 2x 	 2y) dA

R � {(x, y) � �1 � x � 2, �x2 � y � 1 	 x2}

��
R

xy dA

R � {(x, y) � 0 � x � 2, x2 � y � 2x}

��
R

(x 3 	 2y) dA

R � {(x, y) � 0 � x � 1, 0 � y � x}��
R

21 � x 2 dA

R � {(x, y) � 0 � x � 1, 0 � y � x}��
R

(x 	 2y) dA 31. , where is the triangular region with vertices 

, , and 

32. , where is the half-disk defined by the inequalities 

and 

In Exercises 33–38, find the volume of the solid shown in the 
figure.

33. 34.

35. 36.

37. 38.

In Exercises 39–46, find the volume of the solid.

39. The solid under the plane and above 
the region lying in 
the -plane

40. The solid under the plane and above the tri-
angular region in the -plane bounded by the lines ,

, and x � 2y � 0
y � 2xxy

z � x 	 2y

xy
R � {(x, y) � 0 � x � 1, 0 � y � 2}

z � 4 � 2x � y

z

y

x
2

2

2

z = 2e–x–y

z

y
x

2
4

4
z = 4 – x2

y = 4

z

y

x

2

1

4
z = 4 – x2 – y2

x + 2y = 2

y

x

z

z = 4 – x2 – y24

2 2

2

z

y

x
3

4

4

z = 4 – x +    y1__
2

z

y

x
3

4

6

z = 6 – y

y � 0x2 	 y2 � 1

R��
R

y dA

(6, 0)(4, 4)(0, 0)

R��
R

yex dA
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41. The solid under the surface and above the triangular
region in the -plane bounded by the lines ,

, and 

42. The solid under the surface and above the region
in the -plane bounded by the parabolas and

43. The solid under the paraboloid and above the
region in the -plane bounded by the line and the
parabola 

44. The solid under the paraboloid and above the
region in the -plane bounded by the graphs of ,

, and 

45. The solid bounded by the cylinder and the
planes , , , and 

46. The solid bounded by the cylinder and the
planes and 

In Exercises 47–54, sketch the region of integration for the iter-
ated integral, and reverse the order of integration.

47. 48.

49. 50.

51.

52.

53.

54.

In Exercises 55–60, evaluate the integral by reversing the order
of integration.

55. 56.

57. 58.

59.

60.

61. Suppose that and let
. Show that

��
R

f(x, y) dA � c�
b

a

t(x) dxd c�
d

c

h(y) dyd
R � {(x, y) � a � x � b, c � y � d}

f(x, y) � t(x)h(y)

�
1

0
�
p>4

tan�1 y

sec2 x21 	 sec2 x dx dy

�
4

0
�

2

1y

  
1

2x3 	 1
dx dy

�
2

0
�

4

x2

x cos y2 dy dx�
4

0
�

2

1x

 sin y3 dy dx

�
2

0
�

1

y>2
ey>x dx dy�

1

0
�

2

2y

e�x2

dx dy

�
p>4

0
 �

tan x

0
f(x, y) dy dx

�
e

1
�

ln x

0
f(x, y) dy dx

�
1

�1
 �

3�2x2

x2

f(x, y) dy dx

�
5>2

�1
 �

(3>2)y�3>2

y2�4
f(x, y) dx dy

�
2

�2
 �

4�y2

�24�y2

 f(x, y) dx dy�
1

0
�
13 y

y2
 f(x, y) dx dy

�
1

0
�

2

2x

f(x, y) dy dx�
1

0
�

1�x

0
f(x, y) dy dx

z � 0z � 4 � y
x2 	 y2 � 4

2x 	 y � 2z � 0y � 0x � 0
y2 	 z2 � 9

x � 4y � 0
y � 1xxy

z � x2 	 3y2

y � x2
y � xxy

z � x2 	 y2

y � 2 � x2
y � x2xy

z � x2 	 y

y � 0y � �x 	 6
y � 2xxy

z � xy 62. Suppose that has continuous second-order partial
derivatives. Find

where .

63. The following figure depicts a semicircular metal plate
whose density at the point is slugs/ft2. What is
the mass of the plate?

64. Population Density The population density (number of people
per square mile) of a coastal town is described by the function

,

where and are measured in miles. Find the population
inside the rectangular area described by

65. Population Density Refer to Exercise 64. Find the average pop-
ulation density inside the rectangular area .

66. Population Density The population density (number of people
per square mile) of a certain city is given by the function

where the origin gives the location of the government
center. Find the population inside the rectangular area
described by .

67. a. Plot the region bounded by the graphs of 
and and the -axis.

b. Find the -coordinate of the point of intersection of the
graphs of and for accurate
to three decimal places.

c. Estimate .��R
x dA

x  0y � x2 	 xy � cos x
x

yy � x2 	 x
y � cos xR

R � {(x, y) � �15 � x � 15, �20 � y � 20}

(0, 0)

f(x, y) �
50,000 �xy �

(x2 	 20)(y2 	 36)

R

5�5

�2

x (mi)R

y (mi)

(ocean)

(0, 0)

R � {(x, y) � �5 � x � 5, �2 � y � 0}

yx

�4 � y � 0�10 � x � 10f(x, y) �
10,000ey

1 	 0.5 �x �

2�2 x (ft)

y (ft)

(1 	 y)(x, y)

R � {(x, y) � a � x � b, c � y � d}

��
R

fxy(x, y) dA

f(x, y)

cas
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68. a. Plot the region bounded by the graphs of and 

. Then find the -coordinates of the points
of intersection of the two graphs accurate to three deci-
mal places.

b. Estimate .

In Exercises 69–72, use a calculator or computer to compute the
iterated integral accurate to four decimal places.

69.

70.

71.

72. �
2

0
�

4�x2

�24�x2

  
exy

1 	 x2 	 y2 dy dx

�
1

0
�

1�x

0
 21 	 x2 	 y3 dy dx

�
1

0
�

2

1

xy

2x2 	 y2
dy dx

�
1

0
�

2

0
x2y3 cos(x 	 y) dy dx

��R
x1>3y2>3 dA

xy � x21 � x2

y � e�2xR In Exercises 73–78, determine whether the statement is true or
false. If it is true, explain why. If it is false, explain why or give
an example that shows it is false.

73. If is continuous on , then

74. If is continuous on , then

75. If is a nonnegative continuous function on the interval
, then the area under the graph of on is

.

76. If is continuous on , then

77.

78. �
1

0
�

1

0
(1x 	 y)cos(1xy) dx dy � 1.2

�
2

0
�

1

�1
x cos(y2) dx dy � 0

�
1

0
 c�

y

0
f(x, y) dxd  dy � �

1

0
 c�

x

0
f(x, y) dyd  dx

R � [0, 1] � [0, 1]f

�b
a C � f(x)

0  dy D dx
[a, b]f[a, b]

f

�
d

c

 c�
b

a

f(x, y) dxd  dy � �
c

d

 c�
a

b

f(x, y) dxd  dy

R � [a, b] � [c, d]f

��
R

f(x, y) dA � �
b

a

c�
d

c

f(x, y) dyd  dx � �
d

c

c�
b

a

f(x, y) dxd  dy

R � [a, b] � [c, d]f

cas

cas

14.3 Double Integrals in Polar Coordinates

Polar Rectangles
Some double integrals are easier to evaluate if they are expressed in terms of polar coor-
dinates. This is especially true when the region of integration is a polar rectangle,

(See Figure 1.) Observe that is a part of an annular ring with inner radius and
outer radius . Therefore, its area is the difference between the area of the circu-
lar sector of radius and central angle , and the area of the circular sec-
tor of radius and the same central angle . Since the area of a circular sector of
radius and central angle is , we see that the area of is

(1)

where and is the average radius of the polar rectangle.

Double Integrals Over Polar Rectangles
To define a double integral over a polar rectangle , suppose is a continuous func-
tion on . We start by taking a regular partition

a � r0 � r1 � r2 � p � ri�1 � ri � p � rm � b

R
fR

r � 1
2 (b 	 a)�r � b � a

 �
1

2
 (b 	 a)(b � a) �u � r �r �u

 A �
1

2
 b2 �u �

1

2
 a2 �u �

1

2
 (b2 � a2) �u

R1
2r 2uur

�ua
�u � b � ab

r � b
r � aR

R � {(r, u) � a � r � b, a � u � b}

FIGURE 1
A polar rectangle is bounded by
circular arcs and rays.

r � b

¨ � ∫

¨ � å
r � a

O
å
∫

R
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of into subintervals of equal length , and a regular partition

of into subintervals of equal length . Then the circles 
and the rays determine a polar partition of into polar rectangles

, , , , , , where , , as shown
in Figure 2. Figure 3 shows a typical polar subrectangle enlarged for the sake of
clarity. The center of is the point , where is the average radius of r *i(r *i , u*j )Rij

Rij

uj�1 � u � uj}Rij � {(r, u) � ri�1 � r � riRmnpRijpR12R11

N � mnRPu � uj

r � ri�u � (b � a)>nn[a, b]

a � u0 � u1 � u2 � p � uj�1 � uj � p � un � b

�r � (b � a)>mm[a, b]

, and is the average angle of . In other words, andr *i � 1
2 (ri�1 	 ri)Riju*jRij

. Observe that the center of , when expressed in terms of rectan-
gular coordinates, takes the form . Also, from Equation (1) we
see that the area of is . Therefore, the Riemann sum of over the
polar partition is

where . But the last sum is just a Riemann sum associated
with the double integral

Therefore, we have

 � �
b

a
�

b

a

t(r, u) dr du � �
b

a
�

b

a

f(r cos u, r sin u) r dr du

 � lim
m, n→�

 a
m

i�1
a

n

j�1
t(r *i , u*j ) �r �u

 ��
R

f(x, y) dA � lim
m, n→�

 a
m

i�1
a

n

j�1
f(r *i cos u*j , r *i sin u*j ) �A

�
b

a
�

b

a

t(r, u) dr du

t(r, u) � rf(r cos u, r sin u)

 � a
m

i�1
a

n

j�1
t(r *i , u*j ) �r �u

 a
m

i�1
a

n

j�1
f(r *i cos u*j , r *i sin u*j ) �Ai � a

m

i�1
a

n

j�1
f(r *i cos u*j , r *i sin u*j ) r *i �r �u

P
f�Ai � r *i �r �uRij

(r *i cos u*j , r *i sin u*j )
Riju*j � 1

2 (uj�1 	 uj)FIGURE 2
A polar partition of the polar region 
with and n � 6m � 6

R

FIGURE 3
A polar subrectangle and 
its center (r *i , u*j )

Rij

r � b

Rij

r � a

O
å

∫

R

Rij

¨ � ¨j � 1

¨ � ¨j

Î¨

(ri, ¨j )* *

Transforming a Double Integral Over a Polar Rectangle to Polar Coordinates

Let be continuous on a polar rectangle , ,
where . Then

(2)��
R

f(x, y) dA � �
b

a
�

b

a

f(r cos u, r sin u) r dr du

0 � b � a � 2p
a � u � b}R � {(r, u) � 0 � a � r � bf

Thus, we formally transform a double integral over a polar rectangle from rectangular
to polar coordinates by substituting

, ,

and inserting the appropriate limits.

Do not forget the factor on the right-hand side of Equation (2). You can remem-
ber the expression for by making a sketch of the “infinitesimal polar rectangle”
shown in Figure 4. The polar rectangle is similar to an ordinary rectangle with sides
of length and , and therefore, it has “area” .dA � (r du) dr � r dr dudrr du

dA
r

dA � r dr duy � r sin ux � r cos u

!

dr
d¨

r d¨

r

O

FIGURE 4
The infinitesimal polar rectangle has
“area” .dA � r dr du
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FIGURE 5
The region
R � 5 (r, u) � 1 � r � 2, 0 � u � p

2 6

EXAMPLE 2 Find the volume of the solid that lies below the hemisphere

, above the -plane, and inside the cylinder .

Solution The solid is shown in Figure 6. It lies between the hemisphere

and the circular disk centered at the origin with radius 1. 
A polar representation of is

Also, in polar coordinates we can write . Therefore,
the required volume is given by

or approximately 9.16.

Note You can appreciate the role played by polar coordinates in Example 2 by observ-
ing that in rectangular coordinates,

which is not easy to evaluate.

V � �
1

�1
�
21�y2

�21�y2

29 � x2 � y2 dx dy

 �
1

3
 (27 � 1612) �

2p

0
du �

2p

3
 (27 � 1612)

 � �
2p

0
 c�1

3
 (9 � r 2)3>2dr�1

r�0
du

 V � ��
R

f(x, y) dA � �
2p

0
�

1

0
29 � r 2 r dr du

z �29 � x2 � y2 �29 � r 2

R � {(r, u) � 0 � r � 1, 0 � u � 2p}

R
z �29 � x2 � y2

S

x2 	 y2 � 1xyz �29 � x2 � y2

S

FIGURE 6
The solid lies above the disk

and under the 
hemisphere .z �29 � x2 � y2
x2 	 y2 � 1

S

EXAMPLE 1 Evaluate , where is the region in the first quadrant

bounded by the circles and .

Solution The region is a polar rectangle that can also be described in terms of polar
coordinates by

(See Figure 5.) Using Equation (2), we obtain

 � c14

3
sin u � 7 cos udp>2

0
�

35

3

 � �
p>2

0
a14

3
cos u 	 7 sin ub du

 � �
p>2

0
 c23 r 3 cos u 	 r 3 sin udr�2

r�1
du

 � �
p>2

0
�

2

1
(2r 2 cos u 	 3r 2 sin u) dr du

 ��
R

(2x 	 3y) dA � �
p>2

0
�

2

1
(2r cos u 	 3r sin u) r dr du

R � 5 (r, u) � 1 � r � 2, 0 � u � p
2 6

R

x2 	 y2 � 4x2 	 y2 � 1

R��R
(2x 	 3y) dA

y

x

z

3
10

3

S

3

x

R

210

y
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Double Integrals Over General Regions
The results obtained thus far can be extended to more general regions. If the bounded
region is such a region, then we can transform the double integral into
one involving polar coordinates by expressing it as a limit of Riemann sums associ-
ated with the function

(See Figure 7.)
We will not pursue the details. Instead, we will state the result for the type of region

that occurs most frequently in practice: A region is -simple if it is bounded by the
graphs of two functions of . The -simple region described by

where and are continuous on , is shown in Figure 8.[a, b]t2t1

R � {(r, u) �a � u � b, t1(u) � r � t2(u)}

ru

r

fR(x, y) � ef(x, y) if (x, y) is in R

0 if (x, y) is outside R

��R
f(x, y) dAR

FIGURE 7
An inner polar partition of the region R

r � b

r � a

O
å

∫

R

FIGURE 8
The polar region

,
. Observe 

that runs from the curve 
to the curve 

as indicated by the arrow.
r � t2(u)r � t1(u)

r
t1(u) � r � t2(u)}
R � {(r, u) �a � u � b

Transforming a Double Integral Over a Polar Region to Polar Coordinates

Let be continuous on a polar region of the form

where . Then

(3)��
R

f(x, y) dA � �
b

a
�

 2(u)

 1(u)
f(r cos u, r sin u) r dr du

0 � b � a � 2p

R � {(r, u) �a � u � b, t1(u) � r � t2(u)}

f

Note -simple regions (regions that are bounded by the graphs of functions of ) will
be considered in Exercise 44.

ru

EXAMPLE 3 Use a double integral to find the area enclosed by one loop of the three-
leaved rose .

Solution The graph of is shown in Figure 9. Observe that a loop of the
rose is described by the region

and may be viewed as being -simple, where and . Taking
in Equation (3), we see that the required area is given by

or approximately 0.26.

 �
1

4
 cu �

1

6
 sin 6udu�p>3

u�0
�
p

12

sin2 u �
1 � cos 2u

2
 �

1

2
 �
p>3

0
sin2 3u du �

1

4
 �
p>3

0
(1 � cos 6u) du

 � �
p>3

0
 c12 r 2dr�sin 3u

r�0
du

 A � ��
R

dA � �
p>3

0
�

sin 3u

0
r dr du

f(x, y) � 1
t2(u) � sin 3ut1(u) � 0r

R � 5 (r, u) � 0 � u � p
3 , 0 � r � sin 3u6

r � sin 3u

r � sin 3u

¨ � å

¨ � ∫

r � g2(¨)

r � g1(¨)

O
å

∫

R

FIGURE 9
The region viewed as an -simple
region

rR

t

t

¨ �

¨ � 0

3
π

R
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EXAMPLE 4 Evaluate , where is the region in the first quadrant that is
outside the circle and inside the cardioid .

Solution The required region

is sketched in Figure 10 and may be viewed as being -simple. Recalling that 
and using Equation (3), we obtain

 �
8

3
c�1

4
 (1 	 cos u)4 	 cos udp>2

0
�

22

3

 �
8

3
 �
p>2

0
 C (1 	 cos u)3 sin u � sin u D du

 � �
p>2

0
 c13 r 3 sin udr�2(1	cos u)

r�2
du

 ��
R

 y dA � �
p>2

0
 �

2(1	cos u)

2
 r(sin u) r dr du � �

p>2

0
 �

2(1	cos u)

2
r 2(sin u) dr du

y � r sin ur

R � 5 (r, u) � 0 � u � p
2 , 2 � r � 2(1 	 cos u)6

r � 2(1 	 cos u)r � 2
R��R

y dA

FIGURE 10
The polar region 

2 � r � 2(1 	 cos u)6R � 5 (r, u) � 0 � u � p
2 ,

r � 2

0

r � 2(1 	 cos ¨)

R

2 4

�2

�2

2

EXAMPLE 5 Find the volume of the solid that lies below the paraboloid

, above the -plane, and inside the cylinder .

Solution The solid under consideration is shown in Figure 11a. It lies above the
disk bounded by the circle with center and radius 1 shown in Figure 11b. This
unit circle has polar equation , as you can verify by replacing and in
the rectangular equation of the circle by and . Therefore,

and may be viewed as being -simple, where and . Using thet2(u) � 2 cos ut1(u) � 0r

R � 5 (r, u) � �p2 � u � p
2 , 0 � r � 2 cos u6

y � r sin ux � r cos u
yxr � 2 cos u

(1, 0)R
S

(x � 1)2 	 y2 � 1xyz � 4 � x2 � y2

relationship and taking advantage of symmetry, we see that the required
volume is

x2 	 y2 � r 2

 � 8c5
8

 u 	
1

4
sin 2u �

1

32
sin 4udp>2

0
�

5p

2

 � 8 �
p>2

0
 c34 	

1

2
cos 2u �

1 	 cos 4u

8
d  du

cos2 u �
1 	 cos 2u

2
 � 8 �

p>2

0
 c1 	 cos 2u � a1 	 cos 2u

2
b2d  du

 � 2 �
p>2

0
 c2r 2 �

1

4
 r 4dr�2 cos u

r�0
 du � 8 �

p>2

0
(2 cos2 u � cos4 u) du

 V � ��
R

(4 � x2 � y2) dA � �
p>2

�p>2
 �

2 cos u

0
 (4 � r 2) r dr du � 2 �

p>2

0
 �

2 cos u

0
(4r � r 3) dr du

or approximately 7.85.
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FIGURE 11

y

x

z

2

2

2

–2

–2

2

(b) The region R is r-simple.

R

R

(a) The solid S

S

(x – 1)2 + y2 = 1    or    r = 2 cos q 

x2 + y2 = 4

x

y

1. a. What is a polar rectangle? Illustrate with a sketch.
b. Suppose is continuous on a polar rectangle

, where
. Write in terms of polar

coordinates.
��R

f(x, y) dA0 � b � a � 2p
R � {(r, u) � a � r � b, a � u � b}

f
2. a. What is an -simple region? Illustrate with a sketch.

b. Suppose that is continuous on a region of the form
, where

. Write in terms of polar
coordinates.

��R
f(x, y) dA0 � b � a � 2p

t1(u) � r � t2(u)}R � {(r, u) �a � u � b
f

r

14.3 CONCEPT QUESTIONS

Videos for selected exercises are available online at www.academic.cengage.com/login.V

In Exercises 1–4, determine whether to use polar coordinates or
rectangular coordinates to evaluate the integral ,
where is a continuous function. Then write an expression for
the (iterated) integral.

1. 2.

3. 4.

In Exercises 5–8, sketch the region of integration associated with
the integral.

5.

6. �
p

0
�

4 sin u

0
 f(r cos u, r sin u) r dr du

�
p

0
�

4

1
f(r cos u, r sin u) r dr du

x

R

2�2 0

2

�2

y

x

R

10

1

�1

y

√2

x

R

21�1�2 0

2

1

y

x

R

30

2

y

f
��R

f(x, y) dA 7.

8.

In Exercises 9–16, evaluate the integral by changing to polar
coordinates.

9. , where is the disk of radius 2 centered at the 

origin

10. , where is the region in the first quadrant 

bounded by the circle 

11. , where is the region in the first quadrant 

bounded by the circle and the lines and

12. , where is the region in the first quadrant 

bounded by the circle and the lines and

13. , where is the annular region bounded by 

the circles and x2 	 y2 � 2x2 	 y2 � 1

R��
R

 
y2

x2 	 y2 dA

y � 13x
y � 0x2 	 y2 � 4

R��
R

2x2 	 y2 dA

x � y
x � 0x2 	 y2 � 4

R��
R

xy dA

x2 	 y2 � 9

R��
R

(x 	 2y) dA

R��
R

3y dA

�
2p

0
�

1	cos u

0
f(r cos u, r sin u) r dr du

�
p>2

p>4 �
212

0
 f(r cos u, r sin u) r dr du

14.3 EXERCISES
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14. , where is the region in the first 

quadrant bounded by the circles and

15. , where is the smaller of the two regions bounded 

by the circle and the line 

16. , where is the region in the first quadrant 

bounded by the circles and 

In Exercises 17–26, use polar coordinates to find the volume of
the solid region .

17. lies below the paraboloid , above the -plane,
and inside the cylinder .

18. lies below the paraboloid , above the 
-plane, and inside the cylinder .

19. lies below the cone , above the -plane,
and inside the cylinder .

20. lies below the cone , above the -plane,
inside the cylinder , and outside the cylinder

.

21. lies under the plane , above the -
plane, and inside the cylinder .

22. lies under the paraboloid , above the -plane,
and inside the cylinder .

23. is bounded by the paraboloid and the
plane .

24. is bounded by the paraboloids and
.

25. is below the sphere and above the cone

.

26. is inside the sphere and inside the
cylinder .

In Exercises 27–32, use a double integral to find the area of the
region .

27. is bounded by the circle .

28. is bounded by one loop of the four-leaved rose .

29. is bounded by the cardioid .

30. is bounded by the lemniscate .

31. is outside the circle and inside the circle
.

32. is inside the circle and outside the cardioid
.r � 1 	 sin u

r � 3 sin uR

r � 2a sin u
r � aR

r 2 � 4 cos 2uR

r � 3 � 3 sin uR

r � cos 2uR

r � 3 cos uR

R

x2 	 y2 � 2y
x2 	 y2 	 z2 � 4T

z �2x2 	 y2

x2 	 y2 	 z2 � 2T

z � 12 � x2 � y2
z � 5x2 	 5y2T

z � 1
z � 9 � 2x2 � 2y2T

x2 	 y2 � 2y
xyz � x2 	 y2T

x2 	 y2 � 2x
xy3x 	 4y 	 z � 12T

x2 	 y2 � 1
x2 	 y2 � 4

xyz �2x2 	 y2T

x2 	 y2 � 4
xyz �2x2 	 y2T

x2 	 y2 � 1xy
z � 9 � x2 � y2T

x2 	 y2 � 4
xyz � x2 	 y2T

T

x2 	 y2 � 2yx2 	 y2 � 4

R��
R

(x 	 y) dA

y � xx2 	 y2 � 2x

R��
R

y dA

x2 	 y2 � 9
x2 	 y2 � 1

R��
R

sin(x2 	 y2) dA
In Exercises 33–40, evaluate the integral by changing to polar
coordinates.

33.

34.

35.

36.

37.

38.

39.

40.

In Exercises 41 and 42, write the sum of the double integrals as
a simple double integral using polar coordinates. Then evaluate
the resulting integral.

41.

42.

43. a. Suppose that is continuous on the region bounded by
the lines , , and . Show that

b. Use the result of part (a) to evaluate

44. A region is -simple if it is bounded by the graphs of two
functions of . A -simple region is described by

where and are continuous on . It can be shown
that if is continuous on , then

��
R

f(x, y) dA � �
b

a
�

 2(r)

 1(r)
f(r cos u, r sin u) r du dr

Rf
[a, b]t2t1

R � {(r, u) � a � r � b, t1(r) � u � t2(r)}

ur
U

�
1

0
�

y

�y

 2x2 	 y2 dx dy

��
R

f(x, y) dA � �
3p>4

p>4
 �

csc u

0
f(r cos u, r sin u) r dr du

y � 1y � �xy � x
Rf

�
1

0
�
24�x2

21�x2

2x2 	 y2 dy dx 	 �
2

1
�
24�x2

0
 2x2 	 y2 dy dx

�
12

0
 �

x

0
xy dy dx 	 �

2

12
 �
24�x2

0
xy dy dx

�
1

0
�
21�x2

0
tan�1a y

x
b dy dx

�
2

0
�
22x�x2

�22x�x2

x dy dx

�
1

0
�
21�y2

0
cos(x2 	 y2) dx dy

�
2

�2
 �
24�x2

0
ex2	y2

dy dx

�
3

1
�

x

0
 

1

2x2 	 y2
dy dx

�
1

�1
 �
21�y2

0

1

1 	 x2 	 y2 dx dy

�
3

0
�
29�x2

0
 (x2 	 y2)3>2 dy dx

�
2

�2
 �
24�x2

0
 2x2 	 y2 dy dx

t

t
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d. Show that , and

hence deduce the result .

Use the results of Exercise 45 to evaluate the integrals in Exer-
cises 46 and 47.

46. 47.

48. Water Delivered by a Water Sprinkler A lawn sprinkler sprays
water in a circular pattern. It delivers water to a depth of

ft/hr at a distance of ft from the sprinkler.
a. Find the total amount of water that is accumulated in an

hour in a circular region of radius 50 ft centered at the
sprinkler.

b. What is the average amount of water that is delivered to
the region in part (a) in an hour?
Hint: The average value of over a region

where , is the area of .

In Exercises 49 and 50, determine whether the statement is true
or false. If it is true, explain why. If it is false, explain why or
give an example that shows it is false.

49. If , where
and for all in

, then gives the area of .

50. If is the triangular region, whose vertices in rectangular
coordinates are (0, 0), (1, 0), and (1, 1), then

, where
and are polar coordinates.ur

��R
f(x, y) dA � � p>40 � sec u

0 f(r cos u, r sin u) r dr du

R

R�ba �  (u)
0 f(r cos u, r sin u) r dr duR

(r, u)f(r cos u, r sin u) � 10 � b � a � 2p
R � {(r, u) �a � u � b, 0 � r � t(u)}

DA(D)

D �
1

A(D)
 ��

D

f(x, y) dA

f

rf(r) � 0.1re�0.1r

�
�

0

e�x

1x
dx�

�

0
x2e�x2

dx

I � 12p
��

0 e�x2
dx � lima→��a

0 e�x2
dx � 1p>2

Use this formula to find the area of the smaller region
bounded by the spiral , the circles and ,
and the polar axis.

45. The integral occurs in the study of proba-I � ��
��

e�x2>2 dx

r � 2r � 1ru � 1

0 x

r � b

r � a

R

¨ � g2(r)

¨ � g1(r)

y

t

14.4 Applications of Double Integrals

Mass of a Lamina
We mentioned in Section 14.1 that the mass of a thin rectangular plate lying in the 

-plane and having mass density at a point in is given by the volume
of the solid region lying directly above and bounded above by . (See Fig-
ure 1.) We will now show that this is the case. In fact, we will demonstrate that the mass
of a lamina occupying a region in the -plane and having mass density at a
point , where is a nonnegative continuous function, is given by .
The double integral also gives the volume of the solid region lying directly above and
bounded above by the surface . (See Figure 2.)z � r(x, y)

R
��R
r(x, y) dAr(x, y)
r(x, y)xyR

z � r(x, y)RT
R(x, y)r(x, y)xy

R

FIGURE 1
The mass of the plate is numerically
equal to the volume of the solid .T

R

bility and statistics. Show that by verifying the
following steps.
a. Sketch the regions ,

, ,
and on the
same plane. Observe that lies inside and that 
lies inside .

b. Show that

where , and that

c. By considering , where ,
and using the results of part (b), show that

p

4
 11 � e�a2 2 � a�

a

0
e�x2

dxb2

�
p

4
 11 � e�2a2 2

f(x, y) � e�x2�y2
��R2

f(x, y) dA

��
R3

f(r, u) dA �
p

4
 11 � e�2a2 2

f(r, u) � e�r2

��
R1

f(r, u) dA �
p

4
 11 � e�a2 2

R3

R2R2R1

R3 � {(x, y) � x2 	 y2 � 2a2, x � 0, y � 0}
R2 � {(x, y) � 0 � x � a, 0 � y � a}x � 0, y � 0}

R1 � {(x, y) � x2 	 y2 � a2

I � 12p

z = r (x, y)

R

T

z

y

x

0
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FIGURE 3
is a

partition of .S
P � {S11, S12, p , Sij, p , Smn}

Let be a rectangle containing , and let be a reg-
ular partition of . (See Figure 3.) Define

Let be a point in that also lies in . If both and are large (so that the
dimensions of are small), then the continuity of implies that is approxi-
mately equal to for all points in . Therefore, the mass of that piece
of lying in with area is approximately

constant density area

Summing the masses of all such pieces gives an approximation of the mass of :

We can expect the approximation to improve as both and get larger and larger.
Therefore, it is reasonable to define the mass of the lamina as the limiting value of the
sums of this form. But each of these sums is just the Riemann sum of over . This
leads to the following definition.

SrR

nm

a
m

i�1
a

n

j�1
r(x*ij , y*ij ) �A

R

�r(x*ij , y*ij ) �A

�ASijR
Sij(x, y)r(x*ij , y*ij )

r(x, y)rSij

nmRSij(x*ij , y*ij )

rR(x, y) � er(x, y) if (x, y) is in R

0 if (x, y) is inside S but outside R

S
P � {S11, S12, p , Sij, p , Smn}RS

DEFINITION Mass of a Lamina

Suppose that a lamina occupies a region in the plane and the mass density of
the lamina at a point in is , where is a continuous density func-
tion. Then the mass of the lamina is given by

(1)m � ��
R

r(x, y) dA

rr(x, y)R(x, y)
R

Note We obtain other physical interpretations of the double integral by
letting represent various types of densities. For example, if an electric charge is spreadf

��R
f(x, y) dA

FIGURE 2
The mass of the lamina in part (a) 

is numerically equal to the 
volume of the solid in part (b).T

y

x

z

0

(a) (b)

T

R

z = r (x, y)

0 x

y (xij , yij)
Sij

S

R

* *
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over a plane surface and the charge density (charge per unit area) at a point in
is , then the total charge on the surface is given by

(2)

For another example, suppose that the population density (number of people per unit
area) at a point in a plane region is ; then the total population in the
region is given by

(3)N � ��
R

d(x, y) dA

d(x, y)R(x, y)

Q � ��
R

s(x, y) dA

s(x, y)R
(x, y)R

EXAMPLE 1 Find the mass of a lamina occupying a triangular region with vertices
, , and if its mass density at a point in is .

Solution The region is shown in Figure 4. Viewing as a -simple region and using
Equation (1), we see that the required mass is given by

 � �
2

0
(4 � 2x) dx � C4x � x2 D 2

0
� 4

 � �
2

0
 Cxy 	 y2 D y�2�x

y�0
dx � �

2

0
 [x(2 � x) 	 (2 � x)2] dx

 m � ��
R

r(x, y) dA � �
2

0
�

2�x

0
(x 	 2y) dy dx

yRR

r(x, y) � x 	 2yR(x, y)(0, 2)(2, 0)(0, 0)
R

FIGURE 4
The region is both -simple and 
-simple. Here, we view it as -simple.yy

xR

EXAMPLE 2 Electric Charge Over a Region An electric charge is spread over a region
lying in the first quadrant and inside the circle . Find the total charge

on if the charge density (measured in coulombs per square meter) at a point 
in is directly proportional to the square of the distance between the point and the
origin.

Solution The region is shown in Figure 5. The charge density function is given 
by , where is the constant of proportionality. Viewing as a 
-simple region and using Equation (2), we see that the total charge on is given by

or, changing to polar coordinates,

or 2 coulombs.pk

 � 4k�
p>2

0
du � 2pk

 Q � �
p>2

0
 �

2

0
(kr 2) r dr du � k�

p>2

0
 �

2

0
r 3 dr du � k�

p>2

0
 c14 r 4dr�2

r�0
du

Q � ��
R

s(x, y) dA � �
2

0
�
24�x2

0
k(x2 	 y2) dy dx

Ry
Rks(x, y) � k(x2 	 y2)

R

R
(x, y)R

x2 	 y2 � 4R

FIGURE 5
The region is both -simple and 
-simple. Here, we view it as -simple.yy

xR

0 x

y

2

y � 2 � x

R

1

2

1

0 x

y

2

x2 	 y2 � 4

R

2



Note If the density function is constant on , then the point is also called the
centroid of the region . (See Section 5.7.)R

(x, y)Rr

1178 Chapter 14 Multiple Integrals

Moments and Center of Mass of a Lamina
We considered the moments and the center of mass of a homogeneous lamina in Sec-
tion 5.7. Using double integrals, we can now find the moments and center of mass of
a lamina with variable density. Suppose that a lamina with continuous mass density
function occupies a region in the -plane. (See Figure 6.)

Let be a rectangle containing , and let be a reg-
ular partition of . Choose to be any evaluation point in . If and are
large, then the mass of the part of the lamina occupying the subrectangle is approx-
imately . Consequently, the moment of this part of the lamina with respect
to the -axis is approximately

mass moment arm

Adding up these moments and taking the limit of the resulting sum as and 
approach infinity, we obtain the moment of the lamina with respect to the -axis. A
similar argument gives the moment of the lamina about the -axis. These formulas and
the formula for the center of mass of a lamina follow.

y
x

nmmn

�[r(x*ij , y*ij ) �A]y*ij

x
r(x*ij , y*ij ) �A

Sij

nmSij(x*ij , y*ij )S
P � {S11, S12, p , Sij, p , Smn}RS

xyRr

FIGURE 6
The region contained in a rectangle SR

DEFINITION Moments and Center of Mass of a Lamina

Suppose that a lamina occupies a region in the -plane and the mass density
of the lamina at a point in is , where is a continuous density
function. Then the moments of mass of the lamina with respect to the - and 
-axes are

and (4a)

Furthermore, the center of mass of the lamina is located at the point ,
where

(4b)

where the mass of the lamina is given by

m � ��
R

r(x, y) dA

y �
Mx

m
�

1
m

 ��
R

yr(x, y) dAx �
My

m
�

1
m

 ��
R

xr(x, y) dA

(x, y)

My � ��
R

xr(x, y) dAMx � ��
R

yr(x, y) dA

y
x

rr(x, y)R(x, y)
xyR

EXAMPLE 3 A lamina occupies a region in the -plane bounded by the parabola
and the line . (See Figure 7.) Find the center of mass of the lamina if its

mass density at a point is directly proportional to the distance between the point
and the -axis.

Solution The mass density of the lamina is given by , where is the con-
stant of proportionality. Since is symmetric with respect to the -axis and the den-
sity of the lamina is directly proportional to the distance from the -axis, we see thatx

yR
kr(x, y) � ky

x
(x, y)

y � 1y � x2
xyR

FIGURE 7
The region occupied by the 
lamina viewed as being -simpley

R

0 x

y

(xij , yij)

xij

yij

Sij

S

R
*

*

*

*

0 x

y

1�1

y � 1

R

1
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the center of mass is located on the -axis. Thus, . To find , we view as being
-simple and first compute

Then using Equation (4b), we obtain

Therefore, the center of mass of the lamina is located at .

Moments of Inertia
The moments of mass of a lamina, and , are called the first moments of the
lamina with respect to the - and -axes. We can also consider the second moment or
moment of inertia of a lamina about an axis. We begin by recalling that the moment
of inertia of a particle of mass with respect to an axis is defined to be

mass the square of the distance of the moment arm

To understand the physical significance of the moment of inertia of a particle, sup-
pose that a particle of mass rotates with constant angular velocity about a station-
ary axis. (See Figure 8.) The velocity of the particle is , where is the distance
of the particle from the axis. The kinetic energy of the particle is

This tells us that the moment of inertia of the particle with respect to the axis plays
the same role in rotational motion that the mass of a particle plays in rectilinear
motion. Since the mass is a measure of the inertia or resistance to rectilinear motion
(the larger is, the greater the energy needed), we see that the moment of inertia is
a measure of the resistance of the particle to rotational motion.

To define the moment of inertia of a lamina occupying a region in the -plane
and having mass density described by a continuous function , we proceed as before
by enclosing with a rectangle and partitioning the latter using a regular partition. The
moment of inertia of the piece of the lamina occupying the subrectangle about theRij

R
r

xyR
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m
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1
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y2 dy dx �
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 �

1
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c1
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 y3dy�1

y�x2
dx

 y �
1
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 ��
R

yr(x, y) dA �
5

4k
 �

1

�1
 �

1

x2

y(ky) dy dx

 �
k

2
 �

1

�1
(1 � x4) dx �

k

2
cx �

1

5
 x5d1

�1
�

4k

5

 m � ��
R

r(x, y) dA � �
1

�1
 �

1

x2

ky dy dx � k�
1

�1
 c12 y2dy�1

y�x2
dx

y
Ryx � 0y

FIGURE 8
A particle of mass rotating 
about a stationary axis

m

r

m

Axis

-axis is approximately , where is a point in . Taking
the limit of the sum of the second moments as and approach infinity, we obtain
the moment of inertia of the lamina with respect to the -axis. In a similar manner
we obtain the moment of inertia of a lamina with respect to the -axis.

The formulas for these quantities and the formulas for the moment of inertia of a
lamina with respect to the origin (the sum of the moments with respect to and with
respect to ) follow.y

x

y
x

nm
Rij(x*ij , y*ij )[r(x*ij , y*ij ) �A](y*ij )

2x
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DEFINITION Moments of Inertia of a Lamina

The moment of inertia of a lamina with respect to the -axis, the -axis, and
the origin are, respectively, as follows:

(5a)

(5b)

(5c)

 � ��
R

(x2 	 y2)r(x, y) dA � Ix 	 Iy

 I0 � lim
m, n→�

 a
m

i�1
a

n

j�1
[(x*ij )

2 	 (y*ij )
2]r(x*ij , y*ij ) �A

 Iy � lim
m, n→�

 a
m

i�1
a

n

j�1
(x*ij )

2r(x*ij , y*ij ) �A � ��
R

x2r(x, y) dA

 Ix � lim
m, n→�

 a
m

i�1
a

n

j�1
(y*ij )

2r(x*ij , y*ij ) �A � ��
R

y2r(x, y) dA

yx

EXAMPLE 4 Find the moments of inertia with respect to the -axis, the -axis, and
the origin of a thin homogeneous disk of mass and radius , centered at the origin.

Solution Since the disk is homogeneous, its density is constant and given by
. Using Equation (5a), we see that the moment of inertia of the disk

about the -axis is given by

By symmetry we see that . Finally, using Equation (5c), we see that the
moment of inertia of the disk about the origin is given by

Radius of Gyration of a Lamina
If we imagine that the mass of a lamina is concentrated at a point at a distance from
the axis, then the moment of inertia of this “point mass” would be the same as the
moment of inertia of the lamina. (See Figure 9.) The distance is called the radius
of gyration of the lamina with respect to the axis. Thus, if the mass of the lamina
is and its moment of inertia with respect to the axis is , then

mR2 � I

Im

R

R

I0 � Ix 	 Iy �
1

4
 ma2 	

1

4
 ma2 �

1

2
 ma2

Iy � Ix � 1
4ma2

 �
ma2

8p
cu �

1

2
sin 2ud2p

0
�

1

4
 ma2

 �
ma2

4p
 �

2p

0
sin2 u du �

ma2

8p
 �

2p

0
(1 � cos 2u) du

 �
m

pa2
 �

2p

0
 �

a

0
r 3 sin2 u dr du �

m

pa2
 �

2p

0
 c14 r 4 sin2 udr�a

r�0
du

 Ix � ��
R

y2r(x, y) dA �
m

pa2
 �

2p

0
 �

a

0
(r sin u)2 r dr du

x
r(x, y) � m>(pa)2

am
yx

FIGURE 9
is the radius of gyration of the 

lamina with respect to the axis.
R

R

m

Axis
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from which we see that

(6)R � B
I

m

EXAMPLE 5 Find the radius of gyration of the disk of Example 4 with respect to the
-axis.

Solution Using the result of Example 4, we have . Therefore, using Equa-
tion (6), we see that the radius of gyration of the disk about the -axis is

Note In Example 5 we have used the customary notation for the radius of gyration
of a lamina with respect to the -axis. The radius of gyration of a lamina with respect
to the -axis is denoted by .yx

y
x

x � B
Iy

m
� B

1
4ma2

m
�

1

2
 a

y
Iy � 1

4ma2

y

1. A lamina occupies a region in the plane. If the mass den-
sity of the lamina is , write an integral giving (a) the
mass of the lamina, (b) the moments of mass of the lamina
with respect to the - and -axes, and (c) the center of mass
of the lamina.

2. A lamina occupies a region in the plane.
a. Write an integral giving the moment of inertia of the lam-

ina with respect to the -axis, the -axis, and the origin.yx

R

yx

r(x, y)
R b. Write an integral giving the moment of inertia of the

lamina with respect to a line .
Hint: Let denote the distance between a point in 
and the line .

3. What is the radius of gyration of a lamina with respect to an
axis? Illustrate with a sketch.

L
R(x, y)d(x, y)

L

14.4 CONCEPT QUESTIONS

In Exercises 1–12, find the mass and the center of mass of the lam-
ina occupying the region R and having the given mass density.

1. is the rectangular region with vertices , , ,
and ;

2. is the rectangular region with vertices , , ,
and ;

3. is the triangular region with vertices , , and
;

4. is the triangular region with vertices , , and
;

5. is the region bounded by the graphs of the equations
, , and ;

6. is the region bounded by the parabola and the
-axis;

7. is the region bounded by the graphs of
, and ;

8. is the region bounded by the graphs of ,
and ; r(x, y) � y>xx � e

y � ln x, y � 0R

r(x, y) � 2xyx � 1y � ex, y � 0, x � 0
R

r(x, y) � yx
y � 4 � x2R

r(x, y) � xyx � 4y � 0y � 1x
R

r(x, y) � x 	 y(0, 1)
(1, 1)(1, 0)R

r(x, y) � x(4, 0)
(2, 1)(0, 0)R

r(x, y) � x2 	 y2(0, 1)
(3, 1)(3, 0)(0, 0)R

r(x, y) � y(0, 2)
(3, 2)(3, 0)(0, 0)R

9. is the region bounded by the graphs of , ,
, and ;

10. is the region in the first quadrant bounded by the circle
;

11. is the region bounded by the circle ;

12. is the region bounded by the cardioid ;

13. An electric charge is spread over a rectangular region
. Find the total charge

on if the charge density at a point in (measured in
coulombs per square meter) is .

14. Electric Charge on a Disk An electric charge is spread over 
the half-disk described by , . Find 
the total charge on if the charge density at any point 

in (measured in coulombs per square meter) is 

.

15. Temperature of a Hot Plate An 8-in. hot plate is described by
the set . The temperature at theS � {(x, y) � x2 	 y2 � 16}

s(x, y) �2x2 	 y2

H(x, y)
H

y � 0x2 	 y2 � 4H

s(x, y) � 2x2 	 y3
R(x, y)R

R � {(x, y) � 0 � x � 3, 0 � y � 1}

r(r, u) � 3
r � 1 	 cos uR

r(r, u) � r
r � 2 cos uR

r(x, y) � x 	 yx2 	 y2 � 1
R

r(x, y) � yx � px � 0
y � 0y � sin xR

14.4 EXERCISES

Videos for selected exercises are available online at www.academic.cengage.com/login.V

www.academic.cengage.com/login
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point is , measured 
in degrees Fahrenheit. What is the average temperature of
the hot plate?

16. Population Density of a City The population density (number of
people per square mile) of a certain city is

where and are measured in miles. Find the population
within a 1-mi radius of the town hall, located at the 
origin.

In Exercises 17–20, find the moments of inertia , and andI0Ix, Iy

yx

s(x, y) � 3000e�(x2	y2)

T(x, y) � 400 cos(0.12x2 	 y2)(x, y) 25. A thin metal plate has the shape of the region inside the
circle , below the line , to the right of the
line , and above the -axis. Its density is 
for in . Find the mass of the plate.

26. Find the rectangular coordinates of the centroid of the region
lying between the circles and .

In Exercises 27–29, determine whether the statement is true or
false. If it is true, explain why. If it is false, explain why or give
an example that shows it is false.

27. A piece of metal is laminated from two thin sheets of metal
with mass density and . If it occupies a
region in the plane, then the mass of the laminate is

.

28. If the region occupied by a lamina is symmetric with respect
to both the - and -axes, then the center of mass of the
lamina must be located at the origin.

29. If a lamina occupies a region in the plane, then its center
of mass must be located in .R

R

yx

��R
r1(x, y) dA 	 ��R

r2(x, y) dA
R

r2(x, y)r1(x, y)

r � 4 cos ur � 2 cos u

x

x � 1
y � x

R

2

y

R(x, y)
r(x, y) � y>xxx � 1

y � xx2 	 y2 � 4
R

14.5 Surface Area

In Section 5.4 we saw that the area of a surface of revolution can be found by evalu-
ating a simple integral. We now turn our attention to the problem of finding the area
of more general surfaces. More specifically, we will consider surfaces that are graphs
of functions of two variables. As you will see, the area of these surfaces can be found
by using double integrals.

Area of a Surface 
For simplicity we will consider the case in which is defined in an open set contain-
ing a rectangular region and

on . Furthermore, we assume that has continuous first-order partial deriv-
atives in that region. We wish first to define what we mean by the area of the surface

with equation (Figure 1) and then to find a formula that will enable us to
calculate this area.

Let be a regular partition of into subrectangles . Cor-
responding to the subrectangle , there is the part of (called a patch) that liesSSijRij

R11, R12, p , RmnN � mnRP

z � f(x, y)S

fRf(x, y) � 0
R � [a, b] � [c, d] � {(x, y) � a � x � b, c � y � d}

f

z � f(x, y)

the radii of gyration and for the lamina occupying the region
and having uniform density .

17. is the rectangular region with vertices , , ,
and .

18. is the triangular region with vertices , , and
.

19. is the half-disk .

20. is the region bounded by the ellipse .

In Exercises 21–24, find the moments of inertia , and and
the radii of gyration and for the lamina.

21. The lamina of Exercise 1

22. The lamina of Exercise 3

23. The lamina of Exercise 5

24. The lamina of Exercise 10

yx
I0Ix, Iy

x2

a2 	
y2

b2 � 1R

H � {(x, y) � x2 	 y2 � R2, y � 0}D

(0, b)
(a, 0)(0, 0)R

(0, b)
(a, b)(a, 0)(0, 0)R

rR
yx
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FIGURE 1
The surface is the graph of 

for in .R(x, y)z � f(x, y)
S

directly above with area denoted by . Since the subrectangles are nonover-
lapping except for their common boundaries, so are the patches of , so the area of

is given by

(1)

Next, let’s find an approximation of . Let be the corner of closest to
the origin, and let be the point directly above it. If you refer to Fig-
ure 2, you can see that is approximated by the area of of the parallelogram 
that is part of the tangent plane to at the point and lying directly above

. To find a formula for , let and be vectors that have initial point 
and lie along the sides of the approximating parallelogram. Now from Section 13.3 
we see that the slopes of the tangent lines passing through and having
the directions of and are given by and , respectively. Therefore,

and

From Section 11.4 we have . But

where is the area of . Therefore,

(2)

If we approximate by , then Equation (1) becomes

Intuitively, we see that the approximation should get better and better as both and 
get larger and larger. This suggests that we define

Using the definition of the double integral, we obtain the following result, which is
stated for the general case in which is not necessarily rectangular and is not
necessarily positive.

f(x, y)R

A � lim
m, n→�

a
m

i�1
a

n

j�1
2[ fx(x i, yj)]

2 	 [ fy(x i, yj)]
2 	 1 �A

nm

A � a
m

i�1
a

n

j�1
�Tij

�Tij�Sij

�Tij � �a � b � �2[ fx(x i, yj)]
2 	 [ fy(x i, yj)]

2 	 1 �A

Rij�A � �x �y

 � [�fx(x i, yj)i � fy(x i, yj)j 	 k] �A

 � �fx(x i, yj) �x �yi � fy(x i, yj) �x �yj 	 �x �yk

 a � b � †
i j k

�x 0 fx(x i, yj) �x

0 �y fy(x i, yj) �y
†

�Tij � �a � b �

 b � �yj 	 fy(x i, yj) �yk a � �xi 	 fx(x i, yj) �xk

fy(x i, yj)fx(x i, yj)ba
(x i, yj, f(x i, yj))

(x i, yj, f(x i, yj))ba�TijRij

(x i, yj, f(x i, yj))S
Tij�Tij�Sij

(x i, yj, f(x i, yj))
Rij(x i, yj)�Sij

A � a
m

i�1
a

n

j�1
�Sij

S
SSij

Rij�SijRij

FIGURE 2
The tangent plane determined by and

approximates well if is small.RijSb
a

y

x

z

0

z = f (x, y)

R

S

Sij

Rij

Sij

Tij

Rij

b

a

(xi, yj)

(xi, yj,  f (xi, yj))
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EXAMPLE 2 Find the surface area of the part of the paraboloid that
lies above the plane .

Solution The paraboloid is sketched in Figure 4a. The paraboloid intersects the plane
along the circle . Therefore, the surface of interest lies directly above

the disk shown in Figure 4b. Using Equation (3) with
, we find the required area to be

 � ��
R

24x2 	 4y2 	 1 dA

 � ��
R

2(�2x)2 	 (�2y)2 	 1 dA

 A � ��
R

2[ fx(x, y)]2 	 [ fy(x, y)]2 	 1 dA

f(x, y) � 9 � x2 � y2
R � {(x, y) � x2 	 y2 � 4}

x2 	 y2 � 4z � 5

z � 5
z � 9 � x2 � y2

Formula for Finding the Area of a Surface 

Let be defined on a region in the -plane and suppose that and are con-
tinuous. The area of the surface is

(3)A � ��
R

2[ fx(x, y)]2 	 [ fy(x, y)]2 	 1 dA

z � f(x, y)A
fyfxxyRf

z � f(x, y)

EXAMPLE 1 Find the area of the part of the surface with equation that
lies directly above the triangular region in the -plane with vertices , ,
and .

Solution The region is shown in Figure 3. It is both a -simple and an -simple
region. Viewed as an -simple region

Using Equation (3) with , we see that the required area is

or approximately 1.32.

 � c1
8

�
2

3
 (4y2 	 5)3>2d1

0
�

1

12
 (27 � 515)

 � �
1

0
 cx24y2 	 5dx�y

x�0
dy � �

1

0
y24y2 	 5 dy

 � ��
R

222 	 (2y)2 	 1 dA � �
1

0
�

y

0
24y2 	 5 dx dy

 A � ��
R

2[ fx(x, y)]2 	 [ fy(x, y)]2 	 1 dA

f(x, y) � 2x 	 y2

R � {(x, y) � 0 � x � y, 0 � y � 1}

x
xyR

(0, 1)
(1, 1)(0, 0)xyR

z � 2x 	 y2FIGURE 3
The region 

,
viewed as an -simple regionx

0 � y � 1}R � {(x, y) � 0 � x � y

0 x

y

1

y � x

(1, 1)

R

1
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GASPARD MONGE
(1746–1818)

In 1789, at the beginning of the French Rev-
olution, Gaspard Monge was one of the
best-known mathematicians in France. In
addition to doing theoretical work in
descriptive geometry, Monge applied his
skills to construction projects, general
architecture, and military applications.
Before the revolution he was appointed
examiner of naval cadets. This position
took him away from his professorship in
Mézières, but he used his salary to pay
other people to fulfill his teaching duties.
With this arrangement in place, in 1796
Monge embarked on a prolonged absence
from France. He traveled first to Italy,
where he became friendly with Napoleon
Bonaparte. Two years later, he joined Bona-
parte’s expeditionary force to Egypt. While
in Egypt, Monge carried out many technical
and scientific tasks, including the estab-
lishment of the Institut d’Egypt in Cairo.
Monge returned to Paris in 1799, where he
resumed his teaching duties and returned
to his research. He received numerous
awards for his work and accepted an
appointment as a senator for life during
Napoleon’s military dictatorship. However,
after the defeat of Napoleon in 1815, life
became difficult for Monge. He was
expelled from the Institut de France, and
his life was continually threatened. Monge
died in Paris in 1818. He is known today pri-
marily for his application of the calculus to
the study of curvature of surfaces, and he
is considered the father of differential
geometry.

Historical Biography
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s, 
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FIGURE 4

Changing to polar coordinates, we have

or approximately 36.2.

Area of Surfaces with Equations and 
Formulas for finding the area of surfaces that are graphs of and 
are developed in a similar manner.

x � h(y, z)y � t(x, z)

x � h( y, z)y � g(x, z)

 � �
2p

0
 c 1

12
 (173>2 � 1)d du � 2pa 1

12
b (17217 � 1) �

1

6
 p(17117 � 1)

 � �
2p

0
 c18 �

2

3
 (4r 2 	 1)3>2dr�2

r�0
du

 A � �
2p

0
�

2

0
24r 2 	 1 r dr du

Formulas for Finding the Area of Surfaces in the Form 
and .

Let be defined on a region in the -plane, and suppose that and are
continuous. The area of the surface is

(4)

Let be defined on a region in the -plane, and suppose that and are
continuous. The area of the surface is

(5)A � ��
R

2[hy(y, z)]2 	 [hz(y, z)]2 	 1 dA

x � h(y, z)A
hzhyyzRh

A � ��
R

2[tx(x, z)]2 	 [tz(x, z)]2 	 1 dA

y � t(x, z)A
tztxxzRt

x � h( y, z)
y � g(x, z)

These situations are depicted in Figure 5.

y

x

z

z = 5

z = 9 – x2 – y2

(a) The part of the paraboloid that lies above the plane z = 5

22 33

(b) The disk R = {(x,y) | x2 + y2 < 4}

x2 + y2 = 4

x

y

2–2

2

–2

R

Copyright 2009 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.
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1. Write an integral giving the area of the surface 
defined over a region in the -plane.xyR

z � f(x, y) 2. Write an integral giving the area of the surface 
defined over a region in the -plane.yzR

x � f(y, z)

14.5 CONCEPT QUESTIONS

FIGURE 6

FIGURE 5

EXAMPLE 3 Find the area of that part of the plane inside the cylinder

.

Solution The surface of interest is sketched in Figure 6a. The projection of onto
the -plane is the disk shown in Figure 6b. Using Equa-
tion (4) with , we see that the area of is

upon observing that the area of is .pR

 � ��
R

202 	 (�1)2 	 1 dA � 12 ��
R

1 dA � 12p

 A � ��
R

2[tx(x, z)]2 	 [tz(x, z)]2 	 1 dA

St(x, z) � 2 � z
R � {(x, z) � x2 	 z2 � 1}xz

SS

x2 	 z2 � 1

y 	 z � 2

(a) The surface S has equation y = t(x, z) and
      projection R onto the xz-plane.

(b) The surface S has equation x = h(y, z) and
      projection R onto the yz-plane.

y = t(x, z)

x = h(y, z)
y

x

z

R

R

S

S

y

x

z

(a) The surface S (b) The projection R of S onto the xz-plane

S
R

y + z = 2   (y = 2 – z)

y

x

z

x

z

1–1

1

–1

R
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In Exercises 1–14, find the area of the surface .

1. is the part of the plane that lies above
the rectangular region .

2. is the part of the plane that lies above
the triangular region with vertices , , and .

3. is the part of the surface that lies above the
triangular region with vertices , , and .

4. is the part of the surface that lies above
the triangular region with vertices , , and .

5. is the part of the paraboloid that lies
above the -plane.

6. is the part of the paraboloid that lies
between the planes and .

7. is the part of the sphere that lies above
the plane .

8. is the part of the hyperbolic paraboloid that
lies above the annular region .

9. is the part of the surface that lies inside the cylin-
der .

10. is the part of the sphere that lies to the
right of the -plane and inside the cylinder .

11. is the part of the sphere that lies inside
the cone .

12. is the part of the hyperbolic paraboloid that
lies in the first octant and inside the cylinder .

13. is the part of the sphere that lies inside
the cylinder .

14. comprises the parts of the cylinder that lie
within the cylinder .

Hint: The figure shows the intersection of the two cylinders in the
first octant. Use symmetry.

y

x

z

x2 + z2 = 1

y2 + z2 = 1

y2 	 z2 � 1
x2 	 z2 � 1S

x2 � ax 	 y2 � 0
x2 	 y2 	 z2 � a2S

x2 	 z2 � 4
y � x2 � z2S

z2 � x2 	 y2
x2 	 y2 	 z2 � 8S

x2 	 z2 � 4xz
x2 	 y2 	 z2 � 9S

y2 	 z2 � 16
x � yzS

A � {(x, y) � 1 � x2 	 y2 � 4}
z � y2 � x2S

z � 2
x2 	 y2 	 z2 � 9S

y � 5y � 0
y � 9 � x2 � z2S

xy
z � 9 � x2 � y2S

(0, 1)(1, 0)(0, �1)
z � 2 � x2 	 yS

(1, 1)(1, 0)(0, 0)
z � 1

2 x2 	 yS

(0, 3)(1, 3)(0, 0)
3x 	 2y 	 z � 6S

R � {(x, y) � 0 � x � 2, 0 � y � 1}
2x 	 3y 	 z � 12S

S 15. Let be the part of the plane lying in the
first octant whose projection onto the -plane is a region . 

Prove that the area of is ,
where is the area of .

16. a. Let be the part of the sphere 
that lies above the region ,

in the -plane. Show that the area of is 

.
b. Use the result of part (a) to deduce that the area of a

sphere of radius is .

In Exercises 17–20, use a calculator or a computer to approxi-
mate the area of the surface , accurate to four decimal places.

17. is the part of the paraboloid that lies above
the square region .

18. is the part of the paraboloid that lies
above the square region ,

.

19. is the part of the surface that lies inside the
cylinder .

20. is the part of the surface that lies above
the disk .

In Exercises 21–24, write a double integral that gives the surface
area of the part of the graph of that lies above the region .
Do not evaluate the integral.

21. ;

22. ; is the triangular region with
vertices , , and 

23. ;

24. ;

In Exercises 25 and 26, determine whether the statement is true
or false. If it is true, explain why. If it is false, explain why or
give an example that shows it is false.

25. If , then 

, where 
.

26. If is defined over a region in the -plane, then 

, where denotes the area 

of . (Assume that and exist.)fyfxR

A(R)��R
2f 2

x 	 f 2
y 	 1 dA � A(R)

xyRz � f(x, y)

R � {(x, y) � 0 � x2 	 y2 � 4}
��R
2f 2

x 	 f 2
y 	 1 dA � 8p

f(x, y) �24 � x2 � y2

R � {(x, y) � 0 � x � 1, 0 � y � 2}f(x, y) � e�xy

R � {(x, y) � 0 � x � 2, 0 � y � x}f(x, y) �
1

2x 	 3y

(0, 1)(1, 1)(0, 0)
Rf(x, y) � x2 � 3xy 	 y2

R � {(x, y) � �1 � x � 1, �1 � y � 1}f(x, y) � 3x2y2

Rf

x2 	 y2 � 1
z � sin(x2 	 y2)S

x2 	 y2 � 4
z � e�x2�y2

S

�2 � y � 2}
R � {(x, y) � �2 � x � 2

z � 9 � x2 � y2S

R � {(x, y) � 0 � x � 2, 0 � y � 2}
z � x2 	 y2S

S

4pa2a

2pa(a �2a2 � b2)

Sxy0 � b � a}
R � {(x, y) � x2 	 y2 � b2

x2 	 y2 	 z2 � a2S

RA(R)
(1>c)2a2 	 b2 	 c2 A(R)S

Rxy
ax 	 by 	 cz � dS

14.5 EXERCISES

Videos for selected exercises are available online at www.academic.cengage.com/login.V
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14.6 Triple Integrals

Triple Integrals Over a Rectangular Box
Just as the mass of a piece of straight, thin wire of linear mass density , where

, is given by the single integral , and the mass of a thin plate of
mass density is given by the double integral , we will now see
that the mass of a solid object with mass density is given by a triple inte-
gral.

Let’s consider the simplest case in which the solid takes the form of a rectangular
box:

Suppose that the mass density of the solid is g/m3, where is a positive con-
tinuous function defined on . Let

be regular partitions of the intervals , , and of length ,
, and , respectively. The planes , for ,

, for , and , for , parallel to the -, -, and -
coordinate planes divide the box into boxes , , , , , ,
as shown in Figure 1. The volume of is .

Let be an arbitrary point in . If , , and are large (so that the
dimensions of are small), then the continuity of implies that does not
vary appreciably from , whenever is in . Therefore, we can
approximate the mass of by

constant mass density volume

where . Adding up the masses of the boxes, we see that the mass of
the box is approximately

(1)

We expect the approximation to improve as , , and get larger and larger. There-
fore, it is reasonable to define the mass of the box as

(2)

The expression in (1) is an example of a Riemann sum of a function of three
variables over a box and the corresponding limit in (2) is the triple integral of over

. More generally, we have the following definitions. Notice that no assumption
regarding the sign of is made in these definitions.f(x, y, z)
B

f

lim
l, m, n→�

a
l

i�1
a
m

j�1
a

n

k�1
r(x*ijk, y*ijk, z*ijk) �V

B
nml

a
l

i�1
a
m

j�1
a

n

k�1
r(x*ijk, y*ijk, z*ijk) �V

B
N�V � �x �y �z

�r(x*ijk, y*ijk, z*ijk) �V

Bijk

Bijk(x, y, z)r(x*ijk, y*ijk, z*ijk)
r(x, y, z)rBijk

nmlBijk(x*ijk, y*ijk, z*ijk)
�V � �x �y �zBijk

BlmnpBijkpB112B111N � lmnB
xyxzyz1 � k � nz � zk1 � j � my � yj

1 � i � lx � x i�z � (q � p)>n�y � (d � c)>m �x � (b � a)>l[p, q][c, d][a, b]

 p � z0 � z1 � p � zk�1 � zk � p � zn � q

 c � y0 � y1 � p � yj�1 � yj � p � ym � d

 a � x0 � x1 � p � x i�1 � x i � p � x l � b

B
rr(x, y, z)

B � [a, b] � [c, d] � [p, q] � {(x, y, z) � a � x � b, c � y � d, p � z � q}

r(x, y, z)T
��D
s(x, y) dAs(x, y)

D�b
a d(x) dxa � x � b

d(x)

FIGURE 1
A partition of BP � {Bijk}

y
x

z

0

Bijk
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DEFINITION Triple Integral of Over a Rectangular Box 

Let be a continuous function of three variables defined on a rectangular box 
, and let be a partition of .

1. A Riemann sum of over with respect to the partition is a sum of the
form

where is a point in .
2. The triple integral of over is

if the limit exists for all choices of in .Bijk(x*ijk, y*ijk, z*ijk)

���
B

f(x, y, z) dV � lim
l, m, n→�

a
l

i�1
a
m

j�1
a

n

k�1
f(x*ijk, y*ijk, z*ijk) �V

Bf
Bijk(x*ijk, y*ijk, z*ijk)

a
l

i�1
a
m

j�1
a

n

k�1
 f(x*ijk, y*ijk, z*ijk) �V

PBf

BP � {Bijk}B
f

Bf

As in the case of double integrals, a triple integral may be found by evaluating an
appropriate iterated integral.

THEOREM 1
Let be continuous on the rectangular box

Then

(3)���
B

f(x, y, z) dV � �
q

p
�

d

c
�

b

a

f(x, y, z) dx dy dz

B � {(x, y, z) � a � x � b, c � y � d, p � z � q}

f

The iterated integral in Equation (3) is evaluated by first integrating with respect
to while holding and constant, then integrating with respect to while holding 
constant, and finally integrating with respect to . The triple integral in Equation (3)
can also be expressed as any one of five other iterated integrals, each with a different
order of integration. For example, we can write

where the iterated integral is evaluated by successively integrating with respect to ,
, and then . (Remember, we work “from the inside out.”)xz

y

���
B

f(x, y, z) dV � �
b

a
�

q

p
�

d

c

f(x, y, z) dy dz dx

z
zyzyx

EXAMPLE 1 Evaluate , where

B � {(x, y, z) � �1 � x � 1, 0 � y � 3, 1 � z � 2}

���B
(x2y 	 yz2) dV
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FIGURE 2
The box is a typical element of the
partition of .B

Bijk

Solution We can express the given integral as one of six integrals. For example, if
we choose to integrate with respect to , , and , in that order, then we obtain

Triple Integrals Over General Bounded Regions in Space
We can extend the definition of the triple integral to more general regions using the same
technique that we used for double integrals. Suppose that is a bounded solid region
in space. Then it can be enclosed in a rectangular box . 
Let be a regular partition of into boxes with sides of length

, , and volume .
Thus, . (See Figure 2.)

Define

Then a Riemann sum of over with respect to the partition is given by

where is an arbitrary point in and is the volume of . If we take
the limit of these sums as approach infinity, we obtain the triple integral of
over . Thus,

provided that the limit exists for all choices of in .

Notes
1. If is continuous and the surface bounding is “sufficiently smooth,” it can be

shown that is integrable over .
2. The properties of double integrals that are listed in Theorem 1, Section 14.1, with

the necessary modifications are also enjoyed by triple integrals.

Evaluating Triple Integrals Over General Regions
We will now restrict our attention to certain types of regions. A region is -simple
if it lies between the graphs of two continuous functions of and , that is, if

T � {(x, y, z) � (x, y) � R, k1(x, y) � z � k2(x, y)}

yx
zT

Tf
Tf

T(x*ijk, y*ijk, z*ijk)

���
T

f(x, y, z) dV � lim
l, m, n→�

 a
l

i�1
a
m

j�1
a

n

k�1
F(x*ijk, y*ijk, z*ijk) �V

T
fl, m, n

Bijk�VBijk(x*ijk, y*ijk, z*ijk)

a
l

i�1
a
m

j�1
a

n

k�1
F(x*ijk, y*ijk, z*ijk) �V

PTf

F(x, y, z) � ef(x, y, z) if (x, y, z) is in T

0 if (x, y, z) is in B but not in T

P � {B111, B112, p , Bijk, p , Blmn}
�V � �x �y �z�z � (q � p)>n�x � (b � a)>l, �y � (d � c)>m N � lmnBP

B � [a, b] � [c, d] � [p, q]
T

 � �
2

1
(3 	 9z2) dz � C3z 	 3z3 D2

1
� 24

 � �
2

1
 c13 y2 	 y2z2dy�3

y�0
dz

 � �
2

1
�

3

0
 c23 y 	 2yz2d dy dz

 � �
2

1
�

3

0
 c13 x3y 	 xyz2dx�1

x��1
dy dz

 ���
B

(x2y 	 yz2) dV � �
2

1
�

3

0
�

1

�1
(x2y 	 yz2) dx dy dz

zyx

Bijk
T

y

x

z
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where is the projection of onto the -plane. (See Figure 3.) If is continuous on
, then

(4)���
T

f(x, y, z) dV � ��
R

c �
k2(x, y)

k1(x, y)
f(x, y, z) dzd dA

T
fxyTR

FIGURE 3
A -simple region is bounded by the
surfaces and .z � k2(x, y)z � k1(x, y)

Tz

The iterated integral on the right-hand side of Equation (4) is evaluated by first inte-
grating with respect to while holding and constant. The resulting double integral
is then evaluated by using the method of Section 14.2. For example, if is -simple,
as shown in Figure 3, then

in which case Equation (4) becomes

To determine the “limits of integration” with respect to , notice that runs from the
lower surface to the upper surface as indicated by the arrow
in Figure 3.

z � k2(x, y)z � k1(x, y)
zz

���
T

f(x, y, z) dV � �
b

a
�

 2(x)

 1(x)
�

k2(x, y)

k1(x, y)
f(x, y, z) dz dy dx

R � {(x, y) � a � x � b, t1(x) � y � t2(x)}

yR
yxz

t

t

EXAMPLE 2 Evaluate where is the solid in the first octant bounded by

the graphs of and .

Solution The solid is shown in Figure 4a. The solid is -simple because it is bounded
below by the graph of and above by .z � k2(x, y) � 1 � x2z � k1(x, y) � 0

zT

y � xz � 1 � x2

T���T
z dV

FIGURE 4

y

x

a

b

z

R

T

 y  � t1(x)

 y  � t2(x)

 z  � k1(x,y)

 z  � k2(x,y)

y

z

x

R

T

 z  � 1 � x21

1

(a) The solid T is z-simple.

 y  � x

x

y

1 (1, 1)

0 1

R

(b) The projection of the solid T onto
      R in the xy-plane is y-simple.

 z  � 0  y  � x
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A -simple region lies between the graphs of two continuous functions of 
and . In other words, may be described as

where is the projection of onto the -plane. (See Figure 6.) In this case we have

(6)���
T

f(x, y, z) dV � ��
R

c �
k2(x, z)

k1(x, z)
f(x, y, z) dyd dA

xzTR

T � {(x, y, z) � (x, z) � R, k1(x, z) � y � k2(x, z)}

Tz
xTy

The projection of onto the -plane is the set that is sketched in Figure 4b.
Regarding as a -simple region, we obtain

There are two other simple regions besides the -simple region just considered. An
-simple region is one that lies between the graphs of two continuous functions of
and . In other words, may be described as

where is the projection of onto the -plane. (See Figure 5.) Here, we have

(5)

The (double) integral over the plane region is evaluated by integrating with respect
to or first depending on whether is -simple or -simple.zyRzy

R

���
T

f(x, y, z) dV � ��
R

 
c�

k2(y, z)

k1(y, z)
f(x, y, z) dxd dA

yzTR

T � {(x, y, z) � (y, z) � R, k1(y, z) � x � k2(y, z)}

Tzy
Tx

z

 �
1

2
 �

1

0
x(1 � x2)2 dx � c a1

2
b a�1

2
b a1

3
b (1 � x2)3d1

0
�

1

12

 �
1

2
 �

1

0
C (1 � x2)2y Dy�x

y�0
dx

 �
1

2
 �

1

0
�

x

0
(1 � x2)2 dy dx

 � �
1

0
�

x

0
 c12 z2dz�1�x2

z�0
dy dx

 ���
T

z dV � ��
R

 
c�

z�k2(x, y)

z�k1(x, y)
z dzd dA � �

1

0
�

x

0
�

1�x2

0
z dz dy dx

yR
RxyT

FIGURE 5
An -simple region is bounded by the
surfaces and .x � k2(y, z)x � k1(y, z)

Tx

R

T x  = k1(y, z)

x  = k2(y, z)

y

x

z

0
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FIGURE 6
A -simple region is bounded by the
surfaces and .y � k2(x, z)y � k1(x, z)

Ty

EXAMPLE 3 Evaluate , where is the region bounded by the cyl-

inder and the planes and .

Solution The solid is shown in Figure 7a. Although can be viewed as an -
simple or -simple region, it is easier to view it as a -simple region. (Try It!) In this
case we see that is bounded to the left by the graph of the function 
and to the right by the graph of the function . The projection of

onto the -plane is the set , which is sketched in Figure 7b. We have

 � ��
R

2x2 	 z2
 (2 � z) dA

 � ��
R

c2x2 	 z2
 ydy�2�z

y�0
dA 

 � ��
R

c�
2�z

0
2x2 	 z2 dyd dA

 ���
T

2x2 	 z2 dV � ��
R

c�
k2(x, z)

k1(x, z)
2x2 	 z2 dyd dA

RxzT
y � k2(x, z) � 2 � z

y � k1(x, z) � 0T
yz

xTT

y � 0y 	 z � 2x2 	 z2 � 1

T���T
2x2 	 z2 dV

FIGURE 7

y  = k2(x, z)

y  = k1(x, z)

y

x

z

0

R

T

(a) The solid T is viewed as being y-simple.

T

x2 + z2 = 1 

y

x

z

y = 2 – z

(b) The projection of the solid T onto R
      in the xz-plane

x2 + z2 = 1 

x

z

1–1

1

–1

R

Again depending on whether is an -simple or -simple plane region, the double inte-
gration is carried out first with respect to or .zx

zxR
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DEFINITIONS Mass, Center of Mass, and Moments of Inertia 
for Solids in Space

Suppose that gives the mass density at the point of a solid .
Then the mass of is

(8)

The moments of about the three coordinate planes are

(9a)

(9b)

(9c)Mxy � ���
T

zr(x, y, z) dV

Mxz � ���
T

yr(x, y, z) dV

Myz � ���
T

xr(x, y, z) dV

T

m � ���
T

r(x, y, z) dV

Tm
T(x, y, z)r(x, y, z)

Since is a circular region, it is more convenient to use polar coordinates when inte-
grating over . So letting and , we have

Therefore,

Volume, Mass, Center of Mass, and Moments of Inertia
Before looking at other examples, let’s list some applications of triple integrals. Let

for all points in a solid . Then the triple integral of over gives the
volume of ; that is,

(7)

We also have the following.

V � ���
T

dV

TV
TfTf(x, y, z) � 1

���
T

2x2 	 z2 dV �
4p

3

 � c2
3

 u 	
1

4
cos ud2p

0
�

4p

3

 � �
2p

0
a2

3
�

1

4
sin ub du

 � �
2p

0
 c23 r 3 �

1

4
 r 4 sin udr�1

r�0
du

 � �
2p

0
�

1

0
(2r 2 � r 3 sin u) dr du

 ��
R

2x2 	 z2 (2 � z) dA � �
2p

0
�

1

0
r(2 � r sin u) r dr du

z � r sin ux � r cos uR
R
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The projection of onto the -plane is the set shown in Figure 8b. Observe that
the upper boundary of lies along the line that is the intersection of 
and the plane and hence has equation or . If we take 
the base of as the face of the tetrahedron lying on the -plane (actually, by sym-
metry, any face will do), then the mass density function for is ,r(x, y, z) � kzT

xyT
z � 1 � yy 	 z � 1x � 0

x 	 y 	 z � 1R
RyzT

If the mass density is constant, then the center of mass of a solid is called the cen-
troid of .T

EXAMPLE 4 Let be the solid tetrahedron bounded by the plane 
and the three coordinate planes , and . Find the mass of if the 
mass density of is directly proportional to the distance between a base of and a
point on .

Solution The solid is shown in Figure 8a. It is -, -, and -simple. For example, it
can be viewed as being -simple if you observe that it is bounded by the surface

and the surface . (Solve the equation
for .)xx 	 y 	 z � 1

x � k2(y, z) � 1 � y � zx � k1(y, z) � 0
x

zyxT

T
TT
Tz � 0x � 0, y � 0

x 	 y 	 z � 1T

FIGURE 8

The center of mass of is located at the point , where

, , (10)

and the moments of inertia of about the three coordinate axes are

(11a)

(11b)

(11c)Iz � ���
T

(x2 	 y2)r(x, y, z) dV

Iy � ���
T

(x 2 	 z2)r(x, y, z) dV

Ix � ���
T

(y2 	 z2)r(x, y, z) dV

T

z �
Mxy

m
y �

Mxz

m
x �

Myz

m

(x, y, z)T

y

x

z

 x  � 1 � y  � z

 x  � 0R
T

1

1

1

(a) The solid T viewed as an x-simple region

y

z

1

1

 z  � 1 � y

(b) The projection of the solid T onto the
      yz-plane viewed as a z-simple region

R
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FIGURE 9

EXAMPLE 5 Let be the solid that is bounded by the parabolic cylinder and
the planes and . Find the center of mass of , given that it has uni-
form density .

Solution The solid is shown in Figure 9a. It is -, -, and -simple. Let’s choose to
view it as being -simple. (You are also encouraged to solve the problem by viewing

as -simple and -simple.) In this case we see that lies between the -plane
and the plane . The projection of onto the 

-plane is the region shown in Figure 9b. As a first step toward finding the center
of mass of , let’s find the mass of . Using Equation (8), we have

 � �
1

�1
a1

2
� x2 	

1

2
 x4b dx � c1

2
 x �

1

3
 x3 	

1

10
 x5d1

�1
�

8

15

 � �
1

�1
 �

1

x2

(1 � y) dy dx � �
1

�1
 cy �

1

2
 y2dy�1

y�x2
dx

 � �
1

�1
 �

1

x2

 �
1�y

0
dz dy dx � �

1

�1
 �

1

x2

Cz Dz�1�y

z�0
dy dx

 m � ���
T

r(x, y, z) dV � ���
T

dV

TT
Rxy

Tz � k2(x, y) � 1 � yz � k1(x, y) � 0
xyTyxT

z
zyxT

r(x, y, z) � 1
Ty 	 z � 1z � 0

y � x2T

where is the constant of proportionality. Using Equation (8), we see that the required
mass is

View as -simple.

View as -simple.

 � k �
1

0
 
1

6
 (1 � y)3 dy � kc a1

6
b a�1

4
b (1 � y)4d1

0
�

k

24

 � k �
1

0
 c12 (1 � y)z2 �

1

3
 z3dz�1�y

z�0
dy

zR � k �
1

0
�

1�y

0
Czx Dx�1�y�z

x�0
dz dy � k �

1

0
�

1�y

0
[(1 � y)z � z2] dz dy

xT � k �
1

0
�

1�y

0
�

1�y�z

0
z dx dz dy

 m � ���
T

r(x, y, z) dV � ���
T

kz dV

k

y

x

z

 y  � x2

 y  	 z  � 1

 z  � 0

R

(a) The solid T is viewed as a
      z-simple region.

T

R

x

y

1

1�1

 y  � x2

(b) The projection R of T onto the
      xy-plane viewed as being y-simple
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By symmetry we see that . Next, using Equations (9b) and (10), we have

The integrand is an even function.

Similarly, you can verify that

Use Equation (9c).

Therefore, the center of mass of is located at the point .10, 37, 
2
7 2T

 �
15

8
 �

1

�1
 �

1

x2

 �
1�y

0
z dz dy dx �

2

7

 z �
1
m

 ���
T

zr(x, y, z) dV �
15

8
 ���

T

z dV

 �
15

4
 c1

6
 x �

1

10
 x5 �

1

21
 x7d1

0
�

3

7

 �
15

8
 �

1

�1
a1

6
�

1

2
 x4 �

1

3
 x6b dx � 2a15

8
b�

1

0
a1

6
�

1

2
 x4 �

1

3
 x6b dx

 �
15

8
 �

1

�1
 �

1

x2

(y � y2) dy dx �
15

8
 �

1

�1
 c12 y2 �

1

3
 y3dy�1

y�x2
dx

 �
15

8
 �

1

�1
 �

1

x2

 �
1�y

0
y dz dy dx �

15

8
 �

1

�1
 �

1

x2

Cyz Dz�1�y

z�0
dy dx

 y �
1
m

 ���
T

yr(x, y, z) dV �
15

8
 ���

T

y dV

x � 0

EXAMPLE 6 Find the moments of inertia about the three coordinate axes for the solid
rectangular parallelepiped of constant density shown in Figure 10.

Solution Using Equation (11a) with , we obtain

Observe that the integrand is an even function of , , and . Taking advantage of sym-
metry, we can write

mass of the solidm � kabc � �
1

12
 m(b2 � c2)

 � 4kaab3c

48
�

bc3

48
b �

kabc

12
(b2 � c2)

 � 4ka�
c>2

0
ab3

24
�

bz2

2
b dz � 4kaab3

24
 z �

b

6
 z3b `z�c>2

z�0

 � 4ka�
c>2

0
�

b>2

0
(y2 � z2) dy dz � 4ka�

c>2

0
 c13 y3 � z2ydy�b>2

y�0
dz

 Ix � 8k�
c>2

0
�

b>2

0
�

a>2

0
(y2 � z2) dx dy dz � 8k�

c>2

0
�

b>2

0
C (y2 � z2)x Dx�a>2

x�0
dy dz

zyx

 � �
c>2

�c>2
 �

b>2

�b>2
 �

a>2

�a>2
k(y2 � z2) dx dy dz

 Ix � ���
T

(y2 � z2)k dV

r(x, y, z) � k

k

FIGURE 10
The center of the solid is placed 
at the origin.

c
a

b

0

y

x
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Videos for selected exercises are available online at www.academic.cengage.com/login.V

1. a. Define the Riemann sum of over a rectangular box .
b. Define the triple integral of over .

2. Suppose that is continuous on the rectangular box
.

a. Explain how you would evaluate .
b. Write all iterated integrals that are associated with the

triple integral of part (a).

���B
f(x, y, z) dV

B � [a, b] � [c, d] � [p, q]
f

Bf
Bf 3. a. What is a -simple region in space? An -simple region?

A -simple region?
b. Write the integral , where is a -

simple region. An -simple region. A -simple region.yx
zT���T

f(x, y, z) dV
y

xz

14.6 CONCEPT QUESTIONS

In Exercises 1–4, evaluate the integral using
the indicated order of integration.

1. ; ,
. Integrate (a) with respect to , , and , in that

order, and (b) with respect to , , and , in that order.

2. ; ,
. Integrate (a) with respect to , , and , in

that order, and (b) with respect to , , and , in that order.

3. ,
, . Integrate (a) with respect to , ,

and , in that order, and (b) with respect to , , and , in
that order.

4. ; ,B � 5 (x, y, z) � 0 � x � 2, 0 � y � 3f(x, y, z) � xy2 cos z

zyxx
yz0 � z � 3}�1 � y � 1

f(x, y, z) � xy2 	 yz2; B � {(x, y, z) � 0 � x � 2

yzx
zxy�2 � z � 6}

B � {(x, y, z) � �1 � x � 1, 0 � y � 2f(x, y, z) � xyz

xyz
zyx0 � z � 3}

B � {(x, y, z) � 0 � x � 2, 0 � y � 1f(x, y, z) � x 	 y 	 z

���B
f(x, y, z) dV In Exercises 11–14, the figure shows the region of integration for

. Express the triple integral as an iterated inte-

gral in six different ways using different orders of integration.

11. 12.

13. 14.

In Exercises 15–22, evaluate the integral .

15. ; is the tetrahedron bounded by the planes
, , , and 

16. ; is the region bounded by the planes ,
, , and 

17. ; is the region bounded by the cylinder
and the planes , and z � 0y � x, z � 2xy � x3

Tf(x, y, z) � 2z

2x 	 3y 	 z � 6z � 0y � 0
x � 0Tf(x, y, z) � y

x 	 y 	 z � 1z � 0y � 0x � 0
Tf(x, y, z) � x

���T
f(x, y, z) dV

z

y

x

 z  � x2 	 y2

z  � 1

z

1
y

x

 x  	 z  � 1

x  � y2

z

y
x

2

2

3

 x2 	 z2 � 4
y  � 3

z

y
x

2 4

3
 6x  	 3y  	 4z  � 12

���T
f(x, y, z) dV

14.6 EXERCISES

. Integrate (a) with respect to , , and , in that
order, and (b) with respect to , , and , in that order.

In Exercises 5–10, evaluate the iterated integral.

5. 6.

7.

8.

9.

10. �
e

1
�

x

1
�

1>(xy)

0
2 ln y dz dy dx

�
4

0
�

1

0
�

x

0
21ye�x2

dz dx dy

�
1

�1
 �

2

0
�
24�z2

0
y2z dx dz dy

�
p>2

0
�

2

1
�
11�z

0
y cos x dy dz dx

�
1

0
�

z

0
�

y

0
2xz dx dy dz�

1

0
�

x

0
�

x	y

0
x dz dy dx

zxy
xzy0 � z � p

2 6

Similarly, we find

and Iz �
1

12
 m(a2 	 b2)Iy �

1

12
 m(a2 	 c2)

www.academic.cengage.com/login


18. ; is the region bounded by the cylin-
der and the planes , and 

19. ; is the region bounded by the paraboloid
and the plane 

20. ; is the region bounded by the parabolic
cylinder and the planes and 

21. ; is the region bounded by the cylinder
and the planes , , and 

22. ; is the region bounded by the
paraboloids and 

In Exercises 23–28, sketch the solid bounded by the graphs of
the equations, and then use a triple integral to find the volume of
the solid.

23. , , ,

24. , , ,

25. , , ,

26. , , ,

27. ,

28. ,

29. Find the volume of the tetrahedron with vertices ,
, , and .

30. Find the volume of the tetrahedron with vertices ,
, , and .

In Exercises 31–34, sketch the solid whose volume is given by
the iterated integral.

31. 32.

33. 34.

In Exercises 35–38, express the triple integral 
as an iterated integral in six different ways using different orders
of integration.

35. is the solid bounded by the planes ,
, , and .

36. is the tetrahedron bounded by the planes , ,
, , and .

37. is the solid bounded by the circular cylinder 
and the planes and .

38. is the solid bounded by the parabolic cylinder and
the planes and .

39. Let and let ,
, .

a. Use a Riemann sum with , and choose
the evaluation point to be the midpoint (x*ijk, y*ijk, z*ijk)

m � n � p � 2
0 � z � 4}0 � y � 4

B � {(x, y, z) � 0 � x � 4f(x, y, z) � x 	 y 	 z

z � 4 � yz � 0
y � x2T

z � 2z � 0
x2 	 y2 � 1T

z � 1 � xy � 2 � 2zy � 0
x � 0z � 0T

z � 0y � 0x � 0
x 	 2y 	 3z � 6T

���T
f(x, y, z) dV

�
1

0
�
11�y

�11�y

 �
y

0
dz dx dy�

2

�2
�

4�y2

0
�

y	2

0
dz dx dy

�
1

0
�

1�y

0
�

2�2z

0
dx dz dy�

1

0
�

1�y

0
�

1�x�y

0
dz dx dy

(1, 1, 0)(1, 0, 1)(1, 0, 0)
(0, 0, 0)

(0, 0, 2)(0, 3, 0)(1, 0, 0)
(0, 0, 0)

 y2 	 z2 � 4x2 	 z2 � 4

z � 8 � x2 � y2z � x2 	 y2

z � 0y � 2 � xy � xz � 1 � x2

z � 0x � 0x 	 z � 4x � 4 � y2

z � 0y � 4y � x2y � 2z

z � 0y � 0x � 03x 	 2y 	 z � 6

y � 8 � x2 � z2y � x2 	 z2
Tf(x, y, z) �2x2 	 z2

z � 0y � 0x � 2yx2 	 z2 � 4
Tf(x, y, z) � z

z � 0y 	 z � 1y � x2
Tf(x, y, z) � z

y � 4y � x2 	 z2
Tf(x, y, z) � y

z � 0y � x, z � 2xy � 1x
Tf(x, y, z) � x 	 2y of the subrectangles to estimate

.

b. Find the exact value of .

40. Let and let
, , .

a. Use a Riemann sum with , and choose 

the evaluation point to be the midpoint 

of the subrectangles to estimate

.

b. Use a computer algebra system to estimate
accurate to four decimal places.

In Exercises 41 and 42, use a computer algebra system to esti-
mate the triple integral accurate to four decimal places.

41.

42.

In Exercises 43–46, find the center of mass of the solid having
the given mass density.

43. is the tetrahedron bounded by the planes , ,
, and . The mass density at a point of

is directly proportional to the distance between and the
-plane.

44. is the wedge bounded by the planes ,
and . The mass density at a point of 

is directly proportional to the distance between and the
-plane.

45. is the solid bounded by the cylinder and the
planes and . The mass density at a point of 
is directly proportional to the distance between and the 

-plane.

46. is the solid bounded by the parabolic cylinder 
and the planes , and . has uniform
mass density , where is a constant.

In Exercises 47–50, set up, but do not evaluate, the iterated inte-
gral giving the mass of the solid having mass density given by
the function .

47. is the solid bounded by the cylinder in the
first octant and the plane ;

48. is the solid bounded by the ellipsoid
and the planes 

and ;

49. is the solid bounded by the parabolic cylinder 
and the planes , and ;

r(x, y, z) �2x2 	 y2 	 z2

z � 02x 	 y � 2, y � 0
z � 1 � y2T

r(x, y, z) � 1yzz � 0
y � 036x2 	 9y2 	 4z2 � 36

T

r(x, y, z) � xy 	 z2z 	 y � 1
x2 	 z2 � 1T

r

T

kr(x, y, z) � k
Tz � 0y 	 z � 1, y � 0

z � 1 � x2T

yz
P

TPx � 3x � 0
y2 	 z2 � 4T

xy
PT

Px � 1z � �2
3 y 	 2

x � 0, y � 0, z � 0T

yz
PT

Px 	 y 	 z � 1z � 0
y � 0x � 0T

T

�
1

0
�

1�x

0
�

1�x2

0
xeyz dz dy dx

�
1

�1
 �

2

0
�

2

1
 

cos xy

21 	 xyz2
dx dy dz

���B
f(x, y, z) dV

���B
f(x, y, z) dV

Rijk(1 � i, j, k � 2)

(x*ijk, y*ijk, z*ijk)

m � n � p � 2

0 � z � 1}0 � y � 2B � {(x, y, z) � 0 � x � 4
f(x, y, z) �2x2 	 y2 	 z2

���B
f(x, y, z) dV

���B
f(x, y, z) dV

Rijk(1 � i, j, k � 2)
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14.7 Triple Integrals in Cylindrical and Spherical Coordinates

Just as some double integrals are easier to evaluate by using polar coordinates, we will
see that some triple integrals are easier to evaluate by using cylindrical or spherical
coordinates.

Cylindrical Coordinates
Let be a -simple region described by

where is the projection of onto the -plane. (See Figure 1.) As we saw in Section
14.6, if is continuous on , then

(1)���
T

f(x, y, z) dV � ��
R

 
c�

h2(x, y)

h1(x, y)
f(x, y, z) dzd dA

Tf
xyTR

T � {(x, y, z) � (x, y) � R, h1(x, y) � z � h2(x, y)}

zT

50. is the upper hemisphere bounded by the sphere
and the plane ;

51. Let be a cube bounded by the planes , , ,
, , and . Find the moments of inertia of 

with respect to the coordinate axes if has constant mass
density .

52. Let be a rectangular box bounded by the planes ,
, , , , and . Find the moments of

inertia of with respect to the coordinate axes if has con-
stant mass density .

53. Let be the solid bounded by the planes ,
, , and . Find the moments of inertia of 

with respect to the -, -, and -axes if has mass density
given by .

54. Let be the solid bounded by the cylinder and the
planes , , and . Find the moments of inertia
of with respect to the coordinate axes if has mass den-
sity given by .

The average value of a function f of three variables over a solid
region is defined to be

where is the volume of . Use this definition in Exercises
55–58.

55. Find the average value of over the
rectangular box bounded by the planes , ,

, , , and .z � 3z � 0y � 2y � 0
x � 1x � 0T

f(x, y, z) � x 	 y 	 z

TV(T)

fav �
1

V(T)
 ���

T

f(x, y, z) dV

T

r(x, y, z) � z
TT

z � xz � 0y � x
y � x2T

r(x, y, z) � x
Tzyx

Tz � 0y � 0x � 0
x 	 y 	 z � 1T

k
TT

z � cz � 0y � by � 0x � a
x � 0T

k
T

Tz � 1z � 0y � 1
y � 0x � 1x � 0T

r(x, y, z) �21 	 x2 	 y2

z � 0x2 	 y2 	 z2 � 1
T 56. Find the average value of over the

tetrahedron bounded by the planes , ,
, and .

57. Find the average value of over the solid
region lying inside the spherical ball of radius 2 with center
at the origin and in the first octant.

58. Average Temperature in a Room A rectangular room can be
described by the set ,

, . If the temperature (in degrees
Fahrenheit) at a point in the room is given by

, what is the average
temperature in the room?

59. Find the region that will make the value of
as large as possible.

60. Find the values of and that will maximize 
, where 

.

In Exercises 61–64, determine whether the statement is true or
false. If it is true, explain why. If it is false, explain why or give
an example that shows it is false.

61. If , then 

.

62. If is a solid sphere of radius centered at the origin, then
.

63.

64. , where 

and is a constantk
T � {(x, y, z) � 1 � (x � 1)2 	 (y � 2)2 	 (z 	 1)2 � 4}

���
T

k dV �
28pk

3

12 � �
2

1
�

3

1
�

4

1
21 	 x2 	 y2 	 z2 dz dy dx � 6130

���T
x dV � 0

aT

���B
2x2 	 y2 	 z2 dV  0

[�1, 1] � [�2, 2] � [�3, 3]B �

T � {(x, y, z) � 1 � a � x2 	 y2 	 z2 � b � 2}
���T

(4 � x2 � y2 � z2) dV
ba

���T
(1 � 2x2 � 3y2 � z2)1>3 dV

T

f(x, y, z) � 60 	 0.2x 	 0.1y 	 0.2z
(x, y, z)

0 � z � 9}0 � y � 40
B � {(x, y, z) � 0 � x � 20

f(x, y, z) � xyz

z � 0y � 0
x � 0x 	 y 	 z � 1

f(x, y, z) � x2 	 y2 	 z2
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FIGURE 1
viewed as a -simple regionzT

Now suppose that the region can be described in polar coordinates by

Then, since , , and in cylindrical coordinates, we use Equa-
tion (2) in Section 14.3 to obtain the following formula.

z � zy � r sin ux � r cos u

R � {(r, u) �a � u � b, t1(u) � r � t2(u)}

R

Triple Integral in Cylindrical Coordinates

(2)���
T

f(x, y, z) dV � �
b

a
�

 2(u)

 1(u)
�

h2(r cos u, r sin u)

h1(r cos u, r sin u)
 f(r cos u, r sin u, z) r dz dr du

t

t

Note As an aid to remembering Equation (2), observe that the element of volume in
cylindrical coordinates is , as is suggested by Figure 2.dV � r dz dr du

FIGURE 2
The element of volume in cylindrical

coordinates is .dV � r dz dr du

z = h1(x, y)

z = h2(x, y)

r = t2(¨)

y

x

z

0

r = t
1
(¨) R

T

¨ = a

¨ = b

d¨
y

x

z

dr

r d¨

r

dz

EXAMPLE 1 A solid is bounded by the cone and the plane .
(See Figure 3.) The mass density at any point of the solid is proportional to the dis-
tance between the axis of the cone and the point. Find the mass of .

Solution The solid is described by

T � 5 (x, y, z) � (x, y) � R, 2x2 	 y2 � z � 26
T

T

z � 2z �2x2 	 y2T
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where , the volume of , is , or . Using Equation (9c) in Section 14.6,
with , we obtain

 �
1

2
a1

4
 a4b�

2p

0
du �

1

8
 a4 (2p) �

1

4
 pa4

 �
1

2
 �

2p

0
 c12 a2r 2 �

1

4
 r 4dr�a

r�0
du

 � �
2p

0
�

a

0
 c12 z2dz�2a2�r2

z�0
r dr du �

1

2
 �

2p

0
�

a

0
(a2 � r 2) r dr du

 Mxy � ���
T

z dV � �
2p

0
�

a

0
�
2a2�r2

0
z r dz dr du

r(x, y, z) � 1

2
3pa31

2 � 4
3pa3TV

where . In cylindrical coordinates,

and

Since the density of the solid at is proportional to the distance from the -axis
to the point in question, we see that the density function is

where is the constant of proportionality. Therefore, if we use Equation (8) in Sec-
tion 14.6, the mass of is

 � k�
2p

0
 c23 r 3 �

1

4
 r 4dr�2

r�0
du �

4

3
 k�

2p

0
du �

8

3
 pk

 � k�
2p

0
�

2

0
Cr 2z D z�2

z�r
dr du � k�

2p

0
�

2

0
(2r 2 � r 3) dr du

 � �
2p

0
�

2

0
�

2

r

(kr) r dz dr du

 m � ���
T

r(x, y, z) dV � ���
T

k2x2 	 y2 dV

T
k

r(x, y, z) � k2x2 	 y2 � kr

z(x, y, z)

R � {(r, u) � 0 � u � 2p, 0 � r � 2}

T � {(r, u, z) � 0 � u � 2p, 0 � r � 2, r � z � 2}

R � {(x, y) � 0 � x2 	 y2 � 4}

FIGURE 3
The arrow runs from the lower surface

to the 
upper surface of .Tz � h2(x, y) � 2
z � h1(x, y) �2x2 	 y2

EXAMPLE 2 Find the centroid of a homogeneous solid hemisphere of radius .

Solution The solid is shown in Figure 4. In rectangular coordinates we can write

where

In cylindrical coordinates we have

and

By symmetry the centroid lies on the -axis. Therefore, it suffices to find ,z � Mxy>Vz

R � {(r, u) � 0 � u � 2p, 0 � r � a}

T � 5 (r, u, z) � 0 � u � 2p, 0 � r � a, 0 � z �2a2 � r 2 6
R � {(x, y) � 0 � x2 	 y2 � a2}

T � 5 (x, y, z) � (x, y) � R, 0 � z �2a2 � x2 � y2 6
T

a

FIGURE 4
A homogeneous solid hemisphere of
radius a

y

x

z

R

T
z = 2

x2 + y2 = 4

y

x

z
a

a

a

x2 + y2 = a2 

z = √a2 – x2 – y2  

T

R

Copyright 2009 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part.
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Therefore,

so the centroid is located at the point .

Spherical Coordinates
When the region of integration is bounded by portions of spheres and cones, a triple
integral is generally easier to evaluate if it is expressed in terms of spherical coordi-
nates. Recall from Section 11.7 that the relationship between spherical coordinates

and rectangular coordinates , , is given by

, (3)

(See Figure 5.)
To see the role played by spherical coordinates in integration, let’s consider the

simplest case in which the region of integration is a spherical wedge (the analog of a
rectangular box)

where , and . To integrate over such a region,
let

be regular partitions of the intervals , , and , respectively, where
, and . The concentric spheres ,

where , half-cones , where , and the half-planes ,
where , divide the spherical wedge into spherical wedges 

, , , . A typical wedge comprising the spherical partition is
shown in Figure 6.

P � {Tijk}TijkTlmnpT112T111

N � lmnT1 � k � n
u � uk1 � j � mf � fj1 � i � l
ri�u � (b � a)>n�f � (d � c)>m�r � (b � a)>l [a, b][c, d][a, b]

 a � u0 � u1 � p � uk�1 � uk � p � un � b

 c � f0 � f1 � p � fj�1 � fj � p � fm � d

 a � r0 � r1 � p � ri�1 � ri � p � rl � b

0 � b � a � 2pa � 0, 0 � d � c � p

T � {(r, f, u) � a � r � b, c � f � d, a � u � b}

z � r cos fy � r sin f sin ux � r sin f cos u,

zyxr, f, u

10, 0, 3a
8 2

z �
Mxy

V
�
pa4

4
�

3

2pa3
�

3

8
 a

FIGURE 5
The point has representation 
in spherical coordinates and in
rectangular coordinates.

(x, y, z)
(r, f, u)P

y

x

z

O

P( ®, ƒ, ¨ )
or    P(x, y, z)®

ƒ

¨

y

x

z

® = ®
i+1

® = ®
i

ƒ = ƒ
j

ƒ = ƒ
j+1

Δ®Δƒ

®
i 
Δƒ

Δ¨

¨ = ¨
k

¨ = ¨
k+1

®
i
 sin ƒ

j
 D¨ri

 � ®i sin ƒj

FIGURE 6
A typical spherical wedge in 
the partition of the solid TP

If you refer to Figure 6, you will see that is approximately a rectangular box
with dimensions , (the arc of a circle with radius that subtends an angle ofriri �f�r

Tijk
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Equation (4) states that to transform a triple integral in rectangular coordinates to
one in spherical coordinates, make the substitutions

, , , and

then make the appropriate change in the limits of integration, and replace by
. This element of volume can be recalled with the help of Figure 7.r2 sin f dr df du

dV

x2 	 y2 	 z2 � r2z � r cos fy � r sin f sin ux � r sin f cos u

Triple Integral in Spherical Coordinates

(4)

where is the spherical wedge

T � {(r, f, u) � a � r � b, c � f � d, a � u � b}

T

���
T

f(x, y, z) dV � �
b

a
�

d

c
�

b

a

f(r sin f cos u, r sin f sin u, r cos f)r2 sin f dr df du

FIGURE 7
The element of volume in spherical

coordinates is .dV � r2 sin f dr df du

) and (the arc of a circle with radius and subtending an angle
of ). Thus, its volume is

Therefore, an approximation to a Riemann sum of over is

But this is a Riemann sum of the function

and its limit is the triple integral

Therefore, we have the following formula for transforming a triple integral in rectan-
gular coordinates into one involving spherical coordinates.

�
b

a
�

d

c
�

b

a

F(r, f, u) r2 sin f dr df du

F(r, f, u) � f(r sin f cos u, r sin f sin u, r cos f)r2 sin f

a
l

i�1
a
m

j�1
a

n

k�1
f(r*i sin f*j cos u*k , r*i sin f*j sin u*k , r*i cos f*j )r*2

i sin f*j �r�f�u

Tf

�V � r2
i sin fj �r�f�u

�V�u
ri sin fjri sin fj �u�f

y

x

z

Δ®dƒƒ

d¨¨

® sin ƒ  d¨

d®

® dƒ

®r
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Equation (4) can be extended to include more general regions. For example, if is
-simple, that is, if the region can be described by

then

(5)

Observe that -simple regions are precisely those regions that lie between two surfaces
and , as shown in Figure 8. To find the limits of integration

with respect to , we draw a radial line emanating from the origin. The line first inter-
sects the surface, , giving the lower limit of integration, and then inter-
sects the surface , giving the upper limit of integration.r � h2(f, u)

r � h1(f, u)
r

r � h2(f, u)r � h1(f, u)
r

� �
b

a
�

d

c
�

h2(f, u)

h1(f, u)
f(r sin f cos u, r sin f sin u, r cos f)r2 sin f dr df du

���
T

f(x, y, z) dV

T � {(r, f, u) � h1(f, u) � r � h2(f, u), c � f � d, a � u � b}

TR

T

FIGURE 8
A -simple region is bounded by 
the surfaces and
r � h2(f, u)

r � h1(f, u)
r

z ® � h2(ƒ, ¨)

® � h1(ƒ, ¨)

y
x

0

EXAMPLE 3 Evaluate , where is the part of the region in the first octant

lying inside the sphere .

Solution The solid is shown in Figure 9. Since the boundary of is part of a sphere,
let’s use spherical coordinates. In terms of spherical coordinates we can write

Furthermore, . Therefore, using Equation (4), we obtainx � r sin f cos u

T � 5 (r, f, u) � 0 � r � 1, 0 � f � p
2 , 0 � u � p

2 6
TT

x2 	 y2 	 z2 � 1

T���T
x dV

FIGURE 9
is the part of the ball

lying in the first
octant.
x2 	 y2 	 z2 � 1
T

 �
p

16
 �
p>2

0
cos u du �

p

16
 sin u `p>2

0
�
p

16

 �
1

8
 �
p>2

0
�
p>2

0
(1 � cos 2f)cos u df du �

1

8
 �
p>2

0
cos ucf �

1

2
 sin 2fdf�p>2

f�0
du

 � �
p>2

0
�
p>2

0
 c14 r4 sin2 f cos udr�1

r�0
df du �

1

4
 �
p>2

0
�
p>2

0
sin2 f cos u df du

 � �
p>2

0
�
p>2

0
�

1

0
r3 sin2 f cos u dr df du

 ���
T

x dV � �
p>2

0
�
p>2

0
�

1

0
(r sin f cos u)r2 sin f dr df du

z

x2 	 y2 	 z2 � 1
or   ®  � 1T

y

x

EXAMPLE 4 Find the center of mass of the solid of uniform density bounded by

the cone and the sphere . (See Figure 10.)

Solution We first express the given equations in terms of spherical coordinates. The
equation of the cone is

r cos f �2r2 sin2 f cos2 u 	 r2 sin2 f sin2u � r sin f

x2 	 y2 	 z2 � zz �2x2 	 y2

T

FIGURE 10
The solid is bounded below 
by part of a cone and above 
by part of a sphere.

T

® � cos ƒ
T

y

x

z

π__
4
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which simplifies to , , or . Next, we see that the equa-
tion of the sphere is

or

Therefore, the solid under consideration can be described by

Let the uniform density of be . Then the mass of is

By symmetry the center of mass lies on the -axis, so it suffices to find .
Using Equation (9c) in Section 14.6, with , we obtain

Therefore,

so the center of mass is located at .10, 0, 7
12 2

z �
Mxy

m
�

7kp

96
�

8

pk
�

7

12

 � �
k

24
a (12)6

26
� 1b�

2p

0
du �

7k

192
 �

2p

0
du �

7kp

96

 �
k

4
 �

2p

0
�
p>4

0
cos5 f sin f df du �

k

4
 �

2p

0
 c�1

6
cos6 fdf�p>4

f�0
du

 � k�
2p

0
�
p>4

0
 c14 r4 cos f sin fdr�cos f

r�0
df du

 Mxy � ���
T

kz dV � k�
2p

0
�
p>4

0
�

cos f

0
(r cos f)r2 sin f dr df du

r(x, y, z) � 1
z � Mxy>mz

 �
k

16
 �

2p

0
du �

pk

8

 �
k

3
 �

2p

0
�
p>4

0
cos3 f sin f df du �

k

3
 �

2p

0
 c�1

4
cos4 fdf�p>4

f�0
du

 � k�
2p

0
�
p>4

0
 c13 r3 sin fdr�cos f

r�0
df du

h1(f, u) � 0, h2(f, u) � cos f m � k���
T

dV � k�
2p

0
�
p>4

0
�

cos f

0
r2 sin f dr df du

TkT

T � 5 (r, f, u) � 0 � r � cos f, 0 � f � p
4 , 0 � u � 2p6

r � cos fr2 � r cos f

f � p>4tan f � 1cos f � sin f

1. Write the triple integral in cylindrical
coordinates if

,

, , r sin u)}r sin u) � z � h2(r cos uh1(r cos u

T � {(r, u, z) �a � u � b, t1(u) � r � t2(u)

���T
f(x, y, z) dV 2. Write the triple integral in spherical coor-

dinates if

,

3. Write the element of volume in (a) cylindrical coordi-
nates and (b) spherical coordinates.

dV

c � f � d, a � u � b}T � {(r, f, u) � h1(f, u) � r � h2(f, u)

���T
f(x, y, z) dV

14.7 CONCEPT QUESTIONS
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In Exercises 1–4, sketch the solid whose volume is given by the
integral, and evaluate the integral.

1.

2.

3.

4.

In Exercises 5–18, solve the problem using cylindrical coordi-
nates.

5. Evaluate , where is the solid bounded

by the cylinder and the planes and 

.

6. Evaluate , where is the solid bounded by the

cylinder and the planes and .

7. Evaluate , where is the part of the solid in the

first octant lying inside the paraboloid .

8. Evaluate , where is the part of the solid in the

first octant bounded by the paraboloid and the

plane .

9. Evaluate , where is the solid boundedT���T
(x2 	 y2) dV

z � 4

z � x2 	 y2

T���T
x dV

z � 4 � x2 � y2

T���T
y dV

z � 4z � 0x2 	 y2 � 4

T���T
ex2	y2

dV

z � 3

z � 1x2 	 y2 � 1

T���T
2x2 	 y2 dV

�
2p

0
�
p>4

0
�

2 sec f

0
r2 sin f dr df du

�
2p

0
�
p>2

0
�

2

0
r2 sin f dr df du

�
2p

0
�

2

1
�

2�r

0
r dz dr du

�
p>2

0
�

3

0
�

r2

0
r dz dr du

17. Find the moment of inertia about the -axis of a homoge-

neous solid bounded by the cone and the

paraboloid .

18. Find the moment of inertia about the -axis of a solid
bounded by the cylinder and the planes 
and if the mass density at any point on the solid is
directly proportional to its distance from the -plane.

In Exercises 19–24, solve the problem by using spherical 
coordinates.

19. Evaluate , where is the unit ball

.

20. Evaluate , where is the part of the unit

ball lying in the first octant.

21. Evaluate , where is the solid bounded by the

hemisphere and the -plane.

22. Evaluate , where is the part of the unit ball

lying in the first octant.

23. Evaluate , where is the solid bounded above by

the sphere and below by the cone

.

24. Evaluate , where is the solid bounded above by

the sphere and below by the cone

.

25. Find the volume of the solid that is bounded above by the

plane and below by the cone .

26. Find the volume of the solid bounded by the cone

, the cylinder , and the plane

.

27. Find the volume of the solid lying outside the cone

and inside the upper hemisphere

.

28. Find the volume of the solid lying above the cone 
and below the sphere .

29. Find the centroid of a homogeneous solid hemisphere of
radius .

30. Find the centroid of the solid of Exercise 28.

31. Find the mass of a solid hemisphere of radius if the mass
density at any point on the solid is directly proportional to
its distance from the base of the solid.

32. Find the center of mass of the solid of Exercise 31.

33. Find the mass of the solid bounded by the cone

and the plane if the mass density at 
any point on the solid is directly proportional to the square
of its distance from the origin.

z � 2z �2x2 	 y2

a

a

r � 4 cos f
f � p>6

x2 	 y2 	 z2 � 1

z �2x2 	 y2

z � 0

x2 	 y2 � 4z �2x2 	 y2

z �2x2 	 y2z � 1

z �2x2 	 y2

x2 	 y2 	 z2 � 4

T���T
z dV

z �2x2 	 y2

x2 	 y2 	 z2 � 4

T���T
xz dV

x2 	 y2 	 z2 � 1

T���T
x2 dV

xyz �21 � x2 � y2

T���T
y dV

x2 	 y2 	 z2 � 1

B���B
e(x2	y2	z2)3>2

dV

x2 	 y2 	 z2 � 1

B���B
2x2 	 y2 	 z2 dV

xy
z � 3

z � 0x2 	 y2 � 4
z

z � x2 	 y2

z �2x2 	 y2

z

14.7 EXERCISES

V

by the cone and the -plane.

10. Evaluate , where is the solid that lies within 

the cylinder and between the -plane and the

paraboloid .

11. Find the volume of the solid bounded above by the sphere
and below by the paraboloid

.

12. Find the volume of the solid bounded by the paraboloids
and .

13. A solid is bounded by the cylinder and the
planes and . Find the center of mass of the solid
if the mass density at any point is directly proportional to its
distance from the -plane.

14. A solid is bounded by the cone and the 
plane . Find its center of mass if the mass density at

is directly proportional to the distance between 
and the -axis.

15. Find the center of mass of a homogeneous solid bounded by
the paraboloid and .

16. Find the center of mass of a homogeneous solid bounded by
the paraboloids and .z � 36 � 3x2 � 3y2z � x2 	 y2

z � 0z � 4 � x2 � y2

z
PP(x, y, z)

z � 4
z �2x2 	 y2

xy

z � 3z � 0
x2 	 y2 � 4

z � 12 � 2x2 � 2y2z � x2 	 y2

8z � x2 	 y2
x2 	 y2 	 z2 � 9

z � 2x2 	 2y2

xyx2 	 y2 � 1

T���T
y2 dV

xyz � 4 �2x2 	 y2

www.academic.cengage.com/login
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42.

In Exercises 43 and 44, evaluate the integral by using spherical
coordinates.

43.

44.

45. The temperature (in degrees Fahrenheit) at a point 
of a solid ball of radius 3 in. centered at the origin is given
by . What is the average tem-
perature of the ball?

In Exercises 46–50, determine whether the statement is true or
false. If it is true, explain why. If it is false, explain why or give
an example that shows it is false.

46. The volume of the solid bounded above by the paraboloid
and below by the -plane in cylindrical

coordinates is .

47.

48. If , then 

.

49. If is a solid with constant density , then its moment of
inertia about the -axis is given by .

50. If ,

then .���T r cos u dV � 0

T � 5 (r, f, u) � 0 � r � a, 0 � f � p
2 , 0 � u � 2p6

Iz � k���T r
2 sin2 f dVz

kT

���T dV � p
6 (b3 � a3)

T � 5 (r, f, u) � a � r � b, 0 � f � p
2 , 0 � u � p

2 6
�p>20 �2p

0 �2
0 r

2 sin f dr du df � 16p
3

�2p
0 �2

0 �4�r2

0 dz dr du
xyz � 4 � x2 � y2

T(x, y, z) � 20(x2 	 y2 	 z2)

(x, y, z)

�
3

�3
 �
29�x2

�29�x2

 �
225�x2�y2

4
(x2 	 y2 	 z2)�1>2 dz dy dx

�
1

0
�
21�x2

0
�
22�x2�y2

2x2	y2

(x2 	 y2 	 z2)3>2 dz dy dx

�
1

�1
 �
21�x2

�21�x2

 �
2�x2�y2

2x2	y2

(x2 	 y2)3>2 dz dy dx

14.8 Change of Variables in Multiple Integrals

We often use a change of variable (a substitution) when we integrate a function of one
variable to transform the given integral into one that is easier to evaluate. For exam-
ple, using the substitution , we find

Observe that the interval of integration is if we integrate with respect to , and
it changes to if we integrate with respect to . More generally, the substitution

[so ] enables us to write

(1)

where and .b � t(d)a � t(c)

�
b

a

f(x) dx � �
d

c

f(t(u))t¿(u) du

dx � t¿(u) dux � t(u)
uC0, p2 D

x[0, 1]

 �
p

4

 �
1

0
21 � x2 dx � �

p>2

0
cos2 u du �

1

2
 �
p>2

0
(1 	 cos 2u) du

x � sin u

34. Find the center of mass of the solid of Exercise 33.

35. Find the moment of inertia about the -axis of the solid of
Exercise 28, assuming that it has constant mass density.

36. Find the moment of inertia with respect to the axis of sym-
metry for a solid hemisphere of radius if the density at a
point is directly proportional to its distance from the center
of the base.

37. Find the moment of inertia with respect to a diameter of the
base of a homogeneous solid hemisphere of radius .

38. Show that the average distance from the center of a circle of
radius to other points of the circle is and that the
average distance from the center of a sphere of radius to
other points of the sphere is .

39. Let be a uniform solid of mass bounded by the spheres
and , where . Show that the moment

of inertia of about a diameter of is 

40. a. Use the result of Exercise 39 to find the moment of iner-
tia of a uniform solid ball of mass and radius about
a diameter of the ball.

b. Use the result of Exercise 39 to find the moment of iner-
tia of a hollow spherical shell of mass and radius 
about a diameter of the shell.
Hint: Find .

In Exercises 41 and 42, evaluate the integral by using cylindrical
coordinates.

41. �
1

�1
 �
21�x2

0
�
24�x2�y2

0
z dz dy dx

lima→b� I

bm

bm

I �
2m

5
ab5 � a5

b3 � a3b
TT

0 � a � br � br � a
mT

3a>4 a
2a>3a

a

a

z
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As you have also seen on many occasions, a change of variables can be used to
help us to evaluate integrals involving a function of two or more variables. For exam-
ple, in evaluating a double integral , where is a circular region, it is
often helpful to use the substitution

to transform the original integral into one involving polar coordinates. In this instance
we have

where is in the region in the -plane that corresponds to the region in the -
plane.

These examples raise the following questions:

1. If an integral cannot be readily found when we are integrating 
with respect to the variables and , can we find a substitution ,

that transforms this integral into one involving the variables and 
that is more convenient to evaluate?

2. What form does the latter integral take?

Transformations
The substitutions that are used to change an integral involving the variables and 
into one involving the variables and are determined by a transformation or func-
tion from the -plane to the -plane. This function associates with each point 
in a region in the -plane exactly one point in the -plane. (See Figure 1.)
The point , called the image of the point under the transformation , is writ-
ten and is defined by the equations

(2)

where and are functions of two variables. The totality of all points in the -plane
that are images of all points in is called the image of and denoted by . Fig-
ure 1 gives a geometric visualization of a transformation that maps a region in the

-plane onto a region in the -plane.xyRu√
ST

T(S)SS
xyht

y � h(u, √)x � t(u, √)

(x, y) � T(u, √)
T(u, √)(x, y)

xy(x, y)u√S
(u, √)xyu√T

√u
yx

√uy � h(u, √)
x � t(u, √)yx

�� f(x, y) dA

xyRruD

��
R

f(x, y) dA � ��
D

f(r cos u, r sin u) r dr du

y � r sin ux � r cos u

R��R
f(x, y) dA

FIGURE 1
maps the region in the -plane
onto the region in the -plane.xyR

u√ST

A transformation is one-to-one if no two distinct points in the -plane have the
same image. In this case it may be possible to solve Equation (2) for and in terms
of and to obtain the equations

which defines the inverse transformation from the -plane to the -plane.u√xyT�1

√ � H(x, y)u � G(x, y)

yx
√u

u√T

u

√

x

y

S

T

R

(u, √) (x, y)
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EXAMPLE 1 Let be a transformation defined by the equations

Find the image of the rectangular region under the
transformation .

Solution Let’s see how the sides of the rectangle are transformed by . Referring to
Figure 2a, observe and on . Using the given equations describing 

, we see that and . This shows that is mapped onto the line segment
and (labeled in Figure 2b). On , and , so

, for . This gives the image of under as the line segment 
. On , and , so and , which means that is

mapped onto the line segment described by , . Finally, on ,
and , and this gives the image of as the line segment , for

. Observe that as the perimeter of is traced in a counterclockwise direc-
tion, so too is the boundary of the image of . The image of under is the
region inside and on the parallelogram .R

TSSR � T(S)
S0 � y � 1

x � yS40 � √ � 1u � 0
S4y � 11 � x � 3T(S3)

S3y � 1x � u 	 1√ � 10 � u � 2S3T(S2)
TS20 � y � 1x � 2 	 y

0 � √ � 1u � 2S2T(S1)y � 00 � x � 2
S1y � 0x � uT

S1√ � 00 � u � 2
TS

T
S � {(u, √) � 0 � u � 2, 0 � √ � 1}

y � √x � u 	 √

T

FIGURE 2
The region in part (a) is transformed

onto the region in part (b) by .TR
S

FIGURE 3
The transformation maps onto .RST

u

√

x

y

S R

0 1 1 2 3

1 1

(a) (b)

S1

S2

S3

T(S4)

T(S3)

T(S1)

T(S2)

(3, 1)
(1, 1)

S4

2 0

Change of Variables in Double Integrals
To see how a double integral is changed under the transformation defined by Equa-
tion (2), let’s consider the effect that has on the area of a small rectangular region 

in the -plane with vertices , , , and
as shown in Figure 3a. The image of is the region in the 

-plane shown in Figure 3b. The lower left-hand corner point of , , is mapped
onto the point by . On the side of ,

and . Therefore, the image of under is the curve
with equations

y � h(u, √0)x � t(u, √0)

TL1T(L1)√ � √0u0 � u � u0 	 �u
SL1T(x0, y0) � T(u0, √0) � (t(u0, √0), h(u0, √0))

(u0, √0)Sxy
R � T(S)S(u0, √0 	 �√)

(u0 	 �u, √0 	 �√)(u0 	 �u, √0)(u0, √0)u√S
T

T

(a) (b)

x00

y

u

√

R

S

(u0, √0 	 Δ√) (u0 	 Δu, √0 	 Δ√)

(u0, √0) (x0, y0)

T(L2)
T

T(L1)

(u0 	 Δu, √0)L1

L2
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or, in vector form,

with parameter interval . As you can see from Figure 4, the vector

provides us with an approximation of . Similarly, we see that the vector

provides us with an approximation of .
But we can write

If is small, as we have assumed, then the term inside the brackets is approximately
equal to . So

Similarly, we see that

This suggests that we can approximate by the parallelogram having 
and as adjacent sides. (See Figure 5.) The area of this parallelogram is

, or

where the partial derivatives are evaluated at . But

where the partial derivatives are evaluated at . Similarly,

So

Before proceeding, let’s define the following determinant, which is named after the
German mathematician Carl Jacobi (1804–1851).

ru � r√ �

i j k
�x

�u

�y

�u
0

�x

�√
�y

�√
0

� ∞
�x

�u

�y

�u

�x

�√
�y

�√

∞ k � ∞
�x

�u

�x

�√
�y

�u

�y

�√

∞ k

r√ � t√i 	 h√ j �
�x

�√
 i 	

�y

�√
 j

(u0, √0)

ru � tui 	 hu j �
�x

�u
 i 	

�y

�u
 j

(u0, √0)

� (�u ru) � (�√ r√) � � �ru � r√ � �u �√
�a � b �

�√ r√(u0, √0)
�u ru(u0, √0)R

b � �√ r√(u0, √0)

a � �u ru(u0, √0)

ru(u0, √0)
�u

a � cr(u0 	 �u, √0) � r(u0, √0)

�u
d �u

T(L2)

b � r(u0, √0 	 �√) � r(u0, √0)

T(L1)

a � r(u0 	 �u, √0) � r(u0, √0)

[u0, u0 	 �u]

r(u, √0) � t(u, √0)i 	 h(u, √0)j

FIGURE 4
The vector
a � r(u0 	 �u, √0) � r(u0, √0)

FIGURE 5
The image region is approximated 
by the parallelogram with sides

and .�√ r√(u0, √0)�u ru(u0, √0)

R

x0

y

R

r(u0, √0)

b

a

r(u0 	 Δu, √0)

x0

y

R

r(u0, √0)

Δuru(u0, √0)

Δ√r√(u0, √0)

DEFINITION The Jacobian

The Jacobian of the transformation defined by and is

�(x, y)

�(u, √)
� ∞

�x

�u

�x

�√
�y

�u

�y

�√

∞ � �x

�u
 
�y

�√
�

�y

�u
 
�x

�√

y � h(u, √)x � t(u, √)T
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In terms of the Jacobian we can write the approximation of the area of as

(3)

where the Jacobian is evaluated at .
Now let be the image (in the -plane) under of the region in the -plane;

that is, let as shown in Figure 6. Enclose by a rectangle, and partition the
latter into rectangles , where . The images are trans-
formed onto images in the -plane, as shown in Figure 6.xyRij

Sij1 � i � m, 1 � j � nSijmn
SR � T(S)

u√STxyR
(u0, √0)

�A � �ru � r√ � �u �√ � ` �(x, y)

�(u, √)
` �u �√

R�A

FIGURE 6
The images in the -plane 

are transformed onto the 
images in the -plane.xyRij

u√Sij

Suppose that is continuous on , and define by

Using the approximation in Equation (3) on each subrectangle , we can write the
double integral of over as

where the Jacobian is evaluated at . But the sum on the right is the Riemann sum
associated with the integral

This discussion suggests the following result. Its proof can be found in books on
advanced calculus.

��
S

f(t(u, √), h(u, √)) ` �(x, y)

�(u, √)
` du d√

(ui, √j)

 � lim
m, n→�

a
m

i�1
a

n

j�1
FR(t(ui, √j), h(ui, √j)) ` �(x, y)

�(u, √)
` �u �√

 ��
R

f(x, y) dA � lim
m, n→�

a
m

i�1
a

n

j�1
FR(x i, yj) �A

Rf
Rij

FR(x, y) � ef(x, y) if (x, y) � R

0 if (x, y) � R

FRf

x

y

u0 0

√

T

(ui, √j)

(xi, yj)

S Sij

Rij

R

THEOREM 1 Change of Variables in Double Integrals

Let be a one-to-one transformation defined by that maps
a region in the -plane onto a region in the -plane. Suppose that the bound-
aries of both and consist of finitely many piecewise smooth, simple, closed
curves. Furthermore, suppose that the first-order partial derivatives of and are
continuous functions. If is continuous on and the Jacobian of is nonzero, then

(4)��
R

f(x, y) dA � ��
S

f(t(u, √), h(u, √)) ` �(x, y)

�(u, √)
` du d√

TRf
ht

SR
xyRu√S
x � t(u, √), y � h(u, √)T
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Note Theorem 1 tells us that we can formally transform an integral 
involving the variables and into an integral involving the variables and by replac-
ing by and by and the area element in and by the area ele-
ment

in and . If you compare Equation (4) with Equation (1), you will see that the absolute
value of the Jacobian of plays the same role as the derivative of the “transfor-
mation” defined by in the one-dimensional case.x � t(u)t

t¿(u)T
√u

dA � ` �(x, y)

�(u, √)
` du d√

yxdAh(u, √)yt(u, √)x
√uyx

��R
f(x, y) dA

EXAMPLE 2 Use the transformation defined by the equations , to
evaluate , where is the parallelogram shown in Figure 2b. (See Exam-
ple 1.)

Solution Recall that the transformation maps the much simpler rectangular region
onto and that this is precisely the reason for

choosing this transformation. The Jacobian of is

Using Theorem 1, we obtain

In Example 2 the transformation was chosen so that the region in the -plane
corresponding to the region could be described more simply. This made it easier to
evaluate the transformed integral. In other instances the transformation is chosen so
that the corresponding integrand in and is easier to integrate than the original inte-
grand in the variables and , as the following example shows.yx

√u

R
u√ST

 � �
1

0
(2 	 4√) d√ � C2√ 	 2√2 D1

0
� 4

 � �
1

0
�

2

0
(u 	 2√) du d√ � �

1

0
 c12 u2 	 2u√du�2

u�0
d√

 ��
R

(x 	 y) dA � ��
S

[(u 	 √) 	 √](1) du d√

�(x, y)

�(u, √)
� ∞

�x

�u

�x

�√
�y

�u

�y

�√

∞ � ` 1 1

0 1
` � 1

T
RS � {(u, √) � 0 � u � 2, 0 � √ � 1}

T

R��R
(x 	 y) dA

y � √x � u 	 √T

EXAMPLE 3 Evaluate

where is the trapezoidal region with vertices , , , and .

Solution As it stands, this integral is difficult to evaluate. But observe that the form
of the integrand suggests that we make the substitution

√ � x 	 yu � x � y

(0, 1)(0, 2)(2, 0)(1, 0)R

��
R

cosax � y

x 	 y
b dA
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These equations define a transformation from the -plane to the -plane. If we
solve these equations for and in terms of and , we obtain the transformation 
from the -plane to the -plane defined by

The given region is shown in Figure 7.R

y �
1

2
 (√ � u)x �

1

2
 (u 	 √)

xyu√
T√uyx

u√xyT�1

EXAMPLE 4 Suppose that is continuous on a polar rectangle

R � {(r, u) � a � r � b, a � u � b}

f

FIGURE 7
maps onto , and 

maps onto .SRT�1
RST

To find the region in the -plane that is mapped onto under the transforma-
tion , observe that the sides of lie on the lines

, , , and

Using the equations defining , we see that the sides of corresponding to these
sides of are

, , , and

The region is shown in Figure 7a.
The Jacobian of is

If we use Theorem 1 while viewing as a -simple region, we find

The next example shows how the formula for integration in polar coordinates can
be derived with the help of Theorem 1.

 � sin 1 �
2

1
√ d√ �

3

2
sin 1

 � �
2

1
�

√

�√
cosau

√
b � a1

2
b du d√ �

1

2
 �

2

1
 c√ sinau

√
b du�√

u��√
d√

 ��
R

cosax � y

x 	 y
b dA � ��

S

cosau

√
b ` �(x, y)

�(u, √)
` du d√

uS

�(x, y)

�(u, √)
� ∞

�x

�u

�x

�√
�y

�u

�y

�√

∞ � ∞
1

2

1

2

�
1

2

1

2

∞ � 1

2

T
S

√ � 1√ � �u√ � 2√ � u

R
ST�1

y 	 x � 1x � 0y 	 x � 2y � 0

RT
Ru√S

u

√

x

y

R

T

T�1

0�1�2 1 2

1

2

(a) (b)

√ � 1

√ � 2

√ � u√ � �u S

21 0
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Change of Variables in Triple Integrals
The results for a change of variables for double integrals can be extended to the case
involving triple integrals. Let be a transformation from the -space to the -
space defined by the equations

, ,

and suppose that maps a region in uvw-space onto a region in -space. The
Jacobian of is

�(x, y, z)

�(u, √, w)
�

�x

�u

�x

�√
�x

�w
�y

�u

�y

�√
�y

�w

�z

�u

�z

�√
�z

�w

T
xyzRST

z � k(u, √, w)y � h(u, √, w)x � t(u, √, w)

xyzu√wT

FIGURE 8
maps the region onto 

the polar rectangle .R
ST

in the -plane. Show that

where is the region in the -plane mapped onto under the transformation defined
by

Solution Observe that maps the -simple region

onto the polar rectangle as shown in Figure 8. The Jacobian of is

Using Theorem 1, we obtain

as was to be shown.

 � �
b

a
�

 2(u)

 1(u)
f(r cos u, r sin u) r dr du

 ��
R

f(x, y) dA � ��
S

f(t(r, u), h(r, u)) ` �(x, y)

�(r, u)
` dr du

 � r cos2 u 	 r sin2 u � r  0

 
�(x, y)

�(r, u)
� ∞

�x

�r

�x

�u

�y

�r

�y

�u

∞ � ` cos u �r sin u

sin u r cos u
`

TR

S � {(r, u) � a � r � b, a � u � b}

rT

y � h(r, u) � r sin ux � t(r, u) � r cos u

TRruS

��
R

f(x, y) dA � ��
S

f(r cos u, r sin u) r dr du

xy

ra b

¨
∫

å

x

y

R

r � a

r � b
r � a r � b

å

¨ � ∫

¨ � å
¨ � å

¨ � ∫

∫

S

0 0

t

t
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where , and are spherical coordinates. The Jacobian of is

Expanding the determinant by the third row, we find

�(x, y, z)

�(r, f, u)
� †

sin f cos u r cos f cos u �r sin f sin u

sin f sin u r cos f sin u r sin f cos u

cos f �r sin f 0
†

Tur, f

 � r2 cos2 f sin f 	 r2 sin3 f � r2 sin f

 � cos f(r2 cos f sin f cos2 u 	 r2 cos f sin f sin2 u) 	 r sin f(r sin2 f cos2 u 	 r sin2 f sin2 u)

 
�(x, y, z)

�(r, f, u)
� cos f ` r cos f cos u �r sin f sin u

r cos f sin u r sin f cos u
` 	 r sin f ` sin f cos u �r sin f sin u

sin f sin u r sin f cos u
`

Since , we see that , so

Using Equation (5), we obtain

which is Equation (4) in Section 14.7, the formula for integrating a triple integral in
spherical coordinates.

���
R

f(x, y, z) dV � ���
S

f(r sin f cos u, r sin f sin u, r cos f)r2 sin f dr df du

` �(x, y, z)

�(r, f, u)
` � �r2 sin f � � r2 sin f

sin f � 00 � f � p

1. a. Let be a transformation defined by and
. What is the Jacobian of ?

b. Write the Jacobian of the transformation given by
, , and .z � k(u, √, w)y � h(u, √, w)x � t(u, √, w)

T
Ty � h(u, √)
x � t(u, √)T 2. a. Let be the one-to-one transformation defined by

and that maps a region in the
-plane onto a region in the -plane. Write the for-

mula for transforming the integral into an
integral involving and over the region .

b. Repeat part (a) for the case of a triple integral.
S√u

��R
f(x, y) dA

xyRu√
Sy � h(u, √)x � t(u, √)

T

14.8 CONCEPT QUESTIONS

Change of Variables in Triple Integrals

(5)���
R

f(x, y, z) dV � ���
S

f(t(u, √, w), h(u, √, w), k(u, √, w)) ` �(x, y, z)

�(u, √, w)
` du d√ dw

EXAMPLE 5 Use Equation (5) to derive the formula for changing a triple integral in
rectangular coordinates to one in spherical coordinates.

Solution The required transformation is defined by the equations

, , z � r cos fy � r sin f sin ux � r sin f cos u

The following is the analog of Equation (4) for triple integrals.
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In Exercises 1–6, sketch the image of the set under
the transformation defined by the equations ,

.

1. ; ,

2. ; ,

3. is the triangular region with vertices , , ;
, .

4. is the trapezoidal region with vertices , ,
, ; ,

5. ; ;

6. ;

In Exercises 7–12, find the Jacobian of the transformation 
defined by the equations.

7. ,

8. ,

9. ,

10. ,

11. , ,

12. , ,

In Exercises 13–20, evaluate the integral using the transforma-
tion .

13. , where is the parallelogram bounded by the 

lines with equations , , ,
and ; is defined by and 

14. , where is the parallelogram bounded by 

the lines with equations , , ,
and ; is defined by and 

15. , where is the region in the first quadrant 

bounded by the ellipse ; is defined by
and 

16. , where is the region bounded by 

the ellipse ; is defined by
and 

17. , where is the region bounded by R��
R
B1 �

x2

4
�

y2

9
dA

y � 12u 	 12>3√x � 12u � 12>3√
Tx2 � xy 	 y2 � 2

R��
R

cos(x2 � xy 	 y2) dA

y � 2√x � 3u
T4x2 	 9y2 � 36

R��
R

2xy dA

y � 2u � √x � u � 2√Ty � 1
2 x

y � 2x 	 3y � 1
2 x 	 3y � 2x

R��
R

(2x 	 3y) dA

y � √ � 2ux � u 	 2√Ty � 1
2 x

y � �2x 	 10y � 1
2 x � 15

2y � �2x

R��
R

(x 	 y) dA

T

z � u 	 √2 � 2w2y � u2 � √2x � 2u 	 w

 z � u � 2√ 	 3wy � u � √ 	 wx � u 	 √ 	 w

y � √ ln ux � u ln √

 y � eu sin 2√x � eu cos 2√

 y � 2u√x � u2 � √2

y � u2 � √x � 2u 	 √

T

x � u cos √, y � u sin √
S � 5 (u, √) � 1 � u � 2, 0 � √ � p

2 6
y � 2u√

x � u2 � √2S � {(u, √) � u2 	 √2 � 1, u � 0, √ � 0}

y � u � √x � u 	 √(0, 2)(0, 1)
(�1, 0)(�2, 0)S

y � 2√x � u 	 2√
(0, 1)(1, 1)(0, 0)S

y � u � √
x � u 	 √S � {(u, √) � 0 � u � 1, 0 � √ � 2}

y � √x � u � √S � {(u, √) � 0 � u � 2, 0 � √ � 1}

y � h(u, √)
x � t(u, √)T

SR � T(S)
the ellipse ; is defined by and 

18. , where is the region in the first quadrant 

bounded by the hyperbolas and and the lines 

and ; is defined by and 

19. , where ;

is defined by and , where , .

20. , where is the region bounded by the graphs 

of , , and ; is defined by and

In Exercises 21–26, evaluate the integral by making a suitable
change of variables.

21. , where is the parallelogram bounded by 

the lines , , , and

22. , where is the parallelogram 

bounded by the lines , , and

23. , where is the triangular region bounded 

by the lines , , and 

24. , where is the trapezoidal region with 

vertices , , , and 

25. , where is the region in the first quadrant R��
R

xy dA

(0, 2)(0, 1)(�1, 0)(�2, 0)

R��
R

e(x	y)>(x�y) dA

x 	 y � 1y � 0x � 0

R��
R

e(x�y)>(x	y) dA

y � 2x � 2
y � 2xy � �x, y � �x 	 1

R��
R

(x 	 y) sin (2x � y) dA

2x � y � 4
2x � y � 0x 	 y � 3x 	 y � �1

R��
R

(2x 	 y) dA

y � √
x � u2Ty � 1x � 0x � y2

R��
R

y sin x dA

√ � 0uy � 2u√x � u2 � √2T

R � {(x, y) � x2 	 y2 � 1, y � 0}��
R

 
1

2x2 	 y2
dA

y � √x �
u

√
Ty � 2xy � x

xy � 2xy � 1

R��
R

xy2 dA

y � 3√

x � 2uT
x2

4
	

y2

9
� 1

14.8 EXERCISES

Videos for selected exercises are available online at www.academic.cengage.com/login.V

bounded by the ellipse 

26. , where is the region bounded 

by the ellipse 

27. Find the volume of the solid enclosed by the ellipsoid

Hint: . Use the transformation , , and

.z � cw

y � b√x � auV � ���E dV

x2

a2 	
y2

b2 	
z2

c2 � 1

EV

4x2 	 25y2 � 1

R��
R

ln(4x2 	 25y2 	 1) dA

x2

a2 	
y2

b2 � 1

www.academic.cengage.com/login
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28. Let be the solid enclosed by the ellipsoid 

Find the mass of if it has constant mass density .
Hint: Use the transformation of Exercise 27.

29. Find the moment of inertia, , of the lamina that 
has constant mass density and occupies the disk

about the -axis.

30. Show that the moment of inertia of the solid of Exercise 28
about the -axis is , where is
the mass of the solid.

31. Use Formula (5) to find the formula for changing a triple
integral in rectangular coordinates to one in cylindrical coor-
dinates.

m � 4
3pdabcIz � 1

5 m(a2 	 b2)z

xx2 	 y2 � ax � 0
r

Ix

dE

x2

a2 	
y2

b2 	
z2

c2 � 1

E In Exercises 32 and 33, determine whether the statement is true
or false. If it is true, explain why. If it is false, explain why or
give an example that shows it is false.

32. If is defined by and and maps a
region in the -plane onto a region in the -plane,
then the area of is the same as the area of .

33. If is defined by , and maps a region
onto a region , then 

��
R

(x2 	 y2) dx dy � ��
S

(u2 	 √2) ` �(x, y)

�(u, √)
` du d√

RS
y � h(u, √)x � t(u, √)T

SR
xyRu√S

y � h(u, √)x � t(u, √)T

In Exercises 1–12, fill in the blanks.

1. a. If is a continuous function defined on a rectangle
, then the Riemann sum of over 

with respect to a partition is , where
is a point in .

b. The double integral if the
limit exists for all choices of in .

c. If on , then gives the
of the solid lying directly above and below

the surface .
d. If is a bounded region that is not rectangular, then

, where 
if is in and if is not
in .

2. The following properties hold for double integrals:
a.

b.

c. If on , then .

d. If on , then .

e. If and , then
.

3. a. If , then the two iterated integrals of
over are and .

b. Fubini’s Theorem for a rectangular region
states that is 

equal to the integrals in part (a).

4. a. A -simple region has the form , where 
and are continuous functions on .[a, b]t2

t1R �y

��R
f(x, y) dAR � [a, b] � [c, d]

Rf
R � [a, b] � [c, d]

��D
f(x, y) dA �

D1 � D2 � �D � D1 � D2

��D
f(x, y) dADf(x, y) � t(x, y)

��D
f(x, y) dADf(x, y) � 0

��D
[ f(x, y) 
 t(x, y)] dA �

��D
cf(x, y) dA �

D
(x, y)fD(x, y) �D(x, y)

fD(x, y) ���D f(x, y) dA �
D

R
��R

f(x, y) dARf(x, y) � 0
Rij

��R
f(x, y) dA �

Rij(x*ij , y*ij )
P � {Rij}

RfR � [a, b] � [c, d]
f

b. An -simple region has the form , where
and are continuous functions on .

c. Fubini’s Theorem for the -simple region of part (a),
states that . If is the -simple
region of part (b), then .

5. a. A polar rectangle is a set of the form .
b. If is continuous on a polar rectangle , then

.
c. An -simple region is a set of the form .
d. If is continuous on an -simple region , then

.

6. If a lamina occupies a region in the plane and the mass
density of the lamina is , then
a. The mass of the lamina is given by .
b. The moments of the lamina with respect to the - and 

-axes are and . The
coordinates of the center of mass of the lamina are 

and .
c. The moments of inertia of the lamina with respect to the

-axis, the -axis, and the origin are ,
, and , respectively.

d. If the moment of inertia of a lamina with respect to an
axis is , then its radius of gyration with respect to the
axis is .

7. a. If and are continuous on a region in the -plane,
then the area of the surface over is 

.
b. If is defined in a region in the -plane, then the area

of the surface is .A �y � t(x, z)
xzRt

A �Rz � f(x, y)
xyRfyfx

R �
I

I0 �Iy �
Ix �yx

y �
x �

My �Mx �y
x

m �
r(x, y)

R

��R
f(x, y) dA �

Rrf
R �r

��R
f(x, y) dA �

Rf
R �

��R
f(x, y) dA �R

xR��R
f(x, y) dA �

Ry
[c, d]h2h1

R �x

CONCEPT QUESTIONS
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c. If is defined in a region in the -plane, then the area
of the surface is .

8. a. If is a continuous function defined on a rectangular 
box , then the Riemann sum
of over with respect to a partition is

, where is a point in .

b. The triple integral if the

limit exists for all choices of in .

c. If is continuous on a bounded solid region in space,
is a rectangular box that contains , ,

is a partition of , is a function defined
by

then a Riemann sum of over is .
d. The triple integral of over is 

provided that the limit exists for all choices of
in .

9. a. If is continuous on , then
is equal to any of six iterated integrals 

depending on the of integration. If we inte-
grate with respect to , , and , in that order, then

.

b. If is continuous on a -simple region
,

where is the projection of onto the -plane,
then .

10. If gives the density at the point of a solid
, then

a. The mass of is .
b. The moment of about the -plane is ,

the moment of about the -plane is ,Mxz �xzT
Myz �yzT

m �T
T

(x, y, z)r(x, y, z)

���T
f(x, y, z) dV �

xyTR
T � {(x, y, z) � (x, y) � R, k1(x, y) � z � k2(x, y)}

zf
���B

f(x, y, z) dV �
zyx

���B
f(x, y, z) dV

B � [a, b] � [c, d] � [p, q]f

T(x*ijk, y*ijk, z*ijk)

���T
f(x, y, z) dV �Tf

Tf

F(x, y, z) � ef(x, y, z) if (x, y, z) is in T

0 if (x, y, z) is in B but not in T

FBBijk, p , Blmn}
Q � {B111, B112, pT

BTf

Bijk(x*ijk, y*ijk, z*ijk)
���B

f(x, y, z) dV �

Bijk(x*ijk, y*ijk, z*ijk)
P � {Bijk}Bf

B � [a, b] � [c, d] � [p, q]
f

A �x � h(y, z)
yzRh and the moment of about the -plane is 

.
c. The of is located at the

point , where , , and
.

d. The moments of inertia of about the -, -, and -axes
are , , and .

11. a. If is a -simple region described by
, where

, then in
terms of cylindrical coordinates,

.
b. If is

a spherical wedge, then in terms of spherical coordinates,
.

c. If is -simple, ,
, then 

.

12. a. If is a transformation defined by and 

, then the Jacobian of is 

.
b. If maps in the -plane onto a region in the -

plane, then the formula for transforming the integral 
into one involving and is 

.

c. If maps in -space onto in -space and is
defined by , and 

, then the Jacobian is 

, and the change of variable formula for triple 
integrals is .���R

f(x, y, z) dx dy dz �

�(x, y, z)

�(u, √, w)
�Tz � k(u, √, w)

x � t(u, √, w), y � h(u, √, w)
xyzRu√wST

��R
f(x, y) dx dy �

√u��R
f(x, y) dx dy

xyRu√ST

�(x, y)

�(u, √)
�Ty � h(u, √)

x � t(u, √)T

���T
f(x, y, z) dV �c � f � d, a � u � b}

T � {(r, f, u) � h1(f, u) � r � h2(f, u)rT
���T

f(x, y, z) dV �

T � {(r, f, u) � a � r � b, c � f � d, a � u � b}

���T
f(x, y, z) dV �

R � {(r, u) �a � u � b, t1(u) � r � t2(u)}
T � {(x, y, z) � (x, y) � R, h1(x, y) � z � h2(x, y)}

zT

Iz �Iy �Ix �
zyxT

z �
y �x �(x, y, z)

T

Mxy �xyT

In Exercises 1–8 evaluate the iterated integral.

1. 2.

3. 4.

5. 6.

7.

8. �
2

1
�

3

x
�

y

0
 

y

y 	 z
dz dy dx

�
2

0
�
1z

0
�

x

0
(x 	 2z) dy dx dz

�
e

1
�

1>x

0
1ln x dy dx�

2

0
�

2

y

1

4 	 y2 dx dy

�
1

0
�
21�y2

0
2y dx dy�

1

0
�
1x

x

(2x 	 3y) dy dx

�
p

0
�

1

0
x sin xy dy dx�

2

0
�

2

�1
(2x 	 3xy2) dx dy

In Exercises 9–12, sketch the region of integration for the iter-
ated integral.

9. 10.

11.

12.

In Exercises 13 and 14, reverse the order of integration, and
evaluate the resulting integral.

13. 14. �
1

0
�
1y

y

 
cos x

x
dx dy�

1

0
�

1

y

sin x2 dx dy

�
12

�12
 �

2

y2
�

2�x

0
f(x, y, z) dz dx dy

�
p

0
�

1	cos u

0
f(r, u) r dr du

�
1

0
�

sin�1 y

0
f(x, y) dx dy�

2

1
�
13 x

ln x

f(x, y) dy dx

REVIEW EXERCISES
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In Exercises 15–26, evaluate the multiple integral.

15. , where 

16. , where 

17. , where is the region bounded by the parabola 

and the line 

18. , where is the region bounded by the 

graphs of , , and 

19. , where is the region in the first quadrant bounded 

by the ellipse 

20. , where is the region bounded by the graphs 

of , , and 

21. , where 

22. , where is the tetrahedron bounded by the planes 

, , , and 

23. , where is the region bounded by the hemi-

sphere and the plane 

24. , where is the region bounded by the cylinder 

and the planes , , and 

25. , where is the region bounded above by the 

paraboloid , above the plane , and to
the left by the plane 

26. , where is the region bounded 

above by the hemisphere and below by
the plane 

In Exercises 27–32, find the volume of the solid.

27. The solid under the surface and above the rectangu-
lar region R � {(x, y) � 0 � x � 1, 1 � y � 2}

z � xy2

z � 0
z �21 � x2 � y2

T���
T

 
1

2x2 	 y2 	 z2
dV

y � 0
z � 0y � 1 � x2 � z2

T���
T

x2z dV

z � 0y � 2xy � xx2 	 z2 � 1

T���
T

z dV

z � 0z �21 � x2 � y2

T���
T

xyz dV

z � 0 y � 0 x � 0x 	 2y 	 z � 6

R���
T

z dV

T � {(x, y, z) � 0 � x � 1, 0 � y � x2, 0 � z � x 	 y}

���
T

xy dV

x � ey � xy � 1>x
R��

R

ln x dy dx

4x2 	 9y2 � 36

R��
R

x dA

y � 0x � 0x � 4 � y2

R��
R

(x 	 2y) dA

x � 2y � 3x � y2

R��
R

y dA

R � {(x, y) � 0 � x � 1, 0 � y �21 � x2}

��
R

(x 	 y) dA

R � {(x, y) � �1 � x � 1, 0 � y � 2}

��
R

(x2 	 3y2) dA

28. The solid under the paraboloid and above
the triangular region in the -plane with vertices ,

, and 

29. The solid bounded by the paraboloid , the cylin-
der , and the plane 

30. The solid under the paraboloid and above
the circular region in the -plane

31. The solid under the surface , within the cylinder
and above the plane 

32. The solid bounded above by the paraboloid
and below by the cone 

In Exercises 33–36, find the mass and the center of mass of 
the lamina occupying the region and having the given mass
density.

33. is the region in the first quadrant bounded by the graphs
of and ;

34. is the region bounded by the parabola and the line
;

35. is the region in the first quadrant bounded by the circle

;

36. is the region bounded by the semicircle 
and the -axis;

In Exercises 37 and 38, find the moments of inertia , and 
of the lamina occupying the region D and having the given mass
density.

37. is the region bounded by the triangle with vertices ,
, and ;

38. is the region bounded by the graphs of and ;

In Exercises 39 and 40, find the area of the surface .

39. is the part of the plane in the first octant.

40. is the part of the paraboloid below the plane
.

In Exercises 41 and 42, evaluate the integral by changing to
cylindrical or spherical coordinates.

41.

42.

43. Express the triple integral as an iterated
integral in six different ways using different orders of inte-
gration, where is the tetrahedron bounded by the planes

, , , and .

44. Set up, but do not evaluate, the iterated integral giving the

mass of the solid bounded by the cone and z �2x2 	 y2

z � 0y � 0x � 02x 	 3y 	 z � 6
T

���T f(x, y, z) dV

�
3

0
�
29�x2

0
�
29�x2�y2

0
z2x2 	 y2 	 z2 dz dy dx

�
2

0
�
24�x2

0
�

1

0
(x2 	 y2)3>2 dz dy dx

z � 4
z � x2 	 y2S

2x 	 3y 	 z � 6S

S

r(x, y) � x
y � x2y � xD

r(x, y) � x2 	 y2(1, 1)(0, 1)
(0, 0)D

I0Ix, Iy

r(x, y) � x2yx
y �24 � x2D

r(x, y) �2x2 	 y2x2 	 y2 � 1

D

r(x, y) � x2yy � 4
y � x2D

r(x, y) � yy � x3y � x
D

D

z �2x2 	 y2z � 4 � x2 � y2

z � 0x2 	 y2 � 1
z � e�(x2	y2)

xyx2 	 y2 � 4
z � 9 � x2 � y2

z � 0x2 	 y2 � 1
z � x2 	 y2

(0, 1)(1, 1)
(0, 0)xy

z � 4 � x2 � y2
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the sphere if the density of the solid at
any point is .

45. Find the Jacobian of the transformation defined by the
equations , , and .

46. Use the transformation and to evaluate
, where is the region bounded by the

hyperbolas and and the lines and
.

47. Evaluate , where is the triangular region
bounded by the lines , , and .y � 0x 	 y � 2y � x

R��R
e(x�y)>(x	y) dA

y � 4
y � 1xy � 4xy � 1

R��R
y cos xy dy dx

y � √x � u>√
z � u2 � √2 	 2wy � 2u2 	 √x � u 	 w2

T

r(x, y, z) � 11 	 xzP
x2 	 y2 	 z2 � 8 In Exercises 48–53, state whether the statement is true or false.

Give a reason for your answer.

48.

49.

50.

51. If , then for all in .

52.

53. �
1

0
�

3

1
[1x 	 cos2(xy)] dx dy � 6

�
1

�1
 �

3

0
x3 sin y2 dy dx � 0

D(x, y)f(x, y) � 0��D
f(x, y) dA � 0

�
1

0
�

y

0
f(x, y) dx dy � �

1

0
�

x

0
f(x, y) dy dx

�
1

0
�

3

�2
(x 	 cos xy) dx dy � �

3

�2
 �

1

0
(x 	 cos xy) dy dx

�
b

a
�

b

a

f(x)f(y) dx dy � c�
b

a

f(x) dxd2

1. a. Use the definition of the double integral as a limit of a
Riemann sum to compute , where

.
Hint: Take , and , so that , where

, and , where .
b. Verify the result of part (a) by evaluating an appropriate

iterated integral.

2. The following figure shows a triangular lamina. Its mass
density at is . Find its mass.

3. Show that the area of the parallelogram shown in the figure
is , where and .

0 x

y

a b

d

c

c � da � b(b � a)(d � c)

0 x

y

1 2

(2, 1)1

f(x, y) � cos(y2)(x, y)

1 � j � nyj � j>n1 � i � m
xi � 2i>m�y � 1>n�x � 2>m

R � {(x, y) � 0 � x � 2, 0 � y � 1}
��R

(3x2 	 2y) dA

4. Using the result of Problem 3, show that the area of the 
parallelogram determined by the vectors and

is .

5. Monte Carlo Integration This is a method that is used to find
the area of complicated bounded regions in the -plane. 
To describe the method, suppose that is such a region
completely enclosed by a rectangle ,

, as shown in the figure. Using a random number
generator, we then pick points in . If denotes the area
of , then 

where denotes the number of points landing in ,
, and is the number of points

picked. Then

Use Monte Carlo integration with to estimate the
area of the disk of radius 5.

x

y

d

c

a b

D

0

R

n � 5000

A(D) �
(b � a)(d � c)

n
 N(D)

nA(R) � (b � a)(d � c)
DN(D)

A(D)

A(R)
�

N(D)

n

D
A(D)R

c � y � d}
R � {(x, y) � a � x � b

D
xy

�a1b2 � a2b1 �b � �b1, b2�
a � �a1, a2�

CHALLENGE PROBLEMS
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6. The expression , where ,
, and , , is the

Riemann sum of a function over a region associated
with a regular pattern.
a. Write a double integral corresponding to this Riemann

sum.
b. Write an iterated integral corresponding to this Riemann

sum.

7. a. Suppose that is continuous in the triangular region
. Show that

b. Use the result of part (a) to evaluate

8. Let be a continuous function of one variable. Show that

Hint: Use the result of Exercise 7.

9. a. Let be a region in the -plane that is symmetric 
with respect to the -axis, and let be a function that 
satisfies the condition . Show that

.

b. Use the result of part (a) to show that if a lamina with
uniform density that occupies a plane region that is
symmetric with respect to a straight line , then the cen-
troid of the lamina lies on .

10. In Exercise 6 in the Challenge Problems for Chapter 11, you
were asked to show that the area of the portion of the plane

, where , , and are positive constants,
in the first octant is given by 

Derive this formula again, this time using integration. Show
that the result can also be written as

A(R)

c
 2a2 	 b2 	 c2

d2 2a2 	 b2 	 c2

2abc

cbaax 	 by 	 cz � d

L
L

r

��R
f(x, y) dA � 0

f(�x, y) � �f(x, y)
fy

xyR

�
x

a
�

y

a
�

z

a

f(t) dt dz dy �
1

2
 �

x

a

(x � t)2 f(t) dt

f

�
1

0
 c�

1

y

sin x2 dxd dy

�
b

a
 c�

x

a

f(x, y) dyd dx � �
b

a
 c�

b

y

f(x, y) dxd dy

R � {(x, y) � x � b, y � a, y � x}
f(x, y)

f(x, y)
j � 1, 2, p , nyj � 1 	 ( j>n)i � 1, 2, p , m

xi � i>m�m
i�1 �n

j�1 (x2
i 	 y3

j ) �x �y where is the area of the region in the -plane.

11. A thin rectangular metal plate has dimensions ft by ft
and a constant density of slugs/ft2. The plate is placed 
in the -plane as shown in the figure and is allowed to
rotate about the -axis at a constant angular velocity of 

radians/sec.

a. Show that the kinetic energy of the plate is given by 

where .
Hint: The kinetic energy of a particle of mass slugs and veloc-
ity ft/sec is ft-lb.

b. Show that , where .

12. The Schwartz inequality for functions of one variable holds
for multiple integrals. (See Exercise 9 in the Challenge
Problems for Chapter 4.) Thus,

a. Use Schwartz’s inequality to prove that 

where is the triangle with vertices , ,
and .

b. Find the exact value of the integral in part (a). How
accurate is the estimate?

C(1, 0)
B(1, 2)A(0, 0)D

` ��
D

24x2 � y2 dA ` � 213

3

` ��
D

f(x, y)t(x, y) dA ` � B��
D

[ f(x, y)]2 dA��
D

[t(x, y)]2 dA

I � 2
3(a2 	 b2)mE � 1

2Iv
2

1
2 m√2√

m
m � kab

E �
kv2

2
 �

b

0
�

a

0
(x2 	 y2) dx dy �

1

3
 (a2 	 b2)mv2

y

x

z

a
b

v

z
xy

k
ba

y
R

x

z

d_
c

d_
a

d_
b

xyRA(R)



A VECTOR FIELD is a function that assigns a vector to each point in a region. The

study of vector fields is motivated by many physical fields such as force fields and

velocity fields. Gravitational and electric fields are examples of force fields, and the

flow of water through a channel and the flow of air around an airfoil are examples of

velocity fields.

The calculus of vector fields enables us to calculate many quantities of interest

associated with force fields and velocity fields. For example, using the notion of the

line integral, which is a generalization of the definite integral, we are able to calcu-

late the work done by a force field in moving a body from one point to another

along a curve. Using surface integrals, which are generalizations of double integrals,

we can calculate the flux (flow of fluids and gases) across a surface.

The calculations involving line integrals and surface integrals are facilitated by

the theorems of Green and Stokes and the Divergence Theorem, all of which may be

regarded as analogs of the Fundamental Theorem of Calculus in higher dimensions.

15 Vector Analysis
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A vector field in a region in three-
dimensional space is a vector-
valued function that assigns a 

vector to each point in the region.
Vector fields are used in aerody-

namics to model the speed and
direction of air flow around an air-

plane. The photograph shows the air
flow from the wing of an agricul-

tural plane. The air flow was made
visible by a technique that uses col-
ored smoke rising from the ground.
The wingtip vortex, a tube of circu-
lating air that is left behind by the

wing as it generates lift, exerts a
powerful influence on the flow field
behind the plane. This is the reason

that the Federal Aviation Adminis-
tration (FAA) requires aircraft to

maintain set distances behind each
other when they land.

This symbol indicates that one of the following video types is available for enhanced student learning 
at www.academic.cengage.com/login:
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15.1 Vector Fields

Figure 1 shows the airflow around an airfoil in a wind tunnel. The smooth curves, traced
by the individual air particles and made visible by kerosene smoke, are called stream-
lines.

FIGURE 1
A vector field associated with the
airflow around an airfoil

FIGURE 2
A vector field associated with the flow
of blood in an artery

DEFINITION Vector Field in Two-Dimensional Space

Let be a region in the plane. A vector field in is a vector-valued function
that associates with each point in a two-dimensional vector

where and are functions of two variables defined on .RQP

F(x, y) � P(x, y)i � Q(x, y)j

R(x, y)F
RR

EXAMPLE 1 A vector field in (two-dimensional space) is defined by 
. Describe , and sketch a few vectors representing the vector field.

Solution The vector-valued function associates with each point in its posi-
tion vector . This vector points directly away from the origin and has length

which is equal to the distance of from the origin. As an aid to sketching some
vectors representing , observe that each point on a circle of radius centered at the
origin is associated with a vector of length . Figure 3 shows a few vectors represent-
ing this vector field.

r
rF

(x, y)

�F(x, y) � � �r � �2x2 � y2 � r

r � xi � yj
R2(x, y)F

Fxi � yj
F(x, y) �R2F

FIGURE 3
Some vectors representing the 
vector field F(x, y) � xi � yj

EXAMPLE 2 A vector field in is defined by . Describe ,
and sketch a few vectors representing the vector field.

FF(x, y) � �yi � xjR2F

x

y

To facilitate the analysis of this flow, we can associate a tangent vector with each
point on a streamline. The direction of the vector indicates the direction of flow of the
air particle, and the length of the vector gives the speed of the particle. If we assign a
tangent vector to each point on every streamline, we obtain what is called a vector field
associated with this flow.

Another example of a vector field arises in the study of the flow of blood through
an artery. Here, the vectors give the direction of flow and the speed of the blood cells
(see Figure 2).
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FIGURE 4
Some vectors representing the 
vector field F(x, y) � �yi � xj

DEFINITION Vector Field in Three-Dimensional Space

Let be a region in space. A vector field in is a vector-valued function that
associates with each point in a three-dimensional vector

where , , and are functions of three variables defined on .TRQP

F(x, y, z) � P(x, y, z)i � Q(x, y, z)j � R(x, y, z)k

T(x, y, z)
FTT

Important applications of vector fields in three-dimensional space occur in the form
of gravitational and electric fields, as described in the following examples.

x

y

EXAMPLE 3 Gravitational Field Suppose that an object of mass is located at
the origin of a three-dimensional coordinate system. We can think of this object as
inducing a force field in space. The effect of this gravitational field is to attract any
object placed in the vicinity of toward it with a force that is governed by Newton’s
Law of Gravitation. To find an expression for , suppose that an object of mass is
located at a point with position vector . Then, according to
Newton’s Law of Gravitation, the force of attraction of the object of mass on the
object of mass has magnitude

and direction given by the unit vector , where is the gravitational constant.
Therefore, we can write

 � �
GMx

(x2 � y2 � z2)3>2 i �
GMy

(x2 � y2 � z2)3>2 j �
GMz

(x2 � y2 � z2)3>2 k

 F(x, y, z) � �
GM

�r �3
 r

G�r>�r �

GmM

�r �2

m
MO

r � xi � yj � zk(x, y, z)
mF

O
F

MO

Solution Let be the position vector of the point . Then

and this shows that is orthogonal to the vector . This means that is tangent
to the circle of radius with center at the origin. Furthermore,

gives the length of the position vector. Therefore, associates with each point a
vector of length equal to the distance between the origin and and direction that
is perpendicular to the position vector of . A few vectors representing this vector
field are sketched in Figure 4. As in Example 1, this task is facilitated by first sketch-
ing a few concentric circles centered at the origin.

The “spin” vector field of Example 2 is used to describe phenomena as diverse as
whirlpools and the motion of a ferris wheel. It is called a velocity field.

The definition of vector fields in three-dimensional space is similar to that in two-
dimensional vector fields.

(x, y)
(x, y)

(x, y)F

�F(x, y) � �2(�y)2 � x2 �2x2 � y2 � r

r � �r �
F(x, y)rF

 � �yx � xy � 0

 F � r � (�yi � xj) � (xi � yj)

(x, y)r � xi � yj
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EXAMPLE 4 Electric Field Suppose that a charge of coulombs is located at the
origin of a three-dimensional coordinate system. Then, according to Coulomb’s Law,
the electric force exerted by this charge on a charge of coulombs located at a point

with position vector has magnitude

(where , the electrical constant, depends on the units used) and direction given by the
unit vector for like charges and (repulsion). Therefore, we can write the elec-
tric field that is induced by as

The force exerted by the electric field on a charge of coulombs, located at ,
is . Physically, is the force per unit charge that would be exerted on a test
charge placed at the point .

Conservative Vector Fields
Recall from our work in Section 13.6 that if is a scalar function of three variables,
then the gradient of , written or grad , is defined by

If is a function of two variables, then

Since assigns to each point the vector , we see that is a vec-
tor field that associates with each point in its domain a vector giving the direction of
greatest increase of . (See Section 13.6.) The vector field is called the gradient
vector field of .f

§ff

§f§f(x, y, z)(x, y, z)§f

§f(x, y) � fx(x, y)i � fy(x, y)j

f

§f(x, y, z) � fx(x, y, z)i � fy(x, y, z)j � fz(x, y, z)k

f§ff
f

P(x, y, z)
E(x, y, z)qE

(x, y, z)qE

 �
kQx

(x2 � y2 � z2)3>2 i �
kQy

(x2 � y2 � z2)3>2 j �
kQz

(x2 � y2 � z2)3>2 k

 E(x, y, z) �
kQ

�r �3
 r

QE
qQr>�r �

k

k �q ��Q �

r � xi � yj � zk(x, y, z)
q

Q

EXAMPLE 5 Find the gradient vector field of .

Solution The required gradient vector field is given by

 � (2x � y)i � (x � 2yz3)j � 3y2z2k

 �
�

�x
 (x2 � xy � y2z3)i �

�

�y
 (x2 � xy � y2z3)j �

�

�z
 (x2 � xy � y2z3)k

 §f(x, y, z) �
�f

�x
 i �

�f

�y
 j �

�f

�z
 k

f(x, y, z) � x2 � xy � y2z3

The force exerted by the gravitational field on a particle of mass with position
vector is . The vector field is sketched in Figure 5.

Observe that all the arrows point toward the origin and that the lengths of the arrows
decrease as one moves farther away from the origin. Physically, is the force
per unit mass that would be exerted on a test mass placed at the point .P(x, y, z)

F(x, y, z)

FmFr
mF

FIGURE 5
A gravitational force field

m

M

y

x

z
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FIGURE 6
Some computer-generated 

graphs of vector fields
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(c) F(x, y, z) � yi � xj �    k

(a) F(x, y) � xi � yj
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0
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6

(b) F(x, y) � �yi � xj

(d) F(x, y, z) � 
xi � yj � zk_____________
x2� y2 � z2   3/2

y y

(                   )
z_
2

x x

Before we proceed further, it should be pointed out that vector fields in both two-
and three-dimensional space can be plotted with the help of most computer algebra
systems. The computer often scales the lengths of the vectors but still gives a good
visual representation of the vector field. The vector fields of Examples 1 and 2 and two
examples of vector fields in 3-space are shown in Figures 6a–6d.

Not all vector fields are gradients of scalar functions, but those that are play an
important role in the physical sciences.

DEFINITION Conservative Vector Field

A vector field in a region is conservative if there exists a scalar function 
defined in such that

The function is called a potential function for .Ff

F � §f

R
fRF

The reason for using the words conservative and potential in this definition will be
apparent when we discuss the law of conservation of energy in Section 15.4.
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Vector fields of the form

are called inverse square fields. The gravitational and electric fields in Examples 3
and 4 are inverse square fields. The next example shows that these fields are conser-
vative.

F(x, y, z) �
k

�r �3
 r

EXAMPLE 6 Find the gradient vector field of the function

and hence deduce that the inverse square field is conservative.

Solution The gradient vector field of is given by

where . This shows that the inverse square field

is the gradient of the potential function and is therefore conservative.

Note In Example 6 we were able to show that an inverse square field is conserva-
tive because we were given a potential function such that . In Section 15.4 we
will learn how to find the potential function for a conservative vector field. We will
also learn how to determine whether a vector field is conservative without knowing its
potential function.

f
F � §ff

F

f

F(x, y, z) �
k

�r �3
 r

r � xi � yj � zk

 �
k

�r �3
 r

 �
kx

(x2 � y2 � z2)3>2 i �
ky

(x2 � y2 � z2)3>2 j �
kz

(x2 � y2 � z2)3>2 k

 §f(x, y, z) � fx(x, y, z)i � fy(x, y, z)j � fz(x, y, z)k

f

F

f(x, y, z) � �
k

2x2 � y2 � z2

1. a. What is a vector field in the plane? In space? Give exam-
ples of each.

b. Give three examples of vector fields with a physical
interpretation.

2. a. What is a conservative vector field? Give an example.
b. What is a potential function? Give an example.

15.1 CONCEPT QUESTIONS
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In Exercises 1–6, match the vector field with one of the plots labeled (a)–(f).

15.1 EXERCISES

Videos for selected exercises are available online at www.academic.cengage.com/login.V
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5.

6.

In Exercises 7–18, sketch several vectors associated with the
vector field .

7. 8.

9. 10. F(x, y) � yi � xjF(x, y) � �xi � yj

F(x, y) � i � jF(x, y) � 2i

F

F(x, y) � �
1

2
 xi � yj

F(x, y) � �
x

2x2 � y2
 i �

y

2x2 � y2
 j1. 2.

3.

4. F(x, y) � �
y

2x2 � y2
 i �

x

2x2 � y2
 j

F(x, y) � �
y

x2 � y2 i �
x

x2 � y2 j

F(x, y) �
x

�x � iF(x, y) � yi

www.academic.cengage.com/login
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In Exercises 27–32, find the gradient vector field of the scalar
function (That is, find the conservative vector field for the
potential function of .)

27. 28.

29. 30.

31. 32.

33. Velocity of a Particle A particle is moving in a velocity field

At time the particle is located at the point .
a. What is the velocity of the particle at ?
b. What is the approximate location of the particle at

?

34. Velocity of Flow The following figure shows a lateral section of
a tube through which a liquid is flowing. The velocity of flow
may vary from point to point, but it is independent of time.
a. Assuming that the flow is from right to left, sketch vec-

tors emanating from the indicated points representing the
speed and direction of fluid flow. Give a reason for your
answer. (The answer is not unique.)

b. Explain why it is a bad idea to seek shelter in a tunnel
when a tornado is approaching.

35. Show that the vector field is not a gradient 
vector field of a scalar function .
Hint: If is a gradient vector field of , then and

. Show that cannot exist.

36. Is a gradient vector field of a scalar
function ? Explain your answer.

In Exercises 37–40, determine whether the statement is true or
false. If it is true, explain why. If it is false, explain why or give
an example that shows it is false.

37. If is a vector field in the plane, then defined by
, where is a constant, is also a vector

field.

38. If is a velocity field in space, then gives the
speed of a particle at the point , and

, where , is a unit vector
giving its direction.

39. A constant vector field is a gradi-
ent vector field.

40. All the vectors of the vector field point
outward in a radial direction from the origin.

F(x, y) � x2i � y2j

F(x, y, z) � ai � bj � ck

�F(x, y, z) � � 0F(x, y, z)>�F(x, y, z) �
(x, y, z)

�F(x, y, z) �F

cG(x, y) � cF(x, y)
G � cFF

f
F(x, y) � �yi � xj

f�f>�y � 0
�f>�x � yfF

f
F(x, y) � yi

t � 2.01

t � 2
(1, 3, 2)t � 2

V(x, y, z) � 2xi � (x � 3y)j � z2k

f(x, y, z) � tan�1 (xyz)f(x, y, z) � y ln(x � z)

f(x, y, z) � xy2 � yz3f(x, y, z) � xyz

f(x, y) � e�2x sin 3yf(x, y) � x2y � y3

Ff
Ff.

11. 12.

13.

14.

15. , a constant

16. 17.

18.

In Exercises 19–22, match the vector field with one of the plots
labeled (a)–(d).

19. 20.

21.

22.

In Exercises 23–26, use a computer algebra system to plot the
vector field.

23.

24.

25.

26. F(x, y, z) � �
xi � yj � zk

2x2 � y2 � z2

F(x, y, z) �
1

5
 (�yi � xj � zk)

F(x, y) � 2xyi � 2x2yj

F(x, y) �
1

10
 (x � y)i �

1

10
 (x � y)j

(d) 

�10
1

�1

0

1

�1 0 1

(c) 

�10
1

�1

0

1

�1 0 1

�10
1

�1

0

1

�1 0 1

(b) (a) 

�10
1

�1

0

1

�1 0 1

 � 
z

2x2 � y2 � z2
 k

 F(x, y, z) �
x

2x2 � y2 � z2
 i �

y

2x2 � y2 � z2
 j

F(x, y, z) � �xi � yj � zk

F(x, y, z) � xi � yj � 2kF(x, y, z) � i � j � 2k

F(x, y, z) � xi � yj � zk

F(x, y, z) � i � j � kF(x, y, z) � zk

cF(x, y, z) � cj

F(x, y) �
y

2x2 � y2
 i �

x

2x2 � y2
 j

F(x, y) �
x

2x2 � y2
 i �

y

2x2 � y2
 j

F(x, y) � xi � 3yjF(x, y) � xi � 2yj

cas
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15.2 Divergence and Curl

In this section we will look at two ways of measuring the rate of change of a vector
field : the divergence of at a point and the curl of at . The divergence and
curl of a vector field play a very important role in describing fluid flow, heat conduc-
tion, and electromagnetism.

Divergence
Suppose that is a vector field in 2- or 3-space and is a point in its domain. For the
purpose of this discussion, let’s also suppose that the vector field describes the flow
of a fluid in 2- or 3-space. Then the divergence of at , written , measures
the rate per unit area (or volume) at which the fluid departs or accumulates at . Let’s
consider several examples.

P
div F(P)PF

F
PF

PFPFF

b. Figure 2a shows the vector field for and . Observe that
the streamlines are parallel to the -axis and that the lengths of the arrows on
each horizontal line are constant. We can think of as describing the flow of a
river near one side of a riverbank. The velocity of flow is near zero close to the
bank (the -axis) and increases as we move away from it. You can see from Fig-
ure 2b that the amount of fluid flowing into the neighborhood of is matched
by the same amount that exits . Consequently, we expect the “divergence” at 
to be zero. We will show that this is the case in Example 2b.

PN
PN

x

F
x

y � 0x � 0F(x, y) � yi

FIGURE 1

EXAMPLE 1

a. Figure 1a shows the vector field described in Example 1 
of Section 15.1. Let be a point in the plane, and let be a neighborhood 
of with center . Referring to Figure 1b, observe that an arrow entering 
along a streamline is matched by one that emerges from and has a greater
length (because it is located farther away from the origin). This shows that 
more fluid leaves than enters a neighborhood of . We will show in Example 2a
that the vector field is “divergent” at ; that is, the divergence of at is 
positive.

PFPF
P

N
NPP

NP
F(x, y) � xi � yj

x

y

N

P

N

P

(a) The vector field F(x, y) � x i � y i (b) Flow through a neighborhood of P
      (enlarged and not to scale)
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Up to now, we have looked at the notion of “divergence” intuitively. The diver-
gence of a vector field can be defined as follows.

FIGURE 3

DEFINITION Divergence of a Vector Field

Let be a vector field in space, where , , and 
have first-order partial derivatives in some region . The divergence of is the
scalar function defined by

(1)div F �
�P

�x
�

�Q

�y
�

�R

�z

FT
RQPF(x, y, z) � Pi � Qj � Rk

c. Figure 3a shows the vector field

for and . Observe that the streamlines are parallel to the -axis and
that the lengths of the arrows on each horizontal line get smaller as increases.
From Figure 3b you can see that the “flow” into a neighborhood of is greater
than the flow that emerges from . In this case, more fluid enters the neighbor-
hood than leaves it, and the “divergence” is negative. We will show that our intu-
ition is correct in Example 2.

N
PN

x
xy � 0x � 0

F(x, y) �
1

x � 1
 i

x

P

N

P

(a) The vector field F(x, y) � y i

0

(b) Flow through a neighborhood of P
      (enlarged and not to scale)

y

1 2 3 4

FIGURE 2

x
N

P

(a) The vector field F(x, y) � i

1

1

1
x � 1

20

(b) Flow through a neighborhood of P
      (enlarged and not to scale)

y

N

P

(We will justify this definition of divergence in Section 15.8.) In two-dimensional space,

and div F �
�P

�x
�

�Q

�y
F(x, y) � Pi � Qj
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As an aid to remembering Equation (1), let’s introduce the vector differential oper-
ator (read “del”) defined by

If we let operate on a scalar function , we obtain

which is the gradient of . If we take the “dot product” of with the vector field
, we obtain

which is the divergence of the vector field . Thus, we can write the divergence of 
symbolically as

(2)

Let’s apply the definition of divergence to the vector fields that we discussed in
Example 1.

div F � § � F

FF

 �
�

�x
 P �

�

�y
 Q �

�

�z
 R �

�P

�x
�

�Q

�y
�

�R

�z

 § � F � a �

�x
 i �

�

�y
 j �

�

�z
 kb � (Pi � Qj � Rk)

Pi � Qj � RkF(x, y, z) �
§f

 �
�f

�x
(x, y, z)i �

�f

�y
(x, y, z)j �

�f

�z
(x, y, z)k

 �
�

�x
  f(x, y, z)i �

�

�y
  f(x, y, z)j �

�

�z
  f(x, y, z)k

 §f(x, y, z) � a �

�x
 i �

�

�y
 j �

�

�z
 kb f(x, y, z)

f(x, y, z)§

§ �
�

�x
 i �

�

�y
 j �

�

�z
 k

§

EXAMPLE 2 Find the divergence of (a) , (b) , and 

(c) . Reconcile your results with the intuitive observations that

were made in Example 1.

Solution

a. . Here, , as expected.

b. Here, , so . In this case, , as

was observed in Example 1b.
c. With we find

and , as we concluded intuitively in Example 1c.

We turn now to an example involving a vector field whose streamlines are not so
easily visualized.

div F � 0

div F �
�

�x
 (x � 1)�1 �

�

�y
 (0) � �(x � 1)�2 � �

1

(x � 1)2

F � (x � 1)�1i � 0j

div F � 0div F �
�

�x
 (y) �

�

�y
 (0) � 0F � yi � 0j

div F 	 0div F �
�

�x
 (x) �

�

�y
 (y) � 1 � 1 � 2

F(x, y) �
1

x � 1
 i

F(x, y) � yiF(x, y) � xi � yj
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EXAMPLE 4 Show that the divergence of the electric field , where
, is zero.

Solution We first write

Then

E(x, y, z) �
kQx

(x2 � y2 � z2)3>2 i �
kQy

(x2 � y2 � z2)3>2 j �
kQz

(x2 � y2 � z2)3>2 k

r � xi � yj � zk
E(x, y, z) �

kQ

�r �3
 r

div E � kQe �

�x
c x

(x2 � y2 � z2)3>2 d �
�

�y
c y

(x2 � y2 � z2)3>2 d �
�

�z
c z

(x2 � y2 � z2)3>2 d f
But

Similarly, we find

and

Therefore,

div E � kQc �2x2 � y2 � z2

(x2 � y2 � z2)5>2 �
x2 � 2y2 � z2

(x2 � y2 � z2)5>2 �
x2 � y2 � 2z2

(x2 � y2 � z2)5>2 d � 0

�

�z
 c z

(x2 � y2 � z2)3>2 d �
x2 � y2 � 2z2

(x2 � y2 � z2)5>2

�

�y
 c y

(x2 � y2 � z2)3>2 d �
x2 � 2y2 � z2

(x2 � y2 � z2)5>2

 �
�2x2 � y2 � z2

(x2 � y2 � z2)5>2

 � (x2 � y2 � z2)�5>2[(x2 � y2 � z2) � 3x2]

 � (x2 � y2 � z2)�3>2 � x � a�3

2
b (x2 � y2 � z2)�5>2(2x)

 
�

�x
c x

(x2 � y2 � z2)3>2 d �
�

�x
 [x(x2 � y2 � z2)�3>2]

EXAMPLE 3 Find the divergence of at the point
.

Solution

In particular, at the point we find

The divergence of the vector field of Examples 1b and 2b is zero. In
general, if , then is called incompressible. In electromagnetic theory a vec-
tor field that satisfies is called solenoidal. For example, the electric field

in Example 4 is solenoidal. We will study the divergence of a vector field in greater
detail in Section 15.8.
E

§ � F � 0F
Fdiv F � 0

F(x, y) � yi

div F(1, �1, 2) � (�1)(2) � 2(1)2(�1)(2) � �6

(1, �1, 2)

 � yz � 2x2yz

 div F �
�

�x
 (xyz) �

�

�y
 (x2y2z) �

�

�z
 (xy2)

(1, �1, 2)
F(x, y, z) � xyzi � x2y2z j � xy2k
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b. Consider the vector field shown in Figure 6a. Observe
that it is similar to the spin vector field of Example 2 in Section 15.1. Again,
the positive -axis points vertically out of the page. If a paddle wheel is placed
at the origin, it is easy to see that it will rotate in a counterclockwise direction.
Next, suppose that the paddle wheel is planted at a point other than the ori-
gin. If you refer to Figure 6b, you can see that the circle with center at is
divided into two arcs by the points of tangency of the two half-lines starting
from the origin. Notice that the arc farther from the origin is longer than the
one closer to the origin and that the flow on the larger arc is counterclockwise,
whereas the flow on the shorter arc is clockwise. Furthermore, the arrows ema-
nating from the longer arc are longer than those emanating from the shorter
arc. This shows that the amount of fluid flowing in the counterclockwise direc-
tion is greater than that flowing in the clockwise direction. Therefore, the pad-
dle wheel will rotate in a counterclockwise direction, as we will show in
Example 6.

P
P

z

F(x, y, z) � �yi � xj

FIGURE 4
A paddle wheel

EXAMPLE 5

a. Consider the vector field for similar to that of Example 1b. 
This field is shown in Figure 5a. Notice that the positive -axis points vertically
out of the page. Suppose that a paddle wheel is planted at a point . Referring
to Figure 5b, you can see that the arrows in the upper half of the circle with
center at are longer than those in the lower half. This shows that the net
clockwise flow of the fluid is greater than the net counterclockwise flow. This
will cause the paddle to rotate in a clockwise direction, as we will show in
Example 6.

P

P
z

x � 0F(x, y, z) � yi

FIGURE 5

Curl
We now turn our attention to the other measure of the rate of change of a vector field

. Let be a vector field in 3-space, and let be a point in its domain. Once again,
let’s think of the vector field as one that describes the flow of fluid. Suppose that a
small paddle wheel, like the one shown in Figure 4, is immersed in the fluid at . Then
the curl of , written , is a measure of the tendency of the fluid to rotate the
device about its vertical axis at . Later, we will show that the paddle wheel will rotate
most rapidly if its axis coincides with the direction of at and that its maxi-
mum rate of rotation at is given by the length of at .Pcurl FP

Pcurl F
P

curl FF
P

PFF

Axis

x

P

(a) The vector field F(x, y, z) � y i

1
2

3
4

5

1 2 3 4 5 6 7 8 9 10 11 12 13 140

(b) Flow through a neighborhood of P
      at which a paddle wheel is located
      (enlarged and not to scale)

y

P



1236 Chapter 15 Vector Analysis

FIGURE 7

DEFINITION Curl of a Vector Field

Let be a vector field in space, where , , and 
have first-order partial derivatives in some region . The curl of is the vector
field defined by

curl F � § 
 F � a�R

�y
�

�Q

�z
bi � a�P

�z
�

�R

�x
bj � a�Q

�x
�

�P

�y
bk

FT
RQPF(x, y, z) � Pi � Qj � Rk

c. Consider the vector field shown in Figure 7a. Note that it is
similar to the vector field in Example 1 in Section 15.1. Suppose that a paddle
wheel is placed at a point . Then referring to Figure 7(b) and using an argument
involving symmetry, you can convince yourself that the paddle wheel will not
rotate. Again, we will show in Example 6 that this is true.

P

F(x, y, z) � xi � yj

(a) The vector field F(x, y, z) � �y i � xj

0

0

(b) Flow through a neighborhood of P at
      which a paddle wheel is located (enlarged
      and not to scale)

x
P P

y

x

y

FIGURE 6

0

(b) Flow through a neighborhood of P at
      which a paddle wheel is located (enlarged
      and not to scale)

P

N

x

y

N

P

(a) The vector field F(x, y, z) � x i � yj

x

y

The following definition provides us with an exact way to measure the curl of a
vector field.

(We will justify this definition in Section 15.9.)
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b.

As in the case of the cross product of two vectors, we can remember the expres-
sion for the curl of a vector field by writing it (formally) in determinant form:

Let’s apply this definition to the vector fields that we discussed in Example 5.

 � a�R

�y
�

�Q

�z
bi � a�P

�z
�

�R

�x
bj � a�Q

�x
�

�P

�y
bk

 curl F � § 
 F � ∞
i j k
�

�x

�

�y

�

�z

P Q R

∞

EXAMPLE 6 Find the curl of (a) for , (b) ,
and (c) . Reconcile your results with the intuitive observations that
were made in Example 5.

Solution
a.

F(x, y, z) � xi � yj
F(x, y, z) � �yi � xjx � 0F(x, y, z) � yi

 � c �

�y
 (0) �

�

�z
 (0)di � c �

�x
 (0) �

�

�z
 (y)d j � c �

�x
 (0) �

�

�y
 (y)dk � �k

 curl F � § 
 F � ∞
i j k
�

�x

�

�y

�

�z

y 0 0

∞

This shows that is a (unit) vector that points vertically into the page. Apply-
ing the right-hand rule, we see that this result tells us that at any point in the vector
field, the paddle wheel will rotate in a clockwise direction, as was observed earlier.

curl F

 � 2k

 � c �

�y
 (0) �

�

�z
 (x)di � c �

�x
 (0) �

�

�z
 (�y)d j � c �

�x
 (x) �

�

�y
 (�y)dk

 curl F � § 
 F � ∞
i j k
�

�x

�

�y

�

�z

�y x 0

∞

The result tells us that points vertically out of the page, so the paddle
wheel will rotate in a counterclockwise direction when placed at any point in the
vector field .

c.

F

curl F

 � c �

�y
 (0) �

�

�z
 (y)di � c �

�x
 (0) �

�

�z
 (x)d j � c �

�x
 (y) �

�

�y
 (x)dk � 0

 curl F � § 
 F � ∞
i j k
�

�x

�

�y

�

�z

x y 0

∞

This shows that a paddle wheel placed at any point in will not rotate, as
observed earlier.

F
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EXAMPLE 8 Let be a scalar function, and let be a vector field. If and the com-
ponents of have first-order partial derivatives, show that

Solution Let’s write , where , , and are functions of , ,
and . Then

so the left-hand side of the given equation reads

which is equal to the right-hand side.

 � f div F � F � §f

 � f(§ � F) � (§f ) � F

 � f a�P

�x
�

�Q

�y
�

�R

�z
b � a �f

�x
 P �

�f

�y
 Q �

�f

�z
 Rb

 � f  

�P

�x
�

�f

�x
 P � f  

�Q

�y
�

�f

�y
 Q � f  

�R

�z
�

�f

�z
 R

 �
�

�x
 ( fP) �

�

�y
 ( fQ) �

�

�z
 ( fR)

 div( f F) � § � ( f F) � a �

�x
 i �

�

�y
 j �

�

�z
 kb � ( fPi � fQj � fRk)

f F � f(Pi � Qj � Rk) � f Pi � fQj � fRk
z

yxRQPF � Pi � Qj � Rk

div( f F) � f div F � F � §f

F
fFf

EXAMPLE 7

a. Find if .
b. What is ?

Solution
a. By definition,

b.

The div and curl of vector fields enjoy some algebraic properties as illustrated in
the following examples. Other properties can be found in the exercises at the end of
this section.

curl F(�1, 2, 1) � (�1)(12 � 1)i � (2)(12)j � [1 � (�1)]k � �2j � 2k

 � x(z2 � 1)i � yz2j � (z � x)k

 � (xz2 � x)i � yz2j � (z � x)k

 � c �

�y
 (xyz2) �

�

�z
 (xz)di � c �

�x
 (xyz2) �

�

�z
 (xy)d j � c �

�x
 (xz) �

�

�y
 (xy)dk

 curl F � § 
 F � ∞
i j k
�

�x

�

�y

�

�z

xy xz xyz2

∞

curl F(�1, 2, 1)
F(x, y, z) � xyi � xzj � xyz2kcurl F

The vector field in Example 6c has the property that at any point .
In general, if at a point , then is said to be irrotational at . This means
that there are no vortices or whirlpools there.

PFPcurl F � 0
Pcurl F � 0F
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EXAMPLE 9 Let be a vector field in space, and suppose that ,
, and have continuous second-order partial derivatives. Show that

Solution Direct computation shows that

div curl F � 0

RQ
PF � Pi � Qj � Rk

 � 0

 �
�2R

�x �y
�

�2Q

�x �z
�

�2P

�y �z
�

�2R

�y �x
�

�2Q

�z �x
�

�2P

�z �y

 �
�

�x
a�R

�y
�

�Q

�z
b �

�

�y
a�P

�z
�

�R

�x
b �

�

�z
a�Q

�x
�

�P

�y
b

 � a �

�x
 i �

�

�y
 j �

�

�z
 kb � c a �R

�y
�

�Q

�z
bi � a�P

�z
�

�R

�x
bj � a�Q

�x
�

�P

�y
bkd

 div curl F � § � (§ 
 F)

Here we have used the fact that the mixed derivatives are equal because, by assump-
tion, they are continuous.

1. a. Define the divergence of a vector field and give a for-
mula for finding it.

b. Define the curl of a vector field , and give a formula for
finding it.

c. Suppose that is the velocity vector field associated with
the airflow around an airfoil. Give an interpretation of

and .§ 
 F§ � F

F

F

F 2. a. What is meant by a vector field that is incompressible?
Give a physical example of an (almost) incompressible
field.

b. Repeat part (a) for an irrotational vector field.

F

15.2 CONCEPT QUESTIONS

Videos for selected exercises are available online at www.academic.cengage.com/login.V

In Exercises 1–4, you are given the vector field and a plot 
of the vector field in the -plane. (The -component of is .)
(a) By studying the plot of , determine whether div is posi-
tive, negative, or zero. Justify your answer. (b) Find div , and
reconcile your result with your answer in part (a). (c) By study-
ing the plot of , determine whether a paddle wheel planted at 
a point in the field will rotate clockwise, rotate counterclockwise,
or not rotate at all. Justify your answer. (d) Find curl , and 
reconcile your result with your answer in part (c).

1. ,

x321�1�2�3

1

2

�2

�1

y
x � 0F(x, y, z) �

x
�x � i

F

F

F
FF

0Fzxy
F 2.

x4321�1�2�3�4

1
2
3
4
5

�2

�3
�4

�5

F(x, y, z) � �xj

15.2 EXERCISES

www.academic.cengage.com/login
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3.

4.

In Exercises 5–12, find (a) the divergence and (b) the curl of the
vector field .

5.

6.

7.

8.

9.

10.

11.

12.

In Exercises 13–15, let be a vector field, and let be a scalar
field. Determine whether each expression is meaningful. If so, state
whether the expression represents a scalar field or a vector field.

13. a. b.
c. d.

14. a. b.
c. d.

15. a. b.
c. d.

16. Find if , where .

17. Show that the vector field 
, where , , and are differentiable, is incompress-

ible.
htfh(x, y)k

F(x, y, z) � f(y, z)i � t(x, z)j �

f(x, y, z) � 2xy2z3F � grad fdiv F

§ 
 [§ 
 (§f )]§ � (§ � F)
§ � (§f )§ 
 (§ 
 F)

curl(curl F)§ 
 (grad f )
grad(§f )div(§f )

grad F§ 
 (§f )
§ � f§ 
 f

fF

F(x, y, z) � exyzi � cos(x � y)j � ln(x � z)k

F(x, y, z) � e�x cos yi � e�x sin yj � ln zk

F(x, y, z) � x cos yi � y tan xj � sec zk

F(x, y, z) � sin xi � x cos yj � sin zk

F(x, y, z) � yz2i � x2zj

F(x, y, z) � x2y3i � xz2k

F(x, y, z) � x2yi � xy2j � xyzk

F(x, y, z) � yzi � xzj � xyk

F

x321�1�2�3

1

2

3

�3

�2

�1

y

F(x, y, z) � �
y

2x2 � y2
 i �

x

2x2 � y2
 j

x321�1�2�3

1

2

3

�3

�2

�1

y

F(x, y, z) �
x

2x2 � y2
 i �

y

2x2 � y2
 j

18. Show that the vector field ,
where , and are differentiable, is irrotational.

In Exercises 19–26, prove the property for vector fields and 
and scalar fields and . Assume that the appropriate partial
derivatives exist and are continuous.

19.

20.

21.

22.

23.

24.

25. , where 

26.
Hint: Use the results of Exercises 20 and 22.

27. Show that there is no vector field in space such that 
curl .
Hint: See Example 9.

28. Find the value of the constant such that the vector field

is the curl of some vector field .

29. Show that is not a gradient vector
field.
Hint: See Exercise 22.

30. Let be a differentiable function, , and
.

a. Find by interpreting it geometrically.
b. Verify your answer to part (a) analytically.

In Exercises 31–34, let and .

31. Show that .

32. Show that .

33. Show that .

34. Show that .

In Exercises 35–38, the differential operator (called the 

Laplacian) is defined by . §2 � § � § �
�2

�x2 �
�2

�y2 �
�2

�z2

§2

§r n � nr n�2r

§(ln r) � r>r 2

§(1>r) � �r>r 3

§r � r>r
r � �r �r � xi � yj � zk

curl[ f(r)r]
r � �r �

r � xi � yj � zkf

F � (cos x)yi � (sin y)xj

F

G(x, y, z) � (2x � 3y � z2)i � (cy � z)j � (x � y � 2z)k

c

F � xyi � yzj � xyk
F

§ 
 [§f � (§ 
 F)] � § 
 (§ 
 F)

§2F � a �2

�x2 �
�2

�y2 �
�2

�z2bF

§ 
 (§ 
 F) � § (§ � F) � §2F

div(§f 
 §t) � 0

div(F 
 G) � G � curl F � F � curl G

curl(§f ) � 0

curl( f F) � f curl F � (§f ) 
 F

curl(F � G) � curl F � curl G

div(F � G) � div F � div G

tf
GF

htf
F(x, y, z) � f(x)i � t(y)j � h(z)k

It acts on to produce the function . 

Assume that and have second-order partial derivatives.

35. Show that .

36. Show that .

37. Show that , where and .r � xi � yj � zkr � �r �§2r 3 � 12r

§2( ft) � f §2
t � t§2f � 2§f � §t

§ � (§f ) � §2f

tf

§2f �
�2f

�x2 �
�2f

�y2 �
�2f

�z2f
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38. Show that , where and .

39. Angular Velocity of a Particle A particle located at the point is
rotating about the -axis on a circle of radius that lies in
the plane , as shown in the figure. Suppose that the
angular speed of the particle is a constant . Then this rota-
tional motion can be described by the vector ,
which gives the angular velocity of .

a. Show that the velocity of is given by .
Hint: The position of is .

b. Show that .
c. Show that curl . This shows that the angular

velocity of is one half the curl of its tangential 
velocity.

40. Maxwell’s Equations Maxwell’s equations relating the electric
field and the magnetic field , where is the speed of
light, are given by

, ,

, § 
 H �
1
c

 
�E
�t

§ 
 E � �
1
c

 
�H
�t

§ � H � 0§ � E � 0

cHE

P
v � 2w

v � �vyi � vxj
r(t) � R cos vti � R sin vtj � hkP

v � w 
 rPv(t)

x

z

P

R

¨

y

v(t)
(0, 0, h)

r(t)w

P
w � vk

v

z � h
Rz

P

r � xi � yj � zkr � �r �§2a1
r
b � 0

Show that

a.

b.

Hint: Use Exercise 25.

In Exercises 41–48, determine whether the statement is true or
false. If it is true, explain why. If it is false, explain why or give
an example that shows it is false.

41. If is a nonconstant vector field, then .

42. If and for all and , then the
streamlines of must be closed curves.

43. If the streamlines of a vector field are straight lines, then
.

44. If the streamlines of a vector field are concentric circles,
then .

45. If the streamlines of a vector field are straight lines, then
.

46. The curl of a “spin” field is never equal to .

47. There is no nonzero vector field such that and
, simultaneously.

48. If , then must be a constant vector field.Fcurl F � 0

curl F � 0
div F � 0F

0

curl F � 0
F

curl F � 0
F

div F � 0
F

F
yxdiv F � 0F(x, y) � 0

div F � 0F

§2H �
1

c2 
�2H

�t 2

§2E �
1

c2 
�2E

�t 2

15.3 Line Integrals

Line Integrals
Once again recall that the mass of a thin, straight wire of length and linear
mass density is given by

which has the same numerical value as the area under the graph of on . (See
Figure 1.)

Instead of being straight, suppose that the wire takes the shape of a plane curve 
described by the parametric equations and , where , or, equiv-
alently, by the vector equation with parameter interval . (See
Figure 2a.) Furthermore, suppose that the linear mass density of the wire is given by
a continuous function . Then one might conjecture that the mass of the curved
wire should be numerically equal to the area of the region under the graph of 
with lying on . (See Figure 2b.)C(x, y)

z � f(x, y)
f(x, y)

[a, b]r(t) � x(t)i � y(t)j
a � t � by � y(t)x � x(t)

C

[a, b]f

m � �
b

a

f(x) dx

f(x)
(b � a)

FIGURE 1
The mass of a wire of length 
and linear mass density is

.�b
a f(x) dx

f(x)
(b � a)

x

y � f(x)

m � f(x) dx

a b

y

ya
b

0
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But how do we define this area, and how do we compute it? As we will now see,
this area can be defined in terms of an integral called a line integral, even though the
term “curve integral” would seem more appropriate.

Let be a smooth plane curve defined by the parametric equations

, ,

or, equivalently, by the vector equation , and let be a regular par-
tition of the parameter interval with partition points

If and , then the points divide into subarcs ,
, , of lengths , , , , respectively. (See Figure 3.) Next, we

pick any evaluation point in the subinterval . This point is mapped onto
the point lying in the subarc . If is any function of two variables
with domain that contains the curve , then we can evaluate at the point ,
obtaining . If is positive, we can think of the product as rep-
resenting the area of a curved panel with a curved base of length and constant
height . (See Figure 4.) This panel is an approximation of the area under the
curve on the subarc . Therefore, the sum

(1)a
n

k�1
f(x*k , y*k ) �sk

Pk�1Pk+z � f(x, y)
f(x*k , y*k )

�sk

f(x*k , y*k ) �skff(x*k , y*k )
(x*k , y*k )fC

fPk�1Pk+P*k (x*k , y*k )
[tk�1, tk]t *k

�snp�s2�s1Pn�1Pn+pP1P2+

P0P1+nCPk(xk, yk)yk � y(tk)xk � x(tk)

a � t0 � t1 � t2
p � tn � b

[a, b]
Pr(t) � x(t)i � y(t)j

a � t � by � y(t)x � x(t)

C

FIGURE 3

FIGURE 4
The product gives the area
of a curved panel with a curved base of
length and with constant height.�sk

f(x*k , y*k ) �sk

FIGURE 2

x

y

0
C

(a) The curve C gives the shape of a 
      wire with linear density f (x,y).

(b) The region under the graph of f along C

y

x

z

(x, y, f (x, y))

(x, y)

C

(a) A parameter interval

b � tn

a � t0
P0

P1

P2

tk�1 Pk�1

t1

t2

tk* Pk

Pk

Pn

C

*
tk

0

(b) The point Pk(xk, yk) corresponds
      to the point tk.

t

x

y

Pk

Pk–1

Pk
*

f (xk
*, y

k
*)



15.3 Line Integrals 1243

Note Observe that over a small piece of a curved wire represented by the segment
, the linear density of the wire does not vary by much. Therefore, we may

assume that the linear mass density of the wire in the segment is approximately
, so the mass of this segment is approximately . (This is also the

area of a typical panel.) Adding the masses of all the segments of the wire leads to the
sum (1). Taking the limit as in (1) then gives the mass of the wire.

In general, it can be shown that if is continuous, then the limit in Equation (2)
always exists, and the line integral can be evaluated as an ordinary definite integral
with respect to a single variable by using the following formula.

f

n → �

f(x*k , y*k ) �skf(x*k , y*k )
Pk�1Pk+

Pk�1Pk+

DEFINITION Line Integral

If is defined in a region containing a smooth curve with parametric repre-
sentation , where , then the line integral of along is

(2)

provided that the limit exists.

�
C

f(x, y) ds � lim
n→�

 a
n

k�1
f(x*k , y*k ) �sk

Cfa � t � br(t)
Cf

Notes
1. Equation (3) is easier to remember by observing that the element of arc length is 

given by .
2. If is given by the interval , then is just the line segment joining to

. So can be described by the parametric equations and , where
. In this case, Equation (3) becomes �C f(x, y) ds � �b

a f(t, 0) dt �a � t � b
y � 0x � tC(b, 0)

(a, 0)C[a, b]C
ds � �r¿(t) � dt �2[x¿(t)]2 � [y¿(t)]2 dt

EXAMPLE 1 Evaluate , where is the quarter-circle described by
, , as shown in Figure 5.0 � t � p

2r(t) � cos ti � sin tj
C�C (1 � xy) ds

FIGURE 5
The curve is described 

by ,
where .0 � t � p

2

r(t) � cos ti � sin tj
C

(3)�
C

f(x, y) ds � �
b

a

f(x(t), y(t))2[x¿(t)]2 � [y¿(t)]2 dt

, where . So the line integral reduces to an integral of a
function defined on an interval , as expected.[a, b]

t(x) � f(x, 0)�b
a t(x) dx

0 1

1

x

C

y

gives an approximation of the area under the curve and along the curve .
If we let , then it seems reasonable to expect that this sum will approach the
area under the curve along the curve . This observation suggests the fol-
lowing definition.

Cz � f(x, y)
n → �

Cz � f(x, y)
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FIGURE 6
A piecewise-smooth curve composed
of four smooth curves (n � 4)

EXAMPLE 2 Evaluate , where consists of the arc of the parabola 
from to followed by the line segment from to .

Solution The curve is shown in Figure 7. can be parametrized by taking ,
where is a parameter. Thus,

: , ,

Therefore,

can be parametrized by taking . Thus,

: , ,

Therefore,

 � c212 at �
1

2
 t 2b d1

0
� 12

 � 2�
1

0
(1 � t)11 � 1 dt

 �
C2

2x ds � �
1

0
2x2[x¿(t)]2 � [y¿(t)]2 dt

0 � t � 1y(t) � 1 � tx(t) � 1 � tC2

x � 1 � tC2

 � c2a1

8
b a2

3
b (1 � 4t 2)3>2d1

0
�

515 � 1

6

 � 2�
1

0
t21 � 4t 2 dt

 �
C1

2x ds � �
1

0
2x2[x¿(t)]2 � [y¿(t)]2 dt

0 � t � 1y(t) � t 2x(t) � tC1

t
x � tC1C

(0, 0)(1, 1)C2(1, 1)(0, 0)
y � x2C1C�C 2x ds

FIGURE 7
is composed of two smooth curves
and .C2C1

C

Solution Here, and , so and .
Therefore, using Equation (3), we obtain

A curve is piecewise-smooth if it is made up of a finite number of smooth curves
, , , connected at consecutive endpoints as shown in Figure 6. If is contin-

uous in a region containing , then it can be shown that

�
C

f(x, y) ds � �
C1

f(x, y) ds � �
C2

f(x, y) ds � p � �
Cn

f(x, y) ds

C
fCnpC2C1

 �
p

2
�

1

2
�

1

2
(p � 1)

 � �
p>2

0
(1 � cos t sin t) dt � ct �

1

2
sin2 tdp>2

0

 � �
p>2

0
(1 � cos t sin t)2(�sin t)2 � (cos t)2 dt

 �
C

(1 � xy) ds � �
p>2

0
(1 � cos t sin t)2[x¿(t)]2 � [y¿(t)]2 dt

y¿(t) � cos tx¿(t) � �sin ty(t) � sin tx(t) � cos t

0 x

C1

C2

C3
C4

y

(0, 0) 1

(1, 1)1

x

y

y � x2

C1

C2

y � x
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Putting these results together, we have

As we saw earlier, the mass of a thin wire represented by that has linear mass
density is given by

The center of mass of the wire is located at the point , where

(4)y �
1
m

 �
C

yr(x, y) dsx �
1
m

 �
C

xr(x, y) ds

(x, y)

m � �
C

r(x, y) ds

r(x, y)
C

�
C

2x ds � �
C1

2x ds � �
C2

2x ds �
515 � 1

6
� 12

FIGURE 8
The curve has parametric equations

and , where
.0 � t � p

y � a sin tx � a cos t
C

0

Center of
mass

a�a x

y

C

EXAMPLE 3 The Mass and Center of Mass of a Wire A thin wire has the shape of a
semicircle of radius . The linear mass density of the wire is proportional to the dis-
tance from the diameter that joins the two endpoints of the wire. Find the mass of the
wire and the location of its center of mass.

Solution If the wire is placed on a coordinate system as shown in Figure 8, then it
coincides with the curve described by the parametric equations and

, where . Its linear mass density is given by , where
is a positive constant. Since and , we see that the mass

of the wire is

Next, we note that by symmetry, . Using Equation (4), we obtain

Therefore, the center of mass of the curve is located at . (See Figure 8.)

Line Integrals with Respect to Coordinate Variables
The line integrals that we have dealt with up to now are taken with respect to arc
length. Two other line integrals are obtained by replacing in Equation (2) by

and . In the first instance we have the line�yk � y(tk) � y(tk�1)�xk � x(tk) � x(tk�1)
�sk

10, pa
4 2

 �
a

4
ct �

1

2
sin 2tdp

0
�

1

4
 pa

 �
a

2
 �
p

0
sin2 t dt �

a

4
 �
p

0
(1 � cos 2t) dt

 y �
1
m

 �
C

yr(x, y) ds �
1

2ka2
 �
p

0
ky2 ds �

1

2a2
 �
p

0
a(a sin t)2 dt

x � 0

 � ka2�
p

0
sin t dt � C�ka2 cos t Dp

0
� 2ka2

 � �
p

0
ka sin t2(�a sin t)2 � (a cos t)2 dt

 m � �
C

r(x, y) ds � �
C

ky ds � �
p

0
ky2[x¿(t)]2 � [y¿(t)]2 dt

y¿(t) � a cos tx¿(t) � �a sin tk
r(x, y) � ky0 � t � py � a sin t

x � a cos tC

a
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integral of along with respect to ,

and in the second instance we have the line integral of along with respect to ,

Line integrals with respect to both coordinate variables can also be evaluated as
ordinary definite integrals with respect to a single variable. In fact, since and

, we see that and . This leads to the following for-
mulas:

(5a)

(5b)

Thus, if and are continuous functions of and , then

can be evaluated as an ordinary integral of a single variable using the formula

(6)�
C

P(x, y) dx � Q(x, y) dy � �
b

a

[P(x(t), y(t))x¿(t) � Q(x(t), y(t))y¿(t)] dt

�
C

P(x, y) dx � Q(x, y) dy � �
C

P(x, y) dx � �
C

Q(x, y) dy

yxQP

�
C

f(x, y) dy � �
b

a

f(x(t), y(t))y¿(t) dt

�
C

f(x, y) dx � �
b

a

f(x(t), y(t))x¿(t) dt

dy � y¿(t) dtdx � x¿(t) dty � y(t)
x � x(t)

�
C

f(x, y) dy � lim
n→�

 a
n

k�1
f(x*k , y*k ) �yk

yCf

�
C

f(x, y) dx � lim
n→�

 a
n

k�1
f(x*k , y*k ) �xk

xCf

EXAMPLE 4 Evaluate , where (a) is the line segment fromC1C�C y dx � x2 dy
to , (b) is the arc of the parabola from to , and

(c) is the arc of the parabola from to . (See Figure 9.)

Solution
a. can be described by the parametric equations

, ,

(See Section 10.5.) We have and , so Equation (6) gives

b. A parametric representation of is obtained by letting . Thus,

: , ,

Then and , so Equation (6) gives

 � �
2

�1
(2t 2 � t 4) dt � c2

3
 t 3 �

1

5
 t 5d2

�1
�

63

5

 �
C2

y dx � x2 dy � �
2

�1
t(2t dt) � (t 2)2 dt

dy � dtdx � 2t dt

�1 � t � 2y � tx � t 2C2

y � tC2

 � 27�
1

0
(t 2 � t) dt � 27c1

3
 t 3 �

1

2
 t 2d1

0
�

45

2

 �
C1

y dx � x2 dy � �
1

0
(�1 � 3t)(3 dt) � (1 � 3t)2(3 dt)

dy � 3 dtdx � 3 dt

0 � t � 1y � �1 � 3tx � 1 � 3t

C1

(1, �1)(4, 2)x � y2C3C
(4, 2)(1, �1)x � y2C2C(4, 2)(1, �1)

FIGURE 9
The curves , and C3C1, C2

�1

1

2

1 2 3

(4, 2)

(1, �1)

4 x

y

C2

C3

C1

0
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c. can be parametrized by taking . Thus,

: , ,

Then and , so Equation (6) gives

Example 4 sheds some light on the nature of line integrals. First of all, the results
of parts (a) and (b) suggest that the value of a line integral depends not only on the
endpoints, but also on the curve joining these points. Second, the results of parts (b)
and (c) seem to suggest that reversing the direction in which a curve is traced changes
the sign of the value of the line integral.

This latter observation turns out to be true in the general case. For example, sup-
pose that the orientation of the curve (the direction in which it is traced as 
increases) is reversed. Let denote precisely the curve with its orientation reversed
(so that the curve is traced from to instead of from to as shown in Figure 10).
Then

In contrast, note that the value of a line integral taken with respect to arc length does
change sign when is reversed. These results follow because the terms and
change sign but does not when the orientation of is reversed.

Line Integrals in Space
The line integrals in two-dimensional space that we have just considered can be
extended to line integrals in three-dimensional space. Suppose that is a smooth space
curve described by the parametric equations

, , ,

or, equivalently, by the vector equation , and let be a func-
tion of three variables that is defined and continuous on some region containing . We
define the line integral of along (with respect to arc length) by

This integral can be evaluated as an ordinary integral by using the following formula,
which is the analog of Equation (3) for the three-dimensional case.

(7)

If we make use of vector notation, Equation (7) can be written in the equivalent form

�
C

f(x, y, z) ds � �
b

a

f(r(t))�r¿(t) � dt

�
C

f(x, y, z) ds � �
b

a

f(x(t), y(t), z(t))B a
dx

dt
b2

� ady

dt
b2

� adz

dt
b2

dt

�
C

f(x, y, z) ds � lim
n→�

 a
n

k�1
f(x*k , y*k , z*k ) �sk

Cf
C

fr(t) � x(t)i � y(t)j � z(t)k

a � t � bz � z(t)y � y(t)x � x(t)

C

Cdsy¿(t)
x¿(t)Cnot

�
�C

P dx � Q dy � ��
C

P dx � Q dy

BAAB
C�C

tC

 � �1�
1

�2
(2t 2 � t 4) dt � �c2

3
 t 3 �

1

5
 t 5d1

�2
� �

63

5

 �
C3

y dx � x2 dy � �
1

�2
(�t)(2t dt) � (t 2)2 (�dt)

dy � �dtdx � 2t dt

�2 � t � 1y � �tx � t 2C3

y � �tC3

FIGURE 10
is the curve consisting of the 

points of but traversed in the 
opposite direction.

C
�C

0 x

y

A
C

B

0 x

y

A
�C

B
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EXAMPLE 5 Evaluate , where is a constant and is the circular helix with
parametric equations , , and , where .

Solution With , , and , Equation (7) gives

Note In Example 5, suppose that represents a thin wire whose linear mass density
is directly proportional to its height. Then our calculations tell us that its mass is

units.

Line integrals along a curve in space with respect to , , and are defined in
much the same way as line integrals along a curve in two-dimensional space. For exam-
ple, the line integral of along with respect to is given by

so

(8)

If the line integrals with respect to , , and occur together, we have

(9)� �
b

a

cP(x(t), y(t), z(t)) 
dx

dt
� Q(x(t), y(t), z(t)) 

dy

dt
� R(x(t), y(t), z(t)) 

dz

dt
d dt

�
C

P(x, y, z) dx � Q(x, y, z) dy � R(x, y, z) dz

zyx

�
C

f(x, y, z) dx � �
b

a

f(x(t), y(t), z(t))x¿(t) dt

�
C

f(x, y, z) dx � lim
n→�

 a
n

k�1
f(x*k , y*k , z*k ) �xk

xCf

zyxC

212kp2

C

 � 12k�
2p

0
t dt � 12kc1

2
 t 2d2p

0
� 212kp2

 � �
2p

0
kt2sin2 t � cos2 t � 1 dt

 �
C

kz ds � �
2p

0
kt2[x¿(t)]2 � [y¿(t)]2 � [z¿(t)]2 dt

z¿(t) � 1y¿(t) � cos tx¿(t) � �sin t

0 � t � 2pz � ty � sin tx � cos t
Ck�C kz ds

EXAMPLE 6 Evaluate , where consists of part of the twistedC�C y dx � z dy � x dz
cubic with parametric equations , , and , where , fol-
lowed by the line segment from to .

Solution The curve is shown in Figure 11. Integrating along , we have ,
, and . Therefore,

Next, we write the parametric equations of the line segment from to .

On : , , , 0 � t � 1z � 1 � ty � 1x � 1 � tC2

(0, 1, 0)(1, 1, 1)

 � c1
3

 t 3 �
3

4
 t 4 �

2

5
 t 5d1

0
�

89

60

 � �
1

0
(t 2 � 3t 3 � 2t 4) dt

 �
C1

y dx � z dy � x dz � �
1

0
t 2 dt � t 3(2t dt) � t(3t 2) dt

dz � 3t 2 dtdy � 2t dt
dx � dtC1C

(0, 1, 0)(1, 1, 1)C2

0 � t � 1z � t 3y � t 2x � tC1

FIGURE 11
The curve is composed of and 

traversed in the directions shown.C2

C1C

x

z

y

C2

C1

(1, 1, 1)

(0, 1, 0)

0
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Then , , and . Therefore,

Finally, putting these results together, we have

Line Integrals of Vector Fields
Up to now, we have considered line integrals involving a scalar function . We now
turn our attention to the study of line integrals of vector fields. Suppose that we
want to find the work done by a continuous force field in moving a particle from
a point to a point along a smooth curve in space. Let be represented para-
metrically by

, , ,

or, equivalently, by the vector equation with parameter
interval . Take a regular partition of the parameter interval with partition
points

If , , and , then the points divide into 
subarcs , , , of lengths , , , , respectively. (See Fig-
ure 12.) Furthermore, because is smooth, the unit tangent vector at any point on
the subarc will not exhibit an appreciable change in direction and may be
approximated by . Also, because is continuous, the force , , for

is approximated by . Therefore, we can approximate the
work done by in moving the particle along the curve from to by the work
done by the component of the constant force in the direction of the line
segment (approximated by ) from to , that is, by

Constant force in the direction
of times displacementT(x*k )

�Wk � F(x*k , y*k , z*k ) � T(t *k ) �sk

PkPk�1T(t *k )
F(x*k , y*k , z*k )

PkPk�1F
F(x*k , y*k , z*k )tk�1 � t � tk

z(t))y(t)F(x(t)FT(t*k )
Pk�1Pk+

T(t)r
�snp�s2�s1Pn�1Pn+pP1P2+P0P1+

nCPk(xk, yk, zk)zk � z(tk)yk � y(tk)xk � x(tk)

a � t0 � t1 � t2 � p � tn � b

[a, b]P[a, b]
r(t) � x(t)i � y(t)j � z(t)k

a � t � bz � z(t)y � y(t)x � x(t)

CCBA
F

f

�
C

y dx � z dy � x dz �
89

60
�

3

2
� �

1

60

 � �
1

0
(t � 2) dt � c1

2
 t 2 � 2td1

0
� �

3

2

 �
C2

y dx � z dy � x dz � �
1

0
1(�dt) � (1 � t)(0) � (1 � t)(�dt)

dz � �dtdy � 0dx � �dt

x

z

y

(a) A parameter interval

b � tn

a � t0

tk�1

tk*
tk

(b) The partition P of [a, b] breaks the
      curve C into n subarcs.

t

P1

P2

A � P0

Pk�1

Pk
Pn

t1

t2

Pk
*

T(tk )*

FIGURE 12
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Here, we have used the fact that the length of the line segment from to is approx-
imately . So the total work done by in moving the particle from to is

This approximation suggests that we define the work done by the force field 
as

(10)

Since , Equation (10) can also be written in the form

The last integral is usually written in the form . In words, it says that the work
done by a force is given by the line integral of the tangential component of the force
with respect to arc length. Although this integral was defined in the context of work
done by a force, integrals of this type occur frequently in many other areas of physics
and engineering.

�C F � dr

 � �
b

a

F(r(t)) � r¿(t) dt

 W � �
b

a

cF(r(t)) �
r¿(t)

�r¿(t) � d �r¿(t) � dt

T(t) � r¿(t)>�r¿(t) �

W � lim
n→�

a
n

k�1
F(x*k , y*k , z*k ) � T(t *k ) �sk � �

C

F � T ds

F
W

W � a
n

k�1
F(x*k , y*k , z*k ) � T(t *k ) �sk

BAF�sk

PkPk�1

DEFINITION Line Integral of Vector Fields

Let be a continuous vector field defined in a region that contains a smooth
curve described by a vector function , . Then the line integral
of along is

(11)�
C

F � dr � �
C

F � T ds � �
b

a

F(r(t)) � r¿(t) dt

CF
a � t � br(t)C

F

Note We remind you that is an abbreviation for and that is an abbre-
viation for .F(x(t), y(t), z(t))

F(r(t))r¿(t) dtdr

EXAMPLE 7 Find the work done by the force field in
moving a particle along the helix described by the parametric equations ,

, and from to . (See Figure 13.)

Solution Since , , and , we see that

Furthermore, observe that the vector equation of is

0 � t � p
2r(t) � x(t)i � y(t)j � z(t)k � cos ti � sin tj � tk

C

 � �sin ti � cos tj � tk

 F(r(t)) � F(x(t), y(t), z(t)) � �yi � xj � zk

z(t) � ty(t) � sin tx(t) � cos t

10, 1, p2 2(1, 0, 0)z � ty � sin t
x � cos tC

F(x, y, z) � �yi � xj � zk

FIGURE 13
The curve is described by

, .0 � t � p
2r(t) � cos ti � sin tj � tk

C

y

x

z

–1

C

(            ) 0, 1,    p_2

11
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from which we have

Therefore, the work done by the force is

We close this section by pointing out the relationship between line integrals of vector
fields and line integrals of scalar fields with respect to the coordinate variables. Suppose
that a vector field in space is defined by .
Then by Equation (11) we have

F � P(x, y, z)i � Q(x, y, z)j � R(x, y, z)kF

 � �
p>2

0
(sin2 t � cos2 t � t) dt � �

p>2

0
(1 � t) dt � ct �

1

2
 t 2dp>2

0
�
p

2
a1 �

p

4
b

 � �
p>2

0
(�sin ti � cos tj � tk) � (�sin ti � cos tj � k) dt

 W � �
C

F � dr � �
p>2

0
F(r(t)) � r¿(t) dt

r¿(t) � �sin ti � cos tj � k

 � �
b

a

[P(x(t), y(t), z(t))x¿(t) � Q(x(t), y(t), z(t))y¿(t) � R(x(t), y(t), z(t))z¿(t)] dt

 �
C

F � dr � �
b

a

F(r(t)) � r¿(t) dt � �
b

a

(Pi � Qj � Rk) � (x¿(t)i � y¿(t)j � z¿(t)k) dt

But the integral on the right is just the line integral of Equation (9). Therefore, we have
shown that

where (12)

You are urged to rework Example 7 with the aid of Equation (12).
As a consequence of Equation (12), we have the result

(see page 1247). This result also follows from the equation

and we observe that even though line integrals with respect to arc length do not change
sign when the direction traversed is reversed, the unit vector does change sign when

is replaced by .�CC
T

�
�C

F � dr � ��
C

F � T ds

�
�C

F � dr � ��
C

F � dr

F � Pi � Qj � Rk�
C

F � dr � �
C

P dx � Q dy � R dz

EXAMPLE 8 Let be the force field shown in Fig-
ure 14. Find the work done on a particle that moves along the quarter-circle of radius 1
centered at the origin (a) in a counterclockwise direction from to and 
(b) in a clockwise direction from to .(1, 0)(0, 1)

(0, 1)(1, 0)

F(x, y) � �1
8 (x � y)i � 1

8 (x � y)j



1252 Chapter 15 Vector Analysis

Solution
a. The path of the particle may be represented by for

. Since and , we find

and

Therefore, the work done by the force on the particle is

r¿(t) � �sin ti � cos tj

F(r(t)) � �
1

8
 (cos t � sin t)i �

1

8
 (cos t � sin t)j

y � sin tx � cos t0 � t � p
2

r(t) � cos ti � sin tj

 � �
1

8
 �
p>2

0
dt � �

p

16

 �
C

F � dr � �
p>2

0
F(r(t)) � r¿(t) dt �

1

8
 �
p>2

0
(cos t sin t � sin2 t � cos2 t � sin t cos t) dt

b. Here, we can represent the path by for . Then
and . Soy � cos tx � sin t

0 � t � p
2r(t) � sin ti � cos tj

 �
1

8
 �
p>2

0
dt �

p

16

 �
C

F � dr � �
p>2

0
F(r(t)) � r¿(t) dt �

1

8
 �
p>2

0
(�sin t cos t � cos2 t � sin2 t � sin t cos t) dt

In Example 8, observe that the work done by on the particle in part (a) is nega-
tive because the force field opposes the motion of the particle.

F

1. a. Define the line integral of a function along a
smooth curve with parametric representation ,
where .

b. Write a formula for evaluating the line integral of part (a).
2. a. Define the line integral of a function along a

smooth curve with respect to , with respect to , and
with respect to .z

yx
f(x, y, z)

a � t � b
r(t)C

f(x, y, z) b. Write formulas for evaluating the line integrals for the
integrals of part (a).

c. Write a formula for evaluating .
3. a. Define the line integral of a vector field along a

smooth curve .
b. If is a force field, what does the line integral in part (a)

represent?
F

C
F

�C P dx � Q dy � R dz

15.3 CONCEPT QUESTIONS

FIGURE 14
The force field

F(x, y) � �1
8 (x � y)i � 1

8 (x � y)j

0 1

1

x

y

0 1

1

x

y

(a) The direction of the path
goes against the direction of F.

(b) The direction of the path
has the same direction as the
direction of F.
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In Exercises 1–22, evaluate the line integral over the given 
curve .

1. ; ,

2. ; ,

3. ; ,

4. ; ,

5. , where is the upper semicircle

6. , where is the right half of the circle

7. , where is the line segment joining to

8. , where is the line segment joining 

to 

9. ; ,

10. ; ,

11. , where consists of the line segment 

from to and the line segment from to

12. , where consists of the line segment 

from to , and the line segment from to

13. , where consists of the arc of the parabola 

from to and the line segment
from to (2, 0)(0, 4)

(0, 4)(�2, 0)y � 4 � x2

C�
C

y dx � x dy

(2, 4)
(1, 0)(1, 0)(0, 0)

C�
C

(y � x) dx � y2 dy

(4, 0)
(3, 4)(3, 4)(1, 2)

C�
C

xy dx � (x � y) dy

0 � t � 1

C: r(t) � (�1 � 2t)i � (1 � 3t)j�
C

(x � 3y2) dy

0 � t � 1

C: r(t) � (�1 � 2t)i � (1 � 3t)j�
C

(x � 3y2) dx

(0, 3)

(�1, 1)C�
C

(x2 � 2y) ds

(1, 3)

(�2, �1)C�
C

2xy ds

x2 � y2 � 9

C�
C

(x2 � y2) ds

y �24 � x2

C�
C

(xy2 � yx2) ds

0 � t � 1C: r(t) � t 3i � tj�
C

(x � y3) ds

0 � t � 1C: r(t) � 2ti � t 3j�
C

y ds

0 � t � 2C: r(t) � ti � (t � 1)j�
C

(x2 � 2y) ds

0 � t � 1C: r(t) � 3ti � 4tj�
C

(x � y) ds

C 14. , where consists of the elliptical 

path from to and the circular
path from to 

15. ; ,

16. , where is the line segment joining to 

17. ; ,

18. ; ,

19. ; ,

20. ; ,

21. , where consists of the line 

segment from to and the line segment from
to 

22. , where consists 

of the line segment from to and the line
segment from to 

23. A thin wire has the shape of a semicircle of radius . Find
the mass and the location of the center of mass of the wire if
it has a constant linear mass density .

24. A thin wire in the shape of a quarter-circle 
, , has linear mass density
, where is a positive constant. Find the

mass and the location of the center of mass of the wire.

25. A thin wire has the shape of a semicircle ,
. Find the center of mass of the wire if the linear mass

density of the wire at any point is proportional to its distance
from the line .

26. A thin wire of constant linear mass density takes the shape
of an arch of the cycloid , ,

. Determine the mass of the wire, and find the
location of its center of mass.
0 � t � 2p

y � a(1 � cos t)x � a(t � sin t)
k

y � a

y � 0
x2 � y2 � a2

kp(x, y) � k(x � y)
0 � t � p

2a cos ti � a sin tj
r(t) �

k

a

(�1, �2, 3)(1, 1, 1)
(1, 1, 1)(0, 0, 0)

C�
C

(x � y � z) dx � (x � y) dy � xz dz

(2, 3, 5)(1, 1, 0)
(1, 1, 0)(0, 0, 0)

C�
C

xy dx � yz dy � x2 dz

0 � t � p
4

C: r(t) � ti � cos tj � sin tk�
C

x dx � y2 dy � yz dz

0 � t � 1

C: r(t) � eti � e�tj � 2e2tk�
C

(x � y) dx � xy dy � y dz

0 � t � 1C: r(t) � ti � 2t 2j � 3t 3k�
C

(8x � 27z) ds

0 � t � p
2C: r(t) � cos 2ti � sin 2tj � 3tk�

C

xy2 ds

(2, 3, 1)

(1, 1, 0)C�
C

xyz2 ds

0 � t � 1

C: r(t) � (1 � t)i � 2tj � (1 � t)k�
C

xyz ds

(�3, 0)(0, 3)x2 � y2 � 9
(0, 3)(4, 0)9x2 � 16y2 � 144

C�
C

(2x � y) dx � 2y dy

15.3 EXERCISES

Videos for selected exercises are available online at www.academic.cengage.com/login.V

www.academic.cengage.com/login
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27. A thin wire of constant linear mass density has the shape
of the astroid , , . Determine
the location of its center of mass.

28. A thin wire has the shape of the helix ,
, , . Find the mass and the 

center of mass of the wire if it has constant linear mass 
density .

Hint: , ,

, where 

29. The vector field is shown in
the figure. A particle is moved from the point to the
point along the upper semicircle of radius 2 with cen-
ter at the origin.

a. By inspection, determine whether the work done by on
the particle is positive, zero, or negative.

b. Find the work done by on the particle.

30. The vector field 

is shown in the figure. A particle is moved once around the
circle of radius 2 with center at the origin in the counter-
clockwise direction.

a. By inspection, determine whether the work done by on
the particle is positive, zero, or negative.

b. Find the work done by on the particle.

In Exercises 31–36, find the work done by the force field on a
particle that moves along the curve .

31. ; ,
0 � t � 1

C: r(t) � t 2i � t 3jF(x, y) � (x2 � y2)i � xyj

C
F

F

F

�1 1�2 20

�2

�1

0

2

1

y

x

F(x, y) � �
y

2x2 � y2
 i �

x

2x2 � y2
 j

F

F

�1 1�2 20

�2

�1

0

2

1

y

x

(2, 0)
(�2, 0)

F(x, y) � (x � y)i � (x � y)j

m � �
C

r(x, y, z) dsz �
1

m
 �

C

zr(x, y, z) ds

y �
1

m
 �

C

yr(x, y, z) dsx �
1

m
 �

C

xr(x, y, z) ds

k

0 � t � 3pz � bty � a sin t
x � a cos t

0 � t � p
2y � sin3 tx � cos3 t

k 32. ; ,

33. , where is the part of the parabola
from to 

34. , where is an arch of the cycloid

35. ; ,

36. , where is the
line segment from to .

37. Walking up a Spiral Staircase A spiral staircase is described by
the parametric equations

, , ,

where the distance is measured in feet. If a 90-lb girl walks
up the staircase, what is the work done by her against grav-
ity in walking to the top of the staircase?
Note: You can also obtain the answer using elementary physics.

38. A particle is moved along a path from to by the
force . Which of the following polygonal
paths results in the least work?
a. The path from to to 
b. The path from to to 
c. The path from to 

39. Newton’s Second Law of Motion Suppose that the position of a
particle of varying mass in 3-space at time is .
According to Newton’s Second Law of Motion, the force
acting on the particle at is

a. Show that ,
where is the speed of the particle.

b. Show that if is constant, then the work done by the
force in moving the particle along its path from to

is 

Note: The function is the kinetic energy of the 
particle.

40. Work Done by an Electric Field Suppose that a charge of 
coulombs is located at the origin of a three-dimensional
coordinate system. This charge induces an electric field

where and is a constant (see Example 4
in Section 15.1). Find the work done by the electric field on
a particle of charge coulombs as it is moved along the
path , where .0 � t � 1C: r(t) � ti � 2tj � (1 � 4t)k

q

cr � xi � yj � zk

E(x, y, z) �
cQ

�r �3
 r

Q

W(t) � 1
2m√2(t)

W �
m

2
 [√2(b) � √2(a)]

t � b
t � a

m
√ � �r¿ �

F(r(t)) � r¿(t) � m¿(t)√2(t) � m(t)√(t)√¿(t)

F(r(t)) �
d

dt
 [m(t)v(t)]

r(t)

r(t)tm(t)

(1, 2)(0, 0)
(1, 2)(0, 2)(0, 0)
(1, 2)(1, 0)(0, 0)

F � 2xy2i � 3yx2j
(1, 2)(0, 0)

0 � t � p
2z �

16
p

 ty � 5 sin tx � 5 cos t

(1, �2, 4)(�1, 3, 2)
CF(x, y, z) � (x � 2y)i � 2zj � (x � y)k

0 � t � 1
C: r(t) � ti � t 2j � t 3kF(x, y, z) � x2i � y2j � z2k

x � t � sin t, y � 1 � cos t, 0 � t � 2p
CF(x, y) � xi � (y � 1)j

(2, 4)(�1, 1)y � x2
CF(x, y) � xey i � yj

1 � t � 2C: r(t) � ti � t 2jF(x, y) � ln xi � y2j
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41. Work Done by an Electric Field The electric field at any point
induced by a point charge located at the origin is

given by

where and is a positive constant called the
permittivity of free space.
a. Find the work done by the field when a particle of

charge coulombs is moved from to 
along the indicated paths.

(i) The straight line segment from to .
(ii) The polygonal path from to to

and then to .
b. Is there any difference in the work done in part (a) and

part (b)?

42. Magnitude of a Magnetic Field The following figure shows a
long straight wire that is carrying a steady current . This
current induces a magnetic field whose direction is cir-
cumferential; that is, it circles around the wire. Ampere’s
Law states that

B

I

�
C

B � dr � m0I

B
I

D(0, 5, 5)C(0, 5, 0)
B(2, 5, 0)A(2, 1, 0)

DA

C(0, 5, 0)

D(0, 5, 5)

B(2, 5, 0)
A(2, 1, 0)

4

4

4
x

z

y

D(0, 5, 5)A(2, 1, 0)q

e0r � �x, y, z�

E �
Qr

4pe0 �r �3

Q(x, y, z)
E In words, the line integral of the tangential component of the

magnetic field around a closed loop is proportional to the
current passing through any surface bounded by the loop.
The constant is called the permeability of free space. By
taking the loop to be a circle of radius centered on the
wire, show that the magnitude of the magnetic field
at a distance from the center of the wire is

In Exercises 43 and 44, plot the graph of the vector field and
the curve on the same set of axes. Guess at whether the line
integral of over is positive, negative, or zero. Verify your
answer by evaluating the line integral.

43. ; is the curve 

,

44. ; is the curve ,

In Exercises 45–48, determine whether the statement is true or
false. If it is true, explain why. If it is false, explain why or give
an example that shows it is false.

45. If , then , where is any 
circular path centered at the origin.

46. If is continuous and is a smooth curve, then
.

47. If is a smooth curve defined by with 

, then .

48. If is continuous and is a smooth curve defined by
with , then 

.C �C f(x, y) ds D2 � C �C f(x, y) dx D2 � C �C f(x, y) dy D2
a � t � br(t) � x(t)i � y(t)j

Cf(x, y)

�C xy dy � 1
2xy2 �t�b

t�a
a � t � b

r(t) � x(t)i � y(t)jC

�C f(x, y) ds � ���C f(x, y) ds
Cf(x, y)

C�C F � dr � 0F(x, y) � xi � yj

�1 � t � 1

r(t) � ti � (1 � t 2)jCF(x, y) �
1

4
 xi �

1

2
 yj

0 � t � pr(t) � 2 sin ti � 2 cos tj

CF(x, y) �
1

2
 (x � y)i �

1

2
 (x � y)j

CF
C

F

B �
m0I

2pr

r
B � �B �

r
m0

I
C

cas
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15.4 Independence of Path and Conservative Vector Fields

The gravitational field possesses an important property that we will demonstrate in the
following example.

EXAMPLE 1 Work Done on a Particle by a Gravitational Field Consider the gravita-
tional field induced by an object of mass located at the origin (see Example 3,
Section 15.1):

Suppose that a particle with mass moves in the gravitational field from the point
to the point along a smooth curve defined by

with parameter interval . (See Figure 1.) What is the work done by on the
particle?

Solution To find , we note that the particle moving in the gravitational field is
subjected to a force of , so the work done by the force on the particle ismF

FW

FW[a, b]

r(t) � x(t)i � y(t)j � z(t)k

CB(x(b), y(b), z(b))A(x(a), y(a), z(a))
Fm

 � �
GMx

(x2 � y2 � z2)3>2 i �
GMy

(x2 � y2 � z2)3>2 j �
GMz

(x2 � y2 � z2)3>2 k

 F(x, y, z) � �
GM

�r �3
 r

MF

FIGURE 1
The particle moves from to along
the path in the gravitational field.C

BA

 � �GMm�
b

a

c x

(x2 � y2 � z2)3>2 
dx

dt
�

y

(x2 � y2 � z2)3>2 
dy

dt
�

z

(x2 � y2 � z2)3>2 
dz

dt
d dt

 � cdx

dt
 i �

dy

dt
 j �

dz

dt
 kd dt

 � �GMm�
b

a

c x

(x2 � y2 � z2)3>2 i �
y

(x2 � y2 � z2)3>2 j �
z

(x2 � y2 � z2)3>2 kd

 W � �
C

mF � dr � �
b

a

mF(r(t)) � r¿(t) dt

But the expression inside the brackets can be written as

where

s

as you can verify. (Also, see Example 6 in Section 15.1.) Using this result, we can
write

 � �GMm f(x, y, z) ` t�b

t�a
� �GMm[ f(x(b), y(b), z(b)) � f(x(a), y(a), z(a))]

 W � �GMm�
b

a

 
d

dt
a 1

2x2 � y2 � z2
b dt � �

GMm

2x2 � y2 � z2
`t�b

t�a

f(x, y, z) �
1

2x2 � y2 � z2

d

dt
 f(x, y, z) �

�f

�x
 
dx

dt
�

�f

�y
 
dy

dt
�

�f

�z
 
dz

dt

B

C
A

x

z

y
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Note Don’t worry about finding the potential function

for the gravitational field . We will develop a systematic method for finding potential
functions of gradient fields §f later in this section.

Example 1 shows that the work done on a particle by a gravitational field depends
only on the initial point and the endpoint of a curve and not on the curve itself.
We say that the value of the line integral along the path is independent of the path.
(A path is a piecewise-smooth curve.)

More generally, we say that the line integral is independent of path if

for any two paths and that have the same initial and terminal points.
Observe that the gravitational field happens to be a conservative vector field with

potential function ; that is, . Also, Example 1 seems to suggest that if 
is a gradient vector field with potential function , then

(1)

This expression reminds us of Part 2 of the Fundamental Theorem of Calculus which
states that

where is continuous on . The Fundamental Theorem of Calculus, Part 2, tells us
that if the derivative of in the interior of the interval is known, then the integral
of over is given by the difference of the values of (an antiderivative of )
at the endpoints of . If we think of as some kind of derivative of , then Equa-
tion (1) says that if we know the “derivative” of , then the line integral of is given
by the difference of the values of the potential function (“antiderivative” of ) at the
endpoints of the curve .

We now show that Equation (1) is indeed true for all conservative vector fields. 
We state and prove the result for a function of two variables and a curve in the
plane.

Cf

C
§ff

§ff
f§f[a, b]

F¿F[a, b]F¿
[a, b]F

[a, b]F

�
b

a

F¿(x) dx � F(b) � F(a)

�
C

F � dr � �
C

§f � dr � f(x(b), y(b), z(b)) � f(x(a), y(a), z(a))

f
F � §fF � §ff

F
C2C1

�
C1

F � dr � �
C2

F � dr

�C F � dr

C
CBA

F

f
F

f(x, y, z) �
1

2x2 � y2 � z2

THEOREM 1 Fundamental Theorem for Line Integrals

Let be a conservative vector field in an open region , where
is a differentiable potential function for . If is any piecewise-smooth curve

lying in given by

then

�
C

F � dr � �
C

§f � dr � f(x(b), y(b)) � f(x(a), y(a))

a � t � br(t) � x(t)i � y(t)j

R
CFf

RF(x, y) � §f(x, y)
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PROOF We will give the proof for a smooth curve . Since 
, we see that

Use the Chain Rule.

 � f(x(t), y(t)) ` t�b

t�a
� f(x(b), y(b)) � f(x(a), y(a))

 � �
b

a

 
d

dt
 [ f(x(t), y(t))] dt

 � �
b

a

c �f

�x
 
dx

dt
�

�f

�y
 
dy

dt
d dt

 �
C

F � dr � �
C

§f � dr � �
b

a

§f �
dr
dt

dt

fy(x, y)j
F(x, y) � §f � fx(x, y)i �C

EXAMPLE 2 Let be a force field.

a. Prove that is conservative by showing that it is the gradient of the potential
function .

b. Use the Fundamental Theorem for Line Integrals to evaluate , where 
is any piecewise-smooth curve joining the point to the point 
(See Figure 2.)

Solution

a. Since , we conclude that

is indeed conservative.
b. Thanks to the Fundamental Theorem for Line Integrals, we do not need to know

the rule defining the curve ; the integral depends only on the coordinates of the
endpoints and of the curve. We have

Line Integrals Along Closed Paths
A path is closed if its terminal point coincides with its initial point. If a curve has para-
metric representation with parameter interval , then is closed if .
(See Figure 3.)

The following theorem gives an alternative method for determining whether a line
integral is independent of path.

r(a) � r(b)C[a, b]r(t)
C

 � (3)2(1) � (�1)2(2) � 7

 �
C

F � dr � f(3, 1) � f(�1, 2) � x2y ` (3, 1)

(�1, 2)

BA
C

F

§f(x, y) �
�

�x
 (x2y)i �

�

�y
 (x2y)j � 2xyi � x2j � F(x, y)

B(3, 1)A(�1, 2)
C�C F � dr

f(x, y) � x2y
F

F(x, y) � 2xyi � x2j

FIGURE 2
is a piecewise smooth curve joining
to .BA

C

FIGURE 3
On the closed curve , the tip of 
starts at , traverses , and ends up
back at .r(b) � r(a)

Cr(a)
r(t)C

THEOREM 2
Suppose that is a continuous vector field in a region . Then is inde-
pendent of path if and only if for every closed path in .RC�C F � dr � 0

�C F � drRF

0 1 2 3�1

B(3, 1)

A(�1, 2)

1

2

x

y

C

0

r(a) � r(b)

r(t)

C

x

y
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PROOF Suppose that is independent of path in , and let be any closed
path in . We can pick any two points and on and regard as being made up
of the path from to and the path from to . (See Figure 4a.) Then

where is the path traversed in the opposite direction. But both and 
have the same initial point and the same terminal point . Since the line integral is
assumed to be independent of path, we have

and this implies that .�C F � dr � 0

�
C1

F � dr � �
�C2

F � dr

BA
�C2C1C2�C2

�
C

F � dr � �
C1

F � dr � �
C2

F � dr � �
C1

F � dr � �
�C2

F � dr

ABBA
CCBAR

CR�C F � dr

FIGURE 4
is a closed path in an open region .RC

Conversely, suppose that for every closed path in . Let and 
be any two points in and let and be any two paths in connecting to ,
respectively. (See Figure 4b.) Let be the closed path composed of followed by

. Then

so , which shows that the line integral is independent of path.

As a consequence of Theorem 1, we see that if a body moves along a closed path
that ends where it began, then the work done by a conservative force field on the body
is zero.

Independence of Path and Conservative Vector Fields
The Fundamental Theorem for Line Integrals tells us that the line integral of a con-
servative vector field is independent of path. A question that arises naturally is: Is a
vector field whose integral is independent of path necessarily a conservative vector
field? To answer this question, we need to consider regions that are both open and
connected. A region is open if it doesn’t contain any of its boundary points. It is con-
nected if any two points in the region can be joined by a path that lies in the region.
(See Figure 5.) The following theorem provides an answer to part of the first question
that we raised.

�C1
F � dr � �C2

F � dr

0 � �
C

F � dr � �
C1

F � dr � �
�C2

F � dr � �
C1

F � dr � �
C2

F � dr

�C2

C1C
BARC2C1R
BARC�C F � dr � 0

0

(a) C is made up of C1 and C2.

C2

C1

C1

C2

A

B

B

A

x

y

0

(b) C is made up of C1 and �C2.

x

y

0

(a) The plane region R1 is connected.

R1

A

B

x

y

R2

A

B

0

(b) The region R2 is not connected,
      since it is impossible to find a path
      from A to B lying strictly within R2.

x

y

FIGURE 5
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PROOF If is conservative, then the Fundamental Theorem for Line Integrals implies
that the line integral is independent of path. We will prove the converse for the case in
which is a plane region; the proof for the three-dimensional case is similar. Suppose
that the integral is independent of path in . Let be a fixed point in , and let

be any point in . If is any path from to , we define the function
by

Since is open, there exists a disk contained in with center . Pick any point
in the disk with . Now, by assumption, the line integral is independent

of path, so we can choose to be the path consisting of any path from to
followed by the horizontal line segment from to , as shown in

Figure 6. Then

Since the first of the two integrals on the right does not depend on , we have

If we write , then

Now can be represented parametrically by , , where and
is a constant. This gives and since is constant on .

Therefore,

upon using the Fundamental Theorem of Calculus, Part 1. Similarly, by choosing to
be the path with a vertical line segment as shown in Figure 7, we can show that

Therefore,

that is, is conservative.F

F � Pi � Qj �
�f

�x
 i �

�f

�y
 j � §f

�

�y
  f(x, y) � Q(x, y)

C

 �
�

�x
 �

x

x1

P(t, y) dt � P(x, y)

 
�

�x
 f(x, y) �

�

�x
 �

C2

P(x, y) dx � Q(x, y) dy

C2ydy � 0dx � x¿(t) dt � dty
x1 � t � xy(t) � yx(t) � tC2

�
C2

F � dr � �
C2

P(x, y) dx � Q(x, y) dy

F(x, y) � P(x, y)i � Q(x, y)j

�

�x
  f(x, y) � 0 �

�

�x
 �

C2

F � dr

x

f(x, y) � �
C1

F � dr � �
C2

F � dr � �
(x1, y)

(x0, y0)
F � dr � �

C2

F � dr

(x, y)(x1, y)C2(x1, y)
(x0, y0)C1C

x1 � x(x1, y)
(x, y)RR

f(x, y) � �
C

F � dr � �
(x, y)

(x0, y0)
F � dr

f
(x, y)(x0, y0)CR(x, y)

R(x0, y0)R
R

F

THEOREM 3 Independence of Path and Conservative Vector Fields

Let be a continuous vector field in an open, connected region . The line inte-
gral is independent of path if and only if is conservative, that is, if
and only if for some scalar function .fF � §f

F�C F � dr
RF

FIGURE 6
The path consists of an arbitrary 
path from to 
followed by the horizontal line 
segment from to .(x, y)(x1, y)

(x1, y)(x0, y0)C1

C

0

C1

R C2

(x1, y)

(x0, y0)

(x, y)

x

y

FIGURE 7
The path consists of an arbitrary 
path from to 
followed by the vertical line 
segment from to .(x, y)(x, y1)

(x, y1)(x0, y0)
C

0

C1 (x, y1)

(x0, y0)

(x, y)

x

y
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Determining Whether a Vector Field Is Conservative
Although Theorem 3 provides us with a good characterization of conservative vector
fields, it does not help us to determine whether a vector field is conservative, since it
is not practical to evaluate the line integral of over all possible paths. Before stating
a criterion for determining whether a vector field is conservative, we look at a condi-
tion that must be satisfied by a conservative vector field.

F

THEOREM 4
If is a conservative vector field in an open region

and both and have continuous first-order partial derivatives in , then

at each point in .R(x, y)

�Q

�x
�

�P

�y

RQPR
F(x, y) � P(x, y)i � Q(x, y)j

PROOF Because is conservative in , there exists a function such that
, that is,

This equation is equivalent to the two equations

and

Since and are continuous by assumption, it follows from Clairaut’s Theorem in
Section 13.3 that

The converse of Theorem 4 holds only for a certain type of region. To describe this
region, we need the notion of a simple curve. A plane curve described by is
a simple curve if it does not intersect itself anywhere except possibly at its endpoints;
that is, if . (See Figure 8.)a � t1 � t2 � br(t1) � r(t2)

r � r(t)

�P

�y
� fxy � fyx �

�Q

�x

QxPy

Q � fyP � fx

Pi � Qj � fxi � fy j

F � §f
fRF � Pi � Qj

FIGURE 8
is simple, is not simple,

is simple and closed, and 
is closed but not simple.C4

C3

C2C1

A connected region in the plane is a simply-connected region if every simple
closed curve in encloses only points that are in . As is illustrated in Figure 9, a
simply-connected region not only is connected, but also does not have any hole(s).

RRC
R

C1

C2

C3

C4

(a) (b) (c) (d)

r(b)

r(b)

r(a) � r(b)

r(a) � r(b)

r(a)

r(a)
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FIGURE 9
is simply-connected; is not

simply-connected because the simple
closed curve shown encloses points

outside ; is not simply-connected
because it is not connected.
R3R2

R2R1

The following theorem, which is a partial converse of Theorem 4, gives us a test
to determine whether a vector field on a simply-connected region in the plane is con-
servative.

THEOREM 5 Test for a Conservative Vector Field in the Plane

Let be a vector field in an open simply-connected region in the
plane. If and have continuous first-order partial derivatives on and

(2)

for all in , then is conservative in .RFR(x, y)

�Q

�x
�

�P

�y

RQP
RF � Pi � Qj

The proof of this theorem can be found in advanced calculus books.

R3

R1 R2

(a) (b) (c)

EXAMPLE 3 Determine whether the vector field 

is conservative.

Solution Here, and . Since

for all in the plane, which is open and simply-connected, we conclude by The-
orem 5 that is conservative.F

(x, y)

�P

�y
� �2x �

�Q

�x

Q(x, y) � y2 � x2P(x, y) � x2 � 2xy � 1

(y2 � x2)j
F(x, y) � (x2 � 2xy � 1)i �

EXAMPLE 4 Determine whether the vector field is conser-
vative.

Solution Here, and . So

and

Since except along the - or -axis, we see that Equation (2) of The-
orem 5 is not satisfied for all points in any open simply-connected region in the
plane. Therefore, is not conservative.

Finding a Potential Function
Once we have ascertained that a vector field is conservative, how do we go about
finding a potential function for ? One such technique is utilized in the following
example.

Ff
F

F
(x, y)

yx�P>�y � �Q>�x

�Q

�x
� 2xy

�P

�y
� 4xy

Q(x, y) � x2yP(x, y) � 2xy2

F(x, y) � 2xy2i � x2yj
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EXAMPLE 5 Let .

a. Show that is conservative, and find a potential function such that .
b. If is a force field, find the work done by in moving a particle along any path

from to .

Solution
a. Here, and . Since

for all points in the plane, we see that is conservative. Therefore, there exists a
function such that . In this case the equation reads

This vector equation is equivalent to the system of scalar equations

(3)

(4)

Integrating Equation (3) with respect to , (so that is treated as a constant), we
have

(5)

where is the constant of integration. (Remember that is treated as a con-
stant, so the most general expression of a constant here involves a function of .)
To determine , we differentiate Equation (5) with respect to , obtaining

(6)

Comparing Equation (6) with Equation (4) leads to

or

(7)

Integrating Equation (7) with respect to gives

where is a constant. Finally, substituting into Equation (5) gives

the desired potential function.
b. Since is conservative, we know that the work done by in moving a particle

from to is independent of the path connecting these two points.(2, 3)(1, 0)
FF

f(x, y) � x2y � y �
1

3
 y3 � C

t(y)C

t(y) � y �
1

3
 y3 � C

y

t¿(y) � 1 � y2

x2 � t¿(y) � 1 � x2 � y2

�f

�y
� x2 � t¿(y)

yt(y)
y

yt(y)

f(x, y) � x2y � t(y)

yx

 
�f

�y
� 1 � x2 � y2

 
�f

�x
� 2xy

2xyi � (1 � x2 � y2)j �
�f

�x
 i �

�f

�y
 j

F � §ff
F

�P

�y
� 2x �

�Q

�x

Q(x, y) � 1 � x2 � y2P(x, y) � 2xy

(2, 3)(1, 0)
FF

F � §ffF

F(x, y) � 2xyi � (1 � x2 � y2)j
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Using Equation (1), we see that the work done by is

Note In Example 5a you may also integrate Equation (4) first with respect to and
proceed in a similar manner.

The following theorem provides us with a test to determine whether a vector field
in space is conservative. Theorem 6 is an extension of Theorem 5, and its proof will
be omitted.

y

 � c(22)(3) � 3 �
1

3
 (33)d � c(12)(0) � 0 �

1

3
 (0)d � 6

 W � �
C

F � dr � �
C

§f � dr � f(2, 3) � f(1, 0)

F

THEOREM 6 Test for a Conservative Vector Field in Space

Let be a vector field in an open, simply connected region
in space. If , , and have continuous first-order partial derivatives in space,

then is conservative if curl for all points in . Equivalently, is con-
servative if

, , and
�Q

�x
�

�P

�y

�R

�x
�

�P

�z

�R

�y
�

�Q

�z

FDF � 0F
RQPD

F � Pi � Qj � Rk

The following example illustrates how to find a potential function for a conserva-
tive vector field in space.

EXAMPLE 6 Let .

a. Show that is conservative, and find a function such that .
b. If is a force field, find the work done by in moving a particle along any path

from to .

Solution
a. We compute

Since for all points in , we see that is a conservative vector field
by Theorem 6. Therefore, there exists a function such that . In this case
the equation reads

2xyz2i � x2z2j � 2x2yzk �
�f

�x
 i �

�f

�y
 j �

�f

�z
 k

F � §ff
FR3curl F � 0

 � 0

 � (2x2z � 2x2z)i � (4xyz � 4xyz)j � (2xz2 � 2xz2)k

 curl F � ∞
i j k
�

�x

�

�y

�

�z

2xyz2 x2z2 2x2yz

∞

(1, 2, �1)(0, 1, 0)
FF

F � §ffF

F(x, y, z) � 2xyz2i � x2z2j � 2x2yzk
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This vector equation is equivalent to the system of three scalar equations

(8)

(9)

(10)

Integrating Equation (8) with respect to (so that and , are treated as con-
stants), we have

(11)

where is the constant of integration. To determine , we differentiate
Equation (11) with respect to , obtaining

(12)

Comparing Equation (12) with Equation (9) leads to

or

(13)

Integrating Equation (13) with respect to (so that , is treated as a constant), we
obtain , so

(14)

Differentiating Equation (14) with respect to , and comparing the result with
Equation (10), we have

Therefore, and , where is a constant. Finally, substituting the
value of into Equation (14) gives

as the desired potential function.
b. Since is conservative, we know that the work done by in moving a particle

from to is independent of the path connecting these two
points. Therefore, the work done by is

 � (1)2(2)(�1)2 � 0 � 2

 W � �
C

F � dr � �
C

§f � dr � f(1, 2, �1) � f(0, 1, 0)

F
(1, 2, �1)(0, 1, 0)

FF

f(x, y, z) � x2yz2 � C

h(z)
Ch(z) � Ch¿(z) � 0

�f

�z
� 2x2yz � h¿(z) � 2x2yz

z

f(x, y, z) � x2yz2 � h(z)

t(y, z) � h(z)
zy

�t

�y
� 0

x2z2 �
�t

�y
� x2z2

�f

�y
� x2z2 �

�t

�y

y
t(y, z)t(y, z)

f(x, y, z) � x2yz2 � t(y, z)

zyx

 
�f

�z
� 2x2yz

 
�f

�y
� x2z2

 
�f

�x
� 2xyz2
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Conservation of Energy
The Fundamental Theorem for Line Integrals can be used to derive one of the most
important laws of physics: the Law of Conservation of Energy. Suppose that a body of
mass is moved from to along a piecewise-smooth curve such that its position
at any time is given by , and suppose that the body is subjected to the
action of a continuous conservative force field . (See Figure 10.) To find the work
done by the force on the body, we use Newton’s Second Law of Motion to write

, where and are the velocity and
acceleration of the body at any time , respectively. The work done by the force on
the body as it is moved from to along is

Use Theorem 2 in Section 12.2.

Use the Fundamental Theorem for Line Integrals.

Since 

Since the kinetic energy of a particle of mass and speed is , we can write

(15)

which says that the work done by the force field on the body as it moves from to 
along is equal to the change in kinetic energy of the body at and .

Since is conservative, there is a scalar function such that . The poten-
tial energy of a body at the point in a conservative force field is defined to
be , so we have . Consequently, the work done by 
on the body as it is moved from to along is given by

Comparing this equation with Equation (15), we see that

which states that as the body moves from one point to another in a conservative force
field, then the sum of its potential energy and kinetic energy remains constant. This is
the Law of Conservation of Energy and is the reason why certain vector fields are
called conservative.

P(A) � K(A) � P(B) � K(B)

 � P(A) � P(B)

 � C�P(r(t)) Db
a

� �[P(r(b)) � P(r(a))]

 W � �
C

F � dr � ��
C

§P � dr

CBA
FF � �§PP(x, y, z) � �f(x, y, z)

(x, y, z)P
F � §ffF

BAC
BA

W � K(B) � K(A)

1
2 m√2√mK

v(t) � r¿(t) �
1

2
 m �v(b) �2 �

1

2
 m �v(a) �2

 �
m

2
 1 �r¿(b) �2 � �r¿(a) �2 2

 �
m

2
 C �r¿(t) �2 Db

a

 �
m

2
 �

b

a

 
d

dt
 �r¿(t) �2 dt

 �
m

2
 �

b

a

 
d

dt
 [r¿(t) � r¿(t)] dt

 � �
b

a

mr�(t) � r¿(t) dt

 W � �
C

F � dr � �
b

a

F(r(t)) � r¿(t) dt

CBA
Ft

a(t) � r�(t)v(t) � r¿(t)F � ma � mv¿(t) � mr�(t)

F
r(t), a � t � bt

CBAm

x

z

y

C

B

A
r(t)

F

0

FIGURE 10
The path of a body from 
to B � r(b)

A � r(a)C
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1. State the Fundamental Theorem for Line Integrals.
2. a. Explain what it means for the line integral to

be independent of path?
b. If is independent of path for all paths in an

open, connected region , what can you say about ?FR
C�C F � dr

�C F � dr
3. a. How do you determine whether a vector field

is conservative?
b. How do you determine whether a vector field

is conserva-
tive?
F � P(x, y, z)i � Q(x, y, z)j � R(x, y, z)k

F � P(x, y)i � Q(x, y)j

15.4 CONCEPT QUESTIONS

In Exercises 1–10, determine whether is conservative. If so,
find a function such that .

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

In Exercises 11–18, (a) show that is conservative and find 
a function such that , and (b) use the result of part (a)
to evaluate , where is any path from to

.

11. ; and 

12. ; and 

13. ; and

14. ; and 

15. ; and 

16. ; and 

17. ; and 

18. ; and 

In Exercises 19 and 20, evaluate for the vector field 
and the path . (Hint: Show that is conservative, and pick a
simpler path.)

19.
,

20.
, 0 � t � pC: r(t) � 4 cos t i � 3 sin tj

F(x, y) � (ey � y2 sin x)i � (xey � 2y cos x)j

0 � t � pC: r(t) � (1 � cos t)i � sin tj
F(x, y) � (2xy2 � cos y)i � (2x2y � x sin y)j

FC
F�C F � dr

B(1, 1)A(0, 0)F(x, y) � (x � tan�1 y)i �
x � y

1 � y2 j

B(0, p)A(0, 0)F(x, y) � ex sin yi � (ex cos y � y)j

B11, p2 2A(0, 0)F(x, y) � 2x sin yi � x2 cos yj

B(�1, 1)A(0, 0)F(x, y) � xe2yi � x2e2yj

B(2, 0)A(1, 1)F(x, y) � 2xy3i � (3x2y2 � 1)j

B(1, 2)
A(�1, 1)F(x, y) � (2xy2 � 2y)i � (2x2y � 2x)j

B(1, 1)A(0, 0)F(x, y) � (x � 2y)i � (y � 2x)j

B(�1, 1)A(0, 0)F(x, y) � (2y � 1)i � (2x � 3)j

B(x1, y1)
A(x0, y0)C�C F � dr

F � §ff
F

F(x, y) � (ex cos y � y sec2 x)i � (tan x � ex cos y)j

F(x, y) � ax2 �
y

x
bi � (y2 � ln x)j

F(x, y) � (tan y � 2xy)i � (x sec2 y � x2)j

F(x, y) � (e�x � 2y cos 2x)i � (sin 2x � ye�x)j

F(x, y) � (x cos y � sin y)i � (cos y � x sin y)j

F(x, y) � y2 cos xi � (2y sin x � 3)j

F(x, y) � (x2 � y2)i � 2xyj

F(x, y) � (2x � y2)i � (x2 � y)j

F(x, y) � (2x2 � 4y)i � (2x � 3y2)j

F(x, y) � (4x � 3y)i � (3x � 2y)j

F � §ff
F In Exercises 21 and 22, find the work done by the force field 

on a particle moving along a path from to .

21. ; ,

22. ; ,

23. Show that the line integral is not
independent of path.

24. Show that the following line integral is not independent of
path:

In Exercises 25–32, determine whether is conservative. If so,
find a function such that .

25.

26.

27.

28.

29.

30.

31.

32.

In Exercises 33–36, (a) show that is conservative, and find a
function such that , and (b) use the result of part (a) to
evaluate , where is any curve from to

.

33. ; and 

34. ; and

35. ;
and 

36. ; andA(0, 1, 1)F(x, y, z) � ey i � (xey � ln z)j � ay

z
bk

B(2, 2p, 1)
A(1, 0, 0)F(x, y, z) � cos yi � (z2 � x sin y)j � 2yzk

B(1, 1, 1)
A(0, 0, 0)F(x, y, z) � 2xy2z3i � 2x2yz3j � 3x2y2z2k

B(1, 3, 2)A(0, 0, 1)F(x, y, z) � yz2i � xz2j � 2xyzk

B(x1, y1, z1)
A(x0, y0, z0)C�C F � dr

F � §ff
F

F(x, y, z) �
1
yz

 i �
x

y2z
 j �

x

yz2 k

F(x, y, z) � z cos(x � y)i � z sin(x � y)j � cos(x � y)k

F(x, y, z) � zexz i � ln z j � axexz �
y

z
bk

F(x, y, z) � ex cos zi � z sinh yj � (cosh y � ex sin z)k

F(x, y, z) � sin yi � (x cos y � cos z)j � sin zk

F(x, y, z) � 2xyi � (x2 � z2)j � xyk

F(x, y, z) � 2xy2zi � 2x2yz j � x2y2k

F(x, y, z) � yzi � xz j � xyk

F � §ff
F

xe�y cos z dz�C e�y sin z dx � xe�y sin z dy �

�C yz dx � xz dy � xyz dz

B(1, p)A(0, 0)F(x, y) � �e�x cos yi � e�x sin yj

B(2, 9)A(1, 1)F(x, y) � 21yi �
x

1y
 j

QP
F

15.4 EXERCISES

Videos for selected exercises are available online at www.academic.cengage.com/login.V

37. Evaluate , where is the 
curve from to .(2, 1)(0, 0)x4 � 6xy3 � 4y2 � 0

C�C (2xy2 � 3) dx � (2x2y � 1) dy

B(1, 0, 2)

www.academic.cengage.com/login


THEOREM 1 Green’s Theorem

Let be a piecewise-smooth, simple closed curve that bounds a region in the
plane. If and have continuous partial derivatives on an open set that con-
tains , then

(1)

where the line integral over is taken in the positive (counterclockwise) direc-
tion.

C

�
C

P dx � Q dy � ��
R

c�Q

�x
�

�P

�y
d dA

R
QP

RC
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38. Evaluate , where 
is the curve of Exercise 37.

39. Let

where is a constant, and let be the elec-
tric field induced by a charge located at the origin. (See
Example 4 in Section 15.1.) Find the work done by in
moving a charge of coulombs from the point 
along any path to the point .

40. Find the work that is done by the force field
on a particle moving along

a path from to .

41. Let

a. Show that .

b. Show that is not independent of path by com-

puting and , where and are

the upper and lower semicircles of radius 1, centered at 
the origin, from to .

c. Do your results contradict Theorem 5? Explain.
(�1, 0)(1, 0)

C2C1�C2
F � dr�C1

F � dr
�C F � dr

�Q

�x
�

�P

�y

F(x, y) �
y

x2 � y2 i �
x

x2 � y2 j

Q(2, 1, 3)P(1, 1, 1)
F(x, y, z) � y2zi � 2xyz j � xy2k

B(2, 4, 1)
A(1, 3, 2)q

E
Q
r � xi � yj � zkk

E(x, y, z) �
kQ

�r �3
 r

C�C (3x2y � ey) dx � (x3 � xey � 2y) dy 42. Let

a. Show that .
b. Is conservative? Explain.

In Exercises 43–48, determine whether the statement is true or
false. If it is true, explain why. If it is false, explain why or give
an example that shows it is false.

43. The region is simply-
connected.

44. If is a nonconservative vector field, then 
whenever is a closed path.

45. If has continuous first-order partial derivatives in space
and is any smooth curve, then depends only 
on the endpoints of .

46. If is in an open connected region and 

for all in , then for any

smooth curve in .

47. If is continuous and is a smooth curve, then
.

48. If has first-order partial derivatives in a simply-connected
region , then for every closed path in .R�C F � dr � 0R

F

�C F � dr � ���C F � dr
CF(x, y)

RC

�C F � dr � 0R(x, y)
�Q

�x
�

�P

�y

RF � Pi � Q j

C
�C §f � drC

F

C
�C F � dr � 0F

R � {(x, y) � 0 � x2 � y2 � 1}

F
curl F � 0

F(x, y, z) �
y

(y2 � z2)2 j �
z

(y2 � z2)2 k

15.5 Green’s Theorem

Green’s Theorem for Simple Regions
Green’s Theorem, named after the English mathematical physicist George Green (1793–
1841), relates a line integral around a simple closed plane curve to a double integral
over the plane region bounded by . (See Figure 1.)

Before stating Green’s Theorem, however, we need to explain what is meant by the
orientation of a simple closed curve. Suppose that is defined by the vector function

, where . Then is traversed in the positive or counterclockwise direc-
tion if the region is always on the left as the terminal point of traces the bound-
ary curve . (See Figure 2.)C

r(t)R
Ca � t � br(t)

C

CR
C

FIGURE 1
A plane region bounded by a simple
closed plane curve C

R

FIGURE 2
The curve traversed in the positive or
counterclockwise direction

C

x

R

0

C

y

x

R

r(t)

0

C

y
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Note The notation

or

is sometimes used to indicate that the line integral over a simple closed curved is
taken in the positive, or counterclockwise, direction.

Since it is not easy to prove Green’s Theorem for general regions, we will prove it
only for the special case in which the region is both a -simple and an -simple
region. (See Section 14.2.) Such regions are called simple or elementary regions.

PROOF OF GREEN’S THEOREM FOR SIMPLE REGIONS Let be a simple region with
boundary as shown in Figure 3. Since

we can consider each integral on the right separately. Since is a -simple region, it
can be described as

where and are continuous on . Observe that the boundary of consists of
the curves and that are the graphs of the functions and as shown in the fig-
ure. Therefore,

where and are oriented as shown in Figure 3.
Observe that the point traces as increases from to , whereas the

point traces as decreases from to . Therefore,

(2)

Next, we find

(3)

where the last equality is obtained with the aid of the Fundamental Theorem of Cal-
culus. Comparing Equation (3) with Equation (2), we see that

(4)�
C

P dx � ���
R

 
�P

�y
 dA

 � �
b

a

[P(x, f2(x)) � P(x, f1(x))] dx

 ��
R

 
�P

�y
dA � �

b

a
�

f2(x)

f1(x)
 
�P

�y
 (x, y) dy dx

 � �
b

a

[P(x, f1(x)) � P(x, f2(x))] dx

 � �
b

a

P(x, f1(x)) dx � �
b

a

P(x, f2(x)) dx

 � �
b

a

P(x, f1(x)) dx � �
a

b

P(x, f2(x)) dx

 �
C

P dx � �
C1

P dx � �
C2

P dx

abxC2(x, f2(x))
baxC1(x, f1(x))

C2C1

�
C

P dx � �
C1

P dx � �
C2

P dx

f2f1C2C1

RC[a, b]f2f1

R � {(x, y) � a � x � b, f1(x) � y � f2(x)}

yR

�
C

P dx � Q dy � �
C

P dx � �
C

Q dy

C
R

xyR

C

C
P dx � Q dy�

C

P dx � Q dy

FIGURE 3
The simple region viewed as a 
-simple regiony

R

GEORGE GREEN
(1793–1841)

Born a miller’s son in Nottingham, George
Green worked in his father’s grain mill for
most of the first forty years of his life. He
did receive some formal schooling when he
was 8 to 9 years old, but Nottingham had
limited educational resources, and Green
quickly surpassed the education that was
available there. He studied on his own,
though it is not quite clear how he got
access to the current mathematical works.
However, in 1828 Green published “An Essay
on the Application of Mathematical Analy-
sis to the Theories of Electricity and Mag-
netism.” This work included the theorem
that is now known as Green’s Theorem. The
essay was sold to only 51 people, many of
whom are believed to have been friends of
Green’s, who probably did not understand
the importance of the work. Eventually,
Green’s talents were recognized by
acquaintances who were more connected
to academia, and he enrolled as an under-
graduate at Cambridge in 1833 at the age
of 40. Green graduated in 1837 with the
fourth highest scores in his class. He
stayed on at Caius College, Cambridge and
was elected a fellow in 1839. During his
time at Cambridge he made significant
contributions to areas such as optics,
acoustics, and hydrodynamics. Green’s
health was poor, and he died in Notting-
ham in1841. Because of the limited contact
he had with his scientific contemporaries,
most of Green’s work was not appreciated
during his lifetime.

Historical Biography

x

R

y � f2(x)

0

y � f1(x)

C2

C1

a b

y

�
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By viewing as an -simple region (Figure 4),

you can show in a similar manner that

(5)

(See Exercise 48.) Adding Equation (4) and Equation (5), we obtain Equation (1), the
conclusion of Green’s Theorem for the case of a simple region.

�
C

Q dy � ��
R

 
�Q

�x
dA

R � {(x, y) � c � y � d, t1(y) � x � t2(y)}

xR

FIGURE 4
The simple region viewed as an 
-simple regionx

R

EXAMPLE 1 Evaluate , where is the boundary of the C�C x2 dx � (xy � y2) dy
region bounded by the graphs of and and is oriented in a positive di-
rection.

Solution The region is shown in Figure 5. Observe that is simple. Using Green’s
Theorem with and , we have

 �
1

2
a1

3
 x3 �

1

5
 x5b `1

0
�

1

15

 � �
1

0
c1
2

 y2dy�x

y�x2
dx �

1

2
 �

1

0
(x2 � x4) dx

 �
C

x2 dx � (xy � y2) dy � ��
R

c�Q

�x
�

�P

�y
d dA � �

1

0
�

x

x2

(y � 0) dy dx

Q(x, y) � xy � y2P(x, y) � x2
RR

y � x2y � xR

FIGURE 5
The curve is the boundary of 
the region .R

C

EXAMPLE 2 Evaluate , where is the

circle and is oriented in a positive direction.

Solution The simple region bounded by is the disk 
shown in Figure 6. Using Green’s Theorem with and 

, we find

and

and so

 � 3�
2p

0
c1
4

 r 4 cos2 udr�2

r�0
du

 � 3�
2p

0
�

2

0
r 3 cos2 u dr du

Use polar
coordinates. � 3�

2p

0
�

2

0
(r cos u)2r dr du

 �
C

(y2 � tan x) dx � (x3 � 2xy � 1y) dy � ��
R

c�Q

�x
�

�P

�y
d dA � ��

R

3x2 dA

�P

�y
�

�

�y
 (y2 � tan x) � 2y

�Q

�x
�

�

�x
 (x3 � 2xy � 1y) � 3x2 � 2y

x3 � 2xy � 1y
Q(x, y) �P(x, y) � y2 � tan x

R � {(x, y) � x2 � y2 � 4}CR

x2 � y2 � 4

C�C (y2 � tan x) dx � (x3 � 2xy � 1y) dy

FIGURE 6
The region is the disk bounded 
by the circle .x2 � y2 � 4

R

x

R

x � g1(y) x � g2(y)

0

C2
C1

c

d

y

0 1

(1, 1)1

x

y

y � x2

R

C
y � x

0 2�2 x

y

x2 � y2 � 4

R

C
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The results obtained in Examples 1 and 2 can be verified by evaluating the given
line integrals directly without the benefit of Green’s Theorem, but this entails much
more work than evaluating the corresponding double integrals. In certain situations,
however, the opposite is true; that is, it is easier to evaluate a line integral than it is to
evaluate the corresponding double integral. This fact is exploited in the following for-
mulas based on Green’s Theorem for finding the area of a plane region.

 � 6cu �
1

2
sin 2ud2p

0
� 12p

 � 6�
2p

0
(1 � cos 2u) du

 � 12�
2p

0
cos2 u du

THEOREM 2 Finding Area Using Line Integrals

Let be a plane region bounded by a piecewise-smooth simple closed curve .
Then the area of is given by

(6)A � �
C

x dy � ��
C

y dx �
1

2
 �

C

x dy � y dx

R
CR

�
C

�
1

2
 y dx �

1

2
 x dy � �

C

P dx � Q dy � ��
R

c�Q

�x
�

�P

�y
d dA � ��

R

a1

2
�

1

2
b dA � A

PROOF Taking and , Green’s Theorem gives

Similarly, by taking and , we have

Finally, with and , we haveQ(x, y) � 1
2 xP(x, y) � �1

2 y

�
C

�y dx � ��
R

c�Q

�x
�

�P

�y
d dA � ��

R

1 dA � A

Q(x, y) � 0P(x, y) � �y

�
C

x dy � ��
R

c�Q

�x
�

�P

�y
d dA � ��

R

1 dA � A

Q(x, y) � xP(x, y) � 0

EXAMPLE 3 Find the area enclosed by the ellipse .

Solution The ellipse can be represented by the parametric equations 
and , where . Also observe that the ellipse is traced in the coun-
terclockwise direction as increases from 0 to 2 . Using Equation (6), we have

 �
ab

2
 �

2p

0
dt � pab

 A �
1

2
 �

C

x dy � y dx �
1

2
 �

2p

0
(a cos t)(b cos t) dt � (b sin t)(�a sin t) dt

pt
0 � t � 2py � b sin t

x � a cos tC

x2

a2
�

y2

b2
� 1



Green’s Theorem for More General Regions
So far, we have proved Green’s Theorem for the case in which is a simple region,
but the theorem can be extended to the case in which the region is a finite union of
simple regions. For example, the region shown in Figure 7 is not simple, but it can
be written as , where and are both simple. The boundary of is

, and the boundary of is , where and are paths along the
crosscut traversed in the indicated directions.

Applying Green’s Theorem to each of the regions and gives

and

Adding these two equations and observing that the line integrals along and can-
cel each other, we obtain

which is Green’s Theorem for the region with boundary .
A similar argument enables us to establish Green’s Theorem for the general case

in which is the union of any finite number of nonoverlapping, except perhaps for the
common boundaries, simple regions (see Figure 8).

R

C � C1 � C2R � R1 � R2

�
C1�C3

P dx � Q dy � �
C2�C4

P dx � Q dy � �
C1�C2

P dx � Q dy � ��
R

c�Q

�x
�

�P

�y
d dA

C4C3

�
C2�C4

P dx � Q dy � ��
R2

c�Q

�x
�

�P

�y
d dA

�
C1�C3

P dx � Q dy � ��
R1

c�Q

�x
�

�P

�y
d dA

R2R1

C4C3C2 � C4R2C1 � C3

R1R2R1R � R1 � R2

R
R
R

1272 Chapter 15 Vector Analysis

FIGURE 7
The region is the union of two simple
regions and .R2R1

R

FIGURE 8
The region is a union of three simple
regions , and .R3R1, R2

R
EXAMPLE 4 Evaluate , where is the positively ori-C�C (ex � y2) dx � (x2 � 3xy) dy

ented closed curve lying on the boundary of the semiannular region bounded by the
upper semicircles and and the -axis as shown in Figure 9.

Solution The region is not simple, but it can be divided into two simple regions by
means of the crosscut that is the intersection of and the -axis. Also notice that in
polar coordinates,

Using Green’s Theorem with and , we have

and

and so

 �
26

3
 C2 sin u � cos u Dp

0
�

52

3

 � �
p

0
(2 cos u � sin u) c1

3
 r 3d3

1
du

Use polar
coordinates. � �

p

0
�

3

1
(2r cos u � r sin u)r dr du

 �
C

(ex � y2) dx � (x2 � 3xy) dy � ��
R

c�Q

�x
�

�P

�y
d dA � ��

R

(2x � y) dA

�P

�y
�

�

�y
 (ex � y2) � 2y

�Q

�x
�

�

�x
 (x2 � 3xy) � 2x � 3y

Q(x, y) � x2 � 3xyP(x, y) � ex � y2

R � {(r, u) � 1 � r � 3, 0 � u � p}

yR
R

xx2 � y2 � 9x2 � y2 � 1
R

FIGURE 9
The region is divided into two 
simple regions by the crosscut that 
lies on the -axis.y

R

0
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C3

C4

C2
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R2
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x2 � y2 � 1
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FIGURE 10
The annular region can be divided
into two simple regions using two
crosscuts.

R

EXAMPLE 5 Let be a smooth, simple, closed curve that does not pass through the
origin. Show that

is equal to zero if does not enclose the origin but is equal to if encloses the
origin.

Solution Suppose that does not enclose the origin. (See Figure 11.) Using Green’s
Theorem with and so that

and

we obtain

Here, denotes the region enclosed by .CR

�
C

 �
y

x2 � y2
dx �

x

x2 � y2
dy � ��

R

c�Q

�x
�

�P

�y
d dA � ��

R

0 dA � 0

�P

�y
�

(x2 � y2)(�1) � (�y)(2y)

(x2 � y2)2
�

y2 � x2

(x2 � y2)2
�

�Q

�x

�Q

�x
�

(x2 � y2)(1) � x(2x)

(x2 � y2)2
�

y2 � x2

(x2 � y2)2

Q(x, y) � x>(x2 � y2)P(x, y) � �y>(x2 � y2)
C

C2pC

�
C

 �
y

x2 � y2
dx �

x

x2 � y2
dy

C
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Green’s Theorem can be extended to even more general regions. Recall that a region
is simply-connected if for every simple closed curve that lies in , the region

bounded by is also in . Thus, as was noted earlier, a simply-connected region “has
no holes.” For example, a rectangle is simply-connected, but an annulus (a ring bounded
by two concentric circles) is not. Also, multiply-connected regions may have one or
more holes in them and also may have boundaries that consist of two or more simple
closed curves. For example, the annular region shown in Figure 10 has a boundary

consisting of two simple closed curves and . Observe that is traversed in the
positive direction provided that is traversed in the counterclockwise direction and

is traversed in the clockwise direction (so that the region always lies to the left
as the curve is traced).

The region can be divided into two simple regions, and , by means of two
crosscuts, as shown in Figure 10. Applying Green’s Theorem to each of these subre-
gions of , we obtain

where and denote the boundaries of and , respectively. Since the line
integrals along the crosscuts are traversed in opposite directions, they cancel out, and
we have

which is Green’s Theorem for the region . Observe that the second line integral above
is traversed in the clockwise direction.

R

��
R

 
c�Q

�x
�

�P

�y
d dA � �

C1

P dx � Q dy � �
C2

P dx � Q dy � �
C

P dx � Q dy

R2R1�R2�R1

 � ��
�R1

P dx � Q dy � ��
�R2

P dx � Q dy

 ��
R

c�Q

�x
�

�P

�y
d dA � ��

R1

c�Q

�x
�

�P

�y
d dA � ��

R2

c�Q

�x
�

�P

�y
d dA

R

R2R1R

RC2

C1

CC2C1C
R

RC
RCR

0

R2

C2

C1

R1

R

x

y

FIGURE 11
does not enclose the origin.C

x

R

0
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y
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Next, suppose that encloses the origin. Since and are not continuous in the
region enclosed by , Green’s Theorem is not directly applicable. Let be a coun-
terclockwise-oriented circle with center at the origin and radius chosen small enough
so that lies inside . (See Figure 12.) Then both and have continuous partial
derivatives in the annular region bounded by and . Applying Green’s Theorem to
the multiply-connected region with its positively oriented boundary , we
obtain

or, upon reversing the direction of traversal of the second line integral,

Therefore,

Up to this point, we have shown that the required line integral is equal to the line
integral taken over the circle in the counterclockwise direction. To evaluate this inte-
gral, we represent the circle by the parametric equations and ,
where . We obtain0 � t � 2p

y � a sin tx � a cos t
C¿

�
C

P dx � Q dy � �
C¿

P dx � Q dy

�
C

P dx � Q dy � �
C¿

P dx � Q dy � 0

�
C

P dx � Q dy � �
�C¿

P dx � Q dy � ��
R

c�Q

�x
�

�P

�y
d dA � ��

R

0 dA � 0

C � (�C¿)R
C¿C

QPCC¿
a

C¿C
QPC

FIGURE 12
encloses the origin.C

 � �
2p

0
1 dt � 2p

 �
C¿

 �
y

x2 � y2
dx �

x

x2 � y2
dy � �

2p

0
 �

(a sin t)(�a sin t)

(a cos t)2 � (a sin t)2
dt �

(a cos t)(a cos t)

(a cos t)2 � (a sin t)2
dt

xR

a

0

CC�

y

Therefore,

Vector Form of Green’s Theorem
The vector form of Green’s Theorem has two useful versions: one involving the curl
of a vector field and another involving the divergence of a vector field.

Suppose that the curve , the plane region , and the functions and satisfy the
hypothesis of Green’s Theorem. Let be a vector field. Then

Recalling that and are functions of and , we have

Remember that P and Q are
functions of x and y.curl F � § 
 F � ∞

i j k
�

�x

�

�y

�

�z

P Q 0

∞ � a�Q

�x
�

�P

�y
bk

yxQP

�
C

F � T ds � �
C

P dx � Q dy

F � Pi � Q j
QPRC

�
C

 �
y

x2 � y2
dx �

x

x2 � y2
dy � 2p
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so

Therefore, Green’s Theorem can be written in the vector form

(7)

Equation (7) states that the line integral of the tangential component of around
a closed curve is equal to the double integral of the normal component to of 
curl over the region enclosed by .

Next, let the curve be represented by the vector equation ,
. Then the outer unit normal vector to is

which you can verify by showing that , where

is the unit tangent vector to . (See Figure 13.) We have

But by Green’s Theorem,

Observing that the integrand of the last integral is just the divergence of , we obtain
the second vector form of Green’s Theorem:

(8)

Equation (8) states that the line integral of the normal component of around a closed
curve is equal to the double integral of the divergence of over .RFC

F

�
C

F � n ds � ��
R

div F dA

F

 � ��
R

a�P

�x
�

�Q

�y
b dA

 �
C

P dy � Q dx � ��
R

c �

�x
 (P) �

�

�y
 (�Q)d dA

 � �
C

P dy � Q dx

 � �
b

a

P(x(t), y(t))y¿(t) dt � �
b

a

Q(x(t), y(t))x¿(t) dt

 � �
b

a

cP(x(t), y(t))y¿(t)
�r¿(t) � �

Q(x(t), y(t))x¿(t)
�r¿(t) � d �r¿(t) � dt

 �
C

F � n ds � �
b

a

(F � n)(t) �r¿(t) � dt

C

T(t) �
x¿(t)

�r¿(t) � i �
y¿(t)

�r¿(t) � j

n(t) � T(t) � 0

n(t) �
y¿(t)

�r¿(t) � i �
x¿(t)

�r¿(t) � j

Ca � t � b
r(t) � x(t)i � y(t)jC

CRF
RC

F

�
C

F � T ds � ��
R

curl F � k dA

(curl F) � k � a�Q

�x
�

�P

�y
bk � k �

�Q

�x
�

�P

�y

FIGURE 13
is the outer normal vector to .Cn(t)
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1. State Green’s Theorem. 2. Write three line integrals that give the area of a region
bounded by a piecewise smooth curve .C

15.5 CONCEPT QUESTIONS

In Exercises 1–4, evaluate the line integral (a) directly and 
(b) by using Green’s Theorem, where is positively oriented.

1. , where is the square with vertices 

, , , and 

2. , where is the triangle with vertices 

, , and 

3. , where is the boundary of the 

region bounded by the graphs of and lying in
the first quadrant

4. , where is the circle 

In Exercises 5–16, use Green’s Theorem to evaluate the line
integral along the positively oriented closed curve .

5. , where is the triangle with vertices 

, , and 

6. , where is the square with 

vertices 

7. , where is the boundary of the 

region bounded by the graphs of and 

8. , where is the boundary of 

the region bounded by the parabolas and 

9. , where is the 

boundary of the region bounded by the graphs of
and 

10. , where consists of the line segment 

from to and the upper half of the circle
x2 � y2 � 1

(1, 0)(�1, 0)

C�
C

x2y dx � y3 dy

y � 0y � 4 � x2

C�
C

(y2 � cos x) dx � (x � tan�1 y) dy

x � y2y � x2

C�
C

(�y3 � cos x) dx � ey2
dy

y � x2y � x

C�
C

(x2y � x3) dx � 2xy dy

(1, 1)

C�
C

(x2 � y2) dx � 2xy dy

(0, 1)(1 , 1)(0, 0)

C�
C

x3 dx � xy dy

C

x2 � y2 � a2C�
C

2x dx � 3y dy

y � x3y � x

C�
C

y2 dx � (x2 � 2xy) dy

(0, 1)(1, 0)(0, 0)

C�
C

x2 dx � xy dy

(0, 1)(1, 1)(1 , 0)(0, 0)

C�
C

2xy dx � 3xy2 dy

C 11. , where is the astroid 

12. , where is the cardioid 

13. , where is the C�
C

(x � ex sin y) dx � (x � ex cos y) dy

r � 1 � cos u

C�
C

6xy dx � (3x2 � ln(1 � y)) dy

x2>3 � y2>3 � a2>3
C�

C

(x2 � y) dx �21 � y2 dy

15.5 EXERCISES

Videos for selected exercises are available online at www.academic.cengage.com/login.V

ellipse 

14. , where is the right-hand 

loop of the lemniscate 

15. , where is the boundary of the annular 

region formed by circles and 

16. , where is the boundary of C�
C

3x2y dx � (x3 � x) dy

x2 � y2 � 4x2 � y2 � 1

C�
C

(�y dx � x dy)

r 2 � cos 2u

C�
C

 
y

1 � x2 dx � (x � tan�1 x) dy

x2

9
�

y2

4
� 1

the region lying between the ellipse and the 
circle 

17. Use Green’s Theorem to find the work done by the force
in moving a particle in the pos-

itive direction once around the triangle with vertices ,
, and .

18. Use Green’s Theorem to find the work done by the force
in moving a particle once around the 

ellipse in the clockwise direction.

In Exercises 19–22, use one of the formulas on page 1271 to find
the area of the indicated region.

19. The region enclosed by the astroid 

20. The region bounded by an arc of the cycloid
, and the -axis

21. The region enclosed by the curve and

22. The region enclosed by the curve and ,
where 0 � t � 2p

y � 4 sin3 tx � cos t

y � b sin 2t
x � a sin t

xx � a(t � sin t), y � a(1 � cos t)

x2>3 � y2>3 � a2>3

x2

4
�

y2

9
� 1

F(x, y) � 3yi � 2xj

(0, 1)(1, 0)
(0, 0)

F(x, y) � (x2 � y2)i � 2xyj

x2 � y2 � 1

x2

4
�

y2

9
� 1

www.academic.cengage.com/login
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23. a. Plot the curve defined by and
, where .

b. Find the area of the region enclosed by the curve .

24. a. Plot the deltoid defined by and
, where .

b. Find the area of the region enclosed by the deltoid.

25. Swallowtail Catastrophe
a. Plot the swallowtail catastrophe defined by 

and , where .
b. Find the area of the region enclosed by the swallowtail

catastrophe.

26. Refer to the following figure. Suppose that ,

where , and that

for all in the region bounded by 

the circles and , and oriented in a counterclockwise 

direction. Use Green’s Theorem to find .

27. Refer to the figure below. Suppose that and�
C2

F � dr � 2p

0 21�2 x

y

R

C2

C1

�
C1

F � dr

C2C1

R(x, y)a �Q

�x
�

�P

�y
b � 6

F(x, y) � P(x, y)i � Q(x, y)j

�
C2

F � dr � 3p

�1 � t � 1y � 1
2 t 2(3t 2 � 2)

x � 2t(1 � t 2)

0 � t � 2py � 1
4 (2 sin t � sin 2t)

x � 1
4 (2 cos t � cos 2t)

C
0 � t � 1y � t 2(1 � t 3)

x � t(1 � t 2)C 28. Evaluate , where is the

semi-elliptical path from to shown in the figure.
Hint: Use Green’s Theorem, noting that , where is the
straight path from to , is a closed path.

29. Evaluate , where is

the path shown in the figure.
Hint: See the hint in Exercise 28.

30. a. Let be the line segment joining the points and
. Show that .

b. Use the result of part (a) to show that the area of a poly-
gon with vertices , , , (appearing
in the counterclockwise order) is

In Exercises 31 and 32, use the result of Exercise 30 to find the
area of the shaded region.

31. 32.

In Exercises 33 and 34, use the result of Exercise 30 to find the
area of the polygon.

33. Pentagon with vertices , , , , and
.

34. Hexagon with vertices , , , , , and
.(�2, 1)

(0, 3)(2, 4)(4, 1)(3, 0)(0, 0)

(�1, 1)
(1, 3)(3, 1)(2, 0)(0, 0)

543210

2
3

_4

_4

4
5

1

x

y

5432�5
�2

1
0

2
3
4
5

1

x

y

� (xn�1yn � xnyn�1) � (xny1 � x1yn)]

A �
1

2
 [(x1y2 � x2y1) � (x2y3 � x3y2) � p

(xn, yn)p(x2, y2)(x1, y1)

�C �y dx � x dy � x1y2 � x2y1(x2, y2)
(x1, y1)C

543210

2

3

1

x

y

C1 C

B

F A

E

D

ABCDEF

C1�C1
(x2 � 2y) dx � (3x � sinh y) dy

3

B(�3, 0) A(3, 0)

0

2

�3 x

y

C1

C2

(3, 0)(�3, 0)
C2C1 � C2

BA

C1�C1
(x2 � 2y) dx � 14x � ey 22 dy

, where ,F(x, y) � P(x, y)i � Q(x, y)j�
C3

F � dr � 3p

and that for all in the region 

lying inside the curve and outside the curves and .

Use Green’s Theorem to find .

2 3 41�2 �1
�1

1

2

3

�2

�3

�3�4 x

y

R

C1

C3C2

�
C1

F � dr

C3C2C1

R(x, y)a �Q

�x
�

�P

�y
b � 6
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35. Let be a plane region of area bounded by a piecewise-
smooth simple closed curve . Use Green’s Theorem to
show that the centroid of is , where

In Exercises 36 and 37, use the result of Exercise 35 to find the
centroid of the region.

36. The triangle with vertices , , and .

37. The region bounded by the graphs of and .

38. A plane lamina with constant density has the shape of 
a region bounded by a piecewise-smooth simple closed
curve . Show that its moments of inertia about the axes are

39. Use the result of Exercise 38 to find the moment of inertia
of a circular lamina of radius and constant density about
a diameter.

40. Show that if and have continuous derivatives, then

for every piecewise-smooth simple closed curve .

41. Let be a piecewise-smooth simple closed curve that
encloses a region of area . Show that

42. Let be a piecewise-smooth simple closed curve that does
not pass through the origin. Evaluate

(a) where does not enclose the origin and (b) where 
encloses the origin.

43. Let and .

a. Show that , where is the circle

of radius 1 centered at the origin.

b. Verify that .

c. Do parts (a) and (b) contradict each other? Explain.

44. Let be the region bounded by the circles of radius 1 and 3
centered at the origin, and let be the circle of radius 2
centered at the origin described by ,
where . Let

and Q(x, y) �
x

x2 � y2P(x, y) � �
y

x2 � y2

0 � t � 2p
r(t) � 2 cos ti � 2 sin tj

C
R

�P

�y
�

�Q

�x

C�
C

(P dx � Q dy) � 0

Q(x, y) �
x

x2 � y2P(x, y) � �
y

x2 � y2

CC

�
C

 
x

x2 � y2 dx �
y

x2 � y2 dy

C

�
C

(ay � b) dx � (cx � d) dy � (c � a)A

AR
C

C

�
C

f(x) dx � t(y) dy � 0

tf

ra

Iy �
r

3
 �

C

x3 dyIx � �
r

3
 �

C

y3 dx

C

r

y � 9 � x2y � 0

(1, 1)(1, 0)(0, 0)

y � �
1

2A
 �

C

y2 dxx �
1

2A
 �

C

x2 dy

(x, y)R
C

AR
a. Show that in but .

b. Does this contradict Green’s Theorem? Explain.

45. a. Use Green’s Theorem to show that

where is the boundary of the square with vertices
, , , and .

b. Note that

Does this contradict Theorem 4 of Section 15.4?
Explain.

c. Evaluate the line integral of part (a), taking to be the
boundary of the square with vertices , , ,
and .

46. Can Green’s Theorem be applied to evaluate

where is the circle of radius 1 centered at the origin?
Explain.

47. Show that if and have continuous derivatives,
then

where is the rectangular path that is traced in a counter-
clockwise direction with vertices , , ,
and .

48. Refer to the proof of Green’s Theorem. Show that by view-
ing as an -simple region, we have

In Exercises 49–51, determine whether the statement is true or
false. If it is true, explain why. If it is false, explain why or give
an example that shows it is false.

49. If and are constants, then , where 
is a simple closed curve.

50. If is a piecewise-smooth simple closed curve that bounds
a region in the plane, then is
equal to the area of .

51. The work done by the force field on a
particle that moves once around a piecewise-smooth simple
closed curve in a counterclockwise direction is numerically
equal to the area of the region bounded by the curve.

F(x, y) � �1
2 yi � 1

2 xj

R
�C xy2 dx � (x2y � x) dyR

C

C�C a dx � b dy � 0ba

�
C

Q dy � ��
R

 
�Q

�x
dA

xR

(�1, 1)
(1, 1)(1, �1)(�1, �1)

C

�
C

P(y) dx � Q(x) dy � 2CQ(t) � P(t) D t�1

t��1

Q(x)P(y)

C

�
C

 
x

2(x � 2)2 � y2
dx �

y

2(x � 2)2 � y2
dy

(0, 1)
(1, 1)(1, 0)(0, 0)

C

�

�x
 (x4 � ey) �

�

�y
 (cos x � x3y)

(�1, 1)(1, 1)(1, �1)(�1, �1)
C

�
C

(cos x � x3y) dx � (x4 � ey) dy � 0

�
C

P dx � Q dy � 0R
�P

�y
�

�Q

�x
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15.6 Parametric Surfaces

Why We Use Parametric Surfaces
In Chapter 13 we studied surfaces that are graphs of functions of two variables. How-
ever, not every surface is the graph of a function . Consider, for example,
the helicoid shown in Figure 1. Observe that the point in the -plane is associ-
ated with more than one point on the helicoid, so this surface cannot be the graph of
a function .

Just as we found it useful to describe a curve in the plane (and in space) as the
image of a line under a vector-valued function rather than as the graph of a function,
we will now see that a similar situation exists for surfaces. Instead of a single param-
eter, however, we will use two parameters and view a surface in space as the image of
a plane region. More specifically, we have the following.

r

z � f(x, y)

xy(x, y)
z � f(x, y)

FIGURE 1
The helicoid shown here
is not the graph of a
function .z � f(x, y)

4π

(x, y)
1 y

x

z

1

DEFINITION Parametric Surface

Let

be a vector-valued function defined for all points in a region in the 
-plane. The set of all points in satisfying the parametric equa-

tions

, ,

as ranges over is called a parametric surface represented by . The
region is called the parameter domain.D

rSD(u, √)

z � z(u, √)y � y(u, √)x � x(u, √)

R3(x, y, z)u√
D(u, √)

r(u, √) � x(u, √)i � y(u, √)j � z(u, √)k

Thus, as ranges over , the tip of the vector traces out the surface 
(see Figure 2). Put another way, we can think of as mapping each point in 
onto a point , , on in such a way that the plane region is bent,
twisted, stretched, and/or shrunk to yield the surface .S

DSz(u, √))y(u, √)(x(u, √)
D(u, √)r
Sr(u, √)D(u, √)

FIGURE 2
The function maps 

onto the surface .S
Dr

EXAMPLE 1 Identify and sketch the surface represented by

with parameter domain .

Solution The parametric equations for the surface are

, , z � √y � 2 sin ux � 2 cos u

D � {(u, √) � 0 � u � 2p, 0 � √ � 3}

r(u, √) � 2 cos ui � 2 sin uj � √k

x

y

y

z

D

r
S

0

0

(x, y, z)

r(u, √)
(u, √)

x
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There is another way of visualizing the way maps the domain onto a surface
. If we fix by setting , where is a constant, and allow to vary so that the

points lie in , then we obtain a vertical line segment lying in . When
restricted to , the function becomes a function involving one parameter whose
domain is the parameter interval . Therefore, maps onto a curve lying
on (see Figure 4).S

C1L1r(u0, √)L1

√rL1

DL1D(u0, √)
√u0u � u0uS

Dr

FIGURE 3
The function “bends” the rectangular

region into a cylinder.D
r

FIGURE 4
maps onto and onto .C2L2C1L1r

Similarly, by holding fixed, say, , where is a constant, the tip of the result-
ing vector traces the curve as is allowed to assume values in the param-
eter interval . The curves and are called grid curves.

By way of illustration, if we set in Example 1, then both and
are constant. So the vertical line is mapped onto the vertical line

segment , . Similarly, you can verify that a horizontal
line segment in is mapped onto a circle on the cylinder at a height of units
from the -plane.xy

√0D√ � √0

0 � √ � 3(2 cos u0, 2 sin u0, √)
u � u0y � 2 sin u0

x � 2 cos u0u � u0

C2C1L2

uC2r(u, √0)
√0√ � √0√

EXAMPLE 2 Use a computer algebra system (CAS) to generate the surface repre-
sented by

r(u, √) � sin u cos √i � sin u sin √j � cos uk

Eliminating the parameters and in the first two equations, we obtain

Observe that the variable is missing in this equation, so it represents a cylinder with
the -axis as its axis. (See Section 11.6.) Furthermore, the trace in the -plane is a cir-
cle of radius 2, and we conclude that the cylinder is a circular cylinder. Finally, because

, the third equation tells us that . Thus, the required surface
is the truncated cylinder shown in Figure 3.

0 � z � 3z � √0 � √ � 3

xyz
z

x2 � y2 � 4 cos2 u � 4 sin2 u � 4

√u

u

√

y

z

r

3

0
2 2

2π
x

D

3
(x, y, z)

r(u, √)

u y

z

r

0

0

x

C2

C1

L1

L2

r(u0, √)

(u0, √0)√ � √0

u � u0
D

√0

√

u0
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with parameter domain . Identify the curves on
the surface that correspond to the curves with held constant and those with held
constant.

Solution The required surface is the unit sphere centered at the origin. (See Figure 5a.)
You can verify that this is the case by eliminating and in the parametric equations

, ,

to obtain the rectangular equation for the sphere. Fixing ,
where is a constant, leads to the equations

, ,
We have

The system of equations

v
for a fixed lying in or, equivalently, the vector-valued function

represents a circle of radius on the sphere that is parallel to the -plane. Thus,
if we think of the sphere as a globe then the horizontal line segments in the domain of

are mapped onto the latitudinal lines, or parallels. (See Figure 5b.) Similarly, we can
show that the vertical line segments in the domain of with , where is a con-
stant, are mapped by

onto the meridians of longitude—great circles on the surface of the globe passing
through the poles.

r(u, √0) � sin u cos √0i � sin u sin √0 j � cos uk

√0√ � √0r
r

xysin u0

r(u0, √) � sin u0 cos √i � sin u0 sin √j � cos u0k

[0, p]u0

 z � cos u0

 x2 � y2 � sin2 u0

 � sin2 u0(cos2 √ � sin2 √) � sin2 u0

 x2 � y2 � sin2 u0 cos2 √ � sin2 u0 sin2 √

z � cos u0y � sin u0 sin √x � sin u0 cos √

u0

u � u0x2 � y2 � z2 � 1

z � cos uy � sin u sin √x � sin u cos √

√u

√u
D � {(u, √) � 0 � u � p, 0 � √ � 2p}

�1.0
�0.5

0.0
1.0

�1.0
�0.5

0.0
0.5

1.0

�1.0

�0.5

0.0

Meridians (√ � √0)

Parallels (u � u0)
0.5

1.0

0.5

y

x

z

(a) (b)FIGURE 5

Finding Parametric Representations of Surfaces
We now turn our attention to finding vector-valued function representations of surfaces.
We begin by showing that if a surface is the graph of a function , then it has a
simple parametric representation.

f(x, y)
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EXAMPLE 3

a. Find a parametric representation for the graph of a function .
b. Use the result of part (a) to find a parametric representation for the elliptic parab-

oloid .

Solution
a. Suppose that is the graph of defined on a domain in the -plane.

(See Figure 6.) We simply pick and to be the parameters; in other words, we
write the desired parametric equations as

, ,

and take the domain of to be the parameter domain. Equivalently, we obtain the
vector-valued representation by writing

b. The surface is the graph of the function . So we can let and 
be the parameters. Thus, the required parametric equations are

, ,

and the corresponding vector-valued function is

The parameter domain is .D � {(u, √) � �� � u � �, �� � √ � �}

r(u, √) � ui � √j � (4u2 � √2)k

z � 4u2 � √2y � √x � u

yxf(x, y) � 4x2 � y2

r(u, √) � ui � √j � f(u, √)k

f

z � z(u, √) � f(u, √)y � y(u, √) � √x � x(u, √) � u

yx
xyDz � f(x, y)S

z � 4x2 � y2

f(x, y)

FIGURE 6
The vector 
by the rule for vector addition.

r(u, √) � ui � √j � f(u, √)k

EXAMPLE 4 Find a parametric representation for the cone .

Solution The surface is the graph of the function . So we can let
and be the parameters. Thus, the required parametric equations are

, ,

and the corresponding vector-valued function is

The parameter domain is .D � {(u, √) � �� � u � �, �� � √ � �}

r(u, √) �2u2 � √2 i � uj � √k

z � √y � ux �2u2 � √2

zy
f(y, z) �2y2 � z2

x �2y2 � z2

EXAMPLE 5

a. Find a parametric representation of the plane that passes through the point with
position vector and contains two nonparallel vectors and .

b. Using the result of part (a), find a parametric representation of the plane passing
through the point and containing the vectors and

. (This is the plane in Example 6 in Section 11.5.)

Solution
a. Let be a point lying on the plane, and let Since lies in the planeP0P�r � OP�.P

b � �3i � 2j � 3k
a � �2i � 5j � kP0(3, �1, 1)

bar0

P0

determined by and , there exist real numbers and such that .P0P� � ua � √b√uba
(See Figure 7.) Furthermore, we see that . Finally,
since any point on the plane is located at the tip of for an appropriate choice of

and , we see that the required representation is

r(u, √) � r0 � ua � √b

√u
r

r � r0 � P0P� � r0 � ua � √b

y(√)

x(u)

z

S

(x, y)�(u, √)

ui � √j

z � f (x, y) (x, y, f (x, y))

f (u, √)kr(u, √)
0

D

y

x

z

P

√b

ua
r

b

a

O

P0

P0P

r
0

FIGURE 7
r � r0 � P0P� � r0 � ua � √b
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The parameter domain is .
b. The required representation is

with domain .

Note The representation in Example 5b is by no means unique. For example, an 
equation of the plane in question is . (See Example 6 in Section
11.5.) Solving this equation for in terms of and , we obtain 

. Thus, the plane is the graph of the function , and this observation
leads us to the representation

The next two examples involve surfaces that are not graphs of functions.

r(u, √) � ui � √j � a47 � 13u � 3√
11

bk

f1
11 (47 � 13x � 3y)

z � f(x, y) �yxz
13x � 3y � 11z � 47

D � {(u, √) � �� � u � �, �� � √ � �}

 � (�2u � 3√ � 3)i � (5u � 2√ � 1)j � (u � 3√ � 1)k

 r(u, √) � (3i � j � k) � u(�2i � 5j � k) � √(�3i � 2j � 3k)

D � {(u, √) � �� � u � �, �� � √ � �}

EXAMPLE 6 Find a parametric representation for the cone .

Solution The cone has a simple representation in cylindrical coordinates. This
suggests that we choose and as parameters. Writing for and for , we have

, ,

as the required parametric equations. In vector form we have

r(u, √) � u cos √i � u sin √j � uk

z � uy � u sin √x � u cos √

u√ruur
r 2 � z2

x2 � y2 � z2

EXAMPLE 7 Find a parametric representation for the helicoid shown in Figure 1.

Solution Recall that the parametric equations for a helix are

, ,

where and are in cylindrical coordinates. This suggests that we let denote and
denote . Then the parametric equations for the helicoid are

, ,

with parameter domain . In vector form we
have

We now turn our attention to finding the parametric representation for surfaces of
revolution. Suppose that a surface is obtained by revolving the graph of the function

for about the -axis, where . (See Figure 8.) Letting 
denote and denote the angle shown in the figure, we see that if is any point
on , then

, , (1)
or, equivalently,

The parameter domain is .D � {(u, √) � a � u � b, 0 � √ � 2p}

r(u, √) � ui � f(u) cos √j � f(u) sin √k

z � f(u) sin √y � f(u) cos √x � u
S

(x, y, z)√x
uf(x) � 0xa � x � by � f(x)

S

r(u, √) � u cos √i � u sin √j � √k

D � {(u, √) � �1 � u � 1, 0 � √ � 4p}

z � √y � u sin √x � u cos √

u√
ruzu

z � uy � a sin ux � a cos u

FIGURE 8
is obtained by revolving the graph 

of between and about 
the -axis.x

x � bx � af
S

y

x

z

√

a

b
y � f(x)

f(u)
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EXAMPLE 8 Gabriel’s Horn Find a parametric representation for the surface ob-
tained by revolving the graph of , where , about the -axis.

Solution Using Equation (1), we obtain the parametric equations

, ,

with parametric domain . The resulting surface
is a portion of Gabriel’s Horn as shown in Figure 9.

Tangent Planes to Parametric Surfaces
Suppose that is a parametric surface represented by the vector function

and is a point on the surface represented by the vector , where is
a point in the parameter domain of . If we fix by putting and allow to
vary, then the tip of traces the curve lying on . (See Figure 10.) The tan-
gent vector to at is given by

Similarly, by holding fast, , and allowing to vary, the tip of traces
the curve lying on , with tangent vector at given by

If for each in the parameter domain of , then the sur-
face is said to be smooth. For a smooth surface the tangent plane to at is the
plane that contains the tangent vectors and and thus has a normal
vector given by

n � ru(u0, √0) 
 r√(u0, √0)

r√(u0, √0)ru(u0, √0)
P0SS

r(u, √)ru(u, √) 
 r√(u, √) � 0

ru(u0, √0) �
�x

�u
 (u0, √0)i �

�y

�u
 (u0, √0)j �

�z

�u
 (u0, √0)k

P0SC2

r(u, √0)u√ � √0√

r√(u0, √0) �
�x

�√
 (u0, √0)i �

�y

�√
 (u0, √0)j �

�z

�√
 (u0, √0)k

P0C1

SC1r(u0, √)
√u � u0urD

(u0, √0)r(u0, √0)SP0

r(u, √) � x(u, √)i � y(u, √)j � z(u, √)k

S

D � {(u, √) � 1 � u � �, 0 � √ � 2p}

z �
1
u

sin √y �
1
u

cos √x � u

x1 � x � �f(x) � 1>x

FIGURE 9
Gabriel’s Horn

y

z

11

1

x

FIGURE 10
u y

z

r

0

0

x

C2 C1
P0

D

r√(u0, √0)

r(u0, √0)

ru(u0, √0)

n � ru 
 r√

(u0, √0)

u � u0

√ � √0

√0

√

u0

EXAMPLE 9 Find an equation of the tangent plane to the helicoid

of Example 7 at the point where and .√ � p
4u � 1

2

r(u, √) � u cos √i � u sin √j � √k
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Solution We start by finding the partial derivatives of . Thus,

So

A normal vector to the tangent plane is

Since any normal vector will do, let’s take .
Next note that the point in the parameter domain is mapped onto the point

with coordinates

, ,

Therefore, an equation of the required tangent plane at is

or

Area of a Parametric Surface
In Section 14.5, we learned how to find the area of a surface that is the graph of a func-
tion . We now take on the task of finding the areas of parametric surfaces,
which are more general than the surfaces (graphs) defined by functions.

For simplicity, let’s assume that the parametric surface defined by

has parameter domain that is a rectangle. (See Figure 11.) Let be a regular parti-
tion of into subrectangles , , , . The subrectangle is mapped
by onto the patch with area denoted by . Since the subrectangles are nonover-
lapping, except for their common boundaries, so are the patches , and so the area of

is given by

S � a
m

i�1
a

n

j�1
�Sij

S
Sij

Rij�SijSijr
RijRmnpR12R11n � mnR

PR

r(u, √) � x(u, √)i � y(u, √)j � z(u, √)k

S

z � f(x, y)

412x � 412y � 4z � p � 0

 12x � 12y � z �
p

4
� 0

 12 ax �
12

4
b � 12 ay �

12

4
b � 1az �

p

4
b � 0

112
4 , 12

4 , p4 2
z0 �

p

4
y0 �

1

2
sin 
p

4
�
12

4
x0 �

1

2
cos 
p

4
�

1

2
�
12

2
�
12

4

112 , p4 2 n � 12i � 12j � k

n � rua1

2
, 
p

4
b 
 r√a1

2
, 
p

4
b � 5 i j k

12

2

12

2
0

�
12

4

12

4
1

5 � 12

2
 i �

12

2
 j �

1

2
 k

 r√a1

2
, 
p

4
b � �

1

2
�
12

2
 i �

1

2
�
12

2
 j � k � �

12

4
 i �

12

4
 j � k

 rua1

2
, 
p

4
b �

12

2
 i �

12

2
 j

 r√(u, √) � �u sin √i � u cos √j � k

 ru(u, √) � cos √i � sin √j

r
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Next, let’s find an approximation of . Let be the corner of closest to
the origin with image the point represented by as shown in Figure 12. For
the sake of clarity, both and are shown enlarged. The sides of with corner rep-
resented by are approximated by and , where 
and . So may be approximated by the area of the par-
allelogram with and as adjacent sides, that is,

�Sij � �a 
 b �

ba
�Sijb � r(ui, √j � �√) � r(ui, √j)

a � r(ui � �u, √j) � r(ui, √j)bar(ui, √j)
SijSijRij

r(ui, √j)Pij

Rij(ui, √j)�Sij

FIGURE 12

x y

z

r

0

0

x

Rij

Pij

R
S

(ui, √j)

y

Δ√

Δu

Sij

FIGURE 11
The subrectangle is 

mapped onto the patch .Sij

Rij

Sij

Pij

Rij r(ui, √j) a

b

r(ui � Δu, √j)

(ui, √j � Δ√)

(ui, √j)

(ui � Δu, √j � Δ√)

(ui � Δu, √j)

y

z

x

But we can write

If is small, as we assume, then the term inside the brackets is approximately equal
to . So

Similarly, we see that

Therefore,

and the area of may be approximated by

a
m

i�1
a

n

j�1

�ru(ui, √j) 
 r√(ui, √j) � �u �√

S

 � �ru(ui, √j) 
 r√(ui, √j) � �u �√

 �Sij � � [�u ru(ui, √j)] 
 [�√ r√(ui, √j)] �

b � �√ r√(ui, √j)

a � �u ru(ui, √j)

ru(ui, √j)
�u

a � cr(ui � �u, √j) � r(ui, √j)

�u
d �u
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EXAMPLE 10 Find the surface area of a sphere of radius .

Solution The sphere centered at the origin with radius is represented by the equa-
tion

with parameter domain . We find

and so

Therefore

since for . Using Equation (2), the area of the sphere is

 � �
2p

0
C�a2 cos u D u�p

u�0
d√ � �

2p

0
2a2 d√ � 2a2(2p) � 4pa2

 A � ��
D

�ru 
 r√ � dA � �
2p

0
�
p

0
a2 sin u du d√

0 � u � psin u � 0

 � a2 sin u

 �2a4 sin4 u � a4 sin2 u cos2 u �2a4 sin2 u

 �ru 
 r√ � �2a4 sin4 u cos2 √ � a4 sin4 u sin2 √ � a4 sin2 u cos2 u

 � a2 sin2 u cos √i � a2 sin2 u sin √j � a2 sin u cos uk

 ru 
 r√ � †
i j k

a cos u cos √ a cos u sin √ �a sin u

�a sin u sin √ a sin u cos √ 0
†

 r√(u, √) � �a sin u sin √i � a sin u cos √j

 ru(u, √) � a cos u cos √i � a cos u sin √j � a sin uk

D � {(u, √) � 0 � u � p, 0 � √ � 2p}

r(u, √) � a sin u cos √i � a sin u sin √j � a cos uk

a

a

Intuitively, the approximation gets better and better as and get larger and larger.
But the double sum is the Riemann sum of , and we are led to define the area
of as

Alternatively, we have the following definition.

lim
m, n→�

 a
m

i�1
a

n

j�1

�ru(ui, √j) 
 r√(ui, √j) � �u �√

S
�ru 
 r√ �

nm

DEFINITION Surface Area (Parametric Form)

Let be a smooth surface represented by the equation

with parameter domain . If is covered just once as varies throughout
, then the surface area of is

(2)A(S) � ��
D

�ru 
 r√ � dA

SD
(u, √)SD

r(u, √) � x(u, √)i � y(u, √)j � z(u, √)k

S
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1. a. Define a parametric surface.
b. What are the grid curves of a parametric surface?

2. a. What is a smooth surface?
b. Explain how you would find an equation of the tangent

plane to a smooth surface with representation at
the point represented by .r(u0, √0)

r(u, √)

3. Write a double integral giving the area of a surface 
defined by a vector function , where lies in the
parameter domain of .rD

(u, √)r(u, √)
S

15.6 CONCEPT QUESTIONS

EXAMPLE 11 Find the area of one complete turn of the helicoid of width one repre-
sented by the equation with parameter domain

. (Refer to Figure 1.)

Solution We first find

and so

Therefore,

So, the required area is

 � p[12 � ln(1 � 12)] � 7.212

Use Formula 37 from the 
Table of Integrals. � �

2p

0
c1
2

 12 �
1

2
ln(1 � 12)d d√

 � �
2p

0
cu
2

 21 � u2 �
1

2
ln(u �21 � u2)du�1

u�0
d√

 A � ��
D

�ru 
 r√ � dA � �
2p

0
�

1

0
21 � u2 du d√

�ru 
 r√ � �2sin2 √ � cos2 √ � u2 �21 � u2

 � sin √i � cos √j � uk

 � sin √i � cos √j � (u cos2 √ � u sin2 √)k

 ru 
 r√ � †
i j k

cos √ sin √ 0

�u sin √ u cos √ 1
†

 r√ � �u sin √i � u cos √j � k

 ru � cos √i � sin √j

D � {(u, √) � 0 � u � 1, 0 � √ � 2p}
r(u, √) � u cos √i � u sin √j � √k
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In Exercises 1–4, match the equation with one of the graphs
labeled (a)–(d). Give a reason for your choice.

1.

2.

3.

4.

In Exercises 5–8, find an equation in rectangular coordinates,
and then identify and sketch the surface.

5.

6.

7. ,

8.

In Exercises 9–14, use a computer algebra system (CAS) to
graph the surface represented by the vector function.

9. ; ,

10. ; ,

11. ;
,

12. ;
,

13. ; ,
0 � √ � 1

0 � u � 2pr(u, √) � √ cos ui � √ sin uj � √2k

0 � √ � p0 � u � 2p
r(u, √) � √ cos u sin √i � √ sin u sin √j � u cos √k

0 � √ � 2p0 � u � 2p
r(u, √) � cos u sin √i � sin u sin √j � (1 � cos √)k

�2 � √ � 1
0 � u � 1r(u, √) � ui � (√ � 1)j � (√3 � √)k

�1 � √ � 1
�1 � u � 1r(u, √) � (u � √)i � (u � √)j � (u2 � √2)k

r(u, √) � 2 cos √ cos ui � 2 cos √ sin uj � 3 sin √k

0 � √ � 2r(u, √) � 3 sin ui � 2 cos uj � √k

r(u, √) � (u2 � √2)i � uj � √k

r(u, √) � (u � √)i � 3√j � (u � √)k

y

z

(d)

x

z

(c)

y

x

y

x

z

(b)

y

x

(a)

z

r(u, √) � u cos √i � u sin √j � √k

r(u, √) � u cos √i � u sin √j � u2k

r(u, √) � u cos √i � u sin √j � uk

r(u, √) � 2 cos ui � 2 sin uj � √k

14.

;

,
Note: This is a representation for the Möbius strip.

In Exercises 15–22, find a vector representation for the surface.

15. The plane that passes through the point and con-
tains the vectors and 

16. The plane 

17. The lower half of the sphere 

18. The upper half of the ellipsoid 

19. The part of the cylinder between and

20. The part of the cylinder between and

21. The part of the paraboloid inside the cylin-
der 

22. The part of the plane that lies inside the cylinder

In Exercises 23–26, find a vector equation for the surface
obtained by revolving the graph of the function about the indi-
cated axis. Graph the surface.

23. , ; -axis

24. , ; -axis

25. , ; -axis

26. , ; -axis

In Exercises 27–32, find an equation of the tangent plane to the
parametric surface represented by at the specified point.

27. ;

28. ;

29. ; ,

30. ; ,

31. ; ,

32. ; ,

In Exercises 33–40, find the area of the surface.

33. The part of the plane 
; , 0 � √ � 20 � u � 1(2u � 3√ � 1)j � (u � √ � 2)k

r(u, √) � (u � 2√ � 1)i �

√ � 1u � 1r(u, √) � u√i � u ln √j � √k

√ � ln 2u � 0r(u, √) � ue√ i � √euj � u√k

√ �
p

4

u �
p

2
r(u, √) � cos u sin √i � sin u sin √j � cos √k

√ � pu � 1r(u, √) � u cos √i � 2u sin √j � u2k

(2, 5, 1)r(u, √) � ui � (u2 � √2)j � √k

(2, 0, 1)r(u, √) � (u � √)i � (u � √)j � √2k

r

z�p � z � py � cos z

y0 � y � 3x � 9 � y2

x0 � x � 1y � e�x

x0 � x � 4y � 1x

x2 � y2 � 1
z � x � 2

x2 � y2 � 4
z � 9 � x2 � y2

x � 3
x � 09y2 � 4z2 � 36

z � 3
z � �1x2 � y2 � 4

9x2 � 4y2 � 36z2 � 36

x2 � y2 � z2 � 1

2x � 3y � z � 6

i � 2j � k2i � j � k
(2, 1, �3)

�1
2 � √ � 1

20 � u � 2p

� c2 sin u � √ cosau

2
b d j � √ sinau

2
bk

r(u, √) � c2 cos u � √ cosau

2
b d i

15.6 EXERCISES

Videos for selected exercises are available online at www.academic.cengage.com/login.V

cas

www.academic.cengage.com/login
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15.7 Surface Integrals

Surface Integrals of Scalar Fields
As we saw in Section 14.1, the mass of a thin plate lying in a plane region can be
found by evaluating the double integral , where is the mass den-
sity of the plate at any point in . Now, instead of a flat plate, let’s suppose thatR(x, y)

s(x, y)��R s(x, y) dA

45. In Section 5.4 we defined the area of the surface of revolu-
tion obtained by revolving the graph of a nonnegative
smooth function on about the -axis as

Use Equation (1) to derive this formula.

46. If the circle with center at and radius , where
, in the -plane is revolved about the -axis,

we obtain a torus represented parametrically by

with parametric domain ,
. (See the figure below.) Find the surface 

area of the torus.

In Exercises 47 and 48, determine whether the statement is true
or false. If it is true, explain why. If it is false, explain why or
give an example that shows it is false.

47. The surface described by ,
where and , is smooth.

48. If ,
where and , then 

�
p>2

0
�
p>2

0

�ru 
 r√ � du d√ � 2p

0 � √ � p
20 � u � p

2

r(u, √) � 2 sin u cos √i � 2 sin u sin √j � 2 cos uk

0 � √ � 2p�2 � u � 2
r(u, √) � u cos √i � u sin √j � uk

u

(a, 0, 0)

(x, y, z)

x

z

y

0 � √ � 2p}
D � {(u, √) � 0 � u � 2p

 z � b sin √

 y � (a � b cos √)sin u

 x � (a � b cos √)cos u

zxz0 � b � a
b(a, 0, 0)

S � 2p�
b

a

f(x)21 � [ f ¿(x)]2 dx

x[a, b]f

34. The part of the plane that lies above the
rectangular region 

35. The part of the plane that lies inside the
cylinder 

36. The part of the paraboloid 
; ,

37. The part of the cone ;
,

38. The part of the sphere 
that lies in the first octant

39. The surface ;
,

40. The part of the surface ;
,

41. a. Show that the vector equation 
, where and

, represents the ellipsoid 

b. Use a CAS to graph the ellipsoid with , , and
.

c. Use a CAS to find the approximate surface area of the
ellipsoid of part (b).

42. a. Show that the vector equation 
, where and

, represents the astroidal sphere
.

b. Use a CAS to graph the astroidal sphere with .
c. Find the area of the astroidal sphere with .

43. Find the area of the part of the cone that is
cut off by the cylinder .

44. In Section 13.7 we showed that the tangent plane to the
graph of a function at the point is
given by the equation

(See Equation (4) in Section 13.7.) Show that parametrizing
by yields the same tangent

plane.
r(x, y) � xi � yj � f(x, y)kS

z � f(a, b) � fx(a, b)(x � a) � fy(a, b)(y � b)

(a, b, f(a, b))f(x, y)S

x2 � (y � 1)2 � 1
z �2x2 � y2

a � 1
a � 1

x2>3 � y2>3 � z2>3 � a2>30 � √ � 2p
0 � u � pa sin3 u sin3 √j � a cos3 uk

r(u, √) � a sin3 u cos3 √i �

c � 5
b � 4a � 3

x2

a2 �
y2

b2 �
z2

c2 � 1

0 � √ � 2p
0 � u � pb sin u sin √j � c cos uk

r(u, √) � a sin u cos √i �

0 � √ � 20 � u � 1
r(u, √) � u2i � u√j � 1

2 √2k

0 � √ � 2p0 � u � p
r(u, √) � sin u cos √i � sin u sin √j � uk

a sin u sin √j � a cos uk
r(u, √) � a sin u cos √i �

0 � √ � p
21 � u � 2

r(u, √) � u cos √i � u sin √j � uk

0 � √ � 2p0 � u � 3u sin √j � u2k
r(u, √) � u cos √i �

x2 � y2 � 4
z � 8 � 2x � 3y

[1, 2] 
 [1, 3]
2x � 3y � z � 1

cas

cas
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FIGURE 1
A thin plate that takes the shape of 
a surface defined by z � t(x, y)S

Let the mass density of the plate at any point on be , where is a non-
negative continuous function defined on an open region containing , and let 
be a partition of into subrectangles. Corresponding to each subrectangle 

, there is a part of , , that lies directly above with area . Then

(1)

where is the corner of closest to the origin and is the area of . If 
and are large so that the dimensions of are small, then the continuity of and 
implies that does not differ appreciably from . Therefore,
the mass of the part of the plate that lies on and directly above is

Constant mass density surface area

Using Equation (1), we see that the mass of the plate is approximately

The approximation should improve as and approach infinity. This suggests that we
define the mass of the plate to be

Using the definition of the double integral, we see that the required mass, , is

(2)

if we assume that both and are continuous on .
The integral that appears in Equation (2) is a surface integral. More generally,

we can define the surface integral of a function over nonrectangular regions as 
follows.

f

Rtytx

m � ��
S

s(x, y, z) dS � ��
R

s(x, y, t(x, y))2[tx(x, y)]2 � [ty(x, y)]2 � 1 dA

m

lim
n, m→�

 a
m

i�1
a

n

j�1
s(x i, yj, t(x i, yj))2[tx(x i, yj)]

2 � [ty(x i, yj)]
2 � 1 �A

nm

a
m

i�1
a

n

j�1
s(x i, yj, t(x i, yj))2[tx(x i, yj)]

2 � [ty(x i, yj)]
2 � 1 �A

��mij � s(x i, yj, t(x i, yj)) �Sij

RijS
s(x i, yj, t(x i, yj))s(x, y, z)

stRijn
mRij�ARij(x i, yj)

�Sij �2[tx(x i, yj)]
2 � [ty(x i, yj)]

2 � 1 �A

�SijRijSijSRij

N � mnR
P � {Rij}S
ss(x, y, z)S

a

b

c

d

y

x

z

0

S

Sij

Rij

z = t(x, y)

we have a plate that takes the form of a curved surface. How do we determine the mass
of this plate?

For simplicity, let’s suppose that the thin plate has the shape of the surface that
is the graph of a continuous function of two variables defined by . To fur-
ther simplify our discussion, suppose that the domain of is a rectangular region

. A typical surface is shown in Figure 1.R � {(x, y) � a � x � b, c � y � d}
t

z � t(x, y)t

S
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DEFINITION Surface Integral of a Scalar Function

Let be a function of three variables defined in a region in space containing a
surface . The surface integral of over is

��
S

f(x, y, z) dS � lim
n, m→�

 a
m

i�1
a

n

j�1
f(x i, yj, t(x i, yj)) �Sij

SfS
f

We also have the following formulas for evaluating a surface integral depending on
the way is defined.S

THEOREM 1 Evaluation of Surface Integrals
(for Surfaces That Are Graphs)

1. If is defined by and the projection of onto the -plane is 
(Figure 2a), then

(3)

2. If is defined by and the projection of onto the -plane is 
(Figure 2b), then

(4)

3. If is defined by and the projection of onto the -plane is 
(Figure 2c), then

(5)��
S

f(x, y, z) dS � ��
R

f(t(y, z), y, z)2[ty(y, z)]2 � [tz(y, z)]2 � 1 dA

RyzSx � t(y, z)S

��
S

f(x, y, z) dS � ��
R

f(x, t(x, z), z)2[tx(x, z)]2 � [tz(x, z)]2 � 1 dA

RxzSy � t(x, z)S

��
S

f(x, y, z) dS � ��
R

f(x, y, t(x, y))2[tx(x, y)]2 � [ty(x, y)]2 � 1 dA

RxySz � t(x, y)S

FIGURE 2
The surfaces and their projections onto the coordinate planesS

Note If we take , then each of the formulas gives the area of .Sf(x, y, z) � 1

y

x

z

(a)

R

S
z = t (x, y)

y

x

z

(b)

R

R

S

S

y = t (x, z)

x = t (y, z)

y

x

z

(c)

EXAMPLE 1 Evaluate , where is the part of the plane 
that lies in the first octant.

2x � 3y � z � 6S��S x dS
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FIGURE 3

EXAMPLE 2 Find the mass of the surface composed of the part of the paraboloid 

between the planes and if the density at a point on is
inversely proportional to the distance between and the axis of symmetry of .

Solution The surface is shown in Figure 4a, and its projection onto the -plane is
shown in Figure 4b. Using Equation (4) with ,
where is the constant of proportionality and , we have

 � k��
R

(x2 � z2)�1>2 24x2 � 4z2 � 1 dA

 � k��
R

(x2 � z2)�1>2 2(2x)2 � (2z)2 � 1 dA

 � k��
R

(x2 � z2)�1>2 2[tx(x, z)]2 � [tz(x, z)]2 � 1 dA

 m � ��
S

s(x, y, z) dS � ��
S

k(x2 � z2)�1>2 dS

y � t(x, z) � x2 � z2k
f(x, y, z) � s(x, y, z) � k(x2 � z2)�1>2xzS

SP
SPy � 4y � 1y � x2 � z2

S

R

2x � 3y � 6

(a) The surface S (b) The projection R of S onto the xy-plane
      viewed as y-simple

x

y

1 2 3

2

1

R

2x � 3y � z � 6

6

3
2

x

z

y

Solution The plane is shown in Figure 3a, and its projection onto the -plane 
is shown in Figure 3b. Using Equation (3) with and 

, we have

View as -simple.

 � 114 �
3

0
a2x �

2

3
 x2b dx � 114 cx2 �

2

9
 x3d3

0
� 3114

 � 114 �
3

0
Cxy D y�2�(2>3)x

y�0
dx

yR � 114 �
3

0
�

2�(2>3)x

0
x dy dx

 � ��
R

x2(�2)2 � (�3)2 � 1 dA � 114 ��
R

x dA

 ��
S

f(x, y, z) dS � ��
S

x dS � ��
R

x2[tx(x, y)]2 � [ty(x, y)]2 � 1 dA

6 � 2x � 3y
z � t(x, y) �f(x, y, z) � x

xyS
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Changing to polar coordinates, and , we obtain

Parametric Surfaces
If a surface is represented by a vector equation

with parameter domain , then an element of surface area is given by

as we saw in Section 15.6. This leads to the following formula for evaluating a surface
integral in which the surface is defined parametrically.

�ru(u, √) 
 r√(u, √) � dA

D

r(u, √) � x(u, √)i � y(u, √)j � z(u, √)k

S

 � kpc2117 � 15 �
1

2
lna4 � 117

2 � 15
b d

 � kc117 �
1

2
 15 �

1

4
lna4 � 117

2 � 15
b d  �

2p

0
du

Use Formula 37 from
the Table of Integrals.

 � 2k�
2p

0
 c r22r 2 � 1

4 �
1

8
ln ` r �2r 2 � 1

4 ` d
r�2

r�1
du

 m � k�
2p

0
�

2

1
a1

r
b24r 2 � 1 r dr du � 2k�

2p

0
�

2

1
2r 2 � 112 22 dr du

z � r sin ux � r cos u

FIGURE 4

THEOREM 2 Evaluation of Surface Integrals (for Parametric Surfaces)

If is a continuous function in a region that contains a smooth surface with
parametric representation

then the surface integral of over is

(6)

where .f(r(u, √)) � f(x(u, √), y(u, √), z(u, √))

��
S

f(x, y, z) dS � ��
D

f(r(u, √)) �ru 
 r√ � dA

Sf

(u, √) � Dr(u, √) � x(u, √)i � y(u, √)j � z(u, √)k

Sf

z

1
2 4

(a) The surface S (b) The projection R of S onto the xz-plane

R

x

R

y � x2 � z 2

y � 4

y � 1

1 2

y

z

x
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Note You can show that if is the graph of a function , then Equation (3)
follows from Equation (6) by putting . (See Exercise 46.)r(u, √) � ui � √j � t(u, √)k

z � t(x, y)S

EXAMPLE 3 Evaluate , where is the surface represented by 

, where and .

Solution We first find

so

Therefore,

Oriented Surfaces
One of the most important applications of surface integrals involves the computation
of the flux of a vector field across an oriented surface. Before explaining the notion of
flux, however, we need to elaborate on the meaning of orientation.

A surface is orientable or two-sided if it has a unit normal vector that varies
continuously over , that is, if the components of are continuous at each point 
on . Closed surfaces (surfaces that are boundaries of solids) such as spheres are exam-
ples of orientable surfaces. There are two possible choices of for orientable surfaces:
the unit inner normal that points inward from and the unit outer normal that points
outward from (see Figure 5). By convention, however, the positive orientation for
a closed surface is the one for which the unit normal vector points outward from .

An example of a nonorientable surface is the Möbius strip, which can be constructed
by taking a long, rectangular strip of paper, giving it a half-twist, and then taping the short
edges together to produce the surface shown in Figure 6. If you take a unit normal start-
ing at (see Figure 6), then you can move it along the surface in such a way that upon
returning to the starting point (and without crossing any edges), it will point in a direc-
tion precisely opposite to its initial direction. This shows that does not vary continu-
ously on a Möbius strip, and accordingly, the strip is not orientable.

n

P
n

SS
S

S
n

S
(x, y, z)nS

nS

 � 4�
2

0
√ d√ � 2√2 `2

0
� 8

 � 4�
2

0
Cu√ D u�1

u�0
d√

 � 4�
2

0
�

1

0
√ du d√

 ��
S

 
x � y

12z � 1
dS � �

2

0
�

1

0
 
(u � √) � (u � √)

22(u2 � √2) � 1
� 222u2 � 2√2 � 1 du d√

�ru 
 r√ � � 22(u � √)2 � (u � √)2 � 1 � 222u2 � 2√2 � 1

 � 2[(u � √)i � (u � √)j � k]

 ru 
 r√ � †
i j k
1 1 2u

1 �1 2√
†

 r√(u, √) � i � j � 2√k

 ru(u, √) � i � j � 2uk

0 � √ � 20 � u � 1r(u, √) � (u � √)i � (u � √)j � (u2 � √2)k

S��
S

 
x � y

12z � 1
dS

FIGURE 5
Unit inner and outer normals to 
an (orientable) closed surface S

S

–n

n
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Surface Integrals of Vector Fields
Suppose that is a continuous vector field defined in a region in space. We can think
of as giving the velocity of a fluid at a point in , and as a smooth,
oriented surface lying in . If is flat and is a constant field, then the flux, or rate
of flow (volume of fluid crossing per unit time), is equal to

(the normal component of with respect to times the area of ). Geometrically, the
flux is given by the volume of fluid in the prism in Figure 7.

More generally, suppose that is the graph of a function of two variables defined
by , where, for simplicity, we assume that the domain of is a rectangular
region . (See Figure 8.) Let be a parti-
tion of into subrectangles. Corresponding to each subrectangle there is
the part of that lies directly above with area . As in Section 14.5, let be
the corner of closest to the origin, and let be the point directly above
it, as shown in Figure 9. Let denote the unit normal vector to at .
If and are large so that the dimensions of are small, then the continuity of 
implies that does not differ appreciably from on .

Furthermore, the continuity of implies that may be approximated by , the
parallelogram that is part of the tangent plane to at the point lying
directly above . But the flux of across (the flat) is approximately

where is the area of . Since , we see that the flux of across may
be approximated by the sum

This last equality follows upon using Equation (1). We can expect that the approxima-
tion will get better as the partition becomes finer. This observation leads to the fol-
lowing definition.

P

� a
m

i�1
a

n

j�1
F(x i, yj, t(x i, yj)) � nij2[tx(x i, yj)]

2 � [ty(x i, yj)]
2 � 1 �A

a
m

i�1
a

n

j�1
F(x i, yj, t(x i, yj)) � nij �Sij

SF�Tij � �SijTij�Tij

F(x i, yj, t(x i, yj)) � nij(�Tij)

TijFRij

(x i, yj, t(x i, yj))S
TijSijt

RijF(x i, yj, t(x i, yj))F(x, y, z)
FRijnm

(x i, yj, t(x i, yj))Snij

(x i, yj, t(x i, yj))Rij

(x i, yj)�SijRijS
RijN � mnR

P � {Rij}R � {(x, y) � a � x � b, c � y � d}
tz � t(x, y)

S

SSF

F � n A(S)

S
FSR

SR(x, y, z)F(x, y, z)
RF

FIGURE 6
The Möbius strip can be constructed 
by using a rectangular strip of paper.

FIGURE 7
If is flat and is constant, then 
the flux is equal to the volume 
of the prism.

FS

d
d

c

c

P

a
a

b

b

n Start

F • n

n

F

S

FIGURE 8
A smooth surface defined by

for in R(x, y)z � t(x, y)
S

FIGURE 9

z � t (x, y)

a c
d

b

S

x

z

R
y

Sij

Tij

Rij

nij

F

(xi, yj)

(xi, yj, t(xi, yj))

DEFINITION Surface Integral of a Vector Field

Let be a continuous vector field defined in a region containing an oriented sur-
face with unit normal vector . The surface integral of across in the
direction of is

��
S

F � dS � ��
S

F � n dS � lim
m, n→�

 a
m

i�1
a

n

j�1
F(x i, yj, f(x i, yj)) � nij �Sij

n
SFnS

F
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Thus, the surface integral (also called flux integral) of a vector field across an
oriented surface is the integral of the normal component of over . If the fluid has
density at , then the flux integral

gives the mass of the fluid flowing across per unit time.
To obtain a formula for finding the flux integral in terms of , recall from 

Section 13.6 that the normal to the surface is given by , where
. Therefore, the unit normal to is

Furthermore, in Section 14.5 we showed that the “element of area” is given by

so
dS �2[tx(x, y)]2 � [ty(x, y)]2 � 1 dA

dS

n �
§G(x, y, z)

�§G(x, y, z) � �
�tx(x, y)i � ty(x, y)j � k

2[tx(x, y)]2 � [ty(x, y)]2 � 1

SG(x, y, z) � z � t(x, y)
§Gz � t(x, y)

t(x, y)
S

��
S

rF � n dS

(x, y, z)r(x, y, z)
SFS

F

 � ��
D

F � [�tx(x, y)i � ty(x, y)j � k] dA

 ��
S

F � n dS � ��
D

 
F � [�tx(x, y)i � ty(x, y)j � k]

2[tx(x, y)]2 � [ty(x, y)]2 � 1
�2[tx(x, y)]2 � [ty(x, y)]2 � 1 dA

where is the projection of onto the -plane.
If , then we can write

��
S

F � n dS � ��
D

(�Ptx � Qty � R) dA

F(x, y, z) � P(x, y, z)i � Q(x, y, z)j � R(x, y, z)k
xySD

THEOREM 3 Evaluation of Surface Integrals (for Graphs)

If is a continuous vector field in a region that contains a
smooth oriented surface given by and is its projection onto the

-plane, then

(7)��
S

F � dS � ��
D

(�Ptx � Qty � R) dA

xy
Dz � t(x, y)S

F � Pi � Q j � Rk

Before looking at the next example, we note the following property of surface inte-
grals: If , where each of the surfaces is smooth and intersect
only along their boundaries, then

��
S

F � dS � ��
S1

F � dS � p � ��
Sn

F � dS

S � S1 � S2 � p � Sn

EXAMPLE 4 Evaluate , where and is the sur-SF(x, y, z) � xi � yj � zk��S F � dS
face that is composed of the part of the paraboloid lying above the

-plane and the disk .D � {(x, y) � 0 � x2 � y2 � 1}xy
z � 1 � x2 � y2
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Solution The (closed) surface together with a few vectors from the vector field 
is shown in Figure 10. Writing the equation of the surface in the form t(x, y) �S1

FS

, we find that and . Observe that the projection of ontoSty � �2ytx � �2x1 � x2 � y2

the -plane is . Also, , and
. So using Equation (7), we obtain

Use polar coordinates.

Next, observe that the normal for the surface is . (Remember that the nor-
mal for a closed surface, by convention, points outward.) So we have

because on . Therefore,

Notes
1. If the vector field of Example 4 describes the velocity of a fluid flowing

through the paraboloidal surface , then the integral that we have
just evaluated tells us that the fluid is flowing out through at the rate of 
cubic units per unit time.

2. In Example 4, if we had wanted the paraboloid to be oriented so that the normal
pointed downward, then we would simply have picked the normal to be . In
this case the fluid flows into at the rate of cubic units per unit time.

Parametric Surfaces
If an oriented surface is a smooth surface represented by a vector equation

r(u, √) � x(u, √)i � y(u, √)j � z(u, √)k

S

3p>2S
�n

3p>2S
��S F � n dSS

F

��
S

F � dS � ��
S1

F � dS � ��
S2

F � dS �
3

2
 p � 0 �

3p

2

S2z � 0

��
S2

F � dS � ��
S2

F � (�k) dS � ��
D

(�z) dA � ��
D

0 dA � 0

n � �kS2

 � �
2p

0
c1
2

 r 2 �
1

4
 r 4dr�1

r�0
du � �

2p

0
 
3

4
 du �

3

2
 p

 � �
2p

0
�

1

0
(1 � r 2)r dr du

 � ��
D

(1 � x2 � y2) dA

z � 1 � x2 � y2 � ��
D

[2x2 � 2y2 � (1 � x2 � y2)] dA

 � ��
D

(2x2 � 2y2 � z) dA

 � ��
D

[�x(�2x) � y(�2y) � z] dA

 ��
S 1

F � dS � ��
D

(�Ptx � Qty � R) dA

R(x, y, z) � z
P(x, y, z) � x, Q(x, y, z) � yD � {(x, y) � 0 � x2 � y2 � 1}xy

FIGURE 10
The part of the paraboloid

that lies above 
the -plane and is oriented so that 
the unit normal vector points 
upward. The unit normal for the 
disk points downward.D � S2

n
xy

z � 1 � x2 � y2

z = 1 – x2 – y2

S1

S2

y

x

z



15.7 Surface Integrals 1299

with parameter domain , then the normal to is

Therefore,

 � ��
D

F(r(u, √)) � (ru 
 r√) dA

 � ��
D

cF(r(u, √)) �
ru 
 r√

�ru 
 r√ � d �ru 
 r√ � dA

 ��
S

F � dS � ��
S

F � n dS � ��
S

F �
ru 
 r√

�ru 
 r√ � dS

n �
ru 
 r√

�ru 
 r√ �

SD

THEOREM 4 Evaluation of Surface Integrals of a Vector Field
(for Parametric Surfaces)

If is a continuous vector field in a region that contains a smooth, oriented sur-
face with parametric representation

then the surface integral of over is

(8)

where

F(r(u, √)) � F(x(u, √), y(u, √), z(u, √))

��
S

F � dS � ��
D

F(r(u, √)) � (ru 
 r√) dA

Sf

(u, √) � Dr(u, √) � x(u, √)i � y(u, √)j � z(u, √)k

S
F

EXAMPLE 5 Find the flux of the vector field across the

unit sphere .

Solution The unit sphere has parametric representation

with parameter domain . Proceeding as in
Example 10 in Section 15.6 and taking , we find

Therefore,

 � 2(sin3 u sin √ cos √ � cos2 u sin u)

 � sin3 u sin √ cos √ � sin3 u cos √ sin √ � 2 cos2 u sin u

 � (sin2 u cos √i � sin2 u sin √j � sin u cos uk)

 F(r(u, √)) � (ru 
 r√) � (sin u sin √i � sin u cos √j � 2 cos uk)

ru 
 r√ � sin2 u cos √i � sin2 u sin √j � sin u cos uk

a � 1
D � {(u, √) � 0 � u � p, 0 � √ � 2p}

r(u, √) � sin u cos √i � sin u sin √j � cos uk

x2 � y2 � z2 � 1

F(x, y, z) � yi � xj � 2zk
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Using Equation (8), the flux across the sphere is

The first term on the right is equal to zero because

so

We have used an example involving fluid flow to illustrate the concept of the sur-
face integral of a vector field. But these integrals have wider applications in the phys-
ical sciences. For example, if is the electric field induced by an electric charge of 
coulombs located at the origin of a three-dimensional coordinate system, then by
Coulomb’s Law (Example 4 in Section 15.1),

where is a constant called the permittivity of free space. If is a sphere of radius 
centered at the origin, then the surface integral

is the flux of passing through .
Yet another application of surface integrals can be found in the study of heat flow.

Suppose that the temperature at a point in a homogeneous body is .
Empirical results suggest that heat will flow from points at higher temperatures to those
at lower temperatures. Since the temperature gradient points in the direction of
maximum increase of the temperature, we see that the flow of heat can be described
by the vector field

where is a constant of proportionality known as the thermal conductivity of the body.
The rate at which heat flows across a surface in the body is given by the surface 
integral

��
S

q � n dS � �k��
S

§T � n dS

S
k

q � �k§T

§T

T(x, y, z)(x, y, z)

SE

��
S

E � n dS

rSe0

E �
q

4pe0
�

r
�r �3

qE

 �
8p

3

 � 2a�1

3
cos3 ub `p

0
� 2p

 ��
S

F � dS � 2�
p

0
cos2 u sin u du �

2p

0
d√

�
2p

0
sin √ cos √ d√ �

1

2
sin2 √ `2p

0
� 0

 � 2�
p

0
sin3 u du�

2p

0
sin √ cos √ d√ � 2�

p

0
cos2 u sin u du�

2p

0
d√

 � 2�
2p

0
�
p

0
(sin3 u sin √ cos √ � cos2 u sin u) du d√

 ��
S

F � dS � ��
D

F(r(u, √)) � (ru 
 r√) dA

CHARLES-AUGUSTIN DE COULOMB
(1736–1806)

Born to a wealthy family, Charles-Augustin
de Coulomb spent his early years in
Angoulême in southwestern France. His
family later moved to Paris, where he
attended good schools and received a solid
education. In 1760, Coulomb entered the
two-year military engineering program at
the Ecole de Genie at Mézières. At the con-
clusion of those studies, he was commis-
sioned as a second lieutenant in the
infantry, where he served in the engineer-
ing corps. For the next twenty years
Coulomb served in a variety of posts and
was involved in a wide range of military
engineering projects. From 1764 to 1772
Coulomb was put in charge of constructing
the new Fort Bourbon in Martinique in the
West Indies. Upon his return to France, he
started writing works on applied mechan-
ics, and he began publishing important
works in 1773. This period culminated with
his work on friction, Theorie des machines
simples, which won him a prize in 1781. This
recognition changed the direction of his
life. He was elected to the mechanics sec-
tion of the Academie des Sciences, and he
focused on his work as a physicist instead
of engineering. Between 1785 and 1791 he
wrote seven important treatises on elec-
tricity and magnetism, in which he devel-
oped the theory of attraction and repul-
sion between electrical charges that is now
known as Coulomb’s Law.

Historical Biography

Be
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EXAMPLE 6 Rate of Flow of Heat Across a Sphere The temperature at a point
in a medium with thermal conductivity is inversely proportional to the dis-

tance between and the origin. Find the rate of flow of heat across a sphere of radius
, centered at the origin.

Solution We have

where is the constant of proportionality. Then the flow of heat isc

T(x, y, z) �
c

2x2 � y2 � z2

a
SP

kP(x, y, z)

 �
ck

(x2 � y2 � z2)3>2 (xi � yj � zk)

 q � �k§T � �kc� cx

(x2 � y2 � z2)3>2 i �
cy

(x2 � y2 � z2)3>2 j �
cz

(x2 � y2 � z2)3>2 kd

The outward unit normal to the sphere at the point is

So the rate at which heat flows across is

Since on 

 �
ck

a2
 A(S) �

ck

a2
 (4pa2) � 4pck

Sx2 � y2 � z2 � a2 �
ck

a2
 ��

S

dS

 �
ck

a
 ��

S

 
1

2x2 � y2 � z2
dS

 ��
S

q � n dS � ��
S

 
ck

(x2 � y2 � z2)3>2 (xi � yj � zk) � c1
a

 (xi � yj � zk)d dS

S

n �
1
a

 (xi � yj � zk)

(x, y, z)x2 � y2 � z2 � a2

1. a. Define the surface integral of a scalar function over a
surface that is the graph of a function .

b. How do you evaluate the integral of part (a)?
c. How do you evaluate the surface integral if the surface is

represented by a vector function ?
2. What is an orientable surface? Give an example of a surface

that is not orientable.

r(u, √)

z � f(x, y)
f 3. a. Define the surface (flux) integral of a vector field over

an oriented surface with a unit normal .
b. How do you evaluate the surface integral if the surface is

the graph of a function ?
c. How do you evaluate the surface integral if the surface is

represented by the vector function ?r(u, √)

z � t(x, y)

nS
F

15.7 CONCEPT QUESTIONS

In Exercises 1–14, evaluate .

1. ; is the part of the plane
in the first octant3x � 2y � z � 6

Sf(x, y, z) � x � y

��S f(x, y, z) dS 2. ; is the part of the plane 
in the first octant2x � 3y � z � 6

Sf(x, y, z) � xy

15.7 EXERCISES

Videos for selected exercises are available online at www.academic.cengage.com/login.V

www.academic.cengage.com/login
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3. ; is the part of the surface 
above the rectangular region

4. ; is the part of the surface 
to the right of the square region

5. ; is the part of the plane
inside the cylinder 

6. ; is the part of the plane 
inside the cylinder 

7. ; is the part of the cone 
inside the cylinder 

8. ; is the part of the cone

between the planes and 

9. ; is the part of the cylinder 
in the first octant between and 

10. ; is the hemisphere 

11. ; is the surface with 

vector representation ,

12. ; is the surface with vector representation

13. ; is the helicoid with vector
representation ,

14. ; is the part of the torus with vector 
representation 

,

In Exercises 15–18, find the mass of the surface having the
given mass density.

15. is the part of the plane in the first
octant; the density at a point on is directly proportional
to the square of the distance between and the -plane.

16. is the part of the paraboloid between the
planes and ; the density at a point on is
directly proportional to the distance between and the axis
of symmetry of .

17. is the hemisphere , ; the density at
a point on is directly proportional to the distance
between and the -plane.

18. is the part of the sphere that lies above

the cone ; the density at a point on is 
directly proportional to the distance between and the 

-plane.xy
P

SPz �2x2 � y2

x2 � y2 � z2 � 1S

xyP
SP

z � 0x2 � y2 � z2 � 4S

S
P

SPz � 4z � 1
z � x2 � y2S

yzP
SP

x � 2y � 3z � 6S

S

0 � u � 2p, 0 � √ � p
2(a � b cos √)sin uj � b sin √k

r(u, √) � (a � b cos √)cos ui �
Sf(x, y, z) � z

0 � u � 1, 0 � √ � 2p
r(u, √) � u cos √i � u sin √j � √k

Sf(x, y, z) � z21 � x2 � y2

r(u, √) � u sin √i � u cos √j � u2k, 0 � u � 1, 0 � √ � p
2

Sf(x, y, z) � x � z

0 � u � 1, �1 � √ � 1
r(u, √) � ui � √j � (√2 � 1)k

Sf(x, y, z) � x �
y

14z � 5

z �29 � x2 � y2Sf(x, y, z) � z2

z � 4z � 0
x2 � y2 � 4Sf(x, y, z) � xyz

x � 4x � 1x �2y2 � z2

Sf(x, y, z) � x � 2y � 3z

x2 � y2 � 1
z �2x2 � y2Sf(x, y, z) � x2z

x2 � y2 � 4
y � z � 4Sf(x, y, z) � xz

x2 � y2 � 1y � z � 4
Sf(x, y, z) � x � 2y � z

R � {(x, z) � 0 � x � 1, 0 � z � 1}
y � x2 � 2z

Sf(x, y, z) � xz2

R � {(x, y) � 0 � x � 2, 0 � y � 1}

In Exercises 19–28, evaluate , that is, find the flux of
across . If is closed, use the positive (outward) orientation.

19. ; is the part of the paraboloid
above the -plane; points upward

20. ; is the part of the parabo-
loid between the planes and ; 

points downward

21. ; is the part of the plane
in the first octant; points upward

22. ; is the part of the plane
in the first octant; points upward

23. ; is the hemisphere

; points upward

24. ; is the hemisphere

; points upward
Hint: First evaluate , where is the part of the hemi-

sphere inside the cylinder , where 
. Then take the limit as .

25. ; is the part of the cone

inside the cylinder ; points 
upward

26. ; is the part of the cone

inside the cylinder ; points 
to the right

27. ; is the boundary of the
cylindrical solid bounded by , , and 

28. ; is the surface of the tetra-
hedron with vertices , , , and

In Exercises 29 and 30, a thin sheet has the shape of the surface
S. If its density (mass per unit area) at the point is

, then its center of mass is , where

, ,

and is the mass of the sheet. Find the center of mass of the
sheet.

29. is the upper hemisphere , ,
, where is a constant.

30. is the part of the paraboloid , ,
, where is a constant.kr(x, y, z) � k

z � 0z � 4 � 1
2 x2 � 1

2 y2S

kr(x, y, z) � k
z � 0x2 � y2 � z2 � a2S

m

z �
1
m

 ��
S

zr(x, y, z) dS

y �
1
m

 ��
S

yr(x, y, z) dSx �
1
m

 ��
S

xr(x, y, z) dS

(x, y, z)r(x, y, z)
(x, y, z)

(0, 0, 3)
(0, 2, 0)(1, 0, 0)(0, 0, 0)

SF(x, y, z) � x2i � xyj � xzk

z � 3z � 0x2 � y2 � 9
SF(x, y, z) � y3i � x2j � zk

nx2 � z2 � 1y �2x2 � z2

SF(x, y, z) � xi � 2yj � zk

nx2 � y2 � 1z �2x2 � y2

SF(x, y, z) � 2i � 3j � k

a → 3�0 � a � 3
x2 � y2 � a2z �29 � x2 � y2

S��S
– F � n dS

nz �29 � x2 � y2

SF(x, y, z) � xi � yj � zk

nz �24 � x2 � y2

SF(x, y, z) � �yi � xj � 2zk

n2x � 3y � 6z � 12
SF(x, y, z) � 6zi � 2xj � yk

n3x � 2y � z � 6
SF(x, y, z) � xi � yj � zk

n
z � 4z � 0z � x2 � y2

SF(x, y, z) � 3xi � 3yj � 2k

nxyz � 4 � x2 � y2
SF(x, y, z) � 2xi � 2yj � zk

SSF
��S F � dS
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In Exercises 31 and 32, a thin sheet has the shape of a surface 
. If its density (mass per unit area) at the point is

, then its moment of inertia about the -axis is
.

31. Show that the moment of inertia of a spherical shell of uni-
form density about its diameter is , where is its mass
and is its radius.

32. Find the moment of inertia of the conical shell ,
where , if it has constant density .

In Exercises 33 and 34 the electric charge density at a point
on is , and the total charge on is given 

by .

33. Electric Charge Find the total charge on the part of the plane
in the first octant if the charge density at a

point on the surface is directly proportional to the square
of the distance between and the -plane.

34. Electric Charge Find the total charge on the part of the hemi-

sphere that lies directly above the
plane region if the charge density
at a point on the surface is directly proportional to the
square of the distance between and the -plane.

35. Flow of a Fluid The flow of a fluid is described by the vector
field . Find the rate of flow of
the fluid upward through the surface that is the part of the
plane in the first octant.

36. Flow of a Liquid The flow of a liquid is described by the vec-
tor field . If the mass density of
the fluid is 1000 (in appropriate units), find the rate of flow
(mass per unit time) upward of the liquid through the sur-
face that is part of the paraboloid above
the -plane.
Hint: The flux is , where is the mass density function.

37. Rate of Flow of Heat The temperature at a point in a
homogeneous body with thermal conductivity is

. Find the rate of flow of heat across 
the cylindrical surface between the planes

and .

38. Rate of Flow of Heat The temperature at a point in a
medium with thermal conductivity is proportional to the
square of the distance between and the origin. Find the
rate of flow of heat across a sphere of radius , centered 
at the origin.

39. a. Suppose that is a continuous vector
field in a region that contains a smooth oriented surface 
given by and is its projection onto the Dy � t(x, z)

S
F � Pi � Qj � Rk

aS
P

k
P(x, y, z)

z � 1z � 0
x2 � y2 � 1

T(x, y, z) � x2 � y2
k � 5
(x, y, z)

r��S rF � n dS
xy

z � 9 � x2 � y2S

F(x, y, z) � xi � yj � 3zk

2x � 3y � z � 6
S

F(x, y, z) � 2xi � 2yj � 3zk

xyP
P

R � {(x, y) � x2 � y2 � 9}
z �225 � x2 � y2

xyP
P

2x � 3y � z � 6

Q � ��S s(x, y, z) dS
Ss(x, y, z)S(x, y, z)

k0 � z � 2
z2 � x2 � y2

a
m2

3 ma2

Iz � ��S (x2 � y2)r(x, y, z) dS
zr(x, y, z)

(x, y, z)S
-plane. Write a double integral similar to Equation (7)

that gives .
b. Use the result of part (a) to evaluate , where��S F � dS

��S F � dS
xz

and is the part of the
cylinder that lies in the first octant between

and and oriented away from the origin.

40. Flux of an Electric Field Find the flux of the electric field 

across the sphere . Is the 

flux independent of the radius of the sphere? Give a physical
interpretation.

41. Suppose that the density at each point of a thin spherical
shell of radius is proportional to the (linear) distance from
the point to a fixed point on the sphere. Find the total mass
of the shell.

42. Mass of a Ramp Suppose that the density at each point 
of a spiral ramp represented by the vector equation

, where and
, is proportional to the distance of the point

from the central axis of the ramp. What is the total mass of
the ramp?

43. Suppose that is a nonnegative real-valued function defined
on the interval and has a continuous derivative in

. Show that the area of the surface of revolution 
obtained by revolving the graph of about the -axis is
given by

Hint: First find a parametric representation of (see Section 15.6).

44. Find the flux of out of a unit
cube .
Hint: The flux out of the cube is the sum of the fluxes across the
sides of the cube.

Four of the six unit normal vectors are shown.
x

z

y

T � {(x, y, z) � 0 � x � 1, 0 � y � 1, 0 � z � 1}
F(x, y, z) � 2xzi � yzj � z2k

S

2p�
b

a

f(x)21 � [ f ¿(x)]2 dx

xf
S(a, b)

f[a, b]
f

0 � √ � 6p
0 � u � 3r(u, √) � u cos √i � u sin √j � √k

R

x2 � y2 � z2 � a2E �
q

4pe0
 

r
�r �3

z � 3z � 0
x2 � y2 � 4

SF(x, y, z) � yi � z j � 3yz2k
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45. a. Let be a function of three variables defined on a region
in space containing a surface . Suppose that is the
graph of the function that is represented
implicitly by the equation , where is 
differentiable. Show that

where is the projection of onto the -plane.
b. Re-solve Example 1 using the result of part (a).

46. Show that if the surface is the graph of a function
, then Equation (3) follows from Equation (6) 

by putting .r(u, √) � ui � √j � t(u, √)k
z � t(x, y)

S

xySD

��
S

f(x, y, z) dS � ��
D

  
f 2F2

x � F2
y � F2

z

�Fz � dA

FF(x, y, z) � 0
z � t(x, y)

SS
f 47. Let and be continuous vector fields defined on a

smooth, oriented surface . If and are constants,
show that

In Exercises 48 and 49, determine whether the statement is true
or false. If it is true, explain why. If it is false, explain why or
give an example that shows it is false.

48. If , then , where is the
area of .

49. If is a constant vector field and is a sphere, then
.��S F � dS � 0

SF

S
A(S)��S f dS � A(S)f(x, y, z) � 0

��
S

(aF � bG) � dS � a��
S

F � dS � b��
S

F � dS

baS
GF

15.8 The Divergence Theorem

Recall that Green’s Theorem can be written in the form

Equation (8) in Section 15.5

where is a vector field in the plane, is an oriented, piecewise-smooth, simple closed
curve that bounds a region , and is the outer normal vector to . The theorem states
that the line integral of the normal component of a vector field in two-dimensional
space around a simple closed curve is equal to the double integral of the divergence of
the vector field over the plane region bounded by the curve.

The Divergence Theorem
The Divergence Theorem generalizes this result to the case involving vector fields in
three-dimensional space. This theorem, also called Gauss’s Theorem in honor of the
German mathematician Karl Friedrich Gauss (1777–1855), relates the surface integral
of the normal component of a vector field in three-dimensional space over a closed
surface to the triple integral of the divergence of over the solid region bounded
by .

Although the Divergence Theorem is true for very general surfaces, we will restrict
our attention to the case in which the solid regions are simultaneously -, -, and 
-simple. These regions are called simple solid regions. Examples are regions bounded

by spheres, ellipsoids, cubes, and tetrahedrons.
z

yxT

S
TFS

F

CnR
CF

�
C

 F � n ds � ��
R

div F dA

THEOREM 1 The Divergence Theorem

Let be a simple solid region bounded by a closed piecewise-smooth surface 
, and let be the unit outer normal to . If is a vector

field, where , , and have continuous partial derivatives on an open region
containing , then

(1)��
S

F � dS � ��
S

F � n dS � ���
T

div F dV

T
RQP

F � Pi � Qj � RkSnS
T
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In words, the surface integral of the normal component of over a closed surface 
is equal to the volume integral of the divergence of over the solid bounded by .

PROOF Recall that if , then

Therefore, the right-hand side of Equation (1) takes the form

Next, if is the unit outer normal vector to , then the left-hand side of Equation (1)
assumes the form

By equating the last two expressions, we see that the Divergence Theorem will be
proved if we can show that

(2)

(3)

and

(4)

PROOF OF EQUATION (4) Because is -simple, it can be described by the set

where is the projection of onto the -plane, and and are continuous func-
tions of and . (See Figure 1.) Using Equation (4) in Section 14.6, we obtain

(5)

that gives an alternative expression for the right-hand side of Equation (4).
Next, observe that the boundary of may consist of up to six surfaces (Figure 1).

On each of the vertical sides, , so

��
S3

Rk � n dS � ��
S4

Rk � n dS � ��
S5

Rk � n dS � ��
S6

Rk � n dS � 0

k � n � 0
T

 � ��
D

[R(x, y, k2(x, y)) � R(x, y, k1(x, y))] dA

 ���
T

 
�R

�z
dV � ��

D

c�
k2(x, y)

k1(x, y)
 
�R

�z
dzd dA

yx
k2k1xyTD

T � {(x, y, z) � (x, y) � D, k1(x, y) � z � k2(x, y)}

zT

��
S

Rk � n dS � ���
T

 
�R

�z
dV

��
S

Qj � n dS � ���
T

 
�Q

�y
dV

��
S

Pi � n dS � ���
T

 
�P

�x
dV

 � ��
S

Pi � n dS � ��
S

Qj � n dS � ��
S

Rk � n dS

 ��
S

F � n dS � ��
S

(Pi � Qj � Rk) � n dS

Sn

���
T

div F dV � ���
T

 
�P

�x
dV � ���

T

 
�Q

�y
dV � ���

T

 
�R

�z
dV

§ � F �
�P

�x
�

�Q

�y
�

�R

�z

F � Pi � Qj � Rk

STF
SF

S2: z � k2(x , y)

S1: z � k1(x , y)

S3

S4
S5

S6

yx

z

D

FIGURE 1
viewed as a -simple regionzT
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Therefore,

(6)

To evaluate the integrals on the right-hand side of Equation (6), observe that the outer
normal points downward on . Writing , we find

Therefore, using Equation (6), we obtain

n � �
§t1(x, y, z)

� §t1(x, y, z) � �

�k1

�x
 i �

�k1

�y
 j � k

B a
�k1

�x
b2

� a�k1

�y
b2

� 1

t1(x, y, z) � z � k1(x, y)S1n

��
S

Rk � n dS � ��
S1

Rk � n dS � ��
S2

Rk � n dS

 � ���
D

R(x, y, k1(x, y)) dA

 ��
S1

Rk � n dS � ��
D

R(x, y, k1(x, y)) �
�1

B a
�k1

�x
b2

� a�k1

�y
b2

� 1
B a

�k1

�x
b2

� a�k1

�y
b2

� 1 dA

On the outer normal points upward. Writing , we see that

so

n �
§t2(x, y, z)

� §t2(x, y, z) � �

�
�k2

�x
 i �

�k2

�y
 j � k

B a
�k2

�x
b2

� a�k2

�y
b2

� 1

t2(x, y, z) � z � k2(x, y)nS2

 � ��
D

R(x, y, k2(x, y)) dA

 ��
S2

Rk � n dS � ��
D

R(x, y, k2(x, y)) �
1

B a
�k2

�x
b2

� a�k2

�y
b2

� 1
B a

�k2

�x
b2

� a�k2

�y
b2

� 1 dA

Therefore, Equation (6) becomes

Comparing this with Equation (5), we have

so Equation (4) is established. Equations (2) and (3) are proved in a similar manner by
viewing as -simple and -simple, respectively.yxR

��
S

Rk � n dS � ���
T

 
�R

�z
dV

��
S

Rk � n dS � ��
D

[R(x, y, k2(x, y)) � R(x, y, k1(x, y))] dA

EXAMPLE 1 Compute given that

and is the unit sphere .x2 � y2 � z2 � 1S

F(x, y, z) � (x � sin z)i � (2y � cos x)j � (3z � tan y)k

��S F � n dS
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EXAMPLE 2 Let be the solid bounded by the cylinder and the planes
and , and let be the surface of . Calculate the outward flux of the vec-

tor field over .

Solution The surface is shown in Figure 2. The flux of over is given by
, which by the Divergence Theorem can also be found by evaluating

. Now

Therefore,

Using cylindrical coordinates to evaluate the triple integral, we have

 � �
2p

0
30 du � 60p

 � �
2p

0
�

2

0
(3r 3 � 9r) dr du � �

2p

0
c3
4

 r 4 �
9

2
 r 2dr�2

r�0
du

 � �
2p

0
�

2

0
cr 3z �

1

3
 rz3dz�3

z�0
dr du

 ��
S

F � n dS � �
2p

0
�

2

0
�

3

0
(r 2 � z2)r dz dr du

��
S

F � n dS � ���
T

div F dV � ���
T

(x2 � y2 � z2) dV

div F �
�

�x
 (xy2) �

�

�y
 (yz2) �

�

�z
 (zx2) � y2 � z2 � x2

���T § � F dV
��S F � n dS

SFS

SF(x, y, z) � xy2i � yz2j � zx2k
TSz � 3z � 0

x2 � y2 � 4T

Solution To evaluate the integral directly would be a difficult task. Applying the Diver-
gence Theorem, we have

But

and the solid is the unit ball bounded by the unit sphere . There-
fore,

��
S

F � n dS � ���
B

§ � F dV � ���
B

6 dV � 6V(B) � 6 c4
3

 p(1)3d � 8p

x2 � y2 � z2 � 1BT

§ � F �
�

�x
 (x � sin z) �

�

�y
 (2y � cos x) �

�

�z
 (3z � tan y) � 1 � 2 � 3 � 6

��
S

F � n dS � ���
T

div F dV

FIGURE 2
The surface and some of the outer
normals to S

S

2 2

n

n

x2 � y2 � 4

z � 3

3

n

–2

z

y

x

EXAMPLE 3 Let be the region bounded by the parabolic cylinder and
the planes , , and , and let be the surface of . If 

, find .

Solution The surface is shown in Figure 3. We first compute

§ � F �
�

�x
 (xy2) �

�

�y
a1

3
 y3 � cos xzb �

�

�z
 (xey) � y2 � y2 � 2y2

S

��S F � n dSxy2i � 113 y3 � cos xz 2 j � xeyk
F(x, y, z) �TSx � z � 2x � 0z � 0

z � 1 � y2T

FIGURE 3
The surface and some of the outer
normals to S

S

2

1

n

n

n

x � 2 � z z � 1 � y2

x

y

z
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Viewing as an -simple region, we use the Divergence Theorem to obtain

The Divergence Theorem was stated for simple solid regions. But it can be extended
to include regions that are finite unions of simple solid regions. For example, let be
the region that lies between the closed surfaces and with lying inside . Then
the boundary of is , as shown in Figure 4. If and denote the out-
ward normals of and , respectively, then the normal to is given by on

and by on . Applying the Divergence Theorem to , we obtain

(7) � ���
S1

F � dS � ��
S2

F � dS

 � ���
S1

F � n1 dS � ��
S2

F � n2 dS

 � ��
S1

F � (�n1) dS � ��
S2

F � n2 dS

 ���
T

div F dV � ��
S

F � n dS � ��
S1

F � n dS � ��
S2

F � n dS

TS2n � n2S1

n � �n1SS2S1

n2n1S � S1 � S2T
S2S1S2S1

T

 � 2 cy3 �
2

5
 y5 �

1

7
 y7d1

0
�

32

35

 � 2�
1

0
(3y2 � 2y4 � y6) dy

 � �
1

�1
[�y2(1 � y2)2 � 4y2] dy � �

1

�1
(3y2 � 2y4 � y6) dy

 � �
1

�1
 �

1�y2

0
2y2(2 � z) dz dy � �

1

�1
C�y2(2 � z)2 D z�1�y2

z�0  dy

 � �
1

�1
 �

1�y2

0
 �

2�z

0
2y2 dx dz dy � �

1

�1
 �

1�y2

0
C2y2x D x�2�z

x�0
dz dy

 ��
S

F � n dS � ���
T

div F dV � ���
T

2y2 dV

xT

FIGURE 4
The region lies between and .S2S1T

EXAMPLE 4 Flux of an Electric Field Consider the electric field

induced by a point charge placed at the origin of a three-dimensional coordinate sys-
tem, where . (See Example 4 in Section 15.1.) Find the flux of 
across a smooth surface that encloses the origin.

Solution The Divergence Theorem is not immediately applicable because is not
continuous at the origin. To avoid this difficulty, let’s construct a sphere with center at
the origin and a radius that is small enough to ensure that the sphere lies completely
inside . (See Figure 5.) If we denote this sphere by , then satisfies the conditionsES1S

a

E

S
Er � xi � yj � zk

q

E �
q

4pe0
 

r
�r �3

n2

n1

S1

S2

n
n1

S1

S

z

y

x

FIGURE 5
The region lies between the sphere 
and the surface .S

S1T
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of the Divergence Theorem for the solid that lies between and . Using Equa-
tion (7), we obtain

But we showed that div in Example 4 in Section 15.2. So we have

To evaluate the integral on the right, note that the unit normal to the sphere is
. Therefore,

because on the sphere . Therefore, we have

The result in Example 4 shows that the flux across any closed surface that contains
the charge is . This is intuitively clear, since any closed surface enclosing the
charge would trap the same number of field lines.

Furthermore, by using the principle of superposition (the field induced by several
electric charges is the vector sum of the fields due to the individual charges), it can be
shown that for any closed surface ,

where is the total charge enclosed by . This is one of the most important laws in
electrostatics and is known as Gauss’s Law.

Interpretation of Divergence
For a physical interpretation of the divergence of a vector field , we can think of 
as representing the velocity field associated with the flow of a fluid. Let 
be a point in the fluid, and let be a ball with radius , centered at , and having the
sphere for its boundary, as shown in Figure 6. If is small, then the continuity ofrSr

P0rBr

P0(x0, y0, z0)
FF

SQ

��
S

E � n dS �
Q

e0

S

q
q>e0q

 �
q

4pe0a
2
 (4pa2) �

q

e0

 ��
S

E � dS � ��
S1

E � dS �
q

4pe0a
2
 ��

S1

dS �
q

4pe0a
2
 A(S1)

S1�r � � a

 �
q

4pe0a
2

r � r � �r �2 �
q

4pe0 �r �2

 E � n �
q

4pe0
 

r
�r �3

� a r
�r �b �

q

4pe0
 
r � r
�r �4

n � r>�r �
S1

��
S

E � dS � ��
S1

E � dS � ��
S1

E � n dS

E � 0

���
T

div E dV � ���
S1

E � dS � ��
S

E � dS

SS1T

FIGURE 6
is a ball of radius centered at

.P0(x0, y0, z0)
rBr

n

P0(x0, y0, z0)

Sr

Br
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guarantees that for all points in . Therefore, using
the Divergence Theorem, we have

where . This approximation improves as , and we have

(8)

Equation (8) tells us that we can interpret as the rate of flow outward of the
fluid per unit volume at —hence the term divergence. In general, if ,
the net flow is outward near , and is called a source. If , the net flow
is inward near , and is called a sink. Finally, if the fluid is incompressible and there
are no sources or sinks present, then no fluid exits or enters and, accordingly,

at every point .Pdiv F(P) � 0
Br

PP
div F(P) � 0PP

div F(P) 	 0P0

div F(P0)

(div F)(P0) � lim
r→0

 
1

V(Br)
 ��

Br

F � n dS

r → 0V(Br) � 4
3pr 3

 � (div F)(P0)���
Br

dV � (div F)(P0)V(Br)

 ��
Sr

F � n dS � ���
Br

div � F dV � ���
Br

(div F)(P0) dV

BrP(div F)(P) � (div F)(P0)div F

1. State the Divergence Theorem.
2. Suppose that the vector field is associated with the flow of

a fluid and is a point in the domain of . Give a physicalFP
F

interpretation for . What happens to the flow at if
? If ? If ?div F(P) � 0div F(P) � 0div F(P) 	 0

Pdiv F(P)

15.8 CONCEPT QUESTIONS

In Exercises 1–4, verify the Divergence Theorem for the given
vector field and region .

1. ; is the cube bounded by the
planes , , , , , and 

2. ; is the cube bounded by
the planes , , , , , and 

3. ; is the region bounded by
the cylinder in the first octant between 
and 

4. ; is the region bounded by
the paraboloid and the plane 

In Exercises 5–18, use the Divergence Theorem to find the flux of
across ; that is, calculate .

5. ; is the surface of the
cube bounded by the planes , , and 

6. ; is the surface of the rec-
tangular box bounded by the planes , , ,

, , and z � 1z � �1y � 3
y � 0x � 2x � 0

SF(x, y, z) � 2xzi � y2j � yzk

z � 1y � 1x � 1
SF(x, y, z) � xy2i � 2yzj � 3x2y3k

��S F � n dSSF

z � 1z � x2 � y2
TF(x, y, z) � xi � yj � 2z2k

z � 3
z � 0x2 � y2 � 4

TF(x, y, z) � yi � zj � 3yz2k

z � 2z � 0y � 2y � 0x � 2x � 0
TF(x, y, z) � 2xyi � y2j � 3yzk

z � 1z � 0y � 1y � 0x � 1x � 0
TF(x, y, z) � xi � yj � zk

TF
7. ;

is the surface of the region bounded by the cylinder
and the planes and 

8. ; is the
surface of the region bounded by the cylinder 
and the planes , and 

9. ; is the surface of
the tetrahedron bounded by the planes , ,

, and 

10. ; is the 
surface of the tetrahedron bounded by the planes

, and 

11. ; is the sphere

12. ;
is the surface of the region bounded by the cylinder

and the planes and 

13. ; is the ellipsoid
9x2 � 4y2 � 36z2 � 36

SF(x, y, z) � xzi � yzj � xyk

y � 1y � 0x2 � z2 � 1
S
F(x, y, z) � (x � y2)i � (2x2 � z2 � y)j � cos xy k

x2 � y2 � z2 � 9
SF(x, y, z) � xi � 2yj � 3zk

z � 0x � 2y � 3z � 6, x � 0, y � 0

SF(x, y, z) � x2i � xz2j � (2xz � sin xy)k

z � 0y � 0
x � 0x � y � z � 1

SF(x, y, z) � 2xyi � y2j � (x2 � yz)k

y � z � 5y � 0z � 0
z � 4 � x2

SF(x, y, z) � sin yi � (x2y � ez)j � (2x2z � e�x)k

x � 3x � 0y2 � z2 � 1
S
F(x, y, z) � (x3 � cos y)i � (y3 � sin xz)j � (z3 � 2e�x)k

15.8 EXERCISES

Videos for selected exercises are available online at www.academic.cengage.com/login.V

www.academic.cengage.com/login
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14. ;
is the surface of the region bounded by the cone 

and the plane 

15. ;
is the sphere 

16. ; is the surface of the
region bounded by the paraboloid and the

-plane

17. ; is the surface of
the region that lies between the cylinders and

and between the planes and 

18. ; is the
surface of the region between the spheres 
and 

In Exercises 19–25, assume that and satisfy the conditions of
the Divergence Theorem.

19. Show that the volume of is given by ,
where .

20. Show that , where is a constant vector.

21. Show that if has continuous second-order derivatives, then

22. Show that if has continuous second-order partial deriva-
tives, then

where and is the directional

derivative of in the direction of an outer normal of .Snf

Dn f§2f �
�2f

�x2 �
�2f

�y2 �
�2f

�z2

���
T

§2f dV � ��
S

Dn f dS

f

��
S

curl F � n dS � 0

F

a��S a � n dS � 0

r � xi � yj � zk
V(T) � 1

3 ��S r � n dST

TS

x2 � y2 � z2 � 4
x2 � y2 � z2 � 1

SF(x, y, z) � yz2i � (y3 � xz)j � (y2z � 10x)k

z � 3z � 1x2 � y2 � 4
x2 � y2 � 1

SF(x, y, z) � xzi � x2yj � (y2z � 1)k

xz
y � 9 � x2 � z2
SF(x, y, z) � x3i � 3yz2j � 2z3k

x2 � y2 � z2 � 1S
F(x, y, z) � (x3 � 1)i � (yz2 � cos xz)j � (2y2z � etan x)k

y � 4y �2x2 � z2

S
F(x, y, z) � (x � yez)i � (y � tan xz)j � (x � cosh y)k 23. Show that .

Hint: Apply the Divergence Theorem to , where is a con-
stant vector.

24. Show that if and have continuous second-order partial
derivatives, then

25. Show that if and have continuous second-order partial
derivatives, then

26. Find the flux of the vector field 

across the ellipsoid .

In Exercises 27–29, determine whether the statement is true or
false. If it is true, explain why. If it is false, explain why or give
an example that shows it is false.

27. If , then for every closed surface .

28. If is a constant vector field and is a cube, then
.

29. If for all points in a solid region 
bounded by a closed surface , then ,
where is the area of .SA(S)

���T div F dV � A(S)S
T(x, y, z)�F(x, y, z) � � 1

��S F � dS � 0
SF

S��S F � dS � 0div F � 0

(x2>9) � (y2>16) � (z2>4) � 1

F(x, y, z) �
xi � yj � zk

(x2 � y2 � z2)3>2

���
T

( f §2
t � t§2f ) dV � ��

S

( f §t � t§f ) � n dS

tf

���
T

( f §2
t � §f � §t) dV � ��

S

( f §t) � n dS

tf

cF � f c
���T §f dV � ��S f n dS

15.9 Stokes’ Theorem

Stokes’ Theorem
In this section we consider another generalization of Green’s Theorem to higher dimen-
sions. We start with the following version of Green’s Theorem:

Equation (7) in Section 15.5

where the plane curve is an oriented piecewise-smooth simply closed curve that
bounds a region . The theorem states that the line integral of the tangential compo-
nent of a vector field in two-dimensional space around a closed curve is equal to the
double integral of the normal component to of the curl of the vector field over the
plane region bounded by the curve.

Stokes’ Theorem generalizes this version of Green’s Theorem to three-dimensional
space. Named after the English mathematical physicist George G. Stokes (1819–1903),

R

R
C

�
C

F � T ds � ��
R

curl F � k dA
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FIGURE 1
The curve is a boundary of the
surface .S

C

Stokes’ Theorem relates the line integral of the tangential component of a vector field
in three-dimensional space around a simple closed curve in space to the surface inte-
gral of the normal component of the curl of the vector field over any surface that has
the closed curve as its boundary. (See Figure 1.)

The orientation of the surface induces an orientation on that is determined by
using the right-hand rule: Imagine grasping the normal vector to with your right
hand in such a way that your thumb points in the direction of . Then your fingers will
point toward the positive direction of . (See Figure 2.)C

n
Sn

C

FIGURE 2
The orientation of induces an
orientation on .C

S

In words, the line integral of the tangential component of around a simple closed
curve is equal to the surface integral of the normal component of the curl of over
any surface with as its boundary.

Stokes’ Theorem provides us with the following physical interpretation: If is a
force field, then the work done by along is equal to the flux of curl across .
The proof of Stokes’ Theorem can be found in more advanced textbooks.

SFCF
F

CS
FC

F

THEOREM 1 Stokes’ Theorem

Let be an oriented piecewise-smooth surface that has a unit normal vector and
is bounded by a simple, closed, positively oriented curve . If 
is a vector field, where , , and have continuous partial derivatives in an open
region containing , then

(1)�
C

F � dr � �
C

F � T ds � ��
S

curl F � dS � ��
S

curl F � n dS

S
RQP

F � Pi � Qj � RkC
nS

EXAMPLE 1 Verify Stokes’ Theorem for the case in which 

, is the part of the paraboloid with , and is the
trace of on the -plane.

Solution The surface and the curve are sketched in Figure 3. We begin by cal-
culating

Next, writing , we find that and . Also,

observe that the projection of onto the -plane is . So
using Equation (7) of Section 15.7 with , , and ,
we obtain

 � ��
R

(4xy � 6y � 2) dA

 ��
S

curl F � dS � ��
R

(�Ptx � Qty � R) dA

R(x, y) � 2Q(x, y) � 3P(x, y) � 2y
R � {(x, y) � x2 � y2 � 4}xyS

ty � �2ytx � �2xt(x, y) � 4 � x2 � y2

curl F � ∞
i j k
�

�x

�

�y

�

�z

3z 2x y2

∞ � 2yi � 3j � 2k

CS

xyS
Cz � 0z � 4 � x2 � y2S2xj � y2k

F(x, y, z) � 3zi �

FIGURE 3
The outer normal to induces the
positive direction for as shown.C

Sn

z

y

x

nS

C
0

S

C

n

y

x

2 2

– 2

n
S

C

z � 4 � x2 � y2
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Changing to polar coordinates, we find

To evaluate the line integral on the left-hand side of Equation (1), we observe that 
can be parametrized by

Therefore, with we have

which is the same as the surface integral. This verifies the solution.

 � 4ct �
1

2
sin 2td2p

0
� 8p

 � �
2p

0
8 cos2 t dt � 4�

2p

0
(1 � cos 2t) dt

 � �
2p

0
(4 cos tj � 4 sin2 tk) � (�2 sin ti � 2 cos tj) dt

 �
C

F � dr � �
2p

0
F(r(t)) � r¿(t) dt

F(r(t)) � 0i � 4 cos tj � 4 sin2 tk

0 � t � 2pr(t) � 2 cos ti � 2 sin tj � 0k

C

 � C8 sin2 u � 16 cos u � 4u D2p
0

� 8p

 � �
2p

0
[16 cos u sin u � 16 sin u � 4) du

 � �
2p

0
Cr 4 cos u sin u � 2r 3 sin u � r 2 D r�2

r�0
du

 � �
2p

0
�

2

0
(4r 3 cos u sin u � 6r 2 sin u � 2r) dr du

 ��
S

curl F � dS � �
2p

0
�

2

0
(4r 2 cos u sin u � 6r sin u � 2)r dr du

EXAMPLE 2 Evaluate , where and is theCF(x, y, z) � cos zi � x2j � 2yk�C F � dr
curve of intersection of the plane and the cylinder .

Solution The curve is an ellipse, as shown in Figure 4. We can evaluate 
directly (see Exercise 29). But it is easier to use Stokes’ Theorem. Thus,

where is the elliptic plane region lying in the plane and enclosed by .
Of all the surfaces that have as their boundary, this choice of is clearly the most
convenient for our purpose.

We first find

curl F � ∞
i j k
�

�x

�

�y

�

�z

cos z x2 2y

∞ � 2i � sin zj � 2xk

SC
Cx � z � 2S

�
C

F � dr � �
C

F � T ds � ��
S

curl  F � dS

�C F � drC

x2 � y2 � 1x � z � 2

y

x

1 1

n

C

x � z � 2

S

R

z

FIGURE 4
The surface is enclosed by and 
the disk is the projection of onto
the -plane.xy

SR
CS



Solution The boundary of is the curve whose equation is obtained by solving the
equations and simultaneously. Squaring the second
equation and substituting this result into the first equation give , or (since

). Therefore, the boundary of is the circle with equations andx2 � y2 � 4CSz 	 0
z � 22z2 � 8

z �2x2 � y2x2 � y2 � z2 � 8
S
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Then, writing , we find and . Next, observe that thety � 0tx � �1t(x, y) � �x � 2
projection of onto the -plane is . So using Equation (7)
of Section 15.7 with , and , we obtain

Changing to polar coordinates, we obtain

so by Stokes’ Theorem we have

�
C

F � dr � ��
S

curl F � dS � 2p

 � 2c1
2

 u �
1

3
sin ud2p

0
� 2p

 � 2�
2p

0
c1
2

 r 2 �
1

3
 r 3 cos udr�1

r�0
du � 2�

2p

0
a1

2
�

1

3
cos ub du

 ��
S

curl F � dS � 2�
2p

0
�

1

0
(1 � r cos u)r dr du � 2�

2p

0
�

1

0
(r � r 2 cos u) dr du

 � 2��
R

(1 � x) dA

 � ��
R

(2 � 2x) dx

 ��
S

curl F � dS � ��
R

(�Ptx � Qty � R) dA

R(x, y) � 2xP(x, y) � 2, Q(x, y) � �sin z
R � {(x, y) � x2 � y2 � 1}xyS

EXAMPLE 3 Evaluate , where and SF(x, y, z) � yzi � xzj � z3k��S curl F � dS
is the part of the sphere lying inside the cone . (See
Figure 5.)

z �2x2 � y2x2 � y2 � z2 � 8

FIGURE 5
The surface is enclosed by ; the outer normal 
induces the positive direction of shown.C

nCS

–2√2

2√2

2√2

2√2

n

C√z �   x2 � y2

S

x2 � y2 � z2  � 8

y

x

z

GEORGE GABRIEL STOKES
(1819–1903)

George Stokes’s father was an Irish Protes-
tant minister, as was his maternal grandfa-
ther. He was the youngest of six children,
and his three older brothers became
priests. Consequently, Stokes had a very
religious upbringing in which rigorous
study was encouraged. He attended school
in Dublin until the age of 16, after which he
moved to England and entered Bristol Col-
lege to prepare for study at Cambridge.
While at Bristol, Stokes was taught mathe-
matics by Francis Newman, brother of John
Henry Newman (who later became Cardinal
Newman). Stokes excelled in his studies
and entered Pembroke College, Cambridge,
in 1837. Stokes graduated first in his class
in 1841 and was awarded a fellowship at
Pembroke College. During his fellowship
period, Stokes began his study of fluid
dynamics, having been influenced by the
recent work of George Green (page 1269).
Stokes published very highly regarded
work during that time and was chosen for
the position of Lucasian Professor of Math-
ematics at Cambridge in 1849. However,
this position paid very poorly, and he was
forced to take a second position as a
physics professor in London. Stokes contin-
ued to publish papers on fluid dynamics
but also published important work on the
wave theory of light. In 1854 he published
a prize examination question at Cambridge
that included the theorem that now bears
his name. Stokes was also made secretary
and later president of the Royal Society
and served in many capacities at Cam-
bridge. As a mathematician and physicist
he continued to contribute important
works until his death in 1903.
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. Since is easily parametrized, we can use Stokes’ Theorem to help us find the
value of the given surface integral by evaluating the line integral . A vector
equation of is

so

Furthermore, we have

Therefore,

Interpretation of Curl
Just as the divergence theorem can be used to give a physical interpretation of the diver-
gence of a vector field, Stokes’ Theorem can be used to give a physical interpretation
of the curl vector. Once again, we think of as representing the velocity field in fluid
flow. Let be a point in the fluid, and let be a circular disk with radius 
centered at and boundary , as shown in Figure 6. Let be a unit vector normal
to at . Applying Stokes’ Theorem to the vector field on the surface , we obtain

(2)

Since is the component of tangent to , we see that is a measure
of the tendency of the fluid to move around , and accordingly, this line integral is
called the circulation of around . By taking small, we see that the circulation
of around is a measure of the tendency of the field to rotate around the axis deter-
mined by .

Next, for small the continuity of implies that for
all points in . Therefore, if is small, we can write

 � (curl F)(P0) � n��
Sr

dS � (curl F)(P0) � n(pr 2)

 ��
Sr

curl F � dS � ��
Sr

(curl F)(P0) � n dS

rSrP
(curl F)(P) � (curl F)(P0)curl Fr

n
CrF

rCrF
Cr

�Cr
F � drCrFF � T

�
C

F � dr � �
C

F � T ds � ��
Sr

curl F � dS

SrFP0Sr

nCrP0

rSP0(x0, y0, z0)
F

 � �8�
2p

0
dt � �16p

 � �
2p

0
(�8 sin2 t � 8 cos2 t) dt

 � �
2p

0
(4 sin ti � 4 cos tj � 8k) � (�2 sin ti � 2 cos tj) dt

 � �
C

F(r(t)) � r¿(t) dt

 ��
S

curl F � dS � �
C

F � dr

F(r(t)) � (2 sin t)(2)i � (2 cos t)(2)j � (23)k � 4 sin ti � 4 cos tj � 8k

r¿(t) � �2 sin ti � 2 cos tj

0 � t � 2pr(t) � 2 cos ti � 2 sin tj � 2k

C
�C F � dr

Cz � 2

FIGURE 6
is a circular disk of 

radius at .P0(x0, y0, z0)r
Cr

n
P0

Sr

Cr



Summary of Line and Surface Integrals
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So for small , Equation (2) gives

The approximation improves as , and we have

(3)

Equation (3) gives the relationship between the curl and the circulation. It tells us that
we can think of as a measure of the magnitude of the tendency of the fluid
to rotate about the axis determined by . It also tells us that we can think of curl 
as determining the axis about which the circulation of is greatest near .

We now summarize the types of line and surface integrals and the major theorems
associated with these integrals.

P0F
F(P0)n

�curl F(P0) �

(curl F)(P0) � n � lim
r→0

 
1

pr 2
 �

C

F � dr

r → 0

�
C

F � dr � (curl F)(P0) � n(pr 2)

r

Line Integrals

a. Element of arc length:

b. Line integral of a scalar function:

c. Line integral of a vector field: �
C

F � dr � �
C

F � T ds � �
b

a

F(r(t)) � r¿(t) dt

�
C

f(x, y, z) ds � �
b

a

f(x(t), y(t), z(t)) 0r¿(t) 0 dt

 �2[x¿(t)]2 � [y¿(t)]2 � [z¿(t)]2 dt

 ds � �r¿(t) � dt

Surface Integrals

a. Element of surface area:

(i) If is the graph of , then .

(ii) If is represented parametrically by , then .

b. Surface integral of a scalar function:

(i) If is the graph of then

(ii) If is represented parametrically by , then

c. Surface integral of a vector field:

(i) If is the graph of , then

(ii) If is represented parametrically by then

��
S

F � dS � ��
S

F � n dS � ��
D

F � (ru 
 r√) dA

r(u, √), S

��
S

F � dS � ��
S

F � n dS � ��
R

F � (�tx i � ty j � k) dA

z � t(x, y)S

��
S

f(r(u, √)) dS � ��
R

f(x(u, √), y(u, √), z(u, √)) �ru 
 r√ � dA

r(u, √)S

��
S

f(x, y, z) dS � ��
R

f(x, y, t(x, y))2t
2
x � t

2
y � 1 dA

z � t(x, y), S

dS � � ru 
 rv � dAr(u, √)S

dS �2t
2
x � t

2
y � 1 dAz � t(x, y)S
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Summary of Major Theorems Involving Line 
Integrals and Surface Integrals

1. Fundamental Theorem for Line Integrals

2. Green’s Theorem

3. Divergence Theorem

4. Stokes’ Theorem

�
C

F � dr � ��
S

curl F � dS

��
S

F � dS � ���
T

div F dV

�
C

P dx � Q dy � ��
R

a�Q

�x
�

�P

�y
b dA

�
C

§f � dr � f(r(b)) � f(r(a))

1. State Stokes’ Theorem.
2. Suppose that is a vector field in three-

dimensional space such that , , and have continuous
partial derivatives. Let be the hemisphereS1

RQP
F � Pi � Qj � Rk

, and let be the paraboloid
. Explain why

��
S1

curl F � dS � ��
S2

curl F � dS

z � 1 � x2 � y2
S2z �21 � x2 � y2

15.9 CONCEPT QUESTIONS
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In Exercises 1–4, verify Stokes’ Theorem for the given vector
field and the surface , oriented with the normal pointing
upward.

1. ; is the part of the parabo-
loid with 

2. ; is the part of the plane

lying within the cone 

3. ; is the part of the plane
lying in the first octant

4. ; is the hemisphere

In Exercises 5–10, use Stokes’ Theorem to evaluate
.

5. ; is the hemisphere

oriented with normal pointing upward

6. ; is the part of the
paraboloid lying below the plane and 
oriented with normal pointing downward

7. ; is the part of the

hemisphere lying inside the cylinderz �24 � x2 � y2

SF(x, y, z) � xyzi � 2xj � tan�1 y2k

z � 4z � x2 � y2
SF(x, y, z) � 5yzi � 2xzj � 3xz2k

z �24 � x2 � y2

SF(x, y, z) � 2yi � xz2j � x2yezk

��S curl F � dS

z �21 � x2 � y2

SF(x, y, z) � (x � 2y)i � yz2j � y2zk

2x � 2y � z � 6
SF(x, y, z) � yi � zj � xk

z �2x2 � y2z � 1

SF(x, y, z) � 2yi � 2xj � zk

z � 0z � 9 � x2 � y2
SF(x, y, z) � 2zi � 3xj � 2yk

SF
14. ; is the ellipse obtained 

by intersecting the plane with the cylinder
, oriented in a counterclockwise direction 

when viewed from above

15. ; is the path consisting
of straight line segments joining the points , ,

, , , , and in that
order

16. ; is the curve 

obtained by intersecting the cylinder with the
hyperbolic paraboloid , oriented in a counter-
clockwise direction when viewed from above

17. Find the work done by the force field 
on a particle 

when it is moved along the triangular path that is obtained
by intersecting the plane with the coordi-
nate planes and oriented in a counterclockwise direction
when viewed from above.

18. Find the work done by the force field 
on a particle when it is 

moved along the rectangular path with vertices ,
, , , and (0, 0, 3) in that order.

19. Ampere’s Law A steady current in a long wire produces a
magnetic field that is tangent to any circle that lies in the
plane perpendicular to the wire and whose center lies on the
wire. (See the figure below.)

Let denote the vector that points in the direction of the
current and has magnitude measured in amperes per square
meter. This vector is called the electric current density. One
of Maxwell’s equations states that , where 
denotes the magnetic field intensity and is a constant
called the permeability of free space. Using Stokes’ Theo-
rem, show that , where is any closed
curve enclosing the curve and is the net current that passes
through any surface bounded by . This is Ampere’s Law.
(See Exercise 42 in Section 15.3.)

20. Let be a sphere, and suppose that satisfies the conditions
of Stokes’ Theorem. Show that .��S curl F � dS � 0

FS

C
I

C�C B � dr � m0I

m0

Bcurl B � m0J

J

C

B

B

B

J

AD(0, 4, 3)C(2, 4, 3)B(2, 0, 3)
A(0, 0, 3)

xy2i � (x>z)j � (2x � y)k
F(x, y, z) �

2x � 2y � z � 2

(ex � z)i � (x2 � cosh y)j � (y2 � z3)k
F(x, y, z) �

z � y2 � x2
x2 � y2 � 1

CF(x, y, z) � a y

1 � x2bi � tan�1 xj � xyk

(0, 0, 0)(0, 0, 1)(2, 0, 1)(2, 0, 0)(2, 1, 0)
(0, 1, 0)(0, 0, 0)

CF(x, y, z) � xeyi � yexj � (xyz)k

x2 � y2 � 4
y � z � 4

CF(x, y, z) � 2zi � xyj � 4yk

15.9 EXERCISES

Videos for selected exercises are available online at www.academic.cengage.com/login.V

and oriented with normal pointing upward

8. ; is the part of the cylinder

lying in the first octant between and 
and oriented with normal pointing in the positive 

-direction

9. ; is the part of the
ellipsoid lying above the -plane
and oriented with normal pointing upward

10. ; is the part of the cone

between the planes and and 

oriented with normal pointing upward

In Exercises 11–16, use Stokes’ Theorem to evaluate .

11. ; is the
boundary of the part of the plane in the
first octant, oriented in a counterclockwise direction when
viewed from above

12. ; is the boundary of the trian-
gle with vertices , , and oriented in
a counterclockwise direction when viewed from above

13. ; is the circle obtained
by intersecting the cylinder with the plane

oriented in a counterclockwise direction when viewed
from the right
y � 3

x2 � z2 � 1
CF(x, y, z) � 3xzi � exzj � 2xyk

(0, 1, 1)(1, 0, 0)(0, 0, 0)
CF(x, y, z) � yi � zj � xk

2x � 3y � z � 6
CF(x, y, z) � (y � z)i � (z � x)j � (x � y)k

�C F � dr

z � 3z � 1z �2x2 � y2

SF(x, y, z) � yz2i � xzj � z3k

xy9x2 � 9y2 � 4z2 � 36
SF(x, y, z) � z sin xi � 2xj � ex cos zk

x
y � 1

y � 0z �21 � x2

SF(x, y, z) � xyi � yzj � xzk

x2 � y2 � 1

www.academic.cengage.com/login


21. Let and have continuous partial derivatives, and let and
satisfy the conditions of Stokes’ Theorem. Show that:

a.

b. c.

22. Evaluate , where 
is the curve

23. Let , where , is a differ-
entiable function, and . Evaluate , where 
is the boundary of the triangle with vertices ,

, and , traced in a counterclockwise direc-
tion when viewed from above the plane.

24. Let , and let 
be a circle of radius lying in the plane .
(See the following figure.) If , where is
oriented in the counterclockwise direction when viewed
from above the plane, what is the value of ?

25. Use Stokes’ Theorem to evaluate �C ex cos z dx � 2xy2 dy �

5
5

5

y

x

z

r

C

r

C�C F � dr � 13p
x � y � z � 5r

CF(x, y, z) � xyi � (4x � yz)j � (xy � 1z)k

(1, �1, 5)(1, 5, 2)
(4, 2, 0)

C�C F � drr � �r �
fr � xi � yj � zkF(x, y, z) � f(r)r

0 � t � 2p

r(t) � (1 � cos t)i � (1 � sin t)j � (1 � sin t � cos t)k

C�C (2xy � z2) dx � (x2 � 1) dy � 2xz dz

�
C

( f §t � t§f ) � dr � 0�
C

( f §f ) � dr � 0

�
C

( f §t) � dr � ��
S

(§f 
 §t) � dS

S
Ctf 27. Let be the oriented piecewise-smooth surface that is the

boundary of a simple solid region . If 
is a vector field, where , , and have continuous second-
order partial derivatives in an open region containing ,
show that 

28. Suppose that has continuous second-order partial deriva-
tives in a simply connected set . Use Stokes’ Theorem to
show that 

for any simple piecewise-smooth closed curve lying in .

29. Refer to Example 2. Evaluate directly (that is,
without using Stokes’ Theorem), where 

and is the curve of intersection 
of the plane and the cylinder 

30. Refer to Exercise 16. Evaluate directly 
(that is, without using Stokes’ Theorem), where 

and is 

the curve obtained by intersecting the cylinder 
with the hyperbolic paraboloid , oriented in a
counterclockwise direction when viewed from above.

In Exercises 31 and 32, determine whether the statement is true
or false. If it is true, explain why. If it is false, explain why or
give an example that shows it is false.

31. If , where , , and have continuous

partial derivatives in three-dimensional space and and 

are the upper and lower hemisphere 

and , respectively, then

.

32. If has continuous partial derivatives on an open region
containing an oriented surface bounded by a piecewise-
smooth simple closed curve and curl is tangent to ,
then .�C F � dr � 0

SFC
S

F

��S1
curl F � dS � ��S2

curl F � dS

z � �24 � x2 � y2

z �24 � x2 � y2

S2S1

RQPF � Pi � Qj � Rk

z � y2 � x2
x2 � y2 � 1

CF(x, y, z) � a y

1 � x2bi � tan�1 xj � xyk

�C F � dr

x2 � y2 � 1.x � z � 2
Ccos zi � x2j � 2yk

F(x, y, z) �
�C F � dr

DC

�
C

§f � dr � 0

D
f

��
S

curl F � dS � 0

T
RQP

F � Pi � Qj � RkT
S
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1 1

n

x

y

z

, where is the circle and .
Hint: Find a surface with as its boundary and such that 
is oriented counterclockwise when viewed from above.

26. Find if 
, where is the surface with the 

normal pointing outward and having the boundary
shown in the figure.x2 � y2 � 1, z � 0, 

S(y cos z � 4)j � xzk
F(x, y, z) � (x � y � z � 2)i ���S curl F � dS

CCS
z � 0x2 � y2 � 4Ccot�1 y dz
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In Exercises 1–18, fill in the blanks.

1. A vector field on a region is a function that associates
with each point in two-dimensional space a two-
dimensional ; if is a subset of three-dimensional
space, then associates each point with a three-
dimensional .

2. A vector field is conservative if there exists a scalar func-
tion such that . The function is called a

function for .

3. a. The divergence of (describing the flow of fluid) at a
point measures the rate of flow per unit area (or vol-
ume) at which the fluid or at .

b. The divergence of in three-
dimensional space is defined by div ; 
if div , more fluid a neighborhood 
of than from it; if div , the amount
of fluid entering a neighborhood of the
amount departing from it; if div , more fluid

a neighborhood of than it.

4. a. If describes fluid flow, then the curl of measures the
tendency of the fluid to a paddle wheel.

b. The curl of is defined by curl 
.

5. a. If is a smooth curve, then the line integral of along 
is .

b. The formula for evaluating the line integral of part (a) is
.

c. The line integral of along with respect to is 
defined to be with formula 

, where ,

d. The line integral of along with respect to is 
defined to be with formula

.

6. The formula for evaluating the line integral of along a
curve (with respect to arc length) parametrized by

, , is 
.

7. a. If is a continuous vector field and is a smooth 
curve described by , , then the formula for
evaluating the line integral of along is 

.
b. If is a force field, then gives the 

done by on a particle as it moves along from 
to .t � b

t � aCF
�C F � drF

�C F � dr �CF
a � t � br(t)

CF

�C f(x, y, z) ds �a � t � br(t) � x(t)i � y(t)j � z(t)k
C

f

�C f(x, y) dy �
�C f(x, y) dy �

yCf
a � t � b.

r(t) � x(t)i � y(t)j�C f(x, y) dx �
�C f(x, y) dx �

xCf
�C f(x, y) ds �

�C f(x, y) ds �
CfC

F �F � Pi � Qj � Rk

FF

P
F(P) 	 0

P
F(P) � 0P

F(P) � 0
F �

F � Pi � Qj � Rk
P

P
F

F
fF �f

F

(x, y, z)F
R

(x, y)
FR

8. a. If for any two paths having the
same initial and terminal points, then the line integral

is .
b. The Fundamental Theorem for Line Integrals states that

if , where is a function for and 
is any piecewise-smooth curve described by ,

, then .

9. a. The line integral is independent of path if and
only if for every path .

b. If is continuous on an open, region , then
the line integral is independent of path if and
only if is .

10. a. If is a conservative vector
field in an open region and both and have continu-
ous first-order partial derivatives in , then at
each point in .

b. If is defined on an open, region
in the plane and and have continuous first-order

derivatives on and , for all in , then 
is conservative in .

11. If , where , , and have continuous
first-order partial derivatives in space, then is conservative 
if and only if , or, in terms of the partial de-

rivatives of , , and , , ,

and .

12. Green’s Theorem states that if is a , simple
curve that bounds a region in the plane and 

and have continuous partial derivatives on an open set
containing , then .

13. If is a plane region bounded by a piecewise-smooth, sim-
ple closed curve , then the area of is given by 

.

14. If , then Green’s Theorem has the vector 
forms and

.

15. a. A parametric surface can be represented by the vector
equation , where lies in its

domain; this vector equation is equivalent to
the three , ,
and .

b. If is the graph of the function , then a vector
representation of is .r(u, √) �S

z � f(x, y)S
z � z(u, √)

y � y(u, √)x � x(u, √)

(u, √)r(u, √) �
S

�C F � n ds �
�C F � T ds � �C P dx � Q dy �

F � Pi � Qj

��
A �RC

R

�C P dx � Q dy �R
Q

PR
C

�Q

�x
�

�R

�x
�

�R

�y
�RQP

� 0
F

RQPF � Pi � Qj � Rk

R
FR(x, y)R

QPR
F � Pi � Qj

R
R

QPR
F(x, y) � P(x, y)i � Q(x, y)j

F
�C F � dr

RF
C�C F � dr � 0

�C F � dr

�C F � dr � �C §f � dr �a � t � b
r(t)

CFfF � §f

�C F � dr

�C1
F � dr � �C2

F � dr

CONCEPT REVIEW
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c. If is a surface obtained by revolving the graph of a
nonnegative function , where , about the 
-axis, then a vector representation of is 

with parameter domain .

16. If a parametric surface is represented by
with parameter

domain , then its surface area is .A(S) �D
r(u, √) � x(u, √)i � y(u, √)j � z(u, √)k

S

D �
r(u, √) �Sx

a � x � bf(x)
S 17. a. If is defined by and the projection of onto

the -plane is , then .
b. If is defined by 

with parameter domain , then 
.

18. a. The positive orientation of a surface is the one for
which the unit normal vector points from .

b. The flux of a vector field across an oriented surface 
in the direction of the unit normal is .n

SF
S

S

��S F(x, y, z) dS �D
r(u, √) � x(u, √)i � y(u, √)j � z(u, √)kS

��S F(x, y, z) dS �Rxy
Sz � f(x, y)S

In Exercises 1–4, find (a) the divergence and (b) the curl of the
vector field .

1.

2.

3.

4.

In Exercises 5–14, evaluate the line integral.

5. , where is the arch of the parabola from 

to 

6. , where is the upper semicircle centered at 

the origin and joining to 

7. , where is the curve given by 

,

8. , where is the line segment from to 

9. , where is the graph of from 

to 

10. , where is the quarter-circle from 

to , centered at the origin

11. , where is the curve ,

, ,

12. ,

C: r(t) � ti � t 2j � t 3k, 0 � t � 1

�
C

xe�y dx � cos y dy � z2 dz

0 � t � p
2z � sin ty � cos t

x � tC�
C

yz dx � y cos x dy � y dz

(1, 0)

(0, �1)C�
C

xy dx � xy2dy

(8, 2)(1, 1)

y � 13 xC�
C

x2y dx � x3y dy

(2, 3, 4)

(1, 1, 0)C�
C

xyz ds

0 � t � p
2r(t) � sin ti � cos tj � tk

C�
C

xy2 ds

(0, 1)(0, �1)

C�
C

(1 � x2) ds

(4, 2)(1, 1)

y � 1xC�
C

y ds

F(x, y, z) � ln(x2 � y2)i � x cos yj � z2k

F(x, y, z) � ex sin yi � ex cos yj � ezk

F(x, y, z) � xy cos yi � y sin xj � xzk

F(x, y, z) � xy2i � yz2j � zx2k

F 13. , where is the line segment 

joining to 

14. , where consists of the line seg-

ment joining to and the line segment from 
to .

In Exercises 15 and 16, find the work done by the force field 
in moving a particle along the curve .

15. , where is the line seg-
ment from to 

16. , where is part of the helix
given by , , ,

In Exercises 17 and 18, show that is a conservative vector
field and find a function such that 

17.

18.

In Exercises 19 and 20, show that is conservative and use this
result to evaluate for the given curve .

19. ; is the elliptical
path from to traversed in a
counterclockwise direction

20. ; is the
twisted cubic , , from to 

In Exercises 21–24, use Green’s Theorem to evaluate the line
integral along the positively oriented closed curve .

21. , where is the boundary 

of the region enclosed by the graphs of and
y � �x � 2

y � 4 � x2

C�
C

(y2 � sec x) dx � (x2 � y5) dy

C

(1, 1, 1)(0, 0, 0)z � t 3y � t 2x � t
CF(x, y, z) � (2xy � yz2)i � (x2 � xz2)j � 2xyzk

(0, 3)(�5, 0)9x2 � 25y2 � 225
CF(x, y) � (2xy � y3)i � (x2 � 3xy2)j

C�C F � T ds
F

F(x, y, z) � (y2 � 2xz)i � (2xy � z2)j � (x2 � 2yz)k

F(x, y) � (4xy � 3y2)i � (2x2 � 6xy)j

F � §f.f
F

0 � t � p
2z � 2 cos ty � 2 sin tx � 2t

CF(x, y, z) � yzi � zj � xk

(2, 3, 5)(1, 1, 1)
CF(x, y, z) � xyi � (y � z)j � z2k

C
F

(2, 1, 3)(1, 0, 0)
(1, 0, 0)(0, 0, 0)

C�
C

z dx � x dy � x2 dz

(1, 1, 2)(0, 0, 0)

C�
C

xy dx � e�y dy � zex dz
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22. , where is the boundary of the 

region enclosed by the graphs of , , and 

23. , where is the circle 

24. , where is the 

ellipse 

In Exercises 25–28, evaluate the surface integral.

25. , where is the part of the plane 

in the first octant

26. , where is the part of the paraboloid 

inside the cylinder 

27. , where and is the 

part of the paraboloid lying to the right of
the -plane; points to the right

28. , where and is the 

part of the paraboloid lying above the
plane ; points upward

In Exercises 29 and 30, find the mass of the surface having the
given mass density.

29. is the part of the plane in the first octant;
the density at a point on is directly proportional to the
square of the distance between and the -plane.

30. is the part of the paraboloid lying inside 
the cylinder ; the density at a point on is
directly proportional to the distance between and the 

-plane.

In Exercises 31 and 32, use the Divergence Theorem to find the
flux of across ; that is, calculate .

31. ; is the surface of the cylinder
bounded by the planes and ; 

points outward

32. ; is the unit sphere centered
at the origin; points outward

In Exercises 33 and 34, use Stokes’ Theorem to evaluate
.

33. ; is the
part of the paraboloid above the -plane
with an outward normal

xyz � 4 � x2 � y2
SF(x, y, z) � (x � y2 � 2)i � 2xyj � (x2 � yz2)k

��S curl F � n dS

n
SF(x, y, z) � y2i � yz2j � z3k

n
z � 3z � 0x2 � y2 � 4

SF(x, y, z) � xi � yj � zk

��S F � n dSSF

xy
P

SPx2 � y2 � 2
z � x2 � y2S

yzP
SP

x � y � z � 1S

S

nz � 1
z � 5 � x2 � y2

SF(x, y, z) � yi � xj � zk��
S

F � n dS

nxz
y � 1 � x2 � z2

SF(x, y, z) � xi � yj � zk��
S

F � n dS

x2 � y2 � 1z � 4 � x2 � y2

S��
S

z dS

2x � 2y � 3z � 6

S��
S

(y � xz) dS

9x2 � 4y2 � 36

C�
C

(2y � cosh x) dx � (x � sinh y) dy

x2 � y2 � 1

C�
C

(x2y � ex) dx � (e�y � xy2) dy

x � 4y � 0y � 1x

C�
C

xy dx � (x2 �2y) dy 34. ; is the part of the
sphere below the plane with an
outward normal

In Exercises 35 and 36, use Stokes’ Theorem to evaluate
.

35. ; is the
curve obtained by intersecting the plane 
with the coordinate planes, oriented clockwise when viewed
from the top

36. ; is the curve obtained by
intersecting the surface with the planes ,

, , and , oriented counterclockwise when
viewed from above

37. Find the work done by the force field 
when a particle is moved from to

along the path shown in the figure.

38. Find the work done by the force field 
when a particle is moved from

to along the path shown in the figure.

39. Let

Evaluate , where is the path shown in the figure.

x

y

C�C F � dr

F(x, y) �
x � y

x2 � y2 i �
x � y

x2 � y2 j

(0, 2, 3)
(0, 0, 3)

(2, 0, 0)
(0, 3, 0)

x

z

y

(0, 3, 0)(2, 0, 0)
2xyi � (x2 � 2yz2)j � 2y2zk

F(x, y, z) �

42

(2, 4)

(0, 0)

4

2

x

y

(2, 4)
(0, 0)2xy3i � 3x2y2j

F(x, y) �

y � 1y � 0x � 1
x � 0z � x2y

CF(x, y, z) � yi � xzj � xyzk

2x � y � z � 6
CF(x, y, z) � (2x � y)i � (3x � z)j � (y � z)k

�C F � T ds

z � 2x2 � y2 � z2 � 16
SF(x, y, z) � y2zi � 2xzj � cos zk
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40. Let , and let be 
a simple closed curve lying in the plane 
(see the following figure) and oriented in the counterclock-
wise direction when viewed from above the plane. If

, what is the area of the region enclosed 
by ?

3

6

3

C

n

y

x

z

C
�C F � dr � �24

2x � 2y � z � 6
CF(x, y, z) � 14y � 1

2 z2 2i � 2xzj � x2k In Exercises 41–48, state whether the statement is true or false.
(Assume that all differentiability conditions are met.) Give a 
reason for your answer.

41. If is a vector field, then curl is a vector field.

42. If and are vector fields, then div is a scalar
field.

43. If is a scalar field, then is undefined.

44. If is a vector field and is a scalar field, then
is undefined.

45. If has continuous partial derivatives at all points and
, then is a constant function.

46. If , then is a constant vector field.

47. If div , then for every closed 
surface .

48. If for every closed path , then curl .F � 0C�C F � dr � 0

S
��S F � n dS � 0F � 0

F§ 
 F � 0

f§f � 0
f

div[§f 
 (curl F)]
fF

§ � [§ 
 (§f )]f

(F 
 G)GF

(curl F)F

1. Find and sketch the domain of the vector-valued function

2. Find the domain of

3. The curve with equation , where is a
nonzero constant, is called the folium of Descartes.

x0�a

�a

y

ax3 � y3 � 3axy

� ln(1 � �x � � y)j �
ln ln(z � 1)

1z � 3
 k

F(x, y, z) �2�x � � y � 1 i

F(x, y) �
1

24 � x2 � 4y2
 i �

1

24x2 � 4y2 � 1
 j

a. Show that a parametric representation of this curve is

Hint: Use the parameter .
b. Find the area of the region enclosed by the loop of the

curve.

4. Let

and

Evaluate , where is the curve shown in the
figure.

x

C

y

C�C P dx � Q dy

Q(x, y) �
x � y

x2 � y2P(x, y) �
x � y

x2 � y2

t � y>x
y �

3at 2

1 � t 3x �
3at

1 � t 3
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5. Let , and 
let be the curve represented by 

for . Evalu-
ate .

6. A differential equation of the form

is called exact if for all . Show that the 

equation

is exact and solve it.

(2y2 � 6xy � 2) dx � (4xy � 3x2 � 3) dy � 0

(x, y)
�Q

�x
�

�P

�y

P(x, y) dx � Q(x, y) dy � 0

�C F � dr
0 � t � 2p(1 � sin t)j � (1 � sin t � cos t)k

r(t) � (1 � cos t)i �C
F(x, y, z) � y cos xi � (x � sin x)j � cos zk 7. Let be a one-to-one transformation defined by ,

that maps a region in the -plane onto a
region in the -plane. Use Green’s Theorem to prove the
change of variables formula

for the case in which . (Compare with 
Formula (4) in Section 14.8.)

f(x, y) � 1

��
R

dA � ��
S

 
` �(x, y)

�(u, √)
` du d√

xyR
u√Sy � h(u, √)

x � t(u, √)T



The Real Number Line
The real number system is made up of the set of real numbers together with the usual
operations of addition, subtraction, multiplication, and division.

We can represent real numbers geometrically by points on a real number, or
coordinate, line. This line can be constructed as follows. Arbitrarily select a point
on a straight line to represent the number 0. This point is called the origin. If the
line is horizontal, then a point at a convenient distance to the right of the origin is
chosen to represent the number 1. This determines the scale for the number line. Each
positive real number lies at an appropriate distance to the right of the origin, and
each negative real number lies at an appropriate distance to the left of the origin (see
Figure 1).

APPENDIXA The Real Number Line, Inequalities,
and Absolute Value

A 1

FIGURE 1
The real number line

A one-to-one correspondence is set up between the set of all real numbers and the
set of points on the number line; that is, exactly one point on the line is associated with
each real number. Conversely, exactly one real number is associated with each point
on the line. The real number that is associated with a point on the real number line is
called the coordinate of that point.

Intervals
Throughout this book we often restrict our attention to subsets of the set of real num-
bers. For example, if denotes the number of cars rolling off a plant assembly line
each day, then must be nonnegative—that is, . Further, suppose that manage-
ment decides that the daily production must not exceed 200 cars. Then, must satisfy
the inequality .

More generally, we will be interested in the following subsets of real numbers: open
intervals, closed intervals, and half-open intervals. The set of all real numbers that lie
strictly between two fixed numbers and is called an open interval . It con-
sists of all real numbers that satisfy the inequalities , and it is called “open”
because neither of its endpoints is included in the interval. A closed interval contains
both of its endpoints. Thus, the set of all real numbers that satisfy the inequalitiesx

a � x � bx
(a, b)ba

0 � x � 200
x

x � 0x
x

�4 �3 �2 �1 10 2 3 4

Origin

x

� �1
22� � 3



Interval Graph Example

Open:

Closed:

Half-open:

Half-open: [a, b)

(a, b]

[a, b]

(a, b)

C�1
2, 3 2
112, 3 D

[�1, 2]

(�2, 1)

TABLE 2 Infinite Intervals

Inequalities
The following properties may be used to solve one or more inequalities involving a
variable.

A 2 Appendix A The Real Number Line, Inequalities, and Absolute Value

TABLE 1 Finite Intervals

a b

a b

a b

a b x

x

x

x

[

[

]

]

)

)

(

(

3210�1�2�3

210�1

3210

3210�

1
2

1
2

x

x

x

x

[

[

]

]

)

)

(

(

Interval Graph Example

(��, a]

(��, a)

[a, �)

(a, �)

1��, �1
2 D

(��, 1)

[�1, �)

(2, �)
a

a

a

a

x

x

x

x

[

]

)

(
210

�1
2

0�1

10

210

x

x

x

x

[

]

)

(

In addition to finite intervals, we will encounter infinite intervals. Examples of
infinite intervals are the half lines , , , and defined by the
set of all real numbers that satisfy , , , and , respectively. The
symbol , called infinity, is not a real number. It is used here only for notational pur-
poses. The notation is used for the set of all real numbers , since by defini-
tion the inequalities hold for any real number . Infinite intervals are
illustrated in Table 2.

x�� � x � �
x(��, �)

�
x � ax � ax � ax � a

(��, a](��, a)[a, �)(a, �)

is the closed interval . Notice that square brackets are used to indicate
that the endpoints are included in this interval. Half-open intervals contain only one
of their endpoints. Thus, the interval is the set of all real numbers that satisfy

, whereas the interval is described by the inequalities .
Examples of these finite intervals are illustrated in Table 1.

a � x � b(a, b]a � x � b
x[a, b)

[a, b]a � x � b
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Properties of Inequalities

If , , and , are any real numbers, then

Example

Property 1 If and , and , so .
then .

Property 2 If , then , so ; 
. that is, .

Property 3 If and , , and since , we have 
then . ; that is, .

Property 4 If and , , and since , we have 
then . ; that is, .6 � �12(�2)(�3) � (4)(�3)ac � bc

�3 � 0�2 � 4c � 0a � b

�10 � �6(�5)(2) � (�3)(2)ac � bc
2 � 0�5 � �3c � 0a � b

�3 � �1a � c � b � c
�5 � 2 � �3 � 2�5 � �3a � b

a � c
2 � 83 � 82 � 3b � ca � b

cba

Similar properties hold if each inequality sign, , between and and between 
and is replaced by �, , or �. Note that Property 4 says that an inequality sign is
reversed if the inequality is multiplied by a negative number. 

A real number is a solution of an inequality involving a variable if a true statement
is obtained when the variable is replaced by that number. The set of all real numbers
satisfying the inequality is called the solution set. We often use interval notation to
describe the solution set.

�c
bba�

EXAMPLE 1 Find the set of real numbers that satisfy .

Solution Add 5 to each member of the given double inequality, obtaining

Next, multiply each member of the resulting double inequality by , yielding

Thus, the solution is the set of all values of lying in the interval .[2, 6)x

2 � x � 6

1
2

4 � 2x � 12

�1 � 2x � 5 � 7

EXAMPLE 2 Solve the inequality .

Solution Observe that , so the given inequality is
equivalent to the inequality . Since the product of two real num-
bers is negative if and only if the two numbers have opposite signs, we solve the inequal-
ity by studying the signs of the two factors and . Now,

if , and if . Similarly, if , and
if . These results are summarized graphically in Figure 2.x � 2x � 2 � 0

x � 2x � 2 � 0x � �4x � 4 � 0x � �4x � 4 � 0
x � 2x � 4(x � 4)(x � 2) � 0

(x � 4)(x � 2) � 0
x2 � 2x � 8 	 (x � 4)(x � 2)

x2 � 2x � 8 � 0

FIGURE 2
Sign diagram for (x � 4)(x � 2) �1�2�3�4�5 0 1 2 3 4 5

(x � 4)
(x � 2)

��������0��

��

����

0
���� ��

���� ����� ���������

x
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From Figure 2 we see that the two factors and have opposite signs if
and only if lies strictly between and 2. Therefore, the required solution is the
interval .(�4, 2)

�4x
x � 2x � 4

EXAMPLE 3 Solve the inequality .

Solution The quotient is strictly positive if and only if both the
numerator and the denominator have the same sign. The signs of and are
shown in Figure 3.

x � 1x � 1
(x � 1)>(x � 1)

x � 1

x � 1
� 0

FIGURE 3

Sign diagram for 
x � 1

x � 1

From Figure 3 we see that and have the same sign if and only if
or . The quotient is equal to zero if and only if .

Therefore, the required solution is the set of all in the intervals and 
.

Absolute Value

(1, �)
(��, �1]x

x 	 �1(x � 1)>(x � 1)x � 1x � �1
x � 1x � 1

DEFINITION Absolute Value

The absolute value of a number is denoted by and is defined by

�a � 	 e a if a � 0

�a if a � 0

�a �a

Since is a positive number when is negative, it follows that the absolute value
of a number is always nonnegative. For example, and .
Geometrically, is the distance between the origin and the point on the number line
that represents the number . (See Figure 4.)a

�a �
��5 � 	 �(�5) 	 5�5 � 	 5

a�a

FIGURE 4
The absolute value of a number

Absolute Value Properties

If and are any real numbers, then

Example

Property 5

Property 6

Property 7

Property 8

 � �8 � � ��5 � 	 13

 �8 � (�5) � 	 �3 � 	 3�a � b � � �a � � �b �

` (�3)

(�4)
` 	 ` 3

4
` 	 3

4
	

��3 �
��4 �` a

b
` 	 �a �

�b �  (b 
 0)

 	 �2 � ��3 �
 � (2)(�3) � 	 ��6 � 	 6 	 (2)(3)�ab � 	 �a � �b �
��3 � 	 �(�3) 	 3 	 �3 ���a � 	 �a �

ba

�1�2�3�4 0 1 2 3 4

(x � 1)
(x � 1)

����0��

���

����

0
��

���� �������

����

��

x

–a a0

�a� �a�

x
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Property 8 is called the triangle inequality. To prove the triangle inequality, note that

and

Adding the respective numbers in these inequalities, we have

which is equivalent to

as was to be shown.

�a � b � � �a � � �b �

�(�a � � �b �) � a � b � �a � � �b �

��b � � b � �b ���a � � a � �a �

EXAMPLE 4 Evaluate each of the following expressions:

a. b.

Solution
a. Since , we see that . Therefore,

b. Since , we see that . Next, observe that
, so . Therefore,

 	 4 � 213 	 2(2 � 13)

 �13 � 2 � � �2 � 13 � 	 �(13 � 2) � (2 � 13)

�2 � 13 � 	 2 � 132 � 13 � 0
�13 � 2 � 	 �(13 � 2)13 � 2 � 0

�p � 5 � � 3 	 �(p � 5) � 3 	 8 � p

�p � 5 � 	 �(p � 5)p � 5 � 0

�13 � 2 � � �2 � 13 ��p � 5 � � 3

Next, the inequality states that the distance from to zero is greater than or
equal to 5. This observation yields the result or . (See Figure 5b.)x � �5x � 5

x�x � � 5

EXAMPLE 5 Solve the inequalities and .

Solution First, we consider the inequality . If , then , so 
implies in this case. On the other hand, if , then , so 
implies or . Thus, means . (See Figure 5a.) To
obtain an alternative solution, observe that is the distance from the point to zero,
so the inequality implies immediately that .�5 � x � 5�x � � 5

x�x �
�5 � x � 5�x � � 5x � �5�x � 5

�x � � 5�x � 	 �xx � 0x � 5
�x � � 5�x � 	 xx � 0�x � � 5

�x � � 5�x � � 5

FIGURE 5

EXAMPLE 6 Solve the inequality .

Solution The inequality is equivalent to the inequalities 
. (See Example 5.) Thus, and . The solution is therefore

given by the set of all in the interval . (See Figure 6.)[1, 2]x
1 � x � 22 � 2x � 43 � 1

�1 � 2x ��2x � 3 � � 1

�2x � 3 � � 1

[[ ]]
–5 50–5 50

(a) (b)

x x

x0 1 2
[ ]

FIGURE 6
�2x � 3 � � 1

EXAMPLE 7 Solve .

Solution The inequality is equivalent to or .
(See Example 5 with replaced by .) The first inequality gives , and the sec-
ond gives . So the solution is or .x � 1} 	 (��, �4] � [1, �){x � x � �4x � �4

x � 12x � 3x
2x � 3 � �52x � 3 � 5�2x � 3 � � 5

�2x � 3 � � 5
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EXAMPLE 8 If and , find an upper bound for
.

Solution We have

Use the Triangle Inequality.

So .�x � y � 5 � � 0.3

 � 0.1 � 0.2 	 0.3

 � �x � 2 � � �y � 3 �

 �x � y � 5 � 	 � (x � 2) � (y � 3) �

�x � y � 5 �
�y � 3 � � 0.2�x � 2 � � 0.1

In Exercises 1–6, show the interval on a number line.

1. 2.

3. 4.

5. 6.

In Exercises 7–10, determine whether the statement is true or
false.

7. 8.

9. 10.

In Exercises 11–28, find the values of that satisfy the inequality
(inequalities).

11. 12.

13. 14.

15. 16.

17. or

18. or

19. and

20. and

21. 22.

23. 24.

25. 26.

27. 28.

In Exercises 29–38, evaluate the expression.

29. 30.

31. 32.

33. 34. ��1 � � 12 ��2 �13 ��2 � � 3 ��13 �

` 0.2 � 1.4

1.6 � 2.4
`��12 � 4 �

�16 � 12 �

4 � ��4 ���6 � 2 �

2x � 1

x � 2
� 4

x � 2

x � 1
� 2

2x � 3

x � 1
� 4

x � 3

x � 2
� 0

(3x � 4)(2x � 2) �  0(2x � 3)(x � 1) � 0

(2x � 4)(x � 2) � 0(x � 3)(x � 5) � 0

x � 3 � 2x � 4 � 1

x � 2 � 1x � 3 � 1

x � 1 � �2x � 1 � 2

x � 2 � �1x � 1 � 4

0 � x � 1 � 4�6 � x � 2 � 4

�12 � �3x�4x � 20

�6 � 4 � 5x2x � 4 � 8

x

�
5

6
� �

11

12

2

3
�

5

6

�5 � �5�3 � �20

(��, 5](0, �)

c�6

5
, �

1

2
d[�1, 4)

(�2, 5](3, 6)

35. 36.

37. 38.

In Exercises 39–44, suppose that and are real numbers other
than zero and that . State whether the inequality is true or
false.

39. 40.

41. 42.

43. 44.

In Exercises 45–50, determine whether the statement is true for
all real numbers and .

45. 46.

47. 48.

49. 50.

In Exercises 51–54, solve the equation for .

51. 52.

53. 54.

In Exercises 55–64, solve the inequality.

55. 56.

57. 58.

59. 60.

61. 62.

63. 64.

65. If and , find an upper bound for
.

66. Prove that .
Hint: Write and use the Triangle Inequality.x 	 (x � y) � y

�x � y � � �x � � �y �

�x � y � 5 �
�y � 4 � � 0.2�x � 1 � � 0.2

0 � �x � 2 � � 1
31 � �x � � 3

�3x � 2 � � 4�2x � 3 � � 0.2

�3x � 2 � � 1�x � 3 � � 2

�x � 4 � � 0.1�x � 2 � � 1

�x � � 3�x � � 4

` 3x � 1

x � 2
` 	 3�x � 2 � 	 �2x � 3 �

�2x � 4 � 	 1�3x � 	 4

x

�a � b � 	 �a � � �b ��a � b � 	 �a � � �b �

�a � 1 � 	 �a � � 1�a � 4 � 	 �4 � a �

�b2 � 	 b2��a � 	 a

ba

�a � �ba3 � b3

1
a

�
1

b
a2 � b2

a

b
� 1b � a � 0

a � b
ba

�213 � 3 � � �13 � 4 ��12 � 1 � � �3 � 12 �

�p � 6 � � 3�p � 1 � � 2

EXERCISES

Videos for selected exercises are available online at www.academic.cengage.com/login.V

www.academic.cengage.com/login


In this appendix we give the proofs of some of the theorems that appear in the body
of the text.

Chapter 1

Theorem 1 Limit Laws (Section 1.2)

PRODUCT LAW

If and , then .

PROOF Let be given. We want to show that there exists a such that

.

We begin by considering

Use the Triangle Inequality.

(1)

Thus, our goal will be achieved if we can show that the expression on the right of
Equation (1) is less than whenever . Since , there
exists a such that

and therefore,

(2)

Also, because , there exists a such that

(3)

Next, since , there exists a such that

(4)

If we let denote the smallest of the three numbers , , and , then ,
and if , then we have , , and0 � �x � a � � d20 � �x � a � � d10 � �x � a � � d

d � 0d3d2d1d

0 � �x � a � � d3 1 � f(x) � L � �
e

2(1 � �M �)

d3 � 0limx→a f(x) � L

0 � �x � a � � d2 1 �t(x) � M � �
e

2(1 � �L �)

d2 � 0limx→a t(x) � M

�t(x) � � �t(x) � M � M � � � [t(x) � M] � M � � �t(x) � M � � �M � � 1 � �M �

0 � �x � a � � d1 1 �t(x) � M � � 1

d1 � 0
limx→a t(x) � M0 � �x � a � � de

 � � f(x) � L � �t(x) � � �L � �t(x) � M �

 � � [ f(x) � L]t(x) � � �L[t(x) � M] �

 � � [ f(x) � L]t(x) � L[t(x) � M] �

 � f(x)t(x) � LM � � � f(x)t(x) � Lt(x) � Lt(x) � LM �

0 � �x � a � � d1 � f(x)t(x) � LM � � e

d � 0e � 0

lim
x→a

[ f(x)t(x)] � LMlim
x→a

t(x) � Mlim
x→a

f(x) � L

APPENDIXB Proofs of Theorems

A 7



A 8 Appendix B Proofs of Theorems

, so all three Inequalities (2)–(4) hold simultaneously. Therefore, if
, then by Equation (1),

This completes our proof.

CONSTANT MULTIPLE LAW

for every 

PROOF Put in the Product Law, obtaining

Use Law 1 in Section 1.2.

as was to be shown.

QUOTIENT LAW

provided that 

PROOF We can write

and thus use the Product Law established earlier to help us with the proof. Let’s first
show that

Let be given. We need to show that there exists a such that

We consider

(5)

We want to show that the denominator of the last expression is bounded away from 0
when is close to . To do this, observe that if , then there exists a

such that

Remember that , so .�M � � 0M � 00 � �x � a � � d1 1 �t(x) � M � �
�M �
2

d1 � 0
limx→a t(x) � Max

` 1

t(x)
�

1

M
` � ` M � t(x)

Mt(x)
` � �M � t(x) �

�M � �t(x) �

0 � �x � a � � d1 ` 1

t(x)
�

1

M
` � e
d � 0e � 0

lim
x→a

 
1

t(x)
�

1

M

f(x)

t(x)
� f(x) �

1

t(x)

M � 0lim
x→a

 
f(x)

t(x)
�

L

M

 � c lim
x→a

f(x)

 lim
x→a

[cf(x)] � lim
x→a

[t(x)f(x)] � [lim
x→a

t(x)][lim
x→a

f(x)]

t(x) � c

clim
x→a

[cf(x)] � c lim
x→a

f(x)

 �
e

2
�
e

2
� e

 � f(x)t(x) � LM � �
e

2(1 � �M �)
� (1 � �M �) � �L � �

e

2(1 � �L �)

0 � �x � a � � d
0 � �x � a � � d3
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Then

and this implies that if , then

(6)

Thus, if satisfies then Inequality (6) implies that

Also, since , there exists a such that

(7)

If we let denote the smaller of the two numbers and , then and if
, then and , so both Inequali-

ties (6) and (7) hold simultaneously. Therefore, if , then Equation (5)
implies that

This establishes that

Thus, using the Product Law proved earlier, we have

and the desired result follows.

ROOT LAW

If , then , provided that if is even.

PROOF First, we prove that

Let be given. We have

�1x � 1a � � ` 1x � 1a

1
�
1x � 1a

1x � 1a
` � �x � a �

1x � 1a

e � 0

a � 0lim
x→a
1x � 1a

nL � 0lim
x→a

 1n f(x) � 1n Llim
x→a

f(x) � L

lim
x→a

 
f(x)

t(x)
� lim

x→a
f(x) �

1

t(x)
� La 1

M
b �

L

M

lim
x→a

 
1

t(x)
�

1

M

` 1

t(x)
�

1

M
` � �M � t(x) �

�M � �t(x) � �
2

�M �2
�

�M �2e
2

� e

0 � �x � a � � d
0 � �x � a � � d20 � �x � a � � d10 � �x � a � � d

d � 0d2d1d

0 � �x � a � � d2 1 �t(x) � M � �
�M �2e

2

d2 � 0limx→a t(x) � M

1
�M � �t(x) � �

1
�M � �

2
�M � �

2
�M �2

0 � �x � a � � d1x

�t(x) � �
�M �
2

0 � �x � a � � d1

 �
�M �
2

� �t(x) �

 �M � � �M � t(x) � t(x) � � �M � t(x) � � �t(x) �
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of and . Then implies0 � �x � a � � d
31a

2
 e

3

4
 a

, and so . Let’s pick to be the smaller d1x � 1a �
1a

2
� 1a �

31a

2
1
4 a � x � 7

4 a

Let’s agree to pick . Then . If , then or�3
4 a � x � a � 3

4 a�x � a � � dd � 0d � 3
4 a

Since is arbitrary, the result follows.
To complete the proof of the Root Law, we apply Theorem 4 (Section 1.4) to the

special case where , with a positive integer. Then, assuming that all roots
exist, we have

and

So, Theorem 4 gives

and this completes the proof of the Root Law.

Theorem 3 The Squeeze Theorem (Section 1.2)

Suppose that for all in an open interval containing , except pos-
sibly at and that

Then .

PROOF Let be given. Since , there exists a such that

or, equivalently,

(8)

Next, since , there exists a such that

or, equivalently,

(9)

If we let denote the smaller of the two numbers and , then , and 
if , then and , so both Inequali-
ties (8) and (9) hold simultaneously. Therefore, if , then

which implies that

or, equivalently, . Therefore, .limx→a t(x) � L�t(x) � L � � e

L � e � t(x) � L � e

L � e � f(x) � t(x) � h(x) � L � e

0 � �x � a � � d
0 � �x � a � � d20 � �x � a � � d10 � �x � a � � d

d � 0d2d1d

L � e � h(x) � L � e

0 � �x � a � � d2 1 �h(x) � L � � e

d2 � 0limx→a h(x) � L

L � e � f(x) � L � e

0 � �x � a � � d1 1 � f(x) � L � � e

d1 � 0limx→a f(x) � Le � 0

limx→a t(x) � L

lim
x→a

f(x) � L � lim
x→a

h(x)

a
axf(x) � t(x) � h(x)

lim
x→a
1n t(x) � 1n lim

x→a
t(x)

f C limx→a
t(x)D � 1n lim

x→a
t(x)

f(t(x)) � 1n t(x)

nf(x) � 1n x

e

�1x � 1a � �
�x � a �

1x � 1a
�

31a

2
 e

31a

2

� e
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Theorem 4 (Section 1.2)

Suppose that for all in an open interval containing , except possibly at
and that

and

Then .

PROOF Suppose, to the contrary, that . Now, since and
, by the Sum Law (Theorem 1a),

Since , we can take and find a such that

or

or

But this contradicts the condition in the hypothesis, which states that . There-
fore, the assumption must be false, and we conclude that , as was to be
shown.

Theorem 4 Limit of a Composite Function (Section 1.4)

If the function is continuous at and , then

PROOF Let be given. We want to show that there exists a such that

Now, since is continuous at , we have

(10)

so there exists a such that

Next, since , there exists a such that

(11)

Combining (10) and (11), we see that

as was to be shown.

�t(x) � L � � d1 1 � f(t(x)) � f(L) � � e0 � �x � a � � d1

0 � �x � a � � d1 �t(x) � L � � d1

d � 0limx→a t(x) � L

� f(y) � f(L) � � e0 � �y � L � � d1 1

d1 � 0

lim
y→L

f(y) � f(L)

Lf

0 � �x � a � � d1 � f(t(x)) � f(L) � � e

d � 0e � 0

lim
x→a

f(t(x)) � f(L)

limx→a t(x) � LLf

L � ML � M
t(x) 	 f(x)

t(x) � f(x)

t(x) � f(x) � M � L � L � M

� [t(x) � f(x)] � (M � L) � � L � M

d � 0e � L � ML � M � 0

lim
x→a

[t(x) � f(x)] � lim
x→a

t(x) � lim
x→a

f(x) � M � L

limx→a t(x) � M
limx→a f(x) � LL � M

L � M

lim
x→a

t(x) � Mlim
x→a

f(x) � L

a
axf(x) � t(x)
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Chapter 2

Theorem 1 The Chain Rule (Section 2.6)

If is differentiable at and is differentiable at , then the composition 
defined by is differentiable, and

Also, if we write and , then

PROOF According to the definition of the derivative, we have, for fixed ,

(12)

where . Let us define a function of by

Then

by Equation (12). So is a continuous function of . Therefore, for a differentiable
function , we can write

(13)

where .
Now suppose that , where is differentiable at and is differen-

tiable at . If is an increment in and and are the corresponding
increments in and , then using Equation (13), we have

(14)

where as . Similarly,

(15)

where as . Substituting the expression for in Equation (14) into
Equation (15), we obtain

or

(16)

Now, if , then Equation (14) implies that . So both and 
approach 0 as . Therefore, from Equation (16) we have

Since is arbitrary, the proof is complete.a

 � t¿(b)f ¿(a) � t¿( f(a))f ¿(a)

 
dy

dx
� lim

�x→0
 
�y

�x
� lim

�x→0
[t¿(b) � e2(�u)][ f ¿(a) � e1(�x)]

�x → 0
e2(�u)e1(�x)�u → 0�x → 0

�y

�x
� [t¿(b) � e2(�u)][ f ¿(a) � e1(�x)]

�y � [t¿(b) � e2(�u)][ f ¿(a) � e1(�x)] �x

�u�u → 0e2(�u) → 0

�y � t¿(b) �u � e2(�u) �u � [t¿(b) � e2(�u)] �u

�x → 0e1(�x) → 0

�u � f ¿(a) �x � e1(�x) �x � [ f ¿(a) � e1(�x)] �x

yu
�y�ux�xb � f(a)

y � t(u)afu � f(x)
lim�x→0 e(�x) � 0

�y � f ¿(a) �x � e(�x) �x

f
�xe

lim
�x→0

e(�x) � lim
�x→0
a�y

�x
� f ¿(a)b � 0

e(�x) � •
�y

�x
� f ¿(a) if �x � 0

0 if �x � 0

�x�y � f(a � �x) � f(a)

f ¿(a) � lim
�x→0

 
f(a � �x) � f(a)

�x
� lim

�x→0
 
�y

�x

a

dy

dx
�

dy

du
 
du

dx

y � t(u) � t[ f(x)]u � f(x)

h¿(x) � t¿[ f(x)] f ¿(x)

h(x) � t[ f(x)]
h � t � ff(x)txf
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Chapter 3

Note on the Definition of Concavity of a Function (Section 3.4)

If the graph of is concave upward on an open interval , then it lies above its tangent
lines, and if the graph is concave downward on , then it lies below all of its tangent
lines.

PROOF Suppose that the graph of is concave upward on an interval . Then
is increasing on . If is a number in , then an equation of the tangent line to the

graph of at is

If is any number in the interval , then the directed distance from the point 
on the graph of to the point on the tangent line is given by

(17)

Now, by the Mean Value Theorem there exists a number in such that

(18)

Substituting Equation (18) into Equation (17) gives

Now, because is increasing. Furthermore, because 
lies in . So for all in , and this tells us that the graph of lies
above the tangent line at for all in . In a similar manner you can show that
the graph of also lies above the tangent line at for all on . This completes
the proof for the case in which is concave upward. The proof for the case in which 
is concave downward is similar.

Chapter 6

Theorem 3 Continuity and Differentiability of Inverse Functions
(Section 6.2)

Let be one-to-one so that it has an inverse .

1. If is continuous on its domain, then is continuous on its domain.
2. If is differentiable at and , then is differentiable at .

PROOF OF (1) We first show that is monotonic. Suppose, on the contrary, that is
neither increasing nor decreasing. Then there exists numbers , , in with

such that does not lie between and .
There are two cases: (i) lies between and or (ii) lies between

and . In case (i) the Intermediate Value Theorem implies that there exists a
satisfying such that . In case (ii) the Intermediate Value The-

orem implies that there exists a satisfying such that . In
either case we have shown that is not one-to-one. This is a contradiction. Thus, is
indeed monotonic.

ff
f(c) � f(x1)x2 � c � x3c

f(c) � f(x3)x1 � c � x2c
f(x3)f(x2)

f(x1)f(x2)f(x1)f(x3)
f(x3)f(x1)f(x2)x1 � x2 � x3

(a, b)x3x2x1

ff

f(c)f �1f ¿(c) � 0cf
f �1f

f �1f

ff
(c, b)xxf

(a, c)xx
f(a, c)xD(x) � 0(a, c)

x(x � c) � 0f ¿[ f ¿(z) � f ¿(c)] � 0

D(x) � f ¿(z)(x � c) � f ¿(c)(x � c) � [ f ¿(z) � f ¿(c)](x � c)

f ¿(z) �
f(x) � f(c)

x � c

(x, c)z

 � f(x) � f(c) � f ¿(c)(x � c)

 D(x) � f(x) � L(x) � f(x) � [ f(c) � f ¿(c)(x � c)]

(x, L(x))f
(x, f(x))(a, c)x

L(x) � f(c) � f ¿(c)(x � c)

(c, f(c))f
IcIf ¿

I � (a, b)f

I
If
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Without loss of generality, let us assume that is increasing on . Let be any
number in the domain of . Then , where is a number in such
that . We want to show that is continuous at . So let be given
and be sufficiently small so that the interval is contained in the inter-
val . Since is increasing, we see that the interval is mapped
onto the interval .

The function maps onto . Now let denote the smaller of the numbers
and . Then the interval is

contained in and so is mapped onto the interval by . (See Figure 1.) Thus, we
have found a such that implies that .
This shows that is continuous at . Since is an arbitrary number in the domain
of , we have shown that is continuous in its domain.f �1f �1

y0y0f �1
� f �1(y) � f �1(y0) � � e0 � �y � y0 � � dd � 0

f �1IJ
(y0 � d, y0 � d)d2 � f(x0 � e) � y0d1 � y0 � f(x0 � e)

dIJf �1
J � ( f(x0 � e), f(x0 � e))

I � (x0 � e, x0 � e)f(a, b)
(x0 � e, x0 � e)

e � 0y0f �1f(x0) � y0

(a, b)x0f �1(y0) � x0f �1
y0(a, b)f

FIGURE 1 a x

y

y � f(x)

f(x0 � ´)

f(x0 � ´)

x0 � ´ x0 � ´x0 b

y0

Theorem 1 l’Hôpital’s Rule (Section 6.7)

Suppose that and are differentiable on an open interval that contains , with the 

possible exception of itself, and for all in . If has an indeter-

minate form of type or , then

provided that the limit on the right exists or is infinite.

PROOF First, we need to show that if and are con-

tinuous on and differentiable on and for all in , then there
exists a number in such that

(19)

This is called Cauchy’s Mean Value Theorem.
To prove this, first observe that ; otherwise, an application of Rolle’s

Theorem implies that there exists a in such that , contradicting the
assumption that for all in . Put

(20)h(x) � f(x) � f(a) �
f(b) � f(a)

t(b) � t(a)
 [t(x) � t(a)]

(a, b)xt¿(x) � 0
t¿(c) � 0(a, b)c

t(a) � t(b)

f ¿(c)

t¿(c)
�

f(b) � f(a)

t(b) � t(a)

(a, b)c
(a, b)xt¿(x) � 0(a, b)[a, b]

tffor the Case lim
x→a

 
f(x)
g(x)

�
0
0

lim
x→a

 
f(x)

t(x)
� lim

x→a
 
f ¿(x)

t¿(x)

�>�0>0
lim
x→a

 
f(x)

t(x)
Ixt¿(a) � 0a

aItf
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Then Equation (19) follows by applying Rolle’s Theorem to Equation (20). To prove
l’Hôpital’s Rule, suppose that and . Define

and

Then is continuous on , since is continuous on and 
. Similarly, we see that is also continuous on .

For any in and , and are continuous on and differentiable on
, and , since . So, by Cauchy’s Mean Value Theorem there

exists a such that , and

because, by definition, and . Now, if we let approach from the
right, then because . Therefore,

where

which we assume to exist. In a similar manner we can show that

So

as was to be shown.

Chapter 9

Theorem 5 (Section 9.1)

If and the function is continuous at , then

PROOF Let be given. We want to show that there exists a positive integer 
such that implies that . Since is continuous at , there exists
a such that implies that . Next, since

, there exists a positive integer such that . Now
suppose that . Then , which implies that 
and thus completes the proof.

� f(an) � f(L) � � e0 � �an � L � � dn � N
n � N 1 �an � L � � dNlimn→� an � L

� f(x) � f(L) � � e0 � �x � L � � dd � 0
Lf� f(an) � f(L) � � en � N

Ne � 0

lim
n→�

f(an) � f( lim
n→�

an) � f(L)

Lflimn→� an � L

lim
x→a

 
f(x)

t(x)
� L � lim

x→a
 
f ¿(x)

t¿(x)

lim
x→a�

 
f(x)

t(x)
� L

L � lim
x→a�

 
f ¿(x)

t¿(x)

lim
x→a�

 
f(x)

t(x)
� lim

x→a�
 
F(x)

G(x)
� lim

z→a�
 
F¿(z)

G¿(z)
� lim

z→a�
 
f ¿(z)

t¿(z)
� L

a � z � xz → a�
axG(a) � 0F(a) � 0

F¿(z)

G¿(z)
�

F(x) � F(a)

G(x) � G(a)
�

F(x)

G(x)

a � z � xz
G¿(x) � t¿(x)G¿(x) � 0(a, x)

[a, x]GFx � aIx
IGlimx→a f(x) � 0 � F(a)

limx→a F(x) �{x � I � x � a}fIF

G(x) � et(x) if x � a

0 if x � a
F(x) � ef(x)  if x � a

0  if x � a

limx→a t(x) � 0limx→a f(x) � 0
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Theorem 1 Convergence of Power Series (Section 9.7)

Given a power series , exactly one of the following is true:

a. The series converges only at .
b. The series converges for all .
c. There is a number such that the series converges for and

diverges for .

PROOF It suffices to prove the theorem for the special case where . The gen-
eral case then follows if we replace by . So, let us prove the following result.

Given a power series , exactly one of the following is true:

a. The series converges only at .
b. The series converges for all .
c. There is a number such that the series converges for and diverges

for .

We begin by establishing the following results:

1. If a power series converges at , where , then it converges
for all satisfying .

2. If a power series diverges at , where , then it diverges for
all satisfying .

PROOF OF (1) AND (2) Suppose converges at . Then . So
there exists a positive integer such that implies that . Therefore, if

, then we have

If , then and so is a convergent geometric series. There-
fore, using the Comparison Test, we see that is convergent, and this shows
that is absolutely convergent and, therefore, convergent. Next, suppose

diverges at . If is any number satisfying , then part (1) of
the theorem shows that cannot converge because, otherwise, would
converge, a contradiction. Therefore, diverges if .

We are now in the position to prove the theorem. Suppose that neither case (a) nor
case (b) is true. Then there exists nonzero numbers and such that con-
verges at and diverges at . Let . Then is
nonempty since . Furthermore, our earlier result shows that diverges if

and so for all in . Thus is an upper bound for . By the Com-
pleteness Axiom (see Section 9.1), has a least upper bound . Now, if , then

and so diverges. If , then is not an upper bound for and
so there exists a in satisfying . Since , converges, and this
implies that converges.��

n�0 anx
n

��
n�0 anb

nb � S�b � � �x �Sb
S�x ��x � � R��

n�0 anx
nx � S

�x � � RRS
S�d �Sx�x � � �d ��x � � �d �

��
n�0 anx

nb � S
SS � {x � ��

n�0 anx
n converges}x � dx � b

��
n�0 anx

ndb

�x � � �c ���
n�0 anx

n
��

n�0 anc
n��

n�0 anx
n

�x � � �c �xx � c��
n�0 anx

n
��

n�0 anx
n

��
n�0 �anx

n �
��

n�0 �x>b �n�x>b � � 1�x � � �b �

�anx
n � � ` anx

n 
bn

bn ` � �anb
n � ` x

b
`n � ` x

b
`n

n 	 N
�anb

n � � 1n 	 NN
limn→� anb

n � 0b��
n�0 anx

n

�x � � �c �x
c � 0x � c��

n�0 anx
n

�x � � �b �x
b � 0x � b��

n�0 anx
n

�x � � R
�x � � RR � 0

x
x � 0

��
n�0 anx

n
x � cx

c � 0

�x � c � � R
�x � c � � RR � 0

x
x � c

��
n�0 an(x � c)n
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Chapter 13

Theorem 1 Clairaut’s Theorem (Section 13.3)

If and its partial derivatives , , , and are continuous on an open region
, then

for all in .

PROOF Let be any point in . Fix it, and let and be nonzero numbers such
that the point also lie in . Define the function by

(1)

If we let , then Equation (1) can be written

Applying the Mean Value Theorem to the function on the interval 
(or ), we see that there exists a number lying between and such
that

If we apply the Mean Value Theorem again to the function on the interval 
(or ), we see that there exists a number lying between and such
that

Therefore,

If we let , then approaches , and the continuity of implies
that

Similarly, if we write

and use the Mean Value Theorem twice, the continuity of at implies that

Therefore, . Finally, since is any point in , we see that this
equality holds for any in , and the theorem is proved.R(x, y)

R(a, b)fxy(a, b) � fyx(a, b)

lim
(h, k)→(0, 0)

 
F(h, k)

hk
� fyx(a, b)

(a, b)fyx

F(h, k) � [ f(a � h, b � k) � f(a, b � k)] � [ f(a � h, b) � f(a, b)]

lim
(h, k)→(0, 0)

 
F(h, k)

hk
� fxy(a, b)

fxy(a, b)(c, d)(h, k) → (0, 0)

F(h, k) � hkfxy(c, d)

fx(c, b � k) � fx(c, b) � fxy(c, d)k

b � kbd[b � k, b]
[b, b � k]fx

t(a � h) � t(a) � t¿(c)h � h[ fx(c, b � k) � fx(c, b)]

a � hac[a � h, a]
[a, a � h]t

F(h, k) � t(a � h) � t(a)

t(x) � f(x, b � k) � f(x, b)

F(h, k) � [ f(a � h, b � k) � f(a � h, b)] � [ f(a, b � k) � f(a, b)]

FR(a � h, b � k)
khR(a, b)

R(x, y)

fxy(x, y) � fyx(x, y)

R
fyxfxyfyfxf(x, y)
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y

y � f(x) � 1

y � f(x)

x310�1�3

1

3

t(x) �28x � 4x2 � 1

t(x) �
x

2
sin

x

2
t(x) �

31x

x2 � 1

t(x) � x � 3 �
1

1x � 3
t(x) � x3 � x � 2

y � f(2x)y � f 1 x2 2
y � f(x) � 1y � f(x) � 1

h(x) � 2x � 3t(x) � sin xf(x) � x3

h(x) � 1xt(x) � 1 � xf(x) � 1x

t(t) � sin tf(t) � t 2

t(x) � 1>xf(x) �2x2 � 4

t(x) � x3>2f(x) � 3x2 � 422x2 � 1

18 � 138 � 12 h.

43.

45.

47.

49.

51.

��

y

x

1

2

�1

�2

�2

y � 2 sin

y � 2 sin x

y � sin x

x
2

�� 2�

y

x1�1

1

�1

y � 2(x � 1)2

y � 2x2 � 4x � 1
� 2(x � 1)2 � 1

y � (x � 1)2

y � x2

y

x321�1�2�3

1

�1

2

3

y � �x � 1�

y � 2�x � 1 � � 1

y � 2�x � 1�

y � �x�

y

x21�1
�1

1

y � 1
x � 1

y � 1
x � 1

y � 1
x

y � 1
x

y

x1�1�2�3 2 3

1

�1

�2

2

3

4

y � x2 � 2

y � x2

y

x21 3 4

1

�1�3

�2

2
3

y � �2f(x � 1) � 3

y � �2f(x � 1)

y � f(x)
y � f(x � 1)



Answers to Chapter 0 Selected Exercises ANS 5

53.

55. a. Graph for and for .

b.

57. a. b. 59.

61. a.

b.

63. a. ,

b. ,

65. a. b.

67. a. b. 71,200; 109,900

69. True 71. True 73. True

Exercises 0.5 • page 56

1. a. b.

3. a. b.

5. 7.

5�5

�3

4

10�10

8000

0

3�3

�2

2

10�10

�10

10

20�20

�1200

100

10�10

�10

10

3.5t 2 � 2.4t � 71.2

(t � f )(6) � 42(t � f )(0) � 26

P(4) � 0.69P(t) �
1.21t 2 � 6t � 14.5

1.54t 2 � 7.1t � 31.4

D(4) � 26.58D(t) � 0.33t 2 � 1.1t � 16.9

e�1�x � sin x  if �2p 	 x � 0

1x � sin x  if 0 	 x 	 2p

e1�x � sin x  if �2p 	 x � 0

1x � sin x  if 0 	 x 	 2p

3x � 14
3 x � 42x � 5

y

x20

y � sin �x �

�2 � � ���

1

�1

x � 0f(�x)x � 0f(x)

y

x1�1
�1

1

�2 y � (x � 1)2 � 2

y � (x � 1)2

y � �x2 � 2x � 1 �
� �(x � 1)2 � 2 �

y � x2

9. 11.

13. 15.

17. 19. , 0.35855

21. , 1.25873

23. ,

25. , ,

27. ,

29. a.

b.

31. a.

b. No; is not defined at .

33. a.

b.

50�50

�1e�5

1e�5

5�5

�5

5

x � 0f

5�5

�0.25

1.25

0.1�0.1

�0.1

0.1

10�10

�10

10

(0.91325, 1.58299)(�2.51746, �1.16879)

(5.78053, 7.93912)
(1.2414, �1.59306)(�1.02193, �6.34606)

(6.05141, �2.50154)(�2.33712, 2.41174)

�0.45662

�1.11769�1.47569

0.3�0.3

�0.3

0.3

2000

0.0

1.25

0.2�0.2

�0.02

0.02
2�3

�2

0



ANS 6 Answers to Selected Exercises

0.6 Self-Check Diagnostic Test • page 57

1. a. b.

c. d.

e. f.

2. a. ; the initial book value of the asset

b. dollars/year

3.

Exercises 0.6 • page 69

1. a. Polynomial, 3 b. Power c. Rational

d. Rational e. Algebraic f. Trigonometric

3. a. 59.7 million b. 152.54 million

5. 648,000; 902,000; 1,345,200; 1,762,800

7. 4.6%, 8.51%, 15.91%

11. a. b. 74.8%

13. a.

b. 157 million

15. a.

b.

c. 338 ppmv d. 387 ppmv

17. a.

b.

c. $43.66 million; $77.16 million; $107.63 million

19. a.
0.128624t � 1.70992
f(t) � 0.00125t 4 � 0.005093t 3 � 0.024306t 2 �

60

125

f(t) � �0.425t 3 � 3.65714t 2 � 4.01786t � 43.6643

501
310

400

A(t) � 0.010716t 2 � 0.8212t � 313.4

N(t) (millions)

t (year)1 5 10

160
180

120
140

80
100

40
20

0

60

100x

7960 � x

V(x) � 4x3 � 48x2 � 144x

C � S

n

V(0) � C

f(x) � 2 sin xf(x) � 1x � 1

f(x) � x5>7f(x) �
x2

x2 � 9

f(x) � 2x4 � 3x2 � 7f(x) � 3x � 1

b.

c. 1.71, 1.81, 1.85, 1.84, 1.83, 1.89

21. ,

23. ; 

25. ; 

27. ,

29. a.

b. $26,400 c. $28,800

Chapter 0 Review Exercises • page 73

1. 3. 5. 7.

9. 11.

13. a–b.

c. d. 30.1 million

15. , , , ,

17.

19. 21.

23. Domain , range 

25. Even 27. a. b. c.

29. a. , b. ,

31. a. , , , b. 0, , ,

33. ,

35. , , h(x) � 1 � 1x � 2t(x) � cos xf(x) � x2

(��, �)�x �
4p>3p2p>33p>25p>4p>2p>4

11p>6u � 5p>65p>3u � p>3
�315°�450°330°

y

2

1

2

y � g(t)

�� �� 0 t

[1, 2](��, �)

(��, �)[1, 2) � (2, �)

(��, �2) � (�2, 2) � (2, �)

f(p) � 0f 1p3 2 � 13f 1p4 2 � 1f 1p6 2 � 13>3f(0) � 0

y � 2.7x � 8.5

y

5

10

15

25

20

76543210 x

y � �1y � �3
5 x � 12

5

y � �4
3 x � 1

3y � �4�2�7
3

R(x) � �4x2 � 520x � 12,000

(1, 25)f(x) � �2x � 52 �
50
x

10, 56
4 � p 2f(x) � 28x � 1p2 � 22x2

(0, 4)V � 4x3 � 46x2 � 120x

(0, 40)f(x) � 40x � x2

50
1

3



Answers to Chapter 1 Selected Exercises ANS 7

37.

39.

41.

43.

45. , 0.59237, 1.89858

47. , , 1.26456 49. mg

51. , , , , ,
, , ,

T

n42 86 12100

20

40

60

100

120

140

80

f(12) � 136f(11) � 116f(10) � 98f(9) � 80
f(8) � 64f(7) � 48f(6) � 34f(5) � 20f(4) � 0

116 2
3�1�1.08659

�2.18271

2�2

�30

20

y

�3

3

2��2� x

y � 3 cos
x
2

y � cos

y � cos x

x
2

y

1

�1

�2

2

10 x

y � �

y � 2 �

√x

y � √x
√x

y

1

�1

�5

5

(0, �2)

y � x3 � 2

y � x3

�1 x

√2, 0)3(

x f(x)

0.9

0.99

0.999

1.001

1.01

1.1 �1.11111

�1.01010

�1.00100

�0.99900

�0.99010

�0.90909

x f(x)

1.9

1.99

1.999

2.001

2.01

2.1

0.25158

0.25016

0.25002

0.24998

0.24984

0.24846

x f(x)

1.9

1.99

1.999

2.001

2.01

2.1 �0.06135

�0.06238

�0.06249

�0.06251

�0.06262

�0.06370

x f(x)

0.1

0.01

0.001

�0.001

�0.01

�0.1 1.00167

1.00002

1.00002

1.00002

1.00002

1.00167

1�0.0625

53. a. b.

c. d. ft2

55. a.

b. c. 64 in.3

57. a.

b. c. $603.19

CHAPTER 1

Exercises 1.1 • page 87

1. a. 2 b. c. Does not exist

3. a. 2 b. 2 c. 2

5. a. b. 1 c. Does not exist

7. a. True b. True c. False

d. True e. True f. False

9. 11.

�

�1

C(r) � 16pr 2 �
256p

r

h

r

V(x) � 4x3 � 40x2 � 100x

10 in.

10 in.

xx

x x

xx

xx

3600ph(t) � f [t(t)] � p(2t)2 � 4pt 2

t(t) � 2tf(r) � pr 2

13. 15.

1
4�1



x f(x)

 0.01

 0.001

 0.0001

 0

 �0.0001

 �0.001

 �0.01

 �0.5064

 0.8269

 �0.3056

 0

 0

 0

 0

ANS 8 Answers to Selected Exercises

17. 19.

a. 2 b. 2 c. 2 a. 4 b. 4 c. 4

21.

a. 1 b. 1 c. 1

23. 2 25. 27. 3

29. 31. a.

b.

Does not exist; 0; c.

does not exist d.

35. 2.7183

37. 39.

7 Does not exist

41.

43. False 45. False

�0.5

�0.6
�5 5

0.0

�2.5

7.5

0 2

3

10

0

(��, �)
(��, 0) � (0, �)
(��, 0) � (0, �)

y

x41�1 2 π

1

�1

�1

x321�1�2�3

3

2

1

�1

�2

f(x)

f(x)

x31�1�2�3 2

1

�1

2

3

4

f(x)

x531�1

1

�1

�2

2

Exercises 1.2 • page 101

1. 10 3. 0 5. 1 7.

9. 11. 4 13.

15. 17. 1 19.

21. 1 23. 16 25. 1

27. 29. 11 31. 2

33. 1 35. 0 37. Incorrect

39. , , 41. 4

43. 45. 2 47. 49.

51. 3 53. 55. Does not exist

57. 59. 61. 6 63. 1

65. 67. 69. 0 71.

73. 75. 77.

79. a. 12 b. 12

c. 12

81. a. b. 0 83. 0

85. a. 1, 2 b. No,

87. 1, 1, yes 89. Yes, 1 93. No 95. No

99. False 101. False

Exercises 1.3 • page 111

1. 0.003 3. 0.005 5. 0.02 7. 0.0007

9. 0.01 31. False 33. True

Exercises 1.4 • page 122

1. Nowhere 3. At 5. At 0

7. None 9. 2 11. 13. 0, 2

15. , 0 17. 0, 19. 0

21. 23. 0 25. , , ,

27. 3 29. , 31. 2 33. Yes

35. No 37. 39.

41. 43. 45.

47. , , , , ,

49. 5 51. 53.

55. 57. No 59. 3 61. 3

69. b. 0.57926 71. No 73. 1.34

f(0) � 1

f(0) � 1
2f(0) � �2

5

p(p, 2p)(0, p)(�p, 0)(�2p, �p)p
(��, �)(�3, 0) and (0, 3)[�3, 3]

(��, �)(��, �)

b � 4
3a � 8

3

p
5p>4
3p>4
p>4�1


1, 
2, p�2


2


1

limx→�1� f(x) � limx→�1� f(x)

[0, c)

0.0 1.25

12.5

11.5

�13
2�12>2

�1
2

3
4

1
3

1
213>6

1
2

�3
2�3

2�

a � 0t(x) � xf(x) � 1

�7

212>p�2
3

1
24 � 212

�1
3

x f(x)

0.99

0.999

1

1.001

1.01

11.995

11.999

undefined

12.001

12.005



Answers to Chapter 1 Selected Exercises ANS 9

75.

77. c. sec and sec

83. a. No b. No

89.

is continuous at all numbers except , an integer

97. False 99. True

Exercises 1.5 • page 133

1. mph per thousand cars, mph per thousand cars

3. Rising at 3.08%/hr; falling at 21.15%/hr

5. a. At , the velocity of Car is greater, but the accelera-
tion of Car is greater.

b. At , both cars have the same velocity, but Car has
greater acceleration.

7. a. 0 b. 0 c.

9. a. b. 8 c.

11. a. b. 12 c.

13. a. b. c.

15. 4 17. 13 19.

21. a. 1.25 ft/sec, 1.125 ft/sec, 1.025 ft/sec, 1.0025 ft/sec,
1.00025 ft/sec

b. 1 ft/sec

23. a. 48 ft/sec, 56 ft/sec, 62.4 ft/sec

b. 64 ft/sec

c. ft/sec, falling

d. sec

25. a. 820 ft b. 20.5 ft/sec c. 40.5 ft/sec

27. a. units2/unit b. units2/unit4p3p

t � 8

�32

�1

y � �x � 2�1�
1

1 � h

y � 12x � 16h2 � 6h � 12

y � 8x � 92h � 8

y � 5

Bt2

B
At1

�0.3�0.15

nnpf

�10 10

1

�1

7
2

1
2

t (sec)

√A (m/sec)

√B (m/sec)

t1

t1 t (sec)

√

0

0

√

29. a. per thousand tents, per thousand tents

b. Decrease of $2 per thousand tents

31. 30.8 ft/sec

33. a.

b. 12

35. , 37. ,

39. , 41. True 43. False

Chapter 1 Concept Review • page 136

1. a. , , , b. right c. exist, d. ,

3.

5. a. b. its domain c. continuous

7. a. b.

Chapter 1 Review Exercises • page 137

1. a. 0 b. 0 c. 0

3. 5.

a. 2 b. 2 c. 2 a. 0 b. 0 c. 0

7. 34 9. 11. 9 13. 15. 17.

19. 0 21. 6 23. 27. At and 

29. a. Yes b. Yes c. No 31. None 33. None

35. , an integer 37. 41. No

45. Increasing at F/hr, decreasing at a rate of F/hr

47. a. Yes

b. y

y � F(r)

rR

GMm
R2

0

13
4

°41
3

°

1
2n
np

cb�

� 1
16

7
8

1
2213

f(x)

x20 4

2

4

f(x)

x4 62

2

�2
�2

4

6

8

y � f(a) � m tan(x � a)m tan � lim
h→0

 
f(a � h) � f(a)

h

(��, �)

limx→a t(x) � L

d � 0e � 0LaLfL

a � 1f(x) � x4

a � 4f(x) � x2 � 1xa � 1f(x) � x5

0

20

�1 1

�$2.001�$2.005



ANS 10 Answers to Selected Exercises

Chapter 1 Challenge Problems • page 140

1. 3. 7. 2 11. At 0, 1, and 

CHAPTER 2

2.1 Exercises • page 150

1. 0, 3. 3, 5. ,

7. , 9. ,

11. ,

13. ,

15. 17.

19.

21. a.

b.

23. 25. 27. (c) 29. (b)

31. 33. y�

x21

1

0

�1

�1

2
1

y�

x21

1

�1
�1�2

�2

2

0

1
2�3

1.01

0.99
1.010.99

1.1

0.85
1.10.9

4

�4

�2 2

y � �x � 2

y �
13

6
 x �

13

3

y � 6x � 4y � 4x � 3

1��, �1
2 2 � 1�1

2, � 2�
6

(2x � 1)2

(��, �2) � (�2, �)�
1

(x � 2)2

(�1, �)
1

21x � 1
(��, �)6x2 � 1

(��, �)6x � 1(��, �)(��, �)

3
2p>41

3

35.

37. a. is measured in degrees Fahrenheit per foot and gives
the instantaneous rate of change of the temperature at a
given height .

b. Negative

c.

39. a. , measured in dollars per unit, gives the instanta-
neous rate of change of the total manufacturing cost 
when units of a certain product are produced.

b. Positive

c. $20

41. a. b.

c. d. 0

43. 0 45. 47.

53.

$150 million per year, million per year

55. a. The average rate of change of over the interval

b.

c. 10

0
�2 2

f ¿(x) � 3x2

[x, x � h]
f(x) � x3

�$160

100

200

t  (years)

y� ($ million/year)

6 8 10 122 4
�100

�200

�300

0


2
2

y

2

4

x42

�2

�4 �2 0

(1, 0)2x � 2

x
C

C ¿(x)

�0.05°F

h

f ¿(h)

y�

1

x42

�1

�2�4 0



Answers to Chapter 2 Selected Exercises ANS 11

57. a. b.

c.

61. a. 0 b.

65. True 67. False 69. False

2.2 Exercises • page 159

1. 0 3. 5. 7. 9.

11. 13. 15.

17. 19.

21. 23.

25. 27.

29. 31.

33. a. 20 b. c. 20

35. a. b.

37. a. b.

39. and 41. and 

43. a. , y � �1
9 x � 29

9y � 9x � 15

112, 3 21�1
2, �3 2(1, �17)(�2, 10)

20

�5

�3 3

y � �2x � 2

15

�6

�1 3

y � 5x � 4

�4

1

3x2>3 �
1

2x3>22 �
5

21x

0.002x � 0.4 �
200

x2�
16

t 5 �
9

t 4 �
2

t 2

�
3

x2 �
8

x316x3 � 15
2  x3>2

2x � 4 �
3

x210x4 � 12x3 � 3x2 � 8x

0.06x � 0.42pr � 2p2x � 2

�
84

x13

3

21x
2.1x1.16x

0.1

�0.1

�0.5 0.5

f ¿(x) � e�3x2 if x � 0

3x2 if x � 0

x � (��, �)y

25
30

20
15
10
5

x2 4�2�4 0

b.

45.

47. a. and 

b. , , and 

c. , , and 

49. and 51. and 

53. 3 55. 11 57. 59. 1 P.M.

61. a. 1.94% per decade, 2.48% per decade

b. 3.87%, 6.08%

63. a.

b. per person per year, $32.58 per person per year

65. a.

b. 0.3835, 1.0489, 1.7311

c. The number of Alzheimer’s patients will be increasing 
at the rate of approximately 0.3835 million patients per
decade at the beginning of 2010, 1.0489 million patients
per decade in 2020, and 1.7311 million patients per
decade in 2030.

67. a.

b.

c. 5.6608, ,

69.

71. , ,

75. False

77. True

C � 1
4B � 1

2A � 1
4

3p

R
 B

r

t

�6.7602�0.6064

0 9
100

150

�0.0123t 4 � 0.2639t 3 � 2.2601t 2 � 5.6608t � 143.6

12

60

�$3.42

3.6t 2 � 10.62t � 80

2x(7x5 � 1)

y � 6x � 16y � 2x � 411, 10
3 21�1, 20

3 2
1�3, 81

4 214, 80
3 2(0, 0)

1�1, � 5
12 212, �8

3 2(0, 0)

(0, 0)11, �13
12 2


3

10

�10

�3 3
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2.3 Exercises • page 170

1. 3.

5. 7.

9. 11.

13. 15.

17. 19.

21. 23.

25. 27.

29. 31.

33. 10 35. 29 37. ,

39. ,

41. a.

b.

43. a.

b.

45. a. ,

b.

47. 8 49. 51. 53.

55. 57. 59.

61. a. 44 b. 10

6x � 126x � 4
2

x3 �
18

x4

56x6 � 12x2 � 4�2�9

�2

�1.5 2

5

y � �1
7 x � 15

7y � 7x � 5

0�4

�15

�2 2

15

3

y � �13
3  x � 14

3

1
0

5

2

�5

3

�3

�1

y � x � 2

(2, �30)143, �770
27 2

(1, 2)113, 50
27 2

12x3 � 3x2 � 2x � 5

(3x � 1)2

ad � bc

(cx � d)2

�
313x � 21x � 13

21x(3x � 1)2�
x2 � 2x � 2

x2(x � 2)2

2x3 � 5x2 � 4x � 3

(x � 2)2

2x(x � 2)

(x2 � x � 1)2

�3x2 � 1

1x(x2 � 1)225x3>2 � 10x �
1

1x

�2t � 2 �
1

t 2 �
4

t 33x2 � 2x � 1

�
2(x2 � 3x � 5)

(x2 � 5)2�
7

(3x � 2)2

�
1

(x � 1)215x4 � 8x3 � 108x2 � 48x

4t � 12(3x2 � 1)

63. , , ,
, for 

65. 0.0375 part per million per year, 0.006 part per million per
year

67. a.

b. ,

69. 71. , yes 73. False 75. True

77. True

2.4 Exercises • page 181

1. 7.44 ft, 7.44 ft/sec, 7.44 ft/sec

3. ft, ft/sec, 8 ft/sec

5. ft, ft/sec, ft/sec

7. 0 ft, 0 ft/sec, 0 ft/sec

9. a. Never

b. Always positive

c.

11. a. ft

b. Positive when , negative when 

c.

13. a. ft, ft, ft

b. Positive when and when , negative when

c.

15. a. ft

b. Positive when , negative when 

c.

10 s (ft)

t � 10 � t � 1

s(1) � 1

5 6 s (ft)43210

1 � t � 2
t � 20 � t � 1

s(2) � 1s(1) � 3s(0) � 1

10 s (ft)8 97654

t � 10 � t � 1

s(1) � 9

5 s (ft)43210

6
25� 6

25
4
5

�8�2

f �(0) � 0h

f ¿(2) � �14.6165f ¿(0) � �57.5266

120

0 13

n � 5f (n)(x) � 0f (4)(x) � 48
f ‡(x) � 48xf �(x) � 24x2 � 8f ¿(x) � 8x3 � 8x



Answers to Chapter 2 Selected Exercises ANS 13

17. a.

b. , if , if 

19. a.

b. , if , if

21. a. b. 250 J

23. a. Ascending at , stationary at , descending at

b. Positive at , 0 at , positive at 

25. a. 1.65 sec b. m/sec

27. a. b. , ,

c. 64 ft

29. a. 60° b. c. 300 ft

d. ft e. or 120°

31. a. b. 10.6°

33. 22 ft/sec2, 0.88 ft/sec2 35. $120, $120.06

37. a. b. 200, 0,

39. a. 2.38 cm b. 0.00227 cm/cm

2.5 Exercises • page 190

1. 3.

5. 7. 9.

11. 13.

15. 17.

19. 21.

23. 25.

27.

29. a. b.

3

�1.5

�1.5

1.5y �
13

2
 x �

6 � 13p

12

�
4x2 cos x � 4x sin x � cos x

4x1x

�5 cos x � x sin x�sin x

x sin 2x � sin2 x�
2

(sin u � cos u)2

cos x � sin x � 1

(1 � cos x)22 cos 2x

1 � sec x � x sec x tan x

(1 � sec x)2

x cos x � sin x

x2

�sin ucos 2x�u csc2 u � cot u

(sec t)(3 sec t � 4 tan t)�4 sin x � 2

�20010,000 � 200x

3,000

0 24,000

�60°40013

(20013, 300)

√(16) � 0√(8) � 0√(0) � 01
16 t

3 � 3
2 t 2 � 8t

�14.14

t � t2t � t1t � t0

t � t2

t � t1t � t0

100 (kg � m)>sec

t � 13
a(t) � 00 � t � 13a(t) � 0a(0) � a(13) � 0

4t(t 2 � 3)

(t 2 � 1)3

t � 3
2a(t) � 00 � t � 3

2a(t) � 0a132 2 � 0

6(2t � 3)
31. a.

b.

33. 35. 37.

39. ,

41. , , ,
,

43. 2 ft, ft/sec, 3 ft/sec, ft/sec2

45. 51. True

2.6 Exercises • page 201

1. 3.

5. 7.

9. 11.

13. 15.

17. 19.

21. 23.

25. 27.

29.

31. 33.

35. 37.

39. 41.

43. 45.

47.
4

(1 � x)2 sin a1 � x

1 � x
b cos a1 � x

1 � x
b

cos 2x � sin 2x

1sin 2x � cos 2x
�

1

x2 cos
1
x

�
6 sin 3x

(1 � cos 3x)2�
sin x

11 � 2 cos x

�
3(2x � p sec px tan px)

(x2 � sec px)4

4 sin 3x cos 3x

23 1 � sin2 3x

3 sin x cos x(sin x � cos x)2 cos 2x �
sec21x

21x

3 cos x sin2 x

p sec2(pt � 1)3 cos 3x

2(2x2 � 10x � 1)

3(2x2 � 1)2>3(2x � 5)4>3
5s11 �21 � s2 24

21 � s2

�
20t 2 � 40t � 9

t 4(1 � 2t)4

1 � 2u2

21 � u2

3x2 � 2

22x3 � 2x
u2(2u2 � 1)3(22u2 � 3)

6at �
2

t
b5a1 �

2

t 2b�
3(6t 2 � 1)

t 4(2t 2 � 1)4

10(2x � 1)41 � sin x

21x � cos x

�
2x

3(x2 � 1)4>36(2x � 4)2

�csc x cot x

�2�3

pf (4)(x) � sin x
f ‡(x) � �cos xf �(x) � �sin xf ¿(x) � cos x

k � 0, 
1, 
2, p
(2k � 1)p

2

2kp, k � 0, 
1, 
2, p�1
12p(8 � p)

16

�5

5

�3 3

y � 213x �
6 � 213p

3
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49.

51.

53.

55.

57.

59.

61. a.

b.

63. a.

b.

65. 300 67. No 69. , , does not exist

71.

73. 75.

77. a.

,

b.

79. 0.6% per year, 0.4% per year, 25.9%

81. ft, ft/sec, 1 ft/sec, ft/sec2

83. $0 per share per day, $28 per share

85.

87. ft/sec, ft/sec2�1013>913>3

6u0s
6

r 7  c2as
r
b6

� 1d

�3�13
4

5

�2

�3

2

y � 2x � 1y � �2x � 1

f ¿(x) � d�
2

(2 �  x2)3>2 if x � 0

2

(2 �  x2)3>2 if x � 0

�42x[ f ¿(x2 � 1) � t¿(x2 � 1)]

a � cos x � f ¿(sin x) � b � sin x � t¿(cos x)

1
2�4

1.25

�1.25

�3 3

y � �1

10

0 3

�2.5

y �
312

2
 x �

12

2

2(cos 2t � 2t 2 sin t 2 � cos t 2)

48x(6x2 � 1)(2x2 � 1)2

�3p cos px cos2(sin px) sin(sin px)

cos x cos(sin x)

sec2 x (3 sec2 3x � 2 tan x tan 3x)

�
2(1 � x2) sin 2x � x cos 2x

(1 � x2)3>2
89. a.

b. (i) About 93 ft (ii) Exactly 500 ft (iii) Indefinitely

91.

93.

95. b. 6.1 ft/sec, 12.3 ft/sec c.

d.

97. mph per decade, 19.2 mph

99. , no

101. , 103. , , an integer

105. a. ,

b.

107. False 109. True

2.7 Exercises • page 212

1. 3. 5. 7.

9. or 

11. 13. 15.
cos(x � y)

2y � cos(x � y)
�1y>xx � 1

2 � y

3x2 � 2x � y2 � y

x � 2xy � 2y

x4 � 2x2y2 � x2y � y3 � y4

x(x2 � y2)

�
y2

x2

3x2 � 1

6y2 � 1
�

y(y � 2x)

x(2y � x)
�

2x

y

y

x31

y � f(x)

y � f�(x)

2

2

1

�1
�1

�2

x � 1, 2
(2x � 3)(x � 1)(x � 2)

2�x2 � 3x � 2 �3>2

kx � kp
sin 2x

2� sin x �x � �1
x � 1

�x � 1 �

(x � 0)a2 �
1

x2bsin
1
x

�
2
x

cos
1
x

�26.5

100

0 1.5

�

�
s

2e0
 a r

2r 2 � R2
� 1b

k1(EC � q0)

C(k1 � k2t)
2 a k1

k1 � k2t
b (1�Ck2)>(Ck2)

0 1000

1250



Answers to Chapter 2 Selected Exercises ANS 15

17.

19. 21.

23. 25. 1 27. 29.

31. 33.

35. 37.

39. a. ,

b.

41. a. ,

b.

43. a.

b.

c. ,

45. ft/sec

51. 53.

55.

57. True

A

B

600 500
400

300
200
100

50

�4

4

�3 5�5

�5

5

5

3
25

113 2, 13 4 2(0, 0)

y � �x � 3

y � x2

y2 � x

7

�3

�6 4

y � � 2
15 x � 41

15y � 15
2  x � 18

4

�4

�6 6

y � 4x � 45
4y � �1

4 x � 3
2

y � � 9
13 x � 40

13y � 2x � 1
2

y �
13

2
 x � 213�

sin x sin2 y � cos y cos2 x

sin3 y

2y>x213>3y � x � 2

y �
13

6
 x �

213

3

�y21 � cos2 y

cos y sin y � x21 � cos2 y

y � 6x2 tan(x3 � y3) sec2(x3 � y3)

6y2 tan(x3 � y3) sec2(x3 � y3) � x

2.8 Exercises • page 220

1. 3. 5. 1

7. a. b. 150 in.3/sec

9. units/sec

11. a.

b.

c. or 

13. 188.5 ft2/sec 17. 19.2 ft/sec

19. 29 packs per week 21. ft/sec

23. 10 ft/sec 25. 20.1 in.3/sec

27. 17 ft/sec 29. km/h 31. L/sec

33. kg/sec 35. 196.8 ft/sec

37. a. b. m/sec

39. ft/sec 41. 0.04 in.3/sec

2.9 Exercises • page 233

1. a. 0.02, 0.0804 b. 0.08 c. 0.0004

3. a. 0.1, 0.033150 b. 0.033333 c.

5. 7. 9. 11.

13. 15. 17.

19. 1.975, 2.025

21. 1.006 23. 1.9885 25. 6% 27. $2000

29. 31. 3% 33. 15% 35. 1.75 ft

37. 18.1% 39. 0.68 hr 41.

43. True 45. True

Chapter 2 Concept Review • page 236

1. a. b. limit

c. tangent line; d. ; ; 

e. y � f ¿(a)(x � a) � f(a)

(a, f(a))xf(x)(a, f(a))

f ¿(x) � lim
h→0

f(x � h) � f(x)

h

f � 45°

�40%

6

3

�0.5

�4

1
3 x � 4

37x � 4�dx

�
12

2
 dx57

4  dx�dxdx

�0.000183

�80.15

�1205.5x2 � (6 cos u)x � 40 � 0

9.1  10�32

1
7�23

�6.96

x � 2x � �2

x � 
2

�2 � x � 2

�3

dV

dt
� 3x2 

dx

dt

�63
2
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3. a. 0 b.

5. 7. ; ; ; 

9. a.

b. ; ; ;
; ;

11. ; ; 

13. a.

b.

Chapter 2 Review Exercises • page 237

1.

3.

5. a. The rate of change of the amount of money on deposit
with respect to the interest rate, measured in dollars per
unit change in interest.

b. Positive

c. $607.75

7. , 9.

11. 13. 15.

17. 19.

21.

23.

25.

27. 29.

31. 33.

35. 37.

39. 41. 43.

45. 47.

49. 51. 53. 10

55. 57. 59. �
y3

x3

3x

2y

1

3
 c f(x)

t(x)
d�2>3

 
t(x)f ¿(x) � f(x)t¿(x)

[t(x)]2

� 1
27�2(csc2 t)(1 � t cot t)

1

2
csc2 u

2
cot
u

2
�2 cos 2x

3x � 2

(2x � 1)3>26x � 2 �
2

x3� 47
1156

�
u sin u � 2 cos u

u3�3 cot2 x csc2 x

�
2

x2 sec2 2
x

2x �
2x cos 2x � sin 2x

x2

�2 sin(2x � 1)
t � 2

(1t � 1)3

1
2 2s3 � s � 1(11s3 � 5s � 2)

�3
2(3t 2 � 2)(t 3 � 2t � 1)�5>2

cos t � t sin t � sin t � t sin t tan t � t sec t

(1 � tan t)2

(1 � x2) sin x � 3x cos x�sin u � 2 cos u

1 � 3u2

21u(u2 � 1)2

3

(2t � 1)24t �
4

t 2 �
1

t1t

2x5 � 8x3 � 2xa � 4f(x) � 3x3>2

y�

x642

20

�20

�2 0

2x � 2

f(x � �x) � f(x)

x2 � x1

ady>dty

�csc2 f(x) � f ¿(x)
�csc f(x) cot f(x) � f ¿(x)sec f(x) tan f(x) � f ¿(x)

sec2 f(x) � f ¿(x)�sin f(x) � f ¿(x)cos f(x) � f ¿(x)

n[ f(x)]n�1 � f ¿(x)

C¿P¿R¿C¿dy>dx

nxn�1

61. 63. 65.

67. 69. 71. 73.

75. ,

77. , 79.

81.

83. a. b. 85. 0

87. ,

89. 30 cm/sec, cm/sec/cm

91. 750 subscribers/month

93. 0.0107 m2/kg 95. 0.05164

97. a. b.

99. 101. ft/sec

Chapter 2 Challenge Problems • page 241

1. 64

3. b.

5.

9.

13.

CHAPTER 3

Exercises 3.1 • page 253

Abbreviations: abs. max., absolute maximum; abs. min., absolute
minimum.

1. Abs. max. 

3. Abs. max. , abs. min. , , an integer

5. Abs. max. , abs. min. f(5) � �5f(1) � 37

nf(2n � 1) � 0f(2n) � 1

f(1) � 3

�10

xf ¿121 � x2 2
21 � x2

1 � 3 � 5 � p � 17

210  (1 � x)�21>2(39 � x)

(�1)nn! c 1

(x � 2)n�1 �
1

(x � 1)n�1 d

7.715
4

2prh

3

pr 2

3

�200

�20
9  t �4>3 � 10

9  t �1>320
3  t �1>3 � 5

3 t 2>3
y � 2x(1, 2)

�
13

2
 x �

1

12
 (13p � 9)

�
2x

y5y � xy � �x � 2

3

3

�1

�1

y � �
12

3
 x �

412

3
y �

312

2
 x �

12

2

6 � 13p

12
 dx7

3 dx3
16 dx10x4 � 3x2

�
y

x

sin y � sin(x � y)

sin(x � y) � x cos y
�

2x2 � 2xy � y2

x2 � 2xy � 2y2



Answers to Chapter 3 Selected Exercises ANS 17

7. 9.

Abs. min. None

11. 13.

None Abs. min. 

15. 17.

Abs. min. Abs. max. ,
abs. min. 

19. 21.

Abs. max. None

23.

Abs. min. f(�1) � �1

y

x21�1

�1

1

2

0

f 1p2 2 � 2

y

¨
�1

� 1

π_
2

π_
4

π_
4

y

t

1

2

�2

3ππ __
2

π_
2

0

f(0) � 0
f(�2) � 2f(1) � 1

y

x1�2

1

2

0

y

x10

1

f(2) � �1

y

x1

1

�1 3

3

y

x1

1

0

f(�1) � 1

y

t1�1

�1

1

0

y

x�1 1

3

1

0

25. None 27. 29. 31. None

33. 0, 3 35. , 1, 2 37. 0 39.

41. ,

43. Abs. max. , abs. min. 

45. Abs. max. , abs. min. 

47. Abs. max. , abs. min. 

49. Abs. max. , abs. min. 

51. Abs. max. , abs. min. 

53. Abs. max. , abs. min. 

55. Abs. max. , abs. min. 

57. Abs. max. , abs. min. 

59. Abs. max. , abs. min. 

61. 1667 dozen

63. Highest at 6 A.M. and 10 A.M., lowest at 7 A.M.

67. 10,000 71. 7.4 lb 73. $52.79/ft2

75. a.

b. 21.5%

77. Halfway up the side of the cylinder

79. ft 81. Greatest at , smallest at 

83. 85. No 87.

91.

Abs. max. , abs. min. 

93.

Abs. max. , abs. min. 

95. a.

b. Abs. max. 7, abs. min. 2 � 9
813 3>4 � 0.978

�1 2
0

8

f(0) � 0f(0.8) � 0.036

0 4

0.05

0.02

f(�2) � �4.16f(�0.9) � 7.8

�2 2

�5

10

(��, �)�0.48 
W

EI

(0, 
b)(
a, 0)�93

0 4

40

t(0) � 0t1p3 2 � 13 � p
3

f(0) � f 1p2 2 � 2f 1p4 2 � 5

f(
1) � �3f(0) � f(2) � 0

f(1) � �1f(9) � 3

t(4) � 4
3t(2) � 2

f(�1) � �1
2f(1) � 1

2

t(�1) � 0t(�2) � 17

h(�3) � h(0) � 1h(2) � 21

f 112 2 � �9
4f(2) � 0

n � 0, 
1, 
2, pnp>4

1�1


12�1
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97. a.

b. Abs. max. 1, abs. min. 

99. False 101. False

Exercises 3.2 • page 264

1. 2 3. 5. 7. 9. 1

11. 13. 15.

17. There is at least one instant during the 30-min flight when
the plane is neither climbing nor descending.

19. ; the aircraft attains the highest altitude at .

21. is not differentiable on .

23. No; is not differentiable at .

31. b.

41. b. , 0.50000, 1.36603

c.

43. a. 1.325 b.

45. False 47. True 49. True

Exercises 3.3 • page 272

Abbreviations: rel. max., relative maximum; rel. min., relative
minimum.

1. a. Increasing on , constant on , decreasing
on 

b. Rel. max. , x � [�2, 2]f(x) � 2

(2, �)
(�2, 2)(��, �2)

�0.5 2.5

�2.5

12.5

�1.5 2.5

�3

1

�0.36603

�3 3

�5

5

x � 1f

(�1, 1)f

t � 4c � 4

cos�1(�2>p) � 2.26
2 � 213

3
13

p>2
12>2�
1 � 17

3

12(2 � 12) � 0.828

0.0 1.0
0.8

1.0 3. a. Increasing on , decreasing on 

b. Rel. min. 

5. a. Increasing on and b. None

7. a. Increasing on , decreasing on and

b. Rel. max. at 2.5, rel. min. at 

9. a. Increasing on , decreasing on 

b. Rel. min. 

11. a. Increasing on and , decreasing on

b. Rel. max. ,
rel. min. 

13. a. Increasing on and , decreasing on

b. Rel. max. , rel. min. 

15. a. Increasing on , decreasing on 

b. Rel. min. 

17. a. Increasing on b. None

19. a. Increasing on and , decreasing on 

b. Rel. max. , rel. min. 

21. a. Increasing on and , decreasing on
and 

b. Rel. max. , rel. min. 

23. a. Increasing on and , decreasing on 
and 

b. Rel. max. , rel. min. 

25. a. Decreasing on , , and 

b. None

27. a. Increasing on and , decreasing on 

b. Rel. max. , rel. min. 

29. a. Increasing on , decreasing on 

b. Rel. max. 

31. a. Increasing on , decreasing on and 

b. Rel. max. , rel. min. 

33. a. Increasing on and , decreasing on 
and 

b. Rel. max. , rel. min. 

35. a. Increasing on and , decreasing on 

b. Rel. max. , rel. min. 

37. a. Increasing on and ,
decreasing on and 

b. Rel. min. .f(0) � 1.56

(�1(p>2) � 1, 0)
1�p2 , �1(p>2) � 12 11(p>2) � 1, p2 2(0, 1(p>2) � 1)

f 13p2 2 � �3p
2f 1p2 2 � p

2

1p2 , 3p2 213p2 , 2p 210, p2 2
f 1p2 2 � f 13p2 2 � 0f(p) � 1

1p, 3p2 2 10, p2 213p2 , 2p 21p2 , p 2
f 1p3 2 � �0.68f 15p3 2 � 6.97

15p3 , 2p 210, p3 21p3 , 5p3 2
f 134 2 � 313>16

134, 1 210, 34 2
f 165 2 � �2.03f(0) � 0

10, 65 2165, � 2(��, 0)

(2, �)(�2, 2)(��, �2)

f(2) � 4f(0) � 0

(1, 2)
(0, 1)(2, �)(��, 0)

f(1) � 2f(�1) � �2

(0, 1)(�1, 0)
(1, �)(��, �1)

f 145 2 � �1.10592f(0) � 0

10, 45 2145, � 2(��, 0)

(��, �)

f(3) � �21

(��, 3)(3, �)

f(1) � �2f(�2) � 25

(�2, 1)
(1, �)(��, �2)

f(12) � 1 � 412
f(�12) � 1 � 412

(�12, 12)
(12, �)(��, �12)

f(1) � �1

(��, 1)(1, �)

�2.5

(2.5, �)
(��, �2.5)(�2.5, 2.5)

(�1, �)(��, �1)

f(�1) � 0

(��, �1)(�1, �)



Answers to Chapter 3 Selected Exercises ANS 19

39. a. Increasing on and , constant on
and , decreasing on 

and 

41. Increasing on , decreasing on ,
rel. min. 

43. Decreasing on , increasing on ,

45. Rising on , , and ; falling on and
; rel. max. and , rel. min. 

and 

47. a. 49. a.

51. a.

b.

57. ,

59. No. is not continuous on an interval containing .

63. a.

b.

Increasing on , , and ;
decreasing on and 

65. a.

67. True 69. True 71. False

�0.5 0.5
0.0

1.0

(0.2, 1.2)(�1.2, �0.2)
(1.2, �)(�0.2, 0.2)(��, �1.2)

�0.5 0.5

0.5

�2 2

�6

6

x � 0f

b � 24a � �4

a 	 0

�2

2�2

2

0 4
15

40

150

10

(19, 2.8)
(7, 2.8)(13, 12.4)(1, 12.4)(13, 19)

(1, 7)(19, 24)(7, 13)(0, 1)

C(500) � 35
(500, �)(0, 500)

f(1) � 32
(0, 1)(1, 4)

(21.8, 22.7)
(21.1, 21.7)(20.6, 21.1)(19.6, 20.2)

(21.7, 21.8)(20.2, 20.6) Exercises 3.4 • page 285

Abbreviations: CU, concave upward; CD, concave downward;
IP, inflection point; rel. max., relative maximum; rel. min.,
relative minimum.

1. CU on , CD on , IP 

3. CU on and , CD on 

5. CD on , , and 

7. CU on and , CD on and ,
IP at 

9. (b) 11. CU on , CD on , IP 

13. CU on and , CD on , IP and

15. CU on , CD on , IP 

17. CU on and , CD on , IP 
and 

19. CD on and 

21. CU on and 

23. CU on and , CD on and ,
IP 

25. CU on , CD on , IP 

27. CU on , CD on and , IP and 

29. CU on , , , and , CD on 
, , , and , IP , ,

and 

31. CU on , CD on , IP 

33.

a. CU on , CD on b. IP 

35.

a. CU on , CD on b. IP 

37. Rel. max. , rel. min. 

39. Rel. min. 

41. Rel. max. , rel. min. 

43. Rel. max. , rel. min. t(�1) � �1
2t(1) � 1

2

f 112
2 2 � 212f 1�12

2 2 � �212

f(3) � �27

h(5) � �130
3h(�1) � �22

3

(0, 0)(0, �)(��, 0)

�4 4
�1

1

(�0.4, 6.4)(��, �0.4)(�0.4, �)

�2
�2.5

2

10

(0, 0)(�p, 0)(0, p)

1p2 , 0 2 (0, 0)1�p2 , 0 213p4 , p 21p4 , p2 21�p4 , 0 21�3p
4 , �p2 2 1p2 , 3p4 210, p4 21�p2 , �p4 21�p, �3p

4 2
17p4 , 0 2 13p4 , 0 217p4 , 2p 210, 3p4 213p4 , 7p4 2

1p2 , 0 210, p2 21p2 , p 2
(0, 0)

(0, 1)(��, �1)(1, �)(�1, 0)

(0, �)(��, 0)

(0, 1)(�1, 0)

(0, 0)
1�1, � 4

15 2(�1, 0)(0, �)(��, �1)

(0, 1)(0, �)(��, 0)

(1, �1)
(0, 0)(0, 1)(1, �)(��, 0)

(0, 0)(��, 0)(0, �)

x � �1, 0, 1
(0, 1)(��, �1)(1, �)(�1, 0)

(2, �)(�2, 2)(��, �2)

(�4, 4)(4, �)(��, �4)

(0, 0)(��, 0)(0, �)



ANS 20 Answers to Selected Exercises

45. Rel. max. 47. Rel. max. 

49. 51.

53. a. , , ,

b. With the promotion the deposits will increase at an
increasing rate; without it they will increase at a decreas-
ing rate.

55. The restoration process is working at its peak at the time 
corresponding to the -coordinate of .

57.

increases at an increasing rate before the IP and a
decreasing rate after the IP.

59. b. Sales continued to accelerate.

65. a. 506,000 in 1999, 125,480 in 2005

b. The number of measles deaths was dropping.

c. April 2002; decreasing at about 41,000 deaths annually

67. a. CU on , CD on and 

b. No; the graph has no tangent line at .

c.

69. 71. No 77. False 79. True

Exercises 3.5 • page 303

Abbreviations: HA, horizontal asymptote(s); VA, vertical 
asymptote(s).

1. a. b. c. d.

3. a. b. 0 c. 0 5. ���

������

c � 3
2

y

x1�1

�1

1

2

0

(1, 2)

(1, �)(��, 0)(0, 1)

f(t)

Concave downward

Concave upward

Inflection point

y

t

Qt
t0

Dfl
2(t) � 0Dfl

1(t) � 0Dœ
2(t) � 0Dœ

1(t) � 0

y

x�1 1

2

1

2_
3� 0

y

x10�1

f 1p3 2 � 313>2f 1p4 2 � 12 7. 9. 11. 13. 15. 17.

19. 21. 23. 0 25. 27. 29.

31. 33. 0 35. 1 37.

39. b. 0

c.

41. a. b. c.

43. a. 0.7 b. 0.707 c.

45. HA 47. HA , VA 

49. HA , VA 51. HA , VA 

53. HA , VA 55. HA , VA 

57. 59.

61. a. ; the cost increases dramatically as
the amount of pollutant removed approaches 100%.

b.

63. a. 25,000

b.

65. 67.

69. a. 0.6 b. 0.577 c. 13>3

c

m

m0

√0

Terminal velocity

√

t0

200

30

1000

10

limx→100� C(x) � �

y

x

�1

�2 �1 1 2

1

1_
2�

0

y

x

1

0

�1

1�1

t � 
2y � 1x � �2, 3y � 0

x � �1y � 1x � �2y � 0

x � 
1y � �1y � 
1

12>2
1
2

1
2

1
2

0 20
�0.5

0.5

��, 1, 0, 1213>3
�1

6�2
3

1
9

3
2�

�������
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71. b. mph c.

75. 1 83. False 85. False 87. True

Exercises 3.6 • page 317

1. 3.

5. 7.

9. y

x1�1

�3

1
2

2

y

x31

1

6

�1

y

x51�1
�10

10

60

�60

�5 0

y

x1�1

1

�5

y

x31
�5

5

�10

10

0

0

H

√0√2tR

�25,067 17. 19.

21. 23.

25. 27.

29.

31. 33.

y

x1�2

1

�2

0

y

u1

�2

�4

2

y � 1
2 x � 1

2y � u

y

x2π�3π�2π 3ππ�π

1

�1

�2

y

xπ�π�2π

1

2π0

y

x2π

1

0

6

π

y

x3�1

1
1

�1

y

x1

1

5�1�5

y

x1 3�3
�1

1

y

x

1

�1 �2

2

11.

13. 15. y

x1

1

5

10

�2 30

y

x1�1
�1

1

0

y

x1�1

�4

1

4

8

4



ANS 22 Answers to Selected Exercises

37.

The average worker’s efficiency increases until 10 A.M. and
then begins to decrease.

39.

The rate of increase of the ozone level is maximum at about
1 P.M.

41.

The amount of salt increases to a peak level of approxi-
mately 7.43 lb after approximately 3.4 min, and then it
declines.

43.

A particle’s mass increases as its speed increases.

45. 47.

49.

110

16

�8 8
�5

50

�2 4
�10

10

c

m
0

f(√)

√0

100

10

12.50

250

1 2 3 4

20

40

60
y

t (hr)0

Exercises 3.7 • page 327

1. 50, 50 3. 18, 3 5.

7. 9.

11.

13. Radius in., length 36 in., volume in.3

15. 17.

19. 21.

23. , 25.

27. 29. 20 trees/acre

31. ; ft3

35. Width 11.5 in., height 19.9 in.

37. rad, in3

39. ft, ft 41. ,

43. mi from 

45. a.

b. mi

47. , watts 49. 53. Radius , height 

55. 57. ft 59. Yes

61. Radius 1.5 ft, height 3 ft

63. a. ft/sec

b.

65. mi, hr

69. a.

b.

c. 16.02 lb/ft

�0.5 0.55
�1

9

y � 16.02x

30 � 17

12
PR �

317

7

0

E

√2uu u3_
2

3
2 u

512>2y � �2x � 4

H>2R>2C
E2

4r
r

�0.45

D(x) � Bx2 �
(x � 1)2

x
�

4(x � 1)

1x
� 4

O�8.6

213 32>p13 32>p�6.7�6.7

128p13
2p(3 � 16)

3

4013

27

213

3
 ft 

213

3
 ft 

1013

9
 ft

(�2.834, �4.032)

412  212(0.6180, 1.6180)(�1.6180, �0.6180)

(�2, 1)3
2  1

212  121.39 ft  2.08 ft  0.83 ft

46,656>p36>p
7.6 in.  7.6 in.  3.8 in.

12 in.  6 in.  2 in.100 ft  66 2
3 ft

25 m  25 m



Answers to Chapter 3 Selected Exercises ANS 23

71. a.

b.

c. ft/sec2

Exercises 3.8 • page 340

1. 0.7709 3. 1.1219, 2.5745 5.

7. 9. 1.37880 11. 0.75488

13. 0.87122 15. 17. 0.739085

19. All terms are . 21. 1.8794

23. 2.4495 25. 2.1147

27. is not defined; using leads to .

29. b. 0.7351 c. mi

d.

33. 6.7%/year

35. c.

Chapter 3 Concept Review • page 344

1. a. ; absolute maximum value

b. ; open interval

3. Continuous; absolute maximum value; absolute minimum
value

5. a.

b. increasing; decreasing

c.

7. a. values; arbitrarily large; 

b. values; to ; sufficiently large

c. arbitrarily large; decreases

9. a. ; ; 

b. ; ; ; f(x) � Mx � NNM � 0

f(x) � Md � 0M � 0

L

a

� 0

f(x1) � f(x2)

f(c) 	 f(x)

f(x) 	 f(c)

�3 4

�10

7

0.0 1.0
2

4

�2.74

x1 � 1x0 � 0f ¿(1)

x0

�1.347296

(0.4502, 0.4502)

(0.8767, 0.7686)

�32.08

�0.05 0.75
�1

10

y � 16.04t 2 Chapter 3 Review Exercises • page 344

Abbreviations: abs. max., absolute maximum; abs. min., absolute
minimum; CU, concave upward; CD, concave downward; 
IP, inflection point; HA, horizontal asymptote(s); VA, vertical
asymptote(s).

1. Abs. max. , abs. min. 

3. Abs. max. , abs. min. 

5. Abs. max. , abs. min. 

7. Abs. min. 

9. Abs. max. , abs. min. 

11. Abs. min. 

13.

15.

17.

19. is not continuous on .

21. a. Increasing on b. None

c. CU on , CD on d.

23. a. Increasing on and on , decreasing on
and on 

b. Rel. max. , rel. min. and 

c. CU on and on , CD on 

d. ,

25. a. Increasing on and on , decreasing on
and on 

b. Rel. max. , rel. min. 

c. CU on , CD on 

d. None

27. a. Decreasing on b. None

c. CU on , CD on d.

29. a. Increasing on and on b. None

c. CU on , CD on d. None

33. 35. 37. 39. 3 41. 0

43. HA , VA 

45. 47. y

x1�1
�1

1

4

0

y

x1 3

1

3

0
�1

x � �3
2y � 0

�����

(�1, �)(��, �1)

(�1, �)(��, �1)

(1, 0)(��, 1)(1, �)

(��, �)

(��, 1)(1, �)

(2, 4)(0, 0)

(1, 2)(0, 1)
(2, �)(��, 0)

113
3 , �5

9 21�13
3 , �5

9 2
1�13

3 , 13
3 2113

3 , � 21��, �13
3 2

(1, �1)(�1, �1)(0, 0)

(0, 1)(��, �1)
(1, �)(�1, 0)

11, �17
3 2(��, 1)(1, �)

(��, �)

[�2, 0]f

cos�11 2p 2
13

�1

f 1p3 2 �
�313 � p

6

f 13p4 2 � �12f 17p4 2 � 12

f(3) � �3

f(1) � 3f(3) � 107
9

h(4) � �32h(2) � �16

f(�1) � �8f(2) � 1



ANS 24 Answers to Selected Exercises

49. 51.

53. 55.

59. a. Increasing on , decreasing on 

b.

c. The smallest percentage of women over 65 in the work-
force was about in late 1982.

61. 63.

65. a.

67. Maximum when ; minimum when

69. 71. 1 ft 73.

75. 0.8767 77. , 79. No

Chapter 3 Challenge Problems • page 348

1.

3. Highest point: , lowest point:

CHAPTER 4

4.1 Exercises • page 358

1. 3.

5. 7.

9. 11.

13. 15. 2
5 x

5>2 � 4
3 x

3>2 � 6x1>2 � C3x �
2
x

�
1

3x3 � C

61u � C3
10 t

10>3 � 6
7 t 7>3 � 3

4 t 4>3 � C

2
3 x3>2 � 61x � C1

5 x
10 � 4

7 x
7 � 4x � C

1
3 x

3 � x2 � 3x � C1
2 x

2 � 2x � C

(1, �2)(�1, 2)

f 112 2 � 1
4

b � 11a � �4

�0.77091 ft  2 ft  2 ft

t � 0, 4, 8, 12, p
t � 2, 6, 10, 14, p

0 18
20,000

30,000

(2, 1)1012  412

7.9%

P(12.7) � 7.9

(0, 12.7)(12.7, 30)

y

x2π
�1

1

�3

3

π0

y

x2 3 41�1
�1

2

3

�2

1

�2�3 0

y

x�1 1
�1

1

y

x1

1

5

10

�1 0

17.

19. 21.

23. 25.

27. 29.

31. a.

b.

33. a.

b.

35. 37. 39.

41. 43.

45. 47.

49. Graph 1 is . 51.

53. 55.

57.

59. a. b. 5 sec c. ft/sec

65. 2.15 m, 0.82 m 67. ft/sec2, 396 ft

69. 0.924 ft/sec2 71. Branch A 73.

75. a.

b. 0.96%, 3.42%

77.

79.

81. True 83. False 85. False

4.2 Exercises • page 367

1. 3. 5.

7. 9.

11. 13.

15. 17.

19. 21.

23.

25. 1
5(1 � x2)5>2 � 2

3(1 � x2)3>2 � (1 � x2)1>2 � C

2
3(x � 2)1x � 1 � C

�424 � u2 � C�
1

8(2x2 � 3)2 � C

1
10(s4 � 1)5>2 � C�1

32(1 � 2x)3 � C

1
4(x2 � x � 1)4 � C1

8(2x2 � 3)6 � C

5
16(2x � 4)8>5 � C1

5(x2 � 1)5 � C

1
4 tan4 x � C2x2 � 1 � C1

12(2x � 3)6 � C

� 1
251215t � 1

100 t 2 2 � 20

1.0974t 3 � 0.0915t 4 � 34

0.001547x3 � 0.1506x2 � 4.9x � 53.09

10,000x � 100x2

�88
9

�160�16t 2 � 400

0.1t 2 � 3t

�sin t � 2 cos t � t � 1t 3 � 2t 2 � 4t � 2

2t 3 � 2t 2 � t � 2f

1
3 x3 � x2 � 3x � 1

3�4t 1>2 � 4t � 7

1
2 x

4 � x3 � x2 � 3x � 33x2 � 4x � 5

1
2 x2 � cos x � 121x � 2x2 � x � 1

2

6

�4

�2

x2 � cos x � C

�7

�2 8

5

1
2 x2 � 3x � C

tan x � sec x � Ctan x � cot x � C

tan x � 2 cot x � C�csc x � C

�cot x � 2
3 x3>2 � C�3 cos x � 4 sin x � C

1
2 x4 � 11

3  x3 � 6x2 � 9x � C



Answers to Chapter 4 Selected Exercises ANS 25

27. 29.

31. or 33.

35. 37.

39. 41.

43. 45.

47.

49. 51.

53.

55. 80.04 years

57.

59. ,

61. True

4.3 Exercises • page 384

1. a. b.

3. a. b.

5. a. b. 8

0 1 2 3

5

y

x

y � 8 � 2x

156
5

0

10

5

y � 2x � 3

4321

y

x

2
5

1

y � x

y

0

1

x

s(t) � cos 2t � 3
4 sin 2t � 1√(t) � �2 sin 2t � 3

2 cos 2t

1.2
p
a1 � cos

pt

2
b

�1
3(16 � t 2)3>2 � 64

3

1
3(1 � x2)3>2 � 2

3
2
3(x � 1)3>2 � 2

3 x
3>2 � C

1
9(x2 � 1)9>2 � 1

7(x2 � 1)7>2 � C

2
15(3x � 8)2(x � 4)3 � C

1

2
 x �

1

4p
sin 2px � C

1

1 � sec x
� C12 � sin 2t � C

1
6 tan2 3x � Ccos u�1 � C

1
3 sec 3x � C

1

2p
sin2 px � C�

1

2p
cos2 px � C

1

2p
sin px2 � C4 sin

x

2
� C

7. a. b.

9. a. b. 21.68

11. a. b. 0.72

13. 10 15. 25 17. 55 19. 6.15

21. 23. 25.

27. 29.

31. 120 33. 275 35. 13,695

37. 39. 1 41. 43.

45. 6 47. 49. 9 51.

53. a.

b. c.

55. a.

b. c.

59. 9400 ft2 63. False 65. False

7071
10

3(2357n4 � 3270n3 � 1200n2 � 27)

10n4

lim
n→�

 a
n

k�1
c a2 �

3k

n
b4

� 2a2 �
3k

n
b2

� a2 �
3k

n
b d a3

n
b

32
5

16(n � 1)(2n � 1)(3n2 � 3n � 1)

15n4

lim
n→�

32

n5  a
n

k�1
k4

14
3

1
3

13
3

15
2

4n3 � 12n2 � 11n

3

1
n

 a
n

k�1
sina1 �

k

n
b1

n
 a

n

k�1
c2ak

n
b3

� 1d
a

5

k�1
a2k

5
� 1ba

11

k�1
(2k � 1)a

30

k�1
2k

0 1

1
x

2

1

y

x

y �

0 1 2 3 4

16

12

8

4

y

x

y � 16 � x2

69
8 � 8.625

0 1 2 3

10

y

x

y � x2
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4.4 Exercises • page 401

1. a. 14 b. 4 c. 6

3. a. b.

5. a. b. 0.83

7. 2 9. 11. 13.

15. 17. a. b. c. 13 d.

19.

18

21.

23.

5
2

�1

0

1

2

y � �x � 1�

�1 1 2

y

x

9
2

�6

�4

�2
0

2

4

6

8

�2 �1 1 2 3 4

y

x

4�2

y � 3
3

0

y

x

�5
2�19

2�6�
2

1
 

2x

x2 � 1
 dx

�
�1

�3
(4x � 3) dx�5

3�4

�1

0 1 2 3

1

y �    x � 1

y

x

√

�2

�2

0�1

1

2
�1

�3

1

y � 2x � 3
y

x

25.

27. a. 2 b. 1 c. 6 d.

29. a. 3 b. c. 19 31. 0

39.

41.

43.

45. a.

51. a.

55. a.

b.

57. 4 59. No 61. True 63. False 65. True

4.5 Exercises • page 416

1. a. b. c.

3. 5. 7. 9.

11. 13. 20 15. 17. 21

19. 2 21. 23. 25.

27. 29. 31. 33. 35.

37. 39. 41. 43. 0 45. 1

47. 49. b. 0.14342 51. 6 53. 55. 11
2

14
15

2 � 121
3

3
4(413 4 � 1)

6561
2

121
5

19
6213>34

3

3 � 13

3
20812>10532

3

�22
3�

sin x cos2 x

cos x � 1

sin 1x

2x
�sin 2x

1

x2 � 1
13x � 5

x21
3 x3 � 8

3x2

1 	 �
1

0
21 � x2 dx 	

1 � 12

2

1 	 �
1

0
21 � x2 dx 	 12

10

1

�2

1�1

2

p

24
	 �

p>4

p>6
sin x dx 	

12p

24

3 	 �
2

�1
(x2 � 2x � 2) dx 	 15

13 	 �
2

1
21 � 2x3 dx 	 117

�7

�13

�9p
4

0

3

�3 y � �  9 � x2

y

x

√
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57. a. b. 0, 1.165 c. 1.026

59. 61. 63. 65. 67.

69. a. b.

71. a. b.

73. a. 4.5 ft b. 15.75 ft

77. cm/sec

79. 150.937 pollutant standard index

81. 8373 wolves, 50,804 caribou

83. 343.45 ppmv/year

85. 46%; 24%

89. Maxima at , minima at ,

91. a.

b.

c. and ; 

93. 2 95. 0 97. b. 105. True 107. Truep

(0, 3)(1, 3)(0, 1)

�1

0

1

2

�1 1 2 3

3

y

x

dx �
1

2
 x2 if 0 	 x 	 1

1

2
 x2 � x � 1 if 1 � x 	 3

n � 1, 2, p2np(2n � 1)p

80
3

0

1

3

1 2 3 4 5 6

2

y �   x � 3
y

x

√

769
225

0

1

1

2

3
y � x2 � 2x

y

x

121 � 3

3

2>p4
3(212 � 1)1

2
56
3

1
5

�5

2�1.5

2 4.6 Exercises • page 429

1. a. 2.75 b. Exact value:

3. a. 3.7708 b. Exact value:

5. a. 4.3766 b. 4.3328 Exact value:

7. a. 1.8961 b. 2.0046 Exact value:

9. 0.5523 11. 1.4001 13. 1.1643

15. 3.2411 17. 2.2955 19. 1.9101

21. a. b. 0 23. a. b.

25. a. b. 27. 13 29. 24

31. 28 33. 8 35. 4 37. 4 39. 52.82 ft/sec

41. 474.77 million barrels 43. 1922.4 ft3/sec 45. False

Chapter 4 Concept Review • page 431

1. a. b. 3. a. unknown b. function

5. a. b. minus

7. a. b. ; antiderivative c.

9.

Chapter 4 Review Exercises • page 432

1. 3.

5. 7.

9. 11.

13. 15.

17. 19.

21. 16 23. 25. 2 27. 29.

31. 33. 2 35. 37. 1.1502

39. a. b. 41.

43. a. b. sec c. ft/sec

45. 352 ft 47. 119,000 49. 85%

51.

53. a. b. 25.6 million 55. L/sec

57. a. 64.45°F b. 64.63°F

Chapter 4 Challenge Problems • page 435

1. 3. 5.

11. Maxima at , minima at 0 and 

13. b. 0 15. b. It is 0.


2
1

�4
52012�b � � �a �

6>(5p)11.911 � 0.91t

�0.000002x3 � 0.02x2 � 200x � 80,000

�6412212�16t 2 � 128

2
3 x

3>2 � cos x � 37
24,576

1
128

16
5

13 � 12

2

1
2(12 � 1)155

6
1
8

�1
2 csc x2 � C�211 � sin u � C

�1
5 cos5 t � C�

1

4(3x2 � 2x)2 � C

1

3
 x3 � 2x �

1
x

� C1
27(3t � 4)9 � C

1
8(1 � 2t)4 � C3

5 x5>3 � 3x � 2
3 x�3 � C

3
8 x

8>3 � 10
7  x7>5 � C1

2 x4 � 4
3 x

3 � 3
2 x

2 � 4x � C

f(c) �
1

b � a
 �

b

a

f(x) dx

�
b

a

f ¿(x) dxF(b) � F(a)f(x)

�
b

a

f(x) dx

F(x) � CF¿ � f

p5>1,866,240p3>1728

81
262,144

9
1024

3
4

2

13
3

15
4

15
4

8
3

8
3



ANS 28 Answers to Selected Exercises

CHAPTER 5

Exercises 5.1 • page 446

1. 3. 5.

7. billion barrels

9. 11.

13. 15.

9

17. 19.

21. 23.

8 9

25. 27.

21
24 � 17

�1
0

2

�4 �2 2 4

1

y

x
0�1 1 2 3

1

y

x

0

2
4
6
8

10
12

�1 1 2 3

14
y

x
0 1 2 3

2

4

6

8

y

x

65
12

1
3

�2

�1
0

1

2

�1 1 2 3 4

y

x

0 1

1

y

x

1
2

0

1

�1

�1

1

y

x

�4
�2

2

6
4

�2 �1 1 2 3 4

y

x

9
2

14
3

�6
�4
�2

2
4

�4 �3 �2 �1

y

x

0

2

�1 1

4

y

x

�
2050

2010
[ f(t) � t(t)] dt

13
12

40
3

40
3

29. 31.

33. 35.

37.

4

39. 41. 11 43. a. 8 b. 8

45.

47. a. b. and 1.25, 7.48

49. a. b. 0 and 2.25, 7.59

51. a. b. 0 and 0.88, 0.14

53. 30 ft/sec 55. 3,661,581 ft2
�0.25

�0.5 1.5

1.0

2.5

�1

�12.5

�3.5

�1.25

�2

�2 2

5

A � �
b

0
[t(x) � f(x)] dx

412>3

0

1

2

�2�
3

y

x�
6

p � 21
4

0

2

1�1

1

y

x�
�
4

�
4

1

0 �
6

�
3

�
2

y

x

20
3

8
5

�2

�1

1

2

2�2

y

x

�1

0

1

�1 1

y

x
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57. a. b. 342,000

59. 61. 0.5875 63. a. b. 0.69

65. a. b. 0, 1

67. a. b. 0.78540

69. False 71. True

Exercises 5.2 • page 461

1. 3. 5. 7.

9. 11. 13. 15.

17. 19. 21. 23.

25. 27. 29.

31. a.

b. and , 1.08

33. 35. 37.

39. 41.

43. 45. 47.

49. 51.

53. 32 55.

57. a.

b. 12.6 c. 10.9832

�3 3

�2

2

8113>40

(ph2>3)(3r � h)(ph>3)(R2 � rR � r 2)

71p>302p>5(p>15)a3

0

1

1

y

x
0 2

1
x �

y

x

�
2

104p>151088p>1564p>15

(1.18, 1.14)(0, 0)

�1

�1

1.5

2

19p>483p>10p2>4
128p>1564p>316p>3p>2

16p>1532p>547p>8464p>15

p>10p(1 � (p>4))153p>52p>3

�1.0

1.0

�1 1

(m � 1)>(m � 1)

42>31
12

0

300

10000

59. a. b.

61. 63. 65. b. 67. 33.52 ft3

Exercises 5.3 • page 472

1. 3. 5.

7. 9.

11. 13.

15. 17.

19.

0 1�1

�1

1

y

x

19p>48

0 1�1

1

y

x

0

2

4

2

y � 5

�2 �1 1

y

x

p>38p

0 3

3

y

x

0�1 1 2

1

2

y

x

18p2p

1

0�1 1 2

y

x

0 1 2

1

2

3

4

y

x

8p>38p

48p>5p>68p>3

pr 2h2
3 a

3813

p>24

�1.5

�1.5 1.5

1.5



ANS 30 Answers to Selected Exercises

21. a.

b. and c. 3.67

23. 25.

27. 29.

31. 33.

35. 37.

41. 43.

45. ft3 47. 296,231,243 ft3

Exercises 5.4 • page 484

1. 3.

5. 7. 9. 11. 452
27(37137 � 1)315173

8
27(10110 � 1)1

27(80110 � 13113)

10p

2p2a2b4
3 pa2b

0 1

1

y

x0

1

�

y

x

0 2 31

1

y

x

�2

0

2

�4 �2 2

4

y

x

8p>15128p>3
4310

1

2

2

3
y

x

0�1

1

y

x

32p>3p>15

0 1 2

2

4

y

x�1

0 2 4

1

2

y

x

9p>416p>3
(1.22, 1.22)(0, 0)

�0.5

�0.5

1.5

2
13. 15.

17. 19.

21. a.

b. c. 4.2008

23. a.

b. c. 4.8086

25. 27. 0.6325 29.

31. 33.

35. 37. 39.

41. 21.4018 45. 47. mi

49. 24,223.5 ft 51. 30.73 in.

Exercises 5.5 • page 492

1. 200 ft-lb 3. ft-lb 5. 6 ft-lb 7. 18 J

9. J 11. J 13. ft-lb 15. 360 ft-lb

17. 15,600 ft-lb 19. 56,458 ft-lb 21. 1740 ft-lb

23. 121,919 J 25. 128,252 ft-lb 27. 5799 ft-lb

29. 1405 ft-lb 31. J 33. ft-lb

35.

Exercises 5.6 • page 500

1. a. 187.2 lb b. 93.6 lb c. 31.2 lb

3. 1040 lb 5. 6760 lb 7. 1064.96 lb 9. 3057.6 lb

11. 374.4 lb 13. 561.6 lb 15. 12.0 lb 17. 7841 lb

19. a. 8387 lb b. 36,741 lb

21. 477.9 lb 23. 610,509 lb

qQ

4pe0
 a 1

2a2 � R2
�

1

2b2 � R2
b

3.46  1081.13  1013

7
24

17
6�

2
p

�500

8
34p

2p�
2

1
 
2x4 � 1

x3  dxp>445113p

4

(p>6)(17117 � 1)(p>27)(10110 � 1)

515p6a

�
4

0
 B1 � a1 �

1

1x
b2

dx

�1.25

0.25
0 4

�
2

0
21 � 4x4(3 � 2x)2 dx

0 2

2

�
p>4

0
21 � sec4 x dx�

2

�1B1 �
4x2

(x2 � 1)4 dx

�
2

�1
21 � 4x2 dx2

27(37137 � 1)
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Exercises 5.7 • page 511

1. m 3. m 5. 7. 9.

11. 13. 15. 17.

19. 21. 23. 25.

27. 29. 31.

33. 35. 39.

41. 43. 45. 47.

Chapter 5 Concept Review • page 512

1. a.

b.

3.

5. a.

b.

7. ; ; ; 

9.

11. a.

b. ; 

c. ; 

Chapter 5 Review Exercises • page 513

1. 3.

5
6

3
8

0

1

2

3

1

y

x0 1 2

1

y

x

Mx

m

My

m

�
b

a

rx f(x) dx
1

2
 �

b

a

r[ f(x)]2 dx

�
b

a

rf(x) dx

�
b

a

F(x) dx

(dx)2 � (dy)221 � (y¿)2 dx[a, b]�
x

a

21 � [ f ¿(t)]2 dt

2p�
d

c

yf(y) dy

2p�
b

a

x f(x) dx

p�
b

a

{[ f(x)]2 � [t(x)]2} dx

�
b

a

� f(x) � t(x) � dx

�
b

a

[ f(x) � t(x)] dx

a1

2
, 
p

8
ba0, 

2a

p
ba0, 

4R

3p
b8p

72p2aa

3
, 

b

3
bap � 2

p � 2
, 0b

ap � 4

p � 4
, 0b137

18, 
23
18 2a0, �

20

3(8 � p)
b

10, 43 211, 13
5 2116

35, 
16
35 21 9

20, 
9

20 2
15, 10

7 211, 25 210, 15 210, 85 2
11, 23 2156, 79 21� 5

12, 
3
2 21

3
7
6

5. 7.

9. 11.

13. 15.

2

17. 19. 21. 23. 25.

27. 722 m3 29. 36 31.

33.

35. ft-lb

37. 367,566 ft-lb

39. deep end: 30,576 lb; shallow end: 5616 lb; other sides:
41,080 lb

41. 43.

Chapter 5 Challenge Problems • page 516

1. ,

3.

5.

7. 52

9.
4pab2(213 � 3)

9

f(x) � 2
3 (1 � x2)3>2

y �
13

3
 x2

b � 5a � 3

11, �2
5 211, �2

5 2

2
3

2p�
2

1
 
(x3 � 1)24x6 � x4 � 4x3 � 1

x3  dx

14p>3
1
6p7p>308p>218p

1
3

1

1

0

y

x
�1

0

1

1 2

y

x

x � �
2

9
2

4
3

�2

0

1

�2 �1 1 2 3
�1

y

x

0

1

�1 1

2

y

x

14
3

4
3

1

2 4 60

2

y

x�5
�4

�2
�1

1

�1 1

�3

(1, 1)

(�1, �3)

y

x
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CHAPTER 6

Exercises 6.1 • page 528

1. a. 1.7917 b. 0.4055 3. a. 3.4011 b. 2.0149

5. 7.

9. 11.

13.

15.

17. 19.

21. 23.

25. a. b.

The graph of is the right branch 
and the graph of consists of 
both branches.

27. 29. 31.

33. 35. 37.

39. 41. 43.

45. 47. 49.

51. 55.

57. Absolute minimum ,
absolute maximum f(2) � �0.61

f(1) � �1

y � x � 1
(x � 1)y

x(2y2 � 1)

y(ln x � 1)
2 cos t � sin t � 1

(sin t � 1)(cos t � 2)
tan u

2x ln cos x � x2 tan x
cos(ln x)

x

ln x � 1

x ln x

1

x ln x

x(1 � ln x) � 1

x(x � 1)2(ln x)2 � 2 ln x

1

u(u � 1)

1

2x

2

2x � 3

t

f

x � 15

�5

�10 10

12kp � p
2 , 2kp � p

2 2, k � 0, 
1, 
2, p1�1
2, � 2

y

x

y � ln(x � 1)

y � ln x
2 4�2

1

�1

�2

�3

�4

y

x

y � 1 � ln x

y � ln x

1 2�1

1
2

�1
�2
�3
�4

y

x2

y � 2 ln x
y � ln x

1�1

2
1

�1
�2
�3
�4

ln
8

1x � 1

ln 21
3 ln(x � 1) � 1

3 ln(x � 1)

1
3 ln x � 2

3 ln y � 1
2 ln zln 2 � 1

2 ln 3 � ln 5

59. 61.

63. 1.76322 65.

67. 69.

71. 73. 75.

77. 79.

81.

83. 85. 87. 4

89. 91. 93. 1317 ft

95. a. ,

97. a.

b. $35,038.78 per year c.

99.

101.

103.

105.

107. 0.7726,

109. False

111. True

113. True

115. False

Exercises 6.2 • page 538

7. Yes 9. No 11. No 13. Yes 15. Yes

17. No 19. 2 21. 0 23. 25. p>4p>6

1.63  10�5

V(x0 � p)

x0 � p � k

T1 �
r1r2(T1 � T2)

(r2 � r1)
2 ln

r2

r1
�

r2(T2 � T1)

r2 � r1

nRT ln
V1 � nb

V0 � nb
� an2 

V0 � V1

V0V1

y¿ �
(A � Bx)yx¿
(Dy � C)x

�

100

0
25,000 50,000

�
k√2

0

(√0kt � 1)2

√0

√0kt � 1

(4x � 1)ln x(1.44, 0.36)

ln 2ln �2 � x ln x � � C

ln � sec u � tan u � � sin u � C

ln �1 � sin x � � Cln � ln x � � C

3 ln �x1>3 � 1 � � C2
9 ln 22

3 ln �x � � C

[x(ln x � 1)2 � 1]xx�1�
x2 � 2x � 1

3(x � 1)2>3(x2 � 1)4>3

2(2x � 1)(3x2 � 4)2(24x2 � 9x � 8)

y

x2 4�2�4 0

1

2

3

�1

y

x1 2 30

2

4

�2

�4
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27.

29.

31.

33. ,

35.

3

�3

�3 3

x3 � 1

y

x

y �

3

3

√9 � x2

0

x � 029 � x2

y

x

y � x3 � 1
y � 

3

1 2�1 0

2

�1

�2

√x � 1

13 x � 1

y

x

y � 3x � 2

y �

2�2 0

2

�2

x � 2
3

x � 2

3

y � f �1(x)

y � f (x)

�1

�1

1

1

x

y 37. ,

39.
Domain:

41. a. b.

43. a. b. 7.58

45. 47. b. 49. b. 1 51. b.

53. b. 55. 57. 3 61. True 63. True

65. True 67. True

Exercises 6.3 • page 549

1. a. 3 b. 3. a. 9 b.

5. a. b.

7. a. b.

9. a. b. or 

11. 13.

15. 17. 0 19. 21.

23. 25. 27.

29. 31. 33.

35.

37.

39. 41.
3x2 � e2y

2(xe2y � 1)

3

2x
 (2xe2x � 1)(e2x � ln 3x)1>2

2x[(e2x � 1)ln(e2x � 1) � xe2x]

e2x � 1

3
x

 (xex � 2)(ex � ln x2)2

�2e2x sin e2x(1 � ln t)et ln t�ecos x sin x

ex � e�x

22ex � e�x

ex(2ex � 3)

(1 � e�x)2

e1t

21t

�4e�4x��2
3

y

x2 4 6�2

2

4

6

�2

y � 2 ln x

y � ex/2

y

x1 2 3�1

1

3

2

�1
0

g(x) � ln

f(x) � e2x

√x

x � ln 3x � ln 2x � 5 ln 3
8

x � e2 � 1x � ln 5
2 � 2

x � �3
2x � 2

1xx2

1
3�25

4

1
36

1
2

1

21x

f �1(p) �
10

9
 c a p

10.72
b10>3

� 10d
[�459.67, �)f �1(F) � 5

9 (F � 32)

(��, �)
μ

x � 1

2
if x � 1

x2 if 1 	 x � 2

12x � 12 if x � 2

0.5

�0.5

�0.5 0.5

�2
5 	 x 	 2

5

1 �21 � 4x2

2x
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43. 49.

51. Absolute maximum ,
absolute minimum 

53. 55.

57.

59. a. 70,000; 353,700

b. 37,800 per decade; 191,000 per decade

61. a. 50

b. 182 students per day

c. After 5.7 days

d. 5000 students

63. b. 4505 cases per year, 272 cases per year 65. 419.2 lb

67. a. 180.7

b. 0 per decade, per decade, per decade,
per decade

c. 1970 d. 52

71. b. 2

73. a. rad/sec b. 0 c.

75. a. 1.79 sec b. 6.23 m/sec

77. a. 69.63% b. 5.09% per decade

79. a. 50 c.

81. 83. 85. �1
2 e�x2

� Ce � 1t � 41.08569

70

0 200

1.5

20

�1.06

�32
�38�27

0.5

�0.1

�1 4

y

x21�2 �1

1
2
3

�1
�2
�3
�4

y

x0 321�1

�1

�2

f(�1) � �e
f(1) � 1>e

y �
1
e

y2 � ex sec y

ex sec y tan y � 2xy
87. 89.

91. 93.

95. 97. 99.

101.

103. a. b.

105. 107. 109.

111. $40,339.48 113. 30% 115. 15.54%

117. Relative minimum 

119. a.

b. 1.5 in./hr, 0.5 in./hr

c. 2:24 A.M. on February 7, 1.6 in./hr

121. False 123. False 125. True

Exercises 6.4 • page 565

1. 3. 5. 2 7.

9. a. b.

11. a. b.

13.

As increases, the graph 
of is flatter for 

and steeper for .

15. y

x2 4�2 0

2

y � 2x

y � log2 x

4

�2

x � 0x � 0
y � bx
b

5

0

(e)

(a)

�4 4

113 2�2 � 910�3 � 1
1000

log5
1

125 � �3log3 81 � 4

2
3e(tan x)(ln 2)e13 (ln 2)

30

0
36

F(1) � 0

(p>16)(16 ln 2 � 15)3
4(p>2)(e2 � 1)

ln 4
31

�1

�5 5

1
2 (e � 1)

e � 11
2 [ln(ex � 1)]2 � C2e1x � C

1
3 (ex � 1)3 � Cln �ex � e�x � � C

1
3 (1 � 2ex)3>2 � C

e � 1e

e



Answers to Chapter 6 Selected Exercises ANS 35

17.

19. a. 1.631 b. 3 c. 3.303

21. 23.

25. 27.

29. 31.

33. 35. 37.

39.

41. 43.

45. 47. 49.

51. a.

b. , 1000 times as intense

c. 20 times as intense

53. a. 2.014 mi b. 0.25 mph

55. a.

b. 0.82°F/hr

c. 1:30 P.M. on the day before

57.

59. Increasing on , decreasing on 

61. 63.

65. a. $8052.55 b. $8144.47 c. $8193.08

d. $8226.54 e. $8243.04 f. $8243.61

67. 12.3% per year 69. $123,654.10

75. True 77. True 79. True

2p

ln 3

ln 10

2

(e, �)(0, e)

y � (ln 2)x � 2

100

70
0 40

I � 108I0

I � 105I0

ln(3x � 1)

ln 3
� C�

cos 2x

ln 2
� C

3x2�2x

2 ln 3
� C

2

ln 3

cos x ln(cos x) � x sin x

2 cos x
 (1cos x)x

c 1

x(x � 2)
�

ln(x � 2)

x2 d (x � 2)1>x

3x ln 3
t

(t 2 � 1)ln 10

2x � 1

(x2 � x � 1)ln 2

�ln 2(csc2 x)2cot x[(3 ln 2)x � 1]23x

x2

exe�1 � ex�71>√ sin √ �
(ln 7)(cos √)71>√

√2

[1 � (3 ln 5)x]53x(ln 3)3x

y

x2 4�2 0

2

4

�2

y �     
x

y � log1/2 x

1( )2

Exercises 6.5 • page 575

1. 0 3. 5. 7. 9.

11. 13. 15. 17.

19. 21. 1 23. 25.

27. 29. 31. 33.

35. 37. 39.

41. 43.

45. 47. 49.

51. 53.

55. 57.

59.

61. Relative minimum ,

relative maximum 

63. 65. 67.

69. 71.

73. 75.

77. 79. 81.

83. 85.

87. 89.

91. a.

b. 1.27155 c. 1.27798

93. 655 ft 95. 115.5 ft from the starting point

1.0

0.0 1.0

p1p4 � tan�1 1
2 21

2 tan�1 1
2

1
2 tan�1 ax � 2

2
b � Ctan�1 a1x

2
b � C

1
2 (tan�1 x)2 � Cp2>18p>16

�sin�1 acos x

2
b � C1

2 1tan�1 e2 � p
4 2

1

12
sec�1

� t 3 �

4
� C

1

18
sec�1 ax2

9
b � C

p>8sin�1114 x2 � C(0, 0)

f 1�13
2 2 � 13 � p

3

f 113
2 2 � p

3 � 13

2

0

�1.25 1.25

y �
p � 213

6
 x �

13

6

�tan�1 2t�
1

�u �(sec�1 u)22u2 � 1

2x

(1 � x4)3>2
2e2x

21 � e4x

2 cos 2x

1 � sin2 2x

1

t 2 � 1
2x tan�1 x � 1

1 � x

1 � x2 � cot�1 x�
1

21 � x2

1

�u �24u2 � 1
tan�1 3t �

3t

1 � 9t 2

2x

1 � x4

3

21 � 9x2

2x

1 � x2

1

21 � x2
x

21 � x25
4

1
2

12>2�p>6p>3p>6
p>3p>3p>4p>6
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97. 0.011 ft/sec 99. b. 0.50864 101. 0.739

103. 1.132 105. 1.22787 107. False 109. False

111. True

Exercises 6.6 • page 587

1. a. 3.6269 b. 27.3082 c. 0.0993

3. a. 1 b. 0.6481 c. 1.3333

5. a. 0.4812 b. c. 0.8047

17. , , , ,

19. 21. 23.

25. 27.

29.

31. 33.

35. 37.

39.

41.

43. 45.

47. 49.

51. 53.

55. 57.

59. 61.

63. 65.

67. a. 0, ft/sec

b.

69.

71.

77. True

79. True

a0, 
e2a � 4a � e�2a

8(ea � e�a)
b

p[(b � a) � 1
2 (sinh 2b � sinh 2a)]

0

�0.2

�0.1

0 5

�2

T2
0

bW
sinh

Wb

T0
pa3ab

a
�

1

2
sinh

2b

a
b

ln(1 � cosh x) � C1
3 ln �sinh 3x � � C

2
3 (sinh x)3>2 � C1

2 sinh (2x � 3) � C

9(x � 1)

29x2 � 1
�

1

2x11 � x

cosh�1 x2 �
2x2

2x4 � 1
�

1

(2x � 1)1�2x

1

2cosh�1 2x 24x2 � 1

3

21 � 9x2

(1 � tanh 2t) �
1

2t 2 � 1
� 2 cosh�1 t sech2 2t

(1 � tanh 2t)2

1

1 � cosh x

�csch x�2
3 (cosh x � sinh x)2>3

2e2x sech2(e2x � 1)sinh √2 � 2√2 cosh √2

12t cosh(3t 2 � 1)sinh(3t 2 � 1)

2u sinh u2

cosh2(cosh u2)
tanh x

e2t�3 sech2 (1 � 3x)3 cosh 3x

coth x � 5
4tanh x � 4

5sech x � 3
5cosh x � 5

3csch x � 3
4

�0.4812

Exercises 6.7 • page 598

1. 3. 12 5. 1 7. 1 9. 2 11. 13.

15. 17. 0 19. 0 21. 23. 25.

27. 2 29. 0 31. 33. 1 35. 37.

39. 41. 0 43. 1 45. 1 47. 1 49. 1

51. 53. 1 55. 0 57. 59. 61.

65. 67. 73. 1 75. 77. 3 79.

81. False

Chapter 6 Concept Review • page 600

1. ,

3. a. b. c. d.

e. downward, f. g.

5. , , , reflection,

7. 9. a. b. c.

11. , ,

Chapter 6 Review Exercises • page 600

1. 3. 9 5. 7. 9.

11. 1, 2 13. 15.

17. 19.

21. 23. 25.

27. 29. 31.

33. 35. 37.

39. 41.

43. 45.

47. 49.

51.

53. Decreasing on , increasing on 55.

57. Absolute minimum , absolute maximum f(e) � 1>ef(1) � 0

y � 2e112, � 210, 12 2
eax(a cosh bx � b sinh bx)

�
cosh y

(cosh y)esinh y � x sinh y

1
�x � 2 �12x � 3

�
2 sec2(cos�1 2x)

21 � 4x2
sec�1 x �

x

�x �2x2 � 1

2 coth 2x3x cot x(cot x � x csc2 x)ln 3

ye�x � ey2

e�x � 2xyey2eex�x�csc x cot x � ecsc x

2ex � 3

2(1 � e�x)3>2
2(1 � x)

x
�

y(y � x ln y)

x(x � y ln x)

5e�x(cos 2x � sin 2x)
ln x � 2

21x

1

2(x � 1)

ln
x5

y2(x � y)23 ln x � 1
2 ln y � ln z

1
2 ln(y � 2)tan 1

1 � 12ln 3
4(ln 4)2e2>5

au

ln a
� C(ln a)au 

du

dx
ex ln a

erxex

eyexey1

f ¿(t(x))

y � xx � f �1(y)(t � f )(x) � x( f � t)(x) � x

���(0, �)

(0, �)(0, �)(��, �)(0, �)

x � 0�
x

1
 
1

t
dt

1
2

1
3a

Vt

L

5
2

1
3���

�1

1
2���2

�1
2�9

4�

1
3

1
2

1
2



Answers to Chapter 7 Selected Exercises ANS 37

59. 61.

63. 65.

67. 69.

71. 73.

75. 77. 81.

83. 85. 87. 0 89. 91. 0

93. 0 95. 97. 0 99.

101. a. 78.82 million b. 3.95 million per year 105. 378 ft

107. 109. b. 0.500005

Chapter 6 Challenge Problems • page 603

5. No 7. 9.

11. 13. 15. 1

19. a. 1, 1

b. Absolute minimum , no absolute maximum

CHAPTER 7

Exercises 7.1 • page 613

1.

3.

5.

7.

9.

11.

13.

15.

17.

19.

21.

23.

25. 1
4 sec3 u tan u � 3

8 (sec u tan u � ln � sec u � tan u �) � C

2[(x � 2)sin 1x � 21x cos 1x] � C

x tan x � ln �cos x � � 1
2 x2 � C

1
4 [sin(2u � 1) � 2u cos(2u � 1)] � C

1
13 e2x(3 sin 3x � 2 cos 3x) � C

x tan x � ln �cos x � � C

2
9 t1t(3 ln t � 2) � C

x tan�1 x � 1
2 ln(1 � x2) � C

(x2 � 2)sin x � 2x cos x � C

�(x2 � 2x � 2) e�x � C

1
4 x2(2 ln 2x � 1) � C

sin x � x cos x � C

1
4 (2x � 1) e2x � C

f 112 2 � 1
2

3
8

1

sin a
tan�1 ax � cos a

sin a
b � C

p>41
3 tan3 x � 2 tan x � cot x � C

1
4 (3 � 2 ln 2)

1
2

1
2

2
3(ln 2)21

2 (1 � e�16)

2xex2

x4 � 1
ln �1 � sec t � � C1

2 (sin�1 x)2 � C

1

3
ln

e3 � 1

2
�cos ln x � C

2t2

2 ln 2
� C2

3 x � 1
9 ln �3x � 2 � � C

2(1 � ln 2)1
5 ln �5x � 3 � � C

y

x2 4�2 0

1

2

3

y

x1 20

1

27.

29.

31.

33. 35.

37. 39. 41.

43. 45. 47.

49. a. b. 1.251

, 0.555

51. 53. 55.

57. ; 92.2 million metric tons

59. 61.

63.

65.

67. 16 69. True

Exercises 7.2 • page 623

1. 3.

5. 7. 9.

11. 13.

15.

17.

19. 21.

23. 25.

27. 29.

31.

33.

35.

37. 39. 41.

43. 45.

47. 49. 51. 1
2

1
2

1
2 sin 2x � C

1
2 tan4 1t � C

ln � sin 2u �

2
�

sin2 2u

4
� C

1
4 sin 2u � 1

12 sin 6u � C�1
3

4
3

�1
5 cot5 t � 1

3 cot3 t � cot t � t � C

�1cot t � 1
3 cot3 t2 � C

�1
2 (cot x csc x � ln �csc x � cot x �) � C

�1
2 cot 2x � x � C2

3 tan3>2 u � 2
7 tan7>2 u � C

1
9 tan3 3x � 1

15 tan5 3x � C
1

4p
tan4(px) � C

1

2
sec4 

x

2
� 2 tan2 

x

2
� ln cos2 

x

2
� C

4 � p

4

1
8 (2x2 � cos 2x � 2x sin 2x) � C

1
64 C12x2 � 8 sin(2x2) � sin(4x2) D � C

p>161
16 (2x � sin 2x) � C

3
8p>21

3 cos3 x � cos x � C

1
4 113 sin6 2x � 1

4 sin8 2x2 � C1
4 sin4 x � C

(c2 � c1)a r1

r2 � r1
�

1

ln r1 � ln r2
b � c2

√0t �
1

2
 tt 2 �

ms

r
 ea1 �

r

m
 tb clna1 �

r

m
 tb � 1d � 1f

1
3 e�20t(sin 60t � 3 cos 60t) � q0 � 13te�4t

P(t) � 820 � 40(t � 20)e�0.05t

2p(p � 2)p
5 (2ep>2 � 3)p

�1

1.5

�1

�1.2 1.0

1
8 (p � 4 ln 2)e � 21

2 ln 32 � p
36 (9 � 413)

2 ln 2 � p � 4

2

4p � 313

6

31e � 4

2e

1
6 (p � 6 � 313)1

9 (2e3 � 1)

411 � x � 2 ln ` 11 � x � 1

11 � x � 1
` � 211 � x ln x � C

�e�x ln(ex � 1) � ln(1 � e�x) � C

x3 cosh x � 3x2 sinh x � 6x cosh x � 6 sinh x � C
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53. a. b. 1.165

55. 57. 59. , 0

61. 63. 65.

67.

a. 0.55 b. 2.63

Exercises 7.3 • page 631

1. 3.

5. 7.

9.

11. 13.

15.

17. 19.

21. 23.

25. 27.

29.

31.

33. 35. 37.

39.

41. or 108.59 lb�
128(8p � 913)

48

2 � lna213

3
�
13

3
b � 12 � ln(12 � 1)

4p

3
 (2p � 313)

p

4
 b�

1

2
ln 
12 � 1

13 � 2

1

16
tan�1ax � 2

2
b �

x � 2

8(x2 � 4x � 8)
� C

sin�1(t � 1) � C

ln 
213 � 3

3
2 sin�1112 ex 2 � 1

2 ex24 � e2x � C

1
2 (13 � 12)1

3 (4p � 313)

�
1

2
ln `29x2 � 4 � 2

x
` � C�

(1 � x2)3>2

3x3 � C

216x2 � 9 � 3 sec�1143 x2 � C

�
x

92x2 � 9
� C1

3 (x2 � 18)2x2 � 9 � C

� 1
15 (3x2 � 2)(1 � x2)3>2 � C

�
2x2 � 4

4x
� C�

1

2
ln `24 � x2 � 2

x
` � C

�
(4 � x2)3>2

3
� C�29 � x2 � C

0.5

0.0 2

0.12RI 2
0T�

2I0 sin a

p
8p>15

8>p112 (p � 2), p8 2p(3p � 8)

12


0.835

1.0

0.0
�1.0 1.0

43. a. b. 1.114

45.

47. or 104 PSI

49.

55. b.

Exercises 7.4 • page 642

1. a. b.

3. a. b.

5. a. b.

7. 9. 11.

13. 15.

17. 19.

21.

23.

25.

27.

29.

31.

33.

35.
1

2
ln 

(x � 1)2

x2 � 4x � 6
� C

5

2
ln(x2 � 1) � 3 tan�1 x �

1

x2 � 1
� C

x � tan�1 x � ln ` x � 1

x2 � 1
` � C

1
6 (31 ln �x � 1 � � 8 ln �x � 2 � � 3 ln �x � 3 �) � C

ln �x � �
1

2
ln �x2 � 1 � �

1

2(x2 � 1)
� C

2 ln ` x

(x � 1)2 ` � 2

x � 1
� x � C

ln ` (√ � 1)2

√
` � √

(√ � 1)2 � C

ln �x(x � 1)3 � �
2
x

� C

ln ` x3

x � 1
` � 2

x � 1
� C2x � ln �x(x � 1)2 � � C

ln ` (x � 3)3(x � 2)

(x � 2)2 ` � C1
3 ln � (x � 2)(x � 1)2 � � C

1
4 ln 53ln 

� t �3

(t � 1)2 � C
1

4
ln ` x � 4

x
` � C

A

2x � 1
�

Bx � C

x2 � 4

A

x � 2
�

B

x � 2
�

Cx � D

x2 � 4

A

x � 4
�

B

x � 1

A

x
�

B

x2 �
C

x � 1

A

x � 1
�

B

3x � 2

A

x
�

B

x � 5

21 � x2 tan�1 x � ln(21 � x2 � x) � C

215k

5 a2

�5544
10 [tan�1(0.25) � tan�1(�2.25)] � 286
2pa2b

2a2 � b2
 csin�1a2a2 � b2

a
b �

b2a2 � b2

a2 d

0.953

1.25

0.0
�1.5 1.5



Answers to Chapter 7 Selected Exercises ANS 39

37.

39.

41.

43.

45. 47.

49.

51.

53.

55.

57. 59. 61.

63. a. b. 0.892

2.144

65. 67.

69. a.

b.

c.

71. 9231 73. False 75. False

� 5[12 ln(x � 3) � ln(x2 � x � 1)]f

1

42
 e�213 tan�1a2x � 1

13
b � 70 ln(x � 2)

5

3(x � 2)
�

10

7(x � 3)
�

5x � 4

21(x2 � x � 1)

� 
1

42
 c5 ln(x2 � x � 1) � 213 tan�1 

2x � 1

13
d � C

5

3
ln �x � 2 � �

10

7
ln �x � 3 �

2 ln 3 � 1
2p

3
 (1 � 3 ln 3 � 6 ln 2)

3

0

�1

3

ln 43
1
2 (ln � sin x � cos x � � x) � Cln 2

2115

15
tan�1 

115(8 sin x � cos x � 1)

15(1 � cos x)
� C

tan 
x

2
� C

� 13 tan�1c13

3
 (2x1>3 � 1)d � C

3x1>3 �
1

2
ln 

x2>3 � x1>3 � 1

(x1>3 � 1)2

et �
1

6
ln ` (et � 1)3(et � 1)

(et � 2)16 ` � C

1

3
ln ` et � 1

et � 2
` � Cln ` cos x

cos x � 1
` � sec x � C

�
1

2(2x3 � x2 � 8x � 4)
� C

213 tan�1c13

3
 (2x � 1)d �

1

x2 � x � 1
� C

2 ln 2 �
p

4
�

1

2

1

6
 cln 

x2 � x � 1

(x � 1)2 � 213 tan�1 
13(2x � 1)

3
d � C

Exercises 7.5 • page 651

1.

3.

5.

7.

9.

11.

13.

15.

17. 19.

21.

23.

25.

27.

29.

31. 33.

35. 37. 39.

41. 43. 28,284 45. 44; 49

47.

53. Maple: ; 

Mathematica: ; 

TI-89:

55. Maple: ; 

Mathematica: ; 

TI-89:

12 ln(�1x � 2 � 12 �) � 12 ln(�1x � 2 � 12 �) � 41x � 2

2

212 � x � 12 arctanh 
12 � x

12

21x � 2 � 12 arctanh a1x � 212

2
b

2(x � 2)3>2(3x � 4)

15

2
15 (2 � x)3>2(�4 � 3x)

2(x � 2)5>2
5

�
4(x � 2)3>2

3

p

32
 [1815 � ln(2 � 15)]

ap2 � 4

4p
, 

3

8
b

3
16p

21
9 (2e3 � 1)�2(cos x � 1)ecos x � C

4
3

813

9
cos�1a4 � 3x

4
b �

x � 4

6
 28x � 3x2 � C

x � 3

2
 26x � x2 �

9

2
cos�1a3 � x

3
b � C

x4

16
 (4 ln 5x � 1) � C

�tan�1(cos x) � C

�1
8 e�2x(4x3 � 6x2 � 6x � 3) � C

� 1
13 e�2x(2 sin 3x � 3 cos 3x) � C

p>41
2 sin(x2 � 1) � 1

2 x2 cos(x2 � 1) � C

1
16 C (8x2 � 1)cos�1 2x � 2x21 � 4x2 D � C

ex

21 � e2x
� C

2x2 � 3 � 13 cos�1 
13
�x � � C

22 � x2 � 12 ln ` 12 �22 � x2

x
` � C

�
13

3
ln `23 � 2x2 � 13

12x
` � C

�
13 � 2x

x
�
13

3
ln ` 13 � 2x � 13

13 � 2x � 13
` � C

1

8
 a1 � 2x �

1

1 � 2x
� 2 ln �1 � 2x �b � C

1
15 (3x � 1)(1 � 2x)3>2 � C



ANS 40 Answers to Selected Exercises

57. Maple and TI-89: ; 

Mathematica:

59. Maple: ;

Mathematica: ;

TI-89:

61. Maple: ;

Mathematica: ;

TI-89:

63. 65.

67. 69.

71. 73.

75. 77.

79. 81.

83. 85.

87. 89.

91.

93.

95.

97.

99.

Exercises 7.6 • page 665

1. 3. 5. 7. 9. 100 11.

13. 15. Diverges 17. Diverges 19.

21. 23. 0 25. 3 27. 29.

31. Diverges 33. 35. 37. 4

39. Diverges 41. 43. Convergent

45. Convergent 47. Divergent 49. 1 51.

53. 55. 57. 59.
qQ

4pae0
3p>4p>2p>2

32
105p

�4

12�1
4

313 3�9
2p>2

p>21>(2e2)

213>31
2p1

2213

1
2 eex2

� C

� 
13

6
ctan�1 

13(2x � 1)

3
� tan�1 

13(2x � 1)

3
d � C

1

4
ln ` x2 � x � 1

x2 � x � 1
`

� 
13

3
tan�1c13

3
 (2x � 1)d � C

1

3
ln �x � 1 � �

1

6
ln(x2 � x � 1)

2x2 � 9 � 3 ln ` 3 �2x2 � 9
x

` � C

�1
6 cot3 2x � 1

2 cot 2x � x � C

ln �x � 3 �2x2 � 6x � � C2 ln11x � 1 � 1 2 � C

12(2 � 13)x tan x � ln �cos x � � 1
2 x2 � C

1
2 (1 � ln 2)2 ln 

15 � 1

2
�
15

2

1
4 C (2x2 � 1)sin�1 x � x21 � x2 D � C

3x3

ln 3
� C

2(8 � 313)

3
ln1ln x �21 � (ln x)2 2 � C

13

36
 p1 �

p

6
�
13

2

�sin(1>x) � C�3
5 (x � 3)(2 � x)2>3 � C

2(ex � 2)2ex � 1

3

2
3 (�2 � ex)21 � ex

2
3 (ex � 1)3>2 � 22ex � 1

(x5 � 5x4 � 20x3 � 60x2 � 120x � 120) ex

ex(�120 � 120x � 60x2 � 20x3 � 5x4 � x5)

x5ex � 5x4ex � 20x3ex � 60x2ex � 120xex � 120ex

3
8 x � 1

4 sin 2x � 1
32 sin 4x

1
4 cos3 x sin x � 3

8 cos x sin x � 3
8 x

61. 63. b. $100,000

65. 2.3% 67. 1; 

69. Converges if , diverges if 

73. a. c. Converges

75. , 77. ,

81. False 83. True 85. True 87. True

Chapter 7 Concept Review • page 668

1. Product; ; ; easily integrated; 

3. a. ; odd b. ; even

5. a. b. c.

7. ; ; ; 

; 

Chapter 7 Review Exercises • page 669

1. 3.

5. 7.

9.

11.

13.

15.

17.

19.

21. 23.

25. 27.

29.

31.

33.

35.

37. 1
2 x2 cos�1 2x � 1

8 x 21 � 4x2 � 16 sin�1 2x � C

x � 21x � 2 ln �1x � 1 � � C

�1
6 sin t cos5 t � 1

24 sin t cos3 t � 1
16 sin t cos t � 1

16 t � C

1
2 sin�1(2x � 3) � C

1
8 (2 cos 2x � cos 4x) � C

tan x1ln � tan x � � 12 � C2 tan�114x � 1 � C

1
4 (ln x)4 � C

x sin x � cos x � 1

sin x
� C

1
2 117 tan7 2x � 1

9 tan9 2x 2 � C

1

4
 cln 

x8

(x � 1)2 (x2 � 1)3 � 2 tan�1 xd � C

�1
2 (ep � 1)

1
4 C (2u2 � 1)sin�1 u � u21 � u2 D � C

x

2
2x2 � 4 � 2 ln �x �2x2 � 4 � � C

1

27
 aln ` x

x � 3
` � 6

x � 3
�

3
x
b � C

�cot u � csc u � C1
9 x3(3 ln x � 1) � C

�1
3 (x2 � 18)29 � x2 � C2(x � ln �x � 1 �) � C

�
c

a

f(x)dx � �
b

c

f(x) dxlim
c→b�

�
c

a

f(x) dx

�
c

��

f(x) dx � �
�

c

f(x) dxlim
b→�

�
b

a

f(x) dxlim
a→��

�
b

a

 f(x) dx

a sec ua tan ua sin u

tan xsec x

f(x)t(x) `b
a

� �
b

a
t(x)f ¿(x) dx

uu√ � � √ du

s � 0
1

s2s � 0
1
s

�
�

1
t �7>2dt

p 	 1p � 1

2(12 � 1)

qQ

4pe0c
ln `2a2 � c2 � c

a
`



Answers to Chapter 8 Selected Exercises ANS 41

39.

41. 43. 1

45. Divergent 47. 49.

51.

53. 55.

57. 59. 6 61.

63. a. 65.

67. 69. 1187.99 ft

Chapter 7 Challenge Problems • page 672

1. 3. b. 5. 19. 72.6 ft

CHAPTER 8

Exercises 8.1 • page 687

5. a. 3

b.

c. , yes

7. a.

b.

9. 11. 13.

15. 17.

19. 21.

23. 25.

27. f(x) �2x3 � 8

I � 2(1 � e�2t)y � ln(x3 � e)

y3>2 � 1
2 (x3 � 1)y � 2

3 � 1
3 e3x2>2

y � �
2

(ln x)2 � C
y � sin�1(tan x � C)

y � Ce�2>x � 3
2y � Cex3>3y � Cx2

3

�3

�3 3

y �
1
x

�
x3

4

y � 2e3x

5

�5

�2 1

p>61
21>e

1
2 ln(13 � 2) � 13

2p

9
(2e3 � 1)3

0

�1

5

6pexf(x) � C

1
3 tan x sec2 x � 2

3 tan x � Cln � ln(x � 1) � � C

x

8
 (3 � 2x2) 23 � x2 �

9

8
ln �x �23 � x2 � � C

3
2�9

2

1
2 ln12x � 1 �24x2 � 4x � 10 2 � C

x

2
�

1

4
 e�2x � C 29.

31.

33. 35. 200 37. in. 39. ; g

41. 57.8 years 43. 14,176 years old 45. After 3.6 min

47. 1.05 mph

49. a. b. 304.9 million

51. a. b. c.

53. a.

b.

c. The population grows without bound after a finite period
of time.

55. a. b.

c. d. g/mL

57. a. 2974, 5319, 6955 b. 3.6 weeks

c.

59. False 61. True

10,000

0 8

C0e
�kT

1 � e�kTC0(e�kT � e�2kT � p � e�NkT)

C0(e�kT � e�2kT)C0e
�kT

1e�199

0 1000

P(t) �
1

(1 � 0.01kt)100

t

k
√(t) �

t

k
 (1 � e�kt)

d√
dt

� t � k√

P(t) � (P0 � I>k)ekt � I>k

50

9
y �

50

4t � 1
1
2

1
3

2

�2

�2 2

y2 � 2x � C

4

�4

�4 4

y2 � x2 � C



ANS 42 Answers to Selected Exercises

Exercises 8.2 • page 699

1. (a)

3. (b)

5. 7.

9. 11.

13. 15.

17. a. 2.88 b. 3.04

19. a. 3.19 b. 3.26

21. a. 0.83 b. 0.82

23. a. 1.78 b. 1.79

25. a. 1.34 b. 1.37

27. a, c.

b. x2 � y2 � 16

y

x10

1

(c)

y

x10

1

(c)

(a)

(b)

y

x1 20

1

2 (c)

(b)
(a)

y

x10

1

(a)

(b)(c)

y

x10

1
(b)

(c)

(a)

y

x1 2�1�2 0

1

2

�1

�2

(a)(b)
(c)

y

x2 31�1�2 0

1

�1

�2

2

(b)

(a) (c)
(d)

29. a, b.

c.

31. a. 73.6 ft/sec b. ; ft/sec

33. False 35. True

Exercises 8.3 • page 710

1. a. 0.02 b. 1000 3. a. 0.5 b. 500

5. a. 100 b. ,

c–e.

7. a. 0.02 b. 4000 c. 10

11. a. 86.12% b. 1970

13. a. b. 70 days

17. a, c.

If the initial fish population is 100, then it will be gone
after 5 weeks. If the initial population is 300, then it
increases to 600 over time. If it is 700, then it decreases
to 600 over time.

b. , P(t) � 600P(t) � 200

P

t10 20 30 40 500

200

400

600

800

P(t) �
100

1 � 9111
51 2t>30

P

t40 80 1200

100

200

(c)

(d)

(e)

P(t) � 100P(t) � 0

√(2) � 72.9√(t) � 160 � 30e�t>5
lim
t→�

P(t) � 2.72

P

t10

1

4



Answers to Chapter 9 Selected Exercises ANS 43

19. a, c.

b.

21. 173 23. True 25. True

Exercises 8.4 • page 722

1. No 3. No 5.

7. 9.

11. 13.

15. 17.

19. 21.

25. 27.

29. a. b. 33 min

31. a. b. 34.7 lb

c. 35 lb d. 37.8 lb

33. ,

35. a. b. 7.85 ft/sec c. 0.17 sec

37. 29.5 ft; 8 ft/sec

39.

43. True 45. True 47. True

Chapter 8 Concept Review • page 724

1. a. derivative; differential; unknown b. highest

3. ; separable

5. a. tangent line b. slope; direction

7. a. b.

Chapter 8 Review Exercises • page 725

1. Yes 3. 5. ey �
ex

1 � Cexy � �
1

x2 � C

u(x) � e� P(x) dxdy

dx
� P(x)y � Q(x)

t(x)h(y)

I �
E0R

R2 � v2L2 ccos vt �
Lv

R
sin vt � e�(R>L)td

8(1 � e�4t)

I(t) � 0.95e�5tQ(t) � 0.24 � 0.19e�5t

y(t) � 80 � t �
(80 � t)4

512,000

y(t) � 90(1 � e�t>15)

f(x) � x ln x � xy �
13x2

29 � 8x3

y �
(ln x)2 � 2

2(x � 1)
y � 1

2 11 � e�x22
y � 1 � 2e�xy �

x

2
 e�2x �

Ce�2x

x

y �
t 2

2(t � 1)
�

C

t � 1
y � 2

3 x(ln x)3 � Cx

y � 1
3 x2 sin 3x � Cx2y �

1

4
 x3 �

C

x

y � 1
4 e2x � Ce�2x

P(t) � 1000

P

t100 2000

1000

7. 9. 11.

13. a. b. 16,000 c. 13 hr

15. 17. $338,249

19. a. 163°F b. 28.6 min

21. a. b. $25,160.55

23. a.

b. 0.6

25. 1.061 27.

29. 31.

33.

35. a. b. 9374 c. 4.7 years

Chapter 8 Challenge Problems • page 727

3. b.

c.

d. 351.06 million

5. b. ,

CHAPTER 9

Abbreviations: C, convergent; AC, absolutely convergent; 
CC, conditionally convergent; D, divergent; , radius of 
convergence; , interval of convergence

Exercises 9.1 • page 743

1. 2, 1, , , 3. 1, 0, , 0, 1 5. 1, , , ,

7. 9. 11.

13. 2 15. D 17. 1 19. 21. 0 23. D2
3

an �
1

n � 1
an �

(�1)n

n!
an �

n

n � 1

1
113,400

1
2520

1
90

1
6�12

3
5
7

4
5

I
R

y2 � x � Ce�x2>2y1 � x

450

0 3

P(t) �
1168.60

1 � 14.334e�0.7572t

P(t) �
10,000

1 � 24138 2t
y � x sin x � x

y � 2e(x�1)>3y � 1
2 e�x sin 2x � Ce�x

y � x2 � (C>x2)

y

x1 2�1 0

1

2

�1

S(t) �
1
r
 [(rS0 � d)ert � d]

�0.000433

x(t) � 1000 � 4t>3
y �

1 � tan 4x

1 � tan 4x
x2 � y2 � 4y2 �

3

12 � 2x3



ANS 44 Answers to Selected Exercises

25. 0 27. D 29. 0 31. 1 33. 0 35. 0

37. 1 39. 0 41.

43. a.

b. 1 c. 1

45. a.

b. 0 c. 0

47. a.

b. 1 c. 1

49. 9 51. Monotonic, bounded 53. Monotonic, bounded

55. Not monotonic, bounded 57. Monotonic, bounded

59. a. 10088, 10176, 10265, 10355, 10445, 10537

b. Diverges

61. a. 5394.69 b.

63. 65. b. 2.2361 67. 1.226 69. 2

71. c. converges 73. b. 0 79. False

81. True 83. False 85. False

Exercises 9.2 • page 754

1. 1 3. 5. 7. 12 9.

11. 13. 9

23. a. 6

b.

c. 6

8

0 25

2(2 � 12)

5
41>ln 22

5

{an}

e6

�

1.0

0 25

1.25

�0.25
0 25

1.0

0 25

1
2

25. a. 24

b.

c. 24

27. a. diverges

b.

c. D

29. 31. 33. D 35. D 37. D 39. 0

41. D 43. 45. 47. 49. D

51. D 53. D 55. 57.

59. , 61. ,

63. 6 m 65. 67. b. $20 million

69. 71.

79. False 81. False 83. False

Exercises 9.3 • page 760

1. C 3. C 5. C 7. C 9. C 11. C

13. C 15. D 17. C 19. C 21. D 23. C

25. C 27. C 29. C 31. C 33.

35. 41. 0.05 43.

45. 47. 49. 1.082

51. b. 55. True 57. True

Exercises 9.4 • page 767

1. C 3. D 5. D 7. C 9. D 11. C

13. D 15. C 17. C 19. C 21. C 23. D

25. C 27. C 29. D 31. C 33. D 35. C

37. C 39. C 43. 3.06 45. 1.00

49. The converse is false. 53. b. Yes

55. False 57. False

1
4

n � 314n � 200

(p>2) � tan�1 50a � 1

p � 1

313 � p

9
A �

P

er � 1

6
11

2(x � 1)

3 � 2x

1

2
� x �

3

2

1

1 � x
�x � � 1

404
333

4
9

7
2� 5

18cos 1 � 1

5
3

3
4

5

�5

0 20

30

0 40



Answers to Chapter 9 Selected Exercises ANS 45

Exercises 9.5 • page 773

1. C 3. C 5. C 7. C 9. D 11. C

13. C 15. C 17. C 19. D 21. C 23. C

25. 27. 44 29. 10 31. 33. 0.56

35. ; is not satisfied. 37. a. No b. No

39. b. 41. True 43. False

Exercises 9.6 • page 783

1. CC 3. D 5. CC 7. D 9. CC 11. D

13. CC 15. C 17. AC 19. AC 21. AC

23. D 25. AC 27. CC 29. AC 31. AC

33. C 35. a. b.

47. True 49. True

Exercises 9.7 • page 792

1. , 3. ,

5. , 7. ,

9. , 11. ,

13. , 15. ,

17. , 19. ,

21. ,

23. ,

25. ,

27. ,

29. ,

31. a. b. 0; the limit does not exist.

c.

33. 35. 37.

39. ; ; , ,

41. 45. a. b. , 1

47. 3.14159 49. True 51. True

a
�

n�0
 

x2n�1

2n � 1a
�

n�0
t 2n1

(1 � x)2

(�1, 1)[�1, 1)[�1, 1]a
�

n�2
 
(n � 1)xn�2

na
�

n�1
 
xn�1

n

1>L1R(��, �)

5

�10

�2 2

xn�1

1 � x

I � 1�3
2, 

3
2 DR � 3

2

I � (�1, 1)R � 1

I � [�1, 1]R � 1

I � 1�2, �4
3 DR � 1

3

I � (��, �)R � �

I � (��, �)R � �I � (0, 2]R � 1

I � (�1, 5]R � 3I � (2, 4]R � 1

I � C�1
e, 

1
e 2R � 1

eI � [�1, 1)R � 1

I � {0}R � 0I � (��, �)R � �

I � [�1, 1)R � 1I � [�1, 1)R � 1

x � �1�1 � x � 1

�1

an�1 	 an
1
2

�0.90p � 0

Exercises 9.8 • page 805

1. , 3. ,

5. ,

7.

,

9. , 2

11. , 2 13. ,

15. , 1 17. ,

19. , 21. ,

23. ,

25. , 1 27. , 1

29. , 1

31. , 1

33. , 1

35.

37.

39.

41. a.

,

b. , ,

c. 2

�0.5

�2 2

P3(x) � 1 � 1
3 x � 1

9 x2P2(x) � 1 � 1
3 xP1(x) � 1

R � 1� a
�

n�2
(�1)n�1 

2 � 5 � 8 � p � (3n � 4)

n! 3n  xn

f(x) � 1 �
1

3
x

f(x) � x � x2 � 1
3 x3 � p

f(x) �
p

6
�

213

3
 ax �

1

2
b �

213

9
 ax �

1

2
b2

� p

f(x) � 1 � 2ax �
p

4
b � 2ax �

p

4
b2

� p

1 �
3

5
 x � 3a

�

n�2

2 � 7 � 12 � p � (5n � 8)

n! 5n  xn

1 �
1

2
 x2 � a

�

n�2
 
1 � 3 � 5 � p � (2n � 3)

n! 2n  x2n

a
�

n�0
(�1)n(n � 1)xn

a
�

n�1
(�1)n�1 

x2n

na
�

n�0
 

(2n)!x3>2 x2n

(2n n!)2(2n � 1)

�
1

2
 a

�

n�0
 
(�1)n1x � p

3 22n�1

(2n � 1)!
�
13

2
 a

�

n�0
 
(�1)n1x � p

3 22n

(2n)!

�1 � a
�

n�1
 
(�1)n 22n�1 x2n

(2n)!
�a

�

n�0
 
(�1)n x2n�2

(2n)!

�a
�

n�0
 
(�1)n xn�1

n!
�a

�

n�0
x2n�2

1
2a

�

n�0
(�1)n�1 2n(x � 1)n

a
�

n�0

(�1)n

2n�1  (x � 1)n

ln 2 � a
�

n�1
 
(�1)n�1

n2n  (x � 2)n

�� 
1

2
 a

�

n�0
 

(�1)n

(2n � 1)!
 ax �

p

6
b2n�1

13

2
 a

�

n�0
 
(�1)n

(2n)!
 ax �

p

6
b2n

�2x �
23

3!
 x3 �

25

5!
 x5 � p �

(�1)k 22k�1

(2k � 1)!
 x2k�1 � p

�a
�

n�0
 
e2

n!
 (x � 2)n�a

�

n�0
 
2nxn

n!



ANS 46 Answers to Selected Exercises

43. 0.99005

45. 47.

49. 51. 0.7468 53. 0.4969

55. 0.1248 57. 59.

61. 63. 65.

67. a.

b. ,

79. True 81. False 83. True

Exercises 9.9 • page 820

1. , ,

3. ,

5. , ,

lies between and 

7. ,

,

lies between and 

9.

,

, lies between and 

11. ,

, lies between and 1xzR2(x) �
3z2 � 1

3(1 � z2)3 (x � 1)3

P2(x) �
p

4
�

1

2
 (x � 1) �

1

4
 (x � 1)2

�8xzR3(x) � �
10

243z11>3 (x � 8)4

�
5

20,736
 (x � 8)3

P3(x) � �2 �
1

12
 (x � 8) �

1

288
 (x � 8)2

p

4
xz

R2(x) �
sec2 z(2 tan2 z � sec2 z)

3
 ax �

p

4
b3

P2(x) � 1 � 2ax �
p

4
b � 2ax �

p

4
b2

p

2
xz

R3(x) �
sin z

24
 ax �

p

2
b4

P3(x) � 1 �
1

2
 ax �

p

2
b2

R4(x) � 0P4(x) � 7 � 13(x � 1) � 9(x � 1)2 � 2(x � 1)3

40

�30

�10 10

P3(x) � 1 � x � 1
2 x2 � 1

6 x3
P2(x) � 1 � x � 1

2 x2P1(x) � 1 � x

R � 1�
x

0

dt

21 � t 2
� a

�

n�0
 

(2n)!

(n! 2n)2(2n � 1)
 x2n�1

�
1 � 3 � 5 � p � (2n � 1)

n! 2n  u2n � p

1

21 � u2
� 1 �

1

2
 u2 �

1 � 3

2! 22 u4 � p

2
15

1
120ln 3 � ln 2

cos p � �1ln 2

a
�

n�1
 
(�1)n�1 xn

n2 � C

a
�

n�0
 

(�1)n x4n�3

(2n � 1)! (4n � 3)
� Ca

�

n�0
(�1)n 

x3n�1

3n � 1
� C

13. ,

, lies between and 

15.

,

,

lies between and 

17. ,

19.

,

21.

,

23. ,

25. ,

27. ,

29. , ,

31. , ,

33. , ,

35. , ,

37. , , 45. 63%

51. True 53. True

Chapter 9 Concept Review • page 822

1. a. function; integers; th term

b. converge

c. for every; positive integer; 

3. a. partial sums 

b. geometric; 1; 1

{Sn}

n � N

n

P2a8p

45
b � 0.8480c �

p

6
f(x) � cos x

P3(0.1) � 0.09983c � 0f(x) � sin x

P2(�2.1) � �0.476c � �2f(x) �
1
x

P1(9.01) � 3.00167c � 9f(x) � 1x

P3(0.2) � 1.2214c � 0.2f(x) � ex

6(1)4

344!
ln 4 �

1

4
 (x � 3) �

1

32
 (x � 3)2 �

1

192
 (x � 3)3

101p4 24
3

x �
1

3
 x3

5

128
�

1

87>2 (1)4

3 �
1

6
 (x � 9) �

1

216
 (x � 9)2 �

1

3888
 (x � 9)3

32e2(1.1)

5!
 (0.1)5�

2

3
 e2(x � 1)4

e2 � 2e2(x � 1) � 2e2(x � 1)2 �
4

3
 e2(x � 1)3

sin p2
120

 ap
4
b5

�
12

12
 ax �

p

4
b3

�
12

48
 ax �

p

4
b4

12

2
�
12

2
 ax �

p

4
b �

12

4
 ax �

p

4
b2

4(1.2)(1.2 � 1)34(x � 1) � 6(x � 1)2

p

6
xz

R2(x) �
ez(2 sin 2z � 11 cos 2z)

6
 ax �

p

6
b3

� a3

4
� 13bep>6ax �

p

6
b2

P2(x) �
1

2
 ep>6 � a1

2
� 13bep>6ax �

p

6
b

�1xzR3(x) �
(z � 4)ez

24
 (x � 1)4

P3(x) � �
1
e

�
1

2e
 (x � 1)2 �

1

3e
 (x � 1)3
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5. a. convergent; divergent b. ; ; 

7. a. an alternating; 	; 0 b.

9. a. b. ; 

Chapter 9 Review Exercises • page 823

1. 3. 2 5. D 7. 0 9. 3 11. 13. C

15. C 17. C 19. C 21. D 23. C 25. C

27. CC 29. AC 31. CC 33. 35. False

37. True 39. , , , ,

43. , 45. ,

47. , 49.

51.

53.

55. 57.

59. 0.199 61. 0.779

63. ,

, lies between and 1

65. ,

,

lies between and 

Chapter 9 Challenge Problems • page 825

1. 1 3. a. 5. 11.

13. 15.

17. ,

CHAPTER 10

Exercises 10.1 • page 843

1. Parabola (h), vertex , focus , directrix 

3. Parabola (c), vertex , focus , directrix 

5. Ellipse (b), vertices , foci , eccentricity 15
3(
15, 0)(
3, 0)

x � �2(2, 0)(0, 0)

y � 1(0, �1)(0, 0)

�x � � 1P3 � 1 � x2 � 1
2 x3

(��, �)a
�

n�0
x4n � a

�

n�0
x4n�1

1
3

1
2(1 � 11 � 4a)cn � 123 2n

p

2
xz

R2(x) � �
csc z cot z(cot2 z � 5 csc2 z)

6
 ax �

p

2
b3

P2(x) � 1 �
1

2
ax �

p

2
b2

xzR3(x) �
�5(x � 1)4

128z7>2

P3(x) � 1 � 1
2 (x � 1) � 1

8 (x � 1)2 � 1
16 (x � 1)3

ln �x � � a
�

n�1
 (�1)n 

xn

n! n
� C1

4

1 �
1

2
 x2 � a

�

n�2
(�1)n�1 

1 � 3 � 5 � p � (2n � 3)

n! 2n  x2n

a
�

n�0
(�1)n 

x4n

(2n)!

a
�

n�0
(�1)nxn�3I � [�1, 1]R � 1

I � C�1
2, 

1
2 DR � 1

2I � (�1, 1]R � 1

p
2
1k � 0x � kp

6802
4995

11
18

1
3

xx � ca
�

n�0
an(x � c)n

an�1

p 	 1p � 1a
�

n�1
 
1

np

7. Hyperbola (d), vertices , foci , eccentricity 

9. Vertex , 11. Vertex ,
focus , focus ,
directrix directrix 

13. Vertex , 15. Foci ,
focus , vertices 
directrix 

17. Foci , 19. Foci ,
vertices vertices 

21. Foci , 23. Foci ,
vertices , vertices ,
asymptotes asymptotes 

1�1�2

y

x

1

�1

�2

5�5�10

y

x0

10

�10

�20

y � 
xy � 
12
5 x

(
1, 0)(
5, 0)
(
12, 0)(
13, 0)

21�1�2

y

x0

1

�1
2 311�2�3�4

y

x0

2

1

�2

�1

(
2, 0)(
3, 0)
(
13, 0)(
15, 0)

2�2

y

x

�2

�4

�6

4

2

0

y
10

5

�5

�10

x5040302010�10 0

x � �3
5

(0, 
5)135, 0 2 (0, 
121)(0, 0)

x40302010

y
4

2

�2

�4

0

x0

y

�2�4 2 4

10

20

30

40

x � �1
8y � �1

8

118, 0 210, 18 2 (0, 0)(0, 0)

5
4(
5, 0)(
4, 0)
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25. Foci , vertices , asymptotes 

27. 29. 31.

33. 35. 37.

39. 41. 43.

45. (b) 47. (c) 49.

51. 53.

55. 57.

59. 61.

63. 65.

67. Vertex , 69. Vertex ,
focus , focus ,
directrix directrix 

71. Vertex , 73. Center ,(1, �2)1�1, 12 2
2�2�4�6�8�10

y

x

40

30

20

10

0

987654321

y

x

6
4
2

�2
�4

y � 7
4x � 1

1�3, 94 2(3, 1)
(�3, 2)(2, 1)

(y � 1)2

9
�

(x � 4)2

4
� 1

(x � 1)2

9
�

(y � 3)2

16
� 1

(x � 3)2

9
�

(y � 2)2

16
� 1

(x � 2)2

9
�

(y � 1)2

5
� 1

x2

16
�

(y � 2)2

15
� 1

x2

9
�

(y � 3)2

8
� 1

(x � 3)2 � �2(y � 2)(y � 2)2 � �2(x � 2)

(y � 1)2 � 4(x � 2)

x2

4
�

y2

9
� 1

y2

21
�

x2

4
� 1

x2

9
�

y2

16
� 1

73x2

400
�

y2

25
� 1

x2

9
�

4y2

9
� 1

x2

8
�

y2

9
� 1

x2

9
�

y2

8
� 1y2 � �10xy2 � 12x

5�5

y

x

10

5

�5

�10

y � 
15x(0, 
5)(0, 
130)

focus , foci ,
directrix vertices and 

1

y

x

�2.5

�2.0

�1.5

�1.0

�0.5
0

�1�3 21 3 4 5

y

x

6
4
2

�2
�4
�6

(2, �2)(0, �2)x � �3
11 
 13

2 , �2211, 12 2

75. Center , foci , vertices and

77. Center , foci , vertices 

79. Center , foci , vertices ,(
2, �1)(
17, �1)(0, �1)

54321

y

x0

2

1

�2

194 
 3121
4 , 0 2194 
 1105

4 , 0 2194, 0 2

321�1

y

x0

�1

�2

(3, �2)
(�1, �2)(1 
 13, �2)(1, �2)

asymptotes 

81. Center , foci , vertices ,(1, 2 
 16)(1, 2 
 115)(1, 2)

2 4�2�4

y

x

2

�4

�2

y � 
13
2 x � 1

asymptotes 

83. Center , foci , vertices ,
asymptotes 

85. ft 87. 616 ft 91. 6.93 ft 103. 23.013

109. True 111. True 113. False

1
4

64�2�6�8

y

x0

10

5

�5

y � 2 � 
12(x � 1)
(�1 
 12, 2)(�1 
 16, 2)(�1, 2)

62�4�6 x

8

6

2

�2

�4

y � 2 � 
16
3 (x � 1)
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Exercises 10.2 • page 855

1. a. 3. a. ,
b. b.

5. a. , 7. a. ,
b. b.

9. a. 11. a.
b. b.

13. a.
b.

15. a. ,
b.

1�1

y

x0

1

�1

�1 	 x 	 1y � 2x2 � 1

4321

y

x0

2

1

�1

�2

�3

�4

1
4 (x � 2)2 � 1

9 (y � 1)2 � 1

21�2 �1

y

x0

2

3

1

�1

�2

�3

1 2�1�2

y

x0

1

2

�1

�2

1
4 x2 � 1

9 y2 � 1x2 � y2 � 4

4321�1

y

x0

8

4

�4

�8

642

y

x0

6

4

2

�8 	 y 	 8x � y2>31 	 x 	 5y � 2x � 3

42�2

y

x0

10

5

�5

�10

105�5�10�15

y

x0

5

�10

x � 0y � 9 � x2x � 2y � 7 � 0

17. a. , 19. a. ,
b. b. 

21. a. , 23. a.
b. b.

25. a. , 27. a. ,
b. b. 

29. As increases, the particle moves along the parabola
from to .

31. The particle starts out at and travels once counterclock-
wise along the circle of radius centered at .

33. The particle starts at and moves to the right along the
parabola to , then back to , then again to

, and finally back to .

35. 43.

�2.5

�3.5

3.5

2.5
1 2

( 3, 1)
y (mi)

x (mi)0

1 √

(0, 0)(1, 1)
(�1, 1)(1, 1)y � x2

(0, 0)

(1, 2)1
(2, 2)

(5, 2)(1, 0)y � 1x � 1
t

1

y

x0

1

321

y

x0

2

1

�1

�2

�3

0 	 x 	 1y � x3>2x � 1x2 � y2 � 1

21�1�2�3�4

y

x

4

3

2

1

�1

�5

y

x0

5

10

y � 1
4 e2xx � 0y � x2

1

y

x0

1

642

y

x0

4

2

�2

�4

�6

0 	 x 	 1y � x2x � 1x2 � y2 � 1
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45. 47.

49. 51. False 53. True

Exercises 10.3 • page 863

1. 3. 5. 7.

9.

11.

13. Horizontal at , vertical at 

15. Horizontal at and , vertical at and 

17. , 19. ,
d2y

dx2 �
6

t 2

dy

dx
� �

2

t 3>2
d2y

dx2 �
1

6t

dy

dx
� t

4321�1�2

y

x0

4

3

2

1

(�2, 2)(4, 2)(1, 4)(1, 0)

21�1�2�3�4

y

x

8

4

�4

�8

(�4, 0)(�3, 
2)

(31, 64)

�0.5
�0.5

4

0.5

y � 5x � 2

y � 1
2 x � 1

2�3
2�21

2

�1.25 1.25

�1.25

1.25

�1.5

�1

1.5

1.5

�3

3

�2 4

21. ,

23. ,

25. Concave downward on , concave upward on 

27. , at and ,1�12
4 a, �12

4 a 2112
4 a, 12

4 a 2m � �1dy>dx � �tan t

(0, �)(��, 0)

d2y

dx2 � �
1

sinh3 t

dy

dx
� coth t

d2y

dx2 �
sin u � cos u � 1

(1 � sin u)3

dy

dx
�

1 � cos u

1 � sin u

at and 

29. Absolute maximum , absolute minimum

31. 33. 35. 37.

39. 41. Approximately 1639 ft

43.

45. a.

As , the curve spirals about and converges to the
point . As , the curve spirals about and con-t → ��112, 12 2t → �

�1

1

�1 1

aa, �
1

2
 a eE

m√2
0

ba2b
412

16a1
8 ap22151

243 (973>2 � 64)

f(94) � �19
f(�14) � 8

112
4 a, �12

4 a 21�12
4 a, 12

4 a)m � 1

verges to the point .
b.

47. 49. 51.

53. 55. 57.

59. 61. 63.

65.

67. 69.

2.2469

9.6000

71. 33.66 73. Center , radius 

75. , 79. Falsey �
3at 2

t 3 � 1
x �

3at

t 3 � 1

a(0, 0)

�1.75

1.75

�2 1.75

�0.1

0.5

�0.5 2.5

4p2rb

12pa2>5p(e2 � 2e � 6)
24(12 � 1)p

5

64p>3148p>52(247113 � 64)p

1215

3212>33pa2>83pa2

a
1�1

2, �
1
2 2
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Exercises 10.4 • page 877

1. 3.

5. 7.

9. 11.

13. 15.

17. 19.

21. 23.

25. 27. 29. x2 � y2 � 4x � 02x � 3y � 6x � 2

3O

6
π

�¨

6
π��¨

O

4
π

�¨

2O1O

113, 2p � tan�11�12
5 2 2116, 5p4 2

(5, �12)

y

x0 5

�12

y

x0

( )√3,� √3�
�

√3�

√3

15, p2 21212, p4 2

(0, 5)

y

x0

5

2

(2, 2)

y

x0

2

(212, 212)(�1, �1)

O

�

�

�

4
3π

( )4,

4

3π
4

O
4
π

( )π4√2,�

√2

(0, �4)
(212, 212)

O

4

2
3π

( )4, 3π
2

O

4

4
π

( )4, π4

31. 33. 35.

37.

39. 41.

43. 45.

47. 49.

51. 53.

55. 57.

59. 61.

O

O

O

O 1

OO 2

O

�8

O 2

1

�1

O

�2
O 3

O

3
π

�¨

3O

r � 3

r 2 � 8 csc 2u

r � 3r � 4 sec ux2 � 2y � 1 � 0
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63.

65. 67. 69. 71. 0

73. Horizontal at and , vertical at the pole
and 

75. Horizontal at , ,

, , ,

, , and 

, ; 2p � tan�1(�12))(sin(2 tan�1(�12))

p � tan�112)(sin(2 tan�112)

(0, p)p � tan�1(�12))(sin(2 tan�1(�12))

(sin(2 tan�112), tan�112)(0, 0)

(4, 0)
1�212, 3p4 21212, p4 2
p�113>3

91. 93. False 95. False

Exercises 10.5 • page 885

1. a. b. 3.

5. 7. 9. 11.

13.

9p>4
O

3

3p>49p3>161
2

ep � 1

4ep

1
6p

34p4p

�0.5

�0.5

0.5

0.5

vertical at , ,10, p2 21sin12 sin�1 13
3 2, sin�1 13

3 2
,1sin12 sin�1 1�13

3 2 2, p � sin�1 1�13
3 2 2

,1sin12 sin�1 13
3 2, p � sin�1 13

3 2
, and 

77. Horizontal at ,

,

, and 

, vertical at ,

, , and 

81. b.

83. a. 85.

87. 89.

�1.1

�1.1

1.1

1.1�1.1

�1.1

1.1

1.1

�1.1

�1.1

1.1

1.1

a

�a

�2a

�2a

2a

2a

213

112, 2p � cos�1 1�1
4 2 2(�1, p)112, cos�11�1

4 2 2
(3, 0)a1 �

133 � 1

4
, 2p � cos�1 

133 � 1

8
b

a1 �
133 � 1

4
, 2p � cos�1a�1 � 133

8
bb

a1 �
133 � 1

4
, cos�1 

�133 � 1

8
b

a1 �
133 � 1

4
, cos�1 

133 � 1

8
b

1sin12 sin�1 1�13
3 2 2, 2p � sin�1 1�13

3 2 210, 3p2 2

15.

2

17.

19. 21. 23. 25.

27. 29. and 

31. , , , , , , , and

33. , , and the pole 35.

37. 39. 41.

43. 45. 47. 5p
2p � 12 � 613

3

7p � 1213

12

4p � 313

6

4p � 913

8

4p � 613

3

p1�13
2 , 5p3 2113

2 , p3 2
12, 11p

6 2 12, 5p3 212, 4p3 212, 7p6 212, 5p6 212, 2p3 212, p3 212, p6 2
11, 3p2 211, p2 23p � 1

4

p � 2

8
p �

313

2
p>16p>8

2p

O

4
π

�¨

O
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49. 51. 53.

55. 57. 59. 61.

67. a. b. 22.01

69. a. b. 5.37

71. a. b.

73. a. ,

b. c.

75. True

Exercises 10.6 • page 894

1. , parabola

3. , ellipse

5. , hyperbola

7. , ellipser �
4

25 � 10 sin u

r �
3

2 � 3 cos u

r �
2

2 � sin u

r �
2

1 � cos u

3
2

�3

�3

3

3

�p4 � u � 3p
4r �

3 cos u sin u

cos3 u � sin3 u

121
20, 0 2

�0.25

�1

1

2.25

�1.25

�0.25

1.25

1.25

�5

�7.5

5

7.5

2p212p128p>516p

16a>34p � 313

8
12(1 � e�4p)

9. a. , 11. a. ,
b. Ellipse b. Hyperbola
c. c.

13. a. , 15. a. ,
b. Parabola b. Ellipse
c. c.

17. a. , 19. a. ,
b. Parabola b. Ellipse
c. c.

21. 23. 25.

33. , perihelion km,

aphelion km

35. 0.207

Chapter 10 Concept Review • page 896

1. a. equidistant; point; line; point; focus; line; directrix
b. vertex; focus (or vertex); directrix

3. a. sum; foci; constant
b. foci; major axis; center; minor axis

5. a. difference; foci; constant 
b. vertices; transverse; transverse; center; two separate

7. , ; parametery � t(t)x � f(t)

1.507  109

1.347  109r �
1.423  109

1 � 0.056 cos u

110>31217>4

O

y � �6

6

�2

O

y � �1

y � �6e � 1
2y � �1e � 1

O

x � 2
1�

O

x � 2
5

x � �1
2e � 2

3x � 5
2e � 1

O

x � 3
5

O

y � 4

x � 5
3e � 3

2y � 4e � 1
3
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9. a. ; ; simultaneously zero; endpoints 

b.

11. a. ; 

b. ; 

13. a.

b.

15. ; ; ; 

Chapter 10 Review Exercises • page 897

1. Vertices , foci 

3. Vertices , foci 

5. Vertices and , foci 

7. 9. 11. y2 � 4x2 � 9
x2

49
�

y2

45
� 1y2 � �8x

1 2 3�1�2

y

x

2
4

�4
�2

�6
�8

�10
�12

(0, �4 
 110)(0, �7)(0, �1)

2 4 6�2�4�6

y

x0

1

2

�1

(
110, 0)(
3, 0)

1 2�1�2

y

x0

1

2

3

�2

�1

�3

(0, 
15)(0, 
3)

e � 1e � 10 � e � 1
d(P, F)

d(P, l)
� e

A �
1

2�
b

a

{[ f(u)]2 � [t(u)]2}du

A �
1

2�
b

a

r 2 du �
1

2�
b

a

[ f(u)]2 du

(x � 0)
y

x
x2 � y2

r sin ur cos u

�
b

a

2[ f ¿(t)]2 � [t¿(t)]2 dt � �
b

a

21dx
dt 22 � 1dy

dt 22 dt

t¿(t)f ¿(t) 15. a. 17. a.
b. b.

19. 21. 0 23. ,

25. Vertical at , horizontal at 

27. 29. 31.

33. 35.

37.

39. 41. , , and the pole 43.

45. 47. 49.

51. 53.

55. 57.

59. p(p � 2)

�0.3

�0.1

0.5

0.3

�1

�1

1

1

�1

�1

1

1

y � 1

y

x0

4p28
3 [(p2 � 1)3>2 � 1]2(p � 2)

9p>2112, 5p6 2112, p6 2�2

O

(1, 0)

(2, 0)

( )2, 2π
5

O

( )2, π2

3p12(1 � e�p>2)13
3

(0, 2)1
1613
9 , 10

3 2
d2y

dx2 �
4(t 2 � 1)

9t 4

dy

dx
�

4(t 2 � 1)

3t
4
3

42�2

y

x0

4

2

642

y

x0

6

4

2

(x � 1)2 � (y � 3)2 � 4y � 4 � x



Answers to Chapter 11 Selected Exercises ANS 55

Chapter 10 Challenge Problems • page 898

1. c.

3. 5. b.

7. a. (for an ant starting at the northeast corner)

b.

CHAPTER 11

Exercises 11.1 • page 909

1. a. Scalar b. Vector c. Scalar d. Vector

3. a. No b. Yes c. No d. No e. Yes f. Yes

9. 11.

13. 15.

17. 19.

21. 23.

y

0.2

�0.4

�0.2

�0.6

0.6

x0.2

A
B AB

0.4 0.6�0.6
v � AB

y

2

�4

�6

4

6

x2

B

AAB

4 6

�2

�4�6
v � AB

��0.3, �0.1���2, �1�

v � 3(b � a)v � �(a � b)

a � 2b

(a � 2b) � cb

c

c

b

b

a

a

2a

2a � 3b

�3ba
b

y

2

�2

�4

�6

4

6

x2

A(�3, 4)

B(0, 0)

(3, �4)

v � AB
4 6�2�4�6

y

2

�2

�4

�6

4

6

x2 4 6�2�4�6

B(�3, 3) A(2, 3)

v � AB

�3, �4���5, 0�

a

r �
12

2
 ae(p>4)�u

3a2>2ln 
p

2

y

y�

x�

x0
6
π
√2

2
√10

2

25.

27. , , ,
,

29. , , ,
,

31. , , ,

,

33. ,

35. , 37. Parallel 39. Not parallel

41. Parallel 43.

45. a. b.

47. a. b.

49. 51. 53.

55. , 3, 1 57. , , 6

59. 61.

63. a. ; the company produced 
Model systems and Model systems

b.

65. ft/sec, ft/sec 67. 30 lb

69. , hr 71. 275.4 mph, E N

83. False 85. True 87. False

Exercises 11.2 • page 920

1. 3.

5. z

�2

�3

(�3, �2, 4)

4

y

x

2 42

4

z

�2

4

2

y

x

2 42

4

(3, �1, 4)

z

�2

4

2

y

x

2 4

(3, 2, 4)

2

4

25.8°
13

30
60°

40012j40012i

�1.1(a1 � a2), 1.1(b1 � b2)�

Bb1 � b2A
a1 � a2�a1 � a2, b1 � b2�

3

2
 i �

313

2
 j2i

131391113
13 i � 2139

13 j2F � 110 �3110
10 , 110

10 �

��27185
85 , 6185

85 �13i�512
2 , 512

2 �

�13
2 , �1

2���13
2 , 12�

��215
5 , �15

5 ��215
5 , 15

5 �

8
3

b � 2.2a � �1.6

1
2 a � 1

3 b � i � 2j2a � 3b � 4i � 18j

�2a � b � � 1170
42a � b � 7

4 i � 11
4 j

a � b � �1
4 i � 7

4 ja � b � 5
4 i � 5

4 j2a � i � 3j

�2a � b � � 4152a � b � 8i � 4j
a � b � i � 2ja � b � 5i � 2j2a � 6i � 4j

�2a � b � � 1262a � b � �1, 5�
a � b � ��4, 1�a � b � �2, 3�2a � ��2, 4�

(1, �2)



ANS 56 Answers to Selected Exercises

7. ,

9. 11.

13. The subspace of three-dimensional space that lies on or in
front of the plane 

15. The subspace of three-dimensional space that lies strictly
above the plane 

17. a. , (in units of 1000 ft)

b. 6164 ft

19. , , , right 21. 3, 2, , right

23. Collinear 25.

27.

29.

31.

33.

35. , 2 37. , 39. , 2

41. All points inside the sphere with radius 2 and center 

43. All points lying on or between two concentric spheres with
radii 1 and 3 and center 

45.

47.

A(�2, 3, 0)

B(2, �2, 5)

z

4

2

y

x

2 42
�2

4

Position vector
equal to AB

�4, �5, 5�

z

4

2

y

x

2 4
A(3, 2, 1)

B(1, 4, 5)

Position vector equal to AB

2
�2

4

��2, 2, 4�

(0, 0, 0)

(0, 0, 0)

132, 1, �1
2 2113(2, �3, 0)(1, 2, 3)

(x � 1)2 � (y � 2)2 � (z � 4)2 � 6

1x � 5
2 22 � 1y � 1

2 22 � 1z � 5
2 22 � 35

4

(x � 3)2 � (y � 1)2 � (z � 2)2 � 16

(x � 2)2 � (y � 1)2 � (z � 3)2 � 9

(�1, 3, �1)

1512716121

B(�1, 4, 1)A(2, �1, 3)

z � 3

x � 3

z � 4

z

�2

�2

4

2

y

x

2 42

4

z

�2

�2 y � 5

4

2

y

x

2 42

4

B(3, �3, �3)A(2, 5, 5) 49.

51.

53. , , ,
,

55. , ,
, ,

57. , ,

59. Parallel 61. Not parallel

63. a. b.

65. a. b.

67. 69.

71. 73.

83. True 85. False

Exercises 11.3 • page 932

1. a. Yes b. No c. No d. Yes e. Yes f. Yes

3. 5. 7. 9. 4 11.

13. 15. 70 17. 19.

21. 23. 25. Neither 27. Neither

29. Orthogonal 31.

33. , , , ,
,

35. , , ,
, ,

37. or 

39. a. b.

41. a. b.

43. a. b.

45.

47.

49. 12 51. 54.7° 53. ,

55. 1039.2 ft-lb

c � 22.6°u � 67.4°

b � a 3

14
 i �

3

7
 j �

9

14
 kb � a25

14
 i �

10

7
 j �

5

14
 kb

b � �7
5, 21

5 � � �3
5, �1

5�

�0, 4, 0���12
29, 

16
29, �

8
29�

3i � k
20

21
 i �

10

21
 j �

40

21
 k

�14
17, 

56
17��28

13, 
42
13�

2p>3p>3
g � 32.3°cos g � 135>7b � 59.5°

cos b � 3135>35a � 99.7°cos a � �135>35

g � 36.7°cos g � 3114>14
b � 57.7°cos b � 114>7a � 74.5°cos a � 114>14

�6

1
363.1°

94.7°26.6°��24, 48, �12�

�754p�4�1

512��312
10 , 212

5 , 12
2 ��12

3 , �12
3 , 412

3 �

315
5 i � 615

5 j�1013
3 , 1013

3 , 1013
3 �

111

11
 (i � 3j � k)

111

11
 (�i � 3j � k)

��1
3, �

2
3, �

2
3��1

3, 
2
3, 23�

c � 2
5b � 16

35a � 4
35

�a � b � � 9.27��2b � � 14.02�3a � � 11.99
2a � 3b � ��3, �8.1, 23.6�a � b � �1, 6.2, �2.2�

�a � b � � 111��2b � � 2114
�3a � � 3152a � 3b � ��8, �5, 3�a � b � �1, 5, �1�

(3, �6, �3)

A(2, 1, 0)

B(1, 4, 5)

z

�2

4

2

y

x

2 42

4

Position vector
equal to AB

��1, 3, 5�



Answers to Chapter 11 Selected Exercises ANS 57

57. 274,955 ft-lb by Tugboat I, 207,846 ft-lb by Tugboat II

61. a.

63. c. 65. False 67. True

Exercises 11.4 • page 943

1. a. Yes b. No c. Yes d. Yes e. Yes f. Yes

3. 5. 7.

9. 0 11. ,

13. , 15.

17. 19. 21.

23. 25. 15 27. 5 29. 21 31.

33. Yes 35. Yes 37. 32.5 ft-lb

39. newtons 53.

55. , 57. True 59. True 61. True

Exercises 11.5 • page 954

1. a. The direction of the required line is the same as the direc-
tion of the given line and so can be obtained from the para-
metric equations of the latter. Use this information with
the given point to write down the required equation.

b. Obtain the vectors and from the two given lines.
Find the vector . Then the required line has
the direction of and contains the given point.

c. A vector parallel to the required line is , a vector nor-
mal to the plane. It can be obtained from the equation of
the plane. Use and the given point to write down the
required parametric equation.

d. Obtain and , the normals to the two planes, from
the given equations of the planes. The direction of the
required line is given by . Find a point on
the required line by setting one variable, say , equal to 0
and solving the resulting simultaneous equations in two
variables.

3. , , ; 

5. , , ; 

7. , , ; 
x � 2

�1
�

y � 1

2
�

z � 4

3

z � 4 � 3ty � 1 � 2tx � 2 � t

x � 3

2
�

y

�1
�

z � 2

3
z � �2 � 3ty � �tx � 3 � 2t

x � 1

2
�

y � 3

4
�

z � 2

5

z � 2 � 5t y � 3 � 4tx � 1 � 2t

z
v � n1  n2

n2n1

n

n
n
n � v1  v2

v2v1

b � �6a � �3
2

312�4.8  10�14j

13i � j � k

�4i � 6j � 10k1401>213>2


126

26
 (3i � j � 4k)�2i � k2i � k

�i � 7j � 5ki � 7j � 5k

�6i � 7j � 4k3i � 5j � 7k3i � 3j � 2k

113

b b � proja b

a
proja b

9. , , ; 

11. , , ; 

; -plane: ,

-plane: , -plane:

13. Yes 15. Intersect at 

17. Intersect at 19. Intersect, 49.1°

21. Skew 23.

25. 27.

29. 31.

33. 35.

37. 39. Orthogonal

41. Neither, 69.1° 43. 70.5°

45. , ,

47. , ,

49. 51.

53. 55. 57.

61. 65. 67. False

69. False 71. False

Exercises 11.6 • page 970

1. 3.

5. 7.

9. 11.

1

0

z

y
x

z

y

x

0

2 3 y
x

zz

y

x

2

4

0

4

4

z

yx

0
22 yx

0

z

16>26142>7
2121>74129>29(5, 0, 1)

6x � 7y � z � 1111x � 5y � 7z � �8

z � �1 � 3ty � 3 � 4tx � 2 � 2t

z � �11
8 � 11ty � 8tx � 17

4 � 10t

11x � 10y � 13z � 45

9x � 11y � 3z � �26x � y � 4z � �5

6x � 4y � 3z � 0x � 3z � 8

2x � 3y � z � 26x � 2z � 1

x � 2y � 4z � 24

(2, 3, 1)

(5, 4, 5)

(0, 0, 2)yz(0, 0, 2)xz

123, 43, 0 2xy
x � 1

1
�

y � 2

2
�

z � 1

�3

z � �1 � 3ty � 2 � 2tx � 1 � t

x � 1

4
�

y � 2

7
�

z � 1
2

�5

z � �
1

2
� 5ty � �2 � 7tx � �1 � 4t
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13. (a) 15. (f) 17. (e) 19. (b)

21. 23.

25. 27.

29. 31.

33. 35.

or 
x2

(2)2 �
y2

(3)2 �
z2

(6)2 � 0

x2

12 �
y2

132 22 �
z2

32 � 0x2 � y2 � z2 � 0

y
0
2�2

z

xy
0

z

x

�
x2

12 �
y2

22 �
z2

(12)2 � 1�x2 � y2 � z2 � 1

y0 1

z

x

2

2

2

1

z

y
x

x2

22 �
y2

12 �
z2

22 � 1x2 � y2 �
z2

22 � 1

2 3

6
z

y
x

2

2

�2

�2

0
1

z

y
x

x2

22 �
y2

32 �
z2

62 � 1
x2

12 �
y2

22 �
z2

22 � 1
37. 39.

41. 43.

45. 47.

49.

51. , a paraboloid

53. , a planex � y � 2

y2 � z2 � �12x

x
0

9

y

z

2

2

2

x

0
y

z

6

2

3

x

0 y

z

0

z

y
x

0

4

z

y
x

y2 � x2 � zx2 � y2 � z � 4

0

z

y
x

0

z

y
x

x2

32 �
y2

12 �
z

32x2 � y2 � z

z

y
x

0
0

x

z

y



Answers to Chapter 11 Selected Exercises ANS 59

55.

57.

59.

61. False 63. True

Exercises 11.7 • page 977

1. 3. 5.

7. 9. 11.

13. 15. 17.

19. 21. 23.

25. 27. 29.

31. 33. 35. 37.

39. Circular cylinder with radius 2 and central axis the -axis

41. Sphere with center the origin and radius 2

43. Upper half of a right circular cone with vertex the origin and
axis the positive -axis

45. Paraboloid with vertex and axis the -axis, opening
downward

z(0, 0, 4)

z

z

111113
2 , p4 , 12 212, 3p2 , 0 2(0, 0, 3)

12113, p6 , cos�113113
13 2 21412, p3 , 3p4 212, p4 , p2 2

14, p2 , p3 212, 0, p3 212, p, p2 2
1516

4 , 512
4 , 512

2 2(12, 0, 12)(0, 0, 5)

12, p6 , �2 212, p3 , 5 2(2, 0, 3)

1313
2 , �3

2, 2 2(1, 1, 13)(0, 3, 2)

0

0
0

2

2
2

�2

�2
�2

�4

�4

�4

4

4 4

z

y
x

0

0

0

�5
�5

�5
5

5

5

z

y

x

0

0

2

2

�2

�2
�4 �4

4

4

z

x0
2

�2�4

4y

47. Plane parallel to the -plane and three units above it

49. Circular cylinder with radius 2 and central axis the line par-
allel to the -axis passing through 

51. Parabolic cylinder

53. Sphere with radius 4 centered at the origin

55. Plane parallel to the -plane passing through 

57. Two circular cylinders with radii 1 and 2 and axis the -axis

59. a. b.

61. a. b.

63. a.
b.

65. a.
b.

67. 69.

71. a. ,
b.
c. 5663 mi

73. True 75. True

Chapter 11 Concept Review • page 978

1. a. direction; magnitude b. arrow; arrow; direction; length
c. initial; ; terminal; d. direction; magnitude

3. a. ; ; ; scalar; 
b. ; 

5. a. ; 

b.

7. a. ; scalar
b.

c.

9. a. vector projection; vector component
b. scalar component

c.

d.

11. a. b.

13. a.
b. Plane; ; normal vectorsn � �a, b, c�

a(x � x0) � b(y � y0) � c(z � z0) � 0

�a � (b  c) �a � (b  c)

F � PQ
!

ab � a
�a �2
ba

a � b
�a ��b �

1a � a
a1b1 � a2b2 � a3b3

ax1 � x2

2
, 

y1 � y2

2
, 

z1 � z2

2
b

r(h, k, l)

�ca1, ca2��a1 � b1, a2 � b2�
�0, 0�a2a1�a1, a2�

BA

(�1552.8, �2889.9, 2217.8), (2621.0, 100.7, 2966.8)
(3960, 2.20°, 41.48°)(3960, 241.75°, 55.94°)

a

x
0

6
π

y

z

2

x
0

y

z

r2(sin2 f cos2 u � cos2 f) � 4
r 2 cos2 u � z2 � 4

r(2 sin f cos u � 3 sin f sin u � 4 cos f) � 12
r(2 cos u � 3 sin u) � 4z � 12

r sin2 f � 2 cos f � 0r 2 � 2z � 0

r � 2r 2 � z2 � 4

z

(2, 0, 0)yz

(2, 0, 0)z

xy
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Chapter 11 Review Exercises • page 979

1. 3. 5.

7. 9.

11. ,

13. , ,

15. 17. 20 21. 23. 70.5°

25. a. b. 27. 29.

31. a. , ,

b.

33. a. , ,

b.

35. 37. 39.

41. 32.7° 43. 45.

47. All points lying on or inside the (infinite) circular cylinder
of radius 2 with axis the -axis

49. All points lying on or inside the prism shown

51. A plane perpendicular to the -plane

x

02

4

y

z

�2�4�6

xy

0
1

1

x

y

z

x

0
22 y

z

z

5129>29114>14

5129>29y � 22x � 4y � 3z � 3

x � 1

6
�

y � 2

1
�

z � 4

�4

z � 4 � 4ty � 2 � tx � 1 � 6t

x � 1

3
�

y � 2

�3
�

z � 4

7

z � �4 � 7ty � 2 � 3tx � �1 � 3t

11k64 J1
21343i � 3j � 4k

�22�
3

7
 i �

3

14
 j �

9

14
 k

cos g � �16>6cos b � 16>3cos a � 16>6
�

3114

14
 i �

114

7
 j �

114

14
 k

3114

14
 i �

114

7
 j �

114

14
 k

12j � 4k�20

5i � 7j � k1114i � 8j � 9k

53. A paraboloid

55. An elliptic cone with axis the -axis

57. A hyperbolic paraboloid.

59. , 61. ,

63. The half-plane containing the -axis making an angle of 
with the positive -axis

65. A right circular cylinder with radius 1 and axis parallel to
the -axis passing through 

67. a. b.

69. a. b.

71. ,

x

0
y

z

0 	 u 	 p
20 	 r 	 z

r2(1 � cos2 f) � 1r 2 � 2z2 � 1

r � 12 csc fr 2 � 2

(0, 1, 0)z

x
p>3z

113, p4 , 1 2116
2 , 16

2 , 1 212, p4 , p4 2112, p4 , 122

x y

z

x

6 y

z

0

y

0

x

y

z

�3
39
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Chapter 11 Challenge Problems • page 981

5. b.

7. and 

CHAPTER 12

Exercises 12.1 • page 990

1. 3. 5.

7. (c) 9. (e) 11. (b)

13. 15.

17. 19.

21. 23.

25.

27.

�4

�4

�2

�2 2
2 4

4

0

0

0
1

x

y

z

z

x

y

0

z

x
42

2π

y

(2, 4, 8)

10

z

0
2 4 6 yx

(0, 3, 5)

(1, 2, 3)

z

0

y

x

1

y

x0

1

2

(1, �1)

(4, 8)

y

x

1

5

1

(�2, �2)

�5 5

(4, 7)
y

x

1

5

(0, �)(0, 1) � (1, �)(��, 0) � (0, �)

(3, 2, 40)(1, �2, 8)

v � �9�1, 3, 1� � 15�2, �1, 1� � 14�3, 1, 2�

29.

31. b.

33. ,

35.

37. 39. 41.

43. and 45.

47. , , and 49. 88,000 ft

57. 59. False 61. True

Exercises 12.2 • page 998

1. ,

3. ,

5. ,

7. ,

9. a. ,

b.

r(2) r�(2)

x

C

1

y

1

0
�1

r¿(2) �
12

4
 i � jr(2) � 12 i � 2j

r�(t) � �2e�t cos ti � 2e�t sin tj �
2t

(t 2 � 1)2 k

r¿(t) � (cos t � sin t)e�ti � (cos t � sin t)e�tj �
1

t 2 � 1
 k

r�(t) � ��sin t � t cos t, cos t � t sin t�
r¿(t) � ��t sin t, t cos t�

r�(t) � h2, 
1

(t 2 � 1)3>2ir¿(t) � h2t, 
t

2t 2 � 1
i

r�(t) � 2j � 6tkr¿(t) � i � 2tj � 3t 2k

i � 1
2 j

(1, 4](�1, 1)(��, �1)

(0, �)(0, �)[�1, 0)

�0, 0, 2�12i � 4j � 2
5ki � j � 3k

r(t) � ht, 
2t � 1

2t � 2
, 

�2t 2 � 2t � 1

2t � 2
i

0 	 t 	 2pr(t) � hcos t, sin t, 
1 � cos t � sin t

2
i

�1�0.5

0.5
0.0

0
0

1 1

�1
x

y

z

�1

�1

�1

1
1

0

0

0

1

x

y

z



ANS 62 Answers to Selected Exercises

11. a. ,
b.

13. a. ,
b.

15. a. ,
b.

17. 19.

21. , ,

23. , ,

25. , ,

27.

29.

31.

33.

35.

37.

39.

55.

57.

63. True 65. True

r¿(t) � [r¿(t)  r�(t)] � r(t) � [r¿(t)  r‡(t)]

�r¿(�t) �
1

t 2 r¿a1

t
b

r(t) � 1 4
15 t 5>2 � t � 22i � (ln �cos t � � 1)j � (et � 2)k

r(t) � e2ti � (3e�t � 2)j � etk

(2t � 1)i � 2t 2j � (2t 3 � 1)k

(cos t � t sin t)i � 1
2 cos t 2j � 1

2 et2 � C

�1
2 cos 2ti � 1

2 sin 2tj � e�tk � C

2
3 t 3>2i � ln � t � j � 2

5 t 5>2k � C

1
2 t 2i � 2

3 t 3j � 3tk � C

z �
p

6
 ep>6 � a1 �

p

6
bep>6t

y �
p

12
� a1

2
�
13p

12
btx �

13p

12
� a13

2
�
p

12
bt

z � 1
4 � 1

8 ty � 1
3 � 1

9 tx � 2 � 1
4 t

z � 1 � 3ty � 1 � 2tx � 1 � t

2131

31
 i �

3193

31
 j

114

14
 i �

114

7
 j �

3114

14
 k

C

x1

y

1

r� )( 4
π

r )( 4
π

r¿(p>4) � 12 i � 4jr(p>4) � 12 i � 2j

r�(1)r(1)

C

x1

y

1

r¿(1) � 3i � 2jr(1) � 5i � j

r� )( 3
π

x

C

1

y

1 r )( 3
π

0

r¿(p>3) � ��213, 1�r(p>3) � �2, 13� Exercises 12.3 • page 1008

1. 3. 5. 7.

9.

11. , ; 

,

13. ; 

,

15. 0 17. 19. 21.

23. 25.

27. , 29.

31. , 33. (b) 35. (d)

37.

41. 0 for , where is an integer

43. a.

b. , osculating circle at has equation 

; , osculating circle at 

has equation 
c.

(         )

® � 4
3

x1

y

1

® �
�

9
25

20,

x2 � 1y � 5
2 22 � 81

4

(0, 2)k(0) � 2
91x � 5

3 22 � y2 � 16
9

(3, 0)k(3) � 3
4

162

(81 � 5x2)3>2

nt � 2np

2.5

�0.5

�3 3

k(x) �
2 �2x2 � 1 �e2x2

(e2x2

� 4x2)3>2

(1, 1)(�1, �1)

aln 
12

2
, 
12

2
ba12

2
, e�1>2ba�12

2
, e�1>2b

2 �2x2 � 1 �e2x2

(e2x2

� 4x2)3>2
4 � sin 2x �

(1 � 4 cos2 2x)3>2

6 �x �

(1 � 9x4)3>2
1
4

15

(1 � 5t 2)3>2

s � 0� a1 �
13

3
 sbk

� a1 �
13

3
 sb sinalna1 �

13

3
 sbbj

r(t(s)) � a1 �
13

3
 sb cosalna1 �

13

3
 sbbi

s(t) � 13(et � 1)

s � 0

r(t(s)) � a1 �
114

14
 sbi � a1 �

2114

14
 sbj � a3114

14
 sbk

t � 0s(t) � 114t

p24p2 � 2 � ln122p2 � 1 � 12p 2

�6
�2

�4

�4 �2

0

0
0 2 4 6 82

5

y

z

x

e213(e2p � 1)10p4114



Answers to Chapter 12 Selected Exercises ANS 63

45. a. , b.

47.

51.

53. True 55. True 57. True

Exercises 12.4 • page 1016

1. , ,

3. , ,

5. , ,

7. , ,

9. , ,

�v(t) � �
24t 6 � t 4 � 1

t 2

a(t) � 2j �
2

t 3 kv(t) � i � 2tj �
1

t 2 k

�v(t) � �28t 2 � 1a(t) � 2j � 2kv(t) � i � 2tj � 2tk

z

y

x

0

v )( 2
π

a )( 2
π

�v(p>2) � � 12a(p>2) � �jv(p>2) � �i � k

y

1 x

1

0

v )( 4
π

a )( 4
π

` vap
4
b ` � 15

aap
4
b � �

12

2
 i �

312

2
 jvap

4
b � �

12

2
 i �

312

2
 j

x

y

1

1

a(1) v(1)

�v(1) � � 15a(1) � �2jv(1) � i � 2j

12 Cp21 � 4p2 � 1
2 ln(2p �21 � 4p2) D

312

411 � sin u

pt
d2y

dx2 �
pt

cos3 12pt 2

dy

dx
� tan 

1

2
 pt 2

11. ,
,

13. ,

15. ,

17. ,

23. a. 60,892 ft b. 8789 ft c. 1500 ft/sec

25. a. 61,185 ft b. 8989 ft c. 1504 ft/sec

27. 4.4°

29. a.
b.
c. ,

31. 74.4 ft/sec ft/sec

35. ,

37. True

Exercises 12.5 • page 1026

1. ,

3. ,

T(1)
N(1) (1, 1)

y

1 x

1

0

N(t) � �
3t

24 � 9t 2
 i �

2

24 � 9t 2
 j

T(t) �
2

24 � 9t 2
 i �

3t

24 � 9t 2
 j

y

1

(1, 2)

x

1

0

T(1)N(1)

N(t) � �
4t

21 � 16t 2
 i �

1

21 � 16t 2
 j

T(t) �
1

21 � 16t 2
 i �

4t

21 � 16t 2
 j

r(2) � �3, 5, 7�r(t) � �1 � t, 1 � 2t, 1 � 3t�

	 √0 	 81.6

�a(t) � � av2�v(t) � � av
�v2r(t)
�av sin vti � av cos vtj

r(t) � cos ti � (sin t � t)j � 112 t 2 � 2t2kv(t) � �sin ti � (cos t � 1)j � (t � 2)k

r(t) � 112 t 2 � t 2i � 11 � 1
6 t 3 2j � 116 t 3 � 1

2 t 2 � t � 12kv(t) � (t � 1)i � 1
2 t 2j � 112 t 2 � t � 12k

r(t) � ti � 2tj � (128 � 16t 2)kv(t) � i � 2j � 32tk

�v(t) � � 13eta(t) � et��2 sin t, 2 cos t, 1�
v(t) � et�cos t � sin t, cos t � sin t, 1�



ANS 64 Answers to Selected Exercises

5. ,

7. ,

9. ,

11. ,

13. ,

15. ,

17. ,

19. a.

b. Accelerating at , decelerating at 

21. a. , b. Decelerating

29. 31.

33.

35. 39. m

41. a. ,

b. ,

45. True 47. False

Chapter 12 Concept Review • page 1028

1. a. ; real-valued; ; parameter
b. parameter interval; real numbers

3. a. ; ; b. ; continuous

5. a. ; 
b. u¿( f(t))f ¿(t)

u¿(t)  v(t) � u(t)  v¿(t)u¿(t) � v(t) � u(t) � v¿(t)

r(a)lim
t→a

h(t)lim
t→a

t(t)lim
t→a

f(t)

t� f(t), t(t), h(t)�

aN � taT � 0

aN �
t√0 cos a

2(√0 cos a)2 � (√0 sin a � tt)2

aT �
t(tt � √0 sin a)

2(√0 cos a)2 � (√0 sin a � tt)2

2.99  10111
2

1

236t 4 � 9t 2 � 4
 (6t 2i � 3tj � 2k)

12

2
 (�tanh ti � j � sech tk)x � y � 12z � 0

aN � 5aT � �6

BA

N

N

a
a

aNT
aTT

aTT
T

T B
A

aNT

aN � 12etaT � 13et

aN � 2aT � 0

aN �
229t 4 � 9t 2 � 1

29t 4 � 4t 2 � 1
aT �

18t 3 � 4t

29t 4 � 4t 2 � 1

aN �
2

21 � 4t 2
aT �

4t

21 � 4t 2

N(t) � h�
12

2
 (sin t � cos t), 

12

2
 (cos t � sin t), 0i

T(t) � h13

3
 (cos t � sin t), 

13

3
 (cos t � sin t), 

13

3
i

N(t) � ��sin 2t, �cos 2t, 0�

T(t) � h2113

13
cos 2t, �

2113

13
sin 2t, 

3113

13
i

N(t) � �
2t

21 � 4t 2
 j �

1

21 � 4t 2
 k

T(t) �
1

21 � 4t 2
 j �

2t

21 � 4t 2
 k 7.

9. a. b. c. d.

e. radius of curvature; radius; tangent line; circle of 
curvature

11. a. ; b. ; ; ; ; tangential; normal

c. ; 

Chapter 12 Review Exercises • page 1029

1. 3.

5. and 7. and 

9. ,

11. ,

13. , ,

15.

17.

19. ,

21. 10 23.

25. ,

27. ,
,

29. ,

r(t) � 116 t 3 � 2t 2i � 1 1
36 t 4 � 3t 2j � 132 t 2 � t 2kv(t) � 112 t 2 � 22i � 119 t 3 � 3 2j � (3t � 1)k

�v(t) � �24 � 4e�4t � sin2 t

a(t) � r�(t) � 4e�2tj � cos tk
v(t) � 2i � 2e�2tj � sin tk

(2, 1)
4

(x2 � 4x � 8)3>2

221 � 9t 2 � 9t 4

(1 � 4t 2 � 9t 4)3>2

N(1) �
1266

266
 (�11i � 8j � 9k)

T(1) �
114

14
 (i � 2j � 3k)

a4

3
 t 3>2 � 1bi � a 3

2p
sin 2pt � 2bj � (e�t � 1)k

2
3 t 3>2i � 1

2 e�2tj � ln � t � 1 �k � C

z � 1y � �3 � 2tx � 1

r�(t) � 2i �
1

t 2 kr¿(t) � 2ti � 2j �
1

t
 k

r�(t) � �
1

4t 3>2 i � 2j �
2

(t � 1)3 k

r¿(t) �
1

21t
 i � 2tj �

1

(t � 1)2 k

(1, 2)[�1,1)(0, 5)(�1, 0)

z

y
x

1

2

0
1 2 3

�1
�2

y

1 x

1

�r¿(t)  r�(t) �
�r¿(t) �

r¿(t) � r�(t)
�r¿(t) �

k√2√¿NT
T¿(t)

�T¿(t) �
r¿(t)

�r¿(t) �

�y� �

[1 � (y¿)2]3>2
�r¿(t)  r�(t) �

�r¿(t) �3
�T¿(t) �
�r¿(t) �` dT

ds
`

�
b

a

2[ f ¿(t)]2 � [t¿(t)]2 � [h¿(t)]2 dt



Answers to Chapter 13 Selected Exercises ANS 65

31. ,

33. ,

35. a. b. 56.2 ft

Chapter 12 Challenge Problems • page 1030

3. b.

5. c.

9. a. cm/sec, cm/sec2

b. cm/sec2

CHAPTER 13

Exercises 13.1 • page 1043

Abbreviations: D, domain; R, range.

1. a. 8 b. 9 c.

d.

e.

3. a. 6 b. c. d.

e.

5. ,

7. ,

9. ,

11. ,

13. ,

15. and 17.

10 5�5

5

�5

1

√

u10�1
�1

1

y

x

{(u, √) � u � √, u � �√}y � 0}{(x, y) � x � 0

R � {z � �� � z � �}
D � {(u, √, w) � u � p

2 � np, n an integer}

R � {z � 0 	 z 	 3}D � {(x, y, z) � x2 � y2 � z2 	 9}

R � {z � 0 	 z 	 2}D � {(x, y) � x2 � y2 	 4}

R � {z � �� � z � �}D � {(u, √) � u � √}

R � {z � �� � z � �}
D � {(x, y) � �� � x � �, �� � y � �}

115 �x �
26u2 � 2u � 516 � t �111

x2 � 3xy � 3xk � 2x � 3

x2 � 2xh � h2 � 3xy � 3hy � 2x � 2h � 3

4h2 � 18hk � 4h � 3

4p
�a(3) � � 60.54�v(3) � � 18.96

15000

0
0 1e�5

t(d2 � h2)

2√2
0

2012 ti � (7 � 2012t � 16t 2)j

aN �
2 �2 sin t sin 2t � cos t cos 2t �

2sin2 t � 4 cos2 2t

aT �
sin t cos t � 8 sin 2t cos 2t

2sin2 t � 4 cos2 2t

aN �
2

21 � 4t 2
aT �

4t

21 � 4t 2

19. 21.

23. 25.

27. 29.

31. a. 200 ft, 400 ft b. ascending, ascending c.

33. (c) 35. (a) 37. (d)

39. 41.

43. y

x1 k � 2
k � 1
k � 0
k � �1
k � �2

�1

1

�1

z

y x

�5�5

�2

2

55

00

0
z

y

x

�2

�2

0

0

0

22

C

z

x

y1

3

2

z

x

y

9

0

3 3

z

y
x

0

z � 4

z

yx

z

3

3

0
y

x

3

5

1

10 5�5

�5

y

x

{(x, y, z) � x2 � y2 � z2 	 9}{(x, y) � x � 0, y � 0}



ANS 66 Answers to Selected Exercises

45. 47.

49.

51.

53. A family of parallel planes with normal vector 

55. A cone with vertex the origin and axis the -axis (if ),
a family of hyperboloids of one sheet with axis the -axis (if

), and a family of hyperboloids of two sheets with axis
the -axis (if )

57. (a) 59. (c) 61. (e)

63. a. b. y

x1

1

x
�5�5

55
00

0
5z

10

y

k � 0z
k � 0

z
k � 0z

�2, 4, �3�

y

x1

1 k � �2
k � �1
k � 0
k � 1
k � 2

y

x0

k � �2

k � �1
k � 1

k � 0

k � 2

y

x1

1

�1
�1

k � �2

k � 2

k � 1

k � 0

y

x1

1

k � �2

k � �2

k � �1 k � 1
k � 1 k � 0

k � �1

k � 2

k � 2

65. a. b.

67. 69. No

71. a.

b. For , ; for , or
; for , or ; for ,

73. dynes 77. $260,552.20, $151,210.04

79.

83. A family of concentric spheres centered at the origin

85. Hz 87. False 89. False

Exercises 13.2 • page 1058

13. 9 15. 17. 3 19. 21. 23. 0

25. 27. 0 29. 0 31.

33. 35.

37. 39.

41. a. The entire plane b.

43.
The entire plane

45. ; 

47. ; 

53. True 55. True 57. True

{(x, y) � y � p
2 � np, n an integer}cos(x tan y)

{(x, y) � 2x � y � 1}
2x � y � 2

2x � y � 1

(x2 � xy � y2) cos(x2 � xy � y2) � sin(x2 � xy � y2)

z

y
x00

�5
�5

55

1

0

{(x, y, z) � yz � 1}{(x, y) � x2 � y2 � z2 � 4}

{(x, y) � x � 0, y � 0}{(x, y) � x � 0, �y � 	 x}

{(x, y) � 2x � 3y � 1}11
3

1
4�1�18

�435

40.28t

40,000k

x2 � y2 � 4
k � 3x2 � y2 � 2(0, 0)k � 1x2 � y2 � 3

2

x2 � y2 � 1
4k � 1

2x2 � y2 � 1k � 0

z

y
x

2
3

1

1

2x2 � y2 � 5

y

x1

1

x

�1
�1

�1

11
00

0z

1

y



Answers to Chapter 13 Selected Exercises ANS 67

Exercises 13.3 • page 1069

1. a. 4, 4

b. says that the slope of the tangent line to the
curve of intersection of the surface and the
plane at the point is 4. says
that the slope of the tangent line to the curve of intersec-
tion of the surface and the plane at
the point is 4.

c. says that the rate of change of with
respect to with fixed at 1 is 4 units per unit change 
in . says that the rate of change of 
with respect to with fixed at 2 is 4 units per unit
change in .

3. At , and . At , . At ,

and .

5. �7.1°F/in., �3.8°F/in.

7. ,

9. ,

11. ,

13. ,

15. ,

17. ,

19. ,

21. ,

23. ,

25. , ,

27. , ,

29. , ,

31. ,

33. ,

35. , , txy � tyx � 6x2y � 3y2
tyy � 2x3 � 6xytxx(x, y) � 6xy2

�z

�y
� �

z2(x2 � z2)

3yz3 � 3x2yz � 2

�z

�x
� �

2x(2x2 � 2z2 � 1)

z(3yz3 � 3x2yz � 2)

�z

�y
� �

xey � e�x

ez

�z

�x
�

ye�x � ey

ez

ft(r, s, t) � rs>tfs(r, s, t) � r ln st � rfr(r, s, t) � s ln st

�u

�z
� �

xy

z2  ey>z � 2z
�u

�y
�

x

z
 ey>z�u

�x
� ey>z

tz(x, y, z) �
1xyz

2z
ty(x, y, z) �

1xyz

2y
tx(x, y, z) �

1xyz

2x

fy(x, y) � ye�yfx(x, y) � �xe�x

fy(x, y) � xyx�1fx(x, y) � yx ln y

ty(x, y) � �
x3

y2 sinh 
x

y
tx(x, y) � 2x cosh

x

y
�

x2

y
sinh

x

y

t√(u, √) �
u(u2 � 2√3)

(u2 � √3)2tu(u, √) �
√(√3 � u2)

(u2 � √3)2

�z

�y
�

2y

1 � (x2 � y2)2

�z

�x
�

2x

1 � (x2 � y2)2

fy(x, y) � ey>xfx(x, y) � ey>xa1 �
y

x
b

ts(r, s) � 2str(r, s) �
1

21r

�z

�y
�

x

21y

�z

�x
� 1y

fy(x, y) � �3x � 2yfx(x, y) � 4x � 3y

�f

�y
� 0

�f

�x
� 0

R
�f

�x
�

�f

�y
� 0Q

�f

�y
� 0

�f

�x
� 0P

y
xy

f(x, y)fy(2, 1) � 4x
yx

f(x, y)fx(2, 1) � 4

(2, 1, 6)
x � 2z � x2 � 2y2

fy(2, 1) � 4(2, 1, 6)y � 1
z � x2 � 2y2

fx(2, 1) � 4

37. ,

,

39. , ,

41. 43. 45.

69. ,

71. 73. $39 per $1000; per 1000 ft2

75. volts per meter

77. ,

79. a. F

b. for each 1 mph increase in wind speed

83. 87.

89. 0, 91. No 93. True 95. True

Exercises 13.4 • page 1082

1. a. b.

3.

5.

7.

9.

11.

13.

15.

17.

19.

21. 23. 0.21 25. 1080 in.3 27. 58.3 ft2

29. �3.3256 Pa 31. 2.73% 33. 9% 35. 0.3%

37. 39. 7% 45. True 47. False0.19 �

�0.06

dw � 2xey dx � (x2ey � ln z) dy �
y

z
 dz

dw � 2xe�yz dx � x2ze�yz dy � x2ye�yz dz

dw � (2x � y) dx � x dy � 2z dz

dz � 2e2x cos 3y dx � 3e2x sin 3y dy

dw � c2x ln (x2 � y2) �
2x3

x2 � y2 d  dx �
2x2y

x2 � y2 dy

dw � 2xyex2�y2
 dx � (1 � 2y2)ex2�y2

 dy

� 3y2(2x2 � 9y2)(2x2 � 3y2)2 dy
dz � 12xy3(2x2 � 3y2)2 dx

dz � �
2y

(x � y)2 dx �
2x

(x � y)2 dy

dz � 6xy3 dx � 9x2y2 dy

�0.04�0.0386

�
4e

p(e2 � 1)

2x � y � z � 2�0.9872

��0.285°

�19.70°

�N>�y � �2.85�N>�x � 1.06

�114kQ>196

�$975a R

R1
b2

�V>�P � �0.1596288�V>�T � 0.066512

4ex sin(y � 2z)�sin x�8y

hyx(x, y) � hxy(x, y) �
y2 � x2

(x2 � y2)2

hyy(x, y) � �
2xy

(x2 � y2)2hxx(x, y) �
2xy

(x2 � y2)2

�2w

�u �√
�

�2w

�√ �u
� 2 cos(2u � √) � 2 sin(2u � √)

�2w

�√2 � �cos(2u � √) � sin(2u � √)

�2w

�u2 � �4 cos(2u � √) � 4 sin(2u � √)
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Exercises 13.5 • page 1093

1.

3.

5.

7.

9. ,

11. ,

13. ,

15.

17.

19. 21. 0

23. ,

25. ,

27. , , ,

29. 31.

33. ,

35. ,

37. 39. in.2/min

41. �54 mph 45. F/sec 57. 2 59. 0

63. a. b. ,

65. True

{(x, y) � x � y2}
2xy

(x � y2)3�
f 2
x fyy � 2 fx fy fxy � f 2

y fxx

f 3
y

��1.53°

��13.2�
x2 � ay

y2 � ax

�z

�y
�  

x3ex>y � xy2ey � y2exz

xy3exz

�z

�x
� �

yey � y2zexz � x(2y � x)ex>y

xy2exz

�z

�y
�

x � z2

x2 � 2yz

�z

�x
�

2x � y � 2xz

x2 � 2yz

8x1xy � 3y

41xy � 3x

3x2 � 2y

2x � 3y2

�√
�y

� �
1

4√
�√
�x

�
1

4√
�u

�y
�

1

4u

�u

�x
�

1

4u

�w

�t
� 2

�w

�r
� 4

�u

�t
�

sx csc yz cot yz (2y � st 3z)

t 3

�u

�s
�

csc yz(rt 2 � 2xzst 3 cot yz � xy cot yz)

t 2

4x � 2y � xet � 2yet � 6z2 sin 2t

�w

�t
�

�w

�x
 
�x

�t
�

�w

�y
 
�y

�t
�

�w

�z
 
�z

�t

dw

dt
�

�w

�r
 
dr

dt
�

�w

�s
 
ds

dt
�

�w

�u
 
du

dt
�

�w

�√
 
d√
dt

�w

�√
�

x(y cos u � 2ze�2√)

1 � y2z2

�w

�u
�

(tan�1 yz)1u

2u
�

xy√ sin u

1 � y2z2

�w

�√
� exa2√ cos y

u2 � √2 �
1u√ sin y

2√
b

�w

�u
� exa2u cos y

u2 � √2 �
1u√ sin y

2u
b

�w

�√
� 6(x2√ � y2u)

�w

�u
� 6(x2u � y2√)

�2tz � y2z � 2tx2z3 � cosh t(y � xy2 � x2yz2)

y2(1 � x2z2)

2x2y[3yz � 2xz sin t � xy(sin t � t cos t)]

� 2(cos s � s cos r)e�2t � (sin r � r sin s)(3t 2 � 2)

4xt � 6yt 2 � 2y

Exercises 13.6 • page 1105

1. 3. 4 5.

7.

9. 11. 13. 15.

17. 19. 21.

23. 25. 27.

29. 31. 33. ,

35. , 37. ,

39. , 41. ,

43. a. Ascending, descending b. Neither c. East d. East

45. a. b.

49. a. b.

51. 6.25 53.

55. a.

57. increases most rapidly in a direction along any line ema-
nating from the origin and moving away from it; increases
most rapidly in the -direction (positive or negative). No.

59. True 61. True

x
t

f

y

1

x

�3i � 4j

y

x10

1

x � y3

y

x210�2 �1

1

�1

�2

(         )4
1,�

T 4
7œ

10017
p

 i �
500
p

 j

44012i � j121>44i � 2j � k

15�2i � j311417i � 8j � 34k

174>6i � 6j
1212

213p2 � 576
39110>10

16

24
 (3 � p)�413>320114>7

1
6�7613�4113>13

7110>51
9�215>5i � 2j

4 � 12p

4
 i �

12

2
 j

5i � 3j6 � 13>2
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Exercises 13.7 • page 1115

1. 3.

5. ,

7. ,

9. 11.

13.

15. ,

17. ,

19. ,

21. ,

23. ,

25. ,

27. ,

29. , x � 1 �
y � 1

�1
�

z � p
4

2
x � y � 2z � p

2

x � 3, 
y

3
�

z

�1
3y � z � 0

x � 2 �
y

2
�

z � 2

�1
x � 2y � z � 0

x � 2 �
y � 1

3
�

z � 3

�4
x � 3y � 4z � �11

x � 1

�18
�

y � 2

16
�

z � 25

�1
18x � 16y � z � �25

x � 1

5
�

y � 2

4
�

z � 3

3
5x � 4y � 3z � 22

x � 4 � y � 2 � z � 1x � y � z � 1

x � 2

2
�

y � 1

4
�

z � 1

9
2x � 4y � 9z � 17

z

x

y0

�
F(1, 3, 2)

z

x 2 y
2

�
F(0, 2, 4)

z

x

y
0

3

3

�F(1, 2, 2)

3

y �
15

7
 x �

12

7
y � �

715

5
 x � 6

y � �
413

3
 x � 8y �

13

4
 x �

7

8

y

x10 2

3

4

2

1

� f (1, 3)

y

x10

� f (1, 2)

�1

�2

2

31. ,

35. 37. and 

39. and 

45. , ,

47. True 49. True

Exercises 13.8 • page 1124

1. Relative minimum 

3. Relative maximum 

5. Relative minimum 

7. Relative minimum 

9. Relative minimum , saddle points 
and 

11. Relative minimum , relative maximum
, saddle points and 

13. Relative minimum 

15. Relative minimum 

17. Relative maximum 

19. Saddle points , , and 

21. None

23. Relative minima at and , saddle point 

25. Relative minima and , saddle
point 

27. Relative minimum 

y

x

1

1y
�2 0

0

10
z

20

�1
0

x1

2

f(�1, �2) � 14

y

x

1

1�2
0

x�5
y

�10
2

0
4

z

100

200

0

(0, 0, 0)
f(4, �8) � �64f(�1, 2) � �3

2

(0, 0, 0)132, 32 2132, �3
2 2

(0, 2p, 0)(0, p, 0)(0, 0, 0)

f(0, 0) � 1

f(�1, �2) � 6

f(4, 4) � �12

(2, �1, 3)(�2, �1, 3)f 10, �5
3 2 � 125

27

f(0, 0) � 0

(2, �1, 5)
(�2, �1, 5)f(0, 0) � 3

f(5, 6) � �24

f(0, 0) � 0

f(2, �1) � 15

f(1, �2) � �5

z � 1 y �
12

2
� tx � �

12

2
� t

1215
5 , �215

5 , 15
5 21�215

5 , 215
5 , �15

5 2
(1, 2, 3)(�1, �2, �3)

xx0

a2 �
yy0

b2 �
zz0

c2 � 1

x

1
�

z � 1

1
 , y � 3x � z � 1
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29. Relative minima and
, saddle point 

31. Relative maxima ,
saddle point 

33. Absolute minimum , absolute maximum 7

35. Absolute minimum , absolute maximum 13

37. Absolute minimum , absolute maximum 4

39. Absolute minimum , absolute maximum 

41. 43. 45. , ,

47.

49.

51. , 53. 55.

59. a. b. $19.41 billion

61. a. b. $3.39 billion/yr c. $60.5 billion

63. b. Maximum 1, minimum 

65. False 67. False

Exercises 13.9 • page 1138

1. Minimum , maximum 5

y

x1

3x � 4y � 12

3x � 4y � 5

3x � 4y � 03x � 4y � �5

0

1

� �

3_
5

4_
5(       ),

3_
5

4_
5(            ),

�5

�13.5833

y � 3.39x � 23.19

y � 1.59t � 6.69

126
3 , 12 22 ft  2 ft  3 ft4

31  2
3  2

413>3  213  813>3
212 ft  212 ft  212 ft

500
3

500
3

500
3(2, �3, 
1), 114216>3
63
4�13

4

�12

�12

�12

z

y

x
�1

�1

�10
0

0

0

1
1 2

2

�2

(0, 0.630, �1.528)
f(
1.225, 1) � 0.250

z

y x2 1
�1�2�2

2 00

20

�20

10

�10
0

(0.259, 1, �5.492)f(1.267, 1) � �8.620
f(�1.526, 1) � �19.888 3. Minimum 2

5. Maximum 7. Minimum , maximum 

9. Minimum 4, maximum 12 11. Minimum 

13. Minimum , maximum 2

15. Minimum , maximum 

17. Minimum , maximum 

19. Minimum , maximum 21. Minimum , maximum 32

23. 25.

27. and ,

29. 31.

33. 35. ,

37.

39. 225 units of labor and 50 units of capital

41. a.

b.

43. 45. a. 47. a. 51. False

Chapter 13 Concept Review • page 1141

1. a. rule; b. real; real; range

c.

3.

5. a. b. Rf(a, b)

L; L; (a, b)

{(x, y, z) � z � f(x, y), (x, y) � D}

(x, y)

c
312

2
 a132 

, �3
2, �7

2 2

4�4

�4

4

(0, �1)

2
313 36 ft  2

313 36 ft  13 36 ft

abc

27

a

3


b

3


c

3

213

3
 a 

213

3
 b 

213

3
 c

6 in.  6 in.  3 in.212 ft  212 ft  212 ft

214 2(21>4, 
23>4, 21>4)(�21>4, 
23>4, �21>4)
143, 53, �

1
3 2123, 43, 23 2

�4
3

3
2

1
2

2 � 3152 � 315

212�212

�2

�1
2

1
4�1

4
3
2

y

x10

1

x2 � y2 � 1
x2 � y2 � 2
x2 � y2 � 4(�1, �1)

(1, 1)
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7. a. ; ; ; 

; constant; 

b. ; 

9. a. b. c. ; ; 0; 0

d. ; ;
; 

11. a.

b.

c. ; 

d. ; ; 

13. a. ; b. ; 

15. a. Relative maximum b. Absolute minimum

c. Does not exist; 0 d. Critical point

e. Second Derivative Test

17. a. Constrained b. ; multiplier

c. ; ; critical points; maximum; minimum

Chapter 13 Review Exercises • page 1142

Abbreviations: D, domain; R, range.

1.

3.

y

x

D

1�1 0

D � {(x, y) � �1 	 x 	 1}

y

x3�3

3

�3

0

D

D � {(x, y) � 0 � x2 � y2 	 9}

f(x, y)l§t(x, y)

l§t(x, y)

�§f(x, y)�� §f(x, y) �§f(x, y)� §f(x, y) �

Fz(x, y, z) � 0�
Fy(x, y, z)

Fz(x, y, z)
�

Fx(x, y, z)

Fz(x, y, z)

Fy(x, y) � 0�
Fx(x, y)

Fy(x, y)

�w

�x
 
�x

�u
�

�w

�y
 
�y

�u

�w

�x
 
dx

dt
�

�w

�y
 
dy

dt

(0, 0)e2 → 0
e1 → 0fx(a, b) �x � fy(a, b) �y � e1 �x � e2 �y

�y�xdzfx dx � fy dy

xy

y � bx

(a, b, f(a, b))y � blim
h→0

f(x � h, y) � f(x, y)

h

5. 7.

9.

11. 13. 1 15.

17. ,

19. ,

21. , ,

23. , ,

25. , , ,

,

,

31.

33. 22.853 35. No

37. 39.

41. 43. 45.

47. 49. ,

51. ,

53. ,
x � 3

9
�

y � 1

18
�

z � 18

�1
9x � 18y � z � 27

x � 1

2
�

y � 2

8
�

z � 1

9
2x � 8y � 9z � 27

11049>45
4 i � 8j29

15

127
5�11i � 5j � 10k

15

5
 (i � 2j)

3x2 � 6xy � 2y2

3x2 � 4xy � 6y24xye2t � a 1

21y
� x2b sin t

2x tan�1 y3 dx �
3x2y2

1 � y6 dy

fyz(x, y, z) � fzy(x, y, z) � 3x2z2

fxz(x, y, z) � fzx(x, y, z) � 6xyz2

fxy(x, y, z) � fyx(x, y, z) � 2xz3

fzz(x, y, z) � 6x2yzfyy(x, y, z) � 0fxx(x, y, z) � 2yz3

fxy(x, y) � fyx(x, y) � �12xy2

fyy(x, y) � �12x2y � 2fxx(x, y) � 4(3x2 � y3)

fz(x, y, z) �
2z(y2 � x2)

(z2 � x2)2

fy(x, y, z) �
2y

x2 � z2fx(x, y, z) �
2x(z2 � y2)

(z2 � x2)2

fs(r, s) � �2rse�(r2�s2)fr(r, s) � (1 � 2r 2)e�(r2�s2)

fy(x, y) � 2x2fx(x, y) � 4xy �
1

21x

{(x, y) � y � x}2
3

y

x1

1

c � 1

c � e

c � e4

y

x

c � 0

c � 2

c � �2

1

1

0
�1

z

x 2
2

4

y
0
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55. a.

57. Relative minimum 

59. Relative minimum , saddle point 

61. Minimum , maximum 

63. Minimum , maximum 

65. Maximum 69. 71. True

Chapter 13 Challenge Problems • page 1144

1. , , and

3. a. b.

7.

CHAPTER 14

Exercises 14.1 • page 1155

1. 3. 5. 7. 204 9. 15 11. 129

13. 24 15. 32

17. The wedge bounded above by the cylinder 
and below by the triangular base

19.

21. 1.28079 27. True 29. True

Exercises 14.2 • page 1165

1. 5 3. 5. 7. 9.

11. 13. 15. 1
32p

2(212 � 1)9
2

2e6 � 3e5 � 3e � 2

6e3

1
3

64
3�41012

��
R

(3 � 2x � y) dA

R � {(x, y) � 0 	 y 	 x, 0 	 x 	 2}
z � 4 � x2

21
2

25
2

29
2

114

7
 (1 � 12)

15
13D2

u f(x, y) � fxx u2
1 � 2 fxy u1u2 � fyy u2

2

y

x

D

2

�2

1 2 30

4x2 � 16y � 4y2 � �15}
x2 � 2x � y2 � 0{(x, y, z) � 4x2 � 9y2 	 36

(2, 0, 1)1
8

1613

9
�

1613

9

31
27�11

(0, 0, 0)f 132, 94 2 � �27
16

f(6, �7) � �38

y

x

1

1

17. 19. 21. 23. 25.

27. 29. 31. 33. 48

35. 37. 39. 4 41. 40 43.

45.

47. 49.

51.

53.

55. 57. 59.

63. slugs 65. 2166 people per square mile

67. a. b. 0.550 c. 0.062

69. 71. 0.5610 73. True

75. True 77. False

�0.8784

�.25

�.5

2

1

2
3 (3p � 8)

4
3

1 � cos 8

3

e4 � 1

4e4

�
1

0
�

e

ey

f(x, y) dx dy

0

1

1 2 3

R

y = ln x

e

y

x

�
�3

�4
 �
1x�4

�1x�4
 f(x, y) dy dx � �

9>4

�3
 �
1x�4

(2>3)x�1
f(x, y) dy dx

0

1

2

3

R

x � y2 � 4

x � y �

(�3, �1)

( )

�4 1 2 3
�1

�2

y

x

3
2

3
2

,9
4

5
2

�
1

0
�
1x

x3

f(x, y) dy dx�
1

0
�

1�y

0
f(x, y) dx dy

0

1

1

R

x � y2

x33

y �( )

x �y

x

√x

y �( )√y

0 1

1

R

y � 1 � x (x � 1 � y)

y

x

15 � 9
2 sin�1 23 � 1

6 (515 � 27)

3
35

64
38p

4e6 � 15e4 � 172
5

4 � p

8

93
10

1
6

13
6

32
5

2
3
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Exercises 14.3 • page 1173

1. Rectangular,

3. Polar,

5. 7.

9. 0 11. 1 13. 15. 17.

19. 21. 23. 25.

27. 29. 31.

33. 35. 37.

39. 41.

43. b.

45. a. 47. 49. True

Exercises 14.4 • page 1181

1. , 3. ,

5. ,

7. ,

9. , 11. ,

13. coulombs 15. 384.14°F

17. , , , ,

19. , , , ,

21. , , , ,

23. , , , ,

25. 27. True 29. Falseln 2 � 1
4

y � 16
2x � 4115

5I0 � 592
5Iy � 512

5Ix � 16

y � 12x � 13I0 � 30Iy � 18Ix � 12

y � 1
2 Rx � 1

2 RI0 � 1
4prR

4Iy � 1
8prR

4Ix � 1
8prR

4

y � 13
3 b

x � 13
3 aI0 � 1

3rab(a2 � b2)Iy � 1
3ra

3bIx � 1
3rab3

75
4

(x, y) � 165, 0 2m � 32
9(x, y) � 1p2 , 16

9p 2m � p
4

(x, y) � ae2 � 1

e2 � 1
, 

8(2e3 � 1)

27(e2 � 1)
bm � 1

4 (e2 � 1)

(x, y) � 13, 87 2m � 32
3

(x, y) � 173, 13 2m � 4(x, y) � 132, 43 2m � 6

1p

0 a

a

R1

R2

R3

√2a

y

x

1
3[12 � ln(12 � 1)]

�
p>4

0
�

2

0
(r cos u)(r sin u) r dr du, 1p

(p>2) (e4 � 1)(p>2) ln 28p>3
2p � 313

6
 a227p>29p>4

4
3(12 � 1)p16p9p16p>3

8p1
6p>2

O

R

√22

R

�1�4 4

4

1O

�
p>4

�p>4
 �
12

0
f(r cos u, r sin u) r dr du

�
3

0
�

�(2>3)x�2

0
f(x, y) dy dx

Exercises 14.5 • page 1187

1. 3.

5. 7.

9. 11.

13. 17. 13.0046 19. 13.9783

21.

23.

25. True

Exercises 14.6 • page 1198

1. 18 3. 4 5. 7.

9.

11. ,

,

,

,

,

13. ,

,

,

,

,

15. 17. 19. 21. 164p>31
3

1
24

�
1

0
�
11�z

�11�z

 �
1�z

y2

f(x, y, z) dx dy dz

�
1

�1
 �

1�y2

0
�

1�z

y2

f(x, y, z) dx dz dy

�
1

0
�

1�z

0
�
1x

�1x

f(x, y, z) dy dx dz

�
1

0
�

1�x

0
�
1x

�1x

f(x, y, z) dy dz dx

�
1

�1
 �

1

y2

 �
1�x

0
f(x, y, z) dz dx dy

�
1

0
�
1x

�1x

 �
1�x

0
f(x, y, z) dz dy dx

�
3

0
�

(6�2z)>3

0
�

(12�6x�4z)>3

0
f(x, y, z) dy dx dz

�
2

0
�

(6�3x)>2

0
�

(12�6x�4z)>3

0
f(x, y, z) dy dz dx

�
3

0
�

(12�4z)>3

0
 �

(12�3y�4z)>6

0
f(x, y, z) dx dy dz

�
4

0
�

(12�3y)>4

0
 �

(12�3y�4z)>6

0
f(x, y, z) dx dz dy

�
4

0
�

(4�y)>2

0
�

(12�6x�3y)>4

0
f(x, y, z) dz dx dy

�
2

0
�

4�2x

0
 �

(12�6x�3y)>4

0
f(x, y, z) dz dy dx

16(e � 1)

3e

�1
4

3
8

�
2

0
�

x

0
 
213 � (2x � 3y)4

(2x � 3y)2 dy dx

�
1

�1
 �

1

�1
236x2y4 � 36x4y2 � 1 dy dx

2a2(p � 2)

16p(2 � 12)(2p>3)(17117 � 1)

6p(p>6)(37137 � 1)

1
3 (313 � 212)2114
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23. 25.

6

27.

29. 1

31. 33.

35. ,

,

,

,

,

�
2

0
�

(6�3z)>2

0
 �

6�2y�3z

0
f(x, y, z) dx dy dz

�
2

0
�

6�3z

0
 �

(6�x�3z)>2

0
f(x, y, z) dy dx dz

�
3

0
�

(6�2y)>3

0
 �

6�2y�3z

0
f(x, y, z) dx dz dy

�
3

0
�

6�2y

0
 �

(6�x�2y)>3

0
f(x, y, z) dz dx dy

�
6

0
�

(6�x)>3

0
 �

(6�x�3z)>2

0
f(x, y, z) dy dz dx

�
6

0
�

(6�x)>2

0
 �

(6�x�2y)>3

0
f(x, y, z) dz dy dx

x

y

z

0

2

4

�2

4

z � y � 2

x � 4 � y2

(0, 2, 4)

y

z

1

1

1
0

x � 1 � y

z � 1 � x � y

x

16p

4

8

0

x
y

z

128
5

0

x � z � 4

x � 4 � y2

2
4

z

y

x

6

2
30

3x � 2y � 6

3x � 2y � z � 6

y

x

z

37. ,

,

,

,

,

39. a. 384 b. 384 41. 0.4439

43. 45. (2, 0, 0)125 , 15 , 15 2
�

2

0
�

1

�1
 �
21�y2

�21�y2
 f(x, y, z) dx dy dz

�
1

�1
 �

2

0
�
21�y2

�21�y2
 f(x, y, z) dx dz dy

�
2

0
�

1

�1
 �
21�x2

�21�x2
 f(x, y, z) dy dx dz

�
1

�1
 �

2

0
�
21�x2

�21�x2
 f(x, y, z) dy dz dx

�
1

�1
 �
21�y2

�21�y2

 �
2

0
f(x, y, z) dz dx dy

�
1

�1
 �
21�x2

�21�x2

 �
2

0
f(x, y, z) dz dy dx

47.

49.

51. , , 53. , ,

55. 3 57. 59.

61. True 63. True

Exercises 14.7 • page 1207

1. 3.

5. 7. 9. 11.

13. 15. 17. 19.

21. 0 23. 0 25. 27.

29. 31. 33. 35.

37. 41. 43.

45. 108°F 47. True 49. True

1
3 (2 � 12)p7p>84

15 ka5p

67
15 kp48

5 kp1
4 ka4p10, 0, 38 a 2

12p>3p>3
p1

15pr10, 0, 43 2(0, 0, 2)

40p>3512p>564
154p>3

16p>381p>8
x

y

z

2

2
2

0

x

y

z

0

9

3
3

T � {(x, y, z) � 2x2 � 3y2 � z2 	 1}1>p
Iz � 1

90Iy � 1
90Ix � 1

180Iz � 2
3 kIy � 2

3 kIx � 2
3 k

�
1

0
�

(2�y)>2

0
 �

1�y2

0
2x2 � y2 � z2 dz dx dy

�
1

0
 �

1�y

0
�
21�z2

0
 (xy � z2) dx dz dy
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Exercises 14.8 • page 1217

1.

3. 5.

7. 9. 11. 13. 45

15. 0 17. 19. 21. 23.

25. 27. 29.

31.

33. False

Chapter 14 Concept Review • page 1218

1. a.

b. ; 

c. volume; 

d. ; ; 

3. a. ; 

b. iterated

5. a.

b.

c.

d.

7. a. ��
R

2( fx)
2 � ( fy)

2 � 1 dA

�
b

a
�

 2(u)

 1(u)
f(r cos u, r sin u) r dr du

{(r, u) �a 	 u 	 b, t1(u) 	 r 	 t2(u)}

�
b

a
�

b

a

f(r cos u, r sin u) r dr du

{(r, u) � a 	 r 	 b; a 	 u 	 b}

�
d

c
�

b

a

f(x, y) dx dy�
b

a
�

d

c

f(x, y) dy dx

0f(x, y)lim
m, n→�

a
m

i�1
a

n

j�1
fD(x*ij , y*ij ) �A

z � f(x, y)

(x*ij , y*ij )lim
m, n→�

 a
m

i�1
a

n

j�1
f(x*ij , y*ij ) �A

a
m

i�1
a

n

j�1
f(x*ij , y*ij ) �A

���
R

f(x, y, z) dV � ���
S

f(r cos u, r sin u, z) r dz dr du

1
64pra

44
3pabc1

8 a2b2

e2 � 1

4e
32
3p4p

�42e2u�2(u � 1)

0

1

R

1�1

y

x

T(l2)T(l3)

T(l1)
0

1

(2, 2)

R

321

2 (3, 2)
y

x

T(S1)

T(S2)

T(S3)

0 1 2

1

T(S2)T(S4)

T(S1)

T(S3)

R

(�1, 1) (1, 1)

y

x

b.

c.

9. a. order; 

b.

11. a.

b. ,

c. ,

Chapter 14 Review Exercises • page 1219

1. 18 3. 5. 7.

9.

11.

13. 15. 17. 19. 6 21.

23. 0 25. 27. 29. 31.

33. , 35. ,

37. , , 39. 41. 16p>53114I0 � 14
45Iy � 4

45Ix � 2
9

(x, y) � 1 3
2p, 3

2p 2m � p
6(x, y) � 121

32, 
21
40 2m � 2

21

p(e � 1)

e
p>27

6
4

105

19
168

32
3

52
3

1
2 (1 � cos 1)

O

R

2

1

0

1

�1

1 2 3

R

3
y �

y � ln x

y

x

√x

8
15 (5 � 12)

p

4
�

ln 2

2
23
60

r sin f sin u, r cos f)r2 sin f dr df du

�
b

a
�

d

c
�

h2(f, u)

h1(f, u)
f(r sin f cos u

r cos f)r2 sin f dr df du

�
b

a
�

d

c
�

b

a

f(r sin f cos u, r sin f sin u

�
b

a
�

 2(u)

 1(u)
 �

h2(r cos u, r sin u)

h1(r cos u, r sin u)
f(r cos u, r sin u, z) r dz dr du

��
R

c�
k2(x, y)

k1(x, y)
f(x, y, z) dzd dA

�
q

p
�

d

c
�

b

a

f(x, y, z) dx dy dz

��
R

2(hy)
2 � (hz)

2 � 1 dA

��
R

2(tx)
2 � (tz)

2 � 1 dA

t

t

t

t
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43. ,

,

,

,

,

45. 47.

49. True 51. False 53. True

Chapter 14 Challenge Problems • page 1221

1. a. 10 7. b.

CHAPTER 15

Exercises 15.1 • page 1229

1. (b) 3. (c) 5. (e)

7. 9.

11. 13.

15. 17.

0

z

y

x

0

z

y

x

1

1

y

x

1

1

y

x

1

1

y

x
1

1

y

x

1
2 (1 � cos 1)

e � 12 � 16u√w � 4uw

�
6

0
�

(6�z)>3

0
�

(6�3y�z)>2

0
f(x, y, z) dx dy dz

�
2

0
�

6�3y

0
�

(6�3y�z)>2

0
f(x, y, z) dx dz dy

�
6

0
�

(6�z)>2

0
�

(6�2x�z)>3

0
f(x, y, z) dy dx dz

�
3

0
�

6�2x

0
�

(6�2x�z)>3

0
f(x, y, z) dy dz dx

�
2

0
�

(6�3y)>2

0
�

6�2x�3y

0
f(x, y, z) dz dx dy

�
3

0
�

(6�2x)>3

0
 �

6�2x�3y

0
f(x, y, z) dz dy dx

19. (c) 21. (a)

23. 25.

27. 29.

31.

33. a. b.

37. True 39. True

Exercises 15.2 • page 1239

1. a. 0 b. 0 c. Will not rotate d.

3. a. Positive b. c. Will not rotate d.

5. a. 0 b.

7. a. b.

9. a. b.

11. a. b.

13. a. No b. No c. Yes, a vector field d. No

15. a. Yes, a vector field b. Yes, a scalar field
c. No d. Yes, a vector field

41. False 43. False 45. False 47. False

Exercises 15.3 • page 1253

1. 3. 5. 7. 5 9. 42

11. 13. 0 15. 17. 0

19. 21. 23. ,

25. 27.

29. a. Negative b.

31. 33. 35. 1 37. ft-lb

41. a. (i)

(ii)

b. No

(215 � 12)qQ

40pe0

(215 � 12)qQ

40pe0

�7201
2 (e4 � e � 15)23

24

�4p

125, 25 2a0, 
a(4 � p)

2(p � 2)
b

a0, 
2a

p
bpka7

2

1

2
 e2 � 4e �

1
e

�
9

2

16>222
3

32
3

13113 � 8

54
35
2

01>z
cos ykcos x � x sin y � cos z

�z2j � 3x2y2k2x(y3 � z)

0

0
1

2x2 � y2

0

(1.02, 3.1, 2.04)2i � 10j � 4k

y

x � z
 i � ln(x � z)j �

y

x � z
 k

yzi � xzj � xyk2xyi � (x2 � 3y2)j

�4

�4 �2

�2

0 2 4

2

0

4

x

y

0
24

�4
�2

0
2
4

�4
�2�4

�2 0
42 xy

z



b. 7
120

�0.1

�0.1 0.5

0.5

Answers to Chapter 15 Selected Exercises ANS 77

27. 29. 31. 33. 7

37. 39. 43. c. No 45. b. No c.

49. False 51. True

Exercises 15.6 • page 1289

1. (b) 3. (a)

5. , a plane

7. , , a cylinder with an elliptical
cross section and axis the -axis, bounded below by the
plane and above by the plane 

9. 11.

13.

15.

17. with domain

19. with domain

21. with domain
D � {(u, √) � 0 	 u 	 2p, 0 	 √ 	 2}
r(u, √) � √ cos ui � √ sin uj � (9 � √2)k

D � {(u, √) � 0 	 u 	 2p, �1 	 √ 	 3}
r(u, √) � 2 cos ui � 2 sin uj � √k

D � {(u, √) � 0 	 u 	 2p, 0 	 √ 	 p}
r(u, √) � cos √ cos ui � cos √ sin uj � sin √k

r(u, √) � (2 � 2u � √)i � (1 � u � 2√)j � (3 � u � √)k

y
x

1
0

�1
�1

1
0

0.0

z 0.5

1.0

0
�1

x11

�1

y
0

0

1z

2

�2

x
0

�2

z 1

2

0

0
y 2 2

20

2

3

x

y

z

z � 2z � 0
z

0 	 z 	 21
9 x2 � 1

4 y2 � 1

(0, 6, 4)
(3, 0, 3)

0

z

x
y

3x � 2y � 3z � 0

3
4

1
4ra

4p10, 18
5 2

47.5 � p�12288 � 7p43.

45. True 47. False

Exercises 15.4 • page 1267

1. 3. No 5.

7. No 9.

11. a. b. 0

13. a. b. 9

15. a. b.

17. a. b. 19. 2 21. 10

25. 27. No 29.

31. No 33. a. b. 12

35. a. b. 37.

39. 41. c. No 43. False

45. False 47. True

Exercises 15.5 • page 1276

1. a. 0 b. 0 3. a. b. 5. 7.

9. 11. 13. 15. 17.

19. 21.

23. a.

8
3 ab3

8pa2

2
36p6p3

8pa2�352
15

1
12

1
3

4
15

4
15

qkQa114

14
�
121

21
b

�12p � 1x cos y � yz2 � C

xyz2 � C

ex cos z � z cosh y � Cxyz � C

1
2p

2ex sin y � 1
2 y2 � C

1
2 e21

2 x2e2y � C

x2y2 � 2xy � C

2xy � x � 3y � C

1
3 x3 � y ln x � 1

3 y3 � C

y2 sin x � 3y � C2x2 � 3xy � y2 � C

�2p

1 32

1

2

3

�1

�2

�3

0

y

x

25. a.

b. 32
105

�0.5

�1 1

1.0
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23. with domain

25. with
domain 

27. 29.

31. 33. 35.

37. 39.

41. b. c. 199.455

43. 47. False

Exercises 15.7 • page 1301

1. 3. 5. 7.

9. 32 11. 13.

15. 17. 19. 21. 18

23. 25. 27. 29.

33. 35. 42 37.

39. a.

b. 15

41. 45. b. 49. True311416
3 pkR3

��
D

(�Ptx � Q � Rtz) dA

�20p18114k

10, 0, a2 227pp32p>3
40p8kp18114k

8
3p

21
4 [215 � ln(15 � 2)]

12p>5412p1
6(27 � 515)5114

12p

�5

�5

�5

y
0

x
5 0

5

0z

5

[212 � ln(3 � 212)]p
312p

4

4114p213(ln 2)x � 2z � 0

2x � z � �1x � y � z � 1

9

9

3

z

x

y

D � {(u, √) � 0 	 u 	 3, 0 	 √ 	 2p}
r(u, √) � (9 � u2)cos √i � uj � (9 � u2)sin √k

0

z

x

y

D � {(u, √) � 0 	 u 	 4, 0 	 √ 	 2p}
r(u, √) � ui � 1u cos √j � 1u sin √k Exercises 15.8 • page 1310

5. 7. 9. 11. 13. 0

15. 17. 27. True 29. True

Exercises 15.9 • page 1318

5. 7. 9. 11. 13.

15. 17. 2 23. 0 25.

29. 31. False

Chapter 15 Concept Review • page 1320

1. vector; vector

3. a. departs, accumulates

b. ; enters; departs; equals; departs; enters

5. a.

b.

c. ; 

d. ; 

7. a.

b. work

9. a. closed b. connected; conservative

11. ; ; ; 

13. ; ; 

15. a. ; parameter; parametric
equations

b.
c. ;

17. a.

b.

Chapter 15 Review Exercises • page 1321

1. a. b.

3. a. b. 5. 7.

9. 11. 13. 15. 109
2

16
3 � e�13p � 10

12

54,229

110

12>31
12 (17117 � 515)0ez

�2yzi � 2xzj � 2xyky2 � z2 � x2

��
D

F(r(u, √))�ru  r√ � dA

��
R

F(x, y, f(x, y))2[ fx(x, y)]2 � [ fy(x, y)]2 � 1 dA

{(u, √) � a 	 u 	 b, 0 	 √ 	 2p}
ui � f(u) cos √j � f(u) sin √k
ui � √j � f(u, √)k

x(u, √)i � y(u, √)j � z(u, √)k

1

2
 �

C

x dy � y dx��
C

y dx�
C

x dy

�P>�y�P>�z�Q>�zcurl F

�
b

a

F � T ds � �
b

a

F(r(t)) � r¿(t) dt

�
b

a

f(x(t), y(t))y¿(t) dtlim
n→�

 a
n

k�1
f(x*k , y*k ) �yk

�
b

a

f(x(t), y(t))x¿(t) dtlim
n→�

 a
n

k�1
f(x*k , y*k ) �xk

�
b

a

f(x(t), y(t))2[x¿(t)]2 � [y¿(t)]2 dt

lim
n→�

 a
n

k�1
f(x*k , y*k ) �sk

�P

�x
�

�Q

�y
�

�R

�z

2p

8p�1
2 e2 � 2e � 3

2

�6p�368p2p�8p

27p8p>5
216p5

2463p>28
3
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17. 19. 0 21. 23.

25. 27. 29. 31.

33. 0 35. 0 37. 256 39. 0 41. True

43. False 45. True 47. True

Chapter 15 Challenge Problems • page 1323

1.

3. b. 5. p3
2 a2

�2

1

2

�1

1_
2

0

y

x

e(x, y) ` x2

4
�

y2

1
� 1 and x2 � y2 �

1

4
f

12p
13

12
 k3p>29117

4

�p>2�171
102x2y � 3xy2 � C APPENDIX A

Exercises • page A6

1.

3.

5.

7. False 9. False 11. 13.

15. 17. 19.

21. 23.

25. 27. 29. 4

31. 2 33. 35. 37. 2 39. False
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Abel, Niels Henrik (1802–1829), 336n
Absolute convergence, 774–776
Absolute maximum

of a function of two variables, 1117, 1122
of a function on a closed interval, 244
of a function on an arbitrary interval, 320
value, 244, 249, 1117

Absolute minimum
of a function of two variables, 1117, 1122
of a function on a closed interval, 244
of a function on an arbitrary interval, 320
value, 244, 249, 1117

Absolute value, 21, A4
Absolutely convergent series, 775
Acceleration, 176, 1011

components of, 1020
Coriolis, 1031
of an object, 1014
vector, 1010–1011

Accumulated amount, 562
Addition formulas for sine and cosine, 36, 37
Addition of vectors, 903

in the plane, 905–906
rules for, 906
in 3-space, 917

Agnesi, Maria Gaëtana (1718–1799), 852
Algebraic function, 66
Alternating series, 769, 781

harmonic series, 769, 770, 775
remainder, 772

Alternating Series Test, 769
Ampere’s Law, 1255, 1318
Amplitude, 35
Angle(s), 27–30

of incidence, 832
of inclination, 9
radian measure of, 28
reference, 32
of reflection, 832
between two nonzero vectors, 925
between two planes, 952

Angular coordinate, 867
Angular velocity, 944, 1241
Antiderivative, 350
Antidifferentiation, 352
Aphelion, 893, 894, 895
Approximating zeros

bisection method, 122
with Newton’s method, 336–337

Approximation
of definite integrals, 420–421

by differentials, 226–227
linear, 231
by Newton’s method, 336–337
by Riemann sums, 387
by Simpson’s Rules, 427
tangent line, 230
by Taylor polynomials, 809–810
by the Trapezoidal Rule, 422

Arc length, 475
differential, 479, 482
formula, 476
function, 478–479, 1001
of a parametric curve, 861
of a polar curve, 882
of a space curve, 1000

Arccosecant function, 568
Arccosine function, 568
Arccotangent function, 568
Archimedes’ Principle, 450
Arcsecant function, 568
Arcsine function, 567, 568, 569

series for, 800
Arctangent function, 568

series for, 800
Area(s), 369–386

of a circular sector, 30, 878
of a parametric surface, 1287
in polar coordinates, 878–881
of a polar rectangle, 1168
problem, 370
of a region between two curves, 439
of a region in the plane, 1159
of a region under the graph of f, 370, 380
of a surface of revolution, 482, 862

in parametric form, 862
in polar coordinates, 883

Astroid, 213, 484
Asymptote(s)

of a hyperbola, 838, 839, 841
slant, 313
vertical, 292

Autonomous differential equation, 703
Average cost function, 179
Average rate of change, 131–132
Average value of a function, 405, 1200
Average velocity, 78, 405
Axis

of a cone, 964, 968
conjugate, of a hyperbola, 838
of a hyperboloid, 963, 967
major, of an ellipse, 833, 834

minor, of an ellipse, 833, 834
of a parabola, 829, 830
of a paraboloid, 965, 968
of revolution, 451
transverse, of a hyperbola, 836, 837

Base(s)
change of base formula, 559
of a logarithm, 559

Basic integration rules, 353
Basis vectors, 907, 918
Bathtub curve, 266
Bernoulli, Jacob (1654–1705), 715, 855
Bernoulli, Johann (1667–1748), 636, 854,

855
Bernoulli’s differential equation, 722
Bessel, Friedrich Wilhelm (1784–1846), 789
Bessel function, 792
Bifolium, 206, 210, 887
Binomial coefficients, 798
Binomial series, 798
Binormal vector, 1027
Bisection method, 122
Boundary point, 1052
Bounded function, 399
Bounded sequence, 739
Bowditch curves, 857
Brachistochrone problem, 854–855
Brahe, Tycho, 1022
Branches of a hyperbola, 828, 836
Bullet-nose curve, 202, 578
Butterfly catastrophe curve, 857, 898

Cantor middle-third set, 825
Capillarity, 181
Cardioid, 866–867, 872, 880
Carrying capacity, 295, 702
Catenary, 579, 585, 586, 589
Catenoid, 588
Cauchy-Riemann equations, 1095
Cauchy’s Mean Value Theorem, 348, A14
Cauchy-Schwarz inequality, 981
Cavalieri’s Theorem, 464
Center

of curvature, 1007
of gravity, 503, 504
of mass, 502, 503, 504, 1245

of a lamina, 1178
of a solid, 1195

of a planar lamina, 506
of a power series, 785
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Centroid, 507, 508, 509
of a region, 1178
of a solid, 1195

Chain Rule, 193, 1084, A12
one independent variable, 1085
for trigonometric functions, 197–201
two independent variables, 1088
for vector functions, 995

Change in the limits of integration, 411
Change of base formula, 559
Change of variables, 411, 1208

for double integrals, 1212
to polar form, 1169, 1171
for triple integrals, 1216
using a Jacobian, 1211

Charge density, 1177, 1303
Child-Langmuir Law, 234
Circle

equation of, 12
involute of, 856, 887
osculating, 1007
unit, 28, 31

Circle of curvature, 1007
Circulation of a vector field, 1315
Cissoid of Diocles, 212, 666
Clairaut, Alexis Claude (1713–1765), 1067
Clairaut’s Theorem, 1067, A17
Clark, A.J., 65, 70
Clark’s Rule, 74
Classification of conics by eccentricity, 890
Closed

curve, 1258
path, 1258
region, 1052
surface, 1295

Closed intervals, 116, A1–A2
Cobb-Douglas production function, 1046,

1072, 1107, 1139
Cochleoid, 878
Coefficient(s)

binomial, 798
of a polynomial function, 59
of a power series, 785
of restitution, 755
of static friction, 257

Common logarithm, 561
Comparison Test, 762

for improper integrals, 664
Limit, 765

Completeness Axiom, 742
Component of acceleration, 1020
Components of a vector, 904, 917

along a, 929
Composite function, 41, 192

continuity of, 118–119, 1055
Compound interest formulas, 562–564

continuous compounding, 564, 686

Concave downward, 277
Concave upward, 277
Concavity, 277, A13
Conchoid of Nicomedes, 213
Conditional convergence, 776
Conditionally convergent series, 776
Cone, 203, 218, 239, 330, 964, 968
Conic section, 828
Conics, 828

classification by eccentricity, 890
directrix of, 888
eccentricity of, 888
ellipse, 828, 833
focus of, 888
hyperbola, 828, 836–839, 841–842
parabola, 61, 828
in polar equations, 890
shifted, 839–842

Conjugate axis of hyperbola, 838
Connected region, 1259
Conservation of energy, 1266
Conservative vector field, 1227, 1257

test for, 1262, 1264
Constant

of acceleration, 502
Euler’s, 761
force, 487
function, 90

derivative of, 154
limit of, 90

growth, 682, 702
of integration, 352, 410
Michaelis, 531
Multiple Law, 91, A8
Multiple Rule, 156
permeability of free space, 824, 1083,

1255, 1318
permittivity of free space, 494, 824,

1255, 1300
spring, 59, 61, 488

Constraints, 1128
Continuity, 112

of a composite function, 118, 1055
of a function of three variables, 1056
of a function of two variables, 1052

properties of, 1054
at a number, 112
on a region, 1053
of a sum, product, and quotient, 116
of a vector function, 989

Continuous
on a closed interval, 116
compounding, 564, 686
function, 112
on an interval, 116, 989
from the left and from the right, 115
on a region, 1053

Contour map, 214, 1039–1041, 1064
Converge, 732, 733, 747
Convergence, 752

absolute, 775
conditional, 776, 782
of a geometric series, 749
of an improper integral, 655
interval of, 787, 790, 799–800
of a power series, 786, 790, A16
of a p-series, 759
radius of, 787, 790
of a sequence, 733
of a series, 747
of Taylor series, 795–796
tests for series

Alternating Series Test, 769
Comparison Test, 762
geometric series, 749
Integral Test, 757
Limit Comparison Test, 765
p-series, 759
Ratio Test, 777, 781
Root Test, 779, 781
summary of, 780–781

Convergent series, properties of, 753
Conversion period, 563
Coordinate, A1
Coordinate conversion

cylindrical to rectangular, 972
rectangular to cylindrical, 972
rectangular to spherical, 975
spherical to rectangular, 975

Coordinate line, A1
Coordinate planes, 914, 915
Coordinate system

cylindrical, 971
spherical, 974
three-dimensional rectangular, 914

Coplanar vectors, 942
Coriolis acceleration, 1031
Cornu spiral, 865, 1009
Cosecant function, 34

derivative of, 187, 197
graph of, 34
integral of, 526
inverse of, 568, 569

derivatives of, 571–573
limit of, 96

Cosine function, 34, 35
derivative of, 186, 187, 197
graph of, 34
integral of, 353
inverse of, 568, 569

derivatives of, 571
limit of, 96
representation by series, 799

Cost function, 178–179
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Cotangent function, 34
derivative of, 187, 197
graph of, 34
integral of, 526
inverse of, 568, 569

derivatives of, 571
limit of, 96

Coterminal angles, 29
Coulomb, Charles-Augustin de

(1736–1806), 1300
Coulomb’s Law, 494, 644, 923, 1226, 1300
Critical number, 247
Critical point, 1118
Cross product, 934

direction of, 936
geometric properties, 936–939
magnitude of, 937
properties of, 940

Cross section, 458, 460
of a surface, 1159

Cubic, Tschirnhausen’s, 212, 463
Curl of a vector field, 1236
Current, 80, 112, 204, 223
Curvature, 1003, 1007
Curve(s)

bathtub, 266
Bowditch, 857
bullet-nosed, 202, 578
Cissoid of Diocles, 212, 666
closed, 1258
Devil’s, 878
eight, 348
elastic, 125, 183, 251, 255, 257, 361
equipotential, 1047
grid, 1280
helix, 987, 994, 1250
hippopede, 878
hyperellipse, 463
isothermal, 1108, 1144, 1156
Keeling, 70
least-squares, 335
length of, 882
level, 1039
logistic, 705–709
orientation of, 849, 1247
orthogonal, 214
piecewise-smooth, 1244
piriform, 450
polygonal, 425
pursuit, 485, 579, 662–663
resonance, 334
right strophoid, 450
rose, 873, 876, 877
simple, 1261, 1268
smooth, 475, 860, 1001
space, 984
stress-strain, 445

tangent line to a, 127
tractrix, 673
trochoid, 856
twisted cubic, 1005
velocity, 143
witch of Agnesi, 856

Curve sketching, guidelines for, 307
Cusp, 475, 1001
Cycloid, 854, 860

prolate, 857
Cylinder, 959

directrix of, 959
equation of, 959, 961
rulings of, 959

Cylindrical coordinate system, 971
Cylindrical coordinates

converting to rectangular coordinates, 972
triple integral in, 1201

Cylindrical shell(s)
generated by revolving a region about the

x-axis, 470–471
method of, 467, 470
volume of, 466

d’Alembert, Jean le Rond (1717–1783), 705
Decay, law of natural, 677–678
Decay, radioactive, 682
Decreasing functions, 267

test for, 268
Decreasing sequence, 738
Definite integral(s), 387, 400

approximating, 420–421
as the area of a region, 390–391
of a constant function, 395
evaluation of a line integral as, 1243,

1246, 1247
integration by parts, 610
Mean Value Theorem for, 406
of odd and even functions, 412
properties of, 396, 397
of a vector function, 996

Degree of a polynomial function, 59
Degrees and radians, converting, 28
Del (§), 1100
Demand equation, 221, 234, 235, 254, 724
Density

of a lamina, 1175–1176, 1178
of a solid, 1188, 1194

Dependent variable, 18, 1034, 1035
Derivative(s), 142

for bases other than e, 556
Chain Rule, 193, A12
of a constant function, 154
Constant Multiple Rule, 156, A8
Constant Rule, 154
of a cosecant function, 187, 197
of a cosine function, 186, 187, 197

of a cotangent function, 187, 197
Difference Rule, 157
directional, 1097, 1098
of an exponential function, 556
of a function, 142
General Power Rule, 195
higher-order, 168–169
of hyperbolic functions, 582
implicit, 208
of an inverse function, 537
of inverse hyperbolic functions, 585
of inverse trigonometric functions, 571
from the left and from the right, 115
of a logarithmic function, 560
of the natural exponential function, 543
of the natural logarithmic function, 519,

522
notation, 144
partial, 1060

of a function of more than two
variables, 1065

second-order, 1066
Power Rule, 156
of a power series, 790
Product Rule, 162
Quotient Rule, 164
of rational powers of x, 211
of a secant function, 187, 197
second, 168, 285
of a sine function, 185, 187, 197
Sum Rule, 157
of a tangent function, 187, 197
third, 168
of trigonometric functions, 187, 197
of a vector function, 992, 993

Descartes, René (1596–1650), 6
Determinant, 934, 935
Devil’s curve, 878
Difference quotient, 130
Difference Rule, 157
Differentiable function, 147, 1079, 1080,

1081
Differential(s), 227, 1075, 1081

of arc length, 479, 482
Differential equation, 355

autonomous, 703
Bernoulli equation, 722
Cauchy-Riemann, 1095
direction field, 691
doomsday, 690
Euler’s Method, 694, 696
first-order, 676
first-order linear, 712
first-order separable, 678
general solution of, 355, 677
Gompertz, 701, 712
homogeneous, 727
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Differential equation (continued)
initial condition, 355
logistic, 701, 702
order of, 676
partial (Laplace’s equation), 1067, 1070,

1145
Riccati, 728
slope field, 691
solution curves, 677
solutions of, 355, 676

first-order linear, 714
general, 355, 677
particular, 355, 677

Differential operator, 143, 1233
Laplacian, 1240

Differentiation, 143–144
implicit, 206, 208, 1065, 1091–1092

guidelines for, 208
involving inverse hyperbolic function, 585
logarithmic, 523, 524
numerical, 149
partial, 1060
of a power series, 790
of vector functions, 993, 995

Differentiation rules
Chain, 193, A12
Constant, 154
Constant Multiple, 156
cosecant function, 187, 197
cosine function, 186, 187, 197
cotangent function, 187, 197
Difference, 157
General Power, 195
for inverse trigonometric functions, 571
Power, 156

for integral powers, 167
Product, 162
Quotient, 164
secant function, 187, 197
sine function, 185, 187, 197
Sum, 157
tangent function, 187, 197
vector function, 995

Direction angles, 927
Direction cosines, 927
Direction field, 691
Direction numbers, 946
Directional derivative, 1097, 1098

in terms of the gradient of f, 1100
of a function of three variables, 1103

Directrix
of a conic, 888
of a cylinder, 959
of a parabola, 828, 830

Dirichlet function, 103, 126, 403
Dirichlet integral, 673
Discontinuity, 114, 660

Disk method, 453, 455
Displacement, 78, 112

definite integral and, 392–394
net change of position as, 415

Displacement vector, 931
Distance between a point and a plane, 953
Distance formula, 11

in 3-space, 915
Diverge, 732, 747
Divergence

of an improper integral, 655, 660
of a sequence, 732, 735, 739, 741
of a series, 747
tests for series

Comparison Test, 762
geometric series, 749
Integral Test, 757
Limit Comparison Test, 765
p-series, 759
Ratio Test, 777, 781
Root Test, 779, 781
summary of, 780–781

of a vector field, 1232
Divergence Test, 752, 780
Divergence Theorem, 1304, 1317
Domain, 17, 1034

parameter, 1279
of a vector function, 984, 985

Doomsday equation, 690
Doppler effect, 1048, 1094
Dot product, 924

properties of, 924
Double integral, 1152

change of variables in, 1212
over a general region, 1153
in polar coordinates, 1171
properties of, 1154–1155
over a rectangle, 1152

Double-angle formulas, 36, 37

e, the number, 541
Eccentricity, 888

classification of conics by, 890
of an ellipse, 836, 888, 889, 890, 892
of a hyperbola, 839, 888, 890, 892
of a parabola, 888, 890, 892

Ehrenberg equation, 531
Eight curve, 348
Eight-leaved rose, 877
Einstein, Albert, 293, 318
Elastic curve, 125, 183, 251, 255, 257, 361
Elastic hysteresis, 445
Elastic limit, 59
Elasticity, theory of, 445
Electric charge, 1176–1177, 1300
Electric field, 1226
Elementary functions, 664

Elementary region, 1269
Ellipse, 212, 828, 833

center of, 833
eccentricity of, 836, 888, 889, 890, 892
foci of, 833, 834
major axis of, 833, 834
minor axis of, 833, 834
orthogonal trajectories of a family of, 687
polar equation of, 891
reflective property of, 835–836
shifted, 840
standard equation of, 834
vertices of, 833, 834

Ellipsoid, 961–962, 967
Elliptic cylinder, 960
Elliptic paraboloid, 965, 968
Endpoint extrema, 249
Energy

conservation of, 1266
kinetic, 495, 804–805, 1179, 1222, 1254,

1266
potential, 1266

Epsilon-delta, e-d, 105–106
definition of a limit, 106, 1057

Equation(s)
Cauchy-Riemann, 1095
of a circle, 12
Ehrenberg, 531
first-degree, 7
Laplace’s, 1067, 1070, 1145
of a line

general form, 7
point-slope form, 6
slope-intercept form, 7, 8
vertical, 5

of a line in space
parametric, 945
symmetric, 946

Maxwell’s, 1241
parametric, 848, 1279
of a plane in space, 949, 951
polar, 869
related rate, 215
Rivlin’s, 348
of a tangent plane, 1112
van der Waals, 530

Equilibrium solutions, 706
Equipotential curve, 1047
Error

in approximating a Taylor polynomial, 812
in approximating �z by dz, 1077
in measurement, 229–230

Error estimate
for alternating series, 772
for Simpson’s Rule, 427–429
for Trapezoidal Rule, 423

Escape velocity, 306, 366, 667
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Euler, Leonhard (1707–1783), 19, 694, 760
Euler’s constant, 761
Euler’s Method, 694, 696
Even function, 22, 36, 205

integration of, 412
Existence

of an inverse function, 535
of a limit, 106
of zeros of a continuous function, 121

Explicit form of a function, 206
Exponential decay, 681
Exponential function, 67

with base a, 555
derivative of, 556, 558

natural, 540, 542
derivative of, 543
properties of, 542

Exponential growth, 681
Exponential growth and decay model, 681

initial value, 681, 684
Extrema

absolute, 244
endpoint, 249
of a function, 244
guidelines for finding, 320
relative, 246

Extreme Value Theorem, 248
for functions of two variables, 1122

Factorial, 736
Famous curves

astroid, 213, 484
bifolium, 206, 210, 887
bullet-nosed curve, 202, 578
butterfly catastrophe curve, 857, 898
cardioid, 866–867, 872, 880
cissoid, 212, 666
conchoid, 213
cornu spiral, 865, 1009
eight curve, 348
folium of Descartes, 213, 866, 887, 899,

1323
involute of the circle, 856, 887
lemniscate, 212, 848, 866, 867, 873–874,

877, 880
Lissajous (Bowditch), 857
parabola, 61
swallowtail catastrophe curve, 857, 1277
Tschirnhausen’s cubic, 212, 463
witch of Agnesi, 856

Fermat, Pierre de (1601–1665), 307
Fermat’s Principle, 334
Fermat’s Theorem, 246
Fibonacci sequence, 745
Field

conservative vector, 1259–1260, 1262,
1264

electric, 1226
force, 1225
gravitational, 1225, 1256
incompressible, 1234
inverse square, 1228
irrotational, 1238
solenoidal, 1234
vector, 1224
velocity, 1225

Finite intervals, A2
First Derivative Test, 270
First-order differential equations, 676
First-order linear differential equations, 712

integrating factor, 714
solution of, 714
standard form, 712

First-order separable differential equations,
678

Fixed point, 140, 265
Flexural rigidity, 125, 183, 251, 255, 257,

274
Fluid force, 497
Fluid pressure, 495–501
Flux integral, 1297
Focus

of a conic, 888
of an ellipse, 833, 834
of a hyperbola, 836, 837, 841
of a parabola, 828, 830

Folium of Descartes, 213, 866, 887, 899,
1323

Force
central, 1023
constant, 487
exerted by a fluid, 497
torque, 938
variable, 488

Force field, 1225
Formula(s)

arc length, 476
basic integration, 353
compound interest, 562–564
for curvature, 1004
net change, 415
summation, 376
surface area of a solid, 1184, 1185
Wilson lot-size, 1047

Fresnel function, 436
Fresnel integral, 599, 673
Fubini, Guido (1879–1943), 1159, 1160
Fubini’s Theorem, 1160, 1162
Function(s), 16

absolute maximum of, 244
absolute minimum of, 244
absolute value, 21
addition of, 40
antiderivative of, 350

arc length, 478, 1001
average value of, 405, 1175, 1200
Bessel, 792
Cobb-Douglas production, 1046, 1072,

1107, 1139
component, 985
composite, 41, 192, 1055
concave downward, 277, A13
concave upward, 277, A13
constant, 90
continuous, 112
cost, 178–179
critical number of, 247
decreasing, 267

test for, 268
defined by a power series, properties of,

789–790
density, 1176, 1178, 1202
derivative of, 142
difference of, 40
differentiable, 147
Dirichlet, 103, 126, 403
discontinuous, 112, 113
domain of, 17, 40, 65
elementary, 664
even, 22, 36, 205
explicit form, 206
exponential, 555
extrema of, 244
fixed point of, 140, 265
Fresnel, 436
graph of, 20
greatest integer, 96
harmonic, 1067
Heaviside, 81, 82, 90, 112, 115, 147–148
homogeneous, 1048, 1095
hyperbolic, 579
identity, 91
implicit, 206
increasing, 267

test for, 268
integrable, 387, 1152, 1190
inverse hyperbolic, 583
inverse of, 533
inverse trigonometric, 568
jerk, 176
limit of, 80, 106
linear, 59
logarithmic, 559
monotonic, 267
notation, 17
odd, 22, 36, 205
one-to-one, 535
operations on, 40
periodic, 33, 153
piecewise defined, 21–22, 81, 347, 411
polynomial, 26, 59, 117, 1054
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Function(s) (continued)
position, 78, 174, 350, 532
potential, 1227, 1257, 1262
power, 65, 195
product of, 40
quadratic, 61
quotient of, 40
range of, 17
rational, 65, 1036, 1054
relative maximum of, 245, 246–247
relative minimum of, 245, 246–247
represented by a power series, 785,

799–800
Riemann zeta, 761
smooth, 475
square root, 17
square-wave, 90
step, 425
transcendental, 517–603
transformation of a graph of, 43–48
trigonometric, 67
of two or more variables, 1034, 1042,

1081
absolute maximum of, 1117, 1122,

1136
absolute minimum of, 1117, 1122,

1136
continuity of, 1052, 1054, 1056
critical point of, 1118
dependent variable, 1034, 1035
differentiable, 1079, 1080
directional derivative, 1103
domain of, 1034
gradient of, 1099, 1100, 1103
graph of, 1036
independent variables, 1034, 1035
limit of, 1049, 1056, 1057
partial derivative of, 1060, 1065
range of, 1034
relative extrema of, 1116, 1120
Second Derivative Test for, 1120

vector, 984, 985
velocity, 174
von Bertalanffy, 550
zeros of, 54

Fundamental Theorem
of Calculus, 404, 407–411

Part 1, 408
Part 2, 409

for line integrals, 1257, 1317

Gabriel’s Horn, 666, 1284
Gauss, Johann Karl Friedrich (1777–1855),

936, 1304
Gauss’s Law, 1309
Gauss’s Theorem, 1304
General form of the equation of a line, 7

General Power Rule, 195
General solution of a differential equation,

355, 677
Generalized power function, 195
Geodesic, 978
Geometric series, 749, 780
Germain, Sophie (1796–1830), 107
Gibbs, Josiah Willard (1839–1903), 989
Golden ratio, 745
Gompertz equation, 701, 712
Grad, 1100
Gradient, 1226

of a function of three variables, 1103
of a function of two variables, 1099, 1100
properties of, 1101

Gradient vector field, 1226
Graph(s)

of an absolute value function, 21
of a cosecant function, 34
of a cosine function, 34
of a cotangent function, 34
of an exponential function, 557
of a function, 18, 20–21

even and odd functions, 22
guidelines for analyzing, 307
transformation of, 43–48
of two variables, 1036

intercept of, 7, 8
of lines, 8
of logarithmic functions, 522
of parametric equations, 849
of polar equations, 869–871

symmetry in, 871–874
tangent lines to, 874–876

of a secant function, 34
of a sine function, 34
of trigonometric functions, 34

Graphing calculators and computers, 52–57
Grassmann, Hermann Günther 

(1809–1877), 1013
Gravitational field, 1225, 1256
Great circle, 978
Greatest integer function, 96
Green, George (1793–1841), 1268, 1269
Green’s Theorem, 1268, 1317

for multiply-connected regions, 1273
vector form of, 1274–1275

Gregory, James (1638–1675), 808
Grid curves, 1280
Growth constant, 682, 702
Growth function, logistic, 703–704,

707–708
Ground speed, 908
Guidelines

for analyzing the graph of a function, 307
for constructing mathematical models, 67
for curve sketching, 307

for evaluating integrals involving secant
and tangent, 620

for evaluating integrals involving sine
and cosine, 618–619

for finding absolute extrema, 320
for finding an inverse function, 536
for finding Taylor series, 799–800
for implicit differentiation, 208
for integration by parts, 607, 610
for solving optimization problems, 320
for solving related-rate problems, 216

Gyration, radius of, 1180

Half-angle formulas, 36, 37
Half-life, 682
Half-open intervals, A2
Halley’s Law, 566
Harmonic function, 1067
Harmonic series, 751

alternating, 769, 770, 775, 781
general, 751

Heaviside function, 81, 82, 90, 112, 115,
147–148

Heaviside, Oliver (1850–1925), 81
Helix, 987, 994, 1250
Heron’s formula, 1145
Higher-order derivative, 168–169
Hippopede curve, 878
Homogeneous differential equation, 713, 727
Hooke’s Law, 59, 60, 61, 335, 488–489
Horizontal asymptotes, 296
Horizontal line, 11
Horizontal Line Test, 535
Horizontal shift of a graph of a function,

43–44
Horizontal stretching and compressing,

44–45, 47
Horizontal tangent, 158, 859
Horizontal vector components, 907
Hydrostatics, 496
Hyperbola, 212, 828, 836

asymptotes of, 838, 839, 841
branches of, 828, 836
center of, 836, 837
conjugate axis of, 838
eccentricity of, 839, 888, 890, 892
foci of, 836, 837, 841
polar equation of, 891–892
shifted, 840, 841–842
standard equation of, 838
transverse axis of, 836, 837
vertices of, 836, 841

Hyperbolic functions, 579
derivatives of, 582
graph of, 579–580
identities, 580–581
integrals of, 582
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inverse, 583
derivatives of, 585

Hyperbolic identities, 581
Hyperbolic paraboloid, 965, 969
Hyperboloid

of one sheet, 962, 967
of two sheets, 963, 967

Hyperellipse, 463
Hypotrochoid, 898
Hysteresis loop, 445

Ideal gas law, 1047, 1071, 1083
Identities

hyperbolic, 581
Pythagorean, 37
trigonometric, 37, 622

Identity function, 91
Image, 1209
Implicit differentiation, 206, 208, 1065,

1091, 1092
guidelines for, 208

Implicit function, 206
Improper integrals, 653

comparison test for, 664
with infinite discontinuities, 660

convergence of, 660
divergence of, 660

with infinite integration limits, 655
Inclination, angle of, 9
Incompressible velocity field, 1234
Increasing function, 267

test for, 268
Increasing sequence, 738
Increments, 1073

in x and y, 225
Indefinite integral, 352

of a vector function, 996
Independent of path, 1257, 1258, 1260
Independent variable(s), 18, 1034, 1035
Indeterminate forms, 589–597, 824–825
Index of summation, 373, 374
Inequality, A2–A4

Cauchy-Schwarz, 981
properties of, A3
Schwarz’s, 435, 1222
solution of, A3
triangle, 110, A5

Inertia, moment of, 1179, 1180
Infinite discontinuity, 114, 660
Infinite interval, 653, 655, A2
Infinite limit(s), 291, 300, 301

improper integrals with, 655
at infinity, 299–300, 302
from the left and from the right, 291

Infinite sequence. See Sequence
Infinite series (or series), 746

alternating, 769

convergence of, 747
divergence of, 747
geometric, 749
harmonic, alternating, 769, 770
nth partial sum, 747
properties of, 753
p-series, 759, 780
sum of, 747
telescoping, 480, 748
terms of, 746

Infinity, A2
limit at, 295, 302

negative infinity, 296
Inflection points, 279, 307
Initial condition, 355
Initial point

of a parametric curve, 849
of a vector, 902, 904

Initial value, 356, 677, 681
Inner product, 924
Instantaneous rate of change, 132–133, 142
Instantaneous velocity, 79
Integrability and continuity, 387
Integrable function, 387, 1152, 1190
Integral(s)

change of variables in, 1208, 1212, 1216
conversion to cylindrical coordinates, 972
conversion to polar coordinates, 1169
conversion to spherical coordinates, 975
definite, 387, 400, 996, 1154

approximating, 420–421
Mean Value Theorem for, 406
of odd and even functions, 412
properties of, 396, 397

double, 1152, 1153, 1154–1155
of exponential function with base a, 558
flux, 1297
Fresnel, 599, 673
of hyperbolic functions, 582
improper, 653

comparison test for, 664
with infinite discontinuities, 660
with infinite integration limits, 655

indefinite, 352
involving inverse trigonometric functions,

573
iterated, 1158
line, 1242
surface, 1292
of trigonometric functions, 526
triple, 1188, 1189

Integral curves, 677
Integral Test, 757
Integrand, 352, 387
Integrating factor, 714
Integration

basic rules of, 353

constant of, 352, 410
of even and odd functions, 412
formulas, 353
indefinite, 352
involving inverse hyperbolic functions,

582
involving inverse trigonometric functions,

573
limits of, 387, 1162, 1163
Monte Carlo, 1221
of natural exponential functions, 545
numerical, 420–431

Simpson’s Rule, 427
Trapezoidal Rule, 422

partial, 1158
of a power series, 790
range of, 411
rules for exponential functions, 558
of vector functions, 996

Integration by parts, 606, 649
for a definite integral, 610
guidelines for, 607, 610

Integration formulas
basic, 353
reduction formulas, 612
summary of, 648

Integration techniques
graphing calculators and CAS, 647–648
integration by parts, 606, 610, 649
method of partial fractions, 634, 649
summary of, 648–649
trigonometric substitutions, 626, 627, 649

Intercepts, 7, 8
Interior point, 1052
Intermediate Value Theorem, 120
Interval(s), A1–A2

closed, 116, A1–A2
of convergence, 787, 790, 799–800
finite, A2
half-open, 116, A2
infinite, 653, 655, A2
open, 116, A1

Inverse functions, 533
continuity and differentiability of, 537,

A13–A14
derivative of, 537
existence of, 535
graphs of, 534
guidelines for finding, 536
Horizontal Line Test, 535
notation, 533
reflective property of, 534

Inverse hyperbolic functions, 583
derivatives of, 585
graphs of, 583
representation of, in terms of logarithmic

functions, 584
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Inverse sine function (arcsine function),
567, 568, 569

Inverse square field, 1228
Inverse transformation, 1209
Inverse trigonometric functions, 568

derivatives of, 571
graphs of, 569
integrals involving, 573
properties of, 570

Irrational numbers, 541
Irreducible, 637
Irreducible quadratic factors

distinct, 638
repeated, 639

Irrotational vector field, 1238
Isobars, 214, 1042
Isothermal curves, 1108, 1144, 1156
Isotherms, 1042
Iterated integral, 1158, 1162, 1189
Iteration, 337

Jacobi, Carl (1804–1851), 1211
Jacobian, 1211
Jerk, 176
Jerk function, 176
Joule (J), 487
Joule-Lenz Law, 624
Jump discontinuity, 114

Keeling, Charles David, 70, 289, 418
Keeling curve, 70
Kepler, Johannes (1571–1630), 889, 1022
Kepler’s Laws, 235, 893, 1022, 1027, 1031
Kinetic energy, 495, 804–805, 1179, 1222,

1254, 1266
Kirchhoff’s Second Law, 701, 718, 723
Kovalevskaya, Sonya (1850–1891), 372
kth term of a sum, 373

Lagrange, Joseph-Louis (1736–1813), 278,
1129

Lagrange multiplier, 1130
Lagrange’s Theorem, 1130
Lambert, Johann Heinrich (1728–1777),

579
Lambert’s Law of Absorption, 688
Laminas, planar, 506
Laplace, Pierre (1749–1827), 1067
Laplace’s equation, 1067, 1070, 1145
Laplacian, 1240
Law of Conservation of Energy, 1266
Laws of exponents, 543, 555
Laws of logarithms, 519
Least squares

method of, 55, 61, 62, 1126
regression line, 1126

Least upper bound, 742

Least-squares curve, 335
Left-hand limit of a function, 82
Legendre, Adrien-Marie (1752–1833), 1098
Leibniz, Gottfried Wilhelm (1646–1716),

157, 404, 855
Lemniscate, 212, 848, 866, 867, 873–874,

877, 880
Length

of an arc, 475, 478, 479
of a circular arc, 30
of a parametric curve, 1243
of a smooth curve, 475–478, 861
of a space curve, 1247
of a vector, 905, 917

Lennard-Jones 6–12 potential, 203
Lens-maker’s equation, 184
Level curve, 1039, 1041, 1129
Level surface, 1042, 1112
l’Hôpital, Guillaume Francois Antoine de

(1661–1704), 591, 855
l’Hôpital’s Rule, 591–593, A14–A15
Limaçon, 877, 880
Limit(s)

of a composite function, 118, A11
of a constant function, 90–91
definition of, 80, 106
elastic, 59
e-d definition of, 106
evaluating

direct substitution, 96, 139
limit laws, 90–96
rationalize the numerator, 95

existence of, 106
of a function at a number, 80, 106
of a function involving a radical, 91,

A9–A10
of a function of three or more variables,

1056
of a function of two variables
e-d definition of, 1057
at a point, 1049

indeterminate forms, 589–597, 824–825
infinite, 291, 300, 301
at infinity, 295, 302
of integration, 1162, 1163
involving e, 561–562
one-sided, 82, 83
of polynomial functions, 92
properties of, 90–92, A7–A10
of rational functions, 93
of a sequence, 732, 733
sine function, 98
Squeeze Theorem, 97
techniques for finding, 90–103
of trigonometric functions, 96
two-sided, 82, 83
of a vector function, 988

Limit Comparison Test, 765
Limit Laws, 90–96, A7–A10

for functions of two or more variables,
1050–1051

Line(s), 2–15
equation of, 5–8

general form, 7
nonvertical, 5–7
point-slope form, 6
slope-intercept form, 7, 8
vertical, 5

graphs of, 8
least squares or regression, 1126
normal, 1112
parallel, 10, 947

parametric equations of, 945
skew, 948
symmetric equations of, 946

perpendicular, 11
regression, 56
slope of, 2
tangent, 130, 859

Line integral, 1242, 1316
Fundamental Theorem for, 1257, 1317
for a plane curve, 1242
with respect to arc length, 1243, 1316
in three-dimensional space, 1247
in two-dimensional space, 1242
of a vector field, 1250
work defined as, 1250

Lineal element, 691
Linear approximations, 231
Linear differential equations. See First-order

linear differential equations
Linear factors

distinct, 635
repeated, 637

Linear function, 59
Linear regression, 55–56
Linearization, 231
Lissajous curves, 857
Local maximum/minimum. See Relative

maximum; Relative minimum
Logarithm(s)

common, 561
laws of, 519

Logarithmic differentiation, 523, 524
Logarithmic function, 67

with base a, 559
derivatives of, 560

common, 561
natural, 518

derivative of, 522
Logistic curve, 705–709
Logistic differential equations, 701, 702
Logistic growth function, 703–704,

707–708

I 8 Index



LORAN system, 842
Lorentz contraction formula, 138
Loss of significance, 85
Lower bound of a sequence, 742

Maclaurin, Colin (1698–1746), 811
Maclaurin polynomial, 809
Maclaurin remainder of f, 812
Maclaurin series, 795, 796
Magnitude of a vector, 902, 905
Major axis of an ellipse, 833, 834
Marginal analysis, 178
Marginal cost function, 179
Marginal productivity, 1071
Market equilibrium, 724
Mass, 502, 1297

center of, 502, 503
of a one-dimensional system, 503
of a planar lamina, 506
of a two-dimensional system, 504

of a lamina, 1176
moments of, 502, 503, 1178, 1194

Mass density, 505
Mathematical model, 58

guidelines for constructing, 67
Maximum

absolute, 244
relative, 245, 246, 307

Maximum and minimum values, 244, 1117
Mean Value Theorem, 260

Cauchy’s, 348, A14
for Integrals, 406
Rolle’s Theorem, 258

Meniscus, 181
Mersenne, Marin (1588–1648), 119
Method of Lagrange Multipliers, 1131
Method of least squares, 1126
Method of partial fractions, 634, 649
Michaelis constant, 531
Midpoint Formula in 3-space, 915
Minimum

absolute, 244
relative, 246, 307

Minimum value, 244
Minkowski, Hermann (1864–1909), 958
Mixed partial derivatives, 1067
Möbius strip, 1289, 1295–1296
Model, mathematical, 58

guidelines for constructing, 67
Moment(s), 502, 503, 1178

arm, 502
of inertia, 1179, 1180, 1194
of a lamina, 1178, 1180
about a line, 502–503
of mass, 502, 503
about the origin, 503
about a point, 502

with respect to the x-axis, y-axis, and the
origin, 1179, 1180

second, 1179
of a solid, 1195
of a two-dimensional system, 504
about the x- and y-axis, 504, 506

Monge, Gaspard (1746–1818), 1185
Monotone convergence theorem for

sequences, 739
Monotonic function, 267
Monotonic sequence, 738

bounded, 739
Monte Carlo integration, 1221
Multiplier effect, 755
Multiply-connected regions, 1273

n factorial, 736
Napier, John (1550–1617), 523
Natural decay, law of, 678
Natural exponential function, 540, 542

derivative of, 543
integration rules, 545
laws of exponents, 543
number e, 541, 554
properties of, 542
series for, 799

Natural growth, law of, 678
Natural law of exponential growth (decay),

681
Natural logarithmic function, 518

derivative of, 519, 522
graph of, 521–522
properties of, 521
series for, 800

Neile, William (1637–1670), 477
Nephroid of Freeth, 878
Net change formula, 415
Newton, Isaac (1642–1727), 179, 404, 855,

1023
Newton (N), 487
Newton’s Law of Attraction, 125–126
Newton’s Law of Cooling, 553, 684–685, 689
Newton’s Law of Gravitation, 65, 161, 494,

658, 1023, 1047, 1225
Newton’s method, 122

for approximating the zeros of a function,
336–337

iteration, 337
Newton algorithm, 337

Newton’s Second Law of Motion, 62–63,
171, 495, 502, 693, 720, 1014, 1023,
1254

Nonrigid matter, work moving, 489–491
Norm of a partition, 399
Normal component of acceleration, 1020
Normal line, 1112

to a curve, 159, 171

Normal vector, 949
Notation

derivative, 144
function, 17
indefinite integral, 352
infinite limits at infinity, 299
inverse function, 533
for a line integral, 1269
for partial derivatives, 1060

second-order, 1066–1067
sigma, 373

nth partial sum, 747
nth term of a convergent series, 752–753
nth term test for Divergence, 752–753
nth-degree Maclaurin polynomial, 809
nth-degree Taylor polynomial, 809
Number, critical, 247
Number e, 541

limit involving, 561–562
Numerical integration, 420–431

Simpson’s Rule, 427
Trapezoidal Rule, 422

Octants, 914
Odd function, 22–23, 36, 205

integration of, 412
One-sided limits, 82, 83
One-to-one correspondence, A1
One-to-one function, 535
One-to-one transformation, 1209
Open intervals, 116, A1
Open region, 1052, 1259
Optimization problems, guidelines for

solving, 320. See also Maximum;
Minimum

Orbits of the planets, 893, 1025
Order of a differential equation, 676
Ordered triple, 913
Orientable surface, 1295
Orientation of a curve, 849, 1247
Oriented surface, 1295
Origin

of a polar coordinate system, 867
on the real number line, A1

Orthogonal curves, 214
Orthogonal planes, 951
Orthogonal surfaces, 1116
Orthogonal trajectory, 686–687
Orthogonal vectors, 926
Osculating circle, 1007
Osculating plane, 1026

Pappus, Theorem of, 510
Parabola, 61, 828

axis of, 829, 830
directrix of, 828, 830
eccentricity of, 888, 890, 892
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Parabola (continued)
focus of, 828, 830
polar equation of, 890–891
reflective property of, 832
shifted, 840
standard equation of, 829
vertex of, 61–62, 828, 830

Parabolic cylinder, 959, 960
Parabolic spiral, 887
Paraboloid, 958, 964–965, 968, 969
Parallel lines, 10

in space, 947
Parallel planes, 951
Parallel vectors, 902, 939
Parallelogram Law, 903, 905
Parameter, 848, 850

arc length, 1001
Parametric equations, 848, 1279

graph of, 849
of a line, 945
for a surface, 1279
of a trajectory, 849

Parametric surface, 1279
area of, 1287
representation of, 1281–1284
smooth, 1284
surface area of, 1287
tangent plane to, 1284

Partial derivative(s)
of a function of more than two variables,

1065
of a function of two variables, 1060
notations for, 1060, 1066
second-order, 1066

Partial differential equation, 1067
Partial fractions, 634
Partial integration, 1158
Partial sums, sequence of, 747
Particular solution of a differential equation,

355, 677
Partition, 398

norm, 399
polar, 1169
regular, 379, 399, 1149, 1188, 1190

Pascal, Blaise (1623–1662), 216, 496
Pascal’s Principle, 496
Patch, 1182
Path, 1258
Percentage error, 229, 230
Perihelion, 893–894, 895
Period, 35
Periodic function, 33, 153
Permeability of free space, 824
Permittivity of free space, 494, 824, 1300
Perpendicular lines, 11
Perpendicular vectors, 926
Perpetuity, 755

Piecewise defined function, 21–22
Piecewise-smooth curve, 1244
Piriform, 450
Pitiscus, Bartholomeo (1561–1613), 35
Planar lamina, 506

center of mass of, 506
moment of, 506

Plane
center of mass of a system in a, 504
coordinate, 903
distance between a point and, 953
tangent, 1112, 1114

to approximate a surface, 1114
to a parametric surface, 1284

Plane curve, 849, 984
Plane(s) in space

angle between two, 952
equation of, 949, 951
orthogonal, 951
parallel, 951

Point
of diminishing returns, 283
fixed, 140, 265
inflection, 279, 307
of intersection, 55, 884–885

Point(s) in space
coordinates of, 914
distance between, 915

Point-slope equation of a line, 6
Poiseuille, Jean, 234
Poiseuille’s Law, 254, 334, 1046
Polar axis, 867

symmetry with respect to, 871
Polar coordinate system, 867–868

origin of, 867
polar axis of, 867
pole, 867

Polar coordinates, 867
area in, 878–881
area of a surface of revolution in, 883
conic sections in, 888
converting rectangular coordinates to, 869
points of intersection of graphs in,

884–885
transformation of a double integral to,

1169, 1171
Polar curve

arc length of, 882
area bounded by, 879, 881
symmetry in, 871
tangent line to, 874

Polar equations, 869
of conics, 890
graph of, 869–871

tangent lines at the pole, 875
tests for symmetry, 871

Polar partition, 1169

Polar rectangle, 1168
Polar region, area of, 878–879
Pole (or origin), 867

symmetry with respect to, 871
Polygonal curve, 425
Polynomial

Maclaurin, 809
Taylor, 809

Polynomial approximation, 809
centered at c, 809
Taylor’s Theorem, 811

Polynomial function, 26, 59
constant term, 59
continuity of, 117
degree, 59
limit of, 92
of two variables, 1054

Population density, 1167
Position function, 7, 78, 174, 350, 532

for a projectile, 1015
Position vector, 904, 984
Positive orientation, 1295

for a simple closed curve, 1268
of a surface, 1296

Potential energy, 1266
Potential function, 1227, 1257, 1262–1263
Power function, 65, 195
Power Rule, 155, 156, 167, 560
Power series, 785

centered at c, 785
coefficients of, 785
convergence of, 786, 794, A16
for cosine, 779
differentiation of, 790
for an exponential function, 779
integration of, 790
interval of convergence of, 787, 790
properties of functions defined by,

786–787, 789–790
radius of convergence of, 787, 790
representation of functions as, 799
for sine, 779

Predator-prey model, 203, 418, 530
Pressure exerted by a fluid, 495–501
Principal unit normal vector, 1018
Product Law for limits, 91, A7–A8
Product Rule, 162
Profit function, 179
Projectile, motion of, 1014
Prolate cycloid, 857
Properties

of absolute value, A4
of a continuous function of two variables,

1054
of a convergent series, 753
of the cross product, 940
of the dot product, 924
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of double integrals, 1154–1155
of the gradient, 1101
of inverse trigonometric functions, 570
of a sequence, 741
of vector operations, 906

p-series, 759, 780
Pure resonance, 191, 599
Pursuit curve, 485, 579, 662–663
Pythagorean identities, 37

Quadratic factors, irreducible
distinct, 638
repeated, 639

Quadratic function, 61
Quadric surface, 956, 961

aids for sketching, 967–969
cone, 964, 968
cylinder, 959
ellipsoid, 961–962, 967
hyperboloid, 962, 963, 967
paraboloid, 958, 965, 968, 969

Quotient Law of limits, 91, A8–A9
Quotient Rule, 164, 165

Radial coordinate, 867
Radian measure of angles, 28
Radical, limit of a function involving a, 91,

A9–A10
Radius

of convergence, 787, 790
of curvature, 1007
of gyration, 1180

Range of a function, 17, 1034
Rate of change

average, 131
derivative as, 142–143
instantaneous, 132–133, 142

Ratio Test, 777, 781
Rational function, 65

continuity of, 117
finding limits at infinity of, 297
limit of, 93
of two variables, 1036, 1054

Reaction rate, 689
Real number line, A1
Real number system, Completeness Axiom

for, 742
Real-valued function of a real variable x, 17
Rearrangement of series, 781
Rectangle, polar, 1168
Rectangular coordinates

converting to cylindrical coordinates, 972
converting to polar coordinates, 869
converting to spherical coordinates, 975

Rectilinear motion, 220, 368
Recursively defined sequence, 732
Reduction formulas, 612–613

Reference angle, 32
Reflecting a function, 45–48
Reflection, 45–48

about the line y � x, 534
about the x-axis, 45
about the y-axis, 45

Reflective property
of an ellipse, 835–836
of inverse functions, 534
of a parabola, 832

Refraction, 334, 1140
Region

area of, 370, 380, 1159
centroid of, 509
between two curves, 439

closed, 1052
connected, 1259
multiply-connected, 1273
open, 1052, 1259 
simple or elementary, 1269
simply-connected, 1261

Region of integration
r-simple region, 1205
r-simple, 1171
u-simple, 1174
x-simple, 1161, 1162
y-simple, 1161, 1162
z-simple, 1190–1191, 1200

Regression line, 56
Regular partition, 379, 399, 1149, 1188,

1203
Related rates problems, 215

guidelines for solving, 216
Relative error, 229, 230
Relative extrema

finding, 271, 315–316
First Derivative Test for, 270
of a function, 246

of two variables, 1116, 1120
Second Derivative Test for, 283

Relative growth rate, 702
Relative maximum, 246, 307, 1116, 1120

First Derivative Test for, 270
Second Derivative Test for, 283

Relative maximum value, 1116, 1120
Relative minimum, 246, 307

First Derivative Test for, 270
Second Derivative Test for, 283

Relative minimum value, 246, 1116, 1120
Remainder estimates, 812

alternating series, 772
Removable discontinuity, 114
Representation of functions as power series,

799
Resonance curve, 334
Resonance, pure, 191, 599
Rest energy, 804

Restitution, coefficient of, 755
Revenue function, 179
Revolution

axis of, 451
solid of, 451
surface of, 480

Rhodenea, 887
rho-simple region, 1205
Riccati equation, 728
Riemann, Bernhard (1826–1866), 387
Riemann sum, 387, 1152, 1153, 1189, 1190
Riemann zeta function, 761
Right circular cylinder, 323
Right strophoid, 450
Right-hand limit of a function, 82
Right-handed coordinate systems, 914
Rivlin’s equation, 348
Roberval, Gilles Persone de (1602–1675),

440
Rolle, Michel (1652–1719), 258
Rolle’s Theorem, 258
Root Law for limits, 91, 92, A9–A10
Root of an equation, 336

Newton’s method of approximating,
336–343

Root Test, 779, 781
Rose curve, 873, 876, 877
r-simple region of integration, 1171
Rule(s)

of differentiation for vector functions,
995

of integration, 353
Simpson’s, 427
of summation, 375
Trapezoidal, 422
for vector addition and scalar

multiplication, 906
Rulings of a cylinder, 959

Saddle point, 1119, 1120
Salk, Jonas, 550
Scalar, 902
Scalar components of a vector, 904
Scalar multiple, 902
Scalar multiplication, 905, 906, 917
Scalar product of two vectors, 924
Scalar projection, 929
Scalar triple product, 941–942
Scatter diagram, 56, 1126
Scatter plot, 60
Schwarz’s inequality, 435, 1222
Secant function, 34

derivative of, 187, 197
graph of, 34
integral of, 526
inverse of, 568, 569
limit of, 96
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Secant line, 132
slope of, 130, 132

Second derivative, 168, 285
of a vector function, 994

Second Derivative Test, 283, 1120
Second Fundamental Theorem of Calculus,

409
Second moment, 1179
Second-order partial derivatives, 1066
Separable differential equation, 678
Sequence, 730

bounded, 739
convergent, 733
decreasing, 738
divergent, 732
Fibonacci, 745
greatest lower bound, 742
increasing, 738
least upper bound, 742
limit laws for, 734
limit of, 732, 733
monotone convergence theorem for, 739,

742
monotonic, 738
nth term of, 730
of partial sums, 747
recursively defined, 732
Squeeze Theorem for, 736
terms of, 730

Series, 746
absolutely convergent, 775
alternating, 769, 781

error estimate in approximating, 772
binomial, 798
Comparison Test, 762
conditionally convergent, 776, 782
convergent, 747

properties of convergent series, 753
divergence of, 747

nth term test for, 752
geometric, 749, 780

convergence of, 749
harmonic, 751, 775

alternating, 769, 770
infinite, 746

properties of, 753
Integral Test, 757
Maclaurin, 795, 796
nth partial sum, 747
nth term of, 746
nth term of convergent, 752–753
power, 785

convergence of, 786
p-series, 759
Ratio Test, 777
Root Test, 779, 781
sum of, 747

summary of tests for, 780–781
Taylor, 794
telescoping, 748, 780
terms of, 746

Shell method, 467, 470
Shifted conics, 839–842
Sigma notation, 373
Significance, loss of, 85
Simple curve, 1261
Simple region, 1269
Simple solid region, 1304
Simply-connected region, 1261
Simpson, Thomas (1710–1760), 427
Simpson’s Rule, 427

error bounds for, 427
Sine function, 34

derivative of, 185, 187, 197
graph of, 34
inverse of, 567, 568, 569
limit of, 96, 98
series for, 799

Sink, 1310
Skew lines, 948
Slant asymptotes, 313
Slope(s), 2

field, 691
of a horizontal line, 11
of a line, 2
of parallel lines, 10
of perpendicular lines, 11
of a secant line, 130, 132
of a tangent line, 130
of a vertical line, 9

Slope-intercept, 7
Slope-intercept equation of a line, 7, 8
Slug, 502
Smooth curve, 475, 860, 1001

length of, 475–478, 861
Solenoidal, 1234
Solid of revolution, 451

volume of, 452
Solution(s)

curves, 677
of a differential equation, 355, 676

Euler’s Method, 694, 696
first-order linear, 714
general, 355, 677
particular, 355, 677

equilibrium, 706
of an inequality, A3

Solution set, A3, A4
Somerville, Mary Fairfax (1780–1872),

612
Source, 1310
Space curve, 984

arc length of, 1000
smooth, 1247

Special theory of relativity, 66, 102, 293, 804
Speed, 175, 1010, 1011
Sphere, 916

equation of, 916
surface area of, 862–863
volume of, 454

Spherical coordinate system, 974
converting to rectangular coordinates,

975
triple integral in, 1204

Spherical wedge, 1203
Spherical zone, 485
Spiral, 877

cornu, 865, 1009
epi-spiral, 878, 898
logarithmic, 877
parabolic, 887
of Poinsot, 898
toroidal, 988

Spring constant, 59, 61, 488
Square root function, 17, 18
Square-wave function, 90
Squeeze Theorem, 97, A10

for sequences, 736
Standard basis vectors, 907, 918–919
Standard equation

of an ellipse, 834
of a hyperbola, 838
of a parabola, 829
of sphere, 916

Static friction, coefficient of, 257
Steady-state current, 719
Steepest descent, path of, 214
Stefan’s Law, 690
Step function, 425
Stiffness (spring constant), 59, 61, 488
Stokes, George G. (1819–1903), 1314
Stokes’ Theorem, 1312, 1317
Streamlines, 1224
Stress-strain curve, 445
Substitution

integration by, 363
method of, 139
trigonometric, 626, 649

Subtraction formulas for sine and cosine,
36, 37

Sum
of an alternating series, approximating,

771–773
continuity of, 116
of an infinite series, 747
integral of, 396
kth term of, 373
Riemann, 387, 1152, 1153, 1189, 1190
Rule, 157–158

Sum Law for limits, 91
Sum of vectors, 903
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Summary
of integration techniques, 648–649
of tests for series, 780–781

Summation
formulas, 376
index of, 373, 374
rules of, 375

Supply equation, 724
Surface

closed, 1304
level, 1042, 1112
orientable, 1295
parametric, 1279
parametric representations of, 1281–1284
quadric, 956, 961
smooth, 860, 1001

Surface area, 480–483, 1182–1185
of a parametric surface, 1287
of a sphere, 862–863
of a surface , 1184

Surface integral(s), 1292
evaluating

for graphs, 1297
for parametric surfaces, 1294

summary of, 1316, 1317
of a vector field, 1296

Surface of revolution, 480
area of, 482, 862

parametric representation of, 862
polar representation of, 883

Swallowtail catastrophe curve, 857, 1277
Symmetric equations of a line in space,

946
Symmetry

with respect to the polar axis, 871
with respect to the pole, 871
with respect to the vertical line, 871
with respect to the x-axis, 22
with respect to the y-axis, 22
tests for, 871

Table of differentiation formulas, 353
Table of Integrals, 353

use of, 644–647
Tangent function

derivative of, 187, 197
graph of, 34
integral of, 526
inverse of, 568, 569
limit of, 96

Tangent line(s), 130
approximation, 230
to a curve, 127, 857–858
horizontal, 158, 859
to a parametric curve, 857
to a polar curve, 874
at the pole, 875

z � f(x, y)

slope of, 130
vertical, 147, 149, 859

Tangent plane, 1112
to approximate a surface, 1114
to a parametric surface, 1284
to a surface, 1108

Tangent vector, 993
unit, 993, 1018

Tangential component of acceleration, 1020
Tautochrone problem, 854, 855
Taylor, Brook (1685–1731), 794
Taylor polynomial, 809

error in approximating, 812
Taylor remainder of f at c, 812
Taylor series, 794

convergence of, 795–796
guidelines for finding, 799–800

Taylor’s Theorem, 811
Techniques of integration, summary,

648–649
Telescoping series, 748, 780
Term of a sequence, 730
Term of a series, 746
Terminal point

of a curve, 849
of a vector, 902

Terminal side of an angle, 27
Terminal velocity, 305, 689
Test(s)

for concavity, 277
conservative vector field, 1262, 1264
for convergence

Alternating Series Test, 769
Comparison Test, 762
geometric series, 749
Integral Test, 757
Limit Comparison Test, 765
p-series, 759
Ratio Test, 777, 781
Root Test, 779, 781
summary of, 780–781

for coplanar vectors, 942
for divergence, 752, 780
for even and odd functions, 22
for increasing and decreasing function, 268
for parallel vectors, 939
for symmetry, 871

Theorem of Pappus, 510
u-simple region of integration, 1174
Third derivative, 168
Three-dimensional rectangular coordinate

system, 914
Three-leaved rose, 877
Thurstone Learning Curve, 74
Topographic map, 214, 1039–1041
Toroidal spiral, 988
Torque, 938–939

Torricelli, Evangelista (1608–1647), 457
Torricelli’s law, 256
Torricelli’s Trumpet, 666
Torus, 473

surface area of, 1290
volume of, 510

Total differential, 1075
Trace of a surface, 957, 962, 963, 964
Tractrix, 673
Trajectory, 686, 849

of a projectile, 1015
Transcendental functions

exponential functions, 540, 555
hyperbolic functions, 579
inverse functions, 533
inverse trigonometric functions, 568
natural logarithmic functions, 518

Transformation, 17, 1209
inverse, 1209
Jacobian, 1211
one-to-one, 1209

Transformation of a graph of a function,
43–48

basic types, 44, 45
horizontal shift, 43–44
horizontal stretching and compressing,

44–45, 47
reflection about the x-axis, 45
reflection about the y-axis, 45
vertical shift, 44
vertical stretching and compressing, 44, 45

Transverse axis, of a hyperbola, 836, 837
Trapezoidal Rule, 422

error in, 423
Triangle

area of a, 939–940
inequality, 110, A5

Trigonometric functions, 31
continuity of, 117
derivatives of, 187, 197
graphs of, 34
integrals of, 526
inverse, 568

derivatives of, 571
integrals involving, 573
properties of, 570

limits of, 96
Trigonometric identities, 37, 622
Trigonometric integrals, 616–625

guidelines for evaluating, 618–619, 620
Trigonometric substitution, 626, 627
Triple integral, 1189

change of variables in, 1216
in cylindrical coordinates, 1201
over a general bounded region, 1190
over a rectangular box, 1188
in spherical coordinates, 1204
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Triple product, 942
Trochoid, 856
Tschirnhausen’s cubic, 212, 463
Twisted cubic, 1005
Two-sided limit, 82, 83

Unit circle, 28, 31
Unit inner normal, 1295
Unit normal vector, 1018
Unit outer normal, 1295
Unit tangent vector, 993, 1018
Unit vector, 906

angular form of, 908
Unrestricted growth, 702
Upper bound

least, 742
of a sequence, 742

van der Waals equation, 172, 530
Variable

dependent, 18
force, 488
independent, 18

Vector(s), 902
acceleration, 1010–1011
addition, 903, 905–906, 917
angle between, 925
basis, 907, 918
components, 904, 917
coplanar, 942
cross product of, 934
difference of, 903, 905
direction angles of, 927
direction cosines of, 927
displacement, 931
dot product of, 924, 926
equal, 902, 917
force, 907
gradient, 1099
horizontal component of, 907
initial point, 902
inner product of, 924
length of, 905, 917
magnitude of, 902, 905
normal, 949
operations, 906
orthogonal, 926
parallel, 902, 939
position, 904, 917
principal unit normal, 1018
projection of, 929
scalar multiplication, 905, 917
scalar product of, 924
scalar projection, 929

scalar triple product, 941–942
standard basis, 907, 918–919
sum, 903
tangent, 993
terminal point, 902,
unit, 906

angular form of, 908
unit tangent, 993, 1018
velocity, 1010, 1011
vertical component of, 907
wind velocity, 908
zero, 902

Vector field, 1224
conservative, 1227, 1260–1262, 1264
curl of, 1236
divergence of, 1232, 1238
flux of a, 1296
gradient, 1226
gravitational, 1256
incompressible, 1234, 1310
irrotational, 1238
line integral of, 1250
potential function for, 1227, 1262–1263
solenoidal, 1234
surface integral of, 1296, 1297, 1299

Vector function(s), 984, 985
continuity of, 989
definite integral of, 996
differentiation of, 992, 993

rules of, 995
integration of, 996
limit of, 988
parametric equations of, 984

Vector-valued function. See Vector
function(s)

Velocity, 1011
average, 78, 405
escape, 306, 366, 667
field, 1225
instantaneous, 79
of a projectile, 1014
terminal, 305, 689
vector, 1010, 1011

Velocity curve, 143
Velocity function, 174
Vertex, 27

of an ellipse, 833, 834
of a hyperbola, 836, 841
of a parabola, 61–62, 828, 830
of the paraboloid, 965

Vertical asymptote, 292
Vertical line(s), 2, 5, 9

symmetry with respect to, 871
Vertical Line Test, 21

Vertical shift of a graph of a function,
43, 44

Vertical stretching and compressing, 44,
45, 47

Vertical tangent line, 147, 149, 280, 859
Vertical vector components, 907
Volume of a solid, 452

by cross sections, 459
disk method, 453, 455
shell method, 467, 470
Theorem of Pappus and, 510
washer method, 456

Volume
by double integrals, 1161, 1162
under the graph of , 1150
by triple integrals, 1194

von Bertalanffy function, 550
von Bertalanffy growth model, 690
von Bertalanffy, Ludwig (1901–1972), 678

Wallis, John (1616–1703), 84, 477
Washer method, 456
Weber-Fechner Law, 526
Weierstrass, Karl Theodor Wilhelm

(1815–1897), 657
Wessel, Caspar (1745–1818), 906
Wilson lot-size formula, 1047
Witch of Agnesi, 856
Work, 486, 487, 488, 491, 931, 1250

x-axis
moment about, 504
reflection about, 45

x-intercept, 8
x-simple region, 1161, 1192
xy-plane, 914
xz-plane, 914

y-axis
moment about, 504
reflection about, 45

y-intercept, 7, 8
y-simple region, 1161, 1192
yz-plane, 914

Zero of a function, 54
approximating

bisection method, 122
with Newton’s method, 337

of a continuous function, existence of,
121

determining number of, 263
Zero vector, 902
z-simple region, 1190, 1200

z � f(x, y)
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Inequalities and Absolute Value

If and , then .

If , then .

If and , then .

If and , then .

If , then

if and only if or

if and only if

if and only if or

GEOMETRY

Geometric Formulas

Formulas for area , circumference , and volume :

Triangle Circle Sector of Circle

( in radians)

Parallelogram Trapezoid

Sphere Cylinder Cone

(lateral surface area)

A � pr2r 2 � h2A � 4pr 2

V � 1
3pr 2hV � pr 2hV � 4

3pr 3

r

h

r

h
r

A � 1
2 (a � b)hA � bh

b

a

h

b

h

s � ruC � 2pr

u1
2 r 2uA � pr 2A � 1

2 bh � 1
2 ab sin u

� s

r

r
�

b

a
h

VCA

) (
�a 0 a x

x � �ax � a�x � � a

)(
�a 0 a x

�a � x � a�x � � a

�a 0 a x

x � �ax � a�x � � a

a � 0

ca � cbc � 0a � b

ca � cbc � 0a � b

a � c � b � ca � b

a � cb � ca � b

ALGEBRA

Arithmetic Operations

Exponents and Radicals

Factoring

Binomial Theorem

where 

Quadratic Formula

If , then .x �
�b �2b2 � 4ac

2a
ax2 � bx � c � 0

an

k
b �

n(n � 1) p (n � k � 1)

1 � 2 � 3 � p � k

� an

k
bxn�kyk � p � nxyn�1 � yn

(x � y)n � xn � nxn�1y �
n(n � 1)

2
 xn�2y2 � p

(x � y)3 � x3 � 3x2y � 3xy2 � y3

(x � y)3 � x3 � 3x2y � 3xy2 � y3

(x � y)2 � x2 � 2xy � y2

(x � y)2 � x2 � 2xy � y2

x3 � y3 � (x � y)(x2 � xy � y2)

x3 � y3 � (x � y)(x2 � xy � y2)

x2 � y2 � (x � y)(x � y)

Bn
x

y
�
1n x

1n y
1n xy � 1n x1n yxn>m �

m2xn

ax

y
bn

�
xn

yn(xy)n � xnynx�n �
1

xn

(xm)n � xmnxm

xn � xm�nxmxn � xm�n

aa

b
b

ac

d
b

� aa

b
b ad

c
b �

ad

bc

a

b
�

c

d
�

ad � bc

bd

a � b

c
�

a

c
�

b

c



Distance and Midpoint Formulas

Distance between and :

Midpoint of :

Lines

Slope of the line through and :

Slope-intercept equation of the line with slope and -intercept :

Point-slope equation of the line through with slope :

Equation of a Circle

Circle with center and radius :

TRIGONOMETRY

Angle Measurement

radians rad 1 rad

Right Triangle Definitions

cot u �
adj

opp
sec u �

hyp

adj
csc u �

hyp

opp

tan u �
opp

adj
cos u �

adj

hyp
sin u �

opp

hyp

hyp
opp

adj

�

�
180°
p

1° �
p

180
� 180°p

r

r s
�

(x � h)2 � (y � k)2 � r 2

r(h, k)

y � y1 � m(x � x1)

mP1 � (x1, y1)

y � mx � b

bym

m �
y2 � y1

x2 � x1

P2 � (x2, y2)P1 � (x1, y1)

ax1 � x2

2
, 

y1 � y2

2
b

P1P2

d �2(x2 � x1)
2 � (y2 � y1)

2

P2 � (x2, y2)P1 � (x1,y1)

Trigonometric Functions

Graphs of Trigonometric Functions

x

y=ß x

2ππ
1

�1

y

x

y=ç x

y=† x

2ππ

1

�1

y

x

2π
π

y

x

y= x

2ππ

1

�1

y

x

y=˚ x
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2ππ
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y

x2ππ
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x

y
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r

x
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r

y
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Fundamental Identities

The Law of Sines

The Law of Cosines
A b

C

a

B

c

a2 � b2 � c2 � 2bc cos A

sin A

a
�

sin B

b
�

sin C

c

tanap
2

� ub � cot u

cosap
2

� ub � sin usinap
2

� ub � cos u

tan(�u) � �tan ucos(�u) � cos u

sin(�u) � �sin u1 � cot2 u � csc2 u

1 � tan2 u � sec2 usin2 u � cos2 u � 1

cot u �
cos u

sin u
tan u �

sin u

cos u

sec u �
1

cos u
csc u �

1

sin u

Addition and Subtraction Formulas

Double-Angle Formulas

Half-Angle Formulas

cos2 x �
1 � cos 2x

2
sin2 x �

1 � cos 2x

2

tan 2x �
2 tan x

1 � tan2 x

cos 2x � cos2 x � sin2 x � 2 cos2 x � 1 � 1 � 2 sin2 x

sin 2x � 2 sin x cos x

tan(x � y) �
tan x � tan y

1 � tan x tan y

tan(x � y) �
tan x � tan y

1 � tan x tan y

cos(x � y) � cos x cos y � sin x sin y

cos(x � y) � cos x cos y � sin x sin y

sin(x � y) � sin x cos y � cos x sin y

sin(x � y) � sin x cos y � cos x sin y





ENGINEERING AND 
PHYSICAL SCIENCES

Acceleration of a car, 184, 359, 418
Action of an impulse on an object, 125
Adiabatic processes, 223
Aircraft fleet damage rate (“bathtub curve”),

266
Airflow around an airfoil in a wind tunnel,

1224
Air pollution, 199, 255, 274, 289, 318, 418,

430, 632
Air purification, 419
Air temperature and altitude, 151
Air traffic control, 920
Alternating current intensity, 624
Ampere’s Law, 1318
Angular velocity, 944
Angular velocity of a particle, 1241
Arch of a bridge, 846
Artificial satellites, 1027
Atmospheric pressure, 180, 552
Autocatalytic chemical reaction, 255
Automobile headlight design, 832
Average acceleration of a car, 418
Average illumination, 633
Average mass of an electron, 652
Average power in AC circuits, 667
Average temperature in a room, 1200
Average tension on a cable, 587
Average velocity of a motorcycle, 135
Avoiding a collision, 331
Ballast dropped from a balloon, 359
Bond angle of a molecule of methane, 933
Cantilever beam, 274
Capacity of a fuel tank, 464
Capacity of an artificial lake, 473
Charge in an electric current, 615
Chemical mixtures, 566
Child-Langmuir Law, 234
Clepsydra or water clock, 473
Coast Guard launch, 161
Coast Guard patrol search mission, 223
Coefficient of restitution, 755
Colliding billiard balls, 125
Collision of two particles, 360
Concentration of carbon monoxide in the

air, 821
Constructing a cylindrical barrel, 346

Constructing a marina, 331
Constructing an AC transformer, 256
Constructing a new road, 172
Constructing a restaurant between two

jetties, 577
Constructing a storage tank, 234
Contour maps, 1040, 1044, 1064, 1069,

1070, 1107, 1156
Coriolis acceleration, 1031
Coulomb’s Law, 494, 644, 923, 1300
Course taken by a yacht, 1095
Current in an electric circuit, 599
Cycloid motion, 1017
Cylinder pressure, 172
Damped harmonic motion, 588, 614
Deflection of a beam, 183
Designing a conical figure, 330
Designing a grain silo, 330
Designing a loudspeaker, 328
Diffusion, 615
Discharging water from a tank, 690
Distance between two aircraft, 333
Distance between two cars, 438, 446
Distance covered by a cyclist, 383
Distance traveled by a bouncing ball, 746,

751, 755
Distance traveled by a tanker, 476
Diving, 182
Docking a boat, 221
Doppler effect, 1048, 1094
Earthquake’s effect on a structure, 235
Effect of stopping on average speed, 160
Elastic curve of a beam, 125, 361
Elastic deformation of a long beam, 666
Elastic hysteresis, 445
Electrical force of a conductor, 333
Electric charge, 1303
Electric charge on a disk, 1181
Electric charge over a region, 1177
Electric circuits, 223, 718, 723, 724
Electric field, 1226
Electric field induced by a line charge, 824
Electric potential, 204, 1071, 1104
Electrostatic potential, 1062
Emptying a storage tank, 493
Engine efficiency, 1072
Equipotential curves, 1047
Error in calculating the capacity of a storage

tank, 1076

Error in calculating the power of a battery,
1083

Error in computing the range of a projectile,
1076

Error in measuring an electric current, 235
Error in measuring the period of a

pendulum, 1083
Error in measuring the resistance of a

circuit, 1083
Escape velocity, 306, 667
Estimating the flow of water in a river, 449
Estimating the surface area of the moon, 229
Explosion of a gas main, 182
Fabricating corrugated metal sheets, 624
Falling raindrop, 689
Finding the true course and ground speed of

an airplane, 908, 913
Flight of a model rocket, 273, 359
Flight of a projectile, 366, 1084
Flight of a rocket, 529
Flight path of a plane, 173, 319, 486, 856
Flight path of two airplanes, 948
Flow of fluid/liquid, 1303
Flow of water in a canal, 418
Fluid pressure, 496, 498, 500, 501
Fluid pressure on the gate of a dam, 498,

501
Flux of an electric field, 1303, 1308
Force acting on a body in an elliptical path,

257
Force exerted by a charge distribution, 807
Force exerted by an electric charge, 531
Force exerted on the viewing port of a

submersible, 632
Force generated by a centrifuge, 1047
Force of attraction of a cylinder on a point,

807
Force on a proton moving through a

magnetic field, 944
Forensic science, 566
Formaldehyde levels in homes, 171
Global warming, 70, 289, 418
Gravitational field, 1225, 1256
Gravitational force, 139, 184, 807
Great circles, 1281
Halley’s Law, 566
Heat generated by an alternating current,

624
(continued)
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Index of Applications (continued)

Heat-seeking missiles, 588
Heaviside function, 81, 90, 112, 115, 147
Hitting a moving target, 1030
Hooke’s Law, 59, 60, 61, 335, 489
Hot-air balloon, 386
Hydrostatic force on a window, 630
Ideal gas law, 1047, 1071
Intensity of an earthquake, 565
Isothermal curves, 1144
Jumping while on Mars, 359
Lambert’s Law of Absorption, 688
Land reclamation, 474
Launching a lunar landing module, 494
Leaking bucket, 493
Length of a power line, 585
Locating a radio station, 1125
Magnitude of a magnetic field, 1255
Mass and center of mass of a wire, 1245,

1253, 1254
Mass of a body moving near the speed of

light, 203
Mass of a moving particle, 223, 305
Mass of a ramp, 1303
Maximizing drainage capacity, 330
Maximizing light intensity, 346
Maximum deflection of a beam, 251, 255,

257
Maximum error in calculating centrifugal

force, 1081
Maximum power output, 331
Maximum stiffness of a beam, 330
Maximum strength of a beam, 329
Maxwell’s equations, 1241
Measuring the height of a derrick, 235
Monte Carlo integration, 1221
Motion of a projectile, 1015, 1017, 1018,

1021, 1027, 1030
Motorcyclist’s turn, 550
Newton’s Law of Attraction, 125
Newton’s Law of Gravitation, 65, 161, 922,

1047, 1225
Newton’s Law of Inertia, 1018
Newton’s Laws of Heating and Cooling,

553, 684, 689, 725
Newton’s Second Law of Motion, 171,

1254
Newton’s wine barrel, 463
Norman window, 72, 330
Nuclear fallout, 688
Oil spills, 42, 75, 220
Optics, 184
Optimal driving speed, 329
Optimal illumination, 332
Orbit of a satellite, 205

Orbit of Halley’s comet, 893
Orbit of Mercury, 895
Orbit of Pluto, 847, 895
Packaging, 72, 75, 328, 329, 330, 346
Paddle wheel rotation, 1235
Parabolic reflectors, 845
Parachute jump, 693, 698, 701, 721, 723
Path of a baseball, 1017
Path of a boat, 200, 204, 256, 864, 1031
Path of a heat-seeking object, 1102
Path of an acrobatic plane, 602
Path of an ant, 898, 899
Path of a water skier, 673
Path of steepest ascent, 1102, 1106
Pendulum, 185, 204, 234
Period of a communications satellite, 235
Period of a satellite, 161, 234
Period of the Earth’s orbit, 1027
Periods of planets, 71
Police cruiser flasher, 222
Potential energy, 203
Potential of a charged disk, 204
Pulling a sled, 912
Pure resonance, 191, 599
Pursuit curve, 485, 662
Quickest descent, 1102
Racetrack design, 330
Radioactive decay, 566, 682, 688, 728
Range of an artillery shell, 234
Range of a projectile, 152, 240, 332
Rate of change in temperature, 1094
Rate of flow of heat, 1301, 1303
R-C series circuit, 701
Rectilinear motion, 220, 368
Relative error in measuring an electric

current, 235
Resonance, 191, 333, 599, 616
Rings of Neptune, 228
Rivlin’s equation, 348
Rocket launch, 494, 615, 658
Room temperature, 1156
Rotating fluid, 182
Rutherford scattering, 839
Shot put, 1029
Simple harmonic motion, 189, 191, 203,

204, 369
Sinking boat, 723
Sliding chain, 552
Snell’s Law of Refraction, 334, 1140
Special theory of relativity, 66, 102, 293,

305, 318, 369, 539, 804
Specific gravity, 1083
Speed of a motorboat when motor cut off,

726

Speed of a rocket during liftoff, 216
Speed of a wave, 807
Spherical coordinate system for the Earth,

977
Steady-state temperature, 1071, 1106, 1107
Stefan’s Law, 690
Stopping distance of a car, 182, 359
Storing radioactive waste, 333
Surface area of a satellite dish, 845
Surface area of the Jacqueline Kennedy

Onassis reservoir, 449
Suspension bridge cables, 831, 845, 1084
Swinging door, 551, 552
Televising a rocket launch, 217
Temperature at a point, 991
Temperature of a hot plate, 1181
Temperature of a thin metal plate, 1047
Terminal velocity, 305
Test dive of a submarine, 281
Test flights, 182, 264
Towing a cruise ship, 912, 933
Tracking a missile cruiser, 1086
Tracking a plane with radar, 223
Tracking planes in a holding pattern at an

airport, 1030
Tracking the path of a submarine, 221, 342
Traffic flow, 133, 160, 205, 239, 254, 274,

318
Training course for a yacht, 853
Trajectory of a human cannonball, 1017
Trajectory of an electron, 865
Trajectory of a plane, 991
Trajectory of a projectile, 146, 271
Trajectory of a shell, 856, 1026, 1027
Truss bridges, 15
Turbocharged engine versus standard

engine, 448
Variable resistors, 223
Velocity of an attack submarine, 430
Velocity of a particle, 1230
Velocity of a shell, 912
Velocity of a sports car, 430
Velocity of dragsters, 448, 670
Velocity of exploding fireworks, 177
Velocity of flow, 1230
Voltage in AC circuits, 419
Volume of a pontoon, 464
Volume of water in a pond, 1156
VTOL aircraft, 182, 264
Walking up a spiral staircase, 1254
Waste disposal, 641
Water delivered by a water sprinkler, 1175
Water level of a tank, 361
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Water pollution, 256, 288, 305
Wind chill factor, 1072
Work done by a magnetic field, 633
Work done by an electric field, 1254, 1255
Work done by a repulsive charge, 494, 632,

666
Work done in pulling a wagon, 933
Work done in pulling luggage, 933
Work done on a particle by a gravitational

field, 1256
Work required to empty a boiler, 494
Work required to stretch a spring, 489

LLIIFFEE  SSCCIIEENNCCEESS

Absorption of drugs, 551, 553, 603
Air inhaled during respiration, 346
Air pollution, 199
Alzheimer’s patients, 26, 54, 161
Blood alcohol level, 550
Body mass, 1046
Brain growth and IQs, 254
Carbon-14 dating, 689
Carbon monoxide in the atmosphere, 158
Cardiac output, 431
Cells of a honeycomb, 332
Clark’s Rule for pediatric drug dosages, 74
Cricket chirping and temperature, 70
Crop yield, 134
Death due to strokes, 551
Doomsday equation, 690
Drug concentration in the bloodstream, 527,

670, 690, 755
Energy expended by a fish, 333
Epidemic growth, 550
Epidemiology, 181
Extinction situation, 552
Flights of birds, 331
Flow of blood, 334, 418, 1083
Forestry, 133
Fruit fly population, 652, 711
Goldfish population, 712
Gompertz growth curves, 701, 712
Growth of a tumor, 530
Heights and weights of children, 531
Importance of time in treating heart attacks,

172
Lengths of fish, 551
Lengths of infants, 553
Life expectancy of females, 368
Logistic growth functions, 703, 707, 711,

727
Male life expectancy at 65, 1126

Measles deaths, 71, 289
Nicotine content of cigarettes, 71
Obese children in the United States, 69
Obesity in America, 172
Oxygen content of a pond, 25, 171, 289,

305
People living with HIV, 711
Photosynthesis, 180
Poiseuille’s Law, 254, 334, 1046
Polio immunization, 550
Predator-prey population model, 203, 418,

530
Rate of growth for a plant, 711
Rate of growth of a fish population, 709,

711
Reaction of a frog to a drug, 70
Reaction to a drug, 254
Residual concentration of a drug in the

bloodstream, 755
Respiratory cycle, 368, 433
Risk of Down syndrome, 360
Serum cholesterol levels, 554
Serum cholesterol population study, 667
Shock wave lithotripsy, 836
Spread of an epidemic, 345, 711
Spread of disease, 690
Strain on vertebrae, 530
Surface area of a horse, 234
Surface area of a human, 239, 1046, 1071,

1083
Surgeries in physicians’ offices, 274
Trout population, 727
Unclogging arteries, 234
Velocity of airflow during a cough, 255
Velocity of blood, 239, 254, 418
von Bertalanffy growth model, 550, 690
Weight of whales, 15
Yield of apple orchard, 72

BUSINESS AND ECONOMICS

Accumulation years of baby boomers, 202
Acquisition of failing S&L’s, 125
Advertising, 151, 233, 282, 287, 360, 448
Annual return of an investment, 566
Annuities, 530, 726, 744
Assembly time of workers, 288
Average single-family property tax, 69
Bank deposits, 360
Black Monday, 306
Book design, 72
Book publishing, 329
Cable TV subscribers, 239

Canadian oil-sands production, 553
Capital value, 667, 756
Charter flight revenue, 68
Cobb-Douglas production function, 1046,

1072, 1107, 1139
Compound interest, 563, 566, 744
Construction costs, 72, 75
Continuous compounded interest, 686, 744,

1047
Demand, 135, 221, 234, 346
Depreciation, 57, 70, 75, 553, 602
Dial-up Internet households, 73
Driving costs, 305
DVD sales, 166
Effect of advertising on profits, 233
Effect of inflation on salaries, 567
Effect of smoking bans, 288
Establishing a trust fund, 567
Estimating changes in profit, 1143
Federal debt, 256
Financing a home, 235, 343
Forecasting commodity crops, 235
Forecasting sales, 74
Fuel costs of operating an oil tanker, 227
Growth of HMOs, 615
Growth of service industries, 818, 821
Health care costs, 26, 160
Hedge fund assets, 161
Hiring lobbyists, 71
Home mortgage payments, 224, 1034, 1047
Hotel occupancy rates, 17, 52, 205, 264,

418, 433
Housing costs, 602, 725
Income of American families, 552
Information security software sales, 1126
Instant messaging accounts, 69
Loan amortization, 343, 566
Manhattan hotel occupancy rate, 17
Marginal cost, 184, 239
Marginal profit, 184
Marginal revenue, 179, 184
Market equilibrium, 724
Maximizing profit, 254, 345, 1139
Maximizing revenue, 254, 329
Maximizing yield, 329
Median house price, 433
Minimizing costs of laying cable, 322
Minimizing costs of packaging, 329, 346
Minimizing cruise ship costs, 331
Mortgage payments, 224, 235
Multiplier effect of tax cuts, 755
Net investment flow, 433

(continued)



Index of Applications (continued)

Office rents, 255
Oil consumption in United States, 420, 428
Oil production shortfall, 447
Online ad sales, 360
Operations management consulting

spending, 1127
Optimal inventory control, 332
Optimal subway fare, 329
Outsourcing of jobs, 70
Perpetuities, 755
Postal regulations, 26
Production costs, 151, 318
Production functions, 1063, 1071, 1082
Production planning, 912
Profit of a vineyard, 72
Profit versus inventory and floor space,

1071
Projected profit, 239
Projected U.S. gasoline use, 419
Quality control, 744
Rate of return, 725
R & D expenditure, 152
Real estate, 386
Revenue function, 70
Sales of functional food products, 274
Satellite TV subscribers, 73
Savings accounts, 688
Senior workforce, 346
Shortage of nurses, 203
Sickouts, 346
Social Security contributions, 15
Social Security trust fund assets, 63
Spending on fiber-optic links, 274
Spending on Medicare, 160
Stock prices, 203
Theme park attendance, 652
Trust fund, establishing, 567
U.S. hotel rates, 26
U.S. sales of organic milk, 361

U.S. strategic petroleum reserves, 430
U.S. Treasury two-year notes yield, 18
Use of diesel engines, 255
Wilson lot-size formula, 1047
Worker efficiency, 318
Worldwide PC shipments, 554
Yahoo! in Europe, 602

SOCIAL AND 
BEHAVIORAL SCIENCES

Age of drivers in crash fatalities, 274
Aging drivers, 69
Aging population, 202, 539
Alcohol-related traffic accidents, 614
Americans over age 100, 550
Arson study, 1071
City planning, 305, 644
Crime fighting, 51
Crime rate, 318
Cyclical models, 712
Decline of Russian population, 161
Demographics, 181
Dissemination of information, 726
Effect of budget cuts on drug-related

crimes, 288
Effect of immigration on population, 689
Energy production, 614
Fighting crime, 51
Foreign-born medical residents, 254
Gender gap, 15, 25
Global supply of plutonium, 51
Harbor cleanup, 26
Increase in juvenile offenders, 552
Lay teachers at Roman Catholic schools, 711
Learning curves, 689
Morning traffic rush, 274
Motorcycle deaths, 51
Nuclear plant utilization, 15

Online video viewers, 70
Overcrowding of prisons, 52
Percent of females in the labor force, 552
Population density, 1167
Population density of a city, 1182
Population growth in Clark County, 71
Rising median age, 26
Rwandan genocide, 69
Stimulus-response relationship, 526
Surveillance cameras, 289
Testosterone use, 69
Thurstone learning curve, 74
Traffic flow, 133, 160, 205, 239, 254, 274,

318, 433
TV on mobile phones, 433
TV-viewing patterns, 133
Voter registration, 652
Weber-Fechner Law, 526

GENERAL

Baseball diamond, 221
Blowing a soap bubble, 220
Boston Marathon, 273
Breaking the speed limit, 264
Buffon’s needle problem, 516
Cavalieri’s Theorem, 464
Crossing the finish line, 359
Daylight hours in Chicago, 418
Describing the path of pop-up baseball, 356
Gabriel’s Horn, 666, 1284
International America’s cup class, 1047
Interval training, 624
Number of hours of daylight, 239
Postal regulations, 1121, 1126, 1133
Snowfall accumulation, 554
Spam messages, 51
Water level in a harbor, 274, 319
Women’s soccer, 289
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