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Preface

As the earlier editions were, this book is intended as a text for an introductory course in
algebraic structures (groups, rings, fields, and so forth). Such a course is often used to
bridge the gap from manipulative to theoretical mathematics and to help prepare secondary
mathematics teachers for their careers.

A minimal amount of mathematical maturity is assumed in the text; a major goal is to
develop mathematical maturity. The material is presented in a theorem-proof format, with
definitions and major results easily located thanks to a user-friendly format. The treatment
is rigorous and self-contained, in keeping with the objectives of training the student in the
techniques of algebra and providing a bridge to higher-level mathematical courses.

Groups appear in the text before rings. The standard topics in elementary group theory
are included, and the last two sections in Chapter 4 provide an optional sample of more
advanced work in finite abelian groups.

The treatment of the set Z,, of congruence classes modulo 7 is a unique and popular
feature of this text, in that it threads throughout most of the book. The first contact with Z,,
is early in Chapter 2, where it appears as a set of equivalence classes. Binary operations of
addition and multiplication are defined in Z, at a later point in that chapter. Both the addi-
tive and multiplicative structures are drawn upon for examples in Chapters 3 and 4. The
development of Z, continues in Chapter 5, where it appears in its familiar context as a ring.
This development culminates in Chapter 6 with the final description of Z, as a quotient ring
of the integers by the principal ideal (n).

Some flexibility is provided by including more material than would normally be taught
in one course, and a dependency diagram of the chapters/sections (Figure P.1) is included
at the end of this preface. Several sections are marked “optional” and may be skipped by
instructors who prefer to spend more time on later topics.

Several users of the text have inquired as to what material the authors themselves teach
in their courses. Our basic goal in a single course has always been to reach the end of
Section 5.3 “The Field of Quotients of an Integral Domain,” omitting the last two sections
of Chapter 4 along the way. Other optional sections could also be omitted if class meetings
are in short supply. The sections on applications naturally lend themselves well to outside
student projects involving additional writing and library research.

For the most part, the problems in an exercise set are arranged in order of difficulty,
with easier problems first, but exceptions to this arrangement occur if it violates logical
order. If one problem is needed or useful in another problem, the more basic problem
appears first. When teaching from this text, we use a ground rule that any previous result,
including prior exercises, may be used in constructing a proof. Whether to adopt this
ground rule is, of course, completely optional.

xi
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Some users have indicated that they omit Chapter 7 (Real and Complex Numbers) be-
cause their students are already familiar with it. Others cover Chapter 8 (Polynomials) before
Chapter 7. These and other options are diagrammed in Figure P.1 at the end of this preface.

The following user-friendly features are retained from the sixth edition:

* Descriptive labels and titles are placed on definitions and theorems to indicate their
content and relevance.

e Strategy boxes that give guidance and explanation about techniques of proof are
included. This feature forms a component of the bridge that enables students to
become more proficient in constructing proofs.

e Symbolic marginal notes such as “(p A ¢g) = r” and “~p & (~vg A ~r)” are used
to help students analyze the logic in the proofs of theorems without interrupting the
natural flow of the proof.

* A reference system provides guideposts to continuations and interconnections of
exercises throughout the text. For example, consider Exercise 8 in Section 4.4.
The marginal notation “Sec. 3.3, #11 >" indicates that Exercise 8 of Section 4.4 is con-
nected to Exercise 11 in the earlier Section 3.3. The marginal notation “Sec. 4.8, #7 <”
indicates that Exercise 8 of Section 4.4 has a continuation in Exercise 7 of Section 4.8.
Instructors, as well as students, have found this system useful in anticipating which
exercises are needed or helpful in later sections/chapters.

* An appendix on the basics of logic and methods of proof is included.

* A biographical sketch of a great mathematician whose contributions are relevant to
that material concludes each chapter.

e A gradual introduction and development of concepts is used, proceeding from the
simplest structures to the more complex.

e An abundance of examples that are designed to develop the student’s intuition are
included.

* Enough exercises to allow instructors to make different assignments of approximately
the same difficulty are included.

* Exercise sets are designed to develop the student’s maturity and ability to construct
proofs. They contain many problems that are elementary or of a computational nature.

e A summary of key words and phrases is included at the end of each chapter.
* A list of special notations used in the book appears on the front endpapers.
* Group tables for the most common examples are on the back endpapers.
e An updated bibliography is included.
Between this edition and the previous one, my coauthor and beloved husband, Jimmie
Gilbert, passed away. As I worked on this edition, Jimmie was sitting on my shoulder whis-

pering do’s and don’ts to me, and for this reason, his profound influence is still being
reflected in this edition. The most significant changes that “we” made include:

* enhancing the treatment of congruences to systems by introducing the Chinese Re-
mainder Theorem (Section 2.5);

* splitting Section 3.1 so that the variety of groups can be appreciated before the group
properties are emphasized;
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e splitting Section 4.4 so that cosets can be completely understood before introducing

normal subgroups;

e expanding the treatment of irreducibility of polynomials (Section 8.4);

¢ introducing the discriminant of a cubic polynomial to characterize the solutions of

cubic equations (Section 8.5);

¢ fine-tuning the links between exercises from one section/chapter to another;

¢ including around 300 True/False statements that encourage the students to thoroughly
understand the statements of definitions and results of theorems;

e adding nearly 400 new exercises, a majority of which are theoretical and the remain-

der computational; and, of course,

e minor rewriting throughout the text.
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CHAPTER ONE

Fundamentals

M Introduction

This chapter presents the fundamental concepts of set, mapping, binary operation, and
relation. It also contains a section on matrices, which will serve as a basis for examples and
exercises from time to time in the remainder of the text. Much of the material in this chap-
ter may be familiar from earlier courses. If that is the case, appropriate omissions can be
made to expedite the study of later topics.

Sets

Abstract algebra had its beginnings in attempts to address mathematical problems such as
the solution of polynomial equations by radicals and geometric constructions with straight-
edge and compass. From the solutions of specific problems, general techniques evolved
that could be used to solve problems of the same type, and treatments were generalized to
deal with whole classes of problems rather than individual ones.

In our study of abstract algebra, we shall make use of our knowledge of the various
number systems. At the same time, in many cases we wish to examine how certain proper-
ties are consequences of other, known properties. This sort of examination deepens our un-
derstanding of the system. As we proceed, we shall be careful to distinguish between the
properties we have assumed and made available for use and those that must be deduced
from these properties. We must accept without definition some terms that are basic objects
in our mathematical systems. Initial assumptions about each system are formulated using
these undefined terms.

One such undefined term is set. We think of a set as a collection of objects about which
it is possible to determine whether or not a particular object is a member of the set. Sets are
usually denoted by capital letters and are sometimes described by a list of their elements,
as illustrated in the following examples.

Example 1 we write
A=1{0,1,2,3}

to indicate that the set A contains the elements O, 1, 2, 3, and no other elements. The nota-
tion {0, 1, 2, 3} is read as “the set with elements 0, 1, 2, and 3.” [ ]
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Example 2 The set B, consisting of all the nonnegative integers, is written
B=1{0,1,2,3,...}.

The three dots . . . , called an ellipsis, mean that the pattern established before the dots con-
tinues indefinitely. The notation {0, 1, 2, 3, ... } is read as “the set with elements 0, 1, 2, 3,
and so on.” |

As in Examples 1 and 2, it is customary to avoid repetition when listing the elements
of a set. Another way of describing sets is called set-builder notation. Set-builder notation
uses braces to enclose a property that is the qualification for membership in the set.

Example 3 ThesetBin Example 2 can be described using set-builder notation as
B = {x|xis a nonnegative integer}.
The vertical slash is shorthand for “such that,” and we read “B is the set of all x such that x

is a nonnegative integer.” |

There is also a shorthand notation for “is an element of.” We write “x € A” to mean “x
is an element of the set A.” We write “x & A” to mean “x is not an element of the set A.”
For the set A in Example 1, we can write

2€A and 7€ A.

m Subset

Definition 1.2

Let A and B be sets. Then A is called a subset of B if and only if every element of A is an ele-
ment of B. Either the notation A B or the notation B 2 A indicates that A is a subset of B.

The notation A € B is read “A is a subset of B” or “A is contained in B.” Also, B2 A
is read as “B contains A.” The symbol € is reserved for elements, whereas the symbol =
is reserved for subsets.

Example 4 we write

a€{a,b,c,dt or {a}<{a,b,cd}.
However,

ac{a,b,c,dt and {a} € {a,b,c, d}

are both incorrect uses of set notation. |

m Equality of Sets

Two sets are equal if and only if they contain exactly the same elements.

The sets A and B are equal, and we write A = B, if each member of A is also a member
of B and if each member of B is also a member of A. Typically, a proof that two sets are
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equal is presented in two parts. The first shows that A < B, the second that B = A. We then
conclude that A = B. We shall have an example of this type of proof shortly.

Strategy

One method that can be used to prove that A # B is to exhibit an element that is in either
set A or set B but is not in both.

Definition 1.3

Example 5 Suppose A ={1,1}, B={—1,1}, and C = {1}. Now A # B since
—1 € Bbut —1 & A, whereas A = Csince A< CandA 2 C. [ |

Proper Subset

Definition 1.4

If A and B are sets, then A is a proper subset of B if and only if A € Band A # B.

We sometimes write A C B to denote that A is a proper subset of B.

Example 6 The following statements illustrate the notation for proper subsets and
equality of sets.

{1,2,4} c{1,2,3,4,5} {a, ¢} = {c, a} [ |

There are two basic operations, union and intersection, that are used to combine sets.
These operations are defined as follows.

Union, Intersection

If A and B are sets, the union of A and B is the set A U B (read “A union B”), given by
AUB = {x|x EAorx € B}.

The intersection of A and B is the set A M B (read “A intersection B”), given by
ANB={x|x € Aand x € B}.

The union of two sets A and B is the set whose elements are either in A or in B or are
in both A and B. The intersection of sets A and B is the set of those elements common to
both A and B.

Example 1 Suppose A = {2,4,6}and B = {4, 5, 6, 7}. Then
AUB =1{2,4,5,6,7}

and
ANB = {4,6}. [ ]

The operations of union and intersection of two sets have some properties that are
analagous to properties of addition and multiplication of numbers.
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Example 8 Itis easy to see that for any sets A and B, AU B = BU A:

AUB={x|xEAorx € B}
= {x|]x € Borx € A}
=BUA.

Because of the fact that A U B = B U A, we say that the operation union has the commu-
tative property. It is just as easy to show that A M B = B M A, and we say also that the op-
eration intersection has the commutative property. |
It is easy to find sets that have no elements at all in common. For example, the sets
A={1,—-1} and B=1{0,2,3}

have no elements in common. Hence, there are no elements in their intersection, A N B,
and we say that the intersection is empty. Thus it is logical to introduce the empty set.

= Empty Set, Disjoint Sets

Definition 1.6

The empty set is the set that has no elements, and the empty set is denoted by J or { }.
Two sets A and B are called disjoint if and only if A N B = .

The sets {1, —1} and {0, 2, 3} are disjoint, since
{1, -1} N{0,2,3} = <.

There is only one empty set (J, and (J is a subset of every set. For a set A with n ele-
ments (7 a nonnegative integer), we can write out all the subsets of A. For example, if

A ={a,b,c},
then the subsets of A are

&, {a}, {b}, {c}, {a,b}, {a,c}, {b,c}, A.

m Power Set

For any set A, the power set of A, denoted by %(A), is the set of all subsets of A and is written
PA) = {X|X < A}.

Example 9 ForA = {a, b, ¢}, the power set of A is
PA) = {D, {a}, {b}, {c}. {a. b}, {a.c}, {b.c}. A} u

It is often helpful to draw a picture or diagram of the sets under discussion. When we
do this, we assume that all the sets we are dealing with, along with all possible unions and
intersections of those sets, are subsets of some universal set, denoted by U. In Figure 1.1,
we let two overlapping circles represent the two sets A and B. The sets A and B are subsets
of the universal set U, represented by the rectangle. Hence the circles are contained in the
rectangle. The intersection of A and B, A M B, is the crosshatched region where the two
circles overlap. This type of pictorial representation is called a Venn diagram.
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® Figure 1.1 KX

Another special subset is defined next.

Definition 1.7 m Complement

For arbitrary subsets A and B of the universal set U, the complement of B in A is

A—B={x€U|xE€A and x & B}.

The special notation A’ is reserved for a particular complement, U — A:
A=U—-A={x€eU|x&A}.

We read A" simply as “the complement of A” rather than as “the complement of A in U.”

Example 10 Let
U = {x|xis an integer}
A = {x|x s an even integer}
B = {x|xis a positive integer}.
Then
B — A = {x|x s a positive odd integer}
={1,3,5,7,...}
A — B = {x|x is a nonpositive even integer}
={0, -2, —4,—6,...}
A" = {x|x is an odd integer}
={..,-3-113,...}
B’ = {x|x is a nonpositive integer}

={0,-1,-2,-3,...}. m
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Example 11 The overlapping circles representing the sets A and B separate the interior of
the rectangle representing U into four regions, labeled 1, 2, 3, and 4, in the Venn diagram in
Figure 1.2. Each region represents a particular subset of U.

U
Region1: B — A
Region2: A N B
4 Region3: A — B
Region4: (A UB) |

Many of the examples and exercises in this book involve familiar systems of numbers,
and we adopt the following standard notations for some of these systems:

Z denotes the set of all integers.
Z" denotes the set of all positive integers.
Q denotes the set of all rational numbers.
R denotes the set of all real numbers.
R™" denotes the set of all positive real numbers.
C denotes the set of all complex numbers.
We recall that a complex number is defined as a number of the form a + bi, where a and

b are real numbers and i = V' — 1. Also, a real number x is rational if and only if x can be
written as a quotient of integers that has a nonzero denominator. That is,

meZn€Z,andn # O}.

The relationships that some of the number systems have to each other are indicated by
the Venn diagram in Figure 1.3.

Z"CZCQCRCC
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Our work in this book usually assumes a knowledge of the various number systems
that would be familiar from a precalculus or college algebra course. Some exceptions
occur when we wish to examine how certain properties are consequences of other prop-
erties in a particular system. Exceptions of this kind occur with the integers in Chapter 2
and the complex numbers in Chapter 7, and these exceptions are clearly indicated when
they occur.

The operations of union and intersection can be applied repeatedly. For instance, we
might form the intersection of A and B, obtaining A M B, and then form the intersection of
this set with a third set C: (AN B) N C.

Example 12 Thesets(ANB)NCand AN (BN C) are equal, since

ANBNC={xlx€AandxE B} NC
={x|xEAandx € Bandx € C}
=AN{x|x €EBandx € C}
=ANMBNO).

In analogy with the associative property
xt+y)+tz=x+(+2

for addition of numbers, we say that the operation of intersection is associative. When we
work with numbers, we drop the parentheses for convenience and write

x+ty+tz=x+O+tz=x+y +z
Similarly, for sets A, B, and C, we write
ANBNC=ANMBNC)=ANBNC. [ |

Just as simply, we can show (see Exercise 18 in this section) that the union of sets is an
associative operation. We write

AUBUC=AUBUC) =AUBULC.

Example 13 A separation of a nonempty set A into mutually disjoint nonempty subsets
is called a partition of the set A. If

A ={a,b,c,d,e.f},
then one partition of A is
Xy =Aad}, Xy ={bcf},  Xy={e},
since

A:XIUX2UX3
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Witth # @,Xz b @,X3 # @, and
leX2:®, leX:;:@, XZOX:;:@.

The concept of a partition is fundamental to many of the topics encountered later in this
book. |

The operations of intersection, union, and forming complements can be combined in
all sorts of ways, and several nice equalities can be obtained that relate some of these
results. For example, it can be shown that

ANMBUCO =ANBUMAUNCO)
and that
AUMBNC)=AUBNAUDOQO).

Because of the resemblance between these equations and the familiar distributive property
x(y + z7) = xy + xz for numbers, we call these equations distributive properties.

We shall prove the first of these distributive properties in the next example and leave
the last one as an exercise. To prove the first, we shall show that AN BUC) <
(ANB)UANC) and that ANB)UANC)SAN(BU Q). This illustrates the point
made earlier in the discussion of equality of sets, immediately after Definition 1.2.

The symbol = is shorthand for “implies,” and < is shorthand for “is implied by.” We
use them in the next example.

Example 14 To prove
ANBUCO =@ANBUMANO),
we first letx € A N (BU C). Now

xXEANMBUC)=x€A and x€ (BUO)
=>xE€A, and x€B or xe€C
=>xEA and xEB, or x€EA and x&€C
=>xEANB, or xEANC
S>xEANBUMAUNO.
ThusANBUCO)SANBUMUNO).
Conversely, suppose x € (A M B) U (A N C). Then
XEANBUMANC) =xEANB, or xEANC
=>x€EA and xE€B, or x€EA and xE€C
=>x€A, and x€B or xe€C
=>xE€A and xE€ BUO
=>xEANBUDO).

Therefore, (ANB)UANC)SANBUDC), and we have shown that AN BUC) =
ANBUMANO).
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It should be evident that the second part of the proof can be obtained from the first

simply by reversing the steps. That is, when each = is replaced by <, a valid implication
results. In fact, then, we could obtain a proof of both parts by replacing = with <,
where < is short for “if and only if.” Thus

xXEANBUCO ©xEA and x€BUO

SxEA and xEB or xE€C

&Sx€EA and x€B, or x€A and xe€C
SxeEANB, or xeEANC
SxEMANBUMNO. |

Strategy m In proving an equality of sets S and 7, we can often use the technique of showing that
S € T and then check to see whether the steps are reversible. In many cases, the steps are
indeed reversible, and we obtain the other part of the proof easily. However, this method
should not obscure the fact that there are still two parts to the argument: S € Tand 7 < S.

There are some interesting relations between complements and unions or intersec-

tions. For example, it is true that

(ANB) = A UB.

This statement is one of two that are known as De Morgan’st Laws. De Morgan’s other

law is the statement that

(AUB)Y = A'NB.

Stated somewhat loosely in words, the first law says that the complement of an intersection
is the union of the individual complements. The second similarly says that the complement
of a union is the intersection of the individual complements.

BN Exercises 1.1 I——

True or False

Label each of the following statements as either true or false.

1.

EUF I

Two sets are equal if and only if they contain exactly the same elements.
If A is a subset of B and B is a subset of A, then A and B are equal.

The empty set is a subset of every set except itself.

A — A = Jfor all sets A.

AUA = AN Aforall sets A.

fAugustus De Morgan (1806-1871) coined the term mathematical induction and is responsible for rigorously
defining the concept. Not only does he have laws of logic bearing his name but also the headquarters of the
London Mathematical Society and a crater on the moon.
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6. A C A for all sets A.
7. {a, b} = {b, a}

8. {a, b} = {ba a, b}
9.

A — B = C — Bimplies A = C, for all sets A, B, and C.
10. A — B=A — Cimplies B = C, for all sets A, B, and C.

Exercises
1. For each set A, describe A by indicating a property that is a qualification for membership
in A.
a. A =1{0,2,4,6,8, 10} b. A = {1, -1}
c A={—-1,-2,-3,...} d. A={1,4,9,16,25,...}
2. Decide whether or not each statement is true forA = {2,7,11} and B = {1,2,9, 10, 11}.
a.2cA b. {11,2,7} A
c¢.2=ANB d. {7,11} €A
e. ACB f. {7,11,2} =A
3. Decide whether or not each statement is true, where A and B are arbitrary sets.
a. BUACA b. BNACAUB
c. JcA d0ey
e. J € {J} f. &< {D}
g (Jycd h. (¥} =0
P Jgey I Z2E=4%]
4. Decide whether or not each of the following is true for all sets A, B, and C.
aANA = b. ANY=AUY
c. ANBUC)=AUMBNC) d AUB'NCY=AUBUC)
e AUBNC)=AUBNC f. ANBUC=ANBUCQC)
g AUBNC)=ANC)UBNC) h. ANBUC)=AUBNAUOC)

5. Evaluate each of the following sets, where
U=1{0,1,2,3,...,10}
A={0,1,2,3,4,5}
B =1{0,2,4,6,8, 10}

C=1{23,57}.
a. AUB b. ANC c. AUB
d. ANBNC e. ANBNC f. AUBNC)
g. AN (BUC) h. AUBYY i.A—B
j.B—A k.A—(B—0O) L. C— (B—A)
m. (A —B)N(C — B) n.A-BNA-C)
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6. Write each of the following as either A, A’, U, or J, where A is an arbitrary subset of
the universal set U.
a.ANA b. AUA
c. ANA d. AUA
e. AUJZ f.ANG
g ANU h. AUU
i UUA JA-O
k. &' LU
m. (A" nJg-A
7. Write out the power set, P(A), for each set A.
a. A = {a} b. A= {0, 1}
c. A={a,b,c} d. A={1,2,3,4}
e. A={1,{1}} f. A={{1}}
g A= {J) h. A ={J, {J}}
8. Describe two partitions of each of the following sets.
a. {x|xis an integer} b. {a, b, c,d}
c. {1,5,9,11,15} d. {x|x is a complex number }
9. Write out all the different partitions of the given set A.
a. A= {1,273} b. A ={1,2,3,4}
10. Suppose the set A has n elements where n € Z*.
a. How many elements does the power set P(A) have?
b. If 0 = k < n, how many elements of the power set %(A) contain exactly k elements?
11. State the most general conditions on the subsets A and B of U under which the given
equality holds.
a.ANB=A b.AUB =A
c. AUB=A d. ANB =A
ee ANB=U f.ANB =Y
g AUJ=U h ANU=J
12. Let Z denote the set of all integers, and let
A = {x|x =3p — 2 forsome p € Z}
B = {x|x = 3¢ + 1 forsome g € Z}.
Prove that A = B.
13. Let Z denote the set of all integers, and let

C = {x|x = 3r — 1 forsome r € Z}
D = {x|x = 3s + 2 for some s € Z}.
Prove that C = D.



12

Chapter 1

1.2

Fundamentals

In Exercises 14-33, prove each statement.

14.
16.
18.
20.
22,
24,
26.
28.
30.
32.
34.
35.
36.
37.
38.
39.

40.

ANB<CAUB 15. Ay =A

IfA<Band BS C,thenA < C. 17. AcBifandonly if B C A"
AUBUC)=AUBUC 19. AUBY =A'NF
(ANB=A"UPB 2. AUBNC)=AUBNAUCQC
AN@AUB =ANB 23. AUA'NB)=AUB
AUANB) =ANAUB) 25. IfASB,thenAUC<SBUC.
IfAcB, thenANC<SBNC. 27. B—A=BNA

ANB-A) = 29. AUB—-A)=AUB

AUB) - C=A—-OUB-0) 3. A-—BHUANB) =A

Ac BifandonlyifAUB = B. 33. Ac Bifandonly if A N B = A.
Prove or disprove that A U B = A U Cimplies B = C.

Prove or disprove that A M B = A N Cimplies B = C.
Prove or disprove that (A U B) = P(A) U P(B).
Prove or disprove that (A M B) = P(A) N P(B).
Prove or disprove that P(A — B) = P(A) — P(B).

Express (A U B) — (A M B) in terms of unions and intersections that involve A, A’, B,
and B'.

Let the operation of addition be defined on subsets A and B of U by A + B =
(AU B) — (AN B). Use a Venn diagram with labeled regions to illustrate each of the
following statements.

a.A+B=(A—-BU®B-A
b.A+(B+C) =@A+B) +C
. ANB+C)=ANB)+ANCO).

41. Let the operation of addition be as defined in Exercise 40. Prove each of the following
statements.
aA+A=0 b.A+J=A

Mappings

The concept of a function is fundamental to nearly all areas of mathematics. The term
function is the one most widely used for the concept that we have in mind, but it has be-
come traditional to use the terms mapping and transformation in algebra. It is likely that
these words are used because they express an intuitive feel for the association between the
elements involved. The basic idea is that correspondences of a certain type exist between



Definition 1.8

1.2 Mappings 13

the elements of two sets. There is to be a rule of association between the elements of a
first set and those of a second set. The association is to be such that for each element in
the first set, there is one and only one associated element in the second set. This rule of
association leads to a natural pairing of the elements that are to correspond, and then to
the formal statement in Definition 1.9.

By an ordered pair of elements we mean a pairing (a, b), where there is to be a dis-
tinction between the pair (a, b) and the pair (b, a), if a and b are different. That is, there is to
be a first position and a second position such that (a, b) = (c, d) if and only if both a = ¢ and
b = d. This ordering is altogether different from listing the elements of a set, for there the
order of listing is of no consequence at all. The sets {1, 2} and {2, 1} have exactly the same
elements, and {1, 2} = {2, 1}. When we speak of ordered pairs, however, we do not consider
(1, 2) and (2, 1) equal. With these ideas in mind, we make the following definition.

m Cartesian' Product

Definition 1.9

For two nonempty sets A and B, the Cartesian product A X B is the set of all ordered
pairs (a, b) of elements a € A and b € B. That is,

A X B={(a,b)|la € Aand b € B}.

Example1 1fA = {1,2} and B = {3, 4, 5}, then
A X B=1{(1,3), (1,4, (1,5), (2,3), (2,4), (2,5}

We observe that the order in which the sets appear is important. In this example,
BXA={3G1, (32,41, 42,6 D, 62}

soA X Band B X A are quite distinct from each other. |

We now make our formal definition of a mapping.

= Mapping, Image

Let A and B be nonempty sets. A subset f of A X B is a mapping from A to B if and only
if for each a € A there is a unique (one and only one) element b € B such that (a, b) € f.
If f is a mapping from A to B and the pair (a, b) belongs to f, we write b = f(a) and call b
the image of a under f.

Figure 1.4 illustrates the pairing between a and f(a). A mapping f from A to B is the
same as a function from A to B, and the image of a € A under f is the same as the value of
the function f at a. Two mappings f from A to B and g from A to B are equal if and only if
f(x) = g(x) for all x € A.

"The Cartesian product is named for René Descartes (1596—1650), who has been called the “Father of Modern
Philosophy” and the “Father of Modern Mathematics.”
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(a,b) € f

Example 2 1etA = {—2,1,2},and let B = {1, 4, 9}. The set f given by
f=1(=2,4),(1,1),(2,4)}

is a mapping from A to B, since for each a € A there is a unique element » € B such that
(a, b) € f. As is frequently the case, this mapping can be efficiently described by giving
the rule for the image under f. In this case, f(a) = a?, a € A. This mapping is illustrated in
Figure 1.5.

fla)=a*,a € A

When it is possible to describe a mapping by giving a simple rule for the image of an
element, it is certainly desirable to do so. We must keep in mind, however, that the set A,
the set B, and the rule must all be known before the mapping is determined. If fis a map-
ping from A to B, we write f:A — Bor A —L B to indicate this.

Definition 110 m Domain, Codomain, Range

Let f be a mapping from A to B. The set A is called the domain of f, and B is called the
codomain of f. The range of fis the set

C = {y|y € Bandy = f(x) for some x € A}.
The range of fis denoted by f(A).

Example 3 LetA = {—2,1,2}and B = {1, 4,9}, and let f be the mapping described
in the previous example:

f=A{@b)|fla) = d’ a € A}
The domain of f is A, the codomain of f is B, and the range of fis {1,4} C B. |

If f: A — B, the notation used in Definition 1.10 can be extended as follows to arbitrary
subsets S € A.
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Definition 1.11 m Image, Inverse Image

Iff: A—Band S € A, then
f(S) = {y|y € Band y = f(x) for some x € S}.

The set f(S) is called the image of S under f. For any subset T of B, the inverse image of
T is denoted by f~(T') and is defined by

FNT) = {x|x € Aand f(x) € T}.

We note that the image f(A) is the same as the range of f. Also, both notations f(S) and

f~X(T) in Definition 1.11 denote sets, not values of a mapping. We illustrate these notations
in the next example.

Example 4 Letf: A — B as in Example 3. If § = {1, 2}, then f(S) = {1, 4} as shown
in Figure 1.6.

o Figure 1.6

With T = {4,9},f !(T) is given by f~/(T) = {—2, 2} as shown in Figure 1.7.

m Figure 1.7 |

Among the various mappings from a nonempty set A to a nonempty set B, there are some
that have properties worthy of special designation. We make the following definition.

Definition 1.12m Onto, Surjective

Letf: A — B. Then f is called onto, or surjective, if and only if B = f(A). Alternatively, an
onto mapping f is called a mapping from A onto B.
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We begin our discussion of onfo mappings by describing what is meant by a map-
ping that does not satisfy the requirement in Definition 1.12. To show that a given map-
ping f: A — B is not onto, we need only find a single element b in B for which no x € A
exists such that f(x) = b. Such an element b and the sets A, B, and f(A) are diagrammed
in Figure 1.8.

S5 (&

Example 5 Suppose we have f: A — B, where A = {—1, 0, 1}, B = {4, —4}, and
f=1{(=1,4),(0,4), (1, 4)}. The mapping f is not onto, since there is no a € A such that
fla) = —4 €B. [ |

Strategy B According to our definition, a mapping f from A to B is onto if and only if every element
of B is the image of at least one element in A. A standard way to demonstrate that
f+ A — Bis onto is to take an arbitrary element b in B and show (usually by some kind of
formula) that there exists an element a € A such that b = f(a).

Example 6 Let f: Z — Z, where Z is the set of integers. If f is defined by
f={@a2 - a)la€Z}

then we write f(a) =2 —a,a € Z.
To show that f is onto (surjective), we choose an arbitrary element b € Z. Then there
exists 2 — b € Z such that

2-bb)ef
since f(2 — b) = 2 — (2 — b) = b, and hence fis onto. |

Definition 1.13m One-to-One, Injective

Let f: A — B. Then fis called one-to-one, or injective, if and only if different elements of
A always have different images under f.

In an approach analogous to our treatment of the onto property, we first examine the situ-
ation when a mapping fails to have the one-to-one property. To show that f is not one-to-one,
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we need only find two elements a; € A and a, € A such that a; # a; and f(a;) = f(a»). A
pair of elements with this property is shown in Figure 1.9.

Strategy =

The preceding discussion illustrates how only one exception is needed to show that a
given statement is false. An example that provides such an exception is referred to as a
counterexample.

Example 1 Suppose we reconsider the mapping f: A— B from Example 5 where
A={-1,0,1},B= {4, —4},andf = {(—1,4), (0,4), (1, 4)}. We see that fis not one-to-
one, since

A=1)=f0)=4 but —1#0. n

A mapping f: A — B is one-to-one if and only if it has the property that a; # a, in A
always implies that f(a;) # f(a>) in B. This is just a precise statement of the fact that dift-
erent elements always have different images. The trouble with this statement is that it is for-
mulated in terms of unequal quantities, whereas most of the manipulations in mathematics
deal with equalities. For this reason, we take the logically equivalent contrapositive state-
ment “f(a;) = f(ap) always implies a; = a,” as our working form of the definition.

Strategy =

We usually show that fis one-to-one by assuming that f(a;) = f(a,) and proving that this
implies that a; = a.

This strategy is used to show that the mapping in Example 6 is one-to-one.

Example 8 Suppose f: Z — Z is defined by
f={@2 - a)a€Z}.
To show that f'is one-to-one (injective), we assume that for a; € Z and a, € Z,

flay) = flay).
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Then we have
2 — a; = 2 — a,,

and this implies that a; = a,. Thus fis one-to-one. |

Definition 1.14 = One-to-One Correspondence, Bijection

Let f: A — B. The mapping f is called bijective if and only if f is both surjective and injec-
tive. A bijective mapping from A to B is called a one-to-one correspondence from A to B,
or a bijection from A to B.

Example 9 The mapping f: Z — Z defined in Example 6 by
f={@2 - a)la€Z}
is both onto and one-to-one. Thus fis a one-to-one correspondence. |
Just after Example 11 in Section 1.1, the symbols Z, Z*, Q, R, R", and C were

introduced as standard notations for some of the number systems. Another set of numbers
that we use often enough to justify a special notation is the set of all even integers. The

set E of all even integers includes 0 and all negative even integers, —2, —4, —6, ..., as
well as the positive even integers, 2, 4, 6, . . . . Thus
E={..,-6,-4,-2,0,2,4,6,...},

and we define n to be an even integer if and only if n = 2k for some integer k. An integer
n is defined to be an odd integer if and only if n = 2k + 1 for some integer &, and the set
of all odd integers is the complement of E in Z:

Z-E ={..,-5-3,-1,1,3,5...}.

Note that we could also define an odd integer by using the expression n = 2j — 1 for some
integer j.

The next two examples show that a mapping may be onto but not one-to-one, or it may
be one-to-one but not onto.

Example 10 In this example, we encounter a mapping that is onto but not one-to-one.
Let h: Z — Z be defined by

x—2

if x is even
h(x) =

X —
2

if x 1s odd.

To attempt a proof that 4 is onto, let b be an arbitrary element in Z and consider the
equation A(x) = b. There are two possible values for i(x), depending on whether x is even
or odd. Considering both of these values, we have

x—2 x—3

=b f ,
5 or x even, or >

= b for x odd.
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Solving each of these equations separately for x yields
x=2b+2 forxeven, or x=2b+ 3 forxodd.

We note that 2b + 2 = 2(b + 1) is an even integer for every choice of b in Z and that
2b +3=2(b+ 1)+ 1is an odd integer for every choice of b in Z. Thus there are two
values, 2b + 2 and 2b + 3, for x in Z such that

h(2b +2) =b and h(2b + 3) = b.

This proves that 4 is onto. Since 2b + 2 # 2b + 3 and h(2b + 2) = h(2b + 3), we have
also proved that / is not one-to-one. |

Example 11  Consider now the mapping f: Z — Z defined by
f(x) =2x + 1.
To attempt a proof that fis onto, consider an arbitrary element b in Z. We have
fW)=bes2x+1=b>
= 2x=b—1,

and the equation 2x = b — 1 has a solution x in Z if and only if » — 1 is an even
integer—that is, if and only if b is an odd integer. Thus only odd integers are in the
range of f, and therefore fis not onto.

The proof that fis one-to-one is straightforward:

fim) = f(n) =2m+1=2n+ 1

= 2m = 2n
= m = n.
Thus f'is one-to-one even though it is not onto. |

In Section 3.1 and other places in our work, we need to be able to apply two mappings
in succession, one after the other. In order for this successive application to be possible, the
mappings involved must be compatible, as required in the next definition.

Definition 1.15m Composite Mapping

Let g: A— B and f: B— C. The composite mapping f ° g is the mapping from A to C
defined by

(feg)x) = fg(x)
forallx € A.

The process of forming the composite mapping is called composition of mappings,
and the result f o g is sometimes called the composition of g and f. Readers familiar with
calculus will recognize this as the setting for the chain rule of derivatives.
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The composite mapping f° g is diagrammed in Figure 1.10. Note that the domain of
Jf must contain the range of g before the composition f ° g is defined.

YAYNEF WA
\__/

Example 12 Let Z be the set of integers, A the set of nonnegative integers, and B the
set of nonpositive integers. Suppose the mappings g and f are defined as

g7 —>A, gx) = X2

fA—>B,  f0)=-x
Then the composition f © g is a mapping from Z to B with
(f° )W) = flglx) = f(x*) = ="

Note that f © g is not onto, since —3 € B, but there is no integer x such that

(feg)x) = —x* = =3.

Also, f ° g is not one-to-one, since

(feg)(=2) = =(=2) = =4 = (f° 9)(2)

and
-2 # 2. [ |

In connection with the composition of mappings, a word of caution about notation is
in order. Some mathematicians use the notation xf to indicate the image of x under f.
That is, both notations xf and f(x) represent the value of fat x. When the xf notation is used,
mappings are applied from left to right, and the composite mapping f ° g is defined by the
equation x(f° g) = (xf)g. We consistently use the f(x) notation in this book, but the xf
notation is found in some other texts on algebra.

When the composite mapping can be formed, we have an operation defined that is
associative. If 1: A —> B, g: B— C, and f: C — D, then

((fog) o h)(x) = (fog)(h(x))
= flg(h(x))]
= f((g > W)(X))
= (fe (g M)X)

for all x € A. Thus the compositions (f° g) © h and f o (g © h) are the same mapping from
AtoD.
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BN Exercises 1.2 I—

True or False
Label each of the following statements as either true or false.
1. A X A = A, forevery set A.
2. A X =, forevery set A.
3. Letf: A— B where A and B are nonempty. Then f ~'(£(S)) = S for every subset S of A.
4. Letf: A— B where A and B are nonempty. Then f(f~!(T)) = T for every subset T of B.
S. Letf: A— B. Then f(A) = B for all nonempty sets A and B.
6. Every bijection is both one-to-one and onto.
7. A mapping is onto if and only if its codomain and range are equal.
8. Letg: A—>Aandf: A—A.Then (f°g)a) = (g °f)(a) for every a in A.
9. Composition of mappings is an associative operation.

Exercises

1. For the given sets, form the indicated Cartesian product.
a. A X B;A = {a, b}, B=1{0,1}
b. B X A;A = {a, b}, B={0, 1}
c. AXB;A=1{2,4,6,8}, B={2}
d. BXA;A={1,59},B={-1,1}
e. BXA;A=B=1{1,23}

2. For each of the following mappings, state the domain, the codomain, and the range,

where f: E > Z.
a. f(x) =x/2,x EE b. f(x) =x,x € E
c. f(x) =|x|,x€E d. f0))=x+ 1, x€E
3. For each of the following mappings, write out £(S) and (T for the given S and 7,
where f: Z — Z.
a. fx) = |x;S=Z - E, T=1{1,3,4}
x+ 1 ifxiseven
b. = $={0,1,5,9}, T=7Z — E
f®) {x if x is odd; { %

e f(x) =x8={-2,-1,01,2},T={2,7, 11}
d. fx) = |x|—x;8S=T=1{-7,-1,0,2,4}
4. For each of the following mappings f: Z — Z, determine whether the mapping is onto
and whether it is one-to-one. Justify all negative answers.
a. f(x) = 2x b. f(x) = 3x
c. fx)y=x+3 d. f(x) =
e. f(x) = |x| f. f(x) = x — |x|
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10.

11.

f) = X if x is even h. f(x) = X if x is even
BT Ve — 1 ifxisodd T -1 ifxis odd
X if x is even e .
i f) | i o) x— 1 ifxiseven
. fx) = — . fx) =
=1 o ifxisodd J 2% ifxisodd

For each of the following mappings f: R — R, determine whether the mapping is onto
and whether it is one-to-one. Justify all negative answers. (Compare these results with
the corresponding parts of Exercise 4.)

a. f(x) = 2x b. f(x) = 3x
c. fx)=x+3 d. f(x) =x°
e. f(x) = |x| f. f(x) = x — |x|

For the given subsets A and B of Z, let f(x) = 2x and determine whether f: A — B is
onto and whether it is one-to-one. Justify all negative answers.

a.A=7Z,B=E b. A=E,B=E

For the given subsets A and B of Z, let f(x) = |x| and determine whether f: A — B is
onto and whether it is one-to-one. Justify all negative answers.

a. A=7Z,B=17"U{0} b.A=Z"B=17

c. A=7Z",B=17" d A=Z-{0},B=17"

For the given subsets A and B of Z, let f(x) = |x + 4| and determine whether f: A — B
is onto and whether it is one-to-one. Justify all negative answers.

a.A=272Z,B=17 b.A=2Z",B=17"

For the given subsets A and B of Z, let f(x) = 2* and determine whether f: A — B
is onto and whether it is one-to-one. Justify all negative answers.

a. A=7Z".B=17 b.A=Z",B=7Z"NE

For each of the following parts, give an example of a mapping from E to E that
satisfies the given conditions.

a. one-to-one and onto b. one-to-one and not onto

c¢. onto and not one-to-one d. not one-to-one and not onto

For the given f: Z — Z, determine whether f'is onto and whether it is one-to-one. Prove
that your conclusions are correct.

X
- ifxiseven 0 if x is even
a. f(x) = {2 b. f(x) = {2 i odd
0 ifxisodd X HXIso
X . .
2x + 1 ifxiseven 5 if x is even
c. = +1 d. =
JO=2 L s odd L
2 > if x is odd

3x ifxiseven {Zx — 1 ifxiseven

e f) = {Zx if x is odd 2 if x is odd
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13.

14.

15.

16.

17.

18.
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LetA = R — {0} and B = R. For the given f: A — B, determine whether f is onto and
whether it is one-to-one. Prove that your decisions are correct.

-1 2x — 1
&ﬂm=xx b. flx) = =

2x — 1

« f(x)=x2+l d. f(x)=x);+1

For the given f: A — B, determine whether f is onto and whether it is one-to-one. Prove
that your conclusions are correct.

CA=ZXZB=7XZfx,y)=(y,x)
A=ZXZB=7Zf(x,y)=x+y
CA=ZXZ,B=17f(x,y) =x
CA=Z,B=ZXZ f(x)=(x,1)
LA=Z"XZ",B=Q,f(x,y) =x/y
f.A=RXR,B=R,f(x,y) =2

Letf: Z — {—1, 1} be given by f(x) = {_

. Prove or disprove that f is onto.

o & 6 T oW

1 ifxiseven
1 if xis odd.

. Prove or disprove that f is one-to-one.
. Prove or disprove that f(x; + x,) = f(x))f(x,).
. Prove or disprove that f(x;x,) = f(x)f(x,).

e o T o

[

. Show that the mapping f given in Example 2 is neither onto nor one-to-one.
. For this mapping f, show that if § = {1, 2}, then f~'(f(S)) # S.
c. For this same fand T = {4, 9}, show that f(f~'(T)) # T.

X if x is even
Let g: Z —Z be given by g(x) = yx + 1

=3

if x is odd.

a. For S = {3, 4}, find g(S) and g~ '(g(9)).
b. For T = {5, 6}, find g~ '(T) and g(g~ '(1)).

2x — 1 ifxiseven

Letf:Z—>Zbegivenbyf(x)={zx v is odd

a. For S = {0, 1, 2}, find £(S) and £~ '(£(S)).
b. For T = {—1, 1,4}, find f~\(T) and f(f~\(T)).

Letf: Z —Z and g: Z — Z be defined as follows. In each case, compute (f° g)(x) for
arbitrary x € Z.

a. F() = 2x. g(x) = x if x is even
PSR EREY T 0 — 1 ifxisodd
b. f(x) = 2x, g(x) = x°
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19.

if x is even

| =

c. f(x) = x + [x], glx) =
—x ifxisodd

N | =

d. f(x) =

if x is even x— 1 ifxiseven
gx) =

x+ 1 ifxisodd 2x if x is odd

e. f(x) =x%glx) =x — |x|

Let f and g be defined in the various parts of Exercise 18. In each part, compute
(g °f)(x) for arbitrary x € Z.

In Exercises 20-22, suppose m and n are positive integers, A is a set with exactly m elements,
and B is a set with exactly n elements.

20

21.
22.
23.

24.

25.

26.

How many mappings are there from A to B?
If m = n, how many one-to-one correspondences are there from A to B?
If m = n, how many one-to-one mappings are there from A to B?

Let a and b be constant integers with a # 0, and let the mapping f: Z — Z be defined
by f(x) = ax + b.

a. Prove that fis one-to-one.

b. Prove that fis onto if and only ifa = 1 ora = —1.

Let f: A — B, where A and B are nonempty.

a. Prove that f(S; U S;) = f(S1) U f(S,) for all subsets S; and S, of A.
b. Prove that f(S; M S;) < f(S1) N f(S,) for all subsets Sy and S, of A.

c. Give an example where there are subsets S; and S, of A such that
f(S1 N 8) # £(S) NF(Sy).
. Prove that f(S1) — f(S2) S f(S1 — S») for all subsets S; and S, of A.

e. Give an example where there are subsets S| and S, of A such that

f(Sl) _f(Sz) ¢f(Sl - Sz)-

(=%

Letf: A — B, where A and B are nonempty, and let 7} and 7, be subsets of B.
a. Prove that f~ (T, U 1) = f~Y(T)) U fU(T>).

b. Prove that f~ (T, N T») = £~ '(T) N U(T»).

c. Prove that f~1(T)) — fN(Ty) = f (T, — T»).

d. Prove that if 7} S 75, then f~1(T}) S f~ (T>).

Let g: A— B and f: B— C. Prove that (fo g)"'(T) = g~ '(f~!(T)) for any subset T
of C.
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27. Let f: A— B, where A and B are nonempty. Prove that f has the property that
F1(f(S)) = S for every subset S of A if and only if f is one-to-one. (Compare with
Exercise 15b.)

28. Let f:A— B, where A and B are nonempty. Prove that f has the property that
f(f~U(T)) = T for every subset T of B if and only if f is onto. (Compare with
Exercise 15c¢.)

Properties of Composite Mappings (Optional)

In many cases, we will be dealing with mappings of a set into itself; that is, the domain and
codomain of the mappings are the same. In these cases, the mappings f° g and g ° f are
both defined, and the question of whether f° g and g © f are equal arises. That is, is map-
ping composition commutative when the domain and codomain are equal? The following
example shows that the answer is no.

Example 1 Let Z be the set of all integers, and let the mappings f: Z — Z and
g: Z. — Z be defined for each n € Z by

f(n) =2n

n if nis even
gn) =12

4  ifnisodd.

In this case, the composition mappings f° g and g © f are both defined. We have, on the
one hand,
(g f)n) = g(f(n))

g(2n)
= n’

s0 (g o f)(n) = n for all n € Z. On the other hand,
(fog)n) = f(g(n)

f(;) =n ifniseven

f4) =38 if nis odd,

sofo g # g o f. Thus mapping composition is not commutative. |

In the next example we use the same functions f, g, g © f, and f ° g as in Example 1. For
each of them, we determine whether the mapping is onto and whether it is one-to-one.

Example 2 Let fand g be the same as in Example 1. We see that f is one-to-one since
f(m) = f(n) = 2m = 2n

= m=n.
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To show that fis not onto, consider the equation f(n) = 1:
fm)y=1=2n=1
= n=3,

and § is not an element of Z. Thus 1 is not in the range of .
We see that g is not one-to-one since

¢3)=4 and g5 = 4.

However, we can show that g is onto. For any m € Z, the integer 2m is in Z and

2m . .
g(2m) = Y since 2m is even
= m.

Thus every m € Z is in the range of g, and g is onto.
Using the computed values from Example 1, we have

(gofHm) =n
and
(fog) = n if niseven
878 ifnisodd.

The value (g © f)(n) = n shows that g ° fis both onto and one-to-one. Since

(feg)l) =8 and (f°g)3) =238,

f° g is not one-to-one. Since (f° g)(n) is always an even integer, there is no n € Z such
that

(feg)n) =5,
and hence f © g is not onto.
Summarizing our results, we have that
f is one-to-one and not onto.
g is onto and not one-to-one.
g © f is both onto and one-to-one.

f° g is neither onto nor one-to-one. |

Considerations such as those in Example 2 raise the question of how the one-to-one
and onto properties of the mappings f, g, and f ° g are related. General statements concern-
ing these relationships are given in the next two theorems, and others can be found in the
exercises.

Strategy m To show thatf o g is onto in the proof of the next theorem, we use the standard procedure
described on p. 16: We take an arbitrary ¢ € C and prove that there exists an ¢ € A such
that (f° g)(a) = c.




Theorem 1.16
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m Composition of Onto Mappings

(pNg)=r

Theorem 1.17

Letg: A— Bandf: B— C.If fand g are both onto, then f ° g is onto.

Proof Suppose fand g satisfy the stated conditions. The composition f° g maps A to C.
Suppose ¢ € C. Since f'is onto, there exists » € B such that

fb) =c.
Since g is onto, every element in B is an image under g. In particular, for the specific b such
that f(b) = c, there exists a € A such that

gla) = b.
Hence, for ¢ € C, there exists a € A such that
(feg)a) = f(gla)) = f(b) = c,

and f o g is onto.

m Composition of One-to-One Mappings

P Ng=r

Letg: A— Bandf: B— C. If fand g are both one-to-one, then f © g is one-to-one.

Proof Suppose fand g satisfy the stated conditions. Let a; and a, be elements in A such
that

(feg)a) = (f°g)ay)
or
fgla) = f(g(a).
Since fis one-to-one, then
glay) = g(ay),
and since g is one-to-one, then
a; = a,.

Thus f © g is one-to-one.

The mappings in Example 3 provide a combination of properties that is different from
the one in Example 2.

Example 3 Letf: Z—Zand g: Z — Z be defined as follows:

X if x is even
X) = -1
SO =qx if x is odd,
2
g(x) = 4x.

"The notation describing the logic of the proofs is defined in the Appendix.



Chapter 1 Fundamentals

We shall determine which of the mappings f, g, f ° g, and g ° f are onto, and also which of
these mappings are one-to-one.

For arbitrary n € Z, 2n + 1 is odd in Z, and f(2n + 1) = n. Thus fis onto. We have
f(2) = 2 and also f(5) = 2, so fis not one-to-one.

Since g(x) is always a multiple of 4, there is no x € Z such that g(x) = 3. Hence g is
not onto. However,

glx) = gr) > 4x = 47
= x =z,

SO g is one-to-one.
Now

(fo2)(x) = f(gx)) = f(4x) = 4x.

This means that (feo g)(x) = g(x) for all x € Z. Therefore, fo g = g is not onto and is
one-to-one.
Computing (g ° f)(x) , we obtain

(g °NHx) = g(f(x))

g(x) if x is even
= -1
g(x ) if x is odd
2
4 if x is even
2(x — 1) ifxis odd.

Since (g ° f)(x) is never odd, there is no x such that (g ° f)(x) = 1, and g ° fis not onto. Also,
since (g °f)(2) = 8 and (g o f)(5) = 8, g °fis not one-to-one.
We can summarize our results as follows:
f is onto and not one-to-one.
g is one-to-one and not onto.
fo g is one-to-one and not onto.

g ° f is neither onto nor one-to-one. |

BN Exercises 1.3 I——

True or False
Label each of the following statements as either true or false.
1. Mapping composition is a commutative operation.
2. The composition of two bijections is also a bijection.
3. Letf, g, and & be mappings from A into A such that fo g = heo g. Then f = h.
4. Letf, g, and h be mappings from A into A such that fo g = fo h. Then g = h.
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5. Letg: A— Bandf: B— C such that fo g is onto. Then both fand g are onto.
6. Let g: A— B and f: B— C such that f o g is one-to-one. Then both f and g are

one-to-one.

Exercises

1. For each of the following pairs f: Z — Z and g: Z — Z, decide whether f ° g is onto or

one-to-one and justify all negative answers.

a. f(x) =2 ) X if x is even
. fx) = 2x x) =
8 2x — 1 ifxisodd
b. f(x) = 2x, g(x) = x>
X . .
- if x is even
c flx) =x+ |x|, gx)= 2
—x ifxis odd
x . .
d. f(x) 5 if x is even @) {x — 1 ifxiseven
- S = , &) = .
x+ 1 ifxisodd 2x if x is odd
e. f(x) =x% gx) =x— |x|

. For each pair f, g given in Exercise 1, decide whether g © fis onto or one-to-one, and
justify all negative answers.

. Give an example of mappings f and g such that one of f or g is not onto but fo g
is onto.

. Give an example of mappings fand g, different from those in Example 3, such that one
of for g is not one-to-one but f ° g is one-to-one.

. a. Give an example of mappings f and g, different from those in Example 2, where fis
one-to-one, g is onto, and f ° g is not one-to-one.

b. Give an example of mappings f'and g, different from those in Example 2, where f'is
one-to-one, g is onto, and f © g is not onto.

. a. Give an example of mappings f and g, where fis onto, g is one-to-one, and f ° g is
not one-to-one.

b. Give an example of mappings f'and g, different from those in Example 3, where f'is
onto, g is one-to-one, and f © g is not onto.

. Suppose f, g, and & are all mappings of a set A into itself.

a. Prove thatif gis onto and fo g = ho g, thenf = h.

b. Prove that if fis one-to-one and fo g = fo h,theng = h.

. a. Find mappings f, g, and & of a set A into itself such that fo g = ho g and f # h.
b. Find mappings f, g, and & of a set A into itself such that fo g = fe hand g # h.
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9. Letg: A— Bandf: B— C. Prove that fis onto if f o g is onto.
10. Let g: A— Bandf: B— C. Prove that g is one-to-one if f ° g is one-to-one.

11. Letf: A— B and g: B— A. Prove that fis one-to-one and onto if f° g is one-to-one
and g ° fis onto.

Binary Operations

We are familiar with the operations of addition, subtraction, and multiplication on real
numbers. These are examples of binary operations. When we speak of a binary operation
on a set, we have in mind a process that combines two elements of the set to produce a third
element of the set. This third element, the result of the operation on the first two, must be
unique. That is, there must be one and only one result from the combination. Also, it must
always be possible to combine the two elements, no matter which two are chosen. This
discussion is admittedly a bit vague, in that the terms process and combine are somewhat
indefinite. To eliminate this vagueness, we make the following formal definition.

Definition 1.18 = Binary Operation

A binary operation on a nonempty set A is a mapping ffrom A X A to A.

It is conventional in mathematics to assume that when a formal definition is made, it is
automatically biconditional. That is, it is understood to be an “if and only if” statement,
without this being written out explicitly. In Definition 1.18, for example, it is understood as
part of the definition that f is a binary operation on the nonempty set A if and only if fis a
mapping from A X A to A. Throughout the remainder of this book, we will adhere to this
convention when we make definitions.

We now have a precise definition of the term binary operation, but some of the feel for
the concept may have been lost. However, the definition gives us what we want. Suppose f
is a mapping from A X A to A. Then f(x, y) is defined for every ordered pair (x, y) of ele-
ments of A, and the image f(x, y) is unique. In other words, we can combine any two ele-
ments x and y of A to obtain a unique third element of A by finding the value f(x, y). The
result of performing the binary operation on x and y is f(x, ¥), and the only thing unfamiliar
about this is the notation for the result. We are accustomed to indicating results of binary op-
erations by symbols such as x + y and x — y. We can use a similar notation and write x * y
in place of f(x, y). Thus x * y represents the result of an arbitrary binary operation * on A,
just as f(x, y) represents the value of an arbitrary mapping from A X A to A.

Example 1 Two examples of binary operations on Z are the mappings from Z X Z to
Z, defined as follows:

1. x*xy=x+y—1, for(x,y) €EZ X Z.
2. xxy =1+ xy, for (x,y) € Z X Z. |



1.4 Binary Operations 31

Example 2 The operation of forming the intersection A M B of subsets A and B of a
universal set U is a binary operation on the collection of all subsets of U. This is also true
of the operation of forming the union. |

Since we are dealing with ordered pairs in connection with a binary operation, the
results x * y and y * x may well be different.

Definition 1.19m Commutativity, Associativity

If *is a binary operation on the nonempty set A, then *is called commutative if
x*y=ys*xforallxand yin A. If x * (y * z) = (x * y) * z for all x, y, zin A, then we say
that the binary operation is associative.

Example 3 The usual binary operations of addition and multiplication on the integers
are both commutative and associative. However, the binary operation of subtraction on the
integers does not have either of these properties. For example, 5 — 7 # 7 — 5, and
9-8—-3)#0O —28) —3. [ ]

Suppose we consider the two binary operations given in Example 1.

Example 4 The binary operation * defined on Z by
xxy=x+y—1
is commutative, since
xk¥y=x+y—1=y+x—1=y=*xx
Note that * is also associative, since
xx(yxg)=xx(y+z—1)
=x+@+z—-1)—-1

x+y+z—-2

and
(xxry)xz=(@x+ty—1)*z
=x+y—-1D+z-1
x+y+z—2 [ |

Example B The binary operation * defined on Z by
xxy=1+xy
is commutative, since
xxy=14+xy=1+yx=y=*x
To check whether * is associative, we compute
xx(y*g)=xx(1+y)=1+x(1+y2)=1+x+ 07z
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and
xxyxz=N+x)*z=1+0+xz=1+z+ 0z

Thus we can demonstrate that * is not associative by choosing x, y, and z in Z with
x # z.Usingx = 1,y = 2,z = 3, we get

1*2=*3)=1x(1+6)=1x7=1+7=38
and
1*2)y*3=(1+2)*x3=3x3=1+9=10.
Hence * is not associative on Z. |
The commutative and associative properties are properties of the binary operation

itself. In contrast, the property described in the next definition depends on the set under
consideration as well as on the binary operation.

Definition 1.20 m Closure

Suppose that * is a binary operation on a nonempty set A, and let B € A. If x * y is an ele-
ment of B for all x € B and y € B, then B is closed with respect to *.

In the special case where B = A in Definition 1.20, the property of being closed is
automatic, since the result x * y is required to be in A by the definition of a binary opera-
tion on A.

Example 6 Consider the binary operation * defined on the set of integers Z by
xxy=|x|+ |y, (y €ZXZ.
The set B of negative integers is not closed with respect to *, since x = —1 € B and
y = —2 &€ B, but
x#ky=(—1)*(-2)=|—-1|+ |-2|=3€&B. [}

Example 7 The definition of an odd integer that was stated in Section 1.2 can be used
to prove that the set S of all odd integers is closed under multiplication.

Let x and y be arbitrary odd integers. According to the definition of an odd integer, this
means that x = 2m + 1 for some integer m and y = 2n + 1 for some integer n. Forming
the product, we obtain

xy=02m+ 1)2n + 1)
=4mn + 2m + 2n + 1
=2Q@mn +m+n) +1
=2k + 1,

where k = 2mn + m + n € Z, and therefore xy is an odd integer. Hence the set S of all
odd integers is closed with respect to multiplication. |
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Definition 1.21 Identity Element

Let * be a binary operation on the nonempty set A. An element e in A is called an identity
element with respect to the binary operation * if e has the property that

exx =x*%e=x

for all x € A.

The phrase “with respect to the binary operation” is critical in this definition because
the particular binary operation being considered is all-important. This is pointed out in the
next example.

Example 8 The integer 1 is an identity with respect to the operation of multiplication
(1 +x=x+1 = x), but not with respect to the operation of addition (1 + x # x). [ |

Example 9 The element 1 is the identity element with respect to the binary opera-
tion * given by

x*xy=x+y—1, x,y) €Z X Z,
since

x*¥1l=x+1—-—1=x and 1*x=1+x—-1=ux. [ |

Example 10 There is no identity element with respect to the binary operation *
defined by

x*ky =1 xy, (x,y) EZ X Z,
since there is no fixed integer z such that
x*z=z*x=1+xz=1x foralx€Z. [ ]

Whenever a set has an identity element with respect to a binary operation on the set, it
is in order to raise the question of inverses.

Definition 1.22 m Right Inverse, Left Inverse, Inverse

Suppose that e is an identity element for the binary operation * on the set A, and let a € A.
If there exists an element b € A such that a * b = e, then b is called a right inverse of a
with respect to this operation. Similarly, if b * a = e, then b is called a left inverse of a.
Ifbothofa * b = eand b * a = e hold, then b is called an inverse of a, and a is called an
invertible element of A.

Sometimes an inverse is referred to as a two-sided inverse to emphasize that both of the
required equations hold.
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Strategy ® Exercise 13 of this section requests a proof that the inverse of an element with respect to

an associative binary operation is unique. A standard way to prove the uniqueness of an
entity is to assume that two such entities exist and then prove the two to be equal.

Example 11 Each element x € Z has a two-sided inverse (—x + 2) € Z with respect
to the binary operation * given by

x*y=x+y—1, (x,y) € Z X Z,
since

x*(—x+2)=(—x+2)*x=—x+2+x—1=1=e. |

Exercises 1.4 I——

True or False
Label each of the following statements as either true or false.

1. If a binary operation on a nonempty set A is commutative, then an identity element will
exist in A.

2. If * is a binary operation on a nonempty set A, then A is closed with respect to *.

3. LetA = {a, b, c}. The power set P(A) is closed with respect to the binary operation N
of forming intersections.

4. LetA = {a, b, c}. The empty set J is the identity element in P(A) with respect to the
binary operation M.

5. LetA = {a, b, c}. The power set P(A) is closed with respect to the binary operation U
of forming unions.

6. LetA = {a, b, c}. The empty set J is the identity element in P(A) with respect to the
binary operation U.

7. Any binary operation defined on a set containing a single element is commutative and
associative.

8. Anidentity and inverses exist in a set containing a single element upon which a binary
operation is defined.

9. The set of all bijections from A to A is closed with respect to the binary operation of
composition defined on the set of all mappings from A to A.

Exercises

1. Decide whether the given set B is closed with respect to the binary operation defined
on the set of integers Z. If B is not closed, exhibit elements x € B and y € B, such that
x*y€&B.
a.xxy=xy, B={-1,-2,-3,...}
b.x*y=x—y, B=17Z"



Sec. 1.6, #8 <

1.4 Binary Operations 35

c.xxy=x>+y, B=1Z"

1 ifx>0
d. x*y=sgnx+sgny, B={-2,-1,0,1,2} where sgnx = 0 ifx=20
-1 ifx<O.

e.x*y=|x|— |y, B=Z"
f.xxy=x+xy, B=1Z"

g x*y=xy— x —y, Bisthesetofall odd integers.

h. x*y =", B is the set of positive odd integers.

2. In each part following, a rule is given that determines a binary operation * on the set
Z of all integers. Determine in each case whether the operation is commutative or
associative and whether there is an identity element. Also find the inverse of each
invertible element.

a. x*xy=x+xy b. x*xy=x
c.xky=ux+2y d. xxy=3x+y)

e. x*y=3xy f.xxy=x—y

g xky=x+axy+ty h. x*y=x+y+3
Lxxy=x—y+1 Joxtry=x+txy+y—2
ko xxy=|x| — [yl Lxxy=|x—y|

m xky=xforx,y € Z" n x*xy=2%forx,y € Z"

3. Let S be a set of three elements given by S = {A, B, C}. In the following table, all of
the elements of S are listed in a row at the top and in a column at the left. The result
x * yis found in the row that starts with x at the left and in the column that has y at the
top. For example, B % C = Cand C * B = A.

a = >

™ = O >
> o> | W
a O = |0

a. Is the binary operation * commutative? Why?
b. Determine whether there is an identity element in S for .

c. If there is an identity element, which elements have inverses?

4. Let S be the set of three elements given by S = {A, B, C} with the following table.

S

a = >

a = > | »
= O | w
SR N e
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a. Is the binary operation * commutative? Why?
b. Determine whether there is an identity element in S for *.

c. If there is an identity element, which elements have inverses?

5. Let S be a set of four elements given by S = {A, B, C, D} with the following table.

* A B C D
A|B C A B
B C D B A
cC|A B C D
D|A B D D

a. Is the binary operation * commutative? Why?
b. Determine whether there is an identity element in S for *.

c. If there is an identity element, which elements have inverses?

6. Let S be the set of four elements given by S = {A, B, C, D} with the following table.

*= | A B C D
Al A A A A
B | A B A B
cC|A A C C
D|A B C D

a. Is the binary operation * commutative? Why?
b. Determine whether there is an identity element in S for *.

c. If there is an identity element, which elements have inverses?
7. Prove or disprove that the set of nonzero integers is closed with respect to division.
8. Prove or disprove that the set of all odd integers is closed with respect to addition.

9. The definition of an even integer was stated in Section 1.2. Prove or disprove that the
set E of all even integers is closed with respect to

a. addition

b. multiplication.
10. Assume that * is an associative binary operation on the nonempty set A. Prove that
axbx(cxd)]=[a*xb=*c)]*d
for all a, b, ¢, and d in A.
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11. Assume that * is a binary operation on a nonempty set A, and suppose that * is both
commutative and associative. Use the definitions of the commutative and associative
properties to show that

[(@a*b)*c]*d=(d*c)* (a*Db)

for all a, b, ¢, and d in A.

12. Let * be a binary operation on the nonempty set A. Prove that if A contains an identity
element with respect to *, the identity element is unique. (Hint: Assume that both e,
and e, are identity elements for *, and then prove that e; = e;.)

13. Assume that * is an associative binary operation on A with an identity element. Prove
that the inverse of an element is unique when it exists.

1.5 | Permutations and Inverses

The set of all mappings of a set into itself is of special interest, and we consider such
a set next.

Definition 1.23 m Permutation

A one-to-one correspondence from a set A to itself is called a permutation on A. For any
nonempty set A, we adopt the notation S(A) as standard for the set of all permutations on
A. The set of all mappings from A to A will be denoted by M(A).

From the discussion at the end of Section 1.2, we know that composition of mappings
is an associative binary operation on M(A). The identity mapping /, is defined by

L(x) = x forallx € A.
For any f in M(A),
(Iy 2 HH(x) = Li(f(x)) = f(x)
and
(fo L)) = fla(x) = f(x),

so Iy o f = feoly = f. That is, I, is an identity element for mapping composition. Once an
identity element is established for a binary operation, the next natural question is whether
inverses exist. Consider the mappings in the next example.

Example 1 In Example 1 of Section 1.3, we defined the mappings f: Z — Z and
g Z—>7Zby

f(n) = 2n
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and

n if n is even
g(n) =42
4 ifnisodd.

For these mappings, (g°f)(n) =nforalln € Z, so g o f = I and g is a left inverse for f.
Note, however, that

(Fo g)(n) = n if niseven
EV 78 ifnis odd.

Thus fo g # I, and g is not a right inverse for f. |

Example 1 furnishes some insight into the next two lemmas.

Strategy = Each of these lemmas makes a statement of the form “p if and only if ¢.” For this kind of
statement, there are two things to be proved:
1. (p & q) The “if” part, where we assume g is true and prove that p must then be
true, and
2. (p = q) The “only if” part, where we assume that p is true and prove that g must
then be true.
Lemma124 = LeftInverses and the One-to-One Property
Let A be a nonempty set, and let f: A — A. Then f is one-to-one if and only if f has a left
inverse.
p<gq Proof Assume first that f has a left inverse g, and suppose that f(a;) = f(a,). Since
g o f = I, we have
a; = Iy(a) = (g °f)a) = g(f(a) = g(f(ar)
= (g ° NN ay) = In(ay) = ay.
Thus f(a;) = f(ay) implies a; = ay, and fis one-to-one.
p=gq Conversely, now assume that fis one-to-one. We shall define a left inverse g of f. Let ag

represent an arbitrarily chosen but fixed element in A. For each x in A, g(x) is defined
by this rule:

1. If there is an element y in A such that f(y) = x, then g(x) = y.
2. If no such element y exists in A, then g(x) = ay.

A lemma is a proposition whose main purpose is to help prove another proposition.
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When the first part of the rule applies, the element y is unique because f is one-to-one
(f(y1) = x = f(y2) = y1 = y» = g(x)). Thus g(x) is unique in this case. When the second
part of the rule applies, g(x) = ag is surely unique, and g is a mapping from A to A. For all
ain A, we have

(g°f)la) = g(f(a)) = a

because x = f(a) requires g(x) = a. Thus g is a left inverse for f.

There is a connection between the onto property and right inverses that is similar to
the one between the one-to-one property and left inverses. This connection is stated in
Lemma 1.25, and its proof involves using the Axiom of Choice. In one of its simplest
forms, this axiom states that it is possible to make a choice of an element from each of the
sets in a nonempty collection of nonempty sets. We assume the Axiom of Choice in this
text, and it should be noted that this is an assumption.

Lemma1.25 = RightInverses and the Onto Property
Let A be a nonempty set, and f: A — A. Then f is an onto mapping if and only if f has a
right inverse.
p<q Proof Assume that fhas a right inverse g, and let ag be an arbitrarily chosen element of
A. Now g(ap) is an element of A, and
f(glag)) = (fe g)ap)
= Ly(ay) since g is a right inverse of f
= .
Thus aq is the image of g(ap) under f, and this proves that f is onto if f has a right
inverse.
p=gq Let us assume now that fis onto, and we shall define a right inverse of f as follows:

Let ag be an arbitrary element of A. Since fis onto, there exists at least one element x of
A such that f(x) = ao. Choose' one of these elements, say, xo, and define g(ap) by

g(ap) = x,.
For each a in A, we have a unique value g(ag) such that
(fe g)ag) = flglap))
= f(xo)

= qa, by the choice of x,,.

Therefore, fo g = I, and g is a right inverse of f.

Lemmas 1.24 and 1.25 enable us to prove the following important theorem.

"The Axiom of Choice implies that this is possible.
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Let f: A — A. Then f1is invertible if and only if fis a permutation on A.

Proof If f has an inverse g, then g o f = Iy and fo g = I,. Note that g o f = I implies
that fis one-to-one by Lemma 1.24, and f o g = I, implies that f'is onto by Lemma 1.25.
Thus fis a permutation on A.

Now suppose that fis a permutation on A. Then f has a left inverse g by Lemma 1.24
and a right inverse 2 by Lemma 1.25. We have g o f = Iy and fo h = I, so

g=g°ly=g°(feh)y=(g°f)ch=1°h=h

That is, g = h, and f has an inverse.

The last theorem shows that the members of the set S(A) are special in that each of
them is invertible. From Exercise 13 of the last section, we know that the inverse of an
element with respect to an associative binary operation is unique. Thus we denote the
unique inverse of a permutation fby f~!. It is left as an exercise to prove that f~ ! is a per-
mutation on A.

There is one other property of the set S(A) that is significant. Whenever f and g are in
S(A), then fo g is also in S(A). (See Exercise 8 of this section.) Thus S(A) is closed under
mapping composition.

Some of the preceding results are illustrated in the following example.

Example 2 From Example 11 of Section 1.2, we know that the mapping f: Z —Z
defined by

fx)y=2x+1

is one-to-one and not onto. According to Lemmas 1.24 and 1.25, fhas a left inverse but fails
to have a right inverse. The two-part rule for g in the proof of Lemma 1.24 can be used as
a guide in defining a left inverse of the f under consideration here.

The first part of the rule reads as follows: If there is an element y in Z such that
f(y) = x, then g(x) = y. Since we have f(x) = 2x + 1 here, the equation f(y) = x requires
that x be odd and that 2y + 1 = x. Solving this equation for y, we obtain

Thus the equation g(x) = y becomes

x—1
glx) = 5 for x odd

in this instance.
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According to the second part of the rule for g in the proof of Lemma 1.24, we may
choose an arbitrary fixed a in Z and define g(x) = gy when x is not in the range of f.
Choosing ay = 4 gives us a left inverse g of f defined as follows:

x—1

gx) =9 2
4 if x is even. |

if x is odd

Exercises 1.5 I——

True or False

Label each of the following statements as either true or false.
1. Every permutation has an inverse.
2. LetA # Jand f: A — A. Then fis one-to-one if and only if f has a right inverse.
3. LetA # Jand f: A— A. Then fis onto if and only if f has a left inverse.

Exercises

1. For each of the following mappings f: Z — Z, exhibit a right inverse of f with respect
to mapping composition whenever one exists.

a. f(x) = 2x b. f(x) = 3x
c. fx)y=x+2 d f0)=1-x
e flx) =x f. fx) =x
X if x is even X if x is even
. = h. =
g /@) {Zx — 1 ifxisodd f®) {x 1 ifxisodd
i f) = x| je f) = x — ||
X if x is even o
k. f(x) = 1 L f(x) = x—1 ifxiseven
BRI ,—  ifxisodd T 2 ifxisodd
d if x is even x+1 if x is even
m. f(x) =42 nofw=Sx+1
x+2 ifxisodd ) if x is odd

2. For each of the mappings f given in Exercise 1, determine whether f has a left inverse.
Exhibit a left inverse whenever one exists.

3. If nis apositive integer and the set A has n elements, how many elements are in the set
S(A) of all permutations on A?

4. Let f:A— A, where A is nonempty. Prove that f has a left inverse if and only if
£ U(f(S)) = S for every subset S of A.
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5. Let f: A— A, where A is nonempty. Prove that f has a right inverse if and only if
f(f~(T)) = T for every subset T of A.

6. Prove that if fis a permutation on A, then f~ ! is a permutation on A.
7. Prove that if fis a permutation on A, then (f~1) ' = f.
8. a. Prove that the set of all onto mappings from A to A is closed under composition
of mappings.
b. Prove that the set of all one-to-one mappings from A to A is closed under mapping
composition.
9. Let fand g be permutations on A. Prove that (fo g)™' = g7 'o f 1.

10. Let fand g be mappings from A to A. Prove that if f ° g is invertible, then fis onto and
g is one-to-one.

Matrices

The material in this section provides a rich source of examples for many of the concepts
treated later in the text. The basic element under consideration here will be a matrix (plural
matrices).

The word matrix is used in mathematics to denote a rectangular array of elements in
rows and columns. The elements in the array are usually numbers, and brackets may be used
to mark the beginning and the end of the array. Two illustrations of this type of matrix are

5 -1 0 3 9 1
2 1 =2 7] and | —1 0
4 -6 4 3 6 -3

The formal notation for a matrix is introduced in the following definition. We shall
soon see that this notation is extremely useful in proving certain facts about matrices.

Definition 1.27 m Matrix

Anm by n matrix over a set S is a rectangular array of elements of S, arranged in m rows and
n columns. It is customary to write an m by n matrix using notation such as

app dp Ay
ay Ay a

A = . . -n 9
A Ao (™

where the uppercase letter A denotes the matrix and the lowercase a; denotes the element
in row i and column j of the matrix A. The rows are numbered from the top down, and the
columns are numbered from left to right. The matrix A is referred to as a matrix of dimen-
sionm X n (read “mbyn”).
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The m X n matrix A in Definition 1.27 can be written compactly as A = [a;],,x, or
simply as A = [a,] if the dimension is known from the context.

Example 1 In compact notation, B = [b;] 2x 4 is shorthand for the matrix
5 [bn b b blﬂ
by by by by
As a more concrete example, the matrix A defined by A = [a,-j]3x3 with a;; = (— 1)iti
would appear written out as

1 -1 1
A=|—1 I -1
1 -1 1

(This matrix describes the sign pattern in the cofactor expansion of third-order determi-
nants that is used with Cramer’s Rule for solving systems of linear equations in intermedi-
ate algebra.) [ |

An n X n matrix is called a square matrix of order n, and a square matrix
A= [a[j]an with a; = 0 whenever i # j is known as a diagonal matrix. The matrices

5 0 0 8 0 O
0 7 0| and [0 O O
0o 0 -2 0 0 8

are diagonal matrices.

Definition 1.28 m Matrix Equality

Two matrices A = [a;]]mxn and B = [by] x4 over a set S are equal if and only if m = p,
n = g, and a; = b;; for all pairs i, j.

The set of all m X n matrices over S will be denoted in this book by M,,x,(S). When
m = n, we simply write M,(S) instead of M, «,(S). For the remainder of this section, we will
restrict our attention to the sets M, x,(R), where R is the set of all real numbers. Our goal
is to define binary operations of addition and multiplication on certain sets of matrices and
to investigate the basic properties of these operations.

Definition 1.29 m Matrix Addition

Addition in M, «,(R) is defined by

[aij:Ian + [bij]an = [Cij]an

where ¢; = a; + by

To form the sum of two elements in M, x,(R), we simply add the elements that are
placed in corresponding positions.
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Example 2 In M>y3(R), an example of addition is
3 -1 1 . 2 1 0 |5 0 1
2 =7 —4 1 3 -1 3 -4 =57
We note that a sum of two matrices with different dimensions is not defined. For instance,
the sum
1 2 0 5 6
J’_
3 4 0 7 8
is undefined because the dimensions of the two matrices involved are not equal. |

Definition 1.29 can be written in shorter form as
[aiijXn + [bU]lel = [alj + bij]ans

and this shorter form is efficient to use in proving the basic properties of addition in
M, «,(R). These basic properties are stated in the next theorem.

Theorem1.30 m Properties of Matrix Addition

Addition in M, x,(R) has the following properties.

a. Addition as defined in Definition 1.29 is a binary operation on M,,,,(R).
Addition is associative in M,,x,(R).
. M,,x,(R) contains an identity element for addition.

. Each element of M,,x,(R) has an additive inverse in M, x,(R).

o &0 T

. Addition is commutative in M,,x,(R).

Proof LetA = [ay]uxn, B = [bijlmxn, and C = [c;j]n x, be arbitrary elements of M, ,(R).

a. The addition defined in Definition 1.29 is a binary operation on M,, x,(R) because the
rule

la;] + [b;] = [a; + D]
yields a result that is both unique and an element of M, x,(R).
b. The following equalities establish the associative property for addition.
A+ B+ C) =[ay] + [b; + c;] by Definition 1.29
= [a; + (b; + ¢;)] by Definition 1.29
= [(a; + b;) + ¢;] since addition in R is associative
= [a; + by] + [c;] by Definition 1.29
=A+B+C by Definition 1.29
c. Let O,,x, denote the m X n matrix that has all elements zero. Then
A+ O,x, = [aij]an + [O]m><n
= [a; + 0],xn by Definition 1.29

[@y)xn since 0 is the additive identity in R
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A similar computation shows that O,,x, + A = A, and therefore O,,«, is the additive
identity for M, ,(R), called the zero matrix of dimension m X n.

d. Itis left as an exercise to verify that the matrix —A defined by
_A = [_aij]an

is the additive inverse for A in M, «,(R).

e. The proof that addition in M,,x,(R) is commutative is also left as an exercise.

Part d of Theorem 1.30 leads to the definition of subtraction in M,,«,(R): For A and
B iIl Mm XH(R)s

A—B=A+ (—-B),

where —B = [—b;] is the additive inverse of B = [b;;].

The definition of multiplication that we present is a standard definition universally
used in linear algebra, operations research, and other branches of mathematics. Its wide-
spread acceptance is due to its usefulness in a great variety of important applications, not
to its simplicity, for the definition of multiplication is much more complicated and much
less “intuitive” than the definition of addition. We first state the definition and then illus-
trate it with an example.

m Matrix Multiplication

The product of an m X n matrix A over R and an n X p matrix B over R is an
m X p matrix C = AB, where the element c;; in row i and column j of AB is found by
using the elements in row i of A and the elements in column j of B in the following
manner:

column j
of B column j
of C
j
1 by; ,
row i
ail ai2 ai3 CEEIR ain . N b3f e — “ e Cij e row i
of A . . . . . . of C
bnj
where
c; = anby; + ajpby; + apby + -+ a,b,.
That is, the element
Cij = az’lblj + ai2b2j + ai3b3j + o F ainbnj

in row i and column j of AB is found by adding the products formed from corresponding
elements of row i in A and column j in B (first times first, second times second, and so on).
Note that the elements of C are real numbers.




46 Chapter 1 Fundamentals

Note that the number of columns in A must equal the number of rows in B in order
to form the product AB. If this is the case, then A and B are said to be conformable for mul-
tiplication. A simple diagram illustrates this fact.

A B = C

mxXn : nXxp mXp
must be equal

dimension of product matrix

Example 3 Consider the products that can be formed using the matrices

3 -2
0 4 2 1 0

A= B = .
|| and [4 -3 7}
5001

Since the number of columns in A is equal to the number of rows in B, the product AB is
defined. Performing the multiplication, we obtain

-2

4112 1 0
-3 4 -3 7

1

Wn = O W

(3(2) + (=2)4)  3(1) + (=2)(=3)  3(0) + (=2)(7)

_10@2) + 44 0(1) + 4(—3) 0(0) + 4(7)
12) + (=3)@) 1) + (=3)(=3) 10) + (=3)7) |
| 5(2) + 1(4) 5(1) + 1(=3) 5(0) + 1(7)

Thus AB is the 4 X 3 matrix given by

-2 9 -—14
16 —12 28

AB = .
—10 10 -—21

14 2 7

Since the number of columns in B is not equal to the number of rows in A, the prod-
uct BA is not defined. Similarly, the products A - A and B - B are not defined. |

The work in Example 3 shows that multiplication of matrices does not have the com-
mutative property. Some of the computations in the exercises for this section illustrate cases
where AB # BA, even when both products are defined and have the same dimension.
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It should also be noted in connection with Example 3 that the product of matrices we
are working with is not a true binary operation as defined in Section 1.4. With a binary op-
eration on a set A, it must always be possible to combine any two elements of A and obtain
a unique result of the operation. Multiplication of matrices does not have this feature, since
the product of two matrices may not be defined. If consideration is restricted to the set
M,(R) of all n X n matrices of a fixed order n, this difficulty disappears, and multiplication
is a true binary operation on M,(R).

Although matrix multiplication is not commutative, it does have several properties that
are analogous to corresponding properties in the set R of all real numbers. The sigma no-
tation is useful in writing out proofs of these properties.

In the sigma notation, the capital Greek letter X (sigma) is used to indicate a sum:

n
Eai:al‘l'az‘l' s +an.
i=1

The variable i is called the index of summation, and the notations below and above the
sigma indicate the value of i at which the sum starts and the value of i at which it ends. For
example,

b; =bs + by + bs.

5
i=3

The index of summation is sometimes called a “dummy variable” because the value of the
sum is unaffected if the index is changed to a different letter:

3 3
Ea[= Eaj= Eak=a0+al+a2+a3.
i=0 J=0 k=0

Using the distributive properties in R, we can write

a(E bk)za(bl+b2+ -+ b,
k=1
ab, + ab, + -+ + ab,

n

= 2 abk.

k=1

Similarly,
( E bk)a = E bka.
=1 k=1
In the definition of the matrix product AB, the element

C” = a,«lblj + ai2b2j + - + a,-,,b,lj

can be written compactly by use of the sigma notation as

n

i = > auby.

k=1

C

If all necessary comformability is assumed, the following theorem asserts that matrix
multiplication is associative.
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m Associative Property of Multiplication

Theorem 1.33

Let A = [Gijlmxn, B = [bjjlnxp, and C = [c;j]px 4 be matrices over R. Then A(BC) = (AB)C.

P
Proof From Definition 1.31, BC = [dj],x, where d; = E bycy, and A(BC) =
k=1

{ 2 a,.,d,j} where
r=1 mXgq
E alrdrj air( 2 brkckj)
1

r=1 r= k=1

n p
= E (E air(brkckj)>'

r=1

P
Also, AB = [ filux, where f; = D a;b,,and (AB)C = [ > f,-kc,g} where
=1

mXgq

ﬁ: fucy = 2 <§": »k)ckj

k= k=1

s

( E (azrb;k)ck]>

( E lr(b)kékj)>

r=1

The last equality follows from the associative property

(airbrk)ckj = air(brkckj)

of multiplication of real numbers. Comparing the elements in row i, column j, of A(BC)
and (AB)C, we see that

n P p n
2 (E air(brkckj)> = E (E air(brkckj)>7
=1 \k=1 k=1 \r=1

since each of these double sums consists of all the np terms that can be made by using a
product of the form a;(byxcyj) with 1 = r<=nand 1 = k < p. Thus A(BC) = (AB)C.

Similar but simpler use of the sigma notation can be made to prove the distributive
properties stated in the following theorem. Proofs are requested in the exercises.

m Distributive Properties

Let A be an m X n matrix over R, let B and C be n X p matrices over R, and let D be a
p X g matrix over R. Then

a. A(B+ C)=AB + AC, and
b. (B + C)D = BD + CD.
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For each positive integer n, we define a special matrix [, by

1 ifi=j

L, = [8;]uxn where 8, = {0 I

(The symbol §;; used in defining /, is called the Kronecker delta.) Forn = 2 and n = 3,
these special matrices are given by

1 0 O
1 0
I, = and L=|10 1 0|
0 1
0 0 1

The matrices 7,, have special properties in matrix multiplication, as stated in Theorem 1.34.

m Special Properties of /,

Let A be an arbitrary m X n matrix over R. With I, as defined in the preceding para-
graph,

a. [,A=A, and
b. Al, = A.

Proof To prove part a, let A = [a;],ux, and consider /,,A. By Definition 1.31,

ImA = [CUJ mXn

where
m
cij = E Sikakj.
k=1

Since 0y = 0 for k # i and §;; = 1, the expression for c;; simplifies to

c; = 8;a;=1"a; = a;.
Thus ¢;; = a;; for all pairs i, j and [,,A = A.
The proof that A, = A is left as an exercise.

Because the equations /,,A = A and Al,, = A hold for any m X n matrix A, the matrix
I, is called the identity matrix of order n. In a more general context, the terms left identity
and right identity are defined as follows.

Definition 1.35 m Left Identity, Right Identity

Let * be a binary operation on the nonempty set A. If an element e in A has the property
that

e*xx = xforallx € A,
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then e is called a left identity element with respect to :*. Similarly, if
x*e=xforallx € A,

then e is a right identity element with respect to *.

If the same element e is both a left identity and a right identity with respect to *, then e
is an identity element as defined in Definition 1.21. An identity element is sometimes called
a two-sided identity to emphasize that both of the required equations hold.

Even though matrix multiplication is not a binary operation on M,,x ,(R) when m # n,
we call I,,, a left identity and I, a right identity for multiplication with elements of M, ,(R).
In the set M,(R) of all square matrices of order n over R, I, is a two-sided identity element
with respect to multiplication.

The fact that 7, is a multiplicative identity for M,(R) leads immediately to the question:
Does every nonzero element A of M,(R) have a multiplicative inverse? The answer is not
what one might expect, because some nonzero square matrices do not have multiplicative
inverses. This fact is illustrated in the next example.

1 3
Example 4 Leta= |: ) 6} and consider the problem of finding a matrix

B = |:x Z:| such that AB = I,. Computation of AB leads at once to

y o ow
x+3y z+3w)| |1 O
2x + 6y 2z + 6w 0 17

x + 3y z+3w | |1 O
2x+3y) 2z+3w) | [0 1]

This matrix equality is equivalent to the following system of four linear equations.

or

x+3y=1 z+3w=0
2x + 3y) =0 2(z+3w) =1

Since x + 3y = 1 requires 2(x + 3y) = 2, and this contradicts 2(x + 3y) = 0, there is no
solution to the system of equations and therefore no matrix B such that AB = I,. Thatis, A
does not have a multiplicative inverse. |

When we work with matrices, the convention is to use the term inverse to mean “mul-
tiplicative inverse.” If the matrix A has an inverse, Exercise 13 of Section 1.4 assures us that
the inverse is unique. In this case, A is invertible, and its inverse is denoted by A™!. A few
properties of inverses are included in the exercises for this section, but an in-depth
investigation of inverses is more appropriate for a linear algebra course.
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BN Exercises 1.6 I

True or False

Label each of the following statements as either true or false.
1. Matrix addition is a binary operation from M,,x,(R) X M,,x,(R) to M,,,»,(R).

SUNE I A

Matrix multiplication is a binary operation from M,,x,(R) X M,,«,(R) to M,,»,(R).
AB = BA for all square matrices A and B of order n over R.
(AB)" = A"B" for all square matrices A and B of order n over R.

Let A be a nonzero element in M,,x ,(R) and B and C elements in M,,x ,(R). IfAB = AC,
then B = C.

Let A be in M, x,(R) and B be in M,;x,(R). If AB = O,,x, then either A = O,,x,, or
B = 0n><p-

7. The set of diagonal matrices of order n over R is closed with respect to matrix addition.

8. (A + B)® = A% + 3A?B + 3AB? + B’ for all square matrices A and B of order n
over R.

9. The products AB and BA are defined if and only if both A and B are square matrices of
the same order.

10. Let A be in M,,x,(R) and B be in M, x,(R). If the jth column of A contains all zeros,
then the jth column of AB contains all zeros.

11. Let A be in M,,x,(R) and B be in M,,x ,(R). If the ith row of A contains all zeros, then
the ith row of AB contains all zeros.

12. Let A be a square matrix of order n over R such that A* — 34 + I, = O,. Then
A"l =31, — A

Exercises

1. Write out the matrix that matches the given description.
a. A= [(lij]3><2 with ajj = 2i —j
b. A = [a,'j]4><2 with a;; = (—1)1]
c. B= [bij]2><4 with b,'j = (—I)Hj
d. B = [bij]3X4 with bij = 1ifi <jand bij =0ifi =j
e. C= [Cij]4><3 Withcij =i+ jifi=jand Cij = 0ifi <j
f.C= [Cij]4><3 with Cij = 0if i #jand Cij = 1if i =j

2. Perform the indicated operations, if possible.

-1 2 5] 4 -2 -9
a. +
0o -3 7] 8 -5 -1

N TR 30 ~1
: +|-5 - : +
¢ [0 4 5} > 8 d [8 O:| [ 4}

6 7
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3. Perform the following multiplications, if possible.

- -1 2] -1 2 -
al| 20 _3] 5 6 b.| 5 6 [ 2.0 =3
—4 1 -1 -4 1 -1
- 1 -1 L1 -1 -
2 ol[3 2 -—1] (3 2 -1 2 0]
| 0 =3]l6 =2 0 dl6 -2 0 0 -3
-1 5|1 0 4] 1 0 4]l-1 5]
=6 41[0 1 [0 1][-6 4
e. f.
L1 31 2 1 2 1 3
5[ -1
g | -3 4 h.[-4 6 2][-1 0 5]
L 2 1
—4 —4
i3 -2 1] -5 =53 -2 1]
6 6

4. Let A = [a;]> x3 where a;; = i + j, and let B = [b;j]3 x4 where b;; = 2i — j. If AB =
[cij]2 x4, write a formula for ¢;; in terms of i and ;.

5. Show that the matrix equation

1 -2 7 X 9
5 —1 6|1|ly|=|—4
3 4 =8|z 2

is equivalent to a system of linear equations in x, y, and z.

6. Write a single matrix equation of the form AX = B that is equivalent to the following
system of equations.

w+ 6x—3y+2z=9

4w —Tx+ y+5z=0

7. Let §;; denote the Kronecker delta: 6;; = 1ifi = j, and 6;; = 0if i # j. Find the value
of the following expressions.

a. E(Eﬁu) b. E(E(l—&p)
i=1 j=1 i=1 j=1
5 4 n
c. (2(—1)%) d. > 5;;
j=1

i=1 \j=1
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Let S be the set of four matrices S = {I, A, B, C}, where

o S ) S ] AT

Follow the procedure described in Exercise 3 of Section 1.4 to complete the following
multiplication table for S. (In this case, the product BC = A is entered as shown in the
row with B at the left end and in the column with C at the top.) Is S closed under
multiplication?

I A B C

a © = 0~
o
a
~
=

. Find two square matrices A and B such that AB # BA.
10.
11.
12.

Find two nonzero matrices A and B such that AB = BA.
Find two nonzero matrices A and B such that AB = O,,x,,.

Let A, B, and C be elements of M,(R), where A is not a zero matrix. Prove or disprove
that AB = AC implies B = C.

Positive integral powers of a square matrix are defined by A' = A and A"*! = A" - A for
every positive integer n. Evaluate (A — B)(A + B) and A?> — B?> and compare the

results for
Lol 2 aso]? !
"4 o ™ "2 1

For the matrices in Exercise 13, evaluate (A + B)? and A> + 2AB + B?> and com-
pare the results.

Assume that A~ ! exists and find a solution X to AX = B where A and B are in M,(R).

Assume that A, B, C, and X are in M,(R), and AXC = B with A and C invertible. Solve
for X.

a. Prove part d of Theorem 1.30.
b. Prove part e of Theorem 1.30.

a. Prove part a of Theorem 1.33.
b. Prove part b of Theorem 1.33.
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19.
20.
21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

Prove part b of Theorem 1.34.

Prove that if A € M,,,x,(R), then A * O,x, = Opxp.

Suppose that A is an invertible matrix over R and O is a zero matrix. Prove that if
AX = O, then X = O.

Let G be the set of all elements of M>(R) that have one row that consists of zeros and
one row of the form[a  a], with a # 0.

a. Show that G is closed under multiplication.

b. Show that for each x in G, there is an element y in G such that xy = yx = x.

c. Show that G does not have an identity element with respect to multiplication.

Prove that the set § = {[a _bJ
b a

dition and multiplication.

a, b € R} is closed with respect to matrix ad-

Prove or disprove that the set of diagonal matrices of order n over R is closed with
respect to matrix multiplication.

Let A and B be square matrices of order n over R. Prove or disprove that the product
AB is a diagonal matrix of order n over R if B is a diagonal matrix.

Let A and B be square matrices of order n over R. Prove or disprove that if AB is a
diagonal matrix of order n over R, then at least one of A or B is a diagonal matrix.

A square matrix A = [a;], with a;; = 0 for all i > j is called upper triangular. Prove
or disprove each of the following statements.

a. The set of all upper triangular matrices is closed with respect to matrix addition.
b. The set of all upper triangular matrices is closed with respect to matrix multiplication.

c. If A and B are square and the product AB is upper triangular then at least one of A
or B is upper triangular.

Leta, b, ¢, and d be real numbers. If ad — bc # 0, show that the multiplicative inverse

b
of |:a :| is given by
c d

d —-b
ad — bc ad — bc
—c a

ad — bc ad — bc

b
LetA = [a d:| over R. Prove that if ad — bc = 0, then A does not have an inverse.
c

Let A, B, and C be square matrices of order n over R. Prove that if A is invertible and
AB = AC, then B = C.

Let A and B be n X n matrices over R such that A~! and B~ ! exist. Prove that (AB) ™!
exists and that (AB)™' = B~!A™!. (This result is known as the reverse order law for
inverses.)
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1.7 | Relations

In the study of mathematics, we deal with many examples of relations between elements of
various sets. In working with the integers, we encounter relations such as “x is less than y”
and “x is a factor of y.” In calculus, one function may be the derivative of some other func-
tion, or perhaps an integral of another function. The property that these examples of rela-
tions have in common is that there is an association of some sort between two elements of
a set, and the ordering of the elements is important. These relations can all be described by
the following definition.

Definition 1.36 Relation

A relation (or a binary relation) on a nonempty set A is a nonempty set R of ordered pairs
(x, y) of elements x and y of A.

That is, a relation R is a subset of the Cartesian product A X A. If the pair (a, b) is
in R, we write aRb and say that a has the relation R to b. If (a, b) & R, we write a b.
This notation agrees with the customary notations for relations, such as a = b and
a<b.

Example 1 LetA ={-2 -5.2 5} andR = {(5, —2), (5, 2), (=5, —2), (-5, 2)}.
Then 5R2, —5R2,5R(—2),and (—5)R(—2),but2R 5, 5R 5, and so on. As is frequently
the case, this relation can be described by a simple rule: xRy if and only if the absolute
value of x is the same as y> + 1—that is, if |x| = y> + 1. [ ]

Any mapping from A to A is an example of a relation, but not all relations are map-
pings, as Example 1 illustrates. We have (5, 2) € R and (5, —2) € R, and for a mapping
from A to A, the second element y in (5, y) would have to be unique.

Our main concern is with relations that have additional special properties. More pre-
cisely, we are interested for the most part in equivalence relations.

Definition 1.37 m Equivalence Relation

A relation R on a nonempty set A is an equivalence relation if the following conditions are
satisfied for arbitrary x, y, z in A:

1. xRxforall x € A. Reflexive Property
2. If xRy, then yRx. Symmetric Property
3. If xRy and yRz, then xRz. Transitive Property

Properties 1, 2, and 3 of Definition 1.37 are familiar basic properties of equality.



56 Chapter 1 Fundamentals

Example 2 The relation R defined on the set of integers Z by
xRy ifandonlyif |x| = |y|
is reflexive, symmetric, and transitive. For arbitrary x, y, and z in Z,
1. xRx, since |x| = |x|
2. xRy = |x| = |y
= |yl = I«
= yRx.
3. xRyandyRz= |x| =|y| and |[y]| = |z]
= |x[ = |z
= xRz. |

Example 3 The relation R defined on the set of integers Z by
xRy ifandonlyif x>y
is not an equivalence relation, since it is neither reflexive nor symmetric.

1. x # xforallx € Z.
2. x>y qéy>x.

Note that R is transitive:

3.x>y and y>z = x>z |

The following example is a special case of an equivalence relation on the integers that
will be extremely important in later work.

Example 4 The relation “congruence modulo 4” is defined on the set Z of all integers as
follows: x is congruent to y modulo 4 if and only if x — y is a multiple of 4. We write
x =y (mod 4) as shorthand for “x is congruent to y modulo 4.” Thus x = y (mod 4) if and
only if x — y = 4k for some integer k. We demonstrate that this is an equivalence relation.
For arbitrary x, y, zin Z,
1. x = x (mod 4), since x — x = (4)(0).
2. x=y(mod4) =>x — y = 4kforsome k € Z
=y—x=4—k)and —kE Z
= y = x (mod 4).
3. x=y(mod4)andy =z (mod 4)
=>x—y =4kandy — z = 4m for some k, m € Z
S>x—z=x—y+ty—z=4k+m),andk + me€Z
= x = z (mod 4).
Thus congruence modulo 4 has the reflexive, symmetric, and transitive properties and
is an equivalence relation on Z. |
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Definition 1.38 m Equivalence Class

Let R be an equivalence relation on the nonempty set A. For each a € A, the set
[a] = {x € A|xRa}

is called the equivalence class containing a.

Example 5 The relation R in Example 2 defined on Z by xRy < |x| = |y] is an equiv-
alence relation. The equivalence class containing 0 is

[0] = {0}

since 0 is the only element x € Z such that |x| = 0. Some other equivalence classes are
given by

[1]={1,—1} and [-3]={-3, 3}
For a # 0, the equivalence class [¢]is given by

[a] = {~a, 4}

since a and —a are the only elements in Z with absolute value equal to | a|. u

Example 6 The relation “congruence modulo 4” was shown in Example 4 to be an
equivalence relation. Since x = y (mod 4) if and only if x — y is a multiple of 4, the equiv-
alence class [a] consists of all those integers that differ from a by a multiple of 4. Thus [0]
consists of all multiples of 4:

[0)={..,—8 -4,0,4,8,...}.
Similarly, the other equivalence classes are given by:

1]={...,-7,-3,1,59,...}
2]={..,=6,-2,2,6,10,...}.
B]={...=-5-1L3711...} n

In both Examples 5 and 6, the equivalence classes separate the set Z into mutually dis-
joint nonempty subsets. Recall from Section 1.1 that a separation of the elements of a non-
empty set A into mutually disjoint nonempty subsets is called a partition of A. It is not
difficult to show that if R is an equivalence relation on A, then the distinct equivalence classes
of R form a partition of A. Conversely, if a partition of A is given, then we can find an equiv-
alence relation R on A that has the given subsets as its equivalence classes. We simply define
R by xRy if and only if x and y are in the same subset. The proofs of these statements are
requested in the exercises for this section.

The discussion in the last paragraph illustrates a situation where we are dealing with a
collection of sets about which very little is explicit. For example, the collection may be fi-
nite, or it may be infinite. In such situations, it is sometimes desirable to use the notational
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convenience known as indexing. We assume that the sets in the collection are labeled, or
indexed, by a set & of symbols A. That is, a typical set in the collection is denoted by a
symbol such as A, and the index A takes on values from the set &£. For such a collection
{A,}, we write U, c4A, for the union of the collection of sets, and we write (), c4A, for
the intersection. That is,

(JA, = {x|x € A, for at least one A € &£}

AEZ
and
(A, = {x|x € A, forevery A € £}.
rEL
If the indexing set £ is given by £ = {1, 2, . . ., n}, then the union of the collection of sets

{A;} might be written in any one of the following three ways.
A UA2U"' UAn: UAi: UAi
€% i=1

The index notation is useful in describing a partition of a set. An alternative definition
can be made in the following manner.

Definition 1.39 m Partition

Let {A,}, A € &, be a collection of subsets of the nonempty set A. Then {A,} is a partition
of A if all these conditions are satisfied:

1. Each A, is nonempty.

2. A= JA.

AEZL

3. IfA, N AB # (J, then A, = AB'

BN Exercises 1.7 I——

True or False

Label each of the following statements as either true or false.
1. Every mapping on a nonempty set A is a relation.
2. Every relation on a nonempty set A is a mapping.

3. If R is an equivalence relation on a nonempty set A, then the distinct equivalence
classes of R form a partition of A.

4. If R is an equivalence relation on a nonempty set A, then any two equivalence classes
of R contain the same number of elements.
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5. Let R be an equivalence relation on a nonempty set A and letaand bbein A. If b € [a],
then [b] = [a].

6. Let R be a relation on a nonempty set A that is symmetric and transitive. Since R is
symmetric xRy implies yRx. Since R is transitive xRy and yRx implies xRx. Hence R is
also reflexive and thus an equivalence relation on A.

Exercises

1. ForA = {1, 3,5}, determine which of the following relations on A are mappings from
A to A, and justify your answer.

a. {(1,3),3,5),(5, D} b. {(1,1),(3,1),(5, 1)}
c. {(1,1),(1,3),(1,5)} d. {(1,3),(3,1),(5,5)}
e. {(1,5),(3,3),(5,3)} f. {(5,1),(5,3),(5,5)}

2. In each of the following parts, a relation R is defined on the set Z of all integers. De-
termine in each case whether or not R is reflexive, symmetric, or transitive. Justify
your answers.

. XRy if and only if x = 2y.
—y.
. xRy if and only if y = xk for some kin Z.

. xRy if and only if x

. xRy if and only if x < y.

. XRy if and only if x = y.

. xRy if and only if x = |y].

. xRy if and only if |x| = |y + 1].

=0 - 0 2 6 T

. xRy if and only if xy = 0.

e

. xRy if and only if xy = 0.
. xRy ifand only if [x — y| = 1.

7 e

. xRy if and only if |x — y| < 1.
3. a. Let R be the equivalence relation defined on Z in Example 2, and write out the
elements of the equivalence class [3].
b. Let R be the equivalence relation “congruence modulo 4” that is defined on Z in Ex-
ample 4. For this R, list five members of the equivalence class [7].
4. Let R be the relation “congruence modulo 5” defined on Z as follows: x is congruent
to y modulo 5 if and only if x — y is a multiple of 5, and we write x =y (mod 5).
a. Prove that “congruence modulo 5 is an equivalence relation.
b. List five members of each of the equivalence classes [0], [1],[2],[8], and [—4].
5. Let R be the relation “congruence modulo 7” defined on Z as follows: x is congruent
to y modulo 7 if and only if x — y is a multiple of 7, and we write x =y (mod 7).
a. Prove that “congruence modulo 7” is an equivalence relation.
b. List five members of each of the equivalence classes [0],[1],[3],[9], and [ —2].
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In Exercises 610, a relation R is defined on the set Z of all integers. In each case, prove
that R is an equivalence relation. Find the distinct equivalence classes of R and list at least
four members of each.

6.
7.
8.
9.
10.
11.

12.

13.

14.

15.

xRy if and only if x> + y? is a multiple of 2.
xRy if and only if x> — y? is a multiple of 5.
xRy if and only if x + 3y is a multiple of 4.
xRy if and only if 3x — 10y is a multiple of 7.
xRy if and only if (—1)* = (—1).

Consider the set P(A) — {J} of all nonempty subsets of A = {1, 2, 3, 4, 5}. Deter-
mine whether the given relation R on P(A) — {J} is reflexive, symmetric, or transi-
tive. Justify your answers.

a. xRy if and only if x is a subset of y.

b. xRy if and only if x is a proper subset of y.

c. xRy if and only if x and y have the same number of elements.

In each of the following parts, a relation is defined on the set of all human beings.

Determine whether the relation is reflexive, symmetric, or transitive. Justify your
answers.

. xRy if and only if x lives within 400 miles of y.

. xRy if and only if x is the father of y.

. xRy if and only if x is a first cousin of y.

. xRy if and only if x and y were born in the same year.
. xRy if and only if x and y have the same mother.

- 0 & 6 T O

. xRy if and only if x and y have the same hair color.

Let A = R — {0}, the set of all nonzero real numbers, and consider the following rela-
tions on A X A. Decide in each case whether R is an equivalence relation, and justify
your answers.

a. (a,b)R(c,d) if and only if ad = bc.

b. (a,b)R(c,d) if and only if ab = cd.

c. (a,b)R(c,d) if and only if > + b* = * + d*
d. (a,b)R(c,d)ifand onlyifa — b = ¢ — d.

Let A = {1,2,3,4} and define R on P(A) — {J} by xRy if and only if x Ny # .
Determine whether R is reflexive, symmetric, or transitive.

In each of the following parts, a relation R is defined on the power set P(A) of the non-
empty set A. Determine in each case whether R is reflexive, symmetric, or transitive.
Justify your answers.

a. xRyifandonlyifx Ny # .
b. xRyif and only ifx S y.
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18.
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25.

26.

27.

28.
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Let PP(A) be the power set of the nonempty set A, and let C denote a fixed subset of A.
Define R on (A) by xRy if and only if x M C = y M C. Prove that R is an equivalence
relation on P(A).

For each of the following relations R defined on the set A of all triangles in a plane,
determine whether R is reflexive, symmetric, or transitive. Justify your answers.

a. aRb if and only if a is similar to b.

b. aRb if and only if a is congruent to b.

Give an example of a relation R on a nonempty set A that is symmetric and transitive,
but not reflexive.

A relation R on a nonempty set A is called irreflexive if x £ x for all x € A. Which of
the relations in Exercise 2 are irreflexive?

A relation R on a nonempty set A is called asymmetric if, for x and y in A, xRy implies
y R x. Which of the relations in Exercise 2 are asymmetric?

A relation R on a nonempty set A is called antisymmetric if, for x and y in A, xRy and
yRx together imply x = y. (That is, R is antisymmetric if x # y implies that either x R y
or y R x.) Which of the relations in Exercise 2 are antisymmetric?

For any relation R on the nonempty set A, the inverse of R is the relation R~ defined
by xR~y if and only if yRx. Prove the following statements.

a. Ris symmetric if and only if R = R~ ..

b. R is antisymmetric if and only if R N R~ ! is a subset of {(a, a)|a € A}.

¢. Ris asymmetric if and only if RN R~ = .

Let¥ = {1,2,3},A; = {a,b,c,d}, A, = {c,d,e,f},and A5 = {a,c,f, g}. Write out
UiegAy and MyegA,.

Let £ = {a, B, v}, Ax = {1,2,3, ... },Ag = {—1, -2, -3,...},and A, = {0}.
Write out U ,c4A, and My c4A,.

Suppose R is an equivalence relation on the nonempty set A. Prove that the distinct
equivalence classes of R separate the elements of A into mutually disjoint subsets.

LetA = {1,2,3},B; = {1,2},and B, = {2, 3}. Define the relation R on A by aRb if
and only if there is a set B; (i = 1 or 2) such that @ € B; and b € B;. Determine which
of the properties of an equivalence relation hold for R, and give an example for each
property that fails to hold.

Suppose {A,}, A € &, represents a partition of the nonempty set A. Define R on A by
XRy if and only if there is a subset A, such that x € A, and y € A,. Prove that R is an
equivalence relation on A and that the equivalence classes of R are the subsets A,.

Suppose that fis an onto mapping from A to B. Prove that if {B,}, A € ¥, is a partition
of B, then {f~'(B))}, A € &, is a partition of A.



62 Chapter 1 Fundamentals

Key Words and Phrases S

addition of matrices, 43
associative binary operation, 31
associative property, 7, 20, 48
bijective mapping, 18

binary operation, 30

binary relation, 55

Cartesian product, 13

closed subset, 32

codomain, 14

commutative binary operation, 31
commutative property, 4
complement, 5

complex number, 6
composite mapping, 19
composition of mappings, 19
conformable matrices, 46
counterexample, 17

De Morgan’s Laws, 9
diagonal matrix, 43
dimension of a matrix, 42
disjoint sets, 4

distributive property, 8, 48
domain, 14

empty set, 4

equal matrices, 43

equivalence class, 57
equivalence relation, 55
even integer, 18

identity element, 33
identity mapping, 37
identity matrix, 49
image, 13, 15

injective mapping, 16
integers, 6

intersection, 3

inverse, 33

inverse image, 15
invertible element, 33
invertible matrix, 50
Kronecker delta, 49

left identity element, 50
left inverse, 33
mapping, 13

matrix, 42
multiplication of matrices, 45
odd integer, 18
one-to-one correspondence, 18
one-to-one mapping, 16
onto mapping, 15
partition, 7, 58

permutation, 37
positive integers, 6
power set, 4

product of matrices, 45
proper subset, 3

range, 14

rational number, 6

real numbers, 6
reflexive property, 55
relation, 55

reverse order law, 54
right identity element, 50
right inverse, 33

sigma notation, 47
square matrix, 43
subset, 2

subtraction of matrices, 45
surjective mapping, 15
symmetric property, 55
transitive property, 55
union, 3

universal set, 4

Venn diagram, 4

zero matrix, 45

SSPL/Image Works

A Pioneer in Mathematics
Arthur Cayley (1821-1895)

The English mathematician Arthur Cayley, one of the three most
prolific writers in mathematics, authored more than 200
mathematical papers. He founded the theory of matrices and was
one of the first writers to describe abstract groups. According to
mathematical historian Howard Eves, Cayley was one of the 19th-
century algebraists who “opened the floodgates of modern abstract
algebra.”

Cayley displayed superior mathematical talent early in his life.
At the age of 17 he studied at Trinity College of Cambridge
University. Upon graduation, he accepted a position as assistant
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tutor at the college. At the end of his third year as tutor, his appointment was not renewed
because he declined to take the holy orders to become a parson. Cayley then turned to law
and spent the next 15 years as a practicing lawyer. It was during this period that he wrote
most of his mathematical papers, many of which are now classics.

Mathematics was not Cayley's only love, though. He was also an avid novel reader, a
talented watercolor artist, an ardent mountain climber, and a passionate nature lover.
However, even on his mountaineering trips, he spent a few hours each day on
mathematics.

Cayley spent the last 32 years of his life as a professor of mathematics at Cambridge
University. During this period, he campaigned successfully for the admission of women to
the university.
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CHAPTER TWO

The Integers

Introduction

It is unusual for a chapter to begin with an optional section, but there is an explanation for
doing so here. Whether Section 2.1 is to be included or skipped is a matter of attitude or em-
phasis. If the approach is to emphasize the development of the basic properties of addition,
multiplication, and ordering of integers from an initial list of postulates for the integers, then
Section 2.1 should be included. As an alternative approach, these properties can be taken as
known material from earlier experience, and Section 2.1 can be skipped. Whichever ap-
proach is taken, Section 2.1 summarizes the knowledge that is needed for the subsequent
material in the chapter, and it separates “what we know” from “what we must prove.”

Although Section 2.2 on mathematical induction is not labeled as optional, this material
may be familiar from calculus or previous algebra courses, and it might also be skipped.

The set Z,, of congruence classes modulo n makes its first appearance in Section 2.5
as a set of equivalence classes. Binary operations of addition and multiplication are defined
on Z, in Section 2.6. Both the additive and the multiplicative structures are drawn upon for
examples in Chapters 3 and 4.

Sections 2.7 and 2.8 present optional introductions to coding theory and cryptography.
The primary purpose of these sections is to demonstrate that the material in this text has
usefulness other than as a foundation for mathematics courses at a higher level.

Postulates for the Integers (Optional)

The material in this chapter is concerned exclusively with integers. For this reason, we make
a notational agreement that all variables represent integers. As our starting point, we shall
take the system of integers as given and assume that the system of integers satisfies a certain
list of basic axioms, or postulates. More precisely, we assume that there is a set Z of ele-
ments, called the integers, that satisfies the following conditions.

Postulates for the Set Z of Integers

1. Addition postulates. There is a binary operation defined in Z that is called addition,
is denoted by +, and has the following properties:
a. Z is closed under addition.
b. Addition is associative.

65
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¢. Z contains an element O that is an identity element for addition.

d. For each x € Z, there is an additive inverse of x in Z, denoted by —x, such that
x+(—x)=0=(—x) + x

e. Addition is commutative.

2. Multiplication postulates. There is a binary operation defined in Z that is called

multiplication, is denoted by -, and has the following properties:

a. Z is closed under multiplication.

b. Multiplication is associative.

c. Z contains an element 1 that is different from O and that is an identity element for
multiplication.

d. Multiplication is commutative.

3. The distributive law,
x(y+ta=x-y+tx-z

holds for all elements x, y, z € Z.

4. Z contains a subset Z*, called the positive integers, that has the following
properties:
a. Z" is closed under addition.
b. Z* is closed under multiplication.
c. For each x in Z, one and only one of the following statements is true.
i.xezZ*t
ii..x=0
iii. —x€Z*
5. Induction postulate. If S is a subset of Z" such that
a. 1 €S, and
b. x € S always impliesx + 1 € §,

thenS = Z™.

Note that we are taking the entire list of postulates as assumptions concerning Z. This
list is our set of basic properties. In this section we shall investigate briefly some of the con-
sequences of this set of properties.

After the term group has been defined in Chapter 3, we shall see that the addition pos-
tulates state that Z is a commutative group with respect to addition. Note that there is a
major difference between the multiplication and the addition postulates, in that no inverses
are required with respect to multiplication.

Postulate 3, the distributive law, is sometimes known as the left distributive law. The
requirement that

Y+ x=y-x+z-x

is known as the right distributive law. This property can be deduced from those in our list,
as can all the familiar properties of addition and multiplication of integers.

Postulate 4c is referred to as the law of trichotomy because of its assertion that exactly
one of three possibilities must hold. In case iii, where —x € Z™, we say that x is a negative
integer and that the set {x| —x € Z"} is the set of all negative integers.
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The induction postulate is so named because it provides a basis for proofs by mathe-
matical induction. Section 2.2 is devoted to the method of proof by induction, and the
method is used from time to time throughout this book.

The right distributive law can be shown to follow from the set of postulates for the
integers. We do this formally in the following theorem.

Theorem2.1 = Right Distributive Law
The equality
O+t x=yx+tz-x
holds for all x, y, z in Z.
Proof For arbitrary x, y, z in Z, we have
b+ x=x-(Q+2 by postulate 2d

=Xx+y+ x+z bypostulate 3
=y+x+ z-x by postulate 2d.

The foregoing proof is admittedly trivial, but the point is that the usual manipulations
involving integers are indeed consequences of our basic set of postulates. As another
example, consider the statement’ that (—x)y = —(xy). In this equation, —(xy) denotes the
additive inverse of xy, just as —x denotes the additive inverse of x.

Theorem2.2 wm Additive Inverse of a Product
For arbitrary x and y in Z,
(=x)y = —(x).
Instead of attempting to prove this statement directly, we shall first prove a lemma.
Lemma23 = Cancellation Law for Addition
If a, b, and c are integers anda + b = a + ¢, then b = c.
p=gq Proof of the Lemma Supposea + b = a + c¢. Now —a is in Z, and hence

at+t+b=a+c=(—a)+ (@a+b)=(—a)+ (a+c)
=[(—a) ta]+b =[(—a)+a] +c by postulate 1b
= 0+b=0+c¢ by postulate 1d
= b=c by postulate 1c.

This completes the proof of the lemma.

"We adopt the usual convention that the juxtaposition of x and y in xy indicates the operation of

multiplication.
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Definition 2.4

Proof of the Theorem Returning to the theorem, we see that we only need to show that
xy + (=x)y = xy + [—(xy)]. That is, we need only show that xy + (—x)y = 0. We have

Xy + (=x)y =[x + (=) by Theorem 2.1
=0-y by postulate 1d
=0-y+0 by postulate 1c

=0-y+{0-y+[—(0-y)]} by postulate 1d
=@0-y+0-:y)+[—(0-y)] bypostulate 1b

=0+ 0y+[—(0-y)] by Theorem 2.1
=0-y+[—(0-y] by postulate 1c
=0 by postulate 1d.

We have shown that xy + (—x)y = 0, and the theorem is proved.

The proof of Theorem 2.2 would have been shorter if the fact that O - y = 0 had
been available. However, our approach at present is to use in a proof only the basic pos-
tulates for Z and those facts previously proved. Several statements similar to the last
two theorems are given to be proved in the exercises at the end of this section. After this
section, we assume the usual properties of addition and multiplication in Z.

Postulate 4, which asserts the existence of the set Z™" of positive integers, can be used
to introduce the order relation “less than” on the set of integers. We make the following def-
inition.

m The Order Relation Less Than

For integers x and y,
x<y ifandonlyif y—x€Z"

wherey — x =y + (—x).

The symbol < is read “less than,” as usual. Here we have defined the relation, but we
have not assumed any of its usual properties. However, they can be obtained by use of this
definition and the properties of Z*. Before illustrating this with an example, we note that
0 < yifandonlyify € Z*.

For an arbitrary x € Z and a positive integer n, we define x" as follows:

x'=x

X1 = xk- x for any positive integer .
Similarly, positive multiples nx of x are defined by

Ix=x

(k + )x = kx + x for any positive integer k.
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Strategy ®m Some proofs must be divided into different cases because the same argument does not

apply to all elements under consideration. The proof of the next theorem separates natu-
rally into two cases, based on the law of trichotomy (postulate 4c).

Theorem25 m Squares of Nonzero Integers
Forany x # 0inZ, x> € Z™.
p=gq Proof Letx # 0 in Z. By postulate 4, either x € Z" or —x € Z*. If x € Z*, then

x? = x-xisin Z" by postulate 4b. And if —x € Z*, then (—x)*> = (—x) + (—x)isin Z",
by the same postulate. But

X=x-x
= (—x) - (—x) by Exercise 5 in this section,

2

so x2is in Z" if —x € Z™. In each possible case, x*

is in Z", and this completes the proof.

As a particular case of this theorem, 1 € Z*, since 1 = (1)2. That is, 1 must be a
positive integer, a fact that may not be immediately evident in postulate 4. This in turn
implies that 2 = 1 + 1 is in Z*, by postulate 4a. Repeated application of 4a gives
3=2+4+1€Z,4=3+1€2Z",5=4+1€7Z", and so on. It turns out that Z*
must necessarily be the set

7" ={1,2,3,....,n,n+1,...}.

Although our discussion of order has been in terms of less than, the relations greater
than, less than or equal to, and greater than or equal to can be introduced in Z and simi-
larly treated. We consider this treatment to be trivial and do not bother with it. At the same
time, we accept terms such as nonnegative and nonpositive with their usual meanings and
without formal definitions.

Exercises 2.1 I——

True or False

Label each of the following statements as either true or false.
1. The set Z of integers is closed with respect to subtraction.

The set Z — Z* is closed with respect to subtraction.

The set Z — Z* is closed with respect to multiplication.

If xy = xzforall x,y,and zin Z, theny = z.

EUF I

Let A be a set of integers closed under subtraction. If x and y are elements of A then
x — nyisin A for any n in Z.

6. |x| = xforall x in Z. (See the exercises for the definition of | x|, the absolute value of x.)
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7. |x + yP <|xf + |y[* forall xand y in Z.
8. If x < y then x*> < y? for all x and y in Z.
9. If x < y then x> < y*for all x and y in Z.
10. ||x| — |y||=|x — y|forall xand y in Z.

Exercises

Prove that the equalities in Exercises 1-11 hold for all x, y, z, and w in Z. Assume only the
basic postulates for Z and those properties proved in this section. Subtraction is defined

byx —y=x+ (—y).

1. x-0 =0

2. —x=(—1) -x

3. —(—x)=x

4. (—DH(-1H =1

5. (=0(=y) = xy

6. x—0=x

7. x(y —2) =xy —xz

8. (y—x=yx—

9. ~x+y =0+ (Y

o
(=)

. x—yt+t O -—2=x—2z2
1. x+ )z +w)=xz+xw+yz+yw

12. Let A be a set of integers closed under subtraction.
a. Prove that if A is nonempty, then 0 is in A.
Sec. 2.2, #21 < b. Prove that if x is in A then —x is in A.

In Exercises 13-24, prove the statements concerning the relation < on the set Z of
all integers.

13. If x < y,thenx + z <y + z.

14. Ifx <yandz < w,thenx + z <y + w.
15. Ifx = yand 0 < z,theny < x + z.

16. If x = yand z < 0, thenx + z < y.

17. Ifx < yandy < z, then x < z.

18. If x < yand 0 < z, then xz < yz.

19. If x < yand z < 0, then yz < xz.
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20. If 0 < x < y, then x* < y.

21. fO0<x<yand 0 < z < w, then xz < yw.
22, If 0 < zand xz < yz, thenx < y.

23. z —x<z—yifandonlyify < x.

24. Ifx <y, then —y < —ux.

25. Prove that if x and y are integers and xy = O, then either x = 0 or y = 0. (Hint: If
x # 0, then either x € Z" or —x € Z*, and similarly for y. Consider xy for the vari-
ous cases.)

26. Prove that the cancellation law for multiplication holds in Z. That is, if xy = xz and
x #0,theny = z.

27. Let x and y be in Z, not both zero, then x> + y> € Z*.

For an integer x, the absolute value of x is denoted by |x| and is defined by

||_ x if0=x
Tl =x ifx<o

Use this definition for the proofs in Exercises 28-30.

28. Prove that —|x| = x =<|x|for any integer x.

29. Prove that|xy| =|x| +|y|for all x and y in Z.

30. Prove that|x + y|<|x| + |y|for all x and y in Z.

31. Prove that if a is positive and b is negative, then ab is negative.
32. Prove that if a is positive and ab is positive, then b is positive.
33. Prove that if a is positive and ab is negative, then b is negative.
34. Prove or disprove that 0 < x> — xy + y? for all x and y in Z.

35. Consider the set {0} consisting of 0 alone, with 0 + 0 = 0 and 0 - 0 = 0. Which of
the postulates for Z are satisfied?

Mathematical Induction

From this point on, full knowledge of the properties of addition, subtraction, and multipli-
cation of integers is assumed. A study of divisibility begins in Section 2.3.

As mentioned in the last section, the induction postulate forms a basis for the method
of proof known as mathematical induction. Some students may have encountered this
method of proof in calculus or in other previous courses. In this case, it is possible to skip
this section and continue with Section 2.3.
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Strategy = Proof by Mathematical Induction In a typical proof by induction, there is a statement

P, to be proved true for every positive integer n. The proof consists of three steps:

1. The statement is verified forn = 1.
2. The statement is assumed true for n = k.
3. With this assumption made, the statement is then proved to be true forn = k + 1.

The assumption that is made in step 2 is called the inductive assumption or the induc-
tion hypothesis.

Principle of Mathematical Induction
The logic of the method is that

a. if P,is true forn = 1, and
b. if the truth of P, always implies that P is true,

then the statement P, is true for all positive integers n. This logic fits the induction postu-
late perfectly if we let S be the set of all positive integers n for which P, is true. When the
induction postulate is used in this form, it is frequently called the Principle of Mathemat-
ical Induction.

Example 1 We shall prove that

1 1 1 1 n
+ + + o+ =
1-3 3.5 5.7 Cn—DC2n+1) 2n+1

for every positive integer n.
For each positive integer n, let P, be the statement

1 1 1 1 n
+ + o+ = .
13 3:5 5.7 Cn—DC2n+1)  2n+1

In an equation of this type, it is understood that 1/[(2n — 1)(2n + 1)]is the last term on
the left side. When n = 1, there is only one term, and no addition is actually performed.
When n = 1, the value of the left side is

1 1

1
R - 120 +1]  1-3 3
and the value of the right side is

1 1

200 +1 3°
Thus P is true.
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Assume now that P is true. That is, assume that the equation

1 1 1 1 k
+ - + o+ =
13 3.5 5-7 2k — D2k + 1) 2k+1

is true. With this assumption made, we need to prove that Py is true. By adding

1 1
Rk + 1) — 12K+ 1) +1] @2k + D2k + 3)

to both sides of the assumed equality, we obtain

1 1 1 1
13 T3 T T ks @+ T @+ Dk + 3
_ ko, 1
2%+ 1 2k + D2k + 3)
K2k +3) + 1
2k + )2k + 3)
2k* + 3k + 1

2k + 1)(2k + 3)
Qk+ Dkt
k4 D2k + 3)

k+1
2k+ 1) +1°

The last expression matches exactly the fraction

n
2n + 1

when n is replaced by k + 1. Thus Py is true whenever P, is true.
It follows from the induction postulate that P, is true for all positive integers n. |

Example 2 We shall prove that any even positive power of a nonzero integer is posi-
tive. That is, if x # 0 in Z, then x>" is positive for every positive integer .

The second formulation of the statement is suitable for a proof by induction on n. For
n=1,x%"=x% and x? is positive by Theorem 2.5. Assume the statement is true for
n = k; that is, x2* is positive. Forn = k + 1, we have

2 = 20+
= 2k+2
= x* X

Since x* and x? are positive, the product is positive by postulate 4b. Thus the statement is
true forn = k + 1. It follows from the induction postulate that the statement is true for all
positive integers. |
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In Section 2.3 and in some of the exercises at the end of this section, we need to use
the fact that 1 is the least positive integer. It might seem a bit strange to prove something so
obvious, but the proof does reveal how this familiar fact is a consequence of the induction
postulate.

Theorem2.6 m LeastPositive Integer
The integer 1 is the least positive integer. That is, | = x for all x € AR
Induction Proof Let S be the set of all positive integers x such that 1 < x. Then 1 € S. Suppose

k€ S.Now 0 < 1 implies k = k + 0 < k + 1, by Exercise 13 of Section 2.1, so we have
l<=k<k+ 1.Thusk € Simpliesk + 1 € S, and S = Z" by postulate 5.

Mathematical induction can sometimes be used in more complicated situations in-
volving integers. Some statements that involve positive integers n are false for some values
of the positive integer n but are true for all positive integers that are sufficiently large.
Statements of this type can be proved by a modified form of mathematical induction. If a
is a positive integer, and we wish to prove that a statement P, is true for all positive integers
n = a, we alter the three steps described in the strategy box of this section to the following
form.

Strategy = Proof by Generalized Induction

1. The statement is verified for n = a.

2. The statement is assumed true for n = k, where k = a.

3. With this assumption made, the statement is then proved to be true forn = k + 1.

A proof of this type with a = 4 is given in Example 3.

Example 3 We shall prove that
1+ 3n<n

for every positive integer n = 4.
Note that the statement is actually false forn = 1,2, and 3. Forn = 4,

1+3n=1+12=13 and n’>=4>=16.

Since 13 < 16, the statement is true for n = 4.
Assume now that the inequality is true for k where k = 4:

1 + 3k < k2
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When n = k + 1, the left side of the inequality is 1 + 3(k + 1), and
1+3k+1)=1+3k+3

<k+3 since 1 + 3k < k?
=K+2+1

<k +2k+ 1 sincel < kimplies 2 < 2k
= (k + 1)~

(In the steps involving <<, we have used Exercises 13 and 18 of Section 2.1.) Since (k + 1)?
is the right side of the inequality when n = k + 1, we have proved that

1 +3n<n’

istrue whenn = k + 1. Therefore, the inequality is true for all positive integersn = 4. W

The modification of mathematical induction that is described just before Example 3
can be extended even more by allowing a to be 0 or a negative integer and using the same
three steps listed in the strategy box to prove that a statement P, is true for all integers
n = a. This type of proof is requested in Exercise 23 of this section.

In some cases, it is more convenient to use yet another form of the induction postulate.
This form is known by three different titles: It is called the Second Principle of Finite
Induction, the method of proof by Complete Induction, and the method of Strong Math-
ematical Induction. In this form, a proof that a statement P, is true for all integers n = a
consists of the following three steps.

Strategy =

Proof by Complete Induction

1. The statement is proved true for n = a, where a € Z.

2. For an integer k, the statement is assumed true for all integers m such that
a=m<k.

3. Under this assumption, the statement is proved to be true for m = k.

Our next example presents a proof by complete induction, and another example is pro-
vided by the proof of Theorem 2.18 in Section 2.4.

The fact stated in Example 4 is that every positive integer can be written as a sum of
nonnegative powers of 2. This fact is a point of departure for developing the binary repre-
sentation of real numbers, a representation that uses 2 as the number base instead of 10 as
used in our familiar decimal system. Binary representations are used extensively in com-
puter science.

Example 4 We shall use complete induction to prove the statement that every positive
integer n can be expressed in the form

n=cytc 2+ 2+ o0 o 27+ 2

where j is a nonnegative integer, ¢; € {0, 1} foralli <j, and¢; = 1.
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Forn = 1,let j = 0and ¢, = 1. Then
o+ 2" =) =1,

and the statement is true forn = 1.

Assume now that k > 1 and the statement is true for all positive integers m such that
m < k. We consider two cases: where k is even and where k is odd.

If k is even, then k = 2p for some p € Z* with p < k. Since p < k, the induction
hypothesis applies to p, and p can be written in the form

p=cote 2+ 22+ o gt 27 g2
where j is a nonnegative integer, ¢; € {0, 1} for all i, and ¢; = 1. Multiplying both sides of
the equation for p by 2 gives
k=2p=cy*2+c 2+ 22+ - ¢ 2+ 27
and this is an equation for & that has the required form (when k is even).

Suppose now that k is odd, say, k = 2p + 1 for somep € Z.". Since k > 1, this means
thatk — 1 = 2pisin Z" and
k—1 k+k
O0<p= —< — =k
2 2

But p < k implies that p can be written in the form

p=cotc2+c 22+ - +cj,1-2j71+cj-2j
where ¢; € {0, 1}, and ¢; = 1. Therefore,
p=co 2+ 2+ 2+ o g 2+ 2
and
k=2p+1
=1+ 2+¢ 22+ 0+ 2+ 2t

which is an equation for k of the required form (when k is odd).

Combining the arguments for k even and k odd, we have proved that if k > 1 and the
statement is true for all positive integers less than k, then it is also true for n = k. By the
Second Principle of Finite Induction, the statement is true for all positive integers n. |

Exercises 2.2 I——

Prove that the statements in Exercises 1—14 are true for every positive integer n.

nn + 1)
1. 1 +2+3+ --- +n:T
2. 1 +3+5+ --- +(2n_1)=n2
+ 1)2n + 1
3. 12+22+32+...+n2:”(” )6(71 )
2n = D@2n + 1
4. 12+32+52+...+(2n_1)2:n(1’l )(2n )

3
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52422422+ -0 +21=2(2"— 1)
2 +12
6.13+23+33+---+n3=”(”f)
7. P+3+ 5+ -+ Qn— 1) =22 - 1)
nn + 1)(n + 2)
8.1°2+2°3+3°4+---+n(n+1)=f
9. 1:2 +2:22 +3:2% + - +pe2"=(n— 12" +2
1 1 1 1 n
10. + + + o+ =
1-2 2-3 3-4 n(n + 1) n+1
1 1 1 1 n
11. + + + o+ =
1-4 4-7  7-10 Gn—2)3n+1) 3n+1
1 1 1 1 nn + 3)
12. + + o+ =
1.2:3  2:3-4 3-4-5 nn+ DHn +2) 4+ DHn+2)

B.at@+d)+@+2d)+ -+ +la+(n—Dd= g[Za-l—(n—l)d]

e
ifr#1

1
W a+tar+a*+ -+ +ar '=ua 1
- r
Let x and y be integers, and let m and n be positive integers. Use mathematical induction to
prove the statements in Exercises 15-20. (The definitions of x" and nx are given before
Theorem 2.5 in Section 2.1.)

15. (xy)" = x™" 16. xMxt = X0
17. (x™)" = x™ 18. n(x +y) = nx + ny
19. (m + n)x = mx + nx 20. m(nx) = (mn)x

21. Let A be a set of integers closed under subtraction. Prove that if x and y are in A, then
x — nyis in A for every positive integer n.

22. Leta and b be real numbers, and let n and r be integers with O = r = n. The binomial
theorem states that

(g>a” + <rll>a"_lb + <;>a”_2b2 + -+ (?)a”_’b’ + .-
+ ( ! >a2b"2 + ( " >ab"' + <”>b"
n—2 n—1 n
E(n)anrbr’
r=0 r

where the binomial coefficients (7) are defined by

) =i’

(a + by
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Sec. 8.4, #35 <

Sec. 2.3, #48 <
Sec. 6.3, #12 <

Sec. 1.6, #31 >

with vl = r(r — 1) -+ - (2)(1) for r = 1 and 0! = 1. Prove that the binomial coeffi-
cients satisfy the equation

n n n+1
( )—I—():( ) forl =r=n.
r—1 r r

23. Use Exercise 22 and generalized induction to prove that (’;) is an integer for all
integers n and r with0 = r = n.

+
( " >+<n>:<n 1> forl =r=n
r—1 r r

and mathematical induction on n to prove the binomial theorem as it is stated in
Exercise 22.

24. Use the equation

If By, By, and B; are matrices in M, x,(R), part b of Theorem 1.30 implies that
By + (B, + B3) = (B; + B;) + Bj. For each positive integer j = 3, this associative prop-
erty can be extended to the following generalized statement: Regardless of how symbols of
grouping are introduced in the sum By + B, + -+ + Bj, the resulting value is the same
matrix, and this justifies writing the sum without symbols of grouping. The generalized
statement for sums is proved in Exercise 25 of Section 3.2 and for products in Theorem 3.7.
Use these results in Exercises 25-27.

25. Let A be an m X n matrix over R, and let By, B;, ..., By be n X p matrices over R.
Use Theorem 1.33 and mathematical induction to prove that
AB,+B,+ -+ +B)=AB, + AB, + --- + AB;
for every positive integer j.
26. Let Cbe a p X g matrix over R, and let By, B,, ..., B; be n X p matrices over R.
Use Theorem 1.33 and mathematical induction to prove that
B +B,+ -+ +B)C=BC+BC+ - +BC
for every positive integer j.
27. If A}, Ay, .. ., A, are square matrices of order m over R and each A; is invertible, then
the product A1A, - - - A, is invertible. Use the reverse order law for inverses and math-

ematical induction to prove
Ay - A) = A A A

for all positive integers 7.

In Exercises 28—-32, use mathematical induction to prove that the given statement is true for
all positive integers n.

28. 4dn>n+ 2
29. n < 2"
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30. 1 +2n=13"
31. x* < y", where x and y are integers with 0 < x <y

32. n! =n"

In Exercises 33-35, use mathematical induction on n to prove that the given statement
is true.

33. If n is a nonnegative integer and the set A has n elements, then the power set P(A) has
2" elements.

34. If n = 2 and the set A has n elements, then the number of elements of the power set P(A)

. ) ne
containing exactly 2 elements is (g) _ - )

35. If n = 3 and the set A has n elements, thel(l tlgelr)l(urybf):r of elements of the power set P(A)

containing exactly 3 elements is (%) = 3

36. Exercises 33-35 can be generalized as follows: If 0 = k = n and the set A has n ele-
ments, then the number of elements of the power set P(A) containing exactly k elements
is ;)

a. Use this result to write an expression for the total number of elements in the power
set P(A).

b. Use the binomial theorem as stated in Exercise 22 to evaluate the expression
in part a and compare this result to Exercise 33. (Hint: Set a = b = 1 in the
binomial theorem.)

In Exercises 3741, use generalized induction to prove the given statement.

37. 1 + n < n®for all integers n = 2

38. 1 + 2n < n’for all integers n = 2

39. 1 + 2n < 2" for all integers n = 3

40. 2" < n! for all integers n = 4

41. n® < n!for all integers n = 6

42. Use generalized induction and Exercise 37 to prove that n*> < n! for all integers n = 4.

43. Use generalized induction and Exercise 39 to prove that n> < 2" for all integers n = 5.

(In connection with this result, see the discussion of counterexamples in the Appendix.)

44. Assume the statement from Exercise 30 in Section 2.1 that |x + y| = |x| + |y|for all
x and y in Z. Use this assumption and mathematical induction to prove that

@t at ot al =l al + + a

for all integers n = 2 and arbitrary integers a, dz, . . . ,dp.
45. Show that if the statement
1+2+274 -0 4207 =2

is assumed to be true for n = k, then it can be proved to be true forn = k + 1. Is the
statement true for all positive integers n? Why?
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46.

47.

48.

49.

50.

51.

52,

Show that if the statement

nn + 1) N
2

1+2+3+ - +n= 2

is assumed to be true for n = k, the same equation can be proved to be true for
n = k + 1. Explain why this does not prove that the statement is true for all positive
integers. Is the statement true for all positive integers? Why?

Given the recursively defined sequence a; =1, a, =4, and a, = 2a,-; —
a,—» + 2, use complete induction to prove that a, = n? for all positive integers n.

Given the recursively defined sequence a; =1, a =3, a3 =9, and a, = a,— +
3a,-» + 9a,-3, use complete induction to prove that a, = 3"~! for all positive integers 7.

Given the recursively defined sequence a; = 0, a, = —30, and @, = 8a,_; — 15a,_,,
use complete induction to prove that q, = 5+ 3" — 3 - 5" for all positive integers 7.

Given the recursively defined sequence a; = 3,a, = 7,a; = 13,and a, = 3a,_, —
3a,_, + a,_;, use complete induction to prove that a, = n> + n + 1 for all positive
integers n.

The Fibonacci® sequence {f,} = 1,1,2,3,5,8, 13,21, ...1s defined recursively by
fI:L f2:1’ fn+2:fn+l+ﬁz forn=1,2,3,....

a. Prove fy + f, + -+ + f, = f,., — 1 for all positive integers n.
b. Use complete induction to prove that f;, < 2" for all positive integers n.

c. Use complete induction to prove that f; is given by the explicit formula

1+ VE = (1 - V)
" 2"\/5 '

(This equation is known as Binet’s formula, named after the 19th-century French
mathematician Jacques Binet''.)

Let fi, f>, . - ., f, be permutations on a nonempty set A. Prove that

(fichor - of) =filoofylofi!

for all positive integers n.

"The Fibonacci sequence was first introduced to the western world in 1202 by Leonardo of Pisa (c. 1170—c. 1250),
who was posthumously given the nickname Fibonacci. Considered as one of the most talented mathematicians
of the Middle Ages, Fibonacci appreciated the superiority of the Hindu-Arabic numeral system (as opposed to
the Roman numeral system) for its ease in performing the basic arithmetic operations and is credited for
introducing this system into Europe.

T Jacques Binet (1786—1856) is credited for this formula for the nth term in the Fibonacci sequence (although it
was known by Euler over a century earlier) and for developing the rule for matrix multiplication in 1812. Binet
was also a noted physicist and astronomer.
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53. Define powers of a permutation f on A by the following:
fo=1, f'=f and f =f"'of forn>1.

Let fand g be permutations on a nonempty set A. Prove that

(flegefy'=f"eg'of

for all positive integers n.

Divisibility

We turn now to a study of divisibility in the set of integers. Our main goal in this section is
to obtain the Division Algorithm (Theorem 2.10). To achieve this, we need an important
consequence of the induction postulate, known as the Well-Ordering Theorem.

The Well-Ordering Theorem

Definition 2.8

Every nonempty set S of positive integers contains a least element. That is, there is an
element m € S such that m = x forall x € S.

Proof Let S be a nonempty set of positive integers. If 1 € S, then 1 < x for all x € S, by
Theorem 2.6. In this case, m = 1 is the least element in S.

Consider now the case where 1 & S, and let L be the set of all positive integers p such
that p < x for all x € S. That is,

L={p€EZ |p<xforalxe S}

Since 1 & S, Theorem 2.6 assures us that 1 € L. We shall show that there is a positive integer
po such that pg € L and py + 1 & L. Suppose this is not the case. Then we have that p € L
implies p + 1 € L, and L = Z* by the induction postulate. This contradicts the fact that S is
nonempty (note that L N § = (J). Therefore, there is a py such that py € L and py + 1 & L.

We must show that py + 1 € §. We have pp < x for all x € §, so pg + 1 = x for all
x € S (see Exercise 28 at the end of this section). If py + 1 < x were always true, then
po + 1 would be in L. Hence py + 1 = x for some x € S, and m = py + 1 is the required
least element in S.

Divisor, Multiple

Let a and b be integers. We say that a divides b if there is an integer c such that b = ac.
If a divides b, we write a|b. Also, we say that b is a multiple of a, or that a is a factor
of b, or that a is a divisor of b. If a does not divide b, we write a/r b.

It may come as a surprise that we can use our previous results to prove the following
simple theorem.
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Theorem 2.9

m Divisors of 1

p=(@Vr

Theorem 2.10

The only divisors of 1 are 1 and —1.

Proof Suppose ais a divisor of 1. Then 1 = ac for some integer c¢. The equation 1 = ac
requires a # 0, so eithera € Z* or —a € Z".

Consider first the case where a € Z*. This requires ¢ € Z* (see Exercise 32 of
Section 2.1), so we have 1 = a and 1 = ¢, by Theorem 2.6. Now

1<a=1+c<a-c byExercise 18 of Section 2.1
=c<l1 since ac = 1,

and this is a contradiction of 1 < ¢. Thus | = a is the only possibility when a € Z™.
Consider’ now the case where —a € Z*. By Exercise 5 of Section 2.1, we have

(—a)(—¢) = ac = 1,

and —a € Z" implies that —c¢ € Z* by Exercise 32 of Section 2.1. Therefore, | = —aand
1 = —c by Theorem 2.6. Now

1 <—-a= (1)(—c) < (—a)(—c) by Exercise 18 of Section 2.1
= —c<1 since (—a)(—c) = 1,

and —c < 11is acontradiction to 1 = —c. Therefore, | = —a is the only possibility when
—a € Z", and we have

a = —(—a) by Exercise 3 of Section 2.1

= -1 since —a = 1.

Combining the cases where a € Z" and where —a € Z*, we have shown that either
a=1lora = —1ifaisadivisor of 1.

Our next result is the basic theorem on divisibility.

m  The Division Algorithm

Existence

Let a and b be integers with b > 0. Then there exist unique integers g and r such that

a=bg+r with 0=r<b.

Proof Let S be the set of all integers x that can be written in the form x = a — bn
for n € Z, and let S’ denote the set of all nonnegative integers in S. The set S’ is nonempty.

The proof for this case is similar to that where ¢ € Z*, but we include it here because it illustrates several uses
of results from Section 2.1.
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(See Exercise 29 at the end of this section.) If 0 € S, we have a — bq = 0 for some ¢, and
a=bg + 0.1f0 & 5, then §’ contains a least element r = a — bq, by the Well-Ordering
Theorem, and

a=bg+r
where r is positive. Now
r—b=a—-—bqg—b=a—>bg+1),

sor — b € S. Since ris the least element in S” and r — b < r, it must be true that r — b is
negative. That is, r — b < 0, and r < b. Combining the two cases (where 0 € §" and
where 0 & §’), we have

a=bg+r with 0=r<b.

To show that ¢ and r are unique, suppose a = bq; + r; and a = bg, + r,, where
0=r <band0 = r, < b. We may assume that r; = r, without loss of generality. This
means that

0==r,—r=r,<b.
However, we also have
0=r,—r =(a—bg) — (a— bg) = blg, — q).

That is, r, — r| is a nonnegative multiple of b that is less than b. For any positive integer 7,
1 = n implies b = bn. Therefore, r, — r; = 0 and r; = r,. It follows that bq; = bgy,
where b # 0. This implies that g; = ¢, (see Exercise 26 of Section 2.1). We have shown
that r; = rp and g; = ¢, and this proves that ¢ and r are unique.

The word algorithm in the heading of Theorem 2.10 may seem strange at first glance,
since an algorithm is usually a repetitive procedure for obtaining a result. The use of the
word here is derived from the fact that the elements a — bn of S’ in the proof may be found
by repeated subtraction of b:

a—b,a— 2b,a — 3b,

and so on.

In the Division Algorithm, the integer ¢ is called the quotient and r is called the
remainder in the division of a by b. The conclusion of the theorem may be more familiar
in the form

)

S~

a
b

but we are restricting our work here so that only integers are involved.
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Example 1 When a and b are both positive integers, the quotient ¢ and remainder 7 can
be found by the familiar routine of long division. For instance, if a = 357 and b = 13, long
division gives

27

13)357

2.

97

91

6

sog=27andr =6ina = bg + r,with0 = r < b:
357 = (13)(27) + 6.

If a is negative, a minor adjustment (see Exercise 30 of this section) can be made to obtain
the expression in the Division Algorithm. Witha = —357 and b = 13, the preceding equa-
tion can be multiplied by — 1 to obtain

—357 = (13)(=27) + (—6).

To obtain an expression with a positive remainder, we need only subtract and add 13 in the
right member of the equation:
=357 = (13)(—27) + (13)(—1) + (—6) + 13
= (13)(—28) + 7.

Thus ¢ = —28 and r = 7 in the Division Algorithm, witha = —357 and b = 13. |

Exercises 2.3 I——

True or False
Label each of the following statements as either true or false.

1. The Well-Ordering Theorem implies that the set of even integers contains a least
element.

Let b be any integer. Then 0b.

Let b be any integer. Then b 0.

0|b only if b = 0.

Let a and b be integers with b > 0. Then b|a if and only if the remainder r in the
Division Algorithm, when a is divided by b, is 0.

Let @ and b be integers with a # 0, such that a|b. Then a|—b and —a|b and —a| —b.
Let a and b be integers. Then 2|ab(a + b).

If a|c and b|c, then ab|c.

If a|b and b|a, then a = b.

AN o A

° ® A
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Exercises

1.

2.

List all divisors of the following integers.

a. 30 b. 42 c. 28 d. 45

e. 24 f. 40 g 32 h. 210
List all common divisors of each of the following pairs of integers.

a. 30, 28 b. 42, 45 c. 24,32 d. 210, 40
e. —40,24 f. —30, =50

With a and b as given in Exercises 3-16, find the ¢ and r that satisfy the conditions in the

Division Algorithm.

3. a=79,b =26 4. a =512,b =15

5. a=1149,b = 52 6. a = 1205,b = 37
7.a=—12,b =5 8. a=-27,b=17

9. a=—863,b =17 10. a = —921,b = 18

11. a = 26,b = 796 12. a = 15,0 = 512

13. a = —4317,b = 12 14. a = —5316,b = 171

15. a=0,b=3 16. a =0,b =5

17. Prove that if a, b, and ¢ are integers such that a|b and a|c, then a|(b + c).

18.

19.
20.
21.
22,
23.
24.
25.
26.
27.
28.

29.

30.

Let R be the relation defined on the set of integers Z by aRb if and only if a|b. Prove
or disprove that R is an equivalence relation.

Let a, b, ¢, m, and n be integers such that a|b and a|c. Prove that a |(mb + nc).

Let a, b, c, and d be integers such that a|b and c|d. Prove that ac|bd.

Prove that if @ and b are integers such that a|b and b|a, then eithera = bora = —b.
Prove that if a and b are integers such that b # 0 and a|b, then |a| = |b|.

Let a and b be integers such that a|b and |b| <|a|. Prove that b = 0.

Let a, b, and ¢ be integers. Prove or disprove that a|b implies ac|bc .

Let a, b, and ¢ be integers. Prove or disprove that a|bc implies a|b or a|c.

Let a be an integer. Prove that 2|a (a + 1). (Hint: Consider two cases.)

Let a be an integer. Prove that 3|a(a + 1) (a + 2). (Hint: Consider three cases.)

Let m be an arbitrary integer. Prove that there is no integer n such that
m<n<m-+ 1.

Let S be as described in the proof of Theorem 2.10. Give a specific example of a pos-
itive element of S.

Let a and b be integers with b > 0 and @ = bg + r with 0 = r < b. Use this result to

find the unique quotient and remainder as described by the Division Algorithm when
—a is divided by b.
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31. Use the Division Algorithm to prove that if a and b are integers, with b # 0, then there
exist unique integers g and r such thata = bg + r, with 0 = r < |b|.

32. Prove that the Well-Ordering Theorem implies the induction postulate 5 in Section 2.1.

33. Assume that the Well-Ordering Theorem holds, and prove the second principle of
finite induction.

In Exercises 34—47, use mathematical induction to prove that the given statement is true for
all positive integers n.

34. 3isafactor of n® + 2n 35. 3isafactorof n’ — 7n
36. 3isafactorof n’ — n 37. 3is afactor of n® + Sn
38. 6isafactorof n® — n 39. 6is a factor of n® + 5n
40. 3isafactor of 4" — 1 41. 8is afactor of 9" — 1
42. 5is afactor of 7" — 2" 43. 4 is a factor of 9" — 5"
44. 4is a factor of 3% — 1 45. 5 is a factor of 32" — 22"

46. Foralla and b in Z, a — b is a factor of a” — b™. (Hint: a**' — b**' = ak(a — b) +
(@t — bhyb)

47. Forallaand binZ, a + b is a factor of a® — b*".

48. a. The binomial coefficients (}) are defined in Exercise 22 of Section 2.2. Use induc-
tion on r to prove that if p is a prime integer, then p is a factor of (?) forr = 1,2,. . .,
p — 1. (From Exercise 23 of Section 2.2, it is known that (?) is an integer.)

b. Use induction on 7 to prove that if p is a prime integer, then p is a factor of n” — n.

Prime Factors and Greatest Common Divisor

In this section, we establish the existence of the greatest common divisor of two integers
when at least one of them is nonzero. The Unique Factorization Theorem, also known as
the Fundamental Theorem of Arithmetic, is obtained.

Greatest Common Divisor

An integer d is a greatest common divisor of a and b if all these conditions are satisfied:

1. dis a positive integer.
2. d|aand d|b.
3. cl|aand c|b imply c|d.

The next theorem shows that the greatest common divisor d of a and b exists when
at least one of them is not zero. Our proof also shows that d is a linear combination of a
and b; that is, d = ma + nb for integers m and n.
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Strategy m The technique of proof by use of the Well-Ordering Theorem in Theorem 2.12 should be
compared to that used in the proof of the Division Algorithm (Theorem 2.10).
Theorem 212 m Greatest Common Divisor
Let a and b be integers, at least one of them not 0. Then there exists a unique greatest com-
mon divisor d of a and b. Moreover, d can be written as
d=am + bn
for integers m and n, and d is the smallest positive integer that can be written in this form.
Existence Proof Letaandbbe integers, at least one of them not 0. If b = 0, thena # 0,so|a|> 0.
It is easy to see that d = |a| is a greatest common divisor of a and b in this case, and either
d=a-(1)+b-(0)ord=a-(—1) + b-(0).
Suppose now that b # 0. Consider the set S of all integers that can be written in the
form ax + by for some integers x and y, and let S* be the set of all positive integers in S.
The set S contains b = a-(0) + b+ (1) and —b = a-(0) + b+ (—1),s0 S is not empty.
By the Well-Ordering Theorem, ST has a least element d,
d = am + bn.
We have d positive, and we shall show that d is a greatest common divisor of a and b.
By the Division Algorithm, there are integers ¢ and r such that
a=dg+r with 0=r<d.
From this equation,
r=a—dq
=a — (am + bn)g
= a(l — mq) + b(—ng).
Thus ris in § = {ax + by}, and 0 < r < d. By choice of d as the least element in S*, it
must be true that » = 0, and d|a. Similarly, it can be shown that d|b.
If c|a and c|b, then a = ch and b = ck for integers h and k. Therefore,
d=am + bn
= chm + ckn
= c(hm + kn),
and this shows that c|d. By Definition 2.11, d = am + bn is a greatest common divisor of
a and b. It follows from the choice of d as least element of S that d is the smallest positive
integer that can be written in this form.
Uniqueness To show that the greatest common divisor of @ and b is unique, assume that d; and d, are

both greatest common divisors of @ and b. Then it must be true that d, |d, and d,|d;. Since d|
and d, are positive integers, this means that d, = d, (see Exercise 21 of Section 2.3).

Whenever the greatest common divisor of a and b exists, we shall write (a, b) or
gcd(a, b) to indicate the unique greatest common divisor of a and b.
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When at least one of a and b is not 0, the proof of the last theorem establishes the ex-
istence of (a, b), but looking for a smallest positive integer in S = {ax + by} is not a very
satisfactory method for finding this greatest common divisor. A procedure known as the
Euclidean Algorithm furnishes a systematic method for finding (a, b) where b > 0. It can
also be used to find integers m and n such that (a, b) = am + bn. This procedure consists
of repeated applications of the Division Algorithm according to the following pattern,
where a and b are integers with b > 0.

The Euclidean Algorithm

a=bg,+ r, 0=r<b
b=rgq, t r, 0=r,<n
T = 1ryq, 13, 0=rn<n
Te = NG T v 0=rpo<ryr
Since the integers ry, 73, . . ., I'+2 are decreasing and are all nonnegative, there is a small-

est integer n such that r,+; = O:
riz*lzrnqn+rn+l? Ozrn+1'

If we put ry = b, this last nonzero remainder r, is always the greatest common divisor of a
and b. The proof of this statement is left as an exercise.
As an example, we shall find the greatest common divisor of 1492 and 1776.

Example 1 Performing the arithmetic for the Euclidean Algorithm, we have
1776 = (1)(1492) + 284 (qo=1,r, = 284)

1492 = (5)(284) + 72 (g1 =5, =172
284 = (3)(72) + 68 (g, = 3,3, = 68)
72 = (1)(68) + 4 (g3=1,r,=4)
68 = (4)(17) (qs = 17, r5 = 0).
Thus the last nonzero remainder is r, = r4 = 4, and (1776, 1492) = 4. |

As mentioned earlier, the Euclidean Algorithm can also be used to find integers m and
n such that

(a, b) = am + bn.

We can obtain these integers by solving for the last nonzero remainder and substituting the
remainders from the preceding equations successively until @ and b are present in the equa-
tion. For example, the remainders in Example 1 can be expressed as
284 = (1776)(1) + (1492)(—1)
72 = (1492)(1) + (284)(—5)
68 = (284)(1) + (72)(—3)
4 = (72)(1) + (68)(—1).
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Substituting the remainders from the preceding equations successively, we have
4= (72)(1) + [284)(1) + (72)(=3)](—=1)

= (72)(1) + (284)(—1) + (72)(3)

= (72)(4) + (284)(—1) after the first substitution

= [(1492)(1) + (284)(—5)](4) + (284)(—1)

= (1492)(4) + (284)(—20) + (284)(—1)

= (1492)(4) + (284)(—21) after the second substitution

= (1492)(4) + [(1776)(1) + (1492)(— D)](—21)

= (1492)(4) + (1776)(—21) + (1492)(21)

= (1776)(—21) + (1492)(25) after the third substitution.
Thus m = —21 and n = 25 are integers such that

4 = 1776m + 1492n.

The remainders are printed in bold type in each of the preceding steps, and we carefully

avoided performing a multiplication that involved a remainder.
The m and n are not unique in the equation

(a, b) = am + bn.
To see this, simply add and subtract the product ab:
(a,b) = am + ab + bn — ab
=a(m + b) + b(n — a).
Thus m" = m + band n’ = n — a are another pair of integers such that
(a,b) = am' + bn'.

Definition 213 m Relatively Prime Integers

Theorem 2.14

Two integers a and b are relatively prime if their greatest common divisor is 1.

In the next two sections of this chapter, we prove some interesting results concerning
those integers that are relatively prime to a given integer n. Theorem 2.14 is useful in the
proofs of those results.

(pANg=>r

If a and b are relatively prime and a|bc, then a|c.

Proof Assume that (a, b) = 1 and albc. Since (a, b) = 1, there are integers m and n such
that 1 = am + bn, by Theorem 2.12. Since a|bc, there exists an integer ¢ such that
bc = aq. Now,
1=am + bn = ¢ = acm + bcn
= ¢ = acm + agn since bc = aq
= ¢ = a(cm + gn)
= alc.

Thus the theorem is proved.
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Definition 2.15

Among the integers, there are those that have the fewest number of factors possible.
Some of these are the prime integers.

Prime Integer

An integer p is a prime integer if p > 1 and the only divisors of p are =1 and *p.

Note that the condition p > 1 makes p positive and ensures that p # 1. The exclu-
sion of 1 from the set of primes makes possible the statement of the Unique Factoriza-
tion Theorem. Before delving into that, we prove the important property of primes in
Theorem 2.16.

Strategy The conclusion in the next theorem has the form “r or 5.” One technique that can be
used to prove an “or” statement such as this is to assume that one part (such as ) does
not hold, and use this assumption to help prove that the other part must then hold.

Theorem 2.16 Euclid's" Lemma

(pANg) = (rVs)

Corollary 2.17

If p is a prime and p|ab, then either p|a or p|b.

Proof Assume p is a prime and p|ab. If p|a, the conclusion of the theorem is satisfied.

Suppose, then, that p does not divide a. This implies that 1 = (p, a), since the only
positive divisors of p are 1 and p. Then Theorem 2.14 implies that p|b. Thus p|b if p does
not divide a, and the theorem is true in any case.

The following corollary generalizes Theorem 2.16 to products with more than two fac-
tors. Its proof is requested in the exercises. A direct result of this corollary is that if p is
prime and p|d”, then p|a.

If p is a prime and p|(aia, - a,), then p divides some g;.

This brings us to the Unique Factorization Theorem, a result of such importance that
it is frequently called the Fundamental Theorem of Arithmetic.

Strategy

Note the proof of the uniqueness part of Theorem 2.18: Two factorizations are assumed,
and then it is proved that the two are equal.

Euclid (c. 325 B.C.—c. 265 B.C.), a Greek mathematician considered to be the “Father of Geometry,” presented
the principles of Euclidean geometry in his Elements, the most famous mathematics works in all of history.
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Theorem2.18 m Unique Factorization Theorem

Complete
Induction

Uniqueness

Every positive integer n either is 1 or can be expressed as a product of prime integers, and
this factorization is unique except for the order of the factors.

Proof In the statement of the theorem, the word product is used in an extended sense: The
product may have just one factor.

Let P, be the statement that either n = 1 or n can be expressed as a product of primes.
We shall prove that P, is true for all n € Z* by the Second Principle of Finite Induction.

Now P is trivially true. Assume that P, is true for all positive integers m < k. If kis a
prime, then k is a product with one prime factor, and P, is true. Suppose k is not a prime.
Then k = ab, where neither a nor b is 1. Therefore, | < a < kand 1 < b < k. By the in-
duction hypothesis, P, is true and P, is true. That is,

a=pp,- - p, and b =qq g

for primes p; and g;. These factorizations give

k=ab=pp, " pqq " q,

and k is thereby expressed as a product of primes. Thus P, is true, and therefore P, is true
for all positive integers n.
To prove that the factorization is unique, suppose that

n=ppy o peoand n=qqy g,
are factorizations of n as products of prime factors p; and g;. Then

PiP2 " P = 4192 T 4y

so pi1|(qiq2 “** gv). By Corollary 2.17, p;|g; for some j, and there is no loss of generality if
we assume j = 1. However, p; and ¢, are primes, so p;|q; implies ¢; = p;. This gives

Pip2 P = P92 " Gy

and therefore

P> P =49 " 4y
by the cancellation law. This argument can be repeated, removing one factor p; with each
application of the cancellation law, until we obtain
P: =4 " 4,

Since the only positive factors of p; are 1 and p;, and since each g; is a prime, this means
that there must be only one g; on the right in this equation, and it is g,. That is, v = ¢ and
q: = p:. This completes the proof.

The Unique Factorization Theorem can be used to describe a standard form of a posi-
tive integer n. Suppose pi, p2, - . . , p, are the distinct prime factors of n, arranged in order
of magnitude so that

pL<p< " <p.
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Then all repeated factors may be collected together and expressed by use of exponents to
yield

n = pi’hpglz « o p’r”r
where each m; is a positive integer. Each m; is called the multiplicity of p;, and this factor-
ization is known as the standard form for 7.

Example 2 The standard forms for two positive integers a and b can be used to find
their greatest common divisor (a, b) and their least common multiple (see Exercises 28 and
29 at the end of this section). For instance, if

a=31,752=2%-3*-7" and b= 126,000 =2*-3*.5%.7,

then (a, b) can be found by forming the product of all the common prime factors, with each
common factor raised to the least power to which it appears in either factorization:

(a,b) = 2° - 327 = 504. [

From one point of view, the Unique Factorization Theorem says that the prime in-
tegers are building blocks for the integers, where the “building” is done by using mul-
tiplication and forming products. A natural question, then, is: How many blocks? Our
next theorem states the answer given by the ancient Greek mathematician Euclid—that
the number of primes is infinite. The proof is also credited to Euclid.

Theorem2.19 m Euclid’s Theorem on Primes
The number of primes is infinite.
Contradiction Proof Assume there are only a finite number, 7, of primes. Let these n primes be denoted

by p1, p2, . - ., Pn, and consider the integer

m=pp, - p, + L

It is clear that the remainder in the division of m by any prime p; is 1, so each p; is not a fac-
tor of m. Thus there are two possibilities: Either m is itself a prime, or it has a prime factor
that is different from every one of the p;. In either case, we have a prime integer that was
not in the list py, py, . . ., pp. Therefore, there are more than n primes, and this contradiction
establishes the theorem.

Exercises 2.4 —

True or False

Label each of the following statements as either true or false.
1. The set of prime numbers is closed with respect to multiplication.
2. The set of prime numbers is closed with respect to addition.

3. The greatest common divisor is a binary operation from Z — {0} X Z to Z™.



2.4 Prime Factors and Greatest Common Divisor 93

4. The least common multiple is a binary operation from Z — {0} X Z — {0} to Z™.

5. The greatest common divisor is unique, when it exists.

6. Let a and b be integers, not both zero, such that 1 = (a, b). Then there exist integers x

9.
10.
11.
12.

and y such that 1 = ax + by and (x, y) = 1.

. Let a and b be integers, not both zero, such that d = ax + by for integers x and y. Then

d = (a,b).

. Let a and b be integers, not both zero, such that d = (a, b). Then there exist unique

integers x and y such that d = ax + by.

Let a and b be integers, not both zero. Then (a, b) = (—a, D).
Let a be an integer, then (a,a + 1) = 1.

Let a be an integer, then (a, a + 2) = 2.

If (a,b) = 1 and (a, c¢) = 1, then (b, ¢) = 1.

Exercises

In this set of exercises, all variables represent integers.

1.
2.

4.

S.

List all the primes less than 100.

For each of the following pairs, write a and b in standard form and use these factor-
izations to find (a, b).

a. a = 1400, b = 980

b. a = 4950, b = 10,500

c. a = 3780, b = 16,200

d. a = 52,920, b = 25,200

In each part, find the greatest common divisor (a, b) and integers m and n such that
(a, b) = am + bn.

aa=0,b=-3 b. a =65b = —-91

c.a=102,b = 66 d.a=52,b=124

e.a=414,b = —33 f.a=252,b=—180

g a=414,b = 693 h. a =382,b =26

i.a=1197,b =312 j. a = 3780, b = 1200

k. a = 6420,b = 132 l. a =602,b =252
m. a = 5088, b = —156 n. a = 8767, b = 252

Find the smallest integer in the given set.

a. {xEZ|x > 0and x = 4s + 6t for some s, tin Z }

b. {x EZ|x > 0and x = 65 + 15¢for some s, ¢ in Z}

Prove that if p and ¢ are distinct primes, then there exist integers m and n such that

pm + gn = 1.
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Sec. 2.5, #28 <

Sec. 8.2, #35 <

6.

Show that n? — n + Sisa prime integer when n = 1, 2, 3, 4 but that it is not true that

n* — n + 5 is always a prime integer. Write out a similar set of statements for the

polynomial n> — n + 11.

. If a > 0 and a|b, then prove or disprove that (a, b) = a.

8. Leta, b, and c be integers such that a # 0. Prove that if a| bc, then a|c - (a, b).

10.
11.
12.
13.

14.

15.

16.

17.

18.
19.
20.
21.
22,
23.
24.
25.

26.

Let a be a nonzero integer and b a positive integer. Prove or disprove that (a, b) =
(a,a + b).

Let a|c and b|c, and (a, b) = 1, prove that ab divides c.
Prove that if d = (a, b), a|c, and b|c, then ab|cd.
If b > 0anda = bg + r, prove that (a, b) = (b, r).

Let ro = b > 0. With the notation used in the description of the Euclidean
Algorithm, use the result in Exercise 12 to prove that (a, b) = r,, the last nonzero
remainder.

Prove that every remainder 7; in the Euclidean Algorithm is a “linear combination” of
aand b: r; = sja + t;b, for integers s; and ;.

Let a and b be integers, at least one of them not 0. Prove that an integer ¢ can be
expressed as a linear combination of a and b if and only if (a, b)|c.

Prove Corollary 2.17: If p is a prime and p|(ajay" - ay), then p divides some a;. (Hint:
Use induction on n.)

Prove that if n is a positive integer greater than 1 such that n is not a prime, then # has
adivisor d such that 1 < d = V.

Prove that (ab, ¢) = 1 if and only if (a,c¢) = 1 and (b, ¢) = 1.

Let (a, b) = 1 and (a, ¢) = 1. Prove or disprove that (ac, b) = 1.

Let (a, b) = 1. Prove (a, bc) = (a, c), where c is any integer.

Let (a, b) = 1. Prove (a%, b*) = 1.

Let (a, b) = 1. Prove that (a, b") = 1 for all positive integers n.

Prove that if m > 0 and (a, b) exists, then (ma, mb) = m -+ (a, b).

Prove thatif d = (a, b), a = aopd, and b = byd, then (agy, by) = 1.

A least common multiple of two nonzero integers a and b is an integer m that satisfies
all the following conditions:

1. m is a positive integer.

2. a|m and b|m.

3. a|c and b|c imply m|c.

Prove that the least common multiple of two nonzero integers exists and is unique.
Let a and b be positive integers. If d = (a, b) and m is the least common multiple of a

and b, prove that dm = ab. Note that it follows that the least common multiple of two
positive relatively prime integers is their product.



27.

28.

29.

30.

31.

32.

33.

34.
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Let a and b be positive integers. Prove that if d = (a, b),a = aod, and b = byd, then
the least common multiple of a and b is apbod.

Describe a procedure for using the standard forms of two positive integers to find their
least common multiple.

For each pair of integers a, b in Exercise 2, find the least common multiple of a and b
by using their standard forms.

Let a, b, and ¢ be three nonzero integers.

a. Use Definition 2.11 as a pattern to define a greatest common divisor of a, b, and c.

b. Use Theorem 2.12 and its proof as a pattern to prove the existence of a greatest
common divisor of a, b, and c.

c. If d is the greatest common divisor of a, b, and ¢, show that d = ((a, b), c).
d. Prove ((a, b), ¢) = (a, (b, ©)).
Find the greatest common divisor of a, b, and ¢ and write it in the form ax + by + cz
for integers x, y, and z.
a.a=14,b=28,c =35
b. a =26,b=52,c=60
c.a=143,b =1385,¢c = —65
d. a=060,b= —84,c=105
Use the Second Principle of Finite Induction to prove that every positive integer n can
be expressed in the form
n=cytc 3+ 3+ o e 3T 43,
where j is a nonnegative integer, ¢; € {0, 1, 2} foralli <j, and ¢; € {1, 2}.
Use the fact that 2 is a prime to prove that there do not exist nonzero integers a and b

such that a> = 2b?. Explain how this proves that \/2 is not a rational number.

Use the fact that 3 is a prime to prove that there do not exist nonzero integers a and b such
that a> = 3b?. Explain how this proves that \/3 is not a rational number.

2.5 | Congruence of Integers

In Example 4 of Section 1.7, we defined the relation “congruence modulo 4 on the set Z
of all integers, and we proved this relation to be an equivalence relation on Z. That exam-
ple is a special case of congruence modulo 7, as defined next.

Definition 2.20 m

Congruence Modulo n

Let n be a positive integer, n > 1. For integers x and y, x is congruent to y modulo » if and
only if x — y is a multiple of n. We write

x =y (mod n)

to indicate that x is congruent to y modulo 7.
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Thus x = y (mod n) if and only if n divides x — y, and this is equivalent to
X —y = ng, or x =y + nq. Another way to describe this relation is to say that x and y
yield the same remainder when each is divided by n. To see that this is true, let

x=ng +r with 0=r<n
and

y=nq, +r, with 0=r,<n.
Then

x—y=nlq —q) + @ —r) with 0=Ir, —nrl<n

Thus x — y is a multiple of » if and only if r; — r, = O—that is, if and only if r; = r;. In
particular, any integer x is congruent to its remainder when divided by n. This means that
any x is congruent to one of

0,1,2,...,n— 1.

Congruence modulo 7n is an equivalence relation on Z, and this fact is important
enough to be stated as a theorem.

Theorem2.21 m Equivalence Relation

The relation of congruence modulo # is an equivalence relation on Z.

Proof We shall show that congruence modulo n is (1) reflexive, (2) symmetric, and
(3) transitive. Let n > 1, and let x, y, and z be arbitrary in Z.

Reflexive 1. x = x (mod n) since x — x = (n)(0).
Symmetric 2. x =y (modn) =x — y = nq forsome q € Z
=>y—x=n(—q) and —qg€Z
= y = x (mod n).

Transitive 3. x =y (modn) and y = z(mod n)

=>x—y=nq and y—z=nk and gqk€EZ
=>x—z=x—y+ty—z
=n(g+k), and g+ keEZ

= x = z (mod n).

As with any equivalence relation, the equivalence classes for congruence modulo n
form a partition of Z; that is, they separate Z into mutually disjoint subsets. These subsets
are called congruence classes or residue classes. Referring to our discussion concerning
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remainders, we see that there are n distinct congruence classes modulo 7, given by

[0)={...—2n,—n,0,n2n,...}

M={...-2n+1,-n+11,n+1,2n+1,...}

2l=4{...-2n+2,-n+2,2,n+2,2n+2,...}
m—1]={..,-n—1,-1Ln—-1,2n—1,3n—1,...}

When n = 4, these classes appear as

[0]={...—8 —4,0,4,8,...}
M)={...~7,-3,1,5,9,...}
[2]={...—6,-2,2,6,10,...}
3)={...—5—1,3,7,11,...}

Congruence classes are useful in connection with numerous examples, and we shall see
more of them later.

Although x = y (mod n) is certainly not an equation, in many ways congruences can
be handled in the same fashion as equations. The next theorem asserts that the same
integer can be added to both members and that both members can be multiplied by the
same integer.

Theorem2.22 m Addition and Multiplication Properties
If a = b (mod n) and x is any integer, then
a+x=b+x(modn) and ax = bx (mod n).
p=g¢q Proof Leta = b (modn)andx € Z. We shall prove that ax = bx (mod n) and leave the

Theorem 2.23

other part as an exercise. We have
a=b(modn) =>a—b=ng forq € Z
= (a — b)x = (nq)x forq,x €Z
=ax — bx =n(gx) forgx € Z
= ax = bx (mod n).

Congruence modulo n also has substitution properties that are analogous to those
possessed by equality. Suppose we wish to compute the product (25) (17) (mod 6). Since
25 =1 (mod 6) and 17 = 5 (mod 6), the following theorem allows us to compute the prod-
uct (25) (17) (mod 6) as (1) (5) = 5 (mod 6) instead of (25) (17) = 425 (mod 6) = 5 (mod 6).

m Substitution Properties

Suppose a = b (mod n) and ¢ = d (mod n). Then
a+c=b+d(modn) and ac = bd (mod n).
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Proof Leta = b (modn) and ¢ = d (mod n). By Theorem 2.22,
a = b (mod n) = ac = bc (mod n)
and
¢ =d (mod n) = bc = bd (mod n).

But ac = bc (mod n) and bc = bd (mod n) imply ac = bd (mod n), by the transitive

property.
The proof thata + ¢ = b + d (mod n) is left as an exercise.

Example 1 Since exponentiation is just repeated multiplication, Theorem 2.23 can be
used to evaluate powers modulo 7. Consider 5873 (mod 9). Since

58 = 4 (mod 9),

then by Theorem 2.23,
582 = 4% (mod 9).

Also since

423 — 42 . (43)7
then

582 = 4% (mod 9)
=42 . (4% (mod 9)
= (16) (64)” (mod 9)

= (7) (1)’ (mod 9)
= 7 (mod 9). |

It is easy to show that there is a “cancellation law” for addition that holds for congru-
ences: a + x = a + y (mod n) implies x = y (mod n). This is not the case, however, with
multiplication:

ax=ay(modn) and a# 0 (modn) donotimply x =y (modn).
As an example,
(4)(6) = (4)(21)(mod 30) but 6 # 21(mod 30).

It is important to note here that ¢ = 4 and n = 30 are not relatively prime. When the
condition that a and n be relatively prime is imposed, we can obtain a cancellation law for
multiplication.

m Cancellation Law

If ax = ay (mod n) and (a, n) = 1, then

x = y (mod n).
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(p Aqg) = r Proof Assume that ax = ay (mod n) and that a and n are relatively prime.
ax = ay (mod n) = n|(ax — ay)
= nla(x = )
= n|(x —y) by Theorem 2.14
= x =y (mod n)

This completes the proof.

We have seen that there are analogues for many of the manipulations that may be
performed with equations. There are also techniques for obtaining solutions to congru-
ence equations of certain types. The basic technique makes use of Theorem 2.23 and the
Euclidean Algorithm. The use of the Euclidean Algorithm is illustrated in Example 2.

Theorem2.25 m Linear Congruences
If a and n are relatively prime, the congruence ax = b (mod n) has a solution x in the
integers, and any two solutions in Z are congruent modulo 7.
p=¢q Proof Since a and n are relatively prime, there exist integers s and ¢ such that
1 =as + nt
= b = asb + ntb
= a(sb) — b = n(—1b)
= n|[a(sb) — b]
= a(sb) = b (mod n).
Thus x = sb is a solution to ax = b (mod n).
Uniqueness To complete the proof, suppose that both x and y are integers that are solutions to
ax = b (mod n). Then we have
ax =b(modn) and ay = b (mod n).
Using the symmetric and transitive properties of congruence modulo 7, we conclude that
these relations imply
ax = ay (mod n).
Since (a, n) = 1, this requires that x = y (mod n), by Theorem 2.24. Hence any two
solutions in Z are congruent modulo 7.
Strategy B We note that the “uniqueness” part of the proof of the theorem requires showing not that

any two solutions to the system are “equal” but rather that they are congruent modulo 7.
This same type of proof is also used in Theorem 2.26.




100 Chapter 2 The Integers

Example 2 When (a, n) = 1, the Euclidean Algorithm can be used to find a solution x
to ax = b(mod n). Consider the congruence

20x = 14 (mod 63).
We first obtain s and ¢ such that
1 = 20s + 631.
Applying the Euclidean Algorithm, we have
63 = (2003) +3
20 = (3)(6) + 2
3=2)(1)+1
2 = (1)(2).
Solving for the nonzero remainders,
3=63 - (20)(3)
2 =20 — (3)(6)
1=3—-(2)(1).
Substituting the remainders in turn, we obtain
1=3—-(2)1)
=3 —[20 - (O
= @) + 20—
=[63 — (20)(3))(7) + (20)(—1)
= (20)(—22) + (63)(7).
Multiplying this equation by b = 14, we have

14 = (20)(—308) + (63)(98)
= 14 = (20)(—308) (mod 63).

Thus x = —308 is a solution. However, any number is congruent modulo 63 to its remain-
der when divided by 63, and

—308 = (63)(—=5) + 7.

Thus x = 7 is also a solution, one that is in the range 0 = x < 63. |

The preceding example illustrates the basic technique for obtaining a solution to
ax = b (mod n) when a and n are relatively prime, but other methods are also very use-
ful. Some of them make use of Theorems 2.23 and 2.24. Theorem 2.24 can be used to
remove a factor ¢ from both sides of the congruence, provided ¢ and n are relatively
prime. That is, ¢ may be canceled from crx = ¢t (mod n) to obtain the equivalent con-
gruence rx = t (mod n).
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Example 3 Since 2 and 63 are relatively prime, the factor 2 in both sides of
20x = 14 (mod 63)

can be removed to obtain
10x = 7 (mod 63).

Theorem 2.21 allows us to replace an integer by any other integer that is congruent to it
modulo n. Now 7 = 70 (mod 63), and this substitution yields

10x = 70 (mod 63).

Removing the factor 10 from both sides, we have

x =7 (mod 63).
Thus we have obtained the solution x = 7 much more easily than by the method of
Example 1. However, this method is less systematic, and it requires more ingenuity. |

Some systems of congruences can be solved using the result of the next theorem.

Theorem2.26 = System of Congruences
Let m and n be relatively prime and a and b integers. There exists an integer x that satisfies
the system of congruences
x = a (mod m)
x = b (mod n).
Furthermore, any two solutions x and y are congruent modulo mn.
p=q Proof Suppose (m, n) = 1.Letx be a solution to the first congruence in the system

Uniqueness

x = a (mod m)
x = b (mod n).
Thus x = a + mk for some integer k, and this £ must be such that
a + mk = b (mod n)
or
mk = b — a (mod n).
Since (m, n) = 1, Theorem 2.25 guarantees the existence of such an integer k, and

X = a + mk satisfies the system.
Now let y be another solution to the system of congruences; that is,

y = a (mod m)

y = b (mod n).
By Theorem 2.21,

x =y (mod m)

x =y (mod n)
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Theorem 2.27

and
m|x — yand n|x — y.
Then
mn|x —y

by Exercise 10 of Section 2.4. So x = y (mod mn).

Example 4 Since (7,5) = 1, we use Theorem 2.26 to solve the system of congruences
x =5 (mod 7)
x = 3 (mod 5).

From the first congruence we write x = 5 + 7k for some integer k and substitute this
expression for x into the second congruence.

5 + 7k = 3 (mod 5)
or
7k = —2 (mod 5)
= 2k = —2 (mod 5)
= k= —1(mod5) since(2,5) =1
= k=4 (mod)5).

Thus x = 5 + 7(4) = 33 satisfies the system and x = 33 (mod 7 -+ 5) or x = 33 (mod 35)
gives all solutions to the system of congruences. |

An extension of Theorem 2.26 is the Chinese Remainder Theorem. In this theorem, we
use the term “pairwise relatively prime” to mean that every pairing of integers n; and n; for
all i # j are relatively prime.

m Chinese Remainder Theorem

Let ny, ny, . . ., n, be pairwise relatively prime. There exists an integer x that satisfies the
system of congruences

X = a, (mod n,;)

X = a, (mod n,)

X = a,, (mod n,,).

Furthermore, any two solutions x and y are congruent modulo nn; - * - ny,.

The proof of the Chinese Remainder Theorem is requested in the exercises and we
illustrate the technique in the next example.
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Example B Consider the system of congruences

x =5 (mod7)
x = 3 (mod 5)
x = 2 (mod 8)
x = 2 (mod 3).

Example 4 showed that x = 33 (mod 35) is a solution to the first 2 congruences. Pairing
this congruence with the third x = 2 (mod 8) in the system gives

x = 33 (mod 35)
x = 2 (mod 8).

So with x = 33 + 35k for some k € Z gives
33 + 35k = 2 (mod 8)

= 35k = —31 (mod 8)

= 3k =1 (mod 8)

= k = 3 (mod 8)

= x=33+35-3
= 138.

Thus x = 138 (mod 280) satisfies the first three congruences of the system. Pairing this
with the last x = 2 (mod 3) gives the system

x = 138 (mod 280)
x = 2 (mod 3).

Setting x = 138 + 280k for some integer k in the second congruence of the system gives

138 + 280k = 2 (mod 3)

= 280k = —136 (mod 3)
= k =2 (mod 3)
= x =138 +280-2
= 698.
Thus x = 698 (mod 280 - 3) = 698 (mod 840) satisfies the original system. [ |

Exercises 2.5 I——

True or False
Label each of the following statements as either true or false.
1. a = b (mod n) implies ac = bc (mod nc) for ¢ € Z*.

2. a = b (mod n) and c|n implies a = b (mod ¢) forc € Z.™".
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Sec. 2.4, #24 >

a* = b* (mod n) implies a = b (mod n) or a = —b (mod n).
a is congruent to b modulo 7 if and only if @ and b yield the same remainder when each
is divided by n.

The congruence classes for congruence modulo n form a partition of Z.
If ab = 0 (mod n), then either a = 0 (mod n) or b = 0 (mod n).
If (a,n) = 1, thena = 1 (mod n).

Exercises

In this exercise set, all variables are integers.

1.

2.

List the distinct congruence classes modulo 5, exhibiting at least three elements in
each class.

Follow the instructions in Exercise 1 for the congruence classes modulo 6.

Find a solution x € Z, 0 = x < n, for each of the congruences ax = b (mod n) in Exer-
cises 3—24. Note that in each case, a and n are relatively prime.

3.
5.
7.
9.
11.
13.
15.
17.
19.
21.
23.
25.

26.

27.
28.
29.

2x = 3 (mod 7) 4. 2x =3 (mod 5)

3x = 7 (mod 13) 6. 3x =4 (mod 13)

8x =1 (mod 21) 8. 14x = 8 (mod 15)

11x = 1 (mod 317) 10. 11x = 3 (mod 138)

8x = 66 (mod 79) 12. 6x = 14 (mod 55)

8x + 3 =5 (mod9) 14. 19x + 7 = 27 (mod 18)
13x + 19 = 2 (mod 23) 16. 5x + 43 = 15 (mod 22)
25x = 31 (mod 7) 18. 358x = 17 (mod 313)
55x = 59 (mod 42) 20. 79x = 83 (mod 61)

92x + 17 = 29 (mod 37) 22. 57x + 7 = 78 (mod 53)
35x + 14 = 3 (mod 27) 24, 82x + 23 =2 (mod 47)
Complete the proof of Theorem 2.22: If @ = b (mod n) and x is any integer, then

a+ x=b + x(mod n).

Complete the proof of Theorem 2.23: If @ = b (mod n) and ¢ = d (mod n), then
a+ c¢=b + d(modn).

Prove thatif a + x = a + y (mod n), then x = y (mod n).

If ca = ¢b (mod n) and d = (c, n) where n = dm, prove that a = b (mod m).

Find the least positive integer that is congruent to the given sum, product, or power.
a. 3+ 19 + 23 + 52) (mod 6) b. 2 + 17 + 43 + 117) (mod 4)

c. (14 + 46 + 65 + 92) (mod 11) d. 9 + 25 + 38 + 92) (mod 7)

e. (7)(17)(32)(62) (mod 5) f. (6)(16)(38)(118) (mod 9)



30.
31.

32,

33.

34.

35.

36.

37.

38.
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g (4)(9)(15)(59) (mod 7) h. (5)(11)(17)(65) (mod 7)
i. 431 (mod 4) j. 258 (mod 7)
k. 623 (mod 5) 1. 5226 (mod 9)

If a = b (mod n), prove that a” = b™ (mod n) for every positive integer m.

Prove that if m is an integer, then either m?> = 0 (mod 4) or m> = 1 (mod 4). (Hint:
Consider the cases where m is even and where m is odd.)

Prove or disprove that if n is odd, then n* =1 (mod 8).

If m is an integer, show that m? is congruent modulo 8 to one of the integers 0, 1, or 4.
(Hint: Use the Division Algorithm, and consider the possible remainders in
m=4q +r.)

Prove that n* = n (mod 6) for every positive integer n.
Let x and y be integers. Prove that if there is an equivalence class[a] modulo n such that
x € [a]and y € [a], then (x, n) = (y, n).

Prove that if p is a prime and ¢ # 0 (mod p), then cx =b (mod p) has a unique
solution modulo p. That is, a solution exists, and any two solutions are congruent
modulo p.

Letd = (a, n) where n > 1. Prove that if there is a solution to ax = b (mod n), then d
divides b.

(See Exercise 37.) Suppose thatn > 1 and thatd = (a, n) is adivisor of b. Let a = aod,
n = nod, and b = byd, where ay, ng, and by are integers. The following statements a—e
lead to a proof that the congruence ax = b (mod n) has exactly d incongruent solutions
modulo 7, and they show how such a set of solutions can be found.

a. Prove that ax = b (mod n) if and only if agx = by (mod ny).

b. Prove that if x; and x, are any two solutions to agx = by (mod ny), then it follows that
X1 = Xp (mod I’l()).

c. Let x| be a fixed solution to agx = by (mod ng), and prove that each of the d inte-
gers in the list

X, x; + ng,x; + 2ng,...,x, + (d— Dny
is a solution to ax = b (mod n).
d. Prove that no two of the solutions listed in part ¢ are congruent modulo n.
e. Prove that any solution to ax = b (mod n) is congruent to one of the numbers listed
in part c.

the congruences ax = b (mod n) in Exercises 39-50, a and n may not be relatively

prime. Use the results in Exercises 37 and 38 to determine whether there are solutions. If
there are, find d incongruent solutions modulo 7.

39. 6x = 33 (mod 27) 40. 18x = 33 (mod 15)
41. 8x = 66 (mod 78) 42. 35x = 10 (mod 20)
43. 68x = 36 (mod 40) 44. 21x = 18 (mod 30)
45. 24x + 5 = 50 (mod 348) 46. 36x + 1 = 49 (mod 270)
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Sec. 4.4, #20 <
Sec. 8.3, #11 <

47.
49.
51.

52.

53.

54.

55.

I5x + 23 = 153 (mod 110)
42x + 67 = 23 (mod 74)

48. 20x + 13 = 137 (mod 76)
50. 38x + 54 = 20 (mod 60)

Let p be a prime integer. Prove Fermat’s’ Little Theorem: For any positive
integer a, a’ = a (mod p). (Hint: Use induction on a, with p held fixed.)

Prove the Chinese Remainder Theorem: Let ny, ny, ..., n, be pairwise relatively
prime. There exists an integer x that satisfies the system of congruences

x = a, (mod n,)

X = a, (mod n,)

x = a,, (mod n,,).
Furthermore, any two solutions x and y are congruent modulo nny - -+ ny,.

Solve the following systems of congruences.

a. x =2 (mod 5) b. x =4 (mod 5)
x = 3 (mod 8) x =2 (mod 3)
c. x =4 (mod 7) d. 2x = 5 (mod 3)
3x + 2 =3 (mod 8) 5x +4 =5 (mod?7)
. x =4 (mod 5) . x =3 (mod 4)
X = 6 (mod 8) x =4 (mod 5)
x =2 (mod 3) X =6 (mod 7)
. x =2 (mod 3) . x=3(mod)5)
x =2 (mod>5) x =7 (mod 8)
x =4 (mod 7) x =3 (mod9)
x = 3 (mod 8) x =10 (mod 11)

a. Prove that 10" = 1 (mod 9) for every positive integer n.
b. Prove that a positive integer is divisible by 9 if and only if the sum of its digits is
divisible by 9. (Hint: Any integer can be expressed in the form

a,10" + a,_, 10" "' + -+ + q,10 + q,

where each g; is one of the digits 0, 1,...,9.)

a. Prove that 10" = (—1)" (mod 11) for every positive integer n.

b. Prove that a positive integer z is divisible by 11 if and only if 11 divides
a,—a; +a,— --- + (—1)'a, when z is written in the form as described in the
previous problem.

Pierre de Fermat (1601-1665) a French mathematician, is credited for work that led to modern calculus. He is

most widely known for his famous Last Theorem: x" + y" = Z" has no nonzero integral solutions for x, y, and z
when n > 2. This unproven theorem was found by his son with a note by Fermat stating, “I have a truly
marvelous demonstration of this proposition which this margin is too small to contain.” After many failed
attempts by numerous mathematicians, a proof by Andrew Wiles and Richard Taylor was finally accepted as
valid over 350 years later using techniques unknown to Fermat.
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Congruence Classes

In connection with the relation of congruence modulo 7, we have observed that there are n
distinct congruence classes. Let Z,, denote this set of classes:

Z, = {[0L[1.[2].....[n — 1]}
When addition and multiplication are defined in a natural and appropriate manner in Z,,
these sets provide useful examples for our work in later chapters.

m AdditioninZ,

Consider the rule given by
la] + [b] = [a + b].

a. This rule defines an addition that is a binary operation on Z,,.

b. Addition is associative in Z,,:
[a] + ([p] + [e]) = ([a] + [b]) + [c].
c. Addition is commutative in Z,,:
[a] + [b] = [b] + [a].
d. Z, has the additive identity [0].

e. Each[a]in Z, has[—a]as its additive inverse in Z,.

Proof
a. Itis clear that the rule [a] + [b] = [a + b]yields an element of Z,, but the uniqueness
of this result needs to be verified. In other words, closure is obvious, but we need
to show that the operation is well-defined. To do this, suppose that [a] = [x] and
[6] = [¥]. Then
[a] = [x] = a = x (mod n)
and
[b] = [y] = b =y (modn).
By Theorem 2.23,
a+ b=x+y(modn),
and therefore [a + b] = [x + y].
b. The associative property follows from
la] + ([b] + [c]) = [a] + [b + ¢]
=[a+ (b+0)]
[(a + b) + c]
=la +b] +[c]
([a

]+ b)) + [e].
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Note that the key step here is the fact that addition is associative in Z:
atb+c)y=(a+b) +ec
c. The commutative property follows from
[a] + [b] = [a + D]
=[b + d]
= [b] + [a].
d. [0]is the additive identity, since addition is commutative in Z, and
[a] +[0] = [a + 0] = [a].
e. [—a] = [n — a] is the additive inverse of [a], since addition is commutative in Z, and
[—a] + [a] = [—a + a] = [0].

Example 1 Following the procedure described in Exercise 3 of Section 1.4, we can
construct an addition table for Z, = {[0],[1],[2],[3]}. In computing the entries for this table,
[a] + [b]is entered in the row with [a] at the left and in the column with [b] at the top. For in-
stance,

Bl+[2]=[5]=0]
is entered in the row with [3] at the left and in the column with [2] at the top. The complete
addition table is shown in Figure 2.1.

+ [0 1] [2] [3]
[0 { [o] [1] [2] [3]
(1] | (1] [2] (3] [0]
(2] | [2] (3] [o] [1]
® Figure 2.1 Bl B 1o [ 2 [ |

In the following theorem, multiplication in Z,, is defined in a natural way, and the basic
properties for this operation are stated. The proofs of the various parts of the theorem are
quite similar to those for the corresponding parts of Theorem 2.28, and are left as exercises.

Theorem2.29 = Multiplicationin Z,

Consider the rule for multiplication in Z, given by

[al[b] = [ab].
a. Multiplication as defined by this rule is a binary operation on Z,,.

b. Multiplication is associative in Z,;

[a)([b][c]) = ([al[B])c]-
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¢. Multiplication is commutative in Z,:

d. Z, has the multiplicative identity [1].

When we compare the properties listed in Theorems 2.28 and 2.29, we see that the
existence of multiplicative inverses, even for the nonzero elements, is conspicuously miss-
ing. The following example shows that this is appropriate because it illustrates a case where
some of the nonzero elements of Z, do not have multiplicative inverses.

Example 2 A multiplication table for Z4 is shown in Figure 2.2. The third row of
the table shows that [2] is a nonzero element of Z4 that has no multiplicative inverse;
there is no [x] in Z4 such that [2] [x] = [1]. Another interesting point in connection with

x| [o] [ 2] B3
[0] | [0] [0] [0] [0]
(| o [ 21 [3]
2] | [0] [2) 0] [2]
. 31 0] [3] [2] [1
wFiguezz |10 B) B [0
this table is that the equality [2][2] = [0] shows that in Z4, the product of nonzero factors
may be zero. u
Any nonzero element [a] in Z,, for which the equation [a][x] = [0] has a nonzero solution
[x] #[0]in Z,, is a zero divisor. The element [2]in Z, is an example of a zero divisor.
The next theorem characterizes those elements of Z, that have multiplicative
inverses.
Theorem2.30 m Multiplicative InversesinZ,
An element [a] of Z, has a multiplicative inverse in Z,, if and only if a and n are relatively
prime.
p=¢q Proof Suppose first that [a] has a multiplicative inverse [b] in Z,. Then

[a][p] = [1].
This means that
[ab] =[1] and ab = 1 (mod n).
Therefore,

ab—1=ngq
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Corollary 2.31

for some integer ¢, and
a(b) + n(—q) = 1.

By Theorem 2.12, we have (a, n) = 1.
Conversely, if (a, n) = 1, then Theorem 2.25 guarantees the existence of a solution s
to the congruence

as = 1 (mod n).

Thus,

and [a] has a multiplicative inverse [s]in Z,.

m  Multiplicative InversesinZ,

Every nonzero element of Z, has a multiplicative inverse if and only if n is a prime.

Proof The corollary follows from the fact that n is a prime if and only if every integer a
such that 1 = a < n is relatively prime to n.

Example 3 The elements of Z,s that have multiplicative inverses can be listed by writ-
ing down those [a] that are such that (a, 15) = 1. These elements are

(1], (2], [4], [7], [8], [11], [13], [14]. =

Example 4 Suppose we wish to find the multiplicative inverse of [13] in Z191. The
modulus n = 191 is so large that it is not practical to test all of the elements in Z9;, SO
we utilize the Euclidean Algorithm and proceed according to the last part of the proof of
Theorem 2.30:
191 = (13)(14) + 9
13=09)(1) + 4
9=@Q2) +1.
Substituting the remainders in turn, we have
1=9- @2
=9 —[13 = (D]
=G - 13)©2)
= [191 = (13)(1H](3) — (13)(2)
= (191)(3) + (13)(—44).
Thus
(13)(—44) = 1 (mod 191)
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or
[13][—44] = [1].
The desired inverse is

[13]7! = [—44] = [147]. |

Since every element in Z, has an additive inverse, subtraction can be defined in Z, by
the equation

[a] = [b] = [a] + (=[b])
= [a] + [-P]
= [a — b].

We now have at hand the basic knowledge about addition, subtraction, multiplication,
and multiplicative inverses in Z,. Utilizing this knowledge, we can successfully imitate
many of the techniques that we use to solve equations in real numbers to solve equations
involving elements of Z,. For example, Exercise 9 of this section states that [x] = [a]![b]
is the unique solution to [a][x] = [b] in Z, whenever [a] ! exists. In Exercise 19, some
quadratic equations are to be solved by factoring. The next example shows how we can
solve a simple system of linear equations in Z, by using the same kinds of steps that we
use when working in R.

Example B We shall solve the following system of linear equations in Z.
[4][x] + [y] = [22]
[19][x] + [y] = [15]
We can eliminate [y] by subtracting the top equation from the bottom one:
[19][x] — [41[x] = [15] — [22].

This simplifies to

or

[15][x] = [19].

Using the Euclidean Algorithm as we did in Example 4, we find that [15] in Zye has the
multiplicative inverse given by [15]"! = [7]. Using the result in Exercise 9 of this section,
we find that the solution [x] to [15][x] = [19]is

[x] = [15][19]
= [7][19]
=1

[

]
33]
= [3].

3
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Solving for [y]in the equation [4][x] + [y] = [22], yields

] = [22] — [4][~]
= [22] - [4][3]
= [22] - [12]
= [10].
It is easy to check that [x] = [3],[y] = [10]is indeed a solution to the system. [ |

BN Exercises 2.6 I——

True or False

Label each of the following statements as either true or false.
1. Every element [a]in Z, has an additive inverse.
2. Every element [a] #[0] in Z, has a multiplicative inverse.
3. [a][b] = [0]implies either [a] = [0] or [b] = [0].
4. [a][x] = [a][y] and [a]#[0] implies [x] = [y].

Exercises

1. Perform the following computations in Z;.

a. [8] +[7] b. [10] + [9]
c. [8][11] d. [6]]9]
e. [6]([9] +[7]) f. [5]([8] + [11])
g [6][9] + [6][7] h. [5][8] + [5][11]
2. a. Verify that[1][2][3][4] = [4]in Zs
b. Verify that [1][2][3][4][5][6] = [6]in Z
c. Evaluate [1][2][3]in Zs.
d. Evaluate [1][2][3][4][5] in Zs.
3. Make addition tables for each of the following.
a. 7, b. Z3 ¢ Zs
d. Zg e. Z; f. Zs
4. Make multiplication tables for each of the following.
a. 7, b. Z3 c. Zg
d. Zs e. Z; f. Zs
5. Find the multiplicative inverse of each given element.
a. [3]inZ3 b. [7]in Zy; c. [17]in Zy
d. [16] in Zy; e. [17]in Zy, f. [33]in Zsg

8. [1 1] in Z317 h. [9] in leg
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6. For each of the following Z,, list all the elements in Z, that have multiplicative
inverses in Z,,.
a. Zg b. Zg c. Zy
d. Z, e. Zig f. Zy
7. Find all zero divisors in each of the following Z,,.
a. Zg b. Zg (AT
d. Z,, e. Zg f. Z,
8. Whenever possible, find a solution for each of the following equations in the given Z,,.
a. [4][x] = [2]in Z¢ b. [6][x] = [4]in Z},
c. [6][x] = [4]in Zg d. [10][x] = [6]in Z;»
e. [8][x] = [6]in Z;, f. [4][x] = [6]in Zg
g. [8][x] = [4]in Z;, h. [4][x] = [10]in Z4
i. [10][x] = [4]in Z;, j- [9][x] = [3]in Z),
9. Let [a] be an element of Z, that has a multiplicative inverse [a] ! in Z,. Prove that
[x] = [a] " [b]is the unique solution in Z, to the equation [a][x] = [b]
10. Solve each of the following equations by finding [a]”' and using the result in
Exercise 9.
a. [4][x] = [5]in Z3 b. [8][x] = [7]in Z;
c. [7][x] =[11]in Zy, d. [8][x] = [11]in Z;5
e. [9][x] = [14]in Zy f. [8][x] = [15]in Zy;
g. [6][x] = [5]in Zs19 h. [9][x] = [8]in Zy4
In Exercises 11-14, solve the systems of equations in Z.
1L 2)+ DI=[4]
(21[x] + [4][y] = [5]
12. [0 + 210 = [1]
30 + [2)0] = [5)
13. 3]0 + 21 = 1]
(5104 + [610y) = [5]
14. [2][x] + [5][y] = [6]
[4][x] + [6][y] = [6]
15. Prove Theorem 2.29.

16

. Prove the following distributive property in Z,,:

[a]([6] + [¢]) = [al[] + [a][c]
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2.7

17. Prove the following equality in Z,:
([a] + [))(([c] + [d]) = [a][c] + [a][d] + [b][c] + [b][d].

18. Let p be a prime integer. Prove that if [a]|[b] = [0] in Z,, then either [a] = [0]
or [b] = [0].

19. Use the results in Exercises 1618 and find all solutions [x] to the following quadratic
equations by the factoring method.

a. [x]?> + [5][x] + [6] = [0]in Z; b. [x]> + [4][x] + [3] = [0]in Zs
c. [x]> + [x] + [5] = [0]in Z; d. [x]> + [x] + [3] = [0]in Zs

20. Let p be a prime integer. Prove that [1]and [p — 1]are the only elements in Z, that are
their own multiplicative inverses.

21. Show that if n is not a prime, then there exist [a] and [b] in Z, such that [a] # [0] and
[b] # [0], but [a][b] = [0]; that is, zero divisors exist in Z, if n is not prime.

22. Let p be a prime integer. Prove the following cancellation law in Z,: If [a] [x] =
[a][y] and [@] # [0], then [x] = [y].

23. Show that if n is not a prime, the cancellation law stated in Exercise 22 does not hold
inZ,.

24. Prove that a nonzero element [a] in Z, is a zero divisor if and only if @ and n are not
relatively prime.

Introduction to Coding Theory (Optional)

In this section, we present some applications of congruence modulo » found in basic cod-
ing theory. When information is transmitted from one satellite to another or stored and
retrieved in a computer or on a compact disc, the information is usually expressed in some
sort of code. The ASCII code (American Standard Code for Information Interchange) of
256 characters used in computers is one example. However, errors can occur during the
transmission or retrieval processes. The detection and correction of such errors are the fun-
damental goals of coding theory.

In binary coding theory, we omit the brackets on the elements in Z, and call {0, 1} the
binary alphabet. A bit" is an element of the binary alphabet. A word (or block) is a se-
quence of bits, where all words in a message have the same length; that is, they contain the
same number of bits. Thus a 2-bit word is an element of Z, X Z,. For notational conven-
ience, we omit the comma and parentheses in the 2-bit word (a, b) and write ab, where
a € {0, 1} and b € {0, 1}. Thus

000 010 001 011
100 110 101 111

TBit is an abbreviation for binary digit.
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are all eight possible 3-bit words using the binary alphabet. There are thirty-two 5-bit
words, so 5-bit words are frequently used to represent the 26 letters of our alphabet, along
with 6 punctuation marks.

During the process of sending a message using k-bit words, one or more bits may be
received incorrectly. It is essential that errors be detected and, if possible, corrected. The
general idea is to generate a code, send the coded message, and then decode the coded mes-
sage, as illustrated here:

encode send . decode
message ——> coded message — received message — message.

Ideally, the code is devised in such a way as to detect and/or correct any errors in the
received message. Most codes require appending extra bits to each k-bit word, forming an
n-bit code word. The next example illustrates an error-detecting scheme.

Example 1 Parity Check Consider 3-bit words of the form abc. One coding scheme
maps abc onto abcd, where

d=a+ b+ c(mod?2)

is called the parity check digit. If d = 0, we say that the word abc has even parity. If
d = 1, we say abc has odd parity. Thus the eight possible 3-bit words are mapped onto the
eight 4-bit code words as follows:

encode

word code word

encode

000 ——> 0000

encode

010 — 0101

encode

001 <=5 0011
011 =5 o110
100 &5 1001
110 <25 1100
101 <5 1010
111 =5 1111,

Note that each 4-bit code word has even parity. Therefore, a simple parity check on the
code word will detect any single-bit error. For example, suppose that the coded message of
five 4-bit code words

1101 1011 0000 0110 0011

is received. It is obvious that each of the first two code words 1101 and 1011 contains at
least one error. This parity check scheme does not correct single-bit errors, nor will it detect
which bit is in error. It also will not detect 2-bit errors. In this situation, the safest action is
to request retransmission of the message, if retransmission is feasible. |
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Example 2 Repetition Codes Multiple errors can be detected (but not corrected) in
a scheme in which a k-bit word is mapped onto a 2k-bit code word according to the fol-
lowing scheme:

encode

XX X T XX XX X
In the coded message with k = 3,
110110 010011 011011 101000,

errors occur in the second code word 010011 and in the last code word 101000. All other
code words seem to be correct. If, upon retransmission, the coded message is received as

110110 011011 011011 100100,
it will be decoded as

110 011 011 100. |

Example 3 Maximum Likelihood Decoding Multiple errors can be detected and
corrected if each k-bit word is mapped onto a 3k-bit code word according to the following
scheme (called a triple repetition code):

encode
)CIXZ et xk — xl.X2 tt .xk.xle ttt .Xk.xl.X2 tt xk.

For example, if the 6-bit code word (for a 2-bit word)
010111
is received, then an error is detected. By separating the code word into three equal parts
01 01 11

and comparing bit by bit, we note that the first bits in each part do not agree. We correct the
error by choosing the digit that occurs most often, in this case a 0. Thus the corrected code
word is

010101,

and more than likely the correct message is 01. The main disadvantage of this type of cod-
ing is that each message requires three times as many bits as the decoded message, whereas
with the parity check scheme, only one extra bit is needed for each word. |

A combination of a parity check and a repetition code allows detection and correction
of coded messages without requiring quite as many bits as in the maximum likelihood
scheme. We illustrate this in the next example.

Example 4 Error Detection and Correction Suppose 4-bit words are mapped onto
9-bit code words using the scheme

encode

X1 XpX3Xy > X1 XpX3X4X 1 X0 X3X4 P,
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where p is the parity check digit
p=x +x,+ x;3+ x, (mod 2).

For example, the 4-bit word 0110 is encoded as 011001100. Suppose, upon transmission,
a code word 101011100 is received. Breaking 101011100 into three parts,

1010 1110 0,

indicates that an error occurs in the second bit. To have parity 0, the correct word must
be 1010.

Errors might also occur in the parity digit. For example, if 001100111 is received, an
error is detected, and more than likely the error has been made in the parity check digit.
Thus the correct word is 0011. |

The last two examples bring up the question of probability of errors occurring in any
one or more bits of an n-bit code word. We make the following assumptions:

1. The probability of any single bit being transmitted incorrectly is P.
2. The probability of any single bit being transmitted correctly or incorrectly is inde-

pendent of the probability of any other single bit being transmitted correctly or
incorrectly.

Thus the probability of transmitting a 5-bit code word with only one incorrect bit is
(?)P(l — P)* If it happens that P = 0.01 (approximately 1 of every 100 bits are transmit-
ted incorrectly), then the probability of transmitting a 5-bit code word with only one incor-
rect bit is (?)0.01(0.99)4 = 0.04803, and the probability of transmitting a 5-bit code word
with no errors is ((5))(0.01)0(0.99)5 = 0.95099. Hence the probability of transmitting a 5-bit
code word with at most one error is (7)0.01(0.99)* + (3)(0.01)°(0.99)° = 0.99902.

Up to this point, Z, has been used in all of our examples. We next look at some in-
stances in which other congruence classes play a role.

Example D Using Check Digits Many companies use check digits for security pur-
poses or for error detection. For example, an 11th digit may be appended to a 10-bit iden-
tification number to obtain the 11-digit invoice number of the form

X1 XpX3X4 X5XX7X8X9X1(C,
where the 11th bit, ¢, is the check digit, computed as
X1 X2 X3X4X5XX7Xg XX 9 = ¢ (mod n).

If congruence modulo 9 is used, then the check digit for an identification number
3254782201 is 7, since 3254782201 = 7 (mod 9). Thus the complete correct invoice
number would appear as 32547822017. If the invoice number 31547822017 were used
instead and checked, an error would be detected, since 3154782201 % 7 (mod 9).
[3154782201 = 6 (mod 9).]

This particular scheme is not infallible in detecting errors. For example, if a transposi-
tion error (a common keyboarding error) occurred and the invoice number were erroneously
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entered as 32548722017, an error would not be detected, since 3254872201 = 7 (mod 9). It
can be shown that transposition errors will never be detected with this scheme (using con-
gruence modulo 9) unless one of the digits is the check digit. (See Exercise 12.) |

Even more sophisticated schemes for using check digits appear in such places as the
ISBN numbers assigned to all books, the UPCs (Universal Product Codes) assigned to
products in the marketplace, passport numbers, and the driver’s licenses and license
plate numbers in some states. Some of the schemes are very good at detecting errors,
and others are surprisingly faulty. In these schemes, a weighting vector is used in con-
junction with arithmetic on congruence classes modulo n (modular arithmetic). The
dot product notation is useful in describing the situation. We define the dot product
(X1, X2, o« o5 X)) * V1,2, - - -, V) of two ordered n-tuples (vectors) (xi,x2,...,x,) and

(yl,)’Z,---,)’n)by
(X5 X e v o3 %) V1 V2o -+ 5 V) = XY T Xy, + o0+ Xy,

For example, (1, 2, 3) - (=3, 7, —1) = =3 + 14 — 3 = 8. The next example describes
the use of the dot product and weighting vector in bank identification numbers.

Example 6 Bank Identification Numbers Identification numbers for banks have
eight digits, x1xy, . . ., xg, and a check digit, xo, given by

(X, %gs - - s Xg) * (7,3,9,7,3,9,7,3) = x (mod 10).

The weighting vector is (7, 3,9, 7, 3, 9, 7, 3). Thus a bank with identification number
05320044 has check digit

0,5,3,2,0,0,4,4)+(7,3,9,7,3,9,7,3) =0+ 15+ 27+ 14 + 0+ 0 + 28 + 12
=96
= 6 (mod 10)

and appears as 053200446 at the bottom of the check. This particular scheme detects all
one-digit errors. However, suppose that this same bank identification number is coded in as
503200446, with a transposition of the first and second digits. The check digit 6 does not
detect the error:

(5,0,3,2,0,0,4,4)+(7,3,9,7,3,9,7,3) =35+ 0+27+ 14+ 0+ 0+ 28 + 12
=116
= 6 (mod 10).

Transposition errors of adjacent digits x; and x;4+; will be detected by this scheme except
when |x; — x;+1| = 5. (See Exercise 13.) [ |

The next example illustrates the use of another weighting vector in Universal Product
Codes.
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Example 1 UPC Symbols UPC symbols consist of 12 digits, x;x, * - * x;,, with the
last, x5, being the check digit. The weighting vector used for the UPC symbols is the
11-tuple (3, 1,3, 1,3, 1, 3, 1, 3, 1, 3). The check digit x;, can be computed as

—(xp, X o x) = (3,1,3,1,3,1,3, 1,3, 1, 3) = x;, (mod 10) .
The computation

-0,2,1,2,0,0,6,9,1,1,3)- (3,1,3,1,3,1,3,1,3,1,3) = —47
3 (mod 10)

verifies the check digit 3 shown in the UPC symbol in Figure 2.3. As in the bank identifi-
cation scheme, some transposition errors may go undetected.

0 1121200769113 u

In this section, we have attempted to introduce only the basic concepts of coding
theory; more sophisticated coding schemes are constantly being developed. Much re-
search is being done in this branch of mathematics, research based not only on group and
field theory but also on linear algebra and probability theory.

Exercises 2.7 I——

True or False
Label each of the following statements as either true or false.
1. Parity check schemes will always detect the position of an error.

2. All errors in a triple repetition code can be corrected by choosing the digit that occurs
most often.

3. In parity check schemes, errors might occur in the parity check digit.

4. In a check digit scheme using congruence modulo 9, transposition errors will never
be detected.

Exercises

1. Suppose 4-bit words abcd are mapped onto 5-bit code words abcde, where e is the
parity check digit. Detect any errors in the following six-word coded message.

11101 00101 00010 11100 00011 10100

2. Suppose 3-bit words abc are mapped onto 6-bit code words abcabc under a repetition
scheme. Detect any errors in the following five-word coded message.

111011 101101 011110 001000 011011
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3.

10.

11.

12.

13.

Use maximum likelihood decoding to correct the following six-word coded message
generated by a triple repetition code. Then decode the message.

101101101 110110101 110100101 101000111 110010011 011011011

Suppose 2-bit words ab are mapped onto 5-bit code words ababc, where c is the par-
ity check digit. Correct the following seven-word coded message. Then decode the
message.

11100 01011 01010 10101 00011 10111 11111

Suppose a coding scheme is devised that maps k-bit words onto n-bit code words. The
efficiency of the code is the ratio k/n. Compute the efficiency of the coding scheme
described in each of the following examples.

a. Example 1
b. Example 2
c. Example 3
d. Example 4
Suppose the probability of erroneously transmitting a single digit is P = 0.03. Com-

pute the probability of transmitting a 4-bit code word with (a) at most one error, and
(b) exactly four errors.

Suppose the probability of erroneously transmitting a single digit is P = 0.0001.
Compute the probability of transmitting an 8-bit code word with (a) no errors,
(b) exactly one error, (¢) at most one error, (d) exactly two errors, and (e) at most
two errors.

Suppose the probability of incorrectly transmitting a single bit is P = 0.001. Compute
the probability of correctly receiving a 100-word coded message made up of 4-bit
words.

Compute the check digit for the 8-digit identification number 41126450 if the check
digit is computed using congruence modulo 7.

Is the identification number 11257402 correct if the last digit is the check digit com-
puted using congruence modulo 7?

Show that the check digit x9 in bank identification numbers satisfies the congruence
equation

(X1, X2y« « v, Xgy Xo) + (7,3,9,7,3,9,7,3,9) = 0 (mod 10).
Suppose that the check digit is computed as described in Example 5. Prove that trans-

position errors of adjacent digits will not be detected unless one of the digits is the
check digit.

Verify that transposition errors of adjacent digits x; and x;;; will be detected in a bank
identification number except when |x; — x;+1| = 5.
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15.

16.

17.
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Compute the check digit for the UPC symbols whose first 11 digits are given.

. [T

b.
0 7599~ 24511 II
0 "721200"00339

c. 0 || d. “l
401 0

39800706 51111112881

Verify that the check digit x, in a UPC symbol satisfies the following congruence
equation:

(X1 X+ s Xp) = (3,1,3,1,3,1,3,1,3,1,3, 1) = 0 (mod 10).

Show that transposition errors of the type
Xpe o o X1 XXy o Xy =X oo o Xy (XX - e XD
(i=2,3,...,11)in a UPC symbol will not be detected by the check digit.

Passports contain identification codes of the following form.

passport  check birth check  date of check final
number  digit date  digit expiry  digit check

012345678 4 USA 480517 7 F02072] 2<<<<<<<<<iiI<<<<y

Each of the first three check digits is computed on the preceding identification num-
bers by using a weighting vector of the form

(7,3, 1,7,3,1,..)

in conjunction with congruence modulo 10. For example, in this passport identifica-
tion code, the check digit 4 checks the passport number, the check digit 7 checks the
birth date, and the check digit 2 checks the date of expiry. The final check digit is then
computed by using the same type of weighting vector with all the digits (including
check digits, excluding letters). Verify that this passport identification code is valid.
Then check the validity of the following passport identification codes.

a. 0987654326USA1512269F9901018 <<<<<<<<I<I<<I<I<<< 4
b. 0444555331USA4609205M040913] <<<<<<<<<<L<ILILILLL 8
c. 0123987457USA7803012M9711219 <<l 3
d. 0246813570USA8301047F0312203 << <<<<<<<<LI<L<<< 6
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18.

19.

20.

21.

22,

23.

ISBN numbers are ten-digit numbers that identify books, where x is the check digit
and (xy, xp, . .., x10) * (10,9,8,7,6,5,4,3,2,1) = 0 (mod 11). Only digits O through
9 are used for the first nine digits, and if the check digit is required to be 10, then an X
is used in place of the 10. If possible, detect any errors in the following ISBN numbers.

a. ISBN 0-534-92888-9
b. ISBN 0-543-91568-X
c. ISBN 0-87150-334-X
d. ISBN 0-87150-063-4
In the ISBN scheme, write the check digit xjo in the form

(.xl,xZ, e ,.XQ) Y= xlo(mod 11),

where y is obtained from the weighting vector (10, 9, 8,7, 6, 5,4, 3,2, 1).

Suppose X = xjx; ... xgandy = y;ys ... yg are k-bit words. The Hamming' distance
d(x,y) between x and y is defined to be the number of bits in which x and y differ. More
precisely, d(x, y) is the number of indices in which x; # y;. Find the Hamming distance
between the following pairs of words.

a. 0011010 and 1011001

b. 01000 and 10100

c. 11110011 and 00110001

d. 011000 and 110111

Let x, y, and z be k-bit words. Prove the following properties of the Hamming distance.
a. d(x,y) = d(y,x)

b. dix,y) =0 ifandonlyif x =1y

c. dx,z) =dXx,y) + d(y, z)

The Hamming weight wz(x) of a k-bit word is defined to be w#(x) = d(x, 0), where 0

is the k-bit word in which every bit is 0. Find the Hamming weight of each of the
following words.

a. 0011100

b. 11110

c. 10100001

d. 000110001

The minimum distance of a code is defined to be the smallest distance between any

pair of distinct code words in a code. Suppose a code consists of the following code
words. This is the repetition code on 2-bit words.

0000 0101 1010 1111

Find the minimum distance of this code.

"This distance function is named in honor of Richard Hamming (1915-1998), who pioneered the development
of error-correcting codes.
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24. Repeat Exercise 23 for the code consisting of the following code words. This code is a
repetition code on 3-bit words with a parity check digit.
0000000 0100101 0010011 0110110
1001001 1101100 1011010 1111111

25. Repeat Exercise 23 for the code consisting of the following code words.

0000000 0001011 0010111 0011100

0100101 0101110 0110010 0111001

1000110 1001101 1010001 1011010

1100011 1101000 1110100 1111111
This code is called the Hamming (7,4) code. Each code word x;x,x3x4x5x6%7, With
x; € {0, 1}, can be decoded by using the first four digits x;x,x3x4. The last three digits
are parity check digits, where

X5 = x; + x, + x;3 (mod 2)

x; + x3 + x4 (mod 2)

X; = x, + x3 + x4 (mod 2).

X6

26. Write out the eight code words in the (5, 3) code where each code word x;xyx3x4X5 is
generated in the following way:

x; € {0, 1}
Xy = x; + x, (mod 2)

X5 = x; + x3 (mod 2).

Introduction to Cryptography (Optional)

An additional application of congruence modulo 7 is found in cryptography, the design-
ing of secret codes. Cryptanalysis is the process of breaking the secret codes, and cryp-
tology encompasses both cryptography and cryptanalysis. Cryptography differs from code
theory in that code theory concentrates on the detection and correction of errors in mes-
sages, whereas cryptography concentrates on concealing a message from an unauthorized
person.

History is rich with examples of secret writings, dating back as far as 1900 B.Cc. when
an Egyptian master scribe altered hieroglyphic writing, thus forming “secret messages” in
the tomb of the nobleman Khnumhotep II. Later, in 400 B.C., the Spartans used a device
called a skytale to conceal messages. A ribbon was wound around a cylinder (the skytale);
then a message was written on the ribbon. When the ribbon was removed, the message
appeared scrambled. However, the recipient of the ribbon had a similar skytale upon which
he wound the ribbon and then easily read the message. An early cryptological system,
called the Caesar cipher, was employed by Julius Caesar in the Gallic wars. In this system,
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M Figure 2.4
Cipher Wheel

Caesar simply replaced (substituted) each letter of the alphabet (the plaintext) by the letter
three positions to the right (the ciphertext). The complete substitution for our alphabet’
would thus appear as
Plaintextt a b ¢ d e f g -+ t u v W X y z
Ciphertextt p E F G H I J -+ W X Y Z A B G
and the plaintext message “attack at dawn” could easily be enciphered and deciphered
using the substitution alphabet:
Plaintext: a t t a ¢ k a t d a w n
Ciphertext: D W w D F N D W G D Z Q.

The Caesar cipher is an example of an additive cipher, or translation cipher. All
such translation ciphers can be illustrated in a cipher wheel made up of two concentric cir-
cles each containing the entire alphabet. One such cipher wheel is shown in Figure 2.4. The
inner alphabet, representing the plaintext, is fixed, while the outer alphabet, representing
the ciphertext, spins. One pair of plaintext/ciphertext letters determines the entire scheme.
This key is all that is needed to decipher any message. Caesar’s plaintext/ciphertext key
would appear as a/D.

A translation cipher, as used by Caesar, and other, more sophisticated ciphers can be
described mathematically. We first accept the following notational convention:

a mod n is the remainder when a is divided by n,
or, in symbols,
r =amodn & a = ng + rwhere g and r are integers with 0 = r < n.

Although this notation closely resembles the congruence notation defined in Section 2.5, the
meaning is quite different and the distinction must be kept in mind. For a fixed y, the notation

x =y (mod n)

The letters j, u, and w were not in the Roman alphabet.



2.8 Introduction to Cryptography (Optional) 125

allows x to be any integer such that x — y is a multiple of n, but the notation
x = ymod n

requires x to be the unique integer in the range 0 = x < n such that x — y is a multiple of
n. All of the statements

27 =19 (mod 8), 11

19 (mod 8), and 3 = 19 (mod 8)
are true, but the statement
x = 19 mod 8

is true if and only if x = 3.

Example 1

a. 3 = 23 mod 5 since 23 = 5(4) + 3.

b. 1 = 37 mod 4 since 37 = 4(9) + 1.

¢. 21 = 47 mod 26 since 47 = 26(1) + 21.

d. 19 = —7 mod 26 since =7 = 26(—1) + 19. |

Next we describe a translation cipher in terms of congruence modulo 7.

Example 2 Translation Cipher Associate the n letters of the “alphabet” with the in-
tegers 0, 1,2,3,...,n— 1. Let A=1{0,1,2,3,...,n — 1} and define the mapping
fi:A—Aby

f(x) =x + kmodn

where k is the key, the number of positions from the plaintext to the ciphertext. If our
alphabet consists of a through z, in natural order, followed by a blank, then we have 27

“letters” that we associate with the integers 0, 1, 2, . . ., 26 as follows:
Alphabet: a b ¢ d e f ... vV W X y z  “blank”
A 0 1 2 3 4 5 ... 21 22 23 24 25 26

Now if our key is k = 12, then the plaintext message “send money” translates into the
ciphertext message “DQzpPLY zQJ” as follows:

translate to A
e

send money 8 4 13 3 26 12 14 13 4 24
f(x)=x+12 mod 27
— 3 16 25 15 11 24 26 25 16 9
translate from A D Q 7 P L v 7 Q i
The mapping f, given by
f(x) =x+ kmodn
can be shown to be one-to-one and onto, so the inverse exists and is given by

F'(x) = x — kmod n.
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The mapping /' can then be used to decipher the ciphertext.

translate to A

DQZPLY ZQJ — 3 16 25 15 11 24 26 25 16 9

fx)=x—12 mod 27
e

8 4 13 3 26 12 14 13 4 24

translate from A
— s e n d m o n e y N

A natural extension of the translation (or shift) cipher is found in a mapping of the
form

f(x) = ax + bmodn

where @ and b are fixed integers. This type of mapping is called an affine mapping. The
ordered pair a, b of integers forms the key for this type of cipher. If ¢ = 1, we simply have
a translation cipher, whereas if » = 0, we have what’s called a multiplicative cipher. It
follows from Theorem 2.25 that an affine mapping f:A — A has an inverse f:A > A if a
and n are relatively prime. When (a, n) = 1, it can be shown that the inverse f ! is given by

f'(x) =dax+ b modn
where a' is defined by
1 =damodn,with0 <da <n
and

b' = —a'b mod n.

Example 3 Affine Mapping We shall use an affine mapping with @ = 5 and b = 7
as the key in our 27-letter alphabet. The mapping f:A — A, where A = {0, 1, 2, ..., 26}, is
given by

Jf(x) = 5x + 7mod 27.

The plaintext message “hi mom” is translated into the ciphertext “PUCNXN” as follows:

translate to A

hi mom — 7 8 26 12 14 12
f(x)=>5x+7 mod 27

X3 15 20 2 13 23 13

translate from A P U fe N X N

Note that (5, 27) = 1, so the mapping f has an inverse given by
)

11x — 11(7) mod 27 since 1 = 11 - 5 mod 27
11x + 16(7) mod 27 since 16 = —11 mod 27
11x + 112 mod 27

11x + 4 mod 27,
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which can then be used to decipher the ciphertext.

translate to A

PUCNXN — 15 20 2 13 23 13
f(x)=11x+4 mod 27
—> 8 26 12 14 12
translate from A .
—> h 1 m 0 m |

Example 4 Affine Mapping with Unknown Key If a ciphertext message is rela-
tively long, a frequency analysis of letters in a ciphertext can be used to “break the code”
when the key to the affine mapping f(x) = ax + b mod n is not known. Suppose we asso-
ciate the letters a through z, in natural order, with the integers O through 25, respectively, to
form the 26-“letter” alphabet A = {0, 1, 2, ..., 25}. In the English language, with this
alphabet the letter e occurs most often in a lengthy message, and the letters ¢, a, and o are
the next most common. With this in mind, suppose that in a ciphertext message the letter W
occurred most frequently, followed in frequency by P. It seems reasonable that the cipher-
text letters W and P correspond to the plaintext letters e and ¢, respectively. Translating
these into the set A, we have

CIPHERTEXT PLAINTEXT
translate to A translate to A
most frequent: W —— 22 e — 4
translate to A translate to A
next most frequent: P —— 15 — 19.

Therefore, we can determine the key from the solution of the following system of equations
for a and b:

22 = a(4) + bmod 26
15 = a(19) + b mod 26.

From Example 5 in Section 2.6, this solution is given by a = 3, b = 10. Thus we find the
affine mapping f: A — A to be given by

f(x) = 3x + 10 mod 26,
with inverse f~': A — A defined by
f1(x) = 9x + 14 mod 26. |

In each of the preceding examples, once the mapping f was known, finding the inverse
mapping £~ ! was not difficult. In other words, once the key is known, a message can easily
be deciphered. If security is an important issue (which is usually the case in sending secret
messages), then it would certainly be advantageous to devise a system that would be diffi-
cult to break even if the key were known. Such systems are called Public Key Cryptosys-
tems. We examine the RSA' cryptosystem next. The RSA system is based on the difficulty
of factoring large numbers.

fRSA comes from the initials of the last names of Ronald Rivest, Adi Shamir, and Len Adelman, who devised
this system in 1977.
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Theorem 2.32

We begin by first choosing two distinct prime numbers, which we label as p and q.
Then we form the product

m = pq.

The value of m can be made known to the public. However, the factorization of m as pg
shall be kept secret. The larger the value of m, the more secure this system will be, since
breaking the code relies on knowing the prime factors p and g of m. Next we choose e to be
relatively prime to the product (p — 1)(¢ — 1); that is, e is defined by

(e.(p— D(g— 1) =1
Finally, we solve for d in the equation
Il =edmod (p — 1)(g — 1).
The public keys (the keys to be made known) are e and m, whereas the secret keys are p, g,

and d.

m RSA Public Key Cryptosystem

Suppose A = {0, 1,2, ..., m — 1} is an alphabet, consisting of m “letters.” With m, p, ¢, e, and
d as described in the preceding paragraph, let the mapping f: A — A be defined by

f(x) = x* mod m.
Then f has the inverse mapping g:A — A given by
g(x) = xmod m.

Proof Lety = x*mod m. Then
' = (x)* (mod m)
= x* (mod m).
Since
1 =edmod(p — 1)(g — 1),
then
ed=k(p—1)(g—1) +1
for some integer k.
If x # 0 (mod p), then
xd = Jr=DG=D+1 (mod p)
= x"r=D@=Dy (mod p)
= (¢~ H"" Dx (mod p)
= (1) "x (mod p)
= x (mod p)

since x’~! = 1 (mod p), from Exercise 51 and Theorem 2.24 in Section 2.5.
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If x =0 (mod p), it is clear that x/ = 0°/ (mod p) = 0 (mod p). Thus we have
ed —

X x (mod p) in all cases.
Similarly,
x*! = x (mod g).
Hence

pl@x“—x) and gq|x“ — x).
By Exercise 10 in Section 2.4, this implies that
pal (= x),
and since m = pq, we have
x4 = x (mod m).

Thus yd = x* (mod m) = x (mod m), and it follows that yd mod m = x mod m.
We have shown that g(f(x)) = x, and analogous steps can be used to verify that
f(g(x)) = x. Therefore, g is the inverse mapping of f.

We illustrate the RSA cryptosystem with relatively small primes p and g. For the RSA
system to be secure, it is recommended that the primes p and ¢ be chosen so as to contain
more than 100 digits.

Example 5 RSA Public Key Cryptosystem We first choose two primes (which are
to be kept secret):

p =17, and g = 43.
Then we compute m (which is to be made public):
m=pq =17 - 43 = 731.

Next we choose e (which is to be made public), where e must be relatively prime to
(p — D(g — 1) = 1642 = 672. Suppose we take e = 205. The Euclidean Algorithm can
be used to verify that (205, 672) = 1. Then d is determined by the equation

1 = 205d mod 672.

Using the Euclidean Algorithm, we find d = 613 (which is kept secret). The mapping
fiA — A, where A = {0, 1,2,...,730}, defined by

f(x) = x*® mod 731
is used to encrypt a message. Then the inverse mapping g:A — A, defined by
g(x) = x*3 mod 731

can be used to recover the original message.
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Using the 27-letter alphabet as in Examples 2 and 3, the plaintext message “no prob-
lem” is translated into the message as follows:

plaintext: n o p r o b 1 e m
message: 13 14 26 15 17 14 01 11 04 12
The message becomes
13142615171401110412.

This message must be broken into blocks m;, each of which is contained in A. If we choose
three-digit blocks, each block m; < m = 731.

m;: 131 426 151 714 011 104 12
fim) = m*®mod 731 = ¢;: 082 715 376 459 551 593 320
The enciphered message becomes
082 715 376 459 551 593 320

where we choose to report each ¢; with three digits by appending any leading zeros as
necessary.

To decipher the message, one must know the secret key d = 613 and apply the inverse
mapping g to each enciphered message block ¢; = f(m;):

ci 082 715 376 459 551 593 320
g(c) = Pmod 731: 131 426 151 714 011 104 12

Finally, by rebreaking the “message” back into two-digit blocks, one can translate it back
into plaintext.

three-digit block message: 131 426 151 714 011 104 12
two-digit block message: 13 14 26 15 17 14 01 11 04 12
plaintext: n o p r o b I e m N

The RSA Public Key Cipher is an example of an exponentiation cipher. As in coding
theory, we have barely touched on the basics of cryptography. It is our hope that this short
introduction may spark further interest in a topic whose basis lies in modern algebra.

BN Exercises 2.8 I ——

True or False
Label each of the following statements as either true or false.

1. The notation x = y mod n is used to indicate the unique integer x in the range
0 = x < nsuch that x — y is a multiple of n.

2. In order for an affine mapping f(x) = ax + b mod n to have an inverse, a and n must
be relatively prime.

3. Anexample of an exponentiation cipher is the RSA Public Key Cipher.
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Exercises

1. In the 27-letter alphabet A described in Example 2, use the translation cipher with key
k = 8 to encipher the following message.

the check is in the mail

What is the inverse mapping that will decipher the ciphertext?

2. Suppose the alphabet consists of a through z, in natural order, followed by a blank,
a comma, a period, an apostrophe, and a question mark, in that order. Associate these

“letters” with the numbers 0, 1, 2, ..., 30, respectively, thus forming a 31-letter
alphabet B. Use the translation cipher with key k£ = 21 to encipher the following
message.

what’s up, doc?
What is the inverse mapping that will decipher the ciphertext?

3. Inthe 31-letter alphabet B as in Exercise 2, use the translation cipher with key & = 11
to decipher the following message.

?7TRP.HGOZGEZAG.PLOGXPK

What is the inverse mapping that deciphers this ciphertext?

4. In the 27-letter alphabet A described in Example 2, use the translation cipher with key
k = 15 to decipher the following message.

FXGTOPBSOGWXBT
What is the inverse mapping that deciphers this ciphertext?

5. In the 27-letter alphabet A described in Example 2, use the affine cipher with key
a = 7and b = 5 to encipher the following message.

all systems go
What is the inverse mapping that will decipher the ciphertext?

6. In the 31-letter alphabet B described in Exercise 2, use the affine cipher with key
a = 15 and b = 22 to encipher the following message.

Houston, we have a problem.

What is the inverse mapping that will decipher the ciphertext?

7. Suppose the alphabet consists of a through z, in natural order, followed by a blank and
then a period. Associate these “letters” with the numbers 0, 1, 2, . . ., 27, respectively,
thus forming a 28-letter alphabet, C. Use the affine cipher with key a = 3 and b = 22 to
decipher the message

EEETZRIIYUAI.GTAIC

and state the inverse mapping that deciphers this ciphertext.
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8.

10.

11.

12.

13.

Use the alphabet C from the preceding problem and the affine cipher with key a = 11
and b = 7 to decipher the message

727ZZYDJIBIYXMD

and state the inverse mapping that deciphers this ciphertext.

. Suppose that in a long ciphertext message the letter X occurred most frequently, fol-

lowed in frequency by c. Using the fact that in the 26-letter alphabet A, described in
Example 4, e occurs most frequently, followed in frequency by ¢, read the portion of
the message

RNCYXRNCHFT

enciphered using an affine mapping on A. Write out the affine mapping f and its
inverse.

Suppose that in a long ciphertext message the letter D occurred most frequently,
followed in frequency by N. Using the fact that in the 27-letter alphabet A, described in
Example 2, “blank™ occurs most frequently, followed in frequency by e, read the
portion of the message

GENDOCFAADOQNIDPGMDCFE

enciphered using an affine mapping on A. Write out the affine mapping f and its
inverse.

Suppose the alphabet consists of a through z, in natural order, followed by a blank and
then the digits O through 9, in natural order. Associate these “letters” with the numbers
0, 1,2, ..., 36, respectively, thus forming a 37-letter alphabet, D. Use the affine cipher
to decipher the message

X01916R916546M9CNIL6BILLO6X0ORZO6UII

if you know that the plaintext message begins with “th”. Write out the affine mapping
fand its inverse.

Suppose the alphabet consists of a through z, in natural order, followed by a blank, a
comma, and a period, in that order. Associate these “letters” with the numbers 0, 1,
2, ..., 28, respectively, thus forming a 29-letter alphabet, E. Use the affine cipher to
decipher the message

BZZK,AUZNZG,RSKZ,AUWAO

if you know that the plaintext message begins with “b” and ends with “.”. Write out the
affine mapping f and its inverse.

Let ;A — A be defined by f(x) = ax + b mod n. Show that f~:A — A exists if
(a,n) = 1, and is given by f~'(x) = a'x + b’ mod n, where d’ is defined by

1 =damodn,with0 <da <n
and

b' = —a'bmod n.



14.

15.

16.

17.

18.

19.

20.

21.

22,
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Suppose we encipher a plaintext message M using the mapping f1:A — A resulting in
the ciphertext C. Next we treat this ciphertext as plaintext and encipher it using the
mapping f>: A — A resulting in the ciphertext D. The composition mapping f:A — A,
where f = f, ° f1, could be used to encipher the plaintext message M resulting in the
ciphertext D.

a. Prove that if ] and f; are translation ciphers, then f = f; ° fj is a translation cipher.

b. Prove that if f; and f; are affine ciphers, then f = f;  f] is an affine cipher.

a. Excluding the identity cipher, how many different translation ciphers are there
using an alphabet of n “letters”?

b. Excluding the identity cipher, how many different affine ciphers are there using an
alphabet of n “letters,” where 7 is a prime?

Rework Example 5 by breaking the message into two-digit blocks instead of three-
digit blocks. What is the enciphered message using the two-digit blocks?

Suppose that in an RSA Public Key Cryptosystem, the public key ise = 13, m = 77.
Encrypt the message “go for it” using two-digit blocks and the 27-letter alphabet A
from Example 2. What is the secret key d?

Suppose that in an RSA Public Key Cryptosystem, the public key is e = 35, m = 64.
Encrypt the message “pay me later” using two-digit blocks and the 27-letter alpha-
bet A from Example 2. What is the secret key d?

Suppose that in an RSA Public Key Cryptosystem, p = 11, ¢ = 13, and e = 7.
Encrypt the message “algebra” using the 26-letter alphabet from Example 4.
a. Use two-digit blocks.
b. Use three-digit blocks.
¢. What is the secret key d?
Suppose that in an RSA Public Key Cryptosystem, p = 17, ¢ = 19, and e = 19.
Encrypt the message “pascal” using the 26-letter alphabet from Example 4.
a. Use two-digit blocks.
b. Use three-digit blocks.
¢. What is the secret key d?
Suppose that in an RSA Public Key Cryptosystem, the public key is e = 23, m = 55.
The ciphertext message
26 25 00 39 09 18 52 17 49 52 02

was intercepted. What was the message that was sent? Use the 27-letter alphabet from
Example 2.
Suppose that in an RSA Public Key Cryptosystem, the public key is e = 5, m = 51.
The ciphertext message

04 05 32 44 26 39 04 00 13 08 00 44 24 29 17 26 49 28 03

was intercepted. What was the message that was sent? Use the 27-letter alphabet
from Example 2.
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23. The Euler' phi-function is defined for positive integers 7 as follows: ¢ (n) is the num-
ber of positive integers m such that 1 = m = n and (m, n) = 1. Evaluate each of the
following and list each of the integers m relatively prime to the given n.

a. ¢(5) b. #(19)
c. H(15) d. $(27)
Sec. 3.4, #42 < e. $(12) f. $(36)

24,

Prove that the number of ordered pairs a, b that form a key for an affine cipher
f(x) = ax + b mod n is ¢p(n)n.

25. a. Evaluate each of the following.
i.p(2-3) ii. (295 iii. $(3-5) iv. p(3-7)
b. If p is a prime, then ¢(p) = p — 1, since all positive integers less than p are rela-
tively prime to p. Prove that if p and ¢ are distinct primes, then ¢(pg) =
(p — D(g — D.
26. a. Evaluate each of the following.
i. ¢ (2) ii. ¢ (2% iii. ¢ (2% iv. ¢ (2
v. d (3) vi. ¢ (3%) vii. ¢ (3%) viii. ¢ (3%)

. If p is a prime and j is a positive integer, prove ¢(p/) = p/~!(p — 1).
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"Leonhard Paul Euler (1707-1783) was a Swiss mathematician and physicist, who also worked in mechanics,
optics, and astronomy. Euler is considered one of the greatest mathematicians of the 18th century and one of the
best of all time. He has been featured on Swiss, German, and Russian postage stamps, a Swiss banknote, and
has an asteroid named in his honor.
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A Pioneer in Mathematics
Blaise Pascal (1623-1662)

Blaise Pascal is most commonly associated with Pascal’s triangle, a
triangular-shaped pattern in which the binomial coefficients are
generated. Although Pascal was not the first to discover this pattern,
it was through his study of the pattern that he became the first writer
to describe precisely the process of mathematical induction.

As a child, Pascal was frequently ill. His father, a mathematician
himself, used to hide all his own mathematics books because he felt
that his son'’s study of mathematics would be too strenuous. But
when he was 12, Pascal was found in his playroom folding pieces of
paper, doing an experiment by which he discovered that the sum of
the angles in any triangle is equal to 180°. Pascal’s father was so impressed that he gave his
son Euclid's Elements to study, and Pascal soon discovered, on his own, many of the
propositions of geometry.

At the age of 14, Pascal was allowed to participate actively in the gatherings of a group
of French mathematicians. At 16, he had established significant results in projective
geometry. Also at this time, he began developing a calculator to facilitate his father’s work
of auditing chaotic government tax records. Pascal perfected the machine over a period of
ten years by building 50 various models, but ultimately it was too expensive to be practical.

Pascal made many contributions in the fields of mechanics and physics as well. The one-
wheeled wheelbarrow is another of his inventions. Through his correspondence with the
French mathematician Pierre de Fermat, he and Fermat laid the foundations of probability
theory.

Pascal died in 1662 at the age of 39. His contributions to 17th-century mathematics
were stunning, expecially in view of his short life. Scholars wonder how much more
mathematics would have issued from his gifted mind had he lived longer.

Lebrecht/Image Works
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CHAPTER THREE

Groups

Definition 3.1

Introduction

Some of the standard topics in elementary group theory are treated in this chapter: sub-
groups, cyclic groups, isomorphisms, and homomorphisms.

In the development here, the topic of isomorphism appears before homomorphism.
Some instructors prefer a different order and teach Section 3.6 (Homomorphisms) before
Section 3.5 (Isomorphisms). Logic can be used to support either approach. Isomorphism
is a special case of homomorphism, while homomorphism is a generalization of isomor-
phism. Isomorphisms were placed first in this book with the thought that “same structure”
is the simpler idea.

Both the additive and the multiplicative structures in Z, serve as a basis for some of the
examples in this chapter.

Definition of a Group

The fundamental notions of set, mapping, binary operation, and binary relation were pre-
sented in Chapter 1. These notions are essential for the study of an algebraic system. An
algebraic structure, or algebraic system, is a nonempty set in which at least one equiva-
lence relation (equality) and one or more binary operations are defined. The simplest struc-
tures occur when there is only one binary operation, as is the case with the algebraic system
known as a group.

An introduction to the theory of groups is presented in this chapter, and it is appropriate
to point out that this is only an introduction. Entire books have been devoted to the theory of
groups; the group concept is extremely useful in both pure and applied mathematics.

A group may be defined as follows.

= Group

Suppose the binary operation * is defined for elements of the set G. Then G is a group with
respect to * provided the following four conditions hold:

1. Gis closed under *. Thatis, x € G and y € G imply that x *y is in G.

2. *is associative. For all x, y, zin G, x * (y *z) = (x *y) * z.

137
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Definition 3.2

3. G has an identity element e. There is an e in G such that x * e = e * x = x for all
x€EG.

4. G contains inverses. For each a € G, there exists b € Gsuchthata*b = b*a = e.

The phrase “with respect to *” should be noted. For example, the set Z of all integers
is a group with respect to addition but not with respect to multiplication (it has no inverses
for elements other than *=1). Similarly, the set G = {1, —1} is a group with respect to
multiplication but not with respect to addition. In most instances, however, only one binary
operation is under consideration, and we say simply that “G is a group.” If the binary
operation is unspecified, we adopt the multiplicative notation and use the juxtaposition xy
to indicate the result of combining x and y. Keep in mind, though, that the binary operation
is not necessarily multiplication.

m Abelian Group

Let G be a group with respect to *. Then G is called a commutative group, or an abelian’
group, if * is commutative. That is, x * y = y * x for all x, y in G.

Example 1 We can obtain some simple examples of groups by considering appropriate
subsets of the familiar number systems.

a. The set C of all complex numbers is an abelian group with respect to addition.

b. The set Q — {0} of all nonzero rational numbers is an abelian group with respect to
multiplication.

c. The set R* of all positive real numbers is an abelian group with respect to multiplica-
tion, but it is not a group with respect to addition (it has no additive identity and no
additive inverses). |

The following examples give some indication of the great variety there is in groups.

Example 2 Recall from Chapter 1 that a permutation on a set A is a one-to-one mapping
from A onto A and that S(A) denotes the set of all permutations on A. We have seen that S(A)
is closed with respect to the binary operation e of mapping composition and that the
operation ° is associative. The identity mapping I is an identity element:

fehh=f=hef
for all f € S(A), and each f € S(A) has an inverse in S(A). Thus we may conclude from

results in Chapter 1 that S(A) is a group with respect to composition of mappings. However
S(A) is not abelian since mapping composition is not a commutative operation. |

Example 3  We shall take A = {1, 2, 3} and obtain an explicit example of S(A). In
order to define an element f of S(A), we need to specify (1), f(2), and f(3). There are three
possible choices for f(1). Since f is to be bijective, there are two choices for f(2) after

"The term abelian is used in honor of Niels Henrik Abel (1802-1829). A biographical sketch of Abel appears on
the last page of this chapter.
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f(1) has been designated, and then only one choice for f(3). Hence there are 3! = 3 -2 - 1

different mappings fin S(A). These are given by

e(l) =1
e=1:{¢e?)=2
e(3) =3

p(l) =2
p:ip(2) =3
p(3) =1

(1) =3
T7:472) =1
7(3) =2

a(l)y =2
og:302) =1
g3)=3
y(1) =3
yiyY@) =2
y3) =1
o) =1
0:46(2) =3
6(3) = 2.

Thus S(A) = {e, p, 7, 7, v, 8}. Following the same convention as in Exercise 3 of Section 1.4,
we shall construct a “multiplication” table for S(A). As shown in Figure 3.1, the result of f © g
is entered in the row with f at the left and in the column with g at the top.

° g
™ Figure 3.1 Sl I
In constructing the table for S(A), we list the elements of S(A) in a column at the left
and in a row at the top, as shown in Figure 3.2. When the product p*> = p © p is computed,
we have
p(1) = p(p(1)) = p(2) =3
P(2) = p(p(2) = p(3) =1
P’(3) = p(p3) = p(1) =2,
so p*> = 7. Similarly, p° o = y, 0 ° p = 8, and so on.
° e p p> o 0% o
e e p p? o Y 0
plp P e v b5 o
PPl p e p & o v
o o 1) v e p? p
y |y o & p e p?
2
M Figure 3.2 o o 4 7 P P ¢

A table such as the one in Figure 3.2 is referred to in various texts as a multiplication
table, a group table, or a Cayley table.” With such a table, it is easy to locate the identity

"The term Cayley table is in honor of Arthur Cayley (1821-1895). A biographical sketch of Cayley appears on

the last page of Chapter 1.
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m Figure 3.3

m Figure 3.4

and inverses of elements. An element e is a left identity if and only if the row headed by e
at the left end reads exactly the same as the column headings in the table. Similarly, e is a
right identity if and only if the column headed by e at the top reads exactly the same as the
row headings in the table. If it exists, the inverse of a certain element a can be found by
searching for the identity e in the row headed by a and again in the column headed by a.

If the elements in the row headings are listed in the same order from top to bottom as the
elements in the column headings are listed from left to right, it is also possible to use the table
to check for commutativity. The operation is commutative if and only if equal elements appear
in all positions that are symmetrically placed relative to the diagonal from upper left to lower
right. In Example 3, the group is not abelian since the table in Figure 3.2 is not symmetric. For
example, y © p2 = §isinrow 5, column 3, and p2 oy = ¢isinrow 3, column 5.

Example 4 et G be the set of complex numbers given by G = {1, —1, i, —i}, where
i = V/—1, and consider the operation of multiplication of complex numbers in G. The
table in Figure 3.3 shows that G is closed with respect to multiplication.

Multiplication in G is associative and commutative, since multiplication has these prop-
erties in the set of all complex numbers. We can observe from Figure 3.3 that 1 is the iden-
tity element and that all elements have inverses. Each of 1 and —1 is its own inverse, and i
and —i are inverses of each other. Thus G is an abelian group with respect to multiplication.

X 1 -1 i —1
1 1 -1 i —i
-1 | —1 1 —i i
i i —i —1 1
—i —i i 1 -1 -
Example 5 1t is an immediate corollary of Theorem 2.28 that the set
Z, ={[0}.[1}.[2}....[n — 1]}
of congruence classes modulo n forms an abelian group with respect to addition. |

Example 6 LetG = {e,a,b,c} with multiplication as defined by the table in Figure 3.4.

e a b c

From the table, we observe the following:

1. G is closed under this multiplication.

2. e is the identity element.



M Figure 3.5
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3. Each of e and b is its own inverse, and ¢ and a are inverses of each other.

4. This multiplication is commutative.

This multiplication is also associative, but we shall not verify it here because it is a labori-
ous task. It follows that G is an abelian group. |

Example 71 The table in Figure 3.5 defines a binary operation * on the set § =

{A,B,C,D}.

*| A B C D
A| B C A B
B| C D B A
c| A B C D
D| A B D D

From the table, we make the following observations:

1. Sis closed under *.
2. Cis an identity element.
3. D does not have an inverse since DX = C has no solution.

Thus S is not a group with respect to *. |

m Finite Group, Infinite Group, Order of a Group

If a group G has a finite number of elements, G is called a finite group, or a group of finite
order. The number of elements in G is called the order of G and is denoted by either
o(G) or|G]|. If G does not have a finite number of elements, G is called an infinite group.

Example 8 In Example 3, the group

G ={e,p,p’ 0,7, 8}

has order o(G) = 6. In Example 5, o(Z,) = n. The set Z of all integers is a group under ad-
dition, and this is an example of an infinite group. If A is an infinite set, then S(A) furnishes
an example of an infinite group. u

Exercises 3.1 I——

True or False
Label each of the following statements as either true or false.
1. The identity element in a group G is its own inverse.

2. If G is an abelian group, then x~! = x for all x in G.
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M Figure 3.6

Let G be a group that is not abelian. Then xy # yx for all x and y in G.
The set of all nonzero elements in Zg is an abelian group with respect to multiplication.

The Cayley table for a group will always be symmetric with respect to the diagonal
from upper left to lower right.

If a set is closed with respect to the operation, then every element must have an inverse.

Exercises

In Exercises 1-12, decide whether each of the given sets is a group with respect to the
indicated operation. If it is not a group, state a condition in Definition 3.1 that fails to hold.

1.

2
3
4.
5
6

The set of all rational numbers with operation addition.

. The set of all irrational numbers with operation addition.

. The set of all positive irrational numbers with operation multiplication.

The set of all positive rational numbers with operation multiplication.

. The set of all real numbers x such that 0 < x = 1, with operation multiplication.

. For a fixed positive integer n, the set of all complex numbers x such that x* = 1 (that

is, the set of all nth roots of 1), with operation multiplication.

The set of all complex numbers x that have absolute value 1, with operation multipli-
cation. Recall that the absolute value of a complex number x written in the form
x = a + bi, with a and b real, is given by |x| = |a + bi| = Va* + b~

8. The set in Exercise 7 with operation addition.

9. The set E of all even integers with operation addition.

10.
11.
12.

The set E of all even integers with operation multiplication.
The set of all multiples of a positive integer n with operation addition.

The set of all multiples of a positive integer n with operation multiplication.

In Exercises 13 and 14, the given table defines an operation of multiplication on the set

S:

{e,a, b, c}. In each case, find a condition in Definition 3.1 that fails to hold, and

thereby show that S is not a group.

13.

See Figure 3.6.

14. See Figure 3.7.
X e a b ¢ X e a b c
e e a b ¢ e e a b c
a a b a b a e a b c
b b ¢ b c b e a b c
c c e ¢ e ® Figure 3.7 c e a b c
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In Exercises 15-20, let the binary operation * be defined on Z by the given rule. Determine
in each case whether Z is a group with respect to * and whether it is an abelian group. State
which, if any, conditions fail to hold.

1S. x*y=x+y+1 16. x*y=x+y—1
17. x*y = x + xy 18. x*xy=xy +y
19. x*y=x+xy +y 20 xxy=x—1y

In Exercises 21-26, decide whether each of the given sets is a group with respect to the
indicated operation. If it is not a group, state all of the conditions in Definition 3.1 that fail
to hold. If it is a group, state its order.

2

-

. The set {[1], [3]} € Zs with operation multiplication.
22. The set {[1],[2],[3], [4]} < Zs with operation multiplication.
23. The set {[0],[2],[4]} < Zg with operation multiplication.

24. The set {[0],[2],[4],[6],[8]} < Zo with operation multiplication.
25. The set {[0],[2],[4],[6],[8]} S Zo with operation addition.

26. The set {[0],[2],[4],[6]} < Zs with operation addition.

27. a. Let G = {[a]|[a] # [0]} < Z,. Show that G is a group with respect to multiplica-

Sec. 3.4, #11 < tion in Z,, if and only if n is a prime. State the order of G.
Sec. 3.5, #17 < b. Construct a multiplication table for the group G of all nonzero elements in Z,
Sec. 4.4,#13,20 < and identify the inverse of each element.

28. Let G be the set of eight elements G = {1, i, j, k, —1, —i, —j, —k} with identity ele-
ment 1 and noncommutative multiplication given by’

(-1’ =1,
P=p=1K=-1,
ij = —ji =k
Jjk=—kji =1,
Sec. 3.3, #18a, 27a < ki = —ik = J,
Sec.3.4,#2 < —x = (—1Dx =x(—1)forall xin G.
Sec. 3.5, #11 <
Sec. 4.4, #17 < (The circular order of multiplication is indicated by the diagram in Figure 3.8.) Given
Sec. 4.5, #10 < that G is a group of order 8, write out the multiplication table for G. This group is
Sec. 4.6, #3, 11, 16 < known as the quaternion group.

In a multiplicative group, a® is defined by a> = a * a.
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m Figure 3.8

29.

Sec. 3.3, #18c, 27¢c <
Sec.3.4,#5 <
Sec. 4.2, #6 <

30.

Sec. 3.3, #18b, 27b <
Sec. 4.1, #20 <
Sec. 4.6, #14 <

31.

32.

A permutation matrix is a matrix that can be obtained from an identity matrix /, by
interchanging the rows one or more times (that is, by permuting the rows). For n = 3,
the permutation matrices are /3 and the five matrices

1 0 0 01 0 01 0

P=|0 0 1| P,=|1 0 0| P,=]|0 0 1
0 1 0] 0 0 1] 1 0 0
[0 0 1] [0 0 1]

P,=|0 1 0| Ps=|1 0 0.
1 0 0] 0 1 0]

Given that G = {3, Py, P, P3, P4, Ps} is a group of order 6 with respect to matrix mul-
tiplication, write out a multiplication table for G.

Consider the matrices

in M>(R), and let G = {I5, R, R% R, H,D,V, T'}. Given that G is a group of order 8
with respect to multiplication, write out a multiplication table for G.

Prove or disprove that the set of all diagonal matrices in M,(R) forms a group with
respect to addition.

Let G be the set of all matrices in M3(R) that have the form

S O
o O

0
0
c

with all three numbers a, b, and ¢ nonzero. Prove or disprove that G is a group with
respect to multiplication.



Sec. 1.1, #7¢ >

Sec. 1.1, #7¢ >

Sec. 1.1, #7¢ >

3.2

33.

34.
35.
36.

37.

38.

39.
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Let G be the set of all matrices in M3(R) that have the form

1 a b
0 1 ¢
0O 0 1

for arbitrary real numbers a, b, and c. Prove or disprove that G is a group with respect
to multiplication.

Prove or disprove that the set G in Exercise 32 is a group with respect to addition.
Prove or disprove that the set G in Exercise 33 is a group with respect to addition.

For an arbitrary set A, the power set P(A) was defined in Section 1.1 by P(A) =
{X| X € A}, and addition in P(A) was defined by

X+Y=XUY) —(XNY)
=X-VNUy-X.
a. Prove that P(A) is a group with respect to this operation of addition.

b. If A has n distinct elements, state the order of P(A).

Write out the elements of P(A) for the set A = {a,b,c}, and construct an addition
table for (A) using addition as defined in Exercise 36.

LetA = {a, b, c}. Prove or disprove that P(A) is a group with respect to the operation
of union.

Let A = {a, b, c¢}. Prove or disprove that P(A) is a group with respect to the operation
of intersection.

Properties of Group Elements

Several consequences of the definition of a group are recorded in Theorem 3.4.

Strategy

Parts a and b of the next theorem are statements about uniqueness, and they can be
proved by the standard type of uniqueness proof: Assume that two such quantities exist,
and then prove the two to be equal.

Theorem 3.4

Properties of Group Elements

Let G be a group with respect to a binary operation that is written as multiplication.

a.
b.

C.

The identity element e in G is unique.
For each x € G, the inverse x~ ! in G is unique.
Foreachx€ G, x )™ ! = x.
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Uniqueness

(pNhNg)=r

1,—1

d. Reverse order law. For any x and y in G, (xy) ! = y~Ix~ L.

e. Cancellation laws. If g, x, and y are in G, then either of the equations ax = ay or
xa = ya implies that x = y.

Proof We prove parts b and d and leave the others as exercises. To prove part b, let
X € G, and suppose that each of y and z is an inverse of x. That is,
xy=e=yx and xz=-e = zx.
Then
y=ey since e is an identity
= (zx)y sincezx =e
= z(xy) by associativity
= z(e) sincexy = e
=z since e is an identity.
Thus y = z, and this justifies the notation x ! as the unique inverse of x in G.

We shall use part b in the proof of part d. Specifically, we shall use the fact that the in-
verse (xy)~ ! is unique. This means that in order to show that y~'x~! = (xy)~!, we need only
to verify that (xy)(y 'x™!') = e = (y"'x ") (xy). These calculations are straightforward:

O D =y 'y =yley=yly=e
and

O XD =xgy ' =xex T = = e

1 1

The order of the factors y~! and x~ ! in the reverse order law (xy) ' = y~'x~!is crucial
in a nonabelian group. An example where (xy) ' # x~ 'y~ !is requested in Exercise 5 at the
end of this section.

Part e of Theorem 3.4 implies that in the table for a finite group G, no element of G
appears twice in the same row, and no element of G appears twice in the same column.
These results can be extended to the statement in the following strategy box. The proof of
this fact is requested in Exercise 10.

Strategy =

In the multiplication table for a group G, each element of G appears exactly once in each
row and also appears exactly once in each column.

Theorem 3.5

Although our definition of a group is a standard one, alternative forms can be made.
One of these is given in the next theorem.

m Equivalent Conditions for a Group

Let G be a nonempty set that is closed under an associative binary operation called multi-
plication. Then G is a group if and only if the equations ax = b and ya = b have solutions
x and y in G for all choices of @ and b in G.
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Proof Assume first that G is a group, and let a and b represent arbitrary elements of G.
Now a 'isin G,and soare x = a~'band y = ba~'. With these choices for x and y, we have

ax = a(a 'b) = (aa HYb =eb =b
and
ya = (ba Ma = b(a"'a) = be = b.

Thus G contains solutions x and y to ax = b and ya = b.

Suppose now that the equations always have solutions in G. We first show that G
has an identity element. Let a represent an arbitrary but fixed element in G. The equa-
tion ax = a has a solution x = u in G. We shall show that u is a right identity for every
element in G. To do this, let b be arbitrary in G. With z a solution to ya = b, we have
za = b and

bu = (za)u = z(au) = za = b.

Thus u is a right identity for every element in G. In a similar fashion, there exists an
element v in G such that vb = b for all b in G. Then vu = v, since u is a right identity,
and vu = u, since v is a left identity. That is, the element ¢ = u = v is an identity ele-
ment for G.

Now for any a in G, let x be a solution to ax = e, and let y be a solution to ya = e.
Combining these equations, we have

= yax
= y’

and x = y is an inverse for a. This proves that G is a group.

In a group G, the associative property can be extended to products involving more than
three factors. For example, if a;, a», a3, and a4 are elements of G, then applications of con-
dition 2 in Definition 3.1 yield

laf(ayas)]a, = [(aya)a3)ay
and
(aya)(aza,) = [(a1a0)a3]ay.

These equalities suggest (but do not completely prove) that regardless of how symbols
of grouping are introduced in a product aja,aszas, the resulting expression can be
reduced to

[(a\ay)a3]ay.

With these observations in mind, we make the following definition.
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Definition 3.6 = Product Notation

Let n be a positive integer, n = 2. For elements ay, a, . . . , a, in a group G, the expression
aay - - - a, is defined recursively by

aa; - g = (@ay 0 a)a, for k=1

We can now prove the following generalization of the associative property.

Theorem3.7 m Generalized Associative Law
Let n = 2 be a positive integer, and let ay, ay, . . ., a, denote elements of a group G. For
any positive integer m such that 1 = m < n,
(@ay - )@y " @) =@y - Q.
Complete Proof Forn = 2, let P, denote the statement of the theorem. With n = 2, the only possi-
Induction ble value for m is m = 1, and P, asserts the trivial equality

(a)(a) = a,a,.
Assume now that Py is true: For any positive integer m such that 1 = m < k,
(@ay =+ a) ey " @) = aay .

Consider the statement Py |, and let m be a positive integer such that | = m < k + 1. We
treat separately the cases where m = k and where 1 = m < k. If m = k, the desired equality
is true at once from Definition 3.6, as follows:

(@ay =+ @) (Gury * Gr1) = (@@ - QY-
If 1 = m <k,then
Qi1 " Gy = Qg "7 Gt

by Definition 3.6, and consequently,

(ala2 e am)(am-H e akak-H)
= (aa, - am)[(am+1 T ak)akﬂ]
= [(a1a, *** @) (@pnsy *** @)]ag, by the associative property
= laja, - qlags, by P,
= alaz ttt ak+1 by Definltlon 3.6.

Thus Py is true whenever Py is true, and the proof of the theorem is complete.

The material in Section 1.6 on matrices leads to some interesting examples of groups,
both finite and infinite. This is pursued now in Examples 1 and 2.

Example 1 Theorem 1.30 translates directly into the statement that M,,x,(R) is an

abelian group with respect to addition. This is an example of another infinite group.
When the proof of each part of Theorem 1.30 is examined, it becomes clear that each

group property in M,,x,(R) derives in a natural way from the corresponding property in R.
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If the set R is replaced by the set Z of all integers, the steps in the proof of each part of
Theorem 1.30 can be paralleled to prove the same group property for M,,x,(Z). Thus
M,,x»(Z) is also a group under addition. The same reasoning is valid if R is replaced by the
set Q of all rational numbers, by the set C of all complex numbers, or by the set Z; of all
congruence classes modulo k. That is, each of M,,,;x,(Q), My, x,(C), and M,,x,(Zy) is a group
with respect to addition.

We thus have a family of groups, with M,,x,,(Zy) finite and all the others infinite. Some
aspects of computation in M,,«,(Z;) may appear strange at first. For instance,

1] [3] [0]
(2] 4 21

B =

is the additive inverse of

3] 1 Bl
in M>x3(Zs), since
o) [0 o]
A+B_[[0] 0] [oJ‘B”‘ 3

In Example 4 of Section 1.6, it was shown that the matrix

=[5 ]

in M,(R) does not have an inverse, so the nonzero elements of M,(R) do not form a group
with respect to multiplication. This result generalizes to arbitrary M,(R) with n > 1; that
is, the nonzero elements of M,(R) do not form a group with respect to multiplication. How-
ever, the next example shows that the invertible elements’ of M,(R) form a group under
multiplication.

Example 2 We shall show that the invertible elements of M,(R) form a group G with
respect to matrix multiplication.

We have seen in Section 1.6 that matrix multiplication is a binary operation on M,(R), that
this operation is associative (Theorem 1.32), and that [, = [Bij]nx,, is an identity element
(Theorem 1.34). These properties remain valid when attention is restricted to the set G of
invertible elements of M,(R), so we need only show that G is closed under multiplication. To
this end, suppose that A and B are elements of M,(R) such that A~! and B~! exist. Using the
associative property of matrix multiplication, we can write

(AB)(BilAfl) = A(BBil)Afl
=ALA™!
= AA71
=1,

Recall that a square matrix A is called invertible if its multiplicative inverse, A~ !, exists.
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Sec. 5.1, #36 <

Although matrix multiplication is not commutative, a similar simplification shows that
(B~'A™)(AB) = 1,

and it follows that (AB) ! exists and that (AB)~! = B~ 'A~!. Thus G is a group.

As in Example 1, the discussion in the preceding paragraph can be extended by re-
placing R with one of the systems Z, Q, C, or Z;. That is, the invertible elements in each
of the sets M,(Z), M,(Q), M,(C), and M, (Z;) form a group with respect to multiplication.
Once again, the computations in M,(Z;) may seem strange. As an illustration, it can be
verified by multiplication that

m [1]} is the inverse o |:[2] [6]:|
[[51 2] *° "l oo

in the group of invertible elements of M»(Z7). [ |

Exercises 3.2 I——

True or False
Label each of the following statements as either true or false.
1. Letx, y, and z be elements of a group G. Then (xyz) ! = x" 'y~ 1771
2. In a Cayley table for a group, each element appears exactly once in each row.

3. The Generalized Associative Law applies to any group, no matter what the group
operation is.

4. The nonzero elements of M,,«, (R) form a group with respect to matrix multiplication.
5. The nonzero elements of M, (R) form a group with respect to matrix multiplication.

6. The invertible elements of M,, (R) with respect to matrix multiplication form an abelian
group.

Exercises
1. Prove part a of Theorem 3.4.
2. Prove part ¢ of Theorem 3.4.
3. Prove part e of Theorem 3.4.
4

. An element x in a multiplicative group G is called idempotent if x> = x. Prove that
the identity element e is the only idempotent element in a group G.

In Example 3 of Section 3.1, find elements a and b of S(A) such that (ab) ™' # a~ b7,

6. In Example 3 of Section 3.1, find elements a, b, and ¢ of S(A) such that ab = bc but
a # c.

7. In Example 3 of Section 3.1, find elements a and b of S(A) such that (ab)? # a’b>.

n

8. Prove that in Theorem 3.5, the solutions to the equations ax = b and ya = b are actu-
ally unique.
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9. Let G be a group.

10

In

a. Prove that the relation R on G, defined by xRy if and only if there exists ana € G
such that y = a™ ! xa, is an equivalence relation.

b. Letx € G. Find [x], the equivalence class containing x, if G is abelian.

. Suppose that G is a finite group. Prove that each element of G appears in the multipli-
cation table for G exactly once in each row and exactly once in each column.

Exercises 11 and 12, part of the multiplication table for the group G = {a, b, ¢, d} is

given. In each case, complete the table.

11
12

m Fi

13

14.

15.

16.

17.

18.

19.

20.
21.
22,

. See Figure 3.9.
. See Figure 3.10.
X a b ¢ d X a b ¢ d
a d a
b b a
c c c a
gure 3.9 d ¢ ™ Figure 3.10 d

. Prove that if x = x~! for all x in the group G, then G is abelian.

Let a and b be elements of a group G. Prove that G is abelian if and only if
(@) ' =a

Let a and b be elements of a group G. Prove that G is abelian if and only if
(ab)? = a*b.

Use mathematical induction to prove that if a is an element of a group G, then
(@~ " = (a")~! for every positive integer n.

Let a, b, ¢, and d be elements of a group G. Find an expression for (abcd) ™! in terms

ofa b7 ¢ andd ™.

Use mathematical induction to prove that if aj, as, . . ., a, are elements of a group G,
then (aya, -+ - a,)"' = a,'a,’, --- a;'a;'. (This is the general form of the reverse
order law for inverses.)

Let G be a group that has even order. Prove that there exists at least one element
a€ G suchthata # eanda = a™ .

Prove or disprove that every group of order 3 is abelian.

Prove or disprove that every group of order 4 is abelian.

Suppose G is a finite set with n distinct elements given by G = {a}, a, . . ., a,}.
Assume that G is closed under an associative binary operation * and that the following
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3.3

Definition 3.8

two cancellation laws hold for all a, x, and y in G:
a*x=a*y implies x =y;
x#*a=y*a implies x =y.

Prove that G is a group with respect to .

23. Suppose that G is a nonempty set that is closed under an associative binary opera-
tion * and that the following two conditions hold:

1. There exists a left identity e in G such that e xx = x for all x € G.
2. Each a € G has a left inverse ¢; in G such that g;* a = e.

Prove that G is a group by showing that e is in fact a two-sided identity for G and that
a, is a two-sided inverse of a.

24. Reword Definition 3.6 for a group with respect to addition.
25. State and prove Theorem 3.7 for an additive group.

2] [4] [1]
[0] 5] [3]

a. M,y (Ze) b. M,y (Z;)

1] [2
27. Find the multiplicative inverse of H?j %45 in the given group.

26. Find the additive inverse of [ :| in the given group.

a. Invertible elements of M, (Zs) b. Invertible elements of M, (Z,)

Subgroups
Among the nonempty subsets of a group G, there are some that themselves form a group

with respect to the binary operation * in G. That is, a subset H S G may be such that H is
also a group with respect to *. Such a subset H is called a subgroup of G.

Subgroup

Let G be a group with respect to the binary operation *. A subset H of G is called a subgroup
of G if H forms a group with respect to the binary operation * that is defined in G.

The subsets H = {e¢} and H = G are always subgroups of the group G. They are
referred to as trivial subgroups, and all other subgroups of G are called nontrivial.

Example 1 The set Z of all integers is a group with respect to addition, and
the set E of all even integers is a nontrivial subgroup of Z. (See Exercise 9 of Sec-
tion 3.1.) |

Example 2 The set of all nonzero complex numbers is a group under multiplication,
and G = {1, —1, i, —i} is a nontrivial subgroup of this group. (See Example 4 of Sec-
tion 3.1.) |
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Example 3 From the discussion in Example 1 of Section 3.2, it is clear that for fixed m
and n, each of the additive groups in the list

Mm><n(Z) < Man(Q) = Mm><n(R) = Mm><n(C)

is a subgroup of every listed group in which it is contained. |

If G is a group with respect to *, then * is an associative operation on any nonempty
subset of G. A subset H of G is a subgroup, provided that

1. H contains the identity;
2. His closed under *; and

3. H contains an inverse for each of its elements.

In connection with condition 1, consider the possibility that H might contain an identity e’
for its elements that could be different from the identity e of G. Such an element ¢’ would
have the property that ¢’ * ¢’ = ¢’, and Exercise 4 of Section 3.2 then implies that ¢’ = e.
In connection with condition 3, we might consider the possibility that an element a € H
might have one inverse as an element of the subgroup H and a different inverse as an ele-
ment of the group G. In fact, this cannot happen because part b of Theorem 3.4 guarantees
that the solution ytoa * y = y * a = e is unique in G. The following theorem gives a set
of conditions that is slightly different from 1, 2, and 3.

m Equivalent Set of Conditions for a Subgroup

pP=4q
P=4q

A subset H of the group G is a subgroup of G if and only if these conditions are satisfied:

a. H is nonempty;
b. x € Hand y € H imply xy € H; and
c. x € Himpliesx ! € H.

Proof If His a subgroup of G, the conditions follow at once from Definitions 3.8 and 3.1.

Suppose that H is a subset of G that satisfies the conditions. Since H is nonempty, there
is at least one a € H. By condition ¢, a ' €H. But a € H and a” ! € H imply
aa”! = eEH, by condition b. Thus H contains e, is closed, and contains inverses. Hence
H is a subgroup.

Example 4 1t follows from Example 5 of Section 3.1 that
G = Zs = {[0}, [1], [2], [3]. [4]. [5). [6]. [7]}

forms an abelian group with respect to addition [a] + [b] = [a + b]. Consider the subset

H = {[0],[2], [4]. [6]}
of G. An addition table for H is given in Figure 3.11. The subset H is nonempty, and it is
evident from the table that H is closed and contains the inverse of each of its elements.
Hence H is a nontrivial abelian subgroup of Zg under addition.
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o Figure 3.1

® Figure 3.12

Theorem 3.10

Groups

+ | [0 [2] [4] [6]

[0] | [0] 2] [4] [6]

2] | 2] 4] [6] [0]

[4] | 4] [6] [0] [2]

[6] | [6] [0] [2] [4] .

Example B In Exercise 27 of Section 3.1, it was shown that
G = {[1]. (2}, 3], [4]. [S}. [6]} = Z;

is a group with respect to multiplication in Z;. The multiplication table in Figure 3.12
shows that the nonempty subset

H = {[1}.[2].[4]}

is closed and contains inverses and therefore is an abelian subgroup of G.

— — —
AN =
Pl T

An even shorter set of conditions for a subgroup is given in the next theorem.

m Equivalent Set of Conditions for a Subgroup

p=9q

pP=q

A subset H of the group G is a subgroup of G if and only if

a. H is nonempty, and
b. a € Hand b € Himply ab™ ' € H.

Proof Assume H is a subgroup of G. Then H is nonempty since ¢ € H. Let a € H and
b € H Then b~ ! € H since H contains inverses. Since a € H and b~ ! € H, the product
ab~! € Hbecause H is closed. Thus conditions a and b are satisfied.

Suppose, conversely, that conditions a and b hold for H. There is at least one a € H,
and condition b implies that aa~! = ¢ € H. For an arbitrary x € H, we have ¢ € H and
x € H,which implies that ex™! = x~! € H Thus H contains inverses. To show closure, let
x € H and y € H. Since H contains inverses, y_' € H But x € H and y~! € H imply
x(y~1~! = xy € H, by condition b. Hence H is closed; therefore, H is a subgroup of G.
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When the phrase “H is a subgroup of G” is used, it indicates that H is a group with
respect to the group operation in G. Consider the following example.

Example 6 The operation of multiplication is defined in Zo by
[a][b] = [ab].

This rule defines a binary operation that is associative, and Zj, is closed under this

multiplication. Also, [1] is an identity element. However, Z is not a group with respect to
multiplication, since some of its elements do not have inverses. For example, the products

2o} =[0]  [2][1] =[2]
22)=[4] 23] =[6]
[2][4]=[8]  [2][5]=[0]
[2)[6]=[2]  [2)[7]=1[4]
[2][8] =[6]  [2][9] =[8]

show that [2][x] = [1] has no solution in Z.

Now let us examine the multiplication table for the subset H = {[2], [4], [6], [8]} of
Z (see Figure 3.13). It is surprising, perhaps, but the table shows that [6] is an identity
element for H and that H actually forms a group with respect to multiplication. However,
H is not a subgroup of Z since Z is not a group with respect to multiplication.

x| [2] [4] [6] [8]
2] | [4] [8] [2] [6]
[4] | [8] [6] [4] [2]
[6] | [2] [4] [6] [8]
® Figure 3.13 8] | 6] (21 18] [4 n

Integral exponents can be defined for elements of a group as follows.

Definition 3.11 m Integral Exponents

Let G be a group with the binary operation written as multiplication. For any a € G, we
define nonnegative integral exponents by

a® = e, a =a,

and

k1 = gk« a for any positive integer k.

a
Negative integral exponents are defined by

a* = (a"* for any positive integer k.
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Theorem 3.12

It is common practice to write the binary operation as addition in the case of abelian
groups. When the operation is addition, the corresponding multiples of a are defined in a
similar fashion. The following list shows how the notations correspond, where k is a posi-
tive integer.

Multiplicative Notation Additive Notation
a=e Oa=0
a'=a la=a

dtt=4dq (k+ Da =ka + a
a =@ (—=k)a = k(—a)

The notation ka in additive notation does not represent a product of k and a but, rather, a sum
ka=a+a+ -+ +a

with k terms. In Oa = 0, the zero on the left is the zero integer, and the zero on the right
represents the additive identity in the group.

Considering the rich variety of operations and sets that have been involved in our
examples, it may be surprising and reassuring to find, in the next theorem, that the familiar
laws of exponents hold in a group.

m Laws of Exponents

Induction

Let x and y be elements of the group G, and let m and n denote integers. Then

n -n

a. x
b. x™ . x" = x"tn

3 (xm)n = xym

d. If Gis abelian, (xy)" = x™y".

° X = e

o

Proof The proof of each statement involves the use of mathematical induction. It would
be redundant, and even boring, to include a complete proof of the theorem, so we shall
assume statement a and prove b for the case where m is a positive integer. Even then, the
argument is lengthy. The proofs of the statements a, ¢, and d are left as exercises.
Let m be an arbitrary, but fixed, positive integer. There are three cases to consider for n:
in=0
ii. n a positive integer
iii. n a negative integer.
First, let n = O for case i. Then
Kot =x"e 0 =x"e=x" and ¥ =x"0 =",

Thus x™ - x" = x™*" in the case where n = 0.
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Second, we shall use induction on n for case ii where 7 is a positive integer. If n = 1,
we have

XM e xt = xM .y = xm+l — mern,

and statement b of the theorem holds when n = 1. Assume that b is true for n = k. That is,
assume that

x™ . xk — xm+k
Then, forn = k + 1, we have

XM eyt = M. xk+l

=x"+(*+x) by definition of x**'

= " -x) - x by associativity

= X"tk x by the induction hypothesis
= it by definition of x™0*!
= X" sincen =k + 1.
Thus b is true for n = k + 1, and it follows that it is true for all positive integers 7.
Third, consider case iii where n is a negative integer. This means that n = —p, where p is
a positive integer. We consider three possibilities for p: p = m, p < m, and m < p.
Ifp = m,thenn = —p = —m, and we have

XTexX'=x"-x"=e
by statement a of the theorem, and

xm+n = ynm = xO = e.

We have x™ « x" = x"*" when p = m.

Ifp <m,letm — p = g, sothat m = g + p where g and p are positive integers. We
have already proved statement b when m and n are positive integers, so we may use
x9P = x4« xP. This gives

K" X" xITP . x7P
)Cq . xP . x_l’
xl-e by statement a
x‘/
= X‘I*P*I’

— mtn
=X .

That is, ™ + x* = x™*" for the case where p < m.
Finally, suppose that m < p. Let r = p — m, so that r is a positive integer and
p = m + r. By the definition of x 7,
xP=xh
— (x—l)m+r
= (x "+ (") since m and r are positive integers

m -r

=X * X
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Substituting this value for x 7 in x™ « x" = x + x™7, we have
Xtex'=x"(x"x")
" exT™ e xT"

r

=e-*x

We also have

m m+n

sox™ - x"=x when m < p.

We have proved that x™ + x" = x™*"in the cases where m is a positive integer and 7 is
any integer (zero, positive, or negative). Of course, this is not a complete proof of statement
b of the theorem. A complete proof would require considering cases where m = 0 or where
m is a negative integer. The proofs for these cases are similar to those given here, and we

omit them entirely.

The laws of exponents in Theorem 3.12 translate into the following laws of multiples
for an additive group G.

Laws of Multiples
nx + (—n)x =0
mx + nx = (m + n)x

n(mx) = (nm)x

o Fo8

If G is abelian, n(x + y) = nx + ny.

In connection with integral exponents, consider the following example.

Example 1 Let Gbea group, let a be an element of G, and let H be the set of all
elements of the form a”, where n is an integer. That is,
H={x€G|x=a"forn €Z}.

Then H is nonempty and actually forms a subgroup of G. For if x = a™ € H and
y=a"EH, thenxy = """ € Hand x_! = ¢~ € H. It follows from Theorem 3.9 that
H is a subgroup. u

Definition 3.13m Cyclic Subgroup

Let G be a group. For any a € G, the subgroup
H={x€G|x=d"forn € Z}
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is the subgroup generated by a and is denoted by <a>. A given subgroup K of G is a cyclic
subgroup if there exists an element b in G such that

K = (b) = {y € G|y = b" for some n € Z}.

In particular, G is a cyclic group if there is an element ¢ € G such that G = <a>.

Example 8
a. The set Z of integers is a cyclic group under addition. We have Z = <1> andZ = <— 1>.
b. The subgroup E  Z of all even integers is a cyclic subgroup of the additive group Z,
generated by 2. Hence E = <2>
¢. In Example 6, we saw that

H = {[2], [4],[6), [8]} = Zy
is an abelian group with respect to multiplication. Since

(2] =1[4) [2F =[8], [2]'=T6].

then
H = ([2])
d. The group S(A) = {e, p, p*, o, y, 8} of Example 3 in Section 3.1 is not a cyclic group.
This can be verified by considering <a> for all possible choices of a in S(A). |

Exercises 3.3 I——

True or False
Label each of the following statements as either true or false, where H is a subgroup of G.
1. Every group G contains at least two subgroups.

2. The identity element in a subgroup H of a group G must be the same as the identity
element in G.

An element x in H has an inverse x! in H that may be different than its inverse in G.
The generator of a cyclic group is unique.
Any subgroup of an abelian group is abelian.

If a subgroup H of a group G is abelian, then G must be abelian.

NS R W

The relation R on the set of all groups defined by HRK if and only if H is a subgroup
of K is an equivalence relation.

9o

The empty set & is a subgroup of any group G.
9. Any group of order 3 has no nontrivial subgroups.

10. Zs under addition modulo 5 is a subgroup of the group Z under addition.
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Exercises

1.

10.

Let S(A) = {e, p, p2, a,7, 0} be as in Example 3 in Section 3.1. Decide whether each
of the following subsets is a subgroup of S(A). If a set is not a subgroup, give a reason
why it is not. (Hint: Construct a multiplication table for each subset.)

a. {e,0} b. {e, 6}

c. {e,p} d. {e,p’}

e. {e,p,p’} f. {e.p. o}
g {e,o,v} h. {e¢,0,v,6}

Decide whether each of the following sets is a subgroup of G = {1, —1, i, —i} under
multiplication. If a set is not a subgroup, give a reason why it is not.

a. {1, —1} b. {1,i}

c. {i,—1i} d. {1, —i}

Consider the group Z ;s under addition. List all the elements of the subgroup <[6] >, and
state its order.

List all the elements of the subgroup <[8]> in the group Z,g under addition, and state its
order.

Assume that the nonzero elements of Z;3 form a group G under multiplication

[a][b] = [ab].
a. List the elements of the subgroup <[4]> of G, and state its order.
b. List the elements of the subgroup <[8]> of G, and state its order.

Let G be the group of all invertible matrices in M>(R) under multiplication. List the
elements of the subgroup <A> of G for the given A, and give o ( A>)

0 -1 0 -1
a. A = b. A=

1 0 -1 0
e a=|? 1 a a=| b !

1 -1 1 0

Let G be the group M»(Zs) under addition. List the elements of the subgroup <A> of G
for the given A, and give o ((4)).

2] [0 0] 1
a.A:[H HJ M{H []J
[0] 3] 2] [4]
Find a subset of Z that is closed under addition but is not a subgroup of the additive

group Z.

Let G be the group of all nonzero real numbers under multiplication. Find a subset of
G that is closed under multiplication but is not a subgroup of G.

Letn > 1 be an integer, and let a be a fixed integer. Prove or disprove that the set
H={x€Z|ax=0(modn)}

is a subgroup of Z under addition.



Sec. 4.4, #8 <

Sec. 3.5, #9 <

Sec. 1.6, #28 >

Sec. 3.5, #10 <
Sec. 4.3, #29 <

Sec. 3.5, #3 <

Sec.3.5,#5 <
Sec. 4.6, #15 <

11.

12.

13.

14.

15.

16.
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Let H be a subgroup of G, let a be a fixed element of G, and let K be the set of all ele-
ments of the form aha™', where h € H. That is,

K = {x € G |x = aha™" for some h € H}.

Prove or disprove that K is a subgroup of G.

Prove or disprove that H = {h € G|h~! = h} is a subgroup of the group G if G is
abelian.

Prove that each of the following subsets H of M»(Z) is a subgroup of the group M»(Z)

under addition.
y] wzo} b.Hz{[ y] z=w=0}
w w

]
corlli o) e ey

Prove that each of the following subsets H of M»(R) is a subgroup of the group G of
all invertible matrices in M>(R) under multiplication.

am=1" “laer boH=" Plletr=1
. 0 1 a . b a a
—b 1

c.H={|:a ]azﬂ—bz#O} d.Hz{[ a} bq&o}

b a 0 b
d} a+c=l,b+d=l,andad—bc¢0}
=409 0

0 b
H= a b
& c d

Prove that each of the following sets H is a subgroup of the group G of all invertible
matrices in M,(C) under multiplication.

o H = 0 1 0 -1 0 -1 0
) 1o -1/ o 1] 0 -1
b H = 0 , i 0 ’ —i 0 ’ -1 0
1 0 —i 0 i 0o -1
Consider the set of matrices H = {I, My, M, M3, M4, M5}, where
1 0 1 0 0 1
12: N MIZ s M2: s
0 1 -1 -1 -1 -1
M. — -1 -1 M — -1 -1 M. = 0 1
Lo Y Lo 1 TPl oof

Show that H is a subgroup of the multiplicative group of all invertible matrices in
M>(R).

N
=

N

=
=

—N—
1
o Q

Nl

a#O,b#O}

ad—bc=1}

S = O =
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Sec. 3.2, #9 >

Sec. 3.4, #31 <
Sec. 4.5, #22 <
Sec. 7.2, #39 <

Sec. 3.1, #28 >
Sec. 3.1, #30 >
Sec. 3.1, #29 >

Sec. 4.1, #22 <

17.

18.

19.

20.

21.

22,

23.

24.

25.

26.

a. For any group G, the set of all elements that commute with every element of G is
called the center of G and is denoted by Z(G):

Z(G) = {a € G| ax = xaforevery x € G}.

Prove that Z(G) is a subgroup of G.

b. Let R be the equivalence relation on G defined by xRy if and only if there exists an
element @ in G such that y = a” 'xa. If x € Z(G), find [x], the equivalence class
containing x.

(See Exercise 17.) Find the center Z(G) for each of the following groups G.

a. G = {1,i,j,k, —1, —i, —j, —k} in Exercise 28 of Section 3.1.

b. G = {LL,, R, R>, R}, H, D, V, T} in Exercise 30 of Section 3.1.

c. G = {[3, Py, P, P3, P4, Ps} in Exercise 29 of Section 3.1.

d. G is the group of all invertible matrices in M»(R) under multiplication.

Let G be a group and Z(G) its center. Prove or disprove that if ab is in Z(G), then a and
b are in Z(G).

Let G be a group and Z(G) its center. Prove or disprove that if ab is in Z(G), then
ab = ba.

Let A be a given nonempty set. As noted in Example 2 of Section 3.1, S(A) is a group
with respect to mapping composition. For a fixed element a in A, let H, denote the set
of all f € S(A) such that f(a) = a. Prove that H, is a subgroup of S(A).

(See Exercise 21.) Let A be an infinite set, and let H be the set of all f € S(A) such that
f(x) = x for all but a finite number of elements x of A. Prove that H is a subgroup of

S(A).

For eachn € Z, define f,: Z—Zbyf, (x) = x + nforx € Z.
a. Show that f;, is an element of S(Z).

b. LetH = {f, € S(Z) | f,(x) = x + nforeachn € Z}. Prove that H is a subgroup of
S(Z) under mapping composition.

c¢. Prove that H is abelian, even though S(Z) is not.
Let G be an abelian group. For a fixed positive integer n, let
G, = {a € G|a = x" for some x € G}.
Prove that G, is a subgroup of G.
For fixed integers a and b, let
S={ax+by|xEZandy E Z}.

Prove that S is a subgroup of Z under addition. (A special form of this S is used in
proving the existence of a greatest common divisor in Theorem 2.12.)

For a fixed element a of a group G, the set C, = {x € G |ax = xa} is the centralizer
of a in G. Prove that for any a € G, C, is a subgroup of G.



27.

Sec. 3.1, #28 >
Sec. 3.1, #30 >
Sec. 3.1, #29 >

28.
29.

30.

31.

32.

33.

34.

3s.

36.
37.
38.
39.
40.

41.
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Find the centralizer for each element a in each of the following groups.

a. The quaternion group G = {1, i, j, k, —1, —i, —j, —k} in Exercise 28 of Section 3.1
b. G = {L, R, R*>, R®, H, D, V, T} in Exercise 30 of Section 3.1

c. G = {[3, Py, P, P3, P4, Ps} in Exercise 29 of Section 3.1

Prove that C, = C,-1, where C, is the centralizer of a in the group G.

Suppose that H; and H, are subgroups of the group G. Prove that H; M H, is a sub-
group of G.

For an arbitrary n in Z, the cyclic subgroup <n> of Z, generated by n under addition, is the
set of all multiples of n. Describe the subgroup <m> N <n> for arbitrary m and n in Z.

Let {H) }, A € &, be an arbitrary nonempty collection of subgroups H, of the group G,
and let K = NyexH,. Prove that K is a subgroup of G.

If G is a group, prove that Z(G) = M,cC,, where Z(G) is the center of G and C, is the
centralizer of a in G.

Find subgroups H and K of the group S(A) in Example 3 of Section 3.1 such that
H U K is not a subgroup of S(A).

Assume that H and K are subgroups of the abelian group G. Prove that the set of prod-
ucts HK = {g € G |g = hkfor h € H and k € K} is a subgroup of G.

Find subgroups H and K of the group S(A) in Example 3 of Section 3.1 such that the
set HK defined in Exercise 34 is not a subgroup of S(A).

Let G be a cyclic group, G = <a>. Prove that G is abelian.

Prove statement a of Theorem 3.12: x* - x™ "

= e for all integers n.
Prove statement ¢ of Theorem 3.12: (x™)" = x™" for all integers m and n.
Prove statement d of Theorem 3.12: If G is abelian, (xy)" = x"y" for all integers n.

Suppose that H is a nonempty subset of a group G. Prove that H is a subgroup of G if
and only if a~'b € Hforalla € Hand b € H.

Assume that G is a finite group, and let H be a nonempty subset of G. Prove that H is
closed if and only if H is a subgroup of G.

3.4 | Cyclic Groups

In the last section a group G was defined to be cyclic if there exists an element a € G such
that G = <a>. It may happen that there is more than one element a € G such that G = <a>.
For the additive group Z, we have Z = (1) and also Z = (—1), since any n € Z can be writ-
ten as (—n)(— 1). Here (—n)(—1) does not indicate a product but rather a multiple of —1, as
described in Section 3.3.

Definition 3.14 m

Generator

Any element a of the group G such that G = <a> is a generator of G.
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If a is a generator of G, then a lis also, since any element x € G can be written as
x=d = (@hH™

for some integer n.

Example 1 The additive group
Z,={[0L[1}....[n— 1]}
is a cyclic group with generator [1], since any [k]in Z, can be written as
[k] = &[1]

where k[1] indicates a multiple of [1] as described in Section 3.3. Elements other than [1]
may also be generators. To illustrate this, consider the particular case

Zs = {[0], [1], [2], [3] [4]. [5]}-

The element [5] is also a generator of Zg since [5] is the additive inverse of [1]. The follow-
ing list shows how Zg is generated by [5]—that is, how Zg consists of multiples of [5].

1[5] =[5]
2[5] = [5] + [5] = [4]
3[5] =[5] + [5] + [5] = 3]
4[5] = [2]
5[5 = [1]
6[5] = [0]
The cyclic subgroups generated by the other elements of Zs under addition are
((0]) = {[0]}
((2]) = {2, (4], [0]}
([3]) = {3, [0]}
([41) = {14, [2]. [0]} = ([2]).
Thus [1] and [5] are the only elements that are generators of the entire group. |

Example 2 We saw in Example 8 of Section 3.3 that
H = {[2].[4]. [6]. [8]} = Zy

forms a cyclic group with respect to multiplication and that [2] is a generator of H. The ele-
ment [8] = [2]"! is also a generator of H, as the following computations confirm:

(87 =[4. [BF=[2 [8'=[6] u

Example 3 Inthe quaternion group G = { =1, *i, *j, =k}, described in Exercise 28 of
Section 3.1, we have

E w (8]
([
|

—_

~ o~ o~
Il

(58] S}

o .

~. o~
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Thus i generates the cyclic subgroup of order 4 given by
(@) ={i. =1, =i 1},

although the group G itself is not cyclic. |

Whether a group G is cyclic or not, each element a of G generates the cyclic subgroup
<a>, and

(a)={x € G|x=d"forn € Z}.

We shall see that the structure of () depends entirely on whether or not " = e for some
positive integer n. The next two theorems state the possibilities for the structure of <a>.

Strategy The method of proof of the next theorem is by contradiction. A statement p = g may be
proved by assuming that p is true and ¢ is false and then proving that this assumption
leads to a situation where some statement is both true and false—a contradiction.

Theorem 3.15 Infinite Cyclic Group
Let a be an element in the group G. If a” # e for every positive integer n, then a” # a?
whenever p # ¢ in Z, and <a> is an infinite cyclic group.
Contradiction Proof Assume that a is an element of the group G such that a" # e for every posi-
(p A ~q) tive integer n. Having made this assumption, suppose now that
=P ab =
where p # g in Z. We may assume that p > ¢. Then
A =a' = a’ - ai=ql g4
= a1 =e.
Since p — ¢ is a positive integer, this result contradicts a” # e for every positive integer n.
Therefore, it must be that a” # a? whenever p # g. Thus all powers of a are distinct, and
therefore <a> is an infinite cyclic group.
Corollary 3.16
If G is a finite group and a € G, then a” = e for some positive integer n.
p=g¢q Proof Suppose G is a finite group and a € G. Since the cyclic subgroup

(a) ={x € G|x=a"form € Z}

is a subset of G, (@) must also be finite. It must therefore happen that @’ = afor some integers
p and g with p # q. It follows from Theorem 3.15 that a" = e for some positive integer n.
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Theorem 3.17

If it happens that a” # e for every positive integer n, then Theorem 3.15 states that all
the powers of a are distinct and that <a> is an infinite group. Of course, it may happen that
a" = e for some positive integers n. In this case, Theorem 3.17 describes <a> completely.

m Finite Cyclic Group

p=>@ern)

Let a be an element in a group G, and suppose a” = e for some positive integer n. If m is
the least positive integer such that a” = e, then

a. <a> has order m, and <a> ={ad"=e=a"d",d?...,a" "}

b. a* = a' ifandonlyif s =7 (modm).

Proof Assume that m is the least positive integer such that a™ = e. We first show that the
elements

are all distinct. Suppose
ad=a where 0=i<m and 0=j<m.
There is no loss of generality in assuming i = j. Then a’ = & implies
a/=d-a’=e where 0=i—j<m.

Since m is the least positive integer such that a” = e, and since i — j < m, it must be true
that i — j = 0, and therefore i = j. Thus <a> contains the m distinct elements a® = e, a,
a®, ...,a" ' The proof of part a will be complete if we can show that any power of a is
equal to one of these elements. Consider an arbitrary a*. By the Division Algorithm, there

exist integers ¢ and r such that
k=mg+r, withO=r<m.
Thus

ak — amq+r

am™-a by part b of Theorem 3.12
(@?+a" by part ¢ of Theorem 3.12
=el-a

:ar

where ris in the set {0, 1, 2, ..., m — 1}. It follows that
(a) = {e,a,a* ...,a"" "}, and (a)has order m.

To obtain part b, we first observe that if k = mq + r, with 0 = r < m, then ak=a',
where 7 is in the set {0, 1,2, ..., m — 1}. In particular, a* = eif and only if r = O—that
is, if and only if kK = 0 (mod m). Thus

ad=dosa=e¢
< s — t =0 (mod m)
& s =t (mod m),

and the proof is complete.
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We have defined the order o(G) of a group G to be the number of elements in the group.

Order of an Element

Corollary 3.19

The order o(a) of an element a of the group G is the order of the subgroup generated by a.
That is, o(a) = 0(<a>).

Part a of Theorem 3.17 immediately translates into the following corollary.

Finite Order of an Element

If o(a) is finite, then m = o(a) is the least positive integer such that a” = e.

The next example illustrates the results of Theorem 3.17 and its corollary.

Example 4 1t can be shown (see Exercise 16 at the end of this section) that

G = {(1}. 3}, [5} [7), [9) [11], [13], [15]} € Zy6

is a group with respect to multiplication in Z . The element [3] of G generates a cyclic sub-
group of order 4 since [3]* = [1], and 4 is the least positive integer m such that [3]" = [1].
Thus

(3)) = {3)° = (1]. [3]. [9}. [11]},

and the order of the element [3] is 4. Also, powers larger than 4 of [3] are easily computed
using part b of Therom 3.17. For example,

[3]% = [3F = [11]
since 191 = 3 (mod 4). [ ]
The multiplicative group G = {[1], [3], [5], [7], [9], [11], [13], [15]} C Z,sin Example 4
consists of all [a] in Ze that have multiplicative inverses. This group is called the group of
units in Z ¢ and is designated by the symbol Ujs.

As might be expected, every subgroup of a cyclic group is also a cyclic group. It is
even possible to predict a generator of the subgroup, as stated in Theorem 3.20.

Strategy

The conclusion of the next theorem has the form “either a or b.” To prove this statement,
we can assume that a is false and prove that » must then be true.

Theorem 3.20

Subgroup of a Cyclic Group

Let G be a cyclic group with a € G as a generator, and let H be a subgroup of G. Then either

a. H= {e} = <€>, or
b. if H # {e}, then H = (a*) where k is the least positive integer such that a* € H.
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Proof Let G = <a>, and suppose H is a subgroup and H # {e}. Then H contains an
element of the form a’ with j # 0. Since H contains inverses and (a/) ! = a7, both &/ and
a~/ are in H. Thus H contains positive powers of a. Let k be the least positive integer such
that a* € H.

Since H is closed and contains inverses, and since a* € H, all powers (@' = a are in
H. We need to show that any element of H is a power of a*. Let " € H. There are integers
q and r such that

ki

n=kq+r with 0=r<k
Now a % = (¢¥)"9 € H and a”" € H imply that

n

a’ . a—kq — akq+r

ca k=g

isin H. Since 0 = r < k and k is the least positive integer such that a* € H, r must be zero
and a" = a*. Thus H = (a*).

Any subgroup of a cyclic group is cyclic.

Note that Theorem 3.20 and Corollary 3.21 apply to infinite cyclic groups as well as to
finite ones. The next theorem, however, applies only to finite groups.

Strategy In the proof of Theorem 3.22, we use the standard technique to prove that two sets A and
B are equal: We show that A € B and then that B S A.
Theorem 3.22 Generators of Subgroups
Let G be a finite cyclic group of order n with @ € G as a generator. For any integer m, the
subgroup generated by a™ is the same as the subgroup generated by a ¢, where d = (m, n).
p=g¢q Proof Letd = (m,n), and let m = dp. Since a” = a® = (a)?, then a™ is in (a?), and

therefore <a’”> c <ad>. (See Exercise 27 at the end of this section.)
Similarly, to show that (a?) < (a™), it is sufficient to show that a? is in (a™). By
Theorem 2.12, there exist integers x and y such that

d = mx + ny.
Since a is a generator of G and o(G) = n, a" = e. Using this fact, we have

ad — amx+n)'

= g™ . g
(@ - (@
(@) - (e

= (a™".

Thus a?is in <a’”>, and the proof of the theorem is complete.

ny
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As an immediate corollary to Theorem 3.22, we have the following result.

Corollary 3.23 m Distinct Subgroups of a Finite Cyclic Group

Let G be a finite cyclic group of order n with a € G as a generator. The distinct subgroups
of G are those subgroups <a"> where d is a positive divisor of n.

Corollary 3.23 provides a systematic way to obtain all the subgroups of a cyclic group
of order n. In the subgroup generated by a“, the exponent d divides n, the order of G. Then
there is a positive integer k such that n = dk and (a¢) = {a?, a®%, a*, ..., d" = a" = e}.
Thus the order of (a?) is k, and o ((a))| 0(G).

Example 5 LetG= <a> be a cyclic group of order 12. The divisors of 12 are 1, 2, 3, 4,
6, and 12, so the distinct subgroups of G are

(@)=G
(@) = {d d*,d’ a® a",a” = e}
(@) = {d, % &, a* = e}
(@) = {a*, d* a” = ¢}
= a® =)
Y =

(a

Thus Corollary 3.23 makes it easy to list all the distinct subgroups of a cyclic group.
Theorem 3.22 itself makes it easy to determine which subgroup is generated by each
element of the group. For our cyclic group of order 12,

(@) ={a) =G since (5,12) =1

(@) ={a)=G since(7,12) =1

(@) = (a*) since (8, 12) = 4

(@) = (&) since (9, 12) = 3

(@) = () since (10, 12) = 2

(@"y = {a) = G since (11,12) = 1. "

The results in Example 5 lead us to a method for finding all generators of a finite cyclic
group. This method is described in the next theorem.

Theorem 3.24 = Generators of a Finite Cyclic Group

LetG = <a> be a cyclic group of order n. Then a™ is a generator of G if and only if m and
n are relatively prime.

p<q Proof On the one hand, if m is such that m and n are relatively prime, then d =
(m, n) = 1, and a™ is a generator of G by Theorem 3.22.
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p=q

On the other hand, if a™ is a generator of G, then @ = (a™)” for some integer p. By part
b of Theorem 3.17, this implies that 1 = mp (mod n). That is,

1 —mp =ngq
for some integer ¢g. This gives

1 =mp + ng,

and it follows from Theorem 2.12 that (m, n) = 1.

The Euler phi-function ¢ (n) was defined for positive integers 7 in Exercise 23 of Sec-
tion 2.8 as follows: ¢ (n) is the number of positive integers m such that 1 = m = n and
(m,n) = 1. It follows, from Theorems 3.17 and 3.24, that the cyclic group <a> of order n
has ¢ (n) distinct generators.

Example 6 LetG = <a> be a cyclic group of order 10. The positive integers less than
10 and relatively prime to 10 are 1, 3, 7, and 9. Therefore, all generators of G are included
in the list

a, @, 4, and &,

and G has ¢(10) = 4 distinct generators. |

Example 71 Some other explicit uses of Theorem 3.24 can be demonstrated by using Z.
The generators of the additive group Z; are those [a] in Z; such that a and 7 are
relatively prime, and this includes all nonzero [a]. Thus every element of Z;, except [0],
generates Z; under addition.
The situation is quite different when we consider the group G of nonzero elements of
Z; under multiplication. It is easy to verify that [3] is a generator:

B =[. BF=[6. [3'=[M4]

BF =[5 Br=0. B=[3]
According to Theorem 3.24, the only other generator of G is [3]° = [5], since 2, 3, 4, and 6
are not relatively prime to 6. |

Exercises 3.4 I——

True or False
Label each of the following statements as either true or false.
1. The order of the identity element in any group is 1.
Every cyclic group is abelian.
Every abelian group is cyclic.
If a subgroup H of a group G is cyclic, then G must be cyclic.

LU S 2

Whether a group G is cyclic or not, each element a of G generates a cyclic subgroup.
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6. Every subgroup of a cyclic group is cyclic.
7. If there exists an m € Z" such that @™ = e, where a is an element of a group G, then
o(a) = m.
8. Any group of order 3 must be cyclic.
9. Any group of order 4 must be cyclic.
10. Let a be an element of a group G. Then {(a) = (a™").

Exercises

=

List all cyclic subgroups of the group S(A) in Example 3 of Section 3.1.
Sec. 3.1, #28 > Let G = {£1, %i, £j, =k} be the quaternion group. List all cyclic subgroups of G.
Find the order of each element of the group S(A) in Example 3 of Section 3.1.

Find the order of each element of the group G in Exercise 2.

SUE S

Sec. 3.1, #29 > The elements of the multiplicative group G of 3 X 3 permutation matrices are given in

Exercise 29 of Section 3.1. Find the order of each element of the group.

6. In the multiplicative group of invertible matrices in M4(R), find the order of the given

element A.
0 0 0 1 0O 0 1 0
a A= 0O 1 0 O b A — 0O 0 0 1
0O 0 1 O 0O 1 0 O
1 0 0 O 1 0 0 O

7. Let a be an element of order 8 in a group G. Find the order of each of the following.
a. a’ b. a* c. at d. & e. af f. d g a

8. Let a be an element of order 9 in a group G. Find the order of each of the following.
a. a’ b. a* c. at d. & e. a° f. a’ g a h. &°

9. For each of the following values of n, find all distinct generators of the cyclic group Z,
under addition.
a.n=238 b. n =12 c.n=10
d.n=15 e.n=16 f.n=18

10. For each of the following values of n, find all subgroups of the cyclic group Z, under
addition and state their order.
a.n=12 b.n =38 c.n=10
dn=15 e.n=16 f.n=18

Sec.3.1,#27> 11. According to Exercise 27 of Section 3.1, the nonzero elements of Z, form a group G

with respect to multiplication if » is a prime. For each of the following values of n,
show that this group G is cyclic.

a.n=717 b.n=5 c.n=11
d.n =13 e.n=17 f.n=19
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Sec. 3.5, #7 <

Sec. 3.5, #3,6 <

Sec. 4.6,#7, 12 <

12.

13.

14.

15.

16.

17.

18.

19.
20.

21.

22.

For each of the following values of n, find all distinct generators of the group G
described in Exercise 11.

an=7 b.n=>5 c.n=11

dn=13 e.n=17 f.n=19

For each of the following values of n, find all subgroups of the group G described in
Exercise 11, and state their order.

an=7 b.n=>5 c.n=11

dn=13 e.n=17 f.n=19

w={ls 1]

is a cyclic subgroup of the group of all invertible matrices in M»(R).

Prove that the set

a. Use trigonometric identities and mathematical induction to prove that

cos —sin@ |* | cosnf —sinnb
sin 6 cos 6 sin n6f cos nb

for all integers n (positive, zero, or negative). Hence conclude that for a constant 6,

the set
cos nf  —sin nb
H= . n€elZzZ
sin n cos nf
is a cyclic subgroup of the group of all invertible matrices in M>(R).
b. Evaluate each element of H for 8 = 90°.
c. Evaluate each element of H for 6 = 120°.

For an integer n > 1, let G = U, the group of units in Z,; that is, the set of all [a]in Z,
that have multiplicative inverses. Prove that U, is a group with respect to multiplication.

Let U, be the group of units as described in Exercise 16. Prove that[a] € U, if and only
if a and n are relatively prime.

Let U, be the group of units as described in Exercise 16. For each value of n, write out
the elements of U, and construct a multiplication table for U,,.

a.n=20 b. n =8 c.n=24 d. n =30
Which of the groups in Exercise 18 are cyclic?

Consider the group Ug of all units in Zy. Given that Ug is a cyclic group under multi-
plication, find all subgroups of Uy.

Suppose G = <a> is a cyclic group of order n. Determine the number of generators of
G for each value of n and list all the distinct generators of G.
an=28 b. n =14 c.n=18

d.n =24 e.n=17 f.n=13

List all the distinct subgroups of each group in Exercise 21.
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LetG = <a> be a cyclic group of order 24. List all elements having each of the follow-
ing orders in G.

a. 2 b. 3 c. 4 d. 10

LetG = <a> be a cyclic group of order 35. List all elements having each of the follow-
ing orders in G.

a. 2 b. 5 c. 7 d. 10

Describe all subgroups of the group Z under addition.

Find all generators of an infinite cyclic group G = <a>.

Let a and b be elements of the group G. Prove that if a € (b), then (a) < (b).

Let a and b be elements of a finite group G.
a. Prove that @ and ¢~ ! have the same order.
b. Prove that ¢ and bab ™! have the same order.

c. Prove that ab and ba have the same order.

Let G be a group and define the relation R on G by aRb if and only if a and b have the
same order. Prove that R is an equivalence relation.

Prove that a subset H of a finite group G is a subgroup of G if and only if
a. H is nonempty, and

b. a € Hand b € H imply ab € H.

(Hint: Use Corollary 3.16.)

In Exercise 17 of Section 3.3, the center Z(G) is defined as
Z(G) = {a € G|ax = xa for every x € G}.
Prove that if b is the only element of order 2 in G, then b € Z(G).
If a is an element of order m in a group G and a* = e, prove that m divides k.

If G is a cyclic group, prove that the equation x> = e has at most two distinct solutions
in G.

Let G be a finite cyclic group of order n. If d is a positive divisor of n, prove that the
equation x? = ¢ has exactly d distinct solutions in G.

If G is a cyclic group of order p and p is a prime, how many elements in G are generators
of G?

Suppose that a and b are elements of finite order in a group such that ab = ba and
<a> N <b> = {e}. Prove that o(ab) is the least common multiple of o(a) and o(b).

Suppose that a is an element of order m in a group G, and k is an integer. If d = (k, m),
prove that a* has order m/d.

Assume that G = (a) is a cyclic group of order n. Prove that if r divides n, then G has
a subgroup of order r.

Suppose a is an element of order mn in a group G, where m and n are relatively prime.
Prove that a is the product of an element of order m and an element of order n.
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Sec. 4.5, #5 <
Sec. 4.6, #23 <

Sec. 2.8, #23 >

35

m Figure 3.14

40. Prove or disprove: If every nontrivial subgroup of the group G is cyclic, then G is a
cyclic group.

41. Let G be an abelian group. Prove that the set of all elements of finite order in G forms
a subgroup of G. This subgroup is called the torsion subgroup of G.

42. Let d be a positive integer and ¢(d) the Euler phi-function. Use Corollary 3.23 and the
additive groups Z, to show that

n= > ¢

d|n

where the sum has one term for each positive divisor d of n.

Isomorphisms

It turns out that the permutation groups can serve as models for all groups. For this reason,
we examine permutation groups in great detail in the next chapter. In order to describe their
relation to groups in general, we need the concept of an isomorphism. Before formally in-
troducing this concept, however, we consider some examples.

Example 1 Consider a cyclic group of order 4. If G is a cyclic group of order 4, it
must contain an identity element e and a generator a # e in G. The proof of Theorem 3.17
shows that

G = {e,a,d* a’}

where a* = e. A multiplication table for G would have the form shown in Figure 3.14.

e a a2 a3
e e a a2 a3
a a a2 a3 e
a2 Clz a3 e a
a3 613 e a a2

In a very definite way, then, the structure of G is determined. The details as to what the
element a might be and what the operation in G might be may vary, but the basic structure
of G fits the pattern in the table. |

Example 2 Let us consider a group related to geometry. We begin with an equilateral
triangle T with center point O and vertices labeled V), V,, and V3 (see Figure 3.15).
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The equilateral triangle, of course, consists of the set of all points on the three sides of the

triangle. By a rigid motion of the triangle, we mean a bijection of the set of points of the tri-
angle onto itself that leaves the distance between any two points unchanged. In other words,
a rigid motion of the triangle is a bijection that preserves distances. Such a rigid motion must
map a vertex onto a vertex, and the entire mapping is determined by the images of the vertices
Wi, Va, and V3. These rigid motions (or symmetries, as they are often called) form a group with
respect to mapping composition. (Verify this.) There are a total of six elements in the group,
and they may be described as follows:

1.

. r, a counterclockwise rotation through 120° about O in the plane of the triangle.

e, the identity mapping, that leaves all points unchanged.

r? = ror, a counterclockwise rotation through 240° about O in the plane of the
triangle.

A reflection fabout the line L; through V| and O.
A reflection g about the line L, through V; and O.
A reflection 4 about the line L3 through V3 and O.

These rigid motions can be described by indicating their values at the vertices as follows:

e(V) =V, h(Vy) =V,
e: E(Vz) = V2 h: h(VQ) = V1
e(V3) =V h(Vs3) = Vs
r(Vy) =V, gV =V;
rigr(Vy) = Vs g8V =V,
r(V3) =V, gV3) =V,
rz(V1) =V SV =v

Par(Vy) =V, £V =V,
'2(‘/3) =V, V3) = V,.
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® Figure 3.16

B Figure 3.17

We have a group
G={e,r,r’,hgf},

and G has the multiplication table shown in Figure 3.16.

° e r 2 h g f
e e r 1 h g f
r r e g f h
r? P e r f h g
h h f g e 1 r
g g h f r e 1
g h 1 r e

We shall compare this group G with the group S(A) from Example 3 of Section 3.1,
and we shall see that they are the same except for notation. Let the elements of G corre-
spond to those of S(A) according to the mapping ¢: G — S(A) given by

Ple) =1, oh) =0o
o(r)=p P =v
dr)=p> () =8

This mapping is a one-to-one correspondence from G to S(A). Moreover, ¢ has the prop-
erty that

d(xy) = d(x) * ()

for all x and y in G. This statement can be verified by using the multiplication tables for G and
S(A) in the following manner: In the entire multiplication table for G, we replace each element
x € G by its image ¢(x) in S(A). This yields the table in Figure 3.17, which has ¢(xy) in the
row with ¢(x) at the left and in the column with ¢(y) at the top.

L p p o vy &
Iy Iy p p o y 1)
p | p P b § o
PPl kb o p 8 oy
ol o & vy L p p
y |y o & p L p
S| 8§ v o P p L
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The multiplication table for S(A) given in Example 3 of Section 3.1 furnishes a table
of values for ¢(x) + ¢(y), and the two tables agree in every position.” This means that
d(xy) = Pp(x) - ¢(y) for all x and y in G. Thus G and S(A) are the same except for
notation. [ |

A mapping such as ¢ in the preceding example is called an isomorphism.

Definition 3.25m Isomorphism, Automorphism

Let G be a group with respect to ®, and let G’ be a group with respect to l. A mapping
¢: G — G' is an isomorphism from G to G’ if

1. ¢ is a one-to-one correspondence from G to G’, and

2. ¢p(x ®y) = Pp(x) El P(y) forall x and y in G.

If an isomorphism from G to G’ exists, we say that G is isomorphic to G', and we use the
notation G = G’ as shorthand for this phrase. An isomorphism from a group G to G itself
is called an automorphism of G.

The use of ® and [ in Definition 3.25 is intended to emphasize the fact that the group
operations may be different. Now that this point has been made, we revert to our conven-
tion of using the multiplicative notation for the group operation. An isomorphism is said to
“preserve the operation,” since condition 2 of Definition 3.25 requires that the result be the
same whether the group operation is performed before or after the mapping.

The notation = in Definition 3.25 is not standardized. The notations =, =, and = are
used for the same purpose in some other texts.

Because an isomorphism preserves the group operation between two groups, it is not sur-
prising that the identity elements always correspond under an isomorphism and that inverses
are always mapped onto inverses. These results are stated more precisely in the next theorem.

Theorem3.26 m Images of Identities and Inverses

Suppose ¢ is an isomorphism from the group G to the group G'. If e denotes the identity in
G and ¢’ denotes the identity in G, then

a. ¢(e) = ¢, and
b. ¢p(x~") = [¢p(x)] ' forall xin G.

p=¢q Proof Wehave
ere=e > dle - e) = ¢p(e)

= ¢(e) - Pple) = ¢p(e) since ¢ is an isomorphism
= ¢(e) - P(e) = P(e) - € since €' is an identity
= dle) = ¢ by Theorem 3.4e.

"Note that the e in Example 3 of Section 3.1 stands for Ij.



178 Chapter 3

pNg=>r
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For any x in G,
xoxl=e = p-xh) = ¢le)
= px-xH)=¢ by part a
= o) - px) = ¢
Similarly, x ! + x = e implies ¢(x~!) * ¢(x) = ¢, and therefore p(x~1) = [p(x)] L.

The concept of isomorphism introduces the relation of being isomorphic on a collection
% of groups. This relation is an equivalence relation, as the following statements show.

1. Any group G in the collection % is isomorphic to itself. The identity mapping /; is an
automorphism of G.

2. If G and G’ are in % and G is isomorphic to G’, then G’ is isomorphic to G. In fact, if
¢ is an isomorphism from G to G, then ¢~ ! is an isomorphism from G’ to G. (See Ex-
ercise 1 at the end of this section.)

3. Suppose G1, G, Gy are in 4. If G, is isomorphic to G, and G, is isomorphic to G3, then
G is isomorphic to Gs. It is left as an exercise to show that if ¢b; is an isomorphism
from G| to G, and ¢, is an isomorphism from G, to G3, then ¢,¢) is an isomorphism
from G, to Gs.

The fundamental idea behind isomorphisms is this: Groups that are isomorphic have
the same structure relative to their respective group operation. They are algebraically the
same, although details such as the appearance of the elements or the rule defining the op-
eration may vary.

From our discussion at the beginning of this section, we see that any two cyclic groups
of order 4 are isomorphic. In fact, any two cyclic groups of the same order are isomorphic
(see Exercises 25 and 26 at the end of this section).

The next two examples emphasize the fact that the elements of two isomorphic groups
and their group operations may be quite different from each other.

Example 3 Consider G = {1, i, —1, —i} under multiplication and G' = Z, =
{[0], [1], [2], [3]} under addition. Let ¢p: G — G’ be defined by

e =[0, ) =[1], (=D =[2, (=i =][3]

This defines a one-to-one correspondence ¢ from G to G'. To see that ¢ is an isomorphism
from G to G', we use the group tables for G and G’ in the same way as in Example 2 of this
section. Beginning with the multiplication table for G, we replace each x in the table with
¢(x) (see Figures 3.18 and 3.19). Since the resulting table (Figure 3.19) agrees completely
with the addition table for Z4, we conclude that

d(y) = d(x) + (y)

for all x € G, y € G and therefore that ¢ is an isomorphism from G to G'.
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Multiplication Table for G Table of ¢(xy)
! -1 i [0 [ 2] [3]
1 1 A of | [© [0 2B
A I I I P R I < R
e ‘ 2] | 21 (B [0 []
- -] i -l Bl | Bl [0 [ (]
m Figure 3.18 ® Figure 3.19 [ |

We conclude this section with an example involving matrices.

Example 4 The multiplicative group G of 3 X 3 permutation matrices was introduced
in Exercise 29 of Section 3.1. This group G is given by G = {I3, Py, P», P3, P4, Ps}, where

1 0 0 0 1 0 0 1 0

Pp=(0 0 1|, P=|1 0 0 P,=|0 0 1]
0 1 0] 10 0 1] 1 0 0
[0 0 1] [0 0 1]

P,=10 1 0] P=|1 0 0]
1 0 0] 10 1 0]

We shall show that this group is isomorphic to the group S(A) = {I4, p, p>, o, v, 8} that
appears in Example 2 of this section.

A multiplication table for G is needed as a guide in defining an isomorphism from G
to S(A). In constructing this table, we find that

P%Zps, Pg:I?’, P3Pl:P4, aIld P3P4:P2.

Using the group table for S(A) in Figure 3.17 as a pattern, we list the elements of G across
the table in the order

L, Py, P3, P\, P, P,

and evaluate all the products as shown in Figure 3.20. A comparison of the group tables
for G and S(A) suggests that the one-to-one correspondence ¢: G — S(A) given by

o) =1, P3) =p HP3)=p’
dP)=a GP)=7 GPF) =3

might be an isomorphism. To verify the property ¢(xy) = ¢(x) ¢d(y), we replace each x in
the table for G with its image ¢(x) in S(A). The resulting table is shown in Figure 3.21, and
it agrees in every position with the group table for S(A) in Figure 3.17. Thus ¢ is an iso-
morphism from G to S(A).
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Multiplication Table for G Table of ¢(xy)

L Py P; P Py P I, p p> o vy &
L L Py P P P, P b | L, p p* o vy &
Py | P P35 L Py P, P p |l p P L 5 o
Py | P s P3s Po Pi P4 LN PPl p It p & o v
Py | Py P Py I P} P; o |lo & vy I p* p
Py, | P4, P P, Py L1 P2 y |y o & p It p?
P, | P, Py Pr P} P3 I ) 8§ v o p p I

m Figure 3.20 m Figure 3.21 |

BN Exercises 3.5 I ——

True or False
Label each of the following statements as either true or false.
1. Any two cyclic groups of the same order are isomorphic.
Any two abelian groups of the same order are isomorphic.
Any isomorphism is an automorphism.
Any automorphism is an isomorphism.
If two groups G and G’ have order 3, then G and G’ are isomorphic.
Any two groups of the same finite order are isomorphic.

Two groups can be isomorphic even though their group operations are different.

S BN U S

The relation of being isomorphic is an equivalence relation on a collection of groups.

Exercises

1. Prove that if ¢ is an isomorphism from the group G to the group G', then ¢~ ! is an
isomorphism from G’ to G.
2. Let Gy, Gy, and Gj3 be groups.

a. Prove that if ¢ is an isomorphism from G| to G; and ¢, is an isomorphism from G,
to G3, then ¢p»¢b; is an isomorphism from G to Gs.

b. If ¢ is an isomorphism from G| to G; and ¢, is an isomorphism from G, to Gs, find
an isomorphism from G to Gy.

Sec.3.4,#16> 3. Find an isomorphism from the additive group’ Zy4 = {[0]4, [1]4, [2]4, [3]4} to the mul-
tiplicative group of units Us = {[1]s, [2]s, [3]s, [4]5} < Zs.

For clarity, we are temporarily writing [a],, for [a] € Z,,.
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Sec. 4.2, #3 <
Sec. 4.4, #11 <
Sec. 4.6, #16 <

M Figure 3.22
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4. Let G = {1, i, —1, —i} under multiplication, and let G’ = Z, = {[0], [1], [2], [3]}
under addition. Find an isomorphism from G to G’ that is different from the one given
in Example 3 of this section.

5. Let H be the group given in Exercise 16 of Section 3.3, and let S(A) be as given in
Example 4 of this section. Find an isomorphism from H to S(A).

6. Find an isomorphism from the additive group Z¢ = {[a]¢} to the multiplicative group
of units U7 = {[a]7 S Z7| [a]7 Ea [0]7}

7. Find an isomorphism ¢ from the additive group Z to the multiplicative group

1 n
H = neZl
0 1
and prove that ¢(x + y) = d(x)d(y).
8. Find an isomorphism from the group G = {1, i, —1, —i} in Example 3 of this section
to the multiplicative group
1 0 i 0 —i 0 -1 0
H = 9 . 9 . 9 .
0 1 0 —i 0 i 0 -1
9. Find an isomorphism ¢ from the multiplicative group G of nonzero complex numbers
to the multiplicative group
a —b ) )
H= a,b € Randa  + b~ # 0
b a
and prove that ¢(xy) = d(x)d(y).
10. Find an isomorphism from the multiplicative group
1 0 1 0 -1 0 —1 0
H= B 5 s
0 1 0 -1 0 1 0 -1
to the group G = {e, a, b, ab} with multiplication table in Figure 3.22. This group is
known as the Klein' four group.
e a b ab
e e a b ab
a a e ab b
b b ab e a
ab ab b a e

Felix Christian Klein (1849—1925) was a German mathematician known for his work on the connections
between geometry and group theory. Klein successfully worked toward the admission of women to the
University of Gottingen in Germany in 1893, and supervised the first Ph.D. thesis by a woman at Géttingen.
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Sec. 3.1, #28 >

Sec. 3.1, #27a >

Sec. 4.6, #32 <

Sec. 4.6, #32 <

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22,

23.

The following set of matrices

bl SR B
H P AV R

forms a group H with respect to matrix multiplication. Find an isomorphism from H to
the quaternion group.

Let G be the additive group of all real numbers, and let G’ be the group of all positive
real numbers under multiplication. Verify that the mapping ¢: G — G’ defined by
¢(x) = 10 is an isomorphism from G to G'.

Let G and G’ be as given in Exercise 12. Verify that the mapping 6: G’ — G defined by
0(x) = log x is an isomorphism from G’ to G.

Assume that the nonzero complex numbers form a group G with respect to multipli-
cation. If @ and b are real numbers and i = V —1, the conjugate of the complex
number a + bi is defined to be @ — bi. With this notation, let ¢: G — G be defined
by ¢(a + bi) = a — biforall a + bi in G. Prove that ¢ is an automorphism of G.
Let G be a group. Prove that G is abelian if and only if the mapping ¢: G — G defined
by ¢(x) = x~ ' for all x in G is an automorphism.

Suppose (m, n) = 1 and let ¢:Z, —Z, be defined by ¢([a]) = m[a]. Prove or dis-
prove that ¢ is an automorphism of the additive group Z,,.

According to Exercise 27a of Section 3.1, U, the set of nonzero elements of Z,, forms
a group with respect to multiplication if 7 is prime. Prove or disprove that the mapping
¢: U, — U, defined by the rule in Exercise 16 is an automorphism of U,,.

For each a in the group G, define a mapping ,: G — G by t,(x) = axa'. Prove that
t, is an automorphism of G.

For a fixed group G, prove that the set of all automorphisms of G forms a group with
respect to mapping composition.

Assume G is a (not necessarily finite) cyclic group generated by a in G, and let ¢ be
an automorphism of G. Prove that each element of G is equal to a power of ¢(a); that
is, prove that ¢(a) is a generator of G.

Let G be as in Exercise 20. Suppose also that a” is a generator of G. Define f on G by
fla) = a’, f(a’) = (a")' = a’’. Prove that fis an automorphism of G.

Let G be the multiplicative group of units U,. For each value of n, use the results of
Exercises 20 and 21 to list all the automorphisms of G. For each automorphism ¢,
write out the images ¢(x) for all x in G.

an=>5 b. n=17

Use the results of Exercises 20 and 21 to find the number of automorphisms of the
additive group Z,, for the given value of n.

an=3 b. n=4 c. n=38 d n=6
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24. Prove that any cyclic group of finite order » is isomorphic to Z, under addition.

25. For an arbitrary positive integer n, prove that any two cyclic groups of order n are
isomorphic.

26. Prove that any infinite cyclic group is isomorphic to Z under addition.

27. Let H be the group Zg under addition. Find all isomorphisms from the multiplicative
group Uy of units in Z; to H.

28. Suppose that G and H are isomorphic groups. Prove that G is abelian if and only if H
is abelian.

29. Prove that if G and H are two groups that contain exactly two elements each, then G
and H are isomorphic.

30. Prove that any two groups of order 3 are isomorphic.
31. Exhibit two groups of the same finite order that are not isomorphic.

32. Let ¢ be an isomorphism from group G to group H. Let x be in G. Prove that ¢(x") =
(¢p(x))" for every integer n.

33. If G and H are groups and ¢: G — H is an isomorphism, prove that @ and ¢(a) have the
same order, for any a € G.

34. Suppose that ¢ is an isomorphism from the group G to the group G'.
a. Prove that if H is any subgroup of G, then ¢(H) is a subgroup of G'.
b. Prove that if K is any subgroup of G’, then ¢~ !(K) is a subgroup of G.

3.6 | Homomorphisms

We saw in the last section that an isomorphism between two groups provides a connection
that shows that the two groups have the same structure relative to their group operations. It
is for this reason that the concept of an isomorphism is extremely important in algebra.

The name homomorphism is given to another important type of mapping that is related to,
but different from, the isomorphism. The basic differences are that a homomorphism is not
required to be one-to-one and also not required to be onto. The formal definition is as follows.

Definition 3.27 m Homomorphism, Endomorphism, Epimorphism, Monomorphism

Let G be a group with respect to ®, and let G’ be a group with respect to (. A homomor-
phism from G to G’ is a mapping ¢: G — G’ such that

d(x ®y) = d(x) [ p(y)

for all x and y in G. If G = G’, the homomorphism ¢ is an endomorphism. A homomor-
phism ¢ is called an epimorphism if ¢ is onto, and a monomorphism if ¢ is one-to-one.

As we did with isomorphisms, we drop the special symbols @ and ] and simply write
d(xy) = ¢P(x)d(y) for the given condition.

As already noted, a homomorphism ¢ from G to G’ need not be one-to-one or onto. If
¢ is both (that is, if ¢ is a bijection), then ¢ is an isomorphism as defined in Definition 3.25.
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Theorem 3.28

Our first example of a homomorphism has a natural connection with our work in
Chapter 2.

Example 1 For a fixed integer n > 1, consider the mapping ¢ from the additive group
Z to the additive group Z, defined by

() = [x],

where [x]is the congruence class in Z,, that contains x. From the properties of addition in Z,
(see Section 2.6), it follows that

dx +y) =[x + )]
=[x] + D]
= () + d(y).

Thus ¢ is a homomorphism. It follows from the definition of Z, that ¢ is onto, so ¢ is, in
fact, an epimorphism from Z to Z,. Since ¢(0) = ¢(n) = [0], then ¢ is not one-to-one
and hence not a monomorphism. |

Example 2 For two arbitrary groups G and G, let ¢’ denote the identity element in G’
and define ¢: G — G’ by ¢(x) = ¢’ for all x € G. Then, for all x and y in G,

o) - Pp(y) =€ - ¢
= e’
= (),

and ¢ is a homomorphism from G to G'. If G’ has order greater than 1, then ¢ is not onto
and hence not an epimorphism. Also ¢ is not one-to-one, since for any x # y, we have
d(x) = ¢(y) = €. Thus ¢ is not a monomorphism. |

The two previous examples show that, unlike the situation with isomorphisms, the
existence of a homomorphism from G to G’ does not imply that G and G’ have the same
structure. However, we shall see that the existence of a homomorphism can reveal impor-
tant and interesting information relating their structures. As with isomorphisms, we say
that a homomorphism “preserves the group operation.” Two simple consequences of this
condition are that identities must correspond and inverses must be mapped onto inverses.
This is stated in our next theorem, and the proofs are requested in the exercises.

= Images of Identities and Inverses

Let ¢ be a homomorphism from the group G to the group G'. If e denotes the identity in G,
and ¢’ denotes the identity in G’, then

a. ¢e) = ¢, and
b. ¢p(x 1) = [¢p(x)] ! forall x in G.
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The following examples give some indication of the variety that is in homomorphisms.
Other examples appear in the exercises for this section.

Example 3 Consider the group G of nonzero real numbers under multiplication and the
additive group Z. Define ¢p: Z — G by

b(n) = 1 ifniseven
T =1 ifnis odd.

Since every integer is either even or odd and not both, ¢(n) is well-defined. The following
table systematically checks the equality ¢(m + n) = ¢(m) - d(n).

m+n | ¢(m)- p(n) | ¢m + n)

m, n both even even () (1) 1
one even, one odd odd (H(—1) -1
m, n both odd even (=D(—1) 1

A comparison of the last two columns shows that ¢ is indeed a homomorphism from Z to
G. However since ¢ is not onto, it is not an epimorphism. Since ¢(0) = ¢(2) = 1, then ¢
is not one-to-one and hence not a monomorphism. |

Example 4 Consider the additive group Z and the mapping ¢: Z — Z defined by
¢(x) = S5xforall x € Z. Since

d(x +y) =5(x +y)

= 5x + 5y

= d(x) + (),
¢ is an endomorphism. Clearly, ¢ is not an epimorphism since ¢ is not onto. However,
since ¢(x) = ¢(y) implies 5x = S5y and x = y, then ¢ is a monomorphism. |

We saw in the last section that the relation of being isomorphic is an equivalence rela-
tion on a given collection G of groups. The concept of homomorphism leads to a correspon-
ding, but different, relation. If there exists an epimorphism from the group G to the group G,
then G’ is called a homomorphic image of G. Example 1 in this section shows that the
additive group Z, is a homomorphic image of the additive group Z.

On a given collection G of groups, the relation of being a homomorphic image is
reflexive and transitive but may not be symmetric. These facts are brought out in the exer-
cises for this section.

The real importance of homomorphisms will be much clearer at the end of Section 4.6
in the next chapter. The kernel of a homomorphism is one of the key concepts in that
section.
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Definition 3.29 m Kernel

Let ¢ be a homomorphism from the group G to the group G’'. The kernel of ¢ is the set
ker¢p = {x € G| Pp(x) = €'}

where ¢’ denotes the identity in G'.

Example 5 To illustrate Definition 3.29, we list the kernels of the homomorphisms
from the preceding examples in this section.

The kernel of the homomorphism ¢: Z — Z,, defined by ¢(x) = [x] in Example 1 is
given by

ker ¢ = {x € Z|x = knfor some k € Z},

since ¢(x) = [x] = [0]if and only if x is a multiple of n.
The homomorphism ¢: Z — G in Example 3 defined by

1 if n 1s even

) = {—1 if nis odd

has the set E of all even integers as its kernel, since 1 is the identity in G.

For ¢: Z — Z defined by ¢(x) = 5x in Example 4, we have ker ¢ = {0}, since 5x = 0
if and only if x = 0. This kernel is an extreme case since part a of Theorem 3.28 assures us
that the identity is always an element of the kernel.

At the other extreme, the homomorphism ¢: G — G’ defined in Example 2 by ¢(x) = ¢’
for all x € G has ker ¢ = G. u

Exercises 3.6 II———

True or False

Label each of the following statements as either true or false.
1. Every homomorphism is an isomorphism.

Every isomorphism is a homomorphism.

Every endomorphism is an epimorphism.

Every epimorphism is an endomorphism.

Every monomorphism is an isomorphism.

Every isomorphism is an epimorphism and a monomorphism.

AU S ol

The relation of being a homomorphic image is an equivalence relation on a collection
of groups.

*®

The kernel of a homomorphism is never empty.
9. It is possible to find at least one homomorphism from any group G to any group G'.

10. If there exists a homomorphism from group G to group G', then G’ is said to be a
homomorphic image of G.
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Exercises

1.

Each of the following rules determines a mapping ¢: G — G, where G is the group
of all nonzero real numbers under multiplication. Decide in each case whether or not
¢ is an endomorphism. For those that are endomorphisms, state the kernel and decide
whether ¢ is an epimorphism or a monomorphism.

a. ¢(x) = |x| b. ¢(x) = 1/x

c. Pp(x) = —x d. p(x) = X2

e. p(x) = Ii—' f. p(x) =x"+1
g b0 = Vi h. ¢ =

Each of the following rules determines a mapping ¢ from the additive group Z4 to
the additive groups Z,. In each case prove or disprove that ¢ is a homomorphism. If
¢ is a homomorphism, find ker ¢ and decide whether ¢ is an epimorphism or a
monomorphism.

a. ¢([x]) = {

[0] ifxiseven

[1] ifxisodd b. ¢([x]) = [x + 2]

Consider the additive groups of real numbers R and complex numbers C and define ¢:
R — C by ¢p(x) = x + 0i. Prove that ¢ is a homomorphism and find ker ¢. Is ¢ an epi-
morphism? Is ¢ a monomorphism?

Consider the additive group Z and the multiplicative group G = {1,i, —1, —i} and
define ¢: Z — G by ¢(n) = i". Prove that ¢ is a homomorphism and find ker ¢. Is ¢
an epimorphism? Is ¢ a monomorphism?

Consider the additive group Z;, and define ¢: Z1, — Z; by ¢([x]) = [3x]. Prove that
¢ is a homomorphism and find ker ¢. Is ¢ an epimorphism? Is ¢ a monomorphism?

Consider the additive groups Zj, and Zg and define ¢: Ziy; — Zg by ¢([x]15) = [x]s.
Prove that ¢ is a homomorphism and find ker ¢. Is ¢ an epimorphism? Is ¢ a
monomorphism?

Consider the additive groups Zs and Z4 and define ¢: Zg — Z4 by ¢([x]g) = [x];. Prove
that ¢ is a homomorphism and find ker ¢. Is ¢ an epimorphism? Is ¢ a monomorphism?

b
Consider the additive groups M»(Z) and Z and define ¢: M, (Z) — Z by q’)< {a d}) =
c

a. Prove that ¢ is a homomorphism and find ker ¢. Is ¢ an epimorphism? Is ¢ a
monomorphism?

Let G be the multiplicative group of invertible matrices in M>(R), and let G’ be the
group of nonzero real numbers under multiplication. Prove that the mapping ¢:

G — G’ defined by
b
q’)({: d})=ad—bc

is a homomorphism. Is ¢ an epimorphism? Is ¢ a monomorphism? (The value of this
mapping is called the determinant of the matrix.)
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10

11.

12.

13.

14.

15.

16.

17.

18.
19.
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20.

21.

. Find an example of G, G’, and ¢ such that G is a nonabelian group, G’ is an abelian

group, and ¢ is an epimorphism from G to G'.

Let ¢» be a homomorphism from the group G to the group G'.

a. Prove part a of Theorem 3.28: If e denotes the identity in G and ¢’ denotes the
identity in G', then ¢p(e) = €.

b. Prove part b of Theorem 3.28: ¢p(x~ ) = [¢(x)] ! for all x in G.

Prove that on a given collection G of groups, the relation of being a homomorphic
image has the reflexive property.

Suppose that G, G', and G” are groups. If G’ is a homomorphic image of G, and G” is
a homomorphic image of G', prove that G” is a homomorphic image of G. (Thus the
relation in Exercise 12 has the transitive property.)

Find two groups G and G’ such that G’ is a homomorphic image of G but G is not a
homomorphic image of G'. (Thus the relation in Exercise 12 does not have the symmet-
ric property.)

Suppose that ¢ is an epimorphism from the group G to the group G'. Prove that ¢ is an
isomorphism if and only if ker ¢ = {e}, where e denotes the identity in G.

If G is an abelian group and the group G’ is a homomorphic image of G, prove that G’
is abelian.

Let a be a fixed element of the multiplicative group G. Define ¢ from the additive
group Z to G by ¢p(n) = a" for all n € Z. Prove that ¢ is a homomorphism.

With ¢ as in Exercise 17, show that ¢(Z) = <a>, and describe the kernel of ¢.

Assume that ¢ is a homomorphism from the group G to the group G'.

a. Prove that if H is any subgroup of G, then ¢(H) is a subgroup of G'.
b. Prove that if K is any subgroup of G’, then ¢~ (K) is a subgroup of G.
Assume that the group G’ is a homomorphic image of the group G.

a. Prove that G’ is cyclic if G is cyclic.

b. Prove that o(G") divides o(G), whether G is cyclic or not.

Let ¢ be a homomorphism from the group G to the group G', where G = (a), the cyclic
group generated by a. Show that ¢ is completely determined by the image of the gen-
erator a of G.
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isomorphism, 177 order of a group, 141 subgroup, 152

kernel of a homomorphism, 186 order of an element, 167 subgroup generated by a, 159
monomorphism, 183 reverse order law, 146

A Pioneer in Mathematics
Niels Henrik Abel (1802-1829)

Niels Henrik Abel was a leading 19th-century Norwegian mathematician.
Although he died at the age of 27, his accomplishments were
extraordinary, and he is Norway's most noted mathematician. His
memory is honored in many ways. A monument to him was erected at
Froland Church, his burial place, by his friend Baltazar Mathias Keilhau.
History tells us that on his deathbed, Abel jokingly asked his friend to
care for his fiancée after his death, perhaps by marrying her. (After Abel
died, Keilhau did marry Abel’s fiancée.) A statue of Abel stands in the
Royal Park of Oslo, and Norway has issued five postage stamps in his
honor. Many theorems of advanced mathematics bear his name. Probably the most lasting
and significant recognition is in the term abelian group, coined around 1870.

Abel was one of seven children of a pastor. When he was 18 his father died, and
supporting the family became his responsibility. In spite of this burden, Abel continued his
study of mathematics and successfully solved a problem that had baffled mathematicians
for more than 300 years: He proved that the general fifth-degree polynomial equation could
not be solved using the four basic arithmetic operations and extraction of roots.

Although Abel never held an academic position, he continued to pursue his
mathematical research, contributing not only to the groundwork for what later became
known as abstract algebra but also to the theory of infinite series, elliptic functions, elliptic
integrals, and abelian integrals.

In Berlin, Abel became friends with August Leopold Crelle (1780-1856), a civil
engineer and founder of the first journal devoted entirely to mathematical research. It was
only through Crelle’s friendship and respect for Abel’s talent that many of Abel's papers
were published. In fact, Crelle finally obtained a faculty position for Abel at the University of
Berlin, but unfortunately, the news reached Norway two days after Abel’s death.

LC-USZ62-100853/Library of Congress Prints and Photographs Division
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CHAPTER FOUR

More on Groups

Introduction

The first two sections of this chapter present the standard material on permutation groups,
and the optional Section 4.3 contains some real-world applications of such groups. The next
section introduces cosets of a subgroup, a concept necessary to the study of normal sub-
groups and quotient groups in the next two sections. The chapter then concludes with two
optional sections that present some results on finite abelian groups and give a sample of
more advanced work.

The set Z,, of congruence classes modulo n makes isolated appearances in this chapter.

Finite Permutation Groups

An appreciation of the importance of permutation groups must be based to some extent on a
knowledge of their structures. The basic facts about finite permutation groups are presented
in this section, and their importance is revealed in the next two sections.

Suppose A is a finite set of n elements—say,

A= {al,az,...,an .
Any permutation f on A is determined by the choices for the n values

f(al)’f(GZ)’ e ’f(an)'

In assigning these values, there are n choices for f(a;), then n — 1 choices of f(ay), then
n — 2 choices of f(a3), and so on. Thus there are n(n — 1) - - - (2)(1) = n! different ways in
which f can be defined, and S(A) has n! elements. Each element fin S(A) can be repre-
sented by a matrix (rectangular array) in which the image of a; is written under a;:

fe |: a, a a, :|
fla)  flay) -+ fla,)
Each permutation f on A can be made to correspond to a permutation f' on B =
{1,2,...,n} byreplacing a; withkfork = 1,2,...,n:

f’:[ 1 2 n :|
Ay @ - fl]

191
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The mapping f— f is an isomorphism from S(A) to S(B), and the groups are the same
except for notation. For this reason, we will henceforth consider a permutation on a set of
n elements as being written on the set B = {1, 2, ..., n}. The group S(B) is known as the
symmetric group on n elements, and it is denoted by S,,.

Example 1 As anillustration of the matrix representation, the notation
1 2 3 4 5
f:
3 5 1 4 2

indicates that fis an element of S5 and that f(1) = 3, f(2) = 5, f(3) = 1, f(4) = 4, and

JG6) =2 [ |
Definition 41 = Cycle
An element f of S, is a cycle if there exists a set {iy, i, . . . , i,} of distinct integers such that

fG) =0, f() = b5, ..., floy) = 0 fG) = 0o,

and f leaves all other elements fixed.

By this definition, fis a cycle if there are distinct integers iy, i, . . . , i, such that f maps
these elements according to the cyclic pattern

T

W i —>i—> =i —i,
and f leaves all other elements fixed. A cycle such as this can be written in the form

f=(yby...,0),
where it is understood that f(i;) = i+ for 1 = k < r, and f(i,) = i;.

Example 2 The permutation
e 1 2 3 4 5 6 7
1 6 3 7 5 4 2

can be written simply as

f=2,6,4,7).
This expression is not unique, because
f=0,6,4,7)
=(6,4,7,2)
=(4,7,2,6)

=(7,2,6,4). [
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Example 3 Itis easy to write the inverse of a cycle. Since f(iy) = ix4+; implies
£~ ig+1) = i, we only need to reverse the order of the cyclic pattern. For

f=10(1,2,3,4,5,6,7,8,9),
we have

f1=109,8,7,6,54,3,21)
=(1,9,8,7,6,5,4,3,2). ]

Not all elements of S, are cycles, but every permutation can be written as a product of
mutually disjoint cycles. As an example, consider the permutation

so[r2as e 780
3826 7 4 9 1 5]

When we use the same representation scheme with f(k) written beneath k, the result of a
rearrangement of the columns in the matrix still represents f:

f_132846579
3 2 81 6 4 7 9 57

The columns have been arranged in a special way: If f(p) = g, the column with g at the
top has been written next after the column with p at the top. This arranges the elements in
the first row so that f maps them according to the following pattern:

]1->3-52—>8—>1

4—>6—>4

5—-7—9—>5.
Thus 1, 3, 2, and 8 are mapped in a circular pattern, and so are 4 and 6, and 5, 7, and 9. This
procedure has led to a separation of the elements of {1, 2, 3,4, 5, 6, 7, 8, 9} into disjoint

subsets {1, 3, 2, 8}, {4, 6}, and {5, 7, 9} according to the pattern determined by the
following computations:

f(H =3 féd =6 f5) =17
FF)=f3 =2 f@=f6)=4 5 =f7=9
) =£2) =38 £35) = f(9) = 5.

A =r®) =1

The disjoint subsets {1, 3, 2, 8}, {4, 6}, and {5, 7, 9} are called the orbits of f.
For each orbit of f, we define a cycle that maps the elements in that orbit in the same
way as does f:

gl = (1’ 39 2a 8)
8 = (4,6)
¢ = (5,7,9).

moﬁ = fofofandsoon.
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These cycles are automatically on disjoint sets of elements since the orbits are disjoint, and
we see that their product is f:

f= 8188
=(1,3,2,8)(4,6)(5,7,9).

Note that these cycles commute with each other because they are on disjoint sets of elements.

Example 4 The positive integral powers of a cycle f are easy to compute since f” will
map each integer in the cycle onto the integer located m places farther along in the cycle.
For instance, if

f: (1’ 29 3’ 4, 59 6’ 7, 89 9)7
then f2 maps each element onto the element two places farther along, according to the pattern

S ——
1,2,3,4,5,6,7, ...

f2=1(1,3,5,7,9,2,4,6,8).

Similarly, f* maps each element onto the element three places farther along, and so on for
higher powers:

F=0,4,72,5,8)3,6,9)
4=1(1,5,9,4,8,3,7,2,6). -

In connection with Example 4, we note that the order of an r-cycle (a cycle with r
elements) is r.

Ordinarily, cycles that are not on disjoint sets of elements will not commute, but their
product is defined using mapping composition. For example, suppose f = (1, 3, 2, 4) and
g=(1,7,6,2). Then'

fe=(1,3,2,4)(1,7,6,2) = (1,7,6,4)(2, 3),

since

/8
—

1 457157

7556156
6 —>2-"L514
445415
2451153
3253159

stys5-155s

"The product fg is computed from right to left, according to f(g(x)). Some texts multiply permutations from left
to right.
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The computation of fg may be easier to see in the following diagram:
g 1 234567
G
f8 f 71 3 45 2 6
C 73 21 5 4 6
fe=(1,3,2,4)(1,7,6,2) = (1,7,6,4)(2, 3).
A similar diagram for gf appears as follows:

1 23 45 6 7

f
gf<C3421567

8
C 34175 26
gf=(1,7,6,2)(1,3,2,4) = (1,3)(2,4,7, 6).
Thus gf # fg. We adopt the notation that a 1-cycle such as (5) indicates that the element is
left fixed. For example, gf could also be written as
gf = (1,3)(2,4,7,6)(5).
This allows expressions such as e = (1) or e = (1)(2) for the identity permutation.

Example 5 A product of cycles with any number of factors can be expressed as a
product of disjoint cycles by the same procedure that we used in computing fg with
f=(1,3,2,4)and g = (1, 7, 6, 2). To illustrate, suppose we wish to express

(1,4,3,2)(1,6,2,5)(1,5,3,6,2)
as a product of disjoint cycles. Let
f=1(01,4,3,2)
g=1(1,6,2,5)
h=(1,5,3,6,2).

The following computations can be done mentally to obtain fgh as a product of disjoint cycles:

fgh
— T
155 —"51-"254
RN BN N
3256 —52-151
25156156
6 —>2—55-"155
5753253152

Thus
(1,4,3,2)(1,6,2,5)(1,5,3,6,2) = (1,4,3)(2,6,5). u
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When a permutation is written as a product of disjoint cycles, it is easy to find the order
of the permutation if we use the result in Exercise 36 of Section 3.4: The order of the prod-
uct is simply the least common multiple of the orders of the cycles. For example, the
product (1, 2, 3, 4)(5, 6, 7, 8, 9, 10) has order 12, the least common multiple of 4 and 6.

Example 6 The expression of permutations as products of cycles enables us to write
the elements of S, in a very compact form. The elements of S3 are given by

e=(1) o=(1,2)
p=(123) y=(3)
pP=(1,3,2) &§=(273). [ |

A 2-cycle such as (3, 7) is called a transposition. Every permutation can be written as
a product of transpositions, for every permutation can be written as a product of cycles, and
any cycle (i, iy, . . . , i) can be written as

(ih i27 ] lr) = (il’ ir)(ih ir*l) e (il’ l%)(ll’ 12)
For example,
(1,3,2,4) = (1,4)(1, 2)(1, 3).

The factorization into a product of transpositions is not unique, as the next example shows.

Example 7 Consider the product fg, where f = (1, 3, 2, 4) and g = (1, 7, 6, 2). This
product can be written as
(1,3,2,4)(1,7,6,2) = (1,4)(1, 2)(1, 3)(1, 2)(1, 6)(1,7)
and also as
(1,3,2,4)(1,7,6,2) = (1,7,6,4)(2, 3)
= (1,4)(1, 6)(1, 7)(2, 3). |

Although the expression of a permutation as a product of transpositions is not unique,
the number of transpositions used for a certain permutation is either always odd or else
always even. Our proof of this fact takes us somewhat astray from our main course in this
chapter. It involves consideration of a polynomial P in n variables xy, x2, . . ., x, that is the
product of all factors of the form (x; — x)) with 1 =i <j=n:

P = H (x; — x).
i<j

(The symbol H indicates a product in the same way that E is used to indicate sums.) For
example, if n = 3, then

3
| B RS

i<j

~
I

(xr = ) () — x3)(x — x3).
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Forn = 4, P is given by

4

H (x; — xj)

i<j

P

= () = ) — x3)(x; = X)) — x3)(x — x9) (X3 — Xy),

and similarly for larger values of n.
If fis any permutation on {1, 2, . .., n}, then f is applied to P by the rule

fPy =TT Gy = x)-
i<
As an illustration, let us apply the transposition ¢ = (2, 4) to the polynomial
4
H (x; — x;)
i<j

= (x; — ) — x3)(x; — X)) — X3) (0 — X)) (X3 — Xy).

P

We have
1(P) = (x; — x)(x; — x3)(x; — x2) (0 — x3)(%g — Xp)(x3 = x3),

since 2 and 4 are interchanged by 7. Analyzing this result, we observe the following:

1. The factor (x; — x4) in P is changed to (x4 — x) in #(P), so this factor changes sign.

2. The factor (x; — x3) is unchanged.

3. The remaining factors in #(P) may be grouped in pairs as

(1 — x)(x; — xp) and (x4 — 3)(x3 — X)) = (X3 — X)X — x3).
The products of these pairs are unchanged by z.

Thus #(P) = (—1)P, in this particular case. The sort of analysis we have used here can be
used to prove the following lemma.

Lemma42 =
If t = (r, 5) is any transpositionon {1,2,...,n} and P = ﬁ (x; — x;), then
i<j
t(P) = (—1)P.
wAv)=w Proof Sincet= (r,s) = (s, r), we may assume that r < s. We have

HP) = H Xy — xt(j))-

i<j
The factors of #(P) may be analyzed as follows:

1. The factor (x, — x,) in P is changed to (x; — x,) in #(P), so this factor changes sign.

2. The factors (x; — x;) in P with both subscripts different from r and s are unchanged by .



198 Chapter 4 More on Groups

3. The remaining factors in P have exactly one subscript & different from r and s and may
be grouped into pairs according to the following plan.

a. If k <r <y, the pair (x, — x,) (x, — x,) becomes (x, — x,) (x, — x,), and their
product is unchanged by the transposition .

b. Similarly, if r < s < k, the product (x, — x;) (x, — x;) is also unchanged by .
c¢. Finally, if r < k < s, then the pair (x, — x;) (x, — x,) is unchanged by ¢ since

(O = x) (= x,) = [= 0 = x)[—(x, = x)]
= (-xk - xs)(xr - 'xk)‘

Thus #(P) = (—1)P, and the proof of the lemma is complete.

Strategy ® The conclusion in the next theorem has the form “r or s.” In previous conclusions of this
type, we have assumed that 7 was false and proved that s must then be true. It is interesting
to note that this time, our technique is different and uses no negative assumption.

Theorem4.3 = Products of Transpositions
If a certain permutation f is expressed as a product of p transpositions and also as a prod-
uct of ¢ transpositions, then either p and g are both even, or else p and g are both odd.
(uAv) Proof Suppose
= (rvs)

f=tty---t,and f=tith-- -1,
where each #; and each ¢; are transpositions. With the first factorization, the result of apply-
ing f to

n

P = H(x,——xj)

i<j
can be obtained by successive application of the transpositions f,, f,—1, ..., f, t;. By
Lemma 4.2, each f; changes the sign of P, so
fP) = (=1yP.
Repeating this same line of reasoning with the second factorization, we obtain
f(P) = (—1yP.

This means that
(=1Y'P = (=P,
and consequently,
(=D = (=D~

Therefore, either p or g are both even, or p and g are both odd.
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Theorem 4.3 assures us that when a particular permutation is expressed in different
ways as a product of transpositions, the number of transpositions used either will always
be an even number or else will always be an odd number. This fact allows us to make the
following definition.

m Even, 0dd Permutations

Definition 4.5

A permutation that can be expressed as a product of an even number of transpositions is
called an even permutation, and a permutation that can be expressed as a product of an
odd number of transpositions is called an odd permutation.

The product fg in Example 7 was written as a product of six transpositions and then as
a product of four transpositions, and fg is an even permutation.
The factorization of an r-cycle (i1, i, . . ., i) as

(1, 005« oo s i) = (i, i), =) - - - (i, 13)(30), 12)

uses r — 1 transpositions. This shows that an r-cycle is an even permutation if r is odd and
an odd permutation if r is even. The identity is an even permutation since e = (1, 2)(1,2).
The product of two even permutations is clearly an even permutation. Since any permuta-
tion can be written as a product of disjoint cycles, and since the inverse of an r-cycle is an
r-cycle, the inverse of an even permutation is an even permutation. These remarks show
that the set A, of all even permutations in S, is a subgroup of S,. It is called the alternating
group on n elements.

m Alternating Group

Definition 4.6

The alternating group A, is the subgroup of S, that consists of all even permutations in S,,.

Example 8 The elements of the group Ay are as follows:

(D) (1,2,4) (1,4,2) (1,2)(3,4)
(1,2,3) (1,4,3) (2,3,4) (1,3)(2,4)
(1,3,2) (1,3,4) (2,4,3) (1, 4)(2, 3). |

The concept of conjugate elements in a group is basic to the study of normal subgroups.
This concept is defined as follows.

m Conjugate Elements

If a and b are elements of the group G, the conjugate of a by b is the element bab~!. We
say that ¢ € G is a conjugate of a if and only if ¢ = bab~! for some b in G.

We should point out that this concept is trivial in an abelian group G, because
bab ' =bb 'a=ea=aforallb € G.
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There is a procedure by which conjugates of elements in a permutation group may
be computed with ease. To see how this works, suppose that f and g are permutations on
{1, 2, ..., n} that have been written as products of disjoint cycles, and consider gfg_'.
If i; and i, are integers such that f(i;) = i», then gfg~! maps g(i;) to g(i»), as the follow-
ing diagram shows:

AN S P | )
8(iy) L ) 8(iy).

This means that if
(7 )
is one of the disjoint cycles in f, then
(8(1), 8(r), . - ., 8(i,)
is a corresponding cycle in gfg~!. Thus, if
f= G i) oo a9 e (ks kg, oo k),
then
gfe ! = (g(iD), 8(ia), - - - GDNEUDs - - -5 8D~ -+ (glky), - - -, g(K)).

Example 9 1f
f=101,3,6,9,5)2,4,7),
and
g=101,2,8)3,6)(4,5,7),
may be obtained from f as follows:
f=1(1,3,6,9,5)(2,4,7)
R 2R R N A
gfe ' =1(2,6,3,9,7)8,5,4)
=(2,6,3,9,7)(4,8,5),

where the arrows indicate replacement of i by g(i). This result may be verified by direct
computation of g~ ! and the product gfg . [ |

then gfg ™!

The procedure for computing conjugates described just before Example 9 shows that
any conjugate of a given permutation f has the same type of factorization into disjoint
cycles as f does. If suitable permutations f and /4 are given, the procedure also indicates
how g may be found so that gfg~! = h. This is illustrated in Example 10.

Example 10 Suppose f = (1, 4,2)(3,5), h = (6,8, 9)(5, 7), and we wish to find g such

that gfg~! = h. Using arrows to indicate replacements in the same way as in Example 9,
we wish to obtain g f¢g~' = h from f as follows:
f=01,4,2)3,5)
il il

gfg”! = (6,8,9)(5,7).
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From this diagram it is easy to see that
g =(1,6)(4,8)(2,93,5,7)
is a solution to our problem. It is also easy to see that g is not unique. For example,
(1,6,4,8,2,9)3,5,7)

is another value of g that works just as well. |

In Example 2 of Section 3.5, we considered the group of all rigid motions, or symme-
tries, of an equilateral triangle. Every geometric figure has an associated group of rigid mo-
tions. (We are considering only rigid motions in space here. For a plane figure, one can
similarly consider rigid motions of the figure in that plane.) For simple figures such as a
square, a regular pentagon, or a cube, a rigid motion is completely determined by the

images of the vertices. If the vertices are labeled 1, 2, 3, ... rather than V|, V,, V3, ...,
the rigid motions may be represented by permutation notation. In Example 2 of Section 3.5,
the mappings
h(vVy) =V, rVy) =V,
h:{h(V,) =V, and r:{r(V,) =V,
h(Vs) = V; r(V3) =V,

can be written simply as

h=(1,2) and r=(1,2,3).

Example 11  Using the notational convention described in the preceding paragraph, we
shall write out the (space) group G of rigid motions of a square (see Figure 4.1).

4 2
N
N

N

N

|

|

I

N | 7/

|

|

|

_——— ———— NS - — —
o h

A

7
7
7/
7

1 7
7
7

|
|
|
|
i
m Figure 41 d;’ v

The elements of the group G are as follows:

1. the identity mapping e = (1)
the counterclockwise rotation & = (1, 2, 3, 4) through 90° about the center O
the counterclockwise rotation o> = (1, 3)(2, 4) through 180° about the center O
the counterclockwise rotation o® = (1, 4, 3, 2) through 270° about the center O
the reflection 8 = (1, 4)(2, 3) about the horizontal line &

SUNF o
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6.
7.
8.

the reflection y = (2, 4) about the diagonal d;
the reflection A = (1, 2)(3, 4) about the vertical line v
the reflection 8 = (1, 3) about the diagonal d.

The group G = {e, a, o, ad, B, v, A, 6} of rigid motions of the square is known as the octic
group. The multiplication table for G is requested in Exercise 18 of this section. |

Exercises 4.1 I——

True or False

Label each of the following statements as either true or false.

p—

R BN U ol

—
=

. Bvery permutation can be written as a product of transpositions.

A permutation can be uniquely expressed as a product of transpositions.

The product of cycles under mapping composition is a commutative operation.
Disjoint cycles commute under mapping composition.

The identity permutation can be expressed in more than one way.

Every permutation can be expressed as a product of disjoint cycles.

An r-cycle is an even permutation if r is even and an odd permutation if r is odd.
The set of all odd permutations in S, is a subgroup of S,,.

The symmetric group S, on n elements has order n.

A transposition leaves all elements except two fixed.

. The order of an r-cycle is r.

12. The mutually disjoint cycles of a permutation are the same as its orbits.
Exercises
1. Express each permutation as a product of disjoint cycles and find the orbits of each
permutation.
(1 2 3 4 5 1 2 3 4 5
a. b.
14 5 3 1 2} |1 3 2 5 4}
(1 2 3 4 5 (1 2 3 4 5
c. d.
4 1 3 5 2} 13 5 2 4 1}
. (1 2 3 4 5 6 7 ( (1 2 3 4 5 6 7
134 5 6 1 2 7 151 3 7 2 6 4
1 2 3 4 5][1 2 3 4 5
& |1 3 4 5 2|3 2 4 1 5
b 1 2 3 4 5][1 2 3 4 5
12 03 4 1 5|1 3 5 4 2
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=2 R B WY | B )

10.

11.
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Express each permutation as a product of disjoint cycles and find the orbits of each
permutation.

. (1,9,2,3)(1,9,6,5)(1,4,8,7)

. (1,2,9)3,4)(5,6,7,8,9)4,9)

. (1,4,8,7)(1,9,6,5)1,5,3,2,9)
. (1,4,2,3,5)1,3,4,5)

. (1,3,5,4,2)1,4,3,5)

. (1,9,2,4)(1,7,6,5,9)(1,2,3,8)
. (2,3,71,2)3,5,7,6,4)(1,4)

. (4,9,6,7,8)2,6,4)(1,8,7)3,5)

=00 e & 6 TN

. In each part of Exercise 1, decide whether the permutation is even or odd.
. In each part of Exercise 2, decide whether the permutation is even or odd.
. Find the order of each permutation in Exercise 1.

. Find the order of each permutation in Exercise 2.

. Express each permutation in Exercise 1 as a product of transpositions.

. Express each permutation in Exercise 2 as a product of transpositions.

. Compute f2, £, and f~! for each of the following permutations.

a. f=(1,52,4) b. f=(2,7,4,3,5)

c. f=1(1,6,2)(3,4,5) d. f=(1,2)3,5,7,4)

e. f=1(1,2,8)3,4,7,5,6) f. f=1(1,3,7,4)(2,5,9,8,6)
Compute gfg~ !, the conjugate of f by g, for each pair f, g.

a. f=(1,2,4,3); g=1(1,3,2)

b. f=(1,3,5,6); g=1(2,54,6)

c. f=(2,3,5,4); g=0,3,2)4,5)

d. f=(1,4)2,3); g=1(1,2,3)

e. f=(1,3,5)2,4); g=1(2,903,4)

f. f=(1,3,5,2)4,06); g=0,3,6)2,4,5)

For the given permutations, f and &, find a permutation g such that 4 is the conjugate
of f by g—that is, such that 1 = gfg™'.

a. f=(1,5,9); h=(2,6,4)

b. f=(1,3,5,7); h=(3,4,6,8)

c. f=(1,3,5)2,4); h=(2,4,3)1,5)

d. f=(1,2,3)4,5); h=(2,3,4)(1,6)

e. f=(1,4,7)2,5,8); h=(1,5,4)2,3,6)
f. f=(1,3,5(2,4,06); h=(1,2,4)3,5,6)
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Sec. 3.4, #39 >

Sec. 3.4, #39 >

Sec. 3.1, #30 >

Sec. 3.3, #26 >

Sec. 4.4, #25 <

12

13.

14.
15.
16.
17.
18.

. Write the permutation = (1, 2, 3, 4, 5, 6) as a product of a permutation g of order 2
and a permutation /4 of order 3.

Write the permutation f= (1,2,3,4,5,6,7,8,9,10,11,12) as a product of a
permutation g of order 3 and 4 of order 4.

List all the elements of the alternating group As, written in cyclic notation.
List all the elements of Sy, written in cyclic notation.

Find all the distinct cyclic subgroups of Ay4.

Find cyclic subgroups of Sy that have three different orders.

Construct a multiplication table for the octic group described in Example 11 of this
section.

19. Find all the distinct cyclic subgroups of the octic group in Exercise 18.

20. Find an isomorphism from the octic group G in Example 11 of this section to the group
G' = {,R, R2 R, H,D,V, T} in Exercise 30 of Section 3.1.

21. Prove that in any group, the relation “x is a conjugate of y” is an equivalence
relation.

22. As stated in Exercise 26 of Section 3.3, the centralizer of an element g in the group G
is the subgroup given by C, = {x € G|ax = xa}. Use the multiplication table con-
structed in Exercise 18 to find the centralizer C, for each element a of the octic group.

23. A subgroup H of the group S, is called transitiveon B = {1,2, ..., n} if for each pair
i, j of elements of B there exists an element &7 € H such that /(i) = j. Show that there
exists a cyclic subgroup H of S, that is transitive on B.

24. Let ¢ be the mapping from S, to the additive group Z, defined by

&(f) = [0] if fis an even permutation
[1] if fis an odd permutation.
a. Prove that ¢ is a homomorphism.
b. Find the kernel of ¢.
c. Prove or disprove that ¢» an epimorphism.
d. Prove or disprove that ¢ an isomorphism.
25. Let fand g be disjoint cycles in S,. Prove that fg = gf.

26

. Prove that the order of A, is 2.
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4.2 | Cayley's' Theorem
—
At the opening of Section 3.5, we stated that permutation groups can serve as models for
all groups. A more precise statement is that every group is isomorphic to a group of per-
mutations; this is the reason for the fundamental importance of permutation groups in
algebra.
Theorem4.7 = Cayley's Theorem

Every group is isomorphic to a group of permutations.

P=4¢q Proof Let G be a given group. The permutations that we use in the proof will be map-

pings defined on the set of all elements in G.
For each element a in G, we define a mapping f,: G — G by

f.(x) = ax forall xin G.

That is, the image of each x in G is obtained by multiplying x on the left by a. Now f is
one-to-one since
JoX) = fo(y) = ax = ay
= x=y.

To see that f, is onto, let b be arbitrary in G. Thenx = a~ Ip is in G, and for this particular
x we have

Ja(x) = ax
a(a”'b) = b.

Thus f, is a permutation on the set of elements of G.
We shall show that the set

G ={f,|a € G}

actually forms a group of permutations. Since mapping composition is always associative,
we need only show that G’ is closed, has an identity, and contains inverses.
For any f, and f, in G’, we have

Jafo®) = fu(f(x)) = fu(bx) = a(bx) = (ab)(x) = fu(x)
for all x in G. Thus £, f, = fu», and G’ is closed. Since

fx) =ex=x
for all x in G, f, is the identity permutation, f, = ;. Using the result f, f, = f.», we have
f;zfa" :f;la" :fe

A biographical sketch of Author Cayley (1821-1895) is given at the end of Chapter 1.
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and
fa"fa = fa"a = f;z'

Thus (f,)"' = f,-is in G, and G’ is a group of permutations.
All that remains is to show that G is isomorphic to G'. The mapping ¢: G — G’

defined by
P(a) = f,
is clearly onto. It is one-to-one since
Pla) = ob) = f, =/

= f(x) =f,(x) forallx € G
= ax = bx forallx € G

=a=b.

Finally, ¢ is an isomorphism since
d()P(b) = fufy = fur = P(ab)
forall a, b in G.

Note that the group G’ = {f,|a € G} is a subgroup of the group S(G) of all permuta-
tions on G, and G’ # S(G) in most cases.

Example 1 We shall follow the proof of Cayley’s Theorem with the group G =
{1,i, —1, —i} to obtain a group of permutations G’ that is isomorphic to G and an isomor-

phism from G to G'.
With f;: G — G defined by f,(x) = ax for each a € G, we obtain the following permu-

tations on the set of elements of G:

A =1 fi(l) =i
A =i Lo = —1
Ji H=D = —1 i fil=1) = —i
fi(=i) = —i fil=) =1
[ =-1 fo() = =i
JFa = =i ro=1
FiYren=1 T e =i
fo(=i) =i fo(=i=—-1
In a more compact form, we write
f1=(1) f;z(l’l’_l’_l)
S =0, =D, —0) Soi= (1, =i, —1,0).

According to the proof of Cayley’s Theorem, the set

G’ = {fl’ f;‘» f*l’ f*i}
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is a group of permutations, and the mapping ¢: G — G’ defined by
¢(1) = fi
o) = J;
(=1 =1,
d(=i) = f;

is an isomorphism from G to G'. |

BN Exercises 4.2 —

True or False

Label the following statement as either true or false.

1. Every finite group G of order n is isomorphic to a subgroup of order n of the group
S(G) of all permutations on G.

Exercises

In Exercises 1-7, let G be the given group. Write out the elements of a group of permuta-
tions that is isomorphic to G, and exhibit an isomorphism from G to this group.

1. Let G be the additive group Z;.
2. Let G be the cyclic group <a> of order 5.

Sec.3.5,#10> 3. Let G be the Klein four group {e, a, b, ab} with its multiplication table given in Fig-
ure 4.2.

e a b ab

e | e a b ab

a | a e ab b

ab |ab b a e

o Figure 4.2

4. Let G be the multiplicative group of units Us = {[1],[2],[3], (4]} S Zs.
5. Let G be the multiplicative group {[2], [4], [6], [8]} S Zo.

Sec.3.1,#29> 6. Let G be the group of permutations matrices {I3, P, P, P3, P4, Ps} as given in
Exercise 29 of Section 3.1.

7. Let G be the octic group {e, a, &?, &?, B, y, A, 6}.



208

Chapter 4 More on Groups

4.3

8. For each a in the group G, define a mapping h,: G — G by h,(x) = xa forall xin G.
a. Prove that each A, is a permutation on the set of elements in G.
b. Prove that H = {h,|a € G} is a group with respect to mapping composition.

c¢. Define ¢p: G — H by ¢(a) = h, for each a in G. Determine whether ¢ is always
an isomorphism.

9. For each element ¢ in the group G, define a mapping k,: G — G by k,(x) = xa ™' for
all x in G.

a. Prove that each k, is a permutation on the set of elements of G.
b. Prove that K = {k,|a € G} is a group with respect to mapping composition.

c¢. Define ¢p: G — K by ¢(a) = k, for each a in G. Determine whether ¢ is always an
isomorphism.

10. For each a in the group G, define a mapping m,: G — G by my(x) = a~ 'x for all x in G.
a. Prove that each m, is a permutation on the set of elements of G.
b. Prove that M = {m,|a € G} is a group with respect to mapping composition.

c. Define ¢: G — M by ¢p(a) = m, for each a in G. Determine whether ¢ is always an
isomorphism.

Permutation Groups in Science and Art (Optional)

Often, the usefulness of some particular knowledge in mathematics is neither obvious nor
simple. So it is with permutation groups. Their applications in the real world come about
through connections that are somewhat involved. Nevertheless, we shall indicate here some
of their uses in both science and art.

Most of the scientific applications of permutation groups are in physics and chemistry.
One of the most impressive applications occurred in 1962. In that year, physicists Murray
Gell-Mann and Yuval Ne’eman used group theory to predict the existence of a new parti-
cle, which was designated the omega minus particle. It was not until 1964 that the existence
of this particle was confirmed in laboratory experiments.

One of the most extensive uses made of permutation groups has been in the science of
crystallography. As mentioned in Section 4.1, every geometric figure in two or three di-
mensions has its associated rigid motions, or symmetries. This association provides a natu-
ral connection between permutation groups and many objects in the real world. One of the
most fruitful of these connections has been made in the study of the structure of crystals.
Crystals are classified according to geometric symmetry based on a structure with a bal-
anced arrangement of faces. One of the simplest and most common examples of such a
structure is provided by the fact that a common table salt (NaCl) crystal is in the shape of a
cube. (See photo on the next page.)

In this section, we examine some groups related to the rigid motions of a plane figure.
We have already seen two examples of this type of group. The first was the group of sym-
metries of an equilateral triangle in Example 2 of Section 3.5, and the other was the group
of symmetries of a square in Example 11 of Section 4.1.
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SciMAT/Photo Researchers

Salt crystals are in the form of cubes.

It is not hard to see that the symmetries of any plane figure F form a group under map-
ping composition. We already know that the permutations on the set F' form a group S(F)
with respect to mapping composition. The identity permutation I preserves distances and
consequently is a symmetry of F. If two permutations on F preserve distances, their com-
position does also, and if a given permutation preserves distances, its inverse does also.
Thus the symmetries of F' form a subgroup of S(F).

Before we consider some other specific plane figures F, a discussion of the term sym-
metry is in order. In agreement with conventional terminology in algebra, we have used the
word symmetry to refer to a rigid motion of a geometric figure. However, the term is com-
monly used in another way. For example, the pentagon shown in Figure 4.3 is said to have
symmetry with respect to the vertical line ¢ through the center O and the vertex at the top,
or to be symmetric with respect to €. To make a distinction between the two uses, we shall
use the phrase geometric symmetry for the latter type of symmetry.

The groups of symmetries for regular polygons with three or four sides generalize to a
regular polygon P with n sides, for any positive integer n > 4. Any symmetry f of P is
determined by the images of the vertices of P. Let the vertices be numbered 1, 2, .. ., n,



210 Chapter 4 More on Groups

M Figure 4.4

and consider the mapping that makes the symmetry f of P correspond to the permutation
on {1, 2,...,n} that has the matrix form

Ll 2 n}
I [ ... fm ]

Since fis completely determined by the images of the vertices, this mapping is clearly a
bijection between the rigid motions of P and a subset D,, of the symmetric group S, of all
permutations on {1, 2, ..., n}. This mapping is in fact an isomorphism, D, is a subgroup
(called the dihedral group) of S,,, and we identify the rigid motions of P with the elements
of D,, in the same way that we did in Example 11 of Section 4.1.

Regular polygons with n = 5 (a pentagon) and n = 6 (a hexagon) are shown in Figure
4.4. Bearing in mind that a symmetry is determined by the images of the vertices, it can be
seen that D, consists of n counterclockwise rotations and » reflections about a line through
the center O of P. If n is odd, each reflection is about a line through a vertex and the mid-
point of the opposite side. If n is even, half of the reflections are about lines through pairs
of opposite vertices, and the other half are about lines through midpoints of opposite sides.
Thus D, has order 2n.

n=>5
Pentagon Hexagon

Example 1 Consider the pentagon in Figure 4.4. If we let R denote the rotation of

3%00 = 72° counterclockwise about the center O, then all possible rotations in Ds are found

in the following list:
R=(1,2,3,4,5), R®°=(1,3,5,2,4), R*=(1,4,2,5,3),
R*=(1,5,4,3,2), R°=(1).

If we let L; denote the reflection about line €¢; for k = 1, 2, 3, 4, 5, then the reflections in
Ds appear as follows in cyclic notation:

L =(2,5G,4), L,=(1,3)45), Ly = (1,524,
L, = (1,2)(3,5), Ls = (1,4)(2,3).
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Direct computations verify that
LR=L; LR*=Ls, LR =1L, and LR* =L,
Thus the elements of D5 can be listed in the form
Ds = {I,R,R* R°,R*, L, L|R, L,R* LR*, L,R*}. [ ]

All the symmetries in our examples have been either rotations or reflections about a
line. This is no accident because these are the only kinds of symmetries that exist for a
bounded nonempty set. If the group of symmetries of a certain figure contains a rotation
different from the identity mapping, then the figure is said to possess rotational symme-
try. A figure with a group of symmetries that includes a reflection about a line is said to
have reflective symmetry.

Example 2 Each part of Figure 4.5 has a group of symmetries that consists entirely of
rotations, and each possesses only rotational symmetry. In contrast, the group of symme-
tries of the pentagon contains both reflections and rotations, and the pentagon has both
reflective symmetry and rotational symmetry.

e S

We have barely touched on the subject of symmetries in this section, concentrating pri-
marily on bounded nonempty sets in the plane. When attention is extended to unbounded
sets in the plane, there are two more types of symmetries that can be considered: translations
and glide reflections.

A translation is simply a sliding (or glide) of the entire object through a certain dis-
tance in a fixed direction. A glide reflection consists of a translation (or glide) followed
by a reflection about a line parallel to the direction of the translation. These types of
symmetries are treated in detail in more advanced books than this one, and it can be
shown that there are only four kinds of symmetries for plane figures: rotations, reflec-
tions, translations, and glide reflections.

As our final example in this section, we consider the group of symmetries of an
unbounded set.

(a)

Example 3 The unbounded set shown in Figure 4.6 is composed of a horizontal string
of copies of the letter R, equally spaced one unit from the beginning of one R to the
beginning of the next R, and endless in both directions.

1 unit

—
R R R R R R R
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If t denotes a translation of the set in Figure 4.6 one unit to the right, then #* is a trans-
lation two units to the right and #" is a translation » units to the right for any positive inte-
ger n. Thus all positive integral powers of r are symmetries on the set of R’s. The inverse
mapping ¢~ ! is a translation of the set one unit to the left, and ™" is a translation 7 units to
the left for any positive integer n. Thus all integral powers of ¢ are symmetries on the set of
R’s, and the set

{"',t_z,t_l,t():I,t,tz, }

is the (infinite) group of symmetries of this set. |

Translations and glide reflections are common in the group of symmetries for wall-
paper patterns, textile patterns, pottery, ribbons, and all sorts of decorative art. The inter-
ested reader can find an excellent exposition of the applications that we have touched on
in Tannenbaum and Arnold’s Excursions in Modern Mathematics, 3rd ed. (Englewood
Cliffs, NJ: Prentice Hall, 1998).

The outstanding connection between permutation groups and art is provided by the
famous works of the great Dutch artist M. C. Escher.” Concerning Escher, J. Taylor Hollist
said, “Mathematicians continue to use his periodic patterns of animal figures as clever
illustrations of translation, rotation and reflection symmetry. Psychologists use his optical
illusions and distorted views of life as enchanting examples in the study of vision.”’f

Exercises 4.3 I——

True or False

Label each of the following statements as either true or false.

1. The symmetries of any plane figure form a group under mapping composition.
The regular pentagon possesses only rotational symmetry.
The regular hexagon possesses both rotational and reflective symmetry.

The group D,, of symmetries for a regular polygon with z sides has order .

SANE o

The symmetric group S3 on 3 elements is the same as the group D3 of symmetries for
an equilateral triangle. That is, S3 = Ds.

6. The symmetric group S4 on 4 elements is the same as the group D, of symmetries for
a square. That is, S4 = Dy.

7. The alternating group A4 on 4 elements is the same as the group D, of symmetries for
a square. That is, A4 = Dy.

"Maurits Cornelis Escher (1898-1972) was a Dutch graphic artist. He is known for his explorations of infinity in
his mathematically inspired art. Some of his original works are housed in leading public and private collections.
The asteroid 4444 is named in his honor.

7. Taylor Hollist, “Escher Correspondence in the Roosevelt Collection,” Leonardo, Vol. 24, No. 3 (1991), p. 329.
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Exercises

List all elements in the group of symmetries of the given set.
1. The letter T
2. The letter M
3. The letter S
4. The letter H

Determine whether the given figure has rotational symmetry or reflective symmetry.

; @ 219

Describe the elements in the group of symmetries of the given bounded figure.

11. 12. \\></\$ 13.
2\
Recycle Crafted With Pride Atom
14. @ 15. ‘.‘ 16.
Biohazard Radiation Do Not Dry Clean

Describe the elements in the groups of symmetries of the given unbounded figures.

1 unit

—
17.---E E E E E E E

1 unit

—>
8. ---> > > > > > D>

1 unit

—>
9.---T T T T T T T

1 unit

20. .- Kk ok ok ok ok kK
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m Figure 4.7

Sec. 4.6, #4 <

M Figure 4.8

21

22,

23.

24.

25.

26.

217.
28.

. Show that the group of symmetries in Example 3 of this section is isomorphic to the
group of integers under addition.

Construct a multiplication table for the group G of rigid motions of an isosceles triangle
with vertices 1, 2, 3 if the isosceles triangle is not an equilateral triangle.

Construct a multiplication table for the group G of rigid motions of a rectangle with
vertices 1, 2, 3, 4 if the rectangle is not a square.

Construct a multiplication table for the group G of rigid motions of the rhombus in
Figure 4.7 with vertices 1, 2, 3, 4 if the rhombus is not a square.

Construct a multiplication table for the group G of rigid motions of a regular pentagon
with vertices 1, 2, 3, 4, 5.

List the elements of the group G of rigid motions of a regular hexagon with vertices 1,
2,3,4,5,6.

Let G be the group of rigid motions of a cube. Find the order o(G).

Let G be the group of rigid motions of a regular tetrahedron (see Figure 4.8). Find the
order o(G).
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Sec.3.3,#15a>  29. Find an isomorphism from the group G in Exercise 23 of this exercise set to the mul-

tiplicative group
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4.4 | Cosets of a Subgroup

The binary operation in a given group can be used in a natural way to define a product
between subsets of the group. The importance of this product is difficult to appreciate at
this point in our development. It leads to the definition of cosets; cosets in turn lead to
quotient groups; and quotient groups provide a systematic description of all homomor-
phic images of a group in Section 4.6.

Definition 4.8 m Product of Subsets

Let A and B be nonempty subsets of the group G. The product AB is defined by
AB = {x € G|x = abforsomea € A, b € B}.

This product is formed by using the group operation in G. A more precise formulation
would be

Ax*B={x€ G|x=a=*bforsomea € A, b € B},

where * is the group operation in G.
Several properties of this product are worth mentioning. For nonempty subsets A, B,
and C of the group G,

A(BC) = {a(bc)|a € A, b € B,c € C}
= {(ab)cla € A,b € B,c € C}
= (4B)C.
It is obvious that
B=C = AB = ACand BA = CA,

but we must be careful about the order because AB and BA may be different sets.

Example 1 Consider the subsets A = {(1, 2, 3), (1, 2)} and B = {(1, 3), (2, 3)} in
G = S5. We have

AB = {(1, 2,3)(1, 3), (1, 2)(1, 3), (1, 2, 3)(2, 3), (1, 2)(2, 3)}
=1{(2,3),(1,3,2),(1,2),(1,2,3)}
and
BA = {(1,3)(1,2,3), (2,3)(1,2,3), (1, 3)(1, 2), (2, 3)(1, 2)}
={(1,2),(1,3),(1,2,3), (1, 3,2)},
so AB # BA. |

For a nonabelian group G, we would probably expect AB and BA to be different. A fact
that is not quite so “natural” is that

AB=AC+ B = C.
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Theorem 4.9

Example 2 An example where AB = AC but B # C is provided by A = {(1, 2, 3),
(1,3,2)},B={(1,3),(2,3)},and C = {(1, 2), (1,3)} in G = S3. Straightforward calcula-
tions show that

AB = {(2,3),(1,2),(1,3)} = AC,
but B # C. |

If B = {g} consists of a single element g of a group G, then AB is written simply as Ag
instead of as A{g}:

Ag = {x € G|x = ag for some a € A}.
Similarly,
gA = {x € G|x = gaforsome a € A}.
This is one instance in which a cancellation law does hold:
gA =gB = A =B.
This is true because
gA=gB = g '(gA) = g '(gB)
= (g '9A = (g '9)B

= eA = eB
= A = B.

For convenience of reference, we summarize these results in a theorem.

m Properties of the Product of Subsets

Let A, B, and C denote nonempty subsets of the group G, and let g denote an element of G.
Then the following statements hold:

A(BC) = (AB)C.

B = Cimplies AB = AC and BA = CA.

The product AB is not commutative.

AB = AC does not imply B = C.

gA = gB implies A = B.

P e FP

Statements d and e have obvious duals in which the common factor is on the right
side.

We shall be concerned mainly with products of subsets in which one of the factors is a
subgroup. The cosets of a subgroup are of special importance.
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Cosets

Let H be a subgroup of the group G. For any a in G,
aH = {x € G|x = ah for some h € H}

is a left coset of H in G. Similarly, Ha is called a right coset of H in G.

The left coset aH and the right coset Ha are never disjoint, since a = ae = ea is in both
sets. In spite of this, aH and Ha may happen to be different sets, as the next example shows.

Example 3 Consider the subgroup
K= {1),1,2)}
of
G=3S8;={(),(1,2,3),(1,3,2),(1,2),(1,3), (2, 3)}.
Fora = (1, 2, 3), we have
aK = {(1, 2, 3), (1, 2, 3)(1, 2)}
={(1,2,3), (1,3)}
and
Ka = {(1, 2,3), (1,2)(1, 2,3)}
=1{(1,2,3),(2,3)}.
In this case, aK # Ka. |

Although a left coset of H and a right coset of H may be neither equal nor disjoint,
this cannot happen with two left cosets of H. This fact is fundamental to the proof of
Lagrange’s Theorem (Theorem 4.13), so we designate it as a lemma.

Strategy

The proof of this lemma is by use of the contrapositive. The contrapositive of p = ¢ is
~q = ~p. As shown in the Appendix to this book, any statement and its contrapositive
are logically equivalent.

Lemma 4.11

The following proof illustrates a case where it is easier to prove the contrapositive than
the original statement.

Left Coset Partition

Let H be a subgroup of the group G. The distinct left cosets of H in G form a partition of
G; that is, they separate the elements of G into mutually disjoint subsets.
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~q="p

Proof It is sufficient to show that any two left cosets of H that are not disjoint must be the
same left coset.

Suppose aH and bH have at least one element in common—say, z € aH M bH. Then
z = ahy for some h; € H, and z = bh, for some h, € H. This means that ah; = bh, and
a = bhyh;'. We have that hyh; ! is in H since H is a subgroup, so a = bh; where
hy = hzhfl € H. Now, for every h € H,

ah = bhsh
= bh,

where hy = h3-h is in H. That is, ah € bH for all h € H. This proves that aH < bH. A
similar argument shows that bH < aH, and thus aH = bH.

The distinct right cosets of a subgroup H of a group G also form a partition of G.
That is, Lemma 4.11 can be restated in terms of right cosets (see Exercise 7).

Example 4  Consider again the subgroup
K= {1, (1,2)}
of
G=S8={1),(1,23),(1,3,2),(,2),(1,3),(2,3)}.
In Example 3 of this section, we saw that
(1,2,3)K = {(1,2,3), (1,3)}.
Since (1, 3) is in this left coset, it follows from Lemma 4.11 that
(1,3)K = (1,2,3)K = {(1,2,3), (1, 3)}.
Straightforward computations show that
(DK = 1,2k ={), (1,2} =K
and
(2,3)K = (1,3,2)K = {(1, 3,2), (2, 3)}.
Thus the distinct left cosets of K in G are given by
K, (1,2,3)K, (1,3,2)K
and a partition of G is
G=KU(,2,3)KU(1,3,2)k. [

Definition 4.12m Index

Let H be a subgroup of G. The number of distinct left cosets of H in G is called the index
of H in G and is denoted by [G: H].

In the proof of the next theorem, we show that if o(G) is finite, then the order of any
subgroup of G must divide the order of the group G.
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m Lagrange’s’ Theorem

(pANg)=>r

Corollary 4.14

If G is a finite group and H is a subgroup of G, then
order of G = (order of H) - (index of H in G).

Proof Let G be a finite group of order n, and let H be a subgroup of G with order k. We
shall show that k divides n.

From Lemma 4.11, we know that the left cosets of H in G separate the elements of G
into mutually disjoint subsets. Let m be the index of H in G; that is, there are m distinct left
cosets of H in G. We shall show that each left coset has exactly k elements.

Let aH represent an arbitrary left coset of H. The mapping ¢: H — aH defined by

$(h) = ah

is one-to-one, because the left cancellation law holds in G. It is also onto, since any x in aH
can be written as x = ah for h € H. Thus ¢ is a one-to-one correspondence from H to aH,
and this means that aH has the same number of elements as does H.

We have the n elements of G separated into m disjoint subsets, and each subset has k
elements. Therefore, n = km, and

o(G) = o(H) - [G: H].

Lagrange’s Theorem is of great value if we are interested in finding all the subgroups
of a finite group. In connection with this task, it is worthwhile to record this immediate
corollary.

m o(a)|oG)

The order of an element of a finite group must divide the order of the group.

Example B To illustrate the usefulness of the foregoing results, we shall exhibit all of
the subgroups of S3. Any subgroup of S3 must be of order 1, 2, 3, or 6, since 0(S3) = 6. An
element in a subgroup of order 3 must have order dividing 3, and therefore any subgroup of
order 3 is cyclic. Similarly, any subgroup of order 2 is cyclic. The following list is thus a
complete list of the subgroups of Si:

H, = {(1)} H, = {(1), (2,3)}
H2 = {(1)’(1’2)} HS = {(1)’(1’2’ 3)’(1’3’ 2)}
H; = {(1), (1, 3)} Hy = S;. u

Joseph-Louis Lagrange (1736-1813) made significant contributions to analysis, number theory, ordinary and
partial differential equations, calculus, analytical geometry, theory of equations, and to classical and celestial
mechanics. Lagrange was responsible for the metric system, which resulted from his tenure on a commission for
the reform of weights and measures. Napoleon designated Lagrange a count, and the crater Lagrange is so
named in his honor.
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It can be shown that if p is a prime, then any group of order p must be cyclic (see
Exercise 21 at the end of this section). This means that, up to an isomorphism, there is only
one group of order p, if p is a prime. In particular, the only groups of order 2, 3, or 5 are the
cyclic groups.

By examination of the possible orders of the elements and the possible multiplication
tables, it can be shown that a group of order 4 either is cyclic or is isomorphic to the Klein
four group

G = {e,a, b, ab = ba}

of Exercise 10 in Section 3.5. Hence every group of order 4 is abelian.

BN Exercises 4.4 I——

True or False

Label each of the following statements as either true or false.

1. aH N Ha # & where H is any subgroup of a group G and a € G.

N

Let H be any subgroup of a group G. Then H is a left coset of H in G.

Rl

Let H be any subgroup of a group G and @ € G. Then aH = Ha.

b

The elements of G can be separated into mutually disjoint subsets using either left
cosets or right cosets of a subgroup H of G.

g

The order of an element of a finite group divides the order of the group.
6. The order of any subgroup of a finite group divides the order of the group.

7. Let H be a subgroup of a finite group G. The index of H in G must divide the order
of G.

8. Every left coset of a group G is a subgroup of G.

Exercises

In Exercises 1 and 2, let G be the octic group {e, @, &%, &’, B, y, A, 6} in Example 11 of
Section 4.1, with its multiplication table requested in Exercise 18 of the same section.
1. Let H be the subgroup {e, B} of the octic group G.

a. Find the distinct left cosets of H in G, write out their elements, and partition G into
left cosets of H.

b. Find the distinct right cosets of H in G, write out their elements, and partition G into
Sec. 4.5, #1 < right cosets of H.
2. Let H be the subgroup {e, A} of the octic group G.

a. Find the distinct left cosets of H in G, write out their elements, and partition G into
left cosets of H.

b. Find the distinct right cosets of H in G, write out their elements, and partition G into
Sec. 4.5, #1 < right cosets of H.
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3. Let H be the subgroup {(1), (1, 2)} of S;.

a. Find the distinct left cosets of H in S3, write out their elements, and partition S3 into
left cosets of H.

b. Find the distinct right cosets of H in S3, write out their elements, and partition S3
into right cosets of H.

4. Let H be the subgroup {(1), (2, 3)} of S;.

a. Find the distinct left cosets of H in S3, write out their elements, and partition S3 into
left cosets of H.

b. Find the distinct right cosets of H in S3, write out their elements, and partition S3
into right cosets of H.

In Exercises 5 and 6, let G be the multiplicative group of permutation matrices
{L,, P, P3, P, P,, P} in Example 4 of Section 3.5.

5. Let H be the subgroup of G given by

H:{IS’P4}:

S O =
oS = O
- O O
- O O
S = O
S O =

a. Find the distinct left cosets of H in G, write out their elements, and partition G into
left cosets of H.

b. Find the distinct right cosets of H in G, write out their elements, and partition G into
right cosets of H.

6. Let H be the subgroup of G given by

1 0 0[]0 1 O[O O 1
H={L,P,P3}=4/0 1 0[O0 O 1[|1 0 O
0 0 1][1 0 0]|0 1 0

a. Find the distinct left cosets of H in G, write out their elements, and partition G into
left cosets of H.

b. Find the distinct right cosets of H in G, write out their elements, and partition G into
right cosets of H.

7. Let H be a subgroup of the group G. Prove that if two right cosets Ha and Hb are not dis-
joint, then Ha = Hb—that is, the distinct right cosets of H in G form a partition of G.

8. Let H be a subgroup of a group G.

1 1

a. Prove that gHg ' is a subgroup of G for any g € G. We say that gHg ' is a
conjugate of H and that H and gHg ' are conjugate subgroups.

b. Prove that if H is abelian, then gHg ™! is abelian.

c. Prove that if H is cyclic, then gHg ! is cyclic.

d. Prove that H and gHg ' are isomorphic.
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.3.5,#10 >

.4.6,#21 <

L3, #27 >

L3, #28 >

L2.5,#51 >
L3, #27 >
.83, #11 <

.32, #19 >

L4.1,#23 >

9.

10.

11.

12.
13.

14.
15.
16.

17.
18.
19.

20.

21.

22,

23.

24.

25.

For an arbitrary subgroup H of the group G, define the mapping 6 from the set of left
cosets of H in G to the set of right cosets of H in G by 6(aH) = Ha™'. Prove that 6 is
a bijection.

Let H be a subgroup of the group G. Prove that the index of H in G is the number of
distinct right cosets of H in G.

Show that a group of order 4 either is cyclic or is isomorphic to the Klein four group
{e,a, b,ab = ba}.

Let G be a group of finite order n. Prove that @" = e for all a in G.

Find the order of each of the following elements in the multiplicative group of units U,,.
a. [2] forp = 13 b. [5] forp = 13
c. [3]forp = 17 d. [8] forp = 17

Find all subgroups of the octic group.
Find all subgroups of the alternating group Ag.

Lagrange’s Theorem states that the order of a subgroup of a finite group must divide
the order of the group. Prove or disprove its converse: If k divides the order of a finite
group G, then there must exist a subgroup of G having order k.

Find all subgroups of the quaternion group.
Find two groups of order 6 that are not isomorphic.

If H and K are arbitrary subgroups of G, prove that HK = KH if and only if HK is a
subgroup of G.

Let p be prime and G the multiplicative group of units U, = {[a] € Z,|[a] # [0]}. Use
Lagrange’s Theorem in G to prove Fermat’s Little Theorem in the form [a]’ = [a]
for any a € Z. (Compare with Exercise 51 in Section 2.5.)

Prove that any group with prime order is cyclic.

Let G be a group of order pg, where p and g are primes. Prove that any nontrivial sub-
group of G is cyclic.

Let G be a group of order pg, where p and ¢ are distinct prime integers. If G has only
one subgroup of order p and only one subgroup of order ¢, prove that G is cyclic.

Let G be an abelian group of order 2n, where n is odd. Use Lagrange’s Theorem to
prove that G contains exactly one element of order 2.

A subgroup H of the group S, is called transitive on B = {1, 2, ..., n} if for each
pair i, j of elements of B there exists an element 7 € H such that h(i) = j. Suppose G
is a group that is transitive on {1, 2, ..., n}, and let H; be the subgroup of G that

leaves i fixed:
H; = {g € G|g(i) = i}

fori =1,2,...,n. Prove that o(G) = n-o(H,).
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26. (See Exercise 25.) Suppose G is a group that is transitive on {1, 2, ..., n}, and let K;
be the subgroup that leaves each of the elements 1, 2, . . . , i fixed:

K, ={g €G|glk) = kfork = 1,2,...,i}

fori = 1,2,...,n. Provethat G = S, if and only if H; # H; for all pairs i, j such that
iFjandi<n— 1.

4.5 | Normal Subgroups

Among the subgroups of a group are those known as the normal subgroups. The signifi-
cance of the normal subgroups is revealed in the next section.

Definition 415= Normal Subgroup

Let H be a subgroup of G. Then H is a normal (or invariant) subgroup of G if xH = Hx
forallx € G.

Note that the condition xH = Hx is an equality of sets, and it does not require that
xh = hxforall hin H.

Example 1 Let
H=A; ={(1),(1,2,3),(1,3,2)} =((1,2,3))
and
G=58={),1,273),(1,3,2),(1,2), (1, 3), (2,3)}.
For x = (1, 2) we have
xH = {(1,2)(1), (1, 2)(1,2,3), (1, 2)(1, 3, 2)}
={(1,2),(2,3),(1,3)}
and
Hx = {(1)(1,2), (1,2,3)(1,2),(1,3,2)(1,2)}
=1{(1,2),(1,3),(2,3)}.
We have xH = Hx, but xh # hx when h = (1, 2, 3) € H. Similar computations show that
(DH = (1,2,3)H = (1,3,2)H = {(1), (1,2,3),(1,3,2)} = H
H(1) = H(1,2,3) = H(1,3,2) = {(1),(1,2,3),(1,3,2)} = H
(1,2)H = (1,3)H = (2,3)H = {(1,2), (1, 3), (2, 3)}
H(1,2) = H(1,3) = H(2,3) = {(1, 2), (1, 3), (2, 3)}.
Thus H is a normal subgroup of G. Additionally we note that G can be expressed as

G = HU (1,2)H. m
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Theorem 4.16

In Example 1, we have hH = H = Hhfor all h € H. These equalities hold for all sub-
groups, as stated in the following theorem.

m A Special Coset H

Corollary 4.17

If H is any subgroup of a group G, then htH = H = Hhforallh € H.

Proof Let /1 be an arbitrary element in the subgroup H of the group G.

If x € hH, thenx = hy forsomey € H.Buth € Hand y € H imply hy = xisin H,
since H is closed. Thus hH < H.

For any x € H, the element h~'x is in H since H contains the inverse of 4 and H is
closed. But

h'x€H = h(h'x) = x € hH,

and this proves that H < hH. It follows that hH = H.
The proof of the equality Hh = H is similar.

The proof of the following corollary is left as an exercise.

m The Square of a Subgroup

For any subgroup H of a group G, H> = H, where H? denotes the product HH as defined
in Definition 4.8.

Example 2 Asan example of a subgroup that is not normal, let K = {(1), (1, 2)} in Ss.
With x = (1, 2, 3), we have
xK ={(1,2,3),(1,2,3)(1,2)}

= {(1,2,3), (1,3)}
Kx = {(1’ 2’ 3)’ (l’ 2)(1’ 2’ 3)}

={(1,2,3),(2,3)}.
Thus xK # Kx, and K is not a normal subgroup of S3. |
The definition of a normal subgroup can be formulated in several different ways. For
instance, we can write

xH =Hx forallx EGo xHx ' =H forallx €G
o x 'He=H forallx € G.

Other formulations can be made. One that is frequently taken as the definition is given in
Theorem 4.18.
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Theorem 4.18 Normal Subgroups and Conjugates

Let H be a subgroup of G. Then H is a normal subgroup of G if and only if xhx~' € H for
every h € H and every x € G.

p=gq Proof If His anormal subgroup of G, then the condition follows easily, since H normal

requires
xHx ' =H forallx EG = xHx 'cH forallx € G
= xhx ' € H forallh € Hand allx € G.
peEgq Suppose now that the condition holds. For any x € G, xHx ' < H follows imme-

diately, and we need only show that H S xHx '. Let & be arbitrary in H, and let x € G.
Now x~!is an element in G, and the condition implies that

G HMEH ! = x
is in H; that is,
x 'hx = h, forsome hy € H = h = xh;x™ ' for some h, € H
= h € xHx "

Thus H € xHx"!, and we have xHx~ ! = H for all x € G. It follows that H is a normal sub-
group of G.

The concept of generators can be extended from cyclic subgroups <a> to more compli-
cated situations where a subgroup is generated by more than one element. We only touch on
this topic here, but it is a fundamental idea in more advanced study of groups.

Definition 419m Set Generated by A

If A is a nonempty subset of the group G, then the set generated by A, denoted by <A>, is
the set defined by

(A) = {x €G|x = aa, - - - a, with either q; E Aor a; ' € A}.

In other words, <A> is the set of all products that can be formed with a finite number of
factors, each of which either is an element of A or has an inverse that is an element of A.

Theorem 4.20 Subgroup Generated by A

For any nonempty subset A of a group G, the set <A> is a subgroup of G called the subgroup
of G generated by A.

p=¢q Proof There exists at least one a € A, since A # &. Then e = aa” ' € (A), so <A> is
nonempty.
If x € (A) and y € (A), then

X = XX, - - - x,, witheitherx, EAorx; ' € A
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and
Y = yiyo -y, witheither y, € A 01ryj71 € A.
Thus
XY = XXt XYYt Ve
where each factor on the right either is in A or has an inverse that is an element of A. Also,
x P =x1 - xyx; ! with either x; ' € A or x; € A.

The nonempty set <A> is closed and contains inverses, and therefore it is a subgroup of G.

In work with finite groups, the result in Exercise 41 of Section 3.3 is extremely help-
ful in finding <A> since it implies that <A> is the smallest subset of G that contains A and is
closed under the operation. (This is true only for finite groups.) The subgroup <A> can be
constructed systematically by starting a multiplication table using the elements of A and
enlarging the table by adjoining additional elements until closure is obtained. A practical
first step in this direction is to begin the table using all the elements of A and all their dis-
tinct powers. This is illustrated in the next example.

Example 3 Let A = {(1,2,3,4), (1,4)(2, 3)}, and consider the problem of finding
<A> in S4. We begin by computing the distinct powers of the elements of A:

a=(1,2,3,4) o =(1,3)2,4)
& =al=(1,432) at=e=(1)
B = (1,4)(2,3) B =e.

Starting a multiplication table using e, a, o, o, B, we find the following new elements
of (A):

af = (1,2,3,4)(1,4)(2,3) = (2,4) = y
o8 = (1,3)(2, 4)(1,4)(2,3) = (1,2)(3,4) = A
B = (1,4,3,2)(1,4)(2,3) = (1,3) = 6.

We then enlarge the table so as to use all eight elements
e,a, a?,a, By, A, 6.

Proceeding to fill out the enlarged table, we obtain the table in Figure 4.9, which shows that
the set

G ={e ad, a By, A6

is the subgroup of S, generated by A = {«, B}. This group G is the octic group that was
presented in Example 11 of Section 4.1.
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° e a & & B y A 0
e e a & & B y A 0
a|la o> @ e y A 0 B
@ |la® @ e a A 6 B vy
@l e a & 0 B y A
Bl B 6 A vy e o o «a
Yyl v B 6 A a e & o
A|lA v B 60 & a e &
6 |06 A v B & o a e -

BN Exercises 4.5 I——

True or False

Sec. 4.4, #1-6 >

Label each of the following statements as either true or false.

1. Let H be any subgroup of a group G and a € G. Then aH = Ha implies ah = ha for
all 4 in H.
2. The trivial subgroups {e} and G are both normal subgroups of the group G.
3. The trivial subgroups {e} and G are the only normal subgroups of a nonabelian group G.
4. Let H be a subgroup of a group G. If hH = H = Hh for all h € H, then H is normal
in G.
5. If a group G contains a normal subgroup, then every subgroup of G must be normal.
6. Let A be a nonempty subset of a group G. Then A € <A>
7. Let A be a nonempty subset of a group G. Then <A> is closed under the group opera-
tion if and only if A is closed under the same operation.
Exercises
1. Let G be the group and H the subgroup given in each of the following exercises of
Section 4.4. In each case, is H normal in G?
a. Exercise 1 b. Exercise 2 c. Exercise 3
d. Exercise 4 e. Exercise 5 f. Exercise 6
2. Show that

n={lo 4

is a normal subgroup of the multiplicative group G of invertible matrices in M»(R).
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Sec. 3.4, #41 >

Sec. 4.6, #9 <
Sec. 4.6, #10 <

Sec. 3.1, #28 >
Sec. 4.6, #11 <

Sec. 4.6, #36 <
Sec. 4.6, #36 <
Sec. 4.6, #36 <

Sec. 4.6, #36 <

12.

13.

14.

15.

16.
17.
18.
19.
20.

. For any subgroup H of the group G, let H? denote the product H> = HH as defined in

Definition 4.8. Prove Corollary 4.17: H> = H.

. Let H be a normal cyclic subgroup of a finite group G. Prove that every subgroup K of

H is normal in G.

. Let H be a torsion subgroup of an abelian group G. That is, H is the set of all elements

of finite order in G. Prove that H is normal in G.

. Show that every subgroup of an abelian group is normal.

. Consider the octic group G of Example 3.

a. Find a subgroup of G that has order 2 and is a normal subgroup of G.

b. Find a subgroup of G that has order 2 and is not a normal subgroup of G.

. Find all normal subgroups of the octic group.

. Find all normal subgroups of the alternating group A,.
10.
11.

Find all normal subgroups of the quaternion group.

Exercise 6 states that every subgroup of an abelian group is normal. Give an example
of a nonabelian group for which every subgroup is normal.

Find groups H and G such that H € G < A, and the following conditions are satisfied:
a. H is a normal subgroup of G.
b. G is a normal subgroup of Ay.

c¢. H is not a normal subgroup of Ay.

(Thus the statement “A normal subgroup of a normal subgroup is a normal subgroup”
is false.)

Find groups H and K such that the following conditions are satisfied:
a. H is a normal subgroup of K.
b. K is a normal subgroup of the octic group.

¢. H is not a normal subgroup of the octic group.

Let H be a subgroup of G and assume that every left coset aH of H in G is equal to a
right coset Hb of H in G. Prove that H is a normal subgroup of G.

If {H\}, A € &, is a collection of normal subgroups H) of G, prove that m regH,is a
normal subgroup of G.

If H is a subgroup of G, and K is a normal subgroup of G, prove that HK = KH.
With H and K as in Exercise 16, prove that HK is a subgroup of G.

With H and K as in Exercise 16, prove that H M K is a normal subgroup of H.
With H and K as in Exercise 16, prove that K is a normal subgroup of HK.

If H and K are both normal subgroups of G, prove that HK is a normal subgroup of G.



Sec. 4.6, #34 <

Sec. 3.3, #17 >

Sec. 4.6, #30, 33 <

21.

22.

23.
24.
25.

26.

27.
28.
29.

30.
31.

32.

33.

34.

35.

36.
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Prove that if H and K are normal subgroups of G such that H N K = {e}, then hk = kh
forallh € H, k € K.

The center Z(G) of a group G is defined as
Z(G) = {a € Glax = xa for all x € G}.
Prove that Z(G) is a normal subgroup of G.
(See Exercise 22.) Find the center of the octic group.
(See Exercise 22.) Find the center of A4.

Suppose H is a normal subgroup of order 2 of a group G. Prove that H is contained in
Z(G), the center of G.

For an arbitrary subgroup H of the group G, the normalizer of H in G is the set
N(H) = {x € G|xHx™' = H}.

a. Prove that N'(H) is a subgroup of G.

b. Prove that H is a normal subgroup of N(H).

c¢. Prove that if K is a subgroup of G that contains H as a normal subgroup, then
K C N(H).

Find the normalizer of the subgroup {(1), (1, 3)(2, 4)} of the octic group.

Find the normalizer of the subgroup {(1), (1, 4)(2, 3)} of the octic group.

Let H be a subgroup of G. Define the relation “congruence modulo H” on G by
a=b(modH) ifandonlyif a 'b € H.

Prove that congruence modulo H is an equivalence relation on G.

Describe the equivalence classes in Exercise 29.

Let n > 1 in the group of integers under addition, and let H = (n). Prove that

a=b(mod H) ifandonlyif a = b (modn).
Let H be a subgroup of G with index 2.

a. Prove that H is a normal subgroup of G.
b. Prove that g> € Hforall g € G.

Show that A, has index 2 in S,,, and thereby conclude that A, is always a normal sub-
group of §,,.

Let A be a nonempty subset of a group G. Prove that A < (A).

Find the subgroup of §,, that is generated by the given set.
a. {(19 2)s (17 3)} b’ {(19 3)s (17 2’ 3, 4)}
c. {(1,2,4),(2,3,4)} d. {(1,2),(1,3),(1,4)}

Let n be a positive integer, n > 1. Prove by induction that the set of transpositions
{(1,2),(,3),..., (1, n)} generates the entire group S,,.
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4.6

Theorem 4.21

Quotient Groups

If H is a normal subgroup of G, then xH = Hx for all x in G, so there is no distinction between
left and right cosets of H in G. In this case, we refer simply to the cosets of H in G.

If H is any subgroup of G, then hH = H = Hh for all & in H, according to Theo-
rem 4.16. Corollary 4.17 states that H> = H - H = H for all subgroups H. We use this
fact in proving the next theorem.

Group of Cosets

pP=4q

Definition 4.22

Let H be a normal subgroup of G. Then the cosets of H in G form a group with respect to
the product of subsets as given in Definition 4.8.

Proof Let H be a normal subgroup of G. We shall denote the set of all distinct cosets of
H in G by G/H. Multiplication in G/H is associative, by part a of Theorem 4.9.

We need to show that the cosets of H in G are closed under the given product. Let aH
and bH be arbitrary cosets of H in G. Using the associative property freely, we have

(aH)(bH) = a(Hb)H

= a(bH)H since H is normal
= (ab)H-H
= abH since H> = H.

Thus G/H is closed and (aH)(bH) = abH.
The coset H =eH is an identity element, since (aH)(eH) = aeH = aH and
(eH)(aH) = eaH = aH for all aH in G/H.
The inverse of aH is a~ 'H, since
(aH)(a 'H) = aa 'H=eH =H
and
(a"'H)(aH) = a 'aH = eH = H.
This completes the proof.

Quotient Group

If H is a normal subgroup of G, the group G/H that consists of the cosets of H in G is called
the quotient group or factor group of G by H.

If the group G is abelian, then so is the quotient group G/H. Let a and b be elements
of G, then

aHbH = abH since H is normal
= baH since G is abelian
= bHaH since H is normal

and G/H is abelian.
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Suppose the group G has finite order n and the normal subgroup H has order m. Then
by Lagrange’s Theorem, we have

o(G) = o(H) - o(G/H)
or
n=m-o(G/H),
and the order of the quotient group is o(G/H) = n/m.

Example 1 Let G be the octic group as given in Example 3 of Section 4.5:
G ={e,a,a’a’ B,y A, 6}

It can be readily verified that H = {e, v, 0, ozz} is a normal subgroup of G. The distinct
cosets of Hin G are

H=e¢H=vyH=0H=a’H = {e,v, 0, 2%}
and
aH = &’H = BH = AH = {a, &, B, A}.
Thus G/H = {H, aH}, and a multiplication table for G/H is as follows.

H oH
H H aoH
aH | «aH H
[ |

There is a very important and natural relation between the quotient groups of a group
G and the epimorphisms from G to another group G’. Our next theorem shows that every
quotient group G/H is a homomorphic image of G.

Theorem 423 m (Quotient Group = Homomorphic Image
Let G be a group, and let H be a normal subgroup of G. The mapping ¢: G — G/H
defined by
¢(a) = aH
is an epimorphism from G to G/H.
p=4¢q Proof Therule ¢(a) = aH clearly defines a mapping from G to G/H. For any a and b in G,

¢(a) - ¢(b) = (aH)(bH)
= abH since H is normal in G
d(ab).

Thus ¢ is a homomorphism. Every element of G/H is a coset of H in G that has the form
aH for some a in G. For any such a, we have ¢(a) = aH. Therefore, ¢ is an epimorphism.
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Theorem 4.24

Example 2 Consider the octic group
G ={e,aa’a’ B,y A, 0}
and its normal subgroup
H = {e,v,0,a%.

We saw in Example 1 that G/H = {H, aH}. Theorem 4.23 assures us that the mapping
¢: G — G/H defined by

$la) = aH
is an epimorphism. The values of ¢ are given in this case by

dle) = d(y) = ¢(0) = $(&’) = H
d(a) = $(@’) = $(B) = ¢(A) = aH. [ |

Theorem 4.23 says that every quotient G/H is a homomorphic image of G. We shall
see that, up to an isomorphism, these quotient groups give all of the homomorphic
images of G. In order to prove this, we need the following result about the kernel of a
homomorphism.

m Kernel of a Homomorphism

For any homomorphism ¢ from the group G to the group G, ker ¢ is a normal subgroup
of G.

Proof The identity e is in ker ¢ since ¢(e) = €', so ker ¢ is always nonempty. If
a € ker ¢ and b € ker ¢, then ¢(a) = €' and ¢(b) = €'. Also, by Theorem 3.28, p(b™ ") =

()], s0

Plab™") = p(a) p(b™")
(@) [db)]™!
— e/ . (er)—l

= e,’

and therefore ab™' € ker ¢. Thus, by Theorem 3.10, ker ¢ is a subgroup of G.
To show that ker ¢ is normal, let x € G and a € ker ¢. Then
dxax™ V) = p(x)Pp(a)p(x ) since ¢ is a homomorphism
=¢(x)-e - p(x")  sincea € ker ¢
= ¢() - px )
=¢ by part b of Theorem 3.28.

1

Thus xax™ " is in ker ¢, and ker ¢ is a normal subgroup by Theorem 4.18.
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The mapping ¢ in Theorem 4.23 has H as its kernel, and this shows that every normal
subgroup of G is the kernel of a homomorphism. Combining this fact with Theorem 4.24,
we see that the normal subgroups of G and the kernels of the homomorphisms from G to
another group are the same subgroups of G.

We can now prove that every homomorphic image of G is isomorphic to a quotient
group of G.

Theorem4.25 m Homomorphic Image = Quotient Group
Let G and G’ be groups with G’ a homomorphic image of G. Then G’ is isomorphic to a
quotient group of G.
p=¢q Proof Let ¢ be an epimorphism from G to G, and let K = ker ¢. For each aK in G/K,
define 6(akK) by
0(akK) = ¢(a).
First we need to prove that this rule defines a mapping. For any aK and K in G/K,
ak = bK < b 'ak = K
o blagek
o ¢ la)=¢
& ¢(b Hpa) = ¢
e [p0)] '¢a) = ¢
S d(a) = (b)
< 0(aK) = 6(bK).
Thus 0 is a well-defined mapping from G/K to G’, and the < parts of the < statements
show that 6 is one-to-one as well.
We shall show that € is an isomorphism from G/K to G'. Since
0(aK - bK) = 6(abK)
= ¢(ab)
= ¢(a) - $(b)
= 0(aK) - 0(bK),
0 is a homomorphism. To show that 6 is onto, let a’ be arbitrary in G'. Since ¢ is an epi-
morphism, there exists an element a in G such that ¢p(a) = a'. Then aK is in G/K, and
0(aK) = ¢(a) = d'.
Thus every element in G’ is an image under 6, and this proves that 6 is an isomorphism.
Theorem4.26 m Fundamental Theorem of Homomorphisms

If ¢ is an epimorphism from the group G to the group G’, then G’ is isomorphic to G/ker ¢.

The Fundamental Theorem follows at once from the proof of Theorem 4.25.
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In order to give nontrivial illustrations of Theorem 4.24 and 4.25, we need an example
of a homomorphism that is somewhat involved. This homomorphism is presented in the
next example.

Example 3 Consider the permutation group
G =S;={1),(1,2,3),(1,3,2),(1,2),(1,3),(2,3)}
and the multiplicative group
G = {12} = Zs.
The mapping ¢: G — G’ defined by
d(1) = $(1,2,3) = ¢(1,3,2) = [1]
$(1,2) = &(1,3) = ¢(2,3) = [2]

can be shown by direct computation to be an epimorphism from G to G’, but it is tedious to
verify ¢(xy) = ¢(x)¢(y) for all 36 choices of the pair of factors x, y in S3. As an alternative
to this chore, we shall obtain another description of ¢. We first note that if « = (1, 2, 3) and
B = (1, 2), the elements of S; can be written as

(Hh=a8" (1,2,3)=aB’ (1,3,2) =a?pB°
(1,2) = a°B (1,3) = aB (2,3) = a’B.
We then make the following observations concerning Ss:
1. Any element of S3 can be written in the form o/, with i € {0, 1, 2} and k € {0, 1}.
2. Ba' = a B
3. Any x € S;is either of the form x = o' or of the form x = «/B.
Routine calculations will confirm that our mapping ¢ can be described by the rule
d(a’B) = [2]* for any integer r.
Having made these observations, we can now verify the equation ¢(x)¢p(y) = 'ci)(xy) with a
reasonable amount of work. For arbitrary x and y in S3, we write either x = o' orx = a'f3,
andy = a”‘B"’ where m € {0, 1,2} andn € {0, 1}.
If x = o', we have
() = pa'a"B") = p(a’""B") = [2]'
and
d)P(Y) = ()" = [2][2]" = [2]"
If x = /B, we have
d(xy) = p(a'Ba"B")

= G(aa "Bp")

= da "B

_ [2]n+l
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and
P(D)P(y) = da'B)p(a"B")
= [2][2]"
— [2]n+ 1.
Thus ¢(xy) = ¢d(x)d(y) in all cases, and ¢ is a homomorphism (an epimorphism, actually)
from G to G'. u

Example 4 To illustrate Theorems 4.24 and 4.25, consider the groups G = S3 and
G' = {[1], [2]} in the previous example. We see that the kernel of the epimorphism
¢: G — G' is the normal subgroup

K = ker ¢
= {1, (1,2,3),(1,3,2)}
of G. The quotient group G/K is given by
G/K = {K, (1,2)K}
where
(1,2)K = {(1,2),(2,3), (1, 3)}.

The isomorphism 6: G/K — G’ has values

0(K) = (1) = [1]

0((1,2)K) = ¢(1,2) = [2]. .

Using the results of this section, we can systematically find all of the homomorphic
images of a group G. We now know that the homomorphic images of G are the same (in the
sense of isomorphism) as the quotient groups of G.

Example B LetG = S;, the symmetric group on three elements. In order to find all the
homomorphic images of G, we need only find all of the normal subgroups H of G and form
all possible quotient groups G/H. As we saw in Section 4.4, a complete list of the sub-
groups of G is
H, = {(D} H, = {(1), (2,3)}
H2 = {(1)7(19 2)} HS = {(1)’ (172’ 3)’ (1537 2)}
H; = {(1), (1,3)} Hg = S;.
Of these, H}, Hs, and Hg are the only normal subgroups. The possible homomorphic images
of G, then, are
G/H, = {H,, (1,2)H,, (1,3)H,, (2, 3)H,, (1,2, 3)H,, (1, 3, 2)H,}
G/Hs = {Hs, (1, 2)Hs}
G/G = {G}.
Thus any homomorphic image of S is isomorphic to S3, to a cyclic group of order 2, or to
a group with only the identity element. ]
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BN Exercises 4.6 I——

True or False

Label each of the following statements as either true or false.

1.
2.

Every normal subgroup of a group is the kernel of a homomorphism.

The kernel of any homomorphism from group G to group G’ is a normal subgroup
of G'.

aHbH = abH for any subgroup H of a group G and for all @, b in G.

Every homomorphic image of a group G is isomorphic to a quotient group of G.

The homomorphic images of a group G are the same (up to an isomorphism) as the
quotient groups of G.

Exercises

In

Exercises 1-0, H is a normal subgroup of the group G. Find the order of the quotient

group G/H. Write out the distinct elements of G/H and construct a multiplication table
for G/H.

1

2
Sec. 3.1, #28 > 3.
4

Sec. 4.3, #25 >

. The octic group G = {e, a, &%, &*, B, v, A, 0}; H = {e, &’}
. The octic group G = {e, a, &%, &*, B, v, A, 0}; H = {e, B, A, &*}
The quaternion group G = {*1, *i, *=j, *k}; H= {*1}

. The group of rigid motions of a regular pentagon G = {e, e, o, o, o, B,v,A 6,0} =
Ds;H = {e,a, o?, &, o'}, where a = (1, 2,3,4,5), B = (2,53, 4, v = (1, 2)3, 4),
A=(1,3)4,5),0 =(1,4)2,3),and o = (1, 5)(2, 4).

5. The alternating group G = Ag; H = {(1), (1,2)(3, 4), (1,3)(2, 4), (1,4)(2, 3)}

Sec. 3.4, #18 > 7.

Sec. 4.5, #8 > 9.
Sec. 4.5, # > 10.

Sec.3.1,#28> 11.

Sec. 4.5, #10 >

Sec.3.4,#18> 12.

. The symmetric group G = Sy; H = {(1), (1, 2)(3, 4), (1, 3)(2, 4), (1, 4)(2, 3)}

Let G be the multiplicative group of units Uy consisting of all [a] in Z, that have mul-
tiplicative inverses. Find a normal subgroup H of G that has order 2 and construct a
multiplication table for G/H.

. Suppose G; and G, are groups with normal subgroups H; and H,, respectively, and
with G;/H; isomorphic to G,/H,. Determine the possible orders of H; and H, under
the following conditions.

a. o(Gy) = 24 and o(G,) = 18
b. 0(Gy) = 32 and o(G») = 40

Find all homomorphic images of the octic group.
Find all homomorphic images of Ay.

Find all homomorphic images of the quaternion group.

Find all homomorphic images of each group G in Exercise 18 of Section 3.4.



Sec. 3.1, #30 >
Sec. 3.6, #9 >

Sec. 3.3, #16 >

Sec. 3.1, #28 >
Sec. 3.5, #10 >

Sec. 4.4, #12 >

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

4.6 Quotient Groups 237

Let G = S3. For each H that follows, show that the set of all left cosets of H in G does
not form a group with respect to a product defined by (aH)(bH) = abH.

a. H={(1),(1,2)}
b. H = {(1), (1,3)}
c. H={(1),(2,3)}

Let G = {L,R,R*>,R*,H,D, V, T} be the multiplicative group of matrices in Exer-
cise 30 of Section 3.1, let G’ = {1, —1} under multiplication, and define ¢: G — G’ by

o2 on

a. Assume that ¢ is an epimorphism, and find the elements of K = ker ¢.
b. Write out the distinct elements of G/K.

c. Let 0: G/K — G’ be the isomorphism described in the proof of Theorem 4.25, and
write out the values of 6.

Repeat Exercise 14 with G = {I,, M|, M,, M5, M, M5}, the multiplicative group of
matrices in Exercise 16 of Section 3.3.

Repeat Exercise 14 with the quaternion group G = {1, i, j, k, —1, —i, —j, —k}, the
Klein four group G’ = {e, a, b, ab}, and ¢: G — G’ defined by

(1) = Pp(=1) =e ¢@) = d(—i) =a
o) =d(=j))=b k) = d(—k) = ab.

Repeat Exercise 14 where G is the multiplicative group of units U,, and G’ is the cyclic
group of order 4. That is,

G = {[1], {3} [7], (9}, [11], 13}, [17], [19]},
G = (a) = {e,a,d* a’}.
Define ¢ : G — G’ by
s(1)=o(11)=¢  #(3)=o[13) =a
o(9) = ¢((19) =@ H(7) = $(17]) = &’.

If H is a subgroup of the group G such that (aH)(bH) = abH for all left cosets aH and
bH of H in G, prove that H is normal in G.

Let H be a subgroup of the group G. Prove that H is normal in G if and only if
(Ha)(Hb) = Hab for all right cosets Ha and Hb of H in G.

If H is a normal subgroup of the group G, prove that (aH)" = a"H for every positive in-
teger n.

Let H be a normal subgroup of finite group G. If the order of the quotient group G/H
is m, prove that g is in H for all g in G.

Let H be a normal subgroup of the group G. Prove that G/H is abelian if and only if
a b lab € Hforalla,b € G.
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Sec. 3.4, #32,41 >

Sec. 3.6, #19 >

Sec. 4.5, #22 >

Sec. 3.5, #18, 19 >

Sec. 4.5, #22 >

Sec. 4.5, #21 >

Sec. 4.5, #16-19 >

Sec. 6.2, #27 <

23.

24.

25.

26.

217.

28.

29.

30.
31.

32.

33.

34.

35.

36.

Let G be a torsion group, as defined in Exercise 41 of Section 3.4, and H a normal sub-

group of G. Prove that the quotient group G/H is a torsion group.

Let G be a cyclic group. Prove that for every normal subgroup H of G, G/H is a cyclic

group.

Prove or disprove that if a group G has a cyclic quotient group G/H, then G must be

cyclic.

Prove or disprove that if a group G has an abelian quotient group G/H, then G must be

abelian.

a. Show that a cyclic group of order 8 has a cyclic group of order 4 as a homomorphic
image.

b. Show that a cyclic group of order 6 has a cyclic group of order 2 as a homomorphic
image.

Assume that ¢ is an epimorphism from the group G to the group G'.

a. Prove that the mapping H — ¢(H) is a bijection from the set of all subgroups of G
that contain ker ¢ to the set of all subgroups of G'.

b. Prove that if K is a normal subgroup of G’, then ¢~ '(K) is a normal subgroup of G.
Suppose ¢ is an epimorphism from the group G to the group G'. Let H be a normal
subgroup of G containing ker ¢, and let H' = ¢(H).

a. Prove that H' is a normal subgroup of G'.

b. Prove that G/H is isomorphic to G'/H'.

Let G be a group with center Z(G) = C. Prove that if G/C is cyclic, then G is abelian.
(See Exercise 30.) Prove that if p and ¢ are primes and G is a nonabelian group of
order pg, then the center of G is the trivial subgroup {e}.

Let a be a fixed element of the group G. According to Exercise 18 of Section 3.5, the
mapping #,: G — G defined by #,(x) = axa™! is an automorphism of G. Each of these
automorphisms #, is called an inner automorphism of G. Prove that the set
Inn(G) = {t,|a € G} forms a normal subgroup of the group of all automorphisms of G.

(See Exercise 32.) Let G be a group with center Z(G) = C. Prove that Inn(G) is
isomorphic to G/C.

If H and K are normal subgroups of the group G suchthat G = HKand H N K = {e},
then G is said to be the internal direct product of H and K, and we write G = H X K
to denote this. If G = H X K, prove that ¢: H— G/K defined by ¢(h) = hK is an
isomorphism from H to G/K.

(See Exercise 34.) If G = H X K, prove that each element ¢ € G can be written
uniquely as g = hk with h € H and k € K.
Let H be a subgroup of G and let K be a normal subgroup of G.

a. Prove that the mapping ¢: H — HK/K defined by ¢(h) = hK is an epimorphism
from H to HK/K.

b. Prove thatker ¢ = H N K.
c. Prove that H/H N K is isomorphic to HK/K.



Sec. 4.7, #16 <
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37. Let H and K be arbitrary groups and let H ® K denote the Cartesian product of H
and K:

H®K = {(h,k)|h € Hand k € K}.

Equality in H ® K is defined by (h, k) = (', k') if and only if 4 = h' and k = k'.
Multiplication in H ® K is defined by

(hy, k) (hy, ky) = (hyhy, kiky).

a. Prove that H ® K is a group. This group is called the external direct product of H
and K.

b. Suppose that e, and e, are the identity elements of H and K, respectively. Show that
H' = {(h, e;)|h € H} is a normal subgroup of H ® K that is isomorphic to Hand,
similarly, that K’ = {(ey, k) |k € K} is a normal subgroup isomorphic to K.

c. Prove that H ® K/H' is isomorphic to K and that H ® K/K’ is isomorphic to H.

38. (See Exercise 37.) Let a and b be fixed elements of a group G, and let Z ® Z be the
external direct product of the additive group Z with itself. Prove that the mapping
¢: 2 ® 7. — G defined by ¢(m, n) = a”b" is a homomorphism if and only if ab = ba
in G.

Direct Sums (Optional)

The overall objective of this and the next section is to present some of the basic material
on abelian groups. A tremendous amount of work has been done on the subject. One of
the concepts fundamental to abelian groups is a direct sum, to be defined in this section.
Throughout this section we write all abelian groups in additive notation.

We begin by defining the sum of a finite number of subgroups in an abelian group and
showing that this sum is a subgroup.

Sum of Subgroups

Theorem 4.28

Let Hy, Hy, . . ., H, be subgroups of the abelian group G. The sum H, + H, + --- + H,
of these subgroups is defined by

H +Hy+ -+ H ={x€G|x=h +hy + -+ h, with h; € H}.

Sum of Subgroups

If Hy, Hy, . .., H, are subgroups of the abelian group G, then H; + H, + -+ -+ H, is a
subgroup of G.

Proof The sum H, + H, + - - - + H, is clearly nonempty. For arbitrary
x:h1+h2+"'+hn
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with h; € H;, the inverse
—x = (—h) () (hy)
is in the sum H; + H, + - -+ + H, since —h; € H,; for each i. Also, if
y=hi+h+ -+ h,
with i) € H;, then
x+y=0h +h)+ h,+h)+- -+ (h, + h)

is in the sum of the H;, since h; + h; € H; for each i. Thus H; + H, + ---+ H, is a
subgroup of G.

The contents of Definition 4.19 and Theorem 4.20 may be restated as follows, with
addition as the binary operation:

If A is a nonempty subset of the group G, then the subgroup of G generated by A is
the set

(A)={xeGlx=a, +a,+ -+ + a,witha, € Aor —q,; € A}.

It is left as an exercise to prove that if H, H,, . . . , H, are subgroups of an abelian group G,
then G = H, + H, + - - - + H, if and only if G is generated by U._, H,.

Example 1 Let G be the group G = Zj, under addition, and consider the following
sums of subgroups in G.

a. If
H, = ([3]) = {[3]. [6]. [9]. [0]}
and
H, = ([2]) = {[2], [4], [6]. [8], [10], [0},
then

H + H,={r[3] +s[2]| r,s € Z}
={[3r+2s]|r,s €Z}

is a subgroup. Since [3(1) + 2(11)] =[25] =[1] in Z;, and [1] generates Z;, under
addition, we have

H, + H,=G.
b. Now let
K, = H, = (3]),
Ky = ([4]) = {[4]. [8], [0]}-
The sum K; + K is given by
K, + K, = {u[3] +v[4] | u,v € Z}
= {[Bu + 4v] | u,v € Z}.
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Since [3(—1) + 4(1)] = [1], [1] € K| + K3, and hence
K, + K, =G.
c. With the same notation as in parts a and b,
H, + K, = H,,

since K, € H,. [ |

‘We now consider the definition of a direct sum.

Definition 429 m Direct Sum

If H, Hy, . .., H, are subgroups of the abelian group G, then H; + H, + - -+ + H,is a
direct sum if and only if the expression for each x in the sum as

xX=h +h+- -+ h,
with h; € H; is unique. We write
H®H,® --- ®H,

to indicate a direct sum.

The next theorem gives a simple fact about direct sums that can be very useful when
we work with finite groups.

Theorem4.30 m Order of a Direct Sum
If Hy, H,, . . ., H, are finite subgroups of the abelian group G such that their sum is direct,
then the order of H) @ H, @ - - - © H, is the product of the orders of the subgroups H;:
oH®H,®---®H, = o(H))o(H,) - - - o(H,).
p =49 Proof With h; € H; in the expression

Xx=h + o+t h,

there are o(H;) choices for each h;. Any change in one of the /; produces a different element
x, by the uniqueness property stated in Definition 4.29. Hence there are

o(Hpo(H) * - - o(H,)

distinct elements x of the formx = h; + hy + - -+ + h,, and the theorem follows.

There are several equivalent ways to formulate the definition of direct sum. One of
these is presented in the following theorem.
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Theorem 4.31

m Equivalent Condition for a Direct Sum

P =49

Theorem 4.32

If each H; is a subgroup of the abelian group G, then the sum H; + H, + - - -+ H, is
direct if and only if the following condition holds: Any equation of the form

h1+h2+"'+hn:0
with h; € H; implies that all #; = 0.

Proof Assume first that the condition holds. If an element x in the sum of the H; is
written as

x=h1+h2+"'+hn
and also as
xX=hy,+n,+---+h,
with &; and k] € H; for each i, then
h+h+--+h,=h+h+---+H
and
(hy = ) + (hy = hy)) + -+ + (b, = h}) = 0.

The condition implies that &; — A} = 0, and hence h; = h] for each i. Thus the sum
H, + Hy, + - -+ + H, is direct.

Conversely, suppose the sum H| + H, + - -+ + H,is direct. Then the identity element
0 in the sum can be written uniquely as

0=0+0+ -+ +0

where the sum on the right indicates a choice of 0 as the term from each H;. From the
uniqueness property,

h1+h2+"'+h :O

n

with h; € H; requires that all #; = 0.

Some intuitive feeling for the concept of a direct sum is provided by considering the
special case where the sum has only two terms.

m Direct Sum of Two Subgroups

p=(@ANr)

Let H; and H, be subgroups of the abelian group G. Then G = H; © H, if and only if
G = Hl + HzandHl mHz = {0}

Proof Assume first that G = H; ® H,, and let x € H; N H,. Then x = h; for some
hy € H,. Also, x € H,, and therefore —x € H,. Let iy, = —x. Then
hy+h =x+ (—x)
=0
where h; € H;. This implies that x = h; = h, = 0, by Theorem 4.31.
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pe=(@Ar) Assume now that G = H, + Hyand H; N H, = {0}. If
h+h=0
with ; € H;, then hy = —hy € Hy M H,. Therefore, hy = 0 and h, = 0. By Theorem 4.31,
G =H, ® H,.
Example 2 In Example 1, we saw that the equations H; + H, = Gand K| + K, = G
were both valid. Since H; N H, = {[0], [6]}, the sum H; + H, is not direct. However,
Ky N K, = {[0]}, so G = K; & K, in Example 1. [ |
Theorem 4.32 can be generalized to the results stated in the next theorem. A proof is
requested in the exercises.
Theorem 4.33 m Direct Sum of n Subgroups

Let Hy, Hy, . . ., H, be subgroups of the abelian group G. The sum H; + H, + -+ + H,
is direct if and only if the intersection of each H; with the subgroup generated by
=1, :+;H,; is the identity subgroup {0}.
Example 3 Consider the following subgroups of the abelian group Z4, under addition:

H, = {[0}. [21]} = ([21])

H, = {[0].[14].[28]} = ([14])

Hy = {[0]. [6], [12]. [18], [24], [30], [36]} = ([6]).
Since each of the orders of Hy, which is 2, of H,, which is 3, and of H3, which is 7, must
divide the order of the group generated by G = H; U H, U Hj, then G must have order
at least 42. The sum G = H, + H, + Hj is direct since {[0]} = H, N (H, U H;) =
H, N (H, U H;) = H; N (H,; U H,). Since

1[21] + (=D[14] + (=D)[6] = [1]
and [1] generates Z4, under addition, then
As a final result for this section, we prove the following theorem.
Theorem4.34 m Direct Sums and Isomorphisms

Let H; and H; be subgroups of the abelian group G such that G = H; ® H,. Then G/H, is
isomorphic to H;.
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p=gq Proof Therule p(h)) = h; + H, defines a mapping ¢ from H, to G/H,. This mapping is
a homomorphism, since
é(hy + h'y) = (hy + h)H,
= (hy + Hy + (W) + Hy)
= ¢(hy) + G(h)).
Now
hl (S kel’¢ (=1 d)(hl) = H2
= hl + H2 = H2
< h, €H,
S =0 since H, N H, = {0}.
Thus ¢ is one-to-one. Let g + H; be arbitrary in G/H,. Since G = H; ® H,, g can be writ-
tenas g = h; + hy with h; € H,.
Then
gt Hy=(h + hy) + H,
=h, + H, since h, + H, = H,
= d)(hl)’

and this shows that ¢ is onto. Thus ¢ is an isomorphism from H; to G/H,.

BN Exercises 4.7 I ——

True or False
Label each of the following statements as either true or false.
1. Let Hj, H; be finite groups of an abelian group G. Then o(H, ® H,) = o(H,) + o(H,).

2. Let H|, H, be finite groups of an abelian group G. If G = H| + H,, then
G = <H1 U H2>.

Exercises

1. Let H, = {[0], [6]} and H, = {[0], [3], [6], [9]} be subgroups of the abelian group Z,
under addition. Find H; + H; and determine if the sum is direct.

2. Let H, = {[0],[6], [12]} and H, = {[0], [3],[6], [9], [12], [15]} be subgroups of the
abelian group Z;g under addition. Find H; + H, and determine if the sum is direct.

3. Let H, = {[0],[5]} and H, = {[0], [2], [4], [6], [8]} be subgroups of the abelian group
Z.y under addition. Show that Z,, = H, ® H..

4. Let H, = {[0],[7],[14]} and H, = {[0], [3], [6], [9], [12], [15], [18]} be subgroups of
the abelian group Z,; under addition. Show that Z,; = H, © H,.
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. Let H, = {[0],[15]}, H, = {[0], [10], [20]} and H; = {[0], [6], [12], [18], [24]} be sub-

groups of the abelian group Zs, under addition. Show that Z;, = H, ® H, ® H,.

Let H, = {[0],[10],[20], [30], [40], [50], [60]}, H, = {[0], [14], [28], [42], [56]} and
H; = {[0], [35]} be subgroups of the abelian group Z;, under addition. Show that
Z70 = Hl @Hz @ H3.

. Write Zy as the direct sum of two of its nontrivial subgroups.

Write Zy4 as the direct sum of two of its nontrivial subgroups.

Suppose that H; and H, are subgroups of the abelian group G such that H; S H,. Prove
that H, + H, = H,.

Suppose that H; and H, are subgroups of the abelian group G such that G = H;® H,.
If K is a subgroup of G such that K 2 H,, prove that K = H; ® (K N H>).

Assume that H,, H,, . . ., H, are subgroups of the abelian group G such that the sum
H,+ H, + - -+ + H,isdirect. If K;is a subgroup of H; fori = 1,2, ..., n, prove that
K, + K, + -+ + K, is a direct sum.

Assume that H,, H,, ..., H, are subgroups of the abelian group G. Prove that
H, + H, + --- + H,is the smallest subgroup of G that contains all the subgroups H;.

Assume that Hy, Hy, . . ., H, are subgroups of the abelian group G. Prove that G =
Hi + Hy + --- + H,if and only if G is generated by U’}-| H,.

Let G be an abelian group of order mn, where m and n are relatively prime. If
Hy = {x€G|mx =0} and H, = {x € G|nx = 0}, prove that G = H; ® H,.

Let H, and H; be cyclic subgroups of the abelian group G, where H; N H, = {0}.
Prove that H; © H, is cyclic if and only if o(H;) and o(H,) are relatively prime.

(This is the additive version of Exercise 37 in section 4.6, with proofs the same except
for notation.) Let H and K be arbitrary abelian groups with addition as the group
operation, and let H ® K denote the Cartesian product of H and K:

H®K = {(h,k)|h € Hand k € K}.

Equality in H & K is defined by (h, k) = (', k') if and only if h = A’ and k = k'
Addition in H @ K is defined by

(hy, k) + (hy, ky) = (hy + hy, k) + k).

a. Prove that H © K is a group. This group is called the external direct sum of A and K.

b. For simplicity, we denote the additive identity in both H and K by 0. Show that
H' = {(h,0)|h € H} is a normal subgroup of H @ K that is isomorphic to H, and
that K’ = {(0, k) |k € K} is a normal subgroup isomorphic to K.

c. Prove that H @ K/H' is isomorphic to K and H @ K/K' is isomorphic to H.
(See Exercise 16.) Find the order of each of the following elements.

a. ([2],[3]))inZ, ® Zs b. (2],[6)inZ, D Z,,

c. ([2],[3)in Z; © Z, d. ([2],[3)in Z¢ © Z,
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4.8

18. a. Find all subgroups of Z, ® Z,.
b. Find all subgroups of Z, ® Z.

19. a. Show that Z;5 is isomorphic to Z3 & Zs, where the group operation in each of Zs,
73, and Zs is addition.

b. Show that Z,, is isomorphic to Z3 & Z,, where all group operations are addition.

20. Suppose that G and G’ are abelian groups such that G = H, © H, and G' = H| © H,.
If H, is isomorphic to H} and H is isomorphic to H5, prove that G is isomorphic to G'.

21. Suppose a is an element of order rs in an abelian group G. Prove that if r and s are
relatively prime, then a can be written in the form a = b, + b,, where b; has order r
and b, has order s.

22. (See Exercise 21.) Assume that a is an element of order r 7, * - * r, in an abelian group,
where r; and r; are relatively prime if i # j. Prove that a can be written in the form
a = by + by + -+ b,, where each b; has order r;.

23. Prove that if r and s are relatively prime positive integers, then any cyclic group of order
rs is the direct sum of a cyclic group of order r and a cyclic group of order s.

24. Prove Theorem 4.33: If H,, H,, . . . , H, are subgroups of the abelian group G, then the
sum H; + H, + -+ + H,is direct if and only if the intersection of each H; with the
subgroup generated by U;_, ;.;H, is the identity subgroup {0}.

Some Results on Finite Abelian Groups (Optional)

The aim of this section is to sample the flavor of more advanced work in groups while
maintaining an acceptable level of rigor in the presentation. We attempt to achieve this
balance by restricting our attention to proofs of results for abelian groups. There are in-
stances where more general results hold, but their proofs are beyond the level of this text.
In most instances of this sort, the more general results are stated informally and without
proof.

The following definition of a p-group is fundamental to this entire section.

p-Group

If p is a prime, then a group G is called a p-group if and only if each of its elements has an
order that is a power of p.

A p-group can be finite or infinite. Although we do not prove it here, a finite group
is a p-group if and only if its order is a power of p. Whether or not a group is abelian
has nothing at all to do with whether it is a p-group. This is brought out in the following
example.
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Example 1 With p = 2, we can easily exhibit three p-groups of order 8.

a. Consider first the cyclic group Cg = <a> of order 8 generated by the permutation

a=(1,2,3,4,5,6,7,8):

Each of a, @°, @°, and a” has order 8.
a® and a® have order 4.
a* has order 2.

The identity e has order 1.

Thus Cg is a 2-group.

. Consider now the quaternion group G = {*1, *i, =j, =k} of Exercise 28 in Sec-

tion 3.1:

Each of the elements *i, *j, *=k has order 4.
—1 has order 2.
1 has order 1.

Hence G is another 2-group of order 8.

. Last, consider the octic group G’ = {e, a, @?, o, B, v, A, 0} of Example 3 in Sec-

tion 4.5:

Each of « and & has order 4.
Each of &2, B8, v, A, 6 has order 2.
The identity e has order 1.

Thus G’ is also a 2-group of order 8.

Of these three p-groups, Cg is abelian and both G and G’ are nonabelian. |

It may happen that G is not a p-group, yet some of its subgroups are p-groups. In con-

nection with that possibility, we make the following definition.

Definition 436 m The Set G,

If G is a finite abelian group that has order divisible by the prime p, then G, is the set of all
elements of G that have orders that are powers of p.

As might be expected, the set G, turns out to be a subgroup. For the remainder of this

section, we write all abelian groups in additive notation.

Theorem 4.37 m p-Subgroups
The set G, defined in Definition 4.36 is a subgroup of G.
u=v Proof Theidentity 0hasorder1 = p°so0 € G,.If a € G,, then a has order p" for some

nonnegative integer r. Since a and its inverse —a have the same order, —a is also in the
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set G,,. Let b be another element of the set G,,. Then b has order p* for a nonnegative inte-
ger s. If 7 is the larger of » and s, then

p'ta + b) = pa+ p'b
040
= 0.

This implies that the order of ¢ + b divides p’ and is therefore a power of p since p is a
prime. Thus a + b € G, and set G, is a subgroup of G.

Example 2 Consider the additive group G = Zg. The order of Z is 6, which is divisi-
ble by the primes 2 and 3. In this group:

Each of [1] and [5] has order 6.
Each of [2] and [4] has order 3.
[3] has order 2.
[0] has order 1.
For p = 2 or p = 3, the subgroups G, are given by
G, = {[3}, [0}}
G; = {[2}. [4). [0]}.
The group G is not a p-group, but G, is a 2-subgroup of G, and Gj is a 3-subgroup
of G. |

If a group G has p-subgroups, certain of them are given special names, as described in
the following definition.

Definition 4.38 m  Sylow' p-Subgroup

If p is a prime and m is a positive integer such that p™|o(G) and p™*'/o(G), then a sub-
group of G that has order p™ is called a Sylow p-subgroup of G.

Example 3 In Example 2, G, is a Sylow 2-subgroup of G, and G; is a Sylow
3-subgroup of G. As a less trivial example, consider the octic group from Example 3 of
Section 4.5:

H={e,a,a’,a’, B, 7. A, 6}

where
e=(1) a=(1,2,3,4) o> =(1,3)2,4) o =(1,43,2)
B=0,42,3) v=(2,4) A=(1,2)3,4) 0=(1,3).
The group H is a subgroup of order 2* in the symmetric group G = S,, which has order
4! = 24, Since 23|0(S,) and 2%| o(S,), the octic group is a Sylow 2-subgroup of Sj. [ |

"Peter Ludwig Mejdell Sylow (1832-1918) was a Norwegian mathematician who worked in group theory,
publishing his Sylow theorems in a 10-page paper in 1872.
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Theorem 4.39 m Cauchy's' Theorem for Abelian Groups

Induction

If G is an abelian group of order n and p is a prime such that p | n, then G has at least one
element of order p.

Proof The proof is by induction on the order n of G and uses the Second Principle of
Finite Induction. For n = 1, the theorem holds by default.

Now let k be a positive integer, assume that the theorem is true for all positive integers
n < k, and let G be an abelian group of order k. Also, suppose that the prime p is a divisor
of k.

Consider first the case where G has only the trivial subgroups {0} and G. Then any
a # 01in G must be a generator of G, G = <a>. It follows from Exercise 38 of Section 3.4 that
the order k of G must be a prime. Since p divides this order, p must equal k, and G actually
has p — 1 elements of order p, by Theorem 3.22.

Now consider the case where G has a nontrivial subgroup H; that is, H # {0} and
H # G, so that 1 < o(H) < k. If p|o(H), then H contains an element of order p by the
induction hypothesis, and the theorem is true for G. Suppose then that p/ o(H). Since G is
abelian, H is normal in G, and the quotient group G/H has order

0(G)
o(H)’

o(G/H) =

We have
o(G) = o(H)o(G/H),
so p divides the product o(H)o(G/H). Since p is a prime and p[o(H), p must divide
o(G/H) < o(G) = k. Applying the induction hypothesis, we see that the abelian group
G/H has an element b + H of order p. Then
H=pb+ H) =pb+ H,
and therefore pb € H, where b & H. Let r = o(H). The order of pb must be a divisor of r
so that #(pb) = 0 and p(rb) = 0. Since p is a prime and p/r, p and r are relatively prime.
Hence there exist integers u and v such that pu + rv = 1.
The contention now is that the element ¢ = rb has order p. We have pc = 0, and we
need to show that ¢ = rb # 0. Assume the contrary, that vb = 0. Then
b=1b
(pu + rv)b
u(pb) + v(rb)
u(pb) + 0
= u(pb).
Now pb € H, and therefore u(pb) € H. But b & H, so we have a contradiction. Thus
¢ = rb # 01is an element of order p in G, and the proof is complete.

Cauchy’s Theorem also holds for nonabelian groups, but we do not prove it here. The
next theorem applies only to abelian groups.

A biographical sketch of Augustin Louis Cauchy (1789-1857) is given at the end of this chapter.
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Theorem4.40 m Sylow p-Subgroup

uAv)=>w

Theorem 4.41

If G is a finite abelian group and p is a prime such that p | o(G), then G, is a Sylow
p-subgroup.

Proof Assume that G is a finite abelian group such that p™ divides o(G) but p”*! does not
divide o(G). Then o(G) = p™k, where p and k are relatively prime. We need to prove that
G, has order p".

We first argue that o(G,) is a power of p. If 0(G,) had a prime factor g different from
p, then G, would have to contain an element of order ¢, according to Cauchy’s Theorem.
This would contradict the very definition of G,, so we conclude that o(G,) is a power of p.
Let o(G,) = p".

Suppose now that o(G,) < p™—that is, that t < m. Then the quotient group G/G), has
order p"k/p' = p™ 'k, which is divisible by p. Hence G/G, contains an element a + G, of
order p, by Theorem 4.39. Then

G, =pla+ G, =pa+ G,

and this implies that pa € G,,. Thus pa has order that is a power of p. This implies that a has
order a power of p, and therefore a € G,; thatis,a + G, = G,,. This is a contradiction to the
fact that @ + G, has order p. Therefore, 0(G,) = p™, and G, is a Sylow p-subgroup of G.

The next theorem shows the true significance of the Sylow p-subgroups in the struc-
ture of abelian groups.

= Direct Sum of Sylow p-Subgroups

u=yv

Let G be an abelian group of order n = pi"p5> - - - p'- where the p; are distinct primes and
each m; is a positive integer. Then

G=G,9G,® G,

where G, is the Sylow p;-subgroup of G that corresponds to the prime p;.
Proof Assume the hypothesis of the theorem. For each prime p;, G, is a Sylow p-
subgroup of G by Theorem 4.40. Suppose an element a; € G, is also in the subgroup gen-
erated by G,, G, . . ., G,. Then

P2

a=atay+----+ta

r

where a; € G,. Since G,, has order p*, pj"a; = Ofori = 2, ..., r. Hence
My My, . o, —
pps e = 0.

VN

Since the order of any a; € G, is a power of pi, and p is relatively prime to p52p5° - - - p",

this requires that a; = 0. A similar argument shows that the intersection of any G, with the

subgroup generated by the remaining subgroups
G,,.G,,....G, .G

Pi-1? T Pivr? " "

G

Py



4.8 Some Results on Finite Abelian Groups (Optional) 251

is the identity subgroup {0}. Hence the sum
G,9G,® - &G,
is direct and has order equal to the product of the orders p*:
o(G, &G, ® - &G, =pI'"py” - - pi = o(G).
Therefore,

G=G,9G,® - &G

pr

Example 4 1nExample2, G = G, ® G, [

Our next theorem is concerned with a class that is more general than finite abelian
groups, the finitely generated abelian groups. An abelian group G is said to be finitely
generated if there exists a set of elements {ay, as, . . ., a,} in G such that every x € G can
be written in the form

x=zia; + a, + - + za,

where each z; is an integer. The elements a; are called generators of G, and the set
{ai, ay, . . ., a,} is called a generating set for G. A finite abelian group G is surely a finitely
generated group, since G itself is a generating set.

In a finitely generated group, the Well-Ordering Principle assures us that there are
generating sets that have the smallest possible number of elements. Such sets are called
minimal generating sets. The number of elements in a minimal generating set for G is
called the rank of G.

Theorem 4.42 m Direct Sum of Cyclic Groups
Any finitely generated abelian group G (and therefore any finite abelian group) is a direct
sum of cyclic groups.
Induction Proof The proof is by induction on the rank of G. If G has rank 1, then G is cyclic and the

theorem is true.
Assume that the theorem is true for any group of rank k — 1, and let G be a group of
rank k. We consider two cases.

Case 1 Suppose there exists a minimal generating set {ay, as, . . ., a;} for G such that
any relation of the form

za + za, + -+ a4, =0
with z; € Z implies that zja; = zpap = -+ - = zax = 0. Then

G =(a) + (@) + - + (@)

and the theorem is true for this case.
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Case 2 Suppose that Case 1 does not hold. That is, for any minimal generating set
{ay, ay, . . ., a;} of G, there exists a relation of the form

za; + a, + -+ 5, =0

with z; € Z such that some of the z;a; # 0. Among all the minimal generating sets and all
the relations of this form, there exists a smallest positive integer z; that occurs as a coeffi-
cient in one of these relations. Suppose this z; occurs in a relation with the generating set
{b1, by, . .., by}. If necessary, the elements in {by, by, . . ., by} can be rearranged so that
this smallest positive coefficient occurs as z; with b in

by + 20by + -+ b = 0. (1)
Now let sy, 2, . . . , S, be any set of integers that occur as coefficients in a relation of

the form
S|b1 +S2b2+-"+skbk=0 (2)

with these generators b;. We shall show that z; divides s;. By the Division Algorithm,
s, = z;q; + r;, where 0 = r; < z;. Multiplying equation (1) by ¢, and subtracting the
result from equation (2), we have

by + (s, — 20g)by + -+ + (s — zig)b = 0.

The condition 0 = r; < z, forces r; = 0 by choice of z; as the smallest positive integer in
a relation of this form. Thus z; is a factor of s;.

We now show that z,|z; for i = 2, ..., k. Consider z,, for example. By the Divi-
sion Algorithm, z, = 7,9, + r,, where 0 = r, <z. If we let b} = b, + ¢,b,, then
{b1, by, ..., by} is a minimal generating set for G, and

by + by + -+ b =0
= b — @by) T by + -+ b =0
= b+ (@ —zuqb+ -+ b =0

= b + ryby + -+ b = 0.
Now r, # 0 and 0 = r, < z; would contradict the choice of z;, so it must be that r, = 0
and z,|z,. The same sort of argument can be applied to each of z3, ..., Z, so we have
z; = zyq; for i = 2, ..., k. Substituting in equation (1), we obtain

2by + 2igoby + -+ g = 0.
Letcy = by + qaby + - -+ + qiby, and consider the set {cy, b, . . ., b}. This set gen-
erates G, and we have
zicy = 2iby + 2igaby, + o F Ziqudy
=21by + by + -t by
=0.
If H denotes the subgroup of G that is generated by the set {b,,...,b¢}, then G =

(ci) + H since the set {c1,ba,. .., by} is a generating set for G. We shall show that the
sum is direct.
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If 51, 52, . . ., s are any integers such that
sic; + sby + 000+ sib = 0,
then substitution for c; yields
s1by + (8192 + s2)by + -+ + (519 + s)b = 0.

This implies that z; divides s, and therefore s;c; = 0 since z,¢; = 0. Hence the sum is
direct, and

G={()®H.

Since H has rank k — 1, the induction hypothesis applies to H, and H is a direct sum of
cyclic groups. Therefore, G is a direct sum of cyclic groups, and the theorem follows by
induction.

We can now give a complete description of the structure of any finite abelian group G.
As in Theorem 4.41,

G=G,9G,® - @G,

where G, is the Sylow p;-subgroup of order p}" corresponding to the prime p;. Each G, can
in turn be decomposed into a direct sum of cyclic subgroups {a; ;), each of which has order
a power of p;:

G

o <ai,1> ® <ai,2> ® -0 <ai,t,>

where the product of the orders of the subgroups <a,-, j> is pi". This description is frequently
referred to as the Fundamental Theorem on Finite Abelian Groups. It can be used to sys-
tematically describe all the abelian groups of a given finite order, up to isomorphism.

Example 5 Forna positive integer, let C,, denote a cyclic group of order n. If G
is an abelian group of order 72 = 23 - 32 then G is the direct sum of its Sylow
p-subgroups G, of order 23 and G5 of order 3%

G:G2®G3.

Each of G, and Gj3 is a sum of cyclic groups as described in the preceding paragraph. By
considering all possibilities for the decompositions of G, and Gz, we deduce that any
abelian group of order 72 is isomorphic to one of the following direct sums of cyclic groups:

Cy® Cy Cy® C;® Gy
Cz@CzZ@C:;'—’ C2®C22®C3®C3
Cz@C2®C2®C32 Cz@C2®C2®C3®C3. .

The main emphasis of this section has been on finite abelian groups, but the results
presented here hardly scratch the surface. As an example of the interesting and important
work that has been done on finite groups in general, we state the following theorem without
proof.
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Theorem 4.43 m Sylow's Theorem

Let G be a finite group, and let p be a prime integer.

a.

b.

If m is a positive integer such that p™|o(G) and p™*'[ o(G), then G has a subgroup of
order p™.

For the same prime p, any two Sylow p-subgroups of G are conjugate subgroups.

c. If p|o(G), the number n,, of distinct Sylow p-subgroups of G satisfies 1, = 1(mod p).

The result in part a of Theorem 4.43 can be generalized to state that if p”|o(G) and

p" "1/ 0(G), then G has a subgroup of order p* for any k € Z such that 0 < k < m.

BN Exercises 4.8 I———

True or False
Label each of the following statements as either true or false.

Sec. 4.4, #8 >

1.

A p-group can be finite or infinite.

2. Every p-group is abelian.
3. Every p-group is cyclic.

4.
5
6

Every subgroup of a p-group is a p-group.

. Every Sylow p-subgroup of a group G is cyclic.

. If every nontrivial subgroup of a group G is a p-group, then G must be a p-group.

Exercises

1.
2.
3.

Give an example of a p-group of order 9.

Find two p-groups of order 4 that are not isomorphic.

a. Find all Sylow 3-subgroups of the alternating group Ay.
b. Find all Sylow 2-subgroups of A4.

4. Find all Sylow 3-subgroups of the symmetric group Ss.

5. For each of the following Z,, let G be the additive group G = Z,, and write G as a

direct sum of cyclic groups.

a. Zy b. Z;s c. Zp d. Z

For each of the following values of n, describe all the abelian groups of order n, up to
isomorphism.

aan==~6 b. n =10 c.n=12

d.n=18 e.n =36 f. n =100

Let G be a group and ¢ € G. Prove that if H is a Sylow p-group of G, then so is gHg ™.



10.
11.

12.

13.

14.

15.

16.

17.

18.

Key Words and Phrases 255

Let G be a finite group, p prime, and H a Sylow p-group. Prove that H is normal in G
if and only if H is the only Sylow p-group in G.

Determine which of the Sylow p-groups in each part of Exercise 3 are normal.
Determine which of the Sylow 3-groups in Exercise 4 are normal.

Show that {ai, aa, . . ., a,} is a generating set for the additive abelian group G if and
only if G = <a1> + <a2> + e+ <an>.

Give an example where G is a finite nonabelian group with order that is divisible by a
prime p, and where the set of all elements that have orders that are powers of p is not
a subgroup of G.

If p1, pa, . . ., prare distinct primes, prove that any two abelian groups that have order
n = pip> " p,are isomorphic.

Suppose that the abelian group G can be written as the direct sum G = Cp2 @ C3 @ C3,
where C,, is a cyclic group of order 7.

a. Prove that G has elements of order 12 but no element of order greater than 12.

b. Find the number of distinct elements of G that have order 12.

Assume that G can be written as the direct sum G = C, ® C, ® C; & C;, where C, is
a cyclic group of order n.

a. Prove that G has elements of order 6 but no element of order greater than 6.

b. Find the number of distinct elements of G that have order 6.

Suppose that G is a cyclic group of order p™, where p is a prime. If k is any integer such
that 0 < k < m, prove that G has a subgroup of order p*.

Prove the result in Exercise 16 for an arbitrary abelian group G of order p”™, where G
is not necessarily cyclic.

Prove that if G is an abelian group of order n and s is an integer that divides n, then G
has a subgroup of order s.

Key Words and Phrases I

alternating group, 199 generating set, 225, 251 product of subsets, 215
Cauchy’s Theorem for Abelian glide reflection, 211 quotient (factor) group, 230
Groups, 249 index of a subgroup, 218 rank, 251
Cayley’s Theorem, 205 Klein four group, 207 reflective symmetry, 211
conjugate, 199, 221 Lagrange’s Theorem, 219 right coset, 217
cycle, 192 left coset, 217 rotational symmetry, 211
dihedral group, 210 minimal generating set, 251 subgroup generated by A, 225
direct product, 238, 239 normal (invariant) subgroup, 223 sum of subgroups, 239
direct sum of subgroups, 241 octic group, 202, 226 Sylow p-subgroup, 248
even permutation, 199 odd permutation, 199 translation, 211
Fundamental Theorem of orbit, 193 transposition, 196
Homomorphisms, 233 p-group, 246
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A Pioneer in Mathematics
Augustin Louis Cauchy (1789-1857)

Augustin Louis Cauchy, a 19th-century French mathematician, has the
distinction of being a major contributor to the development of modern
calculus. The calculus that we know today is based substantially on
his clear and precise definition of limits, which changed the whole
complexion of the field. Cauchy's attention was not confined to
calculus, though. In 1814, he began to develop the theory of functions
of complex variables. He made significant contributions in the areas of
differential equations, infinite series, probability, determinants, and
mathematical physics, as well as abstract algebra. The current notation
and terminology used for permutations are credited to Cauchy. A
major theorem in the study of abelian groups (Theorem 4.39) was proved by Cauchy and
thus was named for him.

Cauchy was born in Paris on August 21, 1789. By the time he was 11 years old, French
mathematicians recognized his rare talent. He went on to study civil engineering and spent
the first few years of his career as an engineer in Napoleon’s army, pursuing mathematical
research on the side. For health reasons, he gave up engineering and began a teaching
career that was mathematically fruitful in spite of political unrest in France. In 1830, Cauchy,
an ardent supporter of King Charles X, refused to swear allegiance to the new government
after the exile of the king. He lost his professorship and was forced to leave France for eight
years. He subsequently taught in church schools and produced so many papers that the
Academy of Sciences, alarmed at the printing bills that resulted, passed a rule limiting each
paper to four pages. After the February Revolution of 1848, Cauchy was appointed
professor of celestial mechanics at the Ecole Polytechnique, a position he retained for the
rest of his career.

SSPL/Image Works



CHAPTER FIVE

Rings, Integral
Domains, and Fields

M Introduction

Rings, integral domains, and fields are introduced in this chapter. The field of quotients of
an integral domain is constructed, and ordered integral domains are considered. The devel-
opment of Z, continues in Section 5.1, where it appears for the first time in its proper con-
text as aring.

5.1 | Definition of a Ring

A group is one of the simpler algebraic systems because it has only one binary operation.
A step upward in the order of complexity is the ring. A ring has two binary operations called
addition and multiplication. Conditions are made on both binary operations, but fewer are
made on multiplication. A full list of the conditions is in our formal definition.

Definition 5.1am Definition of a Ring

Suppose R is a set in which a relation of equality, denoted by =, and operations of addition
and multiplication, denoted by + and -, respectively, are defined. Then R is a ring (with
respect to these operations) if the following conditions are satisfied:

1. R is closed under addition: x E Randy € Rimply x + y E R.
Addition in R is associative: x + (y + z) = (x + y) + zforall x, y, zin R.
R contains an additive identity 0: x + 0 = 0 + x = xforall x € R.
R contains additive inverses: For x in R, there exists —x in R such that
x+(—x)=(—x) +x=0.
Addition in R is commutative: x + y = y + xforallx, yin R.

El o

R is closed under multiplication: x € Rand y € Rimply x * y € R.
Multiplication in R is associative: x + (y * z) = (x+y) » zforallx, y, zin R.

® AW

Two distributive laws hold in R: x-(y +z)=x-y+tx-zand (x+y)-z=
x-z+y-zforalux,y zinR.

The notation xy will be used interchangeably with x - y to indicate multiplication.

257
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The additive identity of a ring is denoted by 0 and referred to as the zero of the ring.
The additive inverse —a is called the negative of a or the opposite of a, and subtraction
in a ring is defined by

x—y=x+(—y).
As in elementary algebra, we adhere to the convention that multiplication takes precedence
over addition. That is, it is understood that in any expression involving multiplication and
addition, multiplications are performed first. Thus xy + xz represents (x * y) + (x * 2), not
x(y + x)z.
The statement of the definition can be shortened to a form that is easier to remember if

we note that the first five conditions amount to the requirement that R be an abelian group
under addition.

Definition 5.1bm Alternative Definition of a Ring

Suppose R is a set in which a relation of equality, denoted by =, and operations of addition
and multiplication, denoted by + and -, respectively, are defined. Then R is a ring (with
respect to these operations) if these conditions hold:

1. R forms an abelian group with respect to addition.

2. Ris closed with respect to an associative multiplication.

3. Two distributive laws holdinR: x- (y+ z) =x-y+x-zand(x + y)rz=x-z+ y-z
forall x, y, zin R.

Example 1 Some simple examples of rings are provided by the familiar number sys-
tems with their usual operations of addition and multiplication:

the set Z of all integers

the set Q of all rational numbers

the set R of all real numbers

g0 78

the set C of all complex numbers. |

Example 2 We shall verify that the set E of all even integers is a ring with respect to
the usual addition and multiplication in Z. The following conditions of Definition 5.1a are
satisfied automatically since they hold throughout the ring Z, which contains E.

2. Addition in E is associative.

5. Addition in E is commutative.

7. Multiplication in E is associative.

8. The two distributive laws in Definition 5.1a hold in E.

The remaining conditions in Definition 5.1a may be checked as follows:

1. fx€ Eandy € E, then x = 2m and y = 2n with m and n in Z. For the sum, we have
x+y=2m+ 2n = 2(m + n), which is in E. Thus E is closed under addition.

3. E contains the additive identity, since 0 = (2)(0).
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4. For any x = 2k in E, the additive inverse of x is in E, since —x = 2(—k).

6. For x = 2m and y = 2n in E, the product xy = 2(2mn) is in E, so E is closed under
multiplication. u

Definition5.2 m Subring

Theorem 5.3

Whenever a ring R is a subset of a ring R, and has addition and multiplication as defined
in R,, we say that R, is a subring of R;.

Thus the ring E of even integers is a subring of the ring Z of all integers. From
Example 1, we see that the ring Z is a subring of the rational numbers, the rational numbers
form a subring of the real numbers, and the real numbers form a subring of the complex
numbers.

Generalizing from Example 2, we may observe that conditions 2, 5, 7, and 8 of Defini-
tion 5.1a are automatically satisfied in any subset of a ring, leaving only conditions 1, 3, 4,
and 6 to be verified for the subset to form a subring. A slightly more efficient characteriza-
tion of subrings is given in the following theorem, the proof of which is left as an exercise.

m Equivalent Set of Conditions for a Subring

Theorem 5.4

A subset S of the ring R is a subring of R if and only if these conditions are satisfied:

a. §is nonempty.
b. x € Sand y € S imply that x + y and xy are in S.
c. x € Simplies —x € §.

An even more efficient characterization of subrings is provided by the next theorem.
The proof of this theorem is left as an exercise.

m Characterization of a Subring

A subset S of the ring R is a subring of R if and only if these conditions are satisfied:

a. §is nonempty.

b. x € Sand y € S imply that x — y and xy are in S.

Example 3 Using Theorem 5.3 or Theorem 5.4, it is not difficult to verify the follow-
ing examples of subrings.

a. The set of all real numbers of the formm + n \/2, withm € Z and n € Z, is a subring
of the ring of all real numbers.

b. The set of all real numbers of the form a + b\ﬁ, with a and b rational numbers, is a
subring of the real numbers.

c. The set of all real numbers of the form a + b% + c\%, with a, b, and c rational
numbers, is a subring of the real numbers. [ |
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The preceding examples of rings are all drawn from the number systems. The next
example exhibits a class of rings with a different flavor: They are finite rings (that is, rings
with a finite number of elements). The next example is also important because it presents the
set Z,, of congruence classes modulo # for the first time in its proper context as a ring.

Example 4 Forn > 1, let Z, denote the congruence classes of the integers modulo 7
Z,={0],[1,[2],....[n — 1]}.
We have previously seen that the rules
[a] + [b]=[a + b] and [d]-[b] = [ab]

define binary operations of addition and multiplication in Z,. We have seen that Z,, forms
an abelian group under addition, with [0] as the additive identity and [—a] as the additive
inverse of [a]. It has also been noted that Z, is closed with respect to multiplication and that
this multiplication is associative. For arbitrary [a], [b], [c]in Z,, we have

[a] - (b) + [c]) = [a] - [b + ]
= [a(b + ¢)]
= [ab + ac]
= [ab] + [ac]
= [a] - [b] + [a] - [c],
so the left distributive law holds in Z,. The right distributive law can be verified in a simi-
lar way, and Z,, is a ring with respect to these operations. |

Making use of some results from Chapter 1, we can obtain an example of a ring quite
different from any of those previously discussed.

Example b LetUbea nonempty universal set, and let %(U) denote the collection of all
subsets of U.
For arbitrary subsets A and B of U, let A + B be defined as in Exercise 40 of Section 1.1:

A+B=AUB) — (ANB).
This rule defines an operation of addition on the subsets of U, P(U) is closed with respect
to this addition, and this operation is associative, by Exercise 40b of Section 1.1. This addi-
tion is commutative, since AU B = BUA and AN B = BN A. The empty set & is an
additive identity because
T+A=A+T
=AUD) - (ANY)
=A-U
= A.
An unusual feature here is that each subset A of U is its own additive inverse:
A+A=AUA — (ANA)
=A—-A
=@.
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We define multiplication in P(U) by
A-B=ANB,
and P(U) is closed with respect to this multiplication. Also multiplication is associative
since
A-(B-C)=ANBNC)
=(ANBNC
=(A-B)-C.
The left distributive law AN (B + C) = (AN B) + (AN C) is part ¢ of Exercise 40,

Section 1.1, and the right distributive law follows from this one since forming intersections
of sets is a commutative operation. Thus P(U) is a ring with respect to the operations +

and - as we have defined them. |
Definition 55 = Ring with Unity, Commutative Ring

Let R be a ring. If there exists an element e in R such that x -+ ¢ = ¢ - x = x for all x in R,

then e is called a unity, and R is a ring with unity. If multiplication in R is commutative,

then R is called a commutative ring.

A ring may have one of the properties in Definition 5.5 without the other, it may have
neither, or it may have both of the properties. These possibilities are illustrated in the
following examples.

Example 6 The ring Z of all integers has both properties, so Z is a commutative ring
with a unity. As other examples of this type, Z, is a commutative ring with unity [1], and
P(U) is a commutative ring with the subset U as unity. |
Example 1 The ring E of all even integers is a commutative ring, but E does not have
a unity. |
Example 8 It follows from our work in Sections 1.6 and 3.3 that if n = 2, then each of
the sets in the list

M (Z) = M,(Q) =M, (R) = M,(C)

is a noncommutative ring with unity 7,,. Each of these four rings is a subring of every listed
ring in which it is contained. u

Example 9 The set

a b
{2 ¢

of all 2 X 2 matrices over the ring E of even integers is a noncommutative ring that does
not have a unity. |

a, b, c,and d are in E}

The definition of a unity allows the possibility of more than one unity in a ring.
However, this possibility cannot happen.
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Theorem 5.6

Uniqueness of the Unity

Uniqueness

Definition 5.7

If R is a ring that has a unity, the unity is unique.
Proof Suppose that both e and ¢’ are unity elements in a ring R. Consider the product

e - ¢ in R. On the one hand, we have e - ¢ = e, since ¢’ is a unity. On the other hand,
e - ¢ = ¢, since e is a unity. Thus

and the unity is unique.

In general discussions, we shall denote a unity by e. When a ring R has a unity, it is in
order to consider the existence of multiplicative inverses.

Multiplicative Inverse

Theorem 5.8

Let R be a ring with unity e, and let a € R. If there is an element x in R such that
ax = xa = e, then x is a multiplicative inverse of a and « is called a unit (or an invertible
element) in R.

As with the unity, a multiplicative inverse of an element is unique whenever it exists.
The proof of this is left as an exercise.

Uniqueness of the Multiplicative Inverse

Suppose R is a ring with unity e. If an element a € R has a multiplicative inverse, the mul-
tiplicative inverse of a is unique.

We shall use the standard notation @~ ! to denote the multiplicative inverse of a, if the
inverse exists.

Example 10 Some elements in a ring R may have multiplicative inverses whereas others
donot. In the ring Z, [1] and [9] are their own multiplicative inverses, whereas [3] and [7] are
inverses of each other. All other elements of Z;y do not have multiplicative inverses. |

Since every ring R forms an abelian group with respect to addition, many of our re-
sults for groups have immediate applications concerning addition in a ring. For example,
Theorem 3.4 gives these results:

1. The zero element in R is unique.
For each x in R, —x is unique.
Foreachxin R, —(—x) = x.

Foranyxand yinR, —(x + y) = —y — x.

AN S A

Ifa,x,andyareinRanda + x = a + y,thenx = y.
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Whenever both addition and multiplication are involved, the results are not so direct,
but they turn out much as we might expect. One basic result of this type is that a product is
0 if one of the factors is O.

Theoremb59 = ZeroProduct

If R is a ring, then

foralla € R.

Proof Let a be arbitrary in R. We reduce a * 0 to 0 by using various conditions in Defin-
ition 5.1a, as indicated:
a*0=a-0+0 by condition 3
=ag-0+{a-0+[—(a-0)]} bycondition4
=(@-0+a-0)+[—(a-0)] bycondition?2
[a-(0+0)]+[—(a-0)] by condition 8
=a-0+[—(a-0) by condition 3
=0 by condition 4.

Similar steps can be used to reduce 0 - a to 0.

Theorem 5.9 says that a product is 0 if one of the factors is 0. Note that the converse is
not true: A product may be 0O when neither factor is 0. An illustration is provided by
[2] - [5] = [0]in Z.

Definition 5.10 m Zero Divisor

Let Rbe aring and leta € R. If a # 0, and if there exists an element » # 0 in R such that
either ab = 0 or ba = 0, then a is called a proper divisor of zero, or a zero divisor.

If we compare the steps used in the proof of Theorem 5.9 to the last part of the proof
of Theorem 2.2, we see that they are much the same. In the same fashion, the proof of the
first part of the next theorem is parallel to another part of the proof of Theorem 2.2. The
same sort of similarity exists between Exercises 1-10 of Section 2.1 and the remaining
parts of Theorem 5.11. Because of this similarity, their proofs are left as exercises.

Theorem 5.11 = Additive Inverses and Products

For arbitrary x, y, and z in a ring R, the following equalities hold:

a. (—x)y = —(xy)
b. x(—y) = —(xy)
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¢ (—x0)(—y) =xy
d. x(y —2)=xy —xz
e. (x—y)z=x7—yz

Proof of a Since the additive inverse —(xy) of the element xy is unique, we only need to
show that xy + (—x)y = 0. We have

xy + (=x)y = [x + (=x)]y by the right distributive law
=0-y by the definition of —x
=0 by Theorem 5.9.

Even though a ring does not form a group with respect to multiplication, both associa-
tive laws in a ring R can be generalized by the procedure followed in Definition 3.6 and
Theorem 3.7. For any integer n = 2, the expressionsa; + a, + -+ + a,andajaz- - - a,
are defined recursively by

a1+a2+ +ak+ak+1:(a1+a2+ +ak)+ak+1
and
aa; G = (@ay @)

The details are too repetitive to present here, so we accept the following theorem without
proof.

Theorem 5.12 = Generalized Associative Laws
Let n = 2 be a positive integer, and let aj, as, . . . , a, denote elements of a ring R. For any
positive integer m such that 1 = m < n,
(ag+ay+ -+ +a,)+@,-1+ - ta)=a ta+ -+ +a,
and
(@ay =+ a) @y 0 a) =aay " a,
Generalized distributive laws also hold in an arbitrary ring. This fact is stated in the
following theorem, with the proofs left as exercises.
Theorem 5.13 m Generalized Distributive Laws

Let n = 2 be a positive integer, and let b, ay, ay, . . . , a, denote elements of a ring R. Then
we have
a. b(ay +a»+ - +a,) =ba + ba, + -+ + ba,, and

b. (ai+a+-- +tap)b=ab+ab+ - +ab
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BN Exercises 5.1 I——

True or False

Sec. 5.2, #la <
Sec. 5.2, #1b <

Sec. 5.2, #1d <

Sec. 5.2, #le <
Sec. 6.1, #25 <
Sec. 6.4, #11, 12 <

Sec. 5.2, #lh <

Label each of the following statements as either true or false.

1.

Every ring is an abelian group with respect to the operations of addition and
multiplication.

Let R be aring. The set {0} is a subring of R with respect to the operations in R.
Let R be a ring. Then R is a subring of itself.

Both E, the set of even integers, and Z — E, the set of odd integers, are subrings of the
set Z of all integers.

If one element in a ring R has a multiplicative inverse, then all elements in R must have
multiplicative inverses.

Let x and y be elements in a ring R. If xy = 0, then either x = O ory = 0.

Let R be a ring with unity and S a subring (with unity) of R. Then R and S must have
the same unity elements.

A unity exists in any commutative ring.

Any ring with unity must be commutative.

Exercises

1.

Confirm the statements made in Example 3 by proving that the following sets are sub-
rings of the ring of all real numbers.

a. the set of all real numbers of the form m + n\/i, withm &€ Zandn € Z

b. the set of all real numbers of the form a + b \6 with a and b rational numbers

c. the set of all real numbers of the form a + b\3/§ + c%, with a, b, and c rational
numbers

Decide whether each of the following sets is a ring with respect to the usual opera-
tions of addition and multiplication. If it is not a ring, state at least one condition in
Definition 5.1a that fails to hold.

a. the set of all integers that are multiples of 5

b. the set of all real numbers of the form m + n\@ withm € Z andn € Z

c. the set of all real numbers of the forma + b \3@ where a and b are rational numbers
d

. the set of all real numbers of the form a + b\3/5 + 0\3/2g, where a, b, and ¢ are
rational numbers

. the set of all positive real numbers

- D

. the set of all complex numbers of the form m + ni, where m € Z and n € Z (This
set is known as the Gaussian integers.)

g. the set of all real numbers of the form m + n\/i, where m € E andn € Z
h. the set of all real numbers of the form m + n\/Z wherem € Z andn € E
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10.

11.

12.

13.
14.

15.

Let U = {a, b}. Using addition and multiplication as they are defined in Example 5,
construct addition and multiplication tables for the ring P(U) that consists of the
elements J, A = {a}, B = {b}, U.

Follow the instructions in Exercise 3, and use the universal set U = {a, b, c}.

Let U = {a, b}. Define addition and multiplication in ?(U) by C + D = CU D and
CD = C N D. Decide whether (U) is a ring with respect to these operations. If it is
not, state a condition in Definition 5.1a that fails to hold.

Work Exercise 5 using U = {a}.

Find all zero divisors in Z,, for the following values of n.

an==~6 b.n=28
c.n=10 dn=12
e.n=14 f. n a prime integer

For the given value of n, find all the units in Z,,.

an==>0 b.n=28
c.n=16 d.n=12
e.n=14 f. n a prime integer

Prove Theorem 5.3: A subset S of the ring R is a subring of R if and only if these con-
ditions are satisfied:

a. S is nonempty.

b. x € Sand y € S imply that x + y and xy are in S.

c. x € Simplies —x € S.

Prove Theorem 5.4: A subset S of the ring R is a subring of R if and only if these con-
ditions are satisfied:

a. S is nonempty.

b. x € Sand y € S imply that x — y and xy are in S.

Assume R is a ring with unity e. Prove Theorem 5.8: If a € R has a multiplicative
inverse, the multiplicative inverse of a is unique.

(See Example 4.) Prove the right distributive law in Z,:
([a] + [B]) - [e] = [a] - [e] + [B] - [c].
Complete the proof of Theorem 5.9 by showing that O - @ = 0 for any « in a ring R.

Let R be a ring, and let x, y, and z be arbitrary elements of R. Complete the proof of
Theorem 5.11 by proving the following statements.

a. x(—y) = —(xy) b. (=x)(=y) = xy

c. x(y—2)=xy —xz d. x—y)z=x7—yz

Let a and b be elements of a ring R. Prove that the equation a + x = b has a unique
solution.
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Suppose that G is an abelian group with respect to addition, with identity element 0.
Define a multiplication in G by ab = 0 for all a, b € G. Show that G forms a ring with
respect to these operations.

If Ry and R; are subrings of the ring R, prove that Ry M R is a subring of R.
Find subrings R; and R, of Z such that Ry U R, is not a subring of Z.
Find a specific example of two elements a and b in aring R such thatab = 0 and ba # 0.

Find a specific example of two nonzero elements a and b in a ring R such that the equa-
tions ax = b and ya = b have solutions x # y.

Define a new operation of additionin Zby x @y = x + y — 1 with a new multiplication
inZbyx ©y=x+y— xy. Verify that Z forms a ring with respect to these operations.
Let R be a ring with unity and S be the set of all units in R.

a. Prove or disprove that S is a subring of R.

b. Prove or disprove that S is a group with respect to multiplication in R.

Prove that if a is a unit in a ring R with unity, then a is not a zero divisor.
(See Exercise 8.) Describe the units of Z,,.

Suppose that a, b, and ¢ are elements of a ring R such that ab = ac. Prove that if a as
a multiplicative inverse, then b = c.

Let R be a ring with no zero divisors. Prove that if a, b, ¢, and d are elements in R such
thatab = ¢ # O and ad = ¢ # 0, then b = d.

For a fixed element a of a ring R, prove that the set {x € R|ax = 0} is a subring of R.
For a fixed element a of a ring R, prove that the set {xa|x € R} is a subring of R.

Let R be a ring. Prove that the set S = {x € R|xa = ax for all a € R} is a subring of R.

This subring is called the center of R.

Consider the set R = {[0], [2], [4], [6], [8]} & Zio.

a. Construct addition and multiplication tables for R, using the operations as defined
in Z10.

b. Observe that R is a commutative ring with unity [6], and compare this unity with the
unity in Zj.

¢. Is R a subring of Z(? If not, give a reason.

d. Does R have zero divisors?

e. Which elements of R have multiplicative inverses?

Consider the set S = {[0],[2], (4], (6], [8], [10], [12],[14], [16]} < Z;s. Using addition and

multiplication as defined in Z,g, consider the following questions.

a. Is S aring? If not, give a reason.

. Is S a commutative ring with unity? If not, give a reason.

. Is S a subring of Zg? If not, give a reason.

. Does § have zero divisors?

o 0 T

. Which elements of S have multiplicative inverses?
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given in Figure 5.1. Use the distributive laws to complete the multiplication table.

+ a b c . a b c
a a b ¢ a a a a
b b ¢ a b a ¢

c c a b c a

The addition table and part of the multiplication table for the ring R = {a, b, ¢, d} are
given in Figure 5.2. Use the distributive laws to complete the multiplication table.

+ |l a b ¢ d ‘ a b ¢ d
a a b ¢ d a a a a a
b b ¢ d a b a ¢

c c d a b c a a

d d a b ¢ d a a ¢

Give an example of a zero divisor in the ring M»(Z).

Let a and b be elements in a ring R. If ab is a zero divisor, prove that either a or b is a
zero divisor.

An element x in a ring is called idempotent if x> = x. Find two different idempotent
elements in My(Z).

(See Exercise 36.) Show that the set of all idempotent elements of a commutative ring
is closed under multiplication.

Let a be idempotent in a ring with unity. Prove e — a is also idempotent.

Decide whether each of the following sets S is a subring of the ring M»(Z). If a set is
not a subring, give a reason why it is not. If it is a subring, determine if S is commuta-
tive and find the unity, if one exists. For those that have a unity, which elements in S
have multiplicative inverses in S?7

x 0 [x x
.S = ez . S = eZ
a. S {_x 0} X } b. S {_O 0] X }
c SZ{ . y:| x,yEZ} d.SI{ x x,y,zEZ}
Lx L0 z]
[0 x [x 0]
S = ez f.S= ,y EZ
es={[s o] |7} Lo o][rer)
s={[* 0 €z ns={[* 9 €z
& 0 2| ' 0o 2|
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LetS = {|: @t bl: ot dl:| a,b,c,dER}.
—c+di a— bi
a. Show that S is a noncommutative subring of M,(C).
b. Find the unity element, if it exists.
Consider the set T of all 2 X 2 matrices of the form {Z Z , where a and b are real
numbers, with the same rules for addition and multiplication as in M,(R).
a. Show that 7 is a ring that does not have a unity.
b. Show that T is not a commutative ring.
Prove the following equalities in an arbitrary ring R.
cxF @+ w) =z aw) + (yz+yw)
b. (x + y)(z —w) = (xz + y2) — (xw + yw)
c. (x—y(z—w) =@z+yw) — (w + yz)
d. (x+ )&=y =@ —y)+ (x—ay)
Let R be a set of elements containing the unity e, that satisfy all of the conditions in

Definition 5.1a, except condition 5: Addition is commutative. Prove that condition 5
must also hold.

o

Prove Theorem 5.13a.
Prove Theorem 5.13b.

An element a of a ring R is called nilpotent if «” = 0 for some positive integer n. Prove
that the set of all nilpotent elements in a commutative ring R forms a subring of R.

Let R and S be arbitrary rings. In the Cartesian product R X S of R and S, define
(r,s) = (r',s') ifandonlyif r=r"ands =7+,
(ri,81) + (r2,8) = (r1 + 12,81 + 52),
(r1,51) * (12, 85) = (rirp, 515).

a. Prove that the Cartesian product is a ring with respect to these operations. It is

called the direct sum of R and S and is denoted by R © S.
b. Prove that R @ S is commutative if both R and S are commutative.
c. Prove that R @ S has a unity element if both R and S have unity elements.

(See Exercise 47.) Write out the elements of Z, @ Z, and construct addition and
multiplication tables for this ring (Suggestion: Write 0 for [0], 1 for [1] in Z,.)
a. Show that §; = {[0], [2]} is a subring of Z4, and S, = {[0], [3]} is a subring of Z.

b. Write out the elements of S| @ S,, and construct addition and multiplication tables
for this ring.

c. Is §; & S, a commutative ring?

d. Find the unity in S; © S if one exists.

Suppose R is a ring in which all elements x satisfy x> = x. (Such a ring is called a
Boolean ring.)

a. Prove that x = —x for each x € R. (Hint: Consider (x + x)%.)

b. Prove that R is commutative. (Hint: Consider (x + y)2.)
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5.2

Definition 5.14

Integral Domains and Fields

In the preceding section we defined the terms ring with unity, commutative ring, and zero
divisors. All three of these terms are used in defining an integral domain.

Integral Domain

Theorem 5.15

Let D be aring. Then D is an integral domain provided these conditions hold:

1. D is a commutative ring.
2. Dhas aunity e, and e # 0.
3. D has no zero divisors.

Note that the requirement e # 0 means that an integral domain must have at least two
elements.

Example 1 Thering Z of all integers is an integral domain, but the ring E of all even in-
tegers is not an integral domain, because it does not contain a unity. As familiar examples of
integral domains, we can list the set of all rational numbers, the set of all real numbers, and
the set of all complex numbers—all of these with their usual operations. |

Example 2 The ring Zjo is a commutative ring with a unity, but the presence of zero
divisors such as [2] and [5] prevents Z;( from being an integral domain. Considered as a
possible integral domain, the ring M of all 2 X 2 matrices with real numbers as elements fails
on two counts: Multiplication is not commutative, and it has zero divisors. |

In Example 4 of Section 5.1, we saw that Z, is a ring for every value of n > 1.
Moreover, Z, is a commutative ring since

[a] - [b] = [ab] = [ba] = [b] - [a]
for all [a], [b] in Z,,. Since Z, has [1] as the unity, Z, is an integral domain if and only if it
has no zero divisors. The following theorem characterizes these Z,,, and it provides us with
a large class of finite integral domains (that is, integral domains that have a finite number
of elements).

The Integral Domain Z, When nls a Prime

Forn > 1, Z, is an integral domain if and only if # is a prime.

Proof From the previous discussion, it is clear that we need only prove that Z, has no
zero divisors if and only if n is a prime.

Suppose first that n is a prime. Let [a] # [0] in Z,, and suppose [a] [b] = [0] for some [b]
in Z,,. Now [a] [b] = [0] implies that [ab] = [0], and therefore, 1n|ab. However, [a] # [0] means
that { a. Thus n|ab and nfa. Since n is a prime, this implies that n|b, by Theorem 2.16;
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that is, [b] = [0]. We have shown that if[a] # [0], the only way that [a][b] can be [0]is for [b] to
be [0]. Therefore, Z,, has no zero divisors and is an integral domain.

~p & ~q Suppose now that z is not a prime. Then n has divisors other than =1 and *n, so there
are integers a and b such that
n=ab wherel <aga<nandl <b <n.
This means that [a] # [0], [b] # [0], but
[a][b] = [ab] = [n] = [O].
Therefore, [a]is a zero divisor in Z,, and Z, is not an integral domain.
Combining the two cases, we see that n is a prime if and only if Z, is an integral
domain.
One direct consequence of the absence of zero divisors in an integral domain is that the
cancellation law for multiplication must hold.
Theorem5.16 = Cancellation Law for Multiplication
If a, b, and ¢ are elements of an integral domain D such that a # 0 and ab = ac, then
b=c
(pANg)=r Proof Suppose a, b, and ¢ are elements of an integral domain D such that @ # 0 and

ab = ac. Now

ab =ac=ab —ac =0
=alb—c) =0.

Since a # 0 and D has no zero divisors, it must be true that b — ¢ = 0, and hence b = c.

It can be shown that if the cancellation law holds in a commutative ring, then the ring
cannot have zero divisors. The proof of this is left as an exercise.

To require that a ring has no zero divisors is equivalent to requiring that a product of
nonzero elements must always be different from 0. Or, stated another way, a product that is
0 must have at least one factor equal to 0.

A field is another special type of ring, and we shall examine the relationship between
a field and an integral domain. We begin with a definition.

Definition 5.17 m Field

Let F be a ring. Then F is a field provided these conditions hold:

1. Fis a commutative ring.
2. Fhasaunity e, and e # 0.
3. Every nonzero element of F has a multiplicative inverse.
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The rational numbers, the real numbers, and the complex numbers are familiar exam-
ples of fields. We shall see in Corollary 5.20 that if p is a prime, then Z, is a field. Other
and less familiar examples of fields are found in the exercises for this section.

Part of the relation between fields and integral domains is stated in the following
theorem.

Theorem 5.18 m Fields and Integral Domains
Every field is an integral domain.
p=gq Proof LetF be a field. To prove that F is an integral domain, we need only show that F
has no zero divisors. Suppose a and b are elements of F such that ab = 0. If a # 0, then
a ' € Fand
ab=0 = a(ab)=a'-0

= (a'a)pb=0

= eb=0

= b=0.
Similarly, if b # 0, then a = 0. Therefore, F' has no zero divisors and is an integral
domain.

It is certainly not true that every integral domain is a field. For example, the set Z of all
integers forms an integral domain, and the integers 1 and —1 are the only elements of Z that
have multiplicative inverses. It is perhaps surprising, but an integral domain with a finite
number of elements is always a field. This is the other part of the relationship between a field
and an integral domain.

Theorem 519 m Finite Integral Domains and Fields
Every finite integral domain is a field.
p=¢q Proof Assume that D is a finite integral domain. Let n be the number of distinct ele-

ments in D; say,
D={d.,d,,...,d},

where the d; are the distinct elements of D. Now let a be any nonzero element of D, and
consider the set of products

{ad\, ad,, ..., ad,}.

These products are all distinct, for @ # 0 and ad, = ad; would imply d, = d;, by
Theorem 5.16, and the d; are all distinct. These n products are all contained in D, and
no two of them are equal. Hence they are the same as the elements of D, except possibly for
order. This means that every element of D appears somewhere in the list

ad,, ad,, ..., ad,.
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In particular, the unity e is one of these products. That is, ady = e for some dj. Since mul-
tiplication is commutative in D, we have dra = ad; = e, and d; is a multiplicative inverse
of a. Thus D is a field.

m The Field Z,When nls a Prime

Z, is a field if and only if n is a prime.

Proof This follows at once from Theorems 5.15, 5.18, and 5.19.

We have seen that the elements of a ring form an abelian group with respect to addition.
A similar comparison can be made for the nonzero elements of a field. It is readily seen that
the nonzero elements form an abelian group with respect to multiplication. The definition of
a field can thus be reformulated as follows: A field is a set of elements in which equality,
addition, and multiplication are defined such that the following conditions hold.

1. F forms an abelian group with respect to addition.
2. The nonzero elements of F form an abelian group with respect to multiplication.
3. The distributive law x(y + z) = xy + xz holds for all x, y, zin F.

The last example in this section points out that some of our most familiar rings do not
form integral domains.

Example 3 Forn= 2, each of the rings
M,(Z), M,(Q), M,R), M,(C)

is not an integral domain, since multiplication in each of them is not commutative. It is also
true that each of them contains zero divisors if n = 2. For n = 2, the product

Lol - o)

illustrates this statement. Similar examples can easily be constructed for n > 2. |

Exercises 5.2 I——

True or False
Label each of the following statements as either true or false.
1. An integral domain contains at least 2 elements.
2. Every field is an integral domain.
3. Every integral domain is a field.
4. If a set S is not an integral domain, then S is not a field.
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Exercises

1. Decide which of the following are integral domains and which are fields with respect

to the usual operations of addition and multiplication. For each one that fails to be an
integral domain or a field, state a reason.

a. the set of all real numbers of the form m + n\/2, where m and n are integers

b. the set of all real numbers of the form a + b\/Z, where a and b are rational numbers
c. the set of all real numbers of the forma + b \3/2 where a and b are rational numbers

d. the set of all real numbers of the form a + b% + c\3/4, where a, b, and ¢ are
rational numbers

e. the Gaussian integers—that is, the set of all complex numbers of the form m + ni,
wherem € Z andn € Z

f. the set of all complex numbers of the form m + ni, where m € E and n € E (E is
the ring of all even integers.)

g. the set of all complex numbers of the form a + bi, where a and b are rational numbers

h. the set of all real numbers of the form m + n\/Z, wherem € Z andn € E

. Consider the set R = {[0], [2], [4], [6], [8]} S Z1¢, with addition and multiplication as

defined in Z .
a. Is R an integral domain? If not, give a reason.

b. Is R a field? If not, give a reason.

. Consider the set S = {[0], [2], [4], [6], [8], [10], [12], [14], [16]} < Z;5, with addition and

multiplication as defined in Zg.
a. Is S an integral domain? If not, give a reason.

b. Is S a field? If not, give a reason.

Examples 5 and 6 of Section 5.1 showed that ?P(U) is a commutative ring with unity. In
Exercises 4 and 5, let U = {a, b}.

4. Is P(U) an integral domain? If not, find all zero divisors in P(U).

5. Is P(U) a field? If not, find all nonzero elements that do not have multiplicative inverses.

6. LetS = {(0,0),(1,1),(0, 1), (1,0)}, where 0 = [0]and 1 = [1]are the elements of Z,.

Equality, addition, and multiplication are defined in S as follows:
(a,b) = (c,d) ifandonlyif a = candb = dinZ,,
(a,b) + (¢,d) = (a + ¢, b + d),
(a,b) + (¢, d) = (ad + bc + bd, ad + bc + ac).

a. Prove that multiplication in § is associative.

Assume that S is a ring and consider these questions, giving a reason for any negative
answers.

b. Is S a commutative ring?

¢. Does § have a unity?
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d. Is S an integral domain?
e. Is S afield?
Let W be the set of all ordered pairs (x, y) of integers x and y. Equality, addition, and
multiplication are defined as follows:
(x,y) = (z,w) ifandonlyif x = zandy = winZ,
Lyt @w =x+zy+w),
(x, ) * (2, w) = (xz — yw, xw + yz).

Given that W is a ring, determine whether W is commutative and whether W has a
unity. Justify your decisions.

0
Let S be the set of all 2 X 2 matrices of the form {x 0}, where x is a real number.

X
Assume that S is a ring with respect to matrix addition and multiplication. Answer the
following questions, and give a reason for any negative answers.

a. Is S a commutative ring?

b. Does § have a unity? If so, identify the unity.
c. Is S an integral domain?

d. Is S afield?

Work Exercise 8 using § as the set of all 2 X 2 matrices of the form {)(; )(;], where x
is a real number.

Let R be the set of all matrices of the form {Z B ] where a and b are integers.
a

Assume that R is a ring with respect to matrix addition and multiplication. Determine
whether R is commutative, and identify the unity if R has one.

Let R be the set of all matrices of the form {Z } where a and b are real numbers.

a
Assume that R is a ring with respect to matrix addition and multiplication. Answer the
following questions and give a reason for any negative answers.

a. Is R a commutative ring?

b. Does R have a unity? If so, identify the unity.

c. Is R an integral domain?

d. Is R a field?

Considertheset S = {a + bi |a,b €EZ3} ={0,1,2,i, 1 +i,2 +i,2i, 1 +2i,2 + 2i},
where we write O for [0], 1 for [1], and 2 for [2] in Z3. Addition and multiplication are

as in the complex numbers except that the coefficients are added and multiplied as in
Zs. Thus i> = —1 as in the complex numbers and —1 = 2 in Zj.

a. Is S a commutative ring?
b. Does S have a unity?

c. Is S an integral domain?
d. Is S'is a field?
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Work Exercise 12 using S = {a + bi |a, b € Zs}.

Let R be a commutative ring with unity in which the cancellation law for multiplication
holds. That is, if a, b, and c are elements of R, then a # 0 and ab = ac always imply
b = c. Prove that R is an integral domain.

Prove or disprove that every commutative ring with no zero divisors is an integral
domain.

Prove that if a subring R of an integral domain D contains the unity element of D, then
R is an integral domain.

If e is the unity in an integral domain D, prove that (—e)a = —a for alla € D.

Prove that the only idempotent elements in an integral domain are 0 and e.

a. Give an example where a and b are not zero divisors in a ring R, but the suma + b
is a zero divisor.

b. Give an example where a and b are zero divisors in a ring R with a + b # 0, and
a + bisnot a zero divisor.

c. Prove that the set of all elements in a ring R that are not zero divisors is closed under
multiplication.

Find the multiplicative inverse of the given element. (See Example 4 of Section 2.6.)

a. [1 1] in Z317 b. [1 1] in Z]38 C. [9] in Z242 d. [6] in Z3]9

Prove that if R and S are integral domains, then the direct sum R @ S is not an integral
domain.

Let R be a Boolean ring with unity e. Prove that every element of R except 0 and e is a
zero divisor.

If a # 0 in a field F, prove that for every b € F the equation ax = b has a unique
solution x in F.

Suppose S is a subset of a field F that contains at least two elements and satisfies both
of the following conditions: x €S and y €S imply x — yE S, and x ES and
y # 0 € Simply xy~! € S. Prove that S is a field.

The Field of Quotients of an Integral Domain

The example of an integral domain that is most familiar to us is the set Z of all integers, and
the most familiar example of a field is the set of all rational numbers. There is a very natu-
ral and intimate relationship between these two systems. In fact, a rational number is by
definition a quotient a/b of integers a and b, with b # 0; that is, the set of rational numbers
is the set of all quotients of integers with nonzero denominators. For this reason, the set of
rational numbers is frequently referred to as “the quotient field of the integers.” In this
section, we shall see that an analogous field of quotients can be constructed for an arbitrary
integral domain.
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Before we present this construction, let us review the basic definitions of equality,

addition, and multiplication in the rational numbers. We recall that for rational numbers Z
c

and —,
d

£ =% ifandonlyif ad="b
P if and only if a c,
a ¢ ad+ bc
7+7_7’
b d bd
a, c_ac
b d bd

Note that the definitions of equality, addition, and multiplication for rational numbers are
based on the corresponding definitions for the integers. These definitions guide our con-
struction of the quotient field for an arbitrary integral domain D.

Our first step in this construction is the following definition.

Definition 5.21 m A Relation on Ordered Pairs

Let D be an integral domain and let S be the set of all ordered pairs (a, b) of elements of D
with b # O:

S ={(a,b)|a,b € D and b # 0}.
The relation ~ is defined on S by
(a,b) ~ (c,d) ifandonlyif ad = bc.

The relation ~ is an obvious imitation of the equality of rational numbers, and we can
show that it is indeed an equivalence relation on S.

Lemmab522 = The Equivalence Relation ~

The relation ~ in Definition 5.21 is an equivalence relation on S.

Proof We shall show that ~ is reflexive, symmetric, and transitive. Let (a, b), (c, d), and
(f, g) be arbitrary elements of S.

Reflexive 1. (a, b) ~ (a, b), since the commutative multiplication in D implies that ab = ba.

Symmetric 2. (a,b) ~ (¢, d) = ad = bc by definition of ~
=da =cb or cb=da sincemultiplication is commutative in D
= (c,d) ~ (a, b) by definition of ~.

Transitive 3. Assume that (a, b) ~ (¢, d) and (¢, d) ~ (f, g).

(a,b) ~ (¢,d) = ad = bc = adg = bcg

(c,d) ~ (f,8) :>Cg=df:>bcg=bdf} = adg = bdf
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Using the commutative property of multiplication in D once again, we have'
dag = dbf
where d # 0, and therefore
ag = bf

by Theorem 5.16. According to Definition 5.21, this implies that (a, b) ~ (f, g).
Thus ~ is an equivalence relation on S.

The next definition reveals the basic plan for our construction of the quotient field of D.

Definition 5.23 m The Set of Quotients

Lemma 5.24

Let D, S, and ~ be the same as in Definition 5.21 and Lemma 5.22. For each (a, b) in S, let
[a, b] denote the equivalence class in S that contains (a, b), and let Q denote the set of all
equivalence classes [a, b]:

0 = {la, b] |(a, b) € S}.
The set Q is called the set of quotients for D.

We shall at times need the fact that for any x # 0 in D and any [a, b]in Q,
[a, b] = [ax, bx].

This follows at once from the equality a(bx) = b(ax) in the integral domain D.

= Addition and Multiplication in Q

The following rules define binary operations on Q. Addition in Q is defined by
[a, b] + [c,d] = [ad + bc, bd],
and multiplication in Q is defined by
[a, b] - [c, d] = [ac, bd].
Proof We shall verify that the rule stated for addition defines a binary operation on Q. For
arbitrary [a, b]and [c, d]in O, we have b # 0 and d # 0in D. Since D is an integral domain,
b # 0and d # 0 imply bd # 0, so[a, b] + [c, d] = [ad + bc, bd]is an element of Q.

To show that the sum of two elements is unique (or well-defined), suppose that
[a, b] = [x, y]and [c, d] = [z, w]in Q. We need to show [a, b] + [c, d] = [x, y] + [z, w]. Now

[a, b] + [c,d] = [ad + bc, bd)
and

[x,y] + [z, w] = [xw + yz, yw].

It is tempting here to use ad = bc and cg = df to obtain (ad)(cg) = (bc)(df), but this would not imply that
ag = bf, because ¢ might be zero.
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To prove these elements equal, we need

(ad + bc)yw = bd(xw + yz)

or
adyw + bcyw = bdxw + bdyz.
We have
[a,b] = [x,y] = ay = bx
= (ay)(dw) = (bx)(dw)
= adyw = bdxw
and

[e,d] =[z,w] = cw =dz
= (ew)(by) = (dz)(by)
= bcyw = bdyz.
By adding corresponding sides of equations, we obtain

adyw + bcyw = bdxw + bdyz.

Thus [a, b] + [¢, d] = [x, y] + [z, w].
It can be similarly shown that multiplication as defined by the given rule is a binary
operation on Q.

It is important to note that the set of all ordered pairs of the form (0, x), where x # 0,
forms a complete equivalence class that can be written as [0, b] for any nonzero element b
of D. With these preliminaries out of the way, we can now state our theorem.

m The Quotient Field

Let D be an integral domain. The set Q as given in Definition 5.23 is a field, called the
quotient field of D with respect to the operations defined in Lemma 5.24.

Proof We first consider the postulates for addition. It is left as an exercise to prove that
addition is associative. The zero element of Q is the class [0, b], since

[x.y] +[0.0] =[x+ b+ y-0,y-b] = [xb, yb] =[x, ],
and similar steps show that
[0, b] + [x, y] = [x, y].

The equality [xb, yb] = [x, y] follows from the fact that b # 0, as was pointed out just after
Definition 5.23. Routine calculations show that [—a, b]is the additive inverse of [a, b]in Q
and that addition in Q is commutative. The verification of the associative property for mul-
tiplication is left as an exercise.
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We shall verify the left distributive property and leave the other as an exercise. Let
[x, ¥], [z, w], and [u, v] denote arbitrary elements of Q. We have

[y - (o w] + [wv]) = [x ) [zv + wu, wy]
= [xzv + xwu, ywv]

and

[, y) « [z w] + [, y] - [, v] =[xz, yw] + [xu, yv]
= [xyzv + xywu, y'wv]
= [y(xzv + xwu), y(ywv)].
Comparing the results of these two calculations, we see that the last one differs from the
first only in that both elements in the pair have been multiplied by y. Since [x, y] in O

requires y # 0, these results are equal.
Since multiplication in D is commutative, we have

[a, b] - [c, d] = [ac, bd]
= [ca, db]
= [c¢, d] - [a, b].
Thus Q is a commutative ring.
Let b # 0in D, and consider the element [, b]in Q. For any [x, y]in Q we have
[x, y] + [b, b] = [xb, yb]
=[x )
so[b, b]is aright identity for multiplication. Since multiplication is commutative, [b, b]is a
nonzero unity for Q.
We have seen that the zero element of Q is the class [0, b]. Thus any nonzero element
has the form [c, dJ, with both ¢ and d nonzero. But then [d, c]is also in Q, and
[c,d] - [d, c] = [cd, dc]
= [d. d],

so [d, c] is the multiplicative inverse of [¢, d] in Q. This completes the proof that Q is
a field.

Note that in the proof of Theorem 5.25, the unity e in D did not appear explicitly
anywhere. In fact, the construction yields a field if we start with a commutative ring that
has no zero divisors instead of with an integral domain. However, we make use of the unity
of D in Theorem 5.27.

The concept of an isomorphism can be applied to rings as well as to groups. The def-
inition is a very natural extension of the concept of a group isomorphism. Since there are
two binary operations involved in the definition of a ring, we simply require that both
operations be preserved.
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Definition 5.26 m Ring Isomorphism

Theorem 5.27

Let R and R’ denote two rings. A mapping ¢: R — R’ is a ring isomorphism from R to R’
provided the following conditions hold:

1. ¢ is a one-to-one correspondence from R to R'.
2. ¢(x +y) = dp(x) + ¢(y) forall x and y in R.
3. ¢p(x-y) = ¢p(x) - Pp(y) forall x and y in R.

If an isomorphism from R to R’ exists, we say that R is isomorphic to R'.

Of course, the term ring isomorphism may be applied to systems that are more than a
ring; that is, there may be a ring isomorphism that involves integral domains or fields. The
relation of being isomorphic is reflexive, symmetric, and transitive on rings, just as it was
with groups.

The field of quotients Q of an integral domain D has a significant feature that has not
yet been brought to light. In the sense of isomorphism, it contains the integral domain D.
More precisely, Q contains a subring D' that is isomorphic to D.

m Subring of @ lsomorphic to D

Let D and Q be as given in Definition 5.23, and let e denote the unity of D. The set D’
that consists of all elements of Q that have the form [x, ¢] is a subring of Q, and D is
isomorphic to D'.

Proof Referring to Definition 5.1a, we see that conditions 2, 5, 7, and 8 are automatically
satisfied in D’, and we need only check conditions 1, 3, 4, and 6.
For arbitrary [x, e] and [y, ] in D', we have

[x,e] + [y,e]=[x-e+y-ee-e]
=[x+ yel,

and D' is closed under addition. The element [0, e]is in D', so D' contains the zero element of
Q. For [x, e]in D', the additive inverse is[—x, ¢], an element of D'. Finally, the calculation

[x, e] - [y, e] =[xy, €]

shows that D' is closed under multiplication. Thus D’ is a subring of Q.
To prove that D is isomorphic to D', we use the natural mapping ¢: D — D’ defined by

b(x) =[x, e].
The mapping ¢ is obviously a one-to-one correspondence. Since
dx +y) =[x+ y, €]

=[x, e] + [y, €]
= ¢(x) + d(y)
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and

dx - y) =[xy, €]
=[x, el [y €]
= ¢d(x) * d(y),

¢ is a ring isomorphism from D to D'

Thus the quotient field Q contains D in the sense of isomorphism. We say that D is
embedded in Q or that Q is an extension of D. More generally, if S is a ring that contains
a subring R’ that is isomorphic to a given ring R, we say that R is embedded in S or that S
is an extension of R.

There is one more observation about Q that should be made. For any nonzero [b, e]in
D, the multiplicative inverse of [b, e]in Q is [b, e] ! = [e, b], and every element of Q can be
written in the form

[a,b] = [a, e] - [e,b] = [a, e] - [b,e] "

If the isomorphism ¢ in the proof of Theorem 5.27 is used to identify x in D with [x, e] in
D, then every element of Q can be identified as a quotient ab™ ! of elements a and b of D,
with b # 0.

From this, it follows that any field F that contains the integral domain D must also con-
tain Q because F must contain 5~ ! for each b # 0 in D and must also contain the product
ab™ ! for all @ € D. Thus Q is the smallest field that “contains” D.

If the construction presented in this section is carried out beginning with D = Z, the
field Q of rational numbers is obtained, with the elements written as [a, b] instead of a/b.
The isomorphism ¢ in the proof of Theorem 5.27 maps an integer x onto [x, 1], which is
playing the role of x/1 in the notation, and we end up with the integers embedded in the
rational numbers. The construction of the rational numbers from the integers is in this way
a special case of the procedure described here.

Exercises 5.3 I——

True or False

Label each of the following statements as either true or false.

1. The field Q of rational numbers is an extension of the integral domain Z of integers.

2. The field R of real numbers is an extension of the integral domain Z of integers.
3. The field of quotients Q of an integral domain D contains D.
4. The field of quotients Q of an integral domain D contains a subring D' = {[x, e]|x € D,

and e is the unity in D}.
5. A field of quotients can be constructed from an arbitrary integral domain.
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Exercises

AU S o

10.

11.

12.
13.
14.

15.

16.

Prove that the multiplication defined in Lemma 5.24 is a binary operation on Q.
Prove that addition is associative in Q.

Show that [—a, b]is the additive inverse of [a, b]in Q.

Prove that addition is commutative in Q.

Prove that multiplication is associative in Q.

Prove the right distributive property in Q:
(e y) + [z w]) = [u. v] =[x, y] = [, v] + [z, w] - [u, v).

Prove that on a given set of rings, the relation of being isomorphic has the reflexive,
symmetric, and transitive properties.

Assume that the ring R is isomorphic to the ring R'. Prove that if R is commutative,
then R’ is commutative.

Let W be the ring in Exercise 7 of Section 5.2, and let R be the ring in Exercise 10 of
the same section. Given that W and R are isomorphic rings, define an isomorphism
from W to R and prove that your mapping is an isomorphism.

Assume that the set R in Exercise 11 of Section 5.2 is a field, and let C be the field of
all complex numbers a + bi, where a and b are real numbers and i> = — 1. Given that
R and C are isomorphic fields, define an isomorphism from C to R and prove that your
mapping is an isomorphism.

Since this section presents a method for constructing a field of quotients for an arbi-

trary integral domain D, we might ask what happens if D is already a field. As an

example, consider the situation when D = Zj.

a. With D = Z3,write out all the elements of S, sort these elements according to the
relation ~, and then list all the distinct elements of Q.

b. Exhibit an isomorphism from D to Q.
Work Exercise 11 with D = Zs.
Prove that if D is a field to begin with, then the field of quotients Q is isomorphic to D.

Just after the end of the proof of Theorem 5.25, we noted that the construction in the
proof yields a field if we start with a commutative ring that has no zero divisors. As-
sume this is true, and let F' denote the field of quotients of the ring E of all even inte-
gers. Prove that F' is isomorphic to the field of rational numbers.

Let D be the set of all complex numbers of the form m + ni, where m € Z and n € Z.
Carry out the construction of the quotient field Q for this integral domain, and show
that this quotient field is isomorphic to the set of all complex numbers of the form
a + bi, where a and b are rational numbers.

Let D be the set of all real numbers of the form m + n\/Z, where m, n € Z. Carry out
the construction of the quotient field Q for this integral domain, and show that this
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b.4

quotient field is isomorphic to the set of real numbers of the form a + b\/2 where a
and b are rational numbers.

17. Prove that any field that contains an integral domain D must contain a subfield iso-
morphic to the quotient field Q of D.

18. Assume R is a ring, and let S be the set of all ordered pairs (m, x) where m € Z and
x € R. Equality in S is defined by

(m,x) = (n,y) ifandonlyif m =nandx = y.
Addition and multiplication in S are defined by
(m,x) + (n,y)=(m+n,x+y)
and
(m, x) - (n,y) = (mn,my + nx + xy),
where my and nx are multiples of y and x in the ring R.

a. Prove that S is a ring with unity.

b. Prove that ¢: R — S defined by ¢(x) = (0, x) is an isomorphism from R to a sub-
ring R’ of S. This result shows that any ring can be embedded in a ring that has a
unity.

19. Let T be the smallest subring of the field Q of rational numbers that contains 3. Find a
description for a typical element of T.

Ordered Integral Domains

In Section 2.1 we assumed that the set Z of all integers satisfied a list of five postulates. The
last two of these postulates led to the introduction of the order relation “greater than” in Z,
and to the proof of the Well-Ordering Theorem (Theorem 2.7). In this section, we follow a
development along similar lines in a more general setting.

Ordered Integral Domain

An integral domain D is an ordered integral domain if D contains a subset D* that has the
following properties:

1. D" is closed under addition.
2. D% is closed under multiplication.
3. For each x € D, one and only one of the following statements is true:

x€D' x=0, —x€D"

Such a subset D7 is called a set of positive elements for D.
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Analogous to the situation in Z, condition 3 in Definition 5.28 is referred to as the law
of trichotomy, and an element x € D such that —x € D™ is called a negative element of D.

Example 1 The integral domain Z is, of course, an example of an ordered integral
domain. With their usual sets of positive elements, the set of all rational numbers and the
set of all real numbers furnish two other examples of ordered integral domains. |

Later, we shall see that not all integral domains are ordered integral domains.

Following the same sort of procedure that we followed with the integers, we can use
the set of positive elements in an ordered integral domain D to define the order relation
“greater than” in D.

Definition 529 m Greater Than

Theorem 5.30

Let D be an ordered integral domain with D™ as the set of positive elements. The relation
greater than, denoted by >, is defined on elements x and y of D by

x>y ifandonlyif x—y €& D"

The symbol > is read “greater than.” Similarly, < is read “is less than.” We define
x < yif and only if y > x. As direct consequences of the definition, we have

x>0 ifandonlyif x & D*
and
x <0 ifandonlyif —x¢& D7
The three properties of D™ in Definition 5.28 translate at once into the following properties
of > in D.
1. Ifx>0andy > 0, thenx + y > 0.
2. Ifx>0andy > 0, then xy > 0.
3. For each x € D, one and only one of the following statements is true:
x>0, x=0, x<O.

The other basic properties of > are stated in the next theorem. We prove the first two
and leave the proofs of the others as exercises.

m Properties of >

Suppose that D is an ordered integral domain. The relation > has the following properties,
where x, y, and z are arbitrary elements of D.

Ifx>y thenx +z>y + z
Ifx > yand z > 0, then xz > yz.
Ifx>yandy > z, thenx > z

g0 7o

One and only one of the following statements is true:

x>y, x=y, x<y.
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Theorem 5.31

Proofofa Ifx >y, thenx — y € D, by Definition 5.29. Since
xt+tz-(G+ta=x+tz-y—z
= x — y’
this means that (x + z) — (y + z) € D*, and therefore x + z >y + z.
Proof of b Suppose x >y and z > 0. Then x — y € D" and z € D". Condition 2 of

Definition 5.28 requires that D be closed under multiplication, so the product (x — y)z
must be in D*. Since (x — y)z = xz — yz, we have xz — yz € D", and therefore xz > yz.

Our main goal in this section is to characterize the integers as an ordered integral domain
that has a certain type of set of positive elements. As a first step in this direction, we prove the
following simple theorem, which may be compared to Theorem 2.5.

m Square of a Nonzero Element

Corollary 5.32

For any x # 0 in an ordered integral domain D, 2 ept

Proof Suppose x # 0 in D. By condition 3 of Definition 5.28, either x € D* or
—xE€D". If x E D", then x> = x - xis in D" since D" is closed under multiplication. If
—x € D", then x> = x - x = (—x)(—x) is in D™, again by closure of D" under multipli-
cation. In either case, we have x> € D,

m The Unity Element

In any ordered integral domain, e € D™,

Proof This follows from the fact that e = 2.

The preceding theorem and its corollary can be used to show that the set C of all com-
plex numbers does not form an ordered integral domain. Suppose, to the contrary, that C does
contain a set C™" of positive elements. By Corollary 5.32, 1 € C™, and therefore —1 & C* by
the law of trichotomy. Theorem 5.31 requires, however, that i2 = —1 bein C*, and we have
a contradiction. Therefore, C does not contain a set of positive elements. In other words, it is
impossible to impose an order relation on the set of complex numbers.

In the next definition, we use the symbol = with its usual meaning. Similarly, we later
use the symbol = with its usual meaning and without formal definition.

Definition 5.33 m Well-Ordered Subset

A nonempty subset S of an ordered integral domain D is well-ordered if for every non-
empty subset 7 of S, there is an element m € T such that m = x for all x € T. Such an ele-
ment m is called a least element of 7.
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Thus S # J in D is well-ordered if every nonempty subset of S contains a least ele-
ment. We proved in Theorem 2.7 that the set of all positive integers is well-ordered.
The next step toward our characterization of the integers is the following theorem.

m Well-Ordered D*

p=9

If D is an ordered integral domain in which the set D" of positive elements is well-ordered,
then

a. e is the least element of D1, and

b. D" = {neln € Z"}.

Proof We have e € D* by Corollary 5.32. To prove that e is the least element of D™, let
T be the set of all x € D" such that e > x > 0, and assume that T is nonempty. Since D™
is well-ordered, T has a least element m, and

e>m>0.
Using Theorem 5.30b and multiplying by m, we have
me+e>m*>m-0.
That is,
m>m* >0,

and this contradicts the choice of m as the least element of 7. Therefore, T is empty and e
is the least element of D™

Now let S be the set of all n € Z" such that ne € D*. We have 1 € S since
le = e € D". Assume that k € S. Then ke € D*, and this implies that

(k+ e =ke + e

isin S, since D" is closed under addition. Thus k € S implies k + 1 € S, and S = Z* by
the induction postulate for the positive integers. This proves that

D" 2 {neln € Z}.

In order to prove that D™ < {ne|n € Z™}, let L be the set of all elements of D™ that are
not of the form ne with ne € Z*, and suppose that L is nonempty. Since D" is well-
ordered, L has a least element €. It must be true that

> e,
since e is the least element of D™, and therefore ¢ — e > 0. Now

e>0 = e+ (—e) >0+ (—e) by Theorem 5.30a
= 0> —e
=>{>0—¢ by Theorem 5.30a.

We thus have € > € — e > 0. By choice of ¢ as least element of L, { — ¢ & L, so

€ —e=pe forsomep € Z".
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This implies that
{=pe+e
=(p+ l)e, wherep+1€7Z",

and we have a contradiction to the fact that € is an element that cannot be written in the
form ne with n € Z*. Therefore, L = J, and

D" = {ne|ln € Z"}.

We can now give the characterization of the integers toward which we have been
working.

Theorem 5.35 m Isomorphic Images of Z
If D is an ordered integral domain in which the set D" of positive elements is well-ordered,
then D is isomorphic to the ring Z of all integers.
(pAng)=r Proof We first show that

D = {ne|n € Z}.

For an arbitrary x € D, the law of trichotomy requires that exactly one of the following
holds:

x€D' x=0, —x€D"
If x € DY, then x = ne for some n € Z*, by Theorem 5.34b. If x = 0, then x = Oe. Finally,
if —x& D", then —x = me for m € Z%, and therefore,” x = —(me) = (—m)e, where

—m € Z. Hence D = {ne|n € Z}.
Consider now the rule defined by

¢(ne) = n,

for any ne in D. To demonstrate that this rule is well-defined, it is sufficient to show that
each element of D can be written as ne in only one way. To do this, suppose me = ne. With-
out loss of generality, we may assume that m = n. Now

me =ne = me —ne =10
= (m —n)e=0.

Ifm — n > 0,then (m — n)e € D* by Theorem 5.34b. Therefore, it must be thatm — n = 0
and m = n. This shows that the rule ¢(ne) = n defines a mapping ¢ from D to Z.

If ¢p(me) = ¢p(ne), then m = n, so me = ne. Hence ¢ is one-to-one. An arbitrary
n € Z is the image of ne € D under ¢, so ¢ is an onto mapping.

To show that ¢ is a ring isomorphism, we need to verify that

d(me + ne) = ¢Pp(me) + P(ne)

"The equality —(me) = (—m)e is the additive form of the familiar property of exponents (™)' = a " ina
group.
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and also that
d(me * ne) = dp(me) + Pp(ne).

From the laws of multiples in Section 3.3, we know that me + ne = (m + n)e, and it fol-
lows that

d(me + ne) = ¢((m + n)e)

m+n
d(me) + ¢p(ne).

To show that ¢ preserves multiplication, we need the fact that me + ne = (mn)e. This fact is
a consequence of the generalized distributive laws stated in Theorem 5.13 and other results
from Section 5.1. We leave the details of this proof as Exercise 9 at the end of this section.
Using me - ne = (mn)e, we have

P(me - ne) = Pl(mn)e]
= mn

¢(me) - p(ne).

Exercises 5.4 I——

True or False
Label each of the following statements as either true or false.
1. Every integral domain contains a set of positive elements.
It is impossible to impose an order relation on the set C of complex numbers.
In any ordered integral domain, the unity element e is a positive element.

The set R of real numbers is an ordered integral domain.

A S

The set of all integers is well-ordered.

Exercises
1. Complete the proof of Theorem 5.30 by proving the following statements, where x, y,
and z are arbitrary elements of an ordered integral domain D.
a. If x> yandy > z,thenx > z
b. One and only one of the following statements is true:
x>y, x=y, x<)y.
2. Prove the following statements for arbitrary elements x, y, z of an ordered integral
domain D.
a. Ifx > yand z < 0, then xz < yz.
b. Ifx > yandz > w,thenx + z >y + w.
c. If x >y > 0, then x> > y%
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Sec. 7.3, #28 <

10.

11.

d. If x # 0in D, then x** > 0 for every positive integer 7.
e. If x > 0and xy > 0, theny > 0.
f. If x > 0and xy > xz,theny > z.

. Prove the following statements for arbitrary elements in an ordered integral domain.

a. a > bimplies —b > —a.
b. a > e implies a> > a.

c. If a > b and ¢ > d, where a, b, c, and d are all positive elements, then ac > bd.

. Suppose a and b have multiplicative inverses in an ordered integral domain. Prove

each of the following statements.
a. Ifa>b>0,thenb ' >a ' >0.
b. Ifa <0, thena ' < 0.

. Prove that the equation x* + e = 0 has no solution in an ordered integral domain.

. Prove that if @ is any element of an ordered integral domain D, then there exists an

element b € D such that b > a. (Thus D has no greatest element, and no finite integral
domain can be an ordered integral domain.)

. For an element x of an ordered integral domain D, the absolute value |x| is defined by

x| x ifx=0
x =
—x if0 > x.

a. Prove that |—x| = |x| forall x € D.

b. Prove that — |x| = x =< x| for all x € D.

c. Prove that |xy| = |x| - |y| forall x, y € D.

d. Prove that |x + y| = |x| + |y| forallx,y € D.
e. Prove that ||x| — |y|| = |[x—y| forallx,y € D.

If x and y are elements of an ordered integral domain D, prove the following inequalities.
a. x> —2xy+y>°=0

b. x> + y* = xy

c. XX+ y2 = —Xy

. If e denotes the unity element in an integral domain D, prove that me - ne = (mn)e for

allm,n € Z.

An ordered field is an ordered integral domain that is also a field. In the quotient field
Q of an ordered integral domain D, define Q" by

0" ={[a, b]|ab € D"}.
Prove that Q™ is a set of positive elements for Q and hence, that Q is an ordered field.

(See Exercise 10.) According to Definition 5.29, > is defined in Q by [a, b] > [¢, d]if
and only if [a, b] —[c, d]€ QF. Show that [a, b]>[c, d] if and only if
abd® — cdb* € D*.
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(See Exercises 10 and 11.) If each x € D is identified with [x, ¢] in Q, prove that
D' < Q7. (This means that the order relation defined in Exercise 10 coincides in D
with the original order relation in D. We say that the ordering in Q is an extension of
the ordering in D.)

Prove that if x and y are rational numbers such that x > y, then there exists a rational
number z such that x > z > y. (This means that between any two distinct rational
numbers there is another rational number.)

a. If D is an ordered integral domain, prove that each element in the quotient field Q
of D can be written in the form [a, b] with b > 0 in D.
b. If [a, b] € Q with b > 0 in D, prove that[a, b] € Q" if and only if @ > 0 in D.

(See Exercise 14.) If [a, b] and [c, d] € Q with b > 0 and d > 0 in D, prove that
[a, b] > [c, d]if and only if ad > bc in D.

If x and y are positive rational numbers, prove that there exists a positive integer n such
that nx > y. This property is called the Archimedean Property of the rational num-
bers. (Hint: Write x = a/b and y = ¢/d with each of a, b, ¢, d € 7")

Key Words and Phrases [
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embedded, 282 law of trichotomy, 285 ring with unity, 261
extension, 282, 291 least element, 286 set of positive elements, 284
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A Pioneer in Mathematics
Richard Dedekind (1831-1916)

Julius Wilhelm Richard Dedekind, born on October 6, 1831, in
Brunswick, Germany, has been called “the effective founder
of abstract algebra” by the mathematics historian Morris Kline.
Dedekind introduced the concepts of a ring and an ideal; in
fact, he coined the terms ring, ideal, and field. His Dedekind
cuts provided a technique for construction of the real numbers.
Far ahead of his time, he built a foundation for further
developments in ring and ideal theory by the famous algebraist
Emmy Noether (1882-1935).

At the age of 21, Dedekind earned his doctorate in
mathematics working under Carl Friedrich Gauss (1777-1855) at the University of
Gottingen. He taught at the university for a few years and presented the first formal
lectures on Galois theory to an audience of two students. For four years, beginning in 1858,
he was a professor in Zurich, Switzerland. Dedekind spent the next 50 years of his life in
Brunswick, teaching in a technical high school that he had once attended. He died on
February 12, 1916.

Public Domain Images



CHAPTER SIX

More on Rings

M Introduction

The basic theorems on quotient rings and ring homomorphisms are presented in this
chapter, along with a section on the characteristic of a ring and a section on maximal
ideals. The development of Z, culminates in Section 6.1 with the final description of Z, as
a quotient ring of the integers by the principal ideal (n).

6.1 | Ideals and Quotient Rings
In this chapter we develop some theory of rings that parallels the theory of groups pre-

sented in Chapters 3 and 4. We shall see that the concept of an ideal in a ring is analogous
to that of a normal subgroup in a group.

Definition 6.1am Definition of an Ideal

The subset / of aring R is an ideal of R if the following conditions hold:

1. [is a subring of R.
2. x € Iand r € R imply that xr and rx are in 1.

Note that the second condition in this definition requires more than closure of 7 under
multiplication. It requires that I “absorbs” multiplication by arbitrary elements of R, both
on the right and on the left.

In more advanced study of rings, the type of subring described in Definition 6.1a
is referred to as a “two-sided” ideal, and terms that are more specialized are introduced:
A right ideal of R is a subring S of R such that xr € S for all x € S, r € R, and a left
ideal of R is a subring S of R such that rx € Sforallx € S, r € R. Here we only mention
these terms in passing, and observe that these distinctions cannot be made in a commu-
tative ring.

The subrings I = {0} and I = R are always ideals of a ring R. These ideals are labeled
trivial.

If R is aring with unity e and / is an ideal of R that contains e, then it can be shown that
it must be true that / = R (see Exercise 11).

293
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Example 1 In Section 5.1, we saw that the set E of all even integers is a subring of the
ring Z of all integers. To show that condition 2 of Definition 6.1a holds, let x € E and
m € Z. Since x € E, x = 2k for some integer k. We have

xm = mx = m(2k) = 2(mk),

so xm = mx is in E. Thus E is an ideal of Z.

It is worth noting that E is also a subring of the ring Q of all rational numbers, but E
is not an ideal of Q. Condition 2 fails with x = 4 € E and r = § € Q, but xr = 5 is not
in E. |

In combination with Theorem 5.3, Definition 6.1a provides the following checklist of
conditions that must be satisfied in order that a subset / of a ring R be an ideal:
1. [7is nonempty.
2. xE€landy € [ imply that x + y and xy are in I.
3. x € limplies —x € L.
4. x € I and r € R imply that xr and rx are in 1.

The multiplicative closure in the second condition is implied by the fourth condition, so it
may be deleted to obtain an alternative form of the definition of an ideal.

Definition 6.1bm Alternative Definition of an ldeal

A subset / of aring R is an ideal of R provided the following conditions are satisfied:

1 is nonempty.
x€landyElimplyx + yE L
x € Iimplies —x € L.

R Dd =

x € I and r € R imply that x» and rx are in 1.

A more efficient checklist is given in Exercise 1 at the end of this section.
Example 2 Tn Exercise 39d of Section 5.1, we saw that the set

s={06 7]

forms a noncommutative ring with respect to the operations of matrix addition and multi-
plication. In this ring S, consider the subset

-{lo o)ee)

which is clearly nonempty. Since

HE R

a,b,cEZ}
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I is closed under addition. And since
_ 0O b| |0 —b
0 O 0 0/

I contains the additive inverse of each of its elements. For arbitrary [)(; y} in S, we
have <

0O bil|lx vy 0 bz x y|lO0 b 0 xb

= and = ,

0 0|0 z 0 0 0 z][O0O O 0 O

and both of these products are in /. Thus / is an ideal of S. |

Example 3 Example 8 of Section 5.1 introduced the ring M = M,(R) of all 2 X 2
matrices over the real numbers R, and Exercise 41 of Section 5.1 introduced the subring 7’

of M, given by
r=1l% ¢
b b

. a a Xy
For arbitrary b b erT, € M, the product
z w

by y__a a __xa-i—yb xa + yb
z w]|lb b | za + wb za + wb

a, b e R}.

isin 7, so T absorbs multiplication on the left by elements of M. However, the product

a allx y __ax+az ay + aw
b bllz w | bx + bz by + bw

is not always in T, and T does not absorb multiplication on the right by elements of M. This
failure keeps T from being an ideal” of M. |

Example 1 may be generalized to the set of all multiples of any fixed integer n. That is,
the set {nk|k € Z} of all multiples of n is an ideal of Z. Instead of proving this fact, we es-
tablish the following more general result.

Example 4 Let R be a commutative ring with unity e. For any fixed a € R, we shall
show that the set

(a) = {ar|r € R}

is an ideal of R.

T could be said to be a left ideal of M.
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This set is nonempty, since a = ae is in (a). Let x = ar and y = as be arbitrary ele-
ments of (a), where r € R, s € R. Then

x+ty=ar+as=a(r+s),
where r + s € R, so (a) is closed under addition. We also have
—x = —(ar) = a(~1),
where —r € R, so (a) contains additive inverses. For arbitrary r € R,
tx = xt = (ar)t = a(r?),
where rt € R. Thus tx = xt is in (a) for arbitrary x € (a), t € R, and (a) is an ideal

of R. |

This example leads to the following definition.

Definition 6.2 m Principal Ideal
If a is a fixed element of the commutative ring R with unity, the ideal
(a) = {ar|r € R},
which consists of all multiples of a by elements r of R, is called the principal ideal gener-
ated by a in R.
The next theorem gives an indication of the importance of principal ideals.
Theorem6.3 m IdealsinZ
In the ring Z of integers, every ideal is a principal ideal.
p=¢q Proof The trivial ideal {0} is certainly a principal ideal, {0} = (0). Consider then an

ideal I of Z such that I # {0}. Since I # {0}, I contains an integer m # 0. And since /
contains both m and —m, it must contain some positive integers. Let n be the least positive
integer in 1. (Such an n exists, by the Well-Ordering Theorem.) For an arbitrary k € I, the
Division Algorithm asserts that there are integers g and r such that

k=ng+r with 0=r<n.
Solving for r, we have
r=k— ng,

and this equation shows that r € I, since k and n are in [ and [ is an ideal. That is, r is an
element of 7 such that 0 = r < n, where n is the least positive element of I. This forces the
equality r = 0, and therefore, k = nq. It follows that every element of 7 is a multiple of 7,
and therefore I = (n).
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Part of the analogy between ideals of a ring and normal subgroups of a group lies in
the fact that ideals form the basis for a quotient structure much like the quotient group
formed from the cosets of a normal subgroup.

To begin with, a ring R is an abelian group under addition, and any ideal / of R is a nor-
mal subgroup of this additive group. Thus we may consider the additive quotient group R/l
that consists of all the cosets

r+l=1+r={r+x|x€Il}
of I in R. From our work in Chapter 4, we know that
a+I=b+1 ifandonlyif a—Db €I
that
(a+D)+B+1)=(a+b)+1,

and that R/I is an abelian group with respect to this operation of addition.

Strategy =

If the defining rule for a possible binary operation is stated in terms of a certain type of
representation for the elements, then the rule does not define a binary operation unless
the result is independent of the representation for the elements—that is, unless the rule is
well-defined.

In order to make a ring from the cosets in R/I, we consider a multiplication defined by
(a+ DB +1)=ab + I
We must show that this multiplication is well-defined. That is, we need to show that if

a+I=d +1 and b+1=0b +1,

then
ab+1=4db + L
Now
atl=d+1=a=d+x wherex €]l
b+I=b+1= b=>b +y wherey € L
Thus

ab = (a +x)(b' +y) =d'b" +ady + xb' + xy.
Since x € I, y € I, and I is an ideal, each of @'y, xb’, and xy is in I. Therefore, their sum
z=dy+xb +xy
isin/, and z + I = I. This gives
ab+1=ab +z+1=adb +1

and our product is well-defined.
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Theorem 6.4

m The Ring of Cosets

Definition 6.5

Let I be an ideal of the ring R. Then the set R/I of additive cosets r + I of I in R forms a
ring with respect to coset addition

(a@a+Dh+bB+DH=(@+b)+1
and coset multiplication
(a+Db+1)=ab+ L
Proof Assume /is an ideal of R. We noted earlier that the additive quotient group R/I is

an abelian group with respect to addition.
We have already proved that the product

(a+Db+1)=ab+1

is well-defined in R/I, and closure under multiplication is automatic from the definition of
this product. That the product is associative follows from

(a+ D[+ D+ D]=(a+ Dc+1I

albe) + 1

(ab)c + I since multiplication is associative in R
= (ab + D(c+ 1)

=[(a + D + D)c + D.

Verifying the left distributive law, we have

(@a+ DB+ + (c+ D]

(a+ D[ +c)+1]

=ab+c)+1

= (ab + ac) + I from the left distributive law in R
=(ab+ 1)+ (ac + 1)

=@+ Db+I1)+ (a+ Dic+I.

The proof of the right distributive law is similar. Leaving that as an exercise, we conclude
that R/I is a ring.

® Quotient Ring

If 7 is an ideal of the ring R, the ring R/I described in Theorem 6.4 is called the quotient
ring of R by L'

R/I is also known as “the ring of residue classes modulo the ideal 1.”
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Example B In the ring Z of integers, consider the principal ideal
(4) = {4k|k € Z}.

The distinct elements of the ring Z/(4) are

4)=1{.., —8,-4,0,438, ...}
1+@=4{..,-7-3,1,509,...}
2+ @) =1{..,-6-2,2610,...}
3+ @=4{..,-5-1,3711,...}

We see, then, that these cosets are the same as the elements of Zy:
4) =[0], 1+ 4) =1[1], 2+ (4) =12], 3+ (4) =[3].

Moreover, the addition

{a+t @D} +{db+@}={a+b} + @&
agrees exactly with

la] + [b] = [a + b]
in Z4, and the multiplication
{a+ @DHb + D} =ab + 4)

agrees exactly with

[a][b] = [ab]

299

in Z4. Thus Z/(4) is our old friend Z4. Put another way, Zy is the quotient ring of the inte-

gers Z by the ideal (4).

The specific case in Example 5 generalizes at once to an arbitrary integer n > 1, and
we see that Z, is the quotient ring of Z by the ideal (n). This is our final and best descrip-

tion of Z,,.
As a final remark to this section, we note that

@+ Db +1)=ab+ 1
#{xylxEa+Ilandy € b + I}.

As a particular instance, consider / = (4) as in Example 5. We have
O+nDO+DH=0+1=1
However,
{y|x€0+Tandy €0 + I} = {l6r|r € Z},

since x = 4p and y = 4q for p, ¢ € Z imply xy = 16pq.
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BN Exercises 6.1 IE—

True or False

Label each of the following statements as either true or false.

1.

® N AW

Every ideal of a ring R is a subring of R.

Every subring of a ring R is an ideal of R.

The only ideal of a ring R that contains the unity e is the ring R itself.
Any ideal of a ring R is a normal subgroup of the additive group R.

The only ideals of the set of real numbers R are the trivial ideals.

Every ideal of Z is a principal ideal.

For n > 1, the quotient ring of Z by the ideal (n) is Z,.

If I is an ideal of S where S is a subring of a ring R, then [ is an ideal of R.

Exercises

1.

Let I be a subset of the ring R. Prove that / is an ideal of R if and only if 7 is nonempty
andx — y,xr,and rxarein [ forallxandy € I, r € R.

a. Complete the proof of Theorem 6.4 by proving the right distributive law in R/L.

b. Prove that R/l is commutative if R is commutative.

c. Prove that R/I has a unity if R has a unity.

. Prove or disprove each of the following statements.

a. The set Q of rational numbers is an ideal of the set R of real numbers.

b. The set Z of integers is an ideal of the set Q of rational numbers.
If I; and I are two ideals of the ring R, prove that I; M I, is an ideal of R.

If {I,}, A € &, is an arbitrary collection of ideals I, of the ring R, prove that (¢ I,
is an ideal of R.

Find two ideals /| and I, of the ring Z such that

a. I U I, is not an ideal of Z.

b. I; U I is an ideal of Z.

. Let7be an ideal of a ring R, and let S be a subring of R. Prove that / M S is an ideal of S.

. If I) and I, are two ideals of the ring R, prove that the set

L+L={x+ylx€EIl,y€EL}

is an ideal of R that contains each of /; and I,.

. Let I, and I, be ideals of the ring R. Prove that the set

LI, ={ab, + ayb, + -+ +ab,|la,E1,b;ELL,n EL"}

is an ideal of R.
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Prove that if R is a field, then R has only the trivial ideals {0} and R.
Let I be an ideal in a ring R with unity e. Prove thatif e € I, then I = R.

Let I be an ideal in a ring R with unity. Prove that if 7 contains an element a that has a
multiplicative inverse, then I = R.

In the ring Z of integers, prove that every subring is an ideal.
Let a # 0 in the ring of integers Z. Find b € Z such that a # b but (@) = (b).
Let m and n be nonzero integers. Prove that (m) < (n) if and only if n divides m.

If a and b are nonzero integers and m is the least common multiple of a and b, prove
that (a) N (b) = (m).

Prove that every ideal of Z,, is a principal ideal. (Hint: See Corollary 3.23.)
Let [a] € Z,. Prove ([a]) = ([n — a]).

Find all distinct principal ideals of Z, for the given value of n.

an=7 b. n =11 c.n=12

d. n =18 e.n =20 f.n=24

If R is a commutative ring and « is a fixed element of R, prove that the set I, =
{x € R|ax = 0} is an ideal of R. (The set I, is called the annihilator of « in the ring R.)

S = {|:x y:| x,y,zEZ}
0 z

is a ring with respect to matrix addition and multiplication, show that

a b
I =
{9
Show that the set

a b
v {2 7

of all 2 X 2 matrices over the ring E of even integers is an ideal of the ring M»(Z).

Given that the set

a,bEZ}

is an ideal of S.

a, b, c,and d are in E}

With S as in Exercise 21, decide whether or not the set

o1 2]

is an ideal of S, and justify your answer.

=10 ol

is a ring with respect to matrix addition and multiplication.

a,bEZ}

a. Show that the set

x,yEZ}
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Sec. 6.2, #7 <

Sec. 5.1, #1f >

Sec. 6.4, #2-4 <
Sec. 6.4, #16, 17 <
Sec. 6.4, #19,20 <

Sec. 5.1, #46 >

Sec. 6.2, #18b <

25.

26.

27.

28.

29.

30.

31.

32.

b. Is R commutative?
¢. Does R have a unity?

d. Decide whether or not the set

o-{[2 7]

is an ideal of R, and justify your answer.

aEZ}

Let G be the set of Gaussian integers {m + ni|m,n € Z}. Let
I={a+bila€ZbeEE}L

a. Prove or disprove that / is a subring of G.

b. Prove or disprove that / is an ideal of G.

a. For a fixed element a of a commutative ring R, prove that the set I = {ar|r € R} is
an ideal of R. (Hint: Compare this with Example 4, and note that the element a itself
may not be in this set 1.)

b. Give an example of a commutative ring R and an element a € R such that
a & (a) = {ar|r ER}.

Let R be a commutative ring that does not have a unity. For a fixed a € R, prove that
the set

(@) = {na + raln € Z,r € R}

is an ideal of R that contains the element a. (This ideal is called the principal ideal of
R that is generated by a.)

a. Let / be an ideal of the commutative ring R and a € R. Prove that the set
S={ar+slreRrR sEI}
is an ideal of R containing /.
b. If e € Rand a & I, show that / C S.

An element a of a ring R is called nilpotent if " = 0 for some positive integer n. Show
that the set of all nilpotent elements in a commutative ring R forms an ideal of R. (This
ideal is called the radical of R.)

If I is an ideal of R, prove that the set
K, ={x €R|xa=0foralla €I}
is an ideal of R. (The set Kj is called the annihilator of the ideal I.)

Let R be a commutative ring with unity whose only ideals are {0} and R itself. Prove
that R is a field. (Hint: See Exercise 26.)

Suppose that R is a commutative ring with unity and that 7 is an ideal of R. Prove that
the set of all x € R such that x" € I for some positive integer n is an ideal of R.
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Ring Homomorphisms

We turn our attention now to ring homomorphisms and their relations to ideals and quo-
tient rings.

Ring Homomorphism

Definition 6.7

If R and R’ are rings, a ring homomorphism from R to R’ is a mapping 6: R — R’ such that

6(x +y) = 60(x) + 6(y) and 6(xy) = 6(x)6(y)
for all x and y in R.

That is, a ring homomorphism is a mapping from one ring to another that preserves
both ring operations. This situation is analogous to the one where a homomorphism
from one group to another preserves the group operation, and it explains the use of the
term homomorphism in both situations. It is sometimes desirable to use either the term
group homomorphism or the term ring homomorphism for clarity, but in many cases, the
context makes the meaning clear for the single word homomorphism. If only groups are
under consideration, then homomorphism means group homomorphism, and if rings
are under consideration, homomorphism means ring homomorphism.

Some terminology for a special type of homomorphism is given in the following def-
inition.

Ring Epimorphism, Isomorphism

Let 6 be a homomorphism from the ring R to the ring R'.

1. If 0 is onto, then 6 is called an epimorphism and R’ is called a homomorphic image
of R.

2. If 6 is a one-to-one correspondence (both onto and one-to-one), then 6 is an
isomorphism.

Example 1 Consider the mapping 6: Z — Z, defined by
0(a) = [a].
Since
O(a + b) = [a + b] = [a] + [b] = 6(a) + 6(b)
and
0(ab) = [ab] = [a][b] = 0(@)0(b)

for all @ and b in Z, 6 is a homomorphism from Z to Z,. In fact, 6 is an epimorphism and
Z.,, is a homomorphic image of Z. |



304 Chapter 6 More on Rings

Example 2 Consider 6: Z¢ — Z¢ defined by
6([a]) = 4[a].
It follows from

6([a] + [b]) = 4([a] + [P])

=4
= 4{a] + 4[b]
= 6([a]) + 6([b])
that 6 preserves addition. For multiplication, we have
0(a][b]) = 6([ab]) = 4{ab] = [4ab]
and
0((a])o([b]) = (4[a])(4[b]) = 16[ab] = [16ab] = [4ab],

since [16] = [4] in Zg. Thus 6 is a homomorphism. It can be verified that 6(Z¢) =
{[0], [2], [4]}, and we see that 0 is neither onto nor one-to-one. [ |

Theorem 6.8 = Images of Zero and Additive Inverses

If 6 is a homomorphism from the ring R to the ring R’, then

a. 6(0) =0, and
b. 6(—r) = —6(r) forall r € R.

p=¢q Proof The statement in part a follows from
0(0) =6(0) +0
= 6(0) + 6(0) — 6(0)
=60 + 0) — 6(0)
= 6(0) — 6(0)
=0.
(phg)=r To prove part b, we observe that
0(r) + 6(=r) = 0[r + (—1)]
=60(0)
= 0.
Since the additive inverse is unique in the additive group of R,

—6(r) = 6(—).

Under a ring homomorphism, images of subrings are subrings, and inverse images of
subrings are also subrings. This is the content of the next theorem.
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m Images and Inverse Images of Subrings

AN =>r

(pANg)=r

Suppose 6 is a homomorphism from the ring R to the ring R'.
a. If Sis a subring of R, then 6(S) is a subring of R'.
b. If §'is a subring of R, then 6~ '(S") is a subring of R.

Proof To prove part a, suppose S is a subring of R. We shall verify that the conditions
of Theorem 5.3 are satisfied by 0(S). The element 8(0) = 0 is in 6(S), so 6(S) is nonempty.
Let x" and y' be arbitrary elements of 6(S). Then there exist elements x, y € S such that
0(x) = x" and O(y) = ¥'. Since S is a subring, x + y and xy are in S. Therefore,

6(x +y) = 0(x) + 6(y)
=x +y
and
0(xy) = 0()0(y) = x'y'
are in 6(S), and 6(S) is closed under addition and multiplication. Since —x is in S and
0(—x) = —0(x) = —x,

we have —x' € 6(S), and it follows that 6(S) is a subring of R'".

To prove part b, assume that " is a subring of R". We have 0 in ~!(5") since 6(0) = 0,
so 071(S") is nonempty. Let x € 67!(S") and y € 67(S"). This implies that 6(x) € S’ and
0(y) € S'. Hence 6(x) + 6(y) = 6(x + y) and 6(x)0(y) = O(xy) are in §', since S’ is a sub-
ring. Now

fx+y)ES =>x+yeEf(S)
and
() €S = xy € 07'(S).
We also have

0x) ES = —6(x) =0(-x) E S
= —x €07,

and #~!(S") is a subring of R by Theorem 5.3.

Definition 6.10 m Kernel

If 6 is a homomorphism from the ring R to the ring R’, the kernel of 0 is the set

ker 6 = {x € R|6(x) = 0}
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Example 3 1 Example 1, the epimorphism 6: Z — Z, is defined by 6(a) = [a]. Now
6(a) = [0]if and only if a is a multiple of n, so

ker6 ={...,—2n,—n,0,n2n,...}
for this 6.

In Example 2, the homomorphism 6: Z¢ — Z¢ defined by 6([a]) = 4[a] has kernel
given by

ker 0 = {[0], [3]}. n

In these two examples, ker 6 is an ideal of the domain of 6. This is true in general for
homomorphisms, according to the following theorem.

Theorem 6.11 = Kernel of a Ring Homomorphism

If 6 is any homomorphism from the ring R to the ring R’, then ker 6 is an ideal of R, and
ker & = {0} if and only if 0 is one-to-one.

p=¢q Proof Under the hypothesis, we know that ker @ is a subring of R from Theorem 6.9. For
any x € ker 6 and r € R, we have

0(xr) = 0(x)0(r)
=0-60(r) =0,

and similarly 6(rx) = 0. Thus xr and rx are in ker 6, and ker 0 is an ideal of R.

Uy Suppose 6 is one-to-one. Then x € ker 6 implies 8(x) = 0 = 6(0), and therefore

Uu=yv

x = 0. Hence ker 6 = {0} if 0 is one-to-one.
Conversely, if ker 8 = {0}, then

0(x) = 6(y) = 6(x) — 6(y) =0
= 60x—y)=0
=>x—y=0
= x=y.

This means that 6 is one-to-one if ker # = {0}, and the proof is complete.

Example 4  This example illustrates the last part of Theorem 6.11 and provides a nice
example of a ring isomorphism.

For the set U = {a, b}, the power set of U is P(U) = {J, A, B, U}, where A = {a}
and B = {b}. With addition defined by

X+Y=XUY)—-(XNY)
and multiplication by
X-Y=XNY,

%P(U) forms a ring, as we saw in Example 5 of Section 5.1. Addition and multiplication
tables for P(U) are given in Figure 6.1.
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S W o> O+
T % = Q|Q
R B (NI S
> N < W
Q > @ |
S % =8

Q Q Q Q|8
>R o Q>
D wm N Q|w
S % > N|Q

The ring R = Z, ® Z, was introduced in Exercises 47 and 48 of Section 5.1. If we
write 0 for [0] and 1 for [1]in Z,, the set R is given by R = {(0, 0), (1, 0), (0, 1), (1, 1)}.
Addition and multiplication tables for R are displayed in Figure 6.2.

+ 0,00 (1,Oo) (O, 1) (1,1 . 0,0) (1,0) (O, 1) (1,
0,00 | 0,00 (1,00 O, (1,1 0,00 | (0,00 (0,0) (0,0) (0,0)
(1,0) | (1,O) (0,0) (1,1) (0, 1) (1,00 | (0,00 (1,0) (0,0) (1,0)
o,1n{On 1,1 @O0 1,0 O, 1) | @0 (00 (@©1) (@O
1,1 (a1 (@©1) (1,0 (0,0 1,1 { 0,0 d€,0 ©O D 1,1

Consider the mapping 0: P(U) — R defined by
() = (0, 0), 0(A) = (1, 0), 0(B) = (0, 1), oU) = (1, 1).

If each element x in the tables for (U) is replaced by 6(x), the resulting tables agree com-
pletely with those in Figure 6.2. Thus 6 is an isomorphism. We note that the kernel of 6 con-
sists of the zero element in P(U). |

We know now that every kernel of a homomorphism from a ring R is an ideal of R. The
next theorem shows that every ideal of R is a kernel of a homomorphism from R. This
means that the ideals of R and the kernels of the homomorphisms from R to another ring
are the same subrings of R.

= Quotient Ring = Homomorphic Image

If 7 is an ideal of the ring R, the mapping 6: R — R/I defined by
0ry=r+1

is an epimorphism from R to R/I with kernel .
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p=¢q Proof Itis clear that the rule 6(r) = r + I defines an onto mapping 0 from R to R/I and
that ker 6 = I. Since
Ox+y)y=x+y +1
=x+Dh+ G+
=0(x) + 0(y)
and
O(xy) = xy + 1
=x+Dhy+1D
= 0(0)6(y),
6 is indeed an epimorphism from R to R/I.
The last theorem shows that every quotient ring of a ring R is a homomorphic image of
R. A result in the opposite direction is given in the next theorem.

Strategy ® In the proof of Theorem 6.13, it is shown that a certain rule defines a mapping ¢. When
the defining rule for a possible mapping is stated in terms of a certain type of representa-
tion for the elements, the rule does not define a mapping unless the result is independent
of the representation of the elements—that is, unless the rule is well-defined.

Theorem 6.13 = Homomorphic Image = Quotient Ring
If aring R’ is a homomorphic image of the ring R, then R’ is isomorphic to a quotient ring
of R.
p=4¢q Proof Suppose 0 is an epimorphism from R to R', and let K = ker 6. For each @ + K in

R/K, define ¢(a + K) by
d(a + K) = 0(a).

To prove that this rule defines a mapping, let a + K and b + K be arbitrary elements of
R/K. Then

atK=b+K&e a—beK
< 0a—b)=0
< 0(a) = 0(b)
< Pla + K) = ¢(b + K).
This shows that ¢ is well-defined and one-to-one as well. From the definition of ¢, it fol-

lows that ¢(R/K) = 6(R). But 8(R) = R, since 6 is an epimorphism. Thus ¢ is onto and,
consequently, is a one-to-one correspondence from R/K to R'.
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For arbitrary ¢ + Kand b + K in R/K,
#l(a+ K + b+ K] = d[a+ b +K]

= 6(a + D)
= f(a) + 6(b) since 6 is an epimorphism
=¢(a + K) + ¢ + K)

and

¢la + K)(b + K)] = lab + K)

= 6(ab)
= 6(a)0(b) since 0 is an epimorphism
= ¢(a + K)o + K).

Thus ¢ is an isomorphism from R/K to R'.

As an immediate consequence of the proof of this theorem, we have the following
Fundamental Theorem of Ring Homomorphisms.

m Fundamental Theorem of Ring Homomorphisms

If 6 is an epimorphism from the ring R to the ring R’, then R’ is isomorphic to R/ker 6.

‘We now see that, in the sense of isomorphism, the homomorphic images of aring R are
the same as the quotient rings of R. This gives a systematic way to search for all the homo-
morphic images of a given ring. To illustrate the usefulness of this method, we shall find all
the homomorphic images of the ring Z of integers.

Example 5 In order to find all homomorphic images of Z, we shall find all possible
ideals of Z and form all possible quotient rings. According to Theorem 6.3, every ideal of
Z is a principal ideal.

For the trivial ideal (0) = {0}, we obtain the quotient ring Z/(0), which is isomorphic
to Z, since a + (0) = b + (0) if and only if a = b. For the other trivial ideal (1) = Z, we
obtain the quotient ring Z/Z, which has only one element and is isomorphic to {0}. As
shown in the proof of Theorem 6.3, any nontrivial ideal / of Z has the form I = (n) for some
positive integer n > 1. For these ideals, we obtain the quotient rings’ Z/(n) = Z,. Thus the
homomorphic images of Z are Z itself, {0}, and the rings Z,,. [ ]

Exercises 6.2 I———

True or False

Label each of the following statements as either true or false.

1. A ring homomorphism from a ring R to a ring R’ must preserve both ring operations.

2. If a homomorphism exists from a ring R to a ring R’, then R’ is called a homomorphic
image of R.

See the paragraph immediately following Example 5 in Section 6.1.
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Sec. 5.1, #36 >

Sec. 6.1, #21 >

Sec. 6.1, #24 >

. The ideals of a ring R and the kernels of the homomorphisms from R to another ring

are the same subrings of R.

Every quotient ring of a ring R is a homomorphic image of R.

. A ring homomorphism from R to R’ is a group homomorphism from the additive group

R to the additive group R'.

Exercises

Unless otherwise stated, R and R’ denote arbitrary rings throughout this set of exercises.
In Exercises 1-4, suppose R and R’ are isomorphic rings.

1.

LA I

7.

Prove that R is commutative if and only if R’ is commutative.
Prove that R has a unity if and only if R’ has a unity.

Prove that R contains an idempotent element if and only if R’ does.
Prove that R contains a zero divisor if and only if R’ does.

(See Exercise 2.) Suppose that 0 is an epimorphism from R to R’ and that R has a unity.
Prove that if ™! exists for a € R, then [0(a)] ! exists, and [#(a)] ! = 6(a™}).

s={05 1]

is a ring with respect to matrix addition and multiplication.

Assume that the set

x,y,zEZ}

a. Verify that the mapping 0: S — Z defined by 0( B yD = z is an epimorphism
from S to Z. ¢

b. Describe ker 6, and exhibit an isomorphism from S/ker 6 to Z.

-

is a ring with respect to matrix addition and multiplication.

Assume that the set

x,yEZ}

0
a. Verify that the mapping 6: R — Z defined by 0<[x OD = x is an epimorphism
from R to Z. Y

b. Describe ker 6 and exhibit an isomorphism from R/ker 0 to Z.

For any a € Z, let[a]e denote [a]in Z¢ and let [a], denote [a]in Z,.

a. Prove that the mapping 6: Z¢ — Z, defined by 6([a]s) = [a] is a homomorphism.
b. Find ker 6.

Let 6: Z3 — Z,, be defined by 6([x]3) = 4[x];» using the same notational convention as
in Exercise 8.
a. Prove that 6 is a ring homomorphism.

b. Is 6(e) = ¢’ where e is the unity in Z3 and ¢’ is the unity in Z,?
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Sec. 6.1, #29 >

Sec. 5.1, #32 >

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.
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Let R be a ring with unity e. Verify that the mapping 6: Z — R defined by 0(x) = x - ¢
is a homomorphism.

In the field C of complex numbers, show that the mapping 6 that maps each complex
number onto its conjugate, 8(a + bi) = a — bi, is an isomorphism from C to C.

(See Example 3 of Section 5.1.) Let S denote the subring of the real numbers that
consists of all real numbers of the form m + n V2, withm € Z and n € Z. Prove that
6(m + nV2) = m — n\V/2 defines an isomorphism from S to S.

Define 0: My(Z) — M»(Z,) by

(e )=l @)

Prove that 0 is a homomorphism, and describe ker 6.

=]

R’={m+n\/§|m,nEZ}

Assume that

m,nEZ}

and

are rings with respect to their usual operations, and prove that R and R’ are isomor-
phic rings.

Let 0: My(Z) — Z where M»(Z) is the ring of 2 X 2 matrices over the integers Z.
Prove or disprove that each of the following mappings is a homomorphism.

N

b
b. 0< |:a d:|> = a + d (This mapping is called the trace of the matrix.)
c

Consider the mapping 6: Z, — Z1, defined by 6([a]) = 4[a]. Decide whether 6 is a
homomorphism, and justify your answer.

LetR, R', R” berings and 6;: R — R’ and 6,: R' — R” be homomorphisms. Prove that
0,0,: R — R" is a homomorphism.

Suppose 6 is a homomorphism from R to R'.

a. Let x € R. Prove that 8(x") = (6(x))" for all positive integers n.

b. Prove that if x € R is nilpotent, then 6(x) is nilpotent in R’

Figure 6.3 gives addition and multiplication tables for the ring R = {a, b, c} in Exer-

cise 32 of Section 5.1. Use these tables, together with addition and multiplication
tables for Zj3, to find an isomorphism from R to Zs.
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M Figure 6.3

More on Rings

+ a b ¢ a b ¢
a a b ¢ a a a a
b b ¢ a b a ¢ b
c c a b c a b ¢

Sec.5.1,#33>  20. Figure 6.4 gives addition and multiplication tables for the ring R = {a, b, ¢, d} in

™ Figure 6.4

Exercise 33 of Section 5.1. Construct addition and multiplication tables for the subring
R = {[0], [2], [4], [6]} of Zg, and find an isomorphism from R to R'.

+ | a b ¢ d a b ¢ d
a a b ¢ d a a a a a
b b ¢ d a b a ¢ a c
c c d a b c a a a a
d d a b ¢ d a ¢ a c

Sec.5.1,#47>  21. Let R; be the subring of R @ R’ that consists of all elements of the form (r, 0), where

Sec. 6.1, #17 >

22,

23.

24.

25.

r € R. Prove that R; is isomorphic to R.

Each of the following rules determines a mapping 6: R — R, where R is the field of
real numbers. Decide in each case whether 6 preserves addition, whether 6 preserves
multiplication, and whether 6 is a homomorphism.

a. O(x) = |x| b. 0(x) = 2x
c. O0(x) = —x d. 6(x) = x*
0 ifx=0
e. 0(x) =41 f.Ox)=x+1
) T ifx#0

For each given value of n, find all homomorphic images of Z,.

an==~6 b. n =10 c.n=12

d.n=18 e.n=2_8 f.n=20

Suppose F is a field and 6 is an epimorphism from F to a ring S such that ker § # F.
Prove that 0 is an isomorphism and that § is a field.

Assume that 6 is an epimorphism from R to R'. Prove the following statements.

a. If Iis an ideal of R, then (/) is an ideal of R'.

b. If I’ is an ideal of R', then 8~ (I") is an ideal of R.

¢. The mapping I — 6(J) is a bijection from the set of ideals 7 of R that contain ker 60
to the set of all ideals of R'.
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26. In the ring Z of integers, let new operations of addition and multiplication be defined by
x®y=x+y+1 and xOy=xy+x+y,
where x and y are arbitrary integers and x + y and xy denote the usual addition and
multiplication in Z.
a. Prove that the integers form a ring R’ with respect to @ and ©.
b. Identify the zero element and unity of R'.

c. Prove that Z is isomorphic to R'.

Sec.4.6,#36> 27. Let K and I be ideals of the ring R. Prove that K/K M I is isomorphic to (K + D/I

6.3 | The Characteristic of a Ring

In this section, we focus on the fact that the elements of a ring R form an abelian group
under addition.

When the binary operation in a group G is multiplication, each element a of G gener-
ates a cyclic group <a> that consists of all integral powers of a. If there are positive integers
n such that a” = e and m is the smallest such positive integer, then m is the (multiplicative)
order of a.

When the binary operation in a group is addition, the cyclic subgroup <a> consists of all
integral multiples ka of a. If there are positive integers n such that na = 0 and m is
the smallest such positive integer, then m is the (additive) order of a. In a sense, the char-
acteristic of a ring is a generalization from this idea.

Definition 6.15 Characteristic

If there are positive integers n such that nx = 0 for all x in the ring R, then the smallest
positive integer m such that mx = 0 for all x € R is called the characteristic of R. If no
such positive integer exists, then R is said to be of characteristic zero.

It is logical in the last case to call zero the characteristic of R since n = 0 is the only
integer such that nx = 0 for all x € R.

Example 1 The ring Z of integers has characteristic zero since nx = 0 for all x € Z
requires that n = (0. For the same reason, the field R of real numbers and the field C of
complex numbers both have characteristic zero. |

Example 2 Consider the ring Zg. For the various elements of Zg, we have
1o}=[0] e[1]=[0]  3[2]=[0]
2[3]=[0]  3[4]=[0] 6[5]=][0]
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Although smaller positive integers work for some individual elements of Zg, the smallest
positive integer m such that m[a] = [0]for all[a] € Z¢ is m = 6. Thus Zg has characteristic 6.
This example generalizes readily, and we see that Z,, has characteristic 7. |

Theorem 6.16 m Characteristic of a Ring
Let R be a ring with unity e. If e has finite additive order m, then m is the characteristic
of R.
p=4q Proof Suppose R is a ring with unity e and that e has finite additive order m. Then m is
the least positive integer such that me = 0. For arbitrary x € R,
mx = m(ex) = (me)x =0 -x = 0.
Thus mx = 0 for all x € R, and m is the smallest positive integer for which this is true. By
Definition 6.15, R has characteristic m.
In connection with the last theorem, we note that if R has a unity e and e does not have
finite additive order, then R has characteristic zero. In either case, the characteristic can be
determined simply by investigating the additive order of e.
Theorem 6.17 m Characteristic of an Integral Domain
The characteristic of an integral domain is either zero or a prime integer.
~p < (~gN~r) Proof Let D be an integral domain. As mentioned before, D has characteristic zero if

the additive order of the unity e is not finite. Suppose, then, that e has finite additive order m.
By Theorem 6.16, D has characteristic m, and we need only show that m is a prime integer.
Assume, to the contrary, that m is not a prime and m = rs for positive integers r and s such that
1 <r<mand1 <s < m. Then we have re # 0 and se # 0, but

(re)(se) = (rs)e* = (rs)e = me = 0.

This is a contradiction to the fact that D is an integral domain. Therefore, m is a prime
integer, and the proof is complete.

If the characteristic of a ring R is zero, it follows that R has an infinite number of ele-
ments. However, the converse is not true. R may have an infinite number of elements and
not have characteristic zero. This is illustrated in the next example.

Example 3 Consider the ring P(Z) of all subsets of the integers Z, with operations

X+Y=XUY)—(XNY)
X-Y=XNY
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for all X, Y in P(Z). The ring P(Z) has an infinite number of elements, yet
X+X=XUX) - (XNX
=X-X
= @’
where (J is the zero element for P(Z). Thus P(Z) has characteristic 2. [ ]

m Integral Domains, Z, and Z,

r=s

u=y

Theorem 6.19

An integral domain with characteristic zero contains a subring that is isomorphic to Z, and an
integral domain with positive characteristic p contains a subring that is isomorphic to Z,,.

Proof Let D be an integral domain with unity e. Define the mapping 6: Z — D by
0(n) = ne
for each n € Z. Since
O(m + n) = (m + n)e = me + ne = 0(m) + 6(n)
and
O(mn) = (mn)e = mne* = (me)(ne) = 6(m)d(n),

6 is a homomorphism from Z to D. By Theorem 6.9a, 8(Z) is a subring of D.

Suppose D has characteristic zero. Then ne = 0 if and only if n = 0, and it follows that
ker & = {0}. According to Theorem 6.11, this means that 0 is one-to-one and therefore an
isomorphism from Z to the subring 6(Z) of D.

Suppose now that D has characteristic p. Then p is the additive order of e, and ne = 0
if and only if p|n, by Theorem 3.17b. In this case, we have ker 8 = (p), the set of all mul-
tiples of p in Z. By Theorem 6.14, the subring 6(Z) of D is isomorphic to Z/(p) = Z,

The terms embedded and extension were introduced in connection with quotient fields
in Section 5.3. Stated in these terms, Theorem 6.18 says that any integral domain with char-
acteristic zero has Z embedded in it, and any integral domain with characteristic p has Z,
embedded in it.

In Exercise 18 of Section 5.3, a construction was given by which an arbitrary ring can
be embedded in a ring with unity. The next theorem is an improvement on that statement.

m Embedding a Ring in a Ring with Unity

u= VAW

Any ring R can be embedded in a ring S with unity that has the same characteristic as R.

Proof If R has characteristic zero, Exercise 18 of Section 5.3 gives a construction whereby
R can be embedded in a ring S with unity. To see that the ring S has characteristic zero, we
observe that

n(1,0) = (n,0) = (0,0)
if and only if n = 0.
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Suppose now that R has characteristic n. We follow the same type of construction as
before, with Z replaced by Z,. Let S be the set of all ordered pairs ([m], x), where [m] € Z,
and x € R. Equality in S is defined by

([m],x) = (k],y) ifandonlyif [m]=[k] and x =y.
Addition and multiplication are defined by
([}, x) + (K] y) = (m + Kl x + )
and
(), x) - (K. y) = ({mk], my + kx + xy).

It is straightforward to show that S forms an abelian group with respect to addition, the
zero element being ([0], 0). This is left as an exercise (see Exercise 23 at the end of this
section).

The rule for multiplication yields an element of S, but we need to show that this
element is unique. To do this, let ([m], x1) = ([m2], x2) and ([k1], y1) = ([k2], ¥2). Then
[m] = [ma], x1 = xz, [k1] = [kz], and y; = y, from the definition of equality. Using the
definition of multiplication and these equalities, we get

(], x1) = (ki) y0) = (k] myyy + kpxy + x,y,)
and
((ma), x5) = (K2, y2) = (Imaks], myy, + koxy + x595)
= ((miky], myy, + koxy + x,y,).
Comparing the results of these two computations, we see that we need
myy; + koxp = myy; + kyx
to conclude that the results are equal. Now
[m)=[m,] = my, —m; =pn forsomep € Z
= m, = m + pn.
Therefore,
myy, = (m; + pn)y,
myy + npy,

= myy

since py; is in R and R has characteristic n. Similarly, k,x; = kx|, and we conclude that the
product is well-defined.
Verifying that multiplication is associative, we have

([m], ){(K], )([r). 2)} = (m], )([kr], kz + ry + yz)
= ([mkr], mkz + mry + myz + krx + kxz
+ rxy + xy2)
= ([mk], my + kx + xy) - ([}, 2)
= {([m], )k}, M} 2)-
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The left distributive law follows from

({m], (K}, y) + ([r), 2 = (ml, )(k + 7]y + 2)
[mk + mr],my + mz + kx + rx + xy + x2)
[mk], my + kx + xy) + ([mr], mz + rx + xz)
= (Im], )k y) + ({m], ¥)([r]; 2).
The verification of the right distributive law is similar to this and is left as an exercise.

The argument up to this point shows that S is a ring. Since each of Z, and R has
characteristic n,

=
=

n({m}, x) = (n[m], nx) = ([0}, 0)
for all ([m], x) in S, and n is the least positive integer for which this is true. Thus S has
characteristic 7.
Consider now the mapping 8: R — S defined by 6(x) = ([0], x) for all x € R. Since

0(x) = 6(y) < ([0} x) = ([0).y) & x =y,
0 is a one-to-one correspondence from R to O(R). Now
0(x +y) = ([0, x +y) = ([0, x) + (0], y) = 6(x) + 6()
and
0Cy) = ([0}, xy) = ([0}, x)([0], y) = 6®)O(y),

so 6 is an isomorphism from R to 6(R), and 6(R) is a subring of S by Theorem 6.9a. This
shows that R is embedded in S.

Exercises 6.3 I——

True or False

Label each of the following statements as either true or false.

1. The characteristic of a ring R is the positive integer n such that nx = 0 for all x in R.

2. The characteristic of a ring R is the smallest positive integer n such that nx = 0 for
some x in R.

3. The characteristic of a ring R is zero if n = 0 is the only integer such that nx = 0 for
all x in R.

4. If a ring R has characteristic zero, then R must have an infinite number of elements.

5. If a ring R has an infinite number of elements, then R must have characteristic zero.

Exercises

1. Find the characteristic of each of the following rings:
a. E b. Q c. My)(Z)
d. MQ(R) €. Mz(Zz) f. Mz(Z3)
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Sec. 5.1, #47 >

Sec. 5.1, #47 >

Sec. 5.1, #47 >

Sec. 2.2, #23 >
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10.

11.

12.

13.

14.

15.

16.

Find the characteristic of the following rings. (R @ S is defined in Exercise 47 of
Section 5.1.)

a. ZQ@ZQ b. Z3@Z3 C. ZQ®Z3
d. Z2®Z4 €. Z4®Z6

Let D be an integral domain with positive characteristic. Prove that all nonzero ele-
ments of D have the same additive order.

Show by example that the statement in Exercise 3 is no longer true if “an integral
domain” is replaced by “a ring.”

Let R be a ring with unity of characteristic m > 0. Prove that k - ¢ = 0 if and only if
m divides k.

Suppose that R and S are rings with positive characteristics m and n, respectively. If k is
the least common multiple of m and n, prove that R © § has characteristic k.

Prove that if both R and S in Exercise 6 are integral domains, then R © S has charac-
teristic mn if m # n.

Prove that the characteristic of a field is either O or a prime.

Let D be an integral domain with four elements, D = {0, e, a, b}, where e is the unity.
a. Prove that D has characteristic 2.
b. Construct an addition table for D.

Let R be a commutative ring with characteristic 2. Show that each of the following are
true for all x, y € R.

a. (x +y)?=x>+y? b. (x + y)* =x* +y*

a. Give an example of a ring R of characteristic 4, and elements x, y in R such that
(x + y)* # 2+ y*

b. Give an example of a noncommutative ring R with characteristic 4, and elements
x, yin R such that (x + y)* # x* + y*.

Let R be a commutative ring with prime characteristic p. Prove, for any x, y in R, that
(x + y)"” =x" + yp"
for every positive integer 7.

Prove that Z,, has a nonzero element whose additive order is less than # if and only if
n is not a prime integer.

Let R be a ring with more than one element that has no zero divisors. Prove that the
characteristic of R is either zero or a prime integer.

In a commutative ring R of characteristic 2, prove that the idempotent elements form a
subring of R.

A Boolean ring is a ring in which all elements x satisfy x> = x. Prove that every
Boolean ring has characteristic 2.
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17. Suppose R is a ring with positive characteristic n. Prove that if / is any ideal of R, then
n is a multiple of the characteristic of 1.

18. If F'is a field with positive characteristic p, prove that the set
{0e = 0, ¢,2¢,3e,...,(p — 1)e}
of multiples of the unity e forms a subfield of F.
19. If p is a positive prime integer, prove that any field with p elements is isomorphic to Z,.

20. Let I be the set of all elements of a ring R that have finite additive order. Prove that 7 is
an ideal of R.

21. Prove that if a ring R has a finite number of elements, then the characteristic of R is a
positive integer.

22. Let R be a ring with a finite number n of elements. Show that the characteristic of R
divides n.

23. As in the proof of Theorem 6.19, let S = {([m], x)|[m] € Z, and x € R}. Prove that S
forms an abelian group with respect to addition.

24. With § as in Exercise 23, prove that the right distributive law holds in S.
25. With S as in Exercise 23, prove that the set R" = {([0], x)|x € R} is an ideal of S.

26. Prove that every ordered integral domain has characteristic zero.

6.4 | Maximal Ideals (Optional)

We conclude this chapter with a brief study of certain ideals that yield very special quotient
rings. We are interested primarily in commutative rings R with unity, and we consider the
question of when a quotient ring R/ is a field. (The question of when R/I is an integral do-
main is treated very briefly in the exercises for this section.)

Definition 6.20m Maximal Ideal

Let M be an ideal of the commutative ring R. Then M is a maximal ideal of R if M is not a
proper subset’ of any ideal except R itself.

Thus an ideal M is a maximal ideal of R if and only if M C I € R where [ is an ideal,
implies I = R.

Example 1 Consider the commutative ring R = Z. According to Theorem 6.3, every

ideal of Z is a principal ideal (7). We shall show that if n # 1, then (n) is a maximal ideal
of Z if and only if n is a prime.

"The term proper subset is defined in Definition 1.3.
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Theorem 6.21

Suppose first that n = p, where p is a prime integer, and let I be an ideal of Z such
that (p) C I < Z. Then there exists an integer k in I such that k & (p). That is, k is not a
multiple of p. Since p is a prime, this implies that k and p are relatively prime and there
exist integers u and v such that

1 = uk + vp.

Now uk € I, since k € 1. We also have vp € [, since p € I. Therefore, uk + vp = lisin/,
since [ is an ideal. But 1 € [ implies immediately that / = Z, and this proves that (p) is a
maximal ideal if p is a prime.

Suppose now that n is not a prime integer. Since n # 1, there are integers a and b
such that

n=ab where 1<a<n and 1<b<n.
Consider the ideal I = (a). We have (n) C I, since a < n. Also, we have I C Z, since 1 < a.

Thus (n) CICZ, and (n) is not a maximal ideal if » is not a prime. |

Example 2 Example 1 shows that the ideal (4) is not maximal in Z. However, (4) is a
maximal ideal of the ring E of all even integers. To see that this is true, let / be an ideal of
E such that (4) CI S E. Let x be any element of 7 that is not in (4). Then x has the form

x =4k + 2 =22k + 1),
where k € Z. Since [ is an ideal,
x€Il and 4k€El = x—4k=2€l
But 2 € I'implies I = E. Thus (4) is a maximal ideal of E. |

The importance of maximal ideals is evident from the result of the following theorem.

= Quotient Rings That Are Fields

P=4q

Let R be a commutative ring with unity, and let M be an ideal of R. Then R/M is a field if
and only if M is a maximal ideal of R.

Proof Let R be a commutative ring with unity e, and let M be an ideal of R. It follows im-
mediately from Theorem 6.4 that R/M is a commutative ring with unity e + M. Thus R/M is
a field if and only if every nonzero element of R/M has a multiplicative inverse in R/M.

Assume first that M is a maximal ideal, and let a + M be a nonzero element of
R/M. Thatis,a + M # M and a & M. Let

I = {ar + m|r € R, m € M}.

It is clear that each elementa + 0 + m = mof M is in [ and that a = ae + 0is in I but not
in M. Thus M C I. We shall show that [ is an ideal of R.

Let x = ary + m; and y = ar, + my be arbitrary elements of [ with r, € R and
m; € M. Then

x+y=a(r, + r)+ (m + m),
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where r; + r, € R and m; + mp € M, since M is an ideal. Thus x + y € I. Also,
—x =a(=r) + (—m)
isin /, since —r; € R and —m; € M. For any element r of R,
rx = xr = a(ryr) + (mr)

isin I, since rir € R and m;r € M. Thus [ is an ideal of R.
Since M is a maximal ideal and M C I, it must be true that / = R. Therefore, there exist
r € R and m € M such that

ar + m = e.
Hence

e+ M= (ar+m)+M
=ar+ M sincem € M
(a + M)(r + M),

and this means that r + M is the multiplicative inverse of a + M in R/M. We have thus
shown that R/M is a field if M is a maximal ideal.

Assume now that R/M is a field, and let / be an ideal of R such that M C I < R. Since
M C I, there exists an element a € I such that a & M.

We shall show that / = R. To this end, let b be an arbitrary element of R. Since R/M is a
field and a + M is not zero in R/M, there exists’ an element x + M in R/M such that

a+Mx+M)y=b+M
or
ax +M=>b + M.
Therefore, ax — b = m for some m € M, and
b=ax — m.

Now ax € I, since a € I, x € R, and [ is an ideal of R. Also, m € I since M C I. Hence
b = ax — m € I. Since b was an arbitrary element of R, we have proved that R < I, and
therefore, I/ = R. It follows that M is a maximal ideal of R.

Example 3 We showed in Example 1 of this section that (n) is a maximal ideal of
Z if and only if n is a prime. It follows from Theorem 6.21 that Z/(n) is a field if and only
if n is a prime. However, this fact is not new to us. In connection with Example 5 of
Section 6.1, we saw that Z, was the same as Z/(n), and we know from Corollary 5.20 that
Z, is a field if and only if n is a prime. |

See Exercise 23 of Section 5.2.
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Example 4 We saw in Example 2 of this section that (4) is a maximal ideal of the ring
E of all even integers. The distinct elements of the quotient ring E/(4) are given by

4)={..,—8,-40,48,...}
2+ @) =1{..,-6,-2,2,6,10,...}.

Now E/(4) is not a field, since 2 + (4) is not zero in E/(4), but
2+@R2+@B]=4+@) =),

and (4) is the zero in E/(4). Atfirst glance, this seems to contradict Theorem 6.21. However,
E does not have the unity that is required in the hypothesis of Theorem 6.21. |

BN Exercises 6.4 I——

True or False

Label each of the following statements as either true or false.

1. The only ideal of a ring R that properly contains a maximal ideal is the trivial ideal R.

2. Only one maximal ideal exists for a given ring R.

Exercises
1. According to part a of Example 3 in Section 5.1, the set
R={m+nV2imeZnel}
is a ring. Assume that the set
I={a+bV2|a€EE,bEE}
is an ideal of R, and show that 7 is not a maximal ideal of R.
Sec.6.1,#27> 2. Let R be as in Exercise 1, and show that the principal ideal
I=(V2)={2n+mV2|nE€Z meETL}
is a maximal ideal of R.
Sec. 6.1, #27 > . Show that the ideal I = (6) is a maximal ideal of E.
Sec. 6.1, #27 > . Show that the ideal 7 = (10) is a maximal ideal of E.

. Let R and I be as in Exercise 1, and write out the distinct elements of R/I.

3
4
5
6. Let R and I be as in Exercise 2, and write out the distinct elements of R/L.
7. With I as in Exercise 3, write out the distinct elements of E/I

8. With I as in Exercise 4, write out the distinct elements of E/L

9. Find all maximal ideals of Z 5.

10. Find all maximal ideals of Zg.
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Let R be the ring of Gaussian integers {m + ni|m, n € Z}. Let
M = {a + bi|3 divides a and 3 divides b}.

a. Show that M is an ideal of R.

b. Show that M is a maximal ideal of R.

Let R be the ring of Gaussian integers as in Exercise 11, and let
I = {a + bi|2 divides a and 2 divides b}.

a. Show that / is an ideal of R.

b. Show that / is not a maximal ideal of R.

An ideal I of a commutative ring R is a prime ideal if / # R and if ab € I implies
eithera € I or b € I. Let R be a commutative ring with unity, and suppose that / is an
ideal of Rsuchthat/ # Rand I # {0}. Prove that R/l is an integral domain if and only
if 7 is a prime ideal.

Prove that for n # 1 and (n) # {0}, an ideal (n) of Z is a prime ideal if and only if n
is a prime integer.

Show that the ideal / in Exercise 1 is not a prime ideal of R.

Show that the ideal (4) of E is not a prime ideal of E.

Show that the ideal (6) in Exercise 3 is a prime ideal of E.

Show that the ideal / in Exercise 2 is a prime ideal of R.

Show that (10) is a prime ideal of E.

Show that (14) is a prime ideal of E.

Find all prime ideals of Z 5.

Find all prime ideals of Z 5.

Give an example of two prime ideals such that their intersection is not prime.
Show that Z @ E is a maximal ideal of Z & Z.

Show that Z © {0} is a prime ideal of Z © Z but is not a maximal ideal of Z & Z.

0

0
of M»(R) and hence M is a maximal ideal.

b. Show that R/M is not a field. Hence Theorem 6.21 is not true if the condition that R
is commutative is removed.

0
a. LetR = Mr(R),and M = { { 0} } Show that M and M»(R) are the only ideals

If R is a commutative ring with unity, prove that any maximal ideal of R is also a prime
ideal.

If R is a finite commutative ring with unity, prove that every prime ideal of R is a
maximal ideal of R.
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A Pioneer in Mathematics
Amalie Emmy Noether (1882-1935)

Amalie Emmy Noether, born on March 23, 1882, in Erlangen,
Germany, is considered the foremost female mathematician up to
her time. She overcame numerous obstacles to receive her
education and to be permitted to work as a mathematician in a
university environment. Yet her contributions revolutionized abstract
algebra and subsequently influenced mathematics as a whole.

Even though university policy stated that admission of women
would “overthrow all academic order,”" in 1900, Noether and one
other woman were given special permission to audit classes at the
University of Erlangen along with one thousand regularly enrolled male students. It wasn't
until 1904 that Noether was allowed to enroll formally and enjoy the same privileges as her
male counterparts. Three years later, she completed her doctoral dissertation.

Between 1908 and 1915, Noether was allowed only to substitute teach at Erlangen
whenever her father was ill. In 1915, she was brought to the University of Géttingen by
David Hilbert (1862-1943) to help in his study of the mathematics involved in the general
theory of relativity. Hilbert tried to secure a teaching position for Noether but met strong
opposition from the faculty to his request to hire a woman. According to David M. Burton,
Hilbert, in a faculty senate meeting held to discuss her appointment, exploded in frustration,
“| do not see that the sex of the candidate is an argument against her admission as a
Privatdozent. After all we are a university, not a bathhouse.” Her appointment was voted
down, but Hilbert allowed her to lecture in courses that were listed under his own name.

At Gottingen, Noether eventually became a lecturer in algebra and earned a modest
salary. Gottingen was an international center of mathematics during this time. From her
students, the “Noether boys,” came some of the brightest mathematical talents of the era.

Noether, a Jew, was forced to leave Germany in 1933 when Hitler came into power.
She fled to the United States, where she accepted a position as visiting professor at
Bryn Mawr College in Pennsylvania. She also worked at the Institute for Advanced Study
in Princeton, New Jersey. Eighteen months later, at the height of her creative career, she
died unexpectedly after an operation.

Hulton Archive/Getty Images

"David M. Burton, Abstract Algebra (Cincinnati: William C. Brown, 1988), p. 242.



CHAPTER SEVEN

Real and Complex Numbers

Definition 7.1

Introduction

The material in this chapter is included for the benefit of those who would not see it in
some other course. However, it may be skipped by some instructors. It is possible to cover
Chapter 8 before this one, and some instructors use this option.

The Field of Real Numbers

At this point it is possible to fit some of the familiar number systems into the structures
developed in the preceding chapters.

In Theorem 5.35, the ring Z of all integers was characterized as an ordered integral
domain in which the set of positive elements is well-ordered. By “characterized,” we mean
that any ordered integral domain in which the set of positive elements is well-ordered must
be isomorphic to the ring Z of all integers.

At the end of Section 5.3 we noted that the construction of the rational numbers from
Z is a special case of the procedure described in that section. That is, the set Q of all
rational numbers is the quotient field of Z and therefore, is the smallest field that con-
tains Z. From a more abstract point of view, the field of rational numbers can be charac-
terized as the smallest ordered field. That is, any ordered field must contain a subfield
that is isomorphic to Q. (See Exercises 22-24 at the end of this section.)

The main goal of this section is to present a similar characterization for the field of real
numbers. The following definition is essential.

m Upper Bound, Least Upper Bound

Let S be a nonempty subset of an ordered field F'. An element u of F is an upper bound of
Sif u = x for all x € S. An element u of F is a least upper bound of S if these conditions
are satisfied:

1. uis an upper bound of S.
2. If b € Fis an upper bound of S, then b = u.

The phrase least upper bound is abbreviated 1.u.b.

325
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Example 1 LetF= Q be the field of rational numbers, and let S be the set of all
negative rational numbers.

If a is any negative rational number, then there exists b € Q such that 0 > b > a, by
Exercise 13 of Section 5.4. Thus no negative number is an upper bound of S. However, any
positive rational number u is an upper bound of S, since

u>0>x forallx € S.

The rational number 0 is also an upper bound of S, since 0 > x for all x € S. In fact, O is a
least upper bound of S in Q. |

If u € F and v € F are both least upper bounds of the nonempty subset S of an ordered
field F, then the second condition in Definition 7.1 requires both v = u and u = v. Therefore,
u = v and the least upper bound of S in F is unique whenever it exists.

Later we shall exhibit a nonempty subset of Q that has an upper bound in Q but does
not have a least upper bound in Q. The following theorem will be needed.

Theorem7.2 = 2 Is Not Rational
There is no rational number x such that x> =
Contradiction Proof Assume that the theorem is false. That is, assume a rational number x exists such

that x> = 2. We may assume, without loss of generality, that x = p/q is expressed in lowest
terms as a quotient of integers p and ¢. That is,

(-

with 1 as the greatest common divisor of p and ¢. This implies that
p2 — 2q2

Hence 2 divides p2, and since 2 is a prime, this implies that 2 divides p, by Theorem 2.16. Let
p = 2r, where r € Z. Then we have

@r?* =24’
4r? = 2q2
and therefore,
2t = ¢~

This implies, however, that 2 divides g, by another application of Theorem 2.16. Thus
2 is a common divisor of p and ¢, and we have a contradiction to the fact that 1 is the great-
est common divisor of p and ¢. This contradiction establishes the theorem.

Example 2 1t

S={x€Q|x>0andx*=2}.
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We shall show that S is a nonempty subset of Q that has an upper bound in Q but does not
have a least upper bound (L.u.b.) in Q.

The set S is nonempty since 1 is in S. The rational number 3 is an upper bound of S in
Q since x = 3 requires x> = 9 by Exercise 2c of Section 5.4.

It is not so easy to show that S does not have a l.u.b. in Q. As a start, we shall prove the
following two statements for positive u € Q:

1. If u is not an upper bound of S, then u?> < 2.
2. If u*> < 2, then u is not an upper bound of S.

Consider statement 1. If # € Q is not an upper bound of S, then there exists x € S such
that 0 < u < x. By Exercise 2¢ of Section 5.4, this implies that > < x2. Since x*> < 2 for
all x € S, we have u? < 2. s

2—u
To prove statement 2, suppose that u € Q is positive and > < 2. Then ot 1 is
u

a positive rational number. By Exercise 13 of Section 5.4, there exists a rational number d
such that

0<d< mi {1 2_“2}
min 3 1, ,
2u + 1

2

u .
o 1 } denotes the smaller of the two numbers in braces. If we now put
u

v = u + d, then v is a positive rational number, v > u, and

where min { 1

v =u?+ 2ud + d*
<u*+2ud +d since 0 < d < 1 implies 0 < d* < d
=u>+ Qu+ ld

2 — 2 —u?

since d <
2u + 1 2u + 1

<+ Qu+1)-
=2.

Thus v is an element of S such that v > u, and hence u is not an upper bound of S.
Having established statements 1 and 2, we may combine them with Theorem 7.2 and
obtain the following statement:

3. A positive u € Q is an upper bound of S if and only if u> > 2.

With this fact at hand, we can now show that S does not have a l.u.b. in Q.
Suppose u € Q is an upper bound of S. Then u is positive, since all elements of S are
positive, and #> > 2 by statement 3. Let
w =2
2u
w+2
2u

w=u-—

<
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Definition 7.3

w -2

Then w is a positive rational number. We also have w < u, since

S
2u

is positive. Now
u

so w is an upper bound of S by statement 3. Since w < u, we have that u is not a least upper
bound of S. Since u was an arbitrary upper bound of S in Q, this proves that S does not have
alu.b.in Q. |

Example 2 establishes a very significant deficiency in the field Q of rational numbers:
Some nonempty sets of rational numbers have an upper bound in Q but fail to have a least
upper bound in Q. The next definition gives a designation for those ordered fields that do
not have this deficiency.

= Complete Ordered Field

Theorem 7.4

Let F be an ordered field. Then F is complete if every nonempty subset of F that has an
upper bound in F has a least upper bound in F.

The basic difference between the field of rational numbers and the field of real num-
bers is that the real number field is complete. It is possible to construct the field of real
numbers from the field of rational numbers, but this construction is too lengthy and diffi-
cult to be included here. It is more properly a part of that area of mathematics known as
analysis. The method of construction most commonly used is one that is credited to
Richard Dedekind (1831-1916) and utilizes what are called Dedekind cuts. In our treat-
ment, we shall assume the validity of the following theorem.

m The Field of Real Numbers

There exists a field R, called the field of real numbers, that is a complete ordered field.
Any complete ordered field F has the following properties:

a. Fisisomorphic to R.

b. F contains a subfield that is isomorphic to the field Q of rational numbers, and the
ordering in F is an extension of the ordering in this subfield.

The set of all real numbers may be represented geometrically by setting up a one-to-
one correspondence between real numbers and the points on a straight line. To begin, we
select a point on a horizontal line, designate it as the origin, and let this point correspond to
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the number 0. A second point is now chosen to the right of the origin, and we let this point
correspond to the number 1. The distance between the two points corresponding to 0 and 1
is now taken as one unit of measure. Points on the line located successively one unit farther
to the right are made to correspond to the positive integers 2, 3, 4, . . . in succession. With
the same unit of measure and beginning at the origin, points on the line located succes-
sively one unit farther to the left are made to correspond to the negative integers —1, —2,
—3, ... (see Figure 7.1). This sets up a one-to-one correspondence between the set Z of all
integers and some of the points on the line.

Points on the line that correspond to nonintegral rational numbers are now located by
using distances proportional to their expressions as quotients a/b of integers a and b and by
using directions to the right for positive numbers and to the left for negative numbers. For
example, the point corresponding to 3 is located midway between the points that correspond
to 1 and 2, whereas the point corresponding to —3 is located midway between those that cor-
respond to —1 and —2. In this manner, a one-to-one correspondence is established between
the set Q of rational numbers and a subset of the points on the line.

It is not very difficult to demonstrate that there are points on the line that do not corre-
spond to any rational number. This can be done by considering a right triangle with each
leg one unit in length (see Figure 7.2). By the Pythagorean Theorem, the length / of the hy-
potenuse of the triangle in Figure 7.2 satisfies the equation 2> = 2. There is a point on the
line located at a distance 4 units to the right of the origin, but by Theorem 7.2, this point
cannot correspond to a rational number.

o

The foregoing demonstration shows that there are gaps in the rational numbers, even
though any two distinct rational numbers have another rational number located between
them (see Exercise 13 of Section 5.4). We assume now that the one-to-one correspon-
dence that we have set up between the rational numbers and points on the line can be
extended to the set of all real numbers and the set of all points on the line. The points that
do not correspond to rational numbers are assumed to correspond to real numbers that are



330

Chapter 7 Real and Complex Numbers

not rational—that is, to irrational numbers. For example, the discussion in the preceding
paragraph located the point that corresponds to the irrational number 7 = V2.

One more aspect of the real numbers is worthy of mention: the decimal representa-
tion of real numbers. Here we assume that each real number can be represented by a deci-
mal expression that either terminates, as does

9
— = 1.125,
8

or continues without end, as do the repeating decimal®

14 _
Ty 1272727 - = 127

and the nonrepeating decimal
V2 = 1.41421356 - - - .

The decimal expression for a rational number a/b may be found by long division. For
example, for the rational number {3, long division yields the following.

1.27

11]14.00

11
30
22
80
77

3

The repetition of the remainder 3 at this point makes it clear that we have the repeating dec-
imal expression

14 _
T 1272727 = 127,

A terminating decimal expression may be regarded as a repeating pattern where zeros
repeat endlessly. For example,

% = 1.125000 - - - = 1.1250.

With this point of view, the decimal expression for any rational number a/b will always
have a repeating pattern. This can be seen from the long-division algorithm: Each
remainder satisfies 0 = r < b, so there are only b distinct possibilities for the remain-
ders, and the expression starts repeating whenever a remainder occurs for the second
time.

The bar above 27 indicates that the digits 27 repeat endlessly.
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Rational numbers that have a terminating decimal expression can be represented in
another way by changing the range on the remainders in the long division from 0 = r < b
to 0 < r = b. If we perform the long division for% in this way, it appears as follows.

1.1249
8 19.0000
8
10
8
20
16
40
32
80
72
8

At this point, the remainder 8 has occurred twice, and the repeating pattern is seen to be

% = 1.124999 - - - = 1.1249.

It is shown in calculus that if a # 0, then the infinite geometric series
2 a rn*l
n=1

diverges for |r| = 1 and converges to a/(1 — r) when |r| < 1. Thus every nonterminating
repeating decimal expression represents a rational number, since it is the sum of an infinite

geometric series with » = 107%, for some positive integer k. The next example illustrates
this situation.

Example 3 We shall express 2. 134 as a quotient of integers. We have
2.134 = 2.1343434 - - -
= 2.1 + 0.034 + 0.00034 + 0.0000034 + - - -

and the terms 0.034 + 0.00034 + 0.0000034 + - - - form an infinite geometric series with

a=0.034 and r = 107> = 0.01. Since |r| <1, this geometric series converges to
0.034/(1 — 0.01) and

2.134 = 2.1 + > (0.034)(0.01)""!
n=1

_21 0034
10 1 -0.01
_ 21, 0.034
10 0.99
21 34
= — 4+ —
10 990
2113

990 [ |
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This discussion of decimal representations is not intended to be a rigorous presenta-
tion. Its purpose is to make the following remarks appear plausible:
1. Each real number can be represented by a decimal expression.
2. Decimal expressions that repeat or terminate represent rational numbers.

3. Decimal expressions that do not repeat and do not terminate represent irrational numbers.

Exercises 7.1 I——

True or False
Label each of the following statements as either true or false.
1. Every least upper bound of a nonempty set S is an upper bound.
Every upper bound of a nonempty set S is a least upper bound.
The least upper bound of a nonempty set S is unique.
Every upper bound of a nonempty set S must be an element of S.
If a nonempty set S contains an upper bound, then a least upper bound must exist in S.
The field of real numbers is complete.

The field of rational numbers is complete.

® NS R WD

Every decimal representation of a real number that terminates represents a rational
number.

9. Every decimal representation of a real number that does not terminate represents an
irrational number.

Exercises

Find the decimal representation for each of the numbers in Exercises 1-6.
2. % RN

5 % 6.

lz =

<z e

1.
4.

1

Express each of the numbers in Exercises 7—12 as a quotient of integers, reduced to lowest
terms.

7.34 8. 1.6 9. 0.12
10. 0.63 11. 2,51 12. 3.21321

13. Prove that V/3 is irrational. (That is, prove there is no rational number x such that
2 _
x~ =3)

14. Prove that V2 is irrational.

15. Prove that if p is a prime integer, then \/p is irrational.

16. Prove that if ¢ is rational and b is irrational, then a + b is irrational.

17. Prove that if a is a nonzero rational number and b is irrational, then ab is irrational.

18. Prove that if @ is an irrational number, then @~ is an irrational number.
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19. Prove that if a is a nonzero rational number and ab is irrational, then b is irrational.

20. Give counterexamples for the following statements.
a. If a and b are irrational, then a + b is irrational.

b. If a and b are irrational, then ab is irrational.

21. Let S be a nonempty subset of an ordered field F.
a. Write definitions for lower bound of S and greatest lower bound of S.

b. Prove that if F is a complete ordered field and the nonempty subset S has a lower
bound in F, then § has a greatest lower bound in F.

22. Prove that if F is an ordered field with F' as its set of positive elements, then F tDo
{ne|n € Z}, where e denotes the multiplicative identity in F. (Hint: See Theorem
5.34 and its proof.)

23. If F is an ordered field, prove that F contains a subring that is isomorphic to Z. (Hint:
See Theorem 5.35 and its proof.)

24. Prove that any ordered field must contain a subfield that is isomorphic to the field Q of
rational numbers.

25. If a and b are positive real numbers, prove that there exists a positive integer n such that
na > b. This property is called the Archimedean’ Property of the real numbers. (Hint:
If ma < bforallm € Z™, then b is an upper bound for the set S = {ma|m € Z*}. Use
the completeness property of R to arrive at a contradiction.)

26. Prove that if a and b are real numbers such that a > b, then there exists a rational num-
ber m/n such that a > m/n > b. (Hint: Use Exercise 25 to obtain n € Z* such that
a — b > 1/n. Then choose m to be the least integer such that m > nb. With these
choices of m and n, show that (m — 1)/n =< b and then thata > m/n > b.)

Complex Numbers and Quaternions

The fact that negative real numbers do not have square roots in R is a serious deficiency of
the field of real numbers, but it is one that can be overcome by the introduction of complex
numbers.

Although we do not present a characterization of the field of complex numbers until
Section 8.4, it is possible to construct the complex numbers from the real numbers. Such a
construction is the main purpose of this section.

In our construction, complex numbers appear first as ordered pairs (a, b) and later in
the more familiar form a + bi. The operations given in the following definition will seem
more natural if they are compared with the usual operations on complex numbers in the
form a + bi.

¥ Archimedes (c. 287 B.c.—c. 212 B.C.) was a Greek mathematician, physicist, engineer, and astronomer. He is
regarded as the leading scientist of his time and as one of the greatest mathematicians ever. He is famous for his
innovative machine designs, including the screw pump. He is honored with a lunar crater and a lunar mountain
range named after him. California adopted his famous Eureka! as its state motto.
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Definition 7.5 m Complex Numbers

Theorem 7.6

Let C be the set of all ordered pairs (a, b) of real numbers a and b. Equality, addition, and
multiplication are defined in C by

(a,b) = (c,d) ifandonlyif a=c¢ and b=4d
(a,b) + (c,d)y=(a+c,b+d
(a,b)(c,d) = (ac — bd, ad + bc).

The elements of C are called complex numbers.

It is easy to see that the stated rules for addition and multiplication do in fact define
binary operations on C.

m The Field of Complex Numbers

With addition and multiplication as given in Definition 7.5, C is a field. The set of all ele-
ments of the form (a, 0) in C forms a subfield of C that is isomorphic to the field R of real
numbers.

Proof Closure of C under addition follows at once from the fact that R is closed under
addition. It is left for the exercises to prove that addition is associative and commutative,
that (0, 0) is the additive identity in C, and that the additive inverse of (a, b) € C is
(—a, —b) € C.

Since R is closed under multiplication and addition, each of ac — bd and ad + bc is in
R whenever (a, b) and (c, d) are in C. Thus C is closed under multiplication.

For the remainder of the proof, let (a, b), (c, d), and (e, f) represent arbitrary
elements of C. The associative property of multiplication is verified by the following
computations:

(@, b)[(c, d)(e, )] = (a, b)(ce — df; cf + de)
= [a(ce — df) — b(cf + de), a(cf + de) + b(ce — df)]
= (ace — adf — bcf — bde, acf + ade + bce — bdf)
= [(ac — bd)e — (ad + bc)f, (ac — bd)f + (ad + bc)e]
= (ac — bd, ad + bc)(e, f)
= [(a, b)(c, d)](e, f).

Before considering the distributive laws, we shall show that multiplication is commu-
tative in C. This follows from

(c,d)(a, b) = (ca — db, cb + da)
= (ca — db,da + cb)
= (ac — bd, ad + bc)
= (a, b)(c, d).
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We shall verify the left distributive property and leave the proof of the right distribu-
tive property as an exercise:

(a,b)[(c.d) + (e./)] = (a,b)(c + e,d + f)
=[a(c + e) — b(d + f),a(d + f) + b(c + e)]
= (ac + ae — bd — bf,ad + af + bc + be)
= (ac — bd, ad + bc) + (ae — bf, af + be)
= (a,b)(c,d) + (a, b)(e,[).

To this point, we have established that C is a commutative ring.
The computation

1,0)a,b)y=1+a—-0:-b,1-b+0-a)=(ab)

shows that (1, 0) is a left identity for multiplication in C. Since multiplication in C is com-
mutative, it follows that (1, 0) is a nonzero unity in C.

If (a, b) # (0, 0) in C, then at least one of the real numbers a or b is nonzero, and it
follows that a®> + b? is a positive real number. Hence

(e 7w)
at+ v A+ b

is an element of C. The multiplication

( b)< a -b ) <a2 + b —ab + ba) (1.0)
a? b = 9’ = b
@+ b+ b a+ v P+

shows that

(ab)'=< - _b>
’ a+ b+ )

since multiplication is commutative in C. This completes the proof that C is a field.
Consider now the set R’ that consists of all elements of C that have the form (a, 0):

R = {(a,0)|a € R}.
The proof that R’ is a subfield of C is left as an exercise. The mapping 0: R — R’ defined by
0(a) = (a,0)
is clearly onto, and is one-to-one, since (a, 0) = (b, 0) if and only if @ = b. For arbitrary a
and b in R,
0(a + b) = (a + b,0)
= (a,0) + (b,0)
= 0(a) + 0(b)
and
0(ab) = (ab, 0)
= (a, 0)(b, 0)
= 0(a)d(b).

Thus 6 preserves both operations and is an isomorphism from R to R’'.
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We shall use the isomorphism 6 in the preceding proof to identify a € R with (a, 0) in
R’. We write a instead of (a, 0) and consider R to be a subset of C. The calculation

0, 1)0,1)=(©0-0—1-1,0-1+1-0)
=(=1L0
= -1

shows that the equation x> = —1 has a solution x = (0, 1) in C.
To obtain the customary notation for complex numbers, we define the number i by

i=(0,1).
2 —

This makes i a number such that i = — 1. We now note that any (a, b) € C can be written
in the form

(a,b) = (a,0) + (0, b)
(a,0) + b(0, 1)
= a + bi,

and this gives us the familiar form for complex numbers.
Using the field properties freely, we may rewrite the rules for addition and multiplica-
tion in C as follows:

(a+bi)+ (c+di)=a+c+ bi+di
(a+c)+ (b+di

and
(a + bi)(c + di) = (a + bi)c + (a + bi)di
= ac + bci + adi + bdi*
(ac — bd) + (ad + bo)i,

where the last step was obtained by replacing i> with —1.

The fact that i> = —1 was used in Section 5.4 to prove that it is impossible to impose
an order relation on C. Hence C is not an ordered field.

It is easy to show that all negative real numbers have square roots in C. For any positive
real number a, the negative real number —a has both Vaiand — Vai as square roots, since

(Vaif = (VaPi* = at=1) = =a
and
(= Vail = (~Vaf# = a(-1) = —a.

We shall see later in this chapter that every nonzero complex number has two distinct
square roots in C.

Example 1 The following results illustrate some calculations with complex numbers.
a. (1+203—-5)=3+6i—5—102=13+i

b. 2+3)2—-3i)=4-9i>=13

¢. (=3 +4)3B +4i)=-9+16i* = —25
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d A—-)iP=1-2i+i*=-2i
e. it=@@)’=(-1>=1 [ |

In connection with part b of Example 1, we note that
a — b

= a* + b?

(a + bi)(a — bi)

for any complex number a + bi. The number a*> + b? is always real, and it is positive if
a + biis nonzero.

m Conjugate

For any a, b in R, the conjugate of the complex number a + bi is the number a — bi. The
notation z indicates the conjugate of z: If z = a + bi with a and b real, then z = a — bi.

Using the bar notation of Definition 7.7, we can write
w=z=d+b
and the multiplicative inverse of a nonzero z is given by
_ 1\_
Z = ()Z
2

Division of complex numbers may be accomplished by multiplying the numerator and
denominator of a quotient by the conjugate of the denominator.

Example 2 We have the following illustrations of division.

L 3+T_ 347 2430 _6+2i—21 15 23
2-3i 2-3i 2+3i 4+9 1313
b Lo _ 12— 2-i_2 1.
24+i 2+i 2—-i 5 5 5 u

By using the techniques illustrated in Examples 1 and 2, we can write the result of any
calculation involving the field operations with complex numbers in the form a + bi, with a
and b real numbers. This form is called the standard form of the complex number. If b # 0,
the number is called imaginary. If « = 0 and b # 0, the number is called pure imaginary.

The construction of the complex numbers by use of ordered pairs was first accom-
plished by Hamilton (see the biographical section at the end of this chapter). Eventually, he
was able to use ordered quadruples (x, y, z, w) of real numbers to extend the complex num-
bers to a larger set that he called the quaternions. His quaternions satisfy all the postulates
for a field except the requirement that multiplication be commutative. A system with these
properties is called a division ring, or a skew field, and Hamilton’s quaternions were the
first known example of a division ring.
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Example 3 Inthis example we outline the development of the quaternions as the set
H={(x,y,z,w)

with most of the details left as exercises.
Equality and addition are defined in H by

x,y, 2w € R},

(x,y,z,w) = (r,s,t,u) ifandonlyif x=r,y=s,z=tandw = u;

x,y,z,w) + (rs,t,bu) = x+ry+s,z+tLwt u.

It is easy to see that this addition is a binary operation on H, and (0, 0, 0, 0) in H is the
additive identity. Also, each (x, y, z, w) in H has an additive inverse (—x, —y, —z, —w) in H.
The proofs that addition is associative and commutative are left as exercises. Thus H forms
an abelian group with respect to addition.

When the definition of multiplication in H is presented in the same manner as
multiplication of complex numbers in Definition 7.5, it has the following complicated
appearance:

x, vy, z,w)(r, s, t,u) = (xr — ys — zt — wu, xs + yr + zu — wt,

Xt — yu + zr + ws, xu + yt — zs + wr).
This multiplication is a binary operation on H, and it is easy to verify that (1, 0, 0, 0) is a
unity in H. Laborious computations will show that multiplication is associative in H and
that both distributive laws hold. These verifications are left as exercises and lead to the

conclusion that H is a ring.
At this point, it can be shown that the set

R = {(,0,0,0)|a € R}
is a field contained in H and that the mapping 6: R — R’ defined by
6(a) = (a,0,0,0)
is an isomorphism. In a manner similar to the identification of a with (a, 0) in C, we can
identify a in R with (a, 0, 0, 0) in R" and consider R to be a subring of H.

Some other notational changes can be used to give the elements of H a more natural
appearance. We let

i=1(0,1,0,0), j=10,0,1,0), and k=(0,0,0,1).
Then an arbitrary element (x, y, z, w) in H can be written as
x,y,zw) = (x00,0) + (y,0,0,0)i + (z,0,0,0); + (w, 0,0, 0)k
=x+yi +zj + wk.
Routine calculations confirm the equations
(-1 =1 ij=—ji=k
P=P=kK=-1 Jjk=—kj=1i
(=Da=a(—1) = —a foralla € {£1, £i, =j, =k} ki = —ik = j.

In fact, this multiplication agrees with the table constructed for the quaternion group in
Exercise 28 of Section 3.1. The circular order of multiplication observed previously is also
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valid in H (see Figure 7.3). With a positive (counterclockwise) rotation, the product of two
consecutive elements is the third one on the circle, and the sign changes with a negative
(clockwise) rotation.

Computations such as ij = k and ji = —k show that multiplication in H is not com-
mutative, and H is not a field.

With the i, j, k notation, H can be written in the form
H={x+yi+z +wk|x,y,z,w € R},
with addition and multiplication appearing as
(x+yi+zj+wk)++sit+ttjtuk)= (x+r)++si+t @+
+ (w + wk;
xtyitzj+wk)(r+si+tj+uk)= (xr —ys — zt — wu)

+ (xs + yr + zu — wr)i
+ (xt — yu + zr + ws)j
+ (xu + yt — zs + wr)k.

Multiplication can thus be performed by using the distributive laws and other natural ring

properties, with two exceptions:

1. Multiplication is not commutative.
2. Products of i, j, or k are simplified using the equations on the preceding page.

The most outstanding feature of H is that each nonzero element has a multiplicative
inverse. For each ¢ = x + yi + zj + wk in H, we imitate conjugates in C and write

q=x—yi—zj — wk
It is left as an exercise to verify that

qq =qq =x>+y + 2 +w

. ( 1 )
q =\= /q.
99

Thus H has all the field properties except commutative multiplication. |

If g # 0, then gg # 0, and
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BN Exercises 7.2 I——

True or False

Label each of the following statements as either true or false.

1. It is possible to impose an order relation on C, the set of complex numbers.
2. Negative real numbers have two distinct square roots in the field of complex numbers.
3. The inverse of any nonzero complex number can be expressed in terms of its conjugate.
4. The complex numbers form a field.
5. The quaternions form a field.
6. Every field is a division ring.
7. Every division ring is a field.
Exercises
Perform the computations in Exercises 1-12 and express the results in standard form
a + bi.
1. 2 = 3)(—1+4)) 2. 5 -3)2 —4)
3P 4. &
5.2-i0)7 6. i(2 + i)’
1 1
7. - 8. -
2 —i 3+
2—1i 1—i
9. 10.
8 —6i 1+ 3i
5+ 2i 4 —3i
11. - 12. -
5—2i 4 + 3i
13. Find two square roots of each given number.
a. —9 b. —16 c. =25
d. —36 e. —13 f. -8

14.

15.

16.
17.

With addition as given in Definition 7.5, prove the following statements.
a. Addition is associative in C.

b. Addition is commutative in C.

c. (0, 0) is the additive identity in C.

d. The additive inverse of (a, b) € Cis (—a,—b) € C.

With addition and multiplication as in Definition 7.5, prove that the right distributive
property holds in C.

Show that i" = i" for all integers n, where n = m (mod 4).

With C given in Definition 7.5, prove that R" = {(a, 0)|a € R} is a subfield of C.



18.

19.

20.

21.

22.

23.

24.

25.
26.
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Let B = {bi| b € R} be a subset of C with the usual operations of addition and mul-
tiplication of complex numbers.

a. Prove or disprove that B is an abelian group with respect to addition.

b. Prove or disprove that B is a ring.

Let 6 be the mapping #: C — C defined for z = a + bi in standard form by
0(z) = a — bi.

Prove that 0 is a ring isomorphism.

It follows from Exercise 19 that z; + z, = z; + 2, and that 7,7, = 7, z, for all zy, z»
in C. Prove the following statements concerning conjugates of complex numbers.

a. (2) =z b. If z # 0, then () = (z 7).
c.z+zZER d. z = zifand only if z € R.
e. z = —zif and only if z is pure imaginary orz = 0.

a. Show that x + yi satisfies the equation z> = a + bi where

b \/\/a2+b2_a
x=— and y =+ | — .

2y 2
b. Find two square roots of each of the following complex numbers.
i.3—4i ii. 4 + 3i iii. 5+ 12§ iv. —12 + 5i
Assume that §: C — C is an isomorphism and 6(a) = a for all a € R. Prove that if 6
is not the identity mapping, then 6(z) = z for all z € C.

(See Example 8 of Section 5.1.) Show that the mapping 6 defined by
—b
0(a+bi)=[a J for a,b €R
b a

is an isomorphism from C to a subring of the ring of all 2 X 2 matrices over R.

With addition as given in Example 3 of this section, prove the following statements.
a. Addition is associative in H.
b. Addition is commutative in H.

Prove that multiplication in the set H of Example 3 has the associative property.

With addition and multiplication as defined in Example 3, prove that both distributive
laws hold in H.

Exercises 27-31 are stated using the notation in the last paragraph of Example 3.

27.
28.
29.

Prove that (g) = ¢ for all ¢ € H.
Prove that ¢, + ¢, = q, + g, forall ¢;, ¢ € H.
Prove that q,q, = ¢, q, for all ¢y, ¢ € H.
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Sec. 3.3, #17 >

Sec. 5.2, #18 >

30. Prove or disprove: ¢,q, = ¢, ¢, for all g;, g» € H.
31. Verify that gg = gq = x> + y* + 22 + w? for arbitrary ¢ = x + yi + zj + wk in H.
32. (See Exercise 31.) For arbitrary ¢ = x + yi + zj + wk in H, we define the absolute
value of ¢ by |¢| = Vi + y2 + 22 + wh Verify that|q1q2| = |q1| * |q2]-
33. Letgq,, g, € H. Prove q1¢q> = 0 implies g; = 0 or g5 = 0.
34. Show that the equation x> = — 1 has an infinite number of solutions in the quaternions.
35. a. With H as defined in Example 3, prove that the set
R ={(a,0,0,0)|a € R}
is a field that is contained in H.
b. Prove that the mapping 6#: R — R’ defined by 6(a) = (a, 0, 0, 0) is an
isomorphism.
36. Assume that
C'={(a,b,0,0)|a, b € R}
is a subring of the quaternions in Example 3 when H is regarded as a set of quadruples.
Prove that the mapping 6: C — C’ defined by 6(a + bi) = (a, b, 0, 0) is an isomor-
phism from the field C of complex numbers to C'. (Thus we can consider C to be a sub-
ring of H.)
37. Suppose the mapping f is defined on the set H of quaternions by f(g) = ¢ for all
q € H. Show that fis one-to-one, onto, and satisfies the following properties.
far + q) = f(q) + f(go) and f(q19>) = f(q) f(qy) forall q1, g, € H
38. Let S be the subset of M,(C) given by
SI{[ f y:| x,yEC}.
-5 X
a. Prove that S is a subring of M,(C).
b. Prove that the mapping 6: H — S defined by
O + bi + ¢ + dk) a + bi ¢+ di
a 1 C =
/ —(c —di) a~— bi
is an isomorphism from the ring of quaternions H to S. [Note that
a+ bi +cj+ dk = (a+ bi)+ (c + dij.]
39. Let K be the group of nonzero quaternions with the operation of multiplication. Show

40

41

that the center of K'is {x = x + 0i + 0j + Ok |x € R, x # 0}.

. Anelement a in a ring R is idempotent if a> = a. Prove that a division ring must con-
tain exactly two idempotent elements.

. Prove that a finite ring R with unity and no zero divisors is a division ring.
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De Moivre's' Theorem and Roots
of Complex Numbers

We have seen that real numbers may be represented geometrically by the points on a straight
line. In much the same way, it is possible to represent complex numbers by the points in
a plane. We begin with a conventional rectangular coordinate system in the plane (see Fig-
ure 7.4). With each complex number x + yi in standard form, we associate the point that
has coordinates (x, y). This association establishes a one-to-one correspondence from the
set C of complex numbers to the set of all points in the plane.

3i

The point in the plane that corresponds to a complex number is called the graph of
the number, and the complex number that corresponds to a point in the plane is called the
coordinate of the point. Points on the horizontal axis have coordinates a + 0i that are
real numbers. Consequently, the horizontal axis is referred to as the real axis. Points,
other than the origin, on the vertical axis have coordinates 0 + bi that are pure imaginary
numbers, so the vertical axis is called the imaginary axis. Several points are labeled with
their coordinates in Figure 7.4.

Complex numbers are sometimes represented geometrically by directed line segments
called vectors. In this approach, the complex number a + bi is represented by the directed
line segment from the origin of the coordinate system to the point with rectangular

 Abraham de Moivre (1667—1754) was a French mathematician famous for his book on probability theory,
The Doctrine of Chances. It is rumored that de Moivre predicted the date of his own death, and he was the
first to discover Binet’s formula for the nth term in the Fibonacci sequence, although Binet is given credit
for it.
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y a + bi

(a,b)

a + bi

™ Figure 7.5
coordinates (a, b) or by any directed line segment with the same length and direction as
this one. This is shown in Figure 7.5.
In this book we have little use for the vector representation of complex numbers. We
simply note that in this interpretation, addition of complex numbers corresponds to the
usual “parallelogram rule” for adding vectors. This is illustrated in Figure 7.6.
y
P
y X+ yi
z o (X1 + X0, y1 +
(tyy) 1 (x1 + X2, y1 + ¥2) .
22
0
(x1,y1)
10) X
X
m Figure 7.6 w Figure 7.7

Returning now to the representation of complex numbers by points in the plane, we
observe that any point P in the plane can be located by designating its distance r from the
origin O and an angle 6 in standard position that has OP as its terminal side. Figure 7.7
shows r and 6 for a complex number x + yi in standard form.

From Figure 7.7, we see that r and 6 are related to x and y by the equations

X = rcos 6, y = rsin 6, r=Vax*+y.
The complex number x + yi can thus be written in the form

x + yi = r(cos 6 + isin 0).
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Definition 7.8 m Trigonometric Form

When a complex number in standard form x + yi is written as
x + yi = r(cos 0 + i sin 0),
the expression’ r(cos # + i sin ) is called the trigonometric form (or polar form) of

x + yi. The number r = \V/x? + y?is called the absolute value (or modulus) of x + yi, and

the angle 6 is called the argument (or amplitude) of x + yi.

The usual notation is used for the absolute value of a complex number:
lx +yi| =r =Vx +y.

The absolute value, r, is unique, but the angle 6 is not unique since there are many angles
in standard position with P on their terminal side. This is illustrated in the next example.

Example 1 Expressing the complex number —1—i in trigonometric form, we have

NIV N O
‘““VE( V2 \fz)

S5

5
= \fZ(cos 777 + i sin 4)

- il (-22) « rsn(27)]

13 13
= \@(cos Tﬂ- + i sin 477>

Many other such expressions are possible. |

Although the argument 6 is not unique, an equation of the form
ri(cos 6, + i sin ;) = ry(cos 6, + i sin 6,)
does require that 7; = r, and that 6, and 6, be coterminal. Hence
0, =0, + kQ2m)

for some integer k.

The next theorem gives a hint as to the usefulness of the trigonometric form of complex
numbers. In proving the theorem, we shall use the following identities from trigonometry:
cos(A + B) = cos A cos B — sin A sin B
sin(A + B) = sin A cos B + cos A sin B.

"The expression cos 6 + i sin § sometimes abbreviated as cis 6.
""We choose to use radian measure for angles. Degree measure could also be used.
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Theorem 7.9

m Product of Complex Numbers

Theorem 7.10

If

z; = ry(cos 0, + i sin 6,)

and

Zp = ry(cos 0, + i sin 6,)
are arbitrary complex numbers in trigonometric form, then
22 = rir[cos(8, + 6,) + isin(0; + 6,)].

In words, the absolute value of the product of two complex numbers is the product of their
absolute values, and an argument of the product is the sum of their arguments.

Proof The statement of the theorem follows from
212, = [ri(cos 6, + i sin 6,)][r,(cos 6, + i sin 6,)]
= rry[(cos 6, cos 0, — sin 6, sin 6,)
+ i(cos 6, sin 0, + sin 6, cos 6,)]
riry[cos (8, + 6,) + isin (0, + 6,)].

The preceding result leads to the next theorem, which begins to reveal the true useful-
ness of the trigonometric form.

m De Moivre's Theorem

Induction

If n is a positive integer and
z = r(cos O + isin )
is a complex number in trigonometric form, then

Z" = r"(cos nf + i sin nf).

Proof For n = 1, the statement is trivial. Assume that it is true for n = k—that is, that
X = r*(cos kO + i sin k6).

Using Theorem 7.9, we have
kel gk,

= [r*(cos k6 + i sin k0)][r(cos O + i sin )]
= r**[cos(kf + 0) + i sin(k6 + 0)]

= r**!cos(k + 1)0 + i sin(k + 1)6].

Z

Thus the theorem is true forn = k + 1, and it follows by induction that the theorem is true
for all positive integers.
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Example 2 Some applications of De Moivre’s Theorem are shown in the following

computations.
a. (—2+2)*= [2\/5(—1 + 11‘)}4
' V2 V2
3 3 4
= {2\@(005 777 + i sin :)}

= 64(cos 37 + i sin 37)
=64(—1 + 0i) = —64

b. |— + =i = |1l cos — + isin —
2 2 6 6

40( 20 | . 207T>
1%l cos — + i sin ——
3 3

cos(zg-r + 677) + isin<2377 + 6’7T>

2 L. 2T
COST+lsmf

3
1 V3,
= — =+ —1
2 2 [ |

If n is a positive integer greater than 1 and «" = z for complex numbers u and z, then
u is called an nth root of z. We shall prove that every nonzero complex number has exactly
n nth roots in C.

Theorem 7.11 = nth Roots of a Complex Number

For each integer n = 1, any nonzero complex number
z = r(cos 6 + isin )

has exactly n distinct nth roots in C, and these are given by

6 + 2k 6 + 2k
rl/n<005nﬂ-+isinnﬂ)’ k=0,1,2,...,n — 1,

I/n —

where r \/r denotes the positive real nth root of r.

Proof For an arbitrary integer k, let

Un 0+ 2kmw . 0+ 2k
vV=r COST‘FZSIHT.
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Then

0 + 2k 0 + 2k
V= (rl/”)” (cos w + i sin n(nﬂ-))

= r[cos(6 + 2km) + isin(6 + 2km)]
= r(cos 0 + isin 6)
= Z’

and v is an nth root of z. The n angles

0 6+2m 0+ 202w 0+ (n— 1)(Q2m)

k) k) ERCECICIE]

n n n n

are equally spaced 2 radians apart, so no two of them have the same terminal side. Thus
the n values of v obtained by lettingk = 0, 1,2,...,n — 1 are distinct, and we have shown
that z has at least n distinct nth roots in C.

To show there are no other nth roots of z in C, suppose v = #(cos ¢ + i sin ¢) is the
trigonometric form of a complex number v such that v = z. Then

t"(cos n¢p + i sin ngp) = r(cos 0 + i sin ),
by De Moivre’s Theorem. It follows from this that
" =r, cosnd =cosf, and sinngd = sin 6.

Since r and ¢ are positive, it must be true that = /", The other equations require that n¢
and 0 be coterminal, and hence they differ by a multiple of 27:

ngp =0 + mQ2w)
for some integer m. By the Division Algorithm,
m = gqn + k,
where k € {0,1,2,...,n — 1}.Thus
np =0 + (qn + k)(2m)

and

¢

0 + 2k
= + g(2m).

, and hence v is one of the

This equation shows that ¢ is coterminal with the angle Lf’m)

nth roots listed in the statement of the theorem.

Example 3 We shall find the three cube roots of 8i and express each in standard form
a + bi. Expressing 8i in trigonometric form, we have

8i = 8( cos = + i sin —
l COS2 lSlnz.
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By the formula in Theorem 7.11, the cube roots of z = 8i are given by

g1/ cosf+isin7, k=0,1,2.

Each of these roots has absolute value 8'/> = 2, and they are equally spaced 27” radians
apart, with the first one at §. Thus the three cube roots of 8i are

2 2

S S V3 o1
T oisin 2 ) =2 -~ 4 —i)=—V3+i
2<cos o Tisin 6) < 5 21) V3 + i

2<cosz+isinz>=2<\/§+li>= V3 + i

3w . . 3w . .
2l cos— +isin— ) =20 — i) = —2i.
2 2

These results may be checked by direct multiplication. |

BN Exercises 7.3 I—

True or False

Label each of the following statements as either true or false.

1.

There is a one-to-one correspondence between the standard form and the trigonometric
form of a complex number.

Every nonzero complex number has exactly n nth roots in C.

In order for two trigonometric forms to represent the same complex number, the
absolute values must be equal and the arguments must be equal.

. The n nth roots of any complex number are equally spaced around a circle with center

at the origin.

Exercises

1. Graph each of the following complex numbers, and express each in trigonometric
form.
a. —2+2V3i b. 2 + 2i
c.3—3i d. V3 +i
e. 1+ V3i £.—1—i
g —4 h. —5i
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. Find each of the following products. Write each result in both trigonometric and

standard form.

a. [4(cosg + i sin%)] [cos3F + i sin®F]

b. [3(cos’ + i sin?F)][cosF + i sinF"]

c. [2(cos T + i sinF)]{3[cos(—F) + i sin(—F)]}
[

d. [6(cos®F + i sin®)]{5[cos(—F) + i sin(—F)]}

. Use De Moivre’s Theorem to find the value of each of the following. Leave your

answers in standard form a + bi.

a. (V3 +i) b. <\f + ;:‘)21
e (=V3+i) d. (? - ;i)lg
e. <—; + \fz’)ls £ (V2 + V2i)
g. (1 —V3ip h. (—; + \fz‘)u

. Show that the n distinct nth roots of 1 are equally spaced around a circle with center at

the origin and radius 1.

2

Mo = cosz,%’ +i sinzf, show that the distinct nth roots of 1 are given by w, w-, . . .,

n—1

0" " =

. Find the indicated roots of 1 in standard form a + bi, and graph them on a unit circle

with center at the origin.
a. cube roots of 1 b. fourth roots of 1

c. eighth roots of 1 d. sixth roots of 1

. Find all the indicated roots of the given number. Leave your results in trigonometric

form.
3 1
a. cube roots of % + Ei b. cube roots of —1 +
1 1 3
c. fourth roots of ——— + —i d. fourth roots of — — li
2 2 2 2
e. fifth roots of —16V2 — 16V2i f. sixth roots of 32V/3 — 32i

. Find all complex numbers that are solutions of the given equation. Leave your answers

in standard form a + bi.
az72+27=0 b. 22— 16=0
c.2—i=0 d2+8 =0
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1 3

ez4+*—ii=0 .2+ 1-V3i=0
2 2
1 V3

g.z4+5+7'=0 h. 2 + 8 +8V3i=0

If o = cos 2 + i sin 2, and u is any nth root of z € C, show that the nth roots of z are

given by wu, o, ..., 0" 0" = u.

Prove that for a fixed value of n, the set U, of all nth roots of 1 forms a group with
respect to multiplication.

In Exercises 11-14, take U, to be the group in Exercise 10.

11.
13.
15.
16.

17.

18.

19.
20.
21.
22,

a. Find all elements of the subgroup (a ) generated by the given a. Leave your answers
in trigonometric form.

b. State the order of (a).

c. Find all the generators of (a).

2 .o s 27 . 3 .. 3.
a = cos5 + isin7 in Ug 12. a = cos> + isin in Ug
_ 57 . s 57 _ 57 .o 57
a = cos> + isin> in Ug 14. a = cos; + isin; in Ug
. . . . . 2 ..
Prove that the group in Exercise 10 is cyclic, with @ = cos = + i sin % as a generator.

Any generator of the group in Exercise 10 is called a primitive nth root of 1. Prove that

T o 2k
CoOsS—— + I sin——
n n
is a primitive nth root of 1 if and only if k£ and n are relatively prime.

a. Find all primitive sixth roots of 1.
b. Find all primitive eighth roots of 1.

Let w, = cos %7 + i sin %7 be a primitive nth root of unity. Prove that if r is a posi-
tive integer such that (n, r) = d, then wj, is a primitive (n/d)th root of unity.

Prove that the set of all roots of 1 forms a group with respect to multiplication.

Prove that the sum of all the distinct nth roots of 1 is 0.

Prove that the product of all the distinct nth roots of 1is (—1)" .

Prove the following statements concerning absolute values of complex numbers. (As
in Definition 7.7, z denotes the conjugate of z.)

a. |z[ = [z] b. zz = |z|?

|24

- ‘Zz\.

. Ifz # 0, thenz ' = ﬁ d. If z, # 0, then
Z

e |z + 2| =zl + |z

<1

22
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23.

24.

25.

26.

27.

Sec.5.4,#7>  28.

Prove that the set of all complex numbers that have absolute value 1 forms a group
with respect to multiplication.

Prove that if z = r(cos 6 + i sin §) is a nonzero complex number in trigonometric
form, then z~! = r~![cos(—@) + i sin(—0)].
Prove that if n is a positive integer and z = r(cos 6 + i sin 6) is a nonzero complex
number in trigonometric form, then z~" = r~"[cos(—nf) + i sin(—nb)].
Prove that if z; = ri(cos 8, + isin 6;) and z, = ry(cos 6, + isin 6,) are complex
numbers in trigonometric form and z, is nonzero, then

21 T .

— = —[cos(0;, — 6,) + isin(6;, — 6,)]

L N
Let u be an nth root of unity.
a. Show that ™! is also an nth root of unity.

b. Show that u is also an nth root of unity.
In the ordered field R, absolute value is defined according to Exercise 7 of Section 5.4 by

a ifa=0
la|=9 .
a ifa<O.

For a € R, show that the absolute value of @ + 0i according to Definition 7.8 agrees
with the definition from Chapter 5. (Keep in mind, however, that C is not an ordered
field, as was shown in Section 5.4.)

Key Words and Phrases
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A Pioneer in Mathematics
William Rowan Hamilton (1805-1865)

William Rowan Hamilton, born in Dublin, Ireland, on August 3, 1805,
became Ireland’s greatest mathematician. He was the fourth of nine
children and did not attend school. Instead, he was tutored by an uncle. By
the age of 3, he showed amazing ability in reading and arithmetic; he had
mastered 13 languages by age 13. His interest turned to mathematics in
1813, when he placed only second in a public contest of arithmetic skills.
This humbling incident led him to a study of the classical mathematics
texts in their original languages of Greek, Latin, and French. In 1823, he
was the top student entering Trinity College, Dublin. He was knighted in
1835 for obtaining significant results in the field of optics.

In 1833, Hamilton initiated a new line of thought about complex numbers by treating
them as ordered pairs. He spent the next ten years of his life trying to generalize this
treatment of ordered pairs to ordered triples. One day, while walking and chatting with his
wife along the Royal Canal on the way to a meeting, he became preoccupied with his own
thoughts about the ordered triples and suddenly made a dramatic discovery. He realized that
if he considered quadruples (the “quaternions”) instead of triples and compromised the
commutative law for multiplication, he would have the generalization that he had been
seeking for several years. Hamilton became so excited about his discovery that he recorded
it in a pocket book and impulsively carved it in a stone on the Brougham Bridge. A tablet
there marks the spot of Hamilton's discovery of the quaternions.

Hamilton's approach to complex numbers and their four-dimensional generalization, the
quaternions, revolutionized algebraic thought. He spent the last 22 years of his life studying
the theory of quaternions and reporting his results.

LC-USZ62-100657/Library of Congress Prints and Photographs Division
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CHAPTER EIGHT

Polynomials

Definition 8.1

Introduction

The elementary theory of polynomials over a field is presented in this chapter. Topics
included are the division algorithm, the greatest common divisor, factorization theorems,
simple algebraic extensions, and splitting fields for polynomials. This chapter may be studied
independently of Chapter 7.

Polynomials over a Ring

Starting with beginning algebra courses, a great deal of time is devoted to developing skills
in various manipulations with polynomials. Procedures are learned for the basic operations
of addition, subtraction, multiplication, and division of polynomials. By the time a student
begins an abstract algebra course, polynomials are a very familiar topic.

Much of this prior experience involved polynomials in a single letter, such as
5 + 4t + >, where the letter usually represented a variable with domain a subset of the
real numbers. In this section our point of view is very different. We wish to start with a
commutative ring R with unity” 1 and construct a ring that contains both R and a given
element x. More precisely, we want to construct a smallest ring that contains R and x in this
sense: Any ring that contains both R and x would necessarily contain the constructed ring.
We assume that x is not an element of R, but nothing more than this. For the time being, the
letter x will be a formal symbol subject only to the definitions that are made as we proceed.
The letter x is referred to as an indeterminate in order to emphasize its role here. Later, we
shall consider other possible roles for x.

m Polynomialin xover R

Let R be a commutative ring with unity 1, and let x be an indeterminate. A polynomial in x
with coefficients in R, or a polynomial in x over R, is an expression of the form

a’ + ax! + ax* + - + ax"

where 7 is a nonnegative integer and each q; is an element of R. The set of all polynomials
in x over R is denoted by R[x].

"Throughout this chapter, the unity is denoted by 1 rather than e. A similar construction can be made with fewer
restrictions on R, but such generality results in complications that are avoided here.

355
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The construction that we shall carry out will be guided by our previous experience
with polynomials. Consistent with this, we adopt the familiar language of elementary
algebra and refer to the parts ¢;x' of the expression in Definition 8.1 as terms of the
polynomial and to a; as the coefficient of x' in the term a;x'. As a notational convenience,
we shall use functional notations such as f(x) for shorthand names of polynomials. That is,
we shall write things such as

fx) =agx® + ax' + -+ + a,x",

but this indicates only that f(x) is a symbolic name for the polynomial. It does not indicate
a function or a function value.

Example 1 Some examples of polynomials in x over the ring Z of integers are listed
here.

a. f(x) = 2x" + (=)' + 05> + 5x°

b. g(x) = 1x% + 2x! + (= 1)x?

c. h(x) = (=50 + 0x! + 02 [ |

We have not yet defined equality of polynomials. (The preceding use of = only indi-
cated that certain polynomials had been given shorthand names.) To be consistent with
prior experience, it is desirable to define equality of polynomials so that terms with zero co-
efficients can be deleted with equality retained. With this goal in mind, we make the
following (somewhat cumbersome) definition.

Definition 8.2am Equality of Polynomials

Suppose that R is a commutative ring with unity, that x is an indeterminate, and that
f@x) =agx® + ax' + -+ + ax"

and
g(x) = byx" + bix' + -+ + bx"

are polynomials in x over R. Then f(x) and g (x) are equal polynomials, f(x) = g(x), if and
only if the following conditions hold for all i that occur as a subscript on a coefficient in
either f(x) or g(x):

1. If one of a;, b; is zero, then the other either is omitted or is also zero.

2. If one of a;, b; is not zero, then the other is not omitted, and a; = b;.

Example 2 According to Definition 8.2a, the following equalities are valid in the set
Z[x] of all polynomials in x over Z.

a. 20+ (—dx' + 0% + 500 = 20 + (=4 + 5¢°
b. (—5)x° + 0x! + 0x% = (—5)x° |
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The compact sigma notation is useful when we work with polynomials. The polynomial
f) = apx® + ax' + -+ ax"
may be written compactly using the sigma notation as
fx) = E ax'.
i=0

After the convention concerning zero coefficients has been clarified and agreed upon as
stated in conditions 1 and 2 of Definition 8.2a, the definition of equality of polynomials may
be shortened as follows.

Definition 8.2bm Alternative Definition, Equality of Polynomials

If R is a commutative ring with unity, and f(x) = 2/_, a;x" and g(x) = 2", b;x' are
polynomials in x over R, then f(x) = g(x) if and only if @; = b; for all i.

It is understood, of course, that any polynomial over R has only a finite number of
nonzero terms. The notational agreements that have been made allow us to make concise
definitions of addition and multiplication in R[x].

Definition 8.3 m Addition and Multiplication of Polynomials

Let R be a commutative ring with unity. For any f(x) = X/_,a;x' and g(x) = >/, b;x’ in
R[x], we define addition in R[x] by

k
fx) + gx) = D (a; + bx,
i=0

where k is the larger of the two integers n, m. We define multiplication in R[x] by

n+m

f0gx) = D X,

i=0

i
where ¢; = 2 a;b;_;.

The expanded expression for ¢; appears as
¢; = ayb; + a\b,_, + ayb,_, + -+ a,_,by + a,_, b, + a;b,.

We shall see presently that this formula agrees with previous experience in the multiplica-
tion of polynomials.

To introduce some novelty in our next example, we consider the sum and product of
two polynomials over the ring Zg.

Example 3 We shall follow a convention that has been used on some earlier occasions
and write a for [a]in Zg. Let

flx) = E a;x' = 1x" + 5x' + 3%°
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and
l .
gx) = E bix' = 4x° + 2x!
i=0

in Zg[x]. According to our agreement regarding zero coefficients, these polynomials may be
written as

flx) = 1x° + 5x' + 0x% + 3x°
g(x) = 4x° + 2x' + 0x* + 0,

and the definition of addition yields

3
) + g = > (@ + bx
i=0

1+ + G+ 2"+ 0+ 02+ 3+ 0)°
=550 4+ 1x' + 0x% + 34°
=50 + 1x! + 343,

since 5 + 2 = 1 in Ze. The definition of multiplication gives

4
f0gx) = D e,
i=1

where
00=a0b0=1'4=4
cp=ayb, +taby=1-2+5:-4=2+2=4
¢, = aygb, + ajb; + a,by=1-0+5-2+0-4=4
C3:aob3+a1b2+azbl+a3b0:1’0+5'0+0'2+3'4:O
¢y = agby + a;b; + a,b, + azb; + a, b,

=1-0+5-0+0-0+3-2+0-4=0.
Thus

F0)gx) = (1x° + 5x' + 3x%)(4x® + 24
= 4x° + 4x' + 4x* + 0x® + Ox*
=420 + 4x' + 44°

in Zg[x]. This product, obtained by using Definition 8.3, agrees with the result obtained by
the usual multiplication procedure based on the distributive laws:

F)g(x) = (1x° + 5x' + 3x%)(@x%) + (1x° + 52! + 3x%)(2xh

= (42" + 2x' + o) + (2x' + 4% + xh
= 4x% 4+ 4x' + 4x% |
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The expanded forms of the ¢; in Example 3 illustrate how the coefficient of x' in the
product is the sum of all products of the form a,b, withp + ¢ = i. In general, it is true that

i

¢ = 2 a;b;_;

j=0
=ayb;, + a\b;_, + a,b;_, + -+ + a;_ b, + a;b,

E a,b,.

ptq=i

This observation is useful in the proof of our next theorem.

m The Ring of Polynomials over R

Let R be a commutative ring with unity. With addition and multiplication as given in
Definition 8.3, R[x] forms a commutative ring with unity.

Proof Let
n m k
fx) = E ax’, gx) = E bx', h(x) = 2 c;x'
i=0 i=0 i=0

represent arbitrary elements of R[x], and let s be the greatest of the integers n, m, and k.
It follows immediately from Definition 8.3 that the sum f(x) + g(x) is a well-defined
element of R[x], and R[x] is closed under addition. Addition in R[x]is associative since

f@) + [0 + h)] = 3 axd + 3 (b + )
i=0 i=0
= E [a; + (b; + c)]x

=0

[(a; + b)) + ¢;]x" since addition is associative in R
=0

S . k .
= E (a; + b)x' + E c;x

=0 =0
[f(x) + g(x0)] + h(x).
The polynomial 0x” is an additive identity in R[x] since

SO + 0% = 0" + f(x) = f()

for all f(x) in R[x]. The additive inverse of f(x)is >:_(—a;)x’ since

Jx) + i (—a)x' = i [a; + (—a)]x' = 0x°,

i=0 i=0

and X'y (—a)x' + f(x) = Ox° in similar fashion. Addition in R[x] is commutative since

f) + g(x) = D (a; + b)x' = > (b + a)x' = g(x) + f(x).
i=0 i=0

Thus R[x]is an abelian group with respect to addition.
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It is clear from Definition 8.3 that R[x] is closed under the binary operation of multi-
plication. To see that multiplication is associative in R[x], we first note that the coefficient
of x' in f(x)[g(x)h(x)]is given by

> 4B,

prq+r=i

the sum of all products ap(ch,) of coefficients ap, by, ¢, such that the subscripts sum to i.
Similarly, in [ f(x)g(x)]i(x), the coefficient of x' is
E (a,b,)c,.
ptq+r=i

Now a,(b,c,) = (a,b,)c, since multiplication is associative in R, and therefore
F@[g@A)] = [f0)g)]h().

Before considering the distributive laws, we shall establish that multiplication in R[x]
is commutative. This follows from the equalities

n+m

fogx) = > ( > a,,bq)x"

i=0 \p+gqg=i

m+n
2 ( 2 bqap>xi since multiplication is commutative in R

i=0 qg+p=i
= g(x)f(x).

Let ¢ be the greater of the integers m and k, and consider the left distributive law. We
have

flgx) + h(x)] E aixi|: E (b; + C,‘)xi]

i=0 i=0

n+t
- 2 { 2 ap(bq—'—cq)}xi
i=0 Lp+gqg=i
n+t
= { E (a,b, + a,c, ]xi
i=0 Lp+gqg=i
n+t ) n+t )
= 2( > Aapbq)x’ + E ( > ‘apcq)x’
i=0 \p+g=i i=0 \p+g=i
n+m ) n+k )
=SS (S an)er S (S ae)
i=0 \p+g=i i=0 \p+g=i

= f(0)g) + f(x) h(x),
and the left distributive property is established. The right distributive property is now easy
to prove:
[f(X) + g()]h(x) = h(x)[f(x) + g(x)] since multiplication is
commutative in R[x]
= h(x)f(x) + h(x)g(x) by the left distributive law
= f(x) h(x) + g(x) h(x) since multiplication is
commutative in R[x].
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The element 1x is a unity in R|[x] since
IO f) = f) - 1% = D) (@ Dx' = D) aix’ = f(x).
i=0 i=0

This completes the proof that R[x]is a commutative ring with unity.

Theorem 8.4 justifies referring to R[x] as the ring of polynomials over R or as the ring
of polynomials with coefficients in R.

m  Subring of R[x] Isomorphic to R

For any commutative ring R with unity, the ring R[x] of polynomials over R contains a
subring R’ that is isomorphic to R.

Proof Let R be the subset of R[x] that consists of all elements of the form ax’. We shall
show that R’ is a subring by utilizing Theorem 5.4.

The subset R’ contains elements such as the additive identity 0x° and the unity 1x° of
R[x]. For arbitrary ax’ and bx° in R',

ax’ — bx® = (a — b)x°
and
(@x®)(bx°) = (ab)x°

are in R', and therefore R’ is a subring of R[x] by Theorem 5.4.
Guided by our previous experience with polynomials, we define : R — R’ by

0(a) = ax’
for all @ € R. This rule defines a one-to-one correspondence since 6 is onto and
0a) =00b) & ax’ = b’ & a=b.
Moreover, 6 is an isomorphism, since
6(a+ b) = (a+ b)x"=ax® + bx" = 0(a) + 6(b)
and

6(ab) = (ab)x" = (ax’)(bx") = 6(a)0(b).

Thus R is embedded in R[x]. We can use the isomorphism 6 to identify @ € R with ax”
in R[x], and from now on we shall write a in place of ax”. In particular, 0 may denote the zero
polynomial 0x°, and 1 may denote the unity 1x° in R[x]. We write an arbitrary polynomial

F(x) = apx® + a;x' + ax* + -+ a,x"
as
fx) =ay+ ax' + ax* + - + a,x"

n
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Actually, we want to carry this notational simplification a bit further, writing x for x!, x’
for 1x%, and —axx’ for (—a;)x’. This allows us to use all the conventional polynomial
notations for the elements of R[x]. Also, we can now regard each term ax’ withi = 1 as
a product:

with i factors of x in the product.

Having made the agreements described in the last paragraph, we may observe that our
major goal for this section has been achieved. We have constructed a “smallest” ring R[x]
that contains R and x. It is “smallest” because any ring that contained both R and x would
have to contain all polynomials

fx) =ag+ ax + a2x2 + 0+ g )"

as a consequence of the closure properties.
It is now appropriate to pick up some more of the language that is customarily used in
work with polynomials.

= Degree, Leading Coefficient, Constant Term

Let R be a commutative ring with unity, and let
fx)=aytax+ - +ax"

be a nonzero element of R[x]. Then the degree of f(x) is the largest integer & such that the
coefficient of x* is not zero, and this coefficient g is called the leading coefficient of f(x).
The term aq of f(x) is called the constant term of f(x), and elements of R are referred to
as constant polynomials.

The degree of f(x) will be abbreviated deg f(x). Note that degree is not defined for the
zero polynomial. (The reason for this will be clear later.) Note also that the polynomials of
degree zero are the same as the nonzero elements of R.

Example 4 The polynomials f(x) and g(x) in Example 3 can now be written as

f(x)=1+5x+3x3=3x3+5x+1
glx) =4+ 2x =2x + 4.

The constant term of f(x) is 1, and the leading coefficient of f(x) is 3.
The polynomial g(x) has constant term 4 and leading coefficient 2.
deg f(x) = 3 and deg g(x) = 1.

In Example 3, we found that

g0 78

f)gx) =4+ 4x + 4x2,
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so deg (f(x) g(x)) = 2. In connection with the next theorem, we note that

deg(f(x)g(x)) # deg f(x) + deg g(x)

in this instance. [ |

m Degree of a Product

PANQ=>r

Corollary 8.8

If R is an integral domain and f(x) and g(x) are nonzero elements of R[x], then
deg(f(x)g(x)) = degf(x) + degg(x).

Proof Let R be an integral domain, and suppose that

f(x) = D, a;x' has degree n
=0
and

g(x) = D b;x' has degree m
i=0

in R[x]. Then a, # 0 and b,, # 0, and this implies that a,b,, # 0 since R is an integral
domain. But a, b,, is the leading coefficient in f(x)g(x) since

@8 = 2 (E ajb,-,-)x"
i=0 \j=0
by Definition 8.3. Therefore,
deg(f(x) g(x)) = n + m = deg f(x) + deg g(x).

m Polynomials over an Integral Domain

R[x]is an integral domain if and only if R is an integral domain.

Proof Assume that R is an integral domain. If f(x) and g(x) are arbitrary nonzero
elements of R[x], then both f(x) and g(x) have degrees. According to Theorem 8.7, f(x)g(x)
has a degree that is the sum of deg f(x) and deg g(x). Therefore, f(x)g(x) is not the zero
polynomial, and this shows that R[x]is an integral domain.

If R[x]is an integral domain, however, then R must also be an integral domain since R
is a commutative ring with unity and R < R[x].

We make some final observations concerning Theorem 8.7. Since the product of the
zero polynomial and any polynomial always yields the zero polynomial, the equation in
Theorem 8.7 cannot hold when one of the factors is a zero polynomial. This is justifica-
tion for not defining degree for the zero polynomial. We also note that the reason why
the conclusion of Theorem 8.7 fails to hold in Example 4 is that Z¢ is not an integral
domain.
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BN Exercises 8.1 I——

True or False

Label each of the following statements as either true or false where R represents a commu-
tative ring with unity.

1.

A polynomial in x over R is made up of sums of terms of the form a;x’ where each
a, €ERandi € Z.

The zero polynomial has degree zero.
Polynomials of degree zero over R are the same as the nonzero elements of R.

The degree of the sum of any two polynomials f(x) and g(x) over R is always the sum
of the degrees of f(x) and g(x).

. The degree of the product of any two polynomials f(x) and g(x) over R is always the

product of the degrees of f(x) and g(x).

The degree of the product of any two polynomials f(x) and g(x) over R is always the
sum of the degrees of f(x) and g(x).

. The degree of the product of any two polynomials f(x) and g(x) over an integral

domain R always is the sum of the degrees of f(x) and g(x).

Exercises

1.

2.

3.

4.

Write the following polynomials in expanded form.
4

3
a. 2 c;x' b. 2 djxj
=0

j=0

J
3
c. 2 a;x* d. Exk
k=1 k

=2
Express the following polynomials by using sigma notation.

a. cox® + cix! + erx? b. dyx® + dsx® + dyx?

e x+ X2+ 4+ d. 2+ + %0

Consider the following polynomials over Zg, where a is written for [a] in Zsg:

f) =2 +7x+4, gx) =4 +4x+6, h(x)=6x"+ 3.

Find each of the following polynomials with all coefficients in Zg.

a. f(x) + g(x) b. g(x) + h(x)

¢ f(x)g(x) d. g)h(x)

e. f(g(x) + h(x) f. f(0) + g)h(x)

g f)g(x) + fx)h(x) h. f()h(x) + g(x)h(x)

Consider the following polynomials over Zg, where a is written for [a]in Z:

fx) = 2% + Tx + 4, glx) = 4x* + 4x + 6, h(x) = 6x* + 3.
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Find each of the following polynomials with all coefficients in Zg.

a. f(x) + gx) b. g(x) + h(x)

¢ f(x)gx) d. g(x)h(x)

e f(x)gx) + h(x) f. f(x) + g(0)h(x)

g f(0)g) + f(x)h(x) h. f(0)h(x) + g(x)h(x)

. Decide whether each of the following subsets is a subring of R[x], and justify your

decision in each case.

a. the set of all polynomials with zero constant term

b. the set of all polynomials that have zero coefficients for all even powers of x
c¢. the set of all polynomials that have zero coefficients for all odd powers of x
d

. the set consisting of the zero polynomial together with all polynomials that have
degree 2 or less

. Determine which of the subsets in Exercise 5 are ideals of R[x] and which are princi-

pal ideals. Justify your choices.

. a. Prove that

I[x] ={ag + ax + --- + ax"|ay = 2k for k € Z},
the set of all polynomials in Z[x] with even constant term, is an ideal of Z[x].
b. Show that I[x] = {x - f(x) + 2 - g(x)| f(x), gx) € Z[x]}.
a. Prove that
I[x] = {ay + ax + -+ + ax"|a; = 2k; for k; € Z},
the set of all polynomials with even coefficients, is an ideal of Z[x].
b. Prove or disprove that /[x]is a principal ideal.
a. Let F be a field. Prove that
Ix]={ay +ax+ -+ +ax"|g; € Fanda, + a; + -+ + a, = 0},

the set of all polynomials in F[x] such that the sum of the coefficients is zero, is an
ideal of F[x].

b. Prove or disprove that /[x]is a principal ideal.
Let R be a commutative ring with unity. Prove that
deg (f(x) g(x)) = deg f(x) + deg g(x)
for all nonzero f(x), g(x) in R[x], even if R is not an integral domain.
a. List all the polynomials in Z3[x] that have degree 2.
b. Determine which of the polynomials in part a are units. If none exists, state so.
a. Find a nonconstant polynomial in Z4[x], if one exists, that is a unit.

b. Find a nonconstant polynomial in Z;[x], if one exists, that is a unit.

c. Prove or disprove that there exist nonconstant polynomials in Z,[x] that are units if
p is prime.
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13.

14.
15.

16.

17.

18.

19.

20.

21.
22,

23.
24.

a. How many polynomials of degree 2 are there in Z,[x]?

b. If m is a positive integer, how many polynomials of degree m are there in Z,[x]?
Prove or disprove that R[x]is a field if R is a field.

Prove that if 7 is an ideal in a commutative ring R with unity, then /[x]is an ideal
in R[x].

a. If Ris a commutative ring with unity, show that the characteristic of R[x]is the same
as the characteristic of R.

b. State the characteristic of Z,[x].
c. State the characteristic of Z[x].

a. Suppose that R is a commutative ring with unity, and define 6: R[x] — R by
0(ap + ax + -+ + a,x") = a

for all ap + ajx + -+ + a,x" in R[x]. Prove that 6 is an epimorphism from R[x]
to R.

b. Describe the kernel of the epimorphism in part a.

Let R be a commutative ring with unity, and let / be the principal ideal / = (x) in R[x].
Prove that R[x]/I is isomorphic to R.

In the integral domain Z[x], let (Z[x])* denote the set of all f(x) in Z[x] that have a
positive integer as a leading coefficient. Prove that Z[x] is an ordered integral domain
by proving that (Z[x])" is a set of positive elements for Z[x].

Consider the mapping ¢: Z[x] — Z[x] defined by
dlag + ax + -+ + a,x") = [ag] + [ay]x + -+ + [a,]x",

where [a;] denotes the congruence class of Z; that contains a;. Prove that ¢ is an epi-
morphism from Z[x] to Z[x].

Describe the kernel of the epimorphism ¢ in Exercise 20.

Assume that each of R and S is a commutative ring with unity and that #: R — S is an
epimorphism from R to S. Let ¢: R[x] — S[x] be defined by

¢lag + ayx + -+ + a,x") = 0(ay) + O(apx + -~ + 0(a,)x".
Prove that ¢ is an epimorphism from R[x] to S[x].
Describe the kernel of the epimorphism ¢ in Exercise 22.

For each f(x) = X;_, a;x' in R[x], the formal derivative of f(x) is the polynomial
f@) = iax "
=

(Forn = 0, f'(x) = 0 by definition.)
a. Prove that[f(x) + g(x)]' = f'(x) + g'(x).
b. Prove that [ f(x)g(x)]" = f(x)g'(x) + f'(x)g(x).
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Divisibility and Greatest Common Divisor

If a ring R is not an integral domain, the division of polynomials over R is not a very satis-
factory subject for study, because of the possible presence of zero divisors. In order for us
to obtain the results we need on division of polynomials, the ring of coefficients actually
must be a field. For this reason, with a few exceptions in the exercises, we confine our
attention for the rest of this chapter to rings of polynomials F[x] where F is a field. This
assures us that F[x]is an integral domain (Corollary 8.8) and that every nonzero element of
F has a multiplicative inverse.

The definition, the theorems and even proofs in this section are very similar to corre-
sponding statements in Chapter 2 about division in the integral domain Z.

m Divisor, Multiple

If f(x) and g(x) are in F[x], then f(x) divides g(x) if there exists i(x) in F[x]such that g(x) =
FEOR).

If f(x) divides g(x), we write f(x)|g(x), and we say that g(x) is a multiple of f(x), that
f(x) is a factor of g(x), or that f(x) is a divisor of g(x). We write f(x)t g(x) to indicate
that f(x) does not divide g(x).

Polynomials of degree zero (the nonzero elements of F') have two special properties
that are worth noting. First, any nonzero element a of F is a factor of every f(x) € Flx],
because a~'f(x) is in F[x]and

f@) = dla” ' f(0)].
Second, if f(x)|g(x), then af(x)|g(x) for all nonzero a € F, since the equation
g(x) = flx)h(x)
implies that
g() = [afW)]a"'h(x)].

The Division Algorithm for integers has the following analogue in F[x].

Theorem 810 m The Division Algorithm
Let f(x) and g(x) be elements of F[x], with f(x) a nonzero polynomial. There exist unique
elements g(x) and r(x) in F[x] such that
g(x) = fg(x) + r(x)
with either r(x) = 0 or deg r(x) < deg f(x).
Existence Proof We postpone the proof of uniqueness until existence of the required g(x) and r(x)

in F[x] has been proved. There are two trivial cases that we shall dispose of first.
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Complete
Induction

™ Figure 8.1

1. If g(x) = 0 or if deg g(x) < deg f(x), then we see from the equality
g(x) = f(x) - 0 + g(x)

that g(x) = 0 and r(x) = g(x) satisfy the required conditions.
2. Ifdeg f(x) = 0, then f(x) = c for some nonzero constant c. The equality

g(x) = c[c 'g(0)] + 0
shows that g(x) = ¢~ 'g(x) and r(x) = 0 satisfy the required conditions.

Suppose now that g(x) # 0 and 1 = deg f(x) = deg g(x). The proof is by induction on
n = deg g(x), using the second principle of finite induction. For each positive integer n, let
S, be the statement that if g(x) € F[x]has degree n and 1 = deg f(x) = deg g(x), then there
exist g(x) and r(x) € F[x] such that g(x) = f(x)gq(x) + r(x), with either r(x) =0 or
deg r(x) < deg f(x).

If n = 1, then the condition 1 = deg f(x) = deg g(x) = n requires that both f(x) and
g(x) have degree 1—say,

f(x) = ax + b, gx) =cx + d,
where a # 0 and ¢ # 0. The equality
cx +d= (ax + b)(ca") + (d — bca™ ")

shows that g(x) = ca ' and r(x) =d — bca™! satisfy the required conditions, and S is
true.

Now assume that & is a positive integer such that S, is true for all positive integers
m < k. To prove that Sy is true, let g(x) € F[x] with deg g(x) = k and f(x) € F[x] with
1 = deg f(x) = deg g(x). Then

fx) =ax/ + -, gx) = ext + -

with a # 0, ¢ # 0, and j = k. The first step in the usual long division of g(x) by f(x) is
shown in Figure 8.1.

ca” %k

ax’ + - [k ¥ ..

ca 'xXFIf(x)

g(x) — ca” X f(x)

This first step in long division yields
g = ca” ' X Uf(x) + [g(x) — ca” X Tf()].

Let h(x) = g(x) — ca™' x*7 f(x). Then the coefficient of x* in A(x) is zero, and deg h(x) < k.
By the induction hypothesis, there exist polynomials go(x) and r(x) such that

h(x) = f(x)go(x) + r(x)
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with either r(x) = 0 or deg r(x) < deg f(x). This gives the equality
g(x) = ca” ' X f(x) + h(x)
ca” '} + f(0)go(x) + rx)
= fca”'x* 7 + goy(0)] + r(x),
which shows that g(x) = ca”'x¥7 4+ go(x) and r(x) are polynomials that satisfy the
required conditions. Therefore, Sy is true, and the existence part of the theorem follows
from the second principle of finite induction.

To prove uniqueness, suppose that g(x) = f(x)g1(x) + ri(x) and g(x) = f(x)ga2(x) +
r2(x), where either r;(x) = 0 or deg ri(x) < deg f(x) fori = 1, 2. Then

r(x) = rx) = [gkx) — f(0)g,(x0)] — [g(x) — f(X)g2(x)]
= f(0)[g2(x) — g,(0)].

The right member of this equation, f(x)[g2(x) — gi(x)], either is zero or has degree greater
than or equal to deg f(x), by Theorem 8.7. However, the left member, 7;(x) — ry(x), either is
zero or has degree less than deg f(x), since deg ri(x) < deg f(x) and deg ry(x) < deg f(x).
Therefore, both members must be zero, and this requires that r(x) = ry(x) and g;(x) = g2(x)
since f(x) is nonzero. Therefore, g(x) and r(x) are unique and the proof is complete.

In the Division Algorithm, the polynomial g(x) is called the quotient and r(x) is called
the remainder in the division of g(x) by f(x). For any field F, the quotient and remainder
in F[x] can be found by the familiar long-division procedures. An illustration is given in the
next example.

Example 1 Let f(x) = 3x> + 2 and g(x) = 4x* + 2> + 62> + dx + 5 in Z;[x]. We
shall find g(x) and r(x) by the long-division procedure. Referring to Figure 8.1, we have
a =3in f(x),c = 41in g(x), and ca”' = 34" = 3(2) = 6 in the first step.

6x>+3x +5
3+ 2 [t + 27 6+ 4x + 5
45 + 5x°
20 4+ X2
2 + 6x
X+ 5x
X +3

Sx + 2

Thus the quotient is g(x) = 6x*> + 3x + 5 and the remainder is r(x) = 5x + 2 in the
division of g(x) by f(x). [ ]

Our next objective in this section is to prove that any two nonzero polynomials over F'
have a greatest common divisor in F[x]. We saw earlier that if f(x) is a divisor of g(x), then
af(x) is also a divisor of g(x) for every nonzero a € F. By choosing a to be the multiplica-
tive inverse of the leading coefficient of f(x), we can make the leading coefficient in af(x)
equal to 1. This means that when we consider common divisors of two polynomials, there
is no loss of generality if we restrict our attention to polynomials that have 1 as their lead-
ing coefficient.
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Definition 8.11 Monic Polynomial
A polynomial with 1 as its leading coefficient is called a monic polynomial.

One of the conditions that we place on a greatest common divisor of two polynomials
is that it be monic. Without this condition, the greatest common divisor of two polynomi-
als would not be unique.

Definition 8.12m Greatest Common Divisor
Let f(x) and g(x) be nonzero polynomials in F[x]. A polynomial d(x) in F|x]is a greatest
common divisor of f(x) and g(x) if these conditions are satisfied:
1. d(x) is a monic polynomial.
2. d(x)| f(x) and d(x) | g(x).
3. h(x)| f(x) and h(x) | g(x) imply that A(x) | d(x).

The next theorem shows that any two nonzero elements f(x), g(x) of F[x]have a unique

greatest common divisor d(x).
Strategy The proof of Theorem 8.13 is obtained by making minor adjustments in the proof of
Theorem 2.12, and it shows that d(x) is a linear combination of f(x) and g(x); that is,
d(x) can be written in the form
d(x) = f(x)s(x) + g(x)t(x)
for some s(x), #(x) € F[x].
Theorem 8.13 Greatest Common Divisor
Let f(x) and g(x) be nonzero polynomials over F. Then there exists a unique greatest
common divisor d(x) of f(x) and g(x) in F[x]. Moreover, d(x) can be expressed as
d(x) = f(x)s(x) + gx)r(x)
for s(x) and #(x) in F[x], and d(x) is the monic polynomial of least degree that can be written
in this form.
Existence Proof Consider the set S of all polynomials in F[x] that can be written in the form

fux) + glov(x)

with u(x) and v(x) in F[x]. Since f(x) = f(x) - 1 + g(x) - 0 # 0, the set of nonzero polyno-
mials in § is nonempty. Let

d,(x) = f)u,(x) + gr)vi(x)
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be a polynomial of least degree among the nonzero elements of S. If ¢ is the leading coef-
ficient of d;(x), then

d(x) = ¢ 'd\(x) = f[e™ (0] + g vi()]

is a monic polynomial of least degree in S. Letting s(x) = ¢ huy(x) and t(x) = ¢ vi(x),
we have a polynomial

d(x) = f(x)s(x) + g(0)t(x),

which is expressed in the required form and satisfies the first condition in Definition 8.12.
We shall show that d(x) | f(x). By the Division Algorithm, there are elements ¢(x) and
r(x) of F[x]such that

J(x) = d(x)g(x) + r(x)
with either r(x) = 0 or deg r(x) < deg d(x). Since

r(x) = f(x) — d(x)q(x)
= fx) = [f(0)s(x) + g(0)1x0)]g(x)
= f[1 = s(x)g)] + g)[—1(x)gx)],
r(x) is an element of S. By choice of d(x) as having smallest possible degree among the
nonzero elements of S, it cannot be true that deg r(x) < deg d(x). Therefore, r(x) = 0 and

d(x)| f(x). A similar argument shows that d(x) | g(x), and hence d(x) satisfies condition 2 in
Definition 8.12.

If ii(x) | f(x) and A(x) | g(x), then f(x) = h(x)pi(x) and g(x) = h(x)pa(x) for pi(x) € F[x].
Therefore,

d(x) = f(x)s(x) + g(0)r(x)
= h(x)p(x)s(x) + h(x)p,(x)1(x)
= h(0)[p1()s(x) + pr(0)H(x)],
and this shows that i(x) | d(x). By Definition 8.12, d(x) is a greatest common divisor of f(x)
and g(x).
To show uniqueness, suppose that d,(x) and d,(x) are both greatest common divisors
of f(x) and g(x). Then d,(x)|d,(x) and also d,(x)|d;(x). Since both d;(x) and d,(x) are

monic polynomials, this means that d,(x) = d,(x). (See Exercise 26 at the end of this
section.)

If f(x) and g(x) are nonzero polynomials such that f(x)|g(x), then the greatest com-
mon divisor of f(x) and g(x) is simply the product of f(x) and the multiplicative inverse of
its leading coefficient. If f(x)/ g(x), the Euclidean Algorithm extends readily to polynomi-
als, furnishing a systematic method for finding the greatest common divisor of f(x) and g(x)
and for finding s(x) and #(x) in the equation

d(x) = f(x)s(x) + g(x)t(x).

The Euclidean Algorithm consists of repeated application of the Division Algorithm to
yield the following sequence, where r,(x) is the last nonzero remainder.
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Euclidean Algorithm

g(x) = f(x)go(x) + ri(x), deg ri(x) < deg f(x)
f) = g, (x) + r(x), deg ry(x) < deg r(x)

ri(x) = ry(x)qy(x) + r3(x), deg r3(x) < deg ry(x)

Fpo(X) = 1,—1(0)q,—1(x) + r,(x), deg r,(x) < degr, (x)
rn*l(x) = rn(x)qn(-x)

Suppose that a is the leading coefficient of the last nonzero remainder, r,(x). It is left as
an exercise to prove that a” 'r,(x) is the greatest common divisor of f(x) and g(x).

Example 2 We shall find the greatest common divisor of f(x) = 3x> + 5x> + 6x and
g(x) = 4x* + 23 + 6x? + 4x + 5 in Zs[x]. Long division of g(x) by f(x) yields a quotient
of go(x) = 6x and a remainder of r;(x) = 5x% + 4x + 5, so we have
g(x) = f(x) * (6x) + (5x* + 4x + 5).
Dividing f(x) by ri(x), we obtain
fx) =rx) - 2x+5) + (4x + 3),
$0 gi(x) = 2x + 5 and rp(x) = 4x + 3 in the Euclidean Algorithm. Division of r(x) by
r2(x) then yields
r(x) = r(x) - 3x + 4).
Thus r5(x) = 4x + 3 is the last nonzero remainder, and the greatest common divisor of f(x)
and g(x) in Z7[x]is
d(x) = 47 '(4x + 3)
= 2(4x + 3)
=x+6. |

As mentioned earlier, the Euclidean Algorithm can also be used to find polynomials
s(x) and #(x) such that

d(x) = fx)s(x) + g0)r(x).

This is illustrated in Example 3.

Example 3 Asin Example 2, let f(x) = 3x3 + 5x% + 6x and glx) = 4t + 23 +
6x> 4+ 4x + 5 in Z[x]. From Example 2, the greatest common divisor of f(x) and g(x) is
d(x) = x + 6. To find polynomials s(x) and #(x) such that

d(x) = f(x)s(x) + g(x) 1(x),

we first solve for the remainders in the Euclidean Algorithm (see Example 2) as follows:
r(x) = f(x) — nx)(2x +5)
ri(x) = gx) — f(x)(6x).
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Substituting for r;(x) in the first equation, we have

r(x) = f(x) — [g(x) — f(x)(6x)](2x + 5)
= f(x) + f(x) (6x)(2x + 5) — g(x)(2x + 5)
= f()[1 + (6x) 2x + 5)] + g(x)(=2x — 5)
= f(x)(5x% + 2x + 1) + g(x)(5x + 2).
To express d(x) = 47! ry(x) = 2r,(x) as a linear combination of f(x) and g(x), we multi-
ply both members of the last equation by 4~ ' = 2:
d(x) = 2ry(x) = f(xX)(2)(5x* + 2x + 1) + g(x)(2)(5x + 2)
d(x) = f(x)(3x* + 4x + 2) + g(x)(3x + 4).

The desired polynomials are given by s(x) = 3x*> + 4x + 2 and #(x) = 3x + 4. |

Exercises 8.2 I——

True or False

Label each of the following statements as either true or false.

1. Every f(x) in F[x], where F is a field, can be factored.
2. Any two nonzero polynomials over a field ' have a unique greatest common divisor.

3. The greatest common divisor of two polynomials f(x) and g(x) over a field F may not
be monic if at least one of f(x) or g(x) is not monic.

Exercises

For f(x), g(x), and Z,[x] given in Exercises 1-6, find g(x) and r(x) in Z,[x] that satisfy the
conditions in the Division Algorithm.

1L f(x) =3x+1,g(x) =2x>+ 3x> + 4x + 1, in Zs[x]

2. f(x) =2x+2,g(x) = x> + 2x> + 2, in Zs[x]

L) =X+ +2x+2,gx) =x*+ 2 + x + 1, in Z3[x]

4. f(x) =2+ 22+ 2, g(x) = 2 + 2x* + x> + 2, in Z3[x]

5. f(x) =3x* + 2, g(x) = x* + 5x> + 2x + 2, in Z-[x]

6. f(x) =3x>+ 2, g(x) = 4x* + 2> + 6x> + 4x + 5, in Z[x]
For f(x), g(x), and Z,[x] given in Exercises 7-10, find the greatest common divisor d(x) of
f(x) and g(x) in Z,[x].

7. f) =X+ 2+ 2x+2,gx) =x* + 222 + x + 1, in Z3[¥]

8. f(x) =x+ 22 +2,8(x) =28 + 2x* + x* + 2, in Z3[x]
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9. f(x) =3x* + 2, g(x) = x* + 5x2 + 2x + 2, in Z4[x]
10. f(x) = 3x% + 2, g(x) = 4x* + 2% + 6% + 4x + 5, in Z[x]

For f(x), g(x) and Z,[x] given in Exercises 11-14, find s(x) and #(x) in Z,[x] such that
d(x) = f(x)s(x) + g(x)r(x) is the greatest common divisor of f(x) and g(x).

11.
12.
13.
14.
15.

16.

17.

18.

19.

20.

21.

22.

23.
24.

25.

f) =204+ 22+x+ 1, g(x) =x* + 2> + x + 1, in Zs[x]
f) =2+ x+1,g(x) =X + x* + 2% + 1, in Z3[x]
fx) =3x" 4+ 2, g(x) = x* + 5x% + 2x + 2, in Z4[x]

fx) =3x" + 2, g(x) = 4x* + 23 + 6x% + 4x + 5, in Z[x]

a. Factor x as a product of two polynomials of degree 1 in Z[x].

b. Factor x as a product of two polynomials of degree 1 in Zg[x].

Factor each of the following polynomials as the product of two polynomials of
degree 1 in Zp[x].

a.x+2 b. x+3

Factor each of the following polynomials as the product of two polynomials of
degree 1 in Zyg[x].

a.x+7 b. x+9

Prove or disprove that the polynomial x can be factored as the product of two polyno-
mials of degree 1 in F[x], where F is a field.

Let I be the principal ideal (x> + 1) = {(x* + 1)f(x)|f(x) € Z[x]}. Determine
whether each of the following polynomials are elements of /.

a. x* =3+ 32— 3x+2 b. x*+x -2 +x+ 1

Let I be the principal ideal (x* + 1) = {(x* + 1)f(x)|f(x) € Zs[x]}. Determine
whether each of the following polynomials are elements of /.

a. 20t + 4 + 4x + 3 b. 300 4+ x* + 2% + 3% + 4x + 1

Let I be the principal ideal (x + 2) = {(x + 2)f(x)|f(x) € Z;[x]}. Determine
whether each of the following polynomials are elements of /.

a bt + 2+ x+2 b. 5x* + 58 + 332 + 2x + 1

Let 7 be the principal ideal (2x + 7) = {(2x + 7)f(x)| f(x) € Z,,[x]}. Determine
whether each of the following polynomials are elements of /.

a. dxt +6x° + 12+ Tx + 4 b. 9x* + x° + 8x% + 2x + 10
Let f(x), g(x) € F[x] where f(x)| g(x). Prove (g(x)) = (f(x)).
Let f(x) = ax" + a,_x" '+ --- + a, where a, # 0. Find the greatest common

divisor of f(x) and the zero polynomial.

Prove that if f(x) and g(x) are nonzero elements of F[x] such that f(x)|g(x) and
g(x) | f(x), then f(x) = ag(x) for some nonzero a € F.
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26. Prove that if di(x) and d)(x) are monic polynomials over the field F' such that
di(x) | da(x) and da(x) | d1(x), then di(x) = dy(x).

27. Show that the polynomials s(x) and #(x) in the expression
d(x) = f(0)s(x) + g(x)r(x)
in Theorem 8.13 are not unique.

28. Prove that if A(x) | f(x) and A(x) | g(x) in F[x], then A(x) divides f(x)u(x) + g(x)v(x) for
all u(x) and v(x) in F[x].

29. Letf(x), g(x), h(x) € F[x]. Prove that if f(x)|g(x) and g(x) | A(x) then f(x) | h(x).

30. In the statement of the Division Algorithm (Theorem 8.10), prove that the greatest
common divisor of g(x) and f(x) is equal to the greatest common divisor of f(x)
and r(x).

31. With the notation used in the description of the Euclidean Algorithm, prove that
a”'r,(x) is the greatest common divisor of f(x) and g(x).

32. Prove that every nonzero remainder r,(x) in the Euclidean Algorithm is a linear com-
bination of f(x) and g(x): rj(x) = f(x)s;(x) + g(x)t;(x) for some s;(x) and #;(x) in F[x].

33. Prove that the only elements of F[x] that have multiplicative inverses are the nonzero
elements of the field F. (Hence F[x]is nor a field.)

34. Prove that every ideal in F[x], where F is a field, is a principal ideal.

35. Follow the pattern in Exercise 25 of Section 2.4 to define the least common multiple
of two nonzero polynomials f(x) and g(x) over the field F.

Factorization in F[x]

Let f(x) = ap + aix + axx> + - - - + a,x" denote an arbitrary polynomial over the field F.
For any ¢ € F, f(c) is defined by the equation
flo)=ay+ ajc+ ac®+ -+ a,c".

n

That is, f(c) is obtained by replacing the indeterminate x in f(x) by the element c. For each
¢ € F, this replacement rule yields a unique value f(c) € F, and hence the pairing (c, f(c))
defines a mapping from F to F. A mapping obtained in this manner is called a polynomial
mapping, or a polynomial function, from F to F.

Definition 8.14m Zero, Root, Solution

Let f(x) be a polynomial over the field F. If c is an element of F such that f(c) = 0, then ¢
is called a zero of f(x), and we say that c is a root, or a solution, of the equation f(x) = 0.
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Example 1 Consider f(x) = x> + 1 in Zs[x]. Since
fQ)=2+1=0

in Zs, 2 is a zero of x> + 1. Also, 2 is a root, or a solution, of x> + 1 = 0 over Zs. [

For arbitrary polynomials f(x) and g(x) over a field F, let h(x) = f(x) + g(x) and
p(x) = f(x)g(x). Two consequences of the definitions of addition and multiplication in F[x]
are that

h(c) = f(c) + g(c) and p(c) = f(c)g(c)

for all ¢ in F. We shall use these results quite freely, with their justifications left as exercises.

The difference in the roles of the letters x and c in the preceding paragraph should be
emphasized. Beginning with the second paragraph of Section 8.1, the indeterminate x has
been used as a formal symbol which represents an element that is not in R (or F) and sub-
ject only to the definitions that we have made since that paragraph. However, the symbol ¢
represents a variable element in the field F, and f(c) represents the value of the polynomial
function f at the element c.

The next example shows that f(x) and g(x) may be different polynomials in F[x] that
define the same polynomial function from F to F. That is, we may have f(c) = g(c) for all
c in F while the polynomials f(x) and g(x) are not equal.

Example 2 Consider the polynomials f(x) = 3x° — 4x* and g(x) = x> + 3x in Zs[x].
By direct computation, we find that
fO)=0=g0) f)=4=g) [f(2)=0=g?2)
fB3)=3=g@B) f4) =3=gM).
Thus f(c) = g(c) for all ¢ in Zs, but f(x) # g(x) in Zs[x]. |

The next two theorems are two of the simplest and most useful results on factorization
in F[x].

Theorem 815 m The Remainder Theorem
If f(x) is a polynomial over the field F and ¢ € F, then the remainder in the division of f(x)
by x — cis f(c).
(uAv)=w Proof Sincex — c has degree 1, the remainder r in

f) =@ —o)gx) +r
is a constant. Replacing x with ¢, we obtain
fc) =(c —c)qlec) + r
=0-qg(c) +r
= r.

Thus r = f(c).
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m The Factor Theorem

pP=9q

Theorem 8.17

A polynomial f(x) over the field F has a factor x — ¢ in F[x]if and only if ¢ € F is a zero
of f(x).

Proof From the Remainder Theorem, we have

J(x) = (x = o)gx) + f(c).
Thus x — cis a factor of f(x) if and only if f(c) = 0.

The Factor Theorem can be extended as follows.

m Factorization of f(x) with Distinct Zeros

Induction

Let f(x) be a polynomial over the field F that has positive degree n and leading coefficient
a.Ifcy, ¢y, . .., ¢, are n distinct zeros of f(x) in F, then

J&) =alx —c)x =) - (x — ).

Proof The proof is by induction on n = deg f(x). For each positive integer n, let S, be
the statement of the theorem.

For n = 1, suppose that f(x) has degree 1 and leading coefficient a, and let ¢| be a zero
of f(x)in F. Then f(x) = ax + b, where a # 0 and f(c;) = 0. This implies thatac; + b = 0

and b = —ac,. Therefore, f(x) = ax — ac; = a(x — c1), and S| is true.

Assume now that Sy is true, and let f(x) be a polynomial with leading coefficient @ and
degree k + 1 that has k + 1 distinct zeros cy, ¢, . . ., Ci, Ck+1 in F. Since cx+ is a zero
of f(x),

J) = (x = 1 1)g(x)

by the Factor Theorem. By Theorem 8.7, g(x) must have degree k. Since the factor x — ¢y
is monic, g(x) and f(x) have the same leading coefficient. Fori = 1, 2, . . ., k, we have

(¢; = cr)g(c) = fle) =0,

where ¢; — cx+1 # 0, since the zeros ¢y, ¢, . . ., ¢k, cx+1 are distinct. Therefore, g(c;) = 0
fori = 1,2,...,k Thatis, cy, ¢z, . . ., cr are k distinct zeros of g(x) in F. By the induction
hypothesis,

qx) = alx —c)x — ) - (x = ¢p).
Substitution of this factored expression for g(x) in f(x) = (x — cx+1)g(x) yields
f@) =alx —c)x — ) - (x = c)x = ce)-

Therefore, Sy is true whenever Sy is true, and it follows by induction that S, is true for all
positive integers n.

The proof of the following corollary is left as an exercise.
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Corollary 8.18 m Number of Distinct Zeros

A polynomial of positive degree n over the field F has at most n distinct zeros in F.

In the factorization of polynomials over a field F, the concept of an irreducible polynomial
is analogous to the concept of a prime integer in the factorization of integers.

Definition 8.19 = Irreducible, Prime, Reducible

A polynomial f(x) in F[x]is irreducible (or prime) over F if f(x) has positive degree and
if f(x) cannot be expressed as a product f(x) = g(x)h(x) with both g(x) and A(x) of positive
degree in F[x]. If f(x) is not irreducible, then f(x) is said to be reducible.

Example 3 Note that whether or not a given polynomial is irreducible over F depends
on the field F. For instance, x* + 1 is irreducible over the field of real numbers, but it is re-
ducible over the field C of complex numbers, since x> + 1 can be factored as

X+1=x-dkx+i
in C[x]. |

If g(x) and h(x) are polynomials of positive degree, their product g(x)h(x) has degree at
least 2. Therefore, all polynomials of degree 1 are irreducible. Constant polynomials, how-
ever, are never irreducible because they do not have positive degree.

It is usually not easy to decide whether or not a given polynomial is irreducible over a
certain field. However, the following theorem is sometimes quite helpful for polynomials
with degree less than 4.

Theorem8.20 m Polynomials of Degree 2 or 3
If f(x) is a polynomial of degree 2 or 3 over the field F, then f(x) is irreducible over F if
p < q and only if f(x) has no zeros in F.
Proof Let f(x) be a polynomial of degree 2 or 3 over the field F.
~p & ~q We shall prove the theorem in this form: f(x) is reducible over F if and only if f(x) has
at least one zero in F.
~p & ~q Suppose first that f(x) has a zero c in F. By the Factor Theorem,

~p="q

Jx) = (x = 0)q(x),

where g(x) has degree one less than that of f(x) by Theorem 8.7. This factorization shows
that f(x) is reducible over F.

Assume, conversely, that f(x) is reducible over F. That is, there are polynomials g(x)
and A(x) in F[x] such that f(x) = g(x)h(x), with both g(x) and A(x) of positive degree. By
Theorem 8.7,

deg f(x) = deg g(x) + deg h(x).
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Since deg f(x) is either 2 or 3, one of the factors g(x) and A(x) must have degree 1. Without
loss of generality, we may assume that this factor is g(x), and we have

f(x) = (ax + b)h(x),

where a # 0. It follows at once from this equation that —a ™ 'b is a zero of f(x) in F, and
the proof is complete.

Example 4 Let us determine whether each of the following polynomials is irreducible
over Zs.

a. f(x)=x3+2x2—3x+4
b. g(x)=x2+3x+4
Routine computations show that
fO) =4, f)=4 fQ=4  f3)=0, [f4=3.

Thus 3 is a zero of f(x) in Zs, and f(x) is reducible over Zs. However, g(x) is irreducible
over Zs since g(x) has no zeros in Zs:

g(0) = 4, g(l) =3, g(2) =4, g(3) =2, g = 2. u

Irreducible polynomials play a role in the factorization of polynomials corresponding
to the role that prime integers play in the factorization of integers. This is illustrated by the
next theorem.

m Irreducible Factors

uAv)=>WV2)

If p(x) is an irreducible polynomial over the field F and p(x) divides f(x)g(x) in F[x], then
either p(x)| f(x) or p(x) | g(x) in Fx].

Proof Assume that p(x) is irreducible over F and that p(x) divides f(x)g(x); say,

f(x)gx) = p(x)q(x)

for some g(x) in F[x]. If p(x) | f(x), the conclusion is satisfied. Suppose, then, that p(x) does
not divide f(x). This means that 1 is the greatest common divisor of f(x) and p(x), since the
only divisors of p(x) with positive degree are constant multiples of p(x). By Theorem 8.13,
there exist s(x) and #(x) in F[x] such that

I = f(x)s(x) + p(0)i(x),
and this implies that
g(x) = g[f(x)s(x) + p()r(x)]

= [(0)g(x)s(x) + p(x)g(x)t(x)
= p()q()s(x) + px)gx)r(x),
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Theorem 8.22

since f(x)g(x) = p(x)q(x). Factoring p(x) from the two terms in the right member, we see
that p(x) | ¢(x):

g(x) = p)[gx)s(x) + g(x)r(x)].
Thus p(x) divides g(x) if it does not divide f(x).

A comparison of Theorem 8.21 with Theorem 2.16 provides an indication of how
closely the theory of divisibility in F[x] resembles the theory of divisibility in the integers.
This analogy carries over to the proofs as well. For this reason, the proofs of the remaining
results in this section are left as exercises.

Theorem 8.23

Suppose p(x) is an irreducible polynomial over the field F such that p(x) divides a product
fi0)fo(x) - - fux) in Flx], then p(x) divides some f;(x).

Just as with integers, two nonzero polynomials f(x) and g(x) over the field F are called
relatively prime over F if their greatest common divisor in F[x]is 1.

Theorem 8.24

If f(x) and g(x) are relatively prime polynomials over the field F and if f(x)|g(x)h(x) in F[x],
then f(x)|A(x) in F[x].

m Unique Factorization Theorem

Every polynomial of positive degree over the field F can be expressed as a product of its
leading coefficient and a finite number of monic irreducible polynomials over F. This
factorization is unique except for the order of the factors.

Of course, the monic irreducible polynomials involved in the factorization of f(x) over
F may not all be distinct. If p;(x), p2(x), . . ., p(x) are the distinct monic irreducible factors
of f(x), then all repeated factors may be collected together and expressed by use of expo-
nents to yield

f) = alp, )" [p(x)]™ - - - [p.(0)]™,

where each m; is a positive integer.

In the last expression for f(x), m; is called the multiplicity of the factor p;,(x). More
generally, if g(x) is an arbitrary polynomial of positive degree such that[g(x)]" divides f(x)
and no higher power of g(x) divides f(x) in F[x], then g(x) is said to be a factor of f(x) over
F[x] with multiplicity m. Also, if ¢ is an element of the field F such that (x — ¢)" divides
f(x) for some positive integer m but no higher power of x — ¢ divides f(x), then c is called
a zero of multiplicity m.
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Example 5 We shall find the factorization that is described in the Unique Factorization
Theorem for the polynomial

fO =2+ +32+2x+ 4
over the field Zs.
We first determine the zeros of f(x) in Zs:
O =4, fH=2  f2=0 (B =1 féA=1L
Thus 2 is the only zero of f(x) in Zs, and the Factor Theorem assures us that x — 2 is a
factor of f(x). Dividing by x — 2, we get
fx) = (x — 2)(2x* + 3x + 3).
By Exercise 16 at the end of this section, the zeros of f(x) are 2 and the zeros of g(x) =
2x* + 3x + 3. We therefore need to determine the zeros of g(x), and the only possibility
is 2, since this is the only zero of f(x) in Zs. We find that g(2) = 0, and this indicates that
x — 2 is a factor of g(x). Performing the required division, we obtain
2+ 3 +3=(x—-2)2x%+4x+ 1)
and
f) =(x—2)(x —2)(2x* + 4x + 1)
=(x— 2)%2x* + 4x + 1).
We now find that 2x> + 4x + 1 is irreducible over Zs, since it has no zeros in Zs. To

arrive at the desired factorization, we need only factor the leading coefficient of f(x) from
the factor 2x* + 4x + 1:

f(x) = (x — 2)’Q2x* + 4x + 1)
= (x — 2)2x* + 4x + (2)(3)]
=2(x — 2)*(x* + 2x + 3). [ |

Exercises 8.3 II———

True or False
Label each of the following statements as either true or false.
1. Foreach cin a field F, the value f(c¢) € F'is unique, where f(x) = ay + ajx + -+ +
a,x" € F[x].
2. We say that ¢ € F is a solution to the polynomial equation f(x) = 0 if and only if
fc)=0inF.
3. Let f(x) and g(x) be arbitrary polynomials over a field F. If f(c) = g(c) for all c € F,
then f(x) = g(x).
4. Any polynomial of positive degree n over the field F has exactly n distinct zeros in F.

5. There are nonzero elements in a field F that can be considered as irreducible polyno-
mials in F[x].
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. Since the polynomial ax + b of degree 1 over a field F can be factored as a(x + a~'b),

then ax + b is not irreducible.

. Whether or not a given polynomial is irreducible over a field F depends on F.

. Any polynomial f(x) of positive degree that is reducible over a field F has at least one

zero in F.

Exercises

1. Determine the remainder r when f(x) is divided by x — ¢ over the field F for the given

f(), ¢, and F, where R denotes the field of real numbers and C the field of complex
numbers.

a.f(x)=x4—7x2—3x+9,c=2,F=R
b.f(x)=3x5—2x4+5x2+2x—1,c=—1,F=R
c.f(x)=x4—ix3+3x2—3ix,c=i,F=C
d.f(x)=x4—ix3+3x2—3ix,c=—i,F=C
e.f(x)=x5+x3+x+1,c=1,F=Z3
f.f(x)=x4+x3+2x2+1,c=2,F=Z3
g.f(x)=x3+4x2+2x+1,c=3,F=Z5
h.f(x)=2x4+3x3+4x2+3,c=2,F=Z5
i.f(x)=x4+5x3+2x2+6x+2,c=4,F=Z7
j.f(x)=x3+6x2+2x+2,c=5,F=Z7

. Let Q denote the field of rational numbers, R the field of real numbers, and C the

field of complex numbers. Determine whether each of the following polynomials
is irreducible over each of the indicated fields, and state all the zeros in each of
the fields.

. x> —2overQ,R, and C

. x> + loverQ,R, and C

x>+ x — 2over Q, R, and C

2+ 2x + 2over Q, R, and C

2 + x + 2 over Zs, Zs, and Z

2 + 2x + 2 over Zs, Zs, and Z

3 — x>+ 2x + 2over Zs, Zs, and Z,
x* + 2x2 + 1 over Zs, Zs, and Z;

FRom e 20 TR

. Find all monic irreducible polynomials of degree 2 over Zs.

. Write each of the following polynomials as a product of its leading coefficient and a

finite number of monic irreducible polynomials over Zs. State their zeros and the
multiplicity of each zero.

a. 207 + 1 b. 3 + 2x* + x + 2
.3+ X2 +2x+4 d. 23 + 4% +3x + 1
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10.

11.

12.

13.

14.

15.

16.

17.
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e 2t + 3 +3x+2 £.3x* + 38 +x+ 3

g+ X+ +2x+3 h. x* + x> + 22+ 3x + 2

i+ +3x+4 jo X+ x4+ 308 + 207 + 4x

Let F be a field and f(x) = ay + ax + --+ + a,x" € F[x].

a. Prove that x — 1is a factor of f(x) if and only ifay, + a; + --- + a, = 0.

b. Prove that x + 1 is a factor of f(x) if and only ifay — a; + -+ + (—1)"a, = 0.

Prove Corollary 8.18: A polynomial of positive degree n over the field F has at most n
distinct zeros in F.

Corollary 8.18 requires that F be a field. Show that each of the following polynomials
of positive degree n has more than n zeros over F where F is not a field.

a. 4x> + 4 over Zg b. 553 + 3 over Zjo

Let f(x) be an irreducible polynomial over a field F. Prove that af(x) is irreducible
over F for all nonzero a in F.

Let F be a field. Prove that if ¢ is a zero of f(x) =ay + aix + -+ + X" € Fx],
then ¢ 'isazeroofa, + a,_.x + -+ + aux’.

Let f(x) and g(x) be two polynomials over the field F, both of degree n or less. Prove
that if m > n and if there exist m distinct elements ¢y, ¢,, ..., ¢, of F such that
f(c)) = g(cp)fori = 1,2,...,m,then f(x) = g(x).

Let p be a prime integer, and consider the polynomials f(x) = x” and g(x) = x over the
field Z,. Prove that f(c) = g(c) for all ¢ in Z,. (This result is another form of Fermat’s
Little Theorem: n” = n (mod p). To prove it, consider the multiplicative group of
nonzero elements of Z,.)

Find all the zeros of each of the following polynomials over the indicated fields.

5

a. x> — x over Zs b. x!' — xover Z;;

Give an example of a polynomial of degree 4 over the field R of real numbers that is
reducible over R and yet has no zeros in the real numbers.

If f(x) and g(x) are polynomials over the field F, and h(x) = f(x) + g(x), prove that
h(c) = f(c) + g(c) forall cin F.

If f(x) and g(x) are polynomials over the field F, and p(x) = f(x)g(x), prove that
plc) = f(c)g(c) forall cin F.

Let f(x) be a polynomial of positive degree n over the field F, and assume that
Ff@) = (x — ¢)g(x) for some ¢ € F and g(x) in F[x]. Prove that

a. ¢ and the zeros of g(x) in F are zeros of f(x)

b. f(x) has no other zeros in F.

Suppose that f(x), g(x), and h(x) are polynomials over the field F, each of which has

positive degree, and that f(x) = g(x)h(x). Prove that the zeros of f(x) in F consist of the
zeros of g(x) in F together with the zeros of i(x) in F.
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18. Prove that a polynomial f(x) of positive degree n over the field F has at most n (not
necessarily distinct) zeros in F.

19. Prove Theorem 8.22: Suppose p(x) is an irreducible polynomial over the field F' such
that p(x) divides a product f(x)f2(x) - - * f(x) in F[x], then p(x) divides some f;(x).

20. Prove Theorem 8.23: If f(x) and g(x) are relatively prime polynomials over the field F
and if f(x)| g(x)(x) in F[x], then f(x) | h(x) in F[x].

21. Prove the Unique Factorization Theorem in F[x] (Theorem 8.24).
22. Leta # b in afield F. Show that x + a and x + b are relatively prime in F[x].

23. Let f(x), g(x), h(x) € F[x] where f(x) and g(x) are relatively prime. If i(x) | f(x), prove
that (x) and g(x) are relatively prime.

24. Let f(x), g(x), h(x) € F[x] where f(x) and g(x) are relatively prime. If f(x)|h(x) and
g(x) | h(x), prove that f(x)g(x) | h().
25. Let f(x), g(x), h(x) € F[x] where f(x) and g(x) are relatively prime and f(x) and h(x)

are relatively prime. Prove that f(x) and g(x)h(x) are relatively prime.

26. Let f(x), g(x) € Flx] and d(x) the greatest common divisor of f(x) and g(x) where
F(®) = h(x)d(x) and g(x) = k(x)d(x) for some h(x), k(x) € F[x]. Prove that h(x) and
k(x) are relatively prime.

Sec. 8.2, #7-10, 35 > 27. Find the least common multiple of each pair of polynomials given in Exercises 7-10

8.4

Theorem 8.25

of Section 8.2.

Zeros of a Polynomial

We now focus our interest on polynomials that have their coefficients in the field C of com-
plex numbers, the field R of real numbers, or the field Q of rational numbers. Our results
are concerned with the zeros of these polynomials and the related property of irreducibility
over these fields.

The statement in Theorem 8.25 is so important that it is known as the Fundamental
Theorem of Algebra. It was first proved in 1799 by the great German mathematician Carl
Friedrich Gauss (1777-1855). Unfortunately, all known proofs of this theorem require the-
ories that we do not have at our disposal, so we are forced to accept the theorem without
proof.

m The Fundamental Theorem of Algebra

If f(x) is a polynomial of positive degree over the field of complex numbers, then f(x) has
a zero in the complex numbers.

The Fundamental Theorem opens the door to a complete decomposition of any poly-
nomial over C, as described in the following theorem.
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Theorem 8.26 m Factorization over C

Induction

If f(x) is a polynomial of positive degree n over the field C of complex numbers, then f(x)
can be factored as

f) =alx —c)x — ¢ -+ (x = ¢,
where a is the leading coefficient of f(x) and cy, ¢, . . ., ¢, are n (not necessarily distinct)

complex numbers that are zeros of f(x).

Proof For each positive integer n, let S, be the statement of the theorem.
Ifn = 1, then f(x) = ax + b, where a # 0. The complex number ¢; = —a 'bisazero
of f(x), and

fx) =ax + b =ax — ac; = a(x — ¢).

Thus S is true.

Assume that Sy is true, and let f(x) be a polynomial of degree k + 1 over C. By the
Fundamental Theorem of Algebra, f(x) has a zero c; in the complex numbers, and the
Factor Theorem asserts that

fx) = (x — ¢c)glx)

for some polynomial g(x) over C. Since x — ¢; is monic, g(x) has the same leading coeffi-
cient as f(x), and Theorem 8.7 implies that g(x) has degree k. By the induction hypothesis,
q(x) can be factored as the product of its leading coefficient and k factors of the form x — ¢;:

q(x) = alx — ¢))(x = ¢3) (X = Cpy)-
Therefore,
S = (x — ¢)g®)
=alx —c)x —¢c) " (X~ Csn)s

and Sy is true. It follows that the theorem is true for all positive integers n.

As noted in the statement of Theorem 8.26, the zeros c; are not necessarily distinct in
the factorization of f(x) that is described there. If the repeated factors are collected to-
gether, we have

J&) = alx = c)"@x =)™ (0 = )™

as a standard form for the unique factorization of a polynomial over the complex numbers.
In particular, we observe that the only irreducible polynomials over C are the first-degree
polynomials.

With such a simple description of the irreducible polynomials over C, it is natural to ask
which polynomials are irreducible over the real numbers. For polynomials of degree 2
(quadratic polynomials), an answer to this question is readily available from the quadratic
formula. According to the quadratic formula, the zeros of a polynomial

fx) = ax’> + bx + ¢
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with real coefficients” and a # 0 are given by

_ —b+ Vb? — 4dac

2a

—b — Vb* — 4dac

2a

r and r, =
These zeros are not real numbers if and only if the discriminant, b*> — 4ac, is negative.
Thus a quadratic polynomial is irreducible over the real numbers if and only if it has a
negative discriminant.

If we introduce some appropriate terminology, a meaningful characterization of the
field of complex numbers can now be formulated. If F and E are fields such that F € E,
then E is called an extension of F. An element a € E is called algebraic over F if a is the
zero of a polynomial f(x) with coefficients in F, and E is an algebraic extension of F if
every element of E is algebraic over F. E is algebraically closed if every polynomial of
positive degree over E has a zero in E.

The field C of complex numbers can be characterized as a field with the following
properties:

1. Cis an algebraic extension of the field R of real numbers.

2. Cis algebraically closed.

If z = a + biwith a, b € R, then z is a zero of the polynomial

fx) =[x — (a + bi)][x — (a — bi)]
= x> — 2ax + (&® + b?)

over R. Thus z is algebraic over R, and property 1 is established. The Fundamental
Theorem of Algebra (Theorem 8.25) asserts that C is algebraically closed. It can be
proved that any field that is an algebraic extension of R and is algebraically closed must
be isomorphic to C. The proof of this assertion is beyond the scope of this text.

If @ and b are real numbers, the conjugate of the complex number z = a + bi is the
complex number z = a — bi. Note that the zeros r; and r, given by the quadratic formula
are conjugates of each other when the coefficients are real and b* — 4ac < 0.

In the exercises at the end of this section, proofs are requested for the following facts
concerning conjugates:

z|+zz+-'-+zn=21+22+'--+z
Zl'Zz'""Zn:EI'Ez"”'Zn-

That is, the conjugate of a sum of terms is the sum of the conjugates of the individual terms,
and the conjugate of a product of factors is the product of the conjugates of the individual
factors. As a special case for products,

@) = ()"

These properties of conjugates are used in the proof of the next theorem.

"The quadratic formula is also valid if the coefficients are complex numbers, but at the moment we are
interested only in the real case.
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Theorem 827 m Conjugate Zeros

pP=49

Suppose that f(x) is a polynomial that has all its coefficients in the real numbers. If the
complex number z is a zero of f(x), then its conjugate z is also a zero of f(x).

n

Proof Let f(x) = E a,x', where all g; are real, and assume that z is a zero of f(x). Then

i=0
f(z) = 0, and therefore,

0=f()
=ay+az+arr+ o +ad
=ataz+ et - +az"
=ayt+ az + a2+ -+ a,2)
=ay+ az+ @)’ + -+ a,),

where the last equality follows from the fact that each a; is a real number. We thus have
f(z) = 0, and the theorem is proved.

Example 1 The monic polynomial of least degree over the complex numbers that has
1 — i and 2i as zeros is

f) =[x = (1 = D][x - 2i]
=x = (1 +ix+2+2i
However, a polynomial with real coefficients that has 1 — i and 2i as zeros must also have

1 + i and —2i as zeros. Thus the monic polynomial of least degree with real coefficients
that has 1 — i and 2i as zeros is

gx)=[x— A = D][x— A+ D][x — 2i][x + 2{]
=0 —2x+2)* +4)
=x*— 2 + 6x* — 8x + 8. [ |

Example 2 Suppose that it is known that 1 — 2i is a zero of the fourth-degree polyno-
mial f(x) = x* — 3x® + 2% + 7x — 30 and that we wish to find all the zeros of f(x). From
Theorem 8.27, we know that 1 + 2i is also a zero of f(x). The Factor Theorem then assures
us that x — (1 — 2i) and x — (1 + 2i) are factors of f(x):

f@ =[x = (1 = 20)]x = (1 + 2i)]q().
To find g(x), we divide f(x) by the polynomial
[x— (1 =2)][x— A +2)]=x*—2x+5
and obtain ¢(x) = x> — x — 6. Thus
fo) =[x — (1 —=2)][x — (1 +2)](*—x—6)
=[x—0=2)]x— 1+ 2)](x — 3)(x + 2).

It is now evident that the zeros of f(x) are 1 — 2i, 1 + 2i, 3, and —2. [ |



388 Chapter 8 Polynomials

Theorem 8.28

The results obtained thus far prepare for the next theorem, which describes a standard
form for the unique factorization of a polynomial over the real numbers. The proof of this
theorem is left as an exercise.

m Factorization over R

Theorem 8.29

Every polynomial of positive degree over the field R of real numbers can be factored as the
product of its leading coefficient and a finite number of monic irreducible polynomials over
R, each of which is either quadratic or of first degree.

We restrict our attention now to the rational zeros of polynomials with rational coeffi-
cients and to the irreducibility of such polynomials. Neither the zeros of a polynomial nor
its irreducibility are changed when it is multiplied by a nonzero constant, so we lose no
generality by restricting our attention to polynomials with coefficients that are all integers.

m Rational Zeros

u=wVAw)

u—w

u=yv

Let
fx)=aytax+ -+ cz,l,lx"fl + a,x"

be a polynomial of positive degree n with coefficients that are all integers, and let p/q be a
rational number that has been written in lowest terms. If p/g is a zero of f(x), then p divides
ap and ¢ divides a,,.

Proof Suppose that p/q is a rational number expressed in lowest terms that is a zero of
f(x) = 2, a;x’. Then

n—1 n
a, + a1<p> + e+ a,,l(p) + a,,(p) = 0.
q q q

Multiplying both sides of this equality by ¢" gives
aq" + apg" + -+ a, " g+ a,p" = 0.
Subtracting a,p" from both sides, we have
ay" +apg" " + -+ a, " g = —ap,
and hence,
qlaq"" + apg"? + o+ a, ") = —ap'.

This shows that g divides a,p", and therefore ¢|a,, since ¢ and p are relatively prime.
Similarly, the equation

apg" ot ap" g+ ap' = —ay”

can be used to show that p|ay.

It is important to note that Theorem 8.29 only restricts the possibilities of the rational
zeros. It does not guarantee that any of these possibilities is actually a zero of f(x).
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It may happen that when some of the rational zeros of a polynomial have been found,
the remaining zeros may be obtained by use of the quadratic formula. This is illustrated in
the next example.

Example 3 We shall obtain all zeros of the polynomial
f) =2 -5 +32+4x -6

by first finding the rational zeros of f(x). According to Theorem 8.29, any rational zero p/q
of f(x) thatis in lowest terms must have a numerator p that divides the constant term and a
denominator ¢ that divides the leading coefficient. This means that

p E{x1,%2,£3,+6}

g € {*1,x2}

Pedal oy 23 023 261,
q 2 2

Testing the positive possibilities systematically, we get

1 15 3
f(2> = = f() = -2, f<2> -o.

‘We could continue to test the remaining possibilities, but chances are that it is worthwhile to
divide f(x) by x — (3/2) and then work with the quotient. Performing the division, we obtain

fx) = (x - 3)(2x3 -2+ 4)

= (2x — 3)(x3 - x>+ 2).

From this factorization, we see that the other zeros of f(x) are the zeros of the factor
q(x) = x> — x> + 2. Since this factor is monic, the only possible rational zeros are the
divisors of 2. We already know that 1 is not a zero, since f(1) = —2. Thus the remaining
possibilities are 2, —1, and —2. We find that

q(2) =6, g(=1) = 0.
Therefore, x + 1 is a factor of x> — x> 4+ 2. Division by x + 1 yields
X 2=+ D - 2x+2)
and
fx) = 2x — 3)(x + D(* — 2x + 2).
The remaining zeros of f(x) can be found by using the quadratic formula on the factor

2= 2x + 2
2+\V4 — 8

x=—"_——"=1=%x1i

2
Thus the zeros of f(x) are 3/2, —1, 1 + i,and 1 — i. [ |

The results concerning irreducibility over the field Q of rational numbers are not nearly
as neat or complete as those we have obtained for the fields C and R. The best-known result
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for Q is a theorem that states what is known as Eisenstein’s Irreducibility Criterion. To
establish this result is the goal of the rest of this section. We need the following definition
and two intermediate theorems to reach our objective.

Definition 8.30 m Primitive Polynomial

Theorem 8.31

Let f(x) = X;_,a;x' be a polynomial in which all coefficients are integers. Then f(x) is a
primitive polynomial if the greatest common divisor of ag, ay, . . ., a, is 1.

That is, a polynomial is primitive if and only if there is no prime integer that divides
all of its coefficients.

Our first intermediate result simply asserts that the product of two primitive polyno-
mials is primitive.

m Product of Primitive Polynomials

(phNg=r

(PNgN~1)=
(~pV~q)

Theorem 8.32

If g(x) and A(x) are primitive polynomials, then g(x)h(x) is a primitive polynomial.

Proof We shall assume that the theorem is false and arrive at a contradiction.
Suppose that g(x) and h(x) are primitive polynomials, but the product f(x) = g(x)h(x) is
not primitive. Then there is a prime integer p that divides every coefficient of f(x) =
> a;x'. The mapping ¢: Z[x] — Z,[x] defined by

dlag + ax + -+ ax") = [ag) + [a)]x + - + [a,]x"

is an epimorphism from Z[x]to Z,[x], by Exercise 20 of Section 8.1. Since every coefficient
of f(x) is a multiple of p, ¢(f(x)) = [0]in Z,[x]. Therefore,
d(g(x)) * Pp(h(x)) = P(g(x)h(x))
= ¢(f(x)
= [0]
in Z,[x]. Since p is a prime, Z,[x] is an integral domain, and either ¢(g(x)) =[0] or
¢(h(x)) = [0]. Consequently, either p divides every coefficient of g(x), or p divides every co-

efficient of 4(x). In either case, we have a contradiction to the supposition that g(x) and A(x)
are primitive polynomials. This contradiction establishes the theorem.

The following theorem is credited to the same mathematician who first proved the
Fundamental Theorem of Algebra.

m Gauss's' Lemma

Let f(x) be a primitive polynomial. If f(x) can be factored as f(x) = g(x)h(x), where g(x)
and h(x) have rational coefficients and positive degree, then f(x) can be factored as
f(x) = G(x)H(x), where G(x) and H(x) have integral coefficients and positive degree.

A biographical sketch of Carl Friedrich Gauss (1777-1855) is given at the end of this chapter.
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Proof Suppose that f(x) = g(x)h(x) as described in the hypothesis. Let b be the least
common denominator of the coefficients of g(x), so that g(x) can be expressed as
glx) = % g:(x), where gi(x) has integral coefficients. Now let a be the greatest common
divisor of the coefficients of g;(x), so that g;(x) = aG(x), where G(x) is a primitive poly-
nomial. Then we have g(x) = 3 G(x), where a and b are integers and G(x) is primitive and
of the same degree as g(x). Similarly, we may write h(x) = §H(x), where ¢ and d are inte-
gers and H(x) is primitive and of the same degree as h(x). Substituting these expressions for
g(x) and h(x), we obtain

a c
fx) =7 G) -~ Hx),

and therefore,
bdf(x) = acG(x)H(x).

Since f(x) is primitive, the greatest common divisor of the coefficients of the left member of
this equation is bd. By Theorem 8.31, G(x)H(x) is primitive, and therefore the greatest com-
mon divisor of the coefficients of the right member is ac. Hence bd = ac, and this implies
that f(x) = G(x)H(x), where G(x) and H(x) have integral coefficients and positive degrees.

Example 4 The polynomial f(x) = x> + 2x* — 10x> — 9x*> + 30x — 12 is a primi-
tive polynomial in Z[x] that can be factored as

_(25_ 3 _)
f(x)—(3x 4x+2>(2x +3x — 6,

where the factors on the right have rational coefficients and positive degrees. Using the
same technique as in the proof of Gauss’s Lemma, we can write

fx) = %(x3 — 6x + 3)(;)@2 +2x — 4)
= (> — 6x + 3)(x? + 2x — 4).

Thus f(x) = G(x) H(x), where G(x) = x> — 6x + 3 and H(x) = x> + 2x — 4 have
integral coefficients and positive degree. |

We are now in a position to prove Eisenstein’s result.

m Eisenstein's' Irreducibility Criterion

Let f(x) = ap + ajx + - - - + a,x" be a polynomial of positive degree with integral coeffi-
cients. If there exists a prime integer p such that p|a; fori = 0, 1,...,n — 1 but p|a, and
P*[ ay, then f(x) is irreducible over the field of rational numbers.

Ferdinand Gotthold Max Eisenstein (1823-1852) was a German mathematician inspired to do mathematical
research by Abel’s proof of the impossibility of solving fifth-degree polynomials using only the operations of
addition, subtraction, multiplication, division, and the extraction of roots. He experienced health problems
throughout his life and died of tuberculosis at the age of 29.
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Contradiction

Proof Dividing out the greatest common divisor of the coefficients of a polynomial
would have no effect on whether or not the criterion was satisfied by a prime p because of
the requirement that p/[ a,. Therefore, we may restrict our attention to the case where f(x)
is a primitive polynomial.

Let f(x) = X/_, a;x' be a primitive polynomial, and assume there exists a prime inte-
ger p that satisfies the hypothesis. At the same time, assume that the conclusion is false,
so that f(x) factors over the rational numbers as a product of two polynomials of positive
degree. Then f(x) can be factored as the product of two polynomials of positive degree that
have integral coefficients, by Theorem 8.32. Suppose that

fx)y =0y +bx+ -+ +bx")cy+cx+ - + cxh),

where all the coefficients are integers and r > 0, s > 0. Then a, = byc,, and hence p|bc,
but p?| byc, by the hypothesis. This implies that either p | by or p | co, but p does not divide
both by and cy. Without loss of generality, we may assume that p | by and p/ c,. If all of the
b; were divisible by p, then p would divide all the coefficients in the product, f(x). Since
p/ a,, some of the b; are not divisible by p. Let k be the smallest subscript such that p/ by,
and consider

a, = byc, + bicy_y + -+ + b_c; + bcy.
By the choice of k, p divides each of by, by, . . ., by—1, and therefore,
p|(b0Ck + blck_l + e+ bk_lcl).

Also, p|lay, since k < n. Hence p divides the difference:
pllay — (bocy + bicy—y + -+ + b_ycy).

That is, p|bico. This is impossible, however, since p/b; and pfc,. We have arrived at a
contradiction, and therefore f(x) is irreducible over the rational numbers.

Example 5 Consider the polynomial
f(x) =10 — 15x + 25x% — 7x*.

The prime integer p = 5 divides all of the coefficients in f(x) except the leading coefficient
a, = —7, and 5% does not divide the constant term ao = 10. Therefore, f(x) is irreducible
over the rational numbers, by Eisenstein’s Criterion. |

Sometimes when Eisenstein’s Irreducibility Criterion does not apply to a given poly-
nomial, a change of variable will result in a polynomial for which Eisenstein’s Irreducibil-
ity Criterion does apply, as shown in Example 6.

Example 6 Consider the polynomial

fx) =x*+ x>+ 627 — 14x + 16.
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Eisenstein’s Irreducibility Criterion does not apply to this polynomial. However, if we re-
place x by x + 1 in f(x), we obtain
fao+ D=+ D'+ x+ 1> +6x+1)>—14x+ 1)+ 16
= x* + 5x° + 15x* + 5x + 10.
Now 5 is prime and divides all the coefficients of f(x + 1) except the leading coefficient
and 5%/10 = a,. Thus f(x + 1) = x* + 55 + 15x* + 5x + 10 is irreducible and hence,

f(x) = x* + x> + 6x> — 14x + 16 is irreducible (see Exercise 33 at the end of this
section). [ |

We end this section with another technique for determining if a polynomial is irre-
ducible over the field Q of rational numbers.

m lrreducibility of f(x) in Q[x]

~q="p

Suppose f(x) = ag + ax + -+ + a,x" is a polynomial of positive degree with integral
coefficients and p is a prime integer that does not divide a,. Let

S = lag] + [agJx + - + [a,]x"

where [a;] € Z,fori = 0, 1,..., n.If f,(x) is irreducible in Z,[x], then f(x) is irreducible
in Q[x].

Proof Let f(x) = ay + a;x + -+ + a,x" be a polynomial of positive degree with inte-
gral coefficients and define

L) = [ag] + [a]x + -+ + [a,]x"

where p is a prime integer that does not divide a,. Assume f(x) is reducible over Q, that is,
there exists polynomials g(x), A(x) of positive degree in Z[x] such that f(x) = g(x)A(x). The
leading coefficient of the product g(x)h(x) is the leading coefficient a, of f(x). Since p does
not divide a,, then p does not divide the leading coefficient of either g(x) or of i4(x). Hence
the leading coefficients of g,(x) and h,(x) are nonzero elements in Z,. Therefore the
deg g,(x) = deg g(x) = 1 and deg h,(x) = deg h(x) = 1.

Now let ¢: Z[x] — Z,[x] defined by ¢(f(x)) = f,(x). This mapping is an epimorphism
(see Exercise 20 in Section 8.1). Thus

J(x) = o(f(x))
= ¢d(g(0)h(x))
= ¢(g(x) p(h(x))
= gy(0)h,(x),

and f,(x) is reducible over Z,.

We illustrate the use of Theorem 8.34 in the last two examples of this section.
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Example 1 Consider f(x) = x* + 7x> — 4x* + 12x + 9. Now p = 2 is a prime integer
that does not divide a,, = 1 and

H) = [1]x* + [7]x° — [4]x* + [12]x + [9]
=x*+xX+1
where we are writing a for [a] in Z,. Since £2(0) = 1 and f5(1) = 1, then f>(x) has no zeros
and hence no first-degree factors in Z,.
The only possible second-degree factors in Z, are x>, x> + x, x> + 1 and x*> + x + 1.
Now x> = x+x, x> + x =x(x + 1) and x> + 1 = (x + 1)* are not factors of f»(x), since
f>(x) has no first-degree factors. Long division shows that x> + x + 1 is not a factor of f(x).

Thus f>(x) is irreducible in Z, and hence f(x) = x* + 7x® — 4x* + 12x + 9 is irreducible
by Theorem 8.34. |

Example 8 The polynomial f(x) = x* + 3x + 5 is irreducible since fo(x) = x> + x + 1
is irreducible over Z,. However p = 3 is also prime and f3(x) = x> + 2 is not irreducible,
since x = 1 is a zero of f3(x). Thus Theorem 8.34 does not require that f,(x) be irre-
ducible for all positive primes. So finding a prime p such that f,(x) is reducible leads to
no conclusion. [ |

Exercises 8.4 I——

True or False
Label each of the following statements as either true or false.
1. Every polynomial of positive degree over the complex numbers has a zero in the
complex numbers.
The only irreducible polynomials over the complex numbers are of degree 1.
The field of complex numbers is an algebraic extension of the field of real numbers.

The field of real numbers is algebraically closed.

SUF o

If z = a + bi is a zero of a polynomial f(x) with coefficients in the field C, then z is
also a zero of f(x) over C.

6. Every polynomial of positive degree over the field R of real numbers can be factored
as the product of its leading coefficient and a finite number of monic irreducible
polynomials of first degree over R.

7. A polynomial is primitive if and only if there is no prime integer that divides all its
coefficients.

8. The product of two primitive polynomials is primitive.
9. The sum of two primitive polynomials is primitive.
10. Every monic polynomial is primitive.
11. Every primitive polynomial is monic.

12. Every primitive polynomial is irreducible.
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13. Every irreducible polynomial is primitive.
14. A polynomial with real coefficients may have no real zeros.

15. If z is a zero of multiplicity m of a polynomial f(x) with coefficients in the field R of
real numbers, then z is a zero of f(x) of multiplicity m.

Exercises

1. Find a monic polynomial f(x) of least degree over C that has the given numbers as
zeros, and a monic polynomial g(x) of least degree with real coefficients that has the
given numbers as zeros.

a. 21,3 b. —3i,4
c. 2,1 —i d. 3,2 — i
e. 3,1 + 2i f.i,2—1
g 2+ i, —iand1 h.3 — i i,and 2

2. One of the zeros is given for each of the following polynomials. Find the other zeros
in the field of complex numbers.

a x> — 42+ 6x — 4;1 — iis a zero.

b. > + x*2 — 4x + 6; 1 — iis a zero.

. X+ X+ 22+ x+ 1; —iisazero.
d. x* + 3x3 + 6x% + 12x + 8;2iis a zero.

Find all rational zeros of each of the polynomials in Exercises 3-6.
3.2 - —8x—5 4. 3x> + 19x% + 30x + 8
5. 24— —x¥*—-x-3 6. 2"+ x* -8+ x—10

In Exercises 7—12, find all zeros of the given polynomial.

7.0+ —x+2 8 32 — 72+ 8x—2
9, 33 + 222 —Tx +2 10. 33 — 2x2 — Tx — 2
11. 6° + 11> +x — 4 12. 9x° + 27x* + 8x — 20

Factor each of the polynomials in Exercises 13—16 as a product of its leading coefficient
and a finite number of monic irreducible polynomials over the field of rational numbers.

13, x* — ¥ — 2> + 6x — 4 14, 2x* — ¥ — 132 + 5x + 15

15. 2x* + 53 — 7x2 — 10x + 6 16. 6x* + x> + 3x* — 14x — 8

17. Show that each of the following polynomials is irreducible over the field of rational
numbers.
a.3+ 0% +x° b. 7 — 14x + 28x* + »°

c. 3 —27x% + 2%° d. 6 + 12x%2 — 273 + 10x°
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18.

19.

20.

21.

22,

23.

24.
25.

26.

27.

28.

29.

Show that the converse of Eisenstein’s Irreducibility Criterion is not true by finding an
irreducible f(x) € Q[x] such that there is no p that satisfies the hypothesis of Eisen-
stein’s Irreducibility Criterion.

Let f(x) = ay + aix + -+ + a,x" be a polynomial of positive degree with integral
coefficients. If there exists a prime integer p such that p|a; for i = 1,2, ..., n but
p/ay and p*/ a,, prove that f(x) is irreducible over the field of rational numbers.

Show that each of the following polynomials is irreducible over the field Q of rational
numbers.

a. 1 +2x + 6x% — 4x’ + 2x*

b. 4 + 9x? — 15x + 12x*

¢. 6 — 35x + 14x* + 7x°

d. 12 + 22x — 55x + 11x* + 33x°

Use Theorem 8.34 to show that each of the following polynomials is irreducible over
the field Q of rational numbers.

a. f(x) = 27x°> — 16x* + 3x — 25

b. f(x) = 8x* — 2x*> — 5x + 10

e f(x) =123 — 22 + 15x — 2

d. f(x) =30x° + 11x%> — 2x + 8

e. f(x) =3x* + 9x® — 7x2 + 15x + 25

£ f(x)=9x —x*+ 653+ 5x> —x + 21

Show that the converse of Theorem 8.34 is not true by finding an irreducible f(x) in

QIx], different from the f(x) given in Example 8, such that f,(x) in Z,[x] is reducible for
a prime p that does not divide the leading coefficient of f(x).

Prove that z;, + 2z, + - +z,=2z,+2+ -+ +z, for complex numbers
215225+« + 5 Zpe
Provethatz; *z,+ -+ *z,=2/°2* - * z,for complex numbers zj, 22, . . ., Zp.

Prove that for every positive integer n there exist polynomials of degree n that are
irreducible over the rational numbers. (Hint: Consider x" — 2.)

Let f(x)=ayp+ aix + -+ a,—1x" ' + x"* be a monic polynomial of positive
degree n with coefficients that are all integers. Prove that any rational zero of f(x) is an
integer that divides the constant term a.

Derive the quadratic formula for the zeros of ax* + bx + ¢, where a, b, and ¢ are
complex numbers and a # O.

Prove Theorem 8.28. (Hint: In the factorization described in Theorem 8.26, pair those
factors of the form x — (a + bi) and x — (a — bi).)

Prove that any polynomial of odd degree that has real coefficients must have a zero in
the field of real numbers.
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30.

31.

32.

33.

34.

35.

8.5 Solution of Cubic and Quartic Equations by Formulas (Optional) 397

Let f(x) = ay + a;x + -+ - + a,x"in R[x]. Prove thatifa; = Oforalli = 0,1,...,n
orifa; =0foralli =0,1,...,n,then f(x) has no positive zeros.
Let f(x) = ay + a;x + -+ - + a,x" in R[x]. Prove that if the coefficients g; alternate in

sign, where a zero coefficient can be considered as positive or negative to establish an
alternating pattern, then f(x) has no negative zeros.

Let a be in the field F. Define the mapping ¢: F[x] — F[x] by ¢(f(x)) = f(x + a).
Prove that ¢ is an automorphism.

Let f(x) € F[x] where F'is a field and let a € F. Prove that if f(x + a) is irreducible
over F, then f(x) is irreducible over F.

Show that each of the following polynomials is irreducible over the field of rational
numbers by making the appropriate change of variable and applying Eisenstein’s
Irreducibility Criterion.

a x> +3x+ 8 b. x3 + 5x%2 — 9x + 13

Prove that f(x) = x*~' + x*~? + - - - 4+ x + 1 is irreducible over Q for any prime p.
(Hint: Note that f(x) = (x* — 1)/(x — 1) and consider f(x + 1) = ((x + 1)? — 1)/
((x + 1) — 1). Use the Binomial Theorem and Eisenstein’s Irreducibility Criterion.)

Solution of Cubic and Quartic Equations
by Formulas (Optional)

In this section we focus on polynomials that have their coefficients in the field R of real
numbers. Up to this point, results have been stated with emphasis on the zeros of poly-
nomials or on the related property of irreducibility.

We now place emphasis on a different point of view. Finding the zeros of a poly-

nomial

fx)=ag+ax+ -+ a,_x"""+ ax"

is equivalent to finding the solutions of the equation

ay+ax + -+ a,_x" '+ ax"=0.

Historically, mathematics developed with emphasis on the solution of equations.

The solution of linear equations

ax +b =0

by the formula

QS

and the solution of quadratic equations

a*+bx+c=0
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by the formula

—b = Vb — dac

2a

X =

long ago prompted mathematicians to seek similar formulas for equations of higher degree
with real coefficients.

In the 16th century, Italian mathematicians named Ferro, Tartaglia, Ferrari, and
Cardano developed methods for solving third- and fourth-degree equations with real coef-
ficients by the use of formulas that involved only the operations of addition, subtraction,
multiplication, division, and the extraction of roots. For more than two hundred years
afterward, mathematicians struggled to obtain similar formulas for equations with degree
higher than 4 or to prove that such formulas did not exist. It was in the early 19th century
that the Norwegian mathematician Abel” proved that it was impossible to obtain such
formulas for equations with degree greater than 4.

The proof of Abel’s result is beyond the level of this text, but the formulas for cubic and
quartic (third- and fourth-degree) equations with real coefficients are within our reach.

We consider first the solution of the general cubic equation

a> + ax* + aix + ay =0

where the coefficients are real numbers and a; # 0. There is no loss of generality in
assuming that the cubic polynomial is monic since division of both sides of the equation by
ay yields an equivalent equation. Thus we assume an equation of the form

X+al’+bx+c=0.

As would be expected, cube roots of complex numbers play a major role in the
development. For this reason, some remarks on cube roots are in order.

An easy application of Theorem 7.11 yields the fact that the cube roots of 1 are
given by

cosO +isin0 =1,

2 o2 —1+iV3
cos— t+isim—=—""—",

3 2
4w . 4w —1-iV3
cosf-l—zmn?:f.

If we let w = (—1 + iV/3)/2, the distinct cube roots of 1 are w, w?, and &> = 1. For an
arbitrary nonzero complex number z, let V/z denote any fixed cube root of z. Then each of
the numbers \3f, w\3/, and w2\3fz is a cube root of z, and they are clearly distinct. Thus the
three cube roots of z are given by

Va oV oV

where @ = (—1 + i\V/3)/2. This result is used in solving the cubic equation in Theo-
rem 8.36.

fSee the biographical sketch of Niels Henrik Abel at the end of Chapter 3.
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The following two theorems lead to formulas for the solutions of the general cubic

equation

X+al+bx+c=0.

Theorem 8.35 m Change of Variable in the Cubic

The change of variable

a
X=y - =

3
inx’ + ax’ + bx + ¢ = 0 yields the equation

Y +py+g=0,
where

b a ab 24’

=b—-—, =c——+—_—_.

b 30 1 3027

u=v Proof The theorem can be proved by direct substitution, but the details are neater if we

first consider a substitution of the form x = y + h, where & is unspecified at this point.
This substitution yields

(y +h’ +aly +h)?>+ by +h) +c=0.
When this equation is simplified, it appears as
¥+ (Bh + a)y* + 3K + 2ah + b)y + (h* + ah* + bh + ¢) = 0.

If we let h = —$, the coefficients then simplify as follows:

3h+a=3<—;’>+a:o

312 + 2h +b—3<a2)+2<_“>+b—b_“2

a 9 a 3 3
3 3 23
Bt bhte=-L L L b, 2
279 3 327

This establishes the theorem.

Theorem 8.36 = Solutions to the Cubic Equation

Consider the equation y* + py + ¢ = 0, and let

o —LHIVE o a, /@Z(ﬁ)i g _4_ /(61>2+<P)3,
2 2 2 3 2 2 3
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The solutions to y* + py + g = 0 are given by
VA + \3/I§ wVA + wz\S/E, and ©’VA + w\3/1§,

where VA and VB denote (real or complex) cube roots of A and B chosen so that

335 P
VAVB = -5
u=v Proof For an efficient proof, we resort to a “trick” substitution: We let
y=z- r
3z

in y* + py + g = 0. This substitution yields

3
P 14
——] +plz—)+qg=0.
(Z 3z> p(z 32) 1

This equation then simplifies to

3

. P

77— +g=0
277 1

and then to

3
P
+g7 — - =0.
ey

This is a quadratic equation in z*, and we can use the quadratic formula to obtain

—q = q+
7= =-2
2 2 \/

With A and B as given in the statement of the theorem, we have

I+

Z2=A or 72=B.

Noting that

we see that VA and VB need to be chosen so that

VavE = -~
2,
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With these choices made, the six solutions for z are given by
VA, oVA, o*VA, VB, oVB, «*VB.

Substituting these values in

p VAVB
y=z—_-=zt———,
3z z

and using i = @’ or 5 = w, we obtain the following three solutions for y:
w

VA + VB, oVA+ o*VB, and o*VA + oVB.

401

Example 1 We shall use the formulas in Theorem 8.36 to solve the equation
y' =9y —12=0.
We have p = —9 and ¢ = —12. Thus
12
A=+ (=6 + (=3 =6+ V9 =09,
B=6-V9=3,

and the real cube roots V9 and V/3 satisfy VAVB = —~£. The solutions are given by

V9 + V3,
oV + V3 = (T )9s 4 (L s
= —%(\3@ + V3) + %(\3@ - V3),
V6 + 0¥ = (T ) 9o 4 (L s
- L va) - e - v

The results of Theorems 8.35 and 8.36 combine to yield the following theorem. The

formulas in the theorem are known as Cardano’s Formulas.

m Cardano’s' Formulas

The solutions to the cubic equation

Cralt+bx+c=0

fGerolamo Cardano (1501-1576) was an Italian Renaissance mathematician, physician, astrologer, and gambler

who used his gambling expertise as a source of needed income. One of his books (published after his death) was

an early treatment of probability that included information on cheating techniques for gambling. Cardano is

credited with several inventions and he also published two natural science encyclopedias as well as several other

works on a wide variety of subjects.
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are given by
\S/Z-i—\S/E—g, w%+w23B—§, and w2%+w3B—§,

where

-1 +iV3 a? ab 24°
w=—"—"—", p=b——, + —,
2 3 3 27

R (ARCREE RO RO)

with WA and VB chosen so that
VAVE = .

The use of Theorem 8.37 is demonstrated in the following example.

Example 2 For the equation
X=32—6x—4=0,
we havea = —3,b = —6, and ¢ = —4. The formulas in Theorem 8.37 yield

9
= —6--=-9,
p 3
18 54
g=—4-—-2__1
3 27

A=6+ V(=62 + (=33 =09,
B=6—\V(—6)7?+ (—3) = 3.

The real cube roots V9 and V/3 satisfy VAVB = —%, and the solutions are given by
VO + V3 + 1,
3 2.3 1 3 3 ivV3
w\/§+w\/§+l=—5(\/§+\/§—2) (\f V3),
2.3 3 1, s 3 l\[
w\@+w\/§+l=—5(\@+\/§—2) (\/—\/)

We turn our attention now to the solution of quartic equations. As in the case of the
cubic equation, there is no loss of generality in assuming that the equation is monic. Thus

we assume an equation of the form

Ftrald+ b+ ex+d=0.

We find again that an appropriate substitution will remove the term of second-highest

degree.
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Theorem 8.38 m Change of Variable in the Quartic

The change of variable

a
X =y - -

4
inx* + ax’ + bx* + cx + d = 0 yields an equation of the form

y4+py2+qy+r=0.

Theorem 8.38 can be proved by direct substitution, and this proof is left as an exercise.
In contrast to Theorem 8.35, we are not interested in formulas for p, ¢, and r at this time.
Consider now an equation of the form

Y py gy +r=0,
which can be written as
Y=—py gy —r
The basic idea of our method, which was devised by Ferrari, is to add an expression to each

side of the last equation that will make both sides perfect squares (squares of binomials).
With this idea in mind, we add

£

2
+7
DTy

to both sides, where 7 is yet to be determined. This gives

2

7 t
Vit = py gy bt

(3o )
Yty =@—py —q i ")

We recall that a quadratic polynomial Ay* + By + C is the square of a binomial

or

Ay> + By + C = (Dy + E)®
if and only if B* — 4AC = 0. Thus
2 £ 2
t=py =gy +{,—r)=Dy+E
if and only if
7
(—q)® — 4t - p)<4 —r)=0.

This equation simplifies to the equation
2 —pt* —drt+4rp — ¢* =0,

which is known as the resolvent equation for y* + py* + gy + r = 0.
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The resolvent equation can be solved for by Cardano’s method. Any one of the three
solutions for  may be used in

(3 -
Yty =@—py —q i 7

to obtain an equation of the form
£\2
<y2 + 2) = (Dy + E)~.

The solutions to the original equation can then be found by solving the two quadratic
equations

r

2
+
YT

t
=Dy + E and y2+5=—Dy—E.

The method is illustrated in the following example.

Example 3 We illustrate the preceding discussion by solving the equation
Y4+3y¥P—2y+6=0.

We have p = 1, ¢ = —2, and r = 6. The resolvent equation is given by
£ —r—24r+20=0.

We find that = 5 is a solution to the resolvent equation, and the equation

2 tz 2 tz
+—=) =@- —gy+|——
<y 2) (t—=p)y —qy <4 r)
<2+5>2—42+2 +1—<2 +1>2
Yty y Yty y+5)-

Equating square roots, we obtain

becomes

y2+%=2y+* or yz-l—%: —(2y+;)
and then
y¥—=2y+2=0 or y"+2y+3=0.
The quadratic formula then yields
y=1=%i and y=—-1=%iV2

as the solutions of the original equation. |

We can now describe a method of solution for an arbitrary quartic equation

Ftrald+ bl +tex+d=0.
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We first make the substitution

and obtain an equation for the form
Y+p?+gy+r=0.

We next use the method of Example 3 to find the four solutions y;, y,, ¥3, and y, of the equa-
tion in y. Then the solutions to the original equation are given by

Xj

a .
=yj—1 for j=1,2,3,4.

This is illustrated in Example 4.

Example 4 Consider the equation
4+ T 4+ 6=0.
The substitution formula x = y — § yields x = y — 1 and the resulting equation
O-D*+40 -1 +70 - 1)’ +4Hy - 1)+ 6 =0.
This equation simplifies to
Y+ =2y +6=0.
From Example 3, the solutions to the last equation are
yw=14i y,=1—1i y;=-1+iV2, and y,=—-1-iV2
Hence the solutions x; = y; — 1 are given by
X =i X =—i, x3=-2+4+iV2, and x,=—2—iV2. [ |
Just as the discriminant b> — 4ac can be used to characterize the solutions of the
quadratic equation ax®> + bx + ¢ = 0, the discriminant of a polynomial equation can be
used to characterize its solutions. In particular, we will see that a cubic equation will

have either exactly one real solution or exactly three real solutions. We begin with the
next definition.

Definition 8.39m Discriminant of a Cubic Polynomial

Let f(y) = y* + py + g have zeros cy, ¢, and c3. The discriminant of f(y) is D> where

D= [](c—¢)=(c, = c)e; = e3)le, = ¢3).

i<j
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The reason for defining the discriminant as D2, rather than as D, is because the sign of
D depends on the order of the zeros. However, the sign of D? is independent on the order
of the zeros.

Theorem 8.40 = Discriminant of a Cubic Polynomial

The discriminant of f(y) = y* + py + qis D* = —27¢* — 4p°.

p=gq Proof Let c|, ¢, and c3 be zeros of f(y) =y* + py + g. Then we can write f(y) =
(y — c)(y — c)(y — ¢3) where

01=%+%
czzw\3/X+w2\3/§
c3=w2\3/g+w\3/g

and

The discriminant is
D? = (c; = &)*(e; = &) (e, — 3)’,
and using w® = 1, we have
¢, — ¢, = (VA + VB) — (0VA + &*VB)
VA + VB - oVA - o'VB
= (1 = w)(VA - *VB)
cl—c3=(\3/g+\3/§)—(w2\3/g+w\3/l§)
VA + VB - o VA - VB
~wX(1 — 0)(VA ~ 0VB)

(a)% + wz\S/E) - (wz\S/g + w\S/E)
VA + *VB — 0*VA — oV/B
w(l — w)(% - \3/5)

€y — (3
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Then
D = —&’(1 — 0)}(VA — &*VB)(VA — oVB)(VA — VB)
33 (VA — o VB)(VA - oVB)(Vi - VB)
= 31V3 (VA — VB + o’ VAVB — VAVB
—wVAYB + oVAVB — o*/A*B + w2\3/g\3/l¥)
=3iV3(4 - B+ VAV/B — VA™VB
—w(\%?% — %\3/1?) — wz(\3/A7\3/1§ — \%K\%’?))
=3iV3(A - B+ (-1 — 0 — o)(VAVB — VAVB))
= 3iV3(A — B)

4
= 3iV3,/¢* + —p°
iV3. q 27p

since —1 — w — @*> = 0 and
66
—B=—+ /(=) +(Z) - (—2=+[/lZ) +(%
A-B 2 <2> (3) 2 2 3
2 3
)+ ()
3
2 4 5

= +—=p.
T+ p

I
)
TN
[\

Thus
D2

4 2
(31’\/3 g + p3>

27
- 27q2 — 4p3.

The result of Theorem 8.40 can be used to characterize the solutions to the polynomial
equation y* + py + g = 0.

Theorem 8.41 = Real Solutions of a Cubic Equation

The equation y* + py + ¢ = 0 has exactly three real solutions if and only if D> = 0 that is,
if and only if —27¢*> — 4p> = 0.
p=¢q Proof Letc,c,, and c; be real solutions to y* + py + ¢ = 0. Then

D = (¢ — ¢c)(c; — ¢3)(er — ¢3)

is real, and the discriminant D? = 0.
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~p="q

Now assume that there are exactly one real solution ¢ and two nonreal solutions ¢, and
c3. We know that the nonreal solutions must be conjugates, so let c; = z = a + bi and
¢c3 =z =a — bi. Then

D = (Cl - Z)(Cl - 2)(1 - E)
= (¢; — (a + bi))(c; — (a — bi))(a + bi — (a — bi))
= 2bi((a — ¢))* + b?)

and

D2

(2bi((a — ¢)* + b*))?
_4b2(((l _ 01)2 + b2)2
<0

since b # 0. Thus, if there is a nonreal solution, then the discriminant is negative. It follows
that if the discriminant is nonnegative, then the solutions must all be real.

We note that the discriminant for the polynomial y> — 9y — 12 in Example 1 with two
nonreal zeros is D* = —27¢%> — 4p® = —27(—12)> — 4(—9)* = —972 < 0.

Exercises 8.5 I——

True or False

Label each of the following statements as either true or false.

1. Every cubic equation over the reals has at least one real solution.

2. Every quartic equation over the reals has at least one real solution.

3. If the discriminant is positive for a quadratic or cubic polynomial over the reals, then
all the zeros must be real.

4. If the discriminant is negative for a quadratic or cubic polynomial over the reals, then
all the zeros must be nonreal.

Exercises

In Exercises 1-18, use the techniques presented in this section to find all solutions of the
given equation.

1. ¥ —15x—-30=0
3. —12x—20=0
5. X —6x—6=0 . X+ 6x—2=0
7. X+ +6=0 . X +9%—6=0
9. 2 +6x—3=0 10. 2 —6x—5=0
11. ¥ — 62 +33x — 92 =0 120 ¥+ 32 +2lx+ 13=0

X =%+ 12=0
X+ 15x—20=0

® N A D
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13. 8 + 122 + 150x + 25 =0 14. 8 — 12 + 54x — 9 =0
15. ¥*+ X2 —2x+6=0 16. x* — 2> + 8 —3=0
17. X + 43 + 3% +4x +2=0 18. x* — 4 + 4> —8x +4=0

In Exercises 19-24, characterize the solutions to the following equations by evaluating the
discriminant D?.

19. ¥ —91x +90 =0 20. ¥ —32x+24=0
21 X' = 55x — 72 =0 22, x* — 124x — 240 = 0
23. ¥ —47x — 136 =0 24. ¥ —3x+52=0
25. Prove Theorem 8.38: The change of variable x = y — §in

¥ +ad+ b+ cex+d=0
yields an equation of the form
Y+ py+qy+r=0.

26. Show that the change of variable x = y — g, | in
Xt a, x" 't a,_x"?+ - +ax+a,=0
yields an equation of the form y" + 0+ y" ' + b, ,y" >4+ -+ + by + by = 0 or
Y' 4+ b, Y + -+ by + by=0.

27. Derive the quadratic formula by using the change in variable x = y — %(L’) to trans-

a

form the quadratic equation x> + 2x + < = 0 into one involving the difference of two

squares and solve the resulting equation.

28. Use the definition of the discriminant

D? = H (c; — cj)2

i<j

to show that the discriminant of x* + ()x + & is (%)2 —4(2).

Algebraic Extensions of a Field

Some of the results in Chapter 6 concerning ideals and quotient rings are put to good use in
this section. Starting with an irreducible polynomial p(x) over afield F, these results are used
in the construction of a field which is an extension of F' that contains a zero of p(x).

As a special case of Definition 6.2, if p(x) is a fixed polynomial over the field F, the
principal ideal generated by p(x) in F[x]is the set

P = (p() = {f(0pk) | f(x) € Fx]},
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Theorem 8.42

which consists of all multiples of p(x) by elements f(x) of F[x]. Most of our work in this
section is related to quotient rings of the form F[x]/(p(x)).

= The Quotient Rings F[x]/(p(x))

Let p(x) be a polynomial of positive degree over the field F. Then the quotient ring
F[x]/(p(x)) is a commutative ring with unity that contains a subring that is isomorphic to F.

Proof For a fixed polynomial p(x) in F[x], let P = (p(x)). According to Theorem 6.4, the
set F[x]/P forms a ring with respect to addition defined by

[f() + P] + [g(x) + P] = (f(x) + g(x)) + P

and multiplication defined by

[f(x) + P][g(x) + P] = f(x)g(x) + P.

The ring F[x]/P is commutative, since f(x)g(x) = g(x)f(x) in F[x], and 1 + P is the unity
in Flx].

Consider the nonempty subset F’ of F[x|/P that consists of all cosets of the forma + P
witha € F:

F'={a+ Pla € F}.
For arbitrary elements a + P and b + P of F’, the elements
(a+P)—b+P)=(@—Db)+P
and
(a+P)b+P)=ab+ P

are in F’ since a — b and ab are in F. Thus F’ is a subring of F[x]/P, by Theorem 5.4. The
unity 1 + P is in F’, and every nonzero element @ + P of F’ has the multiplicative inverse
a~! + Pin F'. Hence F’ is a field.

The mapping 6: F — F’ defined by

0(a) =a + P
is a homomorphism, since
0a+b)=(a@+b)+P

=(@+P)+ b+ P
= 0(a) + 0(b)
and
6(ab) = ab + P
=(a+ P)b+P)
= 0(a)0(b).
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It follows from the definition of F’ that 6 is an epimorphism. Since p(x) has positive degree,
0 is the only element of F that is contained in P, and therefore,

0(a) = 0(b) >a+P=b+P
<a—beP
& a=b.
Thus 6 is an isomorphism from F to the subring F’ of F[x]/(p(x)).

As we have done in similar situations in the past, we can now use the isomorphism 6
in the preceding proof to identify ¢ € F with a + P in F[x]/(p(x)). This identification al-
lows us to regard F as a subset of F[x]/(p(x)). This point of view is especially advantageous
when the quotient ring F[x]/(p(x)) is a field.

m  FIxl/(p(x)) with p(x) Irreducible

u<=yv

~U =V

Let p(x) be a polynomial of positive degree over the field F. Then the ring Flx]/(p(x)) is a
field if and only if p(x) is an irreducible polynomial over F.

Proof As in the proof of Theorem 8.42, let P = (p(x)). Assume first that p(x) is an irre-
ducible polynomial over F. In view of Theorem 8.42, we need only show that any nonzero
element f(x) + P in F[x]/P has a multiplicative inverse in F[x]/P.If f(x) + P # P, then f(x)
is not a multiple of p(x), and this means that the greatest common divisor of f(x) and p(x)
is 1, since p(x) is irreducible. By Theorem 8.13, there exist s(x) and #(x) in F[x] such that
J(x)s(x) + p()rx) = 1.
Now p(x)t(x) € P, so p(x)t(x) + P = 0 + P, and hence
1 + P =[f(x)s(x) + p(x)t(x)] + P
= [f(x)s(x) + P] + [p(x)i(x) + P]
= [f(x)s(x) + P] + [0 + P]
= f(x)s(x) + P
= [f() + P][s(x) + P].
Thus s(x) + P =[f(x) + P]!, and we have proved that F[x]/P is a field.
Suppose now that p(x) is reducible over F. Then there exist polynomials g(x) and A(x)
of positive degree in F[x] such that p(x) = g(x)h(x). Since deg p(x) = deg g(x) + deg h(x)
and all these degrees are positive, it must be true that deg g(x) < deg p(x) and
deg h(x) < deg p(x). Therefore, neither g(x) nor A(x) is a multiple of p(x). That is,
gx) + P#P and h(x) + P # P,
but
[g(x) + PI[A(x) + P] = g(0)h(x) + P
=px) +P
= P.
We have g(x) + P and h(x) + P as two nonzero elements of F[x]/P whose product is zero.
Hence F[x]/P is not a field in this case, and the proof is complete.
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If F and E are fields such that F € E, then E is called an extension field of F. With the
identification that we have made between F and F', the preceding theorem shows that
F[x]/(p(x)) is an extension field of F if and only if p(x) is an irreducible polynomial over F.
The main significance of all this becomes clear in the proof of the next theorem, which is
credited to the German mathematician Leopold Kronecker (1823-1891).

Theorem 8.44 m Extension Field Containing a Zero
If p(x) is an irreducible polynomial over the field F, there exists an extension field of F that
contains a zero of p(x).
u=v Proof For a given irreducible polynomial

px) =py+ px +px* + o0+ px"

over the field F, let P = (p(x)) in F[x]and let « = x + P in F[x]/P. From the definition of
multiplication in F[x]/P, it follows that

a2=(x+P)(x+P)=x2+P
and that
a=x+P

for every positive integer i. By using the identification of a € F with a + P in F[x]/P, we
can write the polynomial

) =py+px+px’ + o 4 px
in the form
p(x) = (py+ P) + (py + Px + (py + P)* + -+ + (p, + Pix".
Hence
p@)= (pg+ P) + (p; + P)a + (p, + P)’ + - + (p, + P)a”
= (po+ P)+ (p+ P&+ P)+ (p + P& + P)
+ o (py + P)" P
= o+ P+ (px+P)+(px*+P)+ -+ (px"+ P)
= (po+px+px®+ - +px")+ P
= px) + P
=0+ P
Thus p(«) is the zero element of F[x]/P, and « is a zero of p(x) in F[x]/P.

For a particular polynomial p(x), explicit standard forms for the elements of the ring
Fx]/(p(x)) can be given. Before going into this, we note that the ring F[x]/(p(x)) is un-
changed if p(x) is replaced by a multiple of the form cp(x), with ¢ # 0 in F. This follows
from the fact that the ideal P = (p(x)), which consists of the set of all multiples of p(x) in
Flx], is the same as the set of all multiples of ¢p(x) in F[x]. In particular, we can choose c to



M Figure 8.2

8.6 Algebraic Extensions of a Field 413

be the multiplicative inverse of the leading coefficient of p(x), thereby obtaining a monic
polynomial that gives the same ring F[x]/P as p(x) does. Thus there is no loss of generality in
assuming from now on that p(x) is a monic polynomial over F.

Before considering the general situation, we examine some particular cases in the
following examples.

Example 1 Consider the monic irreducible polynomial
p(x)=x2+2x+2

over the field Z3. We shall determine all the elements of the field Z;[x]/(p(x)) and, at the
same time, construct addition and multiplication tables for this field.

Let P = (p(x)) and & = x + P in Z3[x]/P. We start construction of the addition table
for Z;[x]/P with the elements 0 =0 + P, 1 =1 + P,2 =2 + P, and «. Filling out the
table until closure is obtained, we pick up the new elements & + 1, « + 2, 2, 2 + 1, and
2a + 2. The completed table in Figure 8.2 shows that the set

{0, 1,2, a0, + 1, + 2,22, 2 + 1, 2c¢ + 2}

is closed under addition.

+ 0 1 2 o a+1 a+?2 2 2 +1 2a +2
0 0 1 2 e a+1 a+ 2 2a 2 +1 2a+2
1 1 2 0 a+ 1 a+ 2 @ 2 +1 2a + 2 2a
2 2 0 1 a+ 2 a at+l 2a+2 2a 20 + 1
o o a+1 a+2 2a 2+ 1 2a+2 0 1 2
a+1 a+t1 a+?2 a 20+ 1 2a+2 2 1 2 0
a+?2 a+?2 a atl 2a+2 2a 2 + 1 2 0 1
2a 2a 2 +1 2a +2 0 1 2 a a+ 1 a+ 2
2+ 1 |2a+1 2a+2 2a 1 2 0 a+ 1 a+2 o
20 + 2 | 2a + 2 2 2 + 1 2 0 1 a+ 2 e a+1

Turning now to multiplication, we start with the same nine elements that occur in the
addition table. In constructing this table, we make use of the fact that « is a zero of
p(x) = x> + 2x + 2 in the following manner:

& +2a+2=0=a"=2a-2=a+l
That is, whenever o occurs in a product, it is replaced by & + 1. As an illustration, we have

Qa + D(a + 2) =2a% + 2o + 2
=2(a+ 1) +2a+2
=2a+2+2a+2
=a+ 1.



414

M Figure 8.3

m Figure 8.4

M Figure 8.5

Chapter 8 Polynomials

The completed table is shown in Figure 8.3.

0 1 2 a at+tl a+2 2a 2+ 1 2a+2
0 0 0 0 0 0 0 0 0
1 0 1 2 o a + 1 a+ 2 2a 20+ 1 2a+2
2 0 2 1 2a 20+ 2 2a+1 @ at+2 a+t+l
o 0 o 2a a+1l 2a+1 1 200 + 2 2 a+?2
a+1 |0 a+l 2a+2 2a+1 2 a a+?2 20 1
at+2 |0 at+2 2a+1 1 a 20 + 2 2 at1 2a
2a 0 2a o 20 +2 a+2 2 a+ 1 1 20 + 1
20+ 1|10 20+1 a+2 2 2a a+ 1 1 200+ 2 «a
20+2|0 2+2 at+l a+2 1 2a 20 + 1 a 2 -

Example 2 The polynomial p(x) = x> + 1 is not irreducible over the field Z,, since
p(1) = 0. We follow the same procedure as in Example 1 and construct addition and mul-
tiplication tables for the ring Z,[x]/(p(x)).

As before, let P = (p(x)) and « = x + P in Z,[x]/P. Extending an addition table until
closure is obtained, we arrive at the table shown in Figure 8.4.

+ 0 1 «a a+ 1
0 0 1 «a a+ 1
1 1 0 a+ 1 «a
a «a a+ 1 0 1
a+ 1 a+ 1 a 1 0

In making the multiplication table shown in Figure 8.5, we use the fact that p(a) = 0

in this way:
A+1=0=d=
= d =
0 1 «a a+1
0 0 0 0 0
1 0 1 a a+1
o 0 «a 1 a+ 1
a+ 1 0 a + a+ 1 0

Theorem 8.43 assures us that Z[x]/P is not a field, and the multiplication table confirms

this fact by showing that @ + 1 does not have a multiplicative inverse.

The next theorem and its corollary set forth the standard forms for the elements of the
ring F[x]/(p(x)) that we referred to earlier.
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Theorem 8.45 m Elements of F[x]/(p(x))
Let p(x) be a polynomial of positive degree n over the field F, and let P = (p(x)) in F[x].
Then each element of the ring F[x]/P can be expressed uniquely in the form
(@ +ax+ax*+ - +a,_ X" ")+ P
u=v Proof Assume the hypothesis and let f(x) + P be an arbitrary element in F[x]/P. By the
Division Algorithm, there exist g(x) and r(x) in F[x] such that
fx) = p(0)gx) + r(x),
where either r(x) = 0 or deg r(x) < n = deg p(x). In either case, we may write
rx) =ay+ ax +ax* + - +a, XL
Since p(x)q(x) is in P, p(x)q(x) + P = 0 + P, and therefore,
f) + P = [px)q(x) + P] + [r(x) + P]
=[0 + P] + [r(x) + P]
=rx)+P
=(ap+ax+ - +a,_x""+P
Uniqueness To show uniqueness, suppose that f(x) + P = r(x) + P as before and also that

f(x) + P = g(x) + P, where

gx) =by+ bx +bx* + -+ + b, "N
Then r(x) + P = g(x) + P, and therefore r(x) — g(x) is in P. Each of r(x) and g(x) either is
zero or has degree less than 7, and this implies that the difference r(x) — g(x) either is zero

or has degree less than n. Since P = (p(x)) contains no polynomials with degree less than
n, it must be true that r(x) — g(x) = 0, and r(x) = g(x).

Corollary 8.46 m Elements of F[x]/P as Polynomials
For a polynomial p(x) of positive degree n over the field F, let P = (p(x)) in F[x] and let
a = x + P in F[x]/P. Then each element of the ring F[x]/P can be expressed uniquely in
the form
ay + a0 + ad® + -+ a, "
u=v Proof From the theorem, each f(x) + P in F[x]/P can be expressed uniquely in the form

f@x) +P=(apg+ax+ - +a_x"")+P
=(+P)+(@+P)(x+P)+ - +(a,+P)x "+ P)
=(ay+P)+(a, +Pa+ - + (a,, + P’
=a+aa+ - +a,_a" !,

where the last equality follows from the identification of @; in F with ¢; + P in F[x]/P.
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In Example 1, the polynomials f(x) in Z3[x]and the cosets f(x) + P in Z3[x]/P receded
into the background once the notation « = x + P was introduced, and we ended up with
a field whose elements had the form ay + a;«, with a; € Z3. This field Z3(«) of nine
elements, given by

Zy(a) =10, 1,2, 0, + 1, + 2,20, 2 + 1,2 + 2},

is called the field obtained by adjoining a zero a of x* + 2x + 2 to Zs.

In general, if p(x) is an irreducible polynomial over the field F, the smallest field that
contains both F and a zero « of p(x) is denoted by F(«) and is referred to as the field
obtained by adjoining « to the field F. A field F(«) of this type is called a simple alge-
braic extension of F, and F is referred to as the ground field. Corollary 8.46 describes the
standard form for the elements of F(x).

Example 3 The polynomial p(x) = x> + 2x*> + 4x + 2 is irreducible over Zs, since
pO) =2, p)=4 p2)=1 p@B) =4 p4 =4

In the field Zs(«) obtained by adjoining a zero « of p(x) to Zs, we shall obtain a formula for
the product of two arbitrary elements ag + aje + axa® and by + bja + bya’.
In order to accomplish this objective, we first express &’ and o* as polynomials in «
with degrees less than 3. Since p(a) = 0, we have
@ +20+4a+2=0= & =—-2a>—4a —2
=3’ +a+3.
Hence
ot = aBa? + a + 3)
=30’ + o* + 3«
=33a’+ a + 3) + & + 3«
40> + 3a + 4 + o + 3a
a + 4.

Using these results, we get
(ay + aja + a,®)(by + by + bya?)

= agby + (ayb, + a\by)a + (agh, + a;b, + a,by)a’
+ (a\b, + a,b))a’® + a,b,a’

= ayby + (ayh, + a\by)a + (ayh, + a\b, + a,by)a’®
+ (a;by, + ayb))(3c® + a + 3) + ayby(a + 4)

= (apby + 3a,b, + 3a,b, + 4a,b,)
+ (agh;, + aiby + a\b, + ab; + aby)a
+ (aph, + a\b; + ayby + 3a,b, + 3a,b))a’. |

The existence of such a field F(«) is ensured by Theorem 8.44.
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1th Zs5(«) as 1n Example 3, suppose that we wish to find the multiplica-
Example 4 Wwith Zs(a) asin E le 3 h ish to find the multipli
tive inverse of the element o> + 3a + 1 in the field Zs().
The polynomials f(x) = x> + 3x + 1 and p(x) = x* + 2x*> + 4x + 2 are relatively
prime over Zs, so there exist s(x) and #(x) in Zs[x] such that
f)sx) + p(0)x) =1,
by Theorem 8.13. Since p(a) = 0, this means that
fleys(a) = 1
and that (o + 3a + 1) =[f(@)] ! = s(a). In order to find s(x) and #(x), we use the
Euclidean Algorithm:
p(x) = fx)(x +4) + (x + 3)
fx) = (x + 3)(x) + 1.

Thus
1 =fx) —x(x+3)
= f(x) — x[p(x) — f)(x + 4)]
=[Ol + x(x + D] + p(x)(—x)
= f)(@ + dx + 1) + p(0)(—x),
so we have s(x) = x* + 4x + 1 and #(x) = —x. Therefore,

(@ +3a+ D) '=s(a0) =a®+ 4a + 1.
The result may be checked by computing the product
(a® + 3a + 1)(® + 4a + 1)
in Zs(«). [ |

It is of some interest to consider an example similar to Example 4 but in a more famil-
iar setting.

Example B The polynomial p(x) = x*> — 2 is irreducible over the field Q of rational
numbers. In the field Q(V/2) obtained by adjoining a zero & = /2 of p(x) to Q, let us find
the multiplicative inverse of the element 4 + 3V/2 by the method employed in Example 4.
The polynomials f(x) = 3x + 4 and p(x) = x> — 2 are relatively prime over Q. To find s(x)
and #(x) such that

J@)s(x) + p(0)ix) = 1,

we need only one step in the Euclidean Algorithm:

_ .(1 _4>+<_2)
p(x) = f(x) 3579 o)

Multiplying by 9/2 and rewriting this equation, we obtain

fx) - <§x - 2> + p(x)(—z) =1



418

Chapter 8 Polynomials
Since p(V2) = 0, this gives
3
f(V2) - E\E -2)=1
and

@4 +3V2) = [f(VD)] ! = %\ﬁ _a

This agrees with the result obtained by the usual procedure of rationalizing the

denominator:
1 (@ -3V 4-3\V2
4+3V2  (4+3V2)(4-3V2) -2
N Y n
2

The result in Theorem 8.44 generalizes to the following theorem.

Theorem 8.47 m Splitting Field

If p(x) is a polynomial of positive degree n over the field F, there exists an extension field
E of F that contains n zeros of p(x).

Complete  Proof The proof is by induction on the degree n of p(x). If n = 1, then p(x) has the form
Induction p(x) = ax + b, with a # 0. Since p(x) has the unique zero —a~'b in F, the theorem is true

forn = 1.

Assume the theorem is true for all polynomials of degree less than ., and let p(x)
be a polynomial of degree k. We consider two cases, depending on whether p(x) is
irreducible.

If p(x) is irreducible, then there exists an extension field E; of F that contains a zero «
of p(x), by Theorem 8.44. By the Factor Theorem,

p(x) = (x — a)g(x),

where g(x) must have degree k — 1, according to Theorem 8.7. Since ¢g(x) is a polynomial
over E; that has degree less than k, the induction hypothesis applies to g(x) over Ej, and
there exists an extension field E of E; such that g(x) has k — 1 zeros in E. By Exercise 16
of Section 8.3, the zeros of p(x) in E consist of & and the zeros of ¢(x) in E. Thus p(x) has
k zeros in E.

If p(x) is reducible, then p(x) can be factored as a product p(x) = g(x)h(x), where
n; = deg g(x) and n, = deg h(x) are positive integers such that n; + n, = k. Since n; <k,
the induction hypothesis applies to g(x) over F, and there exists an extension field E| of F
that contains n; zeros of g(x). Now h(x) is a polynomial of degree n, < k over Ej, so the
induction hypothesis applies again to /(x) over E|, and there exists an extension field E of
E; such that h(x) has n; zeros in E. By Exercise 17 of Section 8.3, the zeros of p(x) in E
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consist of the zeros of g(x) in E together with the zeros of A(x) in E. There are altogether
ny + no, = k of these zeros in E.

In either case, we have proved the existence of an extension field of F that contains k
zeros of p(x), and the theorem follows by induction.

If E is a field that contains all the zeros of a polynomial p(x), and if no proper subfield
of E contains all of these zeros, then E is called the splitting field of p(x) because it is the
“smallest” field over which p(x) “splits” into first-degree factors. When considering x> + 1
as a polynomial over the field R of real numbers, then R(i), or the field C of complex num-
bers, is the splitting field for x> + 1 where

X+1=x—-dkx+i).

However, if x> + 1 is considered a polynomial over the field Q of rational numbers, then
the splitting field of x*> + 1 is Q(i), a proper subset of C.

The basic facts about zeros of polynomials have been presented in this chapter. The
two most important facts are found in Theorems 8.26 and 8.47. Theorem 8.26 asserts that
for any polynomial p(x) of positive degree n over C, the field C contains n zeros of p(x).
Theorem 8.47 states that for an arbitrary field F and any polynomial p(x) of positive degree
n over F, there exists an extension field of F' that contains n zeros of p(x).

Important as it is, the material in this chapter is only a small part of the knowledge
about extension fields. The study of extension fields leads into the area of mathematics
known as Galois' theory. Interesting results concerning some ancient problems lie in this
direction. One of these results is that it is impossible to trisect an arbitrary angle using only
a straightedge and a compass. Another is that it is impossible to express the zeros of the
general equation of degree 5 or more by formulas that use only the four basic arithmetic
operations and extraction of roots.

The end of this book is actually a beginning. It is a gateway to higher mathematics
courses in several directions, especially those in abstract algebra and linear algebra. These
higher-level courses are more theoretical and stimulating intellectually, and they might
well lead to a lifelong interest in mathematics.

Exercises 8.6 II———

True or False

Label each of the following statements as either true or false.

1. Every polynomial equation of degree n over a field F can be solved over an extension
field E of F.

2. If p(x) is an irreducible polynomial over a field F, then the largest field that contains
both F and a zero « of p(x) is F(a).

3. Let F be a field. If p(x) is reducible over F, the quotient ring F[x]/(p(x)) is also a field.

"Evariste Galois (1811-1832) was a French mathematician who solved the problem of finding a necessary and
sufficient condition for solving polynomials by radicals and laid the foundations for Galois theory. He died at
the age of 20 from wounds suffered in a duel.
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Exercises

1.

Each of the following polynomials p(x) is irreducible over Z3. For each of these poly-
nomials, find all the elements of Z3[x]/(p(x)) and construct addition and multiplication
tables for this field.

a.p(x)=x2+x+2 b.p(x)=x2+1
In each of the following parts, a polynomial p(x) over a field F is given. Construct

addition and multiplication tables for the ring F[x]/(p(x)) in each case and decide
whether this ring is a field.

apx)=x>+x+1lover F=17, b. p(x) = x>+ 1over F = Z,
c.px)=x+x+1loverF=12, dp)=x*+x>+ loverF=12,
e. p(x) =x>+x+ lover F = Z3 f. p(x) = x>+ 2over F = 73

In Exercises 3-6, a field F, a polynomial p(x) over F, and an element of the field F(«)
obtained by adjoining a zero « of p(x) to F are given. In each case:

NS, RowWw

10.

11.

12.

a. Verify that p(x) is irreducible over F.

b. Write out a formula for the product of two arbitrary elements ag + a,a + aa® and
by + by + bya? of F(c).

c¢. Find the multiplicative inverse of the given element of F(«).
F=Z3px)=x+2x>+ 1, >+ a+2
F=Z3,p(x)=x3+x2+2x+ L,a?+2a+ 1
F=Z5,p(x)=x3+x+ 1, &% + 4a
F=Zs,px)=x>+x>+ 1,a* +2a +3

For the given irreducible polynomial p(x) over Z3, list all elements of the field Z(«)
that is obtained by adjoining a zero « of p(x) to Zs.

a. px)=x>+ 222+ 1 b. p) =X+ 2+ 2x + 1

If F is a finite field with k elements, and p(x) is a polynomial of positive degree n over
F, find a formula for the number of elements in the ring F[x]/(p(x)).

Construct a field having the following number of elements.

a. 24 b. 52 c. 33 d. 72

Find the multiplicative inverse of V4 — 2V/2 — 2 in Q(V/2), where Q is the field of
rational numbers.

Find the multiplicative inverse of V9 — V3 + 2 in Q(\3f3), where Q is the field of
rational numbers.

An element u of a field F is a perfect square in F if there exists an element v in F such
that u = 2. The quadratic formula can be generalized in the following way: Suppose
that 1 + 1 # Oin F, and let p(x) = ax* +bx+c,a+#0,bea quadratic polynomial
over F.
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13.

14.
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a. Prove that p(x) has a zero in F if and only if b> — 4ac is a perfect square in F.
b. If b*> — 4ac is a perfect square in F, show that the zeros of p(x) in F are given by

b+ Vb — 4dac —b — Vb — dac

and r, =
2a 2a

and that these zeros are distinct if 4> — 4ac # 0.

r

Determine whether each of the following polynomials has a zero in the given field F.
If a polynomial has zeros in the field, use the quadratic formula to find them.

a. x2 + 3x + 2, F=1Zs
b. X2 + 3x + 3, F=17Zs
c. X2+ 2x + 6, F=17;
d. X2+ 3x+ 1, F=17;
e. 22+ x+ 1, F=17;
f.332+2x — 1, F=17;

a. Find the value of c that will cause the polynomial f(x) = x> + 3x + ¢ to have 3 as
a zero in the field Z.

b. Find the other zero of f(x) in Z;.

Each of the polynomials p(x) in Exercises 15—18 is irreducible over the given field F. Find
all zeros of p(x) in the field F(«) obtained by adjoining a zero of p(x) to F. (In Exercises 17
and 18, p(x) has three zeros in F(«).)

15. p(x) = x> + 2x + 2, F=17;
16. p(x) =x> +x + 2, F=17;
17. p(x) = x>+ x> + 1, F =175
18. p(x) = x>+ 2x% + 4x + 2, F=17;s

Key Words and Phrases [

addition of polynomials, 357 factorization of polynomials over  ground field, 416
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algebraic extension, 386 R, 388 polynomial, 378

Cardano’s Formulas, 401 factor (or divisor) of a linear combination, 370

degree of a polynomial, 362 polynomial, 367 monic polynomial, 370
Factor Theorem, 377 multiple of a polynomial, 367

Division Algorithm, 367 Fundamental Theorem multiplication of

Eisenstein’s Irreducibility of Algebra, 384 polynomials, 357

Gauss’s Lemma, 390 multiplicity of a factor, 380
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polynomial in x over R, 355
polynomial mapping, 375
primitive polynomial, 390
quadratic formula, 385
quotient, remainder, 369
rational zeros, 388

reducible polynomial, 378
relatively prime polynomials, 380
Remainder Theorem, 376
resolvent equation, 403
ring of polynomials

over R, 359, 361

root (solution) of a polynomial
equation, 375

simple algebraic extension, 416

splitting field, 419

zero of a polynomial, 375, 380

A Pioneer in Mathematics
Carl Friedrich Gauss (1777-1855)

Carl Friedrich Gauss was born in Brunswick, Germany, on April 30,
1777. He is regarded as the greatest mathematician of the 19th
century and has been called the Prince of Mathematics. Part of
Gauss's greatness is due to the fact that his interest spanned all
mathematics known in his time. Since then, the volume of knowledge
in mathematics has become so large that no one person could ever
hope to master the whole field. In this sense, he may have been the
last complete mathematician.

The world was almost deprived of Gauss's genius when, as a child,
he fell into an overflowing canal near his home. It is said that he surely would have drowned
had he not been rescued by a passerby.

His mathematical genius became evident early in his life. He often said that he could
reckon before he could talk. In school, his precocity attracted the attention of the Duke of
Brunswick. The Duke decided to finance the education of the young prodigy and granted
him a fixed pension so that he could devote himself to work without financial considerations.

Gauss made some of the greatest contributions to mathematics when he was a young
man. He developed the method of least squares while preparing for university studies at
Collegium Carolinium. Two years later, he solved a 2000-year-old problem by proving that a
regular 17-sided polygon can be constructed with only a straightedge and a compass. In his
doctoral dissertation, Gauss proved the Fundamental Theorem of Algebra, a result that had
been accepted without proof for many years. In 1801, at the age of 24, he published the
monumental work Disquisitiones Arithmeticae, in which he laid the foundations of the area of
mathematics called number theory.

Also in 1801, when Gauss turned his attention to astronomy, he accomplished an
extraordinary achievement. Using a scanty amount of data, he was able to predict
accurately the orbit of the asteroid Ceres. For this achievement, he garnered international
acclaim. In 1807, he was appointed director of the astronomical observatory of Gottingen.

Image Works




APPENDIX

The Basics of Logic

In any mathematical system, just as in any language, there must be some undefined
terms. For example, the words sef and element are undefined terms. We think of a set as
a collection of objects, and the individual objects as elements of the set. We need to un-
derstand the word set to describe the word element, and vice versa. Hence we must rely
on our intuition to understand these undefined terms and feel comfortable using them to
define new terms.

A statement, or proposition, is a declarative sentence that is either true or false,
but not both. Postulates are statements (often expressed using undefined terms) that
are assumed to be true. Postulates and definitions are used to prove statements called
theorems. Once a theorem is proved to be true, it can be used to establish the truth of
subsequent theorems. A lemma is itself a theorem whose major importance lies not in
its own statement but in its role as a stepping stone toward the statement or proof of
a theorem. Finally, a corollary is also a theorem but is not so named because it is usu-
ally either a direct consequence of or a special case of a preceding theorem. To avoid
“stealing the thunder” of the more important theorem, it is labeled a corollary.

We now briefly discuss the basic concepts of logic that are essential to the mathemati-
cian for constructing proofs. We use the letters p, ¢, r, s, and so on, to represent statements.
Consider the following statements:

p: The sum of the angles in a triangle is 180°.
g: 22+32=(2+3)?

r: X2+1=0

s: Beckie is pretty.

The statement p is a true proposition from plane geometry. The statement ¢ is a false
proposition, when we consider the usual multiplication and addition in the set of real
numbers. The statement 7 is not a proposition, since its truth or falsity cannot be deter-
mined unless the value of x is known. The statement s is not a proposition, since its truth
or falsity “is in the eyes of the beholder” and also depends on which “Beckie” is under
consideration.

The statement r in the preceding paragraph can be clarified by placing restrictions on
the variable x, such as “for every x,” “for each x,” “for all x,” “for some x,” “for at least
one x,” or “there exists an x.” The phrases “for every x,” “for all x,” and “for each x” mean
the same thing and are often abbreviated by the symbol V, which is called the universal
quantifier. Similarly, the phrases “for some x,” “for at least one x,” and “there exists an
x” mean the same thing and are abbreviated by the symbol 3, which is called the exis-
tential quantifier. Another commonly used symbol is 3, which is read “such that.”

423
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Thus the statement
Vx,x >0
is read
“For every x, x > 0.”
Similarly, the statement
3y2y*+1=0
is read
“There exists a y such that y> + 1 = 0.

A statement about the variable x may be true for some values of x and false for other
values of x. Some such statements can be proved by furnishing an example, but others can-
not. The quantifier used in the statement determines the type of proof required.

If the statement has an existential quantifier, then one example where the statement is
true will establish the statement as a theorem. Consider the statement

“There exists an integer x such that x> + 2x = 24.

If the value 4 is assigned to x, and it is then verified that 42 + 2(4) = 16 + 8 = 24, this
proves that the statement is true. The phrase “there exists an integer x” requires only one
value of x that works to make the statement true.

If the statement has a universal quantifier, a specific example does not make a proof.
Consider the statement

“For any integer n, n — 1 is a factor of n> — 4n + 3.”

If the value 7 is assigned to n, and it is then verified that » — 1 = 6 is indeed a factor of
7% — 4(7) + 3 = 24 = 6(4), this illustrates a case where the statement is true, but it does
not prove that the statement is true for any value of n other than 7 and thus does not con-
stitute a proof. The phrase “for any integer n”” requires an argument that can be applied in-
dependently of the value of #. In this case, a proof can be supplied by demonstrating that

(n—1Dn—3)=n*>—4n + 3,

since this shows that n — 1 is always a factor of n*> — 4n + 3.

If a statement about x with a universal quantifier is not true for at least one value of
x, the statement is declared to be false (and therefore is not a theorem). Consider the
statement

“y? < 2* for all real numbers x.”
Forx = 3,

3? <2’
is false. Therefore, the statement

“xz < 2% for all real numbers x”

is false.
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A demonstration in which a statement is shown to be false for a certain value of the
variable is called a counterexample. A statement with a universal quantifier can be proved
false by finding just one counterexample, as we did in the last paragraph.

If p is a proposition, then the negation of p is denoted by ~p and is read “not p.” If p
is a true proposition, then ~p must be false, and vice versa. We illustrate the idea using a
truth table (see Figure A.1), where T stands for true and F stands for false.

Truth Table
for~p
p ~p
T
F

The negation of statements involving the universal quantifier and the existential quan-
tifier are given next. We use p(x) to represent a statement involving the variable x. Then the
statement

~(Vx, p(x)) is Ix D ~p(x)
is read
“The negation of ‘For every x, p(x) is true’
is
“There exists an x such that p(x) is false.” ”
We also write
~(3x 2 p(x)) is Vx,~p(x)
and read
“The negation of ‘There exists an x such that p(x) is true’
is

‘For every x, p(x) is false.” ”

Example 1 The negation of the statement
“All the students in the class are female”
is

“There exists at least one student in the class who is not female.” [ |

Example 2 The negation of the statement
“There is at least one student who passed the course”
is

“All the students failed the course.” [ |
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Connectives are used to join propositions to make compound statements. Propositions
p and ¢ can be joined with the connective “and,” which is commonly symbolized by A and
called conjunction. We define p A g to be true only when both p is true and g is true. The
corresponding truth table for p A g is given in Figure A.2.

Truth Table
forpng

p q | P

s B s L R
e I B s B
m o 3| >

M Figure A2

Similarly, propositions p and ¢ can be joined with the connective “or,” symbolized
by V and called disjunction. We define p V ¢ to be true when either p is true or ¢ is true, or
both p and g are true. The truth table for p V ¢ is given in Figure A.3.

Truth Table
forpvg

p q |p

mom o4 S
I T R
moH o= =3 <

M Figure A.3

Probably the most important connective is implication, denoted by =. Suppose p and
q are propositions. Then
pP=4q
is read in several ways:
“p implies ¢~
“if p then ¢”
“p only if ¢”
“p is sufficient for g”

“q 1s necessary for p.”

In each of these statements, p is called the hypothesis and g is called the conclusion.



M Figure A4

Appendix The Basics of Logic 427

Let us consider the following situations. Algebra class meets only three days a week,
on Monday, Wednesday, and Friday. Let p and ¢ be the following propositions:

p:  Today is Monday.
q:  Algebra class meets today.
Consider the implication
p=q.
This implication is true if both p and ¢ are true:
Today is Monday = Algebra class meets today.
Suppose p is true and ¢ is false. Then the implication
Today is Monday = Algebra class meets today

is false. Next suppose that p is false. The falsity of p does not affect the truth or falsity of g.
That is,

Today is not Monday

does not give any information about whether algebra class meets today. Thus we conclude
that

P=4q
is false only when p is true and ¢ is false. We record these results in the truth table in
Figure A.4.

Truth Table
forp=gq

p p=4q

o T 4 4
oo I I v I IS

=
T
F
T
T

Another prominent connective is the biconditional, which is denoted by
P<=q
and is read in any one of three ways:
“p if and only if ¢”
“p is necessary and sufficient for ¢”

“p is equivalent to ¢.”
The biconditional statement

P=9q
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M Figure A5

M Figure A.6

can be expressed as the conjunction of two statements:

PpP=q9 N(g=p).

The truth table in Figure A.5 illustrates that the statement p < ¢ is true when p and g are
both true or both false; otherwise, p < ¢ is false.

Truth Table for p & ¢q

(r=9N(@g=p)
Pl g | pP=>q | qg=>p Peq
T| T T T
T | F F T F
F | T T F F
F | F T T T

If the truth tables for two propositions are identical, then the two propositions are said
to be logically equivalent, and we use the < symbol to designate this.

Example 3 To show that

~pNg) = (~p)V(~q),
we examine the two columns headed by ~(p A g) and by (~p) V (~¢) in the truth table in
Figure A.6 and note that they are identical.

Truth Table for ~(p A q) < (~p) V (~@)

p | q | prhg | ~pAhg) | ~p | ~q | (=p)V(~q)

T| T T F F F

T | F F T F T T

F|T F T T F T

F | F F T T T T .

The statement in Example 3 is the logical form of one of De Morgan’s Laws. The cor-
responding form for sets is given at the end of Section 1.1. The next example illustrates a
truth table involving three propositions.

Example 4 To show that
rAN(pV g & rAp)V(rAg),

we need eight rows in our truth table, since there are 2° different ways to assign true and
false to the three different statements (see Figure A.7).
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Truth Table for rA (pV ) & (rAp) V (rA g)

r|lp| g | pVg | rANpVe | rAp | rAg | (FAPV(IrAg)
T|T|T T T T T T
T|T]|F T T T F T
T|F|T T T F T T
T|F|F F F F F F
F|T|T T F F F F
F|T|F T F F F F
F|F|T T F F F F
M Figure A.7 FIFLE F F F F F [ ]

In this text, we see some theorems whose statements involve an implication

pP=4q
In some instances, it is more convenient to prove a statement that is logically equivalent
to the implication p = ¢. The truth table in Figure A.8 shows that the implication

p = q (implication)
is logically equivalent to the statement
~g = ~p (contrapositive),

which is called the contrapositive of p = ¢.

Truth Table for (p = q) = (~qg= ~p)

pla|pr=>q | ~q | P | ~qg=>"p
T| T F F
T | F F T F F
F | T T F T T
M Figure A.8 FIF T T T T
Two other variations of the implication p = g are given special names. They are
q=p 1isthe converseof p =g
and

~p = ~q istheinverse of p=gq.
We note that the converse and the inverse are logically equivalent; that is,

(g=p) e (~p=~9.
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M Figure A9

M Figure A.10

Example B Letp and ¢ be the following statements:

p:
q:

X is an even integer.

X is an integer.

In Figure A.9, we describe the implication p = ¢ and its variations.

Logically equivalent

Logically equivalent
Implication Contrapositive
P=4q ~q4="P

X 1S an even X 1S not an
integer. integer.
= =
X is an X is not an
integer. even integer.
TRUE TRUE

Converse
q=p
xis an
integer.

=
X is an even
integer.
FALSE

Inverse
~pP="q
X 1S not an

even integer.
=
X is not an
integer.
FALSE

Example 6 Suppose p and ¢ are the following statements:

p:  The Packers win this week.

q: The Packers are in the playoffs next week.

Suppose the only way the Packers go to the playoffs is if they win this week. Hence, if they
do not win this week, they will not go to the playoffs next week. In Figure A.10, we exam-
ine the implication p = ¢ and its variations.

Logically equivalent

Logically equivalent

Implication
p=4q
Packers win
this week.

=
Packers are in
the playoffs
next week.
TRUE

Contrapositive
~q = ~p
Packers are not
in the playoffs
next week.
=
Packers do not
win this week.

TRUE

Converse
q=p
Packers are in
the playoffs
next week.
=
Packers win
this week.

TRUE

Inverse
~p = ~q
Packers do not
win this week.

=
Packers are not
in the playoffs
next week.
TRUE

Since the implication and its converse are true, we write

pP=q.

The method of proof by contradiction is sometimes useful in proving statements of
the form “p implies ¢.” As shown in Figure A.4, the statement “p implies ¢” is true in all
cases except when p is true and q is false. In a proof by contradiction, we assume that p is
true and that ¢g is false and then reach a contradiction (an impossible situation).
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To provide a simple example, consider the following propositions:

p: xisaninteger and x? is even.
g : xisan even integer.
We shall use a proof by contradiction to prove thatp = ¢ .
Assume that p is true and ¢ is false. Since x is not an even integer, x must be an odd
integer. That is, x = 2n + 1 for some integer n . This implies that
¥*=Q2n+ DH2n+1)
=4n’ +4n + 1
=2(2n* + 2n) + 1,

and therefore x? is an odd integer. This directly contradicts proposition p. Therefore, g must
be true when p is true, and this means that p implies g.

Appendix Exercises I

Prove that each of the statements in Exercises 1-6 is false.

1. For every real number x, x> > 0.

For any real number x, x> = x.

For each real number a, there is a real number b such that ab = 1.
2% < 3* for all real numbers x.

—x < Ix| for all real numbers x.

CANICLINE Sl

If x is a real number such that x < 1, then x* < x.

Prove that each of the statements in Exercises 7—12 is true.

7. There is an integer n such that n> + 2n = 48.
8. There is a real number x such that x + 1 = .

9. n? < 2" for some integer .

10. 1 + 3n < 2" for some integer n.

11. There exists an integer n such that n> + n is an even integer.

12. There exists an integer n such that n> + 2n is a multiple of 5.

Write the negation of each of the statements in Exercises 13-36.
13. All the children received a Valentine card.

14. Every house has a fireplace.

15. Every senior graduated and received a job offer.

16. All the cheerleaders are tall and athletic.

An integer m is defined to be an even integer if m = 2k for some integer k, and m is defined to be an odd
integer it m = 2q + 1 for some integer q. More details may be found in Section 1.2.
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17.
18.
19.
20.
21.
22,
23.
24.
25.
26.

27.

28.
29.
30.

31.

32.

33.
34.
35.
36.

There is a rotten apple in the basket.

There is a snake that is nonpoisonous.

There is a politician who is honest and trustworthy.

There is a cold medication that is safe and effective.

For every x € A, x € B . (The notation x € A is defined in Section 1.1.)

For every real number r, the square of r is nonnegative.

For every right triangle with sides a and b and hypotenuse ¢, we have ¢> = a*> + b
For any two rational numbers r and s, there is an irrational number j between them.
Every complex number has a multiplicative inverse.

For all 2 X 2 matrices A and B over the real numbers, we have AB = BA. (The prod-
uct of two matrices is given in Definition 1.31 of Section 1.6.)

For all sets A and B, their Cartesian products satisfy the equation A X B = B X A.
(The Cartesian product is defined in Definition 1.8 of Section 1.2.)

For any real number ¢, x < y = cx < cy.
There exists a complex number x such that x> + 1 = 0.

There exists a 2 X 2 matrix A over the real numbers such that A> = I where
10
1= [O 1] and A2 = A+ A. (The product of two matrices is given in Defi-

nition 1.31 of Section 1.6.)

There exists a set A such that A £ A M B . (The notation A € A M B is defined in Sec-
tion 1.1.)

There exists a complex number z such that z = z . (The notation z is given in Defini-
tion 7.7 of Section 7.2.)

There exists a triangle with angles «, 8, and vy such that« + 8 + y > 180°.
There exists an angle 0 such that sin 0 = 2.1.
There exists a real number x such that 2* = 0.

There exists an even integer x such that x? is odd.

Construct truth tables for each of the statements in Exercises 37-52.

37.
39.
41.
43.
45.
47.
49.
51.
52,

pe ~(~p) 38. pV(~p)

~(p A\ (~p)) 40. p=(pVq)

(pNg)=p 42. ~(pVq) & (~p)N(~q)
(PNp=q9)=q 4. (p=>q9 = ~(pAN~q
r=9<=(~pVaq 46. (~(p=q) = (PN (~q)
(P=q9 = (PA(~q = (p) 48. rV(pAqg) < (rVp)A(rVa)
(pANgAr)=(pV g Ar) 50. (p=>gN@g=n)=>({p=r

pP=>@AN)e(p=9N(p=r)
(phgp=ne(p=@=r)



Appendix The Basics of Logic 433

In Exercises 5368, examine the implication p = ¢ and its variations (contrapositive,
inverse, and converse) by writing each in English. Determine the truth or falsity of each.

53. p: My grade for this course is A.

: I can enroll in the next course.

p
q
54. p: My car ran out of gas.
q: My car won’t start.
55. p: The Saints win the Super Bowl.
q: The Saints are the champion football team.
56. p: 1have completed all the requirements for a bachelor’s degree.
q: 1can graduate with a bachelor’s degree.
57. p: My pet has four legs.
q: My pet is a dog.
58. p: T am within 30 miles of home.
q: Tam within 20 miles of home.
59. p: Quadrilateral ABCD is a square.
q: Quadrilateral ABCD is a rectangle.
60. p: Triangle ABC is isosceles.
q: Triangle ABC is equilateral.
61. p: xis a positive real number.
q: xis a nonnegative real number.
62. p: xis apositive real number.
g: x*is a positive real number.
63. p: 5xisodd.
q: x1is odd.
64. p: 5 + xisodd.
q: xiseven.
65. p: xyiseven.
q: x1iseven ory is even.
66. p: xiseven and y is even.
q: x + yiseven.
67. p: x> >y?
q: x>y
X
68. p: — >0
P y
q: xy >0

State the contrapositive, converse, and inverse of each of the implications in Exercises
69-74.

69. p=>(qVr) 70. p=(gANr)

71. p= ~q 72. (p AN~q) = ~p

73. (pVg) = TANs) 74. (pANg) = (rN\s)
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Answers to True/False and
Selected Computational Exercises

BN Exercises 1.1 Pages9-12 IN———

True or False

1. true 2. true 3. false 4. true 5. true
6. false 7. true 8. true 9. false 10. false
Exercises

1. a. A = {x]|xis a nonnegative even integer less than 12}

c. A = {x|x1is a negative integer}

2. a. false c. false e. false
3. a. false c. true e. true g. false i. false
4. a. true c. false e. false g. false
5. a. {0,1,2,3,4,5,6, 8,10} c. {0,2,4,6,7,8,9,10} e. J
g {0,2,3,4,5} i. {1,3,5} k. {1,2,3,5} m. {3,5}
6. a. A c. & e. A g A i U k. U m. A

7. a. {J, A} c. {J,{a}, {b}, {c}, {a, b}, {a,c}, {D, c}, A}
e. (&, {1}, {{1}}. 4} g {J. A}

8. a. One possible partition is X; = {x|x is a negative integer} and X, = {x|x is a
nonnegative integer}. Another partition is X; = {x|x is a negative integer},
X, = {0}, X5 = {x]|xis a positive integer}.

¢. One partition is X; = {1, 5, 9} and X, = {11, 15}. Another partition is X; =
{1,15}, X, = {11}, and X3 = {5, 9}.

9. a. X, = {1}, Xo = {2}, X3={3}; Xy = {1}, X2 = {2, 3}; X, = {2}, Xo = {1, 3};
X1 ={3}L, X ={1,2}

11. a. ACB c. BCA e A=B=U g. A=U
35. LetA ={a},B={a,b},and C = {a,c}. ThenANB={a} =ANCbut B#C.
39. ANBYUA NB =AUBNAUB)

435



436 Answers to True/False and Selected Computational Exercises

40. a. U
4
AUB: Regions1,2,3 A — B: Region 1
AN B: Region 2 B — A: Region 3

(AUB) — (AN B): Regions 1,3 (A—B)U(B — A): Regions 1,3
A + B: Regions 1,3
Each of A + Band (A — B) U (B — A) consists of Regions 1, 3.

c. U
8

A: Regions 1,4,5,7 AN B: Regions 5,7

B + C: Regions?2,3,4,5 AN C: Regions4,7

AN (B + C): Regions 4,5 (ANB) + (AN C): Regions4,5

Each of AN (B + C) and (A N B) + (A N C) consists of Regions 4, 5.
41. a. A+A=AUA -(ANA=A-A=ANA=Y

BN Exercises 1.2 pages21-25 I

True or False

1. false 2. true 3. false 4. false 5. false
6. true 7. true 8. false 9. true
Exercises

1' a. {(a9 0)’ (a9 1)5 (bv 0)5 (b’ 1)} C. {(2’ 2)1 (4’ 2)’ (6’ 2)9 (89 2)}

e. {(1,1),(1,2),(1,3),(2,1),(2,2),(2,3),(3,1),(3,2),(3,3)}
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2. a. domain = E, codomain = Z, range = Z

C.

domain = E, codomain = Z,

range = {y|y is a nonnegative even integer} = (Z* N E) U {0}

3. a. /() =(1,3,5,...} =Z" —E, f (T)={—4,-3,-1,1,3,4}

10.

11.

C.

a.

a.

f$)=10,1,4}, (T =

The mapping fis not onto, since there is no x € Z such that f(x) = 1. The mapping
f is one-to-one.

. The mapping f is onto and one-to-one.

. The mapping f is not onto, since there is no x € Z such that f(x) = —1. It is not

one-to-one, since f(1) = f(—1)and 1 # —1.

. The mapping f is not onto, since there is no x € Z such that f(x) = 3. It is

one-to-one.

. The mapping f is onto. It is not one-to-one, since f(9) = f(4) and 9 # 4.

. The mapping f is both onto and one-to-one.
. The mapping f is both onto and one-to-one.

. The mapping f is not onto, since there is no x € R such that f(x) = —1. It is not

one-to-one, since f(1) = f(—1)and 1 # —1.

. The mapping fis onto and one-to-one.

. The mapping f is onto. The mapping is not one-to-one, since f(—1) = f(1) and

—1#1.
. The mapping fis onto and one-to-one.
. The mapping f is not onto, since there is no x € Z such that |x + 4|= —1.

The mapping f is not one-to-one, since f(1) = f(—9) = Sbut 1 # —9.

The mapping f is not onto, since there is no x € Z™* such that 2* = 3. The mapping
f is one-to-one.

. Letf: E — E where f(x) = x.

c. Letf: E — E where

€.

) = x/2 if x is a multiple of 4
* X if x is not a multiple of 4.

2a

. For arbitrary a € Z, 2a is even and f(2a) = 5 = a. Thus f is onto. But f is not

one-to-one, since f(1) = f(—1) = 0.

. For arbitrary a € Z, 2a — 1 is odd, and therefore

Q2a—1)+1
fQRa—1)=——""""=a
2
Thus, fis onto. But f is not one-to-one, since f(2) = 5 and also f(9) = 5.

The mapping f is not onto, since there is no x € Z such that f(x) = 4. Since
f(2) = 6 and f(3) = 6, then fis not one-to-one.
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12. a. The mapping fis not onto, since there is no x € R — {0} such that f(x) = 1.

13.

15.

16.
17.

18.

a.

2.
 (fe)x) = { y

If[l], an ER - {O},

al_l_az_l

fla) = fla)) =

a a
= aa; — 1) =a(a, — 1)
=  aa, — a, = aa, — a
= —a, = —aq
= a, = a.

Thus fis one-to-one.

. The mapping f is not onto, since there is no x € R — {0} such that f(x) = 0. It is

not one-to-one, since f(2) = #and f(3) = 3.

The mapping f is onto, since for every (y,x) € B =7 X Z there exists an
(x,y) € A =7 X Zsuch that f(x, y) = (y, x).
To show that fis one-to-one, we assume (a, b)) € A = Z X Z and (¢, d) € A and

f(a, b) = f(c, d)
or

(b,a) = (, c).

This means b = d and a = ¢ and

(a, b) = (c, d).

. Since for every x € B =7 there exists an (x,y) EA =7 X Z such that

f(x,y) = x, the mapping f is onto. However, f is not one-to-one, since f(1,0) =
f(1,1)and (1,0) # (1, 1).

. The mapping fis not onto, since there is no (x,y) in Z* X Z* such that

f(x,y) =3 = 0. The mapping f is not one-to-one, since f(2, 1) = f(4,2) = 2.

. The mapping fis not onto, since there is no a € A such that f(a) = 9 € B. It is not

one-to-one, since f(—2) = f(2) and —2 # 2.

With T= (4,9}, /7'(T) = (=2, 2}, and f(f (7)) = f({—2,2)) = (4} # T.
g8 = (2,4), g7 (g(S) = (2,3,4,7)
S = (12,307 =S

if x is even
2(2x — 1) ifxisodd

x + |x]|

if x is even

c(feg)x) = 2

|x| —x ifxisodd

. (feg)x) = (x —|x|)?
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x + |x]
2

19. a. (gof)(x) = 2x c (gofHx) =
21. n!

Exercises 1.3 Pages2s-30 IS

True or False
1. false 2. true 3. false 4. false 5. false 6. false

e. (g°f)x) =0

Exercises
1. a. The mapping f° g is not onto, since there is no x € Z such that (fog)(x) = 1. The
mapping f° g is one-to-one.
c. The mapping f° g is not onto, since there is no x € Z such that (fog)(x) = 1. It is
not one-to-one, since (fog)(—2) = (f°g)(0) and —2 # 0.
e. The mapping f° g is not onto, since there is no x € Z such that (fog)(x) = —1. Itis
not one-to-one, since (f°g)(1) = (fog)(2)and 1 # 2.
2. a. The mapping g ° fis not onto, since there is no x € Z such that (g o f)(x) = 1. The
mapping g © fis one-to-one.
¢. The mapping g ° fis not onto, since there is no x € Z such that (g o f)(x) = —1. It
is not one-to-one, since (g°f)(—1) = (g°f)(—2)and —1 # —2.
e. The mapping g ° fis not onto, since there is no x € Z such that (g o f)(x) = 1. It is
not one-to-one, since (g ° f)(0) = (g°f)(1)and 0 # 1.

3. LetA={0,1},B={-2,1,2},C = {1,4}. Let g: A — B be defined by g(x) = x + 1
and f: B — C be defined by f(x) = x% Then g is not onto, since —2 & g(A). The map-
ping fis onto. Also, f° g is onto, since (f°g)(0) = f(1) = 1 and (f°g)(1) = f(2) = 4.

5. a. Letf:Z —Z and g: Z — Z be defined by

if x is even

X
f) =x gx) =42
x if xis odd.

The mapping f is one-to-one and the mapping g is onto, but the composition
feog = gisnot one-to-one, since (fog)(1) = (fog)(2)and 1 # 2.

6. a. Letf: Z —Z and g: Z — Z be defined by

X if x is even
fx) =12 g(x) = x.
x ifxisodd

The mapping f is onto and the mapping g is one-to-one, but the composition
feog = fis not one-to-one, since (f°g)(1) = (fog)(2)and 1 # 2.

8. a. Letf(x) = x, g(x) = x%, and h(x) = | x|, for all x € Z.
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BN Exercises 1.4 pages3s-37 II———

True or False

1. false 2. true 3. true 4. false 5. true 6. true
7. true 8. true 9. true
Exercises
1. a. The set B is not closed, since —1 EBand —1 * —1 = 1 & B.
¢. The set B is closed.
e. The set Bis not closed, since l E Band 1 * 1 = 0 & B.
g. The set B is closed.
2. a. not commutative; not associative; no identity element
¢. not commutative; not associative; no identity element
e. commutative; associative; no identity element
g. Commutative; associative; 0 is an identity element; O is the only invertible element,
and its inverse is 0.
i. not commutative; not associative; no identity element
k. not commutative; not associative; no identity element
m. not commutative; not associative; no identity element
3. a. The binary operation * is not commutative, since B * C # C * B.
b. There is no identity element.
5. a. The binary operation * is not commutative, since D * A # A * D.

b. Cis an identity element.

c. The elements A and B are inverses of each other, and C is its own inverse.

7. The set of nonzero integers is not closed with respect to division, since 1 and 2 are
nonzero integers but 1 + 2 is not a nonzero integer.

BN Exercises 1.5 Pages41-42 I————

True or False

1. true 2. false 3. false

Exercises
1. a. A right inverse does not exist, since f is not onto.
c. Arightinverse g: Z —>Zis g(x) = x — 2.

e. A right inverse does not exist, since fis not onto.
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g. A right inverse does not exist, since f is not onto.
i. A right inverse does not exist, since fis not onto.

if x is even

X
k. A right 27 =
right inverse g: Z — Z:is g(x) {Zx +1 ifxisodd.

2 if x i
m. A rightinverse g: Z — Z is g(x) = * 1 * ?s even
x — 2 ifxis odd.
X ifxiseven
2. a. Aleftinverse g: Z — Zis g(x) = 2
1 ifxis odd.

c. Aleftinverse g: Z — Z is g(x) = x — 2.
y ifx = y*forsomey € Z

e. Alefti WASY A =
crmvenes 15 §(x) {0 if x # y*for some y € Z.

X if x is even
g. Aleftinverse g: Z — Zis g(x) = yx + 1
2

i. There is no left inverse, since fis not one-to-one.

if x is odd.

k. There is no left inverse, since fis not one-to-one.

m. There is no left inverse, since fis not one-to-one.
3. n!
5. Letf: A — A, where A is nonempty.
f has aright inverse < fis onto, by Lemma 1.25

& f(fX(T)) = T for every subset T of A, by
Exercise 28 of Section 1.2

Exercises 1.6 Pages51-54 I

True or False

1. true 2. false 3. false 4. false 5. false 6. false
7. true 8. false 9. false 10. false 11. true 12. true
Exercises

o
]
B
I
W W =
~ N O
o
o]
I
I
—_
|
—
—
|
—
L 1
o
a
I
AN L O
~N N © O

W B~ W N



442

2.
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11.

13.

15.

22,

25.

27.
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a3 0 —4
I8 -8 6

-7 t ibl 402 t ibl i [4]
a. 8 —1 c. not possible e. 3 7 g. not possible i

¢. not possible

3
;= ;(i + k)(2k — j)

=@ +D2=-HN+E+2)E =)+ G +3)6—))
= 12i — 6j — 3ij + 28

a. n c. 12
I A B C
I I A B C
A|A B C I
B | B C I A
c| C I A B
, 1 2 11
(answer not unique) A = ,B =
13 4 1 1
( Cunique) A 12 s |6 -6
answer not unique) A = L 2 BT 3 3

(A—B)A +B) = 10 1andA2—B2= 206 (A—B)A +B) #
2 1 -4 97

A2_82
X=A'B

1 1
b. For each x in G of the form |:g g:|, theny = |: :| For each x in G of the

0 0
0 O 0 0
form ,theny = .
a a 1 1
Let A bl d B 2
= n =
© o1t 0

diagonal even though B is diagonal.

Leta=|" "laas=| ' 7| Then the product aB =" ©|;
C. (&) 1 1 an 1 1 . cn € produc O 0 1S

upper triangular, but neither A nor B is upper triangular.

0 2 71,
. Then the product AB = is not
7 2 7
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BN Exercises 1.7 pagesss-61 I

True or False

1. true 2. false 3. true 4. false 5. true 6. false

Exercises

1. a. This is a mapping, since for every a € A there is a unique b € A such that (a, b) is
an element of the relation.

c. This is not a mapping, since the element 1 is related to three different values; 1R1,
1R3, and 1R5.

e. This is a mapping, since for every a € A there is a unique b € A such that (a, b) is
an element of the relation.

2. a. The relation R is not reflexive, since x # 2x for x # 0, x € Z. It is not symmetric,
since x = 2y =5y = 2x for nonzero x and y € Z. It is not transitive, since x = 2y
and y = 2z do not imply that x = 2z, for nonzero x, y, and z in Z.

c. The relation R is reflexive and transitive, but it is not symmetric, since for arbitrary
X, y, and z in Z, we have
(1) x=x-1withl €7Z,

(2) 6 = 3(2) with 2 € Z but 3 # 6k where k € Z,
(3) y = xk, for some k; € Z and z = yk, for some k, € Z imply z = yk, = x(kk,)
with k&, € Z.

e. The relation R is reflexive since x = x for all x € Z. It is not symmetric since SR3
but 3R 5. It is transitive, since x = y and y = z imply x = z for all x, y, z in Z.

g. The relation R is not reflexive, since | —6| % |—6 + 1|. It is not symmetric, since
3| = |5+ 1], but |5|#%|3 + 1] It is not transitive, since |[4| = |3 + 1] and
3] = [2 + 1], but [4[ £ [2 + 1]

i. The relation R is not reflexive, since 2 R 2. It is symmetric, since xy = 0 implies
yx =0 for all x,y € Z. It is not transitive, since —1R2 and 2R(—3), but
(—DR(=3).

k. The relation R is reflexive, symmetric, and transitive, since for arbitrary x, y, and z
in Z, we have
D) |x—x|=10]<1,

Q) x—y|<l=|y—x|<1,
B |x—y|<land |y —z|<l=x=yandy=z= |x — z|< L.

3. a (3,3}

5.b.[0)={...,—14-707.14,...}, [1]={..,—13,-6,1,815,...},
Bl={...—11,-43,10,17,...}, [0] =[2] = {.., —12,-5,2,9,16,...},
[2]=[5]={...—9,-2,5,12,19,...}
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11.

12.

13.

={..,-7.0,7.14,...}, [1]1={. -6,1,8,...},
— (. -12,-5,2,9, ...}, []—{ —11 Z4,3.10,.. )
={. —10 3400, ) [5]={...,—9, -2.5.12....}
={.. ~1,6,13,...}

. The relation R is reflexive and transitive but not symmetric, since for arbitrary

nonempty subsets x, y, and z of A, we have the following:

(1) xis a subset of x.
(2) x1is a subset of y does not imply that y is a subset of x.
(3) xis asubsetof yand y is a subset of z imply that x is a subset of z.

. The relation R is reflexive, symmetric, and transitive, since for arbitrary nonempty

subsets x, y, and z of A, we have the following:

(1) x and x have the same number of elements.

(2) If x and y have the same number of elements, then y and x have the same
number of elements.

(3) If x and y have the same number of elements and y and z have the same number
of elements, then x and z have the same number of elements.

. The relation is reflexive and symmetric but not transitive, since if x, y, and z are

human beings, we have the following:

(1) x lives within 400 miles of x.

(2) x lives within 400 miles of y implies that y lives within 400 miles of x.

(3) x lives within 400 miles of y and y lives within 400 miles of z do not imply that
x lives within 400 miles of z.

. The relation is symmetric but not reflexive and not transitive. Let x, y, and z be

human beings, and we have the following:

(1) xis a first cousin of x is not a true statement.

(2) xis a first cousin of y implies that y is a first cousin of x.

(3) x is a first cousin of y and y is a first cousin of z do not imply that x is a first
cousin of z.

. The relation is reflexive, symmetric, and transitive, since if x, y, and z are human be-

ings, we have the following:

(1) x and x have the same mother.

(2) x and y have the same mother implies that y and x have the same mother.

(3) xand y have the same mother and y and z have the same mother imply that x and
z have the same mother.

. The relation R is an equivalence relation on A X A. Let a, b, ¢, d, p, and g be

arbitrary elements of A.

(1) (a, b)R(a, b) since ab = ba

(2) (a, b)R(c,d) = ad = bc = cb = da = (c, d)R(a, b)

(3) (a, b)R(c, d) and (c, d)R(p, q) = ad = bc and cq = dp
= adcq = bcdp
=aq = bp sincec # 0andd # 0
= (a, b)R(p, q)



14.
15.

16.

17.

19.
21.
23.
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c. The relation R is an equivalence relation on A X A. Let a, b, c, d, p, and g be
arbitrary elements of A.
(1) (a, b)R(a, b) since a> + b* = a®> + b?
) (@, DR, d)=a*+ V= +d*= 2+ d*>=d* + b*= (¢, d)R(a, b)
(3) (a, b)R(c,d)and (c, dR(p, q) =>a*> + b*> =c* +d*and * + d> = p> + ¢*
>4 +b=p*+4
= (a, b)R(p, q)

The relation R is reflexive and symmetric but not transitive.

a. The relation is symmetric but not reflexive and not transitive. Let x, y, and z be
arbitrary elements of the power set P(A) of the nonempty set A.

(1) xNx # Jisnot true if x = .

(2) x Ny # Jimplies that y N x # .

B) xNy+# @ and yNz# I do not imply that x N z # . For example, let
A= {a,b,c,d}, x=1{b,c}, y={c,d}, and z = {d,a}. Then xNy=
{} #,yNz={d} # IbutxNz=O.

The relation is reflexive, symmetric, and transitive. Let x, y, and z be arbitrary elements
of the power set %(A) and C a fixed subset of A.

(1) xRxsincexNC=xNC
2) xRy=>xNC=yNC=yNC=xMNC=yRx
(3) xRyandyRz=>xNC=yNCandyNC=zNC
=>xNC=zNC
= xRz

Thus R is an equivalence relation on P(A).
a. The relation is reflexive, symmetric, and transitive. Let a, b, and ¢ represent arbi-
trary triangles in the plane. Then

(1) ais similar to a is true.
(2) ais similar to b implies that b is similar to a.
(3) ais similar to b and b is similar to ¢ imply that a is similar to c.

d,j

a,d,e, f, k

UA=AUAUA; = {abcdefgh [)A=ANANA;={c}
AEL AEL

Exercises 2.1 Pages69-71 NN

True or False

1. true 2. false 3. false 4. false 5. true

6. false 7. false 8. false 9. true 10. true
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Exercises

3s.

All the addition postulates and all the multiplication postulates except 2c are satisfied.
Postulate 2c is not satisfied, since {0} does not contain an element different from 0. The
set {0} has the properties required in postulate 4, and postulate 5 is satisfied vacuously
(that is, there is no counterexample). Thus all postulates except 2c are satisfied.

Exercises 2.3 Pages g4-gc NN

True or False

1. false 2. false 3. true 4. true 5. true

6. true 7. true 8. false 9. false

Exercises

1. a. =1, *2, =3, =5, *£6, £10, =15, =30 c. =1, 2 *4 +7 +14, +28
e. X1, 2 £3 *4 6, £8, =12, £24 g *1, £2, x4, £8, =16, £32

2. a. *1,*2 c. £1,*2, £4 %8 e. X1, *+2 *£4 +8

3. ¢q=30,r=16 5.9=22,r=5 7.q=-3,r=3

9. g=—-51,r=4 11. ¢ =0,r = 26 13. g = —360,r =3

15. ¢ =0,r=0

25. Counterexample: Leta = 6,b = 8,and ¢ = 9.

29.

Ifa=0,thenn = —1 makes a — bn = 0 — b(—1) = b > 0, and we have a positive
element of S in this case. If a # 0, the choice n = —2|a| givesa — bn =a + 2b|a|
as a specific example of a positive element of S. The problem does not explicitly re-
quire a proof that our element is positive, but this can be done as follows.

Since b > 0, we have b = 1 by Theorem 2.6. This implies | a | = | a |by Exercise 18
of Section 2.1. It follows from the definition of absolute value that|a|= —a. Now

bla| = |a| and |a| = —a = bla| = —a.

Since a # 0, |a| > 0, and therefore, |a| = 1 by Theorem 2.6. Hence b|a| = b by
Exercise 18 of Section 2.1.

blal =b and b>0= bla| >0
We have b|a| = —a and b|a| > 0. By Exercise 14 of Section 2.1,
bla|+ bla| > —a + 0,
2bla| > —a, and
a + 2bla| > 0.

This shows that a + 2b]a| is positive.
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BN Exercises 2.4 pages92-95 II———

True or False

1. false 2. false 3. true 4. true 5. true 6. true
7. false 8. false 9. true 10. true 11. false 12. false
Exercises

1. 2,3,5,7,11,13,17, 19, 23,29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97
2. a. 1400 = 23+ 527,980 = 22 - 5 - 7% (1400, 980) = 22 -5 - 7 = 140
c. 3780 = 22+ 33-5-7; 16,200 = 23+ 3* - 52; (3780, 16,200) = 22- 33+ 5 = 540

3. a. (a,b)=3,m=0,n=—1
c. (a,b)=6,m=2,n= -3
e. (a,b)=3,m=2,n=25
g (a,b)y=9,m=-5n=3
i. (a,b)=3,m= —49,n = 188
k. (a,b)=12,m = —3,n = 146
m. (a,b)=12,m=5,n= 163
4. a. (4,6) =2
19. Let a=2 and b=c=3. Then (a,b)=1(a,c)=2,3)=1, and (ac,b) =
6,3) =3 #1.

28. After a and b are written in their standard forms, the least common multiple of a and
b can be found by forming the product of all the distinct prime factors that appear in
the standard form of either a or b, with each factor raised to the greatest power to
which it appears in either standard form.

29. a. The least common multiple of 1400 = 23527 and 980 = 2%-5 77 is
23 - 5272 = 9800.
c. The least common multiple of 3780 = 22 - 3%+ 5+ 7 and 16,200 = 23 - 3* - 5% s
23.3%.52.7 = 113,400.
30. a. An integer d is a greatest common divisor of a, b, and c if these conditions are
satisfied:
(1) dis a positive integer.
(2) dla, d|b, and d|c.
(3) If n|a, n|b, and n|c, then n|d.
31. a. 7= 14(—2) + 28(0) + 35(1)
c. 1 = 143(—53) + 385(18) + (—65)(—10)



448

Answers to True/False and Selected Computational Exercises

BN Exercises 2.5 Pages103-106 IS

True or False

1. true 2. true 3. false 4. true 5. true 6. false 7. false
Exercises
1. [0]={..,-505,...}, [1]={..,—4,1,6,...},

21=4{...-327,...},, 3]={..,-2,3,8,...}

41=4{...,-1,49,...}
3. x=5 5.x=11 7. x = 9. x =173 11. x =28
13. x =7 15. x = 17. x = 19. x = 11 21. x =13
23. x =2 29. a. 1 c. 8 e. 1 g 3 i. 3 k. 2
39. d =(6,27) = 3 and 3 divides 33; x = 1, x = 10, x = 19 are solutions.

41.
43.
45.
47.

49.
53.

d = (8,78) = 2 and 2 divides 66; x = 18 and x = 57 are solutions.
d = (68, 40) = 4 and 4 divides 36; x = 7, x = 17, x = 27, x = 37 are solutions.
d = (24, 348) = 12 and 12 does not divide 45; therefore, there are no solutions.

d = (15,110) = 5and 5 divides 130; x = 16, x = 38, x = 60, x = 82, and x = 104 are
solutions.

d = (42,74) = 2 and 2 divides 30; x = 6 and x = 43 are solutions.

a. x = 27 or x = 27 (mod 40) c. x=11orx= 11 (mod 56)
e. x = 14 or x = 14 (mod 120) g. x = 347 or x = 347 (mod 840)

Exercises 2.6 pages112-114+ INNNNNNN——

True or False

1. true 2. false 3. false 4. false
Exercises
1. a. [3] c. [4] e. [6][4] = [0] g. [6] + [6] = [O]

2. a. [1][2][3][4] = [24] = [4]

3. a. n

(0]

(1]

(0]
(1]

(0]
(1]

(1]
(0]

c. [1][2](3] = [6] = [2]
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“lx o 11 orroBro“oB5oel
(01| (0] [0] [O0] [0l [O] [O] [O]
(11| (01 (11 [21 (31 [4] [5] [6]
(21| [0] (2] [4] f(el (11 [3] IS]
(31| [0I [31 [6] (21 (51 (11 [4]
(41| [O] [4] [1] (51 (21 [6] I3]
(51| [0] [51 [3] (11 [6] [4] [2]
(6] | [01 [6] [5] (41 (31 [2] |[1]
5. a. [9] c. [13] e. [5] g [173]
6. a. [1], [5] c. [11, 3], [7], [9] e. [1], [S], [7], [11], [13], [17]
7. a. [2], [3], [4] c. [2], [4], [5], [6], [8]
e. [2], [3], [4], [6], [8], [9], [10], [12], [14], [15], [16]
8. a. [x] = [2] or [x] = [5] c. [x] = [2]or [x] = [6]
e. No solution exists.
g [x] = [2], [x] = [5], [x] = [8], or [x] = [11]
i. [x] = [4]or[x] = [10]
10. a. [x] = [4]7'[5] = [10][5] = [11] c. [x] = [717'[11] = [7][11] = [5]
e. [x] = [9]7'[14] = [9][14] = [6] g. [x] = [6]7'[5] = [266][5] = [54]
11. [x] = [3], [y] = [5]
13. [x] = [3], [y] = [3]
19. a. [x] = [4] or [x] = [5] c. [x] =[1]or[x] = [5]

BN Exercises 2.7 Pages119-123 I

True or False

1. false 2. false 3. true 4. false

Exercises
1. Errors occur in 00010 and 11100.

3. Correct coded message:
101101101 110110110 100100100 101101101 010010010 011011011
Decoded message: 101 110 100 101 010 011
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3 2 _1
5. a. 3 c. =3

. (0.97)* + 4(0.97)%(0.03) = 0.9948136

S
©

7. a. (0.9999)% = 0.9992003
c. (0.9999)% + 8(0.9999)7(0.0001) = 0.9999997
e. 1.000000
9. 1 14. a. 7 c. 1 17. a. valid c¢. not valid
18. a. No error is detected. ¢. An error is detected.
19. y = —(10,9,8,7,6,5,4,3,2) 20. a. 3 c. 3
22. a. 3 c. 3 23. 2 25. 3

BN Exercises 2.8 Pages130-13+ I

True or False

1. true 2. true 3. true

Exercises
1. Ciphertext: APMHKPMKSHQ HQVHAPMHUIQT
f'(x) = x + 19 mod 27
3. Plaintext: “tiger, do you read me?”
F'(x) = x + 20 mod 31
5. Ciphertext: FBBZXLXDGIXZUW
f1(x) = 4x + 7 mod 27
7. Plaintext: www.brookscole.com

F71() = 19x + 2 mod 28

9. Plaintext: mathematics
f(x) = 9x + 13 mod 26
f %) = 3x + 13 mod 26
11. Plaintext: there are 25 primes less than 100
f(x) = 12x + 17 mod 37
£ 1 (x) = 34x + 14 mod 37

15. a. n—1 b.n—1n—1=n*—n-1


www.brookscole.com
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17. Ciphertext: 62 49 75 26 49 73 75 50 61 d =37

19. a. Ciphertext: 000 132 085 082 001 030 000
b. Ciphertext: 001 050 105 039 000
c. d =103

21. Plaintext: quaternions

23. a. $(5)=4;1,2,3,4 c. ¢(15)=8;1,2,4,7,8,11, 13,14
e. $(12) =4;1,5,7,11
25. a. i. 2 iii. 8
26. a. i. 1 iii. 4 v. 2 vii. 18
b. The positive integers less than or equal to p’ that are not relatively prime to p’ are

multiples of p; that is, they are elements of the set

{1p,2p,3p, ..., (p/~" = Dp,p/ 'p}.

Since this set contains p/~ ! elements,

d(pHy=p/ —pi~t=pi~(p—1.

B Exercises 3.1 Pages141-145 I

True or False
1. true 2. false 3. false 4. false 5. false 6. false

Exercises
1. group

3. The set of all positive irrational numbers with the operation of multiplication does not
form a group. The set is not closed with respect to multiplication. For example, V2 is a
positive irrational number, but V2V?2 = 2is not. Also, there is no identity element.

5. The set of all real numbers x such that 0 < x = 1 is not a group with respect to multi-
plication because not all elements have inverses.

7. group 9. group 11. group
13. The operation X is not associative, since
aX(cXa)=aXe=a,
whereas
(@aXc)yXa=bXa=c

Also, there are no inverses for the elements a and b.



15.

17.

19.

21.
23.

25.
27.

29.

35.
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The set Z is an abelian group with respect to *. The identity element is —1. The
element —x — 2 is the inverse of the element x € Z.

The set Z is not a group and hence, not an abelian group with respect to the opera-
tion *. The operation is not associative. There is no identity element and hence no
inverse elements.

The set Z is not a group and hence, not an abelian group with respect to *. The iden-
tity element is O, but 1 does not have an inverse in Z.

group, 2

The set is not a group with respect to multiplication, since it does not have an identity
element and hence has no inverse elements.

group, 5
sl @ B o@s e
(11 | (11 [21 (31 [41 [5] [6]
(2] | [21 [4] (el (11 [31 [5]
31| 31 [61 (21 (51 [11 [4]
(41 | (41 (11 [51 (21 [6] [3]
(51 [ 51 31 [11 [6] [4] [2]
(61 | (61 [51 [41 [31 [21 [1]
[177" = [1], [2] and [4] are inverses of each other,
[3] and [3] are inverses of each other, and [6]"! = [6].

X |l P, Py, P;3y Py Ps

I; I; P, P, P3; P, Ps
Py |PL Iz P3 P, Ps P4
P, | P, Ps Iz Py P53 P
Py |P3 Py P Ps Py I
Py | Py P3 Ps P I P

Ps |Ps P, Py L1 P P3

The set G is not a group with respect to addition, since it does not contain an identity
element.

36. b. 2"
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37. P(A) = {D, {a}, {b}, {c}. {a, b}, {a ¢}, {b, c}, A}

+ % {a} {b} {ct  Aa.b} H{ac} {b.c} A
% % {a} {b} {¢t  Aab} H{acp {bc} A
{a} | Aa} g Afab} facp  {b} {c} A b}
oy | b} Aab} D b {4} A {¢t  Aa.c}
{c} {ct  AHacp {bcf O A {a} {b}  {a. b}
{a.b} | {a.b}  {b} {a} A g bt fac  A{d
{a.ct | {a.cp {c} A {a} by @ Aab} {b}
{b.c}y | {b.c} A {c} o} Afa.c} H{ab} O {a}
A A {b,c} H{a,c} {a, b} {c} {b} {a} %)

39. The set A is an identity element. But the set P(A) is not a group with respect to the
operation of intersection, since A is the only element that has an inverse.

B Exercises 3.2 Pages150-152 I

True or False

1. false 2. true 3. true 4. false 5. false 6. false

Exercises

5. One possible choice is a = p and b = o. Then (ab) ' = (po o) ' =y ! = y and
a b l=plogl=p’og =28s0@b)y ' #a b\

2:

7. One possible choice is @ = p and b = 8. Then (ab)*> = (p°d)*> = o e and

a*b? = p?0 8% = p*oe = p?, so (ab)* # a*b.

9. b. {x}

11 X a b ¢ d
a c d a b
b d ¢ b a

c |la b ¢ d
d | b a d c

17. (abed) ™" = ((d ¢ Yo Na™!
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19. Consider the set S = {a € G|la # a~'}. Now a € Sifand only ifa~' € S, s0 S has
an even number of elements. Since both G and S have an even number of elements, the
complement G — S = {a € G|a = a~ '} must also have an even number of elements.

The element e is in G — S since ¢ = ¢~ ! and therefore there is at least one a # e such

thata = a L.

. [[4] 2] [SJJ

Exercises 3.3 Pages159-163 NN

True or False

1. true 2. true 3. false 4. false 5. true
6. false 7. false 8. false 9. true 10. false
Exercises

1. a. Theset {e, o'} is a subgroup of S(A).
The multiplication table is

c. The set {e, p} is not a subgroup of S(A),
since it is not closed. We have pop =

p?> & {e, p}. The multiplication table is
° e o
° e
e e o P
e e
o | o e P
p | p P

e. The set {e, p, p*} is a subgroup of S(A). The multiplication table is

2

o le p p

e e p P
p|lp P e
PP P e p

g. The set {e, o, v} is not a subgroup of S(A), since it is not closed. We have y c o =
p & {e, o, v}. The multiplication table is

° e o y
e e o y
o | o e p?
Y| Y p e
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2. a. subgroup
c. The set {i, —i} is not a subgroup of G, since it is not closed. We have i - i = —1 &
{i, —i}.
3. ([6]) = {[0]. [21, [41, [6], [8]. [10], [12], [141}, o(([6]) = 8
5. a. {[1],[3], [4], [9], [10], [12]}, o(([4])) = 6

[0 —-1][-1 0 o 1][1 o0
saa={[0 [0 SH olls Vb=
c <A>={_? ﬂ[:i (ﬂ [(1) ﬂ},o<<A>)=3
e [oq [[4} [OJJ [m [oq [m [OJJ [[0} [OJJ}
oA {_[O] s Lo Lo @)oo o)

o(4)) =5

9. The set of all real numbers that are greater than 1 is closed under multiplication but is
not a subgroup of G, since it does not contain inverses. (If x > 1, then x~ ' < 1.)

17. b. [x] = {x} 18. a. {1, —1} c. (I}

27. a. C] = C—] = G, Ci = C—i = {1, i, _1, _i}, Cj = C_] = {l,j, _1, _j},
Ck = C—k = {1, k, _1, _k}

c. C, =G, Cp, = {L P}, Cp, = {I, P}, Cp, = Cp, = {3, P3, Ps}, Cp, = {L3, P4}

30. The subgroup (m) N (n) is the set of all multiples of the least common multiple of m
and n.

33. LetH = {e,0} and K = {e, y}.
35. LetH = {e,0} and K = {e, y}.

Exercises 3.4 Pages170-174 NN

True or False

1. true 2. true 3. false 4. false 5. true
6. true 7. false 8. true 9. false 10. true
Exercises

L (e) = {e}. (p) = {e.p. p*}. (o) = {e, 7}, (¥) = {e, v}, (8) = {e, 8}

3. The element e has order 1. Each of the elements o, vy, and 6 has order 2. Each of the
elements p and p? has order 3.

5. o(lz) = 1, 0(P1) = o(Py) = o(P4) = 2, 0(P3) = 0o(Ps) = 3
a. 0o(A) =2

&
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. 4 c 2 e. 4 g 1
9 c. 9 e. 3 g 9

. [11, [31, [51, [7]

- [11,[31, [71, [9]

- [11, 31, [51, [7], [9], [11], [13], [15]

- {101}, 1; {{0], [6]}, 2; {[OL, [4], [81}, 3 {[0], [3], [6], [91}, 4;
{[0], [2], [4], [6]. [8], [101}, 6; Z12, 12

- {[01}, 15 {[O], [51}, 2; {[O1, [21], [4], [6], [81}, 55 Zio, 10

- {01}, 15 {[0], [81}, 2; {[O1, [4], [8]. [12]}, 4;
{[0], [2], [4], [6], [8], [10], [12], [14]}, 8; Zye, 16

- G =(3) = (5]
- G =([2]) = ([6]) = ([7]) = ([8])
= ([31) = ([5]) = {[6]) = ([7]) = ([101) = ([11]) = ([12]) = ([14])
. [31, 5]
- [21. [6], [7], [8]
- [31, 51, [6], [71, [10], [11], [12], [14]
(11}, 15 {[11, [6]}, 2; {11, [2], [41}, 35 G, 6
(11}, 15 {(1], [101}, 2 {[1], [3], [4], [5], 91}, 5: G, 10
(11}, 15 {11, [161}, 25 {[1], [4], [13], [16]}, 4;
(11, (2], [4], [8], [9], [13], [15], [16]}, 8; G, 16

[
[
[
-
{
{
{

_ _\3 _1 V3
H= |:1 0} 2 2 2
. 0 1w | -Y

- Uy = {[11, [31, [71, [9], [11], [13], [17], [191}

=
©)

(1] (3] [7] [9] (11] [13] [17] [19]
(1] (1] (3] [7] [9] [11] [13] [17] [19]
(3] (3] (9] [1] (7] 13] [19] (11] (17]
(7] (7] (1] [

[
9] (3] [17] (1] [19] [13]
(9] (9] (7] (3] (1] [19] [17] [13] (11]

(1] | [11] [13] (17] [19] (1] (3] (7] [9]
(131 | [13] [19] (11] (17] (3] (9] (1] [7]
(71 | [17] (11] [19] [13] (7] (1] (9] (3]
(191 | [19] [17] [13] (11] (9] (7] (3] (1]
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¢. Uy = {[11, [5], [7], [11], [13], [17], [19], [23]}

(1] (5] [7] [11] [13] [17] [19] [23]
(1] (1] (5] [7] [11] [13] [17] [19] (23]
[5] [5] (1] [11] [7] [17] [13] [23] [19]
(7] (7] [11] (1] [5] [19] (23] [13] [17]
[11] [11] (7] (5] [1] (23] [19] [17] [13]
[13] [13] [17] [19] (23] [1] (5] (7] [11]
[17] [17] [13] [23] [19] [5] (1] [11] [7]
[19] [19] [23] [13] [17] [7] [11] (1] (5]
[23] (23] [19] [17] [13] [11] (7] (5] (1]
19. a. not cyclic
¢. not cyclic
21. a. ¢(8) =4;a, a,a,a
c. ¢(18) = 6;a, &, adl,all, a3, av
e. ¢(7) = 6;a, a2, at, ad, b
22. a. (@)= G
(@®) = (@ = {a*, a*, a° a* = ¢}
(@) = {a",a* = )
(@) = (e) = {e}
c.{a)=G
<a2> — <a4 — <as> — <a]0> — <a]4> — <a]6> — {az’ a4’ aé’ 618, alo,a , ]4,(116, 18 _ e}
<a3> — <a15> — {613, a6’ a9’ alz’ alS’ a18 — e}
(@) = (@) = {d®, a', a'® = ¢}
(@) = {a. " = ¢}
(@) = (e) = {e}
e (a) = G, (@) = (e) = {e}
23. a. a"?
c. ab a'®
24. a. none
c. a° a', a's, a?, 425, 4%

25. All subgroups of Z are of the form (n), n a fixed integer.

35. p— 1
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Exercises 3.5 Pages1s0o-153 NN

True or False

1. true 2. false 3. false 4. true 5. true
6. false 7. true 8. true
Exercises

3. Let ¢: Z4 — Us be defined by
¢([0]y) = [11s, &([11s) = [2]5, P([2]0) = [4]s, &([3]s) = [3]5.
5. Let ¢p: H— S(A) be defined by
&) =L, dM) =0, dM)=p, dM3)=p’, M) =y, dMs)=38.

1
7. Let ¢p: Z — H be defined by ¢(n) = [O }11:|, n € Z. Then

1 n+m 1 n||ll m
oem=[L 7T ]

forall n, m € Z.

b
9. Deﬂne¢:G—>Hbyq§(a+bi)=|:Z Jfora%—biEG.Letx:a-i-biEG
a

andy = ¢ + di € G. Then

d(xy) = ¢((a + bi)(c + di))
= ¢((ac — bd) + (bc + ad)i)

| ac—bd —bc— ad
bc + ad ac — bd

- s ]

= ¢(a + biyp(c + di)
= d0)P().

11. Define ¢: H— G by

{9)-
(_ .
;-
(=

<

[ 1
|
]
O =
L1
~_
Il
<
N N
~. I»—‘ OI
|
O =
L1
Il
|

<

T |

Lo
|

o -

|

N———
I
»
<



460 Answers to True/False and Selected Computational Exercises

22. a. For notational convenience we let a represent [a]. The elements 2 and 23 = 3 are
generators of Us. The automorphisms of Us are ¢ and ¢, defined by

o (1) =1 b,(2) =3
b b1 (2) =2 b 0, (2% = d,(4) =3>=4
"ei3) =3 P ) y(2) = ,3) =3 =2
$1(4) =4 6,2 = (1) =3" =1
23. a. 2 c. 4

27. Suppose [a]; represents [a] in Uy and [a]g represents [a] in Zg. Let ¢;: U; —> Zg and
¢,: U; — Zg be defined by:

é1([1]7) = [0]s $,([1]7) = [0
é1(2]7) = 26 $:((2]7) = [4s

. 1 (3]7) = [1]s an . :((3]7) = 56
PNl = 4 " P alal) = 12
é1(5]7) = [5le $:((5]7) = [1]s
(1([6]7) = [3]6 (D2([6]7) = [3]6

31. The cyclic group of order 4 and the Klein 4-group.

BN Exercises 3.6 Pages1gs-153 NN

True or False

1. false 2. true 3. false 4. false 5. false
6. true 7. false 8. true 9. true 10. false
Exercises

1. a. ¢ is an endomorphism and ker¢ = {£1}. ¢ is not an epimorphism nor a
monomorphism.

I

. ¢ is not an endomorphism.

[

. ¢ is an endomorphism and ker ¢ = R*. ¢ is not an epimorphism nor a
monomorphism.

g. ¢ is an endomorphism and ker¢ = {1}. ¢ is an epimorphism and a
monomorphism.

2. a. ¢ is a homomorphism and ker ¢ = {[0], [2]}. ¢ is an epimorphism but not a
monomorphism.

3. ker ¢ = {0}, ¢ is not an epimorphism, and ¢ is a monomorphism.

5. ker ¢ = {[0], [4], [8]}, ¢ is not an epimorphism, and ¢ is not a monomorphism.
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7. ker ¢ = {[0]g, [4]s}, ¢ is an epimorphism, and ¢ is not a monomorphism.

9. ¢ is an epimorphism but not a monomorphism.

BN Exercises 4.1 pages202-204+ N

True or False

1. true 2. false 3. false 4. true 5. true 6. true
7. false 8. false 9. false 10. true 11. true 12. false
Exercises

1. a. (1,4)(2,5); {1,4}, {2,5}
c. (1,4,5,2);{1,4,5,2}
e. (1,3,5)2,4,6); {1,3,5}, {2, 4, 6}
g (1,4)(2,3,5); {1,4}, {2,3,5}

2. a. (1,4,8,7,2,3)(5,9,6); {1,4,8,7,2,3}, {5,9, 6}
c. (1,4,8,7)(2,6,5,3); {1,4,8,7}, {2,6, 5,3}
e. (1,2)(3,4,5); {1,2}, {3,4,5}
g (1,7,6,4,3,5,2);{1,7,6,4,3,5,2}

3. a. even c. odd e. even g. odd

4. a. odd c. even e. odd g. even

5. a. two c. four e. three g. six

6. a. six c. four e. six g. seven

7. a. (1,4)(2,5) 8. a. (1, 3)(1, 2)(1, 7)1, 8)(1, 4)(5, 6)(5, 9)
c. (1,2)(1,5)1,4) c. (1, 7)1, 8)(1, 4)(2, 3)(2, 5)(2, 6)
e. (1,5)(1,3)2, 6)(2,4) e. (1,2)3,5)@3,4)
g (1,4)(2,5)2,3) g (1,2)(1, 5)1, 3)(1, 4)(1, 6)(1,7)

9. a. f2 = (1,2)(4,5), f3 :fﬂ —(1.4.2.5)
= =(1,2,63,5.4), =)
e. 2= (1,82)(3,7.645), f2=@35467, f'=(1,82)36574

(]

10. a. (3,1,4,2) = (1,4,2,3) 11. a. (1, 2)(4, 9)(5, 6)
e (1,2,4,5) ¢ (1,2)(3,4,5)
e. (1,4,2)5,3) = (1,4,2)3, 5) e. (3,7,4,5)6, 8)

13. g =f*=(1,5,9)(2,6,10)3,7, 11)(4, 8, 12),
h=f=(1,10,7,4)(2,11,8,5)3, 12,9, 6)
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15. (1,2,3,4) (1,2,3) (1,2) (1,2)(3,4)
(1,2,4,3) (1,3,2) (1, 3) (1,3)(2,4)
(1,3,2,4) (1,2,4) (1,4) 1,492, 3)
(1,3,4,2) (1,4,2) 2,3) (1
(1,4,2,3) (1,3,4) 2,4
(1,4,3,2) (1,4, 3) 3,4
(2,3,4)
2,4,3)
17. ((1, 2)) = {(1), (1, 2)} has order 2.
((1,2,3)) = {(1),1,2,3),(1, 3, 2)} has order 3.
((1,2,3,4)) = {(1), (1,2,3,4), (1, 3)(2,4), (1, 4, 3,2)} has order 4.
19. {e}, {e. B} {e. v} {e. A} {e, 0}, {e. &} {e, . &2, @}
B Exercises 4.2 Pages207—203 NS
True or False
1. true
Exercises
1. For notational convenience, we let a represent [a] in this solution. With f,: Z3 — Z3

defined by f,(x) = g + x for each g € Z3, we obtain the following permutations on the
set of elements in Z3:

fo=1(0), fi=(0.12), f=1(0,21).
The set G' = {f, fi,/>} is a group of permutations, and the mapping ¢: Z3; — G’
defined by
$0) = fo
¢:3(1) = f;
$(2) =1,

is an isomorphism from Z3 to G'.

With f,: G — G defined by f,(x) = gx for each g € G, we obtain the following permu-
tations on the set of elements of G:

foe=(e), f.=(e,a)b,ab), f,= (e, b)(a,ab), f, = (e, ab)(a,b).
The set G’ = {f,, f., f4» [} 1s @ group of permutations, and the mapping ¢: G —>G’
defined by
dle) = [,
$la) = f,
d) =,
d(ab) = fu

is an isomorphism from G to G'.
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5. For notational convenience, we let a represent [a] in this solution.
Let f,: G — G be defined by f,(x) = ax for each x € G. Then we have the following
permutations:
£ =12,4,8,6), f,=(2,8)(4,06), fs=1(0), f3=1(2,0684).
The set G' = {f, f4, f6, f3} is a group of permutations, and the mapping ¢: G — G’

defined by
dQ2) =1,
Jod) =1
¢ é(6) = f
d@) = fs

is an isomorphism from G to G'.

7. With f;: G — G defined by f,(x) = gx for each g € G, we obtain the following permu-
tations on the set of elements in G:

fe= (o) fa=(e,a,d’, &)(B, v, A, 6)
fe = (e, &) (@, &)(B, A)(v,0) fo = (e, @, &%, a)(B, 6, Ayy)
fs = (e, B)(a, 0)(e?, A)(a, y) fy = (e, 1)@, B)(@?, 0)(e, A)
fa = (e, M), y)(@?, B)(e, 0) fy = (e, 0) (@, A)(?, y)(a, B)

The set G’ = {f,, fa» fos far» s f» fas fo} is a group of permutations, and the mapping
¢: G — G' defined by

($(e) = £,
d(a) = f,
P = f,o
¢:M@=ﬂs
dPB) = f
o(y) =1,
(D) = fu
\d’(e) = fa

is an isomorphism from G to G.

9. c¢. The mapping is an isomorphism.

B Exercises 4.3 Pages212-214+ NN

True or False

1. true 2. false 3. true 4. false 5. true 6. false 7. false

Exercises

1. {I, V}, where [ is the identity mapping and V is the reflection about the vertical axis of
symmetry
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{1, R}, where I is the identity mapping and R is the counterclockwise rotation through
180° about the center of symmetry

5. rotational symmetry only

reflective symmetry only

9. both rotational symmetry and reflective symmetry

11.

13.

15.

{R, R*, R® = I}, where I is the identity mapping and R is the counterclockwise rotation
through 120° about the center of the triangle determined by the arrow tips

Let the vertices of the ellipses be numbered as in the following figure.

2

5

Then any symmetry of the figure can be identified with the corresponding permutation
on {1, 2,3,4,5, 6}, and the group G of symmetries of the figure can be described with
the notation
G={RR,R,R,R,R =1L LR LR, LR LR LR},

where

I1=(Q) L =1(2,6)3,5)

R=(1,2,3,4,5,6) LR = (1,6)(2,5)(3,4)

R* = (1,3,5)(2,4,6) LR* = (1,5)(2,4)

R = (1,4)(2,53,6) LR’ = (1,4)(2,3)(5,6)

R*=(1,5,3)(2,6,4) LR* = (1, 3)(4, 6)

R =(1,6,5,4,3,2) LR’ = (1,2)(3,6)(4, 5).
This is the same permutation group as the one in the answer to Exercise 26 of this exer-
cise set.

Let the axes of symmetry be labeled as in the following figure.

\fl
|




17.

19.

23.
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Then the group G of symmetries of the figure can be described as
G ={LR R, L LR LR
where
1 is the identity mapping,
R is the rotation through 120° counterclockwise about the center,
R? is the rotation through 240° counterclockwise about the center,
L is the reflection about the vertical axis €,
LR is the reflection about the axis ¢,, and
LR? is the reflection about the axis €.
Let 7 denote the identity mapping, and let ¢ denote a translation of the set of E’s one

unit to the right. Then #~ ! is a translation of the set of E’s one unit to the left, and the
collection

{5 O=L ..}

are elements of the (infinite) group of symmetries of the figure. Let r denote the re-
flection of the figure about the horizontal axis of symmetry through the E’s. Then
r?> = 1=/ rt = tr, and the group of symmetries consists of all products of the form
rit/, where i is either O or 1 and j is an integer.

Let I denote the identity mapping, and let ¢ denote a translation of the set of T’s one
unit to the right. Then 7' is a translation of the set of T’s one unit to the left. There is
a vertical axis of symmetry through each copy of the letter T and a corresponding
reflection of the figure about that vertical axis. Each of these reflections is its own
inverse. The group of symmetries consists of this infinite collection of reflections (one
for each copy of the letter T) together with the identity I and all the integral powers of
the translation 7.

Using the same notational convention as in Example 11 of Section 4.1, the elements
of G are as follows:

e=(1), a=(,3)2,4), B=1,412,3), A=(,2)3,4).

With this notation, we obtain the following multiplication table for G.

° e a B A
e e a B A
e A B

e a

A A B « e
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25. Using the same notational convention as in Example 11 of Section 4.1, the elements of
G are as follows:

e=(1) B=1(2,5@3,4)

a=(1,2,3,4,5 y=aB =Ba*=(1,2)3,5)
o =(1,3,52,4) A=d’B==(1,3)45)
o =1(1,4,2,5,3) 0 =a’B = Pa’=(1,4)(2,3)
ot =(1,5,4,3,2) o= a4B = Ba = (1,5)(2,4).

With this notation, we obtain the following multiplication table for G.

° e a o? o® o B 0% 0 o

e e a o? o® o B 0% 0 o

@ a o? o® o e 0 A 0 o B
o? o? o o e a A 0 o B y
o? o o e a o? 0 o B v A
o ot e o? o? o B v A 0

B B o 0 Y e 4 o? o? a

v vy B o 0 A a e o o o?
A A v B o 0 o? e e o o’
0 0 A v B o o’ o? @ e o
o o 0 A v B o o’ o? a e

27. 48

29. Using the same notational convention as in Example 11 of Section 4.1, the elements
of G={e,a, B, A} are e = (1), a = (1, 3)(2, 4), B = (1, 4)(2, 3), A = (1, 2)(3, 4.
Let ¢p: G — H be defined by

1 0 1 0
¢(e>—[0 J, ¢(a)_[0 _J,

-1 0 -1 0
¢(B)=[ o J, d)(A){ 0 _J.
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BN Exercises 4.4 Pages220-223 INNNNN———

True or False

1. true 2. true 3. false 4. true 5. true
6. true 7. true 8. false
Exercises

1. a. eH =BH =H = {¢,B}; aH = yH = {a, v};
o’H = AH = {a’, A}; &’H = 0H = {d’, 6};
G=HUaHU’HU o’H
b. He = HB = H = {e, B}; Ha = HO = {a, 6};
Ho? = HA = {a? A}; Ha’ = Hy = {a’, v};
G = HU Ha U Ho* U Ho?
3. a. (DH = (1,2)H = H = {(1),(1,2)}; (1,2,3)H = (1,3)H = {(1, 2, 3), (1, 3)};
(1,3, 2)H = (2,3)H = {(1,3,2),(2.3)k
G=HU(,2,3)HU(1,3,2)H
b. H(1) = H(1,2) = H = {(1), (1, 2)};
H(1,2,3) = H(2,3) = {(1,2,3),(2,3)}
G=HUH(,2,3)UH(1,3,2)
5. a. LH = P,H = H = {I,, P,}; P\H = P3H = {P,, P3}; P,H = P;H = {P,, P;};
G=HUPHUPH
b.HI3:HP4:H:{I3,P4};HP1 HP3—{P1,P3} HP2 HP3 {Pz,P%}
G =HUHP, UHP,

13. a. 12 c. 16
15. Order 1: {1}
Order2:  {(1).(1,2)3,4)}, {(1). (1, 3)2 4} {(1). (1, 4)2.3)}
Order 3: {(1),(1,2,3),(1,3,2)}, {(1),(1,2,4),(1,4,2)},
{(1),(1,4,3), (1,3, 4)}, {(1).(2,3,4).(2,4,3)}
Order 4: {(1), (1, 2)(3, 4), (1, 3)(2, 4), (1, 4)(2, 3)}
Order 12: A,, as given in Example 8 of Section 4.1

17. Order 1: {1}
Order 2: {—1,1}
Order 4: {i, =1, =i, 1}, {j, =1, —j, 1}, {k, =1, =k, 1}
Order 8: {1, =1,i, —i,j, —j, k, —k}



468 Answers to True/False and Selected Computational Exercises

BN Exercises 4.5 Pages227-229 IS

True or False
1. false 2. true 3. false 4. false 5. false 6. false 7. false

Exercises
1. a. no C. no €. no
7. a. {e, o*} b. {e, A}

9. Order 1: {(1)}
Order 4: {(1), (1, 2)(3, 4), (1, 3)(2, 4), (1, 4)(2, 3)}
Order 12: Ay, as given in Example 8 of Section 4.1

11. Every subgroup of the nonabelian quaternion group is normal.

13. H={¢,A},K = {e, B, A, &*}

23. {e, a’}

27. For H = {(1), (1, 3)(2,4)}, N(H) is the octic group G since H is normal in G.

35. a. S5 = {(1),(1,2),(1,3),(2,3),(1,2,3), (1, 3,2)}
c. Ay, as given in Example 8 of Section 4.1

B Exercises 4.6 Pages236-230 IN———

True or False

1. true 2. false 3. false 4. true 5. true

Exercises
1. o(G/H) = 4; G/H = {H, aH, BH, yH}, where
H={e,d*}, aH={a a’},
BH = {B, A}, yH = {y.0}.

H oH PBH yH
H | H aH PBH <H
aH |aH H yH PBH
BH |BH yH H oH
yH |yH PBH aH H
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3. o(G/H) = 4; G/H = {H, iH, jH, kH}, where

H={1,-1}, iH={i, —i},
JH ={j. —j}, kH = {k, —k}.
H iH jH kH
H |H iH jH kH
iH |iH H kH jH
jH | jH kH H iH
kH | kH jH iH H

5. o(G/H) = 3;G/H = {H, (1,2,3)H, (1, 3, 2) H}, where

(1,2,3)H = {(1,2,3),(1,3,4),(2,4,3), (1,4, 2)},
(1,3,2)H={(1,3,2),(2,3,4), (1,2, 4), (1,4, 3)}.

H 1,2,3)H 1,3,2)H
H H 1,2,3)H 1,3,2)H
1,2,3)H (1,2,3)H 1,3,2)H H
1,3,2)H (1,3,2)H H 1,2,3)H
7. H={[1},[9]}, Uy/H = {H, [3]H, [11]H, [13]H},where
39 = (33 [7],
(11]H = {[11], [19]},
(13]H = {[13], [17]}.
H [31H [11]1H [13]H
H H [31H [11]1H [13]H
[31H [31H H [13]H [11]1H
[11]1H [11]1H [13]H H [31H
[13]H [13]1H [11]1H [31H H
8. a. o(H,)) = 4nwheno(H,) = 3n,n=1,2,3,6

469

9. The normal subgroups of the octic group G are H, = {e}, H, = {e, o*}, H3 =

{e,a, 0%, ), Hy = {e, B,
sible quotient groups.

AOL}H5

{e,v,0,a%},and Hs = G. We consider the pos-



470 Answers to True/False and Selected Computational Exercises

11.

(1) G/H, is isomorphic to G.

(2) G/H, = {H,, aH,, BH,, yH,} is isomorphic to the Klein four group. (See Exer-
cise 3 of Section 4.2.)

(3) Each of G/H3, G/H,, and G/Hs is a cyclic group of order 2.

(4) G/G = {G} is a group of order 1.

Thus the homomorphic images of the octic group G are G itself, a Klein four group, a

cyclic group of order 2, and a group with only the identity element.

The normal subgroups of the quaternion group G are H; = {1}, H, = {—1, 1}, H3 =

{i, —1,—i,1},Hy = {j, =1, —j, 1}, Hs = {k, —1, —k, 1}, and Hs = G. We consider

the quotient groups.

(1) G/H, is isomorphic to G.

(2) G/H, = {H,, iH,, jH,, kH,} is isomorphic to the Klein four group. (See Exercise 3
of Section 4.2.)

(3) Each of G/H3, G/H,, and G/Hs is a cyclic group of order 2.

(4) G/G = {G} is a group of order 1.

Thus the homomorphic images of the quaternion group G are G itself, a Klein four

group, a cyclic group of order 2, and a group with only the identity element.

13. a. The left cosets of H = {(1), (1, 2)} in G = S3 are given by

(DH = (1, 2)H = {(1), (1, 2)}
(1,3)H=(1,2,3)H = {(1, 3), (1, 2, 3)}
(2,3)H=(1,3,2)H={(2,3),(1,3,2)}.

The rule aHbH = abH leads to
(1,3)H(2,3)H = (1,3)(2,3)H = (1, 3,2)H
and also to
(1,2,3)H(1,3,2)H = (1,2, 3)(1,3,2)H = (1)H.
We have (1, 3)H = (1,2, 3)H and (2, 3)H = (1, 3, 2)H, but
(1,3)H(?2,3)H # (1,2,3) H(1, 3, 2)H.
Thus the rule aHbH = abH does not define a binary operation on the left cosets of
H in G. (That is, the result is not well-defined.)
¢. The left cosets of H = {(1), (2,3)} in G = S; are given by
(DH = (2,3)H = {(1), (2,3)}
(1,2)H = (1,2,3)H = {(1, 2), (1, 2, 3)}
(1,3)H = (1,3,2)H = {(1, 3), (1, 3, 2)}.
The rule aHbH = abH leads to
(1,2)H(1,3)H = (1,2)(1,3)H = (1,3,2)H
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and also to
(1,2,3)H(1,3,2)H = (1,2,3)(1,3,2)H = (1)H.
We have (1, 2)H = (1, 2, 3)H and (1, 3)H = (1, 3, 2)H, but
1,2)H(1,3)H # (1,2,3)H(1, 3, 2)H.

Thus the rule aHbH = abH does not define a binary operation on the left cosets of
H in G. (That is, the result is not well-defined.)

15. a. K = {I,, My, M3} b. K = {I, My, M5}, MK = {M,, M,, My}
c. 0K)=1, O(MK) = —1

17. a. K = {[1],[11]}
b. k= {[1},[11]}, [B]K = {[3],[13]}, [7]K ={[7}[17]}, [9)K = {[9), [19}}
c. 0(K) =e, O(3K)=a, 6(7K)=d’, O(9K)=d*

25. S5 is not cyclic. However H = {(1), (1, 2, 3), (1, 3, 2)} is normal, and S;/H =
{H, (1, 2)H} is cyclic.

27. a. LetG = {a,d% &, a*, &, at,d,ad® = e} be a cyclic group of order 8. The subgroup
H = {d? a* a% a® = e} of G is a cyclic group of order 4, and the mapping
¢: G — H defined by ¢(x) = x? is a homomorphism, since

() = ()

= x*? since G is abelian
P()D(y).
The mapping ¢ is an epimorphism, since

B(G) = {p(a), p(a), p(a*), (a’), (@), p(a®), P(d’), p(e)}

= (& d a5 db = e,d” = & a? = o, a" = a5 e}
={d a", da a® = e}
= H.

Thus G has H as a homomorphic image.

BN Exercises 4.7 pages244—24c NS

True or False

1. false 2. true

Exercises

1. H, + H, = H, The sum is not direct.
7. Zy = (4)) @ (5])

17. a. 2 c. 6
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18. a. {([0], [0])},

19.

« Zys = ([5)) & (3]), where ([5]) =

)
{([0], [0]). ([0], [2])},
{([0], [0]). ([1], [0])},
{([0], [0]). ([1], [2])},
{([0], [0]). (0], [1]). ([0], [2]). ([0], [3])},
{([0], [0]). ([0], [2]). ([1], [0]). ([1], [2])},
{([0], [0]). ([0, [2]). ([1], [1]). ([1], [3])},
7,97,

{[5], [10], [0]} is a cyclic group of order 3, and
(3] = {[3]. [6], [9], [12], [0]} is a cyclic group of order 5. From this, it is intuitively
clear that Z,5 is isomorphic to Z; © Zs. The idea can be formalized as follows. For
each a € Z, let [a];s, [a]s, and [a]s denote the congruence class of @ modulo 13, 3,
and 5, respectively. Any [a];s and [b];s in Z,5 can be written as

lalis = H5]is + s[3];s and [b];s = p[Shis + ¢[3];s

with r, s, p, and ¢ integers. Since

[a]is = [blis & M5]is + s[3]is = p[S]is + 4l3];s
& (r = p)[Shis = (g = 9)[3]is
& (r = p)[5lis = [0]is = (g = 5)[3];s
Sr—p=0(mod3) and ¢g — s =0 (mod5)
& [rls =[pl and [q]s = [s];,

the rule

d([ahs) = (7], [s]s)

defines a one-to-one mapping from Z,5 to the external direct sum Z; @ Zs. ¢ is
clearly onto, and ¢ is a homomorphism, since

d([lalis + []is) = ((r + p)[S]is + (s + @)[3]:5)
= ([r + pls[s + qs)
= ([r]s + [Pl [s]s + [g]s)
= ([r]s [s}) + ([P [g]s)

= ¢([al;s) + G([b];s)-

Thus ¢ is an isomorphism from Z ;s to Z; © Zs.
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Exercises 4.8 Pages254-—255 N

True or False

1. true 2. false 3. false 4. true 5. false 6. false

Exercises

1. The cyclic group Cy = {a) of order 9 is a p-group with p = 3.

3. . ((1,2,3)).((1,2,4)). (1,3, 4). (2. 3. 4)
5. a.Z,=(5)®(2) ¢ Z;p=(3)®(4)
= {[5]. [0]} & {[2]. [4]. [6]. [8]. [0]} = {[3].[6]. [9]. [0]} @ {[4]. [8]. [0]}

=C2®C5 =C4@C3

6. a. Any abelian group of order 6 is isomorphic to Cs & C,, where C, is a cyclic group of
order n.

¢. Any abelian group of order 12 is isomorphic to either C4 © C3 or C; © C, @ Cs.

e. Any abelian group of order 36 is isomorphic to one of the direct sums Cy D Co,
C2@C2@C9, C4@C3@C3, C2®C2®C3@C3.

9. a. none

15. b. There are 24 distinct elements of G that have order 6.

Exercises 5.1 Pages265-269 N

True or False

1. false 2. true 3. true 4. false 5. false
6. false 7. false 8. false 9. false

Exercises

2. a. ring

c. Not aring. The set is not closed with respect to multiplication. For example, V5 is
in the set, but the product \3/5 . \3/ = \3/2? is not in the set.

e. Not a ring. The set of positive real numbers does not contain an additive identity.

g. ring
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19.

31.

33.

39.

S W o Q|+
SRS RO EEN
S W o= N
Q Q0 Q QR
>N ox V|

A
A
%)
U
B

BN S | ®
| » ©m ¢ |
T N Q| ®
QI ® o> Q<

The set P(A) is not a ring with respect to the operations of addition and multiplication
as defined, since the set does not contain additive inverse elements.

a. [2], [3], [4]

c. [2], [4], [5], [6], [8]

e. [2], [4], [6]. [7], [8], [10], [12]

a. [1]7" = [1], [5]7" = [5]

e [117h=[1], (317" = [11], [517" = [13], [717" = [7], 191" = 19,
(117" = [3], [13]7" = [5], [15]7" = [15]

e. [117" =11, 317" = [5], 517" = [3], (917" = [11], [11]7" = [9],
(1317 = [13]

) 1 0 0 0 0 0
In the ring M»(Z), let a = and b = . Then ab = but
0 O 1 0 0 O

(3 o)+ [0 ol

. yes

. The set S is a commutative ring, and it contains the unity [10].

. yes, [6] and [12]

a
b
c. yes
d
e. [2], [4], [8], [10], [14], [16]

a b ¢ d

a a a a a

1 0 0
a. S is a commutative subring of M»(Z) with unity LAl * forx = *£1
C 1 0 x 0
have multiplicative inverses.

c¢. §is a noncommutative subring of M»(Z) without unity.
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S is a commutative subring of M»(Z) without unity.

g. Sis not a subring of M»(Z), since it is not closed with respect to multiplication.

49. For notational convenience, we let a represent [a].
b. S, @S, = {(0,0), (0, 3), (2,0), (2,3)}

+ 10,00 (0,3) (2,00 (2,3) : 0,00 (0,3) (2,00 (2,3)

0,0 | (0,00 (0,3 (2,00 (2,3 0,0) ] (0,0) (0,0) (0,0) (0,0)
0,3) 10,3 0,00 (2,3) 2,0 0,3)1(0,0) (0,3) (0,0) (0,3)
2,00 | (2,00 2,3 (0,00 (0,3 (2,0) 1 (0,0) (0,0) (0,0) (0,0)
2,3) 2,3 2,00 (0,3) (0,0 (2,3)1(0,0) (0,3) (0,00 (0,3)

C.

BN Exe

yes d. A unity does not exist.

rcises 5.2 Pages273-27¢ NN

True or False

1. true 2. true 3. false 4. true

Exercises

1. a. The set of real numbers of the form m + nV/2, where m and n are integers, is an

3. a.
b.

integral domain. It is not a field, since not every element (for example, 2 + 0V/2)
has a multiplicative inverse.

. The set of real numbers of the form a + b\3f2, where a and b are rational numbers,

is neither an integral domain nor a field, since it is not a ring. The set is not closed
with respect to multiplication. For example, V2 - V2 = V/4 s not in the set.

. The set of all complex numbers of the form m + ni, where m € Z and n € Z, is an

integral domain. It is not a field, since not every element (for example, 2 + 0i) has
a multiplicative inverse.

. The set of all complex numbers of the form a + bi, where a and b are rational num-

bers, is both an integral domain and a field.

The set S is not an integral domain, since the elements [6] and [12] are zero divisors.

The set S is not a field, since [6] and [12] do not have multiplicative inverses.

5. P(U)isnotafield. A = {a} and B = {b} do not have multiplicative inverses.

7. The ring W is commutative, since if (x, y) and (z, w) are elements of W, we have

(x,y) * (z,w) = (xz — yw, xw + yz)
= (zx — wy, 2y + wx)
=(z,w)* (x,).
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The element (1, 0) in W is the unity element, since for (x, y) in W we have

(e, y) - (1,0) = (1,0) * (x,y)
= (Ix — Oy, 1y + Ox)

= (x,y).
9. a. §is acommutative ring. b. S has the unity element (1) (1)j|
c. Sis an integral domain. d. Sisafield.
11. a. R is a commutative ring. b. R has the unity element |:(1) ?i|
c. Ris an integral domain. d. Ris afield.
13. a. yes b. yes, [1] ¢. No, since (2 + i) (2 + 4i) = 0 (mod 5). d. no

15. The set of even integers is a commutative ring with no zero divisors but not an integral
domain, since it has no unity.

19. a. Consider the ring Zo. The elements [1] and [3] are not zero divisors, but the sum
[1] + [3] = [4] is a zero divisor.

20. a. [173] c. [27]

BN Exercises 5.3 Pages2s2-2s4 N

True or False

1. true 2. false 3. false 4. true 5. true

Exercises
9. Define ¢p: W — R by

b((x.)) = [x - ]
y X

The mapping ¢ is clearly a one-to-one correspondence from W to R.

d((x,y) + (z,w) = d((x + 2,y + w))
S ISR ] B
B y+w X+ z B y X w z
= ¢((x,y) + ¢((z, w))
d((x,y) * (2, w) = d((xz — yw, xw + y2))
o posietol B N Bl
xw + yz Xz — yw y X w z
= d((x, ) * d((z, w))

Thus, ¢ is an isomorphism.
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11. a. For notational convenience in this solution, we write O for [0], 1 for [1], and 2 for
[2] in Z5. Then
S ={0,1),(0,2), (1, 1), (1,2), (2, 1), (2,2)}.

Since (0, 1) ~ (0, 2), (1, 1) ~ (2, 2), and (1, 2) ~ (2, 1) in S, the distinct elements
of Qare [0, 1], [1, 1], and [2, 1].

b. Define ¢: D — Q by

$(0) = [0, 1]
$(1) = [1,1]
$(2) = [2,1].

15. The set of all quotients for D is the set Q of all equivalence classes [m + ni, r + si],
where m + ni € D and r + si € D with not both r and s equal to 0. To show that Q is
isomorphic to the set C of all complex numbers of the form a + bi, where a and b are
rational numbers, we define ¢: Q — C by

m + ni

&([m + ni, r + si]) = P

This rule does define a mapping from Q into C, since for [m + ni, r + si] € Q we can
write

m+ni mr—+ns nr—ms,
= l
r+ si 4 52 2+ 52

which is an element in C.
To show that ¢ is onto, let @ + bi be an arbitrary element in C. Since a and b are
both rational numbers, there exist integers p, ¢, t, and u such that

t
a=£ and b= —.
q u

Then the element [pu + gti, qu + 0i] is in Q, and

pu + qti

qu + 0i

ot
q u

= a + bi.

&([pu + gti, qu + 0i]) =

To show that ¢ is one-to-one, let [m + ni, r + si] and [x + yi, z + wi] be elements
of Q such that

&([m + ni, r + si]) = ¢([x + yi, z + wil).
Then
m+ni  x+yi

r+si oz + wi’
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and this implies that
(m + ni)(z + wi) = (r + si)(x + yi).
By the definition of equality in O, we have
[m + ni,r + si] = [x + yi, z + wi],
and therefore ¢ is one-to-one. Since
&([m + ni, r + si] + [x + yi, z + wi)
= ¢([(m + ni)(z + wi) + (r + si)(x + yi), (r + si)(z + wi)))
_(m + ni)(z + wi) + (r + s)(x + yi)
(r + si)(z + wi)
m + ni . x + yi

r+ si z+ wi
&([m + ni, r + si) + ¢([x + yi, z + wi))

and
&([m + ni, r + si] - [x + yi, z + wi)
= ¢([(m + ni)(x + yi), (r + si)(z + wi)))
(m + ni)(x + yi)
T+ si)z + wi)
m + ni X + yi

r+si oz +wi
= ¢([m + ni, r + si]) - d([x + yi, z + wi),

¢ is an isomorphism from Q to C.

19. %for m,n € Z.

BN Exercises 5.4 Pages2s9-291 NN

True or False

1. false 2. true 3. true 4. true 5. false

BN Exercises 6.1 Pages300-302 I———

True or False
1. true 2. false 3. true 4. true 5. true

6. true 7. true 8. false
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Exercises

3. a. Qisasubring of R, and 1€ Q, V2 € R, but V21 & Q. Thus Q is not an ideal
of R.

6. a. Let]; = (2)and I, = (3). Then 2 and 3 are in /; U I», but the sum 2 + 3 = 5 is not
in I; U I,. Hence I; U I, is not an ideal of Z.

19. a. {[0]}, Z;

c. {[0]}
([61) = {[01, [6]}
([41) = {[0], [4], [8]}
([31) = {01, [3], [6], [91}
([21) = {[01], [2], [4], [6], [8], [10]}
VAL
e. {[0]}
([101) = {[0O], [10]}
([5D) = {01, [5], [10], [15]}
([4]) = {[OL, [4], [8], [12], [16]}
([2]) = {[O], [2], [4], [6], [8], [10], [12], [14], [16], [18]}
7

1 2 1 2
23. The set U is not an ideal of S. X = |:0 1:| isin U, and R = |:O 3:| is in S, but

XR—1 1 tin U
0 3 isnotin U.

25. b. Since 1l +2i€ 1,1 +i € G,but (1 +2)(1 +i) = —1+ 3i & I, then I is not an
ideal of G.

26. b. E is a commutative ring, and2 € Ebut 2 € (2) = {2nln € E}.

Exercises 6.2 Pages3o9-313 NN

True or False

1. true 2. false 3. true 4. true 5. true

Exercises
0 0 0 0

7. b. ker = vezy, o +kerd)=0(|" =x
y 0 y 0 y 0

9. b. no

2 2
13. ker 6 = " " m,n,p,q €L
2p 2q
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15. a.

0 does not preserve addition.

b. 6 does not preserve multiplication.

19. The mapping ¢: R — Z3 given by

$(a) =[0], &) =[2], ¢(c) = [1]

is an isomorphism.

22. a.
c.
e.

23. a.

0 does not preserve addition; 6 preserves multiplication; 6 is not a homomorphism.
0 preserves addition; 6 does not preserve multiplication; 6 is not a homomorphism.
0 does not preserve addition; 6 preserves multiplication; 6 is not a homomorphism.
The ideals of Zg are I, = {[0]}, b = {[0], [3]}, Iz = {[0], [2], [4]}, and Iy = Z¢c. We
consider the quotient rings:

(1) Z¢/I, is isomorphic to Zg.

(2) Z¢/I, = {I, [1] + D, [2] + L} is isomorphic to Zs.
(3) Z¢/I; = {I5,[1] + I3} is isomorphic to Z,.

(4) Z¢/Zs = {Zg} is aring with only the zero element.

Thus, the homomorphic images of Zg are (isomorphic to) Z¢, Z3, Z,, and {0}.

- The ideals of Zy; are I; = {[0]}, L = {[0], [6]}, I3 = {[O], [4], [81}, Is = {[O], [3],

[6], [91}, Is = {[O], [2], [4], [6], [8], [10]}, and I¢ = Z,. The quotient rings are as
follows:

(1) Zy5/1, is isomorphic to Z ;.

2) Z12/12 = {h, [1] + L, [2] + L, [3] + L, [4] + I, [5] + I} is isomorphic
to Zs.

3) Z12/I3 {Ls, [1] + L5, [2] + I3, [3] + I3} is isomorphic to Zj.

4) Zyo/ly = {14, [1] + I, [2] + 14} is isomorphic to Zs.

(5) Z15/Is = {Is,[1] + Is} is isomorphic to Zj.

(6) Z12/Z,, = {Z,,} is aring with only the zero element.

The homomorphic images of Z,, are (isomorphic to) Z», Zg, Z4, Z3, Z,, and {0}.

. The ideals of Zg are I, = {[0]}, I, = {[0], [4]}, I; = {[O], [2], [4], [6]}, and

1, = Zs. The quotient rings are as follows:

(1) Zg/I, is isomorphic to Zs.

(2) Zg/I, = {I,[1] + DL, [2] + D, [3] + L} is isomorphic to Zy.

(3) Zg/I; = {I5,[1] + L3} is isomorphic to Z.

(4) Zg/Zg = {Zg} is aring with only the zero element.

The homomorphic images of Zg are (isomorphic to) Zg, Z4, Z, and {0}.

B Exercises 6.3 Pages317-319 IS

True or False

1. false 2. false 3. true 4. true 5. false




Answers to True/False and Selected Computational Exercises 481

Exercises
l.a. O c. 0 e. 2
2.a. 2 c. 6 e. 12

9. b. Exercise 3 assures us that e, a, and b all have additive order 2. The other entries in
the table can be determined by using the fact that D forms a group with respect to ad-
dition. For example, ¢ + a = a would imply e = 0, so e + a = b must be true.

+ 10 e a b

0 e a b
e e 0 b a
a a b 0 e

b |b a e 0

11. a. Let R = {[0], [5], [10], [15]} C Zy. Take x = y = [5]. Then
(5] + [5])* = [10)* = [0]
and
[5]* + [5]* = [5] + [5] = [10].
Thus
(5] + [5D* # [5]* + [5]*

BN Exercises 6.4 Pages32-32; I

True or False

1. true 2. false

Exercises

S.RII={L1+LV2+L1+V2+1I}

7. E/I1={,2 + L4+ I}

9. {[01, [3], [6], [91} and {[0], [2], [4], [6], [8], [10]}
21. {[0], [3], [6], [91} and {[O], [2], [4], [6], [8], [10]}

23. I, = {[0], [3], [6], [9]} and I, = {[0], [2], [4], [6], [8], [10]} are prime ideals of Z;,, but
I, N1, = {[0], [6]} is not a prime ideal of Z;», since [2][3] € I, N L, but [2] € I, N I,
and [3] € I, N I,
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BN Exercises 7.1 Pages332-333 IS

True or False

1. true 2. false 3. true 4. false 5. false
6. true 7. false 8. true 9. false

Exercises

1. 05 3. 0.987654320 5. 3.142857
7. 31/9 9. 4/33 11. 83/33

20. a. a = V2and b = — V2 are irrational, buta + b = 0 is rational.

21. a. Anelement v of F is a lower bound of S if v = x for all x € S. An element v of F'is
a greatest lower bound of S if these conditions are satisfied:

(1) vis alower bound of S.
(2) If b € Fis alower bound of S, then b = v.

I Exercises 7.2 Pages340-342 I

True or False

1. false 2. true 3. true 4. true 5. false 6. true 7. false

Exercises
1.10 + 11i
3. —i

5.2 —11i

7.2+ 4

9. L+ i

11. 3 + %0i

13. a. 3i, —3i

c. 5i, —5i
e. V13i,—V13i
21.b.i. =2+ 0,2 —i iii. 3 +2i, —3 — 2i
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483

BN Exercises 7.3 Pages349-352 IS

True or False
1. false

2. true 3. false

4. true

Exercises

1. a. =2+ 2V3i =4(cos ¥ + isin ¥)

-2+ 2+/3i

e. 1+ V3i=2(cos 5 +isin%)

T

¢. 3 —3i=3V2(cos ¥ + isin %)

y

L 1++/3i

e
N

g —4 = 4(cos m + isin )

2. a. 4(005%” + isin%”) = —-2V2 +2V2i
c. 6(cos & +isinF) = =3 + 3V3i

3. a. —64\V3 — 64i

c. 512 + 512V3i

g. —128 — 128V3i
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6.

11.

13.

a.

a.

C.

a.
€.
2.
a.

b.

C.

a.

y
_l+ﬁi
2 2
1
/ X
_1 43,
2 2
y
i
V2 V2, V2 42,
2 2 2 2
1
X
V2 42,
2 2
cos 7% + i sin 7%, cos BT + i sin BT, cos BF + i sin ZF
cos 35 + i sin 35, cos 2 + i sin 27, cos 57 + i sin 57, cos 47 + i sin 47
2(cos § + i sin §), 2(cos 55 + i sin 57), 2(cos 57 + i sin 57),
2(cos 5 + i sin 57), 2(cos 55 + i sin 57)
3 4 3V3. 3 _3\V3. V3ol VB e
e R A R AL a1 et
VAT UPR B Vi TP Vi RO UP BV
2 tal, 2+ i 22 2L
1 3: V3 4 1. 1 _ V3. N3 L.
2t 7L T Tal 2 L7 2!
(cos & + i sin &) = {cos & + i sin &, cos T + i sin *7, cos 0 + i sin 0}
olay =3

cos Z + isin &, cos *T + isin ¥

(cos °F + i sin °F) = {cos °F + i sin °F, cos T + i sin *7, cos 7 + i sin 7,

cos 3 + isin3, cos§ + isin%, cos 0+ isin 0}



b.

C.

Answers to True/False and Selected Computational Exercises 485

0o{a) =6
cos 7 + isin°F, cos T + isin¥

1 V3 1 V3.

17. a. cos T+ isin T =4 + 5, cos 7 + isin T =5 — i

BN Exercises 8.1 pages3ss-3c0 I

True or False

1. false 2. false 3. true 4. false 5. false 6. false 7. true

Exercises
1. a. coxO + cpc1 + cz)c2 + C3x3, orcy + cix + czx2 + C3x3

C. alxl + a2x2 + a3x3, oraix + a2x2 + a3x3
2. a. i cx/ c. i x!

< ~

3. a.éx£+4x2+3x+2 c.4’1x2+2x

e. 2x> + 2x + 3 g 4 + 4> + Tx + 4
4 a. 2 + 4 + 2x + 1 .8 + 8 +4 +8% +4x+6

e. 8x° + 8x* + 4x° + 5x% + 4x g 2% + 8x* + 73 + 5x% + Tx
5. a. The set S of all polynomials with zero constant term is nonempty, since it contains

the zero polynomial. Both the sum and the product of polynomials with zero con-
stant term are again polynomials with zero constant term, so S is closed under ad-
dition and multiplication. The additive inverse of a polynomial with zero constant
term is also a polynomial with zero constant term, so S is a subring of R[x].

. Let S be the set of all polynomials that have zero coefficients for all odd powers of

x. Then x?is in S, so S is nonempty. For arbitrary
fx) = i aziXZi and g(x) = i bzixzi
i=0 i=0
in S, let k be the larger of n and m. Then
J) + gx) = 2 (ay + by)x*
has zero coefficients for all odd powers of x and therefore is in S. Also,

fgx) = >, ( > azpbzq)x”

i=0 \ptg=i

isin S, and
—f(x) = D (—ay)x*
i=0

isin S. Thus S is a subring of R[x].
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6.

11.

12.

13.
16.
17.

21.

23.

a. Since a product of a polynomial with zero constant term and any other polynomial
always has zero constant term, S is an ideal of R[x]. Also S is a principal ideal where

§= () = {x-f&)]f(x) € Rx]}.
¢. The polynomial x*> € S and x € R[x], but the product x(x*) = x> & S. Thus, S is not
an ideal of R[x], and hence § is not a principal ideal.

b. I[x] is a principal ideal where I[x] = (1 — x).

a xs 241, 2+2, P4x, P2Ax+l, A x+2, 22 2+ 20+ 1,
X2+ 2,25 2%+ 1,232+ 2,2+ x, 2%+ x + 1, 23 + x + 2, 202 + 2x,
22+ 2x+ 1,2x2 + 2x + 2

b. none

a. We write a for [a] in Z4. The polynomial 2x + 1 is a unit, since (2x + 1)(2x + 1) =
4x* + 4x + 1 = 1 in Z4[x].

a. n*(n — 1) b. " (n — 1)
b. n c. 0

b. ker 6 is the set of all polynomials in R[x] that have zero constant term. (That is, ker 6
is the principal ideal (x) generated by x in R[x].)

ker ¢ is the set of all polynomials in Z[x] that are multiples of k. (That is, ker ¢ is the
principal ideal (k) generated by k in R[x].)

ker ¢ is the set of all polynomials f(x) = a4 + a;x + - -+ + a,x" in R[x] such that all
the coefficients qg; are in ker 6.

Exercises 8.2 Pages373-375 NN

True or False

1. true 2. true 3. false
Exercises

1 gx)=4x*>+3x+ 2, r(x) = 4
3. gy =x+2,r(x) =x* +x
5. gx) =5+ 3, r(x) =2x+ 3
7. dx)=x+1

9. dx)=x+5

11. s(x) = x>+ 2x + 1, 1(x) = x

13.
15.

sy =x2+2,1(x) =4
a. Bx+4)@x+3)=x
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16. a. (3x — 2)(4x — 1) = (3x + 10)(4x + 11)
17. a. 2x — DGx —7) = 2x + 9(5x + 3)
19. a. yes

20. a. yes

21. a. no

22. a. no

35. A least common multiple of two nonzero polynomials f(x) and g(x) in F[x] is a poly-
nomial m(x) in F[x] that satisfies the following conditions:

1. m(x) is monic.
2. f(x)|m(x) and g(x) |m(x).
3. £(0)|k(x) and g(x)| k(x) imply m(x) | k().

Exercises 8.3 Pages3si-3s+ [N

True or False

1. true 2. true 3. false 4. false 5. false
6. false 7. true 8. false

Exercises

1. a. -9 c. 0 e. 1 g 0 i. 4

2. a. x> — 2 is irreducible over Q, reducible over R and C, since x> —2 =

(x — V2)(x + V2). V2 and — V2 are zeros in R and C.

c. x> +x—2=(x+ 2)(x — 1)isreducible over the fields Q, R, and C with zeros —2
and 1in Q, R, and C.

e. x2 + x + 2 is irreducible over Z3 and Zs; x> + x + 2 = (x + 4)? is reducible over
Z7, and 3 is a zero of multiplicity 2 in Z.

g. x> — x> + 2x + 2 is irreducible over Zs3; x> — x> + 2x + 2 = (x + 3)? is reducible
over Zs, and 2 is a zero of multiplicity 3 in Zs; Also -+ +2=
(x + 2)(x* + 4x + 1) is reducible over Z7, and 5 is a zero in Z.

3. 2+ 1L, x+ 2,2+ 20+ 2

4. a. 2> + 1 =2 + 2)(x* + 3x + 4), and 3 is a zero of multiplicity 1.
3 +xX2+2x+4=3x+ D+ 2)(x+4), and 4, 3, and 1 are zeros, each of
multiplicity 1.
e. 2+ X3+ 3x + 2 =2(x + )(x + 2)(x* + 3) with zeros 4 and 3, each of multi-
plicity 1.



488

Answers to True/False and Selected Computational Exercises

g x*+ 3+ 2%+ 2x + 3 = (x + 3)%(x* + 2), and 2 is a zero of multiplicity 2.

i x*+2¢° + 3x + 4 = (x + 4)(x + 1)%, 1 is a zero of multiplicity 1, and 4 is a zero
of multiplicity 3.

7. a. 4x> + 4 has degree 2 and has 4 zeros: 1, 3, 5, and 7.
12. a. 0,1,2,3,and 4 in Zs

13. x* + 5x% + 4 = (x*> + 1)(x*> + 4) is reducible over R and has no zeros in the field of
real numbers.

27. Exercise 7: (x + 1’ (x + )3 + 22 + D=0+ x* + P+ 2% + 2x + 2
Exercise 9: (x + 2)x + 5)(® + 22 + 2x + 6) =X + 2* + 55 + 52+ 6x + 4

Exercises 8.4 pages3os-397 NN

True or False

1. true 2. true 3. true 4. false 5. false
6. false 7. true 8. true 9. false 10. true
11. false 12. false 13. false 14. true 15. true
Exercises

L a f(x)=x>— 3+ 2i)x + 6i, g(x) =x — 3x*> + 4x — 12
) =x>—C—ix+Q2—2)8x)=x>—4x>+6x—4
e. f(x) =x>— (1 + 5i)x — (6 — 3i), g(x) = x* — 20> + 14x% — 18x + 45
g f) =x>=32+ 3 —2ix — (1 —2i),
gx) = =54+ 108 — 102>+ 9x — 5

2. a.1+4,2
c. i,(—1+iV3)/2,(—1 —iV3)/2
3.5/2,—1
5. 3/2,—1
7. =2,(1 +iV3)/2,(1 — iV3)/2
9. 1,1/3, -2

1. —1,1/2, —4/3
13. = - 232+ 6x—4=(x— Dx+2)x*—2x +2)
15. 2x* + 56 — 7% — 10x + 6 = 2(x — 3)(x + )X — 2)
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17. a. Let f(x) = 3 + 9x + x*. The prime integer 3 divides all the coefficients of f(x)

20.

a.

except the leading coefficient a, = 1, and 32 does not divide ag = 3. Thus f(x) is
irreducible by Eisenstein’s Criterion.

. Let f(x) = 3 — 27x* + 2x°. The prime integer 3 divides all the coefficients of f(x)

except the leading coefficient a,, = 2, and 32 does not divide ap = 3. Thus f(x) is
irreducible by Eisenstein’s Criterion.

Let f(x) = 1 4+ 2x + 6x*> — 4x° + 2x*. The prime integer 2 divides all the coeffi-
cients of f(x) except the constant term ay = 1, and 2% does not divide a,, = 2. Thus
f(x) is irreducible by Exercise 19.

. Let f(x) = 6 — 35x + 14x> + 7x°. The prime integer 7 divides all the coefficients

of f(x) except the constant term ay = 6, and 7° does not divide a, = 7. Thus f(x) is
irreducible by Exercise 19.

21. a. f»(x) = x* + x + 1 has no zeros in Z,.

34.

C.

€.

a.

fs(x) = 2x3 + 3x% + 3 has no zeros in Zs.

fr(x) =x*+ x> + ¥ + x + 1 has no zeros in Z, and hence no first-degree factors
in Z,. The only possible second-degree factors in Z, are X2, 32+ x, x>+ 1, and
XH+x+1. Now ¥*=x-x,x>+x=x(x+ 1), and x> + 1 = (x + 1)> are not
factors of f>(x), since f>(x) has no first-degree factors. Long division shows that
x*> + x + 1 is not a factor of f5(x). Thus f>(x) is irreducible in Z,, and hence f(x) =
3x* + 9x* — 7x? + 15x + 25 is irreducible by Theorem 8.34.

Let f(x) = x> + 3x + 8. Then f(x + 1) = x* + 3x> + 6x + 12 s irreducible by the
Eisenstein Irreducibility Criterion implies f(x) is irreducible over Q.

BN Exercises 8.5 Pages4os—40 I

True or False

1. true 2. false 3. true 4. false
Exercises

1. /25 + V5, _W ii\ﬁw
3. V16 + VA, _w ii%w
s vaeva VEIVZ L VAR
V3V \3[;% * i\@%;%

, 2V2-VA VA-2¥3 . VA+2Va

.
2 4 *iVI—
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3 3 3 3
— V49 + 4 7 + /49
11. V49 — V7 + 2, % ii%%
1 VI2-Vis -1 V12 + V18
13. VI8 — V12 — -, + V33—
2 2 2
15. 1 x4, —-1=iV2
17. i, —2*=\2

19. Since D?> = —27(90)% — 4(—91)3 = 2,795,584 > 0, all three solutions are real.
21. Since D> = —27(—72)* — 4(—55)% = 525,532 > 0, all three solutions are real.

23. Since D* = —27(—136)> — 4(—47)> = —84,100 < 0, there is one real solution and
one pair of complex conjugates.

I Exercises 8.6 Pagess419-421 IS
True or False
1. true 2. false 3. false
Exercises
1. a. Let P = (p(x)) and a = x + P in Z;3[x]/P. The elements of Z;[x]/P are
{0,,2,q,a + 1, + 2,20, 200 + 1,2 + 2},
where0 =0+ P,1 =1+ P,and2 = 2 + P. Addition and multiplication tables
are as follows:
+ 0 1 2 a a+1 a+?2 2a 20+ 1 2a+2
0 0 1 2 a a+1 a+?2 2a 20+ 1 2a+2
1 1 2 0 a+1 a+?2 o 2a+1 2a+2 2a
2 2 0 1 a+?2 o at+tl 2a+2 2a 2a + 1
a a a+1 a+?2 2a 20+ 1 2a+2 0 1 2
a+1 a+1 a+?2 o 20+ 1 2a+2 2a 1 2 0
a+ 2 a+?2 o at+tl 2a+2 2a 2a + 1 2 0 1
2a 2a 20 +1 2a+2 0 1 2 a a+1 a+?2
2+ 1 |2+ 1 2a+2 2a 1 2 0 a+1 a+?2 o
20 + 2 | 2a + 2 2 2a + 1 2 0 1 a+?2 o a+1




Answers to True/False and Selected Computational Exercises 491
0 1 2 a a+ 1 a+ 2 2a 20+ 1 2a + 2

0 0 0 0 0 0 0 0 0 0

1 0 1 2 a a+ 1 a+ 2 2a 20 + 1 20 + 2

2 0 2 1 2a 2 + 2 2a + 1 o a+ 2 a+ 1
o 0 1o 2a 2a + 1 1 a+ 1 a+ 2 2a0 + 2 2
a+ 1 0 a+ 1 20 + 2 1 a+ 2 2a 2 e 20 + 1
a+ 2 0 a+ 2 20 + 1 a+ 1 2a 2 2a0 + 2 1 e
2a 0 2a a a+ 2 2 2 + 2 2a + 1 a + 1 1
20 + 1 0 2a+1 a+ 2 2a0 + 2 o 1 a+ 1 2 2a
2a+2 | 0 2a+2 a+ 1 2 2a0 + 1 a 1 2a a+ 2

2. a. Zy[x]/(p(x)) = {0, 1, @, @ + 1} is a field.
+ 0 1 a a+1 0 1 a a+1
0 1 e a+1 0 0 0 0 0
1 1 0 a+t+1 a 1 0 1 16 a+1
a a a+1 0 1 a 0 16 a+1 1
a+1l |a+1 @ 1 0 a+1|0 a+1l 1 a
¢ Llxl/(p(x) ={0, ,a,a + 1,a%, &® + 1,a* + a,a® + a + 1} is a field.

+ 0 1 @ a+1 a? @+ 1 ?+a ta+l

0 0 1 a a+1 o? o+ 1 +a Fa+l

1 1 0 a+1 a o+ 1 o? +a+l o Hta

@ @ a+1 0 1 ?+a ta+l o? @+ 1
a+1 a+1 @ 1 0 Zt+a+l dPHa @+ 1 o?

a? a? a? + 1 ?+a ra+l 0 1 @ a+1
@+ 1 a?+ 1 a? d+a+l PHa 1 0 a+1 @
&+ a ?+a ta+l a? a?+ 1 @ a+1 0 1

?+a+tl|ad+a+l +a a?+ 1 a? a+1 @ 1 0




492

Answers to True/False and Selected Computational Exercises

0 1 @ a+1 o? @+ 1 @+ a & +a+1
0 0 0 0 0 0 0 0 0
1 0 1 @ a+1 o? @+ 1 @+ a & +a+1
a 0 a o? @+ a a+1 1 & +a+l o+ 1
a+1 0 a+1 &+ a @+ 1 & +a+1 o? 1 a
o? 0 o? a+1 &+ a+l @+ a @ @+ 1 1
@+ 1 0 @+ 1 1 o? a +a+1 a+1 @+ a
@+ a 0 @+ a & +a+1 1 @+ 1 a+1 a o?
Z+a+1|0 +a+l o+ 1 a 1 &+ a o? a+1
e. The elements of Z3[x]/(p(x)) are given by
{0,1,2,,a + 1, + 2,20, 2 + 1,2c + 2}.
This ring is not a field, since a + 2 does not have a multiplicative inverse.
+ 0 1 2 o a+ 1 a+ 2 2a 2 + 1 2a + 2
0 0 1 2 a a+ 1 a+ 2 2a 2 + 1 2a + 2
1 1 2 0 a+ 1 a+ 2 el 20+ 1 20 + 2 2a
2 2 0 1 a+ 2 o a+1 2a+2 2a 2a0 + 1
o a a+ 1 a+ 2 2a 2 + 1 2a + 2 0 1 2
a + 1 a+ 1 a+ 2 e 20+ 1 2a + 2 2a 1 2 0
a+ 2 a+ 2 o a+1 2a+2 2a 2a0 + 1 2 0 1
2a 2a 2 + 1 2a + 2 0 1 2 @ a+ 1 a+ 2
2+ 1 |2+ 1 2a+2 2a 1 2 0 a+ 1 a+ 2 el
20 + 2 |20 + 2 2a 20 + 1 2 0 1 a+ 2 o a+ 1
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0 1 2 a a+ 1 a+ 2 2a 2+ 1 2a+2
0 0 0 0 0 0 0 0 0 0
1 0 1 2 a a+ 1 a+ 2 2a 20 + 1 20 + 2
2 0 2 1 2a 2 + 2 2a + 1 o a+ 2 a+ 1
a 0 1o 2a 20 + 2 2 a+ 2 a+ 1 2a0 + 1 1
a+ 1 0 a+ 1 20 + 2 2 a 2a0 + 1 1 a+ 2 2a
a+ 2 0 a+ 2 20 + 1 a+ 2 2a0 + 1 0 2a0 + 1 0 a+2
2a 0 2a a a+ 1 1 2+ 1 2a+2 a+2 2
2a+1 | 0 2a+1 a+ 2 2a + 1 a+ 2 0 a+ 2 0 20 + 1
2a+2 |0 2a+2 a+ 1 1 2a a+ 2 2 2a0 + 1 a
3. a. We have p(0) =1, p(1) =1, and p(2) = 2. Therefore, p(x) is irreducible by

Theorem 8.20.
(ay + aya + a,a®)(by + by + bya?)
= (apby + 2a,b, + 2a,b, + 2a,b,)
+ (agh;, + a\by + 2a,b,)a
+ (agh, + aib; + a\b, + ayby + ayb; + a,b,)a?

(P tat+r2)l=a+ 1

. Since p(0) = 1, p(1) =3, p(2) = 1, p(3) = 1, and p(4) = 4, Theorem 8.20 assures

us that p(x) is irreducible.

. (ay + a,a + a,a®)(by + by + by,a?)

= ((lobo + 4a1b2 + 4a2b1)
+ (aobl + albo + 4a1b2 + 4a2b1 + 4a2b2)0[
+ (aobz + a1b1 + a2b0 + 4a2b2)a2

(@t da) =40 + 30+ 2

L0, L2 e+ La+ 220,20 + 1,20 + 2,0% a® + 1,02 + 2,202, 2% + 1,

20+ 2, +a,dd ta+ a2+ a+2,28+ 20+ o+ 1,
202 + @ + 2, + 20, 0% + 20 + 1,02 + 2a + 2,202 + 2, 202 + 2a + 1,
202 + 2a + 2

. The polynomial p(x) = x* + x> + 1 is irreducible over Z,. Let a be a zero of

p(x) in Z,[x]/(p(x)). The quotient ring

Z,[x)/(p(x)) = {0, l,q,a + 1,a* o’ + 1, & + a, 0> + @ + 1, a7,
S+l +adldtat+l,dd+ e+t
d+ad+tadd+adl+a+t 1}

containing 2* elements is a field.
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11.
13.
15.

11.
13.
15.
17.
19.
21.
23.

25.
27.

29.
31.
33.

¢. The polynomial p(x) = x> + 2x?> + x + 1 is irreducible over Zs. Let a be a zero of
p(x) in Z3[x]/(p(x)). The quotient ring

Zx)/(p(x)) = {0,1,2, a0, + 1, + 2,2, 2a + 1,2a + 2, 0% & + 1,
a?+2,20%,20°+ 1,282+ 2, >+, +ta+ 1> +a+2,
&+ 20,0 +2a+ 1,02 +2a+ 2,20 + o, 20 + a + 1,
207 + a + 2,2a% + 20,207 + 20 + 1,2a2+2a+2}

containing 3° elements is a field.
L=V +5V3 +7)
a. 3,4 c. 2,3 e. 55
a,2a + 1 17. a,2a® + 3a,3a> + a + 4

Appendix Exercises Pages431-433 [N

. For x = 0, the statement 0> > 0 is false.
. For a = 0 and any real number b, the statement O + b = 1 is false.

1
3
5.
7
9

For x = —4, the statement —(—4) < |—4] is false.

. Forn = 6, the statement 6> + 2(6) = 48 is true.

. Forn = 5, the statement 5% < 23 is true.

For n = 3, the integer 3> + 3 is an even integer.

There is at least one child who did not receive a Valentine card.

There is at least one senior who either did not graduate or did not receive a job offer.
All of the apples in the basket are not rotten.

All of the politicians are dishonest or untrustworthy.

There is at least one x € A such that x & B.

There exists a right triangle with sides a and b and hypotenuse ¢ such that
c? #a*+ b

Some complex number does not have a multiplicative inverse.

There are sets A and B such that the Cartesian products A X B and B X A are not
equal.

For every complex number x, x> + 1 # 0.
For all sets A and B, the set A is not a subset of A () B.

For any triangle with angles «, B, and 7y, the inequality & + 8 + y = 180° holds.
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35. For every real number x, 2° > 0.

37. TRUTH TABLE for p & ~(~p)

p |~p | ~(~p)
T
F

We examine the two columns headed by p and ~(~p) and note that they are identical.

39. TRUTH TABLE for ~(p A (~p))

p | ~p | pAN(=p) | ~(pA(~p)
F T

T F T

41. TRUTH TABLE for (p A q) = p

Pl q|phg | (PANp=p
T|T T T
T|F F T
F|T F T
F | F F T

43. TRUTH TABLE for (p A (p = q)) = ¢

Pla|pr=q|p Np=29 | pANpP=9)=>q
T|T T T

T|F F F T

F|T T F T

F|F T F T
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45. TRUTH TABLE for (p = ¢q) & ((~p) V q)

pla|p=q |~ | (PVg
T|T T F T
T|F F F F
F|T T T T
F | F T T T

We examine the two columns headed by p = ¢ and (~p) V ¢ and note that they are
identical.

47. TRUTH TABLE for (p = q) © ((p A (~q)) = (~p))

Plqg|pr=q|~q|pN(=q)| ~p | (pAN(~q)=(~p)
T|T| T F F F T
T|F| F T T F F
F|T| T F F T T
F|F| T T F T T

We examine the two columns headed by p = g and (p A (~g)) = (~p) and note that
they are identical.

49. TRUTH TABLE for (p AgAr)= (pV q) A1)

~

(VO AT | (pAgAD=(pV g AT)
T

PAGNATY | p
T

LS

e T R R I R R I N
M o A 43 oo 4 e
e T R e N T
M m T T T T
I R e e e e A
M m om 4 T A T

H 43 8 8 888
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53.

5S.

57.
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TRUTH TABLE for (p = (gAr) = (p=q) A(p=r))

plagl|r|ghr|p=>@hAn | p=q|p=>r | (p=9AN(p=>71)
T|T|T| T T T T T
T|T|F F F T F F
T|F|T| F F F T F
T|F|F F F F F F
F|T|T| T T T T T
F|T|F F T T T T
F|F|T| F T T T T
F|F|F F T T T T

We examine the two columns headed by p = (¢ A r) and (p = ¢) A (p = r) and note
that they are identical.

The implication (p = ¢q) is true: My grade for this course is A implies that I can enroll
in the next course.

The contrapositive (~g = ~p) is true: I cannot enroll in the next course implies
that my grade for this course is not A.

The inverse (~p = ~¢q) is false: My grade for this course is not A implies that I
cannot enroll in the next course.

The converse (¢ = p) is false: I can enroll in the next course implies that my grade
for this course is A.
The implication (p = ¢) is true: The Saints win the Super Bowl implies that the Saints
are the champion football team.

The contrapositive (~g = ~p) is true: The Saints are not the champion football
team implies that the Saints did not win the Super Bowl.

The inverse (~p = ~¢q) is true: The Saints did not win the Super Bowl implies that
the Saints are not the champion football team.

The converse (¢ = p) is true: The Saints are the champion football team implies
that the Saints did win the Super Bowl.
The implication (p = ¢q) is false: My pet has four legs implies that my pet is a dog.

The contrapositive (~qg = ~p) is false: My pet is not a dog implies that my pet
does not have four legs.

The inverse (~p = ~¢q) is true: My pet does not have four legs implies that my pet
is not a dog.

The converse (¢ = p) is true: My pet is a dog implies that my pet has four legs.
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59.

61.

63.

65.

67.

69.

71.

73.

The implication (p = g) is true: Quadrilateral ABCD is a square implies that quadri-
lateral ABCD is a rectangle.

The contrapositive (~q = ~p) is true: Quadrilateral ABCD is not a rectangle
implies that quadrilateral ABCD is not a square.

The inverse (~p = ~¢q) is false: Quadrilateral ABCD is not a square implies that
quadrilateral ABCD is not a rectangle.

The converse (¢ = p) is false: Quadrilateral ABCD is a rectangle implies that
quadrilateral ABCD is a square.
The implication (p = ¢q) is true: x is a positive real number implies that x is a
nonnegative real number.

The contrapositive (~g = ~p) is true: x is a negative real number implies that x is
a nonpositive real number.

The inverse (~p = ~q) is false: x is a nonpositive real number implies that x is a
negative real number.

The converse (¢ = p) is false: x is a nonnegative real number implies that x is a pos-
itive real number.
The implication (p = q) is true: 5x is odd implies that x is odd.

The contrapositive (~g = ~p) is true: x is not odd implies that 5x is not odd.

The inverse (~p = ~¢q) is true: 5x is not odd implies that x is not odd.

The converse (¢ = p) is true: x is odd implies that 5x is odd.

The implication (p = ¢) is true: xy is even implies that x is even or y is even.
The contrapositive (~g = ~p) is true: x is odd and y is odd implies that xy is odd.
The inverse (~p = ~¢q) is true: xy is odd implies that x is odd and y is odd.
The converse (¢ = p) is true: x is even or y is even implies that xy is even.

The implication (p = g) is false: x*> > y* implies that x > y.

The contrapositive (~¢ = ~p) is false: x = y implies that x> = y*.
The inverse (~p = ~¢) is false: x> =< y? implies that x < y.
The converse (g = p) is false: x > y implies that x> > y°.

Contrapositive: ~(qV r) = ~p, or (~q) A (~r)) = ~p
Converse: (gVr)=p
Inverse: ~p = ~(g V r), or ~p = ((~q) A (~1))

Contrapositive: ¢ = ~p
Converse: ~qg = p
Inverse: ~p = ¢

Contrapositive: ~(r As) = ~(p V q), or (=) V (~s)) = ((~p) N (~q))
Converse: (rAs) = (pV q)

Inverse: ~(pV q) = ~(r As), or (=p) A (~q)) = (=) V (~))
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Archimedean property, 291, 333
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number, 345

Array, 42
Associative binary operation, 31
Associative property, 7, 20, 48

generalized, 148, 264
Asymmetric relation, 61
Automorphism, 177

inner, 238
Axiom of Choice, 39
Axis

imaginary, 343

real, 343

Biconditional, 427
Bijection, 18
Bijective mapping, 18
Binary
alphabet, 114
digit, 114

operation, 30
relation, 55
representation, 75
Binet’s formula, 80
Binomial
coefficients, 77
theorem, 77
Bit, 114
Block, 114
Boolean ring, 269, 318

Caesar cipher, 123
Cancellation law
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in a group, 146
Cardano’s Formulas, 401
Cartesian product, 13
Cauchy, Augustin Louis, 256
Cauchy’s Theorem, 249
Cayley, Arthur, 62
Cayley table, 139
Cayley’s Theorem, 205
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of a group, 162, 229

of aring, 267
Centralizer, 162
Characteristic, 313
Check digit, 115, 117

Cipher
additive, 124
Caesar, 123
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multiplicative, 126
translation, 124
Ciphertext, 124
Closed set with respect to an
operation, 32
Code, 115
error-detecting, 115
Hamming, 123
repetition, 116
triple repetition, 116
Codomain, 14
Coefficient, 356
leading, 362
Commutative
binary operation, 31
group, 138

property, 4, 31

ring, 261
Complement, 5

of one set in another, 5
Complete

induction, 75

ordered field, 328
Complex numbers, 6, 334

in polar form, 345

in standard form, 337

in trigonometric form, 345
Composite mapping, 19
Composition of mappings, 19
Conclusion, 426
Conformable matrices, 46
Congruence

class, 96

modulo n, 95

modulo a subgroup, 229
Conjugate

of a complex number, 182, 337

of an element, 199

of a subgroup, 221

zeros, 387
Conjunction, 426
Connectives, 426
Constant

polynomial, 362

term, 362
Contradiction, 430
Contrapositive, 217, 429
Converse, 429
Coordinate, 343
Corollary, 423
Coset, 217
Counterexample, 17, 425
Cryptoanalysis, 123
Cryptography, 123
Cryptology, 123
Cycle, 192
Cyclic

group, 159

subgroup, 159

Decimal representation, 330
Dedekind, Richard, 292, 328
Dedekind cuts, 292, 328

Degree of a polynomial, 362
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De Moivre’s Theorem, 346
De Morgan’s Laws, 9, 428
Determinant, 187
Diagonal matrix, 43
Dihedral group, 210
Dimension of a matrix, 42
Direct product of groups, 238, 239
Direct sum

of rings, 269

of subgroups, 241
Discriminant, 386, 405
Disjoint

cycles, 194

sets, 4
Disjunction, 426
Distributive property, 8, 48, 66, 67, 264
Division Algorithm

for integers, 81, 82

for polynomials, 367
Division ring, 337
Divisor, 81, 367

greatest common, 86, 370

zero, 109, 263
Domain, 14

integral, 270
Dot product, 118

Efficiency, 120
Eisenstein’s Irreducibility
Criterion, 391

Embedded, 282, 315
Empty set, 4
Endomorphism, 183
Epimorphism, 183, 303
Equality

of complex numbers, 334

of mappings, 13

of matrices, 43

of polynomials, 356

of quaternions, 338

of rational numbers, 277

of sets, 2
Equivalence

class, 57

relation, 55
Error detection, 115
Escher, M. C., 212
Euclidean Algorithm, 88, 372
Euclid’s Lemma, 90
Euclid’s Theorem on Primes, 92
Euler phi-function, 134, 170
Even integer, 18
Even parity, 115
Even permutation, 199
Existential quantifier, 423
Exponentiation cipher, 130
Exponents, 68, 155
Extension, 282, 291, 386, 416

algebraic, 386, 416

field, 412
External direct product, 239

Factor, 81, 367
group, 230
theorem, 377
Fermat’s Little Theorem, 106,
222,383
Fibonacci sequence, 80
Field, 271, 273
algebraically closed, 386
complete ordered, 328
of complex numbers, 334
extension, 282, 386, 412
ground, 416
of quotients, 279
of rational numbers, 282
of real numbers, 328
skew, 337
splitting, 419
Finite
group, 141
integral domain, 270
ring, 260
Finitely generated group, 251
Four group, 181, 207
Function, 12
polynomial, 375
Fundamental theorem
of algebra, 384
of arithmetic, 90
on finite abelian groups, 253
of group homomorphisms, 233
of ring homomorphisms, 309

Gauss, Carl Friedrich, 292, 422
Gaussian integers, 265, 274
Gauss’s Lemma, 390
Generalized
associative laws, 148, 264
distributive laws, 264
induction, 74
Generating set, 225, 251
minimal, 251
Generator, 163, 225, 251
Geometric symmetry, 209
Glide reflection, 211
Graph of a complex
number, 343
Greater than, 69, 285
Greatest common divisor,
86, 370
Greatest lower bound, 333
Ground field, 416
Group, 137
abelian, 138
alternating, 199
center of, 162, 229
commutative, 138
cyclic, 159
dihedral, 210
factor, 230
finite, 141
finitely generated, 251

four, 181, 207
generator of, 163
infinite, 141
isomorphic, 177
Klein four, 181, 207
octic, 202, 226
of units, 167
order of, 141
quaternion, 143
quotient, 230
symmetric, 192
table, 139

Hamilton, William Rowan,
337,353
Hamming
code, 123
distance, 122
weight, 122
Hilbert, David, 324
Homomorphic image, 185, 303
Homomorphism, 183
kernel of, 186, 305
ring, 303
Hypothesis, 426

Ideal, 293, 294

left, 293

maximal, 319

prime, 323

principal, 296, 302

right, 293

trivial, 293
Idempotent element, 150,

268, 342

Identity

element, 33, 66, 138

left, 49

of a group, 138

mapping, 37

matrix, 49

right, 49

two-sided, 50
Image, 13, 15

homomorphic, 185, 303
Imaginary

axis, 343

number, 337
Implication, 426
Indeterminate, 355
Index

of a subgroup, 218

of summation, 47
Indexed collection, 58
Induction

complete, 75

generalized, 74

mathematical, 72

postulate, 66

strong mathematical, 75



Infinite group, 141
Injective mapping, 16
Inner automorphism, 238
Integers, 6, 65

even, 18

Gaussian, 265, 274

negative, 66

odd, 18

positive, 6, 66

postulates for, 65

prime, 90

relatively prime, 89
Integral

exponents, 68, 155

multiples, 68, 156
Integral domain, 270

finite, 270

ordered, 284
Internal direct product, 238
Intersection, 3
Invariant subgroup, 223
Inverse, 33, 66, 138

image, 15

implication, 429

of a mapping, 40

of a matrix, 50

of a relation, 61

multiplicative, 50, 262
Invertible

element, 33, 262

mapping, 40

matrix, 50
Irrational number, 330
Irreducible polynomial, 378
Irreflexive relation, 61
Isomorphic

groups, 177

rings, 281, 303
Isomorphism

of groups, 177

of rings, 281, 303

Kernel, 186, 305

Key, 124

Klein four group, 181, 207
Kronecker delta, 49

Lagrange’s Theorem, 219
Law of trichotomy, 66, 285
Laws

of exponents, 156

of multiples, 158
Leading coefficient, 362
Least common multiple, 94
Least element, 286

Least upper bound (l.u.b.), 325

Left coset, 217

Left distributive law, 66
Left ideal, 293

Left identity element, 50

Left inverse, 33

Lemma, 423

Length of a word, 114

Less than, 68, 285

Linear combination, 86, 370
Logical equivalence, 428
Lower bound, 333

Mapping, 13

affine, 126

bijective, 18

codomain of, 14

composition, 19

domain of, 14

equality of, 13

identity, 37

injective, 16

one-to-one, 16

onto, 15

range of, 14

surjective, 15
Mathematical induction, 72
Matrix, 42

addition, 43

diagonal, 43

dimension of, 42

equality of, 43

identity, 49

invertible, 50

multiplication, 45

multiplicative inverse of, 50

permutation, 144

square, 43

subtraction, 45

sum, 43

zero, 45
Maximal ideal, 319
Maximum likelihood

decoding, 116
Minimal generating set, 251
Minimum distance, 122
Modulus of a complex
number, 345

Monic polynomial, 370
Monomorphism, 183
Morgan Saucier, 506
Multiple, 68, 81, 156, 367
Multiplication

of complex numbers, 334, 346

of cosets, 298

of matrices, 45

of polynomials, 357

postulates for Z, 66

properties in Z,, 108

of quaternions, 338, 339

of rational numbers, 277

table, 139
Multiplicative

cipher, 126

inverse, 50, 262
Multiplicity, 92, 380

Index

Negation of a statement, 425
Negative, 258

element, 285

integer, 66

integral exponents, 155
Nilpotent element, 269, 302
Noether, Amalie Emmy, 324
Nontrivial subgroup, 152
Normal subgroup, 223
Normalizer of a subgroup, 229
nth root, 347

primitive, 351

Octic group, 202, 226
Odd integer, 18
Odd parity, 115
Odd permutation, 199
One-to-one
correspondence, 18
mapping, 16
Onto mapping, 15
Opposite, 258
Orbits, 193
Order
of a group, 141
of an element, 167, 194
relation, 68
Ordered
field, 290
integral domain, 284
pair, 13

Parallelogram rule, 344
Parity
check digit, 115
even, 115
odd, 115
Partition, 7, 58
Pascal, Blaise, 135
Permutation, 37
even, 199
matrix, 144
odd, 199
p-group, 246
Plaintext, 124
Polar form of a complex
number, 345
Polynomial(s), 355
addition of, 357
coefficient of, 356
constant, 362
degree of, 362
equality of, 356
irreducible, 378
monic, 370
multiplication of, 357
prime, 378
primitive, 390
reducible, 378
terms of, 356
zero of, 375, 380
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Polynomial
function, 375
mapping, 375
Positive elements, 284
Positive integer, 6, 66
Postulate, 65, 423
Power set, 4
Prime ideal, 323
Prime integer, 90
Prime polynomial, 378
Primitive
nth root, 351
polynomial, 390
Principal ideal, 296, 302
Principal of mathematical
induction, 72
Product
Cartesian, 13
dot, 118
external direct, 239
of complex numbers,
334, 346
of cosets, 298
of matrices, 45
of polynomials, 357
of quaternions, 338, 339
of rational numbers, 277
of subsets, 215
internal direct, 238
notation, 148
Proof by contradiction, 430
Proper
divisor of zero, 263
subset, 3
Properties
of addition in Z,, 107
of multiplication in Z,, 108
Proposition, 423
Public Key Cryptosystem, 127
Pure imaginary number, 337

Quadratic formula, 385
Quantifier

existential, 423

universal, 423
Quaternion group, 143
Quaternions, 337
Quotient, 83, 369

field, 279

group, 230

ring, 298, 410

set, 278

Range, 14

Rank, 251

Rational numbers, 6, 328
Rational zeros, 388

Real axis, 343

Real numbers, 6, 328

Reducible polynomial, 378
Reflective symmetry, 211
Reflexive property, 55
Relation, 55
antisymmetric, 61
asymmetric, 61
equivalence, 55
inverse of, 61
irreflexive, 61
order, 68
Relatively prime
integers, 89
polynomials, 380
Remainder, 83, 369
Theorem, 376
Repetition codes, 116
Resolvent equation, 403
Reverse Order Law, 54,
146, 151
Residue classes, 96
Right coset, 217
Right distributive law, 66, 67
Right ideal, 293
Right identity element, 50
Right inverse, 33
Rigid motion, 175, 201, 208
Ring, 257
Boolean, 269, 318
characteristic of, 313
commutative, 261
division, 337
finite, 260
homomorphism, 303
of integers modulo n, 260
isomorphism, 281, 303
of polynomials over R,
359, 361
quotient, 298
with unity, 261
Root of a polynomial
equation, 375
Rotational symmetry, 211
RSA cryptosystem, 127

Saucier, Morgan, 505
Second principle of finite
induction, 75
Set
of positive elements, 284
of quotients, 278
power, 4
Set-builder notation, 2
Sets, 1
disjoint, 4
empty, 4
equal, 2
intersection of, 3
union of, 3
universal, 4
Sigma notation, 47

Simple algebraic extension, 416
Skew field, 337
Solution, 375
Splitting field, 419
Square matrix, 43
Standard form
of a complex number, 337
of a positive integer, 92
Statement, 423
Strong mathematical induction, 75
Subgroup, 152
conjugate, 221
cyclic, 159
generated by an element, 159
generated by a subset, 225
index of, 218
invariant, 223
nontrivial, 152
normal, 223
normalizer of, 229
sum of, 239
Sylow p-, 248
transitive, 204, 222
torsion, 174, 228, 238
trivial, 152
Subring, 259
Subset, 2
product of, 215
proper, 3
Subtraction
of integers, 70
of matrices, 45
Sum
of complex numbers, 334
of cosets, 298
direct, 269
of ideals, 300
of matrices, 43
of polynomials, 357
of quaternions, 338, 339
of subgroups, 239
Surjective mapping, 15
Sylow p-subgroup, 248
Sylow’s Theorem, 254
Symmetric
group, 192
property, 55
Symmetries, 175, 201, 208
Symmetry, 208
geometric, 209
reflective, 211
rotational, 211

Terms of a polynomial, 356
Theorem, 423
Torsion subgroup, 174, 228, 238
Transformation, 12
Transitive

property, 55

subgroup, 204, 222



Translation, 211
cipher, 124

Transposition, 196

Trichotomy law, 66, 285

Trigonometric form of a complex
number, 345

Triple repetition code, 116

Trivial ideal, 293

Trivial subgroup, 152

Truth table, 425

Two-sided identity, 50

Two-sided inverse, 33

Union of sets, 3

Unique Factorization Theorem, 86,
91, 380

Unit, 262

Unity, 261

Universal quantifier, 423

Universal set, 4

UPC symbol, 119

Upper bound, 325

Vector, 118, 343
Venn diagram, 4

Index

Well-ordered, 286
Well-Ordering Theorem, 81
Word, 114

Zero
characteristic, 313
divisor, 109, 263
matrix, 45
of multiplicity m, 380
of a polynomial, 375, 380
of aring, 258
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