
John R. Durbin



Modern Algebra
An Introduction

Sixth Edition

John R. Durbin
The University of Texas at Austin

WILEY

John Wiley & Sons, Inc.



Publisher
Associate Editor
Marketing Manager
Marketing Assistant
Production Manager
Senior Production Editor
Designer
Senior Media Editor
Production Management

Laurie Rosatone
Shannon Corliss
Jaclyn Elkins
Tara Martinho
Dorothy Sinclair
Sandra Dumas
James O'Shea
Melissa Edwards
AptaracorplKelly Ricci

This book was set in 10/12 Times Roman by Aptaracorp, Inc. and printed and bound by Hamilton
Printing Company. The cover was printed by Hamilton Printing Company.

This book is printed on acid free paper. 19

Copyright © 2009, 2005 John Wiley & Sons, Inc. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any
form or by any means, electronic, mechanical, photocopying, recording, scanning or otherwise,
except as permitted under Sections 107 or 108 of the 1976 United States Copyright Act, without
either the prior written permission of the Publisher, or authorization through payment of the
appropriate per-copy fee to the Copyright Clearance Center, Inc. 222 Rosewood Drive, Danvers,
MA 01923, Web site http://www.copyright.com. Requests to the Publisher for permission should be
addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ
07030-5774, (201)748-6011, fax (201)748-6008, Web site http://www.wiley.com/go/permissions.

To order books or for customer service please, call 1-800-CALL WILEY (225-5945).

Durbin, John R.
Modem Algebra: An Introduction-6th ed.

ISBN-13 978-0470-38443-5

Printed in the United States of America

1098765432



To Jane





PREFACE

This book is an introduction to modem (abstract) algebra for undergraduates. The first six
chapters present the core of the subject, the basic ideas of groups, rings, and fields. The
remainder is designed to be as flexible as possible. A diagram of chapter dependencies,
preceding the table of contents, suggests a number of options for introducing variety and
depth.

A first course in modem algebra often has the additional goals of introducing the
axiomatic method and the construction of proofs. I have tried to keep these goals constantly
in mind. For example, the first chapter treats ideas that are important but neither abstract nor
complicated, and provides practice in handling mathematical statements-their meaning,
quantification, negation, and proof. I believe this chapter should be covered carefully, except
for students who are already comfortable with the ideas and with proofs.

MAJOR CHANGES FOR THE SIXTH EDITION

The treatment of Galois theory, in Chapters X and XI, has been revised extensively.
Chapter X now gives an overview suitable for those who do not have time for more
detail. This was suggested by users who preferred the abbreviated treatment of Galois
theory in the fourth edition of the book. The overview can also serve as a guide for others
before working through Chapter XI.
Chapter XIII provides proofs of material on groups that is used in the book but was not
proved in the fifth edition.
The section on cryptography and the RSA algorithm, in the fifth edition, has been deleted,
but the key theorem, which uses Euler's function and Euler's Theorem from number
theory, has been proved in an appendix to Chapter IV. The material on coding theory,
and the illustrations of Boolean algebras in switching, have been removed but will be
available at the book's Web site http://www.wiley.com/college/durbin.
Some new problems have been added, but I have chosen to make others available at the
book's Web site rather than in the text. Making material available on the Web, rather
than in the text, comes from a desire to keep the book from growing in size and cost.
Also, I believe that textbooks sometimes become less rather than more useful through
the addition of new material from edition to edition.

As in earlier editions of the book, each problem set is arranged with the more straight-
forward choices at the beginning. These problems are grouped in pairs, with solutions to
those with odd numbers in Appendix E; this will help students know if they are on the right
track. A few of the problems contain fairly substantial extensions of material in the text.

The material is arranged so that most of the sections can be covered in one lecture each.
Notable exceptions are Section 17 and Chapters X and XI. By the nature of the subject,
students may occasionally need time to review and consolidate what they have learned.
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The fifth edition had an unfortunate number of misprints and other errors, especially
in the first printing, for which I apologize. Comments and suggestions are welcome:
durbin@math.utexas.edu.

The sixth edition preserves the style of the earlier editions, which reflects the author's
philosophy that the best textbooks concentrate on presenting core ideas clearly, concisely,
and with few distractions.

John R. Durbin

Reviewers of this edition:

Janusz Konieczny University of Mary Washington
Steve Waters Pacific Union College
Vassil Y. Yorgov Fayetteville State University



ADVICE FOR STUDENTS

What is modern algebra? Why is it important? What does it take to learn it? How can
this book help? These are entirely reasonable questions. This section and the Introduction,
which precedes Chapter I, will help provide answers.

Modern algebra is sometimes called algebraic structures or abstract algebra, or merely,
in the context of advanced mathematics, algebra. Although the name may suggest just a
new way to present the algebra that precedes calculus, it is in fact much broader and deeper
than that.

The Introduction discusses some of the history and applications of modem algebra,
to give a glimpse of what the subject is about. Please spend at least some time with the
Introduction, even though it is optional. Other references to history occur throughout the
book.

Applications are important. But the case for modem algebra rests on more than the
applications that can be presented in this book. The ideas and ways of thought of the subject
permeate nearly every part of modem mathematics. Moreover, no subject is better suited
to cultivate the ability to handle abstract ideas-to understand and deal with the essential
elements of a problem or a subject. This includes the ability to read mathematics, to ask the
right questions, to solve problems, to use deductive reasoning, and to write mathematics
so that it is correct, to the point, and clear. All these things make learning modem alge-
bra worthwhile-for future teachers and graduate students, for computer science students
and many others who will use mathematics, and for some who will simply appreciate its
intellectual appeal. This book has been written with all such readers in mind.

ON READING MATHEMATICS

First, remember that mathematics must be read slowly and thoughtfully. That is true of this
book. The book is intended to be as clear as possible. But that does not mean as easy as
possible. Part of the reward of learning the subject comes from the exercise of questioning
and concentration. It would be a disservice if the book could be read without thought.
Sometimes, if you don't understand something, it's better to go on; but in general you
should work to understand each step before going to the next. That may require referring
back to something covered earlier; if so, the review is probably useful. It may require
writing out details that have been omitted; if so, the thought will help reinforce what you
have learned. Learning this subject is no different from learning music, a sport, or anything
else. It takes effort and patience and perseverance to do it well.

ON ASKING THE RIGHT QUESTIONS

What does it mean to ask the right questions? As a start, continually ask yourself if you
understand what you have just read. If it's a definition, make sure you know all the terms
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that you've previously seen. Try to think of examples that satisfy the definition, as well
as some that don't. If you can't think of any, then from trying you'll at least appreciate
examples when they are given.

When you read a theorem, ask yourself what the hypothesis and conclusion are. (These
terms are reviewed in Appendix B.) Be sure you know what all the words mean, looking
back if necessary. Then, before looking at the proof that's given, think about how you would
try to do it yourself. Some proofs can be hard. But you'll have an advantage if you at least
think about a general strategy before reading the proof in the book. (Again, see Appendix
B.)

When you have finished an example or a proof or a section, ask yourself what you
have learned. There are no lists to help you review in this book. Putting together such lists
is part of the learning process.

Finally, there is one question that is always worthwhile: Could you explain it to someone
else? This applies to everything you read, to every solution you find, and to every proof
that you write. If you can't explain it to someone with a reasonable background, then you
may not fully understand it. Most teachers will admit that they did not fully understand a
subject until they taught it; and even then they may learn something new every time around.
You can get some of the advantage of this simply by imagining how you would explain the
subject yourself.

ON SOLVING PROBLEMS

The best way to learn mathematics is to solve problems. Or at least to make serious attempts
to solve them. Even if you don't succeed, you will be forced to think about ideas that might
help with a solution, and about how those ideas are related. Since mathematics is about
ideas and how they are related, that is extremely valuable.

In each section of the book the problems preceding the double line usually occur
in pairs, with solutions for the odd-numbered problems in Appendix E. The problems
preceding the double line tend to be more straightforward than the others, and provide a
way to become familiar with the basic ideas in the section.

Several sources for advice on problem solving and proofs are listed at the end of
Appendix B.

ON PROVING THEOREMS

In this book solving problems includes proving theorems. Suggestions about proofs appear
at a number of places in the book. In particular, please read Appendix B for the help it
can provide and since the text makes frequent use of its ideas. Included in Appendix B are
some of the "nuts and bolts" of proofs and deductive reasoning. This includes important
terms, basic facts about logic, and advice on strategy.

Do not become discouraged if constructing proofs seems difficult. It is difficult for
nearly everyone. Don't be deceived by the form in which mathematicians generally display
their finished products. Behind a polished proof of any significance there has often been a
great deal of struggle and frustration and ruined paper. There is no other way to discover
good mathematics, and for most of us there is no other way to learn it.
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ON WRITING MATHEMATICS

After you have constructed a proof or solved a problem, it is good to remember that no one
can be expected to know what is in your mind or what you have discarded. They have only
what you write. For communicating proofs it would be hard to find sounder advice than
that given by Quintilian, 1900 years ago:

One should not aim at being possible to understand, but at being impossible
to misunderstand.

The Greek Alphabet

A a alpha
B beta
F y gamma

6 delta
E E epsilon
Z zeta

H ri eta
a 9 theta

I I iota

K K kappa

A X lambda
M mu
N v nu
8 xi
0 o omicron
IT R pi

P p rho

E a sigma
T r tau

T v upsilon
CD 0 phi
X X chi
4, psi
0 cv omega
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INTRODUCTION

Modem algebra-like any other branch of mathematics-can be mastered only by working
up carefully from the most basic ideas and examples. But that takes time, and some of the
goals will not be clear until you reach them. This section is meant to help sustain you along
the way. You may read this all at first, or begin with Chapter I and then return here at your
leisure. The purpose is simply to convey a feeling for how modem algebra developed and
for the kinds of problems it can help solve.

Please note that this section is not a survey of all of modem algebra. There is no
discussion of the applications of algebra in computer-related subjects, for instance, or of
some of the deeper applications of algebra in mathematics itself; in fact, such applications
are not covered even in the text. The examples here have been chosen because they can
be understood without special background. Even at that, by its very purpose this section
must occasionally be vague; we can worry about details and proofs when we get to the text
itself.

SYMMETRY

Symmetrical designs like those in Figure 1 have been used for decoration throughout
history. Each of these designs is built up from a basic irreducible component; such com-
ponents for the designs in Figure 1 are shown in Figure 2. In each case the plane can
be filled without overlap if the basic component is repeated by appropriate combinations
of rotation (twisting), translation (sliding), and reflection (such as interchanging left and
right).

Figure 2

Although the artistic possibilities for the components are unlimited, there is another
sense in which the possibilities are not unlimited. Notice that the lower two examples in
Figure 1 will look the same if the page is turned upside down, but the top example will not.
Because of this we could say that the top example has a different symmetry type from the
other two examples. Continuing, notice that the middle example lacks the strict left-right

1



2 INTRODUCTION

symmetry of the top and bottom examples. (For instance, in the irreducible component for
the middle example the ring passes under the white band on the left, but over the white
band on the right.) We can conclude, then, that the three examples somehow represent three
different symmetry types: different combinations of rotations, translations, and reflections
are needed to build up the three different designs from their basic components. If we were
to look at more designs, we would find examples of still other symmetry types, and we
would also find many examples that could be distinguished from one another, but not on
the basis of symmetry type alone. At some stage we would feel the need for a more precise
definition of "symmetry type." There is such a definition, and it turns out that in terms of
that definition there are exactly 17 different symmetry types of plane-filling designs. Figure
60.9 shows one example of each type. Although each of the 17 types occurs in decorations
from ancient civilizations, it was only in the nineteenth century that these possibilities were
fully understood. The key to making "symmetry type" precise, and also to determining the
number of different symmetry types, is the idea of a group.

GROUPS

The idea of a group is one of the focal points of modern algebra. Like all significant
mathematical ideas, this idea is general and abstract, and it is interesting and important
because of the cumulative interest and importance of its many special cases. Roughly, a
group is a set of elements that can be combined through some operation such as addition
or multiplication, subject to some definite rules like those that govern ordinary addition of
numbers. The elements may be something other than numbers, however, and the operation
something other than the usual operations of arithmetic. For instance, the elements of the
groups used to study symmetry are things like rotations, translations, and reflections. The
precise definition of group is given in Section 5.

CRYSTALLOGRAPHY

Think again about symmetry type, but now move from two dimensions up to three. One
easy example here is given by moving a cube repeatedly along the directions perpendicular
to its faces. Other examples can be very complicated, and the general problem of finding
all symmetry types was not easy. Like the problem in two dimensions, however, it was
also settled in the nineteenth century: in contrast to the 17 different, symmetry types of
plane-filling designs, there are 230 different types of symmetry for figures that fill three-
dimensional space. Again, groups provide the key. And with this use of groups we have
arrived at an application to science, for ideas used to solve this three-dimensional problem
are just what are needed to classify crystals according to symmetry type. The symmetry type
of a crystal is a measure of the regular pattern in which the component atoms or molecules
arrange themselves. Although this pattern is an internal property of the crystal, which may
require x-ray techniques for analysis, symmetry is often evident from the external or surface
features of the crystal. Figure 3 illustrates this with a picture of galena crystals: the repeated
occurrence of the shape on the left, in the picture on the right, is a consequence of the internal
symmetry of galena. (Galena is the chief ore mineral of lead and has properties that make
it useful in electronics.) Classification by symmetry type is at the heart of crystallography,
and is used in parts of physics, chemistry, and mineralogy.
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Figure 3

COMBINATORICS

Although one of the preceding connections of groups is with design, and the other is with
science, they both have to do with symmetry. Here is another example. The numbers 1
through 6 can be placed on the faces of a die (cube) in 720 different ways. But only 30
of these ways are distinguishable-if the numbers are put on more than 30 dice, then
at least two of the dice can be made to look the same through rotation. In Figure 4,
for example, the middle arrangement differs from the left-hand arrangement only by a
rotation, but no rotation of the middle die would make it look like the right-hand die. The
problem of counting the number of distinguishable arrangements belongs to the domain of
combinatorics, and if you are good at systematic counting, you can solve it without groups.
But the problem can also be solved with an appropriate group, and this provides a way of
viewing the problem that is almost indispensable for more complicated problems. In each
case a group is used to account systematically for the symmetry in the problem (such as
the symmetry of a cube).

4

In each case, 1 is on the front
and 2 is on the back.

Figure 4

ALGEBRAIC EQUATIONS

The examples thus far have had to do with geometrical symmetry, but groups were first
studied for a different reason. Much of the early history of modern algebra was tied closely
to questions about equations. In beginning algebra we learn that each linear (first-degree)
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equation ax + b = 0 (a # 0) has a unique solution x = -b/a, and each quadratic (second-
degree) equation ax 2 + bx + c = 0 (a ¢ 0) has solutions

-b ± b2 - 4acx=
2a

(1)

Methods for solving these equations were known by the sixteenth century. For example,
particular types of quadratics had been handled by the ancient Egyptians, Babylonians, and
Greeks, and by the Hindus and Arabs in the Middle Ages. But what about equations of
degree higher than two? For instance, is there a general procedure or formula, like (1), for
writing the solutions of a cubic (third-degree) equation ax3 + bx2 + cx + d = 0 in terms
of the coefficients a, b, c, and d? Italian algebraists discovered in the sixteenth century that
the answer is yes, not only for cubics but also for quartic (fourth-degree) equations.

These solutions for cubics and quartics are fairly complicated, and their detailed form
is not important here. What is important is that all of this leads to the following more
general question: Can the solutions of each algebraic equation

anx' + ao = 0 (2)

be derived from the coefficients an, 1, ... , ao by addition, subtraction, multiplication,
division, and extraction of roots, each applied only finitely many times-or briefly, as we
now say, is (2) solvable by radicals? By early in the nineteenth century mathematicians
knew that the answer is no: for each n > 4 there are equations of degree n that are not
solvable by radicals. However, some equations of each degree n > 4 are solvable by radicals,
so there is the new problem of how to determine whether a given equation is or is not solvable
in this way. With this problem we are brought back to groups: with each equation (2) we can
associate a group, and the French mathematician Evariste Galois (1811-1832) discovered
that properties of this group reveal whether the equation is solvable by radicals. The group
associated with an equation measures an abstruse kind of symmetry involving the solutions
of the equation. Thus the abstract idea of a group can be used to analyze both geometrical
symmetry and solvability by radicals. Groups arise in other contexts as well, but we cannot
pursue them all here.

RINGS AND FIELDS

The theory of groups was not the only part of algebra to be stimulated by questions
about equations. A question that arises when one is first studying quadratic equations
has to do with square roots of negative numbers: What can we say about the solutions in
(1) if b2 - 4ac < 0? Nowadays this creates little problem, since we know about complex
numbers, and we generally feel just as comfortable with them as we do with integers and
real numbers. But this is true only because earlier mathematicians worked out a clear under-
standing of the properties of all the familiar number systems. Two more ideas from modem
algebra-ring and field-were essential for this. Roughly, a ring is a set with operations
like addition, subtraction, and multiplication; and a field is a ring in which division is also
possible. Precise definitions of ring and field are given at the appropriate places in the text,
where we also see how these ideas can be used to characterize the familiar number systems.
There are no surprises when we relate rings and fields to number systems, but the following
application of fields to geometry should be more unexpected.
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GEOMETRIC CONSTRUCTIONS

Among the geometric construction problems left unsolved by the ancient Greeks, three
became especially famous. Each involved the construction of one geometrical segment
from another, using only unmarked straightedge and compass (Figure 5):

I. Construct the edge of a cube having twice the volume of a given cube.

II. Show that every angle can be trisected.

M. Construct the side of a square having the same area as a circle of given radius.

These problems remained unsolved for more than 2000 years. Then, in the nineteenth
century, it was proved that the constructions are impossible. What makes this interesting for
us is that although the constructions were to be geometric, the proofs of their impossibility
involve algebra. And the key algebraic concepts needed are the same as those used to
analyze solvability by radicals; these include facts about fields that go far beyond what is
necessary to characterize the familiar number systems.

I

a b

233=b3

NUMBER THEORY

I I III

30=B

Figure 5

iEr2 = s2

The motivation for studying some of the deeper properties of rings came from a source
totally different from the applications already mentioned. Pythagorean triples are triples
(x, y, z) of positive integers such that x2 + yz = z2. That is, they are the triples of inte-
gers that can occur as lengths of sides of right triangles (relative to an appropriate unit
of length). Examples are (3, 4, 5), (5, 12, 13), (8, 15, 17), and (199, 19800, 19801).
The Greek mathematician Diophantus derived a method for determining all such triples
around A.D. 250. (The Babylonians had determined many Pythagorean triples by much
the same method around 1500 B.C.) In reading about this problem in Diophantus's book
Arithmetica, the French mathematician Pierre de Fermat (1601-1665) was led to introduce
one of the most famous problems in mathematics: Are there nonzero integers x, y, z such
that

xn + yn = Zn

for any integer n > 2? Actually, Fermat claimed that there are no such integers, and this
claim eventually came to be known as Fermat's Last Theorem. But Fermat did not give a
proof of his claim, and the problem of constructing a proof defied some of the world's best
mathematicians for over 350 years.

Fermat's Last Theorem was finally proved in 1994 by Andrew Wiles of Princeton
University. The proof by Wiles, who was born in Cambridge, England, and educated at
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Cambridge University, is extremely complicated and draws on ideas developed by other
mathematicians over many years. Nothing in the statement of the theorem suggests the
depth of the ideas required for its proof. For a hint at these ideas, see Section 41. For an
interesting history of Fermat's Theorem and the work of Wiles, as well as an insight into
mathematics as a creative process, see the book Fermat's Enigma, by Simon Singh, which
is listed at the end of this Introduction.

In the book by Singh, Wiles is quoted as saying that "the definition of a good mathe-
matical problem is the mathematics it generates rather then the problem itself." This brings
out an important lesson from the history of mathematics, namely that attempts to solve
problems, both successful and unsuccessful, have been responsible for the development of
the subject. In particular, attempts to solve Fermat's Last Theorem have had a profound
effect on number theory and algebra.

ORDER

The three basic kinds of systems we have discussed-groups, rings, and fields-are ex-
amples of what are known as algebraic structures. Each such structure involves one or
more operations like addition or multiplication of numbers. Some algebraic structures also
involve a notion of order, such as _c for sets and < for numbers. For example, order must
be taken into account in studying the familiar number systems. One formal idea that grew
from questions about order is that of a lattice. Lattices can be represented by diagrams
like those in Figure 6: the example on the left shows the subsets of {x, y, z}, with a se-
quence of segments connecting one set to another above it if the first set is contained in
the second; the example on the right shows the positive factors of 30, with a sequence
of segments connecting one integer to another above it if the first integer is a factor of
the second. The similarity of these two diagrams suggests one of the purposes of lattice
theory, just as the similarity of certain symmetric figures suggests one of the purposes of
group theory. Lattice theory is concerned with analyzing the notion of order (subject to
some definite rules), and with describing in abstract terms just what is behind the similarity
of diagrams like those in Figure 6. Of course, there is more to this study of order than
diagrams. Lattices were first studied as natural generalizations of Boolean algebras, which
were themselves introduced in the mid-nineteenth century by the British mathematician
George Boole (1815-1864) for the purpose of giving an algebraic analysis of formal logic.
The first significant use of lattices outside of this connection with logic was in ring the-
ory and algebraic number theory; this interdependence of different branches of algebra
is certainly not uncommon in modern mathematics-in fact, it is one of its characteristic
features.

(x, y, z)

{x}

30

15

5

Figure 6
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COMPUTER-RELATED ALGEBRA

A number of applications of modem algebra have grown with the advent of electronic
computers and communication systems. These applications make use of many of the general
ideas first introduced to handle much older problems. For example, one such application
involves the use of Boolean algebras to study the design of computers and switching circuits.
Another application is to algebraic coding, which uses, among, other things, finite fields;
these are systems that have only finitely many elements but are otherwise much like the
system of real numbers. Applications that use tools from modem algebra and combinatorics
belong to the general area of discrete applied mathematics; this can be contrasted with
classical applied mathematics, which uses tools from calculus and its extensions.

GENERAL REMARKS

Each algebraic topic discussed in this section will be touched on in the book, but they
cannot all be treated thoroughly. It would take more than one volume to do that, and in
any event there is even more to algebra than the topics introduced in this section might
suggest. A method once used by the American Mathematical Society to classify current
research divided mathematics into eight broad areas: algebra and the theory of numbers,
analysis, applied mathematics, geometry, logic and foundations, statistics and probability,
topology, and miscellaneous. Although the major branches represented in such a list are
in many ways interdependent, it is nonetheless true that each branch tends to have its own
special outlook and its own special methods and techniques. The goal of this book is to go
as far as possible in getting across the outlook and methods and techniques of algebra or,
more precisely, that part of algebra devoted to the study of algebraic structures.

Most of the chapters end with notes that list other books, including some where more
historical background can be found. Here are some general references that are concerned
with history; the notes at the end of Chapter XI give a short list of more advanced general
references on modem algebra.

NOTES

1. Bell, E. T., Development of Mathematics, 2nd ed., Dover reprint, New York, 1992.
Men of Mathematics, Touchstone Books, New York, 1986. These two books by E. T.

Bell are especially lively, though slightly romanticized.
2. Bourbaki, N., Elements of the History of Mathematics, trans. J. Meldrum, Springer-Verlag,

Berlin, New York, 1994.
3. Boyer, C. B., History of Mathematics, Wiley, New York, 1991. An excellent comprehensive

survey.
4. Cony, L., Modern Algebra and the Rise of Mathematical Structures, Birkhauser-Verlag, Basel-

Boston-Berlin, 1996.
5. Kleiner, I., A History of Abstract Algebra, Birkhauser, Boston, 2007.
6. Kline, M., Mathematical Thought from Ancient to Modern Times, Oxford University Press,

London, 1990. Another excellent comprehensive history; more complete on modem topics than
Boyer's book.

7. Novy, L., Origins of Modern Algebra, Noordhoff, Leyden, The Netherlands, 1973. A detailed
account of algebra in the important period from 1770 to 1870.
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8. Singh, S., Fermat's Enigma, Walker, New York, 1997.
9. Stilwell, J., Mathematics and Its History, 2nd ed., Springer-Verlag, New York, 1989.
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CHAPTER I

MAPPINGS AND OPERATIONS

The most fundamental concept in modem algebra is that of an operation on a set. Addition
and the other operations in the familiar number systems are examples, but we shall see that
the general concept of operation is much broader than that. Before looking at operations,
however, we devote several sections to some basic terminology and facts about mappings,
which will be just as important for us as operations. The words function and mapping are
synonymous; therefore, at least some of this material on mappings will be familiar from
calculus and elsewhere. Our context for mappings will be more general than that in calculus,
however, and one of the reasons we use mapping rather than function is to emphasize this
generality. Notice that elementary facts about sets are collected in Appendix A; they will be
used without explicit reference, and probably should be reviewed at the start. You are also
urged to read Appendix B, which reviews some elements of logic and offers suggestions
regarding proofs.

SECTION 1 MAPPINGS

Mappings are important throughout mathematics. In calculus, for instance, we study
mappings (functions) that assign real numbers to real numbers. The mapping given by
f W = x2, for example, assigns to each real number x the real number x2. The mapping
given by f (x) = sin x assigns to each real number x the real number sin x. The set R of
real numbers plays two roles in these examples: First, X E R, and second, f (X) E R. In
general these roles can be played by sets other than R. Thus in the definition of mapping,
which follows, S and T can denote any sets whatsoever.

Definitions. A mapping from a set S to a set T is a relationship (rule, correspondence)
that assigns to each element of S a uniquely determined element of T. The set S is called
the domain of the mapping, and the set T is called the codomain.

An alternative definition of mapping, preferred by some, is given at the end of
Appendix A.

Mappings will generally be denoted by Greek letters, and to indicate that a is a mapping
from S to T, we shall write a : S -+ T or S T. If x is an element of S, then a(x) will
denote the unique element of T that is assigned to x; the element a(x) is called the image
of x under the mapping a. Sometimes there will be a formula for a(x), as in the examples
f W = xs and f (x) = sin x. But that certainly need not be the case.

9
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Example l.l. Let S = {x, y, z} and T = (1,2, 3}. Thence defined by a(x) = 2, a(y) = 1,
and a(z) = 3 is a mapping from S to T.

Another mapping, $ : S -+ T, is given by a(x) = 1, 0(y) = 3, and 8(z) = 1.

The following diagram does not represent a mapping from S to T for two reasons: First, it
assigns two different elements to x, and second, it assigns no element to y.

Not a mapping

Suppose that f and g are the mappings, each with the set of real numbers as domain,
defined by f (x) = (x + 1)2 and g(x) = x2 + 2x + 1. Because (x + 1)2 = x2 + 2x + 1 for
every real number x, it is reasonable to think of the mappings f and g as being equal. This
illustrates the following definition.

Definition. Two mappings a and P are said to be equal if their domains are equal, their
codomains are equal, and a(x) = P(x) for every x in their common domain.

Example 1.2. In Example 1.1, a 54 P. For example, a(y) = 1 but $(y) = 3, so a(y) 54
0(y). Note that the definition of equal for mappings requires that a(x) = fi(x) for all x in
the common domain. If there is an x in the common domain such that a(x) # fl(x), then
a # fl. As explained in Appendix B, "all" is a universal quantifier, and the negation of a
statement with a universal quantifier is a statement with an existential quantifier: "all" is
universal, whereas "there is" and "there exists" are existential.

Thus Example 1.1 gives two different mappings (a and f) from S to T. There are, in
fact, 27 different mappings from S to T, for S and T as in Example 1.1. The reason is that
we have three independent choices (1, 2, or 3) for where to map each of x, y, and z. Thus
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the total number of choices is 3 3 3 = 33 = 27 (three choices for where to map x, and
the same for each of y and z).

Example 1.3. If S is any set, we shall use i (iota) to denote the identity mapping from S to S,
which is defined by t(x) = x for each x E S. If it is necessary to indicate which set S is
being considered, is can be written instead of t.

It is sometimes convenient to write x - y or x r+ y to indicate that y is the image of
x under a mapping.

Example 1.4. The rule (s, t) H s + t for each ordered pair of real numbers s and t defines
a mapping from the set of ordered pairs of real numbers to the set of real numbers. [That
(s, t) is ordered means that it is to be distinguished from (t, s). The necessity for this
distinction can be seen if addition is replaced by subtraction: t - s 54 s - t unless s = t.]
Mappings of this kind, assigning single elements of a set to pairs of elements from the same
set, will be discussed at length in Section 3.

If a : S -* T and A is a subset of S, then a(A) will denote the set of elements of T
that are images of elements of A undez the mapping a. In set-builder notation (described
in Appendix A),

a(A) = {a(x) : x E A}.

The set a(A) is called the image of A under the mapping a.

Example 1.5. With a and as in Example 1.1,

a({x, z}) = {2, 3} and 8((x, z}) _ {1}.

Definitions. If a : S - T then a(S) will be called the image of a. If a : S -)- T and
a(S) = T, then a is said to be onto. Thus a is onto if for each y E T there is at least one
x E S such that a(x) = y.

is onto
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Example 1.6. In terms of diagrams like those in Example 1.1, a mapping is onto provided
each element of the codomain has at least one arrow pointing to it. Thus the mapping a
in Example 1.1 is onto. However, the mapping ,8 in Example 1.1 is not onto; its image is
{1, 3}, which is a proper subset of {1, 2, 3}, the codomain of $.

Example 1.7. With f (X) = x2 and g(x) = sin x thought of as mappings from R to R,
neither is onto. The image of f is the set of nonnegative real numbers. The image of g is
the set of real numbers between -1 and 1, inclusive.

Definition. A mapping a : S -* T is said to be one-to-one if

x1 54 x2 implies a(xl) 54 a(x2) (xl,x2 E S),

that is, if unequal elements in the domain have unequal images in the codomain.

Example 1.8. In terms of diagrams like those in Example 1.1, a mapping is one-to-one
provided no two arrows point to the same element. The mapping a in Example 1.1 is
one-to-one. However, the mapping $ in Example 1.1 is not one-to-one, because x # z but
$(x) = $(z).

Example 1.9. The mapping f (x) = x2, with domain R, is not one-to-one, because f (x) =
x2 = f(-x), although x # -x when x # 0. The mapping f (x) = sin x, with domain R,
is not one-to-one, because f (x) = sin x = sin (x + 2n7r) = f (x + 2n7r) for each x E JR
and each integer n.

The contrapositive of

xl x2 implies a(xl) a(x2)

is

a(xl) = a(x2) implies x1 = x2.

(See Appendix B for a discussion of contrapositive statements.) Since a statement and its
contrapositive are equivalent, we see that

a : S -+ T is one-to-one

ifft

a(xl) = a(x2) implies xl = x2 (xl, x2 E S).

It is sometimes easier to work with this latter condition than with that given in the definition.
With a : R -* R defined by a(x) = x - 1, for instance, we have that of (x 1) = a(x2) implies
XI - 1 = x2 - 1, which implies xl = x2; therefore, a is one-to-one.

Notice that the identity mapping on any set is both onto and one-to-one. Notice also
that a mapping of a finite set to itself is onto if it is one-to-one. In contrast, there are

t We follow the practice, now widely accepted by mathematicians, of using "iff" to denote "if and only if."
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mappings of any infinite set to itself that are one-to-one but not onto, and also mappings
that are onto but not one-to-one. Here are some examples.

Example 1.10. Define mappings a and ,B from the set of natural numbers, { 1, 2, 3, ...
to itself, by

a(n) = 2n

and

,d(n) _ (n + 1)/2
In/2

if n is odd

if n is even.

1 2 3 4 5 6 7 8 ...

1 2 3 4 5 6 7 8 ...

1 2 3 4 5 6 7 8 ...

I i
2 3 4 6 7 8 ...

Then a is one-to-one but not onto; and ,8 is onto but not one-to-one. The existence of such
mappings is precisely what distinguishes infinite sets from finite sets. In fact, a set S can
be defined as infinite if there exists a mapping from S to S that is one-to-one but not onto.
Otherwise, S is finite.

We close this section with one remark on notation and another on terminology. The
symbols N, Z, Q, R, and C will be reserved to denote the following sets:

N the set of all natural numbers, {1, 2, 3, ...}
Z the set of all integers, {... , -2, -1, 0, 1, 2, ...}

the set of all rational numbers, that is, real numbers that can be
expressed in the form alb, with a, b E Z and b ¢ 0

R the set of all real numbers
C the set of all complex numbers

Familiarity with basic properties of N, Z, Q, and R will be assumed throughout. All of
these sets will be studied in Chapter VII.

Although we shall not use the following terminology, it should be mentioned because
you may see it elsewhere. Sometimes, a one-to-one mapping is called an injection, an onto
mapping is called a surjection, and a mapping that is both one-to-one and onto is called
a bijection or a one-to-one correspondence. Also, what we are calling the codomain of a
mapping is sometimes called the range of the mapping. Regrettably, range is also used for
what we are calling the image of a mapping; this ambiguity over range is one reason for
avoiding its use.
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PROBLEMS

1.1. Let S ={w, x, y, z} and T=(1,2,3,4}, and define a:S-*T and (i:S-*T by
a(w) = 2, a(x) = 4, a(y) = 1, a(z) = 2 and $(w) = 4, P(x) = 2, f(y) = 3, P(z) = 1.
(a) Is a one-to-one? Is 0 one-to-one? Is a onto? Is 0 onto?
(b) Let A = (w, y} and B = {x, y, z}. Determine each of the following subsets of T : a(A),

O(B), a(A fl B), P(A U B).

1.2. Let a, 0, and y be mappings from Z to Z defined by a(n) = 2n, P(n) = n + 1, and y(n) = n3

for each n E Z.
(a) Which of the three mappings are onto?
(b) Which of the three mappings are one-to-one?
(c) Determine a(N), fl(N), and y(N).

For Problems 1.3-1.6, assume S = {r, y, z} and T = 11, 2, 3}. From Example 1.2, we know there
are 27 mappings from S to T.

1.3. How many mappings are there from S onto T?

1.4. How many one-to-one mappings are there from S to T?

1.5. How many mappings are there from S to {1, 2}?

1.6. How many mappings are there from S onto (1, 2)?

For Problems 1.7-1.10, assume that S and T are sets, a : S - T, and (3 : S -* T. Complete each of
the following statements. (The discussion of quantifiers in Appendix B may help.)

1.7. a is not onto iff for some ....

1.8. a is not one-to-one iff ....

1.9. a # 0 iff ....

1.10. )3 is one-to-one and onto iff for each y E T ....

Each f in Problems 1.11-1.16 defines a mapping from R (or a subset of R) to R. Determine which
of these mappings are onto and which are one-to-one. Also describe f(P) in each case, for P the set
of positive real numbers.

1.11. f(x) = 2x 1.12. f(x)=x-4 1.13. f(x)=x3
1.14. f(x)=x2+x 1.15. f(x)=eT 1.16. f(x)=tanx

In Problems 1.17 and 1.18 let A denote the set of odd natural numbers, B the set of even natural
numbers, and C the set of natural numbers that are multiples of 4.

1.17. With a as in Example 1.10, describe a(A), a(B), and a(C).

1.18. With S as in Example 1.10, describe (i(A), f(B), and f(C).

In Problems 1.19 and 1.20, for each n E Z the mapping f : Z - Z is defined by f, (x) = nx.

1.19. For which values of n is f onto?

1.20. For which values of n is f, one-to-one?

t

1.21. Assume that S and T are finite sets containing m and n elements, respectively.
(a) How many mappings are there from S to T?

t For each set of problems, solutions for most of the odd-numbered problems preceding the double line can be
found at the back of the book. More problems for each section may be found at http://www.wiley.com/college/
durbin.
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(b) How many one-to-one mappings are there from S to T? (Consider two cases: m > n and
in < n.)

1.22. (a) How many mappings are there from a two-element set onto a two-element set?
(b) from a three-element set onto a two-element set?
(c) from an n-element set onto a two-element set?

1.23. A mapping f : R -* R is onto if each horizontal line (line parallel to the x-axis) intersects
the graph off at least once.
(a) Formulate a similar condition for f R -> R to be one-to-one.
(b) Formulate a similar condition for f R -> R to be both one-to-one and onto.

1.24. For each ordered pair (a, b) of integers define a mapping aa,b : Z -> Z by a,,b(n) = an + b.
(a) For which pairs (a, b) is aa,b onto?
(b) For which pairs (a, b) is aa,b one-to-one?

1.25. With 0 as defined in Example 1.10, for each n E N the equation /3(x) = n has exactly two
solutions. (The solutions of $(x) = 2 are x = 3 and x = 4, for example.)
(a) Define a mapping y N -> N such that for each n E N the equation y(x) = n has exactly

three solutions.
(b) Define a mapping y : N -> N such that for each n E N the equation y(x) = n has exactly

n solutions. (It suffices to describe y in words.)
(c) Define a mapping y : N -> N such that for each n E N the equation y (x) = n has infinitely

many solutions.

1.26. Prove that there is a mapping from a set to itself that is one-to-one but not onto if there is a
mapping from the set to itself that is onto but not one-to-one. (Compare Example 1.10.)

1.27. Prove that if a : S -> T and A and B are subsets of S, then a(A U B) = a(A) U a(B).(See
Appendix B for half of the proof.)

1.28. (a) Prove that if a : S - T, and A and B are subsets of S, then a(A fl B) C a(A) fl a(B).
(b) Give an example (specific S, T, A, B, and a) to show that equality need not hold in part

(a). (For the simplest examples S will have two elements.)

1.29. Prove that a mapping a : S -> T is one-to-one if a(A fl B) = a(A) fl a(B) for every pair
of subsets A and B of S. (Compare Problem 1.28.)

1.30. Using the definition of infinite from Example 1.10, prove that if a set S has an infinite subset,
then S is infinite.

1.31. Define a one-to-one mapping from the set of natural numbers onto the set of positive rational
numbers.

SECTION 2 COMPOSITION. INVERTIBLE MAPPINGS

Assume that a : S --> T and fi : T -+ U. Then a(x) E T for each x E S, so it makes sense
to write fl(a(x)), which is an element of U. Thus a followed by P in this way is seen to
yield a mapping from S to U. This allows the following definition.

S U
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Definition. If a : S -> T and P : T --> U, the composition (or composite) of a and 8,
denoted by P o a, is the mapping from S to U defined by

0 o a)(x) = fl(a(x))

for each x E S. Note carefully: In 0 o a, it is a, the mapping on the right, that is applied
first.

Example2.1. Let S = {x, y, z}, T = {1, 2, 3}, and U = {a, b, c}. Define a : S -+ T by

a(x) = 2, a(y) = 1, and a(z) = 3,

as shown in the diagram below. Also, define 0 : T -+ U by

P(1) = b, P(2) = c, and i4(3) = a.

Then

Example 2.2. Let a and $ denote the mappings, each with the set of real numbers as both
domain and codomain, defined by

a(x)=x2+2 and $(x)=x-1.
Then

while

(P o a)(x) = $(a(x)) = $(2) = c

($ o a)(y) = $(a(y)) = $(1) = b
( o a)(z) = P(a(z)) = $(3) = a.

(a o $)(x) = a(O(x))

=a(x-1)
=(x-1)Z+2
=xz-2x+3,

($ o a)(x) = $(a(x))
= $(x2+2)

=(x2+2)-1
=x2+1.

In particular, for example, (a o $)(0) = 3 but (i4 o a)(0) = 1. This example shows that
$ o a and a o f need not be equal, even if both are defined.

It will be important to know which compositions are onto and which are one-to-one.
The following theorem provides the answer.

Theorem 2.1. Assume that a : S -+ T and $ : T --* U.

(a) If a and 0 are onto, then $ o a is onto.

(b) If $ o a is onto, then $ is onto.

(c) If a and $ are one-to-one, then $ o a is one-to-one.

(d) If,8 o a is one-to-one, then a is one-to-one.
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PROOF. (a) Assume that both a and 0 are onto. To prove that ,B o a is onto, we must
establish that if z E U, then there is an element x E S such that (P o a)(x) = z.

Let Z E U. Because P is onto, there exists y E T such that $(y) = z. Since a is also
onto, there exists x E S such that a(x) = y. We now have

0 o a)(x) = fl(a(x)) = 0(y) = Z.
Therefore, 0 o a is onto.

(b) Assume that 0 o a is onto and that z E U. Then there exists x E S such that
o a)(x) = z. But then fl(a(x)) = z with a(x) E T. Hence, 0 is onto.

(c) Assume that both a and are one-to-one. To prove that f o a is one-to-one, we
shall prove that if x1, x2 E S and o a)(xi) _ 0 o a)(x2), then xl = x2.

If (P o a)(x1) = (B o a)(x2), then a(x1) = a(x2) since 0 is one-to-one. Therefore,
xi = X2 since a is one-to-one. This proves that $ o a is one-to-one.

(d) Assume that P o a is one-to-one. If x1, x2, E S and a(xt) = a(x2), then 0(a(xj)) _
,B(a(x2)); that is, (B o a)(xi) = 0 o a)(x2). This implies x, = X2 because P o a is one-to-
one. Therefore, a is one-to-one.

Definitions. A mapping fl : T - S is an inverse of a : S T if both o a = is and
a 0 fl = LT. A mapping is said to be invertible if it has an inverse.

If a mapping is invertible, then its inverse is unique (this is Problem 4.13).

Example 2.3. The mapping a in Example 2.1 is invertible. Its inverse is the mapping y
defined by

y(l) = y, y(2) = x, and y(3) = z.

For example,

(y o a)(x) = y(2) = x = is(x)

and

(a o y)(1) = a(y) = 1 = IT(1).

There are also four other equations to be checked, those involving (y o a)(y), (y o a)(z),
(a o y)(2), and (a o y)(3). In terms of the diagram in Example 2.1, y is gotten by reversing
the direction of the arrows under a.

Example 2.4. The mapping a : R -+ IR defined by a(x) = x2 is not invertible. It fails on
two counts, by the following theorem.

Theorem 2.2. A mapping is invertible iff it is both one-to-one and onto.

Remark. This theorem has the form p if q, so we must prove both if p then q, and if
q then p (Appendix B). In the following proof we first prove if p then q, so we begin by
assuming that the given mapping is invertible.

PROOF. First assume that a : S --> T is invertible, with inverse . Then o a, being
the identity mapping on S, is one-to-one; therefore, a must be one-to-one by Theorem
2.1(d). On the other hand, a o $, being the identity mapping on T, is onto. Therefore, a
must be onto by Theorem 2.1(b). This proves that if a is invertible then it is both one-to-one
and onto.
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Now assume that a : S -- T is both one-to-one and onto. We shall show that a is
invertible by describing an inverse. Assume t E T. Then, because a is onto, there is at least
one elements r= S such that a(s) = t. But a is also one-to-one, so this elements must be
unique; let ,e(t) = s. This can be done for each element t E T, and in this way we obtain a
mapping f : T - S. Moreover, from the way in which $ is constructed it can be seen that
,B o a = is and or o)9 = IT, so that $ is an inverse of a. Thus a is invertible.

Warning: Some authors write mappings on the right rather than on the left. Our a(x)
becomes, for them, xa. Then in P o a it is , the mapping on the left, that is applied
first, because x(p o a) = (x$)a. Although we shall consistently write mappings on the
left, it is important when reading other sources to take note of which convention is being
followed.

PROBLEMS

Let a, 0, and y be mappings from Z to Z defined by a(n) = 2n, fl (n) = n + 1, and y (n) = n2. Write
a formula for each of the compositions in Problems 2.1-2.6. Also determine the image in each case.

2.1. a o a

2.2. y o a

23. aofl

2.4. flop

2.5. o y

2.6. y o y

2.7. Prove that if a:S-*T,then aois =a and IT oa=a.

2.8. Describe the inverse of the mapping P in Example 2.1.

Each mapping! in Problems 2.9 and 2.10 defines an invertible mapping from R (or a subset of R) to
R. Write a formula for the inverse (call it g) in each case.

2.9. (a) f (x) = 5x (b) f (x) = x - 4 (c) P X) = 10'
2.10. (a) f (x) = -x/2 (b) f (x) = x3 (c) P X) = 1ogex (x > 0)

2.11. For a a mapping, decide whether each of the following is true or false. (Appendix B gives
examples involving if, only if, necessary conditions, and sufficient conditions.)
(a) a is invertible if et is one-to-one.
(b) a is invertible only if a is one-to-one.
(c) A necessary condition for a to be invertible is that it be one-to-one.
(d) A sufficient condition for a to be invertible is that it be one-to-one.

2.12. For a a mapping, decide whether each of the following is true or false.
(a) a is invertible only if a is onto.
(b) a is invertible if a is onto.
(c) A sufficient condition for a to be onto is that it be invertible.
(d) A necessary condition for a to be onto is that it be invertible.

2.13. Consider f and g, mappings from R to R, defined by f (,r) = sins and g(x) = 2x. Is f o g
equal to g o f?

2.14. Which of the functions sine, cosine, and tangent, as mappings from R to R, are invertible?
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2.15. Complete the following statement: A mapping a : S -> T is not invertible if a is not one-to-one

2.16. Assume a : S -+ T and T -* S. Complete the following statement: fl is not an inverse of
aiff Poa0tsor....

2.17. Assume that a : S -> T and : T -> U. Consider the following statement.

If at is one-to-one and,6 is onto, then
fl o a is one-to-one and onto. (2.1)

(a) Is statement (2.1) true? Justify your answer.
(b) Write the converse of statement (2.1). Is this converse true? Justify your answer.
(c) Write the contrapositive of statement (2.1). Is this contrapositive true? Justify your answer.

2.18. Assume that at : S -+ T and fi : T -> U. Consider the following statement.

If a is not one-to-one, then
P o a is not invertible. (2.2)

(a) Is statement (2.2) true? Justify your answer.
(b) Write the converse of statement (2.2). Is this converse true? Justify your answer.
(c) Write the contrapositive of statement (2.2). Is this contrapositive true? Justify your answer.

2.19. For sets S and T, define S < T to mean that there exists a mapping from T onto S but there
does not exist a mapping from S onto T. Prove that if S < T and T < U, then S < U.

2.20. Prove that the inverse of an invertible mapping is invertible.

2.21. Give an example of sets S, T, and U and mappings a : S -> T and : T - U such that ,6 o a
is onto, but P is not onto. [Compare Theorem 2.1(b).]

2.22. Give an example of sets S, T, and U and mappings a : S -+ T and : T -s U such that P o a
is one-to-one, but a is not one-to-one. [Compare Theorem 2.1(d).]

2.23. Prove that if a : S --> T, 0 : T -* U, y : T -> U, at is onto, and 0 o a = y c a, then = y.

2.24. Prove that if : S -* T, y : S -> T, a : T - U, a is one-to-one, and a o = a o y, then
P=Y

2.25. Give an example to show that the condition "a is onto" cannot be omitted from Problem 2.23.

2.26. Give an example to show that the condition "a is one-to-one" cannot be omitted from Problem
2.24.

2.27. Assume that a : S T and fi : T -> U. Use Theorems 2.1 and 2.2 to prove each of the
following statements.
(a) If a and 0 are invertible, then fl o a is invertible.
(b) If fi o a is invertible, then $ is onto and a is one-to-one.

SECTION 3 OPERATIONS

If one integer is added to another, the result is an integer. If one integer is subtracted
from another, the result is also an integer. These examples-addition and subtraction of
integers-are special cases of what are known as operations. In each case there is a set
(here the integers), and a relationship that assigns to each ordered pair (a, b) of elements of
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that set another element of the same set: a + b in one case, a - b in the other. The general
definition of operation is as follows.

Definition. An operation on a set S is a relationship (rule, correspondence) that assigns
to each ordered pair of elements of S a uniquely determined element of S.

Thus an operation is a special kind of mapping: First, S x S, the Cartesian product of
S with S, is the set of all ordered pairs (a, b) with a E S and b E S (Appendix A). Then an
operation on S is simply a mapping from S x S to S. In the case of addition as an operation
on the integers, (a, b) - a + b.

Example 3.1. On the set of positive integers, multiplication is an operation: (m, n) r-* mn,
where mn has the usual meaning, m times n. Division is not an operation on the set of
positive integers, because m = n is not necessarily a positive integer (1 = 2 = 1/2, for
instance).

The last example illustrates a point worth stressing. To have an operation on a set S, it
is essential that if a, b E S, then the image of the ordered pair (a, b) be in S. This property
of an operation is referred to as closure, or we say that S is closed with respect to the
operation.

If there is an established symbol to denote the image of a pair under an operation, as in
the case of a + b for addition of numbers, then that symbol is used. Otherwise some other
symbol is adopted, such as (a, b) -* a * b or just (a, b) r> ab, for instance, where it must
be specified what a * b or ab is to mean in each case. We often say "operation *" when we
mean "operation denoted by *."

Example 3.2. If * is defined by m * n = m" for all positive integers m and n, the re-
sult is an operation on the set of positive integers. Notice that 3 * 2 = 32 = 9, whereas
2 * 3 = 23 = 8. Thus 3 * 2 # 2 * 3, so that, just as with subtraction, the order makes a
difference.

Example 3.3. Let S denote any nonempty set, and let M(S) denote the set of all mappings
from S to S. Suppose that a E M(S) and 0 E M(S). Then a : S -* S, 0 : S -+ S, and
fl o a : S -* S, so that P o a E M(S). Thus o is an operation on M(S). We shall return to
this in Section 4.

Example 3.4. If S is a finite set, then we can specify an operation on S by means of a table,
similar to the addition and multiplication tables used in beginning arithmetic. We first form
a square, and then list the elements of S across the top and also down the left-hand side.
For an operation *, we put a * b at the intersection of the (horizontal) row with a at the
left and the (vertical) column with bat the top. For Table 3.1, u * v = w, v * u = v, and so
forth. Any way of filling in the nine spaces in the square, with entries chosen from the set
{u, v, w}, will define an operation on {u, v, w}. Changing one or more of the nine entries

Table 3.1

u V W

u I u w w

V V V V

w w u v
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will give a different operation. (If the nine entries are left unchanged, but * is changed
to some other symbol, the result would not be considered a different operation.) Tables
defining operations in this way are called Cayley tables, after the English mathematician
Arthur Cayley (1821-1895).

Example 3.5. For 2 x 2 matrices with real numbers as entries, addition and multiplication
are defined as follows.

a b+ w x_ a+w b+x
c d] [y z] = [c+y d+z

a b w x _ aw+by ax+bz
c d y z cw+dy cx+dz

These examples will reappear throughout the book. More generally, for any positive in-
teger n, both matrix multiplication and matrix addition can be defined on the set of all
n x n matrices with real numbers as entries. These examples are discussed more fully in
Appendix D.

What we are calling operations are often called binary operations, to emphasize that
they are mappings of ordered pairs, rather than mappings of single elements or ordered
triples or such. [Examples of operations that are not binary are a -* -a and (a, b, c) H
a(b + c) where a, b, c E IL] We shall have no occasion to discuss explicitly any operations
other than binary operations, so we shall not carry along the extra word binary.

The notion of operation is so fundamental in algebra that algebra could almost be
defined as the study of operations (with binary operations being the most important): But
this would be something like defining mathematics as the study of sets and mappings-
there is no question of the importance of these concepts, but at the same time they are too
general to be of real interest. In calculus, for example, it is not all functions f : R -* R
that are of interest, but only functions that have some property such as continuity or dif-
ferentiability. In the same way, in algebra the operations that are of interest usually pos-
sess certain special properties. We now introduce some of the most important of these
properties.

Definition. An operation * on a set S is said to be associative if it satisfies the condition

a * (b * c) = (a * b) * c associative law

for all a, b, c E S.

For example, addition of real numbers is associative: a + (b + c) = (a + b) + c for
all a, b, c E R. Subtraction of real numbers, however, is not associative: 2 - (3 - 4) =
2 - (-1) = 3, but (2 - 3) - 4 = (-1) - 4 = -5. Notice that if the equation in the asso-
ciative law fails for even one triple (a, b, c), then the operation is not associative. (See the
discussion in Appendix B on the negation of statements with quantifiers.)

Multiplication of real numbers is associative: a(bc) = (ab)c. But the operation defined
in Example 3.2 is not associative: For example, 2 * (3 * 2) = 2 * (32) = 2 * 9 = 29 = 512
but (2 * 3) * 2 = 23 * 2 = 8 * 2 = 82 = 64.

To motivate the next definition, think of the following properties of the integers 0 and
1:m+0=0+m=mand m, for everyintegerm.
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Definition. An element e in a set S is an identity (or identity element) for an operation *
on S if

e*a=a*e=a foreacha E S.

Thus 0 is an identity for addition of integers, and 1 is an identity for multiplication
of integers. Note that the definition requires both e * a = a and a * e = a, for each a E S.
(See Problems 3.11 and 3.12.) A similar remark applies to the next definition.

Definition. Assume that * is an operation on S, with identity e, and that a E S. An ele-
ment b in S is an inverse of a relative to * if

a * b = b * a = e.

Example 3.6. Relative to addition as an operation on the set of integers, each integer has
an inverse, its negative: a + (-a) = (-a) + a = 0 for each integer a. It is important to
notice that the inverse of an element must be in the set under consideration. Relative to
addition as an operation on the set of nonnegative integers, no element other than 0 has an
inverse: the negative of a positive integer is negative.

Example 3.7. Relative to multiplication as an operation on the set of real numbers, each
real number different from 0 has an inverse, its reciprocal: a (1/a) = (1/a) a = 1. Mul-
tiplication is also an operation on the set of integers (with identity 1), but in this case only
1 and -1 have inverses.

We have seen that it is possible to have an operation * and elements a and b such that
a * b # b * a (subtraction of integers, or Example 3.2, for instance). Operations for which
this cannot happen are numerous enough and important enough to deserve a special name.

Definition. An operation * on a set S is said to be commutative if

a * b = b * a commutative law

for all a, b E S.

Addition and multiplication of integers are commutative. Other examples will occur in
the problems and elsewhere. The next two examples summarize some properties of matrix
addition and multiplication.

Example 3.8. Consider addition on the set of all 2 x 2 real matrices (that is, matrices
with real numbers as entries), from Example 3.5. The matrix with every entry 0 (zero) is
an identity element, and

the inverse of
Ic
a b

J
is C-a -b

J .d -c d

Matrix addition is both associative and commutative.

Recall that the determinant of a real matrix

a b
A =

I
(3.1)

c d
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is the real number ad - bc. This will be denoted det(A). If B is another 2 x 2 real matrix,
then

det(AB) = det(A) det(B). (3.2)

This can be proved by considering the second equation in Example 3.5 and using simple
algebra to verify that (aw + by)(cx + dz) - (ax + bz)(cw + dy) = (ad - bc)(wz - xy).

Example 3.9. Let G denote the set of all 2 x 2 real matrices with det(A) 0 0. Because of
the condition in (3.2), G is closed with respect to multiplication, so multiplication is an
operation on G. Matrix multiplication is associative, but it is not commutative (see Problem
3.26, with the matrices required to have nonzero determinants). The identity matrix,

is an identity element for G. And each element of G has an inverse in G: Problem 3.27 asks
you to verify that if A is as in (3.1) and det(A) = ad - be # 0, then

t

d[a d] ad l be [-c a].

If det(A) = 0, then A does not have a multiplicative inverse.

(3.3)

PROBLEMS

Which of the following equations define operations on the set of integers? Of those that do, which
are associative? Which are commutative? Which have identify elements?

3.1. m*n=mn+1
3.2. m*n=(m+n)/2
3.3. m * n = m

3.4. m*n=mn2

3.5. m*n=m2+n2
3.6. m*n=2,"
3.7. m*n=3
3.8. m * n = mn

3.9. Does (m, n) -* m" define an operation on the set of all integers? (Compare Example 3.2.)

3.10. There is an identity for the operation in Example 3.3. What is it?

3.11. Prove that the operation in Example 3.2 has no identity element.

3.12. (a) Prove that the operation in Example 3.4 has no identity element.
(b) Change one entry in the table in Example 3.4 so that u becomes an identity element.

3.13. If * is an operation on S, T is a subset of S, and T is closed with respect to *, then two ofthe
following three statements are necessarily true, but one may be false. Which two are true?
(a) If * is associative on S, then * is associative on T.
(b) If there is an identity element for * on S, then there is an identity element for * on T.
(c) If * is commutative on S, then * is commutative on T.
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Assume that * is an operation on S. Complete each of the following statements.

3.14. *is not associative iffa*(b*c)#(a*b)*c....

3.15. * is not commutative iff a * b 0 b * a ....

3.16. e E S is not an identity element for * iff ....

3.17. There is no identity element for * if for each e E S there is an element a E S such that....

3.18. Complete the following table in a way that makes * commutative.

a b c d

a a b d

b c

c c d a b

d a c

3.19. Determine the smallest subset A of Z such that 2 E A and A is closed with respect to addition.

3.20. Determine the smallest subset B of Q such that 2 E B and B is closed with respect to addition
and division.

3.21. How many different operations are there on a one-element set? A two-element set? A three-
element set? An n-element set? (See the remarks in Example 3.4.)

3.22. How many different commutative operations are there on a one-element set? A two-element
set? A three-element set? An n-element set? (The Cayley table for a commutative operation
must have a special kind of symmetry.)

3.23. (a) Complete the following Cayley table in such a way that u becomes an identity element. In
how many ways can this be done?

u

V

V

(b) Can the table be completed in such a way that u and v both become identity elements?
Why or why not?

(c) Prove: An operation * on a set S (any S) can have at most one identity element.

3.24. Complete the following table in such a way that * is commutative and has an identity element,
and each element has an inverse. (There is only one correct solution. First explain why y must
be the identity element.)

w
x

y

z

w x y z

y
z w

x

w

3.25. Prove that addition is commutative on the set M(2, R) of all 2 x 2 matrices with real numbers
as entries (Example 3.5). Which property of addition of real numbers do you need?
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3.26. Prove that matrix multiplication (Example 3.5) is not commutative as an operation on the set
of all 2 x 2 matrices with real numbers as entries.

3.27. Verify that the statement in equation (3.3), Example 3.9, is correct.

3.28. Assume that * is an operation on S with identity element e. Prove that to check whether * is
associative on S it suffices to check the associativity condition for the nonidentity elements of
S; that is,

a * (b * c) = (a * b) * c

is automatically true if any one of a, b, or c is equal to e.

3.29. Assume that * is an associative operation on S and that a E S. Let

C(a)={x :x ES anda*x=x*a}.

Prove that C(a) is closed with respect to *.

330. Prove: If * is an associative operation on S, then

a*(b*(c*d))=a*((b*c)*d)
=(a*b)*(c*d)
=(a*(b*c))*d
=((a*b)*c)*d

for all a, b, c, d E S. (See the second paragraph in Section 14.)

331. Assume that * is an operation on S with identity element e and that

x*(y*Z)=(x*z)*y

for all x, y, z E S. Prove that * is commutative and associative.

3.32. Assume that e is an identity element for an operation * on a set S. If a, b E S and a * b = e
then a is said to be a left inverse of b and b is said to be a right inverse of a. Prove that if * is
associative, b is a left inverse of a, and c is a right inverse of a, then b = c.

SECTION 4 COMPOSITION AS AN OPERATION

In Example 3.3 we saw that if S is any nonempty set, then composition is an operation
on M(S), the set of all mappings from S to S. It is worthwhile to look more closely at this
operation, for its importance is matched only by that of addition and the other operations on
the familiar number systems. The most general properties are summarized in the following
theorem.

Theorem 4.1. Let S denote any nonempty set.

(a) Composition is an associative operation on M(S), with identity element is.

(b) Composition is an associative operation on the set of all invertible mappings in
M(S), with identity is.

PROOF. Associativity means that y o (f o a) = (y o $) o a for all a, fi, y E M(S).
By the definition of equality for mappings, this means that

[y o (f o a)](x) = [(y o P) o a](x)



26 CHAPTER I MAPPINGS AND OPERATIONS

for each x E S. To verify this, we can write

[y o (0 o a)](x) = yV o a)(x))

= y(P(a(x)))
_ (y o,d)(a(x))
_ [(y 0 ) o a](x)

(As in all proofs, it is important to understand the justification for each step. Remember
this test: Could you explain it to someone else?)

It is easy to verify that is o a = a o is = a for each a E M(S), which proves that is
is an identity element. (Compare Problem 2.7 with S = T.)

Now move to part (b) of the theorem. Notice that the question of whether y E M(S) is
an inverse of a E M(S) means the same whether taken in the sense of Section 2 (preceding
Example 2.3) or in the sense of Section 3 (preceding Example 3.6): y o a = a o y = is.
To prove that composition is an operation on the set of all invertible mappings in M(S),
assume that a, $ E M(S) and that both a and 0 are invertible. Then a and are one-to-one
and onto by Theorem 2.2. Therefore, fi o a is both one-to-one and onto by Theorem 2.1,
parts (c) and (a). But this implies that fi o a is invertible, again by Theorem 2.2.

Because composition is associative as an operation on all of M(S), it is certainly
associative when restricted to the invertible elements of M(S). The proof is now finished
by the observation that is is invertible.

Example 2.2 shows that composition as an operation on M(IR) is not commutative.
Problem 4.10 gives a more general statement about commutativity.

Notice that composition is an operation on a subset of M(S) if that subset is closed
with respect to composition. Also, whenever a subset of M(S) is closed with respect to
composition, then composition is necessarily associative as an operation on that subset; the
first paragraph of the proof of Theorem 4.1 provides a proof. Many important operations
involve composition on special sets of invertible mappings. We conclude this section by
giving two examples of this; more examples will come later.

Example 4.1. Let p denote a fixed point in a plane P, and let G denote the set of all
rotations of the plane about the point p. Each element of G represents an element of
M(P). Agree that two rotations are equal if they differ by an integral multiple of 360°.
Then composition is an operation of G: if a and ,8 are rotations about p, then P o a is the
rotation obtained by first applying a and then P (Figure 4.1). For example, if a denotes
counterclockwise rotation through 70°, and counterclockwise rotation through 345°, then
P o a is counterclockwise rotation through 415° or, equivalently, 55°, since we can ignore
multiples of 360°. This operation is associative by Theorem 4.1.

Figure 4.1
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An identity element is rotation through 0°, and each rotation has an inverse: rotation of
the same magnitude in the opposite direction. Finally, as an operation on G, composition
is commutative.

Example 4.2. For each ordered pair (a, b) of real numbers with a # 0, let aa,b : R -+ R
be defined by aa,b(x) = ax + b. Let A denote the set of all such mappings. Then com-
position is an operation on A. To verify this, let (a, b) and (c, d) be ordered pairs of real
numberswitha 0 0andc54 0.Then ac#O, and

(aa,b 0 ac,d)(x) = aa,b(ac,d(x))

= aa,b(cx + d)

= a(cx + d) + b
=acx+ad+b
= aac,ad+b(x)

Thus aa,b o ac,d = aac,ad+b Notice that A is a subset of M(R) and that composition is, as
always, associative. Further properties of this example are brought out in the problems.

Each mapping aa,b can be interpreted geometrically by considering what it does to the
points on a real line. If a > 1, for instance, then aa,o magnifies the distance of each point
from the origin by a factor of a: aa,o(x) = ax. Also, if b > 0, then a 1,b translates each point
b units to the right (assuming the real line is directed to the right): al,b(x) = x + b. Now
observe that aa,b = al,b o aa,o. It follows from these observations that if a > 1 and b > 0,
then aa,b corresponds to aa,o (magnification) followed by at,b (translation), as shown in
Figure 4.2. Problem 4.7 asks what happens in other cases.

a,,0 alb

0 X ax ax + b

an. b= al, b. a,,0

a>1
b>0

Figure 4.2

PROBLEMS

4.1. With S = (a, b), the set M(S) contains four elements; denote these by it, p, or, r, defined as
follows:

rr(a) = a p(a) = a a(a) = b r(a) = b

n(b) = a p(b) = b a(b) = a r(b) = b

r}.(a) Construct the Cayley table for composition (o) as an operation on M(S) = (rr, p, or,
(Asastart, por=rand aor=n.)

(b) Which is the identity element?
(c) Is o commutative as an operation on M(S)?
(d) Which elements of M(S) are invertible?
(e) Is o commutative as an operation on the set of invertible elements in M(S)?
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4.2. Let S = (a, b, c} and let A = (a, P, y, 8}, where a, 0, y, and d are the elements of M(S)

defined as follows.

a(a) = a a(b) = b a(c) = c

fl(a) = b P(b) = a P(c) = c

y(a) = a y(b) = a y(c) = a
8(a) = b 8(b) = b 8(c) = b

(a) Construct a Cayley table for A with respect to o. This table will show, in particular, that A
is closed with respect to o.

(b) The operation o is associative on A. Give a reason. (No calculations are necessary.)
(c) Is o commutative as an operation on A?
(d) The identity element of M(S) is in A. Which element is it?

4.3. Consider Example 4.1, and let po, p9o, peso, and pno denote clockwise rotation through
0°, 90°, 180°, and 270°, respectively. Composition is an operation on (po, p9o, Peso, Pno}
(p270 o P90 = po, for instance). Construct the corresponding Cayley table. Is there an identity
element? Does each element have an inverse?

4.4. Let S denote a nonempty set, and let N(S) denote the set of one-to-one mappings from S
to S.
(a) Which theorems prove that composition is an associative operation on N(S)? (The answer

should be specific and complete.)
(b) Is there an identity element for composition as an operation on N(S)?
(c) For which sets S is N(S) the same as the set of all invertible mappings from S to S?

4.5. (a) Consider Example 4.1, and let a denote clockwise rotation through 7r/2 radians. Let H
denote the smallest subset of G such that a E H and H is closed with respect to o. Deter-
mine H. (Suggestion: Denote a o a by a2, denote a o a o a by a3, and so on. H contains
four distinct elements.)

(b) Same as (a) with 7r12 replaced by n/6.
(c) Same as (a) with 7r/2 replaced by a/k (k E N). How many distinct elements (rotations)

does H contain? (Treat rotations as indistinct if they differ by an integral multiple of 2n.)

4.6. Consider the operation o on the set A in Example 4.2.
(a) Verify that a1,o is an identity element.
(b) Prove that each a,,b E A is invertible by verifying that it is one-to-one and onto. (Remember

that a 4 0.)
(c) Determine (c, d) so that a,.,a is an inverse of a,,b.

4.7. Give a geometric interpretation of a,,b in Example 4.2 under each of the following conditions.
(There can be shrinking rather than magnification, and translation to the left as well as to the
right.)
(a) 0<a<1andb=0.
(b) a < O and b = 0.
(c) a=1andb<0.

4.8. Let B and C denote the following subsets of A in Example 4.2:

B=(a,,o:aE Randa54 0)
C={aibbER}

(a) Verify that o is an operation on B. (That is, verify that B is closed with respect to o.) Is it
associative? Commutative? Is there an identity element?
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(b) Verify that o is an operation on C. Is it associative? Commutative? Is there an identity
element?

(c) Verify that each mapping in A is the composition of a mapping in B and a mapping in C.

4.9. Consider Example 4.2 and let D denote the smallest subset of A such that aij E D and D is
closed with respect to O. Determine D.

4.10. Verify that if S contains more than one element, then composition is not a commutative
operation on M(S). (Try "constant" mappings, like sr and r in Problem 4.1.)

4.11. Let S denote the set of all real numbers except 0 and 1. Consider the six mappings from S to S
defined as follows:

al(X)=X a2(x)=
X

a3(X)=1-X

( ) 1
1

ti ) a (X) =Ya4 X = - z = I Xas r 6 X I

(a) Verify that composition is an operation on (al, ... , a6) by constructing a Cayley table.
[As a start,

(a6 o az)(X) = a6( X) = I I1X = as(),

SO a6 O a2 = a5.]

(b) There is an identity element. What is it?
(c) Show that each of the six elements has an inverse.
(d) Is o commutative as an operation on [a I, ... , a6)?
(e) The operation o on (a1, ... , a6) is associative. Why? (You may refer to the text.)

4.12. Prove that if a : S -* T, $ : T - U, and y : U -s V are any mappings, then y o (,8 o a) _
(y o 0) o a. (The associativity in Theorem 4.1 is the special case of this with S = T = U = V.)

4.13. Prove that each invertible mapping has a unique inverse. [Assume that a : S -+ T, fi : T - S,
y:T -+ S,Boa=you=is, and ao8=aoy=Lr. Show that $=y by using
P o (a o y) = (P o a) o y, which is a consequence of Problem 4.12.]

4.14. Is composition an operation on the set of all continuous mappings from R to R? (The answer
requires either a theorem or an example from calculus.)

4.15. Prove that if V is a vector space, then composition is an operation on the set of all linear
transformations from V to V. (This requires some knowledge of linear algebra. The basic ideas
are reviewed in Appendix D.)

4.16. Assume that S is a nonempty set and that a E M(S). Then left and right inverses for a relative
too are defined as in Problem 3.32.
(a) Prove that a has a left inverse relative to o if a is one-to-one.
(b) Prove that a has a right inverse relative to o if a is onto.



CHAPTER II

INTRODUCTION TO GROUPS

We are now ready for one of the central ideas of modem mathematics, that of a group. In
the first chapter we met a number of examples of sets with operations, and we observed
that such operations may or may not possess any of several special properties such as
associativity or the existence of an identity element. We shall see that a group is a set
together with an operation such that certain specified properties are required to hold. These
properties have been singled out because they arise naturally in many important special
cases. By studying groups we can arrive at a clearer understanding of each of those special
cases.

This chapter gives an introduction to groups through examples and a connection with
symmetry. Later chapters treat the general theory and applications of groups.

SECTION 5 DEFINITION AND EXAMPLES

It takes patience to appreciate the diverse ways in which groups arise, but one of these ways
is so familiar that we can use it to ease our way into the basic definition. To this end, recall
the following three things about the set of integers with respect to addition. First, addition
is associative. Second, 0 is an identity element. And third, relative to 0, each integer has an
inverse (its negative). Much more can be said about the integers, of course, but these are
the properties that are important at the moment; they show that the integers with addition
form a group, in the sense of the following definition.

Definition. A group is a set G together with an operation * on G such that each of the
following axioms is satisfied:

Associativity

a*(b*c)=(a*b)*c for all a,b,cEG.

Existence of an identity element

There is an element e E G such that a * e = e * a = a for each a E G.

Existence of inverse elements

For each a E G there is an element b E G such that a * b = b * a = e.

30
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Notice that a group consists of a pair of things, a set and an operation on that set. In
particular, the set must be closed with respect to the operation. Often, a group is referred
to by naming only the underlying set, but that is safe only if it is clear what operation is
intended. As a special case, whenever we refer to the group of integers, the operation is
meant to be addition.

Example 5.1. The set of even integers together with addition is a group. Addition is an
operation because the sum of two even integers is an even integer. The associative law is
true for all integers, so it is certainly true for the subset of all even integers. The identity
element is 0 (an even integer), and the inverse of an even integer x is -x (again an even
integer).

Example 5.2. The set of positive integers with addition is not a group, because there is
no identity element. Even if we considered the positive integers along with 0 we would not
get a group, because no element other than 0 would have an inverse.

Example 5.3. The set {0} together with addition is a group. Notice that because a group
must contain an identity element, the set underlying a group must always contain at least
one element.

Example 5.4. The set of positive rational numbers with multiplication is a group. If r/s
and u/v are positive, then (r/s) (u/v) = ru/sv is also positive. We take the associative
law to be a generally known fact from arithmetic. (We shall have more to say about this in
Chapter VII.) The identity element is 1, and the inverse of r/s is s/r (r $ 0, s $ 0).

Example 5.5. Tables 5.1 and 5.2 define operations on the set {a, b, c} that yield groups.
In Table 5.1 (*), a is an identity element and the inverses of a, b, and c are a, c, and b,
respectively. In Table 5.2 (#), b is an identity element and the inverses of a, b, and c are
c, b, and a, respectively. The verification of associativity is Problem 5.18. This example
illustrates why, in general, we should specify the operation, not just the set, when talking
about a group.

Table 5.1

a

b

c

a b c

a b c

b c a

c a b

Table 5.2

a

b

c

a b c

c a b

a b c

b c a



32 CHAPTER II INTRODUCTION TO GROUPS

Example 5.6. If S is any nonempty set, then the set of all invertible mappings in M(S) is
a group with composition as the operation. This is merely a restatement of Theorem 4.1(b).
We shall return to groups of this type in the next section.

Example 5.7. Let p denote a fixed point in a plane, and let G denote the set of all rotations
of the plane about the point p. In Example 4.1 we observed that composition is an operation
on this set G, and we also verified everything needed to show that this gives a group.

Example 5.8. Let A denote the set of all mappings ao,b : R -* R, as defined in Example
4.2. Recall that a, b E IR, a # 0, and aO,b(x) = ax + b for each x E R. With composition
of mappings as the operation, this yields a group. The rule for composition was worked
out in Example 4.2. The identity element is al,o [Problem 4.6(a)]. The inverse of ao,b is
aQ-',_a- b (Problem 5.19).

Example 5.9. Let M(2, ]R) denote the set of all 2 x 2 real matrices together with addition
as the operation. Example 3.8 shows that M(2, IR) is a group.

Example 5.10. Let GL(2, R) denote the set of all 2 x 2 real matrices with nonzero deter-
minant. Example 3.9 shows that GL(2, R), with matrix multiplication, is a group. This is
called the general linear group of 2 x 2 matrices over R. It contains only matrices with
nonzero determinant so that each matrix will have an inverse.

Definition. A group G is said to be Abelian if the group operation is commutative
(ab = ba for all a, b E G). Non-Abelian means not Abelian.

The name Abelian is in honor of the Norwegian mathematician Niels Henrik Abel
(1802-1829), whose contributions will be discussed in Chapter X. The groups in Examples
5.1, 5.3, 5.4, 5.5, 5.7, and 5.9 are Abelian. The groups in Examples 5.8 and 5.10 are non-
Abelian (Problems 5.19 and 3.26). The group in Example 5.6 is non-Abelian if I S I > 2
(Problem 6.11).

Examination of the groups given thus far will reveal that in each case there is only one
identity element. The definition requires that there be one; the point now is that there cannot
be more than one. Similarly, each element in each group has only one inverse element. Here
is a formal statement and proof of these two facts.

Theorem 5.1. Assume that G together with * is a group.

(a) The identity element of G is unique. That is, if e and f are elements of G such that

e*a=a*e=a foreachaEG
and

f*a=a*f=a foreachaEG,
then e = f.

(b) Each element in a group has a unique inverse. That is, if a, x, and y are elements
of G, e is the identity element of G, and

and

a * x = x * a = e

then x = y.

a*y=y*Q=e,
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PROOF. (a) Assume that e and f are as stated. Then e * a = a for each a E G, and
so, in particular, e * f = f . Similarly, using a = e in a * f = a, we have e * f = e. Thus
f =e* f =e,andsoe= f, as claimed.
(b) With a, x, and y as stated, write

x = x * e (e is the identity)
=x*(a*y) (a*y=e)
_ (x * a) * y (associativity)
=e*y (x*a=e)
= y (e is the identity).

Because of Theorem 5.1, it makes sense to speak of the identity element of a group, and
the inverse of a group element. It is customary to use a-I for the inverse of a group element
a when there is no conflicting natural notation (such as -a in the case of the integers with
addition). Thus a * a-I = a-1 * a = e. This is in accordance with the notation for inverses
relative to multiplication of real numbers, and with notation for other exponents in groups,
to be introduced in Section 14. If several groups are being considered at once, eG can be
used in place of e to denote the identity of a group G.

The number of elements in the set underlying a group is called the order of the group;
we denote this by I G 1. (More generally, I S I denotes the number of elements in the set S.)
A group is said to be finite or infinite depending on whether its order is finite or infinite.
The group in Example 5.3 has order 1. The groups in Example 5.5 each have order 3. We
shall compute the orders of the groups in Example 5.6, for S finite, in the next section. All
other groups considered thus far are infinite.

PROBLEMS

In Problems 5.1-5.10, decide whether the given set of numbers forms a group with respect to the
given operation. If it does, give the identity element and the inverse of each element. If it does not,
give a reason. In each case, be sure to check whether the given set is closed with respect to the given
operation.

5.1. {l}, multiplication.

5.2. All nonzero rational numbers, multiplication.

5.3. All rational numbers, addition.

5.4. All rational numbers, multiplication.

5.5. (-1, 1}, multiplication.

5.6. (-1, 0, 1), addition.

5.7. All integers, multiplication.

5.8. (n : n = l0k for some k E Z}, addition.

5.9. All nonzero rational numbers, division.

5.10. All integers, subtraction.

5.11. Verify that (2' : m E Z) is a group with respect to multiplication. Identify clearly the properties
of Z and R that you use.

5.12. Verify that (2'"3" : m, n E Z) is a group with respect to multiplication. Identify clearly the
properties of Z and R that you use.
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5.13. Let F denote M(R), the set of all mappings from R to R. For f, g E F define f + g by
(f + g)(x) = f (x) + g(x) for all x E R. Then f + g E F. Verify that with this operation F
is a group.

5.14. Let H denote the set of all f : R R such that f (x) 54 0 for all x E R. For f, g E H, define
fg by (fg)(x) = f(x)g(x) for all x E R. Then fg E H. Verify that with this operation H is a
group. How does this group differ from the group of invertible mappings in M(R) (Example
5.6)?

5.15. If ISI > 1, then M(S) is not a group with respect to composition. Why?

5.16. Let G denote the set of all 2 x 2 real matrices A with det(A) # 0 and det(A) E Q (the rational
numbers). Prove that G is a group with respect to multiplication. (Matrix multiplication is
always associative, so you may assume that. But check closure and the existence of an identity
element and inverse elements very carefully.) Is this group Abelian?

5.17. Let G denote the set of all 2 x 2 real matrices with determinant equal to 1. Prove that G is a
group with respect to multiplication. (You may assume associativity.)

5.18. Verify the associative law for the operation * in Example 5.5. (Notice that each time the identity
is involved there is really no problem. See Problem 3.28.)

5.19. Consider the group in Example 5.8.
(a) Verify the claim that the inverse of aa,b is b.

(b) Verify that the group is non-Abelian.

5.20. If {a, b} with operation * is to be a group, with a the identity element, then what must the
Cayley table be?

5.21. If (x, y, z} with operation * is to be a group, with x the identity element, then what must the
Cayley table be?

5.22. Prove: If G is a group, a E G, and a * b = b for some b E G, then a is the identity element
of G.

5.23. There are four assumptions in Theorem 5.1(a):

e* a= a for each a E G f* a= a for each a E G
a* e= a for each a E G a* f= a for each a E G.

The proof of Theorem 5.1(a) uses only two of these assumptions. Which two? Which of the
three axioms for a group are used?

5.24. Assume S is a nonempty set and G is a group. Let Gs denote the set of all mappings from S to
G. Find an operation on Gs that will yield a group.

SECTION 6 PERMUTATIONS

A permutation of a nonempty set S is a one-to-one mapping from S onto S. Because a
mapping from S to S is one-to-one and onto if it is invertible, the permutations of S are the
same as the invertible elements in M(S). We observed in Example 5.6 that with composition
as the operation these invertible elements form a group. Such groups are of sufficient interest
for us to state this as a theorem.
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Theorem 6.1. The set of all permutations of a nonempty set S is a group with respect to
composition. This group is called the symmetric group on S, and will be denoted Sym(S).

Any group whose elements are permutations, with composition as the operation, is
called a permutation group; or, if we want to specify the underlying set S, a permutation
group on S. Therefore Sym(S) is a permutation group on S. But, in general, a permuta-
tion group on S need not contain all of the permutations of S. Examples are the group
of rotations of a plane about a fixed point p (Example 5.7) and the group of mappings
aa,b : R -> R (a # 0) (Example 5.8). We shall see that permutation groups have a number
of important applications. At the moment, we concentrate on some elementary facts about
the groups of the form Sym(S), especially for S finite.

When S is the set { 1 , 2, ... , n}, consisting of the first n positive integers, the group
Sym(S) is commonly denoted S. An element a of S can be conveniently represented in
two-row form as follows. First write 1, 2, ..., n, and then below each number k write its
image a(k). Thus

(1 2 3 4)
2 4 3 1

represents the permutation in S4 defined by 1 ra 2, 2 H 4, 3 H 3, and 4 H 1. The identity
element of S. is

1 2 n

(1 2 .. n

The inverse of an element is obtained by reading from the bottom entry to the top entry
rather than from top to bottom: if 1 appears beneath 4 in a, then 4 will appear beneath 1 in
a-1. Thus

1 2 3 4

(2 4 3 1) -' -
(1 2 3 4

1 3 2)

In composing permutations we always follow the same convention we use in composing
any other mappings: read from right to left. Thus

3 4 3 2 3

(2 4 1

3)0(3

4 1 2) - (1 3 2 4)

but

2 3 1 2 3 4 3 4

(3 4 1 2) c (2 4 1 3) - (4 2 3 1)

Warning: Some authors compose permutations from left to right. One must check in
each case to see which convention is being followed.
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Example 6.1. The elements of S3 are

2 3 3

(1 2 3) (2 3 1) (3 1 2)

2 3 2 3

(2 1 3) (3 2 1) (1 3 2)

Here are two representative computations.

3 1 2 3

(3 1 2) c (3 2 1) - (2 1 3)

The group S, has order 1; S2 has order 2; and, as we have just seen, S3 has or-
der 6. To give a general formula for the order of S we first recall that if n is a posi-
tive integer, then n! (read n factorial) is defined by n! = 1 2 n, the product of
all positive integers up to and including n. Thus 1! = 1, 2! = 2, 3! = 6, 5! = 120, and
20! = 2,432,902,008,176,640,000.

Theorem 6.2. The order of S is n!.

PROOF. The problem of computing the number of elements in S is the same as that
of computing the number of different ways the integers 1, 2, ... , n can be placed in the n
blanks indicated (using each integer just once):

If we begin filling these blanks from the left, there are n possibilities for the first blank.
Once that choice has been made, there remain n - 1 possibilities for the second blank.
Then there are n - 2 possibilities for the third blank, and so on. The theorem follows by
repeated application of this basic counting principle: If one thing can be done in r different
ways, and after that a second thing can be done in s different ways, then the two things can
be done together in rs different ways.

Theorem 6.3. If n > 3, then S is non-Abelian.

PROOF. If a and P in Sn are defined by

2 3a _ (1 2 3

...
and f =

1 3 2 2 1
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with each number after 3 mapped to itself in each case, then

o a - 1 2 3

3 1 2
but ao8=

Thus fi o a 54 a o i9, and the group is non-Abelian.

It is easily seen that S1 and S2 are Abelian. Indeed, if S is any set containing only one
or two elements, then Sym(S) is Abelian. On the other hand, if S contains more than two
elements, then Sym(S) is non-Abelian (Problem 6.11).

Elements of Sn are frequently written using cycle notation. If S is a set, and
a1, a2, ... , ak E S, then (ala2 ... ak) denotes the permutation of S for which

a1 H a2, a2 H a3, .. , ak_1 H ak, ak H a1,

and

x r+ x for all other x E S.

Such a permutation is called a cycle or a k-cycle. If a is any element of S, then the 1-cycle
(a) is the identity permutation of S.

Example 6.2. Consider

To write this in cycle notation:

1 2 3 4 5

2 4 3 1 5

Begin with (1

Next, 1 H 2, so write (1 2

Next, 2 H 4, so write (1 2 4

Next, 4 1, so close the cycle, giving (1 2 4).

Now begin a new cycle with 3, the smallest choice outside (1 2 4).

This gives (1 2 4)(3
But 3 ra 3, so close the second cycle, giving (1 2 4)(3)
Finally, 5 r* 5, so we get (1 2 4)(3)(5).

Because (3) and (5) both represent the identity permutation, they can be omitted, which
gives

(1 2 3 4 5)
2 4 3 1 5

=(I 2 4).

Notice that (1 2 4) can denote an element of S for any n > 4. For example, in S4 it
is the same as (1 2 4)(3), and in S6 it is the same as (1 2 4)(3)(5)(6).
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Cycles are composed just as any other permutations are (except that the symbol o
is usually omitted). We shall occasionally follow the common practice of referring to a
composition of cycles, or of other permutations, as a product. If necessary for clarity,
(al, a2, ... , ak) can be written in place of (ala2 ... ak).

Example 6.3. Remember that to compose two permutations (or any mappings), we begin
with the permutation (or mapping) on the right and then apply to the output the permu-
tation on the left. Consider (1 2 4)(3 4). To write the product (composition) in cycle
notation:

Begin with (1

The cycle (3 4) fixes 1, and then (1 2 4) gives 1 r+ 2, so write (1 2

The cycle (3 4) fixes 2, and then (1 2 4) gives 2 4, so write (1 2 4
The cycle (3 4) gives 4 r-> 3, and then (1 2 4) fixes 3, so write (1 2 4 3

The cycle (3 4) gives 3 H 4, and then (1 2 4) gives 4 H 1,
so 3 r+ 1 by the product and we close the cycle, giving (1 2 4 3).

Thus (1 2 4)(3 4) = (1 2 4 3).

Example 6.4

(1 2 4)(3 5) = (1 2 3 4 51 (1 2 3 4 5

2 4 3 1 5 1 2 5 4 3

(1 2 3 4 5)
2 4 5 1 3

(1) = (2) = (3) _ (1)(2)(3)

(1 2 4)(3 4) _ (1 2 4 3)

(3 4)(1 2 4) _ (1 2 3 4)

(1 2 4)(3)(5) _ (1 2 4)

(1 2 3 4)=(2 3 4 1)=(3 4 1 2)=(4 1 2 3)

Cycles (ala2 . . am) and (bIb2 . . are disjoint if ai # bj for all i, j. For example,
(1 2 4) and (3 5 6) are disjoint, but (1 2 4) and (3 4 6) are not. Disjoint cycles com-
mute; that is, if a and fi represent disjoint cycles, then up = Oct (Problem 6.16).

Theorem 6.4. Any permutation of a finite set is either a cycle or can be written as a product
of pairwise disjoint cycles; and, except for the order in which the cycles are written, and
the inclusion or omission of 1-cycles, this can be done in only one way.

We shall omit the proof of Theorem 6.4, but it is illustrated in the following example.
In each case, we simply start the first cycle with 1, continue until we get back to 1, and
then close the first cycle. Then start the second cycle with the smallest number not in the
first cycle, continue until we get back to that number, and then close the second cycle. And
so on, never repeating a number that has already appeared. The result is called the cyclic
decomposition of the permutation.
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Example 6.5. In each of the following equations, the right-hand side gives the cyclic
decomposition of what is on the left.

1 2 3 4 5

3 4 1 5 2
= (1 3)(2 4 5) = (2 4 5)(1 3)

(1 4 5)(2 3 5) = (1 4 5 2 3)

(2 4)(1 3 2)(2 5 4) = (1 3 4)(2 5) = (2 5)(1 3 4)

(1 6)(1 5)(l 4)(1 3)(1 2) = (1 2 3 4 5 6)

(1 2 3 4)-' = (4 3 2 1) = (1 4 3 2)

(1 5 4 6 3 2)(4 3 6)(2 5) _ (1 5)(2 4)(3)(6)

_ (1 5)(2 4)

Example 6.6. Table 6.1 is the Cayley table for S3. Here is a reminder of two of our
conventions: Across from a and below $ is a o P, which is the permutation obtained by
first applying ,B and then a.

Table 6.1

(1) (1 2 3) (1 3 2) (1 2) (1 3) (2 3)

(1) (1) (1 2 3) (1 3 2) (1 2) (1 3) (2 3)

(1 2 3) (1 2 3) (1 3 2) (1) (1 3) (2 3) (1 2)

(1 3 2) (1 3 2) (1) (1 2 3) (2 3) (1 2) (1 3)

(1 2) (1 2) (2 3) (1 3) (1) (1 3 2) (1 2 3)

(1 3) (1 3) (1 2) (2 3) (1 2 3) (1) (1 3 2)

(2 3) (2 3) (1 3) (1 2) (1 3 2) (1 2 3) (1)

Example 6.7. This example is optional at this point, but it provides an exercise in care-
ful thinking about one- and two-row forms of permutations, and explains the following
statement, which is used in the proof of Theorem 55.1.

If a, $ E then the cyclic decomposition of 0 o a o 0-1 can be found from the cyclic
decomposition of a by replacing each number k by the number appearing below k in the
two-row form of 0.

For example, if

a = (1 2 5)(3 6) (4) and 0 =
1 2 3 4 5 6

5 3 1 2 4 6'

then fi o at o P-i = (5 3 4)(1 6)(2) (as can also be verified by direct calculation).
Here is a proof: If a, P E S,,, and 1 < k < n, then, in the cyclic decomposition of

a, the number k is followed by a(k). [For a = (1 2 5), this would mean in particu-
lar that 5 is followed by 1.] The numbers under k and a(k) in the two-row form of
,B are P(k) and (B o a)(k), respectively. But, since P-1 o P = i (the identity mapping),
P o a = (3 o a o ($-' o 0) = (P o a o P-') o fl, so the number following 0(k) inthe cyclic
decomposition of $ o a o fi-1 is (P o a)(k).
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PROBLEMS

6.1. Assume a=
1 2 3 4

and
1 2 3 4

(1 4 3 2) = (3
1 4 2

Compute each of the following.
(a) Q o a (b) a o$ (c) a-' (d)

(e) P-1 o a-' (f) a-i -fl-1 (g) (P o a)` (h) (a o fi)-'

6.2. Re t Problem 6.1 using a
1 2 3 4

and = 1 2 3 4
Pea g

(3 4 1 2- (4 3 1 2

6.3. Write each of the following as a single cycle or a product of disjoint cycles.

(a) (1 5 6 4 2 6)
(b) (1 2)(1 3)(l 4)

1

(c) (1 3)-'(2 4)(2 3 5)-' (d) (1 4 5)(1 2 3 5)(1 3)

6.4. Write each of the following as a single cycle or a product of disjoint cycles.

(a) (1

1 2 3 4 5 6

6 4 5 3 6)
(b) (1 4)(1 3)(l 2)

(c) (1 2 3)-1(2 3)(1 2 3) (d) (2 4 5)(l 3 5 4)(1 2 5)

6.5. (a) Write all of the elements of S4 both in two-row form and using cycle notation.
(b) Which elements of S4 are their own inverse?

6.6. (a) How many elements of S3 map 3 to 3?
(b) How many elements of S, map n to n?

6.7. (a) Write (a,a2 . . . ak)-' in cycle notation (without the symbol for inverse).
(b) For which values of k will every k-cycle be its own inverse?

6.8. Rewrite the proof of Theorem 6.3 using cycle notation.

6.9. Show that every element of S. is a 2-cycle or can be written as a product of 2-cycles. [Sug-
gestion: (a1a2 ... ak) = (aiak). . (ala3)(a,a2). Two-cycles, which we'll return to in Section
7, are also called transpositions.]

6.10. Complete: If G (with operation *) is a group, then G is non-Abelian if a * b 54 b * a .
6.11. Prove that if S contains at least three elements, then Sym(S) is non-Abelian. (The main idea is

already in the proof of Theorem 6.3.)

6.12. By Problem 4.1, if ISI = 2, then composition, as an operation on M(S), is not commutative.
However, Sym(S) is Abelian. Explain.

6.13. Prove that if a is a k-cycle with k > 2, then is o a is a cycle if k is odd.

6.14. Using a and P from Problem 6.2, compute $ o is o 0-' using the statement proved in Example
6.7 (after first writing a in one-row form). Check your answer using only two-row forms.

6.15. If G is a group with operation *, and a, b E G, then b * a * b-' is called a conjugate of a in
G. Use Example 6.7 to help compute the number of conjugates of each 3-cycle in S. (n > 3).
[Remember that (r s t) = (t r s) = (s t r).]

6.16. Assume that a and 0 are disjoint cycles representing elements of S,,, say a = (aI a2 . . . a,) and
fi = (bib2 ... b,) with ai 36 b1, for all i and j.
(a) Compute (a o fl)(ak) and (( o a)(ak) for 1 < k < s. [Here (a o 0)(ak) denotes the image

of ak under the mapping a o 0; that is, (ak) is not a I-cycle.]
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(b) Compute (a o ,B)(bk) and (fi o a)(bk) for 1 < k < t.
(c) Compute (a o f)(m) and ($ o a)(m) for 1 < m < n with m 36 a; and m bj for all i

and j.
(d) What do parts (a), (b), and (c), taken together, prove about the relationship between a o

and$oa?

SECTION 7 SUBGROUPS

The set of even integers is a subset of the set of all integers, and both sets are groups with
respect to addition. Thus the even integers form a subgroup of the group of all integers,
according to the following definition.

Definition. A subset H of a group G is a subgroup of G if H is itself a group with respect
to the operation on G.

Notice that if G is a group with operation *, H is a subgroup of G, and a, b E H,
then a * b E H. That is, H must be closed with respect to the operation *. In particular
a*aCHforeach aCH.

Example 7.1

(a) The group of integers with addition is a subgroup of the group of real numbers
with addition.

(b) With multiplication, (1, -11 is a subgroup of the group of nonzero real numbers.
(c) Any group is a subgroup of itself.
(d) If e is the identity of a group G, then {e} is a subgroup of G.

Theorem 7.1 will provide a convenient way to decide whether a subset of a group is a
subgroup. But first we need the following preliminary result.

Lemma 7.1 Let G be a group with operation *, and let H be a subgroup of G.

(a) If f is the identity of H and e is the identity of G, then f = e.

(b) If a E H, then the inverse of a in H is the same as the inverse of a in G.

PROOF. (a) If f is the identity of H, then f * f = f . Therefore, if f denotes the
inverse off in G, then

f-`*(f*f)f f
(f-'*f)*f=e

e* f =e
f =e.

(b) Assume a E H. Let a-' denote the inverse of a in G and let c denote the inverse of
a in H. Then a * c = c * a = f, so a * c = c * a = e by part (a) of the proof. However,
Theorem 5.1(b) implies that a-' is the unique element x in G satisfying a * x = x * a = e.
Therefore, c = a-'.
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Theorem 7.1. Let G be a group with operation *, and let H be a subset of G. Then H is a
subgroup of G iff

(a) H is nonempty,

(b) if aeHandbeH,then a*bEH,and
(c) if a E H, then a-1 E H.

PROOF. Assume H to be a subgroup. Then, being a group, it must contain at least an
identity element and thus be nonempty, confirming condition (a). The necessity of closure
for a group, condition (b), has already been pointed out. Now consider condition (c). If
a E H, then a must have an inverse in the set H. By Lemma 7.1(b), this inverse is a-1,
the inverse of a in G. Thus a-1 E H. We have now proved that if H is a subgroup, then
conditions (a), (b), and (c) must be satisfied.

Assume now that H is a subset satisfying (a), (b), and (c). To verify that H is a group we
shall verify that with respect to *, H satisfies the conditions in the definition of a group in
Section 5. Property (b) ensures that * is an operation on H. The associative law is satisfied
automatically: If a * (b * c) = (a * b) * c is true for all elements in G, then it is certainly
true for all elements in H, a subset of G. To show that H contains e, the identity element of
G, let x denote any element of H; there is such an element by condition (a). By condition
(c), x-1 E H. Therefore, by condition (b), e = x * x-1 E H. Thus H is a subgroup.

Problem 7.22 contains a variation on Theorem 7.1, showing how (b) and (c) can be
combined into a single condition. If H is known to be a finite set, then condition (c) of
Theorem 7.1 can be omitted altogether (Problem 14.35).

Example 7.2. If k is an integer, the set of all integral multiples of k satisfies the conditions
of Theorem 7.1 and is therefore a subgroup of Z (with respect to +). In this case, the inverse
of an element is the negative of the element. The special case k = 2 gives the subgroup of
all even integers.

Example 7.3. Table 7.1 shows that if H = {(1), (1 2 3), (1 3 2)}, then H is a sub-
group of S3. Checking the conditions of Theorem 7.1, we see first that H is nonempty.
Closure is fulfilled because nothing appears in the table except (1), (1 2 3), and
(1 3 2). And condition (c) is satisfied because (1)-1 = (1), (1 2 3)-1 = (1 3 2), and
(1 3 2)-1 = (1 2 3).

Table 7.1

(1)

(1 2 3)

(1 3 2)

(1) (1 2 3) (1 3 2)

(1) (1 2 3) (1 3 2)

(1 2 3) (1 3 2) (1)

(1 3 2) (1) (1 2 3)

We now consider a general class of subgroups of which Example 7.3 is a special
case. First, we define a transposition to be a 2-cycle in S (for any n). For example, the
transpositions in S3 are (1 2), (1 3), and (2 3). It can be verified that every element of
S. is a transposition or a product of transpositions (Problem 6.9). For instance, (1 2 3) _
(1 3)(1 2).
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When we write an element of S. as a product of transpositions we may need either an
even number of factors, as in

(1 2 3 4 5) = (1 5)(1 4)(1 3)(1 2),

or an odd number of factors, as in

(1 2 5)(3 4) = (1 5)(1 2)(3 4).

We define a permutation to be even or odd according to whether it can be written as a
product of an even or an odd number of transpositions, respectively. Thus the preceding
equations show that (1 2 3 4 5) is even and (1 2 5)(3 4) is odd.

We must be careful of one thing with this definition. A permutation can be written as
a product of transpositions in more than one way, such as (1 2 3) = (1 3)(1 2) and
(1 2 3) = (2 3)(1 2)(1 3)(2 3); the first representation has two factors and the second
has four. It must be proved that, for any permutation of { 1 , 2, ... , n), the number of transpo-
sitions needed is necessarily either even or odd, depending only on the given permutation.
A proof is given in Section 55, which can be read now if desired. Thus both of the terms
even and odd are well defined for permutations. We can now state the following result.

Theorem 7.2 (Alternating Group). The set of all even permutations in Sforms a subgroup
of S for each n > 2. This subgroup is called the alternating group of degree n, and will be
denoted by An. The order of A is 1(n!).

PROOF. Use Theorem 7.1. The identity permutation is in A. because (1) = (1 2)
(1 2). If a, b E An, then ab E An because a product of an even number of transposi-
tions and an even number of transpositions will give an even number of transpositions.
Finally, the inverse of a = (aia2)(a3a4)...(ak-jak)is a-' = (ak-iak)...(a3a4)(aia2),so
that a-' can be written using the same number of transpositions as a. Thus a E A. implies
a-' E A.

To prove that the order of An is 1(n!), it suffices to prove that S, has the same number
of even permutations as odd permutations, since S has order n!. To do this, it suffices
to prove that the mapping B : A -+ S defined by 0(a) = all 2) is one-to-one and that

is the set of all odd permutations in S. This is left to Problem 7.7.

The group H in Example 7.3 is A3. Problem 7.8 asks you to find the elements in A4.
We close this section with two other types of subgroups of permutation groups. One

type will be used in Section 8 in studying symmetry, and the other will be used in Chapter
XIV in applications to combinatorics.

Assume that G is a permutation group on a set S, and that T is a subset of S. Let

GT = {a E G : a(t) = t for each t E T }. (7.1)

We say that the elements of GT leave T elementwise invariant.

Example7.4. Let S = {1, 2, 3, 4}, G = Sym(S) = S4, and T = {1, 2}. Then

GT = {(l)(2)(3)(4),(l)(2)(3 4)} = {(l),(3 4)}

(see Figure 7.1). This is a subgroup of G.



44 CHAPTER II INTRODUCTION TO GROUPS

An element of GTMust leave
each element inTfixed.

An element of Gr may permute
these elements (outside of n

among themselves.

Figure 7.1

Just as in the example, GT is always a subgroup. Before proving that, however, we
introduce another subset of G closely related to GT. If a is a permutation of S, and T is a
subset of S, then a(T) denotes the set of all elements a(t) fort E T. Let

G(T) ={aEG:a(T)=T}. (7.2)

Thus, if a E G(T) then a may permute the elements of T among themselves, but it sends
no element of T outside T. We say that the elements of G(T) leave T invariant.

Example 7.5. With S, G, and T as in Example 7.4,

GT = {(l)(2)(3)(4), (1 2)(3)(4), (1)(2)(3 4), (1 2)(3 4)}

_ {(1), (1 2), (3 4), (1 2)(3 4))

(see Figure 7.2). This also is a subgroup of S4.

An element of G(n may permute
these elements (in 71

among themselves.

An element of GM may permute
these elements (outside of 71

among themselves.

Figure 7.2

Theorem 7.3. If G is a permutation group on S, and T is a subset of S, then GT and G(T)
are subgroups of G. Also, GT is a subgroup of G(T).

PROOF. Apply Theorem 7.1, first to GT. Because t, the identity mapping of S, is in
GT, the set GT is nonempty. If a, E GT, then

(a o P)(t) = a(f(t)) = a(t) = t
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for each t E T, so a o $ E GT. Finally, if a E GT and t E T, then

a(t) = t

a-t(a(t)) = a-'(0
(a t o a)(t) = a-t(t)

t = a-t(t)

so a-t E GT. The proof that G(T) is a group is similar; simply replace t by T in the obvious
places (Problem 7.15).

To prove that GT is a subgroup of G(T), assume a E GT. Then a(t) = t for each t E T
so a(T) = T. That is, a E G(T).

PROBLEMS

7.1. Decide in each case whether the given subset is a subgroup of S4. Justify your answers.
(a) {(1),(1 3 4),(1 4 3)) (b) ((I),(1 2 3),(2 3 4))
(c) {(1),(1 2)(3 4)) (d) ((1),(1 2 3 4),(1 4 3 2))

7.2. Decide in each case whether the given subset is a subgroup of S5. Justify your answers.
(a) ((1),(1 3 5), (1 5 3)}

(b) ((1),(1 3), (2 4), (1 3)(2 4))

(c) ((1), (1 2 3 4 5), (1 5 4 3 2))
(d) {(1), (1 2 3), (1 3 2), (4 5), (1 2 3)(4 5), (1 3 2)(4 5))

7.3. Let S = (1, 2, 31 and G = S. Write all of the elements of Gr and G(T) in each case.
(a) T = (1) (b) T = (2, 31

7.4. Let S = { 1, 2, 3, 4) and G = S4. Write all of the elements of GT and G(T) in each case.
(a) T = (1) (b) T={1,2,3}

7.5. Verify that (a,,o : a E R, a $ 0) is a subgroup of the group in Example 5.8. Characterize the
group in geometric terms. (See Example 4.2.)

7.6. Repeat Problem 7.5 using {aI,b : b E R).

7.7. Prove the claims about 9 in the proof of Theorem 7.2.

7.8. Find the elements in A4.

7.9. Which of the following are subgroups of the group in Example 5.8?
(a) {a,,o:aEQ,a54 0) (b) (a,,oaEZ,a54 0)
(c) {al,b : b E Z) (d) {at,b : b E N}

7.10. Let F denote M(R), the set of all mappings f : R -> R, made into a group as in Problem 5.13.
Let

H=(f E F : f(x)EZ for each xER).

Prove that H is a subgroup of F. State clearly the properties of Z that you use.

7.11. Consider the group M(2, Z), the set of all 2 x 2 matrices with integers as entries, with matrix
addition as the operation (Example 5.9).
(a) Prove that the set of all diagonal matrices (those with zeroes in the upper right-hand and

lower left-hand corners) forms a subgroup.
(b) Find a subgroup of M(2, Z) besides the group itself, the subgroup containing only the zero

matrix [Example 7.1 (d)], and the subgroup in part (a) of this problem.



46 CHAPTER II INTRODUCTION TO GROUPS

7.12. Find a subgroup of Q (operation +) that contains Z but is different from both Z and Q.

7.13. Prove that if H and K are subgroups of a group G (with operation *), then H fl K is a subgroup
of G. (Compare Problem 7.14.)

7.14. Let H = ((1), (1 2)) and K = [(1), (1 2 3), (1 3 2)}. Both H and K are subgroups of S3.
Show that H U K is not a subgroup of S3. It follows that a union of subgroups is not necessarily
a subgroup. (Compare Problem 7.13. Also see Problem 14.38.)

7.15. Prove in detail that G(T) is a subgroup of G. (That is, complete the proof of Theorem 7.3.)

7.16. For G = S,,, state necessary and sufficient conditions on T, a subset of S = (1, 2, ... , n), for

G(T) = GT

7.17. For a subset T of S, let T' denote the complement of T in S, that is,

T'=(X:XES and xgT}.

Prove that if S = (1, 2, ... , n) and G = S,,, then G(T) = G(T').

7.18. With S and G as in Problem 7.17, find necessary and sufficient conditions on n and T for
GT = GT,.

7.19. With S and G as in Problem 7.17, find necessary and sufficient conditions on n and T for
GT C GT..

7.20. LetS=(1,2,...,n),T=(1,2,...,k)(0<k<n),andG=S,,.
(a) What is I GT I (the order of GT )? (b) What is IGEnI?

7.21. Prove that if G is a group with identity e, and x E G and x * x = x, then x = e. (Question:
How would you prove this in Z with + in place of *, and 0 in place of e?)

7.22. Prove that if G is a group with operation *, and H is a subset of G, then H is a subgroup of G
if
(a) His nonempty, and
(b) if aCHandbeH,then a*b-) E H.

7.23. Assume that G is a group with operation * and that a E G. Let

C(a)=(xEG:a*x=x*a}.

Prove that C(a) is a subgroup of G. [C(a) is called the centralizer of a in G.]

7.24. Assume that G is a group with operation * and let

Z(G)={xEG:a*x=.r*a foreveryaEG}.

Prove that Z(G) is a subgroup of G. [Z(G) is called the center of G.]

7.25. Assume that G is a permutation group on a set S and that T is a subset of S. Let

GET)=(aEG:a(T)CT}.

Then G(T) S GET]-

(a) Give an example of a permutation at of a set S and a subset T of S such that a(T) # T.
(Necessarily, S and T will be infinite.)

(b) Give an example to show that GEr] need not be a subgroup of G. (Compare Theorem 7.3.)
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SECTION 8 GROUPS AND SYMMETRY

Much of the importance of groups comes from their connection with symmetry. Just as
numbers can be used to measure size (once a unit of measurement has been chosen),
groups can be used to measure symmetry. With each figure we associate a group, and this
group characterizes the symmetry of the figure. This application of groups extends from
geometry to crystallography, and is introduced in this section and then discussed more fully
in Chapter XV. Another connection with symmetry-more abstract and not geometrical-
arises in the study of algebraic equations. A group is associated with each equation, and this
group characterizes a type of symmetry involving the solutions of the equation; questions
about the solvability of an equation can be answered by studying the group associated with
the equation. This application is discussed in Chapters X and XI.

We now look at how to associate a group with each figure in a plane. Let P denote
the set of all points in a plane, and let M denote the set of all permutations of P that
preserve distance between points. Thus, if p and q are in P, and A is in M, then the distance
between µ(p) and µ(q) is equal to the distance between p and q. The permutations in M
are called motions or isometries of the plane. We shall prove in Theorem 8.1 that M, with
composition, is a group. But first we consider three types of motions: rotations, reflections
(through lines), and translations.

Rotations If p is a fixed point in P, then any rotation of the plane about p is a motion of
the plane. (Rotations were discussed in Examples 4.1 and 5.7.)

Reflections The reflection of the plane P through a line L in P is the mapping that sends
each point p in P to the point q such that L is the perpendicular bisector of the segment
pq (Figure 8.1).

L

p

q
Figure 8.1

Translations A translation of P is a mapping that sends all points the same distance in
the same direction. For instance, the translation sending p, to qi in Figure 8.2 would send
P2 to q2 and P3 to q3.

P1 P2

Figure 8.2

A fourth type of motion of a plane, glide-reflection, is discussed in Section 59. In this
section we need only rotations and reflections.
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Theorem 8.1. The set M of all motions (isometries) of a plane P forms a subgroup of
Sym(P).

PROOF. For p, q E P let d(p, q) denote the distance between p and q. With this
notation, if a c Sym(P), then

a E M if d(a(p), a(q)) = d(p, q)

To prove that M is a subgroup we shall verify the conditions in Theorem 7.1. (Remember
that the operation on Sym(P) is composition.)

First, t, the identity of Sym(P), is clearly in M, so M is nonempty.
Assume a E M and 0 E M. If p, q E P, then

d((a o $)(p), (a o fl)(q)) = d(a(8(p)), a(o(q)))
= d(f (p), ,8(q)) since a E M, 8(p) E P, and 8(q) E P
= d(p, q) since 0 E M.

Thus a o$EM.
Finally, assume a E M and p, q E P. Then

d(p, q) = d(t(p), t(q)) since t E M

= d(a(a-'(p)), a(a-'(q))) since a o a-1 = t
= d(a-t (p), a-1(q)) since a E M, a-1(p) E P, and a (q) E P.

Thus a-i E M.

Now let T denote any subset of P. Since M is a permutation group on P [that is, a
subgroup of Sym(P)], we can use M in place of G in the defining equation for G(T) in
equation (7.2):

M(T)={aeM:a(T)=T}.
By Theorem 7.3, M(r) is a subgroup of M. Thus we can make the following definition.

Definition. If T is a set of points in a plane, then M(T), the group of all motions leaving
T invariant, is called the group of symmetries (or symmetry group) of T.t

Example 8.1. Consider a square, a rectangle, and a parallelogram (Figure 8.3). Any mo-
tion of one of the figures will permute the vertices of the figure among themselves and the
sides of the figure among themselves. Moreover, any motion will be completely determined
by the way it permutes the vertices. It follows that in each case the group of symmetries
will correspond to a subgroup of Sym{a, b, c, d), and thus will have order at most 4! = 24
(Theorem 6.2). In fact, the order must be less than 24, because some permutations of the
vertices clearly cannot arise from motions of the plane (Problem 8.7). It turns out that the
groups of the three figures have orders 8, 4, and 2, respectively. Their elements are listed
below. The lines V (for vertical), H (for horizontal), and Di and D2 (for diagonal) are
not affected by the different motions. For example, rotation 90° clockwise around p will
change the positions of a, b, c, and d, but not of V, H, DI, and D2. Notice that the more
symmetric the figure, the larger its group of symmetries.

t Notice the difference between "symmetric" group, as used in Section 6, and "symmetry" group, as used here.
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a
v

b a

H

d

H

V

Pi

d

(a) (b)

b

c

(c)

Figure 8.3

Group of symmetries of the square in Figure 8.3a:

120 = identity permutation
1290 = rotation 90° clockwise around p

µ1s0 = rotation 180° clockwise around p
12270 = rotation 270° clockwise around p

PH = reflection through H
pv = reflection through V
p1 = reflection through D1
P2 = reflection through D2

Group of symmetries of the rectangle in Figure 8.3b:

120 = identity permutation
12180 = rotation 180° clockwise around p

PH = reflection through H
pv = reflection through V

Group of symmetries of the parallelogram in Figure 8.3c:

49

120 = identity permutation
12180 = rotation 180° clockwise around p

Figure 8.4 illustrates how to compute entries for the Cayley tables of these groups. It
shows that the result of pH o 1290 is the same as p2, reflection through D2; and µ9o o PH is
the same as pl, reflection through D1. Notice again that when we make such calculations
we assume H, V, D1, and D2 to be fixed.

PH °K9o

a

d

a

d

,U go

a c

PH-s

b d

µ9o - PH

b

a

d

Figure 8.4



50 CHAPTER II INTRODUCTION TO GROUPS

Table 8.1 is the Cayley table for the group of the square, which has each of the other
two groups as a subgroup.

Table 8.1

0 /20 1290 /2180 12270 PH Pv P1 P2

120 12a 1290 /2180 /2270 PH Pv P1 P2

1290 1290 12180 /2270 120 Pt P2 Pv PH

12180 12180 12270 120 1290 Pv PH P2 P1

12270 /2270 120 1290 12180 P2 P1 PH Pv
PH PH P2 Pv P1 P.O 12180 12270 /290

Pv Pv P1 PH P2 12180 120 1290 12270

Pt P1 PH P2 Pv 1290 12270 120 12180

P2 P2 Pv P1 PH 12270 1290 12180 /20

The symmetry groups for the figures in the following exercises contain only rotations
and reflections. The amounts of the rotations may differ from those in Example 8.1, however.

PROBLEMS

8.1. Draw figures like those in Figure 8.4 to verify the entries for µtso o Pv and PV o Also in

Table 8.1.

8.2. Draw figures like those in Figure 8.4 to verify the entries for µ270 o P2 and P2 o 1.6270 in
Table 8.1.

8.3. Determine the group of symmetries of an equilateral triangle.

8.4. Determine the group of symmetries of an isosceles triangle.

8S. Determine the group of symmetries of a regular pentagon. (It will have order 10.)

8.6. Determine the permutation of the vertices of the square abcd corresponding to each motion in
Example 8.1. [Example: Ago corresponds to (a b c d).]

8.7. The permutation (ab)(c)(d) of the vertices of the square abcd (Figure 8.3a) does not correspond
to any motion of the plane. Why?

8.8. Consider the mapping T H M(r) from the set of subsets of a plane to the set of symmetry
groups. Is it one-to-one? Explain.

8.9. Using the notation of Example 8.1, determine the group of symmetries of a rhombus (Figure
8.3c, with ab = ad).

8.10. Consider symmetry under the motions in Example 8.1. As geometric objects, the 26 capital
letters of the alphabet fall into five sets, with letters in each set having the same group of
symmetries. Determine the five sets. (Suggestion: A, B, N, H, and F belong to different sets.)

Determine the group of symmetries of each of the following figures. (It suffices in each case to use
motions similar to those in Example 8.1.)

8.11. 8.12. 8.13.
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8.14. 8.15.

V
In three dimensions, as well as in two, the set of all distance-preserving permutations (motions or
isometries) form a group with respect to composition. And, given a three-dimensional figure, such as
a cube, the set of all motions that leave the figure invariant form a group. Included in these motions
are rotations about either a point or a line. The next two problems involve the groups of rotations of
a cube and a tetrahedron.

8.17. [Refer to Figure 57.2 for this problem. It is part of Example 57.3, which involves other ideas
that may be ignored here.] The group G of all rotations of a cube has order 24. The elements of
G are of five kinds, and are listed in Example 57.3. Each element of G corresponds to a unique
permutation of the vertices of the cube. For example, rotation of 180° about the segment if
corresponds to (ah)(de)(bg)(cf).
(a) Find the permutation of the vertices corresponding to each of the six 180° rotations about

lines joining midpoints of opposite edges, such as k1.
(b) Find the permutation of the vertices corresponding to each of the eight 120° rotations about

lines joining opposite vertices, such as ag.
(c) Show that G has a subgroup of order 12.

8.18. [For this problem, refer to the parenthetical statement at the end of Problem 57.12, and its
accompanying figure. Also see the instructions for Problem 8.17.] The group of all rotations
of a regular tetrahedron has order 12.
(a) Find the permutation of the vertices corresponding to each of the eight 120° rotations about

lines such as ae.
(b) Find the permutation of the vertices corresponding to each of the three 180° rotations about

lines such asfg.
(c) Show that each permutation of the vertices corresponding to a rotation of the group is an

even permutation (Section 7).

NOTES ON CHAPTER II

The origins of group theory can be found primarily in the theory of equations, number
theory, and the study of geometrical transformations. The earliest connections with the
theory of equations came in the late eighteenth and early nineteenth centuries, and will
be discussed in Sections 42-49. The connection with number theory is related to work
that will be discussed in Section 41. The symmetry groups in Section 8 are examples of
geometrical transformation groups; although we shall return to symmetry in Chapter XV,
there are other kinds of transformation groups that we shall not be able to consider.

The following references discuss the history of group theory. G. A. Miller (1865-1951)
was the first distinguished American group theorist.
1. Kleiner, I., The evolution of group theory: A brief survey, Mathematics Magazine, 59 (1986),

195-215.
2. Kline, M., Mathematical Thought from Ancient to Modern Times, Oxford University Press, Lon-

don, 1990.
3. The Collected Works of G. A. Miller, 5 vols., University of Illinois, Urbana, 1935-1959.
4. Novy, L., Origins of Modern Algebra, Noordhoff, Leyden, The Netherlands, 1973.
5. Wussing, H., The Genesis of the Abstract Group Concept, MIT Press, Cambridge, MA., 1984.

Also see http://www-history.mcs.st-andrews.ac.uklhistorylindex.html



CHAPTER III

EQUIVALENCE. CONGRUENCE.
DIVISIBILITY

The first section in this chapter is devoted to equivalence relations, which occur often not
only in algebra but throughout mathematics. The other sections are devoted to elementary
facts about the integers. These facts are used to construct examples of groups and of other
algebraic systems yet to be introduced. They will also help us understand some of the
elementary facts about groups to be proved in the next chapter.

SECTION 9 EQUIVALENCE RELATIONS

Consider the following statements:

1. If x, y E R, then either

x=y or x#y.
2. If x, y E R, then either

x < y or x y.

3. If ABC and DEF are triangles, and = denotes congruence, then either

ABC =DEF or ABC DEF.

In each statement, there is a set (IR, IR, and all triangles, respectively) and a relation on
that set (=, <, and =, respectively). The relationship may or may not hold between ordered
pairs of elements from the set. We are concerned now with relations of this type that satisfy
three specific conditions. (The symbol in the following definition is read tilde.)

Definition. A relation -on a nonempty set S is an equivalence relation on S if it satisfies
the following three properties:

If a E S, then a - a. reflexive
If a, b E S and a b, then b ^- a. symmetric
If a, b, c E S and a ^- b and b c, then a c. transitive

52
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Of the relations in 1, 2, and 3, the first and third are equivalence relations, but the
second is not (because it is not symmetric). In the first relation, R can be replaced by any
nonempty set, and the result will still be an equivalence relation; that is, for any nonempty
set S, equality (=) is an equivalence relation on S.

If is an equivalence relation and a - b, we say that a and b are equivalent, or we
use the specific term involved if there is one (such as equal or congruent).

Example 9.1. Let p denote a fixed point in a plane P, and for points x and y in P let x ^- y
mean that x and y are equidistant from p. This is an equivalence relation on the set of points
in P. A point x will be equivalent to a point q if x lies on the circle through q with center
p. (The point p is equivalent only to itself; think of { p} as a circle with radius 0.)

Example 9.2. Let L denote the set of all lines in a plane with a rectangular coordinate
system. For 11,12 E L, let 11 ^- 12 mean that l1 and 12 have equal slopes or that both slopes
are undefined. This is an equivalence relation on L. The set of lines equivalent to a line 1
consists of 1 and all lines in L that are parallel to 1.

Example 9.3. Let a : S --* T be a mapping. For x, y E S, let x ^- y mean that a(x) _
a(y). This is an equivalence relation on S. Here are two special cases.

(a) Let S = (u, v, w), T = {1, 2, 3}, and define a : S -* T by

a(u) = 3, a(v) = 1, and a(w) = 3.

Then u w because a(u) = a(w). But u f v because a(u) a(v). Here is a
complete list of the equivalences between elements of S:

u=u, v=v, w=w, u^w, w^-u.

(b) Let S = T = R, and let a be the sine function. Then xl - x2 if sin xl = sin x2.
Thus, for example, the set of real numbers equivalent to n in this case is

{x:sin x=0}={0,±,r,±2n.... }. 0

Now return to Example 9.1. A different way to define the equivalence relation in that
example is to say that x y if x and y lie on a common circle with center p. These circles
form a partition of the set of points in the plane, in the sense of the following definition.

Definition. A collection F of nonempty subsets of a nonempty set S forms a partition of
S provided

(a) S is the union of the sets in P, and

(b) if Aand Bare in Pand A#B, then AflB=0.

Alternatively, the collection P forms a partition of S if each element of S is contained
in one and only one of the sets in P. Notice that each element of P is a subset of S. Figure
9.1 shows an example.

We have observed that the equivalence relation in Example 9.1 induces a partition of
the underlying set. In fact, every equivalence relation induces a partition and, conversely,
every partition induces an equivalence relation. Before proving this we make the following
definition.
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P = (S1, S2, S3) forms
a partition of S.

Figure 9.1

Definition. Let be an equivalence relation on a set S, let a E S, and let [a] _
(x E S : a ^- x}. This subset [a] of S is called the equivalence class of a (relative to ^-).

In Example 9.1, the equivalence class of a point q is the set of all points on the circle
with center atp and passing through q. In Example 9.3(a),

[u] = {u, w}, [v] = {v}, and [w] = {u, w}.

Notice that it is always true that a E [a], because ^- is reflexive. And if b E [a] then a E [b],
because ^- is symmetric.

Theorem 9.1. If is an equivalence relation on a set S, then the set of equivalence classes
of ^- forms a partition of S. Conversely, let F be a partition of S, and define a relation
on S by a ^- b iff there is a set in F that contains both a and b; then ^- is an equivalence
relation on S. Thus there is a natural one-to-one correspondence between the equivalence
relations on a set and the partitions of the set.

PROOF. Let be an equivalence relation on S. If a E S, then a belongs to at least one
equivalence class, namely [a], and thus S is indeed the union of the equivalence classes.
It remains to be proved that if two equivalence classes are unequal then they are disjoint;
or, alternatively, if they are not disjoint, then they are equal. To this end, assume that
[a] f1 [b] # 0, and let c denote an element in the intersection. If x denotes any element in
[a], then we have both a c and a x; thus c ^- a and a ^- x, so c ^ x. But we also know
that b c; hence we can conclude that b ^- x, that is, x E [b]. This shows that [a] C [b].
In the same way, it can be shown that [a] 2 [b]. Therefore [a] [b], which is what we
were to prove.

Now assume to be defined as in the converse statement. If a E S, then a ^- a because
there is some set in the partition containing a. If there is a set containing both a and b, then
it contains both b and a, so that the symmetry of ^ is trivial. Finally, assume that a ^- b
and b -' c. Then there is a set in P containing both a and b, call it A; there is also a set in
F containing both b and c, call it B. Since b E A (1 B, we have A f1 B # 0; thus, A = B
because F is a partition. Both a and c belong to this set; therefore a c. This proves that

is transitive.

Example 9.4. Let E denote the set of even integers and 0 the set of odd integers. Then
{E, 0) forms a partition of the set of all integers. For the corresponding equivalence
relation, a ^- b if a and b are both even or both odd. Alternatively, a b if a - b is
even.



SECTION 9 EQUIVALENCE RELATIONS 55

In working with an equivalence relation on a set S, it is often useful to have a complete
set of equivalence class representatives-that is, a subset of S containing precisely one
element from each equivalence class.

Example 9.5

(a) In Example 9.4, {0, 1) is a complete set of equivalence class representatives. Each
integer is equivalent to either 0 or 1, but no integer is equivalent to both. More
generally, any set {a, b} of integers with a even and b odd is a complete set of
equivalence class representatives in this case.

(b) In Example 9.3(a), {u, v} is a complete set of equivalence class representatives.
Another complete set of equivalence class representatives in this case is {v, w}.

(c) In Example 9.1, the set of all points on any ray (half-line) with endpoint p is a
complete set of equivalence class representatives, because such a ray intersects

each equivalence class (circle centered at p) in precisely one point.

The type of equivalence relation in the following theorem is important in applications
to combinatorics. Chapter XIV will give a generalization and more examples.

Theorem 9.2. Let G be a permutation.group on S and define a relation on S by

a b ijf a(a) = b for some a E G.

Then is an equivalence relation on S.

PROOF. Reflexive: If a E S, then t(a) = a, where t is the identity element of G. Thus
a - a.

Symmetric: If a, b E S and a - b, then there exists a E G such that a(a) = b. Since
Gisagroup,a -I E G. Anda-1(b)=a,sob^-a.

Transitive: Assume that a, b, c E S, a - b, and b c. Thena(a) = band(b) = c for
some a, p E G. Because G is a group, 0 o a E G. From (P o a)(a) = ,(a(a)) c,
we see that a ^- c.

Example 9.6. Consider Theorem 9.2 for S = (1,2,3,4,5) and G the group {(1), (1 2 5),
(1 5 2)}. In this case, the equivalence classes are

(1,2,5), (3), and (4).

A complete set of equivalence class representatives is 11, 3, 41.

PROBLEMS

9.1. Assume that S = {w, x, y, z} and that w ^- y and z y. Which of the following must also be
true if is to be an equivalence relation on S?

(a) y -' y (b) y -- z (c) w z (d) y- x
9.2. Assume that T = {v, w, x, y, z) and that w x and x - y. Which of the following must also

be true if is to be an equivalence relation on T?
(a) z^- z (b) x - w (c) v^ z (d) y - w

9.3. If F = ((1, 3), (2), (4, 5)}, then F is a partition of (1, 2, 3, 4, 5). For the corresponding equiv-
alence relation ^- (see Theorem 9.1), which of the following are true?
(a) 4 ^- 5 (b) 3 - 3 (c) 1 2 (d) 5 1

9.4. Repeat Problem 9.3 with F' ((1, 4, 5), (2, 3}).
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9.5. For points with coordinates (x,, y,) and (x2, y2) in a plane with rectangular coordinate system,
let (x,, y,) ^ (x2, y2) mean that y, = y2.
(a) Prove that - is an equivalence relation on the set of points in the plane. State clearly the

properties of the relation = on R that are used in the proof.
(b) Describe the equivalence classes geometrically.
(c) Give a complete set of equivalence class representatives.

9.6. For points (x,, y,) and (,r2, y2) in a plane with rectangular coordinate system, let (x,, y,) ^-
(x2, y2) mean that either x, = X2 or y, = y2. Explain why is not an equivalence relation on
the set of points in the plane.

9.7. Define a relation ^- on R by

a-b if lal=Ibi.

(a) Prove that ^- is an equivalence relation on R. State clearly the properties of the relation =
on R that are used in the proof.

(b) Give a complete set of equivalence class representatives.

9.8. Define a relation on the set hl of natural numbers by

a - b if a = b l0k for some k E Z.

(a) Prove that - is an equivalence relation on N. State clearly the properties of Z that are used
in the proof.

(b) Give a complete set of equivalence class representatives.

9.9. For x, y E R, let x - y mean that xy > 0. Which properties of an equivalence relation does --
satisfy? Answer the same question with xy ? 0 in place of xy > 0.

9.10. Give a complete set of equivalence class representatives for the equivalence relation in Example
9.2.

9.11. Determine a complete set of equivalence class representatives for the equivalence relation

induced on R by the sine function in Example 9.3(b). What does this have to do with the
inverse sine function?

9.12. Repeat Problem 9.11 with the tangent function in place of the sine function.

9.13. (a) Find all of the partitions of {x, y, z).
(b) How many different equivalence relations are there on a three-element set? (Two equiva-

lence relations are different if they induce different partitions.)

9.14. How many different equivalence relations are there on a four-element set? (Compare Problem
9.13.)

9.15. For x, y E R, let x ^- y mean that x - y is an integer. Verify that is an equivalence relation.
Describe the equivalence classes geometrically, with the elements of R identified with the
points on a line in the usual way. Give a complete set of equivalence class representatives.

9.16. For points (x,, y,) and (x2, y2) in a plane with rectangular coordinate system, let (x,, y,) ^-
(x2, y2) mean that x, - x2 is an integer.
(a) Prove that - is an equivalence relation.
(b) Give a geometric description of the equivalence class to which (0, 0) belongs.
(c) Give a complete set of equivalence class representatives.

9.17. Repeat Problem 9.16, but let (x,, y,) ^- (x2, y2) mean that both x, - x2 and y, - y2 are integers.

9.18. For sets S and T, let S ^ T mean that there is an invertible mapping of S onto T. Prove that =
is reflexive, symmetric, and transitive.
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9.19. Consider the equivalence relation in Theorem 9.2. Find the equivalence classes and a complete
set of equivalence class representatives in each of the following special cases.

(a) S={1,2,...,n}andG=S,,.
(b) S = { 1, 2, 3, 4) and G = {(1), (2 3)}.
(c) S = {1, 2, 3, 4, 5) and G = {(1), (1 2), (1 3), (2 3), (1 2 3), (1 3 2)}.

9.20. For polynomials f (x) and g(x) with real coefficients, let f (x) g(x) mean that f' (x) = g'(x)
(where the primes denote derivatives). Prove that is an equivalence relation, and give a
complete set of equivalence class representatives. (A polynomial with real coefficients is an
expression of the form ao + aix + + where ao, a,, ..., a" E R.)

9.21. Let - be a relation on a set S. Complete each of the following statements.

(a) ^- is not reflexive iff ...
(b) is not symmetric iff... .
(c) - is not transitive iff....

9.22. Find a flaw in the following "proof' that a relation on a set S is reflexive if it is both symmetric
and transitive: Let X E S. From x ^- y, by symmetry, we have y ^- x. By transitivity, x - y
and y - x imply x ^- x. Therefore, ^- is reflexive.

SECTION 10 CONGRUENCE. THE DIVISION ALGORITHM

We get an equivalence relation on the set of integers by agreeing that two integers are
equivalent if either both are even or both are odd (Example 9.4). Another way to say
this is to say that two integers are equivalent if their difference is even. The notion of
congruence of integers generalizes this example. Congruence was first treated systemat-
ically at the beginning of the nineteenth century by the eminent German mathematician
Carl Friedrich Gauss (1777-1855); it has played a crucial role in the theory of num-
bers ever since. We shall see that congruence is also a fruitful source for examples in
modern algebra. In fact, many concepts in modem algebra first arose in work relating to
congruence.

Before defining congruence we need some elementary facts about divisibility. An
integer m is divisible by an integer n if there is an integer q (for quotient) such that m = nq.
Thus 6 is divisible by 3 because 6 = 3 2. But 6 is not divisible by 4 or 5. If m is divisible
by n, we also say that n divides m, and that m is a multiple of n, and we write n I m. So 316
but 416. If n I m, we also say that n is a factor of m. An integer p is a prime if p > 1 and p
is divisible by no positive integer other than 1 and p itself.

Notice that if n I m, then n I (-m). (Why?) Also, if n I a and n I b, then n I (a + b). [Proof.-
If a = nql and b = nq2, then a + b = n(qi +q2), and q, +q2 is aninteger if qi and q2 are
integers.]

Definition. Let n be a positive integer. Integers a and b are said to be congruent modulo
n if a - b is divisible by n. This is written a = b (mod n).

Two integers are congruent modulo 2 if either both are even or both are odd. That is
the example from the introductory paragraph. Here are other examples: 17 =_ 3 (mod 7)
because 7 divides 17 - 3 = 14; 4 =- 22 (mod 9) because 9 divides 4 - 22 = -18; 19 =_ 19
(mod 11); 17 3 (mod 8).
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In working with congruences it helps to be able to move easily among the following
equivalent statements.

a - b(modn)
n I (a - b)

a-b=un forsomeuEZ
a=b+un forsomeuEZ

(See Problem 10.21.)

Theorem 10.1. Congruence modulo n is an equivalence relation on the set of integers,
for each positive integer n.

PROOF. Reflexive: If a is an integer, then a - a (mod n) because n I (a - a) = 0.
Symmetric: If a = b (mod n), then n I (a - b), so n I (b - a) and b - a (mod n).
Transitive: If a b (mod n) and b = c (mod n), then n I (a - b) and n I (b - c); but

then n I [(a - b) + (b - c)] = a - c, so a-c(mod n).

The equivalence classes for this equivalence relation are called congruence classes
mod n, or simply congruence classes if n is clear from the context. (These classes are
sometimes called residue classes, but we will not use this term.)

Example 10.1

(a) There are two congruence classes mod 2: the even integers and the odd integers.
(b) There are four congruence classes mod 4:

{...,-8,-4,0,4,8,...}
{... , -7, -3, 1, 5, 9, ...}
{... , -6, -2, 2, 6, 10, ...}
{... , -5, -1, 3, 7, 11, ...}.

Notice that in the last example there are four congruence classes and each integer
is congruent to either 0, 1, 2, or 3 (mod 4). In the language of Section 9, {0, 1, 2, 3,1
is a complete set of equivalence class representatives. We are now going to show that
this is typical, by showing that there are always n congruence classes modulo n and that
each integer is congruent to either 0, 1, 2, ... or n - 1 (mod n). But first we need more
information about the integers-information that is important far beyond our immediate
need, by the way. We start from the following principle.

Least Integer Principle. Every nonempty set of positive integers contains a least element.

The Least Integer Principle is really an axiom, whose role will be clarified in Section
29. (See also Appendix C.) At the moment we need it to prove the Division Algorithm,
which will follow an example.

If 11 is divided by 4, there is a quotient of 2 and a remainder of 3:

4 =2+4, or 11=4.2+3.

This illustrates the following result.
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Division Algorithm. If a and b are integers with b > 0, then there exist unique integers
q and r such that

a=bq+r, 0<r<b.
Before giving the proof, we shall look at the idea behind it in the special case 11 =

4. 2 + 3 (a = 11, b = 4, q = 2, and r = 3). Consider the display in Example 10.1(b): Z
has been partitioned into b = 4 rows (congruence classes); r = 3 is the smallest positive
number in the row containing a = 11; and q = 2 is the number of positions (multiples of
b = 4) that we must move to the right to get from r = 3 to a = 11.

Here is another illustration: -6 = 4 (-2) + 2. Again, b = 4; r = 2 is the smallest
positive number in the row containing a = -6; and q = -2 is the number of positions that
we must move (regarding left as negative) to get from r = 2 to a = -6. In terms of such
a display, with the integers partitioned into b rows (congruence classes), the set S in the
proof that follows consists of the elements in the row to which a belongs.

PROOF. We shall prove first that q and r exist, and then that they are unique. Consider
the set S = (a - bt : t is an integer}. Let S' denote the set of nonnegative elements of S.
Then S' # 0, which can be seen as follows. If a > 0, then t = 0 yields a E S'. If a <0, then
with t=awefind a-baES;buta-ba=a(1-b)>Obecause a<0and1-b<0
(recall 1 < b), and the product of two nonpositive integers is nonnegative.

Let r denote the least integer in S' (if 0 E S' then r = 0; otherwise, apply the Least
Integer Principle). Let q denote the corresponding value of t, so that a - bq = r and
a = bq + r. Then 0 < r by choice; therefore, it suffices to show that r < b. Assume, on
the contrary, that r > b. Then

a - b(q + 1) = a - bq - b = r - b > 0,

and thus a - b(q + 1) E S'. But

a-b(q+l)=a-bq-b<a-bq=r
because b > 0, and this contradicts the choice of r as the least element in S'. Thus we do
have

a=bq+r, 0<r<b.
To prove uniqueness, suppose that

a=bqi+rl, 0<r1<b
and

a = bq2 + r2, 0 < r2 < b.

We must show that q1 = Q2 and r1 = r2. We have

bql+r1=bQ2+r2
b(qt - q2) = r2 - r1.

Thus b I (r2 - r1). But O < r1 < b and O < r2 < b, so -b < r2 - r, < b. The only multiple of
b strictly between -b and b is 0. Therefore, r2 - r1 = 0, and r2 = r1. But then b(q1 - Q2) _
0 with b 54 0 so that q, = q2.

We can now return to congruences.
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Theorem 10.2. Let n be a positive integer. Then each integer is congruent modulo n to
precisely one of the integers 0, 1, 2, ... , n - 1.

PROOF. If a is an integer, then by the Division Algorithm there are unique integers q
and r such that

a=nq+r, 0<r<n.
From this, a - r = nq, so that n I (a - r) and a =- r (mod n). Thus a is congruent to at least
one of the integers 0, 1 , 2, ... , n - 1. To show that r is unique, assume that a - s (mod n)
with 0 < s < n. Then a - s = nt (for some integer t), and

a=nt+s, 0<s<n.
Thus s = r by the uniqueness of r in the Division Algorithm.

PROBLEMS

10.1. List all positive divisors of each of the following integers.
(a) 20 (b) 63 (c) -101

10.2. There are 25 primes less than 100. What are they?

10.3. For each of the following integers, find the smallest nonnegative integer to which it is con-
gruent modulo 7.
(a) 12 (b) 100 (c) -25

10.4. Example 10.1(b) shows the four congruence classes modulo 4. Make a similar array for the
congruence classes modulo 3.

10.5. Find all x such that 2x = x (mod 5).

10.6. There are 10 integers x such that -25 < x < 25 and x = 3 (mod 5). Find them all.

10.7. Find all x such that 0 < x < 6 and 2x = 4 (mod 6).

10.8. For which n is 25 = 4 (mod n)?

10.9. For a, b E N, let a - b mean that the decimal representations of a and b have the same last
(units) digit. This is an equivalence relation on N. How does it relate to congruence?

10.10. Let k denote a positive integer. For a, b E N, let a ^- b mean that the decimal representations
of a and b have the same digits in each of the last k positions. (Example: If k = 3, then
4587 ^- 30,587.) This is an equivalence relation on N. How does it relate to congruence?
(Compare Problem 10.9.)

For each pair a, bin Problems 10.11 and 10.12, find the unique integers q and r such that a = bq + r
with 0<r<b.
10.11. (a) a = 19, b = 5 (b) a=-7,b=5 (c) a = 11, b = 17

10.12. (a) a=50,b=6 (b) a = 13, b = 20 (c) a = 30, b = 1

10.13. Prove that if a i b and b 1c, then a l c.

10.14. Prove that if a I b and b 1 a, then a = ±b. (You may assume that the only divisors of 1 are +1.)

In Problems 10.15 and 10.16, assume that a =- b (mod n) and c d (mod n).

10.15. Prove that a + c = b + d (mod n).

10.16. Prove that ac = bd (mod n). (Suggestion: a = b + un, c = d + vn.)

10.17. Disprove with a counterexample: If a2 = b2 (mod n), then a = b (mod n).
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10.18. Consider the following statement: If a - b (mod n), then a2 - b2 (mod n2). If the statement
is true, give a proof. If it is false, give a counterexample.

10.19. Prove that if a - b (mod n) and n I a, then n I b.

10.20. Prove that if m I n and a b (mod n), then a - b (mod m).

10.21. Prove the equivalence of the four statements just preceding Theorem 10.1. Also prove that
a - b (mod n) iff a and b leave the same remainder on division by n.

10.22. Prove that if n is a positive integer and a, b E Z, then there is an integer x such that a + x - b
(mod n).

10.23. Disprove with a counterexample: If n is a positive integer and a, b E Z, then there is an integer
x such that ax - b (mod n).

10.24. Prove that if a is an odd integer, then a2 - 1 (mod 8).

10.25. How many positive integers divide (a) 3? (b) 9? (c) 27? (d) 3k, if k is a positive integer?

10.26. Assume that p is a prime and that k is a positive integer. How many positive integers divide
(a) p? (b) p2? (c) pk?

10.27. Verify that each of the following statements is false. (Compare the Least Integer Principle.)
(a) Every nonempty set of integers contains a least element.
(b) Every nonempty set of positive rational numbers contains a least element.

10.28. Use the Division Algorithm to prove that if a and b are integers, with b 54 0, then there exist
unique integers q and r such that

a=bq+r, 0<r<Ib1.

(Suggestion: If b > 0, this is the Division Algorithm. Otherwise I b I _ -b > 0.)

10.29. (a) Prove that 10" = 1 (mod 9) for every positive integer n.
(b) Use part (a) to prove that every positive integer, expressed in base 10 notation, is congruent

to the sum of its digits mod 9.

10.30. Prove that a5 - a (mod 10) for every integer a.

SECTION 11 INTEGERS MODULO n

We have seen that if n is a positive integer, then there are n congruence classes modulo
n. With n fixed and k an integer, let [k] denote the congruence class to which k belongs
(mod n). With n = 5, for example,

[2] = [7] _ [-33] _ {... , -8, -3, 2, 7, 12, ...1.t

By Theorem 10.2, {[0], [1], ... , [n - 1]1 is a complete set of congruence classes modulo
n, in the sense that each integer is in precisely one of these classes. Let Z5 denote the set
[[0], [ 1 ], ... , [n - 111. We shall show that there is a natural operation on this set that makes
it a group.

I Notice that [k] is ambiguous unless n has been specified. For example, [3] means one thing if n = 5, and
something else if n = 6. With reasonable attention to context there should be no confusion, however. In case of
doubt, [k] can be used in place of [k].
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Definition. For [a] E Z. and [b] E Zn, define [a] ® [b] by

[a] ® [b] = [a + b].

Example 11.1. Choose n = 5. Then [3] ® [4] = [3 + 4] = [7] = [2], and [-29] ® [7] _
[-22] = [3].

There is a question about the definition of ®: Is it really an operation on Zn? Or,
as it is sometimes expressed, is ® well defined? Notice that [a] ® [b] has been defined
in terms of a + b. What if representatives other than a and b are chosen from [a] and
[b]? For example, with n = 5 again, [3] = [18] and [4] = [-1]; therefore, it should be
true that [3] ® [4] = [18] ® [-1]. Is that true? Yes, because [3] ® [4] = [7] = [2] and
[18] ® [-1] = [17] = [2]. The following lemma settles the question in general.

Lemma 11.1. In Z., if [a,] = [a2] and [b,] = [b2], then [a, + b,] = [a2 + b2].

PROOF. If [a,] = [a2] and [bl] = [b2], then for some integers u and v

a, = a2 + un and b, = b2 + vn.

Addition yields

a, + b, = (a2 + un) + (b2 + vn)

= a2 + b2 + (u + v)n.

Thus (a, + b,) - (a2 + b2) is n times an integer, u + v, and hence a, + b, _- a2 + b2

(mod n). Therefore, [a, + b,] = [a2 + b2].

Problem 11.18 is designed to help remove doubts as to whether Lemma 11.1 is really
necessary.

Theorem 11.1. Z, is an Abelian group with respect to the operation ®.

PROOF. Associativity:

[a] ® ([b] ® [c]) = [a] ® [b + c] definition of ®

= [a + (b + c)] definition of (D

= [(a + b) + c] associativity if +

= [a + b] ® [c] definition 'of E)

= ([a] ® [b]) G [c] definition of ®.

The identity is [0]:

[01 ® [a] _ [0 + a] = [a]

[a]®[0]=[a+0]=[a].
Problem 11.10 asks you to prove that the inverse of [a] is [-a]. Problem 11.7 asks you to
prove that the group is Abelian, that is, [a] ® [b] = [b] ® [a] for all [a], [b] E Z, .

The first parts of the preceding proof are typical of proofs of properties of ®, in that first
the definition of ® is used, then the corresponding property of +, and finally the definition
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of ® again. Whenever Z. is referred to as a group, the operation is understood to be ®.
This group is called the group of integers modulo n (or mod n).

Corollary. There is a group of order n for each positive integer n.

PROOF. Z. contains n elements, [0], [1], ... , and In - 1].

To appreciate this corollary, try to find another way to construct a group of order 21,
for instance. Even for small orders, the associative law is especially hard to verify for an
operation that is not "natural" in some sense.

Example 11.2. Table 11.1 is the Cayley table for 4.

Table 11.1

[01 Ill [2] [3] [4] [5]

[0] [0] [1] [2] [3] [4] [5]
[1] [1] [2] . [3] [4] [5] [0]
[2] [2] [3] [4] [5] [0] [1]
[3] [3] [4] [5] [0] [1] [2]
[4] [4] [5] [0] [1] [2] [31
[5] [5] [01 [1l [21 [31 [4]

Using multiplication rather than addition, we obtain another operation on 9G as follows:

[a] O [b] _ [ab].

Example 11.3. Choose n = 6. Then

[2] O [5] = [10] = [4]

[3] O [-4] = [-12] = [0].

As with ®, we must verify that O is well defined. Lemma 11.2 does that.

Lemma 11.2. In Z,,, if [a1] = [a2] and [bl] = [b2], then [aibi] = [a2bz]

PROOF. If [a1] = [a2] and [b1] = [b2], then for some integers u and v,

al = a2 + un and bl = b2 + vn.

Therefore,

a,bi = (a2 + un)(b2 + vn)

= a2b2 + (a2v + ub2 + uvn)n.

Thus aibl - a2b2 is an integer (a2v + ub2 + uvn) times n. Therefore [aibi] = [a2b2].

In contrast to Z. with ®, 4 with 0 is not a group. (See Problem 11.11, for example.)
The operation O does have some important properties, however; the next lemma gives two
of these, and Chapter VI will give more. Assume n > 2 for statements involving Z,,.
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Lemma 11.3. The operation O on Z, is associative and commutative and has [1] as an
identity element.

PROOF. Make the obvious changes in the proof of Theorem 11.1.

Let Zo denote the set {[1], [2], ... , In - 1]}, that is, Z with (0] deleted. Although Z.
with O is never a group, the next example shows that Zn with O can be a group.

Example 11.4. Zs is a group with respect to the operation O. Associativity is a conse-
quence of Lemma 11.3. Table 11.2 shows closure, and also that [1] is an identity and that
the inverses of [1], [2], [3], and [4] are [1], [3], [2], and [4], respectively. (In contrast with
this example, the next example will show that Z is not a group.)

Table 11.2

O [1] [2] [3] [4]

[1] [l] [2] [3] [4]
[2] [2] [4] [11 [3]
[3] [3] [1] [4] [2]
[4] [4] [3l [2] [1]

Example 11.5. Z6 is not a group with respect to O. For example, since [2] O [3] = [6] _
[0], Z6 is not even closed with respect to O. Thus Z* is a group for n = 5 (preceding
example), but not a group for n = 6. Problems 11.13 and 11.14 ask you to consider
the cases n = 3 and n = 4. In Section 13 we'll return to the question of when r, is a
group.

Remark on Notation. Throughout this book, the notation [k] will be used for the con-
gruence class to which k belongs mod n. In practice, however, writing the square brack-
ets can become a burden. Thus, when the context is clear, it is fairly common to write
(0, 1, 2, ..., n - 1) rather than {[0], [1], [2], ..., In - 1]} for the elements of Z,,. For
convenience, [a] ® [b] is often written as a + b, and [a] 0 [b] as ab. For the problems in
this section, you are urged to write the square brackets, ®, and O. In any case, it is never
a good idea to write x = y when, in fact, x # y, especially if you expect someone else to
read it. The important thing is that the notation be unambiguous.

PROBLEMS

11.1. Give five integers in [3] as an element of Z5, that is, if n = 5.

11.2. Give five integers in [3] as an element of Z6, that is, if n = 6.

11.3. Simplify each of the following expressions in Z5. Write each answer as [0], [1], [2], [3],
or [4].

(a) [31 ® [41 (b) [2] ® [-7] (c) [17] ® [76]

(d) [3] O [4] (e) [2] O [-7] (f) [17] O [76]

(g) [3] O ([2] ® [41) (h) ([3] O [2]) ® ([3] O (41)

11.4. (a) to (h). Simplify each of the expressions in Problem 11.3 after interpreting it in Z6 rather
than Z5, and write each answer as [0], [1], [2], [3], [4], or [5].
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11.5. Construct the Cayley table for the group Z3.

11.6. Construct the Cayley table for the group Z4-

11.7. Prove that each group Z. is Abelian.

11.8. Prove that the operation 0 on Z. is commutative.

11.9. Prove that [a] O ([b] ® [c]) = ([a] (D [b]) ® ([a] O [c]) for all [a], [b], [c] E Z.

11.10. Prove that [-a] is an inverse for [a] in Z.

11.11. There is no inverse for [0] relative to the operation O on Z,,. Why? (The element [1] is an
identity element for (D.)

11.12. Write the proof of Lemma 11.3 in detail.

11.13. Prove or disprove that Z3 is a group with respect to O.

11.14. Prove or disprove that Z4 is a group with respect to O.

11.15. Prove that {[0], [2], [4]} is a subgroup of Z6. Construct the Cayley table for the subgroup.

11.16. Prove that ([0], [3], [6], [9]) is a subgroup of Z 12. Construct the Cayley table for the subgroup.

11.17. (a) Prove that if n is even, then exactly one nonidentity element of Z is its own inverse.
(b) Prove that if n is odd, then no nonidentity element of Z. is its own inverse.
(c) Prove that [0] ® [1] ® . ® [n - 1] equals either [0] or [n/2] in Z,,.
(d) What does part (c) imply about 0 + 1 + + (n - 1) modulo n?

11.18. Define an equivalence relation on the set of integers by letting a - b mean that either both a
and b are negative or both a and b are nonnegative. There are two equivalence classes: [-1],
consisting of the negative integers; and [0], consisting of the nonnegative integers. Attempt
to define an operation ® on the set {[-1], [0]} of equivalence classes by

[a] ®[b] = [a + b]

for a, b E Z, in analogy with the definition of G on Z,,. Show that ® is not well defined.

SECTION 12 GREATEST COMMON DIVISORS.
THE EUCLIDEAN ALGORITHM

There is a close relationship between divisibility properties of the integers and some of
the elementary properties of groups. In this section and the next we consider properties of
divisibility that will be useful when we return to groups in the next chapter.

Theorem 12.1. If a and b are integers, not both zero, then there is a unique positive integer
d such that

(a) d l a and d l b, and

(b) if c is an integer such that c I a and c I b, then c I d.

Property (a) states that d is a common divisor of a and b; property (b) ensures that d
is the greatest such divisor. Therefore, the integer d in the theorem is called the greatest
common divisor of a and b. It is denoted (a, b). (The context will usually make it clear
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whether this or some other interpretation of the ordered pair notation is intended.) Examples
are (4, -6) = 2, (-7, 0) = 7, and (25, 33) = 1.

The following proof of Theorem 12.1 shows how to compute (a, b) by a systematic
procedure known as the Euclidean Algorithm. Another proof, which shows the existence
of (a, b), but not how to compute it, is outlined in Problem 12.24.

PROOF. First consider the case b > 0. By the Division Algorithm (Section 10), there
are unique integers ql and r1 such that

a=bql+rl, 0<r1<b.

If r1 = 0, then b I a, and b will satisfy the conditions for din parts (a) and (b). If r1 0, we
can apply the Division Algorithm again, getting integers q2 and r2 such that

b = r1g2 + r2, 0 < r2 < rl.

Repeated application of the Division Algorithm in this way produces a sequence of pairs
of integers q1, rr; q2, r2; q3, r3; ... such that

a=bql+r,, 0<r,<b
b = r1g2 + r2, 0 < r2 < r,

r, = r2g3 + r3, 0 < r3 < r2
(12.1)

Because each remainder is nonnegative, and r, > r2 > r3 > , we must eventually reach
a remainder that is zero. If rk+r denotes the first zero remainder, then the process terminates
with

rk-2 = rk- Iqk + rk, 0 < rk < rk_1

rk-r = rkgk+l.

We shall show that rk, the last nonzero remainder; satisfies requirements (a) and (b) for d
in the theorem.

Notice first that rk I rk_,, because rk_1 = rkgk+l. But then rk Irk-2 because rk_2 =
rk-rqk + rk and rk I rk-, and rk I rk. Continuing in this way, we can work through the equa-
tions in (12.1), from the end, and obtain rk Irk-1, rk Irk-2, rk I rk-3, ... , until we arrive at
rk I r 1, rk I b, and finally rk I a. Thus rk is a common divisor of a and b.

Now, moving to condition (b), assume that c I a and c I b. Then c I r 1 because r 1=
a - bq1. But if c I b and c I r1, then c I r2, because r2 = b - r,q2. Continuing in this way,
we can work through the equations in (12.1), from the beginning, and obtain c I r 1, c 1 r2,
c I r3, ... , and finally c I rk. This verifies condition (b).

If b < 0, we simply go through the same process starting with a and -b, rather than a
and b; then observe that since b and -b have the same divisors, a greatest common divisor
of a and -b will also be a greatest common divisor of a and b.

If b = 0, then I a I satisfies the requirements (a) and (b) for d in the theorem.
To prove the uniqueness of (a, b), assume that d1 and d2 are integers, each satisfying

both of the requirements (a) and (b) for d. Then d1 I d2 and d2 I d1. Therefore, since both d1
and d2 are positive, d1 = d2.
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Example 12.1. Here is the Euclidean Algorithm applied to compute (1001, 357).

1001 = 357 2 + 287
357 = 287 1 + 70
287=70.4+7
70=7.10

Therefore (1001, 357) = 7.

If a and b are integers, then any integer that is equal to am + bn for some integers m
and n is said to be a linear combination of a and b. The equations that arise in the Euclidean
Algorithm can be used to express (a, b) as a linear combination of a and b. Before proving
this, we illustrate the idea with an example.

Example 12.2. From Example 12.1, (1001, 357) = 7. To express 7 as a linear combination
of 1001 and 357, we use the equations in Example 12.1, beginning with 287 = 70
and working backward one step at a time.

- 4 + 7

7=287-70.4 (12.2)

Solve the equation 357 = 287 1 + 70'for 70 (the remainder), substitute in (12.2), and
simplify.

7=287-(357-287. 1)4
7=287.5-357.4 (12.3)

Solve the equation 1001 = 357 2 + 287 for 287 (the remainder), substitute in (12.3), and
simplify.

7=(1001-357.2)5-357.4
7=1001.5-357.14
7 = 1001(5) + 357(-14)

Thus (1001, 357) = 7 = 1001m + 357n form = 5 and n = -14.

Theorem 12.2. The greatest common divisor of integers a and b, not both zero, can be
expressed as a linear combination of a and b:

(a, b) = am + bn for some integers m and n.

PROOF. We work backward through the equations indicated in (12.1), starting with
rk-2 = rk-I gk + rk. Solve this for rk, to get rk as a linear combination of rk_ 1 and rk_2.

rk = rk-2 - rk-Igk (12.4)

The next equation up the line in (12.1) would be rk-3 = rk-2gk-1 +rk_1. Solve this
for rk_1 and substitute in (12.4). The result gives rk as a linear combination of rk_2 and

rk = rk-2 - (rk-3 - rk_2gk-1)qk

rk = rk-2(1 + qk-lqk) - rk-3qk (12.5)

The next equation up the line in (12.1) would allow us to eliminate rk_2 from (12.5)
and express rk as a linear combination of rk_3 and rk_4. If we continue in this way, we
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eventually get r,, as a linear combination of r2 and r1, then as a linear combination of rl
and b, and finally as a linear combination of b and a.

Corollary. If a and b are integers, then (a, b) = 1 iff there are integers m and n such that
am + bn = 1.

PROOF. If (a, b) = 1, then Theorem 12.2 guarantees the existence of m and n such
that am + bn = 1.

To prove the converse, assume the existence of integers m and n such that am + bn = 1.
If d = (a, b), then d a and d I b, so d I (am + bn) = 1. Therefore, since d > 0, we must
have d = 1.

Integers having greatest common divisor 1, such as a and b in the preceding corollary,
are said to be relatively prime.

Although the Euclidean Algorithm can be used to calculate integers m and n such that
(a, b) = am + bn, it is the mere existence of such m and n, not their actual calculation,
which is most often important. In trying to prove statements involving greatest common
divisors, it is frequently helpful to begin just by trying to make use of Theorem 12.2. Lemma
13.1 illustrates this point.

Theorem 12.1 can be extended to show that every finite set of integers, not all zero,
has a greatest common divisor. The greatest common divisor of at, a2, ... , a is denoted
(al, a2, ..., an). For example, (-6, 15, 33) = 3.

Theorem 12.3. If a and b are nonzero integers, then there is a unique positive integer m
such that

(a) aim and b im, and

(b) if c is an integer such that a I c and b I c, then m I c.

Property (a) states that m is a common multiple of a and b; property (b) ensures that m
is the least positive such multiple. Therefore, the integer m in the theorem is called the least
common multiple of a and b. It is denoted [a, b]. Examples are [4, -6] = 12, [-7, 7] = 7,
and [25, 33] = 825.

PROOF. Let S = {x : x E N, a I x, and b I x }. Then S # 0 since, for example,
ab I E S. By the Least Integer Principle S has a least element, which we denote by m.

By the definition of S, a I m and b I m. Thus to complete the proof it remains only to prove

part (b)
Assume C E N, a I c, and b I c. By the Division Algorithm there exists a unique pair of

integers q, r such that

c=mq+r, 0<r<.m. (12.6)

Because a I c, b I c, a I m, and b I m, Equation (12.6) implies that a I r and b I r. Thus r E S,
but 0 < r < m, so r = 0 by the choice of m as the least element in S. Therefore, m c.

Theorem 12.3 can be extended to show that every finite set of nonzero integers
has a least common multiple. The least common multiple of a,, a2, ..., an is denoted
[a,, a2. ... . an]. For example, [-6, 15, 25] = 150.
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PROBLEMS

In Problems 12.1-12.4, find the greatest common divisor and the least common multiple of the given
set of integers.

12.1. (6,141 12.2. f-75,1051

12.3. (36, -60,90) 12.4. (14, 21, 35)

In Problems 12.5-12.8, find the greatest common divisor and write it as a linear combination of the
two given integers.

12.5. (1001, 33) 12.6. (56, 126)

12.7. (-90, 1386) 12.8. (-2860, -2310)

12.9. List all of the positive integers that are less than 12 and relatively prime to 12.

12.10. How many positive integers less than 81 are relatively prime to 81? (Suggestion: It's easier
to find how many are not relatively prime to 81. Notice that 81 = 34; that tells us something
about at least one factor of any integer that is not relatively prime to 81.)

12.11. Verify that (2, 3) can be expressed in at least two different ways as a linear combination of
2 and 3. (This shows that the integers m and n in Theorem 12.2 are not uniquely determined
by a and b. Problem 12.12 gives a much stronger statement.)

12.12. Prove that if a and bare integers, not both zero, then there are infinitely many pairs of integers
m, n such that (a, b) = am + bn.

12.13. Prove that if c is a positive integer, then (ac, bc) = (a, b)c.

12.14. Prove that if d is a positive integer, d I a, and d I b, then (a, b) = d if (a Id, b/d) = 1.

12.15. Prove that if p is a prime and a is an integer, and p I a, then (a, p) = 1.

12.16. Prove that if (a, c) = 1 and (b, c) = 1, then (ab, c) = 1.

12.17. Prove that if (ab, c) = 1, then (a, c) = 1 and (b, c) = 1.

12.18. Prove that if c I ab and (a, c) = d, then c I bd.

12.19. Prove that if a = bq + r, then (a, b) = (b, r).

12.20. Prove that if (a, b) = 1 and c I a, then (c, b) = 1.

12.21. Prove that if (a, m) = 1, then there is a solution (for x) to the congruence ax = b (mod m).

12.22. Assume that p is a prime and n a positive integer. How many positive integers less than p"
are relatively prime to p"? (See the suggestion for Problem 12.10.)

12.23. Prove that if a, b, c are integers, not all zero, then they have a greatest common divisor, which
can be written as a linear combination of a, b, and c.

12.24. Give an alternative proof of Theorem 12.1 by justifying each of the following steps.
(a) Let S = (ax + by : x, y E Z). The set S contains at least one positive integer.
(b) There is a least positive integer in S; let it be d = am + bn (m, n E Z). (This will be the

d of Theorem 12.1.)
(c) Because a E S and b E S, to prove Theorem 12.1(a) it suffices to prove that d divides

each positive integer in S.
(d) Let k = au + by denote a positive integer in S. There are integers q and r such that

k=dq+r, 0<r<d.
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Therefore,

au + by = (am + bn)q + r

and

r = (u - mq)a + (v - nq)b,

which implies r E S.
(e) Therefore, r = 0, and d does divide each positive integer in S. (As stated, this shows that

dIaanddIb.)
(f) Ifclaandctb,then cld.

SECTION 13 FACTORIZATION. EULER'S PHI-FUNCTION

Fundamental Theorem of Arithmetic. Each integer greater than 1 can be written as a
product of primes, and, except for the order in which these primes are written, this can be
done in only one way.

Thus 15=3.5 =5.3, 16=2 4 , and 17 = 17, the last example showing that "prod-
uct" is taken to include the possibility that there is only one factor present. We shall prove
two lemmas before proving the theorem.

Lemma 13.1. If a, b, and c are integers, with a I be and (a, b) = 1, then a I c.

PROOF. Since (a, b) = 1, by Theorem 12.2 there are integers m and n such that
1 = am + bn. On multiplying both sides of this equation by c, we get c = amc + bnc.
Certainly a I amc. And we are assuming that a I bc, so that a I bnc. Therefore, a divides
amc + bnc, which is equal to c.

Lemma 13.2. If p is a prime, a 1, a2, ... , a are integers, and p I a i a2 . an, then p I a, for

some i (1 < i < n).

PROOF. We use induction on n. The case n = 1 is obvious. Assume that n > 1. If

p I aia2 . an-1, then p I a, for some i (1 < i < n - 1) by the induction hypothesis. If
pIaja2.

an-1,then(p,aia2 . a prime. In this case, by Lemma
13.1 (with a = p, b = aia2 ... an-1, c = an), p I an. 0

PROOF OF THE THEOREM. Let S denote the set of those integers greater than 1 that
cannot be written as a product of primes. To prove the first part of the theorem we must
show that S is empty. Assume otherwise. Then, by the Least Integer Principle (Section 10),
S contains a least element, which we denote by n. The set S contains no primes, so n can
be factored as n = n1n2, where both n1 and n2 are integers and 1 < n1 < n and 1 < n2 < n.
Because n 1 < n and n2 < n, and n is the least element of S, it follows that n j ¢ S and
n2 ¢ S. Thus n1 and n2 both can be written as products of primes, so the same is true of
n = n 1 n2. This contradicts the fact that n E S. This contradiction proves that S must be
empty, as required.

To prove the last part of the theorem, assume m to be an integer greater than 1, and as-
sumem = p 1 P2 PS = q 1 q2 .. qr, where the pi and q1 are primes. Then p 1 I q 1 q2 . q,
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because P1 I P1 P2 ps Thus pl I qj, for some j (1 < j < t), by Lemma 13.2. But then
pi = q j because both pi and q j are primes. It follows that

P2P3 ... Ps = glg2 . qj-lqj+l ... q,

where we have canceled p1 on the left and qj on the right. Repeating the argument just
used, we see that p2 must equal one of the remaining prime factors on the right. Continuing
in this way, we can pair each prime on the left with a prime on the right. The primes on one
side cannot all be canceled before those on the other side because that would imply that
1 is equal to a product of primes, an impossibility. Thus s = t and the lists pt, P2, ... , Ps
and qt, q2, ... , q, must be the same except possibly for their arrangement.

By arranging the prime factors in increasing order, we see that each integer n > 1 can
be written in the form

n = piI p2 ... Pk` (P1 < P2 < ... < Pk) (13.1)

where the primes p1, P2, ... , Pk and the positive integers e 1 , e2, ... , ek are uniquely deter-
mined by n. We shall call this the standard form for n. For example, the standard form for
300 is 22 .3 .52.

To close this chapter we'll look at a special function 0, and a type of group, U, ,
both of which depend on divisibility properties of the integers. The function, attributed
to Leonhard Euler (1707-1783), is important in number theory and, especially for our
purposes, in analyzing cyclic groups. It also provides one of the keys in RSA cryptography,
which is used to help provide secure communications; the Appendix to Chapter IV gives a
brief explanation of the underlying idea.

Definition. For each integer n > 1, let 0(n) denote the number of positive integers that
are less than n and relatively prime to n. Also, let 0(1) = 1. The function 0 is called the
Euler phi function.

You can quickly verify the special cases ¢(5) = 4, 0(6) = 2, and 0(12) = 4. For n a
power of a prime, 0(n) is given by the following theorem.

Theorem 13.1. Assume that p is a prime and r is a positive integer. Then

O(pr) = pr - pr-1 = p'(1 - 1/P)

In particular, 0(p) = p - 1.

PROOF. An integer k such that 1 < k < pr will be relatively prime to p' if k is not
divisible by p since, by Lemma 13.2, the only divisors of p' are powers of p. The integers k
such that 1 < k < p' and k is divisible by p are those in the list p, 2p, 3 p, ... , (pr-1 - 1) p,
and there are pr-1 - 1 of those. Thus the number of positive integers less than p' and
relatively prime top is pr - 1 - (pr-1 - 1) = p' - pi-1. The last equality in the theorem
follows by simple algebra.

Theorem 13.2. If p and q are primes, then O(pq) = (p - 1)(q - 1).

PROOF. By Lemma 13.1, an integer k will satisfy (k, pq) > I if p I k or q I k. The
number of such k with 1 < k < pq is (q - 1) (from multiples of p that are less than pq) plus
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(p - 1) (from multiples of q that are less than pq.) Thus the number of k such
that 1 <k<pq and (k,pq)=lispq-l-(q-1)-(p-1)=pq-q-p+1=
(p - 1)(q - 1).

The following two theorems generalize Theorems 13.1 and 13.2. We will omit the
proofs, which can be found in most elementary books on number theory. Problem 13.23
invites you to prove Theorem 13.4.

Theorem 13.3. If m and n are positive integers with (m, n) = 1, then rp(mn) = 4(m)rp(n).
(A number-theoretic function with this property is called a multiplicative function.)

Theorem 13.4. If n has the form (13.1) as a product of distinct primel powers, then

fi(n) = (p, - p1 e2 - p2z ') ... (pkk - Pkk /
= n(1 - 1/P1)(l - 1/P2) ... (1 - l/Pk)

Section 17 will give further results involving 0(n). We now move to a collection of
groups constructed from integers mod n, but different from the groups of the form 7G,,.

Definition. For each positive integer n, let Un denote the set of congruence classes mod
n defined as follows:

U,,={[k]:1<k<n and (k,n)=1}.

For example, U12 = {[1], [5], [7], [11]}.

Theorem 13.5. U, is an Abelian group with respect to O. The order of the group U is
0(n)

PROOF. We must first verify closure, that is, if [a], [b] E U,,, then [a] 0 [b] E U,,. To
do this, assume (a, n) = 1 and (b, n) = 1. By the corollary of Theorem 12.2, there exist
integers r, s, t, u such that ar + ns = 1 and bt + nu = 1. Multiplication and factoring leads
to ab(rt) + n(aru + sbt + nsu) = 1, which implies (ab, n) = 1 by the same corollary.
Thus [a] O [b] = [ab] E U,,.

Since [1] E U,,, U. is nonempty and has an identity element. For associativity of O
see Lemma 11.3.

To prove that each element of U,, has an inverse in U,,, assume [a] E U,,, that is,
(a, n) = 1. Then ar + ns = 1 for some r, s E Z, from which ar - 1 = (-s)n and ar - 1
(mod n), that is, [a] O [r] _ [ar] = [1], implying that [r] is an inverse of [a].

Thus U,, is a group. It is Abelian because 0 is commutative by Lemma 11.3. The order
is 0(n) by the definitions of U and 0(n).

Whenever U is referred to as a group, the operation is assumed to be O. If n is a prime,
then U. is the same as Z,*, defined in Section 11.

PROBLEMS

Determine the standard form (13.1) for each of the following integers.

13.1. 105 13.2. 684 13.3. 1375 13.4. 139



SECTION 13 FACTORIZATION. EULER'S PHI-FUNCTION 73

13.5. Let

M = Pi' p12 ... pkk

and

n = Pi P2 Pk

where Pt' p2, ... , pk are distinct prime numbers, s, > 0 for 1 < i < k, and t, > 0 for
1 < i < k. Prove that m I n iff s, < ti, for 1 < i < k.

13.6. Let m and n be as in Problem 13.5, and let

ui = the minimum of s, and t, for each i

and

vi = the minimum of s, and t; for each i.

(a) Prove that (m, n) = pj' p2 pkk (greatest common divisor).

(b) Prove that [m, n] = p,' pz pkk (least common multiple).

Use the results of Problem 13.6 to compute the greatest common divisor and least common multiple
of each of the following pairs of integers.

13.7. 10,105 13.8. -39,54

13.9. 56, 126 13.10. -2860, -2310

13.11. Determine all positive integral divisors of each of the following integers.
(a) 16 (b) 27 (c) 2'32 (d) 2`3S

13.12. Determine the number of positive integral divisors of an integer n that has the standard form
p,' p' . p,". (Compare Problem 13.11.)

13.13. Construct the Cayley table for U12-

13.14. Find the inverse of [37] in U50. (Suggestion: Look at the proof of Theorem 13.5, and Example
12.2.)

13.15. Prove that if n is odd, then q5 (2n) _ 0(n).

13.16. Prove that if n is even, then 0(2n) = 20(n).

13.17. Prove that if (a, b) = 1, a I m, and b I m, then ab I m. (Suggestion: If m = ak, then b I k by
Lemma 13.1.)

13.18. An integer is square free if it is not divisible by the square of any integer greater than 1. An
integer n is a perfect square if n = k2 for some integer k.
(a) Prove that n is square-free if in the standard form (13.1) each e; = 1.
(b) Prove that n is a perfect square if in the standard form (13.1) each e, is even.
(c) Prove that every integer greater than 1 is the product of a square-free integer and a perfect

square.

13.19. Prove that if n is a positive integer, then f is rational if n is a perfect square (see Problem
13.18). (Suggestion: Apply the Fundamental Theorem of Arithmetic to a2 = nb2. Compare
Theorem 31.1.)

13.20. Prove that -Y2- is irrational. (Suggestion: Apply the Fundamental Theorem of Arithmetic to
a3 = 2b3.)

13.21. State and prove a theorem characterizing those integers n for which ' n is rational. (Compare
Problems 13.19 and 13.20.)
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13.22. Prove that if a and b are positive integers, then

(a, b)[a, b] = ab.

(See Problem 13.6.)

13.23. Prove Theorem 13.4. (Suggestion: Use Theorems 13.1 and 13.3 and mathematical induction
on the number of distinct prime factors of n.)



CHAPTER IV

GROUPS

In this chapter the emphasis is less on giving examples of groups and more on proving
general theorems about them. The focal points are Lagrange's Theorem, which puts a
strong restriction on which subsets of a group can be subgroups, and isomorphism, which
makes precise the notion of what it means for groups to be "essentially" alike.

SECTION 14 ELEMENTARY PROPERTIES

Hereafter, whenever a group has no other specified operation, we refer to the operation
as multiplication and indicate the product of a and b by ab (juxtaposition). Also, if there
is no other established notation, the identity element is denoted by e and the inverse of
an element a by a-'. When interpreting general statements in special cases, this notation
must be changed accordingly. For instance, ab, e, and a-' become, in additive notation,
a + b, 0, and -a. The reasons for using ab, e, and a-1 consistently in general statements
are economy and uniformity.

We begin with some remarks about associativity. There are two possible results
from inserting parentheses in abc, and the associative law demands that these be equal:
a(bc) = (ab)c. But what about abcd? For example, two of the possibilities here are a(b(cd))
and (ab)(cd). One application of the associative law (for three elements) shows these pos-
sibilities to be equal: substitute a for x, b for y, and cd for z in x(yz) = (xy)z. Then

x(yz) = (xy)z

becomes

a(b(cd)) = (ab)(cd),

as claimed. The other possibilities for abcd are

a((bc)d), ((ab)c)d, and (a(bc))d,

and they all give the same result (Problem 3.30). In fact, this is true for any number of
elements, by what is known as the generalized associative law: If a,, a2, ..., a (n > 2) are
elements of a set with an associative operation, then the product a, a2 a is unambiguous;
that is, the same element will be obtained regardless of how parentheses are inserted in the
product, as long as the elements a,, a2, ... , a and their order of appearance are unchanged.
(For a proof of this law see either of the last two references listed at the end of this chapter.)

7c



76 CHAPTER IV GROUPS

Theorem 14.1. Let G be a group.

(a) If a, b, c E G and ab = ac, then b = c (left cancellation law).

(b) If a, b, c E G and ba = ca, then b = c (right cancellation law).

(c) If a, b E G, then each of the equations ax = b and xa = b has a unique solution
in G. In the first, x = a-1 b; in the second, x = ba-1.

(d) If a E G, then (a-1) 1 = a.

(e) If a, b E G, then (ab)-1 = b-la-1.

PROOF. (a) Assume that ab = ac. On multiplying both sides on the left by a-1, we
are led to a-l(ab) = a-1(ac), (a-1a)b = (a-la)c, eb = ec, and b = c.

(b) Similar to part (a) (Problem 14.11).
(c) To see that x = a-lb is a solution of ax = b, simply substitute: a(a-l b) _

(aa-1)b = eb = b. To see that there is no other solution, assume that ax = b. Then multipli-
cationontheleftbya-1 leadstoa-l(ax) = a-lb, (a-la)x = a-tb, ex = a-lb, x = a-1b;
thus x = a-'b is indeed the only solution. The proof for the equation xa = b is similar
(Problem 14.12).

(d) The inverse of a-1 is the unique element x such that a-1x = e. But a-1a = e.
Therefore, the inverse of a-1 must be a.

(e) The inverse of ab is the unique elementx such that (ab)x = e. But (ab)(b-1a-1) _
a(bb-1)a-1 = aea-1 = as-1 = e; thus the inverse of ab must be b-la-1.

Here are some observations about the theorem. If a and x are elements of a finite group,
then in the Cayley table for the group ax will be in the row labeled by a. If b is also an
element of the group, then the existence of a unique solution of ax = b [Theorem 14.1(c)]
implies that b appears exactly once in the row labeled by a. Thus

each element of a finite group appears exactly once
in each row of the Cayley table for the group.

(This ignores the row labels at the outside of the table.) Similarly, because there is a unique
solution of xa = b,

each element of a finite group appears exactly once
in each column of the Cayley table for the group.

Part (e) of Theorem 14.1 shows that the inverse of a product is the product of the
inverses, in reverse order.

Integral powers of group elements are defined as follows:

a°=e,a1 =a,a2=aa,...,an+1 =ana

so that an is equal to the product of n a's for each positive integer n. Also,

a-" = (a-1)n for each positive integer n.

The following laws of exponents can be proved by mathematical induction:

aman = am+n

(am)n = am"
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for all integers m and n. (See Appendix C.) In additive notation, for n a positive integer a"
becomes na = a + a + + a (n terms), and a-" = (a_1)n becomes (-n)a = n(-a). In
this case the laws above become

(ma) + (na) = (m + n)a
n(ma) = (mn)a

for all integers m and n.
Now assume that a is an element of a group G. Consider the set of all integral powers

of a, that is, I.... a-2, a-1, e, a, a2, ...}. Some of these powers may be equal, as illustrated
in the following example.

Example 14.1. In S3,

(1 2 3)3 = (1)

so that (1 2 3)3 = (1 2 3)°. Also,

(1 2 3)4 = (1 2 3)3(1

so that (1 2 3)4 = (1 2 3)1. Next,

(1 2 3)5 = (1 2 3)3(1

and (1 2 3)° = (1),

2 3) _ (1)(1 2 3) = (1 2 3),

2 3)2 _ (1)(1 2 3)2 = (1 2 3)z,

so that (1 2 3)5 = (1 2 3)2 = (1 3 2). Finally,

(1 2
3)-1

= (1 3 2),

so that (1 2 3)-1 = (1 2 3)2. If we continue in this way, we will soon realize that the set
of all integral powers of (1 2 3) is just

{(1), (1 2 3), (1 2 3)2) = {(1), (1 2 3), (1 3 2)).

This set of all powers of (1 2 3) is a subgroup of S3. The next theorem will generalize this
example.

If G is a group and a E G, then (a) will denote the set of all integral powers of a. Thus

(a)={a":nEZ}.

By Example 14.1,

((1 2 3)) = {(1),(1 2 3), (1 3 2)).

Theorem 14.2. If G is a group and a E G, then (a), the set of all integral powers of a, is
a subgroup of G.

PROOF. It suffices to check the three conditions in Theorem 7.1. First, (a) is non-
empty since a E (a). Next, the set (a) is closed: if am E (a) and a" E (a), then am - a" =
am+n E (a), since m E Z and n E Z imply m + n E Z. Finally, (a) contains the inverse of
each of its elements, because if am E (a), then (am)-1 = a-m E (a).

Definitions. If G = (a) for some a E G, then G is called a cyclic group. In general, the
subgroup (a), which may or may not be all of G, is called the subgroup generated by a. If
H = (a) for some a E H, then H is called a cyclic subgroup.
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The group of integers is cyclic: Z = (1) and Z = (-1), so both 1 and -1 are generators.
Remember that the operation on Z, as a group, is addition, so in this case instead of powers
(such as am), we are concerned with multiples (such as ma).

Every cyclic group G is Abelian, because am an = anam for all m, n E Z. But not every
Abelian group is cyclic (Problem 14.5). More will be said about cyclic groups in Theorem
17.1 and later.

The following theorem analyzes what happens when different powers of an element
are equal, as in Example 14.1.

Theorem 14.3. Assume that G is a group, that a E G, and that there exist unequal integers
r and s such that ar = as.

(a) There is a smallest positive integer n such that a" = e.

(b) If t is an integer, then a' = e iff n is a divisor of t.

(c) The elements e = a0, a, a2, ... , a"-1 are distinct, and (a) = {e, a, a2, ... , a"-1 }

PROOF. (a) To prove part (a), it suffices to show that a' = e for some positive integer
t; the Least Integer Principle will then tell us that there is a smallest such integer, which
we can call n. Assume r > s. (Ifs > r, just interchange r and s in the next sentence.) After
multiplying both sides of ar = as by a-s, we obtain ar-s = e with r - s > 0. And, as
already stated, that is sufficient.

(b) If n is a divisor of t, say t = n v, then a` = a"" = (a")" = e° = e. To prove the other
half of part (b), suppose that a' = e. By the Division Algorithm there are integers q and r
such that t = nq + r, 0 < r < n. Thus a` = a"q+r = (a")qar = egar = a". But a' = e, so
ar = e. This implies that r = 0, since 0 < r < n and n is the smallest positive integer such
that a" = e. Therefore t = nq so that n is a divisor of t.

(c) To prove that a°, a 1, a2, ... , a"-1 are distinct, suppose that a" = a" with 0 < u < n
and 0 < v < n. We shall prove that u must equal v. Interchanging u and v if necessary, we
can assume that u > v. Then a" = a" implies a"a-° = a"a-", which implies a"-° = e
with u - v > 0. Therefore, by part (b), n must be a divisor of u - v. But u - v < n, since
0 < u < n and 0 < v < n. Thus n is a divisor of u - v and 0 < u - v < n, which can happen
only if u - v = 0, that is, u = v.

Certainly any power of a is in (a); hence the proof will be complete if we show that
each power of a is in the set {e, a, a2, ... , a"-1 }. Consider a power am. By the Division
Algorithm there are integers q and r such that m = nq + r. This leads to am = anq+r =
(a")gar = egar = ar, with 0 < r < n, which is just what we need.

Definition. If a is an element of a group, then the smallest positive integer n such that
a" = e, if it exists, is called the order of a. If there is no such integer, then a is said to have
infinite order. The order of an element a will be denoted by o(a).

Example 14.2.

(a) In S3, o((1 2 3)) = 3 (Example 14.1).
(b) In the group of nonzero rational numbers (operation multiplication), 2 has infinite

order, because 2" # 1 for every positive integer n.

In additive notation, the condition a" = e becomes na = 0. In Z, the condition a" = e
becomes n[a] = [0].
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Example 14.3. In Z6, o([2]) = 3, because [2] 0 [0] and

2[2] = [2] ® [2] = [4154 [01

but

3[2] = [2] ® [2] ® [2] = [6] = [0].

(We also see that ([2]) = ([0], [2], [4]).)

The word order has been used in two senses: the order of a group (Section 5) and the
order of an element. The next corollary shows how the two are related.

Corollary. If a is an element of a group, then o(a) = I (a) I.

PROOF. If o(a) = n is finite, then (a) = {e, a, a2, ... , a"-t } by Theorem 14.3(c).
Thus I (a) I = n and o(a) = I (a) I. If a is of infinite order, then all of the integral powers of
a must be distinct by Theorem 14.3(a), and thus I (a) I is infinite.

PROBLEMS

14.1. Solve the equation (1 2)x = (1 2 3) in S3-

14.2. Solve the equation x(1 3 2) = (1 3) in S3.

14.3. Determine the elements in each of the cyclic subgroups of S3. Also give the order of each
element of S3-

14.4. Determine the elements in each of the cyclic subgroups of Z6. Also give the order of each
element of Z6-

14.5. Find the order of the element (1 2)(3 4) in S4. Verify that ((1), (1 2), (3 4), (1 2)(3 4)}
is an Abelian, noncyclic subgroup of S4.

14.6. Find the order of the element (1 2)(3 4 5) in S5.

14.7. (a) Determine the elements in the subgroup ((1 2 3 4)) of S4.
(b) Determine the elements in the subgroup ((1 2 3 4 5)) of S5.
(c) What is the order of the subgroup ((1 2 ... n)) of S°?

14.8. Determine the elements in each of the following subgroups of the group of symmetries of a
square (Table 8.1).

(a) (Ago)
(b) (Also)
(c) (A27t)

14.9. Let a denote the clockwise rotation of the plane through 90° about a fixed point p (a E G in
Example 5.7). What is the order of (a)?

14.10. (a) Repeat Problem 14.9 with 40° in place of 90°.
(b) What is the order of (a) if a denotes rotation through (360/k)° (k E N)?

14.11. Prove Theorem 14.1(b).

14.12. Prove that xa = b has a unique solution in a group. This is the omitted part of the proof of
Theorem 14.1(c).

14.13. Prove that axb = c has a unique solution in a group (given a, b, c).
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14.14. (a) Prove that if a and b are elements of an Abelian group G, with o(a) = m and o(b) = n,
then (ab)m" = e. Indicate where you use the condition that G is Abelian.

(b) With G, a, and b as in part (a), prove that o(ab) divides o(a)o(b).
(c) Give an example of an Abelian group G and elements a and b in G such that

o(ab) 54 o(a)o(b). Compare part (b).

14.15. Show with an example that if G is not Abelian, then the statement in Problem 14.14(a) may
be false. (There is an example with G = S3.)

14.16. (a) Use Problem 14.14 to prove that in an Abelian group the elements of finite order form a
subgroup.

(b) What are the elements of finite order in the group of positive rationals (operation multi-
plication)?

14.17. Verify Theorem 14.1(e) for a = (1 2 5) and b = (2 3 4) in S5. Is (ab)-' = a-'b-I true
for this a and b?

14.18. Assume that a and b are elements of a group G.
(a) Prove that ab = ba iff a-'b-1 = b-'a-1.
(b) Prove that ab = ba if (ab)2 = a2b2.

14.19. Assume m, n E Z. Find necessary and sufficient conditions for (m) c (n).

14.20. Construct a Cayley table for a group G given that G = (a), a 54 e, and a5 = e.

14.21. Rewrite Theorem 14.1 (not its proof) for a group written additively, that is, with operation
+, identity 0, and -a for the inverse of a.

14.22. (a) Prove that if a, b, and c are elements of a group, then any one of the following three
equations implies the other two:

ab = c, a = cb-', b = a-'c.

(b) Show with an example that ab = c does not always imply a = b-' c. (Look in S3.)

14.23. Prove that a nonidentity element of a group has order 2 if it is its own inverse.

14.24. Prove that every group of even order has an element of order 2. (Problem 14.23 may help.)

14.25. Prove that a group G is Abelian if (ab)-' = a - 'b- ' for all a, b E G.

14.26. There is only one way to complete the following Cayley table so as to get a group. Find it.
Why is it unique? (Problem 5.22 may help.)

a

b

c

a b c

b

14.27. Assume that {x, y, z, w} is to be a group, with identity x (operation juxtaposition). With any
one of the following additional assumptions (a), (b), (c), or (d), there is only one Cayley table
yielding a group. Determine that Cayley table in each case.

(a) y2 = z
(b) y2 = w
(c) y2=xandz2=x
(d) y2=xandz2=y

14.28. Prove that if a is a fixed element of a group G, and X : G - G is defined by x(x) = ax for
each x E G, then 1. is one-to-one and onto.

14.29. Prove that a group is Abelian if each of its nonidentity elements has order 2.

14.30. Prove that if G is a group and a E G, then o(a-') = o(a).
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14.31. Prove that if G is a group and a, b E G, then o(a-' ba) = o(b).

14.32. Prove that if G is a group and a, b E G, then o(ab) = o(ba). (Suggestion: Problem 14.31
may help.)

14.33. Prove or give a counterexample: If a group G has a subgroup of order n, then G has an element
of order n.

14.34. Prove that if a group G has no subgroup other than G and (e), then G is cyclic.

14.35. Prove that if G is a finite group, then Theorem 7.1 is true with condition (c) omitted. Also,
give an example to show that (c) cannot be omitted if Theorem 7.1 is to be true for all groups.

14.36. Prove that the order of an element a in S is the least common multiple of the orders of the
cycles in the cyclic decomposition of a.

14.37. Determine the largest order of an element of S. for each n such that 1 < n < 10. [Suggestion:
In S5, o((1 2 3)(4 5)) = 6. Consider Problem 14.36.] Formulate a general statement about
how to find the largest order for an element of S,,.

14.38. Prove that if A and B are subgroups of a group G, and A U B is also a subgroup, then A C B
or A D B. (Compare Problem 7.13 and Theorem 15.1.)

SECTION 15 GENERATORS. DIRECT PRODUCTS

If G is a group and a E G, then the cyclic subgroup (a) is the smallest subgroup containing
a. The next two theorems generalize this idea by associating with each subset of a group a
unique smallest subgroup containing that subset.

Theorem 15.1. If C denotes any collection of subgroups of a group G, then the intersection
of all of the groups in C is also a subgroup of G.

PROOF. Let H denote the intersection in question; we shall verify that H satisfies the
three conditions in Theorem 7.1. Each subgroup in C contains e, the identity of G, so e E H
and H is nonempty. If a, b E H, then a and b belong to each subgroup in C and therefore
ab belongs to each subgroup in C; thus ab E H. Finally, if a E H, then a-' belongs to each
subgroup in C because a does, and thus a-t E H.

Example 15.1. In Z (operation addition), (3) consists of all the multiples of 3 and (4)
consists of all the multiples of 4. Because a number is a multiple of both 3 and 4 if it is a
multiple of 12, we have

(3) n (4) = (12).
Also,

(6) n (8) = (24).

Theorem 15.2. Let S be any subset of a group G, and let (S) denote the intersection of all
of the subgroups of G that contain S. Then (S) is the unique smallest subgroup of G that
contains S, in the sense that

(a) (S) contains S,

(b) (S) is a subgroup, and

(c) if H is any subgroup of G that contains S, then H contains (S).
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PROOF. First, notice that there is always at least one subgroup of G containing S,
namely, G itself. With (S) as defined, (S) certainly contains S, because the intersection of
any collection of subsets each containing S will contain S, whether the subsets are subgroups
or not. Next, (S) is a subgroup by Theorem 15.1. Finally, condition (c) is simply a property
of the intersection of sets: if H is a subgroup containing S, then H is a member of the
collection of subgroups whose intersection is (S), and thus H contains (S).

To justify use of the term unique in the theorem, assume that [S] is a subgroup of G
satisfying conditions (a), (b), and (c) with [S] in place of (S). Condition (c), with [S] in
place of H, implies that [S] ? (S). On the other hand, condition (c) with (S) in place of H
and [S] in place of (S) implies that [S] C (S). Thus [S] = (S).

We say that S generates (S) and that (S) is generated by S. If S = (a), then (S) is the
cyclic subgroup generated by a, which we denote by (a) (Section 14). More generally, if
S = (a,, ..., an), then we denote (S) by (a,, ..., rather than ({a,, ... ,

Example 15.2. The subgroup (9, 12) of the group of integers must contain 12 + (-9) = 3.
Therefore (9, 12) must contain all multiples of 3. That is, (9, 12) 2 (3). But also
(9, 12) c_ (3), because both 9 and 12 are multiples of 3. Therefore (9, 12) = (3). The
next theorem generalizes this example.

Theorem 15.3. Let T, and T2 be subsets of a group G. Then

(Ti) = (T2) iff both T, c (T2) and (Ti) 2 T2.

PROOF. By Theorem 15.2(a), T, c (T,). Therefore,

if (T,) = (T2), then T, C (T2).

Similarly,

if (T1) = (T2), then (T,) : T2.

Because (T2) is a subgroup of G, Theorem 15.2(c) implies that

if T, C (T2), then (T,) C (T2).

(use (T2) in place of H and T, in place of S). Similarly, since (T,) is a subgroup of G,

if (Ti) D T2, then (T,) J (T2).

Therefore,

if T, C (T2) and (Ti) D T2, then (Ti) = (T2).

To determine just which elements are in a subgroup (S), we must in general make
repeated use of Theorem 7.1, beginning with S and obtaining larger and larger sets until we
arrive at a subgroup. At the first step we adjoin to S all elements ab for a, b E S, and also
all elements a-1 for a E S. This is then repeated with S replaced by the (possibly larger) set
consisting of S together with the elements adjoined at the first step. And so on. In this way
it can be seen that (S) must contain all elements a,a2 ak, where k is a positive integer
and each of a, , a2, ... , ak is either an element of S or the inverse of an element of S. In fact,
if S is nonempty, then (S) will consist precisely of the set of all such elements a,a2 ak
(Problem 15.30). As Example 15.2 shows, however, in special cases (S) can be determined
more directly than this.
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Example 15.3. Theorem 15.3 and the following calculations show that in S4,

((1 2 4), (2 3 4)) = ((1 2 3), (1 2)(3 4)).

First, {(1 2 4), (2 3 4)} C ((1 2 3), (1 2)(3 4)) because

(1 2 4) = (1 2 3)(1 2)(3 4)(1 2 3)

and

(2 3 4) = (1 3 2)(1 2)(3 4) = (1 2 3)-'(1 2)(3 4).

Second, ((1 2 4), (2 3 4)) D {(1 2 3), (1 2)(3 4)) because

(1 2 3) _ (1 2 4)(2 3 4)

and

(1 2)(3 4) = (2 3 4)(1 4 2) = (2 3 4)(1 2 4)-1.

We now look at direct products, which provide a way to construct examples of groups
and a way to describe certain groups in terms of less complicated component subgroups.
If A and B are groups, then A x B is the Cartesian product of A and B:

AxB={(a,b):aEA and bEB}.

The following theorem shows how to make this set into a group.

Theorem 15.4. If A and B are groups, then A x B is a group with respect to the operation
defined by

(a,, bi)(a2, b2) = (aia2, bib2)

for all a,, a2 E A and bl, b2 E B. The group A x B (with this operation) is called the direct
product of A and B.

Remark. In defining the direct product we have followed the convention of writing groups
multiplicatively. If the operation on either A or B is something other than multiplication,
then that is taken into account in working with A x B. In Z x Z, for example,

(a, b)(c, d) = (a + c, b + d)

for all a, b, c, d E Z. Also see Example 15.4.

PROOF. The identity element of A x B is (eA, eB), where eA and eB denote the identity
elements of A and B, respectively. The inverse of (a, b) is (a-', b-'). Verification of the
associative law is left as an exercise (Problem 15.16).

Notice that if A and B are finite, then so is A x B, with I A x B I_ I A I l B

Example 15.4. Since Z3 = [[0], [1], [2]) and S2 = [(1), (1 2)},

Z3 x S2 = (([0], (1)), ([0], (1 2)), ([11, (1)),

([l], (1 2)), ([2], (1)), Q21, (1 2))).
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And, for example,

([l],(1 2))([2], (1)) = ([I] ® [2],(l 2)(l)) = ([0],(1 2)).

If A and B are groups, then both

Ax{e}={(a,e):aEA)

and

{e}xB={(e,b):bEB}

are subgroups of A x B (Problem 15.17).

PROBLEMS

Verify each of the following equalities for subgroups of Z.

15.1. (-20, 8) = (4) 15.2. (24, -36, 54) = (6)

Verify each of the following equalities for subgroups of S6.

15.3. ((1 4 6 2 3 5)) = ((1 2)(3 4)(5 6),(1 3 6)(2 4 5))

15.4. ((1 2 3), (4 5 6)) = ((1 2 3)(4 5 6), (4 6 5))

Determine the elements in each of the following subgroups of the group of symmetries of a square
(Table 8.1).

15.5. (490, PH) 15.6. (µiso, Pv)
15.7. What is the order of Z4 X Z7? 15.8. What is the order of S4 X S4?

15.9. Simplify the following expression in Z4 X S4.

([2], (1 2 3))-'([1], (2 4))([2], (1 2 3)).

15.10. Simplify the following expression in A x B, where A is the group in Example 5.8 and B is
the group of symmetries of a square (Table 8.1).

(a2.1, µ90)r'(a3.2, PV)(a2.i, 990)-

15.11. Construct a Cayley table for the group in Example 15.4. Show that the group is cyclic.

15.12. Construct a Cayley table for Z2 X Z3. Show that the group is cyclic.

15.13. The subgroup ((1 4 3 2), (2 4)) of S4 has order 8. Determine its elements and write each
one as a product of disjoint cycles.

15.14. If 0 denotes the empty set, what is (0) (in any group G)?

15.15. Find necessary and sufficient conditions on a subset Sofa group G for S = (S).

15.16. Prove the associative law for the direct product A x B of groups A and B (Theorem 15.4).

15.17. Prove that A x (e) is a subgroup of A x B.

15.18. Prove that A x B is Abelian if both A and B are Abelian.

15.19. Give an example to show that a direct product of two cyclic groups is not necessarily cyclic.
(Compare Problem 15.18.)

15.20. Prove that if A is a subgroup of G and B is a subgroup of H, then A x B is a subgroup of
G x H.

15.21. (a) List the elements of S3 X Z2.
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(b) List the elements of the cyclic subgroup (((1 2), [1])) of S3 X Z2.
(c) List the elements of the cyclic subgroup (((1 2 3), [1])) of S3 x Z2.

15.22. (a) List the elements in the subgroup (([2], [2])) of Z4 x Zs. (The first [2] is in Z4; the second
is in Zs.)

(b) List the elements in the subgroup ([2]) x ([2]) of Z4 x Zs. (Again, the first [2] is in Z4,
and the second [2] is in Zs.)

15.23. Prove that if a, b E Z, then (a, b) = (d), where d is the greatest common divisor of a and b.
Formulate a generalization involving (a,, a2, ... , a,,) for a , , a2, ... , a E Z.

15.24. Prove that if a, b E Z, then (a) fl (b) = (m), where m is the least common multiple of a and
b. Formulate a generalization involving (a,) fl (a2) fl ... fl (a,,) for a , , a2, ... , a E Z.

15.25. Prove that ([a]) = Z if (a, n) = 1, where (a, n) denotes the greatest common divisor of a
and n.

15.26. Prove that if (a, n) = d, then ([a]) = ([d]) in Z,,. [Here (a, n) denotes the greatest common
divisor of a and n.]

15.27. Prove that ([a]) = ([b]) in Z. if (a, n) = (b, n). (See Problem 15.26.)

15.28. Prove that if A is a group, then ((a, a) : a E A) is a subgroup of A x A. This is called the
diagonal subgroup of A x A. What is it, geometrically, for A = IR, with addition as the
operation?

15.29. Each subgroup of Z (operation +) is cyclic. Prove this by assuming that H is a subgroup of
Z and giving a reason for each of the following statements.
(a) If I H I = 1, then H is cyclic.
(b) If H I > 1, then H contains a least positive element; call it b.
(c) Ifa E H and a = bq + r, then r E H.
(d) Ifa E H and a = bq + r, with 0 < r < b, then r = 0.
(e) H = (b).

15.30. Prove that if G is a group with operation *, and S is a nonempty subset of G, then (S) is the
set of all a, * a2 * . . * ak, where k is a positive integer and each of a , , a2, ... , ak is either
an element of S or the inverse of an element of S. [Suggestion: Show that the set described
satisfies the conditions (a), (b), and (c) in Theorem 15.2, which characterize (S).]

SECTION 16 COSETS

We know that congruence modulo n is an equivalence relation on the group of integers. By
viewing this in an appropriate way we are led to an idea that is important in the study of
all groups. To do this, we first recall that if n E Z, then (n) is the subgroup consisting of
all multiples of n. Because

a - b (mod n) iff a - b is a multiple of n,

we see that

a=b(mod n) if a - bE (n).

The next theorem generalizes this by replacing Z by an arbitrary group G, (n) by an
arbitrary subgroup H of G, and a - b by the corresponding expression ab-1 in our general
multiplicative notation.
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Theorem 16.1. Let H denote a subgroup of a group G, and define a relation ^- on G as
follows:

a ^- b iff ab-1 E H. (16.1)

Then is an equivalence relation on G.

PROOF. Reflexive: If a E G, then a ^- a because as-1 = e E H.
Symmetric: If a ^- b, then ab-1 E H, so ba-1 = (ab-1)-1 E H because H contains

the inverse of each of its elements; thus b ^- a.
Transitive: If a ^' b and b ^- c, then ab-1 E H and be-1 E H, so ac-1 = (ab-1)

(bc-1) E H because H is closed under products; thus a ^- c.

The equivalence classes for this equivalence relation are called the right cosets of H
in G. (Left cosets will be defined later in the section.) Looking back at the motivating
example preceding Theorem 16.1, we see that the right cosets of (n) in Z are simply the
congruence classes mod n. Lemma 16.1 will show that the right cosets of H in G have
the form described by the following notation: For H a subgroup of a group G and a E G,
let

Ha=(ha:hoH}.
If the group operation is +, then H + a is written in place of Ha, and similarly for other
operations.

Example 16.1. Let G = Z and H = (7). Then

H+3= (7)+3={...,-14,-7,0,7, 14,...}+3
_ {...,-11,-4,3, 10, 17, ...}.

This is the congruence class [3] in Z7.

Example 16.2. Let G = S3 and H = {(1), (1 2)). Then

H(1) _ {(1)(1), (1 2)(1)} = {(l), (1 2)}

H(1 2 3) _ ((1)(1 2 3), (1 2)(1 2 3)} _ {(1 2 3), (2 3))

H(1 3 2) _ {(1)(1 3 2), (1 2)(1 3 2)} _ {(1 3 2), (1 3)).

Notice that these three sets form a partition of G. In fact, by the following lemma, they are
the right cosets of H in G.

Lemma 16.1. If H is a subgroup of a group G, and a, b E G, then the following four
conditions are equivalent.

(a) ab-1 E H.

(b) a = hbfor some h E H.

(c) a E Hb.

(d) Ha = Hb.

As a consequence, the right coset of H to which a belongs is Ha.

PROOF. Problem 16.9.
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One right coset of H in G will be H = He. To compute all of the right cosets of a
subgroup H in a finite group G, first write H, and then choose any element a E G such
that a ¢ H, and compute Ha. Next, choose any element b E G such that b V H U Ha and
compute Hb. Continue in this way until the elements of G have been exhausted.

Example 16.3. Let G = Zl2 and H = ([4]). The right cosecs of H in G are

H = ([0], [4], [8])

H ® [1] _ {[1], [5], [9]1

H®[2]=([2],[6],[10])
H ® [3] _ ([3], [7], [11]}

In Example 16.3, H has order 3, and each of the right cosets of H also has three
elements. The following lemma, which generalizes this observation, will play a crucial
role in the next section. In stating the lemma we extend the notation I H I to include subsets,
that is, for S a finite set, I S I will denote the number of elements in S. Then I S I = I T I if there
exists a one-to-one mapping of S onto T. (This is, in fact, the definition of I S I = I T 1.)

Lemma 16.2. If H is a finite subgroup of a group G, and a E G, then I H I = 1 Ha 1.

PROOF. By the remark preceding the lemma, it suffices to find a one-to-one mapping
of H onto Ha. Define a : H -+ Ha by a(h) = ha for each h E H. This is a mapping
because ha is uniquely determined by h and a. It is onto because Ha consists precisely of
the elements of the form ha for h E H. To show that a is one-to-one, assume that h 1, h2 E H
and a(h1) = a(h2). Then hta = h2a, and therefore, by right cancellation, ht = h2. Thus
a is one-to-one.

Left cosets result from replacing ab-1 E H by a b E H in (16.1). Specifically, let H
be a subgroup of a group G and define - on G by

a b if a-'b (=- H. (16.2)

Then is an equivalence relation on G, and the equivalence classes are called the left cosets
of H in G. These cosets have the form

aH={ah:hEH).

Problems 16.10 and 16.11 ask you to state and prove the analogues of Theorem 16.1 and
Lemma 16.1 for left cosets. Applications of cosets will appear in the next section and later.

PROBLEMS

16.1. Determine the right cosets of ([4]) in 7.8.

16.2. Determine the right cosets of ([3]) in Z12.

16.3. For Example 8.1 (the group of symmetries of a square), determine the right cosets of (pH).

16.4. For Example 8.1, determine the right cosets of (pi).

16.5. Determine the right cosets of ((1 2 3)) in S3-

16.6. Determine the right cosets of ((1 3)) in S3.
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16.7. Verify that if H = {(x, x) : x E R}, then H is a subgroup of R x R (with + as the operation
in each component). Describe the right cosets of H in R x R geometrically. (H is called the
diagonal subgroup of R x R. See Problem 15.28.)

16.8. Consider Z as a subgroup of R with addition as the operation. Think of the elements of R
as the points on a directed line in the usual way, and then describe the right cosets of Z in R
geometrically. (Suggestion: Start with a specific example, such as Z + 1.)

16.9. Prove Lemma 16.1. [Suggestion: Prove that (a) implies (b) implies (c) implies (d) implies (a).]

16.10. State and prove Theorem 16.1 with the condition ab-' E H replaced by a-'b E H.

16.11. State and prove the analogue of Lemma 16.1 for left cosets in place of right cosecs.

16.12. Verify that if H is a subgroup of an Abelian group G, and a E G, then the right coset of H to
which a belongs is the same as the left coset of H to which a belongs.

16.13. Compute the left cosets of H in G for H and G as in Example 16.2. Verify that in this case
the collection of left cosets is different from the collection of right cosets.

16.14. Let G = S3 andH=((1 3)).
(a) Determine the right cosecs of H in G.
(b) Determine the left cosets of H in G.
(c) Verify that the collection of right cosets is different from the collection of left cosets.

16.15. (a) Compute the right and left cosets of ((1 2 3)) in S3.
(b) Verify that for each element Jr of S3 the right coset of ((1 2 3)) to which rr belongs is

the same as the left coset of ((1 2 3)) to which jr belongs.

16.16. Prove that each right coset of A x (e) in A x B contains precisely one element from {e} x B.
(See Problem 15.17.)

16.17. Compute the right cosets of (((1 2), [1])) in S3 X Z2-

16.18. Compute the left cosets of ((1 2)) x ([1]) in S3 X Z2.

16.19. Prove that a subset S of a group G cannot be a right coset of two different subgroups of G.

16.20. Assume that H and K are subgroups of a group G and that a E G. The subset HaK of G
defined by

HaK = (hak : h E H and k E K)

is called a double coset of H and K in G. Prove that if HaK and HbK are double cosecs of
H and K in G, then they are either equal or disjoint; that is, either HaK = HbK or HaK fl
HbK=0.

16.21. Prove that if H and K are subgroups of a group G, then any right cosec of H fl K in G is the
intersection of a right coset of H in G and a right cosec of K in G.

SECTION 17 LAGRANGE'S THEOREM. CYCLIC GROUPS

Of all the subsets of a finite group, only some will be subgroups. Lagrange's Theorem
narrows the field.

Lagrange's Theorem If H is a subgroup of a finite group G, then the order of H is a
divisor of the order of G.

Thus, since S3 has order 3! = 6, any subgroup of S3 must have order 1, 2, 3, or 6; S3
cannot have subgroups of order 4 or 5. A group of order 7 can have only the two obvious
subgroups: {e}, of order 1; and the group itself, of order 7.
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PROOF OF LAGRANGE'S THEOREM. The right cosets of H, being equivalence classes,
forma partition of G (Theorem 9.1). Thus two right cosets of H are either equal or disjoint.
Moreover, because G is finite, there can be only finitely many of these cosets. Choose one
element from each coset and let the elements chosen be a , , a2, ... , ak. Then

Each coset Hai contains IHI elements (Lemma 16.2), and no element is in more than one
coset. It follows that IGI = IHI k. Therefore, IHI is a divisor of IGI .

The integer k appearing in the proof of Lagrange's Theorem is called the index of H
in G. This index will be denoted [G : H]. Thus [G : H] is the number of right cosets of H
in G, and

Notice that this equation shows that [G : H], as well as IHI, is a divisor of IGI.

Corollary 1. If G is a finite group and a E G, then the order of a is a divisor of the order
of G.

PROOF. By the corollary of Theorem 14.3, o(a) = I(a)I. But (a) is a subgroup of
G, and thus I (a) I is a divisor of I G I by Lagrange's Theorem. Therefore o(a) is a divisor
of IGI.

Corollary 2. If G is a finite group and a E G, then aJGJ = e.

PROOF. From Corollary 1, IGI = o(a)k for some integer k. Thus a1GJ = ao(a)k =
(ao(a))k = ek = e.

Corollary 3 (Euler's Theorem). If n is a positive integer and a and n are relatively prime,
then am(") - 1(mod n).

PROOF. By Theorem 13.5, the group U. has order ¢(n). Thus, by Corollary 2, [a ]0(") _
[1] in U,,. But [a]4(") = [am(")], which implies am(") - 1 (mod n).

Corollary 4 (Fermat's Little Theorem). Assume p is a prime. If p%a, then aP-1
1 (mod p). For all a, an - a (mod p).

PROOF. If p is a prime and p %a, then 0(p) = p - 1 and (a, p) = 1, so the first part
is a special case of Corollary 3, and the second part follows from that. If p I a, then a and
aP are both congruent to 0 mod p.

Corollary5. A group G of prime order contains no subgroup other than {e} and G.

PROOF. This is a direct consequence of Lagrange's Theorem, since a prime has no
positive divisor other than 1 and itself.

Corollary6. Each group G of prime order is cyclic, generated by any one of its nonidentity
elements.

PROOF. If a E G and a 54e, then (a) # {e}, so (a)=G by the preceding
corollary.
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Example 17.1. In contrast to groups of prime order (the preceding corollary), groups of
prime-squared order need not be cyclic. For example, a direct product Z x Z,, has order
p2 but is not cyclic because it has no element of order p2; each of its nonidentity elements
has order p. (See Problem 17.24.)

Example 17.2. Lagrange's Theorem greatly simplifies the problem of determining all the
subgroups of a finite group. Let G denote the group of symmetries of a square (Exam-
ple 8.1). Aside from {µo} and the whole group, any subgroup must have order 2 or 4.
Subgroups of order 2 are easy to determine-each contains the identity together with an
element of order 2 (these correspond to appearances of µo on the diagonal of the Cayley
table). In this case (A 180), (PH), (pv), (Pi) and (p2) all have order 2. This leaves only order
4, and careful inspection will reveal three subgroups of this order: (µ9o), (PH, pv) and

(Pt, P2)

Figure 17.1 shows the subgroups of G and the inclusion relations between them. This
is an example of a subgroup lattice. Such a figure is constructed as follows. If A and B
are subgroups of G with A # B, and there is no subgroup C such that A # C B, then B
appears above A and a segment is drawn connecting A and B.

(PH, Pv)
(Y9o) ,(P1, P2)

(PH)_ (Pv)_
-

(Y'so) (P1) _(P2)

(Ko)

Figure 17.1

Notice that Lagrange's Theorem does not say that if n is a divisor of the order of G,
then G has a subgroup of order n. That would be false. For example, the alternating group
A4 has order 12 but has no subgroup of order 6 (Problem 17.28). On the other hand, the
following theorem shows that every cyclic group of finite order n does have a subgroup
of every order dividing n. (Thoroughly understanding this theorem and its proof will take
extra time, but will be worth it.)

Theorem 17.1 (Fundamental Theorem of Finite Cyclic Groups). Let G be a cycl is group
o f (finite) order n, with G = (a) = {e, a, a2, ..., a"-1 }.

(a) Every subgroup of G is cyclic.

(b) If 1 <k < n, then ak generates a subgroup of order n/(k, n), where (k, n) is the
greatest common divisor of k and n.

(c) If 1 < k < n, then ak is a generator of G if (k, n) = 1. Thus G has fi(n) different
generators.

(d) For each positive divisor d of n, G has exactly one subgroup of order d.
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PROOF. (a) Let H denote a subgroup of G. If H = (e), then H is cyclic. Suppose
H # (e), and let m denote the least integer such that 1 < m < n and am E If. We shall
prove that H = (am).

Suppose at E H. By the Division Algorithm, there are integers q and r such that

t=mq+r, 0<r<m.
Because

we have

at = amq+r = (am)gar,

ar = a'(am)-q.

But a' E H and am c H, so ar E H. This implies that r = 0, since 0 < r < m and m is
the least positive integer such that am E H. Therefore, a' = (am)q and a' E (am). Thus
H = (am) and H is cyclic.

(b) Let g = (k, n). Notice that I (a") I is the least positive integers such that akr = e.
By Theorem 14.3, aks = e iff n I ks. But n I ks iff (n/g) I (k/g)s. Since (n/g, k/g) = 1, we
have (n/g) I (k/g)s if (n/g) I s (Lemma 13.1). The least positive integers such that (n/g) Is
is n/g. Therefore, the order of ak is n/g, that is, n/(k, n).

(c) An element ak generates G iff I (ak) I = n. By part (b), this will be true iff (k, n) = 1.
The second part of (c) now follows from the definition of ¢(n) (Section 13).

(d) Suppose d > 0 and d I n. Then n = du for some positive integer u, and (n, u) = u
since u I n. Therefore, by part (b), a" generates a subgroup of order n/u = d. Thus G has
at least one subgroup of order d.

To prove that G has a unique subgroup of each possible order, assume that Hi and H2
are subgroups of G with 11111 = 1 H 2 1 . By the proof of part (a), H, = (am') and H2 = (am= ),
where mi is the least positive integer such that am' E Hi for i = 1, 2. By part (b), I (am') I =
n/(mi, n) for i = 1, 2. But mi I n for i = 1, 2 because a" = e so that an E (am'). Therefore,
(mi, n) = m, so n/(mi, n) = n/mi for i = 1, 2. Thus n/mi, = n/m2, m1 = m2, (am')
(amp), and H, = H2.

Example 17.3. The positive divisors of 12 are 1, 2, 3, 4, 6, and 12. Thus every cyclic
group of order 12 has exactly one (cyclic) subgroup of each of these orders. Figure 17.2
illustrates this by showing the subgroup lattice of Z 2. The notation ak in Theorem 17.1
becomes k[a] in this example.

([1]) =([5]) = ([7]) = ([11])
([2]) = ([10])
([4]) _ ([8])
([3]) _ ([9])

([0])

Figure 17.2
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The Norwegian mathematician Ludwig Sylow (1832-1918) proved in 1872 that if pk
is any power of a prime and pk is a divisor of I G 1, then G must have a subgroup of order
pk. Thus, for example, any group of order 12 must have subgroups of orders 2, 3, and 4.
A proof of Sylow's Theorem, for the case of the highest power of each prime dividing the
order of a finite group, will be given in Section 58.

Lagrange's Theorem is named for the French mathematician Joseph-Louis Lagrange
(1736-1813), generally regarded as one of the two foremost mathematicians of the eigh-
teenth century, the other being the Swiss-born mathematician Leonhard Euler (1707-1783).
Lagrange did not prove this theorem in the form applying to all finite groups; indeed, the
general concept of group was not studied until after Lagrange. But he did use the theorem
in a significant special case, and therefore it is fitting that it be named for him.

PROBLEMS

17.1. Find [S3 : ((1 2))]. 17.2. Find [S4 : ((1 2 3))].

17.3. Find [Zi0 : ([2])]. 17.4. Find [Z40 : ([12], [20])].

17.5. Let G denote the group in Example 8.1 (the group of symmetries of a square). Find [G : (p2)].

17.6. With G as in Problem 17.5, find [G : (µ270)1-

17.7. A group G has subgroups of orders 4 and 10, and I G I < 50. What can you conclude about
IGI?

17.8. A finite group G has elements of orders p and q, where p and q are distinct primes. What can
you conclude about I G I?

17.9. Assume that G is a group with a subgroup H such that I H I = 6, [G H I > 4, and I G I < 50.
What are the possibilities for I G I ?

17.10. Assume that G is a group with a subgroup H such that IGI < 45, I H I > 10, and [G : H] > 3.
Find G1, I H I ,and [G : HI.

17.11. Find all of the subgroups of Z6. Also construct the subgroup lattice.

17.12. Find all of the subgroups of S3. Also construct the subgroup lattice.

17.13. Find all of the subgroups of Z2 x Z2.

17.14. Find all of the subgroups of Z3 X Z3.

17.15. Determine the number of subgroups of Z, x Zp if p is a prime. (Compare Problems 17.13
and 17.14).

17.16. Find all of the subgroups of Z2 x Z4. (There are eight).

17.17. Find all of the subgroups of Z36. Also construct the subgroup lattice. Use Theorem 17.1.

17.18. Assume that G is a cyclic group of order n, that G = (a), that k I n, and that H = (ak). Find
[G : H].

17.19. Assume that H is a subgroup of a finite group G, and that G contains elements a! , a2.... , a,,
such that a,a ' g H for 1 < i < n, 1 < j < n, and i 54 j. What can you conclude about
[G : H]?

17.20. Assume that A is a subgroup of a finite group G and that B is a subgroup of a finite group H.
Then A x B is a subgroup of G x H (Problem 15.20). Express [G x H: A x B] in terms
of [G : A] and [H : B], and prove that your result is correct.

17.21. Assume that A is a finite group and let D denote the diagonal subgroup of A x A (Problem
15.28). Find (A x A : D].
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17.22. The exponent of a group G is the smallest positive integer n such that a" = e for each
a E G, if such an integer n exists. Prove that every finite group has an exponent, and that this
exponent divides the order of the group. [Suggestion: Consider the least common multiple of
(o(a) : a E G).]

17.23. Determine the exponent of each of the following groups. (See Problem 17.22.)
(a) S3 (b) 4 (c) Z2 X Z2
(d) Z2 x 43 (e) Z., x Z.

17.24. Prove that if G is a group of order p2 (p a prime) and G is not cyclic, then ao = e for each
aEG.

17.25. ProvethatifHisasubgroupofG, [G : H] = 2, a, b E G,a 0 H, andb ¢ H, thenab E H.

17.26. Verify that S4 has at least one subgroup of order k for each divisor k of 24.

17.27. Prove that if A and B are finite subgroups of a group G, and 0 l and lBI have no common
divisor greater than 1, then A fl B = (e). (See Problem 7.13.)

17.28. The subgroup A4 = ((1 2 3), (1 2)(3 4)) of S4 has order 12. Determine its elements. Verify
that it has no subgroup of order 6.

17.29. Prove that a finite cyclic group of order n has exactly one subgroup of index m for each
positive divisor m of n.

17.30. If H is a subgroup of G and [G : H] = 2, then the right cosets of H in G are the same as the
left cosets of H in G. Why?

17.31. Write a proof of Lagrange's Theorem using left cosets rather than right cosets.

1732. Prove that if H is a subgroup of a finite group G, then the number of right cosets of H in G
equals the number of left cosecs of H in G.

1733. Prove that if G and H are cyclic groups of orders m and n, with (m, n) = 1, then G x H is
cyclic. How many different generators does it have? (See Theorem 15.4.)

17.34. Prove that if H and K are subgroups of a finite group G, and K C H, then [G: K] _
[G : H][H:K].

SECTION 18 ISOMORPHISM

We speak of the set of integers, but if we were to allow ourselves to be distracted by things
that are mathematically irrelevant, we might think that there were many such sets. The inte-
gers can appear in Arabic notation [... , 1,2,3 ....}, in Roman notation {.... I, II, III, ...},
in German {... , ein, zwei, drei, ...}, and so on; but mathematically we want to think of all
these sets as being the same. The idea that filters out such differences as names and notation,
as well as other differences that are irrelevant for group-theoretic purposes, is isomorphism.
Isomorphism allows us to treat certain groups as being alike just as geometrical congruence
allows us to treat certain triangles as being alike. The idea also applies in many cases that
are less obvious than that of the integers presented in different languages or notations. As
a hint of this, consider the subgroup ((1 2 3)) of S3 (Table 18.1) and the group Z3 (Table
18.2). The elements of ((1 2 3)) are permutations and the operation is composition; the
elements of 43 are congruence classes and the operation is addition modulo 3. Thus the un-
derlying sets and operations arise in totally different ways. Still, these groups are obviously
somehow alike: given the correspondence (1) H [0], (1 2 3) H [1], and (1 3 2) H [2],
we could fill in all of one table just by knowing the other. The following definition isolates
the idea behind this example.
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Table 18.1

( 1) (1 2 3) (1 3 2)

(1) ( 1) (1 2 3) (1 3 2)

(1 2 3) (1 2 3) (1 3 2) (1)

(1 3 2) (1 3 2) (1) (1 2 3)

Table 18.2

[0]
[1]

[2]

[0] [1] [2]

[0] [1] [2]
[1] [2] [0]

[2] [0] [1]

Definition. Let G be a group with operation *, and let H be a group with operation #.
An isomorphism of G onto H is a mapping 0 : G H that is one-to-one and onto and
satisfies

9(a * b) = 0(a) # 0(b)

for all a, b E G. If there is an isomorphism of G onto H, then G and H are said to be
isomorphic and we write G H.

The condition 0(a * b) = 9(a) # 0(b) is sometimes described by saying that 0 pre-
serves the operation. It makes no difference whether we operate in G and then apply 0, or
apply 0 first and then operate in H-we get the same result either way. See Figure 18.1.

G H

Figure 18.1

Example 18.1. With the obvious mapping (.... 1 H I, 2 r> II, 3 ra III,...) from the
integers in Arabic notation to the integers in Roman notation, we get the same answer
whether we add in Arabic (1 + 2 = 3) and then translate into Roman (3 ra III), or translate
first (1 r* 1, 2 H II) and then add (I + II = III). (And this is true for all m + n, not just
1+2.)

Example 18.2. To illustrate the definition for the case ((1

considered, use
2 3)) and Z3 already

9((l)) = [0], 0((l 2 3)) = [1], 0((1 3 2)) = [2].
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0((1 2 3)(1 3 2)) = 9((1)) = [0]

0((1 2 3)) ®9((1 3 2)) = [ I ] ® [2] = [01,

0((1 2 3)(1 3 2)) = 9((1 2 3)) ® 0((1 3 2)).

There are nine such equations to be checked in this case (one for each entry of the Cayley
table). There will be n2 total equations to check if G and H are finite of order n.

Example 18.3. Define a mapping 0 from the set of all integers to the set of even integers
by 0(n) = 2n for each n. This mapping is one-to-one and onto, and, moreover, it preserves
addition:

0(m+n)=2(m+n)=2m+2n=0(m)+9(n)

for all integers m and n. Thus 0 is an isomorphism, and the group of all integers (operation
+) is isomorphic to the group of even integers (operation +).

The preceding example may seem puzzling-isomorphic groups are supposed to be
essentially alike, but surely there is a difference between the integers and the even integers.
This example shows that, as groups, each with addition as operation, there is in fact no
essential difference between the integers and the even integers. Remember, however, that
we are ignoring multiplication at present; when we take both addition and multiplication
into account in Chapter VI, we shall be able to detect a difference between the two systems.
In Section 29 we shall see precisely what distinguishes the integers mathematically.

Example 18.4. Let RP denote the set of positive real numbers, and define 9 : RP -+ R
by 0(x) = logiox for each x E RP. Here RP is a group with respect to multiplication, R is
a group with respect to addition, and 9 is an isomorphism. The mapping 0 is one-to-one
and onto because it has an inverse, 0 : R -# RP, defined by ¢(x) = 10`. The mapping
preserves the operation because

0(xY) = loglo(xy) = logrox + log10y = 0(x) + 0(y)

for all x, y E RP.
This isomorphism explains the historical importance of logarithms in simplifying

calculations: When used in conjunction with a table of logarithms, it allows one to replace
a multiplication problem by an addition problem. Nowadays, it is much easier to use a
calculator or computer, of course.

The following theorem shows that any group isomorphic to an Abelian group must also
be Abelian. This can be taken as an illustration that isomorphic groups share significant
properties. On the other hand, it can also be taken as showing that the property of being
Abelian (or non-Abelian) is a significant property of groups. For the significant properties
of groups, as groups, are those properties that are shared by isomorphic groups-that is
what isomorphism is all about.

Theorem 18.1. If G and H are isomorphic groups and G is Abelian, then His Abelian.
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PROOF. Let the operations on G and H be * and #, respectively, and let 0 : G -+ H
be an isomorphism. If x, y E H, then there are elements a, b E G such that 0(a) = x and
0(b) = y. Since 0 preserves the operation and G is Abelian,

x # y = 0(a) # 0(b) = 0(a * b) = 0(b * a) = 0(b) # 0(a) = y # x.

This proves that H is Abelian.

Other examples of properties shared by isomorphic groups will be given in the next
section. The following theorem gives some technical facts about isomorphisms. Notice that
except for part (e), the theorem does not assume that 0 is one-to-one or onto-only that it
preserves the operation. Such a mapping is called a homomorphism. That is, if G and H
are groups with operations * and #, respectively, then 0 : G -* H is a homomorphism if

0(a * b) = 0(a) # 0(b)

for all a, b E G. Group homomorphisms are studied in more detail in Chapter V.

Theorem 18.2. Let G be a group with operation *, let H be a group with operation #, and
let 0 : G -> H be a mapping such that 0(a * b) = 9(a) # 0(b) for all a, b E G. Then

(a) 0(e0) = eH,

(b) 0(a-1) = 0(a)-'for each a E G,

(c) 0(ak) = 0(a)' for each a E G and each integer k,

(d) 0(G), the image of 0, is a subgroup of H, and

(e) if 0 is one-to-one, then G 0(G).

PROOF. (a) Because 0 preserves the operation and eG * eG = eG, we have
B(eG) # O(eG) = 0(e0 * e0) = 0(eo). But O(eG) E H, so O(eG) = O(eG) # eH. This gives
O(eG) # 0(eG) = O(eG) # eH, from which 0(e0) = eH by left cancellation.

(b) Using, in order, the properties of 0 and a-t, and part (a), we can write
9(a) # 0(a-1) = 0(a * a-1) = 0(e0) = eH. Therefore 0(a-1) must equal 0(a)-1, because
0(a)-1 is the unique solution of 0(a) #x = eH in H.

(c) We use induction for k > 0, and leave k < 0 as an exercise. The case k = 1 is
obvious. Assume 0(ak) = 0(a)k. Then

0(ak+l) = 0(ak * a) = 0(ak) # 0(a) = 0(a)k # 0(a) = 0(a)ktl

(d) By parts (a) and (b), 0(G) contains eH, and also along with any element the
inverse of that element. Thus it now suffices to show that 0(G) is closed with respect
to #. Assume that x, y E 0(G). Then x = 0(a) and y = 0(b) for some a, b E G; thus
x # y = 0(a) # 0(b) = 0(a * b) E 0(G), which establishes closure.

(e) By assumption, 0 preserves the operation and is one-to-one. Also, thought of as a
mapping from G to 0(G), 0 is onto. Therefore 0 : G 0(G) is an isomorphism.

PROBLEMS

18.1. Prove that 7Z is isomorphic to the multiplicative group of all rational numbers of the form
2" (m E Z).

18.2. Prove that Z x z is isomorphic to the multiplicative group of all rational numbers of the form
2'"3" (m, n E Z).
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18.3. Fill in the blanks in the following table to obtain a group isomorphic to Z4. What is the
isomorphism?

a b c d

a

b

c

d

18.4. Repeat Problem 18.3, with Z4 replaced by Z2 X Z2-

18.5. Assume that H = {u, v, w, x, y, z) is a group with respect to multiplication and that
8 : S3 -> H is an isomorphism with

8((1)) = u, 8((1 2 3)) = v, 8((1 3 2)) = w,

8((1 2)) = x, 8((l 3)) = y, 8((2 3)) = z.

Replace each of the following by the appropriate letter, either u, v, w, x, y, or z.
(a) xw (b) w-' (c) v5 (d) zv-'x

18.6. Assume that H = {u, v, w, x, y, z} is a group with respect to multiplication and that
9 : Z6 -* H is an isomorphism with

8([O]) = u, 8([1]) = v, 8([2]) = w,

8([3]) = x, 8([4]) = y, 8([5]) = Z.

Replace each of the following by the appropriate letter, either u, v, w, x, y, or z.
(a) xw (b) w-' (c) u5 (d) zv-'x

18.7. One of the conditions in the definition of isomorphism was not used in the proof of Theorem
18.1. Which one?

18.8. Describe an isomorphism between the two groups in Example 5.5.

18.9. Prove that if G, H, and K are groups, and 8 : G -* H and 0: H - K are isomorphisms,
then 0 o 9 : G - K is an isomorphism. (Use multiplication for the group operations.)

18.10. Prove that if G and H are groups, then G x H ti H x G. (Let the operations on G and H be
denoted by * and #, respectively.)

18.11. Prove that 8(x) = e` defines an isomorphism of the group R of all real numbers (operation
addition) onto the group RP of all positive real numbers (operation multiplication). What is
the inverse of the mapping 9? Is the inverse an isomorphism?

18.12. Verify that Z4 (operation (D) is isomorphic to ZS (operation O). (See Example 11.4.)

18.13. Use the mapping 9([a]6) = ([a]2, [a]3) to show that Z6 - Z2 X Z3. First verify that 8 is well
defined.

18.14. Prove that if m and n are relatively prime (that is, have greatest common divisor 1), then

Z,n ^ Z,,, X Z
(Problem 18.13 is a special case.)

18.15. Assume that G, H, and 8 are as in Theorem 18.2. Assume also that B is a subgroup of H and
that

A = (xeG:9(x)EB).

Prove that A is a subgroup of G. (A is called the inverse image of B with respect to 8. Thus
the inverse image of a subgroup with respect to a homomorphism is a subgroup.)
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18.16. The group G of all real matrices f a b J, with a # 0, is a subgroup of the group GL(2, R)
L0 1

(Example 5.10). Prove that G is isomorphic to the group in Example 5.8.

18.17. Prove that the group of rotations of a tetrahedron (Problem 8.18) is isomorphic to the alter-
nating group A4.

SECTION 19 MORE ON ISOMORPHISM

If two finite groups are isomorphic, then they must have the same order because an iso-
morphism is, among other things, one-to-one and onto. Turning this around (that is, using
the contrapositive), we get the simplest of all tests for showing that two groups are not
isomorphic: If G and H are groups and I G I # I H I then G and H are not isomorphic. It is
useful to have a list of other properties that are shared by isomorphic groups. Such a list
will frequently make it much easier to determine quickly if two groups are not isomorphic.

Theorem 19.1. Assume that G and H are groups and that G - H.

(a) IGI = 1111-

(b) If G is Abelian, then H is Abelian.

(c) If G is cyclic, then H is cyclic.

(d) If G has a subgroup of order n (for some positive integer n), then H has a subgroup
of order n.

(e) If G has an element of order n, then H has an element of order n.

(f) If every element of G is its own inverse, then every element of H is its own inverse.

(g) If every element of G has finite order; then every element of H has finite order.

PROOF. Statement (a) is the observation made at the beginning of this section. State-
ment (b) was proved as Theorem 18.1. The proofs of the remaining statements are left to
the problems at the end of this section.

Many other properties could be added to the list in Theorem 19.1, but the ones given
there should help to give better insight into the nature of isomorphism. It is also important
to be able to determine if groups are isomorphic, of course. This problem is considered in
the following more general discussion.

In Example 18.2 we saw that two particular groups of order 3 are isomorphic. It will
follow from Theorem 19.3 that any two groups of order 3 are isomorphic. This means
that in essence there is only one group of order 3. More precisely, it means that there is
only one isomorphism class of groups of order 3, where by an isomorphism class we mean
an equivalence class for the equivalence relation imposed on groups by isomorphism, as
described by the following theorem. We revert to the convention of using multiplicative
notation for unspecified group operations.

Theorem 19.2. Isomorphism is an equivalence relation on the class of all groups.



SECTION 19 MORE ON ISOMORPHISM 99

PROOF. If G is a group, then it is easy to verify that the identity mapping t : G --)G
is an isomorphism. Thus G G, and is reflexive.

Assume that G x H and that 9 : G -* H is an isomorphism. Then 9 is one-to-one
and onto, so there is an inverse mapping 9 : H -+ G (Theorem 2.2). We shall show that
8-1 is an isomorphism; it is necessarily one-to-one and onto. Suppose that a, b E H.
We must show that 0-1(ab) = 0-1(a)6-'(b). Let 0-1(a)=x and 0-'(b)=y.
Then a = 9(x) and b = 9(y) so that ab = 9(x) 9(y) = 9(xy). This implies that
0-'(ab) = xy = 0-'(a)0-'(b), as required. Therefore H - G, and -is symmetric.

Finally, it is easy to show that if G, H, and K are groups, and 9 : G -+ H and
H -* K are isomorphisms, then ¢ o 9 : G -+ K is also an isomorphism (Problem 18.9).

Thus is transitive.

Theorem 19.3. If p is a prime and G is a group of order p, then G is isomorphic to Z.

PROOF. Let the operation on G be *, and let a be a nonidentity element of G. Then
(a) is a subgroup of G and (a) # {e}, so (a) = G by Corollary 5 of Lagrange's Theorem
(Section 17). Thus G = {e, a, a2, ... , 0-1}.

Define 8 : G -* 7LP by 9(ak) = [k]. This mapping is well defined and one-to-one
because

ak' = ak2 if ak,-kz = e if p I (k1 - k2) iff [k1] = [k2]

Also, 9 is onto. Finally, if a'", a" E G, then

9(am * a") = 9(am+") = [m + n] _ [m] ® [n] = 9(a') ® (a").

Therefore, 9 is an isomorphism and G zt Z,

With Theorem 19.3 we have completely classified all groups of prime order. The
principal problem of finite group theory is to do the same for groups of all finite orders. An
immense amount of work has been done on this problem. Although much of this work is
well beyond the range of this book, it will still be interesting to look at what is known in
some special cases. Proofs will be omitted.

Table 19.1 shows the number of isomorphism classes of groups of order n for each n
from 1 to 32. The label "number of groups" is what is conventionally used in place of the
more accurate but longer phrase "number of isomorphism classes of groups." Whenever
we ask for "all" groups having a property (such as being Abelian and of order n, for
example), we are really asking for one group from each isomorphism class of groups with
that property.

Notice from Table 19.1 that there is just one group of each prime order; Theorem 19.3
guarantees that. But notice that there is just one group of order 15, and 15 is not a prime.
The key is this:

There is just one group of order n
if

n is a prime or a product of distinct primes pt, P2 . . . . Pk
such that pj X (pi - 1)

forl<i<k,l<j<k.
(For a proof, see [6, Theorem 9.2.7].) Thus, for instance, there is also only one group of
order 33, since 33 = 3. 11 and 31 10 and 1112. For such n, any group of order n will be
isomorphic to 7L".
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Table 19.1

Order 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Number of groups 1 1 1 2 1 2 1 5 2 2 1 5 1 2 1 14

Order 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

Number of groups 1 5 1 5 2 2 1 15 2 2 5 4 1 4 1 51

Another easy-to-describe case is n = p22, the square of a prime. There are two iso-
morphism classes of groups of order p2: the group Z is in one class, and Z x Z is

in the other. (Compare the entries for n = 4, 9, and 25 in Table 19.1.) Notice that all of
these groups of order p2 are Abelian. If n = p3, the cube of a prime, then there are five
isomorphism classes: Three of these classes consist of Abelian groups and are represented
by /! P3 , Z p2 x Z, and Z x Z p x Z ; the other two classes consist of non-Abelian groups.
(For the definition of direct products of more than two groups, see Problem 19.26.)

If only finite Abelian groups are considered, then the problem of determining all
isomorphism classes is completely settled by the following theorem, which has been known
since at least the 1870s. (Each book listed at the end of this chapter gives a proof.)

Fundamental Theorem of Finite Abelian Groups. If G is a finite Abelian group, then
G is the direct product of cyclic groups of prime power order. Moreover, if

G- A1xA2X...xA,
and

G-B1xB2x...xB,,
where each Ai and each Bj is cyclic of prime power order, then s = t and, after suitable
relabeling of subscripts, I Ai I = I Bi I for 1 < i < s.

Because each cyclic group of prime power order pk is isomorphic to 7GA we can use
this theorem to exhibit one group from each isomorphism class of finite Abelian groups.

Example 19.1. Let n = 125 = 53. To apply the theorem, first determine all possible ways
of factoring 125 as a product of (not necessarily distinct) prime powers: 53, 52 . 5, 5 .5 .5.
Each factorization gives a different isomorphism class, so there are three isomorphism
classes of Abelian groups of order 125. Here is one representative from each class:

7653 , Z52 X Z5, Z5 X 7G5 X Z5.

This same idea accounts for the general statement, made earlier, that there are three iso-
morphism classes of Abelian groups of order p3 for each prime p.

Example 19.2. There are six isomorphism classes of Abelian groups of order 200 =
23 x 52. Here is one representative from each class:

Z23 xZ52, Z23 xZ5xZ5, 7622 xZitxZ52,

7122 x Z2 X Z5 X Z5, Z2 X Z2 X Z2 X Z53,

z2xZ2XZ2x xZ5.

Further remarks about the problem of classifying finite groups can be found in Section
23. As the case of Abelian groups suggests, the number of groups of order n is influenced
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largely by the character of the prime factorization of is, and not by the size of is alone.
Table 19.1 gives a further hint of this, and here is one more remark to make it even clearer:
There are 267 groups of order 64.

PROBLEMS

In each of Problems 19.1-19.10, the two groups are not isomorphic. Give a reason in each case.

19.1. Z5, Z6 19.2. Z5 X Z2, Z7

193. Z6, S3 19.4. Z4 x Z2, symmetry group of a square

19.5. Z4 X Z2, Z2 X Z2 X Z2 19.6. Z, Q (both with +)

19.7. Z, 1R (both with +) 19.8. Zs X Z4, Z16 X Z2

19.9. S3 X Z2, the group in Problem 17.28.

19.10. Q (operation +), positive rational numbers (operation ).

19.11. Is there a noncyclic group of order 59? Why?

19.12. Is there a noncyclic group of order 39? Why? Problem 19.17 may help.

19.13. Give an example of a noncyclic group of order 49.

19.14. Give examples of two nonisomorphic groups of order 27.

19.15. If p is a prime, then there are five isomorphism classes of Abelian groups of order p4. Give
one group from each class. (Compare Example 19.1.)

19.16. If p is a prime, then there are seven isomorphism classes of Abelian groups of order p5. Give
one group from each class. (Compare Example 19.1.)

19.17. Prove that if G is a cyclic group of order n, then G - Z,,. (Suggestion: Write Gas G = (a) _
{e,a,...,an-1).)

19.18. Prove that if G is an infinite cyclic group, then G Z. (Compare Problem 19.17.)

19.19. Prove that U5 ti Z4-

19.20. Prove that U5 1110.

Assume that G and H are groups and that G H. Prove each of the statements in Problems 19.21-
19.25.

19.21. If G is cyclic, then H is cyclic.

19.22. If G has a subgroup of order n, then H has a subgroup of order n.

19.23. If G has an element of order n, then H has an element of order n.

19.24. If x = x for each x E G, then x-I = x for each x E H.

19.25. If each element of G has finite order, then each element of H has finite order.

19.26. If (A 1 , A2, ... , is any collection of groups, each with juxtaposition as operation, then
the direct product A, x A2 x ... x A,, is {(a1, a2, ... , a,,) : ai E Ai) with operation

( a i , a2- , a,.)(bi, b2, . , b") _ (atbi, a2b2.... , a,, b,,).

(a) Verify that this direct product is a group.
(b) If each group A; is finite, what is the order of the direct product?

19.27. An isomorphism of a group onto itself is called an automorphism. Prove that the set of all
automorphisms of a group is itself a group with respect to composition. [The group of all
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automorphisms of a group G is called the automorphism group of G and will be denoted
Aut(G). Notice that the elements of Aut(G) are mappings from G onto G. Examples are given
in the problems that follow, and also in Problem 56.10.1

19.28. Verify that if G is an Abelian group, then 9 : G -- G defined by 9(a) = a-t for each a E G
is an automorphism of G. (See Problem 19.27.)

19.29. Prove that if [a] is a generator for Z,,, and 0: Z -> Z is defined by B([k]) = [ka], then
9 E (See Problem 19.27.)

19.30. Prove that I Aut(Z2) I = 1.

19.31. Prove that Aut(Z3) z Z2. (See Problem 19.29.)

19.32. Prove that Aut(Z4) zt Z2.

19.33. Prove that if p is a prime, then Aut(Zp) ti Zp_i.

19.34. Prove that (See Section 13.)

1935. Prove that Aut(Z) x Z2.

19.36. Assume that n is an integer, n > 1, and that the standard form for n, in the sense of (13.1), is

h ek

Prove that

Z x Zp,q X Zpzn x ... X Zpi.et.

[Suggestion: Consider 9([a]) = ([a], [a], ... , [a]). Be sure to prove that, among other things,
0 is well defined. Also, Problem 13.17 may help.]

SECTION 20 CAYLEY'S THEOREM

We have seen that the nature of groups can vary widely-from groups of numbers to groups
of permutations to groups defined by tables. Cayley's Theorem asserts that in spite of this
broad range of possibilities, each group is isomorphic to some group of permutations. This
is an example of what is known as a representation theorem-it tells us that any group can
be represented as (is isomorphic to, in this case) something reasonably concrete. In place of
studying the given group, we can just as well study the concrete object (permutation group)
representing it; and this can be an advantage. However, it can also be a disadvantage, for part
of the power of abstraction comes from the fact that abstraction filters out irrelevancies, and
in concentrating on any concrete object we run the risk of being distracted by irrelevancies.
Still, Cayley's Theorem has proved to be useful, and its proof ties together several of the
important ideas that we have studied.

In proving Cayley's Theorem, we associate with each element of a group G a permu-
tation of the set G. The way in which this is done is suggested by looking at the Cayley
table for a finite group. As we observed after Theorem 14.1, each element of a finite group
appears exactly once in each row of the Cayley table for the group (if we ignore the row
labels at the outside of the table). Thus the elements in each row of the table are merely
a permutation of the elements in the first row. What we do is simply associate with each
element a of G the permutation whose first row (in two-row form) is the first row of the
Cayley table and whose second row is the row labeled by a. If the elements in the first
row are at, a2, ... , a (in that order), then the elements in the row labeled by a will be
aa1, aa2, ... , aa (in that order).
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Example 20.1. Consider the Cayley table for Z6, given in Example 11.2. The permutation
associated with [3] by the idea just described is

[0] [1] [2] [3] [4] [5]

)[3] [4] [5] [0] [1] [21

Cayley's Theorem extends this idea to groups that are not necessarily finite, and also
establishes that this association of group elements with permutations is an isomorphism.

Cayley's Theorem. Every group is isomorphic to a permutation group on its set of
elements.

PROOF. Our isomorphism will be a mapping 0 : G --* Sym(G). We begin by describ-
ing the permutation that 0 will assign to an element a E G.

For a E G, define 10 : G -> G by 10(x) = ax for each x E G. Each such mapping 10
is one-to-one and onto because each equation ax = b (b E G) has a unique solution in G
[Theorem 14.1(c)]. Thus 10 E Sym(G) for each a E G.

Now define 0 : G Sym(G) by 0(a) = 10 for each a E G. To prove that 0 is one-to-
one, suppose that 0(a) = 0(b); we shall deduce that a = b. From 0(a) = 0(b) we have
10 = 1b, and thus in particular 10(e) = 1b(e), since the mappings 10 and Ab can be
equal only if they give the same image for each element in their common domain. But
10(e) = ae = a and ,Lb(e) = be = b, so 10(e) = 16(e) implies a = b. Thus 0 is one-to-
one.

Finally, if a, b E G, then 0(ab) = 10b and 0(a) o 0(b) = X. 016 implying that
0(ab) = 0(a) 0 0(b) if 1Qb = 10 016. To verify the latter, let x E G and write
106(x) _ (ab)x = a(bx) = 10(bx) = 10(16(x)) = (10 016)(x). Thus we have proved that
0(ab) = 0(a) o 0(b) for all a, b r= G.

It follows from Theorem 18.2(e) that G is isomorphic to 0(G), a subgroup of Sym(G).
This completes the proof.

Corollary. Every group of finite order n is isomorphic to a subgroup of S,,.

PROOF. Label the elements of the group a1, a2..... a0. The construction in the proof
of Cayley's Theorem will assign to an element a in the group the permutation

(al a2 ... a0

aa1 aa2 aa0

As remarked preceding Example 20.1, the elements aal, aa2, ..., aa0 are just a1,
a2,..., a in some order. If we replace each aa1 by the unique aj such that aa1 = ai,
and then replace each ak in the permutation by the number k, we obtain an element of S0.
(See Example 20.2 for an example.) By assigning each a to the element of Sn obtained in
this way, we get the desired isomorphism.

Example 20.2. Label the elements of Z3 as follows: a1 = [0], a2 = [1], a3 = [2]. Then
the construction in the proof of Cayley's Theorem yields

0(a3) = 0([2]) - ([0] [1] [2]) = al a2 a3 ).
[2] [0] [11 a3 al a2



104 GROUPS

The idea in the proof of the corollary is simply to delete the a's and keep the subscripts, so
that

(1 2 3)
3 1 21

is assigned to a3. Notice that this is an element of S3 because I Z3 1 = 3.

Corollary. For each positive integer n, there are only finitely many isomorphism
classes of groups of order n.

PROOF. By the previous corollary every group of order n is isomorphic to a subgroup
of S. But S, is finite, and thus has only finitely many subgroups. Hence there can be only
finitely many isomorphism classes of groups of order n.

PROBLEMS

20.1. Write the permutation associated with each element of Z5 by the isomorphism 0 in the proof
of Cayley's Theorem.

20.2. Write the permutation associated with each element of the symmetry group of a square (Ex-
ample 8.1) by the isomorphism 0 in the proof of Cayley's Theorem.

20.3. Write the permutation associated with each element of ((1 2 3)) by the isomorphism 0 in the
proof of Cayley's Theorem.

20.4. Give an alternative proof of Cayley's Theorem by replacing X. (lambda for "left" multiplica-
tion) by p, (rho for "right" multiplication) defined as follows: p, (x) = xa' for each x E G.
Why is xa-' used here, rather than xa?

20.5. Assume that G is a group, and that L, : G -* G and p, : G -> G are defined by La(x) = ax
and p,(x) = xa-' for each x E G. For each a E G, define y, : G -> G by y = p, o X. Prove
that each y is an isomorphism of G onto G. [In the language of Problem 19.27, each y, is an
automorphism of G. Notice that, in particular, each Y. E Sym(G).]

20.6. Let y. be defined as in Problem 20.5, and define 0 : G -> Sym(G) by 0(a) = y for each
a E G. Prove that .(a) = io iff ax = xa for all a E G.
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APPENDIX RSA ALGORITHM

The RSA algorithm is a widely used method of public key cryptography. In simplest terms,
in this type of cryptography an individual wants others to be able to encode and send
messages to him or her, but wants to be the only one able to decode the messages. The RSA
acronym derives from the names of K. Rivest, A. Shamir, and L. Adelman, who developed
the method in 1977. Similar ideas were developed earlier, to some degree, but had been
kept secret for security reasons.

The goal here is simply to present the algorithm and show that it works, that is, how a
message is encoded and then why the decoding step reproduces the original message. This
fits in naturally here because it involves only congruence, Euler's function, and Euler's
Theorem (Section 17); these ideas are from number theory, but we have proved Euler's
Theorem in the course of studying groups. Messages must be put in a formerly agreed-upon
numeric form (such as A = 01, B = 02, ... , Z = 26).

RSA Algorithm

1. Randomly choose two unequal large primes, p and q.

2. Compute n=pgandk=0(n)=(p-1)(q-1).
3. Randomly choose an integer e with 1 < e < k such that gcd(e, k) = 1.

4. Compute d such that de - 1 (mod k).

5. Make n and e public, and keep p, q, and d secret.

6. To encode a message m, compute c = m` (mod n) and send c.

7. To decode the message, compute m cd (mod n).

If p and q are large primes, it is likely that gcd(m, n) = 1, that is, that m and pq are
relatively prime, since otherwise p I m or q I m. So we shall assume that gcd(m, n) = 1. The
theorem below reveals why the algorithm produces the same message that is sent.

Theorem. Assume that p and q are primes and m is a positive integer, and that n = pq,
k = (p - 1)(q - 1), gcd(e, k) = 1, de = 1 (mod k), and (m, n) = 1. Then m = m`d
(mod n).

PROOF. From Theorem 13.2, if 0 is Euler's function, and p and q are primes, then
0(pq) = (p - 1)(q - 1). Thus,ifn = pgandk = (p - 1)(q - 1), wehave0(n) = k. From
Euler's Theorem (Corollary 3 of Section 17), if gcd(m, n) = 1, then mm(") = 1(mod n).
Thus, since we are assuming gcd(m, n) = 1, mk = 1 (mod n).

We have chosen d so that de = 1 (mod k), which implies de - 1 = kr for some integer
r. Thus

med = mltkr mlmkr - m(mm(" )' _- m 1' = m (modn),

as claimed.

For a more thorough discussion of the method, including its history, examples, advice
on how to choose p, q, and e, how to compute d, discussions of why it is difficult to
defeat the method, more advanced theory, and suggestions on software to carry out the
computational details, refer to books on cryptography or sources on the WEB.
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GROUP HOMOMORPHISMS

One way to study a relatively large and complicated group is to study its smaller and less
complicated subgroups. But it would also be useful to be able to study the group as a whole,
much as a globe allows us to study the earth's surface-brought down to manageable size
in a way that preserves as many essential features as possible. Homomorphisms, which are
more general than isomorphisms, can help us do just that. A homomorphism is a mapping
from one group to another that preserves the operation but is not necessarily one-to-one.
Thus the image of a homomorphism can be smaller than the domain, but it will generally
reflect some essential features of the domain. Even more important, subgroups and images
of homomorphisms can be used together to show that most groups are built up from smaller
component groups, as we shall see at the end of this chapter. The concept of homomorphism
also extends to other algebraic structures that we'll study; it is unquestionably one of the
most important concepts in algebra.

SECTION 21 HOMOMORPHISMS OF GROUPS. KERNELS

Definition. If G is a group with operation *, and H is a group with operation #, then a
mapping 8 : G H is a homomorphism if

8(a * b) = 8(a) # 8(b)

for alla,beG.

Every isomorphism is a homomorphism. But a homomorphism need not be one-to-one,
and it need not be onto.

Example 21.1. For any positive integer n, define 0 : Z - Z by 8(a) = [a] for each
a E Z. Then 8(a + b) = [a + b] = [a] ® [b] = 0(a) ® 8(b) for all a, b E Z, so that 8 is
a homomorphism. It is onto but not one-to-one.

Example 21.2. Define 8 : Z -* Z by 8(a) = 2a for each a E Z. Then 8(a + b) =
2(a + b) = 2a + 2b = 8(a) + 8(b) for all a, b E Z. Thus 8 is a homomorphism. It is one-
to-one, but not onto.
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Example 21.3. For each r E R, define pr : R --+ R by pr (a) = ar for each a E R. Then
p,. is a homomorphism from the additive group of R to itself: p, (a + b) = (a + b)r =
ar + br = Pr (a) + pr(b) for all a, b E R. Notice that pr is a homomorphism precisely
because of the distributive law (a + b)r = ar + br.

Example 21.4. Let A and B be groups, and A x B their direct product (defined in Section
15). Then 7r1 : A x B -+ A defined by 7r1((a, b)) = a is a homomorphism from A x B
onto A:

7r1((a1, bi)(a2, b2)) = 7r1((a,a2, bib2)) =a I a2 = 7r1((a1, b1))7r1((a2, b2))

(Problem 21.1 asks you to justify each step.) Also, n2 : A x B -* B defined by
7r2((a, b)) = b is a homomorphism (Problem 21.2).

We can see now that the basic assumption of Theorem 18.2 is that the mapping 9 there
is a homomorphism. Thus that theorem tells us that if 9 : G -+ H is a homomorphism,
then

1. 9(eG) = eH,

2. 9(a-1) = 9(a)-1 for each a E G,

3. 9(ak) = 0(a )k for each a E G and each integer k,

4. 9(G), the image of 9, is a subgroup of H, and

5. if 9 is one-to-one, then G 9(G).

The subgroup 9(G) is called a homomorphic image of G. We shall see that nearly
everything about a homomorphic image is determined by the domain of the homomorphism
and the following subset of the domain.

Definition. If 9 : G -* H is a homomorphism, then the kernel of 9 is the set of all
elements a E G such that 9(a) = elf. This set will be denoted by Ker 9.

The kernel of a homomorphism is always a subgroup of the domain. Before proving
that, however, let us look at some examples.

Example 21.5. For the homomorphism 9 : Z -* 4 in Example 21.1, a E Ker 0 if
9(a) = [a] _ [0]. Therefore, Ker 9 consists of the set of all integral multiples of n.

Example 21.6. In Example 21.2, Ker 9 = {0}.

Example 21.7. In Example 21.4, Ker, 7r1 = {eA) x B.

Theorem 21.1. If 9 : G --* H is a homomorphism, then Ker 9 is a subgroup of G. More-
over, 9 is one-to-one ;ff Ker 9 = fed-

PROOF. We use multiplicative notation for the operations on both G and H. To show
that Ker 9 is a subgroup of G, we use Theorem 7.1. Theorem 18.2(a) shows that eG E Ker 9.
If a, b a Ker 0, then 0 (a b) = 0 (a)9 (b) = eH e H = eH, so that ab E Ker 0. Theorem 18.2(b)
shows that 9(a-1) = 9(a)-1; therefore, if a E Ker 9, then 9(a-1) = 9(a)-1 = eH1 = eH,
and a-1 E Ker 9. Thus Ker 9 is a subgroup.
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Because eG E Ker 9, it is clear that if 9 is one-to-one, then Ker 9 = {eG}. Assume,
on the other hand, that Ker 9 = (e0). If a, b E G and 9(a) = 9(b), then 9(a)9(b)-1 = eH,
9(a)9(b-1) = eH, 9(ab-1) = eH, ab-1 E Ker 9 = {eG }; hence ab-1 = eG and a = b. This
proves that 8 is one-to-one.

Kernels have one more property in common: They are all normal, in the sense of the
next definition.

Definition. A subgroup N of a group G is a normal subgroup of G if gng-t E N for all
n E N and all g E G. If N is a normal subgroup, we write N <G.

Example21.8. If N is a subgroup of an Abelian group G, and n E N and g E G, then
gng-1 = n E N. Thus every subgroup of an Abelian group is a normal subgroup.

Example 21.9. The subgroup ((1 2)) = {(1), (1 2)} of S3 is not normal, because, for
example,

(1 2 3)(1 2)(1 2 3)-1 = (2 3) ¢ ((1 2)).

It often helps to realize that

gng-1 E N forall n E N and g E G

iff
g-1ngEN forall nEN and gEG.

Thus N <G iff g-1ng E N for all n E N and g E G (Problem 21.20).
If a E G, then each element gag-1, for g E G, is called a conjugate of a in G. Thus a

subgroup N of G is normal if the conjugate of every element of N is also in N.
A large collection of examples of normal subgroups-in fact, all examples, as we shall

see in the next section-is given by the following theorem.

Theorem 21.2. If G and H are groups and 9 : G -* H is a homomorphism, then
Ker9<G.

PROOF. We know from Theorem 21.1 that Ker 9 is a subgroup of G; thus it suffices
to show that it is normal. Let n E Ker 9 and g E G. Then 9(n) = e, so that 9(gng-1) _
9(g)9(n)9(g-1) = 9(g)e9(g)-1 = e. Therefore gng-1 E Ker 9, as required.

A homomorphism that is one-to-one is sometimes called a monomorphism; a homo-
morphism that is onto is sometimes called an epimorphism. We shall not use either of these
terms.

PROBLEMS

21.1. Justify each step in the proof that n, is a homomorphism in Example 21.4.

21.2. Prove that 7r2 : A x B -a B, as defined in Example 21.4, is a homomorphism.

213. Consider M(2, Z) as a group with respect to addition (Example 3.5 and Problem 5.16). Define
p,: M(2, Z) -> M(2, Z) by p,(x) = xr for each x E M(2, Z), where

1-[0 0]
Prove that p. is a homomorphism.
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21.4. Find Ker p, for p, in Problem 21.3.

21.5. Define 0 : Z6 -. Z3 by 0([a]6) = [a]3 for each [a]6 E Z6.
(a) Prove that 9 is well defined.
(b) Prove that 0 is a homomorphism.
(c) What is Ker 9?

21.6. (a) Show that a : Z3 -* Z6 given by a([a]3) = [a]6 is not well defined. (Compare Problem
21.5.)

(b) For which pairs m, n is Z. - Z" defined by p([a],,,) = [a]" well defined?

21.7. Prove that every homomorphic image of an Abelian group is Abelian.

21.8. Prove that every homomorphic image of a cyclic group is cyclic.

21.9. Prove that if 9 : G -* H is a homomorphism andA is a subgroup of G, then 0(A) is a subgroup
of H.

21.10. Prove that if 0 : G -> H is a homomorphism and B is a subgroup of H, then 0-'(B) is a
subgroup of G, where 0-'(B) = {g E G : 8(g) E B), the inverse image of B under 0.

21.11. Prove that if a : G -i H is a homomorphism and $ : H -> K is a homomorphism, then
o a: G - K is a homomorphism.

21.12. (a) With at and P as in Problem 21.11, prove that Ker a C Ker P o a.
(b) Give an example of a : G -> H and : H -+ K for which Ker a # Ker $ o a.

21.13. Let n and k denote positive integers, and define 0 : Z -> Z" by

0(a) = [ka] foreacha E Z.

Prove that 9 is a homomorphism.

21.14. Determine Ker 0 in each of the following cases, for 0, n, and k as in Problem 21.13.
(a) n = 6, k = 5. (b) n = 6, k = 3. (c) General n and k.

21.15. Let G denote the subgroup ( 1, -1, i, -i ) of complex numbers (operation multiplication). De-
fine 8 : Z --> G by 9(n) = i" for each n E Z. Verify that 9 is a homomorphism and determine
Ker 0. (Recall that i2 = -1.)

21.16. Define A. from M(2, Z) to itself by ,l, (x) = rx for each x E M (2, Z), where

r=
I

1 11.

0 0

Prove that k, is a homomorphism and then find Ker )Ir.

21.17. Prove that if 9 : G -i H is a homomorphism, a E G, and o(a) is finite, then o(9(a)) I o(a).

21.18. There is a unique homomorphism 0 : Z6 -* S3 such that 0([l ]) _ (1 2 3). Determine 9([k])
for each [k] E Z6. Which elements are in Ker 8?

21.19. True or false: If N . G, then gng-' = n for all n E N and g E G. Justify your answer.

21.20. Prove that N < G if g-' ng E N for all n E N and g E G. (In other words, prove that
gng-' EN forallnaNand9EGiff g-'ng E N for all n E N and 9 E G.)

21.21. By choosing a rectangular coordinate system, the points of a plane can be identified with
the elements of R x R. What is the geometric interpretation of Jr1 : R x R -i R defined by
JrI ((a, b)) = a (as in Example 21.4)?

21.22. Determine all of the normal subgroups of the group of symmetries of a square. (See Exam-
ple 17.2.)
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21.23. Prove that if 9 is a homomorphism from G onto H, and N 4 G, then 9(N) < H.

21.24. If A and B are groups, then {e} x B 4 A x B. Give two different proofs of this, one using the
definition of normal subgroup, and the other using Theorem 21.2 and Example 21.4.

21.25. Prove that if C denotes any collection of normal subgroups of a group G, then the intersection
of all the groups in C is also a normal subgroup of G. (See Theorem 15.1.)

21.26. Prove that if N is a subgroup of G, then N 4 G iff Ng = gN for each g E G.

21.27. Prove that if N is a subgroup of G and [G : N] = 2, then N <G. (Suggestion: Use Problem
21.26.)

21.28. Determine all of the normal subgroups of S3. (See Problem 17.12.)

21.29. Prove that if H and N are subgroups of a group G and N 4 G, then H n N a H.

21.30. For C the complex numbers, let E, 1, J, and K be the elements of M(2, C)) defined as follows:

E=Il 01, 1=C-0 off,
J=r0 0i, K=[i _0].

(If you are unfamiliar with complex numbers, do this

Lproblem

after reading Section 32.)
(a) Form a Cayley table to verify that, with matrix multiplication as the operation,

{±E, ±1, ±J, ±K) is a group of order 8. This group is called the quaternion group;
denote it by Qs.

(b) The group Qs has one subgroup of order 1, one subgroup of order 2, three subgroups of
order 4, and one subgroup of order 8. Find the elements in each subgroup. (Each subgroup
of order less than 8 is cyclic.)

(c) Verify that every subgroup of Qs is a normal subgroup of Qs.
(d) Verify that Qg is not Abelian. With part (c), this shows that Qs is a non-Abelian group

in which every subgroup is normal. Compare Example 21.8.

21.31. If G = (a) and 9 : G --* H is a homomorphism, then 9 is completely determined by 9(a).
Explain.

2132. There is only one homomorphism from Z2 to Z3. Why?

2133. Verify that if G and H are any groups, and 9 : G --.* H is defined by 9(g) = eH for each
g E G, then 0 is a homomorphism.

2134. Define 9 : Z x Z -a Z by 9((a, b)) = a + b. Verify that 9 is a homomorphism and determine
Ker 9.

21.35. Determine all of the homomorphisms of Z onto Z.

SECTION 22 QUOTIENT GROUPS

It may not be obvious at the outset, but quotient groups, which we introduce in this sec-
tion, are essentially the same as homomorphic images. The proof that they are essentially
the same comes with Theorem 22.2 and the Fundamental Homomorphism Theorem (in
Section 23).

Each group Zn is constructed in a simple way from the group of integers. The set of all
multiples of the integer n forms a subgroup, (n), of Z, and the elements of Z, are the right
cosets of that subgroup (Section 16). Moreover, the operation ® of Z depends in a natural
way on the operation + of the integers: (a] ® [b] = [a + b]. We shall now see how this
idea can be used to construct new groups in much more general circumstances. Indeed, the
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following theorem shows that Z can be replaced by any group G _ and (n) by any normal
subgroup N of G. (Notice that (n) <Z because Z is Abelian.) It may help to review Section
16, especially Theorem 16.1 and Lemma 16.1, before reading this section. We continue to
use juxtaposition to denote unspecified group operations.

Theorem 22.1. Let N be a normal subgroup of G, and let GIN denote the set of all right
cosets of N in G. For

No EGIN and NbcGIN, let (Na)(Nb) = N(ab).

With this operation GIN is a group called the quotient group (or factor group) of G by N.

Remark. Figure 22.1 represents the idea behind Theorem 22.1 - Each horizontal section
represents a coset of N. For example, Na is the coset to which a belongs. The cosets are the
elements of GIN. The "product" of the cosets Na and Nb is N(ab), the cosec to which ab
belongs. The first part of the following proof shows that if N < G, then it does not matter
which element is chosen from the coset Na and which is chosen from the coset Nb; their
"product" will be in the coset N(ab).

N

Na

.Nb

N(ab)

e
G

a

b

ab

Figure 22.1

PROOF. We must first prove that the operation on GIN is well defined, that is, if
Nat = Nat and Nbl = Nb2, then N (al bl) = N (a2 b2). From Na 1 = Nat we have a1 = n1 02
for some n1 E N; from Nb1 = Nb2, we have b1 = n2b2 for some n2 E N. Therefore a1 b1
n 1a2n2b2. But a2n2a2 1 = n3 for some n3 E N because N aG. This gives a2n2 - n3a2, so
that a1 b1 = n1n3a2b2 with nIn3 E N. This proves that N(aib1) = N(a2b2), as required.

The operation on GIN is associative because if a, b, c E G, then

Na(NbNc) = Na(Nbc) = N(a(bc)) = N((ab)c) = N(ab)Nc = (NaNb)Nc.

The element Ne is an identity element because if a c G, then

NeNa = N(ea) = Na and NaNe = Nae = Na.

Finally, Na"1 is an inverse for Na because

NaNa-1 = N(aa-1) = Ne and Na-1Na = N(a-1 a) = Ne.

This proves that GIN is a group.
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To emphasize: The elements of GIN are subsets of G. If G is finite, then the order of
GIN is the number of right cosets of N in G; this is [G : N], the index of N in G (Section
17). From the remarks after Lagrange's Theorem, [G : N] = IGI/INI. Therefore,

IG/NI = IGI/INI.

Example22.1. Consider GIN for G = S3 and N = ((1 2 3)). We have

N = {(1),(1 2 3),(1 3 2)} a S3

and

IS3/NI = 6/3 = 2.

The elements of S3/N are

N = {(1), (1 2 3), (1 3 2))

and

N(1 2) =[(I 2),(1 3),(2 3)).

The element (cosec) N is the identity, and

N(1)

= N.

Table 22.1 is the Cayley table.

Table 22.1

N
N(1 2)

N N(1 2)

N N(1 2)
N(1 2) N

Example 22.2. Let G be the group of symmetries of a square (Example 8.1), and let
N = (1.c18o). Then N = {µo, µ18o} and N a G. (In fact, if µ is any element of G, then
µ o µo o µ-1 = µo and µ o Also o µ-1 = µ18O.) The elements of, GIN are (µo, µ18o},
(µ9o, µ270), (pH, pv}, and (pt, p21. If we denote these cosets by [µo], [µ9o], [PH], and
[pi I, respectively, then the Cayley table for GIN is as shown in Table 22.2. For instance,
[µ9o)[Pt] = [PH] because [µso)[Pu] = Nµ9oNP1 = N(µ90 o p1) = Npv and Npv = NPH.

Table 22.2

[µ01 [µ9o] [PHI [Pt]

[µo] [µo1 [µ9o] [PH] [Pt]
[µ9o) [µ9o] [µo] [P1] [PH]
[PH] [PH] [Pt] [µo] [µ9o]

[P11 [P1] [PH] [µ9o] [µo]
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Example 22.3. Let G = Z12 x Z4 and N = ([3]) x ([2]), with the notation interpreted
in the following natural way. The first factor, ([3]), is a subgroup of Z12:

([3]) = {[0], [3], [6], [9]1 c Z12.

The second factor is

([2]) = [[0], [2]) C Z4.

Because G is Abelian, N a G. And IG/N I = 48/8 = 6. A complete list of right coset
representatives of N in G is

01, [01), ([0], [1]), ([1], [0]), ([1], [1]), ([2], [0]), ([2], [1]).

Denote the corresponding cosets of N by

No,o, No,1, N1.o, N1.1, N200, N211,

respectively. Then, for example,

N2.IN1,0 = N([2], [1])N([I], [0])
= N([2] ®[1], [l] ®[0])
= N([3], (1])

= N([0], [1])

Problem 22.4 asks for the Cayley table of this quotient group.

It can be proved that if N is not normal, then the operation on GIN from Theorem
22.1 will not be well defined (Problem 22.15). Thus the concepts of quotient group and
normal subgroup are inseparable. Also, a subgroup N of a group G is normal iff the right
coset of N determined by each element is the same as the left coset of N determined by
that same element (Problem 21.26). Thus in working with cosets of a normal subgroup N,
it is immaterial whether we use Na or aN; we shall always use Na.

By Theorem 21.2, a kernel of the homomorphism is necessarily a normal subgroup.
The next theorem shows that, conversely, every normal subgroup is the kernel of some
homomorphism.

Theorem 22.2. If G is a group and N aG, then the mapping q : G -> GIN defined by

r1(a) = Na for each a E G

is a homomorphism of G onto GIN, and Ker 77 = N.

PROOF. The mapping q is clearly well defined and onto. Also, if a, b E G, then
77(ab) = N(ab) = (Na)(Nb) = q(a)77(b), so q is a homomorphism. Finally, if a E G, then
a E Ker q iff 17(a) = Na = Ne, because Ne is the identity element of G/N. Thus a E Ker q
iff a E N, so Ker 77 = N.

The mapping q in Theorem 22.2 is called the natural homomorphism of G onto GIN.

Example 22.4. If n is a positive integer, then Z/ (n) = Z. The natural homomorphism
q : Z -+ Z/(n) is given by q(a) = (n) + a = [a]. And Ker ri = (n). This q is the same as
the mapping 9 in Example 21.1, whose kernel we computed in Example 21.5.
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PROBLEMS

Determine the order of each of the following quotient groups.

22.1. (a) Zs/([4)) (b) (2)/(8), where (8) C (2) C Z

22.2. (a) Z8/([3]) (b) (3)/(6), where (6) C (3) C Z

22.3. Construct the Cayley table for Z128[41). (Suggestion: Use [[k]] to denote the cosec to which
[k] belongs.)

22.4. Construct the Cayley table for the group in Example 22.3.

22.5. Prove that every quotient group of an Abelian group is Abelian.

22.6. Prove that every quotient group of a cyclic group is cyclic.

22.7. If m and n are positive integers and m I n, then (n) is a normal subgroup of (m) (in Z). What
is I(m)/(n)I? Justify your answer. (Problems 22.1 and 22.2 contain special cases.)

22.8. Give a reason for each step in the proof of Theorem 22.1 for why the operation on G/N is
associative.

22.9. Assume N 4 G.
(a) Prove that if [G : N) is a prime, then G/N is cyclic.
(b) Prove or disprove the converse of the statement in part (a).

22.10. Determine the order of (Z12 X Z4)/(([3], [2])). Explain the difference between this quotient
group and the one in Example 22.3.

22.11. Prove that if N 4 G and a E G, then o(Na) I o(a). [Here o(Na) denotes the order of Na as an
element of GIN.] How is this problem related to Problem 21.17?

22.12. Prove that every element of Q/Z has finite order. Also show that Q/Z has an element of order
n for each positive integer n.

22.13. The elements of finite order in an Abelian group form a subgroup (Problem 14.16). Show
that the subgroup of elements of finite order in R/Z is Q/Z. (See Problem 22.12).

22.14. Prove that GIN is Abelian if aba-'b-' E N for all a, b E G.

22.15. Prove that if N is a subgroup of G, and the operation (Na)(Nb) = N(ab) is well defined on
the set GIN of all right cosets of N in G, then N a G.

SECTION 23 THE FUNDAMENTAL HOMOMORPHISM THEOREM

The natural homomorphism q : G -+ GIN shows that each quotient group of a group G
is a homomorphic image of G (Theorem 22.2). The next theorem shows that the converse
is also true: each homomorphic image of G is (isomorphic to) a quotient group of G. Thus
the claim made at the beginning of Section 22 is justified: quotient groups are essentially
the same as homomorphic images.

Theorem 23.1 (Fundamental Homomorphism Theorem). Let G and H be groups, and
let 9 : G --s H be a homomorphism from G onto H with Ker 9 = K. Then the mapping
0:G/K- H defined by

4(Ka) = 9(a) for each Ka E G/K
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is an isomorphism of G/K onto H. Therefore

G/K - H.

PROOF. We must first verify that 0 is well defined. If Kai = Ka2, then ka1 = a2
for somek e K = Ker9, so 9(ka1) = 9(a2). But9(ka1) = 9(k)9(a1) = e9(ai) = 9(al), so
that9(af) = 9 (a2). Therefore, 9(a) is determined solely by the coset of K to which a belongs,
so 0 is well defined.

To prove that 0 preserves the operation, assume that Ka E G /K and Xb E G / K. Then
0((Ka)(Kb)) = 0(K(ab)) = 0(ab) = 9(a)9(b) = c(Ka)0(Kb), as required. Clearly q5 is
onto, because 9 is onto. It remains only to prove that 0 is one-to-one, or equivalently,
by Theorem 21.1, that Ker 0 contains only the identity element, Ke, of G/K. This is
true because if Ka E Ker 0, then 9(a) _ q(Ka) = e, and therefore a E Ker 0 = K, so
Ka = Ke.

If a homomorphism 9 : G --> H is not onto, then H should be replaced by 9(G) in
the last two sentences of the theorem. Then the last statement of the theorem becomes
G/K x 9(G). In any case, with 9, 0, and K as in the theorern, and o : G - G/K the
natural homomorphism, it can be verified that 0 o n = 9. Schematically, the two ways
(9 and (P o >)) of getting from G to H in Figure 23.1 give the same result for every element
of G (Problem 23.7). This is described by saying the diagram commutes.

a\ 9
- Hz

GIK

Figure 23.1

Example 23.1. Let G denote the group of all rotations of the plane about a fixed point p
(Example 5.7). For each real number r, let 9(r) in G denote clockwise rotation through r
radians. Then 9 is a homomorphism of R onto G, and

Ker9 = (2n) = [2k7r : k E Z}.

The Fundamental Homomorphism Theorem shows that R/ (27r) ti G.

Example 23.2. For a E Z, let [a]12 and [a]4 denote the congruence classes determined by
a in Z12 and Z4, respectively. Define

9 : Z12 -* Z4 by 9([a112) = [a]4.

9 is well defined because if (a] 12 = (b]12, then 121 (a - b), and therefore 4 1 (a - b) and
[a]4 = [b]4. Also, 9 is a homomorphism:

9([a112 ® [b]12) = 8([a + 6112) = [a + b]4 = [a]4 ® [b]4

= 9([a112) ® 9([b]12)

Clearly 9 is onto, and

Ker9 = [[0] 12, [4112,181121 = ([4112).
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Therefore, by the Fundamental Homomorphism Theorem,

Z12 _
([4112)

a.

Notice that from JKer 8 J = 3 alone we could deduce that IZ12/(Ker 9)I = 4, but this would
still leave the possibility that 7612/(Ker 9) -- 7G2 x 712.

Example 233. Let G be the group of symmetries of a square (Example 8.1); we shall
determine all of the homomorphic images of G. By the Fundamental Homomorphism
Theorem, this is equivalent to determining all of the quotient groups of G. To do that, we
must determine all of the normal subgroups of G. There are six in all (Problem 21.22). Any
normal subgroup of order 4 will produce a quotient group of order 2, so we can ignore two
of the three of order 4, and work with these:

G, (µ9o), (µ18O), (µo)

These are of order 8, 4, 2, 1, respectively. Therefore,

G

G
= 1,

G

(µ9o)
= 2,

G

(µ1s0)
= 4,

G

(µo)
=8.

Any group of order 1 is isomorphic to Z1, and any group of order 2 is isomorphic to Z2.
Therefore,

)
ti 72.

G
Z1'

(4G

There are two isomorphism classes of groups of order 4, namely those determined by Z4
and Z2 X 7L2 (Section 19). Problem 23.9 suggests how to show that G/ (µ1e0) is isomorphic
to the latter. Finally, G/(µo) ^ G (see Problem 23.8).

Summarizing, we see that any homomorphic image of this group G is isomorphic to
Z1,Z2,Z2 xZ2, or G.

We shall now see how the ideas in this chapter can be used to construct many groups
from smaller component groups. The groups in the remainder of this section are assumed
to be finite (even though some of the statements are also true for infinite groups).

A group G is said to be an extension of a group A by a group B if G contains a subgroup
N such that

A N aG and G/N B.

When this is so, we can think of G as being built up from component groups A and B.
Because JAI =INI and IG/NI = IGI/INI = IBI, we must have IGI = JAI IBI.

Example 23.4. We saw in Example 22.1 that S3 has a normal subgroup of order 3, namely
N = ((1 2 3)). Also, IS3/NI = 2. Every group of prime order p is isomorphic to ZP
(Theorem 19.3). Therefore,

Z3 -- N < S3 and S3 ti 712
N

Thus S3 is an extension of Z3 by Z2.
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Example 23.5. For any groups A and B, there is always eat least one extension of A byB,
namely A x B. This is because

A>cBA-Ax{e}<AxB and
A x {e}

-- B

(Problem 23.10). a

If we apply Example 23.5 with A = Z3 and B = Z2, we see that Z3 x Z2 is an extension
of Z3 by Z2. But Example 23.4 showed that S3 is also an extension of Z3 by Z2, and
Z3 X Z2 S3 (Z3 x Z2 is Abelian, but S3 is non-Abeliari) Thus there are nonisomorphic
extensions of Z3 by Z2. This leads to the following general problem: Given groups A and
B, determine all (isomorphism classes of) extensions of A by B. This problem was solved in
part by Otto Holder in the 1890s, and more completely by Otto Schreier in the 1920s. Their
results show how to construct a collection of groups from A and B, with the property that
any extension of A by B will be isomorphic to some group in that collection. The details
are complicated and will not be given here (see [71). The important point is that, in theory,
there is a procedure for determining all extensions of A by B.

Some groups can be constructed from smaller groups by extension, and some cannot.
For example, each group Zp with p a prime has only the two obvious (normal) subgroups of
orders 1 andp; therefore, Z can be thought of as an extension in only a trivial way--either
as Z1 by Z., or as Z P by Z1. A nontrivial group G having no normal subgroup other than
{e} and G itself is called a simple group. An Abelian simple group must be isomorphic to
Z for some prime p (Problem 23.11).

All finite groups can be constructed from simple groups by forming repeated exten-
sions. This can be seen as follows. Assume that G is finite. Let G 1 denote a maximal
proper normal subgroup of G : G 1 # G (proper), G 1 <i G (normal), and G has no normal
subgroup strictly between G1 and G (maximal normal). It can be shown that G/G1 is a
simple group (Problem 23.17). Now let G2 denote a maximal proper normal subgroup of
G1. Then GI/G2 is simple also (Problem 23.17 again). Continuing in this way, with G
denoted by Go, we eventually arrive at a series of subgroups

G =Go>G1>G2D ... DGk_2D Gk-1>Gk= {e}

such that each factor group G, -1 / G; is simple (I < i < k). Such a series is called a compo-
sition series of G. We see from this that G can be constructed by a succession of extensions
by simple groups: extend Gk-1 by Gk_2/Gk_t to get Gk-2, extend Gk-2 by Gk-3/Gk-2 to
get Gk-3, and so on until we arrive at G. Moreover, it can be proved that although G may
have more than one composition series, the factor groups arising from any two composition
series can be paired (after rearrangement, perhaps) in such a way that corresponding factor
groups are isomorphic (Jordan-Holder Theorem).

These remarks about composition series show that, with the problem of how to de-
termine extensions effectively solved, the place to direct attention is the class of simple
groups. If all finite simple groups could be determined, then, in theory, all finite groups
would be determined, just by constructing all successive extensions by simple groups. We
close our discussion with some general remarks about this problem.

We have already observed that groups of prime order are simple; they are the only
Abelian simple groups. These groups of prime order are simple in the technical sense,
defined previously, and they are also simple in the sense of being uncomplicated. Other
simple groups (technical sense) can be quite complicated. The smallest non-Abelian simple
group is A5, the alternating group of degree 5, which is of order 60. (Alternating groups
are discussed in Section 7.) In general, each alternating group A is simple for n > 5. Thus
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there is a non-Abelian simple group of order 1(n!) for each n > 5. These groups account
for 5 of the 56 non-Abelian simple groups of order less than 1,000,000.

The most comprehensive, easy-to-state theorem about non-Abelian simple groups is
a celebrated theorem proved in the 1960s by the American group theorists Walter Feit and
John Thompson: There are no non-Abelian simple groups of odd order. The classification of
all simple groups was completed in the early 1980s. The original proof of the classification
involved some 500 journal articles covering approximately 10,000 printed pages.

PROBLEMS

Find all homomorphic images of each of the following groups.

23.1. Z6 23.2. Z4
23.3. Z5 23.4. S3

23.5. Find two nonisomorphic extensions of Z2 by Z2.

23.6. Find two nonisomorphic extensions of Z4 by Z2.

23.7. With 0, 0, and q as in the paragraph following the proof of the Fundamental Homomorphism
Theorem, prove that 0 o rl = 0.

23.8. Use the Fundamental Homomorphism Theorem to prove that if G is any group with identity
e, then G/{e} - G.

23.9. Verify the isomorphism G/(µiso) N Z2 x Z2, from Example 23.3. (It is sufficient to check
that the factor group on the left has no element of order 4. Why?)

23.10. Verify the isomorphisms in Example 23.5. (Suggestion: Use the Fundamental Homomorphism
Theorem and the homomorphism n'2 : A x B --> B from Problem 21.2.)

23.11. Prove that if G is a simple Abelian group, then G - Z p for some prime p.

23.12. Prove that Zis/([3]) - Z3-

23.13. Prove that if k and n are positive integers and k is a divisor of n, then Zk.

23.14. Find all homomorphic images of the quatemion group Qs. (See Problem 21.30.)

23.15. Find all homomorphic images of Z, (n a positive integer).

23.16. Prove that if 8 is a homomorphism of G onto H, B <H, and A = {g r= G : 0(g) E B), then
A'G.

23.17. Prove that if N d G, N # G, and G has no normal subgroup strictly between N and G, then
GIN is simple. (Suggestion: Use the natural homomorphism G --). GIN and Problem
23.16.)

23.18. If G is a simple group, then any homomorphic image of G is either isomorphic to G or of
order one. Why?

23.19. Let A denote the group of all mappings a,,b : R -a R, defined as in Example 5.8. Let
B = {al,b : b e R}, and let R" denote the multiplicative group of R. Define 8 : A --). R"
by B(a,,b) = a for each a,.b E A.
(a) Verify that 8 is a homomorphism with Ker 6 = B.
(b) Explain why B < A and A/ B x W.
(c) Explain why A is an extension of R (operation addition) by R" (operation multiplication).
(d) Give an example of a group that is an extension of R (operation addition) by R" (operation

multiplication) and is not isomorphic to A.
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23.20. Give an example to show that if A and B are subgroups of a group G, the AB =
jab : a E A and b e B) need not be a subgroup of G. [Suggestion: Try G = S3.] Prove that
if A 4 G or B < G, then AB is a subgroup.
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CHAPTER VI

INTRODUCTION TO RINGS

In considering the integers as a group, we have used addition but not multiplication. In
doing that, we have ignored more than multiplication. We have also ignored properties that
combine the two operations, such as the law a(b + c) = ab + ac. The same has happened
with other groups-the rational numbers and the integers mod n, for example. The concept
of a ring covers all of these systems, as well as many others with two operations. Rings, just
like groups, arise in widely varying contexts. Some of the most basic ideas about rings are
used in the next chapter to analyze the integers and other familiar number systems. Rings
also play a role in all of the remaining chapters except XIII-XV.

SECTION 24 DEFINITION AND EXAMPLES

A ring consists of a set with two operations, which are nearly always written as a sum
(a + b) and a product (ab). For rings whose elements are numbers, this notation has its
usual meaning unless the contrary is explicitly stated. In some cases it is necessary to specify
what is meant by the two operations. In reading the axioms for a ring, which follow, it may
help to keep the integers in mind-they do form a ring. Also, do not confuse R (which may
be any nonempty set) with IR (which we reserve for the real numbers).

Definition. A ring is a set R together with two operations on R, called addition (a + b)
and multiplication (ab), such that

R with addition is an Abelian group,
multiplication is associative, and
a(b + c) = ab + ac and (a + b)c = ac + bc for alla,b,c ER.

The last two properties are called the distributive laws.
In detail, the two operations must satisfy each of the following axioms:

a+(b+c)=(a+b)+c for alla,b,cER,

there is an element 0 E R such that

a +0 = 0+a = a for each a E R,
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for each a E R there is an element -a e R (the negative of a in R) such that

a + (-a) _ (-a) +a = 0,
a+b=b+a foralla,bER,

a(bc) = (ab)c for all a, b, c E R, and

a(b + c) = ab + ac and (a + b)c = ac + be for all a, b, c E R.

The group formed by R with addition is referred to as the additive group of R. Its identity
element, 0, is called the zero of the ring; the context will usually make clear whether this
or the integer zero is meant. In expressions such as ab + ac, multiplications are to be
performed first, just as in elementary arithmetic; that is, ab + ac means (ab) + (ac).

Example 24.1. The integers form a ring with respect to the usual addition and multi-
plication. The same is true for the rational numbers, the real numbers, and also the even
integers.

Example 24.2. For each positive integer n, Z,,, the integers mod n, forms a ring with
respect to the operations ® and C introduced in Section 11. Theorem 11.1 shows that Z
with ® is a group, and Problem 11.7 shows that this group is Abelian. Associativity of ®
was recorded in Lemma 11.3. Here is a verification of the first distributive law:

[a] C ([b] ® [c]) = [a] C [b + c] definition of
= (a(b + c)] definition of ®
= [ab + ac] distributivity for +,
= [ab] ® [ac] definition of ®
= ([a] (D [b]) ® ([a] 0 [c]) definition of O.

The proof of the other distributive law is similar (Problem 24.2).

Example 24.3. Let M(2, Z) denote the set of all 2 x 2 matrices with integeral entries
(Example 3.5). With matrix addition and multiplication, M(2, Z) is a ring. Problem 24.4
asks you to check one of the distributive laws. This ring is not commutative. Appendix
D has more information about groups and rings of matrices, which are very important in
linear algebra.

Example 24.4. Let Z[/] denote the set of all numbers a + b/ with a, b E Z. The sum
of two numbers in Z[/] is also in Z[']:

(a+b')+(c+d') = (a + c) + (b + d)-/2,

and a + c E Z and b + d E Z if a, b, c, d E Z. The set Z[.] is also closed under multi-
plication:

(a + bn)(c + dv) = ac + ad + bc-,F2 + bd-v(2-,/2-

_ (ac + 2bd) + (ad + bc)/.

With these operations Z[n] is a ring (Problem 24.5).

Example 24.5. Let F denote the set M(R) of all functions (mappings) f : R - R. We
can define f + g and fg for f, g E F in a way that will give a ring. If f + g is to be in F,
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then it must be a function from R to R. Thus we must specify (f + g)(x) for each x E R.
Similarly forfg. The definitions are

(f + g)(x) = f(x)+g(x) foreachx ER
and (24.1)

(f g)(x) = f (x)g(x) for each x E R.

To verify that this operation + is associative, f + (g + h) = (f + g) + h, we observe
that because each side is a function with domain R, what must be shown is that for all
f, g,hnF

[f + (g + h)](x) = [(f + g) + hl(x) for each x E R.

To do this, write

[f + (g + h)](x) = f (x) + (g + h)(x) definition of + on F
= f (x) + [g(x) + h(x)] definition of + on F
= [f (x) + g(x)] + h(x) associativity of + on Iii
= (f + g)(x) + h(x) definition of + on F
= [(f + g) + h](x) definition of + on F.

The 0 (identity element for +) for this ring is the function defined by 0(x) = 0 for each
x E R, where the 0 on the right is the zero of R: if f E F, then

(f +0)(x)= f(x)+0(,c)= f(x)+0= f(x)

for each x E R, so f + 0 = f . The negative of a function f is the function -f defined
by (- f)(x) = - f (x) for each x E R. Verification of the remaining axioms is left to
Problem 24.6.

Notice that the product of fg in this example is not f o g. See Problem 24.10 for what
happens when f o g is used.

Example 24.6. Let R and S be rings, and R x S the Cartesian product of R and S, that is,
the set of all ordered pairs (r, s) with r E R and S E S. Then R x S becomes a ring with
the following operations:

(r1, s1) + (r2, S2) = (1.1 +r2, S1 + S2)

and
(r1, SI)(1r2, S2) = (rlr2, sts2)

for all rl, r2 E R, sl, S2 E S. The discussion of direct products of groups in Section 15
carries over to show that R x S is a group with respect to addition: the additive identity is
(0, 0) = (OR, Os), and the negative of (r, s) is (-r, -s). Here is verification of one of the
distributive laws:

(r1, sl)((r2, s2) + (r3, S3)) = (r1, st)(r2 + r3, S2 + S3)

= (rl(r2 + r3),s1(s2 + s3))

= (rlr2 + r1r3, SIS2 + s1S3)

= (rlr2,SIS2) + (rtr3,sus3)

= ()-l, si)(r2, S2) + (rl, sl)(r3, S3).

The remaining details are left to Problem 24.11. This ring is called the direct sum of R
and S.
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When one first works with any abstract concept such as group or ring, there is bound to
be uncertainty over what is and is not allowed. For exarmple, in a group written multiplica-
tively the left cancellation law holds: If ab = ac, then b = c [Theorem 14.1(a)). Because
a ring is (among other things) a group with respect to addition, this can be translated into
a statement about rings: If a + b = a + c, then b = c. But what about left cancellation for
multiplication in a ring? In the ring of integers ab = ac implies b = c (for a 54 0), but what
about other rings? We shall come to see that sometimes it is safe to cancel and sometimes it
is not. Only experience can guide us in such matters. Once it has been determined that there
are enough important examples of a concept to make that concept worth studying, we set
about trying to discover theorems about it. Not only do examples tell us whether the concept
is worth studying, but they are also the source of ideas for theorems. Given a property of a
specific ring, for example, we can ask whether that property holds for all rings. Very often,
the answer will be no, and it will be another example-a counterexample-that will give
us that answer. But sometimes the answer will be yes, and we then have another piece of
the theory surrounding the general concept. In this sense, the example of the integers is a
good one to keep in mind when first studying rings. Even though not everything true about
the integers is true about all rings, we can gradually improve our perspective by comparing
each theorem and example with this familiar and important special case.

With these remarks and some examples behind us, we now turn to some elementary
theorems. Because a ring is a group with respect to addition, the elementary properties
of rings that involve addition are obtained by simply translating the elementary properties
of groups into additive notation. An example is the cancellation law mentioned earlier.
And the law (a-1)-1 = a becomes -(-a) = a. The following theorem gives a summary
of such properties. The last part uses the conventions that if n is a positive integer, then
no = a + a (nterms)and(-n)a = -(na).

Theorem 24.1. Let R be a ring and a, b, c E R.

(a) The zero element of R is unique.
(b) Each element of R has a unique negative.
(c) If a + b = a + c, then b = c (left cancellation law).
(d) If b + a = c + a, then b = c (right cancellation law).
(e) Each of the equations a + x = b and x + a = b has a unique solution.
() -(-a) = a and -(a + b) = (-a) + (-b).
(g) If m and n are integers, then (m + n)a = ma + na, m(a + b) = ma -- mb, and

m(na) = (mn)a.

The proof of Theorem 24.1 is left to Problem 24.12. The next theorem concerns
properties involving multiplication in a ring. Here and elsewhere, a - b means a + (-b).

Theorem 24.2. Let R be a ring, 0 the zero of R, and a, b, c E R.

(a) Oa = a0 = 0.
(b) a(-b) = (-a)b = -(ab).
(c) (-a)(-b) = ab.
(d) a(b - c) = ab - ac and (a - b)c = ac - bc.

PROOF. (a) Oa + Oa = (0 + 0)a = Oa = Oa + 0, and therefore, by canceling Oa
from the left of the first and last expressions, Oa = 0. The proof for a0 = 0 is similar.
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(b) The equation x + ab = 0 has x = -(ab) as a solution. But a(-b) + ab =
a(-b + b) = a0 = 0; hence x = a(-b) is also a solution. By uniqueness of the solu-
tion [Theorem 24.1(e)], it follows that -(ab) = a(-b). The proof for -(ab) _ (-a)b is
similar.

(c) Using part (b) and Theorem 24.1(f), we have (-a)(-b) = (-(-a))(b) = ab.
(d) Using part (b), we can write a(b - c) = a(b + (-c)) = ab + a(-c) = ab +

(-(ac)) = ab - ac. The proof for (a - b)c = ac - be is similar.

In the definition of a ring, nothing is assumed about multiplication except associativity
and the connection of multiplication and addition through the distributive laws. Other
assumptions are considered in the next section when we look at some special types of rings.
We close this section by mentioning two of the assumptions that arise most frequently.

An element e in a ring R is called a unity (or identity or unit element) for the ring
if ea = ae = a for each a e R. Thus a unity is simply an identity for multiplication. The
number 1 is a unity for the ring of integers. The ring of even integers has no unity.

A ring R is said to be commutative if ab = ba for all a, b E R. The rings in Examples
24.1, 24.2, 24.4, and 24.5 are commutative. If ab 0 ba for some a, b E R, the ring is
noncommutative. The ring M(2, Z) (Example 24.3) is noncommutative. The ring R x S in
Example 24.6 will be commutative iff both R and S are commutative.

PROBLEMS

24.1. Compute [3] 0 ([4] ® [5]) and ([3] 0 [4]) ® ([3] 0 [5]) in Z6. Show each step.

24.2. Prove that ([a] ® [b]) 0 [c] = ([a] 0 [c]) ® ([b] (D [c]) for all (a], [b], [c] E Z. (Exam-
ple 24.2).

l -2
24.3. Compute I -1

2] ([0
_42]+[-

0 2 ]) in M(2, z).
5

24.4. Verify that a(b + c) = ab + ac for all a, b, c E M(2, Z). (Here each of a, b, and c is, of
course, a 2 x 2 matrix.)

24.5. Prove that Z[/] is a ring (Example 24.4).

24.6. Complete the verification that F = M(R) is a ring (Example 24.5). Also verify that it is
commutative and has a unity.

24.7. Which of the following properties hold in every ring R? What about every commutative
ring R?
(a) a'a" = a"'+" for all a E R, m, n E N.
(b) (a'")" = a"" for all a E R, m, n E N.
(c) (ab)' = a' b" for all a E R, M E N. (The powers occurring here are defined as in Section

14.)

24.8. Prove that if R is a ring, a, b e R, and ab = ba, then a(-b) = (-b)a and (-a)(-b) _
(-b)(-a). (Use Theorem 24.2.)

24.9. Show that if R is a ring and S is a nonempty set, then the set of all mappings from S into R
can be made into a ring by using operations like those defined in Example 24.5.

24.10. Consider Example 24.5 withfg, as defined there, replaced by f o g. Verify that this does not
define a ring.

24.11. Complete the verification that Example 24.6 is a ring.
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24.12. Prove Theorem 24.1. (This can be done by referring to proofs that have already been carried
out for groups.)

24.13. Prove that if R is a ring, then each of the following properties holds for all a, b, c E R.
(a) a0 = 0. (This is part of Theorem 24.2.)
(b) -(ab) = (-a)b. (This is part of Theorem 24.2.)
(c) (a - b)c = ac - bc. (This is part of Theorem 24.2.)
(d) -(a + b) _ (-a) + (-b).
(e) (a-b)+(b-c)=a-c.

24.14. Prove that a ring has at most one unity.

24.15. LetE denote the set of even integers. Prove that with the usual addition, and with multiplication
defined by m * n = (1/2)mn, E is a ring. Is there a unity?

24.16. Prove that a2 - b2 (a + b)(a - b) for all a, b in a ring R if R is commutative.

24.17. Prove that (a + b)2 = a2 + tab + b2 for all a, b in a ring R iff R is commutative.

24.18. Verify that if A is an Abelian group, with addition as the operation, and an operation * is
defined on A by a * b = 0 for all a, b E A, then A is a ring with respect to + and *.

24.19. In the ring of integers, if ab = ac and a 0 0, then b = c. Is this true in all rings? (Suggestion:
Look carefully at the rings in Examples 24.2, 24.3, 24.5, and 24.6.)

24.20. Verify that if R is a ring and a, b ER, then

(a + b)3 = a3 + aba + ba 2 + b2a + a2b + ab2 + bab + b3.

Which ring axioms do you need?

24.21. Prove that if R is a commutative ring, a, b e R, and n is a positive integer, then (a + b)" can
be computed by the Binomial Theorem. (See Appendix C.)

24.22. For each set S, let F(S) denote the set of all subsets of S. For A, B E F(S), define A + B and
AB by

and

A+B=(AUB)\(AnB)={x:xEAUB and xVAnB}

AB = An B.

Verify that with these operations, F(S) is a ring. [P(S) is called the power set of A. See
Appendix A for facts about sets. Suggestion: Make generous use of Venn diagrams in this
problem.)

SECTION 25 INTEGRAL DOMAINS. SUBRINGS

To isolate what is unique about the integers-something we first promised in Section 18-
we focus here on the pertinent abstract ring properties. Commutativity and the existence
of a unity are examples of these properties. After introducing one more such property we
define a special class of rings known as integral domains. This class contains the ring of
integers and brings us very near to a characterization of that ring. The characterization will
be completed in Section 29.

We begin by recalling a fact relating to zero in the ring of integers: If a and b are
integers and ab = 0, then either a = 0 or b = 0. This is not true in some rings. In Z6, for
example, [2] O [3] = [0], but [2] (0] and [3] # [0]. The following definition singles out
such examples.
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Definition. An element a 54 0 in a commutative ring R is called a zero divisor in R if
there exists an element b # 0 in R such that ab = 0.

Thus the ring of integers has no zero divisors. But both [2] and [3] are zero divisors in
Z6. Notice that the definition is restricted to elements in a commutative ring; for what can
happen in a noncommutative ring, see Problem 25.9. By the definition that follows, zero
divisors are forbidden in an integral domain.

Definition. A commutative ring with unity e ,-b 0 and no zero divisors is called an integral
domain.

Note that saying there are no zero divisors is the same as saying the set of nonzero
elements is closed with respect to multiplication.

Example 25.1. The ring of integers, the ring of rational numbers, and the ring of real
numbers are all integral domains. The ring of even integers is not an integral domain
because it has no unity.

Example 25.2. The ring Z6 is not an integral domain because, as we have seen, it has
zero divisors. This happens because 6 is not a prime. More generally, if n is not a prime,
and n = rs with r and s each greater than 1, then, in Z,,, [r] p [s] = [rs] = [n] = [0] with
[r] 34 [0] and [s] $ [0]. Thus Z. is not an integral domain if n is not a prime. On the other
hand, it can be proved that if n is a prime, then Z. is an integral domain (Problem 25.10).
For the special case n = 5 this can be seen from Table 11.2; every Z is commutative and
has a unity, and Table 11.2 shows that the product of any two nonzero elements in Z5 is
nonzero.

Of the other examples of rings in Section 24, M(2, Z) is not an integral domain
because it is noncommutative (Problem 3.26). The ring in Example 24.4 is an integral
domain (Problem 25.11). The ring in Example 24.5 is not an integral domain (Problem
25.12). The ring R x S in Example 24.6 is an integral domain only if one of R or S is an
integral domain and the other contains only a zero element (Problem 25.13).

The following theorem gives an easy-to-prove but important property of integral do-
mains.

Theorem 25.1. If D is an integral domain, a, b, c E D, a # 0, and ab = ac, then b = c
(left cancellation property).

PROOF. From ab = ac we have ab - ac = 0, and thus a(b - c) = 0. Since a is a
nonzero element of the integral domain D, it cannot be a zero divisor, so we must have
b-c=0andb=c.

Because multiplication is commutative in an integral domain, the (left) cancellation
property in Theorem 25.1 is equivalent to the right cancellation property: If a # 0 and
ba = ca, then b = c. Moreover, for a commutative ring each of these cancellation properties
implies that the ring has no zero divisors (Problem 25.14). Thus an alternative definition
of an integral domain is this: An integral domain is a commutative ring D with unity e # 0
such that if a, b, c E D, ab = ac, and a # 0, then b = c.

The notion of subring is the obvious analogue of the notion of subgroup.
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Definition. A subset S of a ring R is a subring of R if S is itself a ring with respect to the
operations on R.

Example 25.3. The ring of even integers is a subring of the ring of all integers. The ring
of integers is a subring of the ring of rational numbers. If R is any ring, then R is a subring
and {0} is a subring. Other examples appear in Example 25.4, in the problems, and later
in the book. a

Theorem 7.1 gave a criterion for determining when a subset of a group is a subgroup.
Here is the corresponding criterion for subrings.

Theorem 25.2. A subset S of a ring R is a subring of R z_ ff S is nonempty, S is closed under
both the addition and the multiplication of R, and S contains the negative of each of its
elements.

PROOF See Problem 25.15. n

Example25.4. Let F = M(R) denote the ring of all functions f : R -+ R, introduced in
Example 24.5. Let S denote the set of all f E F such that f (1) = 0. We shall use Theorem
25.2 to prove that S is a subring of F.

Certainly OF E S, since OF(X) = 0 for all x E R so that in particular OF(1) = 0. Thus
S is nonempty. If f and g are in S, then

(f +g)(1)= f(1)+g(1)=0+0=0
and

(fg)(1) = f (1)g(l) = 0. 0 = 0

PROBLEMS

so that f + g and f g are in S. Finally, if f (1) = 0, then ( - f) ( 1 ) -0 = 0;
therefore, the negative of each element of S is also in S. a

25.1. Which elements of Z4 are zero divisors?

25.2. Which elements of Z10 are zero divisors?

253. Verify that ([2], [0]) is a zero divisor in Z3 X Z3.

25.4. Which elements of Z x Z are zero divisors? (See Example 24.6.)

25.5. What is the smallest subring of Z containing 3?

25.6. What is the smallest subring of R containing 1/2?

Which of the following are subrings of M(2, Z) (Example 243)?

25.7.
[0a 0]. a,bEZ1 25.8.

[0a

b] : a,b,cEZI
c

[0 0][0 0]
and 01

J
in M(2, Z).
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25.10. Prove that if p is a prime, then Zp is an integral domain.

25.11. Explain why Z[,/2-] (Example 24.4) is an integral domain. (Assume that 1R is an integral
domain.)

25.12. Prove that the ring F = M(R) in Example 24.5 is not an integral domain.

25.13. Prove that R x S (Example 24.6) is an integral domain if one of R or S is an integral domain
and the other contains only a zero element.

25.14. Prove that for a commutative ring the cancellation property of Theorem 25.1 implies that
there are no zero divisors.

25.15. Prove Theorem 25.2.

25.16. Let Q R) denote the set of all continuous functions from ]R to R. Prove that C(R) is a subring of
the ring F = M(R) in Example 24.5. Which properties of continuous functions are required?
What happens if C(R) is replaced by the set of differentiable functions from 1R to R?

25.17. Prove that if G denotes any collection of subrings of a ring R, then the intersection of all of
the rings in C is also a subring of R. (Compare Theorem 15.1.)

25.18. State and prove a theorem for rings that is analogous to Theorem 15.2 for groups. (Use
Problem 25.17.)

25.19. Prove or disprove that if C denotes a collection of subrings of an integral domain R, and each
ring in C is an integral domain, then the intersection of all of the rings in C is an integral
domain.

25.20. For which n E Z is the smallest subring containing n an integral domain?

25.21. Verify that (a + b + c ' 4 : a, b, c E Z) is a subring of R. Is this subring an integral
domain?

25.22. The center of a ring R is defined to be (c E R : cr = rc for every r E R). Prove that the center
of a ring is a subring. What is the center of a commutative ring?

25.23. What is the center of M(2, Z)? (See Example 24.3 and Problem 25.22.)

25.24. What is the center of M(JR)? (See Example 24.5 and Problem 25.22.)

25.25. State and prove a theorem giving a necessary and sufficient condition for a subset of an
integral domain to be an integral domain. (Compare Theorem 25.2.)

SECTION 26 FIELDS

Because an integral domain has no zero divisors, its set of nonzero elements is closed with
respect to multiplication. Therefore, multiplication is an operation on this set of nonzero
elements, and it is natural to ask if it yields a group. Because multiplication is required
to be associative in a ring, the operation is associative. Because an integral domain has a
unity, the operation has an identity element. Thus, with respect to multiplication, the set of
nonzero elements of an integral domain can fail to be a group only because of the absence
of inverse elements. In the integral domain of integers, for instance, the nonzero elements
do not form a group with respect to multiplication because only I and -1 have inverses.
In the integral domain of rational numbers, however, each nonzero element does have an
inverse relative to multiplication. Such integral domains are singled out by the following
definition.
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Definition. A commutative ring in which the set of nonzero elements forms a group with
respect to multiplication is called afield.

Alternatively, a field can be defined as on integral domain in which each nonzero ele-
ment has an inverse relative to multiplication (Problem 26.11). Another example of a field,
besides the ring of rational numbers, is the ring of real numbers. Fields are indispensable
to much of mathematics. For example, the field of real numbers is basic in calculus and its
applications.

Here are some relationships between classes of rings:

fields c integral domains C commutative rings C rings.

Each class is contained in, but different from, the class that follows it. If we restrict attention
to rings having only finitely many elements, however, then the first two classes are the same,
because of the following theorem.

Theorem 26.1. Every finite integral domain is afield.

PROOF. Let D be a finite integral domain. We must show that each nonzero element
a E D has an inverse relative to multiplication; that is, if a c- D and a qE 0, then there is
an element b c- D such that ab = e. This means we must show that e is among the set of
elements ax for x E D. To show this, assume that a 0 0 and consider the mapping ;La :

D --* D defined by ,la(x) = ax for each x E D. If this mapping is onto, then in particular
Aa(.x) = e for some x E D, say x = b, and then k,, (b) = ab = e. Thus it suffices to show
that Aa is onto.

Because Aa is a mapping of a finite set to itself, it suffices to establish that Aa is one-
to-one, for it will then necessarily be onto. To show that Aa is one-to-one, assume that
A0(,rr) = Aa(x2). Then ax, = axe, and therefore, by Theorem 25.1, x, = x2. Thus Aa is
one-to-one, as required. n

Corollary. Z a is a field iff n is a prime.

PROOF. From the remarks in Example 25.2 we know that Z, is an integral domain
if n is a prime. That makes this corollary an immediate consequence of Theorem 26.1.

Example 26.1. Tables 26.1 and 26.2 show operations on 10, e, a, b} that produce a field.
See the remarks that follow the tables.

Table 26.1

0 e a b

0 0 e a b

e e 0 b a

a a b 0 e

b b a e 0

Table 26.2

0 e a b

0 0 0 0 0

e 0 e a b

a 0 a b e

0 b e a



130 CHAPTER VI INTRODUCTION TO RINGS

Once 0 has been chosen for the zero element, and e for the unity, there is no choice
about how to complete the table for multiplication (Problem 26.15). The table for addition
must produce a group of order 4; Problem 26.16 asks for verification that the additive group
here is isomorphic to Z2 x Z2 (with operation (D on each Z2). This example shows that
there is a field of order 4, even though Z4 (with (D and 0) is not a field by the corollary of
Theorem 26.1. It can be proved that there is a finite field of order n iff n is a power of a
prime (see Section 50).

Definition. A subset K of a field F is a subfield of F if K is itself a field with respect to
the operations on F.

Theorem 26.2. A subset K of a field F is a subfield of F iff

(a) K contains the zero and unity of F,
(b) ifa,bEK,then a+beKand abEK,
(c) if a E K, then -a E K, and
(d) if a E K and a 0 0, then a-' E K.

PROOF. See Problem 26.19.

Example 26.2. The ring Z[.] =[a+ b,/2-: a, b E 7L}, considered in Example 24.4, is
a subring of R. Although Z[.] is an integral domain (see Problem 25.11), it is not a field.

For instance, -2 + E Z[,/2-], but (-2 + -1 - z 0 Z[,]. If, however,
Z is replaced by Q, then we do get a field: Q[f] = (a + b, : a, b E Q} is a subfield of
R (Problem 26.14).

If the requirement of commutativity is dropped from the definition of a field, what is
left is the definition of a division ring: a ring in which the set of nonzero elements forms a
group with respect to multiplication. Thus a commutative division ring is a field. Problem
32.19 gives an example of a division ring that is not commutative.

PROBLEMS

In each of Problems 26.1-26.10, give an example of a ring satisfying the given conditions or, if there
is no example, so state.

26.1. An integral domain that is not a field.

26.2. A finite integral domain that is not a field.

26.3. A commutative ring with unity that is not an integral domain.

26.4. An infinite integral domain.

26.5. A finite field.

26.6. A commutative ring with a zero divisor.

26.7. A field that is not an integral domain.

26.8. A field that contains a zero divisor.

26.9. A commutative ring without zero divisors that is not an integral domain.

26.10. A noncommutative ring without a unity.
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26.11. Prove that an integral domain is a field if each nonzero element has an inverse relative to
multiplication.

26.12. Prove that an integral domain D is a field iff each equation a_z = b (a, b E D and a 0 0) has
a unique solution in D.

26.13. Let ZO denote the nonzero elements of Z,,. For which n is Z,* a group with respect to 0?
(Compare Examples 11.4 and 11.5.)

26.14. Verify that Q[ f] = [a + b,/2- : a, b E 0} is a subfield of ttie field of real numbers (Example
26.2).

26.15. Prove that if (0, e, a, b) is to be a field with 0 as zero clement and e as unity, then the
multiplication must be as defined in Example 26.1.

26.16. Prove that the additive group of the field in Example 26.1 is isomorphic to Z2 x Z2.

26.17. Show that the ring Z2 x Z2 is not a field. Why is this not in conflict with Problem 26.16?

26.18. Prove that a direct sum of two or more fields is never a field.

26.19. Prove Theorem 26.2.

26.20. Prove that if C denotes any collection of subfields of a field F, then the intersection of all the
fields in C is also a subfield of F. (Compare Problem 25.17.)

26.21. State and prove a theorem for fields that is analogous to Theorem 15.2 for groups. (Use
Problem 26.20, and compare Problem 25.18.)

26.22. What is the smallest subfield of R containing Z? (There is such a subfield by Problem 26.21.)

26.23. (a) An element a in a commutative ring R with unity e is said to be invertible if there is an
element b E R such that ab = e. Prove that if R is a commutative ring with unity, then
the invertible elements form a group with respect to the multiplication of the ring.

(b) What is the group of invertible elements in a field?
(c) What is the group of invertible elements in Z?
(d) What is the group of invertible elements in Z4?
(e) What is the group of invertible elements in Z,,?

26.24. Prove that a zero divisor in a commutative ring with a unity cannot be invertible. (See Problem
26.23.)

26.25. For each r in a ring R define p, : R --> R by pr(a) = ar for each a E R. For R commutative,
explain why Ker p, A (0) iff r = 0 or r is a zero divisor in R. For R a field and r $ 0, explain
why pr is an isomorphism of the additive group of R onto itself.

SECTION 27 ISOMORPHISM. CHARACTERISTIC

In Section 18 we met the idea of isomorphism for groups and learned that isomorphic
groups are essentially the same-they differ at most in the nature of their elements and
operations. A similar idea applies to rings.

Definition. Let R and S be rings. An isomorphism of R onto S is a mapping 0 : R - S
that is one-to-one and onto and satisfies

6(a + b) = 6(a) + 6(b)
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and

6(ab) = 0(a)6(b)

for all a, b E R. If there is an isomorphism of R onto S, then R and S are said to be isomorphic
and we write R - S.

In the conditions 6(a + b) = 6(a) + 0(b) and 0(ab) = 6(a)6(b), the operations on the
left in each equation are, of course, those of R, and the operations on the right are those of
S. Notice that because of the first of these conditions a ring isomorphism is necessarily an
isomorphism of the additive groups of R and S. It follows that 6(0) = 0 and 6(-a) = -6(a)
for each a e R, by translation into additive notation of parts (a) and (b) of Theorem 18.2.

The following example shows that an isomorphism between the additive groups of two
rings is not necessarily a ring isomorphism.

Example 27.1. Let 6 be the mapping from the ring of integers to the ring of even integers
defined by 6(n) = 2n for each n. We verified in Example 18.3 that this is an isomorphism
between additive groups. But it is not a ring isomorphism because it does not preserve
multiplication: 6(mn) = 2mn but 0(m)6(n) = (2m)(2n) = 4mn.

Although this mapping 6 is not a ring isomorphism, we might ask whether some other
mapping from the ring of integers to the ring of even integers can be a ring isomorphism.
The answer is no. For example, the ring of integers has a unity, but the ring of even integers
does not, and if one of two isomorphic rings has a unity, then the other must as well (Problem
27.1). Notice, then, that although the integers and even integers cannot be distinguished as
groups (Example 18.3), they can be distinguished as rings.

Example 27.2. Consider the ring Z(,/2-] defined in Example 24.4,
Z[,/2-] , Z[,/2-] by 6(a + b/) = a - This mapping is clearly
onto. It also preserves both ring operations: For addition,

6((a + b-) + (c + d,12-)) = 0((a + c) + (b + d)J)
_ (a + c) - (b + d),/2-

and also

6(a+bJ)+ 6(c+d/)=(a-b,/2-)+(c-d,/2-)
_ (a + c) - (b + d)J.

For multiplication,

and define 0:
one-to-one and

6((a + b/)(c + d')) = 6((ac + 2bd) + (bc + ad)f)
= (ac + 2bd) - (bc + ad),

and also

6(a + b-)6(c + dV) _ (a - b,/)(c - d,,lr2-)
= (ac + 2bd) - (bc + ad),12-.

Thus 6 is an isomorphism of Z[,/2-) onto Z[V]. An isomorphism like this, of a ring onto
itself, is called an automorphism.
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Example 27.3. We can prove that 76 Z2 X Z3 by using the mapping 8 : Z6 -3 Z2 X Z3
defined by 9([a]6) = ([a]2, [a]3). The following strizig of equivalent statements shows that

8 is both well defined and one-to-one.

[a]6 = [b]6 iff
iff
if

61 (a - b)
2 I (a - b) and 31(a - b)
[a]2 = [b72 and [a]3 = [bl3

if ([a]2, [a]3) _ ([b]2, [b]3)

(The "only if" portion shows that 8 is well defined; the "if" portion shows that it is on-

to-one.) Because IZ61 = I7G2 X Z3I, 8 is onto since it is one-to-one. Next, a preserves

addition:

O([a]6 ® [b]6) = 9([a + b]6)
_ ([a + b12, [a + b]3)

= ([a]2 ® [b]2, [a]3 ® [b]3)

_ ([a]2, [a] 3) + ([b]2, [b)3)

= 8([a]6) + 8([b]6)

Similarly, 8 preserves multiplication (Problem 27.17). Therefore, Z6 ~ Z2 x Z3, as

claimed. Problem 27.16 suggests how to show that 44 9e Z2 X Z2. Problem 27.20 asks

you to show that 76, ti Z. x Z if m and n are relatively prime.

If one of two isomorphic groups is Abelian, then the other must also be Abelian

(Theorem 18.1). In the same way, if one of two isomorphic rings is commutative, then the

other must also be commutative (Problem 27.2). Other properties shared by isomorphic

rings include the existence of a unity, existence of a zero divisor, that of being an integral

domain, and that of being a field (see the problems). The most common method of showing

that two rings are not isomorphic is by finding some such property that one of the rings has

but the other does not.
The next concept will help in determining what is unique about the ring of integers. It

is also especially useful in the study of fields. Recall that if n is a positive integer and a is

a ring element, then na

Definition. Let R be a ring. If there is a positive integer n such that no = 0 for each

a E R, then the least such integer is called the characteristic of R. If there is no such

positive integer, then R is said to have characteristic 0 (zero).

If a ring has a unity e and characteristic n 0, then in particular ne = 0. On the other

hand, if ne = 0 and a E R, then no = n(ea) = (ne)a = Oa = 0. Thus, for a ring with unity

e, the characteristic can be defined alternatively as the least positive integer n such that

ne = 0, if there is such an integer; otherwise the ring has characteristic 0.

Example 27.4

(a) The ring of integers has characteristic 0, for there is no positive integer n such that

n I = 0. For the same reason, the ring of rational numbers and the ring of real

numbers also have characteristic 0.

(b) The characteristic of Z is n, because n(1] _ [n] = [0], but k[1] _ [k) r [0] for

0<k<n. a
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In Example 25.2 we observed that if a ring Z is an integral domain, then n is a prime.
Thus, in view of the last example, if a ring Z. is an integral domain, then its characteristic
is a prime. Here is a more general statement.

Theorem 27.1. If D is an integral domain, then the characteristic of D is either 0 or a
prime.

PROOF. Assume that D is an integral domain with characteristic n # 0. Let e denote
the unity of D. Since le = e # 0, we must have n > 1. We shall prove that n must be
a prime. Assume otherwise. Then n = rs for some integers r and s with 1 < r < n and
1 < s < n. From ne = 0 we have (rs)e = 0 and (rs)(ee) = (re)(se) = 0. But D, being an
integral domain, has no zero divisors, so (re)(se) = 0 implies that either re = 0 or se = 0.
Since I < r < n and 1 < s < n, either possibility contradicts the assumption that n is the
characteristic of D. Thus n must be a prime.

Theorem 27.2. If D is an integral domain of characteristic 0, then D contains a subring
isomorphic to Z.

PROOF. Let e denote the unity of D, and define 0 : Z -a D by 9(n) = ne for each
n E Z. We shall prove that 0 is one-to-one and that it preserves both ring operations.

If 9(m) = 9(n), then me = ne, me - ne = 0, and (m - n)e = 0. Thus m = n because
D has characteristic 0. Therefore 0 is one-to-one. If m, n E Z, then

9(m+n)=(m+n)e=me+ne=9(m)+9(n)
9(mn) = (mn)e = (me)(ne) = 9(m)9(n).

The image of 9 is a subring of D (Problem 27.10), and 0 is an isomorphism of Z onto
that subring. This completes the proof.

Theorem 27.3. If D is an integral domain of prime characteristic p, then D contains a
subring isomorphic to Z,.

PROOF. The proof of this theorem is similar to that of Theorem 27.2. The relevant
mapping is 9 : ZP --+ D defined by 9([k]) = ke for each [k] E T.P. The details are left as
an exercise (Problem 27.11).

If a ring R contains a subring isomorphic to a ring S, then it is said that S can be
embedded in R. Using this terminology, Theorem 27.2 becomes: The ring of integers can
be embedded in every integral domain of characteristic 0. And Theorem 27.3 becomes:
The ring Z P can be embedded in every integral domain of prime characteristic p.

ROBLEMS

27.1. Prove that if R and S are rings, 0 : R -+ S is an isomorphism, and e is a unity of R, then B(e)
is a unity of S.

27.2. Prove that if R and S are isomorphic rings and R is commutative, then S is commutative.

27.3. Prove that if R and S are isomorphic rings and R is an integral domain, then S is an integral
domain.

27.4. Prove that if R and S are isomorphic rings and R is a field, then S is a field.
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Assume that R is a ring with unity e, that a, b E R, ctnd that m, n e 7L_ Prove each statement in
Problems 275-27.8.

27.5. m(ab) = (ma)b = a(mb) 27-6. (mn)e = (me)(ne)
27.7. (mn)a = m(na) 27.8. m(ea) _ (me)ia

27.9. Prove that if E and F are fields, 9 : E -* F is an isomorphism, and a E E, a 0, then
9(a-') = 8(a)-'.

27.10. Prove that if R and S are rings, 9 : R --* S, and 9 preserves both ring operations, then 9(R)
is a subring of S.

27.11. Complete the proof of Theorem 27.3. Prove, in particular, that the mapping 9 is well defined.

27.12. Prove that isomorphism is an equivalence relation on the class of all rings.

27.13. List five ring properties that hold for each ring isomorphic to Z but not for every ring, (Bya
ring property is meant a property of a ring R that is shared by every ring isomorphicto R.)

27.14. What can be said about the characteristic of a ring R in which x = -x for each x E R?

27.15. Prove that if R and S are isomorphic rings, then their characteristics are equal.

27.16. Use Problem 27.15 to explain why Z4 Z2 x Z2.

27.17. Verify that the mapping 9 in Example 27.3 preserves multiplication.

27.18. Give a counterexample to the following statement: If R is a ring, n is a positive integer, and
no = 0 for some a e R, then nr = 0 for all r E R.

27.19. Give an example of a ring of characteristic 3 that is not a field.

27.20. (a) Prove that if (m, n) = 1, then the rings Z,,,, and Z. x Z, are isomorphic.
(b) Prove that if (m, n) 1, then Z,,,,, I- Z, X Z,,.

27.21. A ring R is called a Boolean ring if x2 = x for each x E R. Prove that every Boolean ringR
is commutative and satisfies 2x = 0 for each x E R. Give an example of such a ring.

27.22. Prove that if R is a finite ring, then the characteristic of R is a divisor of IR1. (Section 17 is
relevant.)

27.23. Let R denote the subfield (a + b- : a, b E Q) of R, and let S denote the subfield
(a + bV : a, b E Q) of R. Verify that 9 : R -a S defined by &(a + bf) = a + b,.,-3 is
not a ring isomorphism.

27.24. (a) Prove that if R and S are rings with unities e and f, respectively, R S, and x2 = e + e
has a solution in R, then x2 = f + f has a solution in S. (See Problem 27.1.)

(b) Verify that x2 = 2 has a solution in the ring R of Problem 27.23.
(c) The rings R and S in Problem 27.23 are not isomorphic. Give a reason. (Notice that

the solution of Problem 27.23 shows that a particular mapping from R to S is not an
isomorphism. The solution of this problem shows that no mapping from R to S is an
isomorphism.)

27.25. Every ring R can be embedded in a ring with a unity. Prove this by verifying the following
steps.
(a) The set Z x R is a ring with respect to the operations

(m, a) + (n, b) = (m + n, a + b)

and

(m, a)(n, b) = (mn, no + mb +ab).

(Notice that this is not the direct sum of the rings Z and R.)
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(b) The ring in part (a) has unity (1, 0).
(c) R' = [(0, a) : a E R} is a subring of the ring in part (a), and R R'.

27.26. Prove that every ring with prime characteristic p can be embedded in a ring with unity and
characteristic p.

27.27. Let A be an Abelian group, written additively. If a and P are homomorphisms from A to A,
define a +,B and a by

(a + 0)(a) = a(a) + p(a)

and

(aB)(a) = a(Q(a))

for all a E A. Prove that a + 0 and ag are also homomorphisms from A to A. Also prove that
with these operations the set of all homomorphisms from A to A is a ring. (A homomorphism
from a group to itself is called an endomorphism. The ring in this problem is called the ring
of endomorphisms of the Abelian group A. Compare Problem 24.10.)

27.28. Let R denote the ring of endomorphisms of Z (see Problem 27.27). Prove that R _- Z (ring
isomorphism). (Suggestion: For each k c- Z, define ak : Z -s Z by ak(n) = kn for all n E Z.
Verify that ak E R for each k E Z and that 9 : Z -- R defined by 9(k) = ak is a ring isomor-
phism.)

NOTES ON CHAPTER VI

We shall return to rings in a number of later chapters. References [1], [2], and [4) are
standard sources that go beyond what is in this book. Chapter 49 of [3] contains remarks
on the history of ring theory, as do some of the references at the end of the Introduction.

1. Herstein, I. N., Noncommutative Rings, Carus Monograph Series, No. 15, Mathematical Associ-
ation of America, 1968.

2. Kaplansky, I., Commutative Rings, University of Chicago Press, 1974.
3. Kline, M., Mathematical Thought from Ancient to Modern Times, Oxford University Press,

London,1990.
4. McCoy, N. H., Rings and Ideals, Carus Monograph Series, No. 8, Mathematical Association of

America, 1948.



CHAPTER VII

THE FAMILIAR NUMBER SYSTEMS

This chapter shows what distinguishes each of the familiar number systems-integers,
rational numbers, real numbers, complex numbers-in terms of its special properties as a
ring or field. This requires that we introduce ideas relating to order (<) and to the existence
of solutions of polynomial equations. Complete proofs are given or sketched in the case of
the integers and rational numbers, but not in the case of the real or complex numbers. This
chapter gives part of what is necessary to replace an intuitive understanding of the familiar
number systems by an understanding based on a more solid logical foundation.

SECTION 28 ORDERED INTEGRAL DOMAINS

In this section and the one that follows we take the first steps in characterizing the ring
of integers. The first definition given, that of an ordered integral domain, applies to the
integers as well as to many other integral domains. It will lead to the ideas of positive,
negative, greater than, and less than. To read the definition with the integers in mind as an
example, think of DP as being the set of positive integers.

Definition. An integral domain D is said to be ordered if there is a subset DP of D such
that:

closure under addition

if a, b E DP, then a+ b E DP,

closure under multiplication

ifa, b E DP, then ab E DP,

law of trichotomy

if a E D, then exactly one of the following is true:

a=0, aEDP, or -aEDP.

The elements of DP are called the positive elements of D. Elements that are neither zero
nor positive are said to be negative.

117
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Besides the integers, other ordered integral domains include the rational numbers and
the real numbers, with the set of positive elements being the set of positive numbers in
each case. We shall see that the integral domains ZP are not ordered (regardless of what
one tries to use for the set of positive elements). Assume in the remainder of this section
that D is an ordered integral domain with unity e.

Lemma 28.1. If a E D and a $ 0, then a2 E DP.

PROOF. By definition of DP, since a $ 0 we have either a E DP or -a E DP. If
a E DP, then a a = a2 E DP by closure of DP under multiplication. If -a E DP, then
(-a)(-a) = (-a)2 E DP by closure of DP under multiplication; but (-a)2 = a2 in any
ring, so that again a2 E DP.

Corollary. e E DP.

PROOF. Since e E D and e $ 0, e2 E DP by Lemma 28.1. But e2 = e.

Lemma 28.2. If a E DP and n is a positive integer, then na E DP.

PROOF. The proof is by induction on n (which is reviewed in Appendix Q. We are
given la = a E DP. Assume ka E DP. Then (k + 1)a = ka + la e DP by closure of DP
under addition. Thus na E DP for every positive integer n.

Theorem 28.1. If D is an ordered integral domain, then D has characteristic 0.

PROOF. By the corollary of Lemma 28.1, e E DP, so ne E DP for each positive integer
n by Lemma 28.2. Thus ne $ 0 for each positive integer n, since a positive element cannot
be 0. Therefore, the characteristic cannot be n $ 0.

Corollary. If D is an ordered integral domain, then D contains a subring isomorphic
to Z.

PROOF. Apply Theorems 28.1 and 27.2.

Corollary. A finite integral domain cannot be ordered. In particular, Z, (p a prime)
cannot be ordered.

PROOF. This is a direct consequence of the preceding corollary.

Definition. Assume that D is an ordered integral domain and a, b E D. Then a > b will
mean that a - b E DP. If a > b, we say that a is greater than b, and that b is less than a.

For the ring of integers (or rational numbers or real numbers), this is the customary
meaning of >. As usual,

b < a means a > b
a>b means a >bora=b, and
a< b means a< b or a= b.

The following theorem brings together many of the properties of the relation >.
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Theorem 28.2. Let D be an ordered integral domain and let a, b, c E D.

(a) If a > 0 and b > 0, then a + b > 0.

(b) Ifa>Oandb>0,then ab>0.
(c) Exactly one of the following is true: a = b, a > b, orb > a.

(d)Ifa>b,then a+c>b+c.
(e) If a > b and c > 0, then ac > bc.

(f) If a 00, then a2>0.

(g)Ifa>band b>c,then a>c.

PROOF. Each property follows from the definitions or other properties already given
in this section. To prove (e), for instance, suppose that a > b and c > 0. Then a - b E DP
and C E Do by the definition of >. Therefore (a - b)c E DP by the closure of DP under
multiplication. But (a - b)c = ac - bc, so that ac - be E DP. Therefore, applying the
definition of > once more, ac > bc.

The proofs of the other properties are left as exercises (Problem 28.7).

PROBLEMS

Throughout this set of problems D denotes an ordered integral domain.

28.1. If e is the unity of D, then x2 + e = 0 has no solution in D. Why?

28.2. Prove that if a, b, c E D, a > b, and c < 0, then ac < bc.

28.3. Prove that if a, b, c E D, ac > bc, and c > 0, then a > b.

28.4. Prove that if a, b E D, and a < O and b < O, then ab > 0.

28.5. Prove that if a, b E D and a > b, then -a < - b.

28.6. Prove that if a, b r= DP and a > b, then a2 > b2.

28.7. Complete the proof of Theorem 28.2.

28.8. Prove or disprove that if E is a subring of an ordered integral domain D, and E is also an
integral domain, then E is ordered.

28.9. Let D denote the ring of integers. Prove that the only subset of D that satisfies the conditions
on Do in the definition of integral domain is the set of natural numbers.

28.10. A commutative ring R is said to be ordered if there is a subset RP of R such that RP satisfies
the conditions on DP in the definition of ordered integral domain.
(a) Verify that if positive has its usual meaning, then the ring of even integers is ordered.

Make clear which properties of the even integers are used.
(b) Let R = M(R), the ring in Example 24.5. Let f E RP mean that f (0) > 0. Does this

make R an ordered commutative ring? Justify your answer.

28.11. Begin with Lemma 28.1, continue through the two corollaries of Theorem 28.1, and in each
case replace D by an ordered commutative ring R with unity. (See Problem 28.10 for the
definition of ordered commutative ring.) Which of the lemmas, corollaries, and theorems are
still true?

28.12. Prove or disprove that if a, b E D and a > b, then a2 > b2.
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28.13. Prove or disprove that if a, b E D and a > b, then a3 > b3.

28.14. For a E D, define I a I by

a if aEDP
lal= 0 if a=0

-a if -a E DP

Prove that if a, b E D, then
(a) ab( = la( Ibl
(b) lal>a>-jalandlbl>b>-Ib(
(c) aI + Ibl > la + bl (Suggestion: Add inequalities from part (b).]
(d) a - bl>Ilal - Ibll

SECTION 29 THE INTEGERS

Definition. An element a in a subset S of an ordered integral domain D is a least element
of S if x > a for each x E S such that x ¢ a.

Definition. An ordered integral domain D is well ordered if every nonempty subset of
DP has a least element.

The Least Integer Principle (Section 10) states that the integral domain of integers is
well ordered. (What we have called the Least Integer Principle is sometimes even called
the Well-Ordering Principle.) The integral domain of rational numbers is not well ordered,
because the set of positive rational numbers has no least element (Problem 29.1). In fact,
the integers form the "only" well-ordered integral domain. The following theorem makes
this precise.

Theorem 29.1. If D is a well-ordered integral domain, then D is isomorphic to the ring
of integers.

The proof of the theorem will be easier to grasp if the following fact is proved separately.

Lemma 29.1. If D is a well-ordered integral domain with unity e, then e is the least element
of DP.

PROOF. Because D is well ordered, DP must have a least element; assume it to be
a 0 e (this will lead to a contradiction). Since e E DP by the corollary of Lemma 28.1,
and a is the least element of DP by our assumption, we must have e > a. Now e > a and
a > 0 imply a > a2, by Theorem 28.2(e). However, a2 E DP by Lemma 28.1. Thus we
have a2 E DP, and a > a2, which contradicts the assumption that a is the least element of
DP. Thus the least element of DP must be e.

PROOF OF THEOREM 29.1. Assume that D is a well-ordered integral domain with unity
e, and define 0 : Z -> D by 0(n) = ne for each n E Z. We showed in proving Theorem 27.2
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that this 8 is an isomorphism of Z onto 9 (Z); therefore it suffices
to prove that O (Z) = D.We shall use an indirect proof for this.

Assume that 9 is not onto, and let d denotean element such that d E D but d $ O(Z).Then also -d E D and -d ¢ 9(Z); for if -d e= 9(Z), say 9(m) _ -d, then 9(m) = me =-d so that 9(-m) = (-m)e = -(me) = d, iisnplying d E 9(Z), which
is false. Becaused ( 9(Z) and -d ¢ 9(Z), and either d E Dp or -d E DP, we conclude that there is apositive element in D that is not in 9(Z)_ Therefore the set of elements that are in DP butnot in 9(Z) is nonempty, so since D is well ordered there is a least such element--call

it s.Thus s is the least element of DP that is riot in 6(Z). Because 9(1) = le = e, we havee E 9(Z) so that e # s. Therefore, since e is the least element of DP (Lemma29. 1), we musthaves >e,s-a>O,ands-eEDPpBut s>s-e [because s-(s-e) = e EDP],so that since s is the least element of D not in 9(Z), we must have s - e E 9(Z). But if9(k)=ke=s-efor kEZ,then 9(k+1)=(k+l)e=ke+e=(s-e)+e-s,
andhence s E 9(Z), which is a contradiction. Therefore 9(Z) = D.

If we do not distinguish between isomorphic rings,
we now have a characterization ofthe ring of integers: Z is the unique well-ordered integraldomain.

Throughout this book we have assumed and used properties of the integers withoutproving them. In the book Grundlagest der Analysis (translated edition, Foundations ofAnalysis), Edmund Landau begins with the Peano Postulates-a set of five postulates(axioms) for the system of natural numbers-and then works through a careful development
of properties of the natural numbers, the integers, and each of the other number systemsin this chapter. Such an axiomatic presentation, together with the uniqueness proved inTheorem 29.1, provides a more complete description of the integers than that provided byTheorem 29.1 alone.

PROBLEMS

29.1. Prove (without Theorem 29.1) that Q is not well ordered.

29.2. Prove that the integral domain Z[f] in Example 24.4 is not well ordered. (Suggestion: UseTheorem 29.1 and Problem 27.24.)

29.3. Prove that if D is an ordered integral domain with unity e, and a E D, then a > a _ e.
29.4. Prove that if D is a well-ordered integral domain, a E D, a # 0, and a A e then a2 > a, Isthe preceding statement true if D is merely ordered rather than well ordered?

29.5. For D an ordered integral domain, let D" denote the set of all nonzero elements not in Do.Prove that if D is well ordered, then every nonempty subset S of D" has a greatest element,
that is, an element b E S such that x< b for each x E S such that x ,-,E b.

29.6. Prove that if n is an integer, then n + 1 is the least integer greater than n. (Everyone "kn(3ws.,this, but prove it.)

29.7. Prove the Principle of Mathematical Induction (Appendix C) from the Least Integer Principle,that is, from the fact that Z is well ordered. [Suggestion: Let S = fk : P(k) is false} and showthat S must be empty.]

29.8. Show that if 0 : Z --> Z is a ring isomorphism, then 0 must be the identity mapping. Is therean additive group isomorphism 0 : Z -a Z other than the identity mapping?
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SECTION 30 FIELD OF QUOTIENTS. THE FIELD
OF RATIONAL NUMBERS

If a and b are integers with a 0 0, then the equation ax = b may not have a solution in
the integral domain of integers. The equation does have a solution in the field of rational
numbers, however. Moreover, the field of rational numbers is just large enough to contain all
such solutions, because every rational number has the form a-1b for a and b integers with
a # 0, so that every rational number is a solution of an equation ax = b. We prove in this
section that if D is any integral domain, then there is a "unique smallest" field "containing"
D such that each equation ax = b, with a, b e D and a $ 0, has a solution in that field.
This field is called the field of quotients of D. The field of quotients of the integral domain
of integers is the field of rational numbers. Because we have already characterized the
integers, the uniqueness of its field of quotients gives us a characterization of the rational
numbers.

Before starting through the formalities needed to construct a field of quotients, here is
the basic idea as it applies to the integers. A fraction alb gives us an ordered pair of integers
(a, b) with the second component nonzero. Instead of thinking of the fraction, think of the
ordered pair. To account for the fact that different fractions (such as 3, Z4, and =;0) can
represent the same rational number, we agree not to distinguish between ordered pairs if
they correspond to such fractions. This is done with an equivalence relation: pairs (a, b) and
(c, d) will be equivalent if the corresponding fractions are equal [thus (2, 3) and (-20, -30)
will be equivalent]. The equivalence classes for this equivalence relation form a set, and we
define two operations on this set that make it a field-the field of rational numbers. Next,
we prove that this field contains an integral domain isomorphic to the integral domain of
integers. Finally, we prove that any field containing an integral domain isomorphic to the
integers must contain a field isomorphic to the rational numbers.

Why do all this if we already know about the rational numbers? First, it will tell us what
is unique about the rational numbers in terms of the appropriate abstract ring properties.
Second, the procedure used will apply to any integral domain, not just the integers.

Throughout the following discussion D denotes an integral domain with unity e, and
D' denotes the set of all nonzero elements of D. The Cartesian product of D and D' is

D x D' = {(a,b) : a,b E D,b54 0).

For elements (a, b) and (c, d) in D x D' we write

(a,b)^-(c,d) if ad=bc.

Lemma 30.1. The relation is an equivalence relation on D x D'.

PROOF. The verification of the reflexive and symmetric properties is left to Problem
30.5. To prove that -. is transitive, assume that (a, b) ^- (c, d) and (c, d) (f, g), with
each pair in D x D'. Then ad = be and cg = df. By the first of these equations adg = bcg,
and by the second bcg = bdf. From these last equations we conclude that adg = bdf, or
(ag)d = (bf )d (remember that D is commutative). But D is an integral domain and d # 0,
so that by cancellation (Theorem 25.1) ag = bf. This proves that (a, b) - (f, g), which
establishes transitivity.

If (a, b) E D x D', we shall denote the equivalence class to which (a, b) belongs
relative to - by [a, b]. Thus

[a, b] = {(x, y) E D x D' : (a, b) (x, v)).
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The set of all such equivalence classes will be denoted by FD. If we recall how fractions
are added and multiplied [(a/b) + (c/d) = (ad + bc)/bd and (a/b)(c/d) = ac/bd], then
we are led to define two operations on FD as follows:

[a, b] + [c, d] = [ad + bc, bd] and [a, b] [c, d] = [ac, bd] (30.1)

for all [a, b], [c, d] E FD. (Notice that each second component, bd, is in D' because b E D'
and d E D' and D has no zero divisors.) The next lemma shows that these operations are
well defined.

Lemma 30.2. If [al, b1] = [a2, b2] and [c1, d,] = Ice, d2], then

[aide + blcl, bid t] = [a2dz + b2c2, b2d2]

and

[a,cl, b1di] = [a2c2, b2d2]

PROOF. The proof for multiplication is left to Problem 30.6. Here is the proof for
addition. From [a1, b1] = [a2, b2] we know that (at , b1) - (a2, b2), and so

a, b2 = b1a2.

Similarly, from [c1, d1] _ [c2, d2] we know that

c1d2 = d1c2.

We must show that

[ald1 + b1c1, bi dl] = [a2d2 + b2c2, b2d2],

that is,

(aIdl +bici)(b2d2) = (bldl)(a2d2 +b2c2).

(30.2)

(30.3)

(30.4)

Using (30.2) and (30.3), and the commutativity of D, we can deduce (30.4) as follows:

(a1di + btc1)(b2d2) = a,d1b2d2 + blclb2d2

= al b2dld2 + b1 b2c1 d2

= b1a2d1d2 + b1b2dlc2

= b1d1a2d2 +b1d1b2c2

= b1di(a2d2 + b2c2).

It is easy to verify that

if c E D' and [a, b] E Fo, then [a, b] = [ac, bc] = [ca, cd].

This will be used without explicit reference.

Lemma 30.3. FD with the operations defined in (30.1) is afield. The zero is [0, e], the
negative of [a, b] is [-a, b], the unity is [e, e], and the inverse of [a, b] 36 [0, e] is [b, a].
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PROOF. We shall verify that [0, e] is a zero and that one of the two distributive laws
is satisfied. The remainder of the proof is left to Problem 30.7.

As to zero: If [a, b] e FD, then [a, b] + [0, e] = [ae + bO, be] = [ae, be] = [a, b],
and [0, e] + (a, b] = [Ob + ea, eb] = [ea, eb] = [a, b].

If [a, b], [c, d], (f, g] E FD, then

[a, b]([c, d] + [.f, g]) = [a, b][cg + df, dg]
= [acg + adf, bdg]
= [b(acg + adf), b(bdg)]

= [(ac)(bg) + (bd)(af), (bd)(bg)]

= [ac, bd] + [af , bg]

= [a, b][c, d] + [a, b][f, g].

This establishes one of the two distributive laws.

Lemma 30.4. Let Dt denote the subset of FD consisting of all [a, e] for a E D. Then Dt
is a subring of FD and D - Dt.

PROOF. Define 0 : D -> FD by 0(a) = [a, e] for each a E D. The image of 8 is
clearly D1. We shall prove that 0 is one-to-one and preserves sums and products. It will
follow from this that Dt is a subring and that D - D1. [The proof that DI is a subring is
analogous to the proof of Theorem 18.2(d).]

If 0(at) = 0(a2), then [at, e] _ [a2, e] so that ate = eat and at = a2. Thus 0 is one-
to-one. If a, b E D, then 0(a + b) = [a + b, e] = [ae + eb, ee] = [a, e] + [b, e] = 0(a) +
0(b), and 0(ab) = [ab, e] = [ab, ee] = [a, e][b, e] = 0(a)O(b).

The field FD, constructed from the integral domain D in this way, is called the field
of quotients of D. Recall that to say that a ring S can be embedded in a ring R means that
R contains a subring isomorphic to S (Section 27). Using this terminology, what we have
shown is that any integral domain can be embedded in a field-its field of quotients. But
in general an integral domain can be embedded in more than one field. For example, the
integral domain of integers can be embedded in the field of rational numbers and also in
the field of real numbers. However, the field of quotients is the smallest such field, in that
it can be embedded in any field in which the given integral domain can be embedded. We
put all of this together in the following theorem.

Theorem 30.1. If D is an integral domain, then there exists afield FD, the field of quotients
of D, such that

(a) FD contains an integral domain isomorphic to D, and
(b) if K is any field containing an integral domain isomorphic to D, then K contains a

field isomorphic to FD.

PROOF. Lemma 30.3 proves that FD is a field. Lemma 30.4 proves property (a).
In proving property (b), we shall assume that D is actually a subring of K; this amounts

to identifying D with an integral domain to which it is isomorphic, and allows us to get
at the main idea without having it obscured by distractive notation. Because of the way in
which the field of quotients FD is constructed from the elements of D, we have a natural
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correspondence between elements ab-t e K, with a, b E D and b --, 0, and elements
[a, b] E FD. If we identify each element of FD witJ the element to which it corresponds
([a, b] H ab-1), then we can think of FD as a subrimg of K, which is what property (b)
asserts. [If you prefer, the map ¢ : FD -- K defined by q(fa, b]) = ab-' is one-to-one
and preserves both addition and multiplication, and thus is an isomorphism of FD onto a
subfield of K.] v

PROBLEMS

We can now characterize the field of rational numbers among all sets with two op-
erations: The field of rational numbers is the (unique) field of quotients of the (unique)
well-ordered integral domain. Again, this assumes that we do not distinguish between
isomorphic rings or fields.

If K is any field of characteristic 0, then K must contain a subring isomorphic to Z, by
Theorem 27.2. But then K must also contain a subfield isomorphic to Q, by Theorem 30.1.
This gives the following corollary.

Corollary. If K is any field of characteristic 0, then K contains a subfield isomorphic
to Q.

30.1. Verify that Lemma 30.1 is not true if D is replaced by Z4. This will show that Lemma 30.1
is not true if D is assumed to be just a commutative ring with unity.

30.2. Prove or disprove: If D is a field in the definition preceding Lemma 30.1, then (a, b) - (c, d)
iff (a, b) = (c, d).

30.3. Verify that the field of quotients of the integral domain Zf/] (Example 24.4) is isomorphic
to Q[J]=(a+b-/2-:a,bEQ).

30.4. Let R denote the set of all fractions of the form a/2k, where a is an integer and k is a non-
negative integer.
(a) Prove that R is an integral domain.
(b) Verify that the field of quotients of R is isomorphic to the field of rational numbers.

30.5. Complete the proof of Lemma 30.1.

30.6. Complete the proof of Lemma 30.2.

30.7. Complete the proof of Lemma 30.3.

30.8. The ring Z6 cannot be embedded in a field. Why?

30.9. The field of quotients of any field D is isomorphic to D. Why?

30.10. Assume that D, D1, and FD are as in Lemma 30.4. Show that each element of FD is a solution
of some equation ax = b with a, b E D1.

30.11. State and prove the analogue of the corollary of Theorem 30.1 with characteristic p in place
of characteristic 0.

30.12. In place of the operation + defined on FD in (30.1), consider ® "defined" by [a, b] 113 [c, d)
[a + c, b + d]. (That is, try to define the sum of two fractions so that the numerator is the
sum of the numerators and the denominator is the sum of the denominators, an idea often
used by students new to fractions.) Verify that ® is not well defined.
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SECTION 31 ORDERED FIELDS. THE FIELD OF REAL NUMBERS

By moving from the integral domain of integers to the field of rational numbers, we have
obtained solutions to all equations ax = b (a and b integers, a 54 0). But other deficiencies
remain. As we shall prove in Theorem 31.1, for instance, there is no rational number x such
that x2 = 2. In other words, is irrational, that is, not rational. This was first discovered
by the Pythagoreans, in the fifth century B.C., in its geometric form: there is no rational
number that will measure the hypotenuse of a right triangle with each leg of unit length (see
Figure 31.1). In terms of a number line, this means that if two points are chosen on a straight
line and labeled 0 and 1, and if other points are then made to correspond to the rational
numbers in the obvious way, there will be no number corresponding to the point "v units"
from 0 in the positive direction. In fact, there will be many points not corresponding to
rational numbers. The basic assumption of coordinate geometry is that this problem can be
overcome by using real numbers in place of (just) rational numbers. This important use of
real numbers emphasizes the fact that the deficiency of the rational numbers that the real
numbers corrects has more to do with order than with the solution of equations (such as
x2 = 2). This should become clearer with the discussion of real numbers in this section
and complex numbers in the next.

1

Figure 31.1

1

We now prove the irrationality of '. The usual notation alb (a, b E Z) will be used
in place of the ordered pair notation (a, b) of Section 30, and also to denote the equivalence
class [a, b].

Theorem 31.1. There is no rational number x such that x2 = 2.

PROOF. The proof is by contradiction, so we begin by assuming the theorem to be
false. Thus assume that there are integers a and b, with b # 0, such that (a/b)2 = 2. We
also assume alb reduced to lowest terms, so that a and b have no common factor except
±1. From (a/b)2 = 2 we have a2 = 2b2. The right side of this equation, 2b2, is even;
therefore, the left side, a2, must also be even. But if a2 is even, then a must be even, and
hence a = 2k for some integer k. Substituting a = 2k in a2 = 2b2, we obtain (2k)2 = 2b2,
or 2k2 = b2. Since 2k2 is even, b2 is even, so that b must be even. Thus we have deduced
that a and b are both even, and they therefore have 2 as a common factor. This contradicts
the assumption that alb was reduced to lowest terms, and completes the proof.

The next theorem shows that the rational numbers form an ordered field, that is, an
ordered integral domain that is also a field. Again, the notation alb is used in place of the
ordered pair notation (a, b) of Section 30. (The proof of this theorem should be considered
optional.)
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Theorem 31.2. Let Q denote the field of rational numbers, ¢nd let QP denote the set of
all elements of Q with representations alb such that ab > 0. Then Q is an ordered field
with QP as its set of positive elements.

PROOF. We must first verify that the condition (ab > 0) for an element of Q to
be in Q9 is independent of the particular fraction chosen to represent it, To this end,
assume that alb = c/d. Then ad = bc. Making use of this, and b2 > 0 and d2 > 0, together
with properties of the relation >, we can deduce that if ab > 0, then abd2 > 0, adbd >
0, bcbd > 0, cdb2 > 0, and finally cd > 0. S irnilarly, if cd > 0, then ab > 0. Thus ab > 0
if cd > 0, as required.

It remains to verify the three properties in the definition of ordered integral domain
(Section 28).

If alb and c/d represent elements of QA, then ab > 0 and cd > 0, and thus abd2 > 0
and cdb2 > 0. This implies that (ad + bc)bd = abd2 + cdb2 > 0, so that (a/b) + (c/d) _
(ad + bc)/bd E Qp.

As to closure of QP under multiplication, if alb e QP and c/d E QP, then ab > 0 and
cd > 0, so that (ac)(bd) = (ab)(cd) > 0 and (a/b)(c/d) = (a c)/(bd) E QP.

Finally, if alb represents a nonzero element of Q, then a ¢ 0 and b 54 0; therefore
ab 0 0. Therefore ab > 0 or 0 > ab,.and, correspondingly, alb e QP or -(alb)
(-a)/b e QP. This establishes the law of trichotomy.

An element u of an ordered field F is said to be an upper bound for a subset S of F if
to ? x for each x E S. For example, any positive rational number is an upper bound for the
set of all negative rational numbers. The set of integers has no upper bound in the field of
rational numbers (or in any other field). An element u of an ordered field F is said to be a
least upper bound for a subset S of F provided

1. u is an upper bound for S, and

2. if u E F is an upper bound for S, then v ? u.

Thus 0 is a least upper bound for the set of negative rational numbers.
If S denotes the set of all rational numbers r such that r2 < 2, then S has an upper

bound in the field of rational numbers (1.5, for instance); but it does not have a least upper
bound in the field of rational numbers. However, S does have a least upper bound in the
field of real numbers-namely J. This leads to the following definition, which isolates
the property distinguishing the field of real numbers from the field of rational numbers.

Definition. An ordered field F is said to be complete if every nonempty subset of F having
an upper bound in F has a least upper bound in F.

Theorem 313. There exists a complete ordered field. Any two such fields are isomorphic,
and any such field contains a subfield isomorphic to the field of rational numbers.

The field of real numbers is a complete ordered field. Theorem 31.3 shows that such a
field exists and is essentially unique. The fact that it must contain a subfield isomorphic to
Q follows quickly from results in Sections 28 and 30 (Problem 31.15). We shall not prove
the other parts of the theorem. (For details of the construction of the real numbers, see, for
example, the book by Landau referred to in Section 29.)
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In applications the real numbers are usually thought of as the numbers having decimal
representations. Examples are

I=0.5 3=0.3

-12.138 i = 1.571428

= 1.414213... r = 3.141592...,

where the lines over 3 and 571428 mean that they repeat without end. It can be shown
that the decimal numbers representing rational numbers are precisely those that either
terminate or become periodic (Problems 31.10 and 31.12). The number 0.1010010001... .
where the number of 0's between l's increases each time, is irrational. Each number whose
decimal representation terminates (such as 0.5 or -12.138) also has a representation with
9 repeating on the end. For example, 1.0 = 0.9 (Problem 31.7). The numbers n and e (the
base for natural logarithms) are both irrational, but the proofs are more difficult than that
for /2-.

PROBLEMS

In Problems 31.1 and 31.2, assume that F is an ordered field, a, b E F, and I is the unity of F.

31.1. Prove b > a > 0 implies a-r > b_i > 0.

31.2. Prove 0> b > a implies 0> a-' > b-'.

31.3. Prove that if a is rational and b is irrational, then a + b is irrational.

31.4. Prove that if a is rational, a 0 0, and b is irrational, then ab is irrational.

31.5. Prove that if u is a least upper bound for a subset S of R, then 2u is a least upper bound for
{2x : x E S}.

31.6. Prove that if u is a least upper bound for a subset S of R, then 3 + u is a least upper bound
for {3 + x:xeS}.

31.7. Explain why 0.9 = 1.

31.8. Express 1.935 as a fraction.

31.9. Prove that a decimal number that terminates represents a rational number.

31.10. Prove that a decimal number that becomes periodic represents a rational number. (See Prob-
lems 31.7 and 31.8.)

31.11. Determine the decimal representations of each of the following numbers.
(a) ii

(b) r9sa

(c) 8 (d) 9

31.12. Explain why the decimal representation of a rational number must terminate or become
periodic. (Suggestion: In computing the decimal representation of a /b by long division, there
are only b possible remainders. Look at what happens in a special case.)

31.13. Prove that if p is a prime, then is irrational. (Problem 13.19 gives a more general state-v/p

ment.)
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31.14. (a) Write definitions of lower bound arw4d greatest lower- boundfor a subset S of an orderedfield F.
(b) loProve that if F is a complete

wer bound in F has a greatestower
bofield, thxi

und in
the

F
every nonempty subset of F having a

(c) Is the converse of the statement in part (b) true?

31.15. Prove the last part of Theorem 31.3, that is, prove tl-aat each complete ordered field containsa subfield isomorphic to Q. (Use Sections 28 and 30.)

31.16. Prove that if a and b are two distinct positive real numbers, then (a + b)/2 > A/ b ("Thearithmetic mean is greater than the geometric mean"). [Suggestion:
First explain whyJ) > 0.1

31.17. Prove that a subset of an ordered field has at most one least upper bound in the field.
31.18. Prove that if a and b are positive real nurnbers, then there exists

an integer n such that no > b(This is called the Archimedean Property of R. Suppose that the
statement is false, so that b isan upper bound for [na : n E Z), and then deduce a contradiction by using the completenessof R.)

31.19. Prove that if a, b E Q, and a > b, then there are infinitely many x E Q such that a > x > b.[Suggestion: If c and d are rational, then so is (c + d)/2.)

31.20. Prove that the statement in Problem 31.19 is true if 'Q is replaced by any other ordered field.
31-21. Prove that if a, b e R, and a > is, then there exists a rational

number m/n such that a >m/n > b. Compare Problem 31.22. [Suggestion: By Problem 31.18
there is a positive integern such that n(a - b) > 1, or (a - b) 11n. Let m be the least integer
such that m > nb. Then(m-1)/n< b, and som/n=(m- 1)/n+I/nib+(a-b)=a]

31.22. Assume a, b E 1R and a > b.
(a) Prove that

a-b
a > b + > b.

(b) Use part (a) to prove that between any two rational numbers there is an irrational number.Compare Problem 31.21.

31.23. True or false: If a is irrational, then a is irrational.

31.24. Prove that every real number is a least upper bound of some set of rational numbers. (Foru E R, let S = {r E Q : r < u}. Use Problem 31.21 to explain why
u must be a least upperbound for S.)

31.25. Give examples to show that if a and bare irrational, then ab may beeither rational or irrational,depending on a and b.

31.26. Prove that the order on Q given by Theorem 31.2 is the only one that will make Q an orderedfield.

SECTION 32 THE FIELD OF COMPLEX NUMBERS

There is no real number x such that x2 = -1, because the square of any nonzero element inan ordered integral domain must be positive (Lemma 28.1). The field of complex numbers,
which contains the field of real numbers as a subfield, overcomes this deficiency. It doesmuch more than that, in fact, as can be seen from the following theorem.
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Theorem 32.1 (Fundamental Theorem of Algebra). Every polynomial equation

a1x + a0 = 0, (32.1)

which is of degree at least 1 and whose coefficients a, a,,-I, ..., a1, a0 are complex num-
bers, has at least one solution in the field of complex numbers.

Notice the implications of this theorem. To have solutions for all equations ax = b
(coefficients integers), we extended the integers to the rational numbers. To have a solution
for x2 = 2, we went outside the rational numbers to the real numbers. To have a solution for
x2 = -1, we are extending the real numbers to the complex numbers. The Fundamental
Theorem of Algebra asserts that in looking for solutions to polynomial equations there
will be no need to extend further, because any such equation with complex numbers as
coefficients will have a solution in the field of complex numbers. We shall not prove
the Fundamental Theorem of Algebra, but we say more about polynomial equations in
Chapters X and XI.

We now give a description of the complex numbers. The rational numbers were con-
structed using equivalence classes of ordered pairs of integers. The complex numbers will
be constructed using ordered pairs of real numbers. Problem 32.18 suggests how they could
be constructed using matrices, if one preferred. (Suggestion: After studying the statement
of Theorem 32.2, pass over the proof and read through Example 32.2; then return to the
proof. This should make the operations in the theorem seem more natural.)

Theorem 32.2. Let C denote the set of all ordered pairs (a, b) with a, b E R. Define
addition and multiplication of these pairs by

(a, b) + (c, d) _ (a + c, b + d) and (a, b)(c, d) _ (ac - bd, ad + bc)

for all a, b, c, d E R. With these operations, C is afield. The subset of C consisting of all
(a, 0) with a E lft forms a subfield of C, isomorphic to R.

PROOF. Most of the details will be left as an exercise, including the verification that
(0, 0) serves as an identity element for addition and (-a, -b) serves as a negative of (a, b).

To prove that multiplication is associative, assume that (a, b), (c, d), (e, f) E C. Using
the definition of multiplication, and properties of the real numbers, we can write

(a, b)[(c, d)(e, f)) = (a, b)(ce - df, cf + de)

= (a(ce - df) - b(cf + de),a(cf + de) + b(ce - df))

_ (ace - adf - bcf - bde, acf + ade + bce - bdf)

_ ((ac - bd)e - (ad + bc) f, (ac - bd) f + (ad + bc)e)

_ (ac - bd, ad + bc)(e, f)

_ [(a, b)(c, d)](e, f),

as required.
To prove that multiplication is commutative, write

(a, b)(c, d) = (ac - bd, ad + bc)

_ (ca - db,cd + da)
= (c, d)(a, b).
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The unity is (1, 0):

(a,b)(1,0)=(a 1-b-
(a, b).

Because of the commutativity of multiplication we need not check separately that

(1, 0)(a, b) = (a, b). A similar remark applies to verification of inverse elements and

the distributive laws. of C. Then a # 0 or b # 0, so that
Assume that (a, b) is different from (0, 0), ttsa zero

a2 > 0 or b2 > 0, and a2 + b2 > 0. Thus (a/(a2 -+ b2), -b/(a2 + b2)) is an element of C,

and it is the inverse of (a, b) relative to multiplication:

a -b \ a2 -+b2 -ab+bal i(10)
(a'b)(a2-} b2 a2+ba/` a2 h2' a2+62 )

The remainder of the proof that C is a field is left to Problem 32.9.

To prove that {(a, 0) : a e R) is a subfield isomorphic to 1R, consider the mapping

9 : iR --> C defined by 0(a) _ (a, 0) for each a E R. The mapping 0 preserves both oper-

ations: -

0(a + b) =(a + b, 0) =(a,0)+(b,0)=0(a)+0(b)

and

0(ab) = (ab, 0) _ (a, 0) (b, 0) = 0(a)9(b)

for all a, b E R. Also, 0 is one-to-one because if 0(a) = 9(b), then (a, 0) _ (b, 0) so that

a = b. Thus 0 is an isomorphism of 1R onto [(a, 0) : a E R}; the proof that the latter is a

field is left to Problem 32.10. N

In light of the last part of this theorem it is natural to identify a E R with (a, 0) E C. In
number.

this way R actually becomes a subset of C, SO that every real number is a complex bub
e .

The element (0, 1) of C is customarily denoted by , and then each element (e) Y

This leads to the notation a + bi for the element (a, b) of C. For a, b, c, d E R,

a+bi=c+di if a=c and b=d.

The rules for addition and multiplication become

(a + bi) + (c + di) = (a+c)+(b+d)i

and

(a + bi)(c + di) = (ac - bd) + (ad + bc)i.

In particular, i 2 = (0 + 1 i)(0 + I i) = _ 1 + Oi = -1, and hence i is a solution in C to the

equation x2 = -1.
To compute with elements of C, simply apply the various associative, commutative,

and distributive laws, and replace i2 by -I wherever it occurs. In this way any expression

involving complex numbers can be reduced to the form a + bi with a, b E R. When such

a number has b 0 0 it is said to be imaginary.
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Example 32.1

(a) (l+i)2=1+2i+i2=1+2i-1=2i
(b) i4 = (12)2 = (-1)2 = 1
(e) (-i)2 = (-1)2(i)2 = i2 = I
(d) i(1-i)+2(3+i)=i-i2+6+2i=i-(-1)+6+2i=

i+1+6+2i=7+3i
The number a - bi is called the conjugate of a + bi. To simplify a fraction with an

imaginary number a + bi in the denominator, multiply both the numerator and denominator
by this conjugate, making use of (a + bi)(a - bi) = a2 - (bi)2 = a2 + b2.

Example 32.2
1 _ 1 1-i _ 1-i _ 1 1.

(a) l+i i+i 1-i 2 2-2
2+i 2+i 2+i 4+4i - 1 3 4

(b) 2-i 2-i 2+i 4+1 5+51

More will be said about calculations with complex numbers in the next section. Fol-
lowing now is a concise discussion of the ideas needed to characterize the field C.

If E and F are fields, then E is said to be an extension of F if E contains a subfield
isomorphic to F; for convenience, F is often thought of as actually being a subfield of
E. Thus R is an extension of Q, and C is an extension of both R and Q. Any field is an
extension of itself.

Assume that E is an extension of F. An element a E E is said to be algebraic over F
if a is a solution of some polynomial equation (32.1) with coefficients in F. For example,

is algebraic over Q because it is a solution of x2 - 2 = 0. Neither Tr nor e is algebraic
over Q, but these facts are not easy to prove. A field E is an algebraic extension of F if
every a E E is algebraic over F. The remarks about r and e show that R is not an algebraic
extension of Q. However, C is an algebraic extension of R (Problem 32.12).

A field F is algebraically closed if every polynomial equation (32.1) with coefficients
in F has a solution in F. By the Fundamental Theorem of Algebra, C is algebraically closed.
But neither Q nor R is algebraically closed. (Why?) A field E is an algebraic closure of a
field F if

1. E is an algebraic extension of F, and

2. E is algebraically closed.

It can be proved that every field has an algebraic closure. Moreover, this algebraic closure
is essentially unique: If E 1 and E2 are algebraic closures of F, then E i must be isomorphic
to E2.

Because C is an algebraic extension of R, and C is also algebraically closed, we see
that C is an algebraic closure of R. If we put all of this together with what we know
about R, and agree not to distinguish between isomorphic fields, we arrive at the following
characterization: The field of complex numbers is the (unique) algebraic closure of the
(unique) complete ordered field.

In the introductory remarks of Section 31 it was stated that the necessity for extending
Q to R had more to do with order than with algebra. We can now put this in better focus.
The question of order was covered in Section 31. Regarding algebra, the algebraic closure
of Q cannot be R because R is not algebraically closed. Also, the algebraic closure of
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Q cannot be C because C is not an algebraic extension of Q. The algebraic closure ofis, in fact, a subfield of C known as the field of algebraic numbers. This field consistsprecisely of those elements of C that are algebraic oven (Q. If we were to begin with Q, andconcern ourselves only with finding solutions for polynomial equations, we could workwholly within the field of algebraic numbers. We would not need all of C, and, althoughwe would need some elements outside K_ we would not need all of R. Questions aboutalgebraic numbers have been important throughout the history of modern algebra; more issaid about this in Chapter IX.
Further questions about polynomial equations and field extensions are dealt with inChapters X, XI, and XII.

PROBLEMS

Express each of the following in the form a + bi, with a, b E R.

32.1. (a) (2-i)(l+i) (b) i3 I

(c) I +2i

32.2. (a) (-i)3 (b) (1 +i)3 (c) 1+i
2-3i

32.3. Explain why Q is not algebraically closed.

32.4. Explain why R is not algebraically closed.

32.5. Prove that Z2 is not an algebraically closed field.

32.6. Prove that if p is a prime, then the field Zp is not algebraically closed.

32.7. Determine a pair of complex numbers z = a + bi and w = c + di giving a solution of thesystem

3z - 2w = -i
iz+2iw=-5.

(The usual methods of solving systems of equations over R also work over C. Why?)
32.8. Repeat Problem 32.7 for the system

z+iw=
-2iz+w=-1.

32.9. Complete the proof that C is a field, in the proof of Theorem 32.2.

32.10. Prove that ((a, 0) : a E R) is a subfield of C (Theorem 32.2).

32.11. (a) Verify that in C, thought of as [(a, b) : a, b E R],

(0, 1)(0, 1) _ (-1, 0).

(b) What is (0, 1)4 in C?

32.12. Prove that C is an algebraic extension of R. [Suggestion: Consider the equation[x-(a+bi)][x-(a-bi)]=0.]
32.13. Explain why C cannot be an ordered field.

32.14. Prove or disprove that the mapping 9 : C --> C defined by 9(a + bi) = a - bi is a ring iso-morphism. (Compare Problem 29.8.)

32.15. Find two complex numbers that are solutions of x2 = -4.
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32.16. Let z' denote the conjugate of the complex number z, that is, (a + bi )" = a - bi. Prove that
each of the following is true for each z E C.
(a) (z')' = z (b) z + z` E lR

(c) z = z'iffz e R (d) (z-')* = (z')-'

32.17. Prove that if 8 is an isomorphism of C onto C and 8(a) = a for each a E R, then either 8 is
the identity mapping or 8 maps each element of C to its conjugate, that is, 8(a + bi) = a - bi
for each a + bi e C. [Suggestion: First prove that either 9(i) = i or 9(1) = -i.]

32.18. Verify that

a b
B(a + bi) _

-b a

defines an isomorphism of C onto a subring of M(2, 1R), the ring of 2 x 2 matrices over R.

32.19. Let z' denote the conjugate of z, as in Problem 32.16. Let Q denote the set of all matrices in
M(2, C) that have the form

(32.2)

For example,

F 1+2i 2+i
-2+i 1 -2i

is in Q. Prove that Q is a division ring, that is, a ring with a unity in which each nonzero
element has an inverse relative to multiplication. [Suggestion: Assume that z = a + bi and
w=c+diin(32.2),andletk=a2+b2+c2+ d2. Then

l [z' -wl
w Z J

is an inverse in Q for the matrix in (32.2).] Also prove that Q is not commutative, so that it
is not a field. The division ring Q is called the ring of Hamilton's quaternions, after the Irish
mathematician W. R. Hamilton (1805-1865).

SECTION 33 COMPLEX ROOTS OF UNITY

The other sections of this chapter have been concerned primarily with general properties
and abstractions. This section has to do with computation. We look at some useful ways
to represent complex numbers and show how they can be used to determine the complex
roots of unity-the solutions of equations of the form x" = 1. These roots of unity are
useful for examples; they also arise often enough in other areas of mathematics to make
their inclusion here worthwhile.

Just as the points on a line can be used to represent real numbers geometrically, the
points in a plane can be used to represent complex numbers geometrically. A rectangu-
lar coordinate system is chosen for the plane, and then each complex number a + bi is
represented by the point with coordinates (a, b). Because

a+bi=c+di if a=c and b=d
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(for a, b, c, d E R), the correspondence

a+bi H(a,b)

155

is one-to-one between complex numbers arid points of the plane. Figure 33.1 shows some
examples.

y

2i-
4+2i

- 1 1

-3

-3 - 2i

Figure 33.1

Addition of complex numbers corresponds to vector addition of points in the plane:

(a + bi) + (c + di) = (a + c) + (b + d)i H (a + c, b + d) = (a, b) + (c, d).

To describe multiplication of complex numbers geometrically, we turn to polar coordinates.
Recall that the polar representation of a point with rectangular coordinates (a, b) is (r, 0),
where r denotes the distance between the origin and the given point, and 0 denotes the
angle from the positive x-axis to the ray from the origin through the given point, with the
positive direction taken counterclockwise (Figure 33.2).

a+bi

Figure 33.2

x

Thus r = a2+ b2, a = r cos 0, b = r sin 0, and

a + bi = r(cos 0 + i sin 0).

The latter is called the polar (or trigonometric) form of a + bi. The nonnegative number
r appearing here is called the absolute value (or modulus) of a + bi and is denoted

by
ja + bi j. The angle 0 is called the argument of a + bi. The absolute value of a + bi is
unique, but the argument is not: if 0 is an argument of a + bi, then so is 0 + 2n it for any
integer n. If 0 is restricted so that 0 <_ 0 < 27r, then each nonzero complex number does
have a unique argument.
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Example 33.1. The absolute value of -2 + 2i is 1-2 + 2i I = (-2)2 + 22 = 2,/2. The
smallest positive argument is B = 135° = 37r/4. Thus the polar form of -2 + 2i is
2.[cos(37r/4) + i sin(37r/4)].

The following theorem shows that polar form is especially well suited for computing
products.

Theorem 33.1. If z = r(cos B + i sin B) and w = s(cos rp + i sin 0), then

zw =rs[cos(0+¢) +isin(0+4,)].

Thus the absolute value of a product is the product of the absolute values, and the argument
of a product is the sum of the arguments.

PROOF. Recall the following two addition formulas from trigonometry:

cos(B + 0) = cos B cos ¢ - sin B sin 0

and

sin(B + 0) = sin B cos 0 + cos B sin 4,.

Using these, we can write

zw = r(cos0 +isin0) s (cos0+i sin 0)
= rs[(cos Ocos ¢ - sin Osin ¢)

+ i (sin Ocos 0 + cos Bsin 4')]

= rs[cos(O + 0) + i sin(B + 4')].

DeMoivre's Theorem. If n is a positive integer and z = r(cos B + i sin B), then z° _
r"(cos nO + i sin nO).

PROOF. Use induction on n. For n = I the result is obvious. Assuming the theorem
true for n = k, and using Theorem 33.1 with w = zk, we have

zk+1 = zzk = r(cos B + i sin B) rk(cos kB + i sin k9)

= rk+t[cos(k + 1) B + i sin (k + 1) B]

as required.

Example 33.2. To compute (-2 + 205, begin with

-2 + 2i = 2/[cos(37r/4) + i sin(37r/4)]

from Example 33.1. Now apply DeMoivre's Theorem. We have

(2 J )5 = 128[ and 5(37r/4) = 157r/4 = 27r + 77r/4.

Therefore,

(-2 + 2i)5 = 128, [cos(77r/4) + i sin(77r/4)]

= 128f2- (,f2-/2 - i J/ 2)
= 128 - 1281.
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For each integer n > 1, there can be at most n distinct complex numbers that are
solutions of x" = 1. (This will be formally stated as Theorem 43.2.) There are, in fact,
exactly n solutions, called the complex nth roots of unity. They can be determined by using
DeMoivre's Theorem, as follows.

Theorem 33.2. For each integer n > 1, the n complex nth roots of unity are

2kx 2kxcos-+isin- , k=0, 1,...,n- 1.
n n

(33.1)

PROOF. By DeMoivre's Theorem, the argument of the nth power of each number in
(33.1) is n(2kx/n) = 2kx, and the absolute value is 1' = 1. Thus each of the numbers is
an nth root of unity. The n numbers in (33.1) are distinct because the numbers 2kx/n are
distinct and 0 < 2kx/n < 2x for k = 0, 1, ... , n - 1. Thus the numbers in (33.1) represent
all the nth roots of unity.

The nth roots of unity are represented geometrically by n equally spaced points on the
circle with center at the origin and radius 1, with one of the points being 1. Figure 33.3
shows the case n = 6.

Theorem 33.2 can be extended to give a formula for the nth roots of any complex
number (see Problems 33.27 and 33.28).

- +i

1

1 F3

Figure 33.3

PROBLEMS

Write each of the following complex numbers in the form a + bi.

33.1. The number with absolute value 2 and argument x/6.

33.2. The number with absolute value 1 and argument 5x/3.

33.3. The number with absolute value 5 and argument 9x/4.

33.4. The number with absolute value 3 and argument it.

Use DeMoivre's Theorem to write each of the following numbers in the form a + bi.

335. (1+i)1° 33.6. (.+i)5
33.7. (1 - i)6 33.8. (-i)1°

33.9. 2
z

° 12(1 - i) 33.10. (-
-_

2i)

33.11. Determine all complex eighth roots of unity, and represent them geometrically.

33.12. Determine all complex fifth roots of unity, and represent them geometrically.
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Express each of the following complex numbers in polar form.

33.13. 1 + i 33.14. f - i
33.15. -5 33.16. -2i

33.17. 2 - 2i 33.18. 2i + 2./3-

33-19. Prove that if z = r(cos 6 + i sin 6) and z # 0, then

z-' = r - ' [cos(-O) + i sin(-6)].

33.20. State and prove DeMoivre's Theorem for negative integers. (For n = -1 see Problem 33.19.)

33.21. Prove that if n is a positive integer, then the set of all nth roots of unity forms a cyclic group
of order n with respect to multiplication. [Any generator of this group is called a primitive
root of unity. One such root is cos(2sr/n) + i sin(2 r/n).]

33.22. Prove that for each integer n > 1 the sum of the nth roots of unity is 0. (Suggestion: They
form a geometric progression, which can be summed by a formula in Appendix C.)

33.23. Let n be a positive integer. What is the product of all the nth roots of unity?

33.24. Prove that the set of all roots of unity forms a group with respect to multiplication.

33.25. Prove that with respect to multiplication, the set of all complex numbers of absolute value 1
forms a group that is isomorphic to the group of all rotations of the plane about a fixed point
p (Example 5.7).

33.26. Let z' denote the conjugate of the complex number z, that is, (a + bi)' = a - bi. Prove that
the following are true for each z E C.
(a) Iz'1 = Iz1 (b) zz' = Iz12
(c) z-' = z'/1X12 if z # 0.

33.27. Prove that for each integer n > 1, the n complex nth roots of

z=r(cos0+isinB)

are

t, 8 + 2kn 6 + 2kn
r

(cos
+i sin I, k=0,1,...,n-1,

n n

where r't" is the positive real nth root of r.

33.28. Prove that for each integer n > 1, the n complex nth roots of

z=r(cos0+isinB)

are

where

and

U, Uw, Vw2, .. , Uw"-1,

u=r'1"(cos-+isinB)
n n

2n 2rw = cos- + i sin-
n n

33.29. Use Problem 33.27 to find the complex cube roots of -2i.
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33.30. Use Problem 33.28 to find the complex cube roots of -2i.

3331. Use Problem 33.27 to find the complex fourth roots of -5.

33.32. Use Problem 33.28 to find the complex fourth roots of -5.

3333. Let C" denote the multiplicative group of nonzero complex numbers and RP the multi-
plicative group of positive real numbers. Why is 0 : C" -* R", defined by 0(z) = Izi, a
homomorphism? What is Ker 0?

33.34. Verify that a : R -* C defined by a(x) = cos(27rx) + i sin(2 rx) is a homomorphism of the
additive group of R onto the multiplicative group of all complex numbers of absolute value
1. What is Ker a? Interpret a geometrically. (See Problem 33.25.)



CHAPTER VIII

POLYNOMIALS

This chapter presents the facts about polynomials that are necessary for studying solutions
of polynomial equations (Chapters X and XI). Polynomials with real numbers as coefficients
will be familiar from elementary algebra and calculus; now we must allow for the possibility
that the coefficients are from some ring other than R. A similarity between the theorems
in this chapter and those in Sections 12 and 13 will be obvious; more is said about this
similarity in the last section of this chapter.

SECTION 34 DEFINITION AND ELEMENTARY PROPERTIES

If R is a commutative ring and ao, a1, ... , a" E R, then an expression of the form

ao+alx+a2x2+...+a"x" (34.1)

is called a polynomial in x: it is a finite sum of terms, each of which is some element of
R times a nonnegative integral power of x. We become acquainted with such expressions,
and how to add and multiply them, in elementary algebra. Here we want to consider
polynomials in the context of commutative rings.

Our first problem is that if x is not an element of R, then terms such as alx and a"x",
as well as "sums" of such terms, may not have a predetermined meaning. One way around
this is to consider not (34.1), but rather the sequence (ao, al, ... , a", 0, ...) of elements
of R arising from (34.1), and to define appropriate ring operations on the set of all these
sequences. This procedure is outlined in the appendix to this section. It has the advantage
that it avoids questions about the precise meaning of expressions such as that in (34.1), but
it is not the way polynomials are handled in practice. For most purposes the discussion that
follows will be more satisfactory.

Definition. Let R be a commutative ring. A polynomial in indeterminate x over R is an
expression of the form (34.1) where the coefficients ao, a1, ... , a" are elements of R. If
a" # 0, then the integer n is the degree of the polynomial, and a" is its leading coefficient.
A polynomial over a field is said to be monic if its leading coefficient is the unity of the
field. Two polynomials in x are equal if the coefficients of like powers of x are equal. The
set of all polynomials in x over R will be denoted R [x].
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The indeterminate x used in constructing R[x] can be any element such that an ex-
pression of the form (34.1) equals the zero element of R if ao = a1 = = an = 0. This
requirement on x is equivalent to the requirement that two polynomials in x are equal if
the coefficients of like powers of x are equal.

Polynomials are added by adding coefficients of like powers of x. They are multiplied
by assuming that the laws of a commutative ring apply to all symbols present (the elements
of R, the powers of x, the + sign, and the juxtaposition of the coefficients with powers of
x). Before stating the formal definition that follows from this assumption, let us look at an
example.

Example 34.1. In Z[x],

(2x + 5x2) + (1 - 3x2 - x3)

= (0+2x+5x2+Ox3)+(1 +Ox+(-3)x2+(-1)x3)
_ (0 + 1) + (2 + 0)x + (5 - 3)x2 + (O - 1)x3
= 1+2x+2x2-x3

and

(2x + 5x2)(1 - 3x2 - x3) = 2x(1 - 3x2 - x3) + 5x2(1 - 3x2 - x3)
= (2x - 6x3 - 2x4) + (5x2 - 15x4 - 5x5)
= 2x + 5x2 - 6X3 - 17X4 - 5x5.

Definition. Let

p(x)=a0+alx+...+amxm

and

q(x) = bo + blx + + bnxn

be polynomials over a commutative ring R. Then

p(x) + q(x) _ (ao + bo) + (a] + bl)x + ... + (a, + bn)xn

+an+IXn+I ++amxm, form > n, (34.2)

with a similar formula if m < n. And

p(x)q(x) = aobo + (aobI + a1bo)x + ... + ambnxn'+n (34.3)

the coefficient of xk being

aobk + albk-1 + a2bk-2 + + akbo.

Example 34.2. In 7L4 [x],

([2] + [2]x) + ([2] + [3]x - [l]x2) = ([2] ® [2]) + ([2] ® [3])x + (-[1])x2

_ [0] + [1]X + [-1]x2
= [1]x + [3]x2
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and

([2] + [2]x)([21 + [3]x - [1]x2) = ([21 0 [2]) + ([21 0 [3] ® [2] 0 [2])x

+([2] 0 [-1] ® [21 0 [3])x2
+([2l 0 [-1])x3

= [0] + [2]x + [0]x22 + [-2]x3
= [2]x + [2]x3.

We shall use the convention that -ax" means (-a)x". Thus, above, -[1]x2 = [-1]x2 =
[3]x2.

In working with polynomials over any ring Z,,, we shall frequently omit brackets from
the coefficients, write + instead of ®, use juxtaposition instead of 0, and rely on the context
to remind us that all calculations are to be done modulo n. With this abbreviated notation
the results of the preceding calculations would be written

(2+2x)+(2+3x -x2) =x+3x2
and

(2 + 2x)(2 + 3x - x2) = 2x + 2x3.

Theorem 34.1. If R is a commutative ring, then R[x] is a commutative ring with respect
to the operations defined by (34.2) and (34.3). If R is an integral domain, then R[x] is an
integral domain.

PROOF. The zero of R[x] is the polynomial having all coefficients equal to the zero
of R. (This polynomial is not assigned a degree.) The details of proving that R[x] is a
commutative ring are left as an exercise (Problem 34.7).

Assume that R is an integral domain with unity e. Then it is easy to verify that the
polynomial of degree zero with coefficient e is a unity for R[x]. Also, if p(x) and q(x)
are nonzero elements of R[x], with leading coefficients a," # 0 and b" # 0, then (34.3)
shows that p(x)q(x) has leading coefficient amb" # 0, and thus p(x)q(x) is also.nonzero.
Therefore R[x] has no zero divisors. This proves that R[x] is an integral domain.

Notice in particular that F [x] is an integral domain if F is a field. However, F [,r] is not
a field, no matter what F is (Problem 34.8). The ring R [x] is called the ring of polynomials
in x over R.

APPENDIX TO SECTION 34

Here is an alternative way to define the ring of polynomials in an indeterminate over a
commutative ring R.

If R is a commutative ring, then a sequence of elements of R is a mapping from the
set of nonnegative integers to R. Such sequences can be denoted by (ao, a,, ... , a", ...)
where a", the nth term of the sequence, is the ring element corresponding to the nonnegative
integer n.

Definition. Let R be a commutative ring. A polynomial over R is a sequence

(ao,a,,...,a".... ) (34.1A)
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of elements of R such that only finitely many of its terms are different from the zero element
of R. If an # 0, but all terms with subscripts greater than n are zero, then the polynomial is
said to be of degree n; the terms ao, al a , ,.. an are called the coefficients of the polynomial,
with a the leading coefficient. Denote the set of all polynomials over R by R[X].

By the definition of equality of mappings (Section 1), two polynomials over R are
equal iff they have the same degree and their corresponding terms are equal. (This uses the
fact that polynomials are sequences, that is, mappings from the set of nonnegative integers
to R.)

Definition. Let

p =(ao,a,,...,a..... )
and

q =(bo,bi,...,bn,...)
be polynomials over the commutative ring R. Then

p + q = (ao + bo, a, +bl,...,an+bn.... (34.2A)

pq = (aobo, aob1 + albo, ...), (34.3A)

where the kth term of pq is

aobk + albk_1 + ... + akbo.

Because the sequences p and q each have only finitely many nonzero terms, the same
is true for both p + q and pq. Therefore, both p + q and pq are members of R [X].

Theorem 341A. If R is a commutative ring, then R [X] is a commutative ring with respect
to the operations defined by (34.2A) and (34.3A). If R is an integral domain, then R[X] is
an integral domain.

PROOF. The zero of R [X] is the sequence (0, 0, ... , 0, ...). If R has a unity e, then
R[X] has a unity (e, 0, 0, ... , 0, ...). If R is an integral domain, and p and q are nonzero
elements of R[X] having degrees m and n, then pq has degree mn, and thus is also nonzero.
The other details of the proof are left as an exercise (Problem 34.15).

The mapping that assigns the "polynomial" in (34.1) to the "polynomial" in (34.1A),
with all terms after an assumed to be zero in (34.1 A), is an isomorphism of the ring R[x]
onto the ring R[X] (Problem 34.16).

Assume that R has unity e, and let X denote the sequence (0, e, ... , 0, . . .). Then
it follows from (34.3A) that X2 = X X = (0, 0, e, ... , 0, ...), X3 = (0, 0, 0, e, ... , 0, ...),
and, in general, Xk = (0, 0, ... , 0, e, 0, ...), the sequence (element of R[X]) having the
(k + 1)th term e and all other terms zero. If the product of an element a E R and a sequence
(bo, b l , ..., bn.... ) is defined to be (abo, abl, ... , ab,,, ...), then it follows that

ao+aiX+...+a.Xn =(ao,a,,...,a.,0.... ).

This can be interpreted as giving a more precise meaning to the left side than that given by
calling it an "expression," which was the way we referred to ao + a1x + - + anxn.
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PROBLEMS

34.1. There are four different polynomials of degree 2 in Z2[x]. List them all.

34.2. There are nine different monic polynomials of degree 2 in Z3[x]. List them all.

34.3. The following are polynomials over Z. Express each in the form (34.1).
(a) (1 + 2x) + (2 - x + 2x2) (b) (2x + x3) + (x + 2x4)

(c) (1 + 2x)(2 - x + 2x2) (d) (2x + x3)(x + 2x4)

(e) (2x + x2)3

34.4. (a) to (e). Interpret the polynomials in Problem 34.3 as being over Z3 rather than Z, and write
each in the form (34.1). (See the remark on notation following Example 34.2.)

34.5. (a) to (e). Repeat Problem 34.4 with Z4 in place of Z3.

34.6. (a) In Z"[x], how many different polynomials are there of degree < d?
(b) In Z"[x], how many different monic polynomials are there of degree d?
(c) In Z. [x], how many different polynomials are there of degree d?

34.7. Complete the proof of Theorem 34.1 (that is, prove that R[x] is a commutative ring).

34.8. Explain why a polynomial ring R [x] cannot be a field.

34.9. (a) True or false: The degree of the sum of two polynomials is at least as large as the degree
of each of the two polynomials.

(b) True or false: The degree of the product of two polynomials is the sum of the degrees of
the two polynomials.

34.10. Prove that if R is a commutative ring and R[x] is an integral domain, then R must be an
integral domain. (Compare the last sentence of Theorem 34.1.)

34.11. Prove that if R is any commutative ring, then the characteristic of R[x] is equal to the
characteristic of R.

34.12. Prove that if R and S are commutative rings, and R S, then R[x] S[.x].

34.13. The formal derivative of a polynomial

p(x) = ao + aix + ...+

over R is defined to be

Prove that

and

p'(x) = a, + 2a2x + ... + na,,x"-'.

[p(x) + q(x)]' = p '(x) + q'(x)

[p(x)q(x)]' = p(x)q'(x) + p'(x)q(x).

(An application of formal derivatives will be given in Section 47.)

34.14. Let D be an ordered integral domain (Section 28), and let D[.x]° consist of all nonzero
polynomials in D[x] that have leading coefficient in DP, the set of positive elements of D.
(a) Prove that this makes D[x] an ordered integral domain with D[x]° as the set of positive

elements.
(b) Prove that the polynomial 1 is a least positive element of Z[x].
(c) Prove that Z[x] is not well ordered.

34.15. Complete the proof of Theorem 34.1A.

34.16. Prove that for any commutative ring R, R [x] R [X]. (See the paragraph following the proof
of Theorem 34.1A.)
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SECTION 35 THE DIVISION ALGORITHM

In the next two sections we concentrate on rings of polynomials over fields, proving divis-
ibility and factorization theorems for these rings that are analogous to the divisibility and
factorization theorems that were proved in Sections 12 and 13 for the ring of integers. We
use deg f (x) to denote the degree of a polynomial f (x).

Division Algorithm. If f (.x) and g(x) are polynomials over a field F, with g(x) # 0,
then there exist unique polynomials q(x) and r(x) over F such that

f (x) = g(x)q(x) + r(x), with r(x)=O or deg r(x) < deg g(x).

The polynomials q(x) and r(x) are called, respectively, the quotient and remainder in
the division of f (x) by g(x). The following example illustrates how they can be computed.
The same idea is used in the proof that follows the example.

Example 35.1. Let f (x) = 2x4 + x2 - x + 1 and g(x)=2x-1.

x3 + 2x2 + qx

2x - 1 4 + x2 - x + 1

2x4
x3

x3 + x2 - x + 1

3 - 1x2x
2

3 2
Zx - x + 1

3 2 2Zx - 4x

x + 1

ax +
8

7

8

Therefore,q(x) = x3 + 2Ix2 + 4x - 1 andr(x) = 8. Notice that at each step we eliminated
the highest remaining power of f (x) by subtracting an appropriate multiple of g(x). For
the proof we simply show that this can be done no matter what f (x) and g(x) are.

PROOF OF THE DIVISION ALGORITHM. Let f (x) = ao + a1x + + a.xm and
g(x) = bo + b1x + + Since g(x) 54 0, we can assume that b # 0 so that deg
g(x) = n. The theorem is trivial for f (x) = 0 [use q(x) = 0 and r(x) = 0]. Therefore we
also assume that a. # 0 so that deg f (x) = m.

We first prove the existence of q(x) and r(x) using induction on m. If m <n, then
f (x) = g(x) 0 + f (x) gives the required representation; that is, we can take q(x) = 0
and r(x) = f (x). Thus assume that m > n. If m = 0, then f (x) = ao and g(x) = bo. In
this case ao = bo bo 1ao + 0; hence, we can take q(x) = bo 1 ao and r(x) = 0.

It remains to prove the statement for deg f (x) = m, on the basis of the induction
hypothesis that it is true whenever f (,r) is replaced by a polynomial of degree less than m. Let
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fi(x) = f (x) - amb; lx'"-"g(x). Then deg fi(x) < deg f (x) (Problem 35.11). Therefore,
by the induction hypothesis, there exist polynomials qi(x) and r1(x) such that

fl (x) = g(x)gi(x) + r1(x), with r1(x)=O or deg r1(x) < deg g(x).

This implies that

f (x) - amb" 1xm-"g(x) = g(x)gi(x) + ri(x)

f(x) = +q1(x)] +r1(x)

Thus we can take q(x) = amb,, 1x' -" +qi(x) and r(x) = r1(x). This proves the existence
of q(x) and r(x).

To prove that the polynomials q(x) and r(x) are unique, assume that q*(x) and r*(x)
are also polynomials over F, and that

f (x) = g(x)q*(x) + r*(x), with r(x)=O or deg r*(x) < deg g(x).

Then

g(x)q(x) + r(x) = g(x)q*(x) + r*(x)

and

g(x)[q(x) - q*(x)] = r*(x) - r(x).

The right side of this equation is zero or of degree less than deg g(x). Because the left
side is zero or of degree at least &), this forces q(x) = q*(x). Then we must also have
r*(x) = r(x).

Example 35.2. Let

f (x) = [2]x4 + [1]x2 + [-1]x + [1] E Z5[x]

and

g(x) = [2]x + [-1] E Z5[x].

(Compare Example 35.1.) If we use the abbreviated notation a for [a], + for ®, and juxta-
position for Q, then, f o r instance, since we are in Z [x], 2-1 = 3,
The division of f (x) by g(x) follows.

3-1 = 2, and 4-i = 4.

x3 + 3x2 + 2x + 3

2x - 1 2x4 + x2 - x + 1

2x4 - x3

x3 + x2 - x + 1

x3 - 3x2

Therefore q(x) = [1],r3 + [3]x2 + [2]x + [3], and r(x) = [4].
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If the indeterminate x in a polynomial

f(x) E F[x]

is replaced by an element c c F, the result is an element of F:

f (c) = ao + alc + ... + E F.

We say that f (c) results from f (x) by substitution of c for x. If f (x) = g(x) in F [x], then
f (c) = g(c) in F.

Example 35.3

(a) If f (x) = x3 -2x2 + 2 E R[x], then

f(3)=33-2.32+2= 11 E R.

(b) If f (x) = [3] + [1]x + [-3]x4 E 765[x], then

f ([2]) = [3] ® ([1] 0 [2]) ® ([-3] O [2]4)
= [3] ®[2] ®([2] O [1]) = [7] = [2] E Z5

Remainder Theorem. If f (x) E F[z] and C E F, then the remainder in the division of
f(x)byx - cis f (c).

PROOF. Because deg (x - c) = 1, the remainder in the division of f (x) by x - c
must be either 0 or of degree 0. Thus, for some q(x) E F[x],

f (x) =(x - c)q(x) + r, with r E F.

Substitution of c for x yields

f(c) = (c - c)q(c) + r = r.

Example 35.4

(a) Divide f (x) = x3 - 2x2 + 2 E R[x] by x - 3. The quotient is x2 + x + 3 and the
remainder is 11:

f (x) = (x - 3)(x 2 + x + 3) + 11.

Also, f (3) = 11, as we saw in Example 35.3(a).
(b) Divide f (x) = [3] + [l]x + [-3]x4 E Z5[x] by [1]x + [-2]. The quotient is

[2]x3 + [4]x2 + [3]x + [2] and the remainder is [2]:

f (x) = ([llx + [-2])([2]x3 + [4]x2 + [3]x + [2]) + [2].

Also, f ([2]) = [2], as we saw in Example 35.3(b).

If f (x), g(x) E F[x], with g(x) # 0, then f (x) is divisible by g(x) over F if f (x) =
g(x)q(x) for some q(x) E F[x]. Thus f(x) is divisible by g(x) if the remainder in the
division of f (x) by g(x) is zero. If f (x) is divisible by g(x) (over F), then we also say that
g(x) is a factor of f (x) (over F).

Factor Theorem. If f (x) E F [x] and c E F, then x - c is a factor of f (x) iff f (c) = 0.

PROOF. This is an immediate corollary of the Remainder Theorem.
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An element c E F is called a root (or zero) of a polynomial f (x) E F [x] if f (c) = 0.
By the Factor Theorem, c is a root of f (x) if x - c is a factor of f (x).

PROBLEMS

For each pair of polynomials f(x) and g(x) in Problems 35.1-35.6, determine q(x) and r(x), the
quotient and remainder in the division off (x) by g(x).

35.1. f(x)=,r3+x-1,g(x)=x- 1, both inQ[x].
35.2. f(x)=x°- 1,g(x)=-x2+2,both inQ[x].
35.3. P X) = x3 - 2, g(x) = x4 + x, both in Z3 [.r].

35.4. f (X) = x2 + 2, g(x) = x - 1, both in Z3[X]-

35.5. P x) = 3x° + 2x2 - 1, g(x) = 2x2 + 4x, both in Z5[.c].

35.6. f (X) = x° + ix2 + 1, g(x) = ix2 + 1, both in C[x].

35.7. Use the Remainder Theorem to determine the remainder when 2x5 - 3x3 + 2x + 1 E R[.Y]
is divided by x - 2 E R[x].

35.8. Use the Remainder Theorem to determine the remainder when 2x5 - 3x3 + 2r + 1 E R[x]
is divided by x + 3 E R[x].

35.9. What is the remainder when 2x5 - 3x3 + 2r + 1 E Z7[x] is divided by x - 2 E Z-I[x]?

35.10. What is the remainder when ix9 + 3x7 + x6 - 2ix + I E C[x] is divided by x + i c C[x]?

35.11. Verify that deg f, (x) < deg f (x) in the proof of the Division Algorithm.

35.12. Use the Factor Theorem to answer each of the following questions.
(a) Isx - 3 E Q[x] a factor of 3x3 - 9x2 - 7x + 21 E Q[x]?
(b) Isx + 2 E R[x] a factor of x3 + 8x2 + 6x - 8 E R[x]?
(c) For which k E Q is x - 1 a factor of x3 + 2x2 + x + k E Q[.r]?
(d) Isx - 2 E Z5 [x] a factor of 2x5 - 3x° - 4x3 + 3x E Z5 [x]?
(e) Forwhich kECisx+iafactor ofix9+3x7+x6-2ix +kEC[x]?

35.13. Find all odd primes p for which x - 2 is a factor of x° + x3 + x2 + x in Zr,.

35.14. Prove that for each prime p there is an infinite field of characteristic p. (Suggestion: Consider
the field of quotients of ZP[x]. Fields of quotients are discussed in Section 30.)

35.15. Construct an example to show that the Division Algorithm is not true if F is replaced by the
integral domain Z. (Compare Problem 35.16.)

35.16. Prove that if the Division Algorithm is true for polynomials over an integral domain D, then
D is a field. (Compare Problem 35.15.)

35.17. Use the Factor Theorem to construct a single polynomial f (x) E Z5 [x] such that every element
of Z5 is a root of f (x).

35.18. Prove that if p is a prime, then each element of ZP is a root of xP - x. (Suggestion: If [a] 54 [0],
then [a]p-1 = [1] because Zo is a group with respect top by the corollary of Theorem 26.1.)

35.19. (Lagrange's interpolation formula) Assume that a0, a1, ... , a are distinct elements of a field
F, and that b0,bl,...,b, E F. Let

bk(x - a0)...(x - ak-1)(x - ak+I)...(x - an)f(.r)(35.1)
k=0(ak - ak-I)(ak - ak+l)... (ak - an)
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Verify that f (aj) = b for 0 < j < n. (This shows that there exists a polynomial of degree
at most n that takes on given values at n + 1 distinct given points of F. Problem 43.18 will
show that such a polynomial is unique.)

35.20. (a) Use Problem 35.19 to write a polynomial f(x) E R[x] such that f(1) = 2, f(2) = 3,
and f(3) = -1.

(b) Use Problem 35.19 to write a polynomial f (x) E Z5[.c] such that f([1]) _ [Z], f([2]) _
[3], and f([3]) = [-1].

SECTION 36 FACTORIZATION OF POLYNOMIALS

The next theorem is a direct parallel of Theorem 12.1.

Theorem 36.1. If a(x) and b(x) are polynomials over afield F, not both the zero polyno-
mial, then there is a unique monic polynomial d(x) over F such that

(a) d(x) I a(x) and d(x) I b(x), and
(b) if c(x) is a polynomial such that c(x) I a(x) and c(x) I b(x), then c(x) I d (x).

The polynomial d(x) in the theorem is called the greatest common divisor of a(x) and
b(x). Just as in the case of the integers, the existence of the greatest common divisor is
shown using the Euclidean Algorithm-this time for polynomials.

PROOF. First assume b(x) # 0. By the Division Algorithm there are unique polyno-
mials qi(x) and ri(x) such that

a(x)= b(x)gi(x)+r,(x), with rl(x) = 0 or degr1(x)<degb(x).

If rl(x) = 0, then b(x) la(x); thus d(x) = b(x) satisfies parts (a) and (b). If ri(x) 54 0, then
we apply the Division Algorithm repeatedly, just as in the proof of Theorem 12.1:

a(x) = b(x)g1(x) + rI(x), deg rI(x) < deg b(x)

b(x) = r,(x)g2(x) + r2(x), deg r2 (x) < deg rI(x)

rI(x) = r2(x)g3(x) + r3 W, deg r3(x) < deg r2(x)

rk-2(x) = rk-l(x)gk(x) + rk(x), deg rk(x) < deg rk-I(x)

rk-I(x) = rk(x)gk+l(x)

Here we must eventually get the zero polynomial as a remainder because deg rI (x) >
deg r2(x) > deg r3(x) > . Let rk(x) denote the last nonzero remainder. The proof that
rk (x) satisfies both of the requirements (a) and (b) for d(x) is similar to the proof of Theorem
12.1 (Problem 36.13). If the leading coefficient of rk(x) is r, then r-l rk(x) is a monic
polynomial satisfying (a) and (b).

If b(x) = 0, and am is the leading coefficient of a(x), then am l a(x) is a monic
polynomial satisfying both requirements (a) and (b) for d(x). Thus we have proved the
existence of a greatest common divisor.
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The proof of uniqueness relies on the requirement that the greatest common divisor
be monic. It is similar to the uniqueness proof in Theorem 12.1 and is left as an exercise
(Problem 36.14).

Example 36.1. Here the Euclidean Algorithm is applied to compute the greatest common
divisor of a(x) = x4 - x3 - x2 + 1 and b(x) = x3 - 1, considered as polynomials over
the field of rationals.

x4 -z3 -x2+ 1 = (x3 - 1)(x - 1)+(-x2+x)
X3-I =(-x2+ X)(-X-1)+(X-1)

-x2 + X = (X - 1)(-X)

Therefore, the greatest common divisor is x - 1.

The next theorem follows from the proof of Theorem 36.1 in the same way that Theorem
12.2 follows from the proof of Theorem 12.1 (Problem 36.15).

Theorem 36.2. If a(x) and b(x) are polynomials over a field F, not both the zero poly-
nomial, and d(x) is their greatest common divisor, then there exist polynomials u (x) and
v(x) over F such that

d(x) = a(x)u(x) + b(x)v(x).

Example 36.2. Consider Example 36.1. From the first equation there,

-x2 + x = (x4 - x3 - x2 + 1) - (x3 - 1)(x - 1).

Using this with the second equation, we get

x - 1 = (x3 - 1) - (-x2 + x)(-x - 1)
= (x3 - 1) - [(x4 - x3 - x2 + 1) - (x3 - 1)(x - 1)](-x - 1)
= (x4 - x3 - x2 + 1)(x + 1) + (x3 - 1)[1 + (x - 1)(-x - 1)]
= (x4 - x3 - x2 + 1)(x + 1) + (x3 - 1)(-x2 + 2).

Thus d(x) = x - 1 = a(x)u(x) + b(x)v(x) for u(x) = x + 1 and v(x) _ -x2 +2.

Two polynomials f (x) and g(x) over a field F are said to be associates if f (x) =
c - g(x) for some nonzero element c of F. For example, 2x2 - 1 and 6x2 - 3 = 3(2x2 - 1)
are associates over Q. Notice that each nonzero polynomial has precisely one monic poly-
nomial among its associates. Notice also that each polynomial of degree at least one has two
obvious sets of divisors: its associates and the polynomials of degree zero. If a polynomial
of degree at least one has no other divisors, then it is said to be irreducible (or prime). Thus,
if f (x) = g(x)h(x), and f (x) is irreducible, then one of g(x) and h(x) is of degree zero
and the other is an associate of f (x). If a polynomial is not irreducible, then it is said to be
reducible.

The property of being irreducible depends on the field F. For example, x2 - 2 is
irreducible over the field of rational numbers, but not over the field of real numbers:
x2 - 2 = (x + /)(x - 12-). The irreducible polynomials over a field F play the same
role for F [x] that the prime numbers do for the ring of integers. Here is the first indication
of that. (Compare Lemma 13.2.)

Corollary. IfF is afield, a(x), b(x), p(x) E F[x], p(x) is irreducible, and p(x) I a(x)b(x),
then p(x) I a(x) or p(x) I b(x).
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PROOF. If p(x)-ra(x), then the greatest common divisor of p(x) and a(x) is e,
the polynomial of degree zero with the coefficient the unity of F. Thus, if p(x)-ra(x),
then by Theorem 36.2 there are polynomials u(x) and v(x) such that e = u(x)p(x) +
v(x)a(x). Multiplication of both sides of this equation by b(x) leads to b(x) =
u(x)p(x)b(xY) + v(x)a(x)b(x). Because p(x) I p(x) and p(x) I a(x)b(x), we conclude that
p(x) I [u(x)p(x)b(x) + v(x)a(x)b(x)], and therefore p(,r) I b(x). Thus, if p(x),r a(x), then
p(x) I b(x), which proves the corollary.

Corollary. If p(x), a, (x), a2(x), ..., an(x) are polynomials over F, with p(x) irreducible
and p(x) I aI(x) a2 (x) ... a, (x), then p(x) I ai(x) for some i (1 < i < n).

PROOF. Use the preceding corollary and induction on n (Problem 36.17).

Unique Factorization Theorem. Each polynomial of degree at least one over a field F
can be written as an element of F times a product of monic irreducible polynomials over
F, and, except for the order in which these irreducible polynomials are written, this can be
done in only one way.

PROOF. Let S denote the set of those polynomials over F that are of degree at least
one and that cannot be written as stated. We shall prove that S is empty. If not, then by
the Least Integer Principle (applied to the set of degrees of polynomials in S) there is a
polynomial of least positive degree in S; let a(x) denote such a polynomial and assume
deg a(x) = n. Then a(x) is not irreducible, so it can be factored as a(x) = ai (x)a2(x),
where 1 < deg al(x) < n and 1 < deg a2(x) < n. By the choice of a(x), al(x), and a2(x),
we know ai(x) ¢ S and a2(x) 5t S. Therefore aI (x) and a2(x) can each be written as an
element of F times a product of monic irreducible polynomials, so the same is true of
a(x) = a,(x)a2(x). This contradicts the fact that a(x) E S, and we therefore conclude that
S must be empty, as stated.

The proof of the last part of the theorem is similar to the last part of the proof of
the Fundamental Theorem of Arithmetic (Section 13) and is left as an exercise (Problem
36.18).

Example 36.3. The polynomial 3x4 - 3x2 - 6 can be factored as

3(x2 - 2)(x2 + 1) in Q[x].

3(x + 12-)(x - y 2)(x2 + 1) in R[x],

and

C[x].

Each factor is irreducible in its context.

PROBLEMS

Use the Euclidean Algorithm to compute the greatest common divisors of the following pairs of
polynomials over Q. Also express each greatest common divisor as a linear combination of the two
given polynomials (as in Theorem 36.2).

36.1. x3-3x2+3x-2andx2-5x+6
36.2. x4+3x2+2andx5-z
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36.3. x3+x2-2x-2andx4-2x3+3x2-6x

36.4. x5 + 4x and x3 - X.

36.5. Determine the monic associate of 2x3 - x + 1 E Q[.x].

36.6. Determine the monic associate of 1 + x - ix2 E C[x].

36.7. Determine the monic associate of 2x5 - 3x2 + 1 E Z7[z].

36.8. Determine the monic associate of 2x5 - 3x2 + 1 E Z5 [x].

36.9. Verify that x3 - 3 E ZAx] is irreducible.

36.10. Verify that xa + x2 + 1 E Z5 I,(] is reducible.

36.11. Write x3 + 3x2 + 3x + 4 E Z5 [.x] as a product of irreducible polynomials.

36.12. Write x5 + x4 + x2 + 2x E Z3 [x] as a product of irreducible polynomials.

36.13. Prove that the polynomial rk(x) in the proof of Theorem 36.1 satisfies both requirements (a)
and (b) of the theorem.

36.14. Prove the uniqueness of d(x) in Theorem 36.1.

36.15. Prove Theorem 36.2. (The remark preceding it suggests the method.)

36.16. Explain why each nonzero polynomial has precisely one monic polynomial among its asso-
ciates.

36.17. Write the proof of the second corollary of Theorem 36.2.

36.18. Complete the proof of the Unique Factorization Theorem.

36.19. (a) Prove that (x - 1) 1 f (.x) in Z2[x] iff f (x) has an even number of nonzero coefficients.
(b) Prove that if deg f (.x) > 1 and f (x) is irreducible over Z2, then f (x) has constant term

1 and an odd number of nonzero coefficients.
(c) Determine all irreducible polynomials of degree 4 or less over Z2.
(d) Write each polynomial of degree 3 over Z2 as a product of irreducible factors.

36.20. (a) By counting the number of distinct possibilities for (x - a)(x - b), verify that there are
p(p + 1)/2 monic reducible polynomials of degree 2 over Z,, (p a prime).

(b) How many monic irreducible polynomials of degree 2 over Z, are there?

36.21. State and prove a theorem establishing the existence of a unique least common multiple for
every pair of polynomials, not both the zero polynomial, over a field F. (Compare Theorem
12.3 and Theorem 36.1.)

36.22. (Eisenstein's irreducibility criterion) Assume that p is a prime, f (x) = ao + aix + +
a"x" E Z[x], p I a; (0 < i < n - 1), p2 -r ao and p 4 a,,. Then f (x) is irreducible in Z[x].
Give an indirect proof of this by justifying each of the following statements.
(a) Assume that f (x) _ (bo + b1x + . + b"x")(co + cix + + c,x"). Then p does not

divide both bo and co.
(b) But p divides one of bo and co. Assume that p'rbo and p I co.
(c) Since pr c (why?), not all ci are divisible by p. Let k be the smallest integer such that

pXCk and pIc1 for0 < j <k.
(d) Because ak = bkco + bk_ Id + . + bock, we can conclude that p I bock, which is a con-

tradiction. (For applications, see Problems 36.23 and 36.24.)

36.23. Use Eisenstein's irreducibility criterion (Problem 36.22) to show that each of the following
polynomials is irreducible in Z[x].

(a) x3 + 6x2 + 3,x + 3 (b) x5 - 5x3 + 15
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36.24. Use Eisenstein's irreducibility criterion (Problem 36.22) to prove that if p is a prime, then the
polynomial

f (x) =
XP -

= XP-1 + X p-2 + ... + x + 1X-1
is irreducible in Z[x]. (Suggestion: Replace x by y + 1, and let g(y) denote the result. Show
that g(y) is irreducible in Z[y], and explain why this implies that f (x) is irreducible in Z[x].
The polynomial f (x) is called a cyclotomic polynomial; if p is odd, its roots are the imaginary
pth roots of unity.)

SECTION 37 UNIQUE FACTORIZATION DOMAINS

The similarity between the factorization theorems for integers and polynomials has been
emphasized throughout this chapter. We are concerned now and again in Section 41 with
the question of whether these theorems can be generalized to other rings. This question was
first studied in the early to mid-1800s, and it is important to know that it was studied out
of necessity: progress in solving several notable problems in number theory depended on
understanding factorization in rings of numbers other than the integers. Examples 37.1 and
37.2 illustrate the kinds of rings that were involved, and Section 41 gives a more detailed
account of the relevant history. Two points can be made now, however: first, the ideas
we meet here and in Section 41 came not merely from abstraction for abstraction's sake,
but from attempts to solve specific problems; second, these ideas, and the problems that
brought them into focus, gave rise to algebraic number theory, one of the most interesting
and challenging branches of modem mathematics.

The proofs in this section are similar to proofs already given for Z and F [x], and will
be left as exercises. Except for Section 41, the remainder of the book will be independent
of this section.

Suppose that D is an integral domain. If a, b E D, with b 54 0, then a is divisible by b
if a = be for some c E D. If a is divisible by b, we also say that b divides a, or that b is a
factor of a, and we write b I a.

An element of D is called a unit if it divides the unity, e, of D. The units of Z are I and
-1. If F is a field, then the units of F [x] are the polynomials of degree zero (that is, the
nonzero constant polynomials).

Elements a and b of D are called associates if a I b and b I a. It can be proved that a and
b are associates if a = bu for some unit u of D (Problem 37.14). Elements a, b E Z are
associates if a = ±b. If F is afield, then polynomials f (X), g(x) E F [x] are associates if
g(x) = c f (x) for some nonzero c E F.

An element in an integral domain D is irreducible if it is not a unit of D and its only
divisors in D are its associates and the units of D. The irreducible elements of Z are the
primes and their negatives. The irreducible elements of F [x] are the irreducible polynomials
of F[x].

Definition. An integral domain D is a unique factorization domain provided that

(a) if a E D, a # 0, and a is not a unit, then a can be written as a product of irreducible
elements of D, and

(b) if aEDand
a = pp 2 ... Ps = gt q2 ... qr,
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where each pi and each qj is irreducible, then s = t and there is a permutation jr of
{ 1 , 2, ... , s} such that p; and are associates for 1 < i < s.

The ring of integers is a unique factorization domain (Section 13); so is the ring F[x]
of polynomials over any field F (Section 36). Following is an example of an integral domain
that is not a unique factorization domain. We shall see in Section 41 that there is a historical
connection between examples of this type and attempts to prove Fermat's Last Theorem
(which will be stated in Section 41).

Example 37.1. Let Z[,T---51 =[a + b : a, b E Z}. It can be verified that 9G[ ]

is a subring of C (Problem 37.6). Therefore, since Z[ ] contains 1, it is an integral
domain. In proving that 7G[] is not a unique factorization domain, we shall use the
mapping N from Z[ ] to the set of nonnegative integers defined by

N(a + b) = Ia + 612
= a2 + 5b2.

This mapping N is called a norm. If z, w E Z[/], then

(a) N(z) > 0,
(b) N(z) = 0 iff z = 0, and
(c) N(zw) = N(z)N(w) (Problem 37.7).

To determine the units of Z[,/--5] we first observe that if zw = 1, then N(z)N(w) _
N(zw) = N(1) = 1. Therefore, if z = a + b.,f--5 is a unit, then N(z) = a2 + 5b2 = 1, so
that a = ±1 and b = 0. Thus the units of Z[J] are +1. It follows that an element of
Z[ ] has two associates, itself and its negative.

Now observe that

9=3.3=(2+J)(2-),
and that 9, 3, 2 ± E Z[ .,f--51. If we show that 3 and 2 ± are irreducible in
Z[,/--5], then we will have shown that Z[,/--5] is not a unique factorization domain,
because by the preceding paragraph, 3 is not an associate of either 2 + or 2 -.
We shall prove that 3 is irreducible, and leave the proof for 2 ± as an exercise (Problem
37.8).

Assume that 3 = zw, with z, w E Z[ ]. Then N(z)N(w) = N(zw) = N(3) = 9;
hence N(z) is either 1, 3, or 9. If N(z) = 1, then z is a unit, and if N(z) = 9, then N(w) = 1

and w is a unit. Therefore, if 3 is to have a factor that is neither an associate of 3 nor a unit,
then that factor must have norm 3. But a2 + 5b2 i4 3 for all integers a and b, so Z[ ,f--51
has no element of norm 3. Thus 3 is irreducible in Z[].

If you examine the proofs of unique factorization in Z and F[x], you will see that they
both rely on the Division Algorithm. We shall now see that essentially the same method can
work in other cases. Specifically, Theorem 37.1 shows that an integral domain is a unique
factorization domain if it satisfies the following definition.

Definition. An integral domain D is a Euclidean domain if for each nonzero element
a E D there exists a nonnegative integer d(a) such that

(a) if a and b are nonzero elements of D, then d(a) < d(ab), and
(b) if a, b E D, with b # 0, then there exist elements q, r E D such that a = bq + r,

with r = 0 or d(r) < d(b).
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The ring of integers is a Euclidean domain with d(a) = dal. If F is a field, then F[x]
is a Euclidean domain with d(f (x)) = deg f (x). The following example, introduced by
Gauss, has historical interest that will be discussed in Section 41.

Example 37.2. Let Z[i ] =[a + bi : a, b E Z}. The elements of Z[i] are called Gaussian
integers. It is easy to verify that Z[i] is an integral domain, and we shall prove that it is a
Euclidean domain with respect to d (a + bi) = la + bi I2 = a2 + b2.

If z and w are nonzero elements of Z[i], then

d(z) = Iz12 < 1zl21w12 = Izw12 = d(zw).

Thus d satisfies condition (a) of the definition.
To verify condition (b), assume that z, w E Z[i] with w # 0. Then zw-1 E C, and in

fact zw-1 = a + bi with a, b E Q . Let m and n be integers such that la - ml < 1/2 and
lb - nl < 1/2. Then

zw-1 =a+bi = m +ni + [(a - m) +(b - n)i]

and

z = (m+ni)w+[(a-m)+(b-n)i]w
=qw+r,

where q = m + ni and r = [(a - m) + (b - n)i]w. Here r E Z[i ] because qw E Z[i] and
z E Z[i]. It is now sufficient to show that d(r) < d(w):

d(r) = d[(a - m) + (b - n)i]d(w)
= [(a - m)2 + (b - n)2]d(w)

< [('-a)+(4)]d(w)
< d(w).

It can be shown that the units in Z[i ] are ±1 and ±i (Problem 37.9). Notice that 2 can
be factored in Z[i] as 2 = i(1 - i)2, where i is a unit and 1 - i is irreducible.

Because we have proved that Z[i] is a Euclidean domain, we can conclude that it is a
unique factorization domain because of the following theorem.

Theorem 37.1. Every Euclidean domain is a unique factorization domain.

The proof of Theorem 37.1 is similar to the proofs of unique factorization in the
special cases Z and F[x]. It can be carried out by first working through proofs of each of
the following lemmas. The details will be left as exercises, but just by reading the statements
of these results you can get an understanding of how ideas of factorization extend beyond
the most familiar examples.

Lemma 37.1 If D is an integral domain and a, b E D, then a and b are associates iff
a = bu for some unit u of D.

Definition. If a and bare elements of an integral domain D, not both zero, then an element
d E D is a greatest common divisor of a and b provided that

(a) dla and dlb, and

(b) if c E D, c I a, and c b, then c I d.
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A pair of elements need not have a unique greatest common divisor by this definition.
For example, both ±2 are greatest common divisors of 4 and 6 in Z. And x + 1, 2x + 2,
and (1/2)x + (1/2) are all greatest common divisors of x2 - 1 and x2 + 2x + 1 in Q[x].
The uniqueness of greatest common divisors in Z (Theorem 12.1) depended in part on
the requirement of being positive. Similarly, the uniqueness of greatest common divisors
in F[x] (Theorem 36.1) depended in part on the requirement of being monic. For more
general discussions of factorization we must sacrifice these strong forms of uniqueness
and use the preceding definition. However, Lemma 37.3 will show that even in the general
case we do not lose all uniqueness. Before stating that, however, we state the following
important fact.

Lemma 37.2 Any two nonzero elements a and b of a Euclidean domain D have a greatest
common divisor din D, and d = ar + bs for some r, s e D.

Lemma 37.3 If dt and d2 are both greatest common divisors of elements a and b in an
integral domain D, then dt and d2 are associates in D.

Lemma 37.4 Assume that a and b are nonzero elements of a Euclidean domain D. Then
d(a) = d(ab) iff b is a unit in D.

Lemma 37.5 Assume that a, b, and c are nonzero elements of a Euclidean domain D with
unity e. If a and b have greatest common divisor e, and a I bc, then a I c.

Lemma 37.6 If a, b, and p are nonzero elements of a Euclidean domain D, and p is
irreducible and p I ab, then p I a or p I b.

Section 41 will show how the ideas in this section are connected with other ideas
about rings that are, on the surface, unrelated to factorization. For references for the history
related to this chapter, see the notes at the end of Chapter IX.

PROBLEMS

Assume that D is an integral domain throughout these problems.

37.1. Find all of the associates of 2x5 - x + 1 E Z5[x].

37.2. Find all of the associates of 2 - i E Z[i]. (Suggestion: Use Problem 37.9.)

37.3. Find q, r E Z[i] such that 1 + 5i = (2i )q + r with Id < 2. (See Example 37.2.)

37.4. Find q, r E Z[i] such that 1 - 5i = (1 + 2i)q + r with In I < 5. (See Example 37.2.)

37.5. Sketch a proof, along the lines of Example 37.1, that Zkf ] is not a unique factorization
domain. [Suggestion: 4 = 2 2 = (1 + /)(1 - ,f--3).]

37.6. Prove that Z[/] is a subring of C (Example 37.1).

37.7. Verify the properties (a), (b), and (c) of the norm in Example 37.1.

37.8. Prove that 2 ± are irreducible in Z[-,/r--5] (Example 37.1).

37.9. Show that the units in Z[i] are ±1 and ±i.

37.10. Prove that every field is a Euclidean domain.
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37.11. (a) What are the units of Z[x]?
(b) Prove or disprove that Z[x] is a Euclidean domain with d(f(x)) = deg f (x).

37.12. Prove that an element a of a Euclidean domain is a unit iff d(a) = d(e).

37.13. Prove that if a E D and a # 0, then a is a greatest common divisor of a and 0.

37.14. Prove Lemma 37.1. 37.15. Prove Lemma 37.2.

37.16. Prove Lemma 37.3. 37.17. Prove Lemma 37.4.

37.18. Prove Lemma 37.5. 37.19. Prove Lemma 37.6.

37.20. Prove Theorem 37.1.

37.21. Prove that if a, u E D, and u is a unit, then u I a.

37.22. Prove that the units of D form a group with respect to the multiplication in D.



MAPTER IX

QUOTIENT RINGS

The first two sections of this chapter show that the definitions and basic theorems for ring
homomorphisms and quotient rings directly parallel those for group homomorphisms and
quotient groups. The third section develops some facts about polynomial rings that will be
used later in studying questions about fields and polynomial equations. In the last section of
the chapter we see that ideals, which are the kernels of ring homomorphisms, arise naturally
in the study of factorization in rings.

SECTION 38 HOMOMORPHISMS OF RINGS. IDEALS

Definition. If R and S are rings, then a mapping 8 : R - S is a (ring) homomorphism if

8(a + b) = 8(a) + 8(b)

and

0(ab) = 8(a)8(b)

for all a, b E R.

Thus a ring isomorphism (Section 27) is a ring homomorphism that is one-to-one
and onto. In the conditions 8(a + b) = 9(a) + 8(b) and 8(ab) = 0(a)O(b), the operations
on the left in each case are those of R, and the operations on the right are those of S.
Because of the first of these conditions, a ring homomorphism B : R -> S is necessarily a
group homomorphism from the additive group of R to the additive group of S. It follows
that any statement about group homomorphisms translates into some statement about ring
homomorphisms. For example, if 0 : R -> S is a ring homomorphism, then 8(OR) = Os
and 8(-a) = -8(a) for all a E R.

Example 38.1. The mapping O : Z -* Z. defined by 0(a) = [a] was seen to bea homo-
morphism of additive groups in Example 21.1. But also 8(ab) = [ab] = [a] O [b] for all
a, b, E Z, so 8 is a ring homomorphism.

Example 38.2. Let R and S be rings, and let R x S be the direct sum of R and S (Example
24.6). The mappings 7r, : R x S - R and 7r2 : R x S S defined by 7r1((r, s)) = r and
7r2((r, s)) = s are ring homomorphisms (Problem 38.8).
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Definition. If 9 : R --> S is a ring homomorphism, then Ker 9, the kernel of 9, is the set
of all elements r E R such that 9(r) = O.

Thus the kernel of a ring homomorphism 9 is just the kernel of 9 thought of as a
homomorphism of the additive groups of the rings. Having observed this, we know at once
that Ker 9 is a subgroup of the additive group of R. Kernels of ring homomorphisms are, in
fact, subrings. But just as kernels of group homomorphisms are special among all subgroups,
being normal, kernels of ring homomorphisms are special among all subrings-they are
ideals, in the following sense.

Definition. A subring 1 of a ring R is an ideal of R if ar E I and ra E I for all a E I and
allrER.

The important point here is that in the products ar and ra, r can be any element in
R; r is not restricted to I. If R is commutative, then the conditions ar E I and ra E I are
equivalent. Notice that Z is a subring of Q, but Z is not an ideal of Q. Other examples of
subrings that are not ideals are given in the problems.

Theorem 38.1. Let 8 : R S be a ring homomorphism.

(a) The image of 9 is a subring of S.
(b) The kernel of 8 is an ideal of R.
(c) 9 is one-to-one if Ker 9 = {OR}.

PROOF. (a) Because 9 is an additive group homomorphism, it follows from Section
21 (after Example 21.4) that 9(R), the image of 9, is a subgroup of the additive group
of S. Thus it suffices to prove that 9(R) is closed with respect to multiplication. To this
end, assume that s1, s, E 9(R). Then 9(r1) = s1 and 9(r2) = s2 for some rl, r2 E R, and
9(r1r2) = 9(r1)9(r2) = 5152. Therefore SIS2 E 9(R), as required.

(b) We have already observed that Ker 9 is a subgroup of the additive group of R.
On the other hand, if a E Ker 9 and r E R, then B(ar) = 9(a)9(r) = 0 9(r) = 0 and
B(ra) = 9(r)9(a) = 9(r) 0 = 0. This proves that Ker 9 is an ideal of R.

(c) This is a direct consequence of the last part of Theorem 21.1; simply change to
additive notation.

Example 38.3. The kernel of the homomorphism 9 : Z - 7G in Example 38.1 is the
set (ideal) consisting of all multiples of the integer n. The kernel of n'1 : R x S -+ R in
Example 38.2 is ((0, s) : s E S); this ideal of R x S is isomorphic to S (Problem 38.8).

The ideals in the first part of the preceding example, the kernels of the homomorphisms
9 : Z - Z, belong to an important general class defined as follows. Let R be a commutative
ring with unity e, and let a E R; then (a) will denote the set of all multiples of a by elements
of R:

(a)={ra:rER}.

We shall verify that (a) is an ideal of R. First, (a) is a subgroup of the additive group
of R:

(i) If r, s E R, so that ra, sa E (a), then ra + sa = (r + s)a E (a).
(ii) 0 = Oa E (a).

(iii) The negative of an element ra in (a) is (-r)a, and it is also in (a).
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Second, if ra E (a) and s E R, then s(ra) = (sr)a E (a). Thus (a) is an ideal of R, as
claimed.

Ideals of the form (a) are called principal ideals. The ideal (a) is the smallest ideal of
R containing a. Every ideal of Z is a principal ideal (Problem 38.17). We shall prove in
Theorem 40.3 that if F is a field, then every ideal of the polynomial ring F [x] is a principal
ideal. Problem 38.18 gives an example of an ideal that is not principal.

Some rings, such as Z, have many ideals. At the other extreme are rings having no
ideals except the two obvious ones, (0) and the ring itself. The next example shows that
any field has this property.

Example 38.4. If F is a field, then F has no ideals other than (0) and F.

PROOF. Assume that I is an ideal of F and that I # (0); we shall prove that I = F.
Let a E 1, a # 0. Then a has an inverse in F because F is a field. If e is the unity of F, then
e = a a"I E I because I is an ideal. But now if r is any element of F, then r = e . r E I,
again because I is an ideal. This proves that I = F.

Problem 38.15 gives a partial converse to the statement proved in Example 38.4.

PROBLEMS

Which of the mappings in Problems 38.1-38.6 are ring homomorphisms? Determine the kernel of
each mapping that is a homomorphism.

38.1. 9: Z-+Zby9(a)=3a 38.2. 9:Z-*Zby9(a)=a2
38.3. 9 : Z6 Z3 by 9([a]) = [a] 38.4. 9 : C -i R by 9(z) = Izl

38.5. 0:C-* CbyO(z)=iz

38.6. 9 : M(2, Z) M(2, Z) by 0 [a b]) = [a c ]

38.7. Verify that if R and S are rings, and 9 : R -* S is defined by 9(r) = 0, for each r E R, then
9 is a homomorphism.

38.8. (a) Prove that the mapping n, : R x S - R defined in Example 38.2 is a (ring) homomor-
phism.

(b) Prove that Ker n, S. (See Example 38.3.)

38.9. Prove that a homomorphic image of a commutative ring is commutative.

38.10. Prove or disprove that if a ring R has a unity, then every homomorphic image of R has a unity.

38.11. (a) Determine the smallest subgroup containing z in the additive group of Q.
(b) Determine the smallest subgroup containing 1 in the multiplicative group of Q.
(c) Determine the smallest subring of Q containing Z.
(d) Determine the smallest ideal of Q containing 12-
(e) Determine the smallest subfield of Q containing Z.

38.12. Every subring of Z is an ideal of Z. Why?

38.13. Prove that the constant polynomials in Z[x] form a subring that is not an ideal.
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38.14. Prove that if R is a commutative ring with unity, and a E R, then (a) is the smallest ideal of
R containing a. (Compare Theorem 15.2.)

38.15. Prove that if R is a commutative ring with unity, and R has no ideals other than (0) and R,
then R is a field. (Suggestion: Use Problem 38.14 to show that each nonzero element has a
multiplicative inverse.)

38.16. Determine all of the ideals of Z12-

38.17. Prove that if I is an ideal of Z, then either I = (0) or I = (n), where n is the least positive
integer in I. (See Problem 15.29.)

38.18. (An ideal that is not a principal ideal)
(a) Let I denote the set of all polynomials in Z[x] that have an even number as the constant

term. Prove that I is an ideal of Z[x].
(b) Prove that I is not a principal ideal of Z[.c]. (For the concept of principal ideal for

non-commutative rings, see a book on general ring theory.)

38.19. Prove or disprove that if 9 : R S is a ring homomorphism, then the image of 9 is an ideal
of S. (Suggestion: See Problem 38.13.)

38.20. Prove that if F is a field, R is a ring, and 0 : F R is a ring homomorphism, then either 9
is one-to-one or 9(a) = 0 for all a E F.

38.21. Prove that if R is a ring, a : Q --i R and R are ring homomorphisms, and
a(a) = $(a) for each a E Z, then a = $ [that is, a(a) $(a) for each a E Q].

38.22. The center of a ring R is the subring defined by {c E R : cr = rc for every r E R}. (See
Problems 25.22, 25.23, and 25.24.) Prove that the center of M(2, Z) consists of all matrices
of the form

aEZ.

Verify that this is not an ideal of M(2, Z). (Therefore the center of a ring need not be an
ideal.)

38.23. A subring 1 of a ring R is a left ideal of R if ra E I for all r E R and all a E I. A right ideal
is defined similarly.
(a) Verify that the set of all matrices of the form

Ca

b 0,
(a, b c Z)

is a left but not a right ideal of M(2, Z).
(b) Find a right ideal of M(2, Z) that is not a left ideal.
(c) Verify that if R is a ring and a E R, then (r E R : ra = 0) is a left ideal of R. Determine

this left ideal for R = M(2, Z) and

a =

(d) Verify that if R is a ring and a E R, then (r E R : ar = 0) is a right ideal ofR. Determine
this right ideal for R and a as in part (c).

38.24. An element a in a commutative ring is said to be nilpotent if a" = 0 for some positive integer
n (which may depend on a). Prove that the set of all nilpotent elements in a commutative ring
R is an ideal of R.
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SECTION 39 QUOTIENT RINGS

In this section we discuss quotient rings, the ring analogues of quotient groups, and use
them to prove that every ideal of a ring is a kernel of some homomorphism. We also prove
the ring version of the Fundamental Homomorphism Theorem.

If I is an ideal of a ring R, then ! is a subgroup of the additive group of R, and it is even
normal. (The additive group of R is Abelian, and every subgroup of an Abelian group is
normal.) Therefore, we can talk about the quotient group R/I. Because the elements of R/1
are the cosets of I formed relative to addition, these elements will be written in the form
! + r (r c R). The next theorem shows that R// can be made into a ring in a very natural
way. The construction is merely a generalization of that used for Z. in Example 24.2: there
Z. can be thought of as Z/(n) for (n) the ideal consisting of all integral multiples on n.

Theorem 39.1. Let I be an ideal of a ring R, and let R/I denote the set of all right cosets of
1 considered as a subgroup of the additive group of R. For I + a E R11 and I + b E R/I,
let

(I+a)+(!+b)=1+(a+b)
and

(I + a)(I + b) = I + (ab).

With these operations RI! is a ring, called the quotient ring of R by 1.

PROOF. Because R/I is a group with respect to addition (by Theorem 22.1 in additive
notation) it suffices to verify the properties that involve multiplication. The first step in this
is to verify that the multiplication on R/1 is well defined. Thus assume that 1 + a, = 1 + a2
and ! + b, = I + b2; we must show that ! + alb, = ! + a2b2. From I + a, = ! + a2 we
have al = n, + a2 for some n, E !. Also, from I + b, =I + b2 we have b, = n2 + b2

for some n2 E 1. This implies that

aib, = (ni + a2)(n2 + b2) = nine + n,b2 + a2n2 + a2b2.

But n i n2 + n i b2 + a2n2 E I because n i , n2 E I and I is an ideal ofR. Therefore a, b, has
the form alb, = n3 + a2b2 with n3 E !, so that 1 + alb, = ! + a2b2, as required.

Here is a verification of one of the distributive laws. Assume that a, b, c e R. Then

(I + a)[(I + b) + (1 + c)] _ (! + a)[I + (b + c)]
=!+a(b+c)=!+(ab+ac)
_ (I + ab) + (I + ac)
_ (I + a)(1 + b) + (I + a)(! + c).

The verification of associativity of multiplication, as well as the other distributive law, will
be left as an exercise (Problem 39.2).

If R is commutative, and ! is any ideal in R, then R/1 will be commutative (Problem
39.3). If R has a unity e, then ! + e will be a unity for R/I (Problem 39.4). On the other
hand, R11 will not necessarily be an integral domain when R is an integral domain. For
instance, Z is an integral domain, but Z6 is not (Example 25.2). More will be said about
the properties of particular quotient rings in the next section.
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Theorem 39.2. If R is a ring and I is an ideal of R, then the mapping n : R - R/I defined
by

i(a) = 1+ a for each a E R

is a homomorphism of R onto R/I, and Ker n = I.

PROOF. This proof is similar to that of Theorem 22.2 (Problem 39.5).

As in the case of groups, the mapping n : R -> R/I in Theorem 39.2 is called the
natural homomorphism of R onto R/1. Notice that Theorem 39.2 shows that every ideal is
a kernel. The next theorem shows that every homomorphic image of a ring R is isomorphic
to a quotient ring of R.

Fundamental Homomorphism Theorem for Rings. Let R and S be rings, and let
8 R ---> S be a homomorphism from R onto S with Ker 8 = I. Then the mapping
0 : R/I -+ S defined by

0(I + a) = 9(a) for each I + a E R/1

is an isomorphism of R/I onto S. Therefore

S.

PROOF. If the Fundamental Homomorphism Theorem for groups, and its proof (Sec-
tion 23), are changed into additive notation, then all that remains to be shown is that
preserves multiplication. To do this, let I + a E R/I and I + b E R/1. Then

0((1 + a)(I + b)) = 0(I + ab) = B(ab) = 8(a)B(b) = 0(I + a)0(I + b),

as required.

PROBLEMS

39.1. Define 0 : Z12 - Z4 by 0Qa]12) = [a]4 for each [a] 12 E Z12
(a) Verify that 0 is well defined.
(b) Verify that 8 is a ring homomorphism.
(c) Use the Fundamental Homomorphism Theorem for Rings to explain why Z12/([4]) x Z4.
(d) Construct Cayley tables for the ring operations on Zit/([4]). (Compare Problem 22.3.)

39.2. (a) Prove that multiplication is associative in every quotient ring R//.
(b) Verify the distributive law

[(I + a) + (I + b)](I + c) = (I + a)(1 + c) + (1 + b)(I + c)

for every quotient ring. (See the end of the proof of Theorem 39.1.)

39.3. Prove that if R is commutative and I is an ideal of R, then R/I is commutative.

39.4. Prove that if I is an ideal of R, and R has a unity e, then I + e is a unity for R//.

39.5. Prove Theorem 39.2.

39.6. Prove that if I is an ideal of ring R, then R// is commutative iffab - ba E I for all a, b ER.
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39.7. An ideal P of a commutative ring R is a prime ideal if P 36 R and, for all a, b E R, ab E P
implies that a E P or b E P. Prove that if n is a positive integer, then (n) is a prime ideal of
Z if n is a prime. (For the concept of prime ideal in noncommutative rings, see a book on
general ring theory.)

39.8. Assume that R is a commutative ring with unity and P 0 R is an ideal of R. Prove that P is
a prime ideal if R/P is an integral domain. (Prime ideals are defined in Problem 39.7.)

39.9. (First Isomorphism Theorem for Rings) If I and J are ideals of a ring R, then I + J is defined
to be (a + b : a E I and b E J }. Verify that I + J is an ideal of R, J is an ideal of 1 + J, I fl J
is an ideal of 1, and

I _ I+
!nJ J

(Suggestion: See Theorem 54.1.)

39.10. (Second Isomorphism Theorem for Rings) Prove that if ! and J are ideals of a ring R, with
J E- I, then I/J is an ideal of R/J, and (R/J)/(!/J) RI!. (Suggestion: See Theorem 54.2.)

39.11. Prove that if I is a subring of a ring R, and the two operations in Theorem 39.1 are well
defined on the set R/I of all right cosets of I in R, then ! is an ideal of R. (Compare Problem
22.15.)

39.12. An ideal M of a ring R is a maximal ideal if M A R and there is no ideal ! of R such that
M I R. Prove that if R is a commutative ring with unity, and ! is an ideal of R, then !
is a maximal ideal if R/1 is a field.

SECTION 40 QUOTIENT RINGS OF F[X]

We know that a polynomial over a field F need not have a root in F. In Chapter VII it was
shown how this problem could be overcome in special cases by appropriate field extensions:
the real numbers produced a root for x2 - 2 E Q[x], and the complex numbers produced a
root for x2 + 1 E R[x]. We shall see that by using quotient rings the problem can be solved
in general. Specifically, we shall see that if f (x) is any nonconstant polynomial over any
field F, then f (x) has a root in some extension of F; and that extension can be chosen to
be (isomorphic to) a quotient ring of F[x]. The proof of this is given in the next chapter,
and makes use of the facts about quotient rings developed in this section.

Theorem 40.1. Assume that F is afield and that p(x) E F [x]. Then F[x]/(p(x)) is afield
iff p(x) is irreducible over F.

PROOF. Let I denote the principal ideal (p(x)) throughout the proof. Suppose first
that p(x) is reducible over F, say p(x) = a(x)b(x) with both a(x) and b(x) of degree less
than that of p(x). We shall prove that in this case F[x]/I is not a field. The degree of any
nonzero polynomial in I must be at least as great as deg p(x); thus a(x) ¢ I and b(x) ¢ 1.
Therefore, I + a(x) and I + b(x) are both nonzero elements of F[x]/I. But

(I + a(x))(I + b(x)) = I + a(x)b(x) = I + p(x) = I,

the zero element of F[x]/I. We conclude that F[x]/I has divisors of zero so that F[x]/I
is not a field (it is not even an integral domain). This proves that if F[x]/I is a field, then
p(x) must be irreducible.
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Suppose now that p(x) is irreducible. Problem 40.1 asks you to show that F[x]l1
is commutative and that I + e is a unity for F[x]/I (where e is the unity of F). Thus it
suffices to prove that each nonzero element of F [x]lI has a multiplicative inverse in F [x]/I.
Assume that I + f (x) is nonzero. Then f (x) V I, which means that f (x) is not a multiple
of p(x) in F[x]. Because p(x) is irreducible, this implies that p(x) and f (x) have greatest
common divisor e (Problem 40.2). Therefore, by Theorem 36.2, e = p(x)u(x) + f (x)v(x)
for some u(x), v(x) E F[x]. It follows that e - f (x)v(x) = p(x)u(x) E I, and hence I +
e = I + f (x)v(x) = (I + f (x))(I + v(x)). This shows that I + v(x) is a multiplicative
inverse of I + f (x).

The following theorem is helpful in working with quotient rings F[x]/(p(x)), whether
p(x) is irreducible or not.

Theorem 40.2. Assume that F is afield, p(x) is a polynomial of degree n over F, and I is
the ideal (p(x)) of F[x]. Then each element of F[x]/I can be expressed uniquely in the
form

I + (bo + bix + + b"_Ix"-I), with bo, bI, ... , b"_I E F. (40.1)

Moreover (I + b : b E F) is a subfield of F[x]/I isomorphic to F.

PROOF. If I+ P x) E F[x]II, then by the Division Algorithm f (x) = p(x)q(x) +
r(x)forsomeq(x), r(x) E F[x] withr(x) = 0ordeg r(x) < degp(x). Since f (x) - r(x) =
p(x)q(x) E I, we have I + f(x) = I +r(x); therefore, each element of F[x]/I can be
expressed in at least one way in the form (40.1). On the other hand, if

I +(bo+blx+...+bn-Ix"-I) = I +(co+clx+...+c"-lx"-I),

then

(bo - co) + (b1 - c1)x + ... + (b"_I -
c"-I)x"_I

E I,

so that p(x) divides

(bo - co) + (bt - cl)x + ... + (bn_I - c._I)x"-I,

This implies that

(bo - co) + (b1 - cO)x + ... + (b"_I - c"-I)x"-I = 0,

because deg p(x) = n > n - 1. Therefore

bo=co,bl =cl,...,b,l-I =c,,-I

This proves uniqueness.
It is now easy to verify that b ra I + b is a one-to-one ring homomorphism, and this

will prove the last part of the theorem (Problem 40.3).

Notice that the proof shows that if f (x) E F [x], and if f (x) = p(x)q(x) + r(x) with
r(x) = 0 or deg r(x) < deg p(x), then I + f (x) = I + r(x). This is important for com-
puting in F[x]/(p(x)), as we shall see in the following example and again in Chapter
X. It allows us to represent elements of F[x]/((p(,r)) by polynomials of degree less than
deg p(x), just as the elements in Z, can be represented by the integers 0, 1, ... , n - 1.
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Example 40.1. We now show how the preceding ideas can be used to construct the field
of complex numbers from the field of real numbers. This is a special case of what is to come
in the next chapter. Let p(x) = I + x2, which is irreducible over R. Also let I = (I + x2).

By Theorem 40.1, R[x]/I is a field. In fact, R[x]/I ~ C, as we now verify.
Each element of R[x]/1 can be written uniquely as 1 + (a + bx) with a, b E R, by

Theorem 40.2. Define 0 : R[x]/1 -). C by

0(1 + (a + bx)) = a + bi.

That 0 is one-to-one and onto, and preserves addition, is left as an exercise (Problem 40.4).
To verify that 0 preserves multiplication, we first write

0[(I + (a + bx))(I + (c + dx))] = 0[I + (ac + (ad + bc)x + bdx2)].

To continue, we must determine u, v E R such that

I + (ac + (ad + bc)x + bdx2) = I + (u + vx).

This is done by using the remark following the proof of Theorem 40.2: Divide ac + (ad +
bc)x + bdx2 by I + x2; the remainder will be u + vx. The result is

ac + (ad + bc)x + bdx2 = (1 + x2)bd + (ac - bd) + (ad + bc)x,

so that u + vx = (ac - bd) + (ad + bc)x. Therefore

0[(I + (a + bx))(! + (c + dx))] = 0[1 + (ac - bd) + (ad + bc)x)]
= (ac - bd) + (ad + bc)i
= (a + bi)(c + di)

= 0(1 + (a + bx))0(1 + (c + dx)).

This proves that 0 preserves multiplication. Thus R[x]/! C, as claimed.

With the notation a + bi (a, b E R) for the elements of C, the number i is a root of
1 + x2. To verify the corresponding statement with R[x]/I in place of C, we must check
that I + z2 = 0 for some element z of R[x]/I. Because of the isomorphism b r-* I + b from
Theorem 40.2, in this equation (1 + z2 = 0) 1 should be interpreted as I + 1, and 0 should
be interpreted as I + 0. Because 0(1 + x) = i, one root must be z = I + x E R[x]/I. To
check this directly, write

(I + 1) + (I + x)2 = (I + 1) + (! + x2)
=1+(1+x2)
=1+0.

The next theorem shows that Theorem 40.2 covers all quotient rings of F[x].

Theorem 40.3. If F is afield, then every ideal of the polynomial ring F[x] is a principal
ideal.

PROOF. Let I denote an ideal of F[x]. If I = {0}, then I is the principal ideal (0).
Assume 1 ; {0}, and let g(x) denote any polynomial of least degree among the nonzero
polynomials in I. We shall show that I = (g(x)); certainly I D (g(x)). Let f (X) E I. By
the Division Algorithm there are polynomials q(x), r(x) E F[x] such that

f (x) = g(x)q(x) + r(x), with r(x)=O or deg r(x) < deg g(x).
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Then f (x) E I and g(x)q(x) E I and so r(x) = f (x) - g(x)q(x) E I. Thus r(x) = 0, for
otherwise r(x) E I and deg r(x) < deg g(x), contradicting the choice of g(x) as a polyno-
mial of least degree in I. Therefore f (x) = g(x)q(x) E (g(x)), so that I = (g(x)).

Notice that the proof of Theorem 40.3 shows that I = (g(x)) for g(x) any polynomial
of least degree among the nonzero polynomials in I.

PROBLEMS

40.1. Prove that if F is a field with unity e, and I is an ideal of F [x], then F[x]/I is commutative
with unity I + e.

40.2. Prove that if F is a field and p(x), f (X) E F[x], with p(x) irreducible and p(x) I f (x), then
p(x) and f (x) have greatest common divisor e, where e is the unity of F. (Compare Problem
12.15.)

40.3. Verify that the mapping b -+ I + b in the proof of Theorem 40.2 is a one-to-one ring homo-
morphism.

40.4. Prove that the mapping 9 in Example 40.1 is one-to-one and onto, and preserves addition.

40.5. Prove that if F is a subfield of a field E, and c E E, then 9 : F [x] -+ E defined by B(f (,r)) _
f (c) is a homomorphism.

If O is any homomorphism of the type in Problem 40.5, then Ker 9 = (b(x)) for some b(x) E F[.r], by
Theorem 40.3. Determine such a polynomial b(x) for each of the following examples. (Suggestion:
Use the Factor Theorem.)

40.6. 9 : Q[x] --+ Q by 9(f (.r)) = f (O) 40.7. 8 : Q[x] -+ Q by 9(f (x)) = f(3)

40.8. 0:Q[x]-+Rby9(f(x))= f(,/2-) 40.9. 9:R[x]-+Cby9(f(x))= f(i)
40.10. 0 : R[x] -+ C by 0(f(x)) = f(-i)

40.11. Suppose that F is a field and f (x), g(x) E F[x]. Prove that (f (x)) = (g(x)) if f (x) and g(x)
are associates. (Associates are defined in Section 36.)

40.12. Prove that if F is a field and / is an ideal of F[x], then there is a unique monic polynomial
m(x) E F[x] such that I = (m(x)).

40.13. (a) Prove or disprove that if (f (x)) = (g(x)), then deg f (x) = deg g(x).
(b) Prove or disprove that if deg f (x) = deg g(x), then (f (x)) = (g(x)).

40.14. True or false: If f (X) E (g(x)) and deg f (x) = deg g(x), then (f (x))

40.15. The proof of Theorem 40.3 uses the Least Integer Principle. Where?

40.16. Determine all of the prime ideals of F[x], where F is a field. (See Problems 39.7 and 39.8.)

SECTION 41 FACTORIZATION AND IDEALS

The theme in Chapter VIII was factorization; the theme in this chapter has been the mutually
equivalent ideas of ring homomorphism, ideal, and quotient ring. In this section we shall
see that these apparently unrelated themes are, in fact, not unrelated. Specifically, Theorem
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41.2 will show that information about the ideals in a ring can often tell us when there is
unique factorization in the ring. Then, by looking at some penetrating discoveries from
nineteenth-century number theory, we shall see that in many rings factorization can most
appropriately be studied by considering "products of ideals" in the ring, rather than just
products of elements of the ring. This section is designed to show the relation between
some general ideas connecting number theory and rings; details and proofs will be omitted
or left to the problems. You should be familiar with Sections 37 and 38, and Theorem 40.3.
We begin with a key definition.

Definition. An integral domain in which every ideal is a principal ideal is called a prin-
cipal ideal domain.

Examples of principal ideal domains include the ring of integers (Problem 38.17) and
the ring F [x] of polynomials over any field F (Theorem 40.3). Recall that both Z and F [.Y]
are Euclidean domains; therefore, the fact that they are also principal ideal domains is a
special case of the following theorem.

Theorem 41.1. Every Euclidean domain is a principal ideal domain.

The proof of Theorem 41.1 is similar to the proof of Theorem 40.3, and will be left
as an exercise (Problem 41.1). The converse of Theorem 41.1 is false; that is, not every
principal ideal domain is a Euclidean domain. An example is given by the ring of all
complex numbers of the form a + b(1 + -19)/2 for a, b E Z. (See [5] for a discussion
of this.)

The following theorem gives a direct link between factorization and ideals.

Theorem 41.2. Every principal ideal domain is a unique factorization domain.

A proof of Theorem 41.2 can be constructed by working through Problems 41.2
through 41.8; they provide a thorough test of your grasp of the ideas in the last few chap-
ters. The converse of Theorem 41.2, like the converse of Theorem 41.1, is false. For
example, 7L[x] is a unique factorization domain, but it is not a principal ideal domain: the
set of all polynomials that have an even number as constant term forms an ideal that is not
principal (Problem 38.18).

Here is a summary of the relationships between several important classes of integral
domains.

Euclidean C principal ideal C unique factorization C integral (41.1)
domains domains domains domains

Each class is contained in, but different from, the class that follows it. Problem 41.9 asks
you to place a number of specific examples in the smallest possible class of this sequence.

The extension of factorization theorems to rings other than the integers first arose in
the nineteenth century, from two different sources. The first was in work on biquadratic
reciprocity, and the second was in work on Fermat's Last Theorem. Here, briefly, is what
was involved.

If the congruence xZ = a(mod m) has a solution, then a is said to be a quadratic residue
of m; if there is no solution, then a is said to be a quadratic nonresidue of m. (For example,
1 and 4 are quadratic residues of 5; 2 and 3 are quadratic nonresidues of 5.)
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A. M. Legendre (1752-1833) introduced the following convenient notation for working
with quadratic residues: If p is an odd prime and p,[' a, then the symbol (alp) is defined by

(a/p) 1 if a is a quadratic residue of p
1 -1 if a is a quadratic nonresidue of p.

[Thus (1/5) = (4/5) = 1 and (2/5) = (3/5) = -1.]
The most famous theorem about quadratic residues is the law of quadratic reciprocity:

If p and q are distinct odd primes, then

(p/q)(q/p) = (-1)(114)(p-1xq-1).

Another way to say this is as follows: If either p = 1(mod 4) or q - l (mod 4), then p
is a quadratic residue of q if q is a quadratic residue of p; if both p = 3(mod 4) and
q = 3(mod 4), then p is a quadratic residue of q if q is a quadratic nonresidue of p. The
law of quadratic reciprocity was stated by Euler and Legendre, but Gauss gave the first
complete proof. Gauss then searched for an equally comprehensive law for biquadratic
residues: a is a biquadratic residue of m if x4 - a(mod m) has a solution. He found such a
law: the law of biquadratic reciprocity. The detailed statement of this law is not important
here. What is important is that in order to solve this problem about biquadratic residues,
Gauss stepped outside of Z-the ring in which the problem was posed-and worked in
the larger ring Z[i], now known as the ring of Gaussian integers (Example 37.2). In the
process he proved that unique factorization holds in Z[i]. Gauss also used similar ideas to
develop a theory of cubic reciprocity (replacing x4 by x3).

Now we turn to the connection between factorization and Fermat's Last Theorem.
There are infinitely many triples (x, y, z) of integers, called Pythagorean triples, such that
xz + y2 = z2. (Only solutions with nonzero integers are of interest, of course. See Problem
41.11.) Many such triples were known to the Babylonians as early as 1600 B.C., and they
were also studied by the Greek mathematician Diophantus in his book Arithmetica (c. A.D.
250). In 1637, in a marginal note in a copy of Arithmetica, Fermat wrote that there are no
solutions in positive integers of x' + y' = z" if n > 2. This became known as Fermat's
Last Theorem, even though Fermat gave no proof. In fact, it is very unlikely that Fermat
had a proof.

By the 1840s, mathematicians who worked on Fermat's Last Theorem were concen-
trating on those cases where n is an odd prime, and several realized the usefulness of
factoring the left side of xp + yp = zp as

xp+yp = (x+Y)(x+uy)...(x+up-'Y),

where u is an imaginary pth root of unity. This revealed the problem as one of factorization:
are there nonzero integers x, y, and z such that

zp = (x + Y)(x + uY)...(x + up-'Y)?

Because u is imaginary, this took them outside of Z. Specifically, they were faced with
questions about factorization in the ring Z[u], where u is a solution of

up-' +up-2 +... +u + l = 0. (41.2)

At least one erroneous proof of Fermat's Last Theorem rested on the mistaken assumption
that unique factorization holds in Z[u]. Although unique factorization holds in Z[u] for
many values of p [with u a solution of (41.2)], it does not hold for all values. The smallest
value for which unique factorization fails is p = 23. Although the ring is not of
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the type being considered here, the failure of unique factorization in it shows what can
happen (Example 37.1).

The German mathematician Ernst Kummer (1810-1893) was able to overcome the
failure of unique factorization in part by inventing new "ideal numbers." By using these
ideal numbers, along with the elements in the original ring Z[u], Kummer was able to prove
the impossibility of xP + yP = zP for many values of p, thereby adding considerably to
what was known about Fermat's Last Theorem. It was nearly 150 years later, in 1994, that
Fermat's Last Theorem was finally proved in all cases by the English-born mathematician
Andrew Wiles. The book [7] by Simon Singh cited at the end of this chapter gives a
fascinating account of the history of Fermat's Last Theorem and of the work of Andrew
Wiles.

From the modem point of view, the proper setting for questions about factorization
in the rings considered by Gauss and Kummer is algebraic number theory. This theory
was created by Richard Dedekind (1831-1916) in the 1870s. An algebraic number is any
complex number that is a solution of an equation

aiz + ao = 0, (41.3)

where the coefficients are in Z. It can be shown that the set of all algebraic numbers forms
a field. An algebraic integer is any solution of an equation of the form (41.3) where the
coefficients are in Z and a = 1. The set of all algebraic integers forms an integral domain.
This integral domain of algebraic integers contains many other integral domains, and some
of these, such as Z[i], are unique factorization domains, while others, such as Z[-,./--5], are
not.

One of the basic problems of algebraic number theory is to determine just which rings
of algebraic integers are unique factorization domains. Theorem 41.2 gives a partial answer:
if every ideal is principal, then factorization is unique. By replacing products of numbers
by products of ideals, Dedekind was able to construct a theory of unique factorization for
all rings of algebraic numbers. If 1 and J are ideals of a ring R, then the product IJ is defined
to be the ideal generated by all products ab for a E 1, b E J. An ideal I # R is said to be
prime if ab E I implies that a E I or b E I. The fundamental theorem of ideal theory states
that every nonzero ideal in a ring of algebraic integers can be factored uniquely as a product
of prime ideals. In particular, if a denotes any algebraic integer, then the principal ideal
(a) can be factored uniquely as a product of prime ideals. With these ideas it is possible to
develop theorems for the set of ideals in a general ring of algebraic integers that are similar
to the theorems for the set of elements in every unique factorization domain.

The preceding discussion shows part of what grew from the problems studied by Gauss
and Kummer. These ideas form the basis for much of modem algebraic number theory,
which has come to be seen as the appropriate place to study many of the more difficult
questions about ordinary integers. These ideas also provided many of the problems that
have shaped modem ring theory, including the abstract theory of ideals; this part of algebra
owes a great deal to Emmy Noether (1882-1935) and her students.

PROBLEMS

41.1. Prove Theorem 41.1.

41.2. Assume that D is an integral domain and that a, b e D.
(a) Prove that a I b if (b) C (a).
(b) Prove that a and b are associates if (b) = (a).
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41.3. If a and b are elements of a principal ideal domain D, not both zero, then a and b have a
greatest common divisor in D. Prove this by justifying each of the following statements.
(a) If I is defined by I = {ax + by : x, y E D}, then I is an ideal of D.
(b) I = (d) for some d E D.
(c) An element d, chosen as in part (b), is a greatest common divisor of a and b.

41.4. Prove that if a and b are elements of a principal ideal domain D with unity e, and a and b
have greatest common divisor e, then e = ar + bs for some r, s e D. (See Problem 41.3.)

41.5. Prove that if a, b, and p are nonzero elements of a principal ideal domain D, andp is irreducible
and p I ab, then p I a or p b. (See Problem 41.4.)

41.6. Prove that if D is a principal ideal domain, a,, a2, ... , a, p E D, and p is irreducible and
p I a,a2..... a,,, then p I ai, for some i. (See Problem 41.5.)

41.7. If D is a principal ideal domain, a E D, and a is not a unit of D, then a can be written as a
product of irreducible elements of D. Give an indirect proof of this by justifying each of the
following statements.
(a) Assume that a cannot be written as a product of irreducible elements. Then a is not

irreducible, and so a = a, b, , where neither a, nor b, is a unit.
(b) Either a, or b, cannot be written as a product of irreducible elements; assume that a,

cannot be written as a product of irreducible elements.
(c) Since ai I a, Problem 41.2 implies that (a) C (a, ).
(d) Since b, is not a unit, Problem 41.2 implies that (a) 54 (a,). Therefore (a) C (a,).
(e) Repeat parts (a) through (d) with a, in place of a to deduce the existence of an element

a2 E D such that (a) C (a,) C (a2).
(1) This can be done repeatedly, yielding a sequence

(a) C (a,) C (a2) C ...

of ideals of D. Let I = {x E D : x E (a;) for some a; } and prove that I is an ideal of D.
(g) Because I is an ideal, I = (c) for some c E I. Therefore c E (at) for some k, and then

I = (c) c (a,,). This contradicts the fact that all of the inclusions (a;) C (a;+,) in part (f)
are strict inequalities.

(h) This completes this proof.

41.8. Use Problems 41.6 and 41.7 to prove Theorem 41.2.

41.9. Consider the four classes of rings in (41.1). Determine the smallest class to which each of
the following rings belongs.
(a) Z (b) Z5
(c) Q (d) Z5[C]
(e) Z[i] (f) Z[.]
(g) Z[x] (h) Q[x]

41.10. (a) Which integers k E (1, 2, ..., 101 are quadratic residues of 11?
(b) Is 11 a quadratic residue of 7?
(c) Verify the law of quadratic reciprocity for p = 7 and q = 11.

41.11. Prove that if m and n are positive integers with m > n, and x =M2 - n2, y = 2mn, z =
m2 + n2, then (x, y, z) is a Pythagorean triple.

41.12. Prove that a nonzero ideal (a) of a principal ideal domain D is a maximal ideal if a is an
irreducible element of D.
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CHAPTER X

GALOIS THEORY: OVERVIEW

In this chapter and the next we use groups, rings, fields, and homomorphisms, together
with linear algebra, to prove the basic theorems of Galois theory. These theorems show
how fundamental questions about polynomial equations can be answered in terms of au-
tomorphism groups of field extensions. Galois theory provides an excellent illustration of
the combination of a number of differeni ideas to analyze a basic mathematical question.

The details of Galois theory can be more demanding than what has come before. To
help, this chapter gives an overview of the subject, leaving many of the details and finer
points for Chapter XI. This chapter and the next depend heavily on Section 40.

The challenge of solving polynomial equations

has been one of the most important in the history of algebra. The next four paragraphs give
an introduction to this subject.

Methods for solving first- and second-degree equations go back to the early Egyptians
and Babylonians. In the sixteenth century, Italian mathematicians (del Ferro, Tartaglia, and
Ferrari) succeeded in solving cubic (third-degree) and quartic (fourth-degree) equations.
(For cubic equations, see Problem 42.17.) Their solutions give formulas for writing the
roots in terms of the coefficients ao, a,, ... , an, much as the quadratic formula (43.1) for
the solutions of second-degree equations. It then became a challenge to do the same for
equations of degree higher than four. Specifically, the problem, as it eventually came to
be interpreted, was to show that it is possible to express the roots of equation (*) in terms
of the coefficients ao, a,a , ,.. an using only addition, subtraction, multiplication, division,
and the extraction of roots, each applied only finitely many times. When the roots can be
so expressed, the equation is said to be solvable by radicals.

In 1770-1771 Lagrange took the first steps in settling this problem by introducing
methods for studying polynomial equations that in reality involved group theory. Lagrange
sensed that the key to understanding these equations and their roots was related to the effect,
on the original equations and on certain related equations, of permutations of the roots of
the equation.

Early in the nineteenth century Paulo Ruffini (Italian) and N. H. Abel (Norwegian),
drawing on the ideas introduced by Lagrange, showed that, in fact, there are equations
of each degree higher than four that are not solvable by radicals. The complete answer
to the question of which equations are solvable by radicals was finally given by Evariste
Galois, another French mathematician, in the mid-nineteenth century. Galois was able to
show that a group can be associated with each polynomial equation (*) in such a way that
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the property of solvability by radicals is directly related to a corresponding property of the
group. This group property is called solvability; it will be defined in Section 49. The ideas
of Galois show that an equation is solvable by radicals if its associated group (now called
its Galois group) is solvable. The point of the earlier work by Ruffini and Abel was that
for each degree higher than four there exist polynomial equations whose Galois groups are
not solvable.

The work by Galois became the basis for what is now known as Galois theory. Today
this theory has to do with the study of groups of automorphisms of field extensions; theorems
concerning solvability by radicals are merely a special part of the general theory.

SECTION 42 SIMPLE EXTENSIONS. DEGREE

We begin by looking at how to construct field extensions that solve a particular kind of
problem, namely that of providing roots for polynomials; the extension of IR to C to obtain
a root for 1 + x2 (Section 32) is a special case.

Let E be an extension field of a field F; for convenience, assume F C E. Also let S be a
subset of E. There is at least one subfield of E containing both F and S, namely E itself. The
intersection of all the subfields of E that contain both F and S is a subfield of E (Problem
42.1); it will be denoted F(S). If S C F, then F(S) = F. If S = {a1, a2, ... , then
F(S) will be denoted F(at, a2, ... , an). For example, R(i) = C. The field F(S) consists
of all the elements of E that can be obtained from F and S by repeated applications of
the operations of E-addition, multiplication, and the taking of additive and multiplicative
inverses (Problem 42.3).

If E = F(a) for some a E E, then E is said to be a simple extension of F. We can
classify the simple extensions of F by making use of F[x], the ring of polynomials in the
indeterminate x over F, and

ao, a,, .. . , a, E F},

the ring of all polynomials in a. The difference between F [x] and F[a] is that two poly-
nomials in F[x] are equal only if the coefficients on like powers of x are equal, whereas if
a is algebraic over F (Section 32), then two polynomials in F [a] can be equal without the
coefficients on like powers of a being equal. For example,

l+3=-1+3+J2-2 inQ[v],

but

1 +3x: -1 +3x +x2 inQ[x].

Theorem 42.1. If E is a simple extension of F, with E = F(a) and a algebraic over F,
then

E ^ F[xll(p(x)),

where p(x) is irreducible over F and (p(x)) is the ideal consisting of all f (x) E F[x] such
that f (a) = 0.

PROOF. Define 9 : F[x] -* F[a] by

9(ao+aix+...+anxn) =ao+ala+...+aan.
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It can be verified that 9 is a ring homomorphism (Problem 40.5). Therefore, by the Funda-
mental Homomorphism Theorem for Rings, F [x]/I - F [a], where I = Ker 0 is an ideal
of F[x]. Because a is algebraic over F, I # (0). Notice that 1 consists precisely of those
polynomials having a as a root, because f (x) E I iff 9(f (x)) = f (a) = 0. By Theorem
40.3 every ideal of F[x] is a principal ideal, so I = (p(x)) for some p(x) E F [x]. Be-
cause F [a] C_ E, and E has no zero divisors, F [a] cannot have zero divisors. Therefore
F[x]/(p(x)) cannot have zero divisors. It follows that p(x) is irreducible over F. (See the
proof of Theorem 40.1.)

If Ker 8 is the zero ideal in the proof of Theorem 42.1, then F(a) is said to be a simple
transcendental extension of F, and a is said to be transcendental over F. If a is algebraic
over F (Theorem 42.1), then F(a) is said to be a simple algebraic extension of F. The next
two theorems say more about simple transcendental and simple algebraic extensions.

Theorem 42.2. If a is transcendental over F, then F(a) is isomorphic to the field of
quotients of F[x].

PROOF. If a is transcendental over F, then Ker 9 = (0) in the proof of Theorem 42.1,
and F [x] ^s F [a]. The field of quotients of F [x] can be thought of as the set of all quotients
f (x)/g(x), g(x) # 0, where f (x) and g(x) have no common factor of positive degree
(Problem 42.8). Also, F(a) consists of all "quotients" f (a)g(a)-1 with f (a), g(a) E F[a]
and g(a) # 0. It follows that F(a) is isomorphic to the field of quotients of F[x].

Example 42.1. It can be shown-but not easily-that the real number it is not a root of
any polynomial with rational coefficients [1]. Therefore, Q(7r) is a simple transcendental
extension of Q, and 7r is transcendental over Q. The elements of Q(7r) are the equivalence
classes of rational expressions

ao + a17r + a27r2 + ... +

forao,a,,...,a,,,bo,bl,...,b, EQ.

Theorem 42.3. Assume that F is afield and that p(x) E F[x] is irreducible over F. Then
F[x]/(p(x)) is afield extension of F, and p(x) has a root in F[x]/(p(x)).

PROOF. As before, let I = (p(x)). Theorem 40.1 shows that F[x]/I is a field. In
Theorem 40.2 we showed that by identifying each element I + b E F[x]/I with b, E F we
obtain a subfield of F[x]/I that is isomorphic to F. Therefore F[x]/I is an extension of F.

Assume that p(x) = ao + aix + + a denote the element I + x E
F[x]/I. Then

p(a) = ao+al(I +x)+... +x)'
= I

I + p(x)
=1.

But I is the zero of F[x]/I. Thus a is a root of p(x) in F[x]/I.

Corollary42.1. If F is afield, and f (x) is a polynomial of positive degree over F, then
f (x) has a root in some extension of F.
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PROOF. If f (x) is irreducible over F, then Theorem 42.3 applies directly. Otherwise
f (x) has some irreducible factor p(x) E F[x], and then f (x) = p(x)q(x) for some q(x) E
F[ ]. Apply Theorem 42.3 to p(x). This gives a root a for p(x) in F[x]/(p(x)), and this
a is also a root for f (x) because f (a) = p(a)q(a) = 0 . q(a) = 0.

The following remarks are based on Theorem 40.2 and the proof of Theorem 42.3. If
p(x), I, and a are as in Theorem 42.3 and its proof, then Theorem 40.2 shows that each
element of F[x]/I can be expressed uniquely in the form

I + (bo + bix + 62x2 + -- + with b0,bi,...,b"_1 E F.

Because of the way the operations are defined in F [x]/1, and because a = I + x, this
means that each element can be expressed uniquely in the form

with b0,b1,...,bn_1 EF. (42.1)

Making further use of the way the operations are defined in F [x]/1, we have the following
corollary.

Corollary 42.2. Assume F and p(x) as in Theorem 42.3. Then F[x]l(p(x)) contains a
root a of p(x), and each element of F[x]/(p(x)) can be expressed uniquely in the form
(42.1). Elements of the form (42.1) are added and subtracted using the usual addition and
subtraction of polynomials. To multiply elements f (a) and g(a) of the form (42.1), multiply
them as polynomials and divide the result by p(a); the remainder will equalf(a)g(a).

An important fact about Theorem 42.3 is that it shows how to construct a field having
a root for p(x) beginning with only F and p(x); we need not have an extension before we
begin. Example 40.1 illustrated this for the case of the polynomial x2 + 1, irreducible over
R. Here is another example.

Example 42.2. The polynomial x2 - 2 is irreducible over Q. By Theorem 42.3,
Q[xJ/(x2 - 2) is an extension of Q, and it contains a root for x2 - 2. The point being
stressed here is that this requires no previous knowledge of IIt, which we know to contain
the root /2- of x2 - 2.

Corollary 42.2 tells us that each element of Q[x]/(x2 - 2) can be written uniquely in
the form

a+ba, a,bEQ,

where a = I + x. Here is the calculation of a typical product in Q[x]/(x2 - 2): To compute
(1 - 2a)(2 + a), multiply, and then divide the result by a2 - 2; the remainder is the answer.
Thus

(1 -2a)(2+a) _ 2-3a-2a2 -2-3a
a2-2 a2-2 =-2+ a2-2

so (1 - 2a)(2 + a) _ -2 - 3a.
The mapping 0 : Q[x]/(x2 - 2) -* Q(J) defined by

6(a+ba)=a+b.h
is an isomorphism. A direct proof of this is similar to that in Example 40.1, and is left
as an exercise (Problem 42.9). The calculation in Q(J) corresponding to that above in



SECTION 42 SIMPLE EXTENSIONS. DEGREE 197

Q[x]/(x2 - 2) is

(1-2,/2-)(2+12-)=2-3-v"2- -2 2

We close this section with one more idea about extensions. Assume that E is an
extension of a field F. We can think of E as a vector space over F in the following way:
The vectors are the elements of E; the scalars are the elements of F; and the "product" of
a scalar a E F and a vector b E E is simply the product ab in the field E. Problem 42.13
asks for a proof that this does yield a vector space over F. (Appendix D gives a brief review
of basic facts about vector spaces.)

Definition. The degree of an extension E of a field F, which will be denoted [E : F], is
the dimension of E considered as a vector space over F. If the degree is finite, E is said to
be a finite extension of F.

Example 42.3

(a) Each element of C can be written uniquely as a 1 + b i with a, b E R. Thus
11, i} is a basis for C over R and [C : R] = 2.

(b) Example 42.2 shows that [Q(.) : Q] = 2.
(c) If -Y5- denotes the real cube root of 5, then [Q(' S) : Q] = 3 (Problem 42.15).

PROBLEMS

Assume that F is afield throughout these problems.

42.1. Prove that if E is a field and T is a subset of E, then the intersection of all the subfields of
E that contain T is a subfield of E. (See Problem 26.20.) [If F is a subfield of E and S is a
subset of E, and T = F U S, then the subfield obtained here is F(S).]

42.2. Prove that if a + bi is imaginary, then R(a + bi) = O.

423. Prove the last statement in the second paragraph of this section.

42.4. Let a E Q[x]/(x2 - 7) be a root of the irreducible polynomial x2 - 7 E Q[x]. Express each
of the following elements in the form a + ba with a, b E Q. (See Example 42.2.)
(a) a3 (b) (I - a)(2 + a) (c) (1 + a)2 (d) (I + a)-'

42.5. Prove that Q(,) # Q(.).

42.6. Show that every element of Q(' S) can be written in the form a + b' S + c-'(2-5, with
a,b,caQ.

42.7. Prove that if a2 is algebraic over F, then a is algebraic over F.

42.8. Prove that the set of all quotients f(x)/g(x) with f (x), g(x) E F[x], and g(x) A 0, is a
field with respect to the usual equality of fractions and the usual operations from elementary
algebra. Also explain why this field is isomorphic to the field of quotients of F[x].

42.9. Prove that the mapping 0 in Example 42.5 is an isomorphism.

42.10. Prove that Q(/, -V,, i, -i) = Q(I+ i). (This shows that an extension may be simple
despite first appearances.)
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42.11. Assume a, b E Q and a > 0, b > 0. Prove that Q(om) = Q(*) iff b = ace for some c E Q.
(Problem 42.5 is a special case.)

42.12. If Q(' S) is viewed in terms of Theorem 42.1, then p(x) = x3 - 5 [choosing p(x) to be
monic]. Verify that although -Y5 E Q((-)), p(x) has roots that are not in Q('(5). (Thus a
simple algebraic extension is not necessarily an algebraic extension as defined in Section 32.)

42.13. Prove that if E is an extension of F, then E is a vector space over F with respect to the
operations described preceding Example 42.3.

42.14. Prove that [Q(1 + i) : Q] = 2 and that [R(1 + i) : R] = 2.

42.15. Prove that [Q(' S) : Q] = 3 [Example 42.3(c)].

42.16. Prove that if p and q are distinct primes, then Q(., = Q(, + lq-).
42.17. Any cubic equation can be written in the form x3 + bx2 + cx + d = 0 by dividing by the

leading coefficient. The following steps show how to solve the equation by radicals.
(a) Substitute x = y - b/3 to get y3 + py + q = 0 for appropriate p and q. Find p and q.
(b) Show that substitution of y = z - p/(3z) leads to z3 - p3/(27z3) + q = 0.
(c) Multiply through by z3 to get a quadratic equation in z3. Show that a solution for z3 is

3 =-q+
qz+p3

2 4 27

(d) The cube roots of z3 give z. From this we can get y and then x. Carry out the process
outlined here to solve the equation x3 + 4x2 + 4x + 3 = 0.

(e) Solve the cubic equation in part (d) by using Theorem 43.5 to find a rational root as a
first step.

SECTION 43 ROOTS OF POLYNOMIALS

By definition, an element c of a field F is a root of a polynomial f (X) E F[x] if f (c) = 0. By
the Factor Theorem (Section 35), f (c) = 0 iff x - c is a factor of f (x). If (x - c)" divides
f (x), but no higher power of x - c divides f (x), then c is called a root of multiplicity m.
When we count the number of roots of a polynomial, each root of multiplicity m is counted
m times. For example, x3 - xz - x + 1 = (x - 1)2(x + 1) has 1 as a root of multiplicity
two, and -1 as a root of multiplicity one; it has no other root. Thus we say that this
polynomial has three roots.

In this section we shall first prove that a polynomial of degree n has at most n roots
(Theorem 43.1). We'll then see that any polynomial of degree n over the field C of complex
numbers has exactly n roots in C (Theorem 43.2). Polynomials of degree n over other fields
may have fewer than n roots in that field; however, a polynomial will have n roots in an
appropriately constructed extension field. (See the remarks following Example 43.2.)

Theorem 43.1. A polynomial f (x) of degree n > 1 over afield F has at most n roots in F.

PROOF. The proof will be by induction on n. If n = 1, then f (x) = a0 + aix with
at # 0, and the only root is -a, i a0. Thus assume that n > 1, and assume the theorem true
for polynomials of degree less than n. If f (x) has no root, we are through. If c is a root,
then by the Factor Theorem f (x) = (x - c) f i (x) for some f, (x) E F [x], and deg f, (x) =
n - 1. By the induction hypothesis fi(x) has at most n - 1 roots in F. It will follow that
f (x) has at most n roots in F if f (x) has no roots in F except c and the roots of f, (x). But
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this is so because if a E F, then f (a) = (a - c)fi (a), so that f (a) = 0 only if a - c = 0
or fi (a) = 0 (because F has no divisors of zero). Thus f (a) = 0 only if a = c or a is a
root of f, (x).

We have seen that a polynomial over a field may have no roots in that field. For example,
x2 - 2 and x2 + 1 have no roots in the field of rationals. However, the Fundamental Theorem
of Algebra (Section 32) ensures that each polynomial over the complex numbers has at
least one complex root. In fact, we can prove more, as in the following theorem.

Theorem 43.2. Each polynomial of degree n > 1 over the field C of complex numbers
has n roots in C.

PROOF. We shall use induction on n. Assume that f (x) = ao + al x + + E

C[x]. If n = 1, then f(x) has one root, namely -ai 1ao. Assume the theorem to be true
for all polynomials of degree less than n. If n > 1, then f (x) has a root, say c, by the
Fundamental Theorem of Algebra. Thus, by the Factor Theorem, f (x) = (x - c) f, (x) for
some f1(x) E C[x], and deg f1(x) = n - 1. By the induction hypothesis, fi(x) has n - 1
roots in C. Each of these is clearly a root of f (x), as is c, and hence f (x) has at least n
roots in C.

By Theorem 43.1, f (x) has at most n roots in C. Thus f (x) has exactly n roots
in C.

Definition. A nonconstant polynomial p(x) over a field F splits over an extension field
K of F if p(x) can be factored into linear factors over K, that is, if

p(x) = a(x - c1)(x - c2)...(x - CO,

where a E K and c 1 , c2, ... , c are the roots of p(x) in K.

Example 43.1. Any first-degree polynomial over F splits over F, since ax + b (a # 0)
has the root -a-'b E F.

Example 43.2. The polynomial p(x) = x4 - 2x2 - 3 splits over Q(i, /3-) because

p(x) = (x - i)(x + i)(x - -v )(x + /3).

Also, p(x) splits over C. But p(x) does not split over Q(i) or Q(,J) or any other field that
does not contain Q(i, 13-). In fact, Q(i, /3-) is the smallest field containing all the roots of
p(x), in the sense clarified by the following definition and remarks.

Definition. A field K is a splitting field of a nonconstant polynomial p(x) over a field F
if K is an extension of F such that

(i) p(x) splits over K, and
(ii) K = F(ci, c2, ... , c are the roots of p(x) in K.

It can be proved (Problem 43.14) that we get an equivalent definition if condition (ii)
is replaced by the following condition:

(ii)' if p(x) splits over a field H and F C H C K, then H = K.
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It will be proved in Section 46 that such a field does exist, and is uniquely determined
by F and p(x), in the sense that if E1 and E2 are splitting fields of p(x) over F, then
E, E2. The splitting field of x2 - 2 over Q is Q(/).

We shall return to splitting fields in Chapter M. We now prove a general fact about roots
and field automorphisms, and then look at some special facts about roots of polynomials
over JR and polynomials over Q.

An automorphism of a field is an isomorphism of the field onto itself. Automorphisms
are central to Galois theory.

Example 43.3. If a : C -> C is defined by a (a + bi) = a - bi for all a, b E IR, then a
is an automorphism of C (Problem 43.15). Notice that a fixes each element of R, that is,
a(a) = a for each a E R.

Theorem 43.3. Assume that 6 is an automorphism of a field E, and that 0 fixes each
element in a subfield F of E. If an element c E E is a root of p(x) E F [x], then 8(c) is also
a root of p(x).

PROOF. Assume p(x) = ao + a1x + + a"x". Then p(c) = 0 and 0(ak) = ak for
0 < k < n. Therefore,

p(B(c)) = as + a16(c) + ... + a,,g(c)"

= 0(ao) + 0(alc) + ... + 0(anc")

= 0(ao + a,c + ... + anc")

= 0(p(c)) = 0(0) = 0.

Before stating the next theorem. We first recall from elementary algebra that each
quadratic equation ax 2 + bx + c = 0 has two solutions, given by

-bf b -4ac
x =

2a
(43.1)

The number b2 - 4ac is called the discriminant of axe + bx + c. Assume that a, b, and c
are real. Then the two solutions in (43.1) will be real and equal if b2 - 4ac = 0, real and
unequal if b2 - 4ac > 0, and imaginary and unequal if b2 - 4ac < 0. In the third case the
two solutions will be complex conjugates of each other (that is, of the form u + vi and
u - vi, where u, v E R). Notice that the conjugate of a real number u is u itself. Thus we
can say in any case that if a complex number u + vi is a solution of a quadratic equation
with real coefficients, then its conjugate u - vi is also a solution. This is a special case of
the following corollary.

Corollary. If a+ bi is a root of a polynomial f (x) with real coefficients, then its complex
conjugate a - bi is also a root of f (x).

PROOF. This follows immediately from Theorem 43.3, since the automorphism in
Example 43.3 fixes each element of R.

Theorem 43.4. A polynomial over the field JR of real numbers is irreducible over JR iff it
is linear (first degree), or quadratic (second degree) with a negative discriminant.
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PROOF. Any linear polynomial is irreducible, and any quadratic polynomial over IR
with a negative discriminant is irreducible over R because its roots are imaginary. It now
suffices to prove the converse.

Assume that f (x) E R[x] and that f (x) is irreducible and nonlinear, we shall prove
that f (x) must be quadratic with a negative discriminant.

We can think of f (x) as a polynomial over C; as such, it has a root, say a + bi, in C. If
b = 0, then f (a) = 0 so x - a is a factor of f (x), contradicting that f (x) is nonlinear and
irreducible over R. Thus b # 0. By the Corollary of Theorem 43.3, a - bi is also a root of
f(x),so[x-(a+bi)](x-(a-bi)]=[(x-a)-bi][(x-a)+bi]=(x-a)2+b2 is
a factor of f (x). Since f (x) is irreducible, it follows that f (x) must be an element of R
times (x - a)2 + b2, and thus, in particular, f (x) must be quadratic. The discriminant of
f (x) must be negative in this case because its roots are imaginary (b # 0).

Theorem 43.5. Let f (x) = a0 + a I x + + anx" be a polynomial with integral coeffi-
cients. If rls is a rational root of f (x), and (r, s) = 1, then r I ao and s I a".

Example 43.4. The rational roots of f (x) = 2 - 3x - 8x2 + 12x3 will be represented by
fractions with numerators chosen from the divisors of 2, and denominators chosen from
the divisors of 12. The list of all possibilities is ±1, ±2, ±1, ±1, ±i

,
±1, ±1, ±i. It can

4 6 222 3

be verified that 1, - Z , and i are roots of f (x). Theorem 43.5 gives the same possibilities
for the rational roots of g(x) = 12x3 - 3x + 2 as for the rational roots of f (x). But g(x)
has no rational root (Problem 43.5).

PROOF OF THEOREM 43.5. If r/s is a root of f (x), then a0 + al(r/s) +...+
a"(r/s)" = 0. Therefore a0s" + airs" + + a,r' = 0. Solving this first for a0s" and
then for a"r", we get

a0s" = -[airs"-l + ... + a"r"] (43.2)

and

a"r" = -[aos" + ... + a,_ir"-'s] (43.3)

Because r is a divisor of the right side of (43.2), r I aos". But (r, s) = 1, so (r, s") = 1, and
therefore r I ao by Lemma 13.1. Similarly, because s is a divisor of the right side of (43.3),
s I a, r'. This implies that s I a" because (s, r") = 1, again by Lemma 13.1.

Corollary. A rational root of a monic polynomial a0 + alx + + x" with integral co-
efficients must be an integer and a divisor of a0.

PROOF. Apply Theorem 43.5 with an = 1.

Theorem 43.6 (Eisenstein's Irreducibility Criterion). Assume that p is a prime, f (x) =
ao + aix + + a"x" E Z[x], p l a; for 0 < i < n - 1, p2 J a0 and p J an. Then f (x) is
irreducible over Z.

PROOF. The proof is outlined in Problem 36.22.

For examples of Theorem 43.6, see Problem 36.23.
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PROBLEMS

43.1. Prove that x2 - 1 E Z12[x] has four roots in Z12. Does this contradict Theorem 43.1? Why
or why not?

43.2. Construct a polynomial over Z5 having 3 (that is, [3]) as a root of multiplicity two and 1 as a
root of multiplicity one.

43.3. Construct a polynomial over C having i as a root of multiplicity two and -i as a root of
multiplicity one.

43.4. There are eight polynomials of degree three over Z2. For each one, find the number of roots
over Z2.

43.5. Prove that 12x3 - 3x + 2 has no rational root.

43.6. Find all rational roots of each of the following polynomials over (Q.
(a)4x3-7x-3 (b) 2 -1 Ix + 17x2 - 6x3 (c) 2x3 - x2 + 8x - 4

43.7. Write each of the following polynomials over Q as a product of factors that are irreducible
over Q.
(a) x3-X2-5x+5 (b) 3x3-2x2+3x-2 (c) X3-2x2+2x

43.8. (a) to (c). Repeat Problem 43.7 using factors that are irreducible over R.

43.9. (a) to (c). Repeat Problem 43.7 fusing factors that are irreducible over C.

43.10. There are nine monic polynomials of degree 2 over Z3. For each one, find the number of roots
over Z3-

43.11. Prove that if f (x) E R[x] has an imaginary root of multiplicity two, then deg f (x) > 4.

43.12. Give an example of a quadratic polynomial over C that has an imaginary root of multiplicity
two. (Compare Problem 43.11.)

43.13. Give an example of a polynomial over Z2 that is irreducible and of degree three. (Compare
Theorem 43.4.)

43.14. Prove that an equivalent definition of splitting field results if condition (ii) is replaced by
condition (ii)', which follows it.

43.15. Prove that the mapping a in Example 43.3 is an automorphism of C.

43.16. Assume that F is a field, f (x) E F [x], and E is an extension of F. Prove that an element c
of E is a multiple root of f (x) if f (c) = f'(c) = 0. Multiple root means root of multiplicity
greater than 1. The polynomial f'(x) is the formal derivative of f (x), defined in Prob-
lem 34.13. [Suggestion: Use the Division Algorithm to write f(x) = (x - c)2q(x) + r(x),
where r(x) is linear. Verify that f (c) = r(c) and f'(c) = r'(c). Next, explain why f (x) =
(x - c)2q(x) + (x - c) f'(c) + f (c). Finally, use the latter equation to examine when
(x - C)21f

43.17. Prove that if Q denotes the division ring of quartemions introduced in Problem 32.19, then
x2 + 1 E Q [x] has infinitely many roots in Q. (Here 1 denotes the unity of Q, that is, the
2 x 2 identity matrix.)

43.18. Assume that ao, a,a , ,.. a are distinct elements of a field F, that bo, b, , ... , b E F, and that
f (X), g(x) E F[x] are of degree nor less and satisfy

f(a1)=b1=g(al) for0< j <n.

Prove that f (x) = g(x) in F[x]. (Compare Problem 35.19.)
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SECTION 44 FUNDAMENTAL THEOREM: INTRODUCTION

This section will outline the connection between roots of polynomials, fields, and auto-
morphism groups. Theorem 44.2 is a preliminary version of the Fundamental Theorem of
Galois Theory, which will be stated more fully, and proved, in Section 48. For simplicity,
all fields in this section are assumed to be subfields of the field of complex numbers.

The first key is that of a field automorphism, which, we recall, is an isomor-
phism of a field onto itself. In Example 43.3, we saw that if a : C -> C is defined by
a(a + bi) = a - bi for all a, b E R, then a is an automorphism of C. Here are two more
examples.

Example 44.1. If E is an extension of Q, and or is an automorphism of E, then a (a) = a
for all a E Q. Here is an outline of the proof.

PROOF. First, a(1) = 1 (Problem 27.1). Therefore, a(2) = all + 1) = a(1) +
a(1) = 2. We can extend this by mathematical induction to prove that a(n) = n for every
positive integer n (Problem 44.1). But then for m E Z and m < 0, we have -m > 0 and
a(-m) = -m, so a(m) = a(-(-m)) = -a(-m) m. Thus a(r) = r for all
r E Z.

Also, ifs c Z ands # 0, then a (1 /s) = 1 /a (s) by Problem 27.9. Thus if r, s r= Z with
s # 0, then a(r/s) = a(r)a(1/s) = r/s. This completes the proof.

Example 44.2. Every element of Q(J) can be written uniquely in the form a + b,12-
with a, b E Q (Section 42). If a is an automorphism of Q(,), then a(a) = a and a(b) = b
by Example 44.1, so

a(a + b/) = a(a) + a(b)a(') = a + ba(.).

However, [a(J)]Z = a( 22) = a(2) = 2, so a(/) satisfies x2 = 2 and a(') = .
This means there are only two automorphisms of Q(V), the identity t and the mapping a
defined by a(a + b.) = a - bJ.

The set {t, a) of all automorphisms of Q(om) in Example 44.2 forms a group with
respect to composition. More generally, if E is any field, then the set Aut(E) of all auto-
morphisms of E forms a group with respect to composition (Problem 44.2).

If E is an extension of a field F, then Gal(E/F) will denote the set of all automorphisms
a of E such that a(a) = a for all a E F. Problem 44.6 asks you to prove that Gal(E/F) is
a subgroup of Aut(E).

If H is any subgroup of Gal(E/F), then EH will denote the set of all x E E such that
a(x) = x for all a E H. Problem 44.7 asks you to prove that EH is a subfield of E.

Note the similarities: Every element of the group Gal(E/F) fixes every element of F,
while every element of the field EH is fixed by every element of H. The following theorem
summarizes the last few paragraphs.

Theorem 44.1. If E is afield, then the set of all automorphisms of E forms a group Aut(E)
with respect to composition. If F is a subfield of E, then

Gal(E/F) = {a E Aut(E) : a(x) = x for all x E F)
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is a subgroup of Aut(E). If H is a subgroup of Gal(E/F), then

EH={x EE:a(x)=x for all a EH]

is a subfield of E.

Definitions. The group Gal(E/F) in Theorem 44.1 is called the Galois group of E over
F. The subfield EH is called the fixed field of H.

The key to Galois theory is a natural connection between the subgroups of Gal(E/F)
and the subfields of E that contain F, especially in the case where E is the splitting field of
a polynomial f (x) over F. Before describing this connection, in Theorem 44.2, we recall
from Section 42 that [E : F] denotes the degree of E over F, that is, the dimension of
E as a vector space over F. Also, recall that in this section all fields are assumed to be
subfields of the field of complete numbers. As you read Theorem 44.2, it may help to refer
to the following relations, noting that the larger the subfield, the smaller the corresponding
subgroup, and conversely.

Hl c H2 implies EH, EHZ

Kr c K2 implies Gal(E/Kr) Gal(E/K2)

(44.1)

(44.2)

Definition. If K = F(cl, ..., is the splitting field of a polynomial p(x) over F, then
Gal(K/F) is called the Galois group of the polynomial p(x) over F.

Examples 44.3 and 44.4 will give specific illustrations of Galois groups, splitting fields,
and fixed fields.

Theorem 44.2. Assume that E is the splitting field of a polynomial f (x) over afield F (a
subfield of Q. Consider the correspondence defined by

K -> Gal(E/K) (44.3)

for each subfield K of E such that K contains F. The correspondence (44.3) is one-to-one
between the set of all subfields of E that contain F and the set of all subgroups Gal(E/F).
Moreover, for such K,

[E : K] = IGal(E/K)I. (44.4)

K = EH for H = Gal(E/K). (44.5)

and K is a splitting field for some polynomial over F iff Gal(E/K) is a normal subgroup of
Gal(E/F), in which case Gal(K/F) - Gal(E/F)/Gal(E/K).

We now look at two examples of splitting fields of polynomials and the corresponding
Galois groups. In the first, the polynomial has degree 4 and its Galois group has order 4. In
the second, the polynomial has degree 3 and its Galois group has order 6. Both examples
are, as they should be, consistent with Theorem 44.2.

Figures 44.1 and 44.2 illustrate the relations in (44.1) and (44.2). Moreover, they reveal
a one-to-one correspondence between the set of all subgroups of the Galois group Gal(K/F)
and the set of all subfields of the splitting field E that contain the base field F. This one-
to-one correspondence does not hold in all cases; in these examples it is a consequence of
separability, a concept to be introduced in Chapter XI.
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Example 44.3. The splitting field of the polynomial (x2 - 3)(x2 - 5) over Q is

Q(', J) _ {a + bJ + c' + d'- : a, b, c, d E Q}.
If a and P are defined by

a(a+b.) =a-b/, a(c+d J) =c+dJ
P(c+d,15)=c-dJ

for all a, b, c, d E Q, and y is defined by y = Pa, then

Gal(Q(., J)/(Q) y}.

(You can verify that a(a + bJ) = a + b/ does not define an isomorphism.) Problem
44.13 asks you to verify the following details, where E = Q(f, -).

(i) Gal(E/Q) - Z2 x Z2
(ii) The lattice of subgroups of Gal(E/Q) and the lattice of subfields of Q(', .) are

as shown in Figure 44.1. (The integers on the lines in the figure show the indexes for
subgroups and the degrees for subfields. Some authors choose to invert one of the
two lattices, such as by placing the largest field and the smallest group at the top. It
is a matter of choice, provided there is no ambiguity.)

(iii) E(,,.) = Q(-/5), E(,d) = Q(,/3), E(,.r) = Q(/ -)

(t, a, $, y }

Y
(t, a) (t,Q} Y)

\2

(1)

Q(-3, J)

Q(-8) Q(om) Q('T;5)\ 2/
Figure 44.1

Example 44.4. The splitting field of x3 - 2 over 0 is Q(w, ) where a) is the primitive
cube root -1/2 + i,/3-/2 of 2 (Section 33). If a and P are defined by

Y'2- and a(te) = rv2

fl(y)_w'2 and P(w)=w,

then a and P determine automorphisms of Q(w, ,X2-) and

Gal(Q(w,
n

2)/Q) = It, a, P, Y2, afl, aP2}.

Figure 44.2 shows the lattice of subgroups of the Galois group and the lattice of subfields of
Q(w, Y2-). As in Figure 44.1, the integers on the lines show the indexes for subgroups and
the degrees for subfields. Also, corresponding subgroups and subfields are in corresponding
positions (from left to right). For example, Gal(Q(w, -Y2-)/Q(-'r2-)) is it, a}.
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(, a, $, r2, aP, a,2) Q(d,3-,F2)

/3/ 3 2

3

3

2 2

{t,,,Y2) {t,a} {l, a,8} {1,a,82} Q(w) Q(3I) Q(w)3'h) Q(w23n)

2 2 3 3

3 2 2 3

Figure 44.2

For an overview of the connection between Galois groups and solvability of polynomial
equations by radicals, you may now skip to Section 49 and read through the statement of
Theorem 49.2, passing over Lemma 49.1, the Remark, and Theorem 49.1. Also read the
statement of Theorem 49.3 and the first paragraph of Example 49.2.

;OBLEMS

44.1. Prove that in Example 44.1, a(n) = n for every positive integer n.

44.2. Prove that the set Aut(E) of all automorphisms of a field E is a group.

44.3. Prove the statement in (44.1).

44.4. Prove the statement in (44.2).

44.5. What is Gal(Q(V,.) : Q)? (Find the elements and construct a Cayley table.)

44.6. Prove that Gal(E/F) is a subgroup of Aut(E).

44.7. Prove that EH, as defined in Theorem 44.1, is a subfield of E.

44.8. In Example 44.4, verify that Ga1(Q(m, -Y2-)/Q(-Y2)) is it, a}.

44.9. In Example 44.4, what is the fixed field of (a)?

44.10. Verify that Z2.

44.11. Verify that Gal(Q(' 5)/Q) has order one.

44.12. (a) Show that the splitting field of x4 - 5 over Q is Q(,'(5-, i).
(b) Show that [Q(' 5, i) : Q] = 8.
(c) What is the order of the Galois group of x4 - 5 over Q?

44.13. Verify statements (i), (ii), and (iii) in Example 44.3.

[The problems may also be considered after Section 46.]

NOTE ON CHAPTER X

General references for the topics in this chapter are the same as those listed in the notes at
the end of Chapter XI. The book below contains proofs that r and e are transcendental.

1. Niven, I., Irrational Numbers (Cams Monograph No. 11), The Mathematical Association of
America, 1961.



CHAPTER XI

GALOIS THEORY

This chapter fills in details omitted from the overview of Galois theory in Chapter X.
It draws freely on ideas from Chapter X and earlier parts of the book. The first three
sections develop ideas about polynomials and field extensions needed in Section 48 to
prove the Fundamental Theorem of Galois Theory. Section 49, on solvability by radicals,
uses Theorem 54.3 (from Chapter XIII, on solvable groups); Section 54 depends on nothing
past Chapter V, so can be covered before Section 49, if desired. Section 50, on finite fields,
is independent of Sections 47-49. If covered thoroughly, the sections in this chapter will
take more time than most sections of the book.

SECTION 45 ALGEBRAIC EXTENSIONS

This section deals with basic ideas about automorphisms and degrees of field extensions.

Theorem 45.1. Assume F(a) and F(9) are simple algebraic extensions of afield F, and
a and P are roots of the same polynomial p(x) irreducible over F. Then F(a) and F(fi)
are isomorphic under an isomorphism 9 such that 9(a) = and 9(a) = a for each a e F.

PROOF. Each element of F(a) can be expressed uniquely in the form (42.1) preceding
Corollary 42.2, and each element of F (0) can be expressed uniquely in the same form with
a replaced by fl. The mapping 9 determined by 8(a) = $ and 8(a) = a for each a c F is an
isomorphism by Corollary 42.2, since a and 0 are roots of the same irreducible polynomial
p(x).

If F(c) is a simple algebraic extension of F, and c is a root of the polynomials p(x)
and q(x), both irreducible over F, then p(x) I q(x) and q(x) I p(x). (Consider the proof
of Theorem 42.1 and the remark following Theorem 40.3.) It follows that c is a root of a
unique monic polynomial irreducible over F. This monic polynomial is called the minimum
polynomial of c over F. The degree of the element c is the degree of its minimum polynomial.

Theorem 45.2 generalizes Theorem 45.1, and also restates it making use of minimum
polynomials. It uses the following notation: If 9 is an isomorphism of a field F onto a field
E and

p(x) = ao + alx + ... + a,x" E F(x),
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then Op(x) is the polynomial defined by

8p(x) = 0(ao) + 0(al)x + + 0(a")x" E E(x).

Theorem 45.2. Assume that 0 is an isomorphism of afield F onto afield E, and that F(a)
is a simple algebraic extension of F with p(x) the minimum polynomial of a over F. Assume
also that E(18) is a simple algebraic extension of E with Bp(x) the minimum polynomial
of $ over E. Then 0 can be extended to an isomorphism 0* of F(a) onto E(P) such that
0*(a) = 0 and 0*(a) = 0(a) for each a E F.

PROOF. As in the proof of Theorem 45.1, each element of F(a) can be expressed
uniquely in the form (42.1) preceding Corollary 42.2. Also, each element of can
be expressed uniquely in the same form with a = I + x = (p(x)) + x replaced by ,B =
(Bp(x)) + x, where (p(x)) and (8p(x)) are principal ideals of F [x] and E[x], respectively.
The mapping 0* : F(a) -+ F(P) defined by

9*(ao + ala + ... + an-lan-1) = 0(ao) + 9(a1)o + ... + 0(a.-1)$

satisfies the requirements of the theorem.

Theorem 45.3. Consider a simple extension F(a) of F If a is transcendental over F, then
[F(a) : F] is infinite (that is, there is no finite basis). If a is algebraic over F. then [F(a)
F] = n, where n is the degee o f the minimum polynomial o f a over F, and { 1 , a, ... , an-1 }

is a basis for F(a) as a vector space over F.

PROOF. Assume a transcendental over F. Then the elements 1, a, a2, ... are linearly
independent over F, for otherwise ao 1 + a i a + + a a" = 0 for some integer n
and some ao, a1, ... , a" E F (not all zero), which would imply that a is algebraic over F.
Thus [F(a) : F] is infinite.

If a is algebraic of degree n over F, that is, if the minimum polynomial of a is of degree
n, then Corollary 42.2 shows that ( 1 , a, ... , an-1 } is a basis for F(a) as a vector space over
F. Thus [F(a) : F] = n.

Theorem 45.4. If K, L, and M are fields with K C L C M, L a finite extension of K, and
M a finite extension of L, then M is a finite extension of K and [M : K] = [M : L][L : K].

PROOF. Assume [L : K] = m and [M : L] = n. Let (vi, v2, ..., vm} be a basis for
L over K, and let {wl, w2, ... , wn } be a basis for M over L. It suffices to prove that
S = {viwi : 1 < i < m and 1 < j < n} is a basis for M as a vector space over K. This
requires that we prove (i) that S is a linearly independent subset of M as a vector space over
K, and (ii) that S spans M as a vector space over K.

To prove (i), assume E ayvi wi = 0, where each aii E K and the sum is taken over
all pairs i, j such that 1 < i < m and 1 < j < n. Then each agvi E L, so, for each
j, )aiivi = 0, because {wl, W2, ... , is a linearly independent subset of M as a vec-
tor space over L. But this implies that each aid = 0, because (vi, v2, ... , vm) is a linearly
independent subset of L as a vector space over K. Thus S is a linearly independent subset
of M as a vector space over K.

To prove (ii), assume a E M. Then a = bj wi for some b1, b2, ... , b" E L because
(W 1, w2, ... , w" } spans M as a vector space over L. Because (V 1, v2, ... v,, } spans Las a
vector space over K, each bi equals E ciivi for appropriate c i i . c2j, ... , cmj E K. Substi-
tution leads to a = E bi wi = E (E ciivi wi = E E cii vi wj, where the rearrangement
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of terms is possible because the sums are finite. This shows that the set S spans M as a
vector space over K.

Example 45.1. We can illustrate Theorem 45.4 by using it to compute
making use of Q c c Q(.,,). From Example 42.2, each element of Q(,)
can be expressed uniquely in the form a + bf with a, b E Q. Thus { 1, '} is a basis for
Q(.) as a vector space over Q, which implies [Q(J) : Q] = 2.

Now consider the extension Q(.,.) of Q(,). First, ' Q(J), because
# a + b. for all a, b E Q (Problem 42.5). It follows that x2 - 3 is irreducible as

a polynomial over Q([2). The reasoning used in Example 42.2 can be applied to show
that each element of Q(vf2-, /3-) can be expressed uniquely in the form c + d. with
c, d E Q(V). This implies that (1, /3-) is a basis for Q(J, J) as a vector space over
Q(-/2-), so [(Q(,/2-, 13) : Q(f2)] = 2.

Combining the above results, we have

[Q(,/2, -) : Q] = [Q(,/2, V) Q(-/2)] [(Q(-12) : Q] = 2 . 2 = 4.

Moreover, the proof of Theorem 45.4 shows that a basis for Q is
{1, f2, 3, ,/6}, which consists of the four products using one factor from [1, -} and
the other factor from (1,}.

Theorem 45.5. An extension E of F is finite ijf E is an algebraic extension of F and
E = F(al, ... , for some finite subset (al, ..., of E.

PROOF. If [E : F] is finite, then [F(a) : F] is finite for each a E E, so a is algebraic
over F by Theorem 45.3, and the extension is algebraic. Also, there is a finite basis for
E over F, so E has the required form F(a1, ... , Now assume that E is an algebraic
extension of F and E = F(a1, ... , an). Then F(at) is a finite extension of F by Theorem
45.3, and for n > 2, F(al, ..., a finite extension of F(al, ... , an_1). Therefore, by
mathematical induction and Theorem 45.4, E is a finite extension of F.

Theorem 45.6. Assume K and L are finite extensions of afield F, and 9 is an isomorphism
of K onto L such that 9(c) = c for each c E F. Then [K : F] = [L : F].

PROOF. See Problem 45.2.

PROBLEMS

45.1. Find the minimum polynomial of c over F in each case

(a) F=Q,c=. (b) F=Q,c=1+i
(c) F=Q,c=-12-+i (d) F=R,c=.+i

45.2. Prove Theorem 45.6. [Prove that if (v; , ... , v } is a basis for K over F, then (6 (v1), ... , 9(u))
is a basis for L over F.]

45.3. Prove that if [M : K] is a prime and K C L C M, then L = K or L = M.

45.4. Without using Example 45.1, explain why /6 E J ). Prove that is not in the vector
space spanned by (1, 12-,.) over Q.

45.5. Prove that if [E : F] is a prime, then E is a simple extension of F. (See Problem 45.3.)
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45.6. Prove that if A is the field of all algebraic numbers (Section 32), then [A : Q] is infinite.
(Suggestion: Use Eisenstein's irreducibility criterion, Theorem 43.6, to prove that, for each
positive integer n, there is a polynomial of degree n that is irreducible over Q. Why does that
suffice?)

45.7. By Theorem 45.1 if a and 0 have the same minimum polynomial over F, then F(a) and F(8)
are isomorphic over F. Verify that the converse is false, by showing that if a has minimum
polynomial x2 - 2 over Q, and 0 has minimum polynomial x2 - 4x + 2 over Q, then Q(a) is
isomorphic to Q(P) over Q.

SECTION 46 SPLITTING FIELDS. GALOIS GROUPS

This section tells us more about splitting fields and Galois groups, which were introduced
in Sections 43 and 44, respectively.

Theorem 46.1. If p(x) is a polynomial of degree n > 1 over a field F, then there exists a
splitting field K of p(x) over F such that [K : F] < n!.

PROOF. We shall use induction on n. If n = 1, then p(x) splits over F (Example 43.1),
and [F : F] = 1. Assume the theorem true for each polynomial of degree less than n, and
assume p(x) has degree n.

By the Unique Factorization Theorem for polynomials (Section 36), p(x) has a monic
irreducible factor q(x) of degree < n. By Theorem 45.3, q(x), and therefore p(x), has
a root c in an extension F(c) of F such that [F(c) : F] = deg q(x) < deg p(x) = n. Let
E denote F(c). Then p(x) = (x - c) f (x) for f (x) a polynomial of degree n - 1 over E.
By the induction hypothesis, f (x) has a splitting field K with [K : E] < (n - 1)1. Thus
f (x) = a(x - ct)(x - c2) ... (x - in K[x], and p(x) = a(x - c)(x - ct)(x - c2)

(x - cn_1) in K(c, ct, c2, ... , Moreover, by Theorem 45.4, [K : F] _
[K : F(c)][F(c) : F] < (n - 1)!n = n!, as required.

The following lemma will be used in the proof of Theorem 46.2, which will show that
any two splitting fields of a polynomial p(x) over a field F are isomorphic.

Lemma 46.1. Assume that p(x) is a polynomial over afield F, that 0 is an isomorphism of
F onto F', that K is a splitting field of p(x) over F, and that K' is a splitting field of Op(x)
over F'. Then there exists an isomorphism 0* of K onto K' extending 9, that is, such that
0*(a) = 9(a) for each a c F.

PROOF. The proof will be by induction on n = [K : F]. If n = 1, then K = F and
0* = 0 will suffice. Assume n > 1 and the theorem true for all K such that [K : F] < n.
Because n > 1, the roots of p(x) are not all in F, so p(x) has an irreducible factor q(x) E
F [x] with deg q(x) > 1. Because K is a splitting field for p(x) over F, q(x) has a root c in
K. By Theorem 45.2, 9 can be extended to an isomorphism 9' of F(c) onto F'(9'(c)) with
9'(c) a root of 9q(x).

Because K is a splitting field of p(x) over F, K is a splitting field of q(x) over F(c).
Also, [K : F(c)] < [K : F]. Therefore, the induction hypothesis implies there is an ex-
tension of the isomorphism 9' : F(c) -+ F'(9'(c)) to an isomorphism 0* : K -). K', as
required.
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Theorem 46.2. If K and K' are splitting fields of a polynomial p(x) over a field F, then
there exists an isomorphism 8 of K onto K' such that 9(a) = a for each a E F.

PROOF. Use Lemma 46.1 with F = F' and 8 the identity mapping of F onto F.

Example 46.1. The splitting field of a polynomial is not independent of the specified
underlying field. That is, the "uniqueness" in Theorem 46.2 is a function of both p(x) and
F. For example, the splitting field of x2 + 1 over R is C, because C = R(i). However, the
splitting field of x 2 + 1 over Q is Q(i). (See the discussion of the field of algebraic numbers
at the end of Section 32.)

Example 46.2. Two different monic irreducible polynomials over a field F can have the
same splitting field over F. For example, the splitting field over Q for both x2 - 3 and
x2 - 2x - 2 is Q(.).

Theorem 46.3. Assume p(x) is a polynomial of degree n over F, with k distinct roots
c 1 , ... , ck in a splitting field K = F(cl, ... , ck) of p(x). Then each or E Gal(K/F) induces
a permutation d o f {cj, ... , ck }, and the automorphism a is determined by the permutation
6 of the distinct roots. The mapping defined by or l-- a is an isomorphism of Gal(K/F)
onto a group of permutations of {cl, ... , ck}.

PROOF. By Theorem 43.3, if a E Gal(K/F) and c is a root of p(x), then or (c) is a root
of p(x). Moreover, a, being an automorphism, is one-to-one, so a induces a permutation
it of the distinct roots. Because K = F(cl, ... , ck), and a fixes each element of F, the
permutation o completely determines the automorphism or of F. Thus the mapping a H o is
one-to-one. Also, the operations on the set of automorphisms and on the set of permutations
are both composition, so the mapping or H Q is an isomorphism.

Corollary. The Galois group G of a polynomial of degree n over afield F is isomorphic to
a subgroup Sk, where k is the number of distinct roots in a splitting field of the polynomial
over F. Thus, in particular, the order of G divides n!.

PROOF. Any group of permutations of {cl, ... , ck} is isomorphic to a subgroup of Sk.
And any subgroup of Sk is isomorphic to a subgroup of S,,, since k < n.

Theorem 46.4 will be used in Section 48 to help us establish, under appropriate con-
ditions, the kind of one-to-one correspondence mentioned preceding Example 44.3. The
proof is slightly long, so it will be divided into two lemmas.

Lemma 46.2. If His a finite group of automorphisms of a field E with fixed field EH, then
[E : EH] < JHJ.

PROOF. The proof will be by contradiction. Assume I H I = n, with H = {al, ... , a },
and assume [E : EH] > n. Then E contains a set of n + 1 elements linearly independent
over EH; assume {al, ... , a set. From linear algebra, we know that any
system of n linear homogeneous equations in n + 1 unknowns over a field has a nontrivial
solution in that field, so there exist elements xl, ... , E E, not all zero, such that

ak(al)xl + ... + ak(an+1)xn+l = 0, for 1 < k < n.
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Among all such solutions sets. . . .Ix I, choose one with the least possible number
m of nonzero elements. By changing labels, if necessary, we can assume that x 1 . . . . . xm

are nonzero and xm+1, ..., are zero. Moreover, {xi lxl, ... , xi 1xm+1} will also be a
solution set, so we can assume xl = e. Then

ok(al)xl + + ak(am)xm = 0, for 1 < k < m. (46.1)

If a E H, then a(ak(aj)xj) = aak(aj)a(xj) for each j, so

aak(al)a(xl) + ... + aak(am)a(xm) = 0, for 1 < k < n.

But {oat, ... , aam} = (al, ... , am}. (See the paragraph preceding Example 20.1.) There-
fore,

ak(al)a(x1) + ... + ak(am)a(xm) = 0, 1 < k < n. (46.2)

Multiply each equation in (46.1) by a(x1), and each equation in (46.2) by x1, and subtract.
The first terms cancel, so the result is

ak(a2)[x2a(xl) - a(x2)x1] + . + ak(am)[xma(xl) - a(xm)xl] = 0, 1 < k < m.
(46.3)

Thus we have a solution like (46.1), with one less term in each equation. This contradicts the
minimality of m, unless the solutions in (46.3) are trivial, that is, unless xja(x1) = a(xj)xI
for 2 < j < m. This would imply a(xlx71) = xlx71 for 2 < j < m and a E H, and thus
xlxj 1 E EH for 2 < j < m. Since we have already observed that we can assume xl = e,
this gives xj c EH for 1 < j < m. Using ak equal to the identity automorphism in (46.1)
implies al, ... , am are linearly dependent, which is a contradiction.

Lemma 46.3. If His a finite group of automorphisms of afield E, with the fixed field EH,
then [E : EH] ? IHI.

PROOF. Again we use a proof by contradiction. Assume [E : EH] = m < n = I H 1,
with E = EH (al, ... , am) and H = {al, ... , Consider the system of m homogeneous
equations

a,(ak)xI + ... + a,(ak)x = 0, 1 < k < m. (46.4)

Because m < n, the system has a nontrivial solution set {c1, ... , C E. Choose C E E,
and write c as a linear combination of the basis elements al, ... , am for E over EH.

c=deal+ - + dmam

with dl, ... , dm E EH. For each a E H, we have

a(c) = a (dl )a (al) + ... + a(dm)a(am)
a(c)=dla(al)+...+dma(am). (46.5)

Equation (46.4), with each xi = cj, implies

dkal(ak)C1 + ... + dkan(ak)cn = 0, 1 < k < m. (46.6)

Problem 46.4 asks you to prove that if we add them equations produced by (46.6), rearrange
terms, and use (46.5), we get

al(c)c1+ 0 for each c E E. (46.7)
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Now suppose the solution set {c I, ..., c } is chosen to have the least possible number of
nonzero elements-say (by relabeling, if necessary) c t , ... , c, all nonzero, and ct+t, ..., c
all zero. Then

at(c)cl + ... + at(c)c, = 0 (46.8)

and t 1, for otherwise otc = 0 for all c E E. Choose b E E such that al(b) # at(b).
Condition (46.7) implies

at(cb)cl + ... + o,(cb)c, = ai(c)at(b)ct + ... + ot(c)a,(b)ct = 0. (46.9)

Equation (46.9), and equation (46.8) with both sides multiplied by o,(b), imply

[al (b) - a,(b)]at(c)ci + ... + [a, (b) - or(b)]ot(c)ct = 0

and

[at(b) - ot(b)]at(c)ci + ... + [at_t(b) - at-t(b)]a,-t(c)ct-.t = 0. 46.10)

Here [at (b) - a,(b)]ci ¢ 0 (why?), contradicting the minimality of t. This proves the
lemma. E

Remark. The proof does not require that H be a group. It could be any finite set S of
automorphisms of E, with fixed set Es. Then [E : Es] ? ISI

Theorem 46.4. If His a finite group of automorphisms of a field E, with fixed field EH,
then [E : EH] = IHI.

PROOF. Apply the inequalities proved in Lemmas 46.2 and 46.3.

Theorem46.5. Assume that K is a splitting fieldfor apolynomial over F, and that c, d E K.
Then there exists a E Gal(K/F) such that a(c) = d iff c and d have the same minimum
polynomial over F.

PROOF. Assume c and d have the same minimum polynomial over F. Taking F = E
and 9 to be the identity mapping in the proof of Theorem 45.2, we see that there exists an
isomorphism 9* of F(c) onto F(d) such that 0*(c) = d and 0*(a) = a for each a E F. If
K is a splitting field of f (x) over F, then K is also a splitting field of f (x) over F(c) and
F(d). Therefore, by Lemma 46.1, 9* can be extended to an automorphism a E Gal(K/F)
such that a(c) = d.

If there exists a E Gal(K/F) such that a (c) = d, then c and d have the same minimum
polynomial by Theorem 43.3.

PROBLEMS

46.1. Prove that x2 - 3 and x2 - 2x - 2 have the same Galois group over Q. (Suggestion: It suffices
to show that they have the same splitting field.)

46.2. (a) Show that the splitting field of x4 - 5 over Q is Q(` 5, i ).
(b) Show that [Q0(5-, i) : Q) = 8.
(c) What is the order of the Galois group of x' - 5 over Q?
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46.3. (a) Show that the splitting field of p(x) = (x2 - 2)(x2 - 5)(x2 - 7) over Q is Q(,/2-, /5-, /7-).
(b) Show that [Q(,, /5-, /7) : Q] = 8.
(c) Describe the elements in the Galois group of p(x) over Q.

46.4. The text claims that (46.7) follows from (46.5) and the equations in (46.6). Write out the details
to justify the claim. [Suggestion: Write the equations in (46.6) in order, then add and simplify
each "column" using (46.5).]

465. Find the splitting field of p(x) = x4 + 2x2 + 1 over Q. Verify that the roots of p(x) are not
distinct.

[See Section 44 for more problems covering the material in this section.]

ACTION 47 SEPARABILITY AND NORMALITY

Recall from Section 46 that any polynomial p(x) over a field F has a splitting field over
F, and any two splitting fields of p(x) over F are isomorphic. A polynomial of degree n
will have n roots in a splitting field, but these n roots need not be distinct (Problem 46.5).
In Galois theory, irreducible polynomials create special problems if they have a repeated
root in a splitting field. For this reason, we need the following definitions.

Definitions. A polynomial p(x) of degree n over a field F is separable over F if it has
n distinct roots in a splitting field K over F. If p(x) is not separable, it is inseparable. An
algebraic element in an extension K of F is separable over F if its minimum polynomial is
separable over F. An algebraic extension K of F is a separable extension if every element
of K is separable over F.

The following theorem makes use of formal derivatives, which were introduced in
Problem 34.13.

Theorem 47.1. A polynomial p(x) over a field F is separable over F i¶ p(x) and its
formal derivative p'(x) are relatively prime in K [x], where K is a splitting field of p(x);
that is, if they have no common factor of positive degree in K[x].

PROOF. Let K be a splitting field for p(x). Then p(x) = c(x - ct)" . . . (x - ck)"
with c, C1, ... , ck E K, c 0 0, and ct, ... , ck distinct. One term of p'(x) is cet (x -c1)'
(x - cs)`z (x - ck)", and the other terms each have (x - CI)" as a factor. Therefore,
if et > 1, then x - ct is a factor of both p(x) and p'(x). A similar statement holds if any
ej > 1. Conversely, if each ej = 1, then p(x) and p'(x) do not have a common nonconstant
factor. Thus p(x) has no repeated root in K if p(x) and p'(x) are relatively prime.

Theorem 47.2. If F is afield of characteristic 0, then every irreducible polynomial over
F is separable over F. If F has characteristic p > 0, then an irreducible polynomial p(x)
over F is inseparable over F if p(x) = bo + btxP + + bkxkp for bo, ... , bk E F, that
is, i¶ p(x) # 0 and p(x) E F[xP].

PROOF. Assume that p(x) = ao + atx + + is of degree n > 1 and irre-
ducibleoverF.Ifq(x) E F [x], then either the greatest common divisor of p(x) and q(x) is e,
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the unity of F, or p(x) I q(x). Since deg p'(x) < deg p(x), we have p(x) I p'(x) iff p'(x) = 0,
Therefore, either p'(x) = 0 or p(x) and p'(x) are relatively prime.

If F has characteristic zero, then p'(x) = 0, so p(x) is separable by
Theorem 47.1. If F has characteristic p > 0, then p'(x) = 0 if mam = 0 in F for each
nonzero coefficient am in p(x), which is true if p I m for each nonzero am; in all other
cases p(x) and p'(x) are relatively prime. This proves that for characteristic p > 0, p(x)
is separable unless it has the special form in the statement of the theorem.

Theorem 47.3. Assume that M is a separable algebraic extension of K, and that L is a
subfield of M with K C L C M. Then L is separable over K, and M is separable over L.

PROOF. Obviously, L is separable over K, from the definition of separable extension.
For the second statement, assume c E M and let mK(x) and mi(x) denote the minimum
polynomials of c over K and L, respectively. Then MK (X) E L[x], so mi(x) is a factor of
mK(x) in L[x]. Therefore, mi(x) is separable over L, since mK(x) is separable over K.
Thus every c E M is separable over L, so M is separable over L.

Theorem 47.4. If a polynomial p(x) is separable over afield F, and K is a splitting field
of p(x) over F, then GGal(K/F) I = [K : F].

Here are two illustrations of the theorem: In Example 44.3, the polynomial is
(x2 - 3)(x2 - 5) E Q[x], and IGal(Q(', /5)/Q) I = 4 = [(Q(,r3, vr5) : Q U. In Exam-
ple 44.4, the polynomial is x3 - 2 E Q[x] and IGal(Q(w, ' 2)/Q)I = 6 = [Q(ra, ' 2) : Q].

The proof of the theorem will use the following lemma.

Lemma 47.1 Assume p(x), F, K, 0, F', K' are as in Lemma 46.1, with p(x) separa-
ble and [K : F] = n. Then there are n different isomorphisms 0* : K -> K' that extend
9:F-->F'.

PROOF. The proof will be by induction on n. The case n = 1 is trivial. Let q(x) be
an irreducible factor of p(x), as in the proof of Lemma 46.1, and let ¢ : K -+ K' be an
isomorphism extending 0 : F -> F' (that is, such that 0(a) = 9(a) for each a E F). If
c E K and q(c) = 0, then 0(c) is a root of Bq(x). Since K' is a splitting field for Op(x)
over F', there is an isomorphism 0* : K -+ K', as in Lemma 46.1, such that 0*(c) = 0(c)
and 0*(F(c)) = F'(B*(c)).

Assume deg q(x) = m. Because p(x) is separable over F, q(x) is separable over F,
so q(x) has m distinct roots in K. By the first part of the proof, each such root c produces
one extension 0* from F(c) to F'(B*(c)). By the induction hypothesis, each 0* can be
extended to K in [K : F(c)] = [K : F]/[F(c) : F] = n/m different ways. Thus there are
m(n/m) = n different extensions of 0 to K.

PROOF OF THEOREM 47.4. Consider Lemma 47.1 with F = F', K = K', and 0 the
identity mapping on F. The n different isomorphisms provided by the lemma constitute the
Galois group of p(x). Thus GGal(K/F)I = n = [K : F].

Theorem 47.5. Assume that p(x) is separable over F and K is a splitting field of p(x)
over F. Let G = Gal(K/F). Then KG = F, where KG denotes the fixed field of G in K.
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PROOF. Each element (automorphism) in G is an extension of the identity mapping
on KG. By Lemma 47.1, there are [K : KG] such automorphisms, since K is a splitting
field of KG. But there are [K : F] such automorphisms by Theorem 47.4. Since F C KG,
we conclude that KG = F.

Definition. An algebraic extension K of a field F is a normal extension of F if every
irreducible polynomial p(x) over F that has at least one root in K splits over K, that is, has
all of its roots in K.

For example, C is a normal extension of R, since every polynomial over R splits over
C. However, Example 44.4 shows that Q(' 2) is not a normal extension of Q since Q(. 2)
contains the real root -'r2_2 of x3 - 2 E Q[x], but not the two imaginary roots.

Theorem 47.6. A finite extension K of F is normal over F if K is a splitting field of some
polynomial over F.

PROOF. Assume that K is normal and finite over F. By Theorem 45.5, K =
F(al,... , a,) for some a1 , ... , a, algebraic over F. If mk(x) is the minimum polyno-
mial of ak over F for 1 < k < n, then each Mk(x) has the root ak E K, and therefore each
mk(x) splits over K because K is normal over F. Therefore, K is the splitting field of the
product p(x) = m I (x) ... m, (x) over F.

Assume K is a splitting field of f (x) over F. Then K = F (c l , ..., c,), where c l , ..., c,
are the roots of f (x), so [K : F] is finite. To show that K is normal over F, assume that
p(x) is irreducible over F and p(x) has a root c E K but does not split over K. We shall
show that this leads to a contradiction.

Consider p(x) as a polynomial over K, and then adjoin a root d, not in K, to get the
field K(d). By Theorem 45.1, there is an isomorphism 9 : F(c) -+ F(d) leaving every
element of F fixed and such that 9(c) = d, since c and d are both roots of the polynomial
p(x) irreducible over F. By our original assumption, K is a splitting field of f (x) over F,
and therefore over F(c). However, K(d) is a splitting field of f (x) over F(d). By Lemma
46.1, there is an isomorphism 9* of K onto K (d) such that 9* extends 9; in particular, 9'
leaves F fixed. This implies [K F] = [K(d) : F], which is impossible because d V K.
This contradiction completes the proof.

The next theorem reveals part of the connection between normal extensions and normal
subgroups of their Galois groups.

Theorem 47.7. Assume E is a normal extension of F, K is a subfield of E containing F, and
K is normal over F. Then Gal(E/K) a Gal(E/F) and Gal(E/ F)/Gal(E/K) Gal(K/F).

PROOF. It will suffice to find a homomorphism 9 : Gal(E/F) -> Gal(K/F) such
that 9 is onto and Ker 9 = Gal(E/K), for we will then know that Ker 9 < Gal(E/F) (by
Theorem 21.2) and Gal(E/F)/Ker9 - Gal(K/F) (by the Fundamental Homomorphism
Theorem, Theorem 23.1).

We have F C K C E. Assume a E Gal(E/F). Then a is an automorphism of E, and
or fixes each element of F. Let d denote the restriction of a to K. We shall prove that
d (K) = K; that will show that 6 E Gal(K/F), so 9 defined by 9(a) = o will be a well-
defined mapping from Gal(K/F) to Gal(K/F). It will remain only to prove that 9 has the
other properties sought in the first sentence of the proof.
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To prove a(K) = K, assume c E K, and let p(x) be the minimum polynomial of
c over F. By Theorem 43.3, a(c) is also a root of p(x). But K is normal over F, so
p(x) splits over K and K contains all the roots of p(x), implying a(c) E K. Therefore
a(K) C K, and a is an isomorphism of K onto a(K), fixing each element of F. By
Theorem 45.6, [K : F] = [a(K) : F]. But also F C a(K) C K, so by Theorem 45.4 we
have [K : F] = [K : a(K)][a(K) : F], from which we must have [K : a(K)] = 1. Thus
a(K) = K.

We now have the mapping B : Gal(E/F) Gal(K/F) defined by 6(a) = 6. Problem
47.2 asks you to prove that 9 is a homomorphism. If a E Gal(E/F), then a E Ker 9 if
6 is the identity mapping on K, which is true if a fixes each element of K, that is, if
or E Gal(E/K).

It now remains only to prove that O is onto, that is, if p E Gal(K/F ), then p = 0(o-) = a
for some a E Gal(E/F). Theorem 47.6 implies that E is a splitting field over F, because
E is a finite normal extension of F. Any polynomial over F is a polynomial over K, so
E is a splitting field over K. By Lemma 46.1 every p E Gal(K/F) can be extended to an
automorphism a E Gal(E/F). Then p = 6 = 9(a), proving that 9 is onto.

PROBLEMS

47.1. Prove that if M is a finite normal extension of K and K C L C M, then M is a normal
extension of L.

47.2. Prove that the mapping 0 in the proof of Theorem 47.7 is a homomorphism.

47.3. Is Q(f) a normal extension of Q, where -Y3- denotes the real fifth root of 3? Justify your
answer.

47.4. (a) Verify that x2 +X + 1 does not split over Z2.
(b) Construct a splitting field for x2 +X + 1 over Z2.
(c) Explain why this example is consistent with Theorem 47.2.

47.5. Verify that if w = cos(2n/5) + i sin(27r/5), then Q(w) is a splitting field for the polyno-
mial p(x) = x° + x3 + x2 +X + 1 over Q. (See Theorem 33.2 and Problem 33.21.) What is
[Q(w) : Q]? Prove that p(x) is separable over Q. What is IGal(Q(rv)/Q)I?

47.6. (a) Verify that p(x) = x2 - 2Jx + 3 is irreducible over Q(/). (Give a reason.)
(b) Construct an extension E of degree two over Q(') such that E is a splitting field of p(x)

over Q(,).
(c) Describe the elements in Gal(E/Q(J)).

In each of Problems 47.7-47.12, give an example satisfying the given conditions or, if there is no
example, so state. Justify each answer.

47.7. A separable extension that is not a normal extension.

47.8. A normal extension that is not a separable extension.

47.9. A field F different from both R and C with R C F C C.

47.10. An extension E = F(a) with a algebraic over F but E not an algebraic extension of F.

47.11. An algebraic extension of Q other than the algebraic numbers (and not Q itself).

47.12. An algebraic extension of R other than C (and not R itself).



218 CHAPTER XI GALOIS THEORY

SECTION 48 FUNDAMENTAL THEOREM OF GALOIS THEORY

Theorem 48.1 (Fundamental Theorem of Galois Theory). Assume that E is a finite,
separable, normal extension of a field F. Consider the correspondence defined by

K --* Gal(E/K) (48.1)

for each subfield K of E such that K contains F. The correspondence (48.1) is one-to-one
between the set of all subfields of E that contain F and the set of all subgroups of Gal(E /F).
Moreover for each such K,

[E : K] = JGal(E/K)I, (48.2)

K = EH for H = Gal(E/K), (48.3)

and K is normal over F if Gal(E/K) is a normal subgroup of Gal(E/F), in which case
Gal(K/F) - Gal(E/F)/Gal(E/K).

PROOF. By Theorem 47.6, the finite normal extension E of F is a splitting field of a
polynomial p(x) over F. If F C_ K C E, then E is a splitting field of p(x) over K. Also, E
is separable over K by Theorem 47.3. Therefore, [E : K] = JGal(E/K)I by Theorem 47.4,
proving (48.2). By Theorem 47.5, if H = Gal(E/K) then K = EH, proving (48.3).

We next prove that the correspondence in (48.1) is one-to-one and onto. To prove it
is one-to-one, assume Kr and K2 intermediate subfields of E and F, with K1 K2. Then
one of the subfields contains an element not in the other; assume a E K1 and a ¢ K2.
If G = Gal(E/K2), then EG = K2 by Theorem 47.5, so there exists or E G such that
a(a) # a. Thus a V Gal(E/K1) and Gal(E/K1) # Gal(E/K2). Therefore the correspon-
dence in (48.1) is one-to-one.

To prove that the correspondence in (48.1) is onto, assume that H is a sub-
group of Gal(E/F). By Theorem 46.4, [E EH] = IHI. By (48.2), proved above,
[E : EH] = IGal(E/EH)I. Thus GGal(E/EH)I = IHI. But H C_ Gal(E/EH) by definition
of EH, so we conclude that Gal(E/EH) = H. Therefore H is the image of EH in (48.1),
so the correspondence is onto.

To prove the last part of the theorem, assume first that Gal(E/K) < Gal(E/F). To
prove K normal over F, assume p(x) is irreducible over F and p(x) has a root c E K.
We shall prove p(x) splits over K. Because E is assumed to be normal over F, p(x)
splits over E. Therefore, it suffices to prove that if d E E and d is a root of p(x), then
d E K. ByTheorem46.5 there exists a E Gal(E/F)such thata(d) = C. UP E Gal(E/K),
and ap a-1 = µ, then µ E Gal(E/K) because Gal(E/K) < Gal(E/F). From this,
p(d) = pa-1(c) = a-1 µ(c) = o-1(c) = d. Since p(d) = d for each p E Gal(E/K), d
is in the fixed field of Gal(E/K), which is K. This proves that if Gal(E/K) a Gal(E/F),
then K is normal over F.

The remainder of the theorem was proved in Theorem 47.7.

Theorem 48.1 implies Theorem 44.2, which was stated without proof as part of the
overview of Galois theory in Chapter X. In Theorem 44.2, all the fields were assumed to
be subfields of the field of complex numbers. Also, Theorem 44.2 does not explicitly refer
to normal extensions, because the term had not been introduced at that point. Problem 48.7
asks you to justify Theorem 44.2 on the basis of Theorem 48.1.
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Example 48.1. Consider Example 44.3. Let E = Q(-./3, .) and F = Q. If we apply
Theorem 48.1 with K = Q(.), we have K -> Gal(E/K) = H = {t, 0} Z2, K = EH,
and [E : K] = 2 = IGal(E/K)I. Also, Gal(K/F) Zz z Gal(E/F)/Gal(E/K).

Example 48.2. In Example 44.4, Gal(Q(a), )/Q) ,= S3. The only proper, nontrivial
normal subgroup is Gal(Q(w, ' 2)/Q(w)) = {t, p, $2}; notice that P fixes w. The only
proper, nontrivial normal extension of Q is Q(cv), and Q(to) is the splitting field of x3 - 1
over Q. The quotient group of most interest is Gal(Q(w, ' 2)/Q)/GaI(Q(a), '
which is isomorphic to Gal(Q((w)/Q); both are isomorphic to Z2.

PROBLEMS

In each problem, find the intermediate fields of E over F, Gal(E/F) and its subgroups, the subfields
of E that are normal over F, and the normal subgroups of Gal(E/F). Verify that E is a splitting field
of p(x) over F. Construct the lattices of subgroups and subfileds as in Examples 44.3 and 44.4, and
verify the details of the Fundamental Theorem of Galois Theory, including (48.1), (48.2), (48.3), and
the statement involving normal extensions, normal subgroups, and quotient groups.

48.1. Given F = Q, E = Q(,), p(x) = x2 - 3.

48.2. Given F = Q, E = Q(i, ,), p(x) _ (x2 + 1)(x2 - 5).

48.3. Given F = Q, E = Q(w) where a = cos(2n/5) + i sin(2n/5), a primitive fifth root of unity,
and p(x) = x° + x3 + x2 + x + 1. Begin by showing that p(x) is irreducible over Q by Eisen-
stein's criterion (Theorem 43.6) and that c is a root of p(x).

48.4. Given F = Q, E = Q(i, -`(5-), p(x) = x4 - 5. (Note: Gal(E/F) - Ds.)

48.5. Given F = Q(i), E = Q(i, 4(5-) = F(' S), p(x) = x4 - 5.

48.6. Given F = Q, E = Q(., /3-, f5-), p(x) = (x2 - 2)(x2 - 3)(x2 - 5). (Note: Gal(E/F)
Z2xZ2xZ2.)

48.7. Prove that Theorem 48.1 implies Theorem 44.2.

SECTION 49 SOLVABILITY BY RADICALS

We can now deal with the connection between solvable groups and the solvability of
polynomial equations by radicals. We begin by using field extensions to clarify the notion
of solvability by radicals. We then consider a special case involving Abelian groups, and
follow that with some necessary background about solvable groups. This will lead to
Theorem 49.3, the central theorem of the section. The section will end with an example of
a polynomial equation not solvable by radicals.

In addition to results we have already proved, this section uses the following three
facts: (i) Remark preceding Theorem 44.2. (ii) Any homomorphic image of a solvable
group is solvable, from Theorem 54.3. (iii) If a prime p divides the order of a finite group
G, then G has an element of order p (Problem 58.15).

Throughout this section we assume that F is a subfield of the field of complex numbers
and that F contains all nth roots of unity for every positive integer n.
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Lemma 49.1. If a E F and c is any root of x" - a E F[x], then F(c) is a splitting field
of x" - a over F.

PROOF. The complex roots of unity are described in Theorem 33.2. These form
a cyclic group that is generated by any primitive nth root of unity (Problem 33.21). If
w = cos(2,r/n) + i sin(21r/n), then the group is generated by co or by any other primitive
nth root, that is, any wk = cos(2k7r/n) + i sin(2k7r/n) with 1 < k < n and k relatively
prime to n (Theorem 17.1). If a is any nonzero complex number, and c is any nth root
of a (that is, any root of the equation x" - a = 0), then the set of all nth roots of a is
{c, cw, ... , co)" }; here co can be as defined as above, or it can be any one of the primitive
nth roots of unity (Problem 33.28). The lemma follows from those statements, since we
are assuming that F contains all nth roots of unity.

The next definition involves repeated use of this observation: Suppose F1 = F(cl) is
an extension of F, with c", = a1 E F. Then cl is a root of x" - al E F[x], and c1 is an nth
root of a1. That is, F1 results from adjoining to F an nth root of an element of F.

Definition. A polynomial equation f (X) = 0, with f (X) E F[x], is said to be solvable
by radicals over F if there is a sequence of fields

F = Fo C Fl C ... C Fk (49.1)

such that Fj = F_1 (ci) with Cn' E F_1 for 1 < j < k, and such that Fk contains a splitting
field E of f (x) over F. The field Fk is called a radical extension of F.

Remark. If there exists a radical extension Fk of F satisfying the conditions of the def-
inition, then there exists a normal radical extension of F satisfying the same conditions.
We shall assume this in what follows, but omit the proof to keep the overall picture more
manageable. Proofs can be found in references [3], [9], [11], [13], and [14] at the end of
this chapter. Reference [4] leaves the proof as a problem for the student.

Theorem 49.1 Assume that a E F, a # 0, and n is positive integer. Let K denote the
splitting field of x' - a over F. Then K = F(c), where c is any root of x" - a, and the
Galois group Gal(K/F) of x" - a over F is Abelian.

PROOF. By Lemma 49.1, it suffices to prove that the Galois group G = Gal(K/F) of
x" - a over F is Abelian. Assume o, p E G. Then a and p fix every element of F (which
contains all roots of unity) and a(c) and p(c) are both roots of x" - a (Theorem 43.3).
Thus a(c) = cwi and p(c) = cwk for some j and k. (See the proof of Lemma 49.1.) This
implies that ap(c) = a(cwk) = wka(c) = wkcwj = cwi+k. Similarly, pa(c) = cwj+k, so

ap(c) = pa(c). But ap = pa on F because or and p both fix every element of F. Thus
ap = pa on F(c), and G is Abelian.

Definition. A group G is solvable if it contains a finite sequence of subgroups

G=GotG1>G2> DG"={e},

with each subgroup normal in the preceding subgroup, as indicated, such that each of the
quotient groups Gk/Gk+l is Abelian.
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Example 49.1

(a) Any Abelian group is solvable: Use G 1 = {e} in the definition.
(b) The group S3 is solvable. (See Example 23.4.)
(c) The group of symmetries of a square is solvable. (Use Example 22.2.)
(d) No non-Abelian simple group is solvable. (Why?)
(e) Subgroups and quotient groups of solvable groups are solvable, and extensions of

solvable groups by solvable groups are solvable. (Section 54).
(J) Every group of odd order is solvable. (This is a very deep theorem, the proof

of which appears in reference [4] of Chapter V. The claim in the last paragraph
of Section 23, that there are no non-Abelian simple groups of odd order, is a
corollary.) - 0

Theorem 49.2. If f (x) E F [x] is solvable by radicals over F, then the Galois group of
f (x) over F is solvable.

PROOF. Assume f (x) is solvable by radicals over F, with a radical extension Fk
containing a splitting field E of f (x) over F, and a sequence of subfields as in (49.1). Using
the Remark preceding Theorem 49.1, we may assume without loss of generality that Fk
is a normal extension of F. Then Fk is also a normal extension of Fi for I < j < k, by
Theorem 47.6 [since, if Fk is a splitting field of f (,r) over F, it is a splitting field of f (x)
over each Fi].

We have

and

Gal(Fk/F) j Gal(Fk/F1) ... D Gal(Fk/Fk_1) D (e).

Also, Fj is a normal extension of Fi _ 1, 1 < j < k, by Theorem 49.1. Therefore, for each
j, Gal(Fk/Fi) 4 Gal(Fk/FJ_1) by the Fundamental Theorem of Galois Theory (Theorem
48.1). Also, by the same theorem,

Gal(Fk/Fi_1)/Gal(Fk/F3) - Gal(Fj/Fj_1).

But Gal(Fj/Fj_1) is Abelian, by Theorem 49.1. Therefore, Gal(Fk/F) is solvable.
We have E C Fk and E a normal extension of F (because E is a splitting field of

f (x) over F). Thus Gal(Fk/E) < Gal(Fk/F) and Gal(E/F) Gal(Fk/F)/Gal(Fk/E) by
Theorem 48.1. This implies that Gal(E/F) is a homomorphic image of Gal(Fk/F), which
we have shown to be solvable. Thus Gal(E /F), the Galois group of p(x) over F, is solvable
by Theorem 54.3.

The converse of Theorem 49.2 is also true. Each of the references [3], [11], [13] and
[15] at the end of this chapter contains a proof.

The following theorem and example will show the existence of a polynomial equation
over Q that is not solvable by radicals.

Theorem 49.3. If n > 5, then the symmetric group S is not solvable.

PROOF. The proof will be by contradiction. Thus assume that n > 5 and that S is
solvable. By the definition of solvability S has a finite sequence of subgroups such that

...>Gm={e}

and G;_1l Gi is Abelian for 1 < i < m.
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We'll first show that G 1 must contain every 3-cycle of S. Let (rst) denote any 3-cycle of
S.. Because n > 5, we can choose u, v E {1, 2, ... , n} such that u and v are different from
r, s, and t. Let a = (tus) and b = (srv). By Problem 22.14, aba-tb-1 E G1 since is
Abelian. But aba-lb-1 = (tus)(srv)(tsu)(svr) = (rst). Thus (rst) E G1, as claimed.

If we repeat the argument just given with G1 in place of S, and G2 in place of G1,
we see that G2 contains all 3-cycles of Sn. We can continue in this way to deduce that
Gm = (e) contains all 3-cycles of S., which is a contradiction. Thus, as claimed, S. is not
solvable.

Example 49.2. Consider the polynomial f (x) = 4x5 - 20x + 5. It will be shown that the
Galois group of f (.x) is isomorphic to S5. Because S5 is not solvable by Theorem 49.3, it
will follow from Theorem 49.2 that f (x) is not solvable by radicals.

First we'll show that f (x) has five distinct roots, three real and two imaginary. Because
we are working with a polynomial over R, we can take advantage of elementary calculus. By
Eisenstein's irreducibility criterion (Theorem 43.6) with p = 5, f (,x) is irreducible. The
derivative of f (x) is f(x) = 20x4 - 20 = 20(x4 - 1) = 20(x + 1)(x - 1)(x2 + 1), and
f"(x) = 80x3. Thus f'(x) = 0 if x = -1 or x = 1, and f"(-1) < 0 while f"(1) > 0.
Thus f(x) has a maximum at x = -1, a minimum at x = 1, and a point of inflec-
tion at x = 0. It follows that f (x) has three real zeros, one less than -1, one between
-1 and 1, and one greater than 1. The other two roots must be imaginary conjugates
(Section 4.4).

Assume that the roots are a 1 , a2, ... , a5. By the corollary of Theorem 46.3 the Galois
group G of f (x) over Q is isomorphic to a subgroup of S5. We'll show that, in fact, G is
isomorphic to S5.

Because a1 is a root of the irreducible polynomial f(x) of degree 5 over Q, Theo-
rem 45.3 implies that [Q(al) : Q] = 5. Therefore, by the Fundamental Theorem of Galois
Theory, IGI is divisible by 5. Thus G has an element of order 5 (Problem 58.15). Such an
element of order 5 in G corresponds to a 5-cycle (a permutation of {a1, a2, ... , a5) in S5),
Also, by Theorem 46.5, G contains the automorphism that results from interchanging the
two imaginary (conjugate) roots of f (x); this corresponds to a 2-cycle in S5. Because G is
isomorphic to a subgroup of S5 containing both a 5-cycle and a 2-cycle, this subgroup is,
in fact, S5 (Problem 49.8). Thus the Galois group of f (x) is not solvable, so f (x) is not
solvable by radicals.

PROBLEMS

49.1. (a) Verify that N = ((1), (1 2)(3 4), (1 3)(2 4), (1 4)(2 3)} is a normal subgroup of S4.
(b) Use part (a) to help prove that the group S4 is solvable.

49.2. Prove that if p is a prime, then the Galois group of xP - 1 over Q is isomorphic to Zp_l

49.3. Show that p(x) = x4 - 5x2 + 6 is solvable by radicals over Q. What is the Galois group of
p(x) over Q?

49.4. Repeat Problem 49.3 for p(x) = x5 - 32. (Compare Problem 49.2.)

49.5. Find the Galois group of x3 - 5 over Q. Solve the equation by radicals (over Q).

49.6. Show that 2x5 - 5x4 + 5 = 0 is not solvable by radicals.

49.7. Find the Galois group of x4 - 9.x2 + 14 over Q. Is x4 - 9x2 + 14 = 0 solvable by radicals?
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49.8. Prove that if a = (1 2 3 4 5), $ = (1 2), and G = (a, 0), then G = S5. (Suggestion: Show
that (1 2), (2 3), (3 4), (4 5) are in G by considering ak8a-k for 0 < k < 3. Then show that
(1 3), (1 4), (1 5) are in G by considering (1 2)(2 3)(1 2), and so on. Finally, use Problem
6.9.)

SECTION 50 FINITE FIELDS

In Section 26 we proved that Z, is a field iff n is a prime. This established the existence
of a field of order p for each prime p, but it left open the question of whether there are
fields of other finite orders. We settled this in a special case with Example 26.1, which
gave Cayley tables defining operations for a field of order 4. We now show that there is a
finite field of order q if q is a power of a prime. We prove half of this in Theorem 50.2:
The order of a finite field must be a power of a prime. We then construct fields of orders
4 and 9, using theorems we have proved about polynomials and field extensions. We then
use these ideas to prove the existence and uniqueness of a field of each prime power order;
the Cayley tables for a field or order 4 in Example 26.1 give no hint of a general method
for constructing finite fields. We begin with a basic definition and a theorem about fields.

If F is a field, and P is the intersection of all the subfields of F, then P is a subfield of F
(Problem 26.20). This subfield P is called the prime subfield of F. The characteristic of P
is either 0 or a prime, by Theorem 27.1. Prime subfields are characterized by the following
theorem.

Theorem 50.1. Assume P is the prime subfield of a field F. 1f F has characteristic 0, then
P - Q. If F has prime characteristic p, then P Z,.

PROOF. If F has characteristic 0, then P a Q by Theorem 27.2 and its proof, and the
corollary of Theorem 30.1 and its proof. If F has characteristic p, then P Zp by Theorem
27.3 and its proof.

Theorem 50.2. If F is a finite field, then the order of F is p", where p is the (prime)
characteristic of F and n is a positive integer.

PROOF. The characteristic of F cannot be 0, so it must be a prime, which we denote
by p. The prime subfield of F can be identified with Z, , and F will be a vector space over
this prime subfield. If [F : Zp] = n, with {bt, b2 .... b"} a basis for F over Z,,, then each
element of F can be written uniquely as a linear combination

atbi + a2b2 + .. + (50.1)

with a,, a2, ..., a, E 7Gp. The choices for al, a2, ... , a" can be made independently, so
there are p' total linear combinations (50.1). Thus the order of F is p".

As promised, we now look at a field of order 4 and a field of order 9. If p(x) E Z' [x],
and p(x) is irreducible and of degree n over Zp, then Z p [x]/(p(x)) will be a field by Theorem
40.1. Its order will be p', because each element of the field can be expressed uniquely in the
form (42.1). To simplify notation in the following examples, we write a in place of [a] for
the elements of Zp; addition and multiplication of coefficients is performed modulo p, of
course. Also, we write elements of Zp[x]/(p(x)) in the form bo + bta + + bn_ia"-1,
as in (42.1).
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Example 50.1. The polynomial 1 + x + x2 E Z2[x] is irreducible over Z2. Therefore
Z2[x]/(1 + x + x2) is a field of order 22 = 4. Tables 50.1 and 50.2 are the Cayley ta-
bles for the field operations. They are followed by several examples of calculations of
entries in the tables.

Table 50.1

0 1 a 1+a

0 0 1 a l+a
1 0 1+a a

a a l+a 0 1

l+a 1+a Of 1 0

Table 50.2

0 1 a l+a

0 0 0 0 0

1 0 1 a 1+a
a 0 a 1+a 1

1+a 0 1+a 1 a

Remember that computations with the coefficients are to be performed using the rules
of Z2. Thus, for example, a + (1 + a) = 1 + 2a = 1 + Oa = 1. Also remember the second
corollary of Theorem 42.3: If f (a) = (1 + a + a2)q(a) + r(a), then f (a) = r(a). Hence
a(l + a) = a + a2 = 1 in the table, because

inZ2[a].

Also (1 + a)(1 + a) = 1 + 2a + a2 = 1 + a2 = a, because

1 + a2 = (1 + a + a2) 1 + a in Z2[01].

Example 50.2. The polynomial 1 + x2 is irreducible over 7Z3 (Problem 50.4). Therefore
Z3[x]/(1 +x2) is a field of order 32 = 9. Tables 50.3 and 50.4 are the Cayley tables for
the operations. Following are several examples of the necessary calculations.

Table 50.3

0 1 2 a 2a l+a 1+2a 2+a 2+2a
0 0 1 2 a 2a 1+a 1+2a 2+a 2+2a
1 1 2 0 1+a 1+2a 2+a 2+2a a 2a
2 2 0 1 2+a 2+2a a 2a l+a 1+2a
a a 1+a 2+a 2a 0 1+2a 1 2+2a 2
2a 2a 1+2a 2+2a 0 a 1 1+a 2 2+a
1+a 1+a 2+a a 1+2a 1 2+2a 2 2a 0

1+2a 1+2a 2+2a 2a 1 l+a 2 2+a 0 a
2+a 2+a a l+a 2+2a 2 2a 0 1+2a 1
2 +2a 2 +2a 2a 1+2a 2 2+a 0 a 1 1+a
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Table 50.4

0 1 2 a 2a 1+a 1+2a 2+a 2+2a

0 0 0 0 0 0 0 0 0 0
1 0 1 2 a 2a l+a 1+2a 2+a 2+2a
2 0 2 1 2a a 2+2a 2+a 1+2a l+a
a 0 a 2a 2 1 2+a 1+a 2+2a 1+2a
2a 0 2a a 1 2 1+2a 2+2a l+a 2+a
1+a 0 1+a 2+2a 2+a 1+2a 2a 2 1 a
1 + 2a 0 1 +2a 2+a 1 +a 2+2a 2 a 2a I
2+a 0 2+a 1+2a 2+2a 1+a 1 2a a 2
2+2a 0 2+2a l+a 1+2a 2+a a 1 2 2a

The elements are added as any polynomials, with the coefficients reduced by the rules
in Z3. For example,

(1 +2a)+(2+2a) = 3+4a =0+a =a.

Simplifications of products are made as in the second corollary of Theorem 42.3. Thus

(1+2a)(2+2a)=2+6a+4a2=2+a2 in Z3[a],

and

so

2+al in Z, [al,

2 + a2 = 1 and (1 + 2a)(2 + 2a) = 1

in the table.

The following facts about fields of prime characteristic p and formal derivatives of
polynomials over fields will be used in proving that there exists a field with p" elements.

Lemma 50.1. If F is afield of characteristic p, then (a + b)p = aP + bP for all a, b E F.

PROOF. The Binomial Theorem is true for elements in any commutative ring (Problem
24.21), so

(a + b)P = aP + C(p, p - 1)aP-'b + C(p, p - 2)ap-2b + + V.

Problem 50.11 asks you to prove that if p is a prime then p I C(p, k) for 1 < k < p - 1.
Therefore, since F has characteristic p, each term except the first and last in the above sum
is 0, which leaves (a + b)P = ap + V.

The formal derivative of a polynomial is defined in Problem 34.13, which also asks
you to verify that the familiar rules for derivatives of sums and products from calculus are
also true for formal derivatives. (Formal derivatives do not involve the idea of limit, and
are defined for polynomials over any commutative ring.) Problem 43.16 asks you to prove
that if F is a field, f (x) E F[x], and E is an extension of F, then c E E is a multiple root
of f (x) if f (c) = f'(c) = 0.
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Theorem 50.3. If p is a prime and n is a positive integer, then there exists afield with p"
elements, and any two such fields are isomorphic.

PROOF. Let q = p". We shall first prove that a field F has order q only if F is a
splitting field of the polynomial xQ - x over Z,,. Because splitting fields are isomorphic in
the sense of Theorem 46.2, this will prove that any two fields of order q are isomorphic.
We shall then prove that the splitting field of x9 - x over Z, is indeed of order q, which
will prove the existence of a field with p" elements.

Assume IF I = q. The prime subfield of F is isomorphic to Z,,. The nonzero elements
of F form a multiplicative group of order q - 1, so x9-1 = 1 for each nonzero x E F
by Corollary 1 of Lagrange's Theorem (Section 17). Therefore x9 = x for all x E F,
since 0 satisfies the equation as well as each nonzero x E F. If F = {a1, a2, ... , aq},
then (x - al)(x - a2) . . . (x - aq) is a factor of xQ - x by the Factor Theorem (Section
35), because the ak's are distinct. Thus x4 - x = (x - al)(x - a2) . (x - aq), and F is a
splitting field of x9 - x over Z p, as claimed.

To complete the proof, let K denote a splitting field of f (x) = xQ - x over ZP. The
formal derivative of f (x) is f'(x) = qxq-1 - 1 = -1, since K has characteristic p and
p I q. Thus f'(c) # 0 for all c E K, so f (,r) has no multiple roots in K. (See the remarks
about formal derivatives preceding the theorem.)

It now suffices to prove that the q distinct roots c l, c2, ... , cq of z4 - x form a subfield
of K, for that will imply K = {c 1 , c2, ... , cq } and I K I = q, completing the proof. (Remem-
ber that K is the "smallest" field over which xQ - x splits.) Assume a and b are roots of
x9 - x in K. By Lemma 50.1, (a + b)P = aP + b', (a + b)P2 = (aP + bP)P = a P' + bP2
and so on, implying (a + b)7 = aq + b4. Thus, since a and b are roots of x9 - x,
so is a+ b. Also, (ab)9 - ab = agbq - ab = ab - ab = 0. so ab is a root. And

(a- 1)q -a- I = a-q - a-1 = a-1 - a-1 = 0. It follows that the roots of xQ - x do form
a subfield of K, completing the proof.

Theorem 50.3 proves that there is essentially a unique field of order p". It is called the
Galois field of order p", and is commonly denoted GF(p").

The following lemma will help characterize the multiplicative group of a finite field.
The proof given here appears in references [14] and [16] at the end of this chapter. It uses
the following version of the pigeon-hole principle from combinatorics: If m blue balls and
m red balls are distributed in n boxes, with at least as many blue as red balls in each box,
then each box contains the same number of blue balls as red balls.

Lemma 50.2. If G is a finite group such that, for each positive integer n, there are at most
n elements x E G such that x" = e, then G is cyclic.

PROOF. Let H be a cyclic group with I H I = I G I = m. Each element of G generates
a cyclic subgroup of order d for some divisor d of m, by Lagrange's Theorem. For each x
in that subgroup, xd = e. Therefore, by hypothesis, the subgroup contains all the solutions
in Gofxd = e.

By Theorem 17.1, the cyclic group has exactly one subgroup of order d for each
divisor d of m. Therefore, H has at least as many elements of order d as G does. Hence,
since I H I = I G I, G and H must have the same number of elements of order d for each
divisor d of m. Because H is cyclic, H has an element of order m, and therefore G does as
well. Thus G is cyclic.
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Theorem 50.4. The multiplicative group of a finite field is cyclic.

PROOF. By Theorem 43.1, a field F has at most n solutions of x" = e for each n > 1.
Therefore, if the field is finite, the theorem is a consequence of Lemma 50.2.

In Example 50.1, both a and 1 + a are generators of the multiplicative group. In
Example 50.2, 1 + a, 1 + 2a, 2 + a, and 2 + 2a are all generators.

PROBLEMS

50.1. Find all generators of the multiplicative group of Z11.

50.2. The first step in the proof of Theorem 50.2 states that the characteristic of a finite field cannot
be 0. Give a reason.

50.3. Construct addition and multiplication tables for the ring Z2[.x]/(x2). Give two proofs that the
ring is not a field, one based on Theorem 40.1 and another based directly on the tables that
you construct.

50.4. Verify that 1 + x2 E Z3 [.r] is irreducible over Z3. (Suggestion: Use the Factor Theorem, from
Section 35.)

50.5. (a) Verify that 1 + x + x3 E Z2 [x] is irreducible over Z2.
(b) Construct addition and multiplication tables for the field Z, [x]/(1 + x + x3)

50.6. Find all n such that the multiplicative group of GF(13) has an element of order n.

50.7. Find all n such that the multiplicative group of GF(27) has an element of order n.

50.8. (a) Verify that I + x + x° E Z2[x] is irreducible over Z2.
(b) Find a generator for the (cyclic) multiplicative group of the field Z2[x]/(1 +x +x4).

50.9. Assume that F is a finite field of order p" and let {bi, b2, ... , b,, } be a basis for F as a vector
space over Z.. If a E F, then a can be written uniquely in the form of equation (50.1); define
0:F- ZpxZox...xZpby

0(a)=(a,,a2,...,a,,)

Prove that 0 is an isomorphism of additive groups. This characterizes the additive group of
GF(p").

50.10. (a) Prove: If H is a subfield of GF(p"), then H has order p"' for some divisor m of n.
[Suggestion: What does the proof of Theorem 50.2 say about [H : Zp]? A similar idea
applies to [GF(p") : H].]

(b) Prove: If m and n are positive integers and m I n, then (p'" - 1) I (p" - 1).
(c) Prove: If m I n, then GF(p") has a subfield of order p'".

50.11. Prove that if p is a prime, then p I C (p, k) for 1 < k < p - 1.

NOTES ON CHAPTER XI

References [1] through [7] are general works on modem algebra. Each of these references
contains more extensive discussions of fields and polynomial equations than this book.

The early editions of [7], which were written in the 1930s, have had a major influence
on most other textbooks in modern algebra. Reference [1] has been widely used since
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the appearance of its first edition in 1941. References [3], [6], and [7] are graduate-level
textbooks; reference [4] is written at a level between those books and this one. Reference
[2] is a well-known series treating algebra as well as other parts of mathematics; although
originally published in French, some volumes are available in English translation.
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CHAPTER XII

GEOMETRIC CONSTRUCTIONS

In the last chapter we saw that in trying to solve certain polynomial equations by radi-
cals, mathematicians in the seventeenth and eighteenth centuries had attempted to do the
impossible. The story in this chapter is similar: in working to carry out certain geometric
constructions using only an unmarked straightedge and collapsible compass, mathemati-
cians in ancient Greece also had tried to do the impossible. What makes this story especially
interesting is that although the constructions were to be geometric, the proofs of their im-
possibility involve algebra. In fact, the key algebraic concepts are the same as those used
to analyze solvability by radicals.

After showing why geometric construction problems are equivalent to problems in
algebra, we determine which of those algebraic problems have solutions. We then show
how those results apply to the constructions originally attempted by the Greeks.

SECTION 51 THREE FAMOUS PROBLEMS

In the fifth century B.C., early in the history of Greek geometry, three problems began to
attract increasing attention.

I. The duplication of the cube.
II. The trisection of an arbitrary angle.

M. The quadrature of the circle.

Each involved the construction of one geometrical segment from another, using only an
(unmarked) straightedge and a (collapsible) compass. With the first the problem was to
construct the edge of a cube having twice the volume of a given cube; with the second the
problem was to show that any angle could be trisected; and with the third the problem was
to construct the side of a square having the same area as a circle of given radius.

It must be stressed that these problems are concerned only with the question of whether
the constructions can, in theory, be carried out in a finite number of steps using only a
straightedge and compass. With the straightedge we can draw the line through two given
points, and with the compass we can draw the circle through a given point with a given
radius. For practical purposes there is no reason to restrict the tools to a straightedge and
compass, and the constructions can be carried out to any desired degree of accuracy by
other means.
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As a first step in analyzing the three problems, let us rephrase each of them using
numbers. In I, if the edge of the given cube is taken as the unit of length, and the edge of
the required cube is denoted by x, then the volumes of the two cubes are 1 cubic unit and
x3 cubic units, respectively. Thus I can be rephrased as follows:

I.' Given a segment of length 1, construct a segment
of length x with x3 = 2.

Ultimately, we shall show that the construction II is impossible in general by showing
that an angle of 60° cannot be trisected. (Some angles can, in fact, be trisected. But the
problem in H is whether they all can be trisected, and one example will suffice to prove
otherwise.) Thus we restrict attention now to an angle of 60°. It is easy to show that any
angle can be trisected if a segment the length of its cosine can be constructed from a
segment of unit length (Problem 51.1; here and elsewhere we can assume a segment of unit
length as given). It can be shown with elementary trigonometry (Problem 51.2) that if A is
any angle, then

cos A = 4 cos3(A/3) - 3 cos (A/3). (51.1)

If we take A = 60°, and let x = cos (A/3), this simplifies to

8x3-6x-I=0.
Thus the problem of trisecting a 60° angle can be rephrased like this:

II: Given a segment of length 1, construct a segment
of length x with 8x3 - 6x - 1 = 0.

For III we can take the radius of the given circle as the unit of length. Then the area
of the circle is n square units, and the problem becomes that of constructing a segment of
length x such that x2 = rr. So III can be rephrased as follows:

III.' Given a segment of length 1, construct a segment
of length x with x2 = n.

With I', II', and III', each of the original problems becomes a problem of whether
a certain multiple of a given length can be constructed. The key in each case is in the
following fact, which will be proved in the next section.

A necessary and sufficient condition that a segment of length x
can be constructed with a straightedge and compass, beginning
with a segment of length 1, is that x can be obtained from 1 by a
finite number of rational operations and square roots.

(The rational operations referred to here are addition, subtraction, multiplication, and di-
vision.) After we have proved this fact, the only remaining questions will be whether the
solutions of the equations in I', II', and III' satisfy the specified condition; those questions
will be considered in Section 53.

Now assume that a unit of length has been given. Just what this length is can vary from
problem to problem, but, whatever it is, we shall regard it as fixed until the end of the next
section. We can construct perpendicular lines with a straightedge and compass, so we do
that, and then mark off the given unit of length on each of the perpendicular lines (axes), to
establish coordinates for points in the plane of the axes. Following the usual conventions,
we label the axes with x and y, directed as shown in Figure 51.1.



SECTION 51 THREE FAMOUS PROBLEMS 231

Q

0

1

Y

P

1

Figure 51.1

x

The points 0, P, and Q will be called constructible points, as will any other points
that can be obtained by starting with the points 0, P, and Q and making repeated use of a
straightedge and compass. To determine which points are constructible, we must introduce
two further notions. A constructible line is a line (in the xy-plane) passing through two
constructible points. A constructible circle is a circle (in the xy-plane) having its center at
a constructible point and its radius equal to the distance between two constructible points.
Thus a point other than 0 or P or Q is constructible if it is a point of intersection of
two constructible lines, of two constructible circles, or of a constructible line and a con-
structible circle. Finally, a constructible number is a number that is either the distance
between two constructible points or the negative of such a distance. (This definition de-
pends on the chosen unit of length, of course.)

Example 51.1. The unit circle is constructible: its center is at point 0 and its radius is
OP. The line bisecting the first and third quadrants is constructible, because the lines OP
and OQ are constructible, and the bisector of an angle between two constructible lines is
constructible (Problem 51.5). Therefore, point R (Figure 51.2) is constructible, being the
intersection of a constructible line and a constructible circle. Also, 12- is a constructible
number, because it is the distance between P and Q.

Figure 51.2

Example 51.2. A point is constructible if each of its coordinates is a constructible num-
ber: given constructible numbers a and b, the points (a, 0) and (0, b) are constructible
in one step; and then the point (a, b) is constructible as a point of intersection of two
circles, one with center at (a, 0) and radius lb1, the other with center at (0, b) and ra-
dius at. Conversely, given a constructible point S with coordinates (a, b), we can con-
struct lines through S perpendicular to each coordinate axis; the points of intersection of
these lines with the coordinate axes have coordinates (a, 0) and (0, b), so that a and b are
constructible.

We are primarily interested in constructible numbers, but we must get at those by
working with constructible points, lines, and circles. Let K denote the set of all constructible
numbers. This is a subset of R. In fact, by the following theorem, lid is a subfield of R.
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Theorem 51.1. The set K of constructible numbers is afield.

PROOF. We are assuming that 1, a unit of length, has been given. Thus it suffices
toprovethatifaEKandbEK,thena+bEK,a-bEK,abEK,and, ifbOas
well, then alb E K. The proof for alb will be given here; the other parts will be left to the
problems.

Assume that a and b are constructible numbers, with b # 0. It will suffice to prove that
alb E K for a > 0 and b > 0. As before, assume OP of unit length (Figure 51.3). The point
S, b units from 0 on the x-axis, is constructible; and the point T, a units from 0 on the line
x = y, is constructible (Problem 51.6). The line through P parallel to ST is constructible
(Problem 51.7); let this line intersect OT at U. The point U is constructible. Also, because
triangles OPU and OST are similar, OU/OP = OTIOS. Therefore, the distance between
0andUisalb, so that a/bEK.

Figure 51.3

Being a subfield of II8, the field K must contain all rational numbers. In the next section
we shall determine what other numbers are in K.

)BLEMS

All constructions are to involve only an (unmarked) straightedge and a compass.

51.1. Show how to construct an angle given a segment the length of its cosine and a segment of unit
length.

51.2. Derive the trigonometric identity (51.1).

513. Show how to construct the perpendicular bisector of a given segment.

51.4. Show how to construct a perpendicular to a given line at a given point on the line.

51.5. Show how to construct the bisector of a given angle.

51.6. Explain why the point T is constructible in the proof of Theorem 51.1.

51.7. Explain why the line through P parallel to ST is constructible in the proof of Theorem 51.1.

51.8. Prove that if a and b are constructible numbers, then so are a + b, a - b, and ab.

51.9. Find the cubic equation (51.1) for the trisection of a 90° (right) angle by letting A = 90° and
x = cos(A/3). Show how to construct a segment of length x. (By Problem 51.1, this shows
that a 90° angle can be trisected.)
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SECTION 52 CONSTRUCTIBLE NUMBERS

The next lemma is used in proving Theorem 52.1, which characterizes the constructible
numbers.

Lemma 52.1. Let F be a subfield of R.

(a) If a line contains two points whose coordinates are in F, then the line has an
equation ax + by + c = 0 for some a, b, c E F.

(b) If a circle has its radius in F and its center at a point whose coordinates are in F,
then the circle has an equation x2 + y2 + dx + ey + f = O for some d, e, f E F.

PROOF. (a) If x1 # x2, an equation for the line through (.x1, y1) and (X2, y2) is

Y-Y1 _ Y2-yi
x-x1 x2-x1

This can be put in the form ax + by + c = 0 with each of the coefficients in F because
each is a rational combination of xl, yl, x2, and y2. If x1 = x2, the line through (x1, y1) and
(x2,y2)isx-x1 = 0, which also has the form ax + by + c =0 with a, b, c E F.

(b) Similar to part (a), beginning with

(x - x1)2 + (y - Y] )2 = r2

with x1, yl, r E F.

If F is a subfield of IR, and a E R, then F (a) is the smallest subfield of iR containing
both F and a (see Section 42). For example, Q(.) consists of all real numbers c + d.
with c, d E Q. Notice that each number in Q(J) is constructible, because Q C K and

E K (Example 51.1). Each number in Q(.)(v) = Q(., J) is also constructible,
because E K (see Problem 52.2). We now prove that all constructible numbers belong
to fields that are built up in this way.

Theorem 52.1. A real number r is constructible iff there is a finite sequence
Q= Fo C F1 C ... C Fk of subfields of lR with r E Fk, where Fj = Fj_1( j and
aj_1 is a positive number in Fj_1 for 1 < j < k.

PROOF. Assume first that r is constructible. Then r can be constructed in a finite
number of steps beginning with 1, which is in Q. In light of Lemma 52.1, it suffices to
prove that if F is any subfield of R, and a real number r is a coordinate of an intersection
point of lines or circles having equations with coefficients in F, then r E F('/a`) for some
positive real number a E F.

It is easy to see that in solving two simultaneous linear equations a I x + b1 y + c1 = 0
and a2x + b2y + c2 = 0, with coefficients in F, we will not be led outside F. Thus, if r is
a coordinate of the intersection of the corresponding lines, then r E F, which is sufficient.

If y is eliminated from ax + by + c = 0 and x2 + y2 + dx + ey + f = 0, the result is
a quadratic equation Ax2 + Bx + C = 0 with A, B, C E F. Therefore, the x-coordinates
of the intersection of the corresponding line and circle are given by

-B f B2 --4 A Cx=
2A
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If these are real numbers, then x E F(,fa-) for a = B2 - 4AC > 0, as required. The case
of the y-coordinate is similar.

The coordinates of the intersection points of two circles, x2 + y2 + dlx + ely + fl =
0 and x2 + y2 + d2x + e2y + f2 = 0, can be obtained by first subtracting, thereby getting
(d1 - d2)x + (e1 - e2)y + U1 - fz) = 0, and then using this equation with that of the first
circle. The result is similar to that in the case of a line and a circle.

Now assume that r is an element of a field Fk as described in the theorem. We know
that each number in Q is constructible, and so in order to prove that r is constructible
it suffices to prove that if each number in a subfield F of R is constructible, and if a
is a positive number in F, then each number in F(.,Ia-) is constructible. Because each
number in F (.) is of the form c + d, for c, d E F, and because products and sums of
constructible numbers are constructible, it suffices to prove that is constructible. But
it is an elementary construction problem to show that la- is constructible from 1 and a
(Problem 52.3).

)BLEMS

52.1. Carefully fill in the details in the proof of Lemma 52.1.

52.2. Prove that . E K without using Theorem 52.1.

52.3. Prove that a is constructible from 1 and a.

52.4. Prove that °'2 E K.

CTION 53 IMPOSSIBLE CONSTRUCTIONS

We now use the characterization of constructible numbers given in Theorem 52.1 to prove
the impossibility of duplication of the cube and trisection of a 60° angle. We also indicate,
without proof, why quadrature of the circle is impossible. In settling the first two problems
we need the following theorem.

Theorem 53.1. If a cubic equation with rational coefficients has no rational root, then it
has no constructible root.

The following two lemmas are used in the proof of the theorem.

Lemma 53.1. If the roots of ax3 + bx2 + cx + d are r1, r2, and r3, then r1 + r2 + r3 =
-b/a.

PROOF. The polynomials ax3 + bx2 + cx + d and a(x - rl)(x - r2)(x - r3) =
ax3 - a(rl + r2 + r3)x2 + a(r11'2 + r1r3 +)'2r3)x - arlr2r3 have the same roots and the
same leading coefficients, and therefore the coefficients on all like powers of x must be
equal (Problem 53.1). Thus, in particular, b = -a(r1 + r2 + r3).

Lemma 53.2. If F is a subfield of R, and a cubic polynomial ax3 + bx2 + cx + d E F[x]
has a root p + q,, where p, q, r E F, r > 0, and V F, then p - q,/ r is also a root.
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PROOF. The proof is similar to that of the corollary of Theorem 43.3 and is left as an
exercise (Problem 53.2).

PROOF OF THEOREM 53.1. Assume that ax3 + bx2 + cx + d E Q[x] has no rational
root, but that it does have a root in K. We shall show that this leads to a contradiction. Let
u E K be a root of the given cubic, and assume u chosen so that the corresponding field
Fk in Theorem 52.1 satisfies the condition that k is minimal with respect to the condition
of containing such a root. Then k # 0 because u §t Q = F0. Therefore, u = p + q JF
for some p, q, r E Fk_l. By Lemma 51.2, p - qlr- is also a root of the given cubic.
By Lemma 51.1, the sum of the roots of the cubic is -b/a, so that if v is the third root,
then-b/a = v+(p+q,J)+(p -q J ),andv = -b/a -2p.Buta,b, p E Fk_t,and
hence v E Fk_1, contradicting the minimality of k.

IMPOSSIBILITY OF THE DUPLICATION OF THE CUBE

From I' in Section 51, the question is whether x3 - 2 has a constructible root. Theorem
43.5 can be used to show that x3 - 2 has no rational root (Problem 53.3), and therefore, by
Theorem 53.1, x3 - 2 has no constructible root.

IMPOSSIBILITY OF THE TRISECTION OF AN ARBITRARY ANGLE

From II' in Section 51, if a 60° angle could be trisected, then 8x3 - 6x - 1 would have
a constructible root. But Theorem 43.5 can be used to show that 8x3 - 6x - 1 has no
rational root (Problem 53.3), and therefore, again by Theorem 53.1, 8x3 - 6x - 1 has no
constructible root.

DISCUSSION OF THE QUADRATURE OF THE CIRCLE

It can be proved from Theorem 52.1 that any constructible number is a root of a polynomial
with integral coefficients; any root of such a polynomial is called an algebraic number.
Thus from III' in Section 51 the impossibility of the quadrature of the circle would follow
if it were shown that is not algebraic. This was done by the German mathematician
C. L. F. Lindemann, in 1882. The proof requires methods that are not algebraic, however,
and thus it will not be given here. (See reference [1] of Chapter X.)

PROBLEMS

53.1. Prove that if two polynomials over C have the same degree, the same roots, and the same
leading coefficients, then the coefficients on all like powers of x must be equal.

53.2. Prove Lemma 53.2.

53.3. Prove that neither x3 - 2 nor 8x3 - 6x - 1 has a rational root.

53.4. Prove the following generalization of Lemma 53.1: if the roots of a,, x' + + a I x + ao are
ri, r2, ..., r,,, then

rj + r2 + ... + r, = la
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and

rjrZ...r = (-1) cola,,.

NOTES ON CHAPTER XII

1. Klein, F., Famous Problems of Elementary Geometry, 2nd ed., Dover, New York, 2003.
2. Dudley, U., The Trisectors, The Mathematical Association of America, 1994.



CHAPTER XIII

SOLVABLE AND ALTERNATING GROUPS

This chapter gives proofs of several facts about groups that were used or discussed, but not
proved, earlier in the book. Section 54 first has proofs of two basic isomorphism theorems.
It then treats some fundamental ideas about solvable groups, including a proof that any
quotient group of a solvable group is solvable, which was used in the proof of Theorem
49.2. Section 55 gives a proof that the concepts of even and odd are well defined for
permutations, and a proof that each alternating group A. is simple for n > 5.

SECTION 54 ISOMORPHISM THEOREMS AND SOLVABLE GROUPS

The following two isomorphism theorems are fundamental in the study of groups.

Theorem 54.1 (First Isomorphism Theorem). Assume that H and K are subgroups of a
group G, with K < G. Then HK is a subgroup of G, K < HK, and

H HK

Hf1K K

PROOF. We shall use Theorem 7.1 to verify that HK is a subgroup. [If neither H nor
K is normal in G, then HK might not be a subgroup. For example, ((1 2)) ((1 3)) is not a
subgroup of S3.]

Assume h, h1, h2 E H and k, k1, k2 E K. Clearly e E HK. And h2'k1h2 E K because
K<G,so

hlklh2k2 = hlh2(h2lklh2)k2 E HK.

Finally, if hk E HK, then

(hk)-1 = k-'h-' = h-'hk-'h-' = h-1(hk-'h-') E HK

because K < G. Thus HK is a subgroup.
Obviously, K < HK because K . G, so HK/K is a group. Define 9 : H -* HK/K by

9(h) = hK for each h E H. Problem 54.1 asks you to verify that 9 is a homomorphism of
H onto HK/K, and that Ker 9 = H fl K. The theorem now follows from the Fundamental
Homomorphism Theorem.
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Theorem 54.2 (Second Isomorphism Theorem). Assume that H and K are subgroups
of a group G,withK<H,H<G,andK1G.Then

G/K G
H/K H

PROOF. Define B : G/K -* G/H by B(Kg) = Hg for each Kg E G/K. Then B is
well defined, because if Kg1 = Kg2 in G/K, then glg2I E K, so g1g2' E H and Hg1 =
Hg2. Problem 54.2 asks you to verify that B is a homomorphism with Ker B = H/K. Thus
(G/K)/(H/K) ~ G/H by the Fundamental Homomorphism Theorem.

It is essential that K a G be assumed in the statement of the theorem, because normality
is not transitive, that is, K < H and H < G do not imply K < G. See Problem 55.1 for an
example.

Remark. The names used here for Fundamental Homomorphism Theorem, First Isomor-
phism Theorem, and Second Isomorphism Theorem are esentially the same as in [3]. The
terminology is not uniform. In [1], for example, First and Second are the reverse of what
is used here, and some references use First Isomorphism Theorem for what is here called
the Fundamental Homomorphism Theorem.

Definition. A normal series of a group G is a finite sequence G = Go, G 1, ... , G _ {e}
of subgroups of G such that

G=Go>Gi>G2D. (54.1)

A group is solvable if it has a normal series (54.1) such that each quotient group
Gk/Gk+l is Abelian.

We shall now prove that factor groups and subgroups of solvable groups are solvable,
and that any extension of a solvable group by a solvable group is solvable.

Theorem 54.3. If G is a solvable group, and N < G, then GIN is solvable. (Equivalently,
any homomorphic image of a solvable group is solvable.)

PROOF. Assume that G = Go, G1, ..., G. satisfy the conditions of the definition of
solvability. Then G = NGo > NG1 D . . > NG = N and NGk = (NGk+I)Gk for all k.
Therefore, NGk/NGk+1 - Gk/(NGk+1 n Gk) by the First Isomorphism Theorem, and

Gk/(NGk+l n Gk) - (Gk/Gk+1)/((NGk+l n Gk)/Gk+l)

by the Second Isomorphism Theorem. Therefore, the sequence

G=NGo,NG1.... NG,=N

shows that GIN is solvable, since each Gk/Gk+l is Abelian and any quotient group of an
Abelian group is Abelian.

Lemma 54.1. If G = Go, G1, ..., Gn = {e} is a normal series of a group G, H is a
subgroup of G, and Hk = H n Gk for each k, then Hk/Hk+l is isomorphic to a subgroup
of Gk/Gk+l, for each k.
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PROOF. For each k, Hk c Gk, Hk+1 < Hk, and Hk fl Gk+1 = Hk+1. Therefore, by
the First Isomorphism Theorem, Hk/Hk+1 ^ HkGk+1/Gk+1, which is a subgroup of
Gk/Gk+1

Theorem 54.4. If H is a subgroup of a solvable group G, then H is solvable.

PROOF. Assume (54.1) is a normal series of G such that each Gk/Gk+1 is Abelian.
Let Hk = H fl Gk for each k. Then H0, Ht, ... , H. is a normal series of H and Hk/Hk+1
is Abelian for each k, by Lemma 54.1. Thus H is solvable.

Theorem 54.5. If N is a normal subgroup of a group G, and N and GIN are solvable,
then G is solvable.

PROOF. Assume N = No, N1 , ... , Nn = (e) is a normal series of N with Abelian
factors.

Let 9 : G --> GIN be the natural homomorphism of G onto GIN. Denote GIN by
G', and assume G' = Go, Gi, ... , G' = N/N is a normal series of G' with Abelian
factors. For each k, let Gk = {x E G : 9(x) E Gk}, the inverse image of Gk with respect to
9 (Problem 18.15). Then Go, G1 , ... , Gm = No, N1.... , N is a normal series of G with
Abelian factors, so G is solvable. (Problem 54.5 asks you to explain why the last series is
normal with Abelian factors.)

PROBLEMS

54.1. Verify that, in the proof of Theorem 54.1, 9 is a homomorphism of H onto H/K, and
Kerb=Hf1K.

54.2. Verify that, in the proof of Theorem 54.2, 6 is a homomorphism with Ker 9 = H/K.

54.3. Assume that A and B are subgroups of a group G. Prove that AB is a subgroup iff AB = BA.

54.4. Assume that A and B are normal subgroups of G. Then AB is a subgroup of G by Theorem
54.1.
(a) Prove that AB < G.
(b) Prove that if A and B are solvable, then AB is solvable.

54.5. Assume that N 4 G and that 0 : G -* GIN is the natural homomorphism of G onto GIN
(Theorem 22.2). Denote GIN by G' and for each subgroup K' of G' let K denote the inverse
image of K' (as in the proof of Theorem 54.5). Prove that K -> K' gives a one-to-one
correspondence between the subgroups of G that contain N and the subgroups of GIN, with
K < G iff K' < GIN. Complete the proof of Theorem 54.5.

54.6. Prove: If G is a simple Abelian group, then its order is 1 or a prime.

54.7. Prove: If G is a simple solvable group, then its order is 1 or a prime.

54.8. Prove that a direct product G 1 x G2 x ... x G of groups is solvable if each G, is solvable.

54.9. The commutator [a, b] of elements a and bin a group 0 is defined by [a, b] = a-'b-'ab.
Prove that the subgroup generated by the set of all commutators forms a normal subgroup of
G. This group is called the commutator subgroup or derived group of G, and is denoted by
[G, G] or G' or G' .
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54.10. Assume G is a group with commutator subgroup G' (Problem 54.9).
(a) Prove that GIG' is Abelian.
(b) Prove that if N is a normal subgroup of G, then GIN is Abelian if G' c N.

54.11. The derived series of a group G is defined by G° = G, G 1, G2. ... . where Gk+t = (Gk)' for
k > 0. (See Problem 54.10.) Prove that a group G is solvable if G" = (e) for some integer
n (where (e) is the subgroup of order 1).

:CTION 55 ALTERNATING GROUPS

In Section 7, an element of S was defined to be even or odd depending on whether it can be
written as a product of an even or an odd number of transpositions, respectively. However,
it was not proved that the terms even and odd are well defined for permutations. Following
is a proof. All permutations are assumed to be elements of 5,,. Familiarity with Section 6
is assumed.

Each element of S can be written as a product of disjoint cycles. And each k-cycle
can be written as a product of k - 1 transpositions:

for k > 2, (al a2 ... ak) = (at ak) ... (al a3)(at a2)

Let N denote the mapping from S to the set of non-negative integers defined by

N((1)) = 0,

N((at a2 ... ak)) = k - 1, fork >2,

and, if a is a product of m mutually disjoint cycles a1, a2, ... , am of lengths kt , k2, ... , kn, ,
respectively, then

m m

N(a) = >N(.;) = >(k; - 1).
i=1 i=1

We shall prove that in any factorization of a as a product of transpositions, the number of
factors will be even if N(a) is even; therefore, it also will be odd if N(a) is odd.

We need the following two observations. (Remember that in this book permutations
are composed from right to left.)

(a ct ... cr b dt ... d:)(a b) = (a dt ... ds)(b ct ... Cr)
(act ... cr )(b dt ... ds)(a b) = (a dt ... ds b c1 ... cr).

Therefore, if a and b belong to the same cycle in the cyclic decompositions of a, then
N (a(a b)) = N (a) - 1, and if a and b belong to different cycles in the cyclic decomposition
of a, then N(a(a b)) = N(a) + 1. In either case,

N(a(a b)) = N(a) + I (mod 2).

If (at bt) ... (a, b,) is any representation of a as a product of transpositions, then

a(a, b,) ... (at b1) = (1),

because

[(at b1) ... (a,
b,))-1 = (a, b,)-t ... (at bt)-1 = (a, be) ... (at b1).

But N((1)) = 0. Therefore, N(a) = t (mod 2). So N(a) is even if t is even.
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The groups A. (n > 5) form one of the infinite classes of non-Abelian simple groups
(Section 23). Al and A2 are trivial (of order 1), and A3 is simple because it has prime order
3. A4 is not simple, because it has a normal subgroup of order 4 (Problem 55.1).

Theorem 55.1. If n > 5, then the alternating group A. is simple.

PROOF. Assume N is a nontrivial normal subgroup of A,,, n > 5. To prove that An is
simple, we shall prove that N = An, by proving:

(i) If N contains one 3-cycle of A,,, then N contains all 3-cycles of A,,.
(ii) An is generated by its 3-cycles.
(iii) N contains a 3-cycle.

Proof of (i). Assume, for convenience, that (12 3) E N, and that (i j k) is any other
3-cycle. Because n > 5, the permutation

Y=
3 4

k t

is in N, where f and m need only be different from i, j, and k. We may assume y is an
even permutation, by multiplying it on the right by (t m), if necessary. Then yay-1 =
(i j k) E N, because N < G. (See Example 6.7, for example.) This proves (i).

Proof of (ii). By the definition of A,,, each of its elements is a product of a se-
quence of pairs of transpositions. If the transpositions in a pair are the same, the prod-
uct is the identity. If they have one number in common, such as in (i j) and (j k), then
(i j)(j k) = (i j k), a 3-cycle. If they have no number in common, such as (i j) and (f m),
then (i j)(f m) _ (i j)(i e)(i P)(f m) = (i t j)(i t m), a product of 3-cycles.

Proof of (iii). Let a denote a nonidentity element of N that leaves fixed at least as
many numbers in S = {1, 2, ... , n} as any other element of N. We shall prove that a is a
3-cycle.

If a moves more than 3 elements of S, then either the decomposition of a contains a
k-cycle with k > 3 and a moves more than 3 elements of S, or a is a product of at least two
disjoint transpositions. Therefore, by the reasoning in part (ii), we may assume that

a = (1 2 3 ...) ... (first case)

or

a = (1 2)(3 4)... (second case).

In the first case a moves at least two other numbers, say 4 and 5, because each (12 3 k) is
an odd permutation. Let P = (3 4 5) (which is in Then pap-1 E N, because N <
so

Pa,8-1 = (1 2 4 ...) ... E N (first case)

or

pap-1 = (1 2X4 5) ... E N (second case).

If a number k > 5 in S is fixed by a, then k is fixed by Pap-1, so k is fixed by
a-1eap-1. But also, a-'pap-1 fixes 1 if a = (1 2 3 ...) (first case) and a-leap-1 fixes
2 if a = (1 2)(3 4) ... (second case). Thus a-1 pap-1, which is not the identity, fixes more
elements than a, contradicting the choice of a. Thus (iii) is proved.
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The proof that even and odd are well defined for permutations is essentially the same
as those given in [1] and [2]. The proof of Theorem 55.1 is essentially the same as those
given in [1] and [3]; the proof in [2] is different.

.OBLEMS

55.1. Let H = ((1), (12)(3 4), (13)(2 4), (14)(2 3)} and K = {(1), (12)(3 4)}. Prove that H and K
are subgroups of A4, that K 4 H and H 4 A4, but that K is not normal in A4. (Thus normality
of subgroups is not transitive.)

55.2. Prove that the tetrahedral group is isomorphic to A4. (See Example 59.6. Label the faces and
consider how each rotation permutes them.)

55.3. Prove that the octahedral group is isomorphic to S4. (See Example 59.7. One possibility is to
explain why the rotation groups of a cube and a regular octahedron are the same, such as by
connecting the centers of the faces of a cube, and then labeling the diagonals of a cube and
considering how each rotation permutes them.)

55.4. Prove that the icosahedral group is isomorphic to A5. (See Example 59.8.)

NOTES ON CHAPTER XIII

1. Jacobson, N., Basic Algebra I, 2nd ed., Freeman, San Francisco, 1985.
2. Scott, W. R., Group Theory, Dover, New York, 1985.
3. Van der Waerden, B. I., Algebra: Volume I, 9th ed., Springer-Verlag, New York, 1994.



CHAPTER XIV

APPLICATIONS OF
PERMUTATION GROUPS

This chapter introduces the use of permutation groups for the solution of counting problems.
This is one of the applications of modem algebra to the branch of mathematics known as
combinatorics or combinatorial analysis. Section 56 introduces some basic terminology,
which is then used in Section 57 in the proof and application of Bumside's Counting
Theorem. In Section 58 the ideas in Section 56 are applied to prove a theorem within group
theory itself.

SECTION 56 GROUPS ACTING ON SETS

We begin by recalling the group of symmetries of a square, from Example 8.1. For con-
venience, here are the definitions of the elements and also the accompanying figure,
Figure 56.1.

v

s i
a b

D,

i /

d

Figure 56.1

Group of symmetries of a square (Figure 56.1)

µa =
µ9o =

µ18o =
µ27O =

PH =
Pv =
Pt =

P2 =

identity permutation
rotation 90° clockwise around p
rotation 180° clockwise around p
rotation 270° clockwise around p
reflection through H
reflection through V
reflection through D1
reflection through D2.

Denote the group by G. The elements of G are isometries of the plane; therefore, they
are permutations of the set of all points of the plane. But these isometries also induce
permutations of the set of vertices of the square in a natural way. If we assign to each
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isometry the corresponding permutation of {a, b, c, d}, then we have a mapping from G to
Sym{a, b, c, d}. The mapping with the induced permutations written in cycle notation is

AO H (a)(b)(c)(d) PH (a d)(b c)
Ago 1-+ (a b c d) pv H (a b)(c d)

Also H (a c)(b d) pi H (a)(c)(b d)

A270 H (a d c b) p2 ra (a c)(b)(d).

Because the operations on both G and Sym{a, b, c, d} are composition, this mapping is a
homomorphism.

The isometries in G also induce permutations of the set of diagonals (D1, D2} in a
natural way. For instance, A180(D1) = D1 and Aiso(D2) = D2 (Also interchanges the ends
of each of the diagonals, but that is not important here). In this case we can assign to
each isometry the corresponding permutation of {D1, D2}. This gives a mapping from G to
Sym{D1, D2}. The induced permutations are

Ao r-* (Di)(D2) PH 1-* (D1 D2)
Ago - (D1 D2) Pv r* (D1 D2)
A 180 H (D1)(D2) P1 H (D1)(D2)
A270 H (D1 D2) P2 r-' (D1)(D2)

Again, the mapping is a homomorphism.
These two examples are special cases of the following generalization of the notion of

a permutation group on a set. (Here, and throughout this chapter, the notation P o a for
composition will be shortened to $a.)

Definition. A group G acts on a set S if to each g E G there is assigned a permutation
n8 in such a way that nab = 7ra7rb for all a, b E G.

In other words, G acts on S if there is a homomorphism g 1-+ 7rg of G into Sym(S).
[If g E G, so that n8 E Sym(S), and S E S, then 7rg(s) E S. We are writing 7rg rather than
7r(g) because 7rg(s) seems preferable to 7r(g)(s).] Any subgroup of Sym(S) acts on S.
The idea of a group's acting on S is more general than that of a permutation group on S
because, in the former case, unequal group elements can give rise to equal permutations; that
is, the mapping g 1-+ 7rg need not be one-to-one. If the mapping g i- 7rg is one-to-one, then
G is said to act faithfully on S. In the first example above, G acts faithfully-unequal group
elements give rise to unequal permutations of {a, b, c, d}. In the second example, G does
not act faithfully-consideredonly as permutations of (D1, D2}, Ao = Also = pi = P2 and
Ago=A270=PH=Pv

Because g ra 7rg is a homomorphism, necessarily Ire = is and 7rg = 7rg for all
g E G. This is used in the proof of the following theorem.

Theorem 56.1. Assume that G is a group acting on a set S. Define the relation ^- on S by

s1 ^' S2 iff 7rg(si) = S2 for some g E G.

Then ^- is an equivalence relation on S.

PROOF. Reflexive: Ifs E S, then 7re(s) = is(s) = s so that s ^- s.
Symmetric: If Si '" s2 with 7rg(si) = S2, then 7rg-i(S2) = 7r9 1(s2) = S1 SO S2 ^' S1.
Transitive: If s1 - S2 and s2 s3, with 7rg(si) = S2 and 7rh(S2) = s3, then 7rhg(si) _

7rh7rg(S1) = 7rh(s2) = S3 so that s1 S.
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The equivalence classes relative to ' in Theorem 56.1 are called orbits. The term
G-orbit can be used if it is necessary to specify the group. Also, -G can be written in place
of ^-.

Example 56.1. Let G denote the group of all rotations of a plane about a point p in the
plane (Example 5.7). Then G acts on the set of points in the plane, and the orbits are the
circles with centers at p.

Example 56.2. If S is any nonempty set, then Sym(S) acts on S, and there is only one
orbit, namely S.

Example 56.3. The subgroup {µo, µ180) of the symmetry group of a square acts on
(a, b, c, d) (Figure 56.1). The orbits are {a, c} and {b, d}.

For G acting on S and S E S, let Orb(s) denote the orbit of s:

Orb(s) = {7rg(s) : g E G}.

Then IOrb(s)I is the number of elements in the orbit of s. Let G. denote the set of all g E G
such that 7rg(s) = s. Problem 56.8 asks for verification that GS is a subgroup of G.

Example 56.4. The group G = {(1), (1 2), (3 4), (1 2)(3 4)} acts on { 1, 2, 3, 4}. In this
case

Orb(1) = Orb(2) = {1,2}, Orb(3) = Orb(4) = (3, 41,

GI = G2 = ((1), (3 4)}, G3 = G4 = ((1), (1 2)}.

The following theorem, which gives a formula for the number of elements in an orbit,
is the key to the connection between group theory and combinatorics.

Theorem 56.2. If a finite group G acts on a set S, and s E S, then

IOrb(s)I=[G:Gs]= IIGII.

PROOF. To compute I Orb(s) I, we must compute the number of distinct elements 7rg (s)
for g E G. To do that, we examine when 7rg(s) = 7rh(s) for g, h E G.

7rg(s) = 7rh(s) if (7rh I7rg)(s) = s if 7rh t(ag(s)) = s

if 7r-t5(s) = s if h-tg E GS if gGs = hGs.

The equivalence 7rg(s) = 7rh(s) iff gGs = hGs shows that there is a one-to-one corre-
spondence between the set of elements in Orb(s) and the set of all left cosets of GS in G.
(Use Lemma 16.1 with left cosets in place of right cosets.) Therefore, IOrb(s)I = [G : Gs].

The equation [G : Gs] = IGI/IG:I follows from Lagrange's Theorem.

PROBLEMS

56.1. Write the permutation induced on [H, V) by each isometry (symmetry) of the square.

56.2. Let E1, E2, E3, and E4 denote, respectively, the edges ab, bc, cd, and da of the square in
Figure 56.1. Write the permutation induced on (El, E2, E3, E4) by each isometry (symmetry)
of the square. [Example: pH -* (E I E3).] Does the symmetry group of the square act faithfully
on [El, E2, E3, E4}?
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56.3. Determine the orbits for each of the following subgroups of the symmetry group of the square,
acting on the set of diagonals, {DI, D2). (Compare Example 56.3.)
(a) (p-%) (b) (PH) (c) (Pi)

56.4. (a) to (c). Repeat Problem 56.3, except replace (D1, D2) by (a, b, c, d).

56.5. The group G = ((1 2 3)(4 5)) is of order 6 and acts on (1, 2, 3, 4, 5}.
(a) Determine Orb(k) for 1 < k < 5.
(b) Determine Gk for 1 < k < 5.
(c) Use parts (a) and (b) to verify that IOrb(k)I =IGI / I Gk I for 1 < k < 5. (Compare Theorem

56.2.)

56.6. The group G = ((1 2 3 4)(5 6)) is of order 4 and acts on {1, 2, 3, 4, 5, 61.
(a) Determine Orb(k) for 1 < k < 6.
(b) Determine Gk for 1 < k < 6.
(c) Use parts (a) and (b) to verify that I Orb(k) I =IGI / I G k I for 1 < k < 6. (Compare Theorem

56.2.)

56.7. The paragraph preceding Theorem 56.1 states that because g " ng is a homomorphism if
G acts on a set, necessarily rr, _ t, and ng-. = n8 '. Give a precise reference to justify this.
(See Section 21.)

56.8. Prove that if G acts on S by g H ng, ands E S and

G,= (gEG:ng(s)=s),

then G, is a subgroup of G.

56.9. Assume that G is a group, and for each a E G define ng : G H G by na(x) = axa-1 for
each x E G.
(a) Verify that with this definition G acts on G. (The orbits in this case are known as the

conjugate classes of G; elements s, t E G are conjugate if t = asa-1 for some a E G.)
(b) For G = S3, determine Orb(s) for each s E G.
(c) Verify that G is Abelian if Orb(s) = 1 for each s e G.
(d) Verify that, in general, IOrb(s)I = 1 if so = as for each a E G.
(e) Verify that the set of all elements s satisfying the two equivalent conditions in part (d) is

a subgroup of G. This subgroup is called the center of G; denote it by Z(G).
(f) Verify that Z(S3) = ((1)).

(g) Verify that the center of the symmetry group of a square is {µo, µ18o}.

56.10. Let G be a group, and let Aut(G) denote the automorphism group of G (Problem 19.25).
(a) Verify that if rra is defined as in Problem 56.9, then na E Aut(G). (An automorphism of

the form rra is called an inner automorphism of G.)
(b) Define 9 : G -+ Aut(G) by 9(a) = Ira for each a E G. Verify that 6 is a homomorphism.
(c) With 0 as in part (b); 9(G), being the image of a homomorphism, must be a subgroup of

Aut(G). Denote this subgroup by Inn(G) (it is called the group of inner automorphisms
of G). Verify that IInn(G)I = 1 if G is Abelian.

(d) Explain why G/Z(G) Inn(G). [See Problem 56.9(e) for the definition of Z(G).]

56.11. Verify that Z3 has an automorphism that is not an inner automorphism. [Compare Problem
56.10(c).]

56.12. Let S denote the collection of all subgroups of a finite group G. For a E G and H E S, let
na(H) = aHa'.
(a) Verify that with this definition G acts on S. (Each subgroup aHa-' is called a conjugate

of H.)
(b) For G = S3, determine Orb(((1 2))).
(c) For G = S3, determine G((I 2)).
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(d) Use parts (b) and (c) to verify that

IGIIOrb(((1 2)))1 =
IG(u 2))l

(compare Theorem 56.2).
(e) For H E S, the normalizer of H in G is defined by NG(H) = (a E G : aHa-1 = H).

Using results from this section, explain why NG(H) is a subgroup of G, and the number
of conjugates of H is [G : NG(H)].

56.13. Prove that if G acts on S and 7r,(s) = t, then G, = a-'G,a.

56.14. If G acts on S and H is a subgroup of G, then H acts on S.
(a) Verify that s -H t implies s -G t.
(b) Give an example (specific S, G, H, s, t) showing that s -G t does not imply s '"H t.

56.15. Assume that H acts on S and that 0 : G r+ H is a homomorphism from G onto H.
(a) Verify that G acts on S if n, is defined to be 7r9(,) for each a E G.
(b) Verify that if s, t E S, then s ^-H tiffs ^-G t.

56.16. Explain Cayley's Theorem (Section 20) in terms of a group acting on a set. Is the action
faithful?

56.17. (Generalization of Cayley's Theorem) Let G be a group, H a subgroup of G, and S the set of
left cosets of H in G. For a E G, define n, : S H S by n,(gH) = (ag)H.
(a) Verify that in this way G acts on S, that is, a r+ Jr. defines a homomorphism from G into

Sym(S).
(b) Prove that Ker n = fl{gHg-' : g E G}.
(c) Explain and prove the statement "Ker n is the largest normal subgroup of G that is

contained in H."

56.18. Prove that if a finite group G contains a subgroup H 54 G such that IGI X [G : H]!, then H
contains a nontrivial normal subgroup of G. (Use Problem 56.17, Lagrange's Theorem, and
facts about homomorphisms.)

56.19. (a) Prove that if a finite group G contains a subgroup H 0 G such that IG I X [G : H]! , then G
is not simple. (Use Problem 56.18. Simple groups, and their importance, were discussed
in Section 23.)

(b) Assume that each group of order 100 contains a subgroup of order 25 (this will be proved
in Section 58). Prove that there is no simple group of order 100.

SECTION 57 BURNSIDE'S COUNTING THEOREM

One of the central problems of combinatorics is to compute the number of distinguishable
ways in which something can be done. A simple example is to compute the number of
distinguishable ways the three edges of an equilateral triangle can be painted so that one
edge is red (R), one is white (W), and one is blue (B). The six possibilities are shown in the
top row of Figure 57.1.

If we permit rotation of the triangle in the plane, then the first three possibilities
become indistinguishable-they collapse into the first possibility in the second row of
Figure 57.1. The last three possibilities in the top row collapse into the second possibility
in the second row.

If we permit reflections through lines, as well as rotations in the plane, then the only
possibility is that shown in the third row of Figure 57.1.
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Figure 57.1

In passing from one row to the next in the example, we have treated different ways
of painting the triangle as being equivalent, and we have shown one representative from
each equivalence class. The problem at each step is to compute the number of equiv-
alence classes. In the terminology used most often in combinatorics, possibilities in the
same equivalence class are indistinguishable, whereas possibilities in different equivalence
classes are distinguishable. So the problem of computing the number of distinguishable
ways in which something can be done is the same as that of computing the number of
equivalence classes under an appropriate equivalence relation. The link between group
theory and combinatorics rests on the fact that the equivalence classes are very often orbits
under the action of an appropriate group. In the example, the appropriate group for passing
to the second row of Figure 57.1 is the group of rotations of the triangle; the appropriate
group for passing to the third row contains these three rotations and also three reflections,
each through a line connecting a vertex with the midpoint of the opposite side (this group
is D3 in the notation of Section 59).

To solve a combinatorics problem with these ideas, the first step is to get clearly in
mind the total set of possibilities (without regard to equivalence). Next, decide the condition
under which possibilities are to be considered equivalent (indistinguishable). This will mean
membership in a common orbit under the action of some group; so in effect this means to
choose an appropriate group. Finally, compute the number of orbits relative to this group;
this will be the number of distinguishable possibilities. This method derives its power from
Burnside's Counting Theorem, proved below, which gives a way to compute the number
of orbits relative to a group action (William Burnside, 1852-1927).

In considering a group acting on a set, it is often less cumbersome to use the same
symbol for a group element and the permutation assigned to it, that is, to write g for ng;
we do so in this section. (If this troubles you, do Problem 57.10.) All groups and sets in
this section are assumed to be finite.

For a group G acting on a set S, we shall use >f(g) to denote the number of elements
of S that are invariant under g E G:

,/r(g)=I{S ES:g(S)=s}I

Burnside's Counting Theorem. If a group G acts on a set S, then the number of
orbits is

1

*(g).
IGIgG
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Example 57.1. Consider the group {(1), (1 2), (3 4), (1 2)(3 4)} acting on {1, 2, 3, 41.
Then, for example, the permutation (1 2) leaves only 3 and 4 invariant, so that *((1 2)) _
2. Here are all values >/'(g):

*((1)) = 4 '((3 4)) = 2
*((l 2)) = 2 r((1 2)(3 4)) = 0.

The formula in Burnside's Theorem gives (1) (4 + 2 + 2 + 0) = 2. The two orbits are 11, 2}
and {3, 4}.

Other examples will follow the proof of the theorem, which will depend on the fol-
lowing lemma.

Lemma 57.1. If a group G acts on a set S, s, t E S, and s and t are in the same orbit, then
IGsI = IGI

PROOF. Ifs and t are in the same orbit, then IOrb(s)I = IOrb(t)I, so Theorem 56.2
implies

IGsI = IGI/IOrb(s)I T IGI/IOrb(t)I = IGt1.

PROOF OF BURNSIDE'S THEOREM. Let n denote the number of pairs (g, s) such that
g(s) = s (g E G, S E S). The number of s appearing with a given g is >/'(g), so that

n = E*(g). (57.1)
gEG

The number of g appearing with a given s is IG, I, so that

n=EIG,I.
SES

(57.2)

If we select an orbit Orb(t), sum IG, I over all s E Orb(t), and use first Lemma 57.1 and
then Theorem 56.2, we get

E IGSI = IOrb(t)I IGI = IGI. (57.3)
SEOrb(t)

If we add together all sums like those in (57.3), one such sum for each orbit, we get the
sum in (57.2). Therefore,

n = I G, I = (number of orbits) IGI .
SES

Solve this for the number of orbits, and then use (57.1):

number of orbits =
IGI I G I gEG

Example 57.2. In how many distinguishable ways can the four edges of a square be
painted with four different colors if there is no restriction on the number of times each
color can be used, and two ways are considered indistinguishable if one can be obtained
from the other by an isometry in the group of symmetries of the square? (This would be
the case for a square that could be either rotated in the plane or turned over; the latter
corresponds to reflection through a line in the plane.)



150 CHAPTER XIV APPLICATIONS OF PERMUTATION GROUPS

The appropriate set S in this case is the set of 44 = 256 ways of painting the edges
without regard to equivalence. The group is the one described at the beginning of Section
56. If p is a group element, then t/r(p) = 4k, where k is the number of independent choices
to be made in painting the edges so as to have invariance under p.

* (µo) = 44 (always *(t) = ISI if t is the identity-four choices)
/r(µ90) = 4 (for invariance under µ9o, all edges must be of the same color-one

choice)
(A so) = 42 (pairs of opposite edges must be of the same color-two choices)

,/r(µ270) = 4 (like µ9o-one choice)
*(PH) = 43 (ab and dc must be of the same color; ad and be are independent

three choices)
i,r(pv) = 43 (like pH-three choices)
*(pi) = 42 (ab and ad must be of the same color; cb and cd must be of the same

color-two choices)
*(p2) = 42 (like pl-two choices).

Therefore, by Burnside's Theorem, the number of distinguishable ways is

(g)(44+4+42+4+43+43+42+42)=55.

Example 57.3. In how many distinguishable ways can the six faces of a cube be painted
with six different colors if each face is to be a different color and two ways are considered
indistinguishable if one can be obtained from the other by rotation of the cube?

The answer here is the number of orbits when the group G of all rotations of a cube
acts on the set S of all cubes painted with the six different colors. The group G contains 24
elements, which can be classified as follows (the references are to Figure 57.2):

1. The identity

2. Three 180° rotations around lines (such as ij) joining the centers of opposite faces

3. Six 90° rotations around lines (such as ij) joining the centers of opposite faces

4. Six 180° rotations around lines (such as kl) joining the midpoints of opposite edges

5. Eight 120° rotations around lines (such as ag) joining opposite vertices

Figure 57.2

The number of elements of S is 6! = 720 (the number of ways of painting the cube
without regard to equivalence). If i denotes the identity of G, then >lr(t) = 720. If p # t,
then *(p) = 0, because any way of painting the cube with all faces different colors will be
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PROBLEMS

carried into a different way under the action of p. Therefore, by Burnside's Theorem, the
number of orbits is (24)(720) = 30.

If we identify the six colors here with the integers from 1 to 6, we can interpret this
answer as saying that there are 30 distinguishable ways of assigning the numbers to the
faces of a die. (One of these ways is standard.)

The book Combinatorial Enumeration of Groups, Graphs, and Chemical Compounds,
by G. Pdlya and R. C. Read (Springer-Verlag, New York, 1987), discusses the history
and applications of the part of combinatorial analysis that has been built on Burnside's
Theorem.

57.1. Use Burnside's Counting Theorem to compute the number of orbits for the group
((1 2 3)(4 5)) acting on ( 1, 2, 3, 4, 5). What are the orbits?

57.2. Use Burnside's Counting Theorem to compute the number of orbits for the group
((1 2 3 4)(5 6)) acting on {1, 2, 3, 4, 5, 6}. What are the orbits?

57.3. Consider the problem of painting the edges of a square so that one is red, one is white, one
is blue, and one is yellow.
(a) In how many distinguishable ways can this be done if the edges of the square are distin-

guishable? (This is the analogue of the case of a triangle represented by the first row in
Figure 57.1.)

(b) Repeat (a), except count different ways as being indistinguishable if one can be obtained
from the other by rotation of the square in the plane. (Compare the second row in Figure
57.1.)

(c) Repeat (b), except permit reflections through lines as well as rotations in the plane.

57.4. State and solve the problem that results from replacing a square by a regular pentagon in
Problem 57.3 (with some appropriate fifth color). (The group will have order 10. It is D5 in
the notation of Section 59.)

57.5. A bead is placed at each of the four vertices of a square, and each bead is to be painted either
red (R) or blue (B). Under equivalence relative to the group of rotations of the square, there
are six distinguishable patterns:

R R R R R R R B R B

R R R B B B B R B B B B

Verify that Burnside's Counting Theorem gives the correct number of distinguishable patterns.

57.6. A bead is placed at each of the six vertices of a regular hexagon, and each bead is to be painted
either red or blue, How many distinguishable patterns are there under equivalence relative to
the group of rotations of the hexagon? (Compare Problem 57.5.)

57.7. State and solve the problem that results from replacing a square by a regular pentagon in
Example 57.2. Compare Problem 57.4.

57.8. Repeat Problem 57.7 with a regular hexagon in place of a regular pentagon.

57.9. Repeat Problem 57.4 with a regular hexagon in place of a regular pentagon.

57.10. Rewrite Bumside's Counting Theorem and Lemma 57.1, and their proofs, using the notation
rr8 in place of g wherever appropriate.
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57.11. In how many distinguishable ways can the three edges of a triangle be painted with the three
colors red, white, and blue if there is no restriction on the number of times each color can
be used? State clearly how this problem is like, and also different from, the example at the
beginning of this section, and also Example 57.2.

57.12. In how many distinguishable ways can the four faces of a regular tetrahedron be painted
with four different colors if each face is to be a different color and two ways are considered
indistinguishable if one can be obtained from the other by rotation of the tetrahedron? (The
group of rotations in this case has order 12. In addition to the identity, there are eight 120°
rotations around lines such as ae in the following figure, and three 180° rotations around lines
such as fg.)

57.13. A bead is placed at each of the eight vertices of a cube, and each bead is to be painted either
red or blue. Under equivalence relative to the group of rotations of the cube, how many
distinguishable patterns are there?

57.14. Repeat Problem 57.13 with a regular tetrahedron in place of a cube. (The group is described
in Problem 57.12.)

SECTION 58 SYLOW'S THEOREM

Sylow's Theorem. If G is a group of order pkm, where p is a prime and p X m, then G
has a subgroup of order pk.

This theorem should be viewed as a partial converse of Lagrange's Theorem. That
theorem tells us that if H is a subgroup of G, then I H I divides IG 1. However, as we learned
in Section 17, there is no guarantee of a subgroup of each possible order dividing the order
of a group. Sylow's Theorem provides such a guarantee for the highest power of each
prime dividing the order. In fact, the ideas we shall use in proving Sylow's Theorem can
also be used to prove the existence of a subgroup of each prime power order-not just the
highest-dividing the order of a group (Problem 58.15).

This theorem was first proved by Sylow in 1872. The proof we give here is due to the
German mathematician Helmut Wielandt (1910-2001). It is a splendid application of the
idea of a group acting on a set.

In the proof of the theorem, S denotes the set of all pk_element subsets of G, and G
acts on this set in a natural way. Before the proof we need some preliminary results about
the set S.

The number of r-element subsets of an n-element set is the binomial coefficient

n n! n(n - 1)...(n - r + 1)
(58 1)

\r

r!(n - r)!
.

r!
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Here n can be any positive integer, and 0 < r < n. You can construct (or review) a
proof of this by doing Problem 58.8. We shall need to consider this in the special case
n = pkm, r = pk.

Lemma 58.1. If p is a prime and p X m, then

PROOF

pkm pkm(pkm - 1) ... (pkm - j)... (pkm - pk + 1)
pk) pk(pk - 1)...(pk - j)...(pk - pk + 1)

Except for the factor m, which is not divisible by p, this fraction is equal to a product of
fractions

pkm - j
pk _j

with 0 < j < pk - 1. If these fractions are reduced to lowest terms, then none has a nu-
merator divisible by p, because for 0 < j < pk - 1 the highest power of p dividing pk - j
is the same as the highest power of p dividing pkm - j, both being equal to the highest
power of p dividing j (Problem 58.9).

PROOF OF THE SYLOW'S THEOREM. Let S denote the set of all pk-element subsets of
G. By the lemma, p X I S I. Also, G acts on S as follows: for a E G and T E S,

rro(T) = aT = {at : t E T).

Because I S I is the sum of the numbers IOrb(T)I for the different G-orbits, we must have
p X I Orb(T) I for some T E S, for otherwise we would have p I I S I . Let {T1, ... , TT } be
an orbit with p X u, and let H = {g E G : gT1 = T1 }. Then H is a subgroup-in fact, in
the notation of Section 56, H = GT, . By Theorem 56.2, 1G I = u HI. Since pk I IG I, and
p X u, we must have pk 11 H I. Therefore pk _< IHI.

Because hT1 = T1 for each h E H, we can also think of H as acting on T1. Let t E T1.
Then Ht, which is (h E H : ht = t), contains only e, so IH,I = 1. By Theorem 56.2,
IHI = IOrb(t)I H. Therefore IHI = IOrb(t)I < pk.

From pk < I H I < pk we deduce that I H I = pk.

Sylow's Theorem, as stated previously, can be extended to include still more infor-
mation about subgroups of prime power order. To do this, it will help to introduce the
following terminology. Let p be a prime. A subgroup whose order is a power of p is called
a p-subgroup. A p-subgroup of a finite group G whose order is the highest power of p
dividing IGI is called a Sylow p-subgroup. If H and K are subgroups of a group G, and
K = aHa-1 for some a a c G, then K is a conjugate of H (see Problem 56.12).

Sylow's Theorem (Extended Version). Let G be a group of order pkm, where p is a
prime and p X m. Then

(a) the number n p of Sylow p-subgroups of G satisfies n p - 1 (mod p),

(b) nPlm,and

(c) any two Sylow p-subgroups are conjugate.
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Although we shall not prove this theorem, an application of it is given in the following
example. This example gives some idea of the usefulness of Sylow's Theorem, but only
more experience with the theory of finite groups can give a true appreciation of the theorem.

Example 58.1. Assume that G is a finite group of order pkm, where p is a prime, p1 m,
m > 1, and k > 0. It is not hard to prove that if G has only one Sylow p-subgroup, then
the subgroup must be normal (Problem 58.10). In particular, if G has only one Sylow
p-subgroup, then G is not simple. (Simple groups and their importance are discussed
in Section 23.) This fact can be used along with parts (a) and (b) of Sylow's Theorem
(Extended Version) to show that there are no simple groups of certain orders. For example,
suppose that I G I = 100. Then n5 - 1 (mod 5) so that n5 = 1 or 6 or 11 or .... But also
n514. Therefore n5 = 1, that is, G has only oneSylow 5-subgroup; thus G is not simple.
(Problem 56.19 outlines a different proof that there is no simple group of order 100.)

In 1928, the English mathematician Philip Hall (1904-1982), who had an important
influence on group theory in the twentieth century, proved the following generalization
of Sylow's Theorem for finite solvable groups (Section 54): If G is solvable of order mn,
where m and n are relatively prime, then G has a subgroup of order m, and any two sub-
groups of order m are conjugate in G.

OBLEMS

58.1. What are the orders of the Sylow p-subgroups of a group of order 180?

58.2. What are the orders of the Sylow p-subgroups of a group of order 700?

58.3. Verify Lemma 58.1 by direct computation for
(412).

20).
58.4. Verify Lemma 58.1 by direct computation for (4/l

58.5. Find all of the Sylow p-subgroups of S3 for p = 2 and p = 3. Verify that the three conditions
in Sylow's Theorem (Extended Version) are satisfied for both values of p.

58.6. Use Sylow's Theorem (Extended Version) to verify that if I G I = 24, then n2 equals 1 or 3,
and n3 equals 1 or 4. Now find n2, and n3 for S4 by finding all Sylow 2-subgroups and all
Sylow 3-subgroups of S4.

58.7. Explain why every group of order 12 must have a subgroup of every order dividing 12 except,
possibly, 6. (Problem 17.28 gives an example of a group of order 12 that has no subgroup of
order 6.)

58.8. Assume that n and r are integers such that 0 < r < n.
(a) Explain why the number of ways of choosing r elements from an n-element set, taking

into account the order in which the elements are chosen, is n(n - 1) . . (n - r + 1).

(b) Let I I denote the number of ways of choosing r elements from an n-element set,

without regard to order. Explain why

r!/ I = n(n - 1)...(n - r + 1).
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(Notice that each way of choosing r elements without regard to order corresponds to r!
ways of choosing r elements taking order into account.)

(c) Using part (b) and the convention 0! = 1, verify Equation (58.1).

58.9. Assume that p is a prime.
(a) Prove that if 0 < j < pk - 1, then p` I j iff p` I (p` - j).
(b) Prove that if 0 < j < pk - 1 andp X m, then

P` I j if P` I (Pkm - j).

58.10. (a) Verify that if H is a subgroup of G, and a E G, then aHa-t is a subgroup of G.
(b) Prove that if H is a finite subgroup of G, and a E G, then IaHa-' I = IH 1. (Suggestion:

The mapping h r-> aha-' is one-to-one.)
(c) Explain why if H is a Sylow p-subgroup of a finite group, then so is each conjugate of H.
(d) Prove that if a finite group has only one Sylow p-subgroup for some prime p, then that

subgroup must be normal.

58.11. (a) Use Sylow's Theorem (Extended Version) to prove that every group of order 6 has only
one subgroup of order 3.

(b) Give an example of a group of order 6 that has more than one subgroup of order 2.
(c) Give an example of a group of order 6 that has only one subgroup of order 2.

58.12. Prove that there is no simple group of older 20. (See Example 58.1.)

58.13. Prove that a group of order 175 must have normal subgroups of orders 7 and 25. (See Example
58.1.)

58.14. Let G be a group of order 56.
(a) Say as much as you can, based on Sylow's Theorem (Extended Version), about the number

of Sylow 2-subgroups and the number of Sylow 7-subgroups of G.
(b) Explain why the total number of nonidentity elements in the Sylow 7-subgroups of G is

6n7. (Use Lagrange's Theorem.)
(c) Using parts (a) and (b), explain why either n7 = 1 or n2 = 1.
(d) Using part (c), explain why there is no simple group of order 56.

58.15. Prove that if p is a prime and G is a finite group such that pk I I G I, then G has a subgroup of
order pk, [Suggestion: Follow the proof of Sylow's Theorem, but first prove the following
generalization of Lemma 58.1: if p is a prime and p' is the highest power of p dividing m,

k

then p' is also the highest power of p dividing P m
.]

Pk



HAPTER XV

SYMMETRY

This chapter continues the discussion of groups and symmetry that was begun in Section 8.
The first section gives complete lists of the finite symmetry groups of plane figures, and the
finite rotation groups of three-dimensional figures. The next section gives a complete list of
the infinite discrete symmetry groups of two-dimensional figures; these are the symmetry
groups of such things as border ornaments and wallpaper patterns. The third section is an
introduction to the use of groups in crystallography, one of several important applications
of groups to symmetry problems in science. In the last section of the chapter we draw on
linear algebra to prove a result known as the crystallographic restriction; this is done to
illustrate the natural connection between groups, geometry, and linear algebra. The proofs
of many of the facts presented in this chapter are too long to be included here. The goal
is to summarize some ideas and introduce some others, and to provide more experience
with groups and symmetry through the examples and problems. References for proofs and
other details can be found in the notes at the end of the chapter. The list of references in
[14] gives sources for other applications in physics and chemistry.

,CTION 59 FINITE SYMMETRY GROUPS

The motions (isometries) leaving either a plane figure or a three-dimensional figure in-
variant form a group, called the group of symmetries (or symmetry group) of the figure.
We saw this for plane figures in Section 8. For applications of group theory to geometry
and crystallography it is important to determine just what groups can arise as symmetry
groups-it turns out that most groups cannot. In this section we shall get an idea of what
the possibilities are among finite groups. We begin with the two-dimensional case.

If a motion preserves orientation, it is called a proper motion. (A plane motion preserves
orientation if the clockwise direction around a circle before the motion is applied is still
the clockwise direction after the motion is applied. Any translation is a proper motion;
reflection through any line is not.)

There are three basic types of plane motions: rotations, translations, and glide-
reflections. We met rotations, translations, and reflections in Section 8. A glide-reflection
is a translation in the direction of a line followed by reflection through the line; the set
of footprints shown in Figure 59.1 (assumed to extend infinitely far in each direction) is
invariant under a glide-reflection consisting of translation through t/2 units followed by
reflection through the central line (axis). For convenience, the case of reflection without
translation is included in the category of glide-reflections.
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Figure 59.1

257

It is easy to verify that rotations and translations are proper motions, and that glide-
reflections are improper. It is also easy to verify that if two motions are applied in succession,
then the result will be proper if both are proper, proper if both are improper, and improper
if one is proper and the other is improper. Problems 59.22, 59.23, and 59.24 suggest how
to prove the following theorem.

Theorem 59.1. A motion of the plane is either a rotation, a translation, or a glide-
reflection. The symmetry group of a plane figure either contains only proper motions, or its
proper motions form a subgroup of index two (in which case half of its motions are proper
and half are improper).

We shall restrict attention hereafter to discrete groups of motions: A group G of plane
motions is discrete if for each point p in the plane there is a circle with center at p such that
for each µ in G either µ(p) is outside that circle or µ(p) = p. The symmetry group of a
square (Example 8.1) is discrete. The symmetry group of a circle is not discrete-any point
on the circle can be reached from points arbitrarily close to itself by rotations in the group.
A group G of three-dimensional motions is discrete if for each point p there is a sphere
with center at p such that for each µ in G either µ(p) is outside that sphere or µ(p) = p.
A finite symmetry group is necessarily discrete (Problem 59.12).

Example 59.1. The group of Figure 59.2 is cyclic of order 3. It contains the identity,
clockwise rotation through 120° around p, and clockwise rotation through 240° around p.
Each is a proper motion. We denote this group by C3.

Example 59.2. The group of Figure 59.3 is of order 6. It contains the group in Example
59.1 as a subgroup, and it also contains three reflections (improper motions), one through
each of the three axes intersecting at p. We denote this group by D3.

Figure 59.2 Figure 59.3

Except for the number of rotations and axes involved, the groups in the two examples
just given exhaust the finite plane symmetry groups. To state this precisely, we introduce
the following two classes of groups.

A group Cn is cyclic of order n, and consists of clockwise rotations through k(360/n)°,
0 < k < n, around a fixed point p.
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A group D. has order 2n, and contains the elements of C together with reflections
through n axes that intersect at p and divide the plane into 2n equal angular regions.
The groups Dn are called dihedral groups.

Example 59.3. The symmetry group of a square is D4; the axes of symmetry are the two
diagonals and the horizontal and vertical lines through the center of the square (Example
8.1). The symmetry group of an equilateral triangle is D3. More generally, the symmetry
group of a regular n-sided polygon is D,,. Most snowflakes have the symmetry group D6
(Figure 59.4), although some have the symmetry group D3. (This phenomenon was studied
by Kepler [11].) The symmetry group of a rectangle (Example 8.1) is D2, and that of a
parallelogram (again Example 8.1) is C2.

Figure 59.4

In his interesting book Symmetry [22], Hermann Weyl credits the discovery of the
following theorem, in essence, to Leonardo da Vinci, who wanted to determine the possible
ways to attach chapels and niches to a central building without destroying the symmetry
of the nucleus.

Theorem 59.2. A finite symmetry group of a plane figure is either a cyclic group C or a
dihedral group D,,.

PROOF. Assume that G is a finite symmetry group of a plane figure, and assume first
that G has order n and contains only rotations. Each rotation except the identity can be
assumed to be clockwise through a positive angle of less than 360°. Let a be the one with
the smallest angle. Then G contains t = a0, a, a2, a3, ... ; in fact, every element of G will
appear in this list: For suppose that /3 E G and 0 ak for every k. If the angles for a and 0
are B. and Op, respectively, then tB. < Bp < (t + 1)9a, for some positive integer t. But then
&-` E G and Pa' corresponds to a positive clockwise rotation through an angle less than
9 , a contradiction. Therefore, G = It = a°, a, ... , an-1 } with a" = t and 9 = (360/n)°.
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Now assume that G contains a reflection p, and let H denote the set of rotations
in G. Then H is a subgroup of G and by the first part of the proof we can assume that
H = {L = ao a an-' } for some rotation a. Necessarily, G contains ,a.........'
p, pa, ... , pan-1. Each element pak (0 < k < n) is a reflection, and these elements are all
distinct by the left cancellation law in G.

Let A be a reflection in G. Then pµ, being the product of two reflections, is a rotation
(Problem 59.16). Therefore pµ = ak for some k so that µ = p-lak = pak. It follows from
this that G = {L, a, ... , an-' p pa pan-' }. Problem 59.18 is designed to convince
you that this makes G a dihedral group.

We turn now to three-dimensional figures. We shall restrict our attention to rotations,
and in Theorem 59.3 shall give a complete list of finite rotation groups. (As in the case of
plane figures, a finite symmetry group for a three-dimensional figure either contains only
rotations or the rotations form a subgroup of index 2.) In describing these groups, an axis
of rotation corresponding to rotations of multiples of (360/m)° will be called an m -fold
axis. Before Theorem 59.3 we give an example of each type of group that will occur.

Example 59.4. An n-pyramid (n > 3) is a right pyramid whose base is a regular n-sided
polygon (for n = 3 we also require that the edges off the base have a length different from
those on the base). A 4-pyramid is shown in Figure 59.5. For completeness we define a
2-pyramid to be a right "pyramid" whose base has the shape in Figure 59.6. The rotation
group of an n-pyramid is isomorphic to C". The line connecting the center of the base to
the vertex off the base is an n-fold axis, and the elements of the group are rotations about
this axis.

Figure 59.5 Figure 59.6

Example 59.5. An n-prism (n > 3) is a right cylinder whose base is a regular n-sided
polygon (for n = 4 we also require that the height be different from the length of the edges
on the base). A 2-prism is a right cylinder whose base has the shape in Figure 59.6. A
6-prism is shown in Figure 59.7. The rotation group of an n-prism is isomorphic to D. The
line connecting the centers of the top and bottom bases is an n-fold axis. For n even, the
lines connecting midpoints of opposite side-faces are 2-fold axes, and the lines connecting
midpoints of opposite side-edges are also 2-fold axes. For n odd, each line connecting
the midpoint of a side-face to the midpoint of the opposite side-edge is a 2-fold axis. The
elements of the group are the rotations about these different axes.

9
Figure 59.7
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The other finite rotation groups are connected with the five regular convex polyhedra,
shown in Figure 59.8. These are the only convex solids whose faces are congruent regular
polygons and whose vertex angles are all equal. The rotation group of the cube was described
in Example 57.3, and that of the tetrahedron in Problem 57.12.

Tetrahedron

Dodecahedron

Cube

Figure 59.8

Octahedron

Icosahedron

Example 59.6. The rotation group of the tetrahedron has order 12 and is called the tetra-
hedral group. There are four 3-fold axes (one through each vertex) and three 2-fold axes
(joining the midpoints of nonintersecting edges).

Example 59.7. The rotation group of the cube has order 24. It is the same as the rotation
group of the octahedron, and is called the octahedral group. For the cube, there are three 4-
fold axes (joining centers of opposite faces), six 2-fold axes (joining midpoints of opposite
edges), and four 3-fold axes (joining opposite vertices).

Example 59.8. The rotation group of the icosahedron has order 60. It is the same as
the rotation group of the dodecahedron, and is called the icosahedral group. For the
icosahedron, there are six 5-fold axes (joining pairs of opposite vertices), ten 3-fold axes
(joining centers of opposite faces), and fifteen 2-fold axes (joining the midpoints of op-
posite edges).

Theorem 59.3. A finite rotation group of a three-dimensional figure is either a cyclic
group, a dihedral group, the tetrahedral group, the octahedral group, or the icosahedral
group.

Proofs of this theorem can be found in references [1], [4], [7], [14], and [23] listed
at the end of this chapter. Each of these references also gives a list and derivation of the
finite symmetry groups (of three-dimensional figures) that contain improper motions, that
is, reflections and reflections combined with rotations.

Reference [5] gives a thorough analysis of Rubik's Cube in terms of group theory.
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PROBLEMS

Determine the symmetry group of each of the following figures.

What is the symmetry group of the graph (in the xy-plane) of each of the following equations?

59.5. y = x'- 59.6. y = x' 59.7. 3x2 + 4y2 = 12 59.8. xy = 1

Determine the symmetry group of each of the following figures.

59.11. The groups C2 and D, are isomorphic, but they are not the same as groups of motions. Show
this by drawing one figure with C2 as the symmetry group and another figure with D, as the
symmetry group.

59.12. Explain why a finite symmetry group must be discrete.

59.13. True or false: Every subgroup of a discrete group is discrete.

59.14. Prove that the dihedral group D3 is isomorphic to the symmetric group S3.

59.15. Verify that D is non-Abelian for n > 3. What about D2?

59.16. Explain why the product pp. in the proof of Theorem 59.2 must be a proper rotation. (Notice
that pµ must be a proper motion of finite order.)

59.17. Assume a and p are as in the proof of Theorem 59.2, with p denoting reflection through L.
Use the following figure to give a geometrical proof that pak is the same as reflection through
the line bisecting L and a-'(L). [Compute pak(p).J
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59.18. Use the notation (a and p) from the proof of Theorem 59.2 and compute the Cayley table for
D6 = It, a, ... , a5, p, pa, ... , pce5 }, the symmetry group of a regular hexagon.

59.19. With the vertices of a tetrahedron labeled as in Problem 57.12, write the permutation of
(a, b, c, d) corresponding to each of the 12 rotations in the tetrahedral group.

59.20. (Dodecahedral dice. This assumes knowledge of Section 57.) In how many distinguishable
ways can the 12 faces of a dodecahedron be numbered 1 through 12 if two ways are considered
indistinguishable if one can be obtained from the other by rotation of the dodecahedron?
(Compare Example 57.3.)

59.21. (This assumes knowledge of Section 57.) A bead is placed at each of the 12 vertices of an
icosahedron, and each bead is to be painted either red or blue. Under equivalence relative to
the group of rotations of the icosahedron, how many distinguishable patterns are there?

59.22. Let µ be a proper motion of the plane, and let p be a point on a directed line L in the plane.
(If you stay above the plane and look in the positive direction along L, and a point r is on
your right, then µ(r) will also be on your right if you look in the positive direction along
µ(L); µ(r) would be on your left if µ were improper.)
(a) Explain why µ is uniquely determined by µ(p) and µ(L).
(b) Explain why µ is a rotation if p = µ(p), and a translation if L and µ(L) have the same

direction.
(c) Assume that p 0 µ(p), and that L and µ(L) do not have the same direction. Let q be a

point equidistant from p and µ(p) such that angle pgµ(p) equals the angle between L
and µ(L), as in the figure. Explain why µ is a rotation about q.

L

59.23. Let µ be an improper motion of the plane, and let p be a point on a directed line L in the
plane. (Compare Problem 59.22.)
(a) Explain why µ is uniquely determined by µ(p) and µ(L).
(b) Let q be the midpoint of pµ(p), and let M be the line through q parallel to the bisector

of the angle between the positive directions of L and µ(L), as in the following figure.
Explain why µ is a glide-reflection with axis M.
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L

59.24. Prove Theorem 59.1, using Problems 59.22 and 59.23, and the remarks preceding the theorem.

SECTION 60 INFINITE TWO-DIMENSIONAL SYMMETRY GROUPS

If we imagine the designs on decorative borders or wallpaper to be repeated infinitely often,
we obtain figures whose symmetry groups are discrete and infinite. These groups contain
translations and are conveniently divided into two classes. The groups in one class each
leave a line invariant, and the groups in the other class do not. The groups in the first
class are called frieze groups. There are seven frieze groups in all, and examples of the
corresponding patterns can be seen in Figures 60.1-60.7. These are the symmetry groups
for repeating patterns that appear on vases, bracelets, and decorative borders, and they will
be described along with the examples of the patterns. Figure 60.8 gives one example of
each pattern, all taken from Greek vases.

There are 17 groups that do not leave a line invariant. Figure 60.9 gives one pattern
corresponding to each group. Patterns of this type will be familiar from designs on wall-
paper, decorative ceilings, and tile and brick arrangements; the patterns in Figure 1 of the
Introduction are of this type, for example. The 17 corresponding groups are discussed in
Section 61.

Each type of pattern in this section can be found in the artwork of the past. The book
[ 101 by Owen Jones contains an especially rich collection of such patterns. Another source
is the drawings of M. C. Escher, which have been analyzed in terms of their symmetry in
[13}.

Descriptions of each of the seven frieze groups follow. The accompanying figures are
assumed to extend infinitely far to the left and right.

Type I. The group in Figure 60.1 consists of translations only. If r denotes translation
through the smallest possible distance (to the right, say, in Figure 60.1), then the
group is infinite cyclic with generator r.

F1={rk:knZ}

Figure 60.1

Type H. The group in Figure 60.2 is also infinite cyclic. It is generated by a glide-
reflection; if this glide-reflection is denoted by y, then the even powers of y are
translations.
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Fn = (yk:k E Z}

Figure 60.2

Type III. The group in Figure 60.3 is generated by a translation (say r) and a reflection
(say p) through a vertical line (such as the dotted line in the figure). This group is an
infinite dihedral group. (Verify that rp = pr-1.)

Fnt=(rkpm:keZ,In =0,11

Figure 603

Type IV. The group in Figure 60.4 is generated by a translation (say r) and a rotation
(say a) through 180° around a point such as p in the figure. This is also an infinite
dihedral group.

Fnr={rkat:keZ,m=0,11

P

Figure 60.4

Type V. The group in Figure 60.5 is generated by a glide-reflection (say y) and a
rotation (say a) through 180° around a point such as p in the figure; Fv is another
infinite dihedral group.

Fv={yka':kEZ,m=0,1}

Figure 60.5

Type VI. The group in Figure 60.6 is generated by a translation (say r) and a reflection
(say P) through an axis of symmetry (which is horizontal in the figure). This group
is Abelian. (Verify that rp = fir.)

Fvj=(rkpt:kEZ,m=0,1)

Figure 60.6
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Type VII. The group in Figure 60.7 is generated by a translation (say r) and two
reflections (say p, as in type III; and P, as in type VI). The elements r and p multiply
as in Flu; r and rg multiply as in Fvi; and p8 = Pp.

FvII = {ik0mpn : k EZ,m =0,1, n =0,1}

Figure 60.7

Figure 60.8

_ t _ 1 -1?-:: 11 11' 1 1 1 - . - .
1111"11 `I '

- ' -
I '

11'-11'-11 J' J' J' i '`
t it it

1 ' 1 1 '

_yj C.. qqis is is
e L7

Figure 60.9
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OBLEMS

60.1. Match each part of Figure 60.8 with the appropriate group (FI through Fvn.)

60.2. Each of the following figures has one of FI through Fvn as symmetry group, and no two figures
correspond to the same group. Match each figure with its group.

(a)

(b)

(c)

(d)

(e)

(f )

rr-E: -- LF- - - -F

P P P L

60.3. Each of the following figures has one of F1 through Fv11 as its symmetry group. Find the
appropriate group for each part.

(a)

T\

(b)

(e) U)
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(B)

J Q

60.4. Draw seven figures, different from those in the book, illustrating the seven types of symmetry
corresponding to the groups FI through Fv11.

SECTION 61 ON CRYSTALLOGRAPHIC GROUPS

One of the most interesting applications of.groups outside of mathematics is in crystallog-
raphy. At the heart of this application are 32 finite (three-dimensional) symmetry groups,
known as crystallographic point groups, and 230 infinite symmetry groups, known as crys-
tallographic space groups, which can be constructed from translation groups and the 32
crystallographic point groups. A detailed description of these groups would take us too far
afield, but we can get an idea of what they involve. We begin with the two-dimensional
analogue.

Consider the following problem: Fill the plane with congruent polygons having no
overlap except at the edges. (In this section "polygon" will mean "polygon and its interior.")
Figure 61.1 suggests solutions with equilateral triangles, squares, and regular hexagons. It
also shows why there is no solution with regular pentagons. In fact, 3, 4, and 6 are the only
values of n for which there is a solution with regular n-gons (Problem 61.7). Figure 61.2
offers two solutions with congruent polygons that are not regular.

Now refine the problem by demanding that the congruent polygons needed to fill the
plane be those obtained by applying the motions of some group to just a single polygon;
this polygon is called a fundamental region for the corresponding group. In the case of
squares (Figure 61.1b), translations in perpendicular directions would suffices--the plane
can be filled by starting with one square and moving it repeatedly to the left and right
and up and down. For regular hexagons (Figure 61.1 c), translations in directions meeting
at angles of 60° would suffice. For equilateral triangles (Figure 61.1a), we need the same
translations as for hexagons, and we also need rotations or reflections; rotations through
multiples of 60° about a vertex of a triangle will fill out a hexagon, whose translates will
fill out the plane. In Figure 61.2 the parallelograms offer a solution, but the other example
does not. (We return to this last point at the end of the section.)

The group associated with any solution of this problem will be the symmetry group of
the figure formed by the edges of all the polygons making up the solution. The fundamental
fact connecting group theory and two-dimensional crystallography is this: just 17 groups
arise in this way. These are the two-dimensional crystallographic groups, and it turns out
that they are precisely the discrete symmetry groups (for plane figures) that leave neither
a point nor a line invariant. Thus they are the groups of the patterns in Figure 60.9. (Each
of the finite groups in Section 59 leaves a point invariant, and each of the frieze groups in
Section 60 leaves a line invariant.)

(h)
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(a) (b) (c)

(d)

Figure 61.1

(a) (b)

Figure 61.2

Figure 61.3 contains diagrams corresponding to each of the 17 groups. These diagrams
are based on figures in (2] and give the following information.

1. The shaded area is a fundamental region.

2. The generators of the group are given by the following scheme:

o A O

translation

- glide-reflection
----- reflection axis (mirror line)

centers of 2-, 3-, 4-, or 6-fold rotation
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p1 generated by
two translations

p2 generated by
three rotations

I

I

I

I

pg generated by two
parallel glide-reflections

pmg generated by
a reflection and two

half-turns

p4 generated by a
half-turn and a
quarter-turn

crrrgenerated by a
reflection and glide-

reflection

P

I

P I

pm generated by two
reflection and a translation

1 ' 1

pmm generated by
four reflections

pgg generated by two cmm generated by two
perpendicular glide reflections perpendicular reflections

and a half-turn

p4m generated by
reflections in the sides

of a (45°, 45°, 90°) triangle

p4g generated by a
reflection and a

quarter-turn

Figure 61.3
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p3 generated by three
rotations through 120°

p3m1 generated by three
reflections in the sides of an

equilateral triangle

p3lm generated by a reflection
and a rotation through 120°

p6 generated by a half-turn

and a rotation of 120'

p6m generated by reflections in the
sides of a (30°, 60°, 90') triangle

Figure 61.3 (continued)

By starting with a fundamental region and subjecting it repeatedly to the motions
suggested by the generators, the entire plane will be filled. Each element of the group
will correspond to a different congruent copy of the fundamental region. The notation
pl, p2, ... for the groups is based on [8], and belongs to one of several different systems
used to describe such groups. The notation is given here for convenience; it will not be
explained.

Figure 61.4 gives an algorithm for identifying the two-dimensional crystallographic
group of a plane figure. In Figure 61.4, mirror line refers to a reflection axis, slide line refers
to the reflection axis of a glide-reflection, and C and D refer to cyclic and dihedral groups,
respectively (Section 59). Figure 61.4 is taken from [17], which also gives algorithms for
identifying frieze groups and symmetry groups of bounded plane figures.

The groups that are of interest in crystallography arise from the three-dimensional
version of the problem just considered. These groups can be described as follows. First,
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Translations in two
independent directions?

F
Glide lines?

Yes

Perpendicular
glide lines?

Yes 0

No

Find highest order
of a center of

rotation for pattern.

0

Yes

Mirror lines?

Nonparallel
mirror lines?

Yes

Yes

Yes

Center of rotation
of order 6?

No

Center of rotation
of order 3?

Yes

Find three pairwise
nonparallel mirror lines

such that no mirror lines
passes through the
equilateral triangle

that they form.

Compute symmetry group
of region bounded by

these lines.

C3 D

0

271

Not a two-dimensional
crystallographic group

No Glide lines perpendicular
to mirror lines

No

Glide lines parallel to
mirror lines?

0

Yes

0

Locate rectangle bounded
by adjacent pairs of

perpendicular mirror lines.

Compute symmetry group
of this region.

D D

Figure 61.4 Algorithm for identifying two-dimensional crystallographic groups

a lattice group is a nontrivial discrete motion group whose elements are translations. If,
for example, a rectangular coordinate system is chosen for three-dimensional space, then
the three translations of unit length in the positive directions parallel to the coordinate
axes generate a lattice group. If G is a lattice group, then any G-orbit is called a lattice.t
(A G-orbit consists of all the points that can be reached by applying motions of G to a single
point of the lattice. See Section 56.) For the example mentioned, the lattice containing the
origin would consist of all the points with integral coordinates.

The lattice and associated group are called one-, two-, or three-dimensional depend-
ing on whether the points of the lattice are collinear, coplanar but not collinear, or not
coplanar, respectively. The points of intersection of the lines forming the parallelograms in
Figure 61.2 form part of a two-dimensional lattice. The points of intersection of the lines
in Figure 61.5 form part of a three-dimensional lattice.

t This use of the word lattice is different from that in Chapter XVI. Both uses of the word are well established,
and confusion is unlikely.
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A discrete group of motions is a crystallographic point group if it has an invariant point
p and leaves invariant some three-dimensional lattice containing p (the individual lattice
points other than p will in general not be invariant, of course). A discrete group of motions
is a crystallographic space group if its translations form a three-dimensional lattice group.

Figure 61.5

As stated at the outset, there are 32 crystallographic point groups, each of which is
finite. Eleven of these groups contain only rotations and are among the groups in Theorem
59.3 (Cl, C2, C3, C4, C6, D2, D3, D4, D6, the tetrahedral group, and the octahedral group).
Each of the other 21 point groups contains improper motions (reflections through a plane
or a point) and contains one of the 11 listed groups of proper motions as a subgroup of
index 2.

If G denotes a crystallographic space group, then the translations of G form a normal
subgroup T that is a lattice group, and the quotient group G/T is one of the 32 crystal-
lographic point groups. In the 1890s, E. S. Fedorov (Russian), A. Schonflies (German),
and W. Barlow (British) showed that there are only 230 crystallographic space groups. Of
these, 65 contain only proper motions and the remaining 165 contain improper motions.
These groups are the basis for the classification of crystals by symmetry type and have
been the subject of extensive study since their importance was first realized in the middle
of the last century. The Introduction contains some brief remarks about this use of groups;
for more details see [9] or [16].

The proof that there are only 230 crystallographic space groups is, as could be guessed,
not particularly easy. One of the restricting factors is the following theorem, which will be
proved in Section 62.

The Crystallographic Restriction. Any nontrivial rotation in a two- or three-
dimensional crystallographic point group is of order 2, 3, 4, or 6.

At the International Congress of Mathematicians in 1900, the German mathematician
David Hilbert (1862-1943) presented a collection of 23 problems that have attracted the
interest of many mathematicians throughout the past century. The eighteenth problem on
Hilbert's list was divided into three parts; the second part was this: "Whether polyhedra
also exist which do not appear as fundamental regions of groups of motions, by means of
which nevertheless by a suitable juxtaposition of congruent copies a complete filling up
of all [Euclidean] space is possible." A complicated three-dimensional example was given
by K. Reinhardt in 1928. Figure 61.2a is a two-dimensional example, which was con-
structed by H. Heesch in 1935. Further references are given in the paper by John Milnor
on Hilbert's Eighteenth Problem in [15], and also in [3].
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PROBLEMS

z
t C W..67.

All figures referred to in Problems 61.1-61.5 are assumed to be extended to fill the plane.

61.1. Determine the symmetry group of each of the designs in Figure 60.9. (Use Figure 61.4.)

61.2. (a-q) Determine the symmetry group of each design in Figure 61.6. Also find a fundamental
region for each design. (Use Figures 61.3 and 61.4.)
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(P)

Figure 61.6

1I.Ma 9r

(q)

(continued)

61.3. Determine the symmetry group of each of the three designs in Figure 1 (of the Introduction).

61.4. Which of the 17 two-dimensional crystallographic groups contain rotations of order 4? 6?
Which contain reflections? Which contain glide-reflections that are not reflections?

61.5. Draw 17 figures, different from those in the book, illustrating the 17 types of symmetry shown
in Figure 61.3. (Be sure the figures do not have too much symmetry in each case.)

61.6. Verify that the rotations in the 32 crystallographic point groups are consistent with the crys-
tallographic restriction.

61.7. Prove that the only values of n for which the plane can be filled with congruent regular n-gons
having no overlap except at their edges are n = 3, 4, and 6. [Each of the interior angles of
a regular n-gon has measure (n - 2)n/n. If r such polygons have a vertex in common, then
[r(n - 2),r/ n] = 2n. For which integral values of n and r is this possible?]

:CTION 62 THE EUCLIDEAN GROUP

The distance-preserving mappings of three-dimensional space form a group, called the
Euclidean group, which is implicit in all of the mathematics and science based on
Euclidean geometry. In agreeing not to distinguish between two congruent figures, we are in
essence agreeing not to distinguish between the figures if there is an element of the
Euclidean group that maps one of the figures onto the other. All of the symmetry groups of
two- or three-dimensional figures are subgroups of the Euclidean group. In this section this
group is studied in the context of coordinate geometry and matrices. It is shown that the
Euclidean group is built up from several of its important subgroups. Also, the crystallo-
graphic restriction is proved. The section uses ideas and notation from linear algebra that
are reviewed in Appendix D.

Let E(3) denote the Euclidean group, and let 1R3 denote the vector space of all 3-
tuples of real numbers. We begin by studying those elements of E(3) that are also linear
transformations. It is convenient to identify the points of three-dimensional Euclidean space
with the elements of ]R3 in the usual way. To do this, first choose a unit of length and three
mutually perpendicular coordinate axes. Then associate the geometric unit vectors along
the coordinate axes with the unit vectors et = (1, 0, 0), e2 = (0, 1, 0), and e3 = (0, 0, 1) in
R3. Relative to the basis {et, e2, e3}, each linear transformation of ]R. is represented by a
unique matrix in M(3, R). The elements of E(3) are invertible, so if a linear transformation
is in E(3), then the corresponding matrix must be in GL(3, R). Therefore, relative to a fixed
coordinate system, the set of linear transformations in E(3) is E(3) n GL(3, R). This is an
intersection of groups, so it is also a group. It is called the (real) orthogonal group and
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is denoted by 0(3). To say more about the elements of 0(3), we look at them in terms of
coordinates and matrices.

The inner product of vectors v = (x1, x2, x3) and w = (yi, y2, y3) is defined by

3

(v, w) = Exiyi
i=1

In particular, then,

(ei, ej) = Sij, (62.1)

where 8ii = l and Sij = 0 for i # j.
The length of a vector v = (x, y, z) E R3 is given by

II V II = (v,
v)1 12 = (x2 + y2 + z2)1j2.

The distance between vectors v and w is given by

d(v,w)=1Iv-wII.

Therefore, a mapping a : lR3 1R3 is in E(3) if

Ila(v) - a(w)II = Ilv - wll

(62.2)

(62.3)

(62.4)

for all v, w, E 1R3. If the mapping a is linear, then a(v) - a(w) = a(v - w). It follows that
a linear mapping is distance-preserving if it is length-preserving (Problem 62.5). There-
fore, a E 0(3) iff a is linear and

11a(v)II = 11011 (62.5)

for all v e R3. It can also be proved (Problem 62.7) that if a E 0 (3), then a preserves inner
products; that is,

(a M' (X(w)) = (v, w) (62.6)

for all v, w E 1R3. The matrix form of a is A = [aij], where

3

a(ei) = Eajiej (1 < i < 3) (62.7)

If we compute (a(ei), a(ej)), and make use of (62.1), (62.6), and (62.7), we'obtain

3

Eakiakj = Sij (62.8)
k=1

for 1 < i < 3, 1 <_ j < 3 (Problem 62.8). From these remarks and calculations it follows
that

a E 0(3) if A'A = 13, (62.9)

where A is the matrix of a relative to [e j, e2, e3} and A' is the transpose of A.
A matrix A such that A'A = 13 is called orthogonal. Any such matrix is invertible,

with A-1 = A'. If det A is used to denote the determinant of a matrix A, then det A = ±1 if
A is orthogonal, because if A is orthogonal then det(A'A) = (det A')(det A) = (det A)2. We
recall that if A 1 and A2 are matrices representing the same linear transformation a relative
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to different bases, then det Al = det A2 (Problem 62.10); therefore, det a can be defined
to be det A, where A is the matrix representing a relative to any basis.

The mapping a r-- deter defines a homomorphism from 0(3) onto {1, -1}, because
det (an) = (det a)(det P). The kernel of this homomorphism is a normal subgroup of 0(3),
called the special orthogonal group and denoted by SO(3). Notice that [0(3) : SO(3)] = 2
because 0(3)/S0(3) - {1, -1}. We shall now prove that SO(3) consists of the rotations of
Euclidean space about axes passing through the origin.

Lemma 62.1. If a E S0(3), then there is a unit vector u3 such that a(u3) = u3 and a is a
rotation with u3 as the axis.

PROOF. LetA be the matrix of a relative to the basis {e1, e2, e3}. Then

det(A - 13) = det(A - 13)' = det(A' - 13) = det(A-1 - 13)
= (det A-1)(det(13 - A))

= (det A-')(det(-13))(det(A - 13))

= -det(A - 13).

Therefore, det(A - 13) = 0 so that A = 1 is a characteristic value of A. A characteristic
vector u corresponding to A = 1 will satisfy a(u) = u, as required.

Let u3 be a unit vector in the direction of u, and choose u1 and u2 so that {u1, u2, u3}
is an orthonormal basis for R3. Then

(a(ui), a(u,)) = (u;, u,) = S. (62.10)

The relations given by (62.10) can be used to show that the matrix of a relative to the basis
(U I, u2, u3} is

cos 0 -sin 0 0

sin 0 cos 0 0

0 0 1

(62.11)

for 0 < 0 < 2n (Problem 62.11). This shows that a is a clockwise rotation through angle
0 about the axis u3.

Another important subgroup of E(3) is T Q), the group of translations. It can be proved
that

T(3). E(3),
E(3) -0(3), and IT(3) fl 0(3)1 = 1.
T(3)

In the language of Section 23, E(3) is an extension of T(3) by 0(3). (Proofs of these
facts can be found in reference [ 14].) Instead of pursuing this, we return now to the following
fact, which was stated without proof in Section 61.

The Crystallographic Restriction. Any nontrivial rotation in a two- or three-
dimensional crystallographic point group is of order 2, 3, 4, or 6.

PROOF. The proof will be written for three-dimensional groups; the two-dimensional
case follows from this (Problem 62.12).

Let a be a rotation in a three-dimensional crystallographic point group, and assume
that a leaves the point p fixed and the lattice L invariant. Let {v1, v2, v3} be a basis for
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L; then {VI, v2, v3} will also be a basis for R3. The matrix for a relative to this basis is
A = [aj], defined by

n

COO = Y'aji v j;
j=1

(62.12)

and each aji must be an integer by the invariance of L. As shown in the proof of Lemma
62.1, there is a basis for R3 relative to which the matrix of a has the form (62.11). The
trace of the matrix of a linear transformation is invariant under a change of basis; therefore,
because the trace a i t + a22 + a33 is an integer, 2 cos 0 + 1 must be an integer, where 9
is the angle of rotation for a (from Lemma 62.1). The only values of 9 (0 < 0 < 27r) for
which 2 cos 0 + 1 is an integer are 0 = 0, 7r/2, 37r/2, 7r/3, 27r/3, 7r, 47r/3, and 57r/3. The
orders of the rotations through these angles are those in the crystallographic restriction.

PROBLEMS

Compute (v, w), Ilvll, llwll, and d(v, w).

62.1. v = (1, 0, -2), w = (-3, 4, 5) 62.2. v = (1, 5, - 1), w = (2, 1, 3)

4/. 0

62.3. Let A = 0 0 -1
3/V 4// 0

(a) Is A orthogonal?

62.4. Repeat Problem 62.3 for

A=

(b) Is A in SO(3)?

1/,v'3- 0 -2/,,*16

1/f3- 1/f l
-1/' 1/v -1/ 6

62.5. Prove that a linear mapping is distance-preserving if it is length-preserving. [See the discus-
sion following equation (62.4).]

62.6. Verify that the inner product used in this section has these properties (for all u, v, w E R3
and all a E R).
(a) (u + v, w) _ (u, w) + (u, w) (b) (u, v + w) = (u, v) + (u, w)
(c) (au, v) = (u, av) = a(u, v) (d) (u, u) = (v, u)

62.7. Prove that if a E 0(3), then a preserves inner products. [See equation (62.6). Suggestion:
Use (a(v + w), a(v + w)) = (v + w, v + w) and Problem 62.6.]

62.8. Verify Equation (62.8).

62.9. Use Equation (62.9) to prove that 0(3) is closed with respect to multiplication.

62.10. Prove that if A k and A2 are matrices representing the same linear transformation relative to
different bases, then det Al = det A,. [Recall that AI = BA2B-I for an appropriate B, and
det(XY) = det(X) det(Y).]

62.11. Prove the statement containing Equation (62.11).

62.12. Explain why the crystallographic restriction for three-dimensional groups implies the crys-
tallographic restriction for two-dimensional groups. (Suggestion: Consider Figure 59.7.)
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CHAPTER XVI

LATTICES AND BOOLEAN ALGEBRAS

Just as the axioms for groups and rings reflect properties of addition and multiplication in
the familiar number systems, the axioms for lattices and Boolean algebras reflect properties
of inclusion, union, and intersection in the theory of sets. But we shall see with lattices and
Boolean algebras, as with groups and rings, there are other important examples beyond
those furnishing our original motivation. In particular, Boolean algebras provide appropriate
algebraic settings for formal logic and the theory of switching networks. Section 66 contains
the most interesting theorem in this chapter.

SECTION 63 PARTIALLY ORDERED SETS

The first of several fundamental ideas for this chapter is an abstraction from < for numbers
and C for sets.

Definition. A partially ordered set is a set S together with a relation < on S such that
each of the following axioms is satisfied:

Reflexive

If a E S, then a <a.

Antisymmetric

Ifa,bES,a <b,andb<a,thena=b.

Transitive

Ifa,b,c E S,a <b,andb <c,then a <c.

Example 63.1. The integers forma partially ordered set with respect to <. Here < has its
usual meaning. In other examples < is replaced by whatever is appropriate for the relation
involved.
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Example 63.2. For each set S, let P(S) denote the set of all subsets of S. Then P(S) is a
partially ordered set with A < B defined to mean A C B. Notice that c is a relation on
P(S), not on S. [The set P(S) is called the power set of S; if S is finite, then IP(S)I = 2151
"2 to the power I s I.")

Example 63.3. The set of all subgroups of any group is a partially ordered set with respect
to c. 0

Example 63.4. The set N of all natural numbers (positive integers) is a partially ordered
set with a < b defined to mean a I b. The set of all positive divisors of a fixed positive
integer n is also a partially ordered set with this relation. 0

The notation a < b means that a < b and a # b; b > a means that a < b; and b > a
means that a < b. An element b in a partially ordered set S is said to cover an element a in
S if a < b and there is no x in S such that a < x < b.

It is often helpful to represent a finite partially ordered set by a diagram, in the following
way. Each element of the set is represented by a small circle (or other appropriate symbol),
and if b covers a, then the circle for b is placed above the circle for a and a line is drawn
connecting the two circles. In this way c < d if d is above c and there is a sequence of
segments connecting c to d.

Example 63.5. Figure 63.1 shows the diagram for the set of subsets of {x, y, z} with the
relation c.

{x. Y, z}

0

Figure 63.1

Example 63.6. Figure 63.2 shows the diagram for the set of positive divisors of 12, with
the relation a < b defined to mean that a I b.

12

1

Figure 63.2

An element u in a partially ordered set S is said to be an upper bound for a subset A
of S if x < u for each x E A. The element u is a least upper bound (l.u.b.) for A if it is
an upper bound and u < v for each upper bound v of A. Lower bound and greatest lower
bound (g.l.b.) are defined by replacing < by >.
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If a subset has an l.u.b., then it is unique, for if u1 and u2 are both l.u.b.'s for A, then
ut < U2 and u2 < uI, and therefore ul = U2. Similarly, if there is a g.l.b. for A, then it is
unique; simply replace l.u.b. by g.l.b. and < by ? throughout the preceding sentence.

Example 63.7. Let S be a set, and consider the partially ordered set P(S) with C. If
A, B E P(S) (that is, if A C S and B C S), then A U B is an l.u.b. for {A, B}, and any set
containing A U B is an upper bound for {A, B}. Also, A fl B is a g.l.b. for {A, B}. More
generally, if C is any subset of P(S), then the union of all the subsets in C is in P(S) and
is the l.u.b. for C; and the intersection of all the subsets in C is in P(S) and is the g.l.b.
for C.

Example 63.8. Consider Example 63.4. If A is any finite subset of N, then the least
common multiple of the integers in A is an l.u.b. for A, and the greatest common divisor of
the integers in A is a g.l.b. for A.

Example 63.9. The diagram in Figure 63.3 represents a partially ordered set in which
(a, b) has no upper bound (and therefore no l.u.b.) and in which {c, d} has no lower bound
(and therefore no g.l.b.).

Figure 63.3

The question of the existence of least upper bounds and greatest lower bounds will be
critical in Section 64. Here is another important example in which they always exist.

Example 63.10. Let G be a group, and consider the partially ordered set of subgroups of
G with C (Example 63.3). The subgroup generated by any collection of subgroups of G is
the l.u.b. for that collection of subgroups. (Apply Theorem 15.2, with S being the set union
of the subgroups in the given collection.) The point here is that the set union of subgroups
will not in general be a subgroup, but there is a l.u.b. nonetheless. The intersection of any
collection of subgroups is a subgroup (Theorem 15.1), and this intersection is the g.l.b. for
the collection. Figure 63.4 shows the diagram for the subgroups of 46; Figure 63.5 shows
the diagram for the subgroups of S3.

<(3]>

<[0]>

Figure 63.4

<[2]>

<(1 2)>

<[1)>

Figure 63.5

<(1 2 3)>

If either a < b or b < a for every pair of elements {a, b} in a partially ordered set S,
then S is said to be linearly ordered or to be a chain. With the usual meaning of <, each of
Z, Q, and IR is a chain. None of Figures 63.1 through 63.5 represents a chain.
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Example 63.11. The subgroups of Z8 forma chain, as shown in Figure 63.6. In fact, the
subgroups of any cyclic group of prime power order form a chain (Problem 63.13).

(101, [21, [41, [61)

([01, [41)

[[0])

Figure 63.6

BLEMS

63.1. The set of all nonzero integers is not partially ordered with a < b defined to mean a I b. Why?
(Compare Example 63.4.)

63.2. Draw the diagram for the set of subsets of (x, y} with the relation C.

633. Draw the diagram for the set of subsets of {w, x, y, z} with the relation C.

63.4. Draw the diagram for the set of positive divisors of 20, with a < b defined to mean a I b.

63.5. Assume that p and q are distinct primes, and let n = p2q. Draw the diagram for the set of
positive divisors of n, with a < b defined to mean a I b. (Compare Figure 63.2 and Problem
63.4.)

63.6. For which n E N does the set of all positive divisors of n form a chain, with a < b defined to
mean a I b?

63.7. For N partially ordered as in Example 63.4, determine the l.u.b. and the g.l.b. of the subset
(12, 30, 126).

63.8. Consider the partially ordered set N with a < b defined to mean a I b (Example 63.4).
(a) Which integers are covered by 6?
(b) Which integers cover 6? (There are a lot.)
(c) For m E N, which integers are covered by m?
(d) For M E 14, which integers cover m?

63.9. Consider the partially ordered set of all subgroups of the group of integers (Examples 63.3
and 63.10 with G = Z).
(a) For which m, n E Z is (m) C (n)?
(b) Form, n E Z, determine k so that (k) is the greatest lower bound of (m) and (n).
(c) For n, m E Z, determine k so that (k) is the least upper bound of (m) and (n).

63.10. Assume that A and B are subgroups of a group G. Prove that A U B (set union) is a subgroup
if either A C B or B C A. (This explains why (A, B) rather than A U B is used in Example
63.10.)

63.11. A mapping 0 : L I -> L2 of one partially ordered set onto another is called order preserving
if a < b implies 0(a) < 0(b) for all a, b E L 1. An invertible mapping 0 : L i --- L2 is an iso-
moi phism if both 0 and 0-I are order preserving. (Finite partially ordered sets are isomorphic
if their diagrams are the same except possibly for labeling.)
(a) Verify that isomorphism is an equivalence relation for partially ordered sets.
(b) There are two isomorphism classes for partially ordered sets with two elements. Draw a

diagram corresponding to each class. (Remember that two elements need not be "com-
parable.")
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(c) There are five isomorphism classes for partially ordered sets with three elements. Draw
a diagram corresponding to each class.

(d) There are 16 isomorphism classes for partially ordered sets with four elements. Draw a
diagram corresponding to each class.

(e) Formulate a necessary and sufficient condition on positive integers m and n for the
partially ordered sets of positive divisors of m and n to be isomorphic, with a < b defined
to mean a I b. (Suggestion: See Problem 63.5.) Give several examples to support your
condition, but do not write a formal proof.

63.12. Prove that IP(S)I = 21St. (See Example 63.2. Assume I S I = n and x E S. The subsets of S can
be put in two classes, those that do contain x and those that do not. The induction hypothesis
will tell you how many subsets there are in each class.)

63.13. Prove that the subgroups of every cyclic group of prime power order forma chain, as claimed
in Example 63.11.

SECTION 64 LATTICES

Definition. A lattice is a partially ordered set in which each pair of elements has a least
upper bound and a greatest lower bound.

The l.u.b. of elements a and b in a lattice will be denoted a v b, and the g.l.b. will be
denoted a A b. The operations v and A are called join and meet, respectively.

Example 64.1. The partially ordered sets in Examples 63.1 through 63.4 are all lattices.
The proof for Example 63.1 is obvious, and proofs for the other cases follow from re-
marks in Section 63. We can now speak, for instance, of "the lattice of subgroups" of a
group.

The definition of lattice demands that each pair of elements has a l.u.b. and a g.l.b. It
follows from this that each finite subset has an l.u.b. and a g.l.b. For example, the l.u.b. of
(a, b, c) is (a v b) V c, which can be seen as follows. Let u = (a v b) v c. Then a V b < u,
and therefore a < u and b < u; also c < u. On the other hand, if a < v, b < v, and c < v,
then a v b < v and c < v, therefore u = (a V b) V c < v. Thus u is a l.u.b. for (a, b, c}, as
claimed. A similar argument shows that (a A b) A c is a g.l.b. for (a, b, c} (replace l.u.b. by
g.l.b. and < by > throughout). The l.u.b. and g.l.b. of a finite subset (a1, a2, ... , will
be denoted

and

respectively. The inductive proofs of the existence of these elements are left to Problem
64.16.

In the paragraph preceding Example 63.7 we proved that if a subset of a partially
ordered set has a l.u.b., then that l.u.b. is unique; we then stated that the uniqueness of
the g.l.b. could be proved similarly: replace l.u.b. by g.l.b. and < by >. In the same way,
the proof that (a v b) v c is an l.u.b. for (a, b, c} in a lattice, given previously, can be
transformed into a proof that (a A b) A c is a g.l.b. for (a, b, c). These are applications of
a very useful principle which, for lattices, has the following form.
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Principle of Duality. Any statement that is true for every lattice remains true if < and >
are interchanged throughout the statement and V and A are interchanged throughout the
statement.

The Principle of Duality is valid because of three factors. First, >, as well as is
reflexive, antisymmetric, and transitive. Second, g.l.b. is defined by replacing < by in
the definition of l.u.b. Third, a statement is true for every lattice only if it can be proved
from the reflexive, antisymmetric, and transitive properties and the existence of l.u.b.'s and
g.l.b.'s of finite sets.

If < and > are interchanged and l.u.b. and g.l.b. are interchanged in a statement, then
the new statement obtained is called the dual of the original statement. For example, the
dual of a V a = a is a A a = a. The Principle of Duality simply says that if a statement is
true for every lattice, then so is its dual.

Although each finite subset of a lattice has both a l.u.b. and a g.l.b., an infinite subset
of a lattice need not have a l.u.b. or a g.l.b. For example, in Z, with the relation <, the set
Z itself has neither a l.u.b. nor a g.l.b. In N, with a < b defined to mean a I b, no infinite
subset has a l.u.b. A lattice is said to be complete if each subset (finite or infinite) has both
a l.u.b. and a g.l.b. An element 1 in a lattice L is called a unity (or identity) for L if a < I
for each a E L. And an element 0 in L is called a zero for L if 0 < a for each a E L. Notice
that if 1 and 0 exist in L, then

avO=Ova=a and aAl=lAa=a (64.1)

for each a E L. Also, any finite lattice (one with a finite number of elements) has both a
unity and a zero. We shall always require 0 # 1.

Example 64.2

(a) In Z, with the relation <, there is neither a lattice unity nor a lattice zero.
(b) In P(S) (Example 63.2), S is a unity and 0 (the empty set) is a zero.
(c) In the lattice of subgroups of a group G, G is a lattice unity and (e) is a lattice

zero.
(d) In N, with a < b defined to mean a I b, there is no lattice unity, but 1 is a lattice

zero.

If L is a lattice, then both v and A are operations on L, and they have properties much
like those for + and in a ring. The next theorem lists the properties that are essential and
shows that they give an alternative way to define a lattice.

Theorem 64.1. The operations V and A on a lattice L satisfy each of the following laws
(for all a, b, c E L):

Commutative laws

avb=bva, aAb=bAa,

Associative laws

av(bvc)=(avb)vc, aA(bAC) =(aAb)AC,

Idempotent laws

ava=a, aAa=a,
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Absorption laws

(avb)Aa=a, (aAb)va=a.

Conversely, if operations v and A on a set L satisfy each of these laws, and if a relation
< is defined on L by

a <b iff either avb = b or a A b = a, (64.2)

then L is a lattice.

PROOF. The proof of the first half of the theorem is left to Problem 64.11. To prove
the converse, we first show that in the presence of the assumptions being made on V and
A, the conditions a V b = b and a A b = a in (64.2) are equivalent (that is, either one
implies the other). Assume that a v b = b. Then

aAb=aA(avb) (avb=b)
_ (a V b) A a (commutative law)

= a (absorption law).

The proof of the other implication (a A b = a implies that a V b = b) is similar (Problem
64.12).

Now we shall prove that L is partially ordered relative to <. If a E L, then a A a = a
by one of the idempotent laws, and therefore a < a by (64.2); thus < is reflexive. If
a<bandb<a, then a A b = a and b A a = b, so that a = b by one of the commuta-
tive laws; thus < is antisymmetric. If a < b and b < c, then a A b = a and b A c = b;
therefore

aAC=(aAb)AC=aA(bAC)=aAb=a, (64.3)

so that a < c. Thus < is transitive.
To complete the proof that L is a lattice, we must verify that a V b is a l.u.b.

for a and b, and that a A b is a g.l.b. for a and b. Consider a v b. First, a < a v b
because a A (a v b) = (a v b) A a = a, by commutativity and absorption. Similarly,
b < a v b. Now assume that a <c and b < c. Then a v c = c and b v c = c, so that
(a v b) v c = a v (b v c) =a v c = c, which means a v b < c. This proves that a v b
is a 1.u.b. for a and b. The proof that a A b is a g.l.b. for a and b now follows by using
duality.

Although v and A satisfy the commutative and associative laws, they need not satisfy
the distributive law

a A (b v c) = (a A b) v (a A C) (64.4)

for all a, b E L. A lattice for which (64.4) is satisfied is called a distributive lattice.
The lattice of subsets of a set is distributive. Each of the lattices in Figure 64.1 is
nondistributive. In the one on the left, for instance, a A (b V c) = a A 1 = a whereas
(aAb)V(aAc)=0vc=c.

A subset M of a lattice L is called a sublattice of L if M is closed relative to the
operations v and A of L. It can be proved that any nondistributive lattice contains a sub-
lattice whose diagram is like one of the two in Figure 64.1.
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Figure 64.1

Another important property satisfied by the lattice of subsets of a set is that each of its
elements has a complement: In a lattice with 0 and 1, an element a' is a complement of an
element a if

ana'=0 and ava'=1. (64.5)

A lattice with 0 and 1 in which each element has a complement is called a complemented
lattice. The divisors of 12 (Example 63.6) form a lattice that is not complemented (Problem
64.4). The diagrams in Figure 64.1 represent complemented lattices; they also show that
the complement of an element need not be unique (in the example on the right, for instance,
each of a, b, c is a complement of the other two).

All of these properties are used together in the next section.

OBLEMS

64.1. Show that the lattice on the right in Figure 64.1 is nondistributive.

64.2. Construct the diagram for the lattice of subgroups of ((1 2), (3 4)), and verify that it is
nondistributive.

64.3. Prove: If a partially ordered set is a chain, then it is a distributive lattice.

64.4. Show that the lattice of divisors of 12 (Example 63.6) is not complemented. For which n E N
is the lattice of divisors of n complemented?

64.5. Is the lattice of subgroups of Z6 distributive? Is it complemented? (See Figure 63.4.)

64.6. Is the lattice of subgroups of S3 distributive? Is it complemented? (See Figure 63.5.)

64.7. Construct the diagram for the lattice of subgroups of the group of rotations of a cube (Example
57.3.)

64.8. Prove that if n E N, then the set of all positive divisors of n is a sublattice of the lattice in
Example 64.2(d). This sublattice has a lattice unity. What is it?

64.9. If S is a set, what is the complement of an element in the lattice P(S)?

64.10. Construct the diagram for the lattice of subgroups of the group of symmetries of a square
(Example 8.1).

64.11. Prove the first half of Theorem 64.1.

64.12. Supply the proof that a n b = a implies a v b = b, which was omitted from the proof of
Theorem 64.1.

64.13. The lattice N, with a < b defined to mean a I b, is distributive. Determine and then prove the
property of integers that makes this true. (Suggestion: See Problem 13.6.)

64.14. Explain why each distributive lattice satisfies the law a v (b n c) = (a v b) A (a v c) for all
a, b, c, as well as the law in Equation (64.4).
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64.15. Lattices are isomorphic if they are isomorphic as partially ordered sets (see Problem 63.11).
Draw a diagram corresponding to each isomorphism class of lattices that have four or fewer
elements. [See Problem 63.11(b), (c), (d).l

64.16. Prove that each finite subset of a lattice has a g.1.b. and a l.u.b.

SECTION 65 BOOLEAN ALGEBRAS

In 1854 the British mathematician George Boole published a book entitled An Investigation
of the Laws of Thought, on Which Are Founded the Mathematical Theories of Logic and
Probabilities. This book amplified ideas Boole had introduced in a shorter work published
in 1847, and brought the study of logic clearly into the domain of mathematics. Boolean
algebra, which originated with this work, can now be seen as the proper tool for the study
not only of algebraic logic, but also such things as the theory of telephone switching circuits
and computer design.

Definition I. A Boolean algebra is a lattice with zero (0) and unity (1) that is distributive
and complemented.

Lattices were presented in two forms in Section 64: first in the definition, in terms
of a partial ordering <, and then in Theorem 64.1, in terms of two operations v and A.
Boolean algebras are most often discussed in the second of these forms. Because of this
we next give an alternative to Definition I. Theorem 65.1 establishes the equivalence of
the two definitions. Hereafter, you may work only from Definition II, if you like. All that
is required from Theorem 65.1 is the definition of < given in (65.1), and the fact that this
gives a partial ordering in a Boolean algebra as defined in Definition II.

Definition II. A Boolean algebra is a set B together with two operations v and A on B
such that each of the following axioms is satisfied (for all a, b, c E B):

Commutative laws

avb=bva, aAb=bAa,
Associative laws

av(bvc)=(avb)vc, aA(bAC)=(aAb)AC,

Distributive laws

av(bvc)=(aAb)v(aAc), av(bAC)=(avb)A(avc),

Existence of zero and unity
There are elements 0 and 1 in B such that

av0=a, aA1=a,
Existence of complements

For each a in B there is an element a' in B such that

ava'=1 and aAa'=O.
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Theorem 65.1. (Definitions I and II are equivalent) In any Boolean algebra as defined in
Definition I, the lattice operations v and A satisfy the axioms of Definition H. Conversely,
any Boolean algebra as defined in Definition 11 is a Boolean algebra as defined in Definition
I, with < given by

a <b if avb=b. (65.1)

PROOF. Assume that B is a Boolean algebra according to Definition I. Then B is a
lattice, so its operations v and A satisfy the commutative and associative laws by Theorem
64.1. The other axioms in Definition II are part of Definition I. (Also see Problem 64.14.)
Therefore B satisfies all of the axioms of Definition H.

Assume that B is a Boolean algebra according to Definition II. To show that B is a
Boolean algebra according to Definition I, it suffices, by Theorem 64.1, to show that the
operations v and A satisfy the idempotent and absorption laws. For the idempotent law
ava=a, write

a=av0=av(a'Aa)=(ava')A(ava)=IA(ava)=ava.
For the absorption law (a V b) A a = a, write

(avb)Aa=(avb)A(av0)=av(bA0)=av0=a.
The laws a A a = a and (a A b) v a = a can be proved by interchanging v and A, and
0 and 1 (see the Principle of Duality below).

The dual of a statement in a Boolean algebra is the statement that results by inter-
changing V and A, and 0 and 1. Because the dual of each axiom in Definition II is also an
axiom, we have the following Principle of Duality for Boolean algebras.

Principle of Duality. If a statement is true for every Boolean algebra, then so is its dual
statement.

For example, (a A b) V a = a is true in every Boolean algebra because (a v b) A a = a
is true in every Boolean algebra, a fact that was used at the end of the proof of Theorem
65.1.

Example 65.1. If S is any nonempty set, then P(S), the power set of S, is a Boolean algebra
relative to U and fl. The unity is S, the zero is 0, and the complement of a subset is the
ordinary set complement (Appendix A). We shall prove later that any finite Boolean algebra
is essentially of this type (Theorem 66.1).

Example 65.2. A careful treatment of the connection between Boolean algebras and logic
would require a separate chapter, but roughly the idea is as follows. By a proposition is
meant either a "simple statement" (which may be either true or false) or a "compound
statement" made up from simple statements by using "logical connectives" such as and,
or, and negation. Statements formed from the same simple statements are logically equiva-
lent if they have the same "truth value" (true or false) for all combinations of truth values
for the simple components. For example, "p and q" is logically equivalent to "q and p,"
because both compound statements are true only when both simple components are true;
otherwise both compound statements are false.

Logical equivalence is an equivalence relation on the set of propositions. For con-
venience we can treat equivalent propositions as being equal. Then by "the set of all
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propositions" is meant the set of equivalence classes of all propositions, and by a "propo-
sition" is meant the equivalence class of that proposition. The logical connectives "or" and
"and" are operations on the set of all propositions, and it can be verified that, used for V
and A, respectively, they yield a Boolean algebra. If p and q denote propositions, then

p v q is true if p is true or q is true or both are true

and

p A q is true if p is true and q is true.

This algebra is called the algebra of propositions.
The commutative, associative, and distributive laws are consequences of the usual

meaning of "or" and "and." The negation of a proposition, "not p," is denoted by p'. Then
p v p' is true for every p, and p A p' is false for every p. (Example: "ABC is equilateral
or ABC is not equilateral" is true. "ABC is equilateral and ABC is not equilateral" is false.)
For a zero, we require a proposition 0 such that q V 0 = q for every statement q. That
is, q v 0 must be true if q is true. This will be the case if 0 is a false statement. Thus
for 0 we can use (the equivalence class of) p A p' for any statement p(p A p' is called a
contradiction).

For a unity, we require a proposition 1 such that q A 1 = q for every statement q. That
is, q A 1 must be true if q is true. This will be the case if 1 is a true statement. Thus
for 1 we can use (the equivalence class of) p v p' for any statement p (p v p' is called
a tautology). With these choices for 0 and 1, we also have p' ("not p") for the (Boolean
algebra) complement of each statement p.

It is interesting to interpret <, as given by (65.1), in the algebra of propositions. For
propositions p and q, p < q if p v q = q. Reflection shows, then, that p < q if p is true
and q is true, or p is false (no matter what q). (Remember the meaning of V and =.)
Therefore p < q is equivalent to "if p then q" or "p implies q". The property "p < 1 for
every p" means that every statement implies a true statement. The property "0 < p for
every p" means that every statement is implied by a false statement.

The following theorem brings together some properties of Boolean algebras that are
not listed in Definition H. The laws (a v b)' = a' A b' and (a A b)' = a' V b' in this theorem
are called DeMorgan's Laws, after the British mathematician Augustus DeMorgan (1806-
1871). DeMorgan helped lay the foundations for mathematical logic and was one of the
first to stress the purely symbolic nature of algebra.

Theorem 65.2. If B is a Boolean algebra and a, b, c E B, then

aVa=a, aAa=a,
(aVb)Aa=a, (aAb)va=a,
av1=1, aA0=0,
a has a unique complement, a', and (a')' = a,
(avb)'=a'Ab', (aAb)'=a'vb'
0'=1, l'=0,

and

a<b iff avb=b iff aAb=a.
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PROOF. The first two pairs of properties (the idempotent and absorption laws) hold
by Theorem 64.1 because B is a lattice. Certainly a V 1 = 1, because a < 1 for every a,
and a A 0 = 0 because 0 < a for every a.

To prove that a has a unique complement, assume that a v x = 1 and a A x = 0, and
that aVy=1andaAy=0;weshall show that x=y:

x=xA1=xA(aVy)=(xAa)V(xAy)
=0V(xAy)=0V(yAx)=(yAa)V(yAx)
=yA(aVx)=ynl=y.

The law (a')' = a follows from the definition and uniqueness of complements.
To prove (a v b)' = a' A b' it suffices by uniqueness of complements to show that

(a V b) A (a' A b') = 0 and (a v b) v (a' A b') = 1. By the distributive laws,

(a v b) A (a' A b') _ (a A a' A b') v (b A a' A b')

=0v0
=0

and

(avb)v(a'Ab')=(avbVa')A(avbvb')
=1A1
= 1.

The law (a A b)' = a' v b' now follows by the Principle of Duality.
The laws 0' = 1 and 1' = 0 are both consequences of 0 A 1 = 0 and 0 v 1 = 1. The

last part of the theorem is a consequence of the definition in equation (65.1) and the first
part of the proof of Theorem 64.1.

OBLEMS

65.1. (a) An axiom in Definition II requires that a V 0 = a for each a E B. Why is a n 0 = 0 also
true? [Suggestion: To show that a n 0 = 0, start with a n 0 = (a n 0) v (a n a').]

(b) An axiom in Definition II requires that a n 1 = a for each a E B. Why is 1 n a = a also

true? Why is a v I = 1 also true?

65.2. Justify each step in the proof of the idempotent law a v a = a in the proof of Theorem 65.1.
Also write a proof of the dual statement a n a = a.

653. Justify each step in the proof of the absorption law (a v b) A a = a in the proof of Theorem
65.1. Also write a proof of the dual statement (a n b) v a = a.

65.4. Justify each step in the proof of the uniqueness of a complement for a in the proof of Theorem
65.2.

65.5. Assume that B is a Boolean algebra and a E B. Prove that a = 0 if b = (a n b') V (a' A b)

for each b E B.

65.6. Assume that B is a Boolean algebra and that a, b E B.
(a) Prove that a < b if b' < a'. (b) Prove that a < b' iff a n b = 0.
(c) Provethata <biff a' V b = 1.

65.7. Construct Cayley tables for the operations v and n on the lattice in Figure 67.1. Verify that
this lattice is not a Boolean algebra by finding an element without a unique complement. (This



SECTION 66 FINITE BOOLEAN ALGEBRAS 291

will show that B is not a Boolean algebra because a condition in Theorem 65.2 is vi(Aated.)
Is this lattice distributive?

0

Figure 65.1

65.8. (a) Give an example to show that a v c = b v c does not imply a = b in Boolean algebras.
(b) Prove that if B is a Boolean algebra and a, b, c E B, then a v c = b V c and a v c' _

b v c'imply a = b.

65.9. Restate and do Problem 65.8 with V replaced by n throughout.

65.10. Prove that ifBisaBoolean algebra anda,b,cEB,then avc=bvcandanc=bnc
imply a = b. (Compare Problems 65.8 and 65.9.)

65.11. By considering the possible diagrams for partially ordered sets, show that there is no Boolean
algebra containing exactly three elements. [See Problem 63.11(c).]

65.12. For which n E N will the lattice of all positive divisors of n be a Boolean algebra, with a < b
defined to mean a I b? (Problems 64.4, 64.8, and 64.13 will help. Begin by looking at specific
examples.)

SECTION 66 FINITE BOOLEAN ALGEBRAS

The goal of this section is to prove Theorem 66.1, which characterizes all finite Boolean
algebras. Boolean algebras, like groups and other algebraic structures, are classified ac-
cording to isomorphism.

Definition. If A and B are Boolean algebras, an isomorphism of A onto B is a mapping
0 : A -* B that is one-to-one and onto and satisfies

9(a v b) = 0(a) v 8(b)

and

9(a A b) = 0(a) A 0(b)

for all a, b c A. If there is an isomorphism of A onto B, then A and B are said to be
isomorphic, and we write A -_ B.

Theorem 66.1. Every finite Boolean algebra is isomorphic to the Boolean algebra of all
subsets of some finite set.



CHAPTER XVI LATTICES AND BOOLEAN ALGEBRAS

Example 66.1. The divisors of 30 form a Boolean algebra with a < b defined to mean
a I b. Its diagram is shown in Figure 66.1. Here a V b is the least common multiple of a and
b, and a A b is the greatest common divisor of a and b.

30

1

Figure 66.1

A comparison of Figure 66.1 with Figure 63.1, the diagram for the Boolean al-
gebra of subsets of {x, y, z), suggests an isomorphism determined by 9(2) = (x},
9(3) = [y), and 9(5) = {z). The condition 9(a V b) = 9(a) v 9(b) forces 9(6) = (x, y},
9(10) = {x, z}, 9(15) = {y, z}, and 9(30) = {x, y, z}. Also, the condition 9(a A b) =
9(a) A 9(b) forces 9(1) = 0. This mapping 9 is an isomorphism. The idea here is to match
the elements covering 1 (the prime divisors of 30) with the elements covering 0 (the single-
element subsets of {x, y, z}). This simple and important idea is the key to Theorem 66.1.

(Although the divisors of 30 form a Boolean algebra relative to a I b, the divisors of 12
(Figure 63.2) do not, because 6 has no complement among the divisors of 12. See Problem
66.7 for a more general statement.)

We lead up to the proof of Theorem 66.1 with a definition and several lemmas. This
amounts to showing that every finite Boolean algebra has elements that play the same
role as the single-element subsets in the Boolean algebra of subsets of a finite set. In the
remainder of this section B denotes a finite Boolean algebra.

An element a E B is an atom of B if a covers 0 (the zero of B), that is, if 0 < a and
there is no x E B such that 0 < x < a (Section 63). Equivalently, a is an atom if

aj4 0, and xna=a or xna=0 (66.1)

for each x E B. The atoms in the Boolean algebra of all subsets of a set are the single-
element subsets of that set. The atoms in the Boolean algebra of divisors of 30 are 2, 3, and
5, the prime divisors of 30 (Example 66.1).

Lemma 66.1. If b E B and b 0, then there is an atom a E B such that a < b.

PROOF. If b is an atom, take a = b. Otherwise, choose an element at E B such that
0 < a, < b; there is such an element a, if b is not an atom. If a, is an atom, take a = a,.
Otherwise, choose an element a2 E B such that 0 < a2 < a, < b. If a2 is an atom, take
a = a2. Continue, if necessary, to get

<b.

This cannot continue indefinitely because B is finite. Therefore, ak must be an atom for
some k; take a = ak.
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Lemma 66.2. If a1 and a2 are atoms in B and al A a2 ; 0, then al = a2.

PROOF. Using (66.1), first with a= a1 and x = a2, and then with a = a2 and x = al,
we conclude that a2 A a1 = a1 and a1 A a2 = a2. Therefore a1 = a2.

Lemma 66.3. For b, c E B, the following conditions are equivalent.

(a)b<c
(b) bnc'=0
(c)b'Vc=1.

PROOF. To prove the equivalence, it suffices to prove that (a) implies (b), (b) implies
(c), and (c) implies (a).

(a) implies (b): If b < c, then b V c = c, so that (using substitution and one of DeMor-
gan's Laws)

b A C' = b A (b v c)'

=.bA(b'Ac')
=(bAb')AC'
=0Ac'
= 0.

(b) implies (c): If b A C' = 0, then (b n c')' = 0. Therefore, by one of DeMorgan's
Laws, b'Vc=1.

(c) implies (a): If b'vc1, then bA(b'vc)=b,(bAb')v(bnc)=b,
0v(bnc)=b,bnc=b,andbc.

Lemma 66.4. If b, c E B and b c, then there is an atom a E B such that a < b and
a ¢ c.

PROOF. If b c, then b n c' 74- 0 by Lemma 66.3. Therefore, by Lemma 66.1, there
is an atom a C B such that a < b A c'. For this a, a < b and a c.

Lemma 66.5. If b E B, and a1, a2, ... , am are all the atoms < b, then b = a1 v a2 V
...yam.

PROOF. Let c = a1 v a2 v . . . V am. Then c < b since a; < b for l < i < m. There-
fore, it suffices to show that c > b. Assume, to the contrary, that c b. Then by Lemma
66.4 there is an atom a such that a < b and a ¢ c. But a < b implies a = ai for some i, by
definition of the ai (1 < i < m). The conditions a = ai and a A c = 0 are contradictory, so
that we must have c > b. f

The next lemma shows that if any of the atoms a, (1 < i < m) in Lemma 66.5 are
omitted, then b is not the l.u.b. of the remaining atoms.

Lemma 66.6. I f b e B, and a, a 1 , a2, ... , am are atoms of B, with a < b and
a=a;forsome i.
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PROOF. We have a A b = a because a < b. Therefore

aA(aI

so a A ai 54 0 for some i. Lemma 66.2 gives a = a; .

PROOF OF THEOREM 66.1. Let B be a finite Boolean algebra, and let S be the set of
all atoms in B. We shall prove that B - P(S).

If b E B, then by Lemmas 66.5 and 66.6, b can be written uniquely in the
form b = at v a2 V . . v am with at, a2, ..., am E S; moreover, {at, a2, ..., am) _
{a E S : a < b}. Therefore, we can define a mapping 0 : B -* P(S) by

9(at V a2 V ... vam) = (at,a2,..., am).

The mapping 9 is clearly onto.
To show that 6 is one-to-one, it suffices to show that if b, c E B and b 0 c, then either

there is a r= S such that a < b and a c, or else there is a E S such that a b and a < c.
But this follows from Lemma 66.4, since b c only if b 2! c or b c.

Assume that b, c E B. Then 9(b V c) = B(b) U 8(c) because if a is an atom then

a<bvc if a<b or a<c
(Problem 66.5). And 8(b A C) = B(b) fl 8(c) because if a is an atom then

a < b A C if a < b and a<c

(66.2)

(66.3)

(Problem 66.6).

Corollary. If B is a finite Boolean algebra, then I B I = 2' for some positive integer n.

Theorem 66.1 is not true if we remove the requirement that the Boolean algebra be
finite. However, in 1936 the American mathematician M. H. Stone proved that if B is a
Boolean algebra, then there is a set S such that B is isomorphic to a Boolean algebra formed
by some collection C of subsets of S. The operations on C are union and intersection; the
collection C is not necessarily all of P(S), but C is closed with respect to union, intersection,
and complementation relative to S. (See [5].)

EOBLEMS

66.1. Prove that for Boolean algebras the definition of isomorphism in Problem 63.11 is equivalent
to the definition in this section.

66.2. Prove: If 6 : A --> B is a Boolean algebra isomorphism, then B(IA) = 1B and B(OA) = OB.

663. Prove: If B : A -a B is a Boolean algebra isomorphism, then 8(a') = 9(a)' for each a E A.

66.4. The positive divisors of 1155 form a Boolean algebra when a < b is taken to mean a I b. What
are the atoms?

66.5. Assume that B is a Boolean algebra; a, b, c E B; and a is an atom. Prove that a < b v c if
a < b or a < c. Also show that if a is not an atom, then this is not necessarily true.

66.6. Assume that B is a Boolean algebra and a, b, c E B. Prove that a < b A c if a < b and a < c.
(Notice that in contrast to Problem 66.5, a need not be an atom here.)
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66.7. Assume n E N. Using only Problem 13.12 and the corollary of Theorem 66.1, prove that if the
lattice of divisors of n is a Boolean algebra (with a < b if a I b), then n must be a product of
distinct primes. (Compare Problem 65.12.)

66.8. (This problem puts Boolean algebras in the context of rings, as discussed earlier in the book.
This problem is longer than most of the problems in the book.)
(a) A ring R is called a Boolean ring if x2 = x for each x E R. Every Boolean ring is com-

mutative and satisfies 2x = 0 for each x E R (Problem 27.21). Let R be a Boolean ring
with unity 1, and define operations v and A on R by

avb=a+b-ab

and

a A b = ab.

Prove that with these operations R is a Boolean algebra, with unity 1 and zero 0, and with
1 - a for the complement d of a for each a E R.

(b) Let B be a Boolean algebra and define two operations on B by

a + b = (a A b') v (a'A b)

and

ab=aAb.

(The first of these operations is called the symmetric difference of a and b.) Prove that with
these operations B is a Boolean ring with unity.

NOTES ON CHAPTER XVI

1. Donnellan, T., Lattice Theory, Pergamon Press. Oxford, 1968.
2. Halmos, P. R., and S. R. Givant, Logic as Algebra, The Mathematical Association of America,

1998.
3. Hohn, F. R., Applied Boolean Algebra, 2nd ed., Macmillan, New York, 1966.
4. Roth, C. H., Jr., Fundamentals of Logic Design, 2nd ed., West, St. Paul, MN, 1979.
5. Stone, M. H., The theory of representations of Boolean algebras, Transactions of the American

Mathematical Society 40 (1936), 37-111.
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SETS

This appendix contains a summary of basic facts and notation about sets.
A set is a collection of objects, called its elements or members. To indicate that x is an

element of a set A, we write
xEA.

To indicate that x is not an element of A, we write

x ¢ A.

There are three commonly used methods of defining a set. First, simply describe its
elements:

The set of all positive integers.

Second, list its elements in braces:

(a, b, c} or (1,2,3.... }.

(Not all elements in the second set can be listed, of course, but there should be no doubt
that the set of all positive integers is intended.) Third, a set can be defined by set-builder
notation:

{x : x has property P} means "the set of all x
such that x has property P."

Thus {x : x is a positive integer) also denotes the set of all positive integers.
If A and B are sets, and each element of A is an element of B, then A is a subset of B;

this is denoted by

ACB or BDA.

Notice that A C B does not preclude the possibility that A = B. In fact,

A=B ifft AcB and ADB.
The following three statements are equivalent:

(i) ACB.
(ii) If x E A, then x E B.

(iii) If x ¢ B, then x V A.

t We use "iff" to denote if and only if."
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Statement (iii) is the contrapositive of (ii) (see Appendix B); it is sometimes easier to prove
that A _C B by using (iii) rather than (ii).

A C B will mean A C B and A ¢ B; similarly for A D B. (This notation is not
universal).

The empty (null, vacuous) set contains no elements, and is denoted by 0. Thus,

x E 0 is always false.

If A is not a subset of B, we write A 5 B. This is true, of course, if A contains at least
one element that is not in B. Set inclusion (C) has the following properties:

0 C A for every set A.
A C A for every set A.
If ACBand B CC,thenACC.

If A and B are sets, then A n B, the intersection of A and B, is defined by

AnB={x:xEA and xEB}.

AnB

If A and B are sets, then A U B, the union of A and B, is defined by

AUB={x:xEA or xEB}.

AUB

The diagrams above are called Venn diagrams.

ExampleA.]. Let S = {a, b, c}, T = {c, d, e}, U = {d, e}. Then

a E S
SnT ={c}
S % T
SUT =SUU=(a,b,c,d,e}

If A, B, and C denote any sets, then

a¢T
S n U = 0
T D U

AnB=BnA AUB=BUA
AnBCA ACAUB
A C B implies An B =A
AC_Bimplies AUB=B
A n A = A AUA=A
An(BnC)=(AnB)nC AU(BUC)=(AUB)UC
AU(BUC)=(AnB)U(AnC) AU(BUC)=(AUB)n(AUC).
A\B={x :xEm AandxgB).
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The complement of a set A in a set S that contains A is A` = {x : x E S and x V A).
The Cartesian product of sets A and B is denoted by A x B and is defined by

AxB={(x,y):xEA and yEB}.
Here each (x, y) is an ordered pair. The term ordered is used because (x, y) is to be
distinguished from (y, x) if x # y. Ordered pairs (x, y) and (.r', y') are equal if x = x'
andy=y'.

ExampleA.2. If A = {1, 2} and B = {u, v, w}, then

A x B = ((1, u), (1, v), (1, w), (2, u), (2, u), (2, w)}.

Notice that A x B# B x A. For nonempty A and B, A X B = B x A if A = B.

Plane coordinate (analytic) geometry begins with a one-to-one correspondence be-
tween the points of the plane and the set of pairs of real numbers, that is, elements of
the Cartesian product IR x R. This example explains the choice of the name "Cartesian
product"-Descartes was one of the developers of analytic geometry.

The notion of Cartesian product can be used to give a definition of mapping that is
preferred by some to that given in Section 1: A mapping from a set S to a set T is a subset
of S x T such that each x E S is a first member of precisely one pair in the subset. The
connection between this definition and that given in Section 1 is that if a : S -* T (in the
sense of Section 1), then each x E S contributes the pair (x, a(x)) to the subset of S x T
in the definition of mapping as a subset of S x T. For example, the mapping a in Example
1.1 corresponds to the subset {(x, 2), (y, 1), (z, 3)) of {x, y, x} x {1, 2, 3).

oblems

A.1. Assume A = [t, u, y), B = {w, x}, and C = [x, y, z}. Find each of the following sets.
(a) A n B (b) A n C (c) B U C
(d) A\B (e) B\C (t) A x B
(g) C x B (h) A U (B fl C) (i) (A U B) fl C

A.2. Find each of the following if A, B, and C are as in Problem A. 1. (See page 33 for notation.)
(a) IA x Cl (b) 10\Bl (c) IB x 01

A.3. Here is a Venn diagram for A fl (B U C).

C

Draw a similar diagram for (A fl B) U (A fl C). How do the two diagrams compare?

A.4. Draw Venn diagrams for A U (B fl C) and (A U B) fl (A U C). Are the results consistent with
the property AU(BnC)=(AUB)fl(AUC)?

A.S. Assume that S = ( 1 , 2, 3, ... , 10), A = {1, 2, 3, 4, 5}, and B = {2, 4, 6, 8, 10}. Find A', B`,
(A U B)', and (A fl B)', where each complement is taken relative to the set S.
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PROOFS

A distinguishing feature of mathematics is the use of deductive reasoning. In the deductive
method we begin with a collection of statements (axioms) that are assumed to be true, and
then use logical reasoning (rules of inference) to prove other statements (theorems).

An important example is Euclidean geometry. In Book I of the Elements (written
c. 300 B.C.), Euclid began with ten axioms (divided into five postulates and five com-
mon notions) and then deduced the fundamental theorems of Euclidean plane geometry,
including the Pythagorean Theorem and its converse.

In many parts of mathematics the underlying formal structure (axioms, theorems, and
the connections between them) is not always made clear. In a typical calculus course,
for example, some theorems are given without proof, some proofs are only sketched, and
even the proofs that are complete rely on ideas from geometry and algebra for which
many students may not have seen formal proofs. For some purposes this way of presenting
mathematics is sufficient, because the goal may be only a working knowledge of the basic
ideas and their applications. However, the underlying formal structure is an integral part of
this book. For example, nearly all of the central ideas-such as group, ring, and field-are
defined by axioms.

This appendix is meant to help with some of the ideas and techniques that are used in
deductive reasoning.

In understanding or constructing proofs we are invariably concerned with conditional
statements, that is, with statements of the form

if p then q.

Any such statement is equivalent to each of a number of other statements, where to say
that two statements are equivalent means one is true precisely when the other is true. In
particular, the conditional statement above is equivalent to each of the following statements:

p implies q.
p only if q.
gifp.
p is sufficient for q.
q is necessary for p.

Example B.1. Let A and B denote sets. The statement

A is a subset of B
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is equivalent to the conditional statement

ifxEAthenxEB.

This conditional statement, in turn, is equivalent to each of the following statements:

XEAimplies xEB.
XEAonlyXEB.
xEBifxEA.
x E A is sufficient forx E B.
X E B is necessary for x E A.

A direct proof of a conditional statement "If p then q" will consist of a finite sequence
of statements p = Pt, P2, ... , p, = q, leading from the hypothesis p to the conclusion
q. Each of the statements P1, p2, ... , p, will be an axiom, a hypothesis, a statement that
has already been proved, or a statement derivable from such statements by using rules of
inference (which are covered in books that present introductory logic). Following is an
example (half of Problem 1.27). The ideas used are in Section 1 and Appendix A.

Example B.2. Prove that if a : S -* T and A and B are subsets of S, then a(A U B) C
a(A) U a(B).

PROOF. To begin, we must have a clear idea of what must be done. In this case, we
must demonstrate (given a : S -* T and A and B are subsets of S) that every element of
a(A U B) is also an element of a(A) U a(B), that is, an element of a(A) or an element of
a(B).

Thus assume that y E a(A U B). Then y = a(x) for some x E A U B, by the definition
of image of a subset (Section 1). Since x E A U B we know X E A or x E B, by the definition
of union of sets. If x E A, then y = a(x) E a(A), and if x E B then y = a(x) E a(B). Thus
in either case y E a(A) U a(B), which is what we were to prove.

Another statement equivalent to the conditional statement

if p then q

is its contrapositive,

if not q then not p.

This is the basis for the method of indirect proof , in which a conditional statement is proved
by proving its contrapositive.

Example B.3. The statement

if xEAthenXEB

is equivalent to

if x ¢ B then x ¢ A.

Therefore, to prove "A C B" is the same as to prove "if x ¢ B then x ¢ A."
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Another method, similar to indirect proof, is proof by contradiction (or reductio ad
absurdum). With this method, a conditional statement "if p then q" is proved by showing
that if p were true and q were not true, then some contradiction (absurdity) would result.
For an example of a proof by contradiction see Theorem 31.1.

The statement

if q then p

is the converse of

if p then q.

A statement and its converse are not equivalent. For example, if we were to say that "if
x E A then x E B" is equivalent to "if x E B then x E A," we would be saying that A C B
is the same as B C A, which is manifestly false.

Putting a conditional statement and its converse together, we get a biconditional state-
ment:

p if and only if q,

which we are writing

p iffq.

It is an immediate consequence of earlier remarks that this biconditional statement is
equivalent to

p is necessary and sufficient for q.

Sometimes, "if p then q" or one of its equivalents is written when in fact "p if q" is true.
This happens especially with definitions. For example, the "if" in

An integer p is a prime if p > 1 and p
is divisible by no positive integer other than
1 and p itself,

really means "iff."
The connectives "or," "and," and "not" arise often in forming compound statements.

Unless it is explicitly stated otherwise, the word "or" should always be taken in the inclusive
sense:

p or q

means

p or q or both.

The words "and" and "not" have their usual meanings.
The following rules are used frequently:

1. not (p and q) is equivalent to (not p) or (not q).

2. not (p or q) is equivalent to (not p) and (not q).

Example B.4. Let A and B denote sets, and let

p denote x E A
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and

Then

and

q denote x c B.

"p and q" means x E A fl B,

`porq"means x E AUB.

This leads to the following two lists of equivalent statements:

not (p and q)

x ¢ A n B
equivalent

xgAorx¢B
(not p) or (not q)

not(p orq) I

xgAUB
l

In statements such as

equiva ent

(not p) and (not q)J E

xVAand x¢B

x2-4=0,
and

x is nonnegative,

the letter "x" is called a variable. Variables are assumed to belong to some previously
agreed-upon universal set. In the two examples, this might be the set of all real numbers,
for instance. A statement with a variable can be combined with either a universal quantifier
or an existential quantifier.

Universal quantifier: "for each x"
Existential quantifier: "there is an x such that"

Once a quantifier has been introduced it becomes meaningful to ask whether a statement
with a variable is true or false.

Example B.5. Let the variable x represent a real number.

For each x, x2 - 4 = 0. False

There is an x such that x2 - 4 = 0. True

For each x, x2 is nonnegative. True

The terms "for every" and "for all" are often used in place of "for each." Also, "there
exists an x such that" and "for some x" are often used in place of "there is an x such
that." Moreover, statements that can be made using quantifiers are often made without
their explicit use. For instance, "for each (real number) x, x2 is nonnegative," is logically
equivalent to "the square of every real number is nonnegative."
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In a statement with more than one variable, each variable requires quantification.
Example: For all real numbers a, b, and c, a(b + c) = ab + ac.

The negation of a statement with a universal quantifier is a statement with an existential
quantifier, and the negation of a statement with an existential quantifier is a statement with
a universal quantifier.

Example B.6.

Statement I: For each x, x2 is nonnegative.
Negation of I: There is an x such that x2 is negative.
Statement II: There is an x such that x2 - 4 = 0.
Negation of II: For each x, x2 - 4 # 0.

An example showing that a statement with a universal quantifier is false is called a
counterexample. Thus x = 2 is a counterexample to the statement "for each prime number
x, x is odd."

The preceding remarks were concerned with the technical aspects of proofs. A slightly
different problem is that of how to discover proofs; the last three books below are recom-
mended for their advice on this problem. The first book is recommended for advice on
writing mathematics.

1. Gillman, L., Writing Mathematics Well: A Manual for Authors, The Mathematical Association of
America, 1987.

2. Polya, G., How to Solve It, Princeton University Press, Princeton, NJ, 1988.
3. Solow, D., How to Read and Do Proofs: An Introduction to Mathematical Thought Process, 3rd

ed., Wiley, New York, 2001.
4. Velleman, D. J., How to Prove It: A Structural Approach, Cambridge University Press, New York,

2006.
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MATHEMATICAL INDUCTION

PRINCIPLE OF MATHEMATICAL INDUCTION

For each positive integer n, let P (n) represent a statement depending on n. If

(a) P(1) is true, and

(b) P (k) implies P (k + 1) for each positive integer k,

then P(n) is true for every positive integer n.

Intuitively, the principle is valid because P(1) is true by (a), and then P(2) is true by
(b) with k = 1, and then P(3) is true by (b) with k = 2, and so on. Logically, the principle
is equivalent to the Least Integer Principle, stated in Section 10. (Also see Section 29,
especially Problem 29.7.)

Example C.I. If S(n) denotes the sum

a + ar + art + + am-l

of the first n terms of a geometric progression with first term a and common ratio r # 1,
then

a - am
S(n) = .1 - r (C.1)

To prove this, for each positive integer n let P(n) be the statement that formula (C. 1)
is true.

(a) For n = 1, (C.1) gives

a - ar
S(1) a,

1-r

which is clearly true.
(b) Assume that P(k) is true. Then

S(k) =
a - ark

1-r
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is true. Therefore

S(k + 1) = S(k) + ark

a -ark= + ark
1-r

a - ark + (1 - r)ark

1-r
a - ark+1

1-r

305

and the statement P (k + 1) is true. Therefore P (k) does imply P (k + 1), as re-
quired. 0

Example C.2. Let a denote a real number. Define positive integral powers of a as follows:
a1 = a, a2 = aa, a3 = a2a, and, in general, an+1 = a"a. We shall prove that

aman = am+n (C.2)

for all positive integers m and n. In doing this we shall assume the law

a(bc) = (ab)c (C.3)

for all real numbers a, b and c. [The law in Equation (C.2) will be familiar for real numbers
from elementary algebra. The proof here will show that it is valid, more generally, in any
system satisfying equation (C.3). See Section 14.]

Here we let P(n) be the statement that equation (C.2) is true for n and every positive
integer m.

(a) With n = 1, equation (C.2) is ama = a'+1 which is true because a"'a is the
definition of a n+1. Therefore P(1) is true.

(b) Assume that P(k) is true. Then amak = am +k is true. Therefore

amak+l = am(akal) [by the definition of ak+1]

(amak)a [by (C.3)]
= am+ka [by P(k)]
= am+k+l [by the definition of a"'+k+1]

and the statement P(k + 1) is true.

Example C.3. Binomial Theorem. If a and b denote any real numbers and n denotes a
positive integer, then

(a + b)" = C(n, n)a" + C(n, n - 1)a" b + C(n, n - 2)an-2b2 +

+C(n, r)arbn + +C(n, 0)b".

C(n, r) is the binomial coefficient, defined by

C(n, r) =
n!

r!(n - r)!

(C.4)

for 0 < r < n [with r! = r(r - 1) ... I for r > 0, and O! = 1].
To prove this, let P(n) be the statement that equation (C.4) is true.
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(a) For n = 1, the right-hand side of equation (C.4) gives

C(1, 1)a + C(1, 0)b = a + b,

which is equal to (a + b) 1, as required.
(b) Assume that P (k) is true. If both sides of equation (C.4) (with n replaced by k) are

multiplied by (a + b), then equality will result, and, moreover, the coefficient of
ar bk+I-r on the right will be

C(k,r - 1)+C(k,r).

(It may take pencil and paper to verify that.) The coefficient of ar bk+t-r on the right

when n is replaced by k + 1 in (C.4) will be C(k + 1, r). The truth of P(k + 1) is
a consequence of the identity

C(k+l,r)=C(k,r-1)+C(k,r),
which can be verified by simple addition.

The statement P (k), assumed in the second part of proofs by mathematical induction, is
sometimes called the induction hypothesis. In the following alternative form of the Principle
of Mathematical Induction an apparently stronger induction hypothesis is used: In place
of assuming only P(k), we assume P(i) for all i < k. The proof that the two forms of
the principle are equivalent will be left as an exercise; the appropriate context for this
exercise is Section 29.

SECOND PRINCIPLE OF MATHEMATICAL INDUCTION

For each positive integer n, let P(n) represent a statement depending on n. If

(a) P(1) is true and

(b) the truth of P(i) for all i < k implies the truth of P(k + 1), for each positive
integer k,

then P(n) is true for every positive integer n.
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LINEAR ALGEBRA

This appendix contains a concise review of the facts about vector spaces, linear transfor-
mations, and matrices that are needed elsewhere in this book. It also presents important
examples of groups and rings that arise from linear transformations and matrices. Ideas
from Chapters I through VI are used freely, and proofs are omitted.

Definition. A vector space over a field F is a set V together with an operation + on V and
a mapping F x V -+ V [(a, v) -* av] such that each of the following axioms is satisfied:

1. V is an Abelian group with respect to +,

2. (ab)v = a(bv),

3. (a + b)v = au + bv,

4. a(v + w) = av +aw,

5. ev = v,

for all a, b E F and all v, w E V, with e the unity of F.

The elements of V and F are called vectors and scalars, respectively. And av is called
the scalar multiple of v E V by a E F. Throughout this section V will denote a vector
space over a field F.

Example D.1. Let F' denote the set of n-tuples (a I, a2, ..., a") with each a; E F. With
the operations

and, for a E F,

a(ai, a2, ... , a") = (aai, aa2, ... , as"),

F" is a vector space over F. The elements of 1R2 and R3 will sometimes be identified with
geometric vectors in the usual way. If p is a prime, then Z , is a vector space with p"
elements.

Example D.2. The complex field C can be thought of as a vector space over the real field
R. The elements of C are the vectors; the addition of vectors is the addition in C; and
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a(b + ci) = ab + aci (a r= R, b + ci E Q. That is, the scalar multiples are just multiples
in C except that the first factors are restricted to IR. The same ideas can be extended to show
that if E is any field and F is any subfield of E, then E is a vector space over F.

A subset of W of V is a subspace of V if W is itself a vector space with respect to the
addition of V and the scalar multiplication aw (a E F, w E W). It is useful to know that a
nonempty subset W of V is a subspace of V if

1. v+wEWforallv,wEW,and
2. av E Wforalla E F, v E W.

a linear combination of v 1 , V2, ... , V'. If {v1, V2, ... , v,,} is a subset of V, let

(vl , v2, ... , vn) = {a, vi + a2v2 + .. +anvn : a1 , a2, ... , an E F),

the set of all linear combinations of v 1 , v2, ... , vn. Then (v1, v21 ... , is a subspace of V,
called the subspace spanned (or generated) by {v1, V2, ... , vn}. The vectors v1, v2, ... , un
are said to be linearly independent if

alv1 + a2v2 + ... + anvn = 0

implies that

a1=a2=...=an=0

for a1, a2, ... , an E F; otherwise v1, v2, ... , v are linearly dependent.
If vl, V2, ..., vn are linearly independent and (v1, v2, ..., vn) = V, then (v1,

v2, ... , vn ) is said to be a basis for V. We shall be concerned only with vector spaces
having finite bases. Any two bases for a vector space V have the same number of elements;
this number is called the dimension of V and is denoted dim V.

Example D.3. If

el =(1,0,0,...,0)
e2 = (0, 1, 0, ... , 0)

en = (0, 0, 0, .. , 1),

then (e1, e2, ..., en } is a basis for R'. Thus dim Rn = n. The vectors e1, e2, ... , e will be
called standard unit vectors.

Any set that generates V contains a basis for V. Any linearly independent subset of V is
contained in a basis for V. The dimension of a subspace of V cannot exceed the dimension
of V.

Example D.4. The set (1, i } is a basis for C as a vector space over IR (Example D.2). It
generates C because each complex number can be written as a 1 + b i = a + bi with
a, b E R. It is linearly independent because if a + bi = 0 with a, b E R, then a = 0 and
b = 0. Therefore, as a vector space over IR, dim C = 2.
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Let V denote a vector space over a field F. A mapping a : V -+ V is a linear trans-
formation if

a(av + bw) = aa(v) + ba(w) (D.1)

for all a, b E F, v, w E V. A linear transformation is nonsingular (or invertible) if it is
invertible as a mapping, that is, if it is one-to-one and onto. The inverse of a nonsingular
linear transformation is necessarily linear. Let

LM denote the set of all linear transformation from V to V

and

GL(V) denote the set of all nonsingular elements of L (V).

If a, ,B E L(V), then a + 0 and &a are defined as follows:

(a +)3)(v) = a(v) + O(v)

($a)(v) = Aa(v)) (D.2)

for all v E V. It can be verified that both a + ,B and &a are linear, so we have two operations
on L (V ).

Theorem D.1

(a) L(V) is a ring with respect to the operations defined in (D.2).

(b) GL(V) is a group with respect to the product (composition) defined in (D.2).

If A and B are both m x n matrices over F (that is, with entries in F), then their sum,
A + B, is defined to be the m x n matrix with ij-entry aij + bij, where aij and bij are the
i j-entries of A and B, respectively. If A is an m x n matrix over F, and B is an n x p matrix
over F, then their product, AB, is defined to be the m x p matrix with ij-entry

n

ai i b i j + ai2b2j + ... + ain bnj = Eaik bkj .
k=1

Let I, denote the n x n identity matrix, which is defined by aii = 1 for 1 < i < n and
aij = 0 for i # j. (Here 1 denotes the unity of F.) An n x n matrix A is nonsingular (or
invertible) if there is an n x n matrix A-1 such that A-' A = AA-1 = In. Let

M(n, F) denote the set of all n x n matrices over F

and

GL(n, F) denote the set of all nonsingular elements of M(n, F).

Theorem D.2

(a) M(n, F) is a ring with respect to matrix addition and multiplication.

(b) GL(n, F) is a group with respect to matrix multiplication.
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Let (v1, v2, ..., vn} be a basis for V and let a E L(V). Then each a(vi) is in
V(1 < i < n), and can be written uniquely as a linear combination of v1, v2, ... , un:

n

a(vi) = Eajivj = a1i v1 + a2i v2 + + ani vn. (D.3)
j=1

with all aij E F. The matrix with ij-entry aij is the matrix of a relative to the basis
[V1, V2, ... , vn } . This matrix depends on the order of the vectors in the basis IV,, v2, ... , V,)-
Conversely, given an ordered basis for V, and an n x n matrix A = [aij] over F, there is a
unique a E L(V) having the matrix A; this is defined by (D.3).

Example D.S. Assume that V is a vector space over IR, {v1, v2, v3} is a basis for V,
a E L (V ), and

a(v1) = 5v1 + V2 - 2V3

a(v2) = -2v2 + V3

a(v3) = v, +41)2.

Then the matrix for a relative to {v 1, v2, v3 } is

r 5 0 1I
1 -2 4

-2 1 0

If v = a1 v1 + a2v2 + a3v3 E V, then the representation of a(v) as a linear combination of
v1, v2, v3 can be obtained by matrix multiplication, as follows:

5 0 1

1 -2 4

L-2 1 0

a,

a2

a3 J

Sat + a3

a1 -2a2+4a3
-2a1 +a,

and

a(v) = (5a1 + a3)v1 + (al - 2a2 + 4a3)u2 + (-2a, + a2)v3

The correspondence a H [aij] determined by (D.3) can be used to prove the following
theorem.

Theorem D.3

(a) If dim V = n, then L(V) M(n, F), as rings.

(b) If dim V = n, then GL(V) ti GL(n, F), as groups. Both GL(V) and GL(n, F) are
called general linear groups.

The row space of an m x n matrix A over F is the subspace of F" generated by the
rows of A (thought of as elements of F"). The column space of A is the subspace of F"
generated by the columns of A (thought of as elements of F01). The dimensions of the row
space and column space of A are called the row rank and column rank of A, respectively.
It can be proved that these two ranks are equal for each matrix A; their common value is
called the rank of A.
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The transpose of an m x n matrix A is the n x m matrix, denoted A' or A`r, obtained
by interchanging the rows and columns of A. Thus each ij-entry of A' is the ji-entry of A.
The transpose of a 1 x n (row) matrix is an n x 1 (column) matrix. We shall identify each
1 x n matrix with the corresponding vector in P.

Let A be an m x n matrix over F. The null space of A is the set of all v E F" such that

Av'=0.

The null space of A is a subspace of F", and its dimension is called the nullity of A. It can
be proved that

rank A + nullity A = n.

The elementary row operations on a matrix are of three types:

1. Interchange two rows.

H. Multiply a row by a nonzero scalar.
III. Add a multiple of one row to another row.

If a matrix B can be obtained from a matrix A by a finite sequence of elementary row
operations, then A and B are said to be row equivalent. Row equivalence is an equivalence
relation on the set of m x n matrices over F. Each matrix is row equivalent to a unique
matrix in row-reduced echelon form, that is, a matrix such that

1. the first nonzero entry (the leading entry) of each row is 1,

2. the other entries in any column containing such a leading entry are all 0,

3. the leading entry in each row is to the right of the leading entry in each preceding row,
and

4. rows containing only Os are below rows with nonzero entries.



PPENDIX E

SOLUTIONS TO SELECTED PROBLEMS

This appendix contains answers or solutions (or hints) for nearly all the odd-numbered
problems preceding the double line in each section.

ICTION 1

1.1. (a) a is neither one-to-one nor onto; P is both one-to-one and onto.
(b) a(A) = 11, 2); $(B) = 11, 2, 3); a(A rl B) = {1); $(A U B) = T.

13. 6 1.5. 8

1.7. One answer:... y E T, there is no x E S such that a(x) = y. Another answer:... y E T,
a(x) # y for each x E S. (See Example B.6 in Appendix B.)

1.9. ... a(x) 54 p(xx) for some x E S.

1.11. Both one-to-one and onto. And f (P) = P.

1.13. Both one-to-one and onto. And f (P) = P.

1.15. One-to-one but not onto. And f (P) = (x E R : x > 1).

1.17. a(A) = 12n : n E N and n is odd)
a(B) = C
a(C)=18n:nEN)

1.19. 1 and -1.

ECTION 2

2.1. (a o a)(n) = 4n. Image = all integral multiples of 4.

23. (a o P)(n) = 2n + 2. Image = all even integers.

2.5. (f I:Image :n EZ).

2.7. If x E S, then (a o ts)(x) = a(Ls(x)) = a(x), so a o is = a. And if x E S, then (LT o a)(x)
IT (a (x)) = a(x), so IT o a = a.

2.9. (a) g(x) = x/5. (b) g(x) = x + 4. (c) g(x) = log,ox (x > 0).

2.11. (a) False. (b) True. (c) True. (d) False.

2.13. No. Check x = 7r/2, for example. [In fact, (f o g)(x) = sin 2x = 2 sin x cos x, but (g o f)
(x) = 2 sin x.]

2.15. ... a is not onto. (See Example B.4 in Appendix B.)
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SECTION 3

SECTION 4

2.17. (a) No. For one example, use S = (v}, T = (w, x}, U = (y, z), a(v) = x, (w) = y, and
P(x) = Z.

(b) If P o a is one-to-one and onto, then a is one-to-one and 0 is onto. True. (Give reasons.)
(c) If 0 o a is not one-to-one and onto, then a is not one-to-one or $ is not onto. (Or: if 0 o a

is not one-to-one or 0 o a is not onto, then a is not one-to-one or P is not onto.) This
contrapositive statement is false. (Give reasons.) See Example B.4 in Appendix B.

3.1. Operation. Commutative but not associative. No identity.

3.3. Operation. Associative but not commutative. No identity.

3.5. Operation. Commutative but not associative. No identity.

3.7. Operation. Commutative and associative. No identity.

3.9. No. (Give a reason.)

3.11. Fork to be an identity, we would need m * k = mk = m for every positive integer m, so k = 1.
But k * m = m is also required, and 1 * m = 1"' = 1 for every positive integer m, so 1 is not
an identity.

3.13. (a) and (c) are true.

3.15. ... for some a, b E S. (Compare Example 1.2.)

3.17. ...e*a54 aora*e#a.
3.19. The set of all positive even integers.

4.1. (a) o

Jr

P

a

r

7r p a r

r 7r n or

or p or r
r a p or

r r r r

(b) p. (c) No. (d) p and or. (e) Yes.

4.3. o

Pt

P90

Peso

P270

PO P9o P180 P270

PO P90 P180 P270

P90 Peso PI--70 PO

P180 P270 PO P90

P270 PO P90 Peso

po is an identity element and each element does have an inverse.

SECTION 5

5.1. Group. 5.3. Group. 5.5. Group.

5.7. Not a group. (Only 1 and -1 have inverses.)
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5.9. Not a group. (Division is not associative. Also, there is no identity element.)

5.11. Let S denote the given set.

Operation: 2' - 2" = 21+" E S if 2"', 2" E S because m + n E Z if m, n E Z.
Associativity: True because multiplication is associative on R.
Identity element: I = 20 E S if 2"2" E S because 0 E Z.
Inverses: The inverse of 21" is 2-'", and 2-"' E S if 2" E S because -m E Z if m E Z.

5.13. Associativity: Assume f, g, h E F. If X E IR, then

(f + (g + h))(x) = f (x) + (g + h)(x) = f (x) + (g(x) + h(-x))
= (f(x)+g(x))+h(x) = (f + g)(x) + h(x)
= ((f + g) + h)(x),

so f + (g + h) = (f + g) + h.
Identity: Define OF E F by OF (x) = 0 for each x E R. (Verify that OF is an identity element.)
Inverse: For f E F, define-f E F by (-f)(x) = -(f (.r)). (Verify that-f is an inverse off.)

CTION 6

6.1. (a) (3
2 4 1) (b) (3 1 2 4)

(c) (1 4 3 2) (d) (2 4 1 3)

(e) (2 3 1 4) (0 (4 2 1 3)

(g) (4 2 1 3) (h) (2 3 1 4)
6.3. (a) (1 3 6)(2 5) (b) (1 4 3 2)

(c) (1 3 4 2 5) (d) (2 3)(4 5)

:CTION 7

7.1. (a) and (c) are subgroups.
(b) is not a subgroup. For example (1 2 3)(2 3 4) is not in the set, so closure is not satisfied.
(d) is not a subgroup. For example (1 2 3 4)(1 2 3 4) is not in the set, so closure is not
satisfied.

7.3. (a) GT = {(1), (2 3)). Gr = ((1), (2 3)).
(b) GT = ((1)). GT = {(1), (2 3)).

7.5. Consider the three parts of Theorem 7.1, and let H denote the given set.
(a) H # 0 since ai,0 E H.
(b) If a.,0 E H and ah,0 e H, then a",0 a ah.o = a"h.o E H.
(c) a".0 E H, then aa,o = a"- ,0 E H.

The subgroup consists of the identity, all magnifications, and all contractions.
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SECTION 8

SECTION 9

8.1.

a

d

b

PV OP180=PH

a

d

b
Pv

P1800PV=PH

SECTION 10

C

/180

b

c

c

b

a d
P 180

d a b

d

a

d

Pv

a b

8.3. The group has order six, containing the identity, two (other) rotations, and three reflections.
(Describe the elements more explicitly.)

9.1. (a), (b), and (c).

9.3. (a) and (b).

9.5. (a) Reflexive: (xi, yi) - (xi, y,) because yj = y, by the reflexive property of = on R.
Symmetric: (xi, y,) -. (x2, y2) iff y1 = y2 iff y2 = y1 iff (x2, y2) - (XI, y,), where we have
used the symmetric property of = on R.
Transitive: Use the transitive property of = on R.

(b) The x-axis and the lines parallel to the x-axis.
(c) The set of points on any line not parallel to the x-axis would do.

9.7. (a) The proof requires the reflexive, symmetric, and transitive properties of = on R.
(b) The set of all nonnegative real numbers would do.

9.9. In the first case, symmetric and transitive. In the second case, reflexive and symmetric.

9.11. The interval [-7r/2, n/2] would do. By restricting the domain of sine to this interval, we make
the function one-to-one, and therefore invertible; the inverse is then the inverse sine function.

9.13. (a) There are five. (b) Five.

9.15. The equivalence class to which a point (number) belongs consists of all the points an inte-
gral distance away on the line. The points on the interval [0, 1) would be a complete set of
equivalence class representatives.

10.1. (a) There are six. (b) There are six. (c) There are two.

10.3. (a) 5 (b) 2 (c) 3

10.5. The set of all multiples of 5.

10.7. x = 2 and x = 5.

10.9. a^- biff a =b(mod 10).
10.11. (a) q=3,r=4 (b) q = -2, r = 3 (c) q=0,r=11
10.13. If a l b and b I c, then there are integers u and v such that b = au and c = by. Hence c = auv,

so a I c, since uv is an integer.
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10.15. There are integers u and u such that a - b = un and c - d = un. Hence (a + c) - (b + d) _
(u + v)n, and so a + c = b + d (mod n), since u + u is an integer.

10.17. a=1,b=-1, and n = 3 would do.

MON 11

11.1. -7, -2, 3, 8, and 13 would do.

11.3. (a) [2] (b) [0] (c) [3] (d) [2]
(e) [1] (f) [2] (g) [3] (h) [3]

11.5. ® I 0 1 2

0 0 1 2

1 1 2 0 k is written for [k].
2 2 0 1

11.7. [a] ®[b] = [a + b] = [b + a] = [b] ®[a] for all [a], [b] E Z,,. (Give areason for each step.)

CTION 12

12.1. (6, 14) = 2 and [6, 14] = 42

12.3. (36, -60, 90) = 6 and [36, -60, 901 = 180

12.5. (1001, 33) = 11 = 1001(1) + 33(-30)

12.7. (-90, 1386) = 18 = -90(-31) + 1386(-2)

12.9. There are four.

,CTION 13

13.3.1375=53.11

13.5. First, if p is a prime and a, b E Z, then the highest power of p dividing ab is the sum of the
highest powers of p dividing a and b. Therefore, if m I n, so that n = mu with u E Z, then for
each pi (1 < i < k) the highest power of pi dividing n is the sum of the highest powers of pi
dividing m and u. Thus si < ti for 1 < i < k.

Now, suppose si < ti for 1 < i < k, and let ui = ti - si for I < i < k. Let w =
Then n = mw somIn

13.7. (10, 105) = 5 and [10, 105] = 210. (Show why.)

13.9. (56, 126) = 14 and [56, 126] = 504. (Show why.)

13.11. (a) There are five. (b) There are four.
(c) There are twelve. (d) There are (r + 1)(s + 1).

13.13. O I 1 5 7 11

1 1 5 7 11

5 5 1 11 7

7 7 11 1 5 k is written for [k].
11 11 7 5 1
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SECTION 14

14.1. x=(2 3)

14.3. (Partial answer) The order of (1) is one. The order of (1 2), (1 3), and (2 3) is two. The
order of (1 2 3) and (1 3 2) is three.

14.5. The order is two.

14.7. (a) There are four. (b) There are five. (c) n (why?)

14.9. Four (why?)

SECTION 15

15.1. (-20, 8) c (4) because -20 = -(5 - 4) and 8 = 2 4. (-20, 8) 3 (4) because 4 =
-(-20) - (2)8.

15.3. Use (1 4 6 2 3 5)' = (1 2)(3 4)(5 6),
(1 4 6 2 3 5)4 = (1 3 6)(2 4 5), and
(1 2)(3 4)(5 6)(1 3 6)(2 4 5) = (1 4 6 2 3 5)

[or ((1 2)(3 4)(5 6))-'(1 3 6)(2 4 5) = (1 4 6 2 3 5)].

15.5. The subgroup has order eight.

15.7. 28 15.9. ([1], (1 4))

15.11. Let e = ([0], (1)), v = ([0], (1 2)), w = ([1], (1)), x = ([1], (1 2)), y = ([2], (1)), and z =
([2], (1 2)). T

e

hen eithe

v

r x or z g

w

enerates t

x

he gro

y

up. The Cayley table follows.

z

e e v w x y z

v v e x w z y
w w x y z e V

x x w z y U e

Y y z e v W x
z z y v e x w

SECTION 16

16.1. ([4]) = [[0], [4])
([4]) ®[1] _ {[1], [5])
([4]) ® [2] _ 1[2], [6])
([4]) ® [3] _ J[31, [711

10. (pH) = {µo, pH)
(PH)µ9o = {µ9o, P2}
(PH)µ18o = {hiss, pv)
(PH)927o = (µ27o, PI)

16.5. ((1 2 3)) = [(1), (1 2 3), (1 3 2))
((1 2 3))(1 2) = {(1 2),(1 3),(2 3))

16.7. (Partial answer) In the Cartesian plane, H corresponds to the line whose equation is y = x.
The right cosets correspond to the lines with slope 1. (Each line corresponds to a coset.) Why?
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FION 17

17.1. 3 (why?) 17.3. 2 (why?) 17.5. 4 (why?)

17.7. G I = 20 or 40 (why?)

17.9. G I = 30, 36, 42, or 48 (why?)

17.11. There are only four subgroups. (Notice ([1]) = ([5]) and ([2])

17.13. There are five.

'TION 18

18.1. Verify that if 9 is defined by 0(m) = 2', then 0 is an isomorphism.

18.3.

a

b

c

d

a b c d

a b c d

b c d a

c d a b

d a b c

18.5. (a) y (b) v (c) w (d) u

2TION 19

19.1. Theorem 19.1(a). 19.3. Theorem 19.1(b) or 19.1(c).

19.5. Theorem 19.1(e) (why?).

19.7. Theorem 19.1 (c). [Give a proof. If you know about infinite cardinal numbers, you could also
use Theorem 19.1(a)]

19.9. Theorem 19.1(d).

19.11. No. 19.13. Z7 X Z7

CTION 20

20.1. 0([k]) = ( [O] [1] [2] [3] [4]

[0 + k] [1 + k] [2 + k] [3 + k] [4 + k]

:CTION 21

21.1. Definition of the operation A x B, definition of rr,, definition of rri.

213. Use x = ra 1 J. Y = [g
h ] Ca

d ] [0
0] _ [a

O, and so on.
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SECTION 22

SECTION 23

SECTION 24

SECTION 25

SECTION 26

21.5. (a) [a]6 = [b]6 implies 61 (b - a) implies 31 (b - a) implies [a]3 = [b]3
(b) Straightforward.
(c) ([3]6)

21.7. Similar to Theorem 18.1.

21.9. Use Theorem 7.1. Here is part (b): If x, y E 0(A), then x = 0(a) and y = 0(b) for some
a, b E A. Since ab E A (why?), xy = 0(a)0(b) = 9(ab) E 0(A).

22.1. (a) 4 (b) 4

22.3. If we write kin place of [[k]], and both outside row and outside column in the order 0, 1, 2, 3,
the rows (in order) are 0, 1, 2, 3; 1, 2, 3, 0; 2, 3, 0, 1; 3, 0, 1, 2.

22.5. Use (Na)(Nb) = N(ab) = N(ba) = N(b)N(a).

23.1. Z1, Z2, Z3, Z6. (The same as all quotient groups. For example, Z2 ti Z,6/([2]).

23.3. Z,, Z5

23.5. Z4 and Z2 X Z2

23.7. For a E G, (0 o q)(a) _ (q (a)) = q5 (Ka) = 0(a).

24.1. [3] O ([4] ® [5]) = [3] O [3] = [3] and ([3] 0 [4]) ® ([3] O [5]) = [0] ® [3] = [3].

24.3.

24.5. Associativity of addition and multiplication, commutativity of addition, and the distribu-
tive laws are all satisfied in Z[.] because they are satisfied in R. The zero element
is 0 + 0,J E Z[,/]. The negative of a + b-J is (-a) + (-b)-12, which is in Z[,/21 if
a + b-J E Z[,J], because -a, -b E Z if a, b E Z.

24.7. (a) and (b) are true in every ring. In a commutative ring, (c) is true also.

25.1. Only [2]. 25.3. ([2], [0])([0], [1]) = ([0], [0])

25.5. (3k : k E Z) 25.7. Subring.

Only one example is given in each case.

26.1. Z 26.3. Z4

26.5. Z2 26.7. There is none.

26.9. Even integers.
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CTION 27

27.1. If b E S, then 6(a) = b for some a E R, and b = 9(a) = 9(ae) = 9(a)O(e) = b8(e). Similarly,
b = 9(e)b.

27.3. By Problems 27.1 and 27.2, it suffices to prove that S has no zero divisors. If a, b E S, then
9(x) = a and 9(y) = b for some x, y E R, and ab = 9(x)9(y) = O(xy); therefore ab = 0 if
xy = 0. Because 9 also maps nonzero elements to nonzero elements, it follows that S has no
zero divisors if R does not.

27.5. Form > 0, m(ab) = ab + ab + + ab (m terms)
= (a + a + + a)b (distributivity)
= (ma)b.

Form = 0, m(ab) = 0(ab) = 0 = Ob = (0a)b = (ma)b.
Form < 0, m(ab) = -[(-m)(ab)] (Section 24)

= -[(-m)a]b (casem > 0)
= [-(-m)a]b (Theorem 24.2)

= (ma)b (Section 24)

27.7. Form > 0 and n > 0, the result follows from the generalized associative law and the definition
of mn. Form < 0 or n < 0, use the case m > 0 and n > 0 and follow the ideas in the solution
of Problem 27.5.

.CTION 28

28.1. By the corollary of Lemma 28.1, e > 0. Therefore -e < 0, and if x2 is a solution of x2 + e = 0,
then x2 < 0, contradicting Lemma 28.1. (Clearly x = 0 is not a solution.)

283. Assume otherwise. If a = b, then ac = bc; if a < b and c > 0, then ac < bc. Either possibility
contradicts ac > bc.

28.5. a>biffa-b>0iffb-a<0iff-a<-b.

:CTION 29

29.1. An example of a set of positive rationals with no least element is 11, z , i , a .... }.

293. Usea-(a-e)=e> 0.

:CTION 30

30.1. Transitivity fails. [Consider (2, 1), (0, 2), and (2, 2).]

303. Verify that [a + c + d.] H (ac - 2bd)/(cs - 2d2) + (bc - ad)_/(c2 - 2d2) de-
fines an isomorphism. Or verify that Q[,h] has no proper subfield containing Z[,12], and
use Theorem 30.1.

:CTION 31

31.1. Multiply each part of b > a > 0 by (ab)-l to get b(ab)-` > a(ab)-' > 0, that is,
a-'>b-'>0.

31.3. If a = r/s and a + b = u/v were both rational, then b = u/v - r/s = (us - vr)/vs wouldbe
rational.

31.5. Use the fact that x < u iff 2x < 2u.

31.7. Sum the geometric series 0.9 + 0.09 + 0.009 +
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SECTION 32

32.1. (a) 3 + i (b) -i (c) 1/5 - 2i/5

SECTION 33

SECTION 34

SECTION 35

SECTION 36

SECTION 37

SECTION 38

32.3. x2 + 1 = 0 has its coefficients in Q, but no solution in Q.

32.5. x2 + x + 1 = 0 has no solution in Z2.

32.7. Multiply the first equation by i and the second by -3, and add. This will lead to w = 2i.
Substitute in the first equation to get z = i.

33.1..+i 33.3. (5./2)+(5./ /2)i
33.5. 32i 33.7. 8i

33.9. -1/4 33.11. cos(k7r/4) + i sin (kn/4), k = 0, 1, ..., 7

33.13. r=/2-,9=n/4 33.15. r=5,0=n
33.17. r= 2.,9=7r/4

34.1. x2,x2+x,x2+1,x2+x+1

34.3. (a) 3 + x + 2x2 (b) 3x + x3 + 2x4

(c) 2 + 3x + 4.x3 (d) 2x2 + x4 + 4x5 + 2x7

(e) 8x3 + 12x° + 6x5 + xc

35.1. q(x)=x2+.x+2,r(x)=1 35.3. q(x)=0,r(x)=x3-2
35.5. q(x) = 4x2 + 2x + 2, r(x) = 2x + 4 35.7. The remainder is 45.

35.9. 2 in 7

36.1. x-2 36.3. 1 36.5. x3-(Z)x+z 36.7. x5+2x2+4

36.9. Check that x3 - 3 0 in Z7 for x = 0, 1, ... , 6.

36.11. (x + 3)(x2 + 3)

37.1. Multiply by each of the units in Z5 [x] (that is, by 1, 2, 3, 4) to get four associates.

37.3. q=2-i,r=-1+i

38.1. No.

38.3. Yes. Ker 6 = {[0], [3]).

38.5. No.
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TION 39

39.1. (a), (b), (c) similar to Problem 21.5.

39.3. (1+a)(1+b)=I+ab=I+ba=(I+b)(1+a)

MON 40

40.7. x - 3 40.9. x2+1

MON 41

41.1. Follow the proof of Theorem 40.3, using d(a) in place of deg f (x).

41.3. Si iilar to Problem 12.24.

41.5. Similar to Lemma 13.1.

MON 42

42.1. Use Problem 26.20.

42.3. See the comment after Theorem 15.3.

MON 43

43.1. 1, 5, 7, and 11 are roots. Z12 is not a field, so there is no contradiction.

43.3. (x-i)2(x+i)=x3-ix2+x-i.

:TION 44

44.1. From the induction hypothesis, o(k)=k,wecandeduceo(k+1)=o(k)+a(1)=o(k)+1.

443. Assume H, C H2 and x E EH,. Then o(x) = x for all a E H2 so or (Y) = x for all a E Hi.
Thusx E EH,.

CTION 45

45.1. (a) x2 -2 (b) x2 - Zr + 2 (c) x4 - 2x2 + 9 (d) x2 - 2,`2r + 3

45.3. Use Theorem 45.4: either [M : L] or [L : K] must equal 1.

CTION 46

46.1. The splitting field of each polynomial is Q(J). Thus the Galois group of each is (t, a), where
a(a+b-)=a-b'for a,b EQ.

,CTION 47

47.1. Use Theorem 47.6.

47.3. No. Compare the example preceding Theorem 47.6.
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SECTION 48

48.1. GGal(E/F)I = [E : F] = 2.

48.3. Gal(E/F) is cyclic of order 4.

SECTION 49

49.1. It suffices to prove that the conjugate of each element of N by each 2-cycle of S4 is in N, by
Problem 6.9.

49.3. The Galois group is isomorphic to Z2 x Z2. Compare Examples 44.3 and 48.1.

SECTION 50

50.1. 2,6,7,8.

50.3. +
I 0 1 x l+x 0 1 x 1+x

0 0 1 x 1+x 0 0 0 0 0

1 1 0 1+x x 1 0 1 x l+x
x x 1+x 0 1 x 0 x 0 x

1+x 1+x x 1 0 l+.r 0 1+x x I

SECTION 51

51.1. Start with a segment OA the length of the cosine. Construct a circle with unit radius and center
at 0. Let B denote an intersection of this circle and the perpendicular to OA at A. Angle AOB
is the required angle.

51.3. Given a segment PQ, construct the circle through Q with center at P, and the circle through
P with center at Q. These circles intersect at points R and S. The line through R and S is the
perpendicular bisector of RS.

SECTION 52

52.1. For part (a), if d denotes the right-hand side of the displayed equation, then the displayed
equation is equivalent to dx + (-1)y + (yi - dxi) = 0. Each of d, -1, and y, - dxl is in F.

SECTION 53

53.1. Subtract one of the polynomials from the other. The result is a polynomial of smaller degree
than that of the given polynomial, but with as many roots as the given polynomial. Apply
Theorem 43.1.

SECTION 54

54.1. O(h1h2) = (h1h2)K = (h IK)(h2K) = O(h1)0(h2), SO O is a homomorphism. If hkK is an ele-
ment of HK/K (that is, a cosec of K in HK), then hkK = hK, so 0 is onto HK/K. It suffices
only to explain why h E Ker 0 iff h E H fl K.
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54.3. IfAB is a subgroup, a E A, and It E B, then ba = (a-'b- I)-' is the inverse of a-' b-' E AB, so
ba E AB. Thus AB D BA. If g E AB, then

g_, E AB so g-' = a,b1 for some at E A, b, E B.
Thus g = bj'ai' E BA, so AB C BA. Therefore AB = BA.
Now assume AB = BA. Obviously e = AB. If a, a, E A and b, b, E B, then ab(a, b,)-' _
abbi'at'.Andbbi'ai' EBA=AB,sobb,'at' =a2b2forsomea2 E A, b2 E B. Therefore,
ab(a,b,)-' = aa2b2 E AB, so AB is a subgroup by Problem 7.22.

TION 55

55.1. K 4 H because H is Abelian. H 4 A4 by Example 6.7, because the nontrivial elements of H
all have the same cycle structure (a product of two 2-cycles). K is not normal in A4 because,
for example, (1 2 3)(l 2)(3 4)(1 2 3)-' = (1 4)(2 3).

:TION 56

56.1. µo, gieo, pH, and pv all induce the identity. The other four elements induce (H V).

56.3. (a) (D,, D2} (b) {D,, D2} (c) (Di), (D2)

56.5. (a) Orb(l) = Orb(2) = Orb(3) _ (1, 2, 3)
Orb(4) = Orb(5) = (4, 5)

(b) Gi = G2 = G3 = ((4 5)), G4 = Gs = ((1 2 3))
(c) Straightforward. For example, IOrb(1)l = 3 and IGJ/IGI I = 6/2 = 3.

;TION 57

57.1. (1/6)(5 +0+2+3+2+0) =2; for g = (1 2 3)(4 5), the numbers in the sum are the
values ,V (gk) for k = 0, ... , 5, in order. The two orbits are (1, 2, 31 and (4, 5}.

57.3. (a) 24 (b) 6 (c) 3

57.5. 4(24+2'+22+2')=6

57.7. (io)[55 + 4(5) + 5(53)] = 377

CTION 58

58.1. 22, 32, 5 58.3. 2%495

58.5. Sylow 2-subgroups: ((1 2)), ((1 3)), ((2 3)). Sylow 2-subgroup: ((1 2 3)).

CTION 59

59.1. D4 59.3. D3 59.5. D, 59.7. D2

CTION 60

60.1. Top row, left to right: Fvj1, Fv. Second row, left to right: Fv,, F,11, Fiv, F,,. Bottom row: F,.

,CTION 61

61.1. Top row, left to right: p 1, p2, pmm, pgg. Second row, left to right: pat, pg, pmg, cmm. Third
row, left to right: cm, p4g, p4m, p4, p3. Bottom row, left to right: p6m, p3lm, p3ml, p6.
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SECTION 62

62.1. -13, 0-, 5., 9
62.3. (a) Yes.

SECTION 63

(b) Yes.

63.1. Antisyrnmetry fails: a 54 0, a I -a, and -a I a, but a # -a.

633. Like Figure 63.1; there are 16 subsets.

63.5.
o

p29' T p9

SECTION 64

64.1. an(bvc)=anl=a,but(anb)v(anc)=0v0=0
64.3. Straightforward.

64.5. Both distributive and complemented.

64.7. Here are the number of subgroups of each order.

Order
Number

SECTION 65

24 12 8 6 4 3 2 1

1 1 3 4 7 4 9 1

65.1. (a) Use the suggestion.
(b) avl=(avl)A(ava')=av(lAa')=ava'=1.

65.3. Straightforward.

65.5. If b E B, then (0 A b') v (0' A b) = 0 v b = b. In the other direction, take b = 0 to get 0 =
(aA1)v(a'A0)=av0=a.

SECTION 66

66.1. Usea <biff avb=biff aAb=a.
66.3. Use Problem 66.2, 0 = 6(0) = 9(a A a') = 0(a) A0(a'), and 1 = 0(1) = 0(a v a') _

9(a) V 9(a').
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Greek Alphabet ix

Set Notation

Special Sets and Structures

C

N

Q

R

Z

Un

Zn

An

Cn

Dn

E(3)

GF(pn )

GL(2,R)

GL(n,F)

GL(V)

L(V)

M(2,Z)

M(2JR)

M(n,F)

M(S)

0(3)

Q

Q8

S
Sym(S)

296-298

complex numbers, 13

natural numbers, 13

rational numbers, 13

real numbers, 13

integers, 13

integers relatively prime to n, mod n, 72

integers mod n, 63

alternating group of degree n, 43

cyclic group of order n, 257

dihedral group of order n, 258

Euclidean group, 274

Galois field of order p', 226

general linear group, 32

general linear group, 309

general linear group, 309

linear transformations from V to V, 309

ring of 2 x 2 matrices over Z, 121

group of 2 x 2 matrices over R, 32

ring of n x n matrices over field F, 309

set of all mappings from S to S, 20

orthogonal group, 274-275

Hamilton's quaternions, 154

quaternion group, 110

symmetric group of degree n, 35

symmetric group on S, 35
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Variable Sets

GT

G(T)

C(a)

Z(G)

[a]

(a)

(S)

AxB
Ha

aH

HaK

Aut(G)

Ker 9

GIN

RxS
DP

R[x]

RI!

F(a), F(S)

Aut(E)

Gal(E/F)

EH

Orb(s)

Inn(G)

P(S)

F"

Mappings and Operations

a:S -+ T
S -* T

a(x)
axray

a(A)

oa

elements of G fixing T elementwise, 43

elements of G fixing T, 44

centralizer of an element in a group, 46

center of a group, 46

equivalence or congruence class, 54, 61

subgroup generated by the element a, 77

subgroup generated by the set S, 81

direct product of groups A and B, 83

right coset of a subgroup H, 86

left coset of a subgroup H, 87

double coset, 88

automorphism group of the group G, 101-102

kernel of a homomorphism 0, 107, 179

quotient (or factor) group, 111

direct sum of rings R and S, 122

positive elements of ordered integral domain D, 137

ring of polynomials in x over R, 160

quotient ring, 182

field extensions, 194

automorphism group of the field E. 203

Galois group of E over F, 203

fixed field H in E, 203

orbit of s, 244

inner automorphisms of the group G, 246

power set of S, 288

set of all n-tuples from F, 307

subspace spanned by vectors vi, v2, ... , v, 308

mapping S to T, 9

mapping from S to T, 9

image of x under mapping a, 9

y is image of x under a, 11

image of a set S under mapping a, 11

composition of mappings a and 0, 16

imverse of a mapping a, 17, 33
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/I two-row form for element of 5,,, 35blb2...b
(al, a2, . . . , one-row form for element S,,, 37

rotation in a symmetry group, 49

P. PV, Pr, P2 special reflections in a symmetry group, 49

p'(x) formal derivative of a polynomial p(Y), 164

l.u.b. least upper bound, 280

g.l.b. greatest lower bound, 280

a v b least upper bound of a and b, 283

a A b greatest lower bound of a and b, 283

Relations

a ^- b a is related to b (specified context), 52

a - b (mod n) a is congruent to b mod n, 57

n 1 m n divides (is a factor of) m, 57

n,(m n does not divide m, 57

is isomorphic to, 94

< is a normal subgroup of, 108

> is greater than (in ordered integral domain), 138

< is less than (in ordered integral domain), 138

f (x)Ig(x) f (x) is a factor of g(x), 167

< partial ordering, 297

Numeric

(a, b) or gcd(a, b) greatest common divisor of a and b, 66

[a, b] least common multiple of a and b, 68

o(a) order of an element a, 78

[G : H] index of a subgroup H in a group G, 89

rr/n positive real nth root of positive real number r, 158

deg f (x) degree of a polynomial f (x), 163, 165

[E: F] degree of a field extension E over F, 197

n

(r ) or C(n, r) binomial coefficient, 252, 305

(v, w) inner product of vectors, 275

11V11 length of a vector, 275

0(n) Euler's phi-function, 71
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Abel, N. H., 32, 193
Abelian group, 32
Absolute value:

of complex number, 155
in ordered integral domain, 140

Absorption laws, 285
Action of group, 244

faithful, 244
Algebraic closure, 152
Algebraic element, 152

separable, 214
Algebraic extension, 152
Algebraic integer, 190
Algebraic number, 153
Algebraic number theory, 190
Amplitude of complex number, 155
Antisymmetric, 279
Archimedean property, 149
Argument of complex number, 155
Associate:

in integral domain, 173
of polynomial, 170

Associative law, 21
generalized, 75

Atom, 292
Aut(G), 101-102
Automorphism:

of field, 200
of group, 101

inner, 246
of ring. 132

Axis, m-fold, 259

Barlow, W., 272
Basis, 308
Bijection, 13
Binary operation, 21
Binomial coefficient, 305
Binomial theorem, 125, 305
Boole, George, 6, 287
Boolean algebra, 6, 287

finite, 291-294
Boolean ring, 295
Bumside's counting theorem,

247-252
Burnside, William, 248

C, 13
Cn,257
Cancellation:

law, 76
property, 126

Cartesian product, 298
Cayley, Arthur, 21
Cayley's theorem, 102-103

generalization of, 247
Cayley table, 21
Center:

of group, 46, 246
of ring, 128, 181

Centralizer, 46
Chain, 281
Characteristic of ring, 133
Closure, 20
Codomain of mapping, 9
Coefficient, 160, 163
Combinatories, 3-4, 243
Common divisor, 65
Commutator, 239
Commutative law, 22
Complement:

in lattice, 286
in set, 298

Complete set of equivalence class representatives,
55

Complex numbers, 149-153
characterized, 152

Composition of mappings,
15-16

Composition series, 117
Congruence:

class, 58
of integers, 57

Conjugate:
class, 246
of complex number, 152, 158
of group element, 108, 246
of subgroup, 246

Constructible circle, 231
Constructible line, 231
Constructible number, 231-234
Constructible point, 231
Contradiction, 301



INDEX 331

Coset:
double, 88
left, 87
right, 86

Counterexample, 303
Cover of element, 280
Crystallographic group, see Group, crystallographic
Crystallographic restriction, 256, 272, 276
Crystallography, 2-3
Cube, group of, 260
Cycle, 37
Cyclic decomposition, 38

D,,, 258
da Vinci, Leonardo, 258
Dedekind, Richard, 190
Degree:

of algebraic element, 207
of field extension, 197

deg f (x), 165
DeMoivre's theorem, 156
DeMorgan, Augustus, 289
DeMorgan's laws, 289
Derivative of polynomial, 164
Descartes, Ren6, 298
Dimension of vector space, 308
Diophantus, 5, 189
Direct product of groups, 83, 101
Direct sum of rings, 122
Discriminant of quadratic

polynomial, 200
Disjoint cycles, 38
Distance:

between vectors, 275
Distributive laws, 120
Divisible:

for integers, 57
in integral domain, 173
for polynomials, 168

Division algorithm:
for integers, 59
for polynomials, 165

Division ring, 130
Domain of mapping, 9
Dual of statement, 284
Duplication of cube, 229, 235

E(3), 274
Einstein irreducibility criterion,

172,201
Elementary row operations, 311
Embedded ring, 134
Endomorphism, 136
Epimorphism, 108
Equations:

algebraic, 4
cubic, 198
quartic, 193
solvable by radicals, 219-223

Equivalence class, 54
representatives, 55

Escher, M. C., 263
Euclidean algorithm:

for integers, 66
for polynomials, 169-170

Euclidean domain, 174, 188
Euler, Leonhard, 71
Euler's theorem, 89
Exponent of group, 93
Extension:

field, 152, 194
finite, 197
inseparable, 214
normal, 216
radical, 220
separable, 214
simple, 194
simple algebraic, 195
simple transcendental, 195

group, 116

Factor:
of integer, 57
in integral domain, 173
of polynomial, 167

Factor group, 111
Factor theorem, 167
Fedorov, E. S., 272
Feit, Walter, 118
Fermat, Pierre de, 5, 189
Fermat's last theorem, 5, 189
Fermat's little theorem, 89
Field, 129

algebraically closed, 152
of algebraic numbers, 153
complete ordered, 147
finite, 223-227
fixed, 204
Galois, 226
ordered, 146-147
of quotients, 142-144
splitting, 199

Function, 9
multiplicative, 72

Fundamental homomorphism theorem:
for groups, 114
for rings, 183

Fundamental region, 267
Fundamental theorem:

of algebra, 150
of arithmetic, 70
of finite Albelian groups, 100
of finite cyclic groups, 90
of Galois theory, 218

Galois, Evariste, 4, 193-194
Galois group:

of polynomial, 204
of subfield, 204



Galois theory, 193-228
Gauss, Carl Friedrich, 57, 189
Gaussian integers, 175, 189
Generator, 77
Geometric constructions, 5, 229-236
Glide-reflection, 47, 256
GL(n, F), 309
GL(V), 309
"Greater than" concept, 137-138
Greatest common divisor:

of integers, 65-68
in integral domain, 175
of polynomials, 169

Greatest lower bound:
in ordered field, 149
in partially ordered set, 280

Greek alphabet, ix
Group:

Abelian, 32
acting on set, 244
additive, of ring, 121
alternating, 43, 240-242
automorphism, of group, 101-102
crystallographic:

point, 272
space, 272
two-dimensional, 267-272

cyclic, 77, 90
definition of, 30
derived, 239
dihedral, 258

infinite, 264
discrete, 257
dodecahedral, 260
Euclidean, 274
finite, 33
frieze, 263
general linear, 32, 309
icosahedral, 242, 260
infinite, 33
of inner automorphisms, 246
non-Abelian, 32
octahedral, 242, 260, 275
order of, 33
permutation, 35
real orthogonal, 274-275
rotation, 260
simple, 117
solvable, 220-238
special orthogonal, 276
of symmetries, 48, 256
tetrahedral, 242, 260
of translations, 276

Hall, Philip, 254
Hamilton, W. R., 154
Heesch, H., 272
Hilbert, David, 272
History of mathematics, 7-8

Holder, Otto, 117
Homomorphic image, 107
Homomorphism:

group, 96, 106
natural, 113, 183
ring, 178

Ideal, 179
left, 181
maximal, 184
prime, 184
principal, 180
right, 181

Idempotent laws, 284
Identity:

element, 22, 124
uniqueness of, in group, 32

mapping, 11
of lattice, 284

Iff, 12n
Image:

of element, 9
of mapping, 11

Index of subgroup, 89
Induction, mathematical, 304-306
Induction hypothesis, 306
Injection, 13
Inner product, 275
Inn (G), 246
Inseparable, 214
Integer.

square-free, 73
standard form for, 71

Integers:
characterized, 141
modulo n, 63
relatively prime, 68

Integral domain:
definitions of, 126
finite, 129
ordered, 137
well-ordered, 140

Invariant set, 44
Invariant set, elementwise, 43
Inverse:

image, 97
of element, 22

uniqueness of, in group, 32
mapping, 17

Invertible element, in commutative ring, 131
Jrreducible element in integral domain, 173
Isometry, 47. See also Motion
Isomorphism:

of Boolean algebras, 291
class, 98
of groups, 94
of lattices, 291
of partially ordered sets, 282
of rings, 131
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Isomorphism theorem:
for groups:

first, 237
second,238

for rings:
first, 184
second, 184

Join, 283
Jordan-Holder theorem, 117

1K, 231-232

Kepler, Johannes, 278
Kernel:

of group homomorphism, 107
of ring homomorphism, 179

Kumner, Ernst, 190

Lagrange, Joseph Louis, 92, 193
Lagrange's interpolation formula, 168
Lagrange's theorem, 88
Landau, Edmund, 141
Lattice:

complemented, 286
complete, 284
definition of, 283
distributive, 285
subgroup, 90

Lattice group, 271
lattice associated with, 271

Law of quadratic reciprocity, 189
Law of tricotomy, 137
Least common multiple:

of integers, 68
of polynomials, 172

Least element, 140
Least integer principle, 58
Least upper bound:

in ordered field, 147
in partially ordered set, 280

Left inverse, 25
Legendre, A. M., 189
Length of vector, 275
"Less than" concept, 137-138
Lindemann, C. L. F., 235
Linear algebra, 307-311
Linear combinations:

of integers, 67
of vectors, 308

Linear transformation, 309
invertible, 309
nonsingular, 309

Lower bound:
in ordered field, 149
in partially ordered set, 280

L(V), 309

Mapping, 9, 298
codomain of, 9

constant, 29
domain of, 9
equality of, 10
identity, 11
image of, 11
invertible, 17
one-to-one, 12
onto, 11
operation preserving, 94
order preserving, 282
range of, 13

Mappings, equal, 10
Mathematical induction,

304-306
Matrix:

addition, 21
column, 311
column rank of, 310
column space of, 310
determinant, 23
identity, 309
invertible, 309
of linear transformation, 310
multiplication, 21
nonsingular, 309
nullity of, 311
null space of, 311
orthogonal, 275
rank of, 310
row, 311
row rank of, 310
row space of, 310
transpose of, 311

Meet, 283
Miller, G. A., 51
M(n, F), 309
Modulus of complex number, 155
Monomorphism, 108
Motion, 47

discrete, 257
proper, 256

M(S), 20
M(2, Z), 121
Multiple of integer, 57

N, 13
Negative element, 121, 137
Nilpotent element, 181
Noether, Emmy, 8, 190
Norm, 174
Normalizer, 247
Number:

algebraic, 153, 235
constructible, 231-233
imaginary, 151
irrational, 146
natural, 13
see also Complex numbers; Integers; Real

numbers, characterized
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One-to-one correspondence, 13
Operation, 19-20

associative, 21
commutative, 22
well-defined, 62

Orbit, 244
Order.

of element, 78
of group, 33

Ordered pair, 11, 298
0(3), 274-275

Partition, 53
Peano postulates, 141
Perfect square, 73
Permutation, 34

even, 43, 240
odd, 43, 240

Phi-function, 71
Polar form of complex number, 155
Polyhedra, regular convex, 255
Polynomial, 160, 162

cyclotomic, 173
degree of, 160, 163
irreducible, 170
minimum, 207
manic, 160
prime, 170
reducible, 170
seperable over a field, 214
splits, 199

Polynomials, equal, 160, 163
product, 161, 163
sum, 161, 163

Positive element, 137
Power set, 125, 280
Prime integer, 57
Principle of duality:

for Boolean algebras, 288
for lattices, 284

Principal ideal domain, 188
Prism, n-, 259
Progression, geometric, 304
Proofs, 299-303
Propositions, algebra of, 288-289
Pyramid, n-, 259
Pythagoreans, 146
Pythagorean triple, 5, 189

Q, 13

Quadrature of circle, 229, 235
Quantifier:

existential, 10, 302
universal, 10, 302

Quatemion group, 110
Quatemion, 154, 202
Quintilian, ix
Quotient:

group, 111

for integers, 58, 59
for polynomials, 165
ring, 182

of polynomial ring, 184-187

R, 13
Radical extension, 220
Rational numbers, characterized, 13, 145
Real numbers, characterized, 147
Reductio ad absurdum, 301
Reflection through line, 47
Reinhardt, K., 272
Relation:

antisymmetric, 279
equivalence, 52
reflexive, 52
symmetric, 52
transitive, 52

Remainder:
for integers, 58-59
for polynomials, 165

Remainder theorem, 167
Residue:

biquadratic, 189
quadratic, 188

Residue class. See also Congruence, class
Right inverse, 25
Ring:

commutative, 124
definition of, 120
of endomorphisms, 136
noncommutative, 124
of polynomials, 162-163

Root:
or polynomial, 168

multiplicity of, 198
of unity, 154, 157

primitive, 158
Roots:

conjugate, 200
multiple, 202
rational, 203

Rotation, 26, 47, 257
Row-reduced echelon form, 311
RSA algorithm, 105
Ruffini, Paulo, 193

S,,,35
Scalar, 307
Schbnflies, A., 272
Schreier, Otto, 117
Separable, 214-215
Series:

derived, 240
normal, 238

Set:
empty (null, vacuous), 296
finite, 13
infinite, 13
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linearly ordered, 281 Transcendental element, 195
partially ordered, 279 Translation, 47

Sets, 296-298 Transposition, 40, 42
Solvable by radicals, 4, 219-222 Trigonometric form of complex number,
Splitting fields, 199-200 155

Standard form, for integer, 71 Trisection of arbitrary angle, 229, 235
Statement: T(3), 276

biconditional, 301
conditional, 299 Unique factorization domain, 173, 188
contrapositive, 300
converse, 301

Stone, M. H., 294
Subfield, 130

prime, 223
Subgroup:

commutator, 239
cyclic, 77, 90
definition of, 41
diagonal, 85
generated by set, 82
normal, 108
p-, 253

Unique factorization theorem, 171
Unit, in integral domain, 173

element in ring, 124
Unity:

of lattice, 284
of ring, 124

Upper bound:
in ordered field, 147
in partially ordered set, 280

Vectors:
linearly dependent, 308
linearly independent, 308

Sylow p-, 253
Subgroups, intersection of, 81
Sublattice, 285
Subring, 127
Subspace, 308
Surjection, 13
Sylow, Ludwig, 92, 252
Sylow's theorem, 252

extended version of, 253
Symmetric difference, 295

standard unit, 308
Vector space, 307
Venn diagrams, 297

Well-ordering principle, 140
Weyl, Hermann, 258
Wielandt, Helmut, 252
Wiles, Andrew, 5, 190

Z, 13
Symmetric group, 35, 221 Z,,,61
Symmetry, 1-2, 47-50, 256-278 Zero:
Symmetry groups, 47-51, 256-278
Sym(S), 35

Tautology, 289
Thompson, John, 118

of lattice, 284
of polynomial, 168
of ring, 121

Zero divisor, 126
Z(G), 246
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