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PREFACE

This book is an introduction to modern (abstract) algebra for undergraduates. The first six
chapters present the core of the subject, the basic ideas of groups, rings, and fields. The
remainder is designed to be as flexible as possible. A diagram of chapter dependencies,
preceding the table of contents, suggests a number of options for introducing variety and
depth.

A first course in modern algebra often has the additional goals of introducing the
axiomatic method and the construction of proofs. I have tried to keep these goals constantly
in mind. For example, the first chapter treats ideas that are important but neither abstract nor
complicated, and provides practice in handling mathematical statements—their meaning,
quantification, negation, and proof. I believe this chapter should be covered carefully, except
for students who are already comfortable with the ideas and with proofs.

MAJOR CHANGES FOR THE SIXTH EDITION

* The treatment of Galois theory, in Chapters X and XI, has been revised extensively.
Chapter X now gives an overview suitable for those who do not have time for more
detail. This was suggested by users who preferred the abbreviated treatment of Galois
theory in the fourth edition of the book. The overview can also serve as a guide for others
before working through Chapter XI.

Chapter XIII provides proofs of material on groups that is used in the book but was not
proved in the fifth edition.

* The section on cryptography and the RSA algorithm, in the fifth edition, has been deleted,
but the key theorem, which uses Euler’s function and Euler’s Theorem from number
theory, has been proved in an appendix to Chapter IV. The matenal on coding theory,
and the illustrations of Boolean algebras in switching, have been removed but will be
available at the book’s Web site http://www.wiley.com/college/durbin.

Some new problems have been added, but I have chosen to make others available at the
book’s Web site rather than in the text. Making material available on the Web, rather
than in the text, comes from a desire to keep the book from growing in size and cost.
Also, I believe that textbooks sometimes become less rather than more useful through
the addition of new material from edition to edition.

As in earlier editions of the book, each problem set is arranged with the more straight-
forward choices at the beginning. These problems are grouped in pairs, with solutions to
those with odd numbers in Appendix E; this will help students know if they are on the right
track. A few of the problems contain fairly substantial extensions of material in the text.

The material is arranged so that most of the sections can be covered in one lecture each.
Notable exceptions are Section 17 and Chapters X and XI. By the nature of the subject,
students may occasionally need time to review and consolidate what they have learned.
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PREFACE

The fifth edition had an unfortunate number of misprints and other errors, especially
in the first printing, for which I apologize. Comments and suggestions are welcome:
durbin@math.utexas.edu.

The sixth edition preserves the style of the earlier editions, which reflects the author’s
philosophy that the best textbooks concentrate on presenting core ideas clearly, concisely,
and with few distractions.

John R. Durbin

Reviewers of this edition:

Janusz Konieczny University of Mary Washington
Steve Waters Pacific Union College
Vassil Y. Yorgov Fayetteville State University



ADVICE FOR STUDENTS

What is modern algebra? Why is it important? What does it take to learn it? How can
this book help? These are entirely reasonable questions. This section and the Introduction,
which precedes Chapter I, will help provide answers.

Modem algebra is sometimes called algebraic structures or abstract algebra, or merely,
in the context of advanced mathematics, algebra. Although the name may suggest just a
new way to present the algebra that precedes calculus, it is in fact much broader and deeper
than that.

The Introduction discusses some of the history and applications of modern algebra,
to give a glimpse of what the subject is about. Please spend at least some time with the
Introduction, even though it is optional. Other references to history occur throughout the
book.

Applications are important. But the case for modern algebra rests on more than the
applications that can be presented in this book. The ideas and ways of thought of the subject
permeate nearly every part of modern mathematics. Moreover, no subject is better suited
to cultivate the ability to handle abstract ideas—to understand and deal with the essential
elements of a problem or a subject. This includes the ability to read mathematics, to ask the
right questions, to solve problems, to use deductive reasoning, and to write mathematics
so that it is correct, to the point, and clear. All these things make learning modern alge-
bra worthwhile—for future teachers and graduate students, for computer science students
and many others who will use mathematics, and for some who will simply appreciate its
intellectual appeal. This book has been written with all such readers in mind.

ON READING MATHEMATICS

First, remember that mathematics must be read slowly and thoughtfully. That is true of this
book. The book is intended to be as clear as possible. But that does not mean as easy as
possible. Part of the reward of learning the subject comes from the exercise of questioning
and concentration. It would be a disservice if the book could be read without thought.
Sometimes, if you don’t understand something, it’s better to go on; but in general you
should work to understand each step before going to the next. That may require referring
back to something covered earlier; if so, the review is probably useful. It may require
writing out details that have been omitted; if so, the thought will help reinforce what you
have learned. Leamning this subject is no different from learning music, a sport, or anything
else. It takes effort and patience and perseverance to do it well.

ON ASKING THE RIGHT QUESTIONS

What does it mean to ask the right questions? As a start, continually ask yourself if you
understand what you have just read. If it’s a definition, make sure you know all the terms
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that you’ve previously seen. Try to think of examples that satisfy the definition, as well
as some that don’t. If you can’t think of any, then from trying you’ll at least appreciate
examples when they are given.

When you read a theorem, ask yourself what the hypothesis and conclusion are. (These
terms are reviewed in Appendix B.) Be sure you know what all the words mean, looking
back if necessary. Then, before looking at the proof that’s given, think about how you would
try to do it yourself. Some proofs can be hard. But you’ll have an advantage if you at least
think about a general strategy before reading the proof in the book. (Again, see Appendix
B)

When you have finished an example or a proof or a section, ask yourself what you
have learned. There are no lists to help you review in this book. Putting together such lists
is part of the learning process.

Finally, there is one question that is always worthwhile: Could you explain it to someone
else? This applies to everything you read, to every solution you find, and to every proof
that you write. If you can’t explain it to someone with a reasonable background, then you
may not fully understand it. Most teachers will admit that they did not fully understand a
subject until they taught it; and even then they may learn something new every time around.
You can get some of the advantage of this simply by imagining how you would explain the
subject yourself.

ON SOLVING PROBLEMS

The best way to learn mathematics is to solve problems. Or at least to make serious attempts
to solve them. Even if you don’t succeed, you will be forced to think about ideas that might
help with a solution, and about how those ideas are related. Since mathematics is about
ideas and how they are related, that is extremely valuable.

In each section of the book the problems preceding the double line usually occur
in pairs, with solutions for the odd-numbered problems in Appendix E. The problems
preceding the double line tend to be more straightforward than the others, and provide a
way to become familiar with the basic ideas in the section.

Several sources for advice on problem solving and proofs are listed at the end of
Appendix B.

ON PROVING THEOREMS

In this book solving problems includes proving theorems. Suggestions about proofs appear
at a number of places in the book. In particular, please read Appendix B for the help it
can provide and since the text makes frequent use of its ideas. Included in Appendix B are
some of the “nuts and bolts” of proofs and deductive reasoning. This includes important
terms, basic facts about logic, and advice on strategy.

Do not become discouraged if constructing proofs seems difficult. It is difficult for
nearly everyone. Don’t be deceived by the form in which mathematicians generally display
their finished products. Behind a polished proof of any significance there has often been a
great deal of struggle and frustration and ruined paper. There is no other way to discover
good mathematics, and for most of us there is no other way to learn it.
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ON WRITING MATHEMATICS

After you have constructed a proof or solved a problem, it is good to remember that no one
can be expected to know what is in your mind or what you have discarded. They have only
what you write. For communicating proofs it would be hard to find sounder advice than
that given by Quintilian, 1900 years ago:

One should not aim at being possible to understand, but at being impossible
to misunderstand.

The Greek Alphabet
A o alpha
B B beta
r y gamma
A 8 delta
E € epsilon
VA ¢ zeta
H n eta
0 6 theta
I t 10ta
K K kappa
A A lambda
M u mu
N v nu
) & xi
o 0 omicron
I b4 pi
P 0 rho
z o sigma
T T tau
T v upsilon
d ¢ phi
X X chi
v ¥ psi
Q ) omega
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INTRODUCTION

Modern algebra—like any other branch of mathematics——can be mastered only by working
up carefully from the most basic ideas and examples. But that takes time, and some of the
goals will not be clear until you reach them. This section is meant to help sustain you along
the way. You may read this all at first, or begin with Chapter I and then return here at your
leisure. The purpose is simply to convey a feeling for how modern algebra developed and
for the kinds of problems it can help solve.

Please note that this section is not a survey of all of modern algebra. There is no
discussion of the applications of algebra in computer-related subjects, for instance, or of
some of the deeper applications of algebra in mathematics itself; in fact, such applications
are not covered even in the text. The examples here have been chosen because they can
be understood without special background. Even at that, by its very purpose this section
must occasionally be vague; we can worry about details and proofs when we get to the text
itself.

SYMMETRY

Symmetrical designs like those in Figure 1 have been used for decoration throughout
history. Each of these designs is built up from a basic irreducible component; such com-
ponents for the designs in Figure 1 are shown in Figure 2. In each case the plane can
be filled without overlap if the basic component is repeated by appropriate cornbinations
of rotation (twisting), translation (sliding), and reflection (such as interchanging left and
right).

Figure 2

Although the artistic possibilities for the components are unlimited, there is another
sense in which the possibilities are nor unlimited. Notice that the lower two examples in
Figure 1 will look the same if the page is turned upside down, but the top example will not.
Because of this we could say that the top example has a different symmetry type from the
other two examples. Continuing, notice that the middle example lacks the strict left-right

1
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symmetry of the top and bottomn examples. (For instance, in the irreducible component for
the middle example the ring passes under the white band on the left, but over the white
band on the right.) We can conclude, then, that the three examples somehow represent three
different symmetry types: different combinations of rotations, translations, and reflections
are needed to build up the three different designs from their basic components. If we were
to look at more designs, we would find examples of still other symmetry types, and we
would also find many examples that could be distinguished from one another, but not on
the basis of symmetry type alone. At some stage we would feel the need for a more precise
definition of “symmetry type.” There is such a definition, and it turns out that in terms of
that definition there are exactly 17 different symmetry types of plane-filling designs. Figure
60.9 shows one example of each type. Although each of the 17 types occurs in decorations
from ancient civilizations, it was only in the nineteenth century that these possibilities were
fully understood. The key to making “‘symmetry type” precise, and also to determining the
number of different symmetry types, is the idea of a group.

GROUPS

The idea of a group is one of the focal points of modern algebra. Like all significant
mathematical ideas, this idea is general and abstract, and it is interesting and important
because of the cumulative interest and importance of its many special cases. Roughly, a
group is a set of elements that can be combined through some operation such as addition
or multiplication, subject to some definite rules like those that govern ordinary addition of
numbers. The elements may be something other than numbers, however, and the operation
something other than the usual operations of arithmetic. For instance, the elements of the
groups used to study symmetry are things like rotations, translations, and reflections. The
precise definition of group is given in Section 5.

CRYSTALLOGRAPHY

Think again about symmetry type, but now move from two dimensions up to three. One
easy example here is given by moving a cube repeatedly along the directions perpendicular
to its faces. Other examples can be very complicated, and the general problem of finding
all symmetry types was not easy. Like the problem in two dimensions, however, it was
also settled in the nineteenth century: in contrast to the 17 different symmetry types of
plane-filling designs, there are 230 different types of symmetry for figures that fill three-
dimensional space. Again, groups provide the key. And with this use of groups we have
arrived at an application to science, for ideas used to solve this three-dimensional problem
are just what are needed to classify crystals according to symmetry type. The symmetry type
of a crystal is a measure of the regular pattern in which the component atoms or molecules
arrange themselves. Although this pattern is an internal property of the crystal, which may
require x-ray techniques for analysis, symmetry is often evident from the external or surface
features of the crystal. Figure 3 illustrates this with a picture of galena crystals: the repeated
occurrence of the shape on the left, in the picture on the right, is a consequence of the internal
symmetry of galena. (Galena is the chief ore mineral of lead and has properties that make
it useful in electronics.) Classification by symmetry type is at the heart of crystallography,
and is used in parts of physics, chemistry, and mineralogy.
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COMBINATORICS

Although one of the preceding connections of groups is with design, and the other is with
science, they both have to do with symmetry. Here is another example. The numbers 1
through 6 can be placed on the faces of a die (cube) in 720 different ways. But only 30
of these ways are distinguishable—if the numbers are put on more than 30 dice, then
at least two of the dice can be made to look the same through rotation. In Figure 4,
for example, the middle arrangement differs from the left-hand arrangement only by a
rotation, but no rotation of the middle die would make it look like the right-hand die. The
problem of counting the number of distinguishable arrangements belongs to the domain of
combinatorics, and if you are good at systematic counting, you can solve it without groups.
But the problem can also be solved with an appropriate group, and this provides a way of
viewing the problem that is almost indispensable for more complicated problems. In each
case a group is used to account systematically for the symmetry in the problem (such as
the symmetry of a cube).

3 6 3 ,
6+ |1 4] 54~ 1113 6l 11]5]
5 7 7
7 7 7
5 4 4

tn each case, 1 is on the front
and 2 is on the back.

Figure 4

ALGEBRAIC EQUATIONS

The examples thus far have had to do with geometrical symmetry, but groups were first
studied for a different reason. Much of the early history of modern algebra was tied closely
to questions about equations. In beginning algebra we learn that each linear (first-degree)
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equationax + b = 0 (a # 0) hasa unique solution x = —b/a, and each quadratic (second-
degree) equation ax? + bx + ¢ = 0 (a # 0) has solutions
—b+ Vb2 —4ac "
xr=—
2a

Methods for solving these equations were known by the sixteenth century. For example,
particular types of quadratics had been handled by the ancient Egyptians, Babylonians, and
Greeks, and by the Hindus and Arabs in the Middle Ages. But what about equations of
degree higher than two? For instance, is there a general procedure or formula, like (1), for
writing the solutions of a cubic (third-degree) equation ax® + bx? + cx + d = 0 in terms
of the coefficients a, b, ¢, and 4? Italian algebraists discovered in the sixteenth century that
the answer is yes, not only for cubics but also for quartic (fourth-degree) equations.

These solutions for cubics and quartics are fairly complicated, and their detailed form
is not important here. What is important is that all of this leads to the following more
general question: Can the solutions of each algebraic equation

X" +a,x" L+ +ap=0 2)

be derived from the coefficients a,, a,—i, ..., ao by addition, subtraction, multiplication,
division, and extraction of roots, each applied only finitely many times—or briefly, as we
now say, is (2) solvable by radicals? By early in the nineteenth century mathematicians
knew that the answer is no: for each n > 4 there are equations of degree n that are not
solvable by radicals. However, some equations of each degree n > 4 are solvable by radicals,
so there is the new problem of how to determine whether a given equation is or is not solvable
in this way. With this problem we are brought back to groups: with each equation (2) we can
associate a group, and the French mathematician Evariste Galois (1811~1832) discovered
that properties of this group reveal whether the equation is solvable by radicals. The group
associated with an equation measures an abstruse kind of symmetry involving the solutions
of the equation. Thus the abstract idea of a group can be used to analyze both geometrical
symmetry and solvability by radicals. Groups arise in other contexts as well, but we cannot
pursue them all here.

RINGS AND FIELDS

The theory of groups was not the only part of algebra to be stimulated by questions
about equations. A question that arises when one is first studying quadratic equations
has to do with square roots of negative numbers: What can we say about the solutions in
(1) if b2 — 4ac < 07 Nowadays this creates little problem, since we know about complex
numbers, and we generally feel just as comfortable with them as we do with integers and
real numbers. But this is true only because earlier mathematicians worked out a clear under-
standing of the properties of all the familiar number systems. Two more ideas from modermn
algebra—ring and field—were essential for this. Roughly, a ring is a set with operations
like addition, subtraction, and multiplication; and a field is a ring in which division is also
possible. Precise definitions of ring and field are given at the appropriate places in the text,
where we also see how these ideas can be used to characterize the familiar number systems.
There are no surprises when we relate rings and fields to number systems, but the following
application of fields to geometry should be more unexpected.
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GEOMETRIC CONSTRUCTIONS

Among the geometric construction problems left unsolved by the ancient Greeks, three
became especially famous. Each involved the construction of one geometrical segment
from another, using only unmarked straightedge and compass (Figure 5):

1. Construct the edge of a cube having twice the volume of a given cube.

I1. Show that every angle can be trisected.
III. Construct the side of a square having the same area as a circle of given radius.

These problems remained unsolved for more than 2000 years. Then, in the nineteenth
century, it was proved that the constructions are impossible. What makes this interesting for
us is that although the constructions were to be geometric, the proofs of their impossibility
involve algebra. And the key algebraic concepts needed are the same as those used to
analyze solvability by radicals; these include facts about fields that go far beyond what is
necessary to characterize the familiar number systems.

pa & 9
I L4

! [/_r ¢
a b

28 =6 3p=9 arl=s?

Figure §

NUMBER THEORY

The motivation for studying some of the deeper properties of rings came from a source
totally different from the applications already mentioned. Pythagorean triples are triples
(x, ¥, z) of positive integers such that x4+ y2 = 72, That is, they are the triples of inte-
gers that can occur as lengths of sides of right triangles (relative to an appropriate unit
of length). Examples are (3, 4, 5), (5, 12, 13), (8, 15, 17), and (199, 19800, 19801).
The Greek mathematician Diophantus derived a method for determining all such triples
around A.D. 250. (The Babylonians had determined many Pythagorean triples by much
the same method around 1500 B.C.) In reading about this problem in Diophantus’s book
Arithmetica, the French mathematician Pierre de Fermat (1601-1665) was led to introduce
one of the most famous problems in mathematics: Are there nonzero integers x, y, z such
that

x'l +y'l — ZIl

for any integer n > 2? Actually, Fermat claimed that there are no such integers, and this
claim eventually came to be known as Fermat's Last Theorem. But Fermat did not give a
proof of his claim, and the problem of constructing a proof defied some of the world’s best
mathematicians for over 350 years.

Fermat’s Last Theorem was finally proved in 1994 by Andrew Wiles of Princeton
University. The proof by Wiles, who was born in Cambridge, England, and educated at
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Cambridge University, is extremely complicated and draws on ideas developed by other
mathematicians over many years. Nothing in the statement of the theorem suggests the
depth of the ideas required for its proof. For a hint at these ideas, see Section 41. For an
interesting history of Fermat’s Theorem and the work of Wiles, as well as an insight into
mathematics as a creative process, see the book Fermat's Enigma, by Simon Singh, which
is listed at the end of this Introduction.

In the book by Singh, Wiles is quoted as saying that “the definition of a good mathe-
matical problem is the mathematics it generates rather then the problem itself.” This brings
out an important lesson from the history of mathematics, namely that attempts to solve
problems, both successful and unsuccessful, have been responsible for the development of
the subject. In particular, attempts to solve Fermat’s Last Theorem have had a profound
effect on number theory and algebra.

ORDER

The three basic kinds of systems we have discussed—groups, rings, and fields—are ex-
amples of what are known as algebraic structures. Each such structure involves one or
more operations like addition or multiplication of numbers. Some algebraic structures also
involve a notion of order, such as C for sets and < for numbers. For example, order must
be taken into account in studying the familiar number systems. One formal idea that grew
from questions about order is that of a latfice. Lattices can be represented by diagrams
like those in Figure 6: the example on the left shows the subsets of {x, y, z}, with a se-
quence of segments connecting one set to another above it if the first set is contained in
the second; the example on the right shows the positive factors of 30, with a sequence
of segments connecting one integer to another above it if the first integer is a factor of
the second. The similarity of these two diagrams suggests one of the purposes of lattice
theory, just as the similarity of certain symmetric figures suggests one of the purposes of
group theory. Lattice theory is concerned with analyzing the notion of order (subject to
some definite rules), and with describing in abstract terms just what is behind the similarity
of diagrams like those in Figure 6. Of course, there is more to this study of order than
diagrams. Lattices were first studied as natural generalizations of Boolean algebras, which
were themselves introduced in the mid-nineteenth century by the British mathematician
George Boole (1815-1864) for the purpose of giving an algebraic analysis of formal logic.
The first significant use of lattices outside of this connection with logic was in ring the-
ory and algebraic number theory; this interdependence of different branches of algebra
is certainly not uncommon in modern mathematics—in fact, it is one of its characteristic
features.

Figure 6
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COMPUTER-RELATED ALGEBRA

A number of applications of modern algebra have grown with the advent of electronic
computers and communication systems. These applications make use of many of the general
ideas first introduced to handle much older problems. For example, one such application
involves the use of Boolean algebras to study the design of computers and switching circuits.
Another application is to algebraic coding, which uses, among other things, finite fields;
these are systems that have only finitely many elements but are otherwise much like the
system of real numbers. Applications that use tools from modern algebraand combinatorics
belong to the general area of discrete applied mathematics; this can be contrasted with
classical applied mathematics, which uses tools from calculus and its extensions.

GENERAL REMARKS

Each algebraic topic discussed in this section will be touched on in the book, but they
cannot all be treated thoroughly. It would take more than one volume to do that, and in
any event there is even more to algebra than the topics introduced in this section might
suggest. A method once used by the American Mathematical Society to classify current
research divided mathematics into eight broad areas: algebra and the theory of numbers,
analysis, applied mathematics, geometry, logic and foundations, statistics and probability,
topology, and miscellaneous. Although the major branches represented in such a list are
in many ways interdependent, it is nonetheless true that each branch tends to have its own
special outlook and its own special methods and techniques. The goal of this book is to go
as far as possible in getting across the outlook and methods and techniques of algebra or,
more precisely, that part of algebra devoted to the study of algebraic structures.

Most of the chapters end with notes that list other books, including some where more
historical background can be found. Here are some general references that are concerned
with history; the notes at the end of Chapter X1 give a short list of more advanced general
references on modern algebra.

NOTES

1. Bell, E. T., Development of Mathematics, 2nd ed., Dover reprint, New York, 1992.

, Men of Mathematics, Touchstone Books, New York, 1986. These two books by E. T.
Bell are especially lively, though slightly romanticized.

2. Bourbaki, N., Elements of the History of Mathematics, trans. J. Meldrum, Springer-Verlag,
Berlin, New York, 1994.

3. Boyer, C. B, History of Mathematics, Wiley, New York, 1991. An excellent comprehensive
survey.

4. Corry, L., Modern Algebra and the Rise of Mathematical Structures, Birkhduser-Verlag, Basel-
Boston-Berlin, 1996.

S. Kleiner, I, A History of Abstract Algebra, Birkhauser, Boston, 2007.

6. Kline, M., Mathematical Thought from Ancient to Modern Times, Oxford University Press,
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CHAPTER 1

SECTION 1

MAPPINGS AND OPERATIONS

The most fundamental concept in modern algebra is that of an operation on a set. Addition
and the other operations in the familiar number systems are examples, but we shall see that
the general concept of operation is much broader than that. Before looking at operations,
however, we devote several sections to some basic terminology and facts about mappings,
which will be just as important for us as operations. The words function and mapping are
synonymous; therefore, at least some of this material on mappings will be familiar from
calculus and elsewhere. Our context for mappings will be more general than that in calculus,
however, and one of the reasons we use mapping rather than function is to emphasize this
generality. Notice that elementary facts about sets are collected in Appendix A, they will be
used without explicit reference, and probably should be reviewed at the start. You are also
urged to read Appendix B, which reviews some elements of logic and offers suggestions
regarding proofs.

MAPPINGS

Mappings are important throughout mathematics. In calculus, for instance, we study
mappings (functions) that assign real numbers to real numbers. The mapping given by
f(x) = x2, for example, assigns to each real number x the real number x2. The mapping
given by f(x) = sin x assigns to each real number x the real number sin x. The set R of
real numbers plays two roles in these examples: First, x € R, and second, f(x) € R.In
general these roles can be played by sets other than R. Thus in the definition of mapping,
which follows, S and T can denote any sets whatsoever.

Definitions. A mapping from a set S to a set T is a relationship (rule, correspondence)
that assigns to each element of S a uniquely determined element of T. The set S is called
the domain of the mapping, and the set T is called the codomain.

An alternative definition of mapping, preferred by some, is given at the end of
Appendix A.

Mappings will generally be denoted by Greek letters, and to indicate that « is a mapping
from S to T, we shall write & : S — T or S = T. If x is an element of S, then a(x) will
denote the unique element of T that is assigned to x; the element a(x) is called the image
of x under the mapping «. Sometimes there will be a formula for a(x), as in the examples
f(x) = x? and f(x) = sin x. But that certainly need not be the case.
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Example1.1. LetS = (x,y,z}andT = (1,2, 3}. Then definedby a(x) = 2, a(y) = 1,
and a(z) = 3 is a mapping from Sto T.

Another mapping, 8 : S — T,isgiven by 8(x) =1, B(y) = 3,and B(z) = 1.

The following diagram does not represent a mapping from S to T for two reasons: First, it
assigns two different elements to x, and second, it assigns no element to y.

~.!

Not a mapping T [ ]

Suppose that f and g are the mappings, each with the set of real numbers as domain,
defined by f(x) = (x + 1)?and g(x) = x2 + 2x + 1. Because (x + 1)% = x2 + 2x + 1 for
every real number x, it is reasonable to think of the mappings f and g as being equal. This
illustrates the following definition.

Definition. Two mappings « and B are said to be equal if their domains are equal, their
codomains are equal, and a(x) = B(x) for every x in their common domain.

Example 1.2. In Example 1.1, o # B. For example, a(y) =1 but 8(y) = 3, so a(y) #
B(y). Note that the definition of equal for mappings requires that a(x) = B(x) for all x in
the common domain. If there is an x in the common domain such that a(x) # B(x), then
a # B. As explained in Appendix B, “all” is a universal quantifier, and the negation of a
statement with a universal quantifier is a statement with an existential quantifier: “all” is
universal, whereas “there is” and “there exists” are existential.

Thus Example 1.1 gives two different mappings (o and 8) from S to T. There are, in
fact, 27 different mappings from S to T, for S and T as in Example 1.1. The reason is that
we have three independent choices (1, 2, or 3) for where to map each of x, y, and z. Thus
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the total number of choices is 3 - 3 - 3 = 3% = 27 (three choices for where to map x, and
the same for each of y and z). u

Example 1.3. If S is any set, we shall use ¢ (iota) to denote the identity mapping from Sto S,
which is defined by «(x) = x for each x € S. If it is necessary to indicate which set S is
being considered, s can be written instead of «. ]

It is sometimes convenient to write x — y or x > y to indicate that y is the image of
X under a mapping.

Example 1.4. Therule (s, t) — s + ¢ for each ordered pair of real numbers s and ¢ defines
a mapping from the set of ordered pairs of real numbers to the set of real numbers. [That
(s, t) is ordered means that it is to be distinguished from (¢, s). The necessity for this
distinction can be seen if addition is replaced by subtraction: t — s # s — ¢ unless s = ¢.]
Mappings of this kind, assigning single elements of a set to pairs of elements from the same
set, will be discussed at length in Section 3. n

Ifa:S — T and A is a subset of S, then a(A) will denote the set of elements of T
that are images of elements of A under the mapping «. In set-builder notation (described
in Appendix A),

a(A) = {a(x) : x € A).

The set @(A) is called the image of A under the mapping a.

Example 1.5. With o and 8 as in Example 1.1,
a({x, z}) = {2, 3} and B({x, z}) = {1}. ]

Definitions. If ¢ : S — T then «(S) will be called the image of . f ® : § - T and
a(S) = T, then « is said to be onto. Thus « is onto if for each y € T there is at least one
x € S such that a(x) = y.

N T N
0:5—-T s not onto 7:5—Tis onto

~
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Example 1.6. Interms of diagrams like those in Example 1.1, a mapping is onto provided
each element of the codomain has at least one arrow pointing to it. Thus the mapping o
in Example 1.1 is onto. However, the mapping 8 in Example 1.1 is not onto; its image is
{1, 3}, which is a proper subset of {1, 2, 3}, the codomain of 8. ]

Example 1.7. With f(x) = x? and g(x) = sin x thought of as mappings from R to R,
neither is onto. The image of f is the set of nonnegative real numbers. The image of g is
the set of real numbers between —1 and 1, inclusive. n

Definition. A mappinga : S — T is said to be one-to-one if
x| #x; implies oa(x)) # a(xz) (x1,x2 € 5),

that is, if unequal elements in the domain have unequal images in the codomain.
Example 1.8. In terms of diagrams like those in Example 1.1, a mapping is one-to-one
provided no two arrows point to the same element. The mapping « in Example 1.1 is

one-to-one. However, the mapping 8 in Example 1.1 is not one-to-one, bécause x # z but

B(x) = B(2). | |

Example 1.9. The mapping f(x) = x2, with domain R, is not one-to-one, because f(x) =
x% = f(—x), although x # —x when x # 0. The mapping f(x) = sinx, with domain R,
is not one-to-one, because f(x) =sinx =sin(x + 2n7w) = f(x + 2nm) for each x € R
and each integer n. | |

The contrapositive of

x| # x2 implies o(x;) # a(xz)

a(x;) = o(x;) implies x; = xa.

(See Appendix B for a discussion of contrapositive statements.) Since a statement and its
contrapositive are equivalent, we see that

a:S —> T isone-to-one
ifft
a(x;) =a(xz) implies x3 =x3 (x1,x2€8).

It is sometimes easier to work with this latter condition than with that given in the definition.
Witha : R —> Rdefinedby a(x) = x — 1, forinstance, we have that a(x,) = a(x;) implies
x; — 1 = x — 1, which implies x| = x;; therefore, « is one-to-one.

Notice that the identity mapping on any set is both onto and one-to-one. Notice also
that a mapping of a finite set to itself is onto iff it is one-to-one. In contrast, there are

t'We follow the practice, now widely accepted by mathematicians, of using “iff” to denote “if and only if.”
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mappings of any infinite set to itself that are one-to-one but not onto, and also mappings
that are onto but not one-to-one. Here are some examples.

Example 1.10. Define mappings « and 8 from the set of natural numbers, {1, 2,3, ...},
to itself, by

a(n) =2n

and

(n+1)/2 ifnisodd
nf2 if n is even.

1 2 3 4 5 6 7 8
. \ \\\\‘
1 2 3 4 5 6 1 8
1 2 3 4 5 6 7 8
8 l / ///
1 2 3 4 5 6 7 8
Then « is one-to-one but not onto; and B is onto but not one-to-one. The existence of such
mappings is precisely what distinguishes infinite sets from finite sets. In fact, a set § can

be defined as infinite if there exists a mapping from S to S that is one-to-one but not onto.
Otherwise, $ is finite. ]

=

We close this section with one remark on notation and another on terminology. The
symbols N, Z, Q, R, and C will be reserved to denote the following sets:

the set of all natural numbers, {1,2, 3, ...}

the set of all integers, {..., -2, —1,0,1,2,...}

the set of all rational numbers, that is, real numbers that can be
expressed in the form a/b, witha, b € Zand b # 0

the set of all real numbers

the set of all complex numbers

akr oNZz

Familiarity with basic properties of N, Z, Q, and R will be assumed throughout. All of
these sets will be studied in Chapter VIL

Although we shall not use the following terminology, it should be mentioned because
you may see it elsewhere. Sometimes, a one-to-one mapping is called an injection, an onto
mapping is called a surjection, and a mapping that is both one-to-one and onto is called
a bijection or a one-to-one correspondence. Also, what we are calling the codomain of a
mapping is sometimes called the range of the mapping. Regrettably, range is also used for
what we are calling the image of a mapping; this ambiguity over range is one reason for
avoiding its use,
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PROBLEMS

1.1. Let S={w,x,y,2z} and T ={1,2,3,4}, and define «a:S > T and 8:5S > T by
a(w) =2, a(x) =4, a(y) =1, a(z) =2and B(w) =4, B(x) =2, B(y) =3, B8(z) = 1.
(a) Is @ one-to-one? Is B one-to-one? Is a onto? Is B onto?
(b) Let A = {w, y} and B = {x, y, z}. Determine each of the following subsets of T : a(A),
B(B),a(AN B), B(AU B).

1.2. Leta, 8, and y be mappings from Z to Z defined by a(n) = 2n, B(n) = n + 1,and y(n) = n3
foreachn € Z.
(a) Which of the three mappings are onto?
(b) Which of the three mappings are one-to-one?
(¢) Determine a(N), S(N), and y (N).

For Problems 1.3~1.6, assume S = {x,y,z} and T = (1,2, 3}. From Example 1.2, we know there
are 27 mappings fromSto T.

1.3. How many mappings are there from S onto T?

1.4. How many one-to-one mappings are there from S to 7'?
1.5. How many mappings are there from S to {1,2}?

1.6. How many mappings are there from S onto (1, 2)?

For Problems 1.7-1.10, assume that S and T are sets,a : S — T,and B : S — T. Complete each of
the following statements. (The discussion of quantifiers in Appendix B may help.)

1.7. « is not onto iff for some . ...
1.8. «is not one-to-one iff ...
19. a #Biff ...

1.10. B is one-to-one and onto iff foreachy e T ....

Each f in Problems 1.11-1.16 defines a mapping from R (or a subset of R) to R. Determine which
of these mappings are onto and which are one-to-one. Also describe f(P) in each case, for P the set
of positive real numbers.

111, f(x)=2x 1.12. f(x)=x—4 113, f(x)=x3
114, f(x)=x>+x 115, f(x)=¢" 1.16. f(x)=tanx

In Problems 1.17 and 1.18 let A denote the set of odd natural numbers, B the set of even natural
numbers, and C the set of natural numbers that are muitiples of 4.

1.17. With « as in Example 1.10, describe a(A), a(B), and a(C).

1.18. With 8 as in Example 1.10, describe B(A), B(B), and B(C).

In Problems 1.19 and 1.20, for each n € Z the mapping f, - Z — Z is defined by f,(x) = nx.
1.19. For which values of n is f, onto?

1.20. For which values of » is f, one-to-one?

t

1.21. Assume that S and T are finite sets containing m and n elements, respectively.
(a) How many mappings are there from S to T?

1 For each set of problems, solutions for most of the odd-numbered problems preceding the double line can be
found at the back of the book. More problems for each section may be found at http://www.wiley.com/college/
durbin.
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1.22.

1.23.

(b) How many one-to-one mappings are there from § to T? (Consider two cases: m > n and
m<n.)

(a) How many mappings are there from a two-element set onto a two-element set?
(b) from a three-element set onto a two-element set?
(c) from an n-element set onto a two-element set?

A mapping f : R — R is onto iff each horizontal line (line parallel to the x-axis) intersects
the graph of f at least once.

(a) Formulate a similar condition for f : R — R to be one-to-one.

(b) Formulate a similar condition for f : R — R to be both one-to-one and onto,

1.24. Foreach ordered pair (a, b) of integers define a mapping ¢t  : Z — Z by atq y(n) = an + b.
(a) For which pairs (a, b) is ¢, onto?
(b) For which pairs (a, b) is &4 one-to-one?
1.25. With B as defined in Example 1.10, for each n € N the equation 8(x) = n has exactly two
solutions. (The solutions of 8(x) = 2 are x = 3 and x = 4, for example.)
(a) Define a mapping y : N — N such that for each n € N the equation y(x) = n has exactly
three solutions.
(b) Define a mapping y : N — N such that for each n € N the equation y(x) = n has exactly
n solutions. (It suffices to describe y in words.)
(c) Define amapping y : N — Nsuchthatforeachn € Nthe equation y (x) = n has infinitely
many solutions.
1.26. Prove that there is a mapping from a set to itself that is one-to-one but not onto iff there is a
mapping from the set to itself that is onto but not one-to-one. (Compare Example 1.10.)
1.27. Prove thatif ¢ : S — T and A and B are subsets of S, then @(A U B) = «(A) U «(B). (See
Appendix B for half of the proof.)
1.28. (a) Provethatif @ : § — T, and A and B are subsets of S, then (A N B) € a(A) N a(B).
(b) Give an example (specific S, T, A, B, and «) to show that equality need not hold in part
(a). (For the simplest examples S will have two elements.)
1.29. Prove that a mapping « : § — T is one-to-one iff ®(A N B) = a(A) N a(B) for every pair
of subsets A and B of S. (Compare Problem 1.28.)
1.30. Using the definition of infinite from Example 1.10, prove that if a set S has an infinite subset,
then § is infinite.
1.31. Define a one-to-one mapping from the set of natural numbers onto the set of positive rational
numbers.
SECTION 2 COMPOSITION. INVERTIBLE MAPPINGS

Assumethato : S —> Tand 8 : T — U.Thenw(x) € T foreach x € §, so it makes sense
to write B(c(x)), which is an element of U. Thus « followed by 8 in this way is seen to
yield a mapping from S to U. This allows the following definition.
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Definition. Ifa:S — T and 8 : T — U, the composition (or composite) of o and B,
denoted by 8 o e, is the mapping from S to U defined by

(B oa)x) = Blal(x))
for each x € S. Note carefully: In 8 o @, it is o, the mapping on the right, that is applied
first.
Example2.1. LetS = {x,y,2},T ={(1,2,3},and U = {(a, b, c}. Definea : § - T by
a(x)=2, a(y)=1, and a(z)=3,
as shown in the diagram below. Also, define 8 : T — U by
B(l)=5b, BR2)=c, and B3)=a.

Then
(Boa)x) = Blax)) =BR2)=c

(Boa)y) =Bla(y)=p1)=b
(B 0 a)(z) = Bla(z)) = B(3) = a.
x a 1 B a
y ><2 b
—»3 c B

Example 2.2. Let o and B denote the mappings, each with the set of real numbers as both
domain and codomain, defined by

a(x)=x*+2 and Bx)=x-1.

Then
(& 0 B)(x) = a(B(x)

=alx—1)
=@x-1"+2
=x?-2x+3,

while

(B 0 o)(x) = Bla(x))
= B(x2+2)
=@x1+2) -1
=xr4+1.

In particular, for example, (o o 8)(0) = 3 but (8 o @)(0) = 1. This example shows that
B oa and a o B need not be equal, even if both are defined. n

It will be important to know which compositions are onto and which are one-to-one.
The following theorem provides the answer.
Theorem 2.1. Assumethata :S — T andB:T — U.

(a) If a and B are onto, then B o a is onto.

(b) If B o is onto, then B is onto.

(¢) If a and B are one-to-one, then B o a is one-to-one.

(d) If B o & is one-to-one, then a is one-to-one.
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PROOF. (a) Assume that both @ and g are onto. To prove that 8 o « is onto, we must
establish that if z € U, then there is an element x € S such that (8 o a)(x) = z.

Let z € U. Because 8 is onto, there exists y € T such that 8(y) = z. Since « is also
onto, there exists x € S such that a(x) = y. We now have

(Boa)x)=ple(x))=B(y)=z.

Therefore, 8 o  is onto.

(b) Assume that 8 o« is onto and that z € U. Then there exists x € S such that
(B o a)(x) = z. But then B(a(x)) = z with a(x) € T. Hence, 8 is onto.

(c) Assume that both o and 8 are one-to-one. To prove that 8 o «r is one-to-one, we
shall prove that if x|, x5 € § and (8 o @)(x;) = (B8 o @)(x2), then x| = x,.

If (B o a)(x)) = (B o a)(x2), then a(x;) = a(x2) since B is one-to-one. Therefore,
X| = x, since « is one-to-one. This proves that 8 o « is one-to-one.

(d) Assume that 8 o « is one-to-one. If x;, x3, € S and a(x1) = a(x,), then B(a(xy)) =
Bla(x2)); that is, (8 o a)(x1) = (B o @)(x2). This implies x; = x, because 8 o « is one-to-
one. Therefore, « is one-to-one. u

Definitions. A mapping B:T — S is an inverse of @: S — T if both foa = i5 and
aof = 7. A mapping is said to be invertible if it has an inverse.

If a mapping is invertible, then its inverse is unique (this is Problem 4.13).

Example2.3. The mapping « in Example 2.1 is invertible. Its inverse is the mapping y
defined by
yMO=y, v@Q=x, and y@)=z.

For example,

(yoa)(x) = y(2) = x = 15(x)

and

(@oyX) =a(y)=1=1r(l).

There are also four other equations to be checked, those involving (¥ o a)(¥), (¥ o a)(z),
(a 0 ¥)(2), and (@ o ¥ )(3). In terms of the diagram in Example 2.1, y is gotten by reversing
the direction of the arrows under . u

Example 2.4. The mapping @ : R — R defined by a(x) = x? is not invertible. It fails on
two counts, by the following theorem. u

Theorem 2.2. A mapping is invertible iff it is both one-to-one and onto.

Remark. This theorem has the form p iff ¢, so we must prove both if p then g, and if
q then p (Appendix B). In the following proof we first prove if p then g, so we begin by
assuming that the given mapping is invertible.

PROOF. First assume that  : § — T is invertible, with inverse 8. Then 8 o «, being
the identity mapping on S, is one-to-one; therefore, & must be one-to-one by Theorem
2.1(d). On the other hand, o 8, being the identity mapping on T, is onto. Therefore,
must be onto by Theorem 2.1(b). This proves that if « is invertible then it is both one-to-one
and onto.
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PROBLEMS

Now assume that o : § — T is both one-to-one and onto. We shall show that « is
invertible by describing an inverse. Assume ¢ € T . Then, because o is onto, there is at least
one element s € S such that a(s) = ¢. But « is also one-to-one, so this element s must be
unique; let 8(t) = s. This can be done for each element ¢ € T, and in this way we obtain a
mapping B : T — S. Moreover, from the way in which 8 is constructed it can be seen that
Boa =1t5and @ o B =, sothat 8 is an inverse of «. Thus « is invertible. [ ]

Warning: Some authors write mappings on the right rather than on the left. Our a(x)
becomes, for them, xa. Then in B o« it is B, the mapping on the left, that is applied
first, because x(B o @) = (xB)a. Although we shall consistently write mappings on the
left, it is important when reading other sources to take note of which convention is being
followed.

Leta, B,and y be mappings from Z to Z defined by a(n) = 2n, B(n) =n + 1,and y(n) = n®. Write
a formula for each of the compositions in Problems 2.1-2.6. Also determine the image in each case.

21 aoca
22, youa
23. ao B

24. Bo§B

25 Boy

26. yoy

2.7. Provethatifa:S - T,thena oy =aandir o = a.
2.8. Describe the inverse of the mapping B in Example 2.1.

Each mapping fin Problems 2.9 and 2.10 defines an invertible mapping from R (or a subset of R) to
R. Write a formula for the inverse (call it g) in each case.

29. (a) f(x)=5x () f(x)=x—4 (©) fx)=10
2.10. (a) f(x)=—x/2 ®) fx)=x* (€) f(x)=log,x(x >0)

2.11. For « a mapping, decide whether each of the following is true or false. (Appendix B gives
examples involving if, only if, necessary conditions, and sufficient conditions.)
(a) « is invertible if & is one-to-one. )
(b) « is invertible only if « is one-to-one.
(c) A necessary condition for « to be invertible is that it be one-to-one.
(d) A sufficient condition for @ to be invertible is that it be one-to-one.

2.12. For o a mapping, decide whether each of the following is true or false.
(a) a is invertible only if « is onto.
(b) « is invertible if & is onto.
(c) A sufficient condition for @ to be onto is that it be invertible.
(d) A necessary condition for « to be onto is that it be invertible.

2.13. Consider f and g, mappings from R to R, defined by f(x) =sinx and g(x) =2x.Is fog
equalto go f?

2.14. Which of the functions sine, cosine, and tangent, as mappings from R to R, are invertible?
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2.15.

2.16.

2.17.

2.18.

2.19.

2.20.
2.21.

2.22.

2.23.
2.24.

2.25.
2.26.

2.27.

Complete the following statement: A mapping @ : § — T is notinvertible if & is not one-to-one
or....

Assume o : S — T and 8 : T — S. Complete the following statement: 8 is not an inverse of
aiff Boa #tsor....

Assume thata : § — T and 8: T — U. Consider the following statement.

If « is one-to-one and B is onto, then
B o a is one-to-one and onto. (2.1)

(a) Is statement (2.1) true? Justify your answer.
(b) Write the converse of statement (2.1). Is this converse true? Justify your answer.
(c) Write the contrapositive of statement (2.1). Is this contrapositive true? Justify your answer.

Assume thata : S — T and B8: T — U. Consider the following statement.

If & is not one-to-one, then
B oa is not invertible. (2.2)

(a) Is statement (2.2) true? Justify your answer.
(b) Write the converse of statement (2.2). Is this converse true? Justify your answer.
(c) Write the contrapositive of statement (2.2). Is this contrapositive true? Justify your answer.

For sets S and T, define S < T to mean that there exists a mapping from T onto S but there
does not exist a mapping from S onto T. Prove that if S< 7T and T< U, then S< U.

Prove that the inverse of an invertible mapping is invertible.

Give an example of sets S, T, and U and mappingse : S - Tand B : T — U suchthat Boa
is onto, but B is not onto. [Compare Theorem 2.1(b).]

Give an example of sets §, T, and U and mappings @ : S - Tand 8: T — U suchthat Boa
is one-to-one, but & is not one-to-one. [Compare Theorem 2.1(d).]

Prove thatifa: S > T,8:T - U,y :T - U, aisonto,and Boa = y o, then 8 = y.
Prove thatif 8: S > T,y :S > T,a: T — U, « is one-to-one, and @ o 8 = a o y, then
B=v.

Give an example to show that the condition “« is onto” cannot be omitted from Problem 2.23.

Give an example to show that the condition “« is one-to-one” cannot be omitted from Problem
2.24.

Assume that @ : S — T and 8: T — U. Use Theorems 2.1 and 2.2 to prove each of the
following statements.

(a) If o and B are invertible, then B o & is invertible.

(b) If B o a is invertible, then B is onto and « is one-to-one.

SECTION 3

OPERATIONS

If one integer is added to another, the result is an integer. If one integer is subtracted
from another, the result is also an integer. These examples—addition and subtraction of
integers—are special cases of what are known as operations. In each case there is a set
(here the integers), and a relationship that assigns to each ordered pair (a, b) of elements of
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that set another element of the same set: a + b in one case, a — b in the other. The general
definition of operation is as follows.

Definition. An operation on a set § is a relationship (rule, correspondence) that assigns
to each ordered pair of elements of S a uniquely determined element of S.

Thus an operation is a special kind of mapping: First, § x S, the Cartesian product of
S with S, is the set of all ordered pairs (a, b) witha € S and b € S (Appendix A). Then an
operation on § is simply a mapping from S x § to §. In the case of addition as an operation
on the integers, (a, b) — a + b.

Example 3.1. On the set of positive integers, multiplication is an operation: (m, n) — mn,
where mn has the usual meaning, m times n. Division is not an operation on the set of
positive integers, because m <+ n is not necessarily a positive integer (1 =2 = 1/2, for
instance). n

The last example illustrates a point worth stressing. To have an operation on a set S, it
is essential that if @, b € S, then the image of the ordered pair (a, b) be in §. This property
of an operation is referred to as closure, or we say that S is closed with respect to the
operation.

If there is an established symbol to denote the image of a pair under an operation, as in
the case of a + b for addition of numbers, then that symbol is used. Otherwise some other
symbol is adopted, such as (a, b) +—> a * b or just (a, b) — ab, for instance, where it must
be specified what a * b or ab is to mean in each case. We often say “operation *” when we
mean “operation denoted by *.”

Example3.2. If x is defined by m x n = m" for all positive integers m and n, the re-
sult is an operation on the set of positive integers. Notice that 3 * 2 = 32 = 9, whereas
2%3=23=8. Thus 3%2 # 2 % 3, so that, just as with subtraction, the order makes a
difference. ]

Example 3.3. Let S denote any nonempty set, and let M(S) denote the set of all mappings
from S to S. Suppose that « € M(S) and B € M(S). Thene:S — §,8:S — §, and
Boea:S— S, sothat Boea € M(S). Thus o is an operation on M(S). We shall return to
this in Section 4. [ ]

Example 3.4. IfS is afinite set, then we can specify an operation on § by means of a table,
similar to the addition and multiplication tables used in beginning arithmetic. We first form
a square, and then list the elements of S across the top and also down the left-hand side.
For an operation *, we put a * b at the intersection of the (horizontal) row with a at the
left and the (vertical) column with b at the top. For Table 3.1, u * v = w, v x u = v, and s0
forth. Any way of filling in the nine spaces in the square, with entries chosen from the set
{u, v, w}, will define an operation on {u, v, w}. Changing one or more of the nine entries

Table 3.1
* u v w
w
v v v v
w w
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will give a different operation. (If the nine entries are left unchanged, but * is changed
to some other symbol, the result would not be considered a different operation.) Tables
defining operations in this way are called Cayley tables, after the English mathematician
Arthur Cayley (1821-1895). ]

Example 3.5. For 2 x 2 matrices with real numbers as entries, addition and multiplication
are defined as follows.

ab_+_wx_a-+-w b+x
c d y z c+y d+z

a blw x| _|aw+by ax+bz

c dilly z cw+dy cx+dz
These examples will reappear throughout the book. More generally, for any positive in-
teger n, both matrix multiplication and matrix addition can be defined on the set of all

n x n matrices with real numbers as entries. These examples are discussed more fully in
Appendix D. ]

What we are calling operations are often called binary operations, to emphasize that
they are mappings of ordered pairs, rather than mappings of single elements or ordered
triples or such. [Examples of operations that are not binary are a = —a and (a, b, ¢) ~
a(b + c¢) wherea, b, c € R.] Weshall have no occasion to discuss explicitly any operations
other than binary operations, so we shall not carry along the extra word binary.

The notion of operation is so fundamental in algebra that algebra could almost be
defined as the study of operations (with binary operations being the most important): But
this would be something like defining mathematics as the study of sets and mappings—
there is no question of the importance of these concepts, but at the same time they are too
general to be of real interest. In calculus, for example, it is not all functions f : R - R
that are of interest, but only functions that have some property such as continuity or dif-
ferentiability. In the same way, in algebra the operations that are of interest usually pos-
sess certain special properties. We now introduce some of the most important of these
properties.

Definition. An operation * on a set S is said to be associative if it satisfies the condition

axbxc)=(a*xb)*c associative law

foralla,b,c € S.

For example, addition of real numbers is associative: a + (b + ¢) = (a + b) + ¢ for
all a, b, ¢ € R. Subtraction of real numbers, however, is not associative: 2 — (3 — 4) =
2—(-1)=3,but (2 —3) — 4 = (-1) — 4 = —5. Notice that if the equation in the asso-
ciative law fails for even one triple (g, b, ¢), then the operation is not associative. (See the
discussion in Appendix B on the negation of statements with quantifiers.)

Multiplication of real numbers is associative: a(bc) = (ab)c. But the operation defined
in Example 3.2 is not associative: For example, 2 x (3 *2) = 2 % 3H=2%9=2°=512
but(Q*3)*x2=23%2=8x%2 =82 =64

To motivate the next definition, think of the following properties of the integers 0 and
I:m+0=0+m=mandm-1=1-m = m, for every integer m.
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Definition. An element e in a set S is an identity (or identity element) for an operation *
on S if

exa=ax*xe=aqa foreacha €§.

Thus 0 is an identity for addition of integers, and 1 is an identity for multiplication
of integers. Note that the definition requires both e xa =aand g * e = a,foreacha € S.
(See Problems 3.11 and 3.12.) A similar remark applies to the next definition.

Definition. Assume that * is an operation on S, with identity ¢, and thata € S. An ele-
ment b in S is an inverse of a relative to * if

axb=bxa=e.

Example 3.6. Relative to addition as an operation on the set of integers, each integer has
an inverse, its negative: a + (—a) = (—a) + a = 0 for each integer a. It is important to
notice that the inverse of an element must be in the set under consideration. Relative to
addition as an operation on the set of nonnegative integers, no element other than 0 has an
inverse: the negative of a positive integer is negative. ]

Example 3.7. Relative to multiplication as an operation on the set of real numbers, each
real number different from 0 has an inverse, its reciprocal: a - (1/a) = (1/a) -a = 1. Mul-
tiplication is also an operation on the set of integers (with identity 1), but in this case only
1 and —1 have inverses. n

We have seen that it is possible to have an operation * and elements a and b such that
a * b # b x a (subtraction of integers, or Example 3.2, for instance). Operations for which
this cannot happen are numerous enough and important enough to deserve a special name.

Definition. An operation * on a set S is said to be commutative if

axb=bxa commutative law
foralla,b € S.
Addition and multiplication of integers are commutative. Other examples will occur in

the problems and elsewhere. The next two examples summarize some properties of matrix
addition and multiplication.

Example 3.8. Consider addition on the set of all 2 x 2 real matrices (that is, matrices
with real numbers as entries), from Example 3.5. The matrix with every entry 0 (zero) is
an identity element, and

the inverse of a b is —a b .
¢ d —c —d

Matrix addition is both associative and commutative. | ]

Recall that the determinant of a real matrix

A= [Z ﬂ 3.1
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PROBLEMS

is the real number ad — bc. This will be denoted det(A). If B is another 2 x 2 real matrix,
then

det(AB) = det(A) det(B). 3.2)

This can be proved by considering the second equation in Example 3.5 and using simple
algebra to verify that (aw + by)(cx + dz) — (ax + bz)(cw + dy) = (ad — bc)(wz — xy).

Example 3.9. Let G denote the set of all 2 x 2 real matrices with det(4) # 0. Because of
the condition in (3.2), G is closed with respect to multiplication, so multiplication is an
operation on G. Matrix multiplication is associative, but it is not commutative (see Problem
3.26, with the matrices required to have nonzero determinants). The identity matrix,

b

is an identity element for G. And each element of G has an inverse in G: Problem 3.27 asks
you to verify that if A is as in (3.1) and det(A) = ad — bc # 0, then

-1 .
a b 1 d -b
L d} —m[_c } G

If det(A) = O, then A does not have a multiplicative inverse. ]

Which of the following equations define operations on the set of integers? Of those that do, which
are associative? Which are commutative? Which have identity elements?
3. mxn=mn+1
32. mxn=(m+n)/2
33. mxn=m
34. mxn=mn?

35 mxn=m?+n?

36. mxn=2"
37. mxn=3
38. m*xn=./mn

3.9. Does (m, n) > m" define an operation on the set of all integers? (Compare Example 3.2.)
3.10. There is an identity for the operation in Example 3.3. What is it?
3.11. Prove that the operation in Example 3.2 has no identity element.

3.12. (a) Prove that the operation in Example 3.4 has no identity element.
(b) Change one entry in the table in Example 3.4 so that u becomes an identity element.

3.13. If % is an operation on S, T is a subset of S, and T is closed with respect to %, then two of the
following three statements are necessarily true, but one may be false. Which two are true?
(a) If % is associative on §, then * is associative on T.
(b) If there is an identity element for * on S, then there is an identity element for x on T.
(c) If % is commutative on §, then * is commutative on T
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Assume that x is an operation on S. Complete each of the following statements.

3.14.
3.15.
3.16.
3.17.
3.18.

3.19.
3.20.

3.21.

3.22.

3.23.

3.24.

3.25.

* is not associative iff a x b xc) #(@*xb)xc....

* is not commutative iffa xb £ b*a....

e € S is not an identity element for * iff ....

There is no identity element for * iff for each e € § there is an element a € § such that. ...

Complete the following table in a way that makes % commutative.

* a b c

a a b

b c

c c d a b
d a c

Determine the smallest subset A of Z such that 2 € A and A is closed with respect to addition.

Determine the smallest subset B of Q such that 2 € B and B is closed with respect to addition
and division.

How many different operations are there on a one-element set? A two-element set? A three-
element set? An n-element set? (See the remarks in Example 3.4.)

How many different commutative operations are there on a one-element set? A two-element
set? A three-element set? An n-clement set? (The Cayley table for a commutative operation
must have a special kind of symmetry.)

(a) Complete the following Cayley table in such a way that ¥ becomes an identity element. In
how many ways can this be done?

Tll v
7—_

v

(b) Can the table be completed in such a way that u and v both become identity elements?
Why or why not?

(c) Prove: An operation * on a set S (any S) can have at most one identity element.

Compilete the following table in such a way that * is commutative and has an identity element,

and each element has an inverse. (There is only one correct solution. First explain why y must
be the identity element.)

* w x y z
w y x
x z w

y

z w

Prove that addition is commutative on the set M(2, R) of all 2 x 2 matrices with real numbers
as entries (Example 3.5). Which property of addition of real numbers do you need?



SECTION 4 COMPOSITION AS AN OPERATION 25

3.26.

3.27.
3.28.

3.29.

3.30.

3.31.

3.32.

Prove that matrix multiplication (Example 3.5) is not commutative as an operation on the set
of all 2 x 2 matrices with real numbers as entries.

Verify that the statement in equation (3.3), Example 3.9, is correct.

Assume that * is an operation on S with identity element e. Prove that to check whether x is
associative on § it suffices to check the associativity condition for the nonidentity elements of
S; that is,

ax(bxc)=(@*xb)*xc
is automatically true if any one of a, b, or ¢ is equal to e.
Assume that * is an associative operation on § and thata € S. Let
Cl@a={x:xeSanda*x=xx*a}.
Prove that C(a) is closed with respect to *.
Prove: If * is an associative operation on §, then
axbx(cxd) =ax((bxc)xd)
=(axb)*(cxd)
=(@xbxc)*xd
= ((@a*xb)*c)xd
foralla,b,c,d € S. (See the second paragraph in Section 14.)

Assume that * is an operation on S with identity element e and that
xx(y*z)=(x*z)*y
for all x, y, z € S. Prove that * is commutative and associative.

Assume that e is an identity element for an operation x onaset S.Ifa,bec Sandaxb=¢
then a is said to be a left inverse of b and b is said to be a right inverse of a. Prove that if * is
associative, b is a left inverse of g, and c is a right inverse of @, then b = c.

SECTION 4

COMPOSITION AS AN OPERATION

In Example 3.3 we saw that if § is any nonempty set, then composition is an operation
on M(S), the set of all mappings from § to . It is worthwhile to look more closely at this
operation, for its importance is matched only by that of addition and the other operations on
the familiar number systems. The most general properties are summarized in the following
theorem.

Theorem 4.1. Let S denote any nonempty set.

(a) Composition is an associative operation on M(S), with identity element (.

(b) Composition is an associative operation on the set of all invertible mappings in

M(S), with identity 5.

PROOF. Associativity means that y o (Boa) =(y o B)o« for all ¢, 8, y € M(S).

By the definition of equality for mappings, this means that

[y o (Boa)l(x) = [(y o B) o al(x)
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for each x € S. To verify this, we can write

[y o (B oa)l(x) = y((B o a)(x))
= y(Bla(x)))
= (y o B)(a(x))
= [(y o B) o a](x).

(As in all proofs, it is important to understand the justification for each step. Remember
this test: Could you explain it to someone else?)

It is easy to verify that (g o = & o 15 = o for each o € M(S), which proves that ¢
is an identity element. (Compare Problem 2.7 with S =T'.)

Now move to part (b) of the theorem. Notice that the question of whether y € M(S) is
an inverse of @ € M(S) means the same whether taken in the sense of Section 2 (preceding
Example 2.3) or in the sense of Section 3 (preceding Example 3.6): y cax = a0y = 5.
To prove that composition is an operation on the set of all invertible mappings in M(S),
assume thate, 8 € M(S) and that both & and 8 are invertible. Then ¢ and B are one-to-one
and onto by Theorem 2.2. Therefore, 8 o « is both one-to-one and onto by Theorem 2.1,
parts (c) and (a). But this implies that 8 o « is invertible, again by Theorem 2.2.

Because composition is associative as an operation on all of M(S), it is certainly
associative when restricted to the invertible elements of M(S). The proof is now finished
by the observation that ¢ is invertible. ]

Example 2.2 shows that composition as an operation on M(R) is not commutative.
Problem 4.10 gives a more general statement about commutativity.

Notice that composition is an operation on a subset of M(S) if that subset is closed
with respect to composition. Also, whenever a subset of M(S) is closed with respect to
composition, then composition is necessarily associative as an operation on that subset; the
first paragraph of the proof of Theorem 4.1 provides a proof. Many important operations
involve composition on special sets of invertible mappings. We conclude this section by
giving two examples of this; more examples will come later.

Example 4.1. Let p denote a fixed point in a plane P, and let G denote the set of all
rotations of the plane about the point p. Each element of G represents an element of
M(P). Agree that two rotations are equal if they differ by an integral multiple of 360°.
Then composition is an operation of G: if & and B are rotations about p, then 8 o « is the
rotation obtained by first applying o and then B (Figure 4.1). For example, if o denotes
counterclockwise rotation through 70°, and 8 counterclockwise rotation through 345°, then
B o « is counterclockwise rotation through 415° or, equivalently, 55°, since we can ignore
multiples of 360°. This operation is associative by Theorem 4.1.

R

a

Figure 4.1
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An identity element is rotation through 0°, and each rotation has an inverse: rotation of
the same magnitude in the opposite direction. Finally, as an operation on G, composition
is commutative. ]

Example4.2. For each ordered pair (a, b) of real numbers with a # 0, leta, : R —> R
be defined by o, ,(x) = ax + b. Let A denote the set of all such mappings. Then com-
position is an operation on A. To verify this, let (a, b) and (c, d) be ordered pairs of real
numbers with a # 0 and ¢ # 0. Then ac # 0, and

(0tg,p 0 0, a)(x) = g plerc,a(x))
Agp(cx +d)
a(cx +d)+b
=acx+ad +b

= aac,ad+b(x)~

Thus o, © Ac,g = Ugc g4+»- Notice that A is a subset of M(R) and that composition is, as
always, associative. Further properties of this example are brought out in the problems.

Each mapping «, , can be interpreted geometricaily by considering what it does to the
points on a real line. If @ > 1, for instance, then a, o magnifies the distance of each point
from the origin by a factor of a: e, o(x) = ax. Also, if b > 0, then | , translates each point
b units to the right (assuming the real line is directed to the right): & ,(x) = x + b. Now
observe that a, , = o) 0 &, 0. It follows from these observations thatifa > 1 and b > 0,
then o, 5 corresponds to a, o (magnification) followed by a , (translation), as shown in
Figure 4.2. Problem 4.7 asks what happens in other cases.

>1
a.0 %16 la;>0
/\«/—\L L
0 x ax ax+ b
Qo b= @1, p° %0
Figure 4.2 | ]

4.1. With § = {a, b}, the set M(S) contains four elements; denote these by =, p, o, T, defined as
follows:

@) =a pl@=a c@=>b t@=>
ab)=a pb)=b ob)=a (b)=>b

(a) Construct the Cayley table for composition (o) as an operation on M(S) = {r, p, o, t}.
(Asastart, potr =tandocot =m.)

(b) Which is the identity element?

(c) Is o commutative as an operation on M(S)?

(d) Which elements of M(S) are invertible?

(e) Is o commutative as an operation on the set of invertible elements in M(S)?



28

CHAPTERI MAPPINGS AND OPERATIONS

4.2,

4.3.

4.4.

4.5.

4.6.

4.7.

4.8.

Let S = {a, b, c} and let A = {a, B, ¥, 8}, where a, B, ¥, and & are the elements of M(S)
defined as follows.

a(@)=a ab)=b alc)=c
Blay=b PBb)y=a Pc)=c
y(@=a yb)=a yl)=a
S(ay=>b 8&b)=b 8(c)=0>b

(a) Construct a Cayley table for A with respect to o. This table will show, in particular, that A
is closed with respect to o.

(b) The operation o is associative on A. Give a reason. (No calculations are necessary.)

(c) Is o commutative as an operation on A?

(d) The identity element of M(S) is in A. Which element is it?

Consider Example 4.1, and let pg, pso, P1s0. and pa7p denote clockwise rotation through
0°, 90°, 180°, and 270°, respectively. Composition is an operation on {gg, s9, P180, £270}
(270 © P90 = Po, for instance). Construct the corresponding Cayley table. Is there an identity
element? Does each element have an inverse?

Let S denote a nonempty set, and let N(S) denote the set of one-to-one mappings from S

to S.

(a) Which theorems prove that composition is an associative operation on N(S)? (The answer
should be specific and complete.)

(b) Is there an identity element for composition as an operation on N(S)?

(c) For which sets S is N(S) the same as the set of all invertible mappings from S to S?

(a) Consider Example 4.1, and let a denote clockwise rotation through /2 radians. Let H
denote the smallest subset of G such that @ € H and H is closed with respect to o. Deter-
mine H. (Suggestion: Denote & o & by a2, denote a o @ o « by &, and so on. H contains
four distinct elements.)

(b) Same as (a) with /2 replaced by 7 /6.

(c) Same as (a) with /2 replaced by m/k (k € N). How many distinct elements (rotations)
does H contain? (Treat rotations as indistinct if they differ by an integral multiple of 2 .)

Consider the operation o on the set A in Example 4.2.

(a) Verify that a, g is an identity element.

(b) Provethateacha,; € Aisinvertible by verifying that it is one-to-one and onto. (Remember
that a # 0.)

(c) Determine (c, d) so that & 4 is an inverse of &, 5.

Give a geometric interpretation of «, , in Example 4.2 under each of the following conditions.
(There can be shrinking rather than magnification, and translation to the left as well as to the
right.)

(a) 0<a<landb=0.

(b) a<0andb =0.

(c)a=1and b <0.

Let B and C denote the following subsets of A in Example 4.2:

B ={a,p:a€ Randa # 0}
C ={a,:beR}

(a) Verify that o is an operation on B. (That is, verify that B is closed with respect to o.) Is it
associative? Commutative? Is there an identity element?
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4.9.

4.10.

4.11.

4.12.

4.13.

4.14.

4.15.

4.16.

(b) Verify that o is an operation on C. Is it associative? Commutative? Is there an identity
element?
(c) Verify that each mapping in A is the composition of a mapping in B and a mapping in C.

Consider Example 4.2 and let D denote the smallest subset of A such that ;; € D and D is
closed with respect to o. Determine D.

Verify that if S contains more than one element, then composition is not a commutative
operation on M(S). (Try “constant” mappings, like  and t in Problem 4.1.)

Let S denote the set of all real numbers except O and 1. Consider the six mappings from Sto §
defined as follows:

1
a(x)=x a;(x) = T a(x)=1-x
1 )
ax)=1- - as(x) = ag(x) = ——
x 1— x -1
(a) Verify that composition is an operation on {a;, ..., @)} by constructing a Cayley table.
[As a start,
1 1/x 1
= -] = = — = slx),
(o6 0 a)(x) as(x> x=1 1-x s(x)
SO Qg 0 07 = 5.]
(b) There is an identity element. What s it?
(c) Show that each of the six elements has an inverse.
(d) Is o commutative as an operation on {e;, ..., as}?
(e) The operation o on {e, ..., ag} is associative. Why? (You may refer to the text.)

Prove thatifa: § - T,8:T — U,and y : U — V are any mappings, then y o (Boa) =
(y o B) o a. (The associativity in Theorem 4.1 is the special case of thiswithS§ =T =U =V )

Prove that each invertible mapping has a unique inverse. [Assume thate : § - T, 8: T — §,
y:T—> S8, Boa=yoa=1, and eoB =caoy =t(r. Show that 8 =y by using
Bo(aoy)=(Boa)oy, whichis a consequence of Problem 4.12.]

Is composition an operation on the set of all continuous mappings from R to R? (The answer
requires either a theorem or an example from calculus.)

Prove that if V is a vector space, then composition is an operation on the set of all linear
transformations from V to V. (This requires some knowledge of linear algebra. The basic ideas
are reviewed in Appendix D.)

Assume that S is a nonempty set and that @ € M(S). Then left and right inverses for « relative
to o are defined as in Problem 3.32.

(a) Prove that o has a left inverse relative to o iff @ is one-to-one.

(b) Prove that o has a right inverse relative to o iff « is onto.
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INTRODUCTION TO GROUPS

We are now ready for one of the central ideas of modern mathematics, that of a group. In
the first chapter we met a number of examples of sets with operations, and we observed
that such operations may or may not possess any of several special properties such as
associativity or the existence of an identity element. We shall see that a group is a set
together with an operation such that certain specified properties are required to hold. These
properties have been singled out because they arise naturally in many important special
cases. By studying groups we can arrive at a clearer understanding of each of those special
cases.

This chapter gives an introduction to groups through examples and a connection with
symmetry. Later chapters treat the general theory and applications of groups.

DEFINITION AND EXAMPLES

It takes patience to appreciate the diverse ways in which groups arise, but one of these ways
is so familiar that we can use it to ease our way into the basic definition. To this end, recall
the following three things about the set of integers with respect to addition. First, addition
is associative. Second, 0 is an identity element. And third, relative to 0, each integer has an
inverse (its negative). Much more can be said about the integers, of course, but these are
the properties that are important at the moment; they show that the integers with addition
form a group, in the sense of the following definition.

Definition. A group is a set G together with an operation * on G such that each of the
following axioms is satisfied:

Associativity
ax(b*xc)y=(@xb)*c forall a,b,ceG.
Existence of an identity element
There is an element ¢ € G such thata xe = e *xa = a foreacha € G.
Existence of inverse elements

For eacha € G there is anelement b € G suchthata xb=bxa = e.
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Notice that a group consists of a pair of things, a set and an operation on that set. In
particular, the set must be closed with respect to the operation. Often, a group is referred
to by naming only the underlying set, but that is safe only if it is clear what operation is
intended. As a special case, whenever we refer to the group of integers, the operation is
meant to be addition.

Example 5.1. The set of even integers together with addition is a group. Addition is an
operation because the sum of two even integers is an even integer. The associative law is
true for all integers, so it is certainly true for the subset of all even integers. The identity
element is O (an even integer), and the inverse of an even integer x is —x (again an even
integer). [ ]

Example 5.2. The set of positive integers with addition is not a group, because there is
no identity element. Even if we considered the positive integers along with 0 we would not
get a group, because no element other than 0 would have an inverse. n

Example5.3. The set {0} together with addition is a group. Notice that because a group
must contain an identity element, the set underlying a group must always contain at least
one element. n

Example 5.4. The set of positive rational numbers with multiplication is a group. If r/s
and u/v are positive, then (r/s) (u/v) = ru/sv is also positive. We take the associative
law to be a generally known fact from arithmetic. (We shall have more to say about this in
Chapter VIL) The identity element is 1, and the inverse of r/siss/r (r #0,5s #0). =

Example5.5. Tables 5.1 and 5.2 define operations on the set {a, b, c} that yield groups.
In Table 5.1 (x), a is an identity element and the inverses of a, b, and ¢ are a, ¢, and b,
respectively. In Table 5.2 (#), b is an identity element and the inverses of a, b, and c are
¢, b, and a, respectively. The verification of associativity is Problem 5.18. This example
illustrates why, in general, we should specify the operation, not just the set, when talking

about a group. [ ]
Table 5.1
ﬂ a b c
a a b c
b b c a
c c a b
Table 5.2

(9}
Q
S

[ R~
o o
QO

oo (]
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Example5.6. If S is any nonempty set, then the set of all invertible mappings in M(S) is
a group with composition as the operation. This is merely a restatement of Theorem 4.1(b).
‘We shall return to groups of this type in the next section. B

Example 5.7. Let p denote a fixed point in a plane, and let G denote the set of all rotations
of the plane about the point p. In Example 4.1 we observed that composition is an operation
on this set G, and we also verified everything needed to show that this gives a group. B

Example 5.8. Let A denote the set of all mappings a4 5 : R — R, as defined in Example
4.2. Recall thata, b € R, a # 0, and o, 5(x) = ax + b for each x € R. With composition
of mappings as the operation, this yields a group. The rule for composition was worked
out in Example 4.2. The identity element is c; o [Problem 4.6(a)]. The inverse of o, p is
Qg-1,—g-1, (Problem 5.19). B

Example 5.9. Let M(2, R)denote the set of all 2 x 2 real matrices together with addition
as the operation. Example 3.8 shows that M(2, R) is a group. [

Example 5.10. Let GL(2, R) denote the set of all 2 x 2 real matrices with nonzero deter-
minant. Example 3.9 shows that GL(2, R), with matrix multiplication, is a group. This is
called the general linear group of 2 x 2 matrices over R. It contains only matrices with
nonzero determinant so that each matrix will have an inverse. B

Definition. A group G is said to be Abelian if the group operation is commutative
(ab = bafor alla, b € G). Non-Abelian means not Abelian.

The name Abelian is in honor of the Norwegian mathematician Niels Henrik Abel
(1802-1829), whose contributions will be discussed in Chapter X. The groups in Examples
5.1,5.3,5.4,5.5,5.7, and 5.9 are Abelian. The groups in Examples 5.8 and 5.10 are non-
Abelian (Problems 5.19 and 3.26). The group in Example 5.6 is non-Abelian if |S] > 2
(Problem 6.11).

Examination of the groups given thus far will reveal that in each case there is only one
identity element. The definition requires that there be one; the point now is that there cannot
be more than one. Similarly, each element in each group has only one inverse element. Here
is a formal statement and proof of these two facts.

Theorem 5.1. Assume that G together with % is a group.
(a) The identity element of G is unique. That is, if e and f are elements of G such that

exa=axe=a foreachaeG

and
fxa=axf=a foreachaceG,

thene = f.

(b) Each element in a group has a unique inverse. That is, if a, x, and y are elements
of G, e is the identity element of G, and
axx =XxX*%xa=—=¢
and
axy=yxa=e,

then x = y.
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PROBLEMS

PROOF. (a) Assume that ¢ and f are as stated. Then e xa = a for each a € G, and
80, in particular, ¢ x f = f. Similarly, usinga = eina x f = a, we have e ¥ f = e. Thus
f=exf=e,andsoe= f, as claimed.
(b) With a, x, and y as stated, write

X=xx%xe (e 1s the identity)
=xx*x(@x*y) (@axy=e)
=(x*xa)xy (associativity)
=exy (x*xa=e)
=y (e is the identity). [ ]

Because of Theorem 5.1, it makes sense to speak of the identity element of a group, and
the inverse of a group element. It is customary to use @~! for the inverse of a group element
a when there is no conflicting natural notation (such as —a in the case of the integers with
addition). Thusa *a~! = @~! * @ = e. This is in accordance with the notation for inverses
relative to multiplication of real numbers, and with notation for other exponents in groups,
to be introduced in Section 14. If several groups are being considered at once, e can be
used in place of e to denote the identity of a group G.

The number of elements in the set underlying a group is called the order of the group;
we denote this by |G|. (More generally, |S| denotes the number of elements in the set S.)
A group is said to be finite or infinite depending on whether its order is finite or infinite.
The group in Example 5.3 has order 1. The groups in Example 5.5 each have order 3. We
shall compute the orders of the groups in Example 5.6, for S finite, in the next section. All
other groups considered thus far are infinite.

In Problems 5.1-5.10, decide whether the given set of numbers forms a group with respect to the
given operation. If it does, give the identity element and the inverse of each element. [f it does not,
give a reason. In each case, be sure to check whether the given set is closed with respect to the given
operation.

5.1. {1}, multiplication.
5.2. All nonzero rational numbers, multiplication.
5.3. All rational numbers, addition.
5.4. All rational numbers, multiplication.
5.5. (-1, 1}, multiplication.
5.6. {—1,0, 1}, addition.
5.7. All integers, multiplication.
5.8. (n:n = 10k for some k € Z}, addition.
5.9. All nonzero rational numbers, division.
5.10. All integers, subtraction.

5.11. Verifythat (2™ : m € Z}is a group with respect to multiplication. Identify clearly the properties
of Z and R that you use.

5.12. Verify that (2"3" : m, n € Z} is a group with respect to multiplication. Identify clearly the
properties of Z and R that you use.
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5.13.

5.14.

5.15.
5.16.

5.17.

5.18.

5.19.

5.20.

5.21.

5.22.

5.23.

5.24.

Let F denote M(R), the set of all mappings from R to R. For f, g € F define f + g by
(f + 8)(x) = f(x)+ g(x) for all x € R. Then f + g € F. Verify that with this operation F
is a group.

Let H denote the setof all f : R — R suchthat f(x) # 0 forall x € R. For f, g € H, define
fg by (fg)(x) = f(x)g(x) for all x € R. Then fg € H. Verify that with this operation H is a
group. How does this group differ from the group of invertible mappings in M(R) (Example
5.6)7

If |S] > 1, then M(S) is not a group with respect to composition. Why?

Let G denote the set of all 2 x 2 real matrices A with det(A) # 0 and det(A) € Q (the rational
numbers). Prove that G is a group with respect to multiplication. (Matrix multiplication is
always associative, so you may assume that. But check closure and the existence of an identity
element and inverse elements very carefully.) Is this group Abelian?

Let G denote the set of all 2 x 2 real matrices with determinant equal to 1. Prove that G is a
group with respect to multiplication. (You may assume associativity.)

Verify the associative law for the operation * in Example 5.5. (Notice that each time the identity
is involved there is really no problem. See Problem 3.28.)

Consider the group in Example 5.8.
(a) Verify the claim that the inverse of @, , is @,-1 _,-1,.
(b) Verify that the group is non-Abelian.

If {a, b} with operation * is to be a group, with a the identity element, then what must the
Cayley table be?

If {x, y, z} with operation x is to be a group, with x the identity element, then what must the
Cayley table be?

Prove: If G is a group, @ € G, and a x b = b for some b € G, then a is the identity element
of G.

There are four assumptions in Theorem 5.1(a):

exa =aforeacha € G fxa=aforeachae G

axe=aforeacha € G ax f —aforeacha € G.
The proof of Theorem 5.1(a) uses only two of these assumptions. Which two? Which of the
three axioms for a group are used?

Assume S is anonempty set and G is a group. Let G¥ denote the set of all mappings from § to
G. Find an operation on G® that will yield a group. '

SECTION 6

PERMUTATIONS

A permutation of a nonempty set S is a one-to-one mapping from S onto S. Because a
mapping from S to S is one-to-one and onto iff it is invertible, the permutations of S are the
same as the invertible elements in M(S). We observed in Example 5.6 that with composition
as the operation these invertible elements form a group. Such groups are of sufficient interest
for us to state this as a theorem.
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Theorem 6.1. The set of all permutations of a nonempty set S is a group with respect to
composition. This group is called the symmetric group on S, and will be denoted Sym(S).

Any group whose elements are permutations, with composition as the operation, is
called a permutation group, or, if we want to specify the underlying set S, a permutation
group on S. Therefore Sym(S) is a permutation group on S. But, in general, a permuta-
tion group on § need not contain all of the permutations of S. Examples are the group
of rotations of a plane about a fixed point p (Example 5.7) and the group of mappings
d.5 : R — R (a # 0) (Example 5.8). We shall see that permutation groups have a number
of important applications. At the moment, we concentrate on some elementary facts about
the groups of the form Sym(S), especially for S finite.

When S is the set {1, 2, ..., n}, consisting of the first n positive integers, the group
Sym(S) is commonly denoted S,. An element « of S, can be conveniently represented in
two-row form as follows. First write 1, 2, ..., n, and then below each number k write its

image a(k). Thus
1 2 3 4
2 4 3 1

represents the permutation in S4 definedby 1 > 2,2 +—» 4,3 > 3,and 4 — 1. The identity
element of S, is

The inverse of an element is obtained by reading from the bottom entry to the top entry
rather than from top to bottom: if 1 appears beneath 4 in «, then 4 will appear beneath 1 in

a~!. Thus
-1
1 2 3 4 {1 2 3 4
2 4 3 1 4 1 3 2)
In composing permutations we always follow the same convention we use in composing
any other mappings: read from right to left. Thus

123 4\ 1t 23 4\_1 2 3 4
2 4 1 3/ \3 4 1 2 1 3 2 4
12 3 4\ 1 23 4 (1 2 3 4
3 04 1 2 2 4 1 3 4 2 3 1)

Warning: Some authors compose permutations from left to right. One must check in
each case to see which convention is being followed.

but
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Example 6.1. The elements of S; are
1 2 3 1
1 2 3 2
1 2 3 1
2 1 3 3

Here are two representative computations.

12 3\ [1
]
(3 1 2) (3
-1
(1 2 3) _(1 2 3)
2 3 1 301 2 .

The group §; has order 1; S, has order 2; and, as we have just seen, S3 has or-
der 6. To give a general formula for the order of S, we first recall that if n is a posi-
tive integer, then n! (read n factorial) is defined by n! =1-2. ... . n, the product of
all positive integers up to and including n. Thus 1! =1,2! =2, 3! =6, 5! = 120, and
20! = 2,432,%902,008,176,640,000.

NN w N
—_ W — W
P e
— — W -
w N — N
N W N W

NN
—_ W
S——
Il
TN
N =
- N
W W
S——

Theorem 6.2. The order of Sy is n!.

PROOF. The problem of computing the number of elements in §,, is the same as that
of computing the number of different ways the integers 1,2, ..., n can be placed in the n
blanks indicated (using each integer just once):

-

If we begin filling these blanks from the left, there are n possibilities for the first blank.
Once that choice has been made, there remain n — 1 possibilities for the second blank.
Then there are n — 2 possibilities for the third blank, and so on. The theorem follows by
repeated application of this basic counting principle: If one thing can be done in r different
ways, and after that a second thing can be done in s different ways, then the two things can
be done together in rs different ways. |

Theorem 6.3. Ifn > 3, then S, is non-Abelian.

PROOF. If o and B in S, are defined by

a=123~~~ andﬁ=123"',
1 3 2 .. 3 2 1 ...
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with each number after 3 mapped to itself in each case, then

1 2 3 - 1 2 3 ...
Boa= but dof = .
(3 1 2 ) 2 3 1 ...
Thus 8 o @ # « o B, and the group is non-Abelian. [ ]

It is easily seen that S, and S, are Abelian. Indeed, if S is any set containing only one
or two elements, then Sym(S) is Abelian. On the other hand, if S contains more than two
elements, then Sym(S) is non-Abelian (Problem 6.11).

Elements of S, are frequently written using cycle notation. If S is a set, and
ay,ay,...,a; € S, then (a1a; . .. a;) denotes the permutation of S for which

ay = a, a; — as, ey Qk—1 P> Ak, A > ap,
and

x — x forallotherx € S.

Such a permutation is called a cycle or a k-cycle. If a is any element of S, then the 1-cycle
(a) is the identity permutation of S.

1 2 3 4 5
2 4 3 1 5}

Example 6.2. Consider

To write this in cycle notation:

Begin with (1

Next, 1 — 2, so write a 2
Next, 2 — 4, so write 1 2 4
Next, 4 — 1, soclose the cycle, giving a1 2 4.

Now begin a new cycle with 3, the smallest choice outside (1 2 4).

This gives 1 2 43
But 3 > 3, soclose the second cycle, giving 1 2 403
Finally, 5 — 5, so we get T 2 H3)5).

Because (3) and (5) both represent the identity permutation, they can be omitted, which

gives
1 2 3 4 5 - 2 4
2 4 3 1 5

Notice that (1 2 4) can denote an element of S, for any » > 4. For example, in Sy it
is the same as (1 2 4)(3), and in Sg it is the same as (1 2 4)(3)(5)(6). [ ]
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Cycles are composed just as any other permutations are (except that the symbol o
is usually omitted). We shall occasionally follow the common practice of referring to a
composition of cycles, or of other permutations, as a product. If necessary for clarity,
(ay, aa, . .., a) can be written in place of (a1az - - - ;).

Example 6.3. Remember that to compose two permutations (or any mappings), we begin
with the permutation (or mapping) on the right and then apply to the output the permu-
tation on the left. Consider (1 2 4)(3 4). To write the product (composition) in cycle
notation:

Begin with (1
Thecycle (3 4)fixes1, andthen(l 2 4)givesl— 2, sowrite (1 2

Thecycle (3 4)fixes2, andthen(l 2 4)gives2+— 4, sowrite (1 2 4
Thecycle(3 4)gives4 +— 3, andthen(l 2 4)fixes3, sowrite (1 2 4 3
Thecycle (3 4)gives3 +— 4, andthen(l 2 4)gives4— 1,
s0 3 +— 1 by the product and we close the cycle, giving 1 2 4 3)
Thus(1 2 4)3 49)=(1 2 4 3). [ |
Example 6.4
(124)(35)=12345012345
2 3 5 1 2 5 4 3
{1 2 3 4 5
2 4 5 1 3
H=2)=C3)=0LD3)
1 2 H3 H=1 2 4 3)
G H1 2 4H=(1 2 3 4
1 2 H3)SH=010 2 4)
12 3 49H9=2 3 4 H)=CB 41 2)=4 1 2 3) [ ]

Cycles (ajaz - - - @) and (b1by - - - by) are disjoint if a;  b; for all £, j. For example,
(1 2 49and (3 5 6)aredisjoint,but (1 2 4)and (3 4 6) are not. Disjoint cycles com-
mute; that is, if & and B represent disjoint cycles, then ¢f = Ba (Problem 6.16).

Theorem 6.4. Anypermutation of afinite set is either a cycle or can be written as a product
of pairwise disjoint cycles; and, except for the order in which the cycles are written, and
the inclusion or omission of 1-cycles, this can be done in only one way. [ |

We shall omit the proof of Theorem 6.4, but it is illustrated in the following example.
In each case, we simply start the first cycle with 1, continue until we get back to 1, and
then close the first cycle. Then start the second cycle with the smallest number not in the
first cycle, continue until we get back to that number, and then close the second cycle. And
S0 on, never repeating a number that has already appeared. The result is called the cyclic
decomposition of the permutation.
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Example 6.5. In each of the following equations, the right-hand side gives the cyclic
decomposition of what is on the left.

(1 234 5):(1 N2 4 =@ 4 S 3)
34152
14 52 3 55=(1 45 2 3
2 H1 3 D2 S H=01 3 H2 =@ 55 3 4
(1 61 51 491 3)1 2= 2 3 4 5 6)
123 4H'=@¢ 32 D=1 43 2
(1 5463 24 3 62 55=010 52 H3)XE)
=1 5C 4 n

Example 6.6. Table 6.1 is the Cayley table for S3. Here is a reminder of two of our
conventions: Across from « and below B is @ o 8, which is the permutation obtained by
first applying 8 and then «.

Table 6.1

(0] 12 3) @1Q 3 2 a1 2 1 3) 2 3)

(D 0Y)] 1r23 a3 2 12 1 3) 2 3
az23la 23 as32 (1) (1 3) 2 3) (1 2
a3 2/a 3 2 (1) 12 3 @ 3 1 2 (1 3)
1 2 ) Q 3 1 3 (1 132 (1 2 3
(1 3 (1 3) (1 2 2 3 a2 3 (1 (1 3 2
Q 3 2 3) (1 3 12 a3 2 a2 3 (1

Example 6.7. This example is optional at this point, but it provides an exercise in care-
ful thinking about one- and two-row forms of permutations, and explains the following
statement, which is used in the proof of Theorem S5.1.

Ifo, B € Sy, then the cyclic decomposition of 8 o @ o 8~! can be found from the cyclic
decomposition of a by replacing each number k by the number appearing below & in the
two-row form of B.

For example, if

a=(1 2 53 6)@) and ﬂ:(l 2 3 45 6),

S 3 1 2 4 6

then Boao Bt =(5 3 4)(1 6)(2) (as can also be verified by direct calculation).

Here is a proof: If ¢, B € §,, and 1 < k < n, then, in the cyclic decomposition of
«, the number k is followed by «a(k). [For « = (1 2 S), this would mean in particu-
lar that 5 is followed by 1.] The numbers under k and (k) in the two-row form of
B are B(k) and (B o a)(k), respectively. But, since B~! o 8 =« (the identity mapping),
Boa=Poac(B!oB)=(Boaocp ") o pB,sothe number following B(k) in the cyclic
decomposition of 8 o @ 0 87! is (B o a)(k). u
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PROBLEMS

6.1.

6.2.

6.3.

6.4.

6.5.

6.6.

6.7.

6.8.

6.9.

6.10.

6.11.

6.12.

6.13.
6.14.

6.15.

6.16.

Assumea=1234andﬂ=1234.
1 4 3 2 31 4 2

Compute each of the following.

(@) Boa (b) @0 B (©) a7 (@ g7
(&) Bloa™ ) atop™ (8 (Boa)™ ) (@op)!
Repeat Problem 6.1 using @ = bz 3 4 and 8 = b2 3 4 .
3 4 1 2 4 3 1 2

Write each of the following as a single cycle or a product of disjoint cycles.

1 2 3 4 5 6
() () (1 2%1 3)1 4)

3 5 6 4 2 1
© (1 '@ a2 3 5! @1 4 51 2 3 501 3)
Write each of the following as a single cycle or a product of disjoint cycles.

1 2 3 5 6
@ 4 ® (1 41 3 2)

1 6 4 5 3 2
© 1 2 3742 31 2 3) d) (2 4 51 3 5 41 2 5)

(a) Write all of the elements of S4 both in two-row form and using cycle notation.
(b) Which elements of Sq are their own inverse?

(a) How many elements of S3 map 3 to 3?
(b) How many elements of S, map n to n?

(a) Write (a4, - - - a¢)~" in cycle notation (without the symbol for inverse).
(b) For which values of k will every k-cycle be its own inverse?

Rewrite the proof of Theorem 6.3 using cycle notation.

Show that every element of S, is a 2cycle or can be written as a product of 2-cycles. [Sug-
gestion: (a\az - - - ax) = (a1a) - - - (@1a@3)(a,a2). Two-cycles, which we’ll return to in Section
7, are also called transpositions.]

Complete: If G (with operation =) is a group, then G is non-Abelian iffa *b # b *a---.

Prove that if S contains at least three elements, then Sym(S) is non-Abelian. (The main idea is
already in the proof of Theorem 6.3.)

By Problem 4.1, if |S| = 2, then composition, as an operation on M(S), is not commutative.
However, Sym(S) is Abelian. Explain.

Prove that if @ is a k<cycle with k > 2, then @ o « is a cycle iff & is odd.

Using a and 8 from Problem 6.2, compute 8 o & o 87! using the statement proved in Example
6.7 (after first writing & in one-row form). Check your answer using only two-row forms.

If G is a group with operation x,and a, b € G, then b xa * b~ is called a conjugate of a in
G. Use Example 6.7 to help compute the number of conjugates of each 3-cycle in S, (n > 3).
[Remember that (r s t) = (¢t r s) =(str).]

Assume that « and S are disjoint cycles representing elements of S,, say & = (@14, - - - ;) and

B = (bib, - - - b,) with a; # b, forall i and j.

(a) Compute (@ o 8)(a:) and ((B o a)ax) for 1 < k < s. [Here (a o B)(ax) denotes the image
of a; under the mapping & o 8; that is, (a,) is not a 1-cycle.]
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(b) Compute ( o B)(bx) and (Boa)(by) for 1 <k <1.

(c) Compute (a o f)(m) and (Boa)(m) for 1 <m < n with m # a; and m # b; for all i
and j.

(d) What do parts (a), (b), and (c), taken together, prove about the relationship between « o 8
and 8 o a?

SECTION7 SUBGROUPS

The set of even integers is a subset of the set of all integers, and both sets are groups with
respect to addition. Thus the even integers form a subgroup of the group of all integers,
according to the following definition.

Definition. A subset H of a group G is a subgroup of G if H is itself a group with respect
to the operation on G.

Notice that if G is a group with operation *, H is a subgroup of G, and a,b € H,
then @ * b € H. That is, H must be closed with respect to the operation *. In particular
axa € Hforeacha € H.

Example 7.1

(a) The group of integers with addition is a subgroup of the group of real numbers
with addition.

(b) With multiplication, {1, —1} is a subgroup of the group of nonzero real numbers.

(c) Any group is a subgroup of itself.

(d) If e is the identity of a group G, then {e} is a subgroup of G. n

Theorem 7.1 will provide a convenient way to decide whether a subset of a group is a
subgroup. But first we need the following preliminary result.
Lemma 7.1 Let G be a group with operation *, and let H be a subgroup of G.

(a) If f is the identity of H and e is the identity of G, then f =e.

(b) If a € H, then the inverse of a in H is the same as the inverse of a in G.

PROOF. (a) If f is the identity of H, then f * f = f. Therefore, if f~! denotes the
inverse of f in G, then

A= f

(flafref=e
exf =¢e
f=e.

(b) Assume a € H. Let a~! denote the inverse of a in G and let ¢ denote the inverse of
ain H. Thenaxc=c*a = f,s0a*c=c*a=e by part (a) of the proof. However,
Theorem 5.1(b) implies that a~ is the unique element x in G satisfyinga * x = x xa =e.
Therefore, c = a1, | |
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Theorem 7.1. Let G be a group with operation *, and let H be a subset of G. Then H is a
subgroup of G iff

(a) H is nonempty,
(b)ifaec Handb e H,thena xb € H, and
(c)ifac H, thena™ € H.

PROOF. Assume H to be a subgroup. Then, being a group, it must contain at least an
identity element and thus be nonempty, confirming condition (a). The necessity of closure
for a group, condition (b), has already been pointed out. Now consider condition (c). If
a € H, then @ must have an inverse in the set H. By Lemma 7.1(b), this inverse is a~!,
the inverse of @ in G. Thus a~' € H. We have now proved that if H is a subgroup, then
conditions (a), (b), and (c) must be satisfied.

Assume now that H is a subset satisfying (a), (b), and (c). To verify that H is a group we
shall verify that with respect to *, H satisfies the conditions in the definition of a group in
Section 5. Property (b) ensures that x is an operation on H. The associative law is satisfied
automatically: If a x (b * ¢) = (a * b) * c is true for all elements in G, then it is certainly
true for all elements in H, a subset of G. To show that H contains e, the identity element of
G, let x denote any element of H; there is such an element by condition (a). By condition
(c), x~' € H. Therefore, by condition (b), e = x * x'eH ThusHisa subgroup. n

Problem 7.22 contains a variation on Theorem 7.1, showing how (b) and (c) can be
combined into a single condition. If H is known to be a finite set, then condition (c) of
Theorem 7.1 can be omitted altogether (Problem 14.35).

Example 7.2. 1If k is an integer, the set of all integral multiples of & satisfies the conditions
of Theorem 7.1 and is therefore a subgroup of Z (with respect to +). In this case, the inverse
of an element is the negative of the element. The special case k = 2 gives the subgroup of
all even integers. | |

Example7.3. Table 7.1 shows that if H = {(1),(1 2 3),(1 3 2)}, then H is a sub-
group of S3. Checking the conditions of Theorem 7.1, we see first that H is nonempty.
Closure is fulfilled because nothing appears in the table except (1), (1 2 3), and
(1 3 2). And condition (c) is satisfied because (1)™' = (1), (1 2 3)'=(1 3 2), and
132'=@a 2 3.

Table 7.1
0 a2 3 (a 3 2
(1) €))] a 2 3 a 3 2
a2 3l a 2 3 a3 2 ()
a 3 2 a 3 2 €))] a 2 3 .

We now consider a general class of subgroups of which Example 7.3 is a special
case. First, we define a transposition to be a 2-cycle in S, (for any n). For example, the
transpositions in §3 are (1 2), (1 3), and (2 3). It can be verified that every element of
S» is a transposition or a product of transpositions (Problem 6.9). For instance, (1 2 3) =
(1 3)1 2).
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When we write an element of S, as a product of transpositions we may need either an
even number of factors, as in

(1 2345=( 51 $H1 3)1 2),
or an odd number of factors, as in
1253 H=( 51 2)3 4).

We define a permutation to be even or odd according to whether it can be written as a
product of an even or an odd number of transpositions, respectively. Thus the preceding
equations show that (1 2 3 4 S)isevenand (1 2 5)(3 4)is odd.

We must be careful of one thing with this definition. A permutation can be written as
a product of transpositions in more than one way, such as (1 2 3) = (1 3)(1 2) and
(1 2 3)=(2 3)(1 2)(1 3)2 3); the first representation has two factors and the second
has four. It must be proved that, for any permutation of {1, 2, . . ., n}, the number of transpo-
sitions needed is necessarily either even or odd, depending only on the given permutation.
A proof is given in Section 55, which can be read now if desired. Thus both of the terms
even and odd are well defined for permutations. We can now state the following resuit.

Theorem 7.2 (Alternating Group). The set of all even permutations in S, forms a subgroup
of S, for each n > 2. This subgroup is called the alternating group of degree n, and will be
denoted by A,. The order of A, is 1(n!).

PROOF. Use Theorem 7.1. The identity permutation is in A, because (1) = (1 2)
(1 2). If a,b € A,, then ab € A, because a product of an even number of transposi-
tions and an even number of transpositions will give an even number of transpositions.
Finally, the inverse of @ = (aja2)(@3as) - - - (@k_1a;) is a~' = (@e_1a¢) - - - (@3a4)(a1a2), s0
that a~! can be written using the same number of transpositions as a. Thus a € A, implies
a~le A,.

To prove that the order of A, is %(n!). it suffices to prove that S, has the same number
of even permutations as odd permutations, since S, has order n!. To do this, it suffices
to prove that the mapping 6 : A, — S, defined by 8(a) = a(1 2) is one-to-one and that
6(A,) is the set of all odd permutations in S,. This is left to Problem 7.7. [ ]

The group H in Example 7.3 is A3. Problem 7.8 asks you to find the elements in A4.

We close this section with two other types of subgroups of permutation groups. One
type will be used in Section 8 in studying symmetry, and the other will be used in Chapter
X1V in applications to combinatorics.

Assume that G is a permutation group on a set S, and that T is a subset of S. Let

Gr={eeG:a(t)=t foreach teT}. 7.1
We say that the elements of G leave T elementwise invariant.
Example7.4. LetS ={1,2,3,4},G = Sym(S) = S4,and T = {1, 2}. Then

Gr ={(H@AG@, H@AE N} ={(1D.C M}

(see Figure 7.1). This is a subgroup of G. ]
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An element of Gymust leave
each element in 7 fixed.

n

An element of Gy may permute
these elements (outside of T)
among themselves.

Figure 7.1

Just as in the example, Gr is always a subgroup. Before proving that, however, we
introduce another subset of G closely related to Gr. If & is a permutation of S, and T is a
subset of S, then a(T) denotes the set of all elements a(¢) fort € T. Let

G(T) = {t! e€eG: t!(T) = T} (72)

Thus, if ¢ € G(r) then @ may permute the elements of T among themselves, but it sends
no element of T outside T. We say that the elements of G(r) leave T invariant.

Example7.5. With S, G, and T as in Example 7.4,

Gr ={(H@EX4), (1 D)D), (IN2B 4, (1 )3 4))
={1.1 2,3 4.0 23 4)

(see Figure 7.2). This also is a subgroup of S,.
An element of G may permute

these elements (in T)
among themselves.

n

An element of Gy may permute
these elements (outside of T)
among themselves.

Figure 7.2 | |

Theorem 7.3. If G is a permutation group on S, and T is a subset of S, then Gt and G ()
are subgroups of G. Also, Gt is a subgroup of G ).

PROOF. Apply Theorem 7.1, first to Gr. Because ¢, the identity mapping of S, is in
Gr, the set Gt 1s nonempty. If o, B € Gr, then

(@0 f))=a(B)) =alt) =t
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PROBLEMS

foreacht € T,soa o8 € Gr.Finally,if ¢ € Gr and t € T, then

a(t)y =t
a~Ha@) = a7
(@ oa)(t) = a~i(r)
t =al(r)

soa™! € Gr. The proof that G(r, is a group is similar; simply replace ¢ by T in the obvious
places (Problem 7.15).

To prove that G is a subgroup of G(ry, assume« € Gr.Thena(t) =t foreachr € T

soa(T)=T.Thatis, ¢ € G). ]
7.1. Decide in each case whether the given subset is a subgroup of S,. Justify your answers.

@ (1,1 3 4.7 4 3)} (®) {(1),(1 2 3),2 3 4}

©) (M, A 23 4)} (d) ((1),(1 23 4),(1 43 2}

7.2.

7.3.

74.

7.5.

7.6.

7.
7.8.
7.9.

7.10.

7.11.

Decide in each case whether the given subset is a subgroup of Ss. Justify your answers.

@ (1. (1 3 5,1 5 3)

®) {(1, {1 3),.2 4, 32 )

© {(1),(1 2345),(05432)

(@ {1, 2 3),( 3 2),4 5, 23)4 5, 3 2)4 5))

Let § = {1,2,3} and G = S;. Write all of the elements of Gr and Gz, in each case.
a) T = (1} () T ={2,3}

Let § = {1,2,3,4}and G = S,. Write all of the elements of Gr and G(r, in each case.
@ T={l} (b) T ={1,2,3}

Verify that {a,0 : @ € R, a # 0} is a subgroup of the group in Example 5.8. Characterize the
group in geometric terms. (See Example 4.2.)

Repeat Problem 7.5 using {a;, : b € R}.

Prove the claims about 8 in the proof of Theorem 7.2.

Find the elements in A4.

Which of the following are subgroups of the group in Example 5.8?
(@) {as0:a€Q a+#0} () {as0:a€Z,a#0}
© {ap:beZ} (d) {a1p:beN}

Let F denote M (R), the set of all mappings f : R — R, made into a group as in Problem 5.13.
Let

H={(feF: f(x)eZ foreach x € R}.

Prove that H is a subgroup of F. State clearly the properties of Z that you use.

Consider the group M(2, Z), the set of all 2 x 2 matrices with integers as entries, with matrix

addition as the operation (Example 5.9).

(a) Prove that the set of all diagonal matrices (those with zeroes in the upper right-hand and
lower left-hand corners) forms a subgroup.

(b) Find a subgroup of M(2, Z) besides the group itself, the subgroup containing only the zero
matrix (Example 7.1 (d)], and the subgroup in part (a) of this problem.
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7.12.
7.13.

7.14.

7.15.

7.16.

7.17.

7.18.

7.19.

7.20.

7.21.

7.22.

7.23.

7.24.

7.25.

Find a subgroup of Q (operation +) that contains Z but is different from both Z and Q.

Prove that if H and K are subgroups of a group G (with operation x), then H N X is a subgroup
of G. (Compare Problem 7.14.)

Let H = {(1),(1 2)} and K = {(1),(1 2 3),(1 3 2)}. Both H and X are subgroups of S3.
Show that H U K is not a subgroup of S3. It follows that a union of subgroups is not necessarily
a subgroup. (Compare Problem 7.13. Also see Problem 14.38.)

Prove in detail that Gz is a subgroup of G. (That is, complete the proof of Theorem 7.3.)

For G = §,, state necessary and sufficient conditions on T, a subset of § = (1,2, ..., n}, for
G(T) = GT.

For a subset T of S, let T’ denote the complement of T in S, that is,
T'={x:x€S§ and x¢T}.

Prove thatif S = {1,2,...,n}and G = §,, then G(ry = G 7.

With S and G as in Problem 7.17, find necessary and sufficient conditions on n and T for
Gr =Gy

With § and G as in Problem 7.17, find necessary and sufficient conditions on n and T for
Gr €Gy.

LetS=1(1,2,...,n,T=(1,2,... . k)0 <k <n),and G = §,.
(a) What is |G| (the order of G7)? (b) Whatis |G)|?

Prove that if G is a group with identity e, and x € G and x % x = x, then x = e. (Question:
How would you prove this in Z with + in place of %, and 0 in place of €?)

Prove that if G is a group with operation , and H is a subset of G, then H is a subgroup of G
iff

(a) H is nonempty, and

(b) ifae Handb e H,thenaxb™! € H.

Assume that G is a group with operation x and that a € G. Let
Cl@)={xeG:a*x=xx%al.

Prove that C(a) is a subgroup of G. [C(a) is called the centralizer of a in G.]

Assume that G is a group with operation * and let
Z(Gy={xeG:axx=xxa foreverya € G}.

Prove that Z(G) is a subgroup of G. [Z(G) is called the center of G.]

Assume that G is a permutation group on a set S and that T is a subset of S. Let
G[T] = [(! €eG: (!(T) c T}

Then G(r) E G[T]A

(a) Give an example of a permutation @ of a set S and a subset T of § such that «(T') § T.
(Necessarily, S and T will be infinite.)

(b) Give an example to show that G(r) need not be a subgroup of G. (Compare Theorem 7.3.)
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SECTION 8 GROUPS AND SYMMETRY

Much of the importance of groups comes from their connection with symmetry. Just as
numbers can be used to measure size (once a unit of measurement has been chosen),
groups can be used to measure symmetry. With each figure we associate a group, and this
group characterizes the symmetry of the figure. This application of groups extends from
geometry to crystallography, and is introduced in this section and then discussed more fully
in Chapter XV. Another connection with symmetry—more abstract and not geometrical—
arises in the study of algebraic equations. A group is associated with each equation, and this
group characterizes a type of symmetry involving the solutions of the equation; questions
about the solvability of an equation can be answered by studying the group associated with
the equation. This application is discussed in Chapters X and XI.

We now look at how to associate a group with each figure in a plane. Let P denote
the set of all points in a plane, and let M denote the set of all permutations of P that
preserve distance between points. Thus, if p and g are in P, and  is in M, then the distance
between w(p) and 1(q) is equal to the distance between p and gq. The permutations in M
are called mortions or isometries of the plane. We shall prove in Theorem 8.1 that M, with
composition, is a group. But first we consider three types of motions: rotations, reflections
(through lines), and translations.

Rotations If p is a fixed point in P, then any rotation of the plane about p is a motion of
the plane. (Rotations were discussed in Examples 4.1 and 5.7.)

Reflections The reflection of the plane P through a line L in P is the mapping that sends
each point p in P to the point ¢ such that L is the perpendicular bisector of the segment
pq (Figure 8.1).

op

eq

Figure 8.1

Translations A translation of P is a mapping that sends all points the same distance in
the same direction. For instance, the translation sending p; to q, in Figure 8.2 would send
p2t0 g2 and ps to g3.

q 92

'
Py P2

P3

Figure 8.2

A fourth type of motion of a plane, glide-reflection, is discussed in Section 59. In this
section we need only rotations and reflections.
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Theorem 8.1. The set M of all motions (isometries) of a plane P forms a subgroup of
Sym(P).

PROOF. For p,q € P let d(p, q) denote the distance between p and g. With this
notation, if « € Sym(P), then
aeM iff da(p),alg)) =d(p,q).

To prove that M is a subgroup we shall verify the conditions in Theorem 7.1. (Remember
that the operation on Sym(FP) is composition.)

First, ¢, the identity of Sym(P), is clearly in M, so M is nonempty.

Assumea e Mand B e M. If p,q € P, then

d((a 0 B)(P), (@ 0 B)(q)) = d(a(B(p)), a(B(g)))

=d(B(p), B(q)) sincea € M, B(p) € P, and B(q) € P
=d(p,q) since B e M.
ThusaxoB e M.
Finally, assume « € M and p,q € P. Then
d(p,q) = d(p), «q)) since t € M
=d(a(@™'(p). ale™(q))) sinceax o~ =1
=da (p),a"'(q) sincee € M, a~!(p) € P, anda~!(q) € P.
Thusa~! € M. =

Now let T denote any subset of P. Since M is a permutation group on P [that is, a
subgroup of Sym(P)], we can use M in place of G in the defining equation for Gr) in
equation (7.2):

M(T) = {(I eM Zd(T) = T}
By Theorem 7.3, M7y is a subgroup of M. Thus we can make the following definition.

Definition. If T is a set of points in a plane, then M7y, the group of all motions leaving
T invariant, is called the group of symmetries (or symmetry group) of T !

Example 8.1. Consider a square, a rectangle, and a parallelogram (Figure 8.3). Any mo-
tion of one of the figures will permute the vertices of the figure among themselves and the
sides of the figure among themselves. Moreover, any motion will be completely determined
by the way it permutes the vertices. It follows that in each case the group of symmetries
will correspond to a subgroup of Sym{a, b, ¢, d}, and thus will have order at most 4! = 24
(Theorem 6.2). In fact, the order must be less than 24, because some permutations of the
vertices clearly cannot arise from motions of the plane (Problem 8.7). It tuns out that the
groups of the three figures have orders 8, 4, and 2, respectively. Their elements are listed
below. The lines V (for vertical), H (for horizontal), and D, and D, (for diagonal) are
not affected by the different motions. For example, rotation 90° clockwise around p will
change the positions of &, b, ¢, and d, but not of V, H, D, and D-. Notice that the more
symmetric the figure, the larger its group of symmetries.

1 Notice the difference between “symmetric” group, as used in Section 6, and “symmetry” group, as used here.
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Figure 8.3
Group of symmetries of the square in Figure 8.3a:

o = identity permutation
oo = rotation 90° clockwise around p
180 = rotation 180° clockwise around p
W70 = rotation 270° clockwise around p
pu = reflection through H
pv = reflection through V
o1 = reflection through D
p2 = reflection through D,

Group of symmetries of the rectanéle in Figure 8.3b:

io = identity permutation

180 = rotation 180° clockwise around p
pu = reflection through H
pv = reflection through V'

Group of symmetries of the parallelogram in Figure 8.3c:

o = identity permutation
180 = rotation 180° clockwise around p

Figure 8.4 illustrates how to compute entries for the Cayley tables of these groups. It
shows that the result of py o 1og is the same as p;, reflection through D;; and g 0 py is
the same as py, reflection through D;. Notice again that when we make such calculations
we assume H, V, Dy, and D, to be fixed.

PH o K90
a b d a c b
Hag PH
— —
d c c b d a
P ST
a b d c a d
PH Koo
—_ —
d c a b b c

Figure 8.4 | ]
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Table 8.1 is the Cayley table for the group of the square, which has each of the other
groups as a subgroup.

Table 8.1

o Ko K90 180 K270 PH ov 01 P2
Ho Ho Koo K10 K270 PH Pv Pl 02
Koo 222} K1go K270 Ko 01 P2 ov PH
K180 K180 K270 Ko [22] ov PH P2 (4
K270 K270 Ko Koo K180 P2 £1 PH ov
PH PH P2 Pv 01 Ko H1g0 K270 K90
ov ov £1 PH 02 K180 Ko [22] K270
o1 P1 PH P2 ov Moo H270 Ho H180
P2 P2 pv P1 PH K270 K90 K180 Ko

The symmetry groups for the figures in the following exercises contain only rotations

and reflections. The amounts of the rotations may differ from those in Example 8.1, however.

8.1.

8.2,

8.3.
8.4.

8.5.
8.6.

8.7.

8.8.

8.9.

8.10.

Draw figures like those in Figure 8.4 to verify the entries for (g0 0 pv and py o pig in
Table 8.1.

Draw figures like those in Figure 8.4 to verify the entries for w70 0 02 and pg 0 sy in
Table 8.1.

Determine the group of symmetries of an equilateral triangle.

Determine the group of symmetries of an isosceles triangle.

Determine the group of symmetries of a regular pentagon. (It will have order 10.)

Determine the permutation of the vertices of the square abcd corresponding to each motion in
Example 8.1. [Example: g corresponds to (a b ¢ 4).]

The permutation (ab)(c)(d) of the vertices of the square abcd (Figure 8.3a) does not correspond
to any motion of the plane. Why?

Consider the mapping T + Mr) from the set of subsets of a plane to the set of symmetry
groups. Is it one-to-one? Explain.

Using the notation of Example 8.1, determine the group of symmetries of a thombus (Figure
8.3c, with ab = ad).

Consider symmetry under the motions in Example 8.1. As geometric objects, the 26 capital
letters of the alphabet fall into five sets, with letters in each set having the same group of
symmetries. Determine the five sets. (Suggestion: A, B, N, H, and F belong to different sets.)

Determine the group of symmetries of each of the following figures. (It suffices in each case to use
motions similar to those in Example 8.1.)

8.11.

8.12. 8.13.
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8.14, 8.15. 8.16. f

In three dimensions, as well as in two, the set of all distance-preserving permutations (motions or
isometries) form a group with respect to composition. And, given a three-dimensional fig ure, such as
a cube, the set of all motions that leave the figure invariant form a group. Included in these motions
are rotations about either a point or a line. The next two problems involve the groups of rotations of
a cube and a tetrahedron.

8.17. [Refer to Figure 57.2 for this problem. It is part of Example 57.3, which involves other ideas

that may be ignored here.] The group G of all rotations of a cube has order 24. The elements of

G are of five kinds, and are listed in Example 57.3. Each element of G corresponds to a unique

permutation of the vertices of the cube. For example, rotation of 180° about the segment ij

corresponds to (ah)(de)(bg)(cf).

(a) Find the permutation of the vertices corresponding to each of the six 180° rotations about
lines joining midpoints of opposite edges, such as &/.

(b) Find the permutation of the vertices corresponding to €ach of the eight 120° rotations about
lines joining opposite vertices, such as ag.

(c) Show that G has a subgroup of order 12.

8.18. [For this problem, refer to the parenthetical statement at the end of Problem 57.12, and its

accompanying figure. Also see the instructions for Problem 8.17.] The group of all rotations

of a regular tetrahedron has order 12.

(a) Find the permutation of the vertices corresponding to €ach of the eight 120° rotations about
lines such as ae.

(b) Find the permutation of the vertices corresponding to each of the three 180° rotations about
lines such as fg.

(c) Show that each permutation of the vertices corresponding to a rotation of the group is an
even permutation (Section 7).

NOTES ON CHAPTER II

The origins of group theory can be found primarily in the theory of equations, number
theory, and the study of geometrical transformations. The earliest connections with the
theory of equations came in the late eighteenth and early nineteenth centuries, and will
be discussed in Sections 42-49. The connection with number theory is related to work
that will be discussed in Section 41. The symmetry groups in Section 8 are examples of
geometrical transformation groups; although we shall return to symmetry in Chapter XV,
there are other kinds of transformation groups that we shall not be able to consider.
The following references discuss the history of group theory. G. A. Miller (1865-1951)
was the first distinguished American group theorist.
1. Kleiner, I., The evolution of group theory: A brief survey, Mathematics Magazine, 59 (1986),
195-215.
2. Kline, M., Mathematical Thought from Ancient to Modern Times, Oxford University Press, Lon-
don, 1990.
3. The Collected Works of G. A. Miller, S vols., University of Illinois, Urbana, 1935-1959.
. Novy, L., Origins of Modern Algebra, Noordhoff, Leyden, The Netherlands, 1973.
5. Wussing, H., The Genesis of the Abstract Group Concept, MIT Press, Cambridge, MA., 1984.

&

Also see http://www-history.mcs.st-andrews.ac.uk/historyl/index.html
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EQUIVALENCE. CONGRUENCE.
DIVISIBILITY

The first section in this chapter is devoted to equivalence relations, which occur often not
only in algebra but throughout mathematics. The other sections are devoted to elementary
facts about the integers. These facts are used to construct examples of groups and of other
algebraic systems yet to be introduced. They will also help us understand some of the
elementary facts about groups to be proved in the next chapter.

EQUIVALENCE RELATIONS

Consider the following statements:

1. If x, y € R, then either

xX=y or Xx#Jy.
2. If x, y € R, then either
x<y or x%y.
3. If ABC and DEF are triangles, and = denotes congruence, then either

ABC =DEF or ABC % DEF.

In each statement, there is a set (R, R, and all triangles, respectively) and a relation on
that set (=, <, and =, respectively). The relationship may or may not hold between ordered
pairs of elements from the set. We are concerned now with relations of this type that satisfy
three specific conditions. (The symbol ~ in the following definition is read tilde.)

Definition. A relation ~ on a nonempty set S is an equivalence relation on S if it satisfies
the following three properties:

Ifa € S, thena ~ a. reflexive
Ifa,b e Sanda ~ b, thenb ~ a. symmetric
Ifa,b,c e Sanda ~ band b ~ ¢, thena ~ ¢. transitive
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Of the relations in 1, 2, and 3, the first and third are equivalence relations, but the
second is not (because it is not symmetric). In the first relation, R can be replaced by any
nonempty set, and the result will still be an equivalence relation; that is, for any nonempty
set S, equality (=) is an equivalence relation on §.

If ~ is an equivalence relation and a ~ b, we say that a and b are equivalent, or we
use the specific term involved if there is one (such as equal or congruent).

Example 9.1. Let p denote a fixed point in a plane P, and for points x and y in Plet x ~ y
mean that x and y are equidistant from p. This is an equivalence relation on the set of points
in P. A point x will be equivalent to a point g iff x lies on the circle through g with center
p- (The point p is equivalent only to itself; think of {p} as a circle with radius 0.) [ ]

Example 9.2. Let L denote the set of all lines in a plane with a rectangular coordinate
system. For /;, [, € L, let !} ~ I, mean that /; and /; have equal slopes or that both slopes
are undefined. This is an equivalence relation on L. The set of lines equivalent to a line /
consists of / and all lines in L that are parallel to /. u

Example9.3. Leta:S — T be a mapping. For x, y € §, let x ~ y mean that a(x) =
a(y). This is an equivalence relation on $. Here are two special cases.

(a) Let S = (u,v,w}, T ={1,2,3},and definea : S — T by
au)=3, a@W)=1 and a(w)=3.

Then u ~ w because @(u) = a(w). But u % v because a(u) # «(v). Here is a
complete list of the equivalences between elements of S:

u~U, U~NU, WS~NW, KW, WU

(b) Let S =T =R, and let o be the sine function. Then x; ~ x; iff sin x; = sin x5.
Thus, for example, the set of real numbers equivalent to s in this case is

{x :sinx =0} = {0, £n, £2n, .. .}. [

Now return to Example 9.1. A different way to define the equivalence relation in that
example Is to say that x ~ y if x and y lie on a common circle with center p. These circles
form a partition of the set of points in the plane, in the sense of the following definition.

Definition. A collection P of nonempty subsets of a nonempty set S forms a partition of
S provided

(a) S is the union of the sets in P, and

(b)ifAandBareinPand A # B,then AN B = J.

Alternatively, the collection P forms a partition of § if each element of $ is contained
in one and only one of the sets in P. Notice that each element of P is a subset of S. Figure
9.1 shows an example.

We have observed that the equivalence relation in Example 9.1 induces a partition of
the underlying set. In fact, every equivalence relation induces a partition and, conversely,
every partition induces an equivalence relation. Before proving this we make the following
definition.
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P = (8], S,, S3} forms
a partition of .

Figure 9.1

Definition. Let ~ be an equivalence relation on a set S, let a € §, and let [a] =
{x € S : a ~ x}. This subset [a] of § is called the equivalence class of a (relative to ~).

In Example 9.1, the equivalence class of a point g is the set of all points on the circle
with center at p and passing through 4. In Example 9.3(a),

[¥] = {u, w}, [v] = {v}, and [w] = {u, w}.

Notice that it is always true thata € [a], because ~ is reflexive. And if b € [a] thena € [b],
because ~ is symmetric.

Theorem 9.1. If ~ is an equivalence relation on a set S, then the set of equivalence classes
of ~ forms a partition of S. Conversely, let P be a partition of S, and define a relation ~
on S by a ~ b iff there is a set in P that contains both a and b, then ~ is an equivalence
relation on S. Thus there is a natural one-to-one correspondence between the equivalence
relations on a set and the partitions of the set.

PROOF. Let ~ be an equivalence relation on §. If a € S, then a belongs to at least one
equivalence class, namely [a], and thus S is indeed the union of the equivalence classes.
It remains to be proved that if two equivalence classes are unequal then they are disjoint;
or, alternatively, if they are not disjoint, then they are equal. To this end, assume that
[a] N [b] # B, and let ¢ denote an element in the intersection. If x denotes any element in
[a], then we have botha ~ canda ~ x;thusc ~ aanda ~ x,so ¢ ~ x. But we also know
that b ~ ¢; hence we can conclude that b ~ x, that is, x € [b]. This shows that [a] C [b].
In the same way, it can be shown that [a] D [b]. Therefore [a] = [b], which is what we
were to prove. .

Now assume ~ to be defined as in the converse statement. Ifa € §, thena ~ a because
there is some set in the partition containing a. If there is a set containing both a and b, then
it contains both b and a, so that the symmetry of ~ is trivial. Finally, assume that a ~ b
and b ~ c¢. Then there is a set in P containing both a and b, call it A; there is also a set in
P containing both b and ¢, call it B. Since b€ AN B, we have AN B # @; thus, A = B
because P is a partition. Both a and ¢ belong to this set; therefore a ~ ¢. This proves that
~ is transitive. [ |

Example 9.4. Let E denote the set of even integers and O the set of odd integers. Then
{E, O} forms a partition of the set of all integers. For the corresponding equivalence
relation, @ ~ b iff a and b are both even or both odd. Alternatively, a ~b iff a — b is
even. [ ]
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PROBLEMS

In working with an equivalence relation on a set S, it is often useful to have a complete
set of equivalence class representatives—that is, a subset of S containing precisely one
element from each equivalence class.

Example 9.5

(a) InExample 9.4, {0, 1} is a complete set of equivalence class representatives. Each
integer is equivalent to either O or 1, but no integer is equivalent to both. More
generally, any set {a, b} of integers with a even and b odd is a complete set of
equivalence class representatives in this case.

(b) In Example 9.3(a), {u, v} is a complete set of equivalence class representatives.
Another complete set of equivalence class representatives in this case is {v, w}.

(c) In Example 9.1, the set of all points on any ray (half-line) with endpoint p is a
complete set of equivalence class representatives, because such a ray intersects
each equivalence class (circle centered at p) in precisely one point. ]

The type of equivalence relation in the following theorem is important in applications
to combinatorics. Chapter XIV will give a generalization and more examples.

Theorem 9.2. Let G be a permutation group on S and define a relation ~ on S by
a~b iff al@)=b forsomeacG.

Then ~ is an equivalence relation on §.

PROOF. Reflexive: If a € §, then «(a) = a, where ¢ is the identity element of G. Thus
a~a.

Symmetric: If a, b € S and a ~ b, then there exists @ € G such that a(a) = b. Since
Gisagroup,e~' € G. Anda~'(b) =a,s0b ~ a.

Transitive: Assume thata, b, c € S,a ~ b,and b ~ ¢. Thena(a) = band B(b) = cfor

someca, 8 € G.Because Gisagroup, S o« € G.From (8 o a)(a) = B(a(a)) = B(b) =c,
we see that g ~ c. [ ]

Example 9.6. Consider Theorem 9.2 for § = {1, 2, 3, 4, 5} and G the group {(1),(1 2 5),
(1 5 2)}. In this case, the equivalence classes are

{1,2,5}, (3}, and {4}

A complete set of equivalence class representatives is {1, 3, 4}. ]

9.1. Assume that § = {w, x, y, z} and that w ~ y and z ~ y. Which of the following must also be
true if ~ is to be an equivalence relation on §?
@ y~y ) y~z (0 w~z (A y~x

9.2. AssumethatT = (v, w, x, y, z} and that w ~ x and x ~ y. Which of the following must also
be true if ~ is to be an equivalence relation on T?
(@) z~ 1z b) x~w ) v~z d y~w

9.3. If P = ({1, 3}, {2}, {4, 5}}, then P is a partition of {1, 2, 3, 4, 5}. For the corresponding equiv-
alence relation ~ (see Theorem 9.1), which of the following are true?
(a) 4~5 (by 3~3 © 1~2 (d) 5~1

9.4. Repeat Problem 9.3 with P = ({1, 4, 5}, {2, 3}}.
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9.5.

9.6.

9.7.

9.8.

99.

9.10.

9.11.

9.12.
9.13.

9.14.

9.15.

9.16.

9.17.
9.18.

For points with coordinates (x,, ;) and (x», y,) in a plane with rectangular coordinate system,

let (xy, y1) ~ (x2, y2) mean that y; = y,.

(a) Prove that ~ is an equivalence relation on the set of points in the plane. State clearly the
properties of the relation = on R that are used in the proof.

(b) Describe the equivalence classes geometrically.

(c) Give a complete set of equivalence class representatives.

For points (x;, y;) and (x2, y2) in a plane with rectangular coordinate system, let (x;, y;) ~
(x2, y2) mean that either x; = X or y; = y,. Explain why ~ is not an equivalence relation on
the set of points in the plane.

Define a relation ~ on R by

(a) Prove that ~ is an equivalence relation on R. State clearly the properties of the relation =
on R that are used in the proof.
(b) Give a complete set of equivalence class representatives.

Define a relation ~ on the set N of natural numbers by
a~b iff a=b-10° forsomek € Z.

(a) Prove that ~ is an equivalence relation on N. State clearly the properties of Z that are used
in the proof.
(b) Give a complete set of equivalence class representatives.

For x, y € R, let x ~ y mean that xy > 0. Which properties of an equivalence relation does ~
satisfy? Answer the same question with xy > 0 in place of xy > 0.

Give a complete set of equivalence class representatives for the equivalence relation in Example
9.2.

Determine a complete set of equivalence class representatives for the equivalence relation
induced on R by the sine function in Example 9.3(b). What does this have to do with the
inverse sine function?

Repeat Problem 9.11 with the tangent function in place of the sine function.

(a) Find all of the partitions of {x, y, z}.
(b) How many different equivalence relations are there on a three-element set? (Two equiva-
lence relations are different if they induce different partitions.)

How many different equivalence relations are there on a four-element set? (Compare Problem
9.13)

Forx, y € R, let x ~ y mean that x — y is an integer. Verify that ~ is an equivalence relation.
Describe the equivalence classes geometrically, with the elements of R identified with the
points on a line in the usual way. Give a complete set of equivalence class representatives.

For points (x;, y;) and (x2, y,) in a plane with rectangular coordinate system, let (x;, y1) ~
(x2, y2) mean that x; — x3 is an integer.

(a) Prove that ~ is an equivalence relation.

(b) Give a geometric description of the equivalence class to which (0, 0) belongs.

(c) Give a complete set of equivalence class representatives.

Repeat Problem9.16, butlet (x;, y;) ~ (x2, y;) meanthatboth x; — x; and y; — y, are integers.

Forsets S and 7', let S ~ T mean that there is an invertible mapping of S onto T. Prove that ~
is reflexive, symmetric, and transitive.
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9.19. Consider the equivalence relation in Theorem 9.2. Find the equivalence classes and a complete
set of equivalence class representatives in each of the following special cases.

@@ S={1,2...,n}and G = S,.
() S={1, 2, 3, 4)and G = {(1), 2 )}
© S=1{1, 2, 3, 4, Stand G = {(1),(1 2),(1 35,2 3 2 3),(1 3 D}.

9.20. For polynomials f(x)and g(x) with real coefficients, let f(x) ~ g(x) mean that f’(x) = g’'(x)
(where the primes denote derivatives). Prove that ~ is an equivalence relation, and give a
complete set of equivalence class representatives. (A polynomial with real coefficients is an
expression of the form dg + a,.x + + - - + a,x", where dg, @y, ..., a, € R)

921. Let ~ be a relation on a set S. Complete each of the following statements.
(a) ~ is not reflexive iff. ...
(b) ~ is not symmetric iff. ...
(c) ~ is not transitive iff. ...
9.22. Find a flaw in the following “proof” that a relation on a set S is reflexive if it is both symmetric

and transitive: Let x € S. From x ~ y, by symmetry, we have y ~ x. By transitivity, x ~ y
and y ~ x imply x ~ x. Therefore, ~ is reflexive.

SECTION 10 CONGRUENCE. THE DIVISION ALGORITHM

We get an equivalence relation on the set of integers by agreeing that two integers are
equivalent iff either both are even or both are odd (Example 9.4). Another way to say
this is to say that two integers are equivalent iff their difference is even. The notion of
congruence of integers generalizes this example. Congruence was first treated systemat-
ically at the beginning of the nineteenth century by the eminent German mathematician
Carl Friedrich Gauss (1777-1855); it has played a crucial role in the theory of num-
bers ever since. We shall see that congruence is also a fruitful source for examples in
modern algebra. In fact, many concepts in modern algebra first arose in work relating to
congruence.

Before defining congruence we need some elementary facts about divisibility. An
integer m is divisible by an integer n if there is an integer ¢ (for quotient) such that m = nq.
Thus 6 is divisible by 3 because 6 = 3 - 2. But 6 is not divisible by 4 or 5. If m is divisible
by n, we also say that n divides m, and that m is a multiple of n, and we write n| m. So 3|6
but4 ) 6. If n|m, we also say that n is a factor of m. An integer p is a prime if p > 1 and p
is divisible by no positive integer other than 1 and p itself.

Notice thatif n|m, then n |(—m). (Why?) Also,ifn|a and n| b, thenn|(a + b). [Proof:
Ifa = nq, and b = nq,, thena + b = n(q, + ¢2), and g, + ¢; is an integer if ¢, and g, are
integers.]

Definition. Let n be a positive integer. Integers a and b are said to be congruent modulo
nif a — b is divisible by n. This is writtena = b (mod n).

Two integers are congruent modulo 2 iff either both are even or both are odd. That is
the example from the introductory paragraph. Here are other examples: 17 = 3 (mod 7)
because 7 divides 17 — 3 = 14;4 = 22 (mod 9) because 9 divides 4 — 22 = —18;19 = 19
(mod 11); 17 # 3 (mod 8).
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In working with congruences it helps to be able to move easily among the following
equivalent statements.

a = b (mod n)

n|(@—b)

a—b=un for someu € Z
a=b+un for someu € Z

(See Problem 10.21.)

Theorem 10.1. Congruence modulo n is an equivalence relation on the set of integers,
for each positive integer n.

PROOF. Reflexive: If a is an integer, then @ = a (mod n) because n|(a —a) = 0.

Symmetric: If a = b (mod n), then n{(a — b), so n|(b — a) and b = a (mod n).

Transitive: If a = b (mod n) and b = ¢ (mod n), then n|(a — b) and n|(b — c); but
thenn|[(@ ~b)+ (b —c)]=a—c, soa=c(modn). [ ]

The equivalence classes for this equivalence relation are called congruence classes
mod n, or simply congruence classes if n is clear from the context. (These classes are
sometimes called residue classes, but we will not use this term.)

Example10.1

(a) There are two congruence classes mod 2: the even integers and the odd integers.
(b) There are four congruence classes mod 4:

{...,—8,-4,0,4,8,...)
{....,=7,-3,1,5,9,...)
{....—6,-2,2,6,10, ...}
{..,=5-1,3,7,11,..}. -

Notice that in the last example there are four congruence classes and each integer
is congruent to either 0, 1, 2, or 3 (mod 4). In the language of Section 9, {0, 1,2, 3,}
is a complete set of equivalence class representatives. We are now going to show that
this is typical, by showing that there are always n congruence classes modulo » and that
each integer is congruent to either 0, 1,2, ... or n — 1 (mod 7). But first we need more
information about the integers—information that is important far beyond our immediate
need, by the way. We start from the following principle.

Least Integer Principle. Everynonempty set of positive integers contains aleast element.

The Least Integer Principle is really an axiom, whose role will be clarified in Section
29. (See also Appendix C.) At the moment we need it to prove the Division Algorithm,
which will follow an example.
If 11 is divided by 4, there is a quotient of 2 and a remainder of 3:
11

3
— =242, orll=4.243.
or 3

This illustrates the following result.
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Division Algorithm. If a and b are integers with b > 0, then there exist unique integers
q and r such that

a=bg+r, 0<r<b.

Before giving the proof, we shall look at the idea behind it in the special case 11 =
4-243(@=11, b=4, g =2, and r = 3). Consider the display in Example 10.1(b): Z
has been partitioned into b = 4 rows (congruence classes); r = 3 is the smallest positive
number in the row containing @ = 11; and ¢ = 2 is the number of positions (multiples of
b = 4) that we must move to the right to get fromr =3 toa = 11.

Here is another illustration: —6 = 4 - (—2) + 2. Again, b = 4; r = 2 is the smallest
positive number in the row containing @ = —6; and ¢ = —2 is the number of positions that
we must move (regarding left as negative) to get from r = 2 to @ = —6. In terms of such
a display, with the integers partitioned into b rows (congruence classes), the set § in the
proof that follows consists of the elements in the row to which a belongs.

PROOF. We shall prove first that g and r exist, and then that they are unique. Consider
the set § = {a — bt : t isan integer}. Let §’ denote the set of nonnegative elements of S.
Then §’ # @, which can be seen as follows. If @ > 0,thent = Oyieldsa € §’.Ifa <0, then
witht =awefinda —ba € S;buta —ba =a(l —b) > 0becausea<0and 1 —b <0
(recall 1 < b), and the product of two nonpositive integers is nonnegative.

Let r denote the least integer in ' (if 0 € §’ then r = 0; otherwise, apply the Least
Integer Principle). Let g denote the corresponding value of ¢, so that @ — bqg = r and
a = bg+r. Then 0 < r by choice; therefore, it suffices to show that r < b. Assume, on
the contrary, that » > b. Then

a—blg+l)=a—bg—-b=r—-520,
and thus a — b(g + 1) € §’. But
a-blg+1l)=a—-bg—-b<a-—-bg=r

because b > 0, and this contradicts the choice of r as the least element in §’. Thus we do
have

a=bg+r, 0<r<b.
To prove uniqueness, suppose that
a=bg +r, 0<r <b
and
a=bgp+r;, 0=<ry<b.
We must show that g, = ¢; and r; = r,. We have
bgr+ri =bg+r;
bgi—g)=r2—r1.

Thusb|(rz — ry).But0 < ry <band0 < 12 < b,s0 —b < r; — r; < b.The only multiple of
b strictly between —b and b is 0. Therefore, r; — r; = 0,andr; = r. Butthenb(q, — ¢2) =
0 with b # 0 so that ¢, = ¢5. ]

We can now return to congruences.
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PROBLEMS

Theorem 10.2. Let n be a positive integer. Then each integer is congruent modulo n to
precisely one of the integers0, 1,2, ..., n~ 1.

PROOF. If a is an integer, then by the Division Algorithm there are unique integers ¢
and r such that

a=nqg+r, 0<r<n.

From this, @ — r = ng, so thatn|(a —r) anda = r (mod n). Thus a is congruent to at least
one of the integers 0, 1,2, ..., n — 1. To show that r is unique, assume that a = s (mod n)
with 0 < 5 < n. Then a — s = nt (for some integer ¢), and

a=nt+s, 0<s<n.

Thus s = r by the uniqueness of r in the Division Algorithm. n

10.1. List all positive divisors of each of the following integers.
(a) 20 (b) 63 (c) —101

10.2. There are 25 primes less than 100. What are they?

10.3. For each of the following integers, find the smallest nonnegative integer to which it is con-
gruent modulo 7.
(a) 12 (b) 100 (c) =25

10.4. Example 10.1(b) shows the four congruence classes modulo 4. Make a similar array for the
congruence classes modulo 3.

10.5. Find all x such that 2x = x (mod 5).

10.6. There are 10 integers x such that —25 < x < 25 and x = 3 (mod 5). Find them all.
10.7. Find all x such that 0 < x < 6 and 2x = 4 (mod 6).

10.8. For which nis 25 = 4 (mod n)?

10.9. Fora, b € N, let @ ~ b mean that the decimal representations of a and b have the same last
(units) digit. This is an equivalence relation on N. How does it relate to congruence?

10.10. Let k denote a positive integer. Fora, b € N, leta ~ b mean that the decimal representations
of a and b have the same digits in each of the last k positions. (Example: If k = 3, then
4587 ~ 30,587.) This is an equivalence relation on N. How does it relate to congruence?
(Compare Problem 10.9.)

For each pair a, b in Problems 10.11 and 10.12, find the unique integers q and r such thata = bg +r
with0 <r < b.

1011. (@) a=19,b=5 ya=-7,b=5 () a=11,b=17

10.12. (a) a =50,b =6 (by a=13,b=20 (c)a=30,b=1

10.13. Prove thatif a{b and b|c, thena|c.

10.14. Prove thatifa|bandb|a,thena = +b. (You may assume that the only divisors of 1 are 1.}
In Problems 10.15 and 10.16, assume that a = b (mod n) and ¢ = d (mod n).

10.15. Provethata + ¢ = b + d {mod n).

10.16. Prove that ac = bd (mod n). (Suggestion:a = b + un,c =d + vn.)

10.17. Disprove with a counterexample: If a? = b? (mod n), then a = b (mod n).
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10.18.

10.19.
10.20.
10.21.

10.22.

10.23.

10.24.
10.25.
10.26.

10.27.

10.28.

10.29.

10.30.

Consider the following statement: If @ = b (mod n), then a? = b? (mod n?). If the statement
is true, give a proof. If it is false, give a counterexample.

Prove that if a = b (mod n) and n | q, then n | b.
Prove that if m |n and a = b (mod n), then @ = b (mod m).

Prove the equivalence of the four statements just preceding Theorem 10.1. Also prove that
a = b (mod n) iff @ and b leave the same remainder on division by n.

Prove that if n is a positive integer and a, b € Z, then there is an integer x such that a + x = b
(mod n).

Disprove with a counterexample: If n is a positive integer and a, b € Z, then there is an integer
x such that ax = b (mod n).

Prove that if @ is an odd integer, then a2 = 1 (mod 8).
How many positive integers divide (a) 3? (b) 97 (c) 277 (d) 3, if k is a positive integer?

Assume that p is a prime and that k is a positive integer. How many positive inte gers divide
(a) p? (b) p*? () p*?

Verify that each of the following statements is false. (Compare the Least Integer Principle.)
(a) Every nonempty set of integers contains a least element.
(b) Every nonempty set of positive rational numbers contains a least element.

Use the Division Algorithm to prove that if a and b are integers, with b # 0, then there exist
unique integers g and r such that

a=bg+r, 0<r<|bl

(Suggestion: If b > 0, this is the Division Algorithm. Otherwise |b| = —b > 0.)

(a) Prove that 10" = | (mod 9) for every positive integer n.
(b) Use part (a) to prove that every positive integer, expressed in base 10 notation, is congruent
to the sum of its digits mod 9.

Prove that > = a (mod 10) for every integer a.

SECTION 11 INTEGERS MODULO n

We have seen that if n is a positive integer, then there are n congruence classes modulo
n. With n fixed and k an integer, let [k] denote the congruence class to which k& belongs
(mod n). With n = 5, for example,

R1=M=[-33]1={..,—-8,-3,2,7,12, ...}t

By Theorem 10.2, {[0], [1], ..., [n — 1]} is a complete set of congruence classes modulo
n, in the sense that each integer is in precisely one of these classes. Let Z, denote the set
{[01, (1], ..., [n — 1]}. We shall show that there is a natural operation on this set that makes
it a group.

1 Notice that [k] is ambiguous unless n has been specified. For example, [3] means one thing if # = 5, and
something else if n = 6. With reasonabie attention to context there should be no confusion, however. In case of
doubt, [k],, can be used in place of [k].
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Definition. For [a] € Z, and [b] € Z,, define [a] & [b] by

[a] ® [b] = [a + b].
Example 11.1. Choosen =5.Then[3]® [4] =[3+4] =[7] =[2],and [-29] ® [7] =
[—22] = [3]). ]

There is a question about the definition of @: Is it really an operation on Z,? Or,
as it is sometimes expressed, is @ well defined? Notice that [a] @ [b] has been defined
in terms of a + b. What if representatives other than ¢ and b are chosen from [a] and
[b)? For example, with n = S again, [3] = [18] and [4] = [—1]; therefore, it should be
true that [3] & [4] = [18] & [—1]. Is that true? Yes, because [3] @ [4] = [7] = [2] and
[18] ® [—1] = [17] = [2]. The following lemma settles the question in general.

Lemmall.l. InZ,, if [a;] = [a;] and [b,] = [b2], then [a; + b1] = [a2 + b2].

PROOF. If [@;] = [a2] and [b,] = [b2), then for some integers u and v
ay=a;+un and by =by+ vn.
Addition yields
ay + by = (a2 + un) + (b2 + vn)
=az+ by + (u+ v)n.
Thus (a; + b;) — (@2 + by) is n times an integer, ¥ + v, and hence a; + by, = a; + by

(mod n). Therefore, (a1 + b;] = [a2 + b2]. | |

Problem 11.18 is designed to help remove doubts as to whether Lemma 11.1 is really
necessary.

Theorem 11.1. Z, is an Abelian group with respect to the operation &.

PROOF. Associativity:

[a]®([(P]1® [c]) = [a] ® [b + ] definition of &
=[a+ (b+c)] definition of @&
=[(a+b)+c] associativity if +
=[e+b]6&B[c] definition of &
= ([e]1 ® [b]) ® [c] definition of &.

The identity is [0]:

(0] ® [a] = [0+ a] = [a]
[a] & [0] = [a + 0] = [a].

Problem 11.10 asks you to prove that the inverse of [a] is {—a]. Problem 11.7 asks you to
prove that the group is Abelian, that is, [a] @ {b] = [b] & [e] for all [a], [b] € Z,. | |

The first parts of the preceding proof are typical of proofs of properties of @, in that first
the definition of @ is used, then the corresponding property of +, and finally the definition
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of @ again. Whenever Z, is referred to as a group, the operation is understood to be @®.
This group is called the group of integers modulo n (or mod n).

Corollary. There is a group of order n for each positive integer n.
PROOF. Z, contains n elements, [0], [1],..., and [n — 1]. [ ]

To appreciate this corollary, try to find another way to construct a group of order 21,
for instance. Even for small orders, the associative law is especially hard to verify for an
operation that is not “natural” in some sense.

Example 11.2. Table 11.1 is the Cayley table for Zg.

Table 11.1
® (0] (1] (2] (3] (4] (3]

(0] (0] (1] 2] (3] (4] (3]
(1] (1] 21 . B8l (4] (5] (0]
(2] (2] (3] (4] (5] (0] (1]
(3] (3] (4] (3] (0] (1] (2]
(4] (4] (3] (0] (1] (2] (3]
(3] (3] (0] (1] (2] (3] (4]

Using multiplication rather than addition, we obtain another operation on Z, as follows:

[a] © [b] = [ab].

Example 11.3. Choose n = 6. Then

21 G [5] = [10] = [4]
[B16[-4] = [-12] = [0].

As with ®, we must verify that © is well defined. Lemma 11.2 does that. ]
Lemma 11.2. InZ,, if [a;] = [a;] and [b] = [b;], then [a,b;] = [a;b3].

PROOF. If [a|] = [a;] and [b;] = [b,], then for some integers « and v,
a=a;+un and b, = b, + vn.
Therefore,
arb; = (a; + un)(b, + vn)
= aby + (av + uby + uvn)n.
Thus a1 by — azb, is an integer (ayv + ub, + uvn) times n. Therefore [a1b] = [ab2]- B
In contrast to Z, with @, Z, with © is not a group. (See Problem 11.11, for example.)

The operation © does have some important properties, however; the next lemma gives two
of these, and Chapter VI will give more. Assume n > 2 for statements involving Zy,.
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PROBLEMS

Lemma 11.3. The operation © on Z, is associative and commutative and has [1] as an
identity element.

PROOF. Make the obvious changes in the proof of Theorem 11.1. ]

Let Z! denote the set {[1], [2], ..., [ — 1]}, that is, Z, with [0] deleted. Although Z,
with © is never a group, the next example shows that Z* with © can be a group.

Example 11.4. Z! is a group with respect to the operation ©. Associativity is a conse-
quence of Lemma 11.3. Table 11.2 shows closure, and also that [1] is an identity and that
the inverses of 1], (2], (3], and [4] are [1], [3], [2], and [4], respectively. (In contrast with
this example, the next example will show that Z? is not a group.)

Table 11.2
o] (1] (2] (3] (4]

(1] (1] (2] (3] (4]
(2] (2] (4] (11 (3]
(3] (3] (1] (4] (2]
(4] (4] (3] (2] (1]

Example 11.5. Z! is not a group with respect to ©. For example, since [2] © (3] = [6] =
(0], Z¢ is not even closed with respect to ©. Thus Z* is a group for n = 5 (preceding
example), but not a group for n = 6. Problems 11.13 and 11.14 ask you to consider
the cases n = 3 and n = 4. In Section 13 we’ll return to the question of when Z¥ is a
group. [ ]

Remark on Notation. Throughout this book, the notation [k] will be used for the con-
gruence class to which k belongs mod n. In practice, however, writing the square brack-
ets can become a burden. Thus, when the context is clear, it is fairly common to write
{0, 1, 2,...,n — 1} rather than {[0], [1], [2]...., [n — 1]} for the elements of Z,. For
convenience, [a] @ [b] is often written as a + b, and [a] © [b] as ab. For the problems in
this section, you are urged to write the square brackets, @, and ©. In any case, it is never
a good idea to write x = y when, in fact, x # y, especially if you expect someone else to
read it. The important thing is that the notation be unambiguous.

11.1. Give five integers in [3] as an element of Zs, that is, if n = 5.
11.2. Give five integers in [3] as an element of Zg, that is, if n = 6.

11.3. Simplify each of the following expressions in Zs. Write each answer as [0], [1], [2], [3],

or [4].

(@ Ble4) ® 218[-7] (© 17 e[76]
@ Blo“ ) 210 [-7] H 7] 0 [76)
(& Blo]le M) M Blok2he(Blo4)

11.4. (a) to (h). Simplify each of the expressions in Problem 11.3 after interpreting it in Z¢ rather
than Zs, and write each answer as [0], [1], [2], [3], [4], or [S].
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11.5.
11.6.
11.7.
11.8.

11.9.
11.10.
11.11.

11.12.
11.13.
11.14.
11.15.
11.16.
11.17.

11.18.

Construct the Cayley table for the group Zs.
Construct the Cayley table for the group Zs.
Prove that each group Z, is Abelian.

Prove that the operation © on Z, is commutative.

Prove that [a] © ([b] @ [c]) = ([a] © [b]) ® ([a] © [c]) for all [a], [b), [¢] € Z,.
Prove that [—a] is an inverse for [a] in Z,.

There is no inverse for [0] relative to the operation © op\Z,.. Why? (The element [1] is an
identity element for ©.)

Write the proof of Lemma 11.3 in detail.

Prove or disprove that Z¥ is a group with respect to ©.

Prove or disprove that Z is a group with respect to ©.

Prove that {[0], [2], [4]} is a subgroup of Ze. Construct the Cayley table for the subgroup.
Prove that {[0], [3], 6], [9]} is a subgroup of Z,,. Construct the Cayley table for the subgroup.

(a) Prove that if n is even, then exactly one nonidentity element of Z, is its own inverse.
(b) Prove that if n is odd, then no nonidentity element of Z, is its own inverse.

(c) Prove that [0] @ [1] @ - - - @ [n — 1] equals either [0] or [#/2] in Z,.

(d) What does part (c) imply about 0 + 1 + - - - 4 (n — 1) modulo n?

Define an equivalence relation on the set of integers by letting 2 ~ b mean that either both a
and b are negative or both a and b are nonnegative. There are two equivalence classes: [—1],
consisting of the negative integers; and [0], consisting of the nonnegative integers. Attempt
to define an operation B on the set {{—1], [0]} of equivalence classes by

[a)H [b] = [a + b]

for a, b € Z, in analogy with the definition of & on Z,. Show that B is not well defined.

SECTION 12 GREATEST COMMON DIVISORS.
THE EUCLIDEAN ALGORITHM

There is a close relationship between divisibility properties of the integers and some of
the elementary properties of groups. In this section and the next we consider properties of
divisibility that will be useful when we return to groups in the next chapter.

Theorem 12.1. Ifaand b are integers, not both zero, then there is a unique positive integer
d such that

(a) dla and d|b, and
(b) if c is an integer such that c|a and c|b, then c|d.

Property (a) states that d is a common divisor of a and b; property (b) ensures that d
is the greatest such divisor. Therefore, the integer d in the theorem is called the greatest
common divisor of a and b. It is denoted (a, b). (The context will usually make it clear
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whether this or some other interpretation of the ordered pair notation is intended.) Examples
are (4, —6) = 2,(=7,0) = 7,and (25,33) = 1.

The following proof of Theorem 12.1 shows how to compute (a, b) by a systematic
procedure known as the Euclidean Algorithm. Another proof, which shows the existence
of (a, b), but not how to compute it, is outlined in Problem 12.24.

PROOF. First consider the case b > 0. By the Division Algorithm (Section 10), there
are unique integers g, and r; such that

a=bqg +r, 0<ri<b.

Ifr; = 0, then b|a, and b will satisfy the conditions for d in parts (a) and (b). If r; # 0, we
can apply the Division Algorithm again, getting integers ¢, and r; such that

b=riga+r, 0<ry<ry.

Repeated application of the Division Algorithm in this way produces a sequence of pairs
of integers gy, r1; 42, 72: g3, r3; . . . such that

a=bg +r, 0<r<bd
b=rigag+r, 0<ry<n

12.1
ri=rqitry, 0<ri<nr, ( )

Because each remainder is nonnegative, and r; > ry >r; > - - -, we must eventually reach
aremainder that is zero. If ;| denotes the first zero remainder, then the process terminates
with

Feea = re-1qetre, 0<irg <y

Fe—t = Teqi+1.

We shall show that 1, the last nonzero remainder, satisfies requirements (a) and (b) for d
in the theorem.

Notice first that ry|re_y, because r¢_1 = r¢gi+1. But then ry |ry_y because ry_; =
rk-19k + ri and r¢ |re—y and r¢ | 7. Continuing in this way, we can work through the equa-
tions in (12.1), from the end, and obtain r¢ |rg_y, e |re—2. re |re=s, . . ., until we arrive at
relri, re | b, and finally r4 |a. Thus r, is a common divisor of @ and b.

Now, moving to condition (b), assume that c¢|a and c|b. Then c|r, because r| =
a — bg,. But if c|b and c|ry, then c|r;, because r, = b — ryg,. Continuing in this way,
we can work through the equations in (12.1), from the beginning, and obtain c¢|ry, c}rs,
c|rs, ..., and finally c|r¢. This verifies condition (b).

If b < 0, we simply go through the same process starting with a and —b, rather than a
and b; then observe that since b and —b have the same divisors, a greatest common divisor
of a and —b will also be a greatest common divisor of a and b.

If b = 0, then ]a| satisfies the requirements (a) and (b) for d in the theorem.

To prove the uniqueness of (a, b), assume that d; and d; are integers, each satisfying
both of the requirements (a) and (b) for d. Then d,; | d; and d, | d,. Therefore, since both d,
and d; are positive, d| = dj. [ ]
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Example 12.1. Here is the Euclidean Algorithm applied to compute (1001, 357).

1001 = 357 -2 + 287
357 =287-14+70
287 =70-4+7
70=7-10
Therefore (1001, 357) = 7. | |

If @ and b are integers, then any integer that is equal to am + bn for some integers m
and 7 is said to be a linear combination of a and b. The equations that arise in the Euclidean
Algorithm can be used to express (a, b) as a linear combination of a and b. Before proving
this, we illustrate the idea with an example.

Example 12.2. From Example 12.1,(1001, 357) = 7. To express 7 as a linear combination
of 1001 and 357, we use the equations in Example 12.1, beginning with 287 = 70 -4 +7
and working backward one step at a time.

7=287-70-4 (12.2)

Solve the equation 357 =287 -1+ 70 for 70 (the remainder), substitute in (12.2), and
simplify.

7 =287 —(357—-287 14

7=287-5-357-4 (12.3)
Solve the equation 1001 = 357 - 2 + 287 for 287 (the remainder), substitute in (12.3), and
simplify.

7 = (1001 — 357 -2)5 — 357 - 4
7=1001.5-357-14
7 = 1001(5) + 357(—14)

Thus (1001, 357) =7 = 1001m + 357n form = Sand n = —14. | |
Theorem 12.2. The greatest common divisor of integers a and b, not both zero, can be
expressed as a linear combination of a and b:
(a,b) = am + bn for some integersm and n.
PROOF. We work backward through the equations indicated in (12.1), starting with
Fe—2 = Fe—19k + re. Solve this for ry, to get ry as a linear combination of r,_; and re—s.
Tk =Tg_2 — Fe-19k (12.4)

The next equation up the line in (12.1) would be r¢_3 = ry_2gy—1 + re—1. Solve this
for r¢_; and substitute in (12.4). The result gives ry as a linear combination of ry., and
Fg—3.

Pk = Fi—2 — (Fe=3 — Fe—2qx-1)9k
re = e—2(1 + qe—1qe) — reaqe (12.5)

The next equation up the line in (12.1) would allow us to eliminate r;_; from (12.5)
and express ry as a linear combination of ry_3 and ry_4. If we continue in this way, we
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eventually get r; as a linear combination of r2 and r;, then as a linear combination of r;
and b, and finally as a linear combination of 4 and a. [ ]

Corollary. If aand b are integers, then (a, b) = 1 iff there are integers m and n such that
am +bn =1

PROOF. If (a, b) = 1, then Theorem 12.2 guarantees the existence of m and n such
thatam + bn = 1.

To prove the converse, assume the existence of integers m and n such thatam + bn = 1.
If d = (a, b), then d|a and d|b, so d|(am + bn) = 1. Therefore, since d > 0, we must
have d = 1. [ ]

Integers having greatest common divisor 1, such as a and b in the preceding corollary,
are said to be relatively prime.

Although the Euclidean Algorithm can be used to calculate integers m and n such that
(a, b) = am + bn, it is the mere existence of such m and r, not their actual calculation,
which is most often important. In trying to prove statements involving greatest common
divisors, it is frequently helpful to begin just by trying to make use of Theorem 12.2. Lemma
13.1 illustrates this point.

Theorem 12.1 can be extended to show that every finite set of integers, not all zero,
has a greatest common divisor. The greatest common divisor of a1, az, . . ., a, is denoted
(a1, ay, ..., a,). For example, (—6, 15,33) = 3.

Theorem 12.3. If a and b are nonzero integers, then there is a unique positive integer m
such that

(a) alm and b|m, and

(b) if c is an integer such that a|c and b|c, then m|c.

Property (a) states that m is a common multiple of a and b; property (b) ensures that m
is the least positive such multiple. Therefore, the integer m in the theorem is called the least
common multiple of a and b. It is denoted [a, b]. Examples are [4, —6] = 12,[-7,7] =7,
and [25, 33] = 825.

PROOF. Let S={x:xeN,a|x, andb|x}. Then S # @ since, for example,
lab| € S. By the Least Integer Principle S has a least element, which we denote by m.
By the definition of S, @ |m and b{m. Thus to complete the proof it remains only to prove
part (b).

Assume ¢ € N, a|c, and b|c. By the Division Algorithm there exists a unique pair of
integers g, r such that

c=mg+r, 0=<r<m. (12.6)

Because a|c, b|c, a|m, and b|m, Equation (12.6) implies that a|r and b|r. Thus r € §,
but 0 < rr <m, sor = 0 by the choice of m as the least element in S. Therefore,m|c. =

Theorem 12.3 can be extended to show that every finite set of nonzero integers
has a least common multiple. The least common multiple of a,,a,, ..., a, is denoted
[a1, aa, ..., a,]. For example, [—6, 15, 25] = 150.
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PROBLEMS

In Problems 12.1-12 4, find the greatest common divisor and the least common multiple of the given
set of integers.

12.1.
12.3.

{6, 14} 12.2. {-75,105}
{36, —60, 90} 12.4. (14,21, 35}

In Problems 12.5-12.8, find the greatest common divisor and write it as a linear combination of the
two given integers.

12.5.
12.7.
12.9.
12.10.

12.11.

12.12.

12.13.
12.14.
12.15.
12.16.
12.17.
12.18.
12.19.
12.20.
12.21.
12.22.

12.23.

12.24.

(1001, 33) 12.6. (56, 126)
(=90, 1386) 12.8. (2860, —2310)

List all of the positive integers that are less than 12 and relatively prime to 12.

How many positive integers less than 81 are relatively prime to 817 (Suggestion. It’s easier
to find how many are not relatively prime to 81. Notice that 81 = 3*; that tells us something
about at least one factor of any integer that is not relatively prime to 81.)

Verify that (2, 3) can be expressed in at least two different ways as a linear combination of
2 and 3. (This shows that the integers m and n in Theorem 12.2 are not uniquely determined
by a and b. Problem 12.12 gives a much stronger statement.)

Prove that if @ and b are integers, not both zero, then there are infinitely many pairs of integers
m, n such that (a, b) = am + bn.

Prove that if ¢ is a positive integer, then (ac, bc) = (a, b)c.

Prove that if 4 is a positive integer, d |a, and d | b, then (a, b) = d iff (a/d, b/d) = 1.
Prove that if p is a prime and a is an integer, and p / a, then (a, p) = 1.

Prove that if (@, c) = 1 and (b, ¢) = 1, then (ab,c) = 1.

Prove that if (@b, ¢) = 1, then (a,c) = 1 and (b,c) = 1.

Prove that if ¢ |ab and (@, ¢) = d, then c|bd.

Prove that if a = bg + r, then (a, b) = (b, r).

Prove that if (@, b) = 1 and c|{a, then (¢, b) = 1.

Prove that if (@, m) = 1, then there is a solution (for x) to the congruence ax = b (mod m).

Assume that p is a prime and 7 a positive integer. How many positive integers less than p”
are relatively prime to p"? (See the suggestion for Problem 12.10.)

Prove that if a, b, ¢ are integers, not all zero, then they have a greatest common divisor, which
can be written as a linear combination of a, b, and c.

Give an alternative proof of Theorem 12.1 by justifying each of the following steps.

(a) Let S = {ax + by : x, y € Z}. The set S contains at least one positive integer.

(b) There is a least positive integer in S; letit be d = am + bn (m, n € Z). (This will be the
d of Theorem 12.1.)

(c) Because @ € S and b € S, to prove Theorem 12.1(a) it suffices to prove that d divides
each positive integer in S.

(d) Let k = au + bv denote a positive integer in S. There are integers ¢ and r such that

k=dg+r, 0<r<d.
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Therefore,

au+ bv = (am+bn)qg +r
and

r=(u-mq)a+ (- nqgb,

which implies r € S.

(e) Therefore, r = 0, and d does divide each positive integer in S. (As stated, this shows that
d|aandd|b.)

(f) claandc(b, thencid.

SECTION 13 FACTORIZATION. EULER’S PHI-FUNCTION

Fundamental Theorem of Arithmetic. Each integer greater than 1 can be written as a
product of primes, and, except for the order in which these primes are written, this can be
done in only one way.

Thus 15=3-5=5-3,16 = 2%, and 17 = 17, the last example showing that “prod-
uct” is taken to include the possibility that there is only one factor present. We shall prove
two lemmas before proving the theorem.

Lemma 13.1. 1If a, b, and c are integers, with a |bc and (a, b) = 1, then a|c.

PROOF. Since (a, b) = 1, by Theorem 12.2 there are integers m and n such that
1 = am + bn. On multiplying both sides of this equation by ¢, we get ¢ = amc + bnc.
Certainly a |amc. And we are assuming that a|bc, so that a|bnc. Therefore, a divides
amc + bnc, which is equal to c. n

Lemma 13.2. If pisaprime,ay,ay,...,a, are integers, and plaja; - - - a,, then p|a; for
somei (1l <i <n).

PROOF. We use induction on n. The case n = 1 is obvious. Assume that n > 1. If
plajas - - a,_y, then pla; for some i (1 <i < n—1) by the induction hypothesis. If
plaia; --a,_1, then(p,ajaz - - a,_1) = 1 because p is a prime. In this case, by Lemma
13.1 (witha = p,b =aja; - - @y, ¢ = ay,), play,. : [ ]

PROOF OF THE THEOREM. Let S denote the set of those integers greater than 1 that
cannot be written as a product of primes. To prove the first part of the theorem we must
show that § is empty. Assume otherwise. Then, by the Least Integer Principle (Section 10),
S contains a least element, which we denote by n. The set § contains no primes, so n can
be factored as n = nn3, where both n; and n; are integersand 1 <n; <nand l < nz <n.
Because n; < n and n; < n, and n is the least element of S, it follows that n; ¢ S and
ny € S. Thus ny and n, both can be written as products of primes, so the same is true of
n = nyny. This contradicts the fact that n € S. This contradiction proves that § must be
empty, as required.

To prove the last part of the theorem, assume m to be an integer greater than 1, and as-
sumem = pip2- -+ Ps = q192 - - - g, Where the p; and ¢; are primes. Then p, |g142 - - - ¢:
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because py|p1p2 -« - ps. Thus py|q;, for some j (1 < j <t), by Lemma 13.2. But then
p1 = q; because both p, and g; are primes. It follows that

PPy Ps=q192 - 41941 - 41,

where we have canceled p; on the left and ¢; on the right. Repeating the argument just
used, we see that p> must equal one of the remaining prime factors on the right. Continuing
in this way, we can pair each prime on the left with a prime on the right. The primes on one
side cannot all be canceled before those on the other side because that would imply that
1 is equal to a product of primes, an impossibility. Thus s = ¢ and the lists py, p2, ..., ps
and 4, 42, . .., g, must be the same except possibly for their arrangement. ]

By arranging the prime factors in increasing order, we see that each integer n > 1 can
be written in the form

n=pipypy (pL<pa< o <) (13.1)
where the primes p,, pa, ..., pi and the positive integers e;, ey, ..., € are uniquely deter-

mined by n. We shall call this the standard form for n. For example, the standard form for
300is 22-3.52, .

To close this chapter we’ll look at a special function ¢, and a type of group, U,,
both of which depend on divisibility properties of the integers. The function, attributed
to Leonhard Euler (1707-1783), is important in number theory and, especially for our
purposes, in analyzing cyclic groups. It also provides one of the keys in RSA cryptography,
which is used to help provide secure communications; the Appendix to Chapter IV gives a
brief explanation of the underlying idea.

Definition. For each integer n > 1, let ¢(n) denote the number of positive integers that
are less than n and relatively prime to n. Also, let ¢(1) = 1. The function ¢ is called the
Euler phi-function.

You can quickly verify the special cases ¢(5) = 4, $(6) =2, and ¢(12) = 4. Forn a
power of a prime, ¢(n) is given by the following theorem.

Theorem 13.1. Assume that p is a prime and r is a positive integer. Then
() =p ~p ' =p(1-1/p).

In particular, ¢(p) = p — 1.

PROOF. An integer k such that 1 < k < p” will be relatively prime to p” iff k is not
divisible by p since, by Lemma 13.2, the only divisors of p” are powers of p. The integers k
suchthat 1 < k < p” and kis divisible by p are those in the list p, 2p, 3p, ..., (p" ™! — Dp,
and there are p"~! — 1 of those. Thus the number of positive integers less than p” and
relatively prime to pis p” — 1 — (p"~! — 1) = p” — p"~!. The last equality in the theorem
follows by simple algebra. [ ]

Theorem 13.2. [f p and q are primes, then $(pq) = (p — 1)(g — 1).

PROOF. By Lemma 13.1, an integer k will satisfy (k, pq) > 1 iff p|k or g|k. The
number of such k with 1 < k < pg is (¢ — 1) (from multiples of p that are less than pq) plus
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(p — 1) (from multiples of ¢ that are less than pq.) Thus the number of % such
that 1 <k<pq and k,pg)=1lispg—1-(@-1)—-(p-D=pg—q—-p+1=
(p—1(g—-1. u

The following two theorems generalize Theorems 13.1 and 13.2. We will omit the
proofs, which can be found in most elementary books on number theory. Problem 13.23
invites you to prove Theorem 13.4.

Theorem 13.3. If mand nare positive integers with (m, n) = 1, then¢(mn) = ¢p(m)p(n).
(A number-theoretic function with this property is called a multiplicative function.)

Theorem 13.4. If n has the form (13.1) as a product of distinct prime powers, then

o0 = (5 = P17) (05 = pi) - (P = pi)
=n(1—-1/pX1 =1/p2)--- (1 = 1/po).

Section 17 will give further results involving ¢(n). We now move to a collection of
groups constructed from integers mod n, but different from the groups of the form Z,,.

Definition. For each positive integer n, let U, denote the set of congruence classes mod
n defined as follows:

U,={k]:1<k<n and (k,n)=1}.
For example, Uj, = {[1], [5, [7], [11]}.

Theorem 13.5. U, is an Abelian group with respect to ©. The order of the group U, is
o(n).

PROOF. We must first verify closure, that is, if [a], [b] € U,,, then [a] © [b] € U,. To
do this, assume (a, n) = 1 and (b, n) = 1. By the corollary of Theorem 12.2, there exist
integersr, s, t, u such thatar + ns = 1 and bt + nu = 1. Multiplication and factoring leads
to ab(rt) + n{aru + sbt + nsu) = 1, which implies (ab, n) = 1 by the same corollary.
Thus [a] © [b] = [ab] € U,.

Since [1] € U,, U, is nonempty and has an identity element. For associativity of ©
see Lemma 11.3.

To prove that each element of U, has an inverse in U,, assume [a] € U,, that is,
(a,n) = 1. Thenar + ns = | for some r, s € Z, from whichar — 1 =(—s)nandar =1
(mod n), that is, [a] © [r] = [ar] = [1], implying that [r] is an inverse of [a].

Thus U, is a group. It is Abelian because © is commutative by Lemma 11.3. The order
is ¢(n) by the definitions of U, and ¢(n). [ ]

‘Whenever U, is referred to as a group, the operation is assumed to be ©. If nis a prime,
then U, is the same as Z*, defined in Section 11.

Determine the standard form (13.1) for each of the following integers.
13.1. 105 13.2. 684 13.3. 1375 13.4. 139
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13.5.

13.6.

Let
m = p'py - pyf
and
n=plpE. p}
where pi, py, ..., py are distinct prime numbers, s; > 0 for 1 <i <k, and # >0 for '

1 <i <k.Provethatm|niffs; <t forl <i <k.

Let m and n be as in Problem 13.5, and let
u; = the minimum of s; and ¢; foreach /

and
v; = the minimum of s; and ¢; for each i.

(a) Prove that (m, n) = p{' p;? - - - p;* (greatest common divisor).
(b) Prove that {m, n] = p' p;* -+ - p;* (least common multiple).

Use the results of Problem 13.6 to compute the greatest common divisor and least common multiple
of each of the following pairs of integers.

13.7.
13.9.
13.11.

13.12.

13.13.
13.14.

13.15.
13.16.
13.17.

13.18.

13.19.

13.20.

13.21.

10,105 13.8. -39,54

56, 126 13.10. -2860, —2310

Determine all positive integral divisors of each of the following integers.

(a) 16 (b) 27 (c) 2332 d) 23

Determine the number of positive integral divisors of an integer n that has the standard form
pi'p3 -« pi*. (Compare Problem 13.11.)

Construct the Cayley table for Uy,.

Find the inverse of {37] in Usg. (Suggestion: Look at the proof of Theorem 13.5, and Example
12.2)

Prove that if n is odd, then ¢(2n) = ¢(n).
Prove that if n is even, then ¢(2n) = 2¢(n).

Prove that if (a, b) = 1,a|m, and b|m, then ab|m. (Suggestion: If m = ak, then b|k by
Lemma 13.1.)

An integer is square-free if it is not divisible by the square of any integer greater than 1. An

integer n is a perfect square if n = k* for some integer k.

(a) Prove that n is square-free iff in the standard form (13.1) each e¢; = 1.

(b) Prove that n is a perfect square iff in the standard form (13.1) each ¢; is even.

(c) Prove that every integer greater than 1 is the product of a square-free integer and a perfect
square.

Prove that if n is a positive integer, then /7 is rational iff # is a perfect square (see Problem
13.18). (Suggestion: Apply the Fundamental Theorem of Arithmetic to a? = nb?. Compare
Theorem 31.1.)

Prove that </2 is irrational. {Suggestion: Apply the Fundamental Theorem of Arithmetic to
a® =2p)

State and prove a theorem characterizing those integers n for which /n is rational. (Compare
Problems 13.19 and 13.20.)
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13.22. Prove that if a and b are positive integers, then
(a, b)[a, b] = ab.
(See Problem 13.6.)

13.23. Prove Theorem 13.4. (Suggestion: Use Theorems 13.1 and 13.3 and mathematical induction
on the number of distinct prime factors of n.)




CHAPTER IV

GROUPS

In this chapter the emphasis is less on giving examples of groups and more on proving
general theorems about them. The focal points are Lagrange’s Theorem, which puts a
strong restriction on which subsets of a group can be subgroups, and isomorphism, which
makes precise the notion of what it means for groups to be “essentially” alike.

SECTION 14 ELEMENTARY PROPERTIES

Hereafter, whenever a group has no other specified operation, we refer to the operation
as multiplication and indicate the product of @ and b by ab (juxtaposition). Also, if there
is no other established notation, the identity element is denoted by e and the inverse of
an element a by a~!. When interpreting general statements in special cases, this notation
must be changed accordingly. For instance, ab, e, and a~! become, in additive notation,
a + b, 0, and —a. The reasons for using ab, e, and a~! consistently in general statements
are economy and uniformity.

We begin with some remarks about associativity. There are two possible results
from inserting parentheses in abc, and the associative law demands that these be equal:
a(bc) = (ab)c. But what about abcd? For example, two of the possibilities here are a(b(cd))
and (ab)(cd). One application of the associative law (for three elements) shows these pos-
sibilities to be equal: substitute a for x, b for y, and ¢d for z in x(yz) = (xy)z. Then

x(yz) = (xy)z

becomes
a(b(cd)) = (ab)(cd),

as claimed. The other possibilities for abcd are

a((bc)d), ((@ab)c)d, and (a(bc)d,

and they all give the same result (Problem 3.30). In fact, this is true for any number of
elements, by what is known as the generalized associative law:1fa;, a;, ..., a, (n > 2) are
elements of a set with an associative operation, then the product a,a; - - - @, is unambiguous;
that is, the same element will be obtained regardless of how parentheses are inserted in the
product, as long as the elements a;, @3, . . . , 4, and their order of appearance are unchanged.
(For a proof of this law see either of the last two references listed at the end of this chapter.)
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Theorem 14.1. Let G be a group.
(a) If a, b, c € G and ab = ac, then b = c (left cancellation law).
(b) Ifa, b, c € G and ba = ca, then b = c (right cancellation law).

(¢c) If a, b € G, then each of the equations ax = b and xa = b has a unique solution
in G. In the first, x = a~'b; in the second, x = ba~".

(@) Ifa G, then@!) ' =a.
(¢) Ifa, b € G, then (ab)™' = b~la~l.

PROOF. (a) Assume that ab = ac. On multiplying both sides on the left by a~!, we
are led to a~'(ab) = a~(ac), (a~'a)b = (@ 'a)c, eb=ec,and b = c.

(b) Similar to part (a) (Problem 14.11).

(c) To see that x =a~!b is a solution of ax = b, simply substitute: a(a~'b) =
(aa~hb = eb = b. To see that there is no other solution, assume thatax = b. Then multipli-
cation on the left by a~! leads toa~}ax) = a~'b, (@ la)x = alb,ex =a'b,x =a b,
thus x = @~ !b is indeed the only solution. The proof for the equation xa = b is similar
(Problem 14.12).

(d) The inverse of a~' is the unique element x such that a~'x = e. But a~!a =e.
Therefore, the inverse of 2~} must be a.

(e) The inverse of ab is the unique element x such that (ab)x = e. But (ab)p~la~ ) =
a(bb~Ya~! = gea~! = aa! = ¢; thus the inverse of ab must be b~1a!. ]

Here are some observations about the theorem. If @ and x are elements of a finite group,
then in the Cayley table for the group ax will be in the row labeled by a. If b is also an
element of the group, then the existence of a unique solution of ax = b [Theorem 14.1(c)]
implies that b appears exactly once in the row labeled by a. Thus

each element of a finite group appears exactly once
in each row of the Cayley table for the group.

(This ignores the row labels at the outside of the table.) Similarly, because there is a unique
solution of xa = b,

each element of a finite group appears exactly once
in each column of the Cayley table for the group.

Part (e) of Theorem 14.1 shows that the inverse of a product is the product of the
inverses, in reverse order.
Integral powers of group elements are defined as follows:

a®=ea'=aa*=aa,...,a""" =a"a,

so that @” is equal to the product of n a’s for each positive integer n. Also,
a™" =(a"!)" foreach positive integer n.
The following laws of exponents can be proved by mathematical induction:
ama" = a"*t"
M)ﬂ

mn

(a =a
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for all integers m and n. (See Appendix C.) In additive notation, for n a positive integer a”
becomes na =a+a + - -- +a (nterms), and a~" = (a~!)" becomes (—n)a = n(—a).In
this case the laws above become

(ma) + (na) = (m+n)a
n(ma) = (mn)a
for all integers m and n.
Now assume that a is an element of a group G. Consider the set of all integral powers

ofa,thatis,{...,a %,a~! e, a,a?,.. .}. Some of these powers may be equal, as illustrated
in the following example.

Example 14.1. In S5,
(123%=() and (1 2 3)°=(1),

sothat (1 2 3)®> =(1 2 3)° Also,

(123*=(123%023)=0)X23H=01 2 3),
sothat (1 2 3)*=(1 2 3)". Next,

(123°=(23P123%=(W{123%r=(01 2 32
sothat(1 2 3’ =(1 2 3)>=(1 3 2).Finally,

123)'=0 32,

sothat(l 2 37! = 1?2 3)2. If we continue in this way, we will soon realize that the set
of all integral powers of (1 2 3)is just

(M, 23,0 23 ={1. 1 23,1 32}

This set of all powers of (1 2 3) is a subgroup of S3. The next theorem will generalize this
example. a

If G is a group and a € G, then (@) will denote the set of all integral powers of a. Thus
(@) ={a" :n € Z}.
By Example 14.1,

((1 2 3)={D.A 2 3,01 3 2))}

Theorem 14.2. If Gis a group and a € G, then (a), the set of all integral powers of a, is
a subgroup of G.

PROOF. It suffices to check the three conditions in Theorem 7.1. First, {a) is non-
empty since a € {(a). Next, the set (a) is closed: if a™ € (a) and a” € (a), then @™ - a" =
a™" e (a),sincem € Z and n € Z imply m + n € Z. Finally, (a) contains the inverse of
each of its elements, because if a™ € {(a), then (@™)™! = a~" € (a). a

Definitions. If G = {a) for some a € G, then G is called a cyclic group. In general, the
subgroup (a), which may or may not be all of G, is called the subgroup generated by a. If
H = (a) for some @ € H, then H is called a cyclic subgroup.
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The group of integers is cyclic: Z = (1) and Z = (—1), so both 1 and —1 are generators.
Remember that the operation on Z, as a group, is addition, so in this case instead of powers
(such as a™), we are concerned with multiples (such as ma).

Every cyclic group G is Abelian, because a™a" = a"a™ forallm, n € Z.But not every
Abelian group is cyclic (Problem 14.5). More will be said about cyclic groups in Theorem
17.1 and later.

The following theorem analyzes what happens when different powers of an element
are equal, as in Example 14.1.

Theorem 14.3. Assumethat G is a group, that a € G, and that there exist unequal integers
rand s such thata” = a°.

(a) There is a smallest positive integer n such that a" = e.

(b) If tis an integer, then @’ = e iff nis a divisor of 1.

2 n

(¢c) The elements e = a°, a,a?, ..., a" " are distinct, and (a) = {e,a,d?, ..., a""!)

PROOF. (a) To prove part (a), it suffices to show that @’ = e for some positive integer
t; the Least Integer Principle will then tell us that there is a smallest such integer, which
we can call n. Assume r > 5. (If s > r, just interchange r and s in the next sentence.) After
multiplying both sides of a” = @* by a™*, we obtain o'~ = e with r —s > 0. And, as
already stated, that is sufficient.

(b)If nis adivisor of ¢, say t = nv,thena’ = a"™ = (a")’ = ¢ = e.To prove the other
half of part (b), suppose that a’ = e. By the Division Algorithm there are integers g and r
suchthatt =ng +r,0 <r <n.Thusa’ = a™*" = (a")a" = ea” = a". Buta’ = ¢, 50
a” = e. This implies that r = 0, since 0 < r < n and n is the smallest positive integer such
that @" = e. Therefore t = nq so that n is a divisor of z.

(c) To prove thata®, a', a2, ..., a"~! are distinct, suppose thata” = a” with0 < u <n
and 0 < v < n. We shall prove that 4 must equal v. Interchanging u and v if necessary, we
can assume that u > v. Then a* = @” implies a¥a™* = aa™", which implies a*™* = e
with u — v > 0. Therefore, by part (b), n must be a divisor of u — v. But u — v < n, since
0 <u<nand0 < v < n.Thusnisadivisorofu — vand 0 < u — v < n, whichcanhappen
only if u — v =0, thatis, u = v.

Certainly any power of a is in {(a); hence the proof will be complete if we show that

each power of a is in the set {¢, a, a?, ..., a""'}. Consider a power a™. By the Division
Algorithm there are integers g and r such that m = ng + r. This leads to @™ = @™ =
(@")a" = e%a" = a’, with 0 < r < n, which is just what we need. ]

Definition. If a is an element of a group, then the smallest positive integer n such that
a" = e, if it exists, is called the order of a. If there is no such integer, then a is said to have
infinite order. The order of an element a will be denoted by o(a).

Example 14.2.

(a) In S3, 0((1 2 3)) =3 (Example 14.1).
(b) In the group of nonzero rational numbers (operation multiplication), 2 has infinite

order, because 2" # 1 for every positive integer n. -

In additive notation, the condition@” = e becomes na = 0.InZ,, the conditiona” = e
becomes n[a] = [0].
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PROBLEMS

Example 14.3. In Zg, 0([2)) = 3, because [2] # [0] and
22] =[2] @ [2] = [4] # [0]
but
32]1=[2 & [2]®[2] =[6] =[0].
(We also see that {[2]) = {[0], [2], [4]}.) n

The word order has been used in two senses: the order of a group (Section 5) and the
order of an element. The next corollary shows how the two are related.

Corollary. If a is an element of a group, then o(a) = |{(a)|.

PROOF. If o(a) = n is finite, then (a) = {e, a, a?, ..., a"~'} by Theorem 14.3(c).
Thus |{a)| = n and o(a) = |{a)|. If a is of infinite order, then all of the integral powers of
a must be distinct by Theorem 14.3(a), and thus |{a}| is infinite. ]

14.1. Solve the equation (1 2)x =(1 2 3)in S;.
14.2. Solve the equation x(1 3 2)=(l 3)in S;.

14.3. Determine the elements in each of the cyclic subgroups of Ss. Also give the order of each
element of Ss.

14.4. Determine the elements in each of the cyclic subgroups of Zs. Also give the order of each
element of Zg.

14.5. Find the order of the element (1 2)(3 4) in S4. Verify that {(1), (1 2),(3 4),(1 2)3 4)}
is an Abelian, noncyclic subgroup of Ss.

14.6. Find the order of the element (1 2)(3 4 5)in Ss.

14.7. (a) Determine the elements in the subgroup {(1 2 3 4)) of S4.
(b) Determine the elements in the subgroup {((1 2 3 4 5)) of Ss.
(c) What is the order of the subgroup ((1 2 ... n))of S,?

14.8. Determine the elements in each of the following subgroups of the group of symmetries of a
square (Table 8.1).
(@) (ks0)
(b) (180)
(©) {p2m0)

14.9. Let a denote the clockwise rotation of the plane through 90° about a fixed point p (@ € G in
Example 5.7). What is the order of (a)?

14.10. (a) Repeat Problem 14.9 with 40° in place of 90°.
(b) What is the order of {(a) if & denotes rotation through (360/k)° (k € N)?

14.11. Prove Theorem 14.1(b).

14.12. Prove that xa = b has a unique solution in a group. This is the omitted part of the proof of
Theorem 14.1(c).

14.13. Prove that axb = ¢ has a unique solution in a group (given a, b, ¢).
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14.14.

14.15.

14.16.

14.17.

14.18.

14.19.
14.20.
14.21.

14.22.

14.23.
14.24.
14.25.
14.26.

14.27.

14.28.

14.29.
14.30.

(a) Prove that if @ and b are elements of an Abelian group G, with o(a) = m and o(b) = n,
then (ab)™ = e. Indicate where you use the condition that G is Abelian.

(b) With G, a, and b as in part (a), prove that o(ab) divides o(a)o(b).

(¢) Give an example of an Abelian group G and elements a and b in G such that
o(ab) # o(a)o(b). Compare part (b).

Show with an example that if G is not Abelian, then the statement in Problem 14.14(a) may
be false. (There is an example with G = §3.)

(a) Use Problem 14.14 to prove that in an Abelian group the elements of finite order form a
subgroup.

(b) What are the elements of finite order in the group of positive rationals (operation multi-
plication)?

Verify Theorem 14.1(e) fora =(1 2 S)and b=(2 3 4)in Ss. Is (ab)™' =a'b! true
for this @ and b?

Assume that a and b are elements of a group G.
(a) Prove thatab = ba iffa='b~' =b~'a~l.
(b) Prove that ab = ba iff (ab)* = a?b?.

Assume m, n € Z. Find necessary and sufficient conditions for (m) C (n).
Construct a Cayley table for a group G given that G = (a),a # ¢,and a° =e.

Rewrite Theorem 14.1 (not its proof) for a group written additively, that is, with operation
+, identity 0, and —a for the inverse of a.

(a) Prove that if a, b, and ¢ are elements of a group, then any one of the following three
equations implies the other two:

ab=c¢, a=cb™!, b=a"'c.
(b) Show with an example that ab = ¢ does not always imply a = b~!c. (Look in S3.)
Prove that a nonidentity element of a group has order 2 iff it is its own inverse.
Prove that every group of even order has an element of order 2. (Problem 14.23 may help.)
Prove that a group G is Abelian iff (ab)™' =a~'b~' foralla, b € G.

There is only one way to complete the following Cayley table so as to get a group. Find it.
Why is it unique? (Problem 5.22 may help.)

*
Q
o
o

o o R

Assume that {x, y, z, w} is to be a group, with identity x (operation juxtaposition). With any
one of the following additional assumptions (a), (b), (c), or (d), there is only one Cayley table
yielding a group. Determine that Cayley table in each case.

(a) y’=:

® Y =w

) y¥»=xandz?=x

(d) y*=xandz2=1y

Prove that if a is a fixed element of a group G, and A : G — G is defined by A(x) = ax for
each x € G, then X is one-to-one and onto.

Prove that a group is Abelian if each of its nonidentity elements has order 2.

Prove that if G is a group and a € G, then o(a™') = o(a).
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14.31. Prove that if G is a group and a, b € G, then o(a~'ba) = o(b).

14.32. Prove that if G is a group and a, b € G, then o(ab) = o(ba). (Suggestion: Problem 14.31
may help.)

14.33. Prove or give a counterexample: If a group G has a subgroup of order n, then G has an element
of order n.

14.34. Prove that if a group G has no subgroup other than G and (e}, then G is cyclic.

14.35. Prove that if G is a finite group, then Theorem 7.1 is true with condition (c) omitted. Also,
give an example to show that (c) cannot be omitted if Theorem 7.1 is to be true for all groups.

14.36. Prove that the order of an element « in S, is the least common multiple of the orders of the
cycles in the cyclic decomposition of «.

14.37. Determine the largest order of an element of S, for each nsuch that 1 < n < 10. [Suggestion:
InSs,0((1 2 3)@ 5)) = 6. Consider Problem 14.36.] Formulate a general state ment about
how to find the largest order for an element of S,,.

14.38. Prove that if A and B are subgroups of a group G, and A U B is also a subgroup, then A C B
or A 2 B. (Compare Problem 7.13 and Theorem 15.1.)

SECTION 15 GENERATORS. DIRECT PRODUCTS

If Gis a group and a € G, then the cyclic subgroup (a) is the smallest subgroup containing
a. The next two theorems generalize this idea by associating with each subset of a group a
unique smallest subgroup containing that subset.

Theorem 15.1. If Cdenotes any collection of subgroups of a group G, then the intersection
of all of the groups in C is also a subgroup of G.

PROOF. Let A denote the intersection in question; we shall verify that H satisfies the
three conditions in Theorem 7.1. Each subgroup in C contains e, the identity of G,soe € H
and A is nonempty. If @, b € H, then a and b belong to each subgroup in C and therefore
ab belongs to each subgroup in C; thus ab € H . Finally, ifa € H, thena™! belongs to each
subgroup in C because a does, and thus a~! € H. ]

Example 15.1. In Z (operation addition), (3) consists of all the multiples of 3 and {4)
consists of all the multiples of 4. Because a number is a multiple of both 3 and 4 iff it is a
multiple of 12, we have

(3) N {4) = (12).
Also,
(6) N (8) = (24). m

Theorem 15.2. Let S be any subset of a group G, and let (S) denote the intersection of all
of the subgroups of G that contain S. Then (S) is the unique smallest subgroup of G that
contains S, in the sense that

(a) (S) contains §,
(b) (S) is a subgroup, and
(c) if H is any subgroup of G that contains S, then H contains (S).
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PROOF. First, notice that there is always at least one subgroup of G containing S,
namely, G itself. With (S) as defined, (S) certainly contains S, because the intersection of
any collection of subsets each containing S will contain S, whether the subsets are subgroups
or not. Next, (S) is a subgroup by Theorem 15.1. Finally, condition (c) is simply a property
of the intersection of sets: if H is a subgroup containing S, then H is a member of the
collection of subgroups whose intersection is (S}, and thus H contains (S).

To justify use of the term unique in the theorem, assume that [S] is a subgroup of G
satisfying conditions (a), (b), and (c) with [S] in place of (S). Condition (c), with [S] in
place of H, implies that [S] 2 (S). On the other hand, condition (c) with (S) in place of H
and [S] in place of (S) implies that [S] C (S). Thus [S] = (S). [ ]

We say that S generates (S) and that (S) is generated by S. If § = {a}, then (S) is the
cyclic subgroup generated by a, which we denote by (@) (Section 14). More generally, if
S ={ai,...,a,}, then we denote (S) by (ai, ..., a,) rather than ({ay, ..., a,}).

Example 15.2. The subgroup (9, 12) of the group of integers must contain 12 + (—9) = 3.
Therefore (9, 12) must contain all multiples of 3. That is, (9, 12) 2 (3). But also
(9, 12) € (3), because both 9 and 12 are multiples of 3. Therefore (9, 12) = (3). The
next theorem generalizes this example. ]

Theorem 15.3. Let Ty and T, be subsets of a group G. Then
(Th) = (T2) iff both T) S (T3) and (T)) 2 Ta.

PROOF. By Theorem 15.2(a), T\ € (T). Therefore,
if (Ty) =(Ty),then T, C (T»).
Similarly,
if (1) =(Ta), then (T) 2 Ts.
Because (T) is a subgroup of G, Theorem 15.2(c) implies that
if Ty S (T2), then (Ty) C(T)).
(use (T3) in place of H and T} in place of S). Similarly, since (7)) is a subgroup of G,
if (Ty) 2Tz, then (Ty) 2 (T2).
Therefore,

if T\ C(T,) and (T\) 2 T,, then (T)) = (T3). [ |

To determine just which elements are in a subgroup (S), we must in general make
repeated use of Theorem 7.1, beginning with S and obtaining larger and larger sets until we
arrive at a subgroup. At the first step we adjoin to S all elements ab for a, b € S, and also
allelements a ! fora € S. This is then repeated with S replaced by the (possibly larger) set
consisting of S together with the elements adjoined at the first step. And so on. In this way
it can be seen that (S) must contain all elements a,a; - - - a;, where & is a positive integer
and each of @, a3, . . ., ai is either an element of S or the inverse of an element of S. In fact,
if S is nonempty, then (S) will consist precisely of the set of all such elements aa; - - - a;
(Problem 15.30). As Example 15.2 shows, however, in special cases (S) can be determined
more directly than this.
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Example 15.3. Theorem 15.3 and the following calculations show that in Sy,
((124),234)=(123)023 4).
First, {(1 2 4),2 3 H} < {(1 2 3),(1 2)(3 4)) because

(12 4)=(@1 2 3)1 2)(3 4)(1 2 3)
and
234=01320 283 4H=01 2 3)—1(1 2)(3 4).

Second, ((1 2 4),(2 3 4)) D {(1 2 3),(1 2)(3 4)} because
123hHh=(0124234
and
1B H=2 341 42)=02 3 1 2 H7". ]

We now look at direct products, which provide a way to construct examples of groups
and a way to describe certain groups in terms of less complicated component subgroups.
If A and B are groups, then A x B is the Cartesian product of A and B:

AxB={a,b):ac A and b € B}.

The following theorem shows how to make this set into a group.

Theorem 15.4. If A and B are groups, then A x B is a group with respect to the operation
defined by

(a1, bi)(az, by) = (a1a2, b1B2)

forallay,ay € Aandb,, by € B.The group A x B (with this operation) is called the direct
product of A and B.

Remark. Indefining the direct product we have followed the convention of writing groups
multiplicatively. If the operation on either A or B is something other than multiplication,
then that is taken into account in working with A x B.In Z x Z, for example,

(a,b)(c,d)=(a+c,b+d)
foralla, b, c,d € Z. Also see Example 15.4.

PROOF. The identity elementof A x B is(e4, eg), Where e, and ep denote the identity
elements of A and B, respectively. The inverse of (a, b) is (a‘l, b~Y). Verification of the
associative law is left as an exercise (Problem 15.16). [ ]

Notice that if A and B are finite, then so is A x B, with |A x B| = |A| - |B].

Example 15.4. Since Z3 = {[0], [1], [2]} and S = {(1), (1 2)},
Zy x § = {([0], (1)), ([0], (1 2)), ([1], (1)),
([11, (1 2)), (121, (), ([2], (1 2)).
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PROBLEMS

And, for example,
(111, A 2n(21, ) = (A1 [21, (1 2)(1)) = (01, A 2)). =
If A and B are groups, then both
Ax{e}={@a e):ac A}
and
{e} x B={(e,b): b € B}
are subgroups of A x B (Problem 15.17).

Verify each of the following equalities for subgroups of Z.

15.1. (=20,8) = (4) 15.2. (24, =36, 54) = (6)
Verify each of the following equalities for subgroups of S.

153. (1 4 6 2 3 5))={(1 2)(3 4)5 6),(1 3 6)2 4 5))

154. ((1 2 3),(4 5 6))={(1 2 3)(4 5 6),(4 6 5))

Determine the elements in each of the following subgroups of the group of symmetries of a square
(Table 8.1).

15.5. (is0, pr) 15.6. (1150, ov)
15.7. What is the order of Z4 x Z;? 15.8. What is the order of S4 x S4?

15.9. Simplify the following expression in Z4 x S,.
(121, (1 2 37", 2 )23, A 2 3)).

15.10. Simplify the following expression in A x B, where A is the group in Example 5.8 and B is
the group of symmetries of a square (Table 8.1).

(ctz.1, 190) ™ (03,2, ov)(eta, 1, sa)-
15.11. Construct a Cayley table for the group in Example 15.4. Show that the group is cyclic.
15.12. Construct a Cayley table for Z, x Z3. Show that the group is cyclic.

15.13. The subgroup ((1 4 3 2),(2 4)) of S4 has order 8. Determine its elements and write each
one as a product of disjoint cycles.

15.14. If @ denotes the empty set, what is {8 (in any group G)?

15.15. Find necessary and sufficient conditions on a subset S of a group G for § = (S).

15.16. Prove the associative law for the direct product A x B of groups A and B (Theorem 15.4).
15.17. Prove that A x {e} is a subgroup of A x B.

15.18. Prove that A x B is Abelian iff both A and B are Abelian.

15.19. Give an example to show that a direct product of two cyclic groups is not necessarily cyclic.
(Compare Problem 15.18.)

15.20. Prove that if A is a subgroup of G and B is a subgroup of H, then A x B is a subgroup of
G x H.

15.21. (a) List the elements of S3 x Z,.
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15.22.

15.23.

15.24.

15.25.

15.26.

15.27.

15.28.

15.29.

15.30.

(b) List the elements of the cyclic subgroup {((1 2), [11)) of S3 x Z,.
(c) List the elements of the cyclic subgroup (((1 2 3), [1])) of S5 x Z,.

(a) List the elements in the subgroup {([2], [2])) of Zs x Zs. (The first [2] is in Zs; the second
isin Zg.)

(b) List the elements in the subgroup ([2]) x ([2]} of Z4 x Zs. (Again, the first [2] is in Z,,
and the second [2] is in Z3.)

Prove that if a, b € Z, then (a, b} = (d), where d is the greatest common divisor of a and b.
Formulate a generalization involving {a,, a,, ..., a,) fora,,a,, ..., a, € Z.

Prove that if a, b € Z, then {(a) N (b) = (m), where m is the least common multiple of a and
b. Formulate a generalization involving {a,) N (@) N ---N {a,) foray, as, ..., a, € Z.

Prove that {[a]) = Z, iff (a, n) = 1, where (a, n) denotes the greatest common divisor of a
and n.

Prove that if (@, n) = d, then {[a]) = ([d]) in Z,. [Here (a, n) denotes the greatest common
divisor of @ and n.]

Prove that ([a]) = ([b]) in Z, iff (a, n) = (b, n). (See Problem 15.26.)

Prove that if A is a group, then {(a, a) : a € A} is a subgroup of A x A. This is called the
diagonal subgroup of A x A. What is it, geometrically, for A = R, with addition as the
operation? :

Each subgroup of Z (operation +) is cyclic. Prove this by assuming that / is a subgroup of
Z and giving a reason for each of the following statements.

(a) If |H| =1, then H is cyclic.

(b) If |[H| > 1, then H contains a least positive element; call it b.

(c) fae Handa =bg +r,thenr € H.

(d) Ifae Handa =bg +r,with0 <r <b, thenr =0.

(e) H = (b).

Prove that if G is a group with operation *, and S is a nonempty subset of G, then (S) is the
set of all @y % a; % - - - % a;, where k is a positive integer and each of a,, ay, .. ., ax is either
an element of S or the inverse of an element of S. [Suggestion: Show that the set described
satisfies the conditions (a), (b), and (c) in Theorem 15.2, which characterize (S).]

SECTION 16 COSETS

We know that congruence modulo 7 is an equivalence relation on the group of integers. By
viewing this in an appropriate way we are led to an idea that is important in the study of
all groups. To do this, we first recall that if n € Z, then (n) is the subgroup consisting of
all multiples of n. Because

a=b(modn) iff a—»b isamultiple of n,

we see that

a=b(modn) iff a-—be(n).

The next theorem generalizes this by replacing Z by an arbitrary group G, (n) by an
arbitrary subgroup H of G, and a — b by the corresponding expression ab™! in our general
multiplicative notation.
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Theorem 16.1. Let H denote a subgroup of a group G, and define a relation ~ on G as
follows:

a~b iff ab”'eH. (16.1)

Then ~ is an equivalence relation on G.

PROOF. Reflexive:Ifa € G,thena ~ abecauseaa™! =e e H.

Symmetric: If a ~ b, then ab '€ H,soba™! = (ab‘l)_1 € H because H contains
the inverse of each of its elements; thus b ~ a.

Transitive: If a ~ b and b ~ ¢, then ab~! € H and bc~! € H, so ac™! = (ab™1)
(bc™Y) € H because H is closed under products; thus a ~ c. [ |

The equivalence classes for this equivalence relation are called the right cosets of H
in G. (Left cosets will be defined later in the section.) Looking back at the motivating
example preceding Theorem 16.1, we see that the right cosets of (n) in Z are simply the
congruence classes mod n. Lemma 16.1 will show that the right cosets of H in G have
the form described by the following notation: For H a subgroup of a group Gand a € G,
let

Ha=t(ha :h e H}.
If the group operation is 4, then H + a is written in place of Ha, and similarly for other

operations.

Example 16.1. letG = Z and H = (7). Then

H+3=MN+3=1{(..,~14,-7,0,7,14, .. } +3
o —11,-4,3,10,17,.. ).

This is the congruence class [3] in Z;. [ |

Example16.2. LetG = S3and H = {(1), (1 2)}. Then
H(1) = {()D), A 2D} = {(1), A 2))
H1 2 3)={D(1 2 3),1 2X1 2 )} ={1 2 3),2 3)
H(1 3 2)={1)1 3 2),1 21 3 2} ={1 3 2),(1 3)}.
Notice that these three sets form a partition of G. In fact, by the following lemma, they are
the right cosets of H in G. [ |
Lemma 16.1. If H is a subgroup of a group G, and a, b € G, then the following four
conditions are equivalent.
(a) ab™' e H.
(b) a = hb for some h € H.
(c) a € Hb.
(d) Ha = Hb.

As a consequence, the right coset of H to which a belongs is Ha.

PROOF. Problem 16.9. n



SECTION 16 COSETS 87

PROBLEMS

One right coset of H in G will be H = He. To compute all of the right cosets of a
subgroup H in a finite group G, first write H, and then choose any element a € G such
that e & H, and compute Ha. Next, choose any element b € G such that b € H U Ha and
compute Hb. Continue in this way until the elements of G have been exhausted.

Example16.3. Let G = Zy; and H = {[4]). The right cosets of H in G are

(0], (4], (81}

={
He [1] = {[11, [5], 191}
H & (2] = ([2], [6], {101}
He[3] = ({3],[7], [11]} n

In Example 16.3, H has order 3, and each of the right cosets of H also has three
elements. The following lemma, which generalizes this observation, will play a crucial
role in the next section. In stating the lemma we extend the notation | H | to include subsets,
thatis, for S a finite set, | S| will denote the number of elements in S. Then | S| = | T'| if there
exists a one-to-one mapping of S onto 7. (This is, in fact, the definition of |S| = |T'|.)

Lemma 16.2. If H is a finite subgroup 5fa group G,and a € G, then |H| = |Hal|.

PROOF. By the remark preceding the lemma, it suffices to find a one-to-one mapping
of H onto Ha. Define a : H — Ha by a(h) = ha for each h € H. This is a mapping
because ha is uniquely determined by 4 and a. It is onto because Ha consists precisely of
the elements of the form ha for A € H.To show that « is one-to-one, assume thath, h € H
and a(h;) = a(h3). Then hia = haa, and therefore, by right cancellation, 4y = h;. Thus
a is one-to-one. n

Left cosets result from replacing ab™! € H by a~'b € H in (16.1). Specifically, let H
be a subgroup of a group G and define ~ on G by

a~b iff a'beH. (16.2)

Then ~ is an equivalence relation on G, and the equivalence classes are called the left cosets
of H in G. These cosets have the form

aH = {ah: h € H}.

Problems 16.10 and 16.11 ask you to state and prove the analogues of Theorem 16.1 and
Lemma 16.1 for left cosets. Applications of cosets will appear in the next section and later.

16.1. Determine the right cosets of ([4]) in Zs.

16.2. Determine the right cosets of {[3]) in Z,5.

16.3. For Example 8.1 (the group of symmetries of a square), determine the right cosets of {og).
16.4. For Example 8.1, determine the right cosets of (o).

16.5. Determine the right cosets of ((1 2 3)) in S5.

16.6. Determine the right cosets of {(1 3)) in S5.
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16.7.

16.9.
16.10.
16.11.
16.12.

16.13.

16.14.

16.15.

16.16.

16.17.
16.18.
16.19.
16.20.

16.21.

Verify that if H = {(x, x) : x € R}, then H is a subgroup of R x R (with + as the operation
in each component). Describe the right cosets of H in R x R geometrically. (H is called the
diagonal subgroup of R x R. See Problem 15.28.)

. Consider Z as a subgroup of R with addition as the operation. Think of the elements of R

as the points on a directed line in the usual way, and then describe the right cosets of Z in R
geometrically. (Suggestion: Start with a specific example, such as Z + %.)

Prove Lemma 16.1. [Suggestion. Prove that (a) implies (b) implies (c) implies (d) implies (a).]
State and prove Theorem 16.1 with the condition ab™! € H replaced by a~'b € H.
State and prove the analogue of Lemma 16.1 for left cosets in place of right cosets.

Verify that if H is a subgroup of an Abelian group G, and @ € G, then the right coset of H to
which a belongs is the same as the left coset of H to which a belongs.

Compute the left cosets of H in G for H and G as in Example 16.2. Verify that in this case
the collection of left cosets is different from the collection of right cosets.

LetG = S3and H = ((1 3)).

(a) Determine the right cosets of H in G.

(b) Determine the left cosets of H in G.

(c) Verify that the collection of right cosets is different from the collection of left cosets.

(a) Compute the right and left cosets of {(1 2 3)) in S;.
(b) Verify that for each element &t of Sy the right coset of {(1 2 3)) to which r belongs is
the same as the left coset of (I 2 3)) to which » belongs.

Prove that each right coset of A x {e}in A x B contains precisely one element from {e} x B.
(See Problem 15.17.)

Compute the right cosets of (((1 2), [1])) in S3 x Z,.
Compute the left cosets of {((1 2)) x {[1]) in S5 x Z,.
Prove that a subset S of a group G cannot be a right coset of two different subgroups of G.

Assume that H and K are subgroups of a group G and that @ € G. The subset HaK of G
defined by

HaK = {(hak :he H and ke K}

is called a double coset of H and K in G. Prove that if HaK and HbK are double cosets of
H and K in G, then they are either equal or disjoint; that is, either HaK = HbK or HaK N
HbK = @.

Prove that if H and K are subgroups of a group G, then any right coset of H N K in G is the
intersection of a right coset of H in G and a right coset of K in G.

SECTION 17 LAGRANGE’S THEOREM. CYCLIC GROUPS

Of all the subsets of a finite group, only some will be subgroups. Lagrange’s Theorem
narrows the field.

Lagrange’s Theorem If H is a subgroup of a finite group G, then the order of H is a
divisor of the order of G.

Thus, since S3 has order 3! = 6, any subgroup of §3 must have order 1, 2, 3, or 6; S5
cannot have subgroups of order 4 or 5. A group of order 7 can have only the two obvious
subgroups: {e}, of order 1; and the group itself, of order 7.
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PROOF OF LAGRANGE’S THEOREM. The right cosets of H, being equivalence classes,
form a partition of G (Theorem 9.1). Thus two right cosets of H are either equal or disjoint.
Moreover, because G is finite, there can be only finitely many of these cosets. Choose one
element from each coset and let the elements chosen be ay, a3, . .., a. Then

G =Ha, UHa, U - U Ha.
Each coset Ha; contains |H | elements (Lemma 16.2), and no element is in more than one

coset. It follows that |G| = |H| - k. Therefore, |H | is a divisor of |G|. ]

The integer k appearing in the proof of Lagrange’s Theorem is called the £ndex of H
in G. This index will be denoted [G : H]. Thus [G : H]is the number of right cosets of H
in G, and

Gl =|H|-[G : H].

Notice that this equation shows that (G : H], as well as |H|, is a divisor of {G|.

Corollary 1. IfG is a finite group and a € G, then the order of a is a divisor of the order
of G.

PROOF. By the corollary of Theorem 14.3, o(a) = |(a)|. But {a) is a subgroup of
G, and thus |{a)| is a divisor of |G| by Lagrange’s Theorem. Therefore o(a) is a divisor
of |G|. ]
Corollary 2. If G is a finite group and a € G, then a'® = e.

PROOF. From Corollary 1, |G| = o(a)k for some integer k. Thus a!C! = go@* —
(@@ = &k = e. u

Corollary 3 (Euler’s Theorem). Ifnis a positive integer and a and n are relatively prime,
then a®™ = 1(mod n).

PROOF. By Theorem 13.5, the group U, has order ¢(n). Thus, by Corollary 2, [a]?? =
(11in U,. But [a]*"’ = [a#™], which implies a*® = 1 (mod n). [

Corollary 4 (Fermat’s Little Theorem). Assume p is a prime. If p } a, then a?~!
1 (mod p). For all a, a” = a (mod p).

PROOF. If p is a prime and p f a, then ¢(p) = p — 1 and (a, p) = 1, so the first part
is a special case of Corollary 3, and the second part follows from that. If p|a, then a and
a” are both congruent to 0 mod p. n

Corollary 5. A group G of prime order contains no subgroup other than {e} and G.

PROOF. This is a direct consequence of Lagrange’s Theorem, since a prime has no
positive divisor other than 1 and itself. n

Corollary 6. Each group G of prime order is cyclic, generated by any one of its nonidentity
elements.

PROOF. If a€ G and a #e, then (a) # (e}, so (a) =G by the preceding
corollary. [ ]
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Example 17.1. In contrast to groups of prime order (the preceding corollary), groups of
prime-squared order need not be cyclic. For example, a direct product Z, x Z, has order
p? but is not cyclic because it has no element of order p?; each of its nonidentity elements
has order p. (See Problem 17.24.) ]

Example 17.2. Lagrange’s Theorem greatly simplifies the problem of determining all the
subgroups of a finite group. Let G denote the group of symmetries of a square (Exam-
ple 8.1). Aside from {ug} and the whole group, any subgroup must have order 2 or 4.
Subgroups of order 2 are easy to determine—each contains the identity together with an
element of order 2 (these correspond to appearances of (o on the diagonal of the Cayley
table). In this case {i130), (0u), {ov), (01) and (p2) all have order 2. This leaves only order
4, and careful inspection will reveal three subgroups of this order: (w90}, {on, ov) and

(o1, p2). L

Figure 17.1 shows the subgroups of G and the inclusion relations between them. This
is an example of a subgroup lattice. Such a figure is constructed as follows. If A and B
are subgroups of G with A B, and there is no subgroup C such that A 3 C 3 B, then B
appears above A and a segment is drawn connecting A and B.

/N N

{pw) oy (ulgo)/(PQ (p2)
(#0)
Figure 17.1

Notice that Lagrange’s Theorem does not say that if n is a divisor of the order of G,
then G has a subgroup of order n. That would be false. For example, the alternating group
A4 has order 12 but has no subgroup of order 6 (Problem 17.28). On the other hand, the
following theorem shows that every cyclic group of finite order n does have a subgroup
of every order dividing n. (Thoroughly understanding this theorem and its proof will take
extra time, but will be worth it.)

Theorem 17.1 (Fundamental Theorem of Finite Cyclic Groups). Let G be acyclic group
of (finite) order n, with G = (a) = (e, a,a?,...,a""'}.

(a) Every subgroup of G is cyclic.

(5) If 1 < k <n, then a* generates a subgroup of order n/(k, n), where (k, n) is the
greatest common divisor of k and n.

(¢c) If | < k < n, then a* is a generator of G iff (k,n) = 1. Thus G has ¢(n) different
generators.

(d) For each positive divisor d of n, G has exactly one subgroup of order d.
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PROOF. (a) Let H denote a subgroup of G. If H = (e}, then H is cyclic. Suppose
H # (e), and let m denote the least integer such that | <m <n and @™ € H. We shall
prove that H = (a™).

Suppose a’ € H. By the Division Algorithm, there are integers g and r such that

t=mqg+r, 0<r<m.
Because
a! — amq+r — (aM)qarI
we have
a =a'@™.

But @’ € H and @™ € H, so a” € H. This implies that r =0, since 0 < r <m and m is
the least positive integer such that a™ € H. Therefore, a’ = (@™)? and a’ € (a™). Thus
H = (a™) and H is cyclic.

(b) Let g = (k, n). Notice that [{(a*}{ is the least positive integer s such that aks = e.
By Theorem 14.3, a*° = e iff n|ks. But n| ks iff (n/g)|(k/g)s. Since (n/g, k/g) =1, we
have (n/g)|(k/g)s iff (n/g)|s (Lemma 13.1). The least positive integer s such that (n/g)|s
is n/g. Therefore, the order of ak is n/g, thatis, n/(k, n).

(c) Anelement a* generates G iff |(a*)| = n. By part (b), this will be true iff (k, n) = 1.
The second part of (c) now follows from the definition of ¢(n) (Section 13).

(d) Suppose d > 0 and d | n. Then n = du for some positive integer u, and (n, u) = u
since u | n. Therefore, by part (b), @ generates a subgroup of order n/u = d. Thus G has
at least one subgroup of order d.

To prove that G has a unique subgroup of each possible order, assume that H, and H,
are subgroups of G with | H;| = | H>|. By the proof of part (a), H; = (a™') and H, = (a™),
where m; is the least positive integer such thata™ € H; fori = 1, 2. By part (b), |[(@™}| =
n/(m;,n)fori =1,2.Butm;|nfori = 1, 2 because a" = e sothata” € (a™). Therefore,
(mi,n) =m; sonfim;,n)=n/m; fori =1,2. Thus n/m1, = n/my,m = ms, (a™) =
(@™}, and H, = H,. [ ]

Example 17.3. The positive divisors of 12 are 1, 2, 3, 4, 6, and 12. Thus every cyclic
group of order 12 has exactly one (cyclic) subgroup of each of these orders. Figure 17.2
illustrates this by showing the subgroup lattice of Z,. The notation a* in Theorem 17.1
becomes k[a] in this example.

(1D

(1D =(I5]) =71y =<[11D)
(2D ([2)) = (10D

([4]) = (8D

([3]) =«[9D

(an asp

(6D

(oD
Figure 17.2 L
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The Norwegian mathematician Ludwig Sylow (1832-1918) proved in 1872 that if p*
is any power of a prime and p" is a divisor of |G |, then G must have a subgroup of order
p*. Thus, for example, any group of order 12 must have subgroups of orders 2, 3, and 4.
A proof of Sylow’s Theorem, for the case of the highest power of each prime dividing the
order of a finite group, will be given in Section 58.

Lagrange’s Theorem is named for the French mathematician Joseph-Louis Lagrange
(1736-1813), generally regarded as one of the two foremost mathematicians of the eigh-
teenth century, the other being the Swiss-born mathematician Leonhard Euler (1707-1783).
Lagrange did not prove this theorem in the form applying to all finite groups; indeed, the
general concept of group was not studied until after Lagrange. But he did use the theorem
in a significant special case, and therefore it is fitting that it be named for him.

17.1. Find [S5: ((1 2))]. 17.2. Find [Sq: {(1 2 3))].

17.3. Find [Z,0 : ((2})]. 17.4. Find [Zao : ([12], [20])].

17.5. Let G denote the group in Example 8.1 (the group of symmetries of a square). Find (G : {p,)].
17.6. With G as in Problem 17.5, find [G : (270}].

17.7. A group G has subgroups of orders 4 and 10, and |G | < 50. What can you conclude about
|G1?

17.8. A finite group G has elements of orders p and q, where p and q are distinct primes. What can
you conclude about |G |?

17.9. Assume that G is a group with a subgroup H such that |H| = 6, [G : H| > 4,and |G| < 50.
What are the possibilities for |G |?

17.10. Assume that G is a group with a subgroup H such that { G| < 45, |H| > 10,and [G : H] > 3.
Find |G|, |H|,and [G : H].

17.11. Find all of the subgroups of Zs. Also construct the subgroup lattice.
17.12. Find all of the subgroups of S3. Also construct the subgroup lattice.
17.13. Find all of the subgroups of Z, x Z,.
17.14. Find all of the subgroups of Z3 x Z3.

17.15. Determine the number of subgroups of Z, x Z, if p is a prime. (Compare Problems 17.13
and 17.14).

17.16. Find all of the subgroups of Z; x Z. (There are eight).
17.17. Find all of the subgroups of Zss. Also construct the subgroup lattice. Use Theorem 17.1.
17.18. Assume that G is a cyclic group of order n, that G = (a), that k| n, and that H = (a*). Find

[G: H].

17.19. Assume that H is a subgroup of a finite group G, and that G contains elements a, a;, .. ., a,
such that a,-aj" gH forl <i<n,1<j<n,and i s j. What can you conclude about
(G: HJ?

17.20. Assume that A is a subgroup of a finite group G and that B is a subgroup of a finite group H.
Then A x B is a subgroup of G x H (Problem 15.20). Express [G x H : A x B] in terms
of (G : A] and [H : B), and prove that your result is correct.

17.21. Assume that A is a finite group and let D denote the diagonal subgroup of A x A (Problem
15.28). Find (A x A : D].
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17.22. The exponent of a group G is the smallest positive integer n such that a" = ¢ for each
a € G,if such an integer n exists. Prove that every finite group has an exponent, and that this
exponent divides the order of the group. [Suggestion. Consider the least common multiple of
{o(@a) :a € G}.]

17.23. Determine the exponent of each of the following groups. (See Problem 17.22.)
(@) 83 (b) Z, €} Z; x Z,
(d) ZZ X ZS (e) Zm X Zn

17.24. Prove that if G is a group of order p? (p a prime) and G is not cyclic, then a? = ¢ for each
aeG.

17.25. Provethatif H isasubgroupofG, [G : H1=2,a,b € G,a ¢ H, andb ¢ H, thenab e H.
17.26. Verify that S, has at least one subgroup of order & for each divisor k of 24.

17.27. Prove that if A and B are finite subgroups of a group G, and |A| and |B| have no common
divisor greater than I, then A N B = {e}. (See Problem 7.13.)

17.28. Thesubgroup A4 = ((1 2 3),(1 2)(3 4))of S, has order 12. Determine its elements. Verify
that it has no subgroup of order 6.

17.29. Prove that a finite cyclic group of order n has exactly one subgroup of index m for each
positive divisor m of n.

17.30. If H is a subgroup of G and [G : Hj = 2, then the right cosets of H in G are the same as the
left cosets of H in G. Why?

17.31. Write a proof of Lagrange’s Theorem using left cosets rather than right cosets.

17.32. Prove that if H is a subgroup of a finite group G, then the number of right cosets of H in G
equals the number of left cosets of / in G.

17.33. Prove that if G and H are cyclic groups of orders m and n, with (m,n) =1, then G x H is
cyclic. How many different generators does it have? (See Theorem 15.4.)

17.34. Prove that if H and K are subgroups of a finite group G, and K € H, then [G:K]=
[G: HIH:K].

SECTION 18 ISOMORPHISM

We speak of the set of integers, but if we were to allow ourselves to be distracted by things
that are mathematically irrelevant, we might think that there were many such sets. The inte-
gers can appear in Arabic notation {..., 1,2, 3, ...},inRomannotation {..., I, IL, III, . . .},
in German {. . ., ein, zwei, drei, . ..}, and so on; but mathematically we want to think of all
these sets as being the same. The idea that filters out such differences as names and notation,
as well as other differences that are irrelevant for group-theoretic purposes, is isomorphism.
Isomorphism allows us to treat certain groups as being alike just as geometrical congruence
allows us to treat certain triangles as being alike. The idea also applies in many cases that
are less obvious than that of the integers presented in different languages or notations. As
a hint of this, consider the subgroup ((1 2 3)) of S3 (Table 18.1) and the group Z; (Table
18.2). The elements of ((1 2 3)) are permutations and the operation is composition; the
elements of Z3 are congruence classes and the operation is addition modulo 3. Thus the un-
derlying sets and operations arise in totally different ways. Still, these groups are obviously
somehow alike: given the correspondence (1) <> [0], (1 2 3) < [1], and(1 3 2) & (2],
we could fill in all of one table just by knowing the other. The following definition isolates
the idea behind this example.
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Table 18.1
(1) (1 23) (13 2
qY) 1) 123 (@q3%2
(123 (123) 1 3 2 (1)
a3 2|a 32 (1) 123
Table 18.2

& | [0] [ [2]

o1 | [ (2
(]|l 21 (o]
(21 | 2 [0 [l

Definition. Let G be a group with operation x, and let H be a group with operation #.
An isomorphism of G onto H is a mapping 6 : G — H that is one-to-one and onto and
satisfies

6(a x b) = 0(a) # 6(b)

for all a, b € G. If there is an isomorphism of G onto H, then G and H are said to be
isomorphic and we write G ~ H.

The condition 6(a * b) = (a) # 6(b) is sometimes described by saying that § pre-

serves the operation. It makes no difference whether we operate in G and then apply 6, or
apply 6 first and then operate in H—we get the same result either way. See Figure 18.1.

e (b)

G(a » b)
= 8(a) #6(b)

Figure 18.1

Example 18.1. 'With the obvious mapping (...,1+—> 1,2+~ 1,3~ 1III,...) from the
integers in Arabic notation to the integers in Roman notation, we get the same answer
whether we add in Arabic (1 4+ 2 = 3) and then translate into Roman (3 + III), or translate
first (1 > 1, 2 +> II) and then add (I + II = III). (And this is true for all m + n, not just
14+2) |

Example 18.2. To illustrate the definition for the case ((1 2 3)) and Zj3 already
considered, use

) =1[0], 6((1 2 3)=[1], &1 3 2)=[2]
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Then, for example,
6((1 2 3)1 3 2)) =6((1)) =[0]
and
6l 2 3nee(l 3 2)=[1]e[2] =[O0l
50
8((1 2 3)1 3 2)=6(1 2 3Dl 3 2)).

There are nine such equations to be checked in this case (one for each entry of the Cayley
table). There will be n? total equations to check if G and H are finite of order n. n

Example 18.3. Define a mapping 8 from the set of all integers to the set of even integers
by 8(n) = 2n for each n. This mapping is one-to-one and onto, and, moreover, it preserves
addition:

B(m +n)=2(m +n) =2m + 2n = 6(m) + 6(n)

for all integers m and n. Thus 6 is an isomorphism, and the group of all integers (operation
+) is isomorphic to the group of even integers (operation +). ]

The preceding example may seem puzzling—isomorphic groups are supposed to be
essentially alike, but surely there is a difference between the integers and the even integers.
This example shows that, as groups, each with addition as operation, there is in fact no
essential difference between the integers and the even integers. Remember, however, that
we are ignoring multiplication at present; when we take both addition and multiplication
into account in Chapter VI, we shall be able to detect a difference between the two systems.
In Section 29 we shall see precisely what distinguishes the integers mathematically.

Example 18.4. Let R” denote the set of positive real numbers, and define # : R”? —» R
by 8(x) = log,ox for each x € R?. Here R’ is a group with respect to multiplication, R is
a group with respect to addition, and 8 is an isomorphism. The mapping 6 is one-to-one
and onto because it has an inverse, ¢ : R — R”, defined by ¢(x) = 10*. The mapping
preserves the operation because

B(xy) = logo(xy) = logox + log,oy = 6(x) + 6(y)

forallx,y € R”.

This isomorphism explains the historical importance of logarithms in simplifying
calculations: When used in conjunction with a table of logarithms, it allows one to replace
a multiplication problem by an addition problem. Nowadays, it is much easier to use a
calculator or computer, of course. [ ]

The following theorem shows that any group isomorphic to an Abelian group must also
be Abelian. This can be taken as an illustration that isomorphic groups share significant
properties. On the other hand, it can also be taken as showing that the property of being
Abelian (or non-Abelian) is a significant property of groups. For the significant properties
of groups, as groups, are those properties that are shared by isomorphic groups—that is
what isomorphism is all about.

Theorem 18.1. If G and H are isomorphic groups and G is Abelian, then H is Abelian.
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PROOF. Let the operations on G and H be * and #, respectively, and let6 : G - H
be an isomorphism. If x, y € H, then there are elements @, b € G such that 8(a) = x and
8(b) = y. Since 6 preserves the operation and G is Abelian,

x#y=0(a) #0(b)=0(a@xb)=00b*a)=0(0b) # 6(a)=y # x.
This proves that H is Abelian. ]

Other examples of properties shared by isomorphic groups will be given in the next
section. The following theorem gives some technical facts about isomorphisms. Notice that
except for part (e), the theorem does not assume that 8 is one-to-one or onto—only that it
preserves the operation. Such a mapping is called a homomorphism. That is, if G and H
are groups with operations * and #, respectively, then § : G — H is a homomorphism if

B(a * b) = 8(a) # 6(b)

forall a, b € G. Group homomorphisms are studied in more detail in Chapter V.

Theorem 18.2. Let G be a group with operation x, let H be a group with operation #, and
let 6 : G > H be a mapping such that 8(a xb) = 0(a) # 6(b) for alla,b € G. Then

(@) 6(eG) = en.,

(b) 8(a™") = 8(a)~} foreacha € G,

(c) 8(a*) = B(a)* for each a € G and each integer k,
(d) 8(G), the image of 8, is a subgroup of H, and

(e) if 8 is one-to-one, then G = 6(G).

PROOF. (a) Because 6 preserves the operation and eg * eg = eg, we have
B(eg) #6(eg) = B(eg * eg) = 0(ec). But 8(eg) € H, so 8(eg) = B(eg) # ey. This gives
B(eg) #6(eg) = B(eg) # ey, from which O(ec) = ey by left cancellation.

(b) Using, in order, the properties of 8 and a~!, and part (a), we can write
6(a) #6(a~") = B(a xa~") = B(ec) = ey. Therefore H(a~') must equal H(a)~", because
6(a)~ is the unique solution of 8(a) #x = ey in H.

(c) We use induction for k > 0, and leave k < 0 as an exercise. The case k =1 is
obvious. Assume 8(a*) = #(a)*. Then

8(ak*!) = B(at xa) = 6(a") # 8(a) = B(a)t # B(a) = B+,

(d) By parts (a) and (b), 6(G) contains ey, and also along with any element the
inverse of that element. Thus it now suffices to show that 8(G) is closed with respect
to #. Assume that x, y € 8(G). Then x = 6(a) and y = 6(b) for some a, b € G; thus
x #y=20(a) # 6(b) = 6(a x b) € 8(G), which establishes closure.

(e) By assumption, 8 preserves the operation and is one-to-one. Also, thought of as a
mapping from G to 8(G), 8 is onto. Therefore 8 : G — 6(G) is an isomorphism. [ |

18.1. Prove that Z is isomorphic to the multiplicative group of all rational numbers of the form
2" (m € Z).

18.2. Prove that Z x Z is isomorphic to the multiplicative group of all rational numnbers of the form
2"3" (m,n € Z).
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18.3.

18.4.
18.5.

18.6.

18.7.

18.8.
18.9.

18.10.

18.11.

18.12.

18.13.

18.14.

18.15.

Fill in the blanks in the following table to obtain a group isomorphic to Z,. What is the
isomorphism?

*
()
o
o
.

(SRS IR N

Repeat Problem 18.3, with Z, replaced by Z; x Z,.
Assume that H = {u, v, w, x,y,z} is a group with respect to multiplication and that
6 : S3 — H is an isomorphism with
6((1)) = u, 61 2 3)=v, 6((1 3 2))=w,
6((1 2)) = x, 6((1 3)) =y, 6((2 3) =z
Replace each of the following by the appropriate letter, either u, v, w, x, y, or z.
(a) xw (b) w! © v* d) zv~'x
Assume that H = {u, v, w, x,y,z} is a group with respect to multiplication and that
6 : Zg — H is an isomorphism witlr
6([0]) = u, 61 = v, 6(2) = w,
63D = x, 64D =y, 6([5]) = z.

Replace each of the following by the appropriate letter, either u, v, w, x, y, or z.
(a) xw ®) w! (c) v* (d) zv~'x

One of the conditions in the definition of isomorphism was not used in the proof of Theorem
18.1. Which one?

Describe an isomorphism between the two groups in Example 5.5.

Prove that if G, H, and K are groups, and 6 : G — H and ¢ : H — X are isomorphisms,
then¢ o6 : G — K is an isomorphism. (Use multiplication for the group operations.)

Prove that if G and H are groups, then G x H =~ H x G. (Let the operations on G and H be
denoted by * and #, respectively.)

Prove that 6(x) = e* defines an isomorphism of the group R of all real numbers (operation
addition) onto the group R” of all positive real numbers (operation multiplication). What is
the inverse of the mapping 67 s the inverse an isomorphism?

Verify that Z, (operation @) is isomorphic to Z's' (operation ©). (See Example 11.4.)

Use the mapping 6([als) = ([a],, [a];) to show that Zg = Z, x Z;. First verify that 6 is well
defined.

Prove that if m and n are relatively prime (that is, have greatest common divisor 1), then

Z"l’l ~ Z"l X Z’l'
(Problem 18.13 is a special case.)

Assume that G, H, and 6 are as in Theorem 18.2. Assume also that B is a subgroup of H and
that
A={xeG:0(x)e B}

Prove that A is a subgroup of G. (A is called the inverse image of B with respect to 6. Thus
the inverse image of a subgroup with respect to a homomorphism is a subgroup.)
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18.16. The group G of all real matrices [a f], with a # 0, is a subgroup of the group GL(2, R)
0

(Example 5.10). Prove that G is isomorphic to the group in Example 5.8.

18.17. Prove that the group of rotations of a tetrahedron (Problem 8.18) is isomorphic to the alter-
nating group As.

SECTION 19 MORE ON ISOMORPHISM

If two finite groups are isomorphic, then they must have the same order because an iso-
morphism is, among other things, one-to-one and onto. Turning this around (that is, using
the contrapositive), we get the simplest of all tests for showing that two groups are not
isomorphic: If G and H are groups and |G| # |H{ then G and H are not isomorphic. It is
useful to have a list of other properties that are shared by isomorphic groups. Such a list
will frequently make it much easier to determine quickly if two groups are not isomorphic.

Theorem 19.1. Assume that G and H are groups and that G ~ H.
(@) |G| =|H]|.
(b) If G is Abelian, then H is Abelian.
(¢) If G is cyclic, then H is cyclic.

(d) If G has a subgroup of order n (for some positive integer n), then H has a subgroup
of order n.

(e) If G has an element of order n, then H has an element of order n.
() If every element of G is its own inverse, then every element of H is its own inverse.

(g) If every element of G has finite order; then every element of H has finite order.

PROOF. Statement (a) is the observation made at the beginning of this section. State-
ment (b) was proved as Theorem 18.1. The proofs of the remaining statements are left to
the problems at the end of this section. u

Many other properties could be added to the list in Theorem 19.1, but the ones given
there should help to give better insight into the nature of isomorphism. It is also important
to be able to determine if groups are isomorphic, of course. This problem is considered in
the following more general discussion.

In Example 18.2 we saw that two particular groups of order 3 are isomorphic. It will
follow from Theorem 19.3 that any two groups of order 3 are isomorphic. This means
that in essence there is only one group of order 3. More precisely, it means that there is
only one isomorphism class of groups of order 3, where by an isomorphism class we mean
an equivalence class for the equivalence relation imposed on groups by isomorphism, as
described by the following theorem. We revert to the convention of using multiplicative
notation for unspecified group operations.

Theorem 19.2. [somorphism is an equivalence relation on the class of all groups.
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PROOF. If G is a group, then it is easy to verify that the identity mapping: : G — G
is an isomorphism. Thus G = G, and = is reflexive.

Assume that G = H and that 8 : G — H is an isomorphism. Then 6 is one-to-one
and onto, so there is an inverse mapping §~! : H — G (Theorem 2.2). We shall show that
67! is an isomorphism; it is necessarily one-to-one and onto. Suppose that a,b € H.
We must show that 8~'(ab) =60~'(a)d~'(b). Let 6~ (@)=x and 07'(b) =y.
Then a =6(x) and b=6(y) so that ab =8(x)8(y) =HO(xy). This implies that
6~(ab) = xy = 0~ (a)d~'(b), as required. Therefore H = G, and #: is symmetric.

Finally, it is easy to show that if G, H, and K are groups, and §: G — H and
¢: H — K areisomorphisms,then¢ o 8 : G — K isalso anisomorphism (Problem 18.9).
Thus = is transitive. B

Theorem 19.3. If pis a prime and G is a group of order p, then G is isomorphic t0 Z,.

PROOF. Let the operation on G be %, and let a be a nonidentity element of G. Then
(a) is a subgroup of G and (a) # {e}, so {(a) = G by Corollary 5 of Lagrange’s Theorem
(Section 17). Thus G = {e, a, a?, ..., a?"1}.

Define # : G — Z, by 6(a*) = [k]. This mapping is well defined and one-to-one
because .

a=ah iff avR=c iff p|kh—k) iff [k]=[k]
Also, 8 is onto. Finally, if a™, a" € G, then
6(a™ xa") = 0(@a™*") = [m + n] = [m] ® [n] = 6(a™) @ (a").

Therefore, 6 is an isomorphism and G & Zp. | ]

With Theorem 19.3 we have completely classified all groups of prime order. The
principal problem of finite group theory is to do the same for groups of all finite orders. An
immense amount of work has been done on this problem. Although much of this work is
well beyond the range of this book, it will still be interesting to look at what is known in
some special cases. Proofs will be omitted.

Table 19.1 shows the number of isomorphism classes of groups of order n for each n
from 1 to 32. The label “number of groups” is what is conventionally used in place of the
more accurate but longer phrase “number of isomorphism classes of groups.” Whenever
we ask for “all” groups having a property (such as being Abelian and of order n, for
example), we are really asking for one group from each isomorphism class of groups with
that property.

Notice from Table 19.1 that there is just one group of each prime order; Theorem 19.3
guarantees that. But notice that there is just one group of order 15, and 15 is not a prime.
The key is this:

There is just one group of order n
iff
n is a prime or a product of distinct primes py, p2 ..., Pk
suchthat p; f (pi — 1)
forl<i<k,1<j<k.

(For a proof, see [6, Theorem 9.2.7].) Thus, for instance, there is also only one group of
order 33, since 33 =3 - 11 and 3/ 10and 11 f 2. For such #, any group of order n will be
isomorphic to Z,.
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Table 19.1
Order 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Numberofgrowps 1 1 1 2 1 2 1 5 2 2 1 5 1 2 1 14

Order 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
Numberofgroups 1 S I 5 2 2 1 15 2 2 S 4 1 4 1 351

Another easy-to-describe case is n = p?, the square of a prime. There are two iso-
morphism classes of groups of order p*: the group Zp: is in one class, and Z, x Z, is
in the other. (Compare the entries for n = 4,9, and 25 in Table 19.1.) Notice that all of
these groups of order p? are Abelian. If n = p3, the cube of a prime, then there are five
isomorphism classes: Three of these classes consist of Abelian groups and are represented
byZy, Zp: x Zp,andZ, x Z, x Zy; the other two classes consist of non-Abelian groups.
(For the definition of direct products of more than two groups, see Problem 19.26.)

If only finite Abelian groups are considered, then the problem of determining all
isomorphism classes is completely settled by the following theorem, which has been known
since at least the 1870s. (Each book listed at the end of this chapter gives a proof.)

Fundamental Theorem of Finite Abelian Groups. If G is a finite Abelian group, then
G is the direct product of cyclic groups of prime power order. Moreover, if

G~ A XA X - XA,
and

G~ By x By x---x B,
where each A; and each Bj is cyclic of prime power order, then s = t and, after suitable
relabeling of subscripts, | A;| = |Bi| for 1 <i <s.

Because each cyclic group of prime power order p* is isomorphic to Z,+ we can use
this theorem to exhibit one group from each isomorphism class of finite Abelian groups.

Example 19.1. Letn = 125 = 5. To apply the theorem, first determine all possible ways
of factoring 125 as a product of (not necessarily distinct) prime powers: 53, 52-5,5.5-5.
Each factorization gives a different isomorphism class, so there are three isomorphism
classes of Abelian groups of order 125. Here is one representative from each class:

Z5J, Z5z x Z5, Z5 x Z5 x Zs.
This same idea accounts for the general statement, made earlier, that there are three iso-

morphism classes of Abelian groups of order p for each prime p. n

Example 19.2. There are six isomorphism classes of Abelian groups of order 200 =
23 x 52. Here is one representative from each class:

Zy X Ls2y, Zps x Ls X Ls, Zy: X Zy x Ls2,

Zyp xZy xLs xZs, ZypxZyxZyxLs,

Zy x Ly x Zy x Ls x Ls. u

Further remarks about the problem of classifying finite groups can be found in Section
23. As the case of Abelian groups suggests, the number of groups of order n is influenced
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PROBLEMS

largely by the character of the prime factorization of n, and not by the size of n alone.
Table 19.1 gives a further hint of this, and here is one more remark to make it even clearer:
There are 267 groups of order 64.

In each of Problems 19.1-19.10, the two groups are not isomorphic. Give a reason in each case.

19.1.
19.3.
19.5.
19.7.
19.9.

19.10.
19.11.

19.12.
19.13.
19.14.

19.15.

19.16.

19.17.

19.18.
19.19.
19.20.

Zs, Zg 19.2. Zs x 2,5, Z,

Zs, S5 19.4. Z, x Z,, symmetry group of a square
2y X2, 2y x2; X2, 19.6. Z, Q (both with +)

Z, R (both with +) 19.8. Zg X Zy, Ly x 2,

S3 X Z,, the group in Problem 17.28.

Q (operation +), positive rational numbers (operation ).

Is there a noncyclic group of order 59? Why?

Is there a noncyclic group of order 39? Why? Problem 19.17 may help.
Give an example of a noncyclic group of order 49.

Give examples of two nonisomorphic groups of order 27.

If p is a prime, then there are five isomorphism classes of Abelian groups of order p*. Give
one group from each class. (Compare Example 19.1.)

If p is a prime, then there are seven isomorphism classes of Abelian groups of order p°. Give
one group from each class. (Compare Example 19.1.)

Prove that if G is a cyclic group of order n, then G = Z,,. (Suggestion: Write G as G = {(a) =
{e,a,...,a"'})

Prove that if G is an infinite cyclic group, then G & Z. (Compare Problem 19.17.)
Prove that Us =~ Z,.
Prove that Us &~ Ujp.

Assume that G and H are groups and that G =~ H . Prove each of the statements in Problems 19.21—

19.25.
19.21.
19.22.
19.23.
19.24.

19.25.

19.26.

19.27.

If G is cyclic, then H is cyclic.

If G has a subgroup of order #, then H has a subgroup of order n.

If G has an element of order n, then 4 has an element of order n.

Ifx~' = x foreach x € G, thenx~! = x foreach x € H.

If each element of G has finite order, then each element of H has finite order.

If {A1, Az, ..., A,} is any collection of groups, each with juxtaposition as operation, then
the direct product Ay x Ay x - x A, is {(a1, a2, ...,4a,) : a; € A;} with operation

(@,az,...,8,)(b;, b, ..., by) = (@1by, @202, ..., a,b,).

(a) Verify that this direct product is a group.
(b) If each group A, is finite, what is the order of the direct product?

An isomorphism of a group onto itself is called an automorphism. Prove that the set of all
automorphisms of a group is itself a group with respect to composition. [The group of all
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automorphisms of a group G is called the automorphism group of G and will be denoted
Aut(G). Notice that the elements of Aut(G) are mappings from G onto G. Examples are given
in the problems that follow, and also in Problem 56.10.]

19.28. Verify that if G is an Abelian group, then 6 : G —> G defined by §(a) = a~' foreacha € G
is an automorphism of G. (See Problem 19.27.)

19.29. Prove that if [a] is a generator for Z,, and 8: Z,, — Z, is defined by 6([k]) = [ka], then
8 € Aut(Z,). (See Problem 19.27.)

19.30. Prove that |Aut(Z,)| = 1.

19.31. Prove that Aut(Z;) = Z,. (See Problem 19.29.)
19.32. Prove that Aut(Z,) =~ Z,.

19.33. Prove thatif p is a prime, then Au(Z,) = Z,_,.
19.34. Prove that Aut(Z,) = Uy,. (See Section 13.)
19.35. Prove that Aut(Z) =~ Z,.

19.36. Assume that 7 is an integer, n > 1, and that the standard form for n, in the sense of (13.1), is
n=pips gt (pr<pa< s <o)
Prove that
LTy XZpyer X -+ X Lper .

[Suggestion: Consider 6([a]) = ([a], [a], . .., [a]). Be sure to prove that, among other things,
9 is well defined. Also, Problem 13.17 may help.]

SECTION 20 CAYLEY’S THEOREM

We have seen that the nature of groups can vary widely—from groups of numbers to groups
of permutations to groups defined by tables. Cayley’s Theorem asserts that in spite of this
broad range of possibilities, each group is isomorphic to some group of permutations. This
is an example of what is known as a representation theorem—it tells us that any group can
be represented as (is isomorphic to, in this case) something reasonably concrete. In place of
studying the given group, we can just as well study the concrete object (permutation group)
representing it; and this can be an advantage. However, it can also be a disadvantage, for part
of the power of abstraction comes from the fact that abstraction filters out irrelevancies, and
in concentrating on any concrete object we run the risk of being distracted by irrelevancies.
Still, Cayley’s Theorem has proved to be useful, and its proof ties together several of the
important ideas that we have studied.

In proving Cayley’s Theorem, we associate with each element of a group G a permu-
tation of the set G. The way in which this is done is suggested by looking at the Cayley
table for a finite group. As we observed after Theorem 14.1, each element of a finite group
appears exactly once in each row of the Cayley table for the group (if we ignore the row
labels at the outside of the table). Thus the elements in each row of the table are merely
a permutation of the elements in the first row. What we do is simply associate with each
element a of G the permutation whose first row (in two-row form) is the first row of the
Cayley table and whose second row is the row labeled by a. If the elements in the first
row are ai, as, ..., a, (in that order), then the elements in the row labeled by a will be
aay, aas, . ..,aa, (in that order).
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Example 20.1. Consider the Cayley table for Zg, given in Example 11.2. The permutation
associated with [3] by the idea just described is

([0] (1 21 (31 (4 [5]).

Bl @ B 0 (1 (2 L

Cayley’s Theorem extends this idea to groups that are not necessarily finite, and also
establishes that this association of group elements with permutations is an isomorphism.

Cayley’s Theorem. Every group is isomorphic to a permutation group on its set of
elements.

PROOF. Our isomorphism will be amapping § : G — Sym(G). We begin by describ-
ing the permutation that 4 will assign to an elementa € G.

Fora € G, define A, : G — G by A,(x) = ax for each x € G. Each such mapping A,
is one-to-one and onto because each equation ax = b (b € G) has a unique solution in G
[Theorem 14.1(c)]. Thus A, € Sym(G) foreacha € G.

Now define § : G — Sym(G) by 8(a) = A, foreacha € G. To prove that § is one-to-
one, suppose that f(a) = 0(b); we shall deduce that a = b. From 8(a) = 6(b) we have
A = Ay, and thus in particular A,(e) = Ap(e), since the mappings A, and A, can be
equal only if they give the same image for each element in their common domain. But
Ag(e) = ae = a and A,(e) = be = b, so Ay(e) = Ay(e) implies a = b. Thus 8 is one-to-
one.

Finally, if a,b € G, then 6(ab) = Asp and (@) 0 8(d) = A, o A, implying that
f(ab) =0(@a) o 8(b) if Agp =A,0Ar,. To verify the latter, let x € G and write
A (x) = (@b)x = a(bx) = Aa(bx) = Aa(Ap(x)) = (Ag 0 Ap)(x). Thus we have proved that
f(ab) =0(a)c 6(b) foralla,b € G.

It follows from Theorem 18.2(e) that G is isomorphic to 8(G), a subgroup of Sym(G).
This completes the proof. u

Corollary. Every group of finite order n is isomorphic to a subgroup of S,,.

PROOF. Label the elements of the group ay, a, . . ., a,. The construction in the proof
of Cayley’s Theorem will assign to an element a in the group the permutation

As remarked preceding Example 20.1, the elements aai,aay, ..., aa, are just ay,
az, ..., a, in some order. If we replace each aa; by the unique a; such that ag; = aj,
and then replace each a; in the permutation by the number &, we obtain an element of S,,.
(See Example 20.2 for an example.) By assigning each a to the element of S, obtained in
this way, we get the desired isomorphism. ]

Example 20.2. Label the elements of Z; as follows: a; = [0], a2 = [1], a3 = [2]. Then
the construction in the proof of Cayley’s Theorem yields

8(as) = 6([2]) = ([0] m [2]> _ <a1 a a3>.
[2] [0] [1] as ay ap
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The idea in the proof of the corollary is simply to delete the a’s and keep the subscripts, so

that
1 2 3
31 2
is assigned to a3. Notice that this is an element of S3 because |Z3| = 3. | |

Corollary. For each positive integer n, there are only finitely many isomorphism
classes of groups of order n.

PROOF. By the previous corollary every group of order 2 is isomorphic to a subgroup
of §,. But S, is finite, and thus has only finitely many subgroups. Hence there can be only
finitely many isomorphism classes of groups of order n. |

20.1. Write the permutation associated with each element of Zs by the isomorphism 8 in the proof
of Cayley’s Theorem.

20.2. Write the permutation associated with each element of the symmetry group of a square (Ex-
ample 8.1) by the isomorphism 6 in the proof of Cayley’s Theorem.

20.3. Write the permutation associated with each element of {(1 2 3)) by the isomorphism 6 in the
proof of Cayley’s Theorem.

20.4. Give an alternative proof of Cayley’s Theorem by replacing A, (lambda for “left” multiplica-
tion) by p, (rho for “right” multiplication) defined as follows: p,(x) = xa~! for each x € G.
Why is xa~! used bere, rather than xa?

20.5. Assume that G is a group, and that A, : G — G and p, : G — G are defined by A,(x) = ax
and p,(x) = xa~' foreachx € G.Foreacha € G,definey, : G = Gby y, = p, o A,. Prove
that each y, is an isomorphism of G onto G. [In the language of Problem 19.27, each y, is an
automorphism of G. Notice that, in particular, each y, € Sym(G).]

20.6. Let y, be defined as in Problem 20.5, and define ¢ : G — Sym(G) by ¢(a) = y, for each
a € G. Prove that ¢(a) = g iffax=xa foralla € G.

NOTES ON CHAPTER 1V

Here are six standard references on group theory. The first is a classic and is listed because
of its historical importance. The second emphasizes infinite groups.

1. Burnside, W., Theory of Groups of Finite Order, 2nd ed., Cambridge University Press, Cambridge,
England, 1911; Dover, New York, 1955.
2. Kurosh, A., Theory of Groups, Vols. I and I, trans. from the Russian by K. A, Hirsch; Chelsea,
New York, 1979.

. Robinson, D. J. 8., A Course in the Theory of Groups, 2nd ed., Springer-Verlag, New York, 1996.
. Rose, John S., A Course on Group Theory, Dover, New York, 1994.

. Rotman, J. J., An Introduction to the Theory of Groups, 4th ed., Springer-Verlag, New York, 1995.
. Scott, W. R., Group Theory, Dover, New York, 1985.

AN L bW



APPENDIX RSA ALGORITHM  -105

e

APPENDIX RSA ALGORITHM

RSA Algorithm

The RSA algorithm is a widely used method of public key cryptography. In simplest terms,
in this type of cryptography an individual wants others to be able to encode and send
messages to him or her, but wants to be the only one able to decode the messages. The RSA
acronym derives from the names of K. Rivest, A. Shamir, and L. Adelman, who developed
the method in 1977. Similar ideas were developed earlier, to some degree, but had been
kept secret for security reasons. )

The goal here is simply to present the algorithm and show that it works, that is, how a
message is encoded and then why the decoding step reproduces the original message. This
fits in naturally here because it involves only congruence, Euler’s function, and Euler’s
Theorem (Section 17); these ideas are from number theory, but we have proved Euler’s
Theorem in the course of studying groups. Messages must be put in a formerly agreed-upon
numeric form (suchas A =01, B=02,..., Z = 26).

Randomly choose two unequal large primes, p and ¢.

Compute n = pgand k = ¢(n) = (p — 1)(g — 1).

Randomly choose an integer e with | < e < k such that ged(e, k) = 1.
Compute d such that de = 1 (mod k).

. Make n and e public, and keep p, ¢, and d secret.

. To encode a message m, compute ¢ = m* (mod ») and send c.

Nem AW e

. To decode the message, compute m = ¢ (mod n).

If p and q are large primes, it is likely that gcd(m, n) = 1, that is, that m and pq are
relatively prime, since otherwise p |m or g | m. So we shall assume that gcd(m, n) = 1. The
theorem below reveals why the algorithm produces the same message that is sent.

Theorem. Assume that p and q are primes and m is a positive integer, and that n = pq,
k=(p—1)g—1), ged(e, k) =1, de =1(mod k), and (m,n)=1. Then m = m®?
(mod n).

PROOF. From Theorem 13.2, if ¢ is Euler’s function, and p and ¢ are primes, then
¢(pq) = (p — 1)(q — 1). Thus,if n = pgandk = (p — 1)(q¢ — 1), we have ¢(n) = k.From
Euler’s Theorem (Corollary 3 of Section 17), if ged(m, n) = 1, then m*™ = 1(mod n).
Thus, since we are assuming ged(m, n) = 1, m* = 1 (mod n).

We have chosen d so that de = 1 (mod k), which implies de — 1 = kr for some integer
r. Thus

med = mH-kr = mlmkr = m(m¢(n))" =m-1"=m (mod n),

as claimed. | |

For a more thorough discussion of the method, including its history, examples, advice
on how to choose p, g, and e, how to compute d, discussions of why it is difficult to
defeat the method, more advanced theory, and suggestions on software to carry out the
computational details, refer to books on cryptography or sources on the WEB.
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GROUP HOMOMORPHISMS

One way to study a relatively large and complicated group is to study its smaller and less
complicated subgroups. But it would also be useful to be able to study the group as a whole,
much as a globe allows us to study the earth’s surface—brought down to manageable size
in a way that preserves as many essential features as possible. Homomorphisms, which are
more general than isomorphisms, can help us do just that. A homomorphism is a mapping
from one group to another that preserves the operation but is not necessarily one-to-one.
Thus the image of a homomorphism can be smaller than the domain, but it will generally
reflect some essential features of the domain. Even more important, subgroups and images
of homomorphisms can be used together to show that most groups are built up from smaller
component groups, as we shall see at the end of this chapter. The concept of homomorphism
also extends to other algebraic structures that we’ll study; it is unquestionably one of the
most important concepts in algebra.

SECTION 21 HOMOMORPHISMS OF GROUPS. KERNELS

Definition. If G is a group with operation %, and H is a group with operation #, then a
mapping 6 : G — H is a homomorphism if

6(a * b) = 6(a) # 6(b)
foralla,b € G.

Every isomorphism is a homomorphism. But a homomorphism need not be one-to-one,
and it need not be onto.

Example21.1. For any positive integer n, define 6 : Z — Z, by 6(a) = [a] for each
acZ. Thenba@a+b)=[a+bl=[al®[b]=06@a)®O(D) foralla,b € Z, so that b is
a homomorphism. It is onto but not one-to-one. [ ]

Example21.2. Define 6 : Z — Z by 6(a) =2a for each a € Z. Then 6(a +b) =
2(a + b) = 2a + 2b = 6(a) + 6(b) forall a, b € Z. Thus 8 is a homomorphism. It is one-
to-one, but not onto. | ]
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Example 21.3. Foreachr € R, define p, : R & R by p,(a) = ar foreacha € R. Then
pr is a homomorphism from the additive group of R to itself: p,(a + b) = (@ + b)r =
ar + br = p.(a) + p,(b) for all a, b € R. Notice that o, is a homomorphism precisely
because of the distributive law (a + b)r = ar + br. |

Example 21.4. Let A and B be groups, and A x B their direct product (defined in Section
15). Then 7y : A x B — A defined by m)((a, b)) = a is a homomorphism from A x B
onto A:

m((a1, bi)(az, b)) = m (@142, bib2)) = @az = mil(ay, b))mi((az, b2)).
(Problem 21.1 asks you to justify each step.) Also, m2: A x B — B defined by
m2((a, b)) = b is a homomorphism (Problem 21.2). [ ]

We can see now that the basic assumption of Theorem 18.2 is that the mapping 6 there
is a homomorphism. Thus that theorem tells us that if § : G — H is a homomorphism,
then

1. 6(eg) = ey,

2. (@) =6(a)"" foreacha € G,

3. 8(a*) = 6(a)* for each a € G and each integer k,
4. 6(G), the image of 8, is a subgroup of H, and

S. if 6 is one-to-one, then G = 6(G).

The subgroup 6(G) is called a homomorphic image of G. We shall see that nearly
everything about a homomorphic image is determined by the domain of the homomorphism
and the following subset of the domain.

Definition. If 6 : G — H is a homomorphism, then the kernel of 6 is the set of all
elements a € G such that 8(a@) = ey. This set will be denoted by Ker 6.

The kernel of a homomorphism is always a subgroup of the domain. Before proving
that, however, let us look at some examples.

Example 21.5. For the homomorphism 6 : Z — Z, in Example 21.1, a € Ker 6 iff
6(a) = [a] = [0]. Therefore, Ker 6 consists of the set of all integral multiples of 7. |

Example 21.6. In Example 21.2, Ker 6 = {0}. ]
Example 21.7. In Example 21.4, Ker 7y = {e4} x B. |

Theorem 21.1. If6 :G — H is a homomorphism, then Ker 6 is a subgroup of G. More-
over, 8 is one-to-one iff Ker 6 = {eg}.

PROOF. We use multiplicative notation for the operations on both G and H. To show
that Ker 8 is a subgroup of G, we use Theorem 7.1. Theorem 18.2(a) shows that e € Ker 6.
Ifa, b € Ker 8, then 8(ab) = 8(a)8(b) = eyen = ey,sothatab € Ker6.Theorem 18.2(b)
shows that #(a~") = 8(a)™!; therefore, if a € Ker 6, then 8(a~!) = 60(a)"! = e;,l =ey,
and a~! € Ker 6. Thus Ker 8 is a subgroup.
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Because eg € Ker 0, it is clear that if 6 is one-to-one, then Ker 8 = {e;}. Assume,
on the other hand, that Ker 8 = {eg}. If a, b € G and 6(a) = 6(b), then (@) (h)"' = ey,
0(a)0(b™") = ey, 0(ab~!) = ey, ab™! €Kerd = {eg); hence ab™' = e anda = b. This
proves that 6 is one-to-one. |

Kernels have one more property in common: They are all normal, in the sense of the
next definition.

Definition. A subgroup N of a group G is a normal subgroup of G if gng™' € N for all
ne Nandall g € G.If N is a normal subgroup, we write N <G.

Example 21.8. If N is a subgroup of an Abelian group G, and n € N and g € G, then
gng~! = n € N. Thus every subgroup of an Abelian group is a normal subgroup. ]

Example 21.9. The subgroup ((1 2)) = {(1), (1 2)} of S5 is not normal, because, for
example,

(1230 2123 '=2 3¢l 2). n
It often helps to realize that

gng'eN forall neN and geG
iff
g lngeN forall neN and geG.
Thus N <G iff g~'ng € N foralln € N and g € G (Problem 21.20).
Ifa € G, then each element gag ™', for g € G, is called a conjugate of ain G. Thus a
subgroup N of G is normal iff the conjugate of every element of N is also in N.

A large collection of examples of normal subgroups—in fact, all examples, as we shall
see in the next section—is given by the following theorem.

Theorem 21.2. If G and H are groups and 6 : G — H is a homomorphism, then
Ker8«G.

PROOF. We know from Theorem 21.1 that Ker 6 is a subgroup of G; thus it suffices
to show that it is normal. Let n € Ker 6 and g € G. Then 8(n) = e, so that (gng™!) =
8(2)8(n)0(g") = 6(g)ed(g)™" = e. Therefore gng~=" € Ker 6, as required. ]

A homomorphism that is one-to-one is sometimes called a monomorphism, a homo-
morphism that is onto is sometimes called an epimorphism. We shall not use either of these
terms.

21.1. Justify each step in the proof that r; is a homomorphism in Example 21.4.
21.2. Prove thatw; : A x B — B, as defined in Example 21.4, is a homomorphism.

21.3. Consider M (2, Z) as a group with respect to addition (Example 3.5 and Problem 5.16). Define
0:MQ2,Z) - M(2,Z) by p(x) = xr for each x € M(2, Z), where

o

Prove that p, is a homomorphism.
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21.4.
21.5.

21.6.

21.7.
21.8.
21.9.

21.10.

21.11.

21.12.

21.13.

21.14.

21.15.

21.16.

21.17.
21.18.

21.19.
21.20.

21.21.

21.22.

Find Ker p, for p, in Problem 21.3.

Define 6 : Zg — Z;3 by 6([als) = [a], for each [a]¢ € Zs.
(a) Prove that 6 is well defined.

(b) Prove that 8 is a homomorphism.

(c) What is Ker 67

(a) Show that o : Z3 — Zg given by a([a];) = [a]¢ is not well defined. (Compare Problem
21.5.)
(b) For which pairs m, n is 8 : Z,, — Z, defined by B([a],,) = [a], well defined?

Prove that every homomorphic image of an Abelian group is Abelian.
Prove that every homomorphic image of a cyclic group is cyclic.

Prove thatif 6 : G — H is ahomomorphism and A is a subgroup of G, then 8(A) is a subgroup
of H.

Prove that if § : G — H is a homomorphism and B is a subgroup of H, then 67'(B) is a
subgroup of G, where §~'(B) = {g € G : 6(g) € B}, the inverse image of B under §.

Prove that if « : G — H is a homomorphism and 8 : H — K is a homomorphism, then
Boa:G - K is a homomorphism.

(a) With o and B as in Problem 21.11, prove that Kera C Ker o .
(b) Give an example of @ : G — H and 8 : H — K for which Ker o # Ker o .

Let n and k denote positive integers, and define § : Z — Z, by
6(a) = (ka] foreacha € Z.

Prove that 8 is a homomorphism.

Determine Ker 6 in each of the following cases, for 8, n, and & as in Problem 21.13.
(@ n=6,k=>5. () n=6,k=3. (c) General n and k.

Let G denote the subgroup {1, ~1, i, —i} of complex numbers (operation multiplication). De-
fined : Z — G by 8(n) = i" foreach n € Z. Verify that 8 is a homomorphism and determine
Ker 6. (Recall that i2 = —1.)

Define A, from M(2, Z) to itself by A,(x) = rx for each x € M(2, Z), where

o]

Prove that A, is a homomorphism and then find Ker A,.
Prove thatif 6 : G — H is a homomorphism, a € G, and o(a) is finite, then o(6(a)) | o(a).

There is a unique homomorphism 8 : Zg — §3 such that8([1]) = (1 2 3). Determine 6((k])
for each (k] € Zg. Which elements are in Ker 87

True or false: If N <G, then gng~! = n forall n € N and g € G. Justify your answer.

Prove that N <G iff g"'ng € N for all n € N and g € G. (In other words, prove that
gng'eNforalne Nandg € Giffg~'ng € N foralln e Nand g € G.)

By choosing a rectangular coordinate system, the points of a plane can be identified with
the elements of R x R. What is the geometric interpretation of m; : R x R — R defined by
m((a, b)) = a (as in Example 21.4)?

Determine all of the normal subgroups of the group of symmetries of a square. (See Exam-
ple 17.2)
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21.23.
21.24,

21.25.

21.26.
21.27.

21.28.
21.29.
21.30.

21.3L

21.32.
21.33.

21.34.

21.35.

Prove that if 8 is a homomorphism from G onto H, and N <G, then 9(N) < H.

If A and B are groups, then {e} x B <A x B. Give two different proofs of this, one using the
definition of normal subgroup, and the other using Theorem 21.2 and Example 21.4.

Prove that if C denotes any collection of normal subgroups of a group G, then the intersection
of all the groups in C is also a normal subgroup of G. (See Theorem 15.1.)

Prove that if N is a subgroup of G, then N QG iff Ng = gN foreach g € G.

Prove that if N is a subgroup of G and [G : N} = 2, then N < G. (Suggestion: Use Problem
21.26.)

Determine all of the normal subgroups of S;. (See Problem 17.12.)
Prove that if H and N are subgroups of a group Gand N <G, then H NN < H.
For C the complex numbers, let £, /, J, and K be the elements of M (2, C) defined as follows:

o (VR R P

(If you are unfamiliar with complex numbers, do this problem after reading Section 32.)

(a) Form a Cayley table to verify that, with matrix multiplication as the operation,
{£E, !, +J,£K} is a group of order 8. This group is called the quaternion group;
denote it by Qs.

(b) The group Q3 has one subgroup of order 1, one subgroup of order 2, three subgroups of
order 4, and one subgroup of order 8. Find the elements in each subgroup. (Each subgroup
of order less than 8 is cyclic.)

(c) Verify that every subgroup of Qs is a normal subgroup of Qs.

(d) Verify that Qg is not Abelian. With part (c), this shows that Qj is a non-Abelian group
in which every subgroup is normal. Compare Example 21.8.

IfG = (a) and 8 : G — H is a homomorphism, then 8 is completely determined by 8(a).
Explain.

There is only one homomorphism from Z, to Z;. Why?

Verify that if G and H are any groups, and 6 : G — H is defined by 9(g) = ey for each
¢ € G, then 8 is a homomorphism.

Define§ : Z x Z — Zby6((a, b)) = a + b. Verify thatd is a homomorphism and determine
Ker 6.

Determine all of the homomorphisms of Z onto Z.

SECTION 22 QUOTIENT GROUPS

It may not be obvious at the outset, but quotient groups, which we introduce in this sec-
tion, are essentially the same as homomorphic images. The proof that they are essentially
the same comes with Theorem 22.2 and the Fundamental Homomorphism Theorem (in
Section 23).

Each group Z, is constructed in a simple way from the group of integers. The set of all
multiples of the integer » forms a subgroup, (»), of Z, and the elements of Z, are the right
cosets of that subgroup (Section 16). Moreover, the operation & of Z, depends in a natural
way on the operation + of the integers: {a] @ [b] = [a + b]. We shall now see how this
idea can be used to construct new groups in much more general circumstances. Indeed, the
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following theorem shows that Z can be replaced by any group G- ., and (n) by any normal
subgroup N of G. (Notice that (n) <1Z because Z is Abelian.) It mam.y help to review Section
16, especially Theorem 16.1 and Lemma 16.1, before reading thiss section. We continue to
use juxtaposition to denote unspecified group operations.

Theorem 22.1. Let N be a normal subgroup of G, and let GIN cd enote the set of all ri oht
cosets of N in G. For

Nae G/N and NbeG/N, let (Na)Nb) == N(ab).

With this operation G/N is a group called the quotient group (or factor group) of G by N.

Remark. Figure 22.1 represents the idea behind Theorem 22.1 . Each horizontal section
represents a coset of N. For example, Na is the coset to which 2 bezlongs. The cosets are the
elements of G/N. The “product” of the cosets Na and Nb is N (cz2), the coset to which gp
belongs. The first part of the following proof shows that if N <1 (&, then it does not matter
which element is chosen from the coset Na and which is chosexa from the coset Nb; their
“product” will be in the coset N(ab).

G
N (X3
Na ea
Nb ob
N(ab) eab
Figure 22.1

PROOF. We must first prove that the operation on G/N is well defined, that is, if
Na; = Naz and Nb; = Nb,,then N(a;b,) = N(azb;). FromNa; = Na; wehave @, = na;
forsome n; € N; from Nb; = Nb,, we have by = nyb, for some nz € N. Therefore a, by =
nyaznzb,. But agnzaz“ = n; for some 73 € N because N <G. This gives a;ny = nya,, so
that a1 b; = nin3yazb, with nyn; € N. This proves that N(a;b;) = N(azb2), as required.

The operation on G/N is associative because if a, b, c € G, then

Na(NbNc) = Na(Nbc) = N(a(bc)) = N((ab)c) = N(ab)Nc = (NaNb)Nc.
The element Ne is an identity element because if a € G, then
NeNa = N(ea) =Na and NaNe = Nae = Na.
Finally, Na~! is an inverse for Na because
NaNa™' = N(@a~')=Ne and Na~'Na=N(@'a)=

This proves that G/N 1s a group. ™
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To emphasize: The elements of G /N are subsets of G. If G is finite, then the order of
G/N is the number of right cosets of N in G; this is [G : N], the index of N in G (Section
17). From the remarks after Lagrange’s Theorem, [G : N] = {G|/|N|. Therefore,

IG/N{ =1G1/IN|.

Example22.1. Consider G/N forG = Sy and N = ((1 2 3)). We have

N={1),(1 2 3),0 3 2)}a8,
and

}1S3/Ni=6/3=2.
The elements of S3/N are
N={D,Q1Q 2 3,70 32}

and

N1 2)={1 2),1 3),2 3}

The element (coset) N is the identity, and

N 2)-N(1 2)=N({ 2)?

= N()
=N.
Table 22.1 is the Cayley table.
Table 22.1
N N 2)
N N NG 2)
N1 2) N1 2) N

Example 22.2. let G be the group of symmetries of a square (Example 8.1), and let
N = (p130). Then N = {uo, 130} and N < G. (In fact, if p is any element of G, then
popgo ™t = po and o pyggo u7! = pige.) The elements of G/N are {uo, L1so}.
{Ko0, 270}, Lo, pv}, and {pi, p2}. If we denote these cosets by [io], [1490), [ou], and
[p1], respectively, then the Cayley table for G/N is as shown in Table 22.2. For instance,
[i9ollp1] = [pn] because [1oo)[p;] = NugoNpr = N(iugg © p1) = Npy and Npy = Npy.

Table 22.2
{uo] [eg0) [ou] [m]
{1o] [ko) [90] {ou] (1]
[1490) [1e90] (ko] (o] [onu]
(o]l [oul [p1] (1o} [K90]
[o1] (o] {ou) {90] {10)
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Example22.3. Let G = Z3 x Z4 and N = {[3]) x {[2]), with the notation interpreted
in the following natural way. The first factor, ([3]), is a subgroup of Z,;:

((31) = {[0], (31, (6], 91} € Zi2.

The second factor is

{[2]) = {[0}. 2]} € Z,.

Because G is Abelian, N <G. And [G/N| =48/8 = 6. A complete list of right coset
representatives of N in G is

({0,100, (03, f1), (L. [Op, (M1.{1D, ({2, [0D), (2], [1)).

Denote the corresponding cosets of N by
Noo, No1, Nio, Nty Nag, N2 1,
respectively. Then, for example,

Nz Ny = N([2], [1DN([1], [0])
= N2, 1180
= N(@3L 1D
= N([0], (1))
= Np,1.

Problem 22.4 asks for the Cayley table of this quotient group. [

It can be proved that if N is not normal, then the operation on G/N from Theorem
22.1 will not be well defined (Problem 22.15). Thus the concepts of quotient group and
normal subgroup are inseparable. Also, a subgroup N of a group G is normal iff the right
coset of N determined by each element is the same as the left coset of N determined by
that same element (Problem 21.26). Thus in working with cosets of a normal subgroup N,
it is immaterial whether we use Na or aN; we shall always use Na.

By Theorem 21.2, a kemel of the homomorphism is necessarily a normal subgroup.
The next theorem shows that, conversely, every normal subgroup is the kernel of some
homomorphism.

Theorem 22.2. If G is a group and N <G, then the mapping n . G — G/N defined by
na)=Na foreach a€G
is @ homomorphism of G onto G/N,and Kern = N.
PROOF. The mapping 7 is clearly well defined and onto. Also, if a,b € G, then
n(ab) = N(ab) = (Na)(Nb) = n(a)n(b), so 1 is a homomorphism. Finally, if a2 € G, then

a € Ker niff n(a) = Na = Ne, because Ne is the identity elementof G/N. Thus a € Ker 5
iffa e NysoKern=N, n

The mapping 7 in Theorem 22.2 is called the natural homomorphism of G onto G/N .
Example22.4. 1f n is a positive integer, then Z/{n) = Z,. The natural homomorphism

n:Z — Z/(n) is given by n(a) = {n) + a = [a]. And Ker n = (n). This 5 is the same as
the mapping 6 in Example 21.1, whose kemel we computed in Example 21.5. ]
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Determine the order of each of the following quotient groups.

22.1.
22.2.

22.3.

224.
22.5.
22.6.

22.7.

22.8.

22.9.

22.10.

22.11.

22.12.

22.13.

22.14.
22.15.

(@) Zg/([4D) (b) (2)/(8), where (8) C (2) C Z
(a) Zs/([3]) () (3)/(6), where (6) C (3) S Z
Construct the Cayley table for Z»/([4]). (Suggestion: Use [[k]] to denote the coset to which

[k] belongs.)

Construct the Cayley table for the group in Example 22.3.
Prove that every quotient group of an Abelian group is Abelian.
Prove that every quotient group of a cyclic group is cyclic.

If m and n are positive integers and m | n, then (n) is a normal subgroup of (m} (in Z). What
is |{m)/(n}]? Justify your answer. (Problems 22.1 and 22.2 contain special cases.)

Give a reason for each step in the proof of Theorem 22.1 for why the operation on G/N is
associative.

Assume N G.
(a) Prove that if (G : N]is a prime, then G/N is cyclic.
(b) Prove or disprove the converse of the statement in part (a).

Determine the order of (Zyz % Z4)/{([3], [2])}. Explain the difference between this quotient
group and the one in Example 22.3.

Prove that if N GG and a € G, then o(N a)| o(a). [Here o(N a) denotes the order of Na as an
element of G/N.] How is this problem related to Problem 21.17?

Prove that every element of Q/Z has finite order. Also show that @/Z has an element of order
n for each positive integer 7.

The elements of finite order in an Abelian group form a subgroup (Problem 14.16). Show
that the subgroup of elements of finite order in R/Z is Q/Z. (See Problem 22.12).

Prove that G/N is Abelian iff aba~'b~' € N foralla,b € G.

Prove that if N is a subgroup of G, and the operation (Na)(Nb) = N (ab) is well defined on
the set G/N of all right cosets of N in G, then N <G.

SECTION 23 THE FUNDAMENTAL HOMOMORPHISM THEOREM

The natural homomorphism 7 : G — G /N shows that each quotient group of a group G
is a homomorphic image of G (Theorem 22.2). The next theorem shows that the converse
is also true: each homomorphic image of G is (isomorphic to) a quotient group of G. Thus
the claim made at the beginning of Section 22 is justified: quotient groups are essentially
the same as homomorphic images.

Theorem 23.1 (Fundamental Homomorphism Theorem). Let G and H be groups, and

let 6 :

G — H be a homomorphism from G onto H with Xer 8 = K. Then the mapping

¢ : G/K — H defined by

¢(Ka) = 6(a) foreach Kae G/K
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is an isomorphism of G /K onto H. Therefore
G/K ~ H.

PROOF. We must first verify that ¢ is well defined. If Kcay = Ka, then ka) = a,
forsomek € K = Ker 6, s08(ka,) = 8(az). But8(ka,) = 6(k)8 (1) = ebla,) = 8(a;), so
that@(a;) = 6(az). Therefore, 8(a) is determined solely by the coseztof K to whicha belongs,
5o ¢ 1s well defined.

To prove that ¢ preserves the operation, assume that Ka € G /K and £b € G /K . Then
P((Ka)(Kb)) = ¢(K (ab)) = 8(ab) = 8(a)6(b) = ¢(Ka)p(Kb), as required. Clearly ¢ is
onto, because 6 is onto. It remains only to prove that ¢ is one-to-one, or equivalently,
by Theorem 21.1, that Ker ¢ contains only the identity element, Ke, of G/K . This is
true because if Ka e Ker ¢, then 8(a) = ¢(Ka) = e, and theresfore a € Ker & = K, so
Ka = Ke. ]

If a homomorphism 6 : G — H is not onto, then A should be replaced by 6(G) in
the last two sentences of the theorem. Then the last statement of the theorem becomes
G/K =~ §(G). In any case, with 8, ¢, and K as in the theorem, and 7: G - G/K the
natural homomorphism, it can be verified that ¢ o 7 = 6. Schematically, the two ways
(6 and ¢ o ) of getting from G to H in Figure 23.1 give the same result for every element
of G (Problem 23.7). This is described by saying the diagram commutes.

G i — ™ H
\ /
GIK

Figure 23.1

Example 23.1. Let G denote the group of all rotations of the plane about a fixed point p
{Example 5.7). For each real number r, let 8(r) in G denote clockwise rotation through r
radiaps. Then 6 is a homomorphism of R onto G, and

Kerf = (2n) = (2kn : k € Z}.
The Fundamental Homomorphism Theorem shows that R/(27) = G. )
Example 23.2. Fora € Z,let [a];, and [a]4 denote the congruence classes determined by
ain Z; and Z,, respectively. Define
6 :Z;; > Zsy by 0(al2) = lals.

8 is well defined because if {alyy = [b]),, then 12]{a ~ b), and therefore 4 {(a ~ b) and
fals = [bls. Also, 6 is a homomorphism:

8([aliy ® [bly2) = 6(la + b]1;) = [a + )y = [a]s ® (bl
= 6([a]i2) ® 9([b];2).

Clearly 6 is onto, and

Ker8 = ([0]12, [4]12, (8112} = ([4].2)-
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Therefore, by the Fundamental Homomorphism Theorem,

Zy
(42
Notice that from {Ker §{ = 3 alone we could deduce that {Z,, /(Ker 8)| = 4, but this would
still leave the possibility that Z;2/(Ker ) ~ Z; x Zq. n

Example 23.3. Let G be the group of symmetries of a square (Example 8.1); we shall
determine all of the homomorphic images of G. By the Fundamental Homomorphism
Theorem, this is equivalent to determining all of the quotient groups of G. To do that, we
must determine all of the normal subgroups of G. There are six in all (Problem 21.22). Any
normal subgroup of order 4 will produce a quotient group of order 2, so we can ignore two
of the three of order 4, and work with these:

G, {uso), (w1s0), {Ka).

These are of order 8, 4, 2, 1, respectively. Therefore,
G | _ G 1 G
G {e90) {L130)

{uo)

_IG

Any group of order 1 is isomorphic to Z;, and any group of order 2 is isomorphic to Z,.
Therefore,

9. ~Z, i X ZZ~
G {ps0)
There are two isomorphism classes of groups of order 4, namely those determined by Zg
and Z; x Z; (Section 19). Problem 23.9 suggests how to show that G/ {x1go) is isomorphic
to the latter. Finally, G/{uo) ~ G (see Problem 23.8).
Summarizing, we see that any homomorphic image of this group G is isomorphic to
Zy,Zo,Zy x Zn, orG. n

We shall now see how the ideas in this chapter can be used to construct many groups
from smaller component groups. The groups in the remainder of this section are assumed
to be finite (even though some of the statements are also true for infinite groups).

A group G is said to be an extension of a group A by a group B if G contains a subgroup
N such that

Ax~N<G and G/N = B.

When this is so, we can think of G as being built up from component groups A and B.
Because |A] = |N| and |G/N} = |G|/IN| = |B], we must have |G| = |A| - |B].

Example 23.4. 'We saw in Example 22.1 that S3 has a normal subgroup of order 3, namely
N =((1 2 3)). Also, |S3/N| = 2. Every group of prime order p is isomorphic to Z,
(Theorem 19.3). Therefore,

Z3;~ N<<S; and &= 7.

z|&

Thus S5 is an extension of Z3 by Z,. [ ]
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Example 23.5. For any groups A and B, there is always zm1 least one extension of A by B
namely A x B. This is because '
A >< B

Ax A <A X B d ——~=B
x {e} X an A= 0

(Problem 23.10). -

If we apply Example 23.5 with A = Z3 and B = Z,, weseethat Z3 x Z,isan extension
of Z3 by Z,. But Example 23.4 showed that S3 is also @n extension of Z; by Z,, and
Z3 x Zy % S3(Zy x Z; is Abelian, but S5 is non-Abeliara ). Thus there are nonis omorphic
extensions of Z3 by Z,. This leads to the following genex &l problem: Given groups A and
B, determine ail (isomorphism classes of) extensions of A £ B. This problem was solved in
part by Otto Holder in the 1890s, and more completely by Otto Schreier in the 1920s. Their
results show how to construct a collection of groups frorxa A and B, with the property that
any extension of A by B will be isomorphic to some group in that collection. The detajls
are complicated and will not be given here (see [7]). The irnportant point is that, in theory,
there is a procedure for determining all extensions of A by B.

Some groups can be constructed from smaller groups Yy extension, and some cannot.
For example, each group Z, withp a prirpe has only the two obvious (normal) subgroups of
orders 1 and p; therefore, Z , can be thought of as an extennsion in only a trivial way—either
as Z, by Z,, or as Z,, by Z,. A nontrivial group G having no normal subgroup other than
{e} and G itself is called a simple group. An Abelian simple group must be isomorphic to
Z, for some prime p (Problem 23.11).

All finite groups can be constructed from simple groups by forming repeated exten-
sions. This can be seen as follows. Assume that G is finite. Let G| denote a maximal
proper normal subgroup of G : G, # G (proper), G, 1 G (normal), and G has no normg]
subgroup strictly between G, and G (maximal normal). It can be shown that G/Gyisa
simple group (Problem 23.17). Now let G2 denote a maximal proper normal subgroup of
G,. Then G,/G; is simple also (Problem 23.17 again). Continuing in this way, with G
denoted by G, we eventually arrive at a series of subgroups

G=Gy>G >G> - DG/,_szk—-IDGk:{e}

such that each factor group G;_1/G; is simple (1 < i < k).Such aseriesiscalled a compo-
sition series of G. We see from this that G can be constructed by a succession of eXtensions
by simple groups: extend Gy by Gx2/Gx-y to get G k-2, €xtend G4 2 by G4_3/G4_; 1o
get G¢_3, and so on until we arrive at G, Moreover, it can be proved that although G may
have more than one composition series, the factor groups arising from any two composition
series can be paired (after rearrangement, perhaps) in such a way that corresponding factor
groups are isomorphic (Jordan-Holder Theorem).

These remarks about composition series show that, with the problem of how to de-
termine extensions effectively solved, the place to direct attention is the class of simple
groups. If all finite simple groups could be determined, then, in theory, all finite groups
would be determined, just by constructing all successive Fxtensions by simple groups. We
close our discussion with some general remarks about this problem.

We have already observed that groups of prime order are simple; they are the only
Abelian simple groups. These groups of prime order are simple in the technical sense,
defined previously, and they are also simple in the sense of being uncomplicated. Other
simple groups (technical sense) can be quite complicated. The smallest non-Abel jan simple
group is As, the alternating group of degree 5, which is of order 60. (Alternating groups
are discussed in Section 7.) In general, each alternating g7oup A, is simple for n > 5. Thys



118 CHAPTER V GROUP HOMOMORPHISMS

PROBLEMS

there is a non-Abelian simple group of order %(n!) for each n > 5. These groups account
for S of the 56 non-Abelian simple groups of order less than 1,000,000.

The most comprehensive, easy-to-state theorem about non-Abelian simple groups is
a celebrated theorem proved in the 1960s by the American group theorists Walter Feit and
John Thompson: There are no non-Abelian simple groups of odd order . The classification of
all simple groups was completed in the early 1980s. The original proof of the classification
involved some 500 journal articles covering approximately 10,000 printed pages.

Find all homomorphic images of each of the following groups.
23.1. Z 23.2. Z,4
233. Zs 234. §;
23.5. Find two nonisomorphic extensions of Z; by Z;.

23.6. Find two nonisomorphic extensions of Z, by Z,.

23.7. With8, ¢, and 7 as in the paragraph following the proof of the Fundamental Homomorphism
Theorem, prove that ¢ o 7 = 6.

23.8. Use the Fundamental Homomorphism Theorem to prove that if G is any group with identity
e, then G/{e} = G.

23.9. Verify the isomorphism G /{g0) & Z, x Zy, from Example 23.3. (It is sufficient to check
that the factor group on the left has no element of order 4. Why?)

23.10. Verify the isomorphisms in Example 23.5. (Suggestion: Use the Fundamental Homomorphism
Theorem and the homomorphism 7; : A x B — B from Problem 21.2.)

23.11. Prove that if G is a simple Abelian group, then G & Z, for some prime p.

23.12. Prove that Zg/([3]) = Zs.

23.13. Prove that if & and n are positive integers and & is a divisor of n, then Z,/({k]) =~ Z,.
23.14. Find all homomorphic images of the quaternion group Q5. (See Problem 21.30.)
23.15. Find all homomorphic images of Z, (n a positive integer).

23.16. Prove that if 8 is a homomorphism of G onto H, B <AH,and A = {g € G : 6(g) € B}, then
ALG.

23.17. Prove thatif N < G, N # G, and G has no normal subgroup strictly between N and G, then
G/N is simple. (Suggestion: Use the natural homomorphism 7 ::G — G/N and Problem
23.16.)

23.18. If G is a simple group, then any homomorphic image of G is either isomorphic to G or of
order one. Why?

23.19. Let A denote the group of all mappings @, : R — R, defined as in Example 5.8. Let
B = {a;5: b e R}, and let R* denote the multiplicative group of R. Define § : 4 — R*
by 6(c,,5) = a for each o, ;, € A.
(a) Verify that g is a homomorphism with Ker § = B.
(b) Explain why B </A and A/B ~ R*.
(c) Explain why 4 is an extension of R (operation addition) by R* (operation multiplication).
(d) Give an example of a group that is an extension of R (operation addition) by R* (operation

multiplication) and is not isomorphic to A.
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23.20. Give an example to show that if A andl B are subgroups of a group G, the AB =

{ab:a € Aand b € B) need not be a subgroup of G. {Suggestion: Try G = S§3.] Prove that
if AQ G or B <G, then AB is a subgroup.
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CHAPTER VI

INTRODUCTION TO RINGS

In considering the integers as a group, we have used addition but not multiplication. In
doing that, we have ignored more than multiplication. We have also ignored properties that
combine the two operations, such as the law a(b + ¢) = ab + ac. The same has happened
with other groups—the rational numbers and the integers mod n, for example. The concept
of a ring covers all of these systems, as well as many others with two operations. Rings, just
like groups, arise in widely varying contexts. Some of the most basic ideas about rings are
used in the next chapter to analyze the integers and other familiar number systems. Rings
also play a role in all of the remaining chapters except XIII-XV.

SECTION 24 DEFINITION AND EXAMPLES

A ring consists of a set with two operations, which are nearly always written as a sum
(a + b) and a product (ab). For rings whose elements are numbers, this notation has its
usual meaning unless the contrary is explicitly stated. In some cases it is necessary to specify
what is meant by the two operations. In reading the axioms for a ring, which follow, it may
help to keep the integers in mind—they do form a ring. Also, do not confuse R (which may
be any nonempty set) with R (which we reserve for the real numbers).

Definition. A ring is a set R together with two operations on R, called addition (a + b)
and multiplication (ab), such that

R with addition is an Abelian group,
multiplication is associative, and
a(b+c¢)=ab+acand(a+ b)c =ac+bc foralla,b,c € R.

The last two properties are called the distributive laws.
In detail, the two operations must satisfy each of the following axioms:

a+B+c)y=(a+b)+c foralla,b,ceR,
there is an element 0 € R such that

a+0=0+4+a=a foreacha € R,
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for each a € R there is an element —a € R (the negative of a in R) such that

a+(~a)=(-a)+a=0,
a+b=b+a foralla,b eR,
a(bc) = (ab)c foralla,b,c € R, and
alb+c)=ab+ac and (a+b)c=ac+ bc foralla,b,c€R.

"The group formed by R with addition is referred to as the additive groupof R. Its identity
element, 0, is called the zero of the ring; the context will usually make clear whether this
or the integer zero is meant. In expressions such as ab + ac, multiplications are to be
performed first, just as in elementary arithmetic; that is, ab + ac means (ab) + (ac).

Example24.1. The integers form a ring with respect to the usual addition and muliti-
plication. The same is true for the rational numbers, the real numbers, and also the even
integers. ]

Example 24.2. For each positive integer n, Z,, the integers mod »n, forms a ring with
respect to the operations @ and © introduced in Section 11. Theorem 11.1 shows that Z,,
with @ is a group, and Problem 11.7 shows that this group is Abelian. Associativity of ®
was recorded in Lemma 11.3. Here is a verification of the first distributive law:

f[al]o(b)ldic)) =[aloib+c] definition of ®
= [a(b + ¢)] definition of ©
= [ab + ac] distributivity for +, -
= {ab] & [ac] definition of ®

= ([a] © [b]) ® ([a] © [c]) definition of ©.
The proof of the other distributive law is similar (Problem 24.2). n
Example 24.3. Let M(2, Z) denote the set of all 2 x 2 matrices with integeral entries
(Example 3.5). With matrix addition and multiplication, M(2, Z) is a ring. Problem 24.4
asks you to check one of the distributive laws. This ring is not commutative. Appendix

D has more information about groups and rings of matrices, which are very important in
linear algebra. »

Example 24.4. Let Z[+/2] denote the set of all numbers a + b+/2 with a, b € Z. The sum
of two numbers in Z[{+/2] is also in Z[/2):

@+bVD+(c+dV) =@+ + B +adWV2,

anda+ceZandb+d eZifa,b,c,d e Z. The set Z[+/2] is also closed under multi-
plication:

(@ + bv2)(c +dv/2) = ac + ad~/2 + be2 + bdN2/2
= (ac + 2bd) + (ad + bc)V2.

With these operations Z{+/2] is a ring (Problem 24.5). »

Example 24.5. Let F denote the set M(R) of all functions (mappings) f :R — R. We
can define f + g and fg for f, ¢ € F in a way that will givearing. If f + g is tobe in F,
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then it must be a function from R to R. Thus we must specify (f + g)(x) for each x € R.
Similarly for fg. The definitions are

(f +g(x) = f(x)+g(x) foreachx e R
and (24.1)
(fe)x) = f(x)g(x) foreachx € R.

To verify that this operation + is associative, f + (g + h) = (f + g) + h, we observe
that because each side is a function with domain R, what must be shown is that for all
f.g.heF

[f+@+m)x)=[(f +g) +hlx) foreachx € R.

To do this, write

[f + (g +m)x)= f(x)+(g + h)x) definition of + on F
= f(x) + [g(x) + h(x)] definition of + on F
= [f(x) + 8(0)] + h(x) associativity of + onR
= (f +8)x) + h(x) definition of + on F
={(f+8+hlx) definition of + on F.

The 0 (identity element for +) for this ring is the function defined by 0(x) = 0 for each
x € R, where the 0 on the right is the zero of R: if f € F, then

(f +0)x) = f(x)+0(x) = f(x) + 0 = f(x)

for each x € R, so f + 0 = f. The negative of a function f is the function —f defined
by (— f)x) = — f(x) for each x &€ R. Verification of the remaining axioms is left to
Problem 24.6.

Notice that the product of fg in this example is not f o g. See Problem 24.10 for what
happens when f o g is used. ]

Example 24.6. Let R and S be rings, and R x S the Cartesian product of R and S, that is,
the set of all ordered pairs (, s) withr € R and s € S. Then R x § becomes a ring with
the following operations:
(r1,81) + (2, 82) = (1 + 72, 81 + 82)
and
(ry, $1)0r2, 82) = (r112, $182)

for all r{,r, € R, 51, 52 € S. The discussion of direct products of groups in Section 15
carries over to show that R x S is a group with respect to addition: the additive identity is
(0, 0) = (Og, Os), and the negative of (i, s) is (—r, —s). Here is verification of one of the
distributive laws:
(r1, $1)((r2, $2) + (73, 83)) = (11, s1)(r2 + 13, 52 + 53)

= (r1(r2 +r3), s1(s2 + 53))

= (v +rars, si182 + 8153)

= (rir2, $152) + (rirs, 153)

= (1, s1)(r2, 52) + (05103, 83).

The remaining details are left to Problem 24.11. This ring is called the direct sum of R
and S. ]
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When one first works with any abstract concept such as group or ring, there is bound to
be uncertainty over what is and is not allowed. For examaple, in a group written multiplica-
tively the left cancellation law holds: If ab = ac, then B = ¢ [Theorem 14.1(a)]. Because
a ring is (among other things) a group with respect to addition, this can be translated into
a statement about rings: If a + b = a + c, then b = c. But what about left cancellation for
multiplication in a ring? In the ring of integers ab = ac ixnplies b = ¢ (fora # 0), but what
about other rings? We shall come to see that sometimes itis safe to cancel and sometimes it
is not. Only experience can guide us in such matters. Once it has been determined that there
are enough important examples of a concept to make that concept worth studying, we set
about trying to discover theorems about it. Not only do examples tellus whether the concept
is worth studying, but they are also the source of ideas for theorems. Given a property of a
specific ring, for example, we can ask whether that property holds for all rings. Very often,
the answer will be no, and it will be another example—-a counterexample—that will give
us that answer. But sometimes the answer will be yes, and we then have another piece of
the theory surrounding the general concept. In this senise, the example of the integers is a
good one to keep in mind when first studying rings. Even though not everything true about
the integers is true about all rings, we can gradually improve our perspective by comparing
each theorem and example with this familiar and important special case.

With these remarks and some examples behind us, we now tum to some elementary
theorems. Because a ring is a group with respect to addition, the elementary properties
of rings that involve addition are obtained by simply translating the elementary properties
of groups into additive notation. An example is the cancellation law mentioned earlier.

And the law (a“)_] = a becomes —(—a) = a. The following theorem gives a summary
of such properties. The last part uses the conventions that if n is a positive integer, then
na=a+a+---+a(ntems) and (—n)a = —(na).

Theorem 24.1. LetR bearinganda,b, c € R.

(a) The zero element of R is unique.

(b) Each element of R has a unique negative.

(¢) If a+b=a+c,then b = c (left cancellation law).

(d) If b+a = ¢ + a, then b = c (right cancellation law).

(e) Each of the equations a + x = b and x + a = b has a unique solution.

(H —(—a) =a and —(a + b) = (—a) + (—b).

(8) If m and n are integers, then (m + n)a = ma + na, m(a+ b) = ma + mb, and
m(na) = (mn)a.

The proof of Theorem 24.1 is left to Problem 24.12. The next theorem concerns
properties involving multiplication in a ring. Here and elsewhere, @ — b means a + (—b).

Theorem 24.2. Let R be aring, 0 the zero of R,and a,b,c € R.

(@) Oa = a0 =0.

(b) a(—b) = (—a)b = —(ab).

(¢c) (—a)(~b) = ab.

(d) a(b—c) =ab —ac and (a — b)c = ac — bc.

PROOF. (a) Oa + 0a = (0 + O)a = 0a = 0a + 0, and therefore, by canceling 0a
from the left of the first and last expressions, 0a = 0. The proof for a0 = 0 is similar.
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(b) The equation x + ab =0 has x = —(ab) as a solution. But a(—b)+ab =
a(—b + b) = a0 = 0; hence x = a(~b) is also a solution. By uniqueness of the solu-
tion {Theorem 24.1(e)], it follows that —(ab) = a(~b). The proof for —(ab) = (—a)b is
similar.

(¢) Using part (b) and Theorem 24.1(f), we have (—a)(—b) = (—(—a))(b) = ab.

(d) Using part (b), we can write a(b—c)=a(b +(—c))=ab+a(—c)=ab+
(~(ac)) = ab — ac. The proof for (@ — b)c = ac — bc is similar. ]

In the definition of a ring, nothing is assumed about multiplication except associativity
and the connection of multiplication and addition through the distributive 1aws, Other
assumptions are considered in the next section when we look at some special types of rings.
We close this section by mentioning two of the assumptions that arise most frequently.

An element ¢ in a ring R is called a unity (or identity or unit element) for the ring
if ea = ae = a for each a € R. Thus a unity is simply an identity for multiplication. The
number 1 is a unity for the ring of integers. The ring of even integers has no unity.

A ring R is said to be commutative if ab = ba for all a, b € R. The rings in Examples
24.1, 24.2, 244, and 24.5 are commutative, If ab # ba for some a, b € R, the ring is
noncommutative. The ring M (2, Z) (Example 24.3) is noncommutative. The ring R x S in
Example 24.6 will be commutative iff both R and S are commutative.

24.1. Compute [3] O ([4] @ [5]) and ({3] © [4]) ® ([3] © [5]) in Z¢. Show each step.

24.2. Prove that ([a] @ [h]) ©ic]l = ([a] O [c]) ® ([b] © [c]) for all {a],[b],[c] € Z, (Exam-
ple 24.2).

24.3. Computel:3 1}([0 4}4—[—1 _2})inM(2,Z).
-1 2 5 -2 0 3

24.4. Verify that a(b +c) = ab + ac for all a,b,c € M(2,Z). (Here each of a,b, and c is, of
course, a 2 X 2 matrix.)

24.5. Prove that Z[«/i] is a ring (Example 24.4).

24.6. Complete the verification that F = M(R) is a ring (Example 24.5). Also verify that it is
commutative and has a unity.

24.7. Which of the following properties hold in every ring R? What about every commutative
ring R?
(@) a"a" =a"*" forallae R,m,ne N.
(b) (@) =a™ foralla e R,m,n e N.
(€) (ab)™ = a™b™ foralla € R, m € N.(The powers occurring here are defined as in Section
14.)

24.8. Prove that if R is a ring, a, b € R, and ab = ba, then a(—b) = (—b)a and (—a)(—b) =
(—b)(~a). (Use Theorem 24.2.)

24.9. Show that if R is a ring and S is a nonempty set, then the set of all mappings from S into R
can be made into a ring by using operations like those defined in Example 24.5.

24.10. Consider Example 24.5 with fg, as defined there, replaced by f o g. Verify that this does not
define a ring.

24.11. Complete the verification that Example 24.6 is a ring.
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24.12.

24.13.

24.14.
24.15.

24.16.
24.17.
24.18.

24.19.

24.20.

24.21.

24.22.

Prove Theorem 24.1. (This can be done by referring to proofs that have already been carried
out for groups.)

Prove that if R is a ring, then each of the following properties holds for alla, b, ¢ € R.
(a) a0 = 0. (This is part of Theorem 24.2.)

(b) —~(ab) = (~a)b. (This is part of Theorem 24.2.)

(c) (a — b)c = ac ~ bc. (This is part of Theorem 24.2.)

(d) ~(@+56)=(—a)+(-b).

&) (@a-b)y+b~c)=a-—c.

Prove that a ring has at most one unity.

Let E denote the set of even integers. Prove that with the usualaddition, and with multiplication
defined by m x n = (1/2)mn, E is aring. Is there a unity?

Prove that a®> — b* = (a + b)(a@ — b) for all @, b in aring R iff R is commutative.
Prove that (@ + b)? = a® + 2ab + 5% for all a, b in aring R iff R is commutative.

Verify that if A is an Abelian group, with addition as the operation, and an operation * is
definedon A bya xb =0forall g, b € A, then A is aring with respect to + and *.

In the ring of integers, if ab = ac and a # 0, then b = c. Isthis true in all rings? (Suggestion:
Look carefully at the rings in Examples 24.2, 24.3,24.5, and 24.6.)

Verify that if R is aring and a, b €R, then
(@ +b)® = a® + aba + ba® + b*a + a*b + ab® + bab + b*.

Which ring axioms do you need?

Prove that if R is a commutative ring, @, b € R, and n is a positive integer, then (@ + b)" can
be computed by the Binomial Theorem. (See Appendix C.)

For each set S, let P(S) denote the set of all subsets of S. For A, B € F(S), define A -+ B and
AB by
A+B=(AUB)\(ANB)={x:xe AUB and x ¢ AN B}
and
AB=ANB.
Verify that with these operations, P(S) is a ring. [P(S) is called the power set of A. See

Appendix A for facts about sets. Suggestion. Make generous use of Venn diagrams in this
problem.)

SECTION 25 INTEGRAL DOMAINS. SUBRINGS

To isolate what is unique about the integers—something we first promised in Section 18—
we focus here on the pertinent abstract ring properties. Commautativity and the existence
of a unity are examples of these properties. After introducing one more such property we
define a special class of rings known as integral domains. This class contains the ring of
integers and brings us very near to a characterization of that ring. The characterization will
be completed in Section 29.

We begin by recalling a fact relating to zero in the ring of integers: If a and b are
integers and @b = 0, then either a = 0 or b = 0. This is not true in some rings. In Zg, for
example, [2] © [3] = [0], but [2] # (0] and {3] # [O]. The following definition singles out
such examples.
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Definition. An element g # 0 in a commutative ring R is called a zero divisor in R if
there exists an element b # 0 in R such that ab = 0.

Thus the ring of integers has no zero divisors. But both [2] and [3] are zero divisors in
Zs. Notice that the definition is restricted to elements in a commutative ring; for what can
happen in a noncommutative ring, see Problem 25.9. By the definition that follows, zero
divisors are forbidden in an integral domain.

Definition. A commutative ring with unity e # 0 and no zero divisors is called an integral
domain.

Note that saying there are no zero divisors is the same as saying the set of nonzero
elements is closed with respect to multiplication.

Example 25.1. The ring of integers, the ring of rational numbers, and the ring of real
numbers are all integral domains. The ring of even integers is not an integral domain
because it has no unity. u

Example 25.2. The ring Zg is not an integral domain because, as we have seen, it has
zero divisors. This happens because 6 is not a prime. More generally, if n is not a prime,
and n = rs with r and s each greater than 1, then, in Z,, [r] © [s] = [rs] = [n] = (0] with
[} # [0] and [s] # [0]. Thus Z, is not an integral domain if » is not a prime. On the other
hand, it can be proved that if n is a prime, then Z, is an integral domain (Problem 25.10).
For the special case n = 5 this can be seen from Table 11.2; every Z, is commutative and
has a unity, and Table 11.2 shows that the product of any two nonzero elements in Zs is
nonzero. u

Of the other examples of rings in Section 24, M(2, Z) is not an integral domain
because it is noncommutative (Problem 3.26). The ring in Example 24.4 is an integral
domain (Problem 25.11). The ring in Example 24.5 is not an integral domain (Problem
25.12). The ring R x S in Example 24.6 is an integral domain only if one of R or S is an
integral domain and the other contains only a zero element (Problem 25.13).

The following theorem gives an easy-to-prove but important property of integral do-
mains.

Theorem 25.1. If D is an integral domain, a, b,c € D,a # 0, and ab = ac, thenb = ¢
(left cancellation property).

PROOF. From ab = ac we have ab — ac =0, and thus a(b ~¢) = 0. Since a is a
nonzero element of the integral domain D, it cannot be a zero divisor, so we must have
b-~c=0andb=c. u

Because multiplication is commutative in an integral domain, the (left) cancellation
property in Theorem 25.1 is equivalent to the right cancellation property: If a # 0 and
ba = ca,then b = c. Moreover, foracommutative ring each of these cancellation properties
implies that the ring has no zero divisors (Problem 25.14). Thus an altemative definition
of an integral domain is this: An integral domain is a commutative ring D with unity e # 0
such thatif a,b,c € D,ab=ac,anda # 0, thenb = c.

The notion of subring is the obvious analogue of the notion of subgroup.
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PROBLEMS

Definition. A subset S of a ring R is a subring of Rif § is itself a ring with respect to the
operations on R.

Example25.3. The ring of even integers is a subring of the ring of all integers. The ring
of integers is a subring of the ring of rational numbers. If R is any ring, thenR is a subring
and {0} is a subring. Other examples appear in Example 25.4, in the problems, and later
in the book. ]

Theorem 7.1 gave a criterion for determining when a subset of a group is a subgroup.
Here is the corresponding criterion for subrings.

Theorem 25.2. A subset S of aring R is a subring of R tff S is nonempty, § is closed under
both the addition and the multiplication of R, and S contains the negative of each of jts
elements.

PROOF. See Problem 25.15. ]

Example 25.4. Let F = M(R) denote the ring of all functions f: R — R, introduced in
Example 24.5. Let S denote the setof all f € F such that f(1) = 0. We shall use Theorem
25.2 to prove that S is a subring of F.

Certainly Or € S, since Og(x) = 0 for all x € R so that in particular 0z(1) = 0. Thus
S is nonempty. If f and g are in S, then

f+D=fD+gl)=0+0=0
and
(fe)= f(Hg()=0-0=0

so that f + g and fg are in S. Finally, if (1) =0, then (= f)(1) = ~ f(1) = -0 = 0;
therefore, the negative of each element of S is also in S. »

25.1. Which elements of Z4 are zero divisors?
25.2. Which elements of Z,, are zero divisors?
253. Verify that ([2], [0]) is a zero divisor in Z3 x Z;.
25.4. Which elements of Z x Z are zero divisors? (See Example 24.6.)
25.5. What is the smallest subring of Z containing 3?
25.6. What is the smallest subring of R containing 1/2?
Which of the following are subrings of M(2, Z) (Example 24.3)?

b

25.7. {[“ bJ:a,beZ} 2538. [[" J:a‘b,(:eZ}
0 0 0 ¢

25.9. Compute o tpt o and L 0ot inM(Q2,2Z).
0 010 O 0 0f{lo O
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25.10.
25.11.

25.12.
25.13.

25.14.

25.15.

25.16.

25.17.

25.18.

25.19.

25.20.

25.21.

25.22.

25.23.
25.24.
25.25.

Prove that if p is a prime, then Z, is an integral domain.

Explain why Z{2) (Example 24.4) is an integral domain. (Assume that R is an integral
domain.)

Prove that the ing F = M(R) in Example 24.5 is not an integral domain.

Prove that R x S (Example 24.6) is an integral domain iff one of R or S is an integral domain
and the other contains only a zero element.

Prove that for a commutative ring the cancellation property of Theorem 25.1 implies that
there are no zero divisors.

Prove Theorem 25.2.

Let C (R) denote the setof all continuous functions from R to R. Prove that C (R) is asubring of
the ring F = M(R) in Example 24.5. Which properties of continuous functions are required?
What happens if C (R) is replaced by the set of differentiable functions from R to R?

Prove that if C denotes any collection of subrings of a ring R, then the intersection of all of
the rings in C is also a subring of R. (Compare Theorem 15.1.)

State and prove a theorem for rings that is analogous to Theorem 15.2 for groups. (Use
Problem 25.17.)

Prove or disprove that if C denotes a collection of subrings of an integral domain R, and each
ring in C is an integral domain, then the intersection of all of the rings in C is an integral
domain.

For which n € Z is the smallest subring containing n an integral domain?

Verify that {a + b Y2+ cY4:a,b,cel)is asubring of R. Is this subring an integral
domain?

The center of aring Ris defined tobe {c € R : ¢r = rc foreveryr € R}. Prove that the center
of aring is a subring. What is the center of a commutative ring?

What is the center of M (2, Z)? (See Example 24.3 and Problem 25.22.)
What is the center of M (R)? (See Example 24.5 and Problem 25.22.)

State and prove a theorem giving a necessary and sufficient condition for a subset of an
integral domain to be an integral domain. (Compare Theorem 25.2.)

SECTION 26 FIELDS

Because an integral domain has no zero divisors, its set of nonzero elements is closed with
respect to multiplication. Therefore, multiplication is an operation on this set of nonzero
elements, and it is natural to ask if it yields a group. Because multiplication is required
to be associative in a ring, the operation is associative. Because an integral domain has a
unity, the operation has an identity element. Thus, with respect to multiplication, the set of
nonzero elements of an integral domain can fail to be a group only because of the absence
of inverse elements. In the integral domain of integers, for instance, the nonzero elements
do not form a group with respect to muitiplication because only 1 and —1 have inverses.
In the integral domain of rational numbers, however, each nonzero element does have an
inverse relative to muitiplication. Such integral domains are singled out by the following
definition.
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Definition. A commutative ring in which the set of nonzero elements forms a group with
respect to multiplication is called a field.

Alternatively, a field can be defined as @in integral domain in which each nonzerg ele-
ment has an inverse relative to multiplicatiom (Problem 26.11). Another example of a field,
besides the ring of rational numbers, is the ring of real numbers. Fields are indispensable
to much of mathematics. For example, the field of real numbers is basic in calculus and it
applications.

Here are some relationships between classes of rings:

fields C integral domains < commutativerings C rings.

Each class is contained in, but different fromn, the class that follows it. If we restrict attention
to rings having only finitely many elements., however, then the first two classes are the same,
because of the following theorem,

Theorem 26.1. Every finite integral domain is a field.

PROOF. Let D be a finite integral dornain. We must show that each nonzero element
a € D has an inverse relative to multiplication; that is, if a € D and a # 0, then there is
an element b € D such that ab = e. This means we must show that e is among the set of
elements ax for x € D. To show this, assume that a % 0 and consider the mapping A, :
D ~ D defined by A,(x) = ax for each x &€ D. If this mapping is onto, then in particular
Aa(x) = e for some x € D, say x = b, and then A,(b) = ab = e. Thus it suffices 10 show
that A, is onto.

Because A, is a mapping of a finite set to jtself, it suffices to establish that A, is one-
to-one, for it will then necessarily be onto. To show that A, is one-to-one, assume that
Aala) = Ag(x7). Then ax, = ax;, and therefore, by Theorem 25.1, x; = x,. Thus Aq is
one-to-one, as required. N

Corollary. Z, is a field iff n is a prime.

PROOF. From the remarks in Example 25.2 we know that Z, is an integral domain
iff n is a prime. That makes this corollary an immediate consequence of Theorem 26.1. m

Example 26.1. Tables 26.1 and 26.2 show operations on {0, e, a, b} that produce a field.
See the remarks that follow the tables.

Table 26.1
+ 0 e a b
0 0 e a b
e e 0 b a
a a b 0 e
b b a e O
Table 26.2
—_—
0 e a b
00 O 0 O
e 0 e a b
a 0 a b e
b |0 b e a
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Once 0 has been chosen for the zero element, and e for the unity, there is no choice
about how to complete the table for multiplication (Problem 26.15). The table for addition
must produce a group of order 4; Problem 26.16 asks for verification that the additive group
here is isomorphic to Z, x Z, (with operation @ on each Z,). This example shows that
there is a field of order 4, even though Z4 (with @ and ©) is not a field by the corollary of
Theorem 26.1. It can be proved that there is a finite field of order n iff n is a power of a
prime (see Section 50). n

Definition. A subset K of a field F is a subfield of F if K is itself a field with respect to
the operations on F.

Theorem 26.2. A subset K of a field F is a subfield of F iff

(a) K contains the zero and unity of F,

() ifa,be K, thena+be Kandab e K,
(¢c) ifae K, then —a € K, and
(difacKanda#0,thena ' € K.

PROOF. See Problem 26.19. ]

Example 26.2. The ring Z[/2] = {a + bv/2 : a, b € Z}, considered in Example 24.4, is
a subring of R. Although Z[«/f] is an integral domain (see Problem 25.11), it is not a field.

For instance, —2 + /2 € Z[+/2], but (—2 + «/5)_1 =-—1- %«/f 3 Z[+/2). If, however,
Z is replaced by Q, then we do get a field: Q[+/2) = {a + bv/2 : a, b € Q} is a subfield of
R (Problem 26.14). | |

If the requirement of commutativity is dropped from the definition of a field, what is
left is the definition of a division ring: a ring in which the set of nonzero elements forms a
group with respect to multiplication. Thus a commutative division ring is a field. Problem
32.19 gives an example of a division ring that is not commutative.

In each of Problems 26.1-26.10, give an example of a ring satisfying the given conditions or, if there
is no example, so state.

26.1. An integral domain that is not a field.

26.2. A finite integral domain that is not a field.

26.3. A commutative ring with unity that is not an integral domain.

26.4. An infinite integral domain.

26.5. A finite field.

26.6. A commutative ring with a zero divisor.

26.7. A field that is not an integral domain.

26.8. A field that contains a zero divisor.

26.9. A commutative ring without zero divisors that is not an integral domain.

26.10. A noncommutative ring without a unity.
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26.11.

26.12.

26.13.

26.14.

26.15.

26.16.
26.17.
26.18.
26.19.
26.20.

26.21.

26.22.
26.23.

26.24.

26.25.

Prove that an integral domain is a field iff each nonzero elee=ment has an inverse relative to
multiplication.

Prove that an integral domain D is a field iff each equation @ x = b (a,b e Dand 4 # 0) has
a unique solution in D.

Let Z: denote the nonzero elements of Z,. For which 7 is Z: a group with respect 1o 7
(Compare Examples 11.4 and 11.5.)

Verify that Q[v2) = {a + b+/2 : a, b € Q} is a subfield of tkae field of real numbers (Example
26.2).

Prove that if {0, ¢, a, b} is to be a field with 0 as zero element and ¢ as unity, then the
multiplication must be as defined in Example 26.1.

Prove that the additive group of the field in Example 26.1 is isomorphic to Z, x Z,.
Show that the ring Z, x Z, is not a field. Why is this not imx conflict with Problem 26.16?
Prove that a direct sum of two or more fields is never a field.

Prove Theorem 26.2.

Prove that if C denotes any collection of subfields of a field F, then the intersection of all the
fields in C is also a subfield of F. (Compare Problem 25.17.)

State and prove a theorem for fields that is analogous to Theorem 152 for groups. (Use
Problem 26.20, and compare Problern 25.18.)

What is the smallest subfield of R containing Z? (There is such a subfield by Problem 26.21.)

(a) An element g in a commutative ring R with unity ¢ is said to be invertible if there is an
element b € R such that ab = e. Prove that if R is a commutative ring with unity, then
the invertible elements form a group with respect to the multiplication of the ring.

(b) What is the group of invertible elements in a field?

(c) What is the group of invertible elements in Z?

(d) What is the group of invertible elements in Z,?

(e) What is the group of invertible elements in Z,,?

Prove that a zero divisor in a commutative ring with a unity cannot be invertible. (See Problem
26.23.)

For each r in a ring R define p, : R — R by p,(a) = ar foreacha € R. For R commutative
explain why Ker p, 3 {0} iff - = 0 or r is a zero divisor in R. For R afield and r 3 0, explain
why p, is an isomorphism of the additive group of R onto itself.

SECTION 27 ISOMORPHISM. CHARACTERISTIC

In Section 18 we met the idea of isomorphism for groups and learned that isomorphic
groups are essentially the same—they differ at most in the nature of their elements and
operations. A similar idea applies to rings.

Definition. Let R and S be rings. An isomorphism of R onto S is a mapping 6 : R — §
that is one-to-one and onto and satisfies

6(a +b) =6(a) + 6(b)
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and
6(ab) = 8(a)b(b)

foralla, b € R.If there is an isomorphism of R onto §, then R and § are said to be isomorphic
and we write R ~ §.

In the conditions 6(a + b) = 6(a) + 6(b) and 6(ab) = 6(a)f(b), the operations on the
left in each equation are, of course, those of R, and the operations on the right are those of
S. Notice that because of the first of these conditions a ring isomorphism is necessarily an
isomorphism of the additive groups of R and S. It follows that §(0) = 0 and #(—a) = —6(a)
foreacha € R, by translation into additive notation of parts (a) and (b) of Theorem 18.2.

The following example shows that an isomorphism between the additive groups of two
rings is not necessarily a ring isomorphism.

Example 27.1. Let 8 be the mapping from the ring of integers to the ring of even integers
defined by 8(n) = 2n for each n. We verified in Example 18.3 that this is an isomorphism
between additive groups. But it is not a ring isomorphism because it does not preserve
multiplication: 8(mn) = 2mn but 6(m)6(n) = 2m)(2n) = 4mn.

Although this mapping 8 is not a ring isomorphism, we might ask whether some other
mapping from the ring of integers to the ring of even integers can be a ring isomorphism.
The answer is no. For example, the ring of integers has a unity, but the ring of even integers
does not, and if one of two isomorphic rings has a unity, then the other must as well (Problem
27.1). Notice, then, that although the integers and even integers cannot be distinguished as
groups (Example 18.3), they can be distinguished as rings. "

Example 27.2. Consider the ring Z[s/i] defined in Example 24.4, and define 6 :
Z[/2] - Z[J2] by 6(a + bv/2) =a ~ b+/2. This mapping is clearly one-to-one and
onto. It also preserves both ring operations: For addition,

6((a +bv2) + (c +dvV2) = 8((a+ ¢) + (b + d)V2)
=(@+c)—(b+d)V?2

and also

6(a + b/2) + 8(c +d~2) = (a — bv/2) +(c — dV2)
=(a+c)—~(b+ V2.

For multiplication,

0((a + bv/2)(c + dv/2)) = 8((ac + 2bd) + (bc + ad)v/2)
= (ac + 2bd) — (bc + ad)~/2_

and also

8(a + bv/2)8(c + d+/2) = (a ~ bv/2)(c — dv/2)
= (ac + 2bd) — (bc + ad)/2.

Thus 6 is an isomorphism of Z[+/2] onto Z[+/2]. An isomorphism like this, of a ring onto
itself, is called an automorphism. n
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Example 27.3. 'Wecan prove that Zg = Ty x L3 by~ using themapping 8 : Zg —» Z x Zs
defined by ([ale) = ([al2, {a};). The following strimg of equivalent statements shows that
6 is both well defined and one-to-one.

lale = [ble iff 6l(@a—b)
iff 2i(@a — by and3[(a—b)
iff [a}, = [pJzand[a]; = [b);
iff  (lal, [@lz ) = (Bl [B)3).

(The “only if” portion shows that g is well definec; the “if” portion shows that it is one-
to-one.) Because |Zg| = |Zo x Zs|, 6 is onto since it is one-to-one. Next, § preserves
addition:

6([als ® [ble) = 6([a + bJe)
= ([a +b)2,[a+bly)
= ([a], @ [Ph, [a]; & [b]3)
= ({ak, [a)3) + ([b)2, (b)3)
= f([ale) + 9([ble)

Similarly, 6 preserves multiplication (Problem 27.17). Therefore, Z¢ =~ 7y x Za, as
claimed. Problem 27.16 suggests how to show that Z4 % Z; x Z,. Problem 27.20 asks
you to show that Zmy % Zm X Ln iff m and n are relatively prime. -

If one of two isomorphic groups is Abelian, then the other must also be Abelian
(Theorem 18.1). In the same way, if one of two isomorphic rings is commutative, then the
other must also be commutative (Problem 27.2). Other properties shared by isomorphic
rings include the existence of a unity, existence of a zero divisor, that of being an integral
dornain, and that of being a field (see the problems). The most common method of showing
that two rings are not isomorphic is by finding some such property that one of the rings has
but the other does not.

The next concept will help in determining what is unique about the ring of integers. It
is also especially useful in the study of fields. Recall that if n is a positive integer and a is
aring element, thenna =a +a+ - + a (n termns).

Definition. Let R be a ring. If there is a positive integer n such that na = 0 for each
a € R, then the least such integer is called the characteristic of R. If there is no such
positive integer, then R is said to have characteristic 0 (zero).

If a ring has a unity e and characteristic n # 0, then in particular ne = 0. On the other
hand, if ne = 0and g € R, thenna = n(ea) = (neda = 0a = 0. Thus, for a ring with unity
e, the characteristic can be defined alternatively as the least positive integer n such that
ne = 0, if there is such an integer; otherwise the ring has characteristic 0.

Example 27.4

(a) The ring of integers has characteristic O, for there is no positive integer n such that
n -1 == 0. For the same reason, the ring of rational numbers and the ring of real
numbers also have characteristic 0.

(b) The characteristic of Z, is n, because a(1] = [n] = [0}, but k[1] = [k} % [0] for
O<k<n. n
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In Example 25.2 we observed that if a ring Z, is an integral domain, then n is a prime.
Thus, in view of the last example, if a ring Z, is an integral domain, then its characteristic
is a prime. Here is a more general statement.

Theorem 27.1. If D is an integral domain, then the characteristic of D is either 0 or a
prime.

PROOF. Assume that D is an integral domain with characteristic n # 0. Let e denote
the unity of D. Since le = ¢ # 0, we must have n > 1. We shall prove that n must be
a prime. Assume otherwise. Then n = rs for some integers r and s with ! <r <n and
1 <s <n. From ne = 0 we have (rs)e = 0 and (rs)(ee) = (re)(se) = 0. But D, being an
integral domain, has no zero divisors, so (re)(se) = 0 implies that either re = 0 or se = 0.
Since 1 <r < n and 1 <s < n, either possibility contradicts the assumption that n is the
characteristic of D. Thus n must be a prime. [ |

Theorem 27.2. If D is an integral domain of characteristic 0, then D contains a subring
isomorphic to Z.

PROOF. Let e denote the unity of D, and define 6 : Z — D by 6(n) = ne for each
n € Z. We shall prove that § is one-to-one and that it preserves both ring operations.

If0(m) = 08(n), thenme = ne, me —ne =0,and(m — n)e = 0. Thus m = n because
D has characteristic 0. Therefore 6 is one-to-one. If m, n € Z, then

6(m+n) =(m+n)e =me+ ne =6(m)+6(n)
8(mn) = (mn)e = (me)(ne) = 6(m)f(n).

The image of 6 is a subring of D (Problem 27.10), and 6 is an isomorphism of Z onto
that subring. This completes the proof. ]

Theorem 27.3. If D is an integral domain of prime characteristic p, then D contains a
subring isomorphic to Z,.

PROOF. The proof of this theorem is similar to that of Theorem 27.2. The relevant
mapping is § : Z, — D defined by 6([k]) = ke for each {k] € Z,. The details are left as
an exercise (Problem 27.11). =

If a ring R contains a subring isomorphic to a ring S, then it is said that S can be
embedded in R. Using this terminology, Theorem 27.2 becomes: The ring of integers can
be embedded in every integral domain of characteristic 0. And Theorem 27.3 becomes:
The ring Z, can be embedded in every integral domain of prime characteristic p.

27.1. Prove that if R and S are rings, @ : R — S is an isomorphism, and ¢ is a unity of R, then 6(e)
is a unity of S.

27.2. Prove that if R and S are isomorphiC rings and R is commutative, then S is commutative.

27.3. Prove that if R and S are isomorphic rings and R is an integral domain, then § is an integral
domain.

27.4. Prove that if R and S are isomorphic rings and R is a field, then S is a field.
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Assume that R is a ring with unity e, that a, b € R, cand that m,n € Z._ Prove each suazemen; in
Problems 27 5-27 8.

27.5.
27.7.

27.9.

27.10.

27.11.

27.12.
27.13.

27.14.
27.15.

27.16.
27.17.
27.18.

27.19.

27.20.

27.21.

27.22.

27.23.

27.24.

27.25.

m(ab) = (ma)b = a(mb) 27 .6. (mn)e = (medne)

(mn)a = m(na) 27 8. m(ea) = (medaa

Prove that if £ and F are fields, § : E — F is an isomorphisrr, and a € £, a 5 0, thep
f(a') =0@)"".

Prove that if R and § are rings, § : R — S, and 8 preserves both ring operations, then 8(R)
is a subring of §.

Complete the proof of Theorem 27.3. Prove, irx particular, that the mapping 4 is well defined
Prove that isomorphism is an equivalence relation on the class of all rings.

List five ring properties that hold for each ring isomorphic to Z but not for every ring. (Bya
ring property is meant a property of a ring R that is shared by every ring isomorphic to R)

What can be said about the characteristic of a ring R in which x == —x for each x & R?
Prove that if R and § are isomorphic rings, then their characteristics are equal.

Use Problem 27.15 to explain why Z,‘. ¥ 2y xZy.

Verify that the mapping 8 in Example 27.3 preserves mulitiplication.

Give a counterexample to the following statement: If R is aring, nis a positive integer, and
na = 0forsomea € R, thennr =0 forall»r € R,

Give an example of a ring of characteristic 3 that is not a field.

() Prove that if (m, n) = 1, then the rings Zy,,, and Z,, x Z, are isomorphic.
(b) Prove that if (m, n) # 1, then Z 1y % Zipy X Z,.

A ring R is called a Boolean ring if x2 = x for each x € R. Prove that every Boolean ring R
is commutative and satisfies 2x = 0 for each x € R. Give an example of such a ring.

Prove that if R is a finite ring, then the characteristic of R is a divisor of [R]. (Section 17 is
relevant.)

Let R denote the subfield {a +b~2:a,b€ Q) of R, and let S denote the subfield
(@a+bv3:a,beQ)of R Verify that § : R — S defined by 8(a + 5/2) = g +b63 s
not a ring isomorphism.

(a) Prove that if R and § are rings with unities e and f, respectively, R =~ §, and x2 = ete
has a solution in R, then x* = f + f has a solution in . (See Problem 27.1)

(b) Verify that x2 = 2 has a solution in the ring R of Problem 27.23.

(c) The rings R and S in Problem 27.23 are not isomorphic. Give a reason. (Notice that
the solution of Problem 27.23 shows that a particular mapping from R to S is not an
isomorphism. The solution of this problem shows that no mapping from R to § is ap
isomorphism.)

Every ring R can be embedded in a ring with a unity. Prove this by verifying the following
steps.
(a) The setZ x R is a ring with respect to the operations

(m,a)+(n,b)y=(m+n,a+b
and
(m, a)(n, b) = (mn, na + mb + ab).

(Notice that this is not the direct sum of the rings Z and R.)



36

CHAPTER VI INTRODUCTION TO RINGS

27.26.

27.27.

27.28.

(b) The ring in part (a) has unity (1, 0).

(c) R’ = {(0, a) : a € R} is a subring of the ring in part (a), and R =~ R'.

Prove that every ring with prime characteristic p can be embedded in a ring with unity and
characteristic p.

Let A be an Abelian group, written additively. If @ and 8 are homomorphisms from 4 to 4,
define & + 8 and af by

(o + B)a) = ala) + B(a)

and

(@B)a) = a(B(a))

foralla € A.Prove that + B and af are also homomorphisms from A to A. Also prove that
with these operations the set of all homomorphisms from A t0 A is aring. (A homomorphism
from a group to itself is called an endomorphism. The ring in this problem is called the ring
of endomorphisms of the Abelian group A. Compare Problem 24.10.)

Let R denote the ring of endomorphisms of Z (see Problem 27.27). Prove that R ~ Z (ring
isomorphism). (Suggestion: Foreach k € Z, define o : Z — Z by ax(n) = knforalln € Z.
Verify that g, € R foreach k € Z and that 8 : Z — R defined by 8(k) = o is aring isomor-
phism.)

NOTES ON CHAPTER VI

We shall return to rings in a number of later chapters. References [1}, [2], and [4] are
standard sources that go beyond what is in this book. Chapter 49 of [3] contains remarks
on the history of ring theory, as do some of the references at the end of the Introduction.

1. Herstein, I. N., Noncommutative Rings, Carus Monograph Series, No. 15, Mathematical Associ-
ation of America, 1968.

2. Kaplansky, 1., Commutative Rings, University of Chicago Press, 1974.

3. Kline, M., Mathematical Thought from Ancient to Modern Times, Oxford University Press,
London, 1990.

4. McCoy, N. H,, Rings and Ideals, Carus Monograph Series, No. 8, Mathematical Association of
America, 1948.



CHAPTER VII

THE FAMILIAR NUMBER SYSTEMS

This chapter shows what distinguishes each of the familiar number Systems—integers
rational numbers, real numbers, complex numbexS—in terms of its special properties as a;
ring or field. This requires that we introduce ideas relating to order (<) and to the existence
of solutions of polynomial equations. Complete pxoofs are given or sketched in the case of
the integers and rational numbers, but not in the case of the real or complex numbers, This
chapter gives part of what is necessary to replace an intuitive understanding of the familiar
number systems by an understanding based on a 1more solid logical foundation.

SECTION 28 ORDERED INTEGRAL DOMAINS

In this section and the one that follows we take the first steps in characterizing the ring
of integers. The first definition given, that of an ordered integral domain, applies to the
integers as well as to many other integral domains. It will lead to the ideas of positive,
negative, greater than, and less than. To read the definition with the integers in mind as an
example, think of D? as being the set of positive integers.

Definition. An integral domain D is said to be ordered if there is a subset D? of D such
that:
closure under addition

ifa,be DP, then a+be DP,
closure under multiplication
ifa,b € DP, then abe DP,
law of trichotomy

ifa € D, then exactly one of the following is true:
a=0, aeDP, or —~ae€DPr

The elements of D? are called the positive elements of D. Elements that are neither zerg
nor positive are said to be negative.

1?7



138

CHAPTER VII THE FAMILIAR NUMBER SYSTEMS

Besides the integers, other ordered integral domains include the rational numbers and
the real numbers, with the set of positive elements being the set of positive numbers in
each case. We shall see that the integral domains Z, are not ordered (regardless of what
one tries to use for the set of positive elements). Assume in the remainder of this section
that D is an ordered integral domain with unity e.

Lemma?28.1. If ae Danda # 0,thena® € D?.

PROOF. By definition of DP, since a # 0 we have either a € D? or —a € DP. If
a-€ DP then a - a = a* € D? by closure of DP under multiplication. If ~a € D?, then
(—a)(—a) = (—a)? € D? by closure of DP under multiplication; but (~a¥ =a’in any
ting, so that again a® € D?. [

Corollary. e € D?.
PROOF. Sincee € D ande # 0, ¢ € D? by Lemma 28.1. But e2 = e. |
Lemma 28.2. If a € D? and n is a positive integer, then na € D?.

PROOF. The proof is by induction on n (which is reviewed in Appendix C). We are
given la = a € D, Assume ka € D?. Then (k 4 1)a = ka + 1a € D? by closure of D¥
under addition. Thus na € DP for every positive integer n. |

Theorem 28.1. If D is an ordered integral domain, then D has characteristic 0.

PROOF. By the corollary of Lemma28.1,e € D? so ne € D? foreach positive integer
nby Lemma 28.2. Thus ne # 0 for each positive integer 7, since a positive element cannot
be 0. Therefore, the characteristic cannot be n # 0. |

Corollary. If D is an ordered integral domain, then D contains a subring isomorphic
toZ.

PROOF. Apply Theorems 28.1 and 27.2. ]

Corollary. A finite integral domain cannot be ordered. In particular, Z, (p a prime)
cannot be ordered.

PROOF. This is a direct consequence of the preceding corollary. u

Definition. Assume that D is an ordered integral domain and @, b € D. Thena > b will
meanthata — b € D? If a > b, we say that a is greater than b, and that b is less than a.

For the ring of integers (or rational numbers or real numbers), this is the customary
meaning of >. As usual,

b<a means a>b
a>b means a>bora=>~, and

a<b means a<bora=5b.

The following theorem brings together many of the properties of the relation >.
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Theorem 28.2. Let D be an ordered integral dcomain and et a, b, ¢ € D.
(@) Ifa>0andb >0, thena+b> Q.
B)Ifa>0andb >0, thenab > 0.
(¢) Exactly one of the following is true:a = b,a > b, or b > a.
(d) Ifa> b, thena+c>b+c.
(e)If a>bandc >0, thenac > bc.
pIf a0, thena’ > 0.
@ Ifa>bandb > c, thena > c.

PROOF. Each property follows from the definitions or other properties already given
in this section. To prove (e), for instance, suppose thata > bandc > 0. Thena ~ b € D»
and ¢ € DP by the definition of >. Therefore {a — b)c € D? by the closure of D? under
multiplication. But (a — b)c = ac — bc, so that ac —bc € D?. Therefore, applying the
definition of > once more, ac > bc.

The proofs of the other properties are left as exercises (Problem 28.7). n

Throughout this set of problems D denotes an ordered integral domain.

28.1.
28.2.
28.3.
28.4.
28.5.
28.6.

28.7.
28.8.

28.9.

28.10.

28.11.

28.12.

If e is the unity of D, then x? + ¢ = 0 has no solution in D. Why?
Prove thatifa, b,c € D,a > b, and ¢ < 0, thénac < bc.

Prove that if a,b,c € D,ac > bc,andc > 0,thena > b.

Prove thatifa, b € D,anda <0 and b < O, thenab > 0.

Prove thatifa, b € D and a > b, then —a < —b.

Prove thatif @, b € D? and a > b, then a? > b%.

Complete the proof of Theorem 28.2.

Prove or disprove that if E is a subring of an ordered integral domain D, and £ is aiso an
integral domain, then £ is ordered.

Let D denote the ring of integers. Prove that the only subset of D that satisfies the conditions
on D in the definition of integral domain is the set of natural numbers.

A commutative ring R is said to be ordered if there is a subset R? of R such that R? satisfies

the conditions on D? in the definition of ordered integral domain.

(a) Verify that if positive has its usual meaning, then the ring of even integers is ordered.
Make clear which properties of the even integers are used.

(b) Let R = M(R), the ring in Example 24.5. Let f € R? mean that £(0) > O. Does this
make R an ordered commutative ring? Justify your answer.

Begin with Lemma 28.1, continue through the two corollaries of Theorem 28.1, and in each
case replace D by an ordered commutative ring R with unity. (See Problem 28.10 for the
definition of ordered commutative ring.) Which of the lemmas, corollaries, and theorems are
still true?

Prove or disprove thatif ¢, b € D and @ > b, then a? > b™.
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28.13. Prove or disprove thatifa, b € D and a > b, thena® > 5.
28.14. Fora € D, define |a| by

a if ae D?
la| = 0 if a=0
-a if —aeD?

Prove thatif a, b € D, then

(a) labl =lal - |b}

(b) lal =z @ = ~lal and |b| = b = ~|b}

(c) lal + b} > la + b| [Suggestion: Add inequalities from part (b).]
(d) la~ b} = |la| - |bi|

SECTION 29 THE INTEGERS

Definition. An element a in a subset S of an ordered integral domain D is a least element
of S if x > a for each x € S such that x # a.

Definition. An ordered integral domain D is well ordered if every nonempty subset of
D? has a least element.

The Least Integer Principle (Section 10) states that the integral domain of integers is
well ordered. (What we have called the Least Integer Principle is sometimes even called
the Well-Ordering Principle.) The integral domain of rational numbers is not well ordered,
because the set of positive rational numbers has no least element (Problem 29.1). In fact,
the integers form the “only” well-ordered integral domain. The following theorem makes
this precise.

Theorem 29.1. If D is a well-ordered integral domain, then D is isomorphic to the ring
of integers.

The proof of the theorem will be easier to grasp if the following fact is proved separately.

Lemma 29.1. If D is awell-ordered integral domain with unity e, then e is the least element
of DP.

PROOF. Because D is well ordered, DP must have a least element; assume it to be
a # e (this will lead to a contradiction). Since e € D? by the corollary of Lemma 28.1,
and a is the least element of D? by our assumption, we must have ¢ > a. Now e > a and
a > 0 imply a > a2, by Theorem 28.2(e). However, a> € D? by Lemma 28.1. Thus we
have a? € D?, and a > a2, which contradicts the assumption that a is the least element of
D? . Thus the least element of D? must be e. |

PROOF OF THEOREM 29.1. Assume that D is a well-ordered integral domain with unity
e,and define6 : Z — D by 8(n) = neforeachn € Z. We showed in proving Theorem 27.2
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that this 6 is an isomorphism of Z onto 8 Z); t=therefore it suffices to prove that 0(Z) = D.
We shall use an indirect proof for this.

Assume that 6 is not onto, and let d Benot« an element such thatd e D pyt ¢ & 6(Z)
Then also ~d € D and ~d ¢ 6(Z); for if ~d <= 0(Z), say f(m) = — g then 00m) = me —
—d so that 6(~m) = (—m)e = —(me) = d, Lamplying d ¢ &(2), which is faise. Becayge
d ¢6(Z) and —d ¢ §(Z), and either d & DP or —d € D?, we conclude that there is a
positive element in D that is not in 8(Z). Thexrefore the set of elements that are ip, D? byt
not in 8(Z) is nonempty, so since D is well orcJered there is a least such element—caj] j; ¢

Thus s is the least element of D? that is ot in 6(Z). Because (1) = 1¢ = e, we have.
e € (Z)sothate # s Therefore, since e isthe= least element of D» (Lemma 29.1), we must
have s > e,5 ~¢ > 0,and s — e € D?_ But -f‘>$—e[becausey—(x—e)=eeDP]
so that since s is the least element of D # not in 8(Z), we must have 5 — ¢ € 6(Z). Byt jf"
6(k) =ke =5 —efork € Z, then (k + 1) = (k + 1)e=ke+e=(a‘—e)+e:y and
hence s € 6(Z), which is a contradiction. Therefore 6(Z) = p. ’ .

If we do not distinguish between isomorphic rings, we now have a Characterization of
the ring of integers: Z is the unique well-ordered integral domgin.

Throughout this book we have assumed and used Properties of the integers without
proving them. In the book Grundlager: der Analysis (translated edition, Foundations of
Analysis), Edmund Landau begins with the Peano Postulates—a ser of fye postulates
(axioms) for the system of natural numbers—and then works through a carefy] development
of properties of the natural numbers, the intt?gers, and each of the other number systems
in this chapter. Such an axiomatic presentatmp, _together with the uniqueness proved in
Theorem 29.1, provides a more complete description of the integers than that provided by
Theorem 29.1 alone.

29.1. Prove (without Theorem 29.1) that @ is not well ordered.

29:2. Prove that the integral domain Z{~/2] in Example 24.4 is not well ordegeq. (Suggestion: Use
Theorem 29.1 and Problem 27.24.)

29.3. Prove thatif D is an ordered integral domain with unity e, and g ¢ D,thenag > g — e.

29.4. Prove that if D is a weli-ordered integral domain, g D, a#0,and g #e, then a? > g, [
the preceding statement true if D is merely oOrdered rather than well ordered?

29.5. For D an ordered integral domain, let D” denote the set of all nonzero elements not in D2,
Prove that if D is well ordered, then every nonempty subset S of D’ has 2 greatest element
that is, an element b € § such that x< b foreachx e § such that x s p. ’

29.6. Prove that if n is an integer, then n + 1 is the least integer greater than n, (Everyone “knows”
this, but prove it.)

29.7. Prove the Principle of Mathematical Induction (Appendix C) from the Least Integer Principle
that is, from the fact that Z is well ordered. [Suggestion: Let § = (4 - P(k) is false} and shov
that § must be empty.]

29.8. Show that if § : Z — Z is a ring isomorphism, then 6 must be the identity mapping. Is there
an additive group isomorphism 8 : Z ~ Z other than the identity mapping?
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SECTION 30 FIELD OF QUOTIENTS. THE FIELD
OF RATIONAL NUMBERS

If a and b are integers with a # 0, then the equation ax = b may not have a solution in
the integral domain of integers. The equation does have a solution in the field of rational
numbers, however. Moreover, the field of rational numbers is just large enough to contain all
such solutions, because every rational number has the form a~!b for a and b integers with
a # 0, so that every rational number is a solution of an equation ax = 5. We prove in this
section that if D is any integral domain, then there is a “unique smallest” field “containing”
D such that each equation ax = b, with @, b € D and a # 0, has a solution in that field.
This field is called the field of quotients of D. The field of quotients of the integral domain
of integers is the field of rational numbers. Because we have already characterized the
integers, the uniqueness of its field of quotients gives us a characterization of the rational
numbers.

Before starting through the formalities needed to construct a field of quotients, here is
the basic idea as it applies to the integers. A fraction a /b gives us an ordered pair of integers
(a, b) with the second component nonzero. Instead of thinking of the fraction, think of the
ordered pair. To account for the fact that different fractions (such as 3, £, and :—gg) can
represent the same rational number, we agree not to distinguish between ordered pairs if
they correspond to such fractions. This is done with an equivalence relation: pairs (a, b) and
(c, d) will be equivalent if the corresponding fractions are equal [thus (2, 3) and (—20, ~30)
will be equivalent]. The equivalence classes for this equivalence relation form a set, and we
define two operations on this set that make it a field—the field of rational numbers. Next,
we prove that this field contains an integral domain isomorphic to the integral domain of
integers. Finally, we prove that any field containing an integral domain isomorphic to the
integers must contain a field isomorphic to the rational numbers.

Why do all this if we already know about the rational numbers? First, it will tell us what
is unique about the rational numbers in terms of the appropriate abstract ring properties.
Second, the procedure used will apply to any integral domain, not just the integers.

Throughout the following discussion D denotes an integral domain with unity e, and
D' denotes the set of all nonzero elements of D. The Cartesian product of D and D’ is

DxD' ={ab):a,beD,b#0).
For elements (a, b) and (c, d) in D x D’ we write
{a,b)~ (c,d) if ad=bc.

Lemma 30.1. The relation ~ is an equivalence relation on D x D'.

PROOF. The verification of the reflexive and symmetric properties is left to Problem
30.5. To prove that ~ is transitive, assume that (a, b) ~ (c, d) and (¢, d) ~ (f, g), with
each pairin D x D'. Then ad = bc and cg = df . By the first of these equations adg = bcg,
and by the second bcg = bdf. From these last equations we conclude that adg = bdf, or
(ag)d = (bf)d (remember that D is commutative). But D is an integral domain and d # 0,
so that by cancellation (Theorem 25.1) ag = bf. This proves that (a, b) ~ (f, g), which
establishes transitivity. ]

If (@, b) € D x D', we shall denote the equivalence class to which (a, b) belongs
relative to ~ by [a, b]. Thus

{a,b] = {(x,y) € D x D" : (a,b) ~ (x, »)}.
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The set of all such equivalence classes will be denoted by Fp. If we recall how fractions
are added and multiplied {(a/b) + (c¢/d) == (ad + b«c)/bd and (a /b)(c/d) = ac/bd], then
we are led to define two operations on Fp as follows:

[a,b) +[c.d] = [ad + bc, bcd] and {a,b] - [c, d] = [ac, bd] 30.1)

forall[a, 6], [c, d] € Fp. (Notice that eachr second component, bd, is in D' because b € [y
and d € D' and D has no zero divisors.) The next lemma shows that these operations are
well defined.

Lemma 30.2. If [a), ;1] = a2, b2) and [ €1, di] = [c2. d3], then
[aidy + bicy, bida] = [ayd> + bycs, byd, ]

and

[a,c;, b)dl] = [0262 » b2d2].

PROOF.  The proof for multiplication is left to Problem 30.6. Here is the proof for
addition. From [a,, 1] = {42, by] we know that (a;, b;) ~ (ay, b,), and so

a1 by = bja,. (30.2)
Similarly, from [c}, d\] = [c;, d2] we know that
c1dy = dc;. (30.3)
‘We must show that
[a\dy + by, bidi] = [axda + bacy, byds],
that is,
(a1dy + b1 )(bada) = (brdy)(a2d; + bycy). (30.4)

Using (30.2) and (30.3), and the commutativity of D, we can deduce (30.4) as follows:
(a1d) + b)) (b2dy) = avdibydy + b byd,
= a1bydidzy + bibycid,
= biazxd\dy + bi1bydic,
= bydiayds + byd; byc,
= bidi(aad; + b1cy). n

It is easy to verify that
ifc € D’ and[a, b] € Fp, then|[a, b] = [ac, bc] = [ca, cd].

This will be used without explicit reference.

Lemma 30.3. Fp with the operations defined in (30.1) is a field. The zero is {0, e, the
negative of {a, b] is [—a, b), the unity is [e, e], and the inverse of [a, b] # [0, e is [b, a).
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PROOF. We shall verify that [0, e] is a zero and that one of the two distributive laws
is satisfied. The remainder of the proof is left to Problem 30.7.

As to zero: If [a, b] € Fp, then [a, b] + [0, €] = [ae + b0, be] = [ae, be] = [a, b],
and [0, €] + [a, b] = [0b + ea, eb] = [ea, eb] = [a, b].

If (a, b}, [c, d], [ f, g] € Fp, then

[a, bl([c, d] + [f. gD = la, bllcg + df, dg]
= [acg + adf, bdg]
= [b(acg + adf), b(bdg))}
= [(ac)(bg) + (bd)(af), (bd)(bg)]
= [ac, bd} + [af , bg]
= [a, bllc, d) + [a, b1 f, g)-

This establishes one of the two distributive laws. n

Lemma 30.4. Let Dy denote the subset of Fp consisting of all (a, €] for a € D. Then D,
is a subring of Fp and D = D;.

PROOF. Define 6 : D — Fp by 6(a) = [a, €] for each @ € D. The image of 8 is
clearly D;. We shall prove that 8 is one-to-one and preserves sums and products. It will
follow from this that D is a subring and that D =~ D,. [The proof that D, is a subring is
analogous to the proof of Theorem 18.2(d).]

If 8(a;) = 6(a,), then [a;, €] = [a,, €] so that a,e = ea; and ay = a,. Thus 6 is one-
to-one.Ifa, b € D,then6(a + b) = [a + b, e] = [ae + eb, ee) = [a, e] + [b, €] = 6(a) +
#(b), and 8(ab) = [ab, €] = [ab, ee] = [a, e][b, e] = B(a)d(b). a

The field Fpp, constructed from the integral domain D in this way, is called the field
of quotients of D. Recall that to say that a ring S can be embedded in a ring R means that
R contains a subring isomorphic to § (Section 27). Using this terminology, what we have
shown is that any integral domain can be embedded in a field—its field of quotients. But
in general an integral domain can be embedded in more than one field. For example, the
integral domain of integers can be embedded in the field of rational numbers and also in
the field of real numbers. However, the field of quotients is the smallest such field, in that
it can be embedded in any field in which the given integral domain can be embedded. We
put all of this together in the following theorem.

Theorem 30.1. IfD isanintegral domain, then there exists a field Fp, the field of quotients
of D, such that

(a) Fp contains an integral domain isomorphic to D, and
(b) if K is any field containing an integral domain isomorphic to D, then K contains a
field isomorphic to Fp.

PROOF. Lemma 30.3 proves that F) is a field. Lemma 30.4 proves property (a).

In proving property (b), we shall assume that D is actually a subring of X; this amounts
to identifying D with an integral domain to which it is isomorphic, and allows us to get
at the main idea without having it obscured by distractive notation. Because of the way in
which the field of quotients Fp is constructed from the elements of D, we have a natural
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correspondence between elements ab™' ¢ K, withea,b €D and b # 0, and elements
[a, b] € Fp. If we identify each element of Fp withh the element to which jt corresponds
({a, b] <> ab™"), then we can think of F, as a subyring of X, which is what property (b)
asserts. [If you prefer, the map ¢ : Ffp — K defimed by ¢({a, b]) = ab™! is one-t0-ope
and preserves both addition and multiplication, an<d thus is an isomorphism of Fp onto a
subfield of X .] N

We can now characterize the field of rational numbers among all sets with rwo op-
erations: The field of rational numbers is the (unique) field of quotients of the (unique)
well-ordered integral domain. Again, this assumess that we do not distinguish between
isomorphic rings or fields.

If K is any field of characteristic 0, then X must contain a subring isomorphic to Z, by
Theorem 27.2. But then X must also contain a subfield isomorphic to @, by Theorem 30.1.
This gives the following corollary.

Corollary. If K is any field of characteristic O, then K contains a subfieid isomorphic
to Q.

30.1. Verify that Lemma 30.1 is not true if D is replaced by Z,. This will show that Lemma 30.]
is not true if D is assumed to be just 2 commutative ring with unity. ’

30.2. Prove ordisprove: If D is a field in the definition preceding Lemma 30.1, then (a,8)~(c,d)
iff (a, b) = (¢, d). ’

30.3. Verify that the field of quotients of the integral domain Z[+/Z] (Example 24 4) is isomorphic
o Q(v2] = (a+bv/2:a,b€ QL

30.4. Let R denote the set of all fractions of the forrn a /2%, where g is an integer and £ is a non-
negative integer.
(a) Prove that R is an integral domain.
(b) Verify that the field of quotients of R is isomorphic to the field of rational numbers.

30.5. Complete the proof of Lemma 30.1.

30.6. Complete the proof of Lemma 30.2.

30.7. Compiete the proof of Lemma 30.3.

30.8. The ring Zs cannot be embedded in a field. Why?

30.9. The field of quotients of any field D is isomorphic to D. Why?

30.10. Assumethat D, Dy, and Fp are as in Lemma 30.4. Show that each element of Fp is a solution
of some equation ax = b witha, b € D).

30.11. State and prove the analogue of the corollary of Theorem 30.1 with characteristic p in place
of characteristic 0.

30.12. In place of the operation + defined on Fp in (30.1), consider B “defined” by [q, bl Bc,d] =
[a +c, b + d]. (That is, try to define the sum of two fractions so that the numerator is the
sum of the numerators and the denominator is the sum of the denominators, an idea often
used by students new to fractions.) Verify that B is not well defined.
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SECTION 31 ORDERED FIELDS. THE FIELD OF REAL NUMBERS

By moving from the integral domain of integers to the field of rational numbers, we have
obtained solutions to all equations ax = b (a and b integers, a # 0). But other deficiencies
remain, As we shall prove in Theorem 31.1, for instance, there is no rational number x such
that x* = 2. In other words, +/2 is irrational, that is, not rational. This was first discovered
by the Pythagoreans, in the fifth century B.C., in its geometric form: there is no rational
number that will measure the hypotenuse of a right triangle with each leg of unit length (see
Figure 31.1). In terms of a number line, this means that if two points are chosen on a straight
line and labeled O and 1, and if other points are then made to correspond to the rational
numbers in the obvious way, there will be no number corresponding to the point “+/2 units”
from O in the positive direction. In fact, there will be many points not corresponding to
rational numbers. The basic assumption of coordinate geometry is that this problem can be
overcome by using real numbers in place of (just) rational numbers. This important use of
real numbers emphasizes the fact that the deficiency of the rational numbers that the real
numbers corrects has more to do with order than with the solution of equations (such as
x% = 2). This should become clearer with the discussion of real numbers in this section
and complex numbers in the next.

1
Figure 31.1

We now prove the irrationality of /2. The usual notation a/b (a, b € Z) will be used
in place of the ordered pair notation (a, b) of Section 30, and also to denote the equivalence
class [a, b].

Theorem 31.1.. There is no rational number x such that x*> = 2.

PROOF. The proof is by contradiction, so we begin by assuming the theorem to be
false. Thus assume that there are integers a and b, with b # 0, such that (a/b)* = 2. We
also assume a/b reduced to lowest terms, so that a and b have no common factor except
+1. From (a/b)® = 2 we have a® = 2b%. The right side of this equation, 25, is even;
therefore, the left side, a?, must also be even. But if a2 is even, then a must be even, and
hence a = 2k for some integer k. Substituting a = 2k in a? = 2b2, we obtain (2k)* = 25?,
or 2k? = b?. Since 2k? is even, b? is even, so that b must be even. Thus we have deduced
that a and b are both even, and they therefore have 2 as a common factor. This contradicts
the assumption that a/b was reduced to lowest terms, and completes the proof. »

The next theorem shows that the rational numbers form an ordered field, that is, an
ordered integral domain that is also a field. Again, the notation a/b is used in place of the
ordered pair notation (a, b) of Section 30. (The proof of this theorem should be considered
optional.)
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Theorem 31.2. Let Q denote the field of ratgo nal numbers, and let QP denote the set of
all elements of Q with representations alb swech that ab > 0. Then Q is an ordered field
with Q7 as its set of positive elements.

PROOF. We must first verify that the condition (ab > 0) for an element of Qo
be in QP is independent of the particular fxaction chosen to represent it. To this end
assume thata/b = c/d. Thenad = bc. Making use of this, and &° > Qandd? > 0, togethel:
with properties of the relation >, we can deduce that if ab > 0, then abd? > 0, adbd
0, bcbd > 0, cdb? > 0,and finally cd > 0. Similarly,ifcd > O, thenab > 0. Thus ab>0
iff cd > 0, as required.

It remains to verify the three properties in the definition of ordered integral domain
(Section 28).

Ifa/b and c/d represent elements of Q7 , then ab > 0 and cd > 0, and thus ebd? > 0
and cdb? > 0. This implies that (ad + bc)bd = abd? + cdb® = 0, so that (a/b) + (c/d) =
(ad + bc)/bd € QP.

As to closure of Q7 under multiplication, ifa/b € Q7 and c/d € Q”,thenab > 0 and
cd > 0, so that (ac)(bd) = (ab)(cd) > 0 and (a/b)c/d) = (ac)/(bd) € Q.

Finally, if a/b represents a nonzero element of Q, then a # 0 and b # 0; therefore
ab # 0. Therefore ab > 0 or 0 > ab, .and, correspondingly, a/b € Q7 or ~(a/b) =
(—a)/b € QP. This establishes the law of trichotomy. -

An element u of an ordered field F is said to be an upper bound for a subset S of F if
u > x for each x € S. For example, any positive rational number is an upper bound for the
set of all negative rational numbers. The set of integers has no upper bound in the field of
rational numbers (or in any other field). An element u of an ordered field F is said to be a
least upper bound for a subset § of F provided

1. uis an upper bound for §, and
2. if v € F is an upper bound for S, then v = u.

Thus O is a least upper bound for the set of negative rational numbers.

If S denotes the set of all rational numbers r such that r2< 2, then S has an upper
bound in the field of rational numbers (1.5, for instance); but it does not have a least upper
bound in the field of rational numbers. However, § does have a least upper bound in the
field of real numbers—namely +/2. This leads to the following definition, which isolates
the property distinguishing the field of real numbers from the field of rational numpbers,

Definition. An ordered field F is said to be complete if every nonempty subset of F havin g
an upper bound in F has a least upper bound in F.

Theorem 31.3. There exists a complete ordered field. Any two such fields are isomorphic,
and any such field contains a subfield isomorphic to the field of rational numbers.

The field of real numbers is a complete ordered field. Theorem 31.3 shows that such a
field exists and is essentially unique. The fact that it must contain a subfield isomorphic 10
Q follows quickly from results in Sections 28 and 30 (Problem 31.15). We shall not prove
the other parts of the theorem. (For details of the construction of the real numbers, see, for
example, the book by Landau referred to in Section 29.)
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PROBLEMS

In applications the real numbers are usually thought of as the numbers having decimal
representations. Examples are

1205 ;=03
~12.138 4 = 1571428
V2 =1414213... n=3.141592. ..,

where the lines over 3 and 571428 mean that they repeat without end. It can be shown
that the decimal numbers representing rational numbers are precisely those that either
terminate or become periodic (Problems 31.10 and 31.12). The number 0.1010010001 .. .,
where the number of 0’s between 1’s increases each time, is irrational. Each number whose
decimal representation terminates (such as 0.5_ or —12.138) also has a representation with
9 repeating on the end. For example, 1.0 = 0.9 (Problem 31.7). The numbers & and e (the
base for natural logarithms) are both irrational, but the proofs are more difficult than that

for +/2.

In Problems 31.1 and 31.2, assume that F is an ordered field, a, b € F, and I is the unity of F.
31.1. Prove b > a > Qimpliesa™ > b~' > 0.
31.2. Prove 0 > & > a implies0 > a™' > b7".
31.3. Prove that if a is rational and & is irrational, then @ + & is irrational.
31.4. Prove that if a is rational, @ # 0, and b is irrational, then ab is irrational.

31.5. Prove that if u is a least upper bound for a subset S of R, then 2u is a least upper bound for
{2x : x € §}.

31.6. Prove that if u is a least upper bound for a subset § of R, then 3 + u is a least upper bound
for(3+x:x¢eS}.

31.7. Explain why 0.9 = 1.
31.8. Express 1.935 as a fraction.

31.9. Prove that a decimal number that terminates represents a rational number.

31.10. Prove that a decimal number that becomes periodic represents a rational number. (See Prob-
lems 31.7 and 31.8.)

31.11. Determine the decimal representations of each of the following numbers.
3 984
@ (b) B
© 3 @ 3

31.12. Explain why the decimal representation of a rational number must terminate or become
periodic. (Suggestion: In computing the decimal representation of a /b by long division, there
are only b possible remainders. Look at what happens in a special case.)

31.13. Prove that if p is a prime, then /P is irrational. (Problem 13.19 gives a more general state-
ment.)
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31.14.

31.15.

31.16.

31.17.
31.18.

31.19.

31.20.
31.21.

31.22.

31.23.
31.24.

31.25.

31.26.
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. .. re i
(a) z::;ep éeﬁmnons of lower bound armad greaterst leswer bound for a subset § of an ordered
(b) Prove that if F is a complete ordere=d field, them eve

lower bound in ¥ has a greatest lowe€rbound in &
(c) Is the converse of the statement in y>art (b) true?

TY nonempty subset of having 5

Prove the last part of Theorem 31.3, thaatis, prove t¥aat each com|

piete ordered field ¢ i
a subfield isomorphic to Q. (Use Sectioms 28 annd 30.) ontains

Prove that if a and b are two distinct positive real numbers, then (@a+b)2 > Jab (“Th
arithmetic mean is greater than the gZeometric maean”). [Sugges. e

(Va-vb' >0]

Prove that a subset of an ordered field Thas at most ome least upper bound in the fielq

tion. First explain why

Prove that if a and b are positive real nuxmbers, then there exists an
(This is called the Archimedean Property of R. Suppose that the st
an upper bound for {na : n € Z}, and thendeduce a contradiction
of R.)

Prove thatifa, b € Q, and a > b, then there are infinitely man
[Suggestion: If c and d are rational, thensois (c + &)/2]

integer n such that na > b,
atement is false, 50 that p is
by using the completeness

Y x € Qsuchthatg » x> b,

Prove that the statement in Problem 3 1.19 is true if @ is replaced by any other ordered field

Prove that if @, b € R, and a > b, then there exists a rationa| num
m/n > b. Compare Problem 31.22. [Suggestion: By Problem 3] g there is a positive inte

nsuchthatn{a — b) > |,or(@a — b) > 1/n.Letmbethe leas!in!egersuchthatm > nb Thger
(m—-1)/n<bandsom/n=(m— 1)/n+1/n< b+@a—by=gq] shen

ber m/n such that q

Assume a,b € Randa > b.
(a) Prove that

a—b

Wi

(b) Use part (a) to prove that between any two rational numbers there
Compare Problem 31.21.

a>bp+4

> b,

1S an irrationa] number.

True or false: If a is irrational, then @' is irrational.

Prove that every real number is a least upper bound of some se; of r
ueR,letS={r € Q:r <u}. Use Problem 31.21 to explain why y
bound for S.)

ational num bers. (For
must be a least upper

Give examples to show that if a and b are irrational, then ab may be either

rational or irrationa}
depending on a and . '

Prove that the order on Q given by Theorem 31.2 is the only one that wi

ll make Q an ordered
field.

SECTION 32 THE FIELD OF COMPLEX NUMBERS

There is no real number x such that x2 == 1, because the square of ap
an ordered integral domain must be positive (Lemma 28.1). The field
which contains the field of real numbers as a subfield, overcomeg

Yy nonzero element i
of complex numbers,
this deficiency. It does

much more than that, in fact, as can be seen from the following theorem.
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Theorem 32.1 (Fundamental Theorem of Algebra). Every polynomial equation
apx" + ap X"+ taix +ap =0, 32.1)

which is of degree at least 1 and whose coefficients a,, as—y, . .., ay, ap are complex num-
bers, has at least one solution in the field of complex numbers.

Notice the implications of this theorem. To have solutions for all equations ax = b
(coefficients integers), we extended the integers to the rational numbers. To have a solution
for x? = 2, we went outside the rational numbers to the real numbers. To have a solution for
x? = ~1, we are extending the real numbers to the complex numbers. The Fundamental
Theorem of Algebra asserts that in looking for solutions to polynomial equations there
will be no need to extend further, because any such equation with complex numbers as
coefficients will have a solution in the field of complex numbers. We shall not prove
the Fundamental Theorem of Algebra, but we say more about polynomial equations in
Chapters X and X1

We now give a description of the complex numbers. The rational numbers were con-
structed using equivalence classes of ordered pairs of integers. The complex numbers will
be constructed using ordered pairs of real numbers. Problem 32.18 suggests how they could
be constructed using matrices, if one preferred. (Suggestion: After studying the statement
of Theorem 32.2, pass over the proof and read through Example 32.2; then return to the
proof. This should make the operations in the theorem seem more natural.)

Theorem 322. Let C denote the set of all ordered pairs (a, b) with a, b € R. Define
addition and multiplication of these pairs by

(a,b)+(c,dy=(@+c,b+d) and (a,b)c,d)= (ac— bd,ad + bc)

foralla,b,c,d € R. With these operations, C is a field. The subset of C consisting of all
(a,0) witha € R forms a subfield of C, isomorphic to R.

PROOF. Most of the details will be left as an exercise, including the verification that
(0, 0) serves as an identity element for addition and (—~a, —b) serves as a negative of (a, b).

To prove that multiplication is associative, assume that (a, b), (¢, d), (e, f) € C. Using
the definition of multiplication, and properties of the real numbers, we can write

(a, b)(c, d)e, )] = (a,b)(ce — df, cf + de)
= (a(ce ~ df) — b(cf + de), a(cf + de) + b(ce — df))
= (ace ~ adf — bcf — bde, acf + ade + bce —~ bdf)
= ((ac — bd)e —~ (ad + bc) f, (ac — bd) f + (ad + bc)e)
= (ac — bd, ad + bc)(e, f)
= [(a, b)(c, d)(e, f),

as required.
To prove that multiplication is commutative, write

(a, b)(c, d) = (ac ~ bd, ad + bc)
= (ca — db, cd + da)
= (c¢,d)(a, b).
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The unity is (1, 0):

(a,b)1,0) =(a- 1~-b-0,a-0+b-1)
= (a, B).

Because of the commutativity of multiplication we need not check separately that
(1, O)a, b) = (a, b). A similar remark applies 1o verification of inverse elements and
the distributive laws.
Assume that (a, b) is different from (O, 0), trezero of C. Thena # Oorb # O
, so th
a2 > Oorb? > 0,and a® + b* > 0. Thus (a/@® ~+bY), ~bj(a* + ) isan el:émem(z,fét
and it is the inverse of (a, b) relative to multiplication: ’

@5 a —b . a? -+ b* —ab+ba
o\ i pp) \a® 4B aP+ bt >=(1’0)~

The remainder of the proof that C is a field is left to Problem 32.9.

To prove that {(a,0):a & R} is a subfield isomorphic to R, consider the mappin
9 :R - C defined by 6(a) = (a,0) for eacha & R. The mapping 6 preserves both operg
ations: - -

fla+b)=(@+b0)= (a, 0) + (b, 0) = 6(a) + 6(b)
and
0(ab) = (ab,0) = (a, 0)(b. 0) = 6(a)6(b)

for all a, b € R. Also, 0 is one-to-one because if 8(a) = 6(b), then (a,0) = (b, 0) so that
2 = b. Thus 8 is an isomorphism of R onto {(@,0) : @ € R}; the proof that the latter is a
field is left to Problem 32.10. n

In light of the last part of this theorem it is natural to identify a € R with (¢, 0) € C.In
this way R actually becomes a subset of C, so that every real number is a complex numt;er
The element (0, 1) of Cis customarily denoted by i, and then each element (0, b) by bi.
This leads to the notation @ + bi for the element (@, b) of C. Fora,b,c,d € R, ‘ .

a+bi=c+di ff a=¢ and b=d.
The rules for addition and multiplication become
(a+bi)+(c+d)= (@+c)+(b+d)
and
(@ + bi)(c + di) = (ac — bd) + (ad + bo)i.
In particular, i2 =0+ )0+ )= —1+ 0i = ~1, and hence i is a solution in C to the
equation x? = —1.
To compute with elements of ¢, simply apply the various associative, commutative
and distributive laws, and replace i2 by —1 wherever it occurs. In this way any exxlressio;;

involving complex numbers can be reduced to the form a + bi with a, b € R. When such
a number has b # 0 it is said to be imaginary.
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Example 32.1

(@ G+ =142+i2=1+2~1=2i

®) it = = (-1l =1

() (i) = (-1} =i = -1

(dil=D+20+D=i—i246+2=i—-(-1)+6+2=
Pi+14+6+2=7+3i n

The number @ ~— bi is called the conjugate of a + bi. To simplify a fraction with an

imaginary number a + bi in the denominator, multiply both the numerator and denominator
by this conjugate, making use of (a + bi)(a — bi) = a? —~ (bi)2 =a? + b2

Example 32.2
1 1 l—1i 11— 1 1,
@I TS T2 T2
240 2+4+i 2+i 4+4-1 3 4.
® =3 3T 4v1 o s5TE »

More will be said about calculations with complex numbers in the next section. Fol-
lowing now is a concise discussion of the ideas needed to characterize the field C.

If £ and F are fields, then E is said to be an extension of F if E contains a subfield
isomorphic to F; for convenience, F is often thought of as actually being a subfield of
E. Thus R is an extension of @, and C is an extension of both R and Q. Any field is an
extension of itself.

Assume that £ is an extension of F. An element a € E is said to be algebraic over F
if @ is a solution of some polynomial equation (32.1) with coefficients in F. For example,
V2 is algebraic over (@ because it is a solution of x2 — 2 = 0, Neither 7 nor e is algebraic
over @, but these facts are not easy to prove. A field £ is an algebraic extension of F if
every a € E is algebraic over F. The remarks about 7 and e show that R is not an algebraic
extension of Q. However, C is an algebraic extension of R (Problem 32.12).

A field F is algebraically closed if every polynomial equation (32.1) with coefficients
in F has asolution in F. By the Fundamental Theorem of Algebra, C is algebraically closed.
But neither Q nor R is algebraically closed. (Why?) A field E is an algebraic closure of a
field F if

1. E is an algebraic extension of F, and

2. E is algebraically closed.

1t can be proved that every field has an algebraic closure. Moreover, this algebraic closure
is essentially unique: If £y and E; are algebraic closures of F, then £, must be isomorphic
to E;.

Because C is an algebraic extension of R, and C is also algebraically closed, we see
that C is an algebraic closure of R. If we put all of this together with what we know
about R, and agree not to distinguish between isomorphic fields, we arrive at the following
characterization: The field of complex numbers is the (unique) algebraic closure of the
(unique) complete ordered field.

In the introductory remarks of Section 31 it was stated that the necessity for extending
Q to R had more to do with order than with algebra. We can now put this in better focus.
The question of order was covered in Section 31. Regarding algebra, the algebraic closure
of Q cannot be R because R is not algebraically closed. Also, the algebraic closure of
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Q cannot be C because C is not an algebwraic extenssion of Q. The algebraic ¢ Tosure of
Q is, in fact, a subfield of C known as the _field of algzebraic numbers. This field cons; "
precisely of those elements of C that are alg=zebraic ovex Q. If we were to begin with o 1st§
concern ourselves only with finding solutions for poRynomia] equations, we could v,Vank
wholly within the field of algebraic numbeTs. We wowild not need all of C, and althou0 rh
we would need some elements outside R, we would not need aj] of R. Questi‘ons abog
algebraic numbers have been important tharoughout the history of modern algebra; m, ut
said about this in Chapter IX. » THore is
Further questions about polynomial equations axnd field extensions are dealt with i
Chapters X, X1, and XIL. m

Express each of the following in the form a + bi,witha, b € R,

321 @ 2-i)1+1) (b) i3 © —L
T+20

3 13 T4+

32.2. (a) (—0) ®) (1 +i0) ©) ——
2.3

32.3. Explain why Q is not algebraically ctosed.

32.4. Explain why R is not algebraically closed.

32.5. Prove that Z, is not an algebraically closed field.

32.6. Prove that if p is a prime, then the field Z, is not algebraically closed.

32.7. Determine a pair of complex numbers z =a + bi and w =

¢+ di giving a solution of the
system

3z ~2w=—
iz +2w= -5,
(The usual methods of solving systemns of equations over R also work over C. Why?)
32.8. Repeat Problem 32.7 for the system

z+iw=1
“2iz4+w = 1,

32.9. Complete the proof that C is a field, in the proof of Theorem 32.2,
32.10. Prove that {(a,0) : a € R} is a subfield of C (Theorem 32.2),
32.11. (a) Verify that in C, thought of as {(a, ) : a, b ¢ R),

©, DO, 1) = (~1, 0.

(b) Whatis (0, 1)* in C?

32.12. Prove that C is an algebraic extension of R. [Suggestion: Cop
[x — (@+bi)lx — (a— bi)] =0.]

32.13. Explain why C cannot be an ordered field.

sider the equation

32.14. Prove or disprove that the mapping 8 : C — C defined by §(a + b)=qg—

biis aring jso.
morphism. (Compare Problem 29.8.) 4 ring iso

32.15. Find two complex numbers that are solutions of x> = —4.
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32.16. Let z* denote the conjugate of the complex number z, that is, (a + bi)* = a — bi. Prove that
each of the following is true for each z € C.
(@ @)=z ®z+zreR
© z=c"iffz€R @ Y ="

32.17. Prove that if ¢ is an isomorphism of C onto € and §(a) = a for each a € R, then either ¢ is
the identity mapping or § maps each element of C to its conjugate, that is, 9(a + bi) = a — bi
for each a + bi € C. [Suggestion: First prove that either (1) = i or 6(i) = ~i.)

32.18. Verify that
ga+by=| ¢ °
b a

defines an isomorphism of C onto a subring of M (2, R), the ring of 2 x 2 matrices over R.

32.19. Let z* denote the conjugate of z, as in Problem 32.16. Let Q denote the set of all matrices in

M (2, C) that have the form
[ £w ] (322)
—w*  z*

1420 241
—2+i 1-2i
is in Q. Prove that Q is a division ring, that is, a ring with a unity in which each nonzero

element has an inverse relative to multiplication. [Suggestion: Assume that z = a + bi and
w =c +diin (32.2), and let k = a® + b* + ¢* + 4%, Then

e -w
klw* z

is an inverse in Q for the matrix in (32.2).} Also prove that O is not commutative, so that it
is not a field. The division ring @ is called the ring of Hamilton’s quaternions, after the Irish
mathematician W. R. Hamilton (1805-1865).

For example,

SECTION 33 COMPLEX ROOTS OF UNITY

The other sections of this chapter have been concerned primarily with general properties
and abstractions. This section has to do with computation. We look at some useful ways
to represent complex numbers and show how they can be used to determine the complex
roots of unity-—the solutions of equations of the form x" = 1. These roots of unity are
useful for examples; they also arise often enough in other areas of mathematics to make
their inclusion here worthwhile.

Just as the points on a line can be used to represent real numbers geometrically, the
points in a plane can be used to represent complex numbers geometrically. A rectangu-
lar coordinate system is chosen for the plane, and then each complex number a -+ bi is
represented by the point with coordinates (a, b). Because

a+bi=c+di iff a=c and b=d
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(fora, b, ¢, d € R), the correspondence
a+bi ©(@b)

is one-to-one between complex numbers annd points  ©f the plane. Figure 33.1 shows som
examples. ©

b g
4;
2ie 4’\.2"
-
oL | i S U N
-3
° - el — 2
-3 -2i

Figure 33.1

Addition of complex numbers corresponds to vector addition of points in the plane:
(@a+b)+(c+di)=@+c)+ b +d)i (a+C,b+d)=(a,b)+(c‘ d).

To describe multiplication of complex numbers geormetrically, we turn to polar coordinates
Recall that the polar representation of a point with rectangular coordinates (a,b)is (r 9)‘
where 7 denotes the distance between the origin and the given point, and ¢ denotes,me‘
angle from the positive x-axis to the ray from the origin through the given point, with the
positive direction taken counterclockwise (Figure 33.2). ’

a+ bi y

Figure 33.2

Thus r = va?+b%,a =rcos8,b =rsind, and
a+bi =r(cosd +ising).

The latter is called the polar (or trigonometric) form of a + bi, The nonnegative number
r appearing here is called the absolute value (or modulus) of a + bi and is denoted b
la + bi]. The angle 6 is called the argument of @ + bi. The absolute value of a + i i)sl
unique, but the argument is not: if 8 is an argument of a + bi, then so 5 ¢ + 2n31 for an
integer n. If 6 is restricted so that 0 < & < 2, then each nonzero complex number doe)s,
have a unique argument.
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Example 33.1. The absolute value of —2 + 2i is |-2 + 2i| = +/(— 2)2 +22 =24/2.The
smallest positive argument is § = 135° = 3w /4. Thus the polar form of —2 + 2i is
2v/2(cos(3/4) + i sin(37 /4)]. n

The following theorem shows that polar form is especially well suited for computing
products.

Theorem 33.1. If z = r(cos @ + isinf) and w = s(cos ¢ + i sin @), then
zw =rs(cos (8 + @) + isin (8 + ¢)].

Thus the absolute value of a product is the product of the absolute values, and the argument
of a product is the sum of the arguments.

PROOF. Recall the following two addition formulas from trigonometry:
cos(d + @) = cos B cos ¢ —sinf sin ¢
and
sin(d + ¢) = sin6 cos ¢ + cos § sin .
Using these, we can write

zw =r(cos B +isinh) - s (cos @ + isin @)

rs[(cos fcos ¢ — sin fsin ¢)
+ i(sinfcos ¢ + cos Fsin ¢)]
= rs[cos(® + ¢) +isin(@ + ¢)]. u

Il

DeMoivre’s Theorem. If n is a positive integer and z = r(cos 8 + i sinf), then z" =
r*(cos nf + i sin né).

PROOF. Use induction on n. For n = 1 the result is obvious. Assuming the theorem
true for n = k, and using Theorem 33.1 with w = z*, we have

2kl = 228 = r(cos 8 +isin 8) - r¥(cos kB + i sin k6)
= prkt+i[cos(tk + 1)8 +isin(k + 1) 6]

as required. ]

Example 33.2. To compute (—2 + 2i)°, begin with
—2 +2i =2v/2[cos(3n/4) + i sin(37/4)]
from Example 33.1. Now apply DeMoivre’s Theorem. We have
2v2) = 128v2 and 5(37n/4) = 1574 = 27 + T /4.
Therefore,

(=2 +2i)° = 12842 [cos(Tn /4) + i sin(Tn /4)]
= 128v2(V2/2 — iv/2/2)
=128 — 128i. n
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PROBLEMS

For each integer n > 1, there can be at most n distinct complex numbers that are
solutions of x” = 1. (This will be formally stated as Theorem 43.2.) There are, in fact,
exactly n solutions, called the complex nth roots of unity. They can be determined by using
DeMoivre’s Theorem, as follows.

Theorem 33.2. For each integer n > 1, the n complex nth roots of unity are

2k 2k
cos =X 4 isineX, k=0, 1,....n—1. (33.1)
n n

PROOF. By DeMoivre’s Theorem, the argument of the nth power of each number in
(33.1) is n(2kmr/n) = 2k, and the absolute value is 1* = 1. Thus each of the numbers is
an nth root of unity. The 7 numbers in (33.1) are distinct because the numbers 2k /n are
distinctand 0 < 2k /n < 2x fork =0, 1,..., n — 1. Thus the numbers in (33.1) represent
all the nth roots of unity. n

The nth roots of unity are represented geometrically by n equally spaced points on the
circle with center at the origin and radius 1, with one of the points being 1. Figure 33.3
shows the case n = 6.

Theorem 33.2 can be extended to give a formula for the nth roots of any complex
number (see Problems 33.27 and 33.28).

3
——%— +‘g—i 1 —%— + Bz-i
-1 1
1 V3, 1 V3.
27 -7
Figure 33.3

Write each of the following complex numbers in the form a + bi.
33.1. The number with absolute value 2 and argument /6.
33.2. The number with absolute value ; and argument Sxt/3.
33.3. The number with absolute value 5 and argument 97 /4.
33.4. The number with absolute value 3 and argument .

Use DeMoivre’s Theorem to write each of the following numbers in the form a + bi.

335. (140 336. (V3+i)
33.7. 1—i)® 33.8. (—)'°
339, (4 - 1i* B0, (-2 - V)"

33.11. Determine all complex eighth roots of unity, and represent them geometrically.

33.12. Determine all complex fifth roots of unity, and represent them geometrically.
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Express each of the following complex numbers in polar form.

33.13.
33.15.
33.17.

33.19.

33.20.
33.21.

33.22.

33.23.
33.24.
33.25.

33.26.

33.27.

33.28.

33.29.

1+ 33.4. VI
-5 33.16. —2i
22 33.18. 2i + 23

Prove that if z = r(cos 8 + i sin8) and z # 0, then
27! = r~'[cos(—6) + i sin(—6)].
State and prove DeMoivre’s Theorem for negative integers. (For n = —1 see Problem 33.19.)

Prove that if n is a positive integer, then the set of all nth roots of unity forms a cyclic group
of order n with respect to multiplication. [Any generator of this group is called a primitive
root of unity. One such root is cos(2r/n) + i sin(2w/n).]

Prove that for each integer n > 1 the sum of the nth roots of unity is 0. (Suggestion: They
form a geometric progression, which can be summed by a formula in Appendix C.)

Let n be a positive integer. What is the product of all the nth roots of unity?
Prove that the set of all roots of unity forms a group with respect to multiplication.

Prove that with respect to multiplication, the set of all complex numbers of absolute value 1
forms a group that is isomorphic to the group of all rotations of the plane about a fixed point
p (Example 5.7).

Let z* denote the conjugate of the complex number z, that is, (@ + bi)* = a — bi. Prove that
the following are true for each z € C.

@ |z2*] = Iz (b) zz* = |z|?

©) z7' =z*/|z|*if 2 £ 0.

Prove that for each integer n > 1, the n complex nth roots of

z=r{cosf +isinf)

2k 6 + 2k
r””(cose+ ? +isin + ”), k=0,1,...,n—1,
n n

where /" is the positive real nth root of r.

Prove that for each integer n > 1, the n complex nth roots of

z=r(cos@ +isinf)

are
v, vw, vw?, . v
where
1/n 0 Dol 6
v=r cos— +isimn—
n n
and

27 . 2mw
w =CoS— +1I1sin—.
n n

Use Problem 33.27 to find the complex cube roots of —2i.
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33.30.
33.31.
33.32.
33.33.

33.34.

Use Problem 33.28 to find the complex cube roots of —2i.
Use Problem 33.27 to find the complex fourth roots of —S5.
Use Problem 33.28 to find the complex fourth roots of —5.

Let C* denote the multiplicative group of nonzero complex numbers and R? the multi-
plicative group of positive real numbers. Why is 8 : C¥* — RP, defined by 8(z) = |z|, a
homomorphism? What is Ker 87

Verify that @ : R — C defined by a(x) = cos(27x) + i sin(27x) is a homomorphism of the
additive group of R onto the multiplicative group of all complex numbers of absolute value
1. What is Ker ¢? Interpret & geometrically. (See Problem 33.25.)




CHAPTER VIII

POLYNOMIALS

This chapter presents the facts about polynomials that are necessary for studying solutions
of polynomial equations (Chapters X and XI). Polynomials with real numbers as coefficients
will be familiar from elementary algebra and calculus; now we must allow for the possibility
that the coefficients are from some ring other than R. A similarity between the theorems
in this chapter and those in Sections 12 and 13 will be obvious; more is said about this
similarity in the last section of this chapter.

SECTION 34 DEFINITION AND ELEMENTARY PROPERTIES

If R is a commutative ring and ay, @y, . . ., @, € R, then an expression of the form
a+ax +axt+- - +apx” (34.1)

is called a polynomial in x: it is a finite sum of terms, each of which is some element of
R times a nonnegative integral power of x. We become acquainted with such expressions,
and how to add and multiply them, in elementary algebra. Here we want to consider
polynomials in the context of commutative rings.

Our first problem is that if x is not an element of R, then terms such as a;x and a,x",
as well as “sums” of such terms, may not have a predetermined meaning. One way around
this is to consider not (34.1), but rather the sequence (ag, a1, - .., an, 0, ...) of elements
of R arising from (34.1), and to define appropriate ring operations on the set of all these
sequences. This procedure is outlined in the appendix to this section. It has the advantage
that it avoids questions about the precise meaning of expressions such as that in (34.1), but
it is not the way polynomials are handled in practice. For most purposes the discussion that
follows will be more satisfactory.

Definition. Let R be a commutative ring. A polynomial in indeterminate x over R is an
expression of the form (34.1) where the coefficients ag, a1, .. ., a, are elements of R. If
a, # 0, then the integer n is the degree of the polynomial, and a, is its leading coefficient.
A polynomial over a field is said to be monic if its leading coefficient is the unity of the
field. Two polynomials in x are equal iff the coefficients of like powers of x are equal. The
set of all polynomials in x over R will be denoted R(x].
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The indeterminate x used in constructing R[x] can be any element such that an ex-
pression of the form (34.1) equals the zero element of R iff ag = @y = -+ = a, = 0. This
requirement on x is equivalent to the requirement that two polynomials in x are equal iff
the coefficients of like powers of x are equal.

Polynomials are added by adding coefficients of like powers of x. They are multiplied
by assuming that the laws of a commutative ring apply to all symbols present (the elements
of R, the powers of x, the + sign, and the juxtaposition of the coefficients with powers of
x). Before stating the formal definition that follows from this assumption, let us look at an
example.

Example 34.1. In Z[x],

Qx +5x) + (1 =3x2-x%
=(0+2x +5x24+0x) + (1 +0x + (=3)xZ + (—1)x})
=0+D+Q2+0x+G-3Hx%+O-Dx°
=142x+2x*—x?

and

(2x 4+ 5x)(1 = 3x2 — x¥) = 2x(1 — 3x% — x3) + Sx*(1 — 3x2 — x%)
= (2x — 6x3 = 2x% 4 (5x% — 15x% — S5x5)
=2x 4+ 5x% — 6x3 — 17x* — 5x°, ]

Definition. Let

px)=ag+ax+- -+ anpx"
and

qx)=by+bix+ -+ byx"
be polynomials over a commutative ring R. Then

px) +q(x) = (ap +bo) + (@ +b)x + - + (@, +b)x"

+a,x"t o faux™, form = n, (34.2)
with a similar formula if m < n. And
p(x)q(x) = aghy + (aghy + aibp)x + -+ + ambax™*", (34.3)
the coefficient of x* being
agby +a1bi_| + @bz + -+ +apby.
Example 34.2. In Z4[x],

([2) + [21%) + ([2] + [3)x — [11x?) = ([2) ® [2]) + (2] ® [3Dx + (~[1Dx?
= (0] + [1]x + [~1]x?
= [1]x + [3]x*
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and

(2] + 2121 + Blx — 1) = (RO R) + (210 B1® [2) © [2)x
+ (1o [-11@ 2] © [3])x?
+(R] o [-1])x?
= [0] + [2)x + [0]x? + [2]x°
= [2]x + [2]x3.

We shall use the convention that —ax" means (—a)x". Thus, above, —[1]x? = [—1]x2 =
[3]x2. [}

In working with polynomials over any ring Z,, we shall frequently omit brackets from
the coefficients, write + instead of @, use juxtaposition instead of ©, and rely on the context
to remind us that all calculations are to be done modulo n. With this abbreviated notation
the results of the preceding calculations would be written

(24 2x) + 2+ 3x — x2) = x + 3x?
and
(24 2x)2 +3x ~ x%) = 2x + 2x°.

Theorem 34.1. If R is a commutative ring, then R[x] is a commutative ring with respect
to the operations defined by (34.2) and (34.3). If R is an integral domain, then R[x] is an
integral domain.

PROOF. The zero of R[x] is the polynomial having all coefficients equal to the zero
of R. (This polynomial is not assigned a degree.) The details of proving that R[x] is a
commutative ring are left as an exercise (Problem 34.7).

Assume that R is an integral domain with unity e. Then it is easy to verify that the
polynomial of degree zero with coefficient e is a unity for R[x]. Also, if p(x) and g(x)
are nonzero elements of R[x], with leading coefficients a,, # 0 and b, # 0, then (34.3)
shows that p(x)g(x) has leading coefficient a,,b, # 0, and thus p(x)q(x) is also.nonzero.
Therefore R[x] has no zero divisors. This proves that R[x] is an integral domain. .

Notice in particular that F [x] is an integral domain if F is a field. However, F [x] is not
a field, no matter what F is (Problem 34.8). The ring R[x] is called the ring of polynomials
in x over R.

APPENDIX TO SECTION 34

Here is an alternative way to define the ring of polynomials in an indeterminate over a
commutative ring R.

If R is a commutative ring, then a sequence of elements of R is a mapping from the
set of nonnegative integers to R. Such sequences can be denoted by (ag, a1, ..., @,, ...)
where a,, the nth term of the sequence, is the ring element corresponding to the nonnegative
integer n.

Definition. Let R be a commutative ring. A polynomial over R is a sequence

(ao,a1,....an,...) (34.1A)
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of elements of R such that only finitely many of its terms are different from the zero element
of R. If a, # O, but all terms with subscripts greater than n are zero, then the polynomial is
said to be of degree n; the terms ag, ay, . . . , a, are called the coefficients of the polynomial,
with a, the leading coefficient. Denote the set of all polynomials over R by R[X].

By the definition of equality of mappings (Section 1), two polynomials over R are
equal iff they have the same degree and their corresponding terms are equal. (This uses the

fact that polynomials are sequences, that is, mappings from the set of nonnegative integers
toR.)

Definition. Let

p={ao,ai,...,an...)

and
g =(bo,b1,....bs,...)
be polynomials over the commutative ring R. Then
p+q=(ag+bo,ai+bi,....an +bn,...) (34.24)

and
pq = (aobo, aphy + ayby, .. .), (34.3A)
where the kth term of pg is
aghy +aybg_ + - + arbyg.

Because the sequences p and g each have only finitely many nonzero terms, the same
is true for both p + g and pq. Therefore, both p + g and pg are members of R[X].

Theorem 34.1A. IfRis a commutative ring, then R[X]is a commutative ring with respect
to the operations defined by (34.2A) and (34.3A). If R is an integral domain, then R(X] is
an integral domain.

PROOFK. The zero of R[X] is the sequence (0,0, ...,0,...). If R has a unity e, then
R[X] has a unity (¢,0,0,...,0,...). If R is an integral domain, and p and ¢ are nonzero
elements of R[X]having degrees m and n, then pq has degree mn, and thus is also nonzero.
The other details of the proof are left as an exercise (Problem 34.15). [ ]

The mapping that assigns the “‘polynomial” in (34.1) to the “polynomial” in (34.1A),
with all terms after a, assumed to be zero in (34.1A), is an isomorphism of the ring R[x]
onto the ring R[X] (Problem 34.16).

Assume that R has unity e, and let X denote the sequence (0, e,...,0,...). Then
it follows from (34.3A) that X2 = XX = (0,0,e,...,0,...), X>=(0,0,0,e,...,0,..)),
and, in general, X*¥=(0,0,...,0,e,0,...), the sequence (element of R[X]) having the
(k + 1)th term e and all other terms zero. If the product of an element a € R and a sequence
(bo, b1, ..., by, ...)is defined to be (abg, ab,, .. ., ab,, ...), then it follows that

ag+a X+ - -+a,X"=(ag,ai, ..., a,0,..).

This can be interpreted as giving a more precise meaning to the left side than that given by
calling it an “expression,” which was the way we referred to ag + a1x + - - - + @, x".
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PROBLEMS

34.1.
34.2.
34.3.

34.5.
34.6.

34.7.
34.8.
34.9.

34.10.

34.11.

34.12.
34.13.

34.14.

34.15.
34.16.

There are four different polynomials of degree 2 in Z[x]. List them all.
There are nine different monic polynomials of degree 2 in Z;[x]. List them all.

The following are polynomials over Z. Express each in the form (34.1).
@ (1420 + Q2= x+2x%) () (2x +x°) + (x +2x%)
(© (1+2x)2—x +2x%) (d) (2x+x¥)(x +2x%
(€ (2x+x%’

. (a) to (e). Interpret the polynomials in Problem 34.3 as being over Z, rather than Z, and write

each in the form (34.1). (See the remark on notation following Example 34.2.)

(a) to (e). Repeat Problem 34.4 with Z, in place of Z.

(a) In Z,[x], how many different polynomials are there of degree < 4?
(b) In Z,[x], how many different monic polynomials are there of degree d?
(¢) In Z,[x], how many different polynomials are there of degree d?

Complete the proof of Theorem 34.1 (that is, prove that R[x] is a commutative ring).
Explain why a polynomial ring R[x] cannot be a field.

(a) True or false: The degree of the sum of two polynomials is at least as large as the degree
of each of the two polynomials.

(b) True or false: The degree of the product of two polynomials is the sum of the degrees of
the two polynomials.

Prove that if R is a commutative ring and R[x] is an integral domain, then R must be an
integral domain. (Compare the last sentence of Theorem 34.1.)

Prove that if R is any commutative ring, then the characteristic of R[x] is equal to the
characteristic of R.

Prove that if R and § are commutative rings, and R = S, then R[x] & S[x].
The formal derivative of a polynomial
px)=apt+aix +--- +a,x"
over R is defined to be
p(x)=a +2ax + -+ na,x""".
Prove that
(p(0) + g = p'(x) + ¢'(x)
and
(P()g()) = p(x)g'(x) + p'(x)g(x).
(An application of formal derivatives will be given in Section 47.)

Let D be an ordered integral domain (Section 28), and let D[x]? consist of all nonzero

polynomials in D[x] that have leading coefficient in D?, the set of positive elements of D.

(a) Prove that this makes D [x] an ordered integral domain with D[x]? as the set of positive
elements.

(b) Prove that the polynomial 1 is a least positive element of Z[x].

(c) Prove that Z[x] is not well ordered.

Complete the proof of Theorem 34.1A.

Prove that for any commutative ring R, R[x] = R[X]. (See the paragraph following the proof
of Theorem 34.1A.)



SECTION 35 THE DIVISION ALGORITHM 165

sECTION 35 THE DIVISION ALGORITHM

In the next two sections we concentrate on rings of polynomials over fields, proving divis-
ibility and factorization theorems for these rings that are analogous to the divisibility and
factorization theorems that were proved in Sections 12 and 13 for the ring of integers. We
use deg f(x) to denote the degree of a polynomial f(x).

Division Algorithm. If f(x) and g(x) are polynomials over a field F, with g(x) # 0,
then there exist unique polynomials q(x) and r(x) over F such that

f)=g(x)g(x)+r(x), with r(x)=0 or degr(x)<degg(x).
The polynomials g(x) and r(x) are called, respectively, the quotient and remainder in

the division of f(x) by g(x). The following example illustrates how they can be computed.
The same idea is used in the proof that follows the example.

Example351. Let f(x) =2x*+x>—x+1 and gx)=2x-—1.

3 12 3 _ 1
X7t axt ot g 8
2x—1|2x4 + o2 = x +1
2t — 3
3+x2—x + 1
1
R
32
3X x + 1
32 3
2X red
—ix + 1
- 3x +

001~

Therefore, g(x) = x> + %xz + %x - é andr(x) = %ANotice that at each step we eliminated
the highest remaining power of f(x) by subtracting an appropriate multiple of g(x). For
the proof we simply show that this can be done no matter what f(x) and g(x) are. n

PROOF OF THE DIVISION ALGORITHM. Let f(x)=ap+aix+ - --+anx™ and
g(x)=bp+bix+---+ byx". Since g(x) # 0, we can assume that b, # 0 so that deg
8(x) = n. The theorem is trivial for f(x) = 0 [use g(x) = 0 and r(x) = 0]. Therefore we
also assume that a,, # 0 so that deg f(x) = m.

We first prove the existence of g(x) and r(x) using induction on m. If m < n, then
f(x) = g(x)- 0+ f(x) gives the required representation; that is, we can take g(x) =0
and r(x) = f(x). Thus assume that m > n. If m = 0, then f(x) = ap and g(x) = bp. In
this case @g = bg - bo_lao + 0; hence, we can take g(x) = bo“lao and r(x) = 0.

It remains to prove the statement for deg f(x) = m, on the basis of the induction
hypothesis that it is true whenever f(x)isreplaced by a polynomial of degree less than m. Let
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fix) = f(x) — a,,,bn‘lx”""g(x). Then deg fi(x) < deg f(x) (Problem 35.11). Therefore,
by the induction hypothesis, there exist polynomials ¢;(x) and r;(x) such that

Fix) = gx)gqi(x) +r1(x), with ri(x) =0 or degri(x) < degg(x).
This implies that
f(x) = amby ' x™"g(x) = g(x)q1(x) +r1(x)
f(x) = g)[amb; ' x™" 4+ q1(x)] + r1(x).

Thus we can take g(x) = a,,,b,,‘lx”"" + q1(x) and r(x) = ry(x). This proves the existence
of g(x) and r(x).

To prove that the polynomials ¢(x) and r(x) are unique, assume that ¢*(x) and r*(x)
are also polynomials over F, and that

F&x)=gx)g*(x) +r*(x), with r*(x)=0 or degr*(x) <degg(x).
Then
8(x)q(x) + r(x) = g(x)q™(x) + r*(x)
and
8(0)g(x) — ¢* ()] = r*(x) — r(x).
The right side of this equation is zero or of degree less than deg g(x). Because the left
side is zero or of degree at least g(x), this forces ¢(x) = ¢*(x). Then we must also have
rr(x) =rx). [ ]
Example 35.2. Let
FO) = [21x* + [ + [ 11x + [1] € Zs[x]
and
g(x) = [2]x +[~1] € Zs[x].

(Compare Example 35.1.) If we use the abbreviated notation a for [a], + for @, and juxta-
position for @, then, for instance, since we are in Zs[x],27! = 3,3"! =2,and 47! = 4.
The division of f(x) by g(x) follows.

X+ 32+ 2 + 3

2 = 1 + o2 - x + 1
2x4_x3
x3+xz—x+1
2 - 32

4xz—x+1

@ - u
x + 1
x — 3
4

Therefore g(x) = [1]x3 + [3]x2 + [2]x + [3], and r(x) = [4]. u
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If the indeterminate x in a polynomial
fx)=ao+ax + - +a.x" € F[x]
is replaced by an element ¢ € F, the result is an element of F:
fe)=ap+aic+---+a,c" eF.
We say that f(c) results from f(x) by substitution of ¢ for x. If f(x) = g(x) in F[x], then
fle)=g()inF.
Example 35.3
(@) If f(x) = x* - 2x2 + 2 € R[x], then
f3=3-2.334+2=11€R.
(B) If f(x)= (3] + [1]x + [-3]x* € Zs[x], then
f(2) =Ble o) (-310[2]%)
=[BleR2le(RIc ) =[71=[2] € Zs. u
Remainder Theorem. If f(x) € F(x) and c € F, then the remainder in the division of
f@) byx —cis f(c).
PROOF. Because deg (x — ¢) = 1, the remainder in the division of f(x) by x — ¢
must be either 0 or of degree 0. Thus, for some q(x) € F[x],
fx)=(x—c)qx)+r, with rekF.
Substitution of ¢ for x yields

flor=(—cql)+r=r ]

Example 35.4

(a) Divide f(x) = x> — 2x2 + 2 € R[x] by x — 3. The quotient is x2 + x + 3 and the
remainder is 11:

fE) ==+ x+3)+ 1L

Also, f(3) = 11, as we saw in Example 35.3(a).
(b) Divide f(x) = [3] + [1]x + [-3]x* € Zs[x] by [1]x + [-2]. The quotient is
[21x3 4+ [4)x2 + [3]x + [2] and the remainder is [2]:
£ = ([(1x + [-2D)([21x% + (4162 + [3)x + [2]) + [2].

Also, f([2]) = (2], as we saw in Example 35.3(b). "

If f(x), g(x) € F[x], with g(x) # 0, then f(x) is divisible by g(x) over F if f(x) =
g(x)g(x) for some g(x) € F[x]. Thus f(x) is divisible by g(x) if the remainder in the
division of f(x) by g(x) is zero. If f(x) is divisible by g(x) (over F), then we also say that
8(x) is a factor of f(x) (over F).

Factor Theorem. If f(x) € Fxlandc € F,thenx — cisa factorof f(x) iff f(c)=0.

PROOF. This is an immediate corollary of the Remainder Theorem. ]
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An element ¢ € F is called a root (or zero) of a polynomial f(x) € F[x]if f(c) =0.
By the Factor Theorem, c is a root of f(x)iff x — c is a factor of f(x).

PROBLEMS

For each pair of polynomials f(x) and g(x) in Problems 35.1-35.6, determine g(x) and r(x), the
quotient and remainder in the division of f(x) by g(x).

35.1.
35.2.
35.3.
35.4.
35.5.
35.6.
35.7.

35.8.

35.9.
35.10.

35.11.
35.12.

35.13.
35.14.

35.15.

35.16.

35.17.

35.18.

35.19.

fy=x3+x—1,gx)=x—1,bothinQ [x].
fx)y=x*—1,g(x)=—x2+2, bothin Q [x].
fx)y=x*=2 g(x) =x*+ x, both in Z3[x].

f(x) =x2+2, g(x) = x — |, both in Zs[x].
Fx)=13x% +2x2 — 1, g(x) = 2x? + 4x, both in Zs[x].
f) =x*+ix2 +1, g(x) =ix? + 1, both in C[x].

Use the Remainder Theorem to determine the remainder when 2x5 — 3x° +2x + 1 € R[x]
is divided by x — 2 € R[x].

Use the Remainder Theorem to determine the remainder when 2x% — 3x% + 2x + 1 € R[x]
is divided by x + 3 € R{x].

What is the remainder when 2x> — 3x® + 2x + 1 € Z;[x] is divided by x — 2 € Z[x]?
What is the remainder when ix® 4+ 3x7 4+ x® — 2ix + 1 € C[x] is divided by x +i € C[x]?

Verify that deg f)(x) < deg f(x) in the proof of the Division Algorithm.

Use the Factor Theorem to answer each of the following questions.

(@) Isx — 3 € Q[x] a factor of 3x> — 9x2 — 7x + 21 € Q[x]?

(b) Is x + 2 € R[x] a factor of x> + 8x2 +6x — 8 € R[x]?

(c) For which k € Qis x — 1 afactorof x> + 2x2 + x + k € Q[x]?

(d) Isx — 2 € Zs[x] a factor of 2x5 — 3x* — 4x% + 3x € Zs[x]?

(e) For which k € Cisx +i afactorof ix® + 3x7 + x5 — 2ix + k € C[x]?

Find all odd primes p for which x — 2 isa factor of x* + x3 + x2 + x in Z,,.

Prove that for each prime p there is an infinite field of characteristic p. (Suggestion: Consider
the field of quotients of Z,[x]. Fields of quotients are discussed in Section 30.)

Construct an example to show that the Division Algorithm is not true if F is replaced by the
integral domain Z. (Compare Problem 35.16.)

Prove that if the Division Algorithm is true for polynomials over an integral domain D, then
D is a field. (Compare Problem 35.15.)

Use the Factor Theorem to construct asingle polynomial f(x) € Zs[x] such thatevery element
of Zs is a root of f(x).

Prove that if p is a prime, theneach elementof Z , is aroot of x” — x. (Suggestion: If [a] # (0],
then [a]”~" = [1] because Z* is a group with respect to © by the corollary of Theorem 26.1.)

(Lagrange’s interpolation formula) Assume that ag, a,, ..., a, are distinct elements of a field
F,and that by, b, ..., b, € F.Let

"

Fo) = Z be(x —ag)...(x —ar 1 )x —agy) ... (x —ay)

= la —a0) .. (a — a- Hak — aryt) - (@ — an)

(35.1)
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Verify that f(a;) = b; for 0 < j < n. (This shows that there exists a polynomial of degree
at most 7 that takes on given values at » + 1 distinct given points of F. Problem 43.18 will
show that such a polynomial is unique.)

35.20. (a) Use Problem 35.19 to write a polynomial f(x) € R[x] such that f(1) =2, f(2) =3,
and f(3) = —1.
(b) Use Problem 35.19 to write a polynomial f(x) € Zs[x] such that f([1]) = [2], f([2]) =
(3], and £([3]) = [—1].

SECTION 36 FACTORIZATION OF POLYNOMIALS

The next theorem is a direct parallel of Theorem 12.1.

Theorem 36.1. If a(x) and b(x) are polynomials over a field F, not both the zero polyno-
mial, then there is a unique monic polynomial d(x) over F such that

(a) d(x)|a(x) and d(x)|b(x), and -

(b) if c(x) is a polynomial such that c(x)|a(x) and c(x)|b(x), then c(x)|d(x).

The polynomial d(x) in the theorem is called the greatest common divisor of a(x) and
b(x). Just as in the case of the integers, the existence of the greatest common divisor is
shown using the Euclidean Algorithm—this time for polynomials.

PROOF. First assume b(x) # 0. By the Division Algorithm there are unique polyno-
mials ¢g;(x) and r;(x) such that

a(x) = b(x)q(x) +ri(x), with ri(x)=0 or degri(x) < degb(x).

If ri(x) = 0, then b(x) | a(x); thus d(x) = b(x) satisfies parts (a) and (b). If 7 (x) # 0, then
we apply the Division Algorithm repeatedly, just as in the proof of Theorem 12.1:

a(x) = b(x)q(x) + ri(x), deg ry(x) < deg b(x)
b(x) = ri(x)qa(x) + ra(x), degra(x) < degri(x)

ri{x) = ra(x)qs(x) + ry(x), deg r3(x) < degra(x)

re—2(x) = r 1 (x)qe(x) + re(x), degry(x) < degre-1(x)
re-1(x) = re(x)ges1(x).

Here we must eventually get the zero polynomial as a remainder because deg r;(x) >
degra(x) > degri(x) > ---. Let ri(x) denote the last nonzero remainder. The proof that
r(x) satisfies both of the requirements (a) and (b) for d(x) is similar to the proof of Theorem
12.1 (Problem 36.13). If the leading coefficient of r¢(x) is r, then r ! . r(x) is a monic
polynomial satisfying (a) and (b).

If b(x) =0, and a,, is the leading coefficient of a(x), then a,' - a(x) is a monic
polynomial satisfying both requirements (a) and (b) for d(x). Thus we have proved the
existence of a greatest common divisor.
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The proof of uniqueness relies on the requirement that the greatest common divisor
be monic. It is similar to the uniqueness proof in Theorem 12.1 and is left as an exercise
(Problem 36.14). ]

Example 36.1. Here the Euclidean Algorithm is applied to compute the greatest common
divisor of a(x) = x* — x> — x2 + 1 and b(x) = x> — 1, considered as polynomials over
the field of rationals.

=3 x4+ 1= - Dx - D+ (—x2 +x)
P —l=(+x0)=x - D+ - 1)
—xt4x=x-1)(=x)

Therefore, the greatest common divisor is x — 1. |

The next theorem follows from the proof of Theorem 36.1 in the same way that Theorem
12.2 follows from the proof of Theorem 12.1 (Problem 36.15).

Theorem 36.2. If a(x) and b(x) are polynomials over a field F, not both the zero poly-
nomial, and d(x) is their greatest common divisor, then there exist polynomials u(x) and
v(x) over F such that

d(x) = a(x)u(x) + b(x)v(x).

Example 36.2. Consider Example 36.1. From the first equation there,
X ax=0t - -2+ D - - Dix = D).
Using this with the second equation, we get

x=1l=E-D—(=x2+x)—x—1)
=@ - D) -[x* - -2+ D -3 = Dx - DI(-x = 1)
== -2 D+ D+ = D+ (x = D(=x = 1]
=x* -3 —x24+ Dx + D+ x* = D(—x2 +2).

Thus d(x) = x ~ 1 = a(x)u(x) + b(x)v(x) for u(x) = x + 1 and v(x) = —x2 + 2. [ |

Two polynomials f(x) and g(x) over a field F are said to be associates if f(x) =
¢ - g(x) for some nonzero element c of F. For example, 2x2 — 1 and 6x2 — 3 = 3(2x% — 1)
are associates over Q. Notice that each nonzero polynomial has precisely one monic poly-
nomial among its associates. Notice also that each polynomial of degree at least one has two
obvious sets of divisors: its associates and the polynomials of degree zero. If a polynomial
of degree at least one has no other divisors, then it is said to be irreducible (or prime). Thus,
if f(x) = g(x)h(x), and f(x) is irreducible, then one of g(x) and h(x) is of degree zero
and the other is an associate of f(x). If a polynomial is not irreducible, then it is said to be
reducible.

The property of being irreducible depends on the field F. For example, x2 — 2 is
irreducible over the field of rational numbers, but not over the field of real numbers:
x2 =2 = (x + v/2)(x — +/2). The irreducible polynomials over a field F play the same
role for F[x] that the prime numbers do for the ring of integers. Here is the first indication
of that. (Compare Lemma 13.2.)

Corollary. IfF isafield, a(x), b(x), p(x) € F[x], p(x)isirreducible, and p(x)|a(x)b(x),
then p(x)a(x) or p(x)|b(x).
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PROBLEMS

PROOF. If p(x)+a(x), then the greatest common divisor of p(x) and a(x) is e,
the polynomial of degree zero with the coefficient the unity of F. Thus, if p(x)+a(x),
then by Theorem 36.2 there are polynomials u(x) and v(x) such that e = u(x)p(x) +
v(x)a(x). Multiplication of both sides of this equation by b(x) leads to b(x) =
u(x)p(x)b(x) + v(x)a(x)b(x). Because p(x)|p(x) and p(x)|a(x)b(x), we conclude that
p) | [u(x)p(x)b(x) + v(x)a(x)b(x)], and therefore p(x)|b(x). Thus, if p(x)+a(x), then
p(x)| b(x), which proves the corollary. [ ]

Corollary. If p(x), a;(x), ay(x), ..., a,(x) are polynomials over F, with p(x) irreducible
and p(x)| a1(x) az(x) - - - a,(x), then p(x)| a;(x) for some i (1 <i <n).

PROOF. Use the preceding corollary and induction on n (Problem 36.17). |

Unique Factorization Theorem. Each polynomial of degree at least one over a field F
can be written as an element of F times a product of monic irreducible polynomials over
F, and, except for the order in which these irreducible polynomials are written, this can be
done in only one way.

PROOF. Let S denote the set of those polynomials over F that are of degree at least
one and that cannor be written as stated. We shall prove that § is empty. If not, then by
the Least Integer Principle (applied to the set of degrees of polynomials in S) there is a
polynomial of least positive degree in S; let a(x) denote such a polynomial and assume
deg a(x) = n. Then a(x) is not irreducible, so it can be factored as a(x) = a; (x)a2(x),
where 1 < dega,(x) < n and 1 < degay(x) < n. By the choice of a(x), ai(x), and a(x),
we know a)(x) ¢ S and a(x) ¢ S. Therefore a;(x) and a»(x) can each be written as an
element of F times a product of monic irreducible polynomials, so the same is true of
a(x) = aj(x)az(x). This contradicts the fact that a(x) € S, and we therefore conclude that
§ must be empty, as stated.

The proof of the last part of the theorem is similar to the last part of the proof of
the Fundamental Theorem of Arithmetic (Section 13) and is left as an exercise (Problem
36.18). |

Example 36.3. The polynomial 3x* — 3x? — 6 can be factored as

3(x2 —2)(x2+ 1) inQ[x).
3(x + V2Dx — VD2 + 1) inR[x],

and
3 + vV2)(x — V2)(x + i) (x — i) in C[x].

Each factor is irreducible in its context. |

Use the Euclidean Algorithm to compute the greatest common divisors of the following pairs of
polynomials over Q. Also express each greatest common divisor as a linear combination of the two
given polynomials (as in Theorem 36.2).

361. x* —3x?+3x—2andx?-5x+6
36.2. x*+3x2+2andx’ —x
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36.3.
36.4.
36.5.
36.6.
36.7.
36.8.
36.9.
36.10.
36.11.
36.12.

36.13.

36.14.
36.15.
36.16.

36.17.

36.18.

36.19.

36.20.

36.21.

36.22.

36.23.

x* +x% —2x —2and x* — 2x* + 3x? — 6x

x> +4x and x3 — x.

Determine the monic associate of 2x> — x + 1 € Q[x].

Determine the monic associate of 1 + x — ix? € C[x].

Determine the monic associate of 2x° — 3x2 + 1 € Z;[x].

Determine the monic associate of 2x°> — 3x? + 1 € Zs[x].

Verify that x> — 3 € Z;[x] is irreducible.

Verify that x* + x2 + 1 € Zs[x] is reducible.

Write x3 + 3x2 4+ 3x + 4 € Zs[x] as a product of irreducible polynomials.

Write x5 + x* + x? + 2x € Z,(x] as a product of irreducible polynomials.

Prove that the polynomial 7 (x) in the proof of Theorem 36.1 satisfies both requirements (a)
and (b) of the theorem.

Prove the uniqueness of d(x} in Theorem 36.1.
Prove Theorem 36.2. (The remark preceding it suggests the method.)

Explain why each nonzero polynomial has precisely one monic polynomial among its asso-
ciates.

Write the proof of the second corollary of Theorem 36.2.
Complete the proof of the Unique Factorization Theorem.

(a) Prove that (x — 1)| f(x) in Z,[x] iff f(x)has an even number of nonzero coefficients.

(b) Prove that if deg f(x) > 1 and f(x) is irreducible over Z,, then f(x) has constant term
1 and an odd number of nonzero coefficients.

(c) Determine all irreducible polynomials of degree 4 or less over Z,.

(d) Write each polynomial of degree 3 over Z; as a product of irreducible factors.

(a) By counting the number of distinct possibilities for (x — a)(x — b), verify that there are
p(p + 1)/2 monic reducible polynomials of degree 2 over Z, (p a prime).
(b) How many monic irreducible polynomials of degree 2 over Z,, are there?

State and prove a theorem establishing the existence of a unique least common multiple for
every pair of polynomials, not both the zero polynomial, over a field F. (Compare Theorem
12.3 and Theorem 36.1.)

(Eisenstein’s irreducibility criterion) Assume that p is a prime, f(x)=ag+ajx+--- +

a,x" € Z[x), pla; (0 <i <n—1), p*4ao and pta,. Then f(x) is irreducible in Z[x].

Give an indirect proof of this by justifying each of the following statements.

(a) Assume that f(x) = (bp + bix + -+ 4+ byx*)cg + ¢\ x + - - + ¢,x"). Then p does not
divide both bg and ¢p.

(b) But p divides one of by and co. Assume that p+ by and p|co.

(c) Since p 1 ¢, (Why?), not all ¢; are divisible by p. Let k be the smallest integer such that
ptcyand plc;for0 < j <k

(d) Because ax = byco + bi_1€1 + - - - + bock, we can conclude that p | bgcy, which is a con-
tradiction. (For applications, see Problems 36.23 and 36.24.)

Use Eisenstein’s irreducibility criterion (Problem 36.22) to show that each of the following
polynomials is irreducible in Z[x].
(@) x>+ 6x*+3x+3 (b) x> —5x° +15
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36.24. Use Eisenstein’s irreducibility criterion (Problem 36.22) to prove that if p is a prime, then the
polynomial

-1
=xPt x4 b x4

f)=——

is irreducible in Z[x]. (Suggestion: Replace x by y + 1, and let g(y) denote the resuit. Show
that g(y) is irreducible in Z[y], and explain why this implies that f (x) is irreducible in Z[x].
The polynomial f (x)is called a cyclotomic polynomial, if p is odd, its roots are the imaginary
pth roots of unity.)

SECTION 37 UNIQUE FACTORIZATION DOMAINS

The similarity between the factorization theorems for integers and polynomials has been
emphasized throughout this chapter. We are concerned now and again in Section 41 with
the question of whether these theorems can be generalized to other rings. This question was
first studied in the early to mid-1800s, and it is important to know that it was studied out
of necessity: progress in solving severa] notable problems in number theory depended on
understanding factorization in rings of numbers other than the integers. Examples 37.1 and
37.2 illustrate the kinds of rings that were involved, and Section 41 gives a more detailed
account of the relevant history. Two points can be made now, however: first, the ideas
we meet here and in Section 41 came not merely from abstraction for abstraction’s sake,
but from attempts to solve specific problems; second, these ideas, and the problems that
brought them into focus, gave rise to algebraic number theory, one of the most interesting
and challenging branches of modern mathematics.

The proofs in this section are similar to proofs already given for Z and F[x], and will
be left as exercises. Except for Section 41, the remainder of the book will be independent
of this section.

Suppose that D is an integral domain. If a, b € D, with b # 0, then a is divisible by b
if @ = bc for some ¢ € D. If a is divisible by b, we also say that b divides a, or that b is a
factor of a, and we write bia.

An element of D is called a unit if it divides the unity, e, of D. The units of Z are 1 and
—1. If F is a field, then the units of F[x] are the polynomials of degree zero (that is, the
nonzero constant polynomials).

Elements @ and b of D are called associates if a| b and b|a. It can be proved that @ and
b are associates iff @ = bu for some unit u of D (Problem 37.14). Elements a, b € Z are
associates iff @ = +b. If F is a field, then polynomials f(x), g(x) € F[x] are associates iff
g(x) =c - f(x) for some nonzeroc € F.

An element in an integral domain D is irreducible if it is not a unit of D and its only
divisors in D are its associates and the units of D. The imeducible elements of Z are the
primes and their negatives. The irreducible elements of F{x] are the irreducible polynomials
of F[x].

Definition. An integral domain D is a unique factorization domain provided that

(a) ifa € D,a # 0,and a is not a unit, then a can be written as a product of irreducible
elements of D, and
(b) ifa € D and

a=p\p2-"Ps=q1q92" "4,
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where each p; and each ¢; is irreducible, then s = ¢ and there is a permnutation 7 of
{1,2, ..., s} such that p; and g, are associates for 1 <i <.

The ring of integers is a unique factorization domain (Section 13); so is the ring F[x]
of polynomials over any field F (Section 36). Following is an example of an integral domain
that is not a unique factorization domain. We shall see in Section 41 that there is a historical
connection between examples of this type and attempts to prove Fermat’s Last Theorem
(which will be stated in Section 41).

Example37.1. Let Z{~/—5] = {a + b~/=5 : a, b € Z}. It can be verified that Z[/=5]
is a subring of C (Problem 37.6). Therefore, since Z[+/—5] contains 1, it is an integral
domain. In proving that Z{+/—5] is not a unique factorization domain, we shall use the
mapping N from Z[+/—5] to the set of nonnegative integers defined by

N(@+bv=3) = la + bv/=5|" = a* + 5b%.
This mapping N is called a norm. If z, w € Z{/—5], then

(a) N(z) > 0,
(b) N(z) =01iff z =0, and
(¢) N(zw) = N(z)N(w) (Problem 37.7).

To determine the units of Z[+/—5] we first observe that if zw = 1, then N(z)N (w) =
N(zw) = N(1) = 1. Therefore, if z = @ + b/—5 is a unit, then N(z) = a2 + 5b% = 1, so
that ¢ = 1 and b = 0. Thus the units of Z{~/—5] are +1. It follows that an element of
Z[/=5] has two associates, itself and its negative.

Now observe that

9=3.3=2+/=5)Q2 - v-95),

and that 9,3, 2 + /=5 € Z[/—5]. If we show that 3 and 2 + /=35 are irreducible in
Z[+~/=5], then we will have shown that Z[«/—_S] is not a unique factorization domain,
because by the preceding paragraph, 3 is not an associate of either 2 4+ /=5 or 2 — /5.
We shall prove that 3 is irreducible, and leave the proof for 2 4+ /=5 as an exercise (Problem
37.8).

Assume that 3 = zw, with z, w € Z[+/—5]. Then N(z)N(w) = N@w) = N(3)=9;
hence N(z)is either 1,3,0r9. If N(z) = 1, thenzis aunit,and if N(z) = 9,then N(w) = 1
and w is a unit. Therefore, if 3 is to have a factor that is neither an associate of 3 nor a unit,
then that factor must have norm 3. But @ 4+ 5b% % 3 for all integers @ and b, so Z[+/=3]
has no element of norm 3. Thus 3 is irreducible in Z[~/=5]. [ |

If you examine the proofs of unique factorization in Z and F[x], you will see that they
both rely on the Division Algorithm. We shall now see that essentially the same method can
work in other cases. Specifically, Theorem 37.1 shows that an integral domain is a unique
factorization domain if it satisfies the following definition.

Definition. An integral domain D is a Euclidean domain if for each nonzero element
a € D there exists a nonnegative integer d(a) such that

(a) if a and b are nonzero elements of D, then d(a) < d(ab), and
(b) ifa, b € D, with b # 0, then there exist elements g, r € D such thata = bg +r,
withr = 0 or d(r) < d(b).
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The ring of integers is a Euclidean domain with d(a) = |a|. If F is a field, then F[x]
is a Euclidean domain with d(f(x)) = degf(x). The following example, introduced by
Gauss, has historical interest that will be discussed in Section 41.

Example 37.2. LetZ[i] = {a + bi : a, b € Z}. The elements of Z[i] are called Gaussian
integers. It is easy to verify that Z[{] is an integral domain, and we shall prove that it is a
Euclidean domain with respect to d(a + bi) = |a + bi|*> = a? + b*.

If z and w are nonzero elements of Z[], then

d(z) = |z* < |z lw] = |zw]* = d(zw).
Thus d satisfies condition (a) of the definition.

To verify condition (b), assume that z, w € Z[i] with w # 0. Then zw™! € C, and in
fact zw™! = a + bi with a, b € Q . Let m and n be integers such that |a — m| < 1/2 and
|b—n| <1/2. Then

zwl =a+bi=m+ni+[(@—m+ b - ni
and
z=(m+nw+[(@a—m)+ (b - n)lw
=qw+r, ’

where g =m + niandr = [(@ — m) + (b — n)i]w. Here r € Z[i] because qw € Z[i] and
z € Z[i]. It is now sufficient to show that d(r) < d(w):

d@r) = dl(a—m)+ (b — n)ild(w)
= [(@—m)* + (b - n)'ld(w)
< [P+ @ldw)
< d(w).
It can be shown that the units in Z[i] are 1 and i (Problem 37.9). Notice that 2 can
be factored in Z[i] as 2 = i(1 — i)?, where i is a unit and 1 — i is irreducible.
Because we have proved that Z[{] is a Euclidean domain, we can conclude that it is a
unique factorization domain because of the following theorem. n

Theorem 37.1. Every Euclidean domain is a unique factorization domain.

The proof of Theorem 37.1 is similar to the proofs of unique factorization in the
special cases Z and F[x]. It can be carried out by first working through proofs of each of
the following lemmas. The details will be left as exercises, but just by reading the statements
of these results you can get an understanding of how ideas of factorization extend beyond
the most familiar examples.

Lemma 37.1 If D is an integral domain and a,b € D, then a and b are associates iff
a = bu for some unit u of D.

Definition. 1fag and b are elements of an integral domain D, not both zero, then an element
d € D is a greatest common divisor of a and b provided that

(a) dijaandd|b, and
(b) ifc € D,c|a, and c|b, thenc|d.
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PROBLEMS

A pair of elements need not have a unique greatest common divisor by this definition,
For example, both 32 are greatest common divisors of 4 and 6 in Z. And x + 1, 2x + 2,
and (1/2)x + (1/2) are all greatest common divisors of x2 — 1 and x% + 2x 4 1 in Q[x).
The uniqueness of greatest common divisors in Z (Theorem 12.1) depended in part on
the requirement of being positive. Similarly, the uniqueness of greatest common divisors
in F[x] (Theorem 36.1) depended in part on the requirement of being monic. For more
general discussions of factorization we must sacrifice these strong forms of uniqueness
and use the preceding definition. However, Lemma 37.3 will show that even in the general
case we do not lose all uniqueness. Before stating that, however, we state the following
important fact.

Lemma 37.2 Any two nonzero elements a and b of a Euclidean domain D have a greatest
common divisor d in D, and d = ar + bs for somer,s € D.

Lemma 37.3 If d and d, are both greatest common divisors of elements a and b in an
integral domain D, then d, and d, are associates in D.

Lemma 37.4 Assume that a and b are nonzero elements of a Euclidean domain D. Then
d(a) =d(ab) iff bisaunitinD.

Lemma 37.5 Assume that a, b, and ¢ are nonzero elements of a Euclidean domain D with
unity e. If a and b have greatest common divisor e, and a|bc, then a|c.

Lemma 37.6 If a, b, and p are nonzero elements of a Euclidean domain D, and p is
irreducible and p|ab, then p|a or p|b.

Section 41 will show how the ideas in this section are connected with other ideas
about rings that are, on the surface, unrelated to factorization. For references for the history
related to this chapter, see the notes at the end of Chapter IX.

Assume that D is an integral domain throughout these problems.
37.1. Find all of the associates of 2x°> — x + 1 € Zs[x].
37.2. Find all of the associates of 2 — i € Z[{]. (Suggestion: Use Problem 37.9.)
37.3. Find q,r € Z[i] such that 1 + 5i = (2i)g + r with |r| < 2. (See Example 37.2.)
37.4. Find q, r € Z[i] such that 1 — 5i = (1 + 2i)g + r with [r| < 5. (See Example 37.2.)

37.5. Sketch a proof, along the lines of Example 37.1, that Z[+/=3] is not a unique factorization
domain. [Suggestion: 4 =2 -2 = (1 + /=3)(1 — /=3).]
37.6. Prove that Z[/—35] is a subring of C (Example 37.1).
37.7. Verify the properties (a), (b), and (c) of the norm in Example 37.1.
37.8. Prove that 2 + /=5 are irreducible in Z[+/—5] (Example 37.1).
37.9. Show that the units in Z[i] are £1 and +i.
37.10. Prove that every field is a Euclidean domain.
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37.11.

37.12.
37.13.
37.14.
37.16.
37.18.
37.20.
37.21.
37.22.

(a) What are the units of Z[x]?
(b) Prove or disprove that Z[x] is a Euclidean domain with d(f(x)) = degf(x).

Prove that an element a of a Euclidean domain is a unit iff d(a) = d(e).

Prove thatif a € D and a # 0, then a is a greatest common divisor of @ and 0.

Prove Lemma 37.1. 37.15. Prove Lemma 37.2.
Prove Lemma 37.3. 37.17. Prove Lemma 37.4.
Prove Lemma 37.5. 37.19. Prove Lemma 37.6.

Prove Theorem 37.1.
Prove thatifa, u € D, and u is a unit, then u}a.

Prove that the units of D form a group with respect to the multiplication in D.




“_HAPTER IX

QUOTIENT RINGS

The first two sections of this chapter show that the definitions and basic theorems for ring
homomorphisms and quotient rings directly parallel those for group homomorphisms and
quotient groups. The third section develops some facts about polynomial rings that will be
used later in studying questions about fields and polynomial equations. In the last section of
the chapter we see that ideals, which are the kemels of ring homomorphisms, arise naturally
in the study of factorization in rings.

SECTION 38 HOMOMORPHISMS OF RINGS. IDEALS
Definition. If R and S are rings, then a mapping 6 : R — S is a (ring) homomorphism if

8(a + b) = 6(a) + 8(b)

and
6(ab) = 6(a)f(b)
foralla, b € R.

Thus a ring isomorphism (Section 27) is a ring homomorphism that is one-to-one
and onto. In the conditions 8(a + b) = 6(a) + 6(b) and 8(ab) = 6(a)f(b), the operations
on the left in each case are those of R, and the operations on the right are those of S.
Because of the first of these conditions, a ring homomorphism 6 : R — S is necessarily a
group homomorphism from the additive group of R to the additive group of S. It follows
that any statement about group homomorphisms translates into some statement about ring
homomorphisms. For example, if § : R — S is a ring homomorphism, then §(0g) = Os
and 8(—a) = —6(a) foralla € R.

Example 38.1. The mapping 8 : Z — Z, defined by 6(a) = [a] was seen to be a homo-
morphism of additive groups in Example 21.1. But also 8(ab) = [ab] = [a] © [b] for all
a, b, € Z, so 8 is a ring homomorphism. ]

Example 38.2. LetR and S be nings, and let R x § be the direct sum of R and S (Example
24.6). The mappings w; : R x S = Rand 7, : R x S — S defined by 7 ,((r, 5)) = r and
72((r, §)) = s are ring homomorphisms (Problem 38.8). [ ]
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Definition. If@: R — S is a ring homomorphism, then Ker 8, the kernel of 6, is the set
of all elements r € R such that 8(r) = 0;.

Thus the kernel of a ring homomorphism 6 is just the kernel of # thought of as a
homomorphism of the additive groups of the rings. Having observed this, we know at once
that Ker 6 is a subgroup of the additive group of R. Kernels of ring homomorphisms are, in
fact, subrings. Butjust as kernels of group homomorphisms are special among all subgroups,
being normal, kernels of ring homomorphisms are special among all subrings—they are
ideals, in the following sense.

Definition. A subring [ of a ring R is an ideal of Rif ar € I andra € I foralla € I and
allr e R.

The important point here is that in the products ar and ra, r can be any element in
R; r is not restricted to I. If R is commutative, then the conditions ar € I and ra € | are
equivalent. Notice that Z is a subring of Q, but Z is not an ideal of Q. Other examples of
subrings that are not ideals are given in the problems.

Theorem 38.1. Let® : R — S be a ring homomorphism.

(a) The image of 0 is a subring ofS:.
(b) The kernel of 8 is an ideal of R.
(¢) 0 is one-to-one iff Ker 8 = {0}

PROOF. (a) Because 4 is an additive group homomorphism, it follows from Section
21 (after Example 21.4) that 8(R), the image of 6, is a subgroup of the additive group
of S. Thus it suffices to prove that 8(R) is closed with respect to multiplication. To this
end, assume that s, s, € 8(R). Then 8(r;) = s; and 0(;;) = s, for some ry,r2 € R, and
B@r1r2) = 6(r1)8(r2) = s152. Therefore 515, € O(R), as required.

(b) We have already observed that Ker 6 is a subgroup of the additive group of R.
On the other hand, if a € Ker 8 and r € R, then 6(ar) = 0(a)0() =0-6(r) =0 and
B(ra) = 0(r)8(a) = 8(r) - 0 = 0. This proves that Ker 4 is an ideal of R.

(c) This is a direct consequence of the last part of Theorem 21.1; simply change to
additive notation. ]

Example 38.3. The kemnel of the homomorphism 6 : Z — Z, in Example 38.1 is the
set (ideal) consisting of all multiples of the integer n. The kernel of 7; : R x § - R in
Example 38.2 is {(0, s) : s € §}; this ideal of R x S is isomorphic to S (Problem 38.8). B

The ideals in the first part of the preceding example, the kernels of the homomorphisms
6 : Z — Z,,belong to an important general class defined as follows. Let R be acommutative
ring with unity e, and leta € R; then (@) will denote the set of all multiples of a by elements
of R:

(a) = {ra : r € R}.

We shall verify that (@) is an ideal of R. First, (@) is a subgroup of the additive group
of R:

(i) Ifr,s € R, so thatra, sa € (a), then ra + sa = (r + s)a € (a).
(ii) 0 =0a € (a).
(iii) The negative of an element ra in (a) is (—r)a, and it is also in (a).
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Second, if ra € (a) and s € R, then s(ra) = (sr)a € (@). Thus (a) is an ideal of R, as
claimed.

Ideals of the form (a) are called principal ideals. The ideal (a) is the smallest ideal of
R containing a. Every ideal of Z is a principal ideal (Problem 38.17). We shall prove in
Theorem 40.3 that if F is a field, then every ideal of the polynomial ring F[x] is a principal
ideal. Problem 38.18 gives an example of an ideal that is not principal.

Some rings, such as Z, have many ideals. At the other extreme are rings having no
ideals except the two obvious ones, (0) and the ring itself. The next example shows that
any field has this property.

Example 38.4. If F is a field, then F has no ideals other than (0) and F.

PROOF. Assume that / is an ideal of F and that I # (0); we shall prove that ] = F.
Leta € I, a # 0. Then a has an inverse in F because F is a field. If e is the unity of F, then
e =a-a"! €] because ] is an ideal. But now if r is any element of F, thenr =e -7 € I,
again because / is an ideal. This proves that I = F. ]

Problem 38.15 gives a partial converse to the statement proved in Example 38.4.

PROBLEMS

Which of the mappings in Problems 38.1-38.6 are ring homomorphisms? Determine the kernel of
each mapping that is a homomorphism.

38.1. 6:Z > Zby6b(a) =3a 382. §:Z —> Zbyb(a) =a*
38.3. 6 :Z¢ - Z; by 6([a]) = [a] 384. 9:C > Rbyb6(z) = |z|
385. 6:C—> Cbyb(z)=1iz

38.6

6. :M(2,Z)—+M(2,Z)by9<|:a b]):[" le
c d b d

38.7. Verify that if R and § are rings, and 6 : R — S is defined by 6(r) = 0, for each r € R, then
6 is a homomorphism.

D

38.8. (a) Prove that the mapping 7, : R x § = R defined in Example 38.2 is a (ring) homomor-
phism.
(b) Prove that Ker m; = §. (See Example 38.3.)

38.9. Prove that a homomorphic image of a commutative ring is commutative.
38.10. Prove or disprove thatif a ring R has a unity, then every homomorphic image of R has a unity.

38.11. (a) Determine the smallest subgroup containing % in the additive group of Q.
(b) Determine the smailest subgroup containing % in the multiplicative group of Q.
(c) Determine the smallest subring of Q containing %
(d) Determine the smallest ideal of Q containing }.
(e) Determine the smallest subfield of Q containing 3.

38.12. Every subring of Z is an ideal of Z. Why?

38.13. Prove that the constant polynomials in Z[x] form a subring that is not an ideal.
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38.14.

38.15.

38.16.

38.17.

38.18.

38.19.

38.20.

38.21.

38.22.

38.23.

38.24.

Prove that if R is a commutative ring with unity, and a € R, then (a) is the smallest ideal of
R containing a. (Compare Theorem 15.2.)

Prove that if R is a commutative ring with unity, and R has no ideals other than (0) and R,
then R is a field. (Suggestion: Use Problem 38.14 to show that each nonzero element has a
multiplicative inverse.)

Determine all of the ideals of Z,.

Prove that if [ is an ideal of Z, then either / = (0) or / = (n), where n is the least positive
integer in /. (See Problem 15.29.)

(An ideal that is not a principal ideal)

(a) Let ! denote the set of all polynomials in Z[x] that have an even number as the constant
term. Prove that / is an ideal of Z[x].

(b) Prove that / is not a principal ideal of Z[x]. (For the concept of principal ideal for
non-commutative rings, see a book on general ring theory.)

Prove or disprove thatif  : R — S is a ring homomorphism, then the image of § is an ideal
of S. (Suggestion: See Problem 38.13.)

Prove that if F is a field, R is aring, and  : F — R is a ring homomorphism, then either 8
is one-to-one or f(a) = O forallg € F.

Prove that if R is a ring, @ :Q - R and 8:Q — R are ring homomorphisms, and
ala) = B(a) for eacha € Z, then @ = B [thatis, a(a) = B(a) for each a € Q].

The center of a ring R is the subring defined by {c € R : cr = rc foreveryr € R}. (See
Problems 25.22, 25.23, and 25.24.) Prove that the center of M (2, Z) consists of all matrices
of the form

Verify that this is not an ideal of M(2, Z). (Therefore the center of a ring need not be an
ideal.)

A subring [ of aring R is a left ideal of Rifra € [ forallr e Rand alla € /. A right ideal
is defined similarly.
(a) Verify that the set of all matrices of the form

[" 0], @, bel)
b 0

is a left but not a right ideal of M (2, Z).

(b) Find a right ideal of M (2, Z) that is not a left ideal.

(c) Verify thatif Risaring and a € R, then {r € R : ya = 0} is a left ideal of R. Determine
this left ideal for R = M(2, Z) and

(d) Verifythatif Risaringanda € R, then {r € R : ar = 0} is aright ideal of R. Determine
this right ideal for R and a as in part (c).

An element a in a commutative ring is said to be nilpotent if " = 0 for some positive integer
n (which may depend on a). Prove that the set of all nilpotent elements in a commutative ring
R is an ideal of R.
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SECTION 39 QUOTIENT RINGS

In this section we discuss quotient rings, the ring analogues of quotient groups, and use
them to prove that every ideal of a ring is a kernel of some homomorphism. We also prove
the ring version of the Fundamental Homomorphism Theorem.

If / is anideal of aring R, then/ is a subgroup of the additive group of R, and it is even
normal. (The additive group of R is Abelian, and every subgroup of an Abelian group is
normal.) Therefore, we can talk about the quotient group R//. Because the elements of R//
are the cosets of / formed relative to addition, these elements will be written in the form
I 4 r (r € R). The next theorem shows that R// can be made into a ring in a very natural
way. The construction is merely a generalization of that used for Z, in Example 24.2: there
Z, can be thought of as Z/(n) for (n) the ideal consisting of all integral multiples on n.

Theorem 39.1. Let!be anideal of aring R, and let R/I denote the set of all right cosets of
I considered as a subgroup of the additive group of R. For I +a € R/l and I + b € R/I,
let

J4+a)+U +b)=1+(@+b)
and
(I +a)I +b)=1 + (ab).

With these operations R/l is a ring, called the quotient ring of R by I.

PROOF. Because R/ is a group with respect to addition (by Theorem 22.1 in additive
notation) it suffices to verify the properties that involve multiplication. The first step in this
is to verify that the multiplication on R/ is well defined. Thus assume that/ + a; = I + a;
and I + by = I + by; we must show that / +a,by =1 + a;b;. From I +ay, =1 + a; we
have a; = ny + a, for some n, € . Also, from I + by = I + b, we have by = ny + b,
for some n, € I. This implies that

aiby = (n; + ax)(n2 + by) = ninz + niby + aznz + azbs.

But nyny + nby + azn, € I because ny, n, € I and / is an ideal of R. Therefore a; b, has
the form a;b; = n3 + a;b; with ny € I, so that / + a1b; = I + a;b,, as required.
Here is a verification of one of the distributive laws. Assume that a, b, ¢ € R. Then

+a+b)+U +)]=U+a)ll +B+0)]
=Il+ab+c)=1+(ab+ac)
=({ +ab)+({ +ac)
=+ +d)+{ +a)] +o).

The verification of associativity of multiplication, as well as the other distributive law, will
be left as an exercise (Problem 39.2). [ ]

If R is commutative, and / is any ideal in R, then R// will be commutative (Problem
39.3). If R has a unity e, then / + e will be a unity for R// (Problem 39.4). On the other
hand, R/I will not necessarily be an integral domain when R is an integral domain. For
instance, Z is an integral domain, but Z¢ is not (Example 25.2). More will be said about
the properties of particular quotient rings in the next section.



SECTION 39 QUOTIENT RINGS 183

PROBLEMS

Theorem 39.2. IfRisaringandlisanideal of R, then the mapping n : R — R/I defined
by

n@)=1+a foreach a€R

is @ homomorphism of R onto R/I,and Kern = 1.
PROOF. This proof is similar to that of Theorem 22.2 (Problem 39.5). [ ]

As in the case of groups, the mapping 7 : R — R/I in Theorem 39.2 is called the
natural homomorphism of R onto R/I. Notice that Theorem 39.2 shows that every ideal is
a kernel. The next theorem shows that every homomorphic image of a ring R is isomorphic
to a quotient ring of R.

Fundamental Homomorphism Theorem for Rings. Let R and S be rings, and let
6 : R — S be a homomorphism from R onto S with Ker 6 = I. Then the mapping
¢ : R/l — S defined by

¢(I +a)=06(a) foreach I+ac R/l

is an isomorphism of R/I onto S. Therefore

R/l = §.

PROOF. If the Fundamental Homomorphism Theorem for groups, and its proof (Sec-
tion 23), are changed into additive notation, then all that remains to be shown is that ¢
preserves multiplication. To do this,let / +a € R/l and I + b € R/I. Then

oI + a)I + b)) = ¢(I + ab) = O(ab) = 6(@)0(b) = ¢(I + a)p(I + b),

as required. [ ]

39.1. Define 8 : Z; — Z4 by 6([a),2) = [a], for each [a],; € Zy,.
(a) Verfy that 8 is well defined.
(b) Verify that 8 is a ring homomorphism.
(c) Use the Fundamental Homomorphism Theorem for Rings to explain why Z,/([4]) =~ Z,.
(d) Construct Cayley tables for the ring operations on Zz /([4]). (Compare Problem 22.3.)

39.2. (a) Prove that multiplication is associative in every quotient ring R/ .
(b) Verify the distributive law
[(+a)+ U +bld+o)=U+a)I +c)+U +b)U +c¢)
for every quotient ring. (See the end of the proof of Theorem 39.1.)
39.3. Prove that if R is commutative and / is an ideal of R, then R/ is commutative.

39.4. Prove that if / is an ideal of R, and R has a unity e, then / + e is a unity for R/J.

39.5. Prove Theorem 39.2.

39.6. Prove that if / is an ideal of ring R, then R/l is commutative iff ab — ba € I for alla, b €R.
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39.7. An ideal P of a commutative ring R is a prime ideal if P # R and, foralla, b€ R,abe P
implies thata € P or b € P. Prove that if n is a positive integer, then (n) is a prime ideal of
Z iff n is a prime. (For the concept of prime ideal in noncommutative rings, see a book on
general ring theory.)

39.8. Assume that R is a commutative ring with unity and P 3 R is an ideal of R. Prove that P is
a prime ideal iff R/ P is an integral domain. (Prime ideals are defined in Problem 39.7.)

39.9. (First somorphism Theorem for Rings) If / and J are ideals of a ring R, then / + J is defined
tobe{a+b:a e landb € J}. Verifythat/ + J isanideal of R,/ is anidealof I + J, I NJ
is an ideal of /, and

(Suggestion: See Theorem 54.1.)

39.10. (Second Isomorphism Theorem for Rings) Prove that if / and J are ideals of a ring R, with
J € 1,then /] isanideal of R/J,and (R/J)/(1/J) = R/I.(Suggestion: See Theorem 54.2.)

39.11. Prove that if / is a subring of a ring R, and the two operations in Theorem 39.1 are well
defined on the set R/I of all right cosets of / in R, then / is an ideal of R. (Compare Problem
22.15.)

39.12. An ideal M of a ring R is a maximal ideal if M # R and there is no ideal / of R such that
M & I & R. Prove that if R is a commutative ring with unity, and / is an ideal of R, then /
is a maximal ideal iff R/ is a field.

SECTION 40 QUOTIENT RINGS OF F[X]

We know that a polynomial over a field F need not have a root in F. In Chapter VII it was
shown how this problem could be overcome in special cases by appropriate field extensions:
the real numbers produced a root for x2 — 2 € Q{x], and the complex numbers produced a
root for x2 + 1 € R{x]. We shall see that by using quotient rings the problem can be solved
in general. Specifically, we shall see that if f(x) is any nonconstant polynomial over any
field F, then f(x) has a root in some extension of F; and that extension can be chosen to
be (isomorphic to) a quotient ring of F[x]. The proof of this is given in the next chapter,
and makes use of the facts about quotient rings developed in this section.

Theorem 40.1. Assume that F is a field and that p(x) € F[x).Then F[x]/(p(x)) is a field
iff p(x) is irreducible over F.

PROOF. Let I denote the principal ideal (p(x)) throughout the proof. Suppose first
that p(x) is reducible over F, say p(x) = a(x)b(x) with both a(x) and b(x) of degree less
than that of p(x). We shall prove that in this case F[x]/ is not a field. The degree of any
nonzero polynomial in / must be at least as great as deg p(x); thus a(x) ¢ / and b(x) ¢ I.
Therefore, I + a(x) and / + b(x) are both nonzero elements of F[x]/I. But

(I +a(){d +b(x) =1 +a(x)b(x) =1+ p(x) =1,

the zero element of F[x]/I. We conclude that F[x]/] has divisors of zero so that F[x]//
is not a field (it is not even an integral domain). This proves that if F[x]/[ is a field, then
p(x) must be irreducible.
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Suppose now that p(x) is irreducible. Problem 40.1 asks you to show that F[x]//
is commutative and that / + e is a unity for F[x]/I (where e is the unity of F). Thus it
suffices to prove that each nonzeroelement of F [x]/] has amultiplicative inverse in F [x]/1.
Assume that | + f(x) is nonzero. Then f(x) ¢ I, which means that f(x) is not a multiple
of p(x) in F[x]. Because p(x) is irreducible, this implies that p(x) and f(x) have greatest
common divisor e (Problem 40.2). Therefore, by Theorem 36.2, e = p(x)u(x) + f(x)v(x)
for some u(x), v(x) € F[x]. It follows that e — f(x)v(x) = p(x)u(x) € I, and hence I +
e=1+ f(x)u(x) = + f(x){I + v(x)). This shows that I + v(x) is a multiplicative
inverse of I + f(x). n

The following theorem is helpful in working with quotient rings F [x]/(p(x)), whether
p(x) is irreducible or not.

Theorem 40.2. Assume that F is a field, p(x) is a polynomial of degree n over F, and I is
the ideal (p(x)) of F[x]. Then each element of F[x]/I can be expressed uniquely in the
form

I+ Bo+bix+ - +b,_1x™™Y), withbg, b1, ..., ba_y € F. (40.1)

Moreover (I + b : b € F) is a subfield of F(x]/I isomorphic to F.
PROOF. If I + f(x) € F[x]/I, then by the Division Algorithm f(x) = p(x)q(x) +
r(x)forsomeq(x), r(x) € F[x]withr(x) = Oordegr(x) < degp(x).Since f(x) — r(x) =

p(x)q(x) € I, we have I + f(x) = I + r(x); therefore, each element of F[x]/I can be
expressed in at least one way in the form (40.1). On the other hand, if

I+Bo+bix+- +bix" )=I+(co+cix+-+cox" ™,

then

(bo—co) + (b1 —c)x + -+ + (byoy — Co)x" " €1,
so that p(x) divides

(Bo —co) + (by —c)x 4 -+ + (Buey — Co_)x" L.

This implies that

(bo—co)+ (b1 —c)x 4 -+ (baey — Ca—)x" ' =0,
because deg p(x) = n > n — 1. Therefore

by =rco, by =c1,..., b1 = Cpy.

This proves uniqueness.
It is now easy to verify that b +— I + b is a one-to-one ring homomorphism, and this
will prove the last part of the theorem (Problem 40.3). n

Notice that the proof shows that if f(x) € F[x], and if f(x) = p(x)q(x) + r(x) with
r(x) =0 or degr(x) < deg p(x), then I + f(x) = I + r(x). This is important for com-
puting in F[x]/(p(x)), as we shall see in the following example and again in Chapter
X. It allows us to represent elements of F[x]/({(p(x)) by polynomials of degree less than
deg p(x), just as the elements in Z, can be represented by the integers 0, 1,...,n — 1.



CHAPTER IX QUOTIENT RINGS

Example 40.1. We now show how the preceding ideas can be used to construct the field
of complex numbers from the field of real numbers. This is a special case of what is to come
in the next chapter. Let p(x) = 1 + x2, which is irreducible over R. Alsolet I = (1 + x2).
By Theorem 40.1, R[x]// is a field. In fact, R[x]/I = C, as we now verify.

Each element of R[x]// can be written uniquely as [ + (a + bx) with a, b € R, by
Theorem 40.2. Define 6 : R[x]/] — C by

0] + (a + bx)) = a + bi.

That 6 is one-to-one and onto, and preserves addition, is left as an exercise (Problem 40.4).
To verify that 6 preserves multiplication, we first write

OLUI + (a + b)) + (¢ +dx)] =6l + (ac + (ad + bc)x + bdx2)].
To continue, we must determine u, v € R such that
I + (ac + (ad + bo)x + bdx?) =1 + (u + vx).
This is done by using the remark following the proof of Theorem 40.2: Divide ac + (ad +
be)x + bdx* byl + x2; the remainder will be u + vx. The result is
ac + (ad + be)x + bdx? = (1 + x?)bd + (ac — bd) + (ad + be)x,
so that 4 + vx = (ac — bd) + (ad + bc)x. Therefore
Ol + (a + bx))(I + (c +dx)] =8I + (ac — bd) + (ad + bc)x)]

= (ac — bd) + (ad + bc)i

= (a + bi)(c + di)

=6( + (a+ bx)6(I + (¢ + dx)).
This proves that 8 preserves multiplication. Thus R([x]/I = C, as claimed. |

With the notation a + bi (a, b € R) for the elements of C, the number i is a root of
1 + x2. To verify the corresponding statement with R[x]// in place of C, we must check
that 1 + z2 = O for some element z of R[x]/ 1. Because of the isomorphism b — I + b from
Theorem 40.2, in this equation (1 + z2 = 0) 1 should be interpreted as I + 1, and O should
be interpreted as / + 0. Because 6(/ + x) = i, one root must be z = I + x € R[x]//. To
check this directly, write
T+D+U+x =+ + U +x2)
=1+ +x%)
=1+40.

The next theorem shows that Theorem 40.2 covers all quotient rings of F [x].

Theorem 40.3. IfF is a field, then every ideal of the polynomial ring F(x] is a principal
ideal.

PROOF. Let I denote an ideal of F[x]. If I = {0}, then / is the principal ideal (0).
Assume | # {0}, and let g(x) denote any polynomial of least degree among the nonzero
polynomials in /. We shall show that / = (g(x)); certainly I D (g(x)). Let f(x) € I. By
the Division Algorithm there are polynomials g(x), r(x) € F[x] such that

F&x)=gx)g(x)+r(x), with r(x)=0 or degr(x) < degg(x).
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Then f(x) € I and g(x)q(x) € I andso r(x) = f(x) — g(x)q(x) € I. Thus r(x) = 0, for
otherwise r(x) € I and deg r(x) < deg g(x), contradicting the choice of g(x) as a polyno-
mial of least degree in /. Therefore f(x) = g(x)g(x) € (g(x)), so that I = (g(x)). [ ]

Notice that the proof of Theorem 40.3 shows that I = (g(x)) for g(x) any polynomial
of least degree among the nonzero polynomials in /.

40.1. Prove that if F is a field with unity e, and / is an ideal of F[x], then F[x]/] is commutative
with unity / + e.

40.2. Prove that if F is a field and p(x), f(x) € F[x], with p(x) irreducible and p(x)} f(x), then
p(x)and f(x)have greatest common divisor e, where e is the unity of F. (Compare Problem
12.15.)

40.3. Verify that the mapping b +— / + b in the proof of Theorem 40.2 is a one-to-one ring homo-
morphism.

40.4. Prove that the mapping # in Example 40.1 is one-to-one and onto, and preserves addition.

40.5. Prove that if F is a subfield of a field £, and ¢ € E, then 8 : F[x] — E defined by 8(f(x)) =
f(c) is a homomorphism.

If 8 is any homomorphism of the type in Problem 40.5, then Ker 6 = (b(x)) for some b(x) € F[x], by
Theorem 40.3. Determine such a polynomial b(x) for each of the following examples. (Suggestion:
Use the Factor Theorem.)

40.6. 6 : Qx] — Qby O(f(x)) = f(0) 40.7. 6 :Qx] > Qby 8(f(x) = f(3)
40.8. 6 : Q[x] > R by 6(f(x)) = f(¥/2) 40.9. 6 : R[x] - Cby 8(f(x)) = f(i)
40.10. 6 :R[x] > Cby 8(f(x)) = f(—i)

40.11. Suppose that F is a field and f(x), g(x) € F[x]. Prove that (f(x)) = (g(x)) iff f(x)and g(x)
are associates. (Associates are defined in Section 36.)

40.12. Prove that if F is a field and / is an ideal of F[x], then there is a unique monic polynomial
m(x) € F[x] such that I = (m(x)).

40.13. (a) Prove or disprove that if (f (x)) = (g(x)), then deg f(x) = deg g(x).
(b) Prove or disprove that if deg f(x) = deg g(x), then (f(x)) = (g(x)).

40.14. True or false: If f(x) € (g(x)) and deg f(x) = deg g(x), then (f(x)) = (g(x)).
40.15. The proof of Theorem 40.3 uses the Least Integer Principle. Where?
40.16. Determine all of the prime ideals of F[x], where F is a field. (See Problems 39.7 and 39.8.)

SECTION 41 FACTORIZATION AND IDEALS

The theme in Chapter VIII was factorization; the theme in this chapter has been the mutually
equivalent ideas of ring homomorphism, ideal, and quotient ring. In this section we shall
see that these apparently unrelated themes are, in fact, not unrelated. Specifically, Theorem
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41.2 will show that information about the ideals in a ring can often tell us when there is
unique factorization in the ring. Then, by looking at some penetrating discoveries from
nineteenth-century number theory, we shall see that in many rings factorization can most
appropriately be studied by considering “products of ideals™ in the ring, rather than just
products of elements of the ring. This section is designed to show the relation between
some general ideas connecting number theory and rings; details and proofs will be omitted
or left to the problems. You should be familiar with Sections 37 and 38, and Theorem 40.3.
We begin with a key definition.

Definition. An integral domain in which every ideal is a principal ideal is called a prin-
cipal ideal domain.

Examples of principal ideal domains include the ring of integers (Problem 38.17) and
the ring F [x] of polynomials over any field F (Theorem 40.3). Recall that both Z and F [x]
are Euclidean domains; therefore, the fact that they are also principal ideal domains is a
special case of the following theorem.

Theorem 41.1. Every Euclidean domain is a principal ideal domain.

The proof of Theorem 41.1 is similar to the proof of Theorem 40.3, and will be left
as an exercise (Problem 41.1). The converse of Theorem 41.1 is false; that is, not every
principal ideal domain is a Euclidean domain. An example is given by the ring of all
complex numbers of the form a + b(1 + +~/—19)/2 for a, b € Z. (See [5] for a discussion
of this.)

The following theorem gives a direct link between factorization and ideals.

Theorem 41.2. Every principal ideal domain is a unique factorization domain.

A proof of Theorem 412 can be constructed by working through Problems 41.2
through 41.8; they provide a thorough test of your grasp of the ideas in the last few chap-
ters. The converse of Theorem 41.2, like the converse of Theorem 41.1, is false. For
example, Z[x] is a unique factorization domain, but it is not a principal ideal domain: the
set of all polynomials that have an even number as constant term forms an ideal that is not
principal (Problem 38.18).

Here is a summary of the relationships between several important classes of integral
domains.

Euclidean principal ideal c unique factorization integral (41.1)
domains domains domains domains '

Each class is contained in, but different from, the class that follows it. Problem 41.9 asks
you to place a number of specific examples in the smallest possible class of this sequence.

The extension of factorization theorems to rings other than the integers first arose in
the nineteenth century, from two different sources. The first was in work on biquadratic
reciprocity, and the second was in work on Fermat’s Last Theorem. Here, briefly, is what
was involved.

If the congruence x? = a(mod m) has a solution, then a is said to be a quadratic residue
of m; if there is no solution, then a is said to be a quadratic nonresidue of m. (For example,
1 and 4 are quadratic residues of 5; 2 and 3 are quadratic nonresidues of 5.)
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A.M. Legendre (1752-1833) introduced the following convenient notation for working
with quadratic residues: If p is an odd prime and p / a, then the symbol (a/p) is defined by

(a/p) = 1 ifa is aquadratic residue of p
—1 if a is a quadratic nonresidue of p.

[Thus (1/5) = (4/5) = 1 and (2/5) = (3/5) = ~1.]
The most famous theorem about quadratic residues is the law of quadratic reciprocity:
If p and q are distinct odd primes, then

(pla)a/p) = (—1)/9P=1Xe=D

Another way to say this is as follows: If either p = 1(mod4) or g = 1(mod 4), then p
is a quadratic residue of g iff ¢ is a quadratic residue of p; if both p = 3(mod 4) and
q = 3(mod 4), then p is a quadratic residue of q iff ¢ is a quadratic nonresidue of p. The
law of quadratic reciprocity was stated by Euler and Legendre, but Gauss gave the first
complete proof. Gauss then searched for an equally comprehensive law for biquadratic
residues: a is a biquadratic residue of m if x* = a(mod m) has a solution. He found such a
law: the law of biquadratic reciprocity. The detailed statement of this law is not important
here. What is important is that in order to solve this problem about biquadratic residues,
Gauss stepped outside of Z—the ring in which the problem was posed—and worked in
the larger ring Z[i], now known as the ring of Gaussian integers (Example 37.2). In the
process he proved that unique factorization holds in Z[i]. Gauss also used similar ideas to
develop a theory of cubic reciprocity (replacing x* by x?).

Now we tum to the connection between factorization and Fermat’s Last Theorem.
There are infinitely many triples (x, y, z) of integers, called Pythagorean triples, such that
2yt =2 (Only solutions with nonzero integers are of interest, of course. See Problem
41.11.) Many such triples were known to the Babylonians as early as 1600 B.C., and they
were also studied by the Greek mathematician Diophantus in his book Arithmetica (c. A.D.
250). In 1637, in a marginal note in a copy of Arithmetica, Fermat wrote that there are no
solutions in positive integers of x" + y* = z” if n > 2. This became known as Fermat’s
Last Theorem, even though Fermat gave no proof. In fact, it is very unlikely that Fermat
had a proof.

By the 1840s, mathematicians who worked on Fermat’s Last Theorem were concen-
trating on those cases where n is an odd prime, and several realized the usefulness of
factoring the left side of x? + y? = z” as

xP+yP = (x+ y)x +uy) - (x +ufly),

where u is an imaginary pth root of unity. This revealed the problem as one of factorization:
are there nonzero integers x, y, and z such that

2P = (x+ N +uy)--- (@ +ully)?

Because u is imaginary, this took them outside of Z. Specifically, they were faced with
questions about factorization in the ring Z{u], where u is a solution of

uP—|_+_uP_2.+_....+_u-+-l=0, (41.2)

At least one erroneous proof of Fermat’s Last Theorem rested on the mistaken assumption
that unique factorization holds in Z[«]. Although unique factorization holds in Z[«] for
many values of p [with « a solution of (41.2)], it does not hold for all values. The smallest
value for which unique factorization fails is p = 23. Although the ring Z[/=5] is not of
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the type being considered here, the failure of unique factorization in it shows what can
happen (Example 37.1).

The German mathematician Ernst Kummer (1810-1893) was able to overcome the
failure of unique factorization in part by inventing new “ideal numbers.” By using these
ideal numbers, along with the elements in the original ring Z[«], Kummer was able to prove
the impossibility of x? + y? = z? for many values of p, thereby adding considerably to
what was known about Fermat’s Last Theorem. It was nearly 150 years later, in 1994, that
Fermat’s Last Theorem was finally proved in all cases by the English-born mathematician
Andrew Wiles. The book [7] by Simon Singh cited at the end of this chapter gives a
fascinating account of the history of Fermat’s Last Theorem and of the work of Andrew
Wiles.

From the modern point of view, the proper setting for questions about factorization
in the rings considered by Gauss and Kummer is algebraic number theory. This theory
was created by Richard Dedekind (1831-1916) in the 1870s. An algebraic number is any
complex number that is a solution of an equation

a,2"+ - +a1z+ay =0, (41.3)

where the coefficients are in Z. It can be shown that the set of all algebraic numbers forms
a field. An algebraic integer is any solution of an equation of the form (41.3) where the
coefficients are in Z and a, = 1. The set of all algebraic integers forms an integral domain.
This integral domain of algebraic integers contains many other integral domains, and some
of these, such as Z[i}], are unique factorization domains, while others, such as Z[/=5], are
not.

One of the basic problems of algebraic number theory is to determine just which rings
of algebraic integers are unique factorization domains. Theorem 41.2 gives a partial answer:
if every ideal is principal, then factorization is unique. By replacing products of numbers
by products of ideals, Dedekind was able to construct a theory of unique factorization for
all rings of algebraic numbers. If / and J are ideals of a ring R, then the product /J is defined
to be the ideal generated by all products ab fora € I,b € J. Anideal I # R is said to be
primeif ab € I implies thata € [ orb € I. The fundamental theorem of ideal theory states
that every nonzero ideal in a ring of algebraic integers can be factored uniquely as a product
of prime ideals. In particular, if @ denotes any algebraic integer, then the principal ideal
(a) can be factored uniquely as a product of prime ideals. With these ideas it is possible to
develop theorems for the set of ideals in a general ring of algebraic integers that are similar
to the theorems for the set of elements in every unique factorization domain.

The preceding discussion shows part of what grew from the problems studied by Gauss
and Kummer. These ideas form the basis for much of modern algebraic number theory,
which has come to be seen as the appropriate place to study many of the more difficult
questions about ordinary integers. These ideas also provided many of the problems that
have shaped modern ring theory, including the abstract theory of ideals; this part of algebra
owes a great deal to Emmy Noether (1882-1935) and her students.

41.1. Prove Theorem 41.1.

41.2. Assume that D is an integral domain and thata, b € D.
(a) Prove thata|b iff (b) C (a).
(b) Prove that g and b are associates iff (b) = (a).
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41.3.

41.4.

41.5.

41.6.

41.7.

41.8.
41.9.

41.10.

41.11.

41.12.

If @ and b are elements of a principal ideal domain D, not both zero, then a and b have a
greatest common divisor in D. Prove this by justifying each of the following statements.

(a) If 7 is defined by / = {ax + by : x, y € D}, then [/ is an ideal of D.

(b) I =(d)forsomed € D.

(c) An element d, chosen as in part (b), is a greatest common divisor of a and b.

Prove that if 2 and b are elements of a principal ideal domain D with unity e, and a and b
have greatest common divisor e, then e = ar + bs for some r, s € D. (See Problem 41.3.)

Prove that if a, b, and p are nonzeroelements of a principal ideal domain D, and p is irreducible
and plab, then p|a or p|b. (See Problem 41.4.)

Prove that if D is a principal ideal domain, a;, a,, ..., a,, p € D, and p is irreducible and
plaiay, ..., a,, then p|a;, for some ;. (See Problem 41.5.)

If D is a principal ideal domain, @ € D, and a is not a unit of D, then a can be written as a

product of irreducible elements of D. Give an indirect proof of this by justifying each of the

following statements.

(a) Assume that a cannot be written as a product of irreducible elements. Then a is not
irreducible, and so a = a, b, where neither a; nor b, is a unit.

(b) Either a, or b; cannot be written as a product of irreducible elements; assume that a,
cannot be written as a product of irreducible elements.

(c) Since a,|a, Problem 41.2 implies that (@) C (a,).

(d) Since b, is not a unit, Problem 41.2 implies that (a) # (a,). Therefore (a) C (a,).

(e) Repeat parts (a) through (d) with a, in place of a to deduce the existence of an eiement
a, € D such that (@) C (a,) C (a2).

(f) This can be done repeatedly, yielding a sequence

@c@)c@c---

of ideals of D. Let ] = {x € D : x € (a;) for some a,} and prove that/ is an ideal of D.
(g) Because / is an ideal, / = (c) for some ¢ € /. Therefore ¢ € (a;) for some &, and then
I = (¢) C (ax). This contradicts the fact that all of the inclusions (a;) C (a;+,) in part (f)
are strict inequalities.
(h) This completes this proof.

Use Problems 41.6 and 41.7 to prove Theorem 41.2.

Consider the four classes of rings in (41.1). Determine the smallest class to which each of
the following rings belongs.

@ Z (b) Zs
©Q (d) Zslx)
(e) Z[i) H Z[v/=5)
(8) ZIx] (h) Qlx)

(a) Which integers k € {1, 2, ..., 10} are quadratic residues of 11?
(b) Is 11 a quadratic residue of 7?
(c) Verify the law of quadratic reciprocity for p = 7and ¢ = 11.

Prove that if m and n are positive integers with m > n, and x =m? —n?, y = 2mn, z =
m? + n?, then (x, y, z) is a Pythagorean triple.

Prove that a nonzero ideal (@) of a principal ideal domain D is a maximal ideal iff a is an
irreducible element of D.
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CHAPTER X

GALOIS THEORY: OVERVIEW

In this chapter and the next we use groups, rings, fields, and homomorphisms, together
with linear algebra, to prove the basic theorems of Galois theory. These theorems show
how fundamental questions about polynomial equations can be answered in terms of au-
tomorphism groups of field extensions. Galois theory provides an excellent illustration of
the combination of a number of different ideas to analyze a basic mathematical question.

The details of Galois theory can be more demanding than what has come before. To
help, this chapter gives an overview of the subject, leaving many of the details and finer
points for Chapter XI. This chapter and the next depend heavily on Section 40.

The challenge of solving polynomial equations

a,x"+---+ax+a=0 (%)

has been one of the most important in the history of algebra. The next four paragraphs give
an introduction to this subject.

Methods for solving first- and second-degree equations go back to the early Egyptians
and Babylonians. In the sixteenth century, Italian mathematicians (del Ferro, Tartaglia, and
Ferrari) succeeded in solving cubic (third-degree) and quartic (fourth-degree) equations.
(For cubic equations, see Problem 42.17.) Their solutions give formulas for writing the
roots in terms of the coefficients ag, ay, . . ., a,, much as the quadratic formula (43.1) for
the solutions of second-degree equations. It then became a challenge to do the same for
equations of degree higher than four. Specifically, the problem, as it eventually came to
be interpreted, was to show that it is possible to express the roots of equation (x) in terms
of the coefficients ag, a1, . . ., a, using only addition, subtraction, multiplication, division,
and the extraction of roots, each applied only finitely many times. When the roots can be
so expressed, the equation is said to be solvable by radicals.

In 1770-1771 Lagrange took the first steps in settling this problem by introducing
methods for studying polynomial equations that in reality involved group theory. Lagrange
sensed that the key to understanding these equations and their roots was related to the effect,
on the original equations and on certain related equations, of permutations of the roots of
the equation.

Early in the nineteenth century Paulo Ruffini (Italian) and N. H. Abel (Norwegian),
drawing on the ideas introduced by Lagrange, showed that, in fact, there are equations
of each degree higher than four that are not solvable by radicals. The complete answer
to the question of which equations are solvable by radicals was finally given by Evariste
Galois, another French mathematician, in the mid-nineteenth century. Galois was able to
show that a group can be associated with each polynomial equation () in such a way that
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the property of solvability by radicals is directly related to a corresponding property of the
group. This group property is called soivability; it will be defined in Section 49. The ideas
of Galois show that an equation is solvable by radicals iff its associated group (now called
its Galois group) is solvable. The point of the earlier work by Ruffini and Abel was that
for each degree higher than four there exist polynomial equations whose Galois groups are
not solvable.

The work by Galois became the basis for what is now known as Galois theory. Today
this theory has to do with the study of groups of automorphisms of field extensions; theorems
concerning solvability by radicals are merely a special part of the general theory.

SECTION 42 SIMPLE EXTENSIONS. DEGREE

We begin by looking at how to construct field extensions that solve a particular kind of
problem, namely that of providing roots for polynomials; the extension of R to C to obtain
aroot for 1 + x2 (Section 32) is a special case.

Let E be an extension field of a field F; for convenience, assume F C E. AlsoletSbea
subset of E. There is at least one subfield of E containing both F and S, namely E itself. The
intersection of all the subfields of E that contain both F and S is a subfield of £ (Problem
42.1); it will be denoted F(S). If S C F, then F(S) = F.If S = {a;,a,, ..., a,}, then
F(S) will be denoted F(ay, a3, ..., a,). For example, R(i) = C. The field F(S) consists
of all the elements of E that can be obtained from F and S by repeated applications of
the operations of E—addition, multiplication, and the taking of additive and multiplicative
inverses (Problem 42.3).

If E = F(a) for some a € E, then E is said to be a simple extension of F. We can
classify the simple extensions of F by making use of F[x], the ring of polynomials in the
indeterminate x over F, and

Flal={ag+aia+---+asa" :ap,a,...,a, € F},

the ring of all polynomials in a. The difference between F[x] and F[a] is that two poly-
nomials in F{x] are equal only if the coefficients on like powers of x are equal, whereas if
a is algebraic over F (Section 32), then two polynomials in F[a] can be equal without the
coefficients on like powers of a being equal. For example,

1+3V3=-14+3/24v2 QW2

but

143x# —14+3x+x% inQxl.

Theorem 42.1. If E is a simple extension of F, with E = F(a) and a algebraic over F,
then

E =~ F[x]/(p(x)),

where p(x) is irreducible over F and (p(x)) is the ideal consisting of all f(x) € F[x] such
that f(a) = 0.

PROOF. Define 8 : F{x] — F{a] by

bag+aix+---+ax"Y=as+aa+---+a,a".
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It can be verified that 6 is a ring homomorphism (Problem 40.5). Therefore, by the Funda-
mental Homomorphism Theorem for Rings, F[x]/] & F[a], where I = Ker6 is an ideal
of F[x]. Because q is algebraic over F, I 3 (0). Notice that / consists precisely of those
polynomials having a as a root, because f(x) € I iff 8(f(x)) = f(a) = 0. By Theorem
40.3 every ideal of F[x] is a principal ideal, so / = (p(x)) for some p(x) € F [x]. Be-
cause F[a] € E, and E has no zero divisors, F[a] cannot have zero divisors. Therefore
F[x]/(p(x)) cannot have zero divisors. It follows that p(x) is irreducible over F. (See the
proof of Theorem 40.1.) n

If Ker 6 is the zero ideal in the proof of Theorem 42.1, then F(a) is said to be a simple
transcendental extension of F, and a is said to be transcendental over F. If a is algebraic
over F (Theorem 42.1), then F(a) is said to be a simple algebraic extension of F. The next
two theorems say more about simple transcendental and simple algebraic extensions.

Theorem 42.2. If a is transcendental over F, then F(a) is isomorphic to the field of
quotients of F[x].

PROOF. If a is transcendental over F, then Ker 6 = (0) in the proof of Theorem 42.1,
and F[x] & F[a]. The field of quotients of F[x] can be thought of as the set of all quotients
f(x)/g(x), g(x) # 0, where f(x) and g(x) have no common factor of positive degree
(Problem 42.8). Also, F (a) consists of all “quotients” f(a)g(a)~' with f(a), g(a) € F[a]
and g(a) # 0. It follows that F(a) is isomorphic to the field of quotients of F[x]. [ ]

Example 42.1. It can be shown—but not easily—that the real number = is not a root of
any polynomial with rational coefficients [1]. Therefore, Q(r) is a simple transcendental
extension of Q, and r is transcendental over Q. The elements of Q(r) are the equivalence
classes of rational expressions

ag+am+an?+ - +a,n”

bp+ b +by2+ -+ bym

forag,ay,...,a,,bp,b1,...,bn € Q. n

Theorem 42.3. Assume that F is a field and that p(x) € F(x] is irreducible over F. Then
F[x]/(p(x)) is a field extension of F, and p(x) has a root in F [x]/(p(x)).

PROOF. As before, let / = (p(x)). Theorem 40.1 shows that F[x]/] is a field. In
Theorem 40.2 we showed that by identifying each element I + b € F[x]/] withb € F we
obtain a subfield of F[x]/[ that is isomorphic to F. Therefore F[x]// is an extension of F.

Assume that p(x) =ag+a;x +--- +a,x", and let o denote the element / + x €
F[x]/I. Then

ple) =ao+ a1l +x)+ - +a,(I +x)"
=71 +(@+ax+---+ax"
=1+ pkx)
=1
But / is the zero of F[x]//. Thus  is a root of p(x) in F[x]/I. [ |

Corollary 42.1. IfF is a field, and f(x) is a polynomial of positive degree over F, then
f(x) has a root in some extension of F.
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PROOF. If f(x) is irreducible over F, then Theorem 42.3 applies directly. Otherwise
f(x) has some irreducible factor p(x) € F[x], and then f(x) = p(x)q(x) for some q(x) €
F[x]. Apply Theorem 42.3 to p(x). This gives a root & for p(x) in F[x]/(p(x)), and this
«a is also a root for f(x) because f(a) = p(a)g(a) =0-g(a) =0. N

The following remarks are based on Theorem 40.2 and the proof of Theorem 42.3. If
p(x), 1, and o are as in Theorem 42.3 and its proof, then Theorem 40.2 shows that each
element of F[x]/I can be expressed uniquely in the form

1+(bo+b|x+b2x2+~~~+b,._1x"_1) with bg, b1, ..., b1 € F.

Because of the way the operations are defined in F[x]//, and because o = I + x, this
means that each element can be expressed uniquely in the form

bo+ bia + byo? + -+ b1 with bg, by, ..., by € F. 42.1)

Making further use of the way the operations are defined in F [x]/I, we have the following
corollary.

Corollary 42.2. Assume F and p(x) as in Theorem 42.3. Then F[x]/(p(x)) contains a
root a of p(x), and each element of F[x]/(p(x)) can be expressed uniquely in the form
(42.1). Elements of the form (42.1) are added and subtracted using the usual addition and
subtraction of polynomials. To multiply elements flar) and g(a) of the form (42.1), multiply
them as polynomials and divide the result by p(a); the remainder will equal f(a)g(a).

An important fact about Theorem 42.3 is that it shows how to construct a field having
aroot for p(x) beginning with only F and p(x); we need not have an extension before we
begin. Example 40.1 illustrated this for the case of the polynomial x2 + 1, irreducible over
R. Here is another example.

Example 42.2. The polynomial x2 —2 is irreducible over Q. By Theorem 42.3,
Q[x]/(x* — 2) is an extension of Q, and it contains a root for x> — 2. The point being
stressed here is that this requires no previous knowledge of R, which we know to contain
the root +/2 of x2 — 2.

Corollary 42.2 tells us that each element of Q[x]/(x? — 2) can be written uniquely in
the form

a+ba, a,beQ,

where @ = I + x. Here is the calculation of a typical product in Q[x]/(x? — 2): To compute
(1 — 20)(2 + @), multiply, and then divide the result by @ — 2; the remainder is the answer.
Thus
(1-20)2+a) 2 —3a — 2a? -2y -2 -3«
a?-2 T oa2-2 az—2"'
so(l —2a)2+a) = -2 — 3a.
The mapping 6 : Q[x]/(x2 —2) - Q(+/2) defined by

6a+ba)=a+ b2

is an isomorphism. A direct proof of this is similar to that in Example 40.1, and is left
as an exercise (Problem 42.9). The calculation in Q(+/2) corresponding to that above in
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Qlx1/(x* —2) is
A =2VD2+vV2) =2 -3V2—2(v2) = -2 - 3V/2. "

We close this section with one more idea about extensions. Assume that E is an
extension of a field F. We can think of E as a vector space over F in the following way:
The vectors are the elements of E; the scalars are the elements of F; and the “product” of
a scalar @ € F and a vector b € E is simply the product ab in the field E. Problem 42.13
asks for a proof that this does yield a vector space over F. (Appendix D gives a brief review
of basic facts about vector spaces.)

Definition. The degree of an extension E of a field F, which will be denoted [E : F], is
the dimension of E considered as a vector space over F. If the degree is finite, E is said to
be a finite extension of F.

Example 42.3

(a) Each element of C can be written uniquely as @ -1 + b - i with a, b € R. Thus
{1, i} is a basis for C over Rand [C : R] = 2.

(b) Example 42.2 shows that [Q(+v/2) : Q] = 2.

(¢) If +/5 denotes the real cube root of 5, then [Q(+/5) : Q] = 3 (Problem 42.15). m

PROBLEMS

Assume that F is a field throughout these problems.

42.1. Prove that if E is a field and T is a subset of E, then the intersection of all the subfields of
E that contain T is a subfield of E. (See Problem 26.20.) [If F is a subfield of £ and S is a
subset of E, and T = F U §, then the subfield obtained here is F(S).]

42.2. Prove that if @ + bi is imaginary, then R(@ + bi) = C.
42.3. Prove the last statement in the second paragraph of this section.

42.4. Leta € Q[x]/(x — 7) be aroot of the irreducible polynomial x2 — 7 € Q[x). Express each
of the following elements in the form a + ba with a, b € Q. (See Example 42.2.)
(@) o b d-a)2+a) © 1+ @ Q+a)!

42.5. Prove that Q(+/2) # Q(v/3).

42.6. Show that every element of Q(«~/5) can be written in the form @ + b+/5 + c~/25, with
a,bceQ.

42.7. Prove that if a? is algebraic over F, then a is algebraic over F.

42.8. Prove that the set of all quotients f(x)/g(x) with f(x), g(x) € F[x], and g(x) #0, is a
field with respect to the usual equality of fractions and the usual operations from elementary
algebra. Also explain why this field is isomorphic to the field of quotients of F[x].

42.9. Prove that the mapping @ in Example 42.5 is an isomorphism.

42.10. Prove that Q(+/3, —/3, i, —i) = Q(~/3 + i). (This shows that an extension may be simple
despite first appearances.)
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42.11. Assumea, b € Qanda > 0,b > 0. Prove that Q(/a) = QVb)iff b = ac?forsomec € Q.
(Problem 42.5 is a special case.}

42.12. If Q(/5) is viewed in terms of Theorem 42.1, then p(x) = x* — 5 [choosing p(x) to be
monic]. Verify that aithough 5 e QU5 p(x) has roots that are not in Q(/5). (Thus a
simple algebraic extension is not necessarily an algebraic extension as defined in Section 32.)

42.13. Prove that if E is an extension of F, then E is a vector space over F with respect to the
operations described preceding Example 42.3.

42.14. Prove that [Q(1 + i) : Q] = 2 and that [R(1 + i) : R} = 2.
42.15. Prove that [Q(v/5) : Q] = 3 [Example 42.3(c)].

42.16. Prove that if p and q are distinct primes, then Q(\/p, \/9) = Q(/P + J/9)-

42.17. Any cubic equation can be written in the form x* + bx? + cx + d = 0 by dividing by the
leading coefficient. The following steps show how to solve the equation by radicals.
(a) Substitute x = y — b/3 to get y* + py + ¢ = 0 for appropriate p and ¢. Find p and q.
(b) Show that substitution of y = z — p/(3z) leads to 2> — p3/(27z%) + ¢ = 0.
(c) Multiply through by z> to get a quadratic equation in z>. Show that a solution for 2 is
s_ 4, /¢, P
=24,/ +=
TETITVY T
(d) The cube roots of z* give z. From this we can get y and then x. Carry out the process
outlined here to solve the equation x3 + 4x? + 4x +3 = 0.
(e) Solve the cubic equation in part (d) by using Theorem 43.5 to find a rational root as a
first step.

SECTION 43 ROOTS OF POLYNOMIALS

By definition, an element c of a field F is a root of a polynomial f(x) € F[x]if f(c) = 0.By
the Factor Theorem (Section 35), f(c) = Oiff x — cis afactor of f(x). If (x — c)™ divides
f(x), but no higher power of x — ¢ divides f(x), then c is called a root of multiplicity m.
When we count the number of roots of a polynomial, each root of multiplicity m is counted
m times. For example, x> — x> — x + 1 = (x — 1)%(x + 1) has 1 as a root of multiplicity
two, and —1 as a root of multiplicity one; it has no other root. Thus we say that this
polynomial has three roots.

In this section we shall first prove that a polynomial of degree n has at most n roots
(Theorem 43.1). We’ll then see that any polynomial of degree n over the field C of complex
numbers has exactly n roots in C (Theorem 43.2). Polynomials of degree n over other fields
may have fewer than n roots in that field; however, a polynomial will have n roots in an
appropriately constructed extension field. (See the remarks following Example 43.2.)

Theorem 43.1. A polynomial f(x) of degree n > 1 over a field F has at most nroots in F.

PROOF. The proof will be by induction on n. If n = 1, then f(x) = ag + a;x with
a; # 0, and the only root is —al—lao. Thus assume that n > 1, and assume the theorem true
for polynomials of degree less than n. If f(x) has no root, we are through. If ¢ is a root,
then by the Factor Theorem f(x) = (x — ¢) fi(x) for some fi(x) € F[x], and deg fi(x) =
n — 1. By the induction hypothesis fi(x) has at most n — 1 roots in F. It will follow that
f(x) has at most n roots in F if f(x) has no roots in F except c and the roots of f(x). But



SECTION 43 ROOTS OF POLYNOMIALS 199

this is so because if a € F, then f(a) = (@ — ¢) fi(a), so that f(a) =Qonly ifa —¢c =0
or fi(a) = 0 (because F has no divisors of zero). Thus f(a) =0onlyifa=coraisa
root of fi(x). n

We have seen that a polynomial over a field may have no roots in that field. For example,
x2 — 2and x? + 1have no roots in the field of rationals. However, the Fundamental Theorem
of Algebra (Section 32) ensures that each polynomial over the complex numbers has at
least one complex root. In fact, we can prove more, as in the following theorem.

Theorem 43.2. Each polynomial of degree n > 1 over the field C of complex numbers
has nroots in C.

PROOF. We shall use induction on n. Assume that f(x) =ap + a1x + -+ + a,x" €
Clx]. If n = 1, then f(x) has one root, namely —al_lao. Assume the theorem to be true
for all polynomials of degree less than n. If n > 1, then f(x) has a root, say ¢, by the
Fundamental Theorem of Algebra. Thus, by the Factor Theorem, f(x) = (x — ¢) fi(x) for
some fi(x) € C[x], and deg fi(x) = n — 1. By the induction hypothesis, fi(x) hasn — 1
roots in C. Each of these is clearly a rogt of f(x), as is ¢, and hence f(x) has at least n
roots in C.

By Theorem 43.1, f(x) has at most n roots in C. Thus f(x) has exactly n roots
in C. [ ]

Definition. A nonconstant polynomial p(x) over a field F splits over an extension field
K of F if p(x) can be factored into linear factors over K, that is, if

px)=alx —c)(x —c2)-- (x —ca)s

where a € K and ¢y, ¢,, .. ., ¢, are the roots of p(x) in K.

Example 43.1. Any first-degree polynomial over F splits over F, since ax + b (a # 0)
has the root —a~'b € F. |

Example 43.2. The polynomial p(x) = x* — 2x? — 3 splits over Q(i, +/3) because
() = (x = )ox + )x ~ V3 +3).

Also, p(x) splits over C. But p(x) does not split over Q(i) or Q(+/3) or any other field that
does not contain Q(i, +/3). In fact, Q(, V/3) is the smallest field containing all the roots of
p(x), in the sense clarified by the following definition and remarks. [

Definition. A field X is a splitting field of a nonconstant polynomial p(x) over a field F
if K is an extension of F such that

(i) p(x) splits over K, and
(i)) K =F(cy,ca,...,cn), Wherecy, ¢, ..., ¢, are the roots of p(x) in K.

It can be proved (Problem 43.14) that we get an equivalent definition if condition (ii)
is replaced by the following condition:

(it) if p(x) splits over afield Hand F € H € K, then H =K.
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It will be proved in Section 46 that such a field does exist, and is uniquely determined
by F and p(x), in the sense that if E; and E; are splitting fields of p(x) over F, then
E, =~ E,. The splitting field of x* — 2 over Q is Q(/2).

We shall return to splitting fields in Chapter XI. We now prove a general fact about roots
and field automorphisms, and then look at some special facts about roots of polynomials
over R and polynomials over Q.

An automorphism of a field is an isomorphism of the field onto itself. Automorphisms
are central to Galois theory.

Example43.3. If o : C — Cis defined by o(a + bi) =a — bi foralla,b € R, then ¢
is an automorphism of C (Problem 43.15). Notice that o fixes each element of R, that is,
o(a) =a foreacha € R. [ ]

Theorem 43.3. Assume that 6 is an automorphism of a field E, and that 6 fixes each
element in a subfield F of E. If an element c € E is a root of p(x) € F[x], then 6(c) is also
a root of p(x).

PROOF. Assume p(x) =dg + a1x + -+ +a,x". Then p(c) = 0 and 6(a;) = a, for
0 < k < n. Therefore,

pO(c)) = ag +@6(c) + - - + a,6(c)"
= B(ag) + 0(aic) + - - - + 6(anc")
=0(ap +aic+---+a,c")
=6(p(c)) = 0(0) = 0. |

Before stating the next theorem. We first recall from elementary algebra that each
quadratic equation ax? + bx + ¢ = 0 has two solutions, given by

= —b+ /B2 —4ac

- (43.1)

The number b2 — 4ac is called the discriminant of ax® + bx + c. Assume that a, b, and ¢
are real. Then the two solutions in (43.1) will be real and equal if b? — 4ac = 0, real and
unequal if b2 — 4ac > 0, and imaginary and unequal if b> — 4ac < 0. In the third case the
two solutions will be complex conjugates of each other (that is, of the form « + vi and
u — vi, where u, v € R). Notice that the conjugate of a real number « is u itself. Thus we
can say in any case that if a complex number u + vi is a solution of a quadratic equation
with real coefficients, then its conjugate 4 — vi is also a solution. This is a special case of
the following corollary.

Corollary. Ifa + bi is a root of a polynomial f(x) with real coefficients, then its complex
conjugate a — bi is also a root of f(x).

PROOF. This follows immediately from Theorem 43.3, since the automorphism in
Example 43.3 fixes each element of R. [ ]

Theorem 43.4. A polynomial over the field R of real numbers is irreducible over R iff it
is linear (first degree), or quadratic (second degree) with a negative discriminant.
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PROOF.  Any linear polynomial is irreducible, and any quadratic polynomial over R
with a negative discriminant is irreducible over R because its roots are imaginary. It now
suffices to prove the converse.

Assume that f(x) € R[x] and that f(x) is irreducible and nonlinear; we shall prove
that f(x) must be quadratic with a negative discriminant.

We can think of f(x) as a polynomial over C; as such, it has a root, say a + bi, in C. If
b =0, then f(a) = 0 so x — g is a factor of f(x), contradicting that f(x) is nonlinear and
irreducible over R. Thus b # 0. By the Corollary of Theorem 43.3, @ — bi is also a root of
f(x),s0[x — (@ + bi)] [x — (@ — bi)] = [(x — @) — bill(x — @) + bi] = (x ~— a)® + b is
a factor of f(x). Since f(x) is irreducible, it follows that f(x) must be an element of R
times (x — a) + b2, and thus, in particular, f(x) must be quadratic. The discriminant of
f(x) must be negative in this case because its roots are imaginary (b # 0). [ ]

Theorem 43.5. Let f(x) = ag+aix + - - + a,x" be a polynomial with integral coeffi-
cients. If r/s is a rational root of f(x), and (r,s) = 1, thenr|ag and s |an.

Example 43.4. The rational roots of f(x) = 2 — 3x — 8x? + 12x> will be represented by
fractions with numerators chosen from the divisors of 2, and denominators chosen from
the divisors of 12. The list of all possibilities is £1, 2, +1, +1, +%, 4, £}, + 5. Itcan
be verified that % —%, and % are roots of f(x). Theorem 43.5 gives the same possibilities
for the rational roots of g(x) = 12x> — 3x + 2 as for the rational roots of f(x). But g(x)
has no rational root (Problem 43.5). |

PROOF OF THEOREM 435. If r/s is a root of f(x), then ag+a,(r/s) + - -+
a,(r/s)* = 0. Therefore ags™ +a;rs"~! + -+ + a,r" = 0. Solving this first for aps” and
then for a,r", we get

ags" = —[ayrs" '+ +a,r"] (43.2)
and

ar" = ~[aos" + - + an_ir"'s). (43.3)

Because r is a divisor of the right side of (43.2), r |ags”. But (r, s) = 1,s0(r, s") = 1, and
therefore r |ap by Lemma 13.1. Similarly, because s is a divisor of the right side of (43.3),
s|a,r". This implies that s | a, because (s, r") = 1, again by Lemma 13.1. [ |

Corollary. A rational root of a monic polynomial ag + a1 x + - - - + x" with integral co-
efficients must be an integer and a divisor of ag.

PROOF. Apply Theorem 43.5 witha, = 1. |
Theorem 43.6 (Eisenstein’s Irreducibility Criterion). Assume that p is a prime, f(x) =
ag+ax+---+ax"€Zx],plaiforO<i<n-—1, pz,(ao and pla,. Then f(x) is
irreducible over Z.

PROOF. The proof is outlined in Problem 36.22. |

For examples of Theorem 43.6, see Problem 36.23.
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PROBLEMS

43.1.

43.2.

43.3.

434,

43.5.
43.6.

43.7.

43.8.

43.9.
43.10.

43.11.
43.12.

43.13.

43.14.

43.15.
43.16.

43.17.

43.18.

Prove that x> — | € Z;,[x] has four roots in Zy,. Does this contradict Theorem 43.1? Why
or why not?

Construct a polynomial over Zs having 3 (that is, [3]) as a root of multiplicity two and 1 as a
root of multiplicity one.

Construct a polynomial over C having i as a root of multiplicity two and —i as a root of
multiplicity one.

There are eight polynomials of degree three over Z,. For each one, find the number of roots

over Z,.

Prove that 12x3 — 3x + 2 has no rational root.
Find all rational roots of each of the following polynomials over Q.
(a) 4x* —7x -3 () 2 — llx + 17x% — 6x3 (c) 2x3 —x248x -4

Write each of the following polynomials over Q as a product of factors that are irreducible
over Q.
(@ x*—x2=5x+5 (b) 3x> —2x243x -2 ¢y x> —2x2+2x

(a) to (c). Repeat Problem 43.7 using factors that are irreducible over R.
(a) to (c). Repeat Problem 43.7 fusing factors that are irreducible over C.

There are nine menic polynomials of degree 2 over Zs. For each one, find the number of roots
over Zs.

Prove that if f(x) € R[x] has an imaginary root of multiplicity two, then deg f(x) > 4.

Give an example of a quadratic polynomial over C that has an imaginary root of multiplicity
two. (Compare Problem 43.11.)

Give an example of a polynomial over Z, that is irreducible and of degree three. (Compare
Theorem 43.4.)

Prove that an equivalent definition of splitting field results if condition (ii) is replaced by
condition (ii)’, which follows it.

Prove that the mapping ¢ in Example 43.3 is an automorphism of C.

Assume that F is a field, f(x) € F[x], and E is an extension of F. Prove that an element ¢
of E is a multiple root of f(x)iff f(c) = f’'(c) = 0. Multiple root means root of multiplicity
greater than 1. The polynomial f'(x) is the formal derivative of f(x), defined in Prob-
lem 34.13. [Suggestion: Use the Division Algorithm to write f(x) = (x — ¢)2q(x) + r (x),
where r(x) is linear. Verify that f(c) =r(c) and f'(¢) = r’(c). Next, explain why f(x) =
(x — e)q(x) + (x —c)f'(¢) + f(c). Finally, use the latter equation to examine when
(x — Y1 f(x).]

Prove that if Q denotes the division ring of quartemnions introduced in Problem 32.19, then
x% 41 € Q[x] has infinitely many roots in Q. (Here | denotes the unity of Q, that is, the
2 x 2 identity matrix.)

Assume that ag, g, . .., a, are distinct elements of a field F, that b, b,, ..., b, € F, and that
f(x), g(x) € F(x] are of degree n or less and satisfy

flaj))=>b;=gla;) for0<j<n.

Prove that f(x) = g(x)in F[x]. (Compare Problem 35.19.)
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SECTION 44 FUNDAMENTAL THEOREM: INTRODUCTION

This section will outline the connection between roots of polynomials, fields, and auto-
morphism groups. Theorem 44.2 is a preliminary version of the Fundamental Theorem of
Galois Theory, which will be stated more fully, and proved, in Section 48. For simplicity,
all fields in this section are assumed to be subfields of the field of complex numbers.

The first key is that of a field automorphism, which, we recall, is an isomor-
phism of a field onto itself. In Example 43.3, we saw that if o : C — C is defined by
o(a + bi) =a — bi for all g, b € R, then o is an automorphism of C. Here are two more
examples.

Example 44.1. 1f E is an extension of Q, and o is an automorphism of E, then ¢(a) = a
for all a € Q. Here is an outline of the proof.

PROOF. First, (1) =1 (Problem 27.1). Therefore, 0(2) =oc(1+1) =0(1)+
o (1) = 2. We can extend this by mathematical induction to prove that o (n) = n for every
positive integer n (Problem 44.1). But then for m € Z and m <0, we have —m > 0 and

o(—m)=—m,soo(m) = 0c(—(—m)) = —o(—m) = —(—m) = m. Thus 0 (r) = r for all
rel.

Also,ifs € Zand s # 0,theno(1/5s) = 1/0(s) by Problem 27.9. Thus if r, s € Z with
s #0,then o(r/s) = o(r)o(1/s) = r/s. This completes the proof. ]

Example 44.2. Every element of Q(+/2) can be written uniquely in the form a + b/2
with a, b € Q(Section 42). If « is an automorphism of Q(2), thena(a) = aand a(b) = b
by Example 44.1, so

a(a + by/2) = a(a) + a(b)a(v/2) = a + ba(2).

However, [ot(«/i)]2 = a(@) = a(2) = 2, 50 a(+/2) satisfies x2 = 2 and a(+/2) = £+/2.
This means there are only two automorphisms of Q(+/2), the identity ¢ and the mapping
defined by at(a + bv/2) = a — b/2. ]

The set {¢, @} of all automorphisms of Q(+/2) in Example 44.2 forms a group with
respect to composition. More generally, if E is any field, then the set Aut(E) of all auto-
morphisms of E forms a group with respect to composition (Problem 44.2).

If E is an extension of a field F, then Gal(E/F ) will denote the set of all automorphisms
o of E such that 0 (a) = a for all a € F. Problem 44.6 asks you to prove that Gal(E/F) is
a subgroup of Aut(E).

If H is any subgroup of Gal(E/F), then Ey will denote the set of all x € E such that
o(x) = x forall o € H. Problem 44.7 asks you to prove that Ey is a subfield of E.

Note the similarities: Every element of the group Gal(E/F ) fixes every element of F,
while every element of the field Ey is fixed by every element of H. The following theorem
summarizes the last few paragraphs.

Theorem 44.1. IfE is afield, then the set of all automorphisms of E forms a group Aut(E)
with respect to composition. If F is a subfield of E, then

Gal(E/F)={oc € Au(E):0(x) =x forallx € F}
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is a subgroup of Aut(E). If H is a subgroup of Gal(E/F), then
Egy={xeE:o(x)=x forall o € H)
is a subfield of E.

Definitions. The group Gal(E/F) in Theorem 44.1 is called the Galois group of E over
F. The subfield Ey is called the fixed field of H.

The key to Galois theory is a natural connection between the subgroups of Gal(E/F)
and the subfields of E that contain F, especially in the case where E is the splitting field of
a polynomial f(x) over F. Before describing this connection, in Theorem 44.2, we recall
from Section 42 that [E : F] denotes the degree of E over F, that is, the dimension of
E as a vector space over F. Also, recall that in this section all fields are assumed to be
subfields of the field of complete numbers. As you read Theorem 44.2, it may help to refer
to the following relations, noting that the larger the subfield, the smaller the corresponding
subgroup, and conversely.

H) C H, implies Ey 2 Eg, (44.1)
K, € K, implies Gal(E/K,) 2 Gal(E/K,) (44.2)
Definition. If K = F(cy, ..., ca) is the splitting field of a polynomial p(x) over F, then

Gal(K/F) is called the Galois group of the polynomial p(x) over F.

Examples 44.3 and 44 4 will give specific illustrations of Galois groups, splitting fields,
and fixed fields.

Theorem 44.2. Assume that E is the splitting field of a polynomial f(x) over afield F (a
subfield of C). Consider the correspondence defined by

K - Gal(E/K) (443)

for each subfield K of E such that K contains F. The correspondence (44.3) is one-to-one
between the set of all subfields of E that contain F and the set of all subgroups Gal(E/F).
Moreover, for such K,

(E : K] = |Gal(E/K)|. (44.4)
K =Ey for H =Gal(E/K). (44.5)

and K is a splitting field for some polynomial over F iff Gal(E/K) is a normal subgroup of
Gal(E/F), in which case Gal(K/F) =~ Gal(E/F)/Gal(E/K).

We now look at two examples of splitting fields of polynomials and the corresponding
Galois groups. In the first, the polynomial has degree 4 and its Galois group has order 4. In
the second, the polynomial has degree 3 and its Galois group has order 6. Both examples
are, as they should be, consistent with Theorem 44.2.

Figures 44.1 and 44 .2 illustrate the relations in (44.1) and (44.2). Moreover, they reveal
a one-to-one correspondence between the set of all subgroups of the Galois group Gal(K/F)
and the set of all subfields of the splitting field E that contain the base field F. This one-
to-one correspondence does not hold in all cases; in these examples it is a consequence of
separability, a concept to be introduced in Chapter XI.
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Example 44.3. 'The splitting field of the polynomial (x2 — 3)(x2 — 5) over Q is
QW3,v5) = {a+ b3+ cv/5+dv3/5:a,b,c,d e Q).
If o and B are defined by

a@+b/3) =a—bJ/3, alc+dJ5) =c+dV/5
Ba+bv3)=a+bJ3, Blc+dV5) =c—dJ/5
foralla, b,c,d € Q, and y is defined by y = Ba, then

Gal(Q(/3,v5)/Q) = (1, @, B, v}.

(You can verify that o(a + b+/3) = a + b+/5 does not define an isomorphism.) Problem

44.13 asks you to verify the following details, where E = Q(+/3, v/5).
() Gal(E/Q) = Z, x Z,

(i) The lattice of subgroups of Gal(£ /Q) and the lattice of subfields of Q(~/3, +/5) are

as shown in Figure 44.1. (The integers on the lines in the figure show the indexes for
subgroups and the degrees for subfields. Some authors choose to invert one of the
two lattices, such as by placing the largest field and the smallest group at the top. It

is a matter of choice, provided there is no ambiguity.)

(iii) Eqa = QW5), Eq 5 = QW3), E(.yy = QW3 V5)

{t.a,B.7} Qa3, V5)
/ ’ \ l \
2 2 2
{1, a} (t, 8} (.7} Q(‘B) Q(‘B) Q(\ﬁ\B)
2 2 / 2 l 2 2
{¢} Q
Figure 44.1

Example 44.4. The splitting field of x> — 2 over Q is Q(w, +/2) where w is the primitive

cube root —1/2 + i~/3/2 of 2 (Section 33). If  and 8 are defined by
a(V2) =2 and  a(w) = w?
B2 =wv2 and Bw)=ow,

then « and 8 determine automorphisms of Qw, </2) and

Gal(Q(w, v/2)/Q) = {1, @, B, B2 aB, ap?).

Figure 44.2 shows the lattice of subgroups of the Galois group and the lattice of subfields of
Qw, 3/5). As in Figure 44 .1, the integers on the lines show the indexes for subgroups and
the degrees for subfields. Also, corresponding subgroups and subfields are in corresponding

positions (from left to right). For example, Gal(Q(w, ﬁ)/Q(ﬁ)) is {t, a}.
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Figure 44.2

For an overview of the connection between Galois groups and solvability of polynomial
equations by radicals, you may now skip to Section 49 and read through the statement of
Theorem 49.2, passing over Lemma 49.1, the Remark, and Theorem 49.1. Also read the
statement of Theorem 49.3 and the first paragraph of Example 49.2.

44.1. Prove that in Example 44.1, o (n) = n for every positive integer n.
44.2. Prove that the set Aut(E) of all automorphisms of a field £ is a group.
44.3. Prove the statement in (44.1).

44.4. Prove the statement in (44.2).

44.5. What is Gal(Q(+/2, v/3) : Q)? (Find the elements and construct a Cayley table.)
44.6. Prove that Gal(E/F) is a subgroup of Aut(E).
44.7. Prove that Ey, as defined in Theorem 44.1, is a subfield of E.
44.8. In Example 44.4, verify that Gal(Q(w, v/2)/Q(/2)) is {1, a}.
44.9. In Example 44.4, what is the fixed field of {()?
44.10. Verify that Gal(Q(+v/3)/Q) = Z,
44.11. Verify that Gal(Q(</5)/@Q) has order one.

44.12. (a) Show that the splitting field of x* — 5 over Q is Q(+/5, i).
(b) Show that [Q(+/5,i) : Q] = 8.
(c) What is the order of the Galois group of x* — 5 over Q7

44.13. Verify statements (i), (ii), and (iii) in Example 44.3.

[The problems may also be considered after Section 46.]

NOTE ON CHAPTER X

General references for the topics in this chapter are the same as those listed in the notes at
the end of Chapter X1. The book below contains proofs that 7 and e are transcendental.

1. Niven, L, Irrational Numbers (Cams Monograph No. 11), The Mathematical Association of
America, 1961.
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GALOIS THEORY

This chapter fills in details omitted from the overview of Galois theory in Chapter X.
It draws freely on ideas from Chapter X and earlier parts of the book. The first three
sections develop ideas about polynomials and field extensions needed in Section 48 to
prove the Fundamental Theorem of Galois Theory. Section 49, on solvability by radicals,
uses Theorem 54.3 (from Chapter XIII, on solvable groups); Section 54 depends on nothing
past Chapter V, so can be covered before Section 49, if desired. Section 50, on finite fields,
is independent of Sections 47-49. If covered thoroughly, the sections in this chapter will
take more time than most sections of the book.

SECTION 45 ALGEBRAIC EXTENSIONS

This section deals with basic ideas about automorphisms and degrees of field extensions.

Theorem 45.1. Assume F(a) and F(B) are simple algebraic extensions of a field F, and
a and B are roots of the same polynomial p(x) irreducible over F. Then F(a) and F(B)
are isomorphic under an isomorphism 6 such that 6(a) = B and 6(a) = a foreacha € F.

PROOF. Eachelement of F(cr) can be expressed uniquely in the form (42.1) preceding
Corollary 42.2, and each element of F(8) can be expressed uniquely in the same form with
a replaced by 8. The mapping 6 determined by 6(«) = B and 6(a) = a foreacha € F isan
isomorphism by Corollary 42.2, since & and B are roots of the same irreducible polynomial
p(x). |

If F(c) is a simple algebraic extension of F, and c is a root of the polynomials p(x)
and g(x), both irreducible over F, then p(x)|q(x) and g(x)| p(x). (Consider the proof
of Theorem 42.1 and the remark following Theorem 40.3.) It follows that ¢ is a root of a
unique monic polynomial irreducible over F. This monic polynomial is called the minimum
polynomial of c over F. The degree of the element c is the degree of its minimum polynomial.

Theorem 45.2 generalizes Theorem 45.1, and also restates it making use of minimum
polynomials. It uses the following notation: If 6 is an isomorphism of a field F onto a field
E and

p(xX)=ag+ax+---+ax" € F(x),
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then 6p(x) is the polynomial defined by
Op(x) = 6(ag) + O(a)x + -+ -+ B(a,)x" € E(x).

Theorem 45.2. Assume that 0 is an isomorphism of a field F onto a field E, and that F (&)
is a simple algebraic extension of F with p(x) the minimum polynomial of a over F. Assume
also that E(B) is a simple algebraic extension of E with 6p(x) the minimum polynomial
of B over E. Then 6 can be extended to an isomorphism 6* of F(a) onto E(B) such that
0*(a) = B and 6*(a) = 0(a) for eacha € F.

PROOF.  As in the proof of Theorem 45.1, each element of F(«) can be expressed
uniquely in the form (42.1) preceding Corollary 42.2. Also, each element of F(8) can
be expressed uniquely in the same form with @ = I 4+ x = (p(x)) + x replaced by 8 =
(6p(x)) + x, where (p(x)) and (fp(x)) are principal ideals o