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Preface to the second edition

I have been gratified by the success achieved by Introduction to complex analysis
since it first appeared in 1983, and have been pleasantly surprised by the range of
users it has attracted. But any textbook shows its age in time and, nearly twenty
years after its first publication, this one was certainly due for a make-over. The
new edition is substantially different. from the revised edition published in 1990.
I believe that the changes will enhance the book’s suitability for a present-day
readership. My overall aims, however, remain unchanged: ‘to provide a text
for a first course in complex analysis which is practical without being purely
utilitarian and rigorous without being over-sophisticated or fussy.’

The new edition is considerably longer than the previous one, with additional
discussion of key issues and extra examples and exercises. Extensive teaching ex-
perience has pinpointed for me where expanded or simplified explanations would
particularly assist students. There is now a more protracted development of the
early material, to take account of the likely knowledge base and mathematical
experience of potential readers. Certain topics are treated in greater detail, to
give students a thorough grounding in techniques that are used repeatedly; ex-
amples are Taylor series related to binomial expansions and zeros of holomorphic
functions. As before, some familiarity with -0 real analysis is assumed. I have
now taken Real analysis, by R. G. Bartle and D. R. Sherbert [3] as the core
reference for this, but other texts would serve perfectly well.

Complex analysis is unusual amongst areas of mathematics in the range of
mathematicians (and others) it attracts. It is intended that this book should
be usable at several different levels and so serve a variety of readerships. The
second edition has been structured to facilitate this. It is subdivided into very
short chapters and much of the technical material has been positioned so that
it can without loss be treated as optional. In addition, certain chapters and
sections of chapters are designated ‘basic track’ and some as ‘advanced track’
(superseding the ‘Level I" and ‘Level I’ designations in the original edition).
So, for Cauchy’s theorem and related results, Chapter 11 presents a basic track
treatment adequate for all the applications, while the optional advanced track
presentation in Chapter 12 explores the underlying ideas in greater depth.

The material has been re-arranged in such a way that the order in which
topics can be studied is constrained as little as possible. Thus, at the extremes,
it is feasible, for example,

¢ to take a geodesic route to Cauchy’s theorem and its consequences, or
* to place emphasis in the early stages on geometric thinking, through a study
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of mappings of the complex plane, or
® to concentrate on techniques rather than theory throughout, with a view
primarily to developing skills required for applications.

The problem sets have been extensively revised and enlarged, and are care-
fully graded. Most of the exercises are quite elementary, and are designed to
familiarize students with new concepts. Intermediate steps have been included
in more challenging problems where experience has indicated the need for these.
A few exercises introduce more advanced ideas and results.

Classic complex analysis is very much a triumph of 19th century mathe-
matics. Nevertheless, there has quite recently been important research activity
in, or related to, the subject. The famous Bieberbach conjecture was solved in
1984. Thanks to increasing computer power, the beauty of fractal curves has
been revealed. Neither of these topics is suitable for inclusion in the core of the
text. Instead, a brief appendix hints at these developments.

My thanks are due to those of my former students whose occasional blank
looks have led me to work harder to explain certain points. I am grateful to
the present undergraduates who have consumer-tested drafts of the new edition;
here a special commendation goes to Ben Craig, who drew my attention to
many more missing brackets, incorrect signs, and other small bugs than any of
his peers. I am also grateful to a number of colleagues for constructive comments.
I have, in part, been swayed by their suggestions that I should mention some
notions excluded, perhaps too ruthlessly, from the first edition. But I remain
unrepentant about the omission of topics I regard as too advanced for a first
course. Finally, I should also like to thank the staff of Oxford University Press
for their encouragement and support.

H. A D

Ozford
April 2003



Preface to the first edition

This is a textbook for a first course in complex analysis. It aims to be prac-
tical without being purely utilitarian and to be rigorous without being over-
sophisticated or fussy. The power and significance of Cauchy’s theorem—the
centrepiece of complex analysis—is, I believe, best revealed initially through its
applications. Consequently, emphasis has been put on those parts of the subject
emanating from Cauchy’s integral formula and Cauchy’s residue theorem. This
does not mean that the geometrical and topological aspects of complex analysis
have been neglected, merely that it is recognized that a full appreciation of such
concepts as index only comes with experience. Thus the chapters in which these
important foundations are discussed are written in such a way that the student
may at a first reading easily extract what he needs to proceed to the applications.
He is, naturally, encouraged to return later in search of a deeper understanding.

The book is a metamorphosis of a set of notes in the series produced by
the Mathematical Institute of the University of Oxford. As student opinion dic-
tated it should, it betrays its previous incarnation—notably in its brevity and its
style. Essential ideas are not submerged in a welter of details, material is locally
arranged for ease of reference, and by-ways (however fascinating) are left unex-
plored. Advanced and specialized topics have been ruthlessly excluded. So, for
example, analytic continuation and special functions receive only passing men-
tion; a satisfactory treatment of either would have made unacceptable demands
on the reader. Applied mathematicians have been provided with a thorough
acccount of applicable complex analysis, but specific physical problems are not
discussed. A chapter on Fourier and Lpalce transforms has been included. This
is used to show off the techniques of residue calculus developed in the preceding
chapters. It is also designed as a self-contained introduction to transform meth-
ods (and so strays somewhat beyond the confines of complex analysis), but does
not purport to be a comprehensive survey of transform theory.

Some prior acquaintance with complex numbers is assumed. Apart from
this, the only prerequisite is a course in elementary real analysis involving some
exposure to £-9 proofs. Many analysis and calculus texts cover the required back-
ground. I have taken K.G. Binmore, Mathematical analysis: « straightforward
introduction [4] as my basic reference since it has the merit of having the same
philosphy as the present book. Those concepts in real analysis which transfer,
mautatis mutandis, from real analysis (continuity, etc.) are treated very briefly.
Few students welcome, or benefit from, a detailed presentation of essentially
familiar technical material. Also, the more time spent in these foothills, the
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less time is available for exploring the novel and spectacular terrain surrounding
Cauchy’s theorem.

Not all students will have the same mathematical background. To allow
for this, I have adopted the convention that text enclosed in square brackets
should be heeded by anyone to whom it makes sense but can safely be ignored
by others. These occasional bracketed comments contain, for example, certain
results in topology. It is accepted practice for texts on complex analysis to work
with the Riemann integral rather than the Lebesgue integral. This is irritating
for those who have graduated to the latter and confusing for those {(Oxford
students in particular) who are never taught the former. A dual approach is
adopted here.To understand the book the reader needs a rudimentary knowledge
of either Riemann integration or Lebesgue integration; signposts are provided for
the followers of each theory.

Certain theorems have been designated with the customary proper names,
but I have otherwise made no attempt to attribute theorems or proofs. Also,
the subject has been so well worked over that I do not claim any originality for
methods, examples, or exercises I happen never to have seen elsewhere. Among
the books I have found most influential have been those by W. Rudin [19] and
A.F. Beardon [10].

My preliminary notes on complex analysis evolved over about ten years. The
first version fo these was based on some notes produced by Dr Ida Busbridge.
She had earlier introduced me to ‘complex variable’, and I gratefully acknowledge
my debt to her. It is also a pleasure to thank those colleagues in Oxford and
elsewhere who directly or indirectly have had an influence on the book. However,
my special thanks go to Dr Christine Farmer of London University; she has
been involved with this project since its inception and has read draft after draft
with care and patience. Her constructive criticisms have ben invaluable and her
pencilled question marks unerring. Finally, thanks are due to Professor Michael
Adams and Professor Michael Albert for their help with proof-reading, and to
the staff of the Oxford University Press for encouraging me to write the book
and for their assistance during its production.

H.A.D

Ozford
March 1985
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Notation and terminology

We use N, Z, R, and C to denote, respectively, the set of natural numbers,
integers, real numbers, and complex numbers. Standard terms and symbols
relating to sets and mappings have their conventional meanings. The following
notation, which may not be universally familiar, is also used. Given sets A
and B, the set {a € A : a ¢ B} is denoted A~ B, and given a mapping
f: A — D, we write the image set {f(a) : a« € A} as f(A). In addition, the
characteristic function, Xp, of BB is given by Xp(x) =1 if # € B and Xp(x) =0
otherwise.

When we extend such concepts as differentiability from the real to the
complex setting, we shall sometimes transfer secondary vocabulary and notation
without comment. For example, once f'(#) has been defined, we credit the reader
with enough common sense to deduce what is meant by f”(z) and f{"(z).

The symbol := denotes ‘equals by definition’; it is used to stress that an
ecuation is defining something and also as a convenient shorthand. We denote
the end of a proof by the customary symbol, 0. We adopt the Bourbaki dan-
gerous bend symbol, 7 to warn of a common pitfall. Finally, some of the more
calculational sections of the book contain ‘tactical tips’, flagged by the symbol
. These explain various important points of strategy.

As explained in the preface, any comment in the text enclosed in square
brackets is aimed just at those readers who have the knowledge to understand it.
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1  The complex plane

Complex analysis has its roots in the algebraic, geometric, and topological
structure of the complex plane. This chapter starts to explore these foundations.
It is assumed that the reader has previously been introduced to complex numbers,
and has had some practice in manipulating them. Consequently the first part of
the chapter is designed to be a refresher course. It contains a summary of basic
properties, presented without undue formality.

Complex numbers

1.1 Complex numbers. A complex number is specified by a pair of real
numbers x and y; we write x + iy, where i (sometimes also known as j) is
a fixed symbol. (The arithmetical rules given in 1.4 force i = —1.) The set
of complex numbers is denoted by C. We use the customary abbreviations: z
for z 4 10, iy (or yi) for O+ iy, 0 for 0 + i0, and i for 0+ il. The first of
these implies that we may regard R, the real numbers, as a subset of C. The
terminology here is a legacy from the past: complex numbers are not complex,
nor imaginary numbers any more imaginary than real numbers.

Two elements ¢ + iy and u + iv of C are, by definition, equal if and only
if # = v and y = v. This allows us, given z = # + iy € C, unambiguously to
define x to be the real part of z, written Re 2, and y to be the imaginary part
of z, written Im z.

1.2 Cartesian and polar representations. It is convenient to represent complex
numbers geometrically as points of a plane (the complex plane), also known as
the Argand diagram. We equip the plane R? in the usual way with Cartesian
coordinate axes and identify » = z + iy with (x,y) € R?. This is the Cartesian
representation.

Alternatively, we may use polar coordinates and, for (z,y) € R?, may write
r =rcosf and y = rsinf, where r > 0 and 8 € R. See Fig. 1.1. We write
e? as shorthand for cos# + isin®. Later, when we have introduced the complex
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x+iy=rei®
.

Figure 1.1 Cartesian and polar representations

exponential function, we shall see that this is indeed e evaluated at the point
w = 0.

1.3 Modulus and argument. The modulus || of » = & + iy is defined to be

2] = Va? +y?

(where the positive square root is taken). This can be interpreted as the distance
of z from the origin, 0. Observe that

2=0<=Rez=Imz=0<+=|2|=0.

Because cos? 6 + sin®# = 1, we have |ew| =1 for all real #. Now consider
any » € C. Writing # = z + iy in its polar form re'?, we have r = |z|. For
z =0, we can choose # arbitrarily. For z # 0, the angle # is not unique: because
of the periodicity of the functions cosine and sine, # is only determined up to
an integer multiple of 27. We call any value of § with z = re’’ an argument
of » = # + iy. For now, we write argz to denote any allowable value of 4.
Later we shall have to treat argument with much greater care. Indeed, the non-
unicqueness of #, which may appear here merely as an inconvenience, turns out
to have far-reaching consequences (see 7.10, 7.13, 10.4, 12.8-12.11).

Note especially the following very important and very useful facts: for 8 € R,

el =1 and e =1 <= 0=2kr (kcZ);
e =—1 and e¥=-1<=0=02k+ Dr (kCZ);
™2 =i and e¥=i <=0=312k+Dr (kc).
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= emif2

—1=¢l"

Figure 1.2 Some special complex numbers

See Fig. 1.2. To prove these results we appeal to well-known facts about real
trigonometric functions. For example, to obtain the first one we note that
cosf = 1 and sin® = 0 both hold if and only if 8 = 2k7 (k€ Z).

Algebra in the complex plane

1.4 The algebraic structure of the complex plane. By extension of the cor-
responding operations for real numbers, addition and multiplication are defined
in C by

(x+1iy) + (u+iv) = (& +u) + ily +v),
(4 iy)(u + i) == (zu — yv) + {zv + yu).

Taking =« =0 and y = v = 1, we obtain the identity i = —1.
Routine checking shows that the same arithmetical rules apply in C as in R.
For z1.22, 23 € C, we have commutative laws,
Lt =tz and 21z = 2221,
associative laws,
stz tam) = (1t )t and () = (2122)%.
and the distributive law

21(#2 + 23) = z1%0 + 2123,
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As expected, we have 0+ 2 = z and 1» = » for all » € C. In addition, given
z = x + 1y, there exists

—2i= (=2) + i(=y)

such that 2+ (—z) = 0 and, so long as z # 0, there exists 1/z (also denoted z1)
given by
1z = z(@® +y*) ! —iy(@® +9°)7L,

which is such that z(1/2) = 1. We deduce from this a fact that we shall use
frequently: zw = 0 implies z =0 or w =0 (for »z,w € C).

In a mathematical nutshell, C forms a field. Informally, this simply means
that the algebraic manipulation of complex numbers is just like that of real

numbers, with the law i* = —1 being available to simplify expressions.

1.5 Products and powers; de Moivre’s theorem. It is worth noting that,
while addition is most conveniently expressed using the Cartesian representation,
the neatest formula for multiplication is in terms of the polar representation.
To see this, take z = rel? and w = Rel¥. Write 2 = rcosf + irsinf and
w = Rcosy + iRsin . Then, using the definition in 1.4, we have

zw = rR{cos @ cosp — sinfsin ) + irR{cos fsin ¢ + cos ¢ sin b)
= rRcos(f + ¢) + irRsin(f + ),

by standard trigonometric formulae. Hence zw = rRe!?t#), This implies in
particular that |zw| = |2||w].

Let z = rel? and let n be a natural number. Then, from above and a routine
proof by induction, we obtain

- 7‘”’61”'0.

The special case » = 1 gives de Moivre’s theorem:
(cosf + isind)™ = cosnf + isinnd (# € R).

Also, for 0 #£ z = re'?, we have 1/z = r~te™ ¥ (write 1/7 as w = Rel¥ and
equate zw to 1).
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1.6 Examples (complex numbers).

e 141 has modulus v/2 and lies in the first quadrant, on the line y = z. Hence
1 + i has polar form v/2e'7/%.

e (1+ i)' = (1/v2)e i"/% from above. Alternatively, the inverse can be
obtained in Cartesian form by writing

11 1-1)  1-i
1+i 14+i\1-i/ 2~

e To compute quotients it is usually best to employ polars. For example,

~14++/3i 2e127/3 (2m /38— (—m/4)i Tri/12
T eV = V2,

1.7 Roots of polynomials. The equation 2%+ 1 = 0 has no real solutions. This
fact indicates the inadequacy of the real numbers as a setting for solving real
polynomial equations. In C, the equation 22 +1 = 0 has roots £i. In Chapter 13
we shall prove the important Fundamental theorem of algebra, asserting that a
polynomial of degree n with coefficients in C has a full complement of n roots
(not neccessarily distinct, of course).

There are certain polynomials which occur repeatedly in complex analysis,
and you are recommended to become very familiar with these polynomials and
the location of their roots.

Let us consider the equation 2" = 1. Write z = rel’. Certainly we must
have r = 1, because |z|" = |2"|. Also, from 1.5,

V=1 rteit? =1
<= r=1and cosnf + isinnfd = 1.

The results in 1.3 show that the distinct roots of the equation 2™ =1 are given
by
e2hmi/n (=0,...,n—1).
These numbers are known as the nth roots of unity. Observe that the roots of
2™ =1 lie at the vertices of a regular n-gon centred at 0 and with one vertex
at 1. There is a single real root, namely z = 1, if n is odd and precisely two real
roots, namely 1, if n is even. The case n = 6 is illustrated in Fig. 1.3.
Two special cases are worthy of particular note. We have

=l (P -1D0EP+H1) =0 z==+lor z = +i
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Figure 1.3 The sixth roots of unity

and

=l z=1or

ariss  —Ll+1V3
r=wi=etm o ——— = op
2
. s —1—1V3
=W =t - .
2
= o2l
1
2= el

Figure 1.4 The cube roots of unity

The geometric identity
(1=2)Q+z+--+2) =12

is valid for all z € € and for all natural numbers k. We obtain it by multiplying
out the left-hand side and noticing that all but the two terms on the right-hand
side cancel out. Taking k& = 2 we obtain

(1=2)(1+2+2%) =(1-2%.

From this we see that the roots of the equation 1+ # + 22 = 0 are exactly the
non-real cube roots of unity, that is, w and w?.
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As a further example, consider the equation 1+ 22 + z* = 0. We have (from
the geometric identity with 22 in place of z and with k = 3)

1—28

1+22 424 = T (#£ED.

Consequently the given equation has solutions

e7r1/3’ 627”/3, e—7r1/3’ e—2ﬂ'1/3

—the sixth roots of unity, excluding £1.

Conjugation, modulus, and inequalities

1.8 Complex conjugation. Given z = z + iy, the complex conjugate of z is
defined to be Z := x — iy or, in polar form, 7 := re” ¥, In the Argand diagram,

Z is the reflection of z in the real axis. As examples, we note that 1 = —i and
@ = w? (recall Fig. 1.4). The following identities hold for all z and w in C:
(1) z==x

The formulae in (1)—(3) follow immediately from the Cartesian representations
of z and w. Formulae (4) and (3) come directly from the product formula in 1.5.
The formula in (6) can be derived in various ways. Perhaps the simplest is just
to note that

Z=(r+ i)z —iy) =22+ =2

We have already seen that |zw| = |#||w|. In general, |z + w| # |2| + |w|.
However, important inequalities link modulus and addition.

1.9 Inequalities. For all z and w in C,

(1) [Re2| < |2 and [Tm 2] < J2]:

(2) |z +w| < |#| + |w| (the triangle inequality);
(3) [z +wl| = ||z = wl].
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Proof (1) is immediate since |z|* = (Re 2)? + (Im 2)? and || > 0. To prove (2),
observe that

|z + w|* = (z + w)(Z + W) ( (
= |z)? + |wl’ + (wz + zw)  ( (
= |2)* + |w|® + 2 Re(2®) (by 1.8(1) & (2))
<o + [wl + 2|z ( )
= |zI” + w|” + 21z| |w| ( (
= (2] + w]).
Since |z +w| > 0 and |z| + |w| > 0 we deduce (2).
Now consider (3). For real numbers a and b, the inequality |a| < b holds if
and only if ¢ < b and —a < b (and, necessarily, b > 0). Hence (3) is satisfied

provided the two inequalities |z 4+ w| > |2| — |w| and |z +w| = |w| — |2| hold.
But by (2) we have

2| = |z +w —w| <z +w| +|-w| = |z + w| + |wl,
<

lwl|=lz+w—z| < |z +w|+|—2| = |z+w| + 7],

so (3) follows. O

All of the inequalities in (1)—(3) concern complex numbers but are between
real numbers (|z|, Re z, etc.). It is important to realize that no meaning has been
assigned to an inequality z < w between complex numbers z and w. Indeed,
it is not possible to define an ordering on C in which any two elements are
comparable and which is compatible with the arithmetic operations in the way
that the ordering on R is (see Exercise 1.14). Whenever inequalities appear
henceforth, the quantities involved are assumed to be real. Thus w > 0 means
that w is a real number and that w is also non-negative. In complex analysis,
abuse of inequalities is perhaps the most common type of error perpetrated by
beginners. You have been warned!

1.10 Functions. Formally, given S C C, a mapping f: S — C which assigns
to each z € S a unique complex number f(z) is called a (complex-valued)
function on S. Being explicit about the definition of such a fundamental notion
is not mere pedantry. Rather, this is an opportune point at which to emphasize
the inherent ‘one-valuedness’ of a function. Later we deal also with what we
call multifunctions: a multifunction is a rule assigning a non-empty subset of C
(finite or infinite) to each element of its domain set S. An example, and one
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which underlies all other important multifunctions, comes from the argument
‘function’ which associates to » the infinite set {0 € R : z = |z]el? }.

Strictly, given a function f, we should distinguish between f (the mapping)
and f(z) (the image of the point z under f). However, where it would be
cumbersome to do otherwise, we allow f(z) to denote the function, and write,
for example, ‘2?” in place of ‘the function f defined by f(z) = 2%’. We also
adopt the notation » — w = f(#) to indicate that » is mapped to w by f.

Just as we can write a complex number in terms of its real and imaginary
parts, we can express any complex-valued function f in terms of real-valued
functions, as follows:

f=u+iv, whereu(z) =Re(f(z)) and v(z) = Im (f(z)).

Sometimes it is profitable to link the study of functions of a complex variable
z = x + iy to the study of functions of (z,y). with z and y real variables. In

this situation we write f{x,y) in place of f(») and likewise for « and v (so

regarding C as being identified with ®?). Consider, for example, f(z) = 2%.

Then f(z) = x°> — y* + 2izy, so that u(x,y) = #* — y* and v(z,y) = 2zy.

Exercises
Exercises from the text. Verify properties (1)—(3) in 1.8,

1.1 (a) Express each of the following in the form re'?:

i) % ) 1-1, (i) v2Q+i), (V) vV3-1i (v)2—2V3i
(b) Express each of the following in the form = + iy (x,y € R):

(i) e7r'1/4’ (ii) Se—ﬂ'i’ (iii) 26371'1/2’ (iV) 6471'1/3’ (V) e7ﬂ'i/6.

1.2 Express each of the following in polar form:

i) (1-i)(=1—1), () (1-1D7% (i) (V3=1)/(1+1), (iv) 1+V3D)°.

1.3 Express in terms of r, 0 the following equations, where z = rei:

i) |22 = 4, (i) |2 =1 =1, (i) arg(2z) =2n7/3,
(iv) arg(iz) = 7/4. (v) argz? =7/2.
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1.6

1.7

1.8

1.9

1.10

1.11

The complex plane

Simplify the answers as far as you can.

Evaluate, for n =1,2,3,...,

Q) it (i) G;i) (iii) (1+ )"+ (1 =D

(Hint: use polar representations for the powers.)

Without using the binomial expansion, show that
(\/§+ i)n + (\/g_ i)n

is real for any positive integer n.

Evaluate >, e'?. Deduce that

sin(n + 3)0

n
—1+2§ coskf = )
S5

k=1

for 0 # 2mz (m € Z).

Find a similar expression for ), sin k0.
Find the solutions of the equation cosnf + isinnf = —1 (§ € R). Hence
find all roots in C of the following equations:

i) 2 +1=0, (LA +1=0 (ii)L+1=0
Tllustrate your answers geometrically.

Find all solutions in € of the following equations:
i) 1+z+---+27=0,
(i) (1—2)°%=1+2)° (hint: do not multiply out!),
(iii) 1—2+22=0,
(iv) 1=+ 24 =2%=0.
(Hint: recall the examples in 1.7.)

Let « be such that a® = —1 and a # —1. Evaluate (a*(a—1)%?)"t. (Hint:
it is not necessary to find the possible values of « explicitly.)

Prove that, for 2 € C,
|2l < |Rez| + |Im 2] < V2]7|.

Give examples to show that either inequality may be an equality.

Let z,w € C. Prove that

|2+ il + [w+ iz]” = 2(]2 + [w]).
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1.12 Use the results in 1.8 to prove that, for z and w in C,
11— zwl’ = |z —wf = (1= |2[)(1 = |w]).

Deduce that, if |2| < 1 and |w| <1,

Z—w

1—-Zw

<1

1.13 Let z and w be complex numbers with z # w.

(i) Prove that
NEOWIEC
w—2z |w — |

(ii) Let z = rel? and w = Rel?, with 0 < r < R. By writing |w — z|” as
(w — z)(wW — Z) prove that

|w — z|2 = R?> — 2Rrcos(8 — ) +r°.

Deduce that

Re w+z\ R? —¢2
w—2/) R2—2Rrcos(d — ) +r2

(These formulae for the Poisson kernel are needed in Chapter 23.)

1.14 The usual order relation > on R satisfies
(a) = # 0 implies > 0 or —z > 0, but not both, and
(b) z,y > 0 implies z +y > 0 and zy > 0.
Show that there does not exist a relation > on C satisfying (a) and (b).
(Hint: consider 1i.)
1.15 Find the real and imaginary parts of the following functions as functions

of z and y:
(1) 2%, () (z+271) (2#0), (i) 1/(1—2) (z#1).



2 Geometry in the complex plane

This chapter introduces various curves and regions in the complex plane which
occur repeatedly later on, and presents a variety of ways of describing these.
One reason that such descriptions are important is that they assist in find-
ing well-behaved mappings of one region of the complex plane onto another—a
key technique in the application of complex variable methods to physical prob-
lems. We study mappings in Chapter 8 and also in Chapter 23, where we hint
at applications. Here we investigate some particular mappings—the Mobius
transformations—and their effect on lines and circles. Throughout this chapter
we use geometrical ideas wherever possible rather than taking refuge in decom-
positions into real and imaginary parts.

Lines and circles

2.1 Measuring distances. We noted in 1.3 that the modulus of z = = + iy
has a geometric interpretation. It gives the distance of the point (z.y) from
the origin of coordinates, (0,0). More generally, |z — w]| is the distance between
points z and w in the Argand diagram. Geometrically, the triangle inequality
in 1.9(2) asserts that the length of one side of a triangle in the plane does not
exceed the sum of the lengths of the other two sides.

Many sets in the plane can be geometrically described in terms of distances.
For example, the points strictly above the real axis are exactly those which are
closer to i than they are to —i (Fig. 2.1). To convert such descriptions into
symbolic form we frequently make use of the fact that |z —a| <r, |z —a| = 7,
or |z —a|l > r according as z is at a distance less than, equal to, or greater
than, r from a.

2.2 Equations for line segments and lines. For o and 7 in C, the line segment
with endpoints « and g is given by

[ .5 ={(l—-tha+t3 : 0t <1},
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Figure 2.1 Points closer to i than to —i

If we consider { (1 —t)a +1t8 : t € R} we obtain all the points on the unique
line through o and f, assuming these points are distinct.

To indicate the variety of different descriptions that may be available for
the same linear locus, we note that the real axis is given by any of the equations:

e Imz=0;
® = ?7
o |z —i| = |z + i] or, more generally, |z — «| = |z — @| (where Im « # 0).

The first of these may be taken as the definition. The second is clearly equivalent
to it, by 1.8(2). The conjugate @ of « is simply the reflection of « in the real
axis; the last equation characterizes the real axis as the set of points equidistant
from « and @.

The imaginary axis can be similarly described. In particular it is given by
either the equation Rez = 0 or the equation |z — 1| = |z + 1].

The perpendicular bisector of the line segment joining distinct points «
and g in C is given by |z —a| = |z — 8|. The equation of any line can, for
suitable « and §, be expressed in this convenient form.

2.3 Equations for circles. The circle centre a € C and radius r > 0 is the
locus of points at distance r from @ and so has equation |z — a| = r. There is
another form of equation which also specifies a circle. We reveal the full benefits
of this representation in Chapter 8. Let a,8 € C with « # § and let A € R,
with A > 0 and A # 1. We claim that the equation

Z—«
z=p

represents a circle. Denote o by A and § by B, and the variable point z by P.
Then the given equation specifies the locus of points P for which the ratio
AP : PB has the constant value A. This locus can be shown geometrically to
be a circle, known as a circle of Apollonius; see Fig. 2.2. However, it is simpler

=A
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to switch to Cartesian coordinates (a strategy we stress is usually best avoided
in complex analysis). Put a« = o) + lae, § = 51 + i82. 2 = ¢ + 1y. The given
equation can be rewritten as

|z —af> = X2 |z = 3],
which can be expressed in the form
(r—a)? + (Y —a)? =2z — 8% + N2y — B)°.

This simplifies to

. Oél—)\zﬂl 2 042—)\23{)’2 2 -
(*” ﬁ) e ) R

where K is a positive constant. Thus we do indeed have the equation of a circle.
Conversely, every circle can be represented in this way. This can be proved either
analytically (see 2.10) or geometrically.

Figure 2.2 The circle of Apollonius

2.4 Equations for circular arcs.  We have already considered line segments with
endpoints « and 7. We now want to consider circular arcs joining « and 5. We
need to use angles to describe such arcs. As in Chapter 1, we use arg z to denote
any choice of angle # such that z = |#|e!?; we allow # = 0 here and assign ¢
arbitrarily in this case. The following facts come from the polar representations
of products and quotients:

arg(z1#2) = argz +argz (mod2w),

arg(zy [#2) = argz —argz (mod27).
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Let I” be a variable point on a circular arc with endpoints A and I3 in C.
Then, by elementary geometry, the angle ZAPD is a constant, p say. Write I
as z, Aas o, and B as 3. Let arg(x — ) = § and arg(z — 8) = ¢, as in Fig. 2.3.
We have ¢ = — ¢. Hence the arc A’ has equation

arg(z — o) —arg(x — 8) = ¢ (mod 27),

that is,

z—a
arg = (mod 27).
g (Z — 3> po( )
(Strictly, we should exclude » = «, 8 here, but it will be convenient to regard
these points as included in the locus.) The case y« = 7 gives the degenerate case
when the arc through « and 7 is the line segment joining these points.

Figure 2.3 Circular arcs

Similarly, the equation of the arc AQD in Fig. 2.3 is (note the signs!)

arg (j : f;) =—(m—p) (mod2x).

Although it is worthwhile to have these representations, they need to be
used carefully, since it is easy to make sign errors.
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2.5 Example (circular arcs). Consider S:={2¢cC: |¢| <1, Imz < 0}.
This is the semicircular area shown in Fig. 2.4. Tt is made up of the arcs

v+ 1
arg (jjl> =n (mod2m) form/2< .

The boundary of S is given by the line segment [—1, 1] (the equation above with
/¢ =) and the arc through —1.—1, and 1 {(take p = 7/2).

Figure 2.4 Example 2.5

2.6 An assortment of subsets of C. Many subsets of C which appear repeat-
edly later on have boundaries which are curves of the types described above,
The usage ‘open’, ‘closed’, and ‘region’ is compatible with the technical mean-
ings these terms acquire in Chapter 3.

¢ Discs The open disc centre o € C and radius » > 0 is defined to be

Dia;r) :={zcC:|z—a| <r}.
The closed disc centre o and radius » > 0 is
Da;r)i={zcC:|z—a| <1}

Tt is the union of D{a; r) with its bounding circle |z — a| = r. The punctured
disc centre ¢ € C and radius » > 0 is

D'(a;r):={zcC:0<|z—a|<r}
Since z # a if and only if 0 < |2 — a|, we have D'(a;r) = D(a;r) \ {a}.
e Annuli Any set of the form
{zeC:s<|z—a|l<r} (0<s<r) or
{zeC:s5<|z—a|]} (0<5)
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is called an (open) annulus. The case s = 0 in the first of these gives the
punctured disc D'(a;r).

e Half-planes The open upper half-plane is II" := {z € C : Imz > 0}.
The closed upper half-plane has the bounding line Im z = 0 included. To
obtain this, simply change > to > in the definition of II. The open lower
half-plane is II~ := {z € C : Imz < 0}. Other half-planes are defined
analogously.

e Sectors Su5:={2€C:0£z=|¢7]e¥ cCwitha<@0<3} (a<p)
is a sector. We have a quadrant if 7—«a = 7/2 and a half-planeif 5—a = 7.
For example, ITT is {z € C: 0 £z =|7]e? c Cwith0< @ <7},

an
N

Figure 2.5 An annulus, a half-plane, and a sector

The extended complex plane and the Riemann sphere

We next introduce an ingenious device, due to Riemann, which will allow us to
treat lines and circles, and half-lines and circular arcs, in a unified way.

2.7 The Riemann sphere and the extended complex plane. Let us regard
C as embedded in Euclidean space R* by identifying z = = + iy with (z,y,0).
Now let

Si={(z,p.u) € R 2 + 9% + (u—%)2 =

}.

AT
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This is a sphere (the Riemann sphere). It touches the plane C at S := (0.0.0).
Stereographic projection allows us to set up a one-to-one correspondence be-
tween the points of C and the points of X, excluding NV, the north pole of X.
Geometrically, the line from any point z of C to N cuts ¥ ~ {N} in precisely
one point 2, and, for every point z’ of ¥ ~ {N}, the line through N and 2/
meets the plane € in a unique point z. The irritation of the north pole being
‘left out in the cold’ can be removed: we add to C an extra point oc ¢ C and
define the extended complex plane C to be CU {oc}. We then have a natural
correspondence between C and ¥, which is given analytically by

Coz=atiy=rel <=2 = @1 +r) Lyl +rH)7Lr2 (1L + 05,
oo +— (0,0, 1).

orth pole

Figure 2.6 Stereographic projection

It might at first sight seem curious to have a single ‘point at infinity’
adjoined to C—after all, separate symbols o¢ and —oc are associated with the
real line. However, it should be clear that, if we let 7 = 7e!® (with « fixed) and
allow r to become arbitrarily large, then z" will approach N regardless of the
value of «: informally stated, ‘all roads lead to oc’!

2.8 Arithmetic in the extended plane. We often wish to make use of the
algebraic structure of € and it is convenient to extend this, with some provisos,
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to €. We adopt the following conventions when working with C:

atoc==2octa=occ, afoc=0 forallaecC,
a-00 =00 a= 0%, a/0=0oc forall a € C~ {0},

X=X 00 =0TC = G,

We are allowed to divide a complex number ¢ by zerol—so long as ¢ # 0. Note
that oo — oc and oc/oc are not assigned meanings.

2.9 Circlines.  The merit of moving to @, or equivalently to X, becomes clearer
when we consider lines and circles. For this purpose we shall work with lines in
C rather than C, by regarding o¢ as being adjoined to any line in C. Under the
stereographic correspondence above, circles on X which pass through the north
pole N project down onto lines in C.

Now take any circle drawn on X parallel to the horizontal plane v = 0,
necessarily with centre on the vertical axis # = y = 0. Certainly, we obtain a
circle in € (with centre at Q) when this is projected down to €. The smaller the
radius of the original circle, the larger the radius of its projection. Extending
this, it can be shown that any circle on ¥ which does not pass through N projects
onto a circle in €, and that every circle in C arises in this manner.

With this perspective, it is now natural to regard lines (in (E) as ‘circles
through infinity’, and to adopt the collective name cireline for a circle or straight
line in €. Pulling together our conclusions from 2.2 and 2.3, we see that the
equation
Z—
z—0

=X (A>0)

represents a circline, and that every circline can be represented in this form. The
circline is a line if A = 1 and a circle (in €) otherwise.

By a segment of a circline (or simply an arc) we mean the arc of a circle
joining points « and & in C, the line segment joining points « and & in C, or
a half-line from « € C to oo (in any direction). Such a half-line (also called a
ray) has an equation of the form arg(z — «) = .

2.10 Inverse points.  Consider again the circline given by the equation

Z—Q

=A (A>0).

z2—0
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We now investigate the geometric significance of the points & and 5, which are
known as inverse points with respect to the circline,

First consider the case A = 1, so that we have a line, L say. Then the points
« and 7 are reflections of each other in L.

Now let A # 1. There are exactly two points on the circle which are collinear
with & and 3: these are the points z; and z» which satisfy

s—a=Azn—08) and zm—a=—-Az—7).

These lie at opposite ends of a diameter. Writing the equation of the circle in
the form |z — a| = r we have

1 1
a= E(Zl + ) and r= 5 |z1 — 22].

(=) + (@) = %)\((6 )= () = %)\(Zl — )

¢

N

and, likewise,

1
AB—a)= E(Zl — 22).
Consequently (remember 1.8(6))

(a—a)(B—a)= %(zl — )21 — 20) =12,

So points « and 3 in C are inverse points with respect to the circle |z — a| = r if
and only if they satisfy (o —a)(3 — a) = r%. Note that we must always have one
of a and 3 inside the circle and the other outside. We shall also regard o = a
and 8 = oo as a pair of inverse points for |z —a| = r.

2.11 Examples (inverse-point representation of circles).

¢ Consider the circle given by |z — 3| = 2. This has the segment [1, 3] of the
real axis as a diameter. The real numbers « and 7 are inverse points if and
only if (o« — 3)(8 — 3) = 4. A possible choice is « = 7 and 7 = 4. So the
equation of the circle can be written in the form |2 —7|/|z —4] = A. To
find A we note that z = 5 lies on the circle, This gives A = 2/1 = 2.

e Consider the unit circle, |2| = 1. A typical pair of inverse points for this
circle is & and 1/&, giving as the inverse-point representation of the circle

l—«
1-1/a

Z—a
x—1/&
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Figure 2.7 Circles from inverse-point representation

that is,

Z—Q — 1

az—1
Here we have used the fact that 1 lies on the circle and that |a—1] =
| —1].

e Consider the circle with equation |z + 1| = A|z|, where A # 1. It has —1
and O as inverse points, and hence has a diameter lying on the real axis.

The ends of this diameter are at the solutions of z + 1 = Az, that is. at
(£A—1)7!. The centre is at (A? —1)™ and the radius is A|A* — 1|_l.

2.12 Coaxal circles. TIor distinct fixed points & and 7 in C, we have, as A
and p vary, two families of circles:

o O (. ) circles
Z—a

z—0

having ¢ and 2 as inverse points. Here A = 1 is allowed, so that the straight
line bisecting the segment [«, 7] is included.

o Co(a, 3): circles

fr—a) [ M y

through « and 3.

Traditionally, each of the families C}(«, 8) and Ch{c, 8) is said to form a
coaxal system. Coaxal systems of circles have interesting geometric properties.
For example, any member of € (e, 8) cuts any member of Cs{c, 3) orthogonally.
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av, >

LNTTU

Figure 2.8 Coaxal circles

Mobius transformations

This section introduces a family of mappings of the extended plane onto itself
which map circlines to circlines. More extensive discussions of these mappings
and of their wider role in algebra and geometry can be found in [13] and [18].

2.13 Some particular mappings. Consider the mappings

s ze¥ (pCR) (anticlockwise rotation through ¢),
2Rz (R>0) (stretching by a factor of R),
2 z4+a (a€R) (translation by a),

2 1/z (inversion).

It is easy to see geometrically that mappings of the first three types take straight
lines to straight lines and circles to circles. For example, the real axis is mapped
onto

the imaginary axis by 2w = 22,

the line Imw =1 by Zwi=z2+1,
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while the unit circle is mapped to

the circle |w| =2 by Z e w =2z,
the circle w—1| =1 by Zrrwi=z+ 1.
Now consider the inversion z + w := 1/%, regarded as a map from C to C.

Consider the image of the line Rez = 1, which we may describe in inverse-point
form as |2| = |# — 2| (points # equidistant from 0 and 2). We have z = 1/w, so
the image is given by |1/w| = |1/w — 2|, that is, |2w — 1| = 1. Since inversion
is self-inverse, we see also that the circle |2z — 1| = 1 maps to the line Rew =1
under z — w = 1/z. We conclude that under inversion a line may map to a
circle and a circle may map to a line.

2.14 Mbbius transformations. We now bring together the four special types
of mapping—rotation, stretching, translation, and inversion—considered in 2.13.
A Mobius transformation is a mapping of the form

_az+b

2w = f(z):= o (a,b,c,d € C, ad —bc#£0).

(The excluded case ad — be = 0 produces a constant mapping or one which is
undefined.) We view the Mobius transformation f as a mapping from C to C:
f(=d/c) = oc and f(oc) = a/e, according to the arithmetic rules in 2.8. Then
f: C — C is one-to-one and onto, with a well-defined inverse given by

dw—b
a—auy

Fwes

Certainly the special mappings described in 2.13 are Mobius transforma-
tions. Furthermore, a general Mobius transformation may be built up from
mappings of these types by composing maps in the usual way. It is easy to check
that the Mobius transformations form a group under the operation of composi-
tion of maps.

2.15 Theorem (circlines under Mobius transformations).  Let C be a circline
with inverse points & and 3 (in C) and let f be a Mobius transformation. Then f
maps C' to a circline, with inverse points f(a) and f(3).

Proof We write the equation of €' in inverse-point form as |z — | / |z — 3| = A.
Suppose w = f(2) = (az + b)/(cz + d), so that z = (dw — &) /(a — cw). We
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substitute for z in the equation for C' to obtain the image f(C). It is given by

(ve + d)w — (aa +b)

(Be+ dyw — (Ba+b)| A

We may rewrite this as

. w— fla) fBe+d .
— L= )| : Be ,
1) T A o ifac+d#0and fc+d#0, or
. | Ba+b . g
(i) lw — fle)] = A P ifac+d#0and fc+d=0, or
(iii) lw— f(B)] = A aa 0 ifac+d=0and Sc+d#0
T Be+d T o '

(Note that «ac + d and fe + d cannot both be zero, because ad — be # 0 hy
assumption.) In each case f(C) is indeed a circline with f(«) and f(5) as
inverse points: in cases (i) and (iii), the images of the original inverse points are
the centre of the circle and the point oc.

2.16 Finding images: substitution method.  With the geometric insight pro-
vided by Theorem 2.15, we can now describe the effect of Mobius transformations
on circlines without having to resort to real and imaginary parts. First we draw
attention explicitly to a tactic employed in the proof of Theorem 2.15 for find-
ing an image (in this case a Circline,)v under a mapping (in this case a Mobius
transformation). Suppose that S - C and that we wish to find the image of S
under a map f: 2+ f(2) = w € C. We seek to express z in terms of w (this
obviously requires f to be injective) and then substitute this expression for z
into the defining relation for S to get a corresponding defining relation for f(.5).
This strategy is used in 2.13 and in 2.17,

2.17 Example (circlines under a Mobius transformation).  Consider f: z —
f(z) = w:= (z— 17!, Under this M&bius transformation the image of any
circline is a circline, by 2.15. We find the images of various circlines.

¢ The imaginary axis is given by |# — 1| = |#+ 1|. Substituting for z in terms

of w we see that the image has equation
w1
w

w—+1
w

_1‘_

-1

which reduces to |2w+ 1| = 1. Hence the image is the circle centre —1/2
and radius 1/2.
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e The real axis has i and —1i as inverse points and hence its image is a circline
with f(i) = 1(—1-1) and f(—1i) = £(—1+1) as inverse points. These points
are conjugates of each other. Also, the image passes through co = f(1) and
0 is a straight line. These facts identify the image as the real axis.
Alternatively, but more laboriously, write the equation of the real axis as

|z — i = |z + i

and substitute (w + 1)/w for z to get |w(l—1)+1| = Jw(l+1i)+1|.
Equivalently (remember that |1 —i| = |T—i| = |1 +i|),

|w—3(i+1)| = |w—-3(-i+1)|.

This represents the real axis.

For a third method, we may argue as follows. It is easy to see graphically
that the map z — (z — 1)~ is a map of R~ {1} onto R~ {0}. Also, in the
extended plane, z =00 corresponds to w =1 and z = 0 to w = oo. Hence
the real axis (in C) is mapped to itself.

o The circle centre 0 and radius r has image given by |w+ 1| =r|w|. Ifr =1
then it is the line Rez = —1/2. If » # 1 then it is a circle with —1 and 0
as inverse points. For explicit identification of this circle, use the formulae
in 2.11.

2.18 Triplet representation of Mdbius transformations.  If we are interested
in finding the image of some circline under a Mébius transformation, one way
to proceed is to exploit the fact that there is one and only one circline through
any triplet of three distinct points in C. Thus in the second example in 2.17 we
argued that the real axis is the unique circline through 0, 1, and oo, so that its
image under z — (2 —1)~! is the unique circline through —1, oo, and 0, viz. the
real axis. We do not actively encourage use of triplets since later on we want to
map regions rather than curves. For these the substitution method will be more
effective. However triplets are valuable for constructing Mobius transformations.
Suppose that each of {21, z2, 23} and {wy, w2, w3} is an ordered triplet of distinct
points in C. Then we claim that there is a unique M&bius transformation f such
that f(zx) = wi (k=1,2,3) and that this is given by

w—uwy Wy — W3 AR A Z9 — 23
w—1ws /) \ws —w z—z23 ) \m—2 /)

To prove the claim, note that the map

g'ZP—) zZ—Z1 zZ2 — 23
’ z—23 )\ — 21
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takes z1, 22, 23 to 0, 1, oo, respectively. Construct 5 in the same way as g, to
map wy, wa, wz to 0, 1, co. Then the composite map f := h~!og is a Mdbius
transformation taking zp to wy, for k = 1,2,3, and it is given by the formula
above.

Finally, to prove uniqueness, it is enough to show that the only Mobius
transformation f: z — (az 4+ b)/(cz + d) (ad — be # 0) taking 0, 1, oo to 0, 1,
oo is the identity map z + z. The conditions f(0) =0, f(o0) = 00, f(1) =
force in turn b =0, ¢ =0, a =d, so that f(z) = z for all z, as required.

Exercises

Exercises from the text. [Only for those proficient in geometry: verify the
claim in 2.9 that under stereographic projection any circle on ¥ maps to a
circline in @]

Verify the unproved assertions in 2.14.

2.1  What do the following equations represent geometrically? Give sketches.

(i) |z+2[ =6, (i) |2 —3i| = |z + i,
(iii) |iz — 1| = |iz + 1], (iv) | —w| = |z — 1] (w=e2"/3).

2.2 Describe geometrically the subsets of C specified by

(i) Im(z+1) < 2, i) |z—-1i<]z-1],

(ili) = +2i| = 2, (iv) |z—14+1i =2s—-1-1,
(v) Im[(z + 1)/(21)] <0, (vi) L<Rez <2

(vii) Rez #0, (viii) |z —1| < land |z|=]z—-2|.

2.3 Describe geometrically the subsets of C specified by

(i) |z =1-1>1, (i) [z +1if # |z =i,
(iii) = = |2]e (-7 <0 < Z), (iv) |# —2| > 3 and |z| < 2,
(v) Rez < lor Im(z —1) #0, i) l< ]z -1 <2,

(vii) 1 <Imz < 2 and Re > 1, (viil) |z >z +Z.

2.4 Sketch the following circlines, finding the centre and radius of those which
are circles.

M |z +i| = |2 — 31|, i) |2+ 1] =4z —1],
(iii) |2 — i| = 2|2], (iv) 2|z — i = |2
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2.6

2.7

2.8

2.9

2.10

2.11
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Find a pair of inverse points in C for each of the following circles and hence
find an equation for each in inverse-point form.

G lz-1=2 (i) |z—il=v2, (i) |z—-1-i]=2

Let f be a Mobius transformation. Let S be a circline, so that f(S5)
is a circline, by Theorem 2.15. Let o and £ be distinct points on .S and
consider an arc A on .S which has endpoints « and 3. Describe the possible
geometric forms the image f(A) may take. (Hint: there is a unique point
pin C such that f(p) = oo; consider cases (a) p¢ S, (b) p=a or 3, (c)
pESNA, (@) pe (AN {a,8)))

For each of the following sets of points find an arg equation for the arc
which has the first and third points as its endpoints and which passes
through the second point:

) —1,i,1, (@) —1,-1i, (i) —1-1,0,141, (iv) 0,1+ 1,00.

Which arcs are given by the following equations? Give sketches.

(i) ar T (ii) ar )y _r (iii) ar i)
E\z-1) "2 B\Z+1) T2 E\z-1) "

(a) Sketch the circles |z — 1| = /2 and |z + 1| = v/2 and find the points
« and § where they intersect.

(b) Find equations for the four circular arcs with endpoints « and f
which are arcs of the circles in (a).
(c) Describe in terms of arg the set

G:={z€C:|z-1<V2 |z +1] <V2}.

(d) Describe in terms of arg the three sets obtained from G by changing
one or both of the occurrences of < to >.

~

Find the image (in C) of (a) the ray argz = /6, (b) the disc D(0;2), and
(c) the line Im z = 1 under

(i) 2 = —%, (ii) z = (1 + 1)z, (iil) z — 1/%.

Find the Mo6bius transformation mapping 0, 1, co to 1, 1 + i, i, respec-
tively. Under this mapping what is the image of

(i) a circular arc through —1 and —i,

(ii) the line given by Imz = Rez,
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(iii) the real axis,

(iv) the imaginary axis?

2.12  (a) Consider the Mabius transformation z — w = (z — 1)~! regarded
as a map from C to C. Find the images of the half-lines [1, c0) and
(—00,1] on the real axis.
(b) Consider the Mobius transformation z — w = (z+1)/(2—1) regarded
as a map from C to €. Find the images of the real intervals [0, 1],
[1,00) and (—o00,1]. Find also the image of each of the circles

Q) |z =1, @) [#+1]=1, (i) |z-3i[=1L

2.13 Let a be such that |a| < 1. Let ¢,(2) = (z — a)/(@az — 1). Show that ¢,
maps D(0; 1) one-to-one onto D(0;1) and that the inverse map ¢;! is ¢q.
Prove in addition that every M&bius transformation mapping D(0; 1) onto
D(0;1) is of the form e!* ¢, , for some real constant A and some a € D(0;1).

2.14 Let f: z— w = (az+b)/(cz+d) (ad—bc # 0) be a M&bius transformation,
other than the identity map. A point « in C is said to be a fixed point
of fif fla) =a.

(i) Prove that f has either one or two fixed points.
(ii) Suppose that f has distinct fixed points, o and 5. Prove that
w—a Z—« a—ca
— :kz—[)” where k = e
What is the image under f of
(a) the circline |(z —a)/(z = B)]| = A,
(b) the arc arg((z — a)(z — 8)) = p (mod 27)?
(i) Suppose that f has a single fixed point «. Prove that

1 = 1 + K, where K = 1 .
w—o -« a — co

2.15 Find the fixed points of the Mébius transformation z — w when w is given
by

(i) z+i (ii) 3;_ 14, (iii) iz, (iv) QZZ L
Find the image under each of these mappings of

(a) the circle |z| =1,

(b) the real axis,
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(c) the imaginary axis.

2.16 Let f(z) = 2iz/(z + i). Prove that f maps any circular arc through 0
and i onto itself and deduce that f maps {z : Rez > 0, |z — %1| < % } to
itself. What is the image under f of {2z : |z| < |z —1i|}?

2.17  (a) Show that the equation A2Z+Bz+ BzZ+C =0, where A,C € R and
B € C, represents a circline. Prove that every circline is representable
in this form.

(b) Use (a) to prove that circlines map to circlines under maps of each
of the types (rotation, stretching, translation, inversion) considered
in 2.13. Hence obtain an alternative proof of Theorem 2.15.



3 Topology and analysis in the
complex plane

Complex analysis has a vital geometric facet, from which it derives much of
its character. The geometry of the plane is inextricably bound up with its
topological structure, defined by the open sets we introduce below, and this
structure provides the key to the analysis of complex sequences and series and
of complex-valued functions defined on subsets of C, in particular the study of
convergence, continuity, and differentiability.

Open sets and closed sets in the complex plane

This section introduces notions which are topological in nature. We shall assume
no prior acquaintance with topology and include the bare minimum for our im-
mediate needs. Those who have studied the rudiments of topology in Euclidean
spaces or in the more general setting of metric spaces should find much here that
is familiar. For an introduction to topology we recommend [7].

3.1 From R to C. In elementary real analysis the subsets of R which princi-
pally concern us are intervals. Bounded open intervals, that is, non-empty sets
(e,d) :={xz €R:c<z<d} (¢,deR) underlie the definitions of limits and
continuity; bounded closed intervals (of the form [c,d] ={x € R : c <z < d}
(¢,d € R)) are the sets on which continuous functions have especially good be-
haviour (boundedness, intermediate-value property, etc.). Any bounded open
(closed) interval in R is expressible in the form {z € R : |z—a| < 7}
({z € R : |z —a| € r}); here a is the midpoint and 2r the length of the
interval. In C, we have, analogously, open discs D(a;r) (r > 0) and closed discs
D(a;7), as defined in 2.6.

3.2 Definition (open set). A set S C C is open if, given z € S, there exists
r > 0 (depending on z) such that D(z;r) C S. Informally, S is open if, from any
point z in S, there is room to move some fixed positive distance in any direction
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without straying outside S:; how large this distance can be will vary from one
point to another (see Fig. 3.1). It is the need for such ‘elbow room’ that dictates
that the sets in so many of our later theorems be open.

Figure 3.1 Open set definition

3.3 Generating open sets.

The empty set is open (because the condition for it to be open cannot fail).

The entire plane C is open (since D(z;r) C C for any z € C and any » > 0).

If 51,...,S, are open sets, then S := S1N---NS, is also open. To prove
this, let z € .S and pick d; > O such that D(2:6,) CSpfor k=1,...,n. Let
0 == min{d;,....d0,}. Then § > 0 (this is where we require the restriction

that there are only finitely many sets Si). We have D(z:9) C S.

It is easy to prove that, if S; (for j € J, where J is some index set) are

open sets, then J et S; is also open.

[The facts here are exactly those required for the family of open subsets of C to

form a topology on C.]

3.4 Examples (open sets). We return to the examples in 2.6 and show that
the sets we called open are indeed open sets. Observe the role played by the
strict inequalities < and > in these examples.

We claim that D{a:r) is an open set, for any a € C and r > 0. To prove
this, fix # € D(a;7) and let § satisfy 0 < 6 < r — |z — a|. Then, using the
triangle inequality (1.9(2)),
lw—z<d=|w—a|=|lw—2+z—a|<|w—2|+|z—q
L<d+|z—al<r
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Figure 3.2 Proving that D(a;7) is open

(see Fig. 3.2). A similar argument shows that {# € C : [z —a| > r} is
open.

¢ The open annulus
1z€Cis<lr—al<r} O<s<r<x)

is the intersection of two open sets and so is itself an open set.

¢ The open upper half-plane IT* is an open set: if Im z > 0 then D(z;7) C ITT
whenever 0 < r < Im z; More generally, the sector

Sagi={2€C:0£s=|zle? cCwitha<0< 3} (@< p)

Is an open set. To prove this, fix z € S, 5. Let § := min{d;,d>}, where
01 and J; are the perpendicular distances from z to the bounding rays
argz = a and argz = 3. Then 6 > 0 and D(z;r) C S..3 whenever
0<r<d.

3.5 Examples (non-open sets).  The following sets are not open.

¢ D(a:r): there exists no open disc D(z:0) C D(a;r) if |z —a| = r; see
Fig. 3.3.

® The interval (0,1) of the real axis: for any z € (0,1) there exists no open
disc D(2;9) C(0,1).

3.6 Definitions (closed set, limit point, closure). Let S C C,

(1) Theset Sisclosed if C~S={zcC: 2¢ S} is open.

(2) A point z € C is a limit point of S if D'(z:7) NS #£ @ for every r > 0. A
point of S which is not a limit point of S is called an isolated point of S.
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Figure 3.3 DProving that D(a;r) is not open

(3) The closure S of S is the union of S and the limit points of .S.

So z is a limit point of S if every open disc round z contains a point of .S
other than, possibly, # itself. In Fig. 3.4, w is a limit point of S but z is not. The
use of a punctured disc in the definition is to prevent points of S being automatic
limit points of .S. Tor # to qualify as a limit point it must have clustering round
it, arbitrarily closely, points of S (other than z itself if z € ).

Figure 3.4 Limit points

The definitions in 3.6 are linked by the following proposition. It is useful to
put this in place before we consider examples.

3.7 Proposition (closed sets and closure). Let S C C.
(1) The following are equivalent:

(i) S is closed,
(i) S contains all its limit points,
(i) S=2S.
(2) z€ S if and only if VNS # @ for every open set V' containing .

(3) S is a closed set.



34 Topology and analysis in the complex plane

Proof (1) Note that we have D(z;7) NS =D'(z;7) NS for 2 ¢ .S, Then

S is closed
<= C~ S is open
<= given z ¢ S, there exists > 0 such that D(z;7) CC~ S
<= given z ¢ S, there exists » > 0 such that D'(z;7)NS =@
<= no point of C~ S is a limit point of S.

Hence (i) and (ii) are equivalent. Also, (ii) and (iil) are equivalent by definition
of S.

Now consider (2). Suppose that every open set V' containing » intersects .S.
Recall from 3.4 that D{(z:7) is an open set containing # for any » > 0. Hence
either z € S or D(z;r) NS £ @ (for all » > 0). For the converse, suppose that
there is some open set V such that z € V and VNS = @. Since V is open, we
can choose r > 0 such that D(z;r) CV. Then D(z;r)N S = 2.

For (3), it suffices by (1) to prove that any z in S is in .S. Suppose, for
a contradiction, that this is false. Because z ¢ S, there exists r > 0 such that
D(z;7) NS = @. Because z € S, there exists w such that w € D(z;7) N S (by
(2), applied with S in place of ). But then D(z;7) is an open set containing w
and, by (2) again, we have D{z:7) N.S # @, the required contradiction. O

3.8 Examples (closed sets, limit points, closure).

e Consider D(a:r). We saw in 3.4 that the complement of this set is open, so
D(a;:7) is closed. So, too, is the circle { z€ C : |z —a| =7},
A point z is a limit point of D(a:r) if and only if |z — | < r. Hence the
closure of D(a;r) is the closed disc D(a;7).

e Half-planes, sectors, annuli, etc., when specified by weak inequalities (<)
are closed, and are the closures of the corresponding sets specified by strict

or mixed inequalities.

e Theset S ={z: 1< |4 < 2} is neither open nor closed. To see this,
note that no disc D(1;r) C S and that no disc D(2;7) C C~ 5. Sets in
C are not like doors: a set which fails to be open need not be a closed set.
The concepts open and closed are related by set complementation, not by
logical negation.

o Let S ={(-D™"1+2%):n=12...}. Certainly S is not open. The
limit points of .S are £1, and neither of these belongs to S. Hence .S is not
closed.
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3.9 Bounded sets and compact sets. A subset .S of C is said to be bounded
if there exists a real constant M such that |z| < M for all z € S. A set which is
both bounded and closed is called compact. [The sets we have called compact are
exactly those which satisfy the usual open covering definition of compactness,
thanks to the Heine-Borel Theorem. Save in Theorem 4.5, where we proceed ad
hoc, we shall not need to work with open coverings.]

Note in particular that line segments [a, 5] in C, circles |z —a| = r, and

closed discs D{a;r) are compact.

3.10 The extended plane revisited. We defined open sets in C via open discs.
This suggests that we should define ‘discs’” in € centred on oc: we let

D(oc;r):i={2€C: |z >r}U{cc} (r>0).

We define a subset S of @ to be open if, for each z € 5, there exists r > 0 such
that D(z:r) € .S. The motivation here comes from stereographic projection.
[Those with the requisite topological knowledge will see that the bijective cor-
respondence between the Riemann sphere ¥ and the extended plane C sets up
a homeomorphism between X, equipped with the topology it acquires as a sub-
space of the Euclidean space R?, and C. Furthermore, ¥ is compact and, since
compactness is preserved by homeomorphism, C is also a compact topological
space. What we have here is an instance of the ‘one-point compactification’ of a
space: by adding the extra point o¢ to € and defining open sets appropriately
in C=CuU{oc} we obtain a compact space.]

Convexity and connectedness

This section deals with concepts with both geometric and topological content.
The notion of a region (defined in 3.12) is the most important for the future
development of the theory.

3.11 Convex sets and polygonally connected sets. Let S C C. We say
that S is convex if, given any pair of points @ and b in .S, we have [a,b6] C S.
See Fig. 3.5. Examples of convex sets are:

e half-planes and, more generally, sectors;

e open discs D(a:r) and closed discs D(a:r).
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A convex set A non-convex set

Figure 3.5 Convexity

Examples of non-convex sets are:
e the union of non-intersecting discs, for example D(—1;1) UD(1;1);

e the union of two intersecting discs, when neither lies inside the other;

C \ R, the plane with the real axis removed;

C [0, 00), the plane with the non-negative real axis removed;

punctured discs D’(a;r) or, more generally, annuli.

The non-convexity of C \ R seems geometrically obvious but, for reasons
which will emerge later, it is worth verifying this analytically too. Let a = a;+1iaz
and b = by + iby with as < 0 and b2 > 0. A typical point of the line segment
[a,b] is

(1 — t)(l +tb = (1 — t)a1 + 1(1 - t)(lz + (tbl + itbz)
= ((1 — t)al + tbl) + 1((1 — t)az + tbz) (0 <t 1)

But t = as(az — ba) "t € [0,1] and yet for this ¢ we have Im((1 — t)a + tb) = 0.
So [a,b] £ C\R.

There is an important difference, geometrically, between S; := C\ R =
Ot UIl™ and Sy := C~\ [0,00). First consider S» and fix any two points
a,b € Sa. Although we may not be able to join these points by a single line
segment lying wholly in Sy, we can ‘walk round the slit’: there exist points
zo=a=ay+ias, 1 = —1+1as, zo = —1+ ibs, z3 = b = by + iby such that the
union of the line segments [z, 21], [#1,22], and [22, 23] lies entirely within S5.
On the other hand, given points a € IIT and b € II~, there is no finite sequence
of line segments [zo, 21], [21, 22], .- -, [#n—1, 2n] With 2o = a and z, = b which lies
wholly in Sy. (For a proof, observe that if there were such a sequence then there
would be some k such that [z;_1,25] € S1, which is impossible, from above.)



Topology and analysis in the complex plane 37

Let a =20, 21..... Zn—1,b = z, be finitely many points in C. We call

[20, 1] U [21, 22] U - - - U [2—1. 2]

a polygonal route from « to b; the case @ = b, with n = 0, is allowed. A non-
empty subset S of C is polygonally connected if, given any two points ¢ and b in
S, there is a polygonal route from « to b lying wholly in S. Clearly every convex
set is polygonally connected. Examples of sets which are polygonally connected
but not convex are the set S; defined above, and any annulus.

[ J/

\1

Figure 3.6 A polygonal route from « to b in S

Polygonal connectedness is related to a condition expressible in terms of
open sets, as Theorem 3.13 will show.

3.12 Definitions (connectedness, region).

(1) A subset G of C is connected if it cannot be expressed as the union of
non-empty open sets Gy and G> with Gy N G> = @. Putting this another
way, connectedness of G implies that if G; € G and G; and G~ G are
both open, then we must have G; = G or G; = @.

(2) A region is a non-empty open connected subset of C.

3.13 Theorem. Let G be a non-empty open subset of C. Then G is a region
if and only if G' is polygonally connected. In particular, any non-empty open
convex set is a region.
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Proof Suppose that G is a region. Fix a € G and let
G :={z¢c G : Japolygonal route from a to z in G }

and Gy := G~ Gy, Certainly a € G, so Gy # &. Our strategy will be to show
that both G and G are open. Then connectedness implies that G = G;.

Figure 3.7 DProof of Theorem 3.13

We now establish our claim that G; and G- are open. Tor any 7z € G
we can find » > 0 such that D(z;r) C G. Let w € D(z;r). Certainly
[2,w] € D(#;r) € G. If # € Gy then there is a polygonal route in G from a
to w, via z, so that w € G1. On the other hand, if w € G, then there is a
polygonal route in G from a to z, via w. Hence if 2 ¢ G| then w ¢ G;. We
conclude that z € Gy implies D(z;) C Gy, for k = 1,2. Therefore G; and G-
are open, as claimed.

Conversely, suppose that G is non-empty, open, and polygonally connected,
and suppose for a contradiction that G is the disjoint union of non-empty
open sets G and G3. Take any a € (1 and b € (2. and a polygonal route
[20,#1]U -+ U[2p—1,%,] in G which joins @ = zp to b = z,. Then at least one
of the line segments [zr—1, 2] has zp—1 € G1 and z, € G2. A typical point of
[Zr—1, 2k) 15 2(t) := (1 — t)2p—1 + tz;, with 0 <t < 1 and we have the following:

(i) for each t € [0,1] either #(¢) lies in G or it lies in G2, but not both;
() 2(0) = zx—1 € Gy and 2(1) = 2z € G
(iii) if »(t) lies in G for some given ¢, then z(s) € Gy, for all s € [0,1] with
|t — s| sufficiently small (because G}, is open).
Let
qg:=sup{te(0,1] : 2(t) € Gy }.
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By (i) and (iil), we have 0 < ¢ < 1. Now consider 2(q). If 2(¢) € G, then,
by (iii), there exists s with 1 > s > ¢ such that 2(s) € G, in contradiction to
the definition of ¢. If 2(¢) € G2 then we can find § > 0 such that z(s) € G»
(and hence z(s) ¢ G1) for all s such that 0 < ¢— 4 < s < ¢. Again we have a
contradiction to the definition of ¢. [

[Those with prior knowledge of connectedness will have recognized that the
argument above has features in common with that used to prove that an interval
in R is connected.]

3.14 Other characterizations of polygonal connectedness. In our definition
of polygonal connectedness we used polygonal routes made up of arbitrary line
segments. There are variants on Theorem 3.13. Essentially the same proof works
if, for example,

¢ we allow only polygonal routes all of whose line segments are either hori-
zontal or vertical, or

¢ we allow circular arcs in place of some or all of the line segements in a
polygonal route.

Limits and continuity

This section contains the technical foundations of analysis in the complex plane.
It deals only with those concepts and results which transfer in an entirely
straightforward manner from elementary real analysis. We assume that the
reader is already familiar with limits and continuity in the real case, as pre-
sented in introductory analysis texts. We give references to [3], which covers
all the real analysis we require here and in succeeding chapters, but any other
comparable text serves equally well as a source.

The definitions which follow mimic those for real sequences and functions,
with open discs in € replacing open intervals in R.

3.15 Definitions (sequences).

(1) A (complex) sequence {z,} is an assignment of a complex number z, to
each natural number n = 1,2, .... We occasionally need to allow a different
set of values of n; notation such as {#, }»>0 should be self-explanatory. The
sequence {z,} is bounded if there is a real constant M such that |z,| < M

for all n.
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(2) The sequence {z,} converges, to the limit o in € (in symbols, 2z, — a
or limy o0 2, = a). if, given ¢ > 0, there exists a natural number N
(depending on &) such that

n=N = |m-—-a<e

(3) The sequence {w} is a subsequence of the sequence {z,} if there exist
natural numbers n; < ng <... such that wy =z, for k=1,2,....

3.16 Definitions (limits of functions, continuity).

(1) Let f: .S — C be a function defined on a set S C C and let a € S. Then
lim, . f(#) = w (in alternative notation, f(z) - w as z — a) if, given
& > 0, there exists § > 0 (depending on a and ¢) such that

zeSand 0<|z—a|<d = |f(»)—w|<e.

Note the inclusion, as is normal with limits of functions, of the condition
0 < |#—aql, that is, z # a. The limit, if it exists, is determined by the
behaviour of f(z) as » approaches a; the value of f at a is irrevelant, and
may not even be defined if ¢ ¢ S.

(2) Let f: S — C be a function. Then f is continuous at « € S if, given £ > O,
there exists 0 > 0 (depending on a and ¢) such that

zeSand |[z—a|<d = |f(z)— fla)] <e.

In other words, lim._,, f(#) exists and equals f{a).

The function f is continuous on S if it is continuous at each ¢ € S.
[Continuous functions can be more elegantly characterized in terms of open
sets, but we shall require only the e-¢ definition.]

3.17 Working with limits.  The algebra of complex limits (sums, products,
etc.) and other elementary properties can be developed, both for sequences and
for functions, exactly as in the real case. We shall assume this done, and shall
use the results freely. One caveat is, however, necessary. Proofs which depend
on the order structure of R do not transfer directly to C. It is therefore useful
to have available the following elementary result.
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3.18 Lemma (linking convergence in C and in R).

(1) Let {z,} be a complex sequence. Then {z,} converges if and only if the
real sequences {Re #,} and {Imz,} both converge. In addition, if z, —+ a
then |z,| — |a| and Z; — @.

(2) Let f: .5 — C and write, as usual, f = u+1iv, where u and v are real-valued.
To parallel (1), write v as Re f and v as Im f., s0

(Re [)(2) :=Re(f()) and (Im f)(z) :=Im(f(z)) (< 9).

Then, for any a € S, lim, ,, f(2) exists if and only if both lim. ,, Re f(?)
and lim;_,, Im f(») exist. Then f(z) — w implies that Re f(#) — Rew

and Im f(z) = Imw and, in addition, |f(2)| — |w| and f(z) — @.

(3) Let f: S — C. Then f is continuous at ¢ € S (on S) if and only if Re f
and Im f are continuous at @ (on ). In addition, continuity of f implies
continuity of |f|, defined by |f| (z) := |f(»)| (z € 9).

Proof We shall prove (1), leaving as an exercise the proofs of the analogous

statements in (2) and (3). Let z, — a. Using 1.8(1),

|Re z, — Rea| = |Re(z, — a)

|Im 2, — Ima| = |Im(z, — a)

| <|#n—¢a| and
| < |2n — 4.

It then follows easily from the definition of convergence that Re 2, — Rea and
Imz, — Ima. Conversely, if Re z,, — p and Im 2z, — ¢, then

Zn =Rez, +ilmz, — p+ ig,

by the complex version of the algebra of limits. Also, from above, Rez, — p
and Im z, — ¢. By uniqueness of real limits, Rea = p and Ima = g¢.
To prove the claim about {|z,|} we observe that, for any a € C, 1.8(3) gives

2] = lall < 20 — al.

Finally, if z,, > a=p+iq then 2, = Rez, —ilmz, > p—ig=a. O

3.19 Examples (limits of sequences).

¢ Consider {z,} where z, = ¢*, for ¢ € C and |¢| £ 1. If |¢ < 1 then
|zn| = || — 0. On the other hand, if |¢| > 1 then the real sequence {|¢|"}
tends to infinity and hence {z,} has no limit in C.
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e Now consider {z,} where z, = (n + i)~!. Here we may note that

0 1

SRS R N

and deduce that z, — 0 since
Rezp, =n/(n®*+1) =0 and Imz,=-1/(n*+1) 0.

Alternatively, we see that |2,| < (n—1)71 for n > 2, by 1.8(3). This implies
that |z,| = 0 and hence that z, — Q.

3.20 Examples (limits of functions, continuity).

¢ Consider f(2) = (Im#)/(Rez) for z #£ 0. Then, in particular, f(z) = 0
when # is real and f(z) = 1 on the line y = ». Hence lim, .o f(#) fails to
exist.

e 2% — 1 is continuous on C and (2% — 1)7! is continuous except at the

100th roots of unity.

e From 3.18(2). we see that Rez, Im #, and Z are continuous functions of z

on C.

The following important result is almost immediate from the corresponding
result about R and the lemma in 3.18,

3.21 The Cauchy convergence principle for C. A complex sequence {z,}
converges if and only if, given £ > 0, there exists a natural number N such that

m.n =N = |z — 2| <e.

We next use 3.18(1) to derive the following theorem from its real counterpart
(given, for example, in [3], 3.4.8). This theorem leads to two further results which
are needed in the course of proving some important theorems later on.

3.22 Convergent subsequence theorem. Any bounded sequence of complex
numbers has a convergent subsequence.

Proof Let {z,} be a sequence with |z, < M for all n. Then, by 1.9(1),
|Rezp| < M, so {Rez,} is a bounded sequence in R. Hence there exist natural
numbers n; < ns < ... such that {Rez,, }x>1 converges. By 1.9(1) again,
{Im 2, }r>1 is a bounded real sequence, so there exist natural numbers m; = ny ’
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with m; < ms < ... such that {Imzy,,};>1 converges. Also {Rezy, }j>1
converges because it is a subsequence of {Rez,, }x>1. Now 3.18(1) shows that
{#m; }5>1 provides a convergent subsequence of {z,}. O

3.23 Corollary (Bolzano—Weierstrass theorem).  Any infinite compact sub-
set S of C has a limit point in S.

Proof We first observe that a point z is a limit point of .S if and only if there
exists a sequence {wy}r>1 of distinct points of S such that wy, — 2. We leave
the proof as an exercise.

By the definition in 3.9, S is bounded and closed. Select a sequence {z,}
with the points z, distinct and belonging to .S. Theorem 3.22 asserts that {z,}
has a subsequence which converges, to z say. Then z is a limit point of S.
Because S is closed, it contains z (by Proposition 3.7), O

3.24 Boundedness theorem for continuous functions. Let S be a compact
subset of C and f: S — C a continuous function. Then

(1) fis bounded, that is, there exists a finite constant M such that |f(z)| < M
for all z € S;

(2) f attains its bounds, that is, there exist #, and 2z in S such that

| L |f) <|f(z)] forall z€S.

We record for future use one further theorem from real analysis. It is an
immediate corollary of the Intermediate value theorem ([3], 5.3.7).

3.25 Theorem (integer-valued continuous functions). Let [a,d] be a closed
bounded subinterval in R and let f: [a.b] — Z be continuous. Then f is
constant.

Exercises

Exercises from the text. DProve that the union of any family of open subsets
of C is open (see 3.3). Verify the claims in 3.11 and the unproved assertions
in 3.18. Prove the statement about limit points in the first paragraph of the
proof in 3.23.
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3.1 (a) Prove that the following are open sets:
D{zeC:|z=-1<|z+1i]}. (i) €~ [0,1].
{(b) Prove that the following are not open:
() {z€cC:Rez >0}, ({){zeC:|7/<2,Rez>1}
3.2 Which of the sets in Exercise 2.2 are open, which are closed, and which are
neither? Find the closures of the non-closed sets.
3.3 Prove that each of the sets in Exercise 2.3 is open. Which are convex?
Which are regions?
3.4 Let S be a finite subset of C.
(i) Prove that S is open only if § = @.
(i) Prove that S is closed.
3.5 (a) Let G| and G be regions in €. Prove that Gy U G2 is a region if
and only if G; NGa #£ @.
(b) Let Gy,....Gxn be regions in C such that Gy N Gy # @ for
k=1,...,N—1. Prove that Uk L Gk is a region,
3.6  Suppose that G is a region and let a € G. Prove that G~ {a} is a region.
Assume that » is such that D{a;r) CG. Is G\ D{a;r) always a region?
3.7 Let S be asubset of C and let T :={Z : z € S}. Prove that S is open
(a region) if and only if T is open (a region).
3.8 Let G be aregion and f a continuous map of G onto an open set G. Prove
that G is a region.
3.9 (a) Prove that the sequence {z,} converges, and give its limit, when z,
is given hy
O o ... n?+in
— . 1 n. e e——
(i) nl . ) QA+, (i) R
(b) Prove that the sequence {z,} does not converge when z, is given by
n
i) i, i) (1 7. i) (=1 .
@i @) W) ) (D
3.10 Let p be any complex number. Let zy = p and, for n > 1, define

21 = 2 (70— =)
n+l—2 n n s
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if 2, # 0. Prove the following assertions.

(i) If {z,} converges to a limit a then a®+1—0.
(it
(ii
(iv

(v

If p is real, then {z,}, if defined, does not converge.
If p = ig, where ¢ € R~ {0}, then {z,} converges.
If |p| = 1 and p # +£1, then {z,} converges.

e e e

If Imp > 0, then {z,} converges to 1 and if Imp < O then {z,}
converges to —i (hint: consider |z, — i| / |z, + 1]).

3.11 (a) Prove that lim, o f(#) exists and equals 0 for each of the following
choices of f(z):

(Rez)(Im )

D) z+1z7, (i) % (i) ==,

(b) Tor each of the following choices of f prove, by letting » approach 0
along suitable rays, that lim, ,q f(2) fails to exist:

1) (i)

RN

3.12 On which sets in € are the following continuous?

2241
24+ 17

(iii) (iv)

O -7 @) =

=
i K
w2
g
()

3.13 Define a function f by f(z)=z/(1+|z|).
(1) Prove that f is continuous on C,
(ii) Prove that f(z1) = f(%2) implies »; = 2> (hint: use polar coordi-
nates).
(iii) Prove that f maps C onto D(0;1) (hint: use polar coordinates).
(Hence f is a continuous bijection from C onto D(0;1).)

3.14 Suppose that S is a compact subset of C and f: S — C a continuous
function. Use Theorem 3.24 to prove that the image f(.5) of S under f is
compact.

3.15 (The result of this exercise is needed in 17.9; for those who know some
topology it is a direct consequence of the Bolazano—Weierstrass theorem
for ¥ CR*.) Let S be an infinite subset of C. Show that either $ has a
limit point in .S or every disc D'(oc;r) contains a point of S [so that oc is
a limit point of S in the space CJ.
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3.16 Let ¢ € C and let z, = #,{c) (depending on ¢) be defined inductively as
follows:

20=0, zp1=F.(2) (forn>0), where F.(2):=2°+c.

The Mandelbrot set 3 can be defined to be the set of ¢ € C for which
|| <2 and the sequence {|z,(¢)|} does not tend to infinity as n — oc.
(i) Suppose there exists k such that |zr(c)| > 2. Prove that ¢ ¢ M.
(i) Let Uy :={c€C: |z(c)| > 2}. Prove that Uy is open.
(iii) Deduce that M is a closed subset of C.
(The Mandelbrot set is discussed in the Appendix.)



4 Paths

In this chapter we start systematically to study curves in the complex plane. To
regard a curve, such as a circle, simply as a subset of the plane will not suffice
for our purposes. Instead, we adopt a dynamic approach and think of a curve as
the route traced out by a moving point, the route being specified by a suitable
function of some real parameter. For example, v(t) = e travels anticlockwise
once round the unit circle as ¢ increases from 0 to 27, starting from 1.

We shall need a few of the ideas from this chapter when we consider elemen-
tary conformal mapping in Chapter 8 and multifunctions in Chapter 9. Readers
seeking the quickest possible route to the theory at the heart of complex anal-
ysis, in particular to Cauchy’s theorem, may wish to proceed straight from this
chapter to Chapter 10, in which we discuss integrals along paths.

Introducing curves and paths

Since the dynamic approach to curves involves a function ~ of a real variable ¢
which takes values in €, we record a few facts about such functions.

4.1 Complex-valued functions defined on real intervals.  Suppose g: [, 5] —
C is a function. Then g is continuous if and only if its real and imaginary parts
Reg and Img are continuous (recall 3.16 and 3.18). Differentiability of g is
defined via the expected limit:

§(1) = Tim glt+h) —g(t)

h—0 h (LL, t+hc [Oé, ﬂ]),

if this limit exists. Derivatives at a and 3 are, of course, one-sided derivatives.
Using 3.18(2), we see that ¢'(t) exists if and only if (Reg)'(t) and (Im g)'(¢)
exist, and then ¢'(t) = (Reg)'(t) + i(Im g)'(¢).

We now present the formal definitions of curves of various types. These are
illustrated in Fig. 4.1.
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4.2 Curves and paths. Let [, 5] (—o0 < a < 8 < o) be a closed bounded
interval in R. A curve ~ with parameter interval [«, 5] is a continuous function
~: [a, 8] = €. It has initial point ~(«) and final point v(3). and is closed if
v(a) = (7). It is simple if o < s <t < 3 implies that v(s) # v(t) unless s = ¢
or, in the case of a closed curve, s =« and t = 3.

Suppose v is a curve with parameter interval [a, 5]. We denote the image

e, B]) = {~(t) : t €], 3]}

by ~*. The curve ~ is said to lie in a set S if v* C 5. As the continuous
image of a compact interval, v* is a compact subset of C (by Exercise 3.14). In
particular, ~* is a closed set.

The curve v carries a built-in orientation, determined by the direction in
which ~(t) traces out +* as t increases from « to 8. Given v, there exists a
curve —v with the same image set but the opposite orientation:

(=) =Ha+8—1) (telai).

Let a < ag < f1 < 8. By restricting the function v to [y, 51]. we obtain
a new curve, which we denote by ~[[ay,81]. Now suppose o < 7 < 4 and
let v = Y[[ee, 7] and ~» = ~[[r.5]. The final point of + coincides with the
initial point of v (each is %(7)) and ~* is traced by first tracing ~f and then
tracing ~5. Conversely, take curves ~; and v with parameter intervals [, 5]
and [az, 82]. So long as v1(f1) = v2(az) we can form the join, v say, of v and
~s (denoted v U~2). The recipe is

(t) . { A/l(t) ifte [Oél,ﬂl],
T\t o —B) i€ [Pt P —an)

"//
To avoid irritating technicalities later, the parameter intervals of ~; and ~» are
here allowed to be arbitrary (whereas those of subintervals obtained by restriction
automatically slot together). The penalty is a slightly complicated formula for
join—essentially the parameter interval of 72 has to be translated. The joining
process can be iterated: the join of ~,7,..., ~n, can be defined provided the

initial point of = coincides with the final point of ~;_; for K = 1,....,n — 1.
A polygonal route as defined in 3.11 is the image of the join of line segments
viewed as curves.

A curve v is said to be smooth if the function + has a continuous derivative
on its parameter interval [, 7] (derivatives at « and § being one-sided). A path
is the join of finitely many smooth curves,

In the illustrative diagrams in Fig. 4.1 we perforce depict +* (the image)

rather than v (the function). Arrows indicate the direction in which ~* is traced.
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It should be noted that, even when v is a path, +* may be extremely complicated,
to an extent that diagrams cannot adequately convey.

y (@)= y (o) y(ty)
Y=y (B)
Y(B :

(@)
A smooth curve

t
r(® A simple path

h y@=v(f)

The join of y, and v,
A non-simple closed path

Figure 4.1 Curves and paths

4.3 Circline paths and contours.  Familiar figures such as circles and squares
can be realized as images of paths. In particular:

e for any » and v in C, the image of the path given by
Yty =(1=-tu+tv (tecl0,1])

is the line segment [u,v] traced from « to v, and

¢ any circular arc traced clockwise (or anticlockwise) is the image of a path ~
(or —~), where
“//(LL) =a+ret (LL € [91, 93])

witha € C, r >0, and 0 < 6 — 0, < 2.

We define a circline path to be a path which is the join of finitely many
paths of these types and a contour to be a simple closed circline path. The image
of a contour consists of finitely many line segments and circular arcs and does
not cross itself. We define a contour ~ to be positively oriented if, as ¢ increases,
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Figure 4.2 Two contours

~(t) moves anticlockwise round any point inside it. [A more formal definition,
in terms of index, is given in 12.8, on the advanced track.]

A geometric adjective (circular, triangular, ... ) applied to a path or con-
tour v will refer to the shape of its image ~*. However we shall shorten ‘tri-
angular contour’ to ‘triangle’, etc., where such an abuse of terminology will not
cause confusion. We introduce the following notation: ~(a;r) denotes the circle
centre a and radius r given by

v(a:r)(t) ;= a+rett (€ [0,27]),

T.(t) :=re* (t € [0,7]) defines a frequently used circular arc, and [u, v] denotes
a line segment regarded either as a path or as a subset of C.

/z

Ty /

Figure 4.3 Some particular circline paths

You should be aware that the term ‘contour’ is customarily used in a wider
sense. As we have defined them, contours encompass all the paths regularly
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arising in applied complex analysis. They have the virtue that their images
are geometrically much simpler than those of arbitrary closed paths. Even for
contours, the geometric properties we require—the existence of an ‘inside’ and
an ‘outside’, for example—though obvious in most specific cases, are tricky to
prove in general. For convenience, proofs of all results of this kind are collected
together in the next section.

Properties of paths and contours
The results in this section are not needed until later. Since all are highly
plausible, some readers may be content to take the conclusions on trust and
to skip over the proofs. It is, however, instructive to see what is involved in
proving the ‘obvious’. In justifying geometric statements we have opted for an
indication of strategy at the expense of detail.

Our first goal is the Covering theorem. The theorem asserts that, if v is
a path lying in an open set G, then its image ~* can be covered by a finite
chain of open sets contained in G, each overlapping the next. Qur strategy is
first to show that we can cover v* with discs all of the same radius and then to
show that only finitely many of these discs are needed. [The Covering theorem
is closely related to the Heine-Borel theorem, applied to +*.]

4.4 Lemma. Let ~ be a path lying in an open set (. Then there exists a
constant m > 0 such that D(z;m) C G for all z € v*,

Proof Suppose, for a contradiction, that no such m exists. Then for each n
there exist 2, € v* and w, ¢ G such that |z, —wy,| < 1/n. Use the Convergent
subsequence theorem to choose a subsequence {z,.} of {#,} which converges, to
z say. Then w,. — # too and so. since C\. G is closed, » ¢ (. But we also have
z € ~*, since v is a. closed set. We therefore have the required contradiction. [

4.5 Covering theorem.  Suppose that G is an open set and that ~ is a path
with parameter interval [«, 5] such that ~* € G. Then there exist a constant
m > 0 and open discs Dy, Dq...., Dy such that

(i) for k=0,1,..., N, D =D(~(tr):m), where a =tp < t; < - <ty = 5;

(ii) for k=0,.... N—1, DN Dyy) # &;

(iil) for k=0.....N =1, ¥([tgstrr1]) € Dy
N
) el Drca.
(The disc Dy is not needed for the covering. It is put in for later notational
convenience. When ~ is closed, Dy and Dy coincide.)



32 Paths

Proof Choose m as in Lemma 4.4, so that D(z;m) C & for every z € v*. Tt
remains to show that v* can be covered by a finite chain of such discs, each
overlapping the next, as in Fig. 4.4. If ~* is made up of finitely many line
segments and circular arcs (in particular, if v is a contour) then this is clear
from elementary geometry.

Figure 4.4 The Covering theorem

For a general path we proceed as follows. Suppose first that ~ is smooth.
Then the real Mean value theorem implies that, for any s and ¢ in [, 3],

(Rev)(s) — (Re7)(t) = (s — 1)(Re)'(c)

for some ¢ between o and 7, and similarly for Im~. The continuous functions
(Re)" and (Im~)" are bounded on [a, 8], by 3.24. Therefore there exists § > 0
such that

[v(s) = ~(t)] <m whenever |s —t] <d.
This conclusion [uniform continuity of + to those in the know] persists for an
arbitrary path, since we can apply the above argument to its constituent smooth
curves,

We can now select points @ = 15 < 11 < --- < tny = 3 satisfying
[tpvr —te] < ¢ for £ = 0,1,...,N — 1. If we choose Dy to be D(v(tx);m)
for k=0,1,...,N then conditions (i)~{iv) of the theorem are met, O

Remark DBy refining the argument above it can be shown that a little more
is true than we claimed: for some # > 0, the open strip S = {z : Jw €
* with |z —w| <7} issuch that v C S CG)
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The famous Jordan curve theorem asserts that a simple closed path has an
‘inside” and an ‘outside’. In its general form, it is a very deep result. We restrict
attention to contours (as defined in 4.3).

4.6 Jordan curve theorem (for a contour). Let + be a contour. Then the
complement of 4* is of the form I(v) UO(~), where I(v) and O(v) are disjoint
connected open sets, I(+) (the inside of ) is bounded and O(v) (the outside
of +) is unbounded.

Figure 4.5 Connectedness of I(v)

Outline proof. (For further details, consult Kosnioswki [17], pp. 102-103.) For
any fixed a ¢ +*, consider a ray £ with endpoint a. Let N(a. £) be the number of
times ¢ cuts +* (this is well defined except for, at worst, finitely many positions
of £ involving tangency or ‘corner points’; we leave N{a,{) undefined in these
degenerate cases). The crucial point to note is that whether N{a,{) is odd or
even depends only on @ and not on the direction of £; see Fig. 4.5. Let I{v)
(O(~)) consist of those points a ¢ +* for which N{(a, ) is odd (even).

That I{~) and O(~) are open follows from the observation that for z ¢ ~*
there is an open disc D(z:r) disjoint from ~* which lies wholly in I(+) or wholly
in O(y) (given w € D(%;1), consider [w,z] extended to a ray with endpoint z).
To prove connectedness of, say. I(~) it is sufficient to show that any two points ¢
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and d in I(») can be joined by a path in I(v) made up of line segments and
circular arcs (see 3.14). Figure 4.5 shows how this can be done: we join ¢ and d
to points ¢ and d' in I(v) close to v* and, following +* at a fixed small positive
distance from it and staying within I(~), connect ¢/ to d’. O

4.7 Boundaries. Our intuition on what constitutes the boundary of a set
S C C is only adequate if S is bounded by some familiar geometric figure. But
subsets of the plane can be geometrically very complicated indeed, so we need
a formal, topological, definition. The boundary of a set .S is 35 := SNC~S.
When S is open, €\ S is closed, and so equal to its own closure. In this case,
IS =5~\8.

For a contour ~, both ~* UI(~) and ~* U O(~) are closed and the set v* is
the boundary both of I(~) and of O(v).

Integration of functions along paths is the subject of Chapter 10. Our final
result about paths will allow us to break up an integral round a polygonal contour
into a sum of integrals round triangles, a crucial step in the proof of Cauchy’s
theorem I (11.6).

4.8 Triangulation of a polygon. Let ~ be a polygonal contour in C and let
Z1.%2,....%n (n > 3) be the vertices of ~*. Then it is possible to insert n — 3

line segments [2;,2;] so as to subdivide I(v) into n — 2 triangles. Each of the
inserted segments, excluding its endpoints, lies in I(~v).

Outline proof. (For further details consult Hille [14], p. 286.) If I(v) is convex,
then the segments [21, 2], k = 3,....n—1, trlangulate it. Otherwise the interior
angle at some vertex, say z, is greater than n. Consider a ray £ emanating
from #z such that D(z:7) NI{(~) # @ for all » sufficiently small (so ¢ points
into I(~)). Moving along such a ray from z;, there is a first point of intersection
we (# #z1) of £ with ~*. For at least one choice of £, the point wy is a vertex of
the polygon. Let 2z be such a vertex. The segment [#1, #;] can then be used to
create two new polygonal contours, each of whose images in C has fewer than n
vertices. The argument is repeated until only triangles remain. The process is

illustrated in Fig. 4.6. O

Exercises

Exercises from the text. Prove that every point of +* belongs to I(7) and to
O(%), for any contour ~ (see 4.6).
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Figure 4.6 Triangulation of a polygon

Describe the image ~* of the curve ~ in the following cases, indicating how
the image is traced.
i) v(t) =1+iet (t€[0,7]).
(i) ~(t) =e* (t€[-m.27)).
(iii) ~ is the join of [-1,1], [1,1+1i], [L+1i,—1 —i].
(iv) ~ is the join of ~1, v2, vz, where ~ is [L — 1.0], 72 is [0, 1 + 1], and
~s is defined by ~s(t) = V26147 (¢ € [0,37/2]).
(v) ~ has parameter interval [0,27] and is given by v(t) = e!* for 0 < t <
7 and by v(t) = e ¥ for 7 <t < 2.
(vi) v(t) = ettcost (t € [0,27]).
In which cases is v (a) closed, (b) simple, (¢) smooth, (d) a path?

Define parametrically a path ~ for which +* is
(i) the square with vertices at £1 &£ i;
(i) the closed semicircle in the right half-plane with [— Ri, Ri] as diameter;
(iii) the pair of circles |z — 1| = 1 and |z + 1| = 1, the first traced clockwise
and the second anticlockwise.



5 Holomorphic functions

Complex analysis may be summarized as the study of holomorphic functions.
Holomorphic means—almost—the same as differentiable, but there is a critical
distinction between the two concepts. This comes from the role played by open
sets.

Differentiation and the Cauchy—Riemann equations

5.1 Differentiation. A complex-valued function f defined on an open subset G
of C is differentiable at z € G if

o L0 = )

h—0 z

exists., When the limit does exist it is denoted by f/(z).

Note carefully the role of the open set here. Since G is open, we know that,
given z € @, there exists r > 0 such that D(#;7) C G. Thatis, 2+ h € G
whenever |h| < r. So, in the computation of the limit defining f'(#), the point
z+h is free to approach z from any direction as h — 0. For f to be differentiable
at z it is necessary that the quotient (f(z+h)— f(2))/h tend to a limiting value
independent of the manner in which A~ — 0. Turning this around, we see in
particular that f cannot be differentiable at z if the quotient (f(x+h)— f(2))/h
has different limiting values when A approaches 0 from different directions. A
similar situation can arise in real analysis: a real-valued function defined on
an open interval of R is not differentiable at = if its left-hand and right-hand
derivatives at x exist but have different values.

5.2 Example (a non-differentiable function). Let f(2) = Rez in C. We show
that f is not differentiable at any point z € C:

fle+h)—f(2) Re(z+h)—Rex
h - h
~ Reh { 1 as h — 0 with h real,

T h

0 as h — 0 with h purely imaginary.
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Thus f'(z) does not exist.

The idea of restricting h to be real or purely imaginary can be exploited
quite generally, and yields a necessary (but not sufficient) condition for differen-
tiability.

5.3 Theorem (the Cauchy—Riemann equations). Let the complex-valued
function f be defined on an open set G and be differentiable at z = x + iy € G.
Let f(z) = wu(z,y) + w(z,y) (as in 1.10). Then v and v have first-order
partial derivatives at (x,y) (denoted wuy, Uy, Uz, vy ) and these satisty the Cauchy—
Riemann equations

Up = Vy, Uy = —Up.

Proof From the definition in 5.1,

fle+h) = f(=)

! — 1
fi(z) = lim 0
exists. Hence, restricting h to be, respectively, real and purely imaginary, we
have
h,y) — h,y) —
fl(Z) — hm U(.T + 7y) u(x,y) _|_ IU(J; + 7y) U(.T, y) = uy _|_ iUz
h—0 h h
heR
and
_u(@,y+ k) —u(ey) vyt k) —ely) 1
! — 1 = — .
fle)= i, ik " k T
h=1ik
kER

(The existence of the partial derivatives follows from 3.18(2).) Equating the two
expressions for f'(z) gives

Uy + Wy = —iuy + vy,
Equating real and imaginary parts we obtain

Uy = Vy, Uy = —Vz. O

5.4 Examples (Cauchy—Riemann equations).
o (Example 5.2 revisited) Consider f(z) = Rez on G = C. Here we have
u(z,y) =« and v(z,y) = 0 so u, = 1 # 0 = v,. By (the contrapositive of)
the Cauchy—Riemann equations, f is not differentiable anywhere.
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e Let f(2) = |z on G = C. Here
w(z,y) = (@2 +yHY? and v(z,y) = 0.

Then v, = v, =0 and, for (z,y) # (0,0),

uy = 2(x® +y*)7Y? and  w, = y(® + 7)YV

The Cauchy-Riemann equations fail to hold, and so f fails to be differen-
tiable, at any point » # 0. The point 0 requires separate attention. From
first principles,

fh) = F(O) || { 1 as h — 0 with A real and positive,

h h —1 as h — 0 with h real and negative.

Hence f/(0) does not exist.

5.5 The limitations of the Cauchy—Riemann equations.  The contrapositive of
Theorem 3.3 is useful for proving non-differentiability. Conversely, the Cauchy—
Riemann equations are not on their own sufficient to guarantee differentiability.
Here is an easy but artificial example to show this. Let

1 if neither & nor y is zero,
J2) = Jlwy) = { 0 otherwise,
that is, f takes the value 1 except on the z- and y-axes, and is zero there.
At 0 we have u, = uy, = vz = vy, = 0, so the Cauchy-Riemann equations
hold. However limy,o(f(h) — f(0))/h fails to exist, as we see, for example, by
letting A approach 0 along the ray argz = 7/4. Other examples can be found
in Exercise 3.5.

It turns out that, provided we impose continuity conditions on the partial
derivatives, we do obtain a converse to Theorem 35.3. We record this technical
result here for completeness, but we do not recommend its use as a practical
means of testing for differentiability in open sets. Soon we shall have much better
methods for establishing this. We do use the lemma in Chapter 23, where we
study the relationship between harmonic functions (which are smooth solutions
of Laplace’s equation in two dimensions, ;. + y, = 0) and holomorphic
functions.
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5.6 Technical lemma (a partial converse to Theorem 5.3). Let f(z) =
u(x,y) +iv(z,y) for » =+ iy € G, where G C C is open. Assume that » and
v have continuous first-order partial derivatives in G and that they satisfy the
Cauchy-Riemann equations at z. Then f'(z) exists.

Proof Let » € G and choose r such that D{z:7) C (. Take h = p+ ig with
|h| < r. Then

fle+h) = ()

h
_p(uetpytg-uleytg vletpyte vy +g)
h P p
L e <u(r3/+(1)—u(»1"y)+ (ry+q)—t(rq)>
h q q
y ( Ou ov
2(0 (z + ap, y+q)+10—(r+ Bp, y+(1))
qfow, . 0 ;
+h<0y(»v,y+,q)+10y(»v=y+éq)>,

where each of «, 5,+,d lies in (0,1). Here we have applied the real Mean value
theorem to the four functions x — u(z,y +p), ¢ — vz, y +p). ¥y — ulz,y),
y — v(z,y). Using the continuity of the partial derivatives and the Cauchy—
Riemann equations we see that f/(z) exists, O

Holomorphic functions

In the preceding section we linked differentiation with respect to z to partial
differentiation with respect to the real variables & and y. We now cut loose from
real analysis and work directly with a complex variable.

5.7 Definition (holomorphic function). We have already seen the merits of

working in an open set. In defining holomorphy, open sets play an integral part.

(1) A complex-valued function f which is differentiable at every point of an
open set G is said to be holomorphic in G'. We reiterate that this means
that limp_,o(f(z+h)— f(2))/h exists (independently of the manner in which
h approaches 0) for each z € . The set of functions holomorphic in G is
denoted H(G).

(2) A complex-valued function f is said to be holomorphic at a point o € C
if there exists » > 0 such that f is defined and holomorphic in D{a:r).
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We stress that being holomorphic at a point @ is a stronger condition than
simply being differentiable at a.

5.8 Holomorphic functions: elementary properties. We have so far refrained
from giving examples of differentiable functions because, except in the simplest
cases, it is laborious to check differentiability direct from the definition. (As in
real analysis, proving the existence of a derivative from first principles is mainly
an exercise on limits.) We have also advised against using Technical lemma 3.6 to
prove differentiability. Instead, we build up a catalogue of holomorphic functions
by forming products, composites, etc.

Let G be a fixed open set. The following properties are proved by checking
the appropriate differentiability conditions at each point of G. We omit the
details as the proofs are formally identical to their real counterparts.

(1) Let f and g be holomorphic in G and let A € C. Then Af. f+ g, and fg
(all defined pointwise in the usual way) are holomorphic in & and the usual
differentiation rules apply: for all z € G,

(A)(2) = Af'(2),
(f+9)(z) = f'(#) + g'(x), and
(f9)'(2) = ['(2)9(2) + f(2)g' ().
(2) Chain rule Let f be holomorphic in ¢ and let g be holomorphic in an

open set containing f(G). Then the composite function g o f, given by
(g0 /)(z) = g(f(2)), is holomorphic in G and, for all z € G,

(go N)'(2) =g (FNS(2)-

(3) Let f be holomorphic in G and suppose that f{z) # 0 for all z € G. Then
1/f is holomorphic in G and. for any » € G,

1/ (=) = F () (F(2)

5.9 Holomorphic functions: preliminary examples. We can now easily con-
struct examples of holomorphic functions. The function f defined by f(z) =z
is certainly differentiable everywhere, as is any constant function. By 53.8(1), any
polynomial

N
p(z) = Z en?" (¢n € C, N an integer > 0)

n=0
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is holomorphic in €. We emphasize that a polynomial is a finite sum of terms
of the form ¢,2". The corresponding infinite sums—power series—are centrally
important but raise issues of convergence. They do not come on stage until the
next chapter.

By 3.8(1) & (3), arational function p(#)/¢(2) (p(%) and ¢(#) polynomials) is
holomorphic in any open set in which ¢(z) is never zero. For example, (1+2%)~2
is holomorphic in the open set € ~ {xi} (and so holomorphic at every point
except 1 and —1i).

5.10 Behaviour of functions at oo, We have already briefly considered func-
tions on the extended plane C in connection with Mobius transformations. We
can use the inversion map » + 1/z to analyse what happens at or near oc.
Consider a function f defined on some set { z € C : |2] > r } but not necessarily
at the point oc. Define ? by

f) =11/ (zeD'(0:1/r)

and let ?(0) = f(oo) if f(oo) is defined. We then transfer notions relating to Kf
at 0 to obtain corresponding notions for f at oc: limiting value, continuous,
holomorphic, and so on.

For example, consider f(z) = 2*. Then we have ?(w) = w™?, and this
is not holomorphic at w = 0. Now let f(z) = (1+2*)~" for |2] > 1 and let
f(oc) = 0. Then f(w) = w?(w? + 1)~ for |w| < 1. Therefore f is holomorphic
at oo,

The extended plane is the right setting for studying Mobius transformations.
Consider f: C - C given by f(2) = (az +b)/(cz + d) (ad — bc £ 0). We may
regard f as a rational function; as such, it is holomorphic in C except at —d/¢
if ¢ #0 and everywhere in C if ¢ = 0.

Now assume ¢ # 0. The arithmetic rules in 2.8 imply that f(cc) = a/c
(dn ide by z top and bottom before putting z = = o) and that f is given by

fw) = (a+ bw) /(¢ + dw). Certainly f is holomorphic at w = 0, so f is
holomorphic at oc.

The remaining results in this chapter are ones we shall use frequently in an
ancillary role.

5.11 Holomorphy implies continuity. = We shall establish the technically useful
fact that, if f is holomorphic in G, then f is continuous on G'. Combining this
with Theorem 3.24, we can then assert that if, also, S is a compact subset of G
(that is, S is closed and bounded) then f is bounded on S.
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To prove our claim, suppose that f is differentiable at a point z of an open
set G in which f is defined. For h such that z+h € G,

J(z+h)= f(2) + hf'(z) + he(h) where (h) — 0 as h — 0.

To see this, we write, for h £ 0,

e(h) = Heth) - 1z) h])z — ) _ ().

It follows that f(z+h) — f(2) as h — 0, as required.

The Cauchy—Riemann equations have useful theoretical consequences. The
proof of the next proposition is unaesthetic, but instructive. Like that in 2.6,
it provides a bridge between complexified real analysis and complex analysis
proper.

5.12 Proposition (constancy in a region).  Suppose that f is holomorphic in
aregion G. Then any of the following conditions forces f to be constant in G-
(1) f'(») =0forall zcG;

(2) |f| constant in G;

(3) f(z)isrealforall z € G.

Proof We first assume that G is the unit disc D(0;1). We adopt the notation
of Theorem 3.3. The proof of this theorem shows that, for z = x + iy € D(0; 1),

F(2) = ue + fvp = —iuy + v,

Figure 5.1 DProof of Proposition 3.12 for D(0;1)
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Suppose that f’ is identically zero. Then u, = v, = u, = v, throughout
D(0;1). Fix points p = a + i and ¢ = ¢+ id in D(0;1). We shall prove (1)
by showing that f(p) = f(q). At least one of s = ¢+ ib and t = a + id lies in
D(0: 1): suppose without loss of generality that s does. Each of z +— u(x,b) and
y — u(e,y) is a real-valued function of a real variable with zero derivative, and
so is constant, by the Mean value theorem. Hence

u(a,b) = u(e.b) and u(e,b) = u(c, d)

and likewise
v{a,b) = v(c,b) and wv(e.b) =v(c,d).
We conclude that f(p) = f(s) = f(q).

Now consider (2). Suppose that |f(2)| = ¢ for |2| < 1, where ¢ is a constant.
We then have u? 4 v = ¢?. Therefore

e + v, =0,  wuy, +ovvy, =0,
Hence, by the Cauchy—Riemann equations,
Ue — VUy = 0, uuy +vue =0,

Elimination of w, gives 0 = (u? + v*)u, = u,. If ¢ =0 then we have f =0,
trivially. Otherwise, 4, = 0 everywhere in D(0; 1). Similarly, u,, v;, and v, are
zero, We deduce, from above, that f is constant.,

The proof of (3) is similar. If f is real-valued, then v = 0, so that
vy = vy = 0. DBy the Cauchy-Riemann equations, u, = u, = 0 too. Hence,
as before, f must be constant.

To extend the proof of (1) (and hence of (2) and (3) too) to the case that G
is an arbitrary region, we appeal to 3.14. Any two points in G can be joined by
a polygonal route consisting of horizontal and vertical line segments. The proof
is now a mild complication of that given earlier. [

5.13 Functions with zero derivative: postscript.  Consider the open set

G =D(—-2;1)UD(2;1) and define f on G by
1 if zeD(=21),
ro={1 piepoiy

-1 if zeD(2;1).

Then, working within the two open discs separately, we see that f/ =0 in G.
More generally, let G be a non-empty open set which is not connected. Then G



64 Holomorphic functions

can be partitioned into disjoint open sets (1 and G5, and any function defined
to take different constant values on GG and G- has zero derivative but is non-
constant.

5.14 Beware! Non-holomorphic functions at large.  Failure of the Cauchy—
Riemann equations signals non-differentiability. It happens, in particular, for any
non-constant real-valued function in an open disc or, more generally, in a region
(see 3.12). As a consequence, various functions derived from a non-constant
function f = w + iv which is holomorphic in a region G cannot themselves be
holomorphic. For example, none of

|fl, vu=Ref, v=Imf

is holomorphic anywhere. Contrast this with the situation as regards continuity:
when f is continuous, |f|, Re f, and Im f are also continuous.

We also note that any function which is differentiable just at a single point,
or just on some set of isolated points, cannot be holomorphic anywhere. The
reason is that, by definition, holomorphic at a point a means differentiable at
every point of some disc D{a;r) (r > 0).

Exercises

5.1 Verify that (i) Im » and (ii) Z do not satisfy the Canchy—Riemann equations
at any point z = z+iy in C (so neither function is differentiable anywhere).

3.2 Verify directly that the functions given in Exercise 1.15 satisfy the Cauchy—
Riemann equations.

3.3 The derivation of the Cauchy-Riemann equations in Theorem 3.3 shows
that, if f =u+iv is differentiable at z, then f/(2) = u, +iv, = —iu, +vy.
Verify that

[1(2) =up —iuy, and [f'(z) =v, + iv,.

(So f' is determined by either of v or v alone.)

3.4  Which of the following functions is differentiable at z = 07 Give a proof
or refutation as appropriate.

(i) |2)*, (i) Rez+TImz, (i) (Rez)(Imz).
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3.5 (a) Prove that f defined by

[Pl iz £,
f(é)_{o if 2 =0

satisfies the Cauchy—Riemann equations at z = 0 but is not differen-
tiable there.

(b) Prove that f defined by

[(z) = VI(Re 2)(Im 2)]

satisfies the Cauchy—Riemann equations at z = 0 but is not differen-
tiable there.

3.6 (This exercise shows that the Mean value theorem from real analysis does

not have a direct complex analogue.) Let f(z) = 2*. Prove that there

exists no point ¢ on the line segment [1, i] such that

2.7 (a) At which points z = x + iy are the following functions holomorphic?
Q) B4 7P—w 1, () E-DE-2)7% (i) (°-1)7h
{(b) Prove that the following are not holomorphic at any point:

W 1/l G 2]

5.8 DProve that z/(1 + |#|) is not holomorphic anywhere (cf. Exercise 3.13).
(Hint: argue by contradiction and exploit the fact that |z| is differentiable

nowhere rather than showing that the Cauchy-Riemann equations do not
hold.)

3.9  Give examples of
(i) a function holomorphic except at =1;
(i) a function f holomorphic in C for which 1/f fails to be holomorphic
at precisely six points of C;
(iii) a function f = u+ iv for which neither u nor v is constant and which
is holomorphic nowhere,
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5.10

5.11

Holomorphic functions

Suppose that f is holomorphic in a region G. Prove that f is constant if
Re f is constant. .

Let f be holomorphic in D{0: 1).
(i) Define g by g(#) = f(%). Prove that ¢ is holomorphic in D(0: 1).
(Hint: consider limy,—o(g(z +h) — g(2))/h.)

(ii) Define k by k() = f(»). Prove that k is differentiable at a € D(0; 1)
if and only if f'(a) = 0. Deduce that % is holomorphic in D(0;1) if
and only if f is constant.

Let f be a complex-valued function which is differentiable at each point of
an open set G. Define, for » = (r,y) € G,

of . _L1(of .of of . _L1(of _.of
02'_2<0x+10y> and Oz'_2<0x 10y>’

where, on the right-hand side, f is regarded as a function of (x,y). Verify
that the partial derivatives of f with respect to = and y exist (so that the
definitions above are valid ones) and show that

0 af

-~ =0 and ===/

0z Oz /
Prove, conversely, that a differentiable function f which satisfies 0f /0% =0
in (G is holomorphic in G.



6 Complex series and power series

We begin this chapter with some introductory remarks to motivate the study of
complex power series. As we shall see in Chapter 14, such series turn out to be
fundamental in the theory of holomorphic functions.

In elementary calculus, use is often made of what are known as Maclaurin
expansions: series expansions of the form

IIO ) (n)o
£y = 5O+ f o+ T Ty
Examples are
. L, L,
et =1+ +—z"+---+—=2"+...,
2! n!
s L 3 1 2n+1
smm_m—ﬁx +~-~+(—1)"(2n+1)!m” +..,
1, 1,
coshm:1+§x +-~-+(2n)!x"+...,

for real z. We should like to have complex analogues of these. In the complex
case, geometric ways of defining trigonometric functions are no longer available.
We shall therefore wish to use series expansions to define functions such as sine
and cosine.
There are two issues we must address if we are to use expansions
0

f(z):f(0)+f'(0)z+-~-+Tz +...

or, more generally,

F" (@)

n!

f(z)=fla)+ flla)(z—a)+ -+ (z—a)"+...,

in the complex case. One is the existence of the derivatives f() and the other is
convergence of the series. In real analysis, Taylor’s theorem provides expansions
of the form

F™M(a)

(m—a)z—l—'"-l-T(m—a)N—l-EN,

f(@) = fla) + fla)(z —a) + f"2(!a)

fNY (a4 6,)
™+ 1)

where En = (x —a)¥ T (for some |6,| < 1),
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for suitably well-behaved functions f: R — R. Note that we do not have an
infinite series here. It is also not essential for f to have derivatives of all
orders if our intention is to treat the Taylor expansion as an approximation
Zﬁ:o F(a)(x —a)*/n!, with error Ex. On the other hand, it would certainly
be preferable to have an infinite series expansion. This could be truncated after
any desired number of terms to provide an estimate if required.

The situation in complex analysis is much better than that in real analysis.
It turns out that a function which is holomorphic in an open set G is such that
F(2) exists for # € G for all n: no worries about higher-order derivatives not
necessarily existing! In addition, we shall see that there is a close and very sat-
isfactory relationship between holomorphic functions and functions represented
in open discs by power series (see Theorems 6.11 and 14.4, and 14.9).

So we now investigate complex series in general and series in powers of z
(or powers of z — a) in particular.

Complex series

6.1 Series of complex terms.  Suppose {a,},>0 is a complex sequence. The
series Y ay, is said to converge to the sum s if the sequence {s,} of partial sums,
given by

Spi=ap + -+ Gp,

converges to the limit s, in the sense of the definition in 3.15. We write s =
Yoo oan (and this defines the expression on the right-hand side). Henceforth,
where it would be pedantic to do otherwise, we do not distinguish between a
convergent series > ap and the sum, Z?:o an. to which it converges. Parallel
to 3.18(1), and following from it, we have the result that > a, converges if
and only if the real series > Rea, and }_Ima, both converge. Developing the
theory of complex series is mainly a matter of checking that the same techniques
work as in the real case.

We collect together for reference some basic facts about complex series. The
corresponding results for the real case can be found, for example, in [3].

(1) The terms of a convergent series Suppose that > a, converges. Then
(1) ap =0 asn— oo, and

(i) there exists a real constant M such that |ap| < M for all n.
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(2) Linear combinations of series Suppose that ) a, and b, are convergent
complex series. Then > (a, + kby) converges for any & € C and

Z(an + kbn) — Z an + k Z by,
n=0 n=0 n=0

(3) Absolute convergence vs. convergence Suppose that the (real) series > |ay|
converges. Then > a, converges. This result, which is expressed in words
as ‘absolute convergence implies convergence’, can be obtained from its
real analogue by considering real and imaginary parts. Alternatively, but
essentially equivalently, it can be derived from the Cauchy criterion for
convergence of a complex sequence, 3.21.

(4) Testing for convergence Let > a, be a complex series. The associated
series Y |ay| has real, non-negative terms. Hence well-known tests for
convergence of series with non-negative terms can be applied. Combining
this with (3) we get sufficient conditions for convergence of » a,. Of
particular importance for us are the following:

¢ Comparison test Suppose that > b, is a convergent series with b, > 0
for all n and suppose that, for some constant k& > 0. |a,| < kb, for
all n. Then }_ a, converges absolutely. and hence converges.

¢ d’Alembert’s Ratio test Assume that {a,} is such that

Gntl
Up

£:= lim
n—roc

exists, If £ < 1 then > |ay,| converges (and so » a,, converges too), If
£>1then ) |ay| diverges. If £ = 1 then the test gives no information.

Also worth noting is
e Cauchy’s nth-root test Assume that {a,} is such that £ := lim {/|a,|

exists, If £ < 1 then > |ay,| converges (and so » a,, converges too), If
£>1then ) |ay| diverges. If £ = 1 then the test gives no information.

6.2 Geometric series.  We investigate the fundamental geometric series > 2",
We have already in 1.7 exploited the geometric identity

(1_Z)(1+Z+"'+Zn):l—z’hLl,

This gives
1— Zn+l

Lz f s’ =222 (2#£1).



70 Complex series and power series

We know that {271} converges to 0 if |2| < 1, so > 2" converges in this case.
If |z| > 1 then the individual terms do not tend to 0, so the series diverges, by
6.1(1). We thus have the important result that

>

We remark that we would be arguing in a circular fashion if we applied the tests
in 6.1(4) to the geometric series: the proofs that validate these tests rely on
knowledge of the behaviour of > 2™.

converges, and > 2 2" =(1—2z)7t if |2| <1,

fails to converge if 2] 21

6.3 Expansions derived from the geometric series.  The result in 6.2 can
be viewed in two ways: either as summing an infinite series or as expanding
(1 —2)~! as a series when |z| < 1. Taking the second viewpoint, we may derive
many related expansions. Here is a sample.

1 ) -
=1z _...:Z: (—1)"" (2] < D).
1 >
_ 2 4 — 2
sl eA =Y (<),
1 1
= 4).
i 2/4 ZW (Il < 4)

More generally, for a,b # 0,

1 1 1 > a®
* Tb b (L4 (a/b)z) B é(_l)nmzn (Jz] < [0l /lal).

Each of the expansions above is obtained by making a suitable change of variable
in the standard geometric series. Other devices yield further expansions.

e By partial fractions: for a # b, we have

(z—a)l(z—b) - (aib) (zia_zib)

[ee]

=t (S (- )#") el < minlal o,

n=0

o

1 _ 1—=z _ Z<23n _23n+1) (|Z| <1).

¢ l+z+22 1-—23

n=0
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The geometric series > 2™ is an expansion of (1 — z)~! valid for |z]| < 1,
that is, in the disc D(0;1). Frequently we want an expansion valid in a disc
centred on some point a # 0. The following examples illustrate how to handle a
change of origin.

e To obtain a series expansion of (1 —z)~! valid in a disc centre —3, we may
write

1 1

o0 1
1—2 4—-(2+3) 7;]4n+1(z+3) (z+3| <4

More generally:

1 1 1 .
. b—z:(b—a)—(z—a):;m(z_a) (|2 —a] < |b—al).

Power series

In the preceding section we exhibited expansions of various rational functions in
powers of z or, more generally, powers of z —a. We now turn things around and
systematically study such series, called power series.

6.4 Definition (power series and radius of convergence). A power series is
defined to be a series of the form 3 ¢, (z—a)™, where a € C and ¢, € C (n 2 0).
We shall henceforth often assume, without loss of generality, that « = 0. Recall
the difference between a power series and a polynomial: a polynomial has only
finitely many terms.

The radius of convergence of the power series Y~ c,(z — a)™ is defined
to be

R :=sup{ |z| : Z len(z — a)™| converges };

here we write B = oo if > |en(z — a)™| converges for arbitrarily large |z — al.
We have opted to define R in terms of absolute convergence, rather than conver-
gence: note that > |¢,(z — a)™| is a series of non-negative terms to which many
convergence tests apply directly (recall 6.1(4)).

6.5 Examples (calculating radius of convergence).
e Consider Y nz". We apply the Ratio test to > |nz"|. For z # 0,

(n+1)z7tt

=(1+1 — — 0.
o 1+1/n)|z| =2 asn— o
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Hence 3 |nz"| converges if |z| < 1 and fails to converge if |z| > 1. We
conclude that R = 1.

e Consider Y 2"/n!. We apply the Ratio test to > |2"/nl|. For z # 0,

0 asn—oo.

2" (n+ 1)! |z]
= —

2" [n! n+1
Hence 3 |2™/n!| converges for all z. We deduce that R = co.

e Consider Y n"z". The form of the series makes Cauchy’s nth-root test a

good choice:
0 ifz=0,

Vinren] =mnlzl = { oo otherwise.
Therefore >~ |n™z"| converges only for 2 =0, so R = 0.
e Consider Y ¢,2", where
m  if n = 2™ (for some m =0,1,...),
o= { 0 otherwise.

We cannot apply the Ratio test directly to > |e,2™| because some of the
terms are zero. But we can apply it to >0, |mz2m | We have, for z # 0.

gm+1
|(m+1)z mA L] gmiigm|  mAL e
= | ="
|mz2™| m m
{ 0 if |2| <1,
oo if |z > L

We deduce that R = 1.

It is no coincidence that in each of the above examples the series converges
absolutely for all z such that |z| < R. The following lemma implies that every
power series f(z) = > ¢,(z — a)™ with radius of convergence R > 0 has a ‘disc
of convergence’, D(a; R). We prove later that f is holomorphic in this disc. The
series diverges for |z —a] > R. Any behaviour is possible on |z — a| = R: the
series may always converge, may always diverge, or may converge at some points
and diverge at others.

6.6 Radius of convergence lemma. Let 3 ¢, 2™ be a power series with radius
of convergence R.

(1) 3" cp2™ converges absolutely for all z with |z| < R.

(2) > cpz" fails to converge for any z with |z| > R.
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Proof (1) Let |2] < R. Then R — ¢, where € := R — |2], is strictly less than R.
Hence, by definition of supremum, there is some w with |z| = R—¢ < |[w| < R
for which > |e,w™| converges. Then |¢,2"| < |c,w™| for all n, so that > |e,2"|
converges by the Comparison test (6.1).

(2) Suppose, for a contradiction, that there is some z with |z| > R for which
> cpz™ converges. Then, by 6.1(1), there exists M such that |c,2z"| < M for
all n. Pick w such that R < |w| < |z|. Then

lenw™| = |enz"|

n

w w|n
v gMH .
AL 4

The geometric series Y |w/z|" converges, because |w/z| < 1. Hence, by the
Comparison test, Y |e,w™| converges. This contradicts the definition of R. O

6.7 Differentiating power series: preliminary remarks. We have already
hinted that there is a good connection between power series and holomorphic
functions. How should we establish that f(z) = > ¢,2™ is differentiable for
|z| < R, the radius of convergence? There is an obvious candidate for the
derivative, namely 3" nc,2"~!. But this assumes that we can differentiate the
series ‘term-by-term’. Note that

> (o] d

E nepz = E d—cnz"
z

n=0 n=0

whereas

the differentiation and summation are performed in different orders here. Both
operations are performed by taking a limit. In general, limiting processes need
not commute with one another. So it is not immediate that term-by-term
differentiation of a power series is valid. Indeed, without proving it, we do
not even know that > mnc,2z" ! converges for |z| < R. It is more important
to appreciate the need for justification of these statements than to master the
technical details of their proofs, and we relegate the proofs to an optional
appendix to this chapter.

Note that both (2) and, by induction, (4) in Theorem 6.8 are immediate
from (3), so only the first and third statements need proving. A direct proof
of (2) can be obtained {rom the results on uniform convergence in Chapter 14. An
analogous theorem can, of course, be obtained for series of the form ) ¢, (z—a)™.
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6.8 Differentiation theorem for power series. Let > ¢,z" have radius of
convergence R > 0 and define f in D(0; R) by f(z) = >, ,¢n2™. Then the
following statements are true.

(1) > ne,z"! has radius of convergence R.
(2) f is continuous in D(0; R).
(3) [ is holomorphic in D(0; R) and f’ is given by term-by-term differentiation:

') = chnz”*l (|z| < R).
n=1

(4) f has derivatives of all orders in D(0; R). Furthermore, f((0) = nle,, for
n = 0.

6.9 Example (exploiting the geometric series).  The geometric series ) 2"
has radius of convergence 1, and provides a power series expansion of (1 — z)~!
for |z] < 1. By the Differentiation theorem,

(1—2)"2 -2y t=14+2z+322+... (2| <.

= &(
By induction we may obtain the binomial expansion of (1 —2)"" (n = 3,4,...).
It has the same form as in the real case.

A proof of the Differentiation theorem for power series

6.10 Lemma. The power series > ¢,2" and Y nc,2"~! have the same radius
of convergence.

Proof We first prove that, if 3 |c,2"| converges for |z| < R, then 3 |nc, 2™ !
also converges for |z| < R. Choose p such that |z| < p < R and assume z # 0.
Then

|ne z”*1|—£ Hn|c |"
TR

Since |z| /p < 1, the series > n(|z| /p)™ converges by the Ratio test (see 6.5(1)).
By 6.1(1), there exists a constant M such that n(|z| /p)* < M for all n. Hence

M

n
oy 1"l

|ncnz"*l| <
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The result now follows from the Comparison test; see 6.1(4).
Conversely, suppose that >~ |ncnz”_l| converges. Then

len 2™ < |4 |ncnz”_l| (n>=1),

50 > |cp2™| converges by the Comparison test, O

6.11 Differentiation of power series.  Let f(z) = >"° ¢,2" and assume that
this power series has radius of convergence R > 0. Then f € H(D(0; R)) and

fl2) = incnzn‘l (|| < R).

n=1

Proof Lemma 6.10 allows us to define

g(z) == chnz”_l (2] < R).
n=1
We want to show that f/(») exists and equals g(#) for = € D(0;R). Tor
2,2+ hcD(0:R),
f+h)y— f(z) R Y ACE L el
h 9(2) = nz::l h e '

and we must prove that this tends to 0 as h — 0. We do this by estimating the
terms in the series on the right-hand side. We shall need the binomial expansion

7
z+h)" = n)z”_khk n=23...).
=3 ( )
This expansion, valid for all z and A in C, is proved by induction, just as the
real version is: it relies solely on the arithmetic properties of C which mimic
exactly those of R.
So (notice the way in which the terms involving 2" and 2! cancel)

n—L

(Z + h)n —n el nhzn—l 4 oeee (Z)hkzn_k IR AL s

h —ne h

=h <<Z> Z?L—Z 4o (Z’) hk—zzn—k N hn—Z)

=h Z <:> pFm2 ek
k=2
n—2

_ nT r, n—2—r
=h ) O

r=0
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(writing r = k — 2 for the last step). Hence, invoking the infinite version of the
triangle inequality (Exercise 6.1),

>

n—2
NS0 e ——

Je+R) = f(z)
h

n—2
n! r n—2-r
<
s 2_: ol G =2y M

Ihlz n—H%I(Z |h|||"2’>
= |hl Zn(n = ) fen] (J2] + [A])" 2

Fix 7z and choose p with |z| < p < R, so that |z|+|h| < p whenever |h| < p—|z|.
By Lemma 6.10, used twice over, Y >, n(n — 1) |c,| p" 2 converges, to a finite
constant independent of h. We conclude that f'(z) does indeed exist and equal
g(z). O

Exercises

6.1 Prove that, if a, (n = 0,1,...) are complex numbers such that > |a,|
converges, then

Zan \Z|an|.

n=0

6.2 Write down an expansion of the form 3 ; ¢, 2" for

(@) 2z1+5’ (i) 1—1—124’ (i) itij’
. 1 1 _ 1
Wi Oeihery VEonEog

In each case, specify where the expansion is valid.

6.3 Write down an expansion of (i) (1 —2z)~! and (ii) 1/(z(z + 2)) as a power
series in powers of (a) z+ 1 and (b) z — 1.

6.4 For each of the following power series, calculate the radius of convergence



6.0

6.7

0.8

6.9
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and hence find at which points the series defines a holomorphic function.

(i) Z(_l)nzn/n:S’ (ii) ZZF)n’

n=1 n=0
o< o<

(i) Y2 /nm, (iv) D nlzm,
n=1 n=0

Let > ¢,2" have radius of convergence R. Prove that
R =sup{ |4 : E e " converges } = sup{ |#| : 2" =+ 0asn— oo}

(Hint: look at the proof of the Radius of convergence lemma (6.6).)

let f(z) =", cn?" have radius of convergence R.
(1) Prove that >0  @;#" also has radius of convergence R.
(ii) Prove that f(z) = > ¢zz" for |2| < R. (Hint: exploit the fact
that z — Z is a continuous function.)

(iil) Deduce that g, defined by g(z) = f(#) is holomorphic in D{0: R).
(cf. Exercise 3.11.)

Obtain power series expansions for (1+ #)~2 and for (1+ )™, each valid
for |#| < 1. (Hint: use 6.11.)

Let p be a polynomial of degree k£ > 0. Prove that > p(n)z" has radius
of convergence 1 and that there exists a polynomial ¢(#) of degree & such
that -

D )" =q(x)(1 =2~ (2] < D).

n=0

let p(z) = (z —a1){z — ) ... (# — an), where a;,az, ..., an are distinct
complex numbers. Let A/ = min;¢p<n |ax|. Prove that it is possible to
represent 1/p(z) as a power series Y~ o ¢,2", for |2] < M. Could the

radius of convergence of this power series exceed M7

6.10 Determine for which values of z the following series converge absolutely:

. o z ne ) oo L .
1) 2%, (ii) z_;)<z+1> ’
(iii) Z %(Z” + Z—n)’ (iv) Z on

1—zn’
n=1 n=>0




[ A cornucopia of holomorphic
functions

We shall assume that readers know the basic properties of the real trigonometric,
exponential, and hyperbolic functions, including the formulae for their deriva-
tives from which the Maclaurin expansions of these functions are obtained. For
most, this knowledge will be founded on a naive treatment of these functions,
relying on elementary geometry and trigonometry. A few may have seen the
naive approach superseded by a more analytical one, in which functions are de-
fined by power series and their expected properties are then derived from the
properties of these series. In the complex case, a geometric approach to the
elementary functions is no longer available, but this is not a problem. Power
series definitions serve admirably, since convergent complex power series behave
50 well,

We begin by investigating that most fundamental of functions, the expo-
nential function.

The exponential function

7.1 Definition (exponential function). We have already shown in 6.5 that
the power series > z™/n! has infinite radius of convergence. We may therefore
define the exponential function by

~ T

. ad Z
e = Z E (Z S (C).
n=0

(Note that we do not yet know that this is compatible with our earlier use of the
symbol €Y to denote cos® + isin® for # € R. The reconciliation comes in 7.6,
after we have investigated trigonometric functions.)

We may immediately record what Theorem 6.11 tells us about the expo-
nential function.
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7.2 Theorem (holomorphy of the exponential function).  The function e is
holomorphic (and hence also continuous) in C and

ie; =¢° foral »cC.
dz

There is a useful technique for deriving certain functional identities which re-
lies on the fact that, in an open disc, a holomorphic function with zero derivative
is necessarily constant. The proof of our next result about complex exponentials
illustrates this.

7.3 Theorem (properties of exponentials).

(1) " =1;

(2) eT% =e%ev for all z,w € C;

(3) e £0 for all z € C.

Proof (1) is immediate from the series definition.

For (2), we fix ¢ € C and consider
flz) :=e%e" 77,
By 7.2 and the Chain rule (3.8(2)),
fl(z) =6 —ee 7 =0

Therefore, by 5.12, there exists a constant K such that f(z) = K for all » € C;
here K depends on ¢. To find K. we put z = ¢ and obtain K = €% ¢, So
K = e by (1). Thus e® = e*e®* for all z,¢ € C. Choosing ¢ = w — z we
get (2).

From (1) and (2) we have e*e™* = 1, so (3) follows. O

7.4 The modulus of an exponential. Let 2 = & + iy, where 2,y € R. Then
|e*| = e®. In particular, |eiy| =1foral ycR
To prove the first assertion, observe that

(by 1.8(3))

(by Exercise 6.6)
= (by 7.3)

(by 1.8(4))

(by 7.3).
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Hence |e*| = e® (since both sides are real and positive). The second assertion
comes from taking z =0. O

Complex trigonometric and hyperbolic functions

We shall use power series to define the functions cosz and sinz and their
hyperbolic analogues coshz and sinhz. We shall see that, on the z- and y-
axes, cos z behaves, respectively, like a real cosine and like a real cosh function,
and as a hybrid between these two elsewhere (and similarly for sin z).

7.5 Definitions (trigonometric and hyperbolic functions). We define, for

z€C,
cosz:zl—;—T—i—Z—T—u-:g(—l)”éZ!,
coshz::l+2—j+i—?+--~:§:%,
n=0
sinz::z—z—j+;—?—~-~=§(—1)n%a
sinhz::z—l—;—?;%—;—?-l-'-':;%-

The Ratio test shows, easily, that all four series have infinite radius of conver-
gence and so these series do indeed define functions with domain C.

Theorem 6.11 tells us that the four functions are holomorphic in C and
allows us to calculate their derivatives by differentiating term-by-term. No
surprises:

—cosz = —sing —sinz = cosz
dz ’ dz ’

d . d .

— cosh z = sinh z, — sinh z = cosh z.
dz dz

7.6 Key relationships. Immediately from the definitions (and 6.1(2)) we have

el =cosz +isinz (for z € C).



A cornucopia of holomorphic functions 81

In particular, as previously promised, we obtain
e =cosf + isinf® (for 0 € R).

Note that |ew| = 1 emerges from this if we assume, as we did in 1.3, properties
of cosine and sine on R. We did not need such assumptions in the proof in 7.4.

In the other direction, we can express the trigonometric functions in terms
of exponentials: for any z € C,

1. . .
21(61’~ —e ).

1, .. i .
o5z = (e +e™*) and sinz=
Similarly,
1., - : 1L . =
coshz = E(e” +e ) and sinhz= E(e~ —e %)
Comparing these formulae, or working directly with the defining series, we obtain
the relationships

cosiz =coshz and siniz =isinhz

(known as Osborn’s rules).

7.7 Addition formulae. Nothing novel here! Exactly the same addition for-
mulae hold for the complex trigonometric and hyperbolic functions as for their
real counterparts. For example,

€os(z + w) = €os z cos 1w — sin z sin w.
To prove this, we use 7.6 and 7.3:

COS 2 cos w— sin z sinw

= %L((el; + e—iz)(eiw + e_iw) + (eiz _ e_i;)(eiw _ e_iw))

1, .. . i .
— E(el~elu +e—1~e—1u)
= cos(z +w).

Later (in 15.11) we shall see how identities between holomorphic functions f
and g which are true on R (or on a non-empty open subinterval of R) persist
in the intersection of the sets where f and g are holomorphic (subject to some
topological qualifications).
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7.8 Real and imaginary parts. We can apply the addition formulae and
Osborn’s rules to obtain, for z = = + iy,

e — eTel¥ = e"(cosy + isiny),
cos(x + iy) = cosz cos iy — sinzsin iy = cosz cosh y — isin zsinhy,

sin(x + iy) = sinx cos iy + cos zsin iy = sinx cosh y + icos zsinh y.

These formulae will be used in the next section to identify the points where the
trigonometric functions, and likewise the hyperbolic functions, take the value
zero—necessary if we are to define cosecz = 1/sinz, tanz = sinz/cosz, and
so on. They also show how each of the complex trigonometric and hyperbolic
functions can be seen as a hybrid of real trigonometric and hyperbolic functions.

coshx

sinhx

Figure 7.1 The real hyperbolic functions

7.9 Unboundedness. We can prove from the series definitions that coshx and
sinhx tend to infinity as the real variable z — o¢. As a reminder of the way
these real hyperbolic functions behave, their graphs are shown in Fig. 7.1. From
Osborn’s rules we have

|cos iy| = |coshy| = o as y — o<,

|sin iy| = |sinhy| = o¢  as y — oc.
This is in stark contrast to the behaviour of the real functions:
|cosz| <1 and |[sinz| <1 (r € R).

Not only are these inequalities no longer valid when = € R is replaced by z € C
but the functions cosz and sinz are unbounded in C. For further information
see Exercise 7.6.
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Zeros and periodicity

In this section we begin to explore the far-reaching consequences for complex
analysis of the fundamental equation

T = 1,

This equation comes from the relation el = cos#-+isin 4, assuming that sin 27 =
0 and cos27m = 1. [Purists who seek an ultra-formal approach, independent of
elementary trigonometry, may define m to he the smallest positive solution of
the equation sinf = 0, where sinf is defined by its power series.]

We know that if f is holomorphic in some open set G then 1/f is holo-
morphic in G provided f(z) # 0 for » € (. It is therefore essential to identify
where frequently occurring functions take the value zero. We have already (in
1.7) looked at the zeros (roots) of certain polynomials. We now do the same for
the elementary functions.

7.10 Solving equations, finding zeros. We cannot emphasize too strongly the
importance of the following facts:

e =l<=zr=2kri (ke€lZ),
e = —l<=2=02k+1ri (keZ).

To prove the first of these claims we write # = & + iy and solve the equation
e”(cosy + isiny) = 1. Taking the modulus of both sides gives e* = 1, and this
holds if and only if # = 0. As in 1.3, we then require cosy = 1 and siny = 0,
and this is satisfied if and only if ¥ = 2kx for some k € Z. The solutions of
e = —1 are obtained in a similar way.

We have already seen (7.3) that e £ 0 for any »z € C. On the other hand,
the functions e®—1 and e+ 1 both take the value zero at infinitely many points.
Contrast this with the real case: for x real, * —1 =0 only if t =0 and e* + 1
is never zero.

For the trigonometric and hyperbolic functions we have
Cosz:0<:>z:%(2k'+l)ﬁ (k€ Z),
siny =04= 2z =k7 (kcZ),

coshz:0<:>z:%(2k'+l)wi (k€ Z),

sinhz = 0 <= 2z = k7l (kcZ).

We draw attention particularly to the latter two claims, where the situation is
quite different from that in the real case.
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We can now see that tan z := sin z/ cos z is defined, and is holomorphic, in
C~{@2k+1n/2 : k€ Z} and that cot z := cos 2/ sin z, similarly, exists and is
holomorphic except at the points km (k € Z).

7.11 Example (solving equations). We include an example of the solution of
equations, to reinforce readers’ appreciation of how different the complex-variable
trigonometric functions are from their real-variable counterparts.

We shall find the solutions of the equation sin z = 10*>. We have

sin(z + iy) = 10° <= sinx coshy + icosrsinhy = 10°

<= cosxsinhy = 0 and sinxcoshy = 10°,

From the former condition either (a) y =0 or (b) e = 2k+ w/2 (k€ Z). In
case (a), coshy = 1 and so we require sinz = 10%, which is impossible. Case
(b) leads to no solutions if & is odd, because coshy > 0; for k& even, we must
have sin(2k + 1)7/2 = 1 and coshy = 10%, that is, y takes the unique value
cosh™(10%). Hence

sinz = 10° <= z = L(4m + )7 + icosh ™ (10°) for some m c Z.

7.12 Periodicity.  The results in 7.10 tell us that sinz and cosz are periodic
of period 27, just as in the real case. Also

e"Te —e% for all » € C <= o = 2kxi for some k € Z.

Therefore e* is periodic, of period 27i. This periodicity, of course, stems from
the equation e?™! =1,

The functions cosz and sin z are, as in the real case, periodic of period 27;
cosh z and sinh z have periodicity 271i.

Argument, logarithms, and powers

We now start to come to terms with the many-valuedness of the complex ana-
logues of some important real functions, namely logarithms and powers. Our
approach will initially be static. We focus on values at a fixed, but arbitrary,
point z of the domain of a multifunction. Only later do we think dynamically
and consider z as a variable.
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7.13 Argument.  As we have seen, the periodicity of the exponential function
has awkward consequences for the polar representation of complex numbers: the
angle § in the expression z = |#|e¥¥ is not uniquely determined. Indeed, this is
the fundamental cause of many-valuedness in complex function theory.

For any # # 0, we define the argument of » to be

Jargz] :={0C R : 2=z},

The bracket notation [argz] is designed to emphasize that the argument of

z is a set of numbers, not a single number. In fact, [argz] is an infinite set,

consisting of all numbers of the form @+ 2k~ for £ € Z, where @ is any fixed real

number such that e!? = z/|z|. For example, [argi] ={(4k+ 1)7/2 : kCZ}.
For z,w #£ 0,

[arg(zw)] ={0 +¢ : O [argz], p € [argw] },
[arg(l/z)] ={—0 : 0 € Jargz] }.

7.14 Complex logarithms: the inverse of an exponential. We may define
the logarithm on (0, o) C R as the function which is inverse to the exponential

function: for each positive real number ., there exists a unique real solution

t = log,z to the equation ¢ = z. (Since we shall work exclusively with

logarithms to the base e, we shall henceforth drop the subscript and write logz
in place of Inx = log, z.) In the complex case we seek solutions to the equation
eV =z,

Suppose z € C, z £ 0. Put z = e¥ = e“"¥ (y, v real). Then

|| = |e“eh"| =e* (by 7.3)
and
[axgz] ={v+2kr: k€Z}  (see7.10).
We have derived the important relation
e’ =z &= w=log|z|+if, wherefC [argz].

We accordingly define, for 2 #£ 0,

[logz] :={log|z| +if : 0 € [argz] }.
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For example,
[log2] ={log2+2kni: k€LY,
[log(=1)] ={(4k—D7i/2 : kCZ}.

Also, for w = u + iv,
[loge“] ={loge* +i(v+2km) : ke Z}={w+2kr : kcZ}.

By contrast,
e¥ =z for any we [logz].

7.15 Powers. If n is a positive integer and z # 0, there exist n solutions to
the equation w™ = #z, given in terms of the polar representation z = relf by
w = ri/me2kTi/n (B =0,, .., n — 1); recall 1.7. More generally, if « is a complex

number, we define, for z # 0,
[2] = {exUoslzlHi0) - g ¢ [arg~] }.

The motivation for this definition comes from the real analogue: a% ;= e¥l&¢
for @ > 0. Note that e* (as defined in 7.3) is one member of [e*].

Only when « is an integer n does [2%] not produce multiple values: in
this case [2™] contains the single point 2™, When o = 1/n (n = 2,3,...)
[#%] contains the values of the nth root given above.

Complex powers must be treated with circumspection. The formula #%2° =
pots (x>0, a, 7 real) can be shown to have a complex analogue, in which the
values of the multifunctions have to be appropriately selected. But zfz§ =
(#122)* (21,22 > 0, « real) has no universally valid complex generalization.

Holomorphic branches of some simple multifunctions

Many-valuedness is not a serious problem so long as we are concerned with se-
lecting a value of a multifunction at some fized point z. But it is a very different
matter when z is allowed to roam freely in the plane. In this section we show
how to extract holomorphic functions from [logz] and [2%] (« ¢ Z). Our
treatment is economical, but suffices for working with these functions in succeed-
ing chapters. We explore many-valuedness in greater depth in Chapter 9 and
show how to handle more complicated multifunctions, in particular logarithms
and powers of rational functions. Chapter 9 is optional and only Chapter 23)
directly depends on it.
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7.16 Holomorphic branches of the logarithm.  Consider

[logz] ={log|z| +i0 : 9 € Jargz] } (2 #0).

The many-valuedness arises because values of # differing by an integer multiple
of 27 give the same point z = |z|e¥ but give different values of log |#| + if. We
get a l-valued function if we restrict € either to [0,27) or to (—w,#] (that is,
if we take a principal-value determination of the argument of z). These ranges
are the most usual choices, but any interval of length 27, closed at one end and
open at the other, serves equally well.

For definiteness, let us restrict ¢ to (—x,n] and remind ourselves of this
fact by putting a cut (also called a branch cut) in the plane along the non-
positive real axis (—o¢, 0] and forbidding # to cross the cut. We regard the cut
as having two edges: on the upper edge, § = 7 and on the lower edge, # = —7.
Our choice of restriction on # means that we identify the upper edge of the
cut with the points of (—o¢,0] and exclude the lower edge of the cut from our
plane. (But see also 19.11 below, where we introduce a convenient modification
of this convention.) The point 0 is called a branch point. See 9.3 for a general
discussion of branch points.

z=lglel?

cut [2]

Figure 7.2 TPlane cut along (—oc, 0]

In the cut plane, define
fe(2) =logr +i(0 +2kn) (0£z=re?, —7 <0< 7),

for k € Z. Then [logz] = {fx(¥) : k£ € Z}. Each f; is l-valued. Cer-
tainly z + Re fi(2) = log|#| is continuous for z # 0, by continuity of the
real logarithm. Also Im f; is continuous at any point not on the cut (see
Exercise 7.17). So fi is continuous. However fi. is discontinuous at points
on the cut. In crossing the cut from the upper half-plane to the lower half-
plane we transfer from fi to fit+1. The transfer is continuous in the sense that

limy, o4 fr(ih) = limy, o— feri(ih).
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The function fj is holomorphic in C; := C ~\ (—o¢,0], with f/(2) = 1/z.
To see this, write ¢ = fr(2) and n = fi(z + h) — fr(2). Continuity of f; in C;
implies that 7 — 0 as { — 0. Hence
felz+h) — fu(®) n

= %1*1 h—0
h Tt —e e 2 Bf ’

Here we have used the fact that e/*&*) = z for any » € C; and properties of
the exponential given in 7.2. We can alternatively verify that f € H(C;) by
checking that its real and imaginary parts have continuous first-order partial
derivatives and satisfy the Cauchy-Riemann equations (see 3.6). We call the
functions fi holomorphic branches of the logarithm.

7.17 Holomorphic branches of powers. Let n € Z, n # 0,£1. Consider the
multifunction
[[Zl/n]] _ {lzll/”eiﬁ/n c0£z= |Z|eiﬁ }

We elect to restrict 6 to [0,27) and so cut the plane along the non-negative real
axis. We define

gk(Z) — ezkﬂ'i/nrl/neiﬁ/n (0 ?é v = 7‘610).

The functions g5 are 1-valued and such that (gz(2))"™ = # for each point in the
cut plane. We have g = gk (moan) for any £ € Z and

[2"] ={gr(z) : 0<k<n -1}

Each g is continuous except at points of the cut. Arguments similar to those
for the logarithm confirm that g is holomorphic at any point of C ~ [0, c).
Each is called a holomorphic branch of the nth root.

Similar considerations apply to [2%] for an arbitrary «, save that there
will, in general, be infinitely many values at each point and infinitely many
holomorphic branches.

Exercises

Exercises from the text. Verify the claims about radius of convergence and
derivatives in 7.5. Verify the unproved formulae given in 7.6 and 7.7. Prove
(see 7.10) that ¥ = —1 if and only if z = 2k + D7wi (k € Z).
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7.6

7.7
7.8

7.9

A cornucopia of holomorphic functions &9

Find the real and imaginary parts of (i) €27, (i) e, (iii) .
Suppose o =1, a £ 1. Express e* + %% + e’ as a power series. Hence
evaluate >~ 87"/(3n)!. Find also >°) (27)"/(3n+ 1)L

Use Exercise 6.1 to prove that
(i) for all z € C,
le® — 1] <el*l — 1 < Jz]ell;

(ii) for all z € D(0:1),

B-eld <l =1 < (e= D2
Let f be holomorphic in a region G. Let g be defined by g(z) = /%),
Prove that if ¢ is constant then f is constant.

Prove that T65%Z = cosZ and sin z = sin z, for all z € C. Using Exercise 5.11
or otherwise, prove that cosz and sinz are not holomorphic at any point

of C.
Prove with the aid of 1.8(6) and the preceding exercise that

|cos z|” = sinh? y + cos® x = cosh? y — sin® .

Deduce that
|sinhy| < |cos z| < coshy.
(Analogous results can obviously be proved for sin z.)
Prove that |cos2 z| + |sin2 z| =1lisfalse if x =z + iy with y £ 0.

Let z = Re!®, where « is fixed and 0 < a < 7/2. Prove that each of (i)
|e_i;|, (il) |cosz|, (iil) |sinh #| tends to infinity as R — oc.

Describe the behaviour of these functions as R — o when (a) @ =0 and
(b) a =w/2.

(a) Let f(2) = e'*. Find all values of z for which f(z) is (i) real, (i)
purely imaginary, and (iii) of modulus < 1.
(b) Repeat (a) with f(z) = e™2%,

7.10 Find all solutions to the following equations:

(i) coshz = —1, (ii) cos?z =4, (iil) tanz = 1.

7.11 Find Z(f):={z€C : f(2) =0} for each of the following functions f:

(i) (* — Dsinmz, (ii) cosh? z, (iii) 1+ %,

() si®(1/2) (z£0), () 1-e”, (i) 1te”,
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7.12

7.13

7.14

7.15
7.16

T7.17

A cornucopia of holomorphic functions

(In (v) and (vi), express the elements of Z{f) in polar form.)

Define f by

sin z

1 ifz=0.

By considering a power series expansion, prove that f is holomorphicin C.

(a) Find each of [arg(—1)], [arg(l—1)], [arge=27/?].
(b) Find each of [log(—1)], [log(1+ 1], [logw].

Find each of [15], [(~=8)5], [i5], [(=1)3]. In each case, plot the
set as a subset of the complex plane.

Find [v2'], [iVZ]. [il].and [ei"].

(a) Show that, if w € [#%"7], then there exist z; € [2*] and z €
[#°] such that w = z,2s.

(b) Give an example to show that it may happen that z; € [2%] and
2 € [27] . yet sz ¢ [2°7°]. (Hint: try a4+ 3 =0.)

Show that the map » > 0(2) (where 0 # z = |#|e%*)) is continuous
in C; = C~[0,o¢) if 6(2) is chosen to lie in (0,27). (Hint: consider
a disc D(a;r) within C; and argue geometrically or use the fact that
tan@(z) = y/x, where » =z + iy.)



8 Conformal mapping

This chapter concerns angle-preserving mappings between regions in the complex
plane. As we shall see, every holomorphic function whose derivative is non-zero
defines such a mapping. These mappings are of intrinsic geometric interest and
of importance in advanced complex analysis (Chapter 16 hints at this). They
are also worth studying because of their usefulness in solving certain physical
problems, for example, problems about two-dimensional fluid flow, the idea being
to transform a given problem into an equivalent one which is easier to solve. So
we wish to consider the problem of mapping a given region G onto a geometrically
simpler region G’, for example the open unit disc or the open upper half-plane.
We concentrate in this basic track chapter on presenting and illustrating the
principles of conformal mapping. We therefore restrict attention to mapping
a region whose boundary is a circline or is a pair of arcs (that is, lines, rays,
circular arcs, line segments). For many such problems, three basic types of map
(and certain combinations of these) suffice:

e Mobius transformations (studied quite extensively in Chapter 2),

e integer and non-integer powers, and

e exponentials (and their inverses, logarithms).
We must take due care to avoid many-valuedness whenever we consider loga-
rithms or non-integer powers. Otherwise in this chapter we can safely treat
argument ‘mod 27 and so let argz denote any choice from the set [argz].

We have omitted trigonometric and hyperbolic functions from our catalogue

of maps because the uses of such maps are relatively specialized. We consider
them in Chapter 23; this is geared to applications and includes a variety of
further examples of mappings.

Conformal mapping

Here we reveal the connection between angle-preservation and holomorphy.

8.1 Angles between paths. Let ~ be a path with, for definiteness, parameter
interval [0,1]. Then there is a well-defined tangent to ~ at ¢ = ~(0). This is
defined by ¢ +1+'(0) (¢t > 0), provided +'(0) # 0, and makes an angle arg+'(0)
with the real axis.
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Let ~, and ~4 be paths, both with parameter interval [0, 1], having common
endpoint ¢ = ~1(0) = 72(0), We assume that +{(0) and +}(0) are non-zero, so
that v and 2 have well-defined tangents at ¢, with the angle between v and
~2 being (by definition) arg~{ (0) — arg~4(0).

8.2 Conformality theorem.  Suppose that f is holomorphic in an open set G,
that v and ~» are paths (with parameter interval [0,1]) in G meeting at

= %(0) = 12(0), and that f'(¢) # 0. Then, in the sense defined below, f
preserves angles between paths in G meeting at .

—

0 f f0)

Figure 8.1 DPreservation of an angle under a conformal map

Proof Let the angle between v and ~» be A = arg~+{(0) — arg~4(0). The paths
~ and =2 are mapped by f to paths fo~v; and fo~s; note that these are indeed
paths. They meet at f(¢) at an angle A = arg(f o~1)'(0) —arg(f 0~2)'(0). The
assertion of the theorem is that A = A (mod 27). By the Chain rule,

(fon) () _ fQOHO) _ 1O
(Fo20(©) ~ FO50) ~ 750

from which the result follows; see 7.13 concerning args of quotients. U

8.3 Conformalwmapping. A complex-valued function is conformal in an open
set G CC (or C)if f€ H(G) and f'(2) £ 0 for every z € G, It is conformal at
a point ¢ if it is conformal in some D((:r).

The Conformality theorem shows that a conformal mapping preserves both
the magnitude and sense of angles between paths; informally, preservation of
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772

Figure 8.2 Non-conformality of z ++ 2% at 0

sense means that orientation is preserved: see Fig. 8.1. For a converse to the
Conformality theorem, see Exercise 8.15.

We should not be surprised at the restriction f(¢) # 0 in the Conformality
theorem. The function z ++ 22 = w takes rays argz = A and argz = y meeting
at angle A — yt to rays argw = 2X and argw = 2y meeting at angle 2(A — p).
See Fig. 8.2 and also Exercise 8.3.

8.4 Construction of conformal mappings: preliminary remarks.  Suppose we
require a conformal map f from the open upper half-plane II" = {z : Imz >0}
onto the open unit disc D(0:1). It is unlikely to be helpful to bring Im z into
the definition of f, since Im z is not holomorphic and we want f € H(II)*. But
compare the following descriptions:

z—1
z4+1

O ={z:|lz—i<|z+i}={z:

<1},

DO; 1) ={w:|w <1}
It ought now to be entirely obvious that the map we want is
fezrow=E-—-1)/(z+1)

since
zell™ < f(») €D(:1).

Also, f is holomorphic in ITT with derivative f'(z) = 2i(z +1)72 # 0, and
so is conformal. Notice that the non-holomorphic function |z| enters into the
descriptions we use to match up the domain and image regions, but does not
enter into the definition of the function f. This simple example shows that
success in constructing a conformal map from one region to another will depend
on a judicious choice of descriptions for the regions. Note also that use of the
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Figure 8.3 A multi-stage map

‘matching up’ technique guarantees that the constructed map takes the domain
onto, and not merely into, the target region.

The Chain rule implies that the composition of conformal maps is itself
conformal. This elementary observation is very useful: it allows us to build up
conformal mappings in a finite number of simple steps. For example, to map a
lozenge onto D(0: 1) we might proceed as indicated in Fig. 8.3, Thus an aid to
successful map-building is familiarity with standard mappings.

A plan for mapping a given region G onto, say, D(0; 1) might go as follows.
Try to map G first to some more familiar region G’, in the knowledge that,
having reached G, a sequence of ‘ofl-the-peg’ maps will then take us to D(0; 1).
Giving a distinguished role to D(0: 1) is justified by the following strategy for
mapping one region G; onto another, Ga:

J2

G h D(0; 1) Gs.

ft

If we can map G onto D(0;1) using a conformal map f; and G onto D(0;1)
using a map f-» for which the inverse exists and is conformal, then f; Lo fi maps
(1 conformally onto G, Theorems guaranteeing holomorphy and conformality
of inverse maps appear in Chapter 16.
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Some standard conformal mappings

In this section we study the mapping properties of Mobius transformations,
exponentials, and powers.

We have already investigated M&bius transformations quite thoroughly in
Chapter 2; you are advised to review this material before proceeding. The good
thing about M&bius maps is that they map circlines to circlines and arcs to arcs,
and so are a natural choice for mapping regions bounded by circlines and arcs.
We saw in Chapter 2 that Mo6bius transformations are best viewed as mappings
of the extended plane, €. We continue to work in C when appropriate.

8.5 Particularly useful Mobius mappings.  All half-planes below are open
half-planes.

z—1

z41

Z+1

z—1i

e Upper half-plane onto unit disc: 2+

e Lower half-plane onto unit disc: 2+

. S z—=1 . . .
e Right half-plane onto unit disc: » + —— (and vice versa; this map is

z+1
self-inverse).
o Zz+1
e Left half-plane onto unit disc: 2+ el

In addition, the boundary line of each half-plane maps onto the unit circle.

Since we use Mobius mappings so often, it is worth knowing that they are
conformal everywhere,

8.6 Conformality of Mobius transformations.  Consider the Mobius trans-
formation f: 2 +— (az +0)/(cz +d) (ad — be £ 0). Certainly, provided that

cz+d#£0,
ad — be

TrLN

I = (cx + d)?
Hence f is conformal in C~ {—d/c} (¢ #£0).
We normally regard a Mobius transformation as a mapping from C to itself,
50 want to extend our conformality definition to such a mapping. If f maps a
point ¢ € C to oc, then we consider g: z+» 1/f(z) and say that f is conformal
at ¢ if g is Conformal at ¢. We also say that f is conformal at oc if f deﬁned

as usual by f (#) = f(1/%), is conformal at #z = 0. Take ¢ # 0 and consider f

£0.

b +a
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From above, this is conformal at 0, so f is conformal at oc. Now consider the
behaviour at z = —d/e¢, which f maps to oc. To see what happens, let 7= 1/w
where w = f(%). Then 7 = (cz+d)/(az+b), and this has a non-zero derivative
at # = 0. Finally, in the case when ¢ =0, we have f(oc) = cc. By considering
7 =1/w as a function of { = 1/z, it is easy to show that the derivative at 2 =0
is non-zero. We Coilcltl(le that a Mobius transformation has a non-zero derivative
at every point of C,

We can view geometrically the conformality of a Mobius transformation f
with f(—d/c) = oo, where ¢ # 0. TFor example, f will map a pair of circles
having a common tangent at —d/c¢ to a pair of parallel lines.

8.7 Mappings by a positive integer power. The map z+ 2" (n =2.3,...)
is conformal except at 0, where angles between paths are magnified by a factor
of n. The non-conformality at 0 can be an asset rather than a snag, so long as 0
lies outside the region being mapped. For example, z +» 22 maps

e a quadrant to a half-plane and, in particular, the first quadrant
{#:Rez>0,Imz>0}

onto the open upper half-plane ITT, and
o It ={z:0<argz<wm}onto {z:0<argz <2r}=C~\|[0,0x).

Unlike a Mobius transformation, # — w = #? does not map arcs or circlines to
curves of the same type. It is easy to verify that, in general, z +> 2% maps a line
to a parabola.

8.8 Mapping by a general power. Here we have to contend with a multi-
function. Take a > 0 and consider, for definiteness, 2 = |#|* el®? (» = |#| e,
0 < 0 < 27). Then 2z + z* is conformal in the plane cut along [0,0c). See
Fig. 8.4 for an illustration.

The position of the cut may be governed by the region we wish to consider.
For example, if we wished to find a conformal mapping from C ~ (—oc,0]
onto the open right half-plane, we would cut the plane along (—oc, 0] and take
ziv 22 = |22 192 where z = el (—1 < 0 < 7).
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cut ¥

7> z™MH

Figure 8.4 Mapping of a sector onto I

8.9 Mapping by exponentials and logarithms.

Let

f5Z:-'I7+iyl—>e;:w:ReiW’

This map is conformal everywhere, by 7.3. Then (recall 7.4)

and

R=¢"
Hence z — e* maps

the vertical line z = a to

the horizontal liney = ¢ to

Therefore z +» ¥ maps

a<Rez<b} to
c<Imz<d} to

the vertical strip { z :

the horizontal strip {# :

See Fig. 8.5.

o =y (mod 2m).

the circle |w| = e,

the ray argw = c.

Dot < Jw| <e},
the sector { ¢ < argw < d}.

the annulus {w

In reverse, a logarithm will map a sector to a strip, but we must work in a
cut plane and select a holomorphic branch. The cut must be placed so that it
does not encroach on the region we wish to map.

Mappings of regions by standard mappings

Although it is important to know how various maps treat curves in C or in
C, in many applications we need to know about mappings of regions, with or
without their boundaries, and we shall increasingly study regions rather than

their boundary curves.
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Figure 8.5 Mappings of strips by z — e*

8.10 Mappings of regions bounded by arcs.  Consider a lozenge-shaped region
G as shown in Fig. 8.6. Take the Mbius transformation

Z—a
[z

=3

This sends a to 0 and 7 to o¢ and maps any arc joining « and 8 to a ray
from 0 to oc. The boundary arcs meet at « at an angle g so, by conformality
of f, the boundary rays of the image meet at 0 at the same angle. Therefore
the image is a sector of angle p. The image of a single point other than a or
4 uniquely determines the position of the image sector. A rotation w + el¥w
will swing the sector round to any desired position. Thus by taking the map
z > k(z —a)/(z — 3), where k is a constant of modulus 1, we can map G
conformally onto any desired sector of angle p.

It is entirely plausible that the region between the bounding arcs of G is
mapped to the region bounded by their images, as we tacitly assumed above,
[Fully validating this claim involves topological arguments using the fact that the
image of a connected set under a continuous map is connected.] We can avoid
having to decide whether a particular conformal map takes a region interior to
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a closed path to the inside or to the outside of the image of the path by working
from the start with the given region rather than with just the boundary.

In the present example we can view G and its boundary as a union of
circular arcs joining « to 3. Each such arc maps to a ray starting at 0, and the
image of G is an open sector formed by a fan of rays. This is bounded by the
images of the boundary arcs of G which, as we have already said, meet at an
angle jt.

Figure 8.6 Mapping a lozenge to a sector

8.11 Example (mapping a semicircular region onto a disc). Here is a concrete
example illustrating the technique in 8.10. Let f: z > w = (2 +1)/(# — 1) and
consider the image under f of the semicircular region

S={ze€C:|#|<1l, Imz>0};

Figure 8.7 Example 8.11
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The map f sends —1 to 0 and 0 to oo, and so maps arcs through —1 and 1
to rays from 0 to o¢. Denote —1, 1, 0, i by A, B, O, . The boundary arc
APD and segment AQD of S meet at an angle 7/2. Since f is conformal at —1,
the angle between the images is 7/2 as well. Also, the point —1 = f(0) lies on
the image of AOD, so this image ray must be the negative real axis. Because f
has to preserve the sense of angles, the image of AP’Z must be the non-positive
imaginary axis.

We can confirm by techniques from Chapter 2 that the above reasoning has
led to the correct conclusion. An alternative description of S is

S={zcC:arg((z+1)/(z—1)) =p, where —7 < p < —w/2}
(cf. 2.3). It is then immediate that
fS)={weC: —rm<argw<—n/2}.

Tactical tips

& As we have just illustrated, it is possible, using the results in 2.4, to find an
explicit equation for any given arc through points « and 2 in terms of the
angle subtended. However, such explicit representations can be tiresome to
find, and great care must be taken with signs. Hence it is usually preferable
to employ geometric arguments rather than analytic ones based on arg
ecuations for arcs.

& At this stage, finding images by the substitution method may seem easier
and more reliable than exploiting conformality. However, working with arg
equations of arcs or with inverse-point representations of circlines can be
tedious. Also, we shall shortly want to construct conformal maps between
specified regions, rather than finding images under given maps. For this,
substitution is not an option and geometric thinking is highly recommended.

8.12 Example {(mapping a region bounded by non-concentric circles).  Sup-
pose we have a region G as shown in Fig. 8.8. It is an easy exercise to show that
any pair of non-concentric circles with one lying strictly inside the other has a
common pair of inverse points, « and F. (That is, the given circles form two
members of a coaxal system (e, 5): see 2.12.) The equations of the two circles
in inverse-point form are

Z—Q Z—Q

z—f = Az

=)\ and

z2—0

where we assume A\; < Az. The map » +— w = (z —a)/(» — 3) takes the region
G onto the annulus {w : A\ <|w| < Az }.
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F

~ &3
2 N

Figure 8.8 Mapping to an annulus

8.13 Example (mapping a region bounded by touching circles). Consider
the region G bounded by the circles Cy and C) given by |z — 1| = 1 and |7| = 2.
We find the image of G’ under the Mobius transformation f: 2z +— w = 1/(z—2).

We can view G as the union of circles Cy, with equation |z —1+a|=14a
(0 <a<1). Write z = (1+2w)/w. The substitution method gives the equation
of f(Cy) to be Jw+1/(1+a)| = |w|. Thus the image of C, is a vertical line
Rez = —1/2(1 + a) and the image region is the vertical strip G’ given by
—1/2 < Rew < —1/4.

Figure 8.9 Example 8.13

Alternatively, we may argue geometrically. The boundary circles Cp and
('} touch at z = 2, where the angle between their tangents is 0. The images of
Cy and C) are circlines (by Theorem 2.13). They pass through f(2) = o
and so are straight lines. DBecause f is conformal, the angle between these
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image lines is 0, that is, the lines are parallel. The real axis cuts Cy and €}
orthogonally. Hence its image (easily seen to be the real axis) cuts f(Cyp) and
f(C1) orthogonally, by conformality of f. These lines are therefore vertical and
pass through f(0) = —1/2 and f(—2) = —1/4. The point —1 lies inside G and
is mapped to —1/3 € G'. We conclude that the image of G is indeed G’.

Building conformal mappings

So far, we have given examples of the effect of a given map on a region. In
practice, we often need to be able to construct a conformal map of some given
region onto a simpler one such as a disc or a half-plane.

8.14 Example (mapping a quadrant of a disc onto a disc). We find a
conformal mapping of G = {# : |2| <1, Im# > 0,Rez > 0} onto D(0;1).

_ _—

Stage | Stage 2

B
ab -
<

Stage 4

Figure 8.10 Irom the quadrant of a disc to D(0; 1)

Stage 1 Note that G consists of those points z with |2| < 1 and 0 < argz < 7/2.
Also |z| < 1if and only if |2]* < 1. Hence » ++ w = 2% maps G conformally
onto the semicircular region .S considered in Example 8.11.
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Stage 2 A map of the form

wir (=k——7 (k=1

will map S conformally onto a quadrant ¢. By choosing £ = —1, we send 0 to
1, and this makes @ the first quadrant.

Stage 3 Let ¢ — 7 = (2. This maps the quadrant @ conformally onto IIt.
Stage 4 Let 7+ n = (r—1)/(r +1) to map II" conformally onto D(0;1).
Putting these maps together, we let f: z +— 1, where

(/A =-2)2 -1 (P12 -i1-222 iz4 +2iz2 +1
C((FPHD/A=2))2 1 D2 +i1-22)2 0 -2+

By construction, f maps G onto D(0;1). As the composite of conformal maps,
[ is conformal.

Tactical tip

& Could we simply have used a power f: z+ 2™ to map G onto D(0;1)? For
n > 5, this nearly succeeds: f(S) = D’(0;1). However, since 0 ¢ G, no
power will map G onto D(0; 1).

8.15 Example (mapping a crescent onto D(0;1)).  Consider again the re-
gion G bounded by the circles 2| =2 and |z — 1| = 1.

Stage 1 Our first move is to map the ‘awkward’ point » = 2 to oo by taking
the map z — w = 1/(# — 2). The image of G in the w-plane is then the strip
G’ given by —1/2 < Rew < —1/4.

Stage 2 We now transform G’ to a strip more amenable to mapping by an
exponential. We let ¢ = 4wi(w + %) Then the image of G’ in the {-plane is
given by 0 <Im¢ < 7.

Stage 3 We can transform the strip from Stage 2 to the open upper half-plane

by means of { > 7 = €% (see 8.9).

Stage 4 Tinally, we map the open upper half-plane to D(0: 1) using 7 — n =
(r—=1)/(1+1) (see 8.5).

Therefore z — 1 maps G onto D(0;1) and is conformal, since each of the
maps in Stages 1-4 is conformal on its domain. We can, if required, compute 7
as a function of z.
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Exercises

Exercises from the text.  Verify that a pair of circles, one of which lies inside
the other, has a common pair of inverse points (8.10).

8.1 Find the image of
i){z:0<argz<w/4}, (i) D'(0;2), (iii){z:0<Imz<1}

under (a) z+ (L + 1)z, (b) z — 1/z. (Argue geometrically whenever you
can.)

8.2 Find the image of
(i) {z:0<args <27/3} under z+» 2°,
(ii) {z:Imz>0,Rez >0} under z > 2%,

8.3 Consider the map # + 2.
(i) Find the imageof {z : 0 <Imz < 1}.
(i) Find, and sketch, the images of the lines Imz = p for 0 < p < 1.

84 Find the image of
(i) {#z: —7<Imz<7/2} under z — €,
(ii) {#: =1 <Rez <1} under z > el™%,
(iii) {# : Rez >0} under z > e,

8.5 (A refresher on M&bius transformations, for which a variety of techniques
is recommended.) Describe the image of
(i) {#z:|z=1>1} under z—»w=2z2/(r—2),
M) {z: %<2l <1} under z—w=(2z+1)/(z—2),
(i) {# : Rez > 0} under z +> w, where (w—1)/(w+1) = 2(z—1)/(z+1),
(iv) {#:|z—1i <1, Rez <0} under 2+ (# —21)/z2,
(v) D(0;1) under z — (z— 3)/(z — 2).
8.6 Find a common pair of inverse points for the circles 7| = 1 and |z — 1] = 5.
Hence find a conformal mapping of the region bounded by these two circles
onto an annulus.

8.7 Describe the image of
D {z:|z=1>1 |=+1>1} under 2w =1i(z+2)/z,
() {z:0<argz<w/4} under z—w=2/(z+1),
(i) {#: 0<argz <w/4} under 2+ w = 2z/(#—1) (hint: this is harder
than (ii) and it may help to recall Exercise 2.6),
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(a) by the substitution method and (b) by arguing geometrically.

Find the image of {#z : Re > 0, Imz > 0, |2| > 1} under z — logz =
log || + if, where z = |z]e! (-7 < @ < 7) and the plane is cut along
(—00,0].

By considering the map as a composite of simpler maps, find the image of
(i) {z:0<argz <m/4} under z — w = iz*,

14 ie®

1—je*’

() {z:0<Imz< 7} under z—w=

3 2
(iii) {z: || <1, O<argz <7/3} under z — w = (js—i_i) ’

(iv) {z:l2| <1, |¢ =] > 1} under z > w=el/G-1),

2
(v) {z:]z2—i <V2, |z+1i] < V2} under z + (%) :
- —

Construct, a conformal mapping onto D(0;1) of each of the following:

i) {z: -1<Rez<1}, (i) {z:0<Imz <2},
(i) {7z : —ir <argz< 37w}, (iv){z:Rez>00r Imz#0}.

Construct a conformal mapping of G; onto G5 when

(i) Gi={z:Imz< }} and G2 =D(1;1),

i) Gi={z:-Z<argz<Z}and Go={w: |w| <1, Inw <0},
(ili) G1 ={Imz| < Z} and Go = {w : Rew > 0}.

Given that —1 < ¢ < 1, find a conformal mapping of
{z:]2| <1, Rez >c}

onto the open upper half-plane.

Let U:=C~{z:]z2]=1,Imz>0}.
(i) Find the image of C~ [—1,1] under z — (z — 1)/(z + 1).
(ii) Hence find a conformal mapping of U onto a half-plane.

Show that z +— ¢ = i(1+2)/(1 — z) maps the unit circle onto the real axis
and deduce that the same is true of the map z — ¢3.

Determine, and sketch, the regions in the z-plane that are carried onto the
right half-plane {w : Rew >0} by (i) z — ¢, (ii) 2 — (3.

Let G be an open set and let v be a path with v* C G. Suppose that
f: G — C is a function such that the partial derivatives f, and f, exist
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and are continuous in G and let I' = f o v be the image of v under f.

Show that 1

. 1 N
= SUfe = )7/ (0) + e + 18,7,
where the partial derivatives are evaluated at ~(t). By considering
arg(I'(1)/+'(1))

for suitable choices of ~, show that, if f preserves the magnitude and sense
of angles between paths in G, then the real and imaginary parts of f satisfy
the Cauchy-Riemann equations. (Hence, by 5.6, f € H(G).)

' (1)



O  Multifunctions

Multifunctions are hard to avoid. Many complex functions, like the complex
exponential, are not globally one-to-one. We may view such a function as having
an inverse, so long as we allow the inverse to be a multifunction. Constructing, at
least locally, a well-behaved functional inverse will involve extracting a suitable
value from this multifunction at each point of the domain. We have already
seen how to make a selection of values from the logarithm and from a fractional
power of z to arrive at a holomorphic function. But how should we treat more
complicated examples, such as [log((1 +2)/(1 —2))] or [(#* = DY?]? We
now begin a deeper analysis of many-valuedness, which will enable us to handle
logarithms and powers of rational functions. Multifunctions of this sort re-
appear in Chapter 23, in connection with conformal mappings arising in applied
mathematics.

This chapter, on the basic track, explains how to handle multifunctions in
a way which is mathematically sound but. deliberately, unsophisticated. A more
formal and more elegant treatment of argument can be found in Chapter 12.

Branch points and multibranches

9.1 Argument as a function. The restriction —7 < § < 7 or, alternatively,
0 < 0 < 27, uniquely determines @ in the equation 0 £ z = |z|et?.

Now consider what happens to a principal-value determination of argument,
Argz = 0. where z = |4 el 0 < @ < 27, when z performs a complete
anticlockwise circuit round the unit circle starting from z = 1, with 8 € [0, 27).
Within the chosen range [0,27), € has value 0 at the start and increases steadily
towards 27 as z moves round the circle until it arrives back at 1, when 6 must
jump back to 0. Thus Argz has a jump discontinuity. On the other hand, if we
insist on choosing # so that it varies continuously with z, then its final value has
to be 27, a different choice from [argl] from that we made at the start.

We can give a more formal treatment of the issues just discussed.



108 Multifunctions

9.2 The lack of a continuous argument function. We show that there is no
way to impose a restriction which selects #(%) € [argz ], for ol z in C~ {0}, so
that #: 2 — 6(2) is continuous as a function of z. We assume for a contradiction
that such a continuous function & does exist and consider

1
k() =
*) 27

0y +0(e™)) (teR).
Then k is continuous and
k) = Zir ((t +2mum) + (=t + 2nym))  where my,n, € Z,
1

so k takes only integer values. Also £(0) is even and k(r) is odd, so & is non-
constant. This contradicts Theorem 3.25 (a consequence of the real Intermediate
value theorem).

This result has implications for other multifunctions. For example, it tells
us that there cannot be a continuous logarithm in C ~ {0}: if there were one,
then its imaginary part—an argument function—would be continuous too.

9.3 Branch points. Take a multifunction [w(#)] (so that w(z) is a non-
empty subset of C for each z in the domain of definition of w). Assume that
the many-valuedness arises because, for one or more points a, the definition of
w(z) explicitly or implicitly involves the angle 9, where » —a = |z — a| e, Such
points are called branch points. Any branch point is excluded from the domain
of definition of [w(z)]. More formally, @ is a branch point for Jw(z)] if, for all
sufficiently small » > 0. it is not possible to choose f(z) € [w(#)] sothat fisa
continuous function on +(a; r)*. The motivation comes from 9.2: no continuous
argument function can be drawn from [arg(z —a)] for # on a circle centre a.

9.4 Examples (branch points).
¢ [logz] has a branch point at 0.

o [(z=DY2] = {|]z—1"%e®2 : 0 ¢ [arg(z —1)] } has a branch point
at 1.

e iand —1i are branch points for

[(2+1D)Y3] = { |Z2+1|l/3ei(0+(.f))/3 :
0¢c Jarg(z—1)], o€ [arglz+ 1] }.



Multifunctions 109

e 1 and —1 are branch points for

[log((z = 1)/(z+ 1)) ] = {log|(z = 1)/(z+ D] + {0 — ¢) :
fc larg(z—1)], oc [arglz+1)] }.

More generally, for any non-constant rational function p(z)/¢(#), the multifunc-
tions [log(p(#)/q(2))] and [(p(2)/q(x))"] (a ¢ Z) have branch points at
the roots of p and of ¢ (we assume here that the polynomials have no zeros in
common).

Suppose we are given a multifunction [w(z)]. Our goal is to select a
value f(#) € Jw(2)], for each z in as large a domain as possible, so that f
is holomorphic. In particular, f has to be continuous. We now introduce
multibranches. These provide a stepping stone on the way to our goal.

9.5 Multibranches. There is a sense in which we can make continuous selec-
tions from multifunctions in a natural way. The key idea is the following. Rather
than considering # as our variable we introduce, for each branch point «, new
variables (r,#), where z = a + re!. We first illustrate how this works in the
simplest cases.

For the logarithm

[logz] = {logr+if : z=re!?, 8¢ [argz]} (04 2),
we have multibranches
Fy(r,0) :=logr+ (0 + 2km) (k€Z).

Each Fj is a continuous function of the polar variables (r,0) and Fy(r.6) €
[logz] for 0 £ z = re'?. Furthermore, for any fixed ¢ € R, and for 0 £ 2z = rel?,

[logz] ={Fx(r.0) : k€ Z, 0 €|c.c+2n)},

with no values repeated, and similarly if ¢ is restricted to any interval (¢, ¢+ 27).
We call the set of functions {F} }rez a complete set of multibranches for [logz].
We can view these functions as separating the values of the multifunction [logz ]
into continuous strands.

Now consider what happens when z traces the image of a circle v(0:r). We
have z = rel!, with ¢ increasing from an initial value, 0, to a final value, 2.
For each £, following the continuous multibranch Fj we have

[Fr(r.t)],—¢ = logr + 2kni,
[F5 (1. 1)) jm0y = logr + (2k7 + 2m)i =logr + 2(k + D)7l = [Fpg1 ()] ,—0 -
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That is, by allowing # to travel anticlockwise round a contour which encloses 0,
we transfer from Fy to Fj1) in a continuous fashion.

Similarly, consider the square root
[272] = {r/%e¥/2 : g ¢ [arg~] }.
Then the functions
Fo(r,0) =292 and  F_(r,0) = pl/2ei0T2m/2 = _p1/2,10

are continuous functions of (r, ). In addition, we have Fy(r,8) € [2%/?] when-
ever 0 £ z = re’’, These two functions form a complete set of multibranches for
the square root. This time, tracing the image of ~(0;r),

[Fr(r D] =0 = P2 [F(r i=ar = P22 = [F_(r, D=0
Py = =12, [P (0], = =267 = [P )]

Thus, by letting # encircle 0, we interchange F} and IL_,

In summary, in both these examples, encirclement of a branch point induces
a permutation of the multibranches. We may view this permutation as witnessing
the nature of the many-valuedness.

For functions with two branch points, say at a and b in C, we need variables
(r,R,0,0), where z = a+ re¥ and # = b + Rel®., For example, a complete set
of multibranches for [ ((z —a)/(z — b)) Y 3]] would be the functions

hal (7.’ R, 9’ C)) — (7./R)l/3ei(0—phi)/3’
Fg(r, R.0. C)) — (7,/R)1/3627ri/361(0—(."))/3’
ES(T: R,Q, C)) — (7,/R)1/3647ri/361(0—(."))/3’

It is more complicated this time to work out what happens to the multibranches
when we encircle one or both of the branch points. So our next task is to explore
further the notion of encirclement.

9.6 Circuits. We want to track the variation of @ in 2 —a = |z —a|e'? as z
moves, with z # «. To do this tracking in a controlled way we let » trace images
of closed paths. Specifically, we let v be a positively oriented contour, where
~ has parameter interval [, 3] (so v(a) = (3)). We say » performs a circuit
round v if we allow z = ~(f) to vary with ¢ increasing from the start value «
to the final value 3. Basic track readers should take the following as a fact [an
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advanced track explanation in terms of index is given in 12.11): as z = a +el?
performs a circuit round ~,

if a € I{v), then @ increases by 27,

if @ € O(7), then # returns to its initial value 27.

Suppose we have a complete set of multibranches, {Fj}aea. for the mul-
tifunction [w(z)]; here A is some finite or infinite index set. Suppose that
aj,...,ay are the branch points in € and let (ry,8;) be polar variables relative

to the point aj. Let ~ be a positively oriented contour passing through none of
A1s...,Gn. For k=1,..., n, let

O, — { O+ 27 if ar € I(~),
P o if a; € O(7).
We write F’ )\—ﬁFu if
F:,,,(Tk,gk) :F)\(Tk,@k) for k= 1....,n.

We shall say that 7 is an admissible contour for [w(z)] if F)\ — F) for all

A € A; otherwise it is inadmissible.

9.7 Examples (performing circuits).

e Let {F}}rez be the multibranches for [logz] ., as defined in 9.5. Then, for
all k€ Z,

el 0€I(),

Fy—s Fy, where Fy=
R e WREE e {Fk i£0c O

So v is admissible for [logx] if and only if ~ does not enclose 0.
e For the nth root [21/"], we have a complete set of multibranches

Fk(r, 9) — eZkﬂ'i/nrl/neiH/n (k =0,1,....n— 1)’

We have Fi (7,0 +27) = Fi 1 moany(m9) (K =0,1,...,n—1), so that
induces a cyclic permutation

Fop— F— ... — F_1 — Iy

of the multibranches if 0 € I(v). If 0 is outside v then all multibranches
are unchanged after a circuit round ~.
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e Consider the multifunction [w(z)] = [{((x — a)(z — b))l/ *1 (a.b € C,
a # b). We have branch points at ¢ and b. Write z —a = rel? and
z — b= Rel®. We take multibranches

F (r,R.0.¢) = (rR)?el0T9)/2 and F_(r,R.0,¢) = —(rR)}/?ei010)/2,

prd

\

Figure 9.1 Circuits for [ ((z —a)(z — b))l/z]]

We show in Table 9.1 the effect on the angles # and ¢ and on the multi-
branches of performing circuits round contours v, %2, v3, and vy, as shown in
Fig. 9.1. We consider this example further in 9.11.

Cuts and holomorphic branches

In the previous section we identified argument multifunctions as the root cause
of many-valuedness of logarithms and non-integer powers of rational functions.
We introduced multibranches and circuits as tools for analysing the effect of this
many-valuedness. We now show how to remedy many-valuedness by working in
a plane cut so that inadmissible contours are outlawed. We then make selections
of values of multifunctions which are linked to the arg restrictions imposed by
the cut(s).
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Table 9.1 Circuits for [ {(z —a)(z — b))l/z]]

" Y2 Y3 Y4
a1 2 0 2 0
¢ T 0 27 0 27
10+e)1 ™ T 27 0
Fr+—F_ FL+—F_ 1o 1o
2 ¥ change change

9.3 Cutting the plane.  Suppose that we have a multifunction [w(z)] for
which we have identified the branch points and a complete set of multibranches.
Suppose also that, by considering circuits round contours which include or ex-
clude the various branch points, we have found which contours are admissible
and which are inadmissible. We now wish to restrict movement of z so that
inadmissible contours are outlawed. We do this by means of cuts in the plane
which we forbid z to cross. For example, a cut along [0, oc) would outlaw any ~
enclosing 0, but would not outlaw +{(—2:1). A cut along [—1i, i] would outlaw
any contour enclosing one but not both of i and —i.
For our purposes it will be sufficient to consider cuts of the following forms:
¢ along an infinite ray from a branch point a;
e along a line segment [a. b] joining branch points @ and b.

We do not remove points of a cut from the plane, but we do think of a cut as
having two edges.

Consider a cut of either type with @ as an endpoint and let z — a = relf,
On the cut, # = «, where « is a fixed constant, determined up to an integer
multiple of 27. For any point z not on the cut, we can specify a unique value
of @ by requiring that 8 € (o, + 27). For points on the two edges of the cut

(excluding a), ¢ = « defines one edge and # = « + 27 the other.

9.9 Examples (plane-cutting). In the following examples, notice how the
restrictions on the angles tie up with the positions of the cuts.

e In the plane cut along {iy : vy > 1}, any point other than i may be
uniquely specified as 7 = |2|e', where 7/2 < 0 < 57/2.
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e Cut the plane along [—1,1]. For any point z other than 1 or —1,

z—1=|z—1e (—w<o<m),
z+1l=|z+1e¥ (0<e<2m),

with 8 and ¢ uniquely determined. We have used ‘upper edge’” angle values
for points on the cut. See Fig. 9.2. We could alternatively have taken ‘lower
edge’ values, but not a mixture. So, for example, upper-edge values for z—1
and lower edge values for # 4+ 1 would not be allowed.

-1 | cut 1

Figure 9.2 DPlane cut along [—1,1]

All the machinery is now in place for us to extract holomorphic functions
from multifunctions.

9.10 From multibranches to holomorphic branches. Let [w(2)] be a mul-
tifunction with branch points a;....,a, in C. Suppose that {Fx}iea is a com-
plete set of multibranches and suppose that we have cut the plane so as to forbid
inadmissible contours. In one sense we eliminate many-valuedness by switch-
ing from the variable z to the polar variables (ri.....r;.01,....0,) used with

arg restrictions as dictated by the cuts, to enable us to revert to the variable »
50 that

@) =Fa(rr,..o.rpa01....,0,)

is uniquely determined by z. If f, is holomorphic in the plane with the points
of the cut(s) removed, then it is called a holomorphic branch. The holomorphic
branches we defined in 7.16 and 7.17 are instances.

Here are two examples of taming multifunctions which have more than one
branch point in C.
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9.11 Examples (holomorphic branches).

e Consider [{(z—1)(z+ 1))1/ 2]] . We showed in 9.6 that we must outlaw
contours which encircle one, but not both, of the branch points 1 and —1.
We achieve this by cutting the plane along [—1, 1] (see 9.8). In the cut plane
we then have two holomorphic branches

+ |z2 _ 1|l/2ei(9+”&)/2,

gcJarglx—1], —-w<0<m, pe Jaglz+ 1], 0<p <27,

e Consider [log(z? —1)]. There are branch points at =1. We define multi-
branches

Gr(r.R.0,.0) =log|* — 1| + (0 + ¢ + 2km) (k€ Z).

A circuit round a contour v increases # + ¢ by 27 if v encloses just one of
the points 1 and —1 and increases § +¢ by 4 if v encloses both 1 and —1.
If ~ encloses neither 1 nor —1, then #+¢ is not changed. Therefore we must
outlaw all contours which enclose either, or both, of the branch points. This
can be achieved by cuts along (—oc, —1] and [L, o¢) (see Fig. 9.3). Contrast
this with the preceding example.

cut -1 ‘ 1 cut

Figure 9.3 Cut plane for [log(z? —1)]
Holomorphic branches are given, for & € Z, by

gk(2) =log|#* = 1|+ 1(0 + ¢ + 2km), where
z—1=|r—1e 0<0<2r, 2+1=|z+1]e¥, —m<p< T

9.12 A secret revealed: branch points at occ.  The difference between the two
examples in 9.11 may seem mysterious, as may the non-uniqueness of cuts which
are infinite rays. The mystery disappears once we investigate the behaviour of
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multifunctions at oc € C. We say that oc is a branch point of Jw(z)] if 0 is
a branch point of @, where [w(Q)] = [w(1/¢)] (for ¢ # 0 and 1/¢ in the
domain of definition of w).

Circuits round 0 in the ¢-plane, where ¢ = 1/z, must be outlawed if 0 is a
branch point of . Back in the z-plane, we must cut along at least one infinite
ray if oo is a branch point. Remember that any infinite ray arg(z — a) = i joins
a to oo, Table 9.2 gives some examples.

Table 9.2 Examples of cuts

[w(z)] [@(z)] branch points possible
of w cuts
[22] [2~%2] 0,00 [0,0¢) or (—o¢,0]
[log(+~1)] [log #] 0,00 [0,0¢) or (—o¢,0]
[*-12] (-2 L1

(=7 16T = e
[+ [=G)] = e

[log(+* —1)] [log((1-2%)/2*)]  L1l,00 (=00, —1] & [1,00)

9.13 Summing up.  Given a multifunction w, we seek to
(1) define a complete set of multibranches,

(2) locate the branch points (in @)

(3) identify which contours are admissible and which are not,

(4) cut the plane between pairs of branch points so as to debar inadmissible
contours, making no more cuts than are necessary,

and so to
(5) specify holomorphic branches.

Here (4) serves as a device for stipulating the arg restrictions in a way which
makes them transparent. In simple cases it may be possible to bypass some of
the steps and to define holomorphic branches directly.
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Copies of €

Riemann surface for log z

Figure 9.4 Riemann surface for [logz]

9.14 Riemann surfaces. It could be argued that we have attacked the many-
valuedness problem in an ostrich-like way. Maybe, instead of working with an
individual branch of a multifunction in a cut plane, it would be better to keep
all branches in play, with one copy of the plane on which to define each. In
other words, we treat the aggregate of branches as a single function on a domain
set consisting of many copies of the plane. These copies are glued together so
that in moving from one to another we pass continuously from one branch of the
multifunction to another. The resulting structure of ‘parallel universes’ is known
as a Riemann surface for the multifunction. A multi-storey car park provides a
good mental picture. The floors of the car park represent copies of the plane and
the ramps taking cars up and down hetween levels indicate how these copies are
pasted together. The Riemann surface for the logarithm is modelled by a car
park with infinitely many floors, each of infinite extent, with a semi-infinite ramp
joining each floor to the next; see Fig. 9.4. For more complicated multifunctions,
the car park designer might be said to have a warped sense of humour.

An extensive theory of Riemann surfaces exists and provides a framework for
an advanced study of multifunctions affording, in return for some sophisticated
analysis, far greater insights than the naive plane-cutting approach. However,
for the sort of multifunction problems we discuss in this book, cut planes serve
quite adequately.
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Exercises

9.1 Let ~ be the circular path ~(0;2). Suppose values of f(») € [w(2)]
are selected so that f(v(t)) varies continuously as t increases from 0 to
27, with f(+(0)) real. Determine the initial value f(~(0)) and final value

F(v(2m)) when [w(z)] is
1) [logz], (i) [log(z™Y)]. (i) [log(l+2)]. (iv) [log(z*)].

9.2 Repeat Exercise 9.1 for the following multifunctions:

O [E-D7, @) L6+ D7), @) [
(Assume that f(+(0)) is real and positive.)

9.3 Verify that the multifunctions below have branch points as indicated and
that the cuts suggested outlaw precisely the inadmissible contours. In each
case, specify a holomorphic branch.

(i) [(#=1)'?] (branch points i,00; cut along {iy : y > 1}).
@) [{(z=1)/(z+ 1))3/4]] (branch points =1; cut along [—1,1]).
(iii) [(z(z— 1))_1/2]] (branch points 0,1; cut along [0, 1]).
(iv) [ (z(z—l))z/g]] (branch points 0, 1, oc; cuts along (—oc, —1]&[1, o).
(v) [log(#*+1)] (branch points £i; cuts along { iy : |y| = 1}).

9.4 For each of the following multifunctions, locate the branch points (in @)
suggest how the plane should be cut, and specify a holomorphic branch.

0 [ = D7), @) L= i) [+ )],

9.5 TFor each of the following multifunctions, locate the branch points (in C),
specify multibranches, suggest how the plane should be cut, and specify a
holomorphic branch.

W) [#logz 1. @) [og=2].  (iif) [((z— Dz —w)(z— )],
where w = *71/3,

9.6 Let ai,...,a, be distinct points of C. Prove that the multifunction

[((z—a1)-..(z = an))]

has branch points at each point a,, and has a branch point at oc if n is
odd but not if n is even.



10 Integration in the complex plane

This chapter continues the study of paths begun in Chapter 4. It contains basic
material on integrals along paths which underpins the presentation of Cauchy’s
theorem in Chapters 11 and 12,

Integration along paths

10.1 Paths: a recap. For the definitions of a path and of concepts relating
to paths, consult 4.2, Recall in particular that a path is defined by a function
v: [ev, f] = C and that ~+* denotes the image traced out by +(¢) (for a <1 < 3).
To qualify as a path, the function ~ is required to satisfy a rather technical
differentiability condition. Intuitively, we may interpret this condition as telling
us that the image v* is made up of finitely many smooth sections (as the image
of a contour certainly is).

Essentially, the definition of a path is set up so that we are able to apply
the theory of integration of continuous functions, piecewise, to the finitely many
smooth paths which join to form ~.

10.2 Integration of real- and complex-valued functions. We assume familiar-
ity with integration of real-valued functions on compact intervals in R, at least
at a fairly basic level. Specifically, we take for granted simple techniques for eval-
uating real integrals, elementary properties of integrals (such as linearity) and
the fact that, at the least, continuous real-valued functions on compact intervals
in R are integrable. [Here ‘integrable’ may be interpreted as having the meaning
it has in any treatment of basic integration theory, whether a Riemann-style
approach or a more sophisticated one leading to the Lebesgue integral.]
Continuous functions are not quite adequate for our needs. We say that
a (real- or complex-valued) function h is piecewise continuous on a compact
interval [a, 5] in R if there exist points o« = to < t; < -~ < t,, = 2 and
continuous functions Ay on [ti,tr11] such that h(t) = hi(t) for t € (tg,tps1)
(k=0.....n—1); h need not be defined at any or at some of the poimts t;.
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Essentially, the definition means that h is continuous except, possibly, for a finite
number of jump discontinuities. A real-valued piecewise continuous function is
integrable, with

3 n—L L1
/ h(t)dt = Z / hy () dt.
= k=0 " Lk

Let g be a complex-valued function (defined on [, 5] € R) and write g as
Reg+ ilmg, where Reyg, Img: [o, 5] = R. We say g is integrable if and only
if Reg and Im g are both integrable and in that case we define

8

/: g(t)dt == /: Reg(t)dt + 1/@ Im g(t) dt.

For example,

27 ) 27 27 . o
/ eltdt .= / costdt + i/ sintdt = [sint]o + i[— cost]o =0,
Jo JQ JQ

In the sequel, where we manipulate complex-valued integrals without com-
ment, we are using properties which carry over easily from the real-valued case;
examples are linearity and the theorem on substitution used in 10.5. These
properties and their derivations can be found, for example, in [6] and [2].

10.3 The integral of a function along a path. Let ~ be a path with parameter
interval [, 3]. There exist points & = tp < 11 < --- < t, = J such that ~
restricted to each [tg,tx+1] coincides with a continuously differentiable function
on [ty,tr+1]- At the intermediate points t;, v may not exist. Let f: +* — C
be continuous. We define

J e | @

and call this the integral of f along ~, or round ~ if v is closed. The integral on
the right-hand side makes sense because (f o v)v': t +— f(~v(t)+'(t) is plecewise
continuous, and hence integrable. We can motivate the definition on a formal,
symbol-juggling, level by replacing z by ~(t) and dz by ~/(t)dt.

[In vector calculus, integrals along paths in R® are important. These
are known as line integrals or curvilinear integrals and are usually defined,
Riemann-fashion, by breaking up the parameter interval of a path given by
~(t) = (x(t),y(t)) into small subintervals and forming approximating sums.
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Given f =wu+ iv, the formalism
3
/ f(z)dz = / (u+ v+ iy")dt

3 3
= / (uz’ —vy')dt + i/ (wy' + vy dt

:/udx—/vdy+i/vdx+i/udy

correctly relates line integrals of u{x(t),y(t)) and v(z(t),y(t)) along ~ to the
complex integral [ f(z)dz.]

The following simple consequence of the fundamental identity 71 = 1
(k € Z) will be used again and again in later chapters.

10.4 Example: the Fundamental integral. Tor ¢« € C and r > 0,

. n . 0 (7’2, # _1)7
I s P

where ~(a:r) denotes the circular contour having centre @ and radius r (re-
call 4.3).

Proof Since v(a:7)(t) = a + relt (t € [0,27]), the definitions in 10.3 and 10.2
give

/ (z—a)"dz = / (ret)y"rielt dt
Jy(asr) JO
2
— irn+l/ ﬂei(iz+l)t(it
Jo

2 2
= ipntt </ cos(n + L)t dt + i/ sin(n + 1)t dt)
Jo Jo

- <[m<%ll>f]z _ 1[%]2) (n#-1).

i (n=-1),

from which the conclusion follows immediately, [

We now clear up some technical points. The results, which seem quite
transparent in particular cases, are more important than the details of the proofs.
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10.5 Technical lemma (integrals along paths).  Suppose that + is a path with
parameter interval [a, 8] and that f: v* — C is continuous.

(1) Reversal [ f(z)dz=—[ f(»)dz.
(2) Joining Let oo < 7 < # and let v = ~[[er, 7] and v = ~[[r, 3]. Then

-/vf(Z)dZ_ /m f(z)dz+/ﬁ/2 f(2)dz.

(3) Reparametrization Let 7 be another path, with parameter interval [a, 3]
and suppose that ¥ = v o1, where v is a function which maps [, 4] onto
[cr, 8] and has a positive continuous derivative. Then

L fx)dz = L f(z)dz.

Proof (1) and (2) are easily deduced from the definitions. In proving (3)
we may, thanks to (2), assume that v, and hence also 7, is smooth. For

t € la, 3],
() =~ (WO (t)

(this is the Chain rule in a real/complex hybrid form). Making the substi-
tution s = () is legitimate because of the hypotheses on %) and so

/f,z)d,z—/ & t)ydt

- L A @) () dt
3

= [ e e

= [ f(z)d=. O

The reparametrization result 10.5(3) tells us that under quite mild condi-
tions f f(#)dz depends only on the image v* and on the direction in which it
is traced, and not on the parametrization chosen. In particular, we can translate
and rescale the parameter interval. Translation is needed in the proof of the
following corollary to 10.53(2): recall the definition of join in 4.2.
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10.6 Proposition (integral along a join of paths). Suppose that v is a path
with parameter interval [o, 3] and is the join of paths v1,72,...,%, and let
f:~* — C be continuous. Then

’[/f(z)dz—];/% f(z)dz.

10.7 Example (10.5 and 10.6 in action). We compute [ z?dz, where v is
the semicircular contour formed by joining = := [—R. R] and ~» = T'r: see
Tig. 10.1. We have

7nt) =(1—=1t)(=R)+tR and ~{(t)=2R (t<]0,1]),
v (t) = Rett and ~4(t) = iRe' (¢ € [0,27)).

Hence

1 iy
/ Ao = / ((2t = DR)*2R At + / R R df
4y JQ Jo
op3(ts_ o2 . 133'1L7T
= |2R*(St7 =20 +1)| + |SR%
3 N 3 o
=0.

Figure 10.1 Contour for Example 10.7
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The Fundamental theorem of calculus

The usual way to evaluate real integrals between fixed limits (definite integrals)
is to recognize the integrand as a continuous derivative and then to apply the
Fundamental theorem of calculus. There is an analogous result for complex
integrals. The calculations in 10.7 are special cases of those in the proof below.

10.8 Fundamental theorem of calculus.  Suppose that v is a path with
parameter interval [a, 5], that F' is defined on an open set containing ~*, and
that (%) exists and is continuous at each point of v*. Then

/ F()dz = { 5(’/(’3)) —F(())  in general,

if ~ is closed.

Proof We first assume that ~ is smooth. The hypotheses on F are more than
strong enough to imply that F o~ is differentiable on [e, 5] with (F o +)/(t) =
F'(()~'(t) by the Chain rule. Then

/ Flz)de= /a 3 F'{(y(0)y (1) dt

3
- /a (F o) (t)dt

3
_ / (Re(F 07) (1) + 1Im(F o ~)'(1)) dt

3

{ e(F o )( t] +1[Im(Fow)(t)]
F((#) = F(y(a)).

The penultimate line is obtained by applying the real Fundamental theorem of
calculus (see for example [6], [3], or [2]) to Re(F o) and Im(F o ~).

@

In the general case, we choose o = tp < 1, < --- < t, = § such that
[tk tht1] 1s smooth, for £ =0,...,n — 1. By the above and 10.6,
n—1 Lk+L
F(z)dz = / ~(t) dt
frea=x |
n—1

—Z Wtwe1) = F (1))
:F(y(ﬂ))— F(+(a)). B
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10.9 The status of the complex Fundamental theorem of calculus. The
Fundamental theorem of calculus in complex analysis should be treated, in a
way that its real counterpart is not, as an interim result. It is a stepping stone
to Cauchy’s theorem and its consequences, and these results largely supersede it
for both theoretical and computational purposes.

When complex integrals cannot be evaluated explicitly (and sometimes
when they can) the following estimate of magnitude is invaluable.

10.10 Estimation theorem. Suppose that ~ is a path with parameter interval
[cr, 8] and that f: ~* — C is continuous. Then

“ / f(z)dz

In particular, if | f(2)| < M for all z € v* then

" / F(2)dz
5

length(v) := / |~/ (t)] dt.

s

3
< [ rewrel.

< M x length{(~),

where, by definition,

(For line segments and circular arcs, and hence also for contours, this definition
gives the value we expect the length to have.)

10.11 Examples (estimation). Using estimation correctly depends on famili-
arity with the inequalities in 1.9.

o Let f(z) = (2* +1)7! and let v =Tg. Then, by definition,

Xy 1 i ;
[/f(Z)dZ:/O mlRetdta

the value of which is not obvious. However we do have. by 10.10 and 1.9(3),

M/f(Z)dz <[

o Take f(2) = 1/z, v(t) = e* (¢t = [0,27]). Then |f(v(1))] = 1 and
|['(#)| = 1. The Estimation theorem gives

" / f(z)dz

Rielt
Rietl 11

R~
|Rt =1

dt <€

27
</ 1dt = 27,
40
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which is consistent with 10.4. Compare this with the fallacious estimate

‘/f(z)dz < /|f(z)|dz:/ldz:/ iet dt = 0.
oy Sy Sy JQ

Z The error lies in misplaced modulus signs. The moduli must enclose the

entire parametrized integrand f(v(t))+'(t) and not just f(v(t)) = f(%). A
legitimate shorthand for f_ . | (N~ ()] dt 1s f | £(2)| |d#|, which must not
be confused with ﬁ (2] dz.

Exercises

Exercises from the text. Verify that the definition given in 10.10 for the length
of a path ~ gives the expected value when ~ is a line segment or a circular arc.

10.1 Evaluate [ f(z)dz when
D) f(2) =22 y(t) =" (t €[-7/2,7/2]).

(ii) f(2) =Rez, y(t) =1+ it* (1 € [0,1]),

(iil) f(2)=1/z, v(t) =e ™ (t €[0.87]),

(iv) f(z) =e*, ~ the join of [0,1], [1,1 + i], and [1 + 1, 1],
&) @ =t vy =[=1+ L1 +1].

10.2 Evaluate [ (051 f(z)dz when f(z) is
@ J2*, (1) Rez)?, (i) 272(z* = 1), (iv) sinz.

(Use the Fundamental theorem of calculus where applicable.)

10.3 By integrating (R + 2)/(#(R — %)) round a suitable contour, prove that

1 27 R2—7‘2
2. o D% —2Rrcosf+r?

dd=1 (0<r<R).

(Hint: use partial fractions.)

10.4 Prove the following properties of length(~), the length of a path ~.
(i) length(—~) = length(~).
(ii) If ~ is the join of paths v, and ~» then

length(v) = length(~ ) + length(»s).
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10.6

10.7
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(iii) If ¥ is obtained from ~ by reparametrizing v as in 10.5(3), then
length(~) = length(7).

Use the Estimation theorem to obtain the following upper bounds:

0 / Lid<an  m / sl | 2R
Sr(152) # Jy(0:R) ¥ +1 R—1
(iii) / % dz| < 7R3, (iv) / (2 + D)7y < V2
JTr # J[0,141]

Let ~ be a square contour such that +* has its vertices at (£1 £ i)R.

Obtain an upper bound for |ﬁ i dz| when () n € Z, n > 0 and (ii)
ne€Z,n<q,

Let p(z) be a polynomial. Use the Fundamental theorem of calculus to
prove that [ p(z)dz = 0 for every closed path in C. (This is a very
special case of Cauchy’s theorem, considered in Chapters 11 and 12.)
Deduce that there exists € > 0 such that, for every polynomial p(%),

1
p(2) — ;‘ > ¢ whenever |#| =1

[Thus the function 1/z cannot be uniformly approximated on the unit
circle by polynomials.]



11  Cauchy’s theorem: basic track

Cauchy’s theorem is the centrepiece of complex analysis. It states that
/ flx)dz=0

under appropriate conditions on the function f, the (closed) path v, and the
set G on which f is holomorphic. Inextricably bound up with Cauchy’s the-
orem are the Deformation theorem, concerning the equality of [ f(2)dz and
J= () dz under appropriate conditions, and the Antiderivative theorem, deal-
ing with the existence of F € H(G) such that F' = f. This basic track chapter
presents entry-level forms of all three theorems. Table 11.1 indicates the rather
convoluted route we take to arrive at these key results.

Table 11.1

Cauchy’s theorem I, Indefinite integral theorem I
for a triangle (11.2) (11.3)

\/

Antiderivative theorem I (11.4)

Cauchy’s theorem for a Cauchy’s theorem I,
convex region (11.5) for a contour (13.8)

Deformation theorem I
(11.9)

In this chapter and the next we present Cauchy’s theorem in three different
forms: Cauchy’s theorem I focuses on conditions on v, Cauchy’s theorem II on
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conditions on G, while Cauchy’s theorem IIT is a definitive, global, version of the
theorem. Both theorems I and II are obtained first under restrictive hypothe-
ses. Associated theorems (deformation theorem, for example) are labelled in a
corresponding way.

Cauchy’s theorem

11.1 Contours: arecap. Recall that in 4.3 we defined a contour to be a simple
closed path whose image is made up of a finite number of line segments and
circular arcs. Our purpose in introducing contours was to avoid the geometrical
complexity that general closed paths may exhibit. In particular, we proved that
a contour ~ has an inside I{~) and an outside O(~) (Theorem 4.6, a restricted
form of the Jordan curve theorem).

As our experience with the Fundamental integral (10.4) indicates, the
conclusion of Cauchy’s theorem may fail for a function which is not holomorphic
inside the contour as well as behaving well on it: z~! is holomorphic at every
point of the unit circle yet ﬁ (051) z~tdy = 2wi £ 0. Wesay that f is holomorphic
inside and on a contour v if f € H(G) for some open set G such that ~"UI(y) C
G. (Remember our emphasis on open sets in the definition of holomorphy in
3.7.)

The Fundamental theorem of calculus (10.8) implies that [ F'(z)dz =0
when ~ is a closed path in an open set G, for suitable functions F ‘defined in G.
A natural way to approach Cauchy’s theorem is therefore to find conditions
under which f € H(G) has an antiderivative F (that is, f = F'). It turns out
that, provided G is convex, this is so if [ f(z)dz = 0 for all triangles v in G.
Consequently we shall first prove that CdllChy’S theorem is true in the special
case that the path of integration is a triangle.

11.2 Cauchy’s theorem | (for a triangle).  Suppose that f is holomorphic
on an open set ¢ which contains a triangle ~ and the region inside it. Then
L fz)dz=0.

Proof We first outline the ideas in the proof. The Fundamental theorem of
calculus shows that [ p(z)dz = 0 for any polynomial p(#) and any triangular
contour 7. Near a poiht Z ., we can approximate our holomorphic function f by
the polynomial p(2) = f(Z)+ (# — Z) f'(Z) (see 3.11). Hence we aim to replace
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w

Figure 11.1 Subdivision of a triangle

J. f(#)dz by the sum of integrals round small triangles on the image of each of
which p(#) is a good approximation to f(z).

For any distinct points p, ¢, r, let [p,¢.r] denote the triangle formed
by joining [p.q]. [¢.7], and [r,p]. Let v be [u.v,w] and u', V', and w’ be,
respectively, the midpoints of [v,w], [w,u], and [u,v], as shown in Fig. 11.1.
Consider the triangles +° = [u/,v",w'], ¥* = [u,w', 2], ¥* = [v,4/,w'], and
+* = [w,v",«']. Then, by 10.5,

I:= ’[(f(z)dz—];/v]c f(z)dz.

For at least one value of £,

" / (@)

Relabel such a v* as +;. Repeat the argument with 41 in place of +. Proceeding
in this way, generate a sequence %o, 71, v2,... of triangles such that
@) ="
(il) for each n, A1 €A, where Ay is the closed triangular area having ~
as its boundary,

1
z 7 HI (by L9(3)).

(iii) length(~,) =27"L, where L = length(~), and
(iv) 47" || < |f% f(2) dz| for all n > 0.
The set ﬂ;’;o A, contains a point Z common to all the triangles A,,. (To prove

this, select for each n some point z, € A,,. The sequence {z,} is bounded since
all points z, belong to Ag. By Theorem 3.22, {#,} has a subsequence convergent
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to some point Z. For each n, Z is a limit point of the subset {z;}r>n of Ay,
and so belongs to A, (see 3.7).)
Fix £ > 0. The function f is differentiable at Z, so, for some r,

IF(2) = f(2)—(z=2)f' (D) <e|x—Z] forall z € D{Z;r). (1)
Choose N such that D(Z;+) O An. For such N,
|z = Z| <27NL forall z € Ay, (2)
by (iii), and
[ t@ - nr@)a=o ®)
by 10.8. Hence, by (1),' (2\) (3), and 10.10,

‘[\ f(z)dz

By (iv), |I| < €L?. Since ¢ is arbitrary, I = 0, as required. O

<@ )L x lengih(1x) = 227V LY.

11.3 Indefinite integral theorem I. Let f be a continuous complex-valued
function on a convex region G such that [ f(#)dz = 0 for any triangle ~ in G.
Let a be an arbitrary fixed point of G. Then F defined by

F(z) = flw) dw

/[a.7]
is holomorphic in G, with F' = f.
Proof Fix z € G and let D(#;r) C G, so that |h| < r implies 2+ h € G. We
show that (F(z+ h)—F(z))/h — f(z) as h — 0. For |h| < r, the line segments
[, 2], [z, %+ h], and [a, 2+ h] all lie in G, since G is convex; see Fig. 10.1. By
hypothesis, the integral of f round the triangular contour [a. 2, z + h] is zero.

Figure 11.2 Droof of Indefinite integral theorem I



132 Cauchy’s theorem: basic track

Hence, by 10.5 and 10.6,

Flz+h)—F(2)= / flw)ydw — fa)ydw = / fw) dw.

Ja,z41) Ja,z] Jz.z4h]

Also, by parametrization, f 1dw = h. Hence

szt
F(z+h)—F(2) 1 ‘ . ‘
Peih ey, >\ i /Wh] () = F(2) dw

< = x|h|x sup |f(w)—f()| (by 10.10)
|h’| wE[z,x4-h]

and this tends to zero as A — 0, by continuity of f at z. [

11.4 Antiderivative theorem I.  Let G be a convex region and let f € H(G).
Then there exists F* € H(G) such that F' = f.

Proof Combine Theorems 11.2 and 11.3. O

11.5 Cauchy’s theorem for a convex region. Let G be a convex region and
let f € H(G). Then [ f(#)dz =0 for every closed path v in G.

Proof Combine Theorem 11.4 and the Fundamental theorem of calculus. O

Often the region in which we want to apply Cauchy’s theorem is not convex.
For example, this is the case when we use keyhole-shaped contours in cut planes
(see Fig. 19.3). We now present the version of Cauchy’s theorem we use when
Theorem 11.5 is not applicable.

11.6 Cauchy’s theorem | (for a contour). Suppose that f is holomorphic
inside and on a closed contour . Then f f(z)dz=0.

Proof Suppose first that v is a polygon. By triangulating v (see 4.8) we can
write [ f(z)dz as Sy L . /(#)dz, where each 7 Is a triangle; note that the
mtegralﬂ along the inserted line segments cancel. By Theorem 11.2, the integral
of f along each vy is zero,so [ f(z)dz =0.

Now let v be any contour, and let G be an open set containing +*UI(~) on
which f is holomorphic. We shall ‘approximate” ~ by a polygonal contour. To
do this we cover +* with overlapping discs Dy, = D(~v(tx):m) (k=0,....N:tg <
t1 < --- < tn; (o) = ~(tn)) which satisfy the conditions (i)—(iv) of the
Covering theorem (4.3). By increasing the number of discs if necessary we may
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Figure 11.3 Proof of Cauchy’s theorem I

assume that each g := ¥[[tg, tx+1] is & line segment or a circular arc, and also
that the line segments 5 == [v(t). Y(tx+1)] (kK = 0,....N — 1) join to form a
polygonal contour ¥ such that ¥~ UL(¥) is contained in (J5_, D UI(7), and so
in G see Fig. 11.3. We have |~ f(2)dz = 0. Furthermore, for each k., the join

J oy
!

of v, and —7} is a closed path in Dy, which is convex. By 11.5 and 10.3,
/ f)dz = / f(z)dz for each k.
- ’\’/k . ’\’/k

Hence

N-—-1 N—-1

‘[’/f(z)dz— kz:;) ‘[/k fx)dz= ,; /%c f(z)dz—/yf(z)dz_o, O

11.7 Evaluation of integrals: taking stock. We began in Chapter 10 by
evaluating integrals from scratch by recourse to the parametric definition given
in 10.3. This entails splitting the integrand into real and imaginary parts, and
then using the real Fundamental theorem of calculus. This may lead to laborious
manipulations or, at worst, to integrals we cannot evaluate.
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We graduated to the complex Fundamental theorem of calculus (10.8). To
apply this we must recognize our integrand as a continuous derivative, and we
cannot always do this.

With Cauchy’s theorem available we see instantly that our hard-won an-
swer in Example 10.7 is right. We also now know, for example, that | e dz =10
for any closed contour ~. You would not be able to obtain this result without
Cauchy’s theorem! There are situations where Cauchy’s theorem is not appli-
cable but where either parametrization or the Fundamental theorem of calculus
can be applied.

In Chapters 13 and 18 we shall greatly extend our range of techniques for
evaluating complex integrals. These techniques have their roots in the results of
this chapter.

11.8 Examples (to illustrate 11.7).  We claim that [ := [\ f(z)dz = 0
for each of the functions f below.

o Take f(2) =1/2%. Here I =0 by 10.4.
o Take f(z) = cosec® z. Then f(z) = (d/dz)cotz in an open set containing

~(0:1)* so I = 0 by the Fundamental theorem of calculus. Cauchy’s
theorem is not applicable because sinz =0 at 0 € I(~(0:1)).

o Take f(z) = (22 +4)~Le!®", In this case, the zeros of the denominator do
not lie inside or on +(0:1). Hence I =0 by Cauchy’s theorem.

o Take f(#) = (Imz)?. Here we are dealing with a nowhere holomorphic
function (the Cauchy—Riemann equations fail except at 0; remember 3.14).
The only technique available is parametrization. Write v(t) = el* (0 <t <
27). By de Moivre’s theorem, f(~(1)) = sin2t. So

2w ) ) 2w ) 2 .
I= / (sin? t)ie* dt = / —2costsin® tdt + 21/ sint cos” ¢ dt = 0.
Jo JO JQ

Deformation

We next consider deformation of paths at a basic track level. The objective is
to be able to replace the integral of a given function f along some given path by
the integral of the same function along a more amenable path. Here we present
forms of the Deformation theorem sufficient for most needs. [On the advanced
track, deformation is approached via the topological concept of homotopy (see
12.1).]
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The hypotheses in 11.9(1) allow us to replace an integral round a contour
~ by an integral round a circle, centre a, inside v. We use this result in the
proofs of important theorems in Chapter 13. In these applications, the integrand
involves a factor of (x —a)™™ (n = 1,2,...); this explains why we must permit
non-holomorphy at one point @ inside our contour. Another commonly needed
type of deformation is that in 11.9(3). Loosely, this version of the theorem gives
sufficient conditions for the integral of a holomorphic function f along a circline
path with fixed endpoints to be independent of the path chosen.

11.9 Deformation theorem I.

(1) Suppose that ~ is a positively oriented contour and that D{a:r) C I(v).
Let f be holomorphic inside and on ~ except possibly at ¢. Then

[ fx)dz = ’[/(w‘) f(z)d=.

(2) Suppose that v and % are positively oriented contours such that % lies
inside ~, that is, ¥* UI(%) C I(). Let f be holomorphic inside and on ~.
Then [ f(z)dz = [, f(z)dz.

(3) Suppose that v, and ~» are circline paths with a common initial point and
common final point, let v := v U{(—2), and suppose that ~ is simple. Let
f be holomorphic inside and on +. Then ﬁ (2 dz = ﬁ L () dz.

Figure 11.4 The proof of Deformation theorem I
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Proof (1) The strategy is to form a closed path to which Cauchy’s theorem
can be applied. Let ¢ be the initial point of » and let D(¢;:d) be such that
f € H(D(¢;0)). Then I{(~) N D{(c;8) # @. Take d € I{(~) N D(e: ). Since I(v)
is polygonally connected (Theorem 4.6) there is a polygonal path ~ in I(v)
joining d to a and we can assume that this is simple. Let the parameter interval
of 71 be [, f]. There is a point b = 1 (T) on ~f such that |y (t) —a| > r for
0 <t <T (so that b is the first point at which ~] meets the circle |z — a| = 7.
Then v := [¢,d]U~ joins ¢ to b. Now define T" to be the join of v, 72, —v{a: 1),
and —~. This fails to be a contour solely because of the double-tracing of +3.
However, it is easy to see that the proof of Theorem 11.6 remains valid for a
path such as T' so that fr f(z)dz = 0. Finally, by 10.5 and 10.6, we obtain
L@ de= [ f(2)de

We obtain (2) from (1) by choosing some disc D(a;r) within I(¥) and
applying (1) twice to obtain [ f(z)dz = 'ﬁ/(a;r) [ de = [ f(z)dz.

For (3) we can apply Cauchy’s theorem 11.6, together with 10.5(1) and
10.6. O

11.10 The Fundamental integral revisited. In 10.4 we computed [ (z—a)"dz
for n € Z and v = v(a;r). We can now evaluate this integral for other choices
of ~. Assume that v is a positively oriented contour and that a ¢ ~*. Then

0 if a € O(9),
/ (#z—a)'dz=< 0 faeclly) andn#£ -1,
o 2ri ifa€l(y) and n=-1.

For n # —1 this comes from the Fundamental theorem of calculus (10.8).
For n = —1 we do not have an antiderivative for (z — a)™ so cannot use the
Fundamental theorem of calculus. However Cauchy’s theorem I is applicable
when a € O(v) and we can use 10.4 together with Deformation theorem I
(11.9(2)) when a € I(7).

11.11 Example (Deformation theorem).

e Consider I = [ ., f()dz when f(z) = 2(4z% — 1)~t. Write f(z) as
(22— 1)7t = (22 + 1)7L. We can now invoke the Deformation theorem
(11.9(2)) and then 10.4:

I:/ %dz—/ %(122;.27(_1—‘1.27(—1:0.
Jvzam 22 —35) Sz 22+ 3) 2 2



Cauchy’s theorem: basic track 137

AURY; y(0; 1)

Figure 11.5 Ilustrating Example 11.11

Logarithms again

We showed in 7.14 that for each z #£ 0 we can find infinitely many solutions to
the equation e* = z, differing by integer multiples of 27i. We have seen that
judicious selection of values produces a well-defined logarithm function, provided
we restrict the argument of z suitably (see 7.14)., We now have enough machinery
to investigate logarithms in more depth.

11.12 Multifunctions from indefinite integrals. It is well known that the real
logarithm is given by

1og;v:/ %ds (€ (0,00)).
J1

Is there an analogous description for the complex logarithm? And how might
the many-valuedness manifest. itself?

Let 0 # z = |#|e!, with —7 < # <, so that the value of § is uniquely
determined by z. Essentially, we are working in the plane with a cut along
(—o0, 0], using ‘upper-edge’ values on the cut. Let

Fy(z) == /r(~) %dw,

where the path I'(#) is the join of T’y :=[1,|#|] and T's defined by

|2] el (tc0.0]), if Imz >0,

Ts(2) = .
2(%) { |z| =0 (tcl[0.0]), if Imz <0;

see Fig. 11.6. Note that the path does not cross the cut.
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Suppose that Im z > 0 and write z = |z|e'?. Then

1 Il 1 v .
Folz) = / —dw = / —ds+ / — |#| iett dt = log|z| + i0.
NG Jo 8 Jo |z]et

Similarly, we can show that Fy(2) =log|z| + if if Im z < 0.

'@

Izl

Figure 11.6 The path T'(2)

So we have obtained a valid integral formula for the complex logarithm.
To achieve this we chose a particular circline path T'(z) from 1 to z. What if
we had chosen a different circline path in the cut plane, or a path in C~ {0}?
Recall that for any positively oriented contour ~,

{ 0 ifweO),
—dw = o
Jyw 271 ifwel(y)

(that Fundamental integral again!). For k € Z, let

k times

(F0: 1) U U(0: 1) UT(2) it >0,

—k times

A

(—(0; 1)) U---U(—7(0; 1)) UT(z) if k<O.

I‘k(z) =

Then, for z £ 0,

/ < dw = Fo(z) + 2kwi.
JTr(z) w

If we were to replace v(0;1) (which encircles 0) by, for example, v(1/2;1/2)
(which does not encircle 0), then the factor 2kwi would not appear. This can
be generalized: suppose we allow +(2) to be any circline path from 1 to # in

C~{0}. Then
/ 1
— dw
Sz W

takes precisely the values in [log ], as v(z) varies.
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Other multifunctions may also be viewed in terms of indefinite integrals.
For example, the inverse tangent [tan™! 2] is given by the integral

/ # daw
J(2) 1+ w2 ’

Here ~(z) is any path from 0 to z not passing through =£i (branch points).
The multiple values arise from circuits round i or —i or both. Put cuts along
the imaginary axis as indicated in Fig 11.7. In the cut plane, the indefinite
integral defines a holomorphic branch of tan=!. Other inverse trigonometric and
hyperbolic functions can be treated in a similar way.

cut

cut

Figure 11.7 Cut plane for the inverse tangent

The discussion in 11.12 indicates that it is encirclement of 0 that must
be prevented if we are to have a well-defined logarithm function. Once we have
done this, the logarithm locally behaves well, as the next theorem shows. A
more general, and definitive, version of this result is given in 12.7.

11.13 Theorem (logarithm in a convex region).  Suppose that G is a convex
region not containing 0. Then there exists a function f = log, € H(G) such
that e/(*) = 2 for all z € G and

f(x) = fla)= / %dw for all @ and # in G,

where v is any path in G with endpoints « and z. The function f is uniquely
determined up to the addition of an integer multiple of 27i. Furthermore, for
each z € G,

log 2 = log || + i0(2),

where 6(z) € [argz] and 2z (%) is a continuous function in G
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Proof By the Antiderivative theorem I (11.4) there exists f € H(G) such that
fl(#) =1/z for all z € G. Using the Chain rule,
j_z o) = oI (e =,

Hence, by 3.12(1), z = Ce/'®), where C' is a non-zero constant. By adding a
suitable constant to f, we may assume that ¢' = 1. The integral formula for f
comes from the proof of the Antiderivative theorem. Suppose that, for all z € G,
we have e/{*) = 9%, where both f and g are holomorphic in &. Then f —g¢
has zero derivative and so, by 3.12(1) again, is a constant K. We have e =1,
so K = 2nri for some integer n (see 7.10).

The last part comes from 7.14 and the fact that the imaginary part of a
holomorphic function must be continuous. O

Exercises

11.1 Each of the following integrals is zero:

1 1
i dz, ii / ———dz,
) -/v(l;l) =3 ) Sty (= 3)°

(iii) 2|7t dz, (iv) (1+e%)tdz.
<7 {(0;1) J(1;1)

Give a reason (or reasons) in each case,

11.2 (a) Let v be v(0;2). For which of the following functions f is [ f(z)dz
equal to zero?

1
z—1"

(iii) #°sin® 2,  (iv) sec® 2.

@z ()
Give reasons.
(b) Repeat (a) with + the contour described in Exercise 4.1(iv).

11.3 Evaluate [ (1+ 2?)71dz when 7 is
(1) »(1; 1), (D) (1), (i) v(=i1), (@) 7(0;2),  (v) ¥(3L 7).

(Hint: this is an exercise on Cauchy’s theorem and the Deformation the-
oremn together with 10.4; partial fractions will be helpful for some of the
parts.)
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11.4 Define a path v whose image ~* is the ellipse

traced anticlockwise. By showing that [ f(z)dz = [. f(»)dz for a suit-
able circle %, prove that

2w c
1 2
—dt=— {(a>0, b>0).
/0 a2 cos2t + b2 sin® t ab ( ’ )

(Hint: this would be an immediate consequence of the Deformation theo-
rem I (11.9(2)) if we had not restricted attention there to circline paths;
prove with the aid of 11.5 that deformation of the elliptical contour to a
circle is permissible.)

11.5 A subset S of C is said to be star-shaped if there exists ¢ € S such that
[a,2] C S forall z€S.
(i) Prove that a convex set is star-shaped, and exhibit a non-convex set
which is star-shaped.
(ii) Prove that an open star-shaped set is a region.
(iii) Let G be open and star-shaped and let f € H(G). Adapt the proof
of 11.3 to prove that [ f(#)dz = 0 (that is, prove Cauchy’s theorem
for a star-shaped regioh).

11.6  Establish which of the following sets are star-shaped:

{7z :Imz>0}, (i) {z: 1<z <2},
({i){z:|z—2/>3 |#| <2}, (iv) Cx = C~ (=, 0],
(v) C~{£1}, (vi) Sas (6 —a < 2m) (asin 2.6),

(vil) C~ {2z : |#|=1, Rez > 0}.

11.7 Let ~ be a circline path with initial point 0 and final point 1. Find all
the possible values of

(1) /z3 dz, (iD) / (1+2%)7tdz (where £1¢ +*).



12  Cauchy’s theorem: advanced
track

We approached Cauchy’s theorem in a topologically unsophisticated way in
Chapter 11. The various versions of the theorem we have presented so far are
adequate for applications, but none of these is a definitive formulation. To treat
Cauchy’s theorem only in a utilitarian way would be demeaning to complex
analysis. So we now delve a little deeper, hinting at the notions which lie at the
heart of Cauchy’s theorem.

Deformation and homotopy

We introduced polygonal connectedness as a means of distinguishing topologi-
cally between a single open disc and the disjoint union of more than one open
disc. We now seek to employ paths to distinguish an open disc D from an open
annulus A. Informally, of course, the essential difference is that A has a hole in
it but D does not. This means that a closed path in A whose image encircles
the hole cannot be shrunk, within A. to a point, while every closed path in D
can be deformed to a point. We now make precise what we mean by deformation
of closed paths.

12.1 Deformation. Let GG be a non-empty open set in C and let v and ¥ be
closed paths in G. We say that 7 can be obtained from ~v by an elementary

deformation if there exist open convex subsets Go,G1.....Gy_1 of G such
that v can be expressed as the join of paths v9,7%1,....vv_1 and 7 as the
join of paths Yo, %1,....vv_1 in such a way that, for k =0,....N —1, v and

Y lie in G}, and have common initial and final points (see Fig. 12.1).

Furthermore, closed paths v and ¥ in G are said to be homotopic (in G)
if ¥ can be obtained from ~ via a finite number of elementary deformations.

Elementary deformation is a more natural concept than it might seem from
its somewhat fearsome definition. The idea is to cover the images of the two paths
by overlapping convex regions and, within each of these, to replace a portion of
~* by a portion of 7*. The reason for working with convex sets is that we have
a Cauchy theorem for convex regions.
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Topologists have a definition of (closed path) homotopy, based on a con-
tinuous deformation process, which is, non-trivially, equivalent to our homotopy
definition. The underlying idea is to take G, v, and ¥ as above and to think of
a rubber band positioned over v*. The path 7 is homotopic to + if the rubber
band can be slid and stretched so as to coincide with ¥* (correctly oriented)
without ever moving outside G.

Figure 12.1 Elementary deformation

12.2 Definitions (null path, simply connected region). A path v lying in
a set G is said to be null if +* = {a} for some o € G. A region G is simply
connected if every closed path in G is homotopic to a null path in G.

12.3 Examples (simple connectedness).

e The definition of elementary deformation implies that any two closed paths
in a convex region are homotopic. It follows that any convex region is simply
connected. In particular, any disc D{a;r) is simply connected.

¢ No open annulus is simply connected. This is eminently plausible, but far
from elementary to prove. Jumping ahead, Cauchy’s theorem IT (12.3) tells
us that [ f(#)dz = 0 whenever f is holomorphic in a simply connected
region G and v is a closed path in G. Take G = {z : R< |z —a| < S}
O<R<S<x), f(z)=(z—a)t, and v =~v(a;r) (R<7r < S). Then
L f(#)dz = 271 #£ 0—the Fundamental integral once again.
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e Tor any real number «, let
Co ={C~{zcC:z=|z]e"}

(so that C, is the plane with a ray from 0 excluded). Exercise 12.3 indicates
how to prove that C, is simply connected,

12.4 Deformation theorem I.  Suppose that S is holomorphic in an open
set G and that v and ¥ are homotopic closed paths in G. Then

A f(x)dy = L F()yde.

Figure 12.2 Tllustration of the proof of Deformation theorem II

Proof We may assume that % is obtained from ~ by an elementary deformation.
We adopt the notation of 12.1. For each & = 0.....N — 1, the join T} of
Vi [Y(E1), T(Se40)] =Tk, and [Y(se), v(tr)] is a closed path in the convex
region Gy, so Theorem 11.5 implies that frk f(x)dz=0. But

[ f(x)dz — L f()dz= l:z;ol ( . f(x)dz— -/% f(z)dz)
N-l

Z fl)dz

k=0 /L&
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since the integrals along the line segments cancel. [

Holomorphic functions in simply connected regions

12.5 Cauchy’s theorem Il.  Suppose that f is holomorphic in a simply con-
nected region (. Then [ f(z)dz =0 for every closed path v in G.

Proof The simple connectedness of G implies that ~ is homotopic to a null path
¥ in G (see 12.2). By Deformation theorem II,

[ f(x)dz = L f(z)d=.

The latter integral is clearly zero. [

12.6 Antiderivative theorem Il. Let G be a simply connected region and let
f € H(G). Then there exists F' € H(G) such that F' = f.

Proof We cannot define F(z) = f[(m] f{w)dw as we did in the proof of Theo-
rem 11.3, since there may not exist a universal point ¢ € G such that [a,2] C G
for every » € GG (that is, G need not be star-shaped: see Exercise 11.3). The
remedy is to substitute for [a, 2] some polygonal path v(#) in G joining a fixed
point @ to z: this is possible by Theorem 3.13. Then, if D(a:7) C G and |h| < r,

Flz+h)—F(2)= / flw)ydw — flw) dw

I(ath) I(2)

= / fw) dw,
Jz,z4h]

by Lemma 10.5 and Cauchy’s theorem II. The proof is completed in the same
way as that of Theorem 11.4. [

12.7 Theorem (logarithm in a simply connected region).  The statements in
Theorem 11.13 remain valid for any simply connected region G with 0 ¢ G.
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Proof We proceed exactly as in 11.13, but appeal to Antiderivative theorem II
instead of to Antiderivative theorem I. [

Argument and index

12.8 Index. Let v be a closed path and let w ¢ ~*. Define the index (also
called winding number) n(~,w) of ~ about w by

1 1
2ri ),z —w

n(v,w) == dz.

We can restate in terms of index the results concerning the Fundamental
integral in the case n = —1 that we recorded in 11.10: if ~ is a positively
oriented contour, then n(v,w) = 1 if w lies inside v and 0 if w lies outside ~.
This suggests that we should replace our interim definition of orientation in 4.3
by the following: a contour {or more generally a simple closed path) is positively
oriented if n(v,w) = +1 for any w € I{»). For any closed path v. we clearly
have n(—~,w) = —n(v,w), by 10.5(1).

A contour is, of course, a very special type of closed path: because it is
simple, it cannot wind round the same point more than once. The intention is
that, for a closed path ~, the index n(~,w) should measure the number of times
~ winds round w, taking orientation into account. The next theorem shows
that this is a valid interpretation. For w ¢ ~*, let ~,(t) = ~(t) —w. Then
n(v,w) = n{v,,0). We may therefore, without loss of generality, take w = 0 in
what follows.

12.9 Theorem (properties of index). Let ~ be a closed path with parameter
interval [o, ] and let 0 ¢ ~*. Then

Lde.

(1) n(v,0) is an integer, where 2win(v,0) = [ 27
(2) There exists a continuous function #: [, 3] — R, unique up to an integer

multiple of 27, such that

(i) 2mn(y,0) = n(B) — n(@);

(i) n(t) € [arg(~(t))] for all ¢ € [, 3].
Proof Let (G be an open set containing +*, with 0 ¢ G. We should like to use
Theorem 12.7, but are prevented from doing so directly because we do not know
that G can be chosen to be a simply connected region. We therefore work locally.
We construct points a =ty <t; < --- <ty = 7 and discs Dy, Dy,..., Dy asin

the Covering theorem (4.3). For £ =0,..., N, let gi be a holomorphic logarithm
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in Dy, by taking G = Dy, in Theorem 11.13 (the general form 12.7 is not needed
here). Then gx(2) = log|z| + i0x(2) for z € Dy. For z € Dy N Dy_q, we have
Orp_1(z) — 0x(2) = 2wing, where n, € Z. Let 2, = v(tx) (k=0,...,N). Note
that zo = y(a) = v(8) = 2. Then

n(y,0 27r1/ dz

1
Zdz by 10.5(2) & 11.4
27” Z eonna] Z (by 10.5(2) )
L V=l
% Z I (Zh41) gk(zk)) (by 12.7)
k=0
L Nt
=5 (01 (zk+1) — Ok (z1)) (since the real parts cancel)
k=0

Ok 1(zk) — Ok (2k)) (since 2o = 2n)

uMz

1
27r
:n1+n2+---+nN,

which is an integer.

For k=0,...,N—1, define n on [tg,tg+1] by ng := 85 0y; as the composite
of continuous functions, 7 is continuous. We patch together the functions 7y to
form the function 5 required in (2), adjusting the constants as we go to make 5
continuous at the points ¢;. The final recipe is

() = { 70(t) if t € [to, t1],
T U + S (ea () —me(t)) i € [t ta] (LS E SN = 1),

Finally,
N-1
2rn(y,0) = > (Ok(v(thy1)) — Ox(v(tx)))  (from above)
k=0
N-1
= (m(trsr) — me(te)) (by definition of ;)
k=0
N-1

Il
g

((tr1) = n(tr)) (by definition of )

I
=]

=

—n(a). O

I
I =
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12.10 Continuous selection of argument.  We call the function # in Theo-
rem 12,9 a continuous selection of argument along ~. Note that 7 is required
to vary continuously with ¢, rather than with 2 = ~(t) (cf. 12.7 and 9.2); when
n(v,0) # 0, we cannot find a continuous argument function (of z) on v* since no
choice from [argz] at z =~{(a) = () is compatible with continuity; see 9.2.

12.11 Examples (continuous argument).

o Let v(t) = el (¢t € [0,27]). For a fixed integer n, let n(t) = ¢ + 2nm.
This gives a continuous selection of argument along ~ for any n. Once 7(0)
has been decided, the other values of n(t) are dictated by the continuity
restriction. In particular, we must have n(27) = 7(0) + 2~

2+el

Figure 12.3 Tlustrating argument selection

o Let v(t) =2 +el (t €[0,27]). In this case, a possible choice for n is given

by
_ sint
i) = tan™ <2+Cost) ’

where we take the principal value of tan™! (having values in (—7/2,7/2)).
As t increases from 0 to 27, the value of n(t) increases from 0 to 7/6,
decreases from 7/6 to —7 /6, and then increases again to its original value 0.

Cauchy’s theorem revisited

Neither Cauchy’s theorem I nor Cauchy’s theorem II fully reveals what makes the
Cauchy theorems work. To clarify matters, we put forward without proof a third,
topologically quite sophisticated, Cauchy theorem. An elegant and relatively
elementary proof of this result can be found in [19].
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12.12 Cauchy’s theorem lll.  Let G be a region and let f € H(G). Then
J. f(#)dz =0 for any closed path ~+ in G such that n(y,w) =0 for all w ¢ G.

What is crucial here is the interaction between v and G via the index. Ver-
sions of Cauchy’s theorem which do not mention index incorporate geometric
restrictions on ~ or topological restrictions on G which force the index condi-
tion to hold. Intuitively, the condition says that ~ does not wind round points
outside G'. Our comments in 12.8 show that Cauchy’s theorem III is a natu-
ral generalization of Cauchy’s theorem I (for contours). The connection with
Cauchy’s theorem II is more subtle, and proper appreciation of it demands an
understanding of algebraic topology (specifically of the relation between homo-
topy and homology). Some sense of perspective is conveyed by another deep
theorem.

12.13 Theorem. Let G be a region. Then the following are equivalent:

(1) G is simply connected;

(2) n{~,w) =0 for all closed paths in G and for all w ¢ G

(3) ﬁ  f(#)dz =0 for all closed paths v in G and all f € H(G);

(4) each f € H(G) has an antiderivative (that is, f = I’ for some F € H(G));

(3) given any f € H(G) with f: G — € ~ {0}, there exists a holomorphic
logarithm of f (that is, there exists g € H(G) such that 9 = f).

The assertion (1) = (3) is Cauchy’s theorem III. The implication (3)
= (2) follows from the fact that f(z) = (z —w)™! is holomorphic in G and

/ f(x)dz = 2min(y, w).

The implication (3) = (4) has already been established, and (4) — (5) is
an extension of Theorem 12.7, Completing the circle (by proving (3) = (1))
is much harder ., and well beyond the scope of this book. We refer the interested
reader to [19]. We also recommend [10] to anyone wishing to gain a deeper
understanding of index and argument.
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Exercises

12.1 Describe ~* for each of the following closed paths v and use 12.8 to
compute 1(v,0) in each case.
(i) v is the join of v1, v2, and ~3, where () := (3 — k) + ke'* (I €
[0, 27]);
(i) v is the join of [-2,—1], =T, [1.2], and T, where T .(t) = rel
(t < [0.7]);
(iii) + is the join of [=5,—1] and =, where v, (t) = tel' /7 (t € [r, 57]).

12.2 Let ~1.72: [o, 8] — € be closed paths and define () = ~($)%(t) and
T(1) = 1(0) + () (y € [a ).

(i) Show that v and T' are closed paths.

(i) Show that, if 0 ¢ ~7 U~3, then n(v,0) = n(%1,0) + 12, 0).

(iii) Show that if [v1 ()| > |v2(t)]| for t € [a, 3], then n(T",0) = n(~,0).

12.3 Prove that C, is simply connected (see Examples 12.3). Here is a possible
strategy. Given a closed path ~ with ~* C C,,
(1) find a point a such that [b, 2] C C, forall z € v* and for all b € D(a; )
(for some r > 0);
(i) show, with the aid of 4.5, that there exiit finitely many open convex
sets Go....,Gn_1 such that a € ﬂ =0 L @) and ~ is the join of paths
v for £=0,....,N —1and v} C Gy (hint: each G may be taken to
be an open wedge bounded by an arc and two line segments meeting
at a point in D(a:7));
(iil) deduce that ~ is homotopic to the null path with image {a}.
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Armed with Cauchy’s theorem we can prove a host of striking results about
holomorphic functions. These stem from the Cauchy formulae which we derive
in this chapter. We are then able to prove the following, with relative ease.

e Liouville’s theorem A function which is holomorphic in € cannot be
bounded unless it is constant (13.3).

¢ Infinite differentiability Any holomorphic function (assumed to be differ-
entiable just once) is in fact automatically infinitely differentiable (Theo-
rem 13.7).

e Taylor’s theorem Any holomorphic function is locally representable by
power series (14.4).

¢ Identity theorem (Corollary) If f is holomorphicin a region G and is zero
in an open disc within G then f is identically zero in G (15.8).

All this is in sharp contrast to the behaviour of real-valued functions on R. The
contrast is very welcome: the theorems are not hedged around with unmemorable
technical restrictions.

Cauchy’s integral formula

Cauchy’s integral formula expresses the value of a holomorphic function at a
point « in terms of a *boundary value integral’ taken round a contour encircling
the point. The ingredients in the proof are

¢ deformation, which allows us to replace the given contour by a small circle;

e the fact that .ﬁ((a;r)(w —a)~tdw = 271;

e estimation, exploiting the fact that f(w) — f(a) = 0 as w — a.
We have elected to use w rather than z as our dummy variable of integration
because we shall in due course want to rename a as ¥ when we want to treat
this as a variable.

In Cauchy’s theorem, the orientation of the contour did not need to be spec-
ified. In Cauchy’s integral formula, and all subsequent results giving formulae
for integrals whose values are not in general zero, the contour is taken to be
positively oriented.
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13.1 Cauchy’s integral formula. Let f be holomorphic inside and on a posi-
tively oriented contour . Then, if ¢ is inside ~,

RACH

2r1 5 W —a

fla) =

Proof There exists R such that D(a; R) C I(~). For any r < R,

Lw)dw: / Lw)d

Jyw—a asr) W= @

by the Deformation theorem (11.9(1)). Also, because f(a) is constant,

L Jla). dw = f(a)

(ary W— G Jy(azry

dw = 2rif{a)

from the Fundamental integral (10.4). Now we calculate the difference between
the integral in the formula and the desired value, and estimate:

f) L st
~(asr)

2ri ), w—a 27, wW—a

v~ f(a)| =

T flatret) = fla),

if
= —2Wi_ oif iret d@

i2r>< sup |f(a+7e) f(a)|,
S 2m 0<[0.27]

by the Estimation theorem (10.10). Since f is continuous at a (recall 5.11), the
supremum above tends to zero as » — 0. The expression on the left-hand side
of the display is independent of » and so must be zero, [

13.2 Examples (Cauchy’s integral formula).

cos : o
. / dz = 2rifcos 2] __, = 2i.
~(435) 7 o

5

o[ & dz =2mi[*/(z + D] _, = -7

v(i:1) 42 —+ 1
inz/2
[
I.= '/7(0;2) 7(% ) dz

¢ We cannot evaluate
directly by Cauchy’s integral formula because the integrand fails to be
holomorphic at two points inside ~(0;2), namely 1 and —1. However a
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partial fraction decomposition allows us to write

1 eiﬂ'ﬂ/z 1 eim/z
1= 7/ dz — 7/ dz
2, 02y # 1 2, ~052y %+ 1

— |:}eiﬁz/2:| _ |:‘}ei7m/2:|
2 z=1 2 =1

=1

Use of partial fractions is a feasible method in the last example but it is
laborious. Later we shall have more powerful and more effective methods for
evaluating integrals like this one, and many other integrals too.

We observed in 7.9 that cos z is not bounded in €. Liouville’s theorem shows
that this behaviour is typical of non-constant functions which are holomorphic
everywhere,

13.3 Liouville’s theorem (via Cauchy’s integral formula).  Let f be holomor-
phic and bounded in the complex plane C. Then f is constant.

Proof Suppose that |f(w)| < M for all w € C. Fix o and b in C. Take
R = 2max{|al, 0]}, so that |w—a| > iR and [w —b| = £ R whenever [w| = R
(by 1.9(3)). By Cauchy’s integral formula applied with + = ~(0; R),

s =10 = 55 [ g0 (5 - ) e

w—a w=—=o

a—b flw)

= lw,
2ri /., (w —a)(w —0b) s
50, by the Estimation theorem,
1 la — b]
— < = y .
15@) = 10 < 52 (o

The right-hand side can be made arbitrarily small by taking R sufficiently large.
Hence f(a) = f(b) for any ¢ and bin C. 0O

Liouville’s theorem yields an unexpected bonus: an easy proof of the famous
result commonly known as the Fundamental theorem of algebra.

13.4 Fundamental theorem of algebra. Let p(%) be a non-constant polyno-
mial with complex coefficients. Then there exists ¢ € C such that p(¢) = 0.
Consequently, a complex polynomial of degree n > 1 has n roots (not necessarily
distinct) in C,
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Proof Suppose for a contradiction that p(z) # 0 for every z. Since [p(#)] — o
as |#| = oo, there exists R such that [1/p(#)| < 1 for |z| > R. On the compact
set D(0; R), 1/p(2) is continuous and hence bounded, by 3.24. Hence 1/p(z) is
bounded on C. It is also holomorphic (see 3.8), and so must be constant, by
Liouville’s theorem. We have the required contradiction. The final statement is
proved by induction on the degree of the polynomial. [

Higher-order derivatives

13.5 Onwards from Cauchy’s integral formula.  Let f be holomorphic inside
and on a positively oriented contour ~v. Then

. a1 fw)
(CIF-0) flz) = 27‘_1'/7 (w0 —2) da (z € I(v).
From this we would hope to be able to deduce
(CIF-1) iz = L[S dw (z € I(v),

C2mi ), (w— 2)?

by differentiating the right-hand side of {(CIF-0) with respect to z. We say ‘hope’
because this presumes that differentiation and integration can legitimately be
interchanged. In 13.6 we show that this is indeed so. (Each of integration and
differentiation is defined in terms of a limiting process; it is a well-known fact in
analysis that taking repeated limits in different orders may give different values.)
We may try to take this further by differentiating [ f(w)/(w —2)? dw with
respect to w, in the hope of obtaining ’
(CIF-2) Iz = % : % duw (z € I(7)).
There is a significant difference between this and the first differentiation. Since f
is assumed to be holomorphic we know that f/(z) exists. We do not know in
advance that f”(z) exists. But we can use (CIF-1) to investigate the quotient
(f'(z+h)— f'(2)/h with a view to showing that its limit as » — 0 exists and is
given by the right-hand side of (CIF-2). This can be validated. The process can
then be repeated to show, successively, the existence of (" (z) for n=3.4,....
all given by differentiation under the integral sign:

(CIF-n) fM() = i[ _Jw) dw (z € I(7)).

2ri ), (w—z)ntt
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We call the right-hand side of (CIF-n) a Cauchy integral.

We give below a detailed justification of (CIF-1), to validate differentiation
of an integral in a simple case. This is instructive as an illustration of techniques
for manipulating and estimating integrals of this type. We then outline a proof
of (CIF-2). This result leads to the important result that holomorphic functions
are infinitely differentiable. We also present an inductive proof for (CIF-n) for
general n (13.9). This somewhat forbidding proof, which overrides those for both
(CIF-1) and (CIF-2), may be skipped by anyone content to take it on trust. [A
proof based on the Lebesgue Dominated convergence theorem is slicker.]

13.6 Cauchy’s formula for the first derivative. Let f be holomorphic inside
and on a positively oriented contour v and let a be inside ~. Then

f’(a)*L _fw) daw.

21/, (w—a)?

Proof As in the proof of Cauchy’s integral formula, we may use the Deformation
theorem to replace the integral by the corresponding integral round a circle,
~(a:2r) say. Cauchy’s integral formula gives

flath)y—fla) 1 / ‘ 1 1 ‘
h 2kl g2 Fw) w—a—h w-—a dw

1 flw)

= 27, v(azry (W —a—h)(w —a)

daw,

Hence
flath)—fla) 1 fw)
f _%‘[/((L;Zl‘) m dw
1 1 1
= %/7((“27‘) flw) ((w Ca—w—a) (- a)2> dw
h flw)

T 271 gy (W —a — h)(w — a)? e
We claim that the last expression tends to 0 as h — 0. This looks plausible: we
just need to find a constant which acts as an upper bound for the modulus of
the integral when |h| is small. It seems likely that this integral is bounded so
long as |w — a — h| is bounded away from zero.

Here is the detailed proof of the claim. Choose h such that |h| < r so that,
by 1.9(3), |w—a—h| = |w—a|—|h| >r for all w € ~(a:2r)*. Also, since f is
continuous on ~(a:2r)*. which is compact, there exists a constant M such that



156 Cauchy’s formulae

| f(w)] < M for all w with |w — a| = 2r (3.24). By the Estimation theorem,

fla+h)— fla) 1 flw) |h| M
- h 27 woap Y| Sor 1
) 71 asm (W —a) 7w Ay
—0ash—0. U

Note that the result below can be derived without use of the Deformation
theorem, since its proof uses 13.1 and 13.6 only in the case that the contour ~ is
a circle centred on a point a. The result asserts in particular that the derivative
of a holomorphic function is holomorphic.

13.7 Theorem (the existence of derivatives).  Suppose that f is holomorphic
in an open set G. Then

(1) J' € H(G);

(2) f has derivatives of all orders in G.

Proof Fix a € G and choose r > 0 such that D(a;27) C G. For |h| <r, (CIF-1)
gives

Flath)—fla) 1 1
( ((z

1
=5 - t,
h 27, ~{a;i2r) V= a— h)Z (U./‘ — 0,)2> aw

The right-hand side can be shown to tend to 2 fv (@s2r) (f(w)/(w—a)?)dw by an
argument similar to that used in 13.6.

Thus f"(a) exists for all a € G, so that f' € H(G). Replacing f by f'.
we see that this in turn implies that f{a) exists for all ¢ € G. An inductive
argument now shows that f{" exists throughout G, for all n. O

One consequence of 13.7(1) is a partial converse to Cauchy’s theorem.

13.8 Morera’s theorem.  Suppose that f is continuous on an open set G and
that [ f(#)dz =0 for all triangles v in G. Then f € H(G).
Proof Let a € G and choose r such that D(a;r) C G. Since D(a;r) is a convex

region, the Indefinite integral theorem I (11.3) supplies F' € H(D(a;r)) such that
F' = f. By Theorem 13.7, f € H(D{(a;r)). Since a is arbitrary, f € H(G). O

We have proved that a holomorphic function has derivatives of all orders
and have obtained an integral formula for the first derivative. We now provide
the promised justification of the corresponding formula for any derivative.
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13.9 Cauchy’s formula for derivatives. Let f be holomorphic inside and on
a positively oriented contour y and let a lie inside . Then f(™(a) exists for
n=12,... and

n! w

(CTF-n) f"0) = o~ /V % dw  (a €1(y)).

Proof We proceed by induction. The base case can be taken to be n = 0,
for which the result is Cauchy’s integral formula. Assume (CIF-k) holds for all
a € I(v). We shall prove (CIF-(k+1)). By the Deformation theorem, we may
assume that v = y(a;2r) for some r > 0. The argument below differs from
that used already in the special cases & = 0,1 only in its backwards use of
the Fundamental theorem of calculus to handle differences. Take |h| < r. By
(CIF-k),

FEVa+h) — FP(a) = ZIil/f(w) ((w—al—h)kH e —1a)k+1> dw

S s ([ -

by the Fundamental theorem of calculus.

\

Figure 13.1 Proof of (CIF-n)

We shall show that F(h) — 0 as h — 0, where
(k+1) — k) !
Fny =1 (a+h)— M) (k‘+1)-/ (wf(w) dw

h 2ri — q)kt2
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= (k - D /f </a - (w—=Q)7* 2 — (w—a)™*2) dC) dw

2wih | ’

. Al :
_ (]T +2) f |:/ </ (w — T)_k_s d’]’) dC:| daw.
27ih Jy la,a+h] \J[a.(]

Since f is holomorphic, and so continuous, it is bounded, by M say, on the
compact set v*. For 7 € [a,¢] and ¢ € [a,a + k], we have |w—7| > r for all
w € ~*. Also, [(—a| < r whenever |w—a| = 2r. Also [(—a| < |h|. See
Tig. 13.1. By the Estimation theorem,

(k2! M |n?
27 |h| pht3

|F(h)| < x 47,

so F(hy =0as h—0, O

13.10 Example (Cauchy’s formulae for derivatives). DBy 13.9,

. / e“ 2z dz {27‘—1(12 e;] i
e — |5 7 5¢ — 7l
S0 20 dz? |,
. / 1 A — 2rid? o _2mi
~(1;5/2) (Z - 4)(Z + 1)4 - 31 d’zg =1 B 54 .

13.11 Stocktaking. @ We conclude this chapter with a summary of how our
repertoire of techniques for evaluating integrals has been enlarged by the Cauchy
formulae. We now know that, given a positively oriented contour +, a point
a ¢ ~*, and a function f holomorphic inside and on ~, we have, for n =0.1,...,

27if(a) ifn=0andacl(y) (by13.3),
/ % dz = zglf(’L)( ) nzlandaeecI(v) (by 13.9),
' 0 if a € O(7) (by 11.6).

(The case in which f is the constant function 1 was covered in 11.10.)
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Exercises

13.1 Ewvaluate, when v = +(0;2),

"3 = 1 i -
» / Z _+ 10 dz, (i) / Fo s @) / ;Zm;l dz.

13.2 Evaluate [ (051 27t coszdz. By writing the integral in parametric form,
deduce that

2
/ cos(cos #) cosh(sin 9) 40 = 2.
Jo

13.3 Let f be holomorphic inside and on ~v(0: 1). Prove that

2rif(z) = / Sw) dw — / ) dw (0<|2| <1).

S {0;1) w—=2z ~{0;1) w—= 1/2

Hence prove the Poisson integral formula

Wiy L [T 1-r?) i .
foet) =5 | T /e @<r <.

/ Rez dz
J~(0;1) (Z - é)

cannot be evaluated by applying Cauchy’s integral formula with f(z) =
Rez. Prove that Rez coincides with (z + z71)/2 when |2| = 1. Hence
evaluate the given integral.

13.4 Explain why

13.5 DBy considering the complex conjugate of its parametric form, evaluate the
integral

L/ LZ)dz

27(—1 ~{0;1) Z—=a
in the cases (i) |a| < 1, (i) |a| > 1, where f € H(D(0; R)) (R > 1).
13.6  Suppose that f is holomorphic in € and such that f(z) = f(z +27) and

f(z) = f(#+2xi) for all z € C. Use Liouville’s theorem to prove that f
is constant. (Hint: consider the restriction of f to suitable squares.)

13.7 Let f be holomorphic in C and such that f(2) = 0 as |2| = oc. DProve
that f is identically zero.

13.8 Let f be holomorphic in C.
(i) Prove that if |f(2)] > M in C then f is constant.
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(ii) Prove that if e/ is bounded then f is constant.
(ili) Prove that if Re f is bounded either above or below then f is
constant. (Hint: consider suitable exponentials.)
(You will need the result of 7.4.)

13.9 Evaluate, when v = v(0;2),

(1) /(z— 1)_36'~~2 dz, (i) /z_” coszdz (n=1,2,...),

1
® | e

1z.

13.10 Evaluate / Ml=—=)"de (m=0,1,2,..., n=0,£1,£2....).
(01

13.11 Let a,b € C with |a| #£ 1, |b] # 1. Evaluate, distinguishing cases,

(i) '/7(0;1) m dz, (ii) Lo <j:2)3 dz.

13.12 Suppose G is an open set, f: G — C is continuous, and f is holomorphic
in G~ [a.b]. Use Morera’a theorem to prove that f € H(G).




14  Power series representation

In Chapter 7 we proved the major result that a convergent power series defines
a holomorphic function. This chapter reveals in full the symbiotic relationship
that exists between holomorphic functions and power series. We begin with some
technical results, needed for manipulating integrals and series.

Integration of series in general and power series in particular

14.1 Interchange of summation and integration.  Suppose that ~ is a path
and that ug,u;,... are continuous (or piecewise continuous) functions on +*. It
is certainly true that, for any natural number N,

N N
Z / up(z)dz = / Zuk(z) dz.
k=0 " v oy k=0

If the finite sum here is replaced by an infinite sum, the corresponding inter-
change of summation and integration may well not be valid. For integrals along
paths, a systematic study of sufficient conditions for interchange to be valid can
be based either on a basic treatment of uniform convergence or on more so-
phisticated techniques. Since we need only to be able to handle the integration
of series closely related to power series, taken round quite special contours, we
elect on the basic track to avoid uniform convergence and to adopt an ad hoc
approach. An optional ‘minimum kit treatment of uniform convergence is given
at the end of the chapter.

The use of Theorem 14.2 is illustrated below in 14.3 and in the proof of
Theorem 14.4.

14.2 Interchange theorem (simple form). Let ~ be a path. let U, ug. uq,...
be continuous on v*, and assume that Y.~ o ux(2) converges to U(z) for all
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z € v*. Assume that there exist constants My such that > M converges and
|ur(2)| < My, for all z € +*. Then

g.LUk(Z)(lz_.L guk(z)dz_/ﬁ/U(z)dg,

[If you already know about uniform convergence you will recognize Weierstrass’
M-test lurking here. You should also realize that our hypotheses are stronger
than necessary: continuity of U is automatic from the other conditions.]

Proof For N = 0,1,..., let Un(2) = Zjﬂ\:o ur(z). DBoth Uyx and U are
continuous, and hence integrable, on ~v*. Also, by 6.1(3), > |ug(2)| converges.
We now have, for fixed N,

‘[ U(z)dz — kﬁ:ﬂ[ up(z) dz

L (U(z) = Un(2)) dz
< sup {|U(#) — Un(2)]} x length(v) (by 10.10)

Aol

o>

< sup Z |ug (2)] x length(~) (see Exercise 6.1)
" k=Nt1

< ). Mj x length(y)
E=N+1

and this tends to zero as N — oc, because Y M}, converges. [

. e coefficients in a power series. e z) = " o 2", where the
14.3 Th ff t P Let —o k. wl tl
power series has radius of convergence R > 0. We claim that

1 [(z)
Yy — —— 2 < - ) — 100
o 2ri, 7 {0;7) e dz 0<r<R,n=01...)

Provided summation and integration can be interchanged we have, for fixed n
and fixed » < R,

/ f;gi)l dz = / ( c/&'“) 2z
" ’\’/(O;T‘) - ’\/(0;7‘) k=0

= 2ricy, (by 10.4).
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We justify this by applying Theorem 14.2 with v = ~+(0;7), up(z) = cpz®"71,

and U(z) = 27" 1f(2); by 6.8(2), U is continuous. On ~(0;r)*, we ha\e
[up(2)| = My, := |eg| r¥—7~1, and > M, converges by the Radius of convergence
lemma (6.6). O

Taylor’s theorem

We now use Cauchy’s integral formula to prove that any function holomorphic
in a disc has a power series expansion. It is thanks to Cauchy’s theorem that
Theorem 14.4 is stronger and more satisfactory than most forms of Taylor’s
theorem for a function of a real variable.

14.4 Taylor's theorem. Let f € H(D{(a; R)) (R > 0). Then there exist unique
constants ¢, such that

) =) _eulz—a)" (2<cD(aR)).

The constant ¢, is given by

1w [
[( = ’

2ri ), (w—a)tt n!

Cn =

where v is a circle v(a;r) (0 < r < R) or is any positively oriented contour
¥ in D(a;R) enclosing a, where D(a:7) C I(y) [or any simple closed path
homotopic in D'(a; R) to +v].

Proof Fix 2 € D(a; R) and choose  such that |z —a| < r < R. Take v =
~(a:r). By Cauchy’s integral formula,

EACH

fe) = 2r1 NELES 4

Since |z — a| < |w —a| for all w € ", the right-hand side of the equation

11 1
w—z w—a(l—((z—a)/(w—a))

can be expanded binomially (see 6.3) to give

(z—a)
27—1[/ Z (u, — (I, n+l f(w) daw.
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On the compact set ~*, the continuous function f is bounded, so for some
constant M we have

)| <= 2 (2

(w—a)ntt r

The series > M, converges, since |z — a| < r. Hence, by Theorem 14.2 [uniform
convergence], summation and integration may be interchanged, to give

f(Z)Zni;?)(%[y%dw) (z —a)™.

The remaining assertions of the theorem now follow from Cauchy’s formula for
derivatives 13.9 and, for uniqueness, 6.8(4) or 14.3. O

14.5 Examples (finding Taylor expansions).

© Tactical tip We have two possible strategies for computing the Taylor se-
ries of a function f about a point a. The first is to compute the deriva-
tives f(™(a). It is rarely to be recommended. The second relies on making
use of known expansions and appealing to uniqueness.

e In 6.2 and 6.9 we derived various expansions from the geometric series. All
these expansions are the Taylor series of the functions they represent.

o Let f(2) = z°sin2z in C. Tt would be arduous to calculate derivatives.
However, using the sine series, we obtain

o0 ‘ 2(n+3)
Fz) = ;}(—1)nzzn+lm (z € C).

By uniqueness, this is the Taylor series.

14.6 Taylor expansion for a holomorphic branch of the logarithm. Cut the
plane along (—00,0] and let f be the holomorphic branch of the logarithm in
Cr = C~\ (—00,0] given by

f(z)=log|z]| +i0 (0# 2 =|z|e!, —x <6 < ).

We know that f € H(D(1;1)) and so f must have a Taylor expansion

Z en(z—1)"
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in the disc D(1;1). We now find this expansion. Note that

1
Yz =1 (Jz—1] < 1)
) %(1 " e-1<)

By the Differentiation theorem for power series (6.8),

d n—1 .
P *Tlog,z—nz_:n(n(,a—l) (lz = 1] < 1).

By uniqueness of power series expansions, ¢, = (—1)""'1/n for n > 1.
The value of ¢p is fixed by the choice of branch: We have f(1) = 0, so
¢g = 0. Therefore
( 1 n— l
1= 26 epai).

n=1

Similar arguments yield Taylor expansions for the function f in any disc in C;.

14.7 Estimating Cauchy integrals. It will often be important to have an
estimate of the magnitude of the integrals

= L/ Jw) duw

271/ oz Wit

giving the coefficients of the Taylor series of f € H(D(0: R)) (n =0,1,....r <
R). By the Estimation theorem,

! fw)
27‘—1’[/(0;]‘) wntl dw

< Zi sup{ | f(2)27" 7| : |zl =} x length(v(0;7))
Iy

= %J\/[(r)r_”_l x 27y

=r " M(r),

len| =

where M (r) :=sup{ |f(z)| : |[¢| =71}

We can immediately derive an interesting and perhaps surprising conse-
quence of the estimate above,
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14.8 Theorem (forcing a holomorphic function to be a polynomial). Let f
be holomorphic in €, with Taylor expansion f(z) = Y o ¢,2™ valid for all
z € €. Suppose that there exist positive constants M and K and a positive
integer £ such that

IS M (12> K).

Then f is a polynomial of degree at most k.

Proof Let r > K and note that M(r) < M7»*. Estimating as in 14.7 we obtain

1
|Cn| < ‘—]W—Tk_n_l X 27T,
2
Since r can be chosen arbitrarily large, we must have ¢, = 0 for all n > k.

Hence f is a polynomial of degree not greater than k. [

& Students often regard it as ‘obvious’ that the coeflicients ¢, in a Taylor
series 3. ¢,z must be zero for n > k if |f(2)| grows no faster than |z|*.
We dispute that it is obvious. But the point is not worth arguing over since
the estimation of the integral for the individual coefficient ¢, gives precise
information about its magnitude in terms of information about f—without
any hand-waving.

14.9 The role of power series: summing up. We have now completed our
presentation of an important circle of ideas. In Chapter 6 we showed that
every power series » - o ¢,(z — a)” with radius of convergence R > 0 defines
a holomorphic function in D(a: R). In the opposite direction, Taylors theorem
shows that every function holomorphic in an open set  is amalytic, that is,
locally representable by power series.

It is possible to develop much of complex function theory directly in terms
of analytic functions. Starting from a power series, 14.3 gives us the coefficients
as Cauchy integrals. Combining 14.3 with Theorem 6.8, we can relate these
integrals to derivatives, obtaining Cauchy’s formulae. The special case £ =0 in
10.8 yields Liouville’s theorem. See also Exercise 14.5.
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Multiplication of power series
Formally,

o oc oc
E anzn E anHZE cnzna

n=0 n=0 n=0
where ¢, = Z:}:O Grbn—p, the expression for ¢, being obtained by noting that
terms in z™ arise as products a,z" X bsz® where r + s = n. The formula is true
whenever the series being multiplied converge absolutely. Most proofs of this
result in the real case are highly technical. Fortunately Taylor’s theorem yields
a neat proof.

14.10 Multiplication theorem for power series.  Suppose that

oG o
z) = Z apz™ and g(z) = Z b 2"

n=>0 n=0
are complex power series with radii of convergence R; and Rs, respectively. Let
h(z) = Y0 g ens™, where ¢, = Yoo arby—p. Then > 07 o c,2™ has radius of
convergence at least R :=min{R;, Ra} and h(z) = f(2)g(z) for |2| < R.
Proof In D(0; R) both f and g are holomorphic and we have a,, = £ (0)/n!
and b, = ¢ (0)/n!. The product fg is also holomorphic in D(0; R) and is
represented there by a Taylor series

f()g(z) = Z 2
n=0
where

n

nICn - (fg)(n) (0) Z f(])(o)g(n 7)(0) — n‘Za, n—r-

-1
r=0 - (n ) r=0
Here we have used Leibniz’ formula for the nth derivative of a product. (Those
not familiar with this can check it for small values of n by hand using the
product rule for differentiation; for general n it is proved by induction in just

the same way that the binomial expansion for a positive integer exponent can
be proved.) O

14.11 Examples (products of power series).

o The exponential series >~ ° o 2"*/n! has infinite radius of convergence. The
Multiplication theorem allows us to multiply the series for e® and e®
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Doing so and putting » = 1 gives, after some manipulation, e*T? = e%e? for
all a,b ¢ C (cf. 7.3).

e The nth Hermite function H,, is defined by

d

d n 2 _ ‘
dt) e (n=0,12,...).

Ho(t) = (~1)"et” (
We claim that
Z H”(t)j;_r = gzt 2wi= (r,t € R);
n=0 .

this gives a generating function for the Hermite functions. To prove this,
142 9, 2 1,2 . 2 . L2,

note that e~z¢"120l=2" — ¢3%~(—=0% By the Chain rule, e=* is holo-

morphic in €. It has a Taylor expansion

n=0

for any ¢ € C. Now put 2 = —t and @ = —t and the required formula
drops out.

The Hermite functions are of importance in mathematical physics and else-
where. Differentiation of the series > H,(t)x"/n! with respect to either x
or t can be proved to be legitimate. This enables the generating function to
be used, painlessly, to obtain assorted recurrence relations for the functions
H,, and also the differential equation H(t) = (1> — 2n — 1)H,,(1).

A primer on uniform convergence

Let S be a non-empty subset of C and let {f,(#)} be a sequence of complex-
valued functions which converges for each z € S. How fast the sequence con-
verges to its limit may vary from one point to another, as we illustrate in 14.12.
When we need to consider some process, such as integration, which involves a
variable point in S, we need some control over the rate of convergence if the
limit function is to behave well. Uniform convergence gives such control.

14.12 Introductory example.  Consider the sequence {f,(2)} in .S := D(0; 1),
where f,(#) = 2. For each fixed z € S we certainly have 2" — 0. In detail:
|2 < ¢ (< 1) if and only if nlogl|#| < loge. Realizing that both sides are
negative we see that this inequality holds when n > N, provided N is chosen so
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that N > |loge| / [log|#||. The critical observation now is that N depends both
on ¢ and on z. There is no N such that [¢7| <& for all n > N, simultaneously
for all z € D(0;1): the closer |2| is to 1, the larger we have to take n to bring
2™ within a distance ¢ of the limiting value 0.

Now consider the same sequence, but in S := D(0;1/2). Here |2| < 1/2
implies that 1/|log|z|| < 1/|log1/2|. Choose a natural number N with N >
lloge| /|log1/2|. Then |#"| < ¢ whenever n > N for all z € S at the same time.
There is nothing special about the choice of 1/2 as the radius of the disc, save
that it must be strictly less than 1: for any § with 0 < < 1,

(Ve > 0)(3AN) (n > N = |2"| < £ whenever |z| < 1-4).

We stress that N here can be chosen to be independent of z (though it does, of
course, depend on both dand ¢).

In summary, what is happening here is that the rate of convergence of {z"}
gets slower and slower as || gets closer and closer to 1. But there is a minimum,
worst case, rate of convergence so long as |#| is restricted to some closed disc
D(0:1—6) with 0 < ¢ < 1. Experimentation with a calculator may help you to
grasp the point at issue.

14.13 Uniform convergence of sequences.  Suppose that {f,} is a sequence
of complex-valued functions defined on some set S. We say {f,} converges
pointwise to f on S (and write f, — f) if, for each fixed z € 5. the complex
sequence {f,,(#)} converges to f(z). We say {f,} converges uniformly on S
to f (and write f,, > f on ) if

ap i=supf{ |fn(2) — f(2)| : 2€ 5} = 0asn — oo
This is a convenient way of expressing, and later for working with, the condition
(Ve >0)@N) (n 2 N, = (Vze€8) |fnlz) — f(2)] <a).
On the other hand, f, — f pointwise on S if
(Vz € 5) (Ve >0) (AN:(2)) (n = Ne(2) = [fu(2) = [(2)] <2);

here N.(z) may depend on z. Obviously, f,, * f on S implies that f, — f
on S. The key difference between the two modes of convergence is this: in
uniform convergence there is a single N, which serves as N.(#2) for all .
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14.14 Examples (uniform and non-uniform convergence).

¢ For the sequence {fn(#)} in 14.12 we have f,(») = 2" and f(») =0, so
for S =D(0;1) : ap =sup{|" =0 : |#| <1} =1-»0asn— oo
whereas

for S=D(0:1—6): ay:=sup{|z"=0]: |2|<1=-80}=(1-=-6)"
—0asn — oc,

Convergence is not uniform on the whole of D(0; 1) but is uniform over any
closed subdisc D(0; 1 — 9).

e Let f,(2) = (1 +n%2%)71 on D(0;1). Here, for fixed z,

0 ifz+£0,

f”(z)%f(z)_{ 1 ifz=0.

Therefore, noting that z = 0 can be omitted when calculating the supremum
because f,(0) — f(0) =0, we have

ay s=sup{[(1+n72%) 7 0< |7 <1} =1» 0 as n — oc.

So convergence is not uniform.

The latter example exhibits an interesting but disquieting feature: each f,
is continuous on D(0; 1), yet the limit function f fails to be continuous at 0.
Put another way,

lim { lim fn(z)} =0 but lim {hg%) fn(z)} =1.

z—0 Ln—oc n—roc Lz

(So we have an instance of limit processes not commuting with one another.)

The next result shows that this phenomenon cannot occur for uniformly
convergent sequernces.

14.15 Limits and continuity. Let {f,} be a sequence of continuous functions
on a set S and assume f, = f on S. We claim that f is continuous. The proof
is a classic piece of s-ology. We fix the obligatory ¢ > 0 and let » € S. By
uniform convergence we can find N such that

n=N = Vwe?s) |falw)— fluw)| <e.
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By continuity of fx at z there exists 4 > 0 such that
|z —w| <d = |fn(z) — fv(w)| <e
(0 depends on N, but N is fixed). For |z —w| < 4,

|/ (=) = Fw)l = | f(2) = In(2) + I (2) = In(w) + fv(w) = fw)]
<) = In(A] = [ (2) = ()] + [fx (w) = fw)] < 3e.

This suffices to prove our claim.

14.16 Uniformly convergent series.  As always, we transfer terminology and
results about sequences across to the setting of series by taking sequences of
partial sums. Given Y- oug, let fr, = uo + -+ + un. We say that D5 o ug
converges uniformly on a set .S if {f,,} converges uniformly on S.

It is seldom easy to work out either the pointwise limit

JE) = Jim a2 =Y i)
k=0

or ¢ = supf |fu(2) — f(2)| : z € S}, the test sequence for uniform con-
vergence. Fortunately there is a user-friendly sufficient condition for uniform
convergence of a series. It is not a necessary condition.

14.17 Weierstrass’ M-test.  The series > uy. converges uniformly on S if there
exist real numbers M}, such that

(VE) Jup(z)| < My forall z €S and Z My, converges.

Proof We invoke the Cauchy convergence principle (3.21). This states that a
sequence {z,} of complex numbers converges if and only if

(Ve >0)@AN) (m.n 2 N = |2m — 2a] < 2).
Let f,:=up+---+u,. Foreach 2 € 5 and n > m,
|Fn(2) = fa(2)| = |umar(2) + - Fun()| < Mpsr+--+ My, > 0asm,n — o

by the Cauchy condition applied to the partial sums of the series > M,,. Hence
{fr(#)} satisfies the Cauchy condition and so converges, to f(z), say. Thus the
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series > u, converges pointwise. To check that convergence is uniform, take the
limit as m — o¢ in the displayed line (with z fixed) to get

(Vz e S) |f(z) = fr(®)] < Z My — 0asn — oc. O
k=n+1

14.18 Power series and uniform convergence. Let > ¢p2* be a complex
power series with radius of convergence R > 0. Then the series converges
uniformly on D(0; R—4) for any § > 0 (or on any closed disc D(0; S) if R = oc).
To prove this, note that

lckzk <My = |ee] (R=6)F for 2| < (R=0).

By the Radius of convergence lemma (6.6), > M converges, so Welerstrass’
M-test applies. Likewise, >_ ¢x2* converges uniformly on any circle +(0;7)* for
which 0 < r < R.

Figure 14.1 Tointwise convergence vs. uniform convergence
In general > ¢,2% does not converge uniformly on D(0; R). Consider, for
example, the geometric series Y -, z*. In this case R =1 and, for |2| < 1,
1— Zn+l
fn(Z) = 1+Z+"'+Zn: ﬁ

which converges pointwise to f(z) = (1 — z)~*. Then

Zn+l
o = s 1fa(2) = ) = 14l < 1} =sup{ |Z—| el < 1)
‘,I/.n+l
>sup{l - c0<z<1}.
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By differentiating ™™ /(1 — ) we find that this function is strictly increasing
on [0,1). It tends to infinity as x increases towards 1. Therefore «,, is not finite
for any n, and we certainly do not have «, — 0. Therefore ZZC:O 2k does not
converge uniformly on the whole of D(0; 1),

Finally, we prove that limits and integrals can be interchanged when con-
vergence is uniform.

14.19 Interchange theorem for uniformly convergent sequences and series.
Let + be a path with parameter interval [e, J].

(1) Let {f»} be a sequence of continuous complex-valued functions which con-
verges uniformly on +* to a (necessarily continuous) function f. Then

n—oc

lim | fu(z)dz = / 71113%0 fu(z)dz = / f(=)da.

(2) Let {ui} be a sequence of continuous complex-valued functions such that
> uy (%) converges uniformly on ~*. Then

g‘[/wf(z)dz_// guk(z)dz,

!

Proof It suffices to prove (1). By the Estimation theorem,

‘[ frn(z)dz — L f(z)d=

- ‘/ (Fule) = () dz

< sup |fu(y(t)) — f(v())] X length(y).
tefa, 8]

The final expression tends to 0 because the convergence is uniform. O
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Exercises

14.1 Find an expansion f(z) = >~ , ¢, (#—a)" valid in the disc D(a;7) when

L) fl)=sin*z (@=0). (1) f(z)=(1+2)7" (a=1),
(iil) f(») =" (a=1).

(Hint: make use of known expansions.)
14.2 In the plane cut along (—o¢,0], define the square root of 2z to be f(z) =

|2['/2e18/2 (0 # 2 = |z|e, —7 < 0 < 7). By using the identity

h
JE )+ f(2)
prove that f/(2) exdsts and equals f(2)/(22) in C~ (—cc,0]. By consid-

ering

n=0
for | —1| < 1, obtaun the Taylor expansion of f in D(1;1).

14.3  Suppose that f(z) =Y. " ez for z € C. Prove that, for all R,

flz+h)=J(2) =

Z |en] R* < 2M(2R), where M(r) :==sup{|f(z)| : |z|=7}.
n=0
14.4 Let f be holomorphic in C. Use 14.7 to prove that if |f(z)| < M|z|%,
where 0 < a < 1, then f is identically zero in C.
14.5 Suppose that f(z) = >0 e,2" for z € D(0; R).
(i) Prove that
1 2.2
_ n < " s
o |f(7e | do = nz;)|cn| 0<r<R)
(Hint: use the fact that |f(2)]* = f(2)f(z) and justify two inter-
changes of summation and integration. For the first of these justifi-
cations you will need the fact that f is bounded on v(0:7)*.)
(ii) Suppose that f € H(C) and that f is bounded. Use (i) to deduce
that f is constant.

14.6 Let f have a power series expansion f(z) = >~ o ¢,2" in D(0; R). Use
the result of Exercise 14.5 to prove that, for » < R,

/ (e — Pl o
JQ
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14.8

14.9
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attains its minimum over all polynomials p of degree & when p(z) =

k . T
Zn:O &

The remaining exercises assume familiarity with uniform convergence.

Let G be an open set and suppose that {fi} is a sequence of functions
such that fr € H(G) (k=1,2,...) and fr — f uniformly on G.

(i) Use Morera’s theorem to prove that f € H{(G).

(ii) Use Cauchy’s formula for derivatives to prove that

lim f{"(@) = /") (n=12...).

Deduce corresponding results for uniformly convergent series of holomor-
phic functions.

Prove that, for each d > 0, the series Y >~ - n™* converges uniformly on
{# : Rez > 1+440}. Deduce that the series defines a holomorphic function
¢((#) in {# : Rez > 1}. (This is the Riemann zeta function, of great
interest in number theory. It is discussed briefly in the Appendix.)

By proving that the series converges uniformly on any disc D{a; ) contain-

> __(z—n)7? defines a function holomorphic

ing no integer, prove that > "~

in C\Z.

(In neither of the last two exercises does the given series converge uni-
formly on the whole of the region of holomorphy.)



15  Zeros of holomorphic functions

Let f be holomorphic in an open set G. In this chapter we investigate the set
Z(f)={z€G: f(z) =0}

of points at which f takes the value 0. There are two reasons for doing this.
The first is that 1/f fails to be defined at a if f(a) = 0. Zeros in the denomi-
nators of rational functions and of functions like cot z = cos z/sin z give rise to
singularities (informally, points where an otherwise holomorphic function fails
to be holomorphic). Integrating a function round a contour inside which it has
one or more singularities will in general give a non-zero result (recall 10.4 and
the Cauchy formulae). Understanding, and exploiting, singularities will be the
thrust of Chapters 17-22.

Our second reason for investigating zeros is more theoretical. Taylor’s theo-
rem implies that holomorphic functions are locally representable by power series,
with the coeflicients expressible in terms of the derivatives. The consequences of
this fact are surprising and far-reaching. It turns out that a holomorphic func-
tion in a region cannot be zero except at isolated points without being identically
zero (the Identity theorem (13.8)).

Characterizing zeros

15.1 Definitions (zeros and their orders).  Suppose that f is holomorphic
at a, that is, suppose that f € H(D(a:r)) for some + > 0. The point a is said
to be a zero of f if f(a) = 0. We say that the zero a of f is of order m if

0=fla)=fa)=--=f"a) and f"(a)#0.

Zeros of orders 1,2, ... are called simple, double, . ... For convenience, we adopt
the convention that f has a zero of order 0 at « if f is holomorphic at ¢ and

fla) #£0.
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15.2 Examples (orders of zeros). Here are some simple examples. Recall the
results in 7.10 on the location of zeros of trigonometric and hyperbolic functions
and of functions related to exponentials.
e (z—a)™ has a zero of order m at a.
e sinz=0ifandonlyif z = kr (k€ Z). At z = kr, (d/d2)sinz = cosz £ 0.
Hence all the zeros of sin z are simple. Likewise, all the zeros of cos z, sinh z,
and cosh z are simple.

o |+e* =0ifand onlyif » = 2k+1)wi (k € Z). By 7.3(3), (d/dz)(1+e7) =
e® £, so all the zeros of 1 +e* are simple.

To handle functions more complicated than those above we need further
techniques. See 15.4 and the examples in 15.5.

The proof of part of the next result is rather technical but the result is
extremely useful.

15.3 Characterization theorem for zeros of order m. Let f € H(D(a: R))
and suppose that f has Taylor expansion f(z) = > 7 ¢n(z — @)™ in D{(a; R).
Then the following are equivalent:

(1) 0= f(@) = fila) = - = F" (@) and f™(a) £ 0;
(2) f(2) =307, calz —a)™, where ¢ #0;
(3) f(2)=(2—a)™g(2), where g € H(D(a; R)) and g(a) #£ 0;

(4) there exists a non-zero constant C' € C such that

lim (z — @)™ f(2) exists and equals C.
e

Proof The equivalence of (1) and (2) comes from the facts collected together
in 14.4.
Assume (2). Then we let

X X
g{z) == Z ez —a)t M = Zcm%(z —a)*,
n=m k=0

Since g¢ is defined by a convergent power series, it is holomorphic in D{a: R).
Also, g(a) = ¢ # 0. Hence (4) holds. The continuity of ¢ and the algebra of
limits show that (4) implies (3).

Finally, assume that (3) holds. Given ¢ > 0, there exists § > 0 such that

|(w—a)™™" f(w) = C

< ¢ whenever 0 < |w—a| <d.
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Take r < min{d, R}. Then

lw—a| =r=|(w—a) " fw)| <|C]+¢ (by 1.9(2))
= |f)| <(|C] +2)r™.

The estimate for ¢, given in 14.7 gives
len| < (|C] +e)r™ ™,

If n < m then we can make »™~™ arbitrarily small by taking r sufficiently
small. The constant ¢, is independent of » and so must be zero. We now have
f(z) =377 en(z—a)™. As in the proof above we have

e =lim(z =) () = C£0. O

15.4 Compound zeros. It could be shown directly from the definition in 15.1
that z?sinz has a zero of order 3 at z = 0. But calculations of derivatives of
compound functions can be messy. It is much easier to use instead the fact that
if f and ¢ have zeros of order m = 0 and n > 0, respectively, at z = « then fg
has a zero of order m + n at a. This follows immediately from 15.3(4) and the
algebra of limits.

15.5 Examples (compound zeros).
e »’sin* 2 has a zero of order 2 +4 = 6 at » = 0 and zeros of order 0 +4 = 4
at z =kr (k€ Z~ {0}).
e cosh® » has triple zeros at z = (2k + 1)7i/2 (k € Z), since all the zeros of
cosh z are simple.

The ldentity theorem and the Uniqueness theorem

Our analysis of zeros so far has focused on a single point a. Now we shall consider
the set Z(f) of all zeros of a function f holomorphic in a region . (Recall that
a region is by definition a non-empty open connected set.) We shall see that
clustering of zeros at a limit point in G is sufficient to force the function to be
identically zero. We begin with a recap on limit points. We defer examples until
we have our two major theorems in place.
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15.6 Limit points revisited. The definition was given in 3.6(2): a point « € C
is a limit point of a set S if, for every ¢ > 0, D'(a;6) NS # @, where D'(a;¢) is
the punctured disc {# € C : 0 < |z —a| <<e}.

Let G be an open set and let .S C G. For our purposes here, the following
are important prototypical examples of the occurrence of at least one limit point
of Sin G:

e S = {zy}n>1, with the points z, distinct and z, —+ 2z € ¢ (¢ is a limit

point of 5);

e S is a segment [e, 3], with a # 7 (every point of S is a limit point of 5):
e S is an open disc D(a;7) (the set of limit points of S in G is D(a:7) NG,
and this contains D{a:r)).

15.7 Identity theorem (the special case in which the region is a disc).

Suppose that f € H(D(a;r)) and that f(a) = 0. Then either

(1) f is identically zero in D{a;r), or

(2) the zero of f at a is isolated, that is, there exists ¢ > 0 such that the
punctured disc D'(a;¢) contains no zeros of f.

Consequently, if @ is a limit point of Z(f) then f =0 in D{(a:r).

Proof By Taylor’s theorem (14.4),

F) =) _calz—a)" (2€D(a:r)).

n=0

There are two possibilities. If all ¢, = 0 then (1) holds. Otherwise there exists
a smallest integer m > 0 such that ¢, # 0 and we may write

f()=(z—a)"g(2), where g(2) = ch+7n(z —a)t,
k=0

The series defining ¢ has radius of convergence at least r. Hence, by The-
orem 6.8(2), ¢ is continuous on D(a;r). DBecause g(a) = ¢, # 0 and g is
continuous at a, there is some > 0 such that g(z) # 0 in D’(a;¢). Throughout
this punctured disc we also have f(2) 20, O

The following simple example shows that we certainly cannot extend the
Identity theorem to an arbitrary open set GG. Let

1 if 2 e D(=2:1),

f@%_{o if > €D 1).
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Then f is not identically zero in G := D(—2;1) UD(2:1) despite every point of
D(2;1) being a limit point of Z(f). Of course, G here is not connected.

15.8 ldentity theorem (general form). Let G be a region and suppose that
f € H(G). Assume that the set Z(f) of zeros of f has a limit point in G.
Then f is identically zero in G.

In particular, if f =0 on some open disc D(a;7) C G, then f is identically
zeroin G.

Proof The proof is topological in nature. Our strategy is to prove that F., the
set of limit points of Z(f) in @, is such that

(i) Z(f) 2 E. and

(ii) F and G~ E are both open.
Since G is a region and E # @ by assumption, (ii) implies that E = G. Thence,
by (i), f=0in G.

To prove (i), let @ € E. For each n there exists a,, € D'(a;:1/n) such that
flay) = 0. By continuity of f we have f(a) =0, 50 a € Z(f).

To prove (ii), first let @ € E. Then 15.7 implies that f =0 in D(a;r) for
some r > 0. But then D(a:r) C E. so E is open. To show G~ E is open, take
a € G~ E. Since a is not a limit point of Z(f), there exists D'(a;r) in which
f(#) is never zero. No point of D{a;r) belongs to E. so D(a:;r) CG~E. O

The Identity theorem leads to a very useful uniqueness theorem via the
simple observation that f(z) = g(2) if and only if (f—¢)(2) = 0, for functions f
and g. The theorem is an immediate consequence of 13.8.

15.9 Uniqueness theorem. Suppose that G is a region, that f and g belong
to H(G), and that f(2) = g(») for all z € S, where S has a limit point in G
Then f=gin G.

15.10 Examples (ldentity theorem and Uniqueness theorem).

¢ Suppose that f € H(D(0;1)) is such that f(#) = 0 whenever z € (0,1).
Then f =0 in D{0; 1) (since every point of (0,1) is a limit point of Z(f)
in D(0;1)).

¢ Suppose that f € H(C) and that f(1/n) =sin(l/n) (n=1,2,...). Then 0
is a limit point of S ={1/n : n=1,2,...} and f(z) =sinz on S. By the
Uniqueness theorem, f(z) =sinz in C.

¢ Suppose [ is holomorphic in €~ {0} and f(z) = sin(l/z) whenever z =
1/(nw) (n=1,2,...). It does not follow that f(») =sin(1/%) in C~ {0}.
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Indeed, f = 0 would fit the given conditions. Here 0 is a limit point of Z{(g).
where g(z) := f(x)—sin(1l/z). However the Identity theorem does not apply
because the limit point 0 is not in €~ {0}, the region of holomorphy of g.

¢ We shall show that there is no f € H(D(0;1)) such that f(x) = |z|* for
—1 < <1, Certainly D(0;1) is a region and 0 is a limit point in D(0; 1)
of each of the segments [0,1) and (—1,0]. Suppose, for a contradiction,
that f did exist. Then f(z) = 2% on the segment [0,1) in D(0;1). By
the Uniqueness theorem, f(z) = 2* throughout D(0;1). In the same way,
f(z) ==z on (—1,0] € D(0; 1), so we have the required contradiction.

15.11 Preservation of functional identities. = The Uniqueness theorem allows
us to extend the domain of validity of certain functional identities, a procedure
we alluded to in 7.7. The method is best illustrated by examples.

o The identity cos? z + sin® z = 1 holds when z is real. Now 15.9 implies that
it holds for all complex z, since 1 and cos? z + sin® # are holomorphic in C
and the real axis has limit points in C (every point of R is a limit point).

¢ Qur second example concerns the binomial expansion. Given a negative
integer n., let

f(Z):(quZ)” and !}(Z):Zn(n_l)"];_’(n_k+l)zk.
k=0 .

Clearly f is holomorphic except at —1. The series defining ¢ has radius of
convergence 1, so ¢ € H(D(0; 1)), by 6.8, It is well known that f(x) = g(x)
when # is real and |z| < 1. The Identity theorem tells us that the equality
holds throughout the region D(0:1). The requirement that n be an integer
can be relaxed though care is needed hecause non-integer powers produce
multifunctions; see Exercise 14.2.

15.12 Analytic continuation. The Uniqueness theorem is the gateway to an
important technique in complex function theory, known as analytic continuation.
The objective is to extend a given function f, holomorphic in some region G,
to a function g € H(G'), where G’ is a region strictly containing G. If such a
function g exists, then it is necessarily unique.

The idea is very simply illustrated. Let

fx) = Zz” and  g(z)=(1-2""

n=0
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Here f(#) is defined (and f holomorphic) only in D{0; 1), whereas ¢ is holomor-
phic in a much bigger region, G’ := C~ {1}: and f = g in the common domain
D(0:1). We say g is a direct analytic continuation of f. We cannot hope to do
any better in this case. Since f is unbounded, the Boundedness theorem (3.24)
tells us that f cannot be extended to a function holomorphic in any open set
containing D(0; 1).

In general, it will not be obvious whether we can extend a given holomorphic
function. However there is a natural way to attempt this. Consider, for example,
a function f with f(z) = Y207 s en(z —a)® in D(a; R). The (unique) Taylor
expansion of f about b € D'(a;r) is given hy

* o pn)
=3 L0

T

n=0

this certainly converges in D(b; R — |b—a), the largest open disc centre b
contained in D(a; R). But it may converge in a larger disc, D say. If so, we may
extend f to g € H(D(a; R) U D) by taking

[ f»)  for z€D(a;R),
)= { fi(z) for z e D;

see Fig. 15.1. We may then repeat the process, following a chain of overlapping
discs.

&

Figure 15.1 Analytic continuation

For example, Y7 o 2™(z—1)" /(1 —21)""! converges for |z — 1| < |1 —2i| =
/3 and provides the analytic continuation of > (2/2)" from D(0;2) into the
disc D(i;v/3). We can then re-expand about any point of D(i;v/3), for example
the point 2 + i (which lies outside the original disc D(0;2)), and so on.

It can be proved that if analytic continuation is possible at all then it can
be accomplished by following a chain of overlapping discs along some path ~.



Zeros of holomorphic functions 183

[Continuation along paths links up with the Riemann surfaces approach to
multifunctions and with simple connectedness. In a simply connected region,
the extension is independent of the path. In other cases it may be possible to
obtain an extension by following a multibranch, returning to the starting point
with a different function value.]

Analytic continuation plays a very important part in the theory of some
famous functions of a complex variable. In particular, it is of central importance
in the exploration of the properties of the Riemann zeta function (introduced
fleetingly in Exercise 14.7) and hence in the derivation of the Prime number
theorem; see the Appendix.

Counting zeros

The theorems in this section have close affinities with the results on argument in
Chapters 9 and 11. Exercise 15.16 (advanced track) pursues these connections.
Here we adopt a less sophisticated, basic track approach. Theorem 15.13 can be
derived from Cauchy’s residue theorem (18.3) once we have that result available.
At this stage, we give a direct proof, imitating the argument given in 18.3. See
also Exercise 18.9, which extends Theorem 15.13.

15.13 Theorem (counting zeros). Let f be holomorphic inside and on a
positively oriented contour v. Let f be non-zero on + and have N zeros inside ~.
Then ,
1 z
—— f ( ) dZ = ]\T
2rif., f(2)

(A zero of order m is counted m times.)

Proof The function f’/f is holomorphic inside and on ~ except at the zeros

of f lying inside ~. Suppose that these zeros are at ay,...,an, and are of orders
MLs e NN
We can find disjoint open discs D(ap:ry) (K = 1,....N) such that there

exists a function g which is holomorphic and non-zero in D(ay:7) and such
that

f(2) = —ap)™ge(2) (2 € D(ak; k)
(see 13.3). Then

@) 9:(%) " apzr
() T —a T gZ(z) (# € D'(akire))-
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Define

Fl(z) B Z m; if 2 ¢ U D(a,j;rj):

) me-a e

95.(%) mj _ ;
- E —— ifzeDlag;ry) (k=1,....N).
9(2) GZn P
Ak

Then F is holomorphic inside and on . By Cauchy’s theorem, [ G(z)dz =0.
The required result now follows from the Fundamental integral (10.4). O

15.14 Rouché’s theorem. Let f and g be holomorphic inside and on a
contour v and suppose that |f(z)] > |g(#)] on v*. Then f and f + g have
the same number of zeros inside ~.

(The number of zeros is finite, This is a consequence of the Bolzano—Weierstrass
theorem (3.23) and the Identity theorem (15.8), applied with some care.)

Proof Let ¢ € [0,1]. Since |f(2)| > |g(»)| on ~*, we have (f +tg)(2) # 0 for
any z € v* (by 1.9(3)). Assume, without loss of generality, that v is positively

oriented, and define
1L [+t
o) = — [ M T )
() 2m,L Frin &

By 15.13, (t) is the number of zeros of f + tg inside v. The function ¢ is
integer-valued; if it is continuous, it must be constant (see 3.23). In this event,
©(0), the number of zeros of f inside ~, equals (1), the number of zeros of
[+ g inside ~.,

It is possible to establish continuity of ¢ by citing a general theorem about
functions defined by integrals. Here, alternatively, is a direct proof. Fix ¢ and

consider
B . — 5 (g’f f,g) ('4)
o(t) —p(s) = zﬂ / (f +ta)(2)(f + 359)(2)

By 1.18, we can find positive constants M and m such that, for all z € 7,
[g"f = Pl < M, |g(2)| < M, and |(f +tg)(z)] = m. Then

I/ + 592N = I+ 1) ()] = |s =t lg(=)]  (by 1.9(3))
2M°

dz.

1 .
> Sm if |s—t| <

Hence, for |s — | sufficiently small,

[t —s| M

X length(~) (by 10.10).

(1) = ()] <
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We conclude that ¢ is continuous at . O

In Chapter 16 we shall employ Rouché’s theorem in the proofs of some
important theoretical results. Here we illustrate how the theorem can be used
to locate zeros of particular functions.

15.15 Example (locating zeros via Rouché’s theorem).  We show that the
function 2 + 22 — e'* has precisely one zero in the open upper half-plane. We

take f(z) =2+ 2% and g(z) = —e!¥ and let v be the semicircular contour shown
in Fig. 10.1, with R > /3. For z € [-R. R],

|F() = 2> 1=]g(2)|
and, for z = Re'? (0 <0 < 7).
3 B2 =2 > 13 e = |g(2)].
We deduce from Rouché’s theorem that f(z)+ g(2) = 2+ 2% —e!¥ has the same

number of zeros in {z : Imz > 0, || < R} (R > V/3) as has f(z) = 2+ 22,
that is, just one. This proves our claim.

Exercises

15.1 Determine the orders of the zeros of the functions in Exercise 7.11.

15.2 Let f and g be holomorphic in D(a;r) for some r > 0 and assume that
fla) = g(a) = 0. Use 15.3 to prove that
f& )

lim ——= = lim
e g(z) i gl(2)

if the right-hand side exists. (This is a complex form of L'Hopital’s rule.)
Hence evaluate
1 + eﬂ';&

1—-=z
. . . . " _ ,._l e .
(i) iﬂ T (i) }%(COI’,,& z70),  (iil) lﬂ T o=
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15.3 Suppose that {z,} is a sequence of distinct points in D(0;1) such that
Zn — 0 as n — 6. Decide whether the following statements are true for
all choices of {z,}.

(i) If f is holomorphic in D(0;1) and f(z,) = sinz, for all n, then
f(z) =sinz for all x € D(0: 1).
(ii) There exists f € D(0; 1) such that f(z,) =n for all n.
(ili) There exists f € D(0;1) such that f(z,) = 0 when n is even and
such that f(z,) = 2, when n is odd.
(iv) There exists f € D(0;1) which is such that f(z,) = (—1)"%, for
every 7.
Justify your answers. How do your answers change if we assume that
Zn — 1 instead of z, — 07

15.4 Give an example of a function f which is holomorphic and not identically
zero in D(0; 1) and such that the set of limit points of Z(f) is {£1,£i}.

15.5 Suppose that f is defined on D(0;3) and takes the value (—1)" at the
point (—1)"(1+ %) (n=1,2,...). By considering the sets

S_ ::{—l—ﬁ cm>1}and Sy ={1+5= :m>1},

show that f cannot be holomorphic in D(0;3).

15.6 Find all functions f which are holomorphic in D(0;1) and such that
f(1/n) =n2f(1/n)® for n =2,3.4,....

15.7 Let {¢,} be a sequence of complex numbers such that > |e,| converges
and ZZC:O cpk ™ =01for k=1,2,3,.... Prove that ¢, =0 for all n.

15.8 Let f < H(D(0;1)).
(i) Deduce from Exercise 3.11 or Exercise 6.6 that ¢ defined by

9(z) = J(z) = J(=7) (> € D(0:1))

is holomorphic in D(0; 1).

(ii) Now suppose that f takes real values on the imaginary axis. Prove
that, for = + iy € D(0; 1),
u(r y) = U’(_‘r: _y) and L‘(.’I?, y) = _2"(_1’= y)?
where u and v denote the real and imaginary parts of f.

15.9 Give alternative derivations of the logarithmic and binomial expansions
in 14.6 and in Exercise 14.2 by assuming suitable real expansions and
appealing to the Uniqueness theorem.
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Prove that the equation z° + 152 + 1 = 0 has precisely four solutions in
the annulus {7 : 3 <|7] <2}.

Find the number of zeros of each of the following functions in D(0;1):
(1) 2> =32+ 1, (i) 27 +2¢° +2:% +6, (i) cosmz — 1002,
Suppose that R > 0 is given. Prove that, if N is sufficiently large,

N
Zz”/n! #£0 for all z € D(0; R).

n=0

Prove that, for n = 3.4...., the polynomial 2™ +nz—1 has n zeros inside
the circle with centre at 0 and radius 1 ++/2/(n — 1).

Show that, for each A > 1. the equation z + e~% = A has precisely one
zero in the open right half-plane, and that this zero is real.

Suppose that f is holomorphic inside and on +(0: 1), with Taylor expan-
sion > > o ¢, 2™. Given that f has m zeros inside (0; 1), prove that

mln{lf(z)l : |Z| = 1} < |C{)| + |cl| +-- 4+ |Cm| .

[This advanced track exercise provides an alternative proof of Rouché’s
theorem (15.14), making use of the concept of index introduced in 12.8.
Suppose that f, g, and v satisfy the conditions of Rouché’s theorem.
Define F by F(z) = (f(2) + g(2))/f(#), and let T be the path F o 1.
Prove that T C D(1:1) and hence show that n(T",0) = 0. By applying
Theorem 15.13 to F', deduce Rouché’s theorem.]



16 Holomorphic functions: further
theory

Here we present some additional results about holomorphic functions and about
conformal maps. These are all important tools for more advanced theory. While
this chapter is not designated as ‘advanced track’, it could be omitted by readers
eager to reach the applications-oriented later chapters.

The Maximum modulus theorem

16.1 Local maximum modulus theorem.  Suppose that f € H(D{a: R)) and
that | f(2)] <|f(a)| for all 2 € D{a:R). Then f is constant.

Proof Fix r with 0 < r < R. By Cauchy’s integral formula (13.1),
1 f(2)
- EASZEN
@) 27ri,/7((b;,.) z—a “

1 [T fla+ref)riel?

= . 10
271/, reif ¢
1 2w .
=5 f(a+ret?ydos.
T.Jo

From this and from the hypothesis of the theorem we see that

27
@)l < = / £+ rei®)| 40 < |f(a)].

2

Therefore .
[ r@n=1sa s ey ao=o

Since the integrand is continuous and is non-negative, it must be identically zero
if the integral is to vanish. This is true for every < R. It follows that |f| is
constant in D{a; R). By 5.12. f itself must be constant. O
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16.2 Maximum modulus theorem. Let G be a bounded region and let f be
holomorphic in G and continuous on the closure G of . Then |f]| attains its
maximum on the boundary G = G \ G.

Proof The set G is bounded and closed, so on G the continuous function |f|
is bounded and attains its supremum M at some point of G (by 3.24). Now
assume that | f| does not attain the value M on 9G. Then |f(a)] = M for some
a € G. Since G is open, there exists R > 0 such that D(a; R) C G. By 16.1, f
is constant on D(a; R). Hence, by the Identity theorem, f is constant in G
(see 15.8). By continuity, f is constant on G, and so attains its supremum at
every point of G = G UG, contrary to hypothesis. [

The following corollary of the Maximum modulus theorem is frequently
useful in applying the theorem. See Exercise 16.6 for further deductions from
the same hypotheses.

16.3 Schwarz’ lemma.  Suppose that f is holomorphic in D(0; R), that
f(0) = 0, and that |f(z)| < M in D(0; R). Then

< Tl (el <R).

If equality occurs for some z with |z| < R, then there exists a real constant A
such that f(z) = Mze*/R for z € D(0; R).
Proof Since f(0) = 0, there exists g € H(D(0; R)) such that zg(z) = f(z) for
all z € D(0; R) (see 15.3). On |z| =r < R,

lg()| < |f ()| /r < M[r.

Applying the Maximum modulus theorem to ¢ in G = D(0;r), we obtain
lg(z)] < M/r for |z| < r. Now let r — R to get |g(2)| < M/R for |z| < R. This
gives the required bound on |f(2)| for any z # 0, and the inequality holds for
z = 0 too since f(0) = 0. We leave the proof of the final claim as an exercise. O

Holomorphic mappings

In many applications of conformal mapping it is necessary to construct a confor-
mal map f: G — G between regions G and G , such that the inverse mapping
ft: G — G exists and is also conformal. We now present a group of theorems
which have a bearing on this problem and which are of independent interest.
Since there are common themes in the proofs we begin by presenting some gen-
eral facts.
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16.4 Holomorphic maps: some observations. Suppose that G is an open set
and that f € H(G). Let a € G.

(1) Assume that G is a region and that f is non-constant. Then, in some
D’(a;r), the function f— f(a) is never zero (by the Identity theorem (13.8)).

(2) Let f be one-to-one. Then f’ certainly cannot be identically zero and hence
can only have isolated zeros (by 13.8, applied to f').

(3) Choose r such that D(a;r) € G and suppose that f — f(a) is non-zero
on v*, where v = ~(a:r). Let m = inf{|f(») — f(a)| : 2 € +*}. Then
(i) m >0 (by 3.24);
(i) for each w € D(f(a);m), the functions f — f(a) and f — w have the
same number of zeros, counted according to multiplicity (by Rouché’s
theorem (15.14)): for z € +*,

|7 (2) = fl@)] = m > |f(a) —w| = [(f(a) = F(2)) + (J(z) —w)].

16.5 Theorem. Suppose that f is holomorphic and one-to-one in an open
set G. Then f is conformal in G.

Proof Assume, for a contradiction, that there exists a € G such that f'(a) = 0.
Choose 7 such that D{a;7) C G and such that f’ is never zero in D(a;7).
This is possible by 16.4(2). Let w € D'(f(a);m), where m is as in 16.4(3).
By 16.4(3)(i1), f — f(a) and f — w have the same number of zeros in D{(a;r).
The function f — f(a) has a zero of order at least two at a (by 13.3). On the
other hand, f — w cannot have two distinct zeros, since f is one-to-one, and
cannot have a zero of order greater than one, since f —w and (f — w)’ cannot
both be zero at any point in D(a:r). O

16.6 Open mapping theorem.  Suppose that f is holomorphic and non-
constant in an open set G. Then f(G) is open.

Proof Fix a € (. Choose » and m as in 16.4(3). Observe that f —w has a
zero at a point b if and only if f(b) = w, and that this implies that w lies in the
image of f. By 16.4(1) and 16.4(3)(ii), f — w has at least one zero in D(a;r)
whenever w € D(f(a);m). Hence f(a) € D(f(a);m) C f(D(a;r)) C f(G). The
result now follows from the definition of an open set. [

A special case of the following result was given in 7.16, where we considered
holomorphy of a branch of the logarithm.
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16.7 Inverse function theorem. Let GG be an open set and let f be holomor-
phic and one-to-one in . Then f~! is holomorphic in f(G).

Proof Since f is one-to-one, there exists an inverse map g := f~%: f(G) = G.
Let b = f(a) € f(G). Then a = g(b). We claim that g is continuous. We prove
this by applying the Open mapping theorem to f in D(a:¢) € G to obtain § > 0
such that D(b;0) C f(D(a;¢)) = g~*(D(a:2)). This is the statement of the £-§
definition of continuity of ¢ at b expressed in shorthand.

By Theorem 16.5, f'(g(b)) # 0. Then

gw)—90) 9w —gb) 1
w—b Fg(w)) = fg(0)) — ['(g(0))

as g{w) — g(b). But w — b forces g(w) — ¢{(b), since g is continuous. O

16.8 Conformality of invertible maps. Let G be a region and let f € H(G).
Suppose that f maps G one-to-one onto the region G := f(G), so there exists a
well-defined inverse map f~': G — G. Then we have

e f is conformal (hy 16.3);

o f~!is conformal (by 16.5 and the Inverse function theorem).

There is a partial converse: if f is conformal in a region G, then f is locally
one-to-one in G (Exercise 16.3).

The next result greatly improves on one obtained in Exercise 2.13.

16.9 Example (conformal mappings of the unit disc). Suppose that f is a
one-to-one map of D(0; 1) ontoD(0; 1) which is conformal in D(0; 1) and suppose
that f(a) =0 (o € D(0;1)). We claim that, for some real constant A,

f(#) =e0u(z) (2 € D(0;1)),

where ¢q(2) := (¥ — )/(@z — 1). Recall from Exercise 2,13 that the M&bius
transformation ¢, is its own inverse and maps D(0; 1) onto itself. To prove the
claim about f we consider the composite function h = f o ¢,. Then h maps
D(0:1) one-to-one onto itself, since both f and ¢, do. By the Inverse function
theorem, h~! is also a holomorphic map of D(0;1) to itself. Schwarz’ lemma
(16.3) applies to each of h and h~! to give

[h(w)| < Jw| and  |w| < |A(w)] (lw] < 1).
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Together, these inequalities show that equality holds, so that, by the final state-
ment in Schwarz’ lemma, A is a constant of modulus one, That is, f(oq(w)) =
e for w € D(0; 1), where X is a real constant. Recalling that ¢, = ¢7t, we
deduce the required form for f.

16.10 Do conformal mappings exist? The Riemann mapping theorem. It is
by no means obvious that it is even theoretically possible to construct a conformal
mapping from a region with a complicated, spiky boundary onto a civilized region
such as D(0;1) or vice versa. The definitive theorem about this, the Riemann
mapping theorem, is very striking: Let G be a simply connected region with
G # C. Then there exists a one-to-one conformal mapping f from G onto
D(0;1) with f=1: D(0;1) — G also conformal.

It is worth noting that in each of our worked examples in Chapter 8, the
function we defined not only took one prescribed region, G, onto another, G,
but also mapped the boundary of G onto the boundary of G (in C in certain
cases). Such an extension to the boundary is important in many applications, as
our discussion in Chapter 23 indicates. In general, whether or not a conformal
mapping on a region G extends to a continuous function on G'UJG depends on
the topological nature of the boundary.

Exercises

16.1 TUse Exercise 14.5 to obtain an alternative proof of the Local maximum
modulus theorem.

16.2 Let f be holomorphicin €. Prove, by considering a suitable exponential,
that the condition that f(z) be real when |z| = 1 forces f to be constant.

16.3 Let G be the square region {2 € € : |Rez| < 1, [Im#| < 1}. Suppose
that f is continuous on G and holomorphic in G and such that f(z) =0
when Rez = 1. By considering ¢ defined by

9(z) = f() [ (1) f(=2) f(=12),
prove that f is identically zero in G.

16.4 Let f € H(D(0; R)) smd let M(r) := sup{|f(»)| : || =r} {(r < R).
Prove that M(r) < M(s) for r < s < R, with strict inequality if f



16.5

16.6

16.7
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is non-constant. Prove also that if f is a polynomial of degree n then
M(@ryr—" > M(s)s™™ when 0 < r < s < R.

Use the facts given in 16.4 to prove that, if f is conformal in a region G,
then for each a € G there exists » > 0 such that the restriction of f to
D(a;r) is one-to-one.

Let f satisfy the conditions for Schwarz’ lemma (16.3). Complete the
proof given there by considering the case of equality. Prove further that
|//(0)] < M/R.

Consider II" = {# € C : Imz > 0} and let & € II". Suppose that
F:IIT — IIT is holomorphic. Prove that, for all z ¢ ITT,

Z— <ImF(a).

< (_L‘ and |[F'(a)| <

~

F(z)— F(a) Z—a Ima

‘F(z) — F(a)

(Hint: consider the composite function f = ¢ o F o ¢~ where ¢(z) =
(# —a)/(# — @) and apply Schwarz’ lemma.)



17 Singularities

The time has come to face the fact that many commonplace functions fail to
be holomorphic at isolated points, or worse. Laurent’s theorem (17.3) provides
a very satisfactory substitute for Taylor’s theorem for functions holomorphic
except at isolated singular points.

Laurent’s theorem

17.1 Binomial expansions again. For |z| < 1, we can expand (1 — 2)7! in

1 X
T :Zz” (|| < 1)

n=0

positive powers of z:

(recall 6.2). For |#| > 1 the series on the right-hand side no longer converges.
Instead, we note that |2| > 1 if and only if |1/2| < 1 so that

-1

1 1 —_ m
T—: " (1—1/4) Z”‘ Pem 2 >,

n=0 m=—c<

In the same way, we can expand (@ — z)~! as a series in positive powers of z if
|2] < |a| and as a series in negative powers if |2| > |al.
As an example, note that, in the annulus { z : 1 < |2| < 3}, we have

-1

4 _ 1 1 _ e - nog—n—1,n
TEECES R A= D VIR Db

n=—oc n=0

17.2 Double-ended series. By definition, a series Y.~ a, converges (to
5=81+82) if Y07 g apn converges (to s1) and Y~ | a_p converges (to s2).

If f is holomorphic in a disc D{(a:r) except at a itself, where something
nasty happens, then we cannot hope for a power series expansion

(2) = Z en(z —a)t

n=0
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since the power series on the right-hand side behaves decently at a. by Theo-
rem 6.8. Motivated by the examples in 17.1, we aim for a double-ended series:
for f € H(D'(a:r)) and seek to show that f(z) can be expanded as a Laurent

series
(o9

Z ez —a)"

n—=——oc
valid for 0 < |z — a| < r. We shall prove, slightly more generally, that a function
holomorphic in an annulus has an expansion of this type.

17.3 Laurent’s theorem (series expansion in an annulus). Let
A={z€C:R<|z—a| <S5} 0KR<S <)

and let f € H(A). Then

oG

f(Z) = Z Cn(Z _a)n (Z S fl),

n=—o

where
1 fw)

= 2mi, 4 (w—a)rtt

with v = ~v(a:r) (R <r < .9) [or any closed path in A homotopic to v(a;7)].

Cn daw,

Figure 17.1 The proof of Laurent’s theorem
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Proof By changing the origin if necessary, we may assume that ¢ = 0. Fix z € A
and choose P and @ such that R < P < |2|] < Q < S. Let ¥ and ¥ be as shown
in Fig. 17.1. Then

fx) = L f(w)ﬂ dw (by 13.1)

271 foy w— %

and

- L / f( ) dw  (by Cauchy’s theorem I (11.6)).

2ri )y w—z

Adding, and noting that the integrals along the line segments in 5 cancel, we
have

fx) = L/ LUJ) dw — L/ f(w)ﬂ dw
2ri )0y W 271/ o; P) w—z

w)dw — —
mt1 f( m+1
27—1 L(O Q) =0 w L5 0Py m= 0 4

777,

fw) dw,

using the appropriate binomial expansions (we have |z/w| < 1 for w € ~(0; Q)*
and |w/z| < 1 for w € +(0;P)"). We now invoke Theorem 14.2 [uniform
convergence] to justify interchange of summation and integration (cf. the proof
of Taylor’s theorem (14.4)). This gives

Z"" 1 J(w) Z 1 I
», — 1 n m 1 m—
f(,é) <27(_1/A’/(0Q) u}n+l ¢ u/> e (27_1 /“,/(O;P) (u/)u/ ‘ UJ)

n=0 m=0

We now put n = —m — 1 in the second sum. Finally, we use the Deformation
theorem to replace v(0; Q) and ~(0; ?) by v as in the statement of Laurent’s
theorem. U

17.4 Uniqueness of the Laurent expansion. Let f € H(A), where A is the
annulus {# € C: R< |z —a| < S} (0 < R< S <oc) and suppose that

Y du(z—a)" (z€A).

n—=——o

Then d,, = ¢, for all n € Z. where ¢, is as in 17.3. For the proof, we may
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assume a = 0, Choose r such that R < < S. Then

2rie, = / Flw)w™ L dw
1 (037)

oG

:/ Z dpw® =1 dae
S0 T
(o9

(o9
= / E dpw® " dw + / E d_pw ™ dw
Jy(0r) p—p S0 =1

Summation and integration can be interchanged to give

(o9
2rie, = E dk/ wh==1 qw = 27id,,.

k=——oc  /(0T)

by the Fundamental integral (10.4). For the justification, consider the two
integrals separately and appeal to the Interchange theorem (14.2 [or, via uniform
convergence, 14.19]).

TUniqueness allows us relate Taylor series and Laurent series when the former
exist. Suppose that f is holomorphic in D(a:5). It has a Taylor expansion there
and also has a Laurent expansion in D'(«;S). The uniqueness of the Laurent
coefficients forces these expansions to coincide in D'(a: S) (with ¢, = 0 for all
n < 0).

17.5 Computation of Laurent expansions. We have already advocated using
known expansions wherever possible to find Taylor expansions. This strategy
relies on the uniqueness of the coefficients. As a fall-back, we may compute the
higher-order derivatives f{"(a) (n > 0).

For a Laurent expansion, the method of known expansions is even more
important. Cauchy’s formula for the nth derivative is certainly not available for
negative n and calculating the Laurent coefficients directly from the formula

— / 7]‘(10) dw
Y 2w g (w0 —a)ntt

would be tedious, or impossible. So in practice we combine simple known ex-
pansions (Taylor or Laurent) to obtain Laurent expansions of more complicated

functions. In applications, often only the first few terms in a Laurent expansion
are needed. We shall see in the next chapter that the coefficient ¢_; in a Laurent
expansion is of special significance. The reason for this can be traced back to
the exceptional case, n = —1, in the Fundamental integral.
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17.6 Examples (Laurent expansions).

Tactical tip

™
\

Remember the examples in 6.3 and also that factors such as (1 —w)~2 can
be expanded binomially for |w| < 1 (derivation by differentiation of the
geometric series for (1 — 2)71)); recall 6.9. The same result can be arrived
at by multiplication of series, but this is more laborious.

Exploiting binomial expansions f{z) = 1/(2(1 — 2)?) is holomorphic in
Al={z:0< |z <l}andin Ap ={z:|z—1>1}. For 2 € A},
the binomial expansion gives

flz) = (5_11)2 <1+(}4—1)> = (Z_ll)2<l—(z—1)+(z—1)2—...).

So, for 0 < |z — 1] < 1. the Laurent expansion for f(z) is

HOEIDICIKEESID

n=-—2

For |z — 1| > 1 we write f(z) as (z —1)7*(1 + 1/(# — 1))~. This expands
binomially to give

Fe= Y (CDMHE= (> ),

n=—o

Inverting a known expansion The function cosecz is holomorphic except
at z = kr (k € Z) and so has a Laurent expansion )~ ¢,2" valid for
0 < |2] < w. We have
3 L5 2

. PR z

51n4—4—§+§ —---—4<l—a+h(,¢)>,
where all the terms after the first two have been amalgamated to form the
function h(z). This function A is defined by a convergent power series,
and so is holomorphic. Near 0, the dominant term is that in z* and we
have |h(2)] < K |z4| for some constant K: we shall use the conventional
O-notation for this and write h(z) = O(z*). Then

22

1 -1 1 PZ
cosecs = — (1 - (3! + O(z4))> = <1 + 3 + O(z4)> for small |z].

Here we have used the standard expansion (1—w)™! = I+w+w?+..., valid
for |w| < 1, with w = 22/3! + h(2). Then 17.4 implies that ¢, = 0 for all
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n < —1,c_; =1, ¢ = 1/6. By taking more terms in the above expansions,
we could compute ¢z, ¢, .... Trivially, ¢cop = O for all integers k.
Changing the base point To find the Laurent expansion of cosecz about
z=kr (ke€Z, k#0), we want to expand in powers of w = z — kr. By
the addition formula for the sine function,
o
cosec 7 = (—1)¥ cosec(r — kr) = (=1)* Z ez — km)™,

n=—ox<
where the coefficients ¢, are as in the expansion about 0.

Beware bogus expansions! Replacing # by 1/% in the expansion for cosec z
above appears to give

cosec(l/z) == < + % + O~ ))
This is not valid. The substitution of 1/ for z overlooks the restriction
to small |z| imposed above to validate inverting the sine expansion. In fact
there is no Laurent expansion about 0, since there is no punctured disc
D’{0:¢) in which cosec(1/#) is holomorphic. (In the terminology of 17.8
below, the singularity at 0 is not isolated.)

Multiplying known expansions cotz = cos <

sin z
|2] < 7. Near 0,
52
cotz = <1 51 + O(f)) < 4= 6 + 0(43)>

:% <1+z2 (—%+ é—) +O(z4)) ,

using the expansion above; remember that multiplication of convergent
power series is permissible, by 14.10. Hence

is holomorphic for 0 <

cotz = %— §—+O(z3) 0 < |7 < 7).

Our second example of this type is drawn from fluid mechanics. Let

flz)= <z + ;) <1 - j—j)z <1 - Z—i>_l (2] > ¢,

s . 2 =2 g .
where a and ¢ are positive constants. Expanding {1—(c?/#%))"~ binomially
for large |#|,

o= () () (2,
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This is a case where there are infinitely many negative powers. The coef-
ficient of any given 2™ (n < 0) could be computed by collecting together
terms. For example, the coefficient of 271 is & — 242 + 2.

17.7 Estimating Laurent coefficients.  Suppose that f is holomorphic in
an anmuilus {# : R < |#| < S}. Let f have Laurent expansion f(z) =
Y ne—oo en#"s where 2micy, = [ o fw)w ™" dw (R < r < S). Estimating
in the same way as in 14.7. we have

|en| <7 sup{ /()] ¢ |2[ =7}

Two special cases are worth noting.

¢ Assume that f is holomorphic for |2| > R and that f is bounded (| f(%)| <
M say). Then |¢p| < Mr~" for all » > R. This forces ¢, = 0 for all n > 0,

. 0
and so the Laurent expansion of f takes the form >, ¢,2™.

e Assume that f is defined and holomorphic in a punctured disc D'(0:.9).
This time we can take r arbitrarily small so that our estimate gives ¢, =0
for n < 0. Therefore f(z) = " epz™ for 0 < |2| < S. In addition, if we
define f(0) = co, we obtain

F@ =)™ (21 <9,

n=0

and this power series is holomorphic in D(0:S). We pursue these ideas
in 17.15, where we consider removable singularities.

Singularities

17.8 Definitions (singularities). We say « is a regular point (of f) if f is
holomorphic at o (that is, f € H(D{a;r)) for some r > 0; see 3.7). A point a is
a singularity of f if ¢ is a limit point of regular points which is not itself regular.

If @ is a singularity of f and f is holomorphic in some punctured disc
D'(a;r) (r > 0), then « is an isolated singularity; otherwise a is a non-isolated
(essential) singularity.
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17.9 Classification of isolated singularities.  Suppose that f has an isolated
singularity at a. Then f is holomorphic in some annulus {z : 0 < |z —a| < r}
and has there a unique Laurent expansion

oG

f(z)= Z ez —a)".
We may write
-1 o
f») = Z en(z—a)t + Z ez —a)™.
n=—oc n=0

The second term on the right-hand side is holomorphic in D{a:r) and is in no
way responsible for the singularity. This is caused by the first sum,

-1

Z ez —a)t,
n—=——oc
which is known as the principal part of the Laurent expansion.

We classify isolated singularities according to the behaviour of the coeffi-
clents ¢, for n < 0. We stress that the feasibility of such a classification relies
on both the ezxistence and the uniqueness of the Laurent expansion. The point a
is said to be

¢ a removable singularity if ¢, = 0 for all n < 0;
e apoleoforder m (m=>=1)if ¢, 0 and ¢, =0 for all n < —m;
e an isolated essential singularity if there does not exist m such that ¢, =0

for all n < —m.

Poles of orders 1,2,3,... are called simple, double, triple, ....

17.10 Examples (principal parts and singularities). The examples that follow
are preliminary ones to illustrate the definitions in situations where the Laurent
expansion, or at least its principal part, can be written down easily.

e (z—1)72 is its own Laurent expansion about z = 1, where it has a double
pole.

e We showed in 17.6 that

cotz = % - % +0(=*) (2 € D'(0:7)).

The principal part of the Laurent expansion about 0 is z~! and cot z has
a simple pole at 0. Since cot(z — kx) = cotz for each integer k, each
singularity &7 of cot z is a simple pole.
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e (1 —cosz)z—? is holomorphic except at z = 0 where it is indeterminate.
The Laurent expansion about 0 is
1 22 A

E_E+a —.. (2| >0).

The singularity at 0 is removable.

e For 0 < |z < o0,
1 oC Z—(Zn+l)
sin{ — ] = -t
a(3) =L G
n=0

Hence sin(l/z) has an isolated essential singularity at 0.

It should be clear that computing the Laurent coefficients is an arduous way
of classifying the singularities of even relatively simple functions. Fortunately
there is a much more eflicient method. The clue to it lies in the observation that,
if a holomorphic function has an isolated zero at the point a, then its reciprocal
has an isolated singularity at a. The following technical result parallels that for
zeros in 13.3. We leave the proof as an exercise: it is very like that given in 15.3.

17.11 Characterization theorem for poles of order m. Let f € H(D/(a:r)).
Then f has a pole of order m at a if and only if

lim(z —a)™f(#) = D, where D is a finite non-zero constant.
i

17.12 Theorem (poles and zeros).  Suppose that f is holomorphic in some
open disc D(a:r). Then f has a zero of order m at a if and only if 1/f has a
pole of order m at a.

Proof Suppose 1/f has a pole at a. This requires that 1/f be holomorphic in
some punctured disc with centre a. Therefore the zero of f at a cannot be non-
isolated, by the Identity theorem (13.7), and so 13.3 is applicable. Conversely,
a zero a of f of order m is necessarily isolated, so 1/f is holomorphic in some
punctured disc D'(a;r). The result now follows from 15.3 and 17.11 and the
algebra of limits. [

We leave as an exercise the proof of the following very useful consequence
of the theorems characterizing zeros and poles.
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17.13 Cancellation and coalescence of zeros and poles. Suppose that f has
a pole of order m at a.
(1) Suppose that g € H(D(a:r)) for some + > 0. Then at a the function fg
has
® a pole of order m if g{a) # 0;
¢ a pole of order m —n if ¢ has a zero of order n < m at a;
® a removable singularity if ¢ has a zero of order n > m at a.
(2) Suppose that g has a pole of order n at a. Then fg has a pole of order
m+n at a.

17.14 Examples (orders of poles).

e zsinz has isolated zeros at z = kr (k € Z), all being simple except the
zero at 0, which is double. Therefore 1/(#sinz) has a simple pole at k7
(0# k € Z) and a double pole at 0.

e Consider again cotz = cosz/sinz. At the points z = kr (k € Z). sinz
has simple zeros and cosz #£ 0. Therefore cot z has a simple pole at each
point k7.

(z—1)cosmz
(z+2)22 — (22 + 1)3sin® 7z

Figure 17.2 Singularities of f(z) =

e Consider
(z—1)cosmz

&)= (z +2)(22 — 1)(22 + 1)¥sin* nz’
The denominator has a simple zero at 1/2, zeros of order 3 at Li, a double
zero at each integer £ # —2, and a triple zero at —2. The numerator
has a simple zeros at 1 and at (2k + 1)/2 for each integer k. Appealing
to 17.13, we see that f has triple poles at —2 and =i, a double pole at k
(k€ Z~{1.-2}), a simple pole at 1, and a removable singularity at 1/2.
In Fig. 17.2, we have depicted by large circles the singularities arising from
coalescence or cancellation of zeros in different factors in the expression

f2).
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17.15 Removable singularities. Let f € H(D'(a;r)) and assume that f has a
removable singularity at a. We have a Laurent expansion f(z) = Y-, ¢p(2—a)"
in D'(a:r). Then f(z) — ¢ as z — & (by continuity of the right-hand side at «).
By defining (or re-defining) f(a) to be ¢y we arrive at

[ =2 ealz=a)" (lz—al<7)

n=0

and so have made f holomorphicin D(a:7), by 6.8. Thus a removable singularity
is a non-event: a ceases to be classified as a singularity once f is correctly defined
at a. The standard theorems about holomorphic functions—Cauchy’s theorem,
Liouville’s theorem, etc.—can then be applied.

Suppose now that we have any function f with an isolated singularity at «a,
so that there is a Laurent expansion

-1

f@ =D alz—a)"+ D alz—a)" (zcD'(air)).

n=—oc n=0

n=—oc Cn(Z - a)n’ we
convert the singularity at a to a removable one, which can then be removed.

By subtracting from f(z) its principal part, namely Z_l

17.16 Behaviour near a non-removable isolated singularity. Let f have an
isolated singularity at a and have Laurent expansion

oG

flz)= Z cp(z—a)" (0<|z—a| <r).

n=—o

e Pole Suppose f hasapoleat a. It is immediate from 17.11 that | f(2)] = o
as z — a.

¢ Essential singularity Suppose that f has an isolated essential singularity
at a. Let w be any complex number. Then there exists a sequence {a, } such
that a, = ¢ and f(a,) — w. This is the Casorati-Weierstrass theorem.
For an outline of the proof, see Exercise 17.13.

A more spectactular and much deeper result, due to Picard, asserts that
in any D'(a;¢), [ actually assumes every complex value except, possibly,
one. In the case of e!/#, which has an isolated essential singularity at 0,
the exceptional value is 0.
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17.17 Non-isolated singularities. = We emphasize that in order that a func-
tion f have a Laurent expansion about a point a it is necessary that f be
holomorphic in some punctured disc D'(a;+) (r > 0). This fails to happen
whenever ¢ is a limit point of singularities of f.
¢ cosec(l/z) has singularities at z = 0 (where it is undefined) and at 1/(kw)
(0 £ k € Z) (where sin(1/z) = 0). At 1/(km) there is a simple pole
(see 17.6). There is no punctured disc D'(0;7) in which cosec(l/z) is
holomorphic since every such disc contains points of the form 1/(kw). Hence
0 is a non-isolated singularity.

0 PP ————————————————

Figure 17.3 Singularities of cosec(1/2)

e f(2)=2"*(1+et/*)~! has singularities at 0 and at 1/((2k+1)7xi) (k € Z),
where 1+ el/# has simple zeros. The point 0 is a limit point of singularities
and so a non-isolated singularity. The fact that the factor =2 has a triple
pole at 0 is irrelevant: f itself has no Laurent expansion about 0.

Meromorphic functions

We conclude this chapter by extending our investigation of singularities to the
extended complex plane C.

17.18 Singularities at cc. In 5.10 we briefly considered functions on C and
indicated that the inversion map » + 1/z can be used to analyse what happens
at or near oc. Consider a function f defined on some set {z € C : |2| > 7} but
not necessarily at the point oc. As before, define f by

fw) = f(/w) (weD'(0;1/r)

and let f(0) = f(x) if f(oo) is defined. We then transfer notions relating
to f at 0 to obtain corresponding notions for f at oc. This device allows us to
consider singularities, poles, ... at cc. Here are some examples.

e Tor f(z) = z* we have (JV‘(w) = w2, which has a triple pole at 0. Hence f
has a triple pole at oc.
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e 2 2sinz has a removable singularity at oc.
e tan z has a non-isolated singularity at oc. This can be seen directly, since

oc is a limit point of the set { (2k + 1)7/2 : k € Z } of poles of tan z.

17.19 Definition (meromorphic function). Let G be an open subset of C
or, more generally, of C. A complex-valued function which is holomorphic in G
except possibly for poles is said to be meromorphic in G.

17.20 Theorem (meromorphic functions in (NZ)
(1) Let f be holomorphic in C. Then [ is constant.
(2) Let f be meromorphic in C. Then [ is a rational function.

Proof (1) The result follows immediately from Liouville’s theorem (13.3) once
we know that f is bounded [which, as a complex-valued continuous function
on the compact space (Ei, it is]. An elementary proof of boundedness goes as
follows. The function ? is continuous on the compact subset D(0;1) of C,
by 3.24. Consequently f is bounded on {z € C : |2| > 1}U{oc}. By 3.24, this

time applied to f itself, f is bounded on {2z € C : || < 1}.

(2) An infinite set of poles of f would have a limit point in ¢ (see Exer-
cise 3.13). Such a limit point would be a non-isolated singularity of f, and so
could not be a pole. So f has at most finitely many poles. Assume f has a pole
of order my at a € C (k= 1,..., N) and a pole of order m at oo (and let

m = () if there is no pole at oc). By the algebra of limits and 17.12,

N
lim J[G—an™ e f(2)
~ T k:l
exists for each n = 1.....N. It follows that
N
02) = [L ¢ = )™= £(2)
k=1

has, at worst, removable singularities. Remove these (see 17.15) to make g
holomorphic in €. Applying (1) to g, we see that g must be constant. [

Exercise 17.17 seeks an alternative proof of (2). In this, the singularities
are cancelled out by subtraction of principal parts (see 17.13).
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Exercises

Exercises from the text. Fill in the details of the proof in 17.4 and prove the
assertions in 17.13. Prove the Characterization theorem for poles (17.12),

17.1 Find the Laurent expansion of (2% —1)=2 valid for (i) 0 < |z — 1| < 2 and
(i) [ +1] > 2.

17.2 (a) Let f(z) = e~/% (0 < |2| < o0). Use the exponential series
and 14.10 to write down an expression for the coefficient ¢, in the
Laurent expansion for f(z) valid for 0 < |z| < oc.

(b) Prove that

ew—l/w 2w
/ ——dw = i/ cos(nf — 2sin ) d6.
. Jo

oy W
(¢) Deduce that

= ZW cos(nf — 2sinf) df = i ﬂ
2r fo ) T =Kt R

17.3 Suppose that f is continuous and bounded in D(a:r) and that f is
holomorphic on D'(a;r). Prove that f € H(D(a;r)). (Hint: see 17.7.)

17.4 Suppose that, for R < |2| < S, f(2) = 9(2)+h{z), where ¢ is holomorphic
for |z| < S and h is holomorphic and bounded for 2| > R. Let {¢,} be
the Laurent coefficients of f in the annulus R < |2| < S. DProve, by
considering the expansions of g and h, that

X
g(z)=c+ chz” (2] < 8),
n=l1
where ¢ is a constant, (Hint: use 17.7.)

17.5 Find the principal part of the Laurent expansion about O of

. 1 y 1 i .
(1) 2sinh 2’ (11) G2 2 (111) (e‘ — 1) 2’
(iv) oV, (v) el (vi) (sinz +sinh z — 22)71,

e —1"

In each case, specify the type of singularity the function has at 0.
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17.6 Find the principal part of the Laurent expansion about the indicated
point. a of

e —1
e’ +1

(i) sec?z (a=7/2), (i) (& =7i),

iz

(i) (> + %) (@a=1b),  (iv) E i

In each case, specify the type of singularity the function has at «.

17.7  The function g is holomorphic in II- ={# : Im» < 0} and is such that
gz +2r)=g(z) forall z€II™.
(i) Prove that there is a well-defined function f defined on an unbounded
annulus and such that f(e!¥) = g(2).
(ii) Deduce that there exists an expansion

g(z) = Z cpe'™  (Imz < 0).

n=——o<

17.8  (a) Locate and classify the singularities in C of the following functions:

0 =g ErE
1 )
(iii) ETT (iv) 174
1 , 1
0 1= W

. z (2= 1Y
S T ) B (z T 1) '
(Hint: you will need to be familiar with the facts in 1.7.)

(b) Locate and classify the singularities in C of the following functions:

. 1 . 1 2 .| CosecT
(i) T (i) T’ (iii) tan®z, (iv) =

(Hint: you will need to be familiar with the facts in 7.10).)

17.9 Locate and classify the singularities in € of the following functions:

R ... Cotwz )
e (- g
z . zsinz el el
) 1—e*’ (1) cosz—1" (vii) cosh z’ (viid)



17.10

17.11

17.12

17.13

17.14

17.15

17.16
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(Hint: this is principally an exercise on the use of 17.13.)

Locate and classify the singularities in C of

. 1 . 1 1
W) ) —=—-=
(7 + 2)sin z (m+2)sinz 7z

Locate and classify the singularities in C of

1
sin(m(z — 1)) sin{w/(z + 1))’

Assume that f has a pole of order m at @ and that g has a pole of order n
at a. What kind of singularity at a is it possible for (i) f+g¢ and (i) fog
to have? Give examples to show that all the possibilities that you list can
occur.

Let g be holomorphic in € and assume there exists a finite constant M
such that
lg(z)] < M|sinz| (2 € Q).

Prove that g(#) = Ksinz on C, for some constant K with |K| < M.
(Hint: consider g{z)/sinz.)

Let ¢ be a bounded region in € and let S be a closed set contained in G.
(i) Show that there does not exist a function which has an infinite
number of poles in .S and is otherwise holomorphic in G.

(ii) Show that there does not exist a function f which is holomorphic
in G and is such that 1/f has an infinite number of poles in S.
(Hint: you will need the Identity theorem and the Bolzano—Weierstrass

theorem.)

Suppose that f is holomorphic in a punctured disc, centre a. Let w € C be
given. Suppose that there exist £ > 0 and > 0 such that |f(z) —w| > ¢
for all z € D'(a;r). By considering the function (f —w)™!, prove that f
cannot have an essential singularity at a. Deduce the Casorati—Weierstrass
theorem stated in 17.16.

Determine the type of singularity that each of the following functions has
(a) at 0 and (b) at oc:

@ (= +z_l)_l, (i) z%et/*, (iii) cotz — 271,
.2

iv) (2 — sin )t ' in - =
(iv) (x —sinz)™", (v) cosec(sin z), (vi) o o——
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17.17 Give an alternative proof of Theorem 17.20(2) by considering the function
obtained from f by subtracting from it the sum of the principal parts of
the Laurent expansion about each of its poles.

17.18 Let f be holomorphic in C.
(i) Prove that f has a removable singularity at oc if and only if f is
constant,

(ii) Prove that f has a pole of order m at oc if and only if f is a
polynomial of degree m.

17.19 Construct functions f (k= 1,....6) such that
(1) f1 is holomorphic in C except for simple poles at =1 and =+£i;
(ii) f2 is holomorphic in € except for removable singularities at £1;
(iil) f3 is holomorphic in C except for a pole of order 4 at 2k+1 (k € Z);
(iv) fu is holomorphic in C except for non-isolated singularities at %1
and a set of simple poles:
(v) fs is holomorphic in S(:VJ except for a pole of order 6 at oc;

(vi) fe is holomorphic in C except for isolated essential singularities at 0,
1. .

17.20 (This exercise assumes familiarity with uniform convergence.) Define
1 n
-3 o
it -z

(i) Prove that f is holomorphic in G := C~ {nw : n € Z } by showing
that the series converges uniformly on any disc D{a:r) C G and
applving the result in Exercise 14.7.

(ii) Prove that f has a simple pole at each point k7 (k € Z). (Hint:
split f(z) into two parts: a finite sum having a pole at k7 and an
infinite sum holomorphic at kz.)

(iii) Deduce that f(z) = cosecz for all » € C.



18 Cauchy’s residue theorem

This chapter continues the study of singularities and extends in a significant way
the techniques stemming from Cauchy’s theorem for evaluating the integral of a
function round a contour.

Residues and Cauchy’s residue theorem

The following lemma comes directly out of Laurent’s theorem and the Deforma-
tion theorem: it gives an integral formula for the Laurent coefficient ¢_;. The
result is of sufficient importance for us to record it explicitly.

18.1 Lemma (Integration round a pole). Let f be holomorphic inside and
on a positively oriented contour v except at the point a inside ~, where it has a

pole of order m. Let
o

fz) = Z en(z —a)"

n—=——m

be the (unique) Laurent expansion of f about a. Then

/ f()dz = 2ric_;.

18.2 Definition (residue).  Suppose that f € H(D'(a:r)) and that f has a
pole at a. The residue of f at a is the (unique) coefficient c_; of (z —a)™! in
the Laurent expansion of f about a. and is denoted res{f(2):a}.

18.3 Cauchy’s residue theorem. Let f be holomorphic inside and on a posi-
tively oriented contour except for a finite number of poles, a1,...,an inside ~.
Then

/ fx)dz = 2Wii:res {f(x):ar}.
L k=1
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Proof Let f;.(z) be the principal part of the Laurent expansion about aj. Then

N
g =r=> I
k=1
has only removable singularities at aj,...,axn:; remove them (see 17.13). By

Cauchy’s theorem, [ g¢(#)dz = 0. Hence

‘[/g(z)dz—'/vf(z)dz—lg/ﬁ/fk(z)dz—27riéres{f(z);ak},

by Lemma 18.1, applied to each f;. O

18.4 Example (function-finding). Suppose that f is holomorphic in C except
for simple poles at the cube roots of unity, 1, w = €*7/%, w2, where it has
residues 1, a (£ 0), a™!, respectively. Suppose further that there exists a
constant K such that |z2 f (,4)| < K for |#] > 2.

By Cauchy’s residue theorem,

2rill +a+ta™t) = / flx)de (R >2).
J(0; R)
By the Estimation theorem and the given growth bound,
2w )
|2ri(l +a+a™h)| < / |f(Re'")| R0 < 2rK/R,
Jo

Since R can be arbitrarily large, this forces 1+ a + a~! = 0. Therefore there
are two possibilities for a, namely « and w?.

Subtracting off the principal parts of the Laurent expansions about the two
poles, as in the proof of Cauchy’s residue theorem, we obtain a function

o a~l

g(z)::f(z)_zil_z—w_z—wz

which has only removable singularities and so can be treated as holomorphic
in C. The growth bound on f implies that f(z) tends to zero as |z| — oo, and
the same is true of g(z). Combining this with 3.24, we see that ¢ is bounded
in €. By Liouville’s theorem, ¢ is constant, and the constant must be zero. Put
in the values for « found above and simplify. We deduce that

F) =3 -1 o fz)=32("-1"L
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It is easily seen that each of these functions does meet the given conditions.

We could alternatively have cancelled out the singularities of f by multi-
plying it by (#* —1) (cf. the proof of 17.20). The advantage here of cancellation
by subtraction is that it enables us to build in the given values for the residues
at the outset.

Calculation of residues

To use Cauchy’s residue theorem, we must be able to calculate residues, and
finding residues by computing Laurent expansions is seldom appealing. In this
section we derive formulae which enable residues to be worked out with a mini-
mum of fuss,

18.5 Classification of poles. We already have a lot of information about
the way poles arise and their relationship to zeros, from 15.3 and 17.11-17.13.
Specifically, the function
o M2)
f (’4 ) - k( Z)
has a pole of order m at « if there exists » > 0 such that
(1) h,k € HD(a;r)),

(i) h(a) £ 0,

(iil) k& has a zero of order m > 1 at a, that is, it satisfies the equivalent conditions
(a) k(a) =k'(a) == k" U(a) =0, kK™ (a) £0,
(b) k(2) =(z —a)™g(%). where g € H(D(a:r)) and g(a) # 0.

Assume that f has a pole of order m at a. We call the pole simple if m =1
and multiple otherwise; overt (in the sense of being immediately visible) if f(#)
is expressed in the form g(2)(z — a)™™, where g € H(D(a:r)) for some » > 0
and g(a) £ 0, and covert (that is, hidden) otherwise,

Whether a pole is overt or covert is a matter of how f(z) is written. A
covert pole of h(z)/k(#») arises where a zero of k is recognized through condition
(a) and an overt pole if this is detected through condition (b). A covert pole
can often be converted to an overt pole, but this is seldom prudent in residue
calculations, especially if the pole is simple (see the examples in 18.10).
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18.6 Examples (overt and covert poles).

e 1/((#—1)(#+1)) has overt simple poles at =i; 1/(2%+1) has covert simple
poles at =£i.

e sec’ 7 and tan” z both have covert double poles at (2k + 1)w/2 (k € Z).

18.7 The residue at a simple pole. Let f € H(D(a;r)) and assume that f
has a simple pole at a. We first observe that

®) res {f():a} = lim (- — )/ (2).

To prove (R), write f(z) as > o

lim, ,.(z —a)f(z) =c_;.

(1) Overt simple pole If f(z) = g(2)/(z — a), where g € H(D(a;7)) and
g{a) £ 0, then (R) implies that

1z —a)® in D'(a;r). This implies that

res {f(2);a} = g(a).

This is sometimes called the cover-up rule.

(2) Covert simple pole If f(z) = h(z)/k(z), where h,k € H(D(a;7)), ha) £ 0,
k(a) =0, and £'(a) £ 0, then

res {(2):0) =
We prove this as follows:
. h(z)
res {/():a) = lim (=~ ) 5 (by (R))
= h{a) Zhg}b /ﬁ (by the algebra of limits)
_ Ma)
= )

18.8 The residue at a multiple pole. Let f have a pole of order m > 1 at a.

(1) Overt multiple pole Let f(z) = g(2)/(z — @)™, where ¢ € H(D(a;r)) and

g{a) £ 0. Then
1

(m—1)!

res {f(2);a} = 9" (a).
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This follows from Cauchy’s formula for derivatives:

— 1! »
g(m—l) (0,) — ("l‘ 1)/ 9(4) dz
Jy{asr/2) (

2mi Z—a)™
_ (m—1)! / £(2)dz
271 Jygair/2)
=res{f(%):a} (by Lemma 18.1).

(2) Covert multiple pole No formula as neat as that for a covert simple pole
exists. To find the residue, either convert to an overt pole or compute the
Laurent coeflicient ¢_; . Tofind ¢_j, write w = (¥—a) and expand in powers
of w for small |w|; use known expansions as far as possible. See 18.11 for
examples.

18.9 Residues of indeterminate forms.  We sometimes encounter functions
f(z) = h()/k(%) where h and k have zeros of orders p and ¢ at a, with ¢ > p.
By 17.13, f has a pole of order m := ¢ — p at a. To calculate the residue, we
can compute the Laurent expansion about a (in which a factor of (¢ — a)? will
cancel). Alternatively, we can compute lim,_,,({(x —a)™h(%))/k(z) with the aid
of the complex form of L'Hépital’s rule (see Exercise 13.2).

18.10 Examples (residues via the formulae in 18.7 and 18.8).
Tactical tip
@ In applying the formulae 18.7(2) and 18.8(1) it is best to move into the
numerator any factors in the denominator of f(x) which do not contribute
to there being a zero at «. For example, in computing the residue of f(z) =
1/((2® + 1)sinz) at km (k € Z) we would write f(z) as (2* +1)71/sinz.
o f(2) =1/((2- 2)(2*> +4)) has simple poles at z = 2 (overt) and z = £2i
(covert):

res {£(2): 2} = res {%z} - —é (by 18.7(1)),

res{f(z);i2i}_[%] ﬂ__lfzi (by 18.7(2)).

1/(1 + 2*) has covert simple poles at the points z, = el2ktmi/4

):
=0,1,2,3). By 18.7(2),

fe
(k

1 1 . .
ATV _- ’(2k+l)ﬂ'1/4.
res {f(2); 2k} {44 ]~—~k 1° ,
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since 2t

here.

= —1. Factorization to convert to overt poles is not recommended

e f(2) =1/((z* +1)sinmz) has simple covert poles at z = =i and at z = k
(k €Z). By 18.7(2),

co%ecr,z] - 1 - 1
e=ti  A2isinwi ' 2sinh#’

res{f(»); £i} = [

2z

- -1 vk
res { f(2): k} = [ﬁ] - e )

TCOS T w(k%Z +1)

e f(z) =e!*z7* has an overt pole of order 4 at 0. By 18.8(1),

res{f(2);0} = [ds ei'”"] . = —é.

dz3

For an alternative method, via the Laurent expansion, see 18.11.

e f(2) = (#+1)7%(2*—1)7! has an overt double pole at —1 and covert simple
poles at the cube roots of unity, 1, w, w?, where w = €273, The simple
poles are handled using 18.7(2). Let « be such that «® = 1. Then

(Oz+1) —2

res {f(2); a} =

Hence rei {f(2):1} = & and res {f(2);w} =res {f(2);w?} = £ (remember
that o =1, @ Z 1 implies 1 +a +a? =0).

e f(2) = (mcotmz)/2? has a covert simple pole at z = k for each non-zero
integer k. with

res{WCOFWZ;k} _ (meosmhk/k?) _ i (k€ 2 {0}).

z2 wcoswk k2

by 18.7(2). For the residue at the covert triple pole at 0; see 18.11.

18.11 Examples (residues via the Laurent expansion). For indeterminate
forms, for multiple poles, or where the function is a product of several factors,
it is often best to find the term in (# —a)~! in the Laurent expansion about the
pole at a. Tactics for finding Laurent expansions were illustrated in 17.6.

e A simple Laurent expansion Consider again f(z) = e¥*2~*, The Laurent
expansion

e atagag e >0
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gives, by 18.2, '
res {£(2):0} = —¢.

¢ An indeterminate form 237 cot 7wz has a covert pole at # = 0 of order 4.

By 17.6,
meotwz 1 w? w2
o —§—§+-~——? for small || .
Hence res {f(2):0} = —72/3.
¢ Change of base point Besides having an overt simple pole at zero, f(z) =
e™% /(2(4z — 1)®) has a triple pole at z = 1/4. Write w = z — 4. Then,
near w = 0,

emi(wt]) emi/4 ' (mw)z N
16u3(1 + 4w) — 16w’ <1 + w4 o1 + ) (l — 4w + 16w~ + )

From this we can pick out the coefficient of the term in w~'. Thus
res { f(z); 1} is e™/4(—4ri+ (71)?/2 + 16)/16. We could use 18.8(2) in-
stead, but this would not he any easier. The moral here is that calculating
residues at multiple poles may be unavoidably messy.

18.12 Integrals round the unit circle.  We shall use Cauchy’s residue theorem

to prove that
27 ‘
/ L =
Jo 1+8cos28 3

The method relies on converting the required integral into an integral round the
unit circle. The circle is given parametrically by z = v(8) = ei? (0 € [0,27]).
Then

~'(0) = iel = iz,

cosf = $(e¥ +e7) = L(z 4+ 271).

Hence

2m 1 1 1

/0 T+ 8020 = .L<o;1> iz (1+2(2 +2+272)) ¢
Z

- '[/(0;1) 24452242 -

z
— —_— {2z,
'[/(O;l) (222 + 1)(ZZ + 2)
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The integrand has simple poles at xi/ V2 and £iv/2. The latter poles lie outside
~v(0;1) and do not contribute to the integral. So

/%;d8—2i r z L
o ltscoszg TP\ DErr2) V2

res { e ‘ED
271 271
e I =)

and this simplifies to 27/3.

This method can be used to evaluate various integrals of the general type

2w
F(cos#,sinf) df
0

by converting them to integrals round (0;1) and applying Cauchy’s residue
theorem. Further examples can be found in Exercises 18.6 and 18.7.

18.13 Evaluating complex integrals: taking stock.  Cauchy’s residue theo-
rem provides a natural way to attack a contour integral f,y f(z)dz when f is
holomorphic inside and on v except for at most finitely many poles inside ~
(and none on v*). En route to the residue theorem we proved several important
results for evaluating integrals round contours:

e Cauchy’s theorem (no poles),
e Cauchy’s integral formula (a single pole, overt and simple),

e Cauchy’s formula for derivatives (a single pole, overt and multiple; see
18.8(1)).

It is devious to cite Cauchy’s residue theorem when one of these earlier results is
applicable. The residue theorem comes into its own where there are covert poles.
It also frees us from the restriction to just one singularity. (We can overcome
this in simple cases by using partial fractions to split up a given integral. In
the opposite direction, Exercise 19.3 shows that the existence of partial fraction
decompositions can be derived from Cauchy’s residue theorem.)
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Exercises

18.1 A function f is holomorphic in C except for double poles at 1 and —1,
of residues a and b, respectively. It is also given that there exists a
constant K such that |z2f(z)| < K for large |z|. Prove that a+b = 0.
Find f when ¢ =1 and f(2i) = f(-21) = 0.

18.2 For each of the following functions, identify the type of pole (overt or
covert, simple or multiple) that the function has at the indicated point a
and find the residue.

0 Thng ©=? @ g @=e),
(iii) ﬁ (a=1), ) =g @= Y
@ 5t w=o), () ST (o=,

(i) —— (a=-1),  (vii) m (a=w).

18.3 Find the residues at the poles in € of the following functions (Exer-
cises 17.8 and 17.9 sought identification of the singularities of each of

these):
. 1 ..
(i) ma (i) m7 (iii) 12122
W e Vg ) S
(vii) por Slinz, (viii) tan® z.

18.4 Compute

i 1 .- o1 ;
0 [7(0;2) mdz’ (i) [y(o;s) (1+e”) " dz

18.5 Let f(z) = cosecmz and let {c,} and {d,} be the Laurent coeflicients
of fin{z:0<|z|<1}and {#:1<|z| <2}, respectively. Prove that
%(cn —dp)m =11l n is odd, and find the corresponding result when n is

even.
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18.6 Prove the following by converting each integral into an integral round the
unit circle and applying the residue theorem.

2 i 2
. sin“ @ T
(1)/0 5+4c039d8_Z’

am 1 27
i do = -1 1
(“)/0 TFacsd 0~ =g (CL<e<l)

N 1 27(1 4 a?)
(111)/0 (14 2acos@+ a?)? 0= (1—-a?)3 (-l<a<l).

18.7 Prove that, for any positive integer n,

2w
/ sin’" 9 df = 2—7T (2n> .
0 47\ n

The remaining exercises are theoretical ones, extending the theory of
residues.

18.8 Let f,g € H(D(a;r)) and assume that f has a zero of order m and g a
zero of order m 4+ 1 at a. Prove that

QN s 1 L@
{ 7’ } =D oy

18.9 (This exercise extends Theorem 15.13.) Let f be holomorphic inside
and on a positively oriented contour v except at a finite number of poles
inside . Assume that f(z) # 0 for z € v* and that f has N zeros and P
poles inside v, a zero or pole of order m being counted m times. Prove
that

L [1G& ., _

18.10 Let f be holomorphic inside and on y(a;r) and assume that f(z) # 0 for

z € v(a;r)*. Find, in terms of the zeros of f,

1 f'(z)

% ~(a;r) f(z)zm

dz (m=12,3,...).

(Theorem 15.13 treats the case m = 0.)
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integration

Cauchy’s residue theorem is a powerul tool, as the applications in later chapters
will amply demonstrate. The theorem relates the integral of a meromorphic
function f round a positively oriented contour ~ to the residues at the poles of f
inside v. We already have good techniques for calculating residues, but before
we can exploit the residue theorem to the full we need further information about
integrals along paths.

Evaluating real integrals by contour integration

19.1 An introductory example.  Suppose we wish to evaluate the real integral

I::/ ;dx.
Jo 1+t

(Here the integral is interpreted to mean limp_, o foR(l + %)~ dz. For a brief
discussion of the definition of integrals over [0, oc) and over (—oc, o) see 19.14.)
Because the integrand is an even function,

| |
2/ —4(1;112/ 4(1;1:.
Jo 1+=x J_rl+tzx

Let + be the semicircular contour I'(0; R) shown in Fig. 19.1. We have

/;dz/R;dr+/ﬁLewd§
Jo1+22 77 g1ty 1+ R0

As R — oc, the first term on the right-hand side tends to 27, while the second,

as we showed in 10.11, tends to zero.

The value of f (14 2%)~! dz can be computed by Cauchy’s residue theorem:
(1+2471is holomorphlc inside and on v except for covert simple poles at the
zeros of (1 + z*). These zeros are at e#+D7™/4 (k= 0,1,2,3), Only those at



222 A technical toolkit for contour integration

e}niM

—R i R(>1)

Figure 19.1 Contour I'(0; R) for Example 19.1

2= et = (14 1)/v/2 and 2 := ¥4 = (=1 + i)/+/2 lie inside 7; the other
two zeros do not concern us (see Fig. 19.1). We have, from 18.10,

ves {(1+ 247z} = —izk.

Hence, by Cauchy’s residue theorem,

1 2mi : o 2ni (1+1 —-1+1 ™
I wif4 3rif4) — _ —
/ e 4 <e te ) 4 <\/§+ \/§> V2

We conclude that

/OC ! do =
Jo 1+ zt T 2\/5’
Tactical tip

& This is an opportune moment at which to issue a reminder that, when
Cauchy’s residue theorem is used, only the residues at the poles inside the
contour contribute to the integral.

19.2 Towards a general strategy. We have now seen two examples of the use
of Cauchy’s residue theorem for the evaluation of real definite integrals. In 18.12
we were able to convert the required integral into one round the unit circle to
which the residue theorem was directly applicable. In Example 19.1 the situation
was more complicated. We proceeded in stages:

(1) The required integral was viewed as the limit of an integral along the
segment [—R, R] of the real axis,

(2) By joining this segment with the arc I'r, we formed the contour ~.



3)

(4)
()
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We found a function f(z) = (1 + 2*)~! coinciding with the required inte-
grand (1 + 2*)~! when # is the real variable z, with f holomorphic inside
and on ~ except for finitely many poles inside ~.

We estimated the (unknown) integral of f(#) along the semicircular arc I'r
and discovered—providentially—that it tended to zero as R — oc.

We calculated the residues at the poles of f inside ~ and applied Cauchy’s
residue theorem.

Finally, we let R —+ oc.

v elements in this strategy are the following:

we relate the required integral I, or an approximation to it, to some contour
integral [ f(z)dz:

we must be able to apply Cauchy’s residue theorem, so that f must have
at most finitely many poles inside the contour ~ and none on it;

the contour ~ is chosen so that the integral of f along each portion of it
either contributes to the integral we want, or can be handled by estimation
or in some other way.

The power of the method rests in its versatility and this makes it difficult to
lay down hard and fast rules on how to use it. Accordingly, it is best learned
through examples. In Chapter 20 we carry through our general strategy for
integrals of various types. A number of technical tools are needed repeatedly,
especially those used for estimating integrals or finding their limits. The rest of
this short chapter collects these tools together, for ease of reference.

Inequalities and limits

19.3 Basic inequalities.  The key result for finding an upper bound for the
modulus of an integral is the Estimation theorem (10.10): given a path ~ with
parameter interval [a, 5] and a continuous function f on ~*,

3
< / )Y (0] dt < sup |£(2)] x length(+).
J o S

" / F(2)dz

To obtain an upper bound for | f(~(t))~'(t)|, our first line of attack is to use one
or more of the following, which are true for complex numbers 2, 2o, ... :

1)
(2)

2|+l (1.9(2))
lz1] = |22l (1.9(3));

|21 + 22

|21 + 22
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(3) |zl < |zl =1/ || = 1/ || (for 21,22 # 0);
(4) 1/ |71 + 2| < /|21 — |#2]]  (combine (2) and (3)).
In (2), the exterior modulus signs ensure that we get a meaningful inequality
irrespective of which of |z;| and |#| is the larger. Inequalities (1) and (4)
are used, respectively, for obtaining bounds on numerators and denominators
in fractional expressions. In (4), note particularly the minus sign. If in doubt
when handling 1/|# + 22|, remember that to make this bigger we must make
the denominator smaller, and that this is not achieved by replacing |z, + 22| by
|21] + |#2|. Iterating, we get the following, for n > 3:
(3) |z + 2+ Faa| <]+ + |2l
6) |or + a2+ -+ zp| = |21] = 22| = - = [za] i |21 > |22] + - + |24l

This is an opportune time to issue a reminder that inequalitites must be
between rea! numbers; see 1.9. Omission of moduli in the Estimation theorem
or in (1)—(6) causes havoc,

19.4 Bounds on exponential factors. We often need a bound on an exponen-
tiai e on an arc. On || = r, we have

i Y] i . el .
|elﬂ| — |eire — eu(c050+151110) —e rsin @ (z:rele).

Now consider » = R, where R is large. On the semicircular arc I'r in the upper
half-plane we have 0 < ¢ < 7, so sin® > 0. This bound is often adequate, but
is in fact very crude when 0 < # < 7 and R is very large. For example, when
0 = 7/2, we have e~ 509 — =R which is very small by comparison with 1
when R is large. In situations where the condition sinf > 0 gives too crude a
bound on an expression involving sin #, we may get an improved bound from the
following result. See 20.14 and 20.16 for examples using this technique.

. . 2  sin#
19.5 Jordan’s inequality. =< % <1lfor0<0<3m.
v

Proof It will be sufficient to prove that sinf/0 decreases as € increases for
9 € (0, ;7('] This is the case if

d [sin®
- < <4
(19<9>\0 for 0 <O <57

But

<0 whenever #cosf —sinf < 0.

d (sinf\ fcosf —sinf
o\ e /) 02
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Since [#cosf — sinflp=p = 0. it is now enough to note that, on (0,%7(‘], the
function 6cosf — sind has a non-positive derivative and so decreases as € in-
creases. L[]

19.6 Basic limits. The following real limits are probably already familiar.
Since we shall use them frequently, we include proofs.

(1) For any constant k > 0, zfe™® » 0 as ¢ — o (z € R).

(2) For any constant & > 0,

r%logr +0asz +oc and zflogr +0asz 0 (zCR z>0).

Proof (1) For = > 0,

k

_. £ _
0< zhe ™ = k=n

= < nlr
l+z+-tazn/nl4... e

This is true for any n. Since n can be chosen greater than £, the result follows.

(2) To obtain the first result, put = = e¥/* and note that
e~ *loga = (y/k)e™,

and, by (1), this tends to zero as y — oc, and hence as # — oc. The second
limit follows from the first on replacing = by z7t. O

Estimation techniques

19.7 Estimation of integrals round large circular arcs.  We frequently want to
create a contour by joining the endpoints of a path by a circular arc of radius R.
The integral along this arc will rarely he explicitly computable and we shall hope
to show that it tends to zero as R — oc¢. Let f be continuous on ~*, where
v(0) = Rel? (0; <0 < 0:). We have v'(0) = Rie'?, and the Estimation theorem

gives
‘ / f(z)d=

Note particularly the factor R coming from +'(6).

B2 _
< / | F(Re)| R 9.
Jo,
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o Take f(2) = (¢ + 2+ 1)72. By 19.3(3) and (3),

" / F(2)dz

o Let f(z)=e¥27% (k>1)and v=Tg (so #y =0 and 0> = 7). Then

62 1
< — if R2— R—
</, RZ—R—IR(W (iftR*"—R—-1>0)

= O(R™Y).

B |ei(Rc050+iRsin€)| B e~ Rsin

i
|f(Re')| = [RFeikd| ~ T Rk

On [0, 7], we have sinf > 0. so e~ fsin? <1 Hence

f(x) dz

JTr

</ RY7*d0 - 0as R — oc.
Jo

o Let f(2) =e¥27% (0 < k < 1) and again take v = T'r. Using the fact that
sinf < 1 as above, we get

The right-hand side does not tend to zero as R — o¢. So we seek a tighter
bound on sin# is available from Jordan’s inequality:

</ R'% 49,
Jo

T
< / e—R51116Rl—k 4o
40

w2 ]
— 2/ e—Rsm GRl—k de
40

/2
< 2Rl—k/ e—ZRﬁ/ﬂ' de
0
=aR*1-e"®) < 7R7*,

and this does tend to zero as B — o,

Tactical tips
& In this example Jordan’s inequality produces a life-saving factor of
R~—!. The inequality should only be used where a rougher estimate, as
in 19.4, is no help.
& Note how it was first necessary to change the range of integration to
[0,7/2]; Jordan’s inequality is not valid on [0,7].
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19.8 The need for indented contours.  Suppose we want to integrate a func-
tion f round a contour v. We may be thwarted because there is on v* either a
pole of f or (in the case that f is a branch of a multifunction) a branch point
of f. A possible remedy is to ‘walk round’ the offending point, following a cir-
cular arc of small radius ¢, as illustrated in Fig. 19.2. Our hope will be that we
can compute the limit of the integral round an indentation as its radius shrinks
to 0. In 19.9-19.12 we indicate when this is possible and when it is not.

Figure 19.2 A semicircle with indentations

Cauchy’s residue theorem tells us that ﬁ (s (#)dz = 27ib when f has a
simple pole at a of residue b, What the Indentation lemma tells us is that in
the limit as ¢ — 0, the integral of f along a portion of v(a: <) is 27ib times the

fraction of v(a:£)* traversed.

19.9 Indentation lemma (for a simple pole). Let f € H(D'(a:r)) and let f
have a simple pole of residue b at ¢. Let an indentation round a be given by
v (0) =a+ee? (0C[0,0]), where 0 <& <7 and 0 < 9; < 62 <27, Then

hm/ f()dz = ib(0: — 0,).

Proof From 18.7, b = lim. ,.,(# — a)f(%). Given n > 0. there exists § > 0 such
that |(# —a)f(2) —b] <7 whenever 0 < |z —a| < 4. Let 0 < & < min{r,d}.
When 2 = 7.(0) we have v/(0) = ¢ie' = i(z —a) and so

‘[a fx)dz — ib(0, — 01)| = /:2 (f(7=(0)~L () — ib) do

2
[ sty
J oy

< 1](92 —91). [l
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19.10 Indentation at a multiple pole. Not allowed! The formula in the
Indentation lemma does not apply when the pole at « is not simple. Indeed,
lim. o f% f(#)dz does not even exist, essentially because |f(z)| ‘blows up’ too
fast as z’approaches G.

19.11 Integration in a cut plane. We would like to be able to apply Cauchy’s
theorem or the residue theorem to integrals [ f(#)dz, where f is, or f incor-
porates, a holomorphic branch of a multifunction. Branches can be specified
directly in terms of argument restrictions, without the device of cutting the
plane. But cuts do make it transparent that the contour v is allowable provided
it lies in the cut plane (and so crosses no cut).

f = B cut

Figure 19.3 A keyhole contour

In Chapter 9 we were somewhat schizophrenic about the status of points
on cuts. Defining the value of a branch on one edge of a cut but not the other
prevents branches being 2-valued on the cut, but does seem a little arbitrary.
However, in certain applications, it is tidier to keep both edge-values in play
at the points of a cut. Consider the following example. In the plane cut along
[0,00), take f to be the branch of the logarithm given by

f(z)=logr+i0 (0#z=re" 0<0 < 2m).

We cannot integrate f around ~(0: R), since this crosses the cut. Suppose that
we integrate instead round the keyhole contour ~ shown in Fig. 19.3. In the
cut plane we can take the horizontal lines to be at an arbitrarily small distance
0 > 0 from the real axis. Then f is holomorphic inside and on v. Also,

lim

R R
(5*)0_ABf(Z)dZ:_/5 ldlﬁ)lf(;v+dl)dx:/5 logtdt
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and

R R
lim f()dez = / lim f(x —di)de = (logt + 27i) dt.
=0 f-p Jo 610 Jo

The verification of these claims is technical, but not difficult. Rather than go
through this sort of limiting process every time we integrate in a cut plane—and
we do so quite frequently in the following chapters—we shall allow ourselves
the liberty of integrating along the edge or edges of a cut, using the obvious
edge-values for the integrand.

19.12 Indentation at a branch point.  Suppose a is a branch point of f. Then
[ is not holomorphic in any punctured disc centre a. Therefore it does not have
an isolated singularity at . In particular, ¢ cannot be a pole of f and the
formula in the Indentation lemma. does not apply. Usually the basic inequalities
in 19.3 will show that f f(z)dz +0ase—0.

We conclude this section with a boundedness result we shall need when
evaluating certain infinite sums in Chapter 20. It will enable us to show that the
integrals of certain functions of the form (%) cot mz and ¢(z) cosecwz tend to
zero. Notice that the squares Sy in the lemma avoid the poles of both cot 7z
and cosecmz (which are at each k € Z).

19.13 Boundedness lemma for cot and cosec. Let Sy be the square with
vertices at (£1 £ D)V +3) (N =1,2,...).

(1) There exists a constant C such that |cotwz| < C for all z € Si.

(2) There exists a constant K such that |cosecmz| < K for all z € Sy.

Proof (1) On the horizontal sides of Sy, we have z = # = i(N + 3) and so, by
basic inequalities and the formulae in 7.6 and 7.7,

elm(e£i(N+3)) | g—im(e£i(N+3))

eim(@Xi(N+§)) _ o—in(exi(N+3))

|cotmz| =

e (N+4) +e—7r(N+%)
- e (V+3) _ o=m(N+3)
cothm(N + 1)

coth 3.

<
<

(For the final inequality, note that cotht is a decreasing function of ¢ for ¢ > 0.)
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On the vertical sides of Sy, we have z = £(N + %) + 1y and so, by the
trigonometric addition formulae,

|cot mz| = |tan iny| = |tanh7y| < 1.

(2) is left as an exercise. O
Tactical tip

> To see why trigonometric formulae have been used for the vertical sides of
the square and exponential formulae for the horizontal sides, experiment
with using these the opposite way round.

Improper and principal-value integrals

Many of the integrals we shall evaluate by contour integration will be of the form

'/000 flz)de or /_O:C flz)de.

This section clarifies how we interpret such integrals. We assume that f is either
real- or complex-valued.

19.14 Definitions (improper and principal-value integrals). For a function
defined on a closed bounded subinterval of R, different ways of defining the
integral lead to the same result so long as f is minimally well behaved. Certainly
this is the case for the functions we need to consider, which are, at the very least,
piecewise continuous. Therefore, in the definitions below the term ‘integrable’
can be taken as referring to the reader’s preferred theory of integration.

(1) Suppose that f is integrable on every interval [0,R] (0 < R < o). The
improper integral of f over [0, o) is defined to be

lim /Rf(;v) dez,
0

R—oc

if this limit exists.
(2) Suppose that f is integrable on every bounded closed subinterval of R. The
improper integral of f over (—oc,o0) is defined to be

lim /R f(z)de,
-5

R.5—oc,
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if this limit exists; here R and S tend to oc independently.

(3) Suppose that f is integrable on every subinterval [—R,R] (R > 0) of R.
The principal-value integral of f over (—oc, oc) is defined to be

o R
PV/_OC fle)yde = [%LIE;C /_Rf(;v) dz.

19.15 Comparison and reconciliation of the definitions in 19.14.  DPrincipal-
value and improper integrals arise naturally from limits of contour integrals.
Consider, for example, the integral of f(#) round the contours ~; and ~» shown
in Fig. 194: [ f(#)d» incorporates f_RR f(#)dz and [ f(z)dz incorporates
f_ﬂjg Sflz)der. A semicircular indentation round a point a € R can also give rise
to a PV-style integral (where an interval (@ —e,a+¢) is excluded from the path
and ¢ allowed to tend to zero).

H

Figure 19.4 Sample contours

Trivially, if the improper integral of f over {—oc,o0) exists, then so does
the principal-value integral, and the two coincide. The converse fails: |’ _Rjg rdr =
$(R? — 5?), which does not tend to a limit as R, S — oo independently; on the
other hand, f_RR zdr =0 for all R, so PV ffcoc rdr exists and equals zero.

In Riemann integration, the integral of f over [0,0¢) or (—oc,0¢) is, by
definition, the improper integral over the interval in question. In Lebesgue
integration, integrals over infinite intervals are not defined via improper integrals.
However the Dominated convergence theorem shows that if f has a Lebesgue
integral over [0, oc) then its improper integral over [0, oc) exists, and equals the
Lebesgue integral, and similarly for (—oc,o0). The converse fails: the classic
example is provided by f(z) = z7!sinz. This is not Lebesgue integrable over
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[0,0¢0), nor does the improper Riemann integral of |f| exist. However f does
have an improper integral over [0, o). (See, for example, [6] or [2].)
We henceforth adopt the following conventions:

e [° f(x)dr means either the improper (Riemann) integral [or, for Lebesgue
integral afficiandos, the Lebesgue integral when this exists].

o | _OCOC f(z) dz means the PV-integral when this exists but the improper inte-
gral does not, and the improper (Riemann) integral otherwise. [The latter
may be interpreted as a Lebesgue integral when f is Lebesgue integrable
on R.]

We note that a sufficient condition for f to have [a Lebesgue integral and
hence] an improper integral on (—oc, oc) is
(i) [ is integrable on any closed bounded subinterval of R, and
(i) f(z) = O(z|™") for large |z|, for some constant p > 1.

Exercises
Exercises from the text. DProve the Boundedness lemma for cosec (19.13(2)).

19.1 Evaluate the following limits:
] ] ei;
M I%gnoc Rz4+z3+z2+z+1d'4’

(i) hm (%) el dz,
R

(iii) lim p() dz, where p and g are polynomials and degp <
R=oc Jy(osR) q(Z)
degq — 1.

19.2  Evaluate the following limits:

iz
(i) }1% ) cosecTz dz, (i) }% . 4(;—+1) dz.
19.3  Suppose that p and ¢ are polynomials of degrees m and n respectively,
where n > m+1, and that ¢ has simple zeros at by,....b,. By integrating
Flw) = plw)/{(q(w)(w — 2)) round ~(0; R) for large R, obtain the partial
fraction decomposition

0 Z PO (o gy
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Hence decompose (1 — 2%)/(1+ 2*) into partial fractions.

Suppose that f is holomorphic inside and on ~v(0; 1). By integrating round
the contour shown in Fig. 19.3, prove that

/ flz)de = ? o) f(x)(logz — im) dz,

where log » denotes the branch of the logarithm whose imaginary part lies

between 0 and 27. Deduce that
< E/ZW |£(e1)| o
~ 2 o .




20 Applications of contour
integration

This chapter is devoted to applications of Cauchy’s residue theorem to the
evaluation of definite integrals and the summation of series. The method will
handle quite baroque examples. If we seem to have included some examples
of this sort, especially in the final section (advanced track), it is because these
give valuable technical experience. Very few of the integrals we consider can be
evaluated by more elementary methods such as substitution.

Further methods and examples can be found in Chapters 21 and 22. In
particular, integrals yielding the characteristic functions of some well-known
probability distributions are considered in Chapter 22. Recall also the use of
the residue theorem to compute trigonometric integrals over [0, 27]; see 18.12
and the exercises for Chapter 19.

Integrals of rational functions

Our first example uses the same technique as we employed in 19.1.

.1 ; dz.
2(z2 +4)

20.1 Example. To evaluate ' /0 @0

T'(0;R)

A 4

Figure 20.1 Contour T'(0; R) for Examples 20.1 and 20.3
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Solution We integrate f(z) = 1/((#2+1)*(#*+4)) round the contour v = ['(0; R)
in Fig. 20.1 (choosing R > 2). The function f is holomorphic inside and on ~,
except for a double pole at i and a simple pole at 2i. By Cauchy’s residue
theorem,

R
'/_Rf(z) dx +‘ i f(z)dz =2mi(res{f(z); i} +res{f(2); 2i}).

By 18.8(1) and 18.7(2),

a4 1 C[=22(z 4+ 1) —2(22 +4) i
o 168 = [ ) L~ e e

=1

res { f(2):2i} = {(%JW] i _ﬁ'

Also (see 19.3),

fx)dz
JTr

T 1 s
<, EmmE—g e - o

and
1

/_zf(;v) de = 2/OR 12 D) dez.

Hence, letting R — oc,

Jo @@ 76

Tactical tip

& We would not have been able to obtain the integral of f(x) over [0,o¢)
using the contour I'(0; R) if f had not been an even function on R, that is,
such that f(z) = f(—=) for x real.

1

m dz.

20.2 Example. To evaluate [ := /
Jo

Solution The obvious function to useis f(z) = (1+2!%)~1, which is holomorphic
except for simple covert poles at the points e(2FtDIn/10 (L — 0, .., 9), We
integrate f round the contour ~ shown in Fig. 20.2 (see the tactical tip below
for a discussion of this choice).

Only the pole at 3 = e™/19 lies inside +, and this has residue 1/(103%) =

—3/10 (by 18.7(2)).
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Reri/s

o e/10

/5 .

Figure 20.2 Contour for Example 20.2

On the slanting line, z = te™/° (0 <t < R), so dz/dt = /5 and
1+ 290 = 1410 = 1 4419,

By Cauchy’s residue theorem,

R /5 ;16 0 . mi/5
1 Rie e o —7i/5
/0 m(lr+/() w(le+/[g mdt:—Zﬂ'le i/ /10.

The integral round the circular arc is O(R™Y). Letting R — oo,
e [0 1 7 im0
(1 — eﬂ—l/ )/0 m de = —geﬂ—l/ .
Now we observe that
1— e?Ti/S — eﬂ'i/lO(e—ﬂ'i/lO _ eﬂ'i/lO) — _Zieﬂi/lo Sin7r/10.

vve (1@(111(:(, lla o
' . — AMCL .

Tactical tips

& We could have used a semicircular contour. However, had we done so, we
would have had to add up the residues at five poles. Qur sector contour
encloses just one pole,

= Note carefully the way the integral along the slanting line gives a multiple
of the integral along the real axis, so that these two integrals combine to
give, in the limit, a constant multiple of the integral we want.

When two subpaths in a contour ~ yield integrals I and I', where I' = kI,
with & a constant, & #£ —1, then we say we have integral reinforcement. A
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. . 0 R :
simple case of this occurs when [~ f(x)dz = [ f(x)dz (as occurs when f is
an even function on R): here the multiplier £ is 1. Of course, if £ = —1 we get
cancellation—undesirable if 7 is the integral we are trying to evaluate!

Integrals of other functions with a finite number of poles

We consider integrals of the form

& sinme & sinme e .
/ p(z) dez, / o(x) dz, and / (x)etime dg,
Jo COS TN J oo cOS Mt J

where m > 0 and (z) = p(2)/q(z) is a rational function where, for now, the
polynomials p and ¢ are such that degq > 1 + degp. This restriction ensures
that Jordan’s inequality is not needed. For examples in which degp < degq <
1+ degp and Jordan’s inequality is used, see Examples 20.14 and 20.16.

oG

20.3 Example. To evaluate / AR

Jose B2+ +1 ¢
Solution Integrate f(z) = e'*/(2% + 2+ 1) round v = I'(0; R), as in Fig. 20.1,
with R > 1. The real part of f(z), when z is the real variable z, is the required
integrand. The function f is holomorphic inside and on ~ except for a simple
pole at z = w = 27/%, By Cauchy’s residue theorem and 18.7(2).

R .

el 27 i 14im

e+ [ 030s = mires 1) =g = Hicarhn,
'/_Rf(r)(r ‘er(,c)(,a mires{ f(z):w} T T \/ge

Asin 19.7,

m Re—Rsinﬁ T R L

z)dz| < - - < —df = ),

.er(é)dé\./o |R26219+Rele+l|dg\/0 |R2—R—1|de O(R™)

Hence, letting R — oo and equating real and imaginary parts in the equation
above, we obtain

1
—dr = —e~ cos —.
! V3 2

oC ; ‘
/ cos 27 L3
Tactical tips
& Observe that (22 +z +1)7! cosz is not an even function, so that it is not
possible to *double up’ to obtain the integral over [0, o) rather than that
over (—oo, 00); contrast this example with that in Example 20.1.
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& At first sight it would seem more natural to choose

COsS %

M= s

rather than introducing the complex exponential el* as we did. However
this does not work. Our method relies on our showing that fFR flx)dz—0
as R — oc. On I'r we have

|e1Rc | e Rsiné < 1,
whereas, by Exercise 7.6,

|cos(Rew) |2 = cosh®(Rsin #) — sin?( R cos 0),

and this grows like cosh? R when @ is close to /2. Thus if we had chosen
f(z) = (> + 2+ 1)t cosz we could not have shown that er fx)dz—=0
as R — oo,

& Note that we saw that the integral round the large arc is O(R™!) using just
the inequality e~ #5n% < 1 for 0 € [0,7]. Jordan’s inequality (19.5) is not
needed here,

* sin’ z
dz.

20.4 Example. To evaluate / 2
Jo 4

Solution For the reasons explained in the preceding tactical tip, we cannot
take f(z) = sin®z/z2. We would like instead a function involving a complex
exponential whose real part is sin’ z/x* when z = =z is real. Recall that
2sin? 2 = 1 — cos 2. This suggests taking f(z) = (1 —e*¥)/z%. The function f
is holomorphic except for a pole at 0. The Laurent expansion about 0 is

1 — e2i7 1 .
2 ;2(1—(1+21z+...)),
so that the pole is simple, with residue —2i. We cannot use the semicircular
contour I'(0; R) because it passes through a pole. Instead, we take the contour ~

shown in Fig. 20.3; f is holomorphic inside and on ~, so, by Cauchy’s theorem,

/_:f(;v)dx—/ref(z)dz+/jf(x)dx+/er(Z)dZ_0’
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Figure 20.3 Contour for Example 20.4

The first and third integrals combine to give

R —2ix R 2ix R R .2
l1—e l1—e 1 —cos2zx 4sin“
—d - de =2 ——dx = — dz.

/s z? x+/s 2 /5 z? v /5 2

Because the pole at 0 is simple, the Indentation lemma (19.9) is applicable. It
implies that

e—0

lim / F(2)dz = i( — O)res {f(2); 0} = 27
e

Also
f(z)dz

T —2Rsinf
g/ e " Ras=0(R).
I'r 0

R

Letting R —+ o0 and ¢ =+ 0,

Tactical tip

© Care is needed with the signs when handling the indentation integral. Re-
member that the small arc is traced clockwise (hence the minus sign preced-
ing the integral along I'. ). Note, too, that the contribution from the residue
at 0 comes from the integral round the contour; it is not a term in a sum
of residues. It is instructive to re-work the last example using an indented
semicircle with the indentation in the lower half-plane and enclosing the
pole. You should get the same answer!
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20.5 Example (semicircles: up versus down). To prove that
> e—Zi.'L' |
/ 1+t de = 2v2m(cos V2 — sinv2)e V2,
JO i

Solution The natural choice of function is f(z) = e 2¥(1 + z%)~!, which is
holomorphic except for simple poles at e25tU71 (£ =0,1,2,3). When 2 = Rel?,
we have |e_213| = e2ftsin? and this is not bounded in the upper half-plane, where
sinf > 0. We therefore cannot use the semicircle I'(0; R) because the integral of
f(#) round T'r does not tend to zero. However,

|e_21”"| =?Rsnd <1 provided — 7 <0 <0.

So we take our contour v to be a semicircle in the lower half-plane.

Figure 20.4 Example 20.5: go down not up

By Cauchy’s residue theorem we have (note that the real axis is traced from
right to left),

R —2iz 0 ,—2iRecl? ]
—/ e—dx+/ eiRiewdQ

_Rl+x4 - 1+ Rtetif
= 2ri (res {f(z);e_i’TM} +res {f(z)ée_g.m/ék})
3 o
= 271 [—e‘“]
4 ;:o—iW/‘*:%(l—i)
3
+ 271 [ e—zu] .
,3:(\,—3”/4:%(—1—'1)

The integral round the circular arc is O(R™%) because the exponential factor is
bounded by 1. Hence, simplifying the sum of residues and letting R — oo, we
obtain the result required.
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Tactical tip

@ If we have a factor of e*'™® with an unspecified real value of m, it is
necessary to treat the cases m > 0 and m < 0 separately, taking different
contours in the two cases. See 22.11 for an example of this sort,

Integrals involving functions with infinitely many poles

The method of this section can be used to evaluate integrals of the type

* sinma
o(x) de,
J o COS M

where ¢(z) is a function which has an infinite number of regularly spaced poles.
Examples of such functions are cosec z, sech z, and (1 —e?)™t.

oG 4T

20.6 Example. To evaluate /
J_oe CcOShz

(The restriction on « is needed for the integral to exist.)

de (-l<a<l).

Solution The function f(z) = e**sechz has simple poles at z = £(2n + L)mi
(n € Z). It is holomorphic inside and on the contour + shown in Fig. 20.5
except at wi/2, inside +, where there is a simple pole of residue —jezomi (by
18.7(2)). By Cauchy’s residue theorem,

R @ ™ a( R+1iy) -5 ami e
/ 2 d;r+/ — 4 +/ —= i
J_gcoshz ~  Jy cosh(R+ iy) v Jr cosh(z +xi)

0 ea(—5+ iy) i
——— dy = 27"
’ /7T cosh(—S + iy) y—ene

Y eimi h Y

Figure 20.5 Contour for Example 20.6
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Consider the integrals along the vertical lines:

T ae{R+iy) 0
| s </
p J0

o cosh(R + iy)
T 2e(LR
g/o mdy%@as]%%oo (since a < 1)

et R+iy)
e(R+1y) + o—(R+iy)

dy

and

I ea(—SjLiy) 0
,/0 cosh(—S + iy) H

2ea(—5+ iy)

e e A

T
</
J0

T ze—aS
</ —s——=dy > 0as S~ oo (since a > —1).
Jo T =&

Letting R and S tend to infinity, we obtain

. p 1 i P

0 et 2mezam! 27 wa
dr = - = — — =7sec|{— ).
J_oo cOShz 1 +etmt  gmaaml | gzemi 2

Tactical tips The following observations motivate our choice of contour.
@ A semicircle would have involved, in the limit, an infinite sum of residues.

 The horizontal sides of the contour avoid the poles. One is along y = 0,
to give the integral we want; the other is along y = 7 and yields a
multiple of the required integral because cosh(z + wi) = —cosha and
etl#t7l) — eomiger This is another instance of integral reinforcement (recall
the tactical tip in 20.2).

e [For the benefit of those who care about the sense in which integrals exist:
taking the vertical sides of the rectangle along x = —5, R, rather than along
r = R, leads directly to the improper integral over (—oc, co) rather than
to a principal-value integral (see 19.13).]
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Integrals involving multifunctions

We consider integrals of the form

/ p@)logzrdr and / pl@)z*tdz (a>0),
Jo Jo

where ¢(z) is meromorphic. Since logarithms and non-integer powers are mul-
tifunctions once we move into the complex plane, we work in a cut plane, with
a selected holomorphic branch of the multifunction. The branch point at 0 is
avoided by means of an indentation. Recall the discussion of integration in cut
planes given in 19.11; this ensures that we can legitimately use Cauchy’s theorem
and Cauchy’s residue theorem, even when our contour goes along an edge of the
cut. We give two examples here; for others see 21.12 and 22.13.

20.7 Example. To evaluate / 1og ;th da.
Jo 1+

Solution We cut the plane along (—o¢,0] and take the holomorphic branch of
the logarithm given by logz = log|z| + if, where z = |2|e! and @ is between
—7 and 7. Then f(2) = (1+ 2%)"!logz is holomorphic in the cut plane except
for simple poles at £i. Let ~ be the contour in Fig. 20.6. On the top side of the
cut, =7, s0 logz = logx + im, where —z = x > 0. Cauchy’s residue theorem
gives

R & :
logz N log z + im ’
[ 1+x2dx+/er(4)dé+/R 2 (—dz)

— / f(x)dr =2rives {f(2):i}.
JI:

cut 3 /] \

5

Figure 20.6 Contour for Example 20.7
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We have ogi  iri
res{f(2);i} = 5~ = 5
Also,
e flz)dz| < '/0 %Ri&:w do
< '/Oﬂ (bgl;éjijlﬁm d0 = O(RtlogR)
and

< / W(W: O(cloge).
J0 - <

f(zx)d=
Jr.

Invoking the basic limits in 19.6, we get, as B — o¢ and ¢ — 0,

o [ loge 1 1.
2/0 1+‘1’/‘Z (1I+17T/0 md‘rzéﬂ_ 1.

By equating real parts we get

* logx
lz = 0.
,/0 1ra2 " v

(Equating imaginary parts gives us an integral we do not need contour integration
to compute!)

Tactical tip

& Note how in the example above the two integrals along subintervals of the
real axis reinforce rather than cancelling. Compare this with the situation
in the next example, where integrals taken along the two edges of a cut re-
inforce. The need for reinforcement, rather than cancellation, often governs
the choice of contour in multifunction examples such as these.

20.8 Example. To prove that / (1+2) ede = g
Jo

Solution The function (1 + z*)~! has simple poles at —1, ™/, and e~71/3,
Because there is a pole at —1, we control the square root by cutting the plane
along [0, oc) rather than along (—oc, 0]. We take the holomorphic branch /2 =
|z|l/ el%/2 with 6 between 0 and 2, and use the contour shown in Fig. 20.7.
On the top side of the cut, z = # > 0 and #/2 = £1/2, while on the bottom side,

2 = |z]e*™! and /2 = —2/2, where = > 0. Since the integrals along the two
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. o7l

Figure 20.7 Contour for Example 20.8

sides of the cut are in opposite directions, the integrals reinforce. The remainder
of the calculation involves no new techniques and we leave it as an exercise,

Evaluation of definite integrals: overview (basic track)

20.9 Making choices.  Suppose you are confronted by a real definite integral 7.
How do you decide how to choose a function f and a contour ~ so that evaluating
J. f(z)dz leads you to the value of I? There are some guiding principles:

. ﬁ . f(#)dz, or its real or imaginary part, must incorporate I or a quantity
converging to I.

¢ Cauchy’s theorem or Cauchy’s residue theorem must be applicable, so f has
to be holomorphic except for poles, none on the contour and only finitely
many inside it.

¢ Indentations may be used to avoid simple poles, but you cannot indent to
avoid a maultiple pole.

e When dealing with logarithms and non-integer powers, the plane should be
cut appropriately and a selected branch of a multifunction chosen, the con-
tour must not cross the cut(s), and indentations must be used to avoid any
branch point(s). Note that a branch must be specified by arg restrictions;
these restrictions need to match the position of the cut(s): recall 9.9.
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It is usually clear what interval(s) of the real axis to include in the contour.
When deciding how to join up the endpoints to form a suitable contour, remem-
ber that the integral along each added path is normally handled in one of the
following ways:

e estimation, to give zero limiting value or a limiting value we can compute;

¢ integral reinforcement.

20.10 Complex substitutions are not allowed. Consider the following erro-
neous argument. Let J = [7°(1+2*)~'dz. Put = = iy. Then

I= / (1+yHtdy =il
J0

So I =0, which is clearly wrong, because the integrand is strictly positive. The
correct value for I is 7/(2v/2), as we showed in Example 19.1 by integrating
(1+ 2*)7* round a semicircular contour. We could alternatively have derived
this result using the contour in Fig. 20.8. We can now see that the integrals
along the rays argz = 0 and argz = 7/2, which the substitution equates, in fact
differ by 2mires {(1+ 2*)~1;e™/4}. To assert this, we have to prove also that
the integral along the linking arc tends to zero as R — o¢. For examples of a
similar kind, see 20.16 and 22.12.

Figure 20.8 The dangers of complex substitution

In conclusion: by making a complex substitution you may overlook. at your
peril, residues and/or necessary linking arcs. Don’t be tempted by complex
substitution. Apply Cauchy’s theorem or the residue theorem instead!
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Summation of series

Convergence tests establish that certain series converge to finite limits, but they
do not yield the value of the sum. If an infinite sum can be recognized as a sum
of residues of a meromorphic function, then contour integration may enable us to
evaluate it. Before discussing the general method we present a typical example.

e 2
20.11 Example. To prove that Z % = %

n=1

—N—} N+1

Y

Figure 20.9 Contour for Example 20.11

Solution The function f(z) = wz~%cotwz is holomorphic except for simple
covert poles at n (n = £1,42,...) of residue 1/n® and a triple pole at 0 of
residue —7%/3 (see 18.10). Integrate f(z) round the square contour vy shown
in Fig. 20.9; v% is the square Sy with vertices at (£1£1)(N + 3). Note that f

is holomorphic inside and on v except for poles at 0,£1,...,£N. By Cauchy’s
residue theorem.
A
{
z)dz =2mi| 2 ——-—].
IREEEIOw )

It is now enough to show that [ (7)) dz = 0as N = oo. We have

weotmwx
52

f(x) dz

£ sup
ZESN

x length(~vn)

‘ SN

42N +1
< sup |cot 7wy (Yiﬁ
€SN (A + E)

This is O(N 1), by the Boundedness lemma for cot, 19.13(1).
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20.12 The summation of series by contour integration.  The method used
in Example 20.11 applies to any sum -, ¢(n), where ¢ is a function with the
following properties:

(i) on) =¢(—n) forall n =1,2,....

(ii) ¢ is a rational function, and
(iii) &(z) = O(|z|)~2 for large |2|.
We integrate f(2) = o(z)mcotwz round the contour vn in Fig. 20.9 and use
Cauchy’s residue theorem. The term 7 cot 7wz creates simple poles of f at each
n € Z at which ¢ is holomorphic and non-zero, of residue ¢(n). The bound
on ¢, combined with the Boundedness lemma for cot (19.13(1)), ensures that
S fle)dz 2 0as N — oc.

Under the same conditions (i)—(ili) on ¢, we can evaluate Y~ (—1)"¢(n)
by integrating f(#) = ¢(z)mw cosecmz round the same square contours as before.
The cosec term creates a simple covert pole of residue (—1)"¢(n) at n (provided
¢ is holomorphic and non-zero there). We then invoke Cauchy’s residue theorem
and the Boundedness lemma for cosec (19.13(2)).

An adaptation of these techniques can be used to obtain series expansions
of certain meromorphic functions. See Exercise 20.11 for a typical example.

Further techniques

This optional section presents more subtle and more ingenious techniques which
enlarge the range of integrals which can be evaluated by contour integration. We
shall comment only on new features, leaving routine verification of residues and
estimates as exercises.

20.13 Example (avoidance of a multiple pole at an indentation). To prove

"C;z"/—sin;v1 T
— dr=-.
Jo "1'73 4

Solution The integrand is the real part, when z = x is real, of z7%(z + ie!®),
There is certainly a pole at 0, so we would hope to integrate round an indented
semicircle. However the Laurent expansion

Tzt i) =2 (p+ i1+ i+ 5(12)2) +..0)

reveals a triple pole. This prevents us applying the Indentation lemma. It is the
term iz~? in the expansion that causes the pole to be multiple. We eliminate it
by taking f(z) = 2~%(z+ ie'* — i), which still gives the required integrand when
z is real. The calculation now proceeds as in 20.4.
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*sinz T
dr = —.
2

20.14 Example (use of Jordan’s inequality). To prove that / -
Jo 4

[The integral exists only as an improper integral.]

Solution We integrate f(z) = e!¥/z round the indented semicircle shown in
Fig. 20.3. (Remember the tactical tip in 20.3, which explains why we use this
function and not (sinz)/z.) We now proceed as in Example 20.14, except for
one important difference. Putting the usual upper bound sinf < 1 into the
estimate

fx)dz </ e~ ftsind 49
Jrr Jo

does not show that the integral on the right-hand side tends to zero. We need
the tighter estimate supplied by Jordan’s inequality. As in 19.7 we obtain

f(x) dz

w2 ] w2 .
< 2/ e fteing 40 < / 2R/ 46 = O(R7Y).
Jrs Ja Jo

The pole of f at 0 is simple. The Indentation lemma gives the limit of the
integral round —TI'.: the limit is i(w — O)res{f(%);0} = im. Finally we note

that the integrals of f along the positive and negative real axes combine to give
21 [ (sinz)/xde.

[oe}

20.15 Example (a ubiquitous integral). To prove that / e dy = VT2

Jo
(This well-known fact is usually obtained by methods other than contour inte-
gration. To add variety to our catalogue of contour integrals we show how, with
some ingenuity, the result can be obtained from the residue theorem.)

—3+Ra 3 +Re

s y
/

1 1
~4—Ra i{~Ra

Figure 20.10 Contour for Example 20.15
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Solution Let o = e!™/4, We integrate f(2) = ei™* cosecmz round the contour v
in Fig. 20.10 and obtain

/ flx)dz = 2rires {f(%);0} = 2i.

On the slanting sides, we have 2 = ta £+ (—R < t < R) and f(2) =
+(secmta)el™*Eati) 5o that their combined contribution to [ f(x)dzis

R
/ a(eiw(t2+ta-+;)+eiw(t2—ta+i))secﬂadt
-R

R : R/T

4 ,

= 21/ e~ dt = il e dir,
J-r VT o

On the horizontal sides, z = ZRa+1 (—1/2 <t < 1/2) and an estimate of their
contribution to the integral is given by

dt.

177(1a2i2 Ral+t?)
/ dt| <

/% ze—ﬂR2+R7TL\/§
sinm(ZRa+t)

-1 eﬂ'R/\/Z _ e—ﬂ'R/\/Z

Taking the limit as R — oc, the required result is obtained.
We have already indicated that contour integration can sometimes provide
a substitute for making a substitution. Our final example illustrates how this

. . . . 2
technique allows us to derive other integrals from the known integral [ OOC e " dax.

20.16 Example (deduction from known integral; Jordan’s inequality). To
X o>

prove that / cosz® dr = / sinz?dr = /m/8. [This exists only as an
0 Jo

improper iniegral.]

Rei:rm

/4

Y

Figure 20,11 Contour for Example 20.16
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Solution Integrate f(z) = e** round the contour ~ shown in Fig. 20,11. By
Cauchy’s theorem,

kR ] w/4 | R2c2i0 T 0 /492 74
/ e'’ dx+/ e Riet (19+/ elleV ) ami/t gg —
JO J0 J R

By Jordan’s inequality (19.3), sin 20 > 40/x for § € [0, 7/4], so

T e /4 o
/ e Riel? 4g| < R/ Re~f7sin29 4p
Jo Jo

<:R/WM13—“*W”19 T(1—e )
sEY e == e .

Hence, letting R — oc,

o> ) . o> . 1 : o> 1 .
/ (cosz? + isinz?)dz = / e dy = il 1/ e dt= M
Jo Jo \/E Jo 2\/5

Now equate real and imaginary parts.

Tactical tip

@ If we had, naively, made the complex substitution of ax for z (with o =
elm/ 4) in fooc e diz, we would, ostensibly, have obtained the desired result.
The substitution equates the integrals along the two rays argz = 0 and
argz = w/4. Looking at the contour integral, we see that these integrals
are in fact equal only because there are no poles of ei*” in the sector between
the rays and the integral along the circular arc tends to zero as B — oo,

Exercises

Exercises from the text. Complete the calculations in 20.8. Using a right-angled

sector contour, evaluate [ (z* + 1)7t dz (see 20.10)).

20.1 Prove that

1) /OC L de = T

Jo (@2+a®)(x2+0?) 2ab(a + b)
(i) / b L de = A ,
J—oo (2 + 2+ 1)2 W3

(6> 0, a £0),

mm/m——i——«u—f—
Jomt+a2+1 7 3
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20.2

20.3

204

20.5

20.6

20.7

20.8

Applications of contour integration

(a) By integrating (1 + 2™)~! round a suitable sector of angle 27/n,
prove that, for n = 2,3,...,

X
/ 1+ 2 de = T cosec <£> .
JO n n

(b) Evaluate also / r(1+z")tde (n=2,3,...).
Jo
(¢) Could a semicircular contour be used in either (a) or (b)?

Prove that

X
, COS T T _cosw o
(i) / ——dr=—e"* (a>0), (i) / = -,
8 £ a e
X
COSTTT _
(iil) / S5 5 dr =—me ",
Joo T* =20+ 2
(Note: Jordan’s inequality is not needed in this exercise or the next one.)
Prove that

. * cosar — cosbr T
) /0 AT =B o = T(b=a) (a.b>0).

- * sine o7
(11) /() mdl‘ = E(l 1 cos 1)

oc LT 74— 1

d;v.

Evaluate /

dz and deduce the value of /
o L €7

By integrating a suitably chosen branch of 24! /(1+ z) round the contour
in Fig. 20.7, prove that

X pe 1
/ dez =acosecma (0<a<1).
0 1+-17

Prove that

. o logx o 2 B Oc(log;r)z | 77(_3
(1) '/0 T dx = 8_\/7 (i) /0 T a2 dr = =

Prove that

- 1
(1) Z nZ—H :WCOth’]T,

n—=——o

(i) Z (n —7‘2 cosec’ Ta (a ¢ 7).

n=—o
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20.9 By integrating suitable functions ¢(z) cosecwz (see 20.12), prove that
2
1) Z —1)™*(n? + 1)~ = meosech T, (i) Z( 1)'n~2 = T3

n=—oo n=1

20.10 Let the Taylor expansion of 7z cot mz about 0 be Y7 o ¢, 2", Prove that

(o9
Cop = —2Zk‘_2” (n>1).

k=1
20.11 By integrating f(w) = % round a suitable contour, prove that
)71
cosecs = — -2z anrz = (¢ £ kr (ke ).

n=1

20.12 Use a method similar to that in the preceding exercise to obtain the
following expansions:

(i) Tcotr,a——+2 n2 (z#£k (k€Z)),
1:1—}+§:L (z #£2mmi (m € 7).

z 2 22 + dn?m?
n=1

20.13 (A miscellany of integrals, to test ability to identify and apply the right
techniques (basic track only).) Prove that

o< g2 7
i ——dr = ——.
0 ), T

(11)/ iz dx *—E—%inle_g3
22 +xtl v3TTE
logx T
111)/ e 2)2 Ve
COShar T TG
1\)/ cosh g 08 = 55ec <7> (-l<a<l).

20.14 Consider evaluating the following integrals by applying Cauchy’s theorem
or Cauchy’s residue theorem to [ f(2)dz for suitably chosen f and ~.
(a) State what function f and contour ~ you would choose;
(b) indicate the location and type of any singularities of f:
(¢) where appropriate, comment on how the tactic of integral reinforce-
ment would be emploved in arriving at the desired integral;
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(d) comment on the estimation of any integrals round large or small arcs.

I B o [ 2P

(1) /0 m dz (0/ € R). (11) /0 m dll'/',

i logx ) i 1
(111) / m dx ((I,, b> 0)- (1\") / W d"l’?,

e—ime * 1—cosz
(\)/ T de (meR), (vi) / T
vii —wdr (-1 <a<l), (viii on rr/Z) da,
Ca2-1

20.15 Repeat Exercise 20.14 for the following integrals:

sinyz Y
1
) / (1 +22) d, (i) /0 sinhz
1 > log(1 + z?
(iii) / 8T d;v, (iv) / Og(Tjr) dr
. Jo i

22 tx—2

The remaining exercises are somewhat more challenging than the preced-
ing ones, or involve the more advanced techniques introduced in the final section
of the chapter, or both.

20.16 Prove that

o0 3
_ i N4 -3 _ 7‘—_
Zn =50’ (ii) Z( D"2n+1) 5"
n=1 n=0
20.17 Prove, with the aid of Jordan’s inequality, that
r%mar PR -
(i) / 1+ 5 /_2e (a>0),
3 sinx I Ay
(i) / T 4(13—26 cos\/E.
3

sin” x

20.18 Evaluate / dz. (Hint: consider e** — 3ei +2.)

Jo x?

20.19 By integrating round a suitable sector, prove that

'/000 e™ sin(2?) dw = \/— V2-1.

20.20 What is wrong with the following argument? The substitution y =
(@ — ib)x gives, for ¢ > 0 and b€ R,

oc oc .
/ e~ el g ! - / e “du= le
Jo a—1b Jy az + b
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20.22
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Give a correct derivation, by integrating e~ round a suitable sector.
Deduce the values of

oc 5 oc 2
/ e % cosbrdr and / e " sin bz du.
o 0

(This exercise contains a miscellany of integrals for which you will need
to draw on all the techniques in this chapter.) Evaluate

N[ 2 o [ z—sinz
(1) / m dl?, (11) /0 m dzr

sinh ar . r3 logz

(i) / simhz ) ,/0 (1+2) da.

In the plane cut along [0, 1], take (2(z—1)) to be the holomorphic branch
of the square root which is real and positive at a given point a > 1. Prove
that

! 1 1
21 - dr = - dz
2 ./0 (z(1—2))3i(a—2) L (z(z—1)2(a—2)

where (z(1—x))Z is positive on [0, 1] and ~ is a positively oriented contour
enclosing 0 and 1 but not enclosing a. Hence show that

o ™

/ L o dr = .
Jo (x(l=m)z(a—1x) (ala—1))2




21 The Laplace transform

On one level, integral transforms provide a versatile and systematic method for
solving equations:; on another, they form the starting point for a rich theory
having connections with many important branches of pure and applied mathe-
matics. This chapter and the following one treat the rudiments of the theory and
applications of the best-known and most useful integral transforms: the Laplace
transform and the Fourier transform. As explained in the preface, the empha-
sis is on the part complex analysis plays. Readers who want to concentrate on
methods, taking on trust the theory which underpins these, can simply skip the
more theoretical parts of this chapter. Others will wish to understand the theory
and for them we provide an introductory account of this.

The motivating idea is a very simple one: if you cannot solve a given
problem. transform it into a simpler one you can solve. Find the solution of
the simpler problem, and then use this to capture the solution to the original
problem. In 21.20-21.22 we illustrate how the Laplace transform can be used
to solve certain differential equations. In the preceding sections we set up the
necessary machinery: we establish the basic properties of the transform and
present methods of evaluating and inverting it.

Basic properties and evaluation of Laplace transforms

Laplace transforms, and the Fourier transforms studied in the following chapter,
are defined by integrals over unbounded intervals, [0, o¢) in the first case and R in
the second. These integrals may be taken to be Lebesgue integrals or (absolutely
convergent improper) Riemann integrals. This is feasible because, in deriving
theorems about transforms, the calculations are essentially the same whichever
theory of integration is used. The difference comes in the way the steps are
justified once suitable conditions are imposed on the functions. The following
note allows us to accommodate both a Lebhesgue and a Riemann approach to
integration in this chapter and the next.

21.1 Technical note.  Let J denote either [0, ) or R.
For a Lebesgue integral treatment, Z(.J) should be intepreted as L*(.J). the
(complex-valued) Lebesgue integrable functions on J.
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For a Riemann integral treatment, Z(J) should be interpreted as the set of
(complex-valued) functions on J which are piecewise continuous on any closed
bounded subinterval of J and such that each of f and |f| has an improper
integral on J. The terms used here were defined in 10.2 and 19.14. These
conditions could be relaxed somewhat; see [1], Chapter 13,

21.2 Introducing the Laplace transform.  The Laplace transform of a complex-
valued function f defined on [0, o¢) is given by

Jp) = /OOC f(tHe Pt dt,

if f(t)e™P* € Z(|0,oc)). Here p is allowed to be complex. We follow convention
in using p rather than z to denote the variable.

We may think of the Laplace transform as an operator £ taking a function f
toits transform f, so that £f = f. We shall allow an abuse of notation and insert
or omit the variables (¢ and p) as expedient. Specifically, it will be convenient
to adopt as alternative notations for the transform of f both f(p) and £[f(t)].
We usually use the latter style for the transform of a concrete function and the
former when writing the resulting function of p. Thus, for f(t) = ¢sint we find
that f(p) = 2p(p? + 1)72, and also denote this function by £[tsint] (see 21.8).

To give an impression of how functions transform under f +— f we imme-
diately present some examples.

21.3 Elementary examples. Direct integration, combined with 21.5-21.7 be-
low, enables a catalogue of basic transforms to be constructed. We record some
of the most useful.

Table 21.1 Some Laplace transforms

£ f(p) valid for
1 1/p Rep >0
" (n=12,...) nl/ptt Rep >0
e 1/(p+a) Rep > —Rea
coswt p/ (P +w?) Rep > |Imw|

sin wt w/(p? + w?) Rep > | Imw|
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21.4 The existence of the Laplace transform. In order that the integral
defining f should exist, it is certainly necessary that f should be a reasonably
well-behaved function. The table above signals that we may also expect to need
a restriction on p.

In practice, we are principally interested in differentiable functions, and
for such functions, or more generally for continuous functions, the integral of
f(t)e™P" exists over any bounded interval [0, R], for any p. The exponential
factor is an asset in ensuring good behaviour as R — oc. Note that [e77| =
e~ Rert and that, for Rep > 0, this exponential decays rapidly as t —+ oc. In
particular, if f is continuous on [0, oc) and such that |f(t)| < Me™ for t > T,
where M and T are constants, then f(p) exists for Re > ¢. On the other hand,
a function such as ¢ which grows exceptionally rapidly will not have a Laplace
transform.

We now present some general results which are frequently useful. Elemen-
tary calculations yield the following lemma.

21.5 New transforms from old. Irovided the transforms involved exist:

(1) Llaf(t) +bg(t)] = aL[f({t)] + bL[g(t)] for any constants ¢ and b in C (that
is, £ is linear);

(2) £lf(t/a)] = af(pa) (a > 0);

(3) LS =T +a) (a € Q)

(4) &[f(t—a)H(t —a)] = e *" f(p), where H is the Heaviside function defined
by H(t) =1 (t > 0), H(t) =0 (t <0) (that is, H = X[ o))

21.6 The Laplace transform of a derivative.  Under appropriate conditions
on f,
LW =p"Fp) =p" O = = 0 (n=12...0).

To derive the formula, we integrate by parts to obtain

Sl o) = [fo e p [ e
Jo
= =D 0) + p2[f "V (0],
provided f(”_l)(t)e_f’t — 0 as t — oo. We then repeat the process or, more

formally, use induction. Sufficient conditions for the formula to be valid are
1) f...., f™ all exist and the transforms of f, f'...., £ all exist,
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(ii) f™ is continuous on [0,0c), and
(i) f® (e P »0ast o0 (k=0,...,n—1).

Notice how the operator £ converts derivatives of f into algebraic expres-
sions involving f. This is the crucial property involved in the solution of differ-

ential equations by transform methods.

21.7 The derivative of a Laplace transform.  Suppose f(p) exists for Rep > c.
Then f(p) is holomorphic for Rep > ¢, with derivatives given by differentiation
under the integral sign, so that

d
dp

i) = -0 () 7o

Qutline proof Fix p such that Rep > ¢ and write Rep—c = 2n. Let h be such
that |h| < 75, so that Re(p+ h) > ¢+ 1. Then

o =000y [ = | [ e (5572 00 a
Jo 70

h
x* —pl ¢ (th’) "
/o ft)e E e dt

n=2

(using the expansion for e=")

< |h|/ |f(t)e_1"|tze‘|”| dt
Jo

< |h|/ |f(t)e_"ttze_”t|dt.
Jo

This tends to zero as b — 0, since 2™ is bounded on [0,oc) and |f(t)e™%| is
integrable by hypothesis. This gives the existence of £[f'(t)] and the required
formula for it. Higher-order derivatives are handled in the same way. [

Inversion of Laplace transforms

We next consider how a function f can be recovered from its Laplace trans-
form f. Thus we need to ask whether, given a function g(p), we can find f
such that f = ¢g. The simplest method is obviously ‘inspection’: recognizing a
function with the required transform, with the aid of 21.5-21.3.
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21.8 Inversion of Laplace transforms: elementary examples.

p+1 2 142 Lo . o1 = )
. Po=1  p=1 P = £(2e" —1t—2) (by 21.53(1) & (3) and 21.3).
1 B 1 P o
i TESEEST i £ (e sin4t) (by 21.5(1) & (3) and

21.3).

e Consider

_r _ 1 1 __ 1
(P2 +w?)?2 diw \(p—iw)2  (p+iw)?

= ﬁ (L(te'!) — L(te™vh) (by 21.5 and 21.3 or 21.7)
tsinwt
= by 21.5(1})).
s () (by 2L3(1)
Alternatively,
P 1d 1 tsinwt ) )
S S5 —si\lT—m—/—= ] = by 21. 121.3).
(P> +w?)?  2dp < P*+ w2> < ( 2w ) (by 217 and 21.3)

See 21.12 and 21.15 for further methods for obtaining the same result.

Without recourse to a published table of transforms or to a computer algebra
package, the inspection method is of limited use. Fortunately there is an inversion
theorem which applies to a very wide range of functions (and which is used in
the compilation of extensive tables). The version of the theorem we give is
not the most general. The smoothness condition we impose is no hindrance
in applications and facilitates the proof. However this is still highly technical.
We indicate in 22.9 how the theorem follows from a corresponding theorem for
Fourier transforms (stated in 22.8, proved in [6]).

21.9 Piecewise smooth functions. We introduced piecewise continuous func-
tions in Chapter 11. We note now that if f is piecewise continuous and is
defined on an open interval containing ¢, then the left-hand and right-hand lim-
its, f(t—) and f(t+), exist. Jump discontinuities occur at those points where

f=) £ ().

Let J = R or [0,00). We say that a (real- or complex-valued) function f
is piecewise smooth on J if f and f' are piecewise continuous on every closed
bounded subinterval of J. This definition may seem daunting. In fact, piecewise
smooth functions arise frequently and are easily recognized; see Fig. 21.1 for



The Laplace transform 261

Figure 21.1 A piecewise smooth function

an archetypal example. Any continuously differentiable function is, of course,
piecewise smooth.

21.10 Inversion theorem for the Laplace transform.  Suppose that f is
piecewise smooth on [0,oc) and that f(p) exists for Rep > ¢ > 0. Then,
for t > 0,

1 1 ' ot+iR o
E(f(t+) + f{t=)) = 51 I%gnm[r_m Ffperdp (o> 0.
The left-hand side simplifies to f(t) if f is continuous at t. The integral on the
right-hand side is along the vertical line segment [0 — iR,¢ + iR] in C; it is
independent of the value of o (> ¢).

The inversion theorem guarantees that any continuous and piecewise smooth
function is uniquely determined by its transform. It can in fact be proved that,
for a function f which is merely continuous, f = 0 implies f = 0 (Lerch’s
theorem). This uniqueness property is tacitly used whenever inverse transforms
are obtained by inspection.

The inversion integral can frequently be evaluated by contour integration,
using the techniques developed in Chapters 19 and 20. The following lemma. gives
a handy sufficient condition for an inverse transform to be a sum of residues.

21.11 Lemma (inverse Laplace transform via Cauchy's residue theorem).
Let ¢ be holomorphic except for a finite number of poles at aj,....a,, and
suppose that there exist constants M and k& such that

lg(p)| < MIpl™"  for large |p|.
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Then, for t >0 and ¢ > Rea; (j =1....,n),

1 o+1R . n
- _ L.
— th;%c '/a_iR g(p)er dp = jg_l res { g(p)e’*;a;} .

271

| o+iR

~—Jlo—iR

Figure 21.2 Contour for Lemma 21.11

Proof We integrate g(p)e?* round the semicircular contour ~ shown in Fig. 21.2
and apply Cauchy’s residue theorem. On the semicircular arc ABC, p = o+1Re'?
(6 € [7/2,37/2]) and |p| = R — o (by 1.9(3)). The given bound on g gives, for
large R,

3n/2 .
/ g(p)e* dp| < / M|R—o|™* |e(”+1R°16)LRiele| de
JABC Jr/2
3n/2
< / M|R —o| " ert-theostpagp
Jr/2

w2 ]
= 2/ .M|R—<7|_k e ttitsing g,
Jo

(putting ¢ = # — w/2). The final integral tends to 0 as B — o¢ (Jordan’s
inequality is needed if 0 < &k < 1;see 19.7). O
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21.12 Examples (Laplace transform inversion theorem).

¢ Consider again the function

this is holomorphic except for a simple pole at 1 and a double pole at 0O,
and it satisfies the conditions for Lemma 21.11. Hence g = f, where

F) _res{%ﬂ} +r68{%;1} =2 -2t

Note that use of the Laplace inversion theorem avoids the partial fraction
decomposition employed in 21.8.

¢ By Lemma 21.11,

pett

g a2 pe”t -
p(p —+ W ) —I‘QS{W;1®}+I‘QS{W7—1&/}
(4 pePt n d pePt
T ldp \(p+ iw)? i LA \p—iw)? /] 7

and this, by a straightforward calculation, is (¢sinwt)/(2w), as we expect
from 21.8.

|2 6+iR

cut

™
I~]
3/

Figure 21.3 Contour used in calculating £71(\/p)

e We find a function with Laplace transform (a holomorphic branch of) 1/,/p.
We cut the plane along the negative real axis and take p = |p|el? (—m <
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0 <7)and /p= |p|l/ ?el?/2, We wish to evaluate

1 0'+1R 1 .
—~ k L eP
51 [%LIE;C '/a_iR \/I_)e dp (o >0).

We use the keyhole contour ~ shown in Fig. 21.3. By Cauchy’s theorem,
the integral of e?!/ /P round v is zero. We can prove that the integrals
along AD and EF tend to zero, in just the same way as in 21.11. Also

/Zﬂ— Lestcosﬁﬁdg _ O(né)
\/;, £ £2),

<

Lot
[

On BC, \/p = Ve (x > 0) and on DE, \/p = —iy/x (x > 0). The
integrals along BC and DE combine to give

ro ,
s —axl 3,
2[ —i\/'—xe dz.

Hence, letting ¢ - 0 and R — cc,

1/ 1
—1 _ = —.L'L ,
(1/\/]_)) - T o \/— dl?
= % / oV dy (putting xt = 3°)
™Vt Jo
=1/vxt (by 20.15).

The following two results extend the range of functions for which we can
calculate the inverse Laplace transform. Under suitable conditions, thr first
allows us to invert a product of two transforms, and the second to invert term-
by-term a transform f(p) expressed as a series of negative powers of p.

21.13 Convolution theorem for the Laplace transform. Suppose f and g are
such that f and 7 exist for Rep > ¢. Then fg = h for Rep > ¢, where h is the
convolution of f and g defined by

o) = / g -tdt (>0,
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Informal derivation Consider

W) = / " fera / "~ ps)eP ds
- /0"" /ooc F(H)g(s)e™) dsdt

= / / fgly —t)e P dydt (putting y = s+t (with ¢ fixed))
Jo  Ji

= /00c {/OJ f(tgly —1) dt} e~ dy

= h(p).

The penultimate line is obtained by switching the order in which the two integra-
tions are performed, noting that ¢ € [0,y] if and only if y € [t,o0) (for t,y = 0).
It is this interchange that needs justification.

21.14 Theorem (inverting a series expansion).  Suppose that the continuous
function f satisfies the conditions for the inversion theorem (21.10) and that
f(p) is expressible as

oC
7([’) = Z anp_n_l:
n=0

where the series on the right-hand side converges for |p| > p. Then, for t > 0,

[oe}

0=

n=0

(that is, term-by-term inversion is legitimate).

Outline proof Since g(p) = > 7 5 anp™ "1 converges for [p| > p, 6.1(3) implies
that > |an| 7! converges for 7 > p. Thus

(i) g(p) is holomorphic for [p| > p (cf. 6.8);
(i) for [pl =5 > p. lo()] < Il Xonio lan] S™ = Ol ™)
(iii) on |p| =.9 > p. |e!"] is bounded, by K say, so that

|anp_”_lept| <My i=Kla,| St

and > M, converges.
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o+iR

N
N

~—Jlo—iR

Figure 21.4 Contours for the proof of Theorem 21.14

By the inversion theorem we have, for o > p,

o+iR
ft)==— lim / g(p)et dp

2r1 R—

1 ol (taking ~ as in Fig. 21.4
zn A / 9(p)e” dp and using 21.11, (i), (ii))
_ L g(p)e?t dp (using (ii) and 11.9; here

2mi, A/(O.Q) p<S<o)

= —nlertq sing (iii 114.2
Z 5 [ 0:5) P e dp (using (iil) anc )

= Z ant™/n! (see Table 21.1). O
n=0

21.15 Examples (inversion via the Convolution theorem and via series expan-
sion).  Consider once again p(p® + w?)~2.

e By 21.13 and elementary trigonometry,

p

1 .
L2 aﬂ(coswt)S(smwt)

t
= 12 </ coswy sin{w(t —y)) dy)
w \Jo
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1

=58 (/OL sinw(y + (t—y)) —sinw(y — (t—y)) dy)

tsinwt
o 2( 2 ) ’

¢ We have
R Z( = I R )

W 2n+1
( > (-1 ”(ZTZ 1)> (by 21.14)

n=0

tsinwt
o £< 2 ) '

21.16 Inversion of the Laplace transform: summary. We now have a number
of inversion methods at our disposal:

e inspection, using as a starting point the transforms in Table 21.1 and
exploiting the results in 21.5;

¢ direct computation of the inversion integral, usually with the aid of Lemma
21.11;

¢ use of the Convolution theorem, 21.13, to invert a function recognizable as
a product of known transforms or of more easily inverted functions;

e series expansion followed by term-by-term inversion based on Theorem
21.14.

As we have seen in 21.8 (21.12) and 21.13, there is often a choice of viable
methods.

Applications

In this section we illustrate the use of the Laplace transform in the solution of
simple ordinary and partial differential equations and integral equations. We
start with a simple integral equation.
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21.17 Example (a Volterra integral equation).  We show how the Convolution
theorem can he used to solve the integral equation

L
m(t) = (1 —e™ ) + )\/ m{t —x)e” dx,
Jo

where A is a positive constant. We apply £ and use the Convolution theorem.

This gives
. 1 1 m(p)
m(p) = T )\)\+p'

Hence m(p) = A\/p?, so that m(t) = At provides the required solution.

21.18 Solving differential equations using the Laplace transform.  We reveal
the idea behind the method with a very simple example, taken from electrical
circuit theory. Consider the problem of finding the function I(t), for ¢ > 0,
which satisfies the equation
d7 .
La + RI=F with I =0 when t = 0;

where L, R, E are constants. We multiply the given equation by e P and
integrate over [0,00) to get (by linearity of £),

L/ ge_pt dt + R/ I{te P dt = E/ e Pl dt,
Jo dt Jo Jo

By 21.6 the first integral is pI(p) —I(0). Hence, using the given initial condition,
we have

- — E
Lpl(p) + RI{p) = >
Therefore

o E__E(1__ 1
" p(R+Lp) R\p p+R/L)’
We recognize the right-hand side as the transform of %(1 — e UL ) This

function is the unique solution for I(t).
We can apply the same idea much more widely. Suppose ¢ takes values in
[0,00). Then the Laplace transform will convert

e an ordinary differential equation for f(t) with constant coeflicients into an
algebraic equation for f(p) (see the example above and Example 21,20);

e an ordinary differential equation for f(t) with polynomial coefficients into
an ordinary differential equation for f(p) (Example 21.21);
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e simultaneous ordinary differential equations, with constant coefficients, in
fi(),.... fn(t) into simultaneous equations in fi(p),..., fu(p) (Exercise
21.11);

e a partial differential equation for wu(z,t) (of suitable type) into an ordi-
nary differential equation for u(x, p) with variable z (Examples 21.22 and
Exercise 21.17).

The statements above should not be treated as rules which are universally
applicable, but rather as guidance on what form transformed problems will
take. If the method is to be carried through successfully to solve a given
problem, certain technical provisos must be added and we must include boundary
and/or initial conditions, as needed. For the Laplace transform, we need one
independent variable, ¢, which has domain [0. oc); for physical systems evolving
in time, we are likely to take ¢ to be time. Where we have more than one variable
defined on [0, o¢) the form of the initial or boundary conditions often determines
on which variable we should operate by £.

Transform methods are particularly suitable where the equations involve
unknown constants or functions, often standing for physical quantities. Equa-
tions involving only numerical constants and given functions are usually more
easily solved by more elementary means.

21.19 Important tactical tips. DBefore we embark on examples we amplify a
comment made earlier. It is often relatively easy to obtain a transform solution,
but if we do not establish the validity of each step in the calculation we cannot be
sure that our *solution’ is correct. The following remarks should help to prevent
an excessively pedantic or an excessively cavalier attitude.

> Don’t break the rules For example, don’t write down integrals of functions
which are not integrable. Obey the rules when using contour integration:
for example, integrals round arcs must tend to the limits claimed and a cut
plane must be used with a multifunction.

& Amenable functions Serious problems are likely to arise only with *patho-
logical’ functions: solutions of differential equations are, a priori, reasonably
smooth, and hence behave well under transforms. However it may be nec-
essary to impose restrictions on a function’s rate of growth and limiting
behaviour which are not built into the original problem. In many applied
problems such technical restrictions are acceptable on physical grounds.

& Don't make work! In many cases delicate analysis is neither necessary
nor appropriate. It is frequently easier to carry through the calculations
without checking the validity of the individual steps, and to verify at the
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end that the *solution’ found does indeed satisfy the given equation and
any additional conditions. Some familiarity with existence and uniqueness
theorems is valuable here for knowing what to expect by way of solutions.

21.20 Example (a linear ordinary differential equation).  Consider

cost (0<t <),

roro-{3" s

given f(0) = f'(0) = 0. We operate on the differential equation by £ to get

[ —pt g, PL—e7FT)
SL()] + S0 = /O coster = M=),
Hence, using 21.6 and the initial conditions,
_pl+em)

LT =P

We have shown in many different ways that p(p?+ 1)~ is the Laplace transform
of $tsint. Hence, by 21.5(4),
1 . 1 .
f)y= Etsmt + E(t —7)sin(t — ) H(t —7)

{ ftsint  (0<t <),
twsint  (t > 7).

We may consider, more generally,
"+ =kt ¢=0), subject to f(0) = f/(0) = 0.
The transformed equation is now

k)
T 1 p

i)

Hence, for any reasonably well-behaved function k,

f) = '/0 E(x)sin(t —z)de (¢ = 0),

by the Convolution theorem.
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21.21 Example (an ordinary differential equation with polynomial coeffi-
cients). We find a solution of Bessel’s equation of order zero:

tf(E) + () + tf () = 0.

We first apply £ and use 21.6 and 21.7. The equation transforms into

%p(pzma = pf(0) = F0)) + (BT ) = 0)) = ST ) = 0.

dp
Hence |
W+ 1>;—p7<p> = 7).

This is satisfied by
Fp)=A@*+1)72 (A constant),

where the right-hand side is defined to be holomorphic in the plane cut between i
and —i (see 9.2). For |p| > 1,

@+ 17 2*Z< WZ(;Z%

n=0
Theorem 21.14 now implies that

_ 42 o ,)2 <‘£>ZR_AJO(LL).

n=0

It can be checked, with the aid of Theorem 6.8, that this series does satisfiy
Bessel’s equation.

Bessel’s equation is of second order. It does have, as would be expected,
two linearly independent solutions, Jo(t) and Yo(t). However only Jo(t) is
sufficiently well behaved to be obtained via the Laplace transform; Yo(t) ‘blows
up’ at t =0.

Tactical tip

 The Laplace transform method cannot find a solution of an equation if that
solution does not possess a Laplace transform. Where, for a given equa-
tion, the number of independent solutions found is fewer than an existence
theorem predicts, any missing solution is too ill-behaved for this method to
detect it.
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21.22 Example (the diffusion equation). We find the function u(x,t) which
is defined and continuous in { (#,1) : £ >0, ¢ > 0} and which satisfies

M
@ T
(i) w(x,0)=0 (z
(i) w(0,t) =U (¢
(iv) u(

u(z,t) remains bounded as & — oc.

—ZJ (k a constant > 0);

0);

0), where U is a constant;

N,

)
)
)
)
We operate by £ on the variable ¢, writing

ﬂ(m,p):/ w(z, t)e Pt dt.
Jo

By 21.6 and (ii),
/ —u r,t)e Pt dt = pu(z,p).

Treating p as fixed and assuming differentiation under the integral sign with
respect to x is permissible twice, () transforms into
d*u

Pz, p) = K2

This has solution
(. p) = Ap)e" V" 4 Bp)e= V",

where A(p) and B(p) are functions of p. Here we assume the plane cut along
(—oc, 0] and take, for p = re'?, the branch /p = rt/2e19/2 where —r < 0 < 7
For this choice, Re/p > 0.

Now operate by £ on (iili) and (iv). From (iii),

w0.p) =U/p Rep>0).

while (iv) implies that @(z, p) remains bounded as # — oc. Hence A(p) = 0 and
D{p)=U/p, so

-

e, p>ff eVITE (Rep > 0).

The inversion theorem now gives, for ¢ > 0,

1 o+iR 77
u(z, 1) = -— lim v —ePmtVPEdp (0> 0).
2ri R Jo_ip P
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To evaluate this, we use the keyhole contour shown in Fig. 21.3. On BC,
VB=1yr andon DE, \/p=—iyT (r > 0). For p=re¥ (-7 << 7).

L —a/o/n

_ le_w\/r/_ncos(ﬁ/Z) — O(r—l)
p |

r

Hence, by Jordan’s inequality (as in the proof of Lemma 21.11), the integrals
along AD and EF tend to zero as R — oc. On the small circle of radius &,
1 l— \/_, 1
ZePtme/p/E _ = + h{p),
p p

where h(p) = O(1/+/2). Hence

/ I})ept_w VPR dp = 271 + O(VZ) (by 10.4 and 10.10).
<7 {03¢)

The function (U/p)eP=*VP/% is holomorphic inside and on the keyhole,
Applying Cauchy’s theorem and letting € — 0 and R — o¢, we get

U [ sieiml U [ el
uw(z,t) =U — —/ e i '/’”—‘ dr+ — el ’/“—‘ dr
271 f, 7 271 f, 7

=U - L—/ sin(;v 7‘/&)6_”% dr
0

.

< T

—U-—

o
21 .
- / sin(wy /v/2xt) e‘éfg dy (putting y* = 2rt).
v Jo

This can be rewritten as

w(z,t) =U [1 —erf <ZL\/E>] ;

where erf(z) is the error function defined by

2 [
erf(z) == \/—?/0 eV’ dy.

To obtain this form, note that

o -
/ e~ 3" cos vy dy = \/7(‘/26_5“2
Jo
(cf. Exercise 22.3 below) and integrate with respect to v over [0, 2/v/2xt].

If the boundary condition w(0.y) = U is replaced by the more general
condition «(0,1) = ¢(7), the Convolution theorem enables u(x,t) to be obtained
in terms of an integral (cf. Example 21.20).
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Tactical tip

& We used the Laplace transform on the variable ¢, If we had operated by £
on #, we would have needed to know u,;(0,%) (which we were not given) in
order to apply 21.6. A (good) alternative approach to this example is via
the sine transform (see 22.16 and Exercise 22.7).

Exercises

Exercises from the text. Prove the claims in 21.5. Verify the entries in Ta-
ble 21.1.

21.1 Find the Laplace transform of

) 1 = 1), (ii) #(cost)e™"
(iil) coshtcost, (iv) Xjo.1] (T > 0).

212 The nth Laguerre polynomial L,(t) is defined (for n =0,1,...) by

=4 (§) @

Prove that the Laplace transform of Ly, (t) is (p—1)"/p" 1. Deduce that

L +(1—t)iL +nL, =0
™" a " nT

21.3 Prove by induction that

nla®™

(1 — eotyn] = plp+a)...(p+na)

(n=0,1,2....).

Hence compute £[sin" t].

214  Assume that f is defined on [0, o) and is periodic of period T". Assuming
the Laplace transform of f exists, prove that

T == | S
Now let 20/T 0<1<T/2)
fo= { 21— tT) (T/2<t<T).
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21.6

21.7

21.8

21.9
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Show that, for ¢t > 0,

)= % (tH(t) +2) (=)™t — snT)H(t - §nT)> ,

where H is the Heaviside function (see 21.5(4)).

Verify that the Laplace inversion theorem gives the expected results for
the functions listed in Table 21.1.

Find the inverse Laplace transform of

@) @+ +2)™, (i) @ -1
(i) 6(p* + 10p* + 9L, iv) ((p* +H(p* + 1A,
(v) 2p(p* +1)7, (vi) 202 (p* + 1)L

Let f(t) =t=%, where 0 < a < 1. For Rep > 0, compute the Laplace
transform f(p) in terms of the constant

o>
Cy = / u” e " du.
Jo

Use 15.11 and 21.7 to obtain f(p) for Rep > 0. Apply the inversion
theorem to prove that

C,C\_q = meosecTa.

Solve the integral equation

y(t) =1+ /0 re Ty(t —x)de (t>0).

Use the Laplace transform to solve, for ¢t > 0. the equation

ey dy
Y 6Y 13y =0,
di2 +Gdt Ly =0,

subject to y(0) = ¢/ (0) = 1.

21.10 Use the Laplace transform to solve

- 1 1 if0<t
CY Yy 1 ith<t

FTERRET 26,
0 if2b<t,
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with y(0) =0, ¢ (0) = 1.
21.11 Solve, for t > 0, the simultaneous equations
d’z dx dy &y, dz

ST oS i nze =0, Yt =,
dt2+ ndt+nr 0, dt+ ndt2 Ty th'

where y is a constant, 2(0) = z’(0) = 1 and y(0) =¥'(0) =0.
21.12 Suppose that z, y, and z are functions on [0, cc) such that

de =~ dy _odx (
T bz — ¢y, i oL — az, i ay — b,

where a, b, and ¢ are constants, and suppose that z(0) = 1 and y(0) =
#(0) = 0. Show that

z(t) = (a® + (* + #) coswt) Jw?,  where w? = a® + b + .
21.13 Use the Laplace transform to find a solution to the differential equation
L)+ A0SO+ =12 (> 0).

21.14 Suppose that f(¢) is a solution of the differential equation
4 2
1t _ _* &
ro=(1-1+2) 0

on [0,0¢). Assuming that appropriate technical conditions are satisfied
by f, show that the Laplace transform f(p) is a multiple of (p + 1)=7%.
Hence find a non-trivial solution to the differential equation.

21.15 Suppose that f satisfies f'(t) = f(kt) (t > 0), where 0 < k < 1, and
f(0) = 1. Prove that
o k.n(n—l)/Z
=y —t"

nl
n=0

21.16 The functions ug, 41, us,... are related by the equations
ul () = up—1(t) —un(t) (=1, t>0).

Use the Laplace transform to prove that

un(t) = /0 Pn—l(t - J")Uo(l") de + Z‘Pn—r‘(t)ur(o) (n =L t> 0):
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where the functions ¢, ¢2,... are to be determined.
21.17 Use the Laplace transform to find w(z,t) satisfying, for z > 0 and ¢ > 0,
v Pu

o2 T ox2 T
w(z,0) =0, w(z,0) =z u0t)=1-—e"

—&

21.18 Assume that u(z,t) is defined in {(z,t) €R? : 2 > 0,4 >0} and is a
solution to the boundary value problem
Ju  Ou
— =1, 1.t) = u(x,0) =

e o b LD =u0)
By operating by the Laplace transform on the variable #, with x fixed,
prove that
1 e P

-—— where r = ",
D b

_ 1
U’(p: y) - pg
Deduce, with the aid of 21.5(4), that

1+¢ ifet <z,
u(e,t) = ,
1+logz ifet >
21.19 The function u(z,t) is continuous in { (z,%) : © > 0, > 0} and satisfies
(1) wy = Augy (£>0,t>0);
(ii) u(r 0) = u(2,0) =0 (x > 0)

(iii) htz —u(0,t) + p?u(0,1) = —ux(O t) (> ¢/b);

(iv) u(0,0) =0, [d—tu(O,t)] v

where ¢, pt, b, and U are constants. Making such technical assumptions as
vou need, obtain u(z,t), and verify that the solution you have found does
satisfy the given conditions and any additional conditions imposed.



22 The Fourier transform

The Fourier transform is, from a theoretical point of view, more fundamental
than the Laplace transform; we introduced the latter first because it has a greater
wealth of elementary applications. Here we concentrate on the evaluation, by
contour integration techniques, of Fourier transforms arising out of probability
theory. We also present sufficient basic theory, parallel to that we presented
for the Laplace transform, to be able to demonstrate how the Fourier transform
can be used to solve certain ordinary and partial differential equations. A lively
account of applications can be found in [27]. For the theory, see [2] or [6]
(Lebesgue integral approach) or [1] (Riemann integral).

Introducing the Fourier transform

22.1 Definition (Fourier transform). Let f be a real- or complex-valued
function on R such that f € Z(R): for the interpretation of Z{R) see the technical
note 21.1. The Fourier transform of f is defined, for all real s, by

@) = F(s) = ' /_ - f@)e 1 de,

Variants on this appear in some books: e instead of e~%% or an inserted
normalization factor of 1/+/(27).

22.2 Comparison of the Laplace and Fourier transforms.  The Laplace trans-
form can be regarded as a special case of the Fourier transform, a fact we exploit
in 22.9 when we derive its inversion theorem. To see the connection, write
p=u-+ is and suppose that f(p) exists. Let

glz) = ™ [(2)X[g,00)(7)-

Then -
3(s) = / e flz)e™ 5 de = T(p).
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In the definition of the Laplace transform, the factor e has modulus
e~ Repr: this is a negative exponential for Rep > 0, and so decays fast as z — oc.
For the Fourier transform. the exponential factor e~%¢ has modulus 1 when s is
real, and so neither helps nor hinders the convergence of the integral defining f
Therefore, by comparison with the Laplace transform, we expect the Fourier
transform to exist only for a relatively restricted class of functions.

The following result is entirely elementary.

22.3 New Fourier transforms from old. Drovided all the transforms exist
(1) Slaf(x) + bg(z)] = a3lf (x)] + 03lg9(x)] (a.b € C);

(2) 3f(x/a)] = af(sa) (a>0);

(3) e~ f(w)] = f(z +a) (a € R).

The remaining results in this section parallel those already given for the
Laplace transform and form, with 22.3, the basis for the application of Fourier
transforms to the solution of differential equations. The required formulae are
straightforward to derive at a calculational level; the justifications are exercises
in integration theory, of varying technical difficulty. For further details, see, for
example, [6], Section 33.17.

22.4 The Fourier transform of a derivative.  Under appropriate conditions
on f,
LA (@) = (is)" F(s)-

This is derived by repeated integration by parts. Sufficient assumptions for this
to be valid are:

Q) £ f . f € Z(R), and

(ii) f is continuous.
These conditions ensure that we can legitimately integrate by parts n times.
They are strong enough to force f¥)(z)e=® — 0 as |z| — oo for k =
0,...,n—1; we need this in order to dispose of the integrated terms. In appli-
cations, decay conditions like this are often natural in the context of the problem
being modelled.

22.5 The derivative of a Fourier transform.  Under conditions on f sufficient
to justify differentiation under the integral sign n times,

Fla"f(@)] = "] (s).
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22.6 Smoothness and decay. There is an interpretation of the two preceding
results which is worth noting. Let f be an integrable function on R. Observe that
|| = oc as & — oo, and that this happens progressively faster as n increases.
Thus an assertion that ™ f(x) is integrable on R tells us something about the
rate of decay of f(z) to zero as |z| — oo. Also, the number of derivatives a
real-valued function f possesses indicates the smoothness of the curve we get
when we draw the graph of f. What 22.5 and 22.5 tell us is that the smoother
[ is then the faster its Fourier transform deacys near £oc, and vice versa.

Evaluation and inversion

22.7 Inversion: preliminary comments. DBy contrast with with the good be-
haviour of the transforms of smooth and rapidly decaying functions, the trans-
forms of integrable functions in general can behave quite badly. Consider, for
example, f(r) = e7X[y o)(#). Then elementary integration gives

11 s
1+is 1482 1482

Jis) =

Considering the integral of the imaginary part of this function, we see that the

PV-integral
R

lim ; ds
R—oc f_p 1+ s2
exists but the improper integral limp 5 o _f_R:S s(1 + s%)7'ds does not. This
suggests that a function f may have better integrability properties than its
transform f
The inversion theorem for the Laplace transform gives a formula which
allows a function to be recovered from its transform via a principal-value integral,
in that case along some vertical line Rep = o in C. Since we can regard the
Laplace transform as a special kind of Fourier transform, we would hope for a

similar inversion formula for the latter.

The inversion theorem for the Fourier transform can be formulated in var-
ious ways, the main differences being in the class of functions considered. We
present a version which is adequate for the kind of applications we wish to con-
sider. A proof of this, in the setting of Lebesgue integration, can be found in [6],
Section 33.9. The argument given there shows how the inversion formula comes
about, as well as paying attention to technical issues.
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22.8 Inversion theorem for the Fourier transform.  Let f € Z(R) and assume
that f is piecewise smooth (recall the definition in 21.9). Let

= /_0; f(x)e™ 5% dx

3(f(r+) + f(z—) =5 / 1 (5)el" ds

Here the integral on the right-hand side may only exist in the weak sense of
being a principal-value integral. If f is continuous, the inversion formula takes

the form L g
= 2_7‘_/—0@ F(s)er ds

The similarity of form of the integral formulae for f(s) and f(x) is please. As
a consequence, evaluation and inversion of Fourier transforms are essentially
equivalent processes.

Then

22.9 Deduction of the Laplace transform inversion theorem.  Assume that f
is piecewise smooth on [0, 00) and suppose that f(p) = [~ f(t)e™F" dt exists (in
the sense defined in 21.2) for Rep > ¢ > 0, where ¢ is constant. Then, if ¢t > 0,

o‘+ip_
~(fH) + f(t ))*L hm/ ~ Fpettdp (0> o).
a—iR

271 B>

N

To prove this, we take p on the line of integration, so p = ¢ + iy and

T = [ (et m)e

We can apply the Fourier transform inversion theorem to e=7'f (1) X[0,00)(1)
which is piecewise smooth and belongs to Z(R). This gives, for ¢ > ¢ and
t>0,

1

3¢ eI f+) + f(t-)) = — hm / Flo + iy)e¥ dy.

We obtain the required inversion formula by replacing ¢ + iy by p. O

Informally, the derivation of the following result is similar to that given
earlier for the Laplace convolution (21.13). It involves interchanging the order
in which repeated integrals are evaluated; the conditions stipulated are sufficient
to validate this. It is part of the conclusion that the convolution integral is well
defined.



282 The Fourier transform

22.10 Convolution theorem for the Fourier transform.  Let f, g € 7(R). Then
f(s)ﬁ(s) = E(S) (s € R), where the convolution / is defined by

e = | " f@ele —v)dy.

Applications

Our examples of computing and inverting Fourier transforms are drawn from
probability theory. We consider some fundamental probability distributions
on R, and compute their characteristic functions. Such functions encode in-
formation about, for example, the moments of the associated distributions. For
a probability distribution possessing a density function, f say, the characteristic
function is simply the Fourier transform f Finding these transforms involves
many of the technicues of contour integration presented in Chapter 20.

22.11 Cauchy distribution.  Here we have f(x) = 1/(x(1 + #?)). The Fourier

transform is ]
o — 15T

o= |

We evaluate this integral by the method discussed for Example 20.5. When
2z = Rel?, we have |e_15'~"| = eftssin® Thig leads us to use a semicircular contour,
in the upper half-plane when s < 0 and in the lower half-plane when s > 0.
This ensures that in either case the modulus of e~¥* on the semicircular arc is
a negative exponential and so is bounded above by 1 (recall 19.4).

de (zeR).

.

—R

Figure 22.1 Up and down
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We arrive at

e—isw
—27(—1res{ml} =e’ (5‘ <0).

f(é) = —isz
2mwires S —i
S (14 22y’

that is, f(s) =e Il (s € R).
In this case the inversion integral

- hm |s|els./v
27‘ R—

can be directly computed. This we do by first splitting the range of integration
into (—oc,0] and [0, o0) and then evaluating the integrals of the real and imag-
inary parts of e~*le’*® on each of these intervals. We obtain (7(1 + 22))7%, as
the inversion theorem leads us to expect.

22.12 Normal distribution. Let

1 ,
fla) = —=e 2,
V2w
We claim that f(s) = e, We have
[ x 1..2 H 1.2 * 1 1 ey2
2rf(s) = eT I e dp =727 / e T g
oS —0oC o=
is _
A
Y Y
- > X

Figure 22.2 Contour for the normal distribution integral

2 . . . .
Integrate e~%% round the rectangle with vertices at —S, R, R+ is, —S + is
(shown in Fig. 22.2 in the case s > 0), By Cauchy’s theorem,

R 5
/ e_§w2(1x+/ e~ 3  qp
J =5 JO

-5 0
/ e_%(w+15)2 dz + / e_%(_’9+iy)21dy =0.
J R

5
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Here

g ;
/ e_é(R“y)Zidy

Il
_1R? 1,2
<e 2R/ e?¥" dy +0as R — oo,
Jo Jo

and similarly

5
/ e_é(—sﬁyfidy —0as S — oo,
Jo

Hence, letting R and S tend to oo,

oc 1..2 o 1 s o2
/ eT2% d;v:/ e~z qg
Jso Jso

The left-hand side is 27, by 20.15, so f(s) —e 5 as required.

This is an example where the answer appears to come out by making the
complex substitution of & + is for #. This procedure can be made respectable
by contour integration; see 20.16.

Symmetry shows that the result obtained is consistent with the inversion
theorem.

22.13 Gamma distribution. TFor A > 0 and ¢t > 0, let

@) = T X ),

where

() ::/ e de
Jo

defines the gamma function. We shall show that

fle) = (Aiis)t’

where the right-hand side is a suitable branch of the power.

When 7 is an integer we may integrate round a sector, motivated by the
formal substitution of (A+is)x for x. In the general case we have to contend with
a multifunction. We work in the plane cut along the negative real axis and take
2= |t D for z = |2]e¥? (=7 < 0 < 7). Integrate g(z) = z'"te™®
round the contour shown in Fig, 22.3. On CD, 2 = (A + is)u with v > 0, so

R
/ 9(z)dz =—(A+ is)L/ utTte i gy
J DC Je
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Reia

cut
&

Figure 22.3 Contour for the gamma distribution integral

e Tdux.

while
R
/ g{z)dz = / ztt
JAD Je

d@  (where tana = 5/})

Also
] _ w0 _
</ |(Re19)t—le—Re Rielﬁ
40

/Bcg(z) dx

/|Q| Rte—Rcosﬁde
0

IN

< |a| Rte—Rcos oa’

which tends to zero as R — o¢, and
< |a| gte—s cos oa’

o

Apply Cauchy’s theorem and take the limit as R — ¢ and ¢ — 0 to obtain

which tends to zero as ¢ — 0, since t > 0.

oG
A+ is)t/ utTte iU gy — / e dx
Jo Jo

-~

A A
e = )z_‘)\+is

A+ is

(

Therefore

where tana = s/X, s = |s|e'?, and —ir < o < $7.
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22.14 Example (an ordinary differential equation).  Consider

@)= f@) = (zCR).

where we assume that f{x), f'(z), f"(z) all belong to Z(R) and tend to zero as
|#] = o, Operate by §. Using results in 22.3 and 22.4, we obtain

2

=52f(s) = Fl) = 3l

Hence, by 22.11, 22.10, and 22.8,
o 2
flz)=— (/ e~ lv=al=v" qy,
J—oc

(Note that we could have calculated the Fourier transform of e’ using 22.3(2)
and 22.12. but did not need to do so.)

22.15 Example (a boundary value problem: Laplace’s equation in a half-
plane).  Assume u(z,y) is defined and continuous on { (z,y) € R* : y >0}
and that it satisfies

(1) war + Uyy = 05

(i) w(x,0) = f(x) (x € R), where f is integrable on R.
We shall solve this partial differential equation for u, subject to suitable restric-
tions on the behaviour of u(z,y) for large values of r = (22 + y?)1/2,
We operate by the Fourier transform on the variable z and write, for fixed ¥,

u(s,y) :/ w(z, y)e™ 5% du,

J—oc

The partial differential equation (i) transforms into

&,
P = 5%,

In deriving this we have used 22.4 and have assumed that the derivatives of
U with respect to ¥ can be obtained by differentiation under the integral sign.
The boundary condition (ii) transforms to (s, 0) = f(s) and, provided w(z,y)
decays sufficiently rapidly as » — oo, we have U(s,y) = 0 as y — oo, for each s.
Then

Us,y) = fls)e W,
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By the Convolution theorem and Example 22.11,

P A O

We have here the Poisson integral for a half-plane. This is considered further
in 23.16.

22.16 Postscript: sine and cosine transforms.  As books on Fourier analysis
explain, the Fourier transform can be regarded as the limiting case of a Fourier
series when the periodicty of the function tends to zero. There are therefore
parallels between the theory of Fourier series and that of Fourier transforms.

Consider the Fourier series of a 2m-periodic function f on R. If f is even
(odd), then the Fourier series contains only cosine terms (only sine terms).
In a similar way, the exponential factor in the Fourier transform of an even
(odd) function is replaced by a cosine (sine) term. Since any function on [0, oc)
can be extended to become an even or an odd function on R, sine and cosine
transforms provide an alternative to the Laplace transform. They can be used
to solve certain ordinary and partial differential equations. Which transform
is appropriate depends on the form of the initial or boundary conditions. See
Exercises 22.3 and 22.7.

Exercises

Exercises from the text. Verify the formulae given in 22.3, 22.4, 22.5, and 22.10
[giving justifications if you have the technical knowledge to do so].

22.1 Compute the Fourier transform of f, where

||

)= (1-E) 5o

Hence find the value of

> sin?
dz.

72
S =G &£

22.2 Find the inverse Fourier transform of

() (1+is)7L, (i) (1 —s*)(1 + 8372,

(ill) 567" X[g,00) — € X(_oc,0p (iv) s™sins.
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22.3

224

22.5

22.6

22.7

The Fourier transform

Suppose that f satisfies the hypotheses of the Fourier inversion theorem
(22.8) and that f(x) = f(—) for all #. Show that

%(f(évﬂ + flz=)) = E/OOC cos v </OOC f(y) cosvy dy) dv.

.

Hence evaluate, for a € R,
o oG .
. - . sin av cos av
1) / e~ cos 2av dv, (i) / ——dw.
Jo Jo v

Use the result of 22.12 to show that

(o9
/ e~ o fudu = ‘1\/?6_32/(40“) (@>0).
Jo 2V a

Use the Fourier transform to find a solution to the differential equation
) = 2f(x) = e Mol (x € R),

using (i) partial fractions and inspection, (i) the Fourier inversion theorem
and contour integration, and (ili) the Convolution theorem, to obtain
f from f (The primary purpose of this exercise is to give practice in
inversion techniques; the given differential equation can be solved by more
elementary means.)

Use the Fourier transform to solve
@) +2f(x) + f(@) = g(z) (z€R),

expressing the solution as a convolution.

Let f be an integrable function on [0,o¢) and extend f to an integrable
function F on R by defining

[(z) (z 2 0),
—f(=z) (x<0).

By applying the Fourier inversion theorem to F', show that, if f is suitably
smooth, f(t) can be expressed in terms of its sine transform

/ f{t)sintsdt.
Jo

Use the sine transform to give an alternative solution to Example 21.22.



23  Harmonic functions and
conformal mapping

This chapter first explores the connections between the theory of holomorphic
functions and that of harmonic functions. The latter are functions which arise,
locally, as the real parts of holomorphic functions. Because harmonic functions
satisfy Laplace’s equation in two dimensions, they occur widely in applied mathe-
matics. We cannot in the space available give more than a few hints as to why
this is so. We aim principally to provide links to applications-oriented texts, and
in particular to show that techniques from complex analysis are of relevance.
One such technique is conformal mapping and we conclude the chapter with a
brief discussion of some mappings which arise out of problems in fluid dynamics.

Readers interested primarily in applications may wish to skip over the proofs
of the theoretical results.

Harmonic functions

Laplace™s equation ugz + gy = 0 is of fundamental importance in the mathe-
matical modelling of 2-dimensional physical problems concerning fluid flow,
steady heat conduction, electrostatics, and other phenomena. In the context
of fluid flow it is assumed that the fluid is incompressible and inviscid and that
the flow is steady and irrotational.

Harmonic functions are formally defined in 23.4. Before introducing them
we make some brief and informal remarks about the modelling of fluid flow.

23.1 Complex potential. As we mentioned in Chapter 5, and shall prove in
23.3. we have, for a holomorphic function f = u + iv,

Upr T Uyy = 0 = Vg + Vyy,

so that u and v satisfy Laplace’s equation. In the other direction, suppose we
have a solution ¢ = ¢(x,y) of Laplace’s equation in two dimensions and suppose
that ¢ is expressible as Rew for some holomorphic function w. Therefore ¢
possesses a harmonic conjugate v» = Im w; this also satisfies Laplace’s equation.
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In the context of 2-dimensional fluid flow, ¢ is the velocity potential and
1 the stream function. The function w = ¢ + v’ is then called the complex
potential. Its derivative

V() = w0 (2) = 6u(ay) + a(a.9)

determines a vector fleld which models the velocity of fluid motion. Elementary
vector calculus shows that each curve ¢ = constant is orthogonal to each curve
1 = constant. The latter curves follow the direction of the fluid flow and are
known as streamlines.

A basic problem is to solve ¢ + @y = 0 in some region G in R?, where u
is to be continuous on G and certain conditions involving the normal derivative
O¢/On are to be satisfied on the boundary 0G. We might, for example, wish to
consider fluid flow through a cylindrical pipe whose cross-section is given by a
simple closed curve ¢’ in R?, with G the region bounded by ', or the flow past
a cylindrical obstacle with C' as its cross-sectional boundary. In either case, C
has to be a streamline.

Working with a complex potential is simpler than treating the velocity
potential and stream function separately, and allows us to draw on the theory
of complex functions.

¢ The key theorems of complex analysis relate closely to theorems concerning
harmonic functions, the most fundamental relationship being that between
Cauchy’s theorem and Green’s theorem (see 23.11).

¢ Invertible conformal mappings can be used to transform geometrically com-
plex configurations to simpler ones, and back again. Crucially, conformal
maps preserve harmonicity, so that the solution of simple fluid flow problems
can lead to the solution of more complicated ones.

¢ In simple cases of flow past an obstacle, the complex velocity V(z) and
complex potential w{z) = ¢+ it can be found explicitly by taking a Laurent
expansion of V and matching this to conditions required to hold on the
boundary of the obstacle and at infinity.

¢ Quantities relating to the flow, such as forces, can be expressed in terms of
the complex potential, and techniques of complex analysis employed to find
these.

To illustrate the last point, we introduce Blasius’s theorem. For steady flow
in the absence of gravity, Bernoulli’s equation,

1 ‘
P& + 3o IV = .
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relates the fluid pressure p(#) and velocity V(2): here p is the density of the fluid
(assumed constant) and pg is a constant. This leads to Blasius’s theorem. For
a fixed body which is described parametrically by a positively oriented contour
[simple closed path] ~. The theorem gives ' = (X.Y), the force per unit length,
and M. the moment (or torque), on the body:

X—iY*li/ @Zdz and .MlRe/z@Zdz'
_2/),7 dz 57 ), \dz ;

X can be interpreted as the drag on the body and Y as the lift. Exercise 23.5
seeks F' and M for some particular complex potentials.

23.2 Examples (complex potential).
e w(z) = Uz is the complex potential for a uniform flow of speed U parallel
to the real axis.

2
o Let w(z) = U <z+ %) (|z| > @). This is certainly holomorphic, so

that its real and imaginary parts are harmonic. These are given in polar
coordinates by

2

‘ ) a “ } a?\ |
o(r,d) =U <7‘ + 7—) cosf and P(r,0)=U (7‘ - —) sing.

We have ¢» = 0 for # =0 and € = 7, as well as on the circle » = a. For very
large r, the streamlines approximate to straight lines parallel to the real axis.
This example models uniform 2-dimensional fluid flow parallel to the z-axis, into
which a circular cylinder of radius a has been placed.

Figure 23.1 Flow past a cylinder
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In general, the Milne-Thomson circle theorem asserts that if a circular
cylinder |z| = @ is inserted into a flow having complex potential w then the new
flow has complex potential given by w(z) + w(a/Z).

We now present the theory of harmonic functions that we shall need.

23.3 Holomorphy and the Cauchy—Riemann equations: a re-assessment.
We proved in 5.3 that if f = v + iv in an open set G then [’ = u, + iv, =
—iuy + v,. These equations led us to the Cauchy-Riemann equations wu, = v,
and uy, = —v,. In 13.7 we proved that if f € H(G) then in fact f is infinitely
differentiable in . This implies that u and v have partial derivatives of all
orders. As a consequence we have in particular:

® Ug, Uy, U, and v, are continuous, and

¢ the second-order partial derivatives of u and v exist and are continuous.
In 5.6 we proved that if the Cauchy—Riemann equations hold in an open set G
then f :=w+ iv is holomorphic in G, so long as u., uy, vz, and v, are contin-
uous. We now see that this condition is in fact a necessary one. Furthermore,
continuity of the second-order partial derivatives implies that uz, = ., and
Vpy = Uyy. Hence

Upgy = Vyp = Vpy = —Ugg AN Vgp = —Uye = —Ugy = —Vyy-

23.4 Definition (harmonic function). Let G be an open subset of C and
identify 2 = z + iy € C with (x,y) € R*. A function u: G — R is harmonic
in G if

(i) u has continuous second-order partial derivatives in ¢, and

(i) w satisfies Laplace’s equation tze + ty, = 0 in G.

We denote by H(G) the set of functions harmonic in G.
The facts in 23.3 are sufficiently important to be recorded as a theorem.

23.5 Theorem (holomorphy and harmonicity). Let f be holomorphic in an
open set G and let

[ =uwzy) +iv(ey) (r=e+iycd),

where v and v are real-valued., Then v and v are harmonic in &.
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23.6 Theorem (existence of a harmonic conjugate). Let G be an open disc
[a simply connected region] and suppose that v € H(G). Then there exists
v € H(G) such that f =« + iv € H(G), so u is the real part of a holomorphic
function in G.

Proof If f exists then we must have f'(#) = w, + v, = u, — iu,. Let
9(%) = up — iuy. We shall apply Lemma 5.6 to g to show that ¢ ¢ H(G).
The Antiderivative theorem (11.4 [12.6]), provides F' € H(G) with F' = g.
Then

(u—ReF); =(u—ReF), =0

in G, whence v —ReF is a real constant % (see 5.12). Now let f = F +Fk. Then
feH(G)and Ref=u. O

23.7 Finding a harmonic conjugate. In practice, given G and u, it is often
possible to recognize a harmonic conjugate for v at sight. Suppose, for example,
that w(z,y) = x —xry. This is harmonic in G = C. Then u, —iu, =1—y+ir =
1+ iz. Hence u = Re f, where f(2) = 2+ %zz, and v = ¥ + xy, is a harmonic
conjugate for u.

Where we cannot spot how to choose f we use the relation

fw) = fla) = f(x)dz = / (U — fuy) dz,
Sty Sty

which holds for any polygonal path ~v(w) in G joining a fixed point a € G to w.
The Deformation theorem 11.9 [12.4] implies that the integrals are independent
of the choice of path. In practice, it is often convenient to take a path consisting
of horizontal and vertical line segments.

23.8 Poisson integral formula (for holomorphic and for harmonic functions).

(1) Let f be holomorphic in an open disc containing D(0; R). Then

27 2 2
ity L (’” =)
flre®) = 2w/0 (R? — 2Rrcos(f —t) +1r2)

f(Re!YHYdt (0<r <R).

(2) Let u be harmonic in an open disc G containing D(0; R). Then

wirety= [T B gy g<r< )
D=5, Eemer T S
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Proof (1) Fix z = re'? and apply Cauchy’s integral formula (13.1) to the product
Ig, where g(w) = (R? — r?)/(R? — wZ). Then

(2 =) )
2ri Jyosry (W — 2)(R? — wZ)

B (Rz _ 7,2) /27r f(ReiL)
2w Jy (Relt —rel®)(R2 — Rrelll=9)

[(2) = f(2)g9(») =

Rielt dt.

With the aid of the identity 2cosa = e!* 4 e~ this simplifies to give the
integral required.

(2) Theorem 23.6 allows us to choose f € H(G) such that v = Re f. The
required formula is obtained from (1), the Poisson integral formula for f by
equating real parts. U

23.9 Mean value property for harmonic functions.  Under the same hypothe-

ses as in 23.8(2),
2
u(0) L w(Relt) dt.

- 27(_ 0
Proof The formula is clearly a special case of that in 23.8(2). O

Technical note The hypotheses in 23.8 and 23.9 can be weakened. It is enough
to assume that u is harmonic in D(0;1) and continuous on D(0;1). We can
apply the preceding theorems to u,, where u,(2) := u(pz) (p < 1) and take the
limit as p increases to 1. [Full justification requires the fact that w is uniformly
continuous.]

23.10 Maximum principle for harmonic functions. Let GG be a bounded region
and let v be harmonic in G and continuous on G. Suppose that v < M on
OG = G~ G, where M is a constant. Then v < M on G, that is, v attains its
maximum on the boundary 9G of G.

Qutline proof The Maximum principle is the harmonic counterpart of the
Maximum modulus theorem (16.2), and can be proved in an analogous way.
In brief, a local version is first derived from the Mean value property (cf. 16.1);
then we show that {z € G : u(2) = M } is either the whole of G’ or the empty
set, in the same manner as in the proof of the Identity theorem (13.8). O
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23.11 The relationship of Cauchy’'s theorem to Green’'s theorem. Many
readers will have seen Laplace’s equation before, either in the context of mathe-
matical modelling or of partial differential equations, and such results as the
Mean value property and the Maximum principle may already be familiar. Such
results—not restricted to the 2-dimensional setting—are usually derived using
the apparatus of vector calculus. The proofs have their roots in Green’s theorem
(or, more fundamentally, in Stokes’ theorem on differential forms). Green’s the-
orem is a deep result. It is customarily presented without proof in introductory
courses on vector calculus and is widely used in applied mathematics.

Let f be holomorphic inside and on a closed path ~. Blithely ignoring any
technical hurdles, put dz = da + idy and so write [ f(#)dz in terms of line
integrals as ’

/(u de—vdy)+1 [ (wdy +vde).

We then use Green’s theorem to rewrite this as

/ (—ve —vy)dedy +1 / (uy —vy) drdy.

S 1) 4 JIy)

The Cauchy—Riemann equations imply that both of these integrals are zero. So
we conclude that [ f(#)dz = 0. Sadly, this is not quite the short cut to Cauchy’s
theorem that it mfght seem. To justify it, one must assume, or somehow prove
otherwise, that f’ is continuous. DBut we deduced this from a consequence of
Cauchy’s theorem. The approach is, however, certainly of historical interest: it
was the one used by Cauchy to derive the theorem that bears his name.

23.12 The role of conformal mapping. The philosophy behind the integral
transform methods of the two preceding chapters is that of converting a given
problem to one which is easier to solve, and then ‘inverting’ to solve the orig-
inal problem. The same philosophy underlies the use of (invertible) conformal
mappings in problems involving harmonic functions. Suppose that we have a
region G and a one-to-one conformal mapping ¢ of G onto a simpler region,
say D(0;1). We do not need to assume also that g~! is conformal since this
comes free, by the Inverse function theorem (16.7). Significantly, the correspon-
dence between G and D(0:1) set up by g and g~ goes beyond pure geometry.
Because the maps are conformal, it turns out that they transfer harmonicity
backwards and forwards too. Hence a boundary value problem for G is con-
verted to an equivalent boundary value problem for D(0; 1), Streamlines for a
fluid flow problem for an obstacle G correspond to streamlines for flow past a
circular cylinder, and so on. The key to all this lies in an elementary lemma.
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23.13 Transfer lemma (composing a harmonic function with a holomorphic
map). Suppose that G and G are open sets, that g: G — G is holomorphic,
and that & € H(G). Then u: =Uog € H(G).

Proof We put £ + in = g{z) = g(x + iy), so that @&, n) = u(z.y). Then
9'(2) = & + in, = —1&, + 1. Straightforward partial differentiation shows that

2o
Uga + Uyy = |9'(2)|" (gg + Uyy) = 0. O

Note too that the second-order partial derivatives of v with respect to & and y are
continuous because ¢’ is continuous and @ has continuous second-order partial
derivatives. [

The Dirichlet problem and its solution by conformal mapping

Let GG be aregion. Suppose that we are given a real-valued continuous function U
on the boundary dG = G~G. Can we find a function u such that u is continuous
on G and harmonic in G and is such that w = U on OG7 This boundary value
problem is known as the Dirichlet problem. The solution, if it exists, is unique:
if u; and u» are both solutions, apply the Maximum principle to u; —us and to
us — u; to prove that u; = us on G.

The simpler the geometric configuration, the simpler, presumably, the
Dirichlet problem will be. We now solve the problem for the simplest case of all:
G =D(0:1).

Figure 23.2 Dirichlet problem for D(0; 1)
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23.14 The Dirichlet problem for the unit disc.  Suppose that U is a real-
valued continuous function on the unit circle, Let

o(rel?) = i/zw (1-r%) U dt (re € D(0: 1))
T 2r )y (I=2rcos(@—1t) +r2) ' ’

be the Poisson integral of U'. Define u by

u(reiﬁ) — {

v(re’?y (0<r<1),
UE? r=1.

Then » € H(D(0;1)) and u is continuous on D(0; 1).

Qutline proof The Poisson kernel

1— 7‘2
—2rcos(@ —t)+r2

P.(t) = T

may be alternatively written as Re((w + 2)/(w — 2)) or as (1 — 12%)/ |w — 27,
where w = e!* and z = re'?; see Exercise 1.13. For |2| < 1,

- 1 wHz oo
u(z) =Re <2Wi.[/(0;1) (= Z)L (w) du)

=Re 1_/ Ulw) dw | —Re L/ Uw) dw | .
Tl o) W— % 271 )0y W

The second term is constant, while the first is the real part of the derivative
of a Cauchy integral, which is holomorphic (see 13.7). Hence « is harmonic in
D(0;1).

To prove the continuity assertion we have to show that v(rel?) — U(el®) as
rel? — ei®, Putting u equal to the constant function 1 in the Poisson integral
formula gives

1 27
TJo

Hence
1 27

w(rel’) = Ue®) = 2= | D0 =) (Ue!) = U(e) dt.

«

Let ¢ > 0. Continuity of U implies that there exists 6 > 0 such that
Ue) — U(el*)| < ¢ for all ¢ such that e!* lies on the arc J of the unit circle
T which contains e'® and joins the points eX®%9  TLet K be the arc of T
complementary to J. Then for some m > 0 we have |w — #| > m whenever
w € K and # lies in the shaded sector shown in Fig. 23.2.
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Noting that P.(# — 1) > 0, we now have

. . 1 [27 . .
|v(rel@) - U(e“")| < —/ P00 =) |U(e!) — U(e“")| dt.
2w /o
Elementary estimates show that the contribution from J to this integral is less
than ¢, while, for z in the shaded sector, the contribution from K is bounded by
a multiple of (1—7?)/m? (remember that U is bounded on the circle T'). Hence

we can make |v(re'?) — U(e!*)| < 2¢ by taking |re! —e!¥| small enough. LI

The preceding result can easily be adapted to solve the Dirichlet problem in
an arbitrary disc D(a; R). by translating and rescaling. Transfer to other regions
can be accomplished using conformal mapping.

23.15 Solving the Dirichlet problem by conformal mapping. Let G be a
region and suppose that we can find a one-to-one continuous map g : G — 5(0; 1)
which maps G conformally onto D(0:1) and maps the boundary OG onto the
unit circle. [Some remarks on whether such a mapping g exists in general can
be found in 16.10.] Then we can use 23.14 and the Transfer lemma (23.13) to
solve the Dirichlet problem for G: since U:=Uo g~ t: T — R is a continuous
function on the unit circle we can find a function @ on D(0; 1) which is harmonic
on D{0:1) and which agrees with UonT. Finally, u := 4 o g is continuous on
G and harmonic in G.

In practical problems, the boundary function U is often piecewise continu-
ous rather than continuous. Theorem 23.14 can be extended to cover this case.

Figure 23.3 The Dirichlet problem by conformal mapping
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23.16 The Dirichlet problem for a half-plane.  Let G be the open upper half-
plane II™ and suppose that U is a real-valued continuous function on the real
axis. Fix z =z + 1y (y > 0). Let g(¢) := ((— 2)/(( —2) (Im¢ > 0). Then ¢
maps G conformally one-to-one onto D(0;1). As in 23.13, let u = To g1,
where @ is the Poisson integral of U o g=!. Then u(z) = @(g(z)) = u(0). The

boundaries |#| = 1 and the real axis correspond via

il T—Z

e :g(T):T_T (t €[0,27),7 € R).
Formally,
Wy A Z
ietdt = e dr
and so 5
dt = Y sdr.
=7

Assuming the integrals do indeed transform in the way this suggests, we find
that - U
u(z,y) = ulz) = 7‘1}_7/ m dr.
J—oc
This is, re-assuringly, the solution we obtained in 22.15 using the Fourier trans-
form.

Further examples of conformal mappings

We deliberately restricted our discussion of conformal mapping in Chapter 8 so
as to focus on the guiding principles. With a view to potential applications we
now extend our range of mappings.

23.17 Mapping by trigonometric and hyperbolic functions.  Consider, as an
example, the image of the semi-infinite strip G = {# : Im# >0, 0 <Rez <7}
under
1 iz —iz
f:sz:cosz:E(e”+e ~).

It is far from obvious where f sends G'. However it is relatively easy to see what
happens to the boundary lines: f maps

theray Rex =0, Imz >0 to the interval [1, o),
the interval [0, 7] to the interval [—1,1],

theray Rez =7, Imz >0 to (—oc, —1].
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To obtain the last two of these, use the fact that cos(m + iy) = —coshy. This
shows us that the boundary of G maps to the real axis. We conclude that G itself
maps either to IIT™ or to II™. The image of any point on the line Rez = in/2,
Im z > 0 has positive imaginary part. This confirms that the image of G is the
open upper half-plane.

In the same way, cosh z will map a semi-infinite strip 0 < Rez < w, Imz >
to ITT.

Figure 23.4 From a semi-infinite strip to a half-plane

23.18 The Joukowski transformation. We consider the simplest form of the
Joukowski transformation,

, S VR |
zerw=5(z+z270).
This satisfies 2wz = 22 + 1 and hence is easily seen to be given equivalently by
2
w+l fz+1
w—1" \z—-1/"
It is holomorphic in € except at 0 and oc¢, and conformal except at £1, where

angles are doubled.
Suppose that w = u + iv is the image of z = re

¥ 5o that

u=3(r+rHeost, v==10r—r"")sind.

The image of the half-line argz =yt is
2 2
2, " -Lz =1
cos? it sin®

U
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which is a hyperbola. The image of the circle |2] = p # 1 is the ellipse

u? 2 B

5 T 3 =
Ho 2 R0

When p = 1, the image is the segment [—1,1] of the real axis.

The Joukowski transformation and variants of it have a distinctive feature
which make them of special interest in fluid dynamics: they map certain circles
to (models of) aerofoil shapes (see Fig. 23.3). This enables the lift on a model
of an aircraft wing to be estimated.

—

z—>1(z+z

Figure 23.5 Mapping an aerofoil

The Joukowski transformation provides another approach to the mapping
of an semi-infinite strip, first considered in 23.17.

23.19 Example (semi-infinite strip again). To find a conformal map of H =
{#:Im >0, 0 <Rez <7} onto a half-plane.

Stage 1 Let w = ¢!¥, Then (see 8.9) |w| = e~ ™% and argw = Rez (mod 27).
Hence H is mapped conformally onto

G={w: :0<|w|.l, O<argw <=}

Stage 2 We are now on familiar ground! Stages 1 and 2 of Example 8.14 supply
the map w +— ¢ = ((w -+ 1)/(w — 1))? from G onto a half-plane. More directly,
we can use the Joukowski transformation w +» ¢ = £(w + w™*). Think of G as
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Stage 1 Stage 2

Figure 23.6 From a semi-infinite strip to a half~plane

the union of semicircular arcs w = rel? (0 < @ < ), for 0 < r < 1. Such an arc

is mapped to the portion of the ellipse

2 o2

+ 5 =1
ilp—p71)?

U

ot pt)?

lying in the open lower half-plane. (Note that In¢ = £(r—r~')sinf < 0.) As r
varies, the union of these image curves covers II—.

We conclude that H is mapped conformally onto the open lower half-plane
by the composite transformation

zyw = e +e7) = cos 2.

To reconcile this with 23.17, first rotate the given horizontal strip to the vertical
strip { # : Im# > 0, —7 < Rez < 0} using the map z + iz and remember that
cosh z = cos iz,

23.20 The Dirichlet problem for a semi-infinite strip. Let
G={#z:0<Rez<7m,Imz>0}

We seek a function u such that

(i) w is continuous on G except at 0 and is harmonic in G

(i) u(#) =—1 when Rez =7 (Imz > 0) and when Imz =0 (0 < Rez < 7);
(ili) w(#) =0 when Rez =0 (Imz > 0).



Harmonic functions and conformal mapping 303

As indicated in 23.17, 2 — w = cosz maps G one-to-one onto the closed
lower half-plane, with G mapped conformally onto the open lower half-plane.
The boundary is mapped to the real axis, with g(0) = 1 and g{m) = —1. Define

. 1
U(w) = —arg{w — 1), where arg takes values between —n and «.
w

As the real part of a holomorphic branch of the logarithm, % is harmonic. It
takes the value 0 on (1,00) and —1 on (—oc,1). A suitable choice for v is
therefore

u(z) = L arg(cosz—1) (2 € Q).

™

In applications, maps of exterior regions are important. For example, in
2-dimensional fluid flow problems, we may want to analyse the flow past some
obstacle. Our final examples treat problems of this sort.

23.21 Example (semi-infinite slit). Let
G=C~N[0,0)={z:0<argz<2r}.

To map G to a half-plane, we need a square-root function. We cut the plane
along the excluded slit and in the cut plane define

f:zr—>zl/2:|z|l/zew/2 (0 <0< 2x).

Then f maps G conformally onto IT™. See Fig. 23.7.

cut

Figure 23.7 semi-infinite slit
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_—s

Stage 1

Stage 3

Figure 23.8 Mapping the outside of a lozenge

23.22 Example (region exterior to a lozenge). To find a conformal mapping
of the region G exterior to both the circles |z £ 1| = +/2 onto the region G
exterior to the unit circle.

Stage 1 The given region is bounded by circular arcs meeting orthogonally at =i
(see Fig., 23.8). Take

z—=1

z4 1

g is conformal except at —1 ¢ G. The image of G is a sector S of angle 37/2
(see 8.3 and 8.10). The segment [—1i, i| bisects the angle between the arcs at i
50 its image bisects the complement of the image sector. Since g(0) = —1, the
image is as shown in the figure.

grrrrw =

Stage 2 Working from the other end, we can realize our target region, namely
{7 :|r] > 1}, as the image under the conformal map

h:Ci—H’:CLl

¢—1
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of the right half-plane R={¢ : |¢ — 1| <|¢ + 1] }.

Stage 3 To transform .5 onto R, we seek to multiply angles at 0 by 2/3. This
suggests taking an appropriate holomorphic branch of w r» ¢ = w?/3,

We start in the z-plane with the plane cut along [—1i, i] (chosen to map to
a suitable cut, along the negative real axis in the w-plane). In the cut z-plane,
there exists a holomorphic branch k of [((z — i)/(# + 1))**]. The map we
finally require is f = hokog. It is given by f: » — 7, where

z—izi w+ 1Y
z+i)  \w—=1/"

Although we have now mapped regions of many shapes there is one notable
omission. We have not considered regions with polygonal boundaries.

23.23 Mapping polygons. DBecause of the way they act on arcs and circlines,
Mobius transformations and exponentials are of most use for mapping regions
whose boundaries are made up of curves of this sort. However their scope is,
even so, limited. For example, to map regions with polygonal boundaries, it is
necessary to introduce the Schwarz—Christoffel transformation

s / (€= 2 (C = )2 L (= )
40

Different paths from 0 to z give different values to the integral, so we have
a multifunction. Working with a suitable holomorphic branch, and suitably
specified ki,..., k., we arrive at a map onto a disc of the polygon with vertices

at #1,...,4n. An introduction to this important but advanced material can be

found, for example, in [29].
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Exercises

Exercises from the text. Fill in the details of the proof of the Transfer lemma
(23.13).

23.1 Check that each of the following functions is harmonic on the indicated
set, find a holomorphic function f of which it is the real part, and also
find a harmonic conjugate v:

i) 2 —y* —= (on ©),
(i) # —y(=* +yH) ! (on €\ [0,00)),
(iil) sin(z? — y*)e 2V (on ©),

(

(iv) log(a® + y*)H/? on the open first quadrant).
23.2 Suppose that v is harmonic in €. Show that, for 0 <r < R,

. 1 2w (Rz _ 7,2) .
iy & it
wre) = 27 /0 (R? —2rRcos(f —y) +12) u(Re") dt.

Assume in addition that u > 0. Deduce that

R—r
R+r

; R+r
< u(re?) € :
w(0) < u(re') < R_ru(O)

Hence show that a bounded function which is harmonic in € is necessarily
constant (cf. Liouville’s theorem (13.3)).

23.3 Suppose that f is holomorphic inside and on +(0:1). Let v = Re f and
v=1Im/f.
(i) Evaluate the integrals

1 27

= i) £ p(el))emint =0,1...
o . (u(e') £v(Ee))e ™ dt (n=0,1,...)

in terms of the coefficients of the Taylor series for f.
(ii) Deduce that, if f(0) is real,

=5 ( 2w (<.

el —z
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23.7

23.8
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Let f be holomorphic in A := {z : |2| > R}, with Laurent expansion
f(z)=2"0" ez in A, Let v be a positively oriented contour [closed

path] in A enclosing 0. Prove that
/ f()dz = 2ric_;.

(This variant on Lemma 18.2 is useful in connection with the complex
potential associated with an obstacle whose boundary is described by ~*.)

Consider Blasius’s theorem as stated in 23,1, Calculate FF = (X,Y) and
M for the two-dimensional fluid flows given by the following complex
potentials. (Hint: remember Lemma 18.1; expand the integrand and look
only at the term in the integrand in z71.)

(1) w(z) such that

dw a? ir )
=U\z+ — - (U.a,T constants),
dz Z 2mz
where v = ~(0:r). (Here w is the complex potential associated with
flow past a circular cylinder of radius @ on which is superimposed
a purely rotational flow round the cylinder with circulation I'. The
2 . . . . .
term z + ¢ arises from an application of the Milne-Thomson circle
theorem mentioned in 23.2.
2 2
(i) w(z) = (z—0b)*+ <— - b) , and v is such that 0 lies inside ~ and o
%
lies outside.

(ili) w(z) = U(zcosax — iV 22 —a?sina), where U and « are constants
and the plane is cut along [—e, a]. (Here w(z) is the complex poten-
tial for the flow arising when a flat plate of length 2 is inserted into
a uniform flow, « being the angle of inclination.)

Suppose that W(z) = Uz+¢(#) is the complex potential representing flow
past a body whose cross-section is bounded by a contour v, so that +* is
a streamline. Prove that the force F' on the body is zero. (Hint: recall
Exercise 23.4.)

Find the image of the strip {0 < Rez < #/2} under the map z

cosec? (E + E)
osec? (745 )

Show that the image under the transformation g: z — z + a?/z of the
region exterior to the circle |2| = a is C . [-2a,2a]. Find, as the branch
of a multifunction in a suitable cut plane, a conformal inverse for g.
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23.9

23.10

Harmonic functions and conformal mapping

Let G be the region exterior to the pair of circular arcs through %¢ and
subtending angles of £27/3. Show that G is mapped conformally to the
region exterior to the unit circle by a map f: z — (, where

(-
C+1)  \z+e¢)’

you should specify carefully how the z-plane should be cut and how f is

obtained as a multifunction branch.

Find a conformal mapping of G = {# : 0 < argz < 3w/2} onto a strip.
Hence find a function which is continuous on G except at 0, which is
harmonic in &, and which is such that w(x,0) =1 (# > 0) and »(0,y) =0

(y <0).



Appendix: new perspectives

Virtually everything so far in this book dates from well before the end of the 19th
century. This brief appendix gives glimpses of a selection of more contemporary
developments: the Prime number theorem, the Bieberbach conjecture, and Julia
sets, Our intention is to convey just a little of the flavour of these topics, and
the way in which theory presented in earlier chapters feeds into them. We hope
you will be tempted to find out more by dipping into the specialized texts cited.

The Prime number theorem

Andrew Wiles’ proof of Fermat’s last theorem in 1994 captured the imagination
of many people, by no means all within the mathematical community. It drew
attention to the fact that the statements of many famous problems in number
theory are comprehensible, and intriguing, to non-mathematicians. Since Euclid
proved that there are infinitely many primes, mathematicians have sought to
understand how the prime numbers are distributed amongst the natural numbers.
A way to do this is to obtain information, for real x, about the number, p(x),
of primes < #. A key result here is the Prime number theorem, which gives an
asymptotic estimate of how fast p(z) grows: p(z)logz/z — 1 as £ — oc. In this
section we give a skeleton of a proof of this theorem (dating from 1896) which
makes crucial use of techniques from complex analysis. The details can be found
in [9].

A.1 The functions ((2) and I'(#). The Riemann zeta function is defined for

Rez>1 by
- 1
C(Z) = Z %"
n
n=l
Here n=% := e7#19%6" (as always, log denotes the logarithm to base e). Since
[n=*| = n=Re#, the series defining ((z) certainly converges when Rez > 1; by

Exercise 14.8 it is holomorphic there. It is easy to see that

9N =14 ot 2y
(=27 =14 ootz e
11 1

=3 =270 ) =1+ s+

EENTE
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and so on. This enables us to deduce that
1

mpy_oe H;::l (1 - pI:;)

¢(2) =

where py,p2,... is an enumeration of the primes (p; < p2 < ... ).

A key ingredient in the proof of the Prime number theorem is the method
of analytic continuation discussed fleetingly in 15.12. The zeta function can be
analytically continued in a variety of ways to a larger domain than the one,
S:={%:Rez>1}, on which the defining series converges. Here we shall do
this by relating it to another fundamental function. This is the gamma function:

I'(z):= / t*7lemtdt (Rez >0).
Jo

Proving holomorphy of a function such as this which is defined by an infinite
integral is a technical business, beyond the scope of this book. However those
with sufficient proficiency in integration theory can show quite easily that T'(2)
is holomorphic for Rez > 0. Torn = 0,1,2..., 2 —= I'(x + n + 1) is then
holomorphic for Rez > —n — 1. DBy integrating the defining integral by parts,
we see that, for any n > 1,

Iz+n+1)
2z+ 1) (z+n—=1{z+n)

I'(z)= (Rez > 0).
The function on the right-hand side is holomorphic for Rez > —n, except at
non-positve integers. We deduce that it is possible to continue I'(#) analytically
to a function (also denoted I'(z)) holomorphic in C, except at the non-positive
integers, 0,—1,—2,...; at these points I'(#) has simple poles.
The gamma function has a number of interesting properties, of which we

note the following:

e Tn+ 1) =nt(n=0.1,...);

e T'(x)T(1 — ») = wcosecnz;

ntn®
I'(z) = 1li .
¢ (4) ng%c z(z+1)(z+n)

We now need the following non-trivial fact: there exists a function I(2)
holomorphic in € such that

I(z) == (¥ — )((2)T(2) for Rez > 1.

Here I(#)(e*™* — 1) is given by the complex integral [~ t*7!(e" —1)~1dt. To
see how the displayed identity comes about, expand (¢! — 1)7! as a series in

powers of e~#* and integrate term-by-term.
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Now consider I(2)/((e*™¥ — 1)I'(2)). It can be shown that T'(z) is never
zero and that ((#) #£ 0 at 2,3,.... Our results on the relationship between zeros
and poles in 17.12 and 17.13 show that the singularities of I'(#) at 0,—1,-2,...
are cancelled by the zeros of (e*™* — 1), Therefore the function on the right-
hand side of the above display has only removable singularities at the points of
Z ~{1}; remove these singularities to obtain an analytic continuation of () to
C~ {1} (again denoted ((2)); at z = 1 there is a simple pole, of residue 1.

Before moving on to discuss the Prime number theorem we digress to
mention the Riemann hypothesis, one of the most tantalizing and challenging
of the longstanding open problems in mathematics. This concerns the zeros of
the (extended) zeta function. In a paper published in 1839 Riemann conjectured
that all the non-real zeros of ((2) lie on the line Re = 1/2. As Riemann already
demonstrated, there is a tight connection between the zeros of ({#) and the
properties of the function p(x), so that a resolution of the conjecture would have
a major impact on number theory. It was proved long ago by G.H. Hardy that
¢ (% + it) = 0 for infinitely many real values of t. With the advent of powerful
computers, evidence in favour of the hypothesis has mounted. For example, the
value of b is known for which are there precisely 10” + 1 zeros having imaginary
part in (0,b); the order of magnitude of b is 10%. The real part of every one of
these zeros is equal to 1/2. However, information of this sort cannot decide the
matter. The general result remains elusive.

A.2 The Prime number theorem. Let p(z) denote the number of primes < x.
The theorem asserts that

) lim 2018T

T—0OC xr

The first step in the proof of the theorem is the reduction to an equivalent
problem. Let

g@) =Y Ln).

n<x

where

logp if n = p™ for some prime p and some m = 1,2,...,

Lin) :== { .
0 otherwise,
. Some careful real analysis, relating p(z) and ¢(z), shows that (P) holds if it
can be proved that ¢(x)/z — 1 as £ — oc.
The function ¢ is monotonic non-decreasing on (1, oc0) with a jump of size
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L(n)at n=2,3,.... Then

n=1

[The intermediate steps here involve Stieltjes integration:

i %?) = /lOC 77 dq(t) = '/000 e " dg(e") = /0OC q(eM)e™ " du,

n=lL

by the substitution ¢ = e* and then integration by parts.]
Exercise 14.8 sought a proof that ((z) defines a holomorphic function for
Rez > 1. By 14.7, its derivative is given by term-by-term differentiation:

=Y IZ@ (Rez > 1).

n=lL

It can then be shown that

¢ _ 3 1)

C(Z) n=1 :

[This relies on a technique from combinatorics known as Mobius inversion.] The
limiting behaviour of ¢(x)/z is therefore linked via ¢'(#)/((#) to the properties
of (the analytic continuation of) ((#). We therefore have a function G satisfying

oo %)

This is certainly holomorphic for Rez > 1 and coincides there with

o 1

e dy — ——.

’ /0 q(e") 1

But we can say more. Some delicate analysis shows that ((z) is never zero on

the line Re» = 1; the starting point for an argument by contradiction comes

from the discussion of counting zeros in 15.13. It is a consequence that G(z) is

in fact holomorphic for Rez > 1. This gives control on the limiting behaviour

of G(z) as Rez tends to 1. The proof is completed with the application of some
quite sophisticated integration theory (though not beyond the level of [6]).
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The Bieberbach conjecture

The celebrated Bieberbach conjecture shares with the Prime number theorem
the property of being appealingly simple to pose. It was solved affirmatively by
L. de Branges in 1984, having been postulated nearly 70 years earlier. The book
[30] presents the solution and some of the multitude of ancillary results spawned
by the conjecture.

A.3 Introducing the Bieberbach conjecture. 'We consider univalent functions
on the unit disc. A holomorphic function is called univalent if it is one-to-one.
As we proved in Chapter 16, f necessarily has a non-zero derivative, and so
is conformal. and also has a well-defined and conformal inverse. The class of
univalent functions has many interesting properties. In particular, we may ask
what can be said about the coeflicients in their Taylor expansions.

Assume that f € H(D(0; 1)) is univalent. It is no loss of generality to assume
that f(0) = 0 and that f'(0) = 1 (for the latter, remember that f'(0) # 0, so
that we can replace f by f/f'(0). The Taylor series for f takes the form

) =z2+az? vtazz’ +....
The Bieberbach conjecture is the statement that
lan] <7 (n=2,3,...).

Certainly the conjecture is true, with equality in the bound, for any Koebe
function

o>
z
K\ (2) = ————m= ne" 12" where A is a constant, |A| = 1.
/\( ) (1—)\2)2 nz:; W | |

These functions are, in fact the only functions for which |a,| = n for some (and
hence for all) n.

The conjecture came to be postulated because of a corollary of a result due
to Bieberbach. This result, which is of independent interest, is the following one.

A.4 Bieberbach’s area theorem. Let G be holomorphic for |#| > 1 and have
Laurent expansion

~ — A , Cl C2 -,
G(Z)—4+CO+?+Z_2+--. (|4|>1).

Then

oG

D nle <1,

n=lL
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This inequality is proved by calculating the area enclosed by ~(0:7) for r > 1.
This area, which is certainly non-negative, can be shown to be

Ary == (7‘2 - Z N |Can | 7‘2”> .

n=lL

The conclusion follows if we let » — 1.

A.5 Bieberbach conjecture: the case n = 2 and beyond. Let f be asin A.3.
It is not difficult to show that

F(z)=z+ (;Zz2+...
is holomorphic in D{0: 1), univalent, and non-zero for » # 0. Finally, we can
show that the area theorem applies to

G(2) =1/F(1)z) =2 — 271 ¢

2
to give |—az/2| < 1.

A quite different technique, involving a differential equation, was introduced
by K. Lowner in 1923 to treat the case n = 3. Variational methods were
brought to bear on the problem in the 1930s and this led to the conjecture
being established for n = 4 in 1955 and for n = 6 in 1972. Finally, twelve vears
later, de Branges proved the general case.

A.6 The Koebe i-theorem. Another famous result, stemming from the case
n = 2 in the Bieberbach conjecture, is worth mentioning. This states that
a univalent function f on D(0;1) with f(0) = 0 and f'(0) = 1 is such that
D(0; 1) C f(D(0;1)). with Equality occurs for the same class of functions as
gives equality in the Bieberbach conjecture.

Julia sets and the Mandelbrot set

This final section concerns the geometric and topological features of the com-
plex plane associated with dynamical systems whose evolution is governed by a
sequence p, f(p), f(f(p)).... in C. Such systems describe a variety of phenom-
ena in many areas of physics and the life sciences, in particular those exhibiting
chaotic behaviour.
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A.7 lterating complex functions. Let f be a complex-valued function and fix
p € C. We may then form the sequence of iterates

50 obtaining a complex sequence {z,}. where zp = p and 2,41 = f(#,). We also
write z, as fl (p): of course, this notation must not be confused with that for
higher-order derivatives.

As a very simple case, let f(z) = z°. Then z, = p*™. There are three
possible outcomes as n — oc: if |p| < 1, then 2z, — 0;if |p| > 1, then |z,| = oc;
if [p| = 1 the point z, moves forever on the unit circle, converging only if p = 1.
The unit circle divides the plane into two regions separated by the unit circle: a
starting value p in one results in z, being ‘attracted” to 0, and a starting value
in the other results in ‘repulsion’.

Let f be a function holomorphic in €. If the points

are distinct, but f9 (&) = «, then we say the points form a ¢-cycle and that
each point f¥l(a) (k = 0,...,¢— 1) is a periodic point. If ¢ = 1, we have
a fixed point. Once z, = fl"l(p) reaches a periodic point, then thereafter it
cycles indefinitely through the points of the cycle. An easy exercise using the
Chain rule shows that the derivative fl9 takes the same value at each point
of a g-cycle. « is attracting (or an attractor) if | fl9'(a)| < 1 and repelling if

A ()] < 1.

A.8 Julia sets. We shall henceforth restrict attention to iteration by quadratic
functions F, := 22 + ¢. (More generally, we might consider f(z) = a2 +bz +¢
(a #0). However a transformation ¢: z az+% yvields a function ¢o fod™! of
the form F., and the conjugate functions f and F. exhibit the same behaviours.)
How {z,} behaves turns out to be critically dependent on the choice of ¢. Let r,
be the non-negative root of the equation 22 + ¢ = x. We then define, for any c,

E.:={p: |FMp)| -} (the escape set),
K. =C\E, (the keep set).

The following facts can be established:
e zc E, (K.)ifand only if —z € E; (K.):
o z¢€ E, (K.)implies f(») € E. (K,):
o K. CD(0:re);
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e L. is open and connected;
e K, is closed and is simply connected (informally, it has no ‘holes’ in it)
¢ K. is connected if and only if 0 € K. (the Fatou-Julia theorem).

For a periodic point « of F,. we have:

e if & is an attractor then it is an interior point of K. (that is, there exists

r > 0 such that D{a:7) C K.);

¢ if o is repelling then « is in the boundary 0K, of K.

Finally, we define the Julia set of F. to be the boundary 0K, of the
associated set K. and the filled-in Julia set to be K. U JK.. A substantial
theorem of complex analysis allows the Julia set to be characterized as precisely
the set of points on which {f [”]}7120 does not form a normal family of functions.
Loosely, a family F of holomorphic functions is normal at a point z if on some
D{(z:r) any sequence in F either has a subsequence converging uniformly on
compact subsets to a holomorphic limit or a subseqeuence which, uniformly on
compact subsets, tends to infinity. A discussion of normal families can be found
in [8].

We may view the Julia set for a given value of ¢ as a ‘curve’ dividing the
plane into two. Fig. A.1 shows one example. As Mandelbrot discovered, Julia
sets are generally highly complex. They exhibit the property characteristic of
fractals: by zooming in on a portion of the curve, however minute, and iterating
by F. on this portion repeatedly, the entire curve is generated. At one extreme
the Julia set can be a perfect circle, or a fractally deformed circle; at the other,
it may fragment into a multitude of tiny flecks (called Fatou dusts), with K,
having no interior points at all. Part of the fascination of the subject of fractal
curves such as these is their enormous variety and their beauty. See [32] for a
wealth of computer-generated illustrations in colour.

Figure A.1 The Julia set for 22 —1

A.9 The Mandelbrot set. The Mandelbrot set 3/ was introduced in Exer-
cise 3.16 and some elementary topological properties of it were presented. Here
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we define it by
M :={ccC : F™0) does not tend to infinity }.

That is, ¢ € M if and only if 0 € K., the keep set for the function F.: z +
%2 + ¢. The Fatou-Julia theorem characterizes M alternatively in terms of the
topological structure of the keep sets:

M ={ceC : K, is connected }.

The set M is a closed subset of D(0;2), and so is compact. It is shown in
Fig. A.2, for values of ¢ in the range —2 < Rec <1, —1.5 < Ime < 1.5, As the
figure suggests, M is symmetric about the real axis, which it intersects in the
interval [—2,1/4]. It is also true, but far from obvious, that M is connected
and without holes. Large-scale pictures of M reveal very clearly both the
fractal nature of its boundary and presence of infinitely many hair-like branching
filaments. The connectedness of M relies on the existence of these filaments.

Figure A.2 The Mandelbrot set

The significance of the Mandelbrot set lies in the way that the evolution of
the system described by F¢, and the associated Julia set, is critically dependent
on where ¢ lies relative to M. For example, for ¢ € M, the filled-in Julia set
consists of a warped and distorted disc with a fractal boundary, and a great
variety of shapes are possible. Moreover, the possible behaviours of the system
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described by F. can be classified according to where in M the point ¢ lies. For
example:

¢ for ¢ in the cardioid body of M, there is a single finite attractor;

e for ¢ in a ‘bud’, there is a 3-point attracting cycle;

¢ for ¢ lying on an antenna of J ., the Julia set degenerates into a scatter of

flecks and there is no attractor in C.

Out beyond M the filled-in Julia set becomes a set of ‘islands’, and its comple-
ment fails to be simply connected.

We saw in Chapter 23 that conformal mapping may be used to make
problems in fluid dynamics more tractable. Likewise, conformal mapping can
transform complicated complex dynamical systems to more tractable ones,

There is a deep result of A. Douady and J.H. Hubbard showing that, for
any ¢, there is an invertible conformal mapping ¢, of some D{(oc:r) (in C) such
that

¢co o gt = Fy,

and ¢. maps E. onto the complement of D(0;1), for any ¢ € M. Moreover,
for ¢ ¢ M, the map ¢ — ¢.(c) is an invertible conformal mapping of the
complement of M onto the complement of D(0; 1). Observe that we are dealing
here with regions which are not simply connected; compare with the Riemann
mapping theorem (see 16.10). (This last result can be used to establish that M
is connected.) The results above reinforce the impression that, however chaotic
the system described by F,; may be near the origin, it is relatively easy to analyse
out towards infinity.

The effect of a change of variable » — ¢ = 1/z is to transform F; to R..
given by R.(¢) = ¢*/(1+ ¢¢?). Then R, can, locally, be transformed to Ry by
amap ®. analgous to ¢, above. Then ®. has an expansion

Pe(Q) = C+ax(0) +az(e)® +... (2 € Ep).
An intriguing characterization of M was obtained by F. v. Haeseler:
M={ceC:la(e)|<n(n=2,3,...)}.

Compare this with the Bieberbach conjecture!
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Index

Page numbers given in boldface refer to definitions and those in italic
to exercises, with the latter overriding the former where definitions are
given in exercises.

absolute convergence 69
aerofoil 301

algebra of complex numbers 3
analytic 166

analytic continuation 181-182, 310
angle

between paths 92

preservation of 92
Antiderivative theorem

I 132

I 145
annulus 17, 32, 195
arc (of a circline) 14-16, 19

under Mobius transformations
27, 98-102
Argand diagram 1
argument 2, 14, 15 85, 90
continuous selection of 108, 148
principal value of 107
arithmetic
in complex plane 3
in extended complex plane
18-19
attractor 315
Bessel’s equation 271
Bieberbach area theorem 312
Bieberbach conjecture 312-314,
318
binomial expansion 74, 181, 186
Blasius’s theorem 290, 306
Bolzano—Weierstrass theorem 43,

45
boundary 54, 192
bounded
sequence 39
set 35

Boundedness lemma for cot, cosec
229

Boundedness theorem (for continu-
ous functions) 43

branch, holomorphic 8688,
112-116

branch point 108
at infinity 115-116
indentation at 229, 243

calculation of residues 213-218
Cartesian representation 1
Casorati—Weierstrass theorem
204m 209
Cauchy convergence principle 42
Cauchy distribution 282
Cauchy integral 155, 162, 165
Cauchy—Riemann equations 57-59,
292
and Laplace’s equation 292
partial converse 58
Cauchy’s formula for derivatives
154-155
Cauchy’s integral formula 152-153
Cauchy’s residue theorem 212
and inverse Laplace transforms
261
Cauchy’s theorem 128, 295
converse (Morera’s theorem) 156
for a convex region 132
for a star-shaped region 141
for a triangle 129
Cauchy’s theorem
I (for a contour) 132
II (in a simply connected region)
145
III (general form) 149
chain rule 60
characteristic function of a probabil-
ity distribution 282
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circle(s) 13-14, 20, 50
of Apollonius 14
unit 20

circline 19
inverse-point representation of
20
path 49
under Mobius transformations
23, 29

circuit 110-112

circular arc  14-16

closed curve 48

closed disc 16, 34

closed path(s)

deformation of 142-143
homotopic 142
index of 146
integral round 121, 124

(see also Cauchy’s theorem)
closed set 32-34
closure 33, 34
coaxal circles 21-22
compact set 35, 43
Comparison test 69
complex number 1
complex plane 1
extended 18, 23, 35, /5, 206
topology of 35
complex potential
conformal mapping(s)
construction of 93
examples of 97-103, 299-305
and harmonic functions 295, 297
and invertible mappings 188
Conformality theorem 9

290, 291
89, 317

conjugate
complex 7, 66, 77
harmonic 289, 293

connected 37
polygonally 37, 39
continuous argument function 90,
108, 148
continuous function 40, 61, 170
on compact set 43, 45
integer-valued 43
continuous selection of argument
along a path 148
contour(s) 49-50, 53, 129
admissible, inadmissible 111
geometric properties of 51-54
orientation of 49, 146
convergence tests for series 69
convergence of
a sequence 40
a series 68

Index

convex region
Cauchy’s theorem in 132
logarithm in 139
convex set  35-36
Convolution theorem(s)
for Fourier transform 282
for Laplace transform 264
cosine  80-82, 83, 89
Covering theorem 51
covert pole 213
curve 48
cut 87, 112-114, 116
cut plane(s) 112
integrals in 228, 243-245
cycle 315

definite integrals, evaluation of
217, 234-246, 249-251
deformation of closed paths 142-143
Deformation theorem
I 135, 136
II 141, 144
de Moivre’s theorem 4
derivative(s)
Cauchy’s formula for
existence of 156
differentiable function 55
on a real interval 47
differential equations, solution by
transforms  268-169
differentiation of Cauchy integrals
155
differentiation of power series
73-74
diffusion equation 272
Dirichlet problem 296
for a disc 297
for a half-plane 299
disc (closed, open, punctured) 16
distance 2, 12

154-155

elementary deformation 142-143
elementary functions 78-82
error function 273
escape set 315
essential singularity 201
isolated 201, 204, 209
non-isolated 201, 205
estimation of integrals 122
basic inequalities for 223
round large arcs 225
round small arcs 227
use of Jordan’s inequality in 226
Estimation theorem 122
exponential function 78-80
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and logarithm 85
as a mapping 97
modulus of 79

extended complex plane 18, 23,
35, 45, 206

filled-in Julia set 316

fixed point 315

fluid flow  289-291

Fourier transform 278

Convolution theorem for 282
examples of 282-285
Inversion theorem for 281

function 8
real and imaginary parts of 9,
41

functional identities, preservation of
181

Fundamental integral 121, 136

Fundamental theorem of algebra 5,
153

Fundamental theorem of calculus
124, 134

gamma, distribution 284
gamma function 284, 310-311
geometric identity 6
geometric series  69-70
Green’s theorem 290, 295

half-plane 17
harmonic conjugate 289, 293
harmonic function 58, 286, 292

Maximum principle for 294

Mean value property of 294
Heaviside function 258
Heine-Borel theorem 35
Hermite functions 168
holomorphic

at a point 59

in and on a contour

in extended plane 61

in an open set 59
holomorphic branch(es)

of logarithms and powers
holomorphic function(s) 57

in an annulus 195

bounded 153, 159

Cauchy’s integral formula for

152

conditions for constancy 62, 206

derivatives of, Cauchy’s formula

for 154-155

examples of 60-61

in extended plane

129

112-116
86-88

61, 206
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292-293
156

and harmonic functions
is infinitely differentiable
inverse of 191

Laurent expansion of 195
as mapping 189-192
maximum modulus of 189

one-to-one 190, 311
power series representation of
161-166
in a punctured disc 200
real and imaginary parts of 57,
292
in a region 62, 180
sequences and series of
Taylor expansion of 163
zero(s) of 176-185
holomorphic logarithm
145, 149
homotopic closed paths 142
hyperbolic functions 80-83, 299

175

87, 139,

Identity theorem  179-180
image of a curve 48
imaginary axis 13
imaginary part 1
improper integral 230-232
indefinite integral 137-139
Indefinite integral theorem
I 131
Indentation lemma 227
indented contour 227
index (of a closed path)
inequalities 7-8
infinity, point at
61, 115, 205
inside and outside of a contour
53, 111

146-147

18, 23, 35, 45,

integrable function 120, 230
integral equation 268
integral formula, Cauchy’s 152-153
integral(s)

along a path 120, 122, 123

in cut plane 228, 243-245

122
124, 136, 152, 155,

estimation of
evaluation of

218, 245
improper  230-232
Lebesgue 230-232, 256

of complex-valued function 120
principal-value 230
Riemann 230-232, 257
round unit circle 217
round a pole 209
integral reinforcement 236
interchange of summation and
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integration 161, 173
Interchange theorem
simple form 161
uniform convergence form 173
Intermediate value theorem 43
interval 30
inverse points 19-20
inverse-point representation of
circlines 13-14, 20
inverse tangent 139
Inverse function theorem 191
inversion of Laplace transforms
by residue theorem  259-267
of series, term-by-term 265
Inversion theorem
for Fourier transform 281
for Laplace transform 261, 281
isolated point
isolated singularity 200
behaviour near 204
isolation of zeros (see Identity
theorem)
iteration 314-315

join of curves 48

Jordan curve theorem 53
Jordan’s inequality 224, 249
Joukowski transformation 300
Julia set 315

keep set 315
Koebe i—theorem 314
Koebe function 312

Laplace’s equation 58, 290
in a disc 296
in a half-plane 298
Laplace transform(s) 257
Convolution theorem for 264
inversion of 259-267
Inversion theorem for 261, 281
standard examples of 257
Laurent expansion 195, 307
coefficients in 196, 200
computation of 197-199
principal part of 201
uniqueness 196
Laurent’s theorem 195
Lebesgue integral 230-232, 256
length of a path 125, 126
limit
of a function 40
of a sequence 40
limit point(s) 34, 35, 179, 180
in extended plane 45

Index

of singularities 205
of zeros  179-180

limits (of sequences, functions)
40-42

limits, basic 225

line 13

line segment 12, 49

line integral 120

Liouville’s theorem 153, 166, 206

local Maximum modulus theorem
188

logarithm  85-88, 97, 109, 137-139
holomorphic branch of 84-85,
161
in a simply connected region
145, 148

L’Hopital’s rule 185

Mandelbrot set 46, 316-318
many-valued function (see multifunc-
tion)
Maximum principle 294
Maximum modulus theorem 189,
294
Mean value property 294
Mean value theorem 65
meromorphic function 206
Moébius transformations 23, 61
as conformal mappings 92,
95-96
fixed points of 28
triplet representation 25
modulus 2, 7
of a function 41
Morera’s theorem 156, 175
multibranch 109, 114
multifunction(s) 8, 3, 107-116
conformal mappings involving
96, 303-305
integrals involving  243-245
power series expansion of 164,
174
multiple pole 213
residue at 214-215
multiplication 4
of power series 167, 199

Non-holomorphic functions 64
non-isolated singularity 200, 205
normal distribution 283

null path 143

normal family
open disc 16, 31
in extended plane 35
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open set 30, 31
Open mapping theorem 190
order

of a pole 213

of a zero 176
order relation 8, 11
orientation 48, 146

of a contour 146
opposite 48

overt pole 213

parameter interval 48
partial fraction decomposition
path(s) 48, 119
deformation of 142-143
geometric propertes of 51
integral along 120, 122, 123
join of 48, 123
length of 125, 126
null 143
reparametrization of
periodic point 315
periodicity 84
perpendicular bisector 13
Picard’s theorem 204
piecewise continuous
piecewise smooth 260
Poisson integral formula
Poisson kernel 11, 297
polar representation 1
pole(s)
behaviour near 204
Characterization theorem
classification of 201, 213
covert, overt 213
double, triple, ...
indentation at 227
limit points of 205
muliple 213
of order m 213
residue at 211
simple 213, 227
zeros, relation to
polygonal route 37
polygonally connected 37, 39
polynomial 5, 60, 153, 166
powers 4, 86
as mappings 96
power series 71, 163
coefficients in 162, 166
analytic continuation by
continuity of 74
differentiability of 73-76
multiplication of 167, 199
radius of convergence of 71

232

122

119, 120

293

202

213

202-203

182-183
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representation by 163, 166
uniqueness of coefficients in 162
and uniform convergence 172
preservation of
angles 92
functional identities 181
Prime number theorem 309, 311
principal part of Laurent expan-
sion 201
principal-value integral 230
probability distributions 282-285
product 4
punctured disc 16
quadratic functions 314
radius of convergence 71, 74

Radius of convergence lemma 72
rational function 61, 206

Ratio test (d’Alembert’s) 69

ray (= half-line) 19

real axis 1, 13
real part 1
of holomorphic function 57, 292
region 37, {4, 62
convex 132
simply connected 143, 145, 148,
150

regular point 200
removable singularity 201, 204

reparametrization of a path 122
residue at a pole 211
formulae for 214
Residue theorem 212
Riemann hypothesis 311
Riemann integral 230-232, 257
Riemann mapping theorem 192,
318
Riemann sphere 18
Riemann surface 117
Riemann zeta function 175,
309-312
roots
of polynomials 5-7
of unity 5
square root 110, 174
Rouché’s theorem  184-185, 187

Schwarz—Christoffel transformation
305

Schwarz’ lemma 189, 193
sector 15

semi-infinite slit 303
semi-infinite strip 299, 301, 302

sequence(s) 39

of holomorphic functions 175
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series 6869
double-ended 194
of holomorphic functions 175
summation of 247
simple curve 48
simple pole 213
indentation at 227
residue at 214
simply connected region
148, 150
sine 80
sine transform 274, 287, 288
singularities, classification of 201
singularity 200
behaviour near 204
essential 201, 204, 209
at infinity 205, 210
isolated 201, 204
non-isolated 200, 205
removable 201, 204
smooth curve 48
star-shaped region 141
stereogrsphic projection 18
Stokes’ theorem 294
stream function, streamline 290
subsequence 40, 42 43
substitution method 24
summation of series 247

143, 145,

Taylor expansion 163-165

of multifunctions 164, 186
Taylor’s theorem 163
topology (of complex plane) 31
Transfer lemma 296
triangle inequality 7, 76
triangulstion of a polygon 54
trigonometric functions 80

Index

addition formulae 81
and hyperbolic functions 81
mapping by 299
unboundedness of 82
zeros of 83

triplet representation of Mobius
transformation 25

univalent function
uniform convergence 169
and continuity 170
and power series 172
of sequences 169
of series 171
Uniqueness theorem 180
unit circle 20
integrals round 217
unit disc
conformal mappings of 28, 191

velocity potential 290

Weierstrass’ M-test 171
winding number (see index)

zero(s) 83, 176
Characterization theorem 177
compound 178
counting 183
limit point of 180
of order m 176
poles, relation to  202-203
Rouché’s theorem on  184-185,
187

zeta function, Riemann 175,
308-309
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