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PREFACE

ABOUT CALCULUS by Jon Rogawski

On Teaching Mathematics
As a young instructor, I enjoyed teaching but I didn’t appreciate how difficult it is to
communicate mathematics effectively. Early in my teaching career, I was confronted with
a student rebellion when my efforts to explain epsilon-delta proofs were not greeted with
the enthusiasm I anticipated. Experiences of this type taught me two basic principles:

1. We should try to teach students as much as possible, but not more.

2. As math teachers, how we say it is as important as what we say.

The formal language of mathematics is intimidating to the uninitiated. By presenting
concepts in everyday language, which is more familiar but not less precise, we open the
way for students to understand the underlying ideas and integrate them into their way of
thinking. Students are then in a better position to appreciate the need for formal definitions
and proofs and to grasp their logic.

On Writing a Calculus Text
I began writing Calculus with the goal of creating a text in which exposition, graphics,
and layout would work together to enhance all facets of a student’s calculus experience:
mastery of basic skills, conceptual understanding, and an appreciation of the wide range
of applications. I also wanted students to be aware, early in the course, of the beauty of
the subject and the important role it will play, both in their further studies and in their
understanding of the wider world. I paid special attention to the following aspects of the
text:

(a) Clear, accessible exposition that anticipates and addresses student difficulties.

(b) Layout and figures that communicate the flow of ideas.

(c) Highlighted features in the text that emphasize concepts and mathematical reasoning:
Conceptual Insight, Graphical Insight, Assumptions Matter, Reminder, and Historical
Perspective.

(d) A rich collection of examples and exercises of graduated difficulty that teach basic
skills, problem-solving techniques, reinforce conceptual understanding, and motivate cal-
culus through interesting applications. Each section also contains exercises that develop
additional insights and challenge students to further develop their skills.

Encouraged by the enthusiastic response to the First Edition, I approached the new
edition with the aim of further developing these strengths. Every section of text was
carefully revised. During the revision process, I paid particular attention to feedback from
adopters, reviewers, and students who have used the book. Their insights and creative
suggestions brought numerous improvements to the text.

Calculus has a deservedly central role in higher education. It is not only the key to
the full range of quantitative disciplines; it is also a crucial component in a student’s
intellectual development. I hope this new edition will continue to play a role in opening
up for students the multifaceted world of calculus.

My textbook follows a largely traditional organization, with a few exceptions. One
such exception is the placement of Taylor polynomials in Chapter 8.

viii
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Placement of Taylor Polynomials
Taylor polynomials appear in Chapter 8, before infinite series in Chapter 10. My goal is
to present Taylor polynomials as a natural extension of the linear approximation. When I
teach infinite series, the primary focus is on convergence, a topic that many students find
challenging. After studying the basic convergence tests and convergence of power series,
students are ready to tackle the issues involved in representing a function by its Taylor
series. They can then rely on their previous work with Taylor polynomials and the Error
Bound from Chapter 8. However, the section on Taylor polynomials is designed so that
you can cover it together with the material on power series and Taylor series in Chapter 10
if you prefer this order.

CAREFUL, PRECISE DEVELOPMENT

W. H. Freeman is committed to high quality and precise textbooks and supplements.
From this project’s inception and throughout its development and production, quality and
precision have been given significant priority. We have in place unparalleled procedures
to ensure the accuracy of all facets of the text:

• Exercises and Examples
• Exposition
• Figures
• Editing
• Composition

Together, these procedures far exceed prior industry standards to safeguard the quality
and precision of a calculus textbook.

New to the Second Edition
Enhanced Exercise Sets—with Approximately 25% New and Revised Problems: Ex-
ercise sets have undergone meticulous reviewing by users and nonusers to refine this very
strong feature of Rogawski. Each exercise was worked and evaluated, and carefully re-
vised by the author to further enhance quality and quantity. The Second Edition features
thousands of new and updated problems.

New and Larger Variety of Applications: To show how calculus directly relates to the
real world, the Second Edition features many fresh and creative examples and exercises
centered on innovative, contemporary applications from engineering, the life sciences,
physical sciences, business, economics, medicine, and the social sciences.

Updated Art Program: Through the text, there are new and updated figures to enhance
the graphics and labeling and link the art with the exposition and student understanding.

Content Changes: Rogawski’s Second Edition includes several content changes in re-
sponse to feedback from users and reviewers. The key changes include:

• Chapter 2 Limits: The topic “Limits at Infinity” has been moved forward from
Chapter 4 to Section 2.7 so all types of limits are introduced together.

• Chapter 3 Differentiation: Coverage of differentials has been enhanced.
• Early Transcendentals Chapter 4 Applications of the Derivative: L’Hôpital’s Rule

(Section 4.5) has been moved up so that it can be used in Section 4.6 on graph
sketching.

• The section on “Numerical Integration” has been moved to the end of the Techniques
of Integration chapter so that all the techniques of integration appear first.

• Anew section on “Probability and Integration,” now in the Techniques of Integration
chapter, has been added to allow students to explore a new application of integration
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which is of importance in the physical sciences, as well as in business and the social
sciences.

• Multivariable chapters: Currently recognized as especially strong material in Ro-
gawski’s Calculus, the multivariable chapters have been refined in minor ways for
even greater clarity, accuracy, and precision.

• A new section on “Applications of Multiple Integrals” has been added to the chapter
on Multiple Integration to provide an enhanced selection of applied problems from
the physical and social sciences.

SUPPLEMENTS
• Instructor’s Solutions ManualFor Instructors

Brian Bradie, Christopher Newport University; and Greg Dresden, Washington and
Lee University
Single Variable ISBN: 1-4292-5502-1
Multivariable ISBN: 1-4292-5501-3
Contains worked-out solutions to all exercises in the text.

• Test Bank
Printed, ISBN: 1-4292-5507-2
CD-ROM, ISBN: 1-4292-5505-6
Includes multiple-choice and short-answer test items.

• Instructor’s Resource Manual
ISBN: 1-4292-5504-8
Provides suggested class time, key points, lecture material, discussion topics, class
activities, worksheets, and group projects corresponding to each section of the text.

• Instructor’s Resource CD-ROM
ISBN: 1-4292-5503-X
Search and export all resources by key term or chapter. Includes text images, In-
structor’s Solutions Manual, Instructor’s Resource Manual, and Test Bank.

• Student Solutions ManualFor Students
Brian Bradie, Christopher Newport University; and Greg Dresden, Washington and
Lee University
Single Variable ISBN: 1-4292-5500-5
Multivariable ISBN: 1-4292-5508-0
Offers worked-out solutions to all odd-numbered exercises in the text.

• Software Manuals
Software manuals covering Maple and Mathematica are offered within CalcPortal.
These manuals are available in printed versions through custom publishing. They
serve as basic introductions to popular mathematical software options and guides
for their use with Calculus, Second Edition.

• Companion website at www.whfreeman.com/rogawski2e
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MEDIA

Online Homework Options

http://www.webassign.net/whfreeman

W. H. Freeman has partnered with WebAssign to provide a powerful, convenient online
homework option, making it easy to assign algorithmically generated homework and
quizzes for Rogawski’s Calculus, Second Edition.WebAssign Premium for the new edition
of Calculus offers thousands of exercises, plus tutorial videos. It will also be available
with a full eBook option.

www.yourcalcportal.com

CalcPortal combines a fully customizable eBook with exceptional student and instructor
resources, including precalculus diagnostic quizzes, interactive applets, student solutions,
review questions, and homework management tools, all in one affordable, easy-to-use,
and fully customizable learning space. This new iteration of CalcPortal for Calculus,
Second Edition, represents a dramatic step forward for online teaching and learning, with
innovations that make it both more powerful and easier to use. It will include a turnkey
solution with a prebuilt complete course, featuring ready-made assignments for you to use
as is or modify.

WeBWorK 

http://webwork.maa.org

Developed by the University of Rochester, this open-source homework system is available
to students free of charge. For adopters of Calculus, Second Edition, W. H. Freeman will
increase the current first edition offering to include approximately 2400 algorithmically
generated questions with full solutions from the text, plus access to a shared national
library test bank with thousands of additional questions, including 1500 problem sets
correlated to the table of contents.

ADDITIONAL MEDIA

SolutionMaster
SolutionMaster is an innovative new digital tool to help instructors provide selected, secure
solutions to their students. With SolutionMaster, instructors can easily create solutions for
any assignment from the textbook
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Interactive eBook
The Interactive eBook integrates a complete and customizable online version of the text
with its media resources. Students can quickly search the text, and they can personalize
the eBook just as they would the print version, with highlighting, bookmarking, and note-
taking features. Instructors can add, hide, and reorder content, integrate their own material,
and highlight key text.

Dynamic Book
Rogawski’s Calculus, Second Edition, is available as an innovative, customizable, and
editable DynamicBook eBook. In DynamicBooks an instructor can easily customize the
text presentation by adding, hiding, and modifying content to meet their specific teaching
approach to calculus. In addition to highlighting and adding notes, students can link to
interactive graphical applets, videos, and other digital assets. Rogawski’s DynamicBook
can be viewed online, downloaded to a local computer, and downloaded to an iPhone
or iPad. Students also have the option to purchase a printed, bound version with the
instructor’s changes included.
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FEATURES

Conceptual Insights encourage students to
develop a conceptual understanding of
calculus by explaining important ideas
clearly but informally.

CONCEPTUAL INSIGHT In general, to write a vector u = e, f as a linear combination
of two other vectors v = a, b and w = c, d , we have to solve a system of two linear
equations in two unknowns r and s:

rv + sw = u ⇔ r a, b + s c, d = e, f ⇔ ar + cs = e

br + ds =f

On the other hand, vectors give us a way of visualizing the system of equations geo-
metrically. The solution is represented by a parallelogram as in Figure 14. This relation
between vectors and systems of linear equations extends to any number of variables and
is the starting point for the important subject of linear algebra.

Ch. 12, p. 662

Graphical Insights enhance students’ visual
understanding by making the crucial
connections between graphical properties
and the underlying concepts.

GRAPHICAL INSIGHT When we write a double integral as an iterated integral in the order
dy dx, then for each fixed value x = x0, the inner integral is the area of the cross section
of S in the vertical plane x = x0 perpendicular to the x-axis (Figure 12(A)):

S(x0) =
d

c

f (x0, y) dy = area of cross section in vertical plane
x = x0 perpendicular to the x-axis

What Fubini’s Theorem says is that the volume V of S can be calculated as the integral
of cross-sectional area S(x):

V =
b

a

d

c

f (x, y) dy dx =
b

a

S(x) dx = integral of cross-sectional area

Similarly, the iterated integral in the order dx dy calculates V as the integral of cross
sections perpendicular to the y-axis (Figure 12(B)).

Ch. 15, p. 867

Reminders are margin notes
that link the current
discussion to important
concepts introduced earlier
in the text to give students a
quick review and make
connections with related
ideas.

The average value (or mean value) of a function f (x, y) on a domain D, which we
denote by f , is the quantityREMINDER Equation (8) is similar to

the definition of an average value in one
variable:

f = 1

b − a

b

a

f (x) dx =
b

a
f (x) dx

b

a
1 dx

f = 1

Area(D) D
f (x, y) dA = D f (x, y) dA

D 1 dA
8

Ch. 15, p. 878

Caution Notes warn
students of common pitfalls
they may encounter in
understanding the material.

r1(t) = 1, 0, 1 + t 3, 3, 5

r2(t) = 3, 6, 1 + t 4, −2, 7

Solution The two lines intersect if there exist parameter values t1 and t2 such that
r1(t1) = r2(t2)—that is, if

CAUTION We cannot assume in Eq. (8) that
the parameter values t1 and t2 are equal.
The point of intersection may correspond to
different parameter values on the two lines. 1, 0, 1 + t1 3, 3, 5 = 3, 6, 1 + t2 4, −2, 7 8

This is equivalent to three equations for the components:

Ch. 12, p. 674
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Direction of
wave motion

z

x

Magnetic
field B

Electric
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FIGURE 17 The E and B fields of an
electromagnetic wave along an axis of
motion.

This is not just mathematical
elegance . . . but beauty.
It is so simple and yet it describes
something so complex.

Francis Collins (1950– ), leading geneticist
and former director of the Human Genome
Project, speaking of the Maxwell Equations.

HISTORICAL
PERSPECTIVE

James Clerk Maxwell
(1831–1879)

Vector analysis was
developed in the nine-
teenth century, in large

part, to express the laws of electricity and mag-
netism. Electromagnetism was studied inten-
sively in the period 1750–1890, culminating in
the famous Maxwell Equations, which provide
a unified understanding in terms of two vector
fields: the electric field E and the magnetic field
B. In a region of empty space (where there are no
charged particles), the Maxwell Equations are

div(E) = 0, div(B) = 0

curl(E) = −∂B
∂t

, curl(B) = μ0 0
∂E
∂t

where μ0 and 0 are experimentally determined
constants. In SI units,

μ0 = 4π × 10−7 henries/m

0 ≈ 8.85 × 10−12 farads/m

These equations led Maxwell to make two
predictions of fundamental importance: (1) that
electromagnetic waves exist (this was confirmed
by H. Hertz in 1887), and (2) that light is an elec-
tromagnetic wave.

How do the Maxwell Equations suggest
that electromagnetic waves exist? And why did
Maxwell conclude that light is an electromag-
netic wave? It was known to mathematicians
in the eighteenth century that waves traveling
with velocity c may be described by functions
ϕ(x, y, z, t) that satisfy the wave equation

= 1

c2

∂2ϕ

∂t2
8

where is the Laplace operator (or “Laplacian”)

= ∂2ϕ

∂x2
+ ∂2ϕ

∂y2
+ ∂2ϕ

∂z2

We will show that the components of E sat-
isfy this wave equation. Take the curl of both
sides of Maxwell’s third equation:

curl(curl(E)) = curl −∂B
∂t

= − ∂

∂t
curl(B)

Then apply Maxwell’s fourth equation to obtain

curl(curl(E)) = − ∂

∂t
μ0 0

∂E
∂t

= −μ0 0
∂2E

∂t2
9

Finally, let us define the Laplacian of a vector
field

F = F1, F2, F3

by applying the Laplacian to each component,
F = 1 2 3 . Then the following

identity holds (see Exercise 36):

curl(curl(F)) = ∇(div(F)) − F

Applying this identity to E, we obtain
curl(curl(E)) = − E because div(E) = 0 by
Maxwell’s first equation. Thus, Eq. (9) yields

E = μ0 0
∂2E

∂t2

In other words, each component of the elec-
tric field satisfies the wave equation (8), with
c = (μ0 0)−1/2. This tells us that the E-field
(and similarly the B-field) can propagate through
space like a wave, giving rise to electromagnetic
radiation (Figure 17).

Maxwell computed the velocity c of an
electromagnetic wave:

c = (μ0 0)−1/2 ≈ 3 × 108 m/s

and observed that the value is suspiciously close
to the velocity of light (first measured by Olaf
Römer in 1676). This had to be more than a
coincidence, as Maxwell wrote in 1862: “We
can scarcely avoid the conclusion that light con-
sists in the transverse undulations of the same
medium which is the cause of electric and mag-
netic phenomena.” Needless to say, the wireless
technologies that drive our modern society rely
on the unseen electromagnetic radiation whose
existence Maxwell first predicted on mathemat-
ical grounds.

Ch. 17, p. 1037

Historical Perspectives
are brief vignettes that
place key discoveries and
conceptual advances in
their historical context.
They give students a
glimpse into some of the
accomplishments of great
mathematicians and an
appreciation for their
significance.

Assumptions Matter uses short explanations and well-chosen counterexamples to help
students appreciate why hypotheses are needed in theorems.

Section Summaries summarize a section’s key points in a concise and useful way and
emphasize for students what is most important in each section.
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TO THE STUDENT

Although I have taught calculus for more than 30 years, when I enter the classroom on the
first day of a new semester, I always have a feeling of excitement, as if a great drama is
about to unfold. Does the word drama seem out of place in a discussion of mathematics?

Most people would agree that calculus is useful—it is applied across the sciences and
engineering to everything from space flight and weather prediction to nanotechnology and
financial modeling. But what is dramatic about it?

For me, one part of the drama lies in the conceptual and logical development of
calculus. Calculus is based on just a few fundamental concepts (such as limits, tangent
lines, and approximations). But as the subject develops, we find that these concepts are
adequate to build, step-by-step, a mathematical discipline capable of solving innumer-
able problems of great practical importance. Along the way, there are high points and
moments of suspense—for example, computing a derivative using limits for the first time
or learning from the Fundamental Theorem of Calculus that the two branches of calculus
(differential and integral) are much more closely related than we might have expected.
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We also discover that calculus provides the right language for expressing our most funda-
mental and universal laws of nature, not just Newton’s laws of motion, but also the laws
of electromagnetism and even the quantum laws of atomic structure.

Another part of the drama is the learning process itself—the personal voyage of dis-
covery. Certainly, one aspect of learning calculus is developing various technical skills.
You will learn how to compute derivatives and integrals, solve optimization problems,
and so on. These skills are necessary for applying calculus in practical situations, and
they provide a foundation for further study of more advanced branches of mathematics.
But perhaps more importantly, you will become acquainted with the fundamental ideas
on which calculus is based. These ideas are central in the sciences and in all quantitative
disciplines, and so they will open up for you a world of new opportunities. The distin-
guished mathematician I. M. Gelfand put it this way: “The most important thing a student
can get from the study of mathematics is the attainment of a higher intellectual level.”

This text is designed to develop both skills and conceptual understanding. In fact,
the two go hand in hand. As you become proficient in problem solving, you will come to
appreciate the underlying ideas. And it is equally true that a solid understanding of the
concepts will make you a more effective problem solver. You are likely to devote much
of your time to studying the examples in the text and working the exercises. However,
the text also contains numerous down-to-earth explanations of the underlying concepts,
ideas, and motivations (sometimes under the heading “Conceptual Insight” or “Graphical
Insight”). I urge you to take the time to read these explanations and think about them.

Learning calculus will always be a challenge, and it will always require effort. Ac-
cording to legend, Alexander the Great once asked the mathematician Menaechmus to
show him an easy way to learn geometry. Menaechmus replied, “There is no royal road to
geometry.” Even kings must work hard to learn geometry, and the same is true of calculus.

One of the main challenges in writing this textbook was finding a way to present
calculus as clearly as possible, in a style that students would find comprehensible and
interesting. While writing, I continually asked myself: Can it be made simpler? Have I
assumed something the student may not be aware of? Can I explain the deeper significance
of an underlying concept without confusing a student who is learning the subject for the
first time?

I hope my efforts have resulted in a textbook that is not only student friendly but
also encourages you to see the big picture—the beautiful and elegant ideas that hold the
entire structure of calculus together. Please let me know if you have any comments or
suggestions for improving the text. I look forward to hearing from you.

Best wishes and good luck!

Jon Rogawski







Our knowledge of what stars are made of is

based on the study of absorption spectra, the

sequences of wavelengths absorbed by gases in

the star’s atmosphere.

10 INFINITE SERIES

T he theory of infinite series is a third branch of calculus, in addition to differential
and integral calculus. Infinite series yield a new perspective on functions and on many

interesting numbers. Two examples are the infinite series for the exponential function

ex = 1 + x + x2

2! + x3

3! + x4

4! + · · ·

and the Gregory–Leibniz series (see Exercise 53 in Section 2)

π

4
= 1 − 1

3
+ 1

5
− 1

7
+ 1

9
− · · ·

The first shows that ex can be expressed as an “infinite polynomial,” and the second reveals
that π is related to the reciprocals of the odd integers in an unexpected way. To make sense
of infinite series, we need to define precisely what it means to add up infinitely many terms.
Limits play a key role here, just as they do in differential and integral calculus.

10.1 Sequences
Sequences of numbers appear in diverse situations. If you divide a cake in half, and then

1 1
2

1
4

1
8

FIGURE 1

divide the remaining half in half, and continue dividing in half indefinitely (Figure 1),
then the fraction of cake remaining at each step forms the sequence

1,
1

2
,

1

4
,

1

8
, . . .

This is the sequence of values of the function f (n) = 1

2n
for n = 0, 1, 2, . . . .

Formally, a sequence is an ordered collection of numbers defined by a function f (n)

on a set of integers. The values an = f (n) are called the terms of the sequence, and n is
called the index. Informally, we think of a sequence {an} as a list of terms:

a1, a2, a3, a4, . . .

The sequence does not have to start at n = 1, but may start at n = 0, n = 2, or any other
integer. When an is given by a formula, we refer to an as the general term.

The sequence bn is the Balmer series of
absorption wavelengths of the hydrogen
atom in nanometers. It plays a key role in
spectroscopy.

General term Domain Sequence

an = 1 − 1

n
n ≥ 1 0,

1

2
,

2

3
,

3

4
,

4

5
, . . .

an = (−1)nn n ≥ 0 0, −1, 2, −3, 4, . . .

bn = 364.5n2

n2 − 4
n ≥ 3 656.1, 486, 433.9, 410.1, 396.9, . . .

The sequence in the next example is defined recursively. The first term is given and
the nth term an is computed in terms of the preceding term an−1.

537
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EXAMPLE 1 Recursive Sequence Compute a2, a3, a4 for the sequence defined re-
cursively by

a1 = 1, an = 1

2

(
an−1 + 2

an−1

)

Solution

You may recognize the sequence in
Example 1 as the sequence of
approximations to

√
2 ≈ 1.4142136

produced by Newton’s method with starting
value a1 = 1. As n tends to infinity, an

approaches
√

2.

a2 = 1

2

(
a1 + 2

a1

)
= 1

2

(
1 + 2

1

)
= 3

2
= 1.5

a3 = 1

2

(
a2 + 2

a2

)
= 1

2

(
3

2
+ 2

3/2

)
= 17

12
≈ 1.4167

a4 = 1

2

(
a3 + 2

a3

)
= 1

2

(
17

12
+ 2

17/12

)
= 577

408
≈ 1.414216

Our main goal is to study convergence of sequences. A sequence {an} converges to a
limit L if |an − L| becomes arbitrary small when n is sufficiently large. Here is the formal
definition.

DEFINITION Limit of a Sequence We say that {an} converges to a limit L, and we
write

lim
n→∞ an = L or an → L

if, for every ε > 0, there is a number M such that |an − L| < ε for all n > M .

• If no limit exists, we say that {an} diverges.
• If the terms increase without bound, we say that {an} diverges to infinity.

If {an} converges, then its limit L is unique. A good way to visualize the limit is
to plot the points (1, a1), (2, a2), (3, a3), . . . , as in Figure 2. The sequence converges to

1 2 3 4 5 6 7

−�
+�

L

y

n

FIGURE 2 Plot of a sequence with limit L.
For any ε, the dots eventually remain
within an ε-band around L.

L if, for every ε > 0, the plotted points eventually remain within an ε-band around the
horizontal line y = L. Figure 3 shows the plot of a sequence converging to L = 1. On the
other hand, we can show that the sequence an = cos n in Figure 4 has no limit.

y

n
1410 122 4 6 8

1.5

1

0.5

FIGURE 3 The sequence an = n + 4

n + 1
.

y

n
1410 122 4 6

8

1

−1

FIGURE 4 The sequence an = cos n has no
limit.

EXAMPLE 2 Proving Convergence Let an = n + 4

n + 1
. Prove formally that lim

n→∞
an =1.

Solution The definition requires us to find, for every ε > 0, a number M such that

|an − 1| < ε for all n > M 1
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We have

|an − 1| =
∣∣∣∣n + 4

n + 1
− 1

∣∣∣∣ = 3

n + 1

Therefore, |an − 1| < ε if

3

n + 1
< ε or n >

3

ε
− 1

In other words, Eq. (1) is valid with M = 3
ε

− 1. This proves that lim
n→∞ an = 1.

Note the following two facts about sequences:

• The limit does not change if we change or drop finitely many terms of the sequence.
• If C is a constant and an = C for all n sufficiently large, then lim

n→∞ an = C.

Many of the sequences we consider are defined by functions; that is, an = f (n) for
some function f (x). For example,

an = n − 1

n
is defined by f (x) = x − 1

x

A fact we will use often is that if f (x) approaches a limit L as x → ∞, then the sequence
an = f (n) approaches the same limit L (Figure 5). Indeed, for all ε > 0, we can find M

1 2 3 4 5 6 7 8 9 10

L

y

x

a1 = f (1)

a2 = f (2) y = f (x)

a3 = f (3)

FIGURE 5 If f (x) converges to L, then the
sequence an = f (n) also converges to L.

so that |f (x) − L| < ε for all x > M . It follows automatically that |f (n) − L| < ε for
all integers n > M .

THEOREM 1 Sequence Defined by a Function If lim
x→∞ f (x) exists, then the sequence

an = f (n) converges to the same limit:

lim
n→∞ an = lim

x→∞ f (x)

EXAMPLE 3 Find the limit of the sequence

22 − 2

22
,

32 − 2

32
,

42 − 2

42
,

52 − 2

52
, . . .

Solution This is the sequence with general term

an = n2 − 2

n2
= 1 − 2

n

Therefore, we apply Theorem 1 with f (x) = 1 − 2
x

:

lim
n→∞ an = lim

x→∞

(
1 − 2

x

)
= 1 − lim

x→∞
2

x
= 1 − 0 = 1

EXAMPLE 4 Calculate lim
n→∞

n + ln n

n2
.

Solution Apply Theorem 1, using L’Hôpital’s Rule in the second step:

lim
n→∞

n + ln n

n2
= lim

x→∞
x + ln x

x2
= lim

x→∞
1 + (1/x)

2x
= 0
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The limit of the Balmer wavelengths bn in the next example plays a role in physics and
chemistry because it determines the ionization energy of the hydrogen atom. Table 1 sug-

TABLE 1
Balmer Wavelengths

n bn

3 656.1
4 486
5 433.9
6 410.1
7 396.9

10 379.7
20 368.2
40 365.4
60 364.9
80 364.7

100 364.6

gests that bn approaches 364.5. Figure 6 shows the graph, and in Figure 7, the wavelengths
are shown “crowding in” toward their limiting value.

y = f (x)
b3

b4
b5

3

364.5

200

400

600

800

4 5 6 7

y

x

FIGURE 6 The sequence and the function
approach the same limit.
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FIGURE 7

EXAMPLE 5 Balmer Wavelengths Calculate the limit of the Balmer wavelengths

bn = 364.5n2

n2 − 4
, where n ≥ 3.

Solution Apply Theorem 1 with f (x) = 364.5x2

x2 − 4
:

lim
n→∞ bn = lim

x→∞
364.5x2

x2 − 4
= lim

x→∞
364.5

1 − 4/x2
= 364.5

lim
x→∞(1 − 4/x2)

= 364.5

A geometric sequence is a sequence an = crn, where c and r are nonzero constants.
Each term is r times the previous term; that is, an/an−1 = r . The number r is called
the common ratio. For instance, if r = 3 and c = 2, we obtain the sequence (starting at
n = 0)

2, 2 · 3, 2 · 32, 2 · 33, 2 · 34, 2 · 35, . . .

In the next example, we determine when a geometric series converges. Recall that
{an} diverges to ∞ if the terms an increase beyond all bounds (Figure 8); that is,

lim
n→∞ an = ∞ if, for every number N , an > N for all sufficiently large n

We define lim
n→∞ an = −∞ similarly.

1 2 3 4 5 6

c

y

x

f (x) = crx  (r > 1)

FIGURE 8 If r > 1, the geometric sequence
an = rn diverges to ∞.

x
1 2 3 4 5 6

y

f (x) = crx  (0 < r < 1)

c

FIGURE 9 If 0 < r < 1, the geometric
sequence an = rn converges to 0.

EXAMPLE 6 Geometric Sequences with r ≥ 0 Prove that for r ≥ 0 and c > 0,

lim
n→∞ crn =

⎧⎪⎨
⎪⎩

0 if 0 ≤ r < 1

c if r = 1

∞ if r > 1

Solution Set f (r) = crx . If 0 ≤ r < 1, then (Figure 9)

lim
n→∞ crn = lim

x→∞ f (x) = c lim
x→∞ rx = 0

If r > 1, then both f (x) and the sequence {crn} diverge to ∞ (because c > 0) (Figure 8).
If r = 1, then crn = c for all n, and the limit is c.
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The limit laws we have used for functions also apply to sequences and are proved in
a similar fashion.

THEOREM 2 Limit Laws for Sequences Assume that {an} and {bn} are convergent
sequences with

lim
n→∞ an = L, lim

n→∞ bn = M

Then:

(i) lim
n→∞(an ± bn) = lim

n→∞ an ± lim
n→∞ bn = L ± M

(ii) lim
n→∞ anbn =

(
lim

n→∞ an

)(
lim

n→∞ bn

)
= LM

(iii) lim
n→∞

an

bn

=
lim

n→∞ an

lim
n→∞ bn

= L

M
if M �= 0

(iv) lim
n→∞ can = c lim

n→∞ an = cL for any constant c

THEOREM 3 Squeeze Theorem for Sequences Let {an}, {bn}, {cn} be sequences
such that for some number M ,

bn ≤ an ≤ cn for n > M and lim
n→∞ bn = lim

n→∞ cn = L

Then lim
n→∞ an = L.

EXAMPLE 7 Show that if lim
n→∞ |an| = 0, then lim

n→∞ an = 0.

Solution We have

−|an| ≤ an ≤ |an|
By hypothesis, lim

n→∞ |an| = 0, and thus also lim
n→∞ −|an| = − lim

n→∞ |an| = 0. Therefore,

we can apply the Squeeze Theorem to conclude that lim
n→∞ an = 0.

EXAMPLE 8 Geometric Sequences with r < 0 Prove that for c �= 0,

lim
n→∞ crn =

{
0 if −1 < r < 0

diverges if r ≤ −1

Solution If −1 < r < 0, then 0 < |r| < 1 and lim
n→∞ |crn| = 0 by Example 6. Thus

lim
n→∞ crn = 0 by Example 7. If r = −1, then the sequence crn = (−1)nc alternates in

sign and does not approach a limit. The sequence also diverges if r < −1 because crn

alternates in sign and |crn| grows arbitrarily large.

As another application of the Squeeze Theorem, consider the sequence

REMINDER n! (n-factorial) is the
number

n! = n(n − 1)(n − 2) · · · 2 · 1

For example, 4! = 4 · 3 · 2 · 1 = 24.

an = 5n

n!
Both the numerator and the denominator grow without bound, so it is not clear in advance
whether {an} converges. Figure 10 and Table 2 suggest that an increases initially and then

5 10 15

10

20

y

n

FIGURE 10 Graph of an = 5n

n! .

tends to zero. In the next example, we verify that an = Rn/n! converges to zero for all R.
This fact is used in the discussion of Taylor series in Section 10.7.

TABLE 2

n an = 5n

n!
1 5
2 12.5
3 20.83
4 26.04

10 2.69
15 0.023
20 0.000039
50 2.92×10−30
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EXAMPLE 9 Prove that lim
n→∞

Rn

n! = 0 for all R.

Solution Assume first that R > 0 and let M be the positive integer such that

M ≤ R < M + 1

For n > M , we write Rn/n! as a product of n factors:

Rn

n! =
(

R

1

R

2
· · · R

M

)
︸ ︷︷ ︸
Call this constant C

(
R

M + 1

)(
R

M + 2

)
· · ·

(
R

n

)
︸ ︷︷ ︸

Each factor is less than 1

≤ C

(
R

n

)
2

The first M factors are ≥ 1 and the last n − M factors are < 1. If we lump together the
first M factors and call the product C, and drop all the remaining factors except the last
factor R/n, we see that

0 ≤ Rn

n! ≤ CR

n

Since CR/n → 0, the Squeeze Theorem gives us lim
n→∞ Rn/n! = 0 as claimed. If R < 0,

the limit is also zero by Example 7 because
∣∣Rn/n!∣∣ tends to zero.

Given a sequence {an} and a function f (x), we can form the new sequence f (an). It
is useful to know that if f (x) is continuous and an → L, then f (an) → f (L). A proof is
given in Appendix D.

THEOREM 4 If f (x) is continuous and lim
n→∞ an = L, then

lim
n→∞ f (an) = f

(
lim

n→∞ an

)
= f (L)

In other words, we may “bring a limit inside a continuous function.”

EXAMPLE 10 Apply Theorem 4 to the sequence an = 3n

n + 1
and to the functions

(a) f (x) = ex and (b) g(x) = x2.

Solution Observe first that

L = lim
n→∞ an = lim

n→∞
3n

n + 1
= lim

n→∞
3

1 + n−1
= 3

(a) With f (x) = ex we have f (an) = ean = e
3n

n+1 . According to Theorem 4,

lim
n→∞ e

3n
n+1 = lim

n→∞ f (an) = f
(

lim
n→∞ an

)
= e

lim
n→∞

3n
n+1 = e3

(b) With g(x) = x2 we have g(an) = a2
n, and according to Theorem 4,

lim
n→∞

(
3n

n + 1

)2

= lim
n→∞ g(an) = g

(
lim

n→∞ an

)
=

(
lim

n→∞
3n

n + 1

)2

= 32 = 9

Of great importance for understanding convergence are the concepts of a bounded
sequence and a monotonic sequence.
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DEFINITION Bounded Sequences A sequence {an} is:

• Bounded from above if there is a number M such that an ≤ M for all n. The
number M is called an upper bound.

• Bounded from below if there is a number m such that an ≥ m for all n. The
number m is called a lower bound.

The sequence {an} is called bounded if it is bounded from above and below.Asequence
that is not bounded is called an unbounded sequence.

Upper and lower bounds are not unique. If M is an upper bound, then any larger

1 2 3 4 5 6 7

L

M
Upper
bound

Another
upper
bound

m

Lower
bound

y

n
Another

lower
bound

FIGURE 11 A convergent sequence is
bounded.

number is also an upper bound, and if m is a lower bound, then any smaller number is
also a lower bound (Figure 11).

As we might expect, a convergent sequence {an} is necessarily bounded because the
terms an get closer and closer to the limit. This fact is recorded in the next theorem.

THEOREM 5 Convergent Sequences Are Bounded If {an} converges, then {an} is
bounded.

Proof Let L = lim
n→∞ an. Then there exists N > 0 such that |an − L| < 1 for n > N . In

other words,

L − 1 < an < L + 1 for n > N

If M is any number larger than L + 1 and also larger than the numbers a1, a2, . . . , aN ,
then an < M for all n. Thus, M is an upper bound. Similarly, any number m smaller than
L − 1 and also smaller than the numbers a1, a2, . . . , aN is a lower bound.

There are two ways that a sequence {an} can diverge. One way is by being unbounded.
For example, the unbounded sequence an = n diverges:

1, 2, 3, 4, 5, 6, . . .

However, a sequence can diverge even if it is bounded. This is the case with an = (−1)n+1,
whose terms an bounce back and forth but never settle down to approach a limit:

1, −1, 1, −1, 1, −1, . . .

There is no surefire method for determining whether a sequence {an} converges,
unless the sequence happens to be both bounded and monotonic. By definition, {an} is
monotonic if it is either increasing or decreasing:

• {an} is increasing if an < an+1 for all n.
• {an} is decreasing if an > an+1 for all n.

Intuitively, if {an} is increasing and bounded above by M , then the terms must bunch up
near some limiting value L that is not greater than M (Figure 12). See Appendix B for a
proof of the next theorem.

x
0

a1 a2 a3 a4 a5

L M

The limit
An upper

bound

FIGURE 12 An increasing sequence with
upper bound M approaches a limit L.
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THEOREM 6 Bounded Monotonic Sequences Converge

• If {an} is increasing and an ≤ M , then {an} converges and lim
n→∞ an ≤ M .

• If {an} is decreasing and an ≥ m, then {an} converges and lim
n→∞ an ≥ m.

EXAMPLE 11 Verify that an = √
n + 1 − √

n is decreasing and bounded below. Does
lim

n→∞ an exist?
TABLE 3

an = √
n + 1 − √

n

a1 ≈ 0.4142
a2 ≈ 0.3178
a3 ≈ 0.2679
a4 ≈ 0.2361
a5 ≈ 0.2134
a6 ≈ 0.1963
a7 ≈ 0.1827
a8 ≈ 0.1716

Solution The function f (x) = √
x + 1 − √

x is decreasing because its derivative is neg-
ative:

f ′(x) = 1

2
√

x + 1
− 1

2
√

x
< 0 for x > 0

It follows that an = f (n) is decreasing (see Table 3). Furthermore, an > 0 for all n, so
the sequence has lower bound m = 0. Theorem 6 guarantees that L = lim

n→∞ an exists and

L ≥ 0. In fact, we can show that L = 0 by noting that f (x) = 1/(
√

x + 1 + √
x) and

hence lim
x→∞ f (x) = 0.

EXAMPLE 12 Show that the following sequence is bounded and increasing:

a1 = √
2, a2 =

√
2
√

2, a3 =
√

2

√
2
√

2, . . .

Then prove that L = lim
n→∞ an exists and compute its value.

Solution If we knew in advance that the limit L exists, we could find its value as follows.
The idea is that L “contains a copy” of itself under the square root sign:

L =
√

2

√
2

√
2
√

2 · · · =

√√√√√2

⎛
⎝
√

2

√
2
√

2 · · ·
⎞
⎠ = √

2L

Thus L2 = 2L, which implies that L = 2 or L = 0. We eliminate L = 0 because the terms
an are positive and increasing (as shown below), so we must have L = 2 (see Table 4).

This argument is phrased more formally by noting that the sequence is defined recur-
sively by

a1 = √
2, an+1 = √

2an

If an converges to L, then the sequence bn = an+1 also converges to L (because it is the
same sequence, with terms shifted one to the left). Then, using Theorem 4, we would have

L = lim
n→∞ an+1 = lim

n→∞
√

2an =
√

2 lim
n→∞ an = √

2L

However, none of this is valid unless we know in advance that the limit L exists. By

TABLE 4 Recursive
Sequence an+1 = √

2an

a1 1.4142
a2 1.6818
a3 1.8340
a4 1.9152
a5 1.9571
a6 1.9785
a7 1.9892
a8 1.9946

Theorem 6, it suffices to show that {an} is bounded above and increasing.

Step 1. Show that {an} is bounded above.
We claim that M = 2 is an upper bound. We certainly have a1 < 2 because a1 = √

2 ≈
1.414. On the other hand,

if an < 2, then an+1 < 2 3
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This is true because an+1 = √
2an <

√
2 · 2 = 2. Now, since a1 < 2, we can apply (3)

to conclude that a2 < 2. Similarly, a2 < 2 implies a3 < 2, and so on for all n. Formally
speaking, this is a proof by induction.

Step 2. Show that {an} is increasing.
Since an is positive and an < 2, we have

an+1 = √
2an >

√
an · an = an

This shows that {an} is increasing.

We conclude that the limit L exists and hence L = 2.

10.1 SUMMARY

• A sequence {an} converges to a limit L if, for every ε > 0, there is a number M such
that

|an − L| < ε for all n > M

We write lim
n→∞ an = L or an → L.

• If no limit exists, we say that {an} diverges.
• In particular, if the terms increase without bound, we say that {an} diverges to infinity.
• If an = f (n) and lim

x→∞ f (x) = L, then lim
n→∞ an = L.

• A geometric sequence is a sequence an = crn, where c and r are nonzero.
• The Basic Limit Laws and the Squeeze Theorem apply to sequences.
• If f (x) is continuous and lim

n→∞ an = L, then lim
n→∞ f (an) = f (L).

• A sequence {an} is

– bounded above by M if an ≤ M for all n.

– bounded below by m if an ≥ m for all n.

If {an} is bounded above and below, {an} is called bounded.
• A sequence {an} is monotonic if it is increasing (an < an+1) or decreasing (an > an+1).
• Bounded monotonic sequences converge (Theorem 6).

10.1 EXERCISES

Preliminary Questions
1. What is a4 for the sequence an = n2 − n?

2. Which of the following sequences converge to zero?

(a)
n2

n2 + 1
(b) 2n (c)

(−1

2

)n

3. Let an be the nth decimal approximation to
√

2. That is, a1 = 1,
a2 = 1.4, a3 = 1.41, etc. What is lim

n→∞ an?

4. Which of the following sequences is defined recursively?

(a) an = √
4 + n (b) bn = √

4 + bn−1

5. Theorem 5 says that every convergent sequence is bounded. De-
termine if the following statements are true or false and if false, give a
counterexample.

(a) If {an} is bounded, then it converges.

(b) If {an} is not bounded, then it diverges.

(c) If {an} diverges, then it is not bounded.
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Exercises
1. Match each sequence with its general term:

a1, a2, a3, a4, . . . General term

(a) 1
2 , 2

3 , 3
4 , 4

5 , . . . (i) cos πn

(b) −1, 1, −1, 1, . . . (ii)
n!
2n

(c) 1, −1, 1, −1, . . . (iii) (−1)n+1

(d) 1
2 , 2

4 , 6
8 , 24

16 . . . (iv)
n

n + 1

2. Let an = 1

2n − 1
for n = 1, 2, 3, . . . .Write out the first three terms

of the following sequences.

(a) bn = an+1 (b) cn = an+3

(c) dn = a2
n (d) en = 2an − an+1

In Exercises 3–12, calculate the first four terms of the sequence, starting
with n = 1.

3. cn = 3n

n! 4. bn = (2n − 1)!
n!

5. a1 = 2, an+1 = 2a2
n − 3

6. b1 = 1, bn = bn−1 + 1

bn−1

7. bn = 5 + cos πn 8. cn = (−1)2n+1

9. cn = 1 + 1

2
+ 1

3
+ · · · + 1

n

10. an = n + (n + 1) + (n + 2) + · · · + (2n)

11. b1 = 2, b2 = 3, bn = 2bn−1 + bn−2

12. cn = n-place decimal approximation to e

13. Find a formula for the nth term of each sequence.

(a)
1

1
,
−1

8
,

1

27
, . . . (b)

2

6
,

3

7
,

4

8
, . . .

14. Suppose that lim
n→∞ an = 4 and lim

n→∞ bn = 7. Determine:

(a) lim
n→∞(an + bn) (b) lim

n→∞ a3
n

(c) lim
n→∞ cos(πbn) (d) lim

n→∞(a2
n − 2anbn)

In Exercises 15–26, use Theorem 1 to determine the limit of the sequence
or state that the sequence diverges.

15. an = 12 16. an = 20 − 4

n2

17. bn = 5n − 1

12n + 9
18. an = 4 + n − 3n2

4n2 + 1

19. cn = −2−n 20. zn =
(

1

3

)n

21. cn = 9n 22. zn = 10−1/n

23. an = n√
n2 + 1

24. an = n√
n3 + 1

25. an = ln

(
12n + 2

−9 + 4n

)
26. rn = ln n − ln(n2 + 1)

In Exercises 27–30, use Theorem 4 to determine the limit of the se-
quence.

27. an =
√

4 + 1

n
28. an = e4n/(3n+9)

29. an = cos−1

(
n3

2n3 + 1

)
30. an = tan−1(e−n)

31. Let an = n

n + 1
. Find a number M such that:

(a) |an − 1| ≤ 0.001 for n ≥ M .

(b) |an − 1| ≤ 0.00001 for n ≥ M .

Then use the limit definition to prove that lim
n→∞ an = 1.

32. Let bn = ( 1
3

)n.

(a) Find a value of M such that |bn| ≤ 10−5 for n ≥ M .

(b) Use the limit definition to prove that lim
n→∞ bn = 0.

33. Use the limit definition to prove that lim
n→∞ n−2 = 0.

34. Use the limit definition to prove that lim
n→∞

n

n + n−1
= 1.

In Exercises 35–62, use the appropriate limit laws and theorems to
determine the limit of the sequence or show that it diverges.

35. an = 10 +
(

−1

9

)n

36. dn = √
n + 3 − √

n

37. cn = 1.01n 38. bn = e1−n2

39. an = 21/n 40. bn = n1/n

41. cn = 9n

n! 42. an = 82n

n!

43. an = 3n2 + n + 2

2n2 − 3
44. an =

√
n√

n + 4

45. an = cos n

n
46. cn = (−1)n√

n

47. dn = ln 5n − ln n!
48. dn = ln(n2 + 4) − ln(n2 − 1)

49. an =
(

2 + 4

n2

)1/3
50. bn = tan−1

(
1 − 2

n

)

51. cn = ln

(
2n + 1

3n + 4

)
52. cn = n

n + n1/n

53. yn = en

2n
54. an = n

2n
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55. yn = en + (−3)n

5n
56. bn = (−1)nn3 + 2−n

3n3 + 4−n

57. an = n sin
π

n
58. bn = n!

πn

59. bn = 3 − 4n

2 + 7 · 4n
60. an = 3 − 4n

2 + 7 · 3n

61. an =
(

1 + 1

n

)n

62. an =
(

1 + 1

n2

)n

In Exercises 63–66, find the limit of the sequence using L’Hôpital’s
Rule.

63. an = (ln n)2

n
64. bn = √

n ln

(
1 + 1

n

)

65. cn = n
(√

n2 + 1 − n
)

66. dn = n2( 3
√

n3 + 1 − n
)

In Exercises 67–70, use the Squeeze Theorem to evaluate lim
n→∞ an by

verifying the given inequality.

67. an = 1√
n4 + n8

,
1√
2n4

≤ an ≤ 1√
2n2

68. cn = 1√
n2 + 1

+ 1√
n2 + 2

+ · · · + 1√
n2 + n

,

n√
n2 + n

≤ cn ≤ n√
n2 + 1

69. an = (2n + 3n)1/n, 3 ≤ an ≤ (2 · 3n)1/n = 21/n · 3

70. an = (n + 10n)1/n, 10 ≤ an ≤ (2 · 10n)1/n

71. Which of the following statements is equivalent to the as-
sertion lim

n→∞ an = L? Explain.

(a) For every ε > 0, the interval (L − ε, L + ε) contains at least one
element of the sequence {an}.
(b) For every ε > 0, the interval (L − ε, L + ε) contains all but at
most finitely many elements of the sequence {an}.

72. Show that an = 1

2n + 1
is decreasing.

73. Show that an = 3n2

n2 + 2
is increasing. Find an upper bound.

74. Show that an = 3√
n + 1 − n is decreasing.

75. Give an example of a divergent sequence {an} such that lim
n→∞ |an|

converges.

76. Give an example of divergent sequences {an} and {bn} such that
{an + bn} converges.

77. Using the limit definition, prove that if {an} converges and {bn}
diverges, then {an + bn} diverges.

78. Use the limit definition to prove that if {an} is a convergent se-
quence of integers with limit L, then there exists a number M such that
an = L for all n ≥ M .

79. Theorem 1 states that if lim
x→∞ f (x) = L, then the sequence an =

f (n) converges and lim
n→∞ an = L. Show that the converse is false. In

other words, find a function f (x) such that an = f (n) converges but
lim

x→∞ f (x) does not exist.

80. Use the limit definition to prove that the limit does not change
if a finite number of terms are added or removed from a convergent
sequence.

81. Let bn = an+1. Use the limit definition to prove that if {an} con-
verges, then {bn} also converges and lim

n→∞ an = lim
n→∞ bn.

82. Let {an} be a sequence such that lim
n→∞ |an| exists and is nonzero.

Show that lim
n→∞ an exists if and only if there exists an integer M such

that the sign of an does not change for n > M .

83. Proceed as in Example 12 to show that the sequence
√

3,

√
3
√

3,√
3

√
3
√

3, . . . is increasing and bounded above by M = 3. Then prove
that the limit exists and find its value.

84. Let {an} be the sequence defined recursively by

a0 = 0, an+1 = √
2 + an

Thus, a1 = √
2, a2 =

√
2 + √

2, a3 =
√

2 +
√

2 + √
2, . . . .

(a) Show that if an < 2, then an+1 < 2. Conclude by induction that
an < 2 for all n.

(b) Show that if an < 2, then an ≤ an+1. Conclude by induction that
{an} is increasing.

(c) Use (a) and (b) to conclude that L = lim
n→∞ an exists. Then compute

L by showing that L = √
2 + L.

Further Insights and Challenges
85. Show that lim

n→∞
n
√

n! = ∞. Hint: Verify that n! ≥ (n/2)n/2 by ob-

serving that half of the factors of n! are greater than or equal to n/2.

86. Let bn =
n
√

n!
n

.

(a) Show that ln bn = 1

n

n∑
k=1

ln
k

n
.

(b) Show that ln bn converges to
∫ 1

0
ln x dx, and conclude that

bn → e−1.
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87. Given positive numbers a1 < b1, define two sequences recursively
by

an+1 = √
anbn, bn+1 = an + bn

2

(a) Show that an ≤ bn for all n (Figure 13).

(b) Show that {an} is increasing and {bn} is decreasing.

(c) Show that bn+1 − an+1 ≤ bn − an

2
.

(d) Prove that both {an} and {bn} converge and have the same limit.
This limit, denoted AGM(a1, b1), is called the arithmetic-geometric
mean of a1 and b1.

(e) Estimate AGM(1,
√

2) to three decimal places.

x
an an+1

AGM(a1, b1)

bn+1 bn

Geometric
mean

Arithmetic
mean

FIGURE 13

88. Let cn = 1

n
+ 1

n + 1
+ 1

n + 2
+ · · · + 1

2n
.

(a) Calculate c1, c2, c3, c4.

(b) Use a comparison of rectangles with the area under y = x−1 over
the interval [n, 2n] to prove that∫ 2n

n

dx

x
+ 1

2n
≤ cn ≤

∫ 2n

n

dx

x
+ 1

n

(c) Use the Squeeze Theorem to determine lim
n→∞ cn.

89. Let an = Hn − ln n, where Hn is the nth harmonic num-
ber

Hn = 1 + 1

2
+ 1

3
+ · · · + 1

n

(a) Show that an ≥ 0 for n ≥ 1. Hint: Show that Hn ≥
∫ n+1

1

dx

x
.

(b) Show that {an} is decreasing by interpreting an − an+1 as an area.

(c) Prove that lim
n→∞ an exists.

This limit, denoted γ , is known as Euler’s Constant. It appears in many
areas of mathematics, including analysis and number theory, and has
been calculated to more than 100 million decimal places, but it is still
not known whether γ is an irrational number. The first 10 digits are
γ ≈ 0.5772156649.

10.2 Summing an Infinite Series
Many quantities that arise in applications cannot be computed exactly. We cannot write
down an exact decimal expression for the number π or for values of the sine function
such as sin 1. However, sometimes these quantities can be represented as infinite sums.
For example, using Taylor series (Section 10.7), we can show that

sin 1 = 1 − 1

3! + 1

5! − 1

7! + 1

9! − 1

11! + · · · 1

Infinite sums of this type are called infinite series.
What precisely does Eq. (1) mean? It is impossible to add up infinitely many numbers,

but what we can do is compute the partial sums SN , defined as the finite sum of the terms
up to and including N th term. Here are the first five partial sums of the infinite series for
sin 1:

S1 = 1

S2 = 1 − 1

3! = 1 − 1

6
≈ 0.833

S3 = 1 − 1

3! + 1

5! = 1 − 1

6
+ 1

120
≈ 0.841667

S4 = 1 − 1

6
+ 1

120
− 1

5040
≈ 0.841468

S5 = 1 − 1

6
+ 1

120
− 1

5040
+ 1

362,880
≈ 0.8414709846
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Compare these values with the value obtained from a calculator:

sin 1 ≈ 0.8414709848079 (calculator value)

We see that S5 differs from sin 1 by less than 10−9. This suggests that the partial sums
converge to sin 1, and in fact, we will prove that

sin 1 = lim
N→∞ SN

(Example 2 in Section 10.7). So although we cannot add up infinitely many numbers, it
makes sense to define the sum of an infinite series as a limit of partial sums.

In general, an infinite series is an expression of the form• Infinite series may begin with any
index. For example,

∞∑
n=3

1

n
= 1

3
+ 1

4
+ 1

5
+ · · ·

When it is not necessary to specify the
starting point, we write simply

∑
an.

• Any letter may be used for the index.
Thus, we may write am, ak , ai , etc.

∞∑
n=1

an = a1 + a2 + a3 + a4 + · · ·

where {an} is any sequence. For example,

Sequence General term Infinite series

1

3
,

1

9
,

1

27
, . . . an = 1

3n

∞∑
n=1

1

3n
= 1

3
+ 1

9
+ 1

27
+ 1

81
+ · · ·

1

1
,

1

4
,

1

9
,

1

16
, . . . an = 1

n2

∞∑
n=1

1

n2
= 1

1
+ 1

4
+ 1

9
+ 1

16
+ · · ·

The N th partial sum SN is the finite sum of the terms up to and including aN :

SN =
N∑

n=1

an = a1 + a2 + a3 + · · · + aN

If the series begins at k, then SN =
N∑

n=k

an.

DEFINITION Convergence of an Infinite Series An infinite series
∞∑

n=k

an converges

to the sum S if its partial sums converge to S:

lim
N→∞ SN = S

In this case, we write S =
∞∑

n=k

an.

• If the limit does not exist, we say that the infinite series diverges.
• If the limit is infinite, we say that the infinite series diverges to infinity.

We can investigate series numerically by computing several partial sums SN . If the
partial sums show a trend of convergence to some number S, then we have evidence (but
not proof) that the series converges to S. The next example treats a telescoping series,
where the partial sums are particularly easy to evaluate.
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EXAMPLE 1 Telescoping Series Investigate numerically:

S =
∞∑

n=1

1

n(n + 1)
= 1

1(2)
+ 1

2(3)
+ 1

3(4)
+ 1

4(5)
+ · · ·

Then compute the sum S using the identity:

1

n(n + 1)
= 1

n
− 1

n + 1

Solution The values of the partial sums listed in Table 1 suggest convergence to S = 1.
TABLE 1 Partial Sums

for
∞∑

n=1

1

n(n + 1)

N SN

10 0.90909
50 0.98039

100 0.990099
200 0.995025
300 0.996678

To prove this, we observe that because of the identity, each partial sum collapses down to
just two terms:

S1 = 1

1(2)
= 1

1
− 1

2

S2 = 1

1(2)
+ 1

2(3)
=

(
1

1
− 1

2

)
+
(

1

2
− 1

3

)
= 1 − 1

3

S3 = 1

1(2)
+ 1

2(3)
+ 1

3(4)
=

(
1

1
− 1

2

)
+
(

1

2
− 1

3

)
+
(

1

3
− 1

4

)
= 1 − 1

4

In general,In most cases (apart from telescoping
series and the geometric series introduced
below), there is no simple formula like
Eq. (2) for the partial sum SN . Therefore,
we shall develop techniques that do not
rely on formulas for SN .

SN =
(

1

1
− 1

2

)
+
(

1

2
− 1

3

)
+ · · · +

(
1

N
− 1

N + 1

)
= 1 − 1

N + 1
2

The sum S is the limit of the partial sums:

S = lim
N→∞ SN = lim

N→∞

(
1 − 1

N + 1

)
= 1

It is important to keep in mind the difference between a sequence {an} and an infinite

series
∞∑

n=1

an.

EXAMPLE 2 Sequences versus Series Discuss the difference between {an} and
∞∑

n=1

an, where an = 1

n(n + 1)
.

Solution The sequence is the list of numbers 1
1(2)

, 1
2(3)

, 1
3(4)

, . . . . This sequence con-Make sure you understand the difference
between sequences and series.

• With a sequence, we consider the limit
of the individual terms an.

• With a series, we are interested in the
sum of the terms

a1 + a2 + a3 + · · ·
which is defined as the limit of the
partial sums.

verges to zero:

lim
n→∞ an = lim

n→∞
1

n(n + 1)
= 0

The infinite series is the sum of the numbers an, defined formally as the limit of the partial
sums. This sum is not zero. In fact, the sum is equal to 1 by Example 1:

∞∑
n=1

an =
∞∑

n=1

1

n(n + 1)
= 1

1(2)
+ 1

2(3)
+ 1

3(4)
+ · · · = 1

The next theorem shows that infinite series may be added or subtracted like ordinary
sums, provided that the series converge.
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THEOREM 1 Linearity of Infinite Series If
∑

an and
∑

bn converge, then∑
(an ± bn) and

∑
can also converge (c any constant), and∑

an +
∑

bn =
∑

(an + bn)∑
an −

∑
bn =

∑
(an − bn)∑

can = c
∑

an (c any constant)

Proof These rules follow from the corresponding linearity rules for limits. For example,

∞∑
n=1

(an + bn) = lim
N→∞

N∑
n=1

(an + bn) = lim
N→∞

(
N∑

n=1

an +
N∑

n=1

bn

)

= lim
N→∞

N∑
n=1

an + lim
N→∞

∞∑
n=1

bn =
∞∑

n=1

an +
∞∑

n=1

bn

A main goal in this chapter is to develop techniques for determining whether a series
converges or diverges. It is easy to give examples of series that diverge:

• S =
∞∑

n=1

1 diverges to infinity (the partial sums increase without bound):

S1 = 1, S2 = 1 + 1 = 2, S3 = 1 + 1 + 1 = 3, S4 = 1 + 1 + 1 + 1 = 4, . . .

•
∞∑

n=1

(−1)n−1 diverges (the partial sums jump between 1 and 0):

S1 = 1, S2 = 1 − 1 = 0, S3 = 1 − 1 + 1 = 1, S4 = 1 − 1 + 1 − 1 = 0, . . .

Next, we study the geometric series, which converge or diverge depending on the common
ratio r .

A geometric series with common ratio r �= 0 is a series defined by a geometric
sequence crn, where c �= 0. If the series begins at n = 0, then

S =
∞∑

n=0

crn = c + cr + cr2 + cr3 + cr4 + cr5 + · · ·

For r = 1
2 and c = 1, we can visualize the geometric series starting at n = 1 (Figure 1):

0 1

0 1

0 1+

0 11
2 1

2

1
2

3
4

1
2

3
4

7
8

1
2

3
4

7
8

15
16

1
2

1
4

+1
2

1
4

+ 1
8

+1
2

1
4

+ 1
8

+ 1
16

FIGURE 1 Partial sums of
∞∑

n=1

1

2n
.

S =
∞∑

n=1

1

2n
= 1

2
+ 1

4
+ 1

8
+ 1

16
+ · · · = 1

Adding up the terms corresponds to moving stepwise from 0 to 1, where each step is a
move to the right by half of the remaining distance. Thus S = 1.

There is a simple device for computing the partial sums of a geometric series:

SN = c + cr + cr2 + cr3 + · · · + crN

rSN = cr + cr2 + cr3 + · · · + crN + crN+1

SN − rSN = c − crN+1

SN(1 − r) = c(1 − rN+1)
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If r �= 1, we may divide by (1 − r) to obtain

SN = c + cr + cr2 + cr3 + · · · + crN = c(1 − rN+1)

1 − r
3

This formula enables us to sum the geometric series.

Geometric series are important because
they

• arise often in applications.
• can be evaluated explicitly.
• are used to study other, nongeometric

series (by comparison).

THEOREM 2 Sum of a Geometric Series Let c �= 0. If |r| < 1, then

∞∑
n=0

crn = c + cr + cr2 + cr3 + · · · = c

1 − r
4

∞∑
n=M

crn = crM + crM+1 + crM+2 + crM+3 + · · · = crM

1 − r
5

If |r| ≥ 1, then the geometric series diverges.

Proof If r = 1, then the series certainly diverges because the partial sums SN = Nc grow
arbitrarily large. If r �= 1, then Eq. (3) yields

S = lim
N→∞ SN = lim

N→∞
c(1 − rN+1)

1 − r
= c

1 − r
− c

1 − r
lim

N→∞ rN+1

If |r| < 1, then lim
N→∞ rN+1 = 0 and we obtain Eq. (4). If |r| ≥ 1 and r �= 1, then

lim
N→∞ rN+1 does not exist and the geometric series diverges. Finally, if the series starts

with crM rather than cr0, then

S = crM + crM+1 + crM+2 + crM+3 + · · · = rM
∞∑

n=0

crn = crM

1 − r

EXAMPLE 3 Evaluate
∞∑

n=0

5−n.

Solution This is a geometric series with r = 5−1. By Eq. (4),

∞∑
n=0

5−n = 1 + 1

5
+ 1

52
+ 1

53
+ · · · = 1

1 − 5−1
= 5

4

EXAMPLE 4 Evaluate
∞∑

n=3

7

(
−3

4

)n

= 7

(
−3

4

)3

+ 7

(
−3

4

)4

+ 7

(
−3

4

)5

+ · · ·.

Solution This is a geometric series with r = − 3
4 and c = 7, starting at n = 3. By Eq. (5),

∞∑
n=3

7

(
−3

4

)n

= 7
(− 3

4

)3

1 − (− 3
4

) = −27

16
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EXAMPLE 5 Evaluate S =
∞∑

n=0

2 + 3n

5n
.

Solution Write S as a sum of two geometric series. This is valid by Theorem 1 because
both geometric series converge:

∞∑
n=0

2 + 3n

5n
=

∞∑
n=0

2

5n
+

∞∑
n=0

3n

5n
=

Both geometric series converge︷ ︸︸ ︷
2

∞∑
n=0

1

5n
+

∞∑
n=0

(
3

5

)n

= 2 · 1

1 − 1
5

+ 1

1 − 3
5

= 5

CONCEPTUAL INSIGHT Sometimes, the following incorrect argument is given for sum-
ming a geometric series:

S = 1

2
+ 1

4
+ 1

8
+ · · ·

2S = 1 + 1

2
+ 1

4
+ 1

8
+ · · · = 1 + S

Thus, 2S = 1 + S, or S = 1. The answer is correct, so why is the argument wrong? It
is wrong because we do not know in advance that the series converges. Observe what
happens when this argument is applied to a divergent series:

S = 1 + 2 + 4 + 8 + 16 + · · ·
2S = 2 + 4 + 8 + 16 + · · · = S − 1

This would yield 2S = S − 1, or S = −1, which is absurd because S diverges. We avoid
such erroneous conclusions by carefully defining the sum of an infinite series as the limit
of partial sums.

The infinite series
∞∑

k=1

1 diverges because the N th partial sum SN = N diverges to

infinity. It is less clear whether the following series converges or diverges:

∞∑
n=1

(−1)n+1 n

n + 1
= 1

2
− 2

3
+ 3

4
− 4

5
+ 5

6
− · · ·

We now introduce a useful test that allows us to conclude that this series diverges.

THEOREM 3 Divergence Test If the nth term an does not converge to zero, then the

series
∞∑

n=1

an diverges.

Proof First, note that an = Sn − Sn−1 because

The Divergence Test (also called the
nth-Term Test) is often stated as follows:

If
∞∑

n=1

an converges, then lim
n→∞ an = 0.

In practice, we use it to prove that a given
series diverges.

Sn = (
a1 + a2 + · · · + an−1

) + an = Sn−1 + an
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If
∞∑

n=1

an converges with sum S, then

lim
n→∞ an = lim

n→∞(Sn − Sn−1) = lim
n→∞ Sn − lim

n→∞ Sn−1 = S − S = 0

Therefore, if an does not converge to zero,
∞∑

n=1

an cannot converge.

EXAMPLE 6 Prove the divergence of S =
∞∑

n=1

n

4n + 1
.

Solution We have

lim
n→∞ an = lim

n→∞
n

4n + 1
= lim

n→∞
1

4 + 1/n
= 1

4

The nth term an does not converge to zero, so the series diverges by Theorem 3.

EXAMPLE 7 Determine the convergence or divergence of

S =
∞∑

n=1

(−1)n−1 n

n + 1
= 1

2
− 2

3
+ 3

4
− 4

5
+ · · ·

Solution The general term an = (−1)n−1 n

n + 1
does not approach a limit. Indeed,

n

n + 1
tends to 1, so the odd terms a2n+1 tend to 1, and the even terms a2n tend to −1. Because
lim

n→∞ an does not exist, the series S diverges by Theorem 3.

The Divergence Test tells only part of the story. If an does not tend to zero, then
∑

an

certainly diverges. But what if an does tend to zero? In this case, the series may converge
or it may diverge. In other words, lim

n→∞ an = 0 is a necessary condition of convergence,

but it is not sufficient. As we show in the next example, it is possible for a series to diverge
even though its terms tend to zero.

EXAMPLE 8 Sequence Tends to Zero, yet the Series Diverges Prove the divergence

y

n
1 2 3 4

Terms of sequence, an

Partial sums, SN

5 6 7 8 9 10 11 12

5

4

3

2

1

FIGURE 2 The partial sums of

∞∑
n=1

1√
n

diverge even though the terms an = 1/
√

n

tend to zero.

of ∞∑
n=1

1√
n

= 1√
1

+ 1√
2

+ 1√
3

+ · · ·

Solution The general term 1/
√

n tends to zero. However, because each term in the partial
sum SN is greater than or equal to 1/

√
N , we have

SN =
N terms︷ ︸︸ ︷

1√
1

+ 1√
2

+ · · · + 1√
N

≥ 1√
N

+ 1√
N

+ · · · + 1√
N

= N

(
1√
N

)
= √

N

This shows that SN ≥ √
N . But

√
N increases without bound (Figure 2). Therefore SN

also increases without bound. This proves that the series diverges.
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HISTORICAL
PERSPECTIVE

Geometric series were used as early as the third
century bce by Archimedes in a brilliant argu-
ment for determining the area S of a “parabolic
segment” (shaded region in Figure 3). Given two
points A and C on a parabola, there is a point B

between A and C where the tangent line is par-
allel to AC (apparently, Archimedes knew the
Mean Value Theorem more than 2000 years be-
fore the invention of calculus). Let T be the area
of triangle 
ABC. Archimedes proved that if D

is chosen in a similar fashion relative to AB and
E is chosen relative to BC, then

1

4
T = Area(
ADB) + Area(
BEC) 6

This construction of triangles can be continued.
The next step would be to construct the four tri-
angles on the segments AD, DB, BE, EC, of

total area 1
4

2
T . Then construct eight triangles

of total area 1
4

3
T , etc. In this way, we obtain in-

finitely many triangles that completely fill up the
parabolic segment. By the formula for the sum
of a geometric series,

S = T + 1

4
T + 1

16
T + · · · = T

∞∑
n=0

1

4n
= 4

3
T

For this and many other achievements, Archi-
medes is ranked together with Newton and
Gauss as one of the greatest scientists of all time.

The modern study of infinite series began
in the seventeenth century with Newton, Leib-
niz, and their contemporaries. The divergence

of
∞∑

n=1

1/n (called the harmonic series) was

known to the medieval scholar Nicole d’Oresme
(1323–1382), but his proof was lost for cen-
turies, and the result was rediscovered on more
than one occasion. It was also known that the

sum of the reciprocal squares
∞∑

n=1

1/n2 con-

verges, and in the 1640s, the Italian Pietro Men-
goli put forward the challenge of finding its sum.
Despite the efforts of the best mathematicians
of the day, including Leibniz and the Bernoulli
brothers Jakob and Johann, the problem resisted
solution for nearly a century. In 1735, the great
master Leonhard Euler (at the time, 28 years old)
astonished his contemporaries by proving that

1

12
+ 1

22
+ 1

32
+ 1

42
+ 1

52
+ 1

62
+ · · · = π2

6

This formula, surprising in itself, plays a role
in a variety of mathematical fields. A theorem
from number theory states that two whole num-
bers, chosen randomly, have no common factor
with probability 6/π2 ≈ 0.6 (the reciprocal of
Euler’s result). On the other hand, Euler’s re-
sult and its generalizations appear in the field of
statistical mechanics.

Archimedes (287 BCE–212 BCE), who
discovered the law of the lever, said “Give
me a place to stand on, and I can move the
earth” (quoted by Pappus of Alexandria
c. AD 340).

B

C

A

B

C

A

E

D

Area S Area T

FIGURE 3 Archimedes showed that the area
S of the parabolic segment is 4

3T , where T

is the area of 
ABC.

10.2 SUMMARY

• An infinite series is an expression

∞∑
n=1

an = a1 + a2 + a3 + a4 + · · ·

We call an the general term of the series. An infinite series can begin at n = k for any
integer k.
• The N th partial sum is the finite sum of the terms up to and including the N th term:

SN =
N∑

n=1

an = a1 + a2 + a3 + · · · + aN

• By definition, the sum of an infinite series is the limit S = lim
N→∞ SN . If the limit exists,

we say that the infinite series is convergent or converges to the sum S. If the limit does
not exist, we say that the infinite series diverges.
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• If the partial sums SN increase without bound, we say that S diverges to infinity.

• Divergence Test: If {an} does not tend to zero, then
∞∑

n=1

an diverges. However, a series

may diverge even if its general term {an} tends to zero.
• Partial sum of a geometric series:

c + cr + cr2 + cr3 + · · · + crN = c
(
1 − rN+1

)
1 − r

• Geometric series: If |r| < 1, then

∞∑
n=0

rn = 1 + r + r2 + r3 + · · · = 1

1 − r

∞∑
n=M

crn = crM + crM+1 + crM+2 + · · · = crM

1 − r

The geometric series diverges if |r| ≥ 1.

10.2 EXERCISES

Preliminary Questions
1. What role do partial sums play in defining the sum of an infinite

series?

2. What is the sum of the following infinite series?

1

4
+ 1

8
+ 1

16
+ 1

32
+ 1

64
+ · · ·

3. What happens if you apply the formula for the sum of a geometric
series to the following series? Is the formula valid?

1 + 3 + 32 + 33 + 34 + · · ·

4. Arvind asserts that
∞∑

n=1

1

n2
= 0 because

1

n2
tends to zero. Is this

valid reasoning?

5. Colleen claims that
∞∑

n=1

1√
n

converges because

lim
n→∞

1√
n

= 0

Is this valid reasoning?

6. Find an N such that SN > 25 for the series
∞∑

n=1

2.

7. Does there exist an N such that SN > 25 for the series
∞∑

n=1

2−n?
Explain.

8. Give an example of a divergent infinite series whose general term
tends to zero.

Exercises
1. Find a formula for the general term an (not the partial sum) of the

infinite series.

(a)
1

3
+ 1

9
+ 1

27
+ 1

81
+ · · · (b)

1

1
+ 5

2
+ 25

4
+ 125

8
+ · · ·

(c)
1

1
− 22

2 · 1
+ 33

3 · 2 · 1
− 44

4 · 3 · 2 · 1
+ · · ·

(d)
2

12 + 1
+ 1

22 + 1
+ 2

32 + 1
+ 1

42 + 1
+ · · ·

2. Write in summation notation:

(a) 1 + 1

4
+ 1

9
+ 1

16
+ · · · (b)

1

9
+ 1

16
+ 1

25
+ 1

36
+ · · ·

(c) 1 − 1

3
+ 1

5
− 1

7
+ · · ·

(d)
125

9
+ 625

16
+ 3125

25
+ 15,625

36
+ · · ·

In Exercises 3–6, compute the partial sums S2, S4, and S6.

3. 1 + 1

22
+ 1

32
+ 1

42
+ · · · 4.

∞∑
k=1

(−1)kk−1

5.
1

1 · 2
+ 1

2 · 3
+ 1

3 · 4
+ · · · 6.

∞∑
j=1

1

j !
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7. The series S = 1 + ( 1
5

) + ( 1
5

)2 + ( 1
5

)3 + · · · converges to 5
4 . Cal-

culate SN for N = 1, 2, . . . until you find an SN that approximates 5
4

with an error less than 0.0001.

8. The series S = 1

0! − 1

1! + 1

2! − 1

3! + · · · is known to converge to

e−1 (recall that 0! = 1). Calculate SN for N = 1, 2, . . . until you find
an SN that approximates e−1 with an error less than 0.001.

In Exercises 9 and 10, use a computer algebra system to compute S10,
S100, S500, and S1000 for the series. Do these values suggest conver-
gence to the given value?

9.

π − 3

4
= 1

2 · 3 · 4
− 1

4 · 5 · 6
+ 1

6 · 7 · 8
− 1

8 · 9 · 10
+ · · ·

10.

π4

90
= 1 + 1

24
+ 1

34
+ 1

44
+ · · ·

11. Calculate S3, S4, and S5 and then find the sum of the telescoping
series

S =
∞∑

n=1

(
1

n + 1
− 1

n + 2

)

12. Write
∞∑

n=3

1

n(n − 1)
as a telescoping series and find its sum.

13. Calculate S3, S4, and S5 and then find the sum S =
∞∑

n=1

1

4n2 − 1using the identity

1

4n2 − 1
= 1

2

(
1

2n − 1
− 1

2n + 1

)

14. Use partial fractions to rewrite
∞∑

n=1

1

n(n + 3)
as a telescoping series

and find its sum.

15. Find the sum of
1

1 · 3
+ 1

3 · 5
+ 1

5 · 7
+ · · · .

16. Find a formula for the partial sum SN of
∞∑

n=1

(−1)n−1 and show
that the series diverges.

In Exercises 17–22, use Theorem 3 to prove that the following series
diverge.

17.
∞∑

n=1

n

10n + 12
18.

∞∑
n=1

n√
n2 + 1

19.
0

1
− 1

2
+ 2

3
− 3

4
+ · · · 20.

∞∑
n=1

(−1)nn2

21. cos
1

2
+ cos

1

3
+ cos

1

4
+ · · · 22.

∞∑
n=0

(√
4n2 + 1 − n

)
In Exercises 23–36, use the formula for the sum of a geometric series
to find the sum or state that the series diverges.

23.
1

1
+ 1

8
+ 1

82
+ · · · 24.

43

53
+ 44

54
+ 45

55 + · · ·

25.
∞∑

n=3

(
3

11

)−n

26.
∞∑

n=2

7 · (−3)n

5n

27.
∞∑

n=−4

(
−4

9

)n

28.
∞∑

n=0

(π

e

)n

29.
∞∑

n=1

e−n 30.
∞∑

n=2

e3−2n

31.
∞∑

n=0

8 + 2n

5n
32.

∞∑
n=0

3(−2)n − 5n

8n

33. 5 − 5

4
+ 5

42
− 5

43
+ · · ·

34.
23

7
+ 24

72
+ 25

73
+ 26

74
+ · · ·

35.
7

8
− 49

64
+ 343

512
− 2401

4096
+ · · ·

36.
25

9
+ 5

3
+ 1 + 3

5
+ 9

25
+ 27

125
+ · · ·

37. Which of the following are not geometric series?

(a)
∞∑

n=0

7n

29n
(b)

∞∑
n=3

1

n4

(c)
∞∑

n=0

n2

2n
(d)

∞∑
n=5

π−n

38. Use the method of Example 8 to show that
∞∑

k=1

1

k1/3
diverges.

39. Prove that if
∞∑

n=1

an converges and
∞∑

n=1

bn diverges, then
∞∑

n=1

(an + bn) diverges. Hint: If not, derive a contradiction by writ-

ing

∞∑
n=1

bn =
∞∑

n=1

(an + bn) −
∞∑

n=1

an

40. Prove the divergence of
∞∑

n=0

9n + 2n

5n
.

41. Give a counterexample to show that each of the following
statements is false.

(a) If the general term an tends to zero, then
∞∑

n=1

an = 0.

(b) The N th partial sum of the infinite series defined by {an} is aN .

(c) If an tends to zero, then
∞∑

n=1

an converges.
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(d) If an tends to L, then
∞∑

n=1

an = L.

42. Suppose that S =
∞∑

n=1

an is an infinite series with partial sum

SN = 5 − 2

N2
.

(a) What are the values of
10∑

n=1

an and
16∑

n=5

an?

(b) What is the value of a3?

(c) Find a general formula for an.

(d) Find the sum
∞∑

n=1

an.

43. Compute the total area of the (infinitely many) triangles in Figure 4.

1
2

1
2

1
4

1
8

1
16

y

x
1

FIGURE 4

44. The winner of a lottery receives m dollars at the end of each year
for N years. The present value (PV) of this prize in today’s dollars

is PV =
N∑

i=1

m(1 + r)−i , where r is the interest rate. Calculate PV if

m = $50,000, r = 0.06, and N = 20. What is PV if N = ∞?

45. Find the total length of the infinite zigzag path in Figure 5 (each
zag occurs at an angle of π

4 ).

1

π/4 π/4

FIGURE 5

46. Evaluate
∞∑

n=1

1

n(n + 1)(n + 2)
. Hint: Find constants A, B, and C

such that

1

n(n + 1)(n + 2)
= A

n
+ B

n + 1
+ C

n + 2

47. Show that if a is a positive integer, then

∞∑
n=1

1

n(n + a)
= 1

a

(
1 + 1

2
+ · · · + 1

a

)

48. A ball dropped from a height of 10 ft begins to bounce. Each time it
strikes the ground, it returns to two-thirds of its previous height. What
is the total distance traveled by the ball if it bounces infinitely many
times?

49. Let {bn} be a sequence and let an = bn − bn−1. Show that
∞∑

n=1

an

converges if and only if lim
n→∞ bn exists.

50. Assumptions Matter Show, by giving counterexamples, that the

assertions of Theorem 1 are not valid if the series
∞∑

n=0

an and
∞∑

n=0

bn

are not convergent.

Further Insights and Challenges
Exercises 51–53 use the formula

1 + r + r2 + · · · + rN−1 = 1 − rN

1 − r
7

51. Professor George Andrews of Pennsylvania State University ob-
served that we can use Eq. (7) to calculate the derivative of f (x) = xN

(for N ≥ 0). Assume that a �= 0 and let x = ra. Show that

f ′(a) = lim
x→a

xN − aN

x − a
= aN−1 lim

r→1

rN − 1

r − 1

and evaluate the limit.

52. Pierre de Fermat used geometric series to compute the area under
the graph of f (x) = xN over [0, A]. For 0 < r < 1, let F(r) be the
sum of the areas of the infinitely many right-endpoint rectangles with
endpoints Arn, as in Figure 6. As r tends to 1, the rectangles become
narrower and F(r) tends to the area under the graph.

(a) Show that F(r) = AN+1 1 − r

1 − rN+1
.

(b) Use Eq. (7) to evaluate
∫ A

0
xN dx = lim

r→1
F(r).

y

f (x) = xN

r3A r2A rA A
x

FIGURE 6

53. Verify the Gregory–Leibniz formula as follows.
(a) Set r = −x2 in Eq. (7) and rearrange to show that

1

1 + x2
= 1 − x2 + x4 − · · · + (−1)N−1x2N−2 + (−1)Nx2N

1 + x2
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(b) Show, by integrating over [0, 1], that

π

4
= 1 − 1

3
+ 1

5
− 1

7
+ · · · + (−1)N−1

2N − 1
+ (−1)N

∫ 1

0

x2N dx

1 + x2

(c) Use the Comparison Theorem for integrals to prove that

0 ≤
∫ 1

0

x2N dx

1 + x2
≤ 1

2N + 1

Hint: Observe that the integrand is ≤ x2N .
(d) Prove that

π

4
= 1 − 1

3
+ 1

5
− 1

7
+ 1

9
− · · ·

Hint: Use (b) and (c) to show that the partial sums SN of satisfy∣∣SN − π
4

∣∣ ≤ 1
2N+1 , and thereby conclude that lim

N→∞ SN = π
4 .

54. Cantor’s Disappearing Table (following Larry Knop of Hamilton
College) Take a table of length L (Figure 7). At stage 1, remove the
section of length L/4 centered at the midpoint. Two sections remain,
each with length less than L/2. At stage 2, remove sections of length
L/42 from each of these two sections (this stage removes L/8 of the
table). Now four sections remain, each of length less than L/4. At stage
3, remove the four central sections of length L/43, etc.

(a) Show that at the N th stage, each remaining section has length less
than L/2N and that the total amount of table removed is

L

(
1

4
+ 1

8
+ 1

16
+ · · · + 1

2N+1

)

(b) Show that in the limit as N → ∞, precisely one-half of the table
remains.

This result is curious, because there are no nonzero intervals of table left
(at each stage, the remaining sections have a length less than L/2N ). So
the table has “disappeared.” However, we can place any object longer

than L/4 on the table. It will not fall through because it will not fit
through any of the removed sections.

L/16 L/16L/4

FIGURE 7

55. The Koch snowflake (described in 1904 by Swedish mathemati-
cian Helge von Koch) is an infinitely jagged “fractal” curve obtained
as a limit of polygonal curves (it is continuous but has no tangent line
at any point). Begin with an equilateral triangle (stage 0) and produce
stage 1 by replacing each edge with four edges of one-third the length,
arranged as in Figure 8. Continue the process: At the nth stage, replace
each edge with four edges of one-third the length.

(a) Show that the perimeter Pn of the polygon at the nth stage satisfies
Pn = 4

3Pn−1. Prove that lim
n→∞ Pn = ∞. The snowflake has infinite

length.

(b) Let A0 be the area of the original equilateral triangle. Show that
(3)4n−1 new triangles are added at the nth stage, each with area A0/9n

(for n ≥ 1). Show that the total area of the Koch snowflake is 8
5A0.

Stage 1 Stage 3Stage 2

FIGURE 8

10.3 Convergence of Series with Positive Terms
The next three sections develop techniques for determining whether an infinite series
converges or diverges. This is easier than finding the sum of an infinite series, which is
possible only in special cases.

In this section, we consider positive series
∑

an, where an > 0 for all n. We can

a1 a2 a3 aN x

y

3

2

1

1 2 3 N

FIGURE 1 The partial sum SN is the sum of
the areas of the N shaded rectangles.

visualize the terms of a positive series as rectangles of width 1 and height an (Figure 1).
The partial sum

SN = a1 + a2 + · · · + aN

is equal to the area of the first N rectangles.
The key feature of positive series is that their partial sums form an increasing sequence:

SN < SN+1

for all N . This is because SN+1 is obtained from SN by adding a positive number:

SN+1 = (
a1 + a2 + · · · + aN

) + aN+1 = SN + aN+1︸ ︷︷ ︸
Positive



560 C H A P T E R 10 INFINITE SERIES

Recall that an increasing sequence converges if it is bounded above. Otherwise, it diverges
(Theorem 6, Section 10.1). It follows that a positive series behaves in one of two ways
(this is the dichotomy referred to in the next theorem).

• Theorem 1 remains true if an ≥ 0. It is
not necessary to assume that an > 0.

• It also remains true if an > 0 for all
n ≥ M for some M, because the
convergence of a series is not affected
by the first M terms.

THEOREM 1 Dichotomy for Positive Series If S =
∞∑

n=1

an is a positive series, then

either:

(i) The partial sums SN are bounded above. In this case, S converges. Or,

(ii) The partial sums SN are not bounded above. In this case, S diverges.

Assumptions Matter The dichotomy does not hold for nonpositive series. Consider

S =
∞∑

n=1

(−1)n−1 = 1 − 1 + 1 − 1 + 1 − 1 + · · ·

The partial sums are bounded (because SN = 1 or 0), but S diverges.
Our first application of Theorem 1 is the following Integral Test. It is extremely useful

because integrals are easier to evaluate than series in most cases.
The Integral Test is valid for any series
∞∑

n=k

f (n), provided that for some M > 0,

f (x) is positive, decreasing, and
continuous for x ≥ M. The convergence of
the series is determined by the
convergence of∫ ∞

M

f (x) dx

THEOREM 2 Integral Test Let an = f (n), where f (x) is positive, decreasing, and
continuous for x ≥ 1.

(i) If
∫ ∞

1
f (x) dx converges, then

∞∑
n=1

an converges.

(ii) If
∫ ∞

1
f (x) dx diverges, then

∞∑
n=1

an diverges.

Proof Because f (x) is decreasing, the shaded rectangles in Figure 2 lie below the graph
of f (x), and therefore for all N

a2 + · · · + aN︸ ︷︷ ︸
Area of shaded rectangles in Figure 2

≤
∫ N

1
f (x) dx ≤

∫ ∞

1
f (x) dx

If the improper integral on the right converges, then the sums a2 + · · · + aN remain

a1 a3a2 a4 aN

x

y

N

y = f (x)

1 2 3 4

FIGURE 2

bounded. In this case, SN also remains bounded, and the infinite series converges by the
Dichotomy Theorem (Theorem 1). This proves (i).

On the other hand, the rectangles in Figure 3 lie above the graph of f (x), so

∫ N

1
f (x) dx ≤ a1 + a2 + · · · + aN−1︸ ︷︷ ︸

Area of shaded rectangles in Figure 3

1

If
∫∞

1 f (x) dx diverges, then
∫ N

1 f (x) dx tends to ∞, and Eq. (1) shows that SN also

a2a1 a3 aN−1

x

y

N

y = f (x)

1 2 3 4

FIGURE 3 tends to ∞. This proves (ii).
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EXAMPLE 1 The Harmonic Series Diverges Show that
∞∑

n=1

1

n
diverges.

The infinite series

∞∑
n=1

1

n

is called the “harmonic series.”

Solution Let f (x) = 1
x

. Then f (n) = 1
n

, and the Integral Test applies because f is pos-
itive, decreasing, and continuous for x ≥ 1. The integral diverges:∫ ∞

1

dx

x
= lim

R→∞

∫ R

1

dx

x
= lim

R→∞ ln R = ∞

Therefore, the series
∞∑

n=1

1

n
diverges.

EXAMPLE 2 Does
∞∑

n=1

n

(n2 + 1)2
= 1

22
+ 2

52
+ 3

102
+ · · · converge?

Solution The function f (x) = x

(x2 + 1)2
is positive and continuous for x ≥ 1. It is de-

creasing because f ′(x) is negative:

f ′(x) = 1 − 3x2

(x2 + 1)3
< 0 for x ≥ 1

Therefore, the Integral Test applies. Using the substitution u = x2 + 1, du = 2x dx, we
have ∫ ∞

1

x

(x2 + 1)2
dx = lim

R→∞

∫ R

1

x

(x2 + 1)2
dx = lim

R→∞
1

2

∫ R

2

du

u2

= lim
R→∞

−1

2u

∣∣∣∣R
2

= lim
R→∞

(
1

4
− 1

2R

)
= 1

4

The integral converges. Therefore,
∞∑

n=1

n

(n2 + 1)2
also converges.

The sum of the reciprocal powers n−p is called a p-series.

THEOREM 3 Convergence of p-Series The infinite series
∞∑

n=1

1

np
converges if p > 1

and diverges otherwise.

Proof If p ≤ 0, then the general term n−p does not tend to zero, so the series diverges. If
p > 0, then f (x) = x−p is positive and decreasing, so the Integral Test applies.According
to Theorem 1 in Section 7.6,

∫ ∞

1

1

xp
dx =

⎧⎨
⎩

1

p − 1
if p > 1

∞ if p ≤ 1

Therefore,
∞∑

n=1

1

np
converges for p > 1 and diverges for p ≤ 1.
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Here are two examples of p-series:

p = 1

3
:

∞∑
n=1

1
3
√

n
= 1

3
√

1
+ 1

3
√

2
+ 1

3
√

3
+ 1

3
√

4
+ · · · = ∞ diverges

p = 2 :
∞∑

n=1

1

n2
= 1

1
+ 1

22
+ 1

32
+ 1

42
+ · · · converges

Another powerful method for determining convergence of positive series is compari-
son. Suppose that 0 ≤ an ≤ bn. Figure 4 suggests that if the larger sum

∑
bn converges,

b1

b2

b3 bN

y

x
1 2 3 N

aNa3a2a1

FIGURE 4 The series
∑

an is dominated

by the series
∑

bn.

then the smaller sum
∑

an also converges. Similarly, if the smaller sum diverges, then
the larger sum also diverges.

THEOREM 4 Comparison Test
Assume that there exists M > 0 such that 0 ≤ an ≤ bn for n ≥ M .

(i) If
∞∑

n=1

bn converges, then
∞∑

n=1

an also converges.

(ii) If
∞∑

n=1

an diverges, then
∞∑

n=1

bn also diverges.

Proof We can assume, without loss of generality, that M = 1. If S =
∞∑

n=1

bn converges,

then the partial sums of
∞∑

n=1

an are bounded above by S because

a1 + a2 + · · · + aN ≤ b1 + b2 + · · · + bN ≤
∞∑

n=1

bn = S 2

Therefore,
∞∑

n=1

an converges by the Dichotomy Theorem (Theorem 1). This proves (i).

On the other hand, if
∞∑

n=1

an diverges, then
∞∑

n=1

bn must also diverge. Otherwise we would

have a contradiction to (i).

EXAMPLE 3 Does
∞∑

n=1

1√
n 3n

converge?

Solution For n ≥ 1, we haveIn words, the Comparison Test states that
for positive series:

• Convergence of the larger series forces
convergence of the smaller series.

• Divergence of the smaller series forces
divergence of the larger series.

1√
n 3n

≤ 1

3n

The larger series
∞∑

n=1

1

3n
converges because it is a geometric series with r = 1

3 < 1. By

the Comparison Test, the smaller series
∞∑

n=1

1√
n 3n

also converges.



S E C T I O N 10.3 Convergence of Series with Positive Terms 563

EXAMPLE 4 Does S =
∞∑

n=2

1

(n2 + 3)1/3
converge?

Solution Let us show that

1

n
≤ 1

(n2 + 3)1/3
for n ≥ 2

This inequality is equivalent to (n2 + 3) ≤ n3, so we must show that

f (x) = x3 − (x2 + 3) ≥ 0 for x ≥ 2

The function f (x) is increasing because its derivative f ′(x) = 3x
(
x − 2

3

)
is positive for

x ≥ 2. Since f (2) = 1, it follows that f (x) ≥ 1 for x ≥ 2, and our original inequality

follows. We know that the smaller harmonic series
∞∑

n=2

1

n
diverges. Therefore, the larger

series
∞∑

n=2

1

(n2 + 1)1/3
also diverges.

EXAMPLE 5 Using the Comparison Correctly Study the convergence of

∞∑
n=2

1

n(ln n)2

Solution We might be tempted to compare
∞∑

n=2

1

n(ln n)2
to the harmonic series

∞∑
n=2

1

n

using the inequality (valid for n ≥ 3)

1

n(ln n)2
≤ 1

n

However,
∞∑

n=2

1

n
diverges, and this says nothing about the smaller series

∑ 1

n(ln n)2
.

Fortunately, the Integral Test can be used. The substitution u = ln x yields∫ ∞

2

dx

x(ln x)2
=

∫ ∞

ln 2

du

u2
= lim

R→∞

(
1

ln 2
− 1

R

)
= 1

ln 2
< ∞

The Integral Test shows that
∞∑

n=2

1

n(ln n)2
converges.

Suppose we wish to study the convergence of

S =
∞∑

n=2

n2

n4 − n − 1

For large n, the general term is very close to 1/n2:

n2

n4 − n − 1
= 1

n2 − n−1 − n−2
≈ 1

n2
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Thus we might try to compare S with
∞∑

n=2

1

n2
. Unfortunately, however, the inequality goes

in the wrong direction:

n2

n4 − n − 1
>

n2

n4
= 1

n2

Although the smaller series
∞∑

n=2

1

n2
converges, we cannot use the Comparison Theorem

to say anything about our larger series. In this situation, the following variation of the
Comparison Test can be used.

THEOREM 5 Limit Comparison Test Let {an} and {bn} be positive sequences.Assume
that the following limit exists:

L = lim
n→∞

an

bn

• If L > 0, then
∑

an converges if and only if
∑

bn converges.

• If L = ∞ and
∑

an converges, then
∑

bn converges.

• If L = 0 and
∑

bn converges, then
∑

an converges.

CAUTION The Limit Comparison Test is not
valid if the series are not positive. See
Exercise 44 in Section 10.4.

Proof Assume first that L is finite (possibly zero) and that
∑

bn converges. Choose a
positive number R > L. Then 0 ≤ an/bn ≤ R for all n sufficiently large because an/bn

approaches L. Therefore an ≤ Rbn. The series
∑

Rbn converges because it is a multiple

of the convergent series
∑

bn. Therefore
∑

an converges by the Comparison Test.

Next, suppose that L is nonzero (positive or infinite) and that
∑

an converges.

Let L−1 = lim
n→∞ bn/an. Then L−1 is finite and we can apply the result of the previous

paragraph with the roles of {an} and {bn} reversed to conclude that
∑

bn converges.

CONCEPTUAL INSIGHT To remember the different cases of the Limit Comparison Test,
you can think of it this way. If L > 0, then an ≈ Lbn for large n. In other words, the
series

∑
an and

∑
bn are roughly multiples of each other, so one converges if and

only if the other converges. If L = ∞, then an is much larger than bn (for large n), so if∑
an converges,

∑
bn certainly converges. Finally, if L = 0, then bn is much larger

than an and the convergence of
∑

bn yields the convergence of
∑

an.

EXAMPLE 6 Show that
∞∑

n=2

n2

n4 − n − 1
converges.

Solution Let

an = n2

n4 − n − 1
and bn = 1

n2
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We observed above that an ≈ bn for large n. To apply the Limit Comparison Test, we
observe that the limit L exists and L > 0:

L = lim
n→∞

an

bn

= lim
n→∞

n2

n4 − n − 1
· n2

1
= lim

n→∞
1

1 − n−3 − n−4
= 1

Since
∞∑

n=2

1

n2
converges, our series

∞∑
n=2

n2

n4 − n − 1
also converges by Theorem 5.

EXAMPLE 7 Determine whether
∞∑

n=3

1√
n2 + 4

converges.

Solution Apply the Limit Comparison Test with an = 1√
n2 + 4

and bn = 1

n
. Then

L = lim
n→∞

an

bn

= lim
n→∞

n√
n2 + 4

= lim
n→∞

1√
1 + 4/n2

= 1

Since
∞∑

n=3

1

n
diverges and L > 0, the series

∞∑
n=3

1√
n2 + 4

also diverges.

10.3 SUMMARY

• The partial sums SN of a positive series S =
∑

an form an increasing sequence.
• Dichotomy Theorem: A positive series S converges if its partial sums SN remain
bounded. Otherwise, it diverges.
• Integral Test: Assume that f is positive, decreasing, and continuous for x > M . Set
an = f (n). If

∫∞
M

f (x) dx converges, then S =
∑

an converges, and if
∫∞
M

f (x) dx

diverges, then S =
∑

an diverges.

• p-Series: The series
∞∑

n=1

1

np
converges if p > 1 and diverges if p ≤ 1.

• Comparison Test: Assume there exists M > 0 such that 0 ≤ an ≤ bn for all n ≥ M . If∑
bn converges, then

∑
an converges, and if

∑
an diverges, then

∑
bn diverges.

• Limit Comparison Test: Assume that {an} and {bn} are positive and that the following
limit exists:

L = lim
n→∞

an

bn

– If L > 0, then
∑

an converges if and only if
∑

bn converges.

– If L = ∞ and
∑

an converges, then
∑

bn converges.

– If L = 0 and
∑

bn converges, then
∑

an converges.
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10.3 EXERCISES

Preliminary Questions

1. Let S =
∞∑

n=1

an. If the partial sums SN are increasing, then (choose

the correct conclusion):
(a) {an} is an increasing sequence.
(b) {an} is a positive sequence.

2. What are the hypotheses of the Integral Test?

3. Which test would you use to determine whether
∞∑

n=1

n−3.2

converges?

4. Which test would you use to determine whether
∞∑

n=1

1

2n + √
n

converges?

5. Ralph hopes to investigate the convergence of
∞∑

n=1

e−n

n
by com-

paring it with
∞∑

n=1

1

n
. Is Ralph on the right track?

Exercises
In Exercises 1–14, use the Integral Test to determine whether the infinite
series is convergent.

1.
∞∑

n=1

1

n4
2.

∞∑
n=1

1

n + 3

3.
∞∑

n=1

n−1/3 4.
∞∑

n=5

1√
n − 4

5.
∞∑

n=25

n2

(n3 + 9)5/2
6.

∞∑
n=1

n

(n2 + 1)3/5

7.
∞∑

n=1

1

n2 + 1
8.

∞∑
n=4

1

n2 − 1

9.
∞∑

n=1

1

n(n + 1)
10.

∞∑
n=1

ne−n2

11.
∞∑

n=2

1

n(ln n)2
12.

∞∑
n=1

ln n

n2

13.
∞∑

n=1

1

2ln n
14.

∞∑
n=1

1

3ln n

15. Show that
∞∑

n=1

1

n3 + 8n
converges by using the Comparison Test

with
∞∑

n=1

n−3.

16. Show that
∞∑

n=2

1√
n2 − 3

diverges by comparing with
∞∑

n=2

n−1.

17. Let S =
∞∑

n=1

1

n + √
n

. Verify that for n ≥ 1,

1

n + √
n

≤ 1

n
,

1

n + √
n

≤ 1√
n

Can either inequality be used to show that S diverges? Show that
1

n + √
n

≥ 1

2n
and conclude that S diverges.

18. Which of the following inequalities can be used to study the con-

vergence of
∞∑

n=2

1

n2 + √
n

? Explain.

1

n2 + √
n

≤ 1√
n

,
1

n2 + √
n

≤ 1

n2

In Exercises 19–30, use the Comparison Test to determine whether the
infinite series is convergent.

19.
∞∑

n=1

1

n2n
20.

∞∑
n=1

n3

n5 + 4n + 1

21.
∞∑

n=1

1

n1/3 + 2n
22.

∞∑
n=1

1√
n3 + 2n − 1

23.
∞∑

m=1

4

m! + 4m
24.

∞∑
n=4

√
n

n − 3

25.
∞∑

k=1

sin2 k

k2
26.

∞∑
k=2

k1/3

k5/4 − k

27.
∞∑

n=1

2

3n + 3−n
28.

∞∑
k=1

2−k2

29.
∞∑

n=1

1

(n + 1)! 30.
∞∑

n=1

n!
n3

Exercise 31–36: For all a > 0 and b > 1, the inequalities

ln n ≤ na, na < bn

are true for n sufficiently large (this can be proved using L’Hopital’s
Rule). Use this, together with the Comparison Theorem, to determine
whether the series converges or diverges.

31.
∞∑

n=1

ln n

n3
32.

∞∑
m=2

1

ln m
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33.
∞∑

n=1

(ln n)100

n1.1
34.

∞∑
n=1

1

(ln n)10

35.
∞∑

n=1

n

3n
36.

∞∑
n=1

n5

2n

37. Show that
∞∑

n=1

sin
1

n2
converges. Hint: Use sin x ≤ x for x ≥ 0.

38. Does
∞∑

n=2

sin(1/n)

ln n
converge? Hint: By Theorem 1 in Section 2.6,

sin(1/n) > (cos(1/n))/n. Thus sin(1/n) > 1/(2n) for n > 2 (because
cos(1/n) > 1

2 ).

In Exercises 39–48, use the Limit Comparison Test to prove conver-
gence or divergence of the infinite series.

39.
∞∑

n=2

n2

n4 − 1
40.

∞∑
n=2

1

n2 − √
n

41.
∞∑

n=2

n√
n3 + 1

42.
∞∑

n=2

n3√
n7 + 2n2 + 1

43.
∞∑

n=3

3n + 5

n(n − 1)(n − 2)
44.

∞∑
n=1

en + n

e2n − n2

45.
∞∑

n=1

1√
n + ln n

46.
∞∑

n=1

ln(n + 4)

n5/2

47.
∞∑

n=1

(
1 − cos

1

n

)
Hint: Compare with

∞∑
n=1

n−2.

48.
∞∑

n=1

(1 − 2−1/n) Hint: Compare with the harmonic series.

In Exercises 49–78, determine convergence or divergence using any
method covered so far.

49.
∞∑

n=4

1

n2 − 9
50.

∞∑
n=1

cos2 n

n2

51.
∞∑

n=1

√
n

4n + 9
52.

∞∑
n=1

n − cos n

n3

53.
∞∑

n=1

n2 − n

n5 + n
54.

∞∑
n=1

1

n2 + sin n

55.
∞∑

n=5

(4/5)−n 56.
∞∑

n=1

1

3n2

57.
∞∑

n=2

1

n3/2 ln n
58.

∞∑
n=2

(ln n)12

n9/8

59.
∞∑

k=1

41/k 60.
∞∑

n=1

4n

5n − 2n

61.
∞∑

n=2

1

(ln n)4
62.

∞∑
n=1

2n

3n − n

63.
∞∑

n=1

1

n ln n − n
64.

∞∑
n=1

1

n(ln n)2 − n

65.
∞∑

n=1

1

nn
66.

∞∑
n=1

n2 − 4n3/2

n3

67.
∞∑

n=1

1 + (−1)n

n
68.

∞∑
n=1

2 + (−1)n

n3/2

69.
∞∑

n=1

sin
1

n
70.

∞∑
n=1

sin(1/n)√
n

71.
∞∑

n=1

2n + 1

4n
72.

∞∑
n=3

1

e
√

n

73.
∞∑

n=4

ln n

n2 − 3n
74.

∞∑
n=1

1

3ln n

75.
∞∑

n=2

1

n1/2 ln n
76.

∞∑
n=1

1

n3/2 − ln4 n

77.
∞∑

n=1

4n2 + 15n

3n4 − 5n2 − 17
78.

∞∑
n=1

n

4−n + 5−n

79. For which a does
∞∑

n=2

1

n(ln n)a
converge?

80. For which a does
∞∑

n=2

1

na ln n
converge?

Approximating Infinite Sums In Exercises 81–83, let an = f (n),
where f (x) is a continuous, decreasing function such that f (x) ≥ 0
and

∫ ∞
1 f (x) dx converges.

81. Show that

∫ ∞
1

f (x) dx ≤
∞∑

n=1

an ≤ a1 +
∫ ∞

1
f (x) dx 3

82. Using Eq. (3), show that

5 ≤
∞∑

n=1

1

n1.2
≤ 6

This series converges slowly. Use a computer algebra system to verify
that SN < 5 for N ≤ 43,128 and S43,129 ≈ 5.00000021.
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83. Let S =
∞∑

n=1

an. Arguing as in Exercise 81, show that

M∑
n=1

an +
∫ ∞
M+1

f (x) dx ≤ S ≤
M+1∑
n=1

an +
∫ ∞
M+1

f (x) dx 4

Conclude that

0 ≤ S −
⎛
⎝ M∑

n=1

an +
∫ ∞
M+1

f (x) dx

⎞
⎠ ≤ aM+1 5

This provides a method for approximating S with an error of at most
aM+1.

84. Use Eq. (4) with M = 43,129 to prove that

5.5915810 ≤
∞∑

n=1

1

n1.2
≤ 5.5915839

85. Apply Eq. (4) with M = 40,000 to show that

1.644934066 ≤
∞∑

n=1

1

n2
≤ 1.644934068

Is this consistent with Euler’s result, according to which this infinite
series has sum π2/6?

86. Using a CAS and Eq. (5), determine the value of
∞∑

n=1

n−6

to within an error less than 10−4. Check that your result is consistent
with that of Euler, who proved that the sum is equal to π6/945.

87. Using a CAS and Eq. (5), determine the value of
∞∑

n=1

n−5

to within an error less than 10−4.

1
2

1
4

1
61

8

1
4

1
2

≈ 1.04 book lengths25
24

+ 1
6

+ 1
8

+ 25
24

=

FIGURE 5

88. How far can a stack of identical books (of mass m and unit length)
extend without tipping over? The stack will not tip over if the (n + 1)st
book is placed at the bottom of the stack with its right edge located at
the center of mass of the first n books (Figure 5). Let cn be the center
of mass of the first n books, measured along the x-axis, where we take
the positive x-axis to the left of the origin as in Figure 6. Recall that
if an object of mass m1 has center of mass at x1 and a second object
of m2 has center of mass x2, then the center of mass of the system has
x-coordinate

m1x1 + m2x2

m1 + m2

(a) Show that if the (n + 1)st book is placed with its right edge at cn,
then its center of mass is located at cn + 1

2 .

(b) Consider the first n books as a single object of mass nm with cen-
ter of mass at cn and the (n + 1)st book as a second object of mass m.
Show that if the (n + 1)st book is placed with its right edge at cn, then

cn+1 = cn + 1

2(n + 1)
.

(c) Prove that lim
n→∞ cn = ∞. Thus, by using enough books, the stack

can be extended as far as desired without tipping over.

89. The following argument proves the divergence of the harmonic

series S =
∞∑

n=1

1/n without using the Integral Test. Let

S1 = 1 + 1

3
+ 1

5
+ · · · , S2 = 1

2
+ 1

4
+ 1

6
+ · · ·

Show that if S converges, then

(a) S1 and S2 also converge and S = S1 + S2.

(b) S1 > S2 and S2 = 1
2S.

Observe that (b) contradicts (a), and conclude that S diverges.

x

1

. . .
1
6

1
4

1
2

0c1c2c3cncn+1

1
2(n + 1)

2
3

4

n
n + 1

FIGURE 6

Further Insights and Challenges

90. Let S =
∞∑

n=2

an, where an = (ln(ln n))− ln n.

(a) Show, by taking logarithms, that an = n− ln(ln(ln n)).

(b) Show that ln(ln(ln n)) ≥ 2 if n > C, where C = eee2
.

(c) Show that S converges.

91. Kummer’s Acceleration Method Suppose we wish to approx-

imate S =
∞∑

n=1

1/n2. There is a similar telescoping series whose value

can be computed exactly (Example 1 in Section 10.2):

∞∑
n=1

1

n(n + 1)
= 1
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(a) Verify that

S =
∞∑

n=1

1

n(n + 1)
+

∞∑
n=1

(
1

n2
− 1

n(n + 1)

)

Thus for M large,

S ≈ 1 +
M∑

n=1

1

n2(n + 1)
6

(b) Explain what has been gained. Why is Eq. (6) a better approxima-

tion to S than is
M∑

n=1

1/n2?

(c) Compute

1000∑
n=1

1

n2
, 1 +

100∑
n=1

1

n2(n + 1)

Which is a better approximation to S, whose exact value is π2/6?

92. The series S =
∞∑

k=1

k−3 has been computed to more than

100 million digits. The first 30 digits are

S = 1.202056903159594285399738161511

Approximate S using the Acceleration Method of Exercise 91 with

M = 100 and auxiliary series R =
∞∑

n=1

(n(n + 1)(n + 2))−1. Accord-

ing to Exercise 46 in Section 10.2, R is a telescoping series with the
sum R = 1

4 .

10.4 Absolute and Conditional Convergence
In the previous section, we studied positive series, but we still lack the tools to analyze
series with both positive and negative terms. One of the keys to understanding such series
is the concept of absolute convergence.

DEFINITION Absolute Convergence The series
∑

an converges absolutely if∑
|an| converges.

EXAMPLE 1 Verify that the series

∞∑
n=1

(−1)n−1

n2
= 1

12
− 1

22
+ 1

32
− 1

42
+ · · ·

converges absolutely.

Solution This series converges absolutely because the positive series (with absolute val-
ues) is a p-series with p = 2 > 1:

∞∑
n=1

∣∣∣ (−1)n−1

n2

∣∣∣ = 1

12
+ 1

22
+ 1

32
+ 1

42
+ · · · (convergent p-series)

The next theorem tells us that if the series of absolute values converges, then the
original series also converges.

THEOREM 1 Absolute Convergence Implies Convergence If
∑

|an| converges,

then
∑

an also converges.

Proof We have −|an| ≤ an ≤ |an|. By adding |an| to all parts of the inequality, we get

0 ≤ |an| + an ≤ 2|an|. If
∑

|an| converges, then
∑

2|an| also converges, and therefore,∑
(an + |an|) converges by the Comparison Test. Our original series converges because

it is the difference of two convergent series:∑
an =

∑
(an + |an|) −

∑
|an|
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EXAMPLE 2 Verify that S =
∞∑

n=1

(−1)n−1

n2
converges.

Solution We showed that S converges absolutely in Example 1. By Theorem 1, S itself
converges.

EXAMPLE 3 Does S =
∞∑

n=1

(−1)n−1

√
n

= 1√
1

− 1√
2

+ 1√
3

− · · · converge abso-
lutely?

Solution The positive series
∞∑

n=1

1√
n

is a p-series with p = 1
2 . It diverges because p < 1.

Therefore, S does not converge absolutely.

The series in the previous example does not converge absolutely, but we still do
not know whether or not it converges. A series

∑
an may converge without converging

absolutely. In this case, we say that
∑

an is conditionally convergent.

DEFINITION Conditional Convergence An infinite series
∑

an converges condi-

tionally if
∑

an converges but
∑

|an| diverges.

If a series is not absolutely convergent, how can we determine whether it is condition-
ally convergent? This is often a more difficult question, because we cannot use the Integral
Test or the Comparison Test (they apply only to positive series). However, convergence
is guaranteed in the particular case of an alternating series

S =
∞∑

n=1

(−1)n−1an = a1 − a2 + a3 − a4 + · · ·

where the terms an are positive and decrease to zero (Figure 1).

a1 a3

−a2 −a4 −a6

a5
x

y

FIGURE 1 An alternating series with
decreasing terms. The sum is the signed
area, which is at most a1.

THEOREM 2 Leibniz Test for Alternating Series Assume that {an} is a positive se-
quence that is decreasing and converges to 0:

a1 > a2 > a3 > a4 > · · · > 0, lim
n→∞ an = 0

Then the following alternating series converges:

S =
∞∑

n=1

(−1)n−1an = a1 − a2 + a3 − a4 + · · ·

Furthermore,

0 < S < a1 and S2N < S < S2N+1 N ≥ 1

Assumptions Matter The Leibniz Test is not
valid if we drop the assumption that an is
decreasing (see Exercise 35).
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Proof We will prove that the partial sums zigzag above and below the sum S as in Figure 2.

1 2 3 4 5 6 7 8 9 10

S

y

x

S1

S3 S5 S7 S9

S10S8S6S4
S2

FIGURE 2 The partial sums of an alternating
series zigzag above and below the limit.
The odd partial sums decrease and the even
partial sums increase.

Note first that the even partial sums are increasing. Indeed, the odd-numbered terms occur
with a plus sign and thus, for example,

S4 + a5 − a6 = S6

But a5 − a6 > 0 because an is decreasing, and therefore S4 < S6. In general,

S2N + (a2N+1 − a2N+2) = S2N+2

where a2n+1 − a2N+2 > 0. Thus S2N < S2N+2 and

0 < S2 < S4 < S6 < · · ·

Similarly,

S2N−1 − (a2N − a2N+1) = S2N+1

Therefore S2N+1 < S2N−1, and the sequence of odd partial sums is decreasing:

· · · < S7 < S5 < S3 < S1

Finally, S2N < S2N + a2N+1 = S2N+1. The picture is as follows:

0 < S2 < S4 < S6 < · · · < S7 < S5 < S3 < S1

Now, because bounded monotonic sequences converge (Theorem 6 of Section 10.1), the
even and odd partial sums approach limits that are sandwiched in the middle:

0 < S2 < S4 < · · · < lim
N→∞ S2N ≤ lim

N→∞ S2N+1 < · · · < S5 < S3 < S1 1

These two limits must have a common value L because

lim
N→∞ S2N+1 − lim

N→∞ S2N = lim
N→∞(S2N+1 − S2N) = lim

N→∞ a2N+1 = 0

Therefore, lim
N→∞ SN = L and the infinite series converges to S = L. From Eq. (1) we also

see that 0 < S < S1 = a1 and S2N < S < S2N+1 for all N as claimed.

EXAMPLE 4 Show that S =
∞∑

n=1

(−1)n−1

√
n

= 1√
1

− 1√
2

+ 1√
3

− · · · convergesThe Leibniz Test is the only test for
conditional convergence developed in this
text. Other tests, such as Abel’s Criterion
and the Dirichlet Test, are discussed in
textbooks on Analysis.

conditionally and that 0 ≤ S ≤ 1.

Solution The terms an = 1/
√

n are positive and decreasing, and lim
n→∞ an = 0. Therefore,

S converges by the Leibniz Test. Furthermore, 0 ≤ S ≤ 1 because a1 = 1. However, the

positive series
∞∑

n=1

1/
√

n diverges because it is a p-series with p = 1
2 < 1. Therefore, S

is conditionally convergent but not absolutely convergent (Figure 3).
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0.5

1

S

5 10 15 20

y

n

S1
S3 S5

S6S4S2

12

10

8

6

4

2

10 20 30 5040

y

n

(A) Partial sums of S =
∞∑

n=1

(−1)n−1 1√
n

(B) Partial sums of
∞∑

n=1

1√
n

FIGURE 3

The inequality S2N < S < S2N+1 in Theorem 2 gives us important information about
the error; it tells us that |SN − S| is less than |SN − SN+1| = aN+1 for all N .

THEOREM 3 Let S =
∞∑

n=1

(−1)n−1an, where {an} is a positive decreasing sequence

that converges to 0. Then

∣∣S − SN

∣∣ < aN+1 2

In other words, the error committed when we approximate S by SN is less than the size
of the first omitted term aN+1.

EXAMPLE 5 Alternating Harmonic Series Show that S =
∞∑

n=1

(−1)n−1

n
converges

conditionally. Then:

(a) Show that |S − S6| < 1
7 .

(b) Find an N such that SN approximates S with an error less than 10−3.

Solution The terms an = 1/n are positive and decreasing, and lim
n→∞ an = 0. Therefore,

S converges by the Leibniz Test. The harmonic series
∞∑

n=1

1/n diverges, so S converges

conditionally but not absolutely. Now, applying Eq. (2), we have

|S − SN | < aN+1 = 1

N + 1

For N = 6, we obtain |S − S6| < a7 = 1
7 . We can make the error less than 10−3 by

choosing N so that

1

N + 1
≤ 10−3 ⇒ N + 1 ≥ 103 ⇒ N ≥ 999

Using a computer algebra system, we find that S999 ≈ 0.69365. In Exercise 84 of Section
10.7, we will prove that S = ln 2 ≈ 0.69314, and thus we can verify that

|S − S999| ≈ | ln 2 − 0.69365| ≈ 0.0005 < 10−3
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CONCEPTUAL INSIGHT The convergence of an infinite series
∑

an depends on two
factors: (1) how quickly an tends to zero, and (2) how much cancellation takes place
among the terms. Consider

Harmonic series (diverges): 1 + 1

2
+ 1

3
+ 1

4
+ 1

5
+ · · ·

p-Series with p = 2 (converges): 1 + 1

22
+ 1

32
+ 1

42
+ 1

52
+ · · ·

Alternating harmonic series (converges): 1 − 1

2
+ 1

3
− 1

4
+ 1

5
− · · ·

The harmonic series diverges because reciprocals 1/n do not tend to zero quickly
enough. By contrast, the reciprocal squares 1/n2 tend to zero quickly enough for the
p-series with p = 2 to converge. The alternating harmonic series converges, but only
due to the cancellation among the terms.

10.4 SUMMARY

•
∑

an converges absolutely if the positive series
∑

|an| converges.

• Absolute convergence implies convergence: If
∑

|an| converges, then
∑

an also con-
verges.

•
∑

an converges conditionally if
∑

an converges but
∑

|an| diverges.

• Leibniz Test: If {an} is positive and decreasing and lim
n→∞ an = 0, then the alternating

series

S =
∞∑

n=1

(−1)n−1an = a1 − a2 + a3 − a4 + a5 − · · ·

converges. Furthermore, |S − SN | < aN+1.

• We have developed two ways to handle nonpositive series: Show absolute convergence
if possible, or use the Leibniz Test, if applicable.

10.4 EXERCISES

Preliminary Questions
1. Give an example of a series such that

∑
an converges but

∑
|an|

diverges.

2. Which of the following statements is equivalent to Theorem 1?

(a) If
∞∑

n=0

|an| diverges, then
∞∑

n=0

an also diverges.

(b) If
∞∑

n=0

an diverges, then
∞∑

n=0

|an| also diverges.

(c) If
∞∑

n=0

an converges, then
∞∑

n=0

|an| also converges.

3. Lathika argues that
∞∑

n=1

(−1)n
√

n is an alternating series and there-

fore converges. Is Lathika right?

4. Suppose that an is positive, decreasing, and tends to 0, and let

S =
∞∑

n=1

(−1)n−1an. What can we say about |S − S100| if a101 =

10−3? Is S larger or smaller than S100?
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Exercises
1. Show that

∞∑
n=0

(−1)n

2n

converges absolutely.

2. Show that the following series converges conditionally:

∞∑
n=1

(−1)n−1 1

n2/3
= 1

12/3
− 1

22/3
+ 1

32/3
− 1

42/3
+ · · ·

In Exercises 3–10, determine whether the series converges absolutely,
conditionally, or not at all.

3.
∞∑

n=1

(−1)n−1

n1/3
4.

∞∑
n=1

(−1)n n4

n3 + 1

5.
∞∑

n=0

(−1)n−1

(1.1)n
6.

∞∑
n=1

sin( πn
4 )

n2

7.
∞∑

n=2

(−1)n

n ln n
8.

∞∑
n=1

(−1)n

1 + 1
n

9.
∞∑

n=2

cos nπ

(ln n)2
10.

∞∑
n=1

cos n

2n

11. Let S =
∞∑

n=1

(−1)n+1 1

n3
.

(a) Calculate Sn for 1 ≤ n ≤ 10.
(b) Use Eq. (2) to show that 0.9 ≤ S ≤ 0.902.

12. Use Eq. (2) to approximate

∞∑
n=1

(−1)n+1

n!

to four decimal places.

13. Approximate
∞∑

n=1

(−1)n+1

n4
to three decimal places.

14. Let

S =
∞∑

n=1

(−1)n−1 n

n2 + 1

Use a computer algebra system to calculate and plot the partial sums
Sn for 1 ≤ n ≤ 100. Observe that the partial sums zigzag above and
below the limit.

In Exercises 15–16, find a value of N such that SN approximates the
series with an error of at most 10−5. If you have a CAS, compute this
value of SN .

15.
∞∑

n=1

(−1)n+1

n(n + 2)(n + 3)
16.

∞∑
n=1

(−1)n+1 ln n

n!

In Exercises 17–32, determine convergence or divergence by any
method.

17.
∞∑

n=0

7−n 18.
∞∑

n=1

1

n7.5

19.
∞∑

n=1

1

5n − 3n
20.

∞∑
n=2

n

n2 − n

21.
∞∑

n=1

1

3n4 + 12n
22.

∞∑
n=1

(−1)n√
n2 + 1

23.
∞∑

n=1

1√
n2 + 1

24.
∞∑

n=0

(−1)nn√
n2 + 1

25.
∞∑

n=1

3n + (−2)n

5n
26.

∞∑
n=1

(−1)n+1

(2n + 1)!

27.
∞∑

n=1

(−1)nn2e−n3/3 28.
∞∑

n=1

ne−n3/3

29.
∞∑

n=2

(−1)n

n1/2(ln n)2
30.

∞∑
n=2

1

n(ln n)1/4

31.
∞∑

n=1

ln n

n1.05
32.

∞∑
n=2

1

(ln n)2

33. Show that

S = 1

2
− 1

2
+ 1

3
− 1

3
+ 1

4
− 1

4
+ · · ·

converges by computing the partial sums. Does it converge absolutely?

34. The Leibniz Test cannot be applied to

1

2
− 1

3
+ 1

22
− 1

32
+ 1

23
− 1

33
+ · · ·

Why not? Show that it converges by another method.

35. Assumptions Matter Show by counterexample that the
Leibniz Test does not remain true if the sequence an tends to zero but
is not assumed nonincreasing. Hint: Consider

R = 1

2
− 1

4
+ 1

3
− 1

8
+ 1

4
− 1

16
+ · · · +

(
1

n
− 1

2n

)
+ · · ·

36. Determine whether the following series converges conditionally:

1 − 1

3
+ 1

2
− 1

5
+ 1

3
− 1

7
+ 1

4
− 1

9
+ 1

5
− 1

11
+ · · ·

37. Prove that if
∑

an converges absolutely, then
∑

a2
n also con-

verges. Then give an example where
∑

an is only conditionally con-

vergent and
∑

a2
n diverges.
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Further Insights and Challenges
38. Prove the following variant of the Leibniz Test: If {an} is a positive,
decreasing sequence with lim

n→∞ an = 0, then the series

a1 + a2 − 2a3 + a4 + a5 − 2a6 + · · ·
converges. Hint: Show that S3N is increasing and bounded by a1 + a2,
and continue as in the proof of the Leibniz Test.

39. Use Exercise 38 to show that the following series converges:

S = 1

ln 2
+ 1

ln 3
− 2

ln 4
+ 1

ln 5
+ 1

ln 6
− 2

ln 7
+ · · ·

40. Prove the conditional convergence of

R = 1 + 1

2
+ 1

3
− 3

4
+ 1

5
+ 1

6
+ 1

7
− 3

8
+ · · ·

41. Show that the following series diverges:

S = 1 + 1

2
+ 1

3
− 2

4
+ 1

5
+ 1

6
+ 1

7
− 2

8
+ · · ·

Hint: Use the result of Exercise 40 to write S as the sum of a convergent
series and a divergent series.

42. Prove that

∞∑
n=1

(−1)n+1 (ln n)a

n

converges for all exponents a. Hint: Show that f (x) = (ln x)a/x is
decreasing for x sufficiently large.

43. We say that {bn} is a rearrangement of {an} if {bn} has the same
terms as {an} but occurring in a different order. Show that if {bn} is

a rearrangement of {an} and S =
∞∑

n=1

an converges absolutely, then

T =
∞∑

n=1

bn also converges absolutely. (This result does not hold if

S is only conditionally convergent.) Hint: Prove that the partial sums
N∑

n=1

|bn| are bounded. It can be shown further that S = T .

44. Assumptions Matter In 1829, Lejeune Dirichlet pointed out that
the great French mathematicianAugustin Louis Cauchy made a mistake
in a published paper by improperly assuming the Limit Comparison Test
to be valid for nonpositive series. Here are Dirichlet’s two series:

∞∑
n=1

(−1)n√
n

,

∞∑
n=1

(−1)n√
n

(
1 + (−1)n√

n

)

Explain how they provide a counterexample to the Limit Comparison
Test when the series are not assumed to be positive.

10.5 The Ratio and Root Tests
Series such as

S = 1 + 2

1! + 22

2! + 23

3! + 24

4! + · · ·

arise in applications, but the convergence tests developed so far cannot be applied easily.
Fortunately, the Ratio Test can be used for this and many other series.

THEOREM 1 Ratio Test Assume that the following limit exists:

ρ = lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣
(i) If ρ < 1, then

∑
an converges absolutely.

(ii) If ρ > 1, then
∑

an diverges.

(iii) If ρ = 1, the test is inconclusive (the series may converge or diverge).

Proof The idea is to compare with a geometric series. If ρ < 1, we may choose a number
r such that ρ < r < 1. Since |an+1/an| converges to ρ, there exists a number M such that
|an+1/an| < r for all n ≥ M . Therefore,

The symbol ρ is a lowercase “rho,” the
seventeenth letter of the Greek alphabet.
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|aM+1| < r|aM |
|aM+2| < r|aM+1| < r(r|aM |) = r2|aM |
|aM+3| < r|aM+2| < r3|aM |

In general, |aM+n| < rn|aM |, and thus,

∞∑
n=M

|an| =
∞∑

n=0

|aM+n| ≤
∞∑

n=0

|aM | rn = |aM |
∞∑

n=0

rn

The geometric series on the right converges because 0 < r < 1, so
∞∑

n=M

|an| converges by

the Comparison Test and thus
∑

an converges absolutely.
If ρ > 1, choose r such that 1 < r < ρ. Then there exists a number M such that

|an+1/an| > r for all n ≥ M . Arguing as before with the inequalities reversed, we find
that |aM+n| ≥ rn|aM |. Since rn tends to ∞, the terms aM+n do not tend to zero, and
consequently,

∑
an diverges. Finally, Example 4 below shows that both convergence

and divergence are possible when ρ = 1, so the test is inconclusive in this case.

EXAMPLE 1 Prove that
∞∑

n=1

2n

n! converges.

Solution Compute the ratio and its limit with an = 2n

n! . Note that (n + 1)! = (n + 1)n!
and thus

an+1

an

= 2n+1

(n + 1)!
n!
2n

= 2n+1

2n

n!
(n + 1)! = 2

n + 1

ρ = lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

2

n + 1
= 0

Since ρ < 1, the series
∞∑

n=1

2n

n! converges by the Ratio Test.

EXAMPLE 2 Does
∞∑

n=1

n2

2n
converge?

Solution Apply the Ratio Test with an = n2

2n
:

∣∣∣∣an+1

an

∣∣∣∣ = (n + 1)2

2n+1

2n

n2
= 1

2

(
n2 + 2n + 1

n2

)
= 1

2

(
1 + 2

n
+ 1

n2

)

ρ = lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = 1

2
lim

n→∞

(
1 + 2

n
+ 1

n2

)
= 1

2

Since ρ < 1, the series converges by the Ratio Test.
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EXAMPLE 3 Does
∞∑

n=0

(−1)n
n!

1000n
converge?

Solution This series diverges by the Ratio Test because ρ > 1:

ρ = lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

(n + 1)!
1000n+1

1000n

n! = lim
n→∞

n + 1

1000
= ∞

EXAMPLE 4 Ratio Test Inconclusive Show that both convergence and divergence

are possible when ρ = 1 by considering
∞∑

n=1

n2 and
∞∑

n=1

n−2.

Solution For an = n2, we have

ρ = lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

(n + 1)2

n2
= lim

n→∞
n2 + 2n + 1

n2
= lim

n→∞

(
1 + 2

n
+ 1

n2

)
= 1

On the other hand, for bn = n−2,

ρ = lim
n→∞

∣∣∣∣bn+1

bn

∣∣∣∣ = lim
n→∞

∣∣∣∣ an

an+1

∣∣∣∣ = 1

lim
n→∞

∣∣∣ an+1
an

∣∣∣ = 1

Thus, ρ = 1 in both cases, but
∞∑

n=1

n2 diverges and
∞∑

n=1

n−2 converges. This shows that

both convergence and divergence are possible when ρ = 1.

Our next test is based on the limit of the nth roots n
√

an rather than the ratios an+1/an.
Its proof, like that of the Ratio Test, is based on a comparison with a geometric series (see
Exercise 57).

THEOREM 2 Root Test Assume that the following limit exists:

L = lim
n→∞

n
√|an|

(i) If L < 1, then
∑

an converges absolutely.

(ii) If L > 1, then
∑

an diverges.

(iii) If L = 1, the test is inconclusive (the series may converge or diverge).

EXAMPLE 5 Does
∞∑

n=1

(
n

2n + 3

)n

converge?

Solution We have L = lim
n→∞

n
√

an = lim
n→∞

n

2n + 3
= 1

2
. Since L < 1, the series con-

verges by the Root Test.
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10.5 SUMMARY

• Ratio Test: Assume that ρ = lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ exists. Then
∑

an

– Converges absolutely if ρ < 1.
– Diverges if ρ > 1.
– Inconclusive if ρ = 1.

• Root Test: Assume that L = lim
n→∞

n
√|an| exists. Then

∑
an

– Converges absolutely if L < 1.
– Diverges if L > 1.
– Inconclusive if L = 1.

10.5 EXERCISES

Preliminary Questions
1. In the Ratio Test, is ρ equal to lim

n→∞

∣∣∣∣an+1

an

∣∣∣∣ or lim
n→∞

∣∣∣∣ an

an+1

∣∣∣∣?
2. Is the Ratio Test conclusive for

∞∑
n=1

1

2n
? Is it conclusive for

∞∑
n=1

1

n
?

3. Can the Ratio Test be used to show convergence if the series is
only conditionally convergent?

Exercises
In Exercises 1–20, apply the Ratio Test to determine convergence or
divergence, or state that the Ratio Test is inconclusive.

1.
∞∑

n=1

1

5n
2.

∞∑
n=1

(−1)n−1n

5n

3.
∞∑

n=1

1

nn
4.

∞∑
n=0

3n + 2

5n3 + 1

5.
∞∑

n=1

n

n2 + 1
6.

∞∑
n=1

2n

n

7.
∞∑

n=1

2n

n100
8.

∞∑
n=1

n3

3n2

9.
∞∑

n=1

10n

2n2 10.
∞∑

n=1

en

n!

11.
∞∑

n=1

en

nn
12.

∞∑
n=1

n40

n!

13.
∞∑

n=0

n!
6n

14.
∞∑

n=1

n!
n9

15.
∞∑

n=2

1

n ln n
16.

∞∑
n=1

1

(2n)!

17.
∞∑

n=1

n2

(2n + 1)! 18.
∞∑

n=1

(n!)3

(3n)!

19.
∞∑

n=2

1

2n + 1
20.

∞∑
n=2

1

ln n

21. Show that
∞∑

n=1

nk 3−n converges for all exponents k.

22. Show that
∞∑

n=1

n2xn converges if |x| < 1.

23. Show that
∞∑

n=1

2nxn converges if |x| < 1
2 .

24. Show that
∞∑

n=1

rn

n! converges for all r .

25. Show that
∞∑

n=1

rn

n
converges if |r| < 1.

26. Is there any value of k such that
∞∑

n=1

2n

nk
converges?

27. Show that
∞∑

n=1

n!
nn

converges. Hint: Use lim
n→∞

(
1 + 1

n

)n

= e.
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In Exercises 28–33, assume that |an+1/an| converges to ρ = 1
3 . What

can you say about the convergence of the given series?

28.
∞∑

n=1

nan 29.
∞∑

n=1

n3an 30.
∞∑

n=1

2nan

31.
∞∑

n=1

3nan 32.
∞∑

n=1

4nan 33.
∞∑

n=1

a2
n

34. Assume that
∣∣an+1/an

∣∣ converges to ρ = 4. Does
∑∞

n=1 a−1
n con-

verge (assume that an �= 0 for all n)?

35. Is the Ratio Test conclusive for the p-series
∞∑

n=1

1

np
?

In Exercises 36–41, use the Root Test to determine convergence or
divergence (or state that the test is inconclusive).

36.
∞∑

n=0

1

10n
37.

∞∑
n=1

1

nn

38.
∞∑

k=0

(
k

k + 10

)k

39.
∞∑

k=0

(
k

3k + 1

)k

40.
∞∑

n=1

(
1 + 1

n

)−n

41.
∞∑

n=4

(
1 + 1

n

)−n2

42. Prove that
∞∑

n=1

2n2

n! diverges. Hint: Use 2n2 = (2n)n and n! ≤ nn.

In Exercises 43–56, determine convergence or divergence using any
method covered in the text so far.

43.
∞∑

n=1

2n + 4n

7n
44.

∞∑
n=1

n3

n!

45.
∞∑

n=1

n3

5n
46.

∞∑
n=2

1

n(ln n)3

47.
∞∑

n=2

1√
n3 − n2

48.
∞∑

n=1

n2 + 4n

3n4 + 9

49.
∞∑

n=1

n−0.8 50.
∞∑

n=1

(0.8)−nn−0.8

51.
∞∑

n=1

4−2n+1 52.
∞∑

n=1

(−1)n−1
√

n

53.
∞∑

n=1

sin
1

n2
54.

∞∑
n=1

(−1)n cos
1

n

55.
∞∑

n=1

(−2)n√
n

56.
∞∑

n=1

(
n

n + 12

)n

Further Insights and Challenges

57. Proof of the Root Test Let S =
∞∑

n=0

an be a positive
series, and assume that L = lim

n→∞
n
√

an exists.

(a) Show that S converges if L < 1. Hint: Choose R with L < R < 1
and show that an ≤ Rn for n sufficiently large. Then compare with the

geometric series
∑

Rn.

(b) Show that S diverges if L > 1.

58. Show that the Ratio Test does not apply, but verify convergence
using the Comparison Test for the series

1

2
+ 1

32
+ 1

23
+ 1

34
+ 1

25 + · · ·

59. Let S =
∞∑

n=1

cnn!
nn

, where c is a constant.

(a) Prove that S converges absolutely if |c| < e and diverges if |c| > e.

(b) It is known that lim
n→∞

enn!
nn+1/2

= √
2π . Verify this numerically.

(c) Use the Limit Comparison Test to prove that S diverges for c = e.

10.6 Power Series
A power series with center c is an infinite series

F(x) =
∞∑

n=0

an(x − c)n = a0 + a1(x − c) + a2(x − c)2 + a3(x − c)3 + · · ·

where x is a variable. For example,

F(x) = 1 + (x − 2) + 2(x − 2)2 + 3(x − 2)3 + · · · 1

is a power series with center c = 2.
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A power series F(x) =
∞∑

n=0

an(x − c)n converges for some values of x and mayMany functions that arise in applications
can be represented as power series. This
includes not only the familiar
trigonometric, exponential, logarithm, and
root functions, but also the host of “special
functions” of physics and engineering such
as Bessel functions and elliptic functions.

diverge for others. For example, if we set x = 9
4 in the power series of Eq. (1), we obtain

an infinite series that converges by the Ratio Test:

F

(
9

4

)
= 1 +

(
9

4
− 2

)
+ 2

(
9

4
− 2

)2

+ 3

(
9

4
− 2

)3

+ · · ·

= 1 +
(

1

4

)
+ 2

(
1

4

)2

+ 3

(
1

4

)3

+ · · ·

On the other hand, the power series in Eq. (1) diverges for x = 3:

F(3) = 1 + (3 − 2) + 2(3 − 2)2 + 3(3 − 2)3 + · · ·
= 1 + 1 + 2 + 3 + · · ·

There is a surprisingly simple way to describe the set of values x at which a power
series F(x) converges. According to our next theorem, either F(x) converges absolutely
for all values of x or there is a radius of convergence R such that

F(x) converges absolutely when |x − c| < R and diverges when |x − c| > R.

This means that F(x) converges for x in an interval of convergence consisting of the
open interval (c − R, c + R) and possibly one or both of the endpoints c − R and c + R

(Figure 1). Note that F(x) automatically converges at x = c because

F(c) = a0 + a1(c − c) + a2(c − c)2 + a3(c − c)3 + · · · = a0

We set R = 0 if F(x) converges only for x = c, and we set R = ∞ if F(x) converges for
all values of x.

Converges absolutelyDiverges Diverges

Possible convergence at the endpoints

c − R

|x − c | < R 

c + Rc
x

FIGURE 1 Interval of convergence of a
power series.

THEOREM 1 Radius of Convergence Every power series

F(x) =
∞∑

n=0

an(x − c)n

has a radius of convergence R, which is either a nonnegative number (R ≥ 0) or infinity
(R = ∞). If R is finite, F(x) converges absolutely when |x − c| < R and diverges
when |x − c| > R. If R = ∞, then F(x) converges absolutely for all x.

Proof We assume that c = 0 to simplify the notation. If F(x) converges only at x = 0,
then R = 0. Otherwise, F(x) converges for some nonzero value x = B. We claim that
F(x) must then converge absolutely for all |x| < |B|. To prove this, note that because

F(B) =
∞∑

n=0

anB
n converges, the general term anB

n tends to zero. In particular, there

exists M > 0 such that |anB
n| < M for all n. Therefore,
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∞∑
n=0

|anx
n| =

∞∑
n=0

|anB
n|

∣∣∣ x
B

∣∣∣n < M

∞∑
n=0

∣∣∣ x
B

∣∣∣n

If |x| < |B|, then |x/B| < 1 and the series on the right is a convergent geometric series.
By the Comparison Test, the series on the left also converges. This proves that F(x)

converges absolutely if |x| < |B|.
Now let S be the set of numbers x such that F(x) converges. Then S contains 0,Least Upper Bound Property: If S is a set

of real numbers with an upper bound M

(that is, x ≤ M for all x ∈ S), then S has a
least upper bound L. See Appendix B.

and we have shown that if S contains a number B �= 0, then S contains the open interval
(−|B|, |B|). If S is bounded, then S has a least upper bound L > 0 (see marginal note).
In this case, there exist numbers B ∈ S smaller than but arbitrarily close to L, and thus S

contains (−B, B) for all 0 < B < L. It follows that S contains the open interval (−L, L).
The set S cannot contain any number x with |x| > L, but S may contain one or both of
the endpoints x = ±L. So in this case, F(x) has radius of convergence R = L. If S is not
bounded, then S contains intervals (−B, B) for B arbitrarily large. In this case, S is the
entire real line R, and the radius of convergence is R = ∞.

From Theorem 1, we see that there are two steps in determining the interval of con-
vergence of F(x):

Step 1. Find the radius of convergence R (using the Ratio Test, in most cases).

Step 2. Check convergence at the endpoints (if R �= 0 or ∞).

EXAMPLE 1 Using the Ratio Test Where does F(x) =
∞∑

n=0

xn

2n
converge?

Solution

Step 1. Find the radius of convergence.

Let an = xn

2n
and compute the ratio ρ of the Ratio Test:

ρ = lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

∣∣∣∣xn+1

2n+1

∣∣∣∣ ·
∣∣∣∣2n

xn

∣∣∣∣ = lim
n→∞

1

2
|x| = 1

2
|x|

We find that

ρ < 1 if
1

2
|x| < 1, that is, if |x| < 2

Thus F(x) converges if |x| < 2. Similarly, ρ > 1 if 1
2 |x| > 1, or |x| > 2. Thus F(x)

converges if |x| > 2. Therefore, the radius of convergence is R = 2.

Step 2. Check the endpoints.
The Ratio Test is inconclusive for x = ±2, so we must check these cases directly:

F(2) =
∞∑

n=0

2n

2n
= 1 + 1 + 1 + 1 + 1 + 1 · · ·

F(−2) =
∞∑

n=0

(−2)n

2n
= 1 − 1 + 1 − 1 + 1 − 1 · · ·

Both series diverge. We conclude that F(x) converges only for |x| < 2 (Figure 2).

x
2

DivergesDiverges

Diverges Diverges
Converges
absolutely

−2 0

FIGURE 2 The power series

∞∑
n=0

xn

2n

has interval of convergence (−2, 2).
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EXAMPLE 2 Where does F(x) =
∞∑

n=1

(−1)n

4n n
(x − 5)n converge?

Solution We compute ρ with an = (−1)n

4n n
(x − 5)n:

ρ = lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

∣∣∣∣ (x − 5)n+1

4n+1(n + 1)

4nn

(x − 5)n

∣∣∣∣
= |x − 5| lim

n→∞

∣∣∣∣ n

4(n + 1)

∣∣∣∣
= 1

4
|x − 5|

We find that

ρ < 1 if
1

4
|x − 5| < 1, that is, if |x − 5| < 4

Thus F(x) converges absolutely on the open interval (1, 9) of radius 4 with center c = 5.
In other words, the radius of convergence is R = 4. Next, we check the endpoints:

x
9

ConvergesDiverges

Diverges Diverges
Converges
absolutely

1 5

FIGURE 3 The power series

∞∑
n=1

(−1)n

4nn
(x − 5)n

has interval of convergence (1, 9].

x = 9:
∞∑

n=1

(−1)n

4nn
(9 − 5)n =

∞∑
n=1

(−1)n

n
converges (Leibniz Test)

x = 1:
∞∑

n=1

(−1)n

4nn
(−4)n =

∞∑
n=1

1

n
diverges (harmonic series)

We conclude that F(x) converges for x in the half-open interval (1, 9] shown in Figure 3.

Some power series contain only even powers or only odd powers of x. The Ratio Test
can still be used to find the radius of convergence.

EXAMPLE 3 An Even Power Series Where does
∞∑

n=0

x2n

(2n)! converge?

Solution Although this power series has only even powers of x, we can still apply the
Ratio Test with an = x2n/(2n)!. We have

an+1 = x2(n+1)

(2(n + 1))! = x2n+2

(2n + 2)!
Furthermore, (2n + 2)! = (2n + 2)(2n + 1)(2n)!, so

ρ = lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣ = lim
n→∞

x2n+2

(2n + 2)!
(2n)!
x2n

= |x|2 lim
n→∞

1

(2n + 2)(2n + 1)
= 0

Thus ρ = 0 for all x, and F(x) converges for all x. The radius of convergence is R = ∞.
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Geometric series are important examples of power series. Recall the formulaWhen a function f (x) is represented by a
power series on an interval I , we refer to
the power series expansion of f (x) on I .

∞∑
n=0

rn = 1/(1 − r), valid for |r| < 1. Writing x in place of r , we obtain a power se-

ries expansion with radius of convergence R = 1:

1

1 − x
=

∞∑
n=0

xn for |x| < 1 2

The next two examples show that we can modify this formula to find the power series
expansions of other functions.

EXAMPLE 4 Geometric Series Prove that

1

1 − 2x
=

∞∑
n=0

2nxn for |x| <
1

2

Solution Substitute 2x for x in Eq. (2):

1

1 − 2x
=

∞∑
n=0

(2x)n =
∞∑

n=0

2nxn 3

Expansion (2) is valid for |x| < 1, so Eq. (3) is valid for |2x| < 1, or |x| < 1
2 .

EXAMPLE 5 Find a power series expansion with center c = 0 for

f (x) = 1

2 + x2

and find the interval of convergence.

Solution We need to rewrite f (x) so we can use Eq. (2). We have

1

2 + x2
= 1

2

(
1

1 + 1
2x2

)
= 1

2

(
1

1 − ( − 1
2x2

)
)

= 1

2

(
1

1 − u

)

where u = − 1
2x2. Now substitute u = − 1

2x2 for x in Eq. (2) to obtain

f (x) = 1

2 + x2
= 1

2

∞∑
n=0

(
−x2

2

)n

=
∞∑

n=0

(−1)nx2n

2n+1

This expansion is valid if |−x2/2| < 1, or |x| <
√

2. The interval of convergence is
(−√

2,
√

2).

Our next theorem tells us that within the interval of convergence, we can treat a power
series as though it were a polynomial; that is, we can differentiate and integrate term by
term.
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THEOREM 2 Term-by-Term Differentiation and Integration Assume that

F(x) =
∞∑

n=0

an(x − c)n

has radius of convergence R > 0. Then F(x) is differentiable on (c − R, c + R) [or
for all x if R = ∞]. Furthermore, we can integrate and differentiate term by term. For
x ∈ (c − R, c + R),

F ′(x) =
∞∑

n=1

nan(x − c)n−1

∫
F(x) dx = A +

∞∑
n=0

an

n + 1
(x − c)n+1 (A any constant)

These series have the same radius of convergence R.

The proof of Theorem 2 is somewhat
technical and is omitted. See Exercise 66
for a proof that F(x) is continuous.

EXAMPLE 6 Differentiating a Power Series Prove that for −1 < x < 1,

1

(1 − x)2
= 1 + 2x + 3x2 + 4x3 + 5x4 + · · ·

Solution The geometric series has radius of convergence R = 1:

1

1 − x
= 1 + x + x2 + x3 + x4 + · · ·

By Theorem 2, we can differentiate term by term for |x| < 1 to obtain

d

dx

( 1

1 − x

)
= d

dx
(1 + x + x2 + x3 + x4 + · · · )

1

(1 − x)2
= 1 + 2x + 3x2 + 4x3 + 5x4 + · · ·

Theorem 2 is a powerful tool in the study of power series.

EXAMPLE 7 Power Series for Arctangent Prove that for −1 < x < 1,

tan−1 x =
∞∑

n=0

(−1)nx2n+1

2n + 1
= x − x3

3
+ x5

5
− x7

7
+ · · · 4

Solution Recall that tan−1 x is an antiderivative of (1 + x2)−1. We obtain a power series
expansion of this antiderivative by substituting −x2 for x in the geometric series of Eq. (2):

1

1 + x2
= 1 − x2 + x4 − x6 + · · ·

This expansion is valid for |x2| < 1—that is, for |x| < 1. By Theorem 2, we can integrate
series term by term. The resulting expansion is also valid for |x| < 1:

tan−1 x =
∫

dx

1 + x2
=

∫
(1 − x2 + x4 − x6 + · · · ) dx

= A + x − x3

3
+ x5

5
− x7

7
+ · · ·

Setting x = 0, we obtain A = tan−1 0 = 0. Thus Eq. (4) is valid for −1 < x < 1.
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GRAPHICAL INSIGHT Let’s examine the expansion of the previous example graphically.
The partial sums of the power series for f (x) = tan−1 x are

SN(x) = x − x3

3
+ x5

5
− x7

7
+ · · · + (−1)N

x2N+1

2N + 1

For large N we can expect SN(x) to provide a good approximation to f (x) = tan−1 x

on the interval (−1, 1), where the power series expansion is valid. Figure 4 confirms
this expectation: The graphs of S50(x) and S51(x) are nearly indistinguishable from
the graph of tan−1 x on (−1, 1). Thus we may use the partial sums to approximate the
arctangent. For example, tan−1(0.3) is approximated by

S4(0.3) = 0.3 − (0.3)3

3
+ (0.3)5

5
− (0.3)7

7
+ (0.3)9

9
≈ 0.2914569

Since the power series is an alternating series, the error is less than the first omitted
term:

|tan−1(0.3) − S4(0.3)| <
(0.3)11

11
≈ 1.61 × 10−7

The situation changes drastically in the region |x| > 1, where the power series diverges
and the partial sums SN(x) deviate sharply from tan−1 x.

21−2 −1

1

−1

x

y y = S50(x)

y = tan−1x

21−2 −1

1

−1

x

yy = S51(x)

y = tan−1x

(A) (B)
FIGURE 4 S50(x) and S51(x) are nearly
indistinguishable from tan−1 x on (−1, 1).

Power Series Solutions of Differential Equations
Power series are a basic tool in the study of differential equations. To illustrate, consider
the differential equation with initial condition

y′ = y, y(0) = 1

We know that f (x) = ex is the unique solution, but let’s try to find a power series that
satisfies this initial value problem. We have

F(x) =
∞∑

n=0

anx
n = a0 + a1x + a2x

2 + a3x
3 + · · ·

F ′(x) =
∞∑

n=0

nanx
n−1 = a1 + 2a2x + 3a3x

2 + 4a4x
3 + · · ·

Therefore, F ′(x) = F(x) if

a0 = a1, a1 = 2a2, a2 = 3a3, a3 = 4a4, . . .
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In other words, F ′(x) = F(x) if an−1 = nan, or

an = an−1

n

An equation of this type is called a recursion relation. It enables us to determine all of the
coefficients an successively from the first coefficient a0, which may be chosen arbitrarily.
For example,

n = 1: a1 = a0

1

n = 2: a2 = a1

2
= a0

2 · 1
= a0

2!
n = 3: a3 = a2

3
= a1

3 · 2
= a0

3 · 2 · 1
= a0

3!
To obtain a general formula for an, apply the recursion relation n times:

an = an−1

n
= an−2

n(n − 1)
= an−3

n(n − 1)(n − 2)
= · · · = a0

n!
We conclude that

F(x) = a0

∞∑
n=0

xn

n!
In Example 3, we showed that this power series has radius of convergence R = ∞, so
y = F(x) satisfies y′ = y for all x. Moreover, F(0) = a0, so the initial condition y(0) = 1
is satisfied with a0 = 1.

What we have shown is that f (x) = ex and F(x) with a0 = 1 are both solutions of
the initial value problem. They must be equal because the solution is unique. This proves
that for all x,

ex =
∞∑

n=0

xn

n! = 1 + x + x2

2! + x3

3! + x4

4! + · · ·

In this example, we knew in advance that y = ex is a solution of y′ = y, but suppose
we are given a differential equation whose solution is unknown. We can try to find a

solution in the form of a power series F(x) =
∞∑

n=0

anx
n. In favorable cases, the differential

equation leads to a recursion relation that enables us to determine the coefficients an.

EXAMPLE 8 Find a power series solution to the initial value problemThe solution in Example 8 is called the
“Bessel function of order 1.” The Bessel
function of order n is a solution of

x2y ′′ + xy ′ + (x2 − n2)y = 0

These functions have applications in many
areas of physics and engineering.

x2y′′ + xy′ + (x2 − 1)y = 0, y′(0) = 1 5

Solution Assume that Eq. (5) has a power series solution F(x) =
∞∑

n=0

anx
n. Then

y′ = F ′(x) =
∞∑

n=0

nanx
n−1 = a1 + 2a2x + 3a3x

2 + · · ·

y′′ = F ′′(x) =
∞∑

n=0

n(n − 1)anx
n−2 = 2a2 + 6a3x + 12a4x

2 + · · ·
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Now substitute the series for y, y′, and y′′ into the differential equation (5) to determine
the recursion relation satisfied by the coefficients an:

In Eq. (6), we combine the first three series
into a single series using

n(n − 1) + n − 1 = n2 − 1

and we shift the fourth series to begin at
n = 2 rather than n = 0.

x2y′′ + xy′ + (x2 − 1)y

= x2
∞∑

n=0

n(n − 1)anx
n−2 + x

∞∑
n=0

nanx
n−1 + (x2 − 1)

∞∑
n=0

anx
n

=
∞∑

n=0

n(n − 1)anx
n +

∞∑
n=0

nanx
n −

∞∑
n=0

anx
n +

∞∑
n=0

anx
n+2 6

=
∞∑

n=0

(n2 − 1)anx
n +

∞∑
n=2

an−2x
n = 0

The differential equation is satisfied if

∞∑
n=0

(n2 − 1)anx
n = −

∞∑
n=2

an−2x
n

The first few terms on each side of this equation are

−a0 + 0 · x + 3a2x
2 + 8a3x

3 + 15a4x
4 + · · · = 0 + 0 · x − a0x

2 − a1x
3 − a2x

4 − · · ·
Matching up the coefficients of xn, we find that

−a0 = 0, 3a2 = −a0, 8a3 = −a1, 15a4 = −a2 7

In general, (n2 − 1)an = −an−2, and this yields the recursion relation

an = − an−2

n2 − 1
for n ≥ 2 8

Note that a0 = 0 by Eq. (7). The recursion relation forces all of the even coefficients a2,
a4, a6, . . . to be zero:

a2 = a0

22 − 1
so a2 = 0, and then a4 = a2

42 − 1
= 0 so a4 = 0, etc.

As for the odd coefficients, a1 may be chosen arbitrarily. Because F ′(0) = a1, we set
a1 = 1 to obtain a solution y = F(x) satisfying F ′(0) = 1. Now apply Eq. (8):

n = 3: a3 = − a1

32 − 1
= − 1

32 − 1

n = 5: a5 = − a3

52 − 1
= 1

(52 − 1)(32 − 1)

n = 7: a7 = − a5

72 − 1
= − 1

(72 − 1)(32 − 1)(52 − 1)

This shows the general pattern of coefficients. To express the coefficients in a compact
form, let n = 2k + 1. Then the denominator in the recursion relation (8) can be written

n2 − 1 = (2k + 1)2 − 1 = 4k2 + 4k = 4k(k + 1)

and

a2k+1 = − a2k−1

4k(k + 1)
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Applying this recursion relation k times, we obtain the closed formula

a2k+1 = (−1)k
(

1

4k(k + 1)

)(
1

4(k − 1)k

)
· · ·

(
1

4(1)(2)

)
= (−1)k

4k k! (k + 1)!
Thus we obtain a power series representation of our solution:

F(x) =
∞∑

k=0

(−1)k

4kk!(k + 1)!x
2k+1

A straightforward application of the Ratio Test shows that F(x) has an infinite radius of
convergence. Therefore, F(x) is a solution of the initial value problem for all x.

10.6 SUMMARY

• A power series is an infinite series of the form

F(x) =
∞∑

n=0

an(x − c)n

The constant c is called the center of F(x).

Possible convergence at the endpoints

|x − c | < R 

x
c + R

Diverges Diverges

Converges
absolutely

c − R c

FIGURE 5 Interval of convergence of a
power series.

• Every power series F(x) has a radius of convergence R (Figure 5) such that

– F(x) converges absolutely for |x − c| < R and diverges for |x − c| > R.
– F(x) may converge or diverge at the endpoints c − R and c + R.

We set R = 0 if F(x) converges only for x = c and R = ∞ if F(x) converges for all x.
• The interval of convergence of F(x) consists of the open interval (c − R, c + R) and
possibly one or both endpoints c − R and c + R.
• In many cases, the Ratio Test can be used to find the radius of convergence R. It is
necessary to check convergence at the endpoints separately.
• If R > 0, then F(x) is differentiable on (c − R, c + R) and

F ′(x) =
∞∑

n=1

nan(x − c)n−1,

∫
F(x) dx = A +

∞∑
n=0

an

n + 1
(x − c)n+1

(A is any constant). These two power series have the same radius of convergence R.

• The expansion
1

1 − x
=

∞∑
n=0

xn is valid for |x| < 1. It can be used to derive expansions

of other related functions by substitution, integration, or differentiation.

10.6 EXERCISES

Preliminary Questions
1. Suppose that

∑
anxn converges for x = 5. Must it also converge

for x = 4? What about x = −3?

2. Suppose that
∑

an(x − 6)n converges for x = 10. At which of
the points (a)–(d) must it also converge?

(a) x = 8 (b) x = 11 (c) x = 3 (d) x = 0

3. What is the radius of convergence of F(3x) if F(x) is a power
series with radius of convergence R = 12?

4. The power series F(x) =
∞∑

n=1

nxn has radius of convergence

R = 1. What is the power series expansion of F ′(x) and what is its
radius of convergence?
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Exercises
1. Use the Ratio Test to determine the radius of convergence R of
∞∑

n=0

xn

2n
. Does it converge at the endpoints x = ±R?

2. Use the Ratio Test to show that
∞∑

n=1

xn

√
n2n

has radius of conver-

gence R = 2. Then determine whether it converges at the endpoints
R = ±2.

3. Show that the power series (a)–(c) have the same radius of con-
vergence. Then show that (a) diverges at both endpoints, (b) converges
at one endpoint but diverges at the other, and (c) converges at both
endpoints.

(a)
∞∑

n=1

xn

3n
(b)

∞∑
n=1

xn

n3n
(c)

∞∑
n=1

xn

n23n

4. Repeat Exercise 3 for the following series:

(a)
∞∑

n=1

(x − 5)n

9n
(b)

∞∑
n=1

(x − 5)n

n9n
(c)

∞∑
n=1

(x − 5)n

n29n

5. Show that
∞∑

n=0

nnxn diverges for all x �= 0.

6. For which values of x does
∞∑

n=0

n!xn converge?

7. Use the Ratio Test to show that
∞∑

n=0

x2n

3n
has radius of convergence

R = √
3.

8. Show that
∞∑

n=0

x3n+1

64n
has radius of convergence R = 4.

In Exercises 9–34, find the interval of convergence.

9.
∞∑

n=0

nxn 10.
∞∑

n=1

2n

n
xn

11.
∞∑

n=1

(−1)n
x2n+1

2nn
12.

∞∑
n=0

(−1)n
n

4n
x2n

13.
∞∑

n=4

xn

n5 14.
∞∑

n=8

n7xn

15.
∞∑

n=0

xn

(n!)2 16.
∞∑

n=0

8n

n! xn

17.
∞∑

n=0

(2n)!
(n!)3 xn 18.

∞∑
n=0

4n

(2n + 1)!x
2n−1

19.
∞∑

n=0

(−1)nxn√
n2 + 1

20.
∞∑

n=0

xn

n4 + 2

21.
∞∑

n=15

x2n+1

3n + 1
22.

∞∑
n=1

xn

n − 4 ln n

23.
∞∑

n=2

xn

ln n
24.

∞∑
n=2

x3n+2

ln n

25.
∞∑

n=1

n(x − 3)n 26.
∞∑

n=1

(−5)n(x − 3)n

n2

27.
∞∑

n=1

(−1)nn5(x − 7)n 28.
∞∑

n=0

27n(x − 1)3n+2

29.
∞∑

n=1

2n

3n
(x + 3)n 30.

∞∑
n=0

(x − 4)n

n!

31.
∞∑

n=0

(−5)n

n! (x + 10)n 32.
∞∑

n=10

n! (x + 5)n

33.
∞∑

n=12

en(x − 2)n 34.
∞∑

n=2

(x + 4)n

(n ln n)2

In Exercises 35–40, use Eq. (2) to expand the function in a power series
with center c = 0 and determine the interval of convergence.

35. f (x) = 1

1 − 3x
36. f (x) = 1

1 + 3x

37. f (x) = 1

3 − x
38. f (x) = 1

4 + 3x

39. f (x) = 1

1 + x2
40. f (x) = 1

16 + 2x3

41. Use the equalities

1

1 − x
= 1

−3 − (x − 4)
= − 1

3

1 + (
x−4

3

)
to show that for |x − 4| < 3,

1

1 − x
=

∞∑
n=0

(−1)n+1 (x − 4)n

3n+1

42. Use the method of Exercise 41 to expand 1/(1 − x) in power series
with centers c = 2 and c = −2. Determine the interval of convergence.

43. Use the method of Exercise 41 to expand 1/(4 − x) in a power
series with center c = 5. Determine the interval of convergence.

44. Find a power series that converges only for x in [2, 6).

45. Apply integration to the expansion

1

1 + x
=

∞∑
n=0

(−1)nxn = 1 − x + x2 − x3 + · · ·

to prove that for −1 < x < 1,

ln(1 + x) =
∞∑

n=1

(−1)n−1xn

n
= x − x2

2
+ x3

3
− x4

4
+ · · ·
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46. Use the result of Exercise 45 to prove that

ln
3

2
= 1

2
− 1

2 · 22
+ 1

3 · 23
− 1

4 · 24
+ · · ·

Use your knowledge of alternating series to find an N such that the
partial sum SN approximates ln 3

2 to within an error of at most 10−3.

Confirm using a calculator to compute both SN and ln 3
2 .

47. Let F(x) = (x + 1) ln(1 + x) − x.

(a) Apply integration to the result of Exercise 45 to prove that for
−1 < x < 1,

F(x) =
∞∑

n=1

(−1)n+1 xn+1

n(n + 1)

(b) Evaluate at x = 1
2 to prove

3

2
ln

3

2
− 1

2
= 1

1 · 2 · 22
− 1

2 · 3 · 23
+ 1

3 · 4 · 24
− 1

4 · 5 · 25 + · · ·

(c) Use a calculator to verify that the partial sum S4 approximates the
left-hand side with an error no greater than the term a5 of the series.

48. Prove that for |x| < 1,∫
dx

x4 + 1
= x − x5

5
+ x9

9
− · · ·

Use the first two terms to approximate
∫ 1/2
0 dx/(x4 + 1) numerically.

Use the fact that you have an alternating series to show that the error
in this approximation is at most 0.00022.

49. Use the result of Example 7 to show that

F(x) = x2

1 · 2
− x4

3 · 4
+ x6

5 · 6
− x8

7 · 8
+ · · ·

is an antiderivative of f (x) = tan−1 x satisfying F(0) = 0. What is
the radius of convergence of this power series?

50. Verify that function F(x) = x tan−1 x − 1
2 log(x2 + 1) is an anti-

derivative of f (x) = tan−1 x satisfying F(0) = 0. Then use the result
of Exercise 49 with x = 1√

3
to show that

π

6
√

3
− 1

2
ln

4

3
= 1

1 · 2(3)
− 1

3 · 4(32)
+ 1

5 · 6(33)
− 1

7 · 8(34)
+ · · ·

Use a calculator to compare the value of the left-hand side with the
partial sum S4 of the series on the right.

51. Evaluate
∞∑

n=1

n

2n
. Hint: Use differentiation to show that

(1 − x)−2 =
∞∑

n=1

nxn−1 (for |x| < 1)

52. Use the power series for (1 + x2)−1 and differentiation to prove
that for |x| < 1,

2x

(x2 + 1)2
=

∞∑
n=1

(−1)n−1(2n)x2n−1

53. Show that the following series converges absolutely for |x| < 1
and compute its sum:

F(x) = 1 − x − x2 + x3 − x4 − x5 + x6 − x7 − x8 + · · ·
Hint: Write F(x) as a sum of three geometric series with common ratio
x3.

54. Show that for |x| < 1,

1 + 2x

1 + x + x2
= 1 + x − 2x2 + x3 + x4 − 2x5 + x6 + x7 − 2x8 + · · ·

Hint: Use the hint from Exercise 53.

55. Find all values of x such that
∞∑

n=1

xn2

n! converges.

56. Find all values of x such that the following series converges:

F(x) = 1 + 3x + x2 + 27x3 + x4 + 243x5 + · · ·

57. Find a power series P(x) =
∞∑

n=0

anxn satisfying the differential

equation y′ = −y with initial condition y(0) = 1. Then use Theorem
1 of Section 5.8 to conclude that P(x) = e−x .

58. Let C(x) = 1 − x2

2! + x4

4! − x6

6! + · · · .

(a) Show that C(x) has an infinite radius of convergence.

(b) Prove that C(x) and f (x) = cos x are both solutions of y′′ = −y

with initial conditions y(0) = 1, y′(0) = 0. This initial value problem
has a unique solution, so we have C(x) = cos x for all x.

59. Use the power series for y = ex to show that

1

e
= 1

2! − 1

3! + 1

4! − · · ·

Use your knowledge of alternating series to find an N such that the
partial sum SN approximates e−1 to within an error of at most 10−3.
Confirm this using a calculator to compute both SN and e−1.

60. Let P(x) =
∑
n=0

anxn be a power series solution to y′ = 2xy with

initial condition y(0) = 1.

(a) Show that the odd coefficients a2k+1 are all zero.

(b) Prove that a2k = a2k−2/k and use this result to determine the co-
efficients a2k .

61. Find a power series P(x) satisfying the differential equation

y′′ − xy′ + y = 0 9

with initial condition y(0) = 1, y′(0) = 0. What is the radius of con-
vergence of the power series?

62. Find a power series satisfying Eq. (9) with initial condition y(0) =
0, y′(0) = 1.
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63. Prove that

J2(x) =
∞∑

k=0

(−1)k

22k+2 k! (k + 3)!x
2k+2

is a solution of the Bessel differential equation of order 2:

x2y′′ + xy′ + (x2 − 4)y = 0

64. Why is it impossible to expand f (x) = |x| as a power
series that converges in an interval around x = 0? Explain using The-
orem 2.

Further Insights and Challenges

65. Suppose that the coefficients of F(x) =
∞∑

n=0

anxn are periodic;

that is, for some whole number M > 0, we have aM+n = an. Prove
that F(x) converges absolutely for |x| < 1 and that

F(x) = a0 + a1x + · · · + aM−1xM−1

1 − xM

Hint: Use the hint for Exercise 53.

66. Continuity of Power Series Let F(x) =
∞∑

n=0

anxn be a power
series with radius of convergence R > 0.

(a) Prove the inequality

|xn − yn| ≤ n|x − y|(|x|n−1 + |y|n−1) 10

Hint: xn − yn = (x − y)(xn−1 + xn−2y + · · · + yn−1).

(b) Choose R1 with 0 < R1 < R. Show that the infinite series

M =
∞∑

n=0

2n|an|Rn
1 converges. Hint: Show that n|an|Rn

1 < |an|xn for

all n sufficiently large if R1 < x < R.

(c) Use Eq. (10) to show that if |x| < R1 and |y| < R1, then |F(x) −
F(y)| ≤ M|x − y|.
(d) Prove that if |x| < R, then F(x) is continuous at x. Hint: Choose
R1 such that |x| < R1 < R. Show that if ε > 0 is given, then |F(x) −
F(y)| ≤ ε for all y such that |x − y| < δ, where δ is any positive num-
ber that is less than ε/M and R1 − |x| (see Figure 6).

(     )(     )( ) x
0 R1 R−R x

x − δ x + δ

FIGURE 6 If x > 0, choose δ > 0 less than ε/M and R1 − x.

10.7 Taylor Series
In this section we develop general methods for finding power series representations.
Suppose that f (x) is represented by a power series centered at x = c on an interval
(c − R, c + R) with R > 0:

f (x) =
∞∑

n=0

an(x − c)n = a0 + a1(x − c) + a2(x − c)2 + · · ·

According to Theorem 2 in Section 10.6, we can compute the derivatives of f (x) by
differentiating the series expansion term by term:

f (x) = a0 + a1(x − c) + a2(x − c)2 + a3(x − c)3 + · · ·
f ′(x) = a1 + 2a2(x − c) + 3a3(x − c)2 + 4a4(x − c)3 + · · ·
f ′′(x) = 2a2 + 2 · 3a3(x − c) + 3 · 4a4(x − c)2 + 4 · 5a5(x − c)3 + · · ·
f ′′′(x) = 2 · 3a3 + 2 · 3 · 4a4(x − 2) + 3 · 4 · 5a5(x − 2)2 + · · ·

In general,

f (k)(x) = k!ak +
(

2 · 3 · · · (k + 1)
)
ak+1(x − c) + · · ·

Setting x = c in each of these series, we find that

f (c) = a0, f ′(c) = a1, f ′′(c) = 2a2, f ′′′(c) = 2 · 3a2, . . . , f (k)(c) = k!ak, . . .
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We see that ak is the kth coefficient of the Taylor polynomial studied in Section 8.4:

ak = f (k)(c)

k! 1

Therefore f (x) = T (x), where T (x) is the Taylor series of f (x) centered at x = c:

T (x) = f (c) + f ′(c)(x − c) + f ′′(c)
2! (x − c)2 + f ′′′(c)

3! (x − c)3 + · · ·
This proves the next theorem.

THEOREM 1 Taylor Series Expansion If f (x) is represented by a power series cen-
tered at c in an interval |x − c| < R with R > 0, then that power series is the Taylor
series

T (x) =
∞∑

n=0

f (n)(c)

n! (x − c)n

In the special case c = 0, T (x) is also called the Maclaurin series:

f (x) =
∞∑

n=0

f (n)(0)

n! xn = f (0) + f ′(0)x + f ′′(0)

2! x2 + f ′′′(0)

3! x3 + f (4)(0)

4! x4 + · · ·

EXAMPLE 1 Find the Taylor series for f (x) = x−3 centered at c = 1.

Solution The derivatives of f (x) are f ′(x) = −3x−4, f ′′(x) = (−3)(−4)x−5, and in
general,

f (n)(x) = (−1)n(3)(4) · · · (n + 2)x−3−n

Note that (3)(4) · · · (n + 2) = 1
2 (n + 2)!. Therefore,

f (n)(1) = (−1)n
1

2
(n + 2)!

Noting that (n + 2)! = (n + 2)(n + 1)n!, we write the coefficients of the Taylor series as:

an = f (n)(1)

n! = (−1)n 1
2 (n + 2)!
n! = (−1)n

(n + 2)(n + 1)

2

The Taylor series for f (x) = x−3 centered at c = 1 is

T (x) = 1 − 3(x − 1) + 6(x − 1)2 − 10(x − 1)3 + · · ·

=
∞∑

n=0

(−1)n
(n + 2)(n + 1)

2
(x − 1)n

Theorem 1 tells us that if we want to represent a function f (x) by a power series
centered at c, then the only candidate for the job is the Taylor series:

T (x) =
∞∑

n=0

f (n)(c)

n! (x − c)n
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However, there is no guarantee that T (x) converges to f (x), even if T (x) converges. ToSee Exercise 92 for an example where a
Taylor series T (x) converges but does not
converge to f (x).

study convergence, we consider the kth partial sum, which is the Taylor polynomial of
degree k:

Tk(x) = f (c) + f ′(c)(x − c) + f ′′(c)
2! (x − c)2 + · · · + f (k)(c)

k! (x − c)k

In Section 8.4, we defined the remainder

Rk(x) = f (x) − Tk(x)

Since T (x) is the limit of the partial sums Tk(x), we see that

The Taylor series converges to f (x) if and only if lim
k→∞ Rk(x) = 0.

There is no general method for determining whether Rk(x) tends to zero, but the following
theorem can be applied in some important cases.

REMINDER f (x) is called “infinitely
differentiable” if f (n)(x) exists for all n. THEOREM 2 Let I = (c − R, c + R), where R > 0. Suppose there exists K > 0

such that all derivatives of f are bounded by K on I :

|f (k)(x)| ≤ K for all k ≥ 0 and x ∈ I

Then f (x) is represented by its Taylor series in I :

f (x) =
∞∑

n=0

f (n)(c)

n! (x − c)n for all x ∈ I

Proof According to the Error Bound for Taylor polynomials (Theorem 2 in Section 8.4),

|Rk(x)| = |f (x) − Tk(x)| ≤ K
|x − c|k+1

(k + 1)!
If x ∈ I , then |x − c| < R and

|Rk(x)| ≤ K
Rk+1

(k + 1)!

We showed in Example 9 of Section 10.1 that Rk/k! tends to zero as k → ∞. Therefore,
lim

k→∞ Rk(x) = 0 for all x ∈ (c − R, c + R), as required.

EXAMPLE 2 Expansions of Sine and Cosine Show that the following Maclaurin ex-

Taylor expansions were studied throughout
the seventeenth and eighteenth centuries
by Gregory, Leibniz, Newton, Maclaurin,
Taylor, Euler, and others. These
developments were anticipated by the great
Hindu mathematician Madhava (c.
1340–1425), who discovered the
expansions of sine and cosine and many
other results two centuries earlier.

pansions are valid for all x.

sin x =
∞∑

n=0

(−1)n
x2n+1

(2n + 1)! = x − x3

3! + x5

5! − x7

7! + · · ·
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cos x =
∞∑

n=0

(−1)n
x2n

(2n)! = 1 − x2

2! + x4

4! − x6

6! + · · ·

Solution Recall that the derivatives of f (x) = sin x and their values at x = 0 form a
repeating pattern of period 4:

f (x) f ′(x) f ′′(x) f ′′′(x) f (4)(x) · · ·
sin x cos x − sin x − cos x sin x · · ·

0 1 0 −1 0 · · ·
In other words, the even derivatives are zero and the odd derivatives alternate in sign:
f (2n+1)(0) = (−1)n. Therefore, the nonzero Taylor coefficients for sin x are

a2n+1 = (−1)n

(2n + 1)!
For f (x) = cos x, the situation is reversed. The odd derivatives are zero and the

even derivatives alternate in sign:f (2n)(0) = (−1)n cos 0 = (−1)n. Therefore the nonzero
Taylor coefficients for cos x are a2n = (−1)n/(2n)!.

We can apply Theorem 2 with K = 1 and any value of R because both sine and cosine
satisfy |f (n)(x)| ≤ 1 for all x and n. The conclusion is that the Taylor series converges to
f (x) for |x| < R. Since R is arbitrary, the Taylor expansions hold for all x.

EXAMPLE 3 Taylor Expansion of f (x) = ex at x = c Find the Taylor series T (x) of
f (x) = ex at x = c.

Solution We have f (n)(c) = ec for all x, and thus

T (x) =
∞∑

n=0

ec

n! (x − c)n

Because ex is increasing for all R > 0 we have |f (k)(x)| ≤ ec+R for x ∈ (c − R, c + R).
Applying Theorem 2 with K = ec+R , we conclude that T (x) converges to f (x) for all
x ∈ (c − R, c + R). Since R is arbitrary, the Taylor expansion holds for all x. For c = 0,
we obtain the standard Maclaurin series

ex = 1 + x + x2

2! + x3

3! + · · ·

Shortcuts to Finding Taylor Series
There are several methods for generating new Taylor series from known ones. First of
all, we can differentiate and integrate Taylor series term by term within its interval of
convergence, by Theorem 2 of Section 10.6. We can also multiply two Taylor series or
substitute one Taylor series into another (we omit the proofs of these facts).

EXAMPLE 4 Find the Maclaurin series for f (x) = x2ex .In Example 4, we can also write the
Maclaurin series as

∞∑
n=0

xn+2

n!

Solution Multiply the known Maclaurin series for ex by x2.

x2ex = x2
(

1 + x + x2

2! + x3

3! + x4

4! + x5

5! + · · ·
)

= x2 + x3 + x4

2! + x5

3! + x6

4! + x7

5! + · · · =
∞∑

n=2

xn

(n − 2)!
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EXAMPLE 5 Substitution Find the Maclaurin series for e−x2
.

Solution Substitute −x2 in the Maclaurin series for ex .

e−x2 =
∞∑

n=0

(−x2)

n!
n

=
∞∑

n=0

(−1)nx2n

n! = 1 − x2 + x4

2! − x6

3! + x8

4! − · · · 2

The Taylor expansion of ex is valid for all x, so this expansion is also valid for all x.

EXAMPLE 6 Integration Find the Maclaurin series for f (x) = ln(1 + x).

Solution We integrate the geometric series with common ratio −x (valid for |x| < 1):

1

1 + x
= 1 − x + x2 − x3 + · · ·

ln(1 + x) =
∫

dx

1 + x
= x − x2

2
+ x3

3
− x4

4
+ · · · =

∞∑
n=1

(−1)n−1 xn

n

The constant of integration on the right is zero because ln(1 + x) = 0 for x = 0. This
expansion is valid for |x| < 1. It also holds for x = 1 (see Exercise 84).

In many cases, there is no convenient general formula for the Taylor coefficients, but
we can still compute as many coefficients as desired.

EXAMPLE 7 Multiplying Taylor Series Write out the terms up to degree five in the
Maclaurin series for f (x) = ex cos x.

Solution We multiply the fifth-order Taylor polynomials of ex and cos x together, drop-
ping the terms of degree greater than 5:(

1 + x + x2

2
+ x3

6
+ x4

24
+ x5

120

)(
1 − x2

2
+ x4

24

)
Distributing the term on the left (and ignoring terms of degree greater than 5), we obtain(

1 + x + x2

2
+ x3

6
+ x4

24
+ x5

120

)
−
(

1 + x + x2

2
+ x3

6

)(
x2

2

)
+ (1 + x)

(
x4

24

)

= 1 + x − x3

3
− x4

6
− x5

30︸ ︷︷ ︸
Retain terms of degree ≤ 5

We conclude that the fifth Maclaurin polynomial for f (x) = ex cos x is

T5(x) = 1 + x − x3

3
− x4

6
− x5

30

In the next example, we express the definite integral of sin(x2) as an infinite series.

321

1

−1

y

x

FIGURE 1 Graph of T12(x) for the power
series expansion of the antiderivative

F(x) =
∫ x

0
sin(t2) dt

This is useful because the integral cannot be evaluated explicitly. Figure 1 shows the graph
of the Taylor polynomial T12(x) of the Taylor series expansion of the antiderivative.

EXAMPLE 8 Let J =
∫ 1

0
sin(x2) dx.

(a) Express J as an infinite series.
(b) Determine J to within an error less than 10−4.
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Solution

(a) The Maclaurin expansion for sin x is valid for all x, so we have

sin x =
∞∑

n=0

(−1)n

(2n + 1)!x
2n+1 ⇒ sin(x2) =

∞∑
n=0

(−1)n

(2n + 1)!x
4n+2

We obtain an infinite series for J by integration:

J =
∫ 1

0
sin(x2) dx =

∞∑
n=0

(−1)n

(2n + 1)!
∫ 1

0
x4n+2dx =

∞∑
n=0

(−1)n

(2n + 1)!
(

1

4n + 3

)

= 1

3
− 1

42
+ 1

1320
− 1

75,600
+ · · · 3

(b) The infinite series for J is an alternating series with decreasing terms, so the sum of
the first N terms is accurate to within an error that is less than the (N + 1)st term. The
absolute value of the fourth term 1/75,600 is smaller than 10−4 so we obtain the desired
accuracy using the first three terms of the series for J :

J ≈ 1

3
− 1

42
+ 1

1320
≈ 0.31028

The error satisfies ∣∣∣∣J −
(

1

3
− 1

42
+ 1

1320

)∣∣∣∣ <
1

75,600
≈ 1.3 × 10−5

The percentage error is less than 0.005% with just three terms.

Binomial Series
Isaac Newton discovered an important generalization of the Binomial Theorem around
1665. For any number a (integer or not) and integer n ≥ 0, we define the binomial
coefficient: (

a

n

)
= a(a − 1)(a − 2) · · · (a − n + 1)

n! ,

(
a

0

)
= 1

For example, (
6

3

)
= 6 · 5 · 4

3 · 2 · 1
= 20,

( 4
3
3

)
=

4
3 · 1

3 · ( − 2
3

)
3 · 2 · 1

= − 4

81

Let

f (x) = (1 + x)a

The Binomial Theorem of algebra (see Appendix C) states that for any whole number a,

(r + s)a = ra +
(

a

1

)
ra−1s +

(
a

2

)
ra−2s2 + · · · +

(
a

a − 1

)
rsa−1 + sa

Setting r = 1 and s = x, we obtain the expansion of f (x):

(1 + x)a = 1 +
(

a

1

)
x +

(
a

2

)
x2 + · · · +

(
a

a − 1

)
xa−1 + xa
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We derive Newton’s generalization by computing the Maclaurin series of f (x) without
assuming that a is a whole number. Observe that the derivatives follow a pattern:

f (x) = (1 + x)a f (0) = 1

f ′(x) = a(1 + x)a−1 f ′(0) = a

f ′′(x) = a(a − 1)(1 + x)a−2 f ′′(0) = a(a − 1)

f ′′′(x) = a(a − 1)(a − 2)(1 + x)a−3 f ′′′(0) = a(a − 1)(a − 2)

In general, f (n)(0) = a(a − 1)(a − 2) · · · (a − n + 1) and

f (n)(0)

n! = a(a − 1)(a − 2) · · · (a − n + 1)

n! =
(

a

n

)

Hence the Maclaurin series for f (x) = (1 + x)a is the binomial series
When a is a whole number,

(
a

n

)
is zero for

n > a, and in this case, the binomial
series breaks off at degree n. The binomial
series is an infinite series when a is not a
whole number.

∞∑
n=0

(
a

n

)
xn = 1 + ax + a(a − 1)

2! x2 + a(a − 1)(a − 2)

3! x3 + · · · +
(

a

n

)
xn + · · ·

The Ratio Test shows that this series has radius of convergence R = 1 (Exercise 86) and
an additional argument (developed in Exercise 87) shows that it converges to (1 + x)a for
|x| < 1 .

THEOREM 3 The Binomial Series For any exponent a and for |x| < 1,

(1 + x)a = 1 + a

1!x + a(a − 1)

2! x2 + a(a − 1)(a − 2)

3! x3 + · · · +
(

a

n

)
xn + · · ·

EXAMPLE 9 Find the terms through degree four in the Maclaurin expansion of

f (x) = (1 + x)4/3

Solution The binomial coefficients
(
a
n

)
for a = 4

3 for 0 < n < 4 are

1,

4
3

1! = 4

3
,

4
3

( 1
3

)
2! = 2

9
,

4
3

( 1
3

)( − 2
3

)
3! = − 4

81
,

4
3

( 1
3

)( − 2
3

)( − 5
3

)
4! = 5

243

Therefore, (1 + x)4/3 ≈ 1 + 4
3x + 2

9x2 − 4
81x3 + 5

243x4 + · · · .

EXAMPLE 10 Find the Maclaurin series for

f (x) = 1√
1 − x2

Solution First, let’s find the coefficients in the binomial series for (1 + x)−1/2:

1,
− 1

2

1! = −1

2
,

− 1
2

( − 3
2

)
1 · 2

= 1 · 3

2 · 4
,

− 1
2

( − 3
2

)( − 5
2

)
1 · 2 · 3

= 1 · 3 · 5

2 · 4 · 6

The general pattern is(− 1
2

n

)
= − 1

2

( − 3
2

)( − 5
2

) · · · ( − 2n−1
2

)
1 · 2 · 3 · · · n = (−1)n

1 · 3 · 5 · · · (2n − 1)

2 · 4 · 6 · 2n
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Thus, the following binomial expansion is valid for |x| < 1:

1√
1 + x

= 1 +
∞∑

n=1

(−1)n
1 · 3 · 5 · · · (2n − 1)

2 · 4 · 6 · · · (2n)
xn = 1 − 1

2
x + 1 · 3

2 · 4
x2 − · · ·

If |x| < 1, then |x|2 < 1, and we can substitute −x2 for x to obtain

1√
1 − x2

= 1 +
∞∑

n=1

1 · 3 · 5 · · · (2n − 1)

2 · 4 · 6 · · · 2n
x2n = 1 + 1

2
x2 + 1 · 3

2 · 4
x4 + · · · 4

Taylor series are particularly useful for studying the so-called special functions (such
as Bessel and hypergeometric functions) that appear in a wide range of physics and en-
gineering applications. One example is the following elliptic function of the first kind,
defined for |k| < 1:

E(k) =
∫ π/2

0

dt√
1 − k2 sin2 t

This function is used in physics to compute the period T of pendulum of length L released
from an angle θ (Figure 2). We can use the “small-angle approximation” T ≈ 2π

√
L/g

when θ is small, but this approximation breaks down for large angles (Figure 3). The exact
value of the period is T = 4

√
L/gE(k), where k = sin 1

2θ .

θ

FIGURE 2 Pendulum released at an angle θ .

π

Period T

Angle θ

8

6

4

2

π
2

Small-angle
approximation

FIGURE 3 The period T of a 1-meter
pendulum as a function of the angle θ at
which it is released.

EXAMPLE 11 Elliptic Function Find the Maclaurin series for E(k) and estimate E(k)

for k = sin π
6 .

Solution Substitute x = k sin t in the Taylor expansion (4):

1√
1 − k2 sin2 t

= 1 + 1

2
k2 sin2 t + 1 · 3

2 · 4
k4 sin4 t + 1 · 3 · 5

2 · 4 · 6
k6 sin6 t + · · ·

This expansion is valid because |k| < 1 and hence |x| = |k sin t | < 1. Thus E(k) is equal
to

∫ π/2

0

dt√
1 − k2 sin2 t

=
∫ π/2

0
dt +

∞∑
n=1

1 · 3 · · · (2n − 1)

2 · 4 · (2n)

(∫ π/2

0
sin2n t dt

)
k2n

According to Exercise 78 in Section 7.2,

∫ π/2

0
sin2n t dt =

(
1 · 3 · · · (2n − 1)

2 · 4 · (2n)

)
π

2

This yields

E(k) = π

2
+ π

2

∞∑
n=1

(
1 · 3 · · · (2n − 1)2

2 · 4 · · · (2n)

)2

k2n
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We approximate E(k) for k = sin
(

π
6

) = 1
2 using the first five terms:

E

(
1

2

)
≈ π

2

(
1 +

(
1

2

)2 (1

2

)2

+
(

1 · 3

2 · 4

)2 (1

2

)4

+
(

1 · 3 · 5

2 · 4 · 6

)2 (1

2

)6

+
(

1 · 3 · 5 · 7

2 · 4 · 6 · 8

)2 (1

2

)8
)

≈ 1.68517

The value given by a computer algebra system to seven places is E
( 1

2

) ≈ 1.6856325.

TABLE 1

Function f (x) Maclaurin series Converges to f (x) for

ex
∞∑

n=0

xn

n! = 1 + x + x2

2! + x3

3! + x4

4! + · · · All x

sin x

∞∑
n=0

(−1)nx2n+1

(2n + 1)! = x − x3

3! + x5

5! − x7

7! + · · · All x

cos x

∞∑
n=0

(−1)nx2n

(2n)! = 1 − x2

2! + x4

4! − x6

6! + · · · All x

1

1 − x

∞∑
n=0

xn = 1 + x + x2 + x3 + x4 + · · · |x| < 1

1

1 + x

∞∑
n=0

(−1)nxn = 1 − x + x2 − x3 + x4 − · · · |x| < 1

ln(1 + x)

∞∑
n=1

(−1)n−1xn

n
= x − x2

2
+ x3

3
− x4

4
+ · · · |x| < 1 and x = 1

tan−1 x

∞∑
n=0

(−1)nx2n+1

2n + 1
= x − x3

3
+ x5

5
− x7

7
+ · · · |x| < 1 and x = 1

(1 + x)a
∞∑

n=0

(
a

n

)
xn = 1 + ax + a(a − 1)

2! x2 + a(a − 1)(a − 2)

3! x3 + · · · |x| < 1

10.7 SUMMARY

• Taylor series of f (x) centered at x = c:

T (x) =
∞∑

n=0

f (n)(c)

n! (x − c)n

The partial sum Tk(x) is the kth Taylor polynomial.
• Maclaurin series (c = 0):

T (x) =
∞∑

n=0

f (n)(0)

n! xn
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• If f (x) is represented by a power series
∞∑

n=0

an(x − c)n for |x − c| < R with R > 0,

then this power series is necessarily the Taylor series centered at x = c.
• A function f (x) is represented by its Taylor series T (x) if and only if the remainder
Rk(x) = f (x) − Tk(x) tends to zero as k → ∞.
• Let I = (c − R, c + R) with R > 0. Suppose that there exists K > 0 such that
|f (k)(x)| < K for all x ∈ I and all k. Then f (x) is represented by its Taylor series
on I ; that is, f (x) = T (x) for x ∈ I .
• A good way to find the Taylor series of a function is to start with known Taylor series and
apply one of the operations: differentiation, integration, multiplication, or substitution.
• For any exponent a, the binomial expansion is valid for |x| < 1:

(1 + x)a = 1 + ax + a(a − 1)

2! x2 + a(a − 1)(a − 2)

3! x3 + · · · +
(

a

n

)
xn + · · ·

10.7 EXERCISES

Preliminary Questions
1. Determine f (0) and f ′′′(0) for a function f (x) with Maclaurin

series

T (x) = 3 + 2x + 12x2 + 5x3 + · · ·

2. Determine f (−2) and f (4)(−2) for a function with Taylor series

T (x) = 3(x + 2) + (x + 2)2 − 4(x + 2)3 + 2(x + 2)4 + · · ·

3. What is the easiest way to find the Maclaurin series for the function
f (x) = sin(x2)?

4. Find the Taylor series for f (x) centered at c = 3 if f (3) = 4 and
f ′(x) has a Taylor expansion

f ′(x) =
∞∑

n=1

(x − 3)n

n

5. Let T (x) be the Maclaurin series of f (x). Which of the following
guarantees that f (2) = T (2)?

(a) T (x) converges for x = 2.

(b) The remainder Rk(2) approaches a limit as k → ∞.

(c) The remainder Rk(2) approaches zero as k → ∞.

Exercises
1. Write out the first four terms of the Maclaurin series of f (x) if

f (0) = 2, f ′(0) = 3, f ′′(0) = 4, f ′′′(0) = 12

2. Write out the first four terms of the Taylor series of f (x) centered
at c = 3 if

f (3) = 1, f ′(3) = 2, f ′′(3) = 12, f ′′′(3) = 3

In Exercises 3–18, find the Maclaurin series and find the interval on
which the expansion is valid.

3. f (x) = 1

1 − 2x
4. f (x) = x

1 − x4

5. f (x) = cos 3x 6. f (x) = sin(2x)

7. f (x) = sin(x2) 8. f (x) = e4x

9. f (x) = ln(1 − x2) 10. f (x) = (1 − x)−1/2

11. f (x) = tan−1(x2) 12. f (x) = x2ex2

13. f (x) = ex−2 14. f (x) = 1 − cos x

x

15. f (x) = ln(1 − 5x) 16. f (x) = (x2 + 2x)ex

17. f (x) = sinh x 18. f (x) = cosh x

In Exercises 19–28, find the terms through degree four of the Maclaurin
series of f (x). Use multiplication and substitution as necessary.

19. f (x) = ex sin x 20. f (x) = ex ln(1 − x)

21. f (x) = sin x

1 − x
22. f (x) = 1

1 + sin x

23. f (x) = (1 + x)1/4 24. f (x) = (1 + x)−3/2

25. f (x) = ex tan−1 x 26. f (x) = sin (x3 − x)

27. f (x) = esin x 28. f (x) = e(ex)

In Exercises 29–38, find the Taylor series centered at c and find the
interval on which the expansion is valid.

29. f (x) = 1

x
, c = 1 30. f (x) = e3x , c = −1
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31. f (x) = 1

1 − x
, c = 5 32. f (x) = sin x, c = π

2

33. f (x) = x4 + 3x − 1, c = 2

34. f (x) = x4 + 3x − 1, c = 0

35. f (x) = 1

x2
, c = 4 36. f (x) = √

x, c = 4

37. f (x) = 1

1 − x2
, c = 3 38. f (x) = 1

3x − 2
, c = −1

39. Use the identity cos2 x = 1
2 (1 + cos 2x) to find the Maclaurin se-

ries for cos2 x.

40. Show that for |x| < 1,

tanh−1 x = x + x3

3
+ x5

5
+ · · ·

Hint: Recall that
d

dx
tanh−1 x = 1

1 − x2
.

41. Use the Maclaurin series for ln(1 + x) and ln(1 − x) to show that

1

2
ln

(
1 + x

1 − x

)
= x + x3

3
+ x5

5
+ · · ·

for |x| < 1. What can you conclude by comparing this result with that
of Exercise 40?

42. Differentiate the Maclaurin series for
1

1 − x
twice to find the

Maclaurin series of
1

(1 − x)3
.

43. Show, by integrating the Maclaurin series for f (x) = 1√
1 − x2

,
that for |x| < 1,

sin−1 x = x +
∞∑

n=1

1 · 3 · 5 · · · (2n − 1)

2 · 4 · 6 · · · (2n)

x2n+1

2n + 1

44. Use the first five terms of the Maclaurin series in Exercise 43 to
approximate sin−1 1

2 . Compare the result with the calculator value.

45. How many terms of the Maclaurin series of f (x) = ln(1 + x) are
needed to compute ln 1.2 to within an error of at most 0.0001? Make
the computation and compare the result with the calculator value.

46. Show that

π − π3

3! + π5

5! − π7

7! + · · ·

converges to zero. How many terms must be computed to get within
0.01 of zero?

47. Use the Maclaurin expansion for e−t2
to express the function

F(x) = ∫ x
0 e−t2

dt as an alternating power series in x (Figure 4).

(a) How many terms of the Maclaurin series are needed to approximate
the integral for x = 1 to within an error of at most 0.001?

(b) Carry out the computation and check your answer using a
computer algebra system.

F(x)

T15(x)

1 2

y

x

FIGURE 4 The Maclaurin polynomial T15(x) for F(t) =
∫ x

0
e−t2

dt.

48. Let F(x) =
∫ x

0

sin t dt

t
. Show that

F(x) = x − x3

3 · 3! + x5

5 · 5! − x7

7 · 7! + · · ·

Evaluate F(1) to three decimal places.

In Exercises 49–52, express the definite integral as an infinite series
and find its value to within an error of at most 10−4.

49.
∫ 1

0
cos(x2) dx 50.

∫ 1

0
tan−1(x2) dx

51.
∫ 1

0
e−x3

dx 52.
∫ 1

0

dx√
x4 + 1

In Exercises 53–56, express the integral as an infinite series.

53.
∫ x

0

1 − cos(t)

t
dt , for all x

54.
∫ x

0

t − sin t

t
dt , for all x

55.
∫ x

0
ln(1 + t2) dt , for |x| < 1

56.
∫ x

0

dt√
1 − t4

, for |x| < 1

57. Which function has Maclaurin series
∞∑

n=0

(−1)n2nxn?

58. Which function has Maclaurin series

∞∑
k=0

(−1)k

3k+1
(x − 3)k?

For which values of x is the expansion valid?

In Exercises 59–62, use Theorem 2 to prove that the f (x) is represented
by its Maclaurin series for all x.

59. f (x) = sin(x/2) + cos(x/3) 60. f (x) = e−x

61. f (x) = sinh x 62. f (x) = (1 + x)100
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In Exercises 63–66, find the functions with the following Maclaurin
series (refer to Table 1 on page 599).

63. 1 + x3 + x6

2! + x9

3! + x12

4! + · · ·

64. 1 − 4x + 42x2 − 43x3 + 44x4 − 45x5 + · · ·

65. 1 − 53x3

3! + 55x5

5! − 57x7

7! + · · ·

66. x4 − x12

3
+ x20

5
− x28

7
+ · · ·

In Exercises 67 and 68, let

f (x) = 1

(1 − x)(1 − 2x)

67. Find the Maclaurin series of f (x) using the identity

f (x) = 2

1 − 2x
− 1

1 − x

68. Find the Taylor series for f (x) at c = 2. Hint: Rewrite the identity
of Exercise 67 as

f (x) = 2

−3 − 2(x − 2)
− 1

−1 − (x − 2)

69. When a voltage V is applied to a series circuit consisting of a
resistor R and an inductor L, the current at time t is

I (t) =
(

V

R

) (
1 − e−Rt/L

)

Expand I (t) in a Maclaurin series. Show that I (t) ≈ V t

L
for small t .

70. Use the result of Exercise 69 and your knowledge of alternating
series to show that

V t

L

(
1 − R

2L
t

)
≤ I (t) ≤ V t

L
(for all t)

71. Find the Maclaurin series for f (x) = cos(x3) and use it to deter-
mine f (6)(0).

72. Find f (7)(0) and f (8)(0) for f (x) = tan−1 x using the Maclaurin
series.

73. Use substitution to find the first three terms of the Maclau-

rin series for f (x) = ex20
. How does the result show that f (k)(0) = 0

for 1 ≤ k ≤ 19?

74. Use the binomial series to find f (8)(0) for f (x) =
√

1 − x2.

75. Does the Maclaurin series for f (x) = (1 + x)3/4 converge to f (x)

at x = 2? Give numerical evidence to support your answer.

76. Explain the steps required to verify that the Maclaurin se-
ries for f (x) = ex converges to f (x) for all x.

77. Let f (x) = √
1 + x.

(a) Use a graphing calculator to compare the graph off with the graphs
of the first five Taylor polynomials for f . What do they suggest about
the interval of convergence of the Taylor series?

(b) Investigate numerically whether or not the Taylor expansion for f

is valid for x = 1 and x = −1.

78. Use the first five terms of the Maclaurin series for the elliptic func-
tion E(k) to estimate the period T of a 1-meter pendulum released at
an angle θ = π

4 (see Example 11).

79. Use Example 11 and the approximation sin x ≈ x to show that
the period T of a pendulum released at an angle θ has the following
second-order approximation:

T ≈ 2π

√
L

g

(
1 + θ2

16

)

In Exercises 80–83, find the Maclaurin series of the function and use it
to calculate the limit.

80. lim
x→0

cos x − 1 + x2

2

x4
81. lim

x→0

sin x − x + x3

6
x5

82. lim
x→0

tan−1 x − x cos x − 1
6x3

x5 83. lim
x→0

(
sin(x2)

x4
− cos x

x2

)

Further Insights and Challenges
84. In this exercise we show that the Maclaurin expansion of f (x) =
ln(1 + x) is valid for x = 1.

(a) Show that for all x �= −1,

1

1 + x
=

N∑
n=0

(−1)nxn + (−1)N+1xN+1

1 + x

(b) Integrate from 0 to 1 to obtain

ln 2 =
N∑

n=1

(−1)n−1

n
+ (−1)N+1

∫ 1

0

xN+1 dx

1 + x

(c) Verify that the integral on the right tends to zero as N → ∞ by
showing that it is smaller than

∫ 1
0 xN+1dx.

(d) Prove the formula

ln 2 = 1 − 1

2
+ 1

3
− 1

4
+ · · ·

85. Let g(t) = 1

1 + t2
− t

1 + t2
.

(a) Show that
∫ 1

0
g(t) dt = π

4
− 1

2
ln 2.

(b) Show that g(t) = 1 − t − t2 + t3 + t4 − t5 − t6 + · · · .

(c) Evaluate S = 1 − 1
2 − 1

3 + 1
4 + 1

5 − 1
6 − 1

7 + · · · .
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In Exercises 86 and 87, we investigate the convergence of the binomial
series

Ta(x) =
∞∑

n=0

(
a

n

)
xn

86. Prove that Ta(x) has radius of convergence R = 1 if a is not a
whole number. What is the radius of convergence if a is a whole num-
ber?

87. By Exercise 86, Ta(x) converges for |x| < 1, but we do not yet
know whether Ta(x) = (1 + x)a .

(a) Verify the identity

a

(
a

n

)
= n

(
a

n

)
+ (n + 1)

(
a

n + 1

)

(b) Use (a) to show that y = Ta(x) satisfies the differential equation
(1 + x)y′ = ay with initial condition y(0) = 1.

(c) Prove that Ta(x) = (1 + x)a for |x| < 1 by showing that the

derivative of the ratio
Ta(x)

(1 + x)a
is zero.

88. The function G(k) = ∫ π/2
0

√
1 − k2 sin2 t dt is called an elliptic

function of the second kind. Prove that for |k| < 1,

G(k) = π

2
− π

2

∞∑
n=1

(
1 · 3 · · · (2n − 1)

2 · · · 4 · (2n)

)2 k2n

2n − 1

89. Assume that a < b and let L be the arc length (circumference) of

the ellipse
(
x
a

)2 + ( y
b

)2 = 1 shown in Figure 5. There is no explicit
formula for L, but it is known that L = 4bG(k), with G(k) as in Exer-
cise 88 and k =

√
1 − a2/b2. Use the first three terms of the expansion

of Exercise 88 to estimate L when a = 4 and b = 5.

a

b
y

x

FIGURE 5 The ellipse
(x

a

)2 +
(y

b

)2 = 1.

90. Use Exercise 88 to prove that if a < b and a/b is near 1 (a nearly
circular ellipse), then

L ≈ π

2

(
3b + a2

b

)
Hint: Use the first two terms of the series for G(k).

91. Irrationality of e Prove that e is an irrational number using the
following argument by contradiction. Suppose that e = M/N , where
M, N are nonzero integers.

(a) Show that M! e−1 is a whole number.

(b) Use the power series for ex at x = −1 to show that there is an
integer B such that M! e−1 equals

B + (−1)M+1
(

1

M + 1
− 1

(M + 1)(M + 2)
+ · · ·

)

(c) Use your knowledge of alternating series with decreasing terms to
conclude that 0 < |M! e−1 − B| < 1 and observe that this contradicts
(a). Hence, e is not equal to M/N .

92. Use the result of Exercise 73 in Section 4.5 to show that the Maclau-
rin series of the function

f (x) =
{

e−1/x2
for x �= 0

0 for x = 0

is T (x) = 0. This provides an example of a function f (x) whose
Maclaurin series converges but does not converge to f (x) (except at
x = 0).

CHAPTER REVIEW EXERCISES

1. Let an = n − 3

n! and bn = an+3. Calculate the first three terms in

each sequence.

(a) a2
n (b) bn

(c) anbn (d) 2an+1 − 3an

2. Prove that lim
n→∞

2n − 1

3n + 2
= 2

3
using the limit definition.

In Exercises 3–8, compute the limit (or state that it does not exist)
assuming that lim

n→∞ an = 2.

3. lim
n→∞(5an − 2a2

n) 4. lim
n→∞

1

an

5. lim
n→∞ ean 6. lim

n→∞ cos(πan)

7. lim
n→∞(−1)nan 8. lim

n→∞
an + n

an + n2

In Exercises 9–22, determine the limit of the sequence or show that the
sequence diverges.

9. an = √
n + 5 − √

n + 2 10. an = 3n3 − n

1 − 2n3

11. an = 21/n2
12. an = 10n

n!
13. bm = 1 + (−1)m 14. bm = 1 + (−1)m

m
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15. bn = tan−1
(

n + 2

n + 5

)
16. an = 100n

n! − 3 + πn

5n

17. bn =
√

n2 + n −
√

n2 + 1

18. cn =
√

n2 + n −
√

n2 − n 19. bm =
(

1 + 1

m

)3m

20. cn =
(

1 + 3

n

)n

21. bn = n
(

ln(n + 1) − ln n
)

22. cn = ln(n2 + 1)

ln(n3 + 1)

23. Use the Squeeze Theorem to show that lim
n→∞

arctan(n2)√
n

= 0.

24. Give an example of a divergent sequence {an} such that {sin an}
is convergent.

25. Calculate lim
n→∞

an+1

an
, where an = 1

2
3n − 1

3
2n.

26. Define an+1 = √
an + 6 with a1 = 2.

(a) Compute an for n = 2, 3, 4, 5.

(b) Show that {an} is increasing and is bounded by 3.

(c) Prove that lim
n→∞ an exists and find its value.

27. Calculate the partial sums S4 and S7 of the series
∞∑

n=1

n − 2

n2 + 2n
.

28. Find the sum 1 − 1

4
+ 1

42
− 1

43
+ · · · .

29. Find the sum
4

9
+ 8

27
+ 16

81
+ 32

243
+ · · · .

30. Find the sum
∞∑

n=2

(
2

e

)n

.

31. Find the sum
∞∑

n=−1

2n+3

3n
.

32. Show that
∞∑

n=1

(
b − tan−1 n2) diverges if b �= π

2
.

33. Give an example of divergent series
∞∑

n=1

an and
∞∑

n=1

bn such that∞∑
n=1

(an + bn) = 1.

34. Let S =
∞∑

n=1

(
1

n
− 1

n + 2

)
. Compute SN for N = 1, 2, 3, 4.

Find S by showing that

SN = 3

2
− 1

N + 1
− 1

N + 2

35. Evaluate S =
∞∑

n=3

1

n(n + 3)
.

36. Find the total area of the infinitely many circles on the interval
[0, 1] in Figure 1.

1
8

1
4

1
2

x

1
0

FIGURE 1

In Exercises 37–40, use the Integral Test to determine whether the in-
finite series converges.

37.
∞∑

n=1

n2

n3 + 1
38.

∞∑
n=1

n2

(n3 + 1)1.01

39.
∞∑

n=1

1

(n + 2)(ln(n + 2))3
40.

∞∑
n=1

n3

en4

In Exercises 41–48, use the Comparison or Limit Comparison Test to
determine whether the infinite series converges.

41.
∞∑

n=1

1

(n + 1)2
42.

∞∑
n=1

1√
n + n

43.
∞∑

n=2

n2 + 1

n3.5 − 2
44.

∞∑
n=1

1

n − ln n

45.
∞∑

n=2

n√
n5 + 5

46.
∞∑

n=1

1

3n − 2n

47.
∞∑

n=1

n10 + 10n

n11 + 11n
48.

∞∑
n=1

n20 + 21n

n21 + 20n

49. Determine the convergence of
∞∑

n=1

2n + n

3n − 2
using the Limit Com-

parison Test with bn = ( 2
3

)n.

50. Determine the convergence of
∞∑

n=1

ln n

1.5n
using the Limit Compar-

ison Test with bn = 1

1.4n
.

51. Let an = 1 −
√

1 − 1
n . Show that lim

n→∞ an = 0 and that
∞∑

n=1

an

diverges. Hint: Show that an ≥ 1
2n

.

52. Determine whether
∞∑

n=2

(
1 −

√
1 − 1

n2

)
converges.

53. Let S =
∞∑

n=1

n

(n2 + 1)2
.

(a) Show that S converges.
(b) Use Eq. (4) in Exercise 83 of Section 10.3 with M = 99
to approximate S. What is the maximum size of the error?
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In Exercises 54–57, determine whether the series converges absolutely.
If it does not, determine whether it converges conditionally.

54.
∞∑

n=1

(−1)n

3√n + 2n
55.

∞∑
n=1

(−1)n

n1.1 ln(n + 1)

56.
∞∑

n=1

cos
(
π
4 + πn

)
√

n
57.

∞∑
n=1

cos
(
π
4 + 2πn

)
√

n

58. Use a computer algebra system to approximate
∞∑

n=1

(−1)n

n3 + √
n

to within an error of at most 10−5.

59. Catalan’s constant is defined by K =
∞∑

k=0

(−1)k

(2k + 1)2
.

(a) How many terms of the series are needed to calculate K with an
error of less than 10−6?

(b) Carry out the calculation.

60. Give an example of conditionally convergent series
∞∑

n=1

an and∞∑
n=1

bn such that
∞∑

n=1

(an + bn) converges absolutely.

61. Let
∞∑

n=1

an be an absolutely convergent series. Determine whether

the following series are convergent or divergent:

(a)
∞∑

n=1

(
an + 1

n2

)
(b)

∞∑
n=1

(−1)nan

(c)
∞∑

n=1

1

1 + a2
n

(d)
∞∑

n=1

|an|
n

62. Let {an} be a positive sequence such that lim
n→∞

n
√

an = 1
2 . Deter-

mine whether the following series converge or diverge:

(a)
∞∑

n=1

2an (b)
∞∑

n=1

3nan (c)
∞∑

n=1

√
an

In Exercises 63–70, apply the Ratio Test to determine convergence or
divergence, or state that the Ratio Test is inconclusive.

63.
∞∑

n=1

n5

5n
64.

∞∑
n=1

√
n + 1

n8

65.
∞∑

n=1

1

n2n + n3
66.

∞∑
n=1

n4

n!

67.
∞∑

n=1

2n2

n! 68.
∞∑

n=4

ln n

n3/2

69.
∞∑

n=1

(n

2

)n 1

n! 70.
∞∑

n=1

(n

4

)n 1

n!

In Exercises 71–74, apply the Root Test to determine convergence or
divergence, or state that the Root Test is inconclusive.

71.
∞∑

n=1

1

4n
72.

∞∑
n=1

(
2

n

)n

73.
∞∑

n=1

(
3

4n

)n

74.
∞∑

n=1

(
cos

1

n

)n3

In Exercises 75–92, determine convergence or divergence using any
method covered in the text.

75.
∞∑

n=1

(
2

3

)n

76.
∞∑

n=1

π7n

e8n

77.
∞∑

n=1

e−0.02n 78.
∞∑

n=1

ne−0.02n

79.
∞∑

n=1

(−1)n−1
√

n + √
n + 1

80.
∞∑

n=10

1

n(ln n)3/2

81.
∞∑

n=2

(−1)n

ln n
82.

∞∑
n=1

en

n!

83.
∞∑

n=1

1

n
√

n + ln n
84.

∞∑
n=1

1
3√n(1 + √

n)

85.
∞∑

n=1

(
1√
n

− 1√
n + 1

)
86.

∞∑
n=1

(
ln n − ln(n + 1)

)

87.
∞∑

n=1

1

n + √
n

88.
∞∑

n=2

cos(πn)

n2/3

89.
∞∑

n=2

1

nln n
90.

∞∑
n=2

1

ln3 n

91.
∞∑

n=1

sin2 π

n
92.

∞∑
n=0

22n

n!

In Exercises 93–98, find the interval of convergence of the power series.

93.
∞∑

n=0

2nxn

n! 94.
∞∑

n=0

xn

n + 1

95.
∞∑

n=0

n6

n8 + 1
(x − 3)n 96.

∞∑
n=0

nxn

97.
∞∑

n=0

(nx)n 98.
∞∑

n=0

(2x − 3)n

n ln n

99. Expand f (x) = 2

4 − 3x
as a power series centered at c = 0. De-

termine the values of x for which the series converges.
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100. Prove that

∞∑
n=0

ne−nx = e−x

(1 − e−x)2

Hint: Express the left-hand side as the derivative of a geometric series.

101. Let F(x) =
∞∑

k=0

x2k

2k · k! .

(a) Show that F(x) has infinite radius of convergence.
(b) Show that y = F(x) is a solution of

y′′ = xy′ + y, y(0) = 1, y′(0) = 0

(c) Plot the partial sums SN for N = 1, 3, 5, 7 on the same
set of axes.

102. Find a power series P(x) =
∞∑

n=0

anxn that satisfies the Laguerre
differential equation

xy′′ + (1 − x)y′ − y = 0

with initial condition satisfying P(0) = 1.

In Exercises 103–112, find the Taylor series centered at c.

103. f (x) = e4x , c = 0 104. f (x) = e2x , c = −1

105. f (x) = x4, c = 2

106. f (x) = x3 − x, c = −2

107. f (x) = sin x, c = π 108. f (x) = ex−1, c = −1

109. f (x) = 1

1 − 2x
, c = −2

110. f (x) = 1

(1 − 2x)2
, c = −2 111. f (x) = ln

x

2
, c = 2

112. f (x) = x ln
(

1 + x

2

)
, c = 0

In Exercises 113–116, find the first three terms of the Maclaurin series
of f (x) and use it to calculate f (3)(0).

113. f (x) = (x2 − x)ex2
114. f (x) = tan−1(x2 − x)

115. f (x) = 1

1 + tan x
116. f (x) = (sin x)

√
1 + x

117. Calculate
π

2
− π3

233! + π5

255! − π7

277! + · · · .

118. Find the Maclaurin series of the function F(x) =
∫ x

0

et − 1

t
dt .



The beautiful shell of a chambered nautilus

grows in the shape of an equiangular spiral, a

curve described in polar coordinates by an

equation r = eaθ .

11 PARAMETRIC
EQUATIONS, POLAR
COORDINATES, AND
CONIC SECTIONS

T his chapter introduces two important new tools. First, we consider parametric equa-
tions, which describe curves in a form that is particularly useful for analyzing motion

and is indispensable in fields such as computer graphics and computer-aided design.
We then study polar coordinates, an alternative to rectangular coordinates that simplifies
computations in many applications. The chapter closes with a discussion of the conic
sections (ellipses, hyperbolas, and parabolas).

11.1 Parametric Equations
Imagine a particle moving along a curve C in the plane as in Figure 1. We can describeWe use the term “particle” when we treat

an object as a moving point, ignoring its
internal structure.

the particle’s motion by specifying its coordinates as functions of time t :

x = f (t), y = g(t) 1

In other words, at time t , the particle is located at the point

c(t) = (f (t), g(t))

The equations (1) are called parametric equations, and C is called a parametric curve.
We refer to c(t) as a parametrization with parameter t .

x

y

t = 0
t = 4

Position at time t

( f (t), g(t))

Curve

FIGURE 1 Particle moving along a curve C
in the plane.

Because x and y are functions of t , we often write c(t) = (x(t), y(t)) instead of
(f (t), g(t)). Of course, we are free to use any variable for the parameter (such as s or θ ).
In plots of parametric curves, the direction of motion is often indicated by an arrow as in
Figure 1.

607
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EXAMPLE 1 Sketch the curve with parametric equations

x = 2t − 4, y = 3 + t2 2

Solution First compute the x- and y-coordinates for several values of t as in Table 1,
and plot the corresponding points (x, y) as in Figure 2. Then join the points by a smooth
curve, indicating the direction of motion with an arrow.

TABLE 1

t x = 2t − 4 y = 3 + t2

−2 −8 7
0 −4 3
2 0 7
4 4 19

40−8 −4

y

x

   t = 0
(−4, 3) 

t = −2
(−8, 7)

t = 2
(0, 7)

t = 4
(4, 19)

FIGURE 2 The parametric curve
x = 2t − 4, y = 3 + t2.

CONCEPTUAL INSIGHT The graph of a function y = f (x) can always be parametrized
in a simple way as

c(t) = (t, f (t))

For example, the parabola y = x2 is parametrized by c(t) = (t, t2) and the curve y = et

by c(t) = (t, et ).An advantage of parametric equations is that they enable us to describe
curves that are not graphs of functions. For example, the curve in Figure 3 is not of the
form y = f (x) but it can be expressed parametrically.

y

2−2
x

FIGURE 3 The parametric curve

x = 5 cos(3t) cos
( 2

3 sin(5t)
)
,

y = 4 sin(3t) cos
( 2

3 sin(5t)
)
. As we have just noted, a parametric curve c(t) need not be the graph of a function. If

it is, however, it may be possible to find the function f (x) by “eliminating the parameter”
as in the next example.

EXAMPLE 2 Eliminating the Parameter Describe the parametric curve

c(t) = (2t − 4, 3 + t2)

of the previous example in the form y = f (x).

Solution We “eliminate the parameter” by solving for y as a function of x. First, express
t in terms of x: Since x = 2t − 4, we have t = 1

2x + 2. Then substitute

y = 3 + t2 = 3 +
(

1

2
x + 2

)2

= 7 + 2x + 1

4
x2

Thus, c(t) traces out the graph of f (x) = 7 + 2x + 1
4x2 shown in Figure 2.

EXAMPLE 3 A bullet follows the trajectory

1000 2000 3000

t = 20.4

t = 40.8

t = 0 x (m)

y (m)

2000

1000
t = 5

FIGURE 4 Trajectory of bullet.

c(t) = (80t, 200t − 4.9t2)

until it hits the ground, with t in seconds and distance in meters (Figure 4). Find:

(a) The bullet’s height at t = 5 s. (b) Its maximum height.
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Solution The height of the bullet at time t is y(t) = 200t − 4.9t2.CAUTION The graph of height versus time
for an object tossed in the air is a parabola
(by Galileo’s formula). But keep in mind
that Figure 4 is not a graph of height versus
time. It shows the actual path of the bullet
(which has both a vertical and a horizontal
displacement).

(a) The height at t = 5 s is

y(5) = 200(5) − 4.9(52) = 877.5 m

(b) The maximum height occurs at the critical point of y(t):

y′(t) = d

dt
(200t − 4.9t2) = 200 − 9.8t = 0 ⇒ t = 200

9.8
≈ 20.4 s

The bullet’s maximum height is y(20.4) = 200(20.4) − 4.9(20.4)2 ≈ 2041 m.

We now discuss parametrizations of lines and circles. They will appear frequently in
later chapters.

THEOREM 1 Parametrization of a Line

(a) The line through P = (a, b) of slope m is parametrized by

x = a + rt, y = b + st − ∞ < t < ∞ 3

for any r and s (with r �= 0) such that m = s/r .

(b) The line through P = (a, b) and Q = (c, d) has parametrization

x = a + t (c − a), y = b + t (d − b) − ∞ < t < ∞ 4

The segment from P to Q corresponds to 0 ≤ 1 ≤ t .

Solution (a) Solve x = a + rt for t in terms of x to obtain t = (x − a)/r . Then

a a + 1 a + 2

t = −1

t = 0, P = (a, b)

t = 1

t = 2

x

b

b + m

b + 2m

b − m

y

a − 1

FIGURE 5 The line

y − a = m(x − b)

has parametrization

c(t) = (a + t, b + mt)

This corresponds to r = 1, s = m in Eq. 3.

y = b + st = b + s

(
x − a

r

)
= b + m(x − a) or y − b = m(x − a)

This is the equation of the line through P = (a, b) of slope m. The choice r = 1 and
s = m yields the parametrization in Figure 5.

The parametrization in (b) defines a line that satisfies (x(0), y(0)) = (a, b) and
(x(1), y(1)) = (c, d). Thus, it parametrizes the line through P and Q and traces the
segment from P to Q as t varies from 0 to 1.

EXAMPLE 4 Parametrization of a Line Find parametric equations for the line through
P = (3, −1) of slope m = 4.

Solution We can parametrize the line by taking r = 1 and s = 4 in Eq. (3):

x = 3 + t, y = −1 + 4t

This is also written as c(t) = (3 + t, −1 + 4t). Another parametrization of the line is
c(t) = (3 + 5t, −1 + 20t), corresponding to r = 5 and s = 20 in Eq. (3).
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The circle of radius R centered at the origin has the parametrization

x = R cos θ, y = R sin θ

The parameter θ represents the angle corresponding to the point (x, y) on the circle
(Figure 6). The circle is traversed once in the counterclockwise direction as θ varies over

a
x

b

y
(a + Rcos θ, b + Rsin θ)

(a, b)

(Rcos θ, Rsin θ)

θ

θ

FIGURE 6 Parametrization of a circle of
radius R with center (a, b).

a half-open interval of length 2π such as [0, 2π) or [−π, π).
More generally, the circle of radius R with center (a, b) has parametrization (Figure 6)

x = a + R cos θ, y = b + R sin θ 5

As a check, let’s verify that a point (x, y) given by Eq. (5) satisfies the equation of the
circle of radius R centered at (a, b):

(x − a)2 + (y − b)2 = (a + R cos θ − a)2 + (b + R sin θ − b)2

= R2 cos2 θ + R2 sin2 θ = R2

In general, to translate (meaning “to move”) a parametric curve horizontally a units and
vertically b units, replace c(t) = (x(t), y(t)) by c(t) = (a + x(t), b + y(t)).

Suppose we have a parametrization c(t) = (x(t), y(t)) where x(t) is an even function
and y(t) is an odd function, that is, x(−t) = x(t) and y(−t) = −y(t). In this case, c(−t)

is the reflection of c(t) across the x-axis:

c(−t) = (x(−t), y(−t)) = (x(t), −y(t))

The curve, therefore, is symmetric with respect to the x-axis. We apply this remark in the
next example and in Example 7 below.

EXAMPLE 5 Parametrization of an Ellipse Verify that the ellipse with equation(
x
a

)2 + ( y
b

)2 = 1 is parametrized by

c(t) = (a cos t, b sin t) (for −π ≤ t < π )

Plot the case a = 4, b = 2.

Solution To verify that c(t) parametrizes the ellipse, show that the equation of the ellipse

TABLE 2

t x(t) = 4 cos t y(t) = 2 sin t

0 4 0

π

6
2
√

3 1

π

3
2

√
3

π

2
0 2

2π

3
−2

√
3

5π

6
−2

√
3 1

π

2
−4 0

is satisfied with x = a cos t , y = b sin t :(x

a

)2 +
(y

b

)2 =
(

a cos t

a

)2

+
(

b sin t

b

)2

= cos2 t + sin2 t = 1

To plot the casea = 4,b = 2, we connect the points corresponding to the t-values inTable 2
(see Figure 7). This gives us the top half of the ellipse corresponding to 0 ≤ t ≤ π . Then
we observe that x(t) = 4 cos t is even and y(t) = 2 sin t is odd. As noted above, this tells
us that the bottom half of the ellipse is obtained by symmetry with respect to the x-axis.

−4

−2

2

y

t =   

t =
t =

4
x

t =
t = 0

  
6

2  
3 t =

t =

π

π
  
3
π

  
2
ππ

5  
6
π

FIGURE 7 Ellipse with parametric equations x = 4 cos t , y = 2 sin t .
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A parametric curve c(t) is also called a path. This term emphasizes that c(t) describes
not just an underlying curve C, but a particular way of moving along the curve.

CONCEPTUAL INSIGHT The parametric equations for the ellipse in Example 5 illustrate
a key difference between the path c(t) and its underlying curve C. The curve C is an
ellipse in the plane, whereas c(t) describes a particular, counterclockwise motion of a
particle along the ellipse. If we let t vary from 0 to 4π , then the particle goes around
the ellipse twice.

A key feature of parametrizations is that they are not unique. In fact, every curve
can be parametrized in infinitely many different ways. For instance, the parabola y = x2

is parametrized not only by (t, t2) but also by (t3, t6), or (t5, t10), and so on.

EXAMPLE 6 Different Parametrizations of the Same Curve Describe the motion of a
particle moving along each of the following paths.

(a) c1(t) = (t3, t6) (b) c2(t) = (t2, t4) (c) c3(t) = (cos t, cos2 t)

−1

y y

x
1−1 1 −1

y

1
x x

(−1, 1)

t > 0

t < 0 (1, 1)

(A)  c1(t) = (t3, t6) (B)  c2(t) = (t2, t4) (C)  c3(t) = (cos t, cos2 t )

t = ..., −π, π, 3π, ... t = ..., −2π, 0, 2π, 4π, ...

FIGURE 8 Three parametrizations of
portions of the parabola.

Solution Each of these parametrizations satisfies y = x2, so all three parametrize portions
of the parabola y = x2.

(a) As t varies from −∞ to ∞, the function t3 also varies from −∞ to ∞. Therefore,
c1(t) = (t3, t6) traces the entire parabola y = x2, moving from left to right and passing
through each point once [Figure 8(A)].

(b) Since x = t2 ≥ 0, the path c2(t) = (t2, t4) traces only the right half of the parabola.
The particle comes in toward the origin as t varies from −∞ to 0, and it goes back out to
the right as t varies from 0 to ∞ [Figure 8(B)].

(c) As t varies from −∞ and ∞, cos t oscillates between 1 and −1. Thus a particle
following the path c3(t) = (cos t, cos2 t) oscillates back and forth between the points
(1, 1) and (−1, 1) on the parabola. [Figure 8(C)].

EXAMPLE 7 Using Symmetry to Sketch a Loop Sketch the curve

c(t) = (t2 + 1, t3 − 4t)

Label the points corresponding to t = 0, ±1, ±2, ±2.5.

Solution

Step 1. Use symmetry.
Observe that x(t) = t2 + 1 is an even function and that y(t) = t3 − 4t is an odd func-
tion. As noted before Example 5, this tells us that c(t) is symmetric with respect to
the x-axis. Therefore, we will plot the curve for t ≥ 0 and reflect across the x-axis to
obtain the part for t ≤ 0.
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Step 2. Analyze x(t), y(t) as functions of t .
We havex(t) = t2 + 1 andy(t) = t3 − 4t .Thex-coordinatex(t) = t2 + 1 increases to
∞ as t → ∞. To analyze the y-coordinate, we graph y(t) = t3 − 4t = t (t − 2)(t + 2)

as a function of t (not as a function of x). Since y(t) is the height above the x-axis,
Figure 9(A) shows that

y(t) < 0 for 0 < t < 2, ⇒ curve below x-axis

y(t) > 0 for t > 2, ⇒ curve above x-axis

So the curve starts at c(0) = (1, 0), dips below the x-axis and returns to the x-axis at
t = 2. Both x(t) and y(t) tend to ∞ as t → ∞. The curve is concave up because y(t)

increases more rapidly than x(t).
Step 3. Plot points and join by an arc.

The points c(0), c(1), c(2), c(2.5) tabulated in Table 3 are plotted and joined by an arc
to create the sketch for t ≥ 0 as in Figure 9(B). The sketch is completed by reflecting
across the x-axis as in Figure 9(C).

TABLE 3

t x = t2 + 1 y = t3 − 4t

0 1 0
1 2 −3
2 5 0
2.5 7.25 5.625

y

t = 2.5

t = 1

t = −2
t = 2t = 0t = 2t = 0

t = −2.5

t = −1

(C) Complete sketch using
symmetry.

10

8

−8

3

−3

x

y

3−3 1−1 2−2
t

y

t = 2.5

t = 1

y = t3 − 4t

(B) Graph for t ≥ 0(A) Graph of y-coordinate
y(t) = t3 − 4t

5 510

8

−8

3

−3

x

FIGURE 9 The curve c(t) = (t2 + 1, t3 − 4t).

A cycloid is a curve traced by a point on the circumference of a rolling wheel as in
Figure 10. Cycloids are famous for their “brachistochrone property” (see the marginal
note below).

1

y

x
0 π π2 π3 π4FIGURE 10 A cycloid.

EXAMPLE 8 Parametrizing the Cycloid Find parametric equations for the cycloid
generated by a point P on the unit circle.

A stellar cast of mathematicians (including
Galileo, Pascal, Newton, Leibniz, Huygens,
and Bernoulli) studied the cycloid and
discovered many of its remarkable
properties. A slide designed so that an
object sliding down (without friction)
reaches the bottom in the least time must
have the shape of an inverted cycloid. This
is the brachistochrone property, a term
derived from the Greek brachistos,
“shortest,” and chronos, “time.”

Solution The point P is located at the origin at t = 0. At time t , the circle has rolled t

radians along the x axis and the center C of the circle then has coordinates (t, 1) as in
Figure 11(A). Figure 11(B) shows that we get from C to P by moving down cos t units
and to the left sin t units, giving us the parametric equations

x(t) = t − sin t, y(t) = 1 − cos t 5
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x

1

11

y

O

sin t
x

y

t

P

Position of P at time t(A) P has coordinates
x = t − sin t, y = 1 − cos t

(B)

1

1 cos ttt

y

C = (t, 1)

P

C

t xO x

FIGURE 11

The argument in Example 8 shows in a similar fashion that the cycloid generated by
a circle of radius R has parametric equations

x = Rt − R sin t, y = R − R cos t 6

Next, we address the problem of finding tangent lines to parametric curves. The slope
of the tangent line is the derivative dy/dx, but we have to use the Chain Rule to compute
it because y is not given explicitly as a function of x. Write x = f (t), y = g(t). Then, by
the Chain Rule in Leibniz notation,

g′(t) = dy

dt
= dy

dx

dx

dt
= dy

dx
f ′(t)

If f ′(t) �= 0, we can divide by f ′(t) to obtainNOTATION In this section, we write
f ′(t), x ′(t), y ′(t), and so on to denote the
derivative with respect to t . dy

dx
= g′(t)

f ′(t)

This calculation is valid if f (t) and g(t) are differentiable, f ′(t) is continuous, and f ′(t) �=
0. In this case, the inverse t = f −1(x) exists, and the composite y = g(f −1(x)) is a
differentiable function of x.

CAUTION Do not confuse dy/dx with the
derivatives dx/dt and dy/dt , which are
derivatives with respect to the parameter t .
Only dy/dx is the slope of the tangent line.

THEOREM 2 Slope of the Tangent Line Let c(t) = (x(t), y(t)), where x(t) and y(t)

are differentiable. Assume that x′(t) is continuous and x′(t) �= 0. Then

dy

dx
= dy/dt

dx/dt
= y′(t)

x′(t)
7

EXAMPLE 9 Let c(t) = (t2 + 1, t3 − 4t). Find:

105
x

y

t = 3

t = 

5

10

15

−5

−10

−15

t = − 2

�3

t = −3

2

�3

FIGURE 12 Horizontal tangent lines on
c(t) = (t2 + 1, t3 − 4t).

(a) An equation of the tangent line at t = 3

(b) The points where the tangent is horizontal (Figure 12).

Solution We have

dy

dx
= y′(t)

x′(t)
= (t3 − 4t)′

(t2 + 1)′
= 3t2 − 4

2t
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(a) The slope at t = 3 is

dy

dx
= 3t2 − 4

2t

∣∣∣∣
t=3

= 3(3)2 − 4

2(3)
= 23

6

Since c(3) = (10, 15), the equation of the tangent line in point-slope form is

y − 15 = 23

6
(x − 10)

(b) The slope dy/dx is zero if y′(t) = 0 and x′(t) �= 0. We have y′(t) = 3t2 − 4 = 0
for t = ±2/

√
3 (and x′(t) = 2t �= 0 for these values of t). Therefore, the tangent line is

horizontal at the points

c

(
− 2√

3

)
=

(
7

3
,

16

3
√

3

)
, c

(
2√
3

)
=

(
7

3
, − 16

3
√

3

)

Parametric curves are widely used in the field of computer graphics. A particularlyBézier curves were invented in the 1960s
by the French engineer Pierre Bézier
(1910–1999), who worked for the Renault
car company. They are based on the
properties of Bernstein polynomials,
introduced 50 years earlier by the Russian
mathematician Sergei Bernstein to study
the approximation of continuous functions
by polynomials. Today, Bézier curves are
used in standard graphics programs, such
as Adobe IllustratorTM and Corel DrawTM,
and in the construction and storage of
computer fonts such as TrueTypeTM and
PostScriptTM fonts.

important class of curves are Bézier curves, which we discuss here briefly in the cubic
case. Given four “control points” (Figure 13):

P0 = (a0, b0), P1 = (a1, b1), P2 = (a2, b2), P3 = (a3, b3)

the Bézier curve c(t) = (x(t), y(t)) is defined for 0 ≤ t ≤ 1 by

x(t) = a0(1 − t)3 + 3a1t (1 − t)2 + 3a2t
2(1 − t) + a3t

3 8

y(t) = b0(1 − t)3 + 3b1t (1 − t)2 + 3b2t
2(1 − t) + b3t

3 9

P3

P3 = (a3, b3)

P2 = (a2, b2)
P1 = (a1, b1)

P0 = (a0, b0)
P1

P0

P2

FIGURE 13 Cubic Bézier curves specified
by four control points.

Note that c(0) = (a0, b0) and c(1) = (a3, b3), so the Bézier curve begins at P0 and ends
at P3 (Figure 13). It can also be shown that the Bézier curve is contained within the
quadrilateral (shown in blue) with vertices P0, P1, P2, P3. However, c(t) does not pass
through P1 and P2. Instead, these intermediate control points determine the slopes of the
tangent lines at P0 and P3, as we show in the next example (also, see Exercises 65–68).

EXAMPLE 10 Show that the Bézier curve is tangent to segment P0P1 at P0.

Hand sketch made in 1964 by Pierre Bézier
for the French automobile manufacturer
Renault.

Solution The Bézier curve passes through P0 at t = 0, so we must show that the slope
of the tangent line at t = 0 is equal to the slope of P0P1. To find the slope, we compute
the derivatives:

x′(t) = −3a0(1 − t)2 + 3a1(1 − 4t + 3t2) + a2(2t − 3t2) + 3a3t
2

y′(t) = −3b0(1 − t)2 + 3b1(1 − 4t + 3t2) + b2(2t − 3t2) + 3b3t
2

Evaluating at t = 0, we obtain x′(0) = 3(a1 − a0), y′(0) = 3(b1 − b0), and

dy

dx

∣∣∣∣
t=0

= y′(0)

x′(0)
= 3(b1 − b0)

3(a1 − a0)
= b1 − b0

a1 − a0

This is equal to the slope of the line through P0 = (a0, b0) and P1 = (a1, b1) as claimed
(provided that a1 �= a0).
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11.1 SUMMARY

• A parametric curve c(t) = (f (t), g(t)) describes the path of a particle moving along a
curve as a function of the parameter t .
• Parametrizations are not unique: Every curve C can be parametrized in infinitely many
ways. Furthermore, the path c(t) may traverse all or part of C more than once.
• Slope of the tangent line at c(t):

dy

dx
= dy/dt

dx/dt
= y′(t)

x′(t)
(valid if x′(t) �= 0)

• Do not confuse the slope of the tangent line dy/dx with the derivatives dy/dt and
dx/dt , with respect to t .
• Standard parametrizations:

– Line of slope m = s/r through P = (a, b): c(t) = (a + rt, b + st).
– Circle of radius R centered at P = (a, b): c(t) = (a + R cos t, b + R sin t).
– Cycloid generated by a circle of radius R: c(t) = (R(t − sin t), R(1 − cos t)).

11.1 EXERCISES

Preliminary Questions
1. Describe the shape of the curve x = 3 cos t, y = 3 sin t .

2. How does x = 4 + 3 cos t, y = 5 + 3 sin t differ from the curve in
the previous question?

3. What is the maximum height of a particle whose path has paramet-
ric equations x = t9, y = 4 − t2?

4. Can the parametric curve (t, sin t) be represented as a graph
y = f (x)? What about (sin t, t)?

5. Match the derivatives with a verbal description:

(a)
dx

dt
(b)

dy

dt
(c)

dy

dx

(i) Slope of the tangent line to the curve

(ii) Vertical rate of change with respect to time

(iii) Horizontal rate of change with respect to time

Exercises
1. Find the coordinates at times t = 0, 2, 4 of a particle following the

path x = 1 + t3, y = 9 − 3t2.

2. Find the coordinates at t = 0, π
4 , π of a particle moving along the

path c(t) = (cos 2t, sin2 t).

3. Show that the path traced by the bullet in Example 3 is a parabola
by eliminating the parameter.

4. Use the table of values to sketch the parametric curve (x(t), y(t)),
indicating the direction of motion.

t −3 −2 −1 0 1 2 3

x −15 0 3 0 −3 0 15

y 5 0 −3 −4 −3 0 5

5. Graph the parametric curves. Include arrows indicating the direc-
tion of motion.

(a) (t, t), −∞ < t < ∞ (b) (sin t, sin t), 0 ≤ t ≤ 2π

(c) (et , et ), −∞ < t < ∞ (d) (t3, t3), −1 ≤ t ≤ 1

6. Give two different parametrizations of the line through (4, 1) with
slope 2.

In Exercises 7–14, express in the form y = f (x) by eliminating the
parameter.

7. x = t + 3, y = 4t 8. x = t−1, y = t−2

9. x = t , y = tan−1(t3 + et ) 10. x = t2, y = t3 + 1

11. x = e−2t , y = 6e4t 12. x = 1 + t−1, y = t2

13. x = ln t , y = 2 − t 14. x = cos t , y = tan t

In Exercises 15–18, graph the curve and draw an arrow specifying the
direction corresponding to motion.

15. x = 1
2 t , y = 2t2 16. x = 2 + 4t , y = 3 + 2t

17. x = πt , y = sin t 18. x = t2, y = t3

19. Match the parametrizations (a)–(d) below with their plots in Fig-
ure 14, and draw an arrow indicating the direction of motion.
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2π

xx

yy

1555

(II) (III)(I)

x x

1020
5

yy

(IV)

FIGURE 14

(a) c(t) = (sin t, −t) (b) c(t) = (t2 − 9, 8t − t3)

(c) c(t) = (1 − t, t2 − 9) (d) c(t) = (4t + 2, 5 − 3t)

20. A particle follows the trajectory

x(t) = 1

4
t3 + 2t, y(t) = 20t − t2

with t in seconds and distance in centimeters.

(a) What is the particle’s maximum height?

(b) When does the particle hit the ground and how far from the origin
does it land?

21. Find an interval of t-values such that c(t) = (cos t, sin t) traces the
lower half of the unit circle.

22. Find an interval of t-values such that c(t) = (2t + 1, 4t − 5)

parametrizes the segment from (0, −7) to (7, 7).

In Exercises 23–38, find parametric equations for the given curve.

23. y = 9 − 4x 24. y = 8x2 − 3x

25. 4x − y2 = 5 26. x2 + y2 = 49

27. (x + 9)2 + (y − 4)2 = 49 28.
(x

5

)2 +
( y

12

)2 = 1

29. Line of slope 8 through (−4, 9)

30. Line through (2, 5) perpendicular to y = 3x

31. Line through (3, 1) and (−5, 4)

32. Line through
( 1

3 , 1
6

)
and

( − 7
6 , 5

3

)
33. Segment joining (1, 1) and (2, 3)

34. Segment joining (−3, 0) and (0, 4)

35. Circle of radius 4 with center (3, 9)

36. Ellipse of Exercise 28, with its center translated to (7, 4)

37. y = x2, translated so that the minimum occurs at (−4, −8)

38. y = cos x translated so that a maximum occurs at (3, 5)

In Exercises 39–42, find a parametrization c(t) of the curve satisfying
the given condition.

39. y = 3x − 4, c(0) = (2, 2)

40. y = 3x − 4, c(3) = (2, 2)

41. y = x2, c(0) = (3, 9)

42. x2 + y2 = 4, c(0) = (1,
√

3)

43. Describe c(t) = (sec t, tan t) for 0 ≤ t < π
2 in the form y = f (x).

Specify the domain of x.

44. Find a parametrization of the right branch (x > 0) of the hyperbola

(x

a

)2 −
(y

b

)2 = 1

using the functions cosh t and sinh t . How can you parametrize the
branch x < 0?

45. The graphs of x(t) and y(t) as functions of t are shown in Figure
15(A). Which of (I)–(III) is the plot of c(t) = (x(t), y(t))? Explain.

yyyy
x(t)

y(t)
xxxt

(A) (III)(II)(I)

FIGURE 15

46. Which graph, (I) or (II), is the graph of x(t) and which is the graph
of y(t) for the parametric curve in Figure 16(A)?

y y

(A)

x

(I)

t

y

(II)

t

FIGURE 16

47. Sketch c(t) = (t3 − 4t, t2) following the steps in Example 7.

48. Sketch c(t) = (t2 − 4t, 9 − t2) for −4 ≤ t ≤ 10.

In Exercises 49–52, use Eq. (7) to find dy/dx at the given point.

49. (t3, t2 − 1), t = −4 50. (2t + 9, 7t − 9), t = 1

51. (s−1 − 3s, s3), s = −1 52. (sin 2θ, cos 3θ), θ = π
6

In Exercises 53–56, find an equation y = f (x) for the parametric curve
and compute dy/dx in two ways: using Eq. (7) and by differentiating
f (x).

53. c(t) = (2t + 1, 1 − 9t)

54. c(t) = ( 1
2 t, 1

4 t2 − t
)

55. x = s3, y = s6 + s−3
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56. x = cos θ , y = cos θ + sin2 θ

57. Find the points on the curve c(t) = (3t2 − 2t, t3 − 6t) where the
tangent line has slope 3.

58. Find the equation of the tangent line to the cycloid generated by a
circle of radius 4 at t = π

2 .

In Exercises 59–62, let c(t) = (t2 − 9, t2 − 8t) (see Figure 17).

60

40

20

604020
x

y

FIGURE 17 Plot of c(t) = (t2 − 9, t2 − 8t).

59. Draw an arrow indicating the direction of motion, and determine
the interval of t-values corresponding to the portion of the curve in each
of the four quadrants.

60. Find the equation of the tangent line at t = 4.

61. Find the points where the tangent has slope 1
2 .

62. Find the points where the tangent is horizontal or vertical.

63. Let A and B be the points where the ray of angle θ intersects the
two concentric circles of radii r < R centered at the origin (Figure 18).
Let P be the point of intersection of the horizontal line through A and
the vertical line through B. Express the coordinates of P as a function
of θ and describe the curve traced by P for 0 ≤ θ ≤ 2π .

x

y

B

P

Rr

A

θ

FIGURE 18

64. A 10-ft ladder slides down a wall as its bottom B is pulled away
from the wall (Figure 19). Using the angle θ as parameter, find the
parametric equations for the path followed by (a) the top of the ladder
A, (b) the bottom of the ladder B, and (c) the point P located 4 ft from
the top of the ladder. Show that P describes an ellipse.

y

B

P = (x, y)

6

4

θ x

A

FIGURE 19

In Exercises 65–68, refer to the Bézier curve defined by Eqs. (8) and (9).

65. Show that the Bézier curve with control points

P0 = (1, 4), P1 = (3, 12), P2 = (6, 15), P3 = (7, 4)

has parametrization

c(t) = (1 + 6t + 3t2 − 3t3, 4 + 24t − 15t2 − 9t3)

Verify that the slope at t = 0 is equal to the slope of the segment P0P1.

66. Find an equation of the tangent line to the Bézier curve in Exercise
65 at t = 1

3 .

67. Find and plot the Bézier curve c(t) passing through the
control points

P0 = (3, 2), P1 = (0, 2), P2 = (5, 4), P3 = (2, 4)

68. Show that a cubic Bézier curve is tangent to the segment P2P3
at P3.

69. A bullet fired from a gun follows the trajectory

x = at, y = bt − 16t2 (a, b > 0)

Show that the bullet leaves the gun at an angle θ = tan−1 (
b
a

)
and lands

at a distance ab/16 from the origin.

70. Plot c(t) = (t3 − 4t, t4 − 12t2 + 48) for −3 ≤ t ≤ 3.
Find the points where the tangent line is horizontal or vertical.

71. Plot the astroid x = cos3 θ , y = sin3 θ and find the equa-
tion of the tangent line at θ = π

3 .

72. Find the equation of the tangent line at t = π
4 to the cycloid gen-

erated by the unit circle with parametric equation (5).

73. Find the points with horizontal tangent line on the cycloid with
parametric equation (5).



618 C H A P T E R 11 PARAMETRIC EQUATIONS, POLAR COORDINATES, AND CONIC SECTIONS

74. Property of the Cycloid Prove that the tangent line at a point P

on the cycloid always passes through the top point on the rolling circle
as indicated in Figure 20. Assume the generating circle of the cycloid
has radius 1.

Tangent line

Cycloid

y

x

P

FIGURE 20

75. A curtate cycloid (Figure 21) is the curve traced by a point at a
distance h from the center of a circle of radius R rolling along the
x-axis where h < R. Show that this curve has parametric equations
x = Rt − h sin t , y = R − h cos t .

y

h
R

x
4π2π

FIGURE 21 Curtate cycloid.

76. Use a computer algebra system to explore what happens
when h > R in the parametric equations of Exercise 75. Describe the
result.

77. Show that the line of slope t through (−1, 0) intersects the
unit circle in the point with coordinates

x = 1 − t2

t2 + 1
, y = 2t

t2 + 1
10

Conclude that these equations parametrize the unit circle with the point
(−1, 0) excluded (Figure 22). Show further that t = y/(x + 1).

(x, y)

(−1, 0)

Slope t

y

x

FIGURE 22 Unit circle.

78. The folium of Descartes is the curve with equation x3 + y3 =
3axy, where a �= 0 is a constant (Figure 23).

(a) Show that the line y = tx intersects the folium at the origin and
at one other point P for all t �= −1, 0. Express the coordinates of P

in terms of t to obtain a parametrization of the folium. Indicate the
direction of the parametrization on the graph.

(b) Describe the interval of t-values parametrizing the parts of the
curve in quadrants I, II, and IV. Note that t = −1 is a point of discon-
tinuity of the parametrization.

(c) Calculate dy/dx as a function of t and find the points with hori-
zontal or vertical tangent.

2−2

−2

x

2
II I

III IV

y

FIGURE 23 Folium x3 + y3 = 3axy.

79. Use the results of Exercise 78 to show that the asymptote of the
folium is the line x + y = −a. Hint: Show that lim

t→−1
(x + y) = −a.

80. Find a parametrization of x2n+1 + y2n+1 = axnyn, where a and
n are constants.

81. Second Derivative for a Parametrized Curve Given a param-
etrized curve c(t) = (x(t), y(t)), show that

d

dt

( dy

dx

)
= x′(t)y′′(t) − y′(t)x′′(t)

x′(t)2

Use this to prove the formula

d2y

dx2
= x′(t)y′′(t) − y′(t)x′′(t)

x′(t)3
11

82. The second derivative of y = x2 is dy2/d2x = 2. Verify that
Eq. (11) applied to c(t) = (t, t2) yields dy2/d2x = 2. In fact, any
parametrization may be used. Check that c(t) = (t3, t6) and c(t) =
(tan t, tan2 t) also yield dy2/d2x = 2.

In Exercises 83–86, use Eq. (11) to find d2y/dx2.

83. x = t3 + t2, y = 7t2 − 4, t = 2

84. x = s−1 + s, y = 4 − s−2, s = 1

85. x = 8t + 9, y = 1 − 4t , t = −3

86. x = cos θ , y = sin θ , θ = π
4

87. Use Eq. (11) to find the t-intervals on which c(t) = (t2, t3 − 4t)

is concave up.

88. Use Eq. (11) to find the t-intervals on which c(t) = (t2, t4 − 4t)

is concave up.
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89. Area Under a Parametrized Curve Let c(t) = (x(t), y(t)),
where y(t) > 0 and x′(t) > 0 (Figure 24). Show that the area A under
c(t) for t0 ≤ t ≤ t1 is

A =
∫ t1

t0

y(t)x′(t) dt 12

Hint: Because it is increasing, the function x(t) has an inverse t = g(x)

and c(t) is the graph of y = y(g(x)). Apply the change-of-variables

formula to A = ∫ x(t1)
x(t0)

y(g(x)) dx.

y
c(t)

x(t1)x(t0)
xx

FIGURE 24

90. Calculate the area under y = x2 over [0, 1] using Eq. (12) with the
parametrizations (t3, t6) and (t2, t4).

91. What does Eq. (12) say if c(t) = (t, f (t))?

92. Sketch the graph of c(t) = (ln t, 2 − t) for 1 ≤ t ≤ 2 and compute
the area under the graph using Eq. (12).

93. Galileo tried unsuccessfully to find the area under a cycloid.Around
1630, Gilles de Roberval proved that the area under one arch of the cy-
cloid c(t) = (Rt − R sin t, R − R cos t) generated by a circle of radius
R is equal to three times the area of the circle (Figure 25). Verify Rober-
val’s result using Eq. (12).

x

y

R

πRπR 2

FIGURE 25 The area of one arch of the cycloid equals three times the
area of the generating circle.

Further Insights and Challenges
94. Prove the following generalization of Exercise 93: For all t > 0,
the area of the cycloidal sector OPC is equal to three times the area of
the circular segment cut by the chord PC in Figure 26.

R
tP

O C = (Rt, 0)
x

y

R
t

(B) Circular segment cut
by the chord PC

(A) Cycloidal sector OPC 

P

O C = (Rt, 0)
x

y

FIGURE 26

95. Derive the formula for the slope of the tangent line to
a parametric curve c(t) = (x(t), y(t)) using a method different from
that presented in the text. Assume that x′(t0) and y′(t0) exist and that
x′(t0) �= 0. Show that

lim
h→0

y(t0 + h) − y(t0)

x(t0 + h) − x(t0)
= y′(t0)

x′(t0)

Then explain why this limit is equal to the slope dy/dx. Draw a diagram
showing that the ratio in the limit is the slope of a secant line.

96. Verify that the tractrix curve (� > 0)

c(t) =
(

t − � tanh
t

�
, � sech

t

�

)

has the following property: For all t , the segment from c(t) to (t, 0) is
tangent to the curve and has length � (Figure 27).

y

t

�

�

c(t)

x

FIGURE 27 The tractrix c(t) =
(

t − � tanh
t

�
, � sech

t

�

)
.

97. In Exercise 54 of Section 9.1, we described the tractrix by the
differential equation

dy

dx
= − y√

�2 − y2

Show that the curve c(t) identified as the tractrix in Exercise 96 satisfies
this differential equation. Note that the derivative on the left is taken
with respect to x, not t .

In Exercises 98 and 99, refer to Figure 28.

98. In the parametrization c(t) = (a cos t, b sin t) of an ellipse, t is
not an angular parameter unless a = b (in which case the ellipse is a
circle). However, t can be interpreted in terms of area: Show that if
c(t) = (x, y), then t = (2/ab)A, where A is the area of the shaded
region in Figure 28. Hint: Use Eq. (12).
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q

y

b

a x

(x, y)

FIGURE 28 The parameter θ on the ellipse
(x

a

)2 +
(y

b

)2 = 1.

99. Show that the parametrization of the ellipse by the angle θ is

x = ab cos θ√
a2 sin2 θ + b2 cos2 θ

y = ab sin θ√
a2 sin2 θ + b2 cos2 θ

11.2 Arc Length and Speed
We now derive a formula for the arc length of a curve in parametric form. Recall that in
Section 8.1, arc length was defined as the limit of the lengths of polygonal approximations
(Figure 1).

x

y

N = 5 N = 10

P5 = c(t5) P4 = c(t4)

x

y

P3 = c(t3)

P2 = c(t2)

P1 = c(t1)

P0 = c(t0)

P10 = c(t10)

P1 = c(t1)

P0 = c(t0)

FIGURE 1 Polygonal approximations for
N = 5 and N = 10.

Given a parametrization c(t) = (x(t), y(t)) for a ≤ t ≤ b, we construct a polygonal ap-
proximation L consisting of the N segments by joining points

P0 = c(t0), P1 = c(t1), . . . , PN = c(tN )

corresponding to a choice of values t0 = a < t1 < t2 < · · · < tN = b. By the distance
formula,

Pi−1Pi =
√(

x(ti) − x(ti−1)
)2 + (

y(ti) − y(ti−1)
)2 1

Now assume that x(t) and y(t) are differentiable. According to the Mean Value Theorem,
there are values t∗i and t∗∗

i in the interval [ti−1, ti] such that

x(ti) − x(ti−1) = x′(t∗i )�ti, y(ti) − y(ti−1) = y′(t∗∗
i )�ti

where �ti = ti − ti−1, and therefore,

Pi−1Pi =
√

x′(t∗i )2�t2
i + y′(t∗∗

i )2�t2
i =

√
x′(t∗i )2 + y′(t∗∗

i )2 �ti

The length of the polygonal approximation L is equal to the sum

N∑
i=1

Pi−1Pi =
N∑

i=1

√
x′(t∗i )2 + y′(t∗∗

i )2 �ti 2

This is nearly a Riemann sum for the function
√

x′(t)2 + y′(t)2. It would be a true Riemann
sum if the intermediate values t∗i and t∗∗

i were equal. Although they are not necessarily
equal, it can be shown (and we will take for granted) that if x′(t) and y′(t) are continuous,
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then the sum in Eq. (2) still approaches the integral as the widths �ti tend to 0. Thus,

Because of the square root, the arc length
integral cannot be evaluated explicitly
except in special cases, but we can always
approximate it numerically.

s = lim
N∑

i=1

Pi−1Pi =
∫ b

a

√
x′(t)2 + y′(t)2 dt

THEOREM 1 Arc Length Let c(t) = (x(t), y(t)), where x′(t) and y′(t) exist and are
continuous. Then the arc length s of c(t) for a ≤ t ≤ b is equal to

s =
∫ b

a

√
x′(t)2 + y′(t)2 dt 3

The graph of a function y = f (x) has parametrization c(t) = (t, f (t)). In this case,√
x′(t)2 + y′(t)2 =

√
1 + f ′(t)2

and Eq. (3) reduces to the arc length formula derived in Section 8.1.
As mentioned above, the arc length integral can be evaluated explicitly only in special

cases. The circle and the cycloid are two such cases.

EXAMPLE 1 Use Eq. 3 to calculate the arc length of a circle of radius R.

Solution With the parametrization x = R cos θ , y = R sin θ ,

x′(θ)2 + y′(θ)2 = (−R sin θ)2 + (R cos θ)2 = R2(sin2 θ + cos2 θ) = R2

We obtain the expected result:

s =
∫ 2π

0

√
x′(θ)2 + y′(θ)2 dθ =

∫ 2π

0
R dθ = 2πR

EXAMPLE 2 Length of the Cycloid Calculate the length s of one arch of the cycloid

t = 
2

π2

π2

t = π

π4

4

x

y

FIGURE 2 One arch of the cycloid generated
by a circle of radius 2.

REMINDER

1 − cos t

2
= sin2 t

2

generated by a circle of radius R = 2 (Figure 2).

Solution We use the parametrization of the cycloid in Eq. (6) of Section 1:

x(t) = 2(t − sin t), y(t) = 2(1 − cos t)

x′(t) = 2(1 − cos t), y′(t) = 2 sin t

Thus,

x′(t)2 + y′(t)2 = 22(1 − cos t)2 + 22 sin2 t

= 4 − 8 cos t + 4 cos2 t + 4 sin2 t

= 8 − 8 cos t

= 16 sin2 t

2
(Use the identity recalled in the margin.)

One arch of the cycloid is traced as t varies from 0 to 2π , and thus

s =
∫ 2π

0

√
x′(t)2 + y′(t)2 dt =

∫ 2π

0
4 sin

t

2
dt = −8 cos

t

2

∣∣∣∣2π

0
= −8(−1) + 8 = 16

Note that because sin t
2 ≥ 0 for 0 ≤ t ≤ 2π , we did not need an absolute value when

taking the square root of 16 sin2 t
2 .
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Now consider a particle moving along a path c(t). The distance traveled by the particleIn Chapter 13, we will discuss not just the
speed but also the velocity of a particle
moving along a curved path. Velocity is
“speed plus direction” and is represented
by a vector.

over the time interval [t0, t] is given by the arc length integral:

s(t) =
∫ t

t0

√
x′(u)2 + y′(u)2 du

On the other hand, speed is defined as the rate of change of distance traveled with respect
to time, so by the Fundamental Theorem of Calculus,

Speed = ds

dt
= d

dt

∫ t

t0

√
x′(u)2 + y′(u)2 du =

√
x′(t)2 + y′(t)2

THEOREM 2 Speed Along a Parametrized Path The speed of c(t) = (x(t), y(t)) is

Speed = ds

dt
=

√
x′(t)2 + y′(t)2

The next example illustrates the difference between distance traveled along a path
and displacement (also called net change in position). The displacement along a path is
the distance between the initial point c(t0) and the endpoint c(t1). The distance traveled
is greater than the displacement unless the particle happens to move in a straight line
(Figure 3).

y

x

c (t0)
c (t1)

Displacement over [t0, t1]

Path

FIGURE 3 The distance along the path is
greater than or equal to the displacement.

EXAMPLE 3 A particle travels along the path c(t) = (2t, 1 + t3/2). Find:

y

9

6

3

4 8
x

c(0)

c(4) = (8, 9)

Displacement d

Path of length s

FIGURE 4 The path c(t) = (2t, 1 + t3/2).

(a) The particle’s speed at t = 1 (assume units of meters and minutes).
(b) The distance traveled s and displacement d during the interval 0 ≤ t ≤ 4.

Solution We have

x′(t) = 2, y′(t) = 3

2
t1/2

The speed at time t is

s′(t) =
√

x′(t)2 + y′(t)2 =
√

4 + 9

4
t m/min

(a) The particle’s speed at t = 1 is s′(1) =
√

4 + 9
4 = 2.5 m/min.

(b) The distance traveled in the first 4 min is

s =
∫ 4

0

√
4 + 9

4
t dt = 8

27

(
4 + 9

4
t

)3/2 ∣∣∣∣4

0
= 8

27

(
133/2 − 8

) ≈ 11.52 m

The displacement d is the distance from the initial point c(0) = (0, 1) to the endpoint
c(4) = (8, 1 + 43/2) = (8, 9) (see Figure 4):

d =
√

(8 − 0)2 + (9 − 1)2 = 8
√

2 ≈ 11.31 m

In physics,we often describe the path of a particle moving with constant speed along
a circle of radius R in terms of a constant ω (lowercase Greek omega) as follows:

c(t) = (R cos ωt, R sin ωt)

The constant ω, called the angular velocity, is the rate of change with respect to time of
the particle’s angle θ (Figure 5).
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EXAMPLE 4 Angular Velocity Calculate the speed of the circular path of radius R

�

� �

y

x

R
(R cos    t, R sin    t)

θ =    t

FIGURE 5 A particle moving on a circle of
radius R with angular velocity ω has speed
|ωR|.

and angular velocity ω. What is the speed if R = 3 m and ω = 4 rad/s?

Solution We have x = R cos ωt and y = R sin ωt , and

x′(t) = −ωR sin ωt, y′(t) = ωR cos ωt

The particle’s speed is

ds

dt
=

√
x′(t)2 + y′(t)2 =

√
(−ωR sin ωt)2 + (ωR cos ωt)2

=
√

ω2R2(sin2 ωt + cos2 ωt) = |ω|R
Thus, the speed is constant with value |ω|R. If R = 3 m and ω = 4 rad/s, then the speed
is |ω|R = 3(4) = 12 m/s.

Consider the surface obtained by rotating a parametric curve c(t) = (x(t), y(t)) about
the x-axis. The surface area is given by Eq. (4) in the next theorem. It can be derived in
much the same way as the formula for a surface of revolution of a graph y = f (x) in
Section 8.1. In this theorem, we assume that y(t) ≥ 0 so that the curve c(t) lies above the
x-axis, and that x(t) is increasing so that the curve does not reverse direction.

THEOREM 3 Surface Area Let c(t) = (x(t), y(t)), where y(t) ≥ 0, x(t) is increas-
ing, and x′(t) and y′(t) are continuous. Then the surface obtained by rotating c(t) about
the x-axis for a ≤ t ≤ b has surface area

S = 2π

∫ b

a

y(t)

√
x′(t)2 + y′(t)2 dt 4

EXAMPLE 5 Calculate the surface area of the surface obtained by rotating the tractrix
c(t) = (t − tanh t, sech t) about the x-axis for 0 ≤ t < ∞.

1

y

x

c(t) = (t − tanh t, sech t)

1 2 3

FIGURE 6 Surface generated by revolving
the tractrix about the x-axis.

Solution Note that the surface extends infinitely to the right (Figure 6). We have

x′(t) = d

dt
(t − tanh t) = 1 − sech2 t, y′(t) = d

dt
sech t = − sech t tanh t

Using the identities 1 − sech2 t = tanh2 t and sech2 t = 1 − tanh2 t , we obtain

x′(t)2 + y′(t)2 = (1 − sech2 t)2 + (− sech t tanh t)2

= (tanh2 t)2 + (1 − tanh2 t) tanh2 t = tanh2 t

The surface area is given by an improper integral, which we evaluate using the integral
formula recalled in the margin:

REMINDER

sech t = 1

cosh t
= 2

et + e−t

1 − sech2 t = tanh2 t

d

dt
tanh t = sech2 t

d

dt
sech t = − sech t tanh t∫

sech t tanh t dt = − sech t + C

S = 2π

∫ ∞

0
sech t

√
tanh2 t dt = 2π

∫ ∞

0
sech t tanh t dt = 2π lim

R→∞

∫ R

0
sech t tanh t dt

= 2π lim
R→∞(− sech t)

∣∣∣R
0

= 2π lim
R→∞(sech 0 − sech R) = 2π sech 0 = 2π

Here we use that sech R = 1

eR + e−R
tends to zero (because eR → ∞ while e−R → 0).
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11.2 SUMMARY

• Arc length of c(t) = (x(t), y(t)) for a ≤ t ≤ b:

s = arc length =
∫ b

a

√
x′(t)2 + y′(t)2 dt

• The arc length is the distance along the path c(t). The displacement is the distance from
the starting point c(a) to the endpoint c(b).
• Arc length integral:

s(t) =
∫ t

t0

√
x′(u)2 + y′(u)2 du

• Speed at time t :
ds

dt
=

√
x′(t)2 + y′(t)2

• Surface area of the surface obtained by rotating c(t) = (x(t), y(t)) about the x-axis for
a ≤ t ≤ b:

S = 2π

∫ b

a

y(t)

√
x′(t)2 + y′(t)2 dt

11.2 EXERCISES

Preliminary Questions
1. What is the definition of arc length?

2. What is the interpretation of
√

x′(t)2 + y′(t)2 for a particle fol-
lowing the trajectory (x(t), y(t))?

3. A particle travels along a path from (0, 0) to (3, 4). What is the

displacement? Can the distance traveled be determined from the infor-
mation given?

4. Aparticle traverses the parabola y = x2 with constant speed 3 cm/s.
What is the distance traveled during the first minute? Hint: No compu-
tation is necessary.

Exercises
In Exercises 1–10, use Eq. (3) to find the length of the path over the
given interval.

1. (3t + 1, 9 − 4t), 0 ≤ t ≤ 2

2. (1 + 2t, 2 + 4t), 1 ≤ t ≤ 4 3. (2t2, 3t2 − 1), 0 ≤ t ≤ 4

4. (3t, 4t3/2), 0 ≤ t ≤ 1 5. (3t2, 4t3), 1 ≤ t ≤ 4

6. (t3 + 1, t2 − 3), 0 ≤ t ≤ 1

7. (sin 3t, cos 3t), 0 ≤ t ≤ π

8. (sin θ − θ cos θ, cos θ + θ sin θ), 0 ≤ θ ≤ 2

In Exercises 9 and 10, use the identity

1 − cos t

2
= sin2 t

2

9. (2 cos t − cos 2t, 2 sin t − sin 2t), 0 ≤ t ≤ π
2

10. (5(θ − sin θ), 5(1 − cos θ)), 0 ≤ θ ≤ 2π

11. Show that one arch of a cycloid generated by a circle of radius R

has length 8R.

12. Find the length of the spiral c(t) = (t cos t, t sin t) for 0 ≤ t ≤ 2π

to three decimal places (Figure 7). Hint: Use the formula∫ √
1 + t2 dt = 1

2
t
√

1 + t2 + 1

2
ln

(
t +

√
1 + t2

)
y

x

5

10−10

−10

t = 0

t = 2π

FIGURE 7 The spiral c(t) = (t cos t, t sin t).

13. Find the length of the tractrix (see Figure 6)

c(t) = (t − tanh(t), sech(t)), 0 ≤ t ≤ A
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14. Find a numerical approximation to the length of c(t) =
(cos 5t, sin 3t) for 0 ≤ t ≤ 2π (Figure 8).

y

x

1

1

FIGURE 8

In Exercises 15–18, determine the speed s at time t (assume units of
meters and seconds).

15. (t3, t2), t = 2 16. (3 sin 5t, 8 cos 5t), t = π
4

17. (5t + 1, 4t − 3), t = 9 18. (ln(t2 + 1), t3), t = 1

19. Find the minimum speed of a particle with trajectory c(t) =
(t3 − 4t, t2 + 1) for t ≥ 0. Hint: It is easier to find the minimum of
the square of the speed.

20. Find the minimum speed of a particle with trajectory c(t) =
(t3, t−2) for t ≥ 0.5.

21. Find the speed of the cycloid c(t) = (4t − 4 sin t, 4 − 4 cos t) at
points where the tangent line is horizontal.

22. Calculate the arc length integral s(t) for the logarithmic spiral
c(t) = (et cos t, et sin t).

In Exercises 23–26, plot the curve and use the Midpoint Rule
with N = 10, 20, 30, and 50 to approximate its length.

23. c(t) = (cos t, esin t ) for 0 ≤ t ≤ 2π

24. c(t) = (t − sin 2t, 1 − cos 2t) for 0 ≤ t ≤ 2π

25. The ellipse
(x

5

)2 +
(y

3

)2 = 1

26. x = sin 2t , y = sin 3t for 0 ≤ t ≤ 2π

27. If you unwind thread from a stationary circular spool, keeping the
thread taut at all times, then the endpoint traces a curve C called the

involute of the circle (Figure 9). Observe that PQ has length Rθ . Show
that C is parametrized by

c(θ) = (
R(cos θ + θ sin θ), R(sin θ − θ cos θ)

)
Then find the length of the involute for 0 ≤ θ ≤ 2π .

P = (x, y)

y

θ x

R

Q

FIGURE 9 Involute of a circle.

28. Let a > b and set

k =
√

1 − b2

a2

Use a parametric representation to show that the ellipse
(
x
a

)2+( y
b

)2 = 1 has length L = 4aG
(
π
2 , k

)
, where

G(θ, k) =
∫ θ

0

√
1 − k2 sin2 t dt

is the elliptic integral of the second kind.

In Exercises 29–32, use Eq. (4) to compute the surface area of the given
surface.

29. The cone generated by revolving c(t) = (t, mt) about the x-axis
for 0 ≤ t ≤ A

30. A sphere of radius R

31. The surface generated by revolving one arch of the cycloid c(t) =
(t − sin t, 1 − cos t) about the x-axis

32. The surface generated by revolving the astroid c(t) =
(cos3 t, sin3 t) about the x-axis for 0 ≤ t ≤ π

2

Further Insights and Challenges
33. Let b(t) be the “Butterfly Curve”:

x(t) = sin t

(
ecos t − 2 cos 4t − sin

(
t

12

)5
)

y(t) = cos t

(
ecos t − 2 cos 4t − sin

(
t

12

)5
)

(a) Use a computer algebra system to plot b(t) and the speed s′(t) for
0 ≤ t ≤ 12π .

(b) Approximate the length b(t) for 0 ≤ t ≤ 10π .

34. Let a ≥ b > 0 and set k = 2
√

ab

a − b
. Show that the trochoid

x = at − b sin t, y = a − b cos t, 0 ≤ t ≤ T

has length 2(a − b)G
(
T
2 , k

)
with G(θ, k) as in Exercise 28.

35. A satellite orbiting at a distance R from the center of the earth
follows the circular path x = R cos ωt , y = R sin ωt .
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(a) Show that the period T (the time of one revolution) is T = 2π/ω.

(b) According to Newton’s laws of motion and gravity,

x′′(t) = −Gme
x

R3
, y′′(t) = −Gme

y

R3

where G is the universal gravitational constant and me is the mass of
the earth. Prove that R3/T 2 = Gme/4π2. Thus, R3/T 2 has the same
value for all orbits (a special case of Kepler’s Third Law).

36. The acceleration due to gravity on the surface of the earth is

g = Gme

R2
e

= 9.8 m/s2, where Re = 6378 km

Use Exercise 35(b) to show that a satellite orbiting at the earth’s sur-
face would have period Te = 2π

√
Re/g ≈ 84.5 min. Then estimate

the distance Rm from the moon to the center of the earth. Assume that
the period of the moon (sidereal month) is Tm ≈ 27.43 days.

11.3 Polar Coordinates
In polar coordinates, we label a point P by coordinates (r, θ), where r is the distancePolar coordinates are appropriate when

distance from the origin or angle plays a
role. For example, the gravitational force
exerted on a planet by the sun depends
only on the distance r from the sun and is
conveniently described in polar
coordinates.

to the origin O and θ is the angle between OP and the positive x-axis (Figure 1). By
convention, an angle is positive if the corresponding rotation is counterclockwise. We call
r the radial coordinate and θ the angular coordinate.

x = r cos θ

y = r sin θ

P = (x, y) (rectangular)
(r, θ) (polar)

r

O

y

y

x
θ

FIGURE 1

Ray    =

(4,      )P =

x

4

O

Circle r = 4

y

θ 2  
3
π

2  
3
π

2  
3
π

FIGURE 2

The point P in Figure 2 has polar coordinates (r, θ) = (
4, 2π

3

)
. It is located at distance

r = 4 from the origin (so it lies on the circle of radius 4), and it lies on the ray of angle
θ = 2π

3 .
Figure 3 shows the two families of grid lines in polar coordinates:

x

y

π
4321

r = 4

7π

4
5π

4

3π

4

7π

6

5π

6

11π

6

5π

3
4π

3

2π

3
5π

6

3π

2

π

3

π

2

π

4
π

6

Q = (3, )

FIGURE 3 Grid lines in polar coordinates.

Circle centered at O ←→ r = constant

Ray starting at O ←→ θ = constant

Every point in the plane other than the origin lies at the intersection of the two grid lines
and these two grid lines determine its polar coordinates. For example, point Q in Figure
3 lies on the circle r = 3 and the ray θ = 5π

6 , so Q = (
3, 5π

6

)
in polar coordinates.

Figure 1 shows that polar and rectangular coordinates are related by the equations
x = r cos θ and y = r sin θ . On the other hand, r2 = x2 + y2 by the distance formula,
and tan θ = y/x if x �= 0. This yields the conversion formulas:

Polar to Rectangular Rectangular to Polar

x = r cos θ r =
√

x2 + y2

y = r sin θ tan θ = y

x
(x �= 0)
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EXAMPLE 1 From Polar to Rectangular Coordinates Find the rectangular coordinates
of point Q in Figure 3.

Solution The point Q = (r, θ) = (
3, 5π

6

)
has rectangular coordinates:

x = r cos θ = 3 cos

(
5π

6

)
= 3

(
−

√
3

2

)
= −3

√
3

2

y = r sin θ = 3 sin

(
5π

6

)
= 3

(
1

2

)
= 3

2

EXAMPLE 2 From Rectangular to Polar Coordinates Find the polar coordinates ofy

P = (3, 2)

x

r

32

2

21

1

θ

FIGURE 4 The polar coordinates of P

satisfy r =
√

32 + 22 and tan θ = 2
3 .

point P in Figure 4.

Solution Since P = (x, y) = (3, 2),

r =
√

x2 + y2 =
√

32 + 22 = √
13 ≈ 3.6

tan θ = y

x
= 2

3

and because P lies in the first quadrant,

θ = tan−1 y

x
= tan−1 2

3
≈ 0.588

Thus, P has polar coordinates (r, θ) ≈ (3.6, 0.588).

A few remarks are in order before proceeding:

• The angular coordinate is not unique because (r, θ) and (r, θ + 2πn) label the sameBy definition,

−π

2
< tan−1 x <

π

2

If r > 0, a coordinate θ of P = (x, y) is

θ =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

tan−1 y

x
if x > 0

tan−1 y

x
+ π if x < 0

±π

2
if x = 0

point for any integer n. For instance, point P in Figure 5 has radial coordinate r = 2,
but its angular coordinate can be any one of π

2 , 5π
2 , . . . or − 3π

2 , − 7π
2 , . . . .

• The origin O has no well-defined angular coordinate, so we assign to O the polar
coordinates (0, θ) for any angle θ .

• By convention, we allow negative radial coordinates. By definition, (−r, θ) is the
reflection of (r, θ) through the origin (Figure 6). With this convention, (−r, θ) and
(r, θ + π) represent the same point.

• We may specify unique polar coordinates for points other than the origin by placing
restrictions on r and θ . We commonly choose r > 0 and 0 ≤ θ < 2π .

π

2

5π

2

y

P = (0, 2) (rectangular)

x

FIGURE 5 The angular coordinate of P = (0, 2)

is π
2 or any angle π

2 + 2πn, where n is an
integer.

y

(r, θ)

(−r, θ)
or (r, θ + π)

θ + π 

x
θ

FIGURE 6 Relation between (r, θ) and
(−r, θ).
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When determining the angular coordinate of a point P = (x, y), remember that therey

x

P = (−1, 1)

(1, −1)

4
3

7
4

−
4

FIGURE 7

are two angles between 0 and 2π satisfying tan θ = y/x. You must choose θ so that (r, θ)

lies in the quadrant containing P and in the opposite quadrant (Figure 7).

EXAMPLE 3 Choosing θ Correctly Find two polar representations of P = (−1, 1),
one with r > 0 and one with r < 0.

Solution The point P = (x, y) = (−1, 1) has polar coordinates (r, θ), where

r =
√

(−1)2 + 12 = √
2, tan θ = tan

y

x
= −1

However, θ is not given by

tan−1 y

x
= tan−1

(
1

−1

)
= −π

4

because θ = −π
4 this would place P in the fourth quadrant (Figure 7). Since P is in the

second quadrant, the correct angle is

θ = tan−1 y

x
+ π = −π

4
+ π = 3π

4

If we wish to use the negative radial coordinate r = −√
2, then the angle becomes θ = −π

4
or 7π

4 . Thus,

P =
(√

2,
3π

4

)
or

(
−√

2,
7π

4

)

A curve is described in polar coordinates by an equation involving r and θ , which we
call a polar equation. By convention, we allow solutions with r < 0.

A line through the origin O has the simple equation θ = θ0, where θ0 is the angle
between the line and the x-axis (Figure 8). Indeed, the points with θ = θ0 are (r, θ0),
where r is arbitrary (positive, negative, or zero).

EXAMPLE 4 Line Through the Origin Find the polar equation of the line through the
origin of slope 3

2 (Figure 9).

Solution A line of slope m makes an angle θ0 with the x-axis, where m = tan θ0. In our
case, θ0 = tan−1 3

2 ≈ 0.98. The equation of the line is θ = tan−1 3
2 or θ ≈ 0.98.

y

x
O

(r, θ0)

θ0

r > 0

r < 0

FIGURE 8 Lines through O with polar
equation θ = θ0.

y

x
O

θ0

(2, 3)

2

3

FIGURE 9 Line of slope 3
2 through the

origin.

To describe lines that do not pass through the origin, we note that any such line has a
unique point P0 that is closest to the origin. The next example shows how to write down
the polar equation of the line in terms of P0 (Figure 10).
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EXAMPLE 5 Line Not Passing Through O Show thaty

x

P0 = (d, α)

P = (r, θ)

r

d

O

θ

α

Line L

FIGURE 10 P0 is the point on L closest to
the origin.

r = d sec(θ − α) 1

is the polar equation of the line L whose point closest to the origin is P0 = (d, α).

Solution The point P0 is obtained by dropping a perpendicular from the origin to L
(Figure 10), and if P = (r, θ) is any point on L other than P0, then �OPP0 is a right
triangle. Therefore, d/r = cos(θ − α), or r = d sec(θ − α), as claimed.

EXAMPLE 6 Find the polar equation of the line L tangent to the circle r = 4 at the
point with polar coordinates P0 = (

4, π
3

)
.

Solution The point on L closest to the origin is P0 itself (Figure 11). Therefore, we take

y

x

4

P0

3

FIGURE 11 The tangent line has equation

r = 4 sec
(
θ − π

3

)
.

(d, α) = (
4, π

3

)
in Eq. (1) to obtain the equation r = 4 sec

(
θ − π

3

)
.

Often, it is hard to guess the shape of a graph of a polar equation. In some cases, it is
helpful rewrite the equation in rectangular coordinates.

EXAMPLE 7 Converting to Rectangular Coordinates Identify the curve with polar
equation r = 2a cos θ (a a constant).

Solution Multiply the equation by r to obtain r2 = 2ar cos θ . Because r2 = x2 + y2 and
x = r cos θ , this equation becomes

x2 + y2 = 2ax or x2 − 2ax + y2 = 0

Then complete the square to obtain (x − a)2 + y2 = a2. This is the equation of the circle
of radius a and center (a, 0) (Figure 12).

A similar calculation shows that the circle x2 + (y − a)2 = a2 of radius a and center
(0, a) has polar equation r = 2a sin θ . In the next example, we make use of symmetry.
Note that the points (r, θ) and (r, −θ) are symmetric with respect to the x-axis (Figure
13).

y

x
a

r = 2a cos θ

2a

FIGURE 12

y

x

(r, θ)

(r, −θ)

FIGURE 13 The points (r, θ) and
(r, −θ) are symmetric with respect
to the x-axis.

EXAMPLE 8 Symmetry About the x-Axis Sketch the limaçon curve
r = 2 cos θ − 1.

Solution Since cos θ is periodic, it suffices to plot points for −π ≤ θ ≤ π .

Step 1. Plot points.
To get started, we plot points A–G on a grid and join them by a smooth curve (Fig-
ure 14).
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A B C D E F G

θ 0 π
6

π
3

π
2

2π
3

5π
6 π

r = 2 cos θ − 1 1 0.73 0 −1 −2 −2.73 −3

Step 2. Analyze r as a function of θ .
For a better understanding, it is helpful to graph r as a function of θ in rectangular
coordinates. Figure 15(A) shows that

As θ varies from 0 to π
3 , r varies from 1 to 0.

As θ varies from π
3 to π , r is negative and varies from 0 to −3.

We conclude:

xA G

y

π
21

C

D

E

F

B

π

2 π

3

π

6
5π

6

2π

3

FIGURE 14 Plotting r = 2 cos θ − 1 using a
grid. • The graph begins at point A in Figure 15(B) and moves in toward the origin as

θ varies from 0 to π
3 .

• Since r is negative for π
3 ≤ θ ≤ π , the curve continues into the third and fourth

quadrants (rather than into the first and second quadrants), moving toward the
point G = (−3, π) in Figure 15(C).

Step 3. Use symmetry.
Since r(θ) = r(−θ), the curve is symmetric with respect to the x-axis. So the part of the
curve with −π ≤ θ ≤ 0 is obtained by reflection through the x-axis as in Figure 15(D).

1

−2

11

q varies from   /3 to   ,
but r is negative and
varies from 0 to −3.

(C) The entire Limaçon.(D)

x
G

F

E

C A

B

−2

3
x

1

1 3

y

3 3

2

q varies from 0 to   /3;
r varies from 1 to 0.

(B)Variation of r as a function of q .(A)

y

x

1

−1

−2

−3

r

q
33

r = 2cosq − 1

−

r < 0

A
B

D
E

F
G

C

3
2

3
2

6
5

3
2

D

− −

FIGURE 15 The curve r = 2 cos θ − 1 is called the limaçon, from the Latin word for “snail.” It was first described in 1525 by the German artist
Albrecht Dürer.

11.3 SUMMARY

• A point P = (x, y) has polar coordinates (r, θ), where r is the distance to the origin
and θ is the angle between the positive x-axis and the segment OP , measured in the
counterclockwise direction.

x = r cos θ r =
√

x2 + y2

y = r sin θ tan θ = y

x
(x �= 0)
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• The angular coordinate θ must be chosen so that (r, θ) lies in the proper quadrant. If
r > 0, then

θ =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

tan−1 y

x
if x > 0

tan−1 y

x
+ π if x < 0

±π

2
if x = 0

• Nonuniqueness: (r, θ) and (r, θ + 2nπ) represent the same point for all integers n. The
origin O has polar coordinates (0, θ) for any θ .
• Negative radial coordinates: (−r, θ) and (r, θ + π) represent the same point.
• Polar equations:

Curve Polar equation

Circle of radius R, center at the origin r = R

Line through origin of slope m = tan θ0 θ = θ0

Line on which P0 = (d, α) is
the point closest to the origin

r = d sec(θ − α)

Circle of radius a, center at (a, 0)

(x − a)2 + y2 = a2 r = 2a cos θ

Circle of radius a, center at (0, a)

x2 + (y − a)2 = a2 r = 2a sin θ

11.3 EXERCISES

Preliminary Questions
1. Points P and Q with the same radial coordinate (choose the correct

answer):
(a) Lie on the same circle with the center at the origin.
(b) Lie on the same ray based at the origin.

2. Give two polar representations for the point (x, y) = (0, 1), one
with negative r and one with positive r .

3. Describe each of the following curves:

(a) r = 2 (b) r2 = 2 (c) r cos θ = 2

4. If f (−θ) = f (θ), then the curve r = f (θ) is symmetric with re-
spect to the (choose the correct answer):

(a) x-axis (b) y-axis (c) origin

Exercises
1. Find polar coordinates for each of the seven points plotted in Fig-

ure 16.

A

B
E F

C D
G

x

(x, y) =

y

(2  3, 2)

4

4

FIGURE 16

2. Plot the points with polar coordinates:

(a)
(
2, π

6

)
(b)

(
4, 3π

4

)
(c)

(
3, −π

2

)
(d)

(
0, π

6

)
3. Convert from rectangular to polar coordinates.

(a) (1, 0) (b) (3,
√

3) (c) (−2, 2) (d) (−1,
√

3)

4. Convert from rectangular to polar coordinates using a calculator
(make sure your choice of θ gives the correct quadrant).

(a) (2, 3) (b) (4, −7) (c) (−3, −8) (d) (−5, 2)

5. Convert from polar to rectangular coordinates:

(a)
(
3, π

6

)
(b)

(
6, 3π

4

)
(c)

(
0, π

5

)
(d)

(
5, −π

2

)
6. Which of the following are possible polar coordinates for the point

P with rectangular coordinates (0, −2)?
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(a)
(

2,
π

2

)
(b)

(
2,

7π

2

)

(c)
(

−2, −3π

2

)
(d)

(
−2,

7π

2

)

(e)
(
−2, −π

2

)
(f)

(
2, −7π

2

)
7. Describe each shaded sector in Figure 17 by inequalities in r and θ .

(A) (B) (C)

x x x

y y y

3 5 3 5 3 5

45°

FIGURE 17

8. Find the equation in polar coordinates of the line through the origin
with slope 1

2 .

9. What is the slope of the line θ = 3π
5 ?

10. Which of r = 2 sec θ and r = 2 csc θ defines a horizontal line?

In Exercises 11–16, convert to an equation in rectangular coordinates.

11. r = 7 12. r = sin θ

13. r = 2 sin θ 14. r = 2 csc θ

15. r = 1

cos θ − sin θ
16. r = 1

2 − cos θ

In Exercises 17–20, convert to an equation in polar coordinates.

17. x2 + y2 = 5 18. x = 5

19. y = x2 20. xy = 1

21. Match each equation with its description.

(a) r = 2 (i) Vertical line
(b) θ = 2 (ii) Horizontal line
(c) r = 2 sec θ (iii) Circle
(d) r = 2 csc θ (iv) Line through origin

22. Find the values of θ in the plot of r = 4 cos θ corresponding to
points A, B, C, D in Figure 18. Then indicate the portion of the graph
traced out as θ varies in the following intervals:

(a) 0 ≤ θ ≤ π
2 (b) π

2 ≤ θ ≤ π (c) π ≤ θ ≤ 3π
2

x

y

2

−2

2 4

C A

B

D

FIGURE 18 Plot of r = 4 cos θ .

23. Suppose that P = (x, y) has polar coordinates (r, θ). Find the polar
coordinates for the points:

(a) (x, −y) (b) (−x, −y) (c) (−x, y) (d) (y, x)

24. Match each equation in rectangular coordinates with its equation
in polar coordinates.

(a) x2 + y2 = 4 (i) r2(1 − 2 sin2 θ) = 4
(b) x2 + (y − 1)2 = 1 (ii) r(cos θ + sin θ) = 4
(c) x2 − y2 = 4 (iii) r = 2 sin θ

(d) x + y = 4 (iv) r = 2

25. What are the polar equations of the lines parallel to the line
r cos

(
θ − π

3

) = 1?

26. Show that the circle with center at
( 1

2 , 1
2

)
in Figure 19 has polar

equation r = sin θ + cos θ and find the values of θ between 0 and π

corresponding to points A, B, C, and D.

A D

B C
x

y

1
2

1
2( ),

FIGURE 19 Plot of r = sin θ + cos θ .

27. Sketch the curve r = 1
2 θ (the spiral of Archimedes) for θ between

0 and 2π by plotting the points for θ = 0, π
4 , π

2 , . . . , 2π .

28. Sketch r = 3 cos θ − 1 (see Example 8).

29. Sketch the cardioid curve r = 1 + cos θ .

30. Show that the cardioid of Exercise 29 has equation

(x2 + y2 − x)2 = x2 + y2

in rectangular coordinates.

31. Figure 20 displays the graphs of r = sin 2θ in rectangular coor-
dinates and in polar coordinates, where it is a “rose with four petals.”
Identify:

(a) The points in (B) corresponding to points A–I in (A).
(b) The parts of the curve in (B) corresponding to the angle intervals[
0, π

2

]
,
[
π
2 , π

]
,
[
π, 3π

2

]
, and

[ 3π
2 , 2π

]
.

π

2
π 3π 2π

2

A C E IG

B F

D H

θ x

r y

(A) Graph of r as a function
       of θ, where r = sin 2θ.

(B) Graph of r = sin 2θ 
       in polar coordinates.

FIGURE 20
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32. Sketch the curve r = sin 3θ . First fill in the table of r-values be-
low and plot the corresponding points of the curve. Notice that the three
petals of the curve correspond to the angle intervals

[
0, π

3

]
,
[
π
3 , 2π

3

]
,

and
[
π
3 , π

]
. Then plot r = sin 3θ in rectangular coordinates and label

the points on this graph corresponding to (r, θ) in the table.

θ 0 π
12

π
6

π
4

π
3

5π
12 · · · 11π

12 π

r

33. Plot the cissoid r = 2 sin θ tan θ and show that its equa-
tion in rectangular coordinates is

y2 = x3

2 − x

34. Prove that r = 2a cos θ is the equation of the circle in Figure 21
using only the fact that a triangle inscribed in a circle with one side a
diameter is a right triangle.

x

y

r

2a0
θ

FIGURE 21

35. Show that

r = a cos θ + b sin θ

is the equation of a circle passing through the origin. Express the radius
and center (in rectangular coordinates) in terms of a and b.

36. Use the previous exercise to write the equation of the circle of
radius 5 and center (3, 4) in the form r = a cos θ + b sin θ .

37. Use the identity cos 2θ = cos2 θ − sin2 θ to find a polar equation
of the hyperbola x2 − y2 = 1.

38. Find an equation in rectangular coordinates for the curve r2 =
cos 2θ .

39. Show that cos 3θ = cos3 θ − 3 cos θ sin2 θ and use this identity to
find an equation in rectangular coordinates for the curve r = cos 3θ .

40. Use the addition formula for the cosine to show that the line L with
polar equation r cos(θ − α) = d has the equation in rectangular coor-
dinates (cos α)x + (sin α)y = d. Show that L has slope m = − cot α
and y-intercept d/sin α.

In Exercises 41–44, find an equation in polar coordinates of the line L
with the given description.

41. The point on L closest to the origin has polar coordinates
(
2, π

9

)
.

42. The point on L closest to the origin has rectangular coordinates
(−2, 2).

43. L is tangent to the circle r = 2
√

10 at the point with rectangular
coordinates (−2, −6).

44. L has slope 3 and is tangent to the unit circle in the fourth quadrant.

45. Show that every line that does not pass through the origin has a
polar equation of the form

r = b

sin θ − a cos θ

where b �= 0.

46. By the Law of Cosines, the distance d between two points (Figure
22) with polar coordinates (r, θ) and (r0, θ0) is

d2 = r2 + r2
0 − 2rr0 cos(θ − θ0)

Use this distance formula to show that

r2 − 10r cos
(
θ − π

4

)
= 56

is the equation of the circle of radius 9 whose center has polar coordi-
nates

(
5, π

4

)
.

x

y

(r0, θ0)
r0

r

d

θ0
θ

(r, θ)

FIGURE 22

47. For a > 0, a lemniscate curve is the set of points P such that the
product of the distances from P to (a, 0) and (−a, 0) is a2. Show that
the equation of the lemniscate is

(x2 + y2)2 = 2a2(x2 − y2)

Then find the equation in polar coordinates. To obtain the simplest
form of the equation, use the identity cos 2θ = cos2 θ − sin2 θ . Plot
the lemniscate for a = 2 if you have a computer algebra system.

48. Let c be a fixed constant. Explain the relationship between
the graphs of:

(a) y = f (x + c) and y = f (x) (rectangular)

(b) r = f (θ + c) and r = f (θ) (polar)

(c) y = f (x) + c and y = f (x) (rectangular)

(d) r = f (θ) + c and r = f (θ) (polar)

49. The Derivative in Polar Coordinates Show that a polar curve
r = f (θ) has parametric equations

x = f (θ) cos θ, y = f (θ) sin θ
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Then apply Theorem 2 of Section 11.1 to prove

dy

dx
= f (θ) cos θ + f ′(θ) sin θ

−f (θ) sin θ + f ′(θ) cos θ
2

where f ′(θ) = df /dθ .

50. Use Eq. (2) to find the slope of the tangent line to r = sin θ at
θ = π

3 .

51. Use Eq. (2) to find the slope of the tangent line to r = θ at θ = π
2

and θ = π .

52. Find the equation in rectangular coordinates of the tangent line to
r = 4 cos 3θ at θ = π

6 .

53. Find the polar coordinates of the points on the lemniscate r2 =
cos 2t in Figure 23 where the tangent line is horizontal.

y

x
−1 1

r2 = cos (2t)

FIGURE 23

54. Find the polar coordinates of the points on the cardioid r =
1 + cos θ where the tangent line is horizontal (see Figure 24).

55. Use Eq. (2) to show that for r = sin θ + cos θ ,

dy

dx
= cos 2θ + sin 2θ

cos 2θ − sin 2θ

Then calculate the slopes of the tangent lines at points A, B, C in Fig-
ure 19.

Further Insights and Challenges
56. Let f (x) be a periodic function of period 2π—that is,
f (x) = f (x + 2π). Explain how this periodicity is reflected in the
graph of:

(a) y = f (x) in rectangular coordinates

(b) r = f (θ) in polar coordinates

57. Use a graphing utility to convince yourself that the po-
lar equations r = f1(θ) = 2 cos θ − 1 and r = f2(θ) = 2 cos θ + 1
have the same graph. Then explain why. Hint: Show that the points
(f1(θ + π), θ + π) and (f2(θ), θ) coincide.

58. We investigate how the shape of the limaçon curve r =
b + cos θ depends on the constant b (see Figure 24).

(a) Argue as in Exercise 57 to show that the constants b and −b yield
the same curve.

(b) Plot the limaçon for b = 0, 0.2, 0.5, 0.8, 1 and describe how the
curve changes.

(c) Plot the limaçon for b = 1.2, 1.5, 1.8, 2, 2.4 and describe how the
curve changes.

(d) Use Eq. (2) to show that

dy

dx
= −

(
b cos θ + cos 2θ

b + 2 cos θ

)
csc θ

(e) Find the points where the tangent line is vertical. Note that there
are three cases: 0 ≤ b < 2, b = 1, and b > 2. Do the plots constructed
in (b) and (c) reflect your results?

1 2 33

1

r = 1.5 + cos θ r = 2.3 + cos θr = 1 + cos θ

13 2

1

1 2

1

x

y

x

y

x

y

FIGURE 24

11.4 Area and Arc Length in Polar Coordinates
Integration in polar coordinates involves finding not the area underneath a curve but,
rather, the area of a sector bounded by a curve as in Figure 1(A). Consider the region
bounded by the curve r = f (θ) and the two rays θ = α and θ = β with α < β. To derive
a formula for the area, divide the region into N narrow sectors of angle �θ = (β − α)/N

corresponding to a partition of the interval [α, β]:

θ0 = α < θ1 < θ2 < · · · < θN = β
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θr = f (  )

x

y

(A) Region ≤ ≤

α

α β

β

x

y

(B) Region divided into narrow sectors

N = 

rN
rj rj −1 

r0

θ
j θ

1 θ
j−1 θ

β

0 = θ α

θ

FIGURE 1 Area bounded by the curve
r = f (θ) and the two rays θ = α and
θ = β.

Recall that a circular sector of angle �θ and radius r has area 1
2 r2�θ (Figure 2). If �θ is

small, the j th narrow sector (Figure 3) is nearly a circular sector of radius rj = f (θj ), so
its area is approximately 1

2 r2
j �θ . The total area is approximated by the sum:

Area of region ≈
N∑

j=1

1

2
r2
j �θ = 1

2

N∑
j=1

f (θj )
2�θ 1

This is a Riemann sum for the integral
1

2

∫ β

α

f (θ)2 dθ . If f (θ) is continuous, then the

sum approaches the integral as N → ∞, and we obtain the following formula.

x

y

r

�θ

FIGURE 2 The area of a circular sector is
exactly 1

2 r2�θ .

x

y

Δ

rj
rj −1 

j θ

θ

j−1 θ

FIGURE 3 The area of the j th sector is
approximately 1

2 r2
j
�θ .

THEOREM 1 Area in Polar Coordinates If f (θ) is a continuous function, then the
area bounded by a curve in polar form r = f (θ) and the rays θ = α and θ = β (with
α < β) is equal to

1

2

∫ β

α

r2 dθ = 1

2

∫ β

α

f (θ)2 dθ 2

We know that r = R defines a circle of radius R. By Eq. (2), the area is equal to
1

2

∫ 2π

0
R2 dθ = 1

2
R2(2π) = πR2, as expected.

EXAMPLE 1 Use Theorem 1 to compute the area of the right semicircle with equation
r = 4 sin θ .

Solution The equation r = 4 sin θ defines a circle of radius 2 tangent to the x-axis at the
origin. The right semicircle is “swept out” as θ varies from 0 to π

2 as in Figure 4(A). By
Eq. (2), the area of the right semicircle is

REMINDER In Eq. (4), we use the
identity

sin2 θ = 1

2
(1 − cos 2θ) 3 1

2

∫ π/2

0
r2 dθ = 1

2

∫ π/2

0
(4 sin θ)2 dθ = 8

∫ π/2

0
sin2 θ dθ 4

= 8
∫ π/2

0

1

2
(1 − cos 2θ) dθ

= (4θ − 2 sin 2θ)

∣∣∣∣π/2

0
= 4

(π

2

)
− 0 = 2π
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x

y

2

x

y

2

3

4

6

2 12
5

(A) The polar integral computes the
area swept out by a radial segment.

(B) The ordinary integral in
rectangular coordinates computes
the area underneath a curve.

FIGURE 4

CAUTION Keep in mind that the integral
1
2

∫ β

α
r2 dθ does not compute the area

under a curve as in Figure 4(B), but rather
computes the area “swept out” by a radial
segment as θ varies from α to β, as in
Figure 4(A).

EXAMPLE 2 Sketch r = sin 3θ and compute the area of one “petal.”

Solution To sketch the curve, we first graph r = sin 3θ in rectangular coordinates. Figure
5 shows that the radius r varies from 0 to 1 and back to 0 as θ varies from 0 to π

3 . This
gives petal A in Figure 6. Petal B is traced as θ varies from π

3 to 2π
3 (with r ≤ 0), and

petal C is traced for 2π
3 ≤ θ ≤ π . We find that the area of petal A (using Eq. (3) in the

margin of the previous page to evaluate the integral) is equal to

1

2

∫ π/3

0
(sin 3θ)2 dθ = 1

2

∫ π/3

0

(
1 − cos 6θ

2

)
dθ =

(
1

4
θ − 1

24
sin 6θ

) ∣∣∣∣π/3

0
= π

12

CA

B

θ

r

π

3
2π π

3

FIGURE 5 Graph of r = sin 3θ as a function
of θ .

y

x

q =
r = −1

B

C A
q =
r = 1

q =
r = 1

3

2

6

3
2

6
5

FIGURE 6 Graph of polar curve r = sin 3θ ,
a “rose with three petals.”

The area between two polar curves r = f1(θ) and r = f2(θ) with f2(θ) ≥ f1(θ), for

x

y

α

β

θr = f1(  )

θr = f2(  )

FIGURE 7 Area between two polar graphs in
a sector.

α ≤ θ ≤ β, is equal to (Figure 7):

Area between two curves = 1

2

∫ β

α

(
f2(θ)2 − f1(θ)2) dθ 5

EXAMPLE 3 Area Between Two Curves Find the area of the region inside the circle
r = 2 cos θ but outside the circle r = 1 [Figure 8(A)].

Solution The two circles intersect at the points where (r, 2 cos θ) = (r, 1) or in other
words, when 2 cos θ = 1. This yields cos θ = 1

2 , which has solutions θ = ±π
3 .
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y

x
2

(I)

(A) (B)

1

−

y

x
2

(II)

y

x
21

(III)

(C)

3

3
r = 1

r = 2 cosθ

FIGURE 8 Region (I) is the difference of
regions (II) and (III).

We see in Figure 8 that region (I) is the difference of regions (II) and (III) in Fig-
ures 8(B) and (C). Therefore,

REMINDER In Eq. (6), we use the
identity

cos2 θ = 1

2
(1 + cos 2θ)

Area of (I) = area of (II) − area of (III)

= 1

2

∫ π/3

−π/3
(2 cos θ)2 dθ − 1

2

∫ π/3

−π/3
(1)2 dθ

= 1

2

∫ π/3

−π/3
(4 cos2 θ − 1) dθ = 1

2

∫ π/3

−π/3
(2 cos 2θ + 1) dθ 6

= 1

2
(sin 2θ + θ)

∣∣∣∣π/3

−π/3
=

√
3

2
+ π

3
≈ 1.91

We close this section by deriving a formula for arc length in polar coordinates. Observe
that a polar curve r = f (θ) has a parametrization with θ as a parameter:

x = r cos θ = f (θ) cos θ, y = r sin θ = f (θ) sin θ

Using a prime to denote the derivative with respect to θ , we have

x′(θ) = dx

dθ
= −f (θ) sin θ + f ′(θ) cos θ

y′(θ) = dy

dθ
= f (θ) cos θ + f ′(θ) sin θ

Recall from Section 11.2 that arc length is obtained by integrating
√

x′(θ)2 + y′(θ)2.

Straightforward algebra shows that x′(θ)2 + y′(θ)2 = f (θ)2 + f ′(θ)2, and thus

Arc length s =
∫ β

α

√
f (θ)2 + f ′(θ)2 dθ 7

EXAMPLE 4 Find the total length of the circle r = 2a cos θ for a > 0.

Solution In this case, f (θ) = 2a cos θ and

y

x
a 2a

θ = 0 or πθ = π

2

θ =

θ =

π

4

3π

4

FIGURE 9 Graph of r = 2a cos θ .

f (θ)2 + f ′(θ)2 = 4a2 cos2 θ + 4a2 sin2 θ = 4a2

The total length of this circle of radius a has the expected value:∫ π

0

√
f (θ)2 + f ′(θ)2 dθ =

∫ π

0
(2a) dθ = 2πa

Note that the upper limit of integration is π rather than 2π because the entire circle is
traced out as θ varies from 0 to π (see Figure 9).
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11.4 SUMMARY

• Area of the sector bounded by a polar curve r = f (θ) and two rays θ = α and θ = β

(Figure 10):

Area = 1

2

∫ β

α

f (θ)2 dθ

• Area between r = f1(θ) and r = f2(θ), where f2(θ) ≥ f1(θ) (Figure 11):

Area = 1

2

∫ β

α

(
f2(θ)2 − f1(θ)2) dθ

θr = f (  )

x

y

α

β

FIGURE 10 Region bounded by the polar
curve r = f (θ) and the rays θ = α, θ = β.

x

y

α

β

θr = f1(  )

θr = f2(  )

FIGURE 11 Region between two polar
curves.

• Arc length of the polar curve r = f (θ) for α ≤ θ ≤ β:

Arc length =
∫ β

α

√
f (θ)2 + f ′(θ)2 dθ

11.4 EXERCISES

Preliminary Questions
1. Polar coordinates are suited to finding the area (choose one):

(a) Under a curve between x = a and x = b.

(b) Bounded by a curve and two rays through the origin.

2. Is the formula for area in polar coordinates valid if f (θ) takes
negative values?

3. The horizontal line y = 1 has polar equation r = csc θ . Which area

is represented by the integral
1

2

∫ π/2

π/6
csc2 θ dθ (Figure 12)?

(a) �ABCD (b) �ABC (c) �ACD

y

xA

D

B

C y = 1
1

�3

FIGURE 12

Exercises
1. Sketch the area bounded by the circle r = 5 and the rays θ = π

2
and θ = π , and compute its area as an integral in polar coordinates.

2. Sketch the region bounded by the line r = sec θ and the rays θ = 0
and θ = π

3 . Compute its area in two ways: as an integral in polar coor-
dinates and using geometry.

3. Calculate the area of the circle r = 4 sin θ as an integral in polar
coordinates (see Figure 4). Be careful to choose the correct limits of
integration.

4. Find the area of the shaded triangle in Figure 13 as an integral in
polar coordinates. Then find the rectangular coordinates of P and Q

and compute the area via geometry.
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P

Q

θr = 4 sec(          )−
4
π

x

y

FIGURE 13

5. Find the area of the shaded region in Figure 14. Note that θ varies
from 0 to π

2 .

6. Which interval of θ -values corresponds to the the shaded region in
Figure 15? Find the area of the region.

x

y

θ θr =    2 + 4
8

1 2

FIGURE 14

θ

3

2

y

x

r = 3 − 

FIGURE 15

7. Find the total area enclosed by the cardioid in Figure 16.

y

x
−1−2

FIGURE 16 The cardioid r = 1 − cos θ .

8. Find the area of the shaded region in Figure 16.

9. Find the area of one leaf of the “four-petaled rose” r = sin 2θ (Fig-
ure 17). Then prove that the total area of the rose is equal to one-half
the area of the circumscribed circle.

θr = sin 2 

y

x

FIGURE 17 Four-petaled rose r = sin 2θ .

10. Find the area enclosed by one loop of the lemniscate with equation
r2 = cos 2θ (Figure 18). Choose your limits of integration carefully.

y

x
−1 1

FIGURE 18 The lemniscate r2 = cos 2θ .

11. Sketch the spiral r = θ for 0 ≤ θ ≤ 2π and find the area bounded
by the curve and the first quadrant.

12. Find the area of the intersection of the circles r = sin θ and
r = cos θ .

13. Find the area of region A in Figure 19.

θr = 4 cos
y

x
−1 41 2

Ar = 1

FIGURE 19

14. Find the area of the shaded region in Figure 20, enclosed by the
circle r = 1

2 and a petal of the curve r = cos 3θ . Hint: Compute the
area of both the petal and the region inside the petal and outside the
circle.

θr = cos 3

r = 1
2

y

x

FIGURE 20

15. Find the area of the inner loop of the limaçon with polar equation
r = 2 cos θ − 1 (Figure 21).
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16. Find the area of the shaded region in Figure 21 between the inner
and outer loop of the limaçon r = 2 cos θ − 1.

21

1

−1

y

x

FIGURE 21 The limaçon r = 2 cos θ − 1.

17. Find the area of the part of the circle r = sin θ + cos θ in the fourth
quadrant (see Exercise 26 in Section 11.3).

18. Find the area of the region inside the circle r = 2 sin
(
θ + π

4

)
and

above the line r = sec
(
θ − π

4

)
.

19. Find the area between the two curves in Figure 22(A).

20. Find the area between the two curves in Figure 22(B).

θ

y y

x x

r = 2 + cos 2

θ

θ

θ

r = 2 + sin 2

r = sin 2

r = sin 2

(A) (B)

FIGURE 22

21. Find the area inside both curves in Figure 23.

22. Find the area of the region that lies inside one but not both of the
curves in Figure 23.

y

x

2 + cos 2

2 + sin 2θ

θ

FIGURE 23

23. Calculate the total length of the circle r = 4 sin θ as an integral in
polar coordinates.

24. Sketch the segment r = sec θ for 0 ≤ θ ≤ A. Then compute its
length in two ways: as an integral in polar coordinates and using
trigonometry.

In Exercises 25–30, compute the length of the polar curve.

25. The length of r = θ2 for 0 ≤ θ ≤ π

26. The spiral r = θ for 0 ≤ θ ≤ A

27. The equiangular spiral r = eθ for 0 ≤ θ ≤ 2π

28. The inner loop of r = 2 cos θ − 1 in Figure 21

29. The cardioid r = 1 − cos θ in Figure 16

30. r = cos2 θ

In Exercises 31 and 32, express the length of the curve as an integral
but do not evaluate it.

31. r = (2 − cos θ)−1, 0 ≤ θ ≤ 2π

32. r = sin3 t , 0 ≤ θ ≤ 2π

In Exercises 33–36, use a computer algebra system to calculate the
total length to two decimal places.

33. The three-petal rose r = cos 3θ in Figure 20

34. The curve r = 2 + sin 2θ in Figure 23

35. The curve r = θ sin θ in Figure 24 for 0 ≤ θ ≤ 4π

y

x
5 5

5

10

FIGURE 24 r = θ sin θ for 0 ≤ θ ≤ 4π .

36. r = √
θ , 0 ≤ θ ≤ 4π

Further Insights and Challenges
37. Suppose that the polar coordinates of a moving particle at
time t are (r(t), θ(t)). Prove that the particle’s speed is equal to√

(dr/dt)2 + r2(dθ/dt)2.

38. Compute the speed at time t = 1 of a particle whose polar
coordinates at time t are r = t , θ = t (use Exercise 37). What would
the speed be if the particle’s rectangular coordinates were x = t , y = t?
Why is the speed increasing in one case and constant in the other?
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11.5 Conic Sections
Three familiar families of curves—ellipses, hyperbolas, and parabolas—appear through-The conics were first studied by the ancient

Greek mathematicians, beginning possibly
with Menaechmus (c. 380–320 BCE) and
including Archimedes (287–212 BCE) and
Apollonius (c. 262–190 BCE).

out mathematics and its applications. They are called conic sections because they are
obtained as the intersection of a cone with a suitable plane (Figure 1). Our goal in this
section is to derive equations for the conic sections from their geometric definitions as
curves in the plane.

Parabola

Ellipse

Circle
Hyperbola

FIGURE 1 The conic sections are obtained
by intersecting a plane and a cone.

An ellipse is an oval-shaped curve [Figure 2(A)] consisting of all points P such that
the sum of the distances to two fixed points F1 and F2 is a constant K > 0:

PF1 + PF2 = K 1

The points F1 and F2 are called the foci (plural of “focus”) of the ellipse. Note that ifWe assume always that K is greater than
the distance F1F2 between the foci,
because the ellipse reduces to the line
segment F1F2 if K = F1F2, and it has no
points at all if K < F1F2.

the foci coincide, then Eq. (1) reduces to 2PF1 = K and we obtain a circle of radius 1
2K

centered at F1.
We use the following terminology:

• The midpoint of F1F2 is the center of the ellipse.
• The line through the foci is the focal axis.
• The line through the center perpendicular to the focal axis is the conjugate axis.

The ellipse is said to be in standard position if the focal and conjugate axes are the x-
and y-axes, as shown in Figure 2(B). In this case, the foci have coordinates F1 = (c, 0)

and F2 = (−c, 0) for some c > 0. Let us prove that the equation of this ellipse has the
particularly simple form (x

a

)2 +
(x

b

)2 = 1 2

where a = K/2 and b = √
a2 − c2.

By the distance formula, P = (x, y) lies on the ellipse in Figure 2(B) if

PF1 + PF2 =
√

(x + c)2 + y2 +
√

(x − c)2 + y2 = 2a 3

Move the second term on the left over to the right and square both sides:

(x + c)2 + y2 = 4a2 − 4a

√
(x − c)2 + y2 + (x − c)2 + y2

4a

√
(x − c)2 + y2 = 4a2 + (x − c)2 − (x + c)2 = 4a2 − 4cx
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(A)  The ellipse consists of all points P
such that PF1 + PF2 = K.

(B)  Ellipse in standard position:

(x
a)2

 + (y
b)2

 = 1

y

x

Conjugate axis

Focal axis
Center F1F2 Center

Semimajor axis

Semiminor
axis

(c, 0)(−c, 0)A' = (−a, 0)

P

A = (a, 0)

B = (0, b)

B' = (0, −b)

P = (x, y)

FIGURE 2

Now divide by 4, square, and simplify:

a2(x2 − 2cx + c2 + y2) = a4 − 2a2cx + c2x2

(a2 − c2)x2 + a2y2 = a4 − a2c2 = a2(a2 − c2)

x2

a2
+ y2

a2 − c2
= 1 4

This is Eq. (2) with b2 = a2 − c2 as claimed.

Strictly speaking, it is necessary to show
that if P = (x, y) satisfies Eq. (4), then it
also satisfies Eq. (3). When we begin with
Eq. (4) and reverse the algebraic steps, the
process of taking square roots leads to the
relation√

(x − c)2 + y2 ±
√

(x + c)2 + y2 = ±2a

However, this equation has no solutions
unless both signs are positive because
a > c.

The ellipse intersects the axes in four points A, A′, B, B ′ called vertices. Vertices A

and A′ along the focal axis are called the focal vertices. Following common usage, the
numbers a and b are referred to as the semimajor axis and the semiminor axis (even
though they are numbers rather than axes).

THEOREM 1 Ellipse in Standard Position Let a > b > 0, and set c = √
a2 − b2.

The ellipse PF1 + PF2 = 2a with foci F1 = (c, 0) and F2 = (−c, 0) has equation

(x

a

)2 +
(y

b

)2 = 1 5

Furthermore, the ellipse has

• Semimajor axis a, semiminor axis b.
• Focal vertices (±a, 0), minor vertices (0, ±b).

If b > a > 0, then Eq. (5) defines an ellipse with foci (0, ±c), where c = √
b2 − a2.

EXAMPLE 1 Find the equation of the ellipse with foci (±√
11, 0) and semimajor axis

a = 6. Then find the semiminor axis and sketch the graph.

Solution The foci are (±c, 0) with c = √
11, and the semimajor axis is a = 6, so we can

use the relation c = √
a2 − b2 to find b:

b2 = a2 − c2 = 62 − (
√

11)2 = 25 ⇒ b = 5

Thus, the semiminor axis is b = 5 and the ellipse has equation
(x

6

)2 +
(y

5

)2 = 1. To

sketch this ellipse, plot the vertices (±6, 0) and (0, ±5) and connect them as in Figure 3.
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y

x

(0, 5)
(0, 5)

(0, −5)
(0, −5)

(−6, 0)(−6, 0) (6, 0)(6, 0)

y

x

(−�11 , 0) (�11 , 0)

FIGURE 3

To write down the equation of an ellipse with axes parallel to the x- and y-axes andy

x

5

−5

−3 3

(6, 11)

(6, 2)

(6, 12)

C = (6, 7)

+
2

(6, 3)
(0, 4)

(0, −4)

x − 6
3(         ) = 1

2y − 7
5(         )

+
2x

3(   ) = 1
2y

5(   )

FIGURE 4 An ellipse with vertical major
axis and its translate with center
C = (6, 7).

center translated to the point C = (h, k), replace x by x − h and y by y − k in the equation
(Figure 4): (

x − h

a

)2

+
(

y − k

b

)2

= 1

EXAMPLE 2 Translating an Ellipse Find an equation of the ellipse with center C =
(6, 7), vertical focal axis, semimajor axis 5, and semiminor axis 3. Where are the foci
located?

Solution Since the focal axis is vertical, we have a = 3 and b = 5, so that a < b (Fig-

ure 4). The ellipse centered at the origin would have equation
(

x
3

)2 + ( y
5

)2 = 1. When the
center is translated to (h, k) = (6, 7), the equation becomes(

x − 6

3

)2

+
(

y − 7

5

)2

= 1

Furthermore, c = √
b2 − a2 = √

52 − 32 = 4, so the foci are located ±4 vertical units
above and below the center—that is, F1 = (6, 11) and F2 = (6, 3).

A hyperbola is the set of all points P such that the difference of the distances from

Focal axis

P

Q

F2 F1

A´ A

Conjugate axis

FIGURE 5 A hyperbola with center (0, 0).

P to two foci F1 and F2 is ±K:

PF1 − PF2 = ±K 6

We assume that K is less than the distance F1F2 between the foci (the hyperbola has no
points if K > F1F2). Note that a hyperbola consists of two branches corresponding to the
choices of sign ± (Figure 5).

As before, the midpoint of F1F2 is the center of the hyperbola, the line through F1 and
F2 is called the focal axis, and the line through the center perpendicular to the focal axis
is called the conjugate axis. The vertices are the points where the focal axis intersects the
hyperbola; they are labeled A and A′ in Figure 5. The hyperbola is said to be in standard
position when the focal and conjugate axes are the x- and y-axes as in Figure 6. The next
theorem can be verified in much the same way as Theorem 1.

THEOREM 2 Hyperbola in Standard Position Let a > 0 and b > 0, and set c =√
a2 + b2. The hyperbola PF1 − PF2 = ±2a with foci F1 = (c, 0) and F2 = (−c, 0)

has equation

(x

a

)2 −
(y

b

)2 = 1 7
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A hyperbola has two asymptotes y = ± b
a
x which are, we claim, diagonals of the

Focal axis

Conjugate axis

y = − x

F2 = (−c, 0) F1 = (c, 0)

b

−b

a−a

b
a y = xb

a

FIGURE 6 Hyperbola in standard position.

rectangle whose sides pass through (±a, 0) and (0, ±b) as in Figure 6. To prove this,
consider a point (x, y) on the hyperbola in the first quadrant. By Eq. (7),

y =
√

b2

a2
x2 − b2 = b

a

√
x2 − a2

The following limit shows that a point (x, y) on the hyperbola approaches the line y = b
a
x

as x → ∞:

lim
x→∞

(
y − b

a
x

)
= b

a
lim

x→∞
(√

x2 − a2 − x
)

= b

a
lim

x→∞
(√

x2 − a2 − x
) (√

x2 − a2 + x√
x2 − a2 + x

)

= b

a
lim

x→∞

( −a2

√
x2 − a2 + x

)
= 0

The asymptotic behavior in the remaining quadrants is similar.

EXAMPLE 3 Find the foci of the hyperbola 9x2 − 4y2 = 36. Sketch its graph and

x

y

3

−3

2−2

F2 = (−�13, 0) F1 = (�13, 0)

FIGURE 7 The hyperbola 9x2 − 4y2 = 36.

asymptotes.

Solution First divide by 36 to write the equation in standard form:

x2

4
− y2

9
= 1 or

(x

2

)2 −
(y

3

)2 = 1

Thus a = 2, b = 3, and c = √
a2 + b2 = √

4 + 9 = √
13. The foci are

F1 = (
√

13, 0), F2 = (−√
13, 0)

To sketch the graph, we draw the rectangle through the points (±2, 0) and (0, ±3) as
in Figure 7. The diagonals of the rectangle are the asymptotes y = ± 3

2x. The hyperbola
passes through the vertices (±2, 0) and approaches the asymptotes.

Unlike the ellipse and hyperbola, which are defined in terms of two foci, a parabola
is the set of points P equidistant from a focus F and a line D called the directrix:

PF = PD 8

Here, when we speak of the distance from a point P to a line D, we mean the distance

y

x

Axis

Directrix D  y = −c

Vertex
−c Q

P

2

F = (0, c)

FIGURE 8 Parabola with focus (0, c) and
directrix y = −c.

from P to the point Q on D closest to P , obtained by dropping a perpendicular from P

to D (Figure 8). We denote this distance by PD.
The line through the focus F perpendicular to D is called the axis of the parabola.

The vertex is the point where the parabola intersects its axis. We say that the parabola is
in standard position if, for some c, the focus is F = (0, c) and the directrix is y = −c, as
shown in Figure 8. We verify in Exercise 73 that the vertex is then located at the origin and
the equation of the parabola is y = x2/4c. If c < 0, then the parabola opens downward.
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THEOREM 3 Parabola in Standard Position Let c �= 0. The parabola with focus
F = (0, c) and directrix y = −c has equation

y = 1

4c
x2 9

The vertex is located at the origin. The parabola opens upward if c > 0 and downward
if c < 0.

EXAMPLE 4 The standard parabola with directrix y = −2 is translated so that its
vertex is located at (2, 8). Find its equation, directrix, and focus.

Solution By Eq. (9) with c = 2, the standard parabola with directrix y = −2 has equationy

x

Directrix  y = −2

Directrix  y = 6

(2, 8)

Focus
(2, 10)

−2 2

10

y = x21
8

y − 8 = (x − 2)21
8

Focus
(0, 2)

FIGURE 9 A parabola and its translate.

y = 1
8x2 (Figure 9). The focus of this standard parabola is (0, c) = (0, 2), which is two

units above the vertex (0, 0).
To obtain the equation when the parabola is translated with vertex at (2, 8), we replace

x by x − 2 and y by y − 8:

y − 8 = 1

8
(x − 2)2 or y = 1

8
x2 − 1

2
x + 17

2

The vertex has moved up 8 units, so the directrix also moves up 8 units to become y = 6.
The new focus is two units above the new vertex (2, 8), so the new focus is (2, 10).

Eccentricity
Some ellipses are flatter than others, just as some hyperbolas are steeper. The “shape”
of a conic section is measured by a number e called the eccentricity. For an ellipse or
hyperbola,

e = distance betweeen foci

distance between vertices on focal axis

A parabola is defined to have eccentricity e = 1.

REMINDER

Standard ellipse:(x

a

)2 +
(y

b

)2 = 1, c =
√

a2 − b2

Standard hyperbola:(x

a

)2 −
(y

b

)2 = 1, c =
√

a2 + b2

THEOREM 4 For ellipses and hyperbolas in standard position,

e = c

a

1. An ellipse has eccentricity 0 ≤ e < 1.

2. A hyperbola has eccentricity e > 1.

Proof The foci are located at (±c, 0) and the vertices are on the focal axis at (±a, 0).
Therefore,

e = distance between foci

distance between vertices on focal axis
= 2c

2a
= c

a

For an ellipse, c = √
a2 − b2 and so e = c/a < 1. For a hyperbola, c = √

a2 + b2 and
thus e = c/a > 1.
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How does eccentricity determine the shape of a conic [Figure 10(A)]? Consider the
ratio b/a of the semiminor axis to the semimajor axis of an ellipse. The ellipse is nearly
circular if b/a is close to 1, whereas it is elongated and flat if b/a is small. Now

b

a
=

√
a2 − c2

a
=

√
1 − c2

a2
=

√
1 − e2

This shows that b/a gets smaller (and the ellipse get flatter) as e → 1 [Figure 10(B)]. The
“roundest” ellipse is the circle, with e = 0.

Similarly, for a hyperbola,

b

a
=

√
1 + e2

The ratios ±b/a are the slopes of the asymptotes, so the asymptotes get steeper as e → ∞
[Figure 10(C)].

Asymptotes of the hyperbola
get steeper as e     ∞.

(B) Ellipse flattens as e     1.(A) Eccentricity e

e = 0.9

e = 0.3
e = 0.7

e = 1.2

e = 2
e = 4

y

x

y

x
0 1

Circle Parabola

Ellipses

e

Hyperbolas

(C)

FIGURE 10

CONCEPTUAL INSIGHT There is a more precise way to explain how eccentricity deter-
mines the shape of a conic. We can prove that if two conics C1 and C2 have same
eccentricity e, then there is a change of scale that makes C1 congruent to C2. Changing
the scale means changing the units along the x- and y-axes by a common positive fac-
tor. A curve scaled by a factor of 10 has the same shape but is ten times as large. This
corresponds, for example, to changing units from centimeters to millimeters (smaller
units make for a larger figure). By “congruent” we mean that after scaling, it is possible
to move C1 by a rigid motion (involving rotation and translation, but no stretching or
bending) so that it lies directly on top of C2.

All circles (e = 0) have the same shape because scaling by a factor r > 0 trans-
forms a circle of radius R into a circle of radius rR. Similarly, any two parabolas
(e = 1) become congruent after suitable scaling. However, an ellipse of eccentricity
e = 0.5 cannot be made congruent to an ellipse of eccentricity e = 0.8 by scaling (see
Exercise 74).

Eccentricity can be used to give a unified focus-directrix definition of the conic sec-

Directrix D
x =

F = (c, 0)

(0, b)

(a, 0)

P PD

ae

a
ey

x

PF

a
e

FIGURE 11 The ellipse consists of points P

such that PF = ePD.

(−c, 0) F = (c, 0)

Directrix D x =

Q

P

PF

PD
y

x

a
e

FIGURE 12 The hyperbola consists of points
P such that PF = ePD.

tions. Given a point F (the focus), a line D (the directrix), and a number e > 0, we consider
the set of all points P such that

PF = ePD 10

For e = 1, this is our definition of a parabola. According to the next theorem, Eq. (10)
defines a conic section of eccentricity e for all e > 0 (Figures 11 and 12). Note, however,
that there is no focus-directrix definition for circles (e = 0).
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THEOREM 5 Focus-Directrix Definition For all e > 0, the set of points satisfying
Eq. (10) is a conic section of eccentricity e. Furthermore,

• Ellipse: Let a > b > 0 and c = √
a2 − b2. The ellipse(x

a

)2 +
(y

b

)2 = 1

satisfies Eq. (10) with F = (c, 0), e = c
a

, and vertical directrix x = a
e

.

• Hyperbola: Let a, b > 0 and c = √
a2 + b2. The hyperbola(x

a

)2 −
(y

b

)2 = 1

satisfies Eq. (10) with F = (c, 0), e = c
a

, and vertical directrix x = a
e

.

Proof Assume that e > 1 (the case e < 1 is similar, see Exercise 66). We may choose oury

x
F = (c, 0)

d

Directrix D  x = a
e

FIGURE 13

coordinate axes so that the focus F lies on the x-axis and the directrix is vertical, lying to
the left of F , as in Figure 13. Anticipating the final result, we let d be the distance from
the focus F to the directrix D and set

c = d

1 − e−2
, a = c

e
, b =

√
c2 − a2

Since we are free to shift they-axis, let us choose they-axis so that the focus has coordinates
F = (c, 0). Then the directrix is the line

x = c − d = c − c(1 − e−2)

= c e−2 = a

e

Now, the equation PF = ePD for a point P = (x, y) may be written

√
(x − c)2 + y2︸ ︷︷ ︸

PF

= e

√(
x − (a/e)

)2︸ ︷︷ ︸
PD

Algebraic manipulation yields

(x − c)2 + y2 = e2(x − (a/e)
)2 (square)

x2 − 2cx + c2 + y2 = e2x2 − 2aex + a2

x2 − 2aex + a2e2 + y2 = e2x2 − 2aex + a2 (use c = ae)

(e2 − 1)x2 − y2 = a2(e2 − 1) (rearrange)

x2

a2
− y2

a2(e2 − 1)
= 1 (divide)

This is the desired equation because a2(e2 − 1) = c2 − a2 = b2.
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EXAMPLE 5 Find the equation, foci, and directrix of the standard ellipse with eccen-

(−8, 0)−10

−6

6

10F = (8, 0)

x = 12.5Directrixy

x

P

FIGURE 14 Ellipse of eccentricity e = 0.8
with focus at (8, 0).

d − r cos θ

θ

Directrix D

Focus F

y

x
O d

r

P

FIGURE 15 Focus-directrix definition of the
ellipse in polar coordinates.

tricity e = 0.8 and focal vertices (±10, 0).

Solution The vertices are (±a, 0) with a = 10 (Figure 14). By Theorem 5,

c = ae = 10(0.8) = 8, b =
√

a2 − c2 =
√

102 − 82 = 6

Thus, our ellipse has equation ( x

10

)2 +
(y

6

)2 = 1

The foci are (±c, 0) = (±8, 0) and the directrix is x = a
e

= 10
0.8 = 12.5.

In Section 13.6, we discuss the famous law of Johannes Kepler stating that the orbit
of a planet around the sun is an ellipse with one focus at the sun. In this discussion, we will
need to write the equation of an ellipse in polar coordinates. To derive the polar equations
of the conic sections, it is convenient to use the focus-directrix definition with focus F at
the origin O and vertical line x = d as directrix D (Figure 15). Note from the figure that
if P = (r, θ), then

PF = r, PD = d − r cos θ

Thus the focus-directrix equation of the ellipse PF = ePD becomes r = e(d − r cos θ),
or r(1 + e cos θ) = ed. This proves the following result, which is also valid for the hy-
perbola and parabola (see Exercise 67).

THEOREM 6 Polar Equation of a Conic Section The conic section of eccentricity
e > 0 with focus at the origin and directrix x = d has polar equation

r = ed

1 + e cos θ
11

EXAMPLE 6 Find the eccentricity, directrix, and focus of the conic section

Focus

FIGURE 16 The paraboloid shape of this
radio telescope directs the incoming signal
to the focus.

r = 24

4 + 3 cos θ

Solution First, we write the equation in the standard form

r = 24

4 + 3 cos θ
= 6

1 + 3
4 cos θ

Comparing with Eq. (11), we see that e = 3
4 and ed = 6. Therefore, d = 8. Since e < 1,

the conic is an ellipse. By Theorem 6, the directrix is the line x = 8 and the focus is the
origin.

Reflective Properties of Conic Sections
The conic sections have numerous geometric properties. Especially important are the
reflective properties, which are used in optics and communications (for example, in antenna
and telescope design; Figure 16). We describe these properties here briefly without proof
(but see Exercises 68–70 and Exercise 71 for proofs of the reflective property of ellipses).
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(A) Ellipse (C) Parabola(B) Hyperbola

F1 F1F2 F2

P
P

F
P

FIGURE 17

• Ellipse: The segments F1P and F2P make equal angles with the tangent line at a

FIGURE 18 The ellipsoidal dome of the
National Statuary in the U.S. Capitol
Building creates a “whisper chamber.”
Legend has it that John Quincy Adams
would locate at one focus in order to
eavesdrop on conversations taking place at
the other focus.

point P on the ellipse. Therefore, a beam of light originating at focus F1 is reflected
off the ellipse toward the second focus F2 [Figure 17(A)]. See also Figure 18.

• Hyperbola: The tangent line at a point P on the hyperbola bisects the angle formed
by the segments F1P and F2P . Therefore, a beam of light directed toward F2 is
reflected off the hyperbola toward the second focus F1 [Figure 17(B)].

• Parabola: The segment FP and the line through P parallel to the axis make equal
angles with the tangent line at a point P on the parabola [Figure 17(C)]. Therefore,
a beam of light approaching P from above in the axial direction is reflected off the
parabola toward the focus F .

General Equations of Degree 2
The equations of the standard conic sections are special cases of the general equation of
degree 2 in x and y:

ax2 + bxy + cy2 + dx + ey + f = 0 12

Here a, b, e, d, e, f are constants with a, b, c not all zero. It turns out that this general
equation of degree 2 does not give rise to any new types of curves. Apart from certain
“degenerate cases,” Eq. (12) defines a conic section that is not necessarily in standard
position: It need not be centered at the origin, and its focal and conjugate axes may be
rotated relative to the coordinate axes. For example, the equation

6x2 − 8xy + 8y2 − 12x − 24y + 38 = 0

defines an ellipse with center at (3, 3) whose axes are rotated (Figure 19).

Focal axisConjugate axisy

x
3

3

FIGURE 19 The ellipse with equation
6x2 − 8xy + 8y2 − 12x − 24y + 38 = 0.

We say that Eq. (12) is degenerate if the set of solutions is a pair of intersecting lines,
a pair of parallel lines, a single line, a point, or the empty set. For example:

• x2 − y2 = 0 defines a pair of intersecting lines y = x and y = −x.
• x2 − x = 0 defines a pair of parallel lines x = 0 and x = 1.
• x2 = 0 defines a single line (the y-axis).
• x2 + y2 = 0 has just one solution (0, 0).
• x2 + y2 = −1 has no solutions.

Now assume that Eq. (12) is nondegenerate. The term bxy is called the cross term. When
the cross term is zero (that is, when b = 0), we can “complete the square” to show that
Eq. (12) defines a translate of the conic in standard position. In other words, the axes of
the conic are parallel to the coordinate axes. This is illustrated in the next example.

EXAMPLE 7 Completing the Square Show that

4x2 + 9y2 + 24x − 72y + 144 = 0

defines a translate of a conic section in standard position (Figure 20).

y

x
−3

4

FIGURE 20 The ellipse with equation
4x2 + 9y2 + 24x − 72y + 144 = 0.
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Solution Since there is no cross term, we may complete the square of the terms involving

y'

y ´
x ´

x'

y

x

P = (x, y)

θ

FIGURE 21

x and y separately:

4x2 + 9y2 + 24x − 72y + 144 = 0

4(x2 + 6x + 9 − 9) + 9(y2 − 8y + 16 − 16) + 144 = 0

4(x + 3)2 − 4(9) + 9(y − 4)2 − 9(16) + 144 = 0

4(x + 3)2 + 9(y − 4)2 = 36

Therefore, this quadratic equation can be rewritten in the form(
x + 3

3

)2

+
(

y − 4

2

)2

= 1

When the cross term bxy is nonzero, Eq. (12) defines a conic whose axes are rotated
relative to the coordinate axes. The marginal note describes how this may be verified in
general. We illustrate with the following example.

EXAMPLE 8 Show that 2xy = 1 defines a conic section whose focal and conjugate
axes are rotated relative to the coordinate axes.

If (x ′, y ′) are coordinates relative to axes
rotated by an angle θ as in Figure 21, then

x = x ′ cos θ − y ′ sin θ 13

y = x ′ sin θ + y ′ cos θ 14

See Exercise 75. In Exercise 76, we show
that the cross term disappears when
Eq. (12) is rewritten in terms of x ′ and y ′
for the angle

θ = 1

2
cot−1 a − c

b
15

Solution Figure 22(A) shows axes labeled x′ and y′ that are rotated by 45◦ relative to
the standard coordinate axes. A point P with coordinates (x, y) may also be described
by coordinates (x′, y′) relative to these rotated axes. Applying Eqs. (13) and (14) with
θ = π

4 , we find that (x, y) and (x′, y′) are related by the formulas

x = x′ − y′
√

2
, y = x′ + y′

√
2

Therefore, if P = (x, y) lies on the hyperbola—that is, if 2xy = 1—then

2xy = 2

(
x′ − y′

√
2

) (
x′ + y′

√
2

)
= x′2 − y′2 = 1

Thus, the coordinates (x′, y′) satisfy the equation of the standard hyperbola x′2 − y′2 = 1
whose focal and conjugate axes are the x′- and y′-axes, respectively.

y y

y' x'

2xy = 1

y'

y'

x'

P = (x, y)

x'

45°
x x

11

1

−1

The point P = (x, y) may also be
described by coordinates (x', y' )
relative to the rotated axis.

(A) The hyperbola 2xy = 1 has the
standard form x'2 − y'2 = 1
relative to the x', y' axes.

(B)
FIGURE 22 The x′- and y′-axes are rotated
at a 45◦ angle relative to the x- and y-axes.

We conclude our discussion of conics by stating the Discriminant Test. Suppose that
the equation

ax2 + bxy + cy2 + dx + ey + f = 0
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is nondegenerate and thus defines a conic section. According to the Discriminant Test, the
type of conic is determined by the discriminant D:

D = b2 − 4ac

We have the following cases:

• D < 0: Ellipse or circle
• D > 0: Hyperbola
• D = 0: Parabola

For example, the discriminant of the equation 2xy = 1 is

D = b2 − 4ac = 22 − 0 = 4 > 0

According to the Discriminant Test, 2xy = 1 defines a hyperbola. This agrees with our
conclusion in Example 8.

11.5 SUMMARY

• An ellipse with foci F1 and F2 is the set of points P such that PF1 + PF2 = K , where
K is a constant such that K > F1F2. The equation in standard position is(x

a

)2 +
(y

b

)2 = 1

The vertices of the ellipse are (±a, 0) and (0, ±b).

Focal axis Foci Focal vertices

a > b x-axis (±c, 0) with c =
√

a2 − b2 (±a, 0)

a < b y-axis (0, ±c) with c =
√

b2 − a2 (0, ±b)

Eccentricity: e = c
a

(0 ≤ e < 1). Directrix: x = a
e

(if a > b).

• A hyperbola with foci F1 and F2 is the set of points P such that

PF1 − PF2 = ±K

where K is a constant such that 0 < K < F1F2. The equation in standard position is(x

a

)2 −
(y

b

)2 = 1

Focal axis Foci Vertices Asymptotes

x-axis (±c, 0) with c =
√

a2 + b2 (±a, 0) y = ±b

a
x

Eccentricity: e = c
a

(e > 1). Directrix: x = a
e

.

• A parabola with focus F and directrix D is the set of points P such that PF = PD.
The equation in standard position is

y = 1

4c
x2

Focus F = (0, c), directrix y = −c, and vertex at the origin (0, 0).
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• Focus-directrix definition of conic with focus F and directrix D: PF = ePD.
• To translate a conic section h units horizontally and k units vertically, replace x by x − h

and y by y − k in the equation.
• Polar equation of conic of eccentricity e > 0, focus at the origin, directrix x = d:

r = ed

1 + e cos θ

11.5 EXERCISES

Preliminary Questions
1. Which of the following equations defines an ellipse? Which does

not define a conic section?

(a) 4x2 − 9y2 = 12 (b) −4x + 9y2 = 0

(c) 4y2 + 9x2 = 12 (d) 4x3 + 9y3 = 12

2. For which conic sections do the vertices lie between the foci?

3. What are the foci of(x

a

)2 +
(y

b

)2 = 1 if a < b?

4. What is the geometric interpretation of b/a in the equation of a
hyperbola in standard position?

Exercises
In Exercises 1–6, find the vertices and foci of the conic section.

1.
(x

9

)2 +
(y

4

)2 = 1 2.
x2

9
+ y2

4
= 1

3.
(x

4

)2 −
(y

9

)2 = 1 4.
x2

4
− y2

9
= 36

5.
(

x − 3

7

)2
−

(
y + 1

4

)2
= 1

6.
(

x − 3

4

)2
+

(
y + 1

7

)2
= 1

In Exercises 7–10, find the equation of the ellipse obtained by translat-
ing (as indicated) the ellipse(

x − 8

6

)2
+

(
y + 4

3

)2
= 1

7. Translated with center at the origin

8. Translated with center at (−2, −12)

9. Translated to the right six units

10. Translated down four units

In Exercises 11–14, find the equation of the given ellipse.

11. Vertices (±5, 0) and (0, ±7)

12. Foci (±6, 0) and focal vertices (±10, 0)

13. Foci (0, ±10) and eccentricity e = 3
5

14. Vertices (4, 0), (28, 0) and eccentricity e = 2
3

In Exercises 15–20, find the equation of the given hyperbola.

15. Vertices (±3, 0) and foci (±5, 0)

16. Vertices (±3, 0) and asymptotes y = ± 1
2x

17. Foci (±4, 0) and eccentricity e = 2

18. Vertices (0, ±6) and eccentricity e = 3

19. Vertices (−3, 0), (7, 0) and eccentricity e = 3

20. Vertices (0, −6), (0, 4) and foci (0, −9), (0, 7)

In Exercises 21–28, find the equation of the parabola with the given
properties.

21. Vertex (0, 0), focus
( 1

12 , 0
)

22. Vertex (0, 0), focus (0, 2)

23. Vertex (0, 0), directrix y = −5

24. Vertex (3, 4), directrix y = −2

25. Focus (0, 4), directrix y = −4

26. Focus (0, −4), directrix y = 4

27. Focus (2, 0), directrix x = −2

28. Focus (−2, 0), vertex (2, 0)

In Exercises 29–38, find the vertices, foci, center (if an ellipse or a
hyperbola), and asymptotes (if a hyperbola).

29. x2 + 4y2 = 16 30. 4x2 + y2 = 16

31.
(

x − 3

4

)2
−

(
y + 5

7

)2
= 1 32. 3x2 − 27y2 = 12

33. 4x2 − 3y2 + 8x + 30y = 215

34. y = 4x2 35. y = 4(x − 4)2

36. 8y2 + 6x2 − 36x − 64y + 134 = 0
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37. 4x2 + 25y2 − 8x − 10y = 20

38. 16x2 + 25y2 − 64x − 200y + 64 = 0

In Exercises 39–42, use the Discriminant Test to determine the type of
the conic section (in each case, the equation is nondegenerate). Plot
the curve if you have a computer algebra system.

39. 4x2 + 5xy + 7y2 = 24

40. x2 − 2xy + y2 + 24x − 8 = 0

41. 2x2 − 8xy + 3y2 − 4 = 0

42. 2x2 − 3xy + 5y2 − 4 = 0

43. Show that the “conic” x2 + 3y2 − 6x + 12y + 23 = 0 has no
points.

44. For which values of a does the conic 3x2 + 2y2 − 16y + 12x = a

have at least one point?

45. Show that
b

a
=

√
1 − e2 for a standard ellipse of eccentricity e.

46. Show that the eccentricity of a hyperbola in standard position is

e =
√

1 + m2, where ±m are the slopes of the asymptotes.

47. Explain why the dots in Figure 23 lie on a parabola. Where are the
focus and directrix located?

y = −c

y = c
y = 2c
y = 3c

y

x

FIGURE 23

48. Find the equation of the ellipse consisting of points P such that
PF1 + PF2 = 12, where F1 = (4, 0) and F2 = (−2, 0).

49. A latus rectum of a conic section is a chord through a focus paral-
lel to the directrix. Find the area bounded by the parabola y = x2/(4c)

and its latus rectum (refer to Figure 8).

50. Show that the tangent line at a point P = (x0, y0) on the hyperbola(x

a

)2 −
(y

b

)2 = 1 has equation

Ax − By = 1

where A = x0

a2
and B = y0

b2
.

In Exercises 51–54, find the polar equation of the conic with the given
eccentricity and directrix, and focus at the origin.

51. e = 1
2 , x = 3 52. e = 1

2 , x = −3

53. e = 1, x = 4 54. e = 3
2 , x = −4

In Exercises 55–58, identify the type of conic, the eccentricity, and the
equation of the directrix.

55. r = 8

1 + 4 cos θ
56. r = 8

4 + cos θ

57. r = 8

4 + 3 cos θ
58. r = 12

4 + 3 cos θ

59. Find a polar equation for the hyperbola with focus at the origin,
directrix x = −2, and eccentricity e = 1.2.

60. Let C be the ellipse r = de/(1 + e cos θ), where e < 1. Show that
the x-coordinates of the points in Figure 24 are as follows:

Point A C F2 A′

x-coordinate
de

e + 1
− de2

1 − e2
− 2de2

1 − e2
− de

1 − e

F2

y

x
(0, 0) ACA ´

FIGURE 24

61. Find an equation in rectangular coordinates of the conic

r = 16

5 + 3 cos θ

Hint: Use the results of Exercise 60.

62. Let e > 1. Show that the vertices of the hyperbola r = de

1 + e cos θ
have x-coordinates

ed

e + 1
and

ed

e − 1
.

63. Kepler’s First Law states that planetary orbits are ellipses with the
sun at one focus. The orbit of Pluto has eccentricity e ≈ 0.25. Its peri-
helion (closest distance to the sun) is approximately 2.7 billion miles.
Find the aphelion (farthest distance from the sun).

64. Kepler’s Third Law states that the ratio T/a3/2 is equal to a con-
stant C for all planetary orbits around the sun, where T is the period
(time for a complete orbit) and a is the semimajor axis.

(a) Compute C in units of days and kilometers, given that the semi-
major axis of the earth’s orbit is 150 × 106 km.

(b) Compute the period of Saturn’s orbit, given that its semimajor axis
is approximately 1.43 × 109 km.

(c) Saturn’s orbit has eccentricity e = 0.056. Find the perihelion and
aphelion of Saturn (see Exercise 63).
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Further Insights and Challenges
65. Verify Theorem 2.

66. Verify Theorem 5 in the case 0 < e < 1. Hint: Repeat the proof of
Theorem 5, but set c = d/(e−2 − 1).

67. Verify that if e > 1, then Eq. (11) defines a hyperbola of eccentric-
ity e, with its focus at the origin and directrix at x = d.

Reflective Property of the Ellipse In Exercises 68–70, we prove that
the focal radii at a point on an ellipse make equal angles with the tan-
gent line L. Let P = (x0, y0) be a point on the ellipse in Figure 25 with
foci F1 = (−c, 0) and F2 = (c, 0), and eccentricity e = c/a.

68. Show that the equation of the tangent line at P is Ax + By = 1,

where A = x0

a2
and B = y0

b2
.

69. Points R1 and R2 in Figure 25 are defined so that F1R1 and F2R2
are perpendicular to the tangent line.

y

x

P = (x0, y0)

F1 = (−c, 0) F2 = (c, 0)

1θ
2θ

R2 = (   2,   2)α β

R1 = (   1,   1)α β

FIGURE 25 The ellipse
(x

a

)2 +
(y

b

)2 = 1.

(a) Show, with A and B as in Exercise 68, that

α1 + c

β1
= α2 − c

β2
= A

B

(b) Use (a) and the distance formula to show that

F1R1

F2R2
= β1

β2

(c) Use (a) and the equation of the tangent line in Exercise 68 to show
that

β1 = B(1 + Ac)

A2 + B2
, β2 = B(1 − Ac)

A2 + B2

70. (a) Prove that PF1 = a + x0e and PF2 = a − x0e. Hint: Show
that PF1

2 − PF2
2 = 4x0c. Then use the defining property PF1 +

PF2 = 2a and the relation e = c/a.

(b) Verify that
F1R1

PF1
= F2R2

PF2
.

(c) Show that sin θ1 = sin θ2. Conclude that θ1 = θ2.

71. Here is another proof of the Reflective Property.

(a) Figure 25 suggests that L is the unique line that intersects the el-
lipse only in the point P . Assuming this, prove that QF1 + QF2 >

PF1 + PF2 for all points Q on the tangent line other than P .

(b) Use the Principle of Least Distance (Example 6 in Section 4.7) to
prove that θ1 = θ2.

72. Show that the length QR in Figure 26 is independent of the point P .

y

x

P = (a, ca2)R

Q

y = cx2

FIGURE 26

73. Show that y = x2/4c is the equation of a parabola with directrix
y = −c, focus (0, c), and the vertex at the origin, as stated in Theo-
rem 3.

74. Consider two ellipses in standard position:

E1 :
(

x

a1

)2
+

(
y

b1

)2
= 1

E2 :
(

x

a2

)2
+

(
y

b2

)2
= 1

We say that E1 is similar to E2 under scaling if there exists a factor
r > 0 such that for all (x, y) on E1, the point (rx, ry) lies on E2. Show
that E1 and E2 are similar under scaling if and only if they have the
same eccentricity. Show that any two circles are similar under scaling.

75. Derive Equations (13) and (14) in the text as follows. Write
the coordinates of P with respect to the rotated axes in Figure 21 in
polar form x′ = r cos α, y′ = r sin α. Explain why P has polar coor-
dinates (r, α + θ) with respect to the standard x and y-axes and derive
(13) and (14) using the addition formulas for cosine and sine.

76. If we rewrite the general equation of degree 2 (Eq. 12) in terms of
variables x′ and y′ that are related to x and y by Eqs. (13) and (14), we
obtain a new equation of degree 2 in x′ and y′ of the same form but
with different coefficients:

a′x2 + b′xy + c′y2 + d ′x + e′y + f ′ = 0

(a) Show that b′ = b cos 2θ + (c − a) sin 2θ .

(b) Show that if b �= 0, then we obtain b′ = 0 for

θ = 1

2
cot−1 a − c

b

This proves that it is always possible to eliminate the cross term bxy

by rotating the axes through a suitable angle.
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CHAPTER REVIEW EXERCISES

1. Which of the following curves pass through the point (1, 4)?

(a) c(t) = (t2, t + 3) (b) c(t) = (t2, t − 3)

(c) c(t) = (t2, 3 − t) (d) c(t) = (t − 3, t2)

2. Find parametric equations for the line through P = (2, 5) perpen-
dicular to the line y = 4x − 3.

3. Find parametric equations for the circle of radius 2 with center
(1, 1). Use the equations to find the points of intersection of the circle
with the x- and y-axes.

4. Find a parametrization c(t) of the line y = 5 − 2x such that
c(0) = (2, 1).

5. Find a parametrization c(θ) of the unit circle such that c(0) =
(−1, 0).

6. Find a path c(t) that traces the parabolic arc y = x2 from (0, 0) to
(3, 9) for 0 ≤ t ≤ 1.

7. Find a path c(t) that traces the line y = 2x + 1 from (1, 3) to (3, 7)

for 0 ≤ t ≤ 1.

8. Sketch the graph c(t) = (1 + cos t, sin 2t) for 0 ≤ t ≤ 2π and
draw arrows specifying the direction of motion.

In Exercises 9–12, express the parametric curve in the form y = f (x).

9. c(t) = (4t − 3, 10 − t) 10. c(t) = (t3 + 1, t2 − 4)

11. c(t) =
(

3 − 2

t
, t3 + 1

t

)
12. x = tan t , y = sec t

In Exercises 13–16, calculate dy/dx at the point indicated.

13. c(t) = (t3 + t, t2 − 1), t = 3

14. c(θ) = (tan2 θ, cos θ), θ = π
4

15. c(t) = (et − 1, sin t), t = 20

16. c(t) = (ln t, 3t2 − t), P = (0, 2)

17. Find the point on the cycloid c(t) = (t − sin t, 1 − cos t)

where the tangent line has slope 1
2 .

18. Find the points on (t + sin t, t − 2 sin t) where the tangent is ver-
tical or horizontal.

19. Find the equation of the Bézier curve with control points

P0 = (−1, −1), P1 = (−1, 1), P2 = (1, 1), P3(1, −1)

20. Find the speed at t = π
4 of a particle whose position at time t

seconds is c(t) = (sin 4t, cos 3t).

21. Find the speed (as a function of t) of a particle whose position
at time t seconds is c(t) = (sin t + t, cos t + t). What is the particle’s
maximal speed?

22. Find the length of (3et − 3, 4et + 7) for 0 ≤ t ≤ 1.

In Exercises 23 and 24, let c(t) = (e−t cos t, e−t sin t).

23. Show that c(t) for 0 ≤ t < ∞ has finite length and calculate its
value.

24. Find the first positive value of t0 such that the tangent line to c(t0)

is vertical, and calculate the speed at t = t0.

25. Plot c(t) = (sin 2t, 2 cos t) for 0 ≤ t ≤ π . Express the
length of the curve as a definite integral, and approximate it using a
computer algebra system.

26. Convert the points (x, y) = (1, −3), (3, −1) from rectangular to
polar coordinates.

27. Convert the points (r, θ) = (
1, π

6

)
,
(
3, 5π

4

)
from polar to rectan-

gular coordinates.

28. Write (x + y)2 = xy + 6 as an equation in polar coordinates.

29. Write r = 2 cos θ

cos θ − sin θ
as an equation in rectangular coordinates.

30. Show that r = 4

7 cos θ − sin θ
is the polar equation of a line.

31. Convert the equation

9(x2 + y2) = (x2 + y2 − 2y)2

to polar coordinates, and plot it with a graphing utility.

32. Calculate the area of the circle r = 3 sin θ bounded by the rays
θ = π

3 and θ = 2π
3 .

33. Calculate the area of one petal of r = sin 4θ (see Figure 1).

34. The equation r = sin(nθ), where n ≥ 2 is even, is a “rose” of 2n

petals (Figure 1). Compute the total area of the flower, and show that
it does not depend on n.

y

x

n = 2 (4 petals)

y

x

n = 4 (8 petals)

y

x

n = 6 (12 petals)

FIGURE 1 Plot of r = sin(nθ).

35. Calculate the total area enclosed by the curve r2 = cos θesin θ (Fig-
ure 2).
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y

x

1

1−1

FIGURE 2 Graph of r2 = cos θesin θ .

36. Find the shaded area in Figure 3.

y

x

1

−1

21−2 −1

r = 1 + cos 2θ

FIGURE 3

37. Find the area enclosed by the cardioid r = a(1 + cos θ), where
a > 0.

38. Calculate the length of the curve with polar equation r = θ in Fig-
ure 4.

y
r = θ

x

π

2

π

FIGURE 4

39. Figure 5 shows the graph of r = e0.5θ sin θ for 0 ≤ θ ≤
2π . Use a computer algebra system to approximate the difference in
length between the outer and inner loops.

y

x

5

10

3−6

FIGURE 5

40. Show that r = f1(θ) and r = f2(θ)define the same curves
in polar coordinates if f1(θ) = −f2(θ + π). Use this to show that the
following define the same conic section:

r = de

1 − e cos θ
, r = −de

1 + e cos θ

In Exercises 41–44, identify the conic section. Find the vertices and
foci.

41.
(x

3

)2 +
(y

2

)2 = 1

42. x2 − 2y2 = 4

43.
(
2x + 1

2y
)2 = 4 − (x − y)2

44. (y − 3)2 = 2x2 − 1

In Exercises 45–50, find the equation of the conic section indicated.

45. Ellipse with vertices (±8, 0) and foci (±√
3, 0)

46. Ellipse with foci (±8, 0), eccentricity 1
8

47. Hyperbola with vertices (±8, 0), asymptotes y = ± 3
4x

48. Hyperbola with foci (2, 0) and (10, 0), eccentricity e = 4

49. Parabola with focus (8, 0), directrix x = −8

50. Parabola with vertex (4, −1), directrix x = 15

51. Find the asymptotes of the hyperbola 3x2 + 6x − y2 − 10y = 1.

52. Show that the “conic section” with equationx2 − 4x + y2 + 5 = 0
has no points.

53. Show that the relation dy
dx

= (e2 − 1) x
y holds on a standard ellipse

or hyperbola of eccentricity e.

54. The orbit of Jupiter is an ellipse with the sun at a focus. Find the
eccentricity of the orbit if the perihelion (closest distance to the sun)
equals 740 × 106 km and the aphelion (farthest distance from the sun)
equals 816 × 106 km.

55. Refer to Figure 25 in Section 11.5. Prove that the product of the
perpendicular distances F1R1 and F2R2 from the foci to a tangent line

of an ellipse is equal to the square b2 of the semiminor axes.



Recently completed Baling River Bridge in

China’s Guizhou province (2.25 km long and

soaring 400 m above the Baling River). The

tension in its cables and forces on its towers are

described using vectors.

12 VECTOR GEOMETRY

V ectors play a role in nearly all areas of mathematics and its applications. In physical
settings, they are used to represent quantities that have both magnitude and direction,

such as velocity and force. They also appear in such diverse fields as computer graphics,
economics, and statistics. This chapter develops the basic geometric and algebraic prop-
erties of vectors. Although no calculus is required, the concepts developed will be used
throughout the remainder of the text.

12.1 Vectors in the Plane
A two-dimensional vector v is determined by two points in the plane: an initial point P

(also called the “tail” or basepoint) and a terminal point Q (also called the “head”). We
write

v = −→
PQ

and we draw v as an arrow pointing from P to Q. This vector is said to be based at P .
Figure 1(A) shows the vector with initial point P = (2, 2) and terminal point Q = (7, 5).
The length or magnitude of v, denoted ‖v‖, is the distance from P to Q.

The vector v = −→
OR pointing from the origin to a point R is called the position vectorNOTATION In this text, vectors are

represented by boldface lowercase letters
such as v, w, a, b, etc.

of R. Figure 1(B) shows the position vector of the point R = (3, 5).

Q = (7, 5) R = (3, 5)

P = (2, 2)

2 4 6 81 3 5 7

1

2

3

4

5

6

x

y

2 41 3 5

1

2

3

4

5

6

x

y

(B) The position vector OR

O

(A) The vector PQ

FIGURE 1

We now introduce some vector terminology.

• Two vectors v and w of nonzero length are called parallel if the lines through v
and w are parallel. Parallel vectors point either in the same or in opposite directions
[Figure 2(A)].

• A vector v is said to undergo a translation when it is moved parallel to itself
without changing its length or direction. The resulting vector w is called a translate
of v [Figure 2(B)]. Translates have the same length and direction but different

(A) Vectors parallel to v

(B) w is a translate of v

v
w

v

FIGURE 2

basepoints.

In many situations, it is convenient to treat vectors with the same length and direction as
equivalent, even if they have different basepoints. With this in mind, we say that

• v and w are equivalent if w is a translate of v [Figure 3(A)].

657
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Every vector can be translated so that its tail is at the origin [Figure 3(C)]. Therefore,

Every vector v is equivalent to a unique vector v0 based at the origin.

Vectors equivalent
to v (translates of v)

(B)  Inequivalent vectors(A) v0 is the unique vector based
 at the origin and equivalent to v.

(C) 

v0

v
v

v

x

y

FIGURE 3

To work algebraically, we define the components of a vector (Figure 4).

DEFINITION Components of a Vector The components of v = −→
PQ, where P =

(a1, b1) and Q = (a2, b2), are the quantities

a = a2 − a1 (x-component), b = b2 − b1 (y-component)

The pair of components is denoted 〈a, b〉.

a

b

x

y

v0

P0 = (a, b)

v

Q = (a2, b2)

P = (a1, b1)
a = a2 − a1

b = b2 − b1

FIGURE 4 The vectors v and v0 have
components 〈a, b〉.

• The length of a vector in terms of its components (by the distance formula, see
Figure 4) is

‖v‖ = ‖−→
PQ‖ =

√
a2 + b2

• The zero vector (whose head and tail coincide) is the vector 0 = 〈0, 0〉 of length
zero.

The components 〈a, b〉 determine the length and direction of v, but not its basepoint.• In this text, “angle brackets” are used
to distinguish between the vector
v = 〈a, b〉 and the point P = (a, b).
Some textbooks denote both v and P

by (a, b).
• When referring to vectors, we use the

terms “length” and “magnitude”
interchangeably. The term “norm” is
also commonly used.

Therefore, two vectors have the same components if and only if they are equivalent.
Nevertheless, the standard practice is to describe a vector by its components, and thus we
write

v = 〈a, b〉
Although this notation is ambiguous (because it does not specify the basepoint), it rarely
causes confusion in practice. To further avoid confusion, the following convention will
be in force for the remainder of the text:

We assume all vectors are based at the origin unless otherwise stated.

EXAMPLE 1 Determine whether v1 = −−−→
P1Q1 and v2 = −−−→

P2Q2 are equivalent, where

P1 = (3, 7), Q1 = (6, 5) and P2 = (−1, 4), Q2 = (2, 1)

What is the magnitude of v1?



S E C T I O N 12.1 Vectors in the Plane 659

Solution We can test for equivalence by computing the components (Figure 5):

2 63−1

1

4

5

x

y

Q2 = (2, 1)

Q1 = (6, 5)

P1 = (3, 7)

v1

v2

P2 = (−1, 4)

FIGURE 5

v1 = 〈6 − 3, 5 − 7〉 = 〈3, −2〉 , v2 = 〈2 − (−1), 1 − 4〉 = 〈3, −3〉
The components of v1 and v2 are not the same, so v1 and v2 are not equivalent. Since
v1 = 〈3, −2〉, its magnitude is

‖v1‖ =
√

32 + (−2)2 = √
13

EXAMPLE 2 Sketch the vector v = 〈2, −3〉 based at P = (1, 4) and the vector v0
equivalent to v based at the origin.

Solution The vector v = 〈2, −3〉 based at P = (1, 4) has terminal point Q =
(1 + 2, 4 − 3) = (3, 1), located two units to the right and three units down from P

as shown in Figure 6. The vector v0 equivalent to v based at O has terminal point (2, −3).

3

3

1 2

2

4

1

−3

x

y

Q = (3, 1)

O

P = (1, 4)

v0 = 〈2, −3〉

v = 〈2, −3〉

FIGURE 6 The vectors v and v0 have the
same components but different basepoints.

Vector Algebra
We now define two basic vector operations: vector addition and scalar multiplication.

The vector sum v + w is defined when v and w have the same basepoint: Translate
w to the equivalent vector w′ whose tail coincides with the head of v. The sum v + w is
the vector pointing from the tail of v to the head of w′ [Figure 7(A)]. Alternatively, we
can use the Parallelogram Law: v + w is the vector pointing from the basepoint to the
opposite vertex of the parallelogram formed by v and w [Figure 7(B)].

ww

v v v + w
v + w

w´
vv

w´

(B)  Addition via the Parallelogram Law(A)  The vector sum v + w

FIGURE 7

To add several vectors v1, v2, . . . , vn, translate the vectors to v1 = v′
1, v′

2, . . . , v′
n so

that they lie head to tail as in Figure 8. The vector sum v = v1 + v2 + · · · + vn is the
vector whose terminal point is the terminal point of v′

n.

xx

yy

v

v4́

v4

v3́

v3

v2́

v2

v1́v1

FIGURE 8 The sum v = v1 + v2 + v3 + v4.

Vector subtraction v − w is carried out by adding −w to v as in Figure 9(A). Or, more
CAUTION Remember that the vector v − w
points in the direction from the tip of w to
the tip of v (not from the tip of v to the tip
of w).

simply, draw the vector pointing from w to v as in Figure 9(B), and translate it back to the
basepoint to obtain v − w.
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v

−w

v − w

w

(A) v − w equals v plus (−w) (B) More simply, v − w is the translate
       of the vector pointing from the tip of w
      to the tip of v. 

v
v − w

w

FIGURE 9 Vector subtraction.

The term scalar is another word for “real number,” and we often speak of scalar
versus vector quantities. Thus, the number 8 is a scalar, while 〈8, 2〉 is a vector. If λ is a
scalar and v is a nonzero vector, the scalar multiple λv is defined as follows (Figure 10):

NOTATION λ (pronounced “lambda") is the
eleventh letter in the Greek alphabet. We
use the symbol λ often (but not exclusively)
to denote a scalar.

• λv has length |λ| ‖v‖.
• It points in the same direction as v if λ > 0.
• It points in the opposite direction if λ < 0.

Note that 0v = 0 for all v, and

‖λv‖ = |λ| ‖v‖

In particular, −v has the same length as v but points in the opposite direction. A vector w
is parallel to v if and only if w = λv for some nonzero scalar λ.3

6

4
2

x

y

P

−v

v

2v

FIGURE 10 Vectors v and 2v are based at P

but 2v is twice as long. Vectors v and −v
have the same length but opposite
directions.

Vector addition and scalar multiplication operations are easily performed using com-
ponents. To add or subtract two vectors v and w, we add or subtract their components.
This follows from the parallelogram law as indicated in Figure 11(A).

Similarly, to multiply v by a scalar λ, we multiply the components of v by λ [Figures
11(B) and (C)]. Indeed, if v = 〈a, b〉 is nonzero, 〈λa, λb〉 has length |λ| ‖v‖. It points in
the same direction as 〈a, b〉 if λ > 0, and in the opposite direction if λ < 0.

x x

y y

v = 〈a, b〉

v = 〈a, b〉w = 〈c, d〉

(A) (B)

v + w
b + d

d

c

a + c a

b

b

a x

y

λv = 〈λa, λb〉

(C)

λa

λb

FIGURE 11 Vector operations using
components.

Vector Operations Using Components If v = 〈a, b〉 and w = 〈c, d〉, then:

(i) v + w = 〈a + c, b + d〉
(ii) v − w = 〈a − c, b − d〉

(iii) λv = 〈λa, λb〉
(iv) v + 0 = 0 + v = v

We also note that if P = (a1, b1) and Q = (a2, b2), then components of the vector
v = −→

PQ are conveniently computed as the difference

−→
PQ = −−→

OQ − −→
OP = 〈a2, b2〉 − 〈a1, b1〉 = 〈a2 − a1, b2 − b1〉
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EXAMPLE 3 For v = 〈1, 4〉, w = 〈3, 2〉, calculate

(a) v + w (b) 5v

31 4

6

4

2

x

y

w = 〈3, 2〉

v + w = 〈4, 6〉

v = 〈1, 4〉

FIGURE 12

Solution

v + w = 〈1, 4〉 + 〈3, 2〉 = 〈1 + 3, 4 + 2〉 = 〈4, 6〉
5v = 5 〈1, 4〉 = 〈5, 20〉

The vector sum is illustrated in Figure 12.

Vector operations obey the usual laws of algebra.

THEOREM 1 Basic Properties of Vector Algebra For all vectors u, v, w and for all
scalars λ,

Commutative Law: v + w = w + v
Associative Law: u + (v + w) = (u + v) + w
Distributive Law for Scalars: λ(v + w) = λv + λw

These properties are verified easily using components. For example, we can check
that vector addition is commutative:

〈a, b〉 + 〈c, d〉 = 〈a + c, b + d〉 = 〈c + a, d + b〉︸ ︷︷ ︸
Commutativity of ordinary addition

= 〈c, d〉 + 〈a, b〉

A linear combination of vectors v and w is a vector

rv + sw

where r and s are scalars. If v and w are not parallel, then every vector u in the plane
can be expressed as a linear combination u = rv + sw [Figure 13(A)]. The parallelogram
P whose vertices are the origin and the terminal points of v, w and v + w is called the
parallelogram spanned by v and w [Figure 13(B)]. It consists of the linear combinations
rv + sw with 0 ≤ r ≤ 1 and 0 ≤ s ≤ 1.

rv + sw

x

y

The vector u can be expressed as a
linear combination  u = rv + sw. 
In this figure,  r  < 0.

(A) (B) The parallelogram P spanned by v and w
consists of all linear combinations rv + sw
with 0 ≤ r, s ≤ 1.

v

w

swu = rv + sw

rv x

y

v
rv (0 ≤ r ≤ 1)

w

v + w

sw (0 ≤ s ≤ 1)

FIGURE 13
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EXAMPLE 4 Linear Combinations Express the vector u = 〈4, 4〉 in Figure 14 as a

w

v x

y

v = 〈6, 2〉 

w = 〈2, 4〉 
u = 〈4, 4〉 

4
5

2
5

FIGURE 14

linear combination of v = 〈6, 2〉 and w = 〈2, 4〉.
Solution We must find r and s such that rv + sw = 〈4, 4〉, or

r 〈6, 2〉 + s 〈2, 4〉 = 〈6r + 2s, 2r + 4s〉 = 〈4, 4〉
The components must be equal, so we have a system of two linear equations:

6r + 2s = 4

2r + 4s = 4

Subtracting the equations, we obtain 4r − 2s = 0 or s = 2r . Setting s = 2r in the first
equation yields 6r + 4r = 4 or r = 2

5 , and then s = 2r = 4
5 . Therefore,

u = 〈4, 4〉 = 2

5
〈6, 2〉 + 4

5
〈2, 4〉

CONCEPTUAL INSIGHT In general, to write a vector u = 〈e, f 〉 as a linear combination
of two other vectors v = 〈a, b〉 and w = 〈c, d〉, we have to solve a system of two linear
equations in two unknowns r and s:

rv + sw = u ⇔ r 〈a, b〉 + s 〈c, d〉 = 〈e, f 〉 ⇔
{
ar + cs = e

br + ds =f

On the other hand, vectors give us a way of visualizing the system of equations geo-
metrically. The solution is represented by a parallelogram as in Figure 14. This relation
between vectors and systems of linear equations extends to any number of variables and
is the starting point for the important subject of linear algebra.

A vector of length 1 is called a unit vector. Unit vectors are often used to indicate
direction, when it is not necessary to specify length. The head of a unit vector e based at
the origin lies on the unit circle and has components

e = 〈cos θ, sin θ〉
where θ is the angle between e and the positive x-axis (Figure 15).

x

y

1

q

e = 〈cos q, sin q 〉

FIGURE 15 The head of a unit vector lies on
the unit circle.

We can always scale a nonzero vector v = 〈a, b〉 to obtain a unit vector pointing in
the same direction (Figure 16):

ev = 1

‖v‖v

Indeed, we can check that ev is a unit vector as follows:

x

y

1 a

b

q

v = 〈a, b〉

ev

FIGURE 16 Unit vector in the direction of v.

‖ev‖ =
∥∥∥∥ 1

‖v‖v

∥∥∥∥ = 1

‖v‖‖v‖ = 1

If v = 〈a, b〉 makes an angle θ with the positive x-axis, then

v = 〈a, b〉 = ‖v‖ev = ‖v‖ 〈cos θ, sin θ〉 1

EXAMPLE 5 Find the unit vector in the direction of v = 〈3, 5〉.

Solution ‖v‖ = √
32 + 52 = √

34, and thus ev = 1√
34

v =
〈

3√
34

,
5√
34

〉
.
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It is customary to introduce a special notation for the unit vectors in the direction of

j

bj

i ai
x

y

1

1

v = ai + bj

FIGURE 17

the positive x- and y-axes (Figure 17):

i = 〈1, 0〉 , j = 〈0, 1〉

The vectors i and j are called the standard basis vectors. Every vector in the plane is a
linear combination of i and j (Figure 17):

v = 〈a, b〉 = ai + bj

For example, 〈4, −2〉 = 4i − 2j. Vector addition is performed by adding the i and j coef-
ficients. For example,

(4i − 2j) + (5i + 7j) = (4 + 5)i + (−2 + 7)j = 9i + 5j

CONCEPTUAL INSIGHT It is often said that quantities such as force and velocity are vec-
tors because they have both magnitude and direction, but there is more to this statement
than meets the eye. A vector quantity must obey the law of vector addition (Figure 18),
so if we say that force is a vector, we are really claiming that forces add according to
the Parallelogram Law. In other words, if forces F1 and F2 act on an object, then the
resultant force is the vector sum F1 + F2. This is a physical fact that must be verified
experimentally. It was well known to scientists and engineers long before the vector
concept was introduced formally in the 1800s.

EXAMPLE 6 Find the forces on cables 1 and 2 in Figure 19(A).

v1

v2

FIGURE 18 When an airplane traveling with
velocity v1 encounters a wind of velocity
v2, its resultant velocity is the vector sum
v1 + v2.

x

y

Fg = 〈0, −980〉

30°55°
125°

F1

F2

P

55° 30°

Cable 1 Cable 2

P

100 kg

(A) (B) Force diagram

FIGURE 19

Solution Three forces act on the point P in Figure 19(A): the force Fg due to gravity
of 100g = 980 newtons (g = 9.8 m/s2) acting vertically downward, and two unknown
forces F1 and F2 acting through cables 1 and 2, as indicated in Figure 19(B).

Let f1 = ‖F1‖ and f2 = ‖F2‖. Because F1 makes an angle of 125◦ (the supplement
of 55◦) with the positive x-axis, and F2 makes an angle of 30◦, we can use Eq. (1) and the
table in the margin to write these vectors in component form:

θ cos θ sin θ

125◦ −0.573 0.819
30◦ 0.866 0.5

F1 =f1
〈
cos 125◦, sin 125◦〉 ≈ f1 〈−0.573, 0.819〉

F2 =f2
〈
cos 30◦, sin 30◦〉 ≈ f2 〈0.866, 0.5〉

Fg = 〈0, −980〉
Now, the point P is not in motion, so the net force on P is zero:

F1 + F2 + Fg = 0
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f1 〈−0.573, 0.819〉 + f2 〈0.866, 0.5〉 + 〈0, −980〉 = 〈0, 0〉
This gives us two equations in two unknowns:

−0.573f1 + 0.866f2 = 0, 0.819f1 + 0.5f2 − 980 = 0

By the first equation, f2 = ( 0.573
0.866

)
f1. Substitution in the second equation yields

0.819f1 + 0.5

(
0.573

0.866

)
f1 − 980 ≈ 1.15f1 − 980 = 0

Therefore, the forces in newtons are

f1 ≈ 980

1.15
≈ 852 N and f2 ≈

(
0.573

0.866

)
852 ≈ 564 N

We close this section with the Triangle Inequality. Figure 20 shows the vector sum
v + w for three different vectors w of the same length. Notice that the length ‖v + w‖
varies, depending on the angle between v and w. So in general, ‖v + w‖ is not equal to the
sum ‖v‖ + ‖w‖. What we can say is that ‖v + w‖ is at most equal to the sum ‖v‖ + ‖w‖.
This corresponds to the fact that the length of one side of a triangle is at most the sum of
the lengths of the other two sides. A formal proof may be given using the dot product (see
Exercise 88 in Section 12.3).

THEOREM 2 Triangle Inequality For any two vectors v and w,

‖v + w‖ ≤ ‖v‖ + ‖w‖

Equality holds only if v = 0 or w = 0, or if w = λv, where λ ≥ 0.

v + w

v + wv + w

w

ww

vv v
FIGURE 20 The length of v + w depends on
the angle between v and w.

12.1 SUMMARY

• A vector v = −→
PQ is determined by a basepoint P (the “tail”) and a terminal point Q

(the “head”).
• Components of v = −→

PQ where P = (a1, b1) and Q = (a2, b2):

v = 〈a, b〉
with a = a2 − a1, b = b2 − b1.
• Length or magnitude: ‖v‖ = √

a2 + b2.
• The length ‖v‖ is the distance from P to Q.
• The position vector of P0 = (a, b) is the vector v = 〈a, b〉 pointing from the origin O

to P0.
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• Vectors v and w are equivalent if they are translates of each other: They have the same
magnitude and direction, but possibly different basepoints. Two vectors are equivalent if
and only if they have the same components.
• We assume all vectors are based at the origin unless otherwise indicated.
• The zero vector is the vector 0 = 〈0, 0〉 of length 0.
• Vector addition is defined geometrically by the Parallelogram Law. In components,

〈a1, b1〉 + 〈a2, b2〉 = 〈a1 + a2, b1 + b2〉
• Scalar multiplication: λv is the vector of length |λ| ‖v‖ in the same direction as v if
λ > 0, and in the opposite direction if λ < 0. In components,

λ 〈a, b〉 = 〈λa, λb〉
• Nonzero vectors v and w are parallel if w = λv for some scalar λ.
• Unit vector making an angle θ with the positive x-axis: e = 〈cos θ, sin θ〉.
• Unit vector in the direction of v = 0: ev = 1

‖v‖v.

• If v = 〈a, b〉 makes an angle θ with the positive x-axis, then

a = ‖v‖ cos θ, b = ‖v‖ sin θ, ev = 〈cos θ, sin θ〉
• Standard basis vectors: i = 〈1, 0〉 and j = 〈0, 1〉.
• Every vector v = 〈a, b〉 is a linear combination v = ai + bj.
• Triangle Inequality: ‖v + w‖ ≤ ‖v‖ + ‖w‖.

12.1 EXERCISES

Preliminary Questions
1. Answer true or false. Every nonzero vector is:

(a) Equivalent to a vector based at the origin.
(b) Equivalent to a unit vector based at the origin.
(c) Parallel to a vector based at the origin.
(d) Parallel to a unit vector based at the origin.

2. What is the length of −3a if ‖a‖ = 5?

3. Suppose that v has components 〈3, 1〉. How, if at all, do the com-
ponents change if you translate v horizontally two units to the left?

4. What are the components of the zero vector based at P = (3, 5)?

5. True or false?

(a) The vectors v and −2v are parallel.

(b) The vectors v and −2v point in the same direction.

6. Explain the commutativity of vector addition in terms of the Par-
allelogram Law.

Exercises
1. Sketch the vectors v1, v2, v3, v4 with tail P and head Q, and com-

pute their lengths. Are any two of these vectors equivalent?

v1 v2 v3 v4

P (2, 4) (−1, 3) (−1, 3) (4, 1)

Q (4, 4) (1, 3) (2, 4) (6, 3)

2. Sketch the vector b = 〈3, 4〉 based at P = (−2, −1).

3. What is the terminal point of the vector a = 〈1, 3〉 based at P =
(2, 2)? Sketch a and the vector a0 based at the origin and equivalent
to a.

4. Let v = −→
PQ, where P = (1, 1) and Q = (2, 2). What is the head

of the vector v′ equivalent to v based at (2, 4)? What is the head of the
vector v0 equivalent to v based at the origin? Sketch v, v0, and v′.

In Exercises 5–8, find the components of
−→
PQ.

5. P = (3, 2), Q = (2, 7) 6. P = (1, −4), Q = (3, 5)

7. P = (3, 5), Q = (1, −4) 8. P = (0, 2), Q = (5, 0)

In Exercises 9–14, calculate.

9. 〈2, 1〉 + 〈3, 4〉 10. 〈−4, 6〉 − 〈3, −2〉

11. 5 〈6, 2〉 12. 4(〈1, 1〉 + 〈3, 2〉)

13.
〈
−1

2 , 5
3

〉
+

〈
3, 10

3

〉
14. 〈ln 2, e〉 + 〈ln 3, π〉

15. Which of the vectors (A)–(C) in Figure 21 is equivalent to v − w?
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(A) (B) (C)

w

v

FIGURE 21

16. Sketch v + w and v − w for the vectors in Figure 22.

w
v

FIGURE 22

17. Sketch 2v, −w, v + w, and 2v − w for the vectors in Figure 23.

2 4 61 3 5

1

2

3

4

5

x

y

v = 〈2, 3〉 

w = 〈4, 1〉

FIGURE 23

18. Sketch v = 〈1, 3〉, w = 〈2, −2〉, v + w, v − w.

19. Sketch v = 〈0, 2〉, w = 〈−2, 4〉, 3v + w, 2v − 2w.

20. Sketch v = 〈−2, 1〉, w = 〈2, 2〉, v + 2w, v − 2w.

21. Sketch the vector v such that v + v1 + v2 = 0 for v1 and v2 in
Figure 24(A).

22. Sketch the vector sum v = v1 + v2 + v3 + v4 in Figure 24(B).

1−3

1

3

x

y

v1

v2

(A)

x

y

v3

v1

v4 v2

(B)

FIGURE 24

23. Let v = −→
PQ, where P = (−2, 5), Q = (1, −2). Which of the fol-

lowing vectors with the given tails and heads are equivalent to v?

(a) (−3, 3), (0, 4) (b) (0, 0), (3, −7)

(c) (−1, 2), (2, −5) (d) (4, −5), (1, 4)

24. Which of the following vectors are parallel to v = 〈6, 9〉 and which
point in the same direction?

(a) 〈12, 18〉 (b) 〈3, 2〉 (c) 〈2, 3〉
(d) 〈−6, −9〉 (e) 〈−24, −27〉 (f) 〈−24, −36〉

In Exercises 25–28, sketch the vectors
−→
AB and

−→
PQ, and determine

whether they are equivalent.

25. A = (1, 1), B = (3, 7), P = (4, −1), Q = (6, 5)

26. A = (1, 4), B = (−6, 3), P = (1, 4), Q = (6, 3)

27. A = (−3, 2), B = (0, 0), P = (0, 0), Q = (3, −2)

28. A = (5, 8), B = (1, 8), P = (1, 8), Q = (−3, 8)

In Exercises 29–32, are
−→
AB and

−→
PQ parallel? And if so, do they point

in the same direction?

29. A = (1, 1), B = (3, 4), P = (1, 1), Q = (7, 10)

30. A = (−3, 2), B = (0, 0), P = (0, 0), Q = (3, 2)

31. A = (2, 2), B = (−6, 3), P = (9, 5), Q = (17, 4)

32. A = (5, 8), B = (2, 2), P = (2, 2), Q = (−3, 8)

In Exercises 33–36, let R = (−2, 7). Calculate the following.

33. The length of
−→
OR

34. The components of u = −→
PR, where P = (1, 2)

35. The point P such that
−→
PR has components 〈−2, 7〉

36. The point Q such that
−→
RQ has components 〈8, −3〉

In Exercises 37–42, find the given vector.

37. Unit vector ev where v = 〈3, 4〉
38. Unit vector ew where w = 〈24, 7〉
39. Vector of length 4 in the direction of u = 〈−1, −1〉
40. Unit vector in the direction opposite to v = 〈−2, 4〉
41. Unit vector e making an angle of 4π

7 with the x-axis

42. Vector v of length 2 making an angle of 30◦ with the x-axis

43. Find all scalars λ such that λ 〈2, 3〉 has length 1.

44. Find a vector v satisfying 3v + 〈5, 20〉 = 〈11, 17〉.
45. What are the coordinates of the point P in the parallelogram in
Figure 25(A)?

46. What are the coordinates a and b in the parallelogram in Figure
25(B)?

x

y

x

y

(2, 2)

(A)

P

(5, 4)

(7, 8)

(2, 3)

(−3, 2)
(a, 1)

(−1, b)

(B)

FIGURE 25

47. Let v = −→
AB and w = −→

AC, where A, B, C are three distinct points
in the plane. Match (a)–(d) with (i)–(iv). (Hint: Draw a picture.)
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(a) −w (b) −v (c) w − v (d) v − w

(i)
−→
CB (ii)

−→
CA (iii)

−→
BC (iv)

−→
BA

48. Find the components and length of the following vectors:

(a) 4i + 3j (b) 2i − 3j (c) i + j (d) i − 3j

In Exercises 49–52, calculate the linear combination.

49. 3j + (9i + 4j) 50. − 3
2 i + 5

( 1
2 j − 1

2 i
)

51. (3i + j) − 6j + 2(j − 4i) 52. 3(3i − 4j) + 5(i + 4j)

53. For each of the position vectors u with endpoints A, B, and C in
Figure 26, indicate with a diagram the multiples rv and sw such that

u = rv + sw. A sample is shown for u = −−→
OQ.

y

x

C

A

Q

B

w

v

sw

rv

FIGURE 26

54. Sketch the parallelogram spanned by v = 〈1, 4〉 and w = 〈5, 2〉.
Add the vector u = 〈2, 3〉 to the sketch and express u as a linear com-
bination of v and w.

In Exercises 55 and 56, express u as a linear combination u = rv + sw.
Then sketch u, v, w, and the parallelogram formed by rv and sw.

55. u = 〈3, −1〉; v = 〈2, 1〉, w = 〈1, 3〉
56. u = 〈6, −2〉; v = 〈1, 1〉, w = 〈1, −1〉

57. Calculate the magnitude of the force on cables 1 and 2 in Figure 27.

65° 25°

Cable 1
Cable 2

50 kg

FIGURE 27

58. Determine the magnitude of the forces F1 and F2 in Figure 28,
assuming that there is no net force on the object.

45° 30°

20 kgF2

F1

FIGURE 28

59. A plane flying due east at 200 km/h encounters a 40-km/h wind
blowing in the north-east direction. The resultant velocity of the plane
is the vector sum v = v1 + v2, where v1 is the velocity vector of the
plane and v2 is the velocity vector of the wind (Figure 29). The angle
between v1 and v2 is π

4 . Determine the resultant speed of the plane
(the length of the vector v).

40 km/h

200 km/h

v2

v1

v

FIGURE 29

Further Insights and Challenges
In Exercises 60–62, refer to Figure 30, which shows a robotic arm
consisting of two segments of lengths L1 and L2.

60. Find the components of the vector r = −→
OP in terms of θ1 and θ2.

61. Let L1 = 5 and L2 = 3. Find r for θ1 = π
3 , θ2 = π

4 .

62. Let L1 = 5 and L2 = 3. Show that the set of points reachable by
the robotic arm with θ1 = θ2 is an ellipse.

x

y

PL1

L2

rθ1

θ1
θ2

FIGURE 30

63. Use vectors to prove that the diagonals AC and BD of a parallel-
ogram bisect each other (Figure 31). Hint: Observe that the midpoint
of BD is the terminal point of w + 1

2 (v − w).

(v + w)

(v − w)

v

w

A
B

D
C

1
2

1
2

FIGURE 31
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64. Use vectors to prove that the segments joining the midpoints of
opposite sides of a quadrilateral bisect each other (Figure 32). Hint:
Show that the midpoints of these segments are the terminal points of

1

4
(2u + v + z) and

1

4
(2v + w + u)

65. Prove that two vectors v = 〈a, b〉 and w = 〈c, d〉 are perpendicular
if and only if

ac + bd = 0

z

v

w

u

FIGURE 32

12.2 Vectors in Three Dimensions
This section extends the vector concepts introduced in the previous section to three-
dimensional space. We begin with some introductory remarks about the three-dimensional
coordinate system.

By convention, we label the axes as in Figure 1(A), where the positive sides of the
axes are labeled x, y, and z. This labeling satisfies the right-hand rule, which means that
when you position your right hand so that your fingers curl from the positive x-axis toward
the positive y-axis, your thumb points in the positive z-direction. The axes in Figure 1(B)
are not labeled according to the right-hand rule.

Standard coordinate system
(satisfies the right-hand rule)

(A) This coordinate system does
not satisfy the right-hand rule
because the thumb points in
the negative z-direction.

(B)

y

x

z

x

y

z

FIGURE 1 The fingers of the right hand curl from the positive x-axis to the positive y-axis.

Each point in space has unique coordinates (a, b, c) relative to the axes (Figure 2).

y
x

z

(a, b, 0)

P = (a, b, c)

a

c

b

FIGURE 2

We denote the set of all triples (a, b, c) by R3. The coordinate planes in R3 are defined
by setting one of the coordinates equal to zero (Figure 3). The xy-plane consists of the
points (a, b, 0) and is defined by the equation z = 0. Similarly, x = 0 defines the yz-
plane consisting of the points (0, b, c), and y = 0 defines the xz-plane consisting of the
points (a, 0, c). The coordinate planes divide R3 into eight octants (analogous to the four
quadrants in the plane). Each octant corresponds to a possible combination of signs of the
coordinates. The set of points (a, b, c) with a, b, c > 0 is called the first octant.

As in two dimensions, we derive the distance formula in R3 from the Pythagorean
Theorem.

THEOREM 1 Distance Formula in R3 The distance |P − Q| between the points
P = (a1, b1, c1) and Q = (a2, b2, c2) is

|P − Q| =
√

(a2 − a1)2 + (b2 − b1)2 + (c2 − c1)2 1
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y = 0 defines the xz-planez = 0 defines the xy-plane x = 0 defines the yz-plane

z

yy

xxx

zz

y

FIGURE 3

Proof First apply the distance formula in the plane to the points P and R (Figure 4):

|P − R|2 = (a2 − a1)
2 + (b2 − b1)

2

Then observe that�PRQ is a right triangle [Figure 4(B)] and use the PythagoreanTheorem:

|P − Q|2 = |P − R|2 + |R − Q|2 = (a2 − a1)
2 + (b2 − b1)

2 + (c2 − c1)
2

Q = (a2, b2, c2)

R = (a2, b2, c1) R = (a2, b2, c1)

Q = (a2, b2, c2)

P = (a1, b1, c1)
P = (a1, b1, c1)

|a2 − a1||b2 − b1|

(B)(A)

|c2 − c1|

FIGURE 4 Compute |P − Q| using the right triangle �PRQ.

The sphere of radius R with center Q = (a, b, c) consists of all points P = (x, y, z)

Q = (a, b, c)

R

P = (x, y, z)

FIGURE 5 Sphere of radius R centered at
(a, b, c).

located a distance R from Q (Figure 5). By the distance formula, the coordinates of
P = (x, y, z) must satisfy√

(x − a)2 + (y − b)2 + (z − c)2 = R

On squaring both sides, we obtain the standard equation of the sphere [Eq. (3) below].
Now consider the equation

(x − a)2 + (y − b)2 = R2 2

In the xy-plane, Eq. (2) defines the circle of radius R with center (a, b). However, as an
equation in R3, it defines the right circular cylinder of radius R whose central axis is the
vertical line through (a, b, 0) (Figure 6). Indeed, a point (x, y, z) satisfies Eq. (2) for any
value of z if (x, y) lies on the circle. It is usually clear from the context which of the
following is intended:

Circle = {(x, y) : (x − a)2 + (y − b)2 = R2}
Right circular cylinder = {(x, y, z) : (x − a)2 + (y − b)2 = R2}
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Equations of Spheres and Cylinders An equation of the sphere in R3 of radius R

centered at Q = (a, b, c) is

(x − a)2 + (y − b)2 + (z − c)2 = R2 3

An equation of the right circular cylinder in R3 of radius R whose central axis is the
vertical line through (a, b, 0) is

(x − a)2 + (y − b)2 = R2 4

y

Rx

z

(a, b, 0)

FIGURE 6 Right circular cylinder of radius
R centered at (a, b, 0).

EXAMPLE 1 Describe the sets of points defined by the following conditions:

(a) x2 + y2 + z2 = 4, y ≥ 0 (b) (x − 3)2 + (y − 2)2 = 1, z ≥ −1

Solution

(a) The equation x2 + y2 + z2 = 4 defines a sphere of radius 2 centered at the origin.
The inequality y ≥ 0 holds for points lying on the positive side of the xz-plane. We obtain
the right hemisphere of radius 2 illustrated in Figure 7(A).

(A) (B)

y

x

z

(3, 2, −1)
3

2

1

y

x

z

2

FIGURE 7 Hemisphere and upper cylinder.

(b) The equation (x − 3)2 + (y − 2)2 = 1 defines a cylinder of radius 1 whose central
axis is the vertical line through (3, 2, 0). The part of the cylinder where z ≥ −1 is illustrated
in Figure 7(B).

Vector Concepts

As in the plane, a vector v = −→
PQ in R3 is determined by an initial point P and a terminal

point Q (Figure 8). If P = (a1, b1, c1) and Q = (a2, b2, c2), then the length or magnitude3
3

75

2

4

y
x

Q = (5, 7, 4)
P = (3, 3, 2)

z

FIGURE 8 A vector
−→
PQ in 3-space.

of v = −→
PQ, denoted ‖v‖, is the distance from P to Q:

‖v‖ = ‖−→
PQ‖ =

√
(a2 − a1)2 + (b2 − b1)2 + (c2 − c1)2

The terminology and basic properties discussed in the previous section carry over to
R3 with little change.

• A vector v is said to undergo a translation if it is moved without changing direction
or magnitude.

• Two vectors v and w are equivalent if w is a translate of v; that is, v and w have
the same length and direction.
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• Two nonzero vectors v and w are parallel if v = λw for some scalar λ.
• The position vector of a point Q0 is the vector v0 = −−→

OQ0 based at the origin

x

z

y

Q

P

Q0 = (a, b, c)

v0

v = 〈a, b, c〉

FIGURE 9 A vector v and its translate based
at the origin.

(Figure 9).
• A vector v = −→

PQ with components 〈a, b, c〉 is equivalent to the vector v0 = −−→
OQ0

based at the origin with Q0 = (a, b, c) (Figure 9).
• The components of v = −→

PQ, where P = (a1, b1, c1) and Q = (a2, b2, c2), are the
differences a = a2 − a1, b = b2 − b1, c = c2 − c1; that is,

v = −→
PQ = −−→

OQ − −→
OP = 〈a2, b2, c2〉 − 〈a1, b1, c1〉

For example, if P = (3, −4, −4) and Q = (2, 5, −1), then

v = −→
PQ = 〈2, 5, −1〉 − 〈3, −4, −4〉 = 〈−1, 9, 3〉

• Two vectors are equivalent if and only if they have the same components.
• Vector addition and scalar multiplication are defined as in the two-dimensional case.

Our basepoint convention remains in force:
vectors are assumed to be based at the
origin unless otherwise indicated.

Vector addition is defined by the Parallelogram Law (Figure 10).

x

z

y

v

v + w

FIGURE 10 Vector addition is defined by the
Parallelogram Law.

• In terms of components, if v = 〈a1, b1, c1〉 and w = 〈a2, b2, c2〉, then

λv = λ 〈a1, b1, c1〉 = 〈λa1, λb1, λc1〉
v + w = 〈a1, b1, c1〉 + 〈a2, b2, c2〉 = 〈a1 + a2, b1 + b2, c1 + c2〉

• Vector addition is commutative, is associative, and satisfies the distributive property
with respect to scalar multiplication (Theorem 1 in Section 12.1).

EXAMPLE 2 Vector Calculations Calculate ‖v‖ and 6v − 1
2 w, where v = 〈3, −1, 2〉

and w = 〈4, 6, −8〉.
Solution

‖v‖ =
√

32 + (−1)2 + 22 = √
14

6v − 1

2
w = 6 〈3, −1, 2〉 − 1

2
〈4, 6, −8〉

= 〈18, −6, 12〉 − 〈2, 3, −4〉
= 〈16, −9, 16〉

The standard basis vectors in R3 are

i = 〈1, 0, 0〉 , j = 〈0, 1, 0〉 , k = 〈0, 0, 1〉
Every vector is a linear combination of the standard basis vectors (Figure 11):

〈a, b, c〉 = a 〈1, 0, 0〉 + b 〈0, 1, 0〉 + c 〈0, 0, 1〉 = ai + bj + ck

For example, 〈−9, −4, 17〉 = −9i − 4j + 17k.

EXAMPLE 3 Find the unit vector ev in the direction of v = 3i + 2j − 4k.

Solution Since ‖v‖ = √
32 + 22 + (−4)2 = √

29,

ev = 1

‖v‖v = 1√
29

(3i + 2j − 4k) =
〈

3√
29

,
2√
29

,
−4√

29

〉
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y

x

z

(a, b, 0)

ai

ck

bj

i
j

k
v = ai + bj + ck

FIGURE 11 Writing v = 〈a, b, c〉 as the sum
ai + bj + ck.

Parametric Equations of a Line
Although the basic vector concepts in two and three dimensions are essentially the same,
there is an important difference in the way lines are described. A line in R2 is defined by a
single linear equation such as y = mx + b. In R3, a single linear equation defines a plane
rather than a line. Therefore, we describe lines in R3 in parametric form.

We note first that a line L0 through the origin consists of the multiples of a nonzero
vector v = 〈a, b, c〉, as in Figure 12(A). More precisely, set

r0 = tv = 〈ta, tb, tc〉 (−∞ < t < ∞)

Then the line L0 consists of the terminal points (ta, tb, tc) of the vectors r0 as t varies from
−∞ to ∞. The coordinates (x, y, z) of the points on the line are given by the parametric
equations

x = at, y = bt, z = ct

Suppose, more generally, that we would like to parametrize the line L parallel to v
but passing through a point P0 = (x0, y0, z0) as in Figure 12(B). We must translate the
line tv so that it passes through P0. To do this, we add the position vector

−−→
OP0 to the

multiples tv:

r(t) = −−→
OP0 + tv = 〈x0, y0, z0〉 + t 〈a, b, c〉

tv

P0

v

z
r(t) = OP0 + tv

r0(t) = tv

v y

x

z

(A) Line through the origin (multiples of v). (B) Line through P0 in the direction of v.

y

x

OO

L0

Line L

FIGURE 12
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The terminal point of r(t) traces out L as t varies from −∞ to ∞. The vector v is called
a direction vector for L, and coordinates (x, y, z) of the points on the line L are given
by the parametric equations

x = x0 + at, y = y0 + bt, z = z0 + ct

Equation of a Line (Point-Direction Form) The line L through P0 = (x0, y0, z0) in
the direction of v = 〈a, b, c〉 is described by

Vector parametrization:

r(t) = −−→
OP0 + tv = 〈x0, y0, z0〉 + t 〈a, b, c〉 5

Parametric equations:

x = x0 + at, y = y0 + bt, z = z0 + ct 6

The parameter t varies for −∞ < t < ∞.r(3)

O

2v

v

−v

z

3v

r(2)

r(1)

r(0)

r(−1)

OO

y

x

FIGURE 13 The terminal point of r(t) traces
out a line as t varies from −∞ to ∞.

Parametric equations specify the x, y, and z coordinates of a point on the line as a function
of the parameter t . These are familiar from our discussion of parametric curves in the
plane in Section 11.1. What is new here is the notion of a vector parametrization, the idea
that r(t) describes a vector whose terminal point traces out a line as t varies from −∞ to
∞ (Figure 13).

EXAMPLE 4 Find a vector parametrization and parametric equations for the line
through P0 = (3, −1, 4) with direction vector v = 〈2, 1, 7〉.
Solution By Eq. (5), the following is a vector parametrization:

r(t) = 〈3, −1, 4〉︸ ︷︷ ︸
Coordinates of P0

+ t 〈2, 1, 7〉︸ ︷︷ ︸
Direction vector

= 〈3 + 2t, −1 + t, 4 + 7t〉

The corresponding parametric equations are x = 3 + 2t, y = −1 + t, z = 4 + 7t .

The parametrization of a line L is not unique. We are free to choose any point P0 on
L and we may replace the direction vector v by any nonzero scalar multiple λv. However,
two lines in R3 coincide if they are parallel and pass through a common point, so we can
always check whether two parametrizations describe the same line.

EXAMPLE 5 Different Parametrizations of the Same Line Show that

r1(t) = 〈1, 1, 0〉 + t 〈−2, 1, 3〉 and r2(t) = 〈−3, 3, 6〉 + t 〈4, −2, −6〉
parametrize the same line.

Solution The line r1 has direction vector v = 〈−2, 1, 3〉, whereas r2 has direction vec-
tor w = 〈4, −2, −6〉. These vectors are parallel because w = −2v. Therefore, the lines
described by r1 and r2 are parallel. We must check that they have a point in common.
Choose any point on r1, say P = (1, 1, 0) [corresponding to t = 0]. This point lies on r2
if there is a value of t such that

〈1, 1, 0〉 = 〈−3, 3, 6〉 + t 〈4, −2, −6〉 7
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This yields three equations

1 = −3 + 4t, 1 = 3 − 2t, 0 = 6 − 6t

All three are satisfied with t = 1. Therefore P also lies on r2. We conclude that r1 and r2
parametrize the same line. If Eq. (7) had no solution, we would conclude that r1 and r2
are parallel but do not coincide.

EXAMPLE 6 Intersection of Two Lines Determine whether the following two lines
intersect:

r1(t) = 〈1, 0, 1〉 + t 〈3, 3, 5〉
r2(t) = 〈3, 6, 1〉 + t 〈4, −2, 7〉

Solution The two lines intersect if there exist parameter values t1 and t2 such that
r1(t1) = r2(t2)—that is, if

CAUTION We cannot assume in Eq. (8) that
the parameter values t1 and t2 are equal.
The point of intersection may correspond to
different parameter values on the two lines. 〈1, 0, 1〉 + t1 〈3, 3, 5〉 = 〈3, 6, 1〉 + t2 〈4, −2, 7〉 8

This is equivalent to three equations for the components:

x = 1 + 3t1 = 3 + 4t2, y = 3t1 = 6 − 2t2, z = 1 + 5t1 = 1 + 7t2 9

Let’s solve the first two equations for t1 and t2. Subtracting the second equation from
the first, we get 1 = 6t2 − 3 or t2 = 2

3 . Using this value in the second equation, we get
t1 = 2 − 2

3 t2 = 14
9 . The values t1 = 14

9 and t2 = 2
3 satisfy the first two equations, and thus

r1(t1) and r2(t2) have the same x- and y-coordinates (Figure 14). However, they do not

r1(t1)

r2(t2)

r2(t)

r1(t)

y

x

z

FIGURE 14 The lines r1(t) and r2(t) do not
intersect, but the particular points r1(t1)

and r2(t2) have the same x- and
y-coordinates.

have the same z-coordinates because t1 and t2 do not satisfy the third equation in (9):

1 + 5

(
14

9

)
= 1 + 7

(
2

3

)

Therefore, Eq. (8) has no solution and the lines do not intersect.

We can describe the line L passing through two points P = (a1, b1, c1) and Q =
(a2, b2, c2) by the vector parametrization (Figure 15):

r(t) = (1 − t)
−→
OP + t

−−→
OQ

Why does r pass through P and Q? Because r(0) = −→
OP and r(1) = −−→

OQ. Thus r(t) traces

P

O

Q
(1 − t)OP + tOQ

FIGURE 15 Line through two points P

and Q.

the segment PQ joining P and Q as t varies from 0 to 1. Explicitly,

r(t) = (1 − t) 〈a1, b1, c1〉 + t 〈a2, b2, c2〉

The parametric equations are

x = a1 + (a2 − a1)t, y = b1 + (b2 − b1)t, z = c1 + (c2 − c1)t

The midpoint of PQ corresponds to t = 1
2 :

Midpoint of PQ =
(

a1 + a2

2
,
b1 + b2

2
,
c1 + c2

2

)
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Line through Two Points The line through P = (a1, b1, c1) and Q = (a2, b2, c2) is
described by

Vector parametrization:

r(t) = (1 − t)
−→
OP + t

−−→
OQ = (1 − t) 〈a1, b1, c1〉 + t 〈a2, b2, c2〉 10

Parametric equations:

x = a1 + (a2 − a1)t, y = b1 + (b2 − b1)t, z = c1 + (c2 − c1)t 11

for −∞ < t < ∞. This parametrization traces the segment PQ from P to Q as t varies
from 0 to 1.

EXAMPLE 7 Parametrize the segment PQ where P = (1, 0, 4) and Q = (3, 2, 1).
Find the midpoint of the segment.

Solution The line through P = (1, 0, 4) and Q = (3, 2, 1) has the parametrization

r(t) = (1 − t) 〈1, 0, 4〉 + t 〈3, 2, 1〉 = 〈1 + 2t, 2t, 4 − 3t〉
The segment PQ is traced for 0 ≤ t ≤ 1. The midpoint of PQ is the terminal point of the
vector

r
(

1

2

)
= 1

2
〈1, 0, 4〉 + 1

2
〈3, 2, 1〉 =

〈
2, 1,

5

2

〉
In other words, the midpoint is

(
2, 1, 5

2

)
.

12.2 SUMMARY

• The axes in R3 are labeled so that they satisfy the right-hand rule: When the fingers
of your right hand curl from the positive x-axis toward the positive y-axis, your thumb
points in the positive z-direction (Figure 16).

y

x

z

FIGURE 16

• Sphere of radius R

and center (a, b, c)
(x − a)2 + (y − b)2 + (z − c)2 = R2

Cylinder of radius R with
vertical axis through (a, b, 0)

(x − a)2 + (y − b)2 = R2

• The notation and terminology for vectors in the plane carry over to vectors in R3.
• The length (or magnitude) of v = −→

PQ, where P = (a1, b1, c1) and Q = (a2, b2, c2), is

‖v‖ = ‖−→
PQ‖ =

√
(a2 − a1)2 + (b2 − b1)2 + (c2 − c1)2

• Equations for the line through P0 = (x0, y0, z0) with direction vector v = 〈a, b, c〉:
Vector parametrization: r(t) = −→

OP 0 + tv = 〈x0, y0, z0〉 + t 〈a, b, c〉
Parametric equations: x = x0 + at, y = y0 + bt, z = z0 + ct

• Equation of the line through P = (a1, b1, c1) and Q = (a2, b2, c2):

Vector parametrization: r(t) = (1 − t) 〈a1, b1, c1〉 + t 〈a2, b2, c2〉
Parametric equations: x = a1 + (a2 − a1)t, y = b1 + (b2 − b1)t,

z = c1 + (c2 − c1)t



676 C H A P T E R 12 VECTOR GEOMETRY

The segment PQ is parametrized by r(t) for 0 ≤ t ≤ 1. The midpoint of PQ is the
terminal point of r

( 1
2

)
, namely

( 1
2 (a1 + a2),

1
2 (b1 + b2),

1
2 (c1 + c2)

)
.

12.2 EXERCISES

Preliminary Questions
1. What is the terminal point of the vector v = 〈3, 2, 1〉 based at the

point P = (1, 1, 1)?

2. What are the components of the vector v = 〈3, 2, 1〉 based at the
point P = (1, 1, 1)?

3. If v = −3w, then (choose the correct answer):

(a) v and w are parallel.
(b) v and w point in the same direction.

4. Which of the following is a direction vector for the line through
P = (3, 2, 1) and Q = (1, 1, 1)?

(a) 〈3, 2, 1〉 (b) 〈1, 1, 1〉 (c) 〈2, 1, 0〉

5. How many different direction vectors does a line have?

6. True or false? If v is a direction vector for a line L, then −v is also
a direction vector for L.

Exercises
1. Sketch the vector v = 〈1, 3, 2〉 and compute its length.

2. Let v = −−−→
P0Q0, where P0 = (1, −2, 5) and Q0 = (0, 1, −4).

Which of the following vectors (with tail P and head Q) are equiv-
alent to v?

v1 v2 v3 v4

P (1, 2, 4) (1, 5, 4) (0, 0, 0) (2, 4, 5)

Q (0, 5, −5) (0, −8, 13) (−1, 3, −9) (1, 7, 4)

3. Sketch the vector v = 〈1, 1, 0〉 based at P = (0, 1, 1). Describe
this vector in the form

−→
PQ for some point Q, and sketch the vector v0

based at the origin equivalent to v.

4. Determine whether the coordinate systems (A)–(C) in Figure 17
satisfy the right-hand rule.

(A) (B) (C)

y
x

y
x

z

z

x
y

z

FIGURE 17

In Exercises 5–8, find the components of the vector
−→
PQ.

5. P = (1, 0, 1), Q = (2, 1, 0)

6. P = (−3, −4, 2), Q = (1, −4, 3)

7. P = (4, 6, 0), Q = (− 1
2 , 9

2 , 1
)

8. P = (− 1
2 , 9

2 , 1
)
, Q = (4, 6, 0)

In Exercises 9–12, let R = (1, 4, 3).

9. Calculate the length of
−→
OR.

10. Find the point Q such that v = −→
RQ has components 〈4, 1, 1〉, and

sketch v.

11. Find the point P such that w = −→
PR has components 〈3, −2, 3〉,

and sketch w.

12. Find the components of u = −→
PR, where P = (1, 2, 2).

13. Let v = 〈4, 8, 12〉. Which of the following vectors is parallel to v?
Which point in the same direction?

(a) 〈2, 4, 6〉 (b) 〈−1, −2, 3〉
(c) 〈−7, −14, −21〉 (d) 〈6, 10, 14〉
In Exercises 14–17, determine whether

−→
AB is equivalent to

−→
PQ.

14.
A = (1, 1, 1) B = (3, 3, 3)

P = (1, 4, 5) Q = (3, 6, 7)

15.
A = (1, 4, 1) B = (−2, 2, 0)

P = (2, 5, 7) Q = (−3, 2, 1)

16.
A = (0, 0, 0) B = (−4, 2, 3)

P = (4, −2, −3) Q = (0, 0, 0)

17.
A = (1, 1, 0) B = (3, 3, 5)

P = (2, −9, 7) Q = (4, −7, 13)

In Exercises 18–23, calculate the linear combinations.

18. 5 〈2, 2, −3〉 + 3 〈1, 7, 2〉 19. −2 〈8, 11, 3〉 + 4 〈2, 1, 1〉
20. 6(4j + 2k) − 3(2i + 7k) 21. 1

2 〈4, −2, 8〉 − 1
3 〈12, 3, 3〉

22. 5(i + 2j) − 3(2j + k) + 7(2k − i)

23. 4 〈6, −1, 1〉 − 2 〈1, 0, −1〉 + 3 〈−2, 1, 1〉
In Exercises 24–27, find the given vector.

24. ev, where v = 〈1, 1, 2〉
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25. ew, where w = 〈4, −2, −1〉
26. Unit vector in the direction of u = 〈1, 0, 7〉
27. Unit vector in the direction opposite to v = 〈−4, 4, 2〉
28. Sketch the following vectors, and find their components and
lengths.

(a) 4i + 3j − 2k (b) i + j + k

(c) 4j + 3k (d) 12i + 8j − k

In Exercises 29–36, find a vector parametrization for the line with the
given description.

29. Passes through P = (1, 2, −8), direction vector v = 〈2, 1, 3〉
30. Passes through P = (4, 0, 8), direction vector v = 〈1, 0, 1〉
31. Passes through P = (4, 0, 8), direction vector v = 7i + 4k

32. Passes through O, direction vector v = 〈3, −1, −4〉
33. Passes through (1, 1, 1) and (3, −5, 2)

34. Passes through (−2, 0, −2) and (4, 3, 7)

35. Passes through O and (4, 1, 1)

36. Passes through (1, 1, 1) parallel to the line through (2, 0, −1) and
(4, 1, 3)

In Exercises 37–40, find parametric equations for the lines with the
given description.

37. Perpendicular to the xy-plane, passes through the origin

38. Perpendicular to the yz-plane, passes through (0, 0, 2)

39. Parallel to the line through (1, 1, 0) and (0, −1, −2), passes
through (0, 0, 4)

40. Passes through (1, −1, 0) and (0, −1, 2)

41. Which of the following is a parametrization of the line through
P = (4, 9, 8) perpendicular to the xz-plane (Figure 18)?

(a) r(t) = 〈4, 9, 8〉 + t 〈1, 0, 1〉 (b) r(t) = 〈4, 9, 8〉 + t 〈0, 0, 1〉
(c) r(t) = 〈4, 9, 8〉 + t 〈0, 1, 0〉 (d) r(t) = 〈4, 9, 8〉 + t 〈1, 1, 0〉
42. Find a parametrization of the line through P = (4, 9, 8) perpen-
dicular to the yz-plane.

y

P = (4, 9, 8)

z

x

FIGURE 18

In Exercises 43–46, let P = (2, 1, −1) and Q = (4, 7, 7). Find the co-
ordinates of each of the following.

43. The midpoint of PQ

44. The point on PQ lying two-thirds of the way from P to Q

45. The point R such that Q is the midpoint of PR

46. The two points on the line through PQ whose distance from P is
twice its distance from Q

47. Show that r1(t) and r2(t) define the same line, where

r1(t) = 〈3, −1, 4〉 + t 〈8, 12, −6〉
r2(t) = 〈11, 11, −2〉 + t 〈4, 6, −3〉

Hint: Show that r2 passes through (3, −1, 4) and that the direction
vectors for r1 and r2 are parallel.

48. Show that r1(t) and r2(t) define the same line, where

r1(t) = t 〈2, 1, 3〉 , r2(t) = 〈−6, −3, −9〉 + t 〈8, 4, 12〉

49. Find two different vector parametrizations of the line through
P = (5, 5, 2) with direction vector v = 〈0, −2, 1〉.
50. Find the point of intersection of the lines r(t) = 〈1, 0, 0〉 +
t 〈−3, 1, 0〉 and s(t) = 〈0, 1, 1〉 + t 〈2, 0, 1〉.
51. Show that the lines r1(t) = 〈−1, 2, 2〉 + t 〈4, −2, 1〉 and r2(t) =
〈0, 1, 1〉 + t 〈2, 0, 1〉 do not intersect.

52. Determine whether the lines r1(t) = 〈2, 1, 1〉 + t 〈−4, 0, 1〉 and
r2(s) = 〈−4, 1, 5〉 + s 〈2, 1, −2〉 intersect, and if so, find the point of
intersection.

53. Determine whether the lines r1(t) = 〈0, 1, 1〉 + t 〈1, 1, 2〉 and
r2(s) = 〈2, 0, 3〉 + s 〈1, 4, 4〉 intersect, and if so, find the point of in-
tersection.

54. Find the intersection of the lines r1(t) = 〈−1, 1〉 + t 〈2, 4〉 and
r2(s) = 〈2, 1〉 + s 〈−1, 6〉 in R2.

55. Find the components of the vector v whose tail and head are the
midpoints of segments AC and BC in Figure 19.

56. Find the components of the vector w whose tail is C and head is
the midpoint of AB in Figure 19.

B = (1, 1, 0)

C = (0, 1, 1)
A = (1, 0, 1)

(0, 0, 0)

y

x

z

FIGURE 19
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Further Insights and Challenges
In Exercises 57–63, we consider the equations of a line in symmetric
form, when a = 0, b = 0, c = 0.

x − x0

a
= y − y0

b
= z − z0

c
12

57. Let L be the line through P0 = (x0, y0, c0) with direction vector
v = 〈a, b, c〉. Show that L is defined by the symmetric equations (12).
Hint: Use the vector parametrization to show that every point on L
satisfies (12).

58. Find the symmetric equations of the line through P0 = (−2, 3, 3)

with direction vector v = 〈2, 4, 3〉.
59. Find the symmetric equations of the line through P = (1, 1, 2) and
Q = (−2, 4, 0).

60. Find the symmetric equations of the line

x = 3 + 2t, y = 4 − 9t, z = 12t

61. Find a vector parametrization for the line

x − 5

9
= y + 3

7
= z − 10

62. Find a vector parametrization for the line
x

2
= y

7
= z

8
.

63. Show that the line in the plane through (x0, y0) of slope m has
symmetric equations

x − x0 = y − y0

m

64. A median of a triangle is a segment joining a vertex to the mid-
point of the opposite side. Referring to Figure 20(A), prove that three
medians of triangle ABC intersect at the terminal point P of the vec-
tor 1

3 (u + v + w). The point P is the centroid of the triangle. Hint:

Show, by parametrizing the segment AA′, that P lies two-thirds of the
way from A to A′. It will follow similarly that P lies on the other two
medians.

(B)(A)

A'

B' C'

C

A

B

O

O

u

w

v

v

w
u

P

FIGURE 20

65. A median of a tetrahedron is a segment joining a vertex to the cen-
troid of the opposite face. The tetrahedron in Figure 20(B) has vertices
at the origin and at the terminal points of vectors u, v, and w. Show
that the medians intersect at the terminal point of 1

4 (u + v + w).

12.3 Dot Product and the Angle between Two Vectors
The dot product is one of the most important vector operations. It plays a role in nearly
all aspects of multivariable calculus.

DEFINITION Dot Product The dot product v · w of two vectors

v = 〈a1, b1, c1〉 , w = 〈a2, b2, c2〉
is the scalar defined by

v · w = a1a2 + b1b2 + c1c2

In words, to compute the dot product, multiply the corresponding components andImportant concepts in mathematics often
have multiple names or notations either for
historical reasons or because they arise in
more than one context. The dot product is
also called the “scalar product” or “inner
product” and in many texts, v · w is
denoted (v, w) or 〈v, w〉.

add. For example,

〈2, 3, 1〉 · 〈−4, 2, 5〉 = 2(−4) + 3(2) + 1(5) = −8 + 6 + 5 = 3

The dot product of vectors v = 〈a1, b1〉 and w = 〈a2, b2〉 in R2 is defined similarly:

v · w = a1a2 + b1b2

We will see in a moment that the dot product is closely related to the angle between
v and w. Before getting to this, we describe some elementary properties of dot products.
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First, the dot product is commutative: v · w = w · v, because the components can beThe dot product appears in a very wide
range of applications. To rank how closely a
Web document matches a search input at
Google,

“We take the dot product of the vector of
count-weights with the vector of type-
weights to compute an IR score for the
document.”

From “The Anatomy of a Large-Scale
Hypertextual Web Search Engine” by
Google founders Sergey Brin and Lawrence
Page.

multiplied in either order. Second, the dot product of a vector with itself is the square of
the length: If v = 〈a, b, c〉, then

v · v = a · a + b · b + c · c = a2 + b2 + c2 = ‖v‖2

The dot product also satisfies a Distributive Law and a scalar property as summarized in
the next theorem (see Exercises 84 and 85).

THEOREM 1 Properties of the Dot Product

(i) 0 · v = v · 0 = 0

(ii) Commutativity: v · w = w · v
(iii) Pulling out scalars: (λv) · w = v · (λw) = λ(v · w)

(iv) Distributive Law: u · (v + w) = u · v + u · w

(v + w) · u = v · u + w · u

(v) Relation with length: v · v = ‖v‖2

EXAMPLE 1 Verify the Distributive Law u · (v + w) = u · v + u · w for

u = 〈4, 3, 3〉 , v = 〈1, 2, 2〉 , w = 〈3, −2, 5〉
Solution We compute both sides and check that they are equal:

u · (v + w) = 〈4, 3, 3〉 · ( 〈1, 2, 2〉 + 〈3, −2, 5〉 )
= 〈4, 3, 3〉 · 〈4, 0, 7〉 = 4(4) + 3(0) + 3(7) = 37

u · v + u · w = 〈4, 3, 3〉 · 〈1, 2, 2〉 + 〈4, 3, 3〉 · 〈3, −2, 5〉
= (

4(1) + 3(2) + 3(2)
) + (

4(3) + 3(−2) + 3(5)
)

= 16 + 21 = 37

As mentioned above, the dot product v · w is related to the angle θ between v and w.
This angle θ is not uniquely defined because, as we see in Figure 1, both θ and 2π − θ

2π − θ

w

v
π

FIGURE 1 By convention, the angle θ

between two vectors is chosen so that
0 ≤ θ ≤ π .

can serve as an angle between v and w. Furthermore, any multiple of 2π may be added
to θ . All of these angles have the same cosine, so it does not matter which angle we use
in the next theorem. However, we shall adopt the following convention:

The angle between two vectors is chosen to satisfy 0 ≤ θ ≤ π .

THEOREM 2 Dot Product and the Angle Let θ be the angle between two nonzero
vectors v and w. Then

v · w = ‖v‖ ‖w‖ cos θ or cos θ = v · w
‖v‖ ‖w‖ 1

Proof According to the Law of Cosines, the three sides of a triangle satisfy (Figure 2)

a

b

c

v

v − w

wθ

θ

FIGURE 2 c2 = a2 + b2 − 2ab cos θ
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If two sides of the triangle are v and w, then the third side is v − w, as in the figure, and
the Law of Cosines gives

‖v − w‖2 = ‖v‖2 + ‖w‖2 − 2 cos θ‖v‖ ‖w‖ 2

Now, by property (v) of Theorem 1 and the Distributive Law,

‖v − w‖2 = (v − w) · (v − w) = v · v − 2v · w + w · w

= ‖v‖2 + ‖w‖2 − 2v · w 3

Comparing Eq. (2) and Eq. (3), we obtain −2 cos θ‖v‖ ‖w‖ = −2v · w, and Eq. (1) fol-
lows.

By definition of the arccosine, the angle θ = cos−1 x is the angle in the interval [0, π ]
satisfying cos θ = x. Thus, for nonzero vectors v and w, we have

θ = cos−1
(

v · w
‖v‖ ‖w‖

)

EXAMPLE 2 Find the angle θ between v = 〈3, 6, 2〉 and w = 〈4, 2, 4〉.
Solution Compute cos θ using the dot product:

‖v‖ =
√

32 + 62 + 22 = √
49 = 7, ‖w‖ =

√
42 + 22 + 42 = √

36 = 6

cos θ = v · w
‖v‖‖w‖ = 〈3, 6, 2〉 · 〈4, 2, 4〉

7 · 6
= 3 · 4 + 6 · 2 + 2 · 4

42
= 32

42
= 16

21

The angle itself is θ = cos−1
( 16

21

) ≈ 0.705 rad (Figure 3).

y
x

v = 〈3, 6, 2〉θ

z

w = 〈4, 2, 4〉

FIGURE 3

Two nonzero vectors v and w are called perpendicular or orthogonal if the angle
between them is π

2 . In this case we write v ⊥ w.
The terms “orthogonal” and
“perpendicular” are synonymous and are
used interchangeably, although we usually
use “orthogonal” when dealing with
vectors.

We can use the dot product to test whether v and w are orthogonal. Because an angle
between 0 and π satisfies cos θ = 0 if and only if θ = π

2 , we see that

v · w = ‖v‖ ‖w‖ cos θ = 0 ⇔ θ = π

2

and thus

v ⊥ w if and only if v · w = 0

The standard basis vectors are mutually orthogonal and have length 1 (Figure 4). In

y

x

z

k

i
j

FIGURE 4 The standard basis vectors are
mutually orthogonal and have length 1.

terms of dot products, because i = 〈1, 0, 0〉, j = 〈0, 1, 0〉, and k = 〈0, 0, 1〉,
i · j = i · k = j · k = 0, i · i = j · j = k · k = 1

EXAMPLE 3 Testing for Orthogonality Determine whether v = 〈2, 6, 1〉 is orthogonal
to u = 〈2, −1, 1〉 or w = 〈−4, 1, 2〉.
Solution We test for orthogonality by computing the dot products (Figure 5):

v · u = 〈2, 6, 1〉 · 〈2, −1, 1〉 = 2(2) + 6(−1) + 1(1) = −1 (not orthogonal)

v · w = 〈2, 6, 1〉 · 〈−4, 1, 2〉 = 2(−4) + 6(1) + 1(2) = 0 (orthogonal)
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EXAMPLE 4 Testing for Obtuseness Determine whether the angles between the vec-

y
x

u

v

z
w

FIGURE 5 Vectors v, w, and u in Example 3.

tor v = 〈3, 1, −2〉 and the vectors u = 〈 1
2 , 1

2 , 5
〉

and w = 〈4, −3, 0〉 are obtuse.

Solution By definition, the angle θ between v and u is obtuse if π
2 < θ ≤ π , and this is

the case if cos θ < 0. Since v · u = ‖v‖ ‖u‖ cos θ and the lengths ‖v‖ and ‖u‖ are positive,
we see that cos θ is negative if and only if v · u is negative. Thus,

The angle θ between v and u is obtuse if v · u < 0.

We have

v · u = 〈3, 1, −2〉 ·
〈

1

2
,

1

2
, 5

〉
= 3

2
+ 1

2
− 10 = −8 < 0 (angle is obtuse)

v · w = 〈3, 1, −2〉 · 〈4, −3, 0〉 = 12 − 3 + 0 = 9 > 0 (angle is acute)

EXAMPLE 5 Using the Distributive Law Calculate the dot product v · w, where v =
4i − 3j and w = i + 2j + k.

Solution Use the Distributive Law and the orthogonality of i, j, and k:

v · w = (4i − 3j) · (i + 2j + k)

= 4i · (i + 2j + k) − 3j · (i + 2j + k)

= 4i · i − 3j · (2j) = 4 − 6 = −2

Another important use of the dot product is in finding the projection u|| of a vector u

ev

v
u

u||θ

FIGURE 6 The projection u|| of u along v
has length ‖u‖ cos θ .

along a nonzero vector v. By definition, u|| is the vector obtained by dropping a perpen-
dicular from u to the line through v as in Figures 6 and 7. In the next theorem, recall that
ev = v/‖v‖ is the unit vector in the direction of v.

THEOREM 3 Projection Assume v = 0. The projection of u along v is the vector

u|| = (u · ev)ev or u|| =
(u · v

v · v

)
v 4

The scalar u · ev is called the component of u along v.

Proof Referring to Figures 6 and 7, we see by trigonometry that u|| has length
ev

v

u

u||

θ

FIGURE 7 When θ is obtuse, u|| and ev
point in opposite directions.

‖u‖| cos θ |. If θ is acute, then u|| is a positive multiple of ev and thus u|| = (‖u‖ cos θ)ev
since cos θ > 0. Similarly, if θ is obtuse, then u|| is a negative multiple of ev and
u|| = (‖u‖ cos θ)ev since cos θ < 0. The first formula for u|| now follows because
u · ev = ‖u‖‖ev‖ cos θ = ‖u‖ cos θ .

The second equality in Eq. (4) follows from the computation:

u|| = (u · ev)ev =
(

u · v
‖v‖

)
v

‖v‖

=
(

u · v
‖v‖2

)
v =

(u · v
v · v

)
v
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EXAMPLE 6 Find the projection of u = 〈5, 1, −3〉 along v = 〈4, 4, 2〉.
Solution It is convenient to use the second formula in Eq. (4):

u · v = 〈5, 1, −3〉 · 〈4, 4, 2〉 = 20 + 4 − 6 = 18, v · v = 42 + 42 + 22 = 36

u|| =
(u · v

v · v

)
v =

(
18

36

)
〈4, 4, 2〉 = 〈2, 2, 1〉

We show now that if v = 0, then every vector u can be written as the sum of the
projection u|| and a vector u⊥ that is orthogonal to v (see Figure 8). In fact, if we set

u⊥ = u − u||

then we have

ev

v
u

u⊥

u||θ

FIGURE 8 Decomposition of u as a sum
u = u|| + u⊥ of vectors parallel and
orthogonal to v.

u = u|| + u⊥ 5

Eq. (5) is called the decomposition of u with respect to v. We must verify, however, that
u⊥ is orthogonal to v. We do this by showing that the dot product is zero:

u⊥ · v = (u − u||) · v = (u −
(u · v

v · v

)
v) · v = u · v −

(u · v
v · v

)
(v · v) = 0

EXAMPLE 7 Find the decomposition of u = 〈5, 1, −3〉 with respect to v = 〈4, 4, 2〉.
Solution In Example 6 we showed that u|| = 〈2, 2, 1〉. The orthogonal vector is

u⊥ = u − u|| = 〈5, 1, −3〉 − 〈2, 2, 1〉 = 〈3, −1, −4〉
The decomposition of u with respect to v is

u = 〈5, 1, −3〉 = u|| + u⊥ = 〈2, 2, 1〉︸ ︷︷ ︸
Projection along v

+ 〈3, −1, −4〉︸ ︷︷ ︸
Orthogonal to v

The decomposition into parallel and orthogonal vectors is useful in many applications.

EXAMPLE 8 What is the minimum force you must apply to pull a 20-kg wagon up a
frictionless ramp inclined at an angle θ = 15◦?

Solution Let Fg be the force on the wagon due to gravity. It has magnitude 20g newtons
with g = 9.8. Referring to Figure 9, we decompose Fg as a sum

θ

Fg
F⊥⊥

F||

θ

90° − θ

90° − θ

FIGURE 9 The angle between Fg and F|| is
90◦ − θ .

Fg = F|| + F⊥

where F|| is the projection along the ramp and F⊥ is the “normal force” orthogonal to the
ramp. The normal force F⊥ is canceled by the ramp pushing back against the wagon in
the normal direction, and thus (because there is no friction), you need only pull against
F||.

Notice that the angle between Fg and the ramp is the complementary angle 90◦ − θ .
Since F|| is parallel to the ramp, the angle between Fg and F|| is also 90◦ − θ , or 75◦, and

‖F||‖ = ‖Fg‖ cos(75◦) ≈ 20(9.8)(0.26) ≈ 51 N

Since gravity pulls the wagon down the ramp with a 51-newton force, it takes a minimum
force of 51 newtons to pull the wagon up the ramp.
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GRAPHICAL INSIGHT It seems that we are using the term “component” in two ways. We
say that a vector u = 〈a, b〉 has components a and b. On the other hand, u · e is called
the component of u along the unit vector e.

In fact, these two notions of component are not different. The components a and b

are the dot products of u with the standard unit vectors:

u · i = 〈a, b〉 · 〈1, 0〉 = a

u · j = 〈a, b〉 · 〈0, 1〉 = b

and we have the decomposition [Figure 10(A)]

u = ai + bj

But any two orthogonal unit vectors e and f give rise to a rotated coordinate system,
and we see in Figure 10(B) that

u = (u · e)e + (u · f)f

In other words, u · e and u · f really are the components when we express u relative to
the rotated system.

x

y

x

y

u = 〈a, b〉 u = 〈a, b〉
bj

fj
e

(u · f )f (u · e)e

aii

(A) (B)

FIGURE 10

12.3 SUMMARY

• The dot product of v = 〈a1, b1, c1〉 and w = 〈a2, b2, c2〉 is

v · w = a1a2 + b1b2 + c1c2

• Basic Properties:

– Commutativity: v · w = w · v
– Pulling out scalars: (λv) · w = v · (λw) = λ(v · w)

– Distributive Law: u · (v + w) = u · v + u · w

(v + w) · u = v · u + w · u

– v · v = ‖v‖2

– v · w = ‖v‖ ‖w‖ cos θ where θ is the angle between v and w.

• By convention, the angle θ is chosen to satisfy 0 ≤ θ ≤ π .
• Test for orthogonality: v ⊥ w if and only if v · w = 0.
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• The angle between v and w is acute if v · w > 0 and obtuse if v · w < 0.
• Assume v = 0. Every vector u has a decomposition u = u|| + u⊥, where u|| is parallel

ev

v
u

u⊥

u||θ

FIGURE 11

to v, and u⊥ is orthogonal to v (see Figure 11). The vector u|| is called the projection of
u along v.
• Let ev = v

‖v‖ . Then

u|| = (u · ev)ev =
(u · v

v · v

)
v, u⊥ = u − u||

• The coefficient u · ev is called the component of u along v:

Component of u along v = u · ev = ‖u‖ cos θ

12.3 EXERCISES

Preliminary Questions
1. Is the dot product of two vectors a scalar or a vector?

2. What can you say about the angle between a and b if a · b < 0?

3. Which property of dot products allows us to conclude that if v is
orthogonal to both u and w, then v is orthogonal to u + w?

4. Which is the projection of v along v: (a) v or (b) ev?

5. Let u|| be the projection of u along v. Which of the following is
the projection u along the vector 2v and which is the projection of 2u
along v?

(a) 1
2 u|| (b) u|| (c) 2u||

6. Which of the following is equal to cos θ , where θ is the angle
between u and v?

(a) u · v (b) u · ev (c) eu · ev

Exercises
In Exercises 1–12, compute the dot product.

1. 〈1, 2, 1〉 · 〈4, 3, 5〉 2. 〈3, −2, 2〉 · 〈1, 0, 1〉

3. 〈0, 1, 0〉 · 〈7, 41, −3〉 4. 〈1, 1, 1〉 · 〈6, 4, 2〉

5. 〈3, 1〉 · 〈4, −7〉 6.
〈 1
6 , 1

2

〉 · 〈
3, 1

2

〉
7. k · j 8. k · k

9. (i + j) · (j + k) 10. (3j + 2k) · (i − 4k)

11. (i + j + k) · (3i + 2j − 5k) 12. (−k) · (i − 2j + 7k)

In Exercises 13–18, determine whether the two vectors are orthogonal
and, if not, whether the angle between them is acute or obtuse.

13. 〈1, 1, 1〉, 〈1, −2, −2〉 14. 〈0, 2, 4〉, 〈−5, 0, 0〉

15. 〈1, 2, 1〉, 〈7, −3, −1〉 16. 〈0, 2, 4〉, 〈3, 1, 0〉

17.
〈 12

5 , − 4
5

〉
,

〈 1
2 , − 7

4

〉
18. 〈12, 6〉, 〈2, −4〉

In Exercises 19–22, find the cosine of the angle between the vectors.

19. 〈0, 3, 1〉, 〈4, 0, 0〉 20. 〈1, 1, 1〉, 〈2, −1, 2〉

21. i + j, j + 2k 22. 3i + k, i + j + k

In Exercises 23–28, find the angle between the vectors. Use a calculator
if necessary.

23.
〈
2,

√
2
〉
,

〈
1 + √

2, 1 − √
2
〉

24.
〈
5,

√
3
〉
,

〈√
3, 2

〉
25. 〈1, 1, 1〉, 〈1, 0, 1〉 26. 〈3, 1, 1〉, 〈2, −4, 2〉

27. 〈0, 1, 1〉, 〈1, −1, 0〉 28. 〈1, 1, −1〉, 〈1, −2, −1〉

29. Find all values of b for which the vectors are orthogonal.

(a) 〈b, 3, 2〉, 〈1, b, 1〉 (b) 〈4, −2, 7〉, 〈
b2, b, 0

〉
30. Find a vector that is orthogonal to 〈−1, 2, 2〉.

31. Find two vectors that are not multiples of each other and are both
orthogonal to 〈2, 0, −3〉.
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32. Find a vector that is orthogonal to v = 〈1, 2, 1〉 but not to w =
〈1, 0, −1〉.
33. Find v · e where ‖v‖ = 3, e is a unit vector, and the angle between
e and v is 2π

3 .

34. Assume that v lies in the yz-plane. Which of the following dot
products is equal to zero for all choices of v?

(a) v · 〈0, 2, 1〉 (b) v · k

(c) v · 〈−3, 0, 0〉 (d) v · j

In Exercises 35–38, simplify the expression.

35. (v − w) · v + v · w

36. (v + w) · (v + w) − 2v · w

37. (v + w) · v − (v + w) · w 38. (v + w) · v − (v − w) · w

In Exercises 39–42, use the properties of the dot product to evaluate
the expression, assuming that u · v = 2, ‖u‖ = 1, and ‖v‖ = 3.

39. u · (4v) 40. (u + v) · v

41. 2u · (3u − v) 42. (u + v) · (u − v)

43. Find the angle between v and w if v · w = −‖v‖ ‖w‖.

44. Find the angle between v and w if v · w = 1
2‖v‖ ‖w‖.

45. Assume that ‖v‖ = 3, ‖w‖ = 5 and that the angle between v and
w is θ = π

3 .

(a) Use the relation ‖v + w‖2 = (v + w) · (v + w) to show that
‖v + w‖2 = 32 + 52 + 2v · w.

(b) Find ‖v + w‖.

46. Assume that ‖v‖ = 2, ‖w‖ = 3, and the angle between v and w is
120◦. Determine:

(a) v · w (b) ‖2v + w‖ (c) ‖2v − 3w‖

47. Show that if e and f are unit vectors such that ‖e + f‖ = 3
2 , then

‖e − f‖ =
√

7
2 . Hint: Show that e · f = 1

8 .

48. Find ‖2e − 3f‖ assuming that e and f are unit vectors such that
‖e + f‖ = √

3/2.

49. Find the angle θ in the triangle in Figure 12.

x

y

(0, 10)

(10, 8)

(3, 2)

θ

FIGURE 12

50. Find all three angles in the triangle in Figure 13.

x

y
(2, 7)

(6, 3)

(0, 0)

FIGURE 13

In Exercises 51–58, find the projection of u along v.

51. u = 〈2, 5〉, v = 〈1, 1〉 52. u = 〈2, −3〉, v = 〈1, 2〉
53. u = 〈−1, 2, 0〉, v = 〈2, 0, 1〉
54. u = 〈1, 1, 1〉, v = 〈1, 1, 0〉
55. u = 5i + 7j − 4k, v = k 56. u = i + 29k, v = j

57. u = 〈a, b, c〉, v = i 58. u = 〈a, a, b〉, v = i − j

In Exercises 59 and 60, compute the component of u along v.

59. u = 〈3, 2, 1〉, v = 〈1, 0, 1〉
60. u = 〈3, 0, 9〉, v = 〈1, 2, 2〉
61. Find the length of OP in Figure 14.

62. Find ‖u⊥‖ in Figure 14.

x

y

u = 〈3, 5〉

v = 〈8, 2〉
u⊥

P
O

FIGURE 14

In Exercises 63–68, find the decomposition a = a|| + a⊥ with respect
to b.

63. a = 〈1, 0〉, b = 〈1, 1〉
64. a = 〈2, −3〉, b = 〈5, 0〉
65. a = 〈4, −1, 0〉, b = 〈0, 1, 1〉
66. a = 〈4, −1, 5〉, b = 〈2, 1, 1〉
67. a = 〈x, y〉, b = 〈1, −1〉
68. a = 〈x, y, z〉, b = 〈1, 1, 1〉
69. Let eθ = 〈cos θ, sin θ〉. Show that eθ · eψ = cos(θ − ψ) for any
two angles θ and ψ .
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70. Let v and w be vectors in the plane.

(a) UseTheorem 2 to explain why the dot product v · w does not change
if both v and w are rotated by the same angle θ .

(b) Sketch the vectors e1 = 〈1, 0〉 and e2 =
〈√

2
2 ,

√
2

2

〉
, and determine

the vectors e′
1, e′

2 obtained by rotating e1, e2 through an angle π
4 . Verify

that e1 · e2 = e′
1 · e′

2.

In Exercises 71–74, refer to Figure 15.

71. Find the angle between AB and AC.

72. Find the angle between AB and AD.

73. Calculate the projection of
−→
AC along

−→
AD.

74. Calculate the projection of
−→
AD along

−→
AB.

A = (0, 0, 1)

C = (1, 1, 0)

O

D = (0, 1, 0)

B = (1, 0, 0)

FIGURE 15 Unit cube in R3.

75. Let v and w be nonzero vectors and set u = ev + ew. Use
the dot product to show that the angle between u and v is equal to
the angle between u and w. Explain this result geometrically with a
diagram.

76. Let v, w, and a be nonzero vectors such that v · a = w · a.
Is it true that v = w? Either prove this or give a counterexample.

77. Calculate the force (in newtons) required to push a 40-kg wagon
up a 10◦ incline (Figure 16).

10°

40 kg

FIGURE 16

78. A force F is applied to each of two ropes (of negligible weight)
attached to opposite ends of a 40-kg wagon and making an angle of
35◦ with the horizontal (Figure 17). What is the maximum magnitude

of F (in newtons) that can be applied without lifting the wagon off the
ground?

40 kg

FF

35° 35°

FIGURE 17

79. A light beam travels along the ray determined by a unit vector L,
strikes a flat surface at point P , and is reflected along the ray determined
by a unit vector R, where θ1 = θ2 (Figure 18). Show that if N is the
unit vector orthogonal to the surface, then

R = 2(L · N)N − L

R

N

L

Incoming light Reflected light

P

θ1 θ2

FIGURE 18

80. Let P and Q be antipodal (opposite) points on a sphere of radius
r centered at the origin and let R be a third point on the sphere (Figure
19). Prove that PR and QR are orthogonal.

R

O

Q

P

FIGURE 19

81. Prove that ‖v + w‖2 − ‖v − w‖2 = 4v · w.

82. Use Exercise 81 to show that v and w are orthogonal if and only if
‖v − w‖ = ‖v + w‖.

83. Show that the two diagonals of a parallelogram are perpendicular
if and only if its sides have equal length. Hint: Use Exercise 82 to show
that v − w and v + w are orthogonal if and only if ‖v‖ = ‖w‖.

84. Verify the Distributive Law:

u · (v + w) = u · v + u · w

85. Verify that (λv) · w = λ(v · w) for any scalar λ.
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Further Insights and Challenges
86. Prove the Law of Cosines, c2 = a2 + b2 − 2ab cos θ , by referring
to Figure 20. Hint: Consider the right triangle �PQR.

Q
P

R

a
a sin θ

b

c

b − a cos θ

θ

FIGURE 20

87. In this exercise, we prove the Cauchy–Schwarz inequality: If v and
w are any two vectors, then

|v · w| ≤ ‖v‖ ‖w‖ 6

(a) Let f (x) = ‖xv + w‖2 for x a scalar. Show that f (x) = ax2 +
bx + c, where a = ‖v‖2, b = 2v · w, and c = ‖w‖2.
(b) Conclude that b2 − 4ac ≤ 0. Hint: Observe that f (x) ≥ 0 for all x.

88. Use (6) to prove the Triangle Inequality

‖v + w‖ ≤ ‖v‖ + ‖w‖
Hint: First use the Triangle Inequality for numbers to prove

|(v + w) · (v + w)| ≤ |(v + w) · v| + |(v + w) · w|

89. This exercise gives another proof of the relation between the
dot product and the angle θ between two vectors v = 〈a1, b1〉 and
w = 〈a2, b2〉 in the plane. Observe that v = ‖v‖ 〈cos θ1, sin θ1〉 and
w = ‖w‖ 〈cos θ2, sin θ2〉, with θ1 and θ2 as in Figure 21. Then use the
addition formula for the cosine to show that

v · w = ‖v‖ ‖w‖ cos θ

θ = θ2 − θ1

w w

v v

x

y

x

y

x

y
a2

b2

b1

a1

θ2 θ1

θ

FIGURE 21

90. Let v = 〈x, y〉 and

vθ = 〈x cos θ + y sin θ, −x sin θ + y cos θ〉
Prove that the angle between v and vθ is θ .

91. Let v be a nonzero vector. The angles α, β, γ between v and the
unit vectors i, j, k are called the direction angles of v (Figure 22). The
cosines of these angles are called the direction cosines of v. Prove that

cos2 α + cos2 β + cos2 γ = 1

y

v

x

z

α
β

γ

FIGURE 22 Direction angles of v.

92. Find the direction cosines of v = 〈3, 6, −2〉.
93. The set of all points X = (x, y, z) equidistant from two points P ,
Q in R3 is a plane (Figure 23). Show that X lies on this plane if

−→
PQ · −→

OX = 1

2

(
‖−−→OQ‖2 − ‖−→

OP ‖2
)

7

y

x

z

P

X

R

Q

FIGURE 23

Hint: If R is the midpoint of PQ, then X is equidistant from P and Q

if and only if
−→
XR is orthogonal to

−→
PQ.

94. Sketch the plane consisting of all points X = (x, y, z) equidistant
from the points P = (0, 1, 0) and Q = (0, 0, 1). Use Eq. (7) to show
that X lies on this plane if and only if y = z.

95. Use Eq. (7) to find the equation of the plane consisting of all points
X = (x, y, z) equidistant from P = (2, 1, 1) and Q = (1, 0, 2).
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12.4 The Cross Product
This section introduces the cross product v × w of two vectors v and w. The cross product
(sometimes called the vector product) is used in physics and engineering to describe
quantities involving rotation, such as torque and angular momentum. In electromagnetic
theory, magnetic forces are described using cross products (Figures 1 and 2).

FIGURE 1 The spiral paths of charged
particles in a bubble chamber in the
presence of a magnetic field are described
using cross products.

FIGURE 2 The Van Allen radiation belts,
located thousands of miles above the
earth’s surface, are made up of streams of
protons and electrons that oscillate back
and forth in helical paths between two
“magnetic mirrors” set up by the earth’s
magnetic field. This helical motion is
explained by the “cross-product” nature
of magnetic forces.

Unlike the dot product v · w (which is a scalar), the cross product v × w is again a
vector. It is defined using determinants, which we now define in the 2 × 2 and 3 × 3 cases.
A 2 × 2 determinant is a number formed from an array of numbers with two rows and two
columns (called a matrix) according to the formula∣∣∣∣ a b

c d

∣∣∣∣ = ad − bc 1

Note that the determinant is the difference of the diagonal products. For example,∣∣∣∣ 3 2
1
2 4

∣∣∣∣ =
∣∣∣∣ 3 2

1
2 4

∣∣∣∣ −
∣∣∣∣ 3 2

1
2 4

∣∣∣∣ = 3 · 4 − 2 · 1

2
= 11

The determinant of a 3 × 3 matrix is defined by the formula∣∣∣∣∣∣
a1 b1 c1
a2 b2 c2
a3 b3 c3

∣∣∣∣∣∣ = a1

∣∣∣∣ b2 c2
b3 c3

∣∣∣∣
(1, 1)-minor

− b1

∣∣∣∣ a2 c2
a3 c3

∣∣∣∣
(1, 2)-minor

+ c1

∣∣∣∣ a2 b2
a3 b3

∣∣∣∣
(1, 3)-minor

2

This formula expresses the 3 × 3 determinant in terms of 2 × 2 determinants called
minors. The minors are obtained by crossing out the first row and one of the three columns
of the 3 × 3 matrix. For example, the minor labeled (1, 2) above is obtained as follows:∣∣∣∣∣∣

a1 b1 c1
a2 b2 c2
a3 b3 c3

∣∣∣∣∣∣
Cross out row 1 and column 2

to obtain the (1, 2)-minor

∣∣∣∣ a2 c2
a3 c3

∣∣∣∣
(1,2)-minor

EXAMPLE 1 A 3 × 3 Determinant Calculate

∣∣∣∣∣∣
2 4 3
0 1 −7

−1 5 3

∣∣∣∣∣∣.The theory of matrices and determinants is
part of linear algebra, a subject of great
importance throughout mathematics. In
this section, we discuss just a few basic
definitions and facts needed for our
treatment of multivariable calculus.

Solution∣∣∣∣∣∣
2 4 3
0 1 −7

−1 5 3

∣∣∣∣∣∣ = 2

∣∣∣∣ 1 −7
5 3

∣∣∣∣ − 4

∣∣∣∣ 0 −7
−1 3

∣∣∣∣ + 3

∣∣∣∣ 0 1
−1 5

∣∣∣∣
= 2(38) − 4(−7) + 3(1) = 107

Later in this section we will see how determinants are related to area and volume.
First, we introduce the cross product, which is defined as a “symbolic” determinant whose
first row has the vector entries i, j, k.

CAUTION Note in Eq. (3) that the middle
term comes with a minus sign.

DEFINITION The Cross Product The cross product of vectors v = 〈a1, b1, c1〉 and
w = 〈a2, b2, c2〉 is the vector

v × w =
∣∣∣∣∣∣

i j k
a1 b1 c1
a2 b2 c2

∣∣∣∣∣∣ =
∣∣∣∣ b1 c1

b2 c2

∣∣∣∣ i −
∣∣∣∣ a1 c1

a2 c2

∣∣∣∣ j +
∣∣∣∣ a1 b1

a2 b2

∣∣∣∣ k 3



S E C T I O N 12.4 The Cross Product 689

EXAMPLE 2 Calculate v × w, where v = 〈−2, 1, 4〉 and w = 〈3, 2, 5〉.
Solution

v × w =
∣∣∣∣∣∣

i j k
−2 1 4

3 2 5

∣∣∣∣∣∣ =
∣∣∣∣ 1 4

2 5

∣∣∣∣ i −
∣∣∣∣ −2 4

3 5

∣∣∣∣ j +
∣∣∣∣ −2 1

3 2

∣∣∣∣ k

= (−3)i − (−22)j + (−7)k = 〈−3, 22, −7〉

Formula (3) gives no hint of the geometric meaning of the cross product. However,
there is a simple way to visualize the vector v × w using the right-hand rule. Suppose
that v, w, and u are nonzero vectors that do not all lie in a plane. We say that {v, w, u}
forms a right-handed system if the direction of u is determined by the right-hand rule:
When the fingers of your right hand curl from v to w, your thumb points to the same side
of the plane spanned by v and w as u (Figure 3). The following theorem is proved at the

u

w

v

FIGURE 3 {v, w, u} forms a right-handed
system.

end of this section.

THEOREM 1 Geometric Description of the Cross Product The cross product v × w
is the unique vector with the following three properties:

(i) v × w is orthogonal to v and w.

(ii) v × w has length ‖v‖ ‖w‖ sin θ (θ is the angle between v and w, 0 ≤ θ ≤ π ).

(iii) {v, w, v × w} forms a right-handed system.

How do the three properties in Theorem 1 determine v × w? By property (i), v × w
lies on the line orthogonal to v and w. By property (ii), v × w is one of the two vectors on
this line of length ‖v‖ ‖w‖ sin θ . Finally, property (iii) tells us which of these two vectors
is v × w—namely, the vector for which {v, w, u} is right-handed (Figure 4).

u = v × w

−u

w

v

θ

FIGURE 4 There are two vectors orthogonal
to v and w with length ‖v‖ ‖w‖ sin θ . The
right-hand rule determines which is v × w.

EXAMPLE 3 Let v = 〈2, 0, 0〉 and w = 〈0, 1, 1〉. Determine u = v × w using the
geometric properties of the cross product rather than Eq. (3).

Solution We use Theorem 1. First, by Property (i), u = v × w is orthogonal to v and
w. Since v lies along the x-axis, u must lie in the yz-plane (Figure 5). In other words,

y

x

z

w = 〈0, 1, 1〉 

u = v × w

v = 〈2, 0, 0〉 

FIGURE 5 The direction of u = v × w is
determined by the right-hand rule. Thus, u
has a positive z-component.

u = 〈0, b, c〉. But u is also orthogonal to w = 〈0, 1, 1〉, so u · w = b + c = 0 and thus
u = 〈0, b, −b〉.

Next, direct computation shows that ‖v‖ = 2 and ‖w‖ = √
2. Furthermore, the angle

between v and w is θ = π
2 since v · w = 0. By property (ii),

‖u‖ =
√

b2 + (−b)2 = |b|√2 is equal to ‖v‖ ‖w‖ sin
π

2
= 2

√
2

Therefore, |b| = 2 and b = ±2. Finally, property (iii) tells us that u points in the positive
z-direction (Figure 5). Thus, b = −2 and u = 〈0, −2, 2〉. You can verify that the formula
for the cross product yields the same answer.

One of the most striking properties of the cross product is that it is anticommutative.
Reversing the order changes the sign:

w × v = −v × w 4
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We verify this using Eq. (3): when we interchange v and w, each of the 2 × 2 determinants
changes sign. For example,

∣∣∣∣ a1 b1
a2 b2

∣∣∣∣ = a1b2 − b1a2

= −(b1a2 − a1b2) = −
∣∣∣∣ a2 b2

a1 b1

∣∣∣∣
Anticommutativity also follows from the geometric description of the cross product. By
properties (i) and (ii) in Theorem 1, v × w and w × v are both orthogonal to v and w
and have the same length. However, v × w and w × v point in opposite directions by the
right-hand rule, and thus v × w = −w × v (Figure 6). In particular, v × v = −v × v and

w

v × w

w × v = −v × w

v

FIGURE 6

hence v × v = 0.
The next theorem lists some further properties of cross products (the proofs are given

Note an important distinction between the
dot product and cross product of a vector
with itself:

v × v = 0

v · v = ||v||2

as Exercises 45–48).

THEOREM 2 Basic Properties of the Cross Product

(i) w × v = −v × w

(ii) v × v = 0

(iii) v × w = 0 if and only if w = λv for some scalar λ or v = 0.

(iv) (λv) × w = v × (λw) = λ(v × w)

(v) (u + v) × w = u × w + v × w

u × (v + w) = u × v + u × w

The cross product of any two of the standard basis vectors i, j, and k is equal to the
third, possibly with a minus sign. More precisely (see Exercise 49),

i × j = k, j × k = i, k × i = j 5

i × i = j × j = k × k = 0

Since the cross product is anticommutative, minus signs occur when the cross products
are taken in the opposite order. An easy way to remember these relations is to draw i, j,
and k in a circle as in Figure 7. Go around the circle in the clockwise direction (starting at

k j

i

FIGURE 7 Circle for computing the cross
products of the basis vectors.

any point) and you obtain one of the relations (5). For example, starting at i and moving
clockwise yields i × j = k. If you go around in the counterclockwise direction, you obtain
the relations with a minus sign. Thus, starting at k and going counterclockwise gives the
relation k × j = −i.

EXAMPLE 4 Using the ijk Relations Compute (2i + k) × (3j + 5k).

Solution We use the Distributive Law for cross products:

(2i + k) × (3j + 5k) = (2i) × (3j) + (2i) × (5k) + k × (3j) + k × (5k)

= 6(i × j) + 10(i × k) + 3(k × j) + 5(k × k)

= 6k − 10j − 3i + 5(0) = −3i − 10j + 6k
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EXAMPLE 5 Velocity in a Magnetic Field The force F on a proton moving at velocity
v m/s in a uniform magnetic field B (in teslas) is F = q(v × B) in newtons, where q =
1.6 × 10−19 coulombs (Figure 8). Calculate F if B = 0.0004k T and v has magnitude
106 m/s in the direction −j + k.

y
x

z

F
v

B

FIGURE 8 A proton in a uniform magnetic
field travels in a helical path.

Solution The vector −j + k has length
√

2, and since v has magnitude 106,

v = 106
(−j + k√

2

)
Therefore, the force (in newtons) is

F = q(v × B) = 106q

(−j + k√
2

)
× (0.0004k) = 400q√

2
((−j + k) × k)

= −400q√
2

i = −400(1.6 × 10−19)√
2

i ≈ −(4.5 × 10−17)i

Cross Products, Area, and Volume
Cross products and determinants are closely related to area and volume. Consider the
parallelogram P spanned by nonzero vectors v and w with a common basepoint. In
Figure 9(A), we see that P has base b = ‖v‖ and height h = ‖w‖ sin θ , where θ is the
angle between v and w. Therefore, P has area A = bh = ‖v‖ ‖w‖ sin θ = ‖v × w‖.

y

h

h

x

The area of the parallelogram P is
||v × w||  = ||v||  || w||  sin θ.

(A) The volume of the parallelpiped P is
| u . (v × w)| .

(B)

z

v × w
v × ww

w

v u

v

θ

θ

FIGURE 9

Next, consider the parallelepiped P spanned by three nonzero vectors u, v, w in R3A “parallelepiped” is the solid spanned by
three vectors. Each face is a parallelogram. [the three-dimensional prism in Figure 9(B)]. The base of P is the parallelogram spanned

by v and w, so the area of the base is ‖v × w‖. The height of P is h = ‖u‖ · |cos θ |, where
θ is the angle between u and v × w. Therefore,

Volume of P = (area of base)(height) = ‖v × w‖ · ‖u‖ · |cos θ |
But ‖v × w‖ ‖u‖ cos θ is equal to the dot product of v × w and u. This proves the formula

Volume of P = |u · (v × w)|
The quantity u · (v × w), called the vector triple product, can be expressed as a

determinant. Let

u = 〈a1, b1, c1〉 , v = 〈a2, b2, c2〉 , w = 〈a3, b3, c3〉
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ThenWe use the following notation for the
determinant of the matrix whose rows are
the vectors v, w, u:

det

⎛
⎝ u

v
w

⎞
⎠ =

∣∣∣∣∣∣
a1 b1 c1

a2 b2 c2

a3 b3 c3

∣∣∣∣∣∣
It is awkward to write the absolute value of
a determinant in the notation on the right,
but we may denote it∣∣∣∣∣∣det

⎛
⎝ u

v
w

⎞
⎠

∣∣∣∣∣∣

u · (v × w) = u ·
(∣∣∣∣ b2 c2

b3 c3

∣∣∣∣ i −
∣∣∣∣ a2 c2

a3 c3

∣∣∣∣ j +
∣∣∣∣ a2 b2

a3 b3

∣∣∣∣ k
)

= a1

∣∣∣∣ b2 c2
b3 c3

∣∣∣∣ − b1

∣∣∣∣ a2 c2
a3 c3

∣∣∣∣ + c1

∣∣∣∣ a2 b2
a3 b3

∣∣∣∣
=

∣∣∣∣∣∣
a1 b1 c1
a2 b2 c2
a3 b3 c3

∣∣∣∣∣∣ = det

⎛
⎝ u

v
w

⎞
⎠ 6

We obtain the following formulas for area and volume.

THEOREM 3 Area and Volume via Cross Products and Determinants Let u, v, w be
nonzero vectors in R3. Then

(i) The parallelogram P spanned by v and w has area A = ‖v × w‖.

(ii) The parallelepiped P spanned by u, v, and w has volume

V = |u · (v × w)| =
∣∣∣∣∣∣det

⎛
⎝ u

v
w

⎞
⎠

∣∣∣∣∣∣ 7

EXAMPLE 6 Let v = 〈1, 4, 5〉 and w = 〈−2, −1, 2〉. Calculate:

y
x

6

z

w = 〈−2, −1, 2〉

v = 〈1, 4, 5〉

FIGURE 10

(a) The area A of the parallelogram spanned by v and w
(b) The volume V of the parallelepiped in Figure 10

Solution We compute the cross product and apply Theorem 3:

v × w =
∣∣∣∣ 4 5

−1 2

∣∣∣∣ i −
∣∣∣∣ 1 5

−2 2

∣∣∣∣ j +
∣∣∣∣ 1 4

−2 −1

∣∣∣∣ k = 〈13, −12, 7〉

(a) The area of the parallelogram spanned by v and w is

A = ‖v × w‖ =
√

132 + (−12)2 + 72 = √
362 ≈ 19

(b) The vertical leg of the parallelepiped is the vector 6k, so by Eq. (7),

V = |(6k) · (v × w)| = | 〈0, 0, 6〉 · 〈13, −12, 7〉 | = 6(7) = 42

We can compute the area A of the parallelogram spanned by vectors v = 〈a, b〉 and

w = 〈c, d, 0〉
v = 〈a, b, 0〉

v � w = Ak

y

x

z

A

FIGURE 11 Parallelogram spanned by v and
w in the xy-plane.

w = 〈c, d〉 by regarding v and w as vectors in R3 with zero component in the z-direction
(Figure 11). Thus, we write v = 〈a, b, 0〉 and w = 〈c, d, 0〉. The cross product v × w is a
vector pointing in the z-direction:

v × w =
∣∣∣∣∣∣

i j k
a b 0
c d 0

∣∣∣∣∣∣ =
∣∣∣∣ b 0

d 0

∣∣∣∣ i −
∣∣∣∣ a 0

c 0

∣∣∣∣ j +
∣∣∣∣ a b

c d

∣∣∣∣ k =
∣∣∣∣ a b

c d

∣∣∣∣ k

By Theorem 3, the parallelogram spanned by v and w has area A = ‖v × w‖, and thus,

A =
∣∣∣∣det

(
v
w

)∣∣∣∣ =
∣∣∣∣det

(
a b

c d

)∣∣∣∣ 8
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EXAMPLE 7 Compute the area A of the parallelogram in Figure 12.

Solution We have

∣∣∣∣ v
w

∣∣∣∣ =
∣∣∣∣ 1 4

3 2

∣∣∣∣ = 1 · 2 − 3 · 4 = −10. The area is the absolute

value A = | − 10| = 10.

w = 〈3, 2〉 

v = 〈1, 4〉 

y

x

FIGURE 12

Proofs of Cross-Product Properties
We now derive the properties of the cross product listed in Theorem 1. Let

v = 〈a1, b1, c1〉 , w = 〈a2, b2, c2〉
We prove that v × w is orthogonal to v by showing that v · (v × w) = 0. By Eq. (6),

v · (v × w) = det

⎛
⎝ v

v
w

⎞
⎠ = a1

∣∣∣∣ b1 c1
b2 c2

∣∣∣∣ − b1

∣∣∣∣ a1 c1
a2 c2

∣∣∣∣ + c1

∣∣∣∣ a1 b1
a2 b2

∣∣∣∣ 9

Straightforward algebra (left to the reader) shows that the right-hand side of Eq. (9) is equal
to zero. This shows that v · (v × w) = 0 and thus v × w is orthogonal to v as claimed.
Interchanging the roles of v and w, we conclude also that w × v is orthogonal to w, and
since v × w = −w × v, it follows that v × w is orthogonal to w. This proves part (i) of
Theorem 1. To prove (ii), we shall use the following identity:

‖v × w‖2 = ‖v‖2‖w‖2 − (v · w)2 10

To verify this identity, we compute ‖v × w‖2 as the sum of the squares of the components
of v × w:

‖v × w‖2 =
∣∣∣∣ b1 c1

b2 c2

∣∣∣∣2

+
∣∣∣∣ a1 c1

a2 c2

∣∣∣∣2

+
∣∣∣∣ a1 b1

a2 b2

∣∣∣∣2

= (b1c2 − c1b2)
2 + (a1c2 − c1a2)

2 + (a1b2 − b1a2)
2 11

On the other hand, by definition,

‖v‖2‖w‖2 − (v · w)2 = (
a2

1 + b2
1 + c2

1

)(
a2

2 + b2
2 + c2

2

) − (a1a2 + b1b2 + c1c2)
2

12

Again, algebra (left to the reader) shows that Eq. (11) is equal to Eq. (12).
Now let θ be the angle between v and w. By Eq. (10),

‖v × w‖2 = ‖v‖2‖w‖2 − (v · w)2 = ‖v‖2‖w‖2 − ‖v‖2‖w‖2 cos2 θ

= ‖v‖2‖w‖2(1 − cos2 θ) = ‖v‖2‖w‖2 sin2 θ

Therefore, ‖v × w‖ = ‖v‖‖w‖ sin θ . Note that sin θ ≥ 0 since, by convention, θ lies be-
tween 0 and π . This proves (ii).

Part (iii) of Theorem 1 asserts that {v, w, v × w} is a right-handed system. This is
a more subtle property that cannot be verified by algebra alone. We must rely on the
following relation between right-handedness and the sign of the determinant, which can
be established using the continuity of determinants:

det

⎛
⎝ u

v
w

⎞
⎠ > 0 if and only if {u, v, w} is a right-handed system
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Furthermore, it can be checked directly from Eq. (2) that the determinant does not change
when we replace {u, v, w} by {v, w, u} (or {w, u, v}) . Granting this and using Eq. (6), wev × w

w

v

FIGURE 13 Both {v × w, v, w} and
{v, w, v × w} are right-handed.

obtain

det

⎛
⎝ v

w
v × w

⎞
⎠ = det

⎛
⎝ v × w

v
w

⎞
⎠ = (v × w) · (v × w) = ‖v × w‖2 > 0

Therefore {v, w, v × w} is right-handed as claimed (Figure 13).

12.4 SUMMARY

• Determinants of sizes 2 × 2 and 3 × 3:∣∣∣∣ a11 a12
a21 a22

∣∣∣∣ = a11a22 − a12a21∣∣∣∣∣∣
a11 a12 a13
a21 a22 a23
a31 a32 a33

∣∣∣∣∣∣ = a11

∣∣∣∣ a22 a23
a32 a33

∣∣∣∣ − a12

∣∣∣∣ a21 a23
a31 a33

∣∣∣∣ + a13

∣∣∣∣ a21 a22
a31 a32

∣∣∣∣
• The cross product of v = 〈a1, b1, c1〉 and w = 〈a2, b2, c2〉 is the symbolic determinant

v × w =
∣∣∣∣∣∣

i j k
a1 b1 c1
a2 b2 c2

∣∣∣∣∣∣ =
∣∣∣∣ b1 c1

b2 c2

∣∣∣∣ i −
∣∣∣∣ a1 c1

a2 c2

∣∣∣∣ j +
∣∣∣∣ a1 b1

a2 b2

∣∣∣∣ k

• The cross product v × w is the unique vector with the following three properties:

(i) v × w is orthogonal to v and w.

(ii) v × w has length ‖v‖ ‖w‖ sin θ (θ is the angle between v and w, 0 ≤ θ ≤ π ).

(iii) {v, w, v × w} is a right-handed system.

• Properties of the cross product:

(i) w × v = −v × w
(ii) v × w = 0 if and only if w = λv for some scalar or v = 0

(iii) (λv) × w = v × (λw) = λ(v × w)

(iv) (u + v) × w = u × w + v × w

v × (u + w) = v × u + v × w

• Cross products of standard basis vectors (Figure 14):
k j

i

FIGURE 14 Circle for computing the cross
products of the basis vectors.

i × j = k, j × k = i, k × i = j

• The parallelogram spanned by v and w has area ‖v × w‖.
• Cross-product identity: ‖v × w‖2 = ‖v‖2‖w‖2 − (v · w)2.
• The vector triple product is defined by u · (v × w). We have

u · (v × w) = det

⎛
⎝ u

v
w

⎞
⎠

• The parallelepiped spanned by u, v, and w has volume |u · (v × w)| .
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12.4 EXERCISES

Preliminary Questions

1. What is the (1, 3) minor of the matrix

∣∣∣∣∣∣
3 4 2

−5 −1 1
4 0 3

∣∣∣∣∣∣?
2. The angle between two unit vectors e and f is π

6 . What is the length
of e × f?

3. What is u × w, assuming that w × u = 〈2, 2, 1〉?

4. Find the cross product without using the formula:

(a) 〈4, 8, 2〉 × 〈4, 8, 2〉 (b) 〈4, 8, 2〉 × 〈2, 4, 1〉

5. What are i × j and i × k?

6. When is the cross product v × w equal to zero?

Exercises
In Exercises 1–4, calculate the 2 × 2 determinant.

1.

∣∣∣∣ 1 2
4 3

∣∣∣∣ 2.

∣∣∣∣∣
2
3

1
6

−5 2

∣∣∣∣∣
3.

∣∣∣∣ −6 9
1 1

∣∣∣∣ 4.

∣∣∣∣ 9 25
5 14

∣∣∣∣
In Exercises 5–8, calculate the 3 × 3 determinant.

5.

∣∣∣∣∣∣
1 2 1
4 −3 0
1 0 1

∣∣∣∣∣∣ 6.

∣∣∣∣∣∣
1 0 1

−2 0 3
1 3 −1

∣∣∣∣∣∣
7.

∣∣∣∣∣∣
1 2 3
2 4 6

−3 −4 2

∣∣∣∣∣∣ 8.

∣∣∣∣∣∣
1 0 0
0 0 −1
0 1 0

∣∣∣∣∣∣
In Exercises 9–12, calculate v × w.

9. v = 〈1, 2, 1〉, w = 〈3, 1, 1〉
10. v = 〈2, 0, 0〉, w = 〈−1, 0, 1〉
11. v = 〈 2

3 , 1, 1
2

〉
, w = 〈4, −6, 3〉

12. v = 〈1, 1, 0〉, w = 〈0, 1, 1〉
In Exercises 13–16, use the relations in Eq. (5) to calculate the cross
product.

13. (i + j) × k

14. ( j − k) × ( j + k)

15. (i − 3j + 2k) × ( j − k)

16. (2i − 3j + 4k) × (i + j − 7k)

In Exercises 17–22, calculate the cross product assuming that

u × v = 〈1, 1, 0〉 , u × w = 〈0, 3, 1〉 , v × w = 〈2, −1, 1〉
17. v × u 18. v × (u + v)

19. w × (u + v) 20. (3u + 4w) × w

21. (u − 2v) × (u + 2v) 22. (v + w) × (3u + 2v)

23. Let v = 〈a, b, c〉. Calculate v × i, v × j, and v × k.

24. Find v × w, where v and w are vectors of length 3 in the xz-plane,
oriented as in Figure 15, and θ = π

6 .

y

x

3

3

z

w

v
θ

FIGURE 15

In Exercises 25 and 26, refer to Figure 16.

v

−u

u

w

FIGURE 16

25. Which of u and −u is equal to v × w?

26. Which of the following form a right-handed system?

(a) {v, w, u} (b) {w, v, u} (c) {v, u, w}
(d) {u, v, w} (e) {w, v, −u} (f) {v, −u, w}
27. Let v = 〈3, 0, 0〉 and w = 〈0, 1, −1〉. Determine u = v × w using
the geometric properties of the cross product rather than the formula.
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28. What are the possible angles θ between two unit vectors e and f if
‖e × f‖ = 1

2 ?

29. Show that if v and w lie in the yz-plane, then v × w is a multiple
of i.

30. Find the two unit vectors orthogonal to both a = 〈3, 1, 1〉 and
b = 〈−1, 2, 1〉.
31. Let e and e′ be unit vectors in R3 such that e ⊥ e′. Use the geo-
metric properties of the cross product to compute e × (e′ × e).

32. Calculate the force F on an electron (charge q = −1.6 × 10−19 C)
moving with velocity 105 m/s in the direction i in a uniform magnetic
field B, where B = 0.0004i + 0.0001j teslas (see Example 5).

33. An electron moving with velocity v in the plane experiences a force
F = q(v × B), where q is the charge on the electron and B is a uni-
form magnetic field pointing directly out of the page. Which of the
two vectors F1 or F2 in Figure 17 represents the force on the electron?
Remember that q is negative.

v F2

F1

B

FIGURE 17 The magnetic field vector B points directly out of the page.

34. Calculate the scalar triple product u · (v × w), where u = 〈1, 1, 0〉,
v = 〈3, −2, 2〉, and w = 〈4, −1, 2〉.
35. Verify identity (10) for vectors v = 〈3, −2, 2〉 and w = 〈4, −1, 2〉.
36. Find the volume of the parallelepiped spanned by u, v, and w in
Figure 18.

37. Find the area of the parallelogram spanned by v and w in Figure
18.

38. Calculate the volume of the parallelepiped spanned by

u = 〈2, 2, 1〉 , v = 〈1, 0, 3〉 , w = 〈0, −4, 0〉

y

x

z

u = 〈1, 0, 4〉 
w = 〈−4, 2, 6〉 

v = 〈1, 3, 1〉 

FIGURE 18

39. Sketch and compute the volume of the parallelepiped spanned by

u = 〈1, 0, 0〉 , v = 〈0, 2, 0〉 , w = 〈1, 1, 2〉
40. Sketch the parallelogram spanned by u = 〈1, 1, 1〉 and v =
〈0, 0, 4〉, and compute its area.

41. Calculate the area of the parallelogram spanned by u = 〈1, 0, 3〉
and v = 〈2, 1, 1〉.
42. Find the area of the parallelogram determined by the vectors
〈a, 0, 0〉 and 〈0, b, c〉.
43. Sketch the triangle with vertices at the origin O, P = (3, 3, 0), and
Q = (0, 3, 3), and compute its area using cross products.

44. Use the cross product to find the area of the triangle with vertices
P = (1, 1, 5), Q = (3, 4, 3), and R = (1, 5, 7) (Figure 19).

y

P

Q

R

x

z

FIGURE 19

In Exercises 45–47, verify the identity using the formula for the cross
product.

45. v × w = −w × v

46. (λv) × w = λ(v × w) (λ a scalar)

47. (u + v) × w = u × w + v × w

48. Use the geometric description in Theorem 1 to prove Theorem 2
(iii): v × w = 0 if and only if w = λv for some scalar λ or v = 0.

49. Verify the relations (5).

50. Show that

(i × j) × j = i × (j × j)

Conclude that the Associative Law does not hold for cross products.

51. The components of the cross product have a geometric interpre-
tation. Show that the absolute value of the k-component of v × w is
equal to the area of the parallelogram spanned by the projections v0
and w0 onto the xy-plane (Figure 20).
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y

x v0

v
w

w0

z

FIGURE 20

52. Formulate and prove analogs of the result in Exercise 51
for the i- and j-components of v × w.

53. Show that three points P, Q, R are collinear (lie on a line)

if and only if
−→
PQ × −→

PR = 0.

54. Use the result of Exercise 53 to determine whether the points P ,
Q, and R are collinear, and if not, find a vector normal to the plane
containing them.

(a) P = (2, 1, 0), Q = (1, 5, 2), R = (−1, 13, 6)

(b) P = (2, 1, 0), Q = (−3, 21, 10), R = (5, −2, 9)

(c) P = (1, 1, 0), Q = (1,−2, −1), R = (3, 2, −4)

55. Solve the equation 〈1, 1, 1〉 × X = 〈1, −1, 0〉, where X =
〈x, y, z〉. Note: There are infinitely many solutions.

56. Explain geometrically why 〈1, 1, 1〉 × X = 〈1, 0, 0〉 has
no solution, where X = 〈x, y, z〉.

57. Let X = 〈x, y, z〉. Show that i × X = v has a solution if
and only if v is contained in the yz-plane (the i-component is zero).

58. Suppose that vectors u, v, and w are mutually orthog-
onal—that is, u ⊥ v, u ⊥ w, and v ⊥ w. Prove that (u × v) × w = 0
and u × (v × w) = 0.

In Exercises 59–62: The torque about the origin O due to a force F act-
ing on an object with position vector r is the vector quantity τ = r × F.
If several forces Fj act at positions rj , then the net torque (units: N-m
or lb-ft) is the sum

τ =
∑

rj × Fj

Torque measures how much the force causes the object to rotate. By
Newton’s Laws, τ is equal to the rate of change of angular momentum.

59. Calculate the torque τ about O acting at the point P on the mechan-
ical arm in Figure 21(A), assuming that a 25-N force acts as indicated.
Ignore the weight of the arm itself.

60. Calculate the net torque about O at P , assuming that a 30-kg mass
is attached at P [Figure 21(B)]. The force Fg due to gravity on a mass
m has magnitude 9.8m m/s2 in the downward direction.

O

y

10 m

F = 25 N

P

125°

x

O

y

10 m

F = 25 N

P

125°

x

(B)

Fg

FIGURE 21

61. Let τ be the net torque about O acting on the robotic arm of Fig-
ure 22. Assume that the two segments of the arms have mass m1 and
m2 (in kg) and that a weight of m3 kg is located at the endpoint P . In
calculating the torque, we may assume that the entire mass of each arm
segment lies at the midpoint of the arm (its center of mass). Show that
the position vectors of the masses m1, m2, and m3 are

r1 = 1

2
L1(sin θ1i + cos θ1j)

r2 = L1(sin θ1i + cos θ1j) + 1

2
L2(sin θ2i − cos θ2j)

r3 = L1(sin θ1i + cos θ1j) + L2(sin θ2i − cos θ2j)

Then show that

τ = −g

(
L1

(
1

2
m1 + m2 + m3

)
sin θ1 + L2

(
1

2
m2 + m3

)
sin θ2

)
k

where g = 9.8 m/s2. To simplify the computation, note that all three
gravitational forces act in the −j direction, so the j-components of the
position vectors ri do not contribute to the torque.

x

y

PL1

m1

m2

L2

m3

θ2θ1

θ1

FIGURE 22

62. Continuing with Exercise 61, suppose that L1 = 3 m, L2 = 2 m,
m1 = 15 kg, m2 = 20 kg, and m3 = 18 kg. If the angles θ1, θ2 are equal
(say, to θ ), what is the maximum allowable value of θ if we assume
that the robotic arm can sustain a maximum torque of 1200 N-m?
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Further Insights and Challenges
63. Show that 3 × 3 determinants can be computed using the diagonal
rule: Repeat the first two columns of the matrix and form the products
of the numbers along the six diagonals indicated. Then add the products
for the diagonals that slant from left to right and subtract the products
for the diagonals that slant from right to left.

det(A) =

∣∣∣∣∣∣∣∣
a11 a12 a13
a21 a22 a23
a31 a32 a33

− − −

∣∣∣∣∣∣∣∣
a11 a12
a21 a22
a31 a32
+ + +

= a11a22a33 + a12a23a31 + a13a21a32

− a13a22a31 − a11a23a32 − a12a21a33

64. Use the diagonal rule to calculate

∣∣∣∣∣∣
2 4 3
0 1 −7

−1 5 3

∣∣∣∣∣∣.
65. Prove that v × w = v × u if and only if u = w + λv for some
scalar λ. Assume that v = 0.

66. Use Eq. (10) to prove the Cauchy–Schwarz inequality:

|v · w| ≤ ‖v‖ ‖w‖
Show that equality holds if and only if w is a multiple of v or at least
one of v and w is zero.

67. Show that if u, v, and w are nonzero vectors and (u × v) × w = 0,
then either (i) u and v are parallel, or (ii) w is orthogonal to u and v.

68. Suppose that u, v, w are nonzero and

(u × v) × w = u × (v × w) = 0

Show that u, v, and w are either mutually parallel or mutually perpen-
dicular. Hint: Use Exercise 67.

69. Let a, b, c be nonzero vectors, and set

v = a × (b × c), w = (a · c)b − (a · b)c

(a) Prove that
(i) v lies in the plane spanned by b and c.

(ii) v is orthogonal to a.
(b) Prove that w also satisfies (i) and (ii). Conclude that v and w are
parallel.
(c) Show algebraically that v = w (Figure 23).

a

b × c

c

b
a × (b × c)

FIGURE 23

70. Use Exercise 69 to prove the identity

(a × b) × c − a × (b × c) = (a · b)c − (b · c)a

71. Show that if a, b are nonzero vectors such that a ⊥ b, then there
exists a vector X such that

a × X = b 13

Hint: Show that if X is orthogonal to b and is not a multiple of a, then
a × X is a multiple of b.

72. Show that if a, b are nonzero vectors such that a ⊥ b, then the set
of all solutions of Eq. (13) is a line with a as direction vector. Hint: Let
X0 be any solution (which exists by Exercise 71), and show that every
other solution is of the form X0 + λa for some scalar λ.

73. Assume that v and w lie in the first quadrant in R2 as in Figure
24. Use geometry to prove that the area of the parallelogram is equal

to det

(
v
w

)
.

(c, d)

(a, b)

(a + c, b + d)
c a

ca

v

w

b

d

b

d

FIGURE 24

74. Consider the tetrahedron spanned by vectors a, b, and c as in Fig-
ure 25(A). Let A, B, C be the faces containing the origin O, and let D

be the fourth face opposite O. For each face F , let vF be the vector
normal to the face, pointing outside the tetrahedron, of magnitude equal
to twice the area of F . Prove the relations

vA + vB + vC = a × b + b × c + c × a

vA + vB + vC + vD = 0

Hint: Show that vD = (c − b) × (b − a).

y

x

z

(A) (B)

a
a

b

c
c

O O

vD

b

vD

FIGURE 25 The vector vD is perpendicular to the face.
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75. In the notation of Exercise 74, suppose that a, b, c are mutually
perpendicular as in Figure 25(B). Let SF be the area of face F . Prove

the following three-dimensional version of the Pythagorean Theorem:

S2
A + S2

B + S2
C = S2

D

12.5 Planes in Three-Space

A linear equation ax + by = c in two variables defines a line in R2. In this section we
show that a linear equation ax + by + cz = d in three variables defines a plane in R3.

Consider a plane P that passes through a point P0 = (x0, y0, z0). We can determine
P completely by specifying a nonzero vector n = 〈a, b, c〉 that is orthogonal to P . Such
a vector is called a normal vector. Basing n at P0 as in Figure 1, we see that a pointThe term “normal” is another word for

“orthogonal” or “perpendicular.”

Plane

P0

P

n

FIGURE 1 A point P lies on P if
−−→
P0P ⊥ n.

P = (x, y, z) lies on P precisely when
−−→
P0P is orthogonal to n. Therefore, P lies on the

plane if

n · −−→
P0P = 0 1

In components,
−−→
P0P = 〈x − x0, y − y0, z − z0〉, so Eq. (1) reads

〈a, b, c〉 · 〈x − x0, y − y0, z − z0〉 = 0

This gives us the following equation for the plane:

a(x − x0) + b(y − y0) + c(z − z0) = 0

This can also be written

ax + by + cz = ax0 + by0 + cz0 or n · −→
OP = n · −−→

OP0 2

When we set d = ax0 + by0 + cz0 = n · −−→
OP0, Eq. (2) becomes n · 〈x, y, z〉 = d, or

ax + by + cz = d

THEOREM 1 Equation of a Plane Plane throughP0 = (x0, y0, z0)with normal vector
n = 〈a, b, c〉:

Vector form: n · 〈x, y, z〉 = d 3

Scalar forms: a(x − x0) + b(y − y0) + c(z − z0) = 0 4

ax + by + cz = d 5

where d = n · 〈x0, y0, z0〉 = ax0 + by0 + cz0.

To show how this works in a simple case, consider the plane P through P0 = (1, 2, 0)

with normal vector n = 〈0, 0, 3〉 (Figure 2). Because n points in the z-direction, P must
be parallel to the xy-plane. On the other hand, P0 lies on the xy-plane, so P must be the
xy-plane itself. This is precisely what Eq. (3) gives us:

z

x
yP0 = (1, 2, 0)

P

n = 〈0, 0, 3〉 

FIGURE 2 The plane with normal vector
n = 〈0, 0, 3〉 passing through
P0 = (1, 2, 0) is the xy-plane.

n · 〈x, y, z〉 = n · 〈1, 2, 0〉
〈0, 0, 3〉 · 〈x, y, z〉 = 〈0, 0, 3〉 · 〈1, 2, 0〉

3z = 0 or z = 0

In other words, P has equation z = 0, so P is the xy-plane.
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EXAMPLE 1 Find an equation of the plane through P0 = (3, 1, 0) with normal vector
n = 〈3, 2, −5〉.
Solution Using Eq. (4), we obtain

3(x − 3) + 2(y − 1) − 5z = 0

Alternatively, we can compute

d = n · −−→
OP0 = 〈3, 2, −5〉 · 〈3, 1, 0〉 = 11

and write the equation as 〈3, 2, −5〉 · 〈x, y, z〉 = 11, or 3x + 2y − 5z = 11.

CONCEPTUAL INSIGHT Keep in mind that the components of a normal vector are “lurk-
ing” inside the equation ax + by + cz = d, because n = 〈a, b, c〉. The same is true for
lines in R2. The line ax + by = c in Figure 3 has normal vector n = 〈a, b〉 because the
line has slope −a/b and the vector n has slope b/a (lines are orthogonal if the product
of their slopes is −1).

P0

x

ax + by = c

P = (x, y)

n = 〈a, b〉
y

FIGURE 3 A line with normal vector n.

Note that if n is normal to a plane P , then so is every nonzero scalar multiple λn.
When we use λn instead of n, the resulting equation for P changes by a factor of λ. For
example, the following two equations define the same plane:

x + y + z = 1, 4x + 4y + 4z = 4

The first equation uses the normal 〈1, 1, 1〉, and the second uses the normal 〈4, 4, 4〉.
On the other hand, two planes P and P ′ are parallel if they have a common normal

vector. The following planes are parallel because each is normal to n = 〈1, 1, 1〉:
x + y + z = 1, x + y + z = 2, 4x + 4y + 4z = 7

In general, a family of parallel planes is obtained by choosing a normal vector n = 〈a, b, c〉
and varying the constant d in the equation

ax + by + cz = d

The unique plane in this family through the origin has equation ax + by + cz = 0.

EXAMPLE 2 Parallel Planes Let P have equation 7x − 4y + 2z = −10. Find an
equation of the plane parallel to P passing through

(a) The origin. (b) Q = (2, −1, 3).

Solution The planes parallel to P have an equation of the form (Figure 4)

z

y

x

12

7x − 4y + 2z = 0

7x − 4y + 2z = −10

7x − 4y + 2z = 24

−5

n = 〈7, −4, 2〉

FIGURE 4 Parallel planes with normal
vector n = 〈7, −4, 2〉.

7x − 4y + 2z = d 6

(a) For d = 0, we get the plane through the origin: 7x − 4y + 2z = 0.

(b) The point Q = (2, −1, 3) satisfies Eq. (6) with

d = 7(2) − 4(−1) + 2(3) = 24

Therefore, the plane parallel to P through Q has equation 7x − 4y + 2z = 24.
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Points that lie on a line are called collinear. If we are given three points P , Q, and R

y
x

z

P
Q

R

Plane

n = PQ � PR

FIGURE 5 Three points P , Q, and R

determine a plane (assuming they do not
lie in a straight line).

that are not collinear, then there is just one plane passing through P , Q, and R (Figure 5).
The next example shows how to find an equation of this plane.

EXAMPLE 3 The Plane Determined by Three Points Find an equation of the plane P
determined by the points

P = (1, 0, −1), Q = (2, 2, 1), R = (4, 1, 2)

Solution

Step 1. Find a normal vector.
The vectors

−→
PQ and

−→
PR lie in the plane P , so their cross product is normal to P:

In Example 3, we could just as well have

used the vectors
−→
QP and

−→
QR (or

−→
RP and−→

RQ) to find a normal vector n.

−→
PQ = 〈2, 2, 1〉 − 〈1, 0, −1〉 = 〈1, 2, 2〉
−→
PR = 〈4, 1, 2〉 − 〈1, 0, −1〉 = 〈3, 1, 3〉

n = −→
PQ × −→

PR =
∣∣∣∣∣∣

i j k
1 2 2
3 1 3

∣∣∣∣∣∣ = 4i + 3j − 5k = 〈4, 3, −5〉

By Eq. (5), P has equation 4x + 3y − 5z = d for some d.

Step 2. Choose a point on the plane and compute d.
Now choose any one of the three points—say, P = (1, 0, −1)—and compute

CAUTION When you find a normal vector to
the plane containing points P, Q, R, be
sure to compute a cross product such as−→
PQ × −→

PR. A common mistake is to use a

cross product such as
−→
OP × −−→

OQ or−→
OP × −→

OR, which need not be normal to
the plane.

d = n · −→
OP = 〈4, 3, −5〉 · 〈1, 0, −1〉 = 9

We conclude that P has equation 4x + 3y − 5z = 9.

EXAMPLE 4 Intersection of a Plane and a Line Find the point P where the plane
3x − 9y + 2z = 7 and the line r(t) = 〈1, 2, 1〉 + t 〈−2, 0, 1〉 intersect.

Solution The line has parametric equations

x = 1 − 2t, y = 2, z = 1 + t

Substitute in the equation of the plane and solve for t :

3x − 9y + 2z = 3(1 − 2t) − 9(2) + 2(1 + t) = 7

Simplification yields −4t − 13 = 7 or t = −5. Therefore, P has coordinates

x = 1 − 2(−5) = 11, y = 2, z = 1 + (−5) = −4

The plane and line intersect at the point P = (11, 2, −4).

The intersection of a plane P with a coordinate plane or a plane parallel to a coordinate
plane is called a trace. The trace is a line unless P is parallel to the coordinate plane (in
which case the trace is empty or is P itself).
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EXAMPLE 5 Traces of the Plane Find the traces of the plane −2x + 3y + z = 6 in
the coordinate planes.

Solution We obtain the trace in the xy-plane by setting z = 0 in the equation of the plane.
Thus, the trace is the line −2x + 3y = 6 in the xy-plane (Figure 6).

y

x

z

−2x + 3y = 6

−3

2

6

3y + z = 6

−2x + z = 6

FIGURE 6 The three blue lines are the traces
of the plane −2x + 3y + z = 6 in the
coordinate planes.

Similarly, the trace in the xz-plane is obtained by setting y = 0, which gives the line
−2x + z = 6 in the xz-plane. Finally, the trace in the yz-plane is 3y + z = 6.

12.5 SUMMARY

• Equation of plane through P0 = (x0, y0, z0) with normal vector n = 〈a, b, c〉:
Vector form: n · 〈x, y, z〉 = d

Scalar forms: a(x − x0) + b(y − y0) + c(z − z0) = 0

ax + by + cz = d

where d = n · 〈x0, y0, z0〉 = ax0 + by0 + cz0.
• The family of parallel planes with given normal vector n = 〈a, b, c〉 consists of all
planes with equation ax + by + cz = d for some d.
• The plane through three points P , Q, R that are not collinear:

– n = −→
PQ × −→

PR

– d = n · 〈x0, y0, z0〉, where P = (x0, y0, z0)

• The intersection of a plane P with a coordinate plane or a plane parallel to a coordinate
plane is called a trace. The trace in the yz-plane is obtained by setting x = 0 in the equation
of the plane (and similarly for the traces in the xz- and xy-planes).

12.5 EXERCISES

Preliminary Questions
1. What is the equation of the plane parallel to 3x + 4y − z = 5 pass-

ing through the origin?

2. The vector k is normal to which of the following planes?

(a) x = 1 (b) y = 1 (c) z = 1

3. Which of the following planes is not parallel to the plane x + y +
z = 1?

(a) 2x + 2y + 2z = 1 (b) x + y + z = 3

(c) x − y + z = 0

4. To which coordinate plane is the plane y = 1 parallel?

5. Which of the following planes contains the z-axis?

(a) z = 1 (b) x + y = 1 (c) x + y = 0

6. Suppose that a plane P with normal vector n and a line L with di-
rection vector v both pass through the origin and that n · v = 0. Which
of the following statements is correct?

(a) L is contained in P .

(b) L is orthogonal to P .

Exercises
In Exercises 1–8, write the equation of the plane with normal vector n
passing through the given point in each of the three forms (one vector
form and two scalar forms).

1. n = 〈1, 3, 2〉, (4, −1, 1) 2. n = 〈−1, 2, 1〉, (3, 1, 9)

3. n = 〈−1, 2, 1〉, (4, 1, 5) 4. n = 〈2, −4, 1〉, ( 1
3 , 2

3 , 1
)

5. n = i, (3, 1, −9) 6. n = j,
(−5, 1

2 , 1
2

)
7. n = k, (6, 7, 2) 8. n = i − k, (4, 2, −8)
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9. Write down the equation of any plane through the origin.

10. Write down the equations of any two distinct planes with normal
vector n = 〈3, 2, 1〉 that do not pass through the origin.

11. Which of the following statements are true of a plane that is parallel
to the yz-plane?

(a) n = 〈0, 0, 1〉 is a normal vector.

(b) n = 〈1, 0, 0〉 is a normal vector.

(c) The equation has the form ay + bz = d

(d) The equation has the form x = d

12. Find a normal vector n and an equation for the planes in Fig-
ures 7(A)–(C).

y
x

(A) (B) (C)

y
x

y
x

z

4

−3

z

4

z

FIGURE 7

In Exercises 13–16, find a vector normal to the plane with the given
equation.

13. 9x − 4y − 11z = 2 14. x − z = 0

15. 3(x − 4) − 8(y − 1) + 11z = 0 16. x = 1

In Exercises 17–20, find an equation of the plane passing through the
three points given.

17. P = (2, −1, 4), Q = (1, 1, 1), R = (3, 1, −2)

18. P = (5, 1, 1), Q = (1, 1, 2), R = (2, 1, 1)

19. P = (1, 0, 0), Q = (0, 1, 1), R = (2, 0, 1)

20. P = (2, 0, 0), Q = (0, 4, 0), R = (0, 0, 2)

In Exercises 21–28, find the equation of the plane with the given de-
scription.

21. Passes through O and is parallel to 4x − 9y + z = 3

22. Passes through (4, 1, 9) and is parallel to x + y + z = 3

23. Passes through (4, 1, 9) and is parallel to x = 3

24. Passes through P = (3, 5, −9) and is parallel to the xz-plane

25. Passes through (−2, −3, 5) and has normal vector i + k

26. Contains the lines r1(t) = 〈t, 2t, 3t〉 and r2(t) = 〈3t, t, 8t〉
27. Contains the lines r1(t) = 〈2, 1, 0〉 + 〈t, 2t, 3t〉 and r2(t) =
〈2, 1, 0〉 + 〈3t, t, 8t〉
28. Contains P = (−1, 0, 1) and r(t) = 〈t + 1, 2t, 3t − 1〉
29. Are the planes 1

2x + 2x − y = 5 and 3x + 12x − 6y = 1 paral-
lel?

30. Let a, b, c be constants. Which two of the following equations
define the plane passing through (a, 0, 0), (0, b, 0), (0, 0, c)?

(a) ax + by + cz = 1 (b) bcx + acy + abz = abc

(c) bx + cy + az = 1 (d)
x

a
+ y

b
+ z

c
= 1

31. Find an equation of the plane P in Figure 8.

y

z

3
2

5

x

FIGURE 8

32. Verify that the plane x − y + 5z = 10 and the line r(t) =
〈1, 0, 1〉 + t 〈−2, 1, 1〉 intersect at P = (−3, 2, 3).

In Exercises 33–36, find the intersection of the line and the plane.

33. x + y + z = 14, r(t) = 〈1, 1, 0〉 + t 〈0, 2, 4〉
34. 2x + y = 3, r(t) = 〈2, −1, −1〉 + t 〈1, 2, −4〉
35. z = 12, r(t) = t 〈−6, 9, 36〉
36. x − z = 6, r(t) = 〈1, 0, −1〉 + t 〈4, 9, 2〉
In Exercises 37–42, find the trace of the plane in the given coordinate
plane.

37. 3x − 9y + 4z = 5, yz 38. 3x − 9y + 4z = 5, xz

39. 3x + 4z = −2, xy 40. 3x + 4z = −2, xz

41. −x + y = 4, xz 42. −x + y = 4, yz

43. Does the plane x = 5 have a trace in the yz-plane? Explain.

44. Give equations for two distinct planes whose trace in the xy-plane
has equation 4x + 3y = 8.

45. Give equations for two distinct planes whose trace in the yz-plane
has equation y = 4z.
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46. Find parametric equations for the line through P0 = (3, −1, 1)

perpendicular to the plane 3x + 5y − 7z = 29.

47. Find all planes in R3 whose intersection with the xz-plane is the
line with equation 3x + 2z = 5.

48. Find all planes in R3 whose intersection with the xy-plane is the
line r(t) = t 〈2, 1, 0〉.
In Exercises 49–54, compute the angle between the two planes, de-
fined as the angle θ (between 0 and π ) between their normal vectors
(Figure 9).

49. Planes with normals n1 = 〈1, 0, 1〉, n2 = 〈−1, 1, 1〉
50. Planes with normals n1 = 〈1, 2, 1〉, n2 = 〈4, 1, 3〉
51. 2x + 3y + 7z = 2 and 4x − 2y + 2z = 4

52. x − 3y + z = 3 and 2x − 3z = 4

53. 3(x − 1) − 5y + 2(z − 12) = 0 and the plane with normal n =
〈1, 0, 1〉
54. The plane through (1, 0, 0), (0, 1, 0), and (0, 0, 1) and the yz-plane

L

n2

n2

n1

n1

2

1

θ

θ

FIGURE 9 By definition, the angle between two planes is the angle
between their normal vectors.

55. Find an equation of a plane making an angle of π
2 with the plane

3x + y − 4z = 2.

56. Let P1 and P2 be planes with normal vectors n1 and n2.
Assume that the planes are not parallel, and let L be their intersection
(a line). Show that n1 × n2 is a direction vector for L.

57. Find a plane that is perpendicular to the two planes x + y = 3 and
x + 2y − z = 4.

58. Let L be the intersection of the planes x + y + z = 1 and x + 2y +
3z = 1. Use Exercise 56 to find a direction vector for L. Then find a
point P on L by inspection, and write down the parametric equations
for L.

59. Let L denote the intersection of the planes x − y − z = 1 and
2x + 3y + z = 2. Find parametric equations for the line L. Hint: To
find a point on L, substitute an arbitrary value for z (say, z = 2) and
then solve the resulting pair of equations for x and y.

60. Find parametric equations for the intersection of the planes 2x +
y − 3z = 0 and x + y = 1.

61. Two vectors v and w, each of length 12, lie in the plane x + 2y −
2z = 0. The angle between v and w is π/6. This information determines
v × w up to a sign ±1. What are the two possible values of v × w?

62. The plane

x

2
+ y

4
+ z

3
= 1

intersects the x-, y-, and z-axes in points P , Q, and R. Find the area of
the triangle �PQR.

63. In this exercise, we show that the orthogonal distance D

from the plane P with equation ax + by + cz = d to the origin O is
equal to (Figure 10)

D = |d|√
a2 + b2 + c2

Let n = 〈a, b, c〉, and let P be the point where the line through n in-
tersects P . By definition, the orthogonal distance from P to O is the
distance from P to O.

(a) Show that P is the terminal point of v =
(

d

n · n

)
n.

(b) Show that the distance from P to O is D.

n · 〈x, y, z〉 = d

y

x

O

D

z

P

n

FIGURE 10

64. Use Exercise 63 to compute the orthogonal distance from the plane
x + 2y + 3z = 5 to the origin.

Further Insights and Challenges
In Exercises 65 and 66, let P be a plane with equation

ax + by + cz = d

and normal vector n = 〈a, b, c〉. For any point Q, there is a unique
point P on P that is closest to Q, and is such that PQ is orthogonal
to P (Figure 11).
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n

P y

Q

x

O

z

FIGURE 11

65. Show that the point P on P closest to Q is determined by the
equation

−→
OP = −−→

OQ +
(

d − −−→
OQ · n

n · n

)
n 7

66. By definition, the distance from Q = (x1, y1, z1) to the plane P is
the distance to the point P on P closest to Q. Prove:

Distance from Q to P = |ax1 + by1 + cz1 − d|
‖n‖ 8

67. Use Eq. (7) to find the point P nearest to Q = (2, 1, 2) on the plane
x + y + z = 1.

68. Find the point P nearest to Q = (−1, 3, −1) on the plane

x − 4z = 2

69. Use Eq. (8) to find the distance from Q = (1, 1, 1) to the plane
2x + y + 5z = 2.

70. Find the distance from Q = (1, 2, 2) to the plane n · 〈x, y, z〉 = 3,
where n = 〈 3

5 , 4
5 , 0

〉
.

71. What is the distance from Q = (a, b, c) to the plane x = 0? Vi-
sualize your answer geometrically and explain without computation.
Then verify that Eq. (8) yields the same answer.

72. The equation of a plane n · 〈x, y, z〉 = d is said to be in nor-
mal form if n is a unit vector. Show that in this case, |d| is the dis-
tance from the plane to the origin. Write the equation of the plane
4x − 2y + 4z = 24 in normal form.

12.6 A Survey of Quadric Surfaces
Quadric surfaces are the surface analogs of conic sections. Recall that a conic section is a
curve in R2 defined by a quadratic equation in two variables. A quadric surface is defined
by a quadratic equation in three variables:To ensure that Eq. (1) is genuinely

quadratic, we assume that the degree-2
coefficients A, B, C, D, E, F are not all
zero.

Ax2 + By2 + Cz2 + Dxy + Eyz + Fzx + ax + by + cz + d = 0 1

Like conic sections, quadric surfaces are classified into a small number of types. When
the coordinate axes are chosen to coincide with the axes of the quadric, the equation of the
quadric has a simple form. The quadric is then said to be in standard position. In standard
position, the coefficients D, E, F are all zero and the linear part (ax + by + cz + d) also
reduces to just one term. In this short survey of quadric surfaces, we restrict our attention
to quadrics in standard position.

The surface analogs of ellipses are the egg-shaped ellipsoids (Figure 1). In standard
−a

z

c

a
b

−b

−c
y

x

FIGURE 1 Ellipsoid with equation(x

a

)2 +
(y

b

)2 +
( z

c

)2 = 1.

form, an ellipsoid has the equation

Ellipsoid
(x

a

)2 +
(y

b

)2 +
(z

c

)2 = 1

For a = b = c, this equation is equivalent to x2 + y2 + z2 = a2 and the ellipsoid is a
sphere of radius a.

Surfaces are often represented graphically by a mesh of curves called traces, obtained
by intersecting the surface with planes parallel to one of the coordinate planes (Figure 2).
Algebraically, this corresponds to freezing one of the three variables (holding it constant).
For example, the intersection of the horizontal plane z = z0 with the surface is a horizontal
trace curve.
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EXAMPLE 1 The Traces of an Ellipsoid Describe the traces of the ellipsoid

z = z0

y

x
Trace curve

z

FIGURE 2 The intersection of the plane
z = z0 with an ellipsoid is an ellipse.

(x

5

)2 +
(y

7

)2 +
( z

9

)2 = 1

Solution First we observe that the traces in the coordinate planes are ellipses (Figure 3A):

xy-trace (set z = 0, blue in figure):
(x

5

)2 +
(y

7

)2 = 1

yz-trace (set x = 0, green in figure):
(y

7

)2 +
( z

9

)2 = 1

xz-trace (set y = 0, red in figure):
(x

5

)2 +
( z

9

)2 = 1

In fact, all the traces of an ellipsoid are ellipses. For example, the horizontal trace defined
by setting z = z0 is the ellipse [Figure 3(B)]

Trace at height z0:
(x

5

)2 +
(y

7

)2 +
(z0

9

)2 = 1 or
x2

25
+ y2

49
= 1 − z2

0

81︸ ︷︷ ︸
A constant

The trace at height z0 = 9 is the single point (0, 0, 9) because x2/25 + y2/49 = 0 has
only one solution: x = 0, y = 0. Similarly, for z0 = −9 the trace is the point (0, 0, −9).
If |z0| > 9, then 1 − z2

0/81 < 0 and the plane lies above or below the ellipsoid. The trace
has no points in this case. The traces in the vertical planes x = x0 and y = y0 have a
similar description [Figure 3(C)].

z z

y

x

(0, 0, 9)

(0, 0, −9)

(0, 7, 0)

(−5, 0, 0)

(5, 0, 0)

(0, −7, 0)

y

(B) Horizontal traces(A) (C) Vertical traces

x

y

z

x

FIGURE 3 The ellipsoid
(x

5

)2 +
(y

7

)2 +
( z

9

)2 = 1.

The analogs of the hyperbolas are the hyperboloids, which come in two types, de-
pending on whether the surface has one or two components. We refer to these types as
hyperboloids of one or two sheets (Figure 4). Their equations in standard position are

Hyperboloids One Sheet:
(x

a

)2 +
(y

b

)2 =
(z

c

)2 + 1

Two Sheets:
(x

a

)2 +
(y

b

)2 =
(z

c

)2 − 1
2
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Notice that a hyperboloid of two sheets does not contain any points whose z-coordinate

satisfies −c < z < c because the right-hand side
(z

c

)2 − 1 is then negative, but the left-

hand side of the equation is greater than or equal to zero.

(B) Hyperboloid of two sheets(A) Hyperboloid of one sheet

c

−c

x

y

x

z z

y

b

FIGURE 4 Hyperboloids of one and two
sheets.

EXAMPLE 2 The Traces of a Hyperboloid of One Sheet Determine the traces of the

hyperboloid
(x

2

)2 +
(y

3

)2 =
( z

4

)2 + 1.

Solution The horizontal traces are ellipses and the vertical traces (parallel to both the
yz-plane and the xz-plane) are hyperbolas (Figure 5):

Trace z = z0 (ellipse, blue in figure):
(x

2

)2 +
(y

3

)2 =
(z0

4

)2 + 1

Trace x = x0 (hyperbola, green in figure):
(y

3

)2 −
( z

4

)2 = 1 −
(x0

2

)2

Trace y = y0 (hyperbola, red in figure):
(x

2

)2 −
( z

4

)2 = 1 −
(y0

3

)2

(0, 3, 0)

(−2, 0, 0)
(0, −3, 0)

(2, 0, 0) y

z

x

z z

y

x

y

x

FIGURE 5 The hyperboloid
(x

2

)2 +
(y

3

)2 =
( z

4

)2 + 1.
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EXAMPLE 3 Hyperboloid of Two Sheets Symmetric about the y-axis Show that(x

a

)2 +
(z

c

)2 =
(y

b

)2 − 1 has no points for −b < y < b.

Solution This equation does not have the same form as Eq. (3) because the variables
y and z have been interchanged. This hyperboloid is symmetric about the y-axis rather
than the z-axis (Figure 6). The left-hand side of the equation is always ≥ 0. Thus, there

z

x

Hyperboloid of two sheets

b

−b

y

FIGURE 6 The two-sheeted hyperboloid(x

a

)2 +
( z

c

)2 =
(y

b

)2 − 1.

are no solutions with |y| < b because the right-hand side is
( y

b

)2 − 1 < 0. Therefore, the
hyperboloid has two sheets, corresponding to y ≥ b and y ≤ −b.

The following equation defines an elliptic cone (Figure 7):

z

y

x

FIGURE 7 Elliptic cone(x

a

)2 +
(y

b

)2 =
( z

c

)2
.

Elliptic Cone:
(x

a

)2 +
(y

b

)2 =
(z

c

)2

An elliptic cone may be thought of as a limiting case of a hyperboloid of one sheet in
which we “pinch the waist” down to a point.

The third main family of quadric surfaces are the paraboloids. There are two types—
elliptic and hyperbolic. In standard position, their equations are

Paraboloids Elliptic: z =
(x

a

)2 +
(y

b

)2

Hyperbolic: z =
(x

a

)2 −
(y

b

)2
3

Let’s compare their traces (Figure 8):

Elliptic paraboloid Hyperbolic paraboloid

Horizontal traces ellipses hyperbolas
Vertical traces upward parabolas upward and downward parabolas

Elliptic paraboloid

z =       
2
 +       

2
(A)

z z

y

y

x

x

Hyperbolic paraboloid

z =       
2
 −        

2
(B)

x
2

y
3(   ) (   ) x

2
y
3(   ) (   )

FIGURE 8
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Notice, for example, that for the hyperbolic paraboloid, the vertical traces x = x0 are
downward parabolas (green in the figure)

z = −
(y

b

)2 +
(x0

a

)2

︸ ︷︷ ︸
Trace x = x0 of hyperbolic paraboloid

whereas the vertical traces y = y0 are upward parabolas (red in the figure)

z =
(x

a

)2 −
(y0

b

)2

︸ ︷︷ ︸
Trace y = y0 of hyperbolic paraboloid

EXAMPLE 4 Alternative Form of a Hyperbolic Paraboloid Show that z = 4xy is aParaboloids play an important role in the
optimization of functions of two variables.
The elliptic paraboloid in Figure 8 has a
local minimum at the origin. The
hyperbolic paraboloid is a “saddle shape”
at the origin, which is an analog for
surfaces of a point of inflection.

hyperbolic paraboloid by writing the equation in terms of the variables u = x + y and
v = x − y.

Solution Note that u + v = 2x and u − v = 2y. Therefore,

4xy = (u + v)(u − v) = u2 − v2

and thus the equation takes the form z = u2 − v2 in the coordinates {u, v, z}. The coor-
dinates {u, v, z} are obtained by rotating the coordinates {x, y, z} by 45◦ about the z-axis
(Figure 9).

z

x

y

x − y = 0

x + y = 0

u

FIGURE 9 The hyperbolic paraboloid is
defined by z = 4xy or z = u2 − v2.

y

z

C

x

FIGURE 10 The cylinder with base C.

Further examples of quadric surfaces are the quadratic cylinders. We use the term
cylinder in the following sense: Given a curve C in the xy-plane, the cylinder with base
C is the surface consisting of all vertical lines passing through C (Figure 10). Equations
of cylinders involve just the two variables x and y. The equation x2 + y2 = r2 defines
a circular cylinder of radius r with the z-axis as central axis. Figure 11 shows a circular
cylinder and three other types of quadratic cylinders.

The ellipsoids, hyperboloids, paraboloids, and quadratic cylinders are called nonde-
generate quadric surfaces. There are also a certain number of “degenerate” quadric sur-
faces. For example, x2 + y2 + z2 = 0 is a quadric that reduces to a single point (0, 0, 0),
and (x + y + z)2 = 1 reduces to the union of the two planes x + y + z = ±1.
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x2 + y2 = r2

Right-Circular cylinder of radius r

       2 +       
2
 = 1

Elliptic cylinder Hyperbolic cylinder

y = ax2

Parabolic cylinder

z z

y y
y

x

z

y

x
x

x

z

x
a(   ) y

b(   )        2 −       
2
 = 1

x
a(   ) y

b(   )

FIGURE 11

12.6 SUMMARY

• A quadric surface is a surface defined by a quadratic equation in three variables in which
the coefficients A–F are not all zero:

Ax2 + By2 + Cz2 + Dxy + Eyz + Fzx + ax + by + cz + d = 0

• Quadric surfaces in standard position:

zzz

yyy

x
x

x

Hyperboloid (two sheets)

(   )x
a (   )y

b (   )2z
c

− 1
2
 +

2
 =

Hyperboloid (one sheet)

(   )x
a (   )y

b (   )2z
c

+ 1
2
 + 2

 =

Ellipsoid

(   )x
a (   )y

b (   )2z
c

= 1
2
 + 2

 +

z

y

(   )x
a (   )y

b (   )2z
c

2
 + 2

 =

z

y
x

Paraboloid (elliptic)

(   )x
a (   )y

b
z = 2

 + 2 (   )x
a (   )y

b
z = 2

 − 2

z

y

x

Paraboloid (hyperbolic) Cone (elliptic)
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• A (vertical) cylinder is a surface consisting of all vertical lines passing through a curve
(called the base) in the xy-plane. A quadratic cylinder is a cylinder whose base is a conic
section. There are three types:

z z

y y
y

(   )x
a (   )y

b

2
 + 2

 = 1

Elliptic cylinder

x
x

x

(   )x
a (   )y

b

2
 − 2

 = 1

Hyperbolic cylinder

z

Parabolic cylinder

y = ax2

12.6 EXERCISES

Preliminary Questions
1. True or false? All traces of an ellipsoid are ellipses.

2. True or false? All traces of a hyperboloid are hyperbolas.

3. Which quadric surfaces have both hyperbolas and parabolas as
traces?

4. Is there any quadric surface whose traces are all parabolas?

5. A surface is called bounded if there exists M > 0 such that every
point on the surface lies at a distance of at most M from the origin.
Which of the quadric surfaces are bounded?

6. What is the definition of a parabolic cylinder?

Exercises
In Exercises 1–6, state whether the given equation defines an ellipsoid
or hyperboloid, and if a hyperboloid, whether it is of one or two sheets.

1.
(x

2

)2 +
(y

3

)2 +
( z

5

)2 = 1

2.
(x

5

)2 +
(y

5

)2 −
( z

7

)2 = 1 3. x2 + 3y2 + 9z2 = 1

4. −
(x

2

)2 −
(y

3

)2 +
( z

5

)2 = 1 5. x2 − 3y2 + 9z2 = 1

6. x2 − 3y2 − 9z2 = 1

In Exercises 7–12, state whether the given equation defines an elliptic
paraboloid, a hyperbolic paraboloid, or an elliptic cone.

7. z =
(x

4

)2 +
(y

3

)2
8. z2 =

(x

4

)2 +
(y

3

)2

9. z =
(x

9

)2 −
( y

12

)2
10. 4z = 9x2 + 5y2

11. 3x2 − 7y2 = z 12. 3x2 + 7y2 = 14z2

In Exercises 13–20, state the type of the quadric surface and describe
the trace obtained by intersecting with the given plane.

13. x2 +
(y

4

)2 + z2 = 1, y = 0

14. x2 +
(y

4

)2 + z2 = 1, y = 5

15. x2 +
(y

4

)2 + z2 = 1, z = 1

4

16.
(x

2

)2 +
(y

5

)2 − 5z2 = 1, x = 0

17.
(x

3

)2 +
(y

5

)2 − 5z2 = 1, y = 1

18. 4x2 +
(y

3

)2 − 2z2 = −1, z = 1

19. y = 3x2, z = 27 20. y = 3x2, y = 27

21. Match each of the ellipsoids in Figure 12 with the correct equation:

(a) x2 + 4y2 + 4z2 = 16 (b) 4x2 + y2 + 4z2 = 16

(c) 4x2 + 4y2 + z2 = 16
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y y y

x x x

z z z

FIGURE 12

22. Describe the surface that is obtained when, in the equation
±8x2 ± 3y2 ± z2 = 1, we choose (a) all plus signs, (b) one minus
sign, and (c) two minus signs.

23. What is the equation of the surface obtained when the elliptic

paraboloid z =
(x

2

)2 +
(y

4

)2
is rotated about the x-axis by 90◦? Refer

to Figure 13.

zz

y

y

xx

FIGURE 13

24. Describe the intersection of the horizontal plane z = h and the
hyperboloid −x2 − 4y2 + 4z2 = 1. For which values of h is the inter-
section empty?

In Exercises 25–30, sketch the given surface.

25. x2 + y2 − z2 = 1

26.
(x

4

)2 +
(y

8

)2 +
( z

12

)2 = 1

27. z =
(x

4

)2 +
(y

8

)2
28. z =

(x

4

)2 −
(y

8

)2

29. z2 =
(x

4

)2 +
(y

8

)2
30. z = −x2

31. Find the equation of the ellipsoid passing through the points marked
in Figure 14(A).

z

y

x

(A)

6

4

−4

2

−2

−6

z

y

x

(B)

4

−4

2

−2

FIGURE 14

32. Find the equation of the elliptic cylinder passing through the points
marked in Figure 14(B).

33. Find the equation of the hyperboloid shown in Figure 15(A).

z

y

x

(A)

6

12
8

4

6

5
9

8

z

y

x

(B)

FIGURE 15

34. Find the equation of the quadric surface shown in Figure 15(B).

35. Determine the vertical traces of elliptic and parabolic cylinders in
standard form.

36. What is the equation of a hyperboloid of one or two sheets in stan-
dard form if every horizontal trace is a circle?

37. Let C be an ellipse in a horizonal plane lying above the xy-plane.
Which type of quadric surface is made up of all lines passing through
the origin and a point on C?

38. The eccentricity of a conic section is defined in Section 11.5. Show
that the horizontal traces of the ellipsoid(x

a

)2 +
(y

b

)2 +
( z

c

)2 = 1

are ellipses of the same eccentricity (apart from the traces at height
h = ±c, which reduce to a single point). Find the eccentricity.

Further Insights and Challenges
39. Let S be the hyperboloid x2 + y2 = z2 + 1 and let P = (α, β, 0)

be a point on S in the (x, y)-plane. Show that there are precisely two
lines through P entirely contained in S (Figure 16). Hint: Consider the
line r(t) = 〈α + at, β + bt, t〉 through P . Show that r(t) is contained

in S if (a, b) is one of the two points on the unit circle obtained by ro-
tating (α, β) through ±π

2 . This proves that a hyperboloid of one sheet
is a doubly ruled surface, which means that it can be swept out by
moving a line in space in two different ways.
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z

y

(−β, α)
(α, β)

(β, −α)

x

y

x

x2 + y2 = z2 + 1

(α, β)

FIGURE 16

In Exercises 40 and 41, let C be a curve in R3 not passing through
the origin. The cone on C is the surface consisting of all lines passing
through the origin and a point on C [Figure 17(A)].

40. Show that the elliptic cone
( z

c

)2 =
(x

a

)2 +
(y

b

)2
is, in fact,

a cone on the ellipse C consisting of all points (x, y, c) such that(x

a

)2 +
(y

b

)2 = 1.

41. Let a and c be nonzero constants and let C be the parabola at height
c consisting of all points (x, ax2, c) [Figure 17(B)]. Let S be the cone
consisting of all lines passing through the origin and a point on C. This
exercise shows that S is also an elliptic cone.

(a) Show that S has equation yz = acx2.

(b) Show that under the change of variables y = u + v and z = u − v,
this equation becomes acx2 = u2 − v2 or u2 = acx2 + v2 (the equa-
tion of an elliptic cone in the variables x, v, u).

(A)  Cone on ellipse C (B)  Cone on parabola C
       (half of cone shown)

O

C

C

z

y

x

y

x

z

O

c

c

FIGURE 17

12.7 Cylindrical and Spherical Coordinates

This section introduces two generalizations of polar coordinates to R3: cylindrical and
spherical coordinates. These coordinate systems are commonly used in problems having
symmetry about an axis or rotational symmetry. For example, the magnetic field generated
by a current flowing in a long, straight wire is conveniently expressed in cylindrical
coordinates (Figure 1). We will also see the benefits of cylindrical and spherical coordinates

z

r

Wire

Current flow

Magnetic field

FIGURE 1 The magnetic field generated by
a current flowing in a long, straight wire is
conveniently expressed in cylindrical
coordinates.

when we study change of variables for multiple integrals.

Cylindrical Coordinates
In cylindrical coordinates, we replace the x- and y-coordinates of a point P = (x, y, z)

by polar coordinates. Thus, the cylindrical coordinates of P are (r, θ, z), where (r, θ)

are polar coordinates of the projection Q = (x, y, 0) of P onto the xy-plane (Figure 2).
Note that the points at fixed distance r from the z-axis make up a cylinder, hence the name

θ r

z

x

y

z

Q = (x, y, 0)

P = (x, y, z)

FIGURE 2 P has cylindrical coordinates
(r, θ, z).

cylindrical coordinates.
We convert between rectangular and cylindrical coordinates using the rectangular-

polar formulas of Section 11.3. In cylindrical coordinates, we usually assume r ≥ 0.

Cylindrical to rectangular Rectangular to cylindrical

x = r cos θ r =
√

x2 + y2

y = r sin θ tan θ = y

x
z = z z = z
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EXAMPLE 1 Converting from Cylindrical to Rectangular Coordinates Find the rectan-
gular coordinates of the point P with cylindrical coordinates (r, θ, z) = (

2, 3π
4 , 5

)
.

Solution Converting to rectangular coordinates is straightforward (Figure 3):
P

Cylindrical (2, , 5)z

y
x

Rectangular (−�2, �2, 5)

2

5

Q = (−�2, �2, 0)

3π

4

3π

4

FIGURE 3

x = r cos θ = 2 cos
3π

4
= 2

(
−

√
2

2

)
= −√

2

y = r sin θ = 2 sin
3π

4
= 2

(√
2

2

)
= √

2

The z-coordinate is unchanged, so (x, y, z) = (−√
2,

√
2, 5).

EXAMPLE 2 Converting from Rectangular to Cylindrical Coordinates Find cylindrical
coordinates for the point with rectangular coordinates (x, y, z) = (−3

√
3, −3, 5).

Solution We have r =
√

x2 + y2 =
√

(−3
√

3)2 + (−3)2 = 6. The angle θ satisfies

tan θ = y

x
= −3

−3
√

3
= 1√

3
⇒ θ = π

6
or

7π

6

The correct choice is θ = 7π
6 because the projection Q = (−3

√
3, −3, 0) lies in the third

quadrant (Figure 4). The cylindrical coordinates are (r, θ, z) = (
6, 7π

6 , 5
)
.

x

y

z

5

I

IV

II

III

P = (−3�3, −3, 5)

Q = (−3�3, −3, 0)

7π

6

FIGURE 4 The projection Q lies in the third
quadrant. Therefore, θ = 7π

6 .

The level surfaces of a coordinate system are the surfaces obtained by setting one of
the coordinates equal to a constant. In rectangular coordinates, the level surfaces are the
planes x = x0, y = y0, and z = z0. In cylindrical coordinates, the level surfaces come in
three types (Figure 5). The surface r = R is the cylinder of radius R consisting of all points
located a distance R from the z-axis. The equation θ = θ0 defines the half-plane of all
points that project onto the ray θ = θ0 in the (x, y)-plane. Finally, z = c is the horizontal
plane at height c.

EXAMPLE 3 Equations in Cylindrical Coordinates Find an equation of the form z =
Level Surfaces in Cylindrical Coordinates

r = R Cylinder of radius R with
the z-axis as axis of symmetry

θ = θ0 Half-plane through the z-axis
making an angle θ0 with the
xz-plane

z = c Horizontal plane at height c

f (r, θ) for the surfaces

(a) x2 + y2 + z2 = 9 (b) x + y + z = 1

Solution We use the formulas

x2 + y2 = r2, x = r cos θ, y = r sin θ
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y

x

z

r = R

z = c

θ = θ0

θ0

FIGURE 5 Level surfaces in cylindrical
coordinates.

(a) The equation x2 + y2 + z2 = 9 becomes r2 + z2 = 9, or z = ±√
9 − r2. This is a

sphere of radius 3.

(b) The plane x + y + z = 1 becomes

z = 1 − x − y = 1 − r cos θ − r sin θ or z = 1 − r(cos θ + sin θ)

Spherical Coordinates
Spherical coordinates make use of the fact that a point P on a sphere of radius ρ is
determined by two angular coordinates θ and φ (Figure 6):

• θ is the polar angle of the projection Q of P onto the xy-plane.
• φ is the angle of declination, which measures how much the ray through P declines

from the vertical.

Thus P is determined by the triple (ρ, θ, φ), which are called spherical coordinates.

y

x

Q

ρ
φ

θ

θP = (   ,   ,   )ρ φ

z

FIGURE 6 Spherical coordinates (ρ, θ, φ).

Q = (x, y, 0)

P = (x, y, z)

ρz =    cos φ ρr =    sin φ

θ

ρ
φ

z

y

yr

x

x

FIGURE 7

Suppose that P = (x, y, z) in rectangular coordinates. Since ρ is the distance from• The symbol φ (usually pronounced
“fee,” but sometimes pronounced
“fie”) is the twenty-first letter of the
Greek alphabet.

• We use ρ for the radial coordinate,
although r is also used to denote
distance from the origin in other
contexts.

P to the origin,

ρ =
√

x2 + y2 + z2

On the other hand, we see in Figure 7 that

tan θ = y

x
, cos φ = z

ρ
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The radial coordinate r of Q = (x, y, 0) is r = ρ sin φ, and therefore,Spherical Coordinates

ρ = distance from origin

θ = polar angle in the xy-plane

φ = angle of declination from the vertical

In some textbooks, θ is referred to as the
azimuthal angle and φ as the polar angle.

x = r cos θ = ρ cos θ sin φ, y = r sin θ = ρ sin θ sin φ, z = ρ cos φ

Spherical to rectangular Rectangular to spherical

x = ρ cos θ sin φ ρ =
√

x2 + y2 + z2

y = ρ sin θ sin φ tan θ = y

x

z = ρ cos φ cos φ = z

ρ

EXAMPLE 4 From Spherical to Rectangular Coordinates Find the rectangular coor-
dinates of P = (ρ, θ, φ) = (

3, π
3 , π

4

)
, and find the radial coordinate r of its projection Q

onto the xy-plane.

Solution By the formulas above,

x = ρ cos θ sin φ = 3 cos
π

3
sin

π

4
= 3

(
1

2

) √
2

2
= 3

√
2

4

y = ρ sin θ sin φ = 3 sin
π

3
sin

π

4
= 3

(√
3

2

) √
2

2
= 3

√
6

4

z = ρ cos φ = 3 cos
π

4
= 3

√
2

2
= 3

√
2

2

Now consider the projection Q = (x, y, 0) =
(

3
√

2
4 , 3

√
6

4 , 0
)

(Figure 8). The radial coor-

 φ = 

ρ = 3

r

P

Q

z

y

x

π

4

 θ = π
3

FIGURE 8 Point with spherical coordinates(
3, π

3 , π
4

)
.

dinate r of Q satisfies

r2 = x2 + y2 =
(

3
√

2

4

)2

+
(

3
√

6

4

)2

= 9

2

Therefore, r = 3/
√

2.

EXAMPLE 5 From Rectangular to Spherical Coordinates Find the spherical coordi-
nates of the point P = (x, y, z) = (2, −2

√
3, 3).

Solution The radial coordinate is ρ =
√

22 + (−2
√

3)2 + 32 = √
25 = 5. The angular

coordinate θ satisfies

tan θ = y

x
= −2

√
3

2
= −√

3 ⇒ θ = 2π

3
or

5π

3

Since the point (x, y) = (2, −2
√

3) lies in the fourth quadrant, the correct choice is θ = 5π
3

(Figure 9). Finally, cos φ = z
ρ

= 3
5 and so φ = cos−1 3

5 ≈ 0.93. Therefore, P has spherical

z

y

x

3

5

P = (2, −2�3, 3)

θ = 5π

3

φ

FIGURE 9 Point with rectangular
coordinates (2, −2

√
3, 3). coordinates

(
5, 5π

3 , 0.93
)
.

Figure 10 shows the three types of level surfaces in spherical coordinates. Notice that
if φ = 0, π

2 or π , then the level surface φ = φ0 is the right circular cone consisting of
points P such that OP makes an angle φ0 with the z-axis. There are three exceptional
cases: φ = π

2 defines the xy-plane, φ = 0 is the positive z-axis, and φ = π is the negative
z-axis.
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ρ = R
Sphere of radius R

θ = θ0
Vertical half-plane

φ = φ0
Right-circular cone

0

z

y

x

z

y

x y

z

φ0

θ

R

FIGURE 10

EXAMPLE 6 Finding an Equation in Spherical Coordinates Find an equation of the
form ρ = f (θ, φ) for the following surfaces:

(a) x2 + y2 + z2 = 9 (b) z = x2 − y2

Solution

(a) The equation x2 + y2 + z2 = 9 defines the sphere of radius 3 centered at the origin.
Since ρ2 = x2 + y2 + z2, the equation in spherical coordinates is ρ = 3.

(b) To convert z = x2 − y2 to spherical coordinates, we substitute the formulas for x, y,
and z in terms of ρ, θ , and φ:

z︷ ︸︸ ︷
ρ cos φ =

x2︷ ︸︸ ︷
(ρ cos θ sin φ)2 −

y2︷ ︸︸ ︷
(ρ sin θ sin φ)2

cos φ = ρ sin2 φ(cos2 θ − sin2 θ) (divide by ρ and factor)

cos φ = ρ sin2 φ cos 2θ (since cos2 θ − sin2 θ = cos 2θ)

Solving for ρ, we obtain ρ = cos φ

sin2 φ cos 2θ
.

The angular coordinates (θ, φ) on a sphere of fixed radius are closely related to the
longitude-latitude system used to identify points on the surface of the earth (Figure 11).
By convention, in this system we use degrees rather than radians.

φ
Latitude
90° −

ρ

θ

θP = (   ,   ,   )ρ φ

Greenwich

FIGURE 11 Longitude and latitude provide
spherical coordinates on the surface of the
earth.

• A longitude is a half-circle stretching from the North to the South Pole (Figure
12). The axes are chosen so that θ = 0 passes through Greenwich, England (thisz

Greenwich

W
E

S

N

FIGURE 12 Latitude is measured from the
equator and is labeled N (north) in the
upper hemisphere, and S (south) in the
lower hemisphere.

longitude is called the prime meridian). We designate the longitude by an angle
between 0 and 180◦ together with a label E or W, according to whether it lies to the
east or west of the prime meridian.

• The set of points on the sphere satisfying φ = φ0 is a horizontal circle called a
latitude. We measure latitudes from the equator and use the label N or S to specify
the Northern or Southern Hemisphere. Thus, in the upper hemisphere 0 ≤ φ0 ≤ 90◦,
a spherical coordinate φ0 corresponds to the latitude (90◦ − φ0) N. In the lower
hemisphere 90◦ ≤ φ0 ≤ 180◦, φ0 corresponds to the latitude (φ0 − 90◦) S.

EXAMPLE 7 Spherical Coordinates via Longitude and Latitude Find the angles (θ, φ)

for Nairobi (1.17◦ S, 36.48◦ E) and Ottawa (45.27◦ N, 75.42◦ W).

Solution For Nairobi, θ = 36.48◦ since the longitude lies to the east of Greenwich.
Nairobi’s latitude is south of the equator, so 1.17 = φ0 − 90 and φ0 = 91.17◦.
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For Ottawa, we have θ = 360 − 75.42 = 284.58◦ because 75.42◦ W refers to 75.42
degrees in the negative θ direction. Since the latitude of Ottawa is north of the equator,
45.27 = 90 − φ0 and φ0 = 44.73◦.

12.7 SUMMARY

• Conversion from rectangular to cylindrical (Figure 13) and spherical coordinates (Fig-

P

Q = (x, y, 0)

Cylindrical (r, θ, z)
Rectangular (x, y, z)

z

y
x

r

z

θ

FIGURE 13 Cylindrical coordinates (r, θ, z).

ure 14):

Cylindrical Spherical

r =
√

x2 + y2 ρ =
√

x2 + y2 + z2

tan θ = y

x
tan θ = y

x

z = z cos φ = z

ρ

The angles are chosen so that

0 ≤ θ < 2π (cylindrical or spherical), 0 ≤ φ ≤ π (spherical)

• Conversion to rectangular coordinates:P = (x, y, z)

Q = (x, y, 0)

z

y

x

θ

φ
ρ

FIGURE 14 Spherical coordinates (ρ, θ, φ).

Cylindrical (r, θ, z) Spherical (ρ, θ, φ)

x = r cos θ x = ρ cos θ sin φ

y = r sin θ y = ρ sin θ sin φ

z = z z = ρ cos φ

• Level surfaces:

Cylindrical Spherical

r = R: Cylinder of radius R ρ = R: Sphere of radius R

θ = θ0: Vertical half-plane θ = θ0: Vertical half-plane

z = c: Horizontal plane φ = φ0: Right-circular cone

12.7 EXERCISES

Preliminary Questions
1. Describe the surfaces r = R in cylindrical coordinates and ρ = R

in spherical coordinates.

2. Which statement about cylindrical coordinates is correct?

(a) If θ = 0, then P lies on the z-axis.
(b) If θ = 0, then P lies in the xz-plane.

3. Which statement about spherical coordinates is correct?

(a) If φ = 0, then P lies on the z-axis.

(b) If φ = 0, then P lies in the xy-plane.

4. The level surface φ = φ0 in spherical coordinates, usually a cone,
reduces to a half-line for two values of φ0. Which two values?

5. For which value of φ0 is φ = φ0 a plane? Which plane?
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Exercises
In Exercises 1–4, convert from cylindrical to rectangular coordinates.

1. (4, π, 4) 2.
(

2,
π

3
, −8

)

3.
(

0,
π

5
,

1

2

)
4.

(
1,

π

2
, −2

)
In Exercises 5–10, convert from rectangular to cylindrical coordinates.

5. (1, −1, 1) 6. (2, 2, 1) 7. (1,
√

3, 7)

8.

(
3

2
,

3
√

3

2
, 9

)
9.

(
5√
2
,

5√
2
, 2

)
10. (3, 3

√
3, 2)

In Exercises 11–16, describe the set in cylindrical coordinates.

11. x2 + y2 ≤ 1 12. x2 + y2 + z2 ≤ 1

13. y2 + z2 ≤ 4, x = 0

14. x2 + y2 + z2 = 4, x ≥ 0, y ≥ 0, z ≥ 0

15. x2 + y2 ≤ 9, x ≥ y 16. y2 + z2 ≤ 9, x ≥ y

In Exercises 17–24, sketch the set (described in cylindrical coordi-
nates).

17. r = 4 18. θ = π

3

19. z = −2 20. r = 2, z = 3

21. 1 ≤ r ≤ 3, 0 ≤ z ≤ 4

22. 1 ≤ r ≤ 3, 0 ≤ θ ≤ π

2
, 0 ≤ z ≤ 4

23. z2 + r2 ≤ 4

24. r ≤ 3, π ≤ θ ≤ 3π

2
, z = 4

In Exercises 25–30, find an equation of the form r = f (θ, z) in cylin-
drical coordinates for the following surfaces.

25. z = x + y 26. x2 + y2 + z2 = 4

27.
x2

yz
= 1 28. x2 − y2 = 4

29. x2 + y2 = 4 30. z = 3xy

In Exercises 31–36, convert from spherical to rectangular coordinates.

31.
(

3, 0,
π

2

)
32.

(
2,

π

4
,
π

3

)
33. (3, π, 0)

34.
(

5,
3π

4
,
π

4

)
35.

(
6,

π

6
,

5π

6

)
36. (0.5, 3.7, 2)

In Exercises 37–42, convert from rectangular to spherical coordinates.

37. (
√

3, 0, 1) 38.

(√
3

2
,

3

2
, 1

)

39. (1, 1, 1) 40. (1, −1, 1)

41.

(
1

2
,

√
3

2
,
√

3

)
42.

(√
2

2
,

√
2

2
,
√

3

)

In Exercises 43 and 44, convert from cylindrical to spherical coordi-
nates.

43. (2, 0, 2) 44. (3, π,
√

3)

In Exercises 45 and 46, convert from spherical to cylindrical coordi-
nates.

45.
(
4, 0, π

4

)
46.

(
2, π

3 , π
6

)
In Exercises 47–52, describe the given set in spherical coordinates.

47. x2 + y2 + z2 ≤ 1

48. x2 + y2 + z2 = 1, z ≥ 0

49. x2 + y2 + z2 = 1, x ≥ 0, y ≥ 0, z ≥ 0

50. x2 + y2 + z2 ≤ 1, x = y, x ≥ 0, y ≥ 0

51. y2 + z2 ≤ 4, x = 0

52. x2 + y2 = 3z2

In Exercises 53–60, sketch the set of points (described in spherical
coordinates).

53. ρ = 4 54. φ = π

4

55. ρ = 2, θ = π

4
56. ρ = 2, φ = π

4

57. ρ = 2, 0 ≤ φ ≤ π

2
58. θ = π

2
, φ = π

4
, ρ ≥ 1

59. ρ ≤ 2, 0 ≤ θ ≤ π

2
,

π

2
≤ φ ≤ π

60. ρ = 1,
π

3
≤ φ ≤ 2π

3
In Exercises 61–66, find an equation of the form ρ = f (θ, φ) in spher-
ical coordinates for the following surfaces.

61. z = 2 62. z2 = 3(x2 + y2) 63. x = z2

64. z = x2 + y2 65. x2 − y2 = 4 66. xy = z

67. Which of (a)–(c) is the equation of the cylinder of radius
R in spherical coordinates? Refer to Figure 15.

(a) Rρ = sin φ (b) ρ sin φ = R (c) ρ = R sin φ

R

z

y

x

φ

ρ

FIGURE 15
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68. Let P1 = (1, −√
3, 5) and P2 = (−1,

√
3, 5) in rectangular coor-

dinates. In which quadrants do the projections of P1 and P2 onto the
xy-plane lie? Find the polar angle θ of each point.

69. Find the spherical angles (θ, φ) for Helsinki, Finland (60.1◦ N,
25.0◦ E) and Sao Paulo, Brazil (23.52◦ S, 46.52◦ W).

70. Find the longitude and latitude for the points on the globe with
angular coordinates (θ, φ) = (π/8, 7π/12) and (4, 2).

71. Consider a rectangular coordinate system with origin at the center
of the earth, z-axis through the North Pole, and x-axis through the prime
meridian. Find the rectangular coordinates of Sydney, Australia (34◦ S,
151◦ E), and Bogotá, Colombia (4◦ 32′ N, 74◦ 15′ W). A minute is
1/60◦. Assume that the earth is a sphere of radius R = 6370 km.

72. Find the equation in rectangular coordinates of the quadric surface
consisting of the two cones φ = π

4 and φ = 3π
4 .

73. Find an equation of the form z = f (r, θ) in cylindrical coordinates
for z2 = x2 − y2.

74. Show that ρ = 2 cos φ is the equation of a sphere with its center
on the z-axis. Find its radius and center.

75. Explain the following statement: If the equation of a sur-
face in cylindrical or spherical coordinates does not involve the coor-
dinate θ , then the surface is rotationally symmetric with respect to the
z-axis.

76. Plot the surface ρ = 1 − cos φ. Then plot the trace of S in
the xz-plane and explain why S is obtained by rotating this trace.

77. Find equations r = g(θ, z) (cylindrical) and ρ = f (θ, φ) (spheri-
cal) for the hyperboloid x2 + y2 = z2 + 1 (Figure 16). Do there exist
points on the hyperboloid with φ = 0 or π? Which values of φ occur
for points on the hyperboloid?

y

z

x

FIGURE 16 The hyperboloid x2 + y2 = z2 + 1.

Further Insights and Challenges
In Exercises 78–82, a great circle on a sphere S with center O is a
circle obtained by intersecting S with a plane that passes through O

(Figure 17). If P and Q are not antipodal (on opposite sides), there is
a unique great circle through P and Q on S (intersect S with the plane
through O, P , and Q). The geodesic distance from P to Q is defined
as the length of the smaller of the two circular arcs of this great circle.

78. Show that the geodesic distance from P to Q is equal to Rψ , where
ψ is the central angle between P and Q (the angle between the vectors

v = −→
OP and u = −−→

OQ).

79. Show that the geodesic distance from Q = (a, b, c) to the North

Pole P = (0, 0, R) is equal to R cos−1
( c

R

)
.

80. The coordinates of Los Angeles are 34◦ N and 118◦ W. Find the
geodesic distance from the North Pole to Los Angeles, assuming that
the earth is a sphere of radius R = 6370 km.

81. Show that the central angle ψ between points P and Q on a sphere
(of any radius) with angular coordinates (θ, φ) and (θ ′, φ′) is equal to

ψ = cos−1(
sin φ sin φ′ cos(θ − θ ′) + cos φ cos φ′)

Hint: Compute the dot product of
−→
OP and

−−→
OQ. Check this formula by

computing the geodesic distance between the North and South Poles.

82. Use Exercise 81 to find the geodesic distance between Los Angeles
(34◦ N, 118◦ W) and Bombay (19◦ N, 72.8◦ E).

Great circle
through P and Q

Smaller circle

ψ

FIGURE 17

CHAPTER REVIEW EXERCISES

In Exercises 1–6, let v = 〈−2, 5〉 and w = 〈3, −2〉.
1. Calculate 5w − 3v and 5v − 3w.

2. Sketch v, w, and 2v − 3w.

3. Find the unit vector in the direction of v.

4. Find the length of v + w.

5. Express i as a linear combination rv + sw.

6. Find a scalar α such that ‖v + αw‖ = 6.
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7. If P = (1, 4) and Q = (−3, 5), what are the components of
−→
PQ?

What is the length of
−→
PQ?

8. Let A = (2, −1), B = (1, 4), and P = (2, 3). Find the point Q

such that
−→
PQ is equivalent to

−→
AB. Sketch

−→
PQ and

−→
AB.

9. Find the vector with length 3 making an angle of 7π
4 with the

positive x-axis.

10. Calculate 3 (i − 2j) − 6 (i + 6j).

11. Find the value of β for which w = 〈−2, β〉 is parallel to v =
〈4, −3〉.
12. Let P = (1, 4, −3).

(a) Find the point Q such that
−→
PQ is equivalent to 〈3, −1, 5〉.

(b) Find a unit vector e equivalent to
−→
PQ.

13. Let w = 〈2, −2, 1〉 and v = 〈4, 5, −4〉. Solve for u if v + 5u =
3w − u.

14. Let v = 3i − j + 4k. Find the length of v and the vector 2v +
3 (4i − k).

15. Find a parametrization r1(t) of the line passing through (1, 4, 5)

and (−2, 3, −1). Then find a parametrization r2(t) of the line parallel
to r1 passing through (1, 0, 0).

16. Let r1(t) = v1 + tw1 and r2(t) = v2 + tw2 be parametrizations
of lines L1 and L2. For each statement (a)–(e), provide a proof if the
statement is true and a counterexample if it is false.

(a) If L1 = L2, then v1 = v2 and w1 = w2.

(b) If L1 = L2 and v1 = v2, then w1 = w2.

(c) If L1 = L2 and w1 = w2, then v1 = v2.

(d) If L1 is parallel to L2, then w1 = w2.

(e) If L1 is parallel to L2, then w1 = λw2 for some scalar λ.

17. Find a and b such that the lines r1 = 〈1, 2, 1〉 + t〈1, −1, 1〉 and
r2 = 〈3, −1, 1〉 + t〈a, b,−2〉 are parallel.

18. Find a such that the lines r1 = 〈1, 2, 1〉 + t〈1, −1, 1〉 and r2 =
〈3, −1, 1〉 + t〈a, 4, −2〉 intersect.

19. Sketch the vector sum v = v1 − v2 + v3 for the vectors in Fig-
ure 1(A).

(A)

x

y

v1

v2

v3

(B)

x

y

v1

v2

v3

FIGURE 1

20. Sketch the sums v1 + v2 + v3, v1 + 2v2, and v2 − v3 for the vec-
tors in Figure 1(B).

In Exercises 21–26, let v = 〈1, 3, −2〉 and w = 〈2, −1, 4〉.
21. Compute v · w.

22. Compute the angle between v and w.

23. Compute v × w.

24. Find the area of the parallelogram spanned by v and w.

25. Find the volume of the parallelepiped spanned by v, w, and
u = 〈1, 2, 6〉.
26. Find all the vectors orthogonal to both v and w.

27. Use vectors to prove that the line connecting the midpoints of two
sides of a triangle is parallel to the third side.

28. Let v = 〈1, −1, 3〉 and w = 〈4, −2, 1〉.
(a) Find the decomposition v = v‖ + v⊥ with respect to w.
(b) Find the decomposition w = w‖ + w⊥ with respect to v.

29. Calculate the component of v = 〈 − 2, 1
2 , 3

〉
along w = 〈1, 2, 2〉.

30. Calculate the magnitude of the forces on the two ropes in Figure 2.

Rope 1 Rope 2

A B

P

10 kg

30° 45°

FIGURE 2

31. A 50-kg wagon is pulled to the right by a force F1 making an angle
of 30◦ with the ground. At the same time the wagon is pulled to the left
by a horizontal force F2.

(a) Find the magnitude of F1 in terms of the magnitude of F2 if the
wagon does not move.
(b) What is the maximal magnitude of F1 that can be applied to the
wagon without lifting it?

32. Let v, w, and u be the vectors in R3. Which of the following is a
scalar?

(a) v × (u + w)

(b) (u + w) · (v × w)

(c) (u × w) + (w − v)

In Exercises 33–36, let v = 〈1, 2, 4〉, u = 〈6, −1, 2〉, and w =
〈1, 0, −3〉. Calculate the given quantity.

33. v × w 34. w × u

35. det

⎛
⎝ u

v
w

⎞
⎠ 36. v · (u × w)

37. Use the cross product to find the area of the triangle whose vertices
are (1, 3, −1), (2, −1, 3), and (4, 1, 1).

38. Calculate ‖v × w‖ if ‖v‖ = 2, v · w = 3, and the angle between v
and w is π

6 .

39. Show that if the vectors v, w are orthogonal, then ‖v + w‖2 =
‖v‖2 + ‖w‖2.
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40. Find the angle between v and w if ‖v + w‖ = ‖v‖ = ‖w‖.

41. Find ‖e − 4f‖, assuming that e and f are unit vectors such that
‖e + f‖ = √

3.

42. Find the area of the parallelogram spanned by vectors v and w such
that ‖v‖ = ‖w‖ = 2 and v · w = 1.

43. Show that the equation 〈1, 2, 3〉 × v = 〈−1, 2, a〉 has no solution
for a = −1.

44. Prove with a diagram the following: If e is a unit vector orthogonal
to v, then e × (v × e) = (e × v) × e = v.

45. Use the identity

u × (v × w) = (u · w) v − (u · v) w

to prove that

u × (v × w) + v × (w × u) + w × (u × v) = 0

46. Find an equation of the plane through (1, −3, 5) with normal vector
n = 〈2, 1, −4〉.
47. Write the equation of the plane P with vector equation

〈1, 4, −3〉 · 〈x, y, z〉 = 7

in the form

a (x − x0) + b (y − y0) + c (z − z0) = 0

Hint: You must find a point P = (x0, y0, z0) on P .

48. Find all the planes parallel to the plane passing through the points
(1, 2, 3), (1, 2, 7), and (1, 1, −3).

49. Find the plane through P = (4, −1, 9) containing the line r(t) =
〈1, 4, −3〉 + t〈2, 1, 1〉.
50. Find the intersection of the line r(t) = 〈3t + 2, 1, −7t〉 and the
plane 2x − 3y + z = 5.

51. Find the trace of the plane 3x − 2y + 5z = 4 in the xy-plane.

52. Find the intersection of the planes x + y + z = 1 and 3x − 2y +
z = 5.

In Exercises 53–58, determine the type of the quadric surface.

53.
(x

3

)2 +
(y

4

)2 + 2z2 = 1 54.
(x

3

)2 −
(y

4

)2 + 2z2 = 1

55.
(x

3

)2 +
(y

4

)2 − 2z = 0 56.
(x

3

)2 −
(y

4

)2 − 2z = 0

57.
(x

3

)2 −
(y

4

)2 − 2z2 = 0 58.
(x

3

)2 −
(y

4

)2 − 2z2 = 1

59. Determine the type of the quadric surface ax2 + by2 − z2 = 1 if:

(a) a < 0, b < 0

(b) a > 0, b > 0

(c) a > 0, b < 0

60. Describe the traces of the surface(x

2

)2 − y2 +
( z

2

)2 = 1

in the three coordinate planes.

61. Convert (x, y, z) = (3, 4, −1) from rectangular to cylindrical and
spherical coordinates.

62. Convert (r, θ, z) = (
3, π

6 , 4
)

from cylindrical to spherical coordi-
nates.

63. Convert the point (ρ, θ, φ) = (
3, π

6 , π
3

)
from spherical to cylin-

drical coordinates.

64. Describe the set of all points P = (x, y, z) satisfying x2 + y2 ≤ 4
in both cylindrical and spherical coordinates.

65. Sketch the graph of the cylindrical equation z = 2r cos θ and write
the equation in rectangular coordinates.

66. Write the surface x2 + y2 − z2 = 2 (x + y) as an equation r =
f (θ, z) in cylindrical coordinates.

67. Show that the cylindrical equation

r2(1 − 2 sin2 θ) + z2 = 1

is a hyperboloid of one sheet.

68. Sketch the graph of the spherical equation ρ = 2 cos θ sin φ and
write the equation in rectangular coordinates.

69. Describe how the surface with spherical equation

ρ2(1 + A cos2 φ) = 1

depends on the constant A.

70. Show that the spherical equation cot φ = 2 cos θ + sin θ defines
a plane through the origin (with the origin excluded). Find a normal
vector to this plane.

71. Let c be a scalar, let a and b be vectors, and let X = 〈x, y, z〉. Show
that the equation (X − a) · (X − b) = c2 defines a sphere with center

m = 1
2 (a + b) and radius R, where R2 = c2 + ∥∥ 1

2 (a − b)
∥∥2.



DNA polymers form helical curves whose

spatial orientation influences their biochemical

properties.

13 CALCULUS OF
VECTOR-VALUED
FUNCTIONS

I n this chapter, we study vector-valued functions and their derivatives, and we use them
to analyze curves and motion in three-space. Although many techniques from single-

variable calculus carry over to the vector setting, there is an important new aspect to the
derivative. A real-valued function f (x) can change in just one of two ways: It can increase
or decrease. By contrast, a vector-valued function can change not just in magnitude but
also in direction, and the rate of change is not a single number but is itself a vector. To
develop these new concepts, we begin with an introduction to vector-valued functions.

13.1 Vector-Valued Functions

Consider a particle moving in R3 whose coordinates at time t are (x(t), y(t), z(t)). It is
convenient to represent the particle’s path by the vector-valued function

r(t) = 〈x(t), y(t), z(t)〉 = x(t)i + y(t)j + z(t)k 1

Think of r(t) as a moving vector that points from the origin to the position of the particleFunctions f (x) (with real number values)
are often called scalar-valued to distinguish
them from vector-valued functions.

at time t (Figure 1).

r(t) = 〈x(t), y(t), z(t)〉

r(t1)

r(t2)

r(t3)

Path of
particle

z

y
xFIGURE 1

More generally, a vector-valued function is any function r(t) of the form in Eq. (1)The parameter is often called t (for time),
but we are free to use any other variable
such as s or θ . It is best to avoid writing
r(x) or r(y) to prevent confusion with the
x- and y-components of r.

whose domain D is a set of real numbers and whose range is a set of position vectors.
The variable t is called a parameter, and the functions x(t), y(t), z(t) are called the
components or coordinate functions. We usually take as domain the set of all values of
t for which r(t) is defined—that is, all values of t that belong to the domains of all three
coordinate functions x(t), y(t), z(t). For example,

r(t) = 〈
t2, et , 4 − 7t

〉
, domain D = R

r(s) = 〈√
s, es, s−1〉, domain D = {s ∈ R : s > 0}

723
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The terminal point of a vector-valued function r(t) traces a path in R3 as t varies. We
refer to r(t) either as a path or as a vector parametrization of a path. We shall assume
throughout this chapter that the components of r(t) have continuous derivatives.

We have already studied special cases of vector parametrizations. In Chapter 12, we
described lines in R3 using vector parametrizations. Recall that

r(t) = 〈x0, y0, z0〉 + tv = 〈x0 + ta, y0 + tb, z0 + tc〉
parametrizes the line through P = (x0, y0, z0) in the direction of the vector v = 〈a, b, c〉.

In Chapter 11, we studied parametrized curves in the plane R2 in the form

c(t) = (x(t), y(t))

Such a curve is described equally well by the vector-valued function r(t) = 〈x(t), y(t)〉.
The difference lies only in whether we visualize the path as traced by a “moving point”
c(t) or a “moving vector” r(t). The vector form is used in this chapter because it leads
most naturally to the definition of vector-valued derivatives.

It is important to distinguish between the path parametrized by r(t) and the underlying
curve C traced by r(t). The curve C is the set of all points (x(t), y(t), z(t)) as t ranges over
the domain of r(t). The path is a particular way of traversing the curve; it may traverse
the curve several times, reverse direction, or move back and forth, etc.

EXAMPLE 1 The Path versus the Curve Describe the path

r(t) = 〈cos t, sin t, 1〉 , −∞ < t < ∞
How are the path and the curve C traced by r(t) different?

r(t)

z

y

x

1

FIGURE 2 Plot of r(t) = 〈
cos t, sin t, 1

〉
.

Solution As t varies from −∞ to ∞, the endpoint of the vector r(t) moves around a
unit circle at height z = 1 infinitely many times in the counterclockwise direction when
viewed from above (Figure 2). The underlying curve C traced by r(t) is the circle itself.

A curve in R3 is also referred to as a space curve (as opposed to a curve in R2, which
is called a plane curve). Space curves can be quite complicated and difficult to sketch
by hand. The most effective way to visualize a space curve is to plot it from different
viewpoints using a computer (Figure 3). As an aid to visualization, we plot a “thickened”
curve as in Figures 3 and 5, but keep in mind that space curves are one-dimensional and
have no thickness.

x

x

z

y

y

x

z z

y
x

zz

y yy

z

x

xx yyy

FIGURE 3 The curve r(t) = 〈
t sin 2t cos t, t sin2 t, t cos t

〉
for 0 ≤ t ≤ 4π , seen from three different

viewpoints.

The projections onto the coordinate planes are another aid in visualizing space curves.
The projection of a path r(t) = 〈x(t), y(t), z(t)〉 onto the xy-plane is the path p(t) =
〈x(t), y(t), 0〉 (Figure 4). Similarly, the projections onto the yz- and xz-planes are the
paths 〈0, y(t), z(t)〉 and 〈x(t), 0, z(t)〉, respectively.
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EXAMPLE 2 Helix Describe the curve traced by r(t) = 〈− sin t, cos t, t〉 for t ≥ 0
in terms of its projections onto the coordinate planes.

Solution The projections are as follows (Figure 4):

• xy-plane (set z = 0): the path p(t) = 〈− sin t, cos t, 0〉, which describes a point
moving counterclockwise around the unit circle starting at p(0) = (0, 1, 0).

• xz-plane (set y = 0): the path 〈− sin t, 0, t〉, which is a wave in the z-direction.
• yz-plane (set x = 0): the path 〈0, cos t, t〉, which is a wave in the z-direction.

The function r(t) describes a point moving above the unit circle in the xy-plane while its
height z = t increases linearly, resulting in the helix of Figure 4.

(B)  Projection onto xy-plane

Projection
onto xz-plane

(A)

(C) Projection
onto yz-plane

z

y
p(t)

r(t)

FIGURE 4 Projections of the helix
r(t) = 〈− sin t, cos t, t

〉
.

Every curve can be parametrized in infinitely many ways (because there are infinitely
many ways that a particle can traverse a curve as a function of time). The next example
describes two very different parametrizations of the same curve.

EXAMPLE 3 Parametrizing the Intersection of Surfaces Parametrize the curve C ob-
tained as the intersection of the surfaces x2 − y2 = z − 1 and x2 + y2 = 4 (Figure 5).

Solution We have to express the coordinates (x, y, z) of a point on the curve as functions
of a parameter t . Here are two ways of doing this.
First method: Solve the given equations for y and z in terms of x. First, solve for y:

x2 + y2 = 4 ⇒ y2 = 4 − x2 ⇒ y = ±
√

4 − x2

The equation x2 − y2 = z − 1 can be written z = x2 − y2 + 1. Thus, we can substitute
y2 = 4 − x2 to solve for z:

z = x2 − y2 + 1 = x2 − (4 − x2) + 1 = 2x2 − 3
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z z z

y yy

x

z

y

xxx

x2 − y2 = z − 1 x2 + y2 = 4

FIGURE 5 Intersection of surfaces x2 − y2 = z − 1 and x2 + y2 = 4.

Now use t = x as the parameter. Then y = ±√
4 − t2, z = 2t2 − 3. The two signs of the

square root correspond to the two halves of the curve where y > 0 and y < 0, as shown in
Figure 6. Therefore, we need two vector-valued functions to parametrize the entire curve:

r1(t) =
〈
t,

√
4 − t2, 2t2 − 3

〉
, r2(t) =

〈
t, −

√
4 − t2, 2t2 − 3

〉
, −2 ≤ t ≤ 2

Second method: Note that x2 + y2 = 4 has a trigonometric parametrization: x = 2 cos t ,
y = 2 sin t for 0 ≤ t < 2π . The equation x2 − y2 = z − 1 gives us

z = x2 − y2 + 1 = 4 cos2 t − 4 sin2 t + 1 = 4 cos 2t + 1

Thus, we may parametrize the entire curve by a single vector-valued function:

r(t) = 〈2 cos t, 2 sin t, 4 cos 2t + 1〉 , 0 ≤ t < 2π

Part of curve where y > 0

z

y

x

Part of curve where y < 0

z

y

x

r1(t)

r2(t)

FIGURE 6 Two halves of the curve of
intersection in Example 3.

EXAMPLE 4 Parametrize the circle of radius 3 with center P = (2, 6, 8) located in a
plane:

(a) Parallel to the xy-plane (b) Parallel to the xz-plane

Solution (a)Acircle of radius R in the xy-plane centered at the origin has parametrization
〈R cos t, R sin t〉. To place the circle in a three-dimensional coordinate system, we use the
parametrization 〈R cos t, R sin t, 0〉.
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Thus, the circle of radius 3 centered at (0, 0, 0) has parametrization 〈3 cos t, 3 sin t, 0〉.
To move this circle in a parallel fashion so that its center lies at P = (2, 6, 8), we translate
by the vector 〈2, 6, 8〉:

r1(t) = 〈2, 6, 8〉 + 〈3 cos t, 3 sin t, 0〉 = 〈2 + 3 cos t, 6 + 3 sin t, 8〉
(b) The parametrization 〈3 cos t, 0, 3 sin t〉 gives us a circle of radius 3 centered at the
origin in the xz-plane. To move the circle in a parallel fashion so that its center lies at
(2, 6, 8), we translate by the vector 〈2, 6, 8〉:

r2(t) = 〈2, 6, 8〉 + 〈3 cos t, 0, 3 sin t〉 = 〈2 + 3 cos t, 6, 8 + 3 sin t〉
These two circles are shown in Figure 7.

〈2, 6, 8〉 〈2, 6, 8〉

y

P

x

z

2

(A) (B)

6

8

y

P

x

z

2 6

8

FIGURE 7 Horizontal and vertical circles of
radius 3 and center P = (2, 6, 8) obtained
by translation.

13.1 SUMMARY

• A vector-valued function is a function of the form

r(t) = 〈x(t), y(t), z(t)〉 = x(t)i + y(t)j + z(t)k

• We often think of t as time and r(t) as a “moving vector” whose terminal point traces
out a path as a function of time. We refer to r(t) as a vector parametrization of the path,
or simply as a “path.”
• The underlying curve C traced by r(t) is the set of all points (x(t), y(t), z(t)) in R3 for
t in the domain of r(t). A curve in R3 is also called a space curve.
• Every curve C can be parametrized in infinitely many ways.
• The projection of r(t) onto the xy-plane is the curve traced by 〈x(t), y(t), 0〉. The
projection onto the xz-plane is 〈x(t), 0, z(t)〉, and the projection onto the yz-plane is
〈0, y(t), z(t)〉.

13.1 EXERCISES

Preliminary Questions
1. Which one of the following does not parametrize a line?

(a) r1(t) = 〈8 − t, 2t, 3t〉

(b) r2(t) = t3i − 7t3j + t3k

(c) r3(t) = 〈
8 − 4t3, 2 + 5t2, 9t3〉

2. What is the projection of r(t) = t i + t4j + etk onto the xz-plane?

3. Which projection of 〈cos t, cos 2t, sin t〉 is a circle?

4. What is the center of the circle with parametrization

r(t) = (−2 + cos t)i + 2j + (3 − sin t)k?
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5. How do the paths r1(t) = 〈cos t, sin t〉 and r2(t) = 〈sin t, cos t〉
around the unit circle differ?

6. Which three of the following vector-valued functions parametrize
the same space curve?
(a) (−2 + cos t)i + 9j + (3 − sin t)k

(b) (2 + cos t)i − 9j + (−3 − sin t)k

(c) (−2 + cos 3t)i + 9j + (3 − sin 3t)k

(d) (−2 − cos t)i + 9j + (3 + sin t)k

(e) (2 + cos t)i + 9j + (3 + sin t)k

Exercises
1. What is the domain of r(t) = et i + 1

t
j + (t + 1)−3k?

2. What is the domain of r(s) = es i + √
sj + cos sk?

3. Evaluate r(2) and r(−1) for r(t) =
〈
sin π

2 t, t2, (t2 + 1)−1
〉
.

4. Does either of P = (4, 11, 20) or Q = (−1, 6, 16) lie on the path
r(t) = 〈

1 + t, 2 + t2, t4〉
?

5. Find a vector parametrization of the line through P = (3, −5, 7)

in the direction v = 〈3, 0, 1〉.
6. Find a direction vector for the line with parametrization r(t) =

(4 − t)i + (2 + 5t)j + 1
2 tk.

7. Match the space curves in Figure 8 with their projections onto the
xy-plane in Figure 9.

8. Match the space curves in Figure 8 with the following vector-
valued functions:

(a) r1(t) = 〈cos 2t, cos t, sin t〉 (b) r2(t) = 〈t, cos 2t, sin 2t〉
(c) r3(t) = 〈1, t, t〉

y

x

z

y

x

z

y

x

z

(A) (B) (C)

FIGURE 8

(i)

x

y

(ii)

x

y

(iii)

x

y

FIGURE 9

9. Match the vector-valued functions (a)–(f) with the space curves
(i)–(vi) in Figure 10.

(a) r(t) = 〈
t + 15, e0.08t cos t, e0.08t sin t

〉
(b) r(t) = 〈

cos t, sin t, sin 12t
〉

(c) r(t) =
〈
t, t,

25t

1 + t2

〉
(d) r(t) = 〈

cos3 t, sin3 t, sin 2t
〉

(e) r(t) = 〈
t, t2, 2t

〉
(f) r(t) = 〈

cos t, sin t, cos t sin 12t
〉

y

(i) (ii) (iii)

(iv) (v) (vi)

x

z

y

x

z

y
x

z

y

y

x

x

z

z

y

x

z

FIGURE 10

10. Which of the following curves have the same projection onto the
xy-plane?

(a) r1(t) = 〈
t, t2, et

〉
(b) r2(t) = 〈

et , t2, t
〉

(c) r3(t) = 〈
t, t2, cos t

〉
11. Match the space curves (A)–(C) in Figure 11 with their projections
(i)–(iii) onto the xy-plane.

y

y

x
x

(A) (B) (C)

(i) (iii)(ii)

z

y

x

z

y

x

z

z

y

x

z

y

x

z

FIGURE 11

12. Describe the projections of the circle r(t) = 〈sin t, 0, 4 + cos t〉
onto the coordinate planes.
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In Exercises 13–16, the function r(t) traces a circle. Determine the
radius, center, and plane containing the circle.

13. r(t) = (9 cos t)i + (9 sin t)j

14. r(t) = 7i + (12 cos t)j + (12 sin t)k

15. r(t) = 〈sin t, 0, 4 + cos t〉
16. r(t) = 〈6 + 3 sin t, 9, 4 + 3 cos t〉
17. Let C be the curve r(t) = 〈t cos t, t sin t, t〉.
(a) Show that C lies on the cone x2 + y2 = z2.

(b) Sketch the cone and make a rough sketch of C on the cone.

18. Use a computer algebra system to plot the projections onto
the xy- and xz-planes of the curve r(t) = 〈t cos t, t sin t, t〉 in Exer-
cise 17.

In Exercises 19 and 20, let

r(t) = 〈sin t, cos t, sin t cos 2t〉
as shown in Figure 12.

19. Find the points where r(t) intersects the xy-plane.

20. Show that the projection of r(t) onto the xz-plane is the curve

z = x − 2x3 for − 1 ≤ x ≤ 1

y

x

z

y

z

x

z

FIGURE 12

21. Parametrize the intersection of the surfaces

y2 − z2 = x − 2, y2 + z2 = 9

using t = y as the parameter (two vector functions are needed as in
Example 3).

22. Find a parametrization of the curve in Exercise 21 using trigono-
metric functions.

23. Viviani’s Curve C is the intersection of the surfaces (Figure 13)

x2 + y2 = z2, y = z2

(a) Parametrize each of the two parts of C corresponding to x ≥ 0 and
x ≤ 0, taking t = z as parameter.

(b) Describe the projection of C onto the xy-plane.

(c) Show that C lies on the sphere of radius 1 with center (0, 1, 0). This
curve looks like a figure eight lying on a sphere [Figure 13(B)].

y

y = z2
Viviani's curve

Viviani's curve
viewed from the
negative y-axis

(A) (B)

x

x2 + y2 = z2

z

FIGURE 13 Viviani’s curve is the intersection of the surfaces
x2 + y2 = z2 and y = z2.

24. Show that any point on x2 + y2 = z2 can be written in the form
(z cos θ, z sin θ, z) for some θ . Use this to find a parametrization of
Viviani’s curve (Exercise 23) with θ as parameter.

25. Use sine and cosine to parametrize the intersection of the cylinders
x2 + y2 = 1 and x2 + z2 = 1 (use two vector-valued functions). Then
describe the projections of this curve onto the three coordinate planes.

26. Use hyperbolic functions to parametrize the intersection of the sur-
faces x2 − y2 = 4 and z = xy.

27. Use sine and cosine to parametrize the intersection of the surfaces
x2 + y2 = 1 and z = 4x2 (Figure 14).

y

x

z

FIGURE 14 Intersection of the surfaces x2 + y2 = 1 and z = 4x2.
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In Exercises 28–30, two paths r1(t) and r2(t) intersect if there is a
point P lying on both curves. We say that r1(t) and r2(t) collide if
r1(t0) = r2(t0) at some time t0.

28. Which of the following statements are true?

(a) If r1 and r2 intersect, then they collide.

(b) If r1 and r2 collide, then they intersect.

(c) Intersection depends only on the underlying curves traced by r1
and r2, but collision depends on the actual parametrizations.

29. Determine whether r1 and r2 collide or intersect:

r1(t) = 〈
t2 + 3, t + 1, 6t−1〉

r2(t) = 〈
4t, 2t − 2, t2 − 7

〉
30. Determine whether r1 and r2 collide or intersect:

r1(t) = 〈
t, t2, t3〉

, r2(t) = 〈
4t + 6, 4t2, 7 − t

〉
In Exercises 31–40, find a parametrization of the curve.

31. The vertical line passing through the point (3, 2, 0)

32. The line passing through (1, 0, 4) and (4, 1, 2)

33. The line through the origin whose projection on the xy-plane is a
line of slope 3 and whose projection on the yz-plane is a line of slope
5 (i.e., �z/�y = 5)

34. The horizontal circle of radius 1 with center (2, −1, 4)

35. The circle of radius 2 with center (1, 2, 5) in a plane parallel to the
yz-plane

36. The ellipse
(x

2

)2 +
(y

3

)2 = 1 in the xy-plane, translated to have

center (9, −4, 0)

37. The intersection of the plane y = 1
2 with the sphere x2 + y2 +

z2 = 1

38. The intersection of the surfaces

z = x2 − y2 and z = x2 + xy − 1

39. The ellipse
(x

2

)2 +
( z

3

)2 = 1 in the xz-plane, translated to have

center (3, 1, 5) [Figure 15(A)]

(A)

3

1

(B)

y

x

zz

y

x
3

1

FIGURE 15 The ellipses described in Exercises 39 and 40.

40. The ellipse
(y

2

)2 +
( z

3

)2 = 1, translated to have center (3, 1, 5)

[Figure 15(B)]

Further Insights and Challenges
41. Sketch the curve parametrized by r(t) = 〈|t | + t, |t | − t〉.

42. Find the maximum height above the xy-plane of a point on
r(t) = 〈

et , sin t, t (4 − t)
〉
.

43. Let C be the curve obtained by intersecting a cylinder of ra-
dius r and a plane. Insert two spheres of radius r into the cylinder above
and below the plane, and let F1 and F2 be the points where the plane is
tangent to the spheres [Figure 16(A)]. Let K be the vertical distance be-
tween the equators of the two spheres. Rediscover Archimedes’s proof
that C is an ellipse by showing that every point P on C satisfies

PF1 + PF2 = K 2

Hint: If two lines through a point P are tangent to a sphere and intersect
the sphere at Q1 and Q2 as in Figure 16(B), then the segments PQ1
and PQ2 have equal length. Use this to show that PF1 = PR1 and
PF2 = PR2.

44. Assume that the cylinder in Figure 16 has equation x2 + y2 = r2

and the plane has equation z = ax + by. Find a vector parametrization
r(t) of the curve of intersection using the trigonometric functions cos t

and sin t .

(A) (B)

Q2

P

K

R2

F2

F1

R1

Q1P

FIGURE 16

45. Now reprove the result of Exercise 43 using vector geom-

etry. Assume that the cylinder has equation x2 + y2 = r2 and the plane
has equation z = ax + by.
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(a) Show that the upper and lower spheres in Figure 16 have centers

C1 =
(

0, 0, r
√

a2 + b2 + 1
)

C2 =
(

0, 0, −r
√

a2 + b2 + 1
)

(b) Show that the points where the plane is tangent to the sphere are

F1 = r√
a2 + b2 + 1

(
a, b, a2 + b2)

F2 = −r√
a2 + b2 + 1

(
a, b, a2 + b2)

Hint: Show that C1F1 and C2F2 have length r and are orthogonal to
the plane.

(c) Verify, with the aid of a computer algebra system, that Eq. (2) holds
with

K = 2r
√

a2 + b2 + 1

To simplify the algebra, observe that since a and b are arbitrary, it
suffices to verify Eq. (2) for the point P = (r, 0, ar).

13.2 Calculus of Vector-Valued Functions
In this section, we extend differentiation and integration to vector-valued functions. This
is straightforward because the techniques of single-variable calculus carry over with little
change. What is new and important, however, is the geometric interpretation of the deriva-
tive as a tangent vector. We describe this later in the section.

The first step is to define limits of vector-valued functions.

DEFINITION Limit of a Vector-Valued Function A vector-valued function r(t) ap-
proaches the limit u (a vector) as t approaches t0 if lim

t→t0
‖r(t) − u‖ = 0. In this case,

we write

lim
t→t0

r(t) = u

We can visualize the limit of a vector-valued function as a vector r(t) “moving”
toward the limit vector u (Figure 1). According to the next theorem, vector limits may be

r(t)

z

y

u

x

FIGURE 1 The vector-valued function r(t)
approaches u as t → t0.

computed componentwise.

THEOREM 1 Vector-Valued Limits Are Computed Componentwise A vector-valued
function r(t) = 〈x(t), y(t), z(t)〉 approaches a limit as t → t0 if and only if each com-
ponent approaches a limit, and in this case,

lim
t→t0

r(t) =
〈

lim
t→t0

x(t), lim
t→t0

y(t), lim
t→t0

z(t)

〉
1

Proof Let u = 〈a, b, c〉 and consider the square of the lengthThe Limit Laws of scalar functions remain
valid in the vector-valued case. They are
verified by applying the Limit Laws to the
components.

‖r(t) − u‖2 = (x(t) − a)2 + (y(t) − b)2 + (z(t) − c)2 2

The term on the left approaches zero if and only if each term on the right approaches
zero (because these terms are nonnegative). It follows that ‖r(t) − u‖ approaches zero if
and only if |x(t) − a|, |y(t) − b|, and |z(t) − c| tend to zero. Therefore, r(t) approaches
a limit u as t → t0 if and only if x(t), y(t), and z(t) converge to the components a, b,
and c.

EXAMPLE 1 Calculate lim
t→3

r(t), where r(t) = 〈
t2, 1 − t, t−1〉.

Solution By Theorem 1,

lim
t→3

r(t) = lim
t→3

〈
t2, 1 − t, t−1〉 =

〈
lim
t→3

t2, lim
t→3

(1 − t), lim
t→3

t−1
〉

=
〈
9, −2,

1

3

〉
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Continuity of vector-valued functions is defined in the same way as in the scalar case.
A vector-valued function r(t) = 〈x(t), y(t), z(t)〉 is continuous at t0 if

lim
t→t0

r(t) = r(t0)

By Theorem 1, r(t) is continuous at t0 if and only if the components x(t), y(t), z(t) are
continuous at t0.

We define the derivative of r(t) as the limit of the difference quotient:

r′(t) = d

dt
r(t) = lim

h→0

r(t + h) − r(t)
h

3

In Leibniz notation, the derivative is written dr/dt .
We say that r(t) is differentiable at t if the limit in Eq. (3) exists. Notice that the

components of the difference quotient are difference quotients:

lim
h→0

r(t + h) − r(t)
h

= lim
h→0

〈
x(t + h) − x(t)

h
,
y(t + h) − y(t)

h
,
z(t + h) − z(t)

h

〉

and by Theorem 1, r(t) is differentiable if and only if the components are differentiable.
In this case, r′(t) is equal to the vector of derivatives 〈x′(t), y′(t), z′(t)〉.

By Theorems 1 and 2, vector-valued limits
and derivatives are computed
“componentwise,” so they are not more
difficult to compute than ordinary limits
and derivatives.

THEOREM 2 Vector-Valued Derivatives Are Computed Componentwise A vector-
valued function r(t) = 〈x(t), y(t), z(t)〉 is differentiable if and only if each component
is differentiable. In this case,

r′(t) = d

dt
r(t) = 〈

x′(t), y′(t), z′(t)
〉

Here are some vector-valued derivatives, computed componentwise:

d

dt

〈
t2, t3, sin t

〉 = 〈
2t, 3t2, cos t

〉
,

d

dt

〈
cos t, −1, e2t

〉 = 〈− sin t, 0, 2e2t
〉

Higher-order derivatives are defined by repeated differentiation:

r′′(t) = d

dt
r′(t), r′′′(t) = d

dt
r′′(t), . . .

EXAMPLE 2 Calculate r′′(3), where r(t) = 〈
ln t, t, t2

〉
.

Solution We perform the differentiation componentwise:

r′(t) = d

dt

〈
ln t, t, t2〉 = 〈

t−1, 1, 2t
〉

r′′(t) = d

dt

〈
t−1, 1, 2t

〉 = 〈−t−2, 0, 2
〉

Therefore, r′′(3) = 〈− 1
9 , 0, 2

〉
.

The differentiation rules of single-variable calculus carry over to the vector setting.
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Differentiation Rules Assume that r(t), r1(t), and r2(t) are differentiable. Then

• Sum Rule: (r1(t) + r2(t))
′ = r′

1(t) + r′
2(t)

• Constant Multiple Rule: For any constant c, (c r(t))′ = c r′(t).
• Product Rule: For any differentiable scalar-valued function f (t),

d

dt

(
f (t)r(t)

) = f (t)r′(t) + f ′(t)r(t)

• Chain Rule: For any differentiable scalar-valued function g(t),

d

dt
r(g(t)) = g′(t)r′(g(t))

Proof Each rule is proved by applying the differentiation rules to the components. For
example, to prove the Product Rule (we consider vector-valued functions in the plane, to
keep the notation simple), we write

f (t)r(t) = f (t) 〈x(t), y(t)〉 = 〈f (t)x(t), f (t)y(t)〉

Now apply the Product Rule to each component:

d

dt
f (t)r(t) =

〈
d

dt
f (t)x(t),

d

dt
f (t)y(t)

〉
= 〈

f ′(t)x(t) + f (t)x′(t), f ′(t)y(t) + f (t)y′(t)
〉

= 〈
f ′(t)x(t), f ′(t)y(t)

〉 + 〈
f (t)x′(t), f (t)y′(t)

〉
= f ′(t) 〈x(t), y(t)〉 + f (t)

〈
x′(t), y′(t)

〉 = f ′(t)r(t) + f (t)r′(t)

The remaining proofs are left as exercises (Exercises 69–70).

EXAMPLE 3 Let r(t) = 〈
t2, 5t, 1

〉
and f (t) = e3t . Calculate:

(a)
d

dt
f (t)r(t) (b)

d

dt
r(f (t))

Solution We have r′(t) = 〈2t, 5, 0〉 and f ′(t) = 3e3t .

(a) By the Product Rule,

d

dt
f (t)r(t) = f (t)r′(t) + f ′(t)r(t) = e3t

〈
2t, 5, 0

〉 + 3e3t
〈
t2, 5t, 1

〉
= 〈

(3t2 + 2t)e3t , (15t + 5)e3t , 3e3t
〉

(b) By the Chain Rule,

d

dt
r(f (t)) = f ′(t)r′(f (t)) = 3e3tr′(e3t ) = 3e3t

〈
2e3t , 5, 0

〉 = 〈
6e6t , 15e3t , 0

〉

There are three different Product Rules for vector-valued functions. In addition to the
rule for the product of a scalar function f (t) and a vector-valued function r(t) stated above,
there are Product Rules for the dot and cross products. These rules are very important in
applications, as we will see.
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THEOREM 3 Product Rule for Dot and Cross Products Assume that r1(t) and r2(t)

are differentiable. Then

Dot Products:
d

dt

(
r1(t) · r2(t)

) = r1(t) · r′
2(t) + r′

1(t) · r2(t) 4

Cross Products:
d

dt

(
r1(t) × r2(t)

) = [
r1(t) × r′

2(t)
] + [

r′
1(t) × r2(t)

]
5

Proof We verify Eq. (4) for vector-valued functions in the plane. If r1(t) = 〈x1(t), y1(t)〉

CAUTION Order is important in the Product
Rule for cross products. The first term in
Eq. (5) must be written as

r1(t) × r′
2(t)

not r′
2(t) × r1(t). Similarly, the second

term is r′
1(t) × r2(t). Why is order not a

concern for dot products?

and r2(t) = 〈x2(t), y2(t)〉, then

d

dt

(
r1(t) · r2(t)

) = d

dt

(
x1(t)x2(t) + y1(t)y2(t)

)
= x1(t)x

′
2(t) + x′

1(t)x2(t) + y1(t)y
′
2(t) + y′

1(t)y2(t)

= (
x1(t)x

′
2(t) + y1(t)y

′
2(t)

) + (
x′

1(t)x2(t) + y′
1(t)y2(t)

)
= r1(t) · r′

2(t) + r′
1(t) · r2(t)

The proof of Eq. (5) is left as an exercise (Exercise 71).

In the next example and throughout this chapter, all vector-valued functions are
assumed differentiable, unless otherwise stated.

EXAMPLE 4 Prove the formula
d

dt

(
r(t) × r′(t)

) = r(t) × r′′(t).

Solution By the Product Formula for cross products,

d

dt

(
r(t) × r′(t)

) = r(t) × r′′(t) + r′(t) × r′(t)︸ ︷︷ ︸
Equals 0

= r(t) × r′′(t)

Here, r′(t) × r′(t) = 0 because the cross product of a vector with itself is zero.

The Derivative as a Tangent Vector

The derivative vector r′(t0) has an important geometric property: It points in the direction
tangent to the path traced by r(t) at t = t0.

To understand why, consider the difference quotient, where �r = r(t0 + h) − r(t0)
and �t = h with h = 0:

�r
�t

= r(t0 + h) − r(t0)
h

6

The vector �r points from the head of r(t0) to the head of r(t0 + h) as in Figure 2(A).
The difference quotient �r/�t is a scalar multiple of �r and therefore points in the same
direction [Figure 2(B)].

As h = �t tends to zero, �r also tends to zero but the quotient �r/�t approaches
a vector r′(t0), which, if nonzero, points in the direction tangent to the curve. Figure 3
illustrates the limiting process. We refer to r′(t0) as the tangent vector or the velocity
vector at r(t0).

The tangent vector r′(t0) (if it is nonzero) is a direction vector for the tangent line to
the curve. Therefore, the tangent line has vector parametrization:

Although it has been our convention to
regard all vectors as based at the origin,
the tangent vector r′(t) is an exception; we
visualize it as a vector based at the
terminal point of r(t). This makes sense
because r′(t) then appears as a vector
tangent to the curve (Figure 3).

Tangent line at r(t0): L(t) = r(t0) + t r′(t0) 7
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r(t0 + h) − r(t0)

r(t0)

r(t0 + h) − r(t0)
h

r(t0 + h)

(A)

z

yx

(B)

z

yx

r(t0)

r(t0 + h)

FIGURE 2 The difference quotient points in
the direction of �r = r(t0 + h) − r(t0).

O

r'(t0)

O

(A)

r(t0)

r(t0 + h) − r(t0)
h

r(t0 + h)

(B)

h tending to zero limit as h     0

(C)

O

FIGURE 3 The difference quotient converges to a vector r′(t0), tangent to the curve.

EXAMPLE 5 Plotting Tangent Vectors Plot r(t) = 〈
cos t, sin t, 4 cos2 t

〉
to-

gether with its tangent vectors at t = π
4 and 3π

2 . Find a parametrization of the tangent line
at t = π

4 .

Solution The derivative is r′(t) = 〈− sin t, cos t, −8 cos t sin t〉, and thus the tangent

z

x

y

3  
2

 
4

t =

t =

FIGURE 4 Tangent vectors to

r(t) = 〈
cos t, sin t, 4 cos2 t

〉
at t = π

4 and 3π
2 .

vectors at t = π
4 and 3π

2 are

r′ (π

4

)
=

〈
−

√
2

2
,

√
2

2
, −4

〉
, r′

(
3π

2

)
= 〈1, 0, 0〉

Figure 4 shows a plot of r(t) with r′(π
4

)
based at r

(
π
4

)
and r′( 3π

2

)
based at r

( 3π
2

)
.

At t = π
4 , r

(
π
4

) =
〈√

2
2 ,

√
2

2 , 2
〉

and thus the tangent line is parametrized by

L(t) = r
(π

4

)
+ t r′ (π

4

)
=

〈√
2

2
,

√
2

2
, 2

〉
+ t

〈
−

√
2

2
,

√
2

2
, −4

〉

There are some important differences between vector- and scalar-valued derivatives.
The tangent line to a plane curve y = f (x) is horizontal at x0 if f ′(x0) = 0. But in a vector
parametrization, the tangent vector r′(t0) = 〈

x′(t0), y′(t0)
〉

is horizontal and nonzero if
y′(t0) = 0 but x′(t0) = 0.

EXAMPLE 6 Horizontal Tangent Vectors on the Cycloid The function

r(t) = 〈t − sin t, 1 − cos t〉
traces a cycloid. Find the points where:

(a) r′(t) is horizontal and nonzero. (b) r′(t) is the zero vector.
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Solution The tangent vector is r′(t) = 〈1 − cos t, sin t〉. The y-component of r′(t) is zero
if sin t = 0—that is, if t = 0, π, 2π, . . . . We have

r(0) = 〈0, 0〉 , r′(0) = 〈1 − cos 0, sin 0〉 = 〈0, 0〉 (zero vector)

r(π) = 〈π, 2〉 , r′(π) = 〈1 − cos π, sin π〉 = 〈2, 0〉 (horizontal)

By periodicity, we conclude that r′(t) is nonzero and horizontal for t = π, 3π, 5π, . . .

and r′(t) = 0 for t = 0, 2π, 4π, . . . (Figure 5).

r'(π) horizontal
r'(2π) = 0

2π 3π 4ππ

1
2

x

y

FIGURE 5 Points on the cycloid

r(t) = 〈t − sin t, 1 − cos t〉
where the tangent vector is horizontal.

CONCEPTUAL INSIGHT The cycloid in Figure 5 has sharp points called cusps at points
where x = 0, 2π, 4π, . . . . If we represent the cycloid as the graph of a function y =
f (x), then f ′(x) does not exist at these points. By contrast, the vector derivative r′(t) =
〈1 − cos t, sin t〉 exists for all t , but r′(t) = 0 at the cusps. In general, r′(t) is a direction
vector for the tangent line whenever it exists, but we get no information about the tangent
line (which may or may not exist) at points where r′(t) = 0.

The next example establishes an important property of vector-valued functions that
will be used in Sections 13.4–13.6.

EXAMPLE 7 Orthogonality of r and r′ When r Has Constant Length Prove that if r(t)
has constant length, then r(t) is orthogonal to r′(t).

Solution By the Product Rule for Dot Products,

d

dt
‖r(t)‖2 = d

dt

(
r(t) · r(t)

) = r(t) · r′(t) + r′(t) · r(t) = 2r(t) · r′(t)

This derivative is zero because ‖r(t)‖ is constant. Therefore r(t) · r′(t) = 0, and r(t) is
orthogonal to r′(t) [or r′(t) = 0].

r'(t)

y

r(t)

x

z

FIGURE 6

GRAPHICAL INSIGHT The result of Example 7 has a geometric explanation. A vector
parametrization r(t) consisting of vectors of constant length R traces a curve on the
surface of a sphere of radius R with center at the origin (Figure 6). Thus r′(t) is tangent
to this sphere. But any line that is tangent to a sphere at a point P is orthogonal to the
radial vector through P , and thus r(t) is orthogonal to r′(t).

Vector-Valued Integration
The integral of a vector-valued function can be defined in terms of Riemann sums as
in Chapter 5. We will define it more simply via componentwise integration (the two
definitions are equivalent). In other words,∫ b

a

r(t) dt =
〈 ∫ b

a

x(t) dt,

∫ b

a

y(t) dt,

∫ b

a

z(t) dt

〉
The integral exists if each of the components x(t), y(t), z(t) is integrable. For example,∫ π

0
〈1, t, sin t〉 dt =

〈 ∫ π

0
1 dt,

∫ π

0
t dt,

∫ π

0
sin t dt

〉
=

〈
π,

1

2
π2, 2

〉
Vector-valued integrals obey the same linearity rules as scalar-valued integrals (see Exer-
cise 72).

An antiderivative of r(t) is a vector-valued function R(t) such that R′(t) = r(t). In
the single-variable case, two functions f1(x) and f2(x) with the same derivative differ
by a constant. Similarly, two vector-valued functions with the same derivative differ by a
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constant vector (i.e., a vector that does not depend on t). This is proved by applying the
scalar result to each component of r(t).

THEOREM 4 If R1(t) and R2(t) are differentiable and R′
1(t) = R′

2(t), then

R1(t) = R2(t) + c

for some constant vector c.

The general antiderivative of r(t) is written∫
r(t) dt = R(t) + c

where c = 〈c1, c2, c3〉 is an arbitrary constant vector. For example,∫
〈1, t, sin t〉 dt =

〈
t,

1

2
t2, − cos t

〉
+ c =

〈
t + c1,

1

2
t2 + c2, − cos t + c3

〉

Fundamental Theorem of Calculus for Vector-Valued Functions If r(t) is continuous
on [a, b], and R(t) is an antiderivative of r(t), then∫ b

a

r(t) dt = R(b) − R(a)

EXAMPLE 8 Finding Position via Vector-Valued Differential Equations The path of a
particle satisfies

dr
dt

=
〈
1 − 6 sin 3t,

1

5
t

〉
Find the particle’s location at t = 4 if r(0) = 〈4, 1〉.

y

x

3

1

0 2 94 6

(4, 1)
t = 0

(7.69, 2.6)
t = 4

FIGURE 7 Particle path

r(t) = 〈
t + 2 cos 3t + 2, 1

10 t2 + 1
〉

Solution The general solution is obtained by integration:

r(t) =
∫ 〈

1 − 6 sin 3t,
1

5
t

〉
dt =

〈
t + 2 cos 3t,

1

10
t2

〉
+ c

The initial condition r(0) = 〈4, 1〉 gives us

r(0) = 〈2, 0〉 + c = 〈4, 1〉
Therefore, c = 〈2, 1〉 and (Figure 7)

r(t) =
〈
t + 2 cos 3t,

1

10
t2

〉
+ 〈2, 1〉 =

〈
t + 2 cos 3t + 2,

1

10
t2 + 1

〉
The particle’s position at t = 4 is

r(4) =
〈
4 + 2 cos 12 + 2,

1

10
(42) + 1

〉
≈ 〈7.69, 2.6〉

13.2 SUMMARY

• Limits, differentiation, and integration of vector-valued functions are performed com-
ponentwise.
• Differentation rules:

– Sum Rule: (r1(t) + r2(t))
′ = r′

1(t) + r′
2(t)
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– Constant Multiple Rule: (c r(t))′ = c r′(t)

– Chain Rule:
d

dt
r(g(t)) = g′(t)r′(g(t))

• Product Rules:

Scalar times vector:
d

dt

(
f (t)r(t)

) = f (t)r′(t) + f ′(t)r(t)

Dot product:
d

dt

(
r1(t) · r2(t)

) = r1(t) · r′
2(t) + r′

1(t) · r2(t)

Cross product:
d

dt

(
r1(t) × r2(t)

) = [
r1(t) × r′

2(t)
] + [

r′
1(t) × r2(t)

]
• The derivative r′(t0) is called the tangent vector or velocity vector.
• If r′(t0) is nonzero, then it points in the direction tangent to the curve at r(t0). The
tangent line has vector parametrization

L(t) = r(t0) + tr′(t0)

• If R′
1(t) = R′

2(t), then R1(t) = R2(t) + c for some constant vector c.
• The Fundamental Theorem for vector-valued functions: If r(t) is continuous and R(t)

is an antiderivative of r(t), then∫ b

a

r(t) dt = R(b) − R(a)

13.2 EXERCISES

Preliminary Questions
1. State the three forms of the Product Rule for vector-valued func-

tions.

In Questions 2–6, indicate whether the statement is true or false, and
if it is false, provide a correct statement.

2. The derivative of a vector-valued function is defined as the limit
of the difference quotient, just as in the scalar-valued case.

3. There are two Chain Rules for vector-valued functions: one for the
composite of two vector-valued functions and one for the composite of
a vector-valued and a scalar-valued function.

4. The terms “velocity vector” and “tangent vector” for a path r(t)
mean one and the same thing.

5. The derivative of a vector-valued function is the slope of the tan-
gent line, just as in the scalar case.

6. The derivative of the cross product is the cross product of the
derivatives.

7. State whether the following derivatives of vector-valued functions
r1(t) and r2(t) are scalars or vectors:

(a)
d

dt
r1(t) (b)

d

dt

(
r1(t) · r2(t)

)
(c)

d

dt

(
r1(t) × r2(t)

)

Exercises
In Exercises 1–6, evaluate the limit.

1. lim
t→3

〈
t2, 4t,

1

t

〉
2. lim

t→π
sin 2t i + cos tj + tan 4tk

3. lim
t→0

e2t i + ln(t + 1)j + 4k

4. lim
t→0

〈
1

t + 1
,
et − 1

t
, 4t

〉

5. Evaluate lim
h→0

r(t + h) − r(t)
h

for r(t) =
〈
t−1, sin t, 4

〉
.

6. Evaluate lim
t→0

r(t)
t

for r(t) = 〈sin t, 1 − cos t, −2t〉.

In Exercises 7–12, compute the derivative.

7. r(t) = 〈
t, t2, t3〉

8. r(t) = 〈
7 − t, 4

√
t, 8

〉
9. r(s) = 〈

e3s , e−s , s4〉
10. b(t) =

〈
e3t−4, e6−t , (t + 1)−1

〉
11. c(t) = t−1i − e2tk
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12. a(θ) = (cos 3θ)i + (sin2 θ)j + (tan θ)k

13. Calculate r′(t) and r′′(t) for r(t) = 〈
t, t2, t3〉

.

14. Sketch the curve r(t) = 〈
1 − t2, t

〉
for −1 ≤ t ≤ 1. Compute the

tangent vector at t = 1 and add it to the sketch.

15. Sketch the curve r1(t) = 〈
t, t2〉

together with its tangent vector at

t = 1. Then do the same for r2(t) = 〈
t3, t6〉

.

16. Sketch the cycloid r(t) = 〈
t − sin t, 1 − cos t

〉
together with its

tangent vectors at t = π
3 and 3π

4 .

In Exercises 17–20, evaluate the derivative by using the appropriate
Product Rule, where

r1(t) = 〈
t2, t3, t

〉
, r2(t) = 〈

e3t , e2t , et
〉

17.
d

dt

(
r1(t) · r2(t)

)
18.

d

dt

(
t4r1(t)

)
19.

d

dt

(
r1(t) × r2(t)

)
20.

d

dt

(
r(t) · r1(t)

)∣∣∣
t=2

, assuming that

r(2) = 〈2, 1, 0〉 , r′(2) = 〈1, 4, 3〉
In Exercises 21 and 22, let

r1(t) = 〈
t2, 1, 2t

〉
, r2(t) = 〈

1, 2, et
〉

21. Compute
d

dt
r1(t) · r2(t)

∣∣∣
t=1

in two ways:

(a) Calculate r1(t) · r2(t) and differentiate.
(b) Use the Product Rule.

22. Compute
d

dt
r1(t) × r2(t)

∣∣∣
t=1

in two ways:

(a) Calculate r1(t) × r2(t) and differentiate.
(b) Use the Product Rule.

In Exercises 23–26, evaluate
d

dt
r(g(t)) using the Chain Rule.

23. r(t) = 〈
t2, 1 − t

〉
, g(t) = et

24. r(t) = 〈
t2, t3〉

, g(t) = sin t

25. r(t) = 〈
et , e2t , 4

〉
, g(t) = 4t + 9

26. r(t) = 〈4 sin 2t, 6 cos 2t〉, g(t) = t2

27. Let r(t) = 〈
t2, 1 − t, 4t

〉
. Calculate the derivative of r(t) · a(t) at

t = 2, assuming that a(2) = 〈1, 3, 3〉 and a′(2) = 〈−1, 4, 1〉.
28. Let v(s) = s2i + 2sj + 9s−2k. Evaluate

d

ds
v(g(s)) at s = 4, as-

suming that g(4) = 3 and g′(4) = −9.

In Exercises 29–34, find a parametrization of the tangent line at the
point indicated.

29. r(t) = 〈
t2, t4〉

, t = −2

30. r(t) = 〈
cos 2t, sin 3t

〉
, t = π

4

31. r(t) = 〈
1 − t2, 5t, 2t3〉

, t = 2

32. r(t) = 〈
4t, 5t, 9t

〉
, t = −4

33. r(s) = 4s−1i − 8
3 s−3k, s = 2

34. r(s) = (ln s)i + s−1j + 9sk, s = 1

35. Use Example 4 to calculate
d

dt
(r × r′), where r(t) = 〈

t, t2, et
〉
.

36. Let r(t) = 〈3 cos t, 5 sin t, 4 cos t〉. Show that ‖r(t)‖ is constant
and conclude, using Example 7, that r(t) and r′(t) are orthogonal.
Then compute r′(t) and verify directly that r′(t) is orthogonal to r(t).

37. Show that the derivative of the norm is not equal to the norm of the
derivative by verifying that ‖r(t)‖′ = ‖r(t)′‖ for r(t) = 〈t, 1, 1〉.

38. Show that
d

dt
(a × r) = a × r′ for any constant vector a.

In Exercises 39–46, evaluate the integrals.

39.
∫ 3

−1

〈
8t2 − t, 6t3 + t

〉
dt 40.

∫ 1

0

〈
1

1 + s2
,

s

1 + s2

〉
ds

41.
∫ 2

−2

(
u3i + u5j

)
du

42.
∫ 1

0

(
te−t2

i + t ln(t2 + 1)j
)

dt

43.
∫ 1

0
〈2t, 4t, − cos 3t〉 dt 44.

∫ 1

1/2

〈
1

u2
,

1

u4
,

1

u5

〉
du

45.
∫ 4

1

(
t−1i + 4

√
t j − 8t3/2k

)
dt 46.

∫ t

0

(
3si + 6s2j + 9k

)
ds

In Exercises 47–54, find both the general solution of the differential
equation and the solution with the given initial condition.

47.
dr
dt

= 〈1 − 2t, 4t〉, r(0) = 〈3, 1〉

48. r′(t) = i − j, r(0) = 2i + 3k

49. r′(t) = t2i + 5tj + k, r(1) = j + 2k

50. r′(t) = 〈sin 3t, sin 3t, t〉, r
(
π
2

) =
〈

2, 4,
π2

4

〉

51. r′′(t) = 16k, r(0) = 〈1, 0, 0〉, r′(0) = 〈0, 1, 0〉
52. r′′(t) =

〈
e2t−2, t2 − 1, 1

〉
, r(1) = 〈0, 0, 1〉,

r′(1) = 〈2, 0, 0〉
53. r′′(t) = 〈0, 2, 0〉, r(3) = 〈1, 1, 0〉,
r′(3) = 〈0, 0, 1〉
54. r′′(t) = 〈

et , sin t, cos t
〉
, r(0) = 〈1, 0, 1〉,

r′(0) = 〈0, 2, 2〉
55. Find the location at t = 3 of a particle whose path (Figure 8) sat-
isfies

dr
dt

=
〈
2t − 1

(t + 1)2
, 2t − 4

〉
, r(0) = 〈3, 8〉
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y

x
252015105

10

5

(3, 8)
t = 0

t = 3

FIGURE 8 Particle path.

56. Find the location and velocity at t = 4 of a particle whose path
satisfies

dr
dt

=
〈
2t−1/2, 6, 8t

〉
, r(1) = 〈4, 9, 2〉

57. A fighter plane, which can shoot a laser beam straight ahead, trav-
els along the path r(t) = 〈

5 − t, 21 − t2, 3 − t3/27
〉
. Show that there

is precisely one time t at which the pilot can hit a target located at the
origin.

58. The fighter plane of Exercise 57 travels along the path r(t) =〈
t − t3, 12 − t2, 3 − t

〉
. Show that the pilot cannot hit any target on

the x-axis.

59. Find all solutions to r′(t) = v with initial condition r(1) = w,
where v and w are constant vectors in R3.

60. Let u be a constant vector in R3. Find the solution of the equation
r′(t) = (sin t)u satisfying r′(0) = 0.

61. Find all solutions to r′(t) = 2r(t) where r(t) is a vector-valued
function in three-space.

62. Show that w(t) = 〈sin(3t + 4), sin(3t − 2), cos 3t〉 satisfies the
differential equation w′′(t) = −9w(t).

63. Prove that the Bernoulli spiral (Figure 9) with parametrization
r(t) = 〈

et cos 4t, et sin 4t
〉

has the property that the angle ψ between
the position vector and the tangent vector is constant. Find the angle ψ

in degrees.

−10

20
x

y

t = 0
ψ

ψ

ψ

t = π
2

FIGURE 9 Bernoulli spiral.

64. A curve in polar form r = f (θ) has parametrization

r(θ) = f (θ) 〈cos θ, sin θ〉
Let ψ be the angle between the radial and tangent vectors (Figure 10).
Prove that

tan ψ = r

dr/dθ
= f (θ)

f ′(θ)

Hint: Compute r(θ) × r′(θ) and r(θ) · r′(θ).

r'(  )θ

r(  )θ

θ

y

x

ψ

FIGURE 10 Curve with polar parametrization
r(θ) = f (θ) 〈cos θ, sin θ〉.

65. Prove that if ‖r(t)‖ takes on a local minimum or maximum
value at t0, then r(t0) is orthogonal to r′(t0). Explain how this result is
related to Figure 11. Hint: Observe that if ‖r(t0)‖ is a minimum, then
r(t) is tangent at t0 to the sphere of radius ‖r(t0)‖ centered at the origin.

z

y

x

r ′(t0)

r (t0)

r (t)

FIGURE 11

66. Newton’s Second Law of Motion in vector form states that F = dp
dt

where F is the force acting on an object of mass m and p = mr′(t) is the
object’s momentum. The analogs of force and momentum for rotational
motion are the torque τ = r × F and angular momentum

J = r(t) × p(t)

Use the Second Law to prove that τ = dJ
dt

.

Further Insights and Challenges
67. Let r(t) = 〈x(t), y(t)〉 trace a plane curve C. Assume that x′(t0) =
0. Show that the slope of the tangent vector r′(t0) is equal to the slope
dy/dx of the curve at r(t0).

68. Prove that
d

dt
(r · (r′ × r′′)) = r · (r′ × r′′′).

69. Verify the Sum and Product Rules for derivatives of vector-valued
functions.

70. Verify the Chain Rule for vector-valued functions.

71. Verify the Product Rule for cross products [Eq. (5)].
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72. Verify the linearity properties∫
cr(t) dt = c

∫
r(t) dt (c any constant)

∫ (
r1(t) + r2(t)

)
dt =

∫
r1(t) dt +

∫
r2(t) dt

73. Prove the Substitution Rule (where g(t) is a differentiable scalar
function):

∫ b

a
r(g(t))g′(t) dt =

∫ g−1(b)

g−1(a)
r(u) du

74. Prove that if ‖r(t)‖ ≤ K for t ∈ [a, b], then∥∥∥∥∥
∫ b

a
r(t) dt

∥∥∥∥∥ ≤ K(b − a)

13.3 Arc Length and Speed
In Section 11.2, we derived a formula for the arc length of a plane curve given in parametric
form. This discussion applies to paths in three-space with only minor changes.

Recall that arc length is defined as the limit of the lengths of polygonal approximations.
REMINDER The length of a path or

curve is referred to as the arc length.

To produce a polygonal approximation to a path

r(t) = 〈x(t), y(t), z(t)〉 , a ≤ t ≤ b

we choose a partition a = t0 < t1 < t2 < · · · < tN = b and join the terminal points of the
vectors r(tj ) by segments, as in Figure 1. As in Section 11.2, we find that if r′(t) exists

r (t1)

r (t3)

r (t2)

r (a) r (b)

FIGURE 1 Polygonal approximation to the
arc r(t) for a ≤ t ≤ b.

and is continuous on [a, b], then the lengths of the polygonal approximations approach a
limit L as the maximum of the widths |tj − tj−1| tends to zero. This limit is the length s
of the path which is computed by the integral in the next theorem.

THEOREM 1 Length of a Path Assume that r(t) is differentiable and that r′(t) is
continuous on [a, b]. Then the length s of the path r(t) for a ≤ t ≤ b is equal to

s =
∫ b

a

‖r′(t)‖ dt =
∫ b

a

√
x′(t)2 + y′(t)2 + z′(t)2 dt 1

EXAMPLE 1 Find the arc length s of r(t) = 〈cos 3t, sin 3t, 3t〉 for 0 ≤ t ≤ 2π .

Keep in mind that the length s in Eq. (1) is
the distance traveled by a particle following
the path r(t). The path length s is not
equal to the length of the underlying curve
unless r(t) traverses the curve only once
without reversing direction.

Solution The derivative is r′(t) = 〈−3 sin 3t, 3 cos 3t, 3〉, and

‖r′(t)‖2 = 9 sin2 3t + 9 cos2 3t + 9 = 9(sin2 3t + cos2 3t) + 9 = 18

Therefore, s =
∫ 2π

0
‖r′(t)‖ dt =

∫ 2π

0

√
18 dt = 6

√
2π .

Speed, by definition, is the rate of change of distance traveled with respect to time t .
To calculate the speed, we define the arc length function:

s(t) =
∫ t

a

‖r′(u)‖ du

Thus s(t) is the distance traveled during the time interval [a, t]. By the Fundamental
Theorem of Calculus,

Speed at time t = ds

dt
= ‖r′(t)‖
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Now we can see why r′(t) is known as the velocity vector (and also as the tangent vector).

r(t0)
r(t1)

z

yx

r ′(t0)

r ′(t1)

FIGURE 2 The velocity vector is longer at t0
than at t1, indicating that the particle is
moving faster at t0.

It points in the direction of motion, and its magnitude is the speed (Figure 2). We often
denote the velocity vector by v(t) and the speed by v(t):

v(t) = r′(t), v(t) = ‖v(t)‖

EXAMPLE 2 Find the speed at time t = 2 s of a particle whose position vector is

r(t) = t3i − et j + 4tk

Solution The velocity vector is v(t) = r′(t) = 3t2i − et j + 4k, and at t = 2,

v(2) = 12i − e2j + 4k

The particle’s speed is v(2) = ‖v(2)‖ = √
122 + (−e2)2 + 42 ≈ 14.65 ft/s.

Arc Length Parametrization

We have seen that parametrizations are not unique. For example, r1(t) = 〈
t, t2

〉
and r2(s) =Keep in mind that a parametrization r(t)

describes not just a curve, but also how a
particle traverses the curve, possibly
speeding up, slowing down, or reversing
direction along the way. Changing the
parametrization amounts to describing a
different way of traversing the same
underlying curve.

〈
s3, s6

〉
both parametrize the parabola y = x2. Notice in this case that r2(s) is obtained by

substituting t = s3 in r1(t).
In general, we obtain a new parametrization by making a substitution t = g(s)—that

is, by replacing r(t) with r1(s) = r(g(s)) [Figure 3]. If t = g(s) increases from a to b as
s varies from c to d, then the path r(t) for a ≤ t ≤ b is also parametrized by r1(s) for
c ≤ s ≤ d.

r1(s0) = r(g(s0))
a bt0

t

z

y
x

g r

c ds0

s

FIGURE 3 The path is parametrized by r(t)
and by r1(s) = r(g(s)).

EXAMPLE 3 Parametrize the path r(t) = (t2, sin t, t) for 3 ≤ t ≤ 9 using the param-
eter s, where t = g(s) = es .

Solution Substituting t = es in r(t), we obtain the parametrization

r1(s) = r(g(s)) = 〈
e2s , sin es, es

〉
Because s = ln t , the parameter t varies from 3 to 9 as s varies from ln 3 to ln 9. Therefore,
the path is parametrized by r1(s) for ln 3 ≤ s ≤ ln 9.

One way of parametrizing a path is to choose a starting point and “walk along the
path” at unit speed (say, 1 m/s). A parametrization of this type is called an arc length
parametrization [Figure 4(A)]. It is defined by the property that the speed has constant
value 1:

‖r′(t)‖ = 1 for all t
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t = 0

t = 1

s = 0

t = 3s = 3

s = 4

(B) Not an arc length parametrization:
      lengths of tangent vectors vary,
       so the speed is changing.

(A) An arc length parametrization:
      All tangent vectors have length 1,
      so speed is 1.

O O

t = 4s = 1
s = 2 t = 2

FIGURE 4

In an arc length parametrization, the distance traveled over any time interval [a, b] is equalArc length parametrizations are also called
unit speed parametrizations. We will use arc
length parametrizations to define curvature
in Section 13.4.

to the length of the interval:

Distance traveled over [a, b] =
∫ b

a

‖r′(t)‖ dt =
∫ b

a

1 dt = b − a

To find an arc length parametrization, start with any parametrization r(t) such thatThe letter s is often used as the parameter
in an arc length parametrization. r′(t) = 0 for all t , and form the arc length integral

s(t) =
∫ t

0
‖r′(u)‖ du

Because ‖r′(t)‖ = 0, s(t) is an increasing function and therefore has an inverse t = g(s).
By the formula for the derivative of an inverse (and since s′(t) = ‖r′(t)‖),REMINDER By Theorem 1 in Section

3.8, if g(x) is the inverse of f (x), then

g′(x) = 1

f ′(g(x))

g′(s) = 1

s′(g(s))
= 1

‖r′(g(s))‖
Now we can show that the parametrization

r1(s) = r(g(s))

is an arc length parametrization. Indeed, by the Chain Rule,

‖r′
1(s)‖ = ‖r′(g(s))g′(s)‖ = ‖r′(g(s))‖ 1

‖r′(g(s))‖ = 1

In most cases we cannot evaluate the arc length integral s(t) explicitly, and we cannot
find a formula for its inverse g(s) either. So although arc length parametrizations exist in
general, we can find them explicitly only in special cases.

EXAMPLE 4 Finding an Arc Length Parametrization Find the arc length parametriza-
tion of the helix r(t) = 〈cos 4t, sin 4t, 3t〉.
Solution First, we evaluate the arc length function

‖r′(t)‖ = ‖〈−4 sin 4t, 4 cos t, 3〉‖ =
√

16 sin2 4t + 16 cos2 4t + 32 = 5

s(t) =
∫ t

0
‖r′(t)‖ dt =

∫ t

0
5 dt = 5t

Then we observe that the inverse of s(t) = 5t is t = s/5; that is, g(s) = s/5. As shown
above, an arc length parametrization is

r1(s) = r(g(s)) = r
( s

5

)
=

〈
cos

4s

5
, sin

4s

5
,

3s

5

〉
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As a check, let’s verify that r1(s) has unit speed:

‖r′
1(s)‖ =

∥∥∥∥
〈
−4

5
sin

4s

5
,

4

5
cos

4s

5
,

3

5

〉∥∥∥∥ =
√

16

25
sin2 4s

5
+ 16

25
cos2 4s

5
+ 9

25
= 1

13.3 SUMMARY

• The length s of a path r(t) = 〈x(t), y(t), z(t)〉 for a ≤ t ≤ b is

s =
∫ b

a

‖r′(t)‖ dt =
∫ b

a

√
x′(t)2 + y′(t)2 + z′(t)2 dt

• Arc length function: s(t) =
∫ t

a

‖r′(u)‖ du

• Speed is the derivative of distance traveled with respect to time:

v(t) = ds

dt
= ‖r′(t)‖

• The velocity vector v(t) = r′(t) points in the direction of motion [provided that r′(t) =
0] and its magnitude v(t) = ‖r′(t)‖ is the object’s speed.
• We say that r(s) is an arc length parametrization if ‖r′(s)‖ = 1 for all s. In this case,
the length of the path for a ≤ s ≤ b is b − a.
• If r(t) is any parametrization such that r′(t) = 0 for all t , then

r1(s) = r(g(s))

is an arc length parametrization, where t = g(s) is the inverse of the arc length function.

13.3 EXERCISES

Preliminary Questions
1. At a given instant, a car on a roller coaster has velocity vector

r′ = 〈25, −35, 10〉 (in miles per hour). What would the velocity vector
be if the speed were doubled? What would it be if the car’s direction
were reversed but its speed remained unchanged?

2. Two cars travel in the same direction along the same roller coaster
(at different times). Which of the following statements about their ve-
locity vectors at a given point P on the roller coaster is/are true?
(a) The velocity vectors are identical.
(b) The velocity vectors point in the same direction but may have dif-
ferent lengths.

(c) The velocity vectors may point in opposite directions.

3. A mosquito flies along a parabola with speed v(t) = t2. Let L(t)

be the total distance traveled at time t .

(a) How fast is L(t) changing at t = 2?

(b) Is L(t) equal to the mosquito’s distance from the origin?

4. What is the length of the path traced by r(t) for 4 ≤ t ≤ 10 if r(t)
is an arc length parametrization?

Exercises
In Exercises 1–6, compute the length of the curve over the given in-
terval.

1. r(t) = 〈3t, 4t − 3, 6t + 1〉, 0 ≤ t ≤ 3

2. r(t) = 2t i − 3tk, 11 ≤ t ≤ 15

3. r(t) = 〈
2t, ln t, t2〉

, 1 ≤ t ≤ 4

4. r(t) = 〈
2t2 + 1, 2t2 − 1, t3〉

, 0 ≤ t ≤ 2

5. r(t) = 〈t cos t, t sin t, 3t〉, 0 ≤ t ≤ 2π

6. r(t) = t i + 2tj + (t2 − 3)k, 0 ≤ t ≤ 2. Use the formula:∫ √
t2 + a2 dt = 1

2
t
√

t2 + a2 + 1

2
a2 ln

(
t +

√
t2 + a2

)
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In Exercises 7 and 8, compute the arc length function

s(t) =
∫ t

a
‖r′(u)‖ du for the given value of a.

7. r(t) = 〈
t2, 2t2, t3〉

, a = 0

8. r(t) = 〈
4t1/2, ln t, 2t

〉
, a = 1

In Exercises 9–12, find the speed at the given value of t .

9. r(t) = 〈2t + 3, 4t − 3, 5 − t〉, t = 4

10. r(t) = 〈
et−3, 12, 3t−1〉

, t = 3

11. r(t) = 〈sin 3t, cos 4t, cos 5t〉, t = π
2

12. r(t) = 〈cosh t, sinh t, t〉, t = 0

13. What is the velocity vector of a particle traveling to the right along
the hyperbola y = x−1 with constant speed 5 cm/s when the particle’s
location is

(
2, 1

2

)
?

14. A bee with velocity vector r′(t) starts out at the origin at t = 0
and flies around for T seconds. Where is the bee located at time T if∫ T

0
r′(u) du = 0? What does the quantity

∫ T

0
‖r′(u)‖ du represent?

15. Let

r(t) =
〈
R cos

(
2πNt

h

)
, R sin

(
2πNt

h

)
, t

〉
, 0 ≤ t ≤ h

(a) Show that r(t) parametrizes a helix of radius R and height h making
N complete turns.
(b) Guess which of the two springs in Figure 5 uses more wire.
(c) Compute the lengths of the two springs and compare.

3 cm4 cm

5 turns, radius 4 cm3 turns, radius 7 cm

(A) (B)

FIGURE 5 Which spring uses more wire?

16. Use Exercise 15 to find a general formula for the length of a helix
of radius R and height h that makes N complete turns.

17. The cycloid generated by the unit circle has parametrization

r(t) = 〈t − sin t, 1 − cos t〉
(a) Find the value of t in [0, 2π ] where the speed is at a maximum.
(b) Show that one arch of the cycloid has length 8. Recall the identity
sin2(t/2) = (1 − cos t)/2.

18. Which of the following is an arc length parametrization of a circle
of radius 4 centered at the origin?

(a) r1(t) = 〈4 sin t, 4 cos t〉
(b) r2(t) = 〈4 sin 4t, 4 cos 4t〉
(c) r3(t) = 〈

4 sin t
4 , 4 cos t

4

〉
19. Let r(t) = 〈3t + 1, 4t − 5, 2t〉.
(a) Evaluate the arc length integral s(t) =

∫ t

0
‖r′(u)‖ du.

(b) Find the inverse g(s) of s(t).

(c) Verify that r1(s) = r(g(s)) is an arc length parametrization.

20. Find an arc length parametrization of the line y = 4x + 9.

21. Let r(t) = w + tv be the parametrization of a line.

(a) Show that the arc length function s(t) =
∫ t

0
‖r′(u)‖ du is given

by s(t) = t‖v‖. This shows that r(t) is an arc length parametrizaton if
and only if v is a unit vector.

(b) Find an arc length parametrization of the line with w = 〈1, 2, 3〉
and v = 〈3, 4, 5〉.
22. Find an arc length parametrization of the circle in the plane z = 9
with radius 4 and center (1, 4, 9).

23. Find a path that traces the circle in the plane y = 10 with radius 4
and center (2, 10, −3) with constant speed 8.

24. Find an arc length parametrization of r(t) = 〈
et sin t, et cos t, et

〉
.

25. Find an arc length parametrization of r(t) = 〈
t2, t3〉

.

26. Find an arc length parametrization of the cycloid with parametriza-
tion r(t) = 〈t − sin t, 1 − cos t〉.
27. Find an arc length parametrization of the line y = mx for an arbi-
trary slope m.

28. Express the arc length L of y = x3 for 0 ≤ x ≤ 8 as an integral
in two ways, using the parametrizations r1(t) = 〈

t, t3〉
and r2(t) =〈

t3, t9〉
. Do not evaluate the integrals, but use substitution to show that

they yield the same result.

29. The curve known as the Bernoulli spiral (Figure 6) has
parametrization r(t) = 〈

et cos 4t, et sin 4t
〉
.

(a) Evaluate s(t) =
∫ t

−∞
‖r′(u)‖ du. It is convenient to take lower

limit −∞ because r(−∞) = 〈0, 0〉.
(b) Use (a) to find an arc length parametrization of r(t).

20

t = 0

t = 2π

−10

x

y

FIGURE 6 Bernoulli spiral.
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Further Insights and Challenges
30. Prove that the length of a curve as computed using the arc
length integral does not depend on its parametrization. More precisely,
let C be the curve traced by r(t) for a ≤ t ≤ b. Let f (s) be a differen-
tiable function such that f ′(s) > 0 and that f (c) = a and f (d) = b.
Then r1(s) = r(f (s)) parametrizes C for c ≤ s ≤ d. Verify that∫ b

a
‖r′(t)‖ dt =

∫ d

c
‖r′

1(s)‖ ds

31. The unit circle with the point (−1, 0) removed has parametrization
(see Exercise 73 in Section 11.1)

r(t) =
〈

1 − t2

1 + t2
,

2t

1 + t2

〉
, −∞ < t < ∞

Use this parametrization to compute the length of the unit circle as an
improper integral. Hint: The expression for ‖r′(t)‖ simplifies.

32. The involute of a circle, traced by a point at the end of a thread
unwinding from a circular spool of radius R, has parametrization (see
Exercise 26 in Section 12.2)

r(θ) = 〈
R(cos θ + θ sin θ), R(sin θ − θ cos θ)

〉
Find an arc length parametrization of the involute.

x
θ

(R cos θ, R sin θ)

String
(length Rθ)

R

P

y

FIGURE 7 The involute of a circle.

33. The curve r(t) = 〈t − tanh t, sech t〉 is called a tractrix (see Ex-
ercise 92 in Section 11.1).

(a) Show that s(t) =
∫ t

0
‖r′(u)‖ du is equal to s(t) = ln(cosh t).

(b) Show that t = g(s) = ln(es +
√

e2s − 1) is an inverse of s(t) and
verify that

r1(s) =
〈
tanh−1

(√
1 − e−2s

)
−

√
1 − e−2s , e−s

〉
is an arc length parametrization of the tractrix.

13.4 Curvature
Curvature is a measure of how much a curve bends. It is used to study geometric prop-

FIGURE 1 Curvature is a key ingredient in
roller coaster design.

FIGURE 2 Biochemists study the effect of
the curvature of DNA strands on biological
processes.

erties of curves and motion along curves, and has applications in diverse areas such as
roller coaster design (Figure 1), optics, eye surgery (see Exercise 60), and biochemistry
(Figure 2).

In Chapter 4, we used the second derivative f ′′(x) to measure the bending or concavity
of the graph of y = f (x), so it might seem natural to take f ′′(x) as our definition of
curvature. However, there are two reasons why this proposed definition will not work.
First, f ′′(x) makes sense only for a graph y = f (x) in the plane, and our goal is to
define curvature for curves in three-space. A more serious problem is that f ′′(x) does not
truly capture the intrinsic curvature of a curve. A circle, for example, is symmetric, so its
curvature ought to be the same at every point (Figure 3). But the upper semicircle is the
graph of f (x) = (1 − x2)1/2 and the second derivative f ′′(x) = −(1 − x2)−3/2 does not
have the same value at each point of the semicircle. We must look for a definition that
depends only on the curve itself and not how it is oriented relative to the axes.

Consider a path with parametrization r(t) = 〈x(t), y(t), z(t)〉. We assume that r′(t) =
0 for all t in the domain of r(t). A parametrization with this property is called regular.
At every point P along the path there is a unit tangent vector T = TP that points in the
direction of motion of the parametrization. We write T(t) for the unit tangent vector at the
terminal point of r(t):

Unit tangent vector = T(t) = r′(t)
‖r′(t)‖

For example, if r(t) = 〈
t, t2, t3

〉
, then r′(t) = 〈

1, 2t, 3t2
〉
, and the unit tangent vector at

P = (1, 1, 1), which is the terminal point of r(1) = 〈1, 1, 1〉, is
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TP = 〈1, 2, 3〉
‖〈1, 2, 3〉‖ = 〈1, 2, 3〉√

12 + 22 + 32
=

〈
1√
14

,
2√
14

,
3√
14

〉

If we choose another parametrization, say r1(s), then we can also view T as function of

x

Semicircle
y = f (x)

f ″(0) = −1
f ″(0.7) ≈ −2.75

y

FIGURE 3 The second derivative of
f (x) =

√
1 − x2 does not capture the

curvature of the circle, which by symmetry
should be the same at all points.

s: T(s) is the unit tangent vector at the terminal point of r1(s).
Now imagine walking along a path and observing how the unit tangent vector T

Curvature is large
where the unit tangent
changes direction rapidly

FIGURE 4 The unit tangent vector varies in
direction but not in length.

changes direction (Figure 4). A change in T indicates that the path is bending, and the

more rapidly T changes, the more the path bends. Thus,

∥∥∥∥dT
dt

∥∥∥∥ would seem to be a good

measure of curvature. However,

∥∥∥∥dT
dt

∥∥∥∥ depends on how fast you walk (when you walk

faster, the unit tangent vector changes more quickly). Therefore, we assume that you walk

at unit speed. In other words, curvature is the magnitude κ(s) =
∥∥∥∥dT

ds

∥∥∥∥, where s is the

parameter of an arc length parametrization. Recall that r(s) is an arc length parametriza-
tion if ‖r(s)‖ = 1 for all s.

DEFINITION Curvature Let r(s) be an arc length parametrization and T the unit
tangent vector. The curvature at r(s) is the quantity (denoted by a lowercase Greek
letter “kappa”)

κ(s) =
∥∥∥∥dT

ds

∥∥∥∥ 1

Our first two examples illustrate curvature in the case of lines and circles.

EXAMPLE 1 A Line Has Zero Curvature Compute the curvature at each point on the
line r(t) = 〈x0, y0, z0〉 + tu, where ‖u‖ = 1.

Solution First, we note that because u is a unit vector, r(t) is an arc length parametrization.
Indeed, r′(t) = u and thus ‖r′(t)‖ = ‖u‖ = 1. Thus we have T(t) = r′(t)/‖r′(t)‖ = r′(t)
and hence T′(t) = r′′(t) = 0 (because r′(t) = u is constant). As expected, the curvature
is zero at all points on a line:

κ(t) =
∥∥∥∥dT

dt

∥∥∥∥ = ∥∥r′′(t)
∥∥ = 0

EXAMPLE 2 The Curvature of a Circle of Radius R Is 1/R Compute the curvature of
a circle of radius R.

Solution Assume the circle is centered at the origin, so that it has parametrization r(θ) =
〈R cos θ, R sin θ〉 (Figure 5). This is not an arc length parametrization if R = 1. To find

x
R

r (  ) = R〈cos   , sin   〉

T = 〈 −sin   , cos    〉 

y

FIGURE 5 The unit tangent vector at a point
on a circle of radius R.

an arc length parametrization, we compute the arc length function:

s(θ) =
∫ θ

0
‖r′(u)‖ du =

∫ θ

0
R du = Rθ

Thus s = Rθ , and the inverse of the arc length function is θ = g(s) = s/R. In Section
13.3, we showed that r1(s) = r(g(s)) is an arc length parametrization. In our case, we
obtain

Example 2 shows that a circle of large
radius R has small curvature 1/R. This
makes sense because your direction of
motion changes slowly when you walk at
unit speed along a circle of large radius.

r1(s) = r(g(s)) = r
( s

R

)
=

〈
R cos

s

R
, R sin

s

R

〉
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The unit tangent vector and its derivative are

T(s) = dr1

ds
= d

ds

〈
R cos

s

R
, R sin

s

R

〉
=

〈
− sin

s

R
, cos

s

R

〉
dT
ds

= − 1

R

〈
cos

s

R
, sin

s

R

〉

By definition of curvature,

κ(s) =
∥∥∥∥dT

ds

∥∥∥∥ = 1

R

∥∥∥〈
cos

s

R
, sin

s

R

〉∥∥∥ = 1

R

This shows that the curvature is 1/R at all points on the circle.

In practice, it is often impossible to find an arc length parametrization explicitly.
Fortunately, we can compute curvature using any regular parametrization r(t). To derive
a formula, we need the following two results.

First is the fact that T(t) and T′(t) are orthogonal (see the marginal note). Second,

REMINDER To prove that T(t) and T′(t)
are orthogonal, note that T(t) is a unit
vector, so T(t) · T(t) = 1. Differentiate
using the Product Rule for Dot Products:

d

dt
T(t) · T(t) = 2T(t) · T′(t) = 0

This shows that T(t) · T′(t) = 0

arc length s is function s(t) of time t , so the derivatives of T with respect to t and s are
related by the Chain Rule. Denoting the derivative with respect to t by a prime, we have

T′(t) = dT
dt

= dT
ds

ds

dt
= v(t)

dT
ds

where v(t) = ds

dt
= ‖r′(t)‖ is the speed of r(t). Since curvature is the magnitude

∥∥∥∥dT
ds

∥∥∥∥,

we obtain

‖T′(t)‖ = v(t)κ(t) 2

.

To apply Eq. (3) to plane curves, replace
r(t) = 〈x(t), y(t)〉 by
r(t) = 〈x(t), y(t), 0〉 and compute the
cross product.

THEOREM 1 Formula for Curvature If r(t) is a regular parametrization, then the
curvature at r(t) is

κ(t) = ‖r′(t) × r′′(t)‖
‖r′(t)‖3

3

Proof Since v(t) = ‖r′(t)‖, we have r′(t) = v(t)T(t). By the Product Rule,

r′′(t) = v′(t)T(t) + v(t)T′(t)

Now compute the following cross product, using the fact that T(t) × T(t) = 0:

r′(t) × r′′(t) = v(t)T(t) × (
v′(t)T(t) + v(t)T′(t)

)
= v(t)2T(t) × T′(t) 4

Because T(t) and T′(t) are orthogonal,

REMINDER By Theorem 1 in Section
12.4,

‖v × w‖ = ‖v‖ ‖w‖ sin θ

where θ is the angle between v and w.

‖T(t) × T′(t)‖ = ‖T(t)‖ ‖T′(t)‖ sin
π

2
= ‖T′(t)‖

Eq. (4) yields ‖r′(t) × r′′(t)‖ = v(t)2‖T′(t)‖. Using Eq. (2), we obtain

‖r′(t) × r′′(t)‖ = v(t)2‖T′(t)‖ = v(t)3κ(t) = ‖r′(t)‖3κ(t)

This yields the desired formula.
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EXAMPLE 3 Twisted Cubic Curve Calculate the curvature κ(t) of the twisted

1 2−1−2

2

1

t

y

y =   (t)

FIGURE 6 Graph of the curvature κ(t) of
the twisted cubic r(t) = 〈t, t2, t3〉.

Maximum 
curvature
at  t = 0

t = 1

t = −1

z

x

y

FIGURE 7 Graph of the twisted cubic
r(t) = 〈t, t2, t3〉 colored by curvature.

cubic r(t) = 〈t, t2, t3〉. Then plot the graph of κ(t) and determine where the curvature is
largest.

Solution The derivatives are

r′(t) = 〈
1, 2t, 3t2〉, r′′(t) = 〈0, 2, 6t〉

The parametrization is regular because r′(t) = 0 for all t , so we may use Eq. (3):

r′(t) × r′′(t) =
∣∣∣∣∣∣

i j k
1 2t 3t2

0 2 6t

∣∣∣∣∣∣ = 6t2i − 6tj + 2k

κ(t) = ‖r′(t) × r′′(t)‖
‖r′(t)‖3

=
√

36t4 + 36t2 + 4

(1 + 4t2 + 9t4)3/2

The graph of κ(t) in Figure 6 shows that the curvature is largest at t = 0. The curve r(t) is
illustrated in Figure 7. The plot is colored by curvature, with large curvature represented
in blue, small curvature in green.

In the second paragraph of this section, we pointed out that the curvature of a graph
y = f (x) must involve more than just the second derivative f ′′(x). We now show that
the curvature can be expressed in terms of both f ′′(x) and f ′(x).

THEOREM 2 Curvature of a Graph in the Plane The curvature at the point (x, f (x))

on the graph of y = f (x) is equal to

κ(x) = |f ′′(x)|(
1 + f ′(x)2

)3/2
5

Proof The curve y = f (x) has parametrization r(x) = 〈x, f (x)〉. Therefore, r′(x) =〈
1, f ′(x)

〉
and r′′(x) = 〈

0, f ′′(x)
〉
. To apply Theorem 1, we treat r′(x) and r′′(x) as vectors

in R3 with z-component equal to zero. Then

r′(x) × r′′(x) =
∣∣∣∣∣∣

i j k
1 f ′(x) 0
0 f ′′(x) 0

∣∣∣∣∣∣ = f ′′(x)k

Since ‖r′(x)‖ = ∥∥〈
1, f ′(x)

〉∥∥ = (1 + f ′(x)2)1/2, Eq. (3) yields

FIGURE 8 The angle θ changes as the curve
bends.

κ(x) = ‖r′(x) × r′′(x)‖
‖r′(x)‖3

= |f ′′(x)|(
1 + f ′(x)2

)3/2

CONCEPTUAL INSIGHT Curvature for plane curves has a geometric interpretation in
terms of the angle of inclination, defined as the angle θ between the tangent vector
and the horizonal (Figure 8). The angle θ changes as the curve bends, and we can show
that the curvature κ is the rate of change of θ as you walk along the curve at unit speed
(see Exercise 61).
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EXAMPLE 4 Compute the curvature of f (x) = x3 − 3x2 + 4 at x = 0, 1, 2, 3.

Solution We apply Eq. (5):

f ′(x) = 3x2 − 6x = 3x(x − 2), f ′′(x) = 6x − 6

κ(x) = |f ′′(x)|(
1 + f ′(x)2

)3/2
= |6x − 6|(

1 + 9x2(x − 2)2
)3/2

We obtain the following values:

κ(0) = 6

(1 + 0)3/2
= 6, κ(1) = 0

(1 + 9)3/2
= 0

κ(2) = 6

(1 + 0)3/2
= 6, κ(3) = 12

823/2
≈ 0.016

Figure 9 shows that the graph bends more where the curvature is large.

−1

1

f (x) = x3 − 3x2 + 4

1 2 3−1

6

Curvature
κ(x)4

x

y

FIGURE 9 Graph of f (x) = x3 − 3x2 + 4
and the curvature κ(x).

Unit Normal Vector

We noted above that T′(t) and T(t) are orthogonal. The unit vector in the direction of
T′(t), assuming it is nonzero, is called the unit normal vector and is denoted N(t) or
simply N:

Unit normal vector = N(t) = T′(t)
‖T′(t)‖ 6

Furthermore, ‖T′(t)‖ = v(t)κ(t) by Eq. (2), so we have

T′(t) = v(t)κ(t)N(t) 7

Intuitively, N points the direction in which the curve is turning (see Figure 11). This is

N

T

FIGURE 10 For a plane curve, the unit
normal vector points in the direction of
bending.

particularly clear for a plane curve. In this case, there are two unit vectors orthogonal to
T (Figure 10), and of these two, N is the vector that points to the “inside” of the curve.

EXAMPLE 5 Unit Normal to a Helix Find the unit normal vector at t = π
4 to the helix

r(t) = 〈cos t, sin t, t〉.

y
x

z

4

N

T
r(t)

t =

FIGURE 11 Unit tangent and unit normal
vectors at t = π

4 on the helix in Example 5.

Solution The tangent vector r′(t) = 〈− sin t, cos t, 1〉 has length
√

2, so

T(t) = r′(t)
‖r′(t)‖ = 1√

2
〈− sin t, cos t, 1〉

T′(t) = 1√
2

〈− cos t, − sin t, 0〉

N(t) = T′(t)
‖T′(t)‖ = 〈− cos t, − sin t, 0〉

Hence, N
(π

4

)
=

〈
−

√
2

2
, −

√
2

2
, 0

〉
(Figure 11).

We conclude by describing another interpretation of curvature in terms of the oscu-
lating or “best-fitting circle” circle. Suppose that P is a point on a plane curve C where
the curvature κP is nonzero. The osculating circle, denoted OscP , is the circle of radius
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R = 1/κP through P whose center Q lies in the direction of the unit normal N (Figure 12).
In other words, the center Q is determined by

y

x
O

Q

P
r (t0)

RN

T

FIGURE 12 The center Q of the osculating
circle at P lies at a distance R = κ−1

P
from

P in the normal direction.

−−→
OQ = r(t0) + κ−1

P N = r(t0) + RN 8

Among all circles tangent to C at P , OscP “best fits” the curve (Figure 13; see also
Exercise 71). We refer to R = 1/κP as the radius of curvature at P . The center Q of
OscP is called the center of curvature at P .

y

x
P

Osculating
circle

FIGURE 13 Among all circles tangent to the
curve at P , the osculating circle is the “best
fit” to the curve.

EXAMPLE 6 Parametrize the osculating circle to y = x2 at x = 1
2 .

Solution Let f (x) = x2. We use the parametrization

r(x) = 〈x, f (x)〉 = 〈
x, x2〉

and proceed by the following steps.

Step 1. Find the radius.
Apply Eq. (5) to f (x) = x2 to compute the curvature:

κ(x) = |f ′′(x)|(
1 + f ′(x)2

)3/2
= 2(

1 + 4x2
)3/2

, κ

(
1

2

)
= 2

23/2
= 1√

2

The osculating circle has radius R = 1/κ
( 1

2

) = √
2.

Step 2. Find N at t = 1
2 .

For a plane curve, there is an easy way to find N without computing T′. The tangent
vector is r′(x) = 〈1, 2x〉, and we know that 〈2x, −1〉 is orthogonal to r′(x) (because
their dot product is zero). Therefore, N(x) is the unit vector in one of the two directions
± 〈2x, −1〉. Figure 14 shows that the unit normal vector points in the positive y-

y

y = x2

x

1
2

5
4

,Q = (− )
1
2

1
4

,P = (N )

FIGURE 14 The osculating circle to y = x2

at x = 1
2 has center Q and radius R = √

2.

direction (the direction of bending). Therefore,

N(x) = 〈−2x, 1〉
‖〈−2x, 1〉‖ = 〈−2x, 1〉√

1 + 4x2
, N

(
1

2

)
= 1√

2
〈−1, 1〉

Step 3. Find the center Q.
Apply Eq. (8) with t0 = 1

2 :

−−→
OQ = r

(
1

2

)
+ κ

(
1

2

)−1

N
(

1

2

)
=

〈
1

2
,

1

4

〉
+ √

2

( 〈−1, 1〉√
2

)
=

〈
−1

2
,

5

4

〉

Step 4. Parametrize the osculating circle.
The osculating circle has radius R = √

2, so it has parametrization

c(t) =
〈
−1

2
,

5

4

〉
︸ ︷︷ ︸

Center

+√
2 〈cos t, sin t〉

To define the osculating circle at a point P on a space curve C, we must first specify theIf a curve C lies in a plane, then this plane
is the osculating plane. For a general curve
in three-space, the osculating plane varies
from point to point.

plane in which the circle lies. The osculating plane is the plane through P determined by
the unit tangent TP and the unit normal NP at P (we assume that T′ = 0, so N is defined).
Intuitively, the osculating plane is the plane that “most nearly” contains the curve C near
P (see Figure 15). The osculating circle is the circle in the osculating plane through P of
radius R = 1/κP whose center is located in the normal direction NP from P . Equation
(8) remains valid for space curves.
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4 8
Osculating circle at t =
Curvature is    = 0.64 

Osculating circle at t =
Curvature is    = 4.12 

(A) (B)

z

y

x

z

y

x

N

T

FIGURE 15 Osculating circles to
r(t) = 〈cos t, sin t, sin 2t〉.

13.4 SUMMARY

• A parametrization r(t) is called regular if r′(t) = 0 for all t . If r(t) is regular, we define

the unit tangent vector T(t) = r′(t)
‖r′(t)‖ .

• Curvature is defined by κ(s) =
∥∥∥∥dT

ds

∥∥∥∥, where r(s) is an arc length parametrization.

• In practice, we compute curvature using the following formula, which is valid for arbi-
trary regular parametrizations:

κ(t) = ‖r′(t) × r′′(t)‖
‖r′(t)‖3

• The curvature at a point on a graph y = f (x) in the plane is

κ(x) = |f ′′(x)|(
1 + f ′(x)2

)3/2

• If ‖T′(t)‖ = 0, we define the unit normal vector N(t) = T′(t)
‖T′(t)‖ .

• T′(t) = κ(t)v(t)N(t)
• The osculating plane at a point P on a curve C is the plane through P determined by
the vectors TP and NP . It is defined only if the curvature κP at P is nonzero.
• The osculating circle OscP is the circle in the osculating plane through P of radius
R = 1/κP whose center Q lies in the normal direction NP :

−−→
OQ = r(t0) + κ−1

P NP = r(t0) + RNP

The center of OscP is called the center of curvature and R is called the radius of curvature.

13.4 EXERCISES

Preliminary Questions
1. What is the unit tangent vector of a line with direction vector

v = 〈2, 1, −2〉?
2. What is the curvature of a circle of radius 4?

3. Which has larger curvature, a circle of radius 2 or a circle of ra-
dius 4?

4. What is the curvature of r(t) = 〈2 + 3t, 7t, 5 − t〉?
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5. What is the curvature at a point where T′(s) = 〈1, 2, 3〉 in an arc
length parametrization r(s)?

6. What is the radius of curvature of a circle of radius 4?

7. What is the radius of curvature at P if κP = 9?

Exercises
In Exercises 1–6, calculate r′(t) and T(t), and evaluate T(1).

1. r(t) = 〈
4t2, 9t

〉
2. r(t) = 〈

et , t2〉
3. r(t) = 〈

3 + 4t, 3 − 5t, 9t
〉

4. r(t) = 〈
1 + 2t, t2, 3 − t2〉

5. r(t) = 〈
cos πt, sin πt, t

〉
6. r(t) = 〈

et , e−t , t2〉
In Exercises 7–10, use Eq. (3) to calculate the curvature function κ(t).

7. r(t) = 〈
1, et , t

〉
8. r(t) = 〈

4 cos t, t, 4 sin t
〉

9. r(t) = 〈
4t + 1, 4t − 3, 2t

〉
10. r(t) = 〈

t−1, 1, t
〉

In Exercises 11–14, use Eq. (3) to evaluate the curvature at the given
point.

11. r(t) = 〈
1/t, 1/t2, t2〉

, t = −1

12. r(t) = 〈
3 − t, et−4, 8t − t2〉

, t = 4

13. r(t) = 〈
cos t, sin t, t2〉

, t = π
2

14. r(t) = 〈
cosh t, sinh t, t

〉
, t = 0

In Exercises 15–18, find the curvature of the plane curve at the point
indicated.

15. y = et , t = 3 16. y = cos x, x = 0

17. y = t4, t = 2 18. y = tn, t = 1

19. Find the curvature of r(t) = 〈2 sin t, cos 3t, t〉 at t = π
3 and t = π

2
(Figure 16).

y
x

z

 
3

t =

FIGURE 16 The curve r(t) = 〈2 sin t, cos 3t, t〉.
20. Find the curvature function κ(x) for y = sin x. Use a com-
puter algebra system to plot κ(x) for 0 ≤ x ≤ 2π . Prove that the curva-
ture takes its maximum at x = π

2 and 3π
2 . Hint: As a shortcut to finding

the max, observe that the maximum of the numerator and the minimum
of the denominator of κ(x) occur at the same points.

21. Show that the tractrix r(t) = 〈t − tanh t, sech t〉 has the curvature
function κ(t) = sech t .

22. Show that curvature at an inflection point of a plane curvey = f (x)

is zero.

23. Find the value of α such that the curvature of y = eαx at x = 0 is
as large as possible.

24. Find the point of maximum curvature on y = ex .

25. Show that the curvature function of the parametrization r(t) =
〈a cos t, b sin t〉 of the ellipse

(x

a

)2 +
(y

b

)2 = 1 is

κ(t) = ab

(b2 cos2 t + a2 sin2 t)3/2
9

26. Use a sketch to predict where the points of minimal and maximal
curvature occur on an ellipse. Then use Eq. (9) to confirm or refute your
prediction.

27. In the notation of Exercise 25, assume that a ≥ b. Show that
b/a2 ≤ κ(t) ≤ a/b2 for all t .

28. Use Eq. (3) to prove that for a plane curve r(t) = 〈x(t), y(t)〉,

κ(t) = |x′(t)y′′(t) − x′′(t)y′(t)|(
x′(t)2 + y′(t)2

)3/2
10

In Exercises 29–32, use Eq. (10) to compute the curvature at the given
point.

29.
〈
t2, t3〉

, t = 2 30.
〈
cosh s, s

〉
, s = 0

31.
〈
t cos t, sin t

〉
, t = π 32.

〈
sin 3s, 2 sin 4s

〉
, s = π

2

33. Let s(t) =
∫ t

−∞
‖r′(u)‖ du for the Bernoulli spiral r(t) =〈

et cos 4t, et sin 4t
〉

(see Exercise 29 in Section 13.3). Show that the
radius of curvature is proportional to s(t).

34. The Cornu spiral is the plane curve r(t) = 〈x(t), y(t)〉, where

x(t) =
∫ t

0
sin

u2

2
du, y(t) =

∫ t

0
cos

u2

2
du

Verify that κ(t) = |t |. Since the curvature increases linearly, the Cornu
spiral is used in highway design to create transitions between straight
and curved road segments (Figure 17).

1−1

−1

1

x

y

FIGURE 17 Cornu spiral.
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35. Plot and compute the curvature κ(t) of the clothoid
r(t) = 〈x(t), y(t)〉, where

x(t) =
∫ t

0
sin

u3

3
du, y(t) =

∫ t

0
cos

u3

3
du

36. Find the unit normal vector N(θ) to r(θ) = R 〈cos θ, sin θ〉, the
circle of radius R. Does N(θ) point inside or outside the circle? Draw
N(θ) at θ = π

4 with R = 4.

37. Find the unit normal vector N(t) to r(t) = 〈4, sin 2t, cos 2t〉.
38. Sketch the graph of r(t) = 〈

t, t3〉
. Since r′(t) = 〈

1, 3t2〉
, the unit

normal N(t) points in one of the two directions ±〈−3t2, 1
〉
. Which sign

is correct at t = 1? Which is correct at t = −1?

39. Find the normal vectors to r(t) = 〈t, cos t〉 at t = π
4 and t = 3π

4 .

40. Find the unit normal to the Cornu spiral (Exercise 34) at t = √
π .

41. Find the unit normal to the clothoid (Exercise 35) at t = π1/3.

42. Method for Computing N Let v(t) = ‖r′(t)‖. Show that

N(t) = v(t)r′′(t) − v′(t)r′(t)
‖v(t)r′′(t) − v′(t)r′(t)‖ 11

Hint: N is the unit vector in the direction T′(t). Differentiate T(t) =
r′(t)/v(t) to show that v(t)r′′(t) − v′(t)r′(t) is a positive multiple of
T′(t).

In Exercises 43–48, use Eq. (11) to find N at the point indicated.

43.
〈
t2, t3〉

, t = 1

44.
〈
t − sin t, 1 − cos t

〉
, t = π

45.
〈
t2/2, t3/3, t

〉
, t = 1 46.

〈
t−1, t, t2〉

, t = −1

47.
〈
t, et , t

〉
, t = 0 48.

〈
cosh t, sinh t, t2〉

, t = 0

49. Let f (x) = x2. Show that the center of the osculating circle at

(x0, x2
0 ) is given by

(
−4x3

0 , 1
2 + 3x2

0

)
.

50. Use Eq. (8) to find the center of curvature to r(t) = 〈
t2, t3〉

at
t = 1.

In Exercises 51–58, find a parametrization of the osculating circle at
the point indicated.

51. r(t) = 〈
cos t, sin t

〉
, t = π

4 52. r(t) = 〈
sin t, cos t

〉
, t = 0

53. y = x2, x = 1 54. y = sin x, x = π
2

55.
〈
t − sin t, 1 − cos t

〉
, t = π

56. r(t) = 〈
t2/2, t3/3, t

〉
, t = 0

57. r(t) = 〈
cos t, sin t, t

〉
, t = 0

58. r(t) = 〈
cosh t, sinh t, t

〉
, t = 0

59. Figure 18 shows the graph of the half-ellipse y = ±
√

2rx − px2,
where r and p are positive constants. Show that the radius of curvature
at the origin is equal to r . Hint: One way of proceeding is to write the
ellipse in the form of Exercise 25 and apply Eq. (9).

x

y

r

r

FIGURE 18 The curve y = ±
√

2rx − px2 and the osculating circle at
the origin.

60. In a recent study of laser eye surgery by Gatinel, Hoang-Xuan,
and Azar, a vertical cross section of the cornea is modeled by the half-
ellipse of Exercise 59. Show that the half-ellipse can be written in the
form x = f (y), where f (y) = p−1(

r −
√

r2 − py2
)
. During surgery,

tissue is removed to a depth t (y) at height y for −S ≤ y ≤ S, where
t (y) is given by Munnerlyn’s equation (for some R > r):

t (y) =
√

R2 − S2 −
√

R2 − y2 −
√

r2 − S2 +
√

r2 − y2

After surgery, the cross section of the cornea has the shape x =
f (y) + t (y) (Figure 19). Show that after surgery, the radius of cur-
vature at the point P (where y = 0) is R.

Segment of
length t (y)

y

S

−S

Eye shape
before surgery
x = f (y)

Eye shape
after surgery
x = f (y) + t (y)

P x

FIGURE 19 Contour of cornea before and after surgery.

61. The angle of inclination at a point P on a plane curve is the angle
θ between the unit tangent vector T and the x-axis (Figure 20). Assume
that r(s) is a arc length parametrization, and let θ = θ(s) be the angle
of inclination at r(s). Prove that

κ(s) =
∣∣∣∣dθ

ds

∣∣∣∣ 12

Hint: Observe that T(s) = 〈cos θ(s), sin θ(s)〉.
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y

P

x

T = 〈cos   , sin   〉

FIGURE 20 The curvature at P is the quantity |dθ/ds|.

62. A particle moves along the path y = x3 with unit speed. How fast
is the tangent turning (i.e., how fast is the angle of inclination changing)
when the particle passes through the point (2, 8)?

63. Let θ(x) be the angle of inclination at a point on the graph y = f (x)

(see Exercise 61).

(a) Use the relation f ′(x) = tan θ to prove that
dθ

dx
= f ′′(x)

(1 + f ′(x)2)
.

(b) Use the arc length integral to show that
ds

dx
=

√
1 + f ′(x)2.

(c) Now give a proof of Eq. (5) using Eq. (12).

64. Use the parametrization r(θ) = 〈f (θ) cos θ, f (θ) sin θ〉 to show
that a curve r = f (θ) in polar coordinates has curvature

κ(θ) = |f (θ)2 + 2f ′(θ)2 − 2f (θ)f ′′(θ)|(
f (θ)2 + f ′(θ)2

)3/2
13

In Exercises 65–67, use Eq. (13) to find the curvature of the curve given
in polar form.

65. f (θ) = 2 cos θ 66. f (θ) = θ 67. f (θ) = eθ

68. Use Eq. (13) to find the curvature of the general Bernoulli spiral
r = aebθ in polar form (a and b are constants).

69. Show that both r′(t) and r′′(t) lie in the osculating plane for a
vector function r(t). Hint: Differentiate r′(t) = v(t)T(t).

70. Show that

γ (s) = r(t0) + 1

κ
N + 1

κ

(
(sin κs)T − (cos κs)N

)
is an arc length parametrization of the osculating circle at r(t0).

71. Two vector-valued functions r1(s) and r2(s) are said to agree to
order 2 at s0 if

r1(s0) = r2(s0), r′
1(s0) = r′

2(s0), r′′
1(s0) = r′′

2(s0)

Let r(s) be an arc length parametrization of a path C, and let P be the
terminal point of r(0). Let γ (s) be the arc length parametrization of the
osculating circle given in Exercise 70. Show that r(s) and γ (s) agree
to order 2 at s = 0 (in fact, the osculating circle is the unique circle that
approximates C to order 2 at P ).

72. Let r(t) = 〈x(t), y(t), z(t)〉 be a path with curvature κ(t) and de-
fine the scaled path r1(t) = 〈λx(t), λy(t), λz(t)〉, where λ = 0 is a
constant. Prove that curvature varies inversely with the scale factor.
That is, prove that the curvature κ1(t) of r1(t) is κ1(t) = λ−1κ(t).
This explains why the curvature of a circle of radius R is proportional
to 1/R (in fact, it is equal to 1/R). Hint: Use Eq. (3).

Further Insights and Challenges
73. Show that the curvature of Viviani’s curve, given by r(t) =
〈1 + cos t, sin t, 2 sin(t/2)〉, is

κ(t) =
√

13 + 3 cos t

(3 + cos t)3/2

74. Let r(s) be an arc length parametrization of a closed curve C of
length L. We call C an oval if dθ/ds > 0 (see Exercise 61). Observe
that −N points to the outside of C. For k > 0, the curve C1 defined
by r1(s) = r(s) − kN is called the expansion of c(s) in the normal
direction.

(a) Show that ‖r′
1(s)‖ = ‖r′(s)‖ + kκ(s).

(b) As P moves around the oval counterclockwise, θ increases by
2π [Figure 21(A)]. Use this and a change of variables to prove that∫ L

0
κ(s) ds = 2π .

(c) Show that C1 has length L + 2πk.

In Exercises 75–82, let B denote the binormal vector at a point on a
space curve C, defined by B = T × N.

75. Show that B is a unit vector.

(A) An oval

T
−N

C1 is the expansion of C
in the normal direction.

(B)

C1

C

x

y

= 0

P P

C

FIGURE 21 As P moves around the oval, θ increases by 2π .

76. Follow steps (a)–(c) to prove that there is a number τ (lowercase
Greek “tau”) called the torsion such that

dB
ds

= −τN 14

(a) Show that
dB
ds

= T × dN
ds

and conclude that dB/ds is orthogonal

to T.
(b) Differentiate B · B = 1 with respect to s to show that dB/ds is
orthogonal to B.
(c) Conclude that dB/ds is a multiple of N.

77. Show that if C is contained in a plane P , then B is a unit vector
normal to P . Conclude that τ = 0 for a plane curve.
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78. Torsion means “twisting.” Is this an appropriate name for
τ? Explain by interpreting τ geometrically.

79. Use the identity

a × (b × c) = (a · c)b − (a · b)c

to prove

N × B = T, B × T = N 15

80. Follow steps (a)–(b) to prove

dN
ds

= −κT + τB 16

(a) Show that dN/ds is orthogonal to N. Conclude that dN/ds lies in
the plane spanned by T and B, and hence, dN/ds = aT + bB for some
scalars a, b.

(b) Use N · T = 0 to show that T · dN
ds

= −N · dT
ds

and compute a.

Compute b similarly. Equations (14) and (16) together with dT/dt =
κN are called the Frenet formulas and were discovered by the French
geometer Jean Frenet (1816–1900).

81. Show that r′ × r′′ is a multiple of B. Conclude that

B = r′ × r′′
‖r′ × r′′‖ 17

82. The vector N can be computed using N = B × T [Eq. (15)] with
B, as in Eq. (17). Use this method to find N in the following cases:

(a) r(t) = 〈
cos t, t, t2〉

at t = 0

(b) r(t) = 〈
t2, t−1, t

〉
at t = 1

13.5 Motion in Three-Space
In this section, we study the motion of a particle traveling along a path r(t). Recall that

FIGURE 1 The flight of the space shuttle is
analyzed using vector calculus.

the velocity vector is the derivative

v(t) = r′(t) = lim
h→0

r(t + h) − r(t)
h

As we have seen, v(t) points in the direction of motion (if it is nonzero), and its magnitude
v(t) = ‖v(t)‖ is the particle’s speed. The acceleration vector is the second derivative
r′′(t), which we shall denote a(t). In summary,

v(t) = r′(t), v(t) = ‖v(t)‖, a(t) = r′′(t)

EXAMPLE 1 Calculate and plot the velocity and acceleration vectors at t = 1 of
r(t) = 〈

sin 2t,− cos 2t,
√

t + 1
〉
. Then find the speed at t = 1 (Figure 2).

x

y

r(1)

v(1)

a(1)

z

FIGURE 2

Solution

v(t) = r′(t) =
〈
2 cos 2t, 2 sin 2t,

1

2
(t + 1)−1/2

〉
, v(1) ≈ 〈−0.83, 0.84, 0.35〉

a(t) = r′′(t) =
〈
−4 sin 2t, 4 cos 2t,−1

4
(t + 1)−3/2

〉
, a(1) ≈ 〈−3.64, 0.54, −0.089〉

The speed at t = 1 is

‖v(1)‖ ≈
√

(−0.83)2 + (0.84)2 + (0.35)2 ≈ 1.23

If an object’s acceleration is given, we can solve for v(t) and r(t) by integrating twice:

v(t) =
∫

a(t) dt + v0

r(t) =
∫ t

0
v(t) dt + r0

with v0 and r0 determined by initial conditions.
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EXAMPLE 2 Find r(t) if

a(t) = 2i + 12tj, v(0) = 7i, r(0) = 2i + 9k

Solution We have

v(t) =
∫

a(t) dt + v0 = 2t i + 6t2j + v0

The initial condition v(0) = v0 = 7i gives us v(t) = 2t i + 6t2j + 7i. Then we have

r(t) =
∫

v(t) dt + r0 = t2i + 2t3j + 7t i + r0

The initial condition r(0) = r0 = 2i + 9k yields

r(t) = t2i + 2t3j + 7t i + (2i + 9k) = (t2 + 7t + 2)i + 2t3j + 9k

Newton’s Second Law of Motion is often stated in the scalar form F = ma, but a
more general statement is the vector law F = ma, where F is the net force vector acting on
the object and a is the acceleration vector. When the force varies from position to position,
we write F(r(t)) for the force acting on a particle with position vector r(t) at time t . Then
Newton’s Second Law reads

F(r(t)) = ma(t) or F(r(t)) = mr′′(t) 1

EXAMPLE 3 A bullet is fired from the ground at an angle of 60◦ above the horizontal.
What initial speed v0 must the bullet have in order to hit a point 150 m high on a tower
located 250 m away (ignoring air resistance)?

Solution Place the gun at the origin, and let r(t) be the position vector of the bullet
(Figure 3).

60°

250

150 (250, 150)

x

y

v0

FIGURE 3 Trajectory of the bullet.

Step 1. Use Newton’s Law.
Gravity exerts a downward force of magnitude mg, where m is the mass of the bullet
and g = 9.8 m/s2. In vector form,

F = 〈
0, −mg

〉 = m
〈
0, −g

〉
Newton’s Second Law F = mr′′(t) yields m

〈
0, −g

〉 = mr′′(t) or r′′(t) = 〈0, −g〉. We
determine r(t) by integrating twice:

r′(t) =
∫ t

0
r′′(u) du =

∫ t

0

〈
0, −g

〉
du = 〈

0, −gt
〉 + v0

r(t) =
∫ t

0
r′(u) du =

∫ t

0

(〈
0, −gu

〉 + v0
)
du =

〈
0, −1

2
gt2

〉
+ tv0 + r0
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Step 2. Use the initial conditions.
By our choice of coordinates, r0 = 0. The initial velocity v0 has unknown magnitude
v0, but we know that it points in the direction of the unit vector 〈cos 60◦, sin 60◦〉.
Therefore,

v0 = v0
〈
cos 60◦, sin 60◦〉 = v0

〈
1

2
,

√
3

2

〉

r(t) =
〈
0, −1

2
gt2

〉
+ tv0

〈
1

2
,

√
3

2

〉

Step 3. Solve for v0.
The bullet hits the point 〈250, 150〉 on the tower if there exists a time t such that
r(t) = 〈250, 150〉; that is,

〈
0, −1

2
gt2

〉
+ tv0

〈
1

2
,

√
3

2

〉
= 〈250, 150〉

Equating components, we obtain

1

2
tv0 = 250, −1

2
gt2 +

√
3

2
tv0 = 150

The first equation yields t = 500/v0. Now substitute in the second equation and solve,
using g = 9.8:

−4.9

(
500

v0

)2

+
√

3

2

(
500

v0

)
v0 = 150

(
500

v0

)2

= 250
√

3 − 150

4.9( v0

500

)2 = 4.9

250
√

3 − 150
≈ 0.0173

We obtain v0 ≈ 500
√

0.0173 ≈ 66 m/s.

In linear motion, acceleration is the rate at which an object is speeding up or slowing

x
a

v

y

FIGURE 4 In uniform circular motion, v has
constant length but turns continuously. The
acceleration a is centripetal, pointing
toward the center of the circle.

down. The acceleration is zero if the speed is constant. By contrast, in two or three
dimensions, the acceleration can be nonzero even when the object’s speed is constant.
This happens when v(t) = ‖v(t)‖ is constant but the direction of v(t) is changing. The
simplest example is uniform circular motion, in which an object travels in a circular
path at constant speed (Figure 4).

EXAMPLE 4 Uniform Circular Motion Find a(t) and ‖a(t)‖ for motion around a circle
of radius R with constant speed v.

Solution Assume that the particle follows the circular path r(t) = R
〈
cos ωt, sin ωt

〉
for

some constant ω. Then the velocity and speed of the particle are

v(t) = Rω
〈− sin ωt, cos ωt

〉
, v = ‖v(t)‖ = R|ω|
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Thus |ω| = v/R, and accordingly,
The constant ω (lowercase Greek “omega”)
is called the angular speed because the
particle’s angle along the circle changes at
a rate of ω radians per unit time.

a(t) = v′(t) = −Rω2〈cos ωt, sin ωt
〉
, ‖a(t)‖ = Rω2 = R

( v

R

)2 = v2

R

The vector a(t) is called the centripetal acceleration: It has length v2/R and points in
toward the origin [because a(t) is a negative multiple of the position vector r(t)], as in
Figure 4.

Understanding the Acceleration Vector
We have noted that v(t) can change in two ways: in magnitude and in direction. To un-
derstand how the acceleration vector a(t) “encodes” both types of change, we decompose
a(t) into a sum of tangential and normal components.

Recall the definition of unit tangent and unit normal vectors:

T(t) = v(t)

‖v(t)‖ , N(t) = T′(t)
‖T′(t)‖

Thus, v(t) = v(t)T(t), where v(t) = ‖v(t)‖, so by the Product Rule,

a(t) = dv
dt

= d

dt
v(t)T(t) = v′(t)T(t) + v(t)T′(t)

Furthermore, T′(t) = v(t)κ(t)N(t) by Eq. (7) of Section 13.4, where κ(t) is the curvature.
Thus we can write

a = aTT + aN N, aT = v′(t), aN = κ(t)v(t)2 2

The coefficient aT(t) is called the tangential component and aN(t) the normal compo-
nent of acceleration (Figure 5).When you make a left turn in an

automobile at constant speed, your
tangential acceleration is zero (because
v′(t) = 0) and you will not be pushed back
against your seat. But the car seat (via
friction) pushes you to the left toward the
car door, causing you to accelerate in the
normal direction. Due to inertia, you feel as
if you are being pushed to the right toward
the passenger’s seat. This force is
proportional to κv2, so a sharp turn (large
κ) or high speed (large v) produces a
strong normal force.

The normal component aN is often called
the centripetal acceleration, especially in
the case of circular motion where it is
directed toward the center of the circle.

aa

T
T

N
N

aTT

aNN

FIGURE 5 Decomposition of a into tangential and normal components.

CONCEPTUAL INSIGHT The tangential component aT = v′(t) is the rate at which speed
v(t) changes, whereas the normal component aN = κ(t)v(t)2 describes the change in v
due to a change in direction. These interpretations become clear once we consider the
following extreme cases:

• A particle travels in a straight line. Then direction does not change [κ(t) = 0] and
a(t) = v′(t)T is parallel to the direction of motion.

• A particle travels with constant speed along a curved path. Then v′(t) = 0 and the
acceleration vector a(t) = κ(t)v(t)2N is normal to the direction of motion.

General motion combines both tangential and normal acceleration.
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EXAMPLE 5 The Giant Ferris Wheel in Vienna has radius R = 30 m (Figure 6).

FIGURE 6 The Giant Ferris Wheel in
Vienna, Austria, erected in 1897 to
celebrate the 50th anniversary of the
coronation of Emperor Franz Joseph I.

Ferris wheel

x
a

N

T

y

FIGURE 7

Assume that at time t = t0, the wheel rotates counterclockwise with a speed of 40 m/min
and is slowing at a rate of 15 m/min2. Find the acceleration vector a for a person seated
in a car at the lowest point of the wheel.

Solution At the bottom of the wheel, T = 〈1, 0〉 and N = 〈0, 1〉. We are told that aT =
v′ = −15 at time t0. The curvature of the wheel is κ = 1/R = 1/30, so the normal com-
ponent is aN = κv2 = v2/R = (40)2/30 ≈ 53.3. Therefore (Figure 7),

a ≈ −15T + 53.3N = 〈−15, 53.3〉 m/min2

The following theorem provides useful formulas for the tangential and normal com-
ponents.

THEOREM 1 Tangential and Normal Components of Acceleration In the decompo-
sition a = aTT + aNN, we have

aT = a · T = a · v
‖v‖ , aN = a · N =

√
‖a‖2 − |aT|2 3

and

aTT =
(a · v

v · v

)
v, aNN = a − aTT = a −

(a · v
v · v

)
v 4

Proof We have T · T = 1 and N · T = 0. Thus

a · T = (aTT + aNN) · T = aT

a · N = (aTT + aNN) · N = aN

and since T = v
‖v‖ , we have

aTT = (a · T)T =
(

a · v
‖v‖

)
v

‖v‖ =
(a · v

v · v

)
v

and

aN N = a − aTT = a −
(

a · v
‖v‖

)
v

Finally, the vectors aTT and aNN are the sides of a right triangle with hypotenuse a as in
Figure 5, so by the Pythagorean Theorem,

‖a‖2 = |aT|2 + |aN|2 ⇒ aN =
√

‖a‖2 − |aT|2

Keep in mind that aN ≥ 0 but aT is positive or negative, depending on whether the
object is speeding up or slowing down.

EXAMPLE 6 Decompose the acceleration vector a of r(t) = 〈
t2, 2t, ln t

〉
into tangen-

tial and normal components at t = 1
2 (Figure 8).

x

a = −2T + 4N

N

T

y
z

FIGURE 8 The vectors T, N, and a at t = 1
2

on the curve r(t) = 〈
t2, 2t, ln t

〉
.

Solution First, we compute the tangential components T and aT. We have

v(t) = r′(t) = 〈
2t, 2, t−1〉, a(t) = r′′(t) = 〈

2, 0, −t−2〉
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At t = 1
2 ,

v = r′
(

1

2

)
=

〈
2

(
1

2

)
, 2,

(
1

2

)−1
〉

= 〈1, 2, 2〉

a = r′′
(

1

2

)
=

〈
2, 0, −

(
1

2

)−2
〉

= 〈2, 0, −4〉

Thus

T = v
‖v‖ = 〈1, 2, 2〉√

12 + 22 + 22
=

〈
1

3
,

2

3
,

2

3

〉
and by Eq. (3),

aT = a · T = 〈2, 0, −4〉 ·
〈

1

3
,

2

3
,

2

3

〉
= −2

Next, we use Eq. (4):

aNN = a − aTT = 〈2, 0, −4〉 − (−2)

〈
1

3
,

2

3
,

2

3

〉
=

〈
8

3
,

4

3
, −8

3

〉
This vector has lengthSummary of steps in Example 6:

T = v
‖v‖

aT = a · T

aN N = a − aTT

aN = ‖aN N‖

N = aN N
aN

aN = ‖aNN‖ =
√

64

9
+ 16

9
+ 64

9
= 4

and thus

N = aNN
aN

=
〈

8
3 , 4

3 , − 8
3

〉
4

=
〈

2

3
,

1

3
, −2

3

〉
Finally, we obtain the decomposition

a = 〈2, 0, −4〉 = aTT + aNN = −2T + 4N

EXAMPLE 7 Nonuniform Circular Motion Figure 9 shows the acceleration vectors ofREMINDER

• By Eq. (3), v′ = aT = a · T
• v · w = ‖v‖ ‖w‖ cos θ

where θ is the angle between v and w.

three particles moving counterclockwise around a circle. In each case, state whether the
particle’s speed v is increasing, decreasing, or momentarily constant.

Solution The rate of change of speed depends on the angle θ between a and T:

v′ = aT = a · T = ‖a‖ ‖T‖ cos θ = ‖a‖ cos θ

• In (A), θ is obtuse so cos θ < 0 and v′ < 0. The particle’s speed is decreasing.
• In (B), θ = π

2 so cos θ = 0 and v′ = 0. The particle’s speed is momentarily constant.
• In (C), θ is acute so cos θ > 0 and v′ > 0. The particle’s speed is increasing.

T

N

(A)

T

(B) (C)

aN
a

N

a

T

FIGURE 9 Acceleration vectors of particles
moving counterclockwise (in the direction
of T) around a circle.
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EXAMPLE 8 Find the curvature κ
( 1

2

)
for the path r(t) = 〈

t2, 2t, ln t
〉

in Example 6.

Solution By Eq. (2), the normal component is

aN = κv2

In Example 6 we showed that aN = 4 and v = 〈1, 2, 2〉 at t = 1
2 . Therefore, v2 = v · v = 9

and the curvature is κ
( 1

2

) = aN/v2 = 4
9 .

13.5 SUMMARY

• For an object whose path is described by a vector-valued function r(t),

v(t) = r′(t), v(t) = ‖v(t)‖, a(t) = r′′(t)

• The velocity vector v(t) points in the direction of motion. Its length v(t) = ‖v(t)‖ is
the object’s speed.
• The acceleration vector a is the sum of a tangential component (reflecting change in
speed) and a normal component (reflecting change in direction):

a(t) = aT(t)T(t) + aN(t)N(t)

Unit tangent vector T(t) = v(t)

‖v(t)‖
Unit normal vector N(t) = T′(t)

‖T′(t)‖
Tangential component aT = v′(t) = a · T = a · v

‖v‖
aTT =

(a · v
v · v

)
v

Normal component aN = κ(t)v(t)2 =
√

‖a‖2 − |aT|2

aN N = a − aTT = a −
(a · v

v · v

)
v

13.5 EXERCISES

Preliminary Questions
1. If a particle travels with constant speed, must its acceleration vector

be zero? Explain.

2. For a particle in uniform circular motion around a circle, which of
the vectors v(t) or a(t) always points toward the center of the circle?

3. Two objects travel to the right along the parabola y = x2 with
nonzero speed. Which of the following statements must be true?
(a) Their velocity vectors point in the same direction.
(b) Their velocity vectors have the same length.
(c) Their acceleration vectors point in the same direction.

4. Use the decomposition of acceleration into tangential and normal
components to explain the following statement: If the speed is constant,
then the acceleration and velocity vectors are orthogonal.

5. If a particle travels along a straight line, then the acceleration and
velocity vectors are (choose the correct description):

(a) Orthogonal (b) Parallel

6. What is the length of the acceleration vector of a particle traveling
around a circle of radius 2 cm with constant velocity 4 cm/s?

7. Two cars are racing around a circular track. If, at a certain moment,
both of their speedometers read 110 mph. then the two cars have the
same (choose one):

(a) aT (b) aN
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Exercises
1. Use the table below to calculate the difference quotients

r(1 + h) − r(1)

h
for h = −0.2, −0.1, 0.1, 0.2. Then estimate the ve-

locity and speed at t = 1.

r(0.8) 〈1.557, 2.459, −1.970〉
r(0.9) 〈1.559, 2.634, −1.740〉
r(1) 〈1.540, 2.841, −1.443〉
r(1.1) 〈1.499, 3.078, −1.035〉
r(1.2) 〈1.435, 3.342, −0.428〉

2. Draw the vectors r(2 + h) − r(2) and
r(2 + h) − r(2)

h
for h = 0.5

for the path in Figure 10. Draw v(2) (using a rough estimate for its
length).

O
r (2)

r (2.5)

FIGURE 10

In Exercises 3–6, calculate the velocity and acceleration vectors and
the speed at the time indicated.

3. r(t) = 〈
t3, 1 − t, 4t2〉

, t = 1

4. r(t) = et j − cos(2t)k, t = 0

5. r(θ) = 〈sin θ, cos θ, cos 3θ〉, θ = π
3

6. r(s) =
〈

1

1 + s2
,

s

1 + s2

〉
, s = 2

7. Find a(t) for a particle moving around a circle of radius 8 cm at
a constant speed of v = 4 cm/s (see Example 4). Draw the path and
acceleration vector at t = π

4 .

8. Sketch the path r(t) = 〈
1 − t2, 1 − t

〉
for −2 ≤ t ≤ 2, indicating

the direction of motion. Draw the velocity and acceleration vectors at
t = 0 and t = 1.

9. Sketch the path r(t) = 〈
t2, t3〉

together with the velocity and ac-
celeration vectors at t = 1.

10. The paths r(t) = 〈
t2, t3〉

and r1(t) = 〈
t4, t6〉

trace the
same curve, and r1(1) = r(1). Do you expect either the velocity vec-
tors or the acceleration vectors of these paths at t = 1 to point in the
same direction? Compute these vectors and draw them on a single plot
of the curve.

In Exercises 11–14, find v(t) given a(t) and the initial velocity.

11. a(t) = 〈
t, 4

〉
, v(0) = 〈 1

3 , −2
〉

12. a(t) = 〈
et , 0, t + 1

〉
, v(0) = 〈

1, −3,
√

2
〉

13. a(t) = k, v(0) = i 14. a(t) = t2k, v(0) = i − j

In Exercises 15–18, find r(t) and v(t) given a(t) and the initial velocity
and position.

15. a(t) = 〈t, 4〉, v(0) = 〈3, −2〉, r(0) = 〈0, 0〉
16. a(t) = 〈

et , 2t, t + 1
〉
, v(0) = 〈1, 0, 1〉, r(0) = 〈2, 1, 1〉

17. a(t) = tk, v(0) = i, r(0) = j

18. a(t) = cos tk, v(0) = i − j, r(0) = i

In Exercises 19–24, recall that g = 9.8 m/s2 is the acceleration due to
gravity on the earth’s surface.

19. A bullet is fired from the ground at an angle of 45◦. What initial
speed must the bullet have in order to hit the top of a 120-m tower
located 180 m away?

20. Find the initial velocity vector v0 of a projectile released with initial
speed 100 m/s that reaches a maximum height of 300 m.

21. Show that a projectile fired at an angle θ with initial speed v0 trav-
els a total distance (v2

0/g) sin 2θ before hitting the ground. Conclude
that the maximum distance (for a given v0) is attained for θ = 45◦.

22. One player throws a baseball to another player standing 25 m away
with initial speed 18 m/s. Use the result of Exercise 21 to find two
angles θ at which the ball can be released. Which angle gets the ball
there faster?

23. A bullet is fired at an angle θ = π
4 at a tower located d = 600 m

away, with initial speed v0 = 120 m/s. Find the height H at which the
bullet hits the tower.

24. Show that a bullet fired at an angle θ will hit the top of an h-meter
tower located d meters away if its initial speed is

v0 =
√

g/2 d sec θ√
d tan θ − h

25. Aconstant force F = 〈5, 2〉 (in newtons) acts on a 10-kg mass. Find
the position of the mass at t = 10 s if it is located at the origin at t = 0
and has initial velocity v0 = 〈2, −3〉 (in meters per second).

26. A force F = 〈24t, 16 − 8t〉 (in newtons) acts on a 4-kg mass. Find
the position of the mass at t = 3 s if it is located at (10, 12) at t = 0
and has zero initial velocity.

27. A particle follows a path r(t) for 0 ≤ t ≤ T , beginning at the ori-

gin O. The vector v = 1

T

∫ T

0
r′(t) dt is called the average velocity

vector. Suppose that v = 0. Answer and explain the following:

(a) Where is the particle located at time T if v = 0?

(b) Is the particle’s average speed necessarily equal to zero?

28. At a certain moment, a moving particle has velocity v = 〈2, 2, −1〉
and a = 〈0, 4, 3〉. Find T, N, and the decomposition of a into tangential
and normal components.

29. At a certain moment, a particle moving along a path has velocity
v = 〈12, 20, 20〉 and acceleration a = 〈2, 1, −3〉. Is the particle speed-
ing up or slowing down?
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In Exercises 30–33, use Eq. (3) to find the coefficients aT and aN as a
function of t (or at the specified value of t).

30. r(t) = 〈
t2, t3〉

31. r(t) = 〈
t, cos t, sin t

〉
32. r(t) = 〈

t−1, ln t, t2〉
, t = 1

33. r(t) = 〈
e2t , t, e−t

〉
, t = 0

In Exercise 34–41, find the decomposition of a(t) into tangential and
normal components at the point indicated, as in Example 6.

34. r(t) = 〈
et , 1 − t

〉
, t = 0

35. r(t) =
〈

1
3 t3, 1 − 3t

〉
, t = −1

36. r(t) =
〈
t, 1

2 t2, 1
6 t3

〉
, t = 1

37. r(t) =
〈
t, 1

2 t2, 1
6 t3

〉
, t = 4

38. r(t) = 〈
4 − t, t + 1, t2〉

, t = 2

39. r(t) = 〈
t, et , tet

〉
, t = 0

40. r(θ) = 〈cos θ, sin θ, θ〉, θ = 0

41. r(t) = 〈t, cos t, t sin t〉, t = π
2

42. Let r(t) = 〈
t2, 4t − 3

〉
. Find T(t) and N(t), and show that the de-

composition of a(t) into tangential and normal components is

a(t) =
(

2t√
t2 + 4

)
T +

(
4√

t2 + 4

)
N

43. Find the components aT and aN of the acceleration vector of a par-
ticle moving along a circular path of radius R = 100 cm with constant
velocity v0 = 5 cm/s.

44. In the notation of Example 5, find the acceleration vector for a
person seated in a car at (a) the highest point of the Ferris wheel and
(b) the two points level with the center of the wheel.

45. Suppose that the Ferris wheel in Example 5 is rotating clockwise
and that the point P at angle 45◦ has acceleration vector a = 〈0, −50〉
m/min2 pointing down, as in Figure 11. Determine the speed and tan-
gential acceleration of the Ferris wheel.

Ferris wheel

45°
x

y

FIGURE 11

46. At time t0, a moving particle has velocity vector v = 2i and ac-
celeration vector a = 3i + 18k. Determine the curvature κ(t0) of the
particle’s path at time t0.

47. A space shuttle orbits the earth at an altitude 400 km above the
earth’s surface, with constant speed v = 28,000 km/h. Find the magni-
tude of the shuttle’s acceleration (in km/h2), assuming that the radius
of the earth is 6378 km (Figure 12).

FIGURE 12 Space shuttle orbit.

48. A car proceeds along a circular path of radius R = 300 m centered
at the origin. Starting at rest, its speed increases at a rate of t m/s2. Find
the acceleration vector a at time t = 3 s and determine its decomposi-
tion into normal and tangential components.

49. A runner runs along the helix r(t) = 〈cos t, sin t, t〉. When he is
at position r

(
π
2

)
, his speed is 3 m/s and he is accelerating at a rate of

1
2 m/s2. Find his acceleration vector a at this moment. Note: The run-
ner’s acceleration vector does not coincide with the acceleration vector
of r(t).

50. Explain why the vector w in Figure 13 cannot be the ac-
celeration vector of a particle moving along the circle. Hint: Consider
the sign of w · N.

w

N

FIGURE 13

51. Figure 14 shows acceleration vectors of a particle mov-
ing clockwise around a circle. In each case, state whether the particle is
speeding up, slowing down, or momentarily at constant speed. Explain.

(A) (B) (C)

FIGURE 14

52. Prove that aN = ‖a × v‖
‖v‖ .

53. Suppose that r = r(t) lies on a sphere of radius R for all t . Let
J = r × r′. Show that r′ = (J × r)/‖r‖2. Hint: Observe that r and r′
are perpendicular.
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Further Insights and Challenges
54. The orbit of a planet is an ellipse with the sun at one focus.
The sun’s gravitational force acts along the radial line from the planet to
the sun (the dashed lines in Figure 15), and by Newton’s Second Law,
the acceleration vector points in the same direction. Assuming that the
orbit has positive eccentricity (the orbit is not a circle), explain why
the planet must slow down in the upper half of the orbit (as it moves
away from the sun) and speed up in the lower half. Kepler’s Second
Law, discussed in the next section, is a precise version of this quali-
tative conclusion. Hint: Consider the decomposition of a into normal
and tangential components.

Planetary motion

Sun

N
N

N

a

a

a

FIGURE 15 Elliptical orbit of a planet around the sun.

In Exercises 55–59, we consider an automobile of mass m traveling
along a curved but level road. To avoid skidding, the road must supply
a frictional force F = ma, where a is the car’s acceleration vector. The
maximum magnitude of the frictional force is μmg, where μ is the co-
efficient of friction and g = 9.8 m/s2. Let v be the car’s speed in meters
per second.

55. Show that the car will not skid if the curvature κ of the road is such
that (with R = 1/κ)

(v′)2 +
(

v2

R

)2

≤ (μg)2 5

Note that braking (v′ < 0) and speeding up (v′ > 0) contribute equally
to skidding.

56. Suppose that the maximum radius of curvature along a curved
highway is R = 180 m. How fast can an automobile travel (at constant
speed) along the highway without skidding if the coefficient of friction
is μ = 0.5?

57. Beginning at rest, an automobile drives around a circular track
of radius R = 300 m, accelerating at a rate of 0.3 m/s2. After how
many seconds will the car begin to skid if the coefficient of friction is
μ = 0.6?

58. You want to reverse your direction in the shortest possible time
by driving around a semicircular bend (Figure 16). If you travel at the
maximum possible constant speed v that will not cause skidding, is it
faster to hug the inside curve (radius r) or the outside curb (radius R)?
Hint: Use Eq. (5) to show that at maximum speed, the time required
to drive around the semicircle is proportional to the square root of the
radius.

r
R

FIGURE 16 Car going around the bend.

59. What is the smallest radius R about which an automobile can turn
without skidding at 100 km/h if μ = 0.75 (a typical value)?

13.6 Planetary Motion According to Kepler and Newton
In this section, we derive Kepler’s laws of planetary motion, a feat first accomplished

Sun
(focus)

Planet

Semimajor axis

Center of
ellipse

r (t)

a

FIGURE 1 The planet travels along an
ellipse with the sun at one focus.

by Isaac Newton and published by him in 1687. No event was more emblematic of the
scientific revolution. It demonstrated the power of mathematics to make the natural world
comprehensible and it led succeeding generations of scientists to seek and discover math-
ematical laws governing other phenomena, such as electricity and magnetism, thermody-
namics, and atomic processes.

According to Kepler, the planetary orbits are ellipses with the sun at one focus.
Furthermore, if we imagine a radial vector r(t) pointing from the sun to the planet, as in
Figure 1, then this radial vector sweeps out area at a constant rate or, as Kepler stated in his
Second Law, the radial vector sweeps out equal areas in equal times (Figure 2). Kepler’s
Third Law determines the period T of the orbit, defined as the time required to complete
one full revolution. These laws are valid not just for planets orbiting the sun, but for any
body orbiting about another body according to the inverse-square law of gravitation.
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Kepler’s Three Laws

(i) Law of Ellipses: The orbit of a planet is an ellipse with the sun at one focus.

(ii) Law of Equal Area in Equal Time: The position vector pointing from the sun to
the planet sweeps out equal areas in equal times.

(iii) Law of the Period of Motion: T 2 =
(

4π2

GM

)
a3, where

• a is the semimajor axis of the ellipse (Figure 1).
• G is the universal gravitational constant: 6.673 × 10−11 m3 kg−1 s−2.
• M is the mass of the sun, approximately 1.989 × 1030 kg.

Kepler’s version of the Third Law stated
only that T 2 is proportional to a3. Newton
discovered that the constant of
proportionality is equal to 4π2/(GM), and
he observed that if you can measure T and
a through observation, then you can use
the Third Law to solve for the mass M.
This method is used by astronomers to find
the masses of the planets (by measuring T

and a for moons revolving around the
planet) as well as the masses of binary
stars and galaxies. See Exercises 2–5.

Our derivation makes a few simplifying assumptions. We treat the sun and planet

Orbital path 

Planet

C
D A

B

Sun

FIGURE 2 The two shaded regions have
equal areas, and by Kepler’s Second Law,
the planet sweeps them out in equal times.
To do so, the planet must travel faster
going from A to B than from C to D.

as point masses and ignore the gravitational attraction of the planets on each other. And
although both the sun and the planet revolve around their mutual center of mass, we ignore
the sun’s motion and assume that the planet revolves around the center of the sun. This is
justified because the sun is much more massive than the planet.

We place the sun at the origin of the coordinate system. Let r = r(t) be the position
vector of a planet of mass m, as in Figure 1, and let (Figure 3)

er = r(t)
‖r(t)‖

be the unit radial vector at time t (er is the unit vector that points to the planet as it moves
around the sun). By Newton’s Universal Law of Gravitation (the inverse-square law), the
sun attracts the planet with a gravitational force

F(r(t)) = −
(

km

‖r(t)‖2

)
er

where k = GM (Figure 3). Combining the Law of Gravitation with Newton’s SecondF
er

Planet

Sun

y

x

FIGURE 3 The gravitational force F,
directed from the planet to the sun, is a
negative multiple of er .

Law of Motion F(r(t)) = mr′′(t), we obtain

r′′(t) = − k

‖r(t)‖2
er 1

Kepler’s Laws are a consequence of this differential equation.

Kepler’s Second Law
The key to Kepler’s Second Law is the fact that the following cross product is a constant

In physics, mJ is called the angular
momentum vector. In situations where J is
constant, we say that angular momentum is
conserved. This conservation law is valid
whenever the force acts in the radial
direction.

vector (even though both r(t) and r′(t) are changing in time):

J = r(t) × r′(t)

THEOREM 1 The vector J is constant—that is,

dJ
dt

= 0 2
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Proof By the Product Rule for cross products (Theorem 3 in Section 13.2)

dJ
dt

= d

dt

(
r(t) × r′(t)

) = r(t) × r′′(t) + r′(t) × r′(t)

The cross product of parallel vectors is zero, so the second term is certainly zero. The firstREMINDER

• a × b is orthogonal to both a and b
• a × b = 0 if a and b are parallel, that

is, one is a multiple of the other.

term is also zero because r′′(t) is a multiple of er by Eq. (1), and hence also of r(t) .

How can we use Eq. (2)? First of all, the cross product J is orthogonal to both r(t)
and r′(t). Because J is constant, r(t) and r′(t) are confined to the fixed plane orthogonal
to J. This proves that the motion of a planet around the sun takes place in a plane.

x

y

z

J

r(t)

r

r'(t)

FIGURE 4 The orbit is contained in the
plane orthogonal to J. Of course, we have
not yet shown that the orbit is an ellipse.

We can choose coordinates so that the sun is at the origin and the planet moves in the
counterclockwise direction (Figure 4). Let (r, θ) be the polar coordinates of the planet,
where r = r(t) and θ = θ(t) are functions of time. Note that r(t) = ‖r(t)‖.

Recall from Section 11.4 (Theorem 1) that the area swept out by the planet’s radial
vector is

A = 1

2

∫ θ

0
r2 dθ

Kepler’s Second Law states that this area is swept out at a constant rate. But this rate is

simply dA/dt . By the Fundamental Theorem of Calculus,
dA

dθ
= 1

2
r2, and by the Chain

Rule,

dA

dt
= dA

dθ

dθ

dt
= 1

2
θ ′(t)r(t)2 = 1

2
r(t)2θ ′(t)

Thus, Kepler’s Second Law follows from the next theorem, which tells us that dA/dt has
the constant value 1

2‖J‖.

THEOREM 2 Let J = ‖J‖ (J, and hence J are constant by Theorem 1). Then

r(t)2θ ′(t) = J 3

Proof We note that in polar coordinates, er = 〈cos θ, sin θ〉. We also define the unit vector

ere

y

x

r(t)

FIGURE 5 The unit vectors er and eθ are
orthogonal, and rotate around the origin
along with the planet.

eθ = 〈− sin θ, cos θ〉 that is orthogonal to er (Figure 5). In summary,

r(t) = ‖r(t)‖, er = 〈cos θ, sin θ〉 , eθ = 〈− sin θ, cos θ〉 , er · eθ = 0

We see directly that the derivatives of er and eθ with respect to θ are

d

dθ
er = eθ ,

d

dθ
eθ = −er 4

The time derivative of er is computed using the Chain Rule:

e′
r =

(
dθ

dt

) (
d

dθ
er

)
= θ ′(t) eθ 5

Now apply the Product Rule to r = rer :

r′ = d

dt
rer = r ′er + re′

r = r ′er + rθ ′eθ
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Using er × er = 0, we obtain

J = r × r′ = rer × (r ′er + rθ ′eθ ) = r2θ ′(er × eθ )

It is straightforward to check that er × eθ = k, and since k is a unit vector, J = ‖J‖ =To compute cross products of vectors in the
plane, such as r, er , and eθ , we treat them
as vectors in three-space with z-component
equal to zero. The cross product is then a
multiple of k.

|r2θ ′|. However, θ ′ > 0 because the planet moves in the counterclockwise direction, so
J = r2θ ′. This proves Theorem 2.

Proof of the Law of Ellipses

Let v = r′(t) be the velocity vector. Then r′′ = v′ and Eq. (1) may be writtenREMINDER Eq. (1) states:

r′′(t) = − k

r(t)2
er

where r(t) = ‖r(t)‖.

dv
dt

= − k

r(t)2
er 6

On the other hand, by the Chain Rule and the relation r(t)2θ ′(t) = J of Eq. (3),

dv
dt

= dθ

dt

dv
dθ

= θ ′(t) dv
dθ

= J

r(t)2

dv
dθ

Together with Eq. (6), this yields J
dv
dθ

= −ker , or

dv
dθ

= − k

J
er = − k

J
〈cos θ, sin θ〉

This is a first-order differential equation that no longer involves time t . We can solve it by
integration:

v = − k

J

∫
〈cos θ, sin θ〉 dθ = k

J
〈− sin θ, cos θ〉 + c = k

J
eθ + c 7

where c is an arbitrary constant vector.
We are still free to rotate our coordinate system in the plane of motion, so we may

assume that c points along the y-axis. We can then write c = 〈0, (k/J )e〉 for some constant
e. We finish the proof by computing J = r × v:

J = r × v = rer ×
(

k

J
eθ + c

)
= k

J
r
(
er × eθ + er × 〈0, e〉 )

Direct calculation yields

er × eθ = k, er × 〈0, e〉 = (e cos θ)k

so our equation becomes J = k

J
r(1 + e cos θ)k. Since k is a unit vector,

J = ‖J‖ = k

J
r
(
1 + e cos θ

)
Solving for r , we obtain the polar equation of a conic section of eccentricity e (an ellipse,REMINDER The equation of a conic

section in polar coordinates is discussed in
Section 11.5.

parabola, or hyperbola):

r = J 2/k

1 + e cos θ

This result shows that if a planet travels around the sun in a bounded orbit, then
the orbit must be an ellipse. There are also “open orbits” that are either parabolic and
hyperbolic. They describe comets that pass by the sun and then continue into space, never
to return. In our derivation, we assumed implicitly that J = 0. If J = 0, then θ ′(t) = 0. In
this case, the orbit is a straight line, and the planet falls directly into the sun.

Kepler’s Third Law is verified in Exercises 23 and 24.
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CONCEPTUAL INSIGHT We exploited the fact that J is constant to prove the law of ellipses
without ever finding a formula for the position vector r(t) of the planet as a function of
time t . In fact, r(t) cannot be expressed in terms of elementary functions. This illustrates
an important principle: Sometimes it is possible to describe solutions of a differential
equation even if we cannot write them down explicitly.

The Hubble Space Telescope produced this
image of the Antenna galaxies, a pair of
spiral galaxies that began to collide
hundreds of millions of years ago.

Sun1
2
3
4

Perihelion
advances

Planet

1
2

3
4

FIGURE 6 The perihelion of an orbit shifts
slowly over time. For Mercury, the
semimajor axis makes a full revolution
approximately once every 24,000 years.

Constants:

• Gravitational constant:

G ≈ 6.673 × 10−11 m3 kg−1 s−2

• Mass of the sun:

M ≈ 1.989 × 1030 kg

• k = GM ≈ 1.327 × 1020

HISTORICAL
PERSPECTIVE

The astronomers of
the ancient world
(Babylon, Egypt, and
Greece) mapped out

the nighttime sky with impressive accuracy, but
their models of planetary motion were based
on the erroneous assumption that the planets
revolve around the earth. Although the Greek
astronomer Aristarchus (310–230 bce) had sug-
gested that the earth revolves around the sun,
this idea was rejected and forgotten for nearly
eighteen centuries, until the Polish astronomer
Nicolaus Copernicus (1473–1543) introduced a
revolutionary set of ideas about the solar system,
including the hypothesis that the planets revolve
around the sun. Copernicus paved the way for
the next generation, most notably Tycho Brahe
(1546–1601), Galileo Galilei (1564–1642), and
Johannes Kepler (1571–1630).

The German astronomer Johannes Kepler
was the son of a mercenary soldier who appar-
ently left his family when Johannes was 5 and
may have died at war. He was raised by his
mother in his grandfather’s inn. Kepler’s mathe-
matical brilliance earned him a scholarship at the
University of Tübingen and at age of 29, he went

to work for the Danish astronomer Tycho Brahe,
who had compiled the most complete and ac-
curate data on planetary motion then available.
When Brahe died in 1601, Kepler succeeded him
as “Imperial Mathematician” to the Holy Roman
Emperor, and in 1609 he formulated the first two
of his laws of planetary motion in a work entitled
Astronomia Nova (New Astronomy).

In the centuries since Kepler’s death, as ob-
servational data improved, astronomers found
that the planetary orbits are not exactly ellipti-
cal. Furthermore, the perihelion (the point on the
orbit closest to the sun) shifts slowly over time
(Figure 6). Most of these deviations can be ex-
plained by the mutual pull of the planets, but the
perihelion shift of Mercury is larger than can be
accounted for by Newton’s Laws. On November
18, 1915,Albert Einstein made a discovery about
which he later wrote to a friend, “I was beside
myself with ecstasy for days.” He had been work-
ing for a decade on his famous General Theory
of Relativity, a theory that would replace New-
ton’s law of gravitation with a new set of much
more complicated equations called the Einstein
Field Equations. On that 18th of November, Ein-
stein showed that Mercury’s perihelion shift was
accurately explained by his new theory. At the
time, this was the only substantial piece of evi-
dence that the General Theory of Relativity was
correct.

13.6 SUMMARY

• Kepler’s three laws of planetary motion:

– Law of Ellipses
– Law of Equal Area in Equal Time

– Law of the Period T 2 =
(

4π2

GM

)
a3, where T is the period (time to complete one

Sun
(focus)

Planet

Semimajor axis

Center of
ellipse

r (t)

a

θ

FIGURE 7 Planetary orbit.

full revolution) and a is the semimajor axis (Figure 7).

• According to Newton’s Universal Law of Gravitation and Second Law of Motion, the
position vector r(t) of a planet satisfies the differential equation

r′′(t) = − k

r(t)2
er , where r(t) = ‖r(t)‖, er = r(t)

‖r(t)‖
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• Properties of J = r(t) × r′(t):
– J is a constant of planetary motion.
– Let J = ‖J‖. Then J = r(t)2θ ′(t).

– The planet sweeps out area at the rate
dA

dt
= 1

2
J .

• A planetary orbit has polar equation r = J 2/k

1 + e cos θ
, where e is the eccentricity of the

orbit.

13.6 EXERCISES

Preliminary Questions
1. Describe the relation between the vector J = r × r′ and the rate at

which the radial vector sweeps out area.

2. Equation (1) shows that r′′ is proportional to r. Explain how this
fact is used to prove Kepler’s Second Law.

3. How is the period T affected if the semimajor axis a is increased
four-fold?

Exercises
1. Kepler’s Third Law states that T 2/a3 has the same value for

each planetary orbit. Do the data in the following table support this
conclusion? Estimate the length of Jupiter’s period, assuming that
a = 77.8 × 1010 m.

Planet Mercury Venus Earth Mars

a (1010 m) 5.79 10.8 15.0 22.8
T (years) 0.241 0.615 1.00 1.88

2. Finding the Mass of a Star Using Kepler’s Third Law, show
that if a planet revolves around a star with period T and semimajor axis

a, then the mass of the star is M =
(

4π2

G

) (
a3

T 2

)
.

3. Ganymede, one of Jupiter’s moons discovered by Galileo, has an
orbital period of 7.154 days and a semimajor axis of 1.07 × 109 m. Use
Exercise 2 to estimate the mass of Jupiter.

4. An astronomer observes a planet orbiting a star with a period of
9.5 years and a semimajor axis of 3 × 108 km. Find the mass of the star
using Exercise 2.

5. Mass of the Milky Way The sun revolves around the center of
mass of the Milky Way galaxy in an orbit that is approximately circu-
lar, of radius a ≈ 2.8 × 1017 km and velocity v ≈ 250 km/s. Use the
result of Exercise 2 to estimate the mass of the portion of the Milky
Way inside the sun’s orbit (place all of this mass at the center of the
orbit).

6. A satellite orbiting above the equator of the earth is geosyn-
chronous if the period is T = 24 hours (in this case, the satellite stays
over a fixed point on the equator). Use Kepler’s Third Law to show
that in a circular geosynchronous orbit, the distance from the center of
the earth is R ≈ 42,246 km. Then compute the altitude h of the orbit

above the earth’s surface. The earth has mass M ≈ 5.974 × 1024 kg
and radius R ≈ 6371 km.

7. Show that a planet in a circular orbit travels at constant speed. Hint:
Use that J is constant and that r(t) is orthogonal to r′(t) for a circular
orbit.

8. Verify that the circular orbit

r(t) = 〈R cos ωt, R sin ωt〉
satisfies the differential equation, Eq. (1), provided that ω2 = kR−3.

Then deduce Kepler’s Third Law T 2 =
(

4π2

k

)
R3 for this orbit.

9. Prove that if a planetary orbit is circular of radius R, then vT =
2πR, where v is the planet’s speed (constant by Exercise 7) and T is

the period. Then use Kepler’s Third Law to prove that v =
√

k

R
.

10. Find the velocity of a satellite in geosynchronous orbit about the
earth. Hint: Use Exercises 6 and 9.

11. A communications satellite orbiting the earth has initial position
r = 〈29,000, 20,000, 0〉 (in km) and initial velocity r′ = 〈1, 1, 1〉 (in
km/s), where the origin is the earth’s center. Find the equation of the
plane containing the satellite’s orbit. Hint: This plane is orthogonal
to J.

12. Assume that the earth’s orbit is circular of radius R = 150 × 106

km (it is nearly circular with eccentricity e = 0.017). Find the rate at
which the earth’s radial vector sweeps out area in units of km2/s. What
is the magnitude of the vector J = r × r′ for the earth (in units of km2

per second)?

Exercises 13–19: The perihelion and aphelion are the points on the
orbit closest to and farthest from the sun, respectively (Figure 8). The
distance from the sun at the perihelion is denoted rper and the speed
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at this point is denoted vper . Similarly, we write rap and vap for the
distance and speed at the aphelion. The semimajor axis is denoted a.

F2 F1

y

x
O

Semimajor axis

Aphelion

Perihelion

vperr

vap

a

FIGURE 8 r and v = r′ are perpendicular at the perihelion and
aphelion.

13. Use the polar equation of an ellipse

r = p

1 + e cos θ

to show that rper = a(1 − e) and rap = a(1 + e). Hint: Use the fact
that rper + rap = 2a.

14. Use the result of Exercise 13 to prove the formulas

e = rap − rper

rap + rper
, p = 2raprper

rap + rper

15. Use the fact that J = r × r′ is constant to prove

vper(1 − e) = vap(1 + e)

Hint: r is perpendicular to r′ at the perihelion and aphelion.

16. Compute rper and rap for the orbit of Mercury, which has eccen-
tricity e = 0.244 (see the table in Exercise 1 for the semimajor axis).

17. Conservation of Energy The total mechanical energy (kinetic
energy plus potential energy) of a planet of mass m orbiting a sun of
mass M with position r and speed v = ‖r′‖ is

E = 1

2
mv2 − GMm

‖r‖ 8

(a) Prove the equations

d

dt

1

2
mv2 = v · (ma),

d

dt

GMm

‖r‖ = v ·
(

−GMm

‖r‖3
r
)

(b) Then use Newton’s Law F = ma and Eq. (1) to prove that energy

is conserved—that is,
dE

dt
= 0.

18. Show that the total energy [Eq. (8)] of a planet in a circular orbit

of radius R is E = −GMm

2R
. Hint: Use Exercise 9.

19. Prove that vper =
√(

GM

a

)
1 + e

1 − e
as follows:

(a) Use Conservation of Energy (Exercise 17) to show that

v2
per − v2

ap = 2GM
(
r−1
per − r−1

ap
)

(b) Show that r−1
per − r−1

ap = 2e

a(1 − e2)
using Exercise 13.

(c) Show that v2
per − v2

ap = 4
e

(1 + e)2
v2

per using Exercise 15. Then

solve for vper using (a) and (b).

20. Show that a planet in an elliptical orbit has total mechanical energy

E = −GMm

2a
, where a is the semimajor axis. Hint: Use Exercise 19

to compute the total energy at the perihelion.

21. Prove that v2 = GM

(
2

r
− 1

a

)
at any point on an elliptical orbit,

where r = ‖r‖, v is the velocity, and a is the semimajor axis of the
orbit.

22. Two space shuttles A and B orbit the earth along the solid
trajectory in Figure 9. Hoping to catch up to B, the pilot of A applies a
forward thrust to increase her shuttle’s kinetic energy. Use Exercise 20
to show that shuttle A will move off into a larger orbit as shown in the
figure. Then use Kepler’s Third Law to show that A’s orbital period T

will increase (and she will fall farther and farther behind B)!

Earth

A
B

FIGURE 9

Further Insights and Challenges
Exercises 23 and 24 prove Kepler’s Third Law. Figure 10 shows an
elliptical orbit with polar equation

r = p

1 + e cos θ

where p = J 2/k. The origin of the polar coordinates is at F1. Let a

and b be the semimajor and semiminor axes, respectively.

23. This exercise shows that b = √
pa.

(a) Show that CF1 = ae. Hint: rper = a(1 − e) by Exercise 13.

F2 F1

B

A

Semimajor axis

Semiminor axis

a

a a

b
C

FIGURE 10
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(b) Show that a = p

1 − e2
.

(c) Show thatF1A + F2A = 2a. Conclude thatF1B + F2B = 2a and
hence F1B = F2B = a.

(d) Use the Pythagorean Theorem to prove that b = √
pa.

24. The area A of the ellipse is A = πab.

(a) Prove, using Kepler’s First Law, that A = 1
2JT , where T is the

period of the orbit.

(b) Use Exercise 23 to show that A = (π
√

p)a3/2.

(c) Deduce Kepler’s Third Law: T 2 = 4π2

GM
a3.

25. According to Eq. (7) the velocity vector of a planet as a
function of the angle θ is

v(θ) = k

J
eθ + c

Use this to explain the following statement:As a planet revolves around
the sun, its velocity vector traces out a circle of radius k/J with center
at the terminal point of c (Figure 11). This beautiful but hidden property
of orbits was discovered by William Rowan Hamilton in 1847.

c

B
v(  )

v(  )

D

Planetary orbit

C

A

Velocity circle

B

A

C D

FIGURE 11 The velocity vector traces out a circle as the planet travels
along its orbit.

CHAPTER REVIEW EXERCISES

1. Determine the domains of the vector-valued functions.

(a) r1(t) = 〈
t−1, (t + 1)−1, sin−1 t

〉
(b) r2(t) = 〈√

8 − t3, ln t, e
√

t
〉

2. Sketch the paths r1(θ) = 〈θ, cos θ〉 and r2(θ) = 〈cos θ, θ〉 in the
xy-plane.

3. Find a vector parametrization of the intersection of the surfaces
x2 + y4 + 2z3 = 6 and x = y2 in R3.

4. Find a vector parametrization using trigonometric functions of
the intersection of the plane x + y + z = 1 and the elliptical cylinder(y

3

)2 +
( z

8

)2 = 1 in R3.

In Exercises 5–10, calculate the derivative indicated.

5. r′(t), r(t) = 〈
1 − t, t−2, ln t

〉
6. r′′′(t), r(t) = 〈

t3, 4t2, 7t
〉

7. r′(0), r(t) = 〈
e2t , e−4t2

, e6t
〉

8. r′′(−3), r(t) = 〈
t−2, (t + 1)−1, t3 − t

〉
9.

d

dt
et

〈
1, t, t2〉

10.
d

dθ
r(cos θ), r(s) = 〈

s, 2s, s2〉
In Exercises 11–14, calculate the derivative at t = 3, assuming that

r1(3) = 〈1, 1, 0〉 , r2(3) = 〈1, 1, 0〉
r′

1(3) = 〈0, 0, 1〉 , r′
2(3) = 〈0, 2, 4〉

11.
d

dt
(6r1(t) − 4 · r2(t)) 12.

d

dt

(
etr2(t)

)

13.
d

dt

(
r1(t) · r2(t)

)
14.

d

dt

(
r1(t) × r2(t)

)
15. Calculate

∫ 3

0

〈
4t + 3, t2, −4t3〉

dt .

16. Calculate
∫ π

0

〈
sin θ, θ, cos 2θ

〉
dθ .

17. A particle located at (1, 1, 0) at time t = 0 follows a path whose
velocity vector is v(t) = 〈

1, t, 2t2〉
. Find the particle’s location at t = 2.

18. Find the vector-valued function r(t) = 〈
x(t), y(t)

〉
in R2 satisfying

r′(t) = −r(t) with initial conditions r(0) = 〈1, 2〉.
19. Calculate r(t) assuming that

r′′(t) =
〈
4 − 16t, 12t2 − t

〉
, r′(0) = 〈1, 0〉 , r(0) = 〈0, 1〉

20. Solve r′′(t) =
〈
t2 − 1, t + 1, t3

〉
subject to the initial conditions

r(0) = 〈1, 0, 0〉 and r′(0) = 〈−1, 1, 0〉
21. Compute the length of the path

r(t) = 〈
sin 2t, cos 2t, 3t − 1

〉
for 1 ≤ t ≤ 3

22. Express the length of the path r(t) = 〈
ln t, t, et

〉
for 1 ≤

t ≤ 2 as a definite integral, and use a computer algebra system to find
its value to two decimal places.

23. Find an arc length parametrization of a helix of height 20 cm that
makes four full rotations over a circle of radius 5 cm.

24. Find the minimum speed of a particle with trajectory r(t) =〈
t, et−3, e4−t

〉
.

25. A projectile fired at an angle of 60◦ lands 400 m away. What was
its initial speed?
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26. A specially trained mouse runs counterclockwise in a circle of ra-
dius 0.6 m on the floor of an elevator with speed 0.3 m/s while the
elevator ascends from ground level (along the z-axis) at a speed of
12 m/s. Find the mouse’s acceleration vector as a function of time. As-
sume that the circle is centered at the origin of the xy-plane and the
mouse is at (2, 0, 0) at t = 0.

27. During a short time interval [0.5, 1.5], the path of an unmanned
spy plane is described by

r(t) =
〈
−100

t2
, 7 − t, 40 − t2

〉

A laser is fired (in the tangential direction) toward the yz-plane at time
t = 1. Which point in the yz-plane does the laser beam hit?

28. A force F = 〈12t + 4, 8 − 24t〉 (in newtons) acts on a 2-kg mass.
Find the position of the mass at t = 2 s if it is located at (4, 6) at t = 0
and has initial velocity 〈2, 3〉 in m/s.

29. Find the unit tangent vector to r(t) = 〈
sin t, t, cos t

〉
at t = π .

30. Find the unit tangent vector to r(t) = 〈
t2, tan−1 t, t

〉
at t = 1.

31. Calculate κ(1) for r(t) = 〈ln t, t〉.
32. Calculate κ

(
π
4

)
for r(t) = 〈tan t, sec t, cos t〉.

In Exercises 33 and 34, write the acceleration vector a at the point
indicated as a sum of tangential and normal components.

33. r(θ) = 〈
cos θ, sin 2θ

〉
, θ = π

4

34. r(t) = 〈
t2, 2t − t2, t

〉
, t = 2

35. At a certain time t0, the path of a moving particle is tangent to the
y-axis in the positive direction. The particle’s speed at time t0 is 4 m/s,
and its acceleration vector is a = 〈5, 4, 12〉. Determine the curvature
of the path at t0.

36. Parametrize the osculating circle to y = x2 − x3 at x = 1.

37. Parametrize the osculating circle to y = √
x at x = 4.

38. If a planet has zero mass (m = 0), then Newton’s laws of motion re-
duce to r′′(t) = 0 and the orbit is a straight line r(t) = r0 + tv0, where
r0 = r(0) and v0 = r′(0) (Figure 1). Show that the area swept out by
the radial vector at time t is A(t) = 1

2‖r0 × v0‖t and thus Kepler’s
Second Law continues to hold (the rate is constant).

Sun

Planet

r0

v0

r(t) = r0 + tv0

FIGURE 1

39. Suppose the orbit of a planet is an ellipse of eccentricity e = c/a

and period T (Figure 2). Use Kepler’s Second Law to show that the
time required to travel from A′ to B ′ is equal to(

1

4
+ e

2π

)
T

(c, 0)

Sun

y

x
O

B

b

B'

aA' A

FIGURE 2

40. The period of Mercury is approximately 88 days, and its orbit has
eccentricity 0.205. How much longer does it take Mercury to travel
from A′ to B ′ than from B ′ to A (Figure 2)?



The famous triple peaks Eiger, Monch, and

Jungfrau in the Swiss alps. The steepness at a

point in a mountain range is measured by the

gradient, a concept defined in this chapter.

14 DIFFERENTIATION
IN SEVERAL VARIABLES

I n this chapter we extend the concepts and techniques of differential calculus to functions
of several variables. As we will see, a function f that depends on two or more variables

has not just one derivative but rather a set of partial derivatives, one for each variable.
The partial derivatives are the components of the gradient vector, which provides valuable
insight into the function’s behavior. In the last two sections, we apply the tools we have
developed to optimization in several variables.

14.1 Functions of Two or More Variables
A familiar example of a function of two variables is the area A of a rectangle, equal to the
product xy of the base x and height y. We write

A(x, y) = xy

or A = f (x, y), where f (x, y) = xy. An example in three variables is the distance from
a point P = (x, y, z) to the origin:

g(x, y, z) =
√

x2 + y2 + z2

An important but less familiar example is the density of seawater, denoted ρ, which
is a function ρ(S, T ) of salinity S and temperature T (Figure 1). Although there is no sim-

FIGURE 1 The global climate is influenced
by the ocean “conveyer belt,” a system of
deep currents driven by variations in
seawater density.

ple formula for ρ(S, T ), scientists determine function values experimentally (Figure 2).
According to Table 1, if S = 32 (in parts per thousand) and T = 10◦C, then

ρ(32, 10) = 1.0246 kg/m3

FIGURE 2 A Conductivity-Temperature-
Depth (CDT) instrument is used to
measure seawater variables such as
density, temperature, pressure, and salinity.

TABLE 1 Seawater Density ρ (kg /m3) as
a Function of Temperature and Salinity.

Salinity (ppt)

◦C 32 32.5 33

5 1.0253 1.0257 1.0261
10 1.0246 1.0250 1.0254
15 1.0237 1.0240 1.0244
20 1.0224 1.0229 1.0232

A function of n variables is a function f (x1, . . . , xn) that assigns a real number to
each n-tuple (x1, . . . , xn) in a domain in Rn. Sometimes we write f (P ) for the value of f

at a point P = (x1, . . . , xn). When f is defined by a formula, we usually take as domain
the set of all n-tuples for which f (x1, . . . , xn) is defined. The range of f is the set of all
values f (x1, . . . , xn) for (x1, . . . , xn) in the domain. Since we focus on functions of two
or three variables, we shall often use the variables x, y, and z (rather than x1, x2, x3).

774
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EXAMPLE 1 Sketch the domains of

(a) f (x, y) = √
9 − x2 − y (b) g(x, y, z) = x

√
y + ln(z − 1)

What are the ranges of these functions?

Solution

(a) f (x, y) = √
9 − x2 − y is defined only when 9 − x2 − y ≥ 0, or y ≤ 9 − x2. Thus

the domain consists of all points (x, y) lying below the parabola y = 9 − x2 [Figure 3(A)]:

D = {(x, y) : y ≤ 9 − x2}
To determine the range, note that f is a nonnegative function and that f (0, y) = √

9 − y.
Since 9 − y can be any positive number, f (0, y) takes on all nonnegative values. Therefore
the range of f is the infinite interval [0, ∞).
(b) g(x, y, z) = x

√
y + ln(z − 1) is defined only when both

√
y and ln(z − 1) are de-

fined. We must require that y ≥ 0 and z > 1, so the domain is {(x, y, z) : y ≥ 0, z > 1}
[Figure 3(B)]. The range of g is the entire real line R. Indeed, for the particular choices
y = 1 and z = 2, we have g(x, 1, 2) = x

√
1 + ln 1 = x, and since x is arbitrary, we see

that g takes on all values.

3

9

(A) The domain of f (x, y) =    9 − x2 − y
       is the set of all points lying below
       the parabola y = 9 − x2.

(B) Domain of g(x, y, z) = x   y + ln(z − 1)
      is the set of points with y ≥ 0 and z > 1.
      The domain continues out to infinity in 
      the directions indicated by the arrows.

yx

z

x

y

1

FIGURE 3

Graphing Functions of Two Variables
In single-variable calculus, we use graphs to visualize the important features of a function.
Graphs play a similar role for functions of two variables. The graph of f (x, y) consists
of all points (a, b, f (a, b)) in R3 for (a, b) in the domain D of f . Assuming that f is
continuous (as defined in the next section), the graph is a surface whose height above
or below the xy-plane at (a, b) is the function value f (a, b) [Figure 4]. We often write
z = f (x, y) to stress that the z-coordinate of a point on the graph is a function of x and y.

EXAMPLE 2 Sketch the graph of f (x, y) = 2x2 + 5y2.

Solution The graph is a paraboloid (Figure 5), which we saw in Section 12.6. We sketch
the graph using the fact that the horizontal cross section (called the horizontal “trace”
below) at height z is the ellipse 2x2 + 5y2 = z.
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z

y

y

(A)  Graph of  y = f (x) (B)  Graph of  z = f (x, y)

(a, f (a))

x
a

x

(a, b)

(a, b,  f (a, b))

FIGURE 4

x

y

z

FIGURE 5 Graph of f (x, y) = 2x2 + 5y2

Plotting more complicated graphs by hand can be difficult. Fortunately, computer
algebra systems eliminate the labor and greatly enhance our ability to explore functions
graphically. Graphs can be rotated and viewed from different perspectives (Figure 6).

xy

y

z zz

x

y

x

FIGURE 6 Different views of z = e−x2−y2 − e−(x−1)2−(y−1)2

Traces and Level Curves
One way of analyzing the graph of a function f (x, y) is to freeze the x-coordinate by
setting x = a and examine the resulting curve z = f (a, y). Similarly, we may set y = b

and consider the curve z = f (x, b). Curves of this type are called vertical traces. They
are obtained by intersecting the graph with planes parallel to a vertical coordinate plane
(Figure 7):

• Vertical trace in the plane x = a: Intersection of the graph with the vertical plane
x = a, consisting of all points (a, y, f (a, y)).

• Vertical trace in the plane y = b: Intersection of the graph with the vertical plane
y = b, consisting of all points (x, b, f (x, b)).

EXAMPLE 3 Describe the vertical traces of f (x, y) = x sin y.

Solution When we freeze the x-coordinate by setting x = a, we obtain the trace curve
z = a sin y (see Figure 8). This is a sine curve located in the plane x = a. When we set
y = b, we obtain a line z = (sin b)y of slope sin b, located in the plane y = b.
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FIGURE 7

y
x

z

y
x

z

(A) The traces in the planes x = a 
       are the curves z = a (sin y).

(B) The traces in the planes y = b
       are the lines z = (sin b)y.

z = x sin y z = x sin y

FIGURE 8 Vertical traces of
f (x, y) = x sin y.

EXAMPLE 4 Identifying Features of a Graph Match the graphs in Figure 9 with the
following functions:

(i) f (x, y) = x − y2 (ii) g(x, y) = x2 − y

Solution Let’s compare vertical traces. The vertical trace of f (x, y) = x − y2 in the
plane x = a is a downward parabola z = a − y2. This matches (B). On the other hand,

(A) (B)

Upward parabolas 
y = b, z = x2 − b

Decreasing in 
positive y-direction

Increasing in 
positive x-direction

y

y

x

x

z

Downward parabolas 
x = a, z = a − y2

z

FIGURE 9
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the vertical trace of g(x, y) in the plane y = b is an upward parabola z = x2 − b. This
matches (A).

Notice also that f (x, y) = x − y2 is an increasing function of x (that is, f (x, y)

increases as x increases) as in (B), whereas g(x, y) = x2 − y is a decreasing function of
y as in (A).

Level Curves and Contour Maps
In addition to vertical traces, the graph of f (x, y) has horizontal traces. These traces and

c

y

x

z
Horizontal trace

at z = c

Level curve f (x, y) = c

z = f (x, y)

z = c

FIGURE 10 The level curve consists of all
points (x, y) where the function takes on
the value c.

their associated level curves are especially important in analyzing the behavior of the
function (Figure 10):

• Horizontal trace at height c: Intersection of the graph with the horizontal plane
z = c, consisting of the points (x, y, f (x, y)) such that f (x, y) = c.

• Level curve: The curve f (x, y) = c in the xy-plane.

Thus the level curve consists of all points (x, y) in the plane where the function takes the
value c. Each level curve is the projection onto the xy-plane of the horizontal trace on the
graph that lies above it.

A contour map is a plot in the xy-plane that shows the level curves f (x, y) = c

for equally spaced values of c. The interval m between the values is called the contour
interval. When you move from one level curve to next, the value of f (x, y) (and hence

On contour maps level curves are often
referred to as contour lines.

the height of the graph) changes by ±m.
Figure 11 compares the graph of a function f (x, y) in (A) and its horizontal traces in

(B) with the contour map in (C). The contour map in (C) has contour interval m = 100.
It is important to understand how the contour map indicates the steepness of the graph.

If the level curves are close together, then a small move from one level curve to the next
in the xy-plane leads to a large change in height. In other words, the level curves are close
together if the graph is steep (Figure 11). Similarly, the graph is flatter when the level
curves are farther apart.

z

x

z = f (x, y)

(A) (C) Contour map(B) Horizontal traces

Level curves 
close together

y

x

100

300

300

–100

0
y

z
Steep part
of graph

Flatter part
of graph

Level curves
farther apart

100

0

100

–300300
500500

300

FIGURE 11

EXAMPLE 5 Elliptic Paraboloid Sketch the contour map of f (x, y) = x2 + 3y2 and
comment on the spacing of the contour curves.

Solution The level curves have equation f (x, y) = c, or

x2 + 3y2 = c
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• For c > 0, the level curve is an ellipse.
• For c = 0, the level curve is just the point (0, 0) because x2 + 3y2 = 0 only for

(x, y) = (0, 0).
• The level curve is empty if c < 0 because f (x, y) is never negative.

The graph of f (x, y) is an elliptic paraboloid (Figure 12). As we move away from the
origin, f (x, y) increases more rapidly. The graph gets steeper, and the level curves get
closer together.

EXAMPLE 6 Hyperbolic Paraboloid Sketch the contour map of g(x, y) = x2 − 3y2.

REMINDER The hyperbolic paraboloid
in Figure 13 is often called a “saddle” or
“saddle-shaped surface.”

Solution The level curves have equation g(x, y) = c, or

x2 − 3y2 = c

• For c �= 0, the level curve is the hyperbola x2 − 3y2 = c.
• For c = 0, the level curve consists of the two lines x = ±√

3y because the equation
g(x, y) = 0 factors as follows:

x2 − 3y2 = 0 = (x − √
3y)(x + √

3y) = 0

The graph of g(x, y) is a hyperbolic paraboloid (Figure 13). When you stand at the origin,
g(x, y) increases as you move along the x-axis in either direction and decreases as you
move along the y-axis in either direction. Furthermore, the graph gets steeper as you move
out from the origin, so the level curves get closer together.

c = 0

y

x

y

x

z

50

10
30

FIGURE 12 f (x, y) = x2 + 3y2. Contour
interval m = 10.

y

y

z

c = −30

c = 30

x

g (x, y)
decreasing

g (x, y)
decreasing

g (x, y)
increasing

g (x, y)
increasing

x

FIGURE 13 g(x, y) = x2 − 3y2. Contour
interval m = 10.
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EXAMPLE 7 Contour Map of a Linear Function Sketch the graph of f (x, y) = 12 −

y

c = 12

(Interval m = 4)

c = 8

c = 4

x

y

x

c = 0
c = 4

c = −4

c = 8
c = 12
c = 16
c = 20

c = 0

c = −4

c = 16

c = 20

4

6

z

12

6

4

FIGURE 14 Graph and contour
map of f (x, y) = 12 − 2x − 3y.

2x − 3y and the associated contour map with contour interval m = 4.

Solution To plot the graph, which is a plane, we find the intercepts with the axes (Fig-
ure 14). The graph intercepts the z-axis at z = f (0, 0) = 12. To find the x-intercept, we
set y = z = 0 to obtain 12 − 2x − 3(0) = 0, or x = 6. Similarly, solving 12 − 3y = 0
gives y-intercept y = 4. The graph is the plane determined by the three intercepts.

In general, the level curves of a linear function f (x, y) = qx + ry + s are the lines
with equation qx + ry + s = c. Therefore, the contour map of a linear function consists of
equally spaced parallel lines. In our case, the level curves are the lines 12 − 2x − 3y = c,
or 2x + 3y = 12 − c (Figure 14).

How can we measure steepness quantitatively? Let’s imagine the surface z = f (x, y)

as a mountain range. In fact, contour maps (also called topographical maps) are used
extensively to describe terrain (Figure 15). We place the xy-plane at sea level, so that
f (a, b) is the height (also called altitude or elevation) of the mountain above sea level at
the point (a, b) in the plane.

FIGURE 15 Mount Whitney Range in
California, with contour map.

Figure 16 shows two points P and Q in the xy-plane, together with the points P̃ and
Q̃ on the graph that lie above them. We define the average rate of change:

Average rate of change from P to Q = � altitude

� horizontal

where

� altitude = change in the height from P̃ and Q̃

� horizontal = distance from P to Q

EXAMPLE 8 Calculate the average rate of change of f (x, y) from P to Q for the
function whose graph is shown in Figure 16.

Solution The segment PQ spans three level curves and the contour interval is 0.8 km,
so the change in altitude from P̃ to Q̃ is 3(0.8) = 2.4 km. From the horizontal scale of
the contour map, we see that the horizontal distance PQ is 2 km, so

Average rate of change from P to Q = � altitude

� horizontal
= 2.4

2
= 1.2

On average, your altitude gain is 1.2 times your horizontal distance traveled as you climb
from P̃ to Q̃.
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Contour interval: 0.8 km

Horizontal scale: 2 km

Δ altitude

Δ horizontal
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FIGURE 16
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FIGURE 17

CONCEPTUAL INSIGHT We will discuss the idea that rates of change depend on direction
when we come to directional derivatives in Section 14.5. In single-variable calculus,
we measure the rate of change by the derivative f ′(a). In the multivariable case, there
is no single rate of change because the change in f (x, y) depends on the direction: The
rate is zero along a level curve (because f (x, y) is constant along level curves), and the
rate is nonzero in directions pointing from one level curve to the next (Figure 17).

EXAMPLE 9 Average Rate of Change Depends on Direction Compute the average rate
of change from A to the points B, C, and D in Figure 17.

Solution The contour interval in Figure 17 is m = 50 m. Segments AB and AC both
span two level curves, so the change in altitude is 100 m in both cases. The horizontal
scale shows that AB corresponds to a horizontal change of 200 m, and AC corresponds
to a horizontal change of 400 m. On the other hand, there is no change in altitude from A

to D. Therefore:

Average rate of change from A to B = � altitude

� horizontal
= 100

200
= 0.5

Average rate of change from A to C = � altitude

� horizontal
= 100

400
= 0.25

Average rate of change from A to D = � altitude

� horizontal
= 0

We see here explicitly that the average rate varies according to the direction.

When we walk up a mountain, the incline at each moment depends on the path we
choose. If we walk “around” the mountain, our altitude does not change at all. On the other
hand, at each point there is a steepest direction in which the altitude increases most rapidly.
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On a contour map, the steepest direction is approximately the direction that takes us to
the closest point on the next highest level curve [Figure 18(A)]. We say “approximately”
because the terrain may vary between level curves. A path of steepest ascent is a path thatA path of steepest descent is the same as a

path of steepest ascent but in the opposite
direction. Water flowing down a mountain
follows a path of steepest descent.

begins at a point P and, everywhere along the way, points in the steepest direction. We can
approximate the path of steepest ascent by drawing a sequence of segments that move as
directly as possible from one level curve to the next. Figure 18(B) shows two paths from
P to Q. The solid path is a path of steepest ascent, but the dashed path is not, because it
does not move from one level curve to the next along the shortest possible segment.

40
30

20

10

40
30

20

10

(A) Vectors pointing approximately
       in the direction of steepest ascent

(B)

Q

Approximate path
of steepest ascent
starting at P

P Not a path of
steepest ascent

FIGURE 18

More Than Two Variables
It is not possible to draw the graph of a function of more than two variables. The graph
of a function f (x, y, z) would consist of the set of points (x, y, z, f (x, y, z)) in four-
dimensional space R4. However, it is possible to draw the level surfaces of a function
of three variables f (x, y, z). These are the surfaces with equation f (x, y, z) = c. For
example, the level surfaces of

f (x, y, z) = x2 + y2 + z2

are the spheres with equation x2 + y2 + z2 = c (Figure 19). For functions of four or more

x2 + y2 + z2 = 9

x2 + y2 + z2 = 1

z

x2 + y2 + z2 = 4

x

y

FIGURE 19 The level surfaces of
f (x, y, z) = x2 + y2 + z2 are spheres.

variables, we can no longer visualize the graph or the level surfaces. We must rely on
intuition developed through the study of functions of two and three variables.

EXAMPLE 10 Describe the level surfaces of g(x, y, z) = x2 + y2 − z2.

Solution The level surface for c = 0 is the cone x2 + y2 − z2 = 0. For c �= 0, the level
surfaces are the hyperboloids x2 + y2 − z2 = c. The hyperboloid has one sheet if c > 0
and two sheets if c < 0 (Figure 20).

14.1 SUMMARY

• The domain D of a function f (x1, . . . , xn) of n variables is the set of n-tuples
(a1, . . . , an) in Rn for which f (a1, . . . , an) is defined. The range of f is the set of
values taken by f .
• The graph of a continuous real-valued function f (x, y) is the surface in R3 consisting
of the points (a, b, f (a, b)) for (a, b) in the domain D of f .
• A vertical trace is a curve obtained by intersecting the graph with a vertical plane x = a

or y = b.



S E C T I O N 14.1 Functions of Two or More Variables 783

z

x

y

g(x, y, z) = 0 g(x, y, z) = c  (c < 0)g(x, y, z) = c  (c > 0)

z

x

y

z

x

y

z

x

y

FIGURE 20 Level surfaces of g(x, y, z) = x2 + y2 − z2.

• A level curve is a curve in the xy-plane defined by an equation f (x, y) = c. The level
curve f (x, y) = c is the projection onto the xy-plane of the horizontal trace curve, ob-
tained by intersecting the graph with the horizontal plane z = c.
• A contour map shows the level curves f (x, y) = c for equally spaced values of c. The
spacing m is called the contour interval.
• When reading a contour map, keep in mind:

– Your altitude does not change when you hike along a level curve.
– Your altitude increases or decreases by m (the contour interval) when you hike from

one level curve to the next.

• The spacing of the level curves indicates steepness: They are closer together where the
graph is steeper.

• The average rate of change from P to Q is the ratio
�altitude

�horizontal
.

• A direction of steepest ascent at a point P is a direction along which f (x, y) increases
most rapidly. The steepest direction is obtained (approximately) by drawing the segment
from P to the nearest point on the next level curve.

14.1 EXERCISES

Preliminary Questions
1. What is the difference between a horizontal trace and a level curve?

How are they related?

2. Describe the trace of f (x, y) = x2 − sin(x3y) in the xz-plane.

3. Is it possible for two different level curves of a function to intersect?
Explain.

4. Describe the contour map of f (x, y) = x with contour interval 1.

5. How will the contour maps of

f (x, y) = x and g(x, y) = 2x

with contour interval 1 look different?

Exercises
In Exercises 1–4, evaluate the function at the specified points.

1. f (x, y) = x + yx3, (2, 2), (−1, 4)

2. g(x, y) = y

x2 + y2
, (1, 3), (3, −2)

3. h(x, y, z) = xyz−2, (3, 8, 2), (3, −2, −6)
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4. Q(y, z) = y2 + y sin z, (y, z) = (
2, π

2

)
,
( − 2, π

6

)
In Exercises 5–12, sketch the domain of the function.

5. f (x, y) = 12x − 5y 6. f (x, y) =
√

81 − x2

7. f (x, y) = ln(4x2 − y) 8. h(x, t) = 1

x + t

9. g(y, z) = 1

z + y2
10. f (x, y) = sin

y

x

11. F(I, R) = √
IR 12. f (x, y) = cos−1(x + y)

In Exercises 13–16, describe the domain and range of the function.

13. f (x, y, z) = xz + ey 14. f (x, y, z) = x
√

y + zez/x

15. P(r, s, t) =
√

16 − r2s2t2 16. g(r, s) = cos−1(rs)

17. Match graphs (A) and (B) in Figure 21 with the functions

(i) f (x, y) = −x + y2 (ii) g(x, y) = x + y2

(A) (B)

y

x

z

y

x

z

FIGURE 21

18. Match each of graphs (A) and (B) in Figure 22 with one of the
following functions:

(i) f (x, y) = (cos x)(cos y)

(ii) g(x, y) = cos(x2 + y2)

(A)

y

x

z z

(B)

y

x

FIGURE 22

19. Match the functions (a)–(f) with their graphs (A)–(F) in Figure 23.

(a) f (x, y) = |x| + |y|

(b) f (x, y) = cos(x − y)

(c) f (x, y) = −1

1 + 9x2 + y2

(d) f (x, y) = cos(y2)e−0.1(x2+y2)

(e) f (x, y) = −1

1 + 9x2 + 9y2

(f) f (x, y) = cos(x2 + y2)e−0.1(x2+y2)

(A) (B)

y

x

(C) (D)

y

x

z

y

(E) (F)

x

x

y

x

z

z z

y

z z

FIGURE 23

20. Match the functions (a)–(d) with their contour maps (A)–(D) in
Figure 24.

(a) f (x, y) = 3x + 4y

(b) g(x, y) = x3 − y

(c) h(x, y) = 4x − 3y

(d) k(x, y) = x2 − y
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FIGURE 24

In Exercises 21–26, sketch the graph and describe the vertical and
horizontal traces.

21. f (x, y) = 12 − 3x − 4y 22. f (x, y) =
√

4 − x2 − y2

23. f (x, y) = x2 + 4y2 24. f (x, y) = y2

25. f (x, y) = sin(x − y) 26. f (x, y) = 1

x2 + y2 + 1

27. Sketch contour maps of f (x, y) = x + y with contour intervals
m = 1 and 2.

28. Sketch the contour map of f (x, y) = x2 + y2 with level curves
c = 0, 4, 8, 12, 16.

In Exercises 29–36, draw a contour map of f (x, y) with an appropriate
contour interval, showing at least six level curves.

29. f (x, y) = x2 − y 30. f (x, y) = y

x2

31. f (x, y) = y

x
32. f (x, y) = xy

33. f (x, y) = x2 + 4y2 34. f (x, y) = x + 2y − 1

35. f (x, y) = x2 36. f (x, y) = 3x2 − y2

37. Find the linear function whose contour map (with contour
interval m = 6) is shown in Figure 25. What is the linear function if
m = 3 (and the curve labeled c = 6 is relabeled c = 3)?

c = 0

c = 6

63−6 −3
−1

−2

2

1

x

y

FIGURE 25 Contour map with contour interval m = 6

38. Use the contour map in Figure 26 to calculate the average rate of
change:

(a) From A to B. (b) From A to C.

c = 0

c = −3

62 4−6 −4 −2

6

4

2

x

AB

y

C

FIGURE 26

39. Referring to Figure 27, answer the following questions:

(a) At which of (A)–(C) is pressure increasing in the northern direc-
tion?

(b) At which of (A)–(C) is pressure increasing in the easterly direction?

(c) In which direction at (B) is pressure increasing most rapidly?

10001004
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1012

1024

1024

1024
1020

1020

1008

1032 1032

1020
1028

1028

1016

1016
1012

1004

1012
1016

1016

1016

1008

1016

A

B

C

FIGURE 27 Atmospheric Pressure (in millibars) over the continental
U.S. on March 26, 2009
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In Exercises 40–43, ρ(S, T ) is seawater density (kg/m3) as a function
of salinity S (ppt) and temperature T (◦C). Refer to the contour map in
Figure 28.
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1.0240
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1.0265

1.0270

C

FIGURE 28 Contour map of seawater density ρ(S, T ) (kg/m3).

40. Calculate the average rate of change of ρ with respect to T from
B to A.

41. Calculate the average rate of change of ρ with respect to S from B

to C.

42. At a fixed level of salinity, is seawater density an increasing or a
decreasing function of temperature?

43. Does water density appear to be more sensitive to a change in
temperature at point A or point B?

In Exercises 44–47, refer to Figure 29.

44. Find the change in elevation from A and B.

45. Estimate the average rate of change from A and B and from A

to C.

46. Estimate the average rate of change from A to points i, ii, and iii.

47. Sketch the path of steepest ascent beginning at D.

i

B

iii

D

C

A

ii 400

500

0 1 2 km
Contour interval = 20 m

540

FIGURE 29

Further Insights and Challenges
48. The function f (x, t) = t−1/2e−x2/t , whose graph is
shown in Figure 30, models the temperature along a metal bar after
an intense burst of heat is applied at its center point.

(a) Sketch the vertical traces at times t = 1, 2, 3. What do these traces
tell us about the way heat diffuses through the bar?

(b) Sketch the vertical traces x = c for c = ±0.2, ±0.4. Describe how
temperature varies in time at points near the center.

49. Let

f (x, y) = x√
x2 + y2

for (x, y) �= (0, 0)

Write f as a function f (r, θ) in polar coordinates, and use this to find
the level curves of f .

x

Time t

Metal bar

Temperature T

4

3

2

1
0.40.20−0.2−0.4

FIGURE 30 Graph of f (x, t) = t−1/2e−x2/t beginning shortly after
t = 0.

14.2 Limits and Continuity in Several Variables
This section develops limits and continuity in the multivariable setting. We focus on
functions of two variables, but similar definitions and results apply to functions of three
or more variables.

Recall that a number x is close to a if the distance |x − a| is small. In the plane, one
point (x, y) is close to another point P = (a, b) if the distance between them is small.
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To express this precisely, we define the open disk of radius r and center P = (a, b)

(Figure 1):

x

y

Open disk D (P, r)

D*(P, r) excludes P

r

P
(x, y)

FIGURE 1 The open disk D(P, r) consists
of points (x, y) at distance < r from P . It
does not include the boundary circle.

D(P, r) = {(x, y) ∈ R2 : (x − a)2 + (y − b)2 < r2}
The open punctured disk D∗(P, r) is the disk D(P, r) with its center point P removed.
Thus D∗(P, r) consists of all points whose distance to P is less than r , other than P itself.

Now assume that f (x, y) is defined near P but not necessarily at P itself. In other
words, f (x, y) is defined for all (x, y) in some punctured disk D∗(P, r) with r > 0. We
say that f (x, y) approaches the limit L as (x, y) approaches P = (a, b) if |f (x, y) − L|
becomes arbitrarily small for (x, y) in a sufficiently small punctured disk centered at P

[Figure 2(C)]. In this case, we write

lim
(x,y)→P

f (x, y) = lim
(x,y)→(a,b)

f (x, y) = L

Here is the formal definition.

DEFINITION Limit Assume that f (x, y) is defined near P = (a, b). Then

lim
(x,y)→P

f (x, y) = L

if, for any ε > 0, there exists δ > 0 such that

|f (x, y) − L| < ε for all (x, y) ∈ D∗(P, δ)

This is similar to the limit definition in one variable, but there is an important differ-
ence. In a one-variable limit, we require that f (x) tend to L as x approaches a from the
left or right [Figure 2(A)]. In a multivariable limit, f (x, y) must tend to L no matter how
(x, y) approaches P [Figure 2(B)].

| f (x, y) − L | <    for
all (x, y) inside the disk

(C)In two variables, (x, y) can approach
P = (a, b) along any direction or path.

(B)

a

In one variable, we can approach
a from only two possible directions.

(A)

(a, b)
(x, y)

f (x, y)

L
L +   �

L

y

x

x y

z

Open disk of
radiusP = (a, b)

z = f(x, y)

y = f(x)

x y

z

L +   �

L −   �

�

L −   �

FIGURE 2

EXAMPLE 1 Show that (a) lim
(x,y)→(a,b)

x = a and (b) lim
(x,y)→(a,b)

y = b.

Solution Let P = (a, b). To verify (a), let f (x, y) = x and L = a. We must show that
for any ε > 0, we can find δ > 0 such that

|f (x, y) − L| = |x − a| < ε for all (x, y) ∈ D∗(P, δ) 1



788 C H A P T E R 14 DIFFERENTIATION IN SEVERAL VARIABLES

In fact, we can choose δ = ε, for if (x, y) ∈ D∗(P, ε), then

(x − a)2 + (y − b)2 < ε2 ⇒ (x − a)2 < ε2 ⇒ |x − a| < ε

In other words, for any ε > 0,

a

b

D*(P,   )

P = (a, b)

f (x, y) = y

y

x

b +   �

b −   �

b

z

FIGURE 3 We have |f (x, y) − b| < ε if
|y − b| < δ for δ = ε. Therefore,

lim
(x,y)→(a,b)

y = b

|x − a| < ε for all (x, y) ∈ D∗(P, ε)

This proves (a). The limit (b) is similar (see Figure 3).

The following theorem lists the basic laws for limits. We omit the proofs, which are
similar to the proofs of the single-variable Limit Laws.

THEOREM 1 Limit Laws Assume that lim
(x,y)→P

f (x, y) and lim
(x,y)→P

g(x, y) exist.

Then:

(i) Sum Law:

lim
(x,y)→P

(f (x, y) + g(x, y)) = lim
(x,y)→P

f (x, y) + lim
(x,y)→P

g(x, y)

(ii) Constant Multiple Law: For any number k,

lim
(x,y)→P

kf (x, y) = k lim
(x,y)→P

f (x, y)

(iii) Product Law:

lim
(x,y)→P

f (x, y) g(x, y) =
(

lim
(x,y)→P

f (x, y)

)(
lim

(x,y)→P
g(x, y)

)
(iv) Quotient Law: If lim

(x,y)→P
g(x, y) �= 0, then

lim
(x,y)→P

f (x, y)

g(x, y)
=

lim
(x,y)→P

f (x, y)

lim
(x,y)→P

g(x, y)

As in the single-variable case, we say that f is continuous at P = (a, b) if f (x, y)

approaches the function value f (a, b) as (x, y) → (a, b).

DEFINITION Continuity A function f (x, y) is continuous at P = (a, b) if

lim
(x,y)→(a,b)

f (x, y) = f (a, b)

We say that f is continuous if it is continuous at each point (a, b) in its domain.

The Limit Laws tell us that all sums, multiples, and products of continuous functions
are continuous. When we apply them to f (x, y) = x and g(x, y) = y, which are contin-
uous by Example 1, we find that the power functions f (x, y) = xmyn are continuous for
all whole numbers m, n and that all polynomials are continuous. Furthermore, a rational
function h(x, y)/g(x, y), where h and g are polynomials, is continuous at all points (a, b)

where g(a, b) �= 0. As in the single-variable case, we can evaluate limits of continuous
functions using substitution.
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EXAMPLE 2 Evaluating Limits by Substitution Show that

x

y

z

FIGURE 4 Top view of the graph

f (x, y) = 3x + y

x2 + y2 + 1
.

f (x, y) = 3x + y

x2 + y2 + 1

is continuous (Figure 4). Then evaluate lim
(x,y)→(1,2)

f (x, y).

Solution The function f (x, y) is continuous at all points (a, b) because it is a rational
function whose denominator Q(x, y) = x2 + y2 + 1 is never zero. Therefore, we can
evaluate the limit by substitution:

lim
(x,y)→(1,2)

3x + y

x2 + y2 + 1
= 3(1) + 2

12 + 22 + 1
= 5

6

If f (x, y) is a product f (x, y) = h(x)g(y), where h(x) and g(y) are continuous,
then the limit is a product of limits by the Product Law:

lim
(x,y)→(a,b)

f (x, y) = lim
(x,y)→(a,b)

h(x)g(y) =
(

lim
x→a

h(x)
)(

lim
y→b

g(y)

)

EXAMPLE 3 Product Functions Evaluate lim
(x,y)→(3,0)

x3 sin y

y
.

Solution The limit is equal to a product of limits:

lim
(x,y)→(3,0)

x3 sin y

y
=

(
lim
x→3

x3
)(

lim
y→0

sin y

y

)
= (33)(1) = 27

Composition is another important way to build functions. If f (x, y) is a function
of two variables and G(u) a function of one variable, then the composite G ◦ f is the
function G(f (x, y)). According to the next theorem, a composite of continuous functions
is again continuous.

THEOREM 2 A Composite of Continuous Functions Is Continuous If f (x, y) is con-
tinuous at (a, b) and G(u) is continuous at c = f (a, b), then the composite function
G(f (x, y)) is continuous at (a, b).

EXAMPLE 4 Write H(x, y) = e−x2+2y as a composite function and evaluate

lim
(x,y)→(1,2)

H(x, y)

Solution We have H(x, y) = G ◦ f , where G(u) = eu and f (x, y) = −x2 + 2y. Both
f and G are continuous, so H is also continuous and

lim
(x,y)→(1,2)

H(x, y) = lim
(x,y)→(1,2)

e−x2+2y = e−(1)2+2(2) = e3

We know that if a limit lim
(x,y)→(a,b)

f (x, y) exists and equals L, then f (x, y) tends to

L as (x, y) approaches (a, b) along any path. In the next example, we prove that a limit
does not exist by showing that f (x, y) approaches different limits along lines through the
origin.
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EXAMPLE 5 Showing a Limit Does Not Exist Examine lim
(x,y)→(0,0)

x2

x2 + y2
numeri-

cally. Then prove that the limit does not exist.

Solution If the limit existed, we would expect the values of f (x, y) in Table 1 to get closer
to a limiting value L as (x, y) gets close to (0, 0). But the table suggests that f (x, y) takes
on all values between 0 and 1, no matter how close (x, y) gets to (0, 0). For example,

f (0.1, 0) = 1, f (0.1, 0.1) = 0.5, f (0, 0.1) = 0

Thus, f (x, y) does not seem to approach any fixed value L as (x, y) → (0, 0).
Now let’s prove that the limit does not exist by showing that f (x, y) approaches

different limits along the x- and y-axes (Figure 5):

Limit along x-axis: lim
x→0

f (x, 0) = lim
x→0

x2

x2 + 02
= lim

x→0
1 = 1

Limit along y-axis: lim
y→0

f (0, y) = lim
y→0

02

02 + y2
= lim

y→0
0 = 0

These two limits are different and hence lim
(x,y)→(0,0)

f (x, y) does not exist.

TABLE 1 Values of f (x, y) = x2

x2 + y2

y
x −0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5

0.5 0.5 0.39 0.265 0.138 0.038 0 0.038 0.138 0.265 0.39 0.5

0.4 0.61 0.5 0.36 0.2 0.059 0 0.059 0.2 0.36 0.5 0.61

0.3 0.735 0.64 0.5 0.308 0.1 0 0.1 0.308 0.5 0.64 0.735

0.2 0.862 0.8 0.692 0.5 0.2 0 0.2 0.5 0.692 0.8 0.862

0.1 0.962 0.941 0.9 0.8 0.5 0 0.5 0.8 0.9 0.941 0.962

0 1 1 1 1 1 1 1 1 1 1

−0.1 0.962 0.941 0.9 0.8 0.5 0 0.5 0.8 0.9 0.941 0.962

−0.2 0.862 0.8 0.692 0.5 0.2 0 0.2 0.5 0.692 0.8 0.862

−0.3 0.735 0.640 0.5 0.308 0.1 0 0.1 0.308 0.5 0.640 0.735

−0.4 0.610 0.5 0.360 0.2 0.059 0 0.059 0.2 0.36 0.5 0.61

−0.5 0.5 0.39 0.265 0.138 0.038 0 0.038 0.138 0.265 0.390 0.5

GRAPHICAL INSIGHT The contour map in Figure 5 shows clearly that the function
f (x, y) = x2/(x2 + y2) does not approach a limit as (x, y) approaches (0, 0). For
nonzero c, the level curve f (x, y) = c is the line y = mx through the origin (with the
origin deleted) where c = (m2 + 1)−1:

f (x, mx) = x2

x2 + (mx)2
= 1

m2 + 1
(for x �= 0)

The level curve f (x, y) = 0 is the y-axis (with the origin deleted).As the slope m varies,
f takes on all values between 0 and 1 in every disk around the origin (0, 0), no matter
how small, so f cannot approach a limit.

As we know, there is no single method for computing limits that always works. The

x

z

c = 1 c = 0
0.9 0.7 0.5 0.3 0.1

x

y

y

FIGURE 5 Graph of f (x, y) = x2

x2 + y2
.

next example illustrates two different approaches to evaluating a limit in a case where
substitution cannot be used.
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EXAMPLE 6 Two Methods for Verifying a Limit Calculate lim
(x,y)→(0,0)

f (x, y) where

x

y

z

FIGURE 6 Graph of f (x, y) = xy2

x2 + y2
.

f (x, y) is defined for (x, y) �= (0, 0) by (Figure 6)

f (x, y) = xy2

x2 + y2

Solution

First Method For (x, y) �= (0, 0), we have

0 ≤
∣∣∣∣ y2

x2 + y2

∣∣∣∣ ≤ 1

because the numerator is not greater than the denominator. Multiply by |x|:

0 ≤
∣∣∣∣ xy2

x2 + y2

∣∣∣∣ ≤ |x|

and use the Squeeze Theorem (which is valid for limits in several variables):

0 ≤ lim
(x,y)→(0,0)

∣∣∣∣ xy2

x2 + y2

∣∣∣∣ ≤ lim
(x,y)→(0,0)

|x|

Because lim
(x,y)→(0,0)

|x| = 0, we conclude that lim
(x,y)→(0,0)

f (x, y) = 0 as desired.

Second Method Use polar coordinates:

x = r cos θ, y = r sin θ

Then x2 + y2 = r2 and for r �= 0,

0 ≤
∣∣∣∣ xy2

x2 + y2

∣∣∣∣ =
∣∣∣∣ (r cos θ)(r sin θ)2

r2

∣∣∣∣ = r|cos θ sin2 θ | ≤ r

As (x, y) approaches (0, 0), the variable r also approaches 0, so again, the desired con-
clusion follows from the Squeeze Theorem:

0 ≤ lim
(x,y)→(0,0)

∣∣∣∣ xy2

x2 + y2

∣∣∣∣ ≤ lim
r→0

r = 0

14.2 SUMMARY

• The open disk of radius r centered at P = (a, b) is defined by

D(P, r) = {(x, y) ∈ R2 : (x − a)2 + (y − b)2 < r2}
The punctured disk D∗(P, r) is D(P, r) with P removed.
• Suppose that f (x, y) is defined near P = (a, b). Then

lim
(x,y)→(a,b)

f (x, y) = L

if, for any ε > 0, there exists δ > 0 such that

|f (x, y) − L| < ε for all (x, y) ∈ D∗(P, δ)
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• The limit of a product f (x, y) = h(x)g(y) is a product of limits:

lim
(x,y)→(a,b)

f (x, y) =
(

lim
x→a

h(x)
)(

lim
y→b

g(y)

)
• A function f (x, y) is continuous at P = (a, b) if

lim
(x,y)→(a,b)

f (x, y) = f (a, b)

14.2 EXERCISES

Preliminary Questions
1. What is the difference between D(P, r) and D∗(P, r)?

2. Suppose that f (x, y) is continuous at (2, 3) and that
f (2, y) = y3 for y �= 3. What is the value f (2, 3)?

3. Suppose that Q(x, y) is a function such that 1/Q(x, y) is contin-
uous for all (x, y). Which of the following statements are true?

(a) Q(x, y) is continuous for all (x, y).

(b) Q(x, y) is continuous for (x, y) �= (0, 0).

(c) Q(x, y) �= 0 for all (x, y).

4. Suppose that f (x, 0) = 3 for all x �= 0 and f (0, y) = 5 for all
y �= 0. What can you conclude about lim

(x,y)→(0,0)
f (x, y)?

Exercises
In Exercises 1–8, evaluate the limit using continuity

1. lim
(x,y)→(1,2)

(x2 + y) 2. lim
(x,y)→( 4

9 , 2
9 )

x

y

3. lim
(x,y)→(2,−1)

(xy − 3x2y3) 4. lim
(x,y)→(−2,1)

2x2

4x + y

5. lim
(x,y)→( π

4 ,0)
tan x cos y 6. lim

(x,y)→(2,3)
tan−1(x2 − y)

7. lim
(x,y)→(1,1)

ex2 − e−y2

x + y
8. lim

(x,y)→(1,0)
ln(x − y)

In Exercises 9–12, assume that

lim
(x,y)→(2,5)

f (x, y) = 3, lim
(x,y)→(2,5)

g(x, y) = 7

9. lim
(x,y)→(2,5)

(
g(x, y) − 2f (x, y)

)

10. lim
(x,y)→(2,5)

f (x, y)2g(x, y) 11. lim
(x,y)→(2,5)

ef (x,y)2−g(x,y)

12. lim
(x,y)→(2,5)

f (x, y)

f (x, y) + g(x, y)

13. Does lim
(x,y)→(0,0)

y2

x2 + y2
exist? Explain.

14. Let f (x, y) = xy/(x2 + y2). Show that f (x, y) approaches zero
along the x- and y-axes. Then prove that lim

(x,y)→(0,0)
f (x, y) does not

exist by showing that the limit along the line y = x is nonzero.

15. Prove that

lim
(x,y)→(0,0)

x

x2 + y2

does not exist by considering the limit along the x-axis.

16. Let f (x, y) = x3/(x2 + y2) and g(x, y) = x2/(x2 + y2). Using
polar coordinates, prove that

lim
(x,y)→(0,0)

f (x, y) = 0

and that lim
(x,y)→(0,0)

g(x, y) does not exist. Hint: Show that g(x, y) =
cos2 θ and observe that cos θ can take on any value between −1 and 1
as (x, y) → (0, 0).

17. Use the Squeeze Theorem to evaluate

lim
(x,y)→(4,0)

(x2 − 16) cos

(
1

(x − 4)2 + y2

)

18. Evaluate lim
(x,y)→(0,0)

tan x sin

(
1

|x| + |y|
)

.

In Exercises 19–32, evaluate the limit or determine that it does not
exist.

19. lim
(z,w)→(−2,1)

z4 cos(πw)

ez+w
20. lim

(z,w)→(−1,2)
(z2w − 9z)

21. lim
(x,y)→(4,2)

y − 2√
x2 − 4

22. lim
(x,y)→(0,0)

x2 + y2

1 + y2

23. lim
(x,y)→(3,4)

1√
x2 + y2

24. lim
(x,y)→(0,0)

xy√
x2 + y2
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25. lim
(x,y)→(1,−3)

ex−y ln(x − y) 26. lim
(x,y)→(0,0)

|x|
|x| + |y|

27. lim
(x,y)→(−3,−2)

(x2y3 + 4xy) 28. lim
(x,y)→(2,1)

ex2−y2

29. lim
(x,y)→(0,0)

tan(x2 + y2) tan−1
(

1

x2 + y2

)

30. lim
(x,y)→(0,0)

(x + y + 2)e−1/(x2+y2)

31. lim
(x,y)→(0,0)

x2 + y2√
x2 + y2 + 1 − 1

32. lim
(x,y)→(1,1)

x2 + y2 − 2

|x − 1| + |y − 1|
Hint: Rewrite the limit in terms of u = x − 1 and v = y − 1.

33. Let f (x, y) = x3 + y3

x2 + y2
.

(a) Show that

|x3| ≤ |x|(x2 + y2), |y3| ≤ |y|(x2 + y2)

(b) Show that |f (x, y)| ≤ |x| + |y|.

(c) Use the Squeeze Theorem to prove that lim
(x,y)→(0,0)

f (x, y) = 0.

34. Let a, b ≥ 0. Show that lim
(x,y)→(0,0)

xayb

x2 + y2
= 0 if a + b > 2 and

that the limit does not exist if a + b ≤ 2.

35. Figure 7 shows the contour maps of two functions. Explain
why the limit lim

(x,y)→P
f (x, y) does not exist. Does lim

(x,y)→Q
g(x, y)

appear to exist in (B)? If so, what is its limit?

12

6

0

18

24

30

(A) Contour map of f (x, y) (B) Contour map of g(x, y)

P

3−3

−1 1

5−5

Q

FIGURE 7

Further Insights and Challenges
36. Evaluate lim

(x,y)→(0,2)
(1 + x)y/x .

37. Is the following function continuous?

f (x, y) =
{

x2 + y2 if x2 + y2 < 1

1 if x2 + y2 ≥ 1

38. The function f (x, y) = sin(xy)/xy is defined for
xy �= 0.

(a) Is it possible to extend the domain of f (x, y) to all of R2 so that
the result is a continuous function?

(b) Use a computer algebra system to plot f (x, y). Does the result
support your conclusion in (a)?

39. Prove that the function

f (x, y) =
⎧⎨
⎩

(2x − 1)(sin y)

xy
if xy �= 0

ln 2 if xy = 0

is continuous at (0, 0).

40. Prove that if f (x) is continuous at x = a and g(y) is continuous
at y = b, then F(x, y) = f (x)g(y) is continuous at (a, b).

41. The function f (x, y) = x2y/(x4 + y2) provides an inter-
esting example where the limit as (x, y) → (0, 0) does not exist, even
though the limit along every line y = mx exists and is zero (Figure 8).

(a) Show that the limit along any line y = mx exists and is equal to 0.

(b) Calculate f (x, y) at the points (10−1, 10−2), (10−5, 10−10),
(10−20, 10−40). Do not use a calculator.

(c) Show that lim
(x,y)→(0,0)

f (x, y) does not exist. Hint: Compute the

limit along the parabola y = x2.

x

y

z

x

y

FIGURE 8 Graph of f (x, y) = x2y

x4 + y2
.
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14.3 Partial Derivatives
We have stressed that a function f of two or more variables does not have a unique rate
of change because each variable may affect f in different ways. For example, the current
I in a circuit is a function of both voltage V and resistance R given by Ohm’s Law:

I (V, R) = V

R

The current I is increasing as a function of V but decreasing as a function of R.
The partial derivatives are the rates of change with respect to each variable separately.

A function f (x, y) of two variables has two partial derivatives, denoted fx and fy , defined
by the following limits (if they exist):

fx(a, b) = lim
h→0

f (a + h, b) − f (a, b)

h
, fy(a, b) = lim

k→0

f (a, b + k) − f (a, b)

k

Thus, fx is the derivative of f (x, b) as a function of x alone, and fy is the derivative at
f (a, y) as a function of y alone. The Leibniz notation for partial derivatives is

The partial derivative symbol ∂ is a
rounded “d.” The symbols ∂f/∂x and
∂f/∂y are read as follows: “dee-eff dee-ex”
and “dee-eff dee-why.”

∂f

∂x
= fx,

∂f

∂y
= fy

∂f

∂x

∣∣∣∣
(a,b)

= fx(a, b),
∂f

∂y

∣∣∣∣
(a,b)

= fy(a, b)

If z = f (x, y), then we also write ∂z/∂x and ∂z/∂y.
Partial derivatives are computed just like ordinary derivatives in one variable with this

difference: To compute fx , treat y as a constant, and to compute fy , treat x as a constant.

EXAMPLE 1 Compute the partial derivatives of f (x, y) = x2y5.

Solution

∂f

∂x
= ∂

∂x

(
x2y5) = y5 ∂

∂x

(
x2)︸ ︷︷ ︸

Treat y5 as a constant

= y5(2x) = 2xy5

∂f

∂y
= ∂

∂y

(
x2y5) = x2 ∂

∂x

(
y5)

︸ ︷︷ ︸
Treat x2 as a constant

= x2(5y4) = 5x2y4

GRAPHICAL INSIGHT The partial derivatives at P = (a, b) are the slopes of the tangent
lines to the vertical trace curves through the point (a, b, f (a, b)) in Figure 1(A). To
compute fx(a, b), we set y = b and differentiate in the x-direction. This gives us the
slope of the tangent line to the trace curve in the plane y = b [Figure 1(B)]. Similarly,
fy(a, b) is the slope of the trace curve in the vertical plane x = a [Figure 1(C)].

The differentiation rules from calculus of one variable (the Product, Quotient, and
Chain Rules) are valid for partial derivatives.
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(A)

(a, b)
x

z

P = (a, b, f (a, b))

a a
b

(B)

x
yy

z

(C)

x
y

z

P
P

The trace curve
(x, b, f (x, b))

The trace curve
(a, y, f (a, y))

Slope fx (a, b)

Slope fy (a, b)

Plane y = b Plane x = a

b

FIGURE 1 The partial derivatives are the slopes of the vertical trace curves.

EXAMPLE 2 Calculate gx(1, 3) and gy(1, 3), where g(x, y) = y2

(1 + x2)3
.

y

g (x, y) = y2

(1 + x2)3

P = (1, 3,    )9
8

x

z

FIGURE 2 The slopes of the tangent lines to
the trace curves are gx(1, 3) and gy(1, 3).

Solution To calculate gx , treat y (and therefore y2) as a constant:

gx(x, y) = ∂

∂x

y2

(1 + x2)3
= y2 ∂

∂x
(1 + x2)−3 = −6xy2

(1 + x2)4

gx(1, 3) = −6(1)32

(1 + 12)4
= −27

8

To calculate gy , treat x (and therefore 1 + x2) as a constant:

CAUTION It is not necessary to use the
Quotient Rule to compute the partial
derivative in Eq. (1). The denominator does
not depend on y, so we treat it as a
constant when differentiating with respect
to y.

gy(x, y) = ∂

∂y

y2

(1 + x2)3
= 1

(1 + x2)3

∂

∂y
y2 = 2y

(1 + x2)3
1

gy(1, 3) = 2(3)

(1 + 12)3
= 3

4

These partial derivatives are the slopes of the trace curves through the point
(
1, 3, 9

8

)
shown in Figure 2.

We use the Chain Rule to compute partial derivatives of a composite function
f (x, y) = F(g(x, y)), where F(u) is a function of one variable and u = g(x, y):

∂f

∂x
= dF

du

∂u

∂x
,

∂f

∂y
= dF

du

∂u

∂y

EXAMPLE 3 Chain Rule for Partial Derivatives Compute
∂

∂x
sin(x2y5).

Solution Write sin(x2y5) = F(u), where F(u) = sin u and u = x2y5. Then we have
dF

du
= cos u and the Chain Rule give us

∂

∂x
sin(x2y5) = dF

du

∂u

∂x
= cos(x2y5)

∂

∂x
x2y5︸ ︷︷ ︸

Chain Rule

= 2xy5 cos(x2y5)

Partial derivatives are defined for functions of any number of variables. We compute
the partial derivative with respect to any one of the variables by holding the remaining
variables constant.
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EXAMPLE 4 More Than Two Variables Calculate fz(0, 0, 1, 1), where

f (x, y, z, w) = exz+y

z2 + w

Solution Use the Quotient Rule, treating x, y, and w as constants:In Example 4, the calculation

∂

∂z
exz+y = xexz+y

follows from the Chain Rule, just like

d

dz
eaz+b = aeaz+b

fz(x, y, z, w) = ∂

∂z

(
exz+y

z2 + w

)
= (z2 + w) ∂

∂z
exz+y − exz+y ∂

∂z
(z2 + w)

(z2 + w)2

= (z2 + w)xexz+y − 2zexz+y

(z2 + w)2
= (z2x + wx − 2z)exz+y

(z2 + w)2

fz(0, 0, 1, 1) = −2e0

(12 + 1)2
= −1

2

Because the partial derivative fx(a, b) is the derivative f (x, b), viewed as a function
of x alone, we can estimate the change �f when x changes from a to a + �x as in the
single-variable case. Similarly, we can estimate the change when y changes by �y. For
small �x and �y (just how small depends on f and the accuracy required):

f (a + �x, b) − f (a, b) ≈ fx(a, b)�x

f (a, b + �y) − f (a, b) ≈ fy(a, b)�y

This applies to functions f in any number of variables. For example, �f ≈ fw�w if one
of the variables w changes by �w and all other variables remain fixed.

EXAMPLE 5 Testing Microchips A ball grid array (BGA) is a microchip joined to a

Chip

Circuit board

Solder ball
of radius R

L

FIGURE 3 A BGA package. Temperature
variations strain the BGA and may cause it
to fail because the chip and board expand
at different rates.

circuit board by small solder balls of radius R mm separated by a distance L mm (Figure 3).
Manufacturers test the reliability of BGAs by subjecting them to repeated cycles in which
the temperature is varied from 0◦C to 100◦C over a 40-min period. According to one
model, the average number N of cycles before the chip fails is

N =
(

2200R

Ld

)1.9

where d is the difference between the coefficients of expansion of the chip and the board.
Estimate the change �N when R = 0.12, d = 10, and L is increased from 0.4 to 0.42.

Solution We use the approximation

�N ≈ ∂N

∂L
�L

with �L = 0.42 − 0.4 = 0.02. Since R and d are constant, the partial derivative is

∂N

∂L
= ∂

∂L

(
2200R

Ld

)1.9

=
(

2200R

d

)1.9
∂

∂L
L−1.9 = −1.9

(
2200R

d

)1.9

L−2.9
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Now evaluate at L = 0.4, R = 0.12, and d = 10:

∂N

∂L

∣∣∣∣
(L,R,d)=(0.4,0.12,10)

= −1.9

(
2200(0.12)

10

)1.9

(0.4)−2.9 ≈ −13,609

The decrease in the average number of cycles before a chip fails is

�N ≈ ∂N

∂L
�L = −13,609(0.02) ≈ −272 cycles

In the next example, we estimate a partial derivative numerically. Since fx and fy

are limits of difference quotients, we have the following approximations when h and k

are “small”:

fx(a, b) ≈ �f

�x
= f (a + h, b) − f (a, b)

h

fy(a, b) ≈ �f

�y
= f (a, b + k) − f (a, b)

k

A similar approximation is valid in any number of variables.

EXAMPLE 6 Estimating Partial Derivatives Using Contour Maps Seawater density ρ

32.5 33.0

B

33.5 34.0 34.5

Te
m

pe
ra

tu
re

 T
 (

°C
)

25

20

15

10

5

0

Salinity S (ppt)

A
C

1.0265
1.0260

1.0250
1.02451.02401.0235

1.0230

FIGURE 4 Contour map of seawater density
as a function of temperature and salinity.

(kg/m3) depends on salinity S (ppt) and the temperature T (◦C). Use Figure 4 to estimate
∂ρ/∂T and ∂ρ/∂S at A.

Solution Point A has coordinates (S, T ) = (33, 15) and lies on the level curve ρ =
1.0245. We estimate ∂ρ/∂T at A in two steps.

For greater accuracy, we can estimate
fx(a, b) by taking the average of the
difference quotients for �x and −�x. A
similar remark applies to fy(a, b).

Step 1. Move vertically from A.
Since T varies in the vertical direction, we move up vertically from point A to point B

on the next higher level curve, where ρ = 1.0240. Point B has coordinates (S, T ) =
(33, 17). Note that in moving from A to B, we have kept S constant because both points
have salinity S = 33.

Step 2. Compute the difference quotient.

�ρ = 1.0240 − 1.0245 = −0.0005 kg/m3

�T = 17 − 15 = 2◦C

This gives us the approximation

∂ρ

∂T

∣∣∣∣
A

≈ �ρ

�T
= −0.0005

2
= −0.00025 kg-m−3/◦C

We estimate ∂ρ/∂S in a similar way, by moving to the right horizontally to point C with
coordinates (S, T ) ≈ (33.7, 15), where ρ = 1.0250:

∂ρ

∂S

∣∣∣∣
A

≈ �ρ

�S
= 1.0250 − 1.0245

33.7 − 33
= 0.0005

0.7
≈ 0.0007 kg-m−3/ppt
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Higher-Order Partial Derivatives
The higher-order partial derivatives are the derivatives of derivatives. The second-order
partial derivatives of f are the partial derivatives of fx and fy . We write fxx for the
x-derivative of fx and fyy for the y-derivative of fy :

fxx = ∂

∂x

(
∂f

∂x

)
, fyy = ∂

∂y

(
∂f

∂y

)

We also have the mixed partials:

fxy = ∂

∂y

(
∂f

∂x

)
, fyx = ∂

∂x

(
∂f

∂y

)

The process can be continued. For example, fxyx is the x-derivative of fxy , and fxyy is
the y-derivative of fxy (perform the differentiation in the order of the subscripts from left
to right). The Leibniz notation for higher-order partial derivatives is

fxx = ∂2f

∂x2
, fxy = ∂2f

∂y∂x
, fyx = ∂2f

∂x∂y
, fyy = ∂2f

∂y2

Higher partial derivatives are defined for functions of three or more variables in a similar
manner.

EXAMPLE 7 Calculate the second-order partials of f (x, y) = x3 + y2ex .

Solution First, we compute the first-order partial derivatives:

fx(x, y) = ∂

∂x
(x3 + y2ex) = 3x2 + y2ex, fy(x, y) = ∂

∂y
(x3 + y2ex) = 2yex

Then we can compute the second-order derivatives:

fxx(x, y) = ∂

∂x
fx = ∂

∂x
(3x2 + y2ex) fyy(x, y) = ∂

∂y
fy = ∂

∂y
2yex

= 6x + y2ex, = 2ex

fxy(x, y) = ∂fx

∂y
= ∂

∂y
(3x2 + y2ex) fyx(x, y) = ∂fy

∂x
= ∂

∂x
2yex

= 2yex, = 2yex

EXAMPLE 8 Calculate fxyy for f (x, y) = x3 + y2ex .Remember how the subscripts are used in
partial derivatives. The notation fxyy means
“first differentiate with respect to x and
then differentiate twice with respect to y.” Solution By the previous example, fxy = 2yex . Therefore,

fxyy = ∂

∂y
fxy = ∂

∂y
2yex = 2ex
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Observe in Example 7 that fxy and fyx are both equal to 2yex . It is a pleasant
circumstance that the equality fxy = fyx holds in general, provided that the mixed partials
are continuous. SeeAppendix D for a proof of the following theorem named for the French
mathematician Alexis Clairaut (Figure 5).

THEOREM 1 Clairaut’s Theorem: Equality of Mixed Partials If fxy and fyx are both
continuous functions on a disk D, then fxy(a, b) = fyx(a, b) for all (a, b) ∈ D. In
other words,

∂2f

∂x ∂y
= ∂2f

∂y ∂x

EXAMPLE 9 Check that
∂2W

∂U∂T
= ∂2W

∂T ∂U
for W = eU/T .

The hypothesis of Clairaut’s Theorem, that
fxy and fyx are continuous, is almost
always satisfied in practice, but see
Exercise 84 for an example where the
mixed partials are not equal.

Solution We compute both derivatives and observe that they are equal:

FIGURE 5 Alexis Clairaut (1713–1765) was
a brilliant French mathematician who
presented his first paper to the Paris
Academy of Sciences at the age of 13. In
1752, Clairaut won a prize for an essay on
lunar motion that Euler praised (surely an
exaggeration) as “the most important and
profound discovery that has ever been
made in mathematics.”

∂W

∂T
= eU/T ∂

∂T

(
U

T

)
= −UT −2eU/T ,

∂W

∂U
= eU/T ∂

∂U

(
U

T

)
= T −1eU/T

∂

∂U

∂W

∂T
= −T −2eU/T − UT −3eU/T ,

∂

∂T

∂W

∂U
= −T −2eU/T − UT −3eU/T

Although Clairaut’s Theorem is stated for fxy and fyx , it implies more generally
that partial differentiation may be carried out in any order, provided that the derivatives
in question are continuous (see Exercise 75). For example, we can compute fxyxy by
differentiating f twice with respect to x and twice with respect to y, in any order. Thus,

fxyxy = fxxyy = fyyxx = fyxyx = fxyyx = fyxxy

EXAMPLE 10 Choosing the Order Wisely Calculate the partial derivative gzzwx ,

where g(x, y, z, w) = x3w2z2 + sin

(
xy

z2

)
.

Solution Let’s take advantage of the fact that the derivatives may be calculated in any
order. If we differentiate with respect to w first, the second term disappears because it
does not depend on w:

gw = ∂

∂w

(
x3w2z2 + sin

(
xy

z2

))
= 2x3wz2

Next, differentiate twice with respect to z and once with respect to x:

gwz = ∂

∂z
2x3wz2 = 4x3wz

gwzz = ∂

∂z
4x3wz = 4x3w

gwzzx = ∂

∂x
4x3w = 12x2w

We conclude that gzzwx = gwzzx = 12x2w.
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A partial differential equation (PDE) is a differential equation involving functions
of several variables and their partial derivatives. The heat equation in the next example
is a PDE that models temperature as heat spreads through an object. There are infinitely
many solutions, but the particular function in the example describes temperature at times
t > 0 along a metal rod when the center point is given a burst of heat at t = 0 (Figure 6).

Time t

Temperature T

xMetal bar

FIGURE 6 The plot of

u(x, t) = 1

2
√

πt
e−(x2/4t)

illustrates the diffusion of a burst of heat
over time.

EXAMPLE 11 The Heat Equation Show that u(x, t) = 1

2
√

πt
e−(x2/4t), defined for

t > 0, satisfies the heat equation

∂u

∂t
= ∂2u

∂x2
2

Solution First, compute
∂2u

∂x2
:

∂u

∂x
= ∂

∂x

1

2
√

π
t−1/2e−(x2/4t) = − 1

4
√

π
xt−3/2e−(x2/4t)

∂2u

∂x2
= ∂

∂x

(
− 1

4
√

π
xt−3/2e−(x2/4t)

)
= − 1

4
√

π
t−3/2e−(x2/4t) + 1

8
√

π
x2t−5/2e−(x2/4t)

Then compute ∂u/∂t and observe that it equals ∂2u/∂x2 as required:

∂u

∂t
= ∂

∂t

(
1

2
√

π
t−1/2e−(x2/4t)

)
= − 1

4
√

π
t−3/2e−(x2/4t) + 1

8
√

π
x2t−5/2e−(x2/4t)

14.3 SUMMARY

• The partial derivatives of f (x, y) are defined as the limits

fx(a, b) = ∂f

∂x

∣∣∣∣
(a,b)

= lim
h→0

f (a + h, b) − f (a, b)

h

fy(a, b) = ∂f

∂y

∣∣∣∣
(a,b)

= lim
k→0

f (a, b + k) − f (a, b)

k

• Compute fx by holding y constant, and compute fy by holding x constant.
• fx(a, b) is the slope at x = a of the tangent line to the trace curve z = f (x, b). Similarly,
fy(a, b) is the slope at y = b of the tangent line to the trace curve z = f (a, y).
• For small changes �x and �y,

f (a + �x, b) − f (a, b) ≈ fx(a, b)�x

f (a, b + �y) − f (a, b) ≈ fy(a, b)�y
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More generally, if f is a function of n variables and w is one of the variables, then
�f ≈ fw�w if w changes by �w and all other variables remain fixed.
• The second-order partial derivatives are

∂2

∂x2
f = fxx,

∂2

∂y ∂x
f = fxy,

∂2

∂x ∂y
f = fyx,

∂2

∂y2
f = fyy

• Clairaut’s Theorem states that mixed partials are equal—that is, fxy = fyx provided
that fxy and fyx are continuous.
• More generally, higher-order partial derivatives may be computed in any order. For
example, fxyyz = fyxzy if f is a function of x, y, z whose fourth-order partial derivatives
are continuous.

Joseph Fourier
(1768–1830)

Adolf Fick
(1829–1901)

HISTORICAL
PERSPECTIVE

The general heat equation, of which Eq. (2)
is a special case, was first introduced in 1807
by French mathematician Jean Baptiste Joseph
Fourier. As a young man, Fourier was unsure
whether to enter the priesthood or pursue math-
ematics, but he must have been very ambitious.
He wrote in a letter, “Yesterday was my 21st
birthday, at that age Newton and Pascal had al-
ready acquired many claims to immortality.” In
his twenties, Fourier got involved in the French
Revolution and was imprisoned briefly in 1794
over an incident involving different factions. In
1798, he was summoned, along with more than
150 other scientists, to join Napoleon on his un-
successful campaign in Egypt.

Fourier’s true impact, however, lay in his
mathematical contributions. The heat equation
is applied throughout the physical sciences and
engineering, from the study of heat flow through
the earth’s oceans and atmosphere to the use of
heat probes to destroy tumors and treat heart dis-
ease.

Fourier also introduced a striking new
technique—known as the Fourier transform—
for solving his equation, based on the idea that
a periodic function can be expressed as a (pos-

sibly infinite) sum of sines and cosines. Leading
mathematicians of the day, including Lagrange
and Laplace, initially raised objections because
this technique was not easy to justify rigorously.
Nevertheless, the Fourier transform turned out to
be one of the most important mathematical dis-
coveries of the nineteenth century. AWeb search
on the term “Fourier transform” reveals its vast
range of modern applications.

In 1855, the German physiologist Adolf
Fick showed that the heat equation describes not
only heat conduction but also a wide range of
diffusion processes, such as osmosis, ion trans-
port at the cellular level, and the motion of pol-
lutants through air or water. The heat equation
thus became a basic tool in chemistry, molecular
biology, and environmental science, where it is
often called Fick’s Second Law.

14.3 EXERCISES

Preliminary Questions
1. Patricia derived the following incorrect formula by misapplying

the Product Rule:

∂

∂x
(x2y2) = x2(2y) + y2(2x)

What was her mistake and what is the correct calculation?

2. Explain why it is not necessary to use the Quotient Rule to com-

pute
∂

∂x

(
x + y

y + 1

)
. Should the Quotient Rule be used to compute

∂

∂y

(
x + y

y + 1

)
?
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3. Which of the following partial derivatives should be evaluated
without using the Quotient Rule?

(a)
∂

∂x

xy

y2 + 1
(b)

∂

∂y

xy

y2 + 1
(c)

∂

∂x

y2

y2 + 1

4. What is fx , where f (x, y, z) = (sin yz)ez3−z−1√y?

5. Assuming the hypotheses of Clairaut’s Theorem are satisfied,
which of the following partial derivatives are equal to fxxy?

(a) fxyx (b) fyyx (c) fxyy (d) fyxx

Exercises
1. Use the limit definition of the partial derivative to verify the for-

mulas

∂

∂x
xy2 = y2,

∂

∂y
xy2 = 2xy

2. Use the Product Rule to compute
∂

∂y
(x2 + y)(x + y4).

3. Use the Quotient Rule to compute
∂

∂y

y

x + y
.

4. Use the Chain Rule to compute
∂

∂u
ln(u2 + uv).

5. Calculate fz(2, 3, 1), where f (x, y, z) = xyz.

6. Explain the relation between the following two formulas
(c is a constant).

d

dx
sin(cx) = c cos(cx),

∂

∂x
sin(xy) = y cos(xy)

7. The plane y = 1 intersects the surface z = x4 + 6xy − y4 in a cer-
tain curve. Find the slope of the tangent line to this curve at the point
P = (1, 1, 6).

8. Determine whether the partial derivatives ∂f/∂x and ∂f/∂y are
positive or negative at the point P on the graph in Figure 7.

z

x

y
P

FIGURE 7

In Exercises 9–12, refer to Figure 8.

9. Estimate fx and fy at point A.

10. Is fx positive or negative at B?

11. Starting at point B, in which compass direction (N, NE, SW, etc.)
does f increase most rapidly?

12. At which of A, B, or C is fy smallest?

x

y

−10

−10

−20

A

B

C

50
70

3050

420−2−4

4

2

0

−2

−4

70

30

−30

10

10

0

FIGURE 8 Contour map of f (x, y).

In Exercises 13–40, compute the first-order partial derivatives.

13. z = x2 + y2 14. z = x4y3

15. z = x4y + xy−2 16. V = πr2h

17. z = x

y
18. z = x

x − y

19. z =
√

9 − x2 − y2 20. z = x√
x2 + y2

21. z = (sin x)(sin y) 22. z = sin(u2v)

23. z = tan
x

y
24. S = tan−1(wz)

25. z = ln(x2 + y2) 26. A = sin(4θ − 9t)

27. W = er+s 28. Q = reθ

29. z = exy 30. R = e−v2/k

31. z = e−x2−y2
32. P = e

√
y2+z2

33. U = e−rt

r
34. z = yx

35. z = sinh(x2y) 36. z = cosh(t − cos x)

37. w = xy2z3 38. w = x

y + z
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39. Q = L

M
e−Lt/M 40. w = x

(x2 + y2 + z2)3/2

In Exercises 41–44, compute the given partial derivatives.

41. f (x, y) = 3x2y + 4x3y2 − 7xy5, fx(1, 2)

42. f (x, y) = sin(x2 − y), fy(0, π)

43. g(u, v) = u ln(u + v), gu(1, 2)

44. h(x, z) = exz−x2z3
, hz(3, 0)

Exercises 45 and 46 refer to Example 5.

45. Calculate N for L = 0.4, R = 0.12, and d = 10, and use the linear
approximation to estimate �N if d is increased from 10 to 10.4.

46. Estimate �N if (L, R, d) = (0.5, 0.15, 8) and R is increased from
0.15 to 0.17.

47. The heat index I is a measure of how hot it feels when the relative
humidity is H (as a percentage) and the actual air temperature is T (in
degrees Fahrenheit). An approximate formula for the heat index that is
valid for (T , H) near (90, 40) is

I (T , H) = 45.33 + 0.6845T + 5.758H − 0.00365T 2

− 0.1565HT + 0.001HT 2

(a) Calculate I at (T , H) = (95, 50).

(b) Which partial derivative tells us the increase in I per degree in-
crease in T when (T , H) = (95, 50). Calculate this partial derivative.

48. The wind-chill temperature W measures how cold people feel
(based on the rate of heat loss from exposed skin) when the outside
temperature is T ◦C (with T ≤ 10) and wind velocity is v m/s (with
v ≥ 2):

W = 13.1267 + 0.6215T − 13.947v0.16 + 0.486T v0.16

Calculate ∂W/∂v at (T , v) = (−10, 15) and use this value to estimate
�W if �v = 2.

49. The volume of a right-circular cone of radius r and height h is
V = π

3 r2h. Suppose that r = h = 12 cm. What leads to a greater in-
crease in V , a 1-cm increase in r or a 1-cm increase in h? Argue using
partial derivatives.

50. Use the linear approximation to estimate the percentage change in
volume of a right-circular cone of radius r = 40 cm if the height is
increased from 40 to 41 cm.

51. Calculate ∂W/∂E and ∂W/∂T , where W = e−E/kT , where k is
a constant.

52. Calculate ∂P/∂T and ∂P/∂V , where pressure P , volume V , and
temperature T are related by the ideal gas law, PV = nRT (R and n

are constants).

53. Use the contour map of f (x, y) in Figure 9 to explain the
following statements.

(a) fy is larger at P than at Q, and fx is smaller (more negative) at P

than at Q.

(b) fx(x, y) is decreasing as a function of y; that is, for any fixed value
x = a, fx(a, y) is decreasing in y.

x

y

Q

P

20 16

14

10

8
6

4

FIGURE 9 Contour interval 2.

54. Estimate the partial derivatives at P of the function whose contour
map is shown in Figure 10.

x

y

P

21
18

12
15

9
6
3

4 6 820

4

2

FIGURE 10

55. Over most of the earth, a magnetic compass does not point to true
(geographic) north; instead, it points at some angle east or west of true
north. The angle D between magnetic north and true north is called
the magnetic declination. Use Figure 11 to determine which of the
following statements is true.

(a)
∂D

∂y

∣∣∣∣
A

>
∂D

∂y

∣∣∣∣
B

(b)
∂D

∂x

∣∣∣∣
C

> 0 (c)
∂D

∂y

∣∣∣∣
C

> 0

Note that the horizontal axis increases from right to left because of the
way longitude is measured.

x

y

50°N

40°N

30°N

120°W 110°W 100°W 90°W 80°W 70°W

Magnetic Declination for the U.S. 2004

B

1015

−5

−
5 0

10
5 0

C
A

FIGURE 11 Contour interval 1◦.
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56. Refer to Table 1.

(a) Estimate ∂ρ/∂T and ∂ρ/∂S at the points (S, T ) = (34, 2) and
(35, 10) by computing the average of left-hand and right-hand differ-
ence quotients.

(b) For fixed salinity S = 33, is ρ concave up or concave down
as a function of T ? Hint: Determine whether the quotients �ρ/�T are
increasing or decreasing. What can you conclude about the sign of
∂2ρ/∂T 2?

TABLE 1 Seawater Density ρ as a Function of Temperature T and
Salinity S

T
S 30 31 32 33 34 35 36

12 22.75 23.51 24.27 25.07 25.82 26.6 27.36

10 23.07 23.85 24.62 25.42 26.17 26.99 27.73

8 23.36 24.15 24.93 25.73 26.5 27.28 29.09

6 23.62 24.44 25.22 26 26.77 27.55 28.35

4 23.85 24.62 25.42 26.23 27 27.8 28.61

2 24 24.78 25.61 26.38 27.18 28.01 28.78

0 24.11 24.92 25.72 26.5 27.34 28.12 28.91

In Exercises 57–62, compute the derivatives indicated.

57. f (x, y) = 3x2y − 6xy4,
∂2f

∂x2
and

∂2f

∂y2

58. g(x, y) = xy

x − y
,

∂2g

∂x ∂y

59. h(u, v) = u

u + 4v
, hvv(u, v)

60. h(x, y) = ln(x3 + y3), hxy(x, y)

61. f (x, y) = x ln(y2), fyy(2, 3)

62. g(x, y) = xe−xy , gxy(−3, 2)

63. Compute fxyxzy for

f (x, y, z) =
y sin(xz) sin(x + z) + (x + z2) tan y + x tan

(
z + z−1

y − y−1

)

Hint: Use a well-chosen order of differentiation on each term.

64. Let

f (x, y, u, v) = x2 + eyv

3y2 + ln(2 + u2)

What is the fastest way to show that fuvxyvu(x, y, u, v) = 0 for all
(x, y, u, v)?

In Exercises 65–72, compute the derivative indicated.

65. f (u, v) = cos(u + v2), fuuv

66. g(x, y, z) = x4y5z6, gxxyz

67. F(r, s, t) = r(s2 + t2), Frst

68. u(x, t) = t−1/2e−(x2/4t), uxx

69. F(θ, u, v) = sinh(uv + θ2), Fuuθ

70. R(u, v, w) = u

v + w
, Ruvw

71. g(x, y, z) =
√

x2 + y2 + z2, gxyz

72. u(x, t) = sech2(x − t), uxxx

73. Find a function such that
∂f

∂x
= 2xy and

∂f

∂y
= x2.

74. Prove that there does not exist any function f (x, y) such

that
∂f

∂x
= xy and

∂f

∂y
= x2. Hint: Show that f cannot satisfy Clairaut’s

Theorem.

75. Assume that fxy and fyx are continuous and that fyxx exists. Show
that fxyx also exists and that fyxx = fxyx .

76. Show that u(x, t) = sin(nx) e−n2t satisfies the heat equation for
any constant n:

∂u

∂t
= ∂2u

∂x2
3

77. Find all values of A and B such that f (x, t) = eAx+Bt satisfies
Eq. (3).

78. The function

f (x, t) = 1

2
√

πt
e−x2/4t

describes the temperature profile along a metal rod at time t > 0 when
a burst of heat is applied at the origin (see Example 11). A small bug
sitting on the rod at distance x from the origin feels the temperature
rise and fall as heat diffuses through the bar. Show that the bug feels
the maximum temperature at time t = 1

2x2.

In Exercises 79–82, the Laplace operator � is defined by
�f = fxx + fyy . A function u(x, y) satisfying the Laplace equation
�u = 0 is called harmonic.

79. Show that the following functions are harmonic:

(a) u(x, y) = x (b) u(x, y) = ex cos y

(c) u(x, y) = tan−1 y

x
(d) u(x, y) = ln(x2 + y2)

80. Find all harmonic polynomials u(x, y) of degree three, that is,
u(x, y) = ax3 + bx2y + cxy2 + dy3.

81. Show that if u(x, y) is harmonic, then the partial derivatives ∂u/∂x

and ∂u/∂y are harmonic.

82. Find all constants a, b such that u(x, y) = cos(ax)eby is har-
monic.

83. Show that u(x, t) = sech2(x − t) satisfies the Korteweg–deVries
equation (which arises in the study of water waves):

4ut + uxxx + 12uux = 0
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Further Insights and Challenges
84. Assumptions Matter This exercise shows that the hypotheses of
Clairaut’s Theorem are needed. Let

f (x, y) = xy
x2 − y2

x2 + y2

for (x, y) �= (0, 0) and f (0, 0) = 0.
(a) Verify for (x, y) �= (0, 0):

fx(x, y) = y(x4 + 4x2y2 − y4)

(x2 + y2)2

fy(x, y) = x(x4 − 4x2y2 − y4)

(x2 + y2)2

(b) Use the limit definition of the partial derivative to show that
fx(0, 0) = fy(0, 0) = 0 and that fyx(0, 0) and fxy(0, 0) both exist
but are not equal.

(c) Show that for (x, y) �= (0, 0):

fxy(x, y) = fyx(x, y) = x6 + 9x4y2 − 9x2y4 − y6

(x2 + y2)3

Show that fxy is not continuous at (0, 0). Hint: Show that
lim
h→0

fxy(h, 0) �= lim
h→0

fxy(0, h).

(d) Explain why the result of part (b) does not contradict Clairaut’s
Theorem.

14.4 Differentiability and Tangent Planes
In this section, we generalize two basic concepts from single-variable calculus: differen-

z = f (x, y)

x
y

z

P

Tangent plane at P

FIGURE 1 Tangent plane to the graph of
z = f (x, y).

tiability and the tangent line. The tangent line becomes the tangent plane for functions of
two variables (Figure 1).

Intuitively, we would like to say that a continuous function f (x, y) is differentiable
if it is locally linear—that is, if its graph looks flatter and flatter as we zoom in on
a point P = (a, b, f (a, b)) and eventually becomes indistinguishable from the tangent
plane (Figure 2).

P PP

FIGURE 2 The graph looks flatter and flatter as we zoom in on a point P .

We can show that if the tangent plane at P = (a, b, f (a, b)) exists, then its equation
must be z = L(x, y), where L(x, y) is the linearization at (a, b), defined by

L(x, y) = f (a, b) + fx(a, b)(x − a) + fy(a, b)(y − b)

Why must this be the tangent plane? Because it is the unique plane containing the tangent
lines to the two vertical trace curves through P [Figure 3(A)]. Indeed, when we set y = b

in z = L(x, y), the term fy(a, b)(y − b) drops out and we are left with the equation of
the tangent line to the vertical trace z = f (x, b) at P :

z = L(x, b) = f (a, b) + fx(a, b)(x − a)

Similarly, z = L(a, y) is the tangent line to the vertical trace z = f (a, y) at P .
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x
y

z

(a, b, 0) (a, b, 0)

(x, y, 0)
d

P = (a, b, f (a, b))

z = L(x, y)

z = f (x, y)

P

(A) (B)

z = L(x, y)

|e(x, y)|  = | f (x, y) − L(x, y)|

z = f (x, y)

FIGURE 3

Before we can say that the tangent plane exists, however, we must impose a condition
on f (x, y) guaranteeing that the graph looks flat as we zoom in on P . Set

e(x, y) = f (x, y) − L(x, y)

As we see in Figure 3(B), |e(x, y)| is the vertical distance between the graph of f (x, y)

and the plane z = L(x, y). This distance tends to zero as (x, y) approaches (a, b) because
f (x, y) is continuous. To be locally linear, we require that the distance tend to zero faster
than the distance from (x, y) to (a, b). We express this by the requirement

REMINDER

L(x, y) = f (a, b) + fx(a, b)(x − a)

+ fy(a, b)(y − b)

lim
(x,y)→(a,b)

e(x, y)√
(x − a)2 + (y − b)2

= 0

DEFINITION Differentiability Assume that f (x, y) is defined in a disk D containing
(a, b) and that fx(a, b) and fy(a, b) exist.

• f (x, y) is differentiable at (a, b) if it is locally linear—that is, if

f (x, y) = L(x, y) + e(x, y) 1

where e(x, y) satisfies

lim
(x,y)→(a,b)

e(x, y)√
(x − a)2 + (y − b)2

= 0

• In this case, the tangent plane to the graph at (a, b, f (a, b)) is the plane with
equation z = L(x, y). Explicitly,

z = f (a, b) + fx(a, b)(x − a) + fy(a, b)(y − b) 2

If f (x, y) is differentiable at all points in a domain D, we say that f (x, y) is differ-
entiable on D.

It is cumbersome to check the local linearity condition directly (see Exercise 41),
but fortunately, this is rarely necessary. The following theorem provides a criterion for
differentiability that is easy to apply. It assures us that most functions arising in practice
are differentiable on their domains. See Appendix D for a proof.

The definition of differentiability extends to
functions of n-variables, and Theorem 1
holds in this setting: If all of the partial
derivatives of f (x1, . . . , xn) exist and are
continuous on an open domain D, then
f (x1, . . . , xn) is differentiable on D.

THEOREM 1 Criterion for Differentiability If fx(x, y) and fy(x, y) exist and are
continuous on an open disk D, then f (x, y) is differentiable on D.
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EXAMPLE 1 Show that f (x, y) = 5x + 4y2 is differentiable (Figure 4). Find thez

z = −4 + 5x + 8y

x
y

(2, 1, 0)

P

FIGURE 4 Graph of f (x, y) = 5x + 4y2

and the tangent plane at P = (2, 1, 14).

equation of the tangent plane at (a, b) = (2, 1).

Solution The partial derivatives exist and are continuous functions:

f (x, y) = 5x + 4y2, fx(x, y) = 5, fy(x, y) = 8y

Therefore, f (x, y) is differentiable for all (x, y) by Theorem 1. To find the tangent plane,
we evaluate the partial derivatives at (2, 1):

f (2, 1) = 14, fx(2, 1) = 5, fy(2, 1) = 8

The linearization at (2, 1) is

L(x, y) = 14 + 5(x − 2) + 8(y − 1)︸ ︷︷ ︸
f (a,b)+fx(a,b)(x−a)+fy(a,b)(y−b)

= −4 + 5x + 8y

The tangent plane through P = (2, 1, 14) has equation z = −4 + 5x + 8y.

Assumptions Matter Local linearity plays a key role, and although most reasonable

Local linearity is used in the next section to
prove the Chain Rule for Paths, upon which
the fundamental properties of the gradient
are based.

functions are locally linear, the mere existence of the partial derivatives does not guarantee
local linearity. This is in contrast to the one-variable case, where f (x) is automatically
locally linear at x = a if f ′(a) exists (Exercise 44).

The function g(x, y) in Figure 5(A) shows what can go wrong. The graph contains
the x- and y-axes—in other words, g(x, y) = 0 if x or y is zero—and therefore, the partial
derivatives gx(0, 0) and gy(0, 0) are both zero. The tangent plane at the origin (0, 0), if
it existed, would have to be the xy-plane. However, Figure 5(B) shows that the graph
also contains lines through the origin that do not lie in the xy-plane (in fact, the graph
is composed entirely of lines through the origin). As we zoom in on the origin, these
lines remain at an angle to the xy-plane, and the surface does not get any flatter. Thus
g(x, y) cannot be locally linear at (0, 0), and the tangent plane does not exist. In particular,
g(x, y) cannot satisfy the assumptions of Theorem 1, so the partial derivatives gx(x, y)

and gy(x, y) cannot be continuous at the origin (see Exercise 45 for details).

y

x

z

The horizontal trace at z = 0
consists of the x and y axes.

(A) But the graph also contains
non-horizontal lines through
the origin.

(B) So the graph does not
appear any flatter as we
zoom in on the origin.

(C)
FIGURE 5 Graphs of

g(x, y) = 2xy(x + y)

x2 + y2
.
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EXAMPLE 2 Where is h(x, y) = √
x2 + y2 differentiable?

Solution The partial derivatives exist and are continuous for all (x, y) �= (0, 0):

h (x, y) is not
differentiable
at the origin

y

x

z

h (x, y) = �x2 + y2 

FIGURE 6 The function

h(x, y) =
√

x2 + y2 is differentiable
except at the origin.

hx(x, y) = x√
x2 + y2

, hy(x, y) = y√
x2 + y2

However, the partial derivatives do not exist at (0, 0). Indeed, hx(0, 0) does not exist
because h(x, 0) = √

x2 = |x| is not differentiable at x = 0. Similarly, hy(0, 0) does not
exist. By Theorem 1, h(x, y) is differentiable except at (0, 0) (Figure 6).

EXAMPLE 3 Find a tangent plane of the graph of f (x, y) = xy3 + x2 at (2, −2).

x

y

z

P = (2, −2, −12)

FIGURE 7 Tangent plane to the surface
f (x, y) = xy3 + x2 passing through
P = (2, −2, −12).

Solution The partial derivatives are continuous, so f (x, y) is differentiable:

fx(x, y) = y3 + 2x, fx(2, −2) = −4

fy(x, y) = 3xy2, fy(2, −2) = 24

Since f (2, −2) = −12, the tangent plane through (2, −2, −12) has equation

z = −12 − 4(x − 2) + 24(y + 2)

This can be rewritten as z = 44 − 4x + 24y (Figure 7).

Linear Approximation and Differentials
By definition, if f (x, y) is differentiable at (a, b), then it is locally linear and the linear
approximation is

f (x, y) ≈ L(x, y) for (x, y) near (a, b)

where

L(x, y) = f (a, b) + fx(a, b)(x − a) + fy(a, b)(y − b)

We shall rewrite this in several useful ways. First, set x = a + h and y = b + k. Then

f (a + h, b + k) ≈ f (a, b) + fx(a, b)h + fy(a, b)k 3

We can also write the linear approximation in terms of the change in f :

�f = f (x, y) − f (a, b), �x = x − a, �y = y − b

�f ≈ fx(a, b)�x + fy(a, b)�y 4

Finally, the linear approximation is often expressed in terms of differentials:

df = fx(x, y) dx + fy(x, y) dy = ∂f

∂x
dx + ∂f

∂y
dy

As shown in Figure 8, df represents the change in height of the tangent plane for given

z

z = L(x, y)

z = f (x, y)

dx = Δxdy = Δy

Δ f

df

FIGURE 8 The quantity df is the change in
height of the tangent plane.

changes dx and dy in x and y (when we work with differentials, we call them dx and
dy instead of �x and �y), whereas �f is the change in the function itself. The linear
approximation tells us that the two changes are approximately equal:

�f ≈ df
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These approximations apply in any number of variables. In three variables,

f (a + h, b + k, c + 	) ≈ f (a, b, c) + fx(a, b, c)h + fy(a, b, c)k + fz(a, b, c)	

or in terms of differentials, �f ≈ df , where

df = fx(x, y, z) dx + fy(x, y, z) dy + fz(x, y, z) dz

EXAMPLE 4 Use the linear approximation to estimate

(3.99)3(1.01)4(1.98)−1

Then use a calculator to find the percentage error.REMINDER The percentage error is
equal to ∣∣∣ error

actual value

∣∣∣ × 100%

Solution Think of (3.99)3(1.01)4(1.98)−1 as a value of f (x, y, z) = x3y4z−1:

f (3.99, 1.01, 1.98) = (3.99)3(1.01)4(1.98)−1

Then it makes sense to use the linear approximation at (4, 1, 2):

f (x, y, z) = x3y4z−1, f (4, 1, 2) = (43)(14)(2−1) = 32

fx(x, y, z) = 3x2y4z−1, fx(4, 1, 2) = 24

fy(x, y, z) = 4x3y3z−1, fy(4, 1, 2) = 128

fz(x, y, z) = −x3y4z−2, fz(4, 1, 2) = −16

The linear approximation in three variables stated above, with a = 4, b = 1, c = 2, gives
us

(4 + h)3(1 + k)4(2 + 	)−1︸ ︷︷ ︸
f (4+h,1+k,2+	)

≈ 32 + 24h + 128k − 16	

For h = −0.01, k = 0.01, and 	 = −0.02, we obtain the desired estimate

(3.99)3(1.01)4(1.98)−1 ≈ 32 + 24(−0.01) + 128(0.01) − 16(−0.02) = 33.36

The calculator value is (3.99)3(1.01)4(1.98)−1 ≈ 33.384, so the error in our estimate is
less than 0.025. The percentage error is

Percentage error ≈ |33.384 − 33.36|
33.384

× 100 ≈ 0.075%

EXAMPLE 5 Body Mass Index A person’s BMI is I = W/H 2, where W is the body
weight (in kilograms) and H is the body height (in meters). Estimate the change in a
child’s BMI if (W, H) changes from (40, 1.45) to (41.5, 1.47).BMI is one factor used to assess the risk of

certain diseases such as diabetes and high
blood pressure. The range
18.5 ≤ I ≤ 24.9 is considered normal for
adults over 20 years of age.

Solution

Step 1. Compute the differential at (W, H) = (40, 1.45).

∂I

∂W
= ∂

∂W

(
W

H 2

)
= 1

H 2
,

∂I

∂H
= ∂

∂H

(
W

H 2

)
= −2W

H 3

At (W, H) = (40, 1.45), we have

∂I

∂W

∣∣∣∣
(40,1.45)

= 1

1.452
≈ 0.48,

∂I

∂H

∣∣∣∣
(40,1.45)

= −2(40)

1.453
≈ −26.24

Therefore, the differential at (40, 1.45) is

dI ≈ 0.48 dW − 26.24 dH
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Step 2. Estimate the change.
We have shown that the differential dI at (40, 1.45) is 0.48 dW − 26.24 dH . If (W, H)

changes from (40, 1.45) to (41.5, 1.47), then

dW = 41.5 − 40 = 1.5, dH = 1.47 − 1.45 = 0.02

Therefore,

�I ≈ dI = 0.48 dW − 26.24 dH = 0.48(1.5) − 26.24(0.02) ≈ 0.2

We find that BMI increases by approximately 0.2.

14.4 SUMMARY

• The linearization in two and three variables:

L(x, y) = f (a, b) + fx(a, b)(x − a) + fy(a, b)(y − b)

L(x, y, z) = f (a, b, c) + fx(a, b, c)(x − a) + fy(a, b, c)(y − b) + fz(a, b, c)(z − c)

• f (x, y) is differentiable at (a, b) if fx(a, b) and fy(a, b) exist and

f (x, y) = L(x, y) + e(x, y)

where e(x, y) is a function such that

lim
(x,y)→(a,b)

e(x, y)√
(x − a)2 + (y − b)2

= 0

• Result used in practice: If fx(x, y) and fy(x, y) exist and are continuous in a disk D

containing (a, b), then f (x, y) is differentiable at (a, b).
• Equation of the tangent plane to z = f (x, y) at (a, b):

z = f (a, b) + fx(a, b)(x − a) + fy(a, b)(y − b)

• Equivalent forms of the linear approximation:

f (x, y) ≈ f (a, b) + fx(a, b)(x − a) + fy(a, b)(y − b)

f (a + h, b + k) ≈ f (a, b) + fx(a, b)h + fy(a, b)k

�f ≈ fx(a, b) �x + fy(a, b) �y

• In differential form, �f ≈ df , where

df = fx(x, y) dx + fy(x, y) dy = ∂f

∂x
dx + ∂f

∂y
dy

df = fx(x, y, z) dx + fy(x, y, z) dy + fz(x, y, z) dz = ∂f

∂x
dx + ∂f

∂y
dy + ∂f

∂z
dz

14.4 EXERCISES

Preliminary Questions
1. How is the linearization of f (x, y) at (a, b) defined?

2. Define local linearity for functions of two variables.

In Exercises 3–5, assume that

f (2, 3) = 8, fx(2, 3) = 5, fy(2, 3) = 7
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3. Which of (a)–(b) is the linearization of f at (2, 3)?
(a) L(x, y) = 8 + 5x + 7y

(b) L(x, y) = 8 + 5(x − 2) + 7(y − 3)

4. Estimate f (2, 3.1).

5. Estimate �f at (2, 3) if �x = −0.3 and �y = 0.2.

6. Which theorem allows us to conclude that f (x, y) = x3y8 is dif-
ferentiable?

Exercises
1. Use Eq. (2) to find an equation of the tangent plane to the graph of

f (x, y) = 2x2 − 4xy2 at (−1, 2).

2. Find the equation of the plane in Figure 9, which is tangent to the
graph at (x, y) = (1, 0.8).

z

y

x

FIGURE 9 Graph of f (x, y) = 0.2x4 + y6 − xy.

In Exercises 3–10, find an equation of the tangent plane at the given
point.

3. f (x, y) = x2y + xy3, (2, 1)

4. f (x, y) = x√
y

, (4, 4)

5. f (x, y) = x2 + y−2, (4, 1)

6. G(u, w) = sin(uw),
(
π
6 , 1

)
7. F(r, s) = r2s−1/2 + s−3, (2, 1)

8. g(x, y) = ex/y , (2, 1)

9. f (x, y) = sech(x − y), (ln 4, ln 2)

10. f (x, y) = ln(4x2 − y2), (1, 1)

11. Find the points on the graph of z = 3x2 − 4y2 at which the vector
n = 〈3, 2, 2〉 is normal to the tangent plane.

12. Find the points on the graph of z = xy3 + 8y−1 where the tangent
plane is parallel to 2x + 7y + 2z = 0.

13. Find the linearization L(x, y) of f (x, y) = x2y3 at (a, b) =
(2, 1). Use it to estimate f (2.01, 1.02) and f (1.97, 1.01) and compare
with values obtained using a calculator.

14. Write the linear approximation to f (x, y) = x(1 + y)−1 at
(a, b) = (8, 1) in the form

f (a + h, b + k) ≈ f (a, b) + fx(a, b)h + fy(a, b)k

Use it to estimate 7.98
2.02 and compare with the value obtained using a

calculator.

15. Let f (x, y) = x3y−4. Use Eq. (4) to estimate the change

�f = f (2.03, 0.9) − f (2, 1)

16. Use the linear approximation to f (x, y) = √
x/y at (9, 4) to esti-

mate
√

9.1/3.9.

17. Use the linear approximation of f (x, y) = ex2+y at (0, 0) to esti-
mate f (0.01, −0.02). Compare with the value obtained using a calcu-
lator.

18. Let f (x, y) = x2/(y2 + 1). Use the linear approximation at an
appropriate point (a, b) to estimate f (4.01, 0.98).

19. Find the linearization of f (x, y, z) = z
√

x + y at (8, 4, 5).

20. Find the linearization to f (x, y, z) = xy/z at the point (2, 1, 2).
Use it to estimate f (2.05, 0.9, 2.01) and compare with the value ob-
tained from a calculator.

21. Estimate f (2.1, 3.8) assuming that

f (2, 4) = 5, fx(2, 4) = 0.3, fy(2, 4) = −0.2

22. Estimate f (1.02, 0.01, −0.03) assuming that

f (1, 0, 0) = −3, fx(1, 0, 0) = −2,

fy(1, 0, 0) = 4, fz(1, 0, 0) = 2

In Exercises 23–28, use the linear approximation to estimate the value.
Compare with the value given by a calculator.

23. (2.01)3(1.02)2 24.
4.1

7.9

25.
√

3.012 + 3.992 26.
0.982

2.013 + 1

27.
√

(1.9)(2.02)(4.05) 28.
8.01√

(1.99)(2.01)

29. Find an equation of the tangent plane to z = f (x, y) at P =
(1, 2, 10) assuming that

f (1, 2) = 10, f (1.1, 2.01) = 10.3, f (1.04, 2.1) = 9.7

30. Suppose that the plane tangent to z = f (x, y) at (−2, 3, 4) has
equation 4x + 2y + z = 2. Estimate f (−2.1, 3.1).

In Exercises 31–34, let I = W/H2 denote the BMI described in Ex-
ample 5.

31. A boy has weight W = 34 kg and height H = 1.3 m. Use the lin-
ear approximation to estimate the change in I if (W, H) changes to
(36, 1.32).
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32. Suppose that (W, H) = (34, 1.3). Use the linear approximation to
estimate the increase in H required to keep I constant if W increases
to 35.

33. (a) Show that �I ≈ 0 if �H/�W ≈ H/2W .
(b) Suppose that (W, H) = (25, 1.1). What increase in H will leave
I (approximately) constant if W is increased by 1 kg?

34. Estimate the change in height that will decrease I by 1 if (W, H) =
(25, 1.1), assuming that W remains constant.

35. A cylinder of radius r and height h has volume V = πr2h.

(a) Use the linear approximation to show that

�V

V
≈ 2�r

r
+ �h

h

(b) Estimate the percentage increase in V if r and h are each increased
by 2%.
(c) The volume of a certain cylinder V is determined by measuring r

and h. Which will lead to a greater error in V : a 1% error in r or a 1%
error in h?

36. Use the linear approximation to show that if I = xayb, then

�I

I
≈ a

�x

x
+ b

�y

y

37. The monthly payment for a home loan is given by a function
f (P, r, N), where P is the principal (initial size of the loan), r the
interest rate, and N is the length of the loan in months. Interest rates
are expressed as a decimal: A 6% interest rate is denoted by r = 0.06.
If P = $100,000, r = 0.06, and N = 240 (a 20-year loan), then the
monthly payment is f (100,000, 0.06, 240) = 716.43. Furthermore, at
these values, we have

∂f

∂P
= 0.0071,

∂f

∂r
= 5769,

∂f

∂N
= −1.5467

Estimate:

(a) The change in monthly payment per $1000 increase in loan prin-
cipal.

(b) The change in monthly payment if the interest rate increases to
r = 6.5% and r = 7%.

(c) The change in monthly payment if the length of the loan increases
to 24 years.

38. Automobile traffic passes a point P on a road of width w ft at
an average rate of R vehicles per second. Although the arrival of au-
tomobiles is irregular, traffic engineers have found that the average
waiting time T until there is a gap in traffic of at least t seconds is
approximately T = teRt seconds. A pedestrian walking at a speed of
3.5 ft/s (5.1 mph) requires t = w/3.5 s to cross the road. Therefore,
the average time the pedestrian will have to wait before crossing is
f (w, R) = (w/3.5)ewR/3.5 s.

(a) What is the pedestrian’s average waiting time if w = 25 ft and
R = 0.2 vehicle per second?

(b) Use the linear approximation to estimate the increase in waiting
time if w is increased to 27 ft.

(c) Estimate the waiting time if the width is increased to 27 ft and R

decreases to 0.18.

(d) What is the rate of increase in waiting time per 1-ft increase in
width when w = 30 ft and R = 0.3 vehicle per second?

39. The volume V of a right-circular cylinder is computed using the
values 3.5 m for diameter and 6.2 m for height. Use the linear approxi-
mation to estimate the maximum error in V if each of these values has
a possible error of at most 5%. Recall that V = 1

3πr2h.

Further Insights and Challenges
40. Show that if f (x, y) is differentiable at (a, b), then the function of
one variable f (x, b) is differentiable at x = a. Use this to prove that
f (x, y) =

√
x2 + y2 is not differentiable at (0, 0).

41. This exercise shows directly (without using Theorem 1) that the
function f (x, y) = 5x + 4y2 from Example 1 is locally linear at
(a, b) = (2, 1).
(a) Show that f (x, y) = L(x, y) + e(x, y) with e(x, y) = 4(y − 1)2.
(b) Show that

0 ≤ e(x, y)√
(x − 2)2 + (y − 1)2

≤ 4|y − 1|

(c) Verify that f (x, y) is locally linear.

42. Show directly, as in Exercise 41, that f (x, y) = xy2 is differen-
tiable at (0, 2).

43. Differentiability Implies Continuity Use the definition of dif-
ferentiability to prove that if f is differentiable at (a, b), then f is
continuous at (a, b).

44. Let f (x) be a function of one variable defined near x = a. Given
a number M , set

L(x) = f (a) + M(x − a), e(x) = f (x) − L(x)

Thus f (x) = L(x) + e(x). We say that f is locally linear at x = a if

M can be chosen so that lim
x→a

e(x)

|x − a| = 0.

(a) Show that if f (x) is differentiable at x = a, then f (x) is locally
linear with M = f ′(a).

(b) Show conversely that if f is locally linear at x = a, then f (x) is
differentiable and M = f ′(a).

45. Assumptions Matter Define g(x, y) = 2xy(x + y)/(x2 + y2)

for (x, y) �= 0 and g(0, 0) = 0. In this exercise, we show that g(x, y)

is continuous at (0, 0) and that gx(0, 0) and gy(0, 0) exist, but g(x, y)

is not differentiable at (0, 0).

(a) Show using polar coordinates that g(x, y) is continuous at (0, 0).

(b) Use the limit definitions to show that gx(0, 0) and gy(0, 0) exist
and that both are equal to zero.

(c) Show that the linearization of g(x, y) at (0, 0) is L(x, y) = 0.

(d) Show that if g(x, y) were locally linear at (0, 0), we would have

lim
h→0

g(h, h)

h
= 0. Then observe that this is not the case because

g(h, h) = 2h. This shows that g(x, y) is not locally linear at (0, 0)

and, hence, not differentiable at (0, 0).
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14.5 The Gradient and Directional Derivatives
We have seen that the rate of change of a function f of several variables depends on a
choice of direction. Since directions are indicated by vectors, it is natural to use vectors
to describe the derivative of f in a specified direction.

To do this, we introduce the gradient ∇fP , which is the vector whose components
are the partial derivatives of f at P .

The gradient of a function of n variables is
the vector

∇f =
〈

∂f

∂x1
,

∂f

∂x2
, . . . ,

∂f

∂xn

〉
DEFINITION The Gradient The gradient of a function f (x, y) at a point P = (a, b)

is the vector

∇fP = 〈
fx(a, b), fy(a, b)

〉
In three variables, if P = (a, b, c),

∇fP = 〈
fx(a, b, c), fy(a, b, c), fz(a, b, c)

〉

We also write ∇f(a,b) or ∇f (a, b) for the gradient. Sometimes, we omit reference to the
point P and write

The symbol ∇, called “del,” is an
upside-down Greek delta. It was
popularized by the Scottish physicist P. G.
Tait (1831–1901), who called the symbol
“nabla,” because of its resemblance to an
ancient Assyrian harp. The great physicist
James Clerk Maxwell was reluctant to adopt
this term and would refer to the gradient
simply as the “slope.” He wrote jokingly to
his friend Tait in 1871, “Still harping on
that nabla?”

∇f =
〈
∂f

∂x
,
∂f

∂y

〉
or ∇f =

〈
∂f

∂x
,
∂f

∂y
,
∂f

∂z

〉

The gradient ∇f “assigns” a vector ∇fP to each point in the domain of f , as in Figure 1.

EXAMPLE 1 Drawing Gradient Vectors Let f (x, y) = x2 + y2. Calculate the gradi-
ent ∇f , draw several gradient vectors, and compute ∇fP at P = (1, 1).

Solution The partial derivatives are fx(x, y) = 2x and fy(x, y) = 2y, so

x

y

∇f(1, 1) = 〈2, 2〉

∇f(1, −   ) = 〈2, −1〉

∇f(−   ,   ) = 〈−1, 1〉 (1, 1)

(1, −   )

1

(−   ,    )

1

1
2

1
2

1
2

1
2

1
2

1
2

FIGURE 1 Gradient vectors of
f (x, y) = x2 + y2 at several points
(vectors not drawn to scale).

∇f = 〈2x, 2y〉
The gradient attaches the vector 〈2x, 2y〉 to the point (x, y). As we see in Figure 1, these
vectors point away from the origin. At the particular point (1, 1),

∇fP = ∇f (1, 1) = 〈2, 2〉

EXAMPLE 2 Gradient in Three Variables Calculate ∇f(3,−2,4), where

f (x, y, z) = ze2x+3y

Solution The partial derivatives and the gradient are

∂f

∂x
= 2ze2x+3y,

∂f

∂y
= 3ze2x+3y,

∂f

∂z
= e2x+3y

∇f = 〈
2ze2x+3y, 3ze2x+3y, e2x+3y

〉
Therefore, ∇f(3,−2,4) = 〈

2 · 4e0, 3 · 4e0, e0〉 = 〈8, 12, 1〉.

The following theorem lists some useful properties of the gradient. The proofs are left as
exercises (see Exercises 62–64).
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THEOREM 1 Properties of the Gradient If f (x, y, z) and g(x, y, z) are differentiable
and c is a constant, then

(i) ∇(f + g) = ∇f + ∇g

(ii) ∇(cf ) = c∇f

(iii) Product Rule for Gradients: ∇(fg) = f ∇g + g∇f

(iv) Chain Rule for Gradients: If F(t) is a differentiable function of one variable,
then

∇(F (f (x, y, z))) = F ′(f (x, y, z))∇f 1

EXAMPLE 3 Using the Chain Rule for Gradients Find the gradient of

g(x, y, z) = (x2 + y2 + z2)8

Solution The function g is a composite g(x, y, z) = F(f (x, y, z)) with F(t) = t8 and
f (x, y, z) = x2 + y2 + z2 and apply Eq. (1):

∇g = ∇(
(x2 + y2 + z2)8) = 8(x2 + y2 + z2)7∇(x2 + y2 + z2)

= 8(x2 + y2 + z2)7 〈2x, 2y, 2z〉
= 16(x2 + y2 + z2)7 〈x, y, z〉

The Chain Rule for Paths
Our first application of the gradient is the Chain Rule for Paths. In Chapter 13, we repre-

y
x

z

c'(t)
Tangent vector

c(t) = (x(t), y(t), z(t))

FIGURE 2 Tangent vector c′(t) to a path
c(t) = (x(t), y(t), z(t)).

sented a path in R3 by a vector-valued function r(t) = 〈x(t), y(t), z(t)〉. It is convenient
to use a slightly different notation in this chapter.

A path will be represented by a function c(t) = (x(t), y(t), z(t)). We think of c(t) as
a moving point rather than as a moving vector (Figure 2). By definition, c′(t) is the vector
of derivatives as before:

c(t) = (x(t), y(t), z(t)), c′(t) = 〈
x′(t), y′(t), z′(t)

〉
Recall from Section 13.2 that c′(t) is the tangent or “velocity” vector that is tangent to the
path and points in the direction of motion. We use similar notation for paths in R2.

The Chain Rule for Paths deals with composite functions of the type f (c(t)). What
is the idea behind a composite function of this type? As an example, suppose that T (x, y)

is the temperature at location (x, y) (Figure 3). Now imagine a biker—we’ll call her
Chloe—riding along a path c(t). We suppose that Chloe carries a thermometer with her

∇T(x, y)

c(t) c'(t)

x

y

FIGURE 3 Chloe’s temperature changes at
the rate ∇Tc(t) · c′(t).

and checks it as she rides. Her location at time t is c(t), so her temperature reading at time
t is the composite function

T (c(t)) = Chloe’s temperature at time t

The temperature reading varies as Chloe’s location changes, and the rate at which it
changes is the derivative

d

dt
T (c(t))

The Chain Rule for Paths tells us that this derivative is simply the dot product of the
temperature gradient ∇T evaluated at c(t) and Chloe’s velocity vector c′(t).
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THEOREM 2 Chain Rule for Paths If f and c(t) are differentiable, then

d

dt
f (c(t)) = ∇fc(t) · c′(t)

Explicitly, in the case of two variables, if c(t) = (x(t), y(t)), then

d

dt
f (c(t)) =

〈
∂f

∂x
,
∂f

∂y

〉
· 〈x′(t), y′(t)

〉 = ∂f

∂x

dx

dt
+ ∂f

∂y

dy

dt

CAUTION Do not confuse the Chain Rule for
Paths with the more elementary Chain Rule
for Gradients stated in Theorem 1 above.

Proof By definition,

d

dt
f (c(t)) = lim

h→0

f (x(t + h), y(t + h)) − f (x(t), y(t))

h

To calculate this derivative, set

�f = f (x(t + h), y(t + h)) − f (x(t), y(t))

�x = x(t + h) − x(t), �y = y(t + h) − y(t)

The proof is based on the local linearity of f . As in Section 14.4, we write

�f = fx(x(t), y(t))�x + fy(x(t), y(t))�y + e(x(t + h), y(t + h))

Now set h = �t and divide by �t :

�f

�t
= fx(x(t), y(t))

�x

�t
+ fy(x(t), y(t))

�y

�t
+ e(x(t + �t), y(t + �t))

�t

Suppose for a moment that the last term tends to zero as �t → 0. Then we obtain the
desired result:

d

dt
f (c(t)) = lim

�t→0

�f

�t

= fx(x(t), y(t)) lim
�t→0

�x

�t
+ fy(x(t), y(t)) lim

�t→0

�y

�t

= fx(x(t), y(t))
dx

dt
+ fy(x(t), y(t))

dy

dt

= ∇fc(t) · c′(t)

We verify that the last term tends to zero as follows:

lim
�t→0

e(x(t + �t), y(t + �t))

�t
= lim

�t→0

e(x(t + �t), y(t + �t))√
(�x)2 + (�y)2

(√
(�x)2 + (�y)2

�t

)

=
(

lim
�t→0

e(x(t + �t), y(t + �t))√
(�x)2 + (�y)2

)
︸ ︷︷ ︸

Zero

lim
�t→0

⎛
⎝

√(
�x

�t

)2

+
(

�y

�t

)2
⎞
⎠ = 0

The first limit is zero because a differentiable function is locally linear (Section 14.4). The
second limit is equal to

√
x′(t)2 + y′(t)2, so the product is zero.
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EXAMPLE 4 The temperature at location (x, y) is T (x, y) = 20 + 10e−0.3(x2+y2)◦C.
A bug carries a tiny thermometer along the path

c(t) = (cos(t − 2), sin 2t)

(t in seconds) as in Figure 4. How fast is the temperature changing at t = 0.6 s?∇T

x

y

1

1

c'(0.6)
P = c(0.6)

FIGURE 4 Gradient vectors ∇T and the
path c(t) = (cos(t − 2), sin 2t).

Solution At t = 0.6 s, the bug is at location

c(0.6) = (cos(−1.4), sin 0.6) ≈ (0.170, 0.932)

By the Chain Rule for Paths, the rate of change of temperature is the dot product

dT

dt

∣∣∣∣
t=0.6

= ∇Tc(0.6) · c′(0.6)

We compute the vectors

∇T =
〈
−6xe−0.3(x2+y2), −6ye−0.3(x2+y2)

〉
c′(t) = 〈− sin(t − 2), 2 cos 2t〉

and evaluate at c(0.6) = (0.170, 0.932) using a calculator:

∇Tc(0.6) ≈ 〈−0.779, −4.272〉
c′(0.6) ≈ 〈0.985, 0.725〉

Therefore, the rate of change is

dT

dt

∣∣∣∣
t=0.6

∇Tc(0.6) · c′(t) ≈ 〈−0.779, −4.272〉 · 〈0.985, 0.725〉 ≈ −3.87◦C/s

In the next example, we apply the Chain Rule for Paths to a function of three
variables. In general, if f (x1, . . . , xn) is a differentiable function of n variables and
c(t) = (x1(t), . . . , xn(t)) is a differentiable path, then

d

dt
f (c(t)) = ∇f · c′(t) = ∂f

∂x1

dx1

dt
+ ∂f

∂x2

dx2

dt
+ · · · + ∂f

∂xn

dxn

dt

EXAMPLE 5 Calculate
d

dt
f (c(t))

∣∣∣∣
t=π/2

, where

f (x, y, z) = xy + z2 and c(t) = (cos t, sin t, t)

Solution We have c
(

π
2

) = (
cos π

2 , sin π
2 , π

2

) = (
0, 1, π

2

)
. Compute the gradient:

∇f =
〈
∂f

∂x
,
∂f

∂y
,
∂f

∂z

〉
= 〈y, x, 2z〉 , ∇fc(π/2) = ∇f

(
0, 1,

π

2

)
= 〈1, 0, π〉

Then compute the tangent vector:

c′(t) = 〈− sin t, cos t, 1〉 , c′ (π

2

)
=

〈
− sin

π

2
, cos

π

2
, 1

〉
= 〈−1, 0, 1〉

By the Chain Rule,

d

dt
f (c(t))

∣∣∣∣
t=π/2

= ∇fc(π/2) · c′ (π

2

)
= 〈1, 0, π〉 · 〈−1, 0, 1〉 = π − 1



S E C T I O N 14.5 The Gradient and Directional Derivatives 817

Directional Derivatives
We come now to one of the most important applications of the Chain Rule for Paths.

Contour map of f (x, y)

u = 〈h, k〉

x

y

c(t) = (a + th, b + tk)

(a, b)

FIGURE 5 The directional derivative
Duf (a, b) is the rate of change of f along
the linear path through P with direction
vector u.

Consider a line through a point P = (a, b) in the direction of a unit vector u = 〈h, k〉 (see
Figure 5):

c(t) = (a + th, b + tk)

The derivative of f (c(t)) at t = 0 is called the directional derivative of f with respect
to u at P, and is denoted Duf (P ) or Duf (a, b):

Duf (a, b) = d

dt
f (c(t))

∣∣∣∣
t=0

= lim
t→0

f (a + th, b + tk) − f (a, b)

t

Directional derivatives of functions of three or more variables are defined in a similar way.

DEFINITION Directional Derivative The directional derivative in the direction of a
unit vector u = 〈h, k〉 is the limit (assuming it exists)

Duf (P ) = Duf (a, b) = lim
t→0

f (a + th, b + tk) − f (a, b)

t

Note that the partial derivatives are the directional derivatives with respect to the
standard unit vectors i = 〈1, 0〉 and j = 〈0, 1〉. For example,

Dif (a, b) = lim
t→0

f (a + t (1), b + t (0)) − f (a, b)

t
= lim

t→0

f (a + t, b) − f (a, b)

t

= fx(a, b)

Thus we have

fx(a, b) = Dif (a, b), fy(a, b) = Djf (a, b)

CONCEPTUAL INSIGHT The directional derivative Duf (P ) is the rate of change of f

per unit change in the horizontal direction of u at P (Figure 6). This is the slope of
the tangent line at Q to the trace curve obtained when we intersect the graph with the
vertical plane through P in the direction u.

yu

x

P = (a, b, 0)

z

Q = (a, b, f (a, b))

FIGURE 6 Duf (a, b) is the slope of the
tangent line to the trace curve through Q in
the vertical plane through P in the
direction u.
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To evaluate directional derivatives, it is convenient to define Dvf (a, b) even when
v = 〈h, k〉 is not a unit vector:

Dvf (a, b) = d

dt
f (c(t))

∣∣∣∣
t=0

= lim
t→0

f (a + th, b + tk) − f (a, b)

t

We call Dvf the derivative with respect to v.
If we set c(t) = (a + th, b + tk), then Dvf (a, b) is the derivative at t = 0 of the

composite function f (c(t)), where c(t) = (a + th, b + tk), and we can evaluate it using
the Chain Rule for Paths. We have c′(t) = 〈h, k〉 = v, so

Dvf (a, b) = ∇f(a,b) · c′(0) = ∇f(a,b) · v

This yields the basic formula:

Dvf (a, b) = ∇f(a,b) · v 2

Similarly, in three variables, Dvf (a, b, c) = ∇f(a,b,c) · v.
For any scalar λ, Dλvf (P ) = ∇fP · (λv) = λ∇fP · v. Therefore,

Dλvf (P ) = λDvf (P ) 3

If v �= 0, then u = 1

‖v‖v is a unit vector in the direction of v. Applying Eq. (3) with

λ = 1/‖u‖ gives us a formula for the directional derivative Duf (P ) in terms of Dvf (P ).

THEOREM 3 Computing the Directional Derivative If v �= 0, then u = v/‖v‖ is the
unit vector in the direction of v, and the directional derivative is given by

Duf (P ) = 1

‖v‖∇fP · v 4

EXAMPLE 6 Let f (x, y) = xey , P = (2, −1), and v = 〈2, 3〉.
(a) Calculate Dvf (P ).

(b) Then calculate the directional derivative in the direction of v.

Solution (a) First compute the gradient at P = (2, −1):

∇f =
〈
∂f

∂x
,
∂f

∂y

〉
= 〈

ey, xey
〉 ⇒ ∇fP = ∇f(2,−1) =

〈
e−1, 2e−1

〉
Then use Eq. (2):

Dvf (P ) = ∇fP · v =
〈
e−1, 2e−1

〉
· 〈2, 3〉 = 8e−1 ≈ 2.94

(b) The directional derivative is Duf (P ), where u = v/‖v‖. By Eq. 4,

Duf (P ) = 1

‖v‖Dvf (P ) = 8e−1

√
22 + 32

= 8e−1

√
13

≈ 0.82

EXAMPLE 7 Find the rate of change of pressure at the point Q = (1, 2, 1) in the
direction of v = 〈0, 1, 1〉, assuming that the pressure (in millibars) is given by

f (x, y, z) = 1000 + 0.01(yz2 + x2z − xy2) (x, y, z in kilometers)
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Solution First compute the gradient at Q = (1, 2, 1):

∇f = 0.01
〈
2xz − y2, z2 − 2xy, 2yz + x2

〉
∇fQ = ∇f(1,2,1) = 〈−0.02, −0.03, 0.05〉

Then use Eq. (2) to compute the derivative with respect to v:

Dvf (Q) = ∇fQ · v = 〈−0.02, −0.03, 0.05〉 · 〈0, 1, 1〉 = 0.01(−3 + 5) = 0.02

The rate of change per kilometer is the directional derivative. The unit vector in the
direction of v is u = v/‖v‖. Since ‖v‖ = √

2, Eq. (4) yields

Duf (Q) = 1

‖v‖Dvf (Q) = 0.02√
2

≈ 0.014 mb/km

Properties of the Gradient
We are now in a position to draw some interesting and important conclusions about the
gradient. First, suppose that ∇fP �= 0 and let u be a unit vector (Figure 7). By the propertiesREMINDER For any vectors u and v,

v · u = ‖v‖‖u‖ cos θ

where θ is the angle between v and u. If u
is a unit vector, then

v · u = ‖v‖ cos θ

of the dot product,

Duf (P ) = ∇fP · u = ‖∇fP ‖ cos θ 5

where θ is the angle between ∇fP and u. In other words, the rate of change in a given
direction varies with the cosine of the angle θ between the gradient and the direction.

Because the cosine takes values between −1 and 1, we have

−‖∇fP ‖ ≤ Duf (P ) ≤ ‖∇fP ‖
Since cos 0 = 1, the maximum value of Duf (P ) occurs for θ = 0—that is, when u points
in the direction of ∇fP . In other words the gradient vector points in the direction of

∇fP

Unit vectorP

u

FIGURE 7 Duf (P ) = ‖∇fP ‖ cos θ .

the maximum rate of increase, and this maximum rate is ‖∇fP ‖. Similarly, f decreases
most rapidly in the opposite direction, −∇fP , because cos θ = −1 for θ = π . The rate of
maximum decrease is −‖∇fP ‖. The directional derivative is zero in directions orthogonal
to the gradient because cos π

2 = 0.
In the earlier scenario where the biker Chloe rides along a path (Figure 8), the tem-

perature T changes at a rate that depends on the cosine of the angle θ between ∇T and
the direction of motion.

x

y

Maximum temperature increase
in the gradient direction.

Temperature rate of change is zero
in direction orthogonal to ∇T(x, y).

In this direction, temperature changes
at the rate ||∇T || cos   . 

∇T(x, y)

FIGURE 8
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Another key property is that gradient vectors are normal to level curves (Figure 9).REMINDER

• The words “normal” and “orthogonal”
both mean “perpendicular.”

• We say that a vector is normal to a
curve at a point P if it is normal to the
tangent line to the curve at P .

To prove this, suppose that P lies on the level curve f (x, y) = k. We parametrize this
level curve by a path c(t) such that c(0) = P and c′(0) �= 0 (this is possible whenever
∇fP �= 0). Then f (c(t)) = k for all t , so by the Chain Rule,

∇fP · c′(0) = d

dt
f (c(t))

∣∣∣∣
t=0

= d

dt
k = 0

This proves that ∇fP is orthogonal to c′(0), and since c′(0) is tangent to the level curve, wey

∇fP 

P

40

80

120

c'(0)

x

FIGURE 9 Contour map of f (x, y). The
gradient at P is orthogonal to the level
curve through P .

conclude that ∇fP is normal to the level curve (Figure 9). For functions of three variables,
a similar argument shows that ∇fP is normal to the level surface f (x, y, z) = k through P .

THEOREM 4 Interpretation of the Gradient Assume that ∇fP �= 0. Let u be a unit
vector making an angle θ with ∇fP . Then

Duf (P ) = ‖∇fP ‖ cos θ 6

• ∇fP points in the direction of maximum rate of increase of f at P .
• −∇fP points in the direction of maximum rate of decrease at P .
• ∇fP is normal to the level curve (or surface) of f at P .

GRAPHICAL INSIGHT At each point P , there is a unique direction in which f (x, y)

increases most rapidly (per unit distance). Theorem 4 tells us that this chosen direction is
perpendicular to the level curves and that it is specified by the gradient vector (Figure 10).
For most functions, however, the direction of maximum rate of increase varies from point
to point.

EXAMPLE 8 Let f (x, y) = x4y−2 and P = (2, 1). Find the unit vector that points

x

y

∇fP 

P

Level curve of f (x, y)

FIGURE 10 The gradient points in the
direction of maximum increase.

in the direction of maximum rate of increase at P .

Solution The gradient points in the direction of maximum rate of increase, so we evaluate
the gradient at P :

∇f =
〈
4x3y−2, −2x4y−3

〉
, ∇f(2,1) = 〈32, −32〉

The unit vector in this direction is

u = 〈32, −32〉
‖〈32, −32〉‖ = 〈32, −32〉

32
√

2
=

〈√
2

2
, −

√
2

2

〉

EXAMPLE 9 The altitude of a mountain at (x, y) is

x

y

∇fP 

u

310 2

3

2

1

0

−2

−1

−2 −1

2400 2500 2600 2700

P

FIGURE 11 Contour map of the function
f (x, y) in Example 9.

f (x, y) = 2500 + 100(x + y2)e−0.3y2

where x, y are in units of 100 m.

(a) Find the directional derivative of f at P = (−1, −1) in the direction of unit vector u
making an angle of θ = π

4 with the gradient (Figure 11).
(b) What is the interpretation of this derivative?

Solution First compute ‖∇fP ‖:

fx(x, y) = 100e−0.3y2
, fy(x, y) = 100y(2 − 0.6x − 0.6y2)e−0.3y2

fx(−1, −1) = 100e−0.3 ≈ 74, fy(−1, −1) = −200e−0.3 ≈ −148
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Hence, ∇fP ≈ 〈74, −148〉 and

‖∇fP ‖ ≈
√

742 + (−148)2 ≈ 165.5

Apply Eq. (6) with θ = π/4:

Duf (P ) = ‖∇fP ‖ cos θ ≈ 165.5

(√
2

2

)
≈ 117

Recall that x and y are measured in units of 100 meters. Therefore, the interpretation is:
If you stand on the mountain at the point lying above (−1, −1) and begin climbing so
that your horizontal displacement is in the direction of u, then your altitude increases at a
rate of 117 meters per 100 meters of horizontal displacement, or 1.17 meters per meter of
horizontal displacement.

The symbol ψ (pronounced “p-sigh” or
“p-see”) is the lowercase Greek letter psi.

CONCEPTUAL INSIGHT The directional derivative is related to the angle of inclination
ψ in Figure 12. Think of the graph of z = f (x, y) as a mountain lying over the xy-plane.
Let Q be the point on the mountain lying above a point P = (a, b) in the xy-plane. If
you start moving up the mountain so that your horizontal displacement is in the direction
of u, then you will actually be moving up the mountain at an angle of inclination ψ

defined by

tan ψ = Duf (P ) 7

The steepest direction up the mountain is the direction for which the horizontal dis-
placement is in the direction of ∇fP .

u

u

z = f (x, y)

z

y

x

Q

Du f (P)

P

FIGURE 12

EXAMPLE 10 Angle of Inclination You are standing on the side of a mountain in the
shape z = f (x, y), at a point Q = (a, b, f (a, b)), where ∇f(a,b) = 〈0.4, 0.02〉. Find the
angle of inclination in a direction making an angle of θ = π

3 with the gradient.

Solution The gradient has length ‖∇f(a,b)‖ =
√

(0.4)2 + (0.02)2 ≈ 0.4. If u is a unit
vector making an angle of θ = π

3 with ∇f(a,b), then

Duf (a, b) = ‖∇f(a,b)‖ cos
π

3
≈ (0.4)(0.5) = 0.2

The angle of inclination at Q in the direction of u satisfies tan ψ = 0.2. It follows that
ψ ≈ tan−1 0.2 ≈ 0.197 rad or approximately 11.3◦.
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Another use of the gradient is in finding normal vectors on a surface with equation
F(x, y, z) = k, where k is a constant. Let P = (a, b, c) and assume that ∇FP �= 0. Then
∇FP is normal to the level surface F(x, y, z) = k by Theorem 4. The tangent plane at P

has equation

∇FP · 〈x − a, y − b, z − c〉 = 0

Expanding the dot product, we obtain

Fx(a, b, c)(x − a) + Fy(a, b, c)(y − b) + Fz(a, b, c)(z − c) = 0

EXAMPLE 11 Normal Vector and Tangent Plane Find an equation of the tangent plane
to the surface 4x2 + 9y2 − z2 = 16 at P = (2, 1, 3).

Solution Let F(x, y, z) = 4x2 + 9y2 − z2. Then

∇F = 〈8x, 18y, −2z〉 , ∇FP = ∇F(2,1,3) = 〈16, 18, −6〉
The vector 〈16, 18, −6〉 is normal to the surface F(x, y, z) = 16 (Figure 13), so the tan-

P = (2, 1, 3)
�FP

FIGURE 13 The gradient vector ∇FP is
normal to the surface at P .

gent plane at P has equation

16(x − 2) + 18(y − 1) − 6(z − 3) = 0 or 16x + 18y − 6z = 32

14.5 SUMMARY

• The gradient of a function f is the vector of partial derivatives:

∇f =
〈
∂f

∂x
,
∂f

∂y

〉
or ∇f =

〈
∂f

∂x
,
∂f

∂y
,
∂f

∂z

〉
• Chain Rule for Paths:

d

dt
f (c(t)) = ∇fc(t) · c′(t)

• Derivative of f with respect to v = 〈h, k〉:

Dvf (a, b) = lim
t→0

f (a + th, b + tk) − f (a, b)

t

This definition extends to three or more variables.
• Formula for the derivative with respect to v: Dvf (a, b) = ∇f(a,b) · v.
• For u a unit vector, Duf is called the directional derivative.

– If u = v
‖v‖ , then Duf (a, b) = 1

‖v‖Dvf (a, b).

– Duf (a, b) = ‖∇f(a,b)‖ cos θ , where θ is the angle between ∇f(a,b) and u.

• Basic geometric properties of the gradient (assume ∇fP �= 0):

– ∇fP points in the direction of maximum rate of increase. The maximum rate of
increase is ‖∇fP ‖.

– −∇fP points in the direction of maximum rate of decrease. The maximum rate of
decrease is −‖∇fP ‖.

– ∇fP is orthogonal to the level curve (or surface) through P .

• Equation of the tangent plane to the level surface F(x, y, z) = k at P = (a, b, c):

∇FP · 〈x − a, y − b, z − c〉 = 0

Fx(a, b, c)(x − a) + Fy(a, b, c)(y − b) + Fz(a, b, c)(z − c) = 0



S E C T I O N 14.5 The Gradient and Directional Derivatives 823

14.5 EXERCISES

Preliminary Questions
1. Which of the following is a possible value of the gradient ∇f of a

function f (x, y) of two variables?

(a) 5 (b) 〈3, 4〉 (c) 〈3, 4, 5〉
2. True or false? A differentiable function increases at the rate ‖∇fP ‖

in the direction of ∇fP .

3. Describe the two main geometric properties of the gradient ∇f .

4. You are standing at a point where the temperature gradient vector
is pointing in the northeast (NE) direction. In which direction(s) should
you walk to avoid a change in temperature?

(a) NE (b) NW (c) SE (d) SW

5. What is the rate of change of f (x, y) at (0, 0) in the direction
making an angle of 45◦ with the x-axis if ∇f (0, 0) = 〈2, 4〉?

Exercises
1. Let f (x, y) = xy2 and c(t) = ( 1

2 t2, t3).

(a) Calculate ∇f and c′(t).
(b) Use the Chain Rule for Paths to evaluate

d

dt
f (c(t)) at t = 1 and

t = −1.

2. Let f (x, y) = exy and c(t) = (t3, 1 + t).

(a) Calculate ∇f and c′(t).
(b) Use the Chain Rule for Paths to calculate

d

dt
f (c(t)).

(c) Write out the composite f (c(t)) as a function of t and differentiate.
Check that the result agrees with part (b).

3. Figure 14 shows the level curves of a function f (x, y) and a path
c(t), traversed in the direction indicated. State whether the derivative
d

dt
f (c(t)) is positive, negative, or zero at points A–D.

y

x

−4

0

4

8

−4 840

A 10

0

−10

−20

20
30

B

C
D

0

FIGURE 14

4. Let f (x, y) = x2 + y2 and c(t) = (cos t, sin t).

(a) Find
d

dt
f (c(t)) without making any calculations. Explain.

(b) Verify your answer to (a) using the Chain Rule.

In Exercises 5–8, calculate the gradient.

5. f (x, y) = cos(x2 + y) 6. g(x, y) = x

x2 + y2

7. h(x, y, z) = xyz−3 8. r(x, y, z, w) = xzeyw

In Exercises 9–20, use the Chain Rule to calculate
d

dt
f (c(t)).

9. f (x, y) = 3x − 7y, c(t) = (cos t, sin t), t = 0

10. f (x, y) = 3x − 7y, c(t) = (t2, t3), t = 2

11. f (x, y) = x2 − 3xy, c(t) = (cos t, sin t), t = 0

12. f (x, y) = x2 − 3xy, c(t) = (cos t, sin t), t = π
2

13. f (x, y) = sin(xy), c(t) = (e2t , e3t ), t = 0

14. f (x, y) = cos(y − x), c(t) = (et , e2t ), t = ln 3

15. f (x, y) = x − xy, c(t) = (t2, t2 − 4t), t = 4

16. f (x, y) = xey , c(t) = (t2, t2 − 4t), t = 0

17. f (x, y) = ln x + ln y, c(t) = (cos t, t2), t = π
4

18. g(x, y, z) = xyez, c(t) = (t2, t3, t − 1), t = 1

19. g(x, y, z) = xyz−1, c(t) = (et , t, t2), t = 1

20. g(x, y, z, w) = x + 2y + 3z + 5w, c(t) = (t2, t3, t, t−2),
t = 1

In Exercises 21–30, calculate the directional derivative in the direction
of v at the given point. Remember to normalize the direction vector or
use Eq. (4).

21. f (x, y) = x2 + y3, v = 〈4, 3〉, P = (1, 2)

22. f (x, y) = x2y3, v = i + j, P = (−2, 1)

23. f (x, y) = x2y3, v = i + j, P = ( 1
6 , 3

)
24. f (x, y) = sin(x − y), v = 〈1, 1〉, P = (

π
2 , π

6

)
25. f (x, y) = tan−1(xy), v = 〈1, 1〉, P = (3, 4)

26. f (x, y) = exy−y2
, v = 〈12, −5〉, P = (2, 2)

27. f (x, y) = ln(x2 + y2), v = 3i − 2j, P = (1, 0)

28. g(x, y, z) = z2 − xy2, v = 〈−1, 2, 2〉, P = (2, 1, 3)

29. g(x, y, z) = xe−yz, v = 〈1, 1, 1〉, P = (1, 2, 0)

30. g(x, y, z) = x ln(y + z), v = 2i − j + k, P = (2, e, e)



824 C H A P T E R 14 DIFFERENTIATION IN SEVERAL VARIABLES

31. Find the directional derivative of f (x, y) = x2 + 4y2 at
P = (3, 2) in the direction pointing to the origin.

32. Find the directional derivative of f (x, y, z) = xy + z3 at
P = (3, −2, −1) in the direction pointing to the origin.

33. A bug located at (3, 9, 4) begins walking in a straight line toward
(5, 7, 3). At what rate is the bug’s temperature changing if the temper-
ature is T (x, y, z) = xey−z? Units are in meters and degrees Celsius.

34. The temperature at location (x, y) is T (x, y) = 20 + 0.1(x2 − xy)

(degrees Celsius). Beginning at (200, 0) at time t = 0 (seconds), a bug
travels along a circle of radius 200 cm centered at the origin, at a speed
of 3 cm/s. How fast is the temperature changing at time t = π/3?

35. Suppose that ∇fP = 〈2, −4, 4〉. Is f increasing or decreasing at
P in the direction v = 〈2, 1, 3〉?

36. Let f (x, y) = xex2−y and P = (1, 1).

(a) Calculate ‖∇fP ‖.

(b) Find the rate of change of f in the direction ∇fP .

(c) Find the rate of change of f in the direction of a vector making an
angle of 45◦ with ∇fP .

37. Let f (x, y, z) = sin(xy + z) and P = (0, −1, π). Calculate
Duf (P ), where u is a unit vector making an angle θ = 30◦ with ∇fP .

38. Let T (x, y) be the temperature at location (x, y). Assume that
∇T = 〈y − 4, x + 2y〉. Let c(t) = (t2, t) be a path in the plane. Find
the values of t such that

d

dt
T (c(t)) = 0

39. Find a vector normal to the surface x2 + y2 − z2 = 6 at
P = (3, 1, 2).

40. Find a vector normal to the surface 3z3 + x2y − y2x = 1 at
P = (1, −1, 1).

41. Find the two points on the ellipsoid

x2

4
+ y2

9
+ z2 = 1

where the tangent plane is normal to v = 〈1, 1, −2〉.
In Exercises 42–45, find an equation of the tangent plane to the surface
at the given point.

42. x2 + 3y2 + 4z2 = 20, P = (2, 2, 1)

43. xz + 2x2y + y2z3 = 11, P = (2, 1, 1)

44. x2 + z2ey−x = 13, P =
(

2, 3,
3√
e

)

45. ln[1 + 4x2 + 9y4] − 0.1z2 = 0, P = (3, 1, 6.1876)

46. Verify what is clear from Figure 15: Every tangent plane to the
cone x2 + y2 − z2 = 0 passes through the origin.

y

x

z

FIGURE 15 Graph of x2 + y2 − z2 = 0.

47. Use a computer algebra system to produce a contour plot

of f (x, y) = x2 − 3xy + y − y2 together with its gradient vector field
on the domain [−4, 4] × [−4, 4].
48. Find a function f (x, y, z) such that ∇f is the constant vector
〈1, 3, 1〉.
49. Find a function f (x, y, z) such that ∇f = 〈2x, 1, 2〉.
50. Find a function f (x, y, z) such that ∇f = 〈

x, y2, z3〉.
51. Find a function f (x, y, z) such that ∇f = 〈z, 2y, x〉.
52. Find a function f (x, y) such that ∇f = 〈y, x〉.
53. Show that there does not exist a function f (x, y) such that ∇f =〈
y2, x

〉
. Hint: Use Clairaut’s Theorem fxy = fyx .

54. Let �f = f (a + h, b + k) − f (a, b) be the change in f at P =
(a, b). Set �v = 〈h, k〉. Show that the linear approximation can be
written

�f ≈ ∇fP · �v 8

55. Use Eq. (8) to estimate

�f = f (3.53, 8.98) − f (3.5, 9)

assuming that ∇f(3.5,9) = 〈2, −1〉.
56. Find a unit vector n that is normal to the surface z2 − 2x4 − y4 =
16 at P = (2, 2, 8) that points in the direction of the xy-plane (in other
words, if you travel in the direction of n, you will eventually cross the
xy-plane).

57. Suppose, in the previous exercise, that a particle located at the point
P = (2, 2, 8) travels toward the xy-plane in the direction normal to the
surface.

(a) Through which point Q on the xy-plane will the particle pass?

(b) Suppose the axes are calibrated in centimeters. Determine the path
c(t) of the particle if it travels at a constant speed of 8 cm/s. How long
will it take the particle to reach Q?

58. Let f (x, y) = tan−1 x

y
and u =

〈√
2

2
,

√
2

2

〉
.

(a) Calculate the gradient of f .

(b) Calculate Duf (1, 1) and Duf (
√

3, 1).

(c) Show that the lines y = mx for m �= 0 are level curves for f .
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(d) Verify that ∇fP is orthogonal to the level curve through P for
P = (x, y) �= (0, 0).

59. Suppose that the intersection of two surfaces F(x, y, z) =
0 and G(x, y, z) = 0 is a curve C, and let P be a point on C. Explain
why the vector v = ∇FP × ∇GP is a direction vector for the tangent
line to C at P .

60. Let C be the curve of intersection of the spheres x2 + y2 + z2 = 3
and (x − 2)2 + (y − 2)2 + z2 = 3. Use the result of Exercise 59 to find
parametric equations of the tangent line to C at P = (1, 1, 1).

61. Let C be the curve obtained by intersecting the two surfaces
x3 + 2xy + yz = 7 and 3x2 − yz = 1. Find the parametric equations
of the tangent line to C at P = (1, 2, 1).

62. Verify the linearity relations for gradients:

(a) ∇(f + g) = ∇f + ∇g

(b) ∇(cf ) = c∇f

63. Prove the Chain Rule for Gradients (Theorem 1).

64. Prove the Product Rule for Gradients (Theorem 1).

Further Insights and Challenges
65. Let u be a unit vector. Show that the directional derivative Duf is
equal to the component of ∇f along u.

66. Let f (x, y) = (xy)1/3.

(a) Use the limit definition to show that fx(0, 0) = fy(0, 0) = 0.

(b) Use the limit definition to show that the directional derivative
Duf (0, 0) does not exist for any unit vector u other than i and j.
(c) Is f differentiable at (0, 0)?

67. Use the definition of differentiability to show that if f (x, y) is
differentiable at (0, 0) and

f (0, 0) = fx(0, 0) = fy(0, 0) = 0

then

lim
(x,y)→(0,0)

f (x, y)√
x2 + y2

= 0 9

68. This exercise shows that there exists a function that is not differ-
entiable at (0, 0) even though all directional derivatives at (0, 0) exist.
Define f (x, y) = x2y/(x2 + y2) for (x, y) �= 0 and f (0, 0) = 0.

(a) Use the limit definition to show that Dvf (0, 0) exists for all vectors
v. Show that fx(0, 0) = fy(0, 0) = 0.

(b) Prove that f is not differentiable at (0, 0) by showing that Eq. (9)
does not hold.

69. Prove that iff (x, y) is differentiable and∇f(x,y) = 0 for all (x, y),
then f is constant.

70. Prove the following Quotient Rule, where f, g are differentiable:

∇
(

f

g

)
= g∇f − f ∇g

g2

In Exercises 71–73, a path c(t) = (x(t), y(t)) follows the gradient of a
function f (x, y) if the tangent vector c′(t) points in the direction of ∇f

for all t . In other words, c′(t) = k(t)∇fc(t) for some positive function
k(t). Note that in this case, c(t) crosses each level curve of f (x, y) at
a right angle.

71. Show that if the path c(t) = (x(t), y(t)) follows the gradient of
f (x, y), then

y′(t)
x′(t) = fy

fx

72. Find a path of the form c(t) = (t, g(t)) passing through (1, 2) that
follows the gradient of f (x, y) = 2x2 + 8y2 (Figure 16). Hint: Use
Separation of Variables.

x

y

1

1

2

FIGURE 16 The path c(t) is orthogonal to the level curves of
f (x, y) = 2x2 + 8y2.

73. Find the curve y = g(x) passing through (0, 1) that
crosses each level curve of f (x, y) = y sin x at a right angle. If you
have a computer algebra system, graph y = g(x) together with the level
curves of f .

14.6 The Chain Rule
The Chain Rule for Paths that we derived in the previous section can be extended to general
composite functions. Suppose, for example, that x, y, z are differentiable functions of s

and t—say x = x(s, t), y = y(s, t), and z = z(s, t). The composite

f (x(s, t), y(s, t), z(s, t)) 1

is then a function of s and t . We refer to s and t as the independent variables.
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EXAMPLE 1 Find the composite function where f (x, y, z) = xy + z and x = s2,
y = st , z = t2.

Solution The composite function is

f (x(s, t), y(s, t), z(s, t)) = xy + z = (s2)(st) + t2 = s3t + t2

The Chain Rule expresses the derivatives of f with respect to the independent vari-
ables. For example, the partial derivatives of f (x(s, t), y(s, t), z(s, t)) are

∂f

∂s
= ∂f

∂x

∂x

∂s
+ ∂f

∂y

∂y

∂s
+ ∂f

∂z

∂z

∂s
2

∂f

∂t
= ∂f

∂x

∂x

∂t
+ ∂f

∂y

∂y

∂t
+ ∂f

∂z

∂z

∂t
3

To prove these formulas, we observe that ∂f/∂s, when evaluated at a point (s0, t0),
is equal to the derivative with respect to the path

c(s) = (x(s, t0), y(s, t0), z(s, t0))

In other words, we fix t = t0 and take the derivative with respect to s:

∂f

∂s
(s0, t0) = d

ds
f (c(s))

∣∣∣∣
s=s0

The tangent vector is

c′(s) =
〈
∂x

∂s
(s, t0),

∂y

∂s
(s, t0),

∂z

∂s
(s, t0)

〉
Therefore, by the Chain Rule for Paths,

∂f

∂s

∣∣∣∣
(s0,t0)

= d

ds
f (c(s))

∣∣∣∣
s=s0

= ∇f · c′(s0) = ∂f

∂x

∂x

∂s
+ ∂f

∂y

∂y

∂s
+ ∂f

∂z

∂z

∂s

The derivatives on the right are evaluated at (s0, t0). This proves Eq. (2).Asimilar argument
proves Eq. (3), as well as the general case of a function f (x1, . . . , xn), where the variables
xi depend on independent variables t1, . . . , tm.

THEOREM 1 General Version of Chain Rule Let f (x1, . . . , xn) be a differentiable
function of n variables. Suppose that each of the variables x1, . . . , xn is a differentiable
function of m independent variables t1, . . . , tm. Then, for k = 1, . . . , m,

∂f

∂tk
= ∂f

∂x1

∂x1

∂tk
+ ∂f

∂x2

∂x2

∂tk
+ · · · + ∂f

∂xn

∂xn

∂tk
4

As an aid to remembering the Chain Rule, we will refer to

∂f

∂x1
, . . . ,

∂f

∂xn

as the primary derivatives. They are the components of the gradient ∇f . By Eq. (4), theThe term “primary derivative” is not
standard. We use it in this section only, to
clarify the structure of the Chain Rule.

derivative of f with respect to the independent variable tk is equal to a sum of n terms:

j th term:
∂f

∂xj

∂xj

∂tk
for j = 1, 2, . . . , n
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Note that we can write Eq. (4) as a dot product:

∂f

∂tk
=

〈
∂f

∂x1
,

∂f

∂x2
, . . . ,

∂f

∂xn

〉
·
〈
∂x1

∂tk
,
∂x2

∂tk
, . . . ,

∂xn

∂tk

〉
5

EXAMPLE 2 Using the Chain Rule Let f (x, y, z) = xy + z. Calculate ∂f/∂s, where

x = s2, y = st, z = t2

Solution

Step 1. Compute the primary derivatives.

∂f

∂x
= y,

∂f

∂y
= x,

∂f

∂z
= 1

Step 2. Apply the Chain Rule.

∂f

∂s
= ∂f

∂x

∂x

∂s
+ ∂f

∂y

∂y

∂s
+ ∂f

∂z

∂z

∂s
= y

∂

∂s
(s2) + x

∂

∂s
(st) + ∂

∂s
(t2)

= (y)(2s) + (x)(t) + 0

= 2sy + xt

This expresses the derivative in terms of both sets of variables. If desired, we can
substitute x = s2 and y = st to write the derivative in terms of s and t :

∂f

∂s
= 2ys + xt = 2(st)s + (s2)t = 3s2t

To check this result, recall that in Example 1, we computed the composite function:

f (x(s, t), y(s, t), z(s, t)) = f (s2, st, t2) = s3t + t2

From this we see directly that ∂f/∂s = 3s2t , confirming our result.

EXAMPLE 3 Evaluating the Derivative Let f (x, y) = exy . Evaluate ∂f/∂t at
(s, t, u) = (2, 3, −1), where x = st , y = s − ut2.

Solution We can use either Eq. (4) or Eq. (5). We’ll use the dot product form in Eq. (5).
We have

∇f =
〈
∂f

∂x
,
∂f

∂y

〉
= 〈

yexy, xexy
〉
,

〈
∂x

∂t
,
∂y

∂t

〉
= 〈s, −2ut〉

and the Chain Rule gives us

∂f

∂t
= ∇f ·

〈
∂x

∂t
,
∂y

∂t

〉
= 〈

yexy, xexy
〉 · 〈s, −2ut〉

= yexy(s) + xexy(−2ut)

= (ys − 2xut)exy

To finish the problem, we do not have to rewrite ∂f/∂t in terms of s, t, u. For (s, t, u) =
(2, 3, −1), we have

x = st = 2(3) = 6, y = s − ut2 = 2 − (−1)(32) = 11

With (s, t, u) = (2, 3, −1) and (x, y) = (6, 11), we have

∂f

∂t

∣∣∣∣
(2,3,−1)

= (ys − 2xut)exy

∣∣∣∣
(2,3,−1)

=
(

(11)(2) − 2(6)(−1)(3)

)
e6(11) = 58e66
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EXAMPLE 4 Polar Coordinates Let f (x, y) be a function of two variables, and let
(r, θ) be polar coordinates.

(a) Express ∂f/∂θ in terms of ∂f/∂x and ∂f/∂y.

(b) Evaluate ∂f/∂θ at (x, y) = (1, 1) for f (x, y) = x2y.

Solution

(a) Since x = r cos θ and y = r sin θ ,

∂x

∂θ
= −r sin θ,

∂y

∂θ
= r cos θ

By the Chain Rule,

∂f

∂θ
= ∂f

∂x

∂x

∂θ
+ ∂f

∂y

∂y

∂θ
= −r sin θ

∂f

∂x
+ r cos θ

∂f

∂y

Since x = r cos θ and y = r sin θ , we can write ∂f/∂θ in terms of x and y alone:If you have studied quantum mechanics,
you may recognize the right-hand side of
Eq. (6) as the angular momentum operator
(with respect to the z-axis).

∂f

∂θ
= x

∂f

∂y
− y

∂f

∂x
6

(b) Apply Eq. (6) to f (x, y) = x2y:

∂f

∂θ
= x

∂

∂y
(x2y) − y

∂

∂x
(x2y) = x3 − 2xy2

∂f

∂θ

∣∣∣∣
(x,y)=(1,1)

= 13 − 2(1)(12) = −1

Implicit Differentiation
In single-variable calculus, we used implicit differentiation to compute dy/dx when y

is defined implicitly as a function of x through an equation f (x, y) = 0. This method
also works for functions of several variables. Suppose that z is defined implicitly by an
equation

F(x, y, z) = 0

Thus z = z(x, y) is a function of x and y. We may not be able to solve explicitly for
z(x, y), but we can treat F(x, y, z) as a composite function with x and y as independent
variables, and use the Chain Rule to differentiate with respect to x:

∂F

∂x

∂x

∂x
+ ∂F

∂y

∂y

∂x
+ ∂F

∂z

∂z

∂x
= 0

We have ∂x/∂x = 1, and also ∂y/∂x = 0 since y does not depend on x. Thus

∂F

∂x
+ ∂F

∂z

∂z

∂x
= Fx + Fz

∂z

∂x
= 0

If Fz �= 0, we may solve for ∂z/∂x (we compute ∂z/∂y similarly):

∂z

∂x
= −Fx

Fz

,
∂z

∂y
= −Fy

Fz

7
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EXAMPLE 5 Calculate ∂z/∂x and ∂z/∂y at P = (1, 1, 1), where

x

y

z

P = (1, 1, 1)

FIGURE 1 The surface
x2 + y2 − 2z2 + 12x − 8z − 4 = 0.
A small patch of the surface around P can
be represented as the graph of a function of
x and y.

F(x, y, z) = x2 + y2 − 2z2 + 12x − 8z − 4 = 0

What is the graphical interpretation of these partial derivatives?

Solution We have

Fx = 2x + 12, Fy = 2y, Fz = −4z − 8

and hence,

∂z

∂x
= −Fx

Fz

= 2x + 12

4z + 8
,

∂z

∂y
= −Fy

Fz

= 2y

4z + 8

The derivatives at P = (1, 1, 1) are

∂z

∂x

∣∣∣∣
(1,1,1)

= 2(1) + 12

4(1) + 8
= 14

12
= 7

6
,

∂z

∂y

∣∣∣∣
(1,1,1)

= 2(1)

4(1) + 8
= 2

12
= 1

6

Figure 1 shows the surface F(x, y, z) = 0. The surface as a whole is not the graph of a
function because it fails the Vertical Line Test. However, a small patch near P may be
represented as a graph of a function z = f (x, y), and the partial derivatives ∂z/∂x and
∂z/∂y are equal to fx and fy . Implicit differentiation has enabled us to compute these
partial derivatives without finding f (x, y) explicitly.

Assumptions Matter Implicit differentiation is based on the assumption that we can
solve the equation F(x, y, z) = 0 for z in the form z = f (x, y). Otherwise, the partial
derivatives ∂z/∂x and ∂z/∂y would have no meaning. The Implicit Function Theorem
of advanced calculus guarantees that this can be done (at least near a point P ) if F has
continuous partial derivatives and Fz(P ) �= 0. Why is this condition necessary? Recall
that the gradient vector ∇FP = 〈

Fx(P ), Fy(P ), Fz(P )
〉

is normal to the surface at P ,
so Fz(P ) = 0 means that the tangent plane at P is vertical. To see what can go wrong,
consider the cylinder (shown in Figure 2):1

z

y

x

FIGURE 2 Graph of the cylinder
x2 + y2 − 1 = 0.

F(x, y, z) = x2 + y2 − 1 = 0

In this extreme case, Fz = 0. The z-coordinate on the cylinder does not depend on x or
y, so it is impossible to represent the cylinder as a graph z = f (x, y) and the derivatives
∂z/∂x and ∂z/∂y do not exist.

14.6 SUMMARY

• If f (x, y, z) is a function of x, y, z, and if x, y, z depend on two other variables, say s

and t , then

f (x, y, z) = f (x(s, t), y(s, t), z(s, t))

is a composite function of s and t . We refer to s and t as the independent variables.
• The Chain Rule expresses the partial derivatives with respect to the independent vari-
ables s and t in terms of the primary derivatives:

∂f

∂x
,

∂f

∂y
,

∂f

∂z

Namely,

∂f

∂s
= ∂f

∂x

∂x

∂s
+ ∂f

∂y

∂y

∂s
+ ∂f

∂z

∂z

∂s
,

∂f

∂t
= ∂f

∂x

∂x

∂t
+ ∂f

∂y

∂y

∂t
+ ∂f

∂z

∂z

∂t
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• In general, if f (x1, . . . , xn) is a function of n variables and if x1, . . . , xn depend on the
independent variables t1, . . . , tm, then

∂f

∂tk
= ∂f

∂x1

∂x1

∂tk
+ ∂f

∂x2

∂x2

∂tk
+ · · · + ∂f

∂xn

∂xn

∂tk

• The Chain Rule can be expressed as a dot product:

∂f

∂tk
=

〈
∂f

∂x1
,

∂f

∂x2
, . . . ,

∂f

∂xn

〉
︸ ︷︷ ︸

∇f

·
〈
∂x1

∂tk
,
∂x2

∂tk
, . . . ,

∂xn

∂tk

〉

• Implicit differentiation is used to find the partial derivatives ∂z/∂x and ∂z/∂y when z

is defined implicitly by an equation F(x, y, z) = 0:

∂z

∂x
= −Fx

Fz

,
∂z

∂y
= −Fy

Fz

14.6 EXERCISES

Preliminary Questions
1. Let f (x, y) = xy, where x = uv and y = u + v.

(a) What are the primary derivatives of f ?
(b) What are the independent variables?

In Questions 2 and 3, suppose that f (u, v) = uev , where u = rs and
v = r + s.

2. The composite function f (u, v) is equal to:

(a) rser+s (b) res (c) rsers

3. What is the value of f (u, v) at (r, s) = (1, 1)?

4. According to the Chain Rule, ∂f/∂r is equal to (choose the correct
answer):

(a)
∂f

∂x

∂x

∂r
+ ∂f

∂x

∂x

∂s

(b)
∂f

∂x

∂x

∂r
+ ∂f

∂y

∂y

∂r

(c)
∂f

∂r

∂r

∂x
+ ∂f

∂s

∂s

∂x

5. Suppose that x, y, z are functions of the independent variables
u, v, w. Which of the following terms appear in the Chain Rule ex-
pression for ∂f/∂w?

(a)
∂f

∂v

∂x

∂v
(b)

∂f

∂w

∂w

∂x
(c)

∂f

∂z

∂z

∂w

6. With notation as in the previous question, does ∂x/∂v appear in
the Chain Rule expression for ∂f/∂u?

Exercises
1. Let f (x, y, z) = x2y3 + z4 and x = s2, y = st2, and z = s2t .

(a) Calculate the primary derivatives
∂f

∂x
,
∂f

∂y
,
∂f

∂z
.

(b) Calculate
∂x

∂s
,
∂y

∂s
,
∂z

∂s
.

(c) Compute
∂f

∂s
using the Chain Rule:

∂f

∂s
= ∂f

∂x

∂x

∂s
+ ∂f

∂y

∂y

∂s
+ ∂f

∂z

∂z

∂s

Express the answer in terms of the independent variables s, t .

2. Let f (x, y) = x cos(y) and x = u2 + v2 and y = u − v.

(a) Calculate the primary derivatives
∂f

∂x
,
∂f

∂y
.

(b) Use the Chain Rule to calculate ∂f/∂v. Leave the answer in terms
of both the dependent and the independent variables.

(c) Determine (x, y) for (u, v) = (2, 1) and evaluate ∂f/∂v at (u, v) =
(2, 1).

In Exercises 3–10, use the Chain Rule to calculate the partial deriva-
tives. Express the answer in terms of the independent variables.

3.
∂f

∂s
,
∂f

∂r
; f (x, y, z) = xy + z2, x = s2, y = 2rs, z = r2

4.
∂f

∂r
,
∂f

∂t
; f (x, y, z) = xy + z2, x = r + s − 2t , y = 3rt , z = s2

5.
∂g

∂u
,
∂g

∂v
; g(x, y) = cos(x − y), x = 3u − 5v, y = −7u + 15v

6.
∂R

∂u
,
∂R

∂v
; R(x, y) = (3x + 4y)5, x = u2, y = uv



S E C T I O N 14.6 The Chain Rule 831

7.
∂F

∂y
; F(u, v) = eu+v , u = x2, v = xy

8.
∂f

∂u
; f (x, y) = x2 + y2, x = eu+v , y = u + v

9.
∂h

∂t2
; h(x, y) = x

y
, x = t1t2, y = t2

1 t2

10.
∂f

∂θ
; f (x, y, z) = xy − z2, x = r cos θ , y = cos2 θ , z = r

In Exercises 11–16, use the Chain Rule to evaluate the partial derivative
at the point specified.

11. ∂f/∂u and ∂f/∂v at (u, v) = (−1, −1), where f (x, y, z) = x3 +
yz2, x = u2 + v, y = u + v2, z = uv.

12. ∂f/∂s at (r, s) = (1, 0), where f (x, y) = ln(xy), x = 3r + 2s,

y = 5r + 3s.

13. ∂g/∂θ at (r, θ) = (
2
√

2, π
4

)
, where g(x, y) = 1/(x + y2),

x = r sin θ , y = r cos θ .

14. ∂g/∂s at s = 4, where g(x, y) = x2 − y2, x = s2 + 1, y = 1 −
2s.

15. ∂g/∂u at (u, v) = (0, 1), where g(x, y) = x2 − y2, x = eu cos v,
y = eu sin v.

16.
∂h

∂q
at (q, r) = (3, 2), where h(u, v) = uev , u = q3, v = qr2.

17. Jessica and Matthew are running toward the point P along the
straight paths that make a fixed angle of θ (Figure 3). Suppose that
Matthew runs with velocity va m/s and Jessica with velocity vb m/s.
Let f (x, y) be the distance from Matthew to Jessica when Matthew is
x meters from P and Jessica is y meters from P .

(a) Show that f (x, y) =
√

x2 + y2 − 2xy cos θ .

(b) Assume that θ = π/3. Use the Chain Rule to determine the rate
at which the distance between Matthew and Jessica is changing when
x = 30, y = 20, va = 4 m/s, and vb = 3 m/s.

A

B

x

va
vb

y

P

θ

FIGURE 3

18. The Law of Cosines states that c2 = a2 + b2 − 2ab cos θ , where
a, b, c are the sides of a triangle and θ is the angle opposite the side of
length c.

(a) Compute ∂θ/∂a, ∂θ/∂b, and ∂θ/∂c using implicit differentiation.

(b) Suppose that a = 10, b = 16, c = 22. Estimate the change in θ if
a and b are increased by 1 and c is increased by 2.

19. Let u = u(x, y), and let (r, θ) be polar coordinates. Verify the re-
lation

‖∇u‖2 = u2
r + 1

r2
u2
θ 8

Hint: Compute the right-hand side by expressing uθ and ur in terms of
ux and uy .

20. Let u(r, θ) = r2 cos2 θ . Use Eq. (8) to compute ‖∇u‖2. Then com-
pute ‖∇u‖2 directly by observing that u(x, y) = x2, and compare.

21. Let x = s + t and y = s − t . Show that for any differentiable func-
tion f (x, y), (

∂f

∂x

)2
−

(
∂f

∂y

)2
= ∂f

∂s

∂f

∂t

22. Express the derivatives

∂f

∂ρ
,
∂f

∂θ
,
∂f

∂φ
in terms of

∂f

∂x
,
∂f

∂y
,
∂f

∂z

where (ρ, θ, φ) are spherical coordinates.

23. Suppose that z is defined implicitly as a function of x and y by the
equation F(x, y, z) = xz2 + y2z + xy − 1 = 0.

(a) Calculate Fx, Fy, Fz.

(b) Use Eq. (7) to calculate
∂z

∂x
and

∂z

∂y
.

24. Calculate ∂z/∂x and ∂z/∂y at the points (3, 2, 1) and (3, 2, −1),
where z is defined implicitly by the equation z4 + z2x2 − y − 8 = 0.

In Exercises 25–30, calculate the partial derivative using implicit dif-
ferentiation.

25.
∂z

∂x
, x2y + y2z + xz2 = 10

26.
∂w

∂z
, x2w + w3 + wz2 + 3yz = 0

27.
∂z

∂y
, exy + sin(xz) + y = 0

28.
∂r

∂t
and

∂t

∂r
, r2 = te s/r

29.
∂w

∂y
,

1

w2 + x2
+ 1

w2 + y2
= 1 at (x, y, w) = (1, 1, 1)

30. ∂U/∂T and ∂T /∂U , (T U − V )2 ln(W − UV ) = 1 at

(T , U, V, W) = (1, 1, 2, 4)

31. Let r = 〈x, y, z〉 and er = r/‖r‖. Show that if a function
f (x, y, z) = F(r) depends only on the distance from the origin r =
‖r‖ =

√
x2 + y2 + z2, then

∇f = F ′(r)er 9

32. Let f (x, y, z) = e−x2−y2−z2 = e−r2
, with r as in Exercise 31.

Compute ∇f directly and using Eq. (9).
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33. Use Eq. (9) to compute ∇
(

1

r

)
.

34. Use Eq. (9) to compute ∇(ln r).

35. Figure 4 shows the graph of the equation

F(x, y, z) = x2 + y2 − z2 − 12x − 8z − 4 = 0

(a) Use the quadratic formula to solve for z as a function of x and y.
This gives two formulas, depending on the choice of sign.
(b) Which formula defines the portion of the surface satisfying
z ≥ −4? Which formula defines the portion satisfying z ≤ −4?
(c) Calculate ∂z/∂x using the formula z = f (x, y) (for both choices of
sign) and again via implicit differentiation. Verify that the two answers
agree.

z

z = −4

y

x

FIGURE 4 Graph of x2 + y2 − z2 − 12x − 8z − 4 = 0.

36. For all x > 0, there is a unique value y = r(x) that solves the
equation y3 + 4xy = 16.

(a) Show that dy/dx = −4y/(3y2 + 4x).

(b) Let g(x) = f (x, r(x)), where f (x, y) is a function satisfying

fx(1, 2) = 8, fy(1, 2) = 10

Use the Chain Rule to calculate g′(1). Note that r(1) = 2 because
(x, y) = (1, 2) satisfies y3 + 4xy = 16.

37. The pressure P , volume V , and temperature T of a van der Waals
gas with n molecules (n constant) are related by the equation(

P + an2

V 2

)
(V − nb) = nRT

where a, b, and R are constant. Calculate ∂P/∂T and ∂V/∂P .

38. When x, y, and z are related by an equation F(x, y, z) = 0, we
sometimes write (∂z/∂x)y in place of ∂z/∂x to indicate that in the dif-
ferentiation, z is treated as a function of x with y held constant (and
similarly for the other variables).

(a) Use Eq. (7) to prove the cyclic relation(
∂z

∂x

)
y

(
∂x

∂y

)
z

(
∂y

∂z

)
x

= −1 10

(b) Verify Eq. (10) for F(x, y, z) = x + y + z = 0.

(c) Verify the cyclic relation for the variables P, V, T in the ideal gas
law PV − nRT = 0 (n and R are constants).

39. Show that if f (x) is differentiable and c �= 0 is a constant, then
u(x, t) = f (x − ct) satisfies the so-called advection equation

∂u

∂t
+ c

∂u

∂x
= 0

Further Insights and Challenges
In Exercises 40–43, a function f (x, y, z) is called homogeneous of
degree n if f (λx, λy, λz) = λnf (x, y, z) for all λ ∈ R.

40. Show that the following functions are homogeneous and determine
their degree.

(a) f (x, y, z) = x2y + xyz (b) f (x, y, z) = 3x + 2y − 8z

(c) f (x, y, z) = ln

(
xy

z2

)
(d) f (x, y, z) = z4

41. Prove that if f (x, y, z) is homogeneous of degree n, then
fx(x, y, z) is homogeneous of degree n − 1. Hint: Either use the limit
definition or apply the Chain Rule to f (λx, λy, λz).

42. Prove that if f (x, y, z) is homogeneous of degree n, then

x
∂f

∂x
+ y

∂f

∂y
+ z

∂f

∂z
= nf 11

Hint: Let F(t) = f (tx, ty, tz) and calculate F ′(1) using the Chain
Rule.

43. Verify Eq. (11) for the functions in Exercise 40.

44. Suppose that x = g(t, s), y = h(t, s). Show that ftt is equal to

fxx

(
∂x

∂t

)2
+ 2fxy

(
∂x

∂t

)(
∂y

∂t

)
+ fyy

(
∂y

∂t

)2

+ fx
∂2x

∂t2
+ fy

∂2y

∂t2
12

45. Let r =
√

x2
1 + · · · + x2

n and let g(r) be a function of r . Prove the
formulas

∂g

∂xi
= xi

r
gr ,

∂2g

∂x2
i

= x2
i

r2
grr + r2 − x2

i

r3
gr

46. Prove that if g(r) is a function of r as in Exercise 45, then

∂2g

∂x2
1

+ · · · + ∂2g

∂x2
n

= grr + n − 1

r
gr
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In Exercises 47–51, the Laplace operator is defined by
�f = fxx + fyy . A function f (x, y) satisfying the Laplace equa-
tion �f = 0 is called harmonic. A function f (x, y) is called radial if
f (x, y) = g(r), where r =

√
x2 + y2.

47. Use Eq. (12) to prove that in polar coordinates (r, θ),

�f = frr + 1

r2
fθθ + 1

r
fr 13

48. Use Eq. (13) to show that f (x, y) = ln r is harmonic.

49. Verify that f (x, y) = x and f (x, y) = y are harmonic using both
the rectangular and polar expressions for �f .

50. Verify that f (x, y) = tan−1 y
x is harmonic using both the rectan-

gular and polar expressions for �f .

51. Use the Product Rule to show that

frr + 1

r
fr = r−1 ∂

∂r

(
r
∂f

∂r

)

Use this formula to show that if f is a radial harmonic function, then
rfr = C for some constant C. Conclude that f (x, y) = C ln r + b for
some constant b.

14.7 Optimization in Several Variables
Recall that optimization is the process of finding the extreme values of a function. This
amounts to finding the highest and lowest points on the graph over a given domain. As
we saw in the one-variable case, it is important to distinguish between local and global
extreme values. A local extreme value is a value f (a, b) that is a maximum or minimum
in some small open disk around (a, b) (Figure 1).

x

yDisk D (P, r)

z

Local and
global
minimum

Local
maximum

Local and
global
maximum

FIGURE 1 f (x, y) has a local maximum
at P .

DEFINITION Local Extreme Values A function f (x, y) has a local extremum at
P = (a, b) if there exists an open disk D(P, r) such that:

• Local maximum: f (x, y) ≤ f (a, b) for all (x, y) ∈ D(P, r)
• Local minimum: f (x, y) ≥ f (a, b) for all (x, y) ∈ D(P, r)

Fermat’s Theorem states that if f (a) is a local extreme value, then a is a critical
point and thus the tangent line (if it exists) is horizontal at x = a. We can expect a similar
result for functions of two variables, but in this case, it is the tangent plane that must be
horizontal (Figure 2). The tangent plane to z = f (x, y) at P = (a, b) has equation

REMINDER The term “extremum” (the
plural is “extrema”) means a minimum or
maximum value.

z = f (a, b) + fx(a, b)(x − a) + fy(a, b)(y − b)

Thus, the tangent plane is horizontal if fx(a, b) = fy(a, b) = 0—that is, if the equation
reduces to z = f (a, b). This leads to the following definition of a critical point, where we
take into account the possibility that one or both partial derivatives do not exist.

y

x

(A) (B)

x y

z
Local maximumLocal maximum

FIGURE 2 The tangent line or plane is
horizontal at a local extremum.
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DEFINITION Critical Point A point P = (a, b) in the domain of f (x, y) is called a
critical point if:

• fx(a, b) = 0 or fx(a, b) does not exist, and
• fy(a, b) = 0 or fy(a, b) does not exist.

As in the single-variable case, we have

• More generally, (a1, . . . , an) is a
critical point of f (x1, . . . , xn) if each
partial derivative satisfies

fxj
(a1, . . . , an) = 0

or does not exist.
• Theorem 1 holds in any number of

variables: Local extrema occur at
critical points.

THEOREM 1 Fermat’s Theorem If f (x, y) has a local minimum or maximum at
P = (a, b), then (a, b) is a critical point of f (x, y).

Proof If f (x, y) has a local minimum at P = (a, b), then f (x, y) ≥ f (a, b) for all (x, y)

near (a, b). In particular, there exists r > 0 such that f (x, b) ≥ f (a, b) if |x − a| < r .
In other words, g(x) = f (x, b) has a local minimum at x = a. By Fermat’s Theorem for
functions of one variable, either g′(a) = 0 or g′(a) does not exist. Since g′(a) = fx(a, b),
we conclude that either fx(a, b) = 0 or fx(a, b) does not exist. Similarly, fy(a, b) = 0
or fy(a, b) does not exist. Therefore, P = (a, b) is a critical point. The case of a local
maximum is similar.

Usually, we deal with functions whose partial derivatives exist. In this case, find-
ing the critical points amounts to solving the simultaneous equations fx(x, y) = 0 and
fy(x, y) = 0.

EXAMPLE 1 Show that f (x, y) = 11x2 − 2xy + 2y2 + 3y has one critical point.
Use Figure 3 to determine whether it corresponds to a local minimum or maximum.

x

z

y

FIGURE 3 Graph of
f (x, y) = 11x2 − 2xy + 2y2 + 3y.

Solution Set the partial derivatives equal to zero and solve:

fx(x, y) = 22x − 2y = 0

fy(x, y) = −2x + 4y + 3 = 0

By the first equation, y = 11x. Substituting y = 11x in the second equation gives

−2x + 4y + 3 = −2x + 4(11x) + 3 = 42x + 3 = 0

Thus x = − 1
14 and y = − 11

14 . There is just one critical point, P = ( − 1
14 , − 11

14

)
. Figure 3

shows that f (x, y) has a local minimum at P .

It is not always possible to find the solutions exactly, but we can use a computer to
find numerical approximations.

EXAMPLE 2 Numerical Example Use a computer algebra system to approx-
imate the critical points of

f (x, y) = x − y

2x2 + 8y2 + 3

Are they local minima or maxima? Refer to Figure 4.
x

z

y

FIGURE 4 Graph of

f (x, y) = x − y

2x2 + 8y2 + 3
.

Solution We use a CAS to compute the partial derivatives and solve

fx(x, y) = −2x2 + 8y2 + 4xy + 3

(2x2 + 8y2 + 3)2
= 0

fy(x, y) = −2x2 + 8y2 − 16xy − 3

(2x2 + 8y2 + 3)2
= 0
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To solve these equations, set the numerators equal to zero. Figure 4 suggests that f (x, y)

has a local max with x > 0 and a local min with x < 0. The following Mathematica
command searches for a solution near (1, 0):

FindRoot[{-2xˆ2+8yˆ2+4xy+3 == 0, -2xˆ2+8yˆ2-16xy-3 == 0},
{{x,1},{y,0}}]

The result is

{x -> 1.095, y -> -0.274}

Thus, (1.095, −0.274) is an approximate critical point where, by Figure 4, f takes on a
local maximum.Asecond search near (−1, 0)yields (−1.095, 0.274), which approximates
the critical point where f (x, y) takes on a local minimum.

We know that in one variable, a function f (x) may have a point of inflection rather
than a local extremum at a critical point.Asimilar phenomenon occurs in several variables.
Each of the functions in Figure 5 has a critical point at (0, 0). However, the function in
Figure 5(C) has a saddle point, which is neither a local minimum nor a local maximum.
If you stand at the saddle point and begin walking, some directions take you uphill and
other directions take you downhill.

(A) Local maximum (B) Local minimum (C) Saddle

x

y

z

x

y

z

x

y

z

FIGURE 5

As in the one-variable case, there is a Second Derivative Test for determining the type
of a critical point (a, b) of a function f (x, y) in two variables. This test relies on the sign
of the discriminant D = D(a, b), defined as follows:The discriminant is also referred to as the

“Hessian determinant.”

D = D(a, b) = fxx(a, b)fyy(a, b) − f 2
xy(a, b)

THEOREM 2 Second Derivative Test Let P = (a, b) be a critical point of f (x, y).
Assume that fxx, fyy, fxy are continuous near P . Then:

(i) If D > 0 and fxx(a, b) > 0, then f (a, b) is a local minimum.

(ii) If D > 0 and fxx(a, b) < 0, then f (a, b) is a local maximum.

(iii) If D < 0, then f has a saddle point at (a, b).

(iv) If D = 0, the test is inconclusive.

A proof of this theorem is discussed at the end of this section.

If D > 0, then fxx(a, b) and fyy(a, b)

must have the same sign, so the sign of
fyy(a, b) also determines whether f (a, b)

is a local minimum or a local maximum.
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EXAMPLE 3 Applying the Second Derivative Test Find the critical points of

f (x, y) = (x2 + y2)e−x

and analyze them using the Second Derivative Test.

Solution

Step 1. Find the critical points.
Set the partial derivatives equal to zero and solve:

fx(x, y) = −(x2 + y2)e−x + 2xe−x = (2x − x2 − y2)e−x = 0

fy(x, y) = 2ye−x = 0 ⇒ y = 0

Substituting y = 0 in the first equation then gives

(2x − x2 − y2)e−x = (2x − x2)e−x = 0 ⇒ x = 0, 2

The critical points are (0, 0) and (2, 0) [Figure 6].

x
y

Local
minimum

z

Saddle
point

FIGURE 6 Graph of
f (x, y) = (x2 + y2)e−x .

Step 2. Compute the second-order partials.

fxx(x, y) = ∂

∂x

(
(2x − x2 − y2)e−x

) = (2 − 4x + x2 + y2)e−x

fyy(x, y) = ∂

∂y
(2ye−x) = 2e−x

fxy(x, y) = fyx(x, y) = ∂

∂x
(2ye−x) = −2ye−x

Step 3. Apply the Second Derivative Test.

Critical Discriminant
Point fxx fyy fxy D = fxxfyy − f 2

xy Type

(0, 0) 2 2 0 2(2) − 02 = 4 Local minimum since
D > 0 and fxx > 0

(2, 0) −2e−2 2e−2 0 −2e−2(2e−2) − 02 = −4e−4 Saddle since
D < 0

GRAPHICAL INSIGHT We can also read off the type of critical point from the contour
map. Notice that the level curves in Figure 7 encircle the local minimum at P , with
f increasing in all directions emanating from P . By contrast, f has a saddle point at
Q: The neighborhood near Q is divided into four regions in which f (x, y) alternately
increases and decreases.

Saddle point

Local minimum

x

z

y

Saddle point

xy

Local minimum

P

Q

inc

inc

inc

inc

inc

dec

dec

inc

FIGURE 7 f (x, y) = x3 + y3 − 12xy.
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EXAMPLE 4 Analyze the critical points of f (x, y) = x3 + y3 − 12xy.

Solution Again, we set the partial derivatives equal to zero and solve:

fx(x, y) = 3x2 − 12y = 0 ⇒ y = 1

4
x2

fy(x, y) = 3y2 − 12x = 0

Substituting y = 1
4x2 in the second equation yields

3y2 − 12x = 3

(
1

4
x2

)2

− 12x = 3

16
x(x3 − 64) = 0 ⇒ x = 0, 4

Since y = 1
4x2, the critical points are (0, 0) and (4, 4).

We have

fxx(x, y) = 6x, fyy(x, y) = 6y, fxy(x, y) = −12

The Second Derivative Test confirms what we see in Figure 7: f has a local min at (4, 4)

and a saddle at (0, 0).

Critical Discriminant
Point fxx fyy fxy D = fxxfyy − f 2

xy Type

(0, 0) 0 0 −12 0(0) − 122 = −144 Saddle since
D < 0

(4, 4) 24 24 −12 24(24) − 122 = 432 Local minimum since
D > 0 and fxx > 0

x

z

z = h (x, y)

y

FIGURE 8 Graph of a “monkey saddle” with
equation h(x, y) = 3xy2 − x3.

GRAPHICAL INSIGHT A graph can take on a variety of different shapes at a saddle point.
The graph of h(x, y) in Figure 8 is called a “monkey saddle” (because a monkey can
sit on this saddle with room for his tail in the back).

Global Extrema
Often we are interested in finding the minimum or maximum value of a function f on a
given domain D. These are called global or absolute extreme values. However, global
extrema do not always exist. The function f (x, y) = x + y has a maximum value on the
unit square D1 in Figure 9 (the max is f (1, 1) = 2), but it has no maximum value on the
entire plane R2.

z

x

y

Maximum of f (x, y) = x + y
on D1 occurs at (1, 1)

f (x, y) = x + y

(1, 1)

D1

x

y

1

1

1
1D1

FIGURE 9

To state conditions that guarantee the existence of global extrema, we need a few
definitions. First, we say that a domain D is bounded if there is a number M > 0 such
that D is contained in a disk of radius M centered at the origin. In other words, no point
of D is more than a distance M from the origin [Figures 11(A) and 11(B)]. Next, a point
P is called:

• An interior point of D if D contains some open disk D(P, r) centered at P .
• A boundary point of D if every disk centered at P contains points in D and points

not in D.

Interior point

Boundary point

ba x

ba

FIGURE 10 Interior and boundary points of
an interval [a, b].

CONCEPTUAL INSIGHT To understand the concept of interior and boundary points, think
of the familiar case of an interval I = [a, b] in the real line R (Figure 10). Every point
x in the open interval (a, b) is an interior point of I (because there exists a small open
interval around x entirely contained in I ). The two endpoints a and b are boundary
points (because every open interval containing a or b also contains points not in I ).
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The interior of D is the set of all interior points, and the boundary of D is the set of
all boundary points. In Figure 11(C), the boundary is the curve surrounding the domain.
The interior consists of all points in the domain not lying on the boundary curve.

A domain D is called closed if D contains all its boundary points (like a closed
interval in R). A domain D is called open if every point of D is an interior point (like an
open interval in R). The domain in Figure 11(A) is closed because the domain includes
its boundary curve. In Figure 11(C), some boundary points are included and some are
excluded, so the domain is neither open nor closed.

(A) This domain is bounded
      and closed (contains all
      boundary points).

(B) An unbounded domain
      (contains points arbitrarily
      far from the origin).

A nonclosed domain
(contains some but not
all boundary points).

(C)

y

xx

y

x

y

Interior point
Boundary
point

Boundary point
not in D

FIGURE 11 Domains in R2.

In Section 4.2, we stated two basic results. First, a continuous function f (x) on a
closed, bounded interval [a, b] takes on both a minimum and a maximum value on [a, b].
Second, these extreme values occur either at critical points in the interior (a, b) or at the
endpoints. Analogous results are valid in several variables.

THEOREM 3 Existence and Location of Global Extrema Let f (x, y) be a continuous
function on a closed, bounded domain D in R2. Then:

(i) f (x, y) takes on both a minimum and a maximum value on D.

(ii) The extreme values occur either at critical points in the interior of D or at points
on the boundary of D.

EXAMPLE 5 Find the maximum value of f (x, y) = 2x + y − 3xy on the unit square
D = {(x, y) : 0 ≤ x, y ≤ 1}.

(1, 0, 0)

f (x, y) = 2x + y − 3xy

z

x

y

Edge x = 1

Edge y = 1

Edge y = 0

y

P D

(1, 0)

(0, 1)

Edge x = 0

(1, 1, 0)

x

(1, 1)

FIGURE 12

Solution By Theorem 3, the maximum occurs either at a critical point or on the boundary
of the square (Figure 12).

Step 1. Examine the critical points.
Set the partial derivatives equal to zero and solve:

fx(x, y) = 2 − 3y = 0 ⇒ y = 2

3
, fy(x, y) = 1 − 3x = 0 ⇒ x = 1

3

There is a unique critical point P = ( 1
3 , 2

3

)
and

f (P ) = f

(
1

3
,

2

3

)
= 2

(
1

3

)
+

(
2

3

)
− 3

(
1

3

)(
2

3

)
= 2

3

Step 2. Check the boundary.
We do this by checking each of the four edges of the square separately. The bottom
edge is described by y = 0, 0 ≤ x ≤ 1. On this edge, f (x, 0) = 2x, and the maximum
value occurs at x = 1, where f (1, 0) = 2. Proceeding in a similar fashion with the
other edges, we obtain
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Edge
Restriction of
f (x, y) to Edge

Maximum of
f (x, y) on Edge

Lower: y = 0, 0 ≤ x ≤ 1 f (x, 0) = 2x f (1, 0) = 2
Upper: y = 1, 0 ≤ x ≤ 1 f (x, 1) = 1 − x f (0, 1) = 1
Left: x = 0, 0 ≤ y ≤ 1 f (0, y) = y f (0, 1) = 1
Right: x = 1, 0 ≤ y ≤ 1 f (1, y) = 2 − 2y f (1, 0) = 2

Step 3. Compare.
The maximum of f on the boundary is f (1, 0) = 2. This is larger than the value
f (P ) = 2

3 at the critical point, so the maximum of f on the unit square is 2.

EXAMPLE 6 Box of Maximum Volume Find the maximum volume of a box inscribed
in the tetrahedron bounded by the coordinate planes and the plane 1

3x + y + z = 1.

Solution

Step 1. Find a function to be maximized.
Let P = (x, y, z) be the corner of the box lying on the front face of the tetrahedron
(Figure 13). Then the box has sides of lengths x, y, z and volume V = xyz. Using

A = (3, 0, 0)

C = (0, 0, 1)

z

x

y
x

z
y

P = (x, y, z)

zz B = (0, 1, 0)

D

FIGURE 13 The shaded triangle is the
domain of V (x, y).

1
3x + y + z = 1, or z = 1 − 1

3x − y, we express V in terms of x and y:

V (x, y) = xyz = xy

(
1 − 1

3
x − y

)
= xy − 1

3
x2y − xy2

Our problem is to maximize V , but which domain D should we choose? We let D be the
shaded triangle �OAB in the xy-plane in Figure 13. Then the corner point P = (x, y, z)

of each possible box lies above a point (x, y) in D. Because D is closed and bounded,
the maximum occurs at a critical point inside D or on the boundary of D.

Step 2. Examine the critical points.
First, set the partial derivatives equal to zero and solve:

∂V

∂x
= y − 2

3
xy − y2 = y

(
1 − 2

3
x − y

)
= 0

∂V

∂y
= x − 1

3
x2 − 2xy = x

(
1 − 1

3
x − 2y

)
= 0

If x = 0 or y = 0, then (x, y) lies on the boundary of D, so assume that x and y are
both nonzero. Then the first equation gives us

1 − 2

3
x − y = 0 ⇒ y = 1 − 2

3
x

The second equation yields

1 − 1

3
x − 2y = 1 − 1

3
x − 2

(
1 − 2

3
x

)
= 0 ⇒ x − 1 = 0 ⇒ x = 1

For x = 1, we have y = 1 − 2
3x = 1

3 . Therefore,
(
1, 1

3

)
is a critical point, and

V

(
1,

1

3

)
= (1)

1

3
− 1

3
(1)2 1

3
− (1)

(
1

3

)2

= 1

9

Step 3. Check the boundary.
We have V (x, y) = 0 for all points on the boundary of D (because the three edges
of the boundary are defined by x = 0, y = 0, and 1 − 1

3x − y = 0). Clearly, then, the
maximum occurs at the critical point, and the maximum volume is 1

9 .
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Proof of the Second Derivative Test The proof is based on “completing the square” for
quadratic forms. A quadratic form is a function

Q(h, k) = ah2 + 2bhk + ck2

where a, b, c are constants (not all zero). The discriminant of Q is the quantity

D = ac − b2

Some quadratic forms take on only positive values for (h, k) �= (0, 0), and others
take on both positive and negative values. According to the next theorem, the sign of the
discriminant determines which of these two possibilities occurs.To illustrate Theorem 4, consider

Q(h, k) = h2 + 2hk + 2k2

It has a positive discriminant

D = (1)(2) − 1 = 1

We can see directly that Q(h, k) takes on
only positive values for (h, k) �= (0, 0) by
writing Q(h, k) as

Q(h, k) = (h + k)2 + k2

THEOREM 4 With Q(h, k) and D as above:

(i) If D > 0 and a > 0, then Q(h, k) > 0 for (h, k) �= (0, 0).

(ii) If D > 0 and a < 0, then Q(h, k) < 0 for (h, k) �= (0, 0).

(iii) If D < 0, then Q(h, k) takes on both positive and negative values.

Proof Assume first that a �= 0 and rewrite Q(h, k) by “completing the square”:

Q(h, k) = ah2 + 2bhk + ck2 = a

(
h + b

a
k

)2

+
(

c − b2

a

)
k2

= a

(
h + b

a
k

)2

+ D

a
k2 1

If D > 0 and a > 0, then D/a > 0 and both terms in Eq. (1) are nonnegative. Furthermore,
if Q(h, k) = 0, then each term in Eq. (1) must equal zero. Thus k = 0 and h + b

a
k = 0,

and then, necessarily, h = 0. This shows that Q(h, k) > 0 if (h, k) �= 0, and (i) is proved.
Part (ii) follows similarly. To prove (iii), note that if a �= 0 and D < 0, then the coefficients
of the squared terms in Eq. (1) have opposite signs and Q(h, k) takes on both positive and
negative values. Finally, if a = 0 and D < 0, then Q(h, k) = 2bhk + ck2 with b �= 0. In
this case, Q(h, k) again takes on both positive and negative values.

Now assume that f (x, y) has a critical point at P = (a, b). We shall analyze f by
considering the restriction of f (x, y) to the line (Figure 14) through P = (a, b) in the
direction of a unit vector 〈h, k〉:

〈h, k〉
(a + th, a + tk)

(a, b) r

x

y

P

FIGURE 14 Line through P in the direction
of 〈h, k〉.

F(t) = f (a + th, b + tk)

Then F(0) = f (a, b). By the Chain Rule,

F ′(t) = fx(a + th, b + tk)h + fy(a + th, b + tk)k

Because P is a critical point, we have fx(a, b) = fy(a, b) = 0, and therefore,

F ′(0) = fx(a, b)h + fy(a, b)k = 0

Thus t = 0 is a critical point of F(t).
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Now apply the Chain Rule again:

F ′′(t) = d

dt

(
fx(a + th, b + tk)h + fy(a + th, b + tk)k

)
=

(
fxx(a + th, b + tk)h2 + fxy(a + th, b + tk)hk

)
+

(
fyx(a + th, b + tk)kh + fyy(a + th, b + tk)k2

)
= fxx(a + th, b + tk)h2 + 2fxy(a + th, b + tk)hk + fyy(a + th, b + tk)k2

2

We see that F ′′(t) is the value at (h, k) of a quadratic form whose discriminant is equal to
D(a + th, b + tk). Here, we set

D(r, s) = fxx(r, s)fyy(r, s) − fxy(r, s)
2

Note that the discriminant of f (x, y) at the critical point P = (a, b) is D = D(a, b).

Case 1: D(a, b) > 0 and fxx(a, b) > 0. We must prove that f (a, b) is a local minimum.
Consider a small disk of radius r around P (Figure 14). Because the second derivatives
are continuous near P , we can choose r > 0 so that for every unit vector 〈h, k〉,

D(a + th, b + tk) > 0 for |t | < r

fxx(a + th, b + tk) > 0 for |t | < r

Then F ′′(t) is positive for |t | < r by Theorem 4(i). This tells us that F(t) is concave
up, and hence F(0) < F(t) if 0 < |t | < |r| (see Exercise 64 in Section 4.4). Because
F(0) = f (a, b), we may conclude that f (a, b) is the minimum value of f along each
segment of radius r through (a, b). Therefore, f (a, b) is a local minimum value of f as
claimed. The case that D(a, b) > 0 and fxx(a, b) < 0 is similar.

Case 2: D(a, b) < 0. For t = 0, Eq. (2) yields

F ′′(0) = fxx(a, b)h2 + 2fxy(a, b)hk + fyy(a, b)k2

Since D(a, b) < 0, this quadratic form takes on both positive and negative values by
Theorem 4(iii). Choose 〈h, k〉 for which F ′′(0) > 0. By the Second Derivative Test in
one variable, F(0) is a local minimum of F(t), and hence, there is a value r > 0 such
that F(0) < F(t) for all 0 < |t | < r . But we can also choose 〈h, k〉 so that F ′′(0) < 0,
in which case F(0) > F(t) for 0 < |t | < r for some r > 0. Because F(0) = f (a, b), we
conclude that f (a, b) is a local min in some directions and a local max in other directions.
Therefore, f has a saddle point at P = (a, b).

14.7 SUMMARY

• We say that P = (a, b) is a critical point of f (x, y) if

– fx(a, b) = 0 or fx(a, b) does not exist, and
– fy(a, b) = 0 or fy(a, b) does not exist.

In n-variables, P = (a1, . . . , an) is a critical point of f (x1, . . . , xn) if each partial deriva-
tive fxj

(a1, . . . , an) either is zero or does not exist.
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• The local minimum or maximum values of f occur at critical points.
• The discriminant of f (x, y) at P = (a, b) is the quantity

D(a, b) = fxx(a, b)fyy(a, b) − f 2
xy(a, b)

• Second Derivative Test: If P = (a, b) is a critical point of f (x, y), then

D(a, b) > 0, fxx(a, b) > 0 ⇒ f (a, b) is a local minimum

D(a, b) > 0, fxx(a, b) < 0 ⇒ f (a, b) is a local maximum

D(a, b) < 0 ⇒ saddle point

D(a, b) = 0 ⇒ test inconclusive

• A point P is an interior point of a domain D if D contains some open disk D(P, r)

centered at P . A point P is a boundary point of D if every open disk D(P, r) contains
points in D and points not in D. The interior of D is the set of all interior points, and
the boundary is the set of all boundary points. A domain is closed if it contains all of its
boundary points and open if it is equal to its interior.
• Existence and location of global extrema: If f is continuous and D is closed and
bounded, then

– f takes on both a minimum and a maximum value on D.

– The extreme values occur either at critical points in the interior of D or at points on
the boundary of D.

To determine the extreme values, first find the critical points in the interior of D. Then
compare the values of f at the critical points with the minimum and maximum values of
f on the boundary.

14.7 EXERCISES

Preliminary Questions
1. The functions f (x, y) = x2 + y2 and g(x, y) = x2 − y2 both

have a critical point at (0, 0). How is the behavior of the two func-
tions at the critical point different?

2. Identify the points indicated in the contour maps as local minima,
local maxima, saddle points, or neither (Figure 15).

0

1

1

1

2

3

6

10
−1 −1 0

−1

−2

−3
−3

−6

−10

−3

3

3

000

FIGURE 15

3. Let f (x, y) be a continuous function on a domain D in R2. Deter-
mine which of the following statements are true:

(a) If D is closed and bounded, then f takes on a maximum value
on D.

(b) If D is neither closed nor bounded, then f does not take on a
maximum value of D.

(c) f (x, y) need not have a maximum value on the domain D defined
by 0 ≤ x ≤ 1, 0 ≤ y ≤ 1.

(d) A continuous function takes on neither a minimum nor a maximum
value on the open quadrant

{(x, y) : x > 0, y > 0}
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Exercises
1. Let P = (a, b) be a critical point of f (x, y) = x2 + y4 − 4xy.

(a) First use fx(x, y) = 0 to show that a = 2b. Then use fy(x, y) = 0
to show that P = (0, 0), (2

√
2,

√
2), or (−2

√
2, −√

2).

(b) Referring to Figure 16, determine the local minima and saddle
points of f (x, y) and find the absolute minimum value of f (x, y).

x

z

x

y

FIGURE 16

2. Find the critical points of the functions

f (x, y) = x2 + 2y2 − 4y + 6x, g(x, y) = x2 − 12xy + y

Use the Second Derivative Test to determine the local minimum, lo-
cal maximum, and saddle points. Match f (x, y) and g(x, y) with their
graphs in Figure 17.

z

x

z

y
y

x

(A) (B)

FIGURE 17

3. Find the critical points of

f (x, y) = 8y4 + x2 + xy − 3y2 − y3

Use the contour map in Figure 18 to determine their nature (local min-
imum, local maximum, or saddle point).

0.1 0

−0.3
−0.2
−0.1

0.2
0.3

10

1

0

−1

−1

y

x

−0.1

−0.2

FIGURE 18 Contour map of f (x, y) = 8y4 + x2 + xy − 3y2 − y3.

4. Use the contour map in Figure 19 to determine whether the critical
points A, B, C, D are local minima, local maxima, or saddle points.

11 0

0

2
3

−1

−1

−2
−3

2

0

−2

0 2−2

A

CD

B

y

x

FIGURE 19

5. Let f (x, y) = y2x − yx2 + xy.

(a) Show that the critical points (x, y) satisfy the equations

y(y − 2x + 1) = 0, x(2y − x + 1) = 0

(b) Show that f has three critical points.

(c) Use the second derivative to determine the nature of the critical
points.

6. Show that f (x, y) =
√

x2 + y2 has one critical point P and that
f is nondifferentiable at P . Does f take on a minimum, maximum, or
saddle point at P ?

In Exercises 7–23, find the critical points of the function. Then use the
Second Derivative Test to determine whether they are local minima,
local maxima, or saddle points (or state that the test fails).

7. f (x, y) = x2 + y2 − xy + x 8. f (x, y) = x3 − xy + y3

9. f (x, y) = x3 + 2xy − 2y2 − 10x

10. f (x, y) = x3y + 12x2 − 8y

11. f (x, y) = 4x − 3x3 − 2xy2

12. f (x, y) = x3 + y4 − 6x − 2y2
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13. f (x, y) = x4 + y4 − 4xy 14. f (x, y) = ex2−y2+4y

15. f (x, y) = xye−x2−y2
16. f (x, y) = ex − xey

17. f (x, y) = sin(x + y) − cos x 18. f (x, y) = x ln(x + y)

19. f (x, y) = ln x + 2 ln y − x − 4y

20. f (x, y) = (x + y) ln(x2 + y2)

21. f (x, y) = x − y2 − ln(x + y) 22. f (x, y) = (x − y)ex2−y2

23. f (x, y) = (x + 3y)ey−x2

24. Show that f (x, y) = x2 has infinitely many critical points (as a
function of two variables) and that the Second Derivative Test fails for
all of them. What is the minimum value of f ? Does f (x, y) have any
local maxima?

25. Prove that the function f (x, y) = 1
3x3 + 2

3y3/2 − xy satisfies
f (x, y) ≥ 0 for x ≥ 0 and y ≥ 0.

(a) First, verify that the set of critical points of f is the parabola y = x2

and that the Second Derivative Test fails for these points.
(b) Show that for fixed b, the function g(x) = f (x, b) is concave up
for x > 0 with a critical point at x = b1/2.
(c) Conclude that f (a, b) ≥ f (b1/2, b) = 0 for all a, b ≥ 0.

26. Let f (x, y) = (x2 + y2)e−x2−y2
.

(a) Where does f take on its minimum value? Do not use calculus to
answer this question.
(b) Verify that the set of critical points of f consists of the origin (0, 0)

and the unit circle x2 + y2 = 1.
(c) The Second Derivative Test fails for points on the unit circle (this
can be checked by some lengthy algebra). Prove, however, that f takes
on its maximum value on the unit circle by analyzing the function
g(t) = te−t for t > 0.

27. Use a computer algebra system to find a numerical ap-
proximation to the critical point of

f (x, y) = (1 − x + x2)ey2 + (1 − y + y2)ex2

Apply the Second Derivative Test to confirm that it corresponds to a
local minimum as in Figure 20.

x

y

z

FIGURE 20 Plot of f (x, y) = (1 − x + x2)ey2 + (1 − y + y2)ex2
.

28. Which of the following domains are closed and which are bounded?

(a) {(x, y) ∈ R2 : x2 + y2 ≤ 1}
(b) {(x, y) ∈ R2 : x2 + y2 < 1}
(c) {(x, y) ∈ R2 : x ≥ 0}
(d) {(x, y) ∈ R2 : x > 0, y > 0}
(e) {(x, y) ∈ R2 : 1 ≤ x ≤ 4, 5 ≤ y ≤ 10}
(f) {(x, y) ∈ R2 : x > 0, x2 + y2 ≤ 10}

In Exercises 29–32, determine the global extreme values of the
function on the given set without using calculus.

29. f (x, y) = x + y, 0 ≤ x ≤ 1, 0 ≤ y ≤ 1

30. f (x, y) = 2x − y, 0 ≤ x ≤ 1, 0 ≤ y ≤ 3

31. f (x, y) = (x2 + y2 + 1)−1, 0 ≤ x ≤ 3, 0 ≤ y ≤ 5

32. f (x, y) = e−x2−y2
, x2 + y2 ≤ 1

33. Assumptions Matter Show that f (x, y) = xy does not have a
global minimum or a global maximum on the domain

D = {(x, y) : 0 < x < 1, 0 < y < 1}
Explain why this does not contradict Theorem 3.

34. Find a continuous function that does not have a global maximum
on the domain D = {(x, y) : x + y ≥ 0, x + y ≤ 1}. Explain why this
does not contradict Theorem 3.

35. Find the maximum of

f (x, y) = x + y − x2 − y2 − xy

on the square, 0 ≤ x ≤ 2, 0 ≤ y ≤ 2 (Figure 21).

(a) First, locate the critical point of f in the square, and evaluate f at
this point.

(b) On the bottom edge of the square, y = 0 and f (x, 0) = x − x2.
Find the extreme values of f on the bottom edge.

(c) Find the extreme values of f on the remaining edges.

(d) Find the largest among the values computed in (a), (b), and (c).

f (x, 2) = −2 − x − x2

Edge y = 2

Edge x = 2
f (2, y) = −2 − y − y2

Edge x = 0
f (0, y) = y − y2

Edge y = 0
f (x, 0) = x − x2

x
2

y

2

FIGURE 21 The function f (x, y) = x + y − x2 − y2 − xy on the
boundary segments of the square 0 ≤ x ≤ 2, 0 ≤ y ≤ 2.
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36. Find the maximum of f (x, y) = y2 + xy − x2 on the square
0 ≤ x ≤ 2, 0 ≤ y ≤ 2.

In Exercises 37–43, determine the global extreme values of the
function on the given domain.

37. f (x, y) = x3 − 2y, 0 ≤ x ≤ 1, 0 ≤ y ≤ 1

38. f (x, y) = 5x − 3y, y ≥ x − 2, y ≥ −x − 2, y ≤ 3

39. f (x, y) = x2 + 2y2, 0 ≤ x ≤ 1, 0 ≤ y ≤ 1

40. f (x, y) = x3 + x2y + 2y2, x, y ≥ 0, x + y ≤ 1

41. f (x, y) = x3 + y3 − 3xy, 0 ≤ x ≤ 1, 0 ≤ y ≤ 1

42. f (x, y) = x2 + y2 − 2x − 4y, x ≥ 0, 0 ≤ y ≤ 3, y ≥ x

43. f (x, y) = (4y2 − x2)e−x2−y2
, x2 + y2 ≤ 2

44. Find the maximum volume of a box inscribed in the tetrahedron
bounded by the coordinate planes and the plane

x + 1

2
y + 1

3
z = 1

45. Find the maximum volume of the largest box of the type shown
in Figure 22, with one corner at the origin and the opposite corner at a
point P = (x, y, z) on the paraboloid

z = 1 − x2

4
− y2

9
with x, y, z ≥ 0

x

y

1

P

z

FIGURE 22

46. Find the point on the plane

z = x + y + 1

closest to the point P = (1, 0, 0). Hint: Minimize the square of the
distance.

47. Show that the sum of the squares of the distances from a point
P = (c, d) to n fixed points (a1, b1), . . . ,(an, bn) is minimized when c

is the average of thex-coordinatesai andd is the average of they-coord-
inates bi .

48. Show that the rectangular box (including the top and bottom) with
fixed volume V = 27 m3 and smallest possible surface area is a cube
(Figure 23).

z

y
x

FIGURE 23 Rectangular box with sides x, y, z.

49. Consider a rectangular box B that has a bottom and sides
but no top and has minimal surface area among all boxes with fixed
volume V .

(a) Do you think B is a cube as in the solution to Exercise 48? If not,
how would its shape differ from a cube?
(b) Find the dimensions of B and compare with your response to (a).

50. Given n data points (x1, y1), . . . , (xn, yn), the linear least-
squares fit is the linear function

f (x) = mx + b

that minimizes the sum of the squares (Figure 24):

E(m, b) =
n∑

j=1

(yj − f (xj ))2

Show that the minimum value of E occurs for m and b satisfying the
two equations

m

⎛
⎝ n∑

j=1

xj

⎞
⎠ + bn =

n∑
j=1

yj

m

n∑
j=1

x2
j + b

n∑
j=1

xj =
n∑

j=1

xj yj

x

(x1, y1)
(x2, y2)

(xn, yn)

(xj, yj)

y = mx + b

y

FIGURE 24 The linear least-squares fit minimizes the sum of the
squares of the vertical distances from the data points to the line.

51. The power (in microwatts) of a laser is measured as a function of
current (in milliamps). Find the linear least-squares fit (Exercise 50)
for the data points.

Current (mA) 1.0 1.1 1.2 1.3 1.4 1.5

Laser power (μW) 0.52 0.56 0.82 0.78 1.23 1.50
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52. Let A = (a, b) be a fixed point in the plane, and let fA(P ) be the
distance from A to the point P = (x, y). For P �= A, let eAP be the
unit vector pointing from A to P (Figure 25):

eAP =
−→
AP

‖−→AP ‖
Show that

∇fA(P ) = eAP

Note that we can derive this result without calculation: Because
∇fA(P ) points in the direction of maximal increase, it must point di-
rectly away from A at P , and because the distance fA(x, y) increases
at a rate of one as you move away from A along the line through A and
P , ∇fA(P ) must be a unit vector.

x

y

A = (a, b)

eAP

P = (x, y)
Distance  fA(x, y)

FIGURE 25 The distance from A to P increases most rapidly in the
direction eAP .

Further Insights and Challenges
53. In this exercise, we prove that for all x, y ≥ 0:

1

α
xα + 1

β
xβ ≥ xy

where α ≥ 1 and β ≥ 1 are numbers such that α−1 + β−1 = 1. To do
this, we prove that the function

f (x, y) = α−1xα + β−1yβ − xy

satisfies f (x, y) ≥ 0 for all x, y ≥ 0.

(a) Show that the set of critical points of f (x, y) is the curve y = xα−1

(Figure 26). Note that this curve can also be described as x = yβ−1.
What is the value of f (x, y) at points on this curve?
(b) Verify that the Second Derivative Test fails. Show, however, that for
fixed b > 0, the function g(x) = f (x, b) is concave up with a critical
point at x = bβ−1.
(c) Conclude that for all x > 0, f (x, b) ≥ f (bβ−1, b) = 0.

inc incb

x

y
y = xa − 1

(bb − 1, b )

Critical points of f (x, y)

FIGURE 26 The critical points of f (x, y) = α−1xα + β−1yβ − xy

form a curve y = xα−1.

54. The following problem was posed by Pierre de Fermat:
Given three points A = (a1, a2), B = (b1, b2), and C = (c1, c2) in

the plane, find the point P = (x, y) that minimizes the sum of the dis-
tances

f (x, y) = AP + BP + CP

Let e, f , g be the unit vectors pointing from P to the points A, B, C as
in Figure 27.

(a) Use Exercise 52 to show that the condition ∇f (P ) = 0 is equiva-
lent to

e + f + g = 0 3

(b) Show that f (x, y) is differentiable except at points A, B, C. Con-
clude that the minimum of f (x, y) occurs either at a point P satisfying
Eq. (3) or at one of the points A, B, or C.

(c) Prove that Eq. (3) holds if and only if P is the Fermat point, de-
fined as the point P for which the angles between the segments AP ,
BP , CP are all 120◦ (Figure 27).

(d) Show that the Fermat point does not exist if one of the angles in
�ABC is > 120◦. Where does the minimum occur in this case?

P

A

g

e f

C

B

A
C

B

140°

(A) P is the Fermat point
      (the angles between e,
      f, and g are all 120°).

(B) Fermat point does not exist.

FIGURE 27
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14.8 Lagrange Multipliers: Optimizing with a Constraint
Some optimization problems involve finding the extreme values of a function f (x, y)

1 2 3

1

2

P

Constraint
g(x, y) = 2x + 3y − 6 = 0

Point on the line
closest to the origin

y

x

FIGURE 1 Finding the minimum of

f (x, y) =
√

x2 + y2

on the line 2x + 3y = 6.

subject to a constraint g(x, y) = 0. Suppose that we want to find the point on the line
2x + 3y = 6 closest to the origin (Figure 1). The distance from (x, y) to the origin is
f (x, y) = √

x2 + y2, so our problem is

Minimize f (x, y) =
√

x2 + y2 subject to g(x, y) = 2x + 3y − 6 = 0

We are not seeking the minimum value of f (x, y) (which is 0), but rather the minimum
among all points (x, y) that lie on the line.

The method of Lagrange multipliers is a general procedure for solving optimization
problems with a constraint. Here is a description of the main idea.

GRAPHICAL INSIGHT Imagine standing at point Q in Figure 2(A). We want to increase
the value of f while remaining on the constraint curve. The gradient vector ∇fQ points
in the direction of maximum increase, but we cannot move in the gradient direction
because that would take us off the constraint curve. However, the gradient points to
the right, and so we can still increase f somewhat by moving to the right along the
constraint curve.

We keep moving to the right until we arrive at the point P , where ∇fP is orthogonal
to the constraint curve [Figure 2(B)]. Once at P , we cannot increase f further by moving
either to the right or to the left along the constraint curve. Thus f (P ) is a local maximum
subject to the constraint.

Now, the vector ∇gP is also orthogonal to the constraint curve, so ∇fP and ∇gP

must point in the same or opposite directions. In other words, ∇fP = λ∇gP for some
scalar λ (called a Lagrange multiplier). Graphically, this means that a local max subject
to the constraint occurs at points P where the level curves of f and g are tangent.

4
3
2
1

x

P
Q

y

4

Level curves of f(x, y)

Constraint curve g(x, y) = 0

3
2
1

∇fQ

x

y Tangent line at P

∇fP

∇gP

f increases as we move to the
right along the constraint curve.

(A) The local maximum of f on the constraint
curve occurs where ∇fP and ∇gP are parallel.   

(B)

P

FIGURE 2

THEOREM 1 Lagrange Multipliers Assume that f (x, y) and g(x, y) are differen-
tiable functions. If f (x, y) has a local minimum or a local maximum on the constraint
curve g(x, y) = 0 at P = (a, b), and if ∇gP �= 0, then there is a scalar λ such that

∇fP = λ∇gP 1
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Proof Let c(t) be a parametrization of the constraint curve g(x, y) = 0 near P , chosen
so that c(0) = P and c′(0) �= 0. Then f (c(0)) = f (P ), and by assumption, f (c(t)) has

In Theorem 1, the assumption ∇gP �= 0
guarantees (by the Implicit Function
Theorem of advanced calculus) that we can
parametrize the curve g(x, y) = 0 near P

by a path c such that c(0) = P and
c′(0) �= 0.

a local min or max at t = 0. Thus, t = 0 is a critical point of f (c(t)) and

d

dt
f (c(t))

∣∣∣∣
t=0

= ∇fP · c′(0)︸ ︷︷ ︸
Chain Rule

= 0

This shows that ∇fP is orthogonal to the tangent vector c′(0) to the curve g(x, y) = 0.
The gradient ∇gP is also orthogonal to c′(0) (because ∇gP is orthogonal to the level
curve g(x, y) = 0 at P ). We conclude that ∇fP and ∇gP are parallel, and hence ∇fP is
a multiple of ∇gP as claimed.

We refer to Eq. (1) as the Lagrange condition. When we write this condition in termsREMINDER Eq. (1) states that if a local
min or max of f (x, y) subject to a
constraint g(x, y) = 0 occurs at
P = (a, b), then

∇fP = λ∇gP

provided that ∇gP �= 0.

of components, we obtain the Lagrange equations:

fx(a, b) = λgx(a, b)

fy(a, b) = λgy(a, b)

Apoint P = (a, b) satisfying these equations is called a critical point for the optimization
problem with constraint and f (a, b) is called a critical value.

EXAMPLE 1 Find the extreme values of f (x, y) = 2x + 5y on the ellipse(x

4

)2 +
(y

3

)2 = 1

Solution

Step 1. Write out the Lagrange equations.
The constraint curve is g(x, y) = 0, where g(x, y) = (x/4)2 + (y/3)2 − 1. We have

∇f = 〈2, 5〉 , ∇g =
〈
x

8
,

2y

9

〉
The Lagrange equations ∇fP = λ∇gP are:

〈2, 5〉 = λ

〈
x

8
,

2y

9

〉
⇒ 2 = λx

8
, 5 = λ(2y)

9
2

Step 2. Solve for λ in terms of x and y.
Eq. (2) gives us two equations for λ:

λ = 16

x
, λ = 45

2y
3

To justify dividing by x and y, note that x and y must be nonzero, because x = 0 or
y = 0 would violate Eq. (2).

Step 3. Solve for x and y using the constraint.

The two expressions for λ must be equal, so we obtain
16

x
= 45

2y
or y = 45

32
x. Now

substitute this in the constraint equation and solve for x:

(x

4

)2 +
(

45
32x

3

)2

= 1

x2
(

1

16
+ 225

1024

)
= x2

(
289

1024

)
= 1



S E C T I O N 14.8 Lagrange Multipliers: Optimizing with a Constraint 849

Thus x = ±
√

1024
289 = ± 32

17 , and since y = 45x
32 , the critical points are P = ( 32

17 , 45
17

)
andLevel curve of

f (x, y) = 2x + 5y

3
�gP

�fP

�gQ

P

Q

Constraint curve
g(x, y) = 0

y

x
4�fQ

3

4

17

−17

0

FIGURE 3 The min and max occur where a
level curve of f is tangent to the constraint
curve

g(x, y) =
(x

4

)2 +
(y

3

)2 − 1 = 0

Q = ( − 32
17 , − 45

17

)
.

Step 4. Calculate the critical values.

f (P ) = f

(
32

17
,

45

17

)
= 2

(
32

17

)
+ 5

(
45

17

)
= 17

and f (Q) = −17. We conclude that the maximum of f (x, y) on the ellipse is 17 and
the minimum is −17 (Figure 3).

Assumptions Matter According to Theorem 3 in Section 14.7, a continuous function on
a closed, bounded domain takes on extreme values. This tells us that if the constraint curve
is bounded (as in the previous example, where the constraint curve is an ellipse), then
every continuous function f (x, y) takes on both a minimum and a maximum value subject
to the constraint. Be aware, however, that extreme values need not exist if the constraint
curve is not bounded. For example, the constraint x − y = 0 is an unbounded line. The
function f (x, y) = x has neither a minimum nor a maximum subject to x − y = 0 because
P = (a, a) satisfies the constraint, yet f (a, a) = a can be arbitrarily large or small.

EXAMPLE 2 Cobb–Douglas Production Function By investing x units of labor and y

FIGURE 4 Economist Paul Douglas,
working with mathematician Charles
Cobb, arrived at the production functions
P(x, y) = Cxayb by fitting data gathered
on the relationships between labor, capital,
and output in an industrial economy.
Douglas was a professor at the University
of Chicago and also served as U.S. senator
from Illinois from 1949 to 1967.

units of capital, a low-end watch manufacturer can produce P(x, y) = 50x0.4y0.6 watches.
(See Figure 4.) Find the maximum number of watches that can be produced on a budget
of $20,000 if labor costs $100 per unit and capital costs $200 per unit.

Solution The total cost of x units of labor and y units of capital is 100x + 200y. Our
task is to maximize the function P(x, y) = 50x0.4y0.6 subject to the following budget
constraint (Figure 5):

Increasing output

A

y (capital)

x (labor)

120

60 Budget
constraint

40 80 120

FIGURE 5 Contour plot of the
Cobb–Douglas production function
P(x, y) = 50x0.4y0.6. The level curves of
a production function are called isoquants.

g(x, y) = 100x + 200y − 20,000 = 0 4

Step 1. Write out the Lagrange equations.

Px(x, y) = λgx(x, y) : 20x−0.6y0.6 = 100λ

Py(x, y) = λgy(x, y) : 30x0.4y−0.4 = 200λ

Step 2. Solve for λ in terms of x and y.
These equations yield two expressions for λ that must be equal:

λ = 1

5

(y

x

)0.6 = 3

20

(y

x

)−0.4
5

Step 3. Solve for x and y using the constraint.
Multiply Eq. (5) by 5(y/x)0.4 to obtain y/x = 15/20, or y = 3

4x. Then substitute in
Eq. (4):

100x + 200y = 100x + 200

(
3

4
x

)
= 20,000 ⇒ 250x = 20,000

We obtain x = 20,000
250 = 80 and y = 3

4x = 60. The critical point is A = (80, 60).
Step 4. Calculate the critical values.

Since P(x, y) is increasing as a function of x and y, ∇P points to the northeast, and
it is clear that P(x, y) takes on a maximum value at A (Figure 5). The maximum is
P(80, 60) = 50(80)0.4(60)0.6 = 3365.87, or roughly 3365 watches, with a cost per
watch of 20,000

3365 or about $5.94.
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GRAPHICAL INSIGHT In an ordinary optimization problem without constraint, the global
maximum value is the height of the highest point on the surface z = f (x, y) (point Q

in Figure 6). When a constraint is given, we restrict our attention to the curve on the
surface lying above the constraint curve g(x, y) = 0 . The maximum value subject to
the constraint is the height of the highest point on this curve. Figure 6(B) shows the
optimization problem solved in Example 1.

(A) (B)

y

Global maximum

Constrained 
max occurs here g(x, y) = 0

P

z

x

y

x

P

z

Q

Maximum on the
constraint curve

z = f (x, y) f (x, y) = 2x + 5y

(   )2
 + (   )2

 = 1x
4

y
3

FIGURE 6

The method of Lagrange multipliers is valid in any number of variables. In the next
example, we consider a problem in three variables.

EXAMPLE 3 Lagrange Multipliers in Three Variables Find the point on the plane
x

2
+ y

4
+ z

4
= 1 closest to the origin in R3.

Solution Our task is to minimize the distance d = √
x2 + y2 + z2 subject to the con-

straint
x

2
+ y

4
+ z

4
= 1. But finding the minimum distance d is the same as finding the

minimum square of the distance d2, so our problem can be stated:

Minimize f (x, y, z) = x2 + y2 + z2 subject to g(x, y, z) = x

2
+ y

4
+ z

4
− 1 = 0

The Lagrange condition is

〈2x, 2y, 2z〉︸ ︷︷ ︸
∇f

= λ

〈
1

2
,

1

4
,

1

4

〉
︸ ︷︷ ︸

∇g

This yields

λ = 4x = 8y = 8z ⇒ z = y = x

2

Substituting in the constraint equation, we obtain

x

2
+ y

4
+ z

4
= 2z

2
+ z

4
+ z

4
= 3z

2
= 1 ⇒ z = 2

3

Thus, x = 2z = 4
3 and y = z = 2

3 . This critical point must correspond to the minimum
of f (because f has no maximum on the constraint plane). Hence, the point on the plane
closest to the origin is P = ( 4

3 , 2
3 , 2

3

)
(Figure 7).

(0, 4, 0)
(2, 0, 0)

(0, 0, 4)

z

x
y

P

FIGURE 7 Point P closest to the origin on
the plane.
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The method of Lagrange multipliers can be used when there is more than one con-
straint equation, but we must add another multiplier for each additional constraint. For
example, if the problem is to minimize f (x, y, z) subject to constraints g(x, y, z) = 0
and h(x, y, z) = 0, then the Lagrange condition is

∇f = λ∇g + μ∇h

EXAMPLE 4 Lagrange Multipliers with Multiple Constraints The intersection of the
plane x + 1

2y + 1
3z = 0 with the unit sphere x2 + y2 + z2 = 1 is a great circle (Figure 8).

Find the point on this great circle with the largest x coordinate.
The intersection of a sphere with a plane
through its center is called a great circle.

Solution Our task is to maximize the function f (x, y, z) = x subject to the two constraint

x2 + y2 + z2 = 1

x +     +     = 1y
2

z
3

y

x

z

Q

FIGURE 8 The plane intersects the sphere in
a great circle. Q is the point on this great
circle with the largest x-coordinate.

equations

g(x, y, z) = x + 1

2
y + 1

3
z = 0, h(x, y, z) = x2 + y2 + z2 − 1 = 0

The Lagrange condition is

∇f = λ∇g + μ∇h

〈1, 0, 0〉 = λ

〈
1,

1

2
,

1

3

〉
+ μ 〈2x, 2y, 2z〉

Note that μ cannot be zero. The Lagrange condition would become 〈1, 0, 0〉 = λ
〈
1, 1

2 , 1
3

〉
,

and this equation is not satisfed for any value of λ. Now, the Lagrange condition gives us
three equations:

λ + 2μx = 1,
1

2
λ + 2μy = 0,

1

3
λ + 2μz = 0

The last two equations yield λ = −4μy and λ = −6μz. Because μ �= 0,

−4μy = −6μz ⇒ y = 3

2
z

Now use this relation in the first constraint equation:

x + 1

2
y + 1

3
z = x + 1

2

(
3

2
z

)
+ 1

3
z = 0 ⇒ x = −13

12
z

Finally, we can substitute in the second constraint equation:

x2 + y2 + z2 − 1 =
(

−13

12
z

)2

+
(

3

2
z

)2

+ z2 − 1 = 0

to obtain 637
144z2 = 1 or z = ± 12

7
√

13
. Since x = − 13

12z and y = 3
2z, the critical points are

P =
(

−
√

13

7
,

18

7
√

13
,

12

7
√

13

)
, Q =

(√
13

7
, − 18

7
√

13
, − 12

7
√

13

)

The critical point with the largest x-coordinate (the maximum value of f (x, y, z)) is Q

with x-coordinate
√

13
7 ≈ 0.515.
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14.8 SUMMARY

• Method of Lagrange multipliers: The local extreme values of f (x, y) subject to a con-
straint g(x, y) = 0 occur at points P (called critical points) satisfying the Lagrange con-
dition ∇fP = λ∇gP . This condition is equivalent to the Lagrange equations

fx(x, y) = λgx(x, y), fy(x, y) = λgy(x, y)

• If the constraint curve g(x, y) = 0 is bounded [e.g., if g(x, y) = 0 is a circle or ellipse],
then global minimum and maximum values of f subject to the constraint exist.
• Lagrange condition for a function of three variables f (x, y, z) subject to two constraints
g(x, y, z) = 0 and h(x, y, z) = 0:

∇f = λ∇g + μ∇h

14.8 EXERCISES

Preliminary Questions
1. Suppose that the maximum of f (x, y) subject to the constraint

g(x, y) = 0 occurs at a point P = (a, b) such that ∇fP �= 0. Which of
the following statements is true?

(a) ∇fP is tangent to g(x, y) = 0 at P .
(b) ∇fP is orthogonal to g(x, y) = 0 at P .

2. Figure 9 shows a constraint g(x, y) = 0 and the level curves of a
function f . In each case, determine whether f has a local minimum, a
local maximum, or neither at the labeled point.

4
3
2
1

1
2

3
4

A B

g(x, y) = 0 g(x, y) = 0

∇f ∇f

FIGURE 9

3. On the contour map in Figure 10:

(a) Identify the points where ∇f = λ∇g for some scalar λ.

(b) Identify the minimum and maximum values of f (x, y) subject to
g(x, y) = 0.

x

26 −2

2 6

g (x, y) = 0

Contour plot of f (x, y)
(contour interval 2)

−2−6

−6

y

FIGURE 10 Contour map of f (x, y); contour interval 2.

Exercises
In this exercise set, use the method of Lagrange multipliers unless oth-
erwise stated.

1. Find the extreme values of the function f (x, y) = 2x + 4y subject
to the constraint g(x, y) = x2 + y2 − 5 = 0.

(a) Show that the Lagrange equation ∇f = λ∇g gives λx = 1 and
λy = 2.

(b) Show that these equations imply λ �= 0 and y = 2x.

(c) Use the constraint equation to determine the possible critical points
(x, y).

(d) Evaluate f (x, y) at the critical points and determine the minimum
and maximum values.

2. Find the extreme values of f (x, y) = x2 + 2y2 subject to the con-
straint g(x, y) = 4x − 6y = 25.

(a) Show that the Lagrange equations yield 2x = 4λ, 4y = −6λ.

(b) Show that if x = 0 or y = 0, then the Lagrange equations give
x = y = 0. Since (0, 0) does not satisfy the constraint, you may as-
sume that x and y are nonzero.

(c) Use the Lagrange equations to show that y = − 3
4x.
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(d) Substitute in the constraint equation to show that there is a unique
critical point P .

(e) Does P correspond to a minimum or maximum value of f ? Refer to
Figure 11 to justify your answer. Hint: Do the values of f (x, y) increase
or decrease as (x, y) moves away from P along the line g(x, y) = 0?

y

x

4

0

−4

80 4

6 12 24 36
g(x, y) = 0

−4

P

FIGURE 11 Level curves of f (x, y) = x2 + 2y2 and graph of the
constraint g(x, y) = 4x − 6y − 25 = 0.

3. Apply the method of Lagrange multipliers to the function
f (x, y) = (x2 + 1)y subject to the constraint x2 + y2 = 5. Hint: First
show that y �= 0; then treat the cases x = 0 and x �= 0 separately.

In Exercises 4–13, find the minimum and maximum values of the func-
tion subject to the given constraint.

4. f (x, y) = 2x + 3y, x2 + y2 = 4

5. f (x, y) = x2 + y2, 2x + 3y = 6

6. f (x, y) = 4x2 + 9y2, xy = 4

7. f (x, y) = xy, 4x2 + 9y2 = 32

8. f (x, y) = x2y + x + y, xy = 4

9. f (x, y) = x2 + y2, x4 + y4 = 1

10. f (x, y) = x2y4, x2 + 2y2 = 6

11. f (x, y, z) = 3x + 2y + 4z, x2 + 2y2 + 6z2 = 1

12. f (x, y, z) = x2 − y − z, x2 − y2 + z = 0

13. f (x, y, z) = xy + 3xz + 2yz, 5x + 9y + z = 10

14. Let

f (x, y) = x3 + xy + y3, g(x, y) = x3 − xy + y3

(a) Show that there is a unique point P = (a, b) on g(x, y) = 1 where
∇fP = λ∇gP for some scalar λ.

(b) Refer to Figure 12 to determine whether f (P ) is a local minimum
or a local maximum of f subject to the constraint.

(c) Does Figure 12 suggest that f (P ) is a global extremum subject to
the constraint?

y

x

P

2

0

−2

−3

−5

−1
0 1

3
5

0 2−2

FIGURE 12 Contour map of f (x, y) = x3 + xy + y3 and graph of the
constraint g(x, y) = x3 − xy + y3 = 1.

15. Find the point (a, b) on the graph of y = ex where the value ab is
as small as possible.

16. Find the rectangular box of maximum volume if the sum of the
lengths of the edges is 300 cm.

17. The surface area of a right-circular cone of radius r and height h

is S = πr
√

r2 + h2, and its volume is V = 1
3πr2h.

(a) Determine the ratio h/r for the cone with given surface area S and
maximum volume V .

(b) What is the ratio h/r for a cone with given volume V and minimum
surface area S?

(c) Does a cone with given volume V and maximum surface area exist?

18. In Example 1, we found the maximum of f (x, y) = 2x + 5y on the
ellipse (x/4)2 + (y/3)2 = 1. Solve this problem again without using
Lagrange multipliers. First, show that the ellipse is parametrized by x =
4 cos t , y = 3 sin t . Then find the maximum value of f (4 cos t, 3 sin t)

using single-variable calculus. Is one method easier than the other?

19. Find the point on the ellipse

x2 + 6y2 + 3xy = 40

with largest x-coordinate (Figure 13).

x

y

4

−4

84−8 −4

FIGURE 13 Graph of x2 + 6y2 + 3xy = 40

20. Find the maximum area of a rectangle inscribed in the ellipse (Fig-
ure 14):

x2

a2
+ y2

b2
= 1
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(−x, y) (x, y)

(x, −y)(−x, −y)

x

y

FIGURE 14 Rectangle inscribed in the ellipse
x2

a2
+ y2

b2
= 1.

21. Find the point (x0, y0) on the line 4x + 9y = 12 that is closest to
the origin.

22. Show that the point (x0, y0) closest to the origin on the line
ax + by = c has coordinates

x0 = ac

a2 + b2
, y0 = bc

a2 + b2

23. Find the maximum value of f (x, y) = xayb for x ≥ 0, y ≥ 0 on
the line x + y = 1, where a, b > 0 are constants.

24. Show that the maximum value of f (x, y) = x2y3 on the unit circle

is 6
25

√
3
5 .

25. Find the maximum value of f (x, y) = xayb for x ≥ 0, y ≥ 0 on
the unit circle, where a, b > 0 are constants.

26. Find the maximum value of f (x, y, z) = xaybzc for x, y, z ≥ 0
on the unit sphere, where a, b, c > 0 are constants.

27. Show that the minimum distance from the origin to a point on the
plane ax + by + cz = d is

|d|√
a2 + b2 + d2

28. Antonio has $5.00 to spend on a lunch consisting of hamburgers
($1.50 each) and French fries ($1.00 per order). Antonio’s satisfaction
from eating x1 hamburgers and x2 orders of French fries is measured
by a function U(x1, x2) = √

x1x2. How much of each type of food
should he purchase to maximize his satisfaction? (Assume that frac-
tional amounts of each food can be purchased.)

29. Let Q be the point on an ellipse closest to a given point
P outside the ellipse. It was known to the Greek mathematician Apol-
lonius (third century bce) that PQ is perpendicular to the tangent to
the ellipse at Q (Figure 15). Explain in words why this conclusion is a
consequence of the method of Lagrange multipliers. Hint: The circles
centered at P are level curves of the function to be minimized.

P

Q

FIGURE 15

30. In a contest, a runner starting at A must touch a point P

along a river and then run to B in the shortest time possible (Figure 16).
The runner should choose the point P that minimizes the total length
of the path.

(a) Define a function

f (x, y) = AP + PB, where P = (x, y)

Rephrase the runner’s problem as a constrained optimization problem,
assuming that the river is given by an equation g(x, y) = 0.

(b) Explain why the level curves of f (x, y) are ellipses.

(c) Use Lagrange multipliers to justify the following statement: The
ellipse through the point P minimizing the length of the path is tangent
to the river.

(d) Identify the point on the river in Figure 16 for which the length is
minimal.

River

x

y

A B

P

FIGURE 16

In Exercises 31 and 32, let V be the volume of a can of radius r and
height h, and let S be its surface area (including the top and bottom).

31. Find r and h that minimize S subject to the constraint V = 54π .

32. Show that for both of the following two problems, P =
(r, h) is a Lagrange critical point if h = 2r:

• Minimize surface area S for fixed volume V .
• Maximize volume V for fixed surface area S.

Then use the contour plots in Figure 17 to explain why S has a mini-
mum for fixed V but no maximum and, similarly, V has a maximum
for fixed S but no minimum.

Level curves of S

Critical point P = (r, h)

Increasing S

Increasing V

r

h

Level curve of V

FIGURE 17
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33. A plane with equation
x

a
+ y

b
+ z

c
= 1 (a, b, c > 0) together with

the positive coordinate planes forms a tetrahedron of volume V = 1
6abc

(Figure 18). Find the minimum value of V among all planes passing
through the point P = (1, 1, 1).

A = (a, 0, 0)

B = (0, b, 0)

C = (0, 0, c)

z

x

y

P

FIGURE 18

34. With the same set-up as in the previous problem, find the plane
that minimizes V if the plane is constrained to pass through a point
P = (α, β, γ ) with α, β, γ > 0.

35. Show that the Lagrange equations for f (x, y) = x + y subject to
the constraint g(x, y) = x + 2y = 0 have no solution. What can you
conclude about the minimum and maximum values of f subject to
g = 0? Show this directly.

36. Show that the Lagrange equations for f (x, y) = 2x + y

subject to the constraint g(x, y) = x2 − y2 = 1 have a solution but
that f has no min or max on the constraint curve. Does this contradict
Theorem 1?

37. Let L be the minimum length of a ladder that can reach over a
fence of height h to a wall located a distance b behind the wall.

(a) Use Lagrange multipliers to show that L = (h2/3 + b2/3)3/2 (Fig-
ure 19). Hint: Show that the problem amounts to minimizing f (x, y) =
(x + b)2 + (y + h)2 subject to y/b = h/x or xy = bh.

(b) Show that the value of L is also equal to the radius of the circle
with center (−b, −h) that is tangent to the graph of xy = bh.

Wall
Ladder

Fence

y

h

L
L

b x

x

xy = bh

(−b, −h)

y

FIGURE 19

38. Find the maximum value of f (x, y, z) = xy + xz + yz − xyz

subject to the constraint x + y + z = 1, for x ≥ 0, y ≥ 0, z ≥ 0.

39. Find the point lying on the intersection of the plane
x + 1

2y + 1
4z = 0 and the sphere x2 + y2 + z2 = 9 with the largest

z-coordinate.

40. Find the maximum of f (x, y, z) = x + y + z subject to the two
constraints x2 + y2 + z2 = 9 and 1

4x2 + 1
4y2 + 4z2 = 9.

41. The cylinder x2 + y2 = 1 intersects the plane x + z = 1 in an el-
lipse. Find the point on that ellipse that is farthest from the origin.

42. Find the minimum and maximum of f (x, y, z) = y + 2z subject
to two constraints, 2x + z = 4 and x2 + y2 = 1.

43. Find the minimum value of f (x, y, z) = x2 + y2 + z2 subject to
two constraints, x + 2y + z = 3 and x − y = 4.

Further Insights and Challenges
44. Suppose that both f (x, y) and the constraint function
g(x, y) are linear. Use contour maps to explain why f (x, y) does not
have a maximum subject to g(x, y) = 0 unless g = af + b for some
constants a, b.

45. Assumptions Matter Consider the problem of minimizing

f (x, y) = x subject to g(x, y) = (x − 1)3 − y2 = 0.

(a) Show, without using calculus, that the minimum occurs at P =
(1, 0).

(b) Show that the Lagrange condition ∇fP = λ∇gP is not satisfied
for any value of λ.

(c) Does this contradict Theorem 1?

46. Marginal Utility Goods 1 and 2 are available at dollar prices
of p1 per unit of good 1 and p2 per unit of good 2. A utility function
U(x1, x2) is a function representing the utility or benefit of consuming
xj units of good j . The marginal utility of the j th good is ∂U/∂xj ,
the rate of increase in utility per unit increase in the j th good. Prove
the following law of economics: Given a budget of L dollars, utility is
maximized at the consumption level (a, b) where the ratio of marginal

utility is equal to the ratio of prices:

Marginal utility of good 1

Marginal utility of good 2
= Ux1(a, b)

Ux2(a, b)
= p1

p2

47. Consider the utility function U(x1, x2) = x1x2 with budget con-
straint p1x1 + p2x2 = c.

(a) Show that the maximum of U(x1, x2) subject to the budget con-
straint is equal to c2/(4p1p2).

(b) Calculate the value of the Lagrange multiplier λ occurring in (a).

(c) Prove the following interpretation: λ is the rate of increase in utility
per unit increase in total budget c.

48. This exercise shows that the multiplier λ may be interpreted as a
rate of change in general. Assume that the maximum of f (x, y) subject
to g(x, y) = c occurs at a point P . Then P depends on the value of c,
so we may write P = (x(c), y(c)) and we have g(x(c), y(c)) = c.

(a) Show that

∇g(x(c), y(c)) · 〈x′(c), y′(c)
〉 = 1
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Hint: Differentiate the equation g(x(c), y(c)) = c with respect to c

using the Chain Rule.

(b) Use the Chain Rule and the Lagrange condition ∇fP = λ∇gP to
show that

d

dc
f (x(c), y(c)) = λ

(c) Conclude that λ is the rate of increase in f per unit increase in the
“budget level” c.

49. Let B > 0. Show that the maximum of

f (x1, . . . , xn) = x1x2 · · · xn

subject to the constraints x1 + · · · + xn = B and xj ≥ 0 for j =
1, . . . , n occurs for x1 = · · · = xn = B/n. Use this to conclude that

(a1a2 · · · an)1/n ≤ a1 + · · · + an

n

for all positive numbers a1, . . . , an.

50. Let B > 0. Show that the maximum of f (x1, . . . , xn) = x1 +
· · · + xn subject to x2

1 + · · · + x2
n = B2 is

√
nB. Conclude that

|a1| + · · · + |an| ≤ √
n(a2

1 + · · · + a2
n)1/2

for all numbers a1, . . . , an.

51. Given constants E, E1, E2, E3, consider the maximum of

S(x1, x2, x3) = x1 ln x1 + x2 ln x2 + x3 ln x3

subject to two constraints:

x1 + x2 + x3 = N, E1x1 + E2x2 + E3x3 = E

Show that there is a constant μ such that xi = A−1eμEi for i = 1, 2, 3,
where A = N−1(eμE1 + eμE2 + eμE3).

52. Boltzmann Distribution Generalize Exercise 51 to n variables:
Show that there is a constant μ such that the maximum of

S = x1 ln x1 + · · · + xn ln xn

subject to the constraints

x1 + · · · + xn = N, E1x1 + · · · + Enxn = E

occurs for xi = A−1eμEi , where

A = N−1(eμE1 + · · · + eμEn)

This result lies at the heart of statistical mechanics. It is used to deter-
mine the distribution of velocities of gas molecules at temperature T ;
xi is the number of molecules with kinetic energy Ei ; μ = −(kT )−1,
where k is Boltzmann’s constant. The quantity S is called the entropy.

CHAPTER REVIEW EXERCISES

1. Given f (x, y) =
√

x2 − y2

x + 3
:

(a) Sketch the domain of f .

(b) Calculate f (3, 1) and f (−5, −3).

(c) Find a point satisfying f (x, y) = 1.

2. Find the domain and range of:

(a) f (x, y, z) = √
x − y + √

y − z

(b) f (x, y) = ln(4x2 − y)

3. Sketch the graph f (x, y) = x2 − y + 1 and describe its vertical
and horizontal traces.

4. Use a graphing utility to draw the graph of the func-

tion cos(x2 + y2)e1−xy in the domains [−1, 1] × [−1, 1], [−2, 2] ×
[−2, 2], and [−3, 3] × [−3, 3], and explain its behavior.

5. Match the functions (a)–(d) with their graphs in Figure 1.

(a) f (x, y) = x2 + y

(b) f (x, y) = x2 + 4y2

(c) f (x, y) = sin(4xy)e−x2−y2

(d) f (x, y) = sin(4x)e−x2−y2

(A) (B)

z z

y

yx

x

(C) (D)

z

y

y

x

x

z

FIGURE 1
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6. Referring to the contour map in Figure 2:

(a) Estimate the average rate of change of elevation from A to B and
from A to D.

(b) Estimate the directional derivative at A in the direction of v.

(c) What are the signs of fx and fy at D?

(d) At which of the labeled points are both fx and fy negative?

0 1 2 km
Contour interval = 50 meters

B C

D

v

A

400

650
750

FIGURE 2

7. Describe the level curves of:

(a) f (x, y) = e4x−y (b) f (x, y) = ln(4x − y)

(c) f (x, y) = 3x2 − 4y2 (d) f (x, y) = x + y2

8. Match each function (a)–(c) with its contour graph (i)–(iii) in Fig-
ure 3:

(a) f (x, y) = xy

(b) f (x, y) = exy

(c) f (x, y) = sin(xy)

(i) (ii) (iii)

y

x

y

x

y

x

FIGURE 3

In Exercises 9–14, evaluate the limit or state that it does not exist.

9. lim
(x,y)→(1,−3)

(xy + y2) 10. lim
(x,y)→(1,−3)

ln(3x + y)

11. lim
(x,y)→(0,0)

xy + xy2

x2 + y2
12. lim

(x,y)→(0,0)

x3y2 + x2y3

x4 + y4

13. lim
(x,y)→(1,−3)

(2x + y)e−x+y

14. lim
(x,y)→(0,2)

(ex − 1)(ey − 1)

x

15. Let

f (x, y) =
⎧⎨
⎩

(xy)p

x4 + y4
(x, y) �= (0, 0)

0 (x, y) = (0, 0)

Use polar coordinates to show that f (x, y) is continuous at all (x, y)

if p > 2 but is discontinuous at (0, 0) if p ≤ 2.

16. Calculate fx(1, 3) and fy(1, 3) for f (x, y) =
√

7x + y2.

In Exercises 17–20, compute fx and fy .

17. f (x, y) = 2x + y2 18. f (x, y) = 4xy3

19. f (x, y) = sin(xy)e−x−y 20. f (x, y) = ln(x2 + xy2)

21. Calculate fxxyz for f (x, y, z) = y sin(x + z).

22. Fix c > 0. Show that for any constants α, β, the function u(t, x) =
sin(αct + β) sin(αx) satisfies the wave equation

∂2u

∂t2
= c2 ∂2u

∂x2

23. Find an equation of the tangent plane to the graph of f (x, y) =
xy2 − xy + 3x3y at P = (1, 3).

24. Suppose that f (4, 4) = 3 and fx(4, 4) = fy(4, 4) = −1. Use the
linear approximation to estimate f (4.1, 4) and f (3.88, 4.03).

25. Use a linear approximation of f (x, y, z) =
√

x2 + y2 + z to esti-

mate
√

7.12 + 4.92 + 69.5. Compare with a calculator value.

26. The plane z = 2x − y − 1 is tangent to the graph of z = f (x, y)

at P = (5, 3).

(a) Determine f (5, 3), fx(5, 3), and fy(5, 3).
(b) Approximate f (5.2, 2.9).

27. Figure 4 shows the contour map of a function f (x, y) together with
a path c(t) in the counterclockwise direction. The points c(1), c(2), and
c(3) are indicated on the path. Let g(t) = f (c(t)). Which of statements
(i)–(iv) are true? Explain.

(i) g′(1) > 0.
(ii) g(t) has a local minimum for some 1 ≤ t ≤ 2.

(iii) g′(2) = 0.
(iv) g′(3) = 0.

c(t)

c(3)

c(2)

4

4

2
0

0

0
2

−2

−2

−4

−6

−4

c(1)

FIGURE 4
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28. Jason earns S(h, c) = 20h
(
1 + c

100

)1.5 dollars per month at a used
car lot, where h is the number of hours worked and c is the number
of cars sold. He has already worked 160 hours and sold 69 cars. Right
now Jason wants to go home but wonders how much more he might
earn if he stays another 10 minutes with a customer who is considering
buying a car. Use the linear approximation to estimate how much extra
money Jason will earn if he sells his 70th car during these 10 minutes.

In Exercises 29–32, compute
d

dt
f (c(t)) at the given value of t .

29. f (x, y) = x + ey , c(t) = (3t − 1, t2) at t = 2

30. f (x, y, z) = xz − y2, c(t) = (t, t3, 1 − t) at t = −2

31. f (x, y) = xe3y − ye3x , c(t) = (et , ln t) at t = 1

32. f (x, y) = tan−1 y
x , c(t) = (cos t, sin t), t = π

3

In Exercises 33–36, compute the directional derivative at P in the di-
rection of v.

33. f (x, y) = x3y4, P = (3, −1), v = 2i + j

34. f (x, y, z) = zx − xy2, P = (1, 1, 1), v = 〈2, −1, 2〉

35. f (x, y) = ex2+y2
, P =

(√
2

2
,

√
2

2

)
, v = 〈3, −4〉

36. f (x, y, z) = sin(xy + z), P = (0, 0, 0), v = j + k

37. Find the unit vector e at P = (0, 0, 1) pointing in the direction

along which f (x, y, z) = xz + e−x2+y increases most rapidly.

38. Find an equation of the tangent plane at P = (0, 3, −1) to the sur-
face with equation

zex + ez+1 = xy + y − 3

39. Let n �= 0 be an integer and r an arbitrary constant. Show that
the tangent plane to the surface xn + yn + zn = r at P = (a, b, c) has
equation

an−1x + bn−1y + cn−1z = r

40. Let f (x, y) = (x − y)ex . Use the Chain Rule to calculate ∂f/∂u

and ∂f/∂v (in terms of u and v), where x = u − v and y = u + v.

41. Letf (x, y, z) = x2y + y2z. Use the Chain Rule to calculate ∂f/∂s

and ∂f/∂t (in terms of s and t), where

x = s + t, y = st, z = 2s − t

42. Let P have spherical coordinates (ρ, θ, φ) = (
2, π

4 , π
4

)
. Calculate

∂f
∂φ

∣∣∣
P

assuming that

fx(P ) = 4, fy(P ) = −3, fz(P ) = 8

Recall that x = ρ cos θ sin φ, y = ρ sin θ sin φ, z = ρ cos φ.

43. Let g(u, v) = f (u3 − v3, v3 − u3). Prove that

v2 ∂g

∂u
− u2 ∂g

∂v
= 0

44. Let f (x, y) = g(u), where u = x2 + y2 and g(u) is differentiable.
Prove that (

∂f

∂x

)2
+

(
∂f

∂y

)2
= 4u

(
dg

du

)2

45. Calculate ∂z/∂x, where xez + zey = x + y.

46. Let f (x, y) = x4 − 2x2 + y2 − 6y.

(a) Find the critical points of f and use the Second Derivative Test to
determine whether they are a local minima or a local maxima.

(b) Find the minimum value of f without calculus by completing the
square.

In Exercises 47–50, find the critical points of the function and analyze
them using the Second Derivative Test.

47. f (x, y) = x4 − 4xy + 2y2

48. f (x, y) = x3 + 2y3 − xy

49. f (x, y) = ex+y − xe2y

50. f (x, y) = sin(x + y) − 1

2
(x + y2)

51. Prove that f (x, y) = (x + 2y)exy has no critical points.

52. Find the global extrema of f (x, y) = x3 − xy − y2 + y on the
square [0, 1] × [0, 1].
53. Find the global extrema of f (x, y) = 2xy − x − y on the domain
{y ≤ 4, y ≥ x2}.
54. Find the maximum of f (x, y, z) = xyz subject to the constraint
g(x, y, z) = 2x + y + 4z = 1.

55. Use Lagrange multipliers to find the minimum and maximum val-
ues of f (x, y) = 3x − 2y on the circle x2 + y2 = 4.

56. Find the minimum value of f (x, y) = xy subject to the con-
straint 5x − y = 4 in two ways: using Lagrange multipliers and setting
y = 5x − 4 in f (x, y).

57. Find the minimum and maximum values of f (x, y) = x2y on the
ellipse 4x2 + 9y2 = 36.

58. Find the point in the first quadrant on the curve y = x + x−1 clos-
est to the origin.

59. Find the extreme values of f (x, y, z) = x + 2y + 3z subject to the
two constraints x + y + z = 1 and x2 + y2 + z2 = 1.

60. Find the minimum and maximum values of f (x, y, z) = x − z on
the intersection of the cylinders x2 + y2 = 1 and x2 + z2 = 1 (Fig-
ure 5).
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z

x

y

FIGURE 5

61. Use Lagrange multipliers to find the dimensions of a cylindrical
can with a bottom but no top, of fixed volume V with minimum surface
area.

62. Find the dimensions of the box of maximum volume with its sides
parallel to the coordinate planes that can be inscribed in the ellipsoid
(Figure 6) (x

a

)2 +
(y

b

)2 +
( z

c

)2 = 1

z

x

y

FIGURE 6

63. Given n nonzero numbers σ1, . . . , σn, show that the minimum
value of

f (x1, . . . , xn) = x2
1σ 2

1 + · · · + x2
nσ 2

n

subject to x1 + · · · + xn = 1 is c, where c =
⎛
⎝ n∑

j=1

σ−2
j

⎞
⎠−1

.



These rice terraces illustrate how volume under

a graph is computed using iterated integration.

15 MULTIPLE
INTEGRATION

I ntegrals of functions of several variables, called multiple integrals, are a natural ex-
tension of the single-variable integrals studied in the first part of the text. They are used

to compute many quantities that appear in applications, such as volumes, surface areas,
centers of mass, probabilities, and average values.

15.1 Integration in Two Variables
The integral of a function of two variables f (x, y), called a double integral, is denoted∫∫

D
f (x, y) dA

It represents the signed volume of the solid region between the graph of f (x, y) and a
domain D in the xy-plane (Figure 1), where the volume is positive for regions above the
xy-plane and negative for regions below.

There are many similarities between double integrals and the single integrals:

FIGURE 1 The double integral computes the
volume of the solid region between the
graph of f (x, y) and the xy-plane over a
domain D.

• Double integrals are defined as limits of sums.
• Double integrals are evaluated using the Fundamental Theorem of Calculus (but

we have to use it twice—see the discussion of iterated integrals below).

An important difference, however, is that the domain of integration plays a more prominent
role in the multivariable case. In one variable, the domain of integration is simply an
interval [a, b]. In two variables, the domain D is a plane region whose boundary may be
curved (Figure 1).

In this section, we focus on the simplest case where the domain is a rectangle, leaving
more general domains for Section 15.2. Let

R = [a, b] × [c, d]
denote the rectangle in the plane (Figure 2) consisting of all points (x, y) such that

R: a ≤ x ≤ b, c ≤ y ≤ d

Like integrals in one variable, double integrals are defined through a three-step pro-

FIGURE 2

cess: subdivision, summation, and passage to the limit. Figure 3 illustrates how the rect-
angle R is subdivided:

1. Subdivide [a, b] and [c, d] by choosing partitions:

a = x0 < x1 < · · · < xN = b, c = y0 < y1 < · · · < yM = d

where N and M are positive integers.

2. Create an N × M grid of subrectangles Rij .

3. Choose a sample point Pij in each Rij .

860
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(A) Rectangle      = [a, b] × [c, d]

x x x

y

c

d

a b

(B) Create N × M grid

M rows

N columns

Δx i

Δy j

y

c

d

a xi − 1

yj − 1

xi

yj

b

ij

(C) Sample point Pij

Pij = (xij, yij)
y

c

d

a b

FIGURE 3

Note that Rij = [xi−1, xi] × [yj−1, yj ], so Rij has area

�Aij = �xi �yj

where �xi = xi − xi−1 and �yj = yj − yj−1.
Next, we form the Riemann sum with the function values f (Pij ):Keep in mind that a Riemann sum depends

on the choice of partition and sample
points. It would be more proper to write

SN,M({Pij }, {xi}, {yj })
but we write SN,M to keep the notation
simple.

SN,M =
N∑

i=1

M∑
j=1

f (Pij ) �Aij =
N∑

i=1

M∑
j=1

f (Pij ) �xi �yj

The double summation runs over all i and j in the ranges 1 ≤ i ≤ N and 1 ≤ j ≤ M , a
total of NM terms.

The geometric interpretation of SN,M is shown in Figure 4. Each individual term
f (Pij ) �Aij of the sum is equal to the signed volume of the narrow box of height f (Pij )

above Rij :

f (Pij ) �Aij = f (Pij ) �xi �yj = height × area︸ ︷︷ ︸
Signed volume of box

When f (Pij ) is negative, the box lies below the xy-plane and has negative signed volume.
The sum SN,M of the signed volumes of these narrow boxes approximates volume in the
same way that Riemann sums in one variable approximate area by rectangles [Figure 4(A)].

j

i

iij

ij

j

FIGURE 4
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The final step in defining the double integral is passing to the limit. We write P =
{{xi}, {yj }} for the partition and ‖P‖ for the maximum of the widths �xi , �yj . As ‖P‖
tends to zero (and both M and N tend to infinity), the boxes approximate the solid region
under the graph more and more closely (Figure 5). Here is the precise definition of the
limit:

Limit of Riemann Sums The Riemann sum SN,M approaches a limit L as ‖P‖ → 0
if, for all ε > 0, there exists δ > 0 such that

|L − SN,M | < ε

for all partitions satisfying ‖P‖ < δ and all choices of sample points.

In this case, we write

lim
‖P‖→0

SN,M = lim
‖P‖→0

N∑
i=1

M∑
j=1

f (Pij ) �Aij = L

This limit L, if it exists, is the double integral
∫∫

R
f (x, y) dA.

(A) N = 4, M = 6 (B) N = 8, M = 12 (C) N = 20, M = 30FIGURE 5 Midpoint approximations to the
volume under z = 24 − 3x2 − y2.

DEFINITION Double Integral over a Rectangle The double integral of f (x, y) over
a rectangle R is defined as the limit

∫∫
R

f (x, y) dA = lim
‖P‖→0

N∑
i=1

M∑
j=1

f (Pij )�Aij

If this limit exists, we say that f (x, y) is integrable over R.

The double integral enables us to define the volume V of the solid region between
the graph of a positive function f (x, y) and the rectangle R by

R

FIGURE 6

∫∫
R

f (x, y) dA is the signed

volume of the region between the graph of
z = f (x, y) and the rectangle R.

V =
∫∫

R
f (x, y) dA

If f (x, y) takes on both positive and negative values, the double integral defines the signed
volume (Figure 6).
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In computations, we often assume that the partition P is regular, meaning that the
intervals [a, b] and [c, d] are both divided into subintervals of equal length. In other words,
the partition is regular if �xi = �x and �yj = �y, where

�x = b − a

N
, �y = d − c

M

For a regular partition, ‖P‖ tends to zero as N and M tend to ∞.

EXAMPLE 1 Estimating a Double Integral Let R = [1, 2.5] × [1, 2]. Calculate S3,2
for the integral (Figure 7) ∫∫

R
xy dA

using the following two choices of sample points:

R

FIGURE 7 Graph of z = xy.

(a) Lower-left vertex (b) Midpoint of rectangle

Solution Since we use the regular partition to compute S3,2, each subrectangle (in this
case they are squares) has sides of length

�x = 2.5 − 1

3
= 1

2
, �y = 2 − 1

2
= 1

2

and area �A = �x �y = 1
4 . The corresponding Riemann sum is

S3,2 =
3∑

i=1

2∑
j=1

f (Pij ) �A = 1

4

3∑
i=1

2∑
j=1

f (Pij )

where f (x, y) = xy.

(a) If we use the lower-left vertices shown in Figure 8(A), the Riemann sum is

S3,2 = 1
4

(
f (1, 1) + f

(
1, 3

2

)+ f
( 3

2 , 1
)+ f

( 3
2 , 3

2

)+ f (2, 1) + f
(
2, 3

2

))
= 1

4

(
1 + 3

2 + 3
2 + 9

4 + 2 + 3
) = 1

4

( 45
4

) = 2.8125

(b) Using the midpoints of the rectangles shown in Figure 8(B), we obtain

S3,2 = 1
4

(
f
( 5

4 , 5
4

)+ f
( 5

4 , 7
4

)+ f
( 7

4 , 5
4

)+ f
( 7

4 , 7
4

)+ f
( 9

4 , 5
4

)+ f
( 9

4 , 7
4

))
= 1

4

( 25
16 + 35

16 + 35
16 + 49

16 + 45
16 + 63

16

) = 1
4

( 252
16

) = 3.9375

x
1 2

1

2

y

x

y

5
4

7
4

9
4

5
4

7
43

2

5
2

3
2

(A) Sample points are the lower-left
       vertices.

(B) Sample points are midpoints.

FIGURE 8
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EXAMPLE 2 Evaluate
∫∫

R
(8 − 2y) dA, where R = [0, 3] × [0, 4].

FIGURE 9 Solid wedge under the graph of
z = 8 − 2y.

Solution Figure 9 shows the graph of z = 8 − 2y. The double integral is equal to the
volume V of the solid wedge underneath the graph. The triangular face of the wedge has
area A = 1

2 (8)4 = 16. The volume of the wedge is equal to the area A times the length
� = 3; that is, V = �A = 3(16) = 48. Therefore,∫∫

R
(8 − 2y) dA = 48

The next theorem assures us that continuous functions are integrable. Since we have
not yet defined continuity at boundary points of a domain, for the purposes of the next
theorem, we define continuity on R to mean that f is defined and continuous on some
open set containing R. We omit the proof, which is similar to the single-variable case.

THEOREM 1 Continuous Functions Are Integrable If f (x, y) is continuous on a
rectangle R, then f (x, y) is integrable over R.

As in the single-variable case, we often make use of the linearity properties of the
double integral. They follow from the definition of the double integral as a limit of Riemann
sums.

THEOREM 2 Linearity of the Double Integral Assume that f (x, y) and g(x, y) are
integrable over a rectangle R. Then:

(i)
∫∫

R
(
f (x, y) + g(x, y)

)
dA =

∫∫
R

f (x, y) dA +
∫∫

R
g(x, y) dA

(ii) For any constant C,
∫∫

R
Cf (x, y) dA = C

∫∫
R

f (x, y) dA

If f (x, y) = C is a constant function, then

∫∫
R

C dA = C · Area(R)

The double integral is the signed volume of the box of base R and height C (Figure 10). If
C < 0, then the rectangle lies below the xy-plane, and the integral is equal to the signed
volume, which is negative.

FIGURE 10 The double integral of
f (x, y) = C over a rectangle R is
C · Area(R).

EXAMPLE 3 Arguing by Symmetry Use symmetry to show that
∫∫

R
xy2 dA = 0,

where R = [−1, 1] × [−1, 1].
Solution The double integral is the signed volume of the region between the graph of
f (x, y) = xy2 and the xy-plane (Figure 11). However, f (x, y) takes opposite values at
(x, y) and (−x, y):

f (−x, y) = −xy2 = −f (x, y)

Because of symmetry, the (negative) signed volume of the region below the xy-plane
where −1 ≤ x ≤ 0 cancels with the (positive) signed volume of the region above the

xy-plane where 0 ≤ x ≤ 1. The net result is
∫∫

R
xy2 dA = 0.

f (x, y) = xy2

Positive volume
for x > 0

z

x

y

Negative volume
for x < 0

−1 1

FIGURE 11



S E C T I O N 15.1 Integration in Two Variables 865

Iterated Integrals
Our main tool for evaluating double integrals is the Fundamental Theorem of Calculus
(FTC), as in the single-variable case. To use the FTC, we express the double integral asWe often omit the parentheses in the

notation for an iterated integral:∫ b

a

∫ d

c

f (x, y) dy dx

The order of the variables in dy dx tells us
to integrate first with respect to y between
the limits y = c and y = d.

an iterated integral, which is an expression of the form∫ b

a

(∫ d

c

f (x, y) dy

)
dx

Iterated integrals are evaluated in two steps. Step One: Hold x constant and evaluate the
inner integral with respect to y. This gives us a function of x alone:

S(x) =
∫ d

c

f (x, y) dy

Step Two: Integrate the resulting function S(x) with respect to x.

EXAMPLE 4 Evaluate
∫ 4

2

(∫ 9

1
yex dy

)
dx.

Solution First evaluate the inner integral, treating x as a constant:

S(x) =
∫ 9

1
yex dy = ex

∫ 9

1
y dy = ex

(
1

2
y2
) ∣∣∣∣9

y=1
= ex

(
81 − 1

2

)
= 40ex

Then integrate S(x) with respect to x:∫ 4

2

(∫ 9

1
yex dy

)
dx =

∫ 4

2
40ex dx = 40ex

∣∣∣∣4
2

= 40(e4 − e2)

In an iterated integral where dx precedes dy, integrate first with respect to x:∫ d

c

∫ b

a

f (x, y) dx dy =
∫ d

y=c

(∫ b

x=a

f (x, y) dx

)
dy

Sometimes for clarity, as on the right-hand side here, we include the variables in the limits
of integration.

EXAMPLE 5 Evaluate
∫ 4

y=0

∫ 3

x=0

dx dy√
3x + 4y

.

Solution We evaluate the inner integral first, treating y as a constant. Since we are in-

tegrating with respect to x, we need an antiderivative of 1/
√

3x + 4y as a function of x.
We can use 2

3

√
3x + 4y because

∂

∂x

(
2

3

√
3x + 4y

)
= 1√

3x + 4y

Thus we have ∫ 3

x=0

dx√
3x + 4y

= 2

3

√
3x + 4y

∣∣∣∣3
x=0

= 2

3

(√
4y + 9 −√4y

)
∫ 4

y=0

∫ 3

x=0

dx dy√
3x + 4y

= 2

3

∫ 4

y=0

(√
4y + 9 −√4y

)
dy
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Therefore, we have:∫ 4

y=0

∫ 3

x=0

dx dy√
3x + 4y

= 2

3

(
1

6
(4y + 9)3/2 − 1

6
(4y)3/2

) ∣∣∣∣4
y=0

= 1

9

(
253/2 − 163/2 − 93/2

)
= 34

9

EXAMPLE 6 Reversing the Order of Integration Verify that∫ 4

y=0

∫ 3

x=0

dx dy√
3x + 4y

=
∫ 3

x=0

∫ 4

y=0

dy dx√
3x + 4y

Solution We evaluated the iterated integral on the left in the previous example. We
compute the integral on the right and verify that the result is also 34

9 :∫ 4

y=0

dy√
3x + 4y

= 1

2

√
3x + 4y

∣∣∣∣4
y=0

= 1

2
(
√

3x + 16 − √
3x)

∫ 3

x=0

∫ 4

y=0

dy dx√
3x + 4y

= 1

2

∫ 3

0
(
√

3x + 16 − √
3x) dy

= 1

2

(2

9
(3x + 16)3/2 − 2

9
(3x)3/2

)∣∣∣∣3
x=0

= 1

9

(
253/2 − 93/2 − 163/2

)
= 34

9

The previous example illustrates a general fact: The value of an iterated integral does
not depend on the order in which the integration is performed. This is part of Fubini’s
Theorem. Even more important, Fubini’s Theorem states that a double integral over a
rectangle can be evaluated as an iterated integral.

CAUTION When you reverse the order of
integration in an iterated integral,
remember to interchange the limits of
integration (the inner limits become the
outer limits).

THEOREM 3 Fubini’s Theorem The double integral of a continuous function f (x, y)

over a rectangle R = [a, b] × [c, d] is equal to the iterated integral (in either order):∫∫
R

f (x, y) dA =
∫ b

x=a

∫ d

y=c

f (x, y) dy dx =
∫ d

y=c

∫ b

x=a

f (x, y) dx dy

Proof We sketch the proof. We can compute the double integral as a limit of Riemann
sums that use a regular partition of R and sample points Pij = (xi, yj ), where {xi} are
sample points for a regular partition on [a, b], and {yj } are sample points for a regular
partition of [c, d]:∫∫

R
f (x, y) dA = lim

N,M→∞

N∑
i=1

M∑
j=1

f (xi, yj )�y�x

Here �x = (b − a)/N and �y = (d − c)/M . Fubini’s Theorem stems from the elemen-
tary fact that we can add up the values in the sum in any order. So if we list the values
f (Pij ) in an N × M array as shown in the margin, we can add up the columns first and
then add up the column sums. This yields

3 f (P13) f (P23) f (P33)

2 f (P12) f (P22) f (P32)

1 f (P11) f (P21) f (P31)

j
i 1 2 3 ∫∫

R
f (x, y) dA = lim

N,M→∞

N∑
i=1

⎛
⎝ M∑

j=1

f (xi, yj )�y

⎞
⎠

︸ ︷︷ ︸
First sum the columns;

then add up the column sums.

�x
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For fixed i, f (xi, y) is a continuous function of y and the inner sum on the right is a

Riemann sum that approaches the single integral
∫ d

c

f (xi, y) dy. In other words, setting

S(x) =
∫ d

c

f (x, y) dy, we have

lim
M→∞

M∑
j=1

f (xi, yj ) =
∫ d

c

f (xi, y) dy = S(xi)

To complete the proof, we take two facts for granted. First, that S(x) is a continuous
function for a ≤ x ≤ b. Second, that the limit as N , M → ∞ may be computed by taking
the limit first with respect to M and then with respect to N . Granting this,

∫∫
R

f (x, y) dA = lim
N→∞

N∑
i=1

⎛
⎝ lim

M→∞

M∑
j=1

f (xi, yj )�y

⎞
⎠�x = lim

N→∞

N∑
i=1

S(xi)�x

=
∫ b

a

S(x) dx =
∫ b

a

(∫ d

c

f (x, y) dy

)
dx

Note that the sums on the right in the first line are Riemann sums for S(x) that converge to
the integral of S(x) in the second line. This proves Fubini’s Theorem for the order dy dx.
A similar argument applies to the order dx dy.

GRAPHICAL INSIGHT When we write a double integral as an iterated integral in the order
dy dx, then for each fixed value x = x0, the inner integral is the area of the cross section
of S in the vertical plane x = x0 perpendicular to the x-axis (Figure 12(A)):

S(x0) =
∫ d

c

f (x0, y) dy = area of cross section in vertical plane
x = x0 perpendicular to the x-axis

What Fubini’s Theorem says is that the volume V of S can be calculated as the integral
of cross-sectional area S(x):

V =
∫ b

a

∫ d

c

f (x, y) dy dx =
∫ b

a

S(x) dx = integral of cross-sectional area

Similarly, the iterated integral in the order dx dy calculates V as the integral of cross
sections perpendicular to the y-axis (Figure 12(B)).

FIGURE 12
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EXAMPLE 7 Find the volume V between the graph of f (x, y) = 16 − x2 − 3y2 and

FIGURE 13 Graph of
f (x, y) = 16 − x2 − 3y2 over
R = [0, 3] × [0, 1].

the rectangle R = [0, 3] × [0, 1] (Figure 13).

Solution The volume V is equal to the double integral of f (x, y), which we write as an
iterated integral:

V =
∫∫

R
(16 − x2 − 3y2) dA =

∫ 3

x=0

∫ 1

y=0
(16 − x2 − 3y2) dy dx

We evaluate the inner integral first and then compute V :

∫ 1

y=0
(16 − x2 − 3y2) dy = (16y − x2y − y3)

∣∣∣∣1
y=0

= 15 − x2

V =
∫ 3

x=0
(15 − x2) dx =

(
15x − 1

3
x3
) ∣∣∣∣3

0
= 36

EXAMPLE 8 Calculate
∫∫

R
dA

(x + y)2
, where R = [1, 2] × [0, 1] (Figure 14).

FIGURE 14 Graph of z = (x + y)−2 over
R = [1, 2] × [0, 1].

Solution

∫∫
R

dA

(x + y)2
=
∫ 2

x=1

(∫ 1

y=0

dy

(x + y)2

)
dx =

∫ 2

1

(
− 1

x + y

∣∣∣∣1
y=0

)
dx

=
∫ 2

1

(
− 1

x + 1
+ 1

x

)
dx = (ln x − ln(x + 1)

)∣∣∣∣2
1

= (ln 2 − ln 3
)− (ln 1 − ln 2

) = 2 ln 2 − ln 3 = ln
4

3

When the function is a product f (x, y) = g(x)h(y), the double integral over a rect-
angle is simply the product of the single integrals. We verify this by writing the double
integral as an iterated integral. If R = [a, b] × [c, d],∫∫

R
g(x)h(y) dA =

∫ b

a

(∫ d

c

g(x)h(y) dy

)
dx =

∫ b

a

g(x)

(∫ d

c

h(y) dy

)
dx

=
(∫ b

a

g(x) dx

)(∫ d

c

h(y) dy

)
1

EXAMPLE 9 Iterated Integral of a Product Function Calculate∫ 2

0

∫ π/2

0
ex cos y dy dx

Solution The integrand f (x, y) = ex cos y is a product, so we obtain

∫ 2

0

∫ π/2

0
ex cos y dy dx =

(∫ 2

0
ex dx

)(∫ π/2

0
cos y dy

)
=
(

ex

∣∣∣∣2
0

)(
sin y

∣∣∣∣π/2

0

)

= (e2 − 1)(1) = e2 − 1
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15.1 SUMMARY

• A Riemann sum for f (x, y) on a rectangle R = [a, b] × [c, d] is a sum of the form

SN,M =
N∑

i=1

M∑
j=1

f (Pij ) �xi �yj

corresponding to partitions of [a, b] and [c, d], and choice of sample points Pij in the
subrectangle Rij .
• The double integral of f (x, y) over R is defined as the limit (if it exists):

∫∫
R

f (x, y) dA = lim
M,N→∞

N∑
i=1

M∑
j=1

f (Pij ) �xi �yj

We say that f (x, y) is integrable over R if this limit exists.
• A continuous function on a rectangle R is integrable.
• The double integral is equal to the signed volume of the region between the graph of
z = f (x, y) and the rectangle R. The signed volume of a region is positive if it lies above
the xy-plane and negative if it lies below the xy-plane.
• If f (x, y) = C is a constant function, then∫∫

R
C dA = C · Area(R)

• Fubini’s Theorem: The double integral of a continuous function f (x, y) over a rectangle
R = [a, b] × [c, d] can be evaluated as an iterated integral (in either order):∫∫

R
f (x, y) dA =

∫ b

x=a

∫ d

y=c

f (x, y) dy dx =
∫ d

y=c

∫ b

x=a

f (x, y) dx dy

15.1 EXERCISES

Preliminary Questions
1. If S8,4 is a Riemann sum for a double integral over R = [1, 5] ×

[2, 10] using a regular partition, what is the area of each subrectangle?
How many subrectangles are there?

2. Estimate the double integral of a continuous function f over the
small rectangle R = [0.9, 1.1] × [1.9, 2.1] if f (1, 2) = 4.

3. What is the integral of the constant function f (x, y) = 5 over the
rectangle [−2, 3] × [2, 4]?

4. What is the interpretation of
∫∫

R
f (x, y) dA if f (x, y) takes on

both positive and negative values on R?

5. Which of (a) or (b) is equal to
∫ 2

1

∫ 5

4
f (x, y) dy dx?

(a)
∫ 2

1

∫ 5

4
f (x, y) dx dy (b)

∫ 5

4

∫ 2

1
f (x, y) dx dy

6. For which of the following functions is the double integral over
the rectangle in Figure 15 equal to zero? Explain your reasoning.

(a) f (x, y) = x2y (b) f (x, y) = xy2

(c) f (x, y) = sin x (d) f (x, y) = ex

1−1
x

y

1

FIGURE 15
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Exercises
1. Compute the Riemann sum S4,3 to estimate the double integral of

f (x, y) = xy over R = [1, 3] × [1, 2.5]. Use the regular partition and
upper-right vertices of the subrectangles as sample points.

2. Compute the Riemann sum with N = M = 2 to estimate the inte-
gral of

√
x + y over R = [0, 1] × [0, 1]. Use the regular partition and

midpoints of the subrectangles as sample points.

In Exercises 3–6, compute the Riemann sums for the double inte-

gral
∫∫

R
f (x, y) dA, where R = [1, 4] × [1, 3], for the grid and two

choices of sample points shown in Figure 16.

x
1

(A)

2 3 4

1

2

3

y

1

(B)

2 3 4

1

2

3

y

x

FIGURE 16

3. f (x, y) = 2x + y 4. f (x, y) = 7

5. f (x, y) = 4x 6. f (x, y) = x − 2y

7. Let R = [0, 1] × [0, 1]. Estimate
∫∫

R
(x + y) dA by computing

two different Riemann sums, each with at least six rectangles.

8. Evaluate
∫∫

R
4 dA, where R = [2, 5] × [4, 7].

9. Evaluate
∫∫

R
(15 − 3x) dA, where R = [0, 5] × [0, 3], and

sketch the corresponding solid region (see Example 2).

10. Evaluate
∫∫

R
(−5) dA, where R = [2, 5] × [4, 7].

11. The following table gives the approximate height at quarter-meter
intervals of a mound of gravel. Estimate the volume of the mound by
computing the average of the two Riemann sums S4,3 with lower-left
and upper-right vertices of the subrectangles as sample points.

0.75 0.1 0.2 0.2 0.15 0.1
0.5 0.2 0.3 0.5 0.4 0.2
0.25 0.15 0.2 0.4 0.3 0.2
0 0.1 0.15 0.2 0.15 0.1
y

x 0 0.25 0.5 0.75 1

12. Use the following table to compute a Riemann sum S3,3 for f (x, y)

on the square R = [0, 1.5] × [0.5, 2]. Use the regular partition and
sample points of your choosing.

Values of f (x, y)

2 2.6 2.17 1.86 1.62 1.44
1.5 2.2 1.83 1.57 1.37 1.22
1 1.8 1.5 1.29 1.12 1
0.5 1.4 1.17 1 0.87 0.78
0 1 0.83 0.71 0.62 0.56
y

x 0 0.5 1 1.5 2

13. Let SN,N be the Riemann sum for
∫ 1

0

∫ 1

0
ex3−y3

dy dx

using the regular partition and the lower left-hand vertex of each sub-
rectangle as sample points. Use a computer algebra system to calculate
SN,N for N = 25, 50, 100.

14. Let SN,M be the Riemann sum for∫ 4

0

∫ 2

0
ln(1 + x2 + y2) dy dx

using the regular partition and the upper right-hand vertex of each sub-
rectangle as sample points. Use a computer algebra system to calculate
S2N,N for N = 25, 50, 100.

In Exercises 15–18, use symmetry to evaluate the double integral.

15.
∫∫

R
x3 dA, R = [−4, 4] × [0, 5]

16.
∫∫

R
1 dA, R = [2, 4] × [−7, 7]

17.
∫∫

R
sin x dA, R = [0, 2π ] × [0, 2π ]

18.
∫∫

R
(2 + x2y) dA, R = [0, 1] × [−1, 1]

In Exercises 19–36, evaluate the iterated integral.

19.
∫ 3

1

∫ 2

0
x3y dy dx 20.

∫ 2

0

∫ 3

1
x3y dx dy

21.
∫ 9

4

∫ 8

−3
1 dx dy 22.

∫ −1

−4

∫ 8

4
(−5) dx dy

23.
∫ 1

−1

∫ π

0
x2 sin y dy dx 24.

∫ 1

−1

∫ π

0
x2 sin y dx dy

25.
∫ 6

2

∫ 4

1
x2 dx dy 26.

∫ 6

2

∫ 4

1
y2 dx dy

27.
∫ 1

0

∫ 2

0
(x + 4y3) dx dy 28.

∫ 2

0

∫ 2

0
(x2 − y2) dy dx

29.
∫ 4

0

∫ 9

0

√
x + 4y dx dy

30.
∫ π/4

0

∫ π/2

π/4
cos(2x + y) dy dx 31.

∫ 2

1

∫ 4

0

dy dx

x + y

32.
∫ 2

1

∫ 4

2
e3x−y dy dx 33.

∫ 4

0

∫ 5

0

dy dx√
x + y
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34.
∫ 8

0

∫ 2

1

x dx dy√
x2 + y

35.
∫ 2

1

∫ 3

1

ln(xy) dy dx

y

36.
∫ 1

0

∫ 3

2

1

(x + 4y)3
dx dy

In Exercises 37–42, use Eq. (1) to evaluate the integral.

37.
∫∫

R
x

y
dA, R = [−2, 4] × [1, 3]

38.
∫∫

R
x2y dA, R = [−1, 1] × [0, 2]

39.
∫∫

R
cos x sin 2y dA, R = [0, π

2

]× [0, π
2

]

40.
∫∫

R
y

x + 1
dA, R = [0, 2] × [0, 4]

41.
∫∫

R
ex sin y dA, R = [0, 2] × [0, π

4

]

42.
∫∫

R
e3x+4y dA, R = [0, 1] × [1, 2]

43. Let f (x, y) = mxy2, where m is a constant. Find a value of m such

that
∫∫

R
f (x, y) dA = 1, where R = [0, 1] × [0, 2].

44. Evaluate I =
∫ 3

1

∫ 1

0
yexy dy dx. You will need Integration by

Parts and the formula∫
ex(x−1 − x−2) dx = x−1ex + C

Then evaluate I again using Fubini’s Theorem to change the order of
integration (that is, integrate first with respect to x). Which method is
easier?

45. Evaluate
∫ 1

0

∫ 1

0

y

1 + xy
dy dx. Hint: Change the order of inte-

gration.

46. Calculate a Riemann sum S3,3 on the square R = [0, 3] × [0, 3]
for the function f (x, y) whose contour plot is shown in Figure 17.
Choose sample points and use the plot to find the values of f (x, y) at
these points.

2
3

4
5

x

y

0 1 2 3

1

2

3

FIGURE 17 Contour plot of f (x, y).

47. Using Fubini’s Theorem, argue that the solid in Figure 18
has volume AL, where A is the area of the front face of the solid.

z

x

y

ASide of area A

L

FIGURE 18

Further Insights and Challenges
48. Prove the following extension of the Fundamental Theorem of Cal-

culus to two variables: If
∂2F

∂x ∂y
= f (x, y), then

∫∫
R

f (x, y) dA = F(b, d) − F(a, d) − F(b, c) + F(a, c)

where R = [a, b] × [c, d].

49. Let F(x, y) = x−1exy . Show that
∂2F

∂x ∂y
= yexy and use the re-

sult of Exercise 48 to evaluate
∫∫

R
yexy dA for the rectangle R =

[1, 3] × [0, 1].
50. Find a function F(x, y) satisfying

∂2F

∂x ∂y
= 6x2y and use the

result of Exercise 48 to evaluate
∫∫

R
6x2y dA for the rectangle

R = [0, 1] × [0, 4].

51. In this exercise, we use double integration to evaluate the following
improper integral for a > 0 a positive constant:

I (a) =
∫ ∞

0

e−x − e−ax

x
dx

(a) Use L’Hôpital’s Rule to show that f (x) = e−x − e−ax

x
, though

not defined at x = 0, can be made continuous by assigning the value
f (0) = a − 1.

(b) Prove that |f (x)| ≤ e−x + e−ax for x > 1 (use the triangle in-
equality), and apply the Comparison Theorem to show that I (a) con-
verges.

(c) Show that I (a) =
∫ ∞

0

∫ a

1
e−xy dy dx.
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(d) Prove, by interchanging the order of integration, that

I (a) = ln a − lim
T →∞

∫ a

1

e−Ty

y
dy 2

(e) Use the Comparison Theorem to show that the limit in Eq. (2)
is zero. Hint: If a ≥ 1, show that e−Ty/y ≤ e−T for y ≥ 1, and if
a < 1, show that e−Ty/y ≤ e−aT /a for a ≤ y ≤ 1. Conclude that
I (a) = ln a (Figure 19).

4

x

y

1 2

y = e−x − e−5x

x

FIGURE 19 The shaded region has area ln 5.

15.2 Double Integrals over More General Regions
In the previous section, we restricted our attention to rectangular domains. Now we shall
treat the more general case of domains D whose boundaries are simple closed curves (a
curve is simple if it does not intersect itself). We assume that the boundary of D is smooth
as in Figure 1(A) or consists of finitely many smooth curves, joined together with possible
corners, as in Figure 1(B). A boundary curve of this type is called piecewise smooth. We
also assume that D is a closed domain; that is, D contains its boundary.

z = f(x, y) z = f(x, y)

z

x
y

z

x
y

Boundary Boundary

(B) D has a piecewise smooth boundary,
       consisting of three smooth curves
       joined at the corners.

(A) D has a smooth boundary.

D D

FIGURE 1

Fortunately, we do not need to start from the beginning to define the double integral

FIGURE 2 The function f̃ is zero outside
of D.

over a domain D of this type. Given a function f (x, y) on D, we choose a rectangle
R = [a, b] × [c, d] containing D and define a new function f̃ (x, y) that agrees with
f (x, y) on D and is zero outside of D (Figure 2):

f̃ (x, y) =
{

f (x, y) if (x, y) ∈ D
0 if (x, y) /∈ D

The double integral of f over D is defined as the integral of f̃ over R:

∫∫
D

f (x, y) dA =
∫∫

R
f̃ (x, y) dA 1

We say that f is integrable over D if the integral of f̃ over R exists. The value of the
integral does not depend on the particular choice of R because f̃ is zero outside of D.
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This definition seems reasonable because the integral of f̃ only “picks up” the values
of f on D. However, f̃ is likely to be discontinuous because its values jump suddenly to
zero beyond the boundary. Despite this possible discontinuity, the next theorem guarantees
that the integral of f̃ over R exists if our original function f is continuous.

THEOREM 1 If f (x, y) is continuous on a closed domain D whose boundary is a

closed, simple, piecewise smooth curve, then
∫∫

D
f (x, y) dA exists.

In Theorem 1, we define continuity on D to
mean that f is defined and continuous on
some open set containing D.

As in the previous section, the double integral defines the signed volume between
the graph of f (x, y) and the xy-plane, where regions below the xy-plane are assigned
negative volume.

We can approximate the double integral by Riemann sums for the function f̃ on a
rectangle R containing D. Because f̃ (P ) = 0 for points P in R that do not belong to D,
any such Riemann sum reduces to a sum over those sample points that lie in D:

∫∫
D

f (x, y) dA ≈
N∑

i=1

M∑
j=1

f̃ (Pij ) �xi �yj =
∑

f (Pij ) �xi �yj︸ ︷︷ ︸
Sum only over points

Pij that lie in D

2

EXAMPLE 1 Compute S4,4 for the integral
∫∫

D
(x + y) dA, where D is the shaded

x
0.5 1 1.5 2

0.5

1

1.5

2

y

FIGURE 3 Domain D

domain in Figure 3. Use the upper right-hand corners of the squares as sample points.

Solution Let f (x, y) = x + y. The subrectangles in Figure 3 have sides of length �x =
�y = 1

2 and area �A = 1
4 . Only 7 of the 16 sample points lie in D, so

S4,4 =
4∑

i=1

4∑
j=1

f̃ (Pij ) �x �y = 1

4

(
f (0.5, 0.5) + f (1, 0.5) + f (0.5, 1) + f (1, 1)

+ f (1.5, 1) + f (1, 1.5) + f (1.5, 1.5)
)

= 1

4

(
1 + 1.5 + 1.5 + 2 + 2.5 + 2.5 + 3

) = 7

2

The linearity properties of the double integral carry over to general domains: If f (x, y)

and g(x, y) are integrable and C is a constant, then∫∫
D

(f (x, y) + g(x, y)) dA =
∫∫

D
f (x, y) dA +

∫∫
D

g(x, y) dA∫∫
D

Cf (x, y) dA = C

∫∫
D

f (x, y) dA

Although we usually think of double integrals as representing volumes, it is worth
noting that we can express the area of a domain D in the plane as the double integral of
the constant function f (x, y) = 1:

Area(D) =
∫∫

D
1 dA 3
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Indeed, as we see in Figure 4, the the area of D is equal to the volume of the “cylinder”

x

y

z

1

D

FIGURE 4 The volume of the cylinder of
height 1 with D as base is equal to the area
of D.

of height 1 with D as base. More generally, for any constant C,∫∫
D

C dA = C Area(D) 4

CONCEPTUAL INSIGHT Eq. (3) tells us that we can approximate the area of a domain D
by a Riemann sum for

∫∫
D

1 dA. In this case, f (x, y) = 1, and we obtain a Riemann

sum by adding up the areas �xi �yj of those rectangles in a grid that are contained
in D or that intersects the boundary of D (Figure 5). The finer the grid, the better the
approximation. The exact area is the limit as the sides of the rectangles tend to zero.

Regions between Two Graphs
When D is a region between two graphs in the xy-plane, we can evaluate double integrals

x

y

�y

�x

D

FIGURE 5 The area of D is approximated by
the sum of the areas of the rectangles
contained in D.

over D as iterated integrals. We say that D is vertically simple if it is the region between
the graphs of two continuous functions y = g1(x) and y = g2(x) (Figure 6):

D = {(x, y) : a ≤ x ≤ b, g1(x) ≤ y ≤ g2(x)}
Similarly, D is horizontally simple if

D = {(x, y) : c ≤ y ≤ d, g1(y) ≤ x ≤ g2(y)}

When you write a double integral over a
vertically simple region as an iterated
integral, the inner integral is an integral
over the dashed segment shown in Figure
6(A). For a horizontally simple region, the
inner integral is an integral over the dashed
segment shown in Figure 6(B).

y = g2(x)

x = g1(y) x = g2(y)

y = g1(x)

g1(x) ≤ y ≤ g2(x)

g1(y) ≤ x ≤ g2(y)

x

y

(A) Vertically simple region (B) Horizontally simple region

a x b
x

y

c

y

d

FIGURE 6

THEOREM 2 If D is vertically simple with description

a ≤ x ≤ b, g1(x) ≤ y ≤ g2(x)

then ∫∫
D

f (x, y) dA =
∫ b

a

∫ g2(x)

g1(x)

f (x, y) dy dx

If D is a horizontally simple region with description

c ≤ y ≤ d, g1(y) ≤ x ≤ g2(y)

then ∫∫
D

f (x, y) dA =
∫ d

c

∫ g2(y)

g1(y)

f (x, y) dx dy
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Proof We sketch the proof, assuming that D is vertically simple (the horizontally simple
case is similar). Choose a rectangle R = [a, b] × [c, d] containing D. Then

Although f̃ need not be continuous, the
use of Fubini’s Theorem in Eq. (5) can be
justified. In particular, the integral∫ d

c

f̃ (x, y) dy exists and is a continuous

function of x.

∫∫
D

f (x, y) dA =
∫ b

a

∫ d

c

f̃ (x, y) dy dx 5

By definition, f̃ (x, y) is zero outside D, so for fixed x, f̃ (x, y) is zero unless y satisfies
g1(x) ≤ y ≤ g2(x). Therefore,∫ d

c

f̃ (x, y) dy =
∫ g2(x)

g1(x)

f (x, y) dy

Substituting in Eq. (5), we obtain the desired equality:∫∫
D

f (x, y) dA =
∫ b

a

∫ g2(x)

g1(x)

f (x, y) dy dx

Integration over a simple region is similar to integration over a rectangle with one
difference: The limits of the inner integral may be functions instead of constants.

EXAMPLE 2 Evaluate
∫∫

D
x2y dA, where D is the region in Figure 7.

1

y = 1/x

y =   x

y

31 x
x

Vertical segment
1/x ≤ y ≤   x

FIGURE 7 Domain between y = √
x and

y = 1/x.

Solution

Step 1. Describe D as a vertically simple region.

1 ≤ x ≤ 3︸ ︷︷ ︸
Limits of outer

integral

,
1

x
≤ y ≤ √

x︸ ︷︷ ︸
Limits of inner

integral

In this case, g1(x) = 1/x and g2(x) = √
x.

Step 2. Set up the iterated integral.∫∫
D

x2y dA =
∫ 3

1

∫ √
x

y=1/x

x2y dy dx

Notice that the inner integral is an integral over a vertical segment between the graphs
of y = 1/x and y = √

x.

Step 3. Compute the iterated integral.
As usual, we evaluate the inner integral by treating x as a constant, but now the upper
and lower limits depend on x:

∫ √
x

y=1/x

x2y dy = 1

2
x2y2

∣∣∣∣
√

x

y=1/x

= 1

2
x2(

√
x)2 − 1

2
x2
(

1

x

)2

= 1

2
x3 − 1

2

We complete the calculation by integrating with respect to x:

∫∫
D

x2y dA =
∫ 3

1

(
1

2
x3 − 1

2

)
dx =

(
1

8
x4 − 1

2
x

) ∣∣∣∣3
1

= 69

8
−
(

−3

8

)
= 9
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EXAMPLE 3 Horizontally Simple Description Better Find the volume V of the region
between the plane z = 2x + 3y and the triangle D in Figure 8.

z = 2x + 3y

y = x

y = 2
y = −x

2

x

y

z

4

FIGURE 8

Solution The triangle D is bounded by the lines y = x/2, y = x, and y = 2. We see in
Figure 9 that D is vertically simple, but the upper curve is not given by a single formula:
The formula switches from y = x to y = 2. Therefore, it is more convenient to describe
D as a horizontally simple region (Figure 9):

D : 0 ≤ y ≤ 2, y ≤ x ≤ 2y

D

y = x

y = −x
2

2

4

y

x

Segment
y ≤ x ≤ 2y

FIGURE 9

The volume is equal to the double integral of f (x, y) = 2x + 3y over D,

V =
∫∫

D
f (x, y) dA =

∫ 2

0

∫ 2y

x=y

(2x + 3y) dx dy

=
∫ 2

0

(
x2 + 3yx

)∣∣∣∣2y

x=y

dy =
∫ 2

0

(
(4y2 + 6y2) − (y2 + 3y2)

)
dy

=
∫ 2

0
6y2 dy = 2y3

∣∣∣∣2
0

= 16

The next example shows that in some cases, one iterated integral is easier to evaluate
than the other.

EXAMPLE 4 Choosing the Best Iterated Integral Evaluate
∫∫

D
ey2

dA for D in

Figure 10.
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D

D as a vertically simple domain:
0 ≤ x ≤ 4,  x/2 ≤ y ≤ 2

(A) (B)

≤ y ≤ 2

y = 2

y

2

x
x 4

D

D as a horizontally simple domain:
0 ≤ y ≤ 2,  0 ≤ x ≤ 2y

0 ≤ x ≤ 2y x = 2y

y

y

2

x
x 4

y = x
2

x
2

FIGURE 10 The region D is horizontally
and vertically simple.

Solution First, let’s try describing D as a vertically simple domain. Referring to Figure
10(A), we have

D : 0 ≤ x ≤ 4,
1

2
x ≤ y ≤ 2 ⇒

∫∫
D

ey2
dA =

∫ 4

x=0

∫ 2

y=x/2
ey2

dy dx

The inner integral cannot be evaluated because we have no explicit antiderivative for ey2
.

Therefore, we try describing D as horizontally simple [Figure 10(B)]:

D : 0 ≤ y ≤ 2, 0 ≤ x ≤ 2y

This leads to an iterated integral that can be evaluated:∫ 2

0

∫ 2y

x=0
ey2

dx dy =
∫ 2

0

(
xey2

∣∣∣2y

x=0

)
dy =

∫ 2

0
2yey2

dy

= ey2
∣∣∣2
0

= e4 − 1

EXAMPLE 5 Changing the Order of Integration Sketch the domain of integration D
corresponding to ∫ 9

1

∫ 3

√
y

xey dx dy

Then change the order of integration and evaluate.

y = x2 (or x =   y )

y ≤ x ≤ 3

1 ≤ y ≤ x2

y

y

9

1
x

x1 3

D

FIGURE 11 Describing D as a horizontally
or vertically simple region.

Solution The limits of integration give us inequalities that describe the domain D (as a
horizontally simple region since dx precedes dy):

1 ≤ y ≤ 9,
√

y ≤ x ≤ 3

We sketch the region in Figure 11. Now observe that D is also vertically simple:

1 ≤ x ≤ 3, 1 ≤ y ≤ x2

so we can rewrite our integral and evaluate:∫ 9

1

∫ 3

x=√
y

xey dx dy =
∫ 3

1

∫ x2

y=1
xey dy dx =

∫ 3

1

(∫ x2

y=1
xey dy

)
dx

=
∫ 3

1

(
xey
∣∣∣x2

y=1

)
dx =

∫ 3

1
(xex2 − ex) dx = 1

2
(ex2 − ex2)

∣∣∣3
1

= 1

2
(e9 − 9e) − 0 = 1

2
(e9 − 9e)
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In the next theorem, part (a) is a formal statement of the fact that larger functions
have larger integrals, a fact that we also noted in the single-variable case. Part (b) is useful
for estimating integrals.

THEOREM 3 Let f (x, y) and g(x, y) be integrable functions on D.

(a) If f (x, y) ≤ g(x, y) for all (x, y) ∈ D, then∫∫
D

f (x, y) dA ≤
∫∫

D
g(x, y) dA 6

(b) If m ≤ f (x, y) ≤ M for all (x, y) ∈ D, then

mArea(D) ≤
∫∫

D
f (x, y) dA ≤ M Area(D) 7

Proof If f (x, y) ≤ g(x, y), then every Riemann sum for f (x, y) is less than or equal to
the corresponding Riemann sum for g:∑

f (Pij ) �xi �yj ≤
∑

g(Pij ) �xi �yj

We obtain (6) by taking the limit. Now suppose that f (x, y) ≤ M and apply (6) with
g(x, y) = M: ∫∫

D
f (x, y) dA ≤

∫∫
D

M dA = M Area(D)

This proves half of (7). The other half follows similarly.

EXAMPLE 6 Estimate
∫∫

D
dA√

x2 + (y − 2)2
where D is the disk of radius 1 centered

at the origin.

Solution The quantity
√

x2 + (y − 2)2 is the distance d from (x, y) to (0, 2), and we see

Closest point
(d = 1)

Farthest point
(d = 3)

d

(0, 2)

y

x
1

(x, y)D

FIGURE 12 The distance d from (x, y) to
(0, 2) varies from 1 to 3 for (x, y) in the
unit disk.

from Figure 12 that 1 ≤ d ≤ 3. Taking reciprocals, we have

1

3
≤ 1√

x2 + (y − 2)2
≤ 1

We apply (7) with m = 1
3 and M = 1, using the fact that Area(D) = π , to obtain

π

3
≤
∫∫

D
dA√

x2 + (y − 2)2
≤ π

The average value (or mean value) of a function f (x, y) on a domain D, which we
denote by f , is the quantityREMINDER Equation (8) is similar to

the definition of an average value in one
variable:

f = 1

b − a

∫ b

a

f (x) dx =
∫ b

a
f (x) dx∫ b

a
1 dx

f = 1

Area(D)

∫∫
D

f (x, y) dA =
∫∫

D f (x, y) dA∫∫
D 1 dA

8
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Equivalently, f is the value satisfying the relation∫∫
D

f (x, y) dA = f · Area(D)

GRAPHICAL INSIGHT The solid region under the graph has the same (signed) volume as
the cylinder with base D of height f (Figure 13).

FIGURE 13

EXAMPLE 7 An architect needs to know the average height H of the ceiling of a
pagoda whose base D is the square [−4, 4] × [−4, 4] and roof is the graph of

H(x, y) = 32 − x2 − y2

where distances are in feet (Figure 14). Calculate H .

FIGURE 14 Pagoda with ceiling
H(x, y) = 32 − x2 − y2.

Solution First, we compute the integral of H(x, y) over D:∫∫
D

(32 − x2 − y2) dA =
∫ 4

−4

∫ 4

−4
(32 − x2 − y2) dy dx

=
∫ 4

−4

((
32y − x2y − 1

3
y3
) ∣∣∣∣4−4

)
dx =

∫ 4

−4

(
640

3
− 8x2

)
dx

=
(

640

3
x − 8

3
x3
) ∣∣∣∣4−4

= 4096

3

The area of D is 8 × 8 = 64, so the average height of the pagoda’s ceiling is

H = 1

Area(D)

∫∫
D

H(x, y) dA = 1

64

(
4096

3

)
= 64

3
≈ 21.3 ft

The Mean Value Theorem states that a continuous function on a domain D must take
on its average value at some point P in D, provided that D is closed, bounded, and also
connected (see Exercise 63 for a proof). By definition, D is connected if any two points
in D can be joined by a curve in D (Figure 15).

(A) Connected domain: Any two
       points can be joined by a curve
       lying entirely in    .  

(B) Nonconnected domain.

P

Q

P

Q

FIGURE 15

THEOREM 4 Mean Value Theorem for Double Integrals If f (x, y) is continuous and
D is closed, bounded, and connected, then there exists a point P ∈ D such that∫∫

D
f (x, y) dA = f (P )Area(D) 9

Equivalently, f (P ) = f , where f is the average value of f on D.
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Decomposing the Domain into Smaller Domains
Double integrals are additive with respect to the domain: If D is the union of domains

D1

D2

D3 DN

FIGURE 16 The region D is a union of
smaller domains.

D1, D2, . . . , DN that do not overlap except possibly on boundary curves (Figure 16), then∫∫
D

f (x, y) dA =
∫∫

D1

f (x, y) dA + · · · +
∫∫

DN

f (x, y) dA

Additivity may be used to evaluate double integrals over domains D that are not simple
but can be decomposed into finitely many simple domains.

We close this section with a simple but useful remark. If f (x, y) is a continuous

In general, the approximation (10) is useful
only if D is small in both width and length,
that is, if D is contained in a circle of
small radius. If D has small area but is
very long and thin, then f may be far from
constant on D.

function on a small domain D, then∫∫
D

f (x, y) dA ≈ f (P )Area(D)︸ ︷︷ ︸
Function value × area

10

where P is any sample point in D. In fact, we can choose P so that (10) is an equality by
Theorem 4. But if D is small, then f is nearly constant on D, and (10) holds as a good
approximation for all P ∈ D.

If the domain D is not small, we may partition it into N smaller subdomains
D1, . . . , DN and choose sample points Pj in Dj . By additivity,∫∫

D
f (x, y) dA =

N∑
j=1

∫∫
Dj

f (x, y) dA ≈
N∑

j=1

f (Pj )Area(Dj )

and thus we have the approximation

∫∫
D

f (x, y) dA ≈
N∑

j=1

f (Pj )Area(Dj ) 11

We can think of Eq. (11) as a generalization of the Riemann sum approximation. In a
Riemann sum, D is partitioned by rectangles Rij of area �Aij = �xi �yj .

EXAMPLE 8 Estimate
∫∫

D
f (x, y) dA for the domain D in Figure 17, using the

areas and function values given there and the accompanying table.
D1

D2

D4D3
P1

P2

P4P3

FIGURE 17

j 1 2 3 4

Area(Dj ) 1 1 0.9 1.2

f (Pj ) 1.8 2.2 2.1 2.4

Solution∫∫
D

f (x, y) dA ≈
4∑

j=1

f (Pj )Area(Dj )

= (1.8)(1) + (2.2)(1) + (2.1)(0.9) + (2.4)(1.2) ≈ 8.8

15.2 SUMMARY

• We assume that D is a closed, bounded domain whose boundary is a simple closed curve
that either is smooth or has a finite number of corners. The double integral is defined by∫∫

D
f (x, y) dA =

∫∫
R

f̃ (x, y) dA

where R is a rectangle containing D and f̃ (x, y) = f (x, y) if (x, y) ∈ D, and f̃ (x, y) = 0
otherwise. The value of the integral does not depend on the choice of R.
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• The double integral defines the signed volume between the graph of f (x, y) and the
xy-plane, where regions below the xy-plane are assigned negative volume.

• For any constant C,
∫∫

D
C dA = C · Area(D).

• If D is vertically or horizontally simple,
∫∫

D
f (x, y) dA can be evaluated as an iterated

integral:

Vertically simple domain
a ≤ x ≤ b, g1(x) ≤ y ≤ g2(x)

∫ b

a

∫ g2(x)

g1(x)

f (x, y) dy dx

Horizontally simple domain
c ≤ y ≤ d, g1(y) ≤ x ≤ g2(y)

∫ d

c

∫ g2(y)

g1(y)

f (x, y) dx dy

• If f (x, y) ≤ g(x, y) on D, then
∫∫

D
f (x, y) dA ≤

∫∫
D

g(x, y) dA.

• If m is the minimum value and M the maximum value of f on D, then

m Area(D) ≤
∫∫

D
f (x, y) dA ≤

∫∫
D

M dA = M Area(D)

• The average value of f on D is

f = 1

Area(D)

∫∫
D

f (x, y) dA =
∫∫

D f (x, y) dA∫∫
D 1 dA

• Mean Value Theorem for Integrals: If f (x, y) is continuous and D is closed, bounded,
and connected, then there exists a point P ∈ D such that∫∫

D
f (x, y) dA = f (P )Area(D)

Equivalently, f (P ) = f , where f is the average value of f on D.
• Additivity with respect to the domain: If D is a union of nonoverlapping (except possibly
on their boundaries) domains D1, . . . , DN , then

∫∫
D

f (x, y) dA =
N∑

j=1

∫∫
Dj

f (x, y) dA

• If the domains D1, . . . , DN are small and Pj is a sample point in Dj , then

∫∫
D

f (x, y) dA ≈
N∑

j=1

f (Pj )Area(Dj )

15.2 EXERCISES

Preliminary Questions
1. Which of the following expressions do not make sense?

(a)
∫ 1

0

∫ x

1
f (x, y) dy dx (b)

∫ 1

0

∫ y

1
f (x, y) dy dx

(c)
∫ 1

0

∫ y

x
f (x, y) dy dx (d)

∫ 1

0

∫ 1

x
f (x, y) dy dx

2. Draw a domain in the plane that is neither vertically nor horizon-
tally simple.

3. Which of the four regions in Figure 18 is the domain of integration

for
∫ 0

−√
2/2

∫ √
1−x2

−x
f (x, y) dy dx?
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x
1−1

y

A

B

D

C

π

4

FIGURE 18

4. Let D be the unit disk. If the maximum value of f (x, y) on D is

4, then the largest possible value of
∫∫

D
f (x, y) dA is (choose the

correct answer):

(a) 4 (b) 4π (c)
4

π

Exercises
1. Calculate the Riemann sum for f (x, y) = x − y and the shaded

domain D in Figure 19 with two choices of sample points, • and ◦.
Which do you think is a better approximation to the integral of f over
D? Why?

x
1 2 3

1

2

3

4

y

FIGURE 19

2. Approximate values of f (x, y) at sample points on a grid are given

in Figure 20. Estimate
∫∫

D
f (x, y) dx dy for the shaded domain by

computing the Riemann sum with the given sample points.

x
1

1

−1.5

3.3

3.23.23.1

3.5
3.5

3.5

3.6

3.6

3.9

2.9

3

3

3

2

2.32.7

2.5 4.1

4

y

FIGURE 20

3. Express the domain D in Figure 21 as both a vertically simple
region and a horizontally simple region, and evaluate the integral of
f (x, y) = xy over D as an iterated integral in two ways.

x

y = 1 − x2

y

1

1

FIGURE 21

4. Sketch the domain

D : 0 ≤ x ≤ 1, x2 ≤ y ≤ 4 − x2

and evaluate
∫∫

D
y dA as an iterated integral.

In Exercises 5–7, compute the double integral of f (x, y) = x2y over
the given shaded domain in Figure 22.

5. (A) 6. (B) 7. (C)

(A)

x
1 2 3 4

y

1
2

(B)

x
1 2 3 4

y

1
2

(C)

x
1 2 3 4

y

1
2

FIGURE 22

8. Sketch the domain D defined by x + y ≤ 12, x ≥ 4, y ≥ 4 and

compute
∫∫

D
ex+y dA.

9. Integrate f (x, y) = x over the region bounded by y = x2 and
y = x + 2.

10. Sketch the region D between y = x2 and y = x(1 − x). Ex-
press D as a simple region and calculate the integral of f (x, y) = 2y

over D.

11. Evaluate
∫∫

D
y

x
dA, where D is the shaded part of the semicircle

of radius 2 in Figure 23.

12. Calculate the double integral of f (x, y) = y2 over the rhombus R
in Figure 24.

y

x
21

FIGURE 23 y =
√

4 − x2

R

y

4

−4

x
2−2

FIGURE 24 |x| + 1
2 |y| ≤ 1
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13. Calculate the double integral of f (x, y) = x + y over the domain
D = {(x, y) : x2 + y2 ≤ 4, y ≥ 0}.
14. Integrate f (x, y) = (x + y + 1)−2 over the triangle with vertices
(0, 0), (4, 0), and (0, 8).

15. Calculate the integral of f (x, y) = x over the region D bounded
above by y = x(2 − x) and below by x = y(2 − y). Hint: Apply the
quadratic formula to the lower boundary curve to solve for y as a func-
tion of x.

16. Integrate f (x, y) = x over the region bounded by y = x, y =
4x − x2, and y = 0 in two ways: as a vertically simple region and
as a horizontally simple region.

In Exercises 17–24, compute the double integral of f (x, y) over the
domain D indicated.

17. f (x, y) = x2y; 1 ≤ x ≤ 3, x ≤ y ≤ 2x + 1

18. f (x, y) = 1; 0 ≤ x ≤ 1, 1 ≤ y ≤ ex

19. f (x, y) = x; 0 ≤ x ≤ 1, 1 ≤ y ≤ ex2

20. f (x, y) = cos(2x + y); 1
2 ≤ x ≤ π

2 , 1 ≤ y ≤ 2x

21. f (x, y) = 2xy; bounded by x = y, x = y2

22. f (x, y) = sin x; bounded by x = 0, x = 1, y = cos x

23. f (x, y) = ex+y ; bounded by y = x − 1, y = 12 − x for
2 ≤ y ≤ 4

24. f (x, y) = (x + y)−1; bounded by y = x, y = 1, y = e, x = 0

In Exercises 25–28, sketch the domain of integration and express as an
iterated integral in the opposite order.

25.
∫ 4

0

∫ 4

x
f (x, y) dy dx 26.

∫ 9

4

∫ 3

√
y

f (x, y) dx dy

27.
∫ 9

4

∫ √
y

2
f (x, y) dx dy 28.

∫ 1

0

∫ e

ex
f (x, y) dy dx

29. Sketch the domain D corresponding to

∫ 4

0

∫ 2

√
y

√
4x2 + 5y dx dy

Then change the order of integration and evaluate.

30. Change the order of integration and evaluate

∫ 1

0

∫ π/2

0
x cos(xy) dx dy

Explain the simplification achieved by changing the order.

31. Compute the integral of f (x, y) = (ln y)−1 over the domain D
bounded by y = ex and y = e

√
x . Hint: Choose the order of integra-

tion that enables you to evaluate the integral.

32. Evaluate by changing the order of integration:∫ 9

0

∫ √
y

0

x dx dy

(3x2 + y)1/2

In Exercises 33–36, sketch the domain of integration. Then change the
order of integration and evaluate. Explain the simplification achieved
by changing the order.

33.
∫ 1

0

∫ 1

y

sin x

x
dx dy 34.

∫ 4

0

∫ 2

√
y

√
x3 + 1 dx dy

35.
∫ 1

0

∫ 1

y=x
xey3

dy dx 36.
∫ 1

0

∫ 1

y=x2/3
xey4

dy dx

37. Sketch the domain D where 0 ≤ x ≤ 2, 0 ≤ y ≤ 2, and x or y is

greater than 1. Then compute
∫∫

D
ex+y dA.

38. Calculate
∫∫

D
ex dA, where D is bounded by the lines y = x + 1,

y = x, x = 0, and x = 1.

In Exercises 39–42, calculate the double integral of f (x, y) over the
triangle indicated in Figure 25.

x
1 2 3 4 5

4
3
2
1

y

(A)

x
1 2 3 4 5

4
3
2
1

y

(B)

x
1 2 3 4 5

4
3
2
1

y

(C)

x
1 2 3 4 5

4
5 5

3
2
1

y

(D)

FIGURE 25

39. f (x, y) = ex2
, (A) 40. f (x, y) = 1 − 2x, (B)

41. f (x, y) = x

y2
, (C) 42. f (x, y) = x + 1, (D)

43. Calculate the double integral of f (x, y) = sin y

y
over the region

D in Figure 26.

D

y y = x

2

1

x

x
2

y =

FIGURE 26
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44. Evaluate
∫∫

D
x dA for D in Figure 27.

y

2

1

x

D

FIGURE 27

45. Find the volume of the region bounded by z = 40 − 10y, z = 0,
y = 0, y = 4 − x2.

46. Find the volume of the region enclosed by z = 1 − y2 and z =
y2 − 1 for 0 ≤ x ≤ 2.

47. Calculate the average value of f (x, y) = ex+y on the square
[0, 1] × [0, 1].
48. Calculate the average height above the x-axis of a point in the
region 0 ≤ x ≤ 1, 0 ≤ y ≤ x2.

49. Find the average height of the “ceiling” in Figure 28 defined by
z = y2 sin x for 0 ≤ x ≤ π , 0 ≤ y ≤ 1.

z

y

x

1

π

FIGURE 28

50. Calculate the average value of the x-coordinate of a point on the
semicircle x2 + y2 ≤ R2, x ≥ 0. What is the average value of the y-
coordinate?

51. What is the average value of the linear function

f (x, y) = mx + ny + p

on the ellipse
(x

a

)2 +
(y

b

)2 ≤ 1? Argue by symmetry rather than cal-

culation.

52. Find the average square distance from the origin to a point in the
domain D in Figure 29.

1 3

(x, y)

x = y2 + 1
y

1

x

FIGURE 29

53. Let D be the rectangle 0 ≤ x ≤ 2, − 1
8 ≤ y ≤ 1

8 , and let f (x, y) =√
x3 + 1. Prove that ∫∫

D
f (x, y) dA ≤ 3

2

54. (a) Use the inequality 0 ≤ sin x ≤ x for x ≥ 0 to show that∫ 1

0

∫ 1

0
sin(xy) dx dy ≤ 1

4

(b) Use a computer algebra system to evaluate the double integral to
three decimal places.

55. Prove the inequality
∫∫

D
dA

4 + x2 + y2
≤ π , where D is the disk

x2 + y2 ≤ 4.

56. Let D be the domain bounded by y = x2 + 1 and y = 2. Prove the
inequality

4

3
≤
∫∫

D
(x2 + y2)dA ≤ 20

3

57. Let f be the average of f (x, y) = xy2 on D = [0, 1] × [0, 4].
Find a point P ∈ D such that f (P ) = f (the existence of such a point
is guaranteed by the Mean Value Theorem for Double Integrals).

58. Verify the Mean Value Theorem for Double Integrals for f (x, y) =
ex−y on the triangle bounded by y = 0, x = 1, and y = x.

In Exercises 59 and 60, use (11) to estimate the double integral.

59. The following table lists the areas of the subdomains Dj of the
domain D in Figure 30 and the values of a function f (x, y) at sample

points Pj ∈ Dj . Estimate
∫∫

D
f (x, y) dA.

j 1 2 3 4 5 6

Area(Dj ) 1.2 1.1 1.4 0.6 1.2 0.8
f (Pj ) 9 9.1 9.3 9.1 8.9 8.8

Domain D

D1

D2

D3

D4

D5

D6

FIGURE 30
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60. The domain D between the circles of radii 5 and 5.2 in the
first quadrant in Figure 31 is divided into six subdomains of angu-
lar width �θ = π

12 , and the values of a function f (x, y) at sample
points are given. Compute the area of the subdomains and estimate∫∫

D
f (x, y) dA.

61. According to Eq. (3), the area of a domain D is equal to
∫∫

D
1 dA.

Prove that if D is the region between two curves y = g1(x) and
y = g2(x) with g2(x) ≤ g1(x) for a ≤ x ≤ b, then∫∫

D
1 dA =

∫ b

a
(g1(x) − g2(x)) dx

x
5 5.2

2.5

2.4

2.2

2
1.7

1.5

y

�θ = π

12

FIGURE 31

Further Insights and Challenges
62. Let D be a closed connected domain and let P, Q ∈ D. The Inter-
mediate Value Theorem (IVT) states that if f is continuous on D, then
f (x, y) takes on every value between f (P ) and f (Q) at some point
in D.
(a) Show, by constructing a counterexample, that the IVT is false if D
is not connected.
(b) Prove the IVT as follows: Let c(t) be a path such that c(0) = P

and c(1) = Q (such a path exists because D is connected). Apply the
IVT in one variable to the composite function f (c(t)).

63. Use the fact that a continuous function on a closed domain D at-
tains both a minimum value m and a maximum value M , together with
Theorem 3, to prove that the average value f lies between m and M .

Then use the IVT in Exercise 62 to prove the Mean Value Theorem for
Double Integrals.

64. Let f (y) be a function of y alone and set G(t) =∫ t

0

∫ x

0
f (y) dy dx.

(a) Use the Fundamental Theorem of Calculus to prove that G′′(t) =
f (t).

(b) Show, by changing the order in the double integral, that G(t) =∫ t

0
(t − y)f (y) dy. This shows that the “second antiderivative” of f (y)

can be expressed as a single integral.

15.3 Triple Integrals
Triple integrals of functions f (x, y, z) of three variables are a fairly straightforward gen-
eralization of double integrals. Instead of a rectangle in the plane, our domain is a box
(Figure 1)

FIGURE 1 The box
B = [a, b] × [c, d] × [p, q] decomposed
into smaller boxes.

B = [a, b] × [c, d] × [p, q]
consisting of all points (x, y, z) in R3 such that

a ≤ x ≤ b, c ≤ y ≤ d, p ≤ z ≤ q

To integrate over this box, we subdivide the box (as usual) into “sub”-boxes

Bijk = [xi−1, xi] × [yj−1, yj ] × [zk−1, zk]
by choosing partitions of the three intervals

a = x0 < x1 < · · · < xN = b

c = y0 < y1 < · · · < yM = d

p = z0 < z1 < · · · < zL = q

Here N, M, and L are positive integers. The volume of Bijk is �Vijk = �xi �yj �zk

where

�xi = xi − xi−1, �yj = yj − yj−1, �zk = zk − zk−1
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Then, we choose a sample point Pijk in each box Bijk and form the Riemann sum

SN,M,L =
N∑

i=1

M∑
j=1

L∑
k=1

f (Pijk) �Vijk

As in the previous section, we write P = {{xi}, {yj }, {zk}} for the partition and let ‖P‖
be the maximum of the widths �xi, �yj , �zk . If the sums SN,M,L approach a limit as
‖P‖ → 0 for arbitrary choices of sample points, we say that f is integrable over B. The
limit value is denoted ∫∫∫

B
f (x, y, z) dV = lim

‖P‖→0
SN,M,L

Triple integrals have many of the same properties as double and single integrals.
The linear properties are satisfied, and continuous functions are integrable over a box B.
Furthermore, triple integrals can be evaluated as iterated integrals.

The notation dA, used in the previous
section, suggests area and occurs in double
integrals over domains in the plane.
Similarly, dV suggests volume and is used
in the notation for triple integrals.

THEOREM 1 Fubini’s Theorem for Triple Integrals The triple integral of a continuous
function f (x, y, z) over a box B = [a, b] × [c, d] × [p, q] is equal to the iterated
integral:

∫∫∫
B

f (x, y, z) dV =
∫ b

x=a

∫ d

y=c

∫ q

z=p

f (x, y, z) dz dy dx

Furthermore, the iterated integral may be evaluated in any order.

As noted in the theorem, we are free to evaluate the iterated integral in any order
(there are six different orders). For instance,∫ b

x=a

∫ d

y=c

∫ q

z=p

f (x, y, z) dz dy dx =
∫ q

z=p

∫ d

y=c

∫ b

x=a

f (x, y, z) dx dy dz

EXAMPLE 1 Integration over a Box Calculate the integral
∫∫∫

B
x2ey+3z dV , where

B = [1, 4] × [0, 3] × [2, 6].
Solution We write this triple integral as an iterated integral:∫∫∫

B
x2ey+3z dV =

∫ 4

1

∫ 3

0

∫ 6

2
x2ey+3z dz dy dx

Step 1. Evaluate the inner integral with respect to z, holding x and y constant.∫ 6

z=2
x2ey+3z dz = 1

3
x2ey+3z

∣∣∣∣6
2

= 1

3
x2ey+18 − 1

3
x2ey+6 = 1

3
(e18 − e6)x2ey

Step 2. Evaluate the middle integral with respect to y, holding x constant.∫ 3

y=0

1

3
(e18 − e6)x2ey dy = 1

3
(e18 − e6)x2

∫ 3

y=0
ey dy = 1

3
(e18 − e6)(e3 − 1)x2

Step 3. Evaluate the outer integral with respect to x.∫∫∫
B

(x2ey+3z) dV = 1

3
(e18 − e6)(e3 − 1)

∫ 4

x=1
x2 dx = 7(e18 − e6)(e3 − 1)
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Note that in the previous example, the integrand factors as a product of three functions
f (x, y, z) = g(x)h(y)k(z)—namely,

f (x, y, z) = x2ey+3z = x2eye3z

Because of this, the triple integral can be evaluated simply as the product of three single
integrals:∫∫∫

B
x2eye3z dV =

(∫ 4

1
x2 dx

)(∫ 3

0
ey dy

)(∫ 6

2
e3z dz

)

= (21)(e3 − 1)

(
e18 − e6

3

)
= 7(e18 − e6)(e3 − 1)

Next, instead of a box, we integrate over a solid region W that is simple as in Figure
2. In other words, W is the region between two surfaces z = z1(x, y) and z = z2(x, y)

over a domain D in the xy-plane. In this case,

D

P = (x, y, z)

(x, y)

Region W

x
y

z

z = z2(x, y)

z = z1(x, y)

FIGURE 2 The point P = (x, y, z) in the
simple region W if (x, y) ∈ D and
z1(x, y) ≤ z ≤ z2(x, y).

W = {(x, y, z) : (x, y) ∈ D and z1(x, y) ≤ z ≤ z2(x, y)} 1

The domain D is the projection of W onto the xy-plane.
As a formal matter, as in the case of double integrals, we define the triple integral of

f (x, y, z) over W by∫∫∫
W

f (x, y, z) dV =
∫∫∫

B
f̃ (x, y, z) dV

where B is a box containing W , and f̃ is the function that is equal to f on W and equal
to zero outside of W . The triple integral exists, assuming that z1(x, y), z2(x, y), and the
integrand f are continuous. In practice, however, we evaluate triple integrals as iterated
integrals. This is justified by the following theorem, whose proof is similar to that of
Theorem 2 in Section 15.2.

THEOREM 2 The triple integral of a continuous function f over the region

W : (x, y) ∈ D, z1(x, y) ≤ z ≤ z2(x, y)

is equal to the iterated integral

∫∫∫
W

f (x, y, z) dV =
∫∫

D

(∫ z2(x,y)

z=z1(x,y)

f (x, y, z) dz

)
dA

One thing missing from our discussion so far is a geometric interpretation of triple
integrals. A double integral represents the signed volume of the three-dimensional region
between a graph z = f (x, y) and the xy-plane. The graph of a function f (x, y, z) ofMore generally, integrals of functions of n

variables (for any n) arise naturally in many
different contexts. For example, the average
distance between two points in a ball is
expressed as a six-fold integral because we
integrate over all possible coordinates of
the two points. Each point has three
coordinates for a total of six variables.

three variables lives in four-dimensional space, and thus a triple integral represents a
four-dimensional volume. This volume is hard or impossible to visualize. On the other
hand, triple integrals represent many other types of quantities. Some examples are total
mass, average value, probabilities, and centers of mass (see Section 15.5).

Furthermore, the volume V of a region W is defined as the triple integral of the
constant function f (x, y, z) = 1:

V =
∫∫∫

W
1 dV
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In particular, if W is a simple region between z = z1(x, y) and z = z2(x, y), then∫∫∫
W

1 dV =
∫∫

D

(∫ z2(x,y)

z=z1(x,y)

1 dz

)
dA =

∫∫
D

(z2(x, y) − z1(x, y)) dA

Thus, the triple integral is equal to the double integral defining the volume of the region
between the two surfaces.

EXAMPLE 2 Solid Region with a Rectangular Base Evaluate
∫∫∫

W
z dV , where W

is the region between the planes z = x + y and z = 3x + 5y lying over the rectangle
D = [0, 3] × [0, 2] (Figure 3).

FIGURE 3 Region W between the planes
z = x + y and z = 3x + 5y lying over
D = [0, 3] × [0, 2].

Solution Apply Theorem 2 with z1(x, y) = x + y and z2(x, y) = 3x + 5y:

∫∫∫
W

z dV =
∫∫

D

(∫ 3x+5y

z=x+y

z dz

)
dA =

∫ 3

x=0

∫ 2

y=0

∫ 3x+5y

z=x+y

z dz dy dx

Step 1. Evaluate the inner integral with respect to z.∫ 3x+5y

z=x+y

z dz = 1

2
z2
∣∣∣∣3x+5y

z=x+y

= 1

2
(3x + 5y)2 − 1

2
(x + y)2 = 4x2 + 14xy + 12y2

2
Step 2. Evaluate the result with respect to y.∫ 2

y=0
(4x2 + 14xy + 12y2) dy = (4x2y + 7xy2 + 4y3)

∣∣∣∣2
y=0

= 8x2 + 28x + 32

Step 3. Evaluate the result with respect to x.∫∫∫
W

z dV =
∫ 3

x=0
(8x2 + 28x + 32) dx =

(
8

3
x3 + 14x2 + 32x

) ∣∣∣∣3
0

= 72 + 126 + 96 = 294

EXAMPLE 3 Solid Region with a Triangular Base Evaluate
∫∫∫

W
z dV , where W

FIGURE 4 Region W between the planes
z = x + y and z = 3x + 5y lying over the
triangle D.

is the region in Figure 4.

Solution This is similar to the previous example, but now W lies over the triangle D in
the xy-plane defined by

0 ≤ x ≤ 1, 0 ≤ y ≤ 1 − x

Thus, the triple integral is equal to the iterated integral:∫∫∫
W

z dV =
∫∫

D

(∫ 3x+5y

z=x+y

z dz

)
dA =

∫ 1

x=0

∫ 1−x

y=0︸ ︷︷ ︸
Integral

over triangle

∫ 3x+5y

z=x+y

z dz dy dx

We computed the inner integral in the previous example [see Eq. (2)]:∫ 3x+5y

z=x+y

z dz = 1

2
z2
∣∣∣∣3x+5y

x+y

= 4x2 + 14xy + 12y2
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Next, we integrate with respect to y:∫ 1−x

y=0
(4x2 + 14xy + 12y2) dy = (4x2y + 7xy2 + 4y3)

∣∣∣∣1−x

y=0

= 4x2(1 − x) + 7x(1 − x)2 + 4(1 − x)3

= 4 − 5x + 2x2 − x3

And finally, ∫∫∫
W

z dV =
∫ 1

x=0
(4 − 5x + 2x2 − x3) dx

= 4 − 5

2
+ 2

3
− 1

4
= 23

12

EXAMPLE 4 Region between Intersecting Surfaces Integrate f (x, y, z) = x over the
region W bounded above by z = 4 − x2 − y2 and below by z = x2 + 3y2 in the octant
x ≥ 0, y ≥ 0, z ≥ 0.

Solution The region W is simple, so

∫∫∫
W

x dV =
∫∫

D

∫ 4−x2−y2

z=x2+3y2
x dz dA

where D is the projection of W onto the xy-plane. To evaluate the integral over D, we
must find the equation of the curved part of the boundary of D.

Step 1. Find the boundary of D.
The upper and lower surfaces intersect where they have the same height:

z = x2 + 3y2 = 4 − x2 − y2 or x2 + 2y2 = 2

Therefore, as we see in Figure 5, W projects onto the domain D consisting of the
quarter of the ellipse x2 + 2y2 = 2 in the first quadrant. This ellipse hits the axes at
(
√

2, 0) and (0, 1).

Curve where surfaces
intersect lies above
boundary of D.

2

z = 4 − x2 − y2

x2 + 2y2 = 2

z = x2 + 3y2

z = 4 − x2 − y2

z = x2 + 3y2

1
D

22

(A) (B)

y

x

2

4

y

x

z

W

z

FIGURE 5 Region
x2 + 3y2 ≤ z ≤ 4 − x2 − y2.
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Step 2. Express D as a simple domain.
We can integrate in either the order dy dx or dx dy. If we choose dx dy, then y varies
from 0 to 1 and the domain is described by

D : 0 ≤ y ≤ 1, 0 ≤ x ≤
√

2 − 2y2

Step 3. Write the triple integral as an iterated integral.

∫∫∫
W

x dV =
∫ 1

y=0

∫ √
2−2y2

x=0

∫ 4−x2−y2

z=x2+3y2
x dz dx dy

Step 4. Evaluate.
Here are the results of evaluating the integrals in order:

Inner integral:
∫ 4−x2−y2

z=x2+y2
x dz = xz

∣∣∣∣4−x2−y2

z=x2+3y2
= 4x − 2x3 − 4y2x

Middle integral:

∫ √
2−2y2

x=0
(4x − 2x3 − 4y2x) dx =

(
2x2 − 1

2
x4 − 2x2y2

) ∣∣∣∣
√

2−2y2

x=0

= 2 − 4y2 + 2y4

Triple integral:
∫∫∫

W
x dV =

∫ 1

0
(2 − 4y2 + 2y4) dy = 2 − 4

3
+ 2

5
= 16

15

So far, we have evaluated triple integrals by projecting the region W onto a domain
D in the xy-plane. We can integrate equally well by projecting onto domains in the xz- or
yz-plane. For example, if W is the simple region between the graphs of x = x1(y, z) and
x = x2(y, z) lying over a domain D in the yz-plane (Figure 6), then

z

y

x

x = x1(y, z)

x = x2(y, z)

Region W

FIGURE 6 D is the projection of W onto the
yz-plane.

∫∫∫
W

f (x, y, z) dV =
∫∫

D

(∫ x2(y,z)

x=x1(y,z)

f (x, y, z) dx

)
dA

EXAMPLE 5 Writing a Triple Integral in Three Ways The region W in Figure 7 is
bounded by

z = 4 − y2, y = 2x, z = 0, x = 0

Express
∫∫∫

W
xyz dV as an iterated integral in three ways, by projecting onto each of

the three coordinate planes (but do not evaluate).

Solution We consider each coordinate plane separately.

Step 1. The xy-plane.
The upper face z = 4 − y2 intersects the first quadrant of the xy-plane (z = 0) in the
line y = 2 [Figure 7(A)]. Therefore, the projection of W onto the xy-plane is a triangle
D defined by 0 ≤ x ≤ 1, 2x ≤ y ≤ 2, and

You can check that all three ways of writing
the triple integral in Example 5 yield the
same answer:∫∫∫

W
xyz dV = 2

3

W : 0 ≤ x ≤ 1, 2x ≤ y ≤ 2, 0 ≤ z ≤ 4 − y2

∫∫∫
W

xyz dV =
∫ 1

x=0

∫ 2

y=2x

∫ 4−y2

z=0
xyz dz dy dx 3
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y

z

y = 2x

Left face

Upper face
z = 4 − y2

z = 4 − y2

P = (x, 0, 4 − 4x2)

Q = (x, 2x, 4 − 4x2)

(x, 2x)

(x, 0, z)

y = 2

x
1 2

D

(A) Projection to xy-plane

y

z

x
y

z

x

x

4

T

S S

2 1 12

2x ≤ y ≤    4 − z

y

z

x
2

x

(B) Projection to yz-plane (C) Projection to xz-plane (D) The y-coordinates of points in
       the solid satisfy 2x ≤ y ≤    4 − z.

x = y
2

x = y
2

y
2

0 ≤ x ≤

FIGURE 7

Step 2. The yz-plane.
The projection of W onto the yz-plane is the domain T [Figure 7(B)]:

T : 0 ≤ y ≤ 2, 0 ≤ z ≤ 4 − y2

The region W consists of all points lying between T and the “left face” x = 1
2y. In

other words, the x-coordinate must satisfy 0 ≤ x ≤ 1
2y. Thus,

W : 0 ≤ y ≤ 2, 0 ≤ z ≤ 4 − y2, 0 ≤ x ≤ 1

2
y

∫∫∫
W

xyz dV =
∫ 2

y=0

∫ 4−y2

z=0

∫ y/2

x=0
xyz dx dz dy

Step 3. The xz-plane.
The challenge in this case is to determine the projection of W onto the xz-plane, that
is, the region S in Figure 7(C). We need to find the equation of the boundary curve of
S. A point P on this curve is the projection of a point Q = (x, y, z) on the boundary
of the left face. Since Q lies on both the plane y = 2x and the surface z = 4 − y2,
Q = (x, 2x, 4 − 4x2). The projection of Q is P = (x, 0, 4 − 4x2). We see that the
projection of W onto the xz-plane is the domain

S : 0 ≤ x ≤ 1, 0 ≤ z ≤ 4 − 4x2

This gives us limits for x and z variables, so the triple integral can be written∫∫∫
W

xyz dV =
∫ 1

x=0

∫ 4−4x2

z=0

∫ ??

y=??
xyz dy dz dx

What are the limits for y? The equation of the upper face z = 4 − y2 can be written
y = √

4 − z. Referring to Figure 7(D), we see that W is bounded by the left face
y = 2x and the upper face y = √

4 − z. In other words, the y-coordinate of a point in
W satisfies

2x ≤ y ≤ √
4 − z

Now we can write the triple integral as the following iterated integral:∫∫∫
W

xyz dV =
∫ 1

x=0

∫ 4−4x2

z=0

∫ √
4−z

y=2x

xyz dy dz dx
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The average value of a function of three variables is defined as in the case of two
variables:

f = 1

Volume(W)

∫∫∫
W

f (x, y, z) dV 4

where Volume(W) =
∫∫∫

W
1 dV . And, as in the case of two variables, f lies between

the minimum and maximum values of f on D, and the Mean Value Theorem holds: If
W is connected and f is continuous on W , then there exists a point P ∈ W such that
f (P ) = f .

Excursion: Volume of the Sphere in Higher Dimensions

Archimedes (287–212 bce) proved the beautiful formula V = 4
3πr3 for the volume of a

sphere nearly 2000 years before calculus was invented, by means of a brilliant geometric
argument showing that the volume of a sphere is equal to two-thirds the volume of the
circumscribed cylinder. According to Plutarch (ca. 45–120 CE), Archimedes valued this
achievement so highly that he requested that a sphere with circumscribed cylinder be
engraved on his tomb.

We can use integration to generalize Archimedes’ formula to n dimensions. The ball
of radius r in Rn, denoted Bn(r), is the set of points (x1, . . . , xn) in Rn such that

x2
1 + x2

2 + · · · + x2
n ≤ r2

The balls Bn(r) in dimensions 1, 2, and 3 are the interval, disk, and ball shown in
Figure 8. In dimensions n ≥ 4, the ball Bn(r) is difficult, if not impossible, to visualize,

FIGURE 8 Balls of radius r in dimensions
n = 1, 2, 3.

but we can compute its volume. Denote this volume by Vn(r). For n = 1, the “volume”
V1(r) is the length of the interval B1(r), and for n = 2, V2(r) is the area of the disk B2(r).
We know that

V1(r) = 2r, V2(r) = πr2, V3(r) = 4

3
πr3

For n ≥ 4, Vn(r) is sometimes called the hypervolume.
The key idea is to determine Vn(r) from the formula for Vn−1(r) by integrating cross-

sectional volume. Consider the case n = 3, where the horizontal slice at height z = c is a
two-dimensional ball (a disk) of radius

√
r2 − c2 (Figure 9). The volume V3(r) is equal

FIGURE 9 The volume V3(r) is the integral

of cross-sectional area V2(
√

r2 − c2).

to the integral of these horizontal slices:

V3(r) =
∫ r

z=−r

V2

(√
r2 − z2

)
dz =

∫ r

z=−r

π(r2 − z2) dz = 4

3
πr3

By induction, we can show that for all n ≥ 1, there is a constant An (equal to the volume
of the n-dimensional unit ball) such that

Vn(r) = Anr
n 5

The slice of Bn(r) at height xn = c has equation

x2
1 + x2

2 + · · · + x2
n−1 + c2 = r2

This slice is the ball Bn−1
(√

r2 − c2
)

of radius
√

r2 − c2, and Vn(r) is obtained by inte-
grating the volume of these slices:

Vn(r) =
∫ r

xn=−r

Vn−1

(√
r2 − x2

n

)
dxn = An−1

∫ r

xn=−r

(√
r2 − x2

n

)n−1

dxn
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Using the substitution xn = r sin θ and dxn = r cos θ dθ , we have

Vn(r) = An−1r
n

∫ π/2

−π/2
cosn θ dθ = An−1Cnr

n

where Cn =
∫ π/2

θ=−π/2
cosn θ dθ . This proves Eq. (5) with

An = An−1Cn 6

In Exercise 39, you are asked to use Integration by Parts to verify the relation

Cn =
(

n − 1

n

)
Cn−2 7

It is easy to check directly that C0 = π and C1 = 2. By Eq. (7), C2 = 1
2C0 = π

2 , C3 =
2
3 (2) = 4

3 , and so on. Here are the first few values of Cn:

n 0 1 2 3 4 5 6 7

Cn π 2 π
2

4
3

3π
8

16
15

5π
16

32
35

We also have A1 = 2 and A2 = π , so we can use the values of Cn together with Eq. (6)
to obtain the values of An in Table 1. We see, for example, that the ball of radius r in

TABLE 1

n An

1 2
2 π ≈ 3.14

3 4
3π ≈ 4.19

4 π2

2 ≈ 4.93

5 8π2

15 ≈ 5.26

6 π3

6 ≈ 5.17

7 16π3

105 ≈ 4.72

four dimensions has volume V4(r) = 1
2π2r4. The general formula depends on whether n

is even or odd. Using induction and formulas (6) and (7), we can prove that

A2m = πm

m! , A2m+1 = 2m+1πm

1 · 3 · 5 · · · · · (2m + 1)

This sequence of numbers An has a curious property. Setting r = 1 in Eq. (5), we see
that An is the volume of the unit ball in n dimensions. From Table 1, it appears that the
volumes increase up to dimension 5 and then begin to decrease. In Exercise 40, you are
asked to verify that the five-dimensional unit ball has the largest volume. Furthermore,
the volumes An tend to 0 as n → ∞.

15.3 SUMMARY

• The triple integral over a box B = [a, b] × [c, d] × [p, q] is equal to the iterated integral∫∫∫
B

f (x, y, z) dV =
∫ b

x=a

∫ d

y=c

∫ q

z=p

f (x, y, z) dz dy dx

The iterated integral may be written in any one of six possible orders—for example,∫ q

z=p

∫ d

y=c

∫ b

x=a

f (x, y, z) dx dy dz

• A simple region W in R3 is a region consisting of the points (x, y, z) between two
surfaces z = z1(x, y) and z = z2(x, y), where z1(x, y) ≤ z2(x, y), lying over a domain
D in the xy-plane. In other words, W is defined by

(x, y) ∈ D, z1(x, y) ≤ z ≤ z2(x, y)
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The triple integral over W is equal to an iterated integral:∫∫∫
W

f (x, y, z) dV =
∫∫

D

(∫ z2(x,y)

z=z1(x,y)

f (x, y, z) dz

)
dA

• The average value of f (x, y, z) on a region W of volume V is the quantity

f = 1

V

∫∫∫
W

f (x, y, z) dV, V =
∫∫∫

W
1 dV

15.3 EXERCISES

Preliminary Questions

1. Which of (a)–(c) is not equal to
∫ 1

0

∫ 4

3

∫ 7

6
f (x, y, z) dz dy dx?

(a)
∫ 7

6

∫ 1

0

∫ 4

3
f (x, y, z) dy dx dz

(b)
∫ 4

3

∫ 1

0

∫ 7

6
f (x, y, z) dz dx dy

(c)
∫ 1

0

∫ 4

3

∫ 7

6
f (x, y, z) dx dz dy

2. Which of the following is not a meaningful triple integral?

(a)
∫ 1

0

∫ x

0

∫ 2x+y

x+y
ex+y+z dz dy dx

(b)
∫ 1

0

∫ z

0

∫ 2x+y

x+y
ex+y+z dz dy dx

3. Describe the projection of the region of integration W onto the
xy-plane:

(a)
∫ 1

0

∫ x

0

∫ x2+y2

0
f (x, y, z) dz dy dx

(b)
∫ 1

0

∫ √
1−x2

0

∫ 4

2
f (x, y, z) dz dy dx

Exercises
In Exercises 1–8, evaluate

∫∫∫
B

f (x, y, z) dV for the specified func-

tion f and box B.

1. f (x, y, z) = z4; 2 ≤ x ≤ 8, 0 ≤ y ≤ 5, 0 ≤ z ≤ 1

2. f (x, y, z) = xz2; [−2, 3] × [1, 3] × [1, 4]
3. f (x, y, z) = xey−2z; 0 ≤ x ≤ 2, 0 ≤ y ≤ 1, 0 ≤ z ≤ 1

4. f (x, y, z) = x

(y + z)2
; [0, 2] × [2, 4] × [−1, 1]

5. f (x, y, z) = (x − y)(y − z); [0, 1] × [0, 3] × [0, 3]
6. f (x, y, z) = z

x
; 1 ≤ x ≤ 3, 0 ≤ y ≤ 2, 0 ≤ z ≤ 4

7. f (x, y, z) = (x + z)3; [0, a] × [0, b] × [0, c]
8. f (x, y, z) = (x + y − z)2; [0, a] × [0, b] × [0, c]

In Exercises 9–14, evaluate
∫∫∫

W
f (x, y, z) dV for the function f

and region W specified.

9. f (x, y, z) = x + y; W : y ≤ z ≤ x, 0 ≤ y ≤ x, 0 ≤ x ≤ 1

10. f (x, y, z) = ex+y+z; W : 0 ≤ z ≤ 1, 0 ≤ y ≤ x, 0 ≤ x ≤ 1

11. f (x, y, z) = xyz; W : 0 ≤ z ≤ 1, 0 ≤ y ≤
√

1 − x2,
0 ≤ x ≤ 1

12. f (x, y, z) = x; W : x2 + y2 ≤ z ≤ 4

13. f (x, y, z) = ez; W : x + y + z ≤ 1, x ≥ 0, y ≥ 0,

z ≥ 0

14. f (x, y, z) = z; W : x2 ≤ y ≤ 2, 0 ≤ x ≤ 1,
x − y ≤ z ≤ x + y

15. Calculate the integral of f (x, y, z) = z over the region W in Fig-
ure 10 below the hemisphere of radius 3 and lying over the triangle D
in the xy-plane bounded by x = 1, y = 0, and x = y.

FIGURE 10
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16. Calculate the integral of f (x, y, z) = ez over the tetrahedron W
in Figure 11.

FIGURE 11

17. Integrate f (x, y, z) = x over the region in the first octant (x ≥
0, y ≥ 0, z ≥ 0) above z = y2 and below z = 8 − 2x2 − y2.

18. Compute the integral of f (x, y, z) = y2 over the region within the
cylinder x2 + y2 = 4 where 0 ≤ z ≤ y.

19. Find the triple integral of the function z over the ramp in Figure
12. Here, z is the height above the ground.

FIGURE 12

20. Find the volume of the solid in R3 bounded by y = x2, x = y2,
z = x + y + 5, and z = 0.

21. Find the volume of the solid in the octant x ≥ 0, y ≥ 0, z ≥ 0
bounded by x + y + z = 1 and x + y + 2z = 1.

22. Calculate
∫∫∫

W
y dV , where W is the region above z = x2 + y2

and below z = 5, and bounded by y = 0 and y = 1.

23. Evaluate
∫∫∫

W
xz dV , where W is the domain bounded by the

elliptic cylinder
x2

4
+ y2

9
= 1 and the sphere x2 + y2 + z2 = 16 in

the first octant x ≥ 0, y ≥ 0, z ≥ 0 (Figure 13).

FIGURE 13

24. Describe the domain of integration and evaluate:

∫ 3

0

∫ √
9−x2

0

∫ √
9−x2−y2

0
xy dz dy dx

25. Describe the domain of integration of the following integral:

∫ 2

−2

∫ √
4−z2

−
√

4−z2

∫ √
5−x2−z2

1
f (x, y, z) dy dx dz

26. Let W be the region below the paraboloid

x2 + y2 = z − 2

that lies above the part of the plane x + y + z = 1 in the first octant
(x ≥ 0, y ≥ 0, z ≥ 0). Express∫∫∫

W
f (x, y, z) dV

as an iterated integral (for an arbitrary function f ).

27. In Example 5, we expressed a triple integral as an iterated integral
in the three orders

dz dy dx, dx dz dy, and dy dz dx

Write this integral in the three other orders:

dz dx dy, dx dy dz, and dy dx dz

28. Let W be the region bounded by

y + z = 2, 2x = y, x = 0, and z = 0

(Figure 14). Express and evaluate the triple integral of f (x, y, z) = z

by projecting W onto the:

(a) xy-plane (b) yz-plane (c) xz-plane

FIGURE 14

29. Let

W = {(x, y, z) :
√

x2 + y2 ≤ z ≤ 1
}

(see Figure 15). Express
∫∫∫

W
f (x, y, z) dV as an iterated integral

in the order dz dy dx (for an arbitrary function f ).
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FIGURE 15

30. Repeat Exercise 29 for the order dx dy dz.

31. Let W be the region bounded by z = 1 − y2, y = x2, and the
planes z = 0, y = 1. Calculate the volume of W as a triple integral in
the order dz dy dx.

32. Calculate the volume of the region W in Exercise 31 as a triple
integral in the following orders:

(a) dx dz dy (b) dy dz dx

In Exercises 33–36, compute the average value of f (x, y, z) over the
region W .

33. f (x, y, z) = xy sin(πz); W = [0, 1] × [0, 1] × [0, 1]
34. f (x, y, z) = xyz; W : 0 ≤ z ≤ y ≤ x ≤ 1

35. f (x, y, z) = ey ; W : 0 ≤ y ≤ 1 − x2, 0 ≤ z ≤ x

36. f (x, y, z) = x2 + y2 + z2; W bounded by the planes 2y + z =
1, x = 0, x = 1, z = 0, and y = 0.

In Exercises 37 and 38, let I =
∫ 1

0

∫ 1

0

∫ 1

0
f (x, y, z) dV and let

SN,N,N be the Riemann sum approximation

SN,N,N = 1

N3

N∑
i=1

N∑
j=1

N∑
k=1

f

(
i

N
,

j

N
,

k

N

)

37. Calculate SN,N,N for f (x, y, z) = ex2−y−z for N = 10,
20, 30. Then evaluate I and find an N such that SN,N,N approximates
I to two decimal places.

38. Calculate SN,N,N for f (x, y, z) = sin(xyz) for N = 10,
20, 30. Then use a computer algebra system to calculate I numerically
and estimate the error |I − SN,N,N |.

Further Insights and Challenges
39. Use Integration by Parts to verify Eq. (7).

40. Compute the volume An of the unit ball in Rn for n = 8, 9, 10.

Show that Cn ≤ 1 for n ≥ 6 and use this to prove that of all unit balls,
the five-dimensional ball has the largest volume. Can you explain why
An tends to 0 as n → ∞?

15.4 Integration in Polar, Cylindrical, and Spherical Coordinates
In single-variable calculus, a well-chosen substitution (also called a change of variables)
often transforms a complicated integral into a simpler one. Change of variables is also

FIGURE 1 Spherical coordinates are used in
mathematical models of the earth’s
magnetic field. This computer simulation,
based on the Glatzmaier–Roberts model,
shows the magnetic lines of force,
representing inward and outward directed
field lines in blue and yellow, respectively.

useful in multivariable calculus, but the emphasis is different. In the multivariable case,
we are usually interested in simplifying not just the integrand, but also the domain of
integration.

This section treats three of the most useful changes of variables, in which an integral is
expressed in polar, cylindrical, or spherical coordinates. The general Change of Variables
Formula is discussed in Section 15.6.

Double Integrals in Polar Coordinates
Polar coordinates are convenient when the domain of integration is an angular sector or a
polar rectangle (Figure 2):

R : θ1 ≤ θ ≤ θ2, r1 ≤ r ≤ r2 1

We assume throughout that r1 ≥ 0 and that all radial coordinates are nonnegative. Recall
that rectangular and polar coordinates are related by

x = r cos θ, y = r sin θ



S E C T I O N 15.4 Integration in Polar, Cylindrical, and Spherical Coordinates 897

Thus, we write a function f (x, y) in polar coordinates as f (r cos θ, r sin θ). The Change
of Variables Formula for a polar rectangle R is:∫∫

R
f (x, y) dA =

∫ θ2

θ1

∫ r2

r1

f (r cos θ, r sin θ) r dr dθ 2

Notice the extra factor r in the integrand on the right.

Eq. (2) expresses the integral of f (x, y)

over the polar rectangle in Figure 2 as the
integral of a new function
rf (r cos θ, r sin θ) over the ordinary
rectangle [θ1, θ2] × [r1, r2]. In this sense,
the change of variables “simplifies” the
domain of integration.

r1 r2

x

y

R

θ2
θ1

FIGURE 2 Polar rectangle.

r

x

y

ΔA ≈ rΔrΔθ

θArc of length rΔ

θΔ θ

Δr

r2ΔA = 1
2

FIGURE 3 Small polar rectangle.

To derive Eq. (2), the key step is to estimate the area �A of the small polar rectangle
shown in Figure 3. If �r and �θ are small, then this polar rectangle is very nearly an
ordinary rectangle of sides �r and r�θ , and therefore �A ≈ r �r �θ . In fact, �A is the
difference of areas of two sectors:

REMINDER The length of the arc
subtended by an angle θ is θ , and the area
of a sector is 1

2 r2θ .
�A = 1

2
(r + �r)2 �θ − 1

2
r2 �θ = r(�r �θ) + 1

2
(�r)2�θ ≈ r �r �θ

The error in our approximation is the term 1
2 (�r)2�θ , which has smaller order of mag-

nitude than �r �θ when �r and �θ are both small.
Now, decompose R into an N × M grid of small polar subrectangles Rij as in

Figure 4, and choose a sample point Pij in Rij . If Rij is small and f (x, y) is continuous,
then ∫∫

Rij

f (x, y) dx dy ≈ f (Pij )Area(Rij ) ≈ f (Pij ) rij �r �θ 3

Note that each polar rectangle Rij has angular width �θ = (θ2 − θ1)/N and radial width
�r = (r2 − r1)/M . The integral over R is the sum:

REMINDER In Eq. (3). we use the
approximation (10) in Section 15.2: If f is
continuous and D is a small domain,∫∫

D
f (x, y) dA ≈ f (P )Area(D)

where P is any sample point in D. ∫∫
R

f (x, y) dx dy =
N∑

i=1

M∑
j=1

∫∫
Rij

f (x, y) dx dy

≈
N∑

i=1

M∑
j=1

f (Pij )Area(Rij )

≈
N∑

i=1

M∑
j=1

f (rij cos θij , rij sin θij ) rij �r �θ

This is a Riemann sum for the double integral of rf (r cos θ, r sin θ) over the region
r1 ≤ r ≤ r2, θ1 ≤ θ ≤ θ2, and we can prove that it approaches the double integral as
N, M → ∞. A similar derivation is valid for domains (Figure 5) that can be described as
the region between two polar curves r = r1(θ) and r = r2(θ). This gives us Theorem 1.
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x

y

�r

�θ

r1 r2

Rij

Pij = (rij, θij)

θ2

θ1

FIGURE 4 Decomposition of a polar
rectangle into subrectangles.

θ

θr =  r2(  )

θr =  r1(  )

x

y

2
θ 1

FIGURE 5 General polar region.

THEOREM 1 Double Integral in Polar Coordinates For a continuous function f on
the domain

D : θ1 ≤ θ ≤ θ2, r1(θ) ≤ r ≤ r2(θ)

∫∫
D

f (x, y) dA =
∫ θ2

θ1

∫ r2(θ)

r=r1(θ)

f (r cos θ, r sin θ) r dr dθ 4

EXAMPLE 1 Compute
∫∫

D
(x + y) dA, where D is the quarter annulus in Figure 6.

2 4

π

2
θ = 

θ = 0

FIGURE 6 Quarter annulus 0 ≤ θ ≤ π
2 ,

2 ≤ r ≤ 4.

Eq. (4) is summarized in the symbolic
expression for the “area element” dA in
polar coordinates:

dA = r dr dθ

Solution

Step 1. Describe D and f in polar coordinates.
The quarter annulus D is defined by the inequalities (Figure 6)

D : 0 ≤ θ ≤ π

2
, 2 ≤ r ≤ 4

In polar coordinates,

f (x, y) = x + y = r cos θ + r sin θ = r(cos θ + sin θ)

Step 2. Change variables and evaluate.
To write the integral in polar coordinates, we replace dA by r dr dθ :

∫∫
D

(x + y) dA =
∫ π/2

0

∫ 4

r=2
r(cos θ + sin θ) r dr dθ

The inner integral is

∫ 4

r=2
(cos θ + sin θ) r2 dr = (cos θ + sin θ)

(
43

3
− 23

3

)
= 56

3
(cos θ + sin θ)

and∫∫
D

(x + y) dA = 56

3

∫ π/2

0
(cos θ + sin θ) dθ = 56

3
(sin θ − cos θ)

∣∣∣∣π/2

0
= 112

3
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EXAMPLE 2 Calculate
∫∫

D
(x2 + y2)−2 dA for the shaded domain D in Figure 7.

θ

r = 2 cos

r = sec

θ θ

θ

θ

θ π= −

P = (1, 1)
1

x

y

21

4

sec    ≤ r ≤ 2 cos 

FIGURE 7

Solution

Step 1. Describe D and f in polar coordinates.
The quarter circle lies in the angular sector 0 ≤ θ ≤ π

4 because the line through P =
(1, 1) makes an angle of π

4 with the x-axis (Figure 7).
To determine the limits on r , recall from Section 11.3 (Examples 5 and 7) that:

• The vertical line x = 1 has polar equation r cos θ = 1 or r = sec θ .
• The circle of radius 1 and center (1, 0) has polar equation r = 2 cos θ .

Therefore, a ray of angle θ intersects D in the segment where r ranges from sec θ to
2 cos θ . In other words, our domain has polar description

D : 0 ≤ θ ≤ π

4
, sec θ ≤ r ≤ 2 cos θ

The function in polar coordinates is

f (x, y) = (x2 + y2)−2 = (r2)−2 = r−4

Step 2. Change variables and evaluate.
REMINDER∫
cos2 θ dθ = 1

2

(
θ + 1

2
sin 2θ

)
+ C

∫
sec2 θ dθ = tan θ + C

∫∫
D

(x2 + y2)−2 dA =
∫ π/4

0

∫ 2 cos θ

r=sec θ

r−4 r dr dθ =
∫ π/4

0

∫ 2 cos θ

r=sec θ

r−3 dr dθ

The inner integral is∫ 2 cos θ

r=sec θ

r−3 dr = −1

2
r−2
∣∣∣∣2 cos θ

r=sec θ

= −1

8
sec2 θ + 1

2
cos2 θ

Therefore, ∫∫
D

(x2 + y2)−2 dA =
∫ π/4

0

(
1

2
cos2 θ − 1

8
sec2 θ

)
dθ

=
(

1

4

(
θ + 1

2
sin 2θ

)
− 1

8
tan θ

) ∣∣∣∣π/4

0

= 1

4

(
π

4
+ 1

2
sin

π

2

)
− 1

8
tan

π

4
= π

16

Triple Integrals in Cylindrical Coordinates
Cylindrical coordinates, introduced in Section 12.7, are useful when the domain has axial
symmetry—that is, symmetry with respect to an axis. In cylindrical coordinates (r, θ, z),
the axis of symmetry is the z-axis. Recall the relations (Figure 8)

x = r cos θ, y = r sin θ, z = z

To set up a triple integral in cylindrical coordinates, we assume that the domain of inte-
gration W can be described as the region between two surfaces (Figure 9)

z1(r, θ) ≤ z ≤ z2(r, θ)

lying over a domain D in the xy-plane with polar description

D : θ1 ≤ θ ≤ θ2, r1(θ) ≤ r ≤ r2(θ)
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P = (r, θ, z)

z

y

x

z
r

r
θ

FIGURE 8 Cylindrical coordinates.

θz =  z2(r,   )

θz =  z1(r,   )

θr =  r1(  )

θr =  r2(  )

θ2θ1

z

y
x

FIGURE 9 Region described in cylindrical
coordinates.

A triple integral over W can be written as an iterated integral (Theorem 2 of Section 15.3):

∫∫∫
W

f (x, y, z) dV =
∫∫

D

(∫ z2(r,θ)

z=z1(r,θ)

f (x, y, z) dz

)
dA

By expressing the integral over D in polar coordinates, we obtain the following Change
of Variables Formula.

Eq. (5) is summarized in the symbolic
expression for the “volume element” dV in
cylindrical coordinates:

dV = r dz dr dθ

THEOREM 2 Triple Integrals in Cylindrical Coordinates For a continuous function
f on the region

θ1 ≤ θ ≤ θ2, r1(θ) ≤ r ≤ r2(θ), z1(r, θ) ≤ z ≤ z2(r, θ),

the triple integral
∫∫∫

W
f (x, y, z) dV is equal to

∫ θ2

θ1

∫ r2(θ)

r=r1(θ)

∫ z2(r,θ)

z=z1(r,θ)

f (r cos θ, r sin θ, z) r dz dr dθ 5

EXAMPLE 3 Integrate f (x, y, z) = z
√

x2 + y2 over the cylinder x2 + y2 ≤ 4 for
1 ≤ z ≤ 5 (Figure 10).

Solution The domain of integration W lies above the disk of radius 2, so in cylindrical
coordinates,

W : 0 ≤ θ ≤ 2π, 0 ≤ r ≤ 2, 1 ≤ z ≤ 5

We write the function in cylindrical coordinates:

FIGURE 10 The cylinder x2 + y2 ≤ 4.

f (x, y, z) = z

√
x2 + y2 = zr

and integrate with respect to dV = r dz dr dθ . The function f is a product zr , so the
resulting triple integral is a product of single integrals:
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∫∫∫
W

z

√
x2 + y2 dV =

∫ 2π

0

∫ 2

r=0

∫ 5

z=1
(zr)r dz dr dθ

=
(∫ 2π

0
dθ

)(∫ 2

r=0
r2 dr

)(∫ 5

z=1
z dz

)

= (2π)

(
23

3

)(
52 − 12

2

)
= 64π

EXAMPLE 4 Compute the integral of f (x, y, z) = z over the region W within the

FIGURE 11

cylinder x2 + y2 ≤ 4 where 0 ≤ z ≤ y.

Solution

Step 1. Express W in cylindrical coordinates.
The condition 0 ≤ z ≤ y tells us that y ≥ 0, so W projects onto the semicircle D in
the xy-plane of radius 2 where y ≥ 0 shown in Figure 11. In polar coordinates,

D : 0 ≤ θ ≤ π, 0 ≤ r ≤ 2

The z-coordinate in W varies from z = 0 to z = y, and in polar coordinates y = r sin θ ,
so the region has the description

W : 0 ≤ θ ≤ π, 0 ≤ r ≤ 2, 0 ≤ z ≤ r sin θ

Step 2. Change variables and evaluate.∫∫∫
W

f (x, y, z) dV =
∫ π

0

∫ 2

r=0

∫ r sin θ

z=0
zr dz dr dθ

=
∫ π

0

∫ 2

r=0

1

2
(r sin θ)2r dr dθ

= 1

2

(∫ π

0
sin2 θ dθ

)(∫ 2

0
r3 dr

)

= 1

2

(π

2

) 24

4
= π

Triple Integrals in Spherical Coordinates
We noted that the Change of Variables Formula in cylindrical coordinates is summa-

REMINDER∫
sin2 θ dθ = 1

2

(
θ − 1

2
sin 2θ

)
+ C

∫ π

0
sin2 θ dθ = π

2

rized by the symbolic equation dV = r dr dθ dz. In spherical coordinates (introduced in
Section 12.7), the analog is the formula

dV = ρ2 sin φ dρ dφ dθ

Recall (Figure 12) that

r

r = ρ sin φ

P = (x, y, z)

z

y

y

x

x

z = ρ cos φ  

θ

φ
ρ

FIGURE 12 Spherical coordinates.

x = ρ cos θ sin φ, y = ρ sin θ sin φ, z = ρ cos φ

The key step in deriving this formula is estimating the volume of a small spherical wedge
W , defined by the inequalities

W : θ1 ≤ θ ≤ θ2, φ1 ≤ φ ≤ φ2, ρ1 ≤ ρ ≤ ρ2 6
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Referring to Figure 13, we see that when the increments

�θ = θ2 − θ1, �φ = φ2 − φ1, �ρ = ρ2 − ρ1

are small, the spherical wedge is nearly a box with sides �ρ, ρ1�φ, and ρ1 sin φ1�θ and
volume

Volume(W) ≈ ρ2
1 sin φ1 �ρ �φ �θ 7

θΔ

θΔ
ρΔ ρΔ

ρΔ  .

φ1

ρ1

ρ1 φ1

For small increments, the wedge is nearly
a rectangular box with dimensions

z

y

x

sin

ρ1 φ1sin

ρ1

θΔρ1 φ1sin

θΔρ1 φ1sin

Δ
φΔ

ρ1 φΔ× ×

φ

FIGURE 13 Spherical wedge.

Following the usual steps, we decompose W into N3 spherical subwedges Wi (Fig-

FIGURE 14 Decomposition of a spherical
wedge into subwedges.

ure 14) with increments

�θ = θ2 − θ1

N
, �φ = φ2 − φ1

N
, �ρ = ρ2 − ρ1

N

and choose a sample point Pi = (ρi, θi, φi) in each Wi . Assuming f is continuous, the
following approximation holds for large N (small Wi):∫∫∫

Wi

f (x, y, z) dV ≈ f (Pi)Volume(Wi )

≈ f (Pi)ρ
2
i sin φi �ρ �θ �φ

Taking the sum over i, we obtain

∫∫∫
W

f (x, y, z) dV ≈
∑

i

f (Pi)ρ
2
i sin φi �ρ �θ �φ 8

The sum on the right is a Riemann sum for the function

f (ρ cos θ sin φ, ρ sin θ sin φ, ρ cos φ) ρ2 sin φ

on the domain W . Eq. (9) below follows by passing to the limit an N → ∞ (and showing
that the error in Eq. (8) tends to zero). This argument applies more generally to regions
defined by an inequality ρ1(θ, φ) ≤ ρ ≤ ρ2(θ, φ).



S E C T I O N 15.4 Integration in Polar, Cylindrical, and Spherical Coordinates 903

THEOREM 3 Triple Integrals in Spherical Coordinates For a region W defined by

θ1 ≤ θ ≤ θ2, φ1 ≤ φ ≤ φ2, ρ1(θ, φ) ≤ ρ ≤ ρ2(θ, φ)

the triple integral
∫∫∫

W
f (x, y, z) dV is equal to

∫ θ2

θ1

∫ φ2

φ=φ1

∫ ρ2(θ,φ)

ρ=ρ1(θ,φ)

f (ρ cos θ sin φ, ρ sin θ sin φ, ρ cos φ) ρ2 sin φ dρ dφ dθ

9

EXAMPLE 5 Compute the integral off (x, y, z) = x2 + y2 over the sphereS of radius

Eq. (9) is summarized in the symbolic
expression for the “volume element” dV in
spherical coordinates:

dV = ρ2 sin φ dρ dφ dθ

FIGURE 15 Sphere of radius 4.

4 centered at the origin (Figure 15).

Solution First, write f (x, y, z) in spherical coordinates:

f (x, y, z) = x2 + y2 = (ρ cos θ sin φ)2 + (ρ sin θ sin φ)2

= ρ2 sin2 φ(cos2 θ + sin2 θ) = ρ2 sin2 φ

Since we are integrating over the entire sphere S of radius 4, ρ varies from 0 to 4, θ from

REMINDER∫
sin3 φ dφ = 1

3
cos3 φ − cos φ + C

[write sin3 φ = sin φ(1 − cos2 φ)]

0 to 2π , and φ from 0 to π . In the following computation, we integrate first with respect
to θ :∫∫∫

S

(x2 + y2) dV =
∫ 2π

0

∫ π

φ=0

∫ 4

ρ=0
(ρ2 sin2 φ) ρ2 sin φ dρ dφ dθ

= 2π

∫ π

φ=0

∫ 4

ρ=0
ρ4 sin3 φ dρ dφ = 2π

∫ π

0

(
ρ5

5

∣∣∣∣4
0

)
sin3 φ dφ

= 2048π

5

∫ π

0
sin3 φ dφ

= 2048π

5

(
1

3
cos3 φ − cos φ

) ∣∣∣∣π
0

= 8192π

15

EXAMPLE 6 Integrate f (x, y, z) = z over the ice cream cone–shaped region W in

FIGURE 16 Ice cream cone defined by
0 ≤ ρ ≤ R, 0 ≤ φ ≤ π/4.

Figure 16, lying above the cone and below the sphere.

Solution The cone has equation x2 + y2 = z2, which in spherical coordinates is

(ρ cos θ sin φ)2 + (ρ sin θ sin φ)2 = (ρ cos φ)2

ρ2 sin2 φ(cos2 θ + sin2 θ) = ρ2 cos2 φ

sin2 φ = cos2 φ

sin φ = ± cos φ ⇒ φ = π

4
,

3π

4

The upper branch of the cone has the simple equation φ = π
4 . On the other hand, the

sphere has equation ρ = R, so the ice cream cone has the description

W : 0 ≤ θ ≤ 2π, 0 ≤ φ ≤ π

4
, 0 ≤ ρ ≤ R
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We have∫∫∫
W

z dV =
∫ 2π

0

∫ π/4

φ=0

∫ R

ρ=0
(ρ cos φ)ρ2 sin φ dρ dφ dθ

= 2π

∫ π/4

φ=0

∫ R

ρ=0
ρ3 cos φ sin φ dρ dφ = πR4

2

∫ π/4

0
sin φ cos φ dφ = πR4

8

15.4 SUMMARY

• Double integral in polar coordinates:In symbolic form:

dA = r dr dθ

dV = r dz dr dθ

dV = ρ2 sin φ dρ dφ dθ

∫∫
D

f (x, y) dA =
∫ θ2

θ1

∫ r2(θ)

r=r1(θ)

f (r cos θ, r sin θ) r dr dθ

• Triple integral
∫∫∫

R
f (x, y, z) dV

– In cylindrical coordinates:∫ θ2

θ1

∫ r2(θ)

r=r1(θ)

∫ z2(r,θ)

z=z1(r,θ)

f (r cos θ, r sin θ, z) r dz dr dθ

– In spherical coordinates:∫ θ2

θ1

∫ φ2

φ=φ1

∫ ρ2(θ,φ)

ρ=ρ1(θ,φ)

f (ρ cos θ sin φ, ρ sin θ sin φ, ρ cos φ) ρ2 sin φ dρ dφ dθ

15.4 EXERCISES

Preliminary Questions
1. Which of the following represent the integral of f (x, y) = x2 + y2

over the unit circle?

(a)
∫ 1

0

∫ 2π

0
r2 dr dθ (b)

∫ 2π

0

∫ 1

0
r2 dr dθ

(c)
∫ 1

0

∫ 2π

0
r3 dr dθ (d)

∫ 2π

0

∫ 1

0
r3 dr dθ

2. What are the limits of integration in
∫∫∫

f (r, θ, z)r dr dθ dz if

the integration extends over the following regions?
(a) x2 + y2 ≤ 4, −1 ≤ z ≤ 2
(b) Lower hemisphere of the sphere of radius 2, center at origin

3. What are the limits of integration in∫∫∫
f (ρ, φ, θ)ρ2 sin φ dρ dφ dθ

if the integration extends over the following spherical regions centered
at the origin?

(a) Sphere of radius 4

(b) Region between the spheres of radii 4 and 5

(c) Lower hemisphere of the sphere of radius 2

4. An ordinary rectangle of sides �x and �y has area �x �y, no
matter where it is located in the plane. However, the area of a polar
rectangle of sides �r and �θ depends on its distance from the origin.
How is this difference reflected in the Change of Variables Formula for
polar coordinates?

Exercises
In Exercises 1–6, sketch the region D indicated and integrate f (x, y)

over D using polar coordinates.

1. f (x, y) =
√

x2 + y2, x2 + y2 ≤ 2

2. f (x, y) = x2 + y2; 1 ≤ x2 + y2 ≤ 4

3. f (x, y) = xy; x ≥ 0, y ≥ 0, x2 + y2 ≤ 4

4. f (x, y) = y(x2 + y2)3; y ≥ 0, x2 + y2 ≤ 1
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5. f (x, y) = y(x2 + y2)−1; y ≥ 1
2 , x2 + y2 ≤ 1

6. f (x, y) = ex2+y2
; x2 + y2 ≤ R

In Exercises 7–14, sketch the region of integration and evaluate by
changing to polar coordinates.

7.
∫ 2

−2

∫ √
4−x2

0
(x2 + y2) dy dx

8.
∫ 3

0

∫ √
9−y2

0

√
x2 + y2 dx dy

9.
∫ 1/2

0

∫ √
1−x2

√
3x

x dy dx

10.
∫ 4

0

∫ √
16−x2

0
tan−1 y

x
dy dx

11.
∫ 5

0

∫ y

0
x dx dy

12.
∫ 2

0

∫ √
3x

x
y dy dx

13.
∫ 2

−1

∫ √
4−x2

0
(x2 + y2) dy dx

14.
∫ 2

1

∫ √
2x−x2

0

1√
x2 + y2

dy dx

In Exercises 15–20, calculate the integral over the given region by
changing to polar coordinates.

15. f (x, y) = (x2 + y2)−2; x2 + y2 ≤ 2, x ≥ 1

16. f (x, y) = x; 2 ≤ x2 + y2 ≤ 4

17. f (x, y) = |xy|; x2 + y2 ≤ 1

18. f (x, y) = (x2 + y2)−3/2; x2 + y2 ≤ 1, x + y ≥ 1

19. f (x, y) = x − y; x2 + y2 ≤ 1, x + y ≥ 1

20. f (x, y) = y; x2 + y2 ≤ 1, (x − 1)2 + y2 ≤ 1

21. Find the volume of the wedge-shaped region (Figure 17) contained
in the cylinder x2 + y2 = 9, bounded above by the plane z = x and be-
low by the xy-plane.

FIGURE 17

22. Let W be the region above the sphere x2 + y2 + z2 = 6 and below
the paraboloid z = 4 − x2 − y2.

(a) Show that the projection of W on the xy-plane is the disk
x2 + y2 ≤ 2 (Figure 18).

(b) Compute the volume of W using polar coordinates.

FIGURE 18

23. Evaluate
∫∫

D

√
x2 + y2 dA, where D is the domain in Figure 19.

Hint: Find the equation of the inner circle in polar coordinates and treat
the right and left parts of the region separately.

2
x

y

FIGURE 19

r2 = sin 2θ

x
0.5

0.5

y

FIGURE 20

24. Evaluate
∫∫

D
x

√
x2 + y2 dA, where D is the shaded region en-

closed by the lemniscate curve r2 = sin 2θ in Figure 20.

25. Let W be the region between the paraboloids z = x2 + y2 and
z = 8 − x2 − y2.

(a) Describe W in cylindrical coordinates.

(b) Use cylindrical coordinates to compute the volume of W .

26. Use cylindrical coordinates to calculate the integral of the func-
tion f (x, y, z) = z over the region above the disk x2 + y2 = 1 in the
xy-plane and below the surface z = 4 + x2 + y2.



906 C H A P T E R 15 MULTIPLE INTEGRATION

In Exercises 27–32, use cylindrical coordinates to calculate∫∫∫
W

f (x, y, z) dV for the given function and region.

27. f (x, y, z) = x2 + y2; x2 + y2 ≤ 9, 0 ≤ z ≤ 5

28. f (x, y, z) = xz; x2 + y2 ≤ 1, x ≥ 0, 0 ≤ z ≤ 2

29. f (x, y, z) = y; x2 + y2 ≤ 1, x ≥ 0, y ≥ 0, 0 ≤ z ≤ 2

30. f (x, y, z) = z
√

x2 + y2; x2 + y2 ≤ z ≤ 8 − (x2 + y2)

31. f (x, y, z) = z; x2 + y2 ≤ z ≤ 9

32. f (x, y, z) = z; 0 ≤ z ≤ x2 + y2 ≤ 9

In Exercises 33–36, express the triple integral in cylindrical coordi-
nates.

33.
∫ 1

−1

∫ y=
√

1−x2

y=−
√

1−x2

∫ 4

z=0
f (x, y, z) dz dy dx

34.
∫ 1

0

∫ y=
√

1−x2

y=−
√

1−x2

∫ 4

z=0
f (x, y, z) dz dy dx

35.
∫ 1

−1

∫ y=
√

1−x2

y=0

∫ x2+y2

z=0
f (x, y, z) dz dy dx

36.
∫ 2

0

∫ y=
√

2x−x2

y=0

∫ √
x2+y2

z=0
f (x, y, z) dz dy dx

37. Find the equation of the right-circular cone in Figure 21 in cylin-
drical coordinates and compute its volume.

FIGURE 21

38. Use cylindrical coordinates to integrate f (x, y, z) = z over the in-
tersection of the hemisphere x2 + y2 + z2 = 4, z ≥ 0, and the cylinder
x2 + y2 = 1.

39. Use cylindrical coordinates to calculate the volume of the solid
obtained by removing a central cylinder of radius b from a sphere of
radius a where b < a.

40. Find the volume of the region in Figure 22.

FIGURE 22

In Exercises 41–46, use spherical coordinates to calculate the triple
integral of f (x, y, z) over the given region.

41. f (x, y, z) = y; x2 + y2 + z2 ≤ 1, x, y, z ≤ 0

42. f (x, y, z) = ρ−3; 2 ≤ x2 + y2 + z2 ≤ 4

43. f (x, y, z) = x2 + y2; ρ ≤ 1

44. f (x, y, z) = 1; x2 + y2 + z2 ≤ 4z, z ≥
√

x2 + y2

45. f (x, y, z) =
√

x2 + y2 + z2; x2 + y2 + z2 ≤ 2z

46. f (x, y, z) = ρ; x2 + y2 + z2 ≤ 4, z ≤ 1, x ≥ 0

47. Use spherical coordinates to evaluate the triple integral of
f (x, y, z) = z over the region

0 ≤ θ ≤ π

3
, 0 ≤ φ ≤ π

2
, 1 ≤ ρ ≤ 2

48. Find the volume of the region lying above the cone φ = φ0 and
below the sphere ρ = R.

49. Calculate the integral of

f (x, y, z) = z(x2 + y2 + z2)−3/2

over the part of the ball x2 + y2 + z2 ≤ 16 defined by z ≥ 2.

50. Calculate the volume of the cone in Figure 21 using spherical co-
ordinates.

51. Calculate the volume of the sphere x2 + y2 + z2 = a2, using both
spherical and cylindrical coordinates.

52. Let W be the region within the cylinder x2 + y2 = 2 between z =
0 and the cone z =

√
x2 + y2. Calculate the integral of f (x, y, z) =

x2 + y2 over W , using both spherical and cylindrical coordinates.
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53. Bell-Shaped Curve One of the key results in calculus is the com-
putation of the area under the bell-shaped curve (Figure 23):

I =
∫ ∞
−∞

e−x2
dx

This integral appears throughout engineering, physics, and statistics,

and although e−x2
does not have an elementary antiderivative, we can

compute I using multiple integration.

(a) Show that I2 = J , where J is the improper double integral

J =
∫ ∞
−∞

∫ ∞
−∞

e−x2−y2
dx dy

Hint: Use Fubini’s Theorem and e−x2−y2 = e−x2
e−y2

.

(b) Evaluate J in polar coordinates.

(c) Prove that I = √
π .

21−2 −1
x

y

1

FIGURE 23 The bell-shaped curve y = e−x2
.

Further Insights and Challenges
54. An Improper Multiple Integral Show that a triple integral of

(x2 + y2 + z2 + 1)−2 over all of R3 is equal to π2. This is an improper
integral, so integrate first over ρ ≤ R and let R → ∞.

55. Prove the formula

∫∫
D

ln r dA = −π

2

where r =
√

x2 + y2 and D is the unit disk x2 + y2 ≤ 1. This is an
improper integral since ln r is not defined at (0, 0), so integrate first
over the annulus a ≤ r ≤ 1 where 0 < a < 1, and let a → 0.

56. Recall that the improper integral
∫ 1

0
x−a dx converges if and only

if a < 1. For which values of a does
∫∫

D
r−a dA converge, where

r =
√

x2 + y2 and D is the unit disk x2 + y2 ≤ 1?

15.5 Applications of Multiple Integrals
This section discusses some applications of multiple integrals. First, we consider quantities
(such as mass, charge, and population) that are distributed with a given density ρ in R2 or
R3. In single-variable calculus, we saw that the “total amount” is defined as the integral
of density. Similarly, the total amount of a quantity distributed in R2 or R3 is defined as
the double or triple integral:

Total amount =
∫∫

D
ρ(x, y) dA or

∫∫∫
W

ρ(x, y, z) dV 1

The density function ρ has units of “amount per unit area” (or per unit volume).
The intuition behind Eq. (1) is similar to that of the single variable case. Suppose, for

example, that ρ(x, y) is population density (Figure 1). When density is constant, the total
population is simply density times area:

Population = density (people/km2) × area (km2)

To treat variable density in the case, say, of a rectangle R, we divide R into smaller
rectangles Rij of area �x�y on which ρ is nearly constant (assuming that ρ is continuous
on R). The population in Rij is approximately ρ(Pij ) �x�y for any sample point Pij in
Rij , and the sum of these approximations is a Riemann sum that converges to the double
integral: ∫

R
ρ(x, y) dA ≈

∑
i

∑
j

ρ(Pij )�x�y
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EXAMPLE 1 Population Density The population in a rural area near a river has density
y (km)

x (km)

Population in a small
rectangle Rij is approximately

Δρ (Pij)

Pij

x

Δ x

Δ y.

Δ y

41 2 3 5 6

River

3

2

1

FIGURE 1

ρ(x, y) = 40xe0.1y people per km2

How many people live in the region R: 2 ≤ x ≤ 6, 1 ≤ y ≤ 3 (Figure 1)?

Solution The total population is the integral of population density:

∫∫
R

40xe0.1y dA =
∫ 6

2

∫ 3

1
40xe0.1y dx dy

=
(∫ 6

2
40x dx

)(∫ 3

1
e0.1y dy

)

=
(

20x2
∣∣∣6
x=2

)(
10e0.1y

∣∣∣3
y=1

)
≈ (640)(2.447) ≈ 1566 people

In the next example, we compute the mass of an object as the integral of mass density.Mass ≈ ρ(pijk)�V

FIGURE 2 The mass of a small box is
approximately ρ(Pijk) �V .

In three dimensions, we justify this computation by dividing W into boxes Bijk of volume
�V that are so small that the mass density is nearly constant on Bijk (Figure 2). The mass
of Bijk is approximately ρ(Pijk) �V , where Pijk is any sample point in Bijk , and the sum
of these approximations is a Riemann sum that converges to the triple integral:∫∫∫

W
ρ(x, y, z) dV ≈

∑
i

∑
j

∑
k

ρ(Pijk)�V︸ ︷︷ ︸
Approximate mass

of Bijk

When ρ is constant, we say that the solid has a uniform mass density. In this case, the
triple integral has the value ρV and the mass is simply M = ρV .

z = ar2

−a
H

θ(r,   , z) with
ar2 ≤ z ≤ H

θ(r,   , ar2)

θ
r

H

x

y

θ(r,   , H)

z

FIGURE 3 The paraboloid z = a(x2 + y2).

EXAMPLE 2 Let a > 0. Find the mass of the “solid bowl” W consisting of points
inside the paraboloid z = a(x2 + y2) for 0 ≤ z ≤ H (Figure 3). Assume a mass density
of ρ(x, y, z) = z.

Solution Because the bowl is symmetric with respect to the z-axis, we use cylindrical
coordinates (r, θ, z). Recall that r2 = x2 + y2, so the polar equation of the paraboloid is
z = ar2. A point (r, θ, z) lies above the paraboloid if z ≥ ar2, so it lies in the bowl if
ar2 ≤ z ≤ H . In other words, the bowl is described by

0 ≤ θ ≤ 2π, 0 ≤ r ≤
√

H

a
, ar2 ≤ z ≤ H

The mass of the bowl is the integral of mass density:

M =
∫∫∫

W
ρ(x, y, z) dV =

∫ 2π

θ=0

∫ √
H/a

r=0

∫ H

z=ar2
zr dz dr dθ

= 2π

∫ √
H/a

r=0

(
1

2
H 2 − 1

2
a2r4

)
rdr

= 2π

(
H 2r2

4
− a2r6

12

) ∣∣∣∣
√

H/a

r=0

= 2π

(
H 3

4a
− H 3

12a

)
= πH 3

3a
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Next, we compute centers of mass. In Section 8.3, we computed centers of mass of
laminas (thin plates in the plane), but we had to assume that the mass density is constant.
Multiple integration enables us to treat variable mass density. We define the moments of
a lamina D with respect to the coordinate axes:

My =
∫∫

D
xρ(x, y) dA, Mx =

∫∫
D

yρ(x, y) dA

The center of mass (COM) is the point PCM = (xCM, yCM) where

xCM = My

M
, yCM = Mx

M
2

You can think of the coordinates xCM and yCM as weighted averages—they are the
averages of x and y in which the factor ρ assigns a larger coefficient to points with larger
mass density.

If D has uniform mass density (ρ constant), then the factors of ρ in the numerator and
denominator in Eq. (2) cancel, and the center of mass coincides with the centroid, defined
as the point whose coordinates are the averages of the coordinates over the domain:

x = 1

A

∫∫
D

x dA, y = 1

A

∫∫
D

y dA

Here A =
∫∫

D
1 dA is the area of D.

In R3, the moments of a solid region W are defined not with respect to the axes as in• In R2, we write My for the integral of
xρ(x, y) because x is the distance to
the y-axis.

• In R3, we write Myz for the integral of
xρ(x, y, z) because in R3, x is the
distance to the yz-plane.

R2, but with respect to the coordinate planes:

Myz =
∫∫∫

W
xρ(x, y, z) dV

Mxz =
∫∫∫

W
yρ(x, y, z) dV

Mxy =
∫∫∫

W
zρ(x, y, z) dV

The center of mass is the point PCM = (xCM, yCM, zCM) with coordinates

xCM = Myz

M
, yCM = Mxz

M
, zCM = Mxy

M

The centroid of W is the point P = (x, y, z), which, as before, coincides with the center
of mass when ρ is constant:

x = 1

V

∫∫∫
W

x dV, y = 1

V

∫∫∫
W

y dV, z = 1

V

∫∫∫
W

z dV

where V =
∫∫∫

W
1 dV is the volume of W .

Symmetry can often be used to simplify COM calculations. We say that a region W
in R3 is symmetric with respect to the xy-plane if (x, y,−z) lies in W whenever (x, y, z)

lies in W . The density ρ is symmetric with respect to the xy-plane if

ρ(x, y,−z) = ρ(x, y, z)

In other words, the mass density is the same at points located symmetrically with respect
to the xy-plane. If both W and ρ have this symmetry, then Mxy = 0 and the COM lies on
the xy-plane—that is, zCM = 0. Similar remarks apply to the other coordinate axes and
to domains in the plane.
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EXAMPLE 3 Center of Mass Find the center of mass of the domain D bounded by

(0,    )

(−x, y) (x, y)

y = 1 − x2

x

y

Center of Mass

Mass densities are equal at
points symmetric with
respect to the y-axis.

1

−1 1

4
7

FIGURE 4

y = 1 − x2 and the x-axis, assuming a mass density of ρ(x, y) = y (Figure 4).

Solution The domain D is symmetric with respect to the y-axis, and so too is the mass
density because ρ(x, y) = ρ(−x, y) = y. Therefore, xCM = 0. We need only compute
yCM:

Mx =
∫∫

D
yρ(x, y)dA =

∫ 1

x=−1

∫ 1−x2

y=0
y2 dy dx =

∫ 1

x=−1

(
1

3
y3
∣∣∣∣1−x2

y=0

)
dx

= 1

3

∫ 1

x=−1

(
1 − 3x2 + 3x4 − x6

)
dx = 1

3

(
2 − 2 + 6

5
− 2

7

)
= 32

105

M =
∫∫

D
ρ(x, y)dA =

∫ 1

x=−1

∫ 1−x2

y=0
y dy dx =

∫ 1

x=−1

(
1

2
y2
∣∣∣∣1−x2

y=0

)
dx

= 1

2

∫ 1

x=−1

(
1 − 2x2 + x4

)
dx = 1

2

(
2 − 4

3
+ 2

5

)
= 8

15

Therefore, yCM = Mx

M
= 32

105

(
8

15

)−1

= 4

7
.

EXAMPLE 4 Find the center of mass of the solid bowl W in Example 2 consisting of
points inside the paraboloid z = a(x2 + y2) for 0 ≤ z ≤ H , assuming a mass density of
ρ(x, y, z) = z.

Solution The domain is shown in Figure 3 above.

Step 1. Use symmetry.
The bowl W and the mass density are both symmetric with respect to the z-axis, so we
can expect the COM to lie on the z-axis. In fact, the density satisfies both ρ(−x, y, z) =
ρ(x, y, z) and ρ(x, −y, z) = ρ(x, y, z), and thus we have Mxz = Myz = 0. It remains
to compute the moment Mxy .

Step 2. Compute the moment.
In Example 2, we described the bowl in cylindrical coordinates as

0 ≤ θ ≤ 2π, 0 ≤ r ≤
√

H

a
, ar2 ≤ z ≤ H

and we computed the bowl’s mass as M = πH 3

3a
. The moment is

Mxy =
∫∫∫

W
zρ(x, y, z) dV =

∫∫∫
W

z2 dV =
∫ 2π

θ=0

∫ √
H/a

r=0

∫ H

z=ar2
z2r dz dr dθ

= 2π

∫ √
H/a

r=0

(
1

3
H 3 − 1

3
a3r6

)
rdr

= 2π

(
1

6
H 3r2 − 1

24
a3r8

) ∣∣∣∣
√

H/a

r=0

= 2π

(
H 4

6a
− a3H 4

24a4

)
= πH 4

4a

The z-coordinate of the center of mass is

zCM = Mxy

V
= πH 4/(4a)

πH 3/(3a)
= 3

4
H

and the center of mass itself is
(
0, 0, 3

4H
)
.
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Moments of inertia are used to analyze rotation about an axis. For example, the

Axis of
rotation

FIGURE 5 A spinning yo-yo has rotational
kinetic energy 1

2 Iω2, where I is the
moment of inertia and ω is the angular
velocity. See Exercise 47.

spinning yo-yo in Figure 5 rotates about its center as it falls downward, and according to
physics, it has a rotational kinetic energy equal to

Rotational KE = 1

2
Iω2

Here, ω is the angular velocity (in radians per second) about this axis and I is the moment
of inertia with respect to the axis of rotation. The quantity I is a rotational analog of the
mass m, which appears in the expression 1

2mv2 for linear kinetic energy.
By definition, the moment of inertia with respect to an axis L is the integral of

“distance squared from the axis,” weighted by mass density. We confine our attention to
the coordinate axes. Thus, for a lamina in the plane R2, we define the moments of inertia

Ix =
∫∫

D
y2ρ(x, y) dA

Iy =
∫∫

D
x2ρ(x, y) dA

I0 =
∫∫

D
(x2 + y2)ρ(x, y) dA

3

The quantity I0 is called the polar moment of inertia. It is the moment of inertia relative
to the z-axis, because x2 + y2 is the square of the distance from a point in the xy-plane
to the z-axis. Notice that I0 = Ix + Iy .

For a solid object occupying the region W in R3,

Ix =
∫∫∫

W
(y2 + z2)ρ(x, y, z) dV

Iy =
∫∫∫

W
(x2 + z2)ρ(x, y, z) dV

Iz =
∫∫∫

W
(x2 + y2)ρ(x, y, z) dV

Moments of inertia have units of mass times length-squared.

y = 1 − x2

x

z

y

FIGURE 6 Rotating about the z-axis, the
plate remains in the xy-plane. About the
x-axis, it rotates out of the xy-plane.

EXAMPLE 5 A lamina D of uniform mass density and total mass M kg occupies the
region between y = 1 − x2 and the x-axis (in meters). Calculate the rotational KE if D
rotates with angular velocity ω = 4 rad/s about:

(a) the x-axis (b) the z-axis

Solution The lamina is shown in Figure 6. To find the rotational kinetic energy about the
x- and z-axes, we need to compute Ix and I0, respectively.

Step 1. Find the mass density.
The mass density is uniform (that is, ρ is constant), but this does not mean that ρ = 1.

In fact, the area of D is
∫ 1

−1
(1 − x2) dx = 4

3 , so the mass density (mass per unit area) is

ρ = mass

area
= M

4
3

= 3M

4
kg/m2
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Step 2. Calculate the moments.

Ix =
∫ 1

−1

∫ 1−x2

y=0
y2ρ dy dx =

∫ 1

−1

1

3
(1 − x2)3

(
3M

4

)
dx

= M

4

∫ 1

−1
(1 − 3x2 + 3x4 − x6) dx = 8M

35
kg-m2

To calculate I0, we use the relation I0 = Ix + Iy . We have

Iy =
∫ 1

−1

∫ 1−x2

y=0
x2ρ dy dx =

(
3M

4

)∫ 1

−1
x2(1 − x2) dx = M

5

and thus

I0 = Ix + Iy = 8M

35
+ M

5
= 3M

7
4

CAUTION The relation

I0 = Ix + Iy

is valid for a lamina in the xy-plane.
However, there is no relation of this type for
solid objects in R3.

Step 3. Calculate kinetic energy.
Assuming an angular velocity of ω = 4 rad/s,

Rotational KE about x-axis = 1

2
Ixω

2 = 1

2

(
8M

35

)
42 ≈ 1.8M J

Rotational KE about z-axis = 1

2
I0ω

2 = 1

2

(
3M

7

)
42 ≈ 3.4M J

The unit of energy is the joule (J), equal to 1 kg-m2/s2.

A point mass m located a distance r from an axis has moment of inertia I = mr2

with respect to that axis. Given an extended object of total mass M (not necessarily a
point mass) whose moment of inertia with respect to the axis is I , we define the radius of
gyration by rg = (I/M)1/2. With this definition, the moment of inertia would not change
if all of the mass of the object were concentrated at a point located a distance rg from the
axis.

EXAMPLE 6 Radius of Gyration of a Hemisphere Find the radius of gyration about
the z-axis of the solid hemisphere W defined by x2 + y2 + z2 = R2, 0 ≤ z ≤ 1, assuming
a mass density of ρ(x, y, z) = z kg/m3.

Solution To compute the radius of gyration about the z-axis, we must compute Iz and
the total mass M . We use spherical coordinates:

x2 + y2 = (ρ cos θ sin φ)2 + (ρ sin θ sin φ)2 = ρ2 sin2 φ, z = ρ cos φ

Iz =
∫∫∫

W
(x2 + y2)z dV =

∫ 2π

θ=0

∫ π/2

φ=0

∫ R

ρ=0
(ρ2 sin2 φ)(ρ cos φ)ρ2 sin φ dρ dφ dθ

= 2π

(∫ R

0
ρ5 dρ

)(∫ π/2

φ=0
sin3 φ cos φ dφ

)

= 2π

(
R6

6

)(
sin4 φ

4

∣∣∣∣π/2

0

)
= πR6

12
kg-m2

M =
∫∫∫

W
z dV =

∫ 2π

θ=0

∫ π/2

φ=0

∫ R

ρ=0
(ρ cos φ)ρ2 sin φ dρ dφ dθ
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=
(∫ R

ρ=0
ρ3 dρ

)(∫ π/2

φ=0
cos φ sin φ dφ

)(∫ 2π

θ=0
dθ

)
= πR4

4
kg

The radius of gyration is rg = (Iz/M)1/2 = (R2/3)1/2 = R/
√

3 m.

Probability Theory
In Section 7.7, we discussed how probabilities can be represented as areas under curves

Probability density p(x)

x

y

3 6 9 12 15 18

0.15

0.1

0.05

FIGURE 7 The shaded area is the probability
that X lies between 6 and 12.

(Figure 7). Recall that a random variable X is defined as the outcome of an experiment or
measurement whose value is not known in advance. The probability that the value of X

lies between a and b is denoted P(a ≤ X ≤ b). Furthermore, X is a continuous random
variable if there is a continuous function p(x), called the probability density function,
such that (Figure 7),

P(a ≤ X ≤ b) =
∫ b

a

p(x) dx

Double integration enters the picture when we compute “joint probabilities” of two
random variables X and Y . We let

P(a ≤ X ≤ b; c ≤ Y ≤ d)

denote the probability that X and Y satisfyREMINDER Conditions on a probability
density function:

• p(x) ≥ 0

• p(x) satisfies

∫ ∞

−∞
p(x) = 1

a ≤ X ≤ b, c ≤ Y ≤ d

For example, if X is the height (in centimeters) and Y is the weight (in kilograms) in a
certain population, then

P(160 ≤ X ≤ 170; 52 ≤ Y ≤ 63)

is the probability that a person chosen at random has height between 160 and 170 cm and
weight between 52 and 63 kg.

We say that X and Y are jointly continuous if there is a continuous function p(x, y),

x
a b

c

d

y

FIGURE 8 The probability
P(a ≤ X ≤ b; c ≤ Y ≤ d)

is equal to the integral of p(x, y) over the
rectangle.

called the joint probability density function (or simply the joint density), such that for
all intervals [a, b] and [c, d] (Figure 8),

P(a ≤ X ≤ b; c ≤ Y ≤ d) =
∫ b

x=a

∫ d

y=c

p(x, y) dy dx

In the margin, we recall two conditions that a probability density function must satisfy.
Joint density functions must satisfy similar conditions: First, p(x, y) ≥ 0 for all x and y

(because probabilities cannot be negative), and second,∫ ∞

−∞

∫ ∞

−∞
p(x, y) dy dx = 1 5

This is often called the normalization condition. It holds because it is certain (the prob-
ability is 1) that X and Y take on some value between −∞ and ∞.

EXAMPLE 7 Without proper maintenance, the time to failure (in months) of two
sensors in an aircraft are random variables X and Y with joint density

p(x, y) =

⎧⎪⎨
⎪⎩

1

864
e−x/24−y/36 for x ≥ 0, y ≥ 0

0 otherwise

What is the probability that neither sensor functions after two years?
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Solution The problem asks for the probability P(0 ≤ X ≤ 24; 0 ≤ Y ≤ 24):

∫ 24

x=0

∫ 24

y=0
p(x, y) dy dx = 1

864

∫ 24

x=0

∫ 24

y=0
e−x/24−y/36 dy dx

= 1

864

(∫ 24

x=0
e−x/24 dx

)(∫ 24

y=0
e−y/36 dy

)

= 1

864

(
− 24e−x/24

∣∣∣24

0

)(
− 36e−y/36

∣∣∣24

0

)

= (1 − e−1)(1 − e−24/36) ≈ 0.31

There is a 31% chance that neither sensor will function after two years.

More generally, we can compute the probability that X and Y satisfy conditions of
various types. For example, P(X + Y ≤ M) denotes the probability that the sum X + Y

is at most M . This probability is equal to the integral

P(X + Y ≤ M) =
∫∫

D
p(x, y) dy dx

where D = {(x, y) : x + y ≤ M}.

p (x, y) is zero
outside this square

x
3

3

y

Region in first quadrant
where x + y ≤ 3

FIGURE 9

EXAMPLE 8 Calculate the probability that X + Y ≤ 3, where X and Y have joint
probability density

p(x, y) =

⎧⎪⎨
⎪⎩

1

81
(2xy + 2x + y) for 0 ≤ x ≤ 3, 0 ≤ y ≤ 3

0 otherwise

Solution The probability density function p(x, y) is nonzero only on the square in Fig-
ure 9. Within that square, the inequality x + y ≤ 3 holds only on the shaded triangle, so
the probability that X + Y ≤ 3 is equal to the integral of p(x, y) over the triangle:

∫ 3

x=0

∫ 3−x

y=0
p(x, y) dy dx = 1

81

∫ 3

x=0

(
xy2 + 1

2
y2 + 2xy

)∣∣∣∣3−x

y=0

dx

= 1

81

∫ 3

x=0

(
x3 − 15

2
x2 + 12x + 9

2

)
dx

= 1

81

(
1

4
34 − 5

2
33 + 6(32) + 9

2
(3)

)
= 1

4

15.5 SUMMARY

• If the mass density is constant, then the center of mass coincides with the centroid,
whose coordinates x, y (and z in three dimensions) are the average values of x, y, and z

over the domain. For a domain in R2,

x = 1

A

∫∫
D

x dA, y = 1

A

∫∫
D

y dA, A =
∫∫

D
1 dA
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In R2 In R3

Total mass M =
∫∫

D
ρ(x, y) dA M =

∫∫∫
W

ρ(x, y, z) dV

Moments
Mx =

∫∫
D

yρ(x, y) dA

My =
∫∫

D
xρ(x, y) dA

Myz =
∫∫∫

W
xρ(x, y, z) dV

Mxz =
∫∫∫

W
yρ(x, y, z) dV

Mxy =
∫∫∫

W
zρ(x, y, z) dV

Center
of Mass

xCM = My

M
, yCM = Mx

M
xCM = Myz

M
, yCM = Mxz

M
, zCM = Mxy

M

Moments
of Inertia

Ix =
∫∫

D
y2ρ(x, y) dA

Iy =
∫∫

D
x2ρ(x, y) dA

I0 =
∫∫

D
(x2 + y2)ρ(x, y) dA

(I0 = Ix + Iy)

Ix =
∫∫∫

W
(y2 + z2)ρ(x, y, z) dV

Iy =
∫∫∫

W
(x2 + z2)ρ(x, y, z) dV

Iz =
∫∫∫

W
(x2 + y2)ρ(x, y, z) dV

• Radius of gyration: rg = (I/M)1/2

• Random variables X and Y have joint probability density function p(x, y) if

P(a ≤ X ≤ b; c ≤ Y ≤ d) =
∫ b

x=a

∫ d

y=c

p(x, y) dy dx

• A joint probability density function must satisfy p(x, y) ≥ 0 and∫ ∞

x=−∞

∫ ∞

y=−∞
p(x, y) dy dx = 1

15.5 EXERCISES

Preliminary Questions
1. What is the mass density ρ(x, y, z) of a solid of volume 5 m3 with

uniform mass density and total mass 25 kg?

2. A domain D in R2 with uniform mass density is symmetric with
respect to the y-axis. Which of the following are true?
(a) xCM = 0 (b) yCM = 0 (c) Ix = 0 (d) Iy = 0

3. If p(x, y) is the joint probability density function of random
variables X and Y , what does the double integral of p(x, y) over
[0, 1] × [0, 1] represent? What does the integral of p(x, y) over the
triangle bounded by x = 0, y = 0, and x + y = 1 represent?

Exercises
1. Find the total mass of the square 0 ≤ x ≤ 1, 0 ≤ y ≤ 1 assuming

a mass density of

ρ(x, y) = x2 + y2

2. Calculate the total mass of a plate bounded by y = 0 and y = x−1

for 1 ≤ x ≤ 4 (in meters) assuming a mass density of ρ(x, y) = y/x

kg/m2.

3. Find the total charge in the region under the graph of y = 4e−x2/2

for 0 ≤ x ≤ 10 (in centimeters) assuming a charge density of ρ(x, y) =
10−6xy coulombs per square centimeter.

4. Find the total population within a 4-kilometer radius of the city cen-
ter (located at the origin) assuming a population density of ρ(x, y) =
2000(x2 + y2)−0.2 people per square kilometer.
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5. Find the total population within the sector 2|x| ≤ y ≤ 8 assuming
a population density of ρ(x, y) = 100e−0.1y people per square kilo-
meter.

6. Find the total mass of the solid region W defined by x ≥ 0, y ≥ 0,
x2 + y2 ≤ 4, and x ≤ z ≤ 32 − x (in centimeters) assuming a mass
density of ρ(x, y, z) = 6y g/cm3.

7. Calculate the total charge of the solid ball x2 + y2 + z2 ≤ 5 (in
centimeters) assuming a charge density (in coulombs per cubic cen-
timeter) of

ρ(x, y, z) = (3 · 10−8)(x2 + y2 + z2)1/2

8. Compute the total mass of the plate in Figure 10 assuming a mass
density of f (x, y) = x2/(x2 + y2) g/cm2.

x
10

y

π

3

FIGURE 10

9. Assume that the density of the atmosphere as a function of al-
titude h (in km) above sea level is ρ(h) = ae−bh kg/km3, where
a = 1.225 × 109 and b = 0.13. Calculate the total mass of the atmo-
sphere contained in the cone-shaped region

√
x2 + y2 ≤ h ≤ 3.

10. Calculate the total charge on a plate D in the shape of the ellipse
with the polar equation

r2 =
(

1

6
sin2 θ + 1

9
cos2 θ

)−1

with the disk x2 + y2 ≤ 1 removed (Figure 11) assuming a charge den-
sity of ρ(r, θ) = 3r−4 C/cm2.

6

x

y

1 3

FIGURE 11

In Exercises 11–14, find the centroid of the given region.

11. Region bounded by y = 1 − x2 and y = 0

12. Region bounded by y2 = x + 4 and x = 4

13. Quarter circle x2 + y2 ≤ R2, x ≥ 0, y ≥ 0

14. Infinite lamina bounded by the x- and y-axes and the graph of
y = e−x

15. Use a computer algebra system to compute numerically

the centroid of the shaded region in Figure 12 bounded by r2 = cos 2θ

for x ≥ 0.

−1
x

y

r2 = cos 2θ

1

0.4

−0.4

FIGURE 12

16. Show that the centroid of the sector in Figure 13 has y-coordinate

y =
(

2R

3

)(
sin θ

θ

)

x

y

R

(0, y)

θ

FIGURE 13

In Exercises 17–19, find the centroid of the given solid region.

17. Hemisphere x2 + y2 + z2 ≤ R2, z ≥ 0

18. Region bounded by the xy-plane, the cylinder x2 + y2 = R2, and
the plane x/R + z/H = 1, where R > 0 and H > 0

19. The “ice cream cone” region W bounded, in spherical coordinates,
by the cone φ = π/3 and the sphere ρ = 2

20. Show that the z-coordinate of the centroid of the tetrahedron
bounded by the coordinate planes and the plane

x

a
+ y

b
+ z

c
= 1

in Figure 14 is z = c/4. Conclude by symmetry that the centroid is
(a/4, b/4, c/4).
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c

z

y

x

b
a

FIGURE 14

21. Find the centroid of the region W lying above the unit sphere
x2 + y2 + z2 = 6 and below the paraboloid z = 4 − x2 − y2 (Fig-
ure 15).

FIGURE 15

22. Let R > 0 and H > 0, and let W be the upper half of the ellipsoid
x2 + y2 + (Rz/H)2 = R2 where z ≥ 0 (Figure 16). Find the centroid
of W and show that it depends on the height H but not on the radius R.

y
R

x

R

H

z

FIGURE 16 Upper half of ellipsoid x2 + y2 + (Rz/H)2 = R2, z ≥ 0.

In Exercises 23–26, find the center of mass of the region with the given
mass density ρ.

23. Region bounded by y = 4 − x, x = 0, y = 0; ρ(x, y) = x

24. Region bounded by y2 = x + 4 and x = 0; ρ(x, y) = y

25. Region |x| + |y| ≤ 1; ρ(x, y) = x2

26. Semicircle x2 + y2 ≤ R2, y ≥ 0; ρ(x, y) = y

27. Find the z-coordinate of the center of mass of the first octant of the
unit sphere with mass density ρ(x, y, z) = y (Figure 17).

FIGURE 17

28. Find the center of mass of a cylinder of radius 2 and height 4 and
mass density e−z, where z is the height above the base.

29. Let R be the rectangle [−a, a] × [b, −b] with uniform density and
total mass M . Calculate:

(a) The mass density ρ of R
(b) Ix and I0

(c) The radius of gyration about the x-axis

30. Calculate Ix and I0 for the rectangle in Exercise 29 assuming a
mass density of ρ(x, y) = x.

31. Calculate I0 and Ix for the disk D defined by x2 + y2 ≤ 16 (in
meters), with total mass 1000 kg and uniform mass density. Hint: Cal-
culate I0 first and observe that I0 = 2Ix . Express your answer in the
correct units.

32. Calculate Ix and Iy for the half-disk x2 + y2 ≤ R2, x ≥ 0 (in me-
ters), of total mass M kg and uniform mass density.

In Exercises 33–36, let D be the triangular domain bounded by the co-
ordinate axes and the line y = 3 − x, with mass density ρ(x, y) = y.
Compute the given quantities.

33. Total mass 34. Center of Mass

35. Ix 36. I0

In Exercises 37–40, let D be the domain between the line y = bx/a and
the parabola y = bx2/a2 where a, b > 0. Assume the mass density is
ρ(x, y) = xy. Compute the given quantities.

37. Centroid 38. Center of Mass

39. Ix 40. I0

41. Calculate the moment of inertia Ix of the disk D defined by
x2 + y2 ≤ R2 (in meters) with total mass M kg. How much kinetic
energy (in joules) is required to rotate the disk about the x-axis with
angular velocity 10 rad/s?



918 C H A P T E R 15 MULTIPLE INTEGRATION

42. Calculate the moment of inertia Iz of the box W = [−a, a] ×
[−a, a] × [0, H ] assuming that W has total mass M .

43. Show that the moment of inertia of a sphere of radius R of total
mass M with uniform mass density about any axis passing through the
center of the sphere is 2

5MR2. Note that the mass density of the sphere

is ρ = M/
( 4

3πR3).
44. Use the result of Exercise 43 to calculate the radius of gyration of
a uniform sphere of radius R about any axis through the center of the
sphere.

In Exercises 45 and 46, prove the formula for the right circular cylinder
in Figure 18.

45. Iz = 1
2MR2 46. Ix = 1

4MR2 + 1
12MH 2

R

H

y

x

z

FIGURE 18

47. The yo-yo in Figure 19 is made up of two disks of radius r = 3 cm
and an axle of radius b = 1 cm. Each disk has mass M1 = 20 g, and
the axle has mass M2 = 5 g.

(a) Use the result of Exercise 45 to calculate the moment of inertia I

of the yo-yo with respect to the axis of symmetry. Note that I is the
sum of the moments of the three components of the yo-yo.

(b) The yo-yo is released and falls to the end of a 100-cm string, where
it spins with angular velocity ω. The total mass of the yo-yo is m = 45
g, so the potential energy lost is PE = mgh = (45)(980)100 g-cm2/s2.
Find ω under the assumption that one-third of this potential energy is
converted into rotational kinetic energy.

Axle of radius b

r

FIGURE 19

48. Calculate Iz for the solid region W inside the hyperboloid x2 +
y2 = z2 + 1 between z = 0 and z = 1.

49. Calculate P(0 ≤ X ≤ 2; 1 ≤ Y ≤ 2), where X and Y have joint
probability density function

p(x, y) =
{

1
72 (2xy + 2x + y) if 0 ≤ x ≤ 4 and 0 ≤ y ≤ 2

0 otherwise

50. Calculate the probability that X + Y ≤ 2 for random variables with
joint probability density function as in Exercise 49.

51. The lifetime (in months) of two components in a certain device
are random variables X and Y that have joint probability distribution
function

p(x, y) =
{

1
9216 (48 − 2x − y) if x ≥ 0, y ≥ 0, 2x + y ≤ 48

0 otherwise

Calculate the probability that both components function for at least 12
months without failing. Note that p(x, y) is nonzero only within the tri-
angle bounded by the coordinate axes and the line 2x + y = 48 shown
in Figure 20.

2x + y = 48

x (months)
12 24

Region where x ≥ 12, y ≥ 12
and 2x + y ≤ 48

36

24

12

48

y (months)

FIGURE 20

52. Find a constant C such that

p(x, y) =
{
Cxy if 0 ≤ x and 0 ≤ y ≤ 1 − x

0 otherwise

is a joint probability density function. Then calculate
(a) P

(
X ≤ 1

2 ; Y ≤ 1
4

)
(b) P(X ≥ Y )

53. Find a constant C such that

p(x, y) =
{
Cy if 0 ≤ x ≤ 1 and x2 ≤ y ≤ x

0 otherwise

is a joint probability density function. Then calculate the probability
that Y ≥ X3/2.

54. Numbers X and Y between 0 and 1 are chosen randomly. The joint
probability density is p(x, y) = 1 if 0 ≤ x ≤ 1 and 0 ≤ y ≤ 1, and
p(x, y) = 0 otherwise. Calculate the probability P that the product
XY is at least 1

2 .

55. According to quantum mechanics, the x- and y-coordinates of a
particle confined to the region R = [0, 1] × [0, 1] are random vari-
ables with joint probability density function

p(x, y) =
{
C sin2(2π�x) sin2(2πny) if (x, y) ∈ R
0 otherwise

The integers � and n determine the energy of the particle, and C is a
constant.
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(a) Find the constant C.
(b) Calculate the probability that a particle with � = 2, n = 3 lies in
the region

[
0, 1

4

]× [0, 1
8

]
.

56. The wave function for the 1s state of an electron in the hydrogen
atom is

ψ1s(ρ) = 1√
πa3

0

e−ρ/a0

where a0 is the Bohr radius. The probability of finding the electron in
a region W of R3 is equal to∫∫∫

W
p(x, y, z) dV

where, in spherical coordinates,

p(ρ) = |ψ1s(ρ)|2

Use integration in spherical coordinates to show that the probability of
finding the electron at a distance greater than the Bohr radius is equal to
5/e2 ≈ 0.677. The Bohr radius is a0 = 5.3 × 10−11 m, but this value
is not needed.

57. According to Coulomb’s Law, the force between two elec-
tric charges of magnitude q1 and q2 separated by a distance r is
kq1q2/r2 (k is a negative constant). Let F be the net force on a charged
particle P of charge Q coulombs located d centimeters above the cen-
ter of a circular disk of radius R with a uniform charge distribution
of density ρ C/m2 (Figure 21). By symmetry, F acts in the vertical
direction.
(a) Let R be a small polar rectangle of size �r × �θ located at dis-
tance r . Show that R exerts a force on P whose vertical component
is (

kρQd

(r2 + d2)3/2

)
r �r �θ

(b) Explain why F is equal to the following double integral, and eval-
uate:

F = kρQd

∫ 2π

0

∫ R

0

r dr dθ

(r2 + d2)3/2

FIGURE 21

58. Let D be the annular region

−π

2
≤ θ ≤ π

2
, a ≤ r ≤ b

where b > a > 0. Assume that D has a uniform charge distribution
of ρ C/m2. Let F be the net force on a charged particle of charge Q

coulombs located at the origin (by symmetry, F acts along the x-axis).

(a) Argue as in Exercise 57 to show that

F = kρQ

∫ π/2

θ=−π/2

∫ b

r=a

(
cos θ

r2

)
r dr dθ

(b) Compute F .

Further Insights and Challenges
59. Let D be the domain in Figure 22.Assume that D is symmetric with
respect to the y-axis; that is, both g1(x) and g2(x) are even functions.

(a) Prove that the centroid lies on the y-axis—that is, that x = 0.
(b) Show that if the mass density satisfies ρ(−x, y) = −ρ(x, y), then
My = 0 and xCM = 0.

y = g2(x)

y = g1(x)

x
a−a

y

FIGURE 22

60. Pappus’s Theorem Let A be the area of the region D between
two graphs y = g1(x) and y = g2(x) over the interval [a, b], where
g2(x) ≥ g1(x) ≥ 0. Prove Pappus’s Theorem: The volume of the solid
obtained by revolving D about the x-axis is V = 2πAy, where y is

the y-coordinate of the centroid of D (the average of the y-coordinate).
Hint: Show that

Ay =
∫ b

x=a

∫ g2(x)

y=g1(x)
y dy dx

61. Use Pappus’s Theorem in Exercise 60 to show that the torus ob-
tained by revolving a circle of radius b centered at (0, a) about the
x-axis (where b < a) has volume V = 2π2ab2.

62. Use Pappus’s Theorem to compute y for the upper half of the disk
x2 + y2 ≤ a2, y ≥ 0. Hint: The disk revolved about the x-axis is a
sphere.

63. Parallel-Axis Theorem Let W be a region in R3 with center of
mass at the origin. Let Iz be the moment of inertia of W about the z-
axis, and let Ih be the moment of inertia about the vertical axis through

a point P = (a, b, 0), where h =
√

a2 + b2. By definition,

Ih =
∫∫∫

W
((x − a)2 + (y − b)2)ρ(x, y, z) dV

Prove the Parallel-Axis Theorem: Ih = Iz + Mh2.
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64. Let W be a cylinder of radius 10 cm and height 20 cm, with total
mass M = 500 g. Use the Parallel-Axis Theorem (Exercise 63) and the
result of Exercise 45 to calculate the moment of inertia of W about an

axis that is parallel to and at a distance of 30 cm from the cylinder’s
axis of symmetry.

15.6 Change of Variables
The formulas for integration in polar, cylindrical, and spherical coordinates are important
special cases of the general Change of Variables Formula for multiple integrals. In this
section we discuss the general formula.

Maps from R2 to R2

A function G : X → Y from a set X (the domain) to another set Y is often called a map
or a mapping. For x ∈ X, the element G(x) belongs to Y and is called the image of x.
The set of all images G(x) is called the image or range of G. We denote the image by
G(X).

In this section, we consider mapsG : D → R2 defined on a domainD in R2 (Figure 1).
To prevent confusion, we’ll often use u, v as our domain variables and x, y for the range.
Thus, we will write G(u, v) = (x(u, v), y(u, v)), where the components x and y are
functions of u and v:

x = x(u, v), y = y(u, v)

u

P
G

G(P)

x

y

Domain Image     = G(   )

FIGURE 1 G maps D to R.

One map we are familiar with is the map defining polar coordinates. For this map, we
use variables r, θ instead of u, v. The polar coordinates map G : R2 → R2 is defined by

G(r, θ) = (r cos θ, r sin θ)

EXAMPLE 1 Polar Coordinates Map Describe the image of a polar rectangle R =
[r1, r2] × [θ1, θ2] under the polar coordinates map.

Solution Referring to Figure 2, we see that:

• A vertical line r = r1 (shown in red) is mapped to the set of points with radial
coordinate r1 and arbitrary angle. This is the circle of radius r1.

• A horizontal line θ = θ1 (dashed line in the figure) is mapped to the set of points
with polar angle θ and arbitrary r-coordinate. This is the line through the origin of
angle θ1.

The image of R = [r1, r2] × [θ1, θ2] under the polar coordinates map G(r, θ) =
(r cos θ, r sin θ) is the polar rectangle in the xy-plane defined by r1 ≤ r ≤ r2, θ1 ≤ θ ≤ θ2.
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θ

θ

G

P

G(P)

=

r

r   -plane xy -plane

r1 r2

θ 1

θ 2

θθ 2

= θθ 1G(   )

x

y

r2r1FIGURE 2 The polar coordinates map
G(r, θ) = (r cos θ, r sin θ).

General mappings can be quite complicated, so it is useful to study the simplest
case—linear maps—in detail. A map G(u, v) is linear if it has the form

G(u, v) = (Au + Cv, Bu + Dv) (A, B, C, D constants)

We can get a clear picture of this linear map by thinking of G as a map from vectors in
the uv-plane to vectors in the xy-plane. Then G has the following linearity properties (see
Exercise 46):

G(u1 + u2, v1 + v2) = G(u1, v1) + G(u2, v2) 1

G(cu, cv) = cG(u, v) (c any constant) 2

A consequence of these properties is that G maps the parallelogram spanned by any two
vectors a and b in the uv-plane to the parallelogram spanned by the images G(a) and
G(b), as shown in Figure 3.

More generally, G maps the segment joining any two points P and Q to the segment
joining G(P ) and G(Q) (see Exercise 47). The grid generated by basis vectors i = 〈1, 0〉
and j = 〈0, 1〉 is mapped to the grid generated by the image vectors (Figure 3)

r = G(1, 0) = 〈A, B〉
s = G(0, 1) = 〈C, D〉

j = 〈0, 1〉 s = 〈C, D〉

s
r

r = 〈A, B〉

〈0, 1〉

〈1, 0〉

i = 〈1, 0〉

G

G

G(Q)Q

P

Image of u-axis

Image of    -axis

u

u

x

y

x

G(P)

y

FIGURE 3 A linear mapping G maps a
parallelogram to a parallelogram.
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EXAMPLE 2 Image of a Triangle Find the image of the triangle T with vertices (1, 2),
(2, 1), (3, 4) under the linear map G(u, v) = (2u − v, u + v).

Solution Because G is linear, it maps the segment joining two vertices of T to the segment
joining the images of the two vertices. Therefore, the image of T is the triangle whose
vertices are the images (Figure 4)

G(1, 2) = (0, 3), G(2, 1) = (3, 3), G(3, 4) = (2, 7)

G

2

4

u
2

(2, 1)

(1, 2)

(3, 4)

4

y

2

4

66

x
2

(3, 3)(0, 3)

(2, 7)

4

G(   )

FIGURE 4 The map
G(u, v) = (2u − v, u + v).

To understand a nonlinear map, it is usually helpful to determine the images of hori-
zontal and vertical lines, as we did for the polar coordinate mapping.

EXAMPLE 3 Let G(u, v) = (uv−1, uv) for u > 0, v > 0. Determine the images of:

(a) The lines u = c and v = c (b) [1, 2] × [1, 2]
Find the inverse map G−1.

Solution In this map, we have x = uv−1 and y = uv. Thus

xy = u2,
y

x
= v2 3

(a) By the first part of Eq. (3), G maps a point (c, v) to a point in the xy-plane with xy = c2.
In other words, G maps the vertical line u = c to the hyperbola xy = c2. Similarly, by
the second part of Eq. (3), the horizontal line v = c is mapped to the set of points where
x/y = c2, or y = c2x, which is the line through the origin of slope c2. See Figure 5.

(b) The image of [1, 2] × [1, 2] is the curvilinear rectangle bounded by the four curvesThe term “curvilinear rectangle” refers to a
region bounded on four sides by curves as
in Figure 5.

that are the images of the lines u = 1, u = 2, and v = 1, v = 2. By Eq. (3), this region is
defined by the inequalities

1 ≤ xy ≤ 4, 1 ≤ y

x
≤ 4

To find G−1, we use Eq. (3) to write u = √
xy and v = √

y/x. Therefore, the inverse map
is G−1(x, y) = (√xy,

√
y/x

)
. We take positive square roots because u > 0 and v > 0

on the domain we are considering.
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G

u = 1

= 2

u = 2

1

2

u
1 2

y
y = 4x

xy = 4 (u = 2)

xy = 1 (u = 1)

y = x

1

4

x
1 2

(   = 2) (   = 1)

= 1

FIGURE 5 The mapping
G(u, v) = (uv−1, uv).

How Area Changes under a Mapping: The Jacobian Determinant
The Jacobian determinant (or simply the Jacobian) of a map

G(u, v) = (x(u, v), y(u, v))

is the determinantREMINDER The definition of a 2 × 2
determinant is∣∣∣∣ a b

c d

∣∣∣∣ = ad − bc 4
Jac(G) =

∣∣∣∣∣∣∣∣
∂x

∂u

∂x

∂v

∂y

∂u

∂y

∂v

∣∣∣∣∣∣∣∣ =
∂x

∂u

∂y

∂v
− ∂x

∂v

∂y

∂u

The Jacobian Jac(G) is also denoted
∂(x, y)

∂(u, v)
. Note that Jac(G) is a function of u and v.

EXAMPLE 4 Evaluate the Jacobian of G(u, v) = (u3 + v, uv) at (u, v) = (2, 1).

Solution We have x = u3 + v and y = uv, so

Jac(G) = ∂(x, y)

∂(u, v)
=

∣∣∣∣∣∣∣∣
∂x

∂u

∂x

∂v

∂y

∂u

∂y

∂v

∣∣∣∣∣∣∣∣
=
∣∣∣ 3u2 1

v u

∣∣∣ = 3u3 − v

The value of the Jacobian at (2, 1) is Jac(G)(2, 1) = 3(2)3 − 1 = 23.

s = 〈C, D〉
r = 〈A, B〉

〈0, 1〉

〈1, 0〉

G

u

Area = A

Area = |Jac(G)|A

x

y

FIGURE 6 A linear map G expands (or
shrinks) area by the factor |Jac(G)|.
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The Jacobian tells us how area changes under a map G. We can see this most directly
in the case of a linear map G(u, v) = (Au + Cv, Bu + Dv).

THEOREM 1 Jacobian of a Linear Map The Jacobian of a linear map

G(u, v) = (Au + Cv, Bu + Dv)

is constant with value

Jac(G) =
∣∣∣∣ A C

B D

∣∣∣∣ = AD − BC 5

Under G, the area of a region D is multiplied by the factor |Jac(G)|; that is,

Area(G(D)) = |Jac(G)|Area(D) 6

Proof Eq. (5) is verified by direct calculation: Because

x = Au + Cv and y = Bu + Dv

the partial derivatives in the Jacobian are the constants A, B, C, D.
We sketch a proof of Eq. (6). It certainly holds for the unit rectangle D = [1, 0] ×

[0, 1] because G(D) is the parallelogram spanned by the vectors 〈A, B〉 and 〈C, D〉 (Figure
6) and this parallelogram has area

|Jac(G)| = |AD − BC|
by Theorem 3 in Section 12.4. Similarly, we can check directly that Eq. (6) holds for
arbitrary parallelograms (see Exercise 48). To verify Eq. (6) for a general domain D, we
use the fact that D can be approximated as closely as desired by a union of rectangles in
a fine grid of lines parallel to the u- and v-axes.

We cannot expect Eq. (6) to hold for a nonlinear map. In fact, it would not make
sense as stated because the value Jac(G)(P ) may vary from point to point. However, it is
approximately true if the domain D is small and P is a sample point in D:

Area(G(D)) ≈ |Jac(G)(P )|Area(D) 7

This result may be stated more precisely as the limit relation:

|Jac(G)(P )| = lim
|D|→0

Area(G(D))

Area(D)
8

Here, we write |D| → 0 to indicate the limit as the diameter of D (the maximum distance
between two points in D) tends to zero.

G

u

(u,  )

u

Δu

u + Δu

+ Δ + Δ
Δ

x

y

G(u + Δu,   )B A

G(   )
G(u,           )

G(u,  )
FIGURE 7 The image of a small rectangle
under a nonlinear map can be approximated
by a parallelogram whose sides are
determined by the linear approximation.
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CONCEPTUAL INSIGHT Although a rigorous proof of Eq. (8) is too technical to include
here, we can understand Eq. (7) as an application of linear approximation. Consider a
rectangle R with vertex at P = (u, v) and sides of lengths �u and �v, assumed to be
small as in Figure 7. The image G(R) is not a parallelogram, but it is approximated
well by the parallelogram spanned by the vectors A and B in the figure:

A = G(u + �u, v) − G(u, v)

= (x(u + �u, v) − x(u, v), y(u + �u, v) − y(u, v))

B = G(u, v + �v) − G(u, v)

= (x(u, v + �v) − x(u, v), y(u, v + �v) − y(u, v))

The linear approximation applied to the components of G yields

A ≈
〈
∂x

∂u
�u,

∂y

∂u
�u

〉
9

B ≈
〈
∂x

∂v
�v,

∂y

∂v
�v

〉
10

This yields the desired approximation:

Area(G(R)) ≈
∣∣∣∣det

(
A
B

)∣∣∣∣ =
∣∣∣∣∣det

(
∂x
∂u

�u
∂y
∂u

�u

∂x
∂v

�v
∂y
∂v

�v

)∣∣∣∣∣
=
∣∣∣∣∂x

∂u

∂y

∂v
− ∂y

∂u

∂x

∂v

∣∣∣∣ �u �v

= |Jac(G)(P )|Area(R)

since the area of R is �u �v.

REMINDER Equations (9) and (10) use
the linear approximations

x(u + �u, v) − x(u, v) ≈ ∂x

∂u
�u

y(u + �u, v) − y(u, v) ≈ ∂y

∂u
�u

and

x(u, v + �v) − x(u, v) ≈ ∂x

∂v
�v

y(u, v + �v) − y(u, v) ≈ ∂y

∂v
�v

The Change of Variables Formula
Recall the formula for integration in polar coordinates:∫∫

D
f (x, y) dx dy =

∫ θ2

θ1

∫ r2

r1

f (r cos θ, r sin θ) r dr dθ 11

Here, D is the polar rectangle consisting of points (x, y) = (r cos θ, r sin θ) in the xy-
plane (see Figure 2 above). The domain of integration on the right is the rectangle R =
[θ1, θ2] × [r1, r2] in the rθ -plane. Thus, D is the image of the domain on the right under
the polar coordinates map.

The general Change of Variables Formula has a similar form. Given a map

G : D0
in uv-plane

→ D
in xy-plane

from a domain in theuv-plane to a domain in thexy-plane (Figure 8), our formula expresses
an integral over D as an integral over D0. The Jacobian plays the role of the factor r on
the right-hand side of Eq. (11).

REMINDER G is called “one-to-one” if
G(P ) = G(Q) only for P = Q.

A few technical assumptions are necessary. First, we assume that G is one-to-one, at
least on the interior of D0, because we want G to cover the target domain D just once. We
also assume that G is a C1 map, by which we mean that the component functions x and y

have continuous partial derivatives. Under these conditions, if f (x, y) is continuous, we
have the following result.
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G

∫∫ ∫∫

0

0

u

f (x (u,   ) , y (u,   ))|Jac(G)| dud  f (x, y) dx dy=

x

y

xy-plane
u  -plane

FIGURE 8 The Change of Variables
Formula expresses a double integral over
D as a double integral over D0.

THEOREM 2 Change of Variables Formula Let G : D0 → D be a C1 mapping that
is one-to-one on the interior of D0. If f (x, y) is continuous, then

∫∫
D

f (x, y) dx dy =
∫∫

D0

f (x(u, v), y(u, v))

∣∣∣∣∂(x, y)

∂(u, v)

∣∣∣∣ du dv 12

Proof We sketch the proof. Observe first that Eq. (12) is approximately true if the domains

Eq. (12) is summarized by the symbolic
equality

dx dy =
∣∣∣∣∂(x, y)

∂(u, v)

∣∣∣∣ du dv

Recall that
∂(x, y)

∂(u, v)
denotes the Jacobian

Jac(G).
D0 and D are small. Let P = G(P0) where P0 is any sample point in D0. Since f (x, y)

is continuous, the approximation recalled in the margin together with Eq. (7) yieldREMINDER If D is a domain of small
diameter, P ∈ D is a sample point, and
f (x, y) is continuous, then (see Section
15.2)∫∫

D
f (x, y) dx dy ≈ f (P )Area(D)

∫∫
D

f (x, y) dx dy ≈ f (P )Area(D)

≈ f (G(P0)) |Jac(G)(P0)|Area(D0)

≈
∫∫

D0

f (G(u, v)) |Jac(G)(u, v)| du dv

If D is not small, divide it into small subdomains Dj = G(D0j ) (Figure 9 shows a rectangle
divided into smaller rectangles), apply the approximation to each subdomain, and sum:∫∫

D
f (x, y) dx dy =

∑
j

∫∫
Dj

f (x, y) dx dy

≈
∑
j

∫∫
D0j

f (G(u, v))) |Jac(G)(u, v)| du dv

=
∫∫

D0

f (G(u, v)) |Jac(G)(u, v)| du dv

Careful estimates show that the error tends to zero as the maximum of the diameters of
the subdomains Dj tends to zero. This yields the Change of Variables Formula.

G

Δu

Δ

u
Domain    0

x

y

Domain       = G(   0)

Rectangle     0 j Sample point P0 j

Sample point
Pj = G(P0 j)

Curvilinear rectangle
  j = G(   0 j)

FIGURE 9 G maps a rectangular grid on D0 to a curvilinear grid on D.
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EXAMPLE 5 Polar Coordinates Revisited Use the Change of Variables Formula to
derive the formula for integration in polar coordinates.

Solution The Jacobian of the polar coordinate map G(r, θ) = (r cos θ, r sin θ) is

Jac(G) =

∣∣∣∣∣∣∣∣
∂x

∂r

∂x

∂θ

∂y

∂r

∂y

∂θ

∣∣∣∣∣∣∣∣ =
∣∣∣∣ cos θ −r sin θ

sin θ r cos θ

∣∣∣∣ = r(cos2 θ + sin2 θ) = r

Let D = G(R) be the image under the polar coordinates map G of the rectangle R defined
by r0 ≤ r ≤ r1, θ0 ≤ θ ≤ θ1 (see Figure 2). Then Eq. (12) yields the expected formula for
polar coordinates:∫∫

D
f (x, y) dx dy =

∫ θ1

θ0

∫ r1

r0

f (r cos θ, r sin θ) r dr dθ 13

Assumptions Matter In the Change of Variables Formula, we assume that G is one-to-
one on the interior but not necessarily on the boundary of the domain. Thus, we can apply
Eq. (12) to the polar coordinates map G on the rectangle D0 = [0, 1] × [0, 2π ]. In this
case, G is one-to-one on the interior but not on the boundary of D0 since G(0, θ) = (0, 0)

for all θ and G(r, 0) = G(r, 2π) for all r . On the other hand, Eq. (12) cannot be applied
to G on the rectangle [0, 1] × [0, 4π ] because it is not one-to-one on the interior.

EXAMPLE 6 Use the Change of Variables Formula to calculate
∫∫

P
e4x−y dx dy,

where P is the parallelogram spanned by the vectors 〈4, 1〉, 〈3, 3〉 in Figure 10.

G

u

y

x

〈0, 1〉

〈3, 3〉

〈4, 1〉

〈7, 4〉

〈1, 0〉FIGURE 10 The map
G(u, v) = (4u + 3v, u + 3v).

SolutionRecall that the linear map

G(u, v) = (Au + Cv, Bu + Dv)

satisfies

G(1, 0) = (A, B), G(0, 1) = (C, D)

Step 1. Define a map.
We can convert our double integral to an integral over the unit squareR = [0, 1] × [0, 1]
if we can find a map that sends R to P . The following linear map does the job:

G(u, v) = (4u + 3v, u + 3v)

Indeed, G(1, 0) = (4, 1) and G(0, 1) = (3, 3), so it maps R to P because linear maps
map parallelograms to parallelograms.

Step 2. Compute the Jacobian.

Jac(G) =

∣∣∣∣∣∣∣∣
∂x

∂u

∂x

∂v

∂y

∂u

∂y

∂v

∣∣∣∣∣∣∣∣ =
∣∣∣∣ 4 3

1 3

∣∣∣∣ = 9
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Step 3. Express f (x, y) in terms of the new variables.
Since x = 4u + 3v and y = u + 3v, we have

e4x−y = e4(4u+3v)−(u+3v) = e15u+9v

Step 4. Apply the Change of Variables Formula.
The Change of Variables Formula tells us that dx dy = 9 du dv:∫∫

P
e4x−y dx dy =

∫∫
R

e15u+9v |Jac(G)| du dv =
∫ 1

0

∫ 1

0
e15u+9v (9 du dv)

= 9

(∫ 1

0
e15u du

)(∫ 1

0
e9v dv

)
= 1

15
(e15 − 1)(e9 − 1)

EXAMPLE 7 Use the Change of Variables Formula to compute∫∫
D

(x2 + y2) dx dy

where D is the domain 1 ≤ xy ≤ 4, 1 ≤ y/x ≤ 4 (Figure 11).

Solution In Example 3, we studied the map G(u, v) = (uv−1, uv), which can be written

x = uv−1, y = uv

We showed (Figure 11) that G maps the rectangle D0 = [1, 2] × [1, 2] to our domain D.
Indeed, because xy = u2 and xy−1 = v2, the two conditions 1 ≤ xy ≤ 4 and 1 ≤ y/x ≤ 4
that define D become 1 ≤ u ≤ 2 and 1 ≤ v ≤ 2.

The Jacobian is

Jac(G) = ∂(x, y)

∂(u, v)
=

∣∣∣∣∣∣∣∣
∂x

∂u

∂x

∂v

∂y

∂u

∂y

∂v

∣∣∣∣∣∣∣∣ =
∣∣∣∣ v−1 −uv−2

v u

∣∣∣∣ = 2u

v

To apply the Change of Variables Formula, we write f (x, y) in terms of u and v:

f (x, y) = x2 + y2 =
(u

v

)2 + (uv)2 = u2(v−2 + v2)

By the Change of Variables Formula,∫∫
D

(x2 + y2) dx dy =
∫∫

D0

u2(v−2 + v2)

∣∣∣∣2u

v

∣∣∣∣ du dv

= 2
∫ 2

v=1

∫ 2

u=1
u3(v−3 + v) du dv

= 2

(∫ 2

u=1
u3 du

)(∫ 2

v=1
(v−3 + v) dv

)

= 2

(
1

4
u4
∣∣∣∣2
1

)(
−1

2
v−2 + 1

2
v2
∣∣∣∣2
1

)
= 225

16
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1

2

u
1 2

y
y = 4x
(  = 2)  

1

4

x
1 2

xy = 4 (u = 2)

u = 1 u = 2

xy = 1 (u = 1)

= 2  

= 1  

y = x
(  = 1)  

G

FIGURE 11

Keep in mind that the Change of Variables Formula turns an xy-integral into a uv-
integral, but the map G goes from the uv-domain to the xy-domain. Sometimes, it is easier
to find a map F going in the wrong direction, from the xy-domain to the uv-domain. The
desired map G is then the inverse G = F−1. The next example shows that in some cases,
we can evaluate the integral without solving for G. The key fact is that the Jacobian of F

is the reciprocal of Jac(G) (see Exercises 49–51):
Eq. (14) can be written in the suggestive
form

∂(x, y)

∂(u, v)
=
(

∂(u, v)

∂(x, y)

)−1

Jac(G) = Jac(F )−1 where F = G−1 14

EXAMPLE 8 Using the Inverse Map Integrate f (x, y) = xy(x2 + y2) over

D : −3 ≤ x2 − y2 ≤ 3, 1 ≤ xy ≤ 4

Solution There is a simple map F that goes in the wrong direction. Let u = x2 − y2

and v = xy. Then our domain is defined by the inequalities −3 ≤ u ≤ 3 and 1 ≤ v ≤ 4,
and we can define a map from D to the rectangle R = [−3, 3] × [1, 4] in the uv-plane
(Figure 12):

F : D → R
(x, y) → (x2 − y2, xy)

F

G

4

1
u

3−3

y

x
xy = 1

x2 − y2 = −3

x2 − y2 = 3

xy = 4

FIGURE 12 The map F goes in the “wrong”
direction.

To convert the integral over D into an integral over the rectangle R, we have to apply
the Change of Variables Formula to the inverse mapping:

G = F−1 : R → D
We will see that it is not necessary to find G explicitly. Since u = x2 − y2 and v = xy,
the Jacobian of F is

Jac(F ) =

∣∣∣∣∣∣∣∣
∂u

∂x

∂u

∂y

∂v

∂x

∂v

∂y

∣∣∣∣∣∣∣∣ =
∣∣∣∣ 2x −2y

y x

∣∣∣∣ = 2(x2 + y2)



930 C H A P T E R 15 MULTIPLE INTEGRATION

By Eq. (14),

Jac(G) = Jac(F )−1 = 1

2(x2 + y2)

Normally, the next step would be to express f (x, y) in terms of u and v. We can avoid
doing this in our case by observing that the Jacobian cancels with one factor of f (x, y):∫∫

D
xy(x2 + y2) dx dy =

∫∫
R

f (x(u, v), y(u, v)) |Jac(G)| du dv

=
∫∫

R
xy(x2 + y2)

1

2(x2 + y2)
du dv

= 1

2

∫∫
R

xy du dv

= 1

2

∫∫
R

v du dv (because v = xy)

= 1

2

∫ 3

−3

∫ 4

1
v dv du = 1

2
(6)

(
1

2
42 − 1

2
12
)

= 45

2

Change of Variables in Three Variables
The Change of Variables Formula has the same form in three (or more) variables as in two
variables. Let

G : W0 → W
be a mapping from a three-dimensional region W0 in (u, v, w)-space to a region W in
(x, y, z)-space, say,

x = x(u, v, w), y = y(u, v, w), z = z(u, v, w)

The Jacobian Jac(G) is the 3 × 3 determinant:REMINDER 3 × 3-determinants are
defined in Eq. (2) of Section 12.4.

Jac(G) = ∂(x, y, z)

∂(u, v, w)
=

∣∣∣∣∣∣∣∣∣∣∣∣

∂x

∂u

∂x

∂v

∂x

∂w

∂y

∂u

∂y

∂v

∂y

∂w

∂z

∂u

∂z

∂v

∂z

∂w

∣∣∣∣∣∣∣∣∣∣∣∣
15

The Change of Variables Formula states

dx dy dz =
∣∣∣∣ ∂(x, y, z)

∂(u, v, w)

∣∣∣∣ du dv dw

More precisely, if G is C1 and one-to-one on the interior of W0, and if f is continuous,
then∫∫∫

W
f (x, y, z) dx dy dz

=
∫∫∫

W0

f (x(u, v, w), y(u, v, w), z(u, v, w))

∣∣∣∣ ∂(x, y, z)

∂(u, v, w)

∣∣∣∣ du dv dw 16
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In Exercises 42 and 43, you are asked to use the general Change of Variables Formula to
derive the formulas for integration in cylindrical and spherical coordinates developed in
Section 15.4.

15.6 SUMMARY

• Let G(u, v) = (x(u, v), y(u, v)) be a mapping. We write x = x(u, v) or x = x(u, v)

and, similarly, y = y(u, v) or y = y(u, v). The Jacobian of G is the determinant

Jac(G) = ∂(x, y)

∂(u, v)
=

∣∣∣∣∣∣∣∣
∂x

∂u

∂x

∂v

∂y

∂u

∂y

∂v

∣∣∣∣∣∣∣∣
• Jac(G) = Jac(F )−1 where F = G−1.
• Change of Variables Formula: If G : D0 → D is C1 and one-to-one on the interior of
D0, and if f is continuous, then∫∫

D
f (x, y) dx dy =

∫∫
D0

f (x(u, v), y(u, v))

∣∣∣∣∂(x, y)

∂(u, v)

∣∣∣∣ du dv

• The Change of Variables Formula is written symbolically in two and three variables as

dx dy =
∣∣∣∣∂(x, y)

∂(u, v)

∣∣∣∣ du dv, dx dy dz =
∣∣∣∣ ∂(x, y, z)

∂(u, v, w)

∣∣∣∣ du dv dw

15.6 EXERCISES

Preliminary Questions
1. Which of the following maps is linear?

(a) (uv, v) (b) (u + v, u) (c) (3, eu)

2. Suppose that G is a linear map such that G(2, 0) = (4, 0) and
G(0, 3) = (−3, 9). Find the images of:
(a) G(1, 0) (b) G(1, 1) (c) G(2, 1)

3. What is the area of G(R) if R is a rectangle of area 9 and G is a
mapping whose Jacobian has constant value 4?

4. Estimate the area of G(R), where R = [1, 1.2] × [3, 3.1] and G

is a mapping such that Jac(G)(1, 3) = 3.

Exercises
1. Determine the image under G(u, v) = (2u, u + v) of the following

sets:

(a) The u- and v-axes

(b) The rectangle R = [0, 5] × [0, 7]
(c) The line segment joining (1, 2) and (5, 3)

(d) The triangle with vertices (0, 1), (1, 0), and (1, 1)

2. Describe [in the form y = f (x)] the images of the lines u = c and
v = c under the mapping G(u, v) = (u/v, u2 − v2).

3. Let G(u, v) = (u2, v). Is G one-to-one? If not, determine a domain
on which G is one-to-one. Find the image under G of:

(a) The u- and v-axes

(b) The rectangle R = [−1, 1] × [−1, 1]
(c) The line segment joining (0, 0) and (1, 1)

(d) The triangle with vertices (0, 0), (0, 1), and (1, 1)

4. Let G(u, v) = (eu, eu+v).

(a) Is G one-to-one? What is the image of G?

(b) Describe the images of the vertical lines u = c and the horizontal
lines v = c.

In Exercises 5–12, let G(u, v) = (2u + v, 5u + 3v) be a map from the
uv-plane to the xy-plane.

5. Show that the image of the horizontal line v = c is the line
y = 5

2x + 1
2 c. What is the image (in slope-intercept form) of the ver-

tical line u = c?

6. Describe the image of the line through the points (u, v) = (1, 1)

and (u, v) = (1, −1) under G in slope-intercept form.

7. Describe the image of the line v = 4u under G in slope-intercept
form.
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8. Show that G maps the line v = mu to the line of slope
(5 + 3m)/(2 + m) through the origin in the xy-plane.

9. Show that the inverse of G is

G−1(x, y) = (3x − y, −5x + 2y)

Hint: Show that G(G−1(x, y)) = (x, y) and G−1(G(u, v)) = (u, v).

10. Use the inverse in Exercise 9 to find:

(a) A point in the uv-plane mapping to (2, 1)

(b) A segment in the uv-plane mapping to the segment joining (−2, 1)

and (3, 4)

11. Calculate Jac(G) = ∂(x, y)

∂(u, v)
.

12. Calculate Jac(G−1) = ∂(u, v)

∂(x, y)
.

In Exercises 13–18, compute the Jacobian (at the point, if indicated).

13. G(u, v) = (3u + 4v, u − 2v)

14. G(r, s) = (rs, r + s)

15. G(r, t) = (r sin t, r − cos t), (r, t) = (1, π)

16. G(u, v) = (v ln u, u2v−1), (u, v) = (1, 2)

17. G(r, θ) = (r cos θ, r sin θ), (r, θ) = (4, π
6

)
18. G(u, v) = (uev, eu)

19. Find a linear mapping G that maps [0, 1] × [0, 1] to the parallelo-
gram in the xy-plane spanned by the vectors 〈2, 3〉 and 〈4, 1〉.
20. Find a linear mapping G that maps [0, 1] × [0, 1] to the parallelo-
gram in the xy-plane spanned by the vectors 〈−2, 5〉 and 〈1, 7〉.
21. Let D be the parallelogram in Figure 13. Apply the Change of
Variables Formula to the map G(u, v) = (5u + 3v, u + 4v) to evalu-

ate
∫∫

D
xy dx dy as an integral over D0 = [0, 1] × [0, 1].

D

x

y

(5, 1)

(3, 4)

FIGURE 13

22. Let G(u, v) = (u − uv, uv).

(a) Show that the image of the horizontal line v = c is y = c

1 − c
x if

c �= 1, and is the y-axis if c = 1.

(b) Determine the images of vertical lines in the uv-plane.

(c) Compute the Jacobian of G.

(d) Observe that by the formula for the area of a triangle, the region D
in Figure 14 has area 1

2 (b2 − a2). Compute this area again, using the
Change of Variables Formula applied to G.

(e) Calculate
∫∫

D
xy dx dy.

D

x

y

a b

a

b

FIGURE 14

23. Let G(u, v) = (3u + v, u − 2v). Use the Jacobian to determine
the area of G(R) for:

(a) R = [0, 3] × [0, 5] (b) R = [2, 5] × [1, 7]
24. Find a linear map T that maps [0, 1] × [0, 1] to the parallelogram P
in the xy-plane with vertices (0, 0), (2, 2), (1, 4), (3, 6). Then calculate
the double integral of e2x−y over P via change of variables.

25. With G as in Example 3, use the Change of Variables Formula to
compute the area of the image of [1, 4] × [1, 4].
In Exercises 26–28, let R0 = [0, 1] × [0, 1] be the unit square. The
translate of a map G0(u, v) = (φ(u, v), ψ(u, v)) is a map

G(u, v) = (a + φ(u, v), b + ψ(u, v))

where a, b are constants. Observe that the map G0 in Figure 15 maps
R0 to the parallelogram P0 and that the translate

G1(u, v) = (2 + 4u + 2v, 1 + u + 3v)

maps R0 to P1.

u

1

1

(4, 1)

(6, 4)(2, 3)

(6, 2)

(2, 1)

(8, 5)
(4, 4)

x

y

G0(u,   ) = (4u + 2  , u + 3  )

u

1

1
x

y

G1(u,   ) = (2 + 4u + 2  , 1 + u + 3  )

(3, 2)
(−1, 1)

(1, 4)

x

y

(6, 3)

(2, 2)

(4, 5)

x

y

0

0

2

0

1

3

FIGURE 15
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26. Find translates G2 and G3 of the mapping G0 in Figure 15 that
map the unit square R0 to the parallelograms P2 and P3.

27. Sketch the parallelogram P with vertices (1, 1), (2, 4), (3, 6), (4, 9)

and find the translate of a linear mapping that maps R0 to P .

28. Find the translate of a linear mapping that maps R0 to the paral-
lelogram spanned by the vectors 〈3, 9〉 and 〈−4, 6〉 based at (4, 2).

29. Let D = G(R), where G(u, v) = (u2, u + v) and R = [1, 2] ×
[0, 6]. Calculate

∫∫
D

y dx dy. Note: It is not necessary to describe D.

30. Let D be the image of R = [1, 4] × [1, 4] under the map G(u, v) =
(u2/v, v2/u).

(a) Compute Jac(G).
(b) Sketch D.
(c) Use the Change of Variables Formula to compute Area(D) and∫∫

D
f (x, y) dx dy, where f (x, y) = x + y.

31. Compute
∫∫

D
(x + 3y) dx dy, where D is the shaded region in

Figure 16. Hint: Use the map G(u, v) = (u − 2v, v).

6 10

x + 2y = 10

x + 2y = 6

1

3

5

y

x

FIGURE 16

32. Use the map G(u, v) =
(

u

v + 1
,

uv

v + 1

)
to compute

∫∫
D

(x + y) dx dy

where D is the shaded region in Figure 17.

D

63

y = 2x y = x

1

3

6

y

x

FIGURE 17

33. Show that T (u, v) = (u2 − v2, 2uv) maps the triangle D0 =
{(u, v) : 0 ≤ v ≤ u ≤ 1} to the domain D bounded by x = 0, y = 0,
and y2 = 4 − 4x. Use T to evaluate∫∫

D

√
x2 + y2 dx dy

34. Find a mapping G that maps the disk u2 + v2 ≤ 1 onto the interior

of the ellipse
(x

a

)2 +
(y

b

)2 ≤ 1. Then use the Change of Variables

Formula to prove that the area of the ellipse is πab.

35. Calculate
∫∫

D
e9x2+4y2

dx dy, where D is the interior of the el-

lipse
(x

2

)2 +
(y

3

)2 ≤ 1.

36. Compute the area of the region enclosed by the ellipse x2 + 2xy +
2y2 − 4y = 8 as an integral in the variables u = x + y, v = y − 2.

37. Sketch the domain D bounded by y = x2, y = 1
2x2, and y = x.

Use a change of variables with the map x = uv, y = u2 to calculate∫∫
D

y−1 dx dy

This is an improper integral since f (x, y) = y−1 is undefined at (0, 0),
but it becomes proper after changing variables.

38. Find an appropriate change of variables to evaluate∫∫
R

(x + y)2ex2−y2
dx dy

where R is the square with vertices (1, 0), (0, 1), (−1, 0), (0, −1).

39. Let G be the inverse of the map F(x, y) = (xy, x2y) from the
xy-plane to the uv-plane. Let D be the domain in Figure 18. Show, by
applying the Change of Variables Formula to the inverse G = F−1,
that ∫∫

D
exy dx dy =

∫ 20

10

∫ 40

20
euv−1 dv du

and evaluate this result. Hint: See Example 8.

x2y = 20

1

10

20

x2y = 40

xy = 20

xy = 10

32 4

y

x
65

FIGURE 18

40. Sketch the domain

D = {(x, y) : 1 ≤ x + y ≤ 4, −4 ≤ y − 2x ≤ 1}
(a) Let F be the map u = x + y, v = y − 2x from the xy-plane to the
uv-plane, and let G be its inverse. Use Eq. (14) to compute Jac(G).

(b) Compute
∫∫

D
ex+y dx dy using the Change of Variables Formula

with the map G. Hint: It is not necessary to solve for G explicitly.
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41. Let I =
∫∫

D
(x2 − y2) dx dy, where

D = {(x, y) : 2 ≤ xy ≤ 4, 0 ≤ x − y ≤ 3, x ≥ 0, y ≥ 0}
(a) Show that the mapping u = xy, v = x − y maps D to the rectangle
R = [2, 4] × [0, 3].
(b) Compute ∂(x, y)/∂(u, v) by first computing ∂(u, v)/∂(x, y).
(c) Use the Change of Variables Formula to show that I is equal to the
integral of f (u, v) = v over R and evaluate.

42. Derive formula (5) in Section 15.4 for integration in cylindrical
coordinates from the general Change of Variables Formula.

43. Derive formula (9) in Section 15.4 for integration in spherical co-
ordinates from the general Change of Variables Formula.

44. Use the Change of Variables Formula in three variables to prove

that the volume of the ellipsoid
(x

a

)2 +
(y

b

)2 +
( z

c

)2 = 1 is equal

to abc × the volume of the unit sphere.

Further Insights and Challenges
45. Use the map

x = sin u

cos v
, y = sin v

cos u

to evaluate the integral ∫ 1

0

∫ 1

0

dx dy

1 − x2y2

This is an improper integral since the integrand is infinite if x =
±1, y = ±1, but applying the Change of Variables Formula shows that
the result is finite.

46. Verify properties (1) and (2) for linear functions and show that any
map satisfying these two properties is linear.

47. Let P and Q be points in R2. Show that a linear map G(u, v) =
(Au + Cv, Bu + Dv) maps the segment joining P and Q to the seg-
ment joining G(P ) to G(Q). Hint: The segment joining P and Q has
parametrization

(1 − t)
−→
OP + t

−−→
OQ for 0 ≤ t ≤ 1

48. Let G be a linear map. Prove Eq. (6) in the following steps.
(a) For any set D in the uv-plane and any vector u, let D + u be the set
obtained by translating all points in D by u. By linearity, G maps D + u

G G(u)u

(A) (B)

u

(C)

u x

y

+ u

G(   )

G(   ) + G(u)

FIGURE 19

to the translate G(D) + G(u) [Figure 19(C)]. Therefore, if Eq. (6) holds
for D, it also holds for D + u.

(b) In the text, we verified Eq. (6) for the unit rectangle. Use linearity
to show that Eq. (6) also holds for all rectangles with vertex at the ori-
gin and sides parallel to the axes. Then argue that it also holds for each
triangular half of such a rectangle, as in Figure 19(A).

(c) Figure 19(B) shows that the area of a parallelogram is a difference
of the areas of rectangles and triangles covered by steps (a) and (b).
Use this to prove Eq. (6) for arbitrary parallelograms.

49. The product of 2 × 2 matrices A and B is the matrix AB defined
by

(
a b

c d

)
︸ ︷︷ ︸

A

(
a′ b′
c′ d ′

)
︸ ︷︷ ︸

B

=
(

aa′ + bc′ ab′ + bd ′
ca′ + dc′ cb′ + dd ′

)
︸ ︷︷ ︸

AB

The (i, j)-entry of A is the dot product of the ith row of A and the j th
column of B. Prove that det(AB) = det(A) det(B).

50. Let G1 : D1 → D2 and G2 : D2 → D3 be C1 maps, and let
G2 ◦ G1 : D1 → D3 be the composite map. Use the Multivariable
Chain Rule and Exercise 49 to show that

Jac(G2 ◦ G1) = Jac(G2)Jac(G1)

51. Use Exercise 50 to prove that

Jac(G−1) = Jac(G)−1

Hint: Verify that Jac(I ) = 1, where I is the identity map I (u, v) =
(u, v).

52. Let (x, y) be the centroid of a domain D. For λ > 0, let λD be the
dilate of D, defined by

λD = {(λx, λy) : (x, y) ∈ D}

Use the Change of Variables Formula to prove that the centroid of λD
is (λx, λy).
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CHAPTER REVIEW EXERCISES

1. Calculate the Riemann sum S2,3 for
∫ 4

1

∫ 6

2
x2y dx dy using two

choices of sample points:

(a) Lower-left vertex

(b) Midpoint of rectangle

Then calculate the exact value of the double integral.

2. Let SN,N be the Riemann sum for
∫ 1

0

∫ 1

0
cos(xy) dx dy using

midpoints as sample points.

(a) Calculate S4,4.

(b) Use a computer algebra system to calculate SN,N for
N = 10, 50, 100.

3. Let D be the shaded domain in Figure 1.

D

x
0.5 1 1.5 2

0.5

1

1.5

2

y

FIGURE 1

Estimate
∫∫

D
xy dA by the Riemann sum whose sample points are the

midpoints of the squares in the grid.

4. Explain the following:

(a)
∫ 1

−1

∫ 1

−1
sin(xy) dx dy = 0

(b)
∫ 1

−1

∫ 1

−1
cos(xy) dx dy > 0

In Exercises 5–8, evaluate the iterated integral.

5.
∫ 2

0

∫ 5

3
y(x − y) dx dy

6.
∫ 0

1/2

∫ π/6

0
e2y sin 3x dx dy

7.
∫ π/3

0

∫ π/6

0
sin(x + y) dx dy

8.
∫ 2

1

∫ 2

1

y dx dy

x + y2

In Exercises 9–14, sketch the domain D and calculate
∫∫

D
f (x, y) dA.

9. D = {0 ≤ x ≤ 4, 0 ≤ y ≤ x}, f (x, y) = cos y

10. D = {0 ≤ x ≤ 2, 0 ≤ y ≤ 2x − x2}, f (x, y) = √
xy

11. D = {0 ≤ x ≤ 1, 1 − x ≤ y ≤ 2 − x}, f (x, y) = ex+2y

12. D = {1 ≤ x ≤ 2, 0 ≤ y ≤ 1/x}, f (x, y) = cos(xy)

13. D = {0 ≤ y ≤ 1, 0.5y2 ≤ x ≤ y2}, f (x, y) = ye1+x

14. D = {1 ≤ y ≤ e, y ≤ x ≤ 2y}, f (x, y) = ln(x + y)

15. Express
∫ 3

−3

∫ 9−x2

0
f (x, y) dy dx as an iterated integral in the

order dx dy.

16. Let W be the region bounded by the planes y = z, 2y + z = 3,
and z = 0 for 0 ≤ x ≤ 4.

(a) Express the triple integral
∫∫∫

W
f (x, y, z) dV as an iterated in-

tegral in the order dy dx dz (project W onto the xz-plane).

(b) Evaluate the triple integral for f (x, y, z) = 1.

(c) Compute the volume of W using geometry and check that the result
coincides with the answer to (b).

17. Let D be the domain between y = x and y = √
x. Calculate∫∫

D
xy dA as an iterated integral in the order dx dy and dy dx.

18. Find the double integral of f (x, y) = x3y over the region between
the curves y = x2 and y = x(1 − x).

19. Change the order of integration and evaluate
∫ 9

0

∫ √
y

0

x dx dy

(x2 + y)1/2
.

20. Verify directly that

∫ 3

2

∫ 2

0

dy dx

1 + x − y
=
∫ 2

0

∫ 3

2

dx dy

1 + x − y

21. Prove the formula

∫ 1

0

∫ y

0
f (x) dx dy =

∫ 1

0
(1 − x)f (x) dx

Then use it to calculate
∫ 1

0

∫ y

0

sin x

1 − x
dx dy.

22. Rewrite
∫ 1

0

∫ √
1−y2

−√
1−y2

y dx dy

(1 + x2 + y2)
2

by interchanging the order

of integration, and evaluate.

23. Use cylindrical coordinates to compute the volume of the region
defined by 4 − x2 − y2 ≤ z ≤ 10 − 4x2 − 4y2.
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24. Evaluate
∫∫

D
x dA, where D is the shaded domain in Figure 2.

2

x

y

2 4

r = 2(1 + cos θ)

D

FIGURE 2

25. Find the volume of the region between the graph of the function
f (x, y) = 1 − (x2 + y2) and the xy-plane.

26. Evaluate
∫ 3

0

∫ 4

1

∫ 4

2
(x3 + y2 + z) dx dy dz.

27. Calculate
∫∫∫

B
(xy + z) dV , where

B = {0 ≤ x ≤ 2, 0 ≤ y ≤ 1, 1 ≤ z ≤ 3
}

as an iterated integral in two different ways.

28. Calculate
∫∫∫

W
xyz dV , where

W = {0 ≤ x ≤ 1, x ≤ y ≤ 1, x ≤ z ≤ x + y
}

29. Evaluate I =
∫ 1

−1

∫ √
1−x2

0

∫ 1

0
(x + y + z) dz dy dx.

30. Describe a region whose volume is equal to:

(a)
∫ 2π

0

∫ π/2

0

∫ 9

4
ρ2 sin φ dρ dφ dθ

(b)
∫ 1

−2

∫ π/4

π/3

∫ 2

0
r dr dθ dz

(c)
∫ 2π

0

∫ 3

0

∫ 0

−
√

9−r2
r dz dr dθ

31. Find the volume of the solid contained in the cylinder x2 + y2 = 1
below the curve z = (x + y)2 and above the curve z = −(x − y)2.

32. Use polar coordinates to evaluate
∫∫

D
x dA, whereD is the shaded

region between the two circles of radius 1 in Figure 3.

y

1

1
x

FIGURE 3

33. Use polar coordinates to calculate
∫∫

D

√
x2 + y2 dA, where D is

the region in the first quadrant bounded by the spiral r = θ , the circle
r = 1, and the x-axis.

34. Calculate
∫∫

D
sin(x2 + y2) dA, where

D =
{π

2
≤ x2 + y2 ≤ π

}
35. Express in cylindrical coordinates and evaluate:

∫ 1

0

∫ √
1−x2

0

∫ √
x2+y2

0
z dz dy dx

36. Use spherical coordinates to calculate the triple integral of
f (x, y, z) = x2 + y2 + z2 over the region

1 ≤ x2 + y2 + z2 ≤ 4

37. Convert to spherical coordinates and evaluate:

∫ 2

−2

∫ √
4−x2

−
√

4−x2

∫ √
4−x2−y2

0
e−(x2+y2+z2)

3/2
dz dy dx

38. Find the average value of f (x, y, z) = xy2z3 on the box [0, 1] ×
[0, 2] × [0, 3].
39. Let W be the ball of radius R in R3 centered at the origin, and let
P = (0, 0, R) be the North Pole. Let dP (x, y, z) be the distance from
P to (x, y, z). Show that the average value of dP over the sphere W is
equal to d = 6R/5. Hint: Show that

d = 1
4
3πR3

∫ 2π

θ=0

∫ R

ρ=0

∫ π

φ=0
ρ2 sin φ

√
R2 + ρ2 − 2ρR cos φ dφ dρ dθ

and evaluate.

40. Express the average value of f (x, y) = exy over the el-

lipse
x2

2
+ y2 = 1 as an iterated integral, and evaluate numerically

using a computer algebra system.

41. Use cylindrical coordinates to find the mass of the solid bounded
by z = 8 − x2 − y2 and z = x2 + y2, assuming a mass density of
f (x, y, z) = (x2 + y2)1/2.

42. Let W be the portion of the half-cylinder x2 + y2 ≤ 4, x ≥ 0 such
that 0 ≤ z ≤ 3y. Use cylindrical coordinates to compute the mass of
W if the mass density is ρ(x, y, z) = z2.

43. Use cylindrical coordinates to find the mass of a cylinder of radius
4 and height 10 if the mass density at a point is equal to the square of
the distance from the cylinder’s central axis.

44. Find the centroid of the region W bounded, in spherical coordi-
nates, by φ = φ0 and the sphere ρ = R.

45. Find the centroid of the solid bounded by the xy-plane, the cylinder
x2 + y2 = R2, and the plane x/R + z/H = 1.
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46. Using cylindrical coordinates, prove that the centroid of a right
circular cone of height h and radius R is located at height h

4 on the
central axis.

47. Find the centroid of solid (A) in Figure 4 defined by x2 + y2 ≤ R2,
0 ≤ z ≤ H , and π

6 ≤ θ ≤ 2π , where θ is the polar angle of (x, y).

48. Calculate the coordinate yCM of the centroid of solid (B) in Fig-
ure 4 defined by x2 + y2 ≤ 1 and 0 ≤ z ≤ 1

2y + 3
2 .

1

(A) (B)

R

H

π
6

2

1

FIGURE 4

49. Find the center of mass of the cylinder x2 + y2 = 1 for 0 ≤ z ≤ 1,
assuming a mass density of ρ(x, y, z) = z.

50. Find the center of mass of the sector of central angle 2θ0 (sym-
metric with respect to the y-axis) in Figure 5, assuming that the mass
density is ρ(x, y) = x2.

x

y

1−1

2  0θ

FIGURE 5

51. Find the center of mass of the first octant of the ball x2 + y2 + z2 =
1, assuming a mass density of ρ(x, y, z) = x.

52. Find a constant C such that

p(x, y) =
{
C(4x − y + 3) if 0 ≤ x ≤ 2 and 0 ≤ y ≤ 3
0 otherwise

is a probability distribution and calculate P(X ≤ 1; Y ≤ 2).

53. Calculate P(3X + 2Y ≥ 6) for the probability density in Exer-
cise 52.

54. The lifetimes X and Y (in years) of two machine components have
joint probability density

p(x, y) =
{

6
125 (5 − x − y) if 0 ≤ x ≤ 5 − y and 0 ≤ y ≤ 5

0 otherwise

What is the probability that both components are still functioning after
2 years?

55. An insurance company issues two kinds of policies A and B. Let X
be the time until the next claim of type A is filed, and let Y be the time
(in days) until the next claim of type B is filed. The random variables
have joint probability density

p(x, y) = 12e−4x−3y

Find the probability that X ≤ Y .

56. Compute the Jacobian of the map

G(r, s) = (er cosh(s), er sinh(s)
)

57. Find a linear mapping G(u, v) that maps the unit square to the par-
allelogram in the xy-plane spanned by the vectors 〈3, −1〉 and 〈1, 4〉.
Then, use the Jacobian to find the area of the image of the rectangle
R = [0, 4] × [0, 3] under G.

58. Use the map

G(u, v) =
(

u + v

2
,
u − v

2

)

to compute
∫∫

R
(
(x − y) sin(x + y)

)2
dx dy, where R is the square

with vertices (π, 0), (2π, π), (π, 2π), and (0, π).

59. Let D be the shaded region in Figure 6, and let F be the map

u = y + x2, v = y − x3

(a) Show that F maps D to a rectangle R in the uv-plane.

(b) Apply Eq. (7) in Section 15.6 with P = (1, 7) to estimate Area(D).

D

x

y

y = 9 − x2

y = 8 − x2

y = x3 + 6 y = x3 + 5

1

9
8
7
6
5

P = (1, 7)

FIGURE 6

60. Calculate the integral of f (x, y) = e3x−2y over the parallelogram
in Figure 7.

x

y

(5, 1)

(1, 3)
(6, 4)

D

FIGURE 7
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61. Sketch the region D bounded by the curves y = 2/x, y = 1/(2x),
y = 2x, y = x/2 in the first quadrant. Let F be the map u = xy,
v = y/x from the xy-plane to the uv-plane.

(a) Find the image of D under F .

(b) Let G = F−1. Show that |Jac(G)| = 1

2|v| .

(c) Apply the Change of Variables Formula to prove the formula∫∫
D

f
(y

x

)
dx dy = 3

4

∫ 2

1/2

f (v) dv

v

(d) Apply (c) to evaluate
∫∫

D
yey/x

x
dx dy.



This fluid velocity vector field, from a study of

turbulent flow, was produced using PIV (particle

image velocimetry) in which the motion of

tracer particles is captured by a high-speed

digital camera.

16 LINE AND SURFACE
INTEGRALS

I n the previous chapter, we generalized integration from one variable to several variables.
In this chapter, we generalize still further to include integration over curves and surfaces,

and we will integrate not just functions but also vector fields. Integrals of vector fields
are used in the study of phenomena such as electromagnetism, fluid dynamics, and heat
transfer. To lay the groundwork, the chapter begins with a discussion of vector fields.

16.1 Vector Fields
How can we describe a physical object such as the wind, that consists of a large number
of molecules moving in a region of space? What we need is a new mathematical object
called a vector field. A vector field F assigns to each point P a vector F(P ) that represents
the velocity (speed and direction) of the wind at that point (Figure 1). Another velocity
field is shown in Figure 2. However, vector fields describe many other types of quantities,
such as forces, and electric and magnetic fields.

120 W

50

40

30

20

10
10 20 30 40 50 60 70

FIGURE 1 Velocity vector field of wind
velocity off the coast at Los Angeles.

Mathematically, a vector field in R3 is represented by a vector whose components

FIGURE 2 Blood flow in an artery
represented by a vector field.

are functions:

F(x, y, z) = 〈F1(x, y, z), F2(x, y, z), F3(x, y, z)〉
To each point P = (a, b, c) is associated the vector F(a, b, c), which we also denote by
F(P ). Alternatively,

F = F1i + F2j + F3k

When drawing a vector field, we draw F(P ) as a vector based at P (rather than the origin).
The domain of F is the set of points P for which F(P ) is defined. Vector fields in the
plane are written in a similar fashion:

F(x, y) = 〈F1(x, y), F2(x, y)〉 = F1i + F2j

Throughout this chapter, we assume that the component functions Fj are smooth—that
is, they have partial derivatives of all orders on their domains.

939
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EXAMPLE 1 Which vector is attached to the point P = (2, 4, 2) by the vector field

Vector
〈2, 2, 0〉(2, 4, 2)

y

x

z

FIGURE 3

F = 〈
y − z, x, z − √

y
〉
?

Solution The vector attached to P is

F(2, 4, 2) =
〈
4 − 2, 2, 2 − √

4
〉
= 〈2, 2, 0〉

This is the red vector in Figure 3.

Although it is not practical to sketch complicated vector fields in three dimensions
by hand, computer algebra systems can produce useful visual representations (Figure 4).
The vector field in Figure 4(B) is an example of a constant vector field. It assigns the
same vector 〈1, −1, 3〉 to every point in R3.

(A)  F = 〈x sin z, y2, x/(z2 + 1)〉 (B)  Constant vector field   F = 〈1, −1, 3〉

x

y

z

x

y

z

FIGURE 4

In the next example, we analyze two vector fields in the plane “qualitatively.”

EXAMPLE 2 Describe the following vector fields:

(a) G = i + xj (b) F = 〈−y, x〉
Solution (a) The vector field G = i + xj assigns the vector 〈1, a〉 to the point (a, b). In
particular, it assigns the same vector to all points with the same x-coordinate [Figure 5(A)].
Notice that 〈1, a〉has slopea and length

√
1 + a2. We may describe G as follows: G assigns

a vector of slope a and length
√

1 + a2 to all points with x = a.
(b) To visualize F, observe that F(a, b) = 〈−b, a〉 has length r = √

a2 + b2. It is perpen-
dicular to the radial vector 〈a, b〉 and points counterclockwise. Thus F has the following
description: The vectors along the circle of radius r all have length r and they are tangent
to the circle, pointing counterclockwise [Figure 5(B)].

x

y

(0, 2)

F = 〈−y, x〉G = 〈1, x〉

x

y

−1−2−3 1 2 3

〈0, 2〉

〈−2, 0〉

(A) (B)

(2, 0)

FIGURE 5
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A unit vector field is a vector field F such that ‖F(P )‖ = 1 for all points P . A vector

The English physicist and Nobel laureate
Paul Dirac (1902–1984) introduced a
generalization of vectors called “spinors”
to unify the special theory of relativity with
quantum mechanics. This led to the
discovery of the positron, an elementary
particle used today in PET-scan imaging.

field F is called a radial vector field if F(P ) depends only on the distance r from P to the
origin. Here we use the notation r = (x2 + y2)1/2 for n = 2 and r = (x2 + y2 + z2)1/2

for n = 3. Two important examples are the unit radial vector fields in two and three
dimensions (Figures 6):

er =
〈x
r
,
y

r

〉
=

〈
x√

x2 + y2
,

y√
x2 + y2

〉
1

er =
〈x
r
,
y

r
,
z

r

〉
=

〈
x√

x2 + y2 + z2
,

y√
x2 + y2 + z2

,
z√

x2 + y2 + z2

〉
2

Observe that er (P ) is a unit vector pointing away from the origin at P . Note, however,
that er is not defined at the origin where r = 0.

(A) Unit radial vector field in the plane
er = 〈x/r, y/r〉

x

y

Unit radial vector field in 3-space
er = 〈x/r, y/r, z/r〉

(B)

x

y

z

FIGURE 6

Conservative Vector Fields

x

y

FIGURE 7 A conservative vector field is
orthogonal to the level curves of the
potential function.

We already encountered one type of vector field in Chapter 15—namely, the gradient
vector field of a differentiable function V (x, y, z):

F = ∇V =
〈
∂V

∂x
,
∂V

∂y
,
∂V

∂z

〉
A vector field of this type is called a conservative vector field, and the function V is
called a potential function (or scalar potential function) for F.• The term “conservative” comes from

physics and the law of conservation of
energy (see Section 16.3).

• Any letter can be used to denote a
potential function. We use V , which
suggests “volt,” the unit of electric
potential. Some textbooks use
φ(x, y, z) or U(x, y, z), or simply
f (x, y, z).

• Theorem 1 is valid for a vector field in
the plane F = 〈F1, F2〉. If F = ∇V ,

then
∂F1

∂y
= ∂F2

∂x
.

The same terms apply in two variables and, more generally, in n variables. Recall that
the gradient vectors are orthogonal to the level curves, and thus in a conservative vector
field, the vector at every point P is orthogonal to the level curve through P (Figure 7).

EXAMPLE 3 Verify that V (x, y, z) = xy + yz2 is a potential function for the vector
field F = 〈

y, x + z2, 2yz
〉
.

Solution We compute the gradient of V :

∂V

∂x
= y,

∂V

∂y
= x + z2,

∂V

∂z
= 2yz

Thus, ∇V = 〈
y, x + z2, 2yz

〉 = F as claimed.
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Conservative vector fields have a special property: They satisfy the cross-partial
condition.

THEOREM 1 Cross-Partial Property of a Conservative Vector Field If the vector
field F = 〈F1, F2, F3〉 is conservative, then

∂F1

∂y
= ∂F2

∂x
,

∂F2

∂z
= ∂F3

∂y
,

∂F3

∂x
= ∂F1

∂z

Proof If F = ∇V , then

F1 = ∂V

∂x
, F2 = ∂V

∂y
, F3 = ∂V

∂z

Now compare the “cross”-partial derivatives:

∂F1

∂y
= ∂

∂y

(
∂V

∂x

)
= ∂2V

∂y∂x

∂F2

∂x
= ∂

∂x

(
∂V

∂y

)
= ∂2V

∂x∂y

Clairaut’s Theorem (Section 14.3) tells us that
∂2V

∂y ∂x
= ∂2V

∂x ∂y
, and thus

∂F1

∂y
= ∂F2

∂x

Similarly,
∂F2

∂z
= ∂F3

∂y
and

∂F3

∂x
= ∂F1

∂z
.

From Theorem 1, we can see that most vector fields are not conservative. Indeed, an
arbitrary triple of functions 〈F1, F2, F3〉 does not satisfy the cross-partials condition. Here
is an example.

EXAMPLE 4 Show that F = 〈y, 0, 0〉 is not conservative.

Solution We have

∂F1

∂y
= ∂

∂y
y = 1,

∂F2

∂x
= ∂

∂x
0 = 0

Thus
∂F1

∂y
�= ∂F2

∂x
. By Theorem 1, F is not conservative, even though the other cross-

partials agree:

∂F3

∂x
= ∂F1

∂z
= 0 and

∂F2

∂z
= ∂F3

∂y
= 0

Potential functions, like antiderivatives in one variable, are unique to within an addi-

Connected domain

P

Q

FIGURE 8 In a connected open domain D,
any two points in D can be joined by a path
entirely contained in D.

tive constant. To state this precisely, we must assume that the domain D of the vector field
is open and connected (Figure 8). “Connected” means that any two points can be joined
by a path within the domain.
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THEOREM 2 Uniqueness of Potential Functions If F is conservative on an open
connected domain, then any two potential functions of F differ by a constant.

Proof If both V1 and V2 are potential functions of F, then

∇(V1 − V2) = ∇V1 − ∇V2 = F − F = 0

However, a function whose gradient is zero on an open connected domain is a constant
function (this generalizes the fact from single-variable calculus that a function on an
interval with zero derivative is a constant function—see Exercise 36). Thus V1 − V2 = C

for some constant C, and hence V1 = V2 + C.

The next two examples consider two important radial vector fields.

EXAMPLE 5 Unit Radial Vector Fields Show thatThe result of Example 5 is valid in R2: The
function

V (x, y) =
√

x2 + y2 = r

is a potential function for er .

V (x, y, z) = r =
√

x2 + y2 + z2

is a potential function for er . That is, er = ∇r .

Solution We have

∂r

∂x
= ∂

∂x

√
x2 + y2 + z2 = x√

x2 + y2 + z2
= x

r

Similarly,
∂r

∂y
= y

r
and

∂r

∂z
= z

r
. Therefore, ∇r =

〈x
r
,
y

r
,
z

r

〉
= er .

The gravitational force exerted by a point mass m is described by an inverse-square
force field (Figure 9). A point mass located at the origin exerts a gravitational force F on
a unit mass located at (x, y, z) equal to

REMINDER

er =
〈x
r
,
y

r
,
z

r

〉
where

r = (x2 + y2 + z2)1/2

In R2,

er =
〈x
r
,
y

r

〉
where r = (x2 + y2)1/2.

F = −Gm

r2
er = −Gm

〈 x

r3
,

y

r3
,

z

r3

〉
where G is the universal gravitation constant. The minus sign indicates that the force is
attractive (it pulls in the direction of the origin). The electrostatic force field due to a
charged particle is also an inverse-square vector field. The next example shows that these
vector fields are conservative.

EXAMPLE 6 Inverse-Square Vector Field Show that

er

r2
= ∇

(−1

r

)
Solution Use the Chain Rule for gradients (Theorem 1 in Section 14.5) and Example 5:

x
y

z

FIGURE 9 The vector field −Gmer

r2
represents the force of gravitational
attraction due to a point mass located at the
origin.

∇(−r−1) = r−2∇r = r−2er

16.1 SUMMARY

• Avector field assigns a vector to each point in a domain.Avector field in R3 is represented
by a triple of functions

F = 〈F1, F2, F3〉
A vector field in R2 is represented by a pair of functions F = 〈F1, F2〉. We always assume
that the components Fj are smooth functions on their domains.
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• If F = ∇V , then V is called a potential function for F.
• F is called conservative if it has a potential function.
• Any two potential functions for a conservative vector field differ by a constant (on an
open, connected domain).
• A conservative vector field F satisfies the cross-partial condition:

∂F1

∂y
= ∂F2

∂x
,

∂F2

∂z
= ∂F3

∂y
,

∂F3

∂x
= ∂F1

∂z

• We define

r =
√

x2 + y2 (in R2), r =
√

x2 + y2 + z2 (in R3)

• The radial unit vector field and the inverse-square vector field are conservative:

er =
〈x
r
,
y

r
,
z

r

〉
= ∇r,

er

r2
=

〈 x

r3
,

y

r3
,

z

r3

〉
= ∇(−r−1)

16.1 EXERCISES

Preliminary Questions
1. Which of the following is a unit vector field in the plane?

(a) F = 〈y, x〉

(b) F =
〈

y√
x2 + y2

,
x√

x2 + y2

〉

(c) F =
〈

y

x2 + y2
,

x

x2 + y2

〉

2. Sketch an example of a nonconstant vector field in the plane in
which each vector is parallel to 〈1, 1〉.

3. Show that the vector field F = 〈−z, 0, x〉 is orthogonal to the po-

sition vector
−→
OP at each point P . Give an example of another vector

field with this property.

4. Give an example of a potential function for 〈yz, xz, xy〉 other than
f (x, y, z) = xyz.

Exercises
1. Compute and sketch the vector assigned to the points P = (1, 2)

and Q = (−1, −1) by the vector field F = 〈
x2, x

〉
.

2. Compute and sketch the vector assigned to the points P = (1, 2)

and Q = (−1, −1) by the vector field F = 〈−y, x〉.
3. Compute and sketch the vector assigned to the points P = (0, 1, 1)

and Q = (2, 1, 0) by the vector field F = 〈
xy, z2, x

〉
.

4. Compute the vector assigned to the points P = (1, 1, 0) and Q =
(2, 1, 2) by the vector fields er ,

er

r
, and

er

r2
.

In Exercises 5–12, sketch the following planar vector fields by drawing
the vectors attached to points with integer coordinates in the rectangle
−3 ≤ x ≤ 3, −3 ≤ y ≤ 3. Instead of drawing the vectors with their
true lengths, scale them if necessary to avoid overlap.

5. F = 〈1, 0〉 6. F = 〈1, 1〉 7. F = xi

8. F = yi 9. F = 〈0, x〉 10. F = x2i + yj

11. F =
〈

x

x2 + y2
,

y

x2 + y2

〉

12. F =
〈

−y√
x2 + y2

,
x√

x2 + y2

〉

In Exercises 13–16, match each of the following planar vector fields
with the corresponding plot in Figure 10.

x

y

(B)

−2 20

2

0

(A)

−2

x

y

−2 20

2

0

−2

(C) (D)

x

y

−2 20

2

0

−2

x

y

−2 20

2

0

−2

FIGURE 10
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13. F = 〈2, x〉 14. F = 〈2x + 2, y〉
15. F = 〈y, cos x〉 16. F = 〈x + y, x − y〉
In Exercises 17–20, match each three-dimensional vector field with the
corresponding plot in Figure 11.

(A) (B)

(C) (D)

FIGURE 11

17. F = 〈1, 1, 1〉 18. F = 〈x, 0, z〉
19. F = 〈x, y, z〉 20. F = er

21. Find (by inspection) a potential function for F = 〈x, 0〉 and prove
that G = 〈y, 0〉 is not conservative.

22. Prove that F = 〈yz, xz, y〉 is not conservative.

In Exercises 23–26, find a potential function for the vector field F by
inspection.

23. F = 〈x, y〉 24. F = 〈
yexy, xexy

〉
25. F = 〈

yz2, xz2, 2xyz
〉

26. F = 〈
2xzex2

, 0, ex2 〉
27. Find potential functions for F = er

r3
and G = er

r4
in R3. Hint: See

Example 6.

28. Show that F = 〈3, 1, 2〉 is conservative. Then prove more generally
that any constant vector field F = 〈a, b, c〉 is conservative.

29. Let ϕ = ln r , where r =
√

x2 + y2. Express ∇ϕ in terms of the
unit radial vector er in R2.

30. For P = (a, b), we define the unit radial vector field based at P :

eP = 〈x − a, y − b〉√
(x − a)2 + (y − b)2

(a) Verify that eP is a unit vector field.

(b) Calculate eP (1, 1) for P = (3, 2).

(c) Find a potential function for eP .

31. Which of (A) or (B) in Figure 12 is the contour plot of a poten-
tial function for the vector field F? Recall that the gradient vectors are
perpendicular to the level curves.

(A) (B)

x

y

x

y

x

y

FIGURE 12

32. Which of (A) or (B) in Figure 13 is the contour plot of a potential
function for the vector field F?

(A) (B)

FIGURE 13

33. Match each of these descriptions with a vector field in Figure 14:

(a) The gravitational field created by two planets of equal mass located
at P and Q.

(b) The electrostatic field created by two equal and opposite charges
located at P and Q (representing the force on a negative test charge;
opposite charges attract and like charges repel).
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(C)

(A) (B)

QPQP

P Q

FIGURE 14

34. In this exercise, we show that the vector field F in Figure
15 is not conservative. Explain the following statements:

(a) If a potential function V for F exists, then the level curves of V

must be vertical lines.

(b) If a potential function V for F exists, then the level curves of V

must grow farther apart as y increases.

(c) Explain why (a) and (b) are incompatible, and hence V cannot
exist.

x

y

0.5 1 1.5 2

1

FIGURE 15

Further Insights and Challenges
35. Show that any vector field of the form

F = 〈f (x), g(y), h(z)〉
has a potential function. Assume that f , g, and h are continuous.

36. Let D be a disk in R2. This exercise shows that if

∇V (x, y) = 0

for all (x, y) in D, then V is constant. Consider points P = (a, b),
Q = (c, d) and R = (c, b) as in Figure 16.

(a) Use single-variable calculus to show that V is constant along the
segments PR and RQ.

(b) Conclude that V (P ) = V (Q) for any two points P, Q ∈ D.

x

y

P = (a, b)

Disk DR = (c, b)

Q = (c, d )

FIGURE 16

16.2 Line Integrals
In this section we introduce two types of integrals over curves: integrals of functions and
integrals of vector fields. These are traditionally called line integrals, although it would
be more appropriate to call them “curve” or “path” integrals.

Scalar Line Integrals

We begin by defining the scalar line integral
∫
C

f (x, y, z) ds of a function f over a curve

C. We will see how integrals of this type represent total mass and charge, and how they
can be used to find electric potentials.

Like all integrals, this line integral is defined through a process of subdivision, sum-
mation, and passage to the limit. We divide C into N consecutive arcs C1, . . . , CN , choose
a sample point Pi in each arc Ci , and form the Riemann sum (Figure 1)
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N∑
i=1

f (Pi) length(Ci) =
N∑

i=1

f (Pi) �si

where �si is the length of Ci .

Partition of C into N small arcs

C1

C2

Ci CN

Choice of sample points Pi in each arc

P1

P2

Pi
PN

FIGURE 1 The curve C is divided into N

small arcs.

The line integral of f over C is the limit (if it exists) of these Riemann sums as the
maximum of the lengths �si approaches zero:

∫
C

f (x, y, z) ds = lim{�si }→0

N∑
i=1

f (Pi) �si 1

This definition also applies to functions f (x, y) of two variables.

In Eq. (1), we write {�si} → 0 to indicate
that the limit is taken over all Riemann
sums as the maximum of the lengths �si

tends to zero.

The scalar line integral of the function f (x, y, z) = 1 is simply the length of C. In
this case, all the Riemann sums have the same value:

N∑
i=1

1 �si =
N∑

i=1

length(Ci ) = length(C)

and thus ∫
C

1 ds = length(C)

In practice, line integrals are computed using parametrizations. Suppose that C has
a parametrization c(t) for a ≤ t ≤ b with continuous derivative c′(t). Recall that the
derivative is the tangent vector

c′(t) = 〈
x′(t), y′(t), z′(t)

〉
We divide C into N consecutive arcs C1, . . . , CN corresponding to a partition of the interval
[a, b]:

a = t0 < t1 < · · · < tN−1 < tN = b

so that Ci is parametrized by c(t) for ti−1 ≤ t ≤ ti (Figure 2), and choose sample points

c(t1)

c(t0)

c(ti)

Pi = c(ti*)

c(tN)

FIGURE 2 Partition of parametrized curve
c(t).

Pi = c(t∗i ) with t∗i in [ti−1, ti]. According to the arc length formula (Section 13.3),

REMINDER Arc length formula: The
length s of a path c(t) for a ≤ t ≤ b is

s =
∫ b

a

‖c′(t)‖ dt

Length(Ci) = �si =
∫ ti

ti−1

‖c′(t)‖ dt

Because c′(t) is continuous, the function ‖c′(t)‖ is nearly constant on [ti−1, ti] if the

length �ti = ti − ti−1 is small, and thus
∫ ti

ti−1

‖c′(t)‖ dt ≈ ‖c′(t∗i )‖�ti . This gives us the

approximation

N∑
i=1

f (Pi) �si ≈
N∑

i=1

f (c(t∗i ))‖c′(t∗i )‖ �ti 2
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The sum on the right is a Riemann sum that converges to the integral∫ b

a

f (c(t))‖c′(t)‖ dt 3

as the maximum of the lengths �ti tends to zero. By estimating the errors in this approx-
imation, we can show that the sums on the left-hand side of (2) also approach (3). This
gives us the following formula for the scalar line integral.

THEOREM 1 Computing a Scalar Line Integral Let c(t) be a parametrization of a
curve C for a ≤ t ≤ b. If f (x, y, z) and c′(t) are continuous, then

∫
C

f (x, y, z) ds =
∫ b

a

f (c(t))‖c′(t)‖ dt 4

The symbol ds is intended to suggest arc length s and is often referred to as the line
element or arc length differential. In terms of a parametrization, we have the symbolic
equation

ds = ‖c′(t)‖ dt

where

‖c′(t)‖ =
√

x′(t)2 + y′(t)2 + z′(t)2

Eq. (4) tells us that to evaluate a scalar line integral, we replace the integrand f (x, y, z) ds

with f (c(t)) ‖c′(t)‖ dt .

EXAMPLE 1 Integrating along a Helix Calculate∫
C
(x + y + z) ds

where C is the helix c(t) = (cos t, sin t, t) for 0 ≤ t ≤ π (Figure 3).

1

3π

2π

π

z

x

y

FIGURE 3 The helix c(t) = (cos t, sin t, t).

Solution

Step 1. Compute ds.

c′(t) = 〈− sin t, cos t, 1〉
‖c′(t)‖ =

√
(− sin t)2 + cos2 t + 1 = √

2

ds = ‖c′(t)‖dt = √
2 dt

Step 2. Write out the integrand and evaluate.

We have f (x, y, z) = x + y + z, and so

f (c(t)) = f (cos t, sin t, t) = cos t + sin t + t

f (x, y, z) ds = f (c(t)) ‖c′(t)‖ dt = (cos t + sin t + t)
√

2 dt
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By Eq. (4),∫
C

f (x, y, z) ds =
∫ π

0
f (c(t)) ‖c′(t)‖ dt =

∫ π

0
(cos t + sin t + t)

√
2 dt

= √
2

(
sin t − cos t + 1

2
t2

) ∣∣∣∣π
0

= √
2

(
0 + 1 + 1

2
π2

)
− √

2 (0 − 1 + 0) = 2
√

2 +
√

2

2
π2

EXAMPLE 2 Arc Length Calculate
∫
C

1 ds for the helix in the previous example:

c(t) = (cos t, sin t, t) for 0 ≤ t ≤ π . What does this integral represent?

Solution In the previous example, we showed that ds = √
2 dt and thus∫

C
1 ds =

∫ π

0

√
2 dt = π

√
2

This is the length of the helix for 0 ≤ t ≤ π .

Applications of the Scalar Line Integral
In Section 15.5 we discussed the general principle that “the integral of a density is the
total quantity.” This applies to scalar line integrals. For example, we can view the curve C
as a wire with continuous mass density ρ(x, y, z), given in units of mass per unit length.
The total mass is defined as the integral of mass density:

Total mass of C =
∫
C

ρ(x, y, z) ds 5

A similar formula for total charge is valid if ρ(x, y, z) is the charge density along the
curve. As in Section 15.5, we justify this interpretation by dividing C into N arcs Ci of
length �si with N large. The mass density is nearly constant on Ci , and therefore, the
mass of Ci is approximately ρ(Pi) �si , where Pi is any sample point on Ci (Figure 4).

Mass ≈    (Pi)Δsi Δsi

Pi

y = x2

y

x

FIGURE 4

The total mass is the sum

Total mass of C =
N∑

i=1

mass of Ci ≈
N∑

i=1

ρ(Pi) �si

As the maximum of the lengths �si tends to zero, the sums on the right approach the line
integral in Eq. (5).

EXAMPLE 3 Scalar Line Integral as Total Mass Find the total mass of a wire in the
shape of the parabola y = x2 for 1 ≤ x ≤ 4 (in centimeters) with mass density given by
ρ(x, y) = y/x g/cm.

Solution The arc of the parabola is parametrized by c(t) = (t, t2) for 1 ≤ t ≤ 4.

Step 1. Compute ds.

c′(t) = 〈1, 2t〉
ds = ‖c′(t)‖ dt =

√
1 + 4t2 dt
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Step 2. Write out the integrand and evaluate.
We have ρ(c(t)) = ρ(t, t2) = t2/t = t , and thus

ρ(x, y) ds = ρ(c(t))
√

1 + 4t2 dt = t
√

1 + 4t2 dt

We evaluate the line integral of mass density using the substitution u = 1 + 4t2, du =
8t dt :

∫
C

ρ(x, y) ds =
∫ 4

1
ρ(c(t))‖c′(t)‖ dt =

∫ 4

1
t
√

1 + 4t2 dt

= 1

8

∫ 65

5

√
u du = 1

12
u3/2

∣∣∣∣65

5

= 1

12
(653/2 − 53/2) ≈ 42.74

Note that after the substitution, the limits of integration become u(1) = 5 and u(4) =
65. The total mass of the wire is approximately 42.7 g.

Scalar line integrals are also used to compute electric potentials. When an electric
charge is distributed continuously along a curve C, with charge density ρ(x, y, z), the
charge distribution sets up an electrostatic field E that is a conservative vector field.
Coulomb’s Law tells us that E = −∇V whereBy definition, E is the vector field with the

property that the electrostatic force on a
point charge q placed at location
P = (x, y, z) is the vector qE(x, y, z). V (P ) = k

∫
C

ρ(x, y, z) ds

rP
6

In this integral, rP = rP (x, y, z) denotes the distance from (x, y, z) to P . The constant k
The constant k is usually written as

1

4πε0
where ε0 is the vacuum permittivity.

has the value k = 8.99 × 109 N-m2/C2. The function V is called the electric potential.
It is defined for all points P that do not lie on C and has units of volts (one volt is one
N-m/C).

EXAMPLE 4 Electric Potential A charged semicircle of radius R centered at the ori-

r

R

(R cos t, R sin t)

P =  (0, 0, a)

x

y

z

t

FIGURE 5

gin in the xy-plane (Figure 5) has charge density

ρ(x, y, 0) = 10−8
(

2 − x

R

)
C/m

Find the electric potential at a point P = (0, 0, a) if R = 0.1 m.

Solution Parametrize the semicircle by c(t) = (R cos t, R sin t, 0) for −π/2 ≤ t ≤ π/2:

‖c′(t)‖ = ‖〈−R sin t, R cos t, 0〉‖ =
√

R2 sin2 t + R2 cos2 t + 0 = R

ds = ‖c′(t)‖ dt = R dt

ρ(c(t)) = ρ(R cos t, R sin t, 0) = 10−8
(

2 − R cos t

R

)
= 10−8(2 − cos t)

In our case, the distance rP from P to a point (x, y, 0) on the semicircle has the constant
value rP = √

R2 + a2 (Figure 5). Thus,

V (P ) = k

∫
C

ρ(x, y, z) ds

rP
= k

∫
C

10−8(2 − cos t) Rdt√
R2 + a2

= 10−8kR√
R2 + a2

∫ π/2

−π/2
(2 − cos t) dt = 10−8kR√

R2 + a2
(2π − 2)
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With R = 0.1 m and k = 8.99 × 109, we then obtain 10−8kR(2π − 2) ≈ 38.5 and

V (P ) ≈ 38.5√
0.01 + a2

volts.

Vector Line Integrals
When you carry a backpack up a mountain, you do work against the Earth’s gravitational
field. The work, or energy expended, is one example of a quantity represented by a vector
line integral.

An important difference between vector and scalar line integrals is that vector line
integrals depend on a direction along the curve. This is reasonable if you think of the
vector line integral as work, because the work performed going down the mountain is the
negative of the work performed going up.

A specified direction along a path curve C is called an orientation (Figure 6). We refer
to this direction as the positive direction along C, the opposite direction is the negative
direction, and C itself is called an oriented curve. In Figure 6(A), if we reversed the
orientation, the positive direction would become the direction from Q to P .

x

y y

(A) Oriented path from P to Q

x

P = c(a)

Q = c(b)

(B) A closed oriented path

P = Q

c(t)

c(t)

c�(t)

c�(t)

FIGURE 6

The line integral of a vector field F over a curve C is defined as the scalar line integral
of the tangential component of F. More precisely, let T = T(P ) denote the unit tangent
vector at a point P on C pointing in the positive direction. The tangential component of

The unit tangent vector T varies from point
to point along the curve. When it is
necessary to stress this dependence, we
write T(P ).

F at P is the dot product (Figure 7)

F(P ) · T(P ) = ‖F(P )‖ ‖T(P )‖ cos θ = ‖F(P )‖ cos θ

where θ is the angle between F(P ) and T(P ). The vector line integral of F is the scalar line
integral of the scalar function F · T . We make the standing assumption that C is piecewise
smooth (it consists of finitely many smooth curves joined together with possible corners).

x

y

F • T  is the length
of the projection
of F along T.

c(a)

c(b)

T
F

T

F

θ

FIGURE 7 The line integral is the integral of
the tangential component of F along C.

DEFINITION Vector Line Integral The line integral of a vector field F along an ori-
ented curve C is the integral of the tangential component of F:∫

C
F · ds =

∫
C
(F · T) ds 7

We use parametrizations to evaluate vector line integrals, but there is one important
difference with the scalar case: The parametrization c(t) must be positively oriented ; that
is, c(t) must trace C in the positive direction. We assume also that c(t) is regular; that is,
c′(t) �= 0 for a ≤ t ≤ b. Then c′(t) is a nonzero tangent vector pointing in the positive
direction, and

T = c′(t)
‖c′(t)‖
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In terms of the arc length differential ds = ‖c′(t)‖ dt , we have

(F · T) ds =
(

F(c(t)) · c′(t)
‖c′(t)‖

)
‖c′(t)‖ dt = F(c(t)) · c′(t) dt

Therefore, the integral on the right-hand side of Eq. (7) is equal to the right-hand side of
Eq. (8) in the next theorem.

THEOREM 2 Computing a Vector Line Integral If c(t) is a regular parametrization
of an oriented curve C for a ≤ t ≤ b, then

∫
C

F · ds =
∫ b

a

F(c(t)) · c′(t) dt 8

It is useful to think of ds as a “vector line element” or “vector differential” that is
related to the parametrization by the symbolic equation

ds = c′(t) dt

Eq. (8) tells us that to evaluate a vector line integral, we replace the integrand F · ds withVector line integrals are usually easier to
calculate than scalar line integrals, because
the length ‖c′(t)‖, which involves a square
root, does not appear in the integrand.

F(c(t)) · c′(t) dt .

EXAMPLE 5 Evaluate
∫
C

F · ds, where F = 〈
z, y2, x

〉
and C is parametrized (in the

positive direction) by c(t) = (t + 1, et , t2) for 0 ≤ t ≤ 2.

Solution There are two steps in evaluating a line integral.

Step 1. Calculate the integrand.

c(t) = (t + 1, et , t2)

F(c(t)) = 〈
z, y2, x

〉 = 〈
t2, e2t , t + 1

〉
c′(t) = 〈

1, et , 2t
〉

The integrand (as a differential) is the dot product:

F(c(t)) · c′(t)dt = 〈
t2, e2t , t + 1

〉 · 〈
1, et , 2t

〉
dt = (e3t + 3t2 + 2t)dt

Step 2. Evaluate the line integral.∫
C

F · ds =
∫ 2

0
F(c(t)) · c′(t) dt

=
∫ 2

0
(e3t + 3t2 + 2t) dt =

(
1

3
e3t + t3 + t2

) ∣∣∣∣2

0

=
(

1

3
e6 + 8 + 4

)
− 1

3
= 1

3

(
e6 + 35

)

Another standard notation for the line integral
∫
C

F · ds is

∫
C

F1 dx + F2 dy + F3 dz
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In this notation, we write ds as a vector differential

ds = 〈dx, dy, dz〉
so that

F · ds = 〈F1, F2, F3〉 · 〈dx, dy, dz〉 = F1 dx + F2 dy + F3 dz

In terms of a parametrization c(t) = (x(t), y(t), z(t)),

ds =
〈
dx

dt
,
dy

dt
,
dz

dt

〉
dt

F · ds =
(

F1(c(t))
dx

dt
+ F2(c(t))

dy

dt
+ F3(c(t))

dz

dt

)
dt

So we have the following formula:

∫
C

F1 dx + F2 dy + F3 dz =
∫ b

a

(
F1(c(t))

dx

dt
+ F2(c(t))

dy

dt
+ F3(c(t))

dz

dt

)
dt

GRAPHICAL INSIGHT The magnitude of a vector line integral (or even whether it is
positive or negative) depends on the angles between F and T along the path. Consider
the line integral of F = 〈2y, −3〉 around the ellipse in Figure 8.

• In Figure 8(A), the angles θ between F and T appear to be mostly obtuse along the
top part of the ellipse. Consequently, F · T ≤ 0 and the line integral is negative.
• In Figure 8(B), the angles θ appear to be mostly acute along the bottom part of the
ellipse. Consequently, F · T ≥ 0 and the line integral is positive.
• We can guess that the line integral around the entire ellipse is negative because ‖F‖
is larger in the top half, so the negative contribution of F · T from the top half appears
to dominate the positive contribution of the bottom half. We verify this in Example 6.

Most of the dot products F • T  are negative
because the angles between the
vectors are obtuse.
Therefore: the line integral is negative

(A) (C) Total line integral is negative.

T

F

y

x

Most of the dot products F • T  are positive
because the angles between the
vectors are acute.
Therefore: the line integral is positive

(B)

TF

y

x

y

x

FIGURE 8 The vector field F = 〈2y, −3〉.
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EXAMPLE 6 The ellipse C in Figure 8(C) with counterclockwise orientation is
parametrized by c(θ) = (5 + 4 cos θ, 3 + 2 sin θ) for 0 ≤ θ < 2π . Calculate∫

C
2y dx − 3 dy

Solution We have x(θ) = 5 + 4 cos θ and y(θ) = 3 + 2 sin θ , andIn Example 6, keep in mind that∫
C

2y dx − 3 dy

is another notation for the line integral of
F = 〈2y, −3〉 over C. Formally,

F · ds = 〈2y, −3〉 · 〈dx, dy〉
= 2y dx − 3 dy

dx

dθ
= −4 sin θ,

dy

dθ
= 2 cos θ

The integrand of the line integral is

2y dx − 3 dy =
(

2y
dx

dθ
− 3

dy

dθ

)
dθ

= (
2(3 + 2 sin θ)(−4 sin θ) − 3(2 cos θ)

)
dθ

= −(
24 sin θ + 16 sin2 θ + 6 cos θ

)
dθ

Since the integrals of cos θ and sin θ over [0, 2π ] are zero,REMINDER

•
∫

sin2 θ dθ = 1

2
θ − 1

4
sin 2θ

•
∫ 2π

0
sin2 θ dθ = π

∫
C

2y dx − 3 dy = −
∫ 2π

0

(
24 sin θ + 16 sin2 θ + 6 cos θ

)
dθ

= −16
∫ 2π

0
sin2 θ dθ = −16π

We now state some basic properties of vector line integrals. First, given an oriented
curve C, we write −C to denote the curve C with the opposite orientation (Figure 9).
The unit tangent vector changes sign from T to −T when we change orientation, so the
tangential component of F and the line integral also change sign:∫

−C
F · ds = −

∫
C

F · ds

Unit tangent
vector for C

x

y

Unit tangent
vector for −C

−C
C

P

Q

FIGURE 9 The path from P to Q has two
possible orientations.

Next, if we are given n oriented curves C1, . . . , Cn, we write

C = C1 + · · · + Cn

to indicate the union of the paths, and we define the line integral over C as the sum∫
C

F · ds =
∫
C1

F · ds + · · · +
∫
Cn

F · ds

We use this formula to define the line integral when C is piecewise smooth, meaning
that C is a union of smooth curves C1, . . . , Cn. For example, the triangle in Figure 10 is
piecewise smooth but not smooth. The next theorem summarizes the main properties of
vector line integrals.
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THEOREM 3 Properties of Vector Line Integrals Let C be a smooth oriented curve,
and let F and G be vector fields.

(i) Linearity:
∫
C
(F + G) · ds =

∫
C

F · ds +
∫
C

G · ds

∫
C

kF · ds = k

∫
C

F · ds (k a constant)

(ii) Reversing orientation:
∫

−C
F · ds = −

∫
C

F · ds

(iii) Additivity: If C is a union of n smooth curves C1 + · · · + Cn, then∫
C

F · ds =
∫
C1

F · ds + · · · +
∫
Cn

F · ds

EXAMPLE 7 Compute
∫
C

F · ds, where F = 〈ez, ey, x + y〉 and C is the triangle join-

A = (1, 0, 0)
B = (0, 1, 0)

C = (0, 0, 1)

z

y

x

FIGURE 10 The triangle is piecewise
smooth: It is the union of its three edges,
each of which is smooth.

ing (1, 0, 0), (0, 1, 0), and (0, 0, 1)oriented in the counterclockwise direction when viewed
from above (Figure 10).

Solution The line integral is the sum of the line integrals over the edges of the triangle:

∫
C

F · ds =
∫

AB

F · ds +
∫

BC

F · ds +
∫

CA

F · ds

Segment AB is parametrized by c(t) = (1 − t, t, 0) for 0 ≤ t ≤ 1. We have

F(c(t)) · c′(t) = F(1 − t, t, 0) · 〈−1, 1, 0〉 = 〈
e0, et , 1

〉 · 〈−1, 1, 0〉 = −1 + et

∫
AB

F · ds =
∫ 1

0
(et − 1) dt = (et − t)

∣∣∣1

0
= (e − 1) − 1 = e − 2

Similarly, BC is parametrized by c(t) = (0, 1 − t, t) for 0 ≤ t ≤ 1, and

F(c(t)) · c′(t) = 〈
et , e1−t , 1 − t

〉 · 〈0, −1, 1〉 = −e1−t + 1 − t∫
BC

F · ds =
∫ 1

0
(−e1−t + 1 − t) dt =

(
e1−t + t − 1

2
t2

) ∣∣∣∣1

0
= 3

2
− e

Finally, CA is parametrized by c(t) = (t, 0, 1 − t) for 0 ≤ t ≤ 1, and

F(c(t)) · c′(t) = 〈
e1−t , 1, t

〉 · 〈1, 0, −1〉 = e1−t − t∫
CA

F · ds =
∫ 1

0
(e1−t − t) dt =

(
−e1−t − 1

2
t2

) ∣∣∣∣1

0
= −3

2
+ e

The total line integral is the sum

∫
C

F · ds = (e − 2) +
(

3

2
− e

)
+

(
−3

2
+ e

)
= e − 2
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Applications of the Vector Line Integral
Recall that in physics, “work” refers to the energy expended when a force is applied to an
object as it moves along a path. By definition, the work W performed along the straight
segment from P to Q by applying a constant force F at an angle θ [Figure 11(A)] is

W = (tangential component of F) × distance = (‖F‖ cos θ) × PQ

(A) (B)

P PQ

Q

F

F(Pi)

T(Pi)P1
Pi

PN

FIGURE 11

When the force acts on the object along a curved path C, it makes sense to define the work
W performed as the line integral [Figure 11(B)]:

W =
∫
C

F · ds 9

This is the work “performed by the field F.” The idea is that we can divide C into a
large number of short consecutive arcs C1, . . . , CN , where Ci has length �si . The work
Wi performed along Ci is approximately equal to the tangential component F(Pi) · T(Pi)

times the length �si , where Pi is a sample point in Ci . Thus we have

W =
N∑

i=1

Wi ≈
N∑

i=1

(F(Pi) · T(Pi))�si

The right-hand side approaches
∫
C

F · ds as the lengths �si tend to zero.REMINDER Work has units of energy.
The SI unit of force is the newton, and the
unit of energy is the joule, defined as 1
newton-meter. The British unit is the
foot-pound.

Often, we are interested in calculating the work required to move an object along a
path in the presence of a force field F (such as an electrical or gravitational field). In this
case, F acts on the object and we must work against the force field to move the object.
The work required is the negative of the line integral in Eq. (9):

Work performed against F = −
∫
C

F · ds

EXAMPLE 8 Calculating Work Calculate the work performed moving a particle from
P = (0, 0, 0) to Q = (4, 8, 1) along the path

c(t) = (t2, t3, t) (in meters) for 1 ≤ t ≤ 2

in the presence of a force field F = 〈
x2, −z, −yz−1

〉
in newtons.

Solution We have

F(c(t)) = F(t2, t3, t) =
〈
t4, −t, −t2

〉
c′(t) =

〈
2t, 3t2, 1

〉
F(c(t)) · c′(t) = 〈

t4, −t, −t2〉 · 〈
2t, 3t2, 1

〉 = 2t5 − 3t3 − t2
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The work performed against the force field in joules is

W = −
∫
C

F · ds = −
∫ 2

1
(2t5 − 3t3 − t2) dt = 89

12

Line integrals are also used to compute the “flux across a plane curve,” defined as the

C

F
n

nT

FIGURE 12

integral of the normal component of a vector field, rather than the tangential component
(Figure 12). Suppose that a plane curve C is parametrized by c(t) for a ≤ t ≤ b, and let

n = n(t) = 〈
y′(t), −x′(t)

〉
, en(t) = n(t)

‖n(t)‖
These vectors are normal to C and point to the right as you follow the curve in the
direction of c. The flux across C is the integral of the normal component F · en, obtained
by integrating F(c(t)) · n(t):

Flux across C =
∫
C

(F · en)ds =
∫ b

a

F(c(t)) · n(t) dt 10

If F is the velocity field of a fluid (modeled as a two-dimensional fluid), then the flux is
the quantity of water flowing across the curve per unit time.

EXAMPLE 9 Flux across a Curve Calculate the flux of the velocity vector field
v = 〈

3 + 2y − y2/3, 0
〉

(in centimeters per second) across the quarter ellipse
c(t) = 〈3 cos t, 6 sin t〉 for 0 ≤ t ≤ π

2 (Figure 13).

x

y

3

6

FIGURE 13

Solution The vector field along the path is

v(c(t)) =
〈
3 + 2(6 sin t) − (6 sin t)2/3, 0

〉
=

〈
3 + 12 sin t − 12 sin2 t, 0

〉
The tangent vector is c′(t) = 〈−3 sin t, 6 cos t〉, and thus n(t) = 〈6 cos t, 3 sin t, 〉. We
integrate the dot product

v(c(t)) · n(t) =
〈
3 + 12 sin t − 12 sin2 t, 0

〉
· 〈6 cos t, 3 sin t, 〉

= (3 + 12 sin t − 12 sin2 t)(6 cos t)

= 18 cos t + 72 sin t cos t − 72 sin2 t cos t

to obtain the flux:∫ b

a

v(c(t)) · n(t) dt =
∫ π/2

0
(18 cos t + 72 sin t cos t − 72 sin2 t cos t) dt

= 18 + 36 − 24 = 30 cm2/s

16.2 SUMMARY

• Line integral over a curve with parametrization c(t) for a ≤ t ≤ b:

Scalar line integral:
∫
C

f (x, y, z) ds =
∫ b

a

f (c(t)) ‖c′(t)‖ dt

Vector line integral:
∫
C

F · ds =
∫
C
(F · T) ds =

∫ b

a

F(c(t)) · c′(t) dt
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• Arc length differential: ds = ‖c′(t)‖ dt . To evaluate a scalar line integral, replace
f (x, y, z) ds with f (c(t)) ‖c′(t)‖ dt .
• Vector differential: ds = c′(t) dt . To evaluate a vector line integral, replace F · ds with
F(c(t)) · c′(t) dt .
• An oriented curve C is a curve in which one of the two possible directions along C
(called the positive direction) is chosen.
• The vector line integral depends on the orientation of the curve C. The parametrization
c(t) must be regular, and it must trace C in the positive direction.
• We write −C for the curve C with the opposite orientation. Then∫

−C
F · ds = −

∫
C

F · ds

• If ρ(x, y, z) is the mass or charge density along C, then the total mass or charge is equal

to the scalar line integral
∫
C

ρ(x, y, z) ds.

• The vector line integral is used to compute the work W exerted on an object along a
curve C:

W =
∫
C

F · ds

The work performed against F is the quantity −
∫
C

F · ds.

16.2 EXERCISES

Preliminary Questions
1. What is the line integral of the constant function f (x, y, z) = 10

over a curve C of length 5?

2. Which of the following have a zero line integral over the vertical
segment from (0, 0) to (0, 1)?

(a) f (x, y) = x (b) f (x, y) = y

(c) F = 〈x, 0〉 (d) F = 〈y, 0〉
(e) F = 〈0, x〉 (f) F = 〈0, y〉
3. State whether each statement is true or false. If the statement is

false, give the correct statement.

(a) The scalar line integral does not depend on how you parametrize
the curve.

(b) If you reverse the orientation of the curve, neither the vector line
integral nor the scalar line integral changes sign.

4. Suppose that C has length 5. What is the value of
∫
C

F · ds if:

(a) F(P ) is normal to C at all points P on C?

(b) F(P ) is a unit vector pointing in the negative direction along the
curve?

Exercises
1. Let f (x, y, z) = x + yz, and let C be the line segment from

P = (0, 0, 0) to (6, 2, 2).

(a) Calculate f (c(t)) and ds = ‖c′(t)‖ dt for the parametrization
c(t) = (6t, 2t, 2t) for 0 ≤ t ≤ 1.

(b) Evaluate
∫
C

f (x, y, z) ds.

2. Repeat Exercise 1 with the parametrization c(t) = (3t2, t2, t2) for
0 ≤ t ≤ √

2.

3. Let F = 〈
y2, x2〉

, and let C be the curve y = x−1 for 1 ≤ x ≤ 2,
oriented from left to right.

(a) Calculate F(c(t)) and ds = c′(t) dt for the parametrization of C
given by c(t) = (t, t−1).

(b) Calculate the dot product F(c(t)) · c′(t) dt and evaluate
∫
C

F · ds.

4. Let F = 〈
z2, x, y

〉
and let C be the path c(t) = 〈

3 + 5t2, 3 − t2, t
〉

for 0 ≤ t ≤ 2.

(a) Calculate F(c(t)) and ds = c′(t) dt .

(b) Calculate the dot product F(c(t)) · c′(t) dt and evaluate
∫
C

F · ds.

In Exercises 5–8, compute the integral of the scalar function or vector
field over c(t) = (cos t, sin t, t) for 0 ≤ t ≤ π .

5. f (x, y, z) = x2 + y2 + z2 6. f (x, y, z) = xy + z

7. F = 〈x, y, z〉 8. F = 〈
xy, 2, z3〉
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In Exercises 9–16, compute
∫
C

f ds for the curve specified.

9. f (x, y) = √
1 + 9xy, y = x3 for 0 ≤ x ≤ 1

10. f (x, y) = y3

x7 , y = 1
4x4 for 1 ≤ x ≤ 2

11. f (x, y, z) = z2, c(t) = (2t, 3t, 4t) for 0 ≤ t ≤ 2

12. f (x, y, z) = 3x − 2y + z, c(t) = (2 + t, 2 − t, 2t)

for −2 ≤ t ≤ 1

13. f (x, y, z) = xez2
, piecewise linear path from (0, 0, 1) to

(0, 2, 0) to (1, 1, 1)

14. f (x, y, z) = x2z, c(t) = (et ,
√

2t, e−t ) for 0 ≤ t ≤ 1

15. f (x, y, z) = 2x2 + 8z, c(t) = (et , t2, t), 0 ≤ t ≤ 1

16. f (x, y, z) = 6xz − 2y2, c(t) =
(

t,
t2
√

2
,
t3

3

)
, 0 ≤ t ≤ 2

17. Calculate
∫
C

1 ds, where the curve C is parametrized by

c(t) = (4t, −3t, 12t) for 2 ≤ t ≤ 5. What does this integral represent?

18. Calculate
∫
C

1 ds, where the curve C is parametrized by

c(t) = (et ,
√

2t, e−t ) for 0 ≤ t ≤ 2.

In Exercises 19–26, compute
∫
C

F · ds for the oriented curve specified.

19. F = 〈
x2, xy

〉
, line segment from (0, 0) to (2, 2)

20. F = 〈4, y〉, quarter circle x2 + y2 = 1 with x ≤ 0, y ≤ 0, ori-
ented counterclockwise

21. F = 〈
x2, xy

〉
, part of circle x2 + y2 = 9 with x ≤ 0, y ≥ 0, ori-

ented clockwise

22. F = 〈
ey−x, e2x

〉
, piecewise linear path from (1, 1) to (2, 2) to

(0, 2)

23. F = 〈
3zy−1, 4x, −y

〉
, c(t) = (et , et , t) for −1 ≤ t ≤ 1

24. F =
〈 −y

(x2 + y2)2
,

x

(x2 + y2)2

〉
, circle of radius R with center

at the origin oriented counterclockwise

25. F =
〈

1

y3 + 1
,

1

z + 1
, 1

〉
, c(t) = (t3, 2, t2) for 0 ≤ t ≤ 1

26. F =
〈
z3, yz, x

〉
, quarter of the circle of radius 2 in the yz-plane

with center at the origin where y ≥ 0 and z ≥ 0, oriented clockwise
when viewed from the positive x-axis

In Exercises 27–32, evaluate the line integral.

27.
∫
C

ydx − xdy, parabola y = x2 for 0 ≤ x ≤ 2

28.
∫
C

ydx + zdy + xdz, c(t) = (2 + t−1, t3, t2) for 0 ≤ t ≤ 1

29.
∫
C
(x − y)dx + (y − z)dy + zdz, line segment from (0, 0, 0) to

(1, 4, 4)

30.
∫
C

z dx + x2 dy + y dz, c(t) = (cos t, tan t, t) for 0 ≤ t ≤ π
4

31.
∫
C

−ydx + xdy

x2 + y2
, segment from (1, 0) to (0, 1).

32.
∫
C

y2dx + z2dy + (1 − x2)dz, quarter of the circle of radius 1

in the xz-plane with center at the origin in the quadrant x ≥ 0, z ≤ 0,
oriented counterclockwise when viewed from the positive y-axis.

33. Let f (x, y, z) = x−1yz, and let C be the curve

parametrized by c(t) = (ln t, t, t2) for 2 ≤ t ≤ 4. Use a computer al-

gebra system to calculate
∫
C

f (x, y, z) ds to four decimal places.

34. Use a CAS to calculate
∫
C
〈
ex−y, ex+y

〉 · ds to four dec-

imal places, where C is the curve y = sin x for 0 ≤ x ≤ π , oriented
from left to right.

In Exercises 35 and 36, calculate the line integral of F = 〈
ez, ex−y, ey

〉
over the given path.

35. The blue path from P to Q in Figure 14

P = (0, 0, 0)

(0, 0, 1)

(0, 1, 1)

Q = (−1, 1, 1)

FIGURE 14

36. The closed path ABCA in Figure 15

z

y
x

C = (0, 0, 6)

B = (0, 4, 0)A = (2, 0, 0)

FIGURE 15
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In Exercises 37 and 38, C is the path from P to Q in Figure 16 that
traces C1, C2, and C3 in the orientation indicated, and F is a vector
field such that∫

C
F · ds = 5,

∫
C1

F · ds = 8,

∫
C3

F · ds = 8

x

y

P

Q

C1

C3
C2

FIGURE 16

37. Determine:

(a)
∫
−C3

F · ds (b)
∫
C2

F · ds (c)
∫
−C1−C3

F · ds

38. Find the value of
∫
C′

F · ds, where C′ is the path that traverses the

loop C2 four times in the clockwise direction.

39. The values of a function f (x, y, z) and vector field F(x, y, z) are
given at six sample points along the path ABC in Figure 17. Estimate
the line integrals of f and F along ABC.

Point f (x, y, z) F(x, y, z)

(1, 1
6 , 0) 3 〈1, 0, 2〉

(1, 1
2 , 0) 3.3 〈1, 1, 3〉

(1, 5
6 , 0) 3.6 〈2, 1, 5〉

(1, 1, 1
6 ) 4.2 〈3, 2, 4〉

(1, 1, 1
2 ) 4.5 〈3, 3, 3〉

(1, 1, 5
6 ) 4.2 〈5, 3, 3〉

A = (1, 0, 0)

B = (1, 1, 0)

C = (1, 1, 1)

z

y

x

FIGURE 17

40. Estimate the line integrals of f (x, y) and F(x, y) along the quarter
circle (oriented counterclockwise) in Figure 18 using the values at the
three sample points along each path.

Point f (x, y) F(x, y)

A 1 〈1, 2〉
B −2 〈1, 3〉
C 4 〈−2, 4〉

x

y

C

B

A

1
2

FIGURE 18

41. Determine whether the line integrals of the vector fields around the
circle (oriented counterclockwise) in Figure 19 are positive, negative,
or zero.

(A) (B)

(C)

FIGURE 19

42. Determine whether the line integrals of the vector fields along the
oriented curves in Figure 20 are positive or negative.

(A) (B) (C)

FIGURE 20

43. Calculate the total mass of a circular piece of wire of radius 4 cm
centered at the origin whose mass density is ρ(x, y) = x2 g/cm.
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44. Calculate the total mass of a metal tube in the helical shape
c(t) = (cos t, sin t, t2) (distance in centimeters) for 0 ≤ t ≤ 2π if the
mass density is ρ(x, y, z) = √

z g/cm.

45. Find the total charge on the curve y = x4/3 for 1 ≤ x ≤ 8 (in cm)
assuming a charge density of ρ(x, y) = x/y (in units of 10−6 C/cm).

46. Find the total charge on the curve c(t) = (sin t, cos t, sin2 t) in
centimeters for 0 ≤ t ≤ π

8 assuming a charge density of ρ(x, y, z) =
xy(y2 − z) (in units of 10−6 C/cm).

In Exercises 47–50, use Eq. (6) to compute the electric potential V (P )

at the point P for the given charge density (in units of 10−6 C).

47. Calculate V (P ) at P = (0, 0, 12) if the electric charge is dis-
tributed along the quarter circle of radius 4 centered at the origin with
charge density ρ(x, y, z) = xy.

48. Calculate V (P ) at the origin P = (0, 0) if the negative charge is
distributed along y = x2 for 1 ≤ x ≤ 2 with charge density ρ(x, y) =
−y

√
x2 + 1.

49. CalculateV (P ) atP = (2, 0, 2) if the negative charge is distributed
along the y-axis for 1 ≤ y ≤ 3 with charge density ρ(x, y, z) = −y.

50. Calculate V (P ) at the origin P = (0, 0) if the electric charge is dis-
tributed along y = x−1 for 1

2 ≤ x ≤ 2 with charge density ρ(x, y) =
x3y.

51. Calculate the work done by a field F = 〈x + y, x − y〉 when an
object moves from (0, 0) to (1, 1) along each of the paths y = x2 and
x = y2.

52. Calculate the work done by the force field F = 〈x, y, z〉 along the
path (cos t, sin t, t) for 0 ≤ t ≤ 3π .

53. Figure 21 shows a force field F.

(a) Over which of the two paths, ADC or ABC, does F perform less
work?

(b) If you have to work against F to move an object from C to A, which
of the paths, CBA or CDA, requires less work?

A

x

y

B

D

C

FIGURE 21

54. Verify that the work performed along the segment PQ by the con-

stant vector field F = 〈2, −1, 4〉 is equal to F · −→
PQ in these cases:

(a) P = (0, 0, 0), Q = (4, 3, 5)

(b) P = (3, 2, 3), Q = (4, 8, 12)

55. Show that work performed by a constant force field F over any

path C from P to Q is equal to F · −→
PQ.

56. Note that a curve C in polar form r = f (θ) is parametrized by
c(θ) = (f (θ) cos θ, f (θ) sin θ)) because the x- and y-coordinates are
given by x = r cos θ and y = r sin θ .

(a) Show that ‖c′(θ)‖ =
√

f (θ)2 + f ′(θ)2.

(b) Evaluate
∫
C

(x − y)2 ds, where C is the semicircle in Figure 22

with polar equation r = 2 cos θ , 0 ≤ θ ≤ π
2 .

x
21

1

y

FIGURE 22 Semicircle r = 2 cos θ .

57. Charge is distributed along the spiral with polar equation r = θ

for 0 ≤ θ ≤ 2π . The charge density is ρ(r, θ) = r (assume distance is
in centimeters and charge in units of 10−6 C/cm). Use the result of
Exercise 56(a) to compute the total charge.

In Exercises 58–61, let F be the vortex field (so-called because it swirls
around the origin as in Figure 23):

F =
〈 −y

x2 + y2
,

x

x2 + y2

〉

x

y

FIGURE 23 Vortex field F =
〈 −y

x2 + y2
,

x

x2 + y2

〉
.

58. Calculate I =
∫
C

F · ds, where C is the circle of radius 2 centered

at the origin. Verify that I changes sign when C is oriented in the clock-
wise direction.

59. Show that the value of
∫
CR

F · ds, where CR is the circle of ra-

dius R centered at the origin and oriented counterclockwise, does not
depend on R.

60. Let a > 0, b < c. Show that the integral of F along the segment
[Figure 24(A)] from P = (a, b) to Q = (a, c) is equal to the angle
� POQ.
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61. Let C be a curve in polar form r = f (θ) for θ1 ≤ θ ≤ θ2 [Figure
24(B)], parametrized by c(θ) = (f (θ) cos θ, f (θ) sin θ)) as in Exer-
cise 56.
(a) Show that the vortex field in polar coordinates is written
F = r−1 〈− sin θ, cos θ〉.
(b) Show that F · c′(θ) dθ = dθ .

(c) Show that
∫
C

F · ds = θ2 − θ1.

(A) (B)

a

c

b

y

Q = (a, c)

P = (a, b)

xx

y
r = f (  )

θ
θ

θ

1
θ2

FIGURE 24

In Exercises 62–65, use Eq. (10) to calculate the flux of the vector field
across the curve specified.

62. F = 〈−y, x〉; upper half of the unit circle, oriented clockwise

63. F =
〈
x2, y2

〉
; segment from (3, 0) to (0, 3), oriented upward

64. v =
〈

x + 1

(x + 1)2 + y2
,

y

(x + 1)2 + y2

〉
; segment 1 ≤ y ≤ 4

along the y-axis, oriented upward

65. v = 〈
ey, 2x − 1

〉
; parabola y = x2 for 0 ≤ x ≤ 1, oriented left

to right

66. Let I =
∫
C

f (x, y, z) ds. Assume that f (x, y, z) ≥ m for

some number m and all points (x, y, z) on C. Which of the following
conclusions is correct? Explain.

(a) I ≥ m

(b) I ≥ mL, where L is the length of C

Further Insights and Challenges
67. Let F = 〈x, 0〉. Prove that if C is any path from (a, b) to (c, d),
then ∫

C
F · ds = 1

2
(c2 − a2)

68. Let F = 〈y, x〉. Prove that if C is any path from (a, b) to (c, d),
then ∫

C
F · ds = cd − ab

69. We wish to define the average value Av(f ) of a continuous func-
tion f along a curve C of length L. Divide C into N consecutive arcs
C1, . . . , CN , each of length L/N , and let Pi be a sample point in Ci

(Figure 25). The sum

1

N

∑
i=1

f (Pi)

may be considered an approximation to Av(f ), so we define

Av(f ) = lim
N→∞

1

N

∑
i=1

f (Pi)

Prove that

Av(f ) = 1

L

∫
C

f (x, y, z) ds 11

Hint: Show that
L

N

∑
i=1

f (Pi) is a Riemann sum approximation to the

line integral of f along C.

x

y

P1
P2

Pi Ci

PN

Curve C

FIGURE 25

70. Use Eq. (11) to calculate the average value of f (x, y) = x − y

along the segment from P = (2, 1) to Q = (5, 5).

71. Use Eq. (11) to calculate the average value of f (x, y) = x along
the curve y = x2 for 0 ≤ x ≤ 1.

72. The temperature (in degrees centigrade) at a point P on a circu-
lar wire of radius 2 cm centered at the origin is equal to the square of
the distance from P to P0 = (2, 0). Compute the average temperature
along the wire.

73. The value of a scalar line integral does not depend on the
choice of parametrization (because it is defined without reference to
a parametrization). Prove this directly. That is, suppose that c1(t) and
c(t) are two parametrizations such that c1(t) = c(ϕ(t)), where ϕ(t) is
an increasing function. Use the Change of Variables Formula to verify
that ∫ d

c
f (c1(t))‖c′

1(t)‖ dt =
∫ b

a
f (c(t))‖c′(t)‖ dt

where a = ϕ(c) and b = ϕ(d).
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16.3 Conservative Vector Fields
In this section we study conservative vector fields in greater depth. For convenience,REMINDER

• A vector field F is conservative if
F = ∇V for some function V (x, y, z).

• V is called a potential function.

c(t)

P = Q

FIGURE 1 The circulation around a closed

path is denoted
∮

F · ds.

P

Q
c1

c2

FIGURE 2 Path independence: If F is
conservative, then the line integrals over c1
and c2 are equal.

when a particular parametrization c(t) of an oriented curve C is specified, we will denote

the line integral
∫
C

F · ds by

∫
c

F · ds

When the curve C is closed, we often refer to the line integral as the circulation of F

around C (Figure 1) and denote it with the symbol
∮

:

∮
C

F · ds

Our first result establishes the fundamental path independence of conservative vector
fields, which means that the line integral of F along a path from P to Q depends only on
the endpoints P and Q, not on the particular path followed (Figure 2).

THEOREM 1 Fundamental Theorem for Conservative Vector Fields Assume that
F = ∇V on a domain D.

1. If c is a path from P to Q in D, then

∫
c

F · ds = V (Q) − V (P ) 1

In particular, F is path-independent.

2. The circulation around a closed path c (that is, P = Q) is zero:

∮
c

F · ds = 0

Proof Let c(t) be a path in D for a ≤ t ≤ b with c(a) = P and c(b) = Q. Then

∫
c

F · ds =
∫

c
∇V · ds =

∫ b

a

∇V (c(t)) · c′(t) dt

However, by the Chain Rule for Paths (Theorem 2 in Section 14.5),

d

dt
V (c(t)) = ∇V (c(t)) · c′(t)

Thus we can apply the Fundamental Theorem of Calculus:∫
c

F · ds =
∫ b

a

d

dt
V (c(t)) dt = V (c(t))

∣∣∣b
a

= V (c(b)) − V (c(a)) = V (Q) − V (P )

This proves Eq. (1). It also proves path independence, because the quantity V (Q) − V (P )

depends on the endpoints but not on the path c. If c is a closed path, then P = Q and
V (Q) − V (P ) = 0.
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EXAMPLE 1 Let F = 〈
2xy + z, x2, x

〉
.

Q = (2, 2, 3)
P = (1, −1, 2)

c(t)

z

y

x

FIGURE 3 An arbitrary path from (1, −1, 2)

to (2, 2, 3).

(a) Verify that V (x, y, z) = x2y + xz is a potential function.

(b) Evaluate
∫

c
F · ds, where c is a path from P = (1, −1, 2) to Q = (2, 2, 3).

Solution (a) The partial derivatives of V (x, y, z) = x2y + xz are the components of F:

∂V

∂x
= 2xy + z,

∂V

∂y
= x2,

∂V

∂z
= x

Therefore, ∇V = 〈
2xy + z, x2, x

〉 = F.
(b) By Theorem 1, the line integral over any path c(t) from P = (1, −1, 2) to Q = (2, 2, 3)

[Figure 3] has the value

∫
c

F · ds = V (Q) − V (P )

= V (2, 2, 3) − V (1, −1, 2)

=
(

22(2) + 2(3)
)

−
(

12(−1) + 1(2)
)

= 13

EXAMPLE 2 Find a potential function for F = 〈2x + y, x〉 and use it to evaluate

x

Q = (5, 7)

P = (1, 2)

y

FIGURE 4 Paths from (1, 2) to (5, 7).

∫
c

F · ds, where c is any path (Figure 4) from (1, 2) to (5, 7).

Solution We will develop a general method for finding potential functions. At this point
we can see by inspection that V (x, y) = x2 + xy satisfies ∇V = F:

∂V

∂x
= ∂

∂x
(x2 + xy) = 2x + y,

∂V

∂y
= ∂

∂y
(x2 + xy) = x

Therefore, for any path c from (1, 2) to (5, 7),

∫
c

F · ds = V (5, 7) − V (1, 2)

= (52 + 5(7)) − (12 + 1(2)) = 57

EXAMPLE 3 Integral around a Closed Path Let V (x, y, z) = xy sin(yz). Evaluate∮
C

∇V · ds, where C is the closed curve in Figure 5.

z

y
x

C

FIGURE 5 The line integral of a
conservative vector field around a closed
curve is zero.

Solution By Theorem 1, the integral of a gradient vector around any closed path is zero.

In other words,
∮
C

∇V · ds = 0.
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CONCEPTUAL INSIGHT A good way to think about path independence is in terms of the
contour map of the potential function. Consider a vector field F = ∇V in the plane
(Figure 6). The level curves of V are called equipotential curves, and the value V (P )

is called the potential at P .
When we integrate F along a path c(t) from P to Q, the integrand is

F(c(t)) · c′(t) = ∇V (c(t)) · c′(t)

Now recall that by the Chain Rule for paths,

∇V (c(t)) · c′(t)) = d

dt
V (c(t))

In other words, the integrand is the rate at which the potential changes along the path,
and thus the integral itself is the net change in potential:∫

F · ds = V (Q) − V (P )︸ ︷︷ ︸
Net change in potential

So informally speaking, what the line integral does is count the net number of equipo-
tential curves crossed as you move along any path P to Q. By “net number” we mean
that crossings in the opposite direction are counted with a minus sign. This net number
is independent of the particular path.

We can also interpret the line integral in terms of the graph of the potential function
z = V (x, y). The line integral computes the change in height as we move up the surface
(Figure 7). Again, this change in height does not depend on the path from P to Q. Of
course, these interpretations apply only to conservative vector fields—otherwise, there
is no potential function.

P

Q
1

0

2 3 4 5

c2

c1

c

x

y

FIGURE 6 Vector field F = ∇V with the
contour lines of V .

x

y

V(P)

V(Q)

z

z = V(x, y) 

Q

P

P
~

Q
~

FIGURE 7 The potential surface
z = V (x, y).

You might wonder whether there exist any path-independent vector fields other than
the conservative ones. The answer is no. By the next theorem, a path-independent vector
field is necessarily conservative.

THEOREM 2 A vector field F on an open connected domain D is path-independent if
and only if it is conservative.

Proof We have already shown that conservative vector fields are path-independent. So
we assume that F is path-independent and prove that F has a potential function.

To simplify the notation, we treat the case of a planar vector field F = 〈F1, F2〉.
The proof for vector fields in R3 is similar. Choose a point P0 in D, and for any point
P = (x, y) ∈ D, define

V (P ) = V (x, y) =
∫

c
F · ds

where c is any path in D from P0 to P (Figure 8). Note that this definition of V (P ) is
meaningful only because we are assuming that the line integral does not depend on the
path c.

Domain D

P = (x, y) (x + h, y) 

P0 

c1(t) = (x + t, y) 

c

FIGURE 8

We will prove that F = ∇V , which involves showing that
∂V

∂x
= F1 and

∂V

∂y
= F2.

We will only verify the first equation, as the second can be checked in a similar man-
ner. Let c1 be the horizontal path c1(t) = (x + t, y) for 0 ≤ t ≤ h. For |h| small enough, c1
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lies inside D. Let c + c1 denote the path c followed by c1. It begins at P0 and ends at
(x + h, y), so

V (x + h, y) − V (x, y) =
∫

c+c1

F · ds −
∫

c
F · ds

(∫
c

F · ds +
∫

c1

F · ds
)

−
∫

c
F · ds =

∫
c1

F · ds

The path c1 has tangent vector c′
1(t) = 〈1, 0〉, so

F(c1(t)) · c′
1(t) = 〈F1(x + t, y), F2(x + t, y)〉 · 〈1, 0〉 = F1(x + t, y)

V (x + h, y) − V (x, y) =
∫

c1

F · ds =
∫ h

0
F1(x + t, y) dt

Using the substitution u = x + t , we have

V (x + h, y) − V (x, y)

h
= 1

h

∫ h

0
F1(x + t, y) dt = 1

h

∫ x+h

x

F1(u, y) du

The integral on the right is the average value of F1(u, y) over the interval [x, x + h]. It
converges to the value F1(x, y) as h → 0, and this yields the desired result:

∂V

∂x
= lim

h→0

V (x + h, y) − V (x, y)

h
= lim

h→0

1

h

∫ x+h

x

F1(u, y) du = F1(x, y)

Conservative Fields in Physics
The Conservation of Energy principle says that the sum KE + PE of kinetic and potential
energy remains constant in an isolated system. For example, a falling object picks up kinetic
energy as it falls to earth, but this gain in kinetic energy is offset by a loss in gravitational
potential energy (g times the change in height), such that the sum KE + PE remains
unchanged.

We show now that conservation of energy is valid for the motion of a particle of
mass m under a force field F if F has a potential function. This explains why the term
“conservative” is used to describe vector fields that have a potential function.

We follow the convention in physics of writing the potential function with a minus
sign:

F = −∇V

When the particle is located at P = (x, y, z), it is said to have potential energy V (P ).
Suppose that the particle moves along a path c(t). The particle’s velocity is v = c′(t), and
its kinetic energy is KE = 1

2m‖v‖2 = 1
2mv · v. By definition, the total energy at time tIn a conservative force field, the work W

against F required to move the particle
from P to Q is equal to the change in
potential energy:

W = −
∫

c
F · ds = V (Q) − V (P )

is the sum

E = KE + PE = 1

2
mv · v + V (c(t))

THEOREM 3 Conservation of Energy The total energy E of a particle moving un-
der the influence of a conservative force field F = −∇V is constant in time. That is,
dE

dt
= 0.
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Proof Let a = v′(t) be the particle’s acceleration and let m be its mass. According toPotential functions first appeared in 1774
in the writings of Jean-Louis Lagrange
(1736–1813). One of the greatest
mathematicians of his time, Lagrange
made fundamental contributions to
physics, analysis, algebra, and number
theory. He was born in Turin, Italy, to a
family of French origin but spent most of
his career first in Berlin and then in Paris.
After the French Revolution, Lagrange was
required to teach courses in elementary
mathematics, but apparently he spoke
above the heads of his audience. A
contemporary wrote, “whatever this great
man says deserves the highest degree of
consideration, but he is too abstract for
youth.”

Newton’s Second Law of Motion, F(c(t)) = ma(t), and thus

dE

dt
= d

dt

(
1

2
mv · v + V (c(t))

)
= mv · a + ∇V (c(t)) · c′(t) (Product and Chain Rules)

= v · ma − F · v (since F = −∇V and c′(t) = v)

= v · (ma − F) = 0 (since F = ma)

In Example 6 of Section 16.1, we verified that inverse-square vector fields are con-
servative:

F = k
er

r2
= −∇V with V = k

r

Basic examples of inverse-square vector fields are the gravitational and electrostatic forces
due to a point mass or charge. By convention, these fields have units of force per unit
mass or unit charge. Thus, if F is a gravitational field, the force on a particle of mass m

is mF and its potential energy is mV , where F = −∇V .

EXAMPLE 4 Work against Gravity Compute the work W against the earth’s gravita-
tional field required to move a satellite of mass m = 600 kg along any path from an orbit
of altitude 2000 km to an orbit of altitude 4000 km.

Solution The earth’s gravitational field is the inverse-square field

F = −k
er

r2
= −∇V, V = −k

r

where r is the distance from the center of the earth and k = 4 · 1014 (see marginal note). The

Example 6 of Section 16.1 showed that

er

r2
= −∇

(
1

r

)
The constant k is equal to GMe where
G ≈ 6.67 · 10−11 m3 kg−1 s−2 and the
mass of the earth is Me ≈ 5.98 · 1024 kg:

k = GMe ≈ 4 · 1014 m3 s−2

radius of the earth is approximately 6.4 · 106 meters, so the satellite must be moved from
r = 8.4 · 106 meters to r = 10.4 · 106 meters. The force on the satellite is mF = 600F,
and the work W required to move the satellite along a path c is

W = −
∫

c
mF · ds = 600

∫
c
∇V · ds

= −600k

r

∣∣∣∣10.4×106

8.4·106

≈ − 2.4 · 1017

10.4 · 106
+ 2.4 · 1017

8.4 · 106
≈ 5.5 · 109 joules

x
20

Electron

v0 v

FIGURE 9 An electron moving in an electric
field.

EXAMPLE 5 An electron is traveling in the positive x-direction with speed v0 =
107 m/s. When it passes x = 0, a horizontal electric field E = 100xi (in newtons per
coulomb) is turned on. Find the electron’s velocity after it has traveled 2 meters. Assume
that qe/me = −1.76 · 1011 C/kg, where qe and me are the mass and charge of the electron,
respectively.

Solution We have E = −∇V where V (x, y, z) = −50x2, so the electric field is con-
servative. Since V depends only on x, we write V (x) for V (x, y, z). By the Law of
Conservation of Energy, the electron’s total energy E is constant and therefore E has the
same value when the electron is at x = 0 and at x = 2:

E = 1

2
mev

2
0 + qeV (0) = 1

2
mev

2 + qeV (2)
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Since V (0) = 0, we obtain

1

2
mev

2
0 = 1

2
mev

2 + qeV (2) ⇒ v =
√

v2
0 − 2(qe/me)V (2)

Using the numerical value of qe/me, we obtain

v ≈
√

1014 − 2(−1.76 · 1011)(−50(2)2) ≈
√

2.96 · 1013 ≈ 5.4 · 106 m/s

Note that the velocity has decreased. This is because E exerts a force in the negative
x-direction on a negative charge.

Finding Potential Functions
We do not yet have an effective way of telling whether a given vector field is conservative.
By Theorem 1 in Section 16.1, every conservative vector field satisfies the cross-partials
condition:

∂F1

∂y
= ∂F2

∂x
,

∂F2

∂z
= ∂F3

∂y
,

∂F3

∂x
= ∂F1

∂z
2

But does this condition guarantee that F is conservative? The answer is a qualified yes;
the cross-partials condition does guarantee that F is conservative, but only on domains D
with a property called simple-connectedness.

Roughly speaking, a domain D in the plane is simply-connected if it does not have

Nonsimply-connected regions

Simply-connected regions

FIGURE 10 Simple connectedness means
“no holes.”

any “holes” (Figure 10). More precisely, D is simply-connected if every loop in D can
be drawn down, or “contracted,” to a point while staying within D as in Figure 11(A).
Examples of simply-connected regions in R2 are disks, rectangles, and the entire plane
R2. By contrast, the disk with a point removed in Figure 11(B) is not simply-connected:
The loop cannot be drawn down to a point without passing through the point that was
removed. In R3, the interiors of balls and boxes are simply-connected, as is the entire
space R3.

Simply-connected region:
Any loop can be drawn down to
a point within the region.

(A) Nonsimply-connected region:
a loop around the missing hole
cannot be drawn tight without
passing through the hole.

(B)

FIGURE 11

THEOREM 4 Existence of a Potential Function Let F be a vector field on a simply-
connected domain D. If F satisfies the cross-partials condition (2), then F is conserva-
tive.
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Rather than prove Theorem 4, we illustrate a practical procedure for finding a potential
function when the cross-partials condition is satisfied. The proof itself involves Stokes’
Theorem and is somewhat technical because of the role played by the simply-connected
property of the domain.

EXAMPLE 6 Finding a Potential Function Show that

F = 〈
2xy + y3, x2 + 3xy2 + 2y

〉
is conservative and find a potential function.

Solution First we observe that the cross-partial derivatives are equal:

∂F1

∂y
= ∂

∂y
(2xy + y3) = 2x + 3y2

∂F2

∂x
= ∂

∂x
(x2 + 3xy2 + 2y) = 2x + 3y2

Furthermore, F is defined on all of R2, which is a simply-connected domain. Therefore,
a potential function exists by Theorem 4.

Now, the potential function V satisfies

∂V

∂x
= F1(x, y) = 2xy + y3

This tells us that V is an antiderivative of F1(x, y), regarded as a function of x alone:

V (x, y) =
∫

F1(x, y) dx

=
∫ (

2xy + y3) dx

= x2y + xy3 + g(y)

Note that to obtain the general antiderivative of F1(x, y) with respect to x, we must add
on an arbitrary function g(y) depending on y alone, rather than the usual constant of
integration. Similarly, we have

V (x, y) =
∫

F2(x, y) dy

=
∫ (

x2 + 3xy2 + 2y
)
dy

= x2y + xy3 + y2 + h(x)

The two expressions for V (x, y) must be equal:

x2y + xy3 + g(y) = x2y + xy3 + y2 + h(x)

This tells us that g(y) = y2 and h(x) = 0, up to the addition of an arbitrary numerical
constant C. Thus we obtain the general potential function

V (x, y) = x2y + xy3 + y2 + C

The same method works for vector fields in three-space.
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EXAMPLE 7 Find a potential function for

F =
〈
2xyz−1, z + x2z−1, y − x2yz−2

〉
Solution If a potential function V exists, then it satisfies

V (x, y, z) =
∫

2xyz−1 dx = x2yz−1 + f (y, z)

V (x, y, z) =
∫ (

z + x2z−1) dy = zy + x2z−1y + g(x, z)

V (x, y, z) =
∫ (

y − x2yz−2) dz = yz + x2yz−1 + h(x, y)

These three ways of writing V (x, y, z) must be equal:

x2yz−1 + f (y, z) = zy + x2z−1y + g(x, z) = yz + x2yz−1 + h(x, y)

These equalities hold iff (y, z) = yz,g(x, z) = 0, andh(x, y) = 0. Thus F is conservativeIn Example 7, F is only defined for z �= 0,
so the domain has two halves: z > 0 and
z < 0. We are free to choose different
constants C on the two halves, if desired.

and, for any constant C, a potential function is

V (x, y, z) = x2yz−1 + yz + C

Assumptions Matter We cannot expect the method for finding a potential function to
work if F does not satisfy the cross-partials condition (because in this case, no potential
function exists). What goes wrong? Consider F = 〈y, 0〉. If we attempted to find a potential
function, we would calculate

V (x, y) =
∫

y dx = xy + g(y)

V (x, y) =
∫

0 dy = 0 + h(x)

However, there is no choice of g(y) and h(x) for which xy + g(y) = h(x). If there were,
we could differentiate this equation twice, once with respect to x and once with respect
to y. This would yield 1 = 0, which is a contradiction. The method fails in this case
because F does not satisfy the cross-partials condition and thus is not conservative.

The Vortex Field Why does Theorem 4 assume that the domain is simply-connected? This
is an interesting question that we can answer by examining the vortex field (Figure 12):

FIGURE 12 The vortex field.

F =
〈 −y

x2 + y2
,

x

x2 + y2

〉

EXAMPLE 8 Show that the vortex field satisfies the cross-partials condition but is not
conservative. Does this contradict Theorem 4?

Solution We check the cross-partials condition directly:

∂

∂x

(
x

x2 + y2

)
= (x2 + y2) − x(∂/∂x)(x2 + y2)

(x2 + y2)2
= y2 − x2

(x2 + y2)2

∂

∂y

( −y

(x2 + y2)

)
= −(x2 + y2) + y(∂/∂y)(x2 + y2)

(x2 + y2)2
= y2 − x2

(x2 + y2)2

Now consider the line integral of F around the unit circle C parametrized by c(t) =
(cos t, sin t):
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F(c(t)) · c′(t) = 〈− sin t, cos t〉 · 〈− sin t, cos t〉 = sin2 t + cos2 t = 1∮
c

F · ds =
∫ 2π

0
F(c(t)) · c′(t) dt =

∫ 2π

0
dt = 2π �= 0 3

If F were conservative, its circulation around every closed curve would be zero by Theo-
rem 1. Thus F cannot be conservative, even though it satisfies the cross-partials condition.

This result does not contradict Theorem 4 because the domain of F does not satisfy the
simply-connected condition of the theorem. Because F is not defined at (x, y) = (0, 0),
its domain is D = {(x, y) �= (0, 0)}, and this domain is not simply-connected (Figure 13).

x

y

FIGURE 13 The domain D of the vortex F is
the plane with the origin removed. This
domain is not simply-connected.

CONCEPTUAL INSIGHT Although the vortex field F is not conservative on its domain, it
is conservative on any smaller, simply-connected domain, such as the upper half-plane
{(x, y) : y > 0}. In fact, we can show (see the marginal note) that F = ∇V , where

V (x, y) = θ = tan−1 y

x

By definition, then, the potential V (x, y) at any point (x, y) is the angle θ of the point
in polar coordinates (Figure 14). The line integral of F along a path c is equal to the
change in potential θ along the path [Figures 15(A) and (B)]:∫

c
F · ds = θ2 − θ1 = the change in angle θ along c

Now we can see what is preventing F from being conservative on all of its domain.
The angle θ is defined only up to integer multiples of 2π . The angle along a path that
goes all the way around the origin does not return to its original value but rather increases
by 2π . This explains why the line integral around the unit circle (Eq. 3) is 2π rather
than 0. And it shows that V (x, y) = θ cannot be defined as a continuous function on
the entire domain D. However, θ is continuous on any domain that does not enclose the
origin, and on such domains we have F = ∇θ .

In general, if a closed path c winds around the origin n times (where n is negative
if the curve winds in the clockwise direction), then [Figures 15(C) and (D)]:∮

c
F · ds = 2πn

The number n is called the winding number of the path. It plays an important role in the
mathematical field of topology.

θ
x

y

P = (x, y) 

FIGURE 14 The potential function V (x, y)

takes the value θ at (x, y).

Using the Chain Rule and the formula

d

dt
tan−1 t = 1

1 + t2

we can check that F = ∇V

∂θ

∂x
= ∂

∂x
tan−1 y

x
= −y/x2

1 + (y/x)2
= −y

x2 + y2

∂θ

∂y
= ∂

∂y
tan−1 y

x
= 1/x

1 + (y/x)2
= x

x2 + y2

y

x

y

x

(A) ∫c F • ds = θ2 − θ1

c
c

c c
Q

P

Q

P

y

x

y

x

1
2

(B) ∫c F • ds = θ2 − θ1 + 2π

θ1

θ2

c goes around the origin
twice, so ∫c F • ds = 4π.

(C) c does not go around the
origin, so ∫c F • ds = 0.

(D)

FIGURE 15 The line integral of the vortex field F = ∇θ is equal to the change in θ along the path.
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16.3 SUMMARY

• A vector field F on a domain D is conservative if there exists a function V such that
∇V = F on D. The function V is called a potential function of F.
• Avector field F on a domainD is called path-independent if for any two pointsP, Q ∈ D,
we have ∫

c1

F · ds =
∫

c2

F · ds

for any two paths c1 and c2 in D from P to Q.
• The Fundamental Theorem for Conservative Vector Fields: If F = ∇V , then∫

c
F · ds = V (Q) − V (P )

for any path c from P to Q in the domain of F. This shows that conservative vector fields
are path-independent. In particular, if c is a closed path (P = Q), then∮

c
F · ds = 0

• The converse is also true: On an open, connected domain, a path-independent vector
field is conservative.
• Conservative vector fields satisfy the cross-partial condition

∂F1

∂y
= ∂F2

∂x
,

∂F2

∂z
= ∂F3

∂y
,

∂F3

∂x
= ∂F1

∂z
4

• Equality of the cross-partials guarantees that F is conservative if the domain D is simply
connected—that is, if any loop in D can be drawn down to a point within D.

16.3 EXERCISES

Preliminary Questions
1. The following statement is false. If F is a gradient vector field,

then the line integral of F along every curve is zero. Which single
word must be added to make it true?

2. Which of the following statements are true for all vector fields, and
which are true only for conservative vector fields?
(a) The line integral along a path from P to Q does not depend on
which path is chosen.
(b) The line integral over an oriented curve C does not depend on how
C is parametrized.
(c) The line integral around a closed curve is zero.
(d) The line integral changes sign if the orientation is reversed.
(e) The line integral is equal to the difference of a potential function
at the two endpoints.
(f) The line integral is equal to the integral of the tangential component
along the curve.
(g) The cross-partials of the components are equal.

3. Let F be a vector field on an open, connected domain D. Which
of the following statements are always true, and which are true under
additional hypotheses on D?

(a) If F has a potential function, then F is conservative.

(b) If F is conservative, then the cross-partials of F are equal.

(c) If the cross-partials of F are equal, then F is conservative.

4. Let C, D, and E be the oriented curves in Figure 16 and let F = ∇V

be a gradient vector field such that
∫
C

F · ds = 4. What are the values

of the following integrals?

(a)
∫
D

F · ds (b)
∫
E

F · ds

x

y

P

C
D
E

Q

FIGURE 16
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Exercises
1. Let V (x, y, z) = xy sin(yz) and F = ∇V . Evaluate

∫
c

F · ds,

where c is any path from (0, 0, 0) to (1, 1, π).

2. Let F = 〈
x−1z, y−1z, log(xy)

〉
.

(a) Verify that F = ∇V , where V (x, y, z) = z ln(xy).

(b) Evaluate
∫

c
F · ds, where c(t) = 〈

et , e2t , t2〉
for 1 ≤ t ≤ 3.

(c) Evaluate
∫

c
F · ds for any path c from P = ( 1

2 , 4, 2) to Q =
(2, 2, 3) contained in the region x > 0, y > 0.

(d) Why is it necessary to specify that the path lie in the region where
x and y are positive?

In Exercises 3–6, verify that F = ∇V and evaluate the line integral of
F over the given path.

3. F = 〈3, 6y〉, V (x, y, z) = 3x + 3y2; c(t) = (t, 2t−1) for
1 ≤ t ≤ 4

4. F = 〈
cos y, −x sin y

〉
, V (x, y) = x cos y; upper half of the unit

circle centered at the origin, oriented counterclockwise

5. F = yezi + xezj + xyezk, V (x, y, z) = xyez;
c(t) = (t2, t3, t − 1) for 1 ≤ t ≤ 2

6. F = z

x
i + j + ln xk, V (x, y, z) = y + z ln x;

circle (x − 4)2 + y2 = 1 in the clockwise direction

In Exercises 7–16, find a potential function for F or determine that F
is not conservative.

7. F = 〈z, 1, x〉
8. F = xj + yk

9. F = y2i + (2xy + ez)j + yezk

10. F = 〈
y, x, z3〉

11. F = 〈
cos(xz), sin(yz), xy sin z

〉
12. F = 〈

cos z, 2y, −x sin z
〉

13. F = 〈
z sec2 x, z, y + tan x

〉
14. F = 〈

ex(z + 1), − cos y, ex
〉

15. F = 〈
2xy + 5, x2 − 4z, −4y

〉
16. F = 〈

yzexy, xzexy − z, exy − y
〉

17. Evaluate ∫
c

2xyz dx + x2z dy + x2y dz

over the path c(t) = (t2, sin(πt/4), et2−2t ) for 0 ≤ t ≤ 2.

18. Evaluate ∮
C

sin x dx + z cos y dy + sin y dz

where C is the ellipse 4x2 + 9y2 = 36, oriented clockwise.

19. A vector field F and contour lines of a potential function for F are

shown in Figure 17. Calculate the common value of
∫
C

F · ds for the

curves shown in Figure 17 oriented in the direction from P to Q.

x

y

1

3

5

7

9

77

55

Q

P

FIGURE 17

20. Give a reason why the vector field F in Figure 18 is not
conservative.

x

y

FIGURE 18

21. Calculate the work expended when a particle is moved from O to
Q along segments OP and PQ in Figure 19 in the presence of the force
field F = 〈

x2, y2〉
. How much work is expended moving in a complete

circuit around the square?

x

y

O

R = (0, 1) Q = (1, 1)

P = (1, 0)

FIGURE 19

22. Let F =
〈

1

x
,
−1

y

〉
. Calculate the work against F required to move

an object from (1, 1) to (3, 4) along any path in the first quadrant.

23. Compute the work W against the earth’s gravitational field required
to move a satellite of mass m = 1000 kg along any path from an orbit
of altitude 4000 km to an orbit of altitude 6000 km.
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24. An electric dipole with dipole moment p = 4 × 10−5 C-m sets up
an electric field (in newtons per coulomb)

F(x, y, z) = kp

r5

〈
3xz, 3yz, 2z2 − x2 − y2

〉
where r = (x2 + y2 + z2)1/2 with distance in meters and k = 8.99 ×
109 N-m2/C2. Calculate the work against F required to move a particle
of charge q = 0.01 C from (1, −5, 0) to (3, 4, 4). Note: The force on
q is qF newtons.

25. On the surface of the earth, the gravitational field (with z as vertical
coordinate measured in meters) is F = 〈0, 0, −g〉.
(a) Find a potential function for F.
(b) Beginning at rest, a ball of mass m = 2 kg moves under the influ-
ence of gravity (without friction) along a path from P = (3, 2, 400) to
Q = (−21, 40, 50). Find the ball’s velocity when it reaches Q.

26. An electron at rest at P = (1, 1, 1) moves along a path ending at
Q = (5, 3, 7) under the influence of the electric field (in newtons per
coulomb)

F(x, y, z) = 400(x2 + z2)−1 〈x, 0, z〉
(a) Find a potential function for F.
(b) What is the electron’s speed at point Q? Use Conservation of En-
ergy and the value qe/me = −1.76 × 1011 C/kg, where qe and me are
the charge and mass on the electron, respectively.

27. Let F =
〈 −y

x2 + y2
,

x

x2 + y2

〉
be the vortex field. Determine∫

c
F · ds for each of the paths in Figure 20.

(A)

y

x

(D)

y

x

(E)

y

x

(B)

y

x

(C)

y

x

FIGURE 20

28. The vector field F =
〈

x

x2 + y2
,

y

x2 + y2

〉
is defined on the

domain D = {(x, y) �= (0, 0)}.
(a) Is D simply-connected?

(b) Show that F satisfies the cross-partial condition. Does this guaran-
tee that F is conservative?

(c) Show that F is conservative on D by finding a potential function.

(d) Do these results contradict Theorem 4?

Further Insights and Challenges
29. Suppose that F is defined on R3 and that

∮
c

F · ds = 0 for all closed

paths c in R3. Prove:
(a) F is path-independent; that is, for any two paths c1 and c2 in D
with the same initial and terminal points,

∫
c1

F · ds =
∫

c2

F · ds

(b) F is conservative.

16.4 Parametrized Surfaces and Surface Integrals
The basic idea of an integral appears in several guises. So far, we have defined single,
double, and triple integrals and, in the previous section, line integrals over curves. Now we
consider one last type on integral: integrals over surfaces. We treat scalar surface integrals
in this section and vector surface integrals in the following section.

Just as parametrized curves are a key ingredient in the discussion of line integrals,
surface integrals require the notion of a parametrized surface—that is, a surface S whose
points are described in the form

G(u, v) = (x(u, v), y(u, v), z(u, v))

The variables u, v (called parameters) vary in a region D called the parameter domain.
Two parameters u and v are needed to parametrize a surface because the surface is two-
dimensional.

Figure 1 shows a plot of the surface S with the parametrization

G(u, v) = (u + v, u3 − v, v3 − u)
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This surface consists of all points (x, y, z) in R3 such that

x = u + v, y = u3 − v, z = v3 − u

for (u, v) in D = R2.

Parameter domain D

G

x

y

z

(u,   )

G(u,v)

u

v

FIGURE 1 The parametric surface
G(u, v) = (u + v, u3 − v, v3 − u).

EXAMPLE 1 Parametrization of a Cone Find a parametrization of the portion S of

FIGURE 2 The cone x2 + y2 = z2.

the cone with equation x2 + y2 = z2 lying above or below the disk x2 + y2 ≤ 4. Specify
the domain D of the parametrization.

Solution This surface x2 + y2 = z2 is a cone whose horizonal cross section at height
z = u is the circle x2 + y2 = u2 of radius u (Figure 2). So a point on the cone at height u has
coordinates (u cos v, u sin v, u) for some angle v. Thus, the cone has the parametrization

G(u, v) = (u cos v, u sin v, u)

Since we are interested in the portion of the cone where x2 + y2 = u2 ≤ 4, the height
variable u satisfies −2 ≤ u ≤ 2. The angular variable v varies in the interval [0, 2π), and
therefore, the parameter domain is D = [−2, 2] × [0, 2π).

Three standard parametrizations arise often in computations. First, the cylinder of

If necessary, review cylindrical and
spherical coordinates in Section 12.7.
They are used often in surface calculations.

radius R with equation x2 + y2 = R2 is conveniently parametrized in cylindrical coor-
dinates (Figure 3). Points on the cylinder have cylindrical coordinates (R, θ, z), so we use
θ and z as parameters (with fixed R).

Parametrization of a Cylinder:

G(θ, z) = (R cos θ, R sin θ, z), 0 ≤ θ < 2π, −∞ < z < ∞

z

z0

Parameter domain D
0 2 y

G

x

z

0

G( 0, z0)

FIGURE 3 The parametrization of a cylinder
by cylindrical coordinates amounts to
wrapping the rectangle around the cylinder.
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The sphere of radius R with center at the origin is parametrized conveniently using

FIGURE 4 Spherical coordinates on a sphere
of radius R.

spherical coordinates (ρ, θ, φ) with ρ = R (Figure 4).

Parametrization of a Sphere:

G(θ, φ) = (R cos θ sin φ, R sin θ sin φ, R cos φ), 0 ≤ θ < 2π, 0 ≤ φ ≤ π

The North and South Poles correspond to φ = 0 and φ = π with any value of θ (the map
G fails to be one-to-one at the poles):

North Pole: G(θ, 0) = (0, 0, R), South Pole: G(θ, π) = (0, 0, −R)

As shown in Figure 5, G maps each horizontal segment φ = c (0 < c < π) to a latitude (a
circle parallel to the equator) and each vertical segment θ = c to a longitudinal arc from
the the North Pole to the South Pole.

G

=

= 0

2

FIGURE 5 The parametrization by spherical
coordinates amounts to wrapping the
rectangle around the sphere. The top and
bottom edges of the rectangle are collapsed
to the North and South Poles.

Finally, the graph of a function z = f (x, y) always has the following simple
parametrization (Figure 6).

FIGURE 6

Parametrization of a Graph:

G(x, y) = (x, y, f (x, y))

In this case, the parameters are x and y.

Grid Curves, Normal Vectors, and the Tangent Plane
Suppose that a surface S has a parametrization

G(u, v) = (x(u, v), y(u, v), z(u, v))

that is one-to-one on a domain D. We shall always assume that G is continuously differ-
entiable, meaning that the functions x(u, v), y(u, v), and z(u, v) have continuous partial
derivatives.

In the uv-plane, we can form a grid of lines parallel to the coordinates axes. These

In essence, a parametrization labels each
point P on S by a unique pair (u0, v0) in
the parameter domain. We can think of
(u0, v0) as the “coordinates” of P

determined by the parametrization. They
are sometimes called curvilinear
coordinates.

grid lines correspond under G to a system of grid curves on the surface (Figure 7). More
precisely, the horizontal and vertical lines through (u0, v0) in the domain correspond to
the grid curves G(u, v0) and G(u0, v) that intersect at the point P = G(u0, v0).
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G

0P = G (u0,      )

0

u0
u

Curve G (u0,   )

Curve G (u,   0)

FIGURE 7 Grid curves.

Now consider the tangent vectors to these grid curves (Figure 8):

For G(u, v0): Tu(P ) = ∂G

∂u
(u0, v0) =

〈
∂x

∂u
(u0, v0),

∂y

∂u
(u0, v0),

∂z

∂u
(u0, v0)

〉

For G(u0, v): Tv(P ) = ∂G

∂v
(u0, v0) =

〈
∂x

∂v
(u0, v0),

∂y

∂v
(u0, v0),

∂z

∂v
(u0, v0)

〉
The parametrization G is called regular at P if the following cross product is nonzero:

n(P ) = n(u0, v0) = Tu(P ) × Tv(P )

In this case, Tu and Tv span the tangent plane to S at P and n(P ) is a normal vector to
the tangent plane. We call n(P ) a normal to the surface S.

G

0

u0
u G (u0,   )

G (u,   0)

P Tu

T
n

P

FIGURE 8 The vectors Tu and Tv are
tangent to the grid curves through
P = G(u0, v0).

We often write n instead of n(P ) or n(u, v), but it is understood that the vector nAt each point on a surface, the normal
vector points in one of two opposite
directions. If we change the
parametrization, the length of n may
change and its direction may be reversed.

varies from point to point on the surface. Similarly, we often denote the tangent vectors
by Tu and Tv . Note that Tu, Tv , and n need not be unit vectors (thus the notation here
differs from that in Sections 13.4, 13.5, and 16.2, where T and n denote unit vectors).

EXAMPLE 2 Consider the parametrization G(θ, z) = (2 cos θ, 2 sin θ, z) of the cylin-
der x2 + y2 = 4:

(a) Describe the grid curves.
(b) Compute Tθ , Tz, and n(θ, z).
(c) Find an equation of the tangent plane at P = G(π

4 , 5).

Solution

(a) The grid curves on the cylinder through P = (θ0, z0) are (Figure 9)P

FIGURE 9 Grid curves on the cylinder.

θ -grid curve: G(θ, z0) = (2 cos θ, 2 sin θ, z0) (circle of radius 2 at height z = z0)

z-grid curve: G(θ0, z) = (2 cos θ0, 2 sin θ0, z) (vertical line through P with θ = θ0)
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(b) The partial derivatives of G(θ, z) = (2 cos θ, 2 sin θ, z) give us the tangent vectors
at P :

θ -grid curve: Tθ = ∂G

∂θ
= ∂

∂θ
(2 cos θ, 2 sin θ, z) = 〈−2 sin θ, 2 cos θ, 0〉

z-grid curve: Tz = ∂G

∂z
= ∂

∂z
(2 cos θ, 2 sin θ, z) = 〈0, 0, 1〉

Observe in Figure 9 that Tθ is tangent to the θ -grid curve and Tz is tangent to the z-grid
curve. The normal vector is

n(θ, z) = Tθ × Tz =
∣∣∣∣∣∣

i j k
−2 sin θ 2 cos θ 0

0 0 1

∣∣∣∣∣∣ = 2 cos θ i + 2 sin θ j

The coefficient of k is zero, so n points directly out of the cylinder.

(c) For θ = π
4 , z = 5,

P = G
(π

4
, 5

)
= 〈√

2,
√

2, 5
〉
, n = n

(π

4
, 5

)
= 〈√

2,
√

2, 0
〉

The tangent plane through P has normal vector n and thus has equation

REMINDER An equation of the plane
through P = (x0, y0, z0) with normal
vector n is〈

x − x0, y − y0, z − z0
〉 · n = 0

〈
x − √

2, y − √
2, z − 5

〉 · 〈√
2,

√
2, 0

〉 = 0

This can be written
√

2(x − √
2) + √

2(y − √
2) = 0 or x + y = 2

√
2

The tangent plane is vertical (because z does not appear in the equation).

EXAMPLE 3 Helicoid Surface Describe the surface S with parametrization

G(u, v) = (u cos v, u sin v, v), −1 ≤ u ≤ 1, 0 ≤ v < 2π

(a) Use a computer algebra system to plot S.

(b) Compute n(u, v) at u = 1
2 , v = π

2 .

Solution For each fixed value u = a, the curve G(a, v) = (a cos v, a sin v, v) is a helix
of radius a. Therefore, as u varies from −1 to 1, G(u, v) describes a family of helices of
radius u. The resulting surface is a “helical ramp.”

(a) Here is a typical command for a computer algebra system that generates the helicoid
surface shown on the right-hand side of Figure 10.

ParametricPlot3D[{u*Cos[v],u*Sin[v],v},{u,-1,1},{v,0,2Pi}]

G

1−1

(u,   )

u

(u cos   , u sin   ,   )

FIGURE 10 Helicoid.
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(b) The tangent and normal vectors are

Tu = ∂G

∂u
= 〈cos v, sin v, 0〉

Tv = ∂G

∂v
= 〈−u sin v, u cos v, 1〉

n(u, v) = Tu × Tv =
∣∣∣∣∣∣

i j k
cos v sin v 0

−u sin v u cos v 1

∣∣∣∣∣∣ = (sin v)i − (cos v)j + uk

At u = 1
2 , v = π

2 , we have n = i + 1
2 k.

For future reference, we compute the outward-pointing normal vector in the standard
parametrization of the sphere of radius R centered at the origin (Figure 11):

y

x

z

R

n

er

P = (  ,   )

FIGURE 11 The normal vector n points in
the radial direction er .

G(θ, φ) = (R cos θ sin φ, R sin θ sin φ, R cos φ)

Note first that since the distance from G(θ, φ) to the origin is R, the unit radial vector at
G(θ, φ) is obtained by dividing by R:

er = 〈cos θ sin φ, sin θ sin φ, cos φ〉
Furthermore,

Tθ = 〈−R sin θ sin φ, R cos θ sin φ, 0〉
Tφ = 〈R cos θ cos φ, R sin θ cos φ, −R sin φ〉

n = Tθ × Tφ =
∣∣∣∣∣∣

i j k
−R sin θ sin φ R cos θ sin φ 0
R cos θ cos φ R sin θ cos φ −R sin φ

∣∣∣∣∣∣
= −R2 cos θ sin2 φ i − R2 sin θ sin2 φ j − R2 cos φ sin φ k

= −R2 sin φ 〈cos θ sin φ, sin θ sin φ, cos φ〉 1

= −(R2 sin φ) er

This is an inward-pointing normal vector. However, in most computations it is standard
to use the outward-pointing normal vector:

n = Tφ × Tθ = (R2 sin φ) er , ‖n‖ = R2 sin φ 2

Surface Area
The length ‖n‖ of the normal vector in a parametrization has an important interpretation
in terms of area. Assume, for simplicity, that D is a rectangle (the argument also applies to
more general domains). Divide D into a grid of small rectangles Rij of size �u × �v, as
in Figure 12, and compare the area of Rij with the area of its image under G. This image
is a “curved” parallelogram Sij = G(Rij ).

First, we note that if �u and �v in Figure 12 are small, then the curved parallelogram
Sij has approximately the same area as the “genuine” parallelogram with sides

−→
PQ and−→

PS. Recall that the area of the parallelogram spanned by two vectors is the length of their
cross product, so

Area(Sij ) ≈ ‖−→
PQ × −→

PS‖
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G

G

Rectangle Rij

Δu

Δu

u

Δ

Δ

ijP = G(uij,       )P0 = (uij,      )ij

Curved parallelogram Sij = G(Rij)

P0 Q0

S0

Rij
Sij

S

P

Q TuΔu

FIGURE 12

Next, we use the linear approximation to estimate the vectors
−→
PQ and

−→
PS:REMINDER By Theorem 3 in Section

12.4, the area of the parallelogram
spanned by vectors v and w in R3 is equal
to ‖v × w‖.

−→
PQ = G(uij + �u, vij ) − G(uij , vij ) ≈ ∂G

∂u
(uij , vij )�u = Tu�u

−→
PS = G(uij , vij + �v) − G(uij , vij ) ≈ ∂G

∂v
(uij , vij )�v = Tv�v

Thus we have

Area(Sij )) ≈ ‖Tu�u × Tv�v‖ = ‖Tu × Tv‖ �u �v

Since n(uij , vij ) = Tu × Tv and Area(Rij ) = �u�v, we obtain

Area(Sij ) ≈ ‖n(uij , vij )‖Area(Rij ) 3

Our conclusion: ‖n‖ is a distortion factor that measures how the area of a small rectangle
Rij is altered under the map G.

The approximation (3) is valid for any small
region R in the uv-plane:

Area(S) ≈ ‖n(u0, v0))‖Area(R)

where S = G(R) and (u0, v0) is any
sample point in R. Here, “small” means
contained in a small disk. We do not allow
R to be very thin and wide.

To compute the surface area of S, we assume that G is one-to-one, except possibly
on the boundary of D. We also assume that G is regular, except possibly on the boundaryNote: We require only that G be one-to-one

on the interior of D. Many common
parametrizations (such as the
parametrizations by cylindrical and
spherical coordinates) fail to be one-to-one
on the boundary of their domains.

of D. Recall that “regular” means that n(u, v) is nonzero.
The entire surface S is the union of the small patches Sij , so we can apply the

approximation on each patch to obtain

Area(S) =
∑
i,j

Area(Sij ) ≈
∑
i,j

‖n(uij , vij )‖�u�v 4

The sum on the right is a Riemann sum for the double integral of ‖n(u, v)‖ over the
parameter domain D. As �u and �v tend to zero, these Riemann sums converge to a
double integral, which we take as the definition of surface area:

Area(S) =
∫∫

D
‖n(u, v)‖ du dv
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Surface Integral
Now we can define the surface integral of a function f (x, y, z):∫∫

S
f (x, y, z) dS

This is similar to the definition of the line integral of a function over a curve. Choose a
sample point Pij = G(uij , vij ) in each small patch Sij and form the sum:∑

i,j

f (Pij )Area(Sij ) 5

The limit of these sums as �u and �v tend to zero (if it exists) is the surface integral:∫∫
S

f (x, y, z) dS = lim
�u,�v→0

∑
i,j

f (Pij )Area(Sij )

To evaluate the surface integral, we use Eq. (3) to write∑
i,j

f (Pij )Area(Sij ) ≈
∑
i,j

f (G(uij , vij ))‖n(uij , vij )‖ �u �v 6

On the right we have a Riemann sum for the double integral of

f (G(u, v))‖n(u, v)‖
over the parameter domain D. Under the assumption that G is continuously differentiable,
we can show these the sums in Eq. (6) approach the same limit.This yields the next theorem.

It is interesting to note that Eq. (7)
includes the Change of Variables Formula
for double integrals (Theorem 1 in
Section 15.6) as a special case. If the
surface S is a domain in the xy-plane [in
other words, z(u, v) = 0], then the integral
over S reduces to the double integral of the
function f (x, y, 0). We may view G(u, v)

as a mapping from the uv-plane to the
xy-plane, and we find that ‖n(u, v)‖ is the
Jacobian of this mapping.

THEOREM 1 Surface Integrals and Surface Area Let G(u, v) be a parametrization
of a surface S with parameter domain D. Assume that G is continuously differentiable,
one-to-one, and regular (except possibly at the boundary of D). Then

∫∫
S

f (x, y, z) dS =
∫∫

D
f (G(u, v))‖n(u, v)‖ du dv 7

For f (x, y, z) = 1, we obtain the surface area of S:

Area(S) =
∫∫

D
‖n(u, v)‖ du dv

Equation (7) is summarized by the symbolic expression for the “surface element”:

dS = ‖n(u, v)‖ du dv

EXAMPLE 4 Calculate the surface area of the portion S of the cone x2 + y2 = z2

lying above the disk x2 + y2 ≤ 4 (Figure 13). Then calculate
∫∫

S
x2z dS.

FIGURE 13 Portion S of the cone
x2 + y2 = z2 lying over the disk
x2 + y2 ≤ 4.

Solution A parametrization of the cone was found in Example 1. Using the variables θ

and t , this parametrization is

G(θ, t) = (t cos θ, t sin θ, t), 0 ≤ t ≤ 2, 0 ≤ θ < 2π
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Step 1. Compute the tangent and normal vectors.

Tθ = ∂G

∂θ
= 〈−t sin θ, t cos θ, 0〉 , Tt = ∂G

∂t
= 〈cos θ, sin θ, 1〉

n = Tθ × Tt =
∣∣∣∣∣∣

i j k
−t sin θ t cos θ 0

cos θ sin θ 1

∣∣∣∣∣∣ = t cos θ i + t sin θ j − tk

The normal vector has length

REMINDER In this example,

G(θ, t) = (t cos θ, t sin θ, t)

‖n‖ =
√

t2 cos2 θ + t2 sin2 θ + (−t)2 =
√

2t2 = √
2 |t |

Thus, dS = √
2|t | dθ dt . Since t ≥ 0 on our domain, we drop the absolute value.

Step 2. Calculate the surface area.

Area(S) =
∫∫

D
‖n‖ du dv =

∫ 2

0

∫ 2π

0

√
2 t dθ dt = √

2πt2
∣∣∣∣2

0
= 4

√
2π

Step 3. Calculate the surface integral.
We express f (x, y, z) = x2z in terms of the parameters t and θ and evaluate:

REMINDER∫ 2π

0
cos2 θ dθ =

∫ 2π

0

1 + cos 2θ

2
dθ = π

f (G(θ, t)) = f (t cos θ, t sin θ, t) = (t cos θ)2t = t3 cos2 θ∫∫
S

f (x, y, z) dS =
∫ 2

t=0

∫ 2π

θ=0
f (G(θ, t)) ‖n(θ, t)‖ dθ dt

=
∫ 2

t=0

∫ 2π

θ=0
(t3 cos2 θ)(

√
2t) dθ dt

= √
2

(∫ 2

0
t4 dt

) (∫ 2π

0
cos2 θ dθ

)

= √
2

(
32

5

)
(π) = 32

√
2π

5

In previous discussions of multiple and line integrals, we applied the principle that
the integral of a density is the total quantity. This applies to surface integrals as well. For
example, a surface with mass density ρ(x, y, z) [in units of mass per area] is the surface
integral of the mass density:

Mass of S =
∫∫

S
ρ(x, y, z) dS

Similarly, if an electric charge is distributed over S with charge density ρ(x, y, z), then
the surface integral of ρ(x, y, z) is the total charge on S.

EXAMPLE 5 Total Charge on a Surface Find the total charge (in coulombs) on a
sphere S of radius 5 cm whose charge density in spherical coordinates is ρ(θ, φ) =
0.003 cos2 φ C/cm2.

Solution We parametrize S in spherical coordinates:

G(θ, φ) = (5 cos θ sin φ, 5 sin θ sin φ, 5 cos φ)

By Eq. (2), ‖n‖ = 52 sin φ and

Total charge =
∫∫

S

ρ(θ, φ) dS =
∫ 2π

θ=0

∫ π

φ=0
ρ(θ, φ)‖n‖ dφ dθ



S E C T I O N 16.4 Parametrized Surfaces and Surface Integrals 983

=
∫ 2π

θ=0

∫ π

φ=0
(0.003 cos2 φ)(25 sin φ) dφ dθ

= (0.075)(2π)

∫ π

φ=0
cos2 φ sin φ dφ

= 0.15π

(
−cos3 φ

3

) ∣∣∣∣π
0

= 0.15π

(
2

3

)
≈ 0.1π C

When a graph z = g(x, y) is parametrized by G(x, y) = (x, y, g(x, y)), the tangent
and normal vectors are

Tx = (1, 0, gx), Ty = (0, 1, gy)

n = Tx × Ty =
∣∣∣∣∣∣

i j k
1 0 gx

0 1 gy

∣∣∣∣∣∣ = −gx i − gyj + k, ‖n‖ =
√

1 + g2
x + g2

y 8

The surface integral over the portion of a graph lying over a domain D in the xy-plane is

Surface integral over a graph =
∫∫

D
f (x, y, g(x, y))

√
1 + g2

x + g2
y dx dy 9

EXAMPLE 6 Calculate
∫∫

S
(z − x) dS, where S is the portion of the graph of z =

x + y2 where 0 ≤ x ≤ y, 0 ≤ y ≤ 1 (Figure 14).

FIGURE 14 The surface z = x + y2 over
0 ≤ x ≤ y ≤ 1.

Solution Let z = g(x, y) = x + y2. Then gx = 1 and gy = 2y, and

dS =
√

1 + g2
x + g2

y dx dy =
√

1 + 1 + 4y2 dx dy =
√

2 + 4y2 dx dy

On the surface S, we have z = x + y2, and thus

f (x, y, z) = z − x = (x + y2) − x = y2

By Eq. (9),

∫∫
S

f (x, y, z) dS =
∫ 1

y=0

∫ y

x=0
y2

√
2 + 4y2 dx dy

=
∫ 1

y=0

(
y2

√
2 + 4y2

)
x

∣∣∣∣y
x=0

dy =
∫ 1

0
y3

√
2 + 4y2 dy

Now use the substitution u = 2 + 4y2, du = 8y dy. Then y2 = 1
4 (u − 2), and

∫ 1

0
y3

√
2 + 4y2 dy = 1

8

∫ 6

2

1

4
(u − 2)

√
u du = 1

32

∫ 6

2
(u3/2 − 2u1/2) du

= 1

32

(
2

5
u5/2 − 4

3
u3/2

) ∣∣∣∣6

2
= 1

30
(6

√
6 + √

2) ≈ 0.54
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Excursion
In physics it is an important fact that the gravitational field F corresponding to any ar-The French mathematician Pierre Simon,

Marquis de Laplace (1749–1827) showed
that the gravitational potential satisfies the
Laplace equation �V = 0, where � is the
Laplace operator

�V = ∂2V

∂x2
+ ∂2V

∂y2
+ ∂2V

∂z2

This equation plays an important role in
more advanced branches of math and
physics.

rangement of masses is conservative; that is, F = −∇V (recall that the minus sign is a
convention of physics). The field at a point P due to a mass m located at point Q is

F = −Gm

r2
er , where er is the unit vector pointing from Q to P and r is the distance from

P to Q, which we denote by |P − Q|. As we saw in Example 4 of Section 16.3,

V (P ) = −Gm

r
= − Gm

|P − Q|

If, instead of a single mass, we have N point masses m1, . . . , mN located at Q1, . . . , QN ,
then the gravitational potential is the sum

V (P ) = −G

N∑
i=1

mi

|P − Qi | 10

If mass is distributed continuously over a thin surface S with mass density function
ρ(x, y, z), we replace the sum by the surface integral

V (P ) = −G

∫∫
S

ρ(x, y, z) dS

|P − Q| = −G

∫∫
S

ρ(x, y, z) dS√
(x − a)2 + (y − b)2 + (z − c)2

11

where P = (a, b, c). However, this surface integral cannot be evaluated explicitly unless
the surface and mass distribution are sufficiently symmetric, as in the case of a hollow
sphere of uniform mass density (Figure 15).

P = (a, b, c)

|P − Q|

Q = (x, y, z)

z

x

y

R

FIGURE 15

THEOREM 2 Gravitational Potential of a Uniform Hollow Sphere The gravitational
potential V due to a hollow sphere of radius R with uniform mass distribution of total
mass m at a point P located at a distance r from the center of the sphere is

V (P ) =

⎧⎪⎪⎨
⎪⎪⎩

−Gm

r
if r > R (P outside the sphere)

−Gm

R
if r < R (P inside the sphere)

12

We leave this calculation as an exercise (Exercise 48), because we will derive it again
with much less effort using Gauss’s Law in Section 17.3.

In his magnum opus, Principia Mathematica, Isaac Newton proved that a sphere of
uniform mass density (whether hollow or solid) attracts a particle outside the sphere as if
the entire mass were concentrated at the center. In other words, a uniform sphere behaves
like a point mass as far as gravity is concerned. Furthermore, if the sphere is hollow, then
the sphere exerts no gravitational force on a particle inside it. Newton’s result follows
from Eq. (12). Outside the sphere, V has the same formula as the potential due to a
point mass. Inside the sphere, the potential is constant with value −Gm/R. But constant
potential means zero force because the force is the (negative) gradient of the potential.
This discussion applies equally well to the electrostatic force. In particular, a uniformly
charged sphere behaves like a point charge (when viewed from outside the sphere).



S E C T I O N 16.4 Parametrized Surfaces and Surface Integrals 985

16.4 SUMMARY

• A parametrized surface is a surface S whose points are described in the form

G(u, v) = (x(u, v), y(u, v), z(u, v))

where the parameters u and v vary in a domain D in the uv-plane.
• Tangent and normal vectors:

Tu = ∂G

∂u
=

〈
∂x

∂u
,
∂y

∂u
,

∂z

∂u

〉
, Tv = ∂G

∂v
=

〈
∂x

∂v
,
∂y

∂v
,
∂z

∂v

〉
n = n(u, v) = Tu × Tv

The parametrization is regular at (u, v) if n(u, v) �= 0.
• The quantity ‖n‖ is an “area distortion factor.” If D is a small region in the uv-plane
and S = G(D), then

Area(S) ≈ ‖n(u0, v0)‖Area(D)

where (u0, v0) is any sample point in D.
• Formulas:

Area(S) =
∫∫

D
‖n(u, v)‖ du dv∫∫

S
f (x, y, z) dS =

∫∫
D

f (G(u, v)) ‖n(u, v)‖ du dv

• Some standard parametrizations:

– Cylinder of radius R (z-axis as central axis):

G(θ, z) = (R cos θ, R sin θ, z)

Outward normal: n = Tθ × Tz = R 〈cos θ, sin θ, 0〉
dS = ‖n‖ dθ dz = R dθ dz

– Sphere of radius R, centered at the origin:

G(θ, φ) = (R cos θ sin φ, R sin θ sin φ, R cos φ)

Unit radial vector: er = 〈cos θ sin φ, sin θ sin φ, cos φ〉
Outward normal: n = Tφ × Tθ = (R2 sin φ) er

dS = ‖n‖ dφ dθ = R2 sin φ dφ dθ

– Graph of z = g(x, y):

G(x, y) = (x, y, g(x, y))

n = Tx × Ty = 〈−gx, −gy, 1
〉

dS = ‖n‖ dx dy =
√

1 + g2
x + g2

y dx dy



986 C H A P T E R 16 LINE AND SURFACE INTEGRALS

16.4 EXERCISES

Preliminary Questions
1. What is the surface integral of the function f (x, y, z) = 10 over a

surface of total area 5?

2. What interpretation can we give to the length ‖n‖ of the normal
vector for a parametrization G(u, v)?

3. A parametrization maps a rectangle of size 0.01 × 0.02 in the
uv-plane onto a small patch S of a surface. Estimate Area(S) if
Tu × Tv = 〈1, 2, 2〉 at a sample point in the rectangle.

4. A small surface S is divided into three small pieces, each of area

0.2. Estimate
∫∫

S
f (x, y, z) dS if f (x, y, z) takes the values 0.9, 1,

and 1.1 at sample points in these three pieces.

5. A surface S has a parametrization whose domain is the square
0 ≤ u, v ≤ 2 such that ‖n(u, v)‖ = 5 for all (u, v). What is Area(S)?

6. What is the outward-pointing unit normal to the sphere of radius 3
centered at the origin at P = (2, 2, 1)?

Exercises
1. Match each parametrization with the corresponding surface in Fig-

ure 16.

(a) (u, cos v, sin v)

(b) (u, u + v, v)

(c) (u, v3, v)

(d) (cos u sin v, 3 cos u sin v, cos v)

(e) (u, u(2 + cos v), u(2 + sin v))

(i) (ii) (iii)

x

y

z

x
y

z

x y

(iv) (v)

x
y

z

z

x

z

y

FIGURE 16

2. Show that G(r, θ) = (r cos θ, r sin θ, 1 − r2) parametrizes the
paraboloid z = 1 − x2 − y2. Describe the grid curves of this
parametrization.

3. Show that G(u, v) = (2u + 1, u − v, 3u + v) parametrizes the
plane 2x − y − z = 2. Then:

(a) Calculate Tu, Tv , and n(u, v).

(b) Find the area of S = G(D), where
D = {(u, v) : 0 ≤ u ≤ 2, 0 ≤ v ≤ 1}.

(c) Express f (x, y, z) = yz in terms of u and v, and evaluate∫∫
S

f (x, y, z) dS.

4. Let S = G(D), where D = {(u, v) : u2 + v2 ≤ 1, u ≥ 0, v ≥ 0}
and G is as defined in Exercise 3.

(a) Calculate the surface area of S.

(b) Evaluate
∫∫

S
(x − y) dS. Hint: Use polar coordinates.

5. Let G(x, y) = (x, y, xy).

(a) Calculate Tx , Ty , and n(x, y).
(b) Let S be the part of the surface with parameter domain D =
{(x, y) : x2 + y2 ≤ 1, x ≥ 0, y ≥ 0}. Verify the following formula and
evaluate using polar coordinates:∫∫

S
1 dS =

∫∫
D

√
1 + x2 + y2 dx dy

(c) Verify the following formula and evaluate:∫∫
S

z dS =
∫ π/2

0

∫ 1

0
(sin θ cos θ)r3

√
1 + r2 dr dθ

6. A surface S has a parametrization G(u, v) whose domain D is the
square in Figure 17. Suppose that G has the following normal vectors:

n(A) = 〈2, 1, 0〉 , n(B) = 〈1, 3, 0〉
n(C) = 〈3, 0, 1〉 , n(D) = 〈2, 0, 1〉

Estimate
∫∫

S
f (x, y, z) dS, where f is a function such that

f (G(u, v)) = u + v.

u

A B

C D

1

1

FIGURE 17
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In Exercises 7–10, calculate Tu, Tv , and n(u, v) for the parametrized
surface at the given point. Then find the equation of the tangent plane
to the surface at that point.

7. G(u, v) = (2u + v, u − 4v, 3u); u = 1, v = 4

8. G(u, v) = (u2 − v2, u + v, u − v); u = 2, v = 3

9. G(θ, φ) = (cos θ sin φ, sin θ sin φ, cos φ); θ = π
2 , φ = π

4

10. G(r, θ) = (r cos θ, r sin θ, 1 − r2); r = 1
2 , θ = π

4

11. Use the normal vector computed in Exercise 8 to estimate the area
of the small patch of the surface G(u, v) = (u2 − v2, u + v, u − v)

defined by

2 ≤ u ≤ 2.1, 3 ≤ v ≤ 3.2

12. Sketch the small patch of the sphere whose spherical coordinates
satisfy

π

2
− 0.15 ≤ θ ≤ π

2
+ 0.15,

π

4
− 0.1 ≤ φ ≤ π

4
+ 0.1

Use the normal vector computed in Exercise 9 to estimate its area.

In Exercises 13–26, calculate
∫∫

S
f (x, y, z) dS for the given surface

and function.

13. G(u, v) = (u cos v, u sin v, u), 0 ≤ u ≤ 1, 0 ≤ v ≤ 1;
f (x, y, z) = z(x2 + y2)

14. G(r, θ) = (r cos θ, r sin θ, θ), 0 ≤ r ≤ 1, 0 ≤ θ ≤ 2π ;
f (x, y, z) =

√
x2 + y2

15. y = 9 − z2, 0 ≤ x ≤ 3, 0 ≤ z ≤ 3; f (x, y, z) = z

16. y = 9 − z2, 0 ≤ x ≤ z ≤ 3; f (x, y, z) = 1

17. x2 + y2 + z2 = 1, x, y, z ≥ 0; f (x, y, z) = x2.

18. z = 4 − x2 − y2, 0 ≤ z ≤ 3; f (x, y, z) = x2/(4 − z)

19. x2 + y2 = 4, 0 ≤ z ≤ 4; f (x, y, z) = e−z

20. G(u, v) = (u, v3, u + v), 0 ≤ u ≤ 1, 0 ≤ v ≤ 1;
f (x, y, z) = y

21. Part of the plane x + y + z = 1, where x, y, z ≥ 0;
f (x, y, z) = z

22. Part of the plane x + y + z = 0 contained in the cylinder x2 +
y2 = 1; f (x, y, z) = z2

23. x2 + y2 + z2 = 4, 1 ≤ z ≤ 2;
f (x, y, z) = z2(x2 + y2 + z2)−1

24. x2 + y2 + z2 = 4, 0 ≤ y ≤ 1; f (x, y, z) = y

25. Part of the surface z = x3, where 0 ≤ x ≤ 1, 0 ≤ y ≤ 1;
f (x, y, z) = z

26. Part of the unit sphere centered at the origin, where x ≥ 0 and
|y| ≤ x; f (x, y, z) = x

27. A surface S has a parametrization G(u, v) with domain 0 ≤ u ≤
2, 0 ≤ v ≤ 4 such that the following partial derivatives are constant:

∂G

∂u
= 〈2, 0, 1〉 ,

∂G

∂v
= 〈4, 0, 3〉

What is the surface area of S?

28. Let S be the sphere of radius R centered at the origin. Explain using
symmetry: ∫∫

S
x2 dS =

∫∫
S

y2 dS =
∫∫

S
z2 dS

Then show that
∫∫

S
x2 dS = 4

3
πR4 by adding the integrals.

29. Calculate
∫∫

S
(xy + ez) dS, where S is the triangle in Figure 18

with vertices (0, 0, 3), (1, 0, 2), and (0, 4, 1).

FIGURE 18

30. Use spherical coordinates to compute the surface area of a sphere
of radius R.

31. Use cylindrical coordinates to compute the surface area of a sphere
of radius R.

32. Let S be the surface with parametrization

G(u, v) = (
(3 + sin v) cos u, (3 + sin v) sin u, v

)
for 0 ≤ u ≤ 2π , 0 ≤ v ≤ 2π . Using a computer algebra system:

(a) Plot S from several different viewpoints. Is S best described as a
“vase that holds water” or a “bottomless vase”?

(b) Calculate the normal vector n(u, v).

(c) Calculate the surface area of S to four decimal places.

33. Let S be the surface z = ln(5 − x2 − y2) for 0 ≤ x ≤ 1,
0 ≤ y ≤ 1. Using a computer algebra system:

(a) Calculate the surface area of S to four decimal places.

(b) Calculate
∫∫

S
x2y3 dS to four decimal places.

34. Find the area of the portion of the plane 2x + 3y + 4z = 28 lying
above the rectangle 1 ≤ x ≤ 3, 2 ≤ y ≤ 5 in the xy-plane.
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35. What is the area of the portion of the plane 2x + 3y + 4z = 28 ly-
ing above the domain D in the xy-plane in Figure 19 if Area(D) = 5?

D

x

y

FIGURE 19

36. Find the surface area of the part of the cone x2 + y2 = z2 between
the planes z = 2 and z = 5.

37. Find the surface area of the portion S of the cone z2 = x2 + y2,
where z ≥ 0, contained within the cylinder y2 + z2 ≤ 1.

38. Calculate the integral of ze2x+y over the surface of the box in
Figure 20.

4

2 3

z

P

Q

S

R

O

y

x

FIGURE 20

39. Calculate
∫∫

G
x2z dS, where G is the cylinder (including the top

and bottom) x2 + y2 = 4, 0 ≤ z ≤ 3.

40. Let S be the portion of the sphere x2 + y2 + z2 = 9, where
1 ≤ x2 + y2 ≤ 4 and z ≥ 0 (Figure 21). Find a parametrization of S in
polar coordinates and use it to compute:

(a) The area of S (b)
∫∫

S
z−1 dS

FIGURE 21

41. Prove a famous result of Archimedes: The surface area of the por-
tion of the sphere of radius R between two horizontal planes z = a and
z = b is equal to the surface area of the corresponding portion of the
circumscribed cylinder (Figure 22).

a

b

z
R

FIGURE 22

Further Insights and Challenges
42. Surfaces of Revolution Let S be the surface formed by rotat-
ing the region under the graph z = g(y) in the yz-plane for c ≤ y ≤ d

about the z-axis, where c ≥ 0 (Figure 23).

(a) Show that the circle generated by rotating a point (0, a, b) about
the z-axis is parametrized by

(a cos θ, a sin θ, b), 0 ≤ θ ≤ 2π

(b) Show that S is parametrized by

G(y, θ) = (y cos θ, y sin θ, g(y)) 13

for c ≤ y ≤ d, 0 ≤ θ ≤ 2π .

(c) Use Eq. (13) to prove the formula

Area(S) = 2π

∫ d

c
y

√
1 + g′(y)2 dy 14

FIGURE 23
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43. Use Eq. (14) to compute the surface area of z = 4 − y2 for
0 ≤ y ≤ 2 rotated about the z-axis.

44. Describe the upper half of the cone x2 + y2 = z2 for 0 ≤ z ≤ d

as a surface of revolution (Figure 2) and use Eq. (14) to compute its
surface area.

45. Area of a Torus Let T be the torus obtained by rotating the circle
in the yz-plane of radius a centered at (0, b, 0) about the z-axis (Figure
24). We assume that b > a > 0.

(a) Use Eq. (14) to show that

Area(T) = 4π

∫ b+a

b−a

ay√
a2 − (b − y)2

dy

FIGURE 24 The torus obtained by rotating a circle of radius a.

(b) Show that Area(T) = 4π2ab.

46. Pappus’s Theorem (also called Guldin’s Rule) states that the area
of a surface of revolution S is equal to the length L of the generating
curve times the distance traversed by the center of mass. Use Eq. (14)
to prove Pappus’s Theorem. If C is the graph z = g(y) for c ≤ y ≤ d,
then the center of mass is defined as the point (y, z) with

y = 1

L

∫
C

y ds, z = 1

L

∫
C

z ds

47. Compute the surface area of the torus in Exercise 45 using Pappus’s
Theorem.

48. Potential Due to a Uniform Sphere Let S be a hollow
sphere of radius R with center at the origin with a uniform mass dis-
tribution of total mass m [since S has surface area 4πR2, the mass
density is ρ = m/(4πR2)]. The gravitational potential V (P ) due to S
at a point P = (a, b, c) is equal to

−G

∫∫
S

ρ dS√
(x − a)2 + (y − b)2 + (z − c)2

(a) Use symmetry to conclude that the potential depends only on the
distance r from P to the center of the sphere. Therefore, it suffices to
compute V (P ) for a point P = (0, 0, r) on the z-axis (with r �= R).

(b) Use spherical coordinates to show that V (0, 0, r) is equal to

−Gm

4π

∫ π

0

∫ 2π

0

sin φ dθ dφ√
R2 + r2 − 2Rr cos φ

(c) Use the substitution u = R2 + r2 − 2Rr cos φ to show that

V (0, 0, r) = −mG

2Rr

(|R + r| − |R − r|)
(d) Verify Eq. (12) for V .

49. Calculate the gravitational potential V for a hemisphere of radius
R with uniform mass distribution.

50. The surface of a cylinder of radius R and length L has a uniform
mass distribution ρ (the top and bottom of the cylinder are excluded).
Use Eq. (11) to find the gravitational potential at a point P located along
the axis of the cylinder.

51. Let S be the part of the graph z = g(x, y) lying over a domain D
in the xy-plane. Let φ = φ(x, y) be the angle between the normal to S

and the vertical. Prove the formula

Area(S) =
∫∫

D
dA

| cos φ|

16.5 Surface Integrals of Vector Fields
The last integrals we will consider are surface integrals of vector fields. These integrals
represent flux or rates of flow through a surface. One example is the flux of moleculesThe word flux is derived from the Latin word

fluere, which means “to flow.” across a cell membrane (number of molecules per unit time).
Because flux through a surface goes from one side of the surface to the other, we need

to specify a positive direction of flow. This is done by means of an orientation, which is a
choice of unit normal vector en(P ) at each point P of S, chosen in a continuously varying
manner (Figure 1). There are two normal directions at each point, so the orientation serves
to specify one of the two “sides” of the surface in a consistent manner. The unit vectors
−en(P ) define the opposite orientation. For example, if en are outward-pointing unit
normal vectors on a sphere, then a flow from the inside of the sphere to the outside is a
positive flux.
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S

(A) One possible orientation of S (B) The opposite orientation

−en(P)

x y

z

S

en(P)

x y

z

FIGURE 1 The surface S has two possible
orientations.

The normal component of a vector field F at a point P on an oriented surface S is
the dot product

Normal component at P = F(P ) · en(P ) = ‖F(P )‖ cos θ

where θ is the angle between F(P ) and en(P ) (Figure 2). Often, we write en instead of

F

Normal
component
of F

en

FIGURE 2 The normal component of a
vector to a surface.

en(P ), but it is understood that en varies from point to point on the surface. The vector

surface integral, denoted
∫∫

S
F · dS, is defined as the integral of the normal component:

Vector surface integral:
∫∫

S
F · dS =

∫∫
S

(F · en) dS

This quantity is also called the flux of F across or through S.
An oriented parametrization G(u, v) is a regular parametrization (meaning that

n(u, v) is nonzero for all u, v) whose unit normal vector defines the orientation:

en = en(u, v) = n(u, v)

‖n(u, v)‖
Applying Eq. (1) in the margin to F · en, we obtainREMINDER Formula for a scalar surface

integral in terms of an oriented
parametrization:

∫∫
S

f (x, y, z) dS

=
∫∫

f (G(u, v))‖n(u, v)‖ du dv 1

∫∫
S

F · dS =
∫∫

D
(F · en)‖n(u, v)‖ du dv

=
∫∫

D
F(G(u, v)) ·

(
n(u, v)

‖n(u, v)‖
)

‖n(u, v)‖ du dv

=
∫∫

D
F(G(u, v)) · n(u, v) du dv 2

This formula remains valid even if n(u, v) is zero at points on the boundary of the parameter
domain D. If we reverse the orientation of S in a vector surface integral, n(u, v) is replaced
by −n(u, v) and the integral changes sign.

We can think of dS as a “vector surface element” that is related to a parametrization
by the symbolic equation

dS = n(u, v) du dv
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THEOREM 1 Vector Surface Integral Let G(u, v) be an oriented parametrization of
an oriented surface S with parameter domain D. Assume that G is one-to-one and
regular, except possibly at points on the boundary of D. Then

∫∫
S

F · dS =
∫∫

D
F(G(u, v)) · n(u, v) du dv 3

If the orientation of S is reversed, the surface integral changes sign.

EXAMPLE 1 Calculate
∫∫

S
F · dS, where F = 〈0, 0, x〉 and S is the surface with

parametrization G(u, v) = (u2, v, u3 − v2) for 0 ≤ u ≤ 1, 0 ≤ v ≤ 1 and oriented by
upward-pointing normal vectors.

Solution

Step 1. Compute the tangent and normal vectors.

Tu = 〈
2u, 0, 3u2〉, Tv = 〈0, 1, −2v〉

n(u, v) = Tu × Tv =
∣∣∣∣∣∣

i j k
2u 0 3u2

0 1 −2v

∣∣∣∣∣∣
= −3u2i + 4uvj + 2uk = 〈−3u2, 4uv, 2u

〉
The z-component of n is positive on the domain 0 ≤ u ≤ 1, so n is the upward-pointing
normal (Figure 3).

x

z

F
n

F

F

F

y

F

F

F

F

FIGURE 3 The surface
G(u, v) = (u2, v, u3 − v2) with an
upward-pointing normal. The vector field
F = 〈0, 0, x〉 points in the vertical
direction.

Step 2. Evaluate F · n.
Write F in terms of the parameters u and v. Since x = u2,

F(G(u, v)) = 〈0, 0, x〉 = 〈
0, 0, u2〉

and

F(G(u, v)) · n(u, v) = 〈
0, 0, u2〉 · 〈−3u2, 4uv, 2u

〉 = 2u3

Step 3. Evaluate the surface integral.
The parameter domain is 0 ≤ u ≤ 1, 0 ≤ v ≤ 1, so∫∫

S
F · dS =

∫ 1

u=0

∫ 1

v=0
F(G(u, v)) · n(u, v) dv du

=
∫ 1

u=0

∫ 1

v=0
2u3 dv du =

∫ 1

u=0
2u3 du = 1

2

EXAMPLE 2 Integral over a Hemisphere Calculate the flux of F = 〈z, x, 1〉 across
the upper hemisphere S of the sphere x2 + y2 + z2 = 1, oriented with outward-pointing
normal vectors (Figure 4).

y

x

z

FIGURE 4 The vector field F = 〈z, x, 1〉.

Solution Parametrize the hemisphere by spherical coordinates:

G(θ, φ) = (cos θ sin φ, sin θ sin φ, cos φ), 0 ≤ φ ≤ π

2
, 0 ≤ θ < 2π

Step 1. Compute the normal vector.
According to Eq. (2) in Section 16.4, the outward-pointing normal vector is

n = Tφ × Tθ = sin φ
〈
cos θ sin φ, sin θ sin φ, cos φ

〉
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Step 2. Evaluate F · n.

F(G(θ, φ)) = 〈z, x, 1〉 = 〈
cos φ, cos θ sin φ, 1

〉
F(G(θ, φ)) · n(θ, φ) = 〈

cos φ, cos θ sin φ, 1
〉 · 〈

cos θ sin2 φ, sin θ sin2 φ, cos φ sin φ
〉

= cos θ sin2 φ cos φ + cos θ sin θ sin3 φ + cos φ sin φ

Step 3. Evaluate the surface integral.

∫∫
S

F · dS =
∫ π/2

φ=0

∫ 2π

θ=0
F(G(θ, φ)) · n(θ, φ) dθ dφ

=
∫ π/2

φ=0

∫ 2π

θ=0
(cos θ sin2 φ cos φ + cos θ sin θ sin3 φ︸ ︷︷ ︸

Integral over θ is zero

+ cos φ sin φ) dθ dφ

The integrals of cos θ and cos θ sin θ over [0, 2π ] are both zero, so we are left with

∫ π/2

φ=0

∫ 2π

θ=0
cos φ sin φ dθ dφ = 2π

∫ π/2

φ=0
cos φ sin φ dφ = −2π

cos2 φ

2

∣∣∣∣π/2

0
= π

EXAMPLE 3 Surface Integral over a Graph Calculate the flux of F = x2j through
the surface S defined by y = 1 + x2 + z2 for 1 ≤ y ≤ 5. Orient S with normal pointing
in the negative y-direction.

Solution This surface is the graph of the function y = 1 + x2 + z2, where x and z arez

y
x

D
2

2

5

FIGURE 5

the independent variables (Figure 5).

Step 1. Find a parametrization.
It is convenient to use x and z because y is given explicitly as a function of x and z.
Thus we define

G(x, z) = (x, 1 + x2 + z2, z)

What is the parameter domain? The condition 1 ≤ y ≤ 5 is equivalent to 1 ≤ 1 + x2 +
z2 ≤ 5 or 0 ≤ x2 + z2 ≤ 4. Therefore, the parameter domain is the disk of radius 2 in
the xz-plane—that is, D = {(x, z) : x2 + z2 ≤ 4}.

Because the parameter domain is a disk, it makes sense to use the polar variables
r and θ in the xz-plane. In other words, we write x = r cos θ , z = r sin θ . Then

y = 1 + x2 + z2 = 1 + r2

G(r, θ) = (r cos θ, 1 + r2, r sin θ), 0 ≤ θ ≤ 2π, 0 ≤ r ≤ 2

Step 2. Compute the tangent and normal vectors.

Tr = 〈cos θ, 2r, sin θ〉, Tθ = 〈−r sin θ, 0, r cos θ〉

n = Tr × Tθ =
∣∣∣∣∣∣

i j k
cos θ 2r sin θ

−r sin θ 0 r cos θ

∣∣∣∣∣∣ = 2r2 cos θ i − rj + 2r2 sin θk

The coefficient of j is −r . Because it is negative, n points in the negative y-direction,
as required.
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Step 3. Evaluate F · n.
CAUTION In Step 3, we integrate F · n with
respect to dr dθ , and not r dr dθ . The
factor of r in r dr dθ is a Jacobian factor
that we add only when changing variables
in a double integral. In surface integrals,
the Jacobian factor is incorporated into the
magnitude of n (recall that ‖n‖ is the area
“distortion factor”).

F(G(r, θ)) = x2j = r2 cos2 θ j = 〈
0, r2 cos2 θ, 0

〉
F(G(r, θ)) · n = 〈

0, r2 cos2 θ, 0
〉 · 〈2r2 cos θ, −r, 2r2 sin θ〉 = −r3 cos2 θ

∫∫
S

F · dS =
∫∫

D
F(G(r, θ)) · n dr dθ =

∫ 2π

0

∫ 2

0
(−r3 cos2 θ) dr dθ

= −
(∫ 2π

0
cos2 θ dθ

) (∫ 2

0
r3 dr

)

= −(π)

(
24

4

)
= −4π

CONCEPTUAL INSIGHT Since a vector surface integral depends on the orientation of the
surface, this integral is defined only for surfaces that have two sides. However, some
surfaces, such as the Möbius strip (discovered in 1858 independently by August Möbius
and Johann Listing), cannot be oriented because they are one-sided. You can construct a
Möbius strip M with a rectangular strip of paper: Join the two ends of the strip together
with a 180◦ twist. Unlike an ordinary two-sided strip, the Möbius strip M has only
one side, and it is impossible to specify an outward direction in a consistent manner
(Figure 6). If you choose a unit normal vector at a point P and carry that unit vector
continuously around M , when you return to P , the vector will point in the opposite
direction. Therefore, we cannot integrate a vector field over a Möbius strip, and it is not
meaningful to speak of the “flux” across M . On the other hand, it is possible to integrate
a scalar function. For example, the integral of mass density would equal the total mass
of the Möbius strip.

FIGURE 6 It is not possible to choose a
continuously varying unit normal vector on
a Möbius strip.

Fluid Flux
Imagine dipping a net into a stream of flowing water (Figure 7). The flow rate is the

S
P

v

FIGURE 7 Velocity field of a fluid flow.

volume of water that flows through the net per unit time.
To compute the flow rate, let v be the velocity vector field. At each point P , v(P )

is velocity vector of the fluid particle located at the point P . We claim that the flow rate
through a surface S is equal to the surface integral of v over S.

To explain why, suppose first that S is a rectangle of area A and that v is a constant
vector field with value v0 perpendicular to the rectangle. The particles travel at speed
‖v0‖, say in meters per second, so a given particle flows through S within a one-second
time interval if its distance to S is at most ‖v0‖ meters—in other words, if its velocity
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vector passes through S (see Figure 8). Thus the block of fluid passing through S in a
one-second interval is a box of volume ‖v0‖A (Figure 9), and

Surface S of area A
viewed from above

Q

P v0

v0

FIGURE 8 The particle P flows through S
within a one-second interval, but Q does
not.

Flow rate = (velocity)(area) = ‖v0‖A

Block of water has
volume A �v0�

v0

One second later
(the block has passed through S)

Surface S of area A

SS

FIGURE 9

If the fluid flows at an angle θ relative to S, then the block of water is a parallelepiped
(rather than a box) of volume A‖v0‖ cos θ (Figure 10). If n is a vector normal to S of
length equal to the area A, then we can write the flow rate as a dot product:

Flow rate = A‖v0‖ cos θ = v0 · n

Block of water has volume
A �v0� cos    = n • v0 

Surface S of area A
viewed from above

v0
v0

Surface S of area A

n = normal of length A

FIGURE 10 Water flowing at constant
velocity v0, making an angle θ with a
rectangular surface.

In the general case, the velocity field v is not constant, and the surface S may bePatch S0 has
area ||n(u0,   0)||ΔuΔ  

n(u0,   0) ΔuΔ
v(u0,   0)

S

FIGURE 11 The flow rate across the small
patch S0 is approximately
v(u0, v0) · n(u0, v0) �u �v.

curved. To compute the flow rate, we choose a parametrization G(u, v) and we consider a
small rectangle of size �u × �v that is mapped by G to a small patch S0 of S (Figure 11).
For any sample point G(u0, v0) in S0, the vector n(u0, v0) �u �v is a normal vector of
length approximately equal to the area of S0 [Eq. (3) in Section 16.4]. This patch is nearly
rectangular, so we have the approximation

Flow rate through S0 ≈ v(u0, v0) · n(u0, v0) �u �v

The total flow per second is the sum of the flows through the small patches. As usual, the
limit of the sums as �u and �v tend to zero is the integral of v(u, v) · n(u, v), which is
the surface integral of v over S.

Flow Rate through a Surface For a fluid with velocity vector field v,

Flow rate across the S (volume per unit time) =
∫∫

S
v · dS 4



S E C T I O N 16.5 Surface Integrals of Vector Fields 995

EXAMPLE 4 Let v = 〈
x2 + y2, 0, z2

〉
be the velocity field (in centimeters per second)

of a fluid in R3. Compute the flow rate through the upper hemisphere S of the unit sphere
centered at the origin.

Solution We use spherical coordinates:

x = cos θ sin φ, y = sin θ sin φ, z = cos φ

The upper hemisphere corresponds to the ranges 0 ≤ φ ≤ π
2 and 0 ≤ θ ≤ 2π . By Eq. (2)

in Section 16.4, the upward-pointing normal is

n = Tφ × Tθ = sin φ
〈
cos θ sin φ, sin θ sin φ, cos φ

〉
We have x2 + y2 = sin2 φ, so

v = 〈
x2 + y2, 0, z2〉 = 〈

sin2 φ, 0, cos2 φ
〉

v · n = sin φ
〈
sin2 φ, 0, cos2 φ

〉 · 〈
cos θ sin φ, sin θ sin φ, cos φ

〉
= sin4 φ cos θ + sin φ cos3 φ∫∫

S
v · dS =

∫ π/2

φ=0

∫ 2π

θ=0
(sin4 φ cos θ + sin φ cos3 φ) dθ dφ

The integral of sin4 φ cos θ with respect to θ is zero, so we are left with∫ π/2

φ=0

∫ 2π

θ=0
sin φ cos3 φ dθ dφ = 2π

∫ π/2

φ=0
cos3 φ sin φ dφ

= 2π

(
−cos4 φ

4

) ∣∣∣∣π/2

φ=0
= π

2
cm3/s

Since n is an upward-pointing normal, this is the rate at which fluid flows across the
hemisphere from below to above.

Electric and Magnetic Fields
The laws of electricity and magnetism are expressed in terms of two vector fields, the
electric field E and the magnetic field B, whose properties are summarized in Maxwell’s
four equations. One of these equations is Faraday’s Law of Induction, which can be
formulated either as a partial differential equation or in the following “integral form”:

FIGURE 12 The positive direction along the
boundary curve C is defined so that if a
pedestrian walks in the positive direction
with the surface to her left, then her head
points in the outward (normal) direction.

∫
C

E · ds = − d

dt

∫∫
S

B · dS 5

In this equation, S is an oriented surface with boundary curve C, oriented as indicated in
Figure 12. The line integral of E is equal to the voltage drop around the boundary curve
(the work performed by E moving a positive unit charge around C).

To illustrate Faraday’s Law, consider an electric current of i amperes flowing through

The tesla (T) is the SI unit of magnetic field
strength. A one-coulomb point charge
passing through a magnetic field of 1 T at
1 m/s experiences a force of 1 newton.

a straight wire. According to the Biot-Savart Law, this current produces a magnetic field

B of magnitude B(r) = μ0|i|
2πr

T, where r is the distance (in meters) from the wire and

μ0 = 4π · 10−7 T-m/A.At each point P , B is tangent to the circle through P perpendicular
to the wire as in Figure 13(A), with direction determined by the right-hand rule: If the
thumb of your right hand points in the direction of the current, then your fingers curl in
the direction of B.
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B

B

P

i

r

(A)

Volt meter

Rectangular
region R

H

P = (x, y)

B

i

d

L

Magnetic field B due to
a current in a wire

(B) The magnetic field B points in
the direction n normal to R 

Wire loop C

B

B
y

x

n

y

x = 0

x = L

FIGURE 13

EXAMPLE 5 A varying current of magnitude (t in seconds)The electric field E is conservative when
the charges are stationary or, more
generally, when the magnetic field B is
constant. When B varies in time, the
integral on the right in Eq. (5) is nonzero
for some surface, and hence the circulation
of E around the boundary curve C is also
nonzero. This shows that E is not
conservative when B varies in time.

i = 28 cos (400t) amperes

flows through a straight wire [Figure 13(B)].Arectangular wire loop C of length L = 1.2 m
and width H = 0.7 m is located a distance d = 0.1 m from the wire as in the figure. The
loop encloses a rectangular surface R, which is oriented by normal vectors pointing out
of the page.

(a) Calculate the flux 
(t) of B through R.
(b) Use Faraday’s Law to determine the voltage drop (in volts) around the loop C.

Solution We choose coordinates (x, y) on rectangle R as in Figure 13, so that y is theMagnetic flux as a function of time is often
denoted by the Greek letter 
:


(t) =
∫∫

S
B · dS

distance from the wire and R is the region

0 ≤ x ≤ L, d ≤ y ≤ H + d

Our parametrization of R is simply G(x, y) = (x, y), for which the normal vector n is
the unit vector perpendicular to R, pointing out of the page. The magnetic field B at

P = (x, y) has magnitude
μ0|i|
2πy

. It points out of the page in the direction of n when i is

positive and into the page when i is negative. Thus,

B = μ0i

2πy
n and B · n = μ0i

2πy

(a) The flux 
(t) of B through R at time t is


(t) =
∫∫

R
B · dS =

∫ L

x=0

∫ H+d

y=d

B · n dy dx

=
∫ L

x=0

∫ H+d

y=d

μ0i

2πy
dy dx = μ0Li

2π

∫ H+d

y=d

dy

y

= μ0L

2π

(
ln

H + d

d

)
i

= μ0(1.2)

2π

(
ln

0.8

0.1

)
28 cos (400t)

With μ0 = 4π · 10−7, we obtain


(t) ≈ 1.4 × 10−5 cos (400t) T-m2
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(b) By Faraday’s Law [Eq. (5)], the voltage drop around the rectangular loop C, oriented
in the counterclockwise direction, is∫

C
E · ds = −d


dt
≈ −(1.4 × 10−5) (400) sin (400t) = −0.0056 sin (400t) V

16.5 SUMMARY

• A surface S is oriented if a continuously varying unit normal vector en(P ) is specified
at each point on S. This distinguishes an “outward” direction on the surface.
• The integral of a vector field F over an oriented surface S is defined as the integral of
the normal component F · en over S.
• Vector surface integrals are computed using the formula∫∫

S
F · dS =

∫∫
D

F(G(u, v)) · n(u, v) du dv

Here, G(u, v) is a parametrization of S such that n(u, v) = Tu × Tv points in the direction
of the unit normal vector specified by the orientation.
• The surface integral of a vector field F over S is also called the flux of F through G. If

F is the velocity field of a fluid, then
∫∫

S
F · dS is the rate at which fluid flows through

S per unit time.

16.5 EXERCISES

Preliminary Questions
1. Let F be a vector field and G(u, v) a parametrization of a surface S,

and set n = Tu × Tv . Which of the following is the normal component
of F?
(a) F · n (b) F · en

2. The vector surface integral
∫∫

S
F · dS is equal to the scalar surface

integral of the function (choose the correct answer):
(a) ‖F‖
(b) F · n, where n is a normal vector
(c) F · en, where en is the unit normal vector

3.
∫∫

S
F · dS is zero if (choose the correct answer):

(a) F is tangent to S at every point.
(b) F is perpendicular to S at every point.

4. If F(P ) = en(P ) at each point on S , then
∫∫

S
F · dS is equal to

(choose the correct answer):

(a) Zero (b) Area(S) (c) Neither

5. Let S be the disk x2 + y2 ≤ 1 in the xy-plane oriented with nor-

mal in the positive z-direction. Determine
∫∫

S
F · dS for each of the

following vector constant fields:

(a) F = 〈1, 0, 0〉 (b) F = 〈0, 0, 1〉 (c) F = 〈1, 1, 1〉

6. Estimate
∫∫

S
F · dS, where S is a tiny oriented surface of area

0.05 and the value of F at a sample point in S is a vector of length 2
making an angle π

4 with the normal to the surface.

7. A small surface S is divided into three pieces of area 0.2. Estimate∫∫
S

F · dS if F is a unit vector field making angles of 85◦, 90◦, and

95◦ with the normal at sample points in these three pieces.

Exercises
1. Let F = 〈z, 0, y〉 and let S be the oriented surface parametrized by

G(u, v) = (u2 − v, u, v2) for 0 ≤ u ≤ 2, −1 ≤ v ≤ 4. Calculate:

(a) n and F · n as functions of u and v

(b) The normal component of F to the surface at P = (3, 2, 1) =
G(2, 1)

(c)
∫∫

S
F · dS

2. Let F = 〈y, −x, x2 + y2〉 and let S be the portion of the paraboloid
z = x2 + y2 where x2 + y2 ≤ 3.

(a) Show that if S is parametrized in polar variables x = r cos θ ,
y = r sin θ , then F · n = r3.
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(b) Show that
∫∫

S
F · dS =

∫ 2π

0

∫ 3

0
r3 dr dθ and evaluate.

3. Let S be the unit square in the xy-plane shown in Figure 14, ori-
ented with the normal pointing in the positive z-direction. Estimate∫∫

S
F · dS

where F is a vector field whose values at the labeled points are

F(A) = 〈2, 6, 4〉, F(B) = 〈1, 1, 7〉
F(C) = 〈3, 3, −3〉, F(D) = 〈0, 1, 8〉

4. Suppose that S is a surface in R3 with a parametrization G whose
domain D is the square in Figure 14. The values of a function f , a
vector field F, and the normal vector n = Tu × Tv at G(P ) are given
for the four sample points in D in the following table. Estimate the
surface integrals of f and F over S .

Point
P in D f F n

A 3 〈2, 6, 4〉 〈1, 1, 1〉
B 1 〈1, 1, 7〉 〈1, 1, 0〉
C 2 〈3, 3, −3〉 〈1, 0, −1〉
D 5 〈0, 1, 8〉 〈2, 1, 0〉

x

y

A B

C D

1

1

FIGURE 14

In Exercises 5–17, compute
∫∫

S
F · dS for the given oriented surface.

5. F = 〈y, z, x〉, plane 3x − 4y + z = 1,
0 ≤ x ≤ 1, 0 ≤ y ≤ 1, upward-pointing normal

6. F = 〈
ez, z, x

〉
, G(r, s) = (rs, r + s, r),

0 ≤ r ≤ 1, 0 ≤ s ≤ 1, oriented by Tr × Ts

7. F = 〈
0, 3, x

〉
, part of sphere x2 + y2 + z2 = 9,

where x ≥ 0, y ≥ 0, z ≥ 0 outward-pointing normal

8. F = 〈x, y, z〉, part of sphere x2 + y2 + z2 = 1,

where
1

2
≤ z ≤

√
3

2
, inward-pointing normal

9. F = 〈z, z, x〉, z = 9 − x2 − y2, x ≥ 0, y ≥ 0, z ≥ 0 upward-
pointing normal

10. F = 〈sin y, sin z, yz〉, rectangle 0 ≤ y ≤ 2, 0 ≤ z ≤ 3 in the
(y, z)-plane, normal pointing in negative x-direction

11. F = y2i + 2j − xk, portion of the plane x + y + z = 1 in the
octant x, y, z ≥ 0, upward-pointing normal

12. F = 〈
x, y, ez

〉
, cylinder x2 + y2 = 4, 1 ≤ z ≤ 5, outward-

pointing normal

13. F = 〈
xz, yz, z−1〉

, disk of radius 3 at height 4 parallel to the xy-
plane, upward-pointing normal

14. F = 〈xy, y, 0〉, cone z2 = x2 + y2, x2 + y2 ≤ 4, z ≥ 0,
downward-pointing normal

15. F = 〈
0, 0, ey+z

〉
, boundary of unit cube 0 ≤ x ≤ 1, 0 ≤ y ≤ 1,

0 ≤ z ≤ 1, outward-pointing normal

16. F = 〈
0, 0, z2〉

, G(u, v) = (u cos v, u sin v, v), 0 ≤ u ≤ 1,
0 ≤ v ≤ 2π , upward-pointing normal

17. F = 〈y, z, 0〉, G(u, v) = (u3 − v, u + v, v2), 0 ≤ u ≤ 2,
0 ≤ v ≤ 3, downward-pointing normal

18. Let S be the oriented half-cylinder in Figure 15. In (a)–(f),

determine whether
∫∫

S
F · dS is positive, negative, or zero. Explain

your reasoning.

(a) F = i (b) F = j (c) F = k

(d) F = yi (e) F = −yj (f) F = xj

FIGURE 15

19. Let er = 〈x/r, y/r, z/r〉 be the unit radial vector, where r =√
x2 + y2 + z2. Calculate the integral of F = e−rer over:

(a) The upper hemisphere of x2 + y2 + z2 = 9, outward-pointing
normal.

(b) The octant x ≥ 0, y ≥ 0, z ≥ 0 of the unit sphere centered at the
origin.

20. Show that the flux of F = er

r2
through a sphere centered at the

origin does not depend on the radius of the sphere.

21. The electric field due to a point charge located at the origin in R3

is E = k
er

r2
, where r =

√
x2 + y2 + z2 and k is a constant. Calculate

the flux of E through the disk D of radius 2 parallel to the xy-plane
with center (0, 0, 3).

22. Let S be the ellipsoid
(x

4

)2 +
(y

3

)2 +
( z

2

)2 = 1. Calculate the

flux of F = zi over the portion of S where x, y, z ≤ 0 with upward-
pointing normal. Hint: ParametrizeS using a modified form of spherical
coordinates (θ, φ).
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23. Let v = zk be the velocity field (in meters per second) of a fluid
in R3. Calculate the flow rate (in cubic meters per second) through the
upper hemisphere (z ≥ 0) of the sphere x2 + y2 + z2 = 1.

24. Calculate the flow rate of a fluid with velocity field v = 〈
x, y, x2y

〉
(in m/s) through the portion of the ellipse

(x

2

)2 +
(y

3

)2 = 1 in the

xy-plane, where x, y ≥ 0, oriented with the normal in the positive z-
direction.

In Exercises 25–26, let T be the triangular region with vertices (1, 0, 0),
(0, 1, 0), and (0, 0, 1) oriented with upward-pointing normal vector
(Figure 16). Assume distances are in meters.

25. A fluid flows with constant velocity field v = 2k (m/s). Calculate:
(a) The flow rate through T
(b) The flow rate through the projection of T onto the xy-plane [the
triangle with vertices (0, 0, 0), (1, 0, 0), and (0, 1, 0)]

26. Calculate the flow rate through T if v = −j m/s.

2k

FIGURE 16

27. Prove that if S is the part of a graph z = g(x, y) lying over a domain
D in the xy-plane, then∫∫

S
F · dS =

∫∫
D

(
−F1

∂g

∂x
− F2

∂g

∂y
+ F3

)
dx dy

In Exercises 28–29, a varying current i(t) flows through a long straight
wire in the xy-plane as in Example 5. The current produces a magnetic

field B whose magnitude at a distance r from the wire is B = μ0i

2πr
T,

where μ0 = 4π · 10−7 T-m/A. Furthermore, B points into the page at
points P in the xy-plane.

28. Assume that i(t) = t (12 − t) A (t in seconds). Calculate the flux

(t), at time t , of B through a rectangle of dimensions L × H =
3 × 2 m whose top and bottom edges are parallel to the wire and whose
bottom edge is located d = 0.5 m above the wire, similar to Figure
13(B). Then use Faraday’s Law to determine the voltage drop around
the rectangular loop (the boundary of the rectangle) at time t .

29. Assume that i = 10e−0.1t A (t in seconds). Calculate the flux 
(t),
at time t , of B through the isosceles triangle of base 12 cm and height
6 cm whose bottom edge is 3 cm from the wire, as in Figure 17. Assume
the triangle is oriented with normal vector pointing out of the page. Use
Faraday’s Law to determine the voltage drop around the triangular loop
(the boundary of the triangle) at time t .

Volt meter

Triangular wire

B

B
P

i

r

3

12

6

B

FIGURE 17

Further Insights and Challenges
30. A point mass m is located at the origin. Let Q be the flux of the

gravitational field F = −Gm
er

r2
through the cylinder x2 + y2 = R2

for a ≤ z ≤ b, including the top and bottom (Figure 18). Show that
Q = −4πGm if a < 0 < b (m lies inside the cylinder) and Q = 0 if
0 < a < b (m lies outside the cylinder).

FIGURE 18

In Exercises 31 and 32, let S be the surface with parametrization

G(u, v) =
((

1 + v cos
u

2

)
cos u,

(
1 + v cos

u

2

)
sin u, v sin

u

2

)

for 0 ≤ u ≤ 2π , − 1
2 ≤ v ≤ 1

2 .

31. Use a computer algebra system.

(a) Plot S and confirm visually that S is a Möbius strip.

(b) The intersection of S with the xy-plane is the unit circle G(u, 0) =
(cos u, sin u, 0). Verify that the normal vector along this circle is

n(u, 0) =
〈
cos u sin

u

2
, sin u sin

u

2
, − cos

u

2

〉
(c) As u varies from 0 to 2π , the point G(u, 0) moves once around the
unit circle, beginning and ending at G(0, 0) = G(2π, 0) = (1, 0, 0).
Verify that n(u, 0) is a unit vector that varies continuously but that
n(2π, 0) = −n(0, 0). This shows that S is not orientable—that is, it
is not possible to choose a nonzero normal vector at each point on S
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in a continuously varying manner (if it were possible, the unit normal
vector would return to itself rather than to its negative when carried
around the circle).

32. We cannot integrate vector fields over S because S is not
orientable, but it is possible to integrate functions over S. Using a com-
puter algebra system:

(a) Verify that

‖n(u, v)‖2 = 1 + 3

4
v2 + 2v cos

u

2
+ 1

2
v2 cos u

(b) Compute the surface area of S to four decimal places.

(c) Compute
∫∫

S
(x2 + y2 + z2) dS to four decimal places.

CHAPTER REVIEW EXERCISES

1. Compute the vector assigned to the point P = (−3, 5) by the vector
field:

(a) F = 〈xy, y − x〉
(b) F = 〈4, 8〉
(c) F = 〈

3x+y, log2(x + y)
〉

2. Find a vector field F in the plane such that ‖F(x, y)‖ = 1 and
F(x, y) is orthogonal to G(x, y) = 〈x, y〉 for all x, y.

In Exercises 3–6, sketch the vector field.

3. F(x, y) = 〈y, 1〉 4. F(x, y) = 〈4, 1〉
5. ∇V , where V (x, y) = x2 − y

6. F(x, y) =
〈

4y√
x2 + 4y2

,
−x√

x2 + 16y2

〉
Hint: Show that F is a unit vector field tangent to the family of ellipses
x2 + 4y2 = c2.

In Exercises 7–15, determine whether the vector field is conservative,
and if so, find a potential function.

7. F(x, y) = 〈
x2y, y2x

〉
8. F(x, y) = 〈

4x3y5, 5x4y4〉
9. F(x, y, z) = 〈

sin x, ey, z
〉

10. F(x, y, z) = 〈
2, 4, ez

〉
11. F(x, y, z) = 〈

xyz, 1
2x2z, 2z2y

〉
12. F(x, y) = 〈

y4x3, x4y3〉
13. F(x, y, z) =

〈
y

1 + x2
, tan−1 x, 2z

〉

14. F(x, y, z) =
〈

2xy

x2 + z
, ln(x2 + z),

y

x2 + z

〉
15. F(x, y, z) = 〈

xe2x, ye2z, ze2y
〉

16. Find a conservative vector field of the form F = 〈g(y), h(x)〉 such
that F(0, 0) = 〈1, 1〉, where g(y) and h(x) are differentiable functions.
Determine all such vector fields.

In Exercises 17–20, compute the line integral
∫
C

f (x, y) ds for the

given function and path or curve.

17. f (x, y) = xy, the path c(t) = (t, 2t − 1) for 0 ≤ t ≤ 1

18. f (x, y) = x − y, the unit semicircle x2 + y2 = 1, y ≥ 0

19. f (x, y, z) = ex − y

2
√

2z
, the path c(t) = (

ln t,
√

2t, 1
2 t2)

for

1 ≤ t ≤ 2

20. f (x, y, z) = x + 2y + z, the helix c(t) = (cos t, sin t, t) for
−1 ≤ t ≤ 3

21. Find the total mass of an L-shaped rod consisting of the segments
(2t, 2) and (2, 2 − 2t) for 0 ≤ t ≤ 1 (length in centimeters) with mass
density ρ(x, y) = x2y g/cm.

22. Calculate F = ∇V , where V (x, y, z) = xyez, and compute∫
C

F · ds, where:

(a) C is any curve from (1, 1, 0) to (3, e, −1).

(b) C is the boundary of the square 0 ≤ x ≤ 1, 0 ≤ y ≤ 1 oriented
counterclockwise.

23. Calculate
∫
C1

y dx + x2y dy, where C1 is the oriented curve in

Figure 1(A).

x

y

3

(A)

3
C1

x

y

3

(B)

3 C2

FIGURE 1

24. Let F(x, y) = 〈
9y − y3, e

√
y(x2 − 3x)

〉
and let C2 be the oriented

curve in Figure 1(B).

(a) Show that F is not conservative.

(b) Show that
∫
C2

F · ds = 0 without explicitly computing the integral.

Hint: Show that F is orthogonal to the edges along the square.

In Exercises 25–28, compute the line integral
∫

c
F · ds for the given

vector field and path.

25. F(x, y) =
〈

2y

x2 + 4y2
,

x

x2 + 4y2

〉
,

the path c(t) =
(

cos t, 1
2 sin t

)
for 0 ≤ t ≤ 2π
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26. F(x, y) = 〈
2xy, x2 + y2〉

, the part of the unit circle in the first
quadrant oriented counterclockwise.

27. F(x, y) = 〈
x2y, y2z, z2x

〉
, the path c(t) = (

e−t , e−2t , e−3t
)

for
0 ≤ t < ∞
28. F = ∇V , where V (x, y, z) = 4x2 ln(1 + y4 + z2), the path
c(t) = (

t3, ln(1 + t2), et
)

for 0 ≤ t ≤ 1

29. Consider the line integrals
∫

c
F · ds for the vector fields F and paths

c in Figure 2. Which two of the line integrals appear to have a value of
zero? Which of the other two appears to have a negative value?

(A) (B)

y

x

y

x

y

x

y

x

P Q

Q
P

(C) (D)

FIGURE 2

30. Calculate the work required to move an object from
P = (1, 1, 1) to Q = (3, −4, −2) against the force field
F(x, y, z) = −12r−4 〈x, y, z〉 (distance in meters, force in newtons),
where r =

√
x2 + y2 + z2. Hint: Find a potential function for F.

31. Find constants a, b, c such that

G(u, v) = (u + av, bu + v, 2u − c)

parametrizes the plane 3x − 4y + z = 5. Calculate Tu, Tv , and
n(u, v).

32. Calculate the integral of f (x, y, z) = ez over the portion of the
plane x + 2y + 2z = 3, where x, y, z ≥ 0.

33. Let S be the surface parametrized by

G(u, v) =
(

2u sin
v

2
, 2u cos

v

2
, 3v

)
for 0 ≤ u ≤ 1 and 0 ≤ v ≤ 2π .

(a) Calculate the tangent vectors Tu and Tv and the normal vector
n(u, v) at P = G(1, π

3 ).
(b) Find the equation of the tangent plane at P .
(c) Compute the surface area of S.

34. Plot the surface with parametrization

G(u, v) = (u + 4v, 2u − v, 5uv)

for −1 ≤ v ≤ 1, −1 ≤ u ≤ 1. Express the surface area as a double
integral and use a computer algebra system to compute the area numer-
ically.

35. Express the surface area of the surface z = 10 − x2 − y2

for −1 ≤ x ≤ 1, −3 ≤ y ≤ 3 as a double integral. Evaluate the integral
numerically using a CAS.

36. Evaluate
∫∫

S
x2y dS, where S is the surface z = √

3x + y2,

−1 ≤ x ≤ 1, 0 ≤ y ≤ 1.

37. Calculate
∫∫

S

(
x2 + y2

)
e−z dS, where S is the cylinder with

equation x2 + y2 = 9 for 0 ≤ z ≤ 10.

38. Let S be the upper hemisphere x2 + y2 + z2 = 1, z ≥ 0. For each

of the functions (a)–(d), determine whether
∫∫

S
f dS is positive, zero,

or negative (without evaluating the integral). Explain your reasoning.

(a) f (x, y, z) = y3 (b) f (x, y, z) = z3

(c) f (x, y, z) = xyz (d) f (x, y, z) = z2 − 2

39. Let S be a small patch of surface with a parametrization G(u, v)

for 0 ≤ u ≤ 0.1, 0 ≤ v ≤ 0.1 such that the normal vector n(u, v) for
(u, v) = (0, 0) is n = 〈2, −2, 4〉. Use Eq. (3) in Section 16.4 to estimate
the surface area of S.

40. The upper half of the sphere x2 + y2 + z2 = 9 has parametrization

G(r, θ) = (r cos θ, r sin θ,
√

9 − r2) in cylindrical coordinates (Fig-
ure 3).

(a) Calculate the normal vector n = Tr × Tθ at the point G
(
2, π

3

)
.

(b) Use Eq. (3) in Section 16.4 to estimate the surface area of G(R),
where R is the small domain defined by

2 ≤ r ≤ 2.1,
π

3
≤ θ ≤ π

3
+ 0.05

x

y

z

3

3

3Δr Δ

P0 = (2,    )3

G(P0)

FIGURE 3



1002 C H A P T E R 16 LINE AND SURFACE INTEGRALS

In Exercises 41–46, compute
∫∫

S
F · dS for the given oriented surface

or parametrized surface.

41. F(x, y, z) = 〈
y, x, exz

〉
, x2 + y2 = 9, x ≥ 0, y ≥ 0,

−3 ≤ z ≤ 3, outward-pointing normal

42. F(x, y, z) = 〈−y, z,−x〉, G(u, v) = (u + 3v, v − 2u, 2v + 5),
0 ≤ u ≤ 1, 0 ≤ v ≤ 1, upward-pointing normal

43. F(x, y, z) = 〈
0, 0, x2 + y2〉

, x2 + y2 + z2 = 4, z ≥ 0,
outward-pointing normal

44. F(x, y, z) = 〈
z, 0, z2〉

, G(u, v) = (v cosh u, v sinh u, v),
0 ≤ u ≤ 1, 0 ≤ v ≤ 1, upward-pointing normal

45. F(x, y, z) = 〈
0, 0, xzexy

〉
, z = xy, 0 ≤ x ≤ 1, 0 ≤ y ≤ 1,

upward-pointing normal

46. F(x, y, z) = 〈0, 0, z〉, 3x2 + 2y2 + z2 = 1, z ≥ 0,
upward-pointing normal

47. Calculate the total charge on the cylinder

x2 + y2 = R2, 0 ≤ z ≤ H

if the charge density in cylindrical coordinates is ρ(θ, z) = Kz2 cos2 θ ,
where K is a constant.

48. Find the flow rate of a fluid with velocity field v = 〈2x, y, xy〉 m/s
across the part of the cylinder x2 + y2 = 9 where x ≥ 0, y ≥ 0, and
0 ≤ z ≤ 4 (distance in meters).

49. With v as in Exercise 48, calculate the flow rate across the part of

the elliptic cylinder
x2

4
+ y2 = 1 where x ≥ 0, y ≥ 0, and 0 ≤ z ≤ 4.

50. Calculate the flux of the vector field E(x, y, z) = 〈0, 0, x〉 through
the part of the ellipsoid

4x2 + 9y2 + z2 = 36

where z ≥ 3, x ≥ 0, y ≥ 0. Hint: Use the parametrization

G(r, θ) = (
3r cos θ, 2r sin θ, 6

√
1 − r2

)



Fluid flows, such as this water vortex, are

analyzed using the fundamental theorems of

vector analysis.

17 FUNDAMENTAL
THEOREMS OF
VECTOR ANALYSIS

I n this final chapter, we study three generalizations of the Fundamental Theorem of
Calculus, known as Green’s Theorem, Stokes’ Theorem, and the Divergence Theorem.

This is a culmination of our efforts to extend the ideas of single-variable calculus to the
multivariable setting. However, vector analysis is not so much an endpoint as a gateway
to a host of applications, not only in the traditional domains of physics and engineering,
but also in biological, earth, and environmental sciences, where an understanding of fluid
and aerodynamics, and continuous matter is required.

17.1 Green’s Theorem
In Section 16.3, we showed that the circulation of a conservative vector field F around
every closed path is zero. For vector fields in the plane, Green’s Theorem tells us what
happens when F is not conservative.

To formulate Green’s Theorem, we need some notation. Consider a domain D whose
boundary C is a simple closed curve—that is, a closed curve that does not intersect
itself (Figure 1). We follow standard usage and denote the boundary curve C by ∂D.

x

y

C = ∂D

D

FIGURE 1 The boundary of D is a simple
closed curve C that is denoted ∂D. The
boundary is oriented in the
counterclockwise direction.

REMINDER The line integral of a vector
field over a closed curve is called the
“circulation” and is often denoted with the

symbol

∮
.

The counterclockwise orientation of ∂D is called the boundary orientation. When you
traverse the boundary in this direction, the domain lies to your left (Figure 1).

Recall that we have two notations for the line integral of F = 〈F1, F2〉:∫
C

F · ds and
∫
C

F1 dx + F2 dy

If C is parametrized by c(t) = (x(t), y(t)) for a ≤ t ≤ b, then

dx = x′(t) dt, dy = y′(t) dt∫
C

F1 dx + F2 dy =
∫ b

a

(
F1(x(t), y(t))x′(t) + F2(x(t), y(t))y′(t)

)
dt 1

Throughout this chapter, we assume that the components of all vector fields have continu-
ous partial derivatives, and also that C is smooth (C has a parametrization with derivatives
of all orders) or piecewise smooth (a finite union of smooth curves joined together at
corners).

THEOREM 1 Green’s Theorem Let D be a domain whose boundary ∂D is a simple
closed curve, oriented counterclockwise. Then

∮
∂D

F1 dx + F2 dy =
∫∫

D

(
∂F2

∂x
− ∂F1

∂y

)
dA 2

1003



1004 C H A P T E R 17 FUNDAMENTAL THEOREMS OF VECTOR ANALYSIS

Proof Because a complete proof is quite technical, we shall make the simplifying assump-

x

y

C1: y = g(x)

C2: y = f (x)

Boundary ∂D 

D

a b

c

d

FIGURE 2 The boundary curve ∂D is the
union of the graphs of y = g(x) and
y = f (x) oriented counterclockwise.

tion that the boundary of D can be described as the union of two graphs y = g(x) and
y = f (x) with g(x) ≤ f (x) as in Figure 2 and also as the union of two graphs x = g1(y)

and x = f1(y), with g1(y) ≤ f1(y) as in Figure 3.
Green’s Theorem splits up into two equations, one for F1 and one for F2:∮

∂D
F1 dx = −

∫∫
D

∂F1

∂y
dA 3∮

∂D
F2 dy =

∫∫
D

∂F2

∂x
dA 4

In other words, Green’s Theorem is obtained by adding these two equations. To prove
Eq. (3), we write ∮

∂D
F1 dx =

∮
C1

F1 dx +
∮
C2

F1 dx

where C1 is the graph of y = g(x) and C2 is the graph of y = f (x), oriented as in Figure 2.
To compute these line integrals, we parameterize the graphs from left to right using t as
parameter:

Graph of y = g(x): c1(t) = (t, g(t)), a ≤ t ≤ b

Graph of y = f (x): c2(t) = (t, f (t)), a ≤ t ≤ b

Since C2 is oriented from right to left, the line integral over ∂D is the difference∮
∂D

F1 dx =
∫

c1

F1 dx −
∫

c2

F1 dx

In both parametrizations, x = t , so dx = dt , and by Eq. (1)

x

y

x = f1(y)x = g1(y)

D

a b

c

d

FIGURE 3 The boundary curve ∂D is also
the union of the graphs of x = g1(x) and
y = f (x) oriented counterclockwise.

∮
∂D

F1 dx =
∫ b

t=a

F1(t, g(t)) dt −
∫ b

t=a

F1(t, f (t)) dt 5

Now, the key step is to apply the Fundamental Theorem of Calculus to
∂F1

∂y
(t, y) as

a function of y with t held constant:

F1(t, f (t)) − F1(t, g(t)) =
∫ f (t)

y=g(t)

∂F1

∂y
(t, y) dy

Substituting the integral on the right in Eq. (5), we obtain Eq. (3):∮
∂D

F1 dx = −
∫ b

t=a

∫ f (t)

y=g(t)

∂F1

∂y
(t, y) dy dt = −

∫∫
D

∂F1

∂y
dA

Eq. (4) is proved in a similar fashion, by expressing ∂D as the union of the graphs of
x = f1(y) and x = g1(y) (Figure 3).

Recall that if F = ∇V , then the cross-partial condition is satisfied:

∂F2

∂x
− ∂F1

∂y
= 0

In this case, Green’s Theorem merely confirms what we already know: The line integral
of a conservative vector field around any closed curve is zero.
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EXAMPLE 1 Verifying Green’s Theorem Verify Green’s Theorem for the line integral

x

y

FIGURE 4 The vector field F = 〈
xy2, x

〉
.

along the unit circle C, oriented counterclockwise (Figure 4):∮
C

xy2 dx + x dy

Solution

Step 1. Evaluate the line integral directly.
We use the standard parametrization of the unit circle:

Green’s Theorem states:

∮
∂D

F1 dx + F2 dy

=
∫∫

D

(
∂F2

∂x
− ∂F1

∂y

)
dA

x = cos θ, y = sin θ

dx = − sin θ dθ, dy = cos θ dθ

The integrand in the line integral is

xy2 dx + x dy = cos θ sin2 θ(− sin θ dθ) + cos θ(cos θ dθ)

= (− cos θ sin3 θ + cos2 θ
)
dθ

and

REMINDER To integrate cos2 θ , use the
identity cos2 θ = 1

2 (1 + cos 2θ).

∮
C

xy2 dx + x dy =
∫ 2π

0

(− cos θ sin3 θ + cos2 θ
)
dθ

= − sin4 θ

4

∣∣∣∣2π

0
+ 1

2

(
θ + 1

2
sin 2θ

) ∣∣∣∣2π

0

= 0 + 1

2
(2π + 0) = π

Step 2. Evaluate the line integral using Green’s Theorem.
In this example, F1 = xy2 and F2 = x, so

∂F2

∂x
− ∂F1

∂y
= ∂

∂x
x − ∂

∂y
xy2 = 1 − 2xy

According to Green’s Theorem,∮
C

xy2 dx + x dy =
∫∫

D

(
∂F2

∂x
− ∂F1

∂y

)
dA =

∫∫
D

(1 − 2xy) dA

where D is the disk x2 + y2 ≤ 1 enclosed by C. The integral of 2xy over D is zero
by symmetry—the contributions for positive and negative x cancel. We can check this
directly:∫∫
D

(−2xy) dA = −2
∫ 1

x=−1

∫ √
1−x2

y=−
√

1−x2
xy dy dx = −

∫ 1

x=−1
xy2

∣∣∣
√

1−x2

y=−
√

1−x2
dx = 0

Therefore,∫∫
D

(
∂F2

∂x
− ∂F1

∂y

)
dA =

∫∫
D

1 dA = Area(D) = π

This agrees with the value in Step 1, so Green’s Theorem is verified in this case.

EXAMPLE 2 Computing a Line Integral Using Green’s Theorem Compute the circula-D

C

x

y

2

2

FIGURE 5 The region D is described by
0 ≤ x ≤ 2, 0 ≤ y ≤ x.

tion of F =
〈
sin x, x2y3

〉
around the triangular path C in Figure 5.

Solution To compute the line integral directly, we would have to parametrize all three
sides of the triangle. Instead, we apply Green’s Theorem to the domain D enclosed by the
triangle. This domain is described by 0 ≤ x ≤ 2, 0 ≤ y ≤ x.
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Applying Green’s Theorem, we obtain

∂F2

∂x
− ∂F1

∂y
= ∂

∂x
x2y3 − ∂

∂y
sin x = 2xy3

∮
C

sin x dx + x2y3 dy =
∫∫

D
2xy3 dA =

∫ 2

0

∫ x

y=0
2xy3 dy dx

=
∫ 2

0

(
1

2
xy4

∣∣∣∣x
0

)
dx = 1

2

∫ 2

0
x5 dx = 1

12
x6

∣∣∣∣2

0
= 16

3

Green’s Theorem applied to F = 〈−y, x〉 leads to a formula for the area of the domain
D enclosed by a simple closed curve C (Figure 6). We have

x

y

C

D

FIGURE 6 The line integral
∮
C

x dy − y dx

is equal to twice the area enclosed by C.

∂F2

∂x
− ∂F1

∂y
= ∂

∂x
x − ∂

∂y
(−y) = 2

By Green’s Theorem,
∮
C

−y dx + x dy =
∫∫

D
2 dx dy = 2Area(D). We obtain

Area enclosed by C = 1

2

∮
C

x dy − y dx 6

This remarkable formula tells us how to compute an enclosed area by making measure-
ments only along the boundary. It is the mathematical basis of the planimeter, a device
that computes the area of an irregular shape when you trace the boundary with a pointer
at the end of a movable arm (Figure 7).

This end of the
planimeter is
fixed in place.

Flexible elbow

This end of the
planimeter
traces the shape.

FIGURE 7 A planimeter is a mechanical
device used for measuring the areas of
irregular shapes.

EXAMPLE 3 Computing Area via Green’s Theorem Compute the area of the ellipse(x

a

)2 +
(y

b

)2 = 1 using a line integral.“Fortunately (for me), I was the only one in
the local organization who had even heard
of Green’s Theorem,…although I was not
able to make constructive contributions, I
could listen, nod my head and exclaim in
admiration at the right places.”
John M. Crawford, geophysicist and
director of research at Conoco Oil,
1951–1971, writing about his first job
interview in 1943, when a scientist visiting
the company began speaking about
applications of mathematics to oil
exploration.

Solution We parametrize the boundary of the ellipse by

x = a cos θ, y = b sin θ, 0 ≤ θ < 2π

and use Eq. (6):

x dy − y dx = (a cos θ)(b cos θ dθ) − (b sin θ)(−a sin θ dθ)

= ab(cos2 θ + sin2 θ) dθ = ab dθ

Enclosed area = 1

2

∮
C

x dy − y dx = 1

2

∫ 2π

0
ab dθ = πab

This is the standard formula for the area of an ellipse.
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CONCEPTUAL INSIGHT What is the meaning of the integrand in Green’s Theorem? For
convenience, we denote this integrand by curlz(F):

curlz(F) = ∂F2

∂x
− ∂F1

∂y

In Section 17.3, we will see that curlz(F) is the z-component of a vector field curl(F)

called the “curl” of F. Now apply Green’s Theorem to a small domain D with simple
closed boundary curve and let P be a point in D. Because curlz(F) is a continuous
function, its value does not change much on D if C is sufficiently small, so to a first
approximation, we can replace curlz(F) by the constant value curlz(F)(P ) (Figure 8).
Green’s Theorem yields the following approximation for the circulation:∮

C
F · ds =

∫∫
D

curlz(F) dA

≈ curlz(F)(P )

∫∫
D

dA 7

≈ curlz(F)(P ) · Area(D)

In other words, the circulation around a small, simple closed curve C is, to a first-
order approximation, equal to the curl times the enclosed area. Thus, we can think of
curlz(F)(P ) as the circulation per unit of enclosed area.

D
P

x

y

C

FIGURE 8 The circulation of F around C is
approximately curlz(F)(P ) · Area(D).

Angular Velocity An arc of � meters on a
circle of radius r meters has radian
measure �/r. Therefore, an object moving
along the circle with a speed of v meters
per second travels v/r radians per second.
In other words, the object has angular
velocity v/r.

GRAPHICAL INSIGHT If we think of F as the velocity field of a fluid, then we can measure
the curl by placing a small paddle wheel in the stream at a point P and observing how
fast it rotates (Figure 9). Because the fluid pushes each paddle to move with a velocity
equal to the tangential component of F, we can assume that the wheel itself rotates with
a velocity va equal to the average tangential component of F. If the paddle is a circle C
of radius r (and hence length 2πr), then the average tangential component of velocity
is

va = 1

2πr

∮
Cr

F · ds

On the other hand, the paddle encloses an area of πr2, and for small r , we can apply
the approximation (7):

va ≈ 1

2πr
(πr2)curlz(F)(P ) =

(
1

2
r

)
curlz(F)(P )

Now if an object moves along a circle of radius r with speed va , then its angular velocity
(in radians per unit time) is va/r ≈ 1

2 curlz(F)(P ). Therefore, the angular velocity of
the paddle wheel is approximately one-half the curl.

C
P

r

n

P
FIGURE 9 The curl is approximately equal
to one-half the angular velocity of a small
paddle wheel placed at P .
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Figure 10 shows vector fields with constant curl. Field (A) describes a fluid rotating
counterclockwise around the origin, and field (B) describes a fluid that spirals into the
origin. However, a nonzero curl does not mean that the fluid itself is necessarily rotating.
It means only that a small paddle wheel would rotate if placed in the fluid. Field (C) is an
example of shear flow (also known as a Couette flow). It has nonzero curl but does not
rotate about any point. Compare with the fields in Figures (D) and (E), which have zero
curl.

x

(A) F = 〈−y, x〉
curlz(F) = 2

(B) F = 〈−x − y, x − y〉
curlz(F) = 2

(C) F = 〈y, 0〉
curlz(F) = −1

(D) F = 〈y, x〉
curlz(F) = 0

(E) F = 〈x, y〉
curlz(F) = 0

y

x

y

x

y

x

y

x

y

FIGURE 10

Additivity of Circulation
Circulation around a closed curve has an important additivity property: If we decompose
a domain D into two (or more) non-overlapping domains D1 and D2 that intersect only
on part of their boundaries as in Figure 11, then

∮
∂D

F · ds =
∮

∂D1

F · ds +
∮

∂D2

F · ds 8

=

∂D Ctop

D1

Cmiddle

Cmiddle

Cbottom

+
D

D2

FIGURE 11 The domain D is the union of
D1 and D2.

To verify this equation, note first that∮
∂D

F · ds =
∫
Ctop

F · ds +
∫
Cbot

F · ds

with Ctop and Cbot as in Figure 11. Then observe that the dashed segment Cmiddle occurs in
both ∂D1 and ∂D2 but with opposite orientations. If Cmiddle is oriented right to left, then∮

∂D1

F · ds =
∫
Ctop

F · ds −
∫
Cmiddle

F · ds

∮
∂D2

F · ds =
∫
Cbot

F · ds +
∫
Cmiddle

F · ds

We obtain Eq. (8) by adding these two equations:∮
∂D1

F · ds +
∮

∂D2

F · ds =
∫
Ctop

F · ds +
∫
Cbot

F · ds =
∮

∂D
F · ds
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More General Form of Green’s Theorem
Consider a domain D whose boundary consists of more than one simple closed curve as
in Figure 12. As before, ∂D denotes the boundary of D with its boundary orientation. In
other words, the region lies to the left as the curve is traversed in the direction specified
by the orientation. For the domains in Figure 12,

∂D1 = C1 + C2, ∂D2 = C3 + C4 − C5

The curve C5 occurs with a minus sign because it is oriented counterclockwise, but the
boundary orientation requires a clockwise orientation.

(A) Oriented boundary of D1 is C1 + C2 (B) Oriented boundary of D2 is C3 + C4 − C5

D2D1

C1 C3

C2 C4
C5

FIGURE 12

Green’s Theorem remains valid for more general domains of this type:

∮
∂D

F · ds =
∫∫

D

(
∂F2

∂x
− ∂F1

∂y

)
dA 9

This equality is proved by decomposing D into smaller domains each of which is bounded
by a simple closed curve. To illustrate, consider the region D in Figure 13. We decompose
D into domains D1 and D2. Then

∂D = ∂D1 + ∂D2

because the edges common to ∂D1 and ∂D2 occur with opposite orientation and therefore
cancel. The previous version of Green’s Theorem applies to both D1 and D2, and thus∮

∂D
F · ds =

∫
∂D1

F · ds +
∫

∂D2

F · ds

=
∫∫

D1

(
∂F2

∂x
− ∂F1

∂y

)
dA +

∫∫
D2

(
∂F2

∂x
− ∂F1

∂y

)
dA

=
∫∫

D

(
∂F2

∂x
− ∂F1

∂y

)
dA

=
The line integrals over
these pairs of dashed
edges cancel.

∂D
D1

D2

D

∂D1

∂D2

FIGURE 13 The boundary of ∂D is the sum
∂D1 + ∂D2 because the straight edges
cancel.
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EXAMPLE 4 Calculate
∮
C1

F · ds, where F = 〈
x − y, x + y3

〉
and C1 is the outer

x

y

1

D

C2

C1

FIGURE 14 D has area 8, and C2 is a circle
of radius 1.

boundary curve oriented counterclockwise. Assume that the domain D in Figure 14 has
area 8.

Solution We cannot compute the line integral over C1 directly because the curve C1 is
not specified. However, ∂D = C1 − C2, so Green’s Theorem yields∮

C1

F · ds −
∮
C2

F · ds =
∫∫

D

(
∂F2

∂x
− ∂F1

∂y

)
dA 10

We have

∂F2

∂x
− ∂F1

∂y
= ∂

∂x
(x + y3) − ∂

∂y
(x − y) = 1 − (−1) = 2

∫∫
D

(
∂F2

∂x
− ∂F1

∂y

)
dA =

∫∫
D

2 dA = 2Area(D) = 2(8) = 16

Thus Eq. (10) gives us ∮
C1

F · ds −
∮
C2

F · ds = 16 11

To compute the second integral, parametrize the unit circle C2 by c(t) = (cos θ, sin θ).
Then

F · c′(t) = 〈
cos θ − sin θ, cos θ + sin3 θ

〉 · 〈− sin θ, cos θ
〉

= − sin θ cos θ + sin2 θ + cos2 θ + sin3 θ cos θ

= 1 − sin θ cos θ + sin3 θ cos θ

The integrals of sin θ cos θ and sin3 θ cos θ over [0, 2π ] are both zero, so∮
C2

F · ds =
∫ 2π

0
(1 − sin θ cos θ + sin3 θ cos θ) dθ =

∫ 2π

0
dθ = 2π

Eq. (11) yields
∮
C1

F · ds = 16 + 2π .

17.1 SUMMARY

• We have two notations for the line integral of a vector field:∫
C

F · ds and
∫
C

F1 dx + F2 dy

• ∂D denotes the boundary of D with its boundary orientation (Figure 15).D

∂D

FIGURE 15 The boundary orientation is
chosen so that the region lies to your left as
you walk along the curve.

• Green’s Theorem:∮
∂D

F1 dx + F2 dy =
∫∫

D

(
∂F2

∂x
− ∂F1

∂y

)
dA

• Formula for the area of the region D enclosed by C:

Area(D) = 1

2

∮
C

x dy − y dx
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• The quantity

curlz(F) = ∂F2

∂x
− ∂F1

∂y

is interpreted as circulation per unit area. If D is a small domain with boundary C, then
for any P ∈ D, ∮

C
F1 dx + F2 dy ≈ curlz(F)(P ) · Area(D)

17.1 EXERCISES

Preliminary Questions
1. Which vector field F is being integrated in the line integral∮
x2 dy − ey dx?

2. Draw a domain in the shape of an ellipse and indicate with an arrow
the boundary orientation of the boundary curve. Do the same for the
annulus (the region between two concentric circles).

3. The circulation of a conservative vector field around a closed curve
is zero. Is this fact consistent with Green’s Theorem? Explain.

4. Indicate which of the following vector fields possess the following

property: For every simple closed curve C,
∫
C

F · ds is equal to the area

enclosed by C.

(a) F = 〈−y, 0〉
(b) F = 〈x, y〉
(c) F = 〈

sin(x2), x + ey2 〉

Exercises
1. Verify Green’s Theorem for the line integral

∮
C

xy dx + y dy,

where C is the unit circle, oriented counterclockwise.

2. Let I =
∮
C

F · ds, where F = 〈
y + sin x2, x2 + ey2 〉

and C is the

circle of radius 4 centered at the origin.

(a) Which is easier, evaluating I directly or using Green’s Theorem?

(b) Evaluate I using the easier method.

In Exercises 3–10, use Green’s Theorem to evaluate the line integral.
Orient the curve counterclockwise unless otherwise indicated.

3.
∮
C

y2 dx + x2 dy, where C is the boundary of the unit square

0 ≤ x ≤ 1, 0 ≤ y ≤ 1

4.
∮
C

e2x+y dx + e−y dy, where C is the triangle with vertices (0, 0),

(1, 0), and (1, 1)

5.
∮
C

x2 y dx, where C is the unit circle centered at the origin

6.
∮
C

F · ds, where F = 〈
x + y, x2 − y

〉
and C is the boundary of the

region enclosed by y = x2 and y = √
x for 0 ≤ x ≤ 1

7.
∮
C

F · ds, where F = 〈
x2, x2〉

and C consists of the arcs y = x2

and y = x for 0 ≤ x ≤ 1

8.
∮
C
(ln x + y) dx − x2 dy, where C is the rectangle with vertices

(1, 1), (3, 1), (1, 4), and (3, 4)

9. The line integral of F = 〈
ex+y, ex−y

〉
along the curve (oriented

clockwise) consisting of the line segments by joining the points (0, 0),
(2, 2), (4, 2), (2, 0), and back to (0, 0) (note the orientation).

10.
∫
C

xy dx + (x2 + x) dy, where C is the path in Figure 16

(1, 0)(−1, 0)

(0, 1)

x

y

FIGURE 16

11. Let F = 〈
2xey, x + x2ey

〉
and let C be the quarter-circle path from

A to B in Figure 17. Evaluate I =
∮
C

F · ds as follows:

(a) Find a function V (x, y) such that F = G + ∇V , where G = 〈0, x〉.
(b) Show that the line integrals of G along the segments OA and OB

are zero.
(c) Evaluate I . Hint: Use Green’s Theorem to show that

I = V (B) − V (A) + 4π
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O

B = (0, 4)

A = (4, 0)
x

y

FIGURE 17

12. Compute the line integral of F = 〈
x3, 4x

〉
along the path from A to

B in Figure 18. To save work, use Green’s Theorem to relate this line
integral to the line integral along the vertical path from B to A.

1

A = (−1, 0)

B = (−1, −1)

y

x

FIGURE 18

13. Evaluate I =
∫
C
(sin x + y) dx + (3x + y) dy for the nonclosed

path ABCD in Figure 19. Use the method of Exercise 12.

x

y

D = (0, 6)

C = (2, 4)

B = (2, 2)
A = (0, 0)

FIGURE 19

14. Show that if C is a simple closed curve, then∮
C

−y dx =
∮
C

x dy

and both integrals are equal to the area enclosed by C.

In Exercises 15–18, use Eq. (6) to calculate the area of the given region.

15. The circle of radius 3 centered at the origin

16. The triangle with vertices (0, 0), (1, 0), and (1, 1)

17. The region between the x-axis and the cycloid parametrized by
c(t) = (t − sin t, 1 − cos t) for 0 ≤ t ≤ 2π (Figure 20)

x

y

1

2

2

FIGURE 20 Cycloid.

18. The region between the graph of y = x2 and the x-axis for 0 ≤
x ≤ 2

19. Let x3 + y3 = 3xy be the folium of Descartes (Figure 21).

x

y

2

−2

2−2

FIGURE 21 Folium of Descartes.

(a) Show that the folium has a parametrization in terms of t = y/x

given by

x = 3t

1 + t3
, y = 3t2

1 + t3
(−∞ < t < ∞) (t �= −1)

(b) Show that

x dy − y dx = 9t2

(1 + t3)2
dt

Hint: By the Quotient Rule,

x2 d
(y

x

)
= x dy − y dx

(c) Find the area of the loop of the folium.

20. Find a parametrization of the lemniscate (x2 + y2)2 = xy (see
Figure 22) by using t = y/x as a parameter (see Exercise 19). Then
use Eq. (6) to find the area of one loop of the lemniscate.

x

y

0.5

−0.5

0.5

−0.5

FIGURE 22 Lemniscate.
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21. The Centroid via Boundary Measurements The centroid (see
Section 15.5) of a domain D enclosed by a simple closed curve C is
the point with coordinates (x, y) = (My/M, Mx/M), where M is the
area of D and the moments are defined by

Mx =
∫∫

D
y dA, My =

∫∫
D

x dA

Show that Mx =
∮
C

xy dy. Find a similar expression for My .

22. Use the result of Exercise 21 to compute the moments of the semi-
circle x2 + y2 = R2, y ≥ 0 as line integrals. Verify that the centroid is
(0, 4R/(3π)).

23. Let CR be the circle of radius R centered at the origin. Use the

general form of Green’s Theorem to determine
∮
C2

F · ds, where F is

a vector field such that
∮
C1

F · ds = 9 and
∂F2

∂x
− ∂F1

∂y
= x2 + y2 for

(x, y) in the annulus 1 ≤ x2 + y2 ≤ 4.

24. Referring to Figure 23, suppose that
∮
C2

F · ds = 12. Use Green’s

Theorem to determine
∮
C1

F · ds, assuming that
∂F2

∂y
− ∂F1

∂y
= −3

in D.

3

x

y

52

D

C1

C2

FIGURE 23

25. Referring to Figure 24, suppose that∮
C2

F · ds = 3π,

∮
C3

F · ds = 4π

Use Green’s Theorem to determine the circulation of F around C1, as-

suming that
∂F2

∂x
− ∂F1

∂x
= 9 on the shaded region.

C1

C3 C2

5

11

FIGURE 24

26. Let F be the vortex vector field

F =
〈 −y

x2 + y2
,

x

x2 + y2

〉

In Section 16.3 we verified that
∫
CR

F · ds = 2π , where CR is the circle

of radius R centered at the origin. Prove that
∮
C

F · ds = 2π for any

simple closed curve C whose interior contains the origin (Figure 25).
Hint: Apply the general form of Green’s Theorem to the domain be-
tween C and CR , where R is so small that CR is contained in C.

x

y

C
CR

FIGURE 25

In Exercises 27–30, refer to the Conceptual Insight that discusses the
curl, defined by

curlz(F) = ∂F2

∂x
− ∂F1

∂y

27. For the vector fields (A)–(D) in Figure 26, state whether the curlz
at the origin appears to be positive, negative, or zero.

(C) (D)

(A) (B)

xx

x

y

y

x

y

y

FIGURE 26
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28. Estimate the circulation of a vector field F around a circle of radius
R = 0.1, assuming that curlz(F) takes the value 4 at the center of the
circle.

29. Estimate
∮
C

F · ds, where F =
〈
x + 0.1y2, y − 0.1x2

〉
and C en-

closes a small region of area 0.25 containing the point P = (1, 1).

30. Let F be the velocity field. Estimate the circulation of F around a
circle of radius R = 0.05 with center P , assuming that curlz(F)(P ) =
−3. In which direction would a small paddle placed at P rotate? How
fast would it rotate (in radians per second) if F is expressed in meters
per second?

31. Let CR be the circle of radius R centered at the origin. Use Green’s

Theorem to find the value of R that maximizes
∮
CR

y3 dx + x dy.

32. Area of a Polygon Green’s Theorem leads to a convenient for-
mula for the area of a polygon.

(a) Let C be the line segment joining (x1, y1) to (x2, y2). Show that

1

2

∫
C

−y dx + x dy = 1

2
(x1y2 − x2y1)

(b) Prove that the area of the polygon with vertices (x1, y1), (x2, y2),

. . . , (xn, yn) is equal [where we set (xn+1, yn+1) = (x1, y1)] to

1

2

n∑
i=1

(xiyi+1 − xi+1yi)

33. Use the result of Exercise 32 to compute the areas of the polygons
in Figure 27. Check your result for the area of the triangle in (A) using
geometry.

(A)

(2, 1)

(2, 3)

(5, 1)
x

y

2 5

1

3

(B)

(−1, 1)

(−3, 5)

(5, 3)

(3, 2)

(1, 3)

x

y

1 3 5

1

2

3

5

−1−3

FIGURE 27

Exercises 34–39: In Section 16.2, we defined the flux of F across a
curve C (Figure 28) as the integral of the normal component of F along
C, and we showed that if c(t) = (x(t), y(t)) is a parametrization of C
for a ≤ t ≤ b, then the flux is equal to∫ b

a
F(c(t)) · n(t) dt

where n(t) = 〈y′(t), −x′(t)〉.

n

P
F

T

FIGURE 28 The flux of F is the integral of the normal component F · n
around the curve.

34. Show that the flux of F = 〈P, Q〉 across C is equal to∮
C

P dy − Q dx.

35. Define div(F) = ∂P

∂x
+ ∂Q

∂y
. Use Green’s Theorem to prove that

for any simple closed curve C,

Flux across C =
∫∫

D
div(F) dA 12

where D is the region enclosed by C. This is a two-dimensional version
of the Divergence Theorem discussed in Section 17.3.

36. Use Eq. (12) to compute the flux of F =
〈
2x + y3, 3y − x4

〉
across

the unit circle.

37. Use Eq. (12) to compute the flux of F = 〈cos y, sin y〉 across the
square 0 ≤ x ≤ 2, 0 ≤ y ≤ π

2 .

38. If v is the velocity field of a fluid, the flux of v across C is equal to
the flow rate (amount of fluid flowing across C in m2/s). Find the flow
rate across the circle of radius 2 centered at the origin if div(v) = x2.

39. A buffalo (Figure 29) stampede is described by a velocity vector
field F = 〈

xy − y3, x2 + y
〉
km/h in the regionD defined by 2 ≤ x ≤ 3,

2 ≤ y ≤ 3 in units of kilometers (Figure 30). Assuming a density is
ρ = 500 buffalo per square kilometer, use Eq. (12) to determine the net
number of buffalo leaving or entering D per minute (equal to ρ times
the flux of F across the boundary of D).

FIGURE 29 Buffalo stampede.

x

y

3

2

2

3

FIGURE 30 The vector field
F =

〈
xy − y3, x2 + y

〉
.



S E C T I O N 17.2 Stokes’ Theorem 1015

Further Insights and Challenges
In Exercises 40–43, the Laplace operator � is defined by

�ϕ = ∂2ϕ

∂x2
+ ∂2ϕ

∂y2
13

For any vector field F = 〈F1, F2〉, define the conjugate vector field
F∗ = 〈−F2, F1〉.
40. Show that if F = ∇ϕ, then curlz(F∗) = �ϕ.

41. Let n be the outward-pointing unit normal vector to a simple closed
curve C. The normal derivative of a function ϕ, denoted ∂ϕ

∂n , is the di-
rectional derivative Dn(ϕ) = ∇ϕ · n. Prove that∮

C
∂ϕ

∂n
ds =

∫∫
D

�ϕ dA

where D is the domain enclosed by a simple closed curve C. Hint: Let
F = ∇ϕ. Show that ∂ϕ

∂n = F∗ · T where T is the unit tangent vector,
and apply Green’s Theorem.

42. Let P = (a, b) and let Cr be the circle of radius r centered at P .
The average value of a continuous function ϕ on Cr is defined as the
integral

Iϕ(r) = 1

2π

∫ 2π

0
ϕ(a + r cos θ, b + r sin θ) dθ

(a) Show that

∂ϕ

∂n
(a + r cos θ, b + r sin θ)

= ∂ϕ

∂r
(a + r cos θ, b + r sin θ)

(b) Use differentiation under the integral sign to prove that

d

dr
Iϕ(r) = 1

2πr

∫
Cr

∂ϕ

∂n
ds

(c) Use Exercise 41 to conclude that

d

dr
Iϕ(r) = 1

2πr

∫∫
D(r)

�ϕ dA

where D(r) is the interior of Cr .

43. Prove that m(r) ≤ Iϕ(r) ≤ M(r), where m(r) and M(r) are the
minimum and maximum values of ϕ on Cr . Then use the continuity of
ϕ to prove that lim

r→0
Iϕ(r) = ϕ(P ).

In Exercises 44 and 45, let D be the region bounded by a simple closed
curve C. A function ϕ(x, y) on D (whose second-order partial deriva-
tives exist and are continuous) is called harmonic if �ϕ = 0, where
�ϕ is the Laplace operator defined in Eq. (13).

44. Use the results of Exercises 42 and 43 to prove the mean-value
property of harmonic functions: If ϕ is harmonic, then Iϕ(r) = ϕ(P )

for all r .

45. Show that f (x, y) = x2 − y2 is harmonic. Verify the mean-value
property for f (x, y) directly [expand f (a + r cos θ, b + r sin θ) as a
function of θ and compute Iϕ(r)]. Show that x2 + y2 is not harmonic
and does not satisfy the mean-value property.

17.2 Stokes’ Theorem
Stokes’ Theorem is an extension of Green’s Theorem to three dimensions in which circu-
lation is related to a surface integral in R3 (rather than to a double integral in the plane).
In order to state it, we introduce some definitions and terminology.

Figure 1 shows three surfaces with different types of boundaries. The boundary of a
surface is denoted ∂S. Observe that the boundary in (A) is a single, simple closed curve
and the boundary in (B) consists of three closed curves. The surface in (C) is called a
closed surface because its boundary is empty. In this case, we write ∂S = ∅.

FIGURE 1 Surfaces and their boundaries.

Recall from Section 16.5 that an orientation is a continuously varying choice of
unit normal vector at each point of a surface S. When S is oriented, we can specify an
orientation of ∂S, called the boundary orientation. Imagine that you are a unit normal
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(A) (B)

C1C1

n

n
C2

S S

C2

FIGURE 2 The orientation of the boundary
∂S for each of the two possible
orientations of the surface S.

vector walking along the boundary curve. The boundary orientation is the direction for
which the surface is on your left as you walk. For example, the boundary of the surface in
Figure 2 consists of two curves, C1 and C2. In (A), the normal vector points to the outside.
The woman (representing the normal vector) is walking along C1 and has the surface to
her left, so she is walking in the positive direction. The curve C2 is oriented in the opposite
direction because she would have to walk along C2 in that direction to keep the surface on
her left. The boundary orientations in (B) are reversed because the opposite normal has
been selected to orient the surface.

All that’s left is to define curl. The curl of the vector field F = 〈F1, F2, F3〉 is the
vector field defined by the symbolic determinant

curl(F) =

∣∣∣∣∣∣∣∣∣∣

i j k

∂

∂x

∂

∂y

∂

∂z

F1 F2 F3

∣∣∣∣∣∣∣∣∣∣
=

(
∂F3

∂y
− ∂F2

∂z

)
i −

(
∂F3

∂x
− ∂F1

∂z

)
j +

(
∂F2

∂x
− ∂F1

∂y

)
k

In more compact form, the curl is the symbolic cross product

curl(F) = ∇ × F

where ∇ is the del “operator” (also called “nabla”):

∇ =
〈

∂

∂x
,

∂

∂y
,

∂

∂z

〉

In terms of components, curl(F) is the vector field

curl(F) =
〈
∂F3

∂y
− ∂F2

∂z
,
∂F1

∂z
− ∂F3

∂x
,
∂F2

∂x
− ∂F1

∂y

〉

It is straightforward to check that curl obeys the linearity rules:

curl(F + G) = curl(F) + curl(G)

curl(cF) = c curl(F) (c any constant)
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EXAMPLE 1 Calculating the Curl Calculate the curl of F = 〈
xy, ex, y + z

〉
.

Solution We compute the curl as a symbolic determinant:

curl(F) =

∣∣∣∣∣∣∣∣∣

i j k

∂

∂x

∂

∂y

∂

∂z

xy ex y + z

∣∣∣∣∣∣∣∣∣
=

(
∂

∂y
(y + z) − ∂

∂z
ex

)
i −

(
∂

∂x
(y + z) − ∂

∂z
xy

)
j +

(
∂

∂x
ex − ∂

∂y
xy

)
k

= i + (ex − x)k

EXAMPLE 2 Conservative Vector Fields Have Zero Curl Verify:

If F = ∇V , then curl(F) = 0. That is, curl(∇V ) = 0. 1

Solution The curl of a vector field is zero if

∂F3

∂y
− ∂F2

∂z
= 0,

∂F1

∂z
− ∂F3

∂x
= 0,

∂F2

∂x
− ∂F1

∂y
= 0

But these equations are equivalent to the cross-partials condition that is satisfied by every
conservative vector field F = ∇V .

In the next theorem, we assume that S is an oriented surface with parametrization
G : D → S, where D is a domain in the plane bounded by smooth, simple closed curves,
and G is one-to-one and regular, except possibly on the boundary of D. More generally,
S may be a finite union of surfaces of this type. The surfaces in applications we consider,
such as spheres, cubes, and graphs of functions, satisfy these conditions.

THEOREM 1 Stokes’ Theorem For surfaces S as described above,

∮
∂S

F · ds =
∫∫

S
curl(F) · dS 2

The integral on the left is defined relative to the boundary orientation of ∂S. If S is
closed (that is, ∂S is empty), then the surface integral on the right is zero.

Proof Each side of Eq. (2) is equal to a sum over the components of F:

The curl measures the extent to which F
fails to be conservative. If F is
conservative, then curl(F) = 0 and Stokes’
Theorem merely confirms what we already
know: The circulation of a conservative
vector field around a closed path is zero.

∮
C

F · ds =
∮
C

F1 dx + F2 dy + F3 dz∫∫
S

curl(F) · dS =
∫∫

S
curl(F1i) · dS +

∫∫
S

curl(F2j) · dS +
∫∫

S
curl(F3k) · dS

The proof consists of showing that the F1-, F2-, and F3-terms are separately equal.
Because a complete proof is quite technical, we will prove it under the simplifying

assumption that S is the graph of a function z = f (x, y) lying over a domain D in the
xy-plane. Furthermore, we will carry the details only for the F1-terms. The calculation
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for F2-components is similar, and we leave as an exercise the equality of the F3-terms
(Exercise 31). Thus, we shall prove that∮

C
F1 dx =

∫∫
S

curl(F1(x, y, z)i) · dS 3

Orient S with upward-pointing normal as in Figure 3 and let C = ∂S be the boundary
curve. Let C0 be the boundary of D in the xy-plane, and let c0(t) = (x(t), y(t)) (for

z

yx

C0

(x, y)

(x, y, f (x, y))

D

S

C

n

FIGURE 3

a ≤ t ≤ b) be a counterclockwise parametrization of C0 as in Figure 3. The boundary
curve C projects onto C0, so C has parametrization

c(t) = (
x(t), y(t), f (x(t), y(t))

)
and thus ∮

C
F1(x, y, z) dx =

∫ b

a

F1
(
x(t), y(t), f (x(t), y(t))

)dx

dt
dt

The integral on the right is precisely the integral we obtain by integrating
F1

(
x, y, f (x, y)

)
dx over the curve C0 in the plane R2. In other words,∮

C
F1(x, y, z) dx =

∫
C0

F1
(
x, y, f (x, y)

)
dx

By Green’s Theorem applied to the integral on the right,∮
C

F1(x, y, z) dx = −
∫∫

D
∂

∂y
F1(x, y, f (x, y)) dA

By the Chain Rule,

∂

∂y
F1

(
x, y, f (x, y)

) = F1y

(
x, y, f (x, y)

) + F1z

(
x, y, f (x, y)

)
fy(x, y)

so finally we obtain∮
C

F1 dx = −
∫∫

D

(
F1y

(
x, y, f (x, y)

) + F1z

(
x, y, f (x, y)

)
fy(x, y)

)
dA 4

To finish the proof, we compute the surface integral of curl(F1i) using the parametriza-REMINDER Calculating a surface
integral:∫∫

S
F · dS =

∫∫
D

F(u, v) · n(u, v) du dv

If S is a graph z = f (x, y), parametrized
by G(x, y) = (x, y, f (x, y)), then

n(x, y) = 〈−fx(x, y),−fy(x, y), 1
〉

tion G(x, y) = (x, y, f (x, y)) of S:

n = 〈−fx(x, y),−fy(x, y), 1
〉

(upward-pointing normal)

curl(F1i) · n = 〈
0, F1z, −F1y

〉 · 〈−fx(x, y),−fy(x, y), 1
〉

= −F1z

(
x, y, f (x, y)

)
fy(x, y) − F1y

(
x, y, f (x, y)

)
∫∫

S
curl(F1i) · dS = −

∫∫
D

(
F1z(x, y, z)fy(x, y) + F1y

(
x, y, f (x, y)

))
dA 5

The right-hand sides of Eq. (4) and Eq. (5) are equal. This proves Eq. (3).

EXAMPLE 3 Verifying Stokes’ Theorem Verify Stokes’ Theorem for

F = 〈−y, 2x, x + z〉
and the upper hemisphere with outward-pointing normal vectors (Figure 4):

S = {(x, y, z) : x2 + y2 + z2 = 1, z ≥ 0}
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Solution We will show that both the line integral and the surface integral in Stokes’

FIGURE 4 Upper hemisphere with oriented
boundary.

Theorem are equal to 3π .

Step 1. Compute the line integral around the boundary curve.
The boundary of S is the unit circle oriented in the counterclockwise direction with

REMINDER In Eq. (6), we use∫ 2π

0
cos2 t dt =

∫ 2π

0

1 + cos 2t

2
dt = π

parametrization c(t) = (cos t, sin t, 0). Thus,

c′(t) = 〈− sin t, cos t, 0〉
F(c(t)) = 〈− sin t, 2 cos t, cos t〉

F(c(t)) · c′(t) = 〈− sin t, 2 cos t, cos t〉 · 〈− sin t, cos t, 0〉
= sin2 t + 2 cos2 t = 1 + cos2 t∮

∂S
F · ds =

∫ 2π

0
(1 + cos2 t) dt = 2π + π = 3π 6

Step 2. Compute the curl.

curl(F) =

∣∣∣∣∣∣∣∣∣

i j k

∂

∂x

∂

∂y

∂

∂z

−y 2x x + z

∣∣∣∣∣∣∣∣∣
=

(
∂

∂y
(x + z) − ∂

∂z
2x

)
i −

(
∂

∂x
(x + z) − ∂

∂z
(−y)

)
j

+
(

∂

∂x
2x − ∂

∂y
(−y)

)
k

= 〈0, −1, 3〉
Step 3. Compute the surface integral of the curl.

We parametrize the hemisphere using spherical coordinates:REMINDER Stokes’ Theorem states∮
∂S

F · ds =
∫∫

S
curl(F) · dS G(θ, φ) = (cos θ sin φ, sin θ sin φ, cos φ)

By Eq. (2) of Section 16.4, the outward-pointing normal vector is

n = sin φ 〈cos θ sin φ, sin θ sin φ, cos φ〉
Therefore,

curl(F) · n = sin φ 〈0, −1, 3〉 · 〈cos θ sin φ, sin θ sin φ, cos φ〉
= − sin θ sin2 φ + 3 cos φ sin φ

The upper hemisphere S corresponds to 0 ≤ φ ≤ π
2 , so

∫∫
S

curl(F) · dS =
∫ π/2

φ=0

∫ 2π

θ=0
(− sin θ sin2 φ + 3 cos φ sin φ) dθ dφ

= 0 + 2π

∫ π/2

φ=0
3 cos φ sin φ dφ = 2π

(
3

2
sin2 φ

) ∣∣∣∣π/2

φ=0

= 3π
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Notice that curl(F) contains the partial derivatives
∂F1

∂y
and

∂F1

∂z
but not the partial

∂F1

∂x
. So if F1 = F1(x) is a function of x alone, then

∂F1

∂y
= ∂F1

∂z
= 0, and F1 does not

contribute to the curl. The same holds for the other components. In summary, if each of
F1, F2, and F3 depends only on its corresponding variable x, y, or z, then

curl
(〈
F1(x), F2(y), F3(z)

〉) = 0

EXAMPLE 4 Use Stokes’ Theorem to show that
∮
C

F · ds = 0, where

F = 〈
sin(x2), ey2 + x2, z4 + 2x2〉

and C is the boundary of the triangle in Figure 5 with the indicated orientation.

FIGURE 5

Solution We apply Stokes’ Theorem

∮
C

F · ds =
∫∫

S
curl(F) · dS

and show that the integral on the right is zero.
By the preceding remark, the first component sin(x2) does not contribute to the curl

since it depends only on x. Similarly, ey2
and z4 drop out of the curl, and we have

curl
(〈

sin x2, ey2 + x2, z4 + 2x2〉) =
Automatically zero︷ ︸︸ ︷

curl
(〈

sin x2, ey2
, z4〉) + curl

(〈
0, x2, 2x2〉)

=
〈
0, − ∂

∂x
2x2,

∂

∂x
x2

〉
= 〈0, −4x, 2x〉

Now, it turns out (by the author’s design) that we can show the surface integral is
zero without actually computing it. Referring to Figure 5, we see that C is the boundary
of the triangular surface S contained in the plane

x

3
+ y

2
+ z = 1

Therefore, u = 〈 1
3 , 1

2 , 1
〉
is a normal vector to this plane. But u and curl(F) are orthogonal:

curl(F) · u = 〈0, −4x, 2x〉 ·
〈

1

3
,

1

2
, 1

〉
= −2x + 2x = 0

In other words, the normal component of curl(F) along S is zero. Since the surface integral
of a vector field is equal to the surface integral of the normal component, we conclude

that
∫∫

S
curl(F) · dS = 0.
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CONCEPTUAL INSIGHT Recall that if F is conservative—that is, F = ∇V —then for any
two paths C1 and C2 from P to Q (Figure 6),∫

C1

F · ds =
∫
C2

F · ds = V (Q) − V (P )

In other words, the line integral is path independent. In particular,
∮
C

F · ds is zero if C
is closed (P = Q).

Analogous facts are true for surface integrals when F = curl(A). The vector field
A is called a vector potential for F. Stokes’ Theorem tells us that for any two surfaces
S1 and S2 with the same oriented boundary C (Figure 7),∫∫

S1

F · dS =
∫∫

S2

F · dS =
∮
C

A · ds

In other words, the surface integral of a vector field with vector potential A is surface
independent, just as a vector field with a potential function V is path independent.

If the surface is closed, then the boundary curve is empty and the surface integral
is zero: ∫∫

S
F · dS = 0 if F = curl(A) and S is closed

C1

C2

− P

+ Q

FIGURE 6 Two paths with the same
boundary Q − P .

C

S1

S2

FIGURE 7 Surfaces S1 and S2 have the
same oriented boundary.

Vector potentials are not unique: If
F = curl(A), then F = curl(A + B) for
any vector field B such that curl(B) = 0.

THEOREM 2 Surface Independence for Curl Vector Fields
If F = curl(A), then the flux of F through a surface S depends only on the oriented
boundary ∂S and not on the surface itself:∫∫

S
F · dS =

∮
∂S

A · ds 7

In particular, if S is closed (that is, ∂S is empty), then
∫∫

S
F · dS = 0.

EXAMPLE 5 Let F = curl(A), where A = 〈
y + z, sin(xy), exyz

〉
. Find the flux of FREMINDER By the flux of a vector field

through a surface, we mean the surface
integral of the vector field.

through the surfaces S1 and S2 in Figure 8 whose common boundary C is the unit circle
in the xz-plane.

Solution With C oriented in the direction of the arrow, S1 lies to the left, and by Eq. (7),

FIGURE 8

∫∫
S1

F · dS =
∮
C

A · ds

We shall compute the line integral on the right. The parametrization c(t) = (cos t, 0, sin t)

traces C in the direction of the arrow because it begins at c(0) = (1, 0, 0) and moves in
the direction of c

(
π
2

) = (0, 0, 1). We have

A(c(t)) = 〈
0 + sin t, sin(0), e0〉 = 〈sin t, 0, 1〉

A(c(t)) · c′(t) = 〈sin t, 0, 1〉 · 〈− sin t, 0, cos t〉 = − sin2 t + cos t∮
C

A · ds =
∫ 2π

0
(− sin2 t + cos t) dt = −π
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We conclude that
∫∫

S1

F · dS = −π . On the other hand, S2 lies on the right as you traverse

C. Therefore S2 has oriented boundary −C, and∫∫
S2

F · dS =
∮

−C
A · ds = −

∮
C

A · ds = π

CONCEPTUAL INSIGHT Interpretation of the Curl In Section 17.1, we showed that the

quantity
∂F2

∂x
− ∂F1

∂y
in Green’s Theorem is the “circulation per unit of enclosed area.”

A similar interpretation is valid in R3.
Consider a plane through a point P with unit normal vector en and let D be a small

domain containing P with boundary curve C (Figure 9). By Stokes’ Theorem,∮
C

F · ds ≈
∫∫

D
(curl(F) · en) dS 8

The vector field curl(F) is continuous (its components are derivatives of the components
of F), so its value does not change much on D if D is sufficiently small. To a first
approximation, we can replace curl(F) by the constant value curl(F)(P ), giving us the
approximation ∫∫

D
(curl(F) · en) dS ≈

∫∫
D

(curl(F)(P ) · en) dS

9
≈ (curl(F)(P ) · en)Area(D)

Furthermore, curl(F)(P ) · en = ‖curl(F)(P )‖ cos θ , where θ is the angle between
curl(F) and en. Together, Eq. (8) and Eq. (9) give us∮

C
F · ds ≈ ‖curl(F)(P )‖(cos θ)Area(D) 10

This is a remarkable result. It tells us that curl(F) encodes the the circulation per unit
of enclosed area in every plane through P in a simple way—namely, as the dot product
curl(F)(P ) · en. In particular, the circulation rate varies (to a first-order approximation)
as the cosine of the angle θ between curl(F)(P ) and en.

We can also argue (as in Section 17.1 for vector fields in the plane) that if F is the
velocity field of a fluid, then a small paddle wheel with normal en will rotate with an
angular velocity of approximately 1

2 curl(F)(P ) · en (see Figure 10).

y
C

z

x

D
curl(F )

P

en

FIGURE 9 The curve C around P lies in the
plane through P with normal vector en.

C

r

curl(F )

P

en
curl(F )

en

FIGURE 10 The paddle wheel can be
oriented in different ways, as specified by
the normal vector en.

EXAMPLE 6 Vector Potential for a Solenoid An electric current flowing through a
solenoid (a tightly wound spiral of wire; see Figure 11) creates a magnetic field B. If we
assume that the solenoid is infinitely long, with radius R and the z-axis as central axis,
then

B =
⎧⎨
⎩

0 if r > R

Bk if r < R
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x

y

I

z

B

I

R

x

y

A

S

z

r

B

FIGURE 11 The magnetic field of a long
solenoid is nearly uniform inside and weak
outside. In practice, we treat the solenoid
as “infinitely long” if it is very long in
comparison with its radius.

where r = (x2 + y2)1/2 and B is a constant that depends on the current strength and the
spacing of the turns of wire.

(a) Show that a vector potential for B is

A =

⎧⎪⎪⎨
⎪⎪⎩

1

2
R2B

〈
− y

r2
,

x

r2
, 0

〉
if r > R

1

2
B 〈−y, x, 0〉 if r < R

(b) Calculate the flux of B through the surface S (with upward-pointing normal) in Fig-
ure 11 whose boundary is a circle of radius r where r > R.

Solution

(a) For any functions f and g,

curl(〈f, g, 0〉) = 〈−gz, fz, gx − fy

〉
Applying this to A for r < R, we obtain

curl(A) = 1

2
B

〈
0, 0,

∂

∂x
x − ∂

∂y
(−y)

〉
= 〈0, 0, B〉 = Bk = B

We leave it as an exercise [Exercise 29] to show that curl(A) = B = 0 for r > R.

(b) The boundary circle of S with counterclockwise parametrization c(t) =
(r cos t, r sin t, 0), so

The vector potential A is continuous but
not differentiable on the cylinder r = R,
that is, on the solenoid itself (Figure 12).
The magnetic field B = curl(A) has a
jump discontinuity where r = R. We take
for granted the fact that Stokes’ Theorem
remains valid in this setting.

r
R

BR

�A�

1
2

FIGURE 12 The magnitude ‖A‖ of the
vector potential as a function of distance r

to the z-axis.

c′(t) = 〈−r sin t, r cos t, 0〉

A(c(t)) = 1

2
R2Br−1 〈− sin t, cos t, 0〉

A(c(t)) · c′(t) = 1

2
R2B

(
(− sin t)2 + cos2 t

)
= 1

2
R2B

By Stokes’ Theorem, the flux of B through S is equal to∫∫
S

B · dS =
∮

∂S
A · ds =

∫ 2π

0
A(c(t)) · c′(t) dt = 1

2
R2B

∫ 2π

0
dt = πR2B
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CONCEPTUAL INSIGHT There is an interesting difference between scalar and vector po-
tentials. If F = ∇V , then the scalar potential V is constant in regions where the field
F is zero (since a function with zero gradient is constant). This is not true for vector
potentials. As we saw in Example 6, the magnetic field B produced by a solenoid is zero
everywhere outside the solenoid, but the vector potential A is not constant outside the

solenoid. In fact, A is proportional to
〈
− y

r2
,

x

r2
, 0

〉
. This is related to an intriguing phe-

nomenon in physics called the Aharonov-Bohm (AB) effect, first proposed on theoretical
grounds in the 1940s.

According to electromagnetic theory, a magnetic field B exerts a force on a moving
electron, causing a deflection in the electron’s path. We do not expect any deflection when
an electron moves past a solenoid because B is zero outside the solenoid (in practice,
the field is not actually zero, but it is very small—we ignore this difficulty). However,
according to quantum mechanics, electrons have both particle and wave properties. In
a double-slit experiment, a stream of electrons passing through two small slits creates a
wavelike interference pattern on a detection screen (Figure 13). The AB effect predicts
that if we place a small solenoid between the slits as in the figure (the solenoid is so
small that the electrons never pass through it), then the interference pattern will shift
slightly. It is as if the electrons are “aware” of the magnetic field inside the solenoid,
even though they never encounter the field directly.

The AB effect was hotly debated until it was confirmed definitively in 1985, in
experiments carried out by a team of Japanese physicists led by Akira Tonomura. The
AB effect appeared to contradict “classical” electromagnetic theory, according to which
the trajectory of an electron is determined by B alone. There is no such contradiction in
quantum mechanics, because the behavior of the electrons is governed not by B but by
a “wave function” derived from the nonconstant vector potential A.

Solenoid

Electron stream

B

Detection screen

FIGURE 13 A stream of electrons passing
through a double slit produces an
interference pattern on the detection
screen. The pattern shifts slightly when an
electric current flows through the solenoid.

17.2 SUMMARY

• The boundary of a surface S is denoted ∂S. We say that S is closed if ∂S is empty.
• Suppose that S is oriented (a continuously varying unit normal is specified at each
point of S). The boundary orientation of ∂S is defined as follows: If you walk along the
boundary in the positive direction with your head pointing in the normal direction, then
the surface is on your left.
•

curl(F) =

∣∣∣∣∣∣∣∣∣

i j k

∂

∂x

∂

∂y

∂

∂z

F1 F2 F3

∣∣∣∣∣∣∣∣∣
=

(
∂F3

∂y
− ∂F2

∂z

)
i −

(
∂F3

∂x
− ∂F1

∂z

)
j +

(
∂F2

∂x
− ∂F1

∂y

)
k

Symbolically, curl(F) = ∇ × F where ∇ is the del operator

∇ =
〈

∂

∂x
,

∂

∂y
,

∂

∂z

〉

• Stokes’ Theorem relates the circulation around the boundary to the surface integral of
the curl:
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∂S

F · ds =
∫∫

S
curl(F) · dS

• If F = ∇V , then curl(F) = 0.
• Surface Independence: If F = curl(A), then the flux of F through a surface S depends
only on the oriented boundary ∂S and not on the surface itself:∫∫

S
F · dS =

∮
∂S

A · ds

In particular, if S is closed (that is, ∂S is empty) and F = curl(A), then
∫∫

S
F · dS = 0.

• The curl is interpreted as a vector that encodes circulation per unit area: If P is any point
and en is a unit normal vector, then∫

C
F · ds ≈ (curl(F)(P ) · en)Area(D)

where C is a small, simple closed curve around P in the plane through P with normal
vector en, and D is the enclosed region.

17.2 EXERCISES

Preliminary Questions
1. Indicate with an arrow the boundary orientation of the boundary

curves of the surfaces in Figure 14, oriented by the outward-pointing
normal vectors.

FIGURE 14

2. Let F = curl(A). Which of the following are related by Stokes’
Theorem?

(a) The circulation of A and flux of F.

(b) The circulation of F and flux of A.

3. What is the definition of a vector potential?

4. Which of the following statements is correct?

(a) The flux of curl(A) through every oriented surface is zero.

(b) The flux of curl(A) through every closed, oriented surface is zero.

5. Which condition on F guarantees that the flux through S1 is equal
to the flux through S2 for any two oriented surfaces S1 and S2 with the
same oriented boundary?

Exercises
In Exercises 1–4, calculate curl(F).

1. F = 〈
z − y2, x + z3, y + x2〉

2. F =
〈
y

x
,
y

z
,

z

x

〉
3. F = 〈

ey, sin x, cos x
〉

4. F =
〈

x

x2 + y2
,

y

x2 + y2
, 0

〉
In Exercises 5–8, verify Stokes’ Theorem for the given vector field and
surface, oriented with an upward-pointing normal.

5. F = 〈2xy, x, y + z〉, the surface z = 1 − x2 − y2 for
x2 + y2 ≤ 1

6. F = 〈yz, 0, x〉, the portion of the plane
x

2
+ y

3
+ z = 1 where

x, y, z ≥ 0

7. F = 〈
ey−z, 0, 0

〉
, the square with vertices (1, 0, 1), (1, 1, 1),

(0, 1, 1), and (0, 0, 1)

8. F =
〈
y, x, x2 + y2

〉
, the upper hemisphere

x2 + y2 + z2 = 1, z ≥ 0

In Exercises 9 and 10, calculate curl(F) and then use Stokes’Theorem to
compute the flux of curl(F) through the given surface as a line integral.

9. F =
〈
ez2 − y, ez3 + x, cos(xz)

〉
, the upper hemisphere

x2 + y2 + z2 = 1, z ≥ 0 with outward-pointing normal

10. F =
〈
x + y, z2 − 4, x

√
y2 + 1)

〉
, surface of the wedge-shaped

box in Figure 15 (bottom included, top excluded) with outward-point-
ing normal



1026 C H A P T E R 17 FUNDAMENTAL THEOREMS OF VECTOR ANALYSIS

y

x + y = 1

z

2

x

(0, 1, 2)

(1, 0, 2)

1

1

FIGURE 15

11. Let S be the surface of the cylinder (not including the top and bot-
tom) of radius 2 for 1 ≤ z ≤ 6, oriented with outward-pointing normal
(Figure 16).

(a) Indicate with an arrow the orientation of ∂S (the top and bottom
circles).
(b) Verify Stokes’ Theorem for S and F = 〈

yz2, 0, 0
〉
.

FIGURE 16

R

−R

FIGURE 17

12. Let S be the portion of the plane z = x contained in the half-
cylinder of radius R depicted in Figure 17. Use Stokes’ Theorem to
calculate the circulation of F = 〈z, x, y + 2z〉 around the boundary of
S (a half-ellipse) in the counterclockwise direction when viewed from
above. Hint: Show that curl(F) is orthogonal to the normal vector to
the plane.

13. Let I be the flux of F = 〈
ey, 2xex2

, z2〉
through the upper hemi-

sphere S of the unit sphere.

(a) Let G = 〈
ey, 2xex2

, 0
〉
. Find a vector field A such that

curl(A) = G.
(b) Use Stokes’ Theorem to show that the flux of G through S is zero.
Hint: Calculate the circulation of A around ∂S .
(c) Calculate I . Hint: Use (b) to show that I is equal to the flux of〈
0, 0, z2〉

through S.

14. Let F = 〈0, −z, 1〉. Let S be the spherical cap x2 + y2 + z2 ≤ 1,

where z ≥ 1
2 . Evaluate

∫∫
S

F · dS directly as a surface integral. Then

verify that F = curl(A), where A = (0, x, xz) and evaluate the surface
integral again using Stokes’ Theorem.

15. Let A be the vector potential and B the magnetic field of the infinite
solenoid of radius R in Example 6. Use Stokes’ Theorem to compute:

(a) The flux of B through a circle in the xy-plane of radius r < R

(b) The circulation of A around the boundary C of a surface lying
outside the solenoid

16. The magnetic field B due to a small current loop (which we
place at the origin) is called a magnetic dipole (Figure 18). Let
ρ = (x2 + y2 + z2)1/2. For ρ large, B = curl(A), where

A =
〈
− y

ρ3
,

x

ρ3
, 0

〉
(a) Let C be a horizontal circle of radius R with center (0, 0, c), where
c is large. Show that A is tangent to C.
(b) Use Stokes’ Theorem to calculate the flux of B through C.

R
c

Current loop

A

z

y

x

FIGURE 18

17. Auniform magnetic field B has constant strengthb in the z-direction
[that is, B = 〈0, 0, b〉].
(a) Verify that A = 1

2 B × r is a vector potential for B, where r =
〈x, y, 0〉.
(b) Calculate the flux of B through the rectangle with vertices A, B,
C, and D in Figure 19.

18. Let F = 〈−x2y, x, 0
〉
. Referring to Figure 19, let C be the closed

path ABCD. Use Stokes’ Theorem to evaluate
∫
C

F · ds in two ways.

First, regard C as the boundary of the rectangle with vertices A, B, C,
and D. Then treat C as the boundary of the wedge-shaped box with
open top.

FIGURE 19

19. Let F = 〈
y2, 2z + x, 2y2〉

. Use Stokes’ Theorem to find a plane
with equation ax + by + cz = 0 (where a, b, c are not all zero) such

that
∮
C

F · ds = 0 for every closed C lying in the plane. Hint: Choose

a, b, c so that curl(F) lies in the plane.

20. Let F = 〈−z2, 2zx, 4y − x2〉
and let C be a simple closed curve in

the plane x + y + z = 4 that encloses a region of area 16 (Figure 20).
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Calculate
∮
C

F · ds, where C is oriented in the counterclockwise direc-

tion (when viewed from above the plane).

FIGURE 20

21. Let F = 〈
y2, x2, z2〉

. Show that∫
C1

F · ds =
∫
C2

F · ds

for any two closed curves lying on a cylinder whose central axis is the
z-axis (Figure 21).

FIGURE 21

22. The curl of a vector field F at the origin is v0 = 〈3, 1, 4〉. Estimate
the circulation around the small parallelogram spanned by the vectors
A = 〈

0, 1
2 , 1

2

〉
and B = 〈

0, 0, 1
3

〉
.

23. You know two things about a vector field F:
(i) F has a vector potential A (but A is unknown).

(ii) The circulation of A around the unit circle (oriented counterclock-
wise) is 25.
Determine the flux of F through the surface S in Figure 22, oriented
with upward pointing normal.

S

y

x

z

1

Unit circle

FIGURE 22 Surface S whose boundary is the unit circle.

24. Suppose that F has a vector potential and that F(x, y, 0) = k. Find
the flux of F through the surface S in Figure 22, oriented with upward
pointing normal.

25. Prove that curl(f a) = ∇f × a, where f is a differentiable func-
tion and a is a constant vector.

26. Show that curl(F) = 0 if F is radial, meaning that F =
f (ρ) 〈x, y, z〉 for some function f (ρ), where ρ =

√
x2 + y2 + z2.

Hint: It is enough to show that one component of curl(F) is zero, be-
cause it will then follow for the other two components by symmetry.

27. Prove the following Product Rule:

curl(f F) = f curl(F) + ∇f × F

28. Assume that f and g have continuous partial derivatives of order 2.
Prove that ∮

∂S
f ∇(g) · ds =

∫∫
S

∇(f ) × ∇(g) · ds

29. Verify that B = curl(A) for r > R in the setting of Example 6.

30. Explain carefully why Green’s Theorem is a special case
of Stokes’ Theorem.

Further Insights and Challenges
31. In this exercise, we use the notation of the proof of Theorem 1 and
prove ∮

C
F3(x, y, z)k · ds =

∫∫
S

curl(F3(x, y, z)k) · dS 11

In particular, S is the graph of z = f (x, y) over a domain D, and C is
the boundary of S with parametrization (x(t), y(t), f (x(t), y(t))).

(a) Use the Chain Rule to show that

F3(x, y, z)k · ds = F3(x(t), y(t), f (x(t), y(t))(
fx(x(t), y(t))x′(t) + fy(x(t), y(t))y′(t)

)
dt

and verify that

∮
C

F3(x, y, z)k · ds =
∮
C0

〈
F3(x, y, z)fx(x, y), F3(x, y, z)fy(x, y)

〉 · ds

where C0 has parametrization (x(t), y(t)).

(b) Apply Green’s Theorem to the line integral over C0 and show that
the result is equal to the right-hand side of Eq. (11).

32. Let F be a continuously differentiable vector field in R3, Q a point,
and S a plane containing Q with unit normal vector e. Let Cr be a circle
of radius r centered at Q in S, and let Sr be the disk enclosed by Cr .
Assume Sr is oriented with unit normal vector e.
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(a) Let m(r) and M(r) be the minimum and maximum values of
curl(F(P )) · e for P ∈ Sr . Prove that

m(r) ≤ 1

πr2

∫∫
Sr

curl(F) · dS ≤ M(r)

(b) Prove that

curl(F(Q)) · e = lim
r→0

1

πr2

∫
Cr

F · ds

This proves that curl(F(Q)) · e is the circulation per unit area in the
plane S.

17.3 Divergence Theorem
We have studied several “Fundamental Theorems.” Each of these is a relation of the type:

Integral of a derivative
on an oriented domain

= Integral over the oriented
boundary of the domain

Here are the examples we have seen so far:

• In single-variable calculus, the Fundamental Theorem of Calculus (FTC) relates the
integral of f ′(x) over an interval [a, b] to the “integral” of f (x) over the boundary
of [a, b] consisting of two points a and b:∫ b

a

f ′(x) dx︸ ︷︷ ︸
Integral of derivative over [a, b]

= f (b) − f (a)︸ ︷︷ ︸
“Integral” over the boundary of [a, b]

The boundary of [a, b] is oriented by assigning a plus sign to b and a minus sign
to a.

• The Fundamental Theorem for Line Integrals generalizes the FTC: Instead of an
interval [a, b] (a path from a to b along the x-axis), we take any path from points
P to Q in R3 (Figure 1), and instead of f ′(x) we use the gradient:

C

− P

+ Q

FIGURE 1 The oriented boundary of C is
∂C = Q − P . ∫

C
∇V · ds︸ ︷︷ ︸

Integral of derivative over a curve

= V (Q) − V (P )︸ ︷︷ ︸
“Integral” over the

boundary ∂C = Q − P

• Green’s Theorem is a two-dimensional version of the FTC that relates the integral
of a derivative over a domain D in the plane to an integral over its boundary curve
C = ∂D (Figure 2):

C = ∂DD

FIGURE 2 Domain D in R2 with boundary
curve C = ∂D. ∫∫

D

(
∂F2

∂y
− ∂F1

∂x

)
dA︸ ︷︷ ︸

Integral of derivative over domain

=
∫
C

F · ds︸ ︷︷ ︸
Integral over boundary curve

• Stokes’ Theorem extends Green’s Theorem: Instead of a domain in the plane (a flat
surface), we allow any surface in R3 (Figure 3). The appropriate derivative is the
curl:

C

FIGURE 3 The oriented boundary of S is
C = ∂S.

∫∫
S

curl(F) · dS︸ ︷︷ ︸
Integral of derivative over surface

=
∫
C

F · ds︸ ︷︷ ︸
Integral over boundary curve

Our last theorem—the Divergence Theorem—follows this pattern:∫∫∫
W

div(F) dW︸ ︷︷ ︸
Integral of derivative over 3-D region

=
∫∫

S
F · dS︸ ︷︷ ︸

Integral over boundary surface
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Here, S is a closed surface that encloses a 3-D region W . In other words, S is the boundary
of W: S = ∂W . Recall that a closed surface is a surface that “holds air.” Figure 4 shows
two examples of regions and boundary surfaces that we will consider.

Three-dimensional ball Three-dimensional cubeBoundary is a sphere,
oriented to the outside

Boundary is the
surface of the cube,
oriented to the outside

∂WW ∂WW

FIGURE 4

The derivative appearing in the Divergence Theorem is the divergence of a vector
field F = 〈F1, F2, F3〉, defined by

More advanced treatments of vector
calculus use the theory of “differential
forms” to formulate a general version of
Stokes’ Theorem that is valid in all
dimensions and includes each of our main
theorems (Green’s, Stokes’, Divergence) as
a special case.

div(F) = ∂F1

∂x
+ ∂F2

∂y
+ ∂F3

∂z
1

We often write the divergence as a symbolic dot product:

∇ · F =
〈

∂

∂x
,

∂

∂y
,

∂

∂z

〉
· 〈F1, F2, F3〉 = ∂F1

∂x
+ ∂F2

∂y
+ ∂F3

∂z

Note that, unlike the gradient and curl, the divergence is a scalar function. Like the gradient
and curl, the divergence obeys the linearity rules:

div(F + G) = div(F) + div(G)

div(cF) = c div(F) (c any constant)

EXAMPLE 1 Evaluate the divergence of F = 〈
exy, xy, z4

〉
at P = (1, 0, 2).

Solution

div(F) = ∂

∂x
exy + ∂

∂y
xy + ∂

∂z
z4 = yexy + x + 4z3

div(F)(P ) = div(F)(1, 0, 2) = 0 · e0 + 1 + 4 · 23 = 33

THEOREM 1 Divergence Theorem Let S be a closed surface that encloses a region
W in R3. Assume that S is piecewise smooth and is oriented by normal vectors pointing
to the outside of W . Let F be a vector field whose domain contains W . Then∫∫

S
F · dS =

∫∫∫
W

div(F) dV 2

Proof We prove the Divergence Theorem in the special case that W is a box [a, b] ×
[c, d] × [e, f ] as in Figure 5. The proof can be modified to treat more general regions

i

z

x
y

b

e

f

a c
d

j

k

FIGURE 5 A box
W = [a, b] × [c, d] × [e, f ]. such as the interiors of spheres and cylinders.
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We write each side of Eq. (2) as a sum over components:REMINDER The Divergence Theorem
states∫∫

S
F · dS =

∫∫∫
W

div(F) dV

∫∫
∂W

(F1i + F2j + F3k) · dS =
∫∫

∂W
F1i · dS +

∫∫
∂W

F2j · dS +
∫∫

∂W
F3k · dS∫∫∫

W
div(F1i + F2j + F3k) dV =

∫∫∫
W

div(F1i) dV +
∫∫∫

W
div(F2j) dV

+
∫∫∫

W
div(F3k) dV

As in the proofs of Green’s and Stokes’ Theorems, we show that corresponding terms
are equal. It will suffice to carry out the argument for the i-component (the other two
components are similar). Thus we assume that F = F1i.

The surface integral over boundary S of the box is the sum of the integrals over the
six faces. However, F = F1i is orthogonal to the normal vectors to the top and bottom
as well as the two side faces because F · j = F · k = 0. Therefore, the surface integrals
over these faces are zero. Nonzero contributions come only from the front and back faces,
which we denote Sf and Sb (Figure 6):

Front face Sf
(x = b)

Back face Sb
(x = a)

z

x
y

b

e

f

a c
d

–i

i

FIGURE 6

∫∫
S

F · dS =
∫∫

Sf

F · dS +
∫∫

Sb

F · dS

To evaluate these integrals, we parametrize Sf and Sb by

Gf (y, z) = (b, y, z), c ≤ y ≤ d, e ≤ z ≤ f

Gb(y, z) = (a, y, z), c ≤ y ≤ d, e ≤ z ≤ f

The normal vectors for these parametrizations are

∂Gf

∂y
× ∂Gf

∂z
= j × k = i

∂Gb

∂y
× ∂Gb

∂z
= j × k = i

However, the outward-pointing normal for Sb is −i, so a minus sign is needed in the

The names attached to mathematical
theorems often conceal a more complex
historical development. What we call
Green’s Theorem was stated by Augustin
Cauchy in 1846 but it was never stated by
George Green himself (he published a
result that implies Green’s Theorem in
1828). Stokes’ Theorem first appeared as a
problem on a competitive exam written by
George Stokes at Cambridge University, but
William Thomson (Lord Kelvin) had
previously stated the theorem in a letter to
Stokes. Gauss published special cases of
the Divergence Theorem in 1813 and later
in 1833 and 1839, while the general
theorem was stated and proved by the
Russian mathematician Michael
Ostrogradsky in 1826. For this reason, the
Divergence Theorem is also referred to as
“Gauss’s Theorem” or the
“Gauss-Ostrogradsky Theorem.”

surface integral over Sb using the parametrization Gb:

∫∫
Sf

F · dS +
∫∫

Sb

F · dS =
∫ f

e

∫ d

c

F1(b, y, z) dy dz −
∫ f

e

∫ d

c

F1(a, y, z) dy dz

=
∫ f

e

∫ d

c

(
F1(b, y, z) − F1(a, y, z)

)
dy dz

By the FTC in one variable,

F1(b, y, z) − F1(a, y, z) =
∫ b

a

∂F1

∂x
(x, y, z) dx

Since div(F) = div(F1i) = ∂F1

∂x
, we obtain the desired result:

∫∫
S

F · dS =
∫ f

e

∫ d

c

∫ b

a

∂F1

∂x
(x, y, z) dx dy dz =

∫∫∫
W

div(F) dV
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EXAMPLE 2 Verifying the Divergence Theorem Verify Theorem 1 for F = 〈
y, yz, z2

〉

−k

z

yx

5

k

2

W

D

FIGURE 7 Cylinder of radius 2 and height 5.

and the cylinder in Figure 7.

Solution We must verify that the flux
∫∫

S
F · dS, where S is the boundary of the cylinder,

is equal to the integral of div(W) over the cylinder. We compute the flux through S first:
It is the sum of three surface integrals over the side, the top, and the bottom.

Step 1. Integrate over the side of the cylinder.
We use the standard parametrization of the cylinder:

G(θ, z) = (2 cos θ, 2 sin θ, z), 0 ≤ θ < 2π, 0 ≤ z ≤ 5

The normal vector is

n = Tθ × Tz = 〈−2 sin θ, 2 cos θ, 0〉 × 〈0, 0, 1〉 = 〈2 cos θ, 2 sin θ, 0〉
and F(G(θ, z)) = 〈

y, yz, z2
〉 = 〈

2 sin θ, 2z sin θ, z2
〉
. Thus

F · dS = 〈
2 sin θ, 2z sin θ, z2〉 · 〈

2 cos θ, 2 sin θ, 0
〉
dθ dz

= 4 cos θ sin θ + 4z sin2 θ dθ dz

∫∫
side

F · dS =
∫ 5

0

∫ 2π

0
(4 cos θ sin θ + 4z sin2 θ) dθ dz

= 0 + 4π

∫ 5

0
z dz = 4π

(
25

2

)
= 50π 3

Step 2. Integrate over the top and bottom of the cylinder.
The top of the cylinder is at height z = 5, so we can parametrize the top by G(x, y) =

REMINDER In Eq. (3), we use∫ 2π

0
cos θ sin θ dθ = 0

∫ 2π

0
sin2 θ dθ = π

(x, y, 5) for (x, y) in the disk D of radius 2:

D = {(x, y) : x2 + y2 ≤ 4}
Then

n = Tx × Ty = 〈1, 0, 0〉 × 〈0, 1, 0〉 = 〈0, 0, 1〉

and since F(G(x, y)) = F(x, y, 5) = 〈
y, 5y, 52

〉
, we have

F(G(x, y)) · n = 〈
y, 5y, 52〉 · 〈0, 0, 1〉 = 25∫∫

top
F · dS =

∫∫
D

25 dA = 25 Area(D) = 25(4π) = 100π

Along the bottom disk of the cylinder, we have z = 0 and F(x, y, 0) = 〈y, 0, 0〉. Thus
F is orthogonal to the vector −k normal to the bottom disk, and the integral along the
bottom is zero.

Step 3. Find the total flux.∫∫
S

F · dS = sides + top + bottom = 50π + 100π + 0 = 150π

Step 4. Compare with the integral of divergence.

div(F) = div
(〈
y, yz, z2〉) = ∂

∂x
y + ∂

∂y
(yz) + ∂

∂z
z2 = 0 + z + 2z = 3z
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The cylinder W consists of all points (x, y, z) for 0 ≤ z ≤ 5 and (x, y) in the disk D.
We see that the integral of the divergence is equal to the total flux as required:∫∫∫

W
div(F) dV =

∫∫
D

∫ 5

z=0
3z dV =

∫∫
D

75

2
dA

=
(

75

2

)
(Area(D)) =

(
75

2

)
(4π) = 150π

In many applications, the Divergence Theorem is used to compute flux. In the next
example, we reduce a flux computation (that would involve integrating over six sides of
a box) to a more simple triple integral.

EXAMPLE 3 Using the Divergence Theorem Use the Divergence Theorem to evaluate

FIGURE 8

∫∫
S

〈
x2, z4, ez

〉 · dS, where S is the boundary of the box W in Figure 8.

Solution First, compute the divergence:

div
(〈
x2, z4, ez

〉) = ∂

∂x
x2 + ∂

∂y
z4 + ∂

∂z
ez = 2x + ez

Then apply the Divergence Theorem and use Fubini’s Theorem:∫∫
S

〈
x2, z4, ez

〉 · dS =
∫∫∫

W
(2x + ez) dV =

∫ 2

0

∫ 3

0

∫ 1

0
(2x + ez) dz dy dx

= 3
∫ 2

0
2x dx + 6

∫ 1

0
ez dz = 12 + 6(e − 1) = 6e + 6

EXAMPLE 4 A Vector Field with Zero Divergence Compute the flux of

x

y

z

S

FIGURE 9

F =
〈
z2 + xy2, cos(x + z), e−y − zy2

〉
through the boundary of the surface S in Figure 9.

Solution Although F is rather complicated, its divergence is zero:

div(F) = ∂

∂x
(z2 + xy2) + ∂

∂y
cos(x + z) + ∂

∂z
(e−y − zy2) = y2 − y2 = 0

The Divergence Theorem shows that the flux is zero. Letting W be the region enclosed

S

FIGURE 10 For a velocity field, the flux
through a surface is the flow rate (in
volume per time) of fluid across the
surface.

by S, we have ∫∫
S

F · dS =
∫∫∫

W
div(F) dV =

∫∫∫
W

0 dV = 0

GRAPHICAL INSIGHT Interpretation of Divergence Let’s assume again that F is the ve-
locity field of a fluid (Figure 10). Then the flux of F through a surface S is the flow rate
(volume of fluid passing through S per unit time). If S encloses the region W , then by
the Divergence Theorem,

Flow rate across S =
∫∫∫

W
div(F) dV 4

Now assume that S is a small surface containing a point P . Because div(F) is
continuous (it is a sum of derivatives of the components of F), its value does not
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change much on W if S is sufficiently small and to a first approximation, we can replace
div(F) by the constant value div(F)(P ). This gives us the approximation

Flow rate across S =
∫∫∫

W
div(F) dV ≈ div(F)(P ) · Vol(W) 5

In other words, the flow rate through a small closed surface containing P is approxi-
mately equal to the divergence at P times the enclosed volume, and thus div(F)(P ) has
an interpretation as “flow rate (or flux) per unit volume”:

• If div(F)(P ) > 0, there is a net outflow of fluid across any small closed surface
enclosing P , or, in other words, a net “creation” of fluid near P .
• If div(F)(P ) < 0, there is a net inflow of fluid across any small closed surface en-
closing P , or, in other words, a net “destruction” of fluid near P .

Because of this, div(F) is sometimes called the source density of the field.

• If div(F)(P ) = 0, then to a first-order approximation, the net flow across any small
closed surface enclosing P is equal to zero.

A vector field such that div(F) = 0 everywhere is called incompressible.
To visualize these cases, consider the two-dimensional situation, where we define

div(〈F1, F2〉) = ∂F1

∂x
+ ∂F2

∂y

In Figure 11, field (A) has positive divergence. There is a positive net flow of fluid across
every circle per unit time. Similarly, field (B) has negative divergence. By contrast, field
(C) is incompressible. The fluid flowing into every circle is balanced by the fluid flowing
out.

Do the units match up in Eq. (5)? The flow
rate has units of volume per unit time. On
the other hand, the divergence is a sum of
derivatives of velocity with respect to
distance. Therefore, the divergence has
units of “distance per unit time per
distance,” or unit time−1, and the
right-hand side of Eq. (5) also has units of
volume per unit time.

(A) The field F = 〈x, y〉 with
div(F) = 2. There is a net
outflow through every circle.

(B) The field F = 〈y − 2x, x − 2y〉
with div(F) = −4. There is a
net inflow into every circle.

(C) The field F = 〈x, −y〉
with div(F) = 0. The flux
through every circle is zero.

x

y

x

y

x

y

FIGURE 11 FIGURE 12 Unit radial vector field er .

Applications to Electrostatics
The Divergence Theorem is a powerful tool for computing the flux of electrostatic fields.
This is due to the special properties of the inverse-square vector field (Figure 12). In thisREMINDER

r =
√

x2 + y2 + z2

For r �= 0,

er = 〈x, y, z〉
r

= 〈x, y, z〉√
x2 + y2 + z2

section, we denote the inverse-square vector field by Fi-sq:

Fi-sq = er

r2

Recall that Fi-sq is defined for r �= 0. The next example verifies the key property that
div(Fi-sq) = 0.
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EXAMPLE 5 The Inverse-Square Vector Field Verify that Fi-sq = er

r2
has zero diver-

gence:

div
( er

r2

)
= 0

Solution Write the field as

Fi-sq = 〈F1, F2, F3〉 = 1

r2

〈x
r
,
y

r
,
z

r

〉
= 〈

xr−3, yr−3, zr−3〉
We have

∂r

∂x
= ∂

∂x
(x2 + y2 + z2)1/2 = 1

2
(x2 + y2 + z2)−1/2(2x) = x

r

∂F1

∂x
= ∂

∂x
xr−3 = r−3 − 3xr−4 ∂r

∂x
= r−3 − (3xr−4)

x

r
= r2 − 3x2

r5

The derivatives
∂F2

∂y
and

∂F3

∂z
are similar, so

div(Fi-sq) = r2 − 3x2

r5 + r2 − 3y2

r5 + r2 − 3z2

r5 = 3r2 − 3(x2 + y2 + z2)

r5 = 0

The next theorem shows that the flux of Fi-sq through a closed surface S depends only
on whether S contains the origin.

THEOREM 2 Flux of the Inverse-Square Field The flux of Fi-sq = er

r2
through closed

surfaces has the following remarkable description:

∫∫
S

( er

r2

)
· d S =

⎧⎨
⎩

4π if S encloses the origin

0 if S does not enclose the origin

Proof First, assume that S does not contain the origin (Figure 13). Then the region

x

y

z

S
W

FIGURE 13 S is contained in the domain of
Fi-sq (away from the origin).

W enclosed by S is contained in the domain of Fi-sq and we can apply the Divergence
Theorem. By Example 5, div(Fi-sq) = 0 and therefore∫∫

S

( er

r2

)
· d S =

∫∫∫
W

div(Fi-sq) dV =
∫∫∫

W
0 dV = 0

Next, let SR be the sphere of radius R centered at the origin (Figure 14). We cannot

x

y

er

Fi-sq

R

z

FIGURE 14

use the Divergence Theorem because SR contains a point (the origin) where Fi-sq is not
defined. However, we can compute the flux of Fi-sq throughSR using spherical coordinates.
Recall from Section 16.4 [Eq. (5)] that the outward-pointing normal vector in spherical
coordinates is

n = Tφ × Tθ = (R2 sin φ)er

The inverse-square field on SR is simply Fi-sq = R−2er , and thus

Fi-sq · n = (R−2er ) · (R2 sin φer ) = sin φ(er · er ) = sin φ

∫∫
SR

Fi-sq · dS =
∫ 2π

0

∫ π

0
Fi-sq · n dφ dθ



S E C T I O N 17.3 Divergence Theorem 1035

=
∫ 2π

0

∫ π

0
sin φ dφ dθ

= 2π

∫ π

0
sin φ dφ = 4π

To extend this result to any surface S containing the origin, choose a sphere SR whose

S

SR

Fi−sq =
r2
er

R

W

FIGURE 15 W is the region between S and
the sphere SR .

radius R > 0 is so small that SR is contained inside S. Let W be the region between SR

and S (Figure 15). The oriented boundary of W is the difference

∂W = S − SR

This means that S is oriented by outward-pointing normals and SR by inward-pointing
normals. By the Divergence Theorem,

To verify that the Divergence Theorem
remains valid for regions between two
surfaces, such as the region W in Figure
15, we cut W down the middle. Each half
is a region enclosed by a surface, so the
the Divergence Theorem as we have stated
it applies. By adding the results for the two
halves, we obtain the Divergence Theorem
for W . This uses the fact that the fluxes
through the common face of the two halves
cancel.

∫∫
∂W

Fi-sq · dS =
∫∫

S
Fi-sq · dS −

∫∫
SR

Fi-sq · dS

=
∫∫∫

W
div(Fi-sq) dV (Divergence Theorem)

=
∫∫∫

W
0 dV = 0 (Because div(Fi-sq) = 0)

This proves that the fluxes through S and SR are equal, and hence both equal 4π .
Notice that we just applied the Divergence Theorem to a region W that lies between

two surfaces, one contained in the other. This is a more general form of the theorem than
the one we stated formally in Theorem 1 above. The marginal comment explains why this
is justified.

This result applies directly to the electric field E of a point charge, which is a multiple
of the inverse-square vector field. For a charge of q coulombs at the origin,

E =
(

q

4πε0

)
er

r2

where ε0 = 8.85 × 10−12 C2/N-m
2

is the permittivity constant. Therefore,

Flux of E through S =
⎧⎨
⎩

q

ε0
if q is inside S

0 if q is outside S
Now, instead of placing just one point charge at the origin, we may distribute a finite
number N of point charges qi at different points in space. The resulting electric field E is
the sum of the fields Ei due to the individual charges, and∫∫

S
E · dS =

∫∫
S

E1 · dS + · · · +
∫∫

S
EN · dS

Each integral on the right is either 0 or qi/ε0, according to whether or not S contains qi ,
so we conclude that ∫∫

S
E · dS = total charge enclosed by S

ε0
6

This fundamental relation is called Gauss’s Law. A limiting argument shows that Eq. (6)
remains valid for the electric field due to a continuous distribution of charge.

The next theorem, describing the electric field due to a uniformly charged sphere, is
a classic application of Gauss’s Law.
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THEOREM 3 Uniformly Charged Sphere The electric field due to a uniformly charged
hollow sphere SR of radius R, centered at the origin and of total charge Q, is

E =
⎧⎨
⎩

Q

4πε0r2
er if r > R

0 if r < R

7

where ε0 = 8.85 × 10−12 C2/N-m
2
.

Proof By symmetry (Figure 16), the electric field E must be directed in the radial direction

R

E = E(r)er

r

FIGURE 16 The electric field due to a
uniformly charged sphere.

er with magnitude depending only on the distance r to the origin. Thus, E = E(r)er for
some function E(r). The flux of E through the sphere Sr of radius r is∫∫

Sr

E · dS = E(r)

∫∫
Sr

er · dS︸ ︷︷ ︸
Surface area of sphere

= 4πr2E(r)

By Gauss’s Law, this flux is equal to C/ε0, where C is the charge enclosed by Sr .

We proved Theorem 3 in the analogous
case of a gravitational field (also a radial
inverse-square field) by a laborious
calculation in Exercise 48 of Section 16.4.
Here, we have derived it from Gauss’s Law
and a simple appeal to symmetry.

If r < R, then C = 0 and E = 0. If r > R, then C = Q and 4πr2E(r) = Q/ε0, or
E(r) = Q/(ε04πr2). This proves Eq. (7).

CONCEPTUAL INSIGHT Here is a summary of the basic operations on functions and vector
fields:

f
∇−→ F

curl−→ G
div−→ g

function vector field vector field function

One basic fact is that the result of two consecutive operations in this diagram is zero:

curl(∇(f )) = 0, div(curl(F)) = 0

We verified the first identity in Example 1 of Section 17.2. The second identity is left
as an exercise (Exercise 6).

An interesting question is whether every vector field satisfying curl(F) = 0 is nec-
essarily conservative—that is, F = ∇V for some function V . The answer is yes, but
only if the domain D is simply connected (every path can be drawn down to a point in
D). We saw in Section 16.3 that the vortex vector satisfies curl(F) = 0 and yet cannot
be conservative because its circulation around the unit circle is nonzero (the circulation
of a conservative vector field is always zero). However, the domain of the vortex vector
field is R2 with the origin removed, and this domain is not simply-connected.

The situation for vector potentials is similar. Can every vector field G satisfying
div(G) = 0 be written in the form G = curl(A) for some vector potential A? Again,
the answer is yes—provided that the domain is a region W in R3 that has “no holes,”
like a ball, cube, or all of R3. The inverse-square field Fi-sq = er/r2 plays the role of
vortex field in this setting: Although div(Fi-sq) = 0, Fi-sq cannot have a vector potential
because its flux through the unit sphere is nonzero as shown in Theorem 2 (the flux over
a closed surface of a vector field with a vector potential is always zero by Theorem 2 of
Section 17.2). In this case, the domain of er/r2 is R3 with the origin removed, which
“has a hole.”

These properties of the vortex and inverse-square vector fields are significant be-
cause they relate line and surface integrals to “topological” properties of the domain,
such as whether the domain is simply-connected or has holes. They are a first hint
of the important and fascinating connections between vector analysis and the area of
mathematics called topology.
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Direction of
wave motion

z

x

Magnetic
field B

Electric
field E

FIGURE 17 The E and B fields of an
electromagnetic wave along an axis of
motion.

This is not just mathematical
elegance . . . but beauty.
It is so simple and yet it describes
something so complex.

Francis Collins (1950– ), leading geneticist
and former director of the Human Genome
Project, speaking of the Maxwell Equations.

HISTORICAL
PERSPECTIVE

James Clerk Maxwell
(1831–1879)

Vector analysis was
developed in the nine-
teenth century, in large

part, to express the laws of electricity and mag-
netism. Electromagnetism was studied inten-
sively in the period 1750–1890, culminating in
the famous Maxwell Equations, which provide
a unified understanding in terms of two vector
fields: the electric field E and the magnetic field
B. In a region of empty space (where there are no
charged particles), the Maxwell Equations are

div(E) = 0, div(B) = 0

curl(E) = −∂B
∂t

, curl(B) = μ0ε0
∂E
∂t

where μ0 and ε0 are experimentally determined
constants. In SI units,

μ0 = 4π × 10−7 henries/m

ε0 ≈ 8.85 × 10−12 farads/m

These equations led Maxwell to make two
predictions of fundamental importance: (1) that
electromagnetic waves exist (this was confirmed
by H. Hertz in 1887), and (2) that light is an elec-
tromagnetic wave.

How do the Maxwell Equations suggest
that electromagnetic waves exist? And why did
Maxwell conclude that light is an electromag-
netic wave? It was known to mathematicians
in the eighteenth century that waves traveling
with velocity c may be described by functions
ϕ(x, y, z, t) that satisfy the wave equation

�ϕ = 1

c2

∂2ϕ

∂t2
8

where � is the Laplace operator (or “Laplacian”)

�ϕ = ∂2ϕ

∂x2
+ ∂2ϕ

∂y2
+ ∂2ϕ

∂z2

We will show that the components of E sat-
isfy this wave equation. Take the curl of both
sides of Maxwell’s third equation:

curl(curl(E)) = curl

(
−∂B

∂t

)
= − ∂

∂t
curl(B)

Then apply Maxwell’s fourth equation to obtain

curl(curl(E)) = − ∂

∂t

(
μ0ε0

∂E
∂t

)

= −μ0ε0
∂2E

∂t2
9

Finally, let us define the Laplacian of a vector
field

F = 〈F1, F2, F3〉
by applying the Laplacian � to each component,
�F = 〈�F1, �F2, �F3〉. Then the following
identity holds (see Exercise 36):

curl(curl(F)) = ∇(div(F)) − �F

Applying this identity to E, we obtain
curl(curl(E)) = −�E because div(E) = 0 by
Maxwell’s first equation. Thus, Eq. (9) yields

�E = μ0ε0
∂2E

∂t2

In other words, each component of the elec-
tric field satisfies the wave equation (8), with
c = (μ0ε0)−1/2. This tells us that the E-field
(and similarly the B-field) can propagate through
space like a wave, giving rise to electromagnetic
radiation (Figure 17).

Maxwell computed the velocity c of an
electromagnetic wave:

c = (μ0ε0)−1/2 ≈ 3 × 108 m/s

and observed that the value is suspiciously close
to the velocity of light (first measured by Olaf
Römer in 1676). This had to be more than a
coincidence, as Maxwell wrote in 1862: “We
can scarcely avoid the conclusion that light con-
sists in the transverse undulations of the same
medium which is the cause of electric and mag-
netic phenomena.” Needless to say, the wireless
technologies that drive our modern society rely
on the unseen electromagnetic radiation whose
existence Maxwell first predicted on mathemat-
ical grounds.



1038 C H A P T E R 17 FUNDAMENTAL THEOREMS OF VECTOR ANALYSIS

17.3 SUMMARY

• Divergence of F = 〈F1, F2, F3〉:

div(F) = ∇ · F = ∂F1

∂x
+ ∂F2

∂y
+ ∂F3

∂z

• The Divergence Theorem: If W is a region in R3 whose boundary ∂W is a surface,
oriented by normal vectors pointing outside W , then∫∫

∂W
F · dS =

∫∫∫
W

div(F) dV

• Corollary: If div(F) = 0, then F has zero flux through the boundary ∂W of any W
contained in the domain of F.
• The divergence div(F) is interpreted as “flux per unit volume,” which means that the flux
through a small closed surface containing a point P is approximately equal to div(F)(P )

times the enclosed volume.
• Basic operations on functions and vector fields:

f
∇−→ F

curl−→ G
div−→ g

function vector field vector field function

• The result of two consecutive operations is zero:

curl(∇(f )) = 0, div(curl(F)) = 0

• The inverse-square field F = er/r
2, defined for r �= 0, satisfies div(F) = 0. The flux of

F through a closed surface S is 4π if S contains the origin and is zero otherwise.

17.3 EXERCISES

Preliminary Questions
1. What is the flux of F = 〈1, 0, 0〉 through a closed surface?

2. Justify the following statement: The flux of F = 〈
x3, y3, z3〉

through every closed surface is positive.

3. Which of the following expressions are meaningful (where F is a
vector field and f is a function)? Of those that are meaningful, which
are automatically zero?

(a) div(∇f ) (b) curl(∇f ) (c) ∇curl(f )

(d) div(curl(F)) (e) curl(div(F)) (f) ∇(div(F))

4. Which of the following statements is correct (where F is a contin-
uously differentiable vector field defined everywhere)?

(a) The flux of curl(F) through all surfaces is zero.

(b) If F = ∇ϕ, then the flux of F through all surfaces is zero.

(c) The flux of curl(F) through all closed surfaces is zero.

5. How does the Divergence Theorem imply that the flux of F =〈
x2, y − ez, y − 2zx

〉
through a closed surface is equal to the enclosed

volume?

Exercises
In Exercises 1–4, compute the divergence of the vector field.

1. F = 〈
xy, yz, y2 − x3〉

2. xi + yj + zk

3. F = 〈
x − 2zx2, z − xy, z2x2〉

4. sin(x + z)i − yexzk

5. Find a constant c for which the velocity field

v = (cx − y)i + (y − z)j + (3x + 4cz)k

of a fluid is incompressible [meaning that div(v) = 0].

6. Verify that for any vector field F = 〈F1, F2, F3〉,
div(curl(F)) = 0

In Exercises 7–10, verify the Divergence Theorem for the vector field
and region.

7. F = 〈z, x, y〉, the box [0, 4] × [0, 2] × [0, 3]
8. F = 〈y, x, z〉, the region x2 + y2 + z2 ≤ 4



S E C T I O N 17.3 Divergence Theorem 1039

9. F = 〈2x, 3z, 3y〉, the region x2 + y2 ≤ 1, 0 ≤ z ≤ 2

10. F = 〈x, 0, 0〉, the region x2 + y2 ≤ z ≤ 4

In Exercises 11–18, use the Divergence Theorem to evaluate the flux∫∫
S

F · dS.

11. F =
〈
0, 0, z3/3

〉
, S is the sphere x2 + y2 + z2 = 1.

12. F = 〈y, z, x〉, S is the sphere x2 + y2 + z2 = 1.

13. F = 〈
x3, 0, z3〉

, S is the octant of the sphere x2 + y2 + z2 = 4, in
the first octant x ≥ 0, y ≥ 0, z ≥ 0.

14. F = 〈
ex+y, ex+z, ex+y

〉
, S is the boundary of the unit cube

0 ≤ x ≤ 1, 0 ≤ y ≤ 1, 0 ≤ z ≤ 1.

15. F = 〈
x, y2, z + y

〉
, S is the boundary of the region contained in

the cylinder x2 + y2 = 4 between the planes z = x and z = 8.

16. F = 〈
x2 − z2, ez2 − cos x, y3〉

, S is the boundary of the region
bounded by x + 2y + 4z = 12 and the coordinate planes in the first
octant.

17. F = 〈x + y, z, z − x〉, S is the boundary of the region between the
paraboloid z = 9 − x2 − y2 and the xy-plane.

18. F = 〈
ez2

, 2y + sin(x2z), 4z +
√

x2 + 9y2
〉
, S is the region

x2 + y2 ≤ z ≤ 8 − x2 − y2.

19. Calculate the flux of the vector field F = 2xyi − y2j + k through
the surface S in Figure 18. Hint: Apply the Divergence Theorem to the
closed surface consisting of S and the unit disk.

20. Let S1 be the closed surface consisting of S in Figure 18 together
with the unit disk. Find the volume enclosed by S1, assuming that∫∫

S1

〈x, 2y, 3z〉 · dS = 72

S

y

x

z

1

Unit circle

FIGURE 18 Surface S whose boundary is the unit circle.

21. Let S be the half-cylinder x2 + y2 = 1, x ≥ 0, 0 ≤ z ≤ 1.Assume
that F is a horizontal vector field (the z-component is zero) such that
F(0, y, z) = zy2i. Let W be the solid region enclosed by S, and assume
that

∫∫∫
W

div(F) dV = 4

Find the flux of F through the curved side of S.

22. Volume as a Surface Integral Let F = 〈x, y, z〉. Prove that if

W is a region R3 with a smooth boundary S, then

Volume(W) = 1

3

∫∫
S

F · dS 10

23. Use Eq. (10) to calculate the volume of the unit ball as a surface
integral over the unit sphere.

24. Verify that Eq. (10) applied to the box [0, a] × [0, b] × [0, c] yields
the volume V = abc.

25. Let W be the region in Figure 19 bounded by the cylinder
x2 + y2 = 4, the plane z = x + 1, and the xy-plane. Use the Diver-

gence Theorem to compute the flux of F =
〈
z, x, y + z2

〉
through the

boundary of W .

FIGURE 19

26. Let I =
∫∫

S
F · dS, where

F =
〈

2yz

r2
, −xz

r2
, −xy

r2

〉
(r =

√
x2 + y2 + z2) and S is the boundary of a region W .

(a) Check that F is divergence-free.

(b) Show that I = 0 if S is a sphere centered at the origin. Ex-
plain, however, why the Divergence Theorem cannot be used to prove
this.

27. The velocity field of a fluid v (in meters per second) has divergence
div(v)(P ) = 3 at the point P = (2, 2, 2). Estimate the flow rate out of
the sphere of radius 0.5 centered at P .

28. A hose feeds into a small screen box of volume 10 cm3 that is
suspended in a swimming pool. Water flows across the surface of the
box at a rate of 12 cm3/s. Estimate div(v)(P ), where v is the velocity
field of the water in the pool and P is the center of the box. What are
the units of div(v)(P )?

29. The electric field due to a unit electric dipole oriented in the k-
direction is E = ∇(z/r3), where r = (x2 + y2 + z2)1/2 (Figure 20).
Let er = r−1 〈x, y, z〉.
(a) Show that E = r−3k − 3zr−4er .
(b) Calculate the flux of E through a sphere centered at the origin.
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(c) Calculate div(E).

(d) Can we use the Divergence Theorem to compute the flux
of E through a sphere centered at the origin?

x

z

FIGURE 20 The dipole vector field restricted to the xz-plane.

30. Let E be the electric field due to a long, uniformly charged rod of
radius R with charge density δ per unit length (Figure 21). By symme-
try, we may assume that E is everywhere perpendicular to the rod and
its magnitude E(d) depends only on the distance d to the rod (strictly
speaking, this would hold only if the rod were infinite, but it is nearly
true if the rod is long enough). Show that E(d) = δ/2πε0d for d > R.
Hint: Apply Gauss’s Law to a cylinder of radius R and of unit length
with its axis along the rod.

z

x
y

d

E

FIGURE 21

31. Let W be the region between the sphere of radius 4 and the cube of
side 1, both centered at the origin. What is the flux through the boundary
S = ∂W of a vector field F whose divergence has the constant value
div(F) = −4?

32. Let W be the region between the sphere of radius 3 and the sphere
of radius 2, both centered at the origin. Use the Divergence Theorem
to calculate the flux of F = xi through the boundary S = ∂W .

33. Find and prove a Product Rule expressing div(f F) in terms of
div(F) and ∇f .

34. Prove the identity

div(F × G) = curl(F) · G − F · curl(G)

Then prove that the cross product of two irrotational vector fields is
incompressible [F is called irrotational if curl(F) = 0 and incom-
pressible if div(F) = 0].

35. Prove that div(∇f × ∇g) = 0.

In Exercises 36–38, � denotes the Laplace operator defined by

�ϕ = ∂2ϕ

∂x2
+ ∂2ϕ

∂y2
+ ∂2ϕ

∂z2

36. Prove the identity

curl(curl(F)) = ∇(div(F)) − �F

where �F denotes 〈�F1, �F2, �F3〉.
37. A function ϕ satisfying �ϕ = 0 is called harmonic.

(a) Show that �ϕ = div(∇ϕ) for any function ϕ.

(b) Show that ϕ is harmonic if and only if div(∇ϕ) = 0.

(c) Show that if F is the gradient of a harmonic function, then
curl(F ) = 0 and div(F ) = 0.

(d) Show that F =
〈
xz, −yz, 1

2 (x2 − y2)
〉

is the gradient of a har-

monic function. What is the flux of F through a closed surface?

38. Let F = rner , where n is any number, r = (x2 + y2 + z2)1/2, and
er = r−1 〈x, y, z〉 is the unit radial vector.

(a) Calculate div(F).

(b) Calculate the flux of F through the surface of a sphere of radius R

centered at the origin. For which values of n is this flux independent
of R?

(c) Prove that ∇(rn) = n rn−1er .

(d) Use (c) to show that F is conservative for n �= −1. Then show that
F = r−1er is also conservative by computing the gradient of ln r .

(e) What is the value of
∫
C

F · ds, where C is a closed curve that does

not pass through the origin?

(f) Find the values of n for which the function ϕ = rn is harmonic.

Further Insights and Challenges
39. Let S be the boundary surface of a region W in R3 and let Denϕ

denote the directional derivative of ϕ, where en is the outward unit
normal vector. Let � be the Laplace operator defined earlier.

(a) Use the Divergence Theorem to prove that

∫∫
S

Denϕ dS =
∫∫∫

W
�ϕ dV

(b) Show that if ϕ is a harmonic function (defined in Exercise 37), then∫∫
S

Denϕ dS = 0

40. Assume that ϕ is harmonic. Show that div(ϕ∇ϕ) = ‖∇ϕ‖2 and
conclude that ∫∫

S
ϕDenϕ dS =

∫∫∫
W

‖∇ϕ‖2 dV
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41. Let F = 〈P, Q, R〉 be a vector field defined on R3 such that
div(F) = 0. Use the following steps to show that F has a vector po-
tential.

(a) Let A = 〈f, 0, g〉. Show that

curl(A) =
〈
∂g

∂y
,
∂f

∂z
− ∂g

∂x
, −∂f

∂y

〉
(b) Fix any value y0 and show that if we define

f (x, y, z) = −
∫ y

y0

R(x, t, z) dt + α(x, z)

g(x, y, z) =
∫ y

y0

P(x, t, z) dt + β(x, z)

where α and β are any functions of x and z, then ∂g/∂y = P and
−∂f/∂y = R.
(c) It remains for us to show that α and β can be chosen so Q =
∂f/∂z − ∂g/∂x. Verify that the following choice works (for any choice
of z0):

α(x, z) =
∫ z

z0

Q(x, y0, t) dt, β(x, z) = 0

Hint: You will need to use the relation div(F) = 0.

42. Show that

F = 〈
2y − 1, 3z2, 2xy

〉
has a vector potential and find one.

43. Show that

F = 〈
2yez − xy, y, yz − z

〉
has a vector potential and find one.

44. In the text, we observed that although the inverse-square radial

vector field F = er

r2
satisfies div(F) = 0, F cannot have a vector poten-

tial on its domain {(x, y, z) �= (0, 0, 0)} because the flux of F through
a sphere containing the origin is nonzero.

(a) Show that the method of Exercise 41 produces a vector potential
A such that F = curl(A) on the restricted domain D consisting of R3

with the y-axis removed.

(b) Show that F also has a vector potential on the domains obtained
by removing either the x-axis or the z-axis from R3.

(c) Does the existence of a vector potential on these restricted domains
contradict the fact that the flux of F through a sphere containing the
origin is nonzero?

CHAPTER REVIEW EXERCISES

1. Let F(x, y) = 〈
x + y2, x2 − y

〉
and let C be the unit circle, ori-

ented counterclockwise. Evaluate
∮
C

F · ds directly as a line integral

and using Green’s Theorem.

2. Let ∂R be the boundary of the rectangle in Figure 1 and let ∂R1
and ∂R2 be the boundaries of the two triangles, all oriented counter-
clockwise.

(a) Determine
∮
∂R1

F · ds if
∮
∂R

F · ds = 4 and
∮
∂R2

F · ds = −2.

(b) What is the value of
∮
∂R

F ds if ∂R is oriented clockwise?

x

Rectangle R
y

R1

R2

FIGURE 1

In Exercises 3–6, use Green’s Theorem to evaluate the line integral
around the given closed curve.

3.
∮
C

xy3 dx + x3y dy, where C is the rectangle −1 ≤ x ≤ 2, −2 ≤
y ≤ 3, oriented counterclockwise.

4.
∮
C
(3x + 5y − cos y) dx + x sin y dy, where C is any closed curve

enclosing a region with area 4, oriented counterclockwise.

5.
∮
C

y2 dx − x2 dy, where C consists of the arcs y = x2 and y =
√

x, 0 ≤ x ≤ 1, oriented clockwise.

6.
∮
C

yex dx + xey dy, where C is the triangle with vertices (−1, 0),

(0, 4), and (0, 1), oriented counterclockwise.

7. Let c(t) = (
t2(1 − t), t(t − 1)2)

.

(a) Plot the path c(t) for 0 ≤ t ≤ 1.

(b) Calculate the area A of the region enclosed by c(t) for 0 ≤ t ≤ 1

using the formula A = 1

2

∮
C
(x dy − y dx).

8. In (a)–(d), state whether the equation is an identity (valid for all F
or V ). If it is not, provide an example in which the equation does not
hold.

(a) curl(∇V ) = 0 (b) div(∇V ) = 0

(c) div(curl(F)) = 0 (d) ∇(div(F)) = 0

In Exercises 9–12, calculate the curl and divergence of the vector field.

9. F = yi − zk 10. F = 〈
ex+y, ey+z, xyz

〉
11. F = ∇(e−x2−y2−z2

)

12. er = r−1 〈x, y, z〉 (
r =

√
x2 + y2 + z2

)
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13. Recall that if F1, F2, and F3 are differentiable functions of one
variable, then

curl (〈F1(x), F2(y), F3(z)〉) = 0

Use this to calculate the curl of

F = 〈
x2 + y2, ln y + z2, z3 sin(z2)ez3 〉

14. Give an example of a nonzero vector field F such that curl(F) = 0
and div(F) = 0.

15. Verify the identities of Exercises 6 and 34 in Section 17.3 for the
vector fields F = 〈

xz, yex, yz
〉

and G = 〈
z2, xy3, x2y

〉
.

16. Suppose that S1 and S2 are surfaces with the same oriented bound-
ary curve C. Which of the following conditions guarantees that the flux
of F through S1 is equal to the flux of F through S2?

(i) F = ∇V for some function V

(ii) F = curl(G) for some vector field G

17. Prove that if F is a gradient vector field, then the flux of curl(F)

through a smooth surface S (whether closed or not) is equal to zero.

18. Verify Stokes’ Theorem for F = 〈y, z − x, 0〉 and the surface
z = 4 − x2 − y2, z ≥ 0, oriented by outward-pointing normals.

19. Let F = 〈
z2, x + z, y2〉

and let S be the upper half of the ellipsoid

x2

4
+ y2 + z2 = 1

oriented by outward-pointing normals. Use Stokes’ Theorem to com-

pute
∫∫

S
curl(F) · dS.

20. Use Stokes’ Theorem to evaluate
∮
C
〈
y, z, x

〉 · ds, where C is the

curve in Figure 2.

y

y2 + z2 = 1

S

(0, 0, 1)

(0, 1, 0)x

z

FIGURE 2

21. Let S be the side of the cylinder x2 + y2 = 4, 0 ≤ z ≤ 2 (not in-
cluding the top and bottom of the cylinder). Use Stokes’ Theorem to
compute the flux of F = 〈0, y, −z〉 through S (with outward pointing
normal) by finding a vector potential A such that curl(A) = F.

22. Verify the Divergence Theorem for F = 〈0, 0, z〉 and the region
x2 + y2 + z2 = 1.

In Exercises 23–26, use the Divergence Theorem to calculate∫∫
S

F · dS for the given vector field and surface.

23. F = 〈
xy, yz, x2z + z2〉

, S is the boundary of the box [0, 1] ×
[2, 4] × [1, 5].

24. F = 〈
xy, yz, x2z + z2〉

, S is the boundary of the unit sphere.

25. F = 〈
xyz + xy, 1

2y2(1 − z) + ex, ex2+y2 〉
, S is the boundary of

the solid bounded by the cylinder x2 + y2 = 16 and the planes z = 0
and z = y − 4.

26. F = 〈
sin(yz),

√
x2 + z4, x cos(x − y)

〉
, S is any smooth closed

surface that is the boundary of a region in R3.

27. Find the volume of a region W if∫∫
∂W

〈
x + xy + z, x + 3y − 1

2
y2, 4z

〉
· dS = 16

28. Show that the circulation of F = 〈
x2, y2, z(x2 + y2)

〉
around any

curve C on the surface of the cone z2 = x2 + y2 is equal to zero (Fig-
ure 3).

FIGURE 3

In Exercises 29–32, let F be a vector field whose curl and divergence
at the origin are

curl(F)(0, 0, 0) = 〈2, −1, 4〉 , div(F)(0, 0, 0) = −2

29. Estimate
∮
C

F · ds, where C is the circle of radius 0.03 in the xy-

plane centered at the origin.

30. Estimate
∮
C

F · ds, where C is the boundary of the square of side

0.03 in the yz-plane centered at the origin. Does the estimate depend
on how the square is oriented within the yz-plane? Might the actual
circulation depend on how it is oriented?

31. Suppose that v is the velocity field of a fluid and imagine placing
a small paddle wheel at the origin. Find the equation of the plane in
which the paddle wheel should be placed to make it rotate as quickly
as possible.

32. Estimate the flux of F through the box of side 0.5 in Figure 4. Does
the result depend on how the box is oriented relative to the coordinate
axes?
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FIGURE 4

33. The velocity vector field of a fluid (in meters per second) is

F = 〈
x2 + y2, 0, z2〉

Let W be the region between the hemisphere

S = {
(x, y, z) : x2 + y2 + z2 = 1, x, y, z ≥ 0

}
and the disk D = {

(x, y, 0) : x2 + y2 ≤ 1
}

in the xy-plane. Recall that
the flow rate of a fluid across a surface is equal to the flux of F through
the surface.

(a) Show that the flow rate across D is zero.
(b) Use the Divergence Theorem to show that the flow rate across S,

oriented with outward-pointing normal, is equal to
∫∫∫

W
div(F) dV .

Then compute this triple integral.

34. The velocity field of a fluid (in meters per second) is

F = (3y − 4)i + e−y(z+1)j + (x2 + y2)k

(a) Estimate the flow rate (in cubic meters per second) through a small
surface S around the origin if S encloses a region of volume 0.01 m3.
(b) Estimate the circulation of F about a circle in the xy-plane of ra-
dius r = 0.1 m centered at the origin (oriented counterclockwise when
viewed from above).
(c) Estimate the circulation of F about a circle in the yz-plane of ra-
dius r = 0.1 m centered at the origin (oriented counterclockwise when
viewed from the positive x-axis).

35. Let V (x, y) = x + x

x2 + y2
. The vector field F = ∇V (Figure 5)

provides a model in the plane of the velocity field of an incompress-
ible, irrotational fluid flowing past a cylindrical obstacle (in this case,
the obstacle is the unit circle x2 + y2 = 1).

(a) Verify that F is irrotational [by definition, F is irrotational if
curl(F) = 0].

x

y

1

3

2

1

−1−2−3
−1

−2

−3

32

FIGURE 5 The vector field ∇V for V (x, y) = x + x

x2 + y2
.

(b) Verify that F is tangent to the unit circle at each point along the
unit circle except (1, 0) and (−1, 0) (where F = 0).

(c) What is the circulation of F around the unit circle?

(d) Calculate the line integral of F along the upper and lower halves
of the unit circle separately.

36. Figure 6 shows the vector field F = ∇V , where

V (x, y) = ln
(
x2 + (y − 1)2) + ln

(
x2 + (y + 1)2)

which is the velocity field for the flow of a fluid with sources of equal
strength at (0, ±1) (note that V is undefined at these two points). Show
that F is both irrotational and incompressible—that is, curlz(F) = 0 and
div(F) = 0 [in computing div(F), treat F as a vector field in R3 with
a zero z-component]. Is it necessary to compute curlz(F) to conclude
that it is zero?

x

y

(0, 1)

(0, −1)

FIGURE 6 The vector field ∇V for
V (x, y) = ln(x2 + (y − 1)2) + ln(x2 + (y + 1)2).

37. In Section 17.1, we showed that if C is a simple closed curve,
oriented counterclockwise, then the line integral is

Area enclosed by C = 1

2

∮
C

x dy − y dx 1

Suppose that C is a path from P to Q that is not closed but has the prop-
erty that every line through the origin intersects C in at most one point,
as in Figure 7. Let R be the region enclosed by C and the two radial
segments joining P and Q to the origin. Show that the line integral in
Eq. (1) is equal to the area of R. Hint: Show that the line integral of
F = 〈−y, x〉 along the two radial segments is zero and apply Green’s
Theorem.

x

y

C

R
P

Q

FIGURE 7

38. Suppose that the curve C in Figure 7 has the polar equation
r = f (θ).

(a) Show that c(θ) = (f (θ) cos θ, f (θ) sin θ) is a counterclockwise
parametrization of C.
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(b) In Section 11.4, we showed that the area of the region R is given
by the formula

Area of R = 1

2

∫ β

α
f (θ)2 dθ

Use the result of Exercise 37 to give a new proof of this formula. Hint:
Evaluate the line integral in Eq. (1) using c(θ).

39. Prove the following generalization of Eq. (1). Let C be a simple
closed curve in the plane (Figure 8)

S : ax + by + cz + d = 0

Then the area of the region R enclosed by C is equal to

1

2‖n‖
∮
C
(bz − cy) dx + (cx − az) dy + (ay − bx) dz

where n = 〈a, b, c〉 is the normal to S , and C is oriented as the boundary
of R (relative to the normal vector n). Hint: Apply Stokes’ Theorem to
F = 〈bz − cy, cx − az, ay − bx〉.

y

C
R

n = 〈a, b, c〉

Plane S

z

x

FIGURE 8

40. Use the result of Exercise 39 to calculate the area of the triangle
with vertices (1, 0, 0), (0, 1, 0), and (0, 0, 1) as a line integral. Verify
your result using geometry.

41. Show that G(θ, φ) = (a cos θ sin φ, b sin θ sin φ, c cos φ) is a
parametrization of the ellipsoid(x

a

)2 +
(y

b

)2 +
( z

c

)2 = 1

Then calculate the volume of the ellipsoid as the surface integral of
F = 1

3 〈x, y, z〉 (this surface integral is equal to the volume by the Di-
vergence Theorem).



A THE LANGUAGE
OF MATHEMATICS

One of the challenges in learning calculus is growing accustomed to its precise language
and terminology, especially in the statements of theorems. In this section, we analyze a
few details of logic that are helpful, and indeed essential, in understanding and applying
theorems properly.

Many theorems in mathematics involve an implication. If A and B are statements,
then the implication A �⇒ B is the assertion that A implies B:

A �⇒ B : If A is true, then B is true.

Statement A is called the hypothesis (or premise) and statement B the conclusion of the
implication. Here is an example: If m and n are even integers, then m + n is an even
integer. This statement may be divided into a hypothesis and conclusion:

m and n are even integers︸ ︷︷ ︸
A

�⇒ m + n is an even integer︸ ︷︷ ︸
B

In everyday speech, implications are often used in a less precise way. An example is: If
you work hard, then you will succeed. Furthermore, some statements that do not initially
have the form A �⇒ B may be restated as implications. For example, the statement “Cats
are mammals” can be rephrased as follows:

Let X be an animal. X is a cat︸ ︷︷ ︸
A

�⇒ X is a mammal︸ ︷︷ ︸
B

When we say that an implication A �⇒ B is true, we do not claim that A or B is
necessarily true. Rather, we are making the conditional statement that if A happens to be
true, then B is also true. In the above, if X does not happen to be a cat, the implication
tells us nothing.

The negation of a statement A is the assertion that A is false and is denoted ¬A.

Statement A Negation ¬A

X lives in California. X does not live in California.

�ABC is a right triangle. �ABC is not a right triangle.

The negation of the negation is the original statement: ¬(¬A) = A. To say that X does
not not live in California is the same as saying that X lives in California.

EXAMPLE 1 State the negation of each statement.

(a) The door is open and the dog is barking.
(b) The door is open or the dog is barking (or both).

Solution

(a) The first statement is true if two conditions are satisfied (door open and dog barking),
and it is false if at least one of these conditions is not satisfied. So the negation is

Either the door is not open OR the dog is not barking (or both).

A1
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(b) The second statement is true if at least one of the conditions (door open or dog barking)
is satisfied, and it is false if neither condition is satisfied. So the negation is

The door is not open AND the dog is not barking.

Contrapositive and Converse
Two important operations are the formation of the contrapositive and the formation of the
converse of a statement. The contrapositive of A �⇒ B is the statement “If B is false,
then A is false”:Keep in mind that when we form the

contrapositive, we reverse the order of A

and B. The contrapositive of A �⇒ B is
NOT ¬A �⇒ ¬B.

The contrapositive of A �⇒ B is ¬B �⇒ ¬A.

Here are some examples:

Statement Contrapositive

If X is a cat,
then X is a mammal.

If X is not a mammal,
then X is not a cat.

If you work hard,
then you will succeed.

If you did not succeed,
then you did not work hard.

If m and n are both even,
then m + n is even.

If m + n is not even, then
m and n are not both even.

A key observation is this:

The contrapositive and the original implication are equivalent.

In other words, if an implication is true, then its contrapositive is automatically true, andThe fact that A �⇒ B is equivalent to its
contrapositive ¬B �⇒ ¬A is a general
rule of logic that does not depend on what
A and B happen to mean. This rule
belongs to the subject of “formal logic,”
which deals with logical relations between
statements without concern for the actual
content of these statements.

vice versa. In essence, an implication and its contrapositive are two ways of saying the
same thing. For example, the contrapositive “If X is not a mammal, then X is not a cat”
is a roundabout way of saying that cats are mammals.

The converse of A �⇒ B is the reverse implication B �⇒ A:

Implication: A �⇒ B Converse B �⇒ A

If A is true, then B is true. If B is true, then A is true.

The converse plays a very different role than the contrapositive because the converse is
NOT equivalent to the original implication. The converse may be true or false, even if the
original implication is true. Here are some examples:

True Statement Converse Converse True or False?

If X is a cat,
then X is a mammal.

If X is a mammal,
then X is a cat.

False

If m is even,
then m2 is even.

If m2 is even,
then m is even.

True
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EXAMPLE 2 An Example Where the Converse Is False Show that the converse of “If
m and n are even, then m + n is even” is false.

Solution The converse is “If m + n is even, then m and n are even.” To show that theA counterexample is an example that
satisfies the hypothesis but not the
conclusion of a statement. If a single
counterexample exists, then the statement
is false. However, we cannot prove that a
statement is true merely by giving an
example.

converse is false, we display a counterexample. Take m = 1 and n = 3 (or any other pair
of odd numbers). The sum is even (since 1 + 3 = 4) but neither 1 nor 3 is even. Therefore,
the converse is false.

EXAMPLE 3 An Example Where the Converse Is True State the contrapositive and
converse of the Pythagorean Theorem. Are either or both of these true?

Solution Consider a triangle with sides a, b, and c, and let θ be the angle opposite the
side of length c as in Figure 1. The Pythagorean Theorem states that if θ = 90◦, then

a

b
c

A

CB
θ

FIGURE 1

a2 + b2 = c2. Here are the contrapositive and converse:

Pythagorean Theorem θ = 90◦ �⇒ a2 + b2 = c2 True

Contrapositive a2 + b2 �= c2 �⇒ θ �= 90◦ Automatically
true

Converse a2 + b2 = c2 �⇒ θ = 90◦ True (but not
automatic)

The contrapositive is automatically true because it is just another way of stating the original
theorem. The converse is not automatically true since there could conceivably exist a
nonright triangle that satisfies a2 + b2 = c2. However, the converse of the Pythagorean
Theorem is, in fact, true. This follows from the Law of Cosines (see Exercise 38).

When both a statement A �⇒ B and its converse B �⇒ A are true, we write A ⇐⇒
B. In this case, A and B are equivalent. We often express this with the phrase

A ⇐⇒ B A is true if and only if B is true.

For example,

a2 + b2 = c2 if and only if θ = 90◦

It is morning if and only if the sun is rising.

We mention the following variations of terminology involving implications that you may
come across:

Statement Is Another Way of Saying

A is true if B is true. B �⇒ A

A is true only if B is true. A �⇒ B (A cannot be true
unless B is also true.)

For A to be true, it is necessary that B be true. A �⇒ B (A cannot be true
unless B is also true.)

For A to be true, it is sufficient that B be true. B �⇒ A

For A to be true, it is necessary and sufficient
that B be true.

B ⇐⇒ A
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Analyzing a Theorem
To see how these rules of logic arise in calculus, consider the following result fromy

Maximum value

ba
x

FIGURE 2 A continuous function on a closed
interval I = [a, b] has a maximum value.

Section 4.2:

THEOREM 1 Existence of a Maximum on a Closed Interval If f (x) is a continuous
function on a closed (bounded) interval I = [a, b], then f (x) takes on a maximum
value on I (Figure 2).

To analyze this theorem, let’s write out the hypotheses and conclusion separately:

Hypotheses A: f (x) is continuous and I is closed.

Conclusion B: f (x) takes on a maximum value on I .

A first question to ask is: “Are the hypotheses necessary?” Is the conclusion still true if we
drop one or both assumptions? To show that both hypotheses are necessary, we provide
counterexamples:

• The continuity of f (x) is a necessary hypothesis. Figure 3(A) shows the graph
of a function on a closed interval [a, b] that is not continuous. This function has no
maximum value on [a, b], which shows that the conclusion may fail if the continuity
hypothesis is not satisfied.

• The hypothesis that I is closed is necessary. Figure 3(B) shows the graph of a
continuous function on an open interval (a, b). This function has no maximum
value, which shows that the conclusion may fail if the interval is not closed.

We see that both hypotheses in Theorem 1 are necessary. In stating this, we do not claim
that the conclusion always fails when one or both of the hypotheses are not satisfied. We
claim only that the conclusion may fail when the hypotheses are not satisfied. Next, let’s
analyze the contrapositive and converse:

• Contrapositive ¬B �⇒ ¬A (automatically true): If f (x) does not have a max-
imum value on I , then either f (x) is not continuous or I is not closed (or both).

• Converse B �⇒ A (in this case, false): If f (x) has a maximum value on I ,
then f (x) is continuous and I is closed. We prove this statement false with a
counterexample [Figure 3(C)].

The function is continuous
but the interval is open. The
function has no maximum value.

(B) This function is not continuous
and the interval is not closed,
but the function does have a
maximum value.

(C)The interval is closed
but the function is not
continuous. The function
has no maximum value.

(A)

y

a b
x

y

a b
x

y

a b
x

Maximum value

FIGURE 3
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As we know, the contrapositive is merely a way of restating the theorem, so it is automat-The technique of proof by contradiction is
also known by its Latin name reductio ad
absurdum or “reduction to the absurd.”
The ancient Greek mathematicians used
proof by contradiction as early as the fifth
century BC, and Euclid (325–265 BC)
employed it in his classic treatise on
geometry entitled The Elements. A famous
example is the proof that

√
2 is irrational in

Example 4. The philosopher Plato
(427–347 BC) wrote: “He is unworthy of
the name of man who is ignorant of the fact
that the diagonal of a square is
incommensurable with its side.”

ically true. The converse is not automatically true, and in fact, in this case it is false. The
function in Figure 3(C) provides a counterexample to the converse: f (x) has a maximum
value on I = (a, b), but f (x) is not continuous and I is not closed.

Mathematicians have devised various general strategies and methods for proving
theorems. The method of proof by induction is discussed inAppendix C.Another important
method is proof by contradiction, also called indirect proof. Suppose our goal is to prove
statement A. In a proof by contradiction, we start by assuming that A is false, and then show
that this leads to a contradiction. Therefore, A must be true (to avoid the contradiction).

EXAMPLE 4 Proof by Contradiction The number
√

2 is irrational (Figure 4).

1

1

2

FIGURE 4 The diagonal of the unit square
has length

√
2.

Solution Assume that the theorem is false, namely that
√

2 = p/q, where p and q are
whole numbers. We may assume that p/q is in lowest terms, and therefore, at most one
of p and q is even. Note that if the square m2 of a whole number is even, then m itself
must be even.

The relation
√

2 = p/q implies that 2 = p2/q2 or p2 = 2q2. This shows that p must
be even. But if p is even, then p = 2m for some whole number m, and p2 = 4m2. Because
p2 = 2q2, we obtain 4m2 = 2q2, or q2 = 2m2. This shows that q is also even. But we
chose p and q so that at most one of them is even. This contradiction shows that our
original assumption, that

√
2 = p/q, must be false. Therefore,

√
2 is irrational.

One of the most famous problems in
mathematics is known as “Fermat’s Last
Theorem.” It states that the equation

xn + yn = zn

has no solutions in positive integers if
n ≥ 3. In a marginal note written around
1630, Fermat claimed to have a proof, and
over the centuries, that assertion was
verified for many values of the exponent n.
However, only in 1994 did the British-
American mathematician Andrew Wiles,
working at Princeton University, find a
complete proof.

CONCEPTUAL INSIGHT The hallmark of mathematics is precision and rigor. A theorem
is established, not through observation or experimentation, but by a proof that consists
of a chain of reasoning with no gaps.

This approach to mathematics comes down to us from the ancient Greek mathe-
maticians, especially Euclid, and it remains the standard in contemporary research. In
recent decades, the computer has become a powerful tool for mathematical experimen-
tation and data analysis. Researchers may use experimental data to discover potential
new mathematical facts, but the title “theorem” is not bestowed until someone writes
down a proof.

This insistence on theorems and proofs distinguishes mathematics from the other
sciences. In the natural sciences, facts are established through experiment and are subject
to change or modification as more knowledge is acquired. In mathematics, theories are
also developed and expanded, but previous results are not invalidated. The Pythagorean
Theorem was discovered in antiquity and is a cornerstone of plane geometry. In the
nineteenth century, mathematicians began to study more general types of geometry (of
the type that eventually led to Einstein’s four-dimensional space-time geometry in the
Theory of Relativity). The Pythagorean Theorem does not hold in these more general
geometries, but its status in plane geometry is unchanged.

A. SUMMARY

• The implication A �⇒ B is the assertion “If A is true, then B is true.”
• The contrapositive of A �⇒ B is the implication ¬B �⇒ ¬A, which says “If B is
false, then A is false.” An implication and its contrapositive are equivalent (one is true if
and only if the other is true).
• The converse of A �⇒ B is B �⇒ A. An implication and its converse are not neces-
sarily equivalent. One may be true and the other false.
• A and B are equivalent if A �⇒ B and B �⇒ A are both true.
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• In a proof by contradiction (in which the goal is to prove statement A), we start by
assuming that A is false and show that this assumption leads to a contradiction.

A. EXERCISES

Preliminary Questions
1. Which is the contrapositive of A �⇒ B?

(a) B �⇒ A (b) ¬B �⇒ A

(c) ¬B �⇒ ¬A (d) ¬A �⇒ ¬B

2. Which of the choices in Question 1 is the converse of A �⇒ B?

3. Suppose that A �⇒ B is true. Which is then automatically true,
the converse or the contrapositive?

4. Restate as an implication: “A triangle is a polygon.”

Exercises
1. Which is the negation of the statement “The car and the shirt are

both blue”?

(a) Neither the car nor the shirt is blue.

(b) The car is not blue and/or the shirt is not blue.

2. Which is the contrapositive of the implication “If the car has gas,
then it will run”?

(a) If the car has no gas, then it will not run.

(b) If the car will not run, then it has no gas.

In Exercises 3–8, state the negation.

3. The time is 4 o’clock.

4. �ABC is an isosceles triangle.

5. m and n are odd integers.

6. Either m is odd or n is odd.

7. x is a real number and y is an integer.

8. f (x) is a linear function.

In Exercises 9–14, state the contrapositive and converse.

9. If m and n are odd integers, then mn is odd.

10. If today is Tuesday, then we are in Belgium.

11. If today is Tuesday, then we are not in Belgium.

12. If x > 4, then x2 > 16.

13. If m2 is divisible by 3, then m is divisible by 3.

14. If x2 = 2, then x is irrational.

In Exercise 15–18, give a counterexample to show that the converse of
the statement is false.

15. If m is odd, then 2m + 1 is also odd.

16. If �ABC is equilateral, then it is an isosceles triangle.

17. If m is divisible by 9 and 4, then m is divisible by 12.

18. If m is odd, then m3 − m is divisible by 3.

In Exercise 19–22, determine whether the converse of the statement is
false.

19. If x > 4 and y > 4, then x + y > 8.

20. If x > 4, then x2 > 16.

21. If |x| > 4, then x2 > 16.

22. If m and n are even, then mn is even.

In Exercises 23 and 24, state the contrapositive and converse (it is not
necessary to know what these statements mean).

23. If f (x) and g(x) are differentiable, then f (x)g(x) is differen-
tiable.

24. If the force field is radial and decreases as the inverse square of the
distance, then all closed orbits are ellipses.

In Exercises 25–28, the inverse of A �⇒ B is the implication ¬A �⇒
¬B.

25. Which of the following is the inverse of the implication “If she
jumped in the lake, then she got wet”?

(a) If she did not get wet, then she did not jump in the lake.

(b) If she did not jump in the lake, then she did not get wet.

Is the inverse true?

26. State the inverses of these implications:

(a) If X is a mouse, then X is a rodent.

(b) If you sleep late, you will miss class.

(c) If a star revolves around the sun, then it’s a planet.

27. Explain why the inverse is equivalent to the converse.

28. State the inverse of the Pythagorean Theorem. Is it true?

29. Theorem 1 in Section 2.4 states the following: “If f (x) and g(x) are
continuous functions, then f (x) + g(x) is continuous.” Does it follow
logically that if f (x) and g(x) are not continuous, then f (x) + g(x) is
not continuous?

30. Write out a proof by contradiction for this fact: There is no smallest
positive rational number. Base your proof on the fact that if r > 0, then
0 < r/2 < r .

31. Use proof by contradiction to prove that if x + y > 2, then x > 1
or y > 1 (or both).
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In Exercises 32–35, use proof by contradiction to show that the number
is irrational.

32.
√

1
2 33.

√
3 34. 3√2 35. 4√11

36. An isosceles triangle is a triangle with two equal sides. The fol-
lowing theorem holds: If � is a triangle with two equal angles, then �
is an isosceles triangle.
(a) What is the hypothesis?
(b) Show by providing a counterexample that the hypothesis is neces-
sary.

(c) What is the contrapositive?

(d) What is the converse? Is it true?

37. Consider the following theorem: Let f (x) be a quadratic polyno-
mial with a positive leading coefficient. Then f (x) has a minimum
value.

(a) What are the hypotheses?

(b) What is the contrapositive?

(c) What is the converse? Is it true?

Further Insights and Challenges
38. Let a, b, and c be the sides of a triangle and let θ be the angle op-
posite c. Use the Law of Cosines (Theorem 1 in Section 1.4) to prove
the converse of the Pythagorean Theorem.

39. Carry out the details of the following proof by contradiction that√
2 is irrational (This proof is due to R. Palais). If

√
2 is rational, then

n
√

2 is a whole number for some whole number n. Let n be the smallest
such whole number and let m = n

√
2 − n.

(a) Prove that m < n.
(b) Prove that m

√
2 is a whole number.

Explain why (a) and (b) imply that
√

2 is irrational.

40. Generalize the argument of Exercise 39 to prove that
√

A is irra-
tional if A is a whole number but not a perfect square. Hint: Choose n

as before and let m = n
√

A − n[√A], where [x] is the greatest integer
function.

41. Generalize further and show that for any whole number r , the rth
root r

√
A is irrational unless A is an rth power. Hint: Let x = r

√
A. Show

that if x is rational, then we may choose a smallest whole number n

such that nxj is a whole number for j = 1, . . . , r − 1. Then consider
m = nx − n[x] as before.

42. Given a finite list of prime numbers p1, . . . , pN , let
M = p1 · p2 · · · pN + 1. Show that M is not divisible by any of the
primes p1, . . . , pN . Use this and the fact that every number has a prime
factorization to prove that there exist infinitely many prime numbers.
This argument was advanced by Euclid in The Elements.



B PROPERTIES OF REAL
NUMBERS

In this appendix, we discuss the basic properties of real numbers. First, let us recall that a“The ingenious method of expressing every
possible number using a set of ten symbols
(each symbol having a place value and an
absolute value) emerged in India. The idea
seems so simple nowadays that its
significance and profound importance is no
longer appreciated. Its simplicity lies in the
way it facilitated calculation and placed
arithmetic foremost amongst useful
inventions. The importance of this
invention is more readily appreciated when
one considers that it was beyond the two
greatest men of Antiquity, Archimedes and
Apollonius.”

—Pierre-Simon Laplace,
one of the great French mathematicians

of the eighteenth century

real number is a number that may be represented by a finite or infinite decimal (also called
a decimal expansion). The set of all real numbers is denoted R and is often visualized as
the “number line” (Figure 1).

2 3−3 0 1−2 −1
R

FIGURE 1 The real number line.

Thus, a real number a is represented as

a = ±n.a1a2a3a4 . . . ,

where n is any whole number and each digit aj is a whole number between 0 and 9.
For example, 10π = 31.41592 . . . . Recall that a is rational if its expansion is finite or
repeating, and is irrational if its expansion is nonrepeating. Furthermore, the decimal
expansion is unique apart from the following exception: Every finite expansion is equal
to an expansion in which the digit 9 repeats. For example, 0.5 = 0.4999 · · · = 0.49̄.

We shall take for granted that the operations of addition and multiplication are defined
on R—that is, on the set of all decimals. Roughly speaking, addition and multiplication
of infinite decimals are defined in terms of finite decimals. For d ≥ 1, define the dth
truncation of a = n.a1a2a3a4 . . . to be the finite decimal a(d) = a.a1a2 . . . ad obtained
by truncating at the dth place. To form the sum a + b, assume that both a and b are
infinite (possibly ending with repeated nines). This eliminates any possible ambiguity in
the expansion. Then the nth digit of a + b is equal to the nth digit of a(d) + b(d) for
d sufficiently large (from a certain point onward, the nth digit of a(d) + b(d) no longer
changes, and this value is the nth digit of a + b). Multiplication is defined similarly.
Furthermore, the Commutative, Associative, and Distributive Laws hold (Table 1).

TABLE 1 Algebraic Laws

Commutative Laws: a + b = b + a, ab = ba

Associative Laws: (a + b) + c = a + (b + c), (ab)c = a(bc)

Distributive Law: a(b + c) = ab + ac

Every real number x has an additive inverse −x such that x + (−x) = 0, and every
nonzero real number x has a multiplicative inverse x−1 such that x(x−1) = 1. We do not
regard subtraction and division as separate algebraic operations because they are defined
in terms of inverses. By definition, the difference x − y is equal to x + (−y), and the
quotient x/y is equal to x(y−1) for y �= 0.

In addition to the algebraic operations, there is an order relation on R: For any two
real numbers a and b, precisely one of the following is true:

Either a = b, or a < b, or a > b

To distinguish between the conditions a ≤ b and a < b, we often refer to a < b as a strict
inequality. Similar conventions hold for > and ≥. The rules given in Table 2 allow us to
manipulate inequalities. The last order property says that an inequality reverses direction
when multiplied by a negative number c. For example,

−2 < 5 but (−3)(−2) > (−3)5

A8
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TABLE 2 Order Properties

If a < b and b < c, then a < c.
If a < b and c < d , then a + c < b + d.
If a < b and c > 0, then ac < bc.
If a < b and c < 0, then ac > bc.

The algebraic and order properties of real numbers are certainly familiar. We now
discuss the less familiar Least Upper Bound (LUB) Property of the real numbers. This
property is one way of expressing the so-called completeness of the real numbers. There
are other ways of formulating completeness (such as the so-called nested interval property
discussed in any book on analysis) that are equivalent to the LUB Property and serve the
same purpose. Completeness is used in calculus to construct rigorous proofs of basic
theorems about continuous functions, such as the Intermediate Value Theorem, (IVT)
or the existence of extreme values on a closed interval. The underlying idea is that the
real number line “has no holes.” We elaborate on this idea below. First, we introduce the
necessary definitions.

Suppose that S is a nonempty set of real numbers. A number M is called an upper
bound for S if

x ≤ M for all x ∈ S

If S has an upper bound, we say that S is bounded above. A least upper bound L is an
upper bound for S such that every other upper bound M satisfies M ≥ L. For example
(Figure 2),

2 3−3 0 1−2 −1
x

ML

FIGURE 2 M = 3 is an upper bound for the
set S = (−2, 1). The LUB is L = 1. • M = 3 is an upper bound for the open interval S = (−2, 1).

• L = 1 is the LUB for S = (−2, 1).

We now state the LUB Property of the real numbers.

THEOREM 1 Existence of a Least Upper Bound Let S be a nonempty set of real
numbers that is bounded above. Then S has an LUB.

In a similar fashion, we say that a number B is a lower bound for S if x ≥ B for all
x ∈ S. We say that S is bounded below if S has a lower bound. A greatest lower bound
(GLB) is a lower bound M such that every other lower bound B satisfies B ≤ M . The set
of real numbers also has the GLB Property: If S is a nonempty set of real numbers that
is bounded below, then S has a GLB. This may be deduced immediately from Theorem
1. For any nonempty set of real numbers S, let −S be the set of numbers of the form −x

for x ∈ S. Then −S has an upper bound if S has a lower bound. Consequently, −S has an
LUB L by Theorem 1, and −L is a GLB for S.

2 3−3 0 1−2 −1
x

2

FIGURE 3 The rational numbers have a
“hole” at the location

√
2.

CONCEPTUAL INSIGHT Theorem 1 may appear quite reasonable, but perhaps it is not
clear why it is useful. We suggested above that the LUB Property expresses the idea
that R is “complete” or “has no holes.” To illustrate this idea, let’s compare R to the
set of rational numbers, denoted Q. Intuitively, Q is not complete because the irrational
numbers are missing. For example, Q has a “hole” where the irrational number

√
2

should be located (Figure 3). This hole divides Q into two halves that are not connected
to each other (the half to the left and the half to the right of

√
2). Furthermore, the half

on the left is bounded above but no rational number is an LUB, and the half on the right
is bounded below but no rational number is a GLB. The LUB and GLB are both equal
to the irrational number

√
2, which exists in only R but not Q. So unlike R, the rational

numbers Q do not have the LUB property.
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EXAMPLE 1 Show that 2 has a square root by applying the LUB Property to the set

S = {x : x2 < 2}
Solution First, we note that S is bounded with the upper bound M = 2. Indeed, if x > 2,
then x satisfies x2 > 4, and hence x does not belong to S. By the LUB Property, S has
a least upper bound. Call it L. We claim that L = √

2, or, equivalently, that L2 = 2. We
prove this by showing that L2 ≥ 2 and L2 ≤ 2.

If L2 < 2, let b = L + h, where h > 0. Then

b2 = L2 + 2Lh + h2 = L2 + h(2L + h) 1

We can make the quantity h(2L + h) as small as desired by choosing h > 0 small enough.
In particular, we may choose a positive h so that h(2L + h) < 2 − L2. For this choice,
b2 < L2 + (2 − L2) = 2 by Eq. (1). Therefore, b ∈ S. But b > L since h > 0, and thus
L is not an upper bound for S, in contradiction to our hypothesis on L. We conclude that
L2 ≥ 2.

If L2 > 2, let b = L − h, where h > 0. Then

b2 = L2 − 2Lh + h2 = L2 − h(2L − h)

Now choose h positive but small enough so that 0 < h(2L − h) < L2 − 2. Then b2 >

L2 − (L2 − 2) = 2. But b < L, so b is a smaller lower bound for S. Indeed, if x ≥ b, then
x2 ≥ b2 > 2, and x does not belong to S. This contradicts our hypothesis that L is the
LUB. We conclude that L2 ≤ 2, and since we have already shown that L2 ≥ 2, we have
L2 = 2 as claimed.

We now prove three important theorems, the third of which is used in the proof of the
LUB Property below.

THEOREM 2 Bolzano–Weierstrass Theorem Let S be a bounded, infinite set of real
numbers. Then there exists a sequence of distinct elements {an} in S such that the limit
L = lim

n→∞ an exists.

Proof For simplicity of notation, we assume that S is contained in the unit interval [0, 1]
(a similar proof works in general). If k1, k2, . . . , kn is a sequence of n digits (that is, each
kj is a whole number and 0 ≤ kj ≤ 9), let

S(k1, k2, . . . , kn)

be the set of x ∈ S whose decimal expansion begins 0.k1k2 . . . kn. The set S is the union of
the subsets S(0), S(1), . . . , S(9), and since S is infinite, at least one of these subsets must
be infinite. Therefore, we may choose k1 so that S(k1) is infinite. In a similar fashion, at
least one of the set S(k1, 0), S(k2, 1), . . . , S(k1, 9) must be infinite, so we may choose k2
so that S(k1, k2) is infinite. Continuing in this way, we obtain an infinite sequence {kn}
such that S(k1, k2, . . . , kn) is infinite for all n. We may choose a sequence of elements
an ∈ S(k1, k2, . . . , kn) with the property that an differs from a1, . . . , an−1 for all n. Let L

be the infinite decimal 0.k1k2k3 . . . . Then lim
n→∞ an = L since |L − an| < 10−n for all n.

We use the Bolzano–Weierstrass Theorem to prove two important results about se-
quences {an}. Recall that an upper bound for {an} is a number M such that aj ≤ M for
all j . If an upper bound exists, {an} is said to be bounded from above. Lower bounds
are defined similarly and {an} is said to be bounded from below if a lower bound exists.
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A sequence is bounded if it is bounded from above and below. A subsequence of {an} is
a sequence of elements an1 , an2 , an3 , . . . , where n1 < n2 < n3 < · · · .

Now consider a bounded sequence {an}. If infinitely many of the an are distinct, the
Bolzano–Weierstrass Theorem implies that there exists a subsequence {an1 , an2 , . . . } such
that lim

n→∞ ank
exists. Otherwise, infinitely many of the an must coincide, and these terms

form a convergent subsequence. This proves the next result.

Section 10.1 THEOREM 3 Every bounded sequence has a convergent subsequence.

THEOREM 4 Bounded Monotonic Sequences Converge

• If {an} is increasing and an ≤ M for all n, then {an} converges and lim
n→∞ an ≤ M .

• If {an} is decreasing and an ≥ M for all n, then {an} converges and lim
n→∞ an ≥ M .

Proof Suppose that {an} is increasing and bounded above by M . Then {an} is automati-
cally bounded below by m = a1 since a1 ≤ a2 ≤ a3 · · · . Hence, {an} is bounded, and by
Theorem 3, we may choose a convergent subsequence an1 , an2 , . . . . Let

L = lim
k→∞ ank

Observe that an ≤ L for all n. For if not, then an > L for some n and then ank
≥ an > L

for all k such that nk ≥ n. But this contradicts that ank
→ L. Now, by definition, for any

ε > 0, there exists Nε > 0 such that

|ank
− L| < ε if nk > Nε

Choose m such that nm > Nε . If n ≥ nm, then anm ≤ an ≤ L, and therefore,

|an − L| ≤ |anm − L| < ε for all n ≥ nm

This proves that lim
n→∞ an = L as desired. It remains to prove that L ≤ M . If L > M , let

ε = (L − M)/2 and choose N so that

|an − L| < ε if k > N

Then an > L − ε = M + ε. This contradicts our assumption that M is an upper bound
for {an}. Therefore, L ≤ M as claimed.

Proof of Theorem 1 We now use Theorem 4 to prove the LUB Property (Theorem 1).
As above, if x is a real number, let x(d) be the truncation of x of length d. For example,

If x = 1.41569, then x(3) = 1.415

We say that x is a decimal of length d if x = x(d). Any two distinct decimals of length d

differ by at least 10−d . It follows that for any two real numbers A < B, there are at most
finitely many decimals of length d between A and B.

Now let S be a nonempty set of real numbers with an upper bound M . We shall prove
that S has an LUB. Let S(d) be the set of truncations of length d:

S(d) = {x(d) : x ∈ S}
We claim that S(d) has a maximum element. To verify this, choose any a ∈ S. If x ∈ S

and x(d) > a(d), then

a(d) ≤ x(d) ≤ M
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Thus, by the remark of the previous paragraph, there are at most finitely many values of
x(d) in S(d) larger than a(d). The largest of these is the maximum element in S(d).

For d = 1, 2, . . . , choose an element xd such that xd(d) is the maximum element in
S(d). By construction, {xd(d)} is an increasing sequence (since the largest dth truncation
cannot get smaller as d increases). Furthermore, xd(d) ≤ M for all d. We now apply
Theorem 4 to conclude that {xd(d)} converges to a limit L. We claim that L is the LUB of
S. Observe first that L is an upper bound for S. Indeed, if x ∈ S, then x(d) ≤ L for all d

and thus x ≤ L. To show that L is the LUB, suppose that M is an upper bound such that
M < L. Then xd ≤ M for all d and hence xd(d) ≤ M for all d. But then

L = lim
d→∞ xd(d) ≤ M

This is a contradiction since M < L. Therefore, L is the LUB of S.

As mentioned above, the LUB Property is used in calculus to establish certain basic
theorems about continuous functions. As an example, we prove the IVT. Another example
is the theorem on the existence of extrema on a closed interval (see Appendix D).

THEOREM 5 Intermediate Value Theorem If f (x) is continuous on a closed interval
[a, b] and f (a) �= f (b), then for every value M between f (a) and f (b), there exists
at least one value c ∈ (a, b) such that f (c) = M .

Proof Assume first that M = 0. Replacing f (x) by −f (x) if necessary, we may assume
that f (a) < 0 and f (b) > 0. Now let

S = {x ∈ [a, b] : f (x) < 0}
Then a ∈ S since f (a) < 0 and thus S is nonempty. Clearly, b is an upper bound for S.
Therefore, by the LUB Property, S has an LUB L. We claim that f (L) = 0. If not, set
r = f (L). Assume first that r > 0.

Since f (x) is continuous, there exists a number δ > 0 such that

|f (x) − f (L)| = |f (x) − r| <
1

2
r if |x − L| < δ

Equivalently,

1

2
r < f (x) <

3

2
r if |x − L| < δ

The number 1
2 r is positive, so we conclude that

f (x) > 0 if L − δ < x < L + δ

By definition of L, f (x) ≥ 0 for all x ∈ [a, b] such that x > L, and thus f (x) ≥ 0 for all
x ∈ [a, b] such that x > L − δ. Thus, L − δ is an upper bound for S. This is a contradiction
since L is the LUB of S, and it follows that r = f (L) cannot satisfy r > 0. Similarly, r

cannot satisfy r < 0. We conclude that f (L) = 0 as claimed.
Now, if M is nonzero, let g(x) = f (x) − M . Then 0 lies between g(a) and g(b),

and by what we have proved, there exists c ∈ (a, b) such that g(c) = 0. But then f (c) =
g(c) + M = M , as desired.



C INDUCTION AND THE
BINOMIAL THEOREM

The Principle of Induction is a method of proof that is widely used to prove that a given
statement P(n) is valid for all natural numbers n = 1, 2, 3, . . . . Here are two statements
of this kind:

• P(n): The sum of the first n odd numbers is equal to n2.

• P(n):
d

dx
xn = nxn−1.

The first statement claims that for all natural numbers n,

1 + 3 + · · · + (2n − 1)︸ ︷︷ ︸
Sum of first n odd numbers

= n2 1

We can check directly that P(n) is true for the first few values of n:

P(1) is the equality: 1 = 12 (true)

P(2) is the equality: 1 + 3 = 22 (true)

P(3) is the equality: 1 + 3 + 5 = 32 (true)

The Principle of Induction may be used to establish P(n) for all n.

The Principle of Induction applies if P(n) is
an assertion defined for n ≥ n0, where n0 is
a fixed integer. Assume that

(i) Initial step: P(n0) is true.

(ii) Induction step: If P(n) is true for n = k,
then P(n) is also true for n = k + 1.

Then P(n) is true for all n ≥ n0.

THEOREM 1 Principle of Induction Let P(n) be an assertion that depends on a
natural number n. Assume that

(i) Initial step: P(1) is true.

(ii) Induction step: If P(n) is true for n = k, then P(n) is also true for n = k + 1.

Then P(n) is true for all natural numbers n = 1, 2, 3, . . . .

EXAMPLE 1 Prove that 1 + 3 + · · · + (2n − 1) = n2 for all natural numbers n.

Solution As above, we let P(n) denote the equality

P(n) : 1 + 3 + · · · + (2n − 1) = n2

Step 1. Initial step: Show that P(1) is true.
We checked this above. P(1) is the equality 1 = 12.

Step 2. Induction step: Show that if P(n) is true for n = k, then P(n) is also true for
n = k + 1.
Assume that P(k) is true. Then

1 + 3 + · · · + (2k − 1) = k2

Add 2k + 1 to both sides:[
1 + 3 + · · · + (2k − 1)

] + (2k + 1) = k2 + 2k + 1 = (k + 1)2

1 + 3 + · · · + (2k + 1) = (k + 1)2

A13
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This is precisely the statement P(k + 1). Thus, P(k + 1) is true whenever P(k) is true.
By the Principle of Induction, P(k) is true for all k.

The intuition behind the Principle of Induction is the following. If P(n) were not
true for all n, then there would exist a smallest natural number k such that P(k) is false.
Furthermore, k > 1 since P(1) is true. Thus P(k − 1) is true [otherwise, P(k) would not
be the smallest “counterexample”]. On the other hand, if P(k − 1) is true, then P(k) is
also true by the induction step. This is a contradiction. So P(k) must be true for all k.

EXAMPLE 2 Use Induction and the Product Rule to prove that for all whole num-
bers n,

d

dx
xn = nxn−1

Solution Let P(n) be the formula
d

dx
xn = nxn−1.

Step 1. Initial step: Show that P(1) is true.
We use the limit definition to verify P(1):

d

dx
x = lim

h→0

(x + h) − x

h
= lim

h→0

h

h
= lim

h→0
1 = 1

Step 2. Induction step: Show that if P(n) is true for n = k, then P(n) is also true for
n = k + 1.

To carry out the induction step, assume that
d

dx
xk = kxk−1, where k ≥ 1. Then, by

the Product Rule,

d

dx
xk+1 = d

dx
(x · xk) = x

d

dx
xk + xk d

dx
x = x(kxk−1) + xk

= kxk + xk = (k + 1)xk

This shows that P(k + 1) is true.

By the Principle of Induction, P(n) is true for all n ≥ 1.

As another application of induction, we prove the Binomial Theorem, which describes
the expansion of the binomial (a + b)n. The first few expansions are familiar:

In Pascal’s Triangle, the nth row displays the
coefficients in the expansion of (a + b)n:

16
5
4
3
2
1
0

n

6 15 20 15 6 1
1 5 10 10 5 1

1 4 6 4 1
1 3 3 1

1 2 1
1 1

1

The triangle is constructed as follows: Each
entry is the sum of the two entries above it
in the previous line. For example, the entry
15 in line n = 6 is the sum 10 + 5 of the
entries above it in line n = 5. The recursion
relation guarantees that the entries in the
triangle are the binomial coefficients.

(a + b)1 = a + b

(a + b)2 = a2 + 2ab + b2

(a + b)3 = a3 + 3a2b + 3ab2 + b3

In general, we have an expansion

(a + b)n = an +
(

n

1

)
an−1b +

(
n

2

)
an−2b2 +

(
n

3

)
an−3b3

2

+ · · · +
(

n

n − 1

)
abn−1 + bn

where the coefficient of xn−kxk , denoted

(
n

k

)
, is called the binomial coefficient. Note

that the first term in Eq. (2) corresponds to k = 0 and the last term to k = n; thus,
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n

0

)
=

(
n

n

)
= 1. In summation notation,

(a + b)n =
n∑

k=0

(
n

k

)
akbn−k

Pascal’s Triangle (described in the marginal note on page A14) can be used to compute
binomial coefficients if n and k are not too large. The Binomial Theorem provides the
following general formula:

(
n

k

)
= n!

k! (n − k)! = n(n − 1)(n − 2) · · · (n − k + 1)

k(k − 1)(k − 2) · · · 2 · 1
3

Before proving this formula, we prove a recursion relation for binomial coefficients. Note,
however, that Eq. (3) is certainly correct for k = 0 and k = n (recall that by convention,
0! = 1): (

n

0

)
= n!

(n − 0)! 0! = n!
n! = 1,

(
n

n

)
= n!

(n − n)! n! = n!
n! = 1

THEOREM 2 Recursion Relation for Binomial Coefficients(
n

k

)
=

(
n − 1

k

)
+

(
n − 1

k − 1

)
for 1 ≤ k ≤ n − 1

Proof We write (a + b)n as (a + b)(a + b)n−1 and expand in terms of binomial coeffi-
cients:

(a + b)n = (a + b)(a + b)n−1

n∑
k=0

(
n

k

)
an−kbk = (a + b)

n−1∑
k=0

(
n − 1

k

)
an−1−kbk

= a

n−1∑
k=0

(
n − 1

k

)
an−1−kbk + b

n−1∑
k=0

(
n − 1

k

)
an−1−kbk

=
n−1∑
k=0

(
n − 1

k

)
an−kbk +

n−1∑
k=0

(
n − 1

k

)
an−(k+1)bk+1

Replacing k by k − 1 in the second sum, we obtain

n∑
k=0

(
n

k

)
an−kbk =

n−1∑
k=0

(
n − 1

k

)
an−kbk +

n∑
k=1

(
n − 1

k − 1

)
an−kbk

On the right-hand side, the first term in the first sum is an and the last term in the second
sum is bn. Thus, we have

n∑
k=0

(
n

k

)
an−kbk = an +

(
n−1∑
k=1

((
n − 1

k

)
+

(
n − 1

k − 1

))
an−kbk

)
+ bn

The recursion relation follows because the coefficients of an−kbk on the two sides of the
equation must be equal.
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We now use induction to prove Eq. (3). Let P(n) be the claim(
n

k

)
= n!

k! (n − k)! for 0 ≤ k ≤ n

We have

(
1

0

)
=

(
1

1

)
= 1 since (a + b)1 = a + b, so P(1) is true. Furthermore,(

n

n

)
=

(
n

0

)
= 1 as observed above, since an and bn have coefficient 1 in the ex-

pansion of (a + b)n. For the inductive step, assume that P(n) is true. By the recursion
relation, for 1 ≤ k ≤ n, we have(

n + 1

k

)
=

(
n

k

)
+

(
n

k − 1

)
= n!

k! (n − k)! + n!
(k − 1)! (n − k + 1)!

= n!
(

n + 1 − k

k! (n + 1 − k)! + k

k! (n + 1 − k)!
)

= n!
(

n + 1

k! (n + 1 − k)!
)

= (n + 1)!
k! (n + 1 − k)!

Thus, P(n + 1) is also true and the Binomial Theorem follows by induction.

EXAMPLE 3 Use the Binomial Theorem to expand (x + y)5 and (x + 2)3.

Solution The fifth row in Pascal’s Triangle yields

(x + y)5 = x5 + 5x4y + 10x3y2 + 10x2y3 + 5xy4 + y5

The third row in Pascal’s Triangle yields

(x + 2)3 = x3 + 3x2(2) + 3x(2)2 + 23 = x3 + 6x2 + 12x + 8

C. EXERCISES

In Exercises 1–4, use the Principle of Induction to prove the formula
for all natural numbers n.

1. 1 + 2 + 3 + · · · + n = n(n + 1)

2

2. 13 + 23 + 33 + · · · + n3 = n2(n + 1)2

4

3.
1

1 · 2
+ 1

2 · 3
+ · · · + 1

n(n + 1)
= n

n + 1

4. 1 + x + x2 + · · · + xn = 1 − xn+1

1 − x
for any x �= 1

5. Let P(n) be the statement 2n > n.

(a) Show that P(1) is true.

(b) Observe that if 2n > n, then 2n + 2n > 2n. Use this to show that
if P(n) is true for n = k, then P(n) is true for n = k + 1. Conclude
that P(n) is true for all n.

6. Use induction to prove that n! > 2n for n ≥ 4.

Let {Fn} be the Fibonacci sequence, defined by the recursion formula

Fn = Fn−1 + Fn−2, F1 = F2 = 1

The first few terms are 1, 1, 2, 3, 5, 8, 13, . . . . In Exercises 7–10, use
induction to prove the identity.

7. F1 + F2 + · · · + Fn = Fn+2 − 1

8. F 2
1 + F 2

2 + · · · + F 2
n = Fn+1Fn

9. Fn = Rn+ − Rn−√
5

, where R± = 1 ± √
5

2

10. Fn+1Fn−1 = F 2
n + (−1)n. Hint: For the induction step, show that

Fn+2Fn = Fn+1Fn + F 2
n

F 2
n+1 = Fn+1Fn + Fn+1Fn−1

11. Use induction to prove that f (n) = 8n − 1 is divisible by 7 for all
natural numbers n. Hint: For the induction step, show that

8k+1 − 1 = 7 · 8k + (8k − 1)

12. Use induction to prove that n3 − n is divisible by 3 for all natural
numbers n.
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13. Use induction to prove that 52n − 4n is divisible by 7 for all natural
numbers n.

14. Use Pascal’s Triangle to write out the expansions of (a + b)6 and
(a − b)4.

15. Expand (x + x−1)4.

16. What is the coefficient of x9 in (x3 + x)5?

17. Let S(n) =
n∑

k=0

(
n

k

)
.

(a) Use Pascal’s Triangle to compute S(n) for n = 1, 2, 3, 4.

(b) Prove that S(n) = 2n for all n ≥ 1. Hint: Expand (a + b)n and
evaluate at a = b = 1.

18. Let T (n) =
n∑

k=0

(−1)k
(

n

k

)
.

(a) Use Pascal’s Triangle to compute T (n) for n = 1, 2, 3, 4.

(b) Prove that T (n) = 0 for all n ≥ 1. Hint: Expand (a + b)n and
evaluate at a = 1, b = −1.



D ADDITIONAL PROOFS

In this appendix, we provide proofs of several theorems that were stated or used in the
text.

Section 2.3 THEOREM 1 Basic Limit Laws Assume that lim
x→c

f (x) and lim
x→c

g(x) exist. Then:

(i) lim
x→c

(
f (x) + g(x)

) = lim
x→c

f (x) + lim
x→c

g(x)

(ii) For any number k, lim
x→c

kf (x) = k lim
x→c

f (x)

(iii) lim
x→c

f (x)g(x) =
(

lim
x→c

f (x)
) (

lim
x→c

g(x)
)

(iv) If lim
x→c

g(x) �= 0, then

lim
x→c

f (x)

g(x)
=

lim
x→c

f (x)

lim
x→c

g(x)

Proof Let L = lim
x→c

f (x) and M = lim
x→c

g(x). The Sum Law (i) was proved in Section 2.6.

Observe that (ii) is a special case of (iii), where g(x) = k is a constant function. Thus, it
will suffice to prove the Product Law (iii). We write

f (x)g(x) − LM = f (x)(g(x) − M) + M(f (x) − L)

and apply the Triangle Inequality to obtain

|f (x)g(x) − LM| ≤ |f (x)(g(x) − M)| + |M(f (x) − L)| 1

By the limit definition, we may choose δ > 0 so that

|f (x) − L| < 1 if 0 < |x − c| < δ

If follows that |f (x)| < |L| + 1 for 0 < |x − c| < δ. Now choose any number ε > 0.
Applying the limit definition again, we see that by choosing a smaller δ if necessary, we
may also ensure that if 0 < |x − c| < δ, then

|f (x) − L| ≤ ε

2(|M| + 1)
and |g(x) − M| ≤ ε

2(|L| + 1)

Using Eq. (1), we see that if 0 < |x − c| < δ, then

|f (x)g(x) − LM| ≤ |f (x)| |g(x) − M| + |M| |f (x) − L|
≤ (|L| + 1)

ε

2(|L| + 1)
+ |M| ε

2(|M| + 1)

≤ ε

2
+ ε

2
= ε

Since ε is arbitrary, this proves that lim
x→c

f (x)g(x) = LM . To prove the Quotient Law

(iv), it suffices to verify that if M �= 0, then

lim
x→c

1

g(x)
= 1

M
2

A18
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For if Eq. (2) holds, then we may apply the Product Law to f (x) and g(x)−1 to obtain the
Quotient Law:

lim
x→c

f (x)

g(x)
= lim

x→c
f (x)

1

g(x)
=

(
lim
x→c

f (x)
) (

lim
x→c

1

g(x)

)

= L

(
1

M

)
= L

M

We now verify Eq. (2). Since g(x) approaches M and M �= 0, we may choose δ > 0 so
that |g(x)| ≥ |M|/2 if 0 < |x − c| < δ. Now choose any number ε > 0. By choosing a
smaller δ if necessary, we may also ensure that

|M − g(x)| < ε|M|
( |M|

2

)
for 0 < |x − c| < δ

Then

∣∣∣∣ 1

g(x)
− 1

M

∣∣∣∣ =
∣∣∣∣M − g(x)

Mg(x)

∣∣∣∣ ≤
∣∣∣∣M − g(x)

M(M/2)

∣∣∣∣ ≤ ε|M|(|M|/2)

|M|(|M|/2)
= ε

Since ε is arbitrary, the limit in Eq. (2) is proved.

The following result was used in the text.

THEOREM 2 Limits Preserve Inequalities Let (a, b) be an open interval and let
c ∈ (a, b). Suppose that f (x) and g(x) are defined on (a, b), except possibly at c.
Assume that

f (x) ≤ g(x) for x ∈ (a, b), x �= c

and that the limits lim
x→c

f (x) and lim
x→c

g(x) exist. Then

lim
x→c

f (x) ≤ lim
x→c

g(x)

Proof Let L = lim
x→c

f (x) and M = lim
x→c

g(x). To show that L ≤ M , we use proof by

contradiction. If L > M , let ε = 1
2 (L − M). By the formal definition of limits, we may

choose δ > 0 so that the following two conditions are satisfied:

|M − g(x)| < ε if |x − c| < δ

|L − f (x)| < ε if |x − c| < δ

But then

f (x) > L − ε = M + ε > g(x)

This is a contradiction since f (x) ≤ g(x). We conclude that L ≤ M .
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THEOREM 3 Limit of a Composite Function Assume that the following limits exist:

L = lim
x→c

g(x) and M = lim
x→L

f (x)

Then lim
x→c

f (g(x)) = M .

Proof Let ε > 0 be given. By the limit definition, there exists δ1 > 0 such that

|f (x) − M| < ε if 0 < |x − L| < δ1 3

Similarly, there exists δ > 0 such that

|g(x) − L| < δ1 if 0 < |x − c| < δ 4

We replace x by g(x) in Eq. (3) and apply Eq. (4) to obtain

|f (g(x)) − M| < ε if 0 < |x − c| < δ

Since ε is arbitrary, this proves that lim
x→c

f (g(x)) = M .

THEOREM 4 Continuity of Composite Functions LetF(x) = f (g(x)) be a composite
function. If g is continuous at x = c and f is continuous at x = g(c), then F(x) is
continuous at x = c.

Proof By definition of continuity,

Section 2.4

lim
x→c

g(x) = g(c) and lim
x→g(c)

f (x) = f (g(c))

Therefore, we may apply Theorem 3 to obtain

lim
x→c

f (g(x)) = f (g(c))

This proves that f (g(x)) is continuous at x = c.

THEOREM 5 Squeeze Theorem Assume that for x �= c (in some open interval con-
taining c),

l(x) ≤ f (x) ≤ u(x) and lim
x→c

l(x) = lim
x→c

u(x) = L

Then lim
x→c

f (x) exists and

lim
x→c

f (x) = L

Proof Let ε > 0 be given. We may choose δ > 0 such that

Section 2.6

|l(x) − L| < ε and |u(x) − L| < ε if 0 < |x − c| < δ

In principle, a different δ may be required to obtain the two inequalities for l(x) and u(x),
but we may choose the smaller of the two deltas. Thus, if 0 < |x − c| < δ, we have

L − ε < l(x) < L + ε

and

L − ε < u(x) < L + ε
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Since f (x) lies between l(x) and u(x), it follows that

L − ε < l(x) ≤ f (x) ≤ u(x) < L + ε

and therefore |f (x) − L| < ε if 0 < |x − c| < δ. Since ε is arbitrary, this proves that
lim
x→c

f (x) = L as desired.

THEOREM 6 Derivative of the Inverse Assume that f (x) is differentiable and one-
to-one on an open interval (r, s) with inverse g(x). If b belongs to the domain of g(x)

and f ′(g(b)) �= 0, then g′(b) exists and

g′(b) = 1

f ′(g(b))

Proof The function f (x) is one-to-one and continuous (since it is differentiable). It fol-

Section 3.9

lows that f (x) is monotonic increasing or decreasing on (r, s). For if not, then f (x) would
have a local minimum or maximum at some point x = x0. But then f (x) would not be
one-to-one in a small interval around x0 by the IVT.

Suppose that f (x) is increasing (the decreasing case is similar). We shall prove that
g(x) is continuous at x = b. Let a = g(b), so that f (a) = b. Fix a small number ε > 0.
Since f (x) is an increasing function, it maps the open interval (a − ε, a + ε) to the open
interval (f (a − ε), f (a + ε)) containing f (a) = b. We may choose a number δ > 0 so
that (b − δ, b + δ) is contained in (f (a − ε), f (a + ε)). Then g(x) maps (b − δ, b + δ)

back into (a − ε, a + ε). It follows that

|g(y) − g(b)| < ε if 0 < |y − b| < δ

This proves that g is continuous at x = b.
To complete the proof, we must show that the following limit exists and is equal to

1/f ′(g(b)):

g′(a) = lim
y→b

g(y) − g(b)

y − b

By the inverse relationship, if y = f (x), then g(y) = x, and since g(y) is continuous, x

approaches a as y approaches b. Thus, since f (x) is differentiable and f ′(a) �= 0,

lim
y→b

g(y) − g(b)

y − b
= lim

x→a

x − a

f (x) − f (a)
= 1

f ′(a)
= 1

f ′(g(b))

THEOREM 7 Existence of Extrema on a Closed Interval If f (x) is a continuous
function on a closed (bounded) interval I = [a, b], then f (x) takes on a minimum and
a maximum value on I .

Proof We prove that f (x) takes on a maximum value in two steps (the case of a minimum
is similar).

Section 4.2

Step 1. Prove that f (x) is bounded from above.
We use proof by contradiction. If f (x) is not bounded from above, then there exist
points an ∈ [a, b] such that f (an) ≥ n for n = 1, 2, . . . . By Theorem 3 in Appen-
dix B, we may choose a subsequence of elements an1 , an2 , . . . that converges to a limit
in [a, b]—say, lim

k→∞ ank
= L. Since f (x) is continuous, there exists δ > 0 such that

|f (x) − f (L)| < 1 if x ∈ [a, b] and |x − L| < δ
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Therefore,

f (x) < f (L) + 1 if x ∈ [a, b] and x ∈ (L − δ, L + δ) 5

For k sufficiently large, ank
lies in (L − δ, L + δ) because lim

k→∞ ank
= L. By Eq. (5),

f (ank
) is bounded by f (L) + 1. However, f (ank

) = nk tends to infinity as k → ∞.
This is a contradiction. Hence, our assumption that f (x) is not bounded from above is
false.

Step 2. Prove that f (x) takes on a maximum value.
The range of f (x) on I = [a, b] is the set

S = {f (x) : x ∈ [a, b]}
By the previous step, S is bounded from above and therefore has a least upper bound
M by the LUB Property. Thus f (x) ≤ M for all x ∈ [a, b]. To complete the proof, we
show that f (c) = M for some c ∈ [a, b]. This will show that f (x) attains the maximum
value M on [a, b].

By definition, M − 1/n is not an upper bound for n ≥ 1, and therefore, we may
choose a point bn in [a, b] such that

M − 1

n
≤ f (bn) ≤ M

Again by Theorem 3 in Appendix B, there exists a subsequence of elements
{bn1 , bn2 , . . . } in {b1, b2, . . . } that converges to a limit—say,

lim
k→∞ bnk

= c

Let ε > 0. Since f (x) is continuous, we may choose k so large that the following two
conditions are satisfied: |f (c) − f (bnk

)| < ε/2 and nk > 2/ε. Then

|f (c) − M| ≤ |f (c) − f (bnk
)| + |f (bnk

) − M| ≤ ε

2
+ 1

nk

≤ ε

2
+ ε

2
= ε

Thus, |f (c) − M| is smaller than ε for all positive numbers ε. But this is not possible
unless |f (c) − M| = 0. Thus f (c) = M as desired.

THEOREM 8 Continuous Functions Are Integrable If f (x) is continuous on [a, b],
then f (x) is integrable over [a, b].

Proof We shall make the simplifying assumption that f (x) is differentiable and that

Section 5.2

its derivative f ′(x) is bounded. In other words, we assume that |f ′(x)| ≤ K for some
constant K . This assumption is used to show that f (x) cannot vary too much in a small
interval. More precisely, let us prove that if [a0, b0] is any closed interval contained in
[a, b] and if m and M are the minimum and maximum values of f (x) on [a0, b0], then

|M − m| ≤ K|b0 − a0| 6

Figure 1 illustrates the idea behind this inequality. Suppose that f (x1) = m and f (x2) =
M − m

Slope f ´(c)

y

M

m

b0a0 x2x1 c
x

FIGURE 1 Since M − m = f ′(c)(x2 − x1),
we conclude that M − m ≤ K(b0 − a0).

M , where x1 and x2 lie in [a0, b0]. If x1 �= x2, then by the Mean Value Theorem (MVT),
there is a point c between x1 and x2 such that

M − m

x2 − x1
= f (x2) − f (x1)

x2 − x1
= f ′(c)
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Since x1, x2 lie in [a0, b0], we have |x2 − x1| ≤ |b0 − a0|, and thus,

|M − m| = |f ′(c)| |x2 − x1| ≤ K|b0 − a0|

This proves Eq. (6).
We divide the rest of the proof into two steps. Consider a partition P :

P : x0 = a < x1 < · · · < xN−1 < xN = b

Let mi be the minimum value of f (x) on [xi−1, xi] and Mi the maximum on [xi−1, xi].
We define the lower and upper Riemann sums

L(f, P ) =
N∑

i=1

mi�xi, U(f, P ) =
N∑

i=1

Mi�xi

These are the particular Riemann sums in which the intermediate point in [xi−1, xi] is the
point where f (x) takes on its minimum or maximum on [xi−1, xi]. Figure 2 illustrates
the case N = 4.

Upper
rectangle

Lower
rectangle

Maximum value
on the intervaly

x

FIGURE 2 Lower and upper rectangles for a
partition of length N = 4.

Step 1. Prove that the lower and upper sums approach a limit.
We observe that

L(f, P1) ≤ U(f, P2) for any two partitions P1 and P2 7

Indeed, if a subinterval I1 of P1 overlaps with a subinterval I2 of P2, then the minimum
of f on I1 is less than or equal to the maximum of f on I2 (Figure 3). In particular,

y

x

FIGURE 3 The lower rectangles always lie
below the upper rectangles, even when the
partitions are different.

the lower sums are bounded above by U(f, P ) for all partitions P . Let L be the least
upper bound of the lower sums. Then for all partitions P ,

L(f, P ) ≤ L ≤ U(f, P ) 8

According to Eq. (6), |Mi − mi | ≤ K�xi for all i. Since ‖P ‖ is the largest of the
widths �xi , we see that |Mi − mi | ≤ K‖P ‖ and

|U(f, P ) − L(f, P )| ≤
N∑

i=1

|Mi − mi | �xi

≤ K‖P ‖
N∑

i=1

�xi = K‖P ‖ |b − a| 9

Let c = K |b − a|. Using Eq. (8) and Eq. (9), we obtain

|L − U(f, P )| ≤ |U(f, P ) − L(f, P )| ≤ c‖P ‖

We conclude that lim||P ||→0
|L − U(f, P )| = 0. Similarly,

|L − L(f, P )| ≤ c‖P ‖

and

lim||P ||→0
|L − L(f, P )| = 0
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Thus, we have

lim||P ||→0
U(f, P ) = lim||P ||→0

L(f, P ) = L

Step 2. Prove that
∫ b

a
f (x) dx exists and has value L.

Recall that for any choice C of intermediate points ci ∈ [xi−1, xi], we define the Rie-
mann sum

R(f, P, C) =
N∑

i=1

f (ci)�xi

We have

L(f, P ) ≤ R(f, P, C) ≤ U(f, P )

Indeed, since ci ∈ [xi−1, xi], we have mi ≤ f (ci) ≤ Mi for all i and

N∑
i=1

mi �xi ≤
N∑

i=1

f (ci) �xi ≤
N∑

i=1

Mi �xi

It follows that

|L − R(f, P, C)| ≤ |U(f, P ) − L(f, P )| ≤ c‖P ‖
This shows that R(f, P, C) converges to L as ‖P ‖ → 0.

THEOREM 9 If f (x) is continuous and {an} is a sequence such that the limit
lim

n→∞ an = L exists, then

lim
n→∞ f (an) = f (L)

Proof Choose any ε > 0. Since f (x) is continuous, there exists δ > 0 such that

Section 10.1

|f (x) − f (L)| < ε if 0 < |x − L| < δ

Since lim
n→∞ an = L, there exists N > 0 such that |an − L| < δ for n > N . Thus,

|f (an) − f (L)| < ε for n > N

It follows that lim
n→∞ f (an) = f (L).

Section 14.3 THEOREM 10 Clairaut’s Theorem If fxy and fyx are both continuous functions on
a disk D, then fxy(a, b) = fyx(a, b) for all (a, b) ∈ D.

Proof We prove that both fxy(a, b) and fyx(a, b) are equal to the limit

L = lim
h→0

f (a + h, b + h) − f (a + h, b) − f (a, b + h) + f (a, b)

h2

Let F(x) = f (x, b + h) − f (x, b). The numerator in the limit is equal to

F(a + h) − F(a)
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and F ′(x) = fx(x, b + h) − fx(x, b). By the MVT, there exists a1 between a and a + h

such that

F(a + h) − F(a) = hF ′(a1) = h(fx(a1, b + h) − fx(a1, b))

By the MVT applied to fx , there exists b1 between b and b + h such that

fx(a1, b + h) − fx(a1, b) = hfxy(a1, b1)

Thus,

F(a + h) − F(a) = h2fxy(a1, b1)

and

L = lim
h→0

h2fxy(a1, b1)

h2
= lim

h→0
fxy(a1, b1) = fxy(a, b)

The last equality follows from the continuity of fxy since (a1, b1) approaches (a, b) as
h → 0. To prove that L = fyx(a, b), repeat the argument using the function F(y) =
f (a + h, y) − f (a, y), with the roles of x and y reversed.

THEOREM 11 Criterion for Differentiability If fx(x, y) and fy(x, y) exist and are
continuous on an open disk D, then f (x, y) is differentiable on D.

Proof Let (a, b) ∈ D and set

Section 14.4

L(x, y) = f (a, b) + fx(a, b)(x − a) + fy(a, b)(y − b)

It is convenient to switch to the variables h and k, where x = a + h and y = b + k. Set

�f = f (a + h, b + k) − f (a, b)

Then

L(x, y) = f (a, b) + fx(a, b)h + fy(a, b)k

and we may define the function

e(h, k) = f (x, y) − L(x, y) = �f − (fx(a, b)h + fy(a, b)k)

To prove that f (x, y) is differentiable, we must show that

lim
(h,k)→(0,0)

e(h, k)√
h2 + k2

= 0

To do this, we write �f as a sum of two terms:

�f = (f (a + h, b + k) − f (a, b + k)) + (f (a, b + k) − f (a, b))

and apply the MVT to each term separately. We find that there exist a1 between a and
a + h, and b1 between b and b + k, such that

f (a + h, b + k) − f (a, b + k) = hfx(a1, b + k)

f (a, b + k) − f (a, b) = kfy(a, b1)
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Therefore,

e(h, k) = h(fx(a1, b + k) − fx(a, b)) + k(fy(a, b1) − fy(a, b))

and for (h, k) �= (0, 0),∣∣∣∣ e(h, k)√
h2 + k2

∣∣∣∣ =
∣∣∣∣h(fx(a1, b + k) − fx(a, b)) + k(fy(a, b1) − fy(a, b))√

h2 + k2

∣∣∣∣
≤

∣∣∣∣h(fx(a1, b + k) − fx(a, b))√
h2 + k2

∣∣∣∣ +
∣∣∣∣k(fy(a, b1) − fy(a, b))√

h2 + k2

∣∣∣∣
= |fx(a1, b + k) − fx(a, b)| + ∣∣fy(a, b1) − fy(a, b)

∣∣
In the second line, we use the Triangle Inequality (see Eq. (1) in Section 1.1), and we may

pass to the third line because
∣∣h/

√
h2 + k2

∣∣ and
∣∣k/

√
h2 + k2

∣∣ are both less than 1. Both
terms in the last line tend to zero as (h, k) → (0, 0) because fx and fy are assumed to be
continuous. This completes the proof that f (x, y) is differentiable.
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In Section 4.1, we used the linearization L(x) to approximate a function f (x) near a point

English mathematician Brook Taylor
(1685–1731) made important contributions
to calculus and physics, as well as to the
theory of linear perspective used in
drawing.

x = a:

L(x) = f (a) + f ′(a)(x − a)

We refer to L(x) as a “first-order” approximation to f (x) at x = a because f (x) and L(x)

have the same value and the same first derivative at x = a (Figure 1):

L(a) = f (a), L′(a) = f ′(a)

A first-order approximation is useful only in a small interval around x = a. In this section
we learn how to achieve greater accuracy over larger intervals using the higher-order
approximations (Figure 2).

f(x)

L(x)

a
x

y

FIGURE 1 The linear approximation L(x) is
a first-order approximation to f (x).

a

f(x)

L(x)

x

y

Second-order
approximation

FIGURE 2 A second-order approximation is
more accurate over a larger interval.

In what follows, assume that f (x) is defined on an open interval I and that all higher
derivatives f (k)(x) exist on I . Let a ∈ I . We say that two functions f (x) and g(x) agree
to order n at x = a if their derivatives up to order n at x = a are equal:

f (a) = g(a), f ′(a) = g′(a), f ′′(a) = g′′(a), . . . , f (n)(a) = g(n)(a)

We also say that g(x) “approximates f (x) to order n” at x = a.
Define the nth Taylor polynomial centered at x = a as follows:

Tn(x) = f (a) + f ′(a)

1! (x − a) + f ′′(a)

2! (x − a)2 + · · · + f (n)(a)

n! (x − a)n

The first few Taylor polynomials are

T0(x) = f (a)

T1(x) = f (a) + f ′(a)(x − a)

T2(x) = f (a) + f ′(a)(x − a) + 1

2
f ′′(a)(x − a)2

T3(x) = f (a) + f ′(a)(x − a) + 1

2
f ′′(a)(x − a)2 + 1

6
f ′′′(a)(x − a)3

A27
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Note that T1(x) is the linearization of f (x) at a. Note also that Tn(x) is obtained from
Tn−1(x) by adding on a term of degree n:

Tn(x) = Tn−1(x) + f (n)(a)

n! (x − a)n

The next theorem justifies our definition of Tn(x).

REMINDER k-factorial is the number
k! = k(k − 1)(k − 2) · · · (2)(1). Thus,

1! = 1, 2! = (2)1 = 2

3! = (3)(2)1 = 6

By convention, we define 0! = 1.

THEOREM 1 The polynomial Tn(x) centered at a agrees with f (x) to order n at
x = a, and it is the only polynomial of degree at most n with this property.

The verification of Theorem 1 is left to the exercises (Exercises 70–71), but we’ll
illustrate the idea by checking that T2(x) agrees with f (x) to order n = 2.

T2(x) = f (a) + f ′(a)(x − a) + 1

2
f ′′(a)(x − a)2, T2(a) = f (a)

T ′
2(x) = f ′(a) + f ′′(a)(x − a), T ′

2(a) = f ′(a)

T ′′
2 (x) = f ′′(a), T ′′

2 (a) = f ′′(a)

This shows that the value and the derivatives of order up to n = 2 at x = a are equal.
Before proceeding to the examples, we write Tn(x) in summation notation:

Tn(x) =
n∑

j=0

f (j)(a)

j ! (x − a)j

By convention, we regard f (x) as the zeroeth derivative, and thus f (0)(x) is f (x) itself.
When a = 0, Tn(x) is also called the nth Maclaurin polynomial.

EXAMPLE 1 Maclaurin Polynomials for ex Plot the third and fourth Maclaurin poly-
nomials for f (x) = ex . Compare with the linear approximation.

Solution All higher derivatives coincide with f (x) itself: f (k)(x) = ex . Therefore,

f (0) = f ′(0) = f ′′(0) = f ′′′(0) = f (4)(0) = e0 = 1

The third Maclaurin polynomial (the case a = 0) is

T3(x) = f (0) + f ′(0)x + 1

2
f ′′(0)x2 + 1

3!f
′′′(0)x3 = 1 + x + 1

2
x2 + 1

6
x3

We obtain T4(x) by adding the term of degree 4 to T3(x):

T4(x) = T3(x) + 1

4!f
(4)(0)x4 = 1 + x + 1

2
x2 + 1

6
x3 + 1

24
x4

Figure 3 shows that T3 and T4 approximate f (x) = ex much more closely than the linear

5

1
x

y y = ex

y = T4(x)
y = T3(x)

y = T1(x)

−1

FIGURE 3 Maclaurin polynomials for
f (x) = ex .

approximation T1(x) on an interval around a = 0. Higher-degree Taylor polynomials
would provide even better approximations on larger intervals.
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EXAMPLE 2 Computing Taylor Polynomials Compute the Taylor polynomial T4(x)

centered at a = 3 for f (x) = √
x + 1.

Solution First evaluate the derivatives up to degree 4 at a = 3:

f (x) = (x + 1)1/2, f (3) = 2

f ′(x) = 1

2
(x + 1)−1/2, f ′(3) = 1

4

f ′′(x) = −1

4
(x + 1)−3/2, f ′′(3) = − 1

32

f ′′′(x) = 3

8
(x + 1)−5/2, f ′′′(3) = 3

256

f (4)(x) = −15

16
(x + 1)−7/2, f (4)(3) = − 15

2048

Then compute the coefficients
f (j)(3)

j ! :

The first term f (a) in the Taylor polynomial
Tn(x) is called the constant term.

Constant term = f (3) = 2

Coefficient of (x − 3) = f ′(3) = 1

4

Coefficient of (x − 3)2 = f ′′(3)

2! = − 1

32
· 1

2! = − 1

64

Coefficient of (x − 3)3 = f ′′′(3)

3! = 3

256
· 1

3! = 1

512

Coefficient of (x − 3)4 = f (4)(3)

4! = − 15

2048
· 1

4! = − 5

16,384

The Taylor polynomial T4(x) centered at a = 3 is (see Figure 4):

−1 153

y

x

y = f (x)

y = T4(x)

FIGURE 4 Graph of f (x) = √
x + 1 and

T4(x) centered at x = 3.

T4(x) = 2 + 1

4
(x − 3) − 1

64
(x − 3)2 + 1

512
(x − 3)3 − 5

16,384
(x − 3)4

EXAMPLE 3 Finding a General Formula for Tn Find the Taylor polynomials Tn(x) of
f (x) = ln x centered at a = 1.

Solution For f (x) = ln x, the constant term of Tn(x) at a = 1 is zero because f (1) =
ln 1 = 0. Next, we compute the derivatives:

After computing several derivatives of
f (x) = ln x, we begin to discern the
pattern. For many functions of interest,
however, the derivatives follow no simple
pattern and there is no convenient formula
for the general Taylor polynomial.

f ′(x) = x−1, f ′′(x) = −x−2, f ′′′(x) = 2x−3, f (4)(x) = −3 · 2x−4

Similarly, f (5)(x) = 4 · 3 · 2x−5. The general pattern is that f (k)(x) is a multiple of x−k ,
with a coefficient ±(k − 1)! that alternates in sign:

f (k)(x) = (−1)k−1(k − 1)! x−k 1

The coefficient of (x − 1)k in Tn(x) is

f (k)(1)

k! = (−1)k−1(k − 1)!
k! = (−1)k−1

k
(for k ≥ 1)
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Thus, the coefficients for k ≥ 1 form a sequence 1, − 1
2 , 1

3 , − 1
4 , . . . , andTaylor polynomials for ln x at a = 1:

T1(x) = (x − 1)

T2(x) = (x − 1) − 1

2
(x − 1)2

T3(x) = (x − 1) − 1

2
(x − 1)2 + 1

3
(x − 1)3

Tn(x) = (x − 1) − 1

2
(x − 1)2 + 1

3
(x − 1)3 − · · · + (−1)n−1 1

n
(x − 1)n

EXAMPLE 4 Cosine Find the Maclaurin polynomials of f (x) = cos x.

Solution The derivatives form a repeating pattern of period 4:

f (x) = cos x, f ′(x) = − sin x, f ′′ (x) = − cos x, f ′′′(x) = sin x,

f (4)(x) = cos x, f (5)(x) = − sin x, · · ·

In general, f (j+4)(x) = f (j)(x). The derivatives at x = 0 also form a pattern:

f (0) f ′(0) f ′′(0) f ′′′(0) f (4)(0) f (5)(0) f (6)(0) f (7)(0) · · ·
1 0 −1 0 1 0 −1 0 · · ·

Therefore, the coefficients of the odd powers x2k+1 are zero, and the coefficients of the

Scottish mathematician Colin Maclaurin
(1698–1746) was a professor in Edinburgh.
Newton was so impressed by his work that
he once offered to pay part of Maclaurin’s
salary.

even powers x2k alternate in sign with value (−1)k/(2k)!:

T0(x) = T1(x) = 1, T2(x) = T3(x) = 1 − 1

2!x
2

T4(x) = T5(x) = 1 − x2

2
+ x4

4!
T2n(x) = T2n+1(x) = 1 − 1

2
x2 + 1

4!x
4 − 1

6!x
6 + · · · + (−1)n

1

(2n)!x
2n

Figure 5 shows that as n increases, Tn(x) approximates f (x) = cos x well over larger and
larger intervals, but outside this interval, the approximation fails.

x x

x x

yy y

y

T0(x)

T2(x)

T10(x)T6(x)

x

T4(x)

2π

π

−2π

−π

2π 2π

π π

−2π −2π

−π −π

2π

π

−2π

−π

2π

π

−2π

−π

y

f (x) = cos x

x

y

T8(x)

2π

π

−2π

−π

FIGURE 5 Maclaurin polynomials for
f (x) = cos x. The graph of f (x) is shown
as a dashed curve.



A P P E N D I X E TAYLOR POLYNOMIALS A31

EXAMPLE 5 How far is the horizon? Valerie is at the beach, looking out over the
ocean (Figure 6). How far can she see? Use Maclaurin polynomials to estimate the distance
d, assuming that Valerie’s eye level is h = 1.7 m above ground. What if she looks out
from a window where her eye level is 20 m?

FIGURE 6 View from the beach

A

H

h

R

Eye level

R

d

C

q

FIGURE 7 Valerie can see a distance
d = Rθ , the length of arc AH .

Solution Let R be the radius of the earth. Figure 7 shows that Valerie can see a distance
d = Rθ , the length of the circular arc AH in Figure 7. We have

cos θ = R

R + h

Our key observation is that θ is close to zero (both θ and h are much smaller than shownThis calculation ignores the bending of
light (called refraction) as it passes through
the atmosphere. Refraction typically
increases d by around 10%, although the
actual effect is complex and varies with
atmospheric temperature.

in the figure), so we lose very little accuracy if we replace cos θ by its second Maclaurin
polynomial T2(θ) = 1 − 1

2θ2, as computed in Example 4:

1 − 1

2
θ2 ≈ R

R + h
⇒ θ2 ≈ 2 − 2R

R + h
⇒ θ ≈

√
2h

R + h

Furthermore, h is very small relative to R, so we may replace R + h by R to obtain

d = Rθ ≈ R

√
2h

R
= √

2Rh

The earth’s radius is approximately R ≈ 6.37 × 106 m, so

d = √
2Rh ≈

√
2(6.37 × 106)h ≈ 3569

√
h m

In particular, we see that d is proportional to
√

h.
If Valerie’s eye level is h = 1.7 m, then d ≈ 3569

√
1.7 ≈ 4653 m, or roughly

4.7 km. If h = 20 m, then d ≈ 3569
√

20 ≈ 15.96 m, or nearly 16 km.

The Error Bound
To use Taylor polynomials effectively, we need a way to estimate the size of the error.
This is provided by the next theorem, which shows that the size of this error depends on
the size of the (n + 1)st derivative.A proof of Theorem 2 is presented at the

end of this section.

THEOREM 2 Error Bound Assume that f (n+1)(x) exists and is continuous. Let K be
a number such that |f (n+1)(u)| ≤ K for all u between a and x. Then

|f (x) − Tn(x)| ≤ K
|x − a|n+1

(n + 1)!

where Tn(x) is the nth Taylor polynomial centered at x = a.
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EXAMPLE 6 Using the Error Bound Apply the error bound to

| ln 1.2 − T3(1.2)|
where T3(x) is the third Taylor polynomial for f (x) = ln x at a = 1. Check your result
with a calculator.

Solution

Step 1. Find a value of K .
To use the error bound with n = 3, we must find a value of K such that |f (4)(u)| ≤ K

for all u between a = 1 and x = 1.2.As we computed in Example 3, f (4)(x) = −6x−4.
The absolute value |f (4)(x)| is decreasing for x > 0, so its maximum value on [1, 1.2]
is |f (4)(1)| = 6. Therefore, we may take K = 6.

Step 2. Apply the error bound.

| ln 1.2 − T3(1.2)| ≤ K
|x − a|n+1

(n + 1)! = 6
|1.2 − 1|4

4! ≈ 0.0004

Step 3. Check the result.
Recall from Example 3 that

T3(x) = (x − 1) − 1

2
(x − 1)2 + 1

3
(x − 1)3

The following values from a calculator confirm that the error is at most 0.0004:

| ln 1.2 − T3(1.2)| ≈ |0.182667 − 0.182322| ≈ 0.00035 < 0.0004

Observe in Figure 8 that ln x and T3(x) are indistinguishable near x = 1.2.

T3(x)

ln(x)

x

1

−1

y

21 1.2

FIGURE 8 ln x and T3(x) are
indistinguishable near x = 1.2.

EXAMPLE 7 Approximating with a Given Accuracy Let Tn(x) be the nth Maclaurin
polynomial for f (x) = cos x. Find a value of n such that

| cos 0.2 − Tn(0.2)| < 10−5

Solution

Step 1. Find a value of K .
Since |f (n)(x)| is | cos x| or | sin x|, depending on whether n is even or odd, we have
|f (n)(u)| ≤ 1 for all u. Thus, we may apply the error bound with K = 1.

Step 2. Find a value of n.
The error bound gives usTo use the error bound, it is not necessary

to find the smallest possible value of K. In
this example, we take K = 1. This works
for all n, but for odd n we could have used
the smaller value K = sin 0.2 ≈ 0.2.

| cos 0.2 − Tn(0.2)| ≤ K
|0.2 − 0|n+1

(n + 1)! = |0.2|n+1

(n + 1)!
To make the error less than 10−5, we must choose n so that

|0.2|n+1

(n + 1)! < 10−5

It’s not possible to solve this inequality for n, but we can find a suitable n by checking
several values:

n 2 3 4

|0.2|n+1

(n + 1)!
0.23

3! ≈ 0.0013
0.24

4! ≈ 6.67 × 10−5 0.25

5! ≈ 2.67 × 10−6 < 10−5

We see that the error is less than 10−5 for n = 4.
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The rest of this section is devoted to a proof of the error bound (Theorem 2). Define
the nth remainder:

Rn(x) = f (x) − Tn(x)

The error in Tn(x) is the absolute value |Rn(x)|. As a first step in proving the error bound,
we show that Rn(x) can be represented as an integral.

Taylor’s Theorem Assume that f (n+1)(x) exists and is continuous. Then

Rn(x) = 1

n!
∫ x

a

(x − u)nf (n+1)(u) du 2

Proof Set

In(x) = 1

n!
∫ x

a

(x − u)nf (n+1)(u) du

Our goal is to show that Rn(x) = In(x). For n = 0, R0(x) = f (x) − f (a) and the desired
result is just a restatement of the Fundamental Theorem of Calculus:

I0(x) =
∫ x

a

f ′(u) du = f (x) − f (a) = R0(x)

To prove the formula for n > 0, we apply Integration by Parts to In(x) withExercise 64 reviews this proof for the
special case n = 2.

h(u) = 1

n! (x − u)n, g(u) = f (n)(u)

Then g′(u) = f (n+1)(u), and so

In(x) =
∫ x

a

h(u) g′(u) du = h(u)g(u)

∣∣∣∣x
a

−
∫ x

a

h′(u)g(u) du

= 1

n! (x − u)nf (n)(u)

∣∣∣∣x
a

− 1

n!
∫ x

a

(−n)(x − u)n−1f (n)(u) du

= − 1

n! (x − a)nf (n)(a) + In−1(x)

This can be rewritten as

In−1(x) = f (n)(a)

n! (x − a)n + In(x)

Now apply this relation n times, noting that I0(x) = f (x) − f (a):

f (x) = f (a) + I0(x)

= f (a) + f
′
(a)

1! (x − a) + I1(x)

= f (a) + f
′
(a)

1! (x − a) + f ′′(a)

2! (x − a)2 + I2(x)

...

= f (a) + f
′
(a)

1! (x − a) + · · · + f (n)(a)

n! (x − a)n + In(x)

This shows that f (x) = Tn(x) + In(x) and hence In(x) = Rn(x), as desired.
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Now we can prove Theorem 2. Assume first that x ≥ a. Then,

In Eq. (3), we use the inequality∣∣∣∣
∫ b

a

f (x) dx

∣∣∣∣ ≤
∫ b

a

|f (x)| dx

which is valid for all integrable functions.

|f (x) − Tn(x)| = |Rn(x)| =
∣∣∣∣ 1

n!
∫ x

a

(x − u)nf (n+1)(u) du

∣∣∣∣
≤ 1

n!
∫ x

a

∣∣∣(x − u)nf (n+1)(u)

∣∣∣ du 3

≤ K

n!
∫ x

a

|x − u|n du 4

= K

n!
−(x − u)n+1

n + 1

∣∣∣∣x
u=a

= K
|x − a|n+1

(n + 1)!
Note that the absolute value is not needed in Eq. (4) because x − u ≥ 0 for a ≤ u ≤ x.

If x ≤ a, we must interchange the upper and lower limits of the integral in Eq. (3) and
Eq. (4).

E. SUMMARY

• The nth Taylor polynomial centered at x = a for the function f (x) is

Tn(x) = f (a) + f ′(a)

1! (x − a)1 + f ′′(a)

2! (x − a)2 + · · · + f (n)(a)

n! (x − a)n

When a = 0, Tn(x) is also called the nth Maclaurin polynomial.
• If f (n+1)(x) exists and is continuous, then we have the error bound

|Tn(x) − f (x)| ≤ K
|x − a|n+1

(n + 1)!
where K is a number such that |f (n+1)(u)| ≤ K for all u between a and x.
• For reference, we include a table of standard Maclaurin and Taylor polynomials.

f (x) a Maclaurin or Taylor Polynomial

ex 0 Tn(x) = 1 + x + x2

2! + x3

3! + · · · + xn

n!
sin x 0 T2n+1(x) = T2n+2(x) = x − x3

3! + · · · + (−1)n
x2n+1

(2n + 1)!
cos x 0 T2n(x) = T2n+1(x) = 1 − x2

2! + x4

4! − · · · + (−1)n
x2n

(2n)!
ln x 1 Tn(x) = (x − 1) − 1

2
(x − 1)2 + · · · + (−1)n−1

n
(x − 1)n

1

1 − x
0 Tn(x) = 1 + x + x2 + · · · + xn

E. EXERCISES

Preliminary Questions
1. What is T3(x) centered at a = 3 for a function f (x) such that

f (3) = 9, f ′(3) = 8, f ′′(3) = 4, and f ′′′(3) = 12?
2. The dashed graphs in Figure 9 are Taylor polynomials for a function

f (x). Which of the two is a Maclaurin polynomial?
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x x
2 31

2

31−1 −1

y = f (x)y = f (x)

y y

(A) (B)

FIGURE 9

3. For which value of x does the Maclaurin polynomial Tn(x) satisfy
Tn(x) = f (x), no matter what f (x) is?

4. Let Tn(x) be the Maclaurin polynomial of a function f (x) satisfy-
ing |f (4)(x)| ≤ 1 for all x. Which of the following statements follow
from the error bound?

(a) |T4(2) − f (2)| ≤ 2
3

(b) |T3(2) − f (2)| ≤ 2
3

(c) |T3(2) − f (2)| ≤ 1
3

Exercises
In Exercises 1–14, calculate the Taylor polynomials T2(x) and T3(x)

centered at x = a for the given function and value of a.

1. f (x) = sin x, a = 0 2. f (x) = sin x, a = π

2

3. f (x) = 1

1 + x
, a = 2 4. f (x) = 1

1 + x2
, a = −1

5. f (x) = x4 − 2x, a = 3 6. f (x) = x2 + 1

x + 1
, a = −2

7. f (x) = tan x, a = 0 8. f (x) = tan x, a = π

4

9. f (x) = e−x + e−2x , a = 0 10. f (x) = e2x , a = ln 2

11. f (x) = x2e−x , a = 1 12. f (x) = cosh 2x, a = 0

13. f (x) = ln x

x
, a = 1 14. f (x) = ln(x + 1), a = 0

15. Show that the nth Maclaurin polynomial for ex is

Tn(x) = 1 + x

1! + x2

2! + · · · + xn

n!

16. Show that the nth Taylor polynomial for
1

x + 1
at a = 1 is

Tn(x) = 1

2
− (x − 1)

4
+ (x − 1)2

8
+ · · · + (−1)n

(x − 1)n

2n+1

17. Show that the Maclaurin polynomials for sin x are

T2n+1(x) = T2n+2(x) = x − x3

3! + x5

5! − · · · + (−1)n
x2n+1

(2n + 1)!
18. Show that the Maclaurin polynomials for ln(1 + x) are

Tn(x) = x − x2

2
+ x3

3
+ · · · + (−1)n−1 xn

n

In Exercises 19–24, find Tn(x) at x = a for all n.

19. f (x) = 1

1 + x
, a = 0 20. f (x) = 1

x − 1
, a = 4

21. f (x) = ex , a = 1 22. f (x) = x−2, a = 2

23. f (x) = cos x, a = π

4
24. f (θ) = sin 3θ , a = 0

In Exercises 25–28, find T2(x) and use a calculator to compute the
error |f (x) − T2(x)| for the given values of a and x.

25. y = ex , a = 0, x = −0.5

26. y = cos x, a = 0, x = π

12

27. y = x−2/3, a = 1, x = 1.2

28. y = esin x , a = π

2
, x = 1.5

29. Compute T3(x) for f (x) = √
x centered at a = 1. Then

use a plot of the error |f (x) − T3(x)| to find a value c > 1 such that
the error on the interval [1, c] is at most 0.25.

30. Plot f (x) = 1/(1 + x) together with the Taylor polyno-
mials Tn(x) at a = 1 for 1 ≤ n ≤ 4 on the interval [−2, 8] (be sure to
limit the upper plot range).

(a) Over which interval does T4(x) appear to approximate f (x)

closely?

(b) What happens for x < −1?

(c) Use your computer algebra system to produce and plot T30 together
with f (x) on [−2, 8]. Over which interval does T30 appear to give a
close approximation?

31. Let T3(x) be the Maclaurin polynomial of f (x) = ex . Use the er-
ror bound to find the maximum possible value of |f (1.1) − T3(1.1)|.
Show that we can take K = e1.1.

32. Let T2(x) be the Taylor polynomial of f (x) = √
x at a = 4. Ap-

ply the error bound to find the maximum possible value of the error
|f (3.9) − T2(3.9)|.
In Exercises 33–36, compute the Taylor polynomial indicated and use
the error bound to find the maximum possible size of the error. Verify
your result with a calculator.

33. f (x) = cos x, a = 0; |cos 0.25 − T5(0.25)|

34. f (x) = x11/2, a = 1; |f (1.2) − T4(1.2)|

35. f (x) = x−1/2, a = 4; |f (4.3) − T3(4.3)|

36. f (x) = √
1 + x, a = 8; |√9.02 − T3(8.02)|
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37. Calculate the Maclaurin polynomial T3(x) for f (x) = tan−1 x.
Compute T3

( 1
2

)
and use the error bound to find a bound for the error∣∣ tan−1 1

2 − T3
( 1

2

)∣∣. Refer to the graph in Figure 10 to find an accept-

able value of K . Verify your result by computing
∣∣ tan−1 1

2 − T3
( 1

2

)∣∣
using a calculator.

y

x
21 3

−1

1

2

3

4

5

FIGURE 10 Graph of f (4)(x) = −24x(x2 − 1)

(x2 + 1)4
, where

f (x) = tan−1 x.

38. Let f (x) = ln(x3 − x + 1). The third Taylor polynomial at a =
1 is

T3(x) = 2(x − 1) + (x − 1)2 − 7

3
(x − 1)3

Find the maximum possible value of |f (1.1) − T3(1.1)|, using the
graph in Figure 11 to find an acceptable value of K . Verify your re-
sult by computing |f (1.1) − T3(1.1)| using a calculator.

20

40
41

x

y

1.21.11.00.9

FIGURE 11 Graph of f (4)(x), where f (x) = ln(x3 − x + 1).

39. Calculate the T3(x) at a = 0.5 for f (x) = cos(x2),
and use the error bound to find the maximum possible value of
|f (0.6) − T2(0.6)|. Plot f (4)(x) to find an acceptable value of K .

40. Calculate the Maclaurin polynomial T2(x) for f (x) =
sech x and use the error bound to find the maximum possible value
of

∣∣f ( 1
2

) − T2
( 1

2

)∣∣. Plot f ′′′(x) to find an acceptable value of K .

In Exercises 41–44, use the error bound to find a value of n for which the
given inequality is satisfied. Then verify your result using a calculator.

41. | cos 0.1 − Tn(0.1)| ≤ 10−7, a = 0

42. | ln 1.3 − Tn(1.3)| ≤ 10−4, a = 1

43. |√1.3 − Tn(1.3)| ≤ 10−6, a = 1

44. |e−0.1 − Tn(−0.1)| ≤ 10−6, a = 0

45. Let f (x) = e−x and T3(x) = 1 − x + x2

2
− x3

6
. Use the error

bound to show that for all x ≥ 0,

|f (x) − T3(x)| ≤ x4

24

If you have a GU, illustrate this inequality by plotting f (x) − T3(x)

and x4/24 together over [0, 1].
46. Use the error bound with n = 4 to show that∣∣∣∣∣sin x −

(
x − x3

6

)∣∣∣∣∣ ≤ |x|5
120

(for all x)

47. Let Tn(x) be the Taylor polynomial for f (x) = ln x at a = 1, and
let c > 1. Show that

| ln c − Tn(c)| ≤ |c − 1|n+1

n + 1

Then find a value of n such that | ln 1.5 − Tn(1.5)| ≤ 10−2.

48. Let n ≥ 1. Show that if |x| is small, then

(x + 1)1/n ≈ 1 + x

n
+ 1 − n

2n2
x2

Use this approximation with n = 6 to estimate 1.51/6.

49. Verify that the third Maclaurin polynomial for f (x) = ex sin x is
equal to the product of the third Maclaurin polynomials of ex and sin x

(after discarding terms of degree greater than 3 in the product).

50. Find the fourth Maclaurin polynomial for f (x) = sin x cos x by
multiplying the fourth Maclaurin polynomials for f (x) = sin x and
f (x) = cos x.

51. Find the Maclaurin polynomials Tn(x) for f (x) = cos(x2). You
may use the fact that Tn(x) is equal to the sum of the terms up to degree
n obtained by substituting x2 for x in the nth Maclaurin polynomial of
cos x.

52. Find the Maclaurin polynomials of 1/(1 + x2) by substituting −x2

for x in the Maclaurin polynomials of 1/(1 − x).

53. Let f (x) = 3x3 + 2x2 − x − 4. Calculate Tj (x) for j = 1, 2, 3,
4, 5 at both a = 0 and a = 1. Show that T3(x) = f (x) in both cases.

54. Let Tn(x) be the nth Taylor polynomial at x = a for a polynomial
f (x) of degree n. Based on the result of Exercise 53, guess the value of
|f (x) − Tn(x)|. Prove that your guess is correct using the error bound.

55. Let s(t) be the distance of a truck to an intersection. At time t = 0,
the truck is 60 meters from the intersection, is traveling at a velocity
of 24 m/s, and begins to slow down with an acceleration of a = −3
m/s2. Determine the second Maclaurin polynomial of s(t), and use it
to estimate the truck’s distance from the intersection after 4 s.

56. A bank owns a portfolio of bonds whose value P(r) depends on
the interest rate r (measured in percent; for example, r = 5 means a
5% interest rate). The bank’s quantitative analyst determines that

P(5) = 100,000,
dP

dr

∣∣∣∣
r=5

= −40,000,
d2P

dr2

∣∣∣∣
r=5

= 50,000



A P P E N D I X E TAYLOR POLYNOMIALS A37

In finance, this second derivative is called bond convexity. Find the
second Taylor polynomial of P(r) centered at r = 5 and use it to esti-
mate the value of the portfolio if the interest rate moves to r = 5.5%.

57. A narrow, negatively charged ring of radius R exerts a force on a
positively charged particle P located at distance x above the center of
the ring of magnitude

F(x) = − kx

(x2 + R2)3/2

where k > 0 is a constant (Figure 12).

(a) Compute the third-degree Maclaurin polynomial for F(x).
(b) Show that F ≈ −(k/R3)x to second order. This shows that when x

is small, F(x) behaves like a restoring force similar to the force exerted
by a spring.
(c) Show that F(x) ≈ −k/x2 when x is large by showing that

lim
x→∞

F(x)

−k/x2
= 1

Thus, F(x) behaves like an inverse square law, and the charged ring
looks like a point charge from far away.

x

x

R
F(x)

Nearly linear
here

Nearly inverse square
here

P

FIGURE 12

58. A light wave of wavelength λ travels from A to B by passing
through an aperture (circular region) located in a plane that is perpen-
dicular to AB (see Figure 13 for the notation). Let f (r) = d ′ + h′; that
is, f (r) is the distance AC + CB as a function of r .

(a) Show that f (r) =
√

d2 + r2 +
√

h2 + r2, and use the Maclaurin
polynomial of order 2 to show that

f (r) ≈ d + h + 1

2

(
1

d
+ 1

h

)
r2

(b) The Fresnel zones, used to determine the optical disturbance at
B, are the concentric bands bounded by the circles of radius Rn

such that f (Rn) = d + h + nλ/2. Show that Rn ≈ √
nλL, where

L = (d−1 + h−1)−1.
(c) Estimate the radii R1 and R100 for blue light (λ = 475 × 10−7 cm)
if d = h = 100 cm.

O

d ´
d

R1
R2

R3

C

B

A

h

r
h´

FIGURE 13 The Fresnel zones are the regions between the circles of
radius Rn.

59. Referring to Figure 14, let a be the length of the chord AC of angle
θ of the unit circle. Derive the following approximation for the excess
of the arc over the chord.

θ − a ≈ θ3

24

Hint: Show that θ − a = θ − 2 sin(θ/2) and use the third Maclaurin
polynomial as an approximation.

C

1

B

A

b

aq

q
2

FIGURE 14 Unit circle.

60. To estimate the length θ of a circular arc of the unit circle, the
seventeenth-century Dutch scientist Christian Huygens used the ap-
proximation θ ≈ (8b − a)/3, where a is the length of the chord AC of
angle θ and b is length of the chord AB of angle θ/2 (Figure 14).

(a) Prove that a = 2 sin(θ/2) and b = 2 sin(θ/4), and show that the
Huygens approximation amounts to the approximation

θ ≈ 16

3
sin

θ

4
− 2

3
sin

θ

2

(b) Compute the fifth Maclaurin polynomial of the function on the
right.

(c) Use the error bound to show that the error in the Huygens approx-
imation is less than 0.00022|θ |5.

Further Insights and Challenges
61. Show that the nth Maclaurin polynomial of f (x) = arcsin x for n

odd is

Tn(x) = x + 1

2

x3

3
+ 1 · 3

2 · 4

x5

5
+ · · · + 1 · 3 · 5 · · · (n − 2)

2 · 4 · 6 · · · (n − 1)

xn

n

62. Let x ≥ 0 and assume that f (n+1)(t) ≥ 0 for 0 ≤ t ≤ x. Use
Taylor’s Theorem to show that the nth Maclaurin polynomial Tn(x)

satisfies

Tn(x) ≤ f (x) for all x ≥ 0
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63. Use Exercise 62 to show that for x ≥ 0 and all n,

ex ≥ 1 + x + x2

2! + · · · + xn

n!
Sketch the graphs of ex , T1(x), and T2(x) on the same coordinate axes.
Does this inequality remain true for x < 0?

64. This exercise is intended to reinforce the proof of Taylor’s
Theorem.

(a) Show that f (x) = T0(x) +
∫ x

a
f ′(u) du.

(b) Use Integration by Parts to prove the formula∫ x

a
(x − u)f (2)(u) du = −f ′(a)(x − a) +

∫ x

a
f ′(u) du

(c) Prove the case n = 2 of Taylor’s Theorem:

f (x) = T1(x) +
∫ x

a
(x − u)f (2)(u) du.

In Exercises 65–69, we estimate integrals using Taylor polynomials.
Exercise 66 is used to estimate the error.

65. Find the fourth Maclaurin polynomial T4(x) for f (x) = e−x2
,

and calculate I = ∫ 1/2
0 T4(x) dx as an estimate

∫ 1/2
0 e−x2

dx. A CAS
yields the value I ≈ 0.4794255. How large is the error in your approx-
imation? Hint: T4(x) is obtained by substituting −x2 in the second
Maclaurin polynomial for ex .

66. Approximating Integrals Let L > 0. Show that if two functions
f (x) and g(x) satisfy |f (x) − g(x)| < L for all x ∈ [a, b], then∣∣∣∣

∫ b

a
f (x) dx −

∫ b

a
g(x) dx

∣∣∣∣ dx < L(b − a)

67. Let T4(x) be the fourth Maclaurin polynomial for cos x.

(a) Show that | cos x − T4(x)| ≤ ( 1
2

)6
/6! for all x ∈ [

0, 1
2

]
. Hint:

T4(x) = T5(x).

(b) Evaluate
∫ 1/2

0 T4(x) dx as an approximation to
∫ 1/2

0 cos x dx. Use
Exercise 66 to find a bound for the size of the error.

68. Let Q(x) = 1 − x2/6. Use the error bound for sin x to show that∣∣∣∣ sin x

x
− Q(x)

∣∣∣∣ ≤ |x|4
5!

Then calculate
∫ 1

0 Q(x) dx as an approximation to
∫ 1

0 (sin x/x) dx and
find a bound for the error.

69. (a) Compute the sixth Maclaurin polynomial T6(x) for sin(x2) by
substituting x2 in P(x) = x − x3/6, the third Maclaurin polynomial
for sin x.

(b) Show that | sin(x2) − T6(x)| ≤ |x|10

5! .

Hint: Substitute x2 for x in the error bound for | sin x − P(x)|, noting
that P(x) is also the fourth Maclaurin polynomial for sin x.

(c) Use T6(x) to approximate
∫ 1/2

0
sin(x2) dx and find a bound for

the error.

70. Prove by induction that for all k,

dj

dxj

(
(x − a)k

k!

)
= k(k − 1) · · · (k − j + 1)(x − a)k−j

k!

dj

dxj

(
(x − a)k

k!

)∣∣∣∣∣
x=a

=
{

1 for k = j

0 for k �= j

Use this to prove that Tn(x) agrees with f (x) at x = a to order n.

71. Let a be any number and let

P(x) = anxn + an−1xn−1 + · · · + a1 + a0

be a polynomial of degree n or less.

(a) Show that if P (j)(a) = 0 for j = 0, 1, . . . , n, then P(x) = 0, that
is, aj = 0 for all j . Hint: Use induction, noting that if the statement is
true for degree n − 1, then P ′(x) = 0.

(b) Prove that Tn(x) is the only polynomial of degree n or less that
agrees with f (x) at x = a to order n. Hint: If Q(x) is another such
polynomial, apply (a) to P(x) = Tn(x) − Q(x).



ANSWERS TO ODD-
NUMBERED EXERCISES

Chapter 10
Section 10.1 Preliminary Questions

1. a4 = 12 2. (c) 3. lim
n→∞ an = √

2 4. (b)

5. (a) False. Counterexample: an = cos πn

(b) True (c) False. Counterexample: an = (−1)n

Section 10.1 Exercises
1. (a) (iv) (b) (i) (c) (iii) (d) (ii)
3. c1 = 3, c2 = 9

2 , c3 = 9
2 , c4 = 27

8
5. a1 = 2, a2 = 5, a3 = 47, a4 = 4415
7. b1 = 4, b2 = 6, b3 = 4, b4 = 6
9. c1 = 1, c2 = 3

2 , c3 = 11
6 , c4 = 25

12
11. b1 = 2, b2 = 3, b3 = 8, b4 = 19

13. (a) an = (−1)n+1

n3 (b) an = n+1
n+5

15. lim
n→∞ 12 = 12 17. lim

n→∞
5n−1

12n+9 = 5
12

19. lim
n→∞

(−2−n
) = 0 21. The sequence diverges.

23. lim
n→∞

n√
n2+1

= 1 25. lim
n→∞ ln

(
12n+2
−9+4n

)
= ln 3

27. lim
n→∞

√
4 + 1

n = 2 29. lim
n→∞ cos−1

(
n3

2n3+1

)
= π

3

31. (a) M = 999 (b) M = 99999

35. lim
n→∞

(
10 +

(
− 1

9

)n)
= 10 37. The sequence diverges.

39. lim
n→∞ 21/n = 1 41. lim

n→∞
9n

n! = 0

43. lim
n→∞

3n2+n+2
2n2−3

= 3
2 45. lim

n→∞
cos n

n = 0

47. The sequence diverges. 49. lim
n→∞

(
2 + 4

n2

)1/3 = 21/3

51. lim
n→∞ ln

(
2n+1
3n+4

)
= ln 2

3 53. The sequence diverges.

55. lim
n→∞

en+(−3)n

5n = 0 57. lim
n→∞ n sin π

n = π

59. lim
n→∞

3−4n

2+7·4n = − 1
7 61. lim

n→∞
(

1 + 1
n

)n = e

63. lim
n→∞

(ln n)2

n = 0 65. lim
n→∞ n

(√
n2 + 1 − n

) = 1
2

67. lim
n→∞

1√
n4+n8

= 0 69. lim
n→∞ (2n + 3n)1/n = 3 71. (b)

73. Any number greater than or equal to 3 is an upper bound.
75. Example: an = (−1)n 79. Example: f (x) = sin πx

87. (e) AGM
(

1,
√

2
)

≈ 1.198

Section 10.2 Preliminary Questions
1. The sum of an infinite series is defined as the limit of the

sequence of partial sums. If the limit of this sequence does not exist,
the series is said to diverge.

2. S = 1
2

3. The result is negative, so the result is not valid: a series with all
positive terms cannot have a negative sum. The formula is not valid
because a geometric series with |r| ≥ 1 diverges.

4. No 5. No 6. N = 13

7. No, SN is increasing and converges to 1, so SN ≤ 1 for all N .

8. Example:
∞∑

n=1

1
n9/10

Section 10.2 Exercises

1. (a) an = 1
3n (b) an =

(
5
2

)n−1

(c) an = (−1)n+1 nn

n! (d) an = 1+ (−1)n+1+1
2

n2+1

3. S2 = 5
4 , S4 = 205

144 , S6 = 5369
3600

5. S2 = 2
3 , S4 = 4

5 , S6 = 6
7

7. S6 = 1.24992

9. S10 = 0.03535167962, S100 = 0.03539810274,
S500 = 0.03539816290, S1000 = 0.03539816334. Yes.

11. S3 = 3
10 , S4 = 1

3 , S5 = 5
14 ,

∞∑
n=1

(
1

n+1 − 1
n+2

)
= 1

2

13. S3 = 3
7 , S4 = 4

9 , S5 = 5
11 ,

∞∑
n=1

1
4n2−1

= 1
2

15. S = 1
2 17. lim

n→∞
n

10n+12 = 1
10 �= 0

19. lim
n→∞ (−1)n

(
n−1
n

)
does not exist.

21. lim
n→∞ an = cos 1

n+1 = 1 �= 0

23. S = 8
7 25. The series diverges. 27. S = 59049

3328

29. S = 1
e−1 31. S = 35

3 33. S = 4 35. S = 7
15

37. (b) and (c)
A39
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41. (a) Counterexample:
∞∑

n=1

(
1
2

)n = 1.

(b) Counterexample: If an = 1, then SN = N .

(c) Counterexample:
∞∑

n=1

1
n diverges.

(d) Counterexample:
∞∑

n=1

cos 2πn �= 1.

43. The total area is 1
4 .

45. The total length of the path is 2 + √
2.

Section 10.3 Preliminary Questions
1. (b)

2. A function f (x) such that an = f (n) must be positive,
decreasing, and continuous for x ≥ 1.

3. Convergence of p-series or integral test

4. Comparison Test

5. No;
∞∑

n=1

1

n
diverges, but since e−n

n < 1
n for n ≥ 1, the

Comparison Test tells us nothing about the convergence of
∞∑

n=1

e−n

n .

Section 10.3 Exercises
1.

∫ ∞
1

dx
x4 dx converges, so the series converges.

3.
∫ ∞

1 x−1/3 dx = ∞, so the series diverges.

5.
∫ ∞

25
x2

(x3+9)5/2 dx converges, so the series converges.

7.
∫ ∞

1
dx

x2+1
converges, so the series converges.

9.
∫ ∞

1
dx

x(x+1)
converges, so the series converges.

11.
∫ ∞

2
1

x(ln x)2 dx converges, so the series converges.

13.
∫ ∞

1
dx

2ln x = ∞, so the series diverges.

15. 1
n3+8n

≤ 1
n3 , so the series converges.

19. 1
n2n ≤

(
1
2

)n
, so the series converges.

21. 1
n1/3+2n ≤

(
1
2

)n
, so the series converges.

23. 4
m!+4m ≤ 4

(
1
4

)m
, so the series converges.

25. 0 ≤ sin2 k
k2 ≤ 1

k2 , so the series converges.

27. 2
3n+3−n ≤ 2

(
1
3

)n
, so the series converges.

29. 1
(n+1)! ≤ 1

n2 , so the series converges.

31. ln n
n3 ≤ 1

n2 for n ≥ 1, so the series converges.

33. (ln n)100

n1.1 ≤ 1
n1.09 for n sufficiently large, so the series converges.

35. n
3n ≤

(
2
3

)n
for n ≥ 1, so the series converges.

39. The series converges. 41. The series diverges.

43. The series converges. 45. The series diverges.

47. The series converges. 49. The series converges.
51. The series diverges. 53. The series converges.
55. The series diverges. 57. The series converges.
59. The series diverges. 61. The series diverges.
63. The series diverges. 65. The series converges.
67. The series diverges. 69. The series diverges.
71. The series converges. 73. The series converges.
75. The series diverges. 77. The series converges.
79. The series converges for a > 1 and diverges for a ≤ 1.

87.
∞∑

n=1

n−5 ≈ 1.0369540120.

91.
1000∑
n=1

1
n2 = 1.6439345667 and 1 +

100∑
n=1

1
n2(n+1)

= 1.6448848903.

The second sum is a better approximation to
π2

6
≈ 1.6449340668.

Section 10.4 Preliminary Questions
1. Example:

∑
(−1)n

3√n
2. (b) 3. No.

4. |S − S100| ≤ 10−3, and S is larger than S100.

Section 10.4 Exercises
3. Converges conditionally
5. Converges absolutely
7. Converges conditionally
9. Converges conditionally

11. (a) n Sn n Sn

1 1 6 0.899782407
2 0.875 7 0.902697859
3 0.912037037 8 0.900744734
4 0.896412037 9 0.902116476
5 0.904412037 10 0.901116476

13. S5 = 0.947 15. S44 = 0.06567457397
17. Converges (by geometric series)
19. Converges (by Comparison Test)
21. Converges (by Limit Comparison Test)
23. Diverges (by Limit Comparison Test)
25. Converges (by geometric series and linearity)
27. Converges absolutely (by Integral Test)
29. Converges conditionally (by Leibniz Test)
31. Converges (by Integral Test)
33. Converges conditionally

Section 10.5 Preliminary Questions

1. ρ = lim
n→∞

∣∣∣ an+1
an

∣∣∣
2. The Ratio Test is conclusive for

∞∑
n=1

1
2n and inconclusive

for
∞∑

n=1

1
n .

3. No.
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Section 10.5 Exercises
1. Converges absolutely 3. Converges absolutely

5. The ratio test is inconclusive. 7. Diverges

9. Converges absolutely 11. Converges absolutely

13. Diverges 15. The ratio test is inconclusive.

17. Converges absolutely 19. Converges absolutely

21. ρ = 1
3 < 1 23. ρ = 2|x|

25. ρ = |r| 29. Converges absolutely

31. The ratio test is inconclusive, so the series may converge or
diverge.

33. Converges absolutely 35. The ratio test is inconclusive.

37. Converges absolutely 39. Converges absolutely

41. Converges absolutely

43. Converges (by geometric series and linearity)

45. Converges (by the Ratio Test)

47. Converges (by the Limit Comparison Test)

49. Diverges (by p-series) 51. Converges (by geometric series)

53. Converges (by Limit Comparison Test)

55. Diverges (by Divergence Test)

Section 10.6 Preliminary Questions
1. Yes. The series must converge for both x = 4 and x = −3.

2. (a), (c) 3. R = 4

4. F ′(x) =
∞∑

n=1

n2xn−1; R = 1

Section 10.6 Exercises
1. R = 2. It does not converge at the endpoints.

3. R = 3 for all three series.

9. (−1, 1) 11. [−√
2,

√
2] 13. [−1, 1] 15. (−∞, ∞)

17. [− 1
4 , 1

4 ) 19. (−1, 1] 21. (−1, 1) 23. [−1, 1) 25. (2, 4)

27. (6, 8) 29.
[ − 7

2 , − 5
2

)
31. (−∞, ∞) 33.

(
2 − 1

e , 2 + 1
e

)
35.

∞∑
n=0

3nxn on the interval
( − 1

3 , 1
3

)

37.
∞∑

n=0

xn

3n+1 on the interval (−3, 3)

39.
∞∑

n=0

(−1)nx2n on the interval (−1, 1)

43.
∞∑

n=0

(−1)n+1(x − 5)n on the interval (4, 6)

47. (c) S4 = 69
640 and |S − S4| ≈ 0.000386 < a5 = 1

1920

49. R = 1 51.
∞∑

n=1

n
2n = 2 53. F(x) = 1−x−x2

1−x3

55. −1 ≤ x ≤ 1 57. P(x) =
∞∑

n=0

(−1)n xn

n!

59. N must be at least 5; S5 = 0.3680555556

61. P(x) = 1 − 1
2x2−

∞∑
n=2

1·3·5···(2n−3)
(2n)! x2n; R = ∞

Section 10.7 Preliminary Questions
1. f (0) = 3 and f ′′′(0) = 30

2. f (−2) = 0 and f (4)(−2) = 48

3. Substitute x2 for x in the Maclaurin series for sin x.

4. f (x) = 4 +
∞∑

n=1

(x−3)n+1

n(n+1)
5. (c)

Section 10.7 Exercises
1. f (x) = 2 + 3x + 2x2 + 2x3 + · · ·
3. 1

1−2x
=

∞∑
n=0

2nxn on the interval
( − 1

2 , 1
2

)

5. cos 3x =
∞∑

n=0

(−1)n 9nx2n

(2n)! on the interval (−∞, ∞)

7. sin(x2) =
∞∑

n=0

(−1)n x4n+2

(2n+1)! on the interval (−∞, ∞)

9. ln(1 − x2) = −
∞∑

n=1

x2n

n on the interval (−1, 1)

11. tan−1(x2) =
∞∑

n=0

(−1)n x4n+2

2n+1 on the interval [−1, 1]

13. ex−2 =
∞∑

n=0

xn

e2n! on the interval (−∞, ∞)

15. ln(1 − 5x) = −
∞∑

n=1

5nxn

n on the interval
[ − 1

5 , 1
5

)

17. sinh x =
∞∑

k=0

x2k+1

(2k+1)! on the interval (−∞, ∞)

19. ex sin x = x + x2 + x3

3 − x5

30 + · · ·
21. sin x

1−x
= x + x2 + 5x3

6 + 5x4

6 + · · ·
23. (1 + x)1/4 = 1 + 1

4x − 3
32x2 + 7

128x3 + · · ·
25. ex tan−1 x = x + x2 + 1

6x3 − 1
6x4 + · · ·

27. esin x = 1 + x + 1
2x2 − 1

8x4 + · · ·

29. 1
x =

∞∑
n=0

(−1)n(x − 1)n on the interval (0, 2)

31. 1
1−x

=
∞∑

n=0

(−1)n+1 (x−5)n

4n+1 on the interval (1, 9)

33. 21 + 35(x − 2) + 24(x − 2)2 + 8(x − 2)3 + (x − 2)4 on the
interval (−∞, ∞)

35. 1
x2 =

∞∑
n=0

(−1)n(n + 1)
(x − 4)n

4n+2
on the interval (0, 8)

37. 1
1−x2 =

∞∑
n=0

(−1)n+1(2n+1−1)

22n+3 (x − 3)n on the interval (1, 5)
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39. cos2 x = 1
2 + 1

2

∞∑
n=0

(−1)n
(4)nx2n

(2n)!

45. S4 = 0.1822666667
47. (a) 4 (b) S4 = 0.7474867725

49.
∫ 1

0 cos(x2) dx =
∞∑

n=0

(−1)n

(2n)!(4n+1)
; S3 = 0.9045227920

51.
∫ 1

0
e−x3

dx =
∞∑

n=0

(−1)n

n!(3n+1)
; S5 = 0.8074461996

53.
∫ x

0
1−cos(t)

t dt =
∞∑

n=1

(−1)n+1 x2n

(2n)!2n

55.
∫ x

0 ln(1 + t2) dt =
∞∑

n=1

(−1)n−1 x2n+1

n(2n + 1)

57. 1
1+2x

63. ex3
65. 1 − 5x + sin 5x

67. 1
(1−2x)(1−x)

=
∞∑

n=0

(
2n+1 − 1

)
xn

69. I (t) = V
R

∞∑
n=1

(−1)n+1

n!
(

Rt
L

)n

71. f (x) =
∞∑

n=0

(−1)nx6n

(2n)! and f (6)(0) = −360.

73. e20x = 1 + x20 + x40

2 + · · · 75. No.

81. lim
x→0

sin x − x + x3

6
x5 = 1

120

83. lim
x→0

(
sin(x2)

x4
− cos x

x2

)
= 1

2

85. S = π
4 − 1

2 ln 2 89. L ≈ 28.369

Chapter 10 Review
1. (a) a2

1 = 4, a2
2 = 1

4 , a2
3 = 0

(b) b1 = 1
24 , b2 = 1

60 , b3 = 1
240

(c) a1b1 = − 1
12 , a2b2 = − 1

120 , a3b3 = 0

(d) 2a2 − 3a1 = 5, 2a3 − 3a2 = 3
2 , 2a4 − 3a3 = 1

12

3. lim
n→∞(5an − 2a2

n) = 2 5. lim
n→∞ ean = e2

7. lim
n→∞(−1)nan does not exist.

9. lim
n→∞

(√
n + 5 − √

n + 2
)

= 0 11. lim
n→∞ 21/n2 = 1

13. The sequence diverges.

15. lim
n→∞ tan−1

(
n+2
n+5

)
= π

4

17. lim
n→∞

(√
n2 + n −

√
n2 + 1

)
= 1

2

19. lim
m→∞

(
1 + 1

m

)3m

= e3 21. lim
n→∞(n ln(n + 1) − ln n) = 1

25. lim
n→∞

an+1

an
= 3 27. S4 = − 11

60 , S7 = 41
630

29.
∞∑

n=2

( 2
3 )n = 4

3 31.
∞∑

n=−1

2n+3

3n
= 36

33. Example: an =
(

1
2

)n + 1, bn = −1

35. S = 47
180 37. The series diverges.

39.
∫ ∞

1
1

(x+2)(ln(x+2))3 dx = 1
2(ln(3))2 , so the series converges.

41. 1
(n+1)2 < 1

n2 , so the series converges.

43.
∞∑

n=0

1
n1.5 converges, so the series converges.

45. n√
n5+2

< 1
n3/2 , so the series converges.

47.
∞∑

n=0

(
10
11

)n
converges, so the series converges.

49. Converges

53. (b) 0.3971162690 ≤ S ≤ 0.3971172688, so the maximum size
of the error is 10−6.

55. Converges absolutely 57. Diverges

59. (a) 500 (b) K ≈
499∑
n=0

(−1)k

(2k+1)2 = 0.9159650942

61. (a) Converges (b) Converges (c) Diverges
(d) Converges

63. Converges 65. Converges 67. Diverges

69. Diverges 71. Converges 73. Converges

75. Converges (by geometric series)

77. Converges (by geometric series)

79. Converges (by the Leibniz Test)

81. Converges (by the Leibniz Test)

83. Converges (by the Comparison Test)

85. Converges using partial sums (the series is telescoping)

87. Diverges (by the Comparison Test)

89. Converges (by the Comparison Test)

91. Converges (by the Comparison Test)

93. Converges on the interval (−∞, ∞)

95. Converges on the interval [2, 4]
97. Converges at x = 0

99. 2
4−3x

= 1
2

∞∑
n=0

(
3
4

)n
xn. The series converges on the interval

(−4
3 , 4

3 )

101. (c) y

x
−1−2 1

1

2

3

4

5

6

7

2

103. e4x =
∞∑

n=0

4n

n! xn

105. x4 = 16 + 32(x − 2) + 24(x − 2)2 + 8(x − 2)3 + (x − 2)4
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107. sin x =
∞∑

n=0

(−1)n+1(x−π)2n+1

(2n+1)!

109. 1
1−2x

=
∞∑

n=0

2n

5n+1 (x + 2)n 111. ln x
2 =

∞∑
n=1

(−1)n+1(x−2)n

n2n

113. (x2 − x)ex2 =
∞∑

n=0

( x2n+2−x2n+1

n! ) so f (3)(0) = −6

115. 1
1+tan x

= −x + x2 − 4
3x3 + 2

3x4 + · · · so f (3)(0) = −8

117. π
2 − π3

233! + π5

255! − π7

277! + · · · = sin π
2 = 1

Chapter 11
Section 11.1 Preliminary Questions

1. A circle of radius 3 centered at the origin.

2. The center is at (4, 5) 3. Maximum height: 4

4. Yes; no 5. (a) ↔ (iii), (b) ↔ (ii), (c) ↔ (i)

Section 11.1 Exercises
1. (t = 0)(1, 9); (t = 2)(9, −3); (t = 4)(65, −39)

5. (a)

x

y (b)

x

y

t =      (−1,−1)3π
2

t =     (1,1)π

2

t = 0
t = 2π

(c)

x

y (d)

x

y

t = 1(1, 1)

t = −1 (−1, −1)

7. y = 4x − 12 9. y = tan−1
(
x3 + ex

)
11. y = 6

x2 (where x > 0) 13. y = 2 − ex

15.

x

y

t = 0

17.

x

y

(4π2,0)

(−2π2,0)

19. (a) ↔ (iv), (b) ↔ (ii), (c) ↔ (iii), (d) ↔ (i)

21. π ≤ t ≤ 2π 23. c(t) = (t, 9 − 4t) 25. c(t) =
(

5+t2

4 , t
)

27. c(t) = (−9 + 7 cos t, 4 + 7 sin t) 29. c(t) = (−4 + t, 9 + 8t)

31. c(t) = (3 − 8t, 1 + 3t) 33. c(t) = (1 + t, 1 + 2t) (0 ≤ t ≤ 1)

35. c(t) = (3 + 4 cos t, 9 + 4 sin t) 37. c(t) =
(
−4 + t, −8 + t2

)
39. c(t) = (2 + t, 2 + 3t) 41. c(t) =

(
3 + t, (3 + t)2

)
43. y =

√
x2 − 1 (1 ≤ x<∞) 45. Plot III.

47. y

x

t = 1

t = 0

t = 2

t = −1

t = −2

49. dy
dx

∣∣∣
t=−4

= −1

6
51. dy

dx

∣∣∣
s=−1

= −3

4

53. y = −9

2
x + 11

2
; dy

dx
= −9

2

55. y = x2 + x−1; dy
dx

= 2x − 1

x2

57. (0, 0), (96, 180)

59.

x

y

20

t = 0
(−9,0)

t = 8
(55,0)

t = 3
(0,−15)

t = −3 (0,33)

t = 4 (7,−16)

40 60−20

−20

20

40

60

The graph is in: quadrant (i) for t < −3 or t > 8, quadrant (ii) for
−3 < t < 0, quadrant (iii) for 0 < t < 3, quadrant (iv) for 3 < t < 8.

61. (55, 0)

63. The coordinates of P , (R cos θ, r sin θ), describe an ellipse for
0 ≤ θ ≤ 2π .

67. c(t) = (3 − 9t + 24t2 − 16t3, 2 + 6t2 − 4t3), 0 ≤ t ≤ 1

x

y

1 2 3

1

2

3

4
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71. y = −√
3x +

√
3

2

x

y

=     (0, 1)π

2

θ =      (0, −1)3π
2

θ = 0
(1, 0)

θ = π
(−1, 0)

73. ((2k − 1)π, 2) , k = 0, ±1, ±2, . . .

83. d2y

dx2

∣∣∣∣
t=2

= − 21

512
85. d2y

dx2

∣∣∣∣
t=−3

= 0 87. Concave up: t > 0

Section 11.2 Preliminary Questions
1. S = ∫ b

a

√
x′(t)2 + y′(t)2 dt 2. The speed at time t

3. Displacement: 5; no 4. L = 180 cm

Section 11.2 Exercises
1. S = 10 3. S = 16

√
13 5. S = 1

2 (653/2 − 53/2) ≈ 256.43

7. S = 3π 9. S = −8
(√

2
2 − 1

)
≈ 2.34

13. S = ln(cosh(A)) 15. ds
dt

∣∣∣∣
t=2

= 4
√

10 ≈ 12.65 m/s

17. ds
dt

∣∣∣∣
t=9

= √
41 ≈ 6.4 m/s 19.

(
ds
dt

)
min

≈ √
4.89 ≈ 2.21

21. ds
dt

= 8

23. y

t = 0, t = 2π, (1, 1)t = π, (−1, 1)

x

t =     (0, e)π

2

t =      (0,    )3π
2

1
e

M10 = 6.903734, M20 = 6.915035, M30 = 6.914949,
M50 = 6.914951

25. y

t = 0
t = 2π

x

M10 = 25.528309, M20 = 25.526999, M30 = 25.526999,
M50 = 25.526999

27. S = 2π2R 29. S = m
√

1 + m2πA2 31. S = 64π
3

33. (a)

y

x
t = 10π

t = 0

302010

15

20

10

5

x

y

(b) L ≈ 212.09

Section 11.3 Preliminary Questions
1. (b)

2. Positive: (r,θ) = (
1, π

2

)
; Negative: (r, θ) =

(
−1, 3π

2

)
3. (a) Equation of the circle of radius 2 centered at the origin.

(b) Equation of the circle of radius
√

2 centered at the origin.

(c) Equation of the vertical line through the point (2, 0).

4. (a)

Section 11.3 Exercises
1. (A):

(
3
√

2, 3π
4

)
; (B): (3, π); (C):(√

5, π + 0.46
)

≈
(√

5, 3.60
)

; (D):
(√

2, 5π
4

)
; (E):

(√
2, π

4

)
; (F):(

4, π
6

)
; (G):

(
4, 11π

6

)
3. (a) (1, 0) (b)

(√
12, π

6

)
(c)

(√
8, 3π

4

)
(d)

(
2, 2π

3

)
5. (a)

(
3
√

3
2 , 3

2

)
(b)

(
− 6√

2
, 6√

2

)
(c) (0, 0) (d) (0, −5)

7. (A): 0 ≤ r ≤ 3, π ≤ θ ≤ 2π , (B): 0 ≤ r ≤ 3, π
4 ≤ θ ≤ π

2 , (C):

3 ≤ r ≤ 5, 3π
4 ≤ θ ≤ π

9. m = tan 3π
5 ≈ −3.1 11. x2 + y2 = 72

13. x2 + (y − 1)2 = 1 15. y = x − 1 17. r = √
5

19. r = tan θ sec θ

21. (a)↔(iii), (b)↔(iv), (c)↔(i), (d)↔(ii)

23. (a) (r, 2π − θ) (b) (r, θ + π) (c) (r, π − θ)

(d)
(
r, π

2 − θ
)

25. r cos
(
θ − π

3

) = d

27.

π

4
3π
4

3π
2

5π
4

7π
4

π

2

O

D

E

A

G

C
B

0
2π

π
H

F
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29.

7π

4
3π

2

5π

4

3π

4

π

2
π

4

π 0
0 1 2 x

y

31. (a) A, θ = 0, r = 0; B, θ = π
4 , r = sin 2π

4 = 1; C, θ = π
2 ,

r = 0; D, θ = 3π
4 , r = sin 2·3π

4 = −1; E, θ = π , r = 0; F, θ = 5π
4 ,

r = 1; G, θ = 3π
2 , r = 0; H, θ = 7π

4 , r = −1; I, θ = 2π , r = 0

(b) 0 ≤ θ ≤ π
2 is in the first quadrant. π

2 ≤ θ ≤ π is in the fourth

quadrant. π ≤ θ ≤ 3π
2 is in the third quadrant. 3π

2 ≤ θ ≤ 2π is in the
second quadrant.

33.

7π

4
3π

2

5π

4

3π

4

π

2
π

4

π 0
0 1 2 x

y

35.
(
x − a

2

)2 +
(
y − b

2

)2 = a2+b2

4 , r =
√

a2 + b2 , centered at the

point
(

a
2 , b

2

)
37. r2 = sec 2θ 39. (x2 + y2) = x3 − 3y2x

41. r = 2 sec
(
θ − π

9

)
43. r = 2

√
10 sec (θ − 4.39)

47. r2 = 2a2 cos 2θ

r2 = 8 cos 2θ

3π

2

π

2

π 0

51. θ = π
2 , m = − 2

π ; θ = π , m = π

53.
(√

2
2 , π

6

)
,
(√

2
2 , 5π

6

)
,
(√

2
2 , 7π

6

)
,
(√

2
2 , 11π

6

)
55. A: m = 1, B: m = −1, C: m = 1

Section 11.4 Preliminary Questions
1. (b) 2. Yes 3. (c)

Section 11.4 Exercises
1. A = 1

2

∫ π
π/2 r2 dθ = 25π

4

x

y
θ =

θ = π

π

2

3. A = 1
2

∫ π
0 r2 dθ = 4π 5. A = 16

7. A = 3π
2 9. A = π

8 ≈ 0.39

11.

x

y

θ = 2π,
r = 2π

θ = π,
r = π

θ = π/2,
r = π/2

θ = 0,
r = 0

A = π3

48

13. A =
√

15
2 + 7 cos−1

(
1
4

)
≈ 11.163

15. A = π − 3
√

3
2 ≈ 0.54 17. A = π

8 − 1
4 ≈ 0.14 19. A = 4π

21. A = 9π
2 − 4

√
2 23. A = 4π

25. L = 1
3

((
π2 + 4

)3/2 − 8

)
≈ 14.55

27. L = √
2

(
e2π − 1

)
≈ 755.9 29. L = 8

31. L = ∫ 2π
0

√
5 − 4 cos θ (2 − cos θ)−2 dθ 33. L ≈ 6.682

35. L ≈ 79.564

Section 11.5 Preliminary Questions
1. (a) Hyperbola (b) Parabola (c) Ellipse

(d) Not a conic section

2. Hyperbolas 3. The points (0, c) and (0, −c)

4. ± b
a are the slopes of the two asymptotes of the hyperbola.

Section 11.5 Exercises Questions
1. F1 =

(
−√

65, 0
)

, F2 =
(√

65, 0
)

. The vertices are (9, 0),

(−9, 0), (0, 4) and (0, −4).

3. F1 =
(√

97, 0
)

, F2 =
(√

97, 0
)

. The vertices are (4, 0) and

(−4, 0).

5. F1 =
(√

65 + 3, −1
)

, F2 =
(
−√

65 + 3, −1
)

. The vertices are

(10, −1) and (−4, −1).
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7. x2

62 + y2

32 = 1 9. (x−14)2

62 + (y+4)2

32 = 1

11. x2

52 + y2

72 = 1 13. x2

(40/3)2 + y2

(50/3)2 = 1

15.
(
x
3

)2 − ( y
4

)2 = 1 17. x2

22 + y2(
2
√

3
)2 = 1

19.
(

x−2
5

)2 −
(

y

10
√

2

)2 = 1 21. y = 3x2

23. y = 1
20x2 25. y = 1

16x2 27. x = 1
8y2

29. Vertices: (±4, 0), (0, ±2). Foci:
(
±√

12, 0
)

. Centered at the

origin.

31. Vertices: (7, −5), (−1, −5) . Foci:
(√

65 + 3, −5
)

,(
−√

65 + 3, −5
)

. Center: (3, −5). Asymptotes: y = 4
7x + 47

7 and

y = − 4
7x + 23

7 .

33. Vertices: (5, 5), (−7, 5) . Foci:
(√

84 − 1, 5
)

,
(
−√

84 − 1, 5
)

.

Center: (−1, 5). Asymptotes: y =
√

48
6 (x + 1) + 5 ≈ 1.15x + 6.15

and y = −
√

48
6 (x + 1) + 5 ≈ −1.15x + 3.85.

35. Vertex: (0, 0). Focus:
(

0, 1
16

)
.

37. Vertices:
(

1 ± 5
2 , 1

5

)
,
(

1, 1
5 ± 1

)
. Foci:

(
−

√
21
2 + 1, 1

5

)
,(√

21
2 + 1, 1

5

)
. Centered at

(
1, 1

5

)
.

39. D = −87; ellipse 41. D = 40; hyperbola

47. Focus: (0, c). Directrix: y = −c. 49. A = 8
3 c2

51. r = 3
2+cos θ

53. r = 4
1+cos θ

55. Hyperbola, e = 4, directrix x = 2

57. Ellipse, e = 3
4 , directrix x = 8

3 59. r = 12
5−6 cos θ

61.
(

x+3
5

)2 +
(

y
16/5

)
2 = 1

63. 4.5 billion miles

Chapter 11 Review
1. (a), (c)

3. c(t) = (1 + 2 cos t, 1 + 2 sin t). The intersection points with the

y-axis are
(

0, 1 ± √
3
)

. The intersection points with the x-axis are(
1 ± √

3, 0
)

.

5. c (θ) = (cos (θ + π) , sin (θ + π)) 7. c(t) = (1 + 2t, 3 + 4t)

9. y = − x
4 + 37

4 11. y = 8
(3−x)2 + 3−x

2

13. dy
dx

∣∣∣∣
t=3

= 3
14 15. dy

dx

∣∣∣∣
t=0

= cos 20
e20

17. (0, 1), (π, 2), (0.13, 0.40), and (1.41, 1.60)

19. x(t) = −2t3 + 4t2 − 1, y(t) = 2t3 − 8t2 + 6t − 1

21. ds
dt

= √
3 + 2(cos t − sin t); maximal speed:

√
3 + 2

√
2

23. s = √
2

25.

x

y

2

1

−2

−1

−2 −1 21

s = 2
∫ π

0

√
cos2 2t + sin2 t dt ≈ 6.0972

27.
(
1, π

6

)
and

(
3, 5π

4

)
have rectangular coordinates

(√
3

2 , 1
2

)
and(

− 3
√

2
2 , − 3

√
2

2

)
.

29.
√

x2 + y2 = 2x
x−y 31. r = 3 + 2 sin θ

r = 3 + 2sin θ

5

40 31−4 2−1−2−3
−2

4

3

2

1

0

−1

33. A = π
16 35. e − 1

e
Note: One needs to double the integral from −π

2 to π
2 in order to

account for both sides of the graph.

37. A = 3πa2

2

39. Outer: L ≈ 36.121, inner: L ≈ 7.5087, difference: 28.6123

41. Ellipse. Vertices: (±3, 0), (0,±2). Foci: (±√
5, 0).

43. Ellipse. Vertices:
(
± 2√

5
, 0

)
,
(

0, ± 4√
5

)
. Foci:

(
0, ±

√
12
5

)
.

45.
(
x
8

)2 +
(

y√
61

)2 = 1 47.
(
x
8

)2 − ( y
6

)2 = 1 49. x = 1
32y2

51. y = √
3x +

(√
3 − 5

)
and y = −√

3x +
(
−√

3 − 5
)

CHAPTER 12
Section 12.1 Preliminary Questions

1. (a) True (b) False (c) True (d) True

2. ‖−3a‖ = 15

3. The components are not changed.

4. (0, 0)

5. (a) True (b) False
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Section 12.1 Exercises
1. v1 = 〈2, 0〉 , ‖v1‖ = 2 v2 = 〈2, 0〉 , ‖v2‖ = 2

y

x

QP
v1

y

x

QP
v2

v3 = 〈3, 1〉 , ‖v3‖ = √
10 v4 = 〈2, 2〉 , ‖v4‖ = 2

√
2

y

x

Q

P v3

y

x

Q

P v4

Vectors v1 and v2 are equivalent.

3. (3, 5)

y

x

P

Q

0

a0

a

5.
−→
PQ = 〈−1, 5〉 7.

−→
PQ = 〈−2, − 9〉 9. 〈5, 5〉

11. 〈30, 10〉 13.
〈

5
2 , 5

〉
15. Vector (B)

w

vv − w

−w

−w

17. 2v = 〈4, 6〉 −w = 〈−4, − 1〉

2 4 61 3 5

2v

1

2

3

4

5

x

y

y

x
w

−w

2v − w = 〈0, 5〉 v + w = 〈6, 4〉

2v − w

y

x

y

x
w

v

v + w

19. 3v + w = 〈−2, 10〉, 2v − 2w = 〈4, − 4〉
y

x

w

v

3v + w

2v − 2w

21.

1 2

3

1

−4

−3

y

x

v

v1

v2

23. (b) and (c)

25.
−→
AB = 〈2, 6〉 and

−→
PQ = 〈2, 6〉; equivalent

27.
−→
AB = 〈3, −2〉 and

−→
PQ = 〈3, −2〉; equivalent

29.
−→
AB = 〈2, 3〉 and

−→
PQ = 〈6, 9〉; parallel and point in the same

direction
31.

−→
AB = 〈−8, 1〉 and

−→
PQ = 〈8, −1〉; parallel and point in

opposite directions

33.
∥∥∥−→
OR

∥∥∥ = √
53 35. P = (0, 0) 37. ev = 1

5 〈3, 4〉
39. 4eu =

〈
−2

√
2, − 2

√
2
〉

41. e =
〈
cos 4π

7 , sin 4π
7

〉
= 〈−0.22, 0.97〉

43. λ = ± 1√
13

45. P = (4, 6)

47. (a) → (ii), (b) → (iv), (c) → (iii), (d) → (i) 49. 9i + 7j
51. −5i − j
53.

y

x

w

v
B

sw
rv

y

x

w

vsw

rv

C

y

x

A

w

v

sw

rv
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55. u = 2v − w

y

x

v

u

w

57. The force on cable 1 is ≈ 45 lb, and force on cable 2 is ≈ 21 lb.

59. 230 km/hr 61. r = 〈6.45, 0.38〉

Section 12.2 Preliminary Questions
1. (4, 3, 2) 2. 〈3, 2, 1〉 3. (a) 4. (c)

5. Infinitely many direction vectors 6. True

Section 12.2 Exercises
1. ‖v‖ = √

14

1 3

2

yx

z

v = 〈1, 3, 2〉

3. The head of v = −→
PQ is Q = (1, 2, 1).

v

v0
yx

Q = (1, 2, 1)

P = (0, 1, 1)

z

v0 = −→
OS, where S = (1, 1, 0)

v y
x S = (1, 1, 0)

O

z

5.
−→
PQ = 〈1, 1, − 1〉 7.

−→
PQ =

〈
− 9

2 , − 3
2 , 1

〉
9.

∥∥∥−→
OR

∥∥∥ = √
26 ≈ 5.1 11. P = (−2, 6, 0)

13. (a) Parallel and same direction (b) Not parallel

(c) Parallel and opposite directions (d) Not parallel

15. Not equivalent 17. Not equivalent 19. 〈−8, − 18, − 2〉
21. 〈−2, − 2, 3〉 23. 〈16, − 1, 9〉
25. ew =

〈
4√
21

, −2√
21

, −1√
21

〉
27. −ev =

〈
2
3 , − 2

3 , − 1
3

〉
29. r(t) = 〈1 + 2t, 2 + t, − 8 + 3t〉
31. r(t) = 〈4 + 7t, 0, 8 + 4t〉 33. r(t) = 〈1 + 2t, 1 − 6t, 1 + t〉
35. r(t) = 〈4t, t, t〉 37. r(t) = 〈0, 0, t〉
39. r(t) = 〈−t, − 2t, 4 − 2t〉
41. (c) 43. (3, 4, 3) 45. R = (6, 13, 15)

49. r1(t) = 〈5, 5, 2〉 + t 〈0, − 2, 1〉;
r2(t) = 〈5, 5, 2〉 + t 〈0, − 20, 10〉

53. (3, 4, 7) 55. v =
〈
0, 1

2 , − 1
2

〉
59. x−1

−3 = y−1
3 = z−2

−2
61. r(t) = 〈5, − 3, 10〉 + t 〈9, 7, 1〉

Section 12.3 Preliminary Questions
1. Scalar 2. Obtuse 3. Distributive Law

4. (a) v (b) v

5. (b); (c) 6. (c)

Section 12.3 Exercises
1. 15 3. 41 5. 5 7. 0 9. 1 11. 0 13. Obtuse

15. Orthogonal 17. Acute 19. 0 21. 1√
10

23. π/4

25. ≈ 0.615 27. 2π/3

29. (a) b = − 1
2 (b) b = 0 or b = 1

2

31. v1 = 〈0, 1, 0〉 , v2 = 〈3, 2, 2〉 33. − 3
2 35. ‖v‖2

37. ‖v‖2 − ‖w‖2 39. 8 41. 2 43. π 45. (b) 7 49. 51.91◦
51.

〈
7
2 , 7

2

〉
53.

〈
− 4

5 , 0, − 2
5

〉
55. −4k 57. ai 59. 2

√
2

61.
√

17

63. a =
〈

1
2 , 1

2

〉
+

〈
1
2 , − 1

2

〉
65. a =

〈
0, − 1

2 , − 1
2

〉
+

〈
4, − 1

2 , 1
2

〉
67.

〈
x−y

2 ,
y−x

2

〉
+

〈
x+y

2 ,
y+x

2

〉
71. ≈ 35◦ 73.

−→
AD 77. ≈ 68.07 N 95. 2x + 2y − 2z = 1

Section 12.4 Preliminary Questions

1.

∣∣∣∣ −5 −1
4 0

∣∣∣∣
2. ‖e × f‖ = 1

2 3. u × v = 〈−2, − 2, − 1〉
4. (a) 0 (b) 0

5. i × j = k and i × k = −j 6. v × w = 0 if either v or w (or
both) is the zero vector or v and w are parallel vectors.

Section 12.4 Exercises
1. −5 3. −15 5. −8 7. 0 9. i + 2j − 5k 11. 6i − 8k

13. −j + i 15. i + j + k 17. 〈−1, −1, 0〉
19. 〈−2, − 2, − 2〉 21. 〈4, 4, 0〉
23. v × i = 〈0, c, − b〉; v × j = 〈−c, 0, a〉;
v × k = 〈b, − a, 0〉
25. −u 27. 〈0, 3, 3〉 31. e′ 33. F1 37. 2

√
138
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39. The volume is 4.

u
v

w

y

x

z

41.
√

35 ≈ 5.92
43.

y
x

O

Q = (0, 3, 3)

P = (3, 3, 0)

z

The area of the triangle is 9
√

3
2 ≈ 7.8.

55. X = 〈a, a, a + 1〉
59. τ = 250 sin 125◦ k ≈ 204.79 k

Section 12.5 Preliminary Questions
1. 3x + 4y − z = 0 2. (c): z = 1 3. Plane (c) 4. xz-plane
5. (c): x + y = 0 6. Statement (a)

Section 12.5 Exercises
1. 〈1, 3, 2〉 · 〈x, y, z〉 = 3

x + 3y + 2z = 3
(x − 4) + 3(y + 1) + 2(z − 1) = 0

3. 〈−1, 2, 1〉 · 〈x, y, z〉 = 3
−x + 2y + z = 3
−(x − 4) + 2(y − 1) + (z − 5) = 0

5. 〈1, 0, 0〉 · 〈x, y, z〉 = 3
x = 3
(x − 3) + 0(y − 1) + 0(z + 9) = 0

7. 〈0, 0, 1〉 · 〈x, y, z〉 = 2
z = 2
0(x − 6) + 0(y − 7) + 1(z − 2) = 0

9. x = 0 11. Statements (b) and (d) 13. 〈9, − 4, − 11〉
15. 〈3, − 8, 11〉 17. 6x + 9y + 4z = 19 19. x + 2y − z = 1
21. 4x − 9y + z = 0 23. x = 4 25. x + z = 3
27. 13x + y − 5z = 27 29. Yes, the planes are parallel.
31. 10x + 15y + 6z = 30 33. (1, 5, 8) 35. (−2, 3, 12)

37. −9y + 4z = 5 39. x = − 2
3 41. x = −4

43. The two planes have no common points.
45. y − 4z = 0

x + y − 4z = 0
47. (3λ)x + by + (2λ)z = 5λ, λ �= 0 49. θ = π/2
51. θ = 1.143 rad or θ = 65.49◦ 53. θ ≈ 55.0◦
55. x + y + z = 1 57. x − y − z = f

59. x = 9
5 + 2t, y = − 6

5 − 3t, z = 2 + 5t 61. ±24 〈1, 2, − 2〉
67.

(
2
3 , − 1

3 , 2
3

)
69. 6√

30
≈ 1.095 71. |a|

Section 12.6 Preliminary Questions
1. True, mostly, except at x = ±a, y = ±b, or z = ±c.

2. False 3. Hyperbolic paraboloid

4. No 5. Ellipsoid

6. All vertical lines passing through a parabola c in the xy-plane.

Section 12.6 Exercises
1. Ellipsoid 3. Ellipsoid

5. Hyperboloid of one sheet 7. Elliptic paraboloid

9. Hyperbolic paraboloid 11. Hyperbolic paraboloid

13. Ellipsoid, the trace is a circle on the xz-plane

15. Ellipsoid, the trace is an ellipse on the xy-plane

17. Hyperboloid of one sheet, the trace is a hyperbola.

19. Parabolic cylinder, the trace is the parabola y = 3x2

21. (a) ↔ Figure b; (b) ↔Figure c; (c) ↔ Figure a

23. y = (
x
2

)2 + (
z
4

)2

25. z

y

x

Graph of x2 + y2 − z2 = 1

27. z

y

x

29.

4

1

8

z

y

x

31.
(
x
2

)2 + ( y
4

)2 + (
z
6

)2 = 1 33.
(
x
4

)2 + ( y
6

)2 −
(

z

3
√

3

)2 = 1

35. One or two vertical lines, or an empty set

37. The upper part of an elliptic cone

Section 12.7 Preliminary Questions
1. Cylinder of radius R whose axis is the z-axis, sphere of radius R

centered at the origin.

2. (b) 3. (a) 4. φ = 0, π 5. φ = π
2 , the xy-plane
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Section 12.7 Exercises
1. (−4, 0, 4) 3.

(
0, 0, 1

2

)
5.

(√
2, 7π

4 , 1
)

7.
(
2, π

3 , 7
)

9.
(
5, π

4 , 2
)

11. r2 ≤ 1

13. r2 + z2 ≤ 4, θ = π
2 or θ = 3π

2

15. r2 ≤ 9, 5π
4 ≤ θ ≤ 2π and 0 ≤ θ ≤ π

4
17.

−4

−4

4
4

z

y

x

19.

−2

z

y

x

21. z

y

x

−4

−4

4

0

4

4

23.
2

2

2

−2

−2

−2

z

y

x

25. r = z
cos θ+sin θ

27. r = z tan θ
cos θ 29. r = 2 31. (3, 0, 0)

33. (0, 0, 3) 35.
(

3
√

3
2 , 3

2 , − 3
√

3
)

37.
(
2, 0, π

3

)
39.

(√
3, π

4 , 0.955
)

41.
(
2, π

3 , π
6

)
43.

(
2
√

2, 0, π
4

)
45.

(
2
√

2, 0, 2
√

2
)

47. 0 ≤ ρ ≤ 1

49. ρ = 1, 0 ≤ θ ≤ π
2 , 0 ≤ φ ≤ π

2

51.
{
(ρ, θ, φ) : 0 ≤ ρ ≤ 2, θ = π

2 or θ = 3π
2

}
53. z

y

x

55.

2

x

z

y

2

57.
2

2
2

−2

−2

z

y

x

59.

2
2

−2

z

y

x

61. ρ = 2
cos φ 63. ρ = cos θ tan φ

cos φ 65. ρ = 2
sin φ

√
cos 2θ

67. (b)

69. Helsinki:(25.0◦, 29.9◦), Sao Paulo: (313.48◦, 113.52◦)
71. Sydney: (−4618.8, 2560.3, − 3562.1), Bogota:
(1723.7, − 6111.7, 503.1)

73. z = ±r
√

cos 2θ

77. r =
√

z2 + 1 and ρ =
√

− 1
cos 2φ

; no points; π
4 < φ < 3π

4

Chapter 12 Review

1. 〈21, − 25〉 and 〈−19, 31〉 3.
〈 −2√

29
, 5√

29

〉
5. i = 2

11 v + 5
11 w 7.

−→
PQ = 〈−4, 1〉 ;

∥∥∥−→
PQ

∥∥∥ = √
17

9.
〈

3√
2
, − 3√

2

〉
11. β = 3

2 13. u =
〈

1
3 , − 11

6 , 7
6

〉
15. r1(t) = 〈1 + 3t, 4 + t, 5 + 6t〉 ; r2(t) = 〈1 + 3t, t, 6t〉
17. a = −2, b = 2
19.

3−2

4

x

y

v1

v1 + v2 + v3

v 1
 +

 v
2

v2

v3

21. v · w = −9 23. v × w = 〈10, − 8, − 7〉
25. V = 48 29. 5

3

31. ‖F1‖ = 2‖F2‖√
3

; ‖F1‖ = 980 N

33. v × w = 〈−6, 7, − 2〉
35. −47 37. 5

√
2 41. ‖e − 4f‖ = √

13
47. (x − 0) + 4(y − 1) − 3(z + 1) = 0
49. 17x − 21y − 13z = −28 51. 3x − 2y = 4 53. Ellipsoid
55. Elliptic paraboloid 57. Elliptic cone
59. (a) Empty set (b) Hyperboloid of one sheet
(c) Hyperboloid of two sheets

61. (r, θ, z) =
(

5, tan−1 4
3 , − 1

)
, (ρ, θ, φ) =(√

26, tan−1 4
3 , cos−1

( −1√
26

))
63. (r, θ, z) =

(
3
√

3
2 , π

6 , 3
2

)
65. z = 2x

4

2

2

2

−4

y

x

z

4

2

2

2

−4

y

x

z

69. A < −1 : Hyperboloid of one sheet
A = −1 : Cylinder with the z-axis as its central axis
A > −1 : Ellipsoid
A = 0 : Sphere
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CHAPTER 13
Section 13.1 Preliminary Questions

1. (c) 2. The curve z = ex

3. The projection onto the xz-plane

4. The point (−2, 2, 3)

5. As t increases from 0 to 2π , a point on sin t i + cos tj moves
clockwise and a point on cos t i + sin tj moves counterclockwise.

6. (a), (c), and (d)

Section 13.1 Exercises
1. D = {t ∈ R, t �= 0, t �= −1}
3. r(2) =

〈
0, 4, 1

5

〉
; r(−1) =

〈
−1, 1, 1

2

〉
5. r(t) = (3 + 3t)i − 5j + (7 + t)k
7. A ↔ ii, B ↔ i, C ↔ iii

9. (a) = (v), (b) = (i), (c) = (ii), (d) = (vi), (e) = (iv), (f) = (iii)

11. C ↔ i, A ↔ ii, B ↔ iii

13. Radius 9, center (0, 0, 0), xy-plane

15. Radius 1, center (0, 0, 4), xz-plane

17. (b)
10

5

0

−5

−10
−4 0 6 8 6 4 2 0 −2 −4 −6 −8

x
y

z

19. (0, 1, 0), (0, −1, 0),
(

1√
2
, 1√

2
, 0

)
,
(

1√
2
, − 1√

2
, 0

)
,(

− 1√
2
, − 1√

2
, 0

)
,
(
− 1√

2
, 1√

2
, 0

)
21. r(t) =

〈
2t2 − 7, t, ±

√
9 − t2

〉
, for − 3 ≤ t ≤ 3

23. (a) r(t) =
〈
±t

√
1 − t2, t2, t

〉
for − 1 ≤ t ≤ 1

(b) The projection is a circle in the xy-plane with radius 1
2 and

centered at the xy-point
(
0, 1

2

)
.

25. r(t) = 〈cos t, ± sin t, sin t〉; the projection of the curve onto the
xy-plane is traced by 〈cos t, ± sin t, 0〉, which is the unit circle in
this plane; the projection of the curve onto the xz-plane is traced by
〈cos t, 0, sin t〉, which is the unit circle in this plane; the projection
of the curve onto the yz-plane is traced by 〈0, ± sin t, sin t〉, which is
the two segments z = y and z = −yfor − 1 ≤ y ≤ 1.

27. r(t) =
〈
cos t, sin t, 4 cos t2

〉
, 0 ≤ t ≤ 2π

29. Collide at the point (12, 4, 2) and intersect at the points
(4, 0, −6) and (12, 4, 2)

31. r(t) = 〈3, 2, t〉 , − ∞ < t < ∞
33. r(t) = 〈t, 3t, 15t〉 , −∞ < t < ∞
35. r(t) = 〈1, 2 + 2 cos t, 5 + 2 sin t〉 , 0 ≤ t ≤ 2π

37. r(t) =
〈√

3
2 cos t, 1

2 ,

√
3

2 sin t
〉
, 0 ≤ t ≤ 2π

39. r(t) = 〈3 + 2 cos t, 1, 5 + 3 sin t〉 , 0 ≤ t ≤ 2π

41.

r(t) = 〈|t| + t, |t| − t〉

y

x

Section 13.2 Preliminary
1. d

dt
(f (t)r(t)) = f (t)r′(t) + f ′(t)r(t)

d
dt

(r1(t) · r2(t)) = r1(t) · r′
2(t) + r′

1(t) · r2(t)

d
dt

(r1(t) × r2(t)) = r1(t) × r′
2(t) + r′

1(t) × r2(t)

2. True 3. False 4. True 5. False 6. False

7. (a) Vector (b) Scalar (c) Vector

Section 13.2 Exercises
1. lim

t→3

〈
t2, 4t, 1

t

〉
=

〈
9, 12, 1

3

〉
3. lim

t→0
(e2t i + ln(t + 1)j + 4k) = i + 4k

5. lim
h→0

r(t+h)−r(t)
h

=
〈
− 1

t2 , cos t, 0
〉

7. dr
dt

=
〈
1, 2t, 3t2

〉
9. dr

ds
=

〈
3e3s , −e−s , 4s3

〉
11. c′(t) = −t−2i − 2e2tk

13. r′(t) =
〈
1, 2t, 3t2

〉
, r′′(t) = 〈0, 2, 6t〉

15.

r2(t)

r ´2(1)

r1(t)

r ´1(1)

17. d
dt

(r1(t) · r2(t)) =
2t3e2t + 3t2e3t + 2te3t + 3t2e2t + tet + et

19. d
dt

(r1(t) × r2(t)) =〈
3t2et − 2te2t − e2t + t3et , e3t + 3te3t − t2et − 2tet ,

2te2t + 2t2e2t − 3t2e3t − 3t3e3t

〉
21. d

dt
(r1(t) · r2(t)) = 2t + 2et + 2tet

23. d
dt

r(g(t)) =
〈
2e2t , −et

〉
25. d

dt
r(g(t)) =

〈
4e4t+9, 8e8t+18, 0

〉
27. d

dt
(r(t) · a(t))|t=2 = 13

29. 	(t) = 〈4 − 4t, 16 − 32t〉
31. 	(t) = 〈−3 − 4t, 10 + 5t, 16 + 24t〉
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33. 	(t) =
〈
2 − t, 0, − 1

3 + 1
2 t

〉
35.

d

dt

(
r × r′) =

〈
(t2 − 2)et , − tet , 2t

〉
39.

〈
212
3 , 124

〉
41. 〈0, 0〉

43.
〈
1, 2, − sin 3

3

〉
45. (ln 4)i + 56

3 j − 496
5 k

47. r(t) =
〈
−t2 + t + 3, 2t2 + 1

〉
49. r(t) =

(
1
3 t3

)
i +

(
5t2

2

)
j + tk + c ; with initial conditions,

r(t) = 1
3 t3i +

(
5t2

2 + 1
)

j + (t + 2)k

51. r(t) = (8t2)k + c1t + c2 ; with initial conditions,
r(t) = i + tj + (8t2)k

53. r(t) =
〈
0, t2, 0

〉
+ c1t + c2 ; with initial conditions,

r(t) =
〈
1, t2 − 6t + 10, t − 3

〉
55. r(3) =

〈
45
4 , 5

〉
57. Only at time t = 3 can the pilot hit a target located at the origin.
59. r(t) = (t − 1)v + w 61. r(t) = e2tc

Section 13.3 Preliminary Questions
1. 2r′ = 〈50, − 70, 20〉 , −r′ = 〈−25, 35, − 10〉
2. Statement (b) is true.

3. (a) L′(2) = 4

(b) L(t) is the distance along the path traveled, which is usually
different from the distance from the origin.

4. 6

Section 13.3 Exercises
1. L = 3

√
61 3. L = 15 + ln 4

5. L = π
√

4π2 + 10 + 5 ln 2π+
√

4π2+10√
10

≈ 29.3

7. s(t) = 1
27

(
(20 + 9t2)

3/2 − 203/2
)

9. v(4) ≈ 4.58 11. v
(
π
2

) = 5 13. r′ =
〈

20√
17

, −5√
17

〉
15. (c) L1 ≈ 132.0,L2 ≈ 125.7; the first spring uses more wire.

17. (a) t = π

19. (a) s(t) = √
29t (b) t = φ(s) = s√

29

21.
〈
1 + 3s√

50
, 2 + 4s√

50
, 3 + 5s√

50

〉
23. r1(s) = 〈2 + 4 cos(2s), , 10, −3 + 4 sin(2s)〉
25. r1(s) =

〈
1
9 (27s + 8)2/3 − 4

9 , ± 1
27

(
(27s + 8)2/3 − 4

)3/2
〉

27.
〈

s√
1+m2

, sm√
1+m2

〉
29. (a)

√
17et (b) s√

17

〈
cos

(
4 ln s√

17

)
, sin

(
4 ln s√

17

)〉
31. L = ∫ ∞

−∞
∥∥r′(t)

∥∥ = 2
∫ ∞
−∞ dt

1+t2 = 2π

Section 13.4 Preliminary Questions

1.
〈

2
3 , 1

3 , − 2
3

〉
2. 1

4

3. The curvature of a circle of radius 2 4. Zero curvature

5. κ = √
14 6. 4 7. 1

9

Section 13.4 Exercises
1.

∥∥r′(t)
∥∥ =

√
64t2 + 81, T(t) = 1√

64t2+81
〈8t, 9〉,

T(1) =
〈

8√
145

, 9√
145

〉
3.

∥∥r′(t)
∥∥ = √

122, T(t) =
〈

4√
122

, − 5√
122

, 9√
122

〉
, T(1) = T(t)

5.
∥∥r′(t)

∥∥ =
√

π2 + 1,

T(t) = 1√
π2+1

〈−π sin πt, π cos πt, 1〉,

T(1) =
〈
0, − π√

π2+1
, 1√

π2+1

〉
7. κ(t) = et

(1+e2t )
3/2 9. κ(t) = 0 11. κ = 2

√
74

27

13. κ =
√

π2+5(
π2+1

)3/2 ≈ 0.108 15. κ(3) ≈ 0.0025

17. κ(2) ≈ 0.0015 19. κ
(
π
3

) ≈ 4.54, κ
(
π
2

) = 0.2

23. α = ±√
2 29. κ(2) ≈ 0.012 31. κ(π) ≈ 1.11

35. κ(t) = t2 κ

t

37. N(t) = 〈0, − sin 2t, − cos 2t〉
39. T′ (π

4

) =
〈
−

√
2

3
√

3
, − 2

3
√

3

〉
, T′ ( 3π

4

)
=

〈 √
2

3
√

3
, 2

3
√

3

〉
41. N

(
π1/3

)
=

〈
1
2 , −

√
3

2

〉
43. N(1) = 1√

13
〈−3, 2〉

45. N(1) = 1√
2

〈0, 1, − 1〉 47. N(0) = 1
6

〈
−√

6, 2
√

6, −√
6
〉

51. 〈cos t, sin t〉 , that is, the unit circle itself.

53. c(t) =
〈
−4, − 7

2

〉
+ 53/2

2 〈cos t, sin t〉
55. c(t) = 〈π, − 2〉 + 4 〈cos t, sin t〉
57. c(t) =

〈
−1 − 2 cos t, 2 sin t√

2
, 2 sin t√

2

〉
65. κ(θ) = 1 67. κ(θ) = 1√

2
e−θ

Section 13.5 Preliminary Questions
1. No, since the particle may change its direction. 2. a(t)

3. Statement (a), their velocity vectors point in the same direction.

4. The velocity vector always points in the direction of motion.
Since the vector N(t) is orthogonal to the direction of motion, the
vectors a(t) and v(t) are orthogonal.

5. Description (b), parallel 6. ‖a(t)‖ = 8 cm/s2 7. aN
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Section 13.5 Exercises
1. h = −0.2 : 〈−0.085, 1.91, 2.635〉

h = −0.1 : 〈−0.19, 2.07, 2.97〉
h = 0.1 : 〈−0.41, 2.37, 4.08〉
h = 0.2 : 〈−0.525, 2.505, 5.075〉
v(1) ≈ 〈−0.3, 2.2, 3.5〉 , v(1) ≈ 4.1

3. v(1) = 〈3, − 1, 8〉 , a(1) = 〈6, 0, 8〉 , v(1) = √
74

5. v( π
3 ) =

〈
1
2 , −

√
3

2 , 0
〉
, a( π

3 ) =
〈
−

√
3

2 , − 1
2 , 9

〉
, v(π

3 ) = 1

7. a(t) = −2
〈
cos t

2 , sin t
2

〉 ; a( π
4 ) ≈ 〈−1.85, − .077〉

8

R(t) = 8
〈
cos t

2 , sin t
2

〉
9.

x

y

r(t) = (t2, t3)

t = 1

v(1)

a(1)

11. v(t) =
〈

3t2+2
6 , 4t − 2

〉
13. v(t) = i + tk

15. v(t) =
〈
t2

2 + 3, 4t − 2
〉
, r(t) =

〈
t3

6 + 3t, 2t2 − 2t
〉

17. v(t) = i + t2

2 k, r(t) = t i + j + t3

6 k

19. v0 = √
5292 ≈ 72.746 m/s 23. H = 355 m

25. r(10) = 〈45, −20〉
27. (a) At its original position (b) No
29. The speed is decreasing.

31. aT = 0, aN = 1 33. aT = 7√
6
, aN =

√
53
6

35. a(−1) = − 2√
10

T + 6√
10

N with T = 1√
10

〈1, −3〉 and

N = 1√
10

〈−3, −1〉
37. aT(4) = 4, aN(4) = 1, so a = 4T + N, with T =

〈
1
9 , 4

9 , 8
9

〉
and N =

〈
− 4

9 , − 7
9 , 4

9

〉
39. a(0) = √

3T + √
2N, with T = 1√

3
〈1, 1, 1〉 and

N = 1√
2

〈−1, 0, 1〉
41. a

(
π
2

) = − π

2
√

3
T + π√

6
N, with T = 1√

3
〈1, −1, 1〉 and

N = 1√
6

〈1, −1, −2〉

43. aT = 0, aN = 0.25 cm/s2

45. The tangential acceleration is 50√
2

≈ 35.36 m/min2,

v = √
35.36(30) ≈ 32.56 m/min

47. ‖a‖ = 1.157 × 105 km/h2

49. a =
〈
− 1

6 , −1, 1
6

〉
51. (A) slowing down, (B) speeding up, (C) slowing down 57. After
139.91 s the car will begin to skid.

59. R ≈ 105 m

Section 13.6 Preliminary Questions
1. dA

dt
= 1

2 ‖J‖
3. The period is increased eightfold.

Section 13.6 Exercises
1. The data supports Kepler’s prediction;

T ≈
√

a3 · 3 · 10−4 ≈ 11.9 years 3. M ≈ 1.897 × 1027 kg

5. M ≈ 2.6225 × 1041 kg 11. {(x, y, z) : 2x − y = 0}

Chapter 13 Review
1. (a) −1 < t < 0 or 0 < t ≤ 1 (b) 0 < t ≤ 2

3. r(t) =
〈
t2, t,

3
√

3 − t4
〉
, −∞ < t < ∞

5. r′(t) =
〈
−1, − 2t−3, 1

t

〉
7. r′(0) = 〈2, 0, 6〉

9. d
dt

et
〈
1, t, t2

〉
= et

〈
1, 1 + t, 2t + t2

〉
11. d

dt
(6r1(t) − 4r2(t))|t=3 = 〈0, − 8, − 10〉

13. d
dt

(r1(t) · r2(t))|t=3 = 2

15.
∫ 3

0

〈
4t + 3, t2, − 4t3

〉
dt = 〈27, 9, − 81〉

17.
(

3, 3, 16
3

)
19. r(t) =

〈
2t2 − 8

3 t3 + t, t4 − 1
6 t3 + 1

〉
21. L = 2

√
13 23.

〈
5 cos 2π s

5
√

1+4π2
, 5 sin 2π s

5
√

1+4π2
, s√

1+4π2

〉
25. v0 ≈ 67.279 m/s 27. (0, − 1, − 2)

29. T(π) =
〈 −1√

2
, 1√

2
, 0

〉
31. κ(1) = 1

23/2

33. a = 1√
2

T + 4N, where T = 〈−1, 0〉 and N = 〈0, − 1〉
35. κ = 13

16 37. c(t) =
〈
− 9

2 , 36
〉
+ 173/2

2 〈cos t, sin t〉

Chapter 14
Section 14.1 Preliminary Questions

1. Same shape, but located in parallel planes

2. The parabola z = x2 in the xz-plane 3. Not possible

4. The vertical lines x = c with distance of 1 unit between adjacent
lines

5. In the contour map of g(x, y) = 2x, the distance between two
adjacent vertical lines is 1

2 .
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Section 14.1 Exercises
1. f (2, 2) = 18, f (−1, 4) = −5

3. h(3, 8, 2) = 6;h(3, − 2, − 6) = − 1
6

5. The domain is the entire xy-plane.

7.

x

y y = 4x2 9. D =
{
(y, z) : z �= −y2

}

y

z

z = −y2

z + y2 �= 0

11.

I

R

I R ≥ 0

13. Domain: entire (x, y, z)−space; range: entire real line

15. Domain: {(r, s, t) : |rst | ≤ 4} ; range: {w : 0 ≤ w ≤ 4}
17. f ↔ (B), g ↔ (A)

19. (a) D (b) C (c) E (d) B (e) A (f) F

21.

y

x

z

3

12

4

Horizontal trace: 3x + 4y = 12 − c in the plane z = c

Vertical trace: z = (12 − 3a) − 4y and z = −3x + (12 − 4a) in
the planes x = a, andy = a, respectively

23.

y

x

z

The horizontal traces are ellipses for c > 0.

The vertical trace in the plane x = a is the parabola z = a2 + 4y2.

The vertical trace in the plane y = a is the parabola z = x2 + 4a2.

25. z

y

x

The horizontal traces in the plane z = c, |c| ≤ 1, are the lines
x − y = sin−1 c + 2kπ and x − y = π − sin−1 c + 2kπ, for
integer k

The vertical trace in the plane x = a is z = sin (a − y).

The vertical trace in the plane y = a is z = sin (x − a).

27. m = 1 : m = 2 :

420−4

−4

−2

0

2

4

−2 420−4

−4

−2

0

2

4

−2

m = 1 m = 2

29.

4

21 3−2−3 −1 0

3

2

1

5

6

31.

−1

0.2 0.4 0.6 0.8 1
0

1

y

x

−0.5

0.5

33. 4

2

0

−2

−4

−4 −2 0 2 4

35.

420−4

−4

−2

0

2

4

−2
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37. m = 6 : f (x , y) = 2x + 6y + 6
m = 3 : f (x , y) = x + 3y + 3

39. (a) Only at (A) (b) Only at (C) (c) West

41. Average ROC from B to C = 0.000625 kg/m3 · ppt

43. At point A

45. Average ROC from A to B ≈ 0.0737 , average ROC from A to
C ≈ 0.0457

47.

i

B

iii

D

C

A

ii 400

500

0 1 2 km
Contour interval = 20 m

540

49. f (r, θ) = cos θ ; the level curves are
θ = ±cos−1 (c)for |c| < 1, c �= 0 ;
the y−axis for c = 0;
the positive x−axis for c = 1;
the negative x−axis for c = −1.

Section 14.2 Preliminary Questions
1. D∗(p, r) consists of all points in D(p , r) other than p itself.

2. f (2, 3) = 27

3. All three statements are true

4. lim
(x, y)→(0, 0)

f (x, y) does not exist.

Section 14.2 Exercises
1. lim

(x, y)→(1, 2)
(x2 + y) = 3

3. lim
(x, y)→(2,−1)

(xy − 3x2y3) = 10

5. lim
(x, y)→(

π
4 , 0)

tan x cos y = 1

7. lim
(x, y)→(1, 1)

ex2 −e−y2

x+y = 1
2 (e − e−1)

9. lim
(x, y)→(2, 5)

(g(x, y) − 2f (x, y)) = 1

11. lim
(x, y)→(2, 5)

ef (x, y)2−g(x, y) = e2

13. No; the limit along the x-axis and the limit along the y-axis are
different.

17. lim
(x, y)→(4, 0)

(x2 − 16) cos

(
1

(x − 4)2 + y2

)
= 0

19. lim
(z, w)→(−2, 1)

z4 cos(πw)
ez+w = −16e

21. lim
(x, y)→(4, 2)

y−2√
x2 −4

= 0

23. lim
(x, y)→(3, 4)

1√
x2 +y2

= 1
5

25. lim
(x, y)→(1,−3)

ex−y ln(x − y) = e4 ln(4)

27. lim
(x, y)→(−3,−2)

(x2y3 + 4xy) = −48

29. lim
(x, y)→(0, 0)

tan(x2 + y2)tan−1
(

1
x2 +y2

)
= 0

31. lim
(x, y)→(0, 0)

x2 +y2√
x2 +y2 +1−1

= 2

35. lim
(x, y)→Q

g(x, y) = 4

37. Yes

41. (b) f
(
10−1, 10−2) = 1

2 , f
(
10−5, 10−10) = 1

2 ,

f
(
10−20, 10−40) = 1

2

Section 14.3 Preliminary Questions
1. ∂

∂x
(x2y2) = 2xy2

2. In this case, the Constant Multiple Rule can be used. In the
second part, since y appears in both the numerator and the
denominator, the Quotient Rule is preferred.

3. (a), (c) 4. fx = 0 5. (a), (d)

Section 14.3 Exercises
3. ∂

∂y
y

z+y = x

(x+y)2 5. fz(2, 3, 1) = 6

7. m = 10 9. fx(A) ≈ 8, fy(A) ≈ −16.7 11. NW

13. ∂
∂x

(x2 + y2) = 2x, ∂
∂y

(x2 + y2) = 2y

15. ∂
∂x

(x4y + xy−2) = 4x3y + y−2,
∂
∂y

(x4y + xy−2) = x4 − 2xy−3

17. ∂
∂x

(
x
y

)
= 1

y , ∂
∂y

(
x
y

)
= −x

y2

19. ∂
∂x

(√
9 − x2 − y2

)
= −x√

9−x2 −y2
, ∂

∂y

(√
9 − x2 − y2

)
=

−y√
9−x2 −y2

21. ∂
∂x

(sin x sin y) = sin y cos x, ∂
∂y

(sin x sin y) = sin x cos y

23. ∂
∂x

(
tan x

y

)
= 1

y cos2
(

x
y

) , ∂
∂y

(
tan x

y

)
= −x

y2cos2
(

x
y

)
25. ∂

∂x
ln(x2 + y2) = 2x

x2 +y2 , ∂
∂y

ln(x2 + y2) = 2y

x2 +y2

27. ∂
∂r

er+s = er+s , ∂
∂s

er+s = er+s

29. ∂
∂x

exy = yexy, ∂
∂y

exy = xexy

31. ∂z
∂y

= −2xe−x2−y2
, ∂z

∂y
= −2ye−x2−y2

33. ∂U
∂t

= −e−rt , ∂U
∂r

= −e−rt (rt+1)

r2

35. ∂
∂x

sinh(x2y) = 2xy cosh(x2y), ∂
∂y

sinh(x2y) = x2 cosh(x2y)

37. ∂w
∂x

= y2z3, ∂w
∂y

= 2xz3y, ∂w
∂z

= 3xy2z2

39. ∂Q
∂L

= M − L t
M2 e−Lt/M , ∂Q

∂M
= L(Lt − M)

M3 e−Lt/M ,
∂Q
∂t

= − L2

M2 e−Lt/M

41. fx(1, 2) = −164 43. gu(1, 2) = ln 3 + 1
3

45. N = 2865.058, N ≈ −217.74

47. (a) I (95, 50) ≈ 73.1913 (b) ∂I
∂T

; 1.66

49. A 1-cm increase in r

51. ∂W
∂E

= − 1
kT

e−E/kT , ∂W
∂T

= E
kT 2 e−E/kT
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55. (a), (b) 57. ∂2f

∂x2 = 6y,
∂2f

∂y2 = −72xy2

59. hvv = 32u

(u + 4v)3 61. fyy(2, 3) = − 4
9

63. fxyxzy = 0 65. fuuv = 2v sin(u + v2)

67. Frst = 0 69. Fuuθ = cosh(uv + θ2) · 2θv2

71. gxyz = 3xyz

(x2 +y2 +z2)
5/2 73. f (x, y) = x2y

77. B = A2

Section 14.4 Preliminary Questions
1. L(x, y) = f (a, b) + fx(a, b)(x − a) + fy(a, b)(y − b)

2. f (x, y) − L(x, y) = ∈ (x, y)

√
(x − a)2 + (y − b)2

3. (b) 4. f (2, 3, 1) ≈ 8.7 5. f ≈ −0.1

6. Criterion for Differentiability

Section 14.4 Exercises
1. z = −34 − 20x + 16y 3. z = 5x + 10y − 14

5. z = 8x − 2y − 13 7. z = 4r − 5s + 2

9. z =
(

4
5 + 12

25 ln 2
)

− 12
25x + 12

25y 11.
(
− 1

4 , 1
8 , 1

8

)
13. (a) f (x, y) = −16 + 4x + 12y

(b) f (2.01, 1.02) ≈ 4.28; f (1.97, 1.01) ≈ 4

15. f ≈ 3.56 17. f (0.01, − 0.02) ≈ 0.98

19. L(x, y, z) = −8.66025 + 0.721688x + 0.721688y + 3.4641z

21. 5.07 23. 8.44 25. 4.998 27. 3.945

29. z = 3x − 3y + 13 31. I ≈ 0.5644

33. (b) H ≈ 0.022m

35. (b) 6% (c) 1% error in r

37. (a) $7.10 (b) $28.85, $57.69 (c) −$74.24

39. Maximum error in V is about 8.948 m.

Section 14.5 Preliminary Questions
1. (b) 〈3, 4〉
2. False

3. ∇f points in the direction of maximum rate of increase of f and
is normal to the level curve of f .

4. (b) NW and (c) SE

5. 3
√

2

Section 14.5 Exercises
1. (a) ∇f =

〈
y2, 2xy

〉
, c′(t) =

〈
t, 3t2

〉
(b) d

dt
(f (c(t)))

∣∣∣
t=1

= 4; d
dt

(f (c(t)))
∣∣∣
t=−1

= −4

3. A: zero, B: negative, C: positive, D: zero

5. ∇f = − sin(x2 + y) 〈2x, 1〉
7. ∇h =

〈
yz−3, xz−3, − 3xyz−4

〉
9. d

dt

(
f (c(t))

)∣∣∣
t=0

= −7 11. d
dt

(
f (c(t))

)∣∣∣
t=0

= −3

13. d
dt

(
f (c(t))

)∣∣∣
t=0

= 5 cos 1 ≈ 2.702

15. d
dt

(
f (c(t))

)∣∣∣
t=4

= −56

17. d
dt

(
f (c(t))

)∣∣∣
t=π/4

= −1 + π
8 ≈ 1.546

19. d
dt

(
g(c(t))

)∣∣∣
t=1

= 0

21. Duf (1, 2) = 8.8 23. Duf
(

1
6 , 3

)
= 39

4
√

2

25. Duf (3, 4) = 7
√

2
290 27. Duf (1, 0) = 6√

13

29. Duf (1, 2, 0) = − 1√
3

31. Duf (3, 2) = −50√
13

33. Duf (P ) = − e5

3 ≈ −49.47

35. f is increasing at P in the direction of v.

37. Duf (P ) =
√

6
2 39. 〈6, 2, − 4〉

41.
(

4√
17

, 9√
17

, − 2√
17

)
and

(
− 4√

17
, − 9√

17
, 2√

17

)
43. 9x + 10y + 5z = 33

45. 0.5217x + 0.7826y − 1.2375z = −5.309

47.

x

y

4

2

−2

2

−4

4−2−4

49. f (x, y, z) = x2 + y + 2z

51. f (x, y, z) = xz + y2 55. f ≈ 0.08

57. (a) 〈34, 18, 0〉
(b)

〈
2 + 32√

21
t, 2 + 16√

21
t, 8 − 8√

21
t
〉
; ≈ 4.58 s

61. x = 1 − 4t, y = 2 + 26t, z = 1 − 25t

73. y =
√

1 − ln(cos2x)

Section 14.6 Preliminary Questions
1. (a) ∂f

∂x
and ∂f

∂y
(b) u and v

2. (a) 3. f (u, v)| (r,s)=(1,1) = e2 4. (b) 5. (c) 6. No

Section 14.6 Exercises
1. (a) ∂f

∂x
= 2xy3,

∂f
∂y

= 3x2y2,
∂f
∂z

= 4z3

(b) ∂x
∂s

= 2s,
∂y
∂s

= 2t2, ∂z
∂s

= 2st

(c) ∂f
∂s

= 7s6t6 + 8s7t4

3. ∂f
∂s

= 6rs2,
∂f
∂r

= 2s3 + 4r3

5. ∂g
∂u

= −10 sin(10u − 20v),
∂g
∂v

= 20 sin(10u − 20v)

7. ∂F
∂y

= xex2 +xy 9. ∂h
∂t2

= 0

11. ∂f
∂u

∣∣∣
(u,v)=(−1,−1)

= 1,
∂f
∂v

∣∣∣
(u,v)=(−1,−1)

= −2

13. ∂g
∂θ

∣∣∣
(r,θ)=

(
2
√

2, π/4
) = 1

6 15. ∂f
∂v

∣∣∣
(u,v)=(0,1)

= 2 cos 2

17. (b) ∂f
∂t

= 19
2
√

7
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23. (a) Fx = z2 + y, Fy = 2yz + x, Fz = 2xz + y2

(b) ∂z
∂x

= − z2 + y

2xz + y2 , ∂z
∂y

= − 2yz + x

2xz + y2

25. ∂z
∂x

= − 2xy + z2

2xz + y2 27. ∂z
∂y

= − xexy + 1
x cos(xz)

29. ∂w
∂y

= −y(w2 + x2)
2

w
(
(w2 + y2)

2 + (w2 + x2)
2
) ; at (1, 1, 1), ∂w

∂y
= − 1

2

33. ∇
(

1
r

)
= − 1

r3 r 35. (c) ∂z
∂x

= x − 6
z + 4

37. ∂P
∂T

= − nR
V − nb

, ∂V
∂P

= nbV 3 − V 4

PV 3 + 2an3b − an2V

Section 14.7 Preliminary Questions
1. f has a local (and global) min at (0, 0); g has a saddle point at

(0, 0).

2.

0

1

1

−1
−1

−3

−3

3

3

1

R

Point R is a saddle point.

1 30−1−3 S

Point S is neither a local extremum nor a saddle point.

2

6

10

−2

−6

−10

0

P Q

Point P is a local minimum and point Q is a local maximum.

3. Statement (a)

Section 14.7 Exercises
1. (b) P1 = (0, 0) is a saddle point, P2 =

(
2
√

2,
√

2
)

and

P3 =
(
−2

√
2, −√

2
)

are local minima; absolute minimum value of

f is −4.

3. (0, 0) saddle point,
(

13
64 , − 13

32

)
and

(
− 1

4 , 1
2

)
local minima

5. (c) (0, 0), (1, 0), and (0, −1) saddle points,
(

1
3 , − 1

3

)
local

minimum.

7.
(
− 2

3 , − 1
3

)
local minimum

9. (−2, −1) local maximum,
(

5
3 , 5

6

)
saddle point

11.
(

0, ±√
2
)

saddle points,
(

2
3 , 0

)
local maximum,(

− 2
3 , 0

)
local minimum

13. (0, 0) saddle point, (1, 1) and (−1, −1) local minima

15. (0, 0) saddle point,
(

1√
2
, 1√

2

)
and

(
− 1√

2
, − 1√

2

)
local

maximum,
(

1√
2
, − 1√

2

)
and

(
− 1√

2
, 1√

2

)
local minimum

17. Critical points are
(
jπ, kπ + π

2

)
, for

j,k even: saddle points
j,k odd: local maxima
j even, k odd: local minima
j odd, k even: saddle points

19.
(

1, 1
2

)
local maximum 21.

(
3
2 , − 1

2

)
saddle point

23.
(
− 1

6 , − 17
18

)
local minimum

27. x = y = 0.27788 local minimum

29. Global maximum 2, global minimum 0

31. Global maximum 1, global minimum 1
35

35. Maximum value 1
3

37. Global minimum f (0, 1) = −2 , global maximum f (1, 0) = 1

39. Global maximum 3, global minimum 0

41. Global minimum f (1, 1) = −1 , global maximum
f (1, 0) = f (0, 1) = 1

43. Global minimum f (1, 0) = f (−1, 0) = −0.368 , global
maximum f (0, − 1) = f (0, 1) = 1.472

45. Maximum volume 3
4

49. (a) No. In the box B with minimal surface area, z is smaller than
3√
V , which is the side of a cube with volume V .

(b) Width: x = (2V )1/3; length: y = (2V )1/3;

height: z =
(

V
4

)1/3

51. f (x) = 1.9629x − 1.5519

Section 14.8 Preliminary Questions
1. Statement (b)

2. f had a local maximum 2, under the constraint, at A; f (B) is
neither a local minimum nor a local maximum of f .

3. (a)

Contour plot of f (x, y)
(contour interval 2)

26 −2

2 6
g (x, y) = 0�fA, �gA

A

E

C

D

B

−2−6

−6

(b) Global minimum −4, global maximum 6
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Section 14.8 Exercises
1. (c) Critical points (−1, −2) and (1, 2)

(d) Maximum 10, minimum −10

3. Maximum 4
√

2 , minimum −4
√

2

5. Minimum 36
13 , no maximum value

7. Maximum 8
3 , minimum − 8

3

9. Maximum
√

2 , minimum 1

11. Maximum 3.7, minimum −3.7

13. No maximum and minimum values

15. (−1, e−1)

17. (a) h =
√

2√
3π

≈ 0.6, r =
√

1√
3π

≈ 0.43 (b) h
r = √

2

(c) There is no cone of volume 1 and maximal surface area.

19. (8, − 2) 21.
(

48
97 , 108

97

)
23. aabb

(a+b)a+b 25.
√

aabb

(a+b)a+b

31. r = 3, h = 6 33. x + y + z = 3

39.
( −6√

105
, −3√

105
, 30√

105

)
41. (−1, 0, 2)

43. Minimum 138
11 ≈ 12.545 , no maximum value

47. (b) λ = c
2p1p2

Chapter 14 Review
1. (a)

x
−3

y

(b) f (3, 1) =
√

2
3 , f (−5, − 3) = −2 (c)

(
− 5

3 , 1
)

3.

x

y

z

Vertical and horizontal traces: the line z = (c2 + 1) − y in the
plane x = c, the parabola z = x2 − c + 1 in the plane y = c.

5. (a) Graph (B) (b) Graph (C) (c) Graph (D) (d) Graph (A)

7. (a) Parallel lines 4x − y = ln c, c > 0, in the xy-plane

(b) Parallel lines 4x − y = ec in the xy-plane

(c) Hyperbolas 3x2 − 4y2 = c in the xy-plane

(d) Parabolas x = c − y2 in the xy-plane

9. lim
(x,y)→(1,−3)

(xy + y2) = 6

11. The limit does not exist.

13. lim
(x,y)→(1,−3)

(2x + y)e−x+y = −e−4

17. fx = 2, fy = 2y

19. fx = e−x−y(y cos(xy) − sin(xy))

fy = e−x−y(x cos(yx) − sin(yx))

21. fxxyz = − cos(x + z) 23. z = 33x + 8y − 42

25. Estimate, 12.146; calculator value to three places, 11.996.

27. Statements (ii) and (iv) are true.

29. d
dt

(
f (c(t))

)∣∣∣
t=2

= 3 + 4e4 ≈ 221.4

31. d
dt

(
f (c(t))

)∣∣∣
t=1

= 4e − e3e ≈ −3469.3

33. Duf (3, − 1) = − 54√
5

35. Duf (P ) = −
√

2e
5 37.

〈
1√
2
, 1√

2
, 0

〉
41. ∂f

∂s
= 3s2t + 4st2 + t3 − 2st3 + 6s2t2

∂f
∂t

= 4s2t + 3st2 + s3 + 4s3t − 3s2t2

45. ∂z
∂x

= − ez − 1
xez + ey

47. (0, 0) saddle point, (1, 1) and (−1, −1) local minima

49.
(

1
2 , 1

2

)
saddle point

53. Global maximum f (2, 4) = 10 , global minimum
f (−2, 4) = −18

55. Maximum 26√
13

, minimum − 26√
13

57. Maximum 12√
3

, minimum − 12√
3

59. f (0.8, 0.52, − 0.32) = 0.88 and f (−0.13, 0.15, 0.99) = 3.14

61. r =
(

V
2π

)1/3
, h = 2

(
V
2π

)1/3

Chapter 15
Section 15.1 Preliminary Questions

1. A = 1, the number of subrectangles is 32.

2.
∫∫

R f dA ≈ S1,1 = 0.16

3.
∫∫

R 5 dA = 50

4. The signed volume between the graph z = f (x, y) and the
xy-plane. The region below the xy-plane is treated as negative volume.

5. (b) 6. (b), (c)

Section 15.1 Exercises
1. S4,3 = 13.5 3. (A) S3,2 = 42, (B) S3,2 = 43.5

5. (A) S3,2 = 60, (B) S3,2 = 62

7. Two possible solutions are S3,2 = 77
72 and S3,2 = 79

72 .

9. 225
2
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z

x

y

15

5

3

11. 0.19375 13. 1.0731, 1.0783, 1.0809 15. 0 17. 0 19. 40
21. 55 23. 4

3 25. 84 27. 4 29. 1858
15

31. 6 ln 6 − 2 ln 2 − 5 ln 5 ≈ 1.317 33. 4
3

(
19 − 5

√
5
)

≈ 10.426

35. 1
2 (ln 3)(−2 + ln 48) ≈ 1.028 37. 6 ln 3 ≈ 6.592

39. 1 41.
(
e2 − 1

) (
1 −

√
2

2

)
≈ 1.871

43. m = 3
4 45. 2 ln 2 − 1 ≈ 0.386

49. e3

3 − 1
3 − e + 1 ≈ 4.644

Section 15.2 Preliminary Questions
1. (b), (c)

2.

x

y 3.

y

x

B

−
2
2

y = 1 − x2

y = −x

4. (b)

Section 15.2 Exercises
1. (a) Sample points •, S3,4 = −3

(b) Sample points ◦, S3,4 = −4

3. As a vertically simple region: 0 ≤ x ≤ 1, 0 ≤ y ≤ 1 − x2; as a
horizontally simple region: 0 ≤ y ≤ 1, 0 ≤ x ≤ √

1 − y

5. 192
5 = 38.4 7. 608

15 ≈ 40.53 9. 2 1
4 11. − 3

4 + ln 4

13. 16
3 ≈ 5.33 15. 11

60 17. 1754
15 ≈ 116.93 19. e − 2

2 ≈ 0.359

21. 1
12 23. 2e12 − 1

2 e9 + 1
2 e5 ≈ 321, 532.2

25.

x

y

y = x

x ≤ y ≤ 4

4

4∫ 4

0

∫ 4

x
f (x, y) dy dx =

∫ 4

0

∫ y

0
f (x, y) dx dy

27.

x

y
x =    y

2

2 4 6 8

4

6

8

2 ≤ x ≤ y

∫ 9

4

∫ √
y

2
f (x, y) dx dy =

∫ 3

2

∫ 9

x2
f (x, y) dy dx

29. y

x
2 41 3

2

4

1

3

0

x = y

 y ≤ x ≤ 2

∫ 2

0

∫ x2

0

√
4x2 + 5y dy dx = 152

15

31.
∫ e

1
∫ ln y

ln2 y
(ln y)−1 dx dy = e − 2 ≈ 0.718

33.

x

y

x = y

y ≤ x ≤ 1

1

1

∫ 1

0

∫ x

0

sin x
x dy dx = 1 − cos 1 ≈ 0.460

35.

x

y

y = x

x ≤ y ≤ 1

1

1

∫ 1

0

∫ y

0
xey3

dx dy = e − 1
6 ≈ 0.286
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37. y

x
1 2

D2

D1

D

1

2

0 ∫∫
D

ex+y dA = e4 − 3e2 + 2e ≈ 37.878

39.
∫ 4

0
∫ 3x/4
x/4 ex2

dy dx = 1
4

(
e16 − 1

)
41.

∫ 4
2

∫ 7−y
y−1

x
y2 dx dy = 6 − 6 ln 2 ≈ 1.841

43.
∫∫

D
sin y

y dA = cos 1 − cos 2 ≈ 0.956

45.
∫ 2
−2

∫ 4−x2

0 (40 − 10y) dy dx = 256

47.
∫ 1

0
∫ 1

0 ex+y dx dy = e2 − 2e + 1 ≈ 2.952

49. 1
π

∫ 1
0

∫ π
0 y2 sin x dx dy = 2

3π
51. f̄ = p

57. One possible solution is P =
(

2
3 , 2

)
59.

∫∫
D f (x, y) dA ≈ 57.01

Section 15.3 Preliminary Questions
1. (c) 2. (b)

3. (a) D = {(x, y) : 0 ≤ x ≤ 1, 0 ≤ y ≤ x}
(b) D =

{
(x, y) : 0 ≤ x ≤ 1, 0 ≤ y ≤

√
1 − x2

}

Section 15.3 Exercises
1. 6 3. (e − 1)(1 − e−2) 5. − 27

4 = −6.75

7. b
20

[
(a + c)5 − a5 − c5

]
9. 1

6 11. 1
16 13. e − 5

2

15. 2 1
12 17. 128

15 19. 2 21. 1
12 23. 126

5
25. The region bounded by the plane y = 1 and the paraboloid
y = 5 − x2 − z2 lying over the disk x2 + z2 ≤ 4 in the xz-plane.

27.
∫ 2

0
∫ y/2

0

∫ 4−y2

0 xyz dz dx dy,
∫ 4

0
∫ √

4−z
0

∫ y/2
0 xyz dx dy dz,

and
∫ 4

0
∫ √

1−(z/4)
0

∫ √
4−z

2x
xyz dy dx dz

29.
∫ 1
−1

∫ √
1−x2

−
√

1−x2

∫ 1√
x2+y2 f (x, y, z) dz dy dx

31. 16
21 33. 1

2π
35. 2e − 4 ≈ 1.437

37. SN,N,N ≈ 0.561, 0.572, 0.576; I ≈ 0.584; N = 100

Section 15.4 Preliminary Questions
1. (d)

2. (a)
∫ 2
−1

∫ 2π
0

∫ 2
0 f (P ) r dr dθ dz

(b)
∫ 0
−2

∫ 2π
0

∫ √
4−z2

0 r dr dθ dz

3. (a)
∫ 2π

0
∫ π

0
∫ 4

0 f (P ) ρ2 sin φ dρ dφ dθ

(b)
∫ 2π

0
∫ π

0
∫ 5

4 f (P ) ρ2 sin φ dρ dφ dθ

(c)
∫ 2π

0
∫ π
π/2

∫ 2
0 f (P ) ρ2 sin φ dρ dφ dθ

4. A ≈ r(rθ), and the factor r appears in dA = r dr dθ in the
Change of Variables formula.

Section 15.4 Exercises Questions
1.

x

y

2

∫∫
D

√
x2 + y2 dA = 4

√
2π

3

3.

x

D

y

20

2

∫∫
D

xy dA = 2

5.

x

y

1

1
2

(−     ,    )3
2

1
2 (     ,    )3

2
1
2

∫∫
D

y
(
x2 + y2

)−1
dA = √

3 − π

3
≈ 0.685

7.

x

D

y

2−2

∫ 2

−2

∫ √
4−x2

0
(x2 + y2) dy dx = 4π
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9.

x

D

y

0

1

1
2

π

3

3xy =

1 − x2y =

∫ 1/2

0

∫ √
1−x2

√
3x

x dy dx = 1
3

(
1 −

√
3

2

)
≈ 0.045

11.

x

D

y

5

5

∫ 5

0

∫ y

0
x dx dy = 125

6

13.
y = 4 − x2

D
x

y

2−1

∫ 2

−1

∫ √
4−x2

0
(x2 + y2) dy dx =

√
3

2 + 8π
3 ≈ 9.244

15. 1
4 17. 1

2 19. 0 21. 18 23. 48π − 32
9 ≈ 13.2

25. (a) W : 0 ≤ θ ≤ 2π, 0 ≤ r ≤ 2, r2 ≤ z ≤ 8 − r2

(b) 16π

27. 405π
2 ≈ 636.17 29. 2

3 31. 243π

33.
∫ 2π

0
∫ 1

0
∫ 4

0 f (r cos θ, r sin θ, z) r dz dr dθ

35.
∫ π

0
∫ 1

0
∫ r2

0 f (r cos θ, r sin θ, z) r dz dr dθ

37. z = H
R

r; V = πR2H
3 39. 4

3π
(
a2 − b2

)3/2
41. − π

16

43. 8π
15 45. 8π

5 47. 5π
8 49. π 51. 4πa3

3

Section 15.5 Preliminary Questions
1. 5 kg/m3 2. (a)

3. The probability that 0 ≤ X ≤ 1 and 0 ≤ Y ≤ 1; the probability
that 0 ≤ X + Y ≤ 1

Section 15.5 Exercises
1. 2

3

3. 4
(

1 − e−100
)

× 10−6 C ≈ 4 × 10−6 C

5. 10, 000 − 18, 000e−4/5 ≈ 1912

7. 25π
(

3 × 10−8 C
)

≈ 2.356 × 10−6 C

9. ≈ 2.593 × 1010 kg 11.
(

0, 2
5

)
13.

(
4R
3π

, 4R
3π

)
15. (0.555, 0) 17.

(
0, 0, 3R

8

)
19.

(
0, 0, 9

8

)
21.

(
0, 0, 13

2
(

17−6
√

6
)
)

23. (1, 2) 25. (0, 0) 27. 16
15π

29. (a) M
4ab

(b) Ix = Mb2

3 ; I0 = M(a2 + b2)
3 (c) b√

3

31. I0 = 8000 kg · m2; Ix = 4000 kg · m2

33. 9
2 35. 243

20 37.
(

24a
35 , 3b

5

)
39. a2b4

60

41. Ix = MR2

4 ; kinetic energy required is 25MR2

2 J

47. (a) I = 182.5 g · cm2 (b) ω ≈ 126.92 rad/s

49. 13
72 51. 1

64

53. C = 15; probability is 5
8 .

55. (a) C = 4 (b) 1
48π

+ 1
32 ≈ 0.038

Section 15.6 Preliminary Questions
1. (b)

2. (a) G(1, 0) = (2, 0) (b) G(1, 1) = (1, 3)

(c) G(2, 1) = (3, 3)

3. Area (G(R)) = 36 4. Area (G(R)) = 0.06

Section 15.6 Exercises
1. (a) Image of the u-axis is the line y = 1

2x; image of the v-axis is
the y-axis.

(b) The parallelogram with vertices (0, 0), (10, 5) (10, 2), (0, 7).

(c) The segment joining the points (2, 3) and (10, 8).

(d) The triangle with vertices (0, 1), (2, 1), and (2, 2).

3. G is not one-to-one; G is one-to-one on the domain
{(u, v) : u ≥ 0}, and G is one-to-one on the domain {(u, v) : u ≤ 0}.
(a) The positive x-axis including the origin and the y-axis,
respectively.

(b) The rectangle [0, 1] × [−1, 1].
(c) The curve y = √

x for 0 ≤ x ≤ 1.

(d)

(1, 1)

(0, 0)

(0, 1)

y

x

y = x

5. y = 3x − c 7. y = 17
6 x 11. Jac(G) = 1

13. Jac(G) = −10 15. Jac(G) = 1 17. Jac(G) = 4
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19. G(u, v) = (4u + 2v, u + 3v)

21. 2329
12 ≈ 194.08

23. (a) Area (G(R)) = 105 (b) Area (G(R)) = 126

25. Jac(G) = 2u
v ; for R = [1, 4] × [1, 4], area (G(R)) = 15 ln 4

27.

P

y

x

(4, 9)

(3, 6)

(1, 1)

(2, 4)

G(u, v) = (1 + 2u + v, 1 + 5u + 3v)

29. 82 31. 80 33. 56
45 35. π(e36 − 1)

6

37. y

x

y = x

y = x2

D

y =    x21
2

∫∫
D

y−1 dx dy = 1

39.
∫∫

D exy dA = (e20 − e10) ln 2

41. (b) − 1
x + y (c) I = 9 45. π2

8

Chapter 15 Review
1. (a) S2,3 = 240 (b) S2,3 = 510 (c) 520

3. S4,4 = 2.9375 5. 32
3 7.

√
3 − 1
2

9.

x

D

y

y = x

4

2

42

∫∫
D

cos y dA =1 − cos 4

11.

x

y

y = 2 − x

1 − x ≤ y ≤ 2 − x

y = 1 − x

1

∫∫
D

ex+2y dA = 1
2 e(e + 1)(e − 1)2

13.

x

y

0.5y2 ≤ x ≤ y2

1

∫∫
D

ye1+x dA = 0.5(e2 − 2e1.5 + e)

15.
∫ 9

0
∫ √

9−y

−√
9−y

f (x, y) dx dy 17. 1
24 19. 18(

√
2 − 1)

21. 1 − cos 1 23. 6π 25. π/2 27. 10 29. π
4 + 2

3 31. π

33. 1
4 35.

∫ π/2
0

∫ 1
0

∫ r
0 zr dz dr dθ = π/16 37. 2π(−1 + e8)

3e8

41. 256π
15 ≈ 53.62 43. 1280π 45.

(
− 1

4R, 0, 5
8H

)
47.

(
− 2

11π
R, − 2

11π
R(2 − √

3), 1
2H

)
. 49.

(
0, 0, 2

3

)
51.

(
8

15 , 16
15π

, 16
15π

)
53. 19

33 55. 4
7

57. G(u, v) = (3u + v, − u + 4v); Area (G(R)) = 156

59. Area(D) ≈ 1
5

61. (a)

D

x

y
y = 2x

1 2

1

2
y = x

2

y = 1
2x

y = 2
x

(d) 3
4 (e2 − √

e)
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Chapter 16
Section 16.1 Preliminary Questions

1. (b)

2. y

x

3. F = 〈0, − z, y〉
4. f1(x, y, z) = xyz + 1

Section 16.1 Exercises
1. F(1, 2) = 〈1, 1〉 , F(−1, − 1) = 〈1, − 1〉

x
−1

−1

1

1

y

F(P) = 〈1, 1〉

F(Q) = 〈1, −1〉

P

Q

3. F(P ) = 〈0, 1, 0〉 , F(Q) = 〈2, 0, 2〉

F(P) = 〈0, 1, 0〉F(Q) = 〈2, 0, 2〉

y

x

z

Q

P

5. F = 〈1, 0〉

−2

−1

−3

1

2

3

y

x
−2−3 −1 1 2 3

7. F = xi
y

x

9. F(x, y) = 〈0, x〉
y

x

11. F =
〈

x
x2 + y2 ,

y

x2 + y2

〉
y

x

13. Plot (D) 15. Plot (B) 17. Plot (C) 19. Plot (B)
21. f (x, y) = 1

2x2 23. f (x, y) = 1
2x2 + 1

2y2

25. f (x, y, z) = xyz2 27. f1(r) = − 1
2r2 ; f2(r) = − 1

3r3

29. ∇φ = er
r 31. Plot (B)

33. (a) Plot (C) (b) Plot (B)

Section 16.2 Preliminary Questions
1. 50 2. (a), (c), (d), (e)

3. (a) True

(b) False. Reversing the orientation of the curve changes the sign of
the vector line integral.

4. (a) 0 (b) −5

Section 16.2 Exercises
1. (a) f (c(t)) = 6t + 4t2, ds = 2

√
11 dt (b) 26

√
11

3

3. (a) F (c(t)) =
〈
t−2, t2

〉
, ds =

〈
1, − t−2

〉
dt (b) − 1

2

5.
√

2
(
π + π3

3

)
7. π2/2 9. 2.8 11. 128

√
29

3 ≈ 229.8
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13.
√

3
2 (e − 1) ≈ 1.488 15. 2

3

(
(e2 + 5)3/2 − 23/2

)
17. 39; the distance between (8, − 6, 24) and (20, − 15, 60)

19. 16
3 21. 0 23. 2(e2 − e−2) − (e − e−1) ≈ 12.157 25. 10

9
27. − 8

3 29. 13
2 31. π

2 33. 339.5587 35. 2 − e − 1
e

37. (a) −8 (b) −11 (c) −16

39. ≈ 7.6; ≈ 4 2
3 41. (A) Zero, (B) Negative, (C) Zero 43. 64π g

45. ≈ 10.4 × 10−6 C 47. ≈ 22743.10 volts 49. ≈ −10097 volts
51. 1

53. (a) ABC (b) CBA

57. 1
3

(
(4π2 + 1)3/2 − 1

)
≈ 85.5 × 10−6 C

63. 18 65. e − 1 71. 0.574

Section 16.3 Preliminary Questions
1. Closed

2. (a) Conservative vector fields (b) All vector fields

(c) Conservative vector fields (d) All vector fields

(e) Conservative vector fields (f) All vector fields

(g) Conservative vector fields and some other vector fields

3. (a) Always true (b) Always true

(c) True under additional hypotheses on D

4. (a) 4 (b) −4

Section 16.3 Exercises
1. 0 3. − 9

4 5. 32e − 1 7. V (x, y, z) = zx + y

9. V (x, y, z) = y2x + ezy 11. The vector field is not
conservative. 13. V (x, y, z) = z tan x + zy

15. V (x, y, z) = x2y + 5x − 4zy 17. 16 19. 6 21. − 2
3 ; 0

23. 6.2 × 109 J

25. (a) V (x, y, z) = −gz (b) ≈ 82.8 m/s

27. (A) 2π , (B) 2π , (C) 0, (D) −2π , (E) 4π

Section 16.4 Preliminary Questions
1. 50

2. A distortion factor that indicates how much the area of Rij is
altered under the map G.

3. Area(S) ≈ 0.0006 4.
∫∫

S f (x, y, z) dS ≈ 0.6

5. Area(S) = 20 6.
〈

2
3 , 2

3 , 1
3

〉

Section 16.4 Exercises
1. (a) v (b) iii (c) i (d) iv (e) ii

3. (a) Tu = 〈2, 1, 3〉 , Tv = 〈0, − 1, 1〉,
n(u, v) = 〈4, − 2, − 2〉
(b) Area(S) = 4

√
6 (c)

∫∫
S f (x, y, z) dS = 32

√
6

3
5. (a) Tx = 〈1, 0, y〉,

Ty = 〈0, 1, x〉 , n(x, y) = 〈−y, − x, 1〉
(b) (2

√
2 − 1)π

6 (c)
√

2 + 1
15

7. Tu = 〈2, 1, 3〉 , Tv = 〈1, − 4, 0〉 , n(u, v) =
3 〈4, 1, − 3〉 , 4x + y − 3z = 0

9. Tθ = 〈− sin θ sin φ, cos θ sin φ, 0〉 ,
Tφ = 〈cos θ cos φ, sin θ cos φ, − sin φ〉,
n(u, v) = −(cos θ sin2 φ)i − (sin θ sin2 φ)j − (sin φ cos φ)k,
y + z = √

2

11. Area(S) ≈ 0.2078 13.
√

2
5 15. 37

√
37 − 1
4 ≈ 56.02 17. π

6

19. 4π(1 − e−4) 21.
√

3
6 23. 7π

3 25. 5
√

10
27 − 1

54
27. Area(S) = 16 29. 3e3 − 6e2 + 3e + 1 ≈ 25.08
31. Area(S) = 4πR2

33. (a) Area(S) ≈ 1.0780 (b) ≈ 0.09814

35. Area(S) = 5
√

29
4 ≈ 6.73 37. Area(S) = π 39. 48π

43. Area(S) = π
6

(
17

√
17 − 1

)
≈ 36.18 47. 4π2ab

49. V (r) = − Gm
2Rr

(√
R2 + r2 − |R − r|

)

Section 16.5 Preliminary Questions
1. (b) 2. (c) 3. (a) 4. (b)

5. (a) 0 (b) π (c) π

6. ≈ 0.05
√

2 ≈ 0.0707 7. 0

Section 16.5 Exercises
1. (a) n = 〈2v, − 4uv, 1〉 , F · n = 2v3 + u

(b) 4√
69

(c) 265

3. 4 5. −4 7. 27
12 (3π + 4) 9. 693

5 11. 11
12 13. 9π

4
15. (e − 1)2 17. 270

19. (a) 18πe−3 (b) π
2 e−1

21.
(

2 − 6√
13

)
πk 23. 2π

3 m3/s

25. (a) 1 (b) 1

29. �(t) = −1.56 × 10−5e−0.1 t T–m2;
voltage drop = − 1.56 × 10−6e−0.1 t V

31. (a) z

x

y

Chapter 16 Review
1. (a) 〈−15, 8〉 (b) 〈4, 8〉 (c) 〈9, 1〉
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3.

F = 〈y, 1〉

y

x

5. F(x, y) = 〈2x, − 1〉
y

x

�V = 〈2x, −1〉

7. F is not conservative. 9. − cos x + ey + z2

2

11. F is not conservative. 13. y tan−1(x) + z2

15. F is not conservative. 17.
√

5
6 19. 11

6 21. M = 13 1
3

23. 81−9π
4 25. −π

2 27. − 13
18

29. (B) and (C) Zero, (D) Negative
31. a = 4

3 , b = 5
4 , c = −5,

Tu =
〈
1, 5

4 , 2
〉
,

Tv =
〈

4
3 , 1, 0

〉
,

n =
〈
−2, 8

3 , − 2
3

〉
33. (a) Tu

(
1, π

3

) =
〈
1,

√
3, 0

〉
,

Tv

(
1, π

3

) =
〈√

3
2 , − 1

2 , 3
〉
,

n
(
1, π

3

) =
〈
3
√

3, − 3, − 2
〉

(b) 3
√

3x − 3y − 2z + 2π = 0 (c) Area(S) ≈ 38.4
35. Area(S) ≈ 41.8525 37. 54π(e−10 + 1) ≈ 54π

39. Area(S) = 0.02
√

6 ≈ 0.049 41. 54 43. 8π 45. 3 − e

47. π
3 KH 3R 49. 6π

Chapter 17
Section 17.1 Preliminary Questions

1. F =
〈
−ey, x2

〉
2. C

3. Yes 4. (a), (c)

Section 17.1 Exercises
3. 0 5. −π

4 7. 1
6 9. (e2 − 1)(e4 − 5)

2

11. (a) V (x, y) = x2ey 13. I = 34 15. A = 9π 17. A = 3π

19. (c) A = 3
2 23. 9 + 15π

2 25. 214π

27. (A) Zero (B) Positive (C) Negative (D) Zero

29. −0.10 31. R =
√

2
3 33. Triangle (A), 3; Polygon (B), 12

37. 2 39. 0.021 buffalos per second

Section 17.2 Preliminary Questions
1.

(A) (B)

nn

2. (a)

3. A vector field A such that F = curl(A)is a vector potential for F.

4. (b)

5. If the two oriented surfaces S1 and S2 have the same oriented
boundary curve, C.

Section 17.2 Exercises
1.

〈
1 − 3z2, 1 − 2x, 1 + 2y

〉
3.

〈
0, sin x, cos x − ey

〉
5.

∫∫
C F · ds = ∫∫

S curl(F) · dS = π

7.
∫∫

C F · ds = ∫∫
S curl(F) · dS = e−1 − 1

9.
〈
−3z2ez3

, 2zez2 + z sin(xz), 2
〉
; 2π

11. (a)

1

6

z

yx

n

C1

C2

(b) 140π

13. (a) A =
〈
0, 0, ey − ex2

〉
(c)

∫∫
S F · dS = π

2

15. (a)
∫∫

S B · dS = r2Bπ (b)
∫
∂S A · ds = 0

17.
∫∫

S B · dS = bπ 19. c = 2a and b is arbitrary.

23.
∫∫

S F · dS = 25

Section 17.3 Preliminary Questions
1.

∫∫
S F · dS = 0

2. Since the integrand is positive for all (x, y, z) �= (0, 0, 0), the
triple integral, hence also the flux, is positive.

3. (a), (b), (d), (f) are meaningful; (b) and (d) are automatically zero.

4. (c) 5. div(F) = 1 and flux = ∫
div(F) dV = volume



A66 ANSWERS TO ODD-NUMBERED EXERCISES

Section 17.3 Exercises
1. y + z 3. 1 − 4zx − x + 2zx2 5. c = − 1

5

7.
∫∫

S F · dS = ∫∫∫
R div(F) dV = ∫∫∫

R 0 dV = 0

9.
∫∫

S F · dS = ∫∫∫
R div(F) dV = 4π

11. 4π
15 13. 32π

5 15. 64π 17. 81π 19. 0 21. 13
3 23. 4π

3

25. 16π
3 + 9

√
3

2 ≈ 24.549 27. ≈ 1.57 m3/s

29. (b) 0 (c) 0

(d) Since E is not defined at the origin, which is inside the ball W , we
cannot use the Divergence Theorem.

31. (−4) ·
[

256π
3 − 1

]
≈ −1068.33

33. div(f F) = f div(F) + F · ∇f

Chapter 17 Review
1. 0 3. −30 5. 3

5

7. (a)

x

y

0.10

0.1

(b) A = 1
60

9. curl(F) = −k, div(F) = −1

11. curl(F) = 0, div(F) = 2e−x2−y2−z2
(

2(x2 + y2 + z2) − 3
)

13. curl(F) = 〈−2z, 0, − 2y〉 19. 2π

21. A = 〈yz, 0, 0〉 and the flux is 8π. 23. 296
3 25. −128π

27. Volume(W) = 2 29. 4 · 0.0009π ≈ 0.0113
31. 2x − y + 4z = 0

33. (b) π
2

35. (c) 0 (d)
∫
C1

F · ds = −4,
∫
C2

F · ds = 4
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INDEX

absolute convergence, 569
absolute (global) extreme values, 837
absorption spectra, 537
absorption wavelength of hydrogen atom,

537
acceleration, 756

normal, 759
tangential, 759, 764

acceleration vector, 756–757, 759–762
of three particles, 761
for uniform circular motion, 758

additivity:
of line integrals, 955

Aharonov-Bohm (AB) effect, 1024
algebra:

and cross products, 688
vector, 659–664

alternating harmonic series, 572–573
alternating series, 570
Andrews, George, 558
angle of declination (φ), 715
angle of inclination, 821

of a plane curve, 750
angles:

obtuseness testing, 681
angles between vectors:

and dot product, 678–680
angular coordinate, 627, 628, 631
angular momentum, 740, 766
angular momentum vector, 766
angular speed, 759
angular velocity, 623, 1007
Antenna galaxies, 769
anticommutativity:

of cross product, 690
antiderivatives, 736–737
antidifferentiation, see integration
aphelion (of planet orbit), 653
approximations:

first-order, 1022, Appendix E
of infinite sums, 548
linear, 808–810, Appendix E

arc length, 620–621, 741
of a path, 741
of a plane curve, 741

arc length differential, 948
arc length function, 741, 743, 747

arc length integral, 743
arc length parametrization, 742–744, 748
Archimedes, 555, 892
arcs:

circular, length of, 621
area:

changes of under a mapping, 923–925
computing of via Green’s Theorem, 1006
and cross product, 688–691
of an ellipse, 1006
formulas for via cross products and

determinants, 692–693
parallelogram, 980
and polar coordinates, 634–637
of a polygon, 1014
surface, 623, 979–980

Aristarchus, 769
arithmetic-geometric mean, 548
associative law, 661
asymptotes:

of a hyperbola, 643–644, 645–647
average rate of change, 796–798
average value of a function (mean value), 879
average velocity vector, 763
axes:

of an ellipse, 643
of a hyperbola, 644

axis of the parabola, 644

ball grid array (BGA), 796
Balmer series, 537, 540
Balmer wavelengths, 539–540
basepoint (in the plane), 657
Bernoulli, Jacob, 555, 612
Bernoulli, Johann, 555
Bernoulli spiral, 740
Bernstein, Sergei, 614
Bernstein polynomials, 614
Bessel functions, 580, 586
best fitting circle, 750
Bézier, Pierre, 614
Bézier curves, 614
binomial coefficient, 596, 597

recursion relation for, A15
binomial series, 596, 597
Binomial Theorem, 596, 597, A15
Body Mass Index (BMI), 809

Boltzmann distribution, 856
Bolzano-Weierstrass Theorem, A10
boundaries, 1015

oriented, 1015
boundary curves, 1009, 1015

piecewise smooth, 872
boundary of the square, 837
boundary orientation, 1003, 1015
boundary point of a domain, 837
bounded constraint curve, 847
bounded domains, 838
bounded monotonic sequences, 544
bounded sequences, 543–545
brachistochrone property, 612
Brahe, Tycho, 769

calculus:
infinite series, 537
and theory of infinite series, 537
see also Fundamental Theorem of

Calculus (FTC)
Cantor’s disappearing table, 599
Cartesian coordinates, see rectangular

coordinates
Cauchy, Augustin Louis, 575, 1030
center:

of a hyperbola, 643
of an ellipse, 643

center of curvature, 751
center of mass (COM), 909
Chain Rule, 733, 798, 825–828

for gradients, 814
and implicit differentiation, 828–829
in partial derivatives, 795

Chain Rule for Paths, 814–816
chambered nautilus, 607
Change of Variables Formula, 920–925

and mapping, 925–930
in three variables, 930

circle:
area of, 636
best fitting, 750
curvature of, 747
involute of, 629, 746
osculating, 750–751
parametrization of, 610, 726–727
and polar equations, 631

I1
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circulation, 963, 1007
circulation per unit area, 1011
cissoid, 633
Clairaut, Alexis, 799
Clairaut’s Theorem, 799, A24
closed domains, 872
closed surface, 1015
clothoid, 754
Cobb, Charles, 849
Cobb-Douglas Production Function, 849
coefficients:

binomial, 596
common ratio, 540, 551
Commutative Law, 661
commutativity:

of dot product, 679
Comparison Test:

for convergence of positive series, 562
for limits, 564

completing the square technique, 840
component of u, 682
components:

and vector operations, 660–661
of vectors, 658

components function, 723
composite functions, 789

and Chain Rule, 826
computer algebra systems, 776
conditional convergence, 570
Conductivity-Temperature-Depth instrument,

774
cone, 783, 903

parametrization of, 974–975
conic sections, 641, 705

degenerate, 649
eccentricity of, 645
focus-directrix definition of, 647
nondegenerate, 649
polar equations of, 648, 769–770
reflective properties of, 648–649

conjugate axis of an ellipse, 641
connected domains, 879
conservative vector fields, 941, 963–973
constant mass density, 788
Constant Multiple Rule, 733
constant vector, 737
constant vector field, 940
constraint curve, 847–850
constraints, 851

and Lagrange multipliers, 851
continuity:

for functions, 788, 789
of power series, 591

continuous functions, 838, 864
integrability of, A22

contour intervals, 778, 780, 781, 803
contour maps, 778–782

and critical points, 836

and directional derivative, 820
and estimating partial derivatives, 797
for gradient vector field, 972
of a linear function, 780–781
of a saddle, 709

convergence:
absolute, 569
conditional, 569
infinite radius of, 588
of an infinite series, 549
of positive series, 574–580
radius of, 594–596

convergent sequence, 542, 543–544
coordinate function, 723
coordinate planes, 668

traces in, 705
coordinate systems:

level surfaces of, 714
three-dimensional, 668

coordinates:
angular, 626–627
cylindrical, 713–715
polar, 626–630, 634–637, 828
radial, 626
rectangular, 626–627, 629–630, 714–717
spherical, 713–717, 896–899, 901–903

Copernicus, Nicolaus, 769
cornea:

contour of, 754
Cornu spiral, 753
cosine function:

Maclaurin expansions of, 596–597
Cosines, Law of, 694
Couette flow, see shear flow
Coulomb’s Law, 950
cross partials:
cross-partials condition, 968–971
cross product, 688–694

anticommutativity of, 690
and area and volume, 691–693
basic properties of, 690
and Distributive Law, 690–691
geometric description of, 689
Product Formula for, 734
Product Rules for, 733
proofs of properties of, 693–694

cross term, 649
curl:

constant value of, 1007
of a vector field, 1007

curl vector fields:
surface independence for, 1021

curvature, 746–753
center of, 751
formula for, 748
of a graph in the plane, 749–750
radius of, 747

curve integrals, see line integrals

curve length, see arc length
curved parallelogram, 979
curves:

area between two, 636
bell-shaped, 907
Bézier, 614
boundary, 1009
closed, 1008
and conic sections, 609
forward direction of, 951
grid, 976–977
helix, 725–726
lemniscate, 633
oriented, 951
parametric (parametrized) 607–608, 611,

614, 618, 724
piecewise smooth, 872, 954
regions between, 874–879
simple closed, 872, 1005, 1009
smooth, 872
twisted cubic, 749
winding number of, 971

curvilinear coordinates, 976
curvilinear grid, 926
curvilinear rectangle, 922
cycloid, 612–613, 618, 621

horizontal tangent vector on, 735–736
cylinders:

equation of, 670
grid curves on, 977
parametrizations of, 975–976
quadratic, 709

cylindrical coordinates, 713–715, 975–976
triple integrals in, 899–900

decomposition:
of polar rectangle, 898
of spherical wedge, 901

decreasing sequence, 544
degree two, general equations of, 649–651
density, see mass density
derivatives:

directional, 817–819
mixed partials, 798
normal, 1015
partial, 774, 794–801, 808, 834
in polar coordinates, 626
of power series, 584
primary, 826–827
scalar-valued, 723, 733, 735
as a tangent vector, 734–736
vector-valued, 731–732, 736
of velocity vector, 756
see also antiderivatives; Second Derivative

Test
Descartes, folium of, 1012
determinants:

absolute value of, 692
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and area and volume, 691–693
and cross product, 688
Jacobian, 923–925
minors, 688
symbolic, 688

Dichotomy Theorem for Positive Series, 560,
562

difference quotient points, 735
differentiability, 805–809

criterion for, 806, A25
and tangent plane, 806

differential equations:
power series solutions of, 585–588
solutions to, 770
for vector-valued functions, 737

differential forms, theory of, 1029
differentials, 809
differentiation:

implicit, 828–829
of a power series, 584

differentiation rules, 732–733
Dirac, Paul, 941
direction vector, 673
directional derivatives, 817–822
directrix, 644–647
Dirichlet, Lejeune, 575
Discriminant Test, 651
discriminants, 835–837, 840–841

and conic sections, 650–651
displacement, 622
Distance Formula, 633

in three dimensions, 668–669
and vectors, 658

distance traveled:
and displacement, 622

Distributive Law, 681
and cross products, 688–689
and dot product, 679

distributive law for scalars, 661
divergence:

of an infinite series, 549
of harmonic series, 555
of a sequence, 538
of a vector field, 1029

Divergence Test, 553
Divergence Theorem, 1028–1037
divergent sequences, 543
divergent series, 549, 553–554
DNA:

and curvature, 746
domains, 837

and boundaries, 1003, 1028
and boundary curves, 1009
bounded, 837
and Change of Variables Formula,

928–929
connected and disconnected, 879
and cylindrical coordinates, 914

decomposing of, 880
and differentiability, 806
double integrals over, 872–881
and Green’s Theorem, 1003
of integration, 860
and Jacobians, 923
and n variables, 774–775
no holes, 1036
open, 837
parameter, 975
and polar coordinates, 899
and regions between curves, 874–879
and sequence, 537
simply connected, 968–969

dot product, 678–679
and angle between vectors, 678–679
properties of, 679
Product Rules for, 736
and testing for orthogonality,

680–681
double integrals, 860, 862–863

and Change of Variables Formula, 920
linearity of, 864
over more general domains, 872–881

Douglas, Paul, 849
Dürer, Albrecht, 630

e:
irrationality of, 603

earth:
gravitational force of sun on, 967
magnetic field of, 896

eccentricity:
of a conic section, 646
and ellipses, 646–647
of hyperbola, 647

Einstein, Albert, 769
Einstein Field Equations, 769
electric fields, 950, 967, 995–996, 1035–1037
electromagnetic wave, 1037
electromagnetism, 1037
electrons:

path of, 1024
electrostatic force, 943
ellipse, 641–643, 720, 721

area of, 1006
directrix of, 645
eccentricity of, 645
focus-directrix definition of, 647
parametrization of, 610–611
in polar coordinates, 648
reflective properties of, 649
translating, 643

Ellipses, Law of, 766, 768–769
proof of, 768–769

ellipsoids, 705
elliptic function of the first kind, 598
elliptic function of the second kind, 603

elliptic integral of the second kind, 603
elliptic paraboloids, 708
energy:

conservation of, 966–967
kinetic, 911–912, 966

Equal Area in Equal Time, Law of,
766

equations:
of an ellipse, 642
general, of degree two, 649–651
heat, 800
of a hyperbola, 644
Laplace, 984
of a parabola, 645
parametric, 607–615
polar, 651, 628, 648

equiangular spiral, 607
equivalent vectors, 658, 670
Error Bound:

for Taylor polynomials, 593, Appendix E
Euler, Leonhard, 555
Euler’s Constant, 548
exponential functions:

power series of, 579
extreme values (extrema), 833, 838

existence on a closed interval, A21

Faraday’s Law of Induction, 995–996
Fermat’s Theorem on Local Extrema, 834
Fibonacci sequence, A16
first octant, 668
first-order approximation, 1022, Appendix E
flow rate, 993–997

of fluid through a surface, 994
fluid dynamics, 939
fluid flux, 993–997
fluids:

incompressible, 1033
flux, 993
flux of a vector field, 989, 992, 1034–1036
focal axis:

of an ellipse, 641
foci:

of an ellipse, 641, 765
of a hyperbola, 643

focus-directrix definition (of conics), 646,
647

folium of Descartes, 618
foot-pounds (ft-lb), 956
force:

in magnetic field, 691
tangential component of, 957
and work, 956–957

force diagram, 663
force field, 965
force vectors, 663
forces:

as vector quantity, 663
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forward direction:
along a curve, 951

freezing:
of variables, 705

Frenet formulas, 756
Fubini’s Theorem, 866–867, 875, 886
functions:

arc length, 740, 743, 747
Bessel, 598
components, 723, 759
composite, 738
continuous, 788
continuously differentiable, 976
coordinate, 723
and differentiability, 805
differentiable, 805
gradient of, 813
and graphs of two variables, 775–777
harmonic, 548, 561
higher-order partial derivatives of,

798–801
level curves of, 776–778
linear, 776, 780–781
linearization of, 805–806
potential, 941
power, 788
product of, 789
product, 868
radial, 833
rational, 788
real-valued, 723
real-valued of n variables, 774
represented as a power series, 580
scalar-valued, 723
sequences defined by, 539
of several variables, 774
surface integral of, 981
triple integrals of, 885–892
of two or more variables, 774–782
vector-valued, 723–727, 731–737, 766
vector-valued integral, 736
velocity, 737

Fundamental Theorem of Calculus (FTC),
741, 860, 963, 1003, 1004, 1028–1029

Fundamental Theorem for Conservative
Vector Fields, 963–964, 966–967, 1021

Fundamental Theorem for Line Integrals,
1028

Galilei, Galileo, 769
Gauss’s Law, 984, 1035
Gauss’s Theorem, see Divergence Theorem
Gauss-Ostrogradsky Theorem, see

Divergence Theorem
general equations of degree two, 649–651
general term (of a sequence), 537
General Theory of Relativity, 769
geometric sequence, 540

geometric series, 550, 551, 552, 555, 556
sum of, 552

Glatzmaier-Roberts model, 896
global (absolute) extreme values, 833,

837–841
gradient (conservative) vector field, 941–943

Fundamental Theorem for, 963
gradient vectors, 813-814, 816, 820

Product Rule and Chain Rule for, 814
properties of, 814

graph of a function:
parametrization of, 976

graphing:
of functions of two variables, 775–776

graphs:
of twisted cubic curve, 749
polar, 636
surface integral of, 992

Gravitation, Newton’s Universal Law of,
766

gravitation force, 967
gravitational potential, 984
gravity:

work against, 967
Greek, ancient, mathematicians and

philosophers, 641
Green’s Theorem, 1003-1010, 1016, 1018
Gregory, James, 593
Gregory–Leibniz series, 537
grid curves, 976–977
grid lines:

in polar coordinates, 626
Guldin’s Rule, see Pappus’s Theorem

Hamilton, William Rowan, 772
harmonic functions, 1015
harmonic series, 555, 561

alternating, 572–573
divergence of, 575

head (in the plane), 657
heat equation, 800
helical ramp, 978
helicoid surface, 978
helix:

curve of, 725–726
unit normal vector to, 750

hemisphere:
integral over a, 993

horizontal traces, 778–779
horizontally simple region, 874, 876, 890
Huygens, Christiaan, 612
hyperbolas, 641, 645-647, 706, 711

asymptotes of, 654, 646
directrix of, 644
eccentricity of, 644
equation of, 659

focus-directrix definition of, 647
horizontal traces, 778
reflective properties of, 649

hyperbolic orbits, 770
hyperbolic paraboloids, 708–709
hyperboloid, 707-708, 782
hypervolume, 892–893

i, j, and k components, 658–662, 1017–1022
image, 922–923
implicit differentiation, 828-829
Implicit Function Theorem, 829, 848
improper multiple integrals, 920
incompressible fluid, 1033
increasing sequence, 543
independent variables, 825
index (of a sequence), 537
index (of an infinite series), 549
induction, principle of, A13
infinite radius of convergence, 588
infinite series, 537

convergence of, 549
linearity of, 551
summing of, 548–556

initial velocity, 758
inner integral, 865
integrability, 864
integral curves, 1007
Integral Test, 560, 561
integrals:

arc length, 621, 622
around a closed path, 964
double, 860, 862–868, 896–898, 900
of a gradient vector, 941
over a hemisphere, 991
inner, 865
iterated, 865–869, 870
line, 946–958, 1003–1005, 1019
Mean Value Theorems for, 879
multiple, 860
scalar line, 946–949
single, 860, 867
surface, 975–984, 981, 982, 984, 985,

991–998, 1020, 1024
triple, 885–894, 899–900, 901–904
vector surface, 974

integration:
multiple, 860–880
over a box, 885
over part of a circle, 873
over rectangles, 874
in polar coordinates, 896–904
of power series, 584
term-by-term, 584
vector-valued, 736

interior point of a domain, 837
Intermediate Value Theorem (IVT), A12
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inverse functions:
derivative of, A24

inverse map, 929
involute, 625
iterated integrals, 865–868, 876–877

triple integrals, 885–887

Jacobian determinant (Jacobian), 923–925
of inverse map, 929–930

Kepler, Johannes, 765, 769
Kepler’s First Law, 653
Kepler’s Laws, 766–769
Kepler’s Second Law, 766–767

proof of, 767
Kepler’s Third Law, 626, 653
kinetic energy, 966
Koch snowflake, 559
Koch, Helge von, 559
Korteweg-deVries equation, 804
Kummer’s acceleration method, 568

Lagrange condition, 848
Lagrange equations, 848–849
Lagrange multipliers:

in three variables, 850–851
with multiple constraints, 851

Laplace, Pierre Simon, Marquis de, 984
Laplace equation, 984
Laplace operator (�), 804, 833, 984, 1015,

1037
latitude, 717
Law of Conservation of Energy, 771, 941,

966
Law of Cosines, 679
Law of Ellipses, 766
Law of Equal Area in Equal Time, 766
Law of the Period of Motion, 766
Least Upper Bound (LUB) Property, 581
Leibniz, Gottfried Wilhelm von, 555, 594,

612
Leibniz notation:

for higher-order partial derivatives, 798
for partial derivatives, 794
vector-valued derivatives, 732

Leibniz Test for alternating series, 570–571
lemniscate curve, 633
length:

and dot product, 679
of a vector, 657, 670

level curves, 776–782, 836
of a potential function, 965
spacing of, 778–779

level surfaces:
of a coordinate system, 713–716
of a function of three variables, 782
in spherical coordinates, 716

limaçon, 629–630

Limit Comparison Test, 564
Limit Laws, 788

for sequences, 541
Limit Laws of scalar functions, 731
limits, 787

evaluating by substitution, 789
linearity rules for, 551
of polygonal approximations, 620
of Riemann sums, 861–862
of a sequence, 539–540
in several variables, 786–788
of vector-valued functions, 731–733
verifying, 791

line element, 948
line integrals, 946–957

Fundamental Theorem for, 1028
and Green’s Theorem, 1003–1004,

1005–1006
and Stokes’ Theorem, 1020

linear algebra:
and theory of matrices and determinants,

688
Linear Approximation, 808–809

of parallelogram, 924
of rectangle, 924

linear combination of vectors, 661–662, 671
linear functions:

contour map of, 779–780
traces of, 780

linear maps, 920–921
Jacobian of, 923–924

linear operations, and curl, 1017
linearity:

of line integrals, 955
linearization:

of a function, 805–806
lines:

direction of in the plane, 700–701
intersection of, 674
intersection of with a plane, 701
parametric equations of, 672–675
point-direction equation of, 673
and traces of a linear function, 780
vector parametrizations of, 724
and zero curvature, 747

local extrema, 833–834
local extreme values, 833
local linearity, 806
local maximum, 833–835
local minimum, 833–837
longitude, 717
lower bound of a sequence, 543

Maclaurin, Colin, 593, Appendix E
Maclaurin expansions, 593–594
Maclaurin polynomials, Appendix E
Maclaurin series, 592, 594–595, 597, 599
Madhava, 594

magnetic declination:
of United States, 803

magnetic fields, 995–997, 1024, 1037
and cross products, 688
of a solenoid, 1022–1023
velocity in, 691

magnitude:
of a vector, 657

mapping, 920–923
area changes under, 923–925
and Change of Variables Formula,

925–930
maps, 920–923

inverse, 929
Jacobians, 923–925
linear, 920–921
one-to-one, 925
polar coordinate, 920
rectangular grid, 926

marginal utility, 855
mass:

center of, 909
and triple integrals, 908–909

mass density:
of a curve, 949–950

matrices and determinants, theory of, 688
matrix, 688
maximum (max) value:

of unit square, 838
maximum volume, 839
Maxwell, James Clerk, 813, 1037
Maxwell’s equations of electromagnetism,

1037
mean value, see average value of a function
Mean Value Theorem (MVT), 555, 620
Mean Value Theorem for Double Integrals,

879
Mean Value Theorem for Integrals, 881
Mengoli, Pietro, 555
Mercury:

orbit of, 770
microchips:

testing for reliability of, 796
midpoint formula, 674
Milky Way:

mass of, 770
minors, 688
mixed partial derivatives, 798
mixed partial derivatives:

equality of, 799
Möbius strip, 993
monkey saddle, 837
monotonic sequences, bounded, 544
motion:

nonuniform circular, 761
in three-space, 756–759
uniform circulation, 758–759

Motion, Law of the Period of, 766
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Motion, Newton’s Second Law of, 766
Mount Whitney Range, 780
mountains:

and contour maps, 780–781
moving vector, 724
multiple integrals, 860–868
multiplying Taylor series, 595

n variables, 774
nabla, 813, 1016
newton, 956
Newton, Isaac, 596, 765, 984
Newton’s Law:

and conservation of energy, 771, 966
Newton’s Laws, 769
Newton’s Second Law of Motion, 757, 967
Newton’s universal gravitational constant,

766
Newton’s Universal Law of Gravitation, 766
newton-meter (N-m), 956
no holes region, 1036
nonuniform circular motion, 761
nonzero vector, 660, 662, 671
norm (of a vector), see length; magnitude
normal component of acceleration, 759,

760
normal component of a vector field, 957
normal force, 682
normal vector, 699–701, 977

to the plane, 701
numbers:

sequences of, 537

obtuseness:
testing for, 681

octants, 668
Ohm’s Law, 794
open disk, 787
open domains, 806
optimization:

with Lagrange multipliers, 847–851
in several variables, 833–841

orbits:
and law of ellipses, 768–769
perihelion of, 653

Oresme, Nicole d’, 555
oriented boundary, 1021
oriented curves, 954
oriented surface, 991
orthogonal unit vectors, 683
orthogonal vectors, 682
orthogonality:

of vector-valued functions,
736

testing for, 680
osculating circle, 750–751
osculating plane, 751
oval, 755

p-series, 561
Pappus’s Theorem, 919, 989
parabola, 644–645, 649

eccentricity of, 645
reflective properties of, 648–649
vertical traces, 776

paraboloids, 708–709
parallel vectors, 657
parallelepiped, 691–692
parallelogram, 661

area of, 979–980
curved, 980

Parallelogram Law, 659–660, 663, 665, 671
parameter domains, 974
parameters, 607, 723

and parametric equations, 607
parametric (parametrized) curve, 607–608,

610–611, 614
area under, 619
second derivative of, 618

parametric equations, 607–614
parametric equations of a line, 672–675
parametric line, 609
parametrization, 607

of arc length, 742–744
of a cone, 975
of a cylinder, 976
of graph of a function, 976
of line integral curves, 947
regular, 748, 952
of the sphere, 979
of vector line integral, 951
of vectors, 673

parametrized surface, 974–985
partial derivatives, 774, 794–800

estimating with contour maps, 797
higher-order, 798–800

partial differential equation (PDE), 800
partial differentiation:

and Clairaut’s Theorem, 799
partial sums, 548, 549

even, 571
odd, 571
of positive series, 560

partitions:
regular, 863

Pascal, Blaise, 612
Pascal’s Triangle, A14-A15
path, 723–724

arc length of, 741
parametrization of, 742
Chain Rule for, 814–816

path independence (of a vector field), 963,
965

path of steepest ascent, 782
path of steepest descent, 782
perihelion (of planet orbit), 653
period (of an orbit), 653, 765

piecewise smooth boundary curve, 872
piecewise smooth curves, 954
plane curve:

arc length of, 620
planes:

coordinate, 668
equation of a, in point-normal form,

699
equation of determined by three points,

701
intersection of with a line, 701
osculating, 751
parallel to a given plane, 700
in three-space, 699–702
traces of the, 702

planetary motion:
Kepler’s laws of, 765
laws of, 765–768

planetary orbits, 765, 769
planimeter, 1006
polar coordinates, 626–630, 634–637, 828

and area, 634–637
arc length in, 634–637
derivative in, 633
double integrals in, 896–899

polar coordinates map, 920
polar equations, 631, 648

of conic sections, 648
polar rectangle, 896

decomposition of, 898
polar regions, 898
polygon:

area of, 1014
polygonal approximations, 620, 741
polynomial approximate to the arc, 741
polynomials:

Bernstein, 614
continuous, 788
Maclaurin, Appendix E
Taylor, Appendix E

position vector, 657, 671
positive series, 559–565
positron, 941
potential:

gravitational, 966, 984
potential energy, 966–967
potential functions, 943, 963–971

existence of, 968
finding, 968–971

power functions, 788
power series, 579–588, 591

adapting, 583
and integration, 584
differentiating, 584
finding radius of convergence, 581
interval of convergence of, 580
representing functions by, 556
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solutions of differential equations,
585–588

term-by-term differentiating, 584
power series expansion, 583, 591–592
primary derivatives, 826
prime meridian, 717
Product Formula:

for cross products, 734
product function:

iterated integral of, 868
Product Law, 788
Product Rule, 733–734, 748

for gradients, 814
projection, 681

of solid regions, 887
proportionality, constant of, 766
protons:

in magnetic field, 691
psi (ψ), 821
punctured disk, 787
Pythagorean Theorem, 668–669, 760

quadratic cylinders, 709
quadratic forms, 840
quadric surfaces, 709–710
quantity flux, 990
Quotient Law, 788

radial coordinate, 626–628
radial functions, 833
radial vector, 766
radius of convergence, 580–588

infinite, 588
radius of curvature, 751
range (of a function), 920
rate of change (ROC):

average, 780–781
and partial derivatives, 794

Ratio Test, 575–578, 581–588
rational functions:

continuous, 788
real numbers:

completeness property of, Appendix D
real-valued functions, 723

of n variables, 774
rectangles:

and linear approximation, 925
as domains for integration, 860
curvilinear, 922
integration over, 875
polar, 896

rectangular (or Cartesian) coordinates, 607,
626–630, 714–718

level surfaces in, 714
rectangular grid, map of, 926
recursion relation, 586–587
recursive sequences, 538
recursively defined sequences, 537

regions:
simple, 874
solid, 886–888
see also domains

regular parametrization, 748, 852
regular partitions, 863, 866
remainder term, Appendix E
resultant force, 663
reverse orientation:

of line integrals, 955
Riemann sums, 620, 635, 862, 873

and areas of rectangles, 860–862
and double integral, 980
double integral limit, 860
and scalar line integrals, 946–947

right-hand rule, 668, 689
right-handed system, 689
right-handedness, 693
roller coasters:

and curvature, 746
Römer, Olaf, 1037
Root Test, 577

saddle, 779
saddle point, 835, 836
sample points, 861, 862, 863, 873
scalar, 660

and dot product, 678
scalar curl, 1017
scalar functions:

Limit Laws of, 731
scalar line integrals, 944–948
scalar multiplication, 660, 671
scalar potentials, 1024
scalar product, see dot product
scalar-valued derivatives, 735
scalar-valued functions, 723
scaling (dilation) of a graph:

and conic sections, 646
Scientific Revolution, 765
seawater density, 774, 804

contour map of, 797
Second Derivative Test, 840

for critical points, 835–837
second derivatives, 746

and acceleration vector, 756
for a parametrized curve, 618

sequences, 537
bounded, 542–545
bounded monotonic, 544
convergence of, 538–539, 543, 544
decreasing, 544
defined by a function, 539
difference from series, 550
divergence of, 538, 543
geometric, 540
increasing, 543
Limit Laws for, 541

limits of, 538–539, 540
recursive, 544
recursively defined, 537–538
Squeeze Theorem for, 541
term of, 537
unbounded, 543

series:
absolutely convergent, 569–570
alternating, 570
alternating harmonic, 572–573
binomial, 597–598
conditionally convergent, 570
convergent, 549, 555
difference from a sequence, 550
divergent, 549, 553
geometric, 550, 551, 552, 553, 555,

583
Gregory–Leibniz, 537
harmonic, 555, 561, 572–573
infinite, 537, 548–555
Maclaurin, 592, 594, 595, 597–599
partial sums of, 548
positive, 559–565
power, 579–588, 591
p-series, 561
Taylor, 592–599
telescoping, 549–550

set of all triples, 668
shear flow (Couette flow), 1008
signed volume of a region, 869
simple closed curve, 872, 881
simple regions, 874
simply connected domain, 942, 943
sine function:

Maclaurin expansion of, 594–595
single integrals, 860, 868
slope of a line:

and polar equation, 628
smooth curve, 872

piecewise, 872
solenoid:

vector potential for, 1022, 1023
solid regions:

integrating over, 888–889
sound:
space curve, 724, 727
space shuttle, 756

orbit of, 765
spanning with vectors, 661
speed, 622

along parametrized path, 622
sphere:

and gradient, 819
gravitational potential of, 984
in higher dimensions, 892
and level surfaces, 782
parametrization of, 848
volume of, 892–893
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spherical coordinates, 715–718, 901
and earth’s magnetic field, 688, 901
level surfaces in, 714
and longitude and latitude, 715
triple integrals in, 885–890

spherical wedge, 901–902
spinors, 941
Squeeze Theorem, 95–98

for sequences, 537–538
standard basis vectors, 663, 665, 671
standard position:

of an ellipse, 642
of a hyperbola, 643
of a parabola, 645
of quadrics, 705

Stokes’ Theorem, 1015–1024
stream lines, see integral curves
substitution:

and evaluating limits, 788–789
and Maclaurin series, 592

Sum Law, 788
Sum Rule, 732–733
sums, partial, 548, 549, 560, 570–571
sun:
surface area, 623, 979–983
surface element, 981
surface independence:

for curl vector fields, 1021
surface integrals, 940–944, 984

over a graph, 992
of vector fields, 990–997

surfaces, 1036
and boundaries, 1021
boundary of, 1015
closed, 1015
degenerate quadric, 709
flow rate of a fluid through, 994
helicoid, 978
intersection of, 724–725
level, 714
nondegenerate quadric, 709
orientation of, 1015
oriented, 989
parametrized, 974–983
parametrizing the intersection of, 724–725
quadric, 705
of revolution, 988
smooth, 1002
and Stokes’ Theorem, 1003
total charge on, 983–984
upward-pointing, 979
see also level surfaces

symbolic differential, 1003
Symmetric Four-Noid surface, 939
symmetry:

and parametrization, 607

tail (in the plane), 657
Tait, P. G., 813
tangent lines, 734, 805

for a curve in parametric form, 612–613
slopes of, 613, 802, 819

tangent plane, 806, 976–977
and differentiability, 808
finding an equation of, 820
at a local extremum, 833

tangent vectors, 738, 977
derivatives, 734–736
horizontal, on the cycloid, 735–736
plotting of, 735

tangential component:
of acceleration, 759, 760
of vector field, 952, 954, 956, 957

Taylor, Brook, Appendix E
Taylor expansions, 593, 594
Taylor polynomials, 592, 593, 595, Appendix

E
Taylor series, 591–603

integration of, 595
multiplying, 595
shortcuts to finding, 594–596
see also Maclaurin series

Taylor’s Theorem, Appendix E
temperature:

directional derivative of, 819
term-by-term differentiation and integration,

584
terms (of the sequence), 537
tests for convergence and divergence of

series:
Comparison Test, 562
Dichotomy Theorem for Positive Series,

560
Divergence Test, 553–554
Integral Test, 560
Leibniz Test for alternating series, 570–571
Limit Comparison Test, 564
p-series, 561–562
Ratio Test, 575–576
Root Test, 577

theorems:
analyzing, A6

three-dimensional coordinate system, 668
three-dimensional vectors, 668–675
Tonomura, Akira, 1024
torque, 740
torsion, 755
torus:

area of, 989
total mass, 949

scalar line integrals as, 949–950
trace curves:

and tangent lines, 805
traces, 701, 702, 776–778

of an ellipsoid, 706

of hyperboloids of one sheet, 707
of surfaces, 706

tractrix, 619, 623
transformations, see maps
translation of a vector, 657, 670
Triangle Inequality, 664
triangles:

image of under a linear map, 922
triple integrals, 885–892

in cylindrical coordinates, 899–901
in spherical coordinates, 901–904

twisted cubic curve, 749
two-dimensional vector, 657

unbounded sequences, 543
uniform circular motion, 758–759
uniform density, see constant mass density
unit circle, 612, 712
unit normal vectors, 750, 762–765, 989
unit speed parametrization, 743
unit tangent, 746
unit tangent vector, 746–752, 762, 951
unit vector field, 939–945
unit vector field:

potentials for, 943
unit vectors, 683, 817, 989
universal laws of motion and gravitation, 766
upper bound of a sequence, 543
utility, 855

Van Allen radiation belts, 688
variables:

change of, 900
Change of Variables Formula, 925–931
functions of two or more, 774–783
graphing functions of, 775–783
independent and dependent, 836
and limits, 794–796

vector addition, 659–665, 671
vector algebra, 659–665
vector analysis:

fundamental theorems of, 1003–1011
vector curl, 1011
vector differentiation, 744
vector fields, 939–942, 1005, 1008, 1010,

1024
circulation of, 963
conservative, 941–943
divergence of, 1028
gradient, 941
inverse-square radial, 1033–1035
irrotational, 1040
with nonzero curl, 1007
with nonzero divergence, 1032
normal component of, 991
radial, 1028
surface integrals of, 989–993
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unit radial, 1033
with zero divergence, 1028–1038
with zero flux, 1038

vector line integrals, 946–948
vector operations:

using components, 660–666
vector parametrization, 673, 680, 686,

753
of the cycloid, 735

vector potentials, 1021, 1024, 1036
for a solenoid, 1022, 1024

vector product, see cross product
vector quantity, 663
vector subtraction, 659
vector sum, 659
vector surface integral, 990
vector triple product, 691
vectors, 668

acceleration, 756–757
angular momentum, 766
average velocity, 763
components of, 672, 685
cross product of, 693
direction, 685
equivalent, 671, 684
force, 657
gradient, 774, 912–822
i, j, k, 688–691
in three dimensions, 680–688
length of, 683
Lenz, 780–784
linear combination of, 661–662
nonzero, 662, 665
normal, 699–715, 719, 720, 830, 972

orthogonal, 699
orthogonal unit, 683
parallel, 671
perpendicular, 693
position, 684
product, 688–691
radial, 778
standard basis, 674, 692, 696
tangent, 770, 974
translation of, 672, 684
two-dimensional, 657
unit, 676, 828
unit normal, 763, 771, 947
unit tangent, 746–747, 950, 745, 749–755,

787
velocity, 734, 738, 742, 744, 756, 762
zero, 672

vector-valued functions, 731–739
calculus of, 740–741
of constant length, 761
continuity of, 742
continuous, 744
derivatives of, 743
differential equations of, 749, 779
dot and cross products of, 748
fundamental theory of calculus for, 733
limits of, 741–742
orthogonality of, 734–735

vector-valued integration, 736–737
velocity, 631

and acceleration, 160, 767
angular, 634
initial, 751
in a magnetic field, 691
as vector quantity, 670

velocity field:
of a fluid flow, 993–994
velocity vector field, 1000

velocity function, 750
velocity vector, 738, 752–753, 770, 773, 826,

939
vertex (of a parabola), 657
vertical traces, 776
vertically simple region, 884, 887
vertices:

of an ellipse, 654
of a hyperbola, 655–657

volume:
and cross product, 701–702
formulas for via cross products and

determinants, 691–694
of a region, 885
of a sphere, 901–902
and triple integrals, 900

vortex vector field, 967

wave equation, 1037
wind velocity, 939
winding number of the curve, 971
work:

and force, 956–957
and gravity, 967

x-axis:
symmetry about, 640

xy-plane, 881–882
xz-plane, 882

yz-plane, 899–900

z-axis, 708
zero vector, 672
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