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Preface (with David Steinsaltz)

Apolice officer on patrol at midnight, so runs an old joke, notices a man
crawling about on his hands and knees under a streetlamp. He walks over
to investigate, whereupon the man explains in a tired and somewhat slurred

voice that he has lost his housekeys. The policeman offers to help, and for the next
five minutes he too is searching on his hands and knees. At last he exclaims, “Are
you absolutely certain that this is where you dropped the keys?”

“Here? Absolutely not. I dropped them a block down, in the middle of the
street.”

“Then why the devil have you got me hunting around this lamppost?”
“Because this is where the light is.”

It is mathematics, and not just (as Bismarck claimed) politics, that consists in “the
art of the possible.” Rather than search in the darkness for solutions to problems of
pressing interest, we contrive a realm of problems whose interest lies above all in
the fact that solutions can conceivably be found.

Perhaps the largest patch of light surrounds the techniques of matrix arithmetic
and algebra, and in particular matrix multiplication and row reduction. Here we
might begin with Descartes, since it was he who discovered the conceptual meeting-
point of geometry and algebra in the identification of Euclidean space with R3; the
techniques and applications proliferated since his day. To organize and clarify those
is the role of a modern linear algebra course.

Computers and Computation

An essential issue that needs to be addressed in establishing a mathematical method-
ology is the role of computation and of computing technology. Are the proper sub-
jects of mathematics algorithms and calculations, or are they grand theories and
abstractions that evade the need for computation? If the former, is it important that
the students learn to carry out the computations with pencil and paper, or should the
algorithm “press the calculator’s x−1 button” be allowed to substitute for the tradi-
tional method of finding an inverse? If the latter, should the abstractions be taught
through elaborate notational mechanisms or through computational examples and
graphs?

We seek to take a consistent approach to these questions: Algorithms and com-
putations are primary, and precisely for this reason computers are not. Again and
again we examine the nitty-gritty of row reduction or matrix multiplication in or-
der to derive new insights. Most of the proofs, whether of rank-nullity theorem, the
volume-change formula for determinants, or the spectral theorem for symmetric
matrices, are in this way tied to hands-on procedures.

The aim is not just to know how to compute the solution to a problem, but to
imagine the computations. The student needs to perform enough row reductions by
hand to be equipped to follow a line of argument of the form: “If we calculate the
reduced row-echelon form of such a matrix . . . ,” and to appreciate in advance the
possible outcomes of a particular computation.

ix
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In applications, the solution to a problem is hardly more important than recog-
nizing its range of validity and appreciating how sensitive it is to perturbations of the
input. We emphasize the geometric and qualitative nature of the solutions, notions
of approximation, stability, and “typical” matrices. The discussion of Cramer’s rule,
for instance, underscores the value of closed-form solutions for visualizing a sys-
tem’s behavior and understanding its dependence on initial conditions.

The availability of computers is, however, neither to be ignored nor regretted.
Each student and instructor will have to decide how much practice is needed to be
sufficiently familiar with the inner workings of the algorithm. As the explicit com-
putations are being replaced gradually by a theoretical overview of how the algo-
rithm works, the burden of calculation will be taken up by technology, particularly
for those wishing to carry out the more numerical and applied exercises.

Examples, Exercises, Applications, and History

The exercises and examples are the heart of this book. Our objective is not just to
show our readers a “patch of light” where questions may be posed and solved, but
to convince them that there is indeed a great deal of useful, interesting material to
be found in this area if they take the time to look around. Consequently, we have
included genuine applications of the ideas and methods under discussion to a broad
range of sciences: physics, computer science, chemistry, biology, economics, and,
of course, mathematics itself. Often we have simplified them to sharpen the point,
but they use the methods and models of contemporary scientists.

With such a large and varied set of exercises in each section, instructors should
have little difficulty in designing a course that is suited to their aims and to the needs
of their students. Quite a few straightforward computation problems are offered,
of course. Simple (and, in a few cases, not so simple) proofs and derivations are
required in some exercises. In many cases, theoretical principles that are discussed
at length in more abstract linear algebra courses are here found broken up in bite-
size exercises.

The examples make up a significant portion of the text; we have kept abstract
exposition to a minimum. It is a matter of taste whether general theories should
give rise to specific examples or be pasted together from them. In a text such as this
one, attempting to keep an eye on applications, the latter is clearly preferable: The
examples always precede the theorems in this book.

Scattered throughout the mathematical exposition are quite a few names and
dates, some historical accounts, and anecdotes. Students of mathematics are too
rarely shown that the seemingly strange and arbitrary concepts they study are the
results of long and hard struggles. It will encourage the readers to know that a
mere two centuries ago some of the most brilliant mathematicians were wrestling
with problems such as the meaning of dimension or the interpretation of eit, and
to realize that the advance of time and understanding actually enables them, with
some effort of their own, to see farther than those great minds.

Continuing Text Features
• Linear transformations are introduced early on in the text to make the dis-

cussion of matrix operations more meaningful and easier to visualize.
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• Visualization and geometrical interpretation are emphasized extensively
throughout.

• The reader will find an abundance of thought-provoking (and occasionally
delightful) problems and exercises.

• Abstract concepts are introduced gradually throughout the text. The major
ideas are carefully developed at various levels of generality before the student
is introduced to abstract vector spaces.

• Discrete and continuous dynamical systems are used as a motivation for
eigenvectors, and as a unifying theme thereafter.

New Features in the Fifth Edition

Students and instructors generally found the fourth edition to be accurate and well
structured. While preserving the overall organization and character of the text, some
changes seemed in order:

• A large number of exercises have been added to the problem sets, from the
elementary to the challenging and from the abstract to the applied. For ex-
ample, there are quite a few new exercises on “Fibonacci matrices” and their
eigenvectors and eigenvalues.

• Throughout the text, we have added an ongoing discussion of the mathemati-
cal principles behind search engines and the notion of PageRank in particular,
with dozens of examples and exercises. Besides being an interesting and im-
portant contemporary application of linear algebra, this topic allows for an
early and meaningful introduction to dynamical systems, one of the main
themes of this text, naturally leading up to a discussion of diagonalization
and eigenvectors.

• In a new appendix, we offer a brief discussion of the proof techniques of
induction and contraposition.

• There have been hundreds of small editorial improvements – offering a hint
in a challenging problem for example, or choosing a more sensible notation
in a definition.

Outline of the Text

Chapter 1 This chapter provides a careful introduction to the solution of systems
of linear equations by Gauss–Jordan elimination. Once the concrete problem is
solved, we restate it in terms of matrix formalism and discuss the geometric prop-
erties of the solutions.

Chapter 2 Here we raise the abstraction a notch and reinterpret matrices as lin-
ear transformations. The reader is introduced to the modern notion of a func-
tion, as an arbitrary association between an input and an output, which leads into
a discussion of inverses. The traditional method for finding the inverse of a matrix
is explained: It fits in naturally as a sort of automated algorithm for Gauss–Jordan
elimination.
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Chapters 1 to 3:
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We define linear transformations primarily in terms of matrices, since that is
how they are used; the abstract concept of linearity is presented as an auxiliary no-
tion. Rotations, reflections, and orthogonal projections in R2 are emphasized, both
as archetypal, easily visualized examples, and as preparation for future applications.

Chapter 3 We introduce the central concepts of linear algebra: subspaces, image
and kernel, linear independence, bases, coordinates, and dimension, still firmly
fixed in Rn .

Chapter 4 Generalizing the ideas of the preceding chapter and using an abundance
of examples, we introduce abstract vector spaces (which are called linear spaces
here, to prevent the confusion some students experience with the term “vector”).

Chapter 5 This chapter includes some of the most basic applications of linear
algebra to geometry and statistics. We introduce orthonormal bases and the Gram–
Schmidt process, along with the QR factorization. The calculation of correlation
coefficients is discussed, and the important technique of least-squares approxima-
tions is explained, in a number of different contexts.

Chapter 6 Our discussion of determinants is algorithmic, based on the counting
of patterns (a transparent way to deal with permutations). We derive the properties
of the determinant from careful analysis of this procedure, tying it together with
Gauss–Jordan elimination. The goal is to prepare for the main application of deter-
minants: the computation of characteristic polynomials.

Chapter 7 This chapter introduces the central application of the latter half
of the text: linear dynamical systems. We begin with discrete systems and are
naturally led to seek eigenvectors, which characterize the long-term behavior of the
system. Qualitative behavior is emphasized, particularly stability conditions. Com-
plex eigenvalues are explained, without apology, and tied into earlier discussions of
two-dimensional rotation matrices.
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Chapter 8 The ideas and methods of Chapter 7 are applied to geometry. We dis-
cuss the spectral theorem for symmetric matrices and its applications to quadratic
forms, conic sections, and singular values.

Chapter 9 Here we apply the methods developed for discrete dynamical systems
to continuous ones, that is, to systems of first-order linear differential equations.
Again, the cases of real and complex eigenvalues are discussed.

Solutions Manuals
• Student’s Solutions Manual, with carefully worked solutions to all odd-

numbered problems in the text (ISBN 0-13-600927-1)
• Instructor’s Solutions Manual, with solutions to all the problems in the text

(ISBN 0-13-600928-X)
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C H A P T E R

1
Linear Equations

1.1 Introduction to Linear Systems

Traditionally, algebra was the art of solving equations and systems of equations.
The word algebra comes from the Arabic al-jabr ( ), which means restoration
(of broken parts).1 The term was first used in a mathematical sense by Mohammed
al-Khowarizmi (c. 780–850), who worked at the House of Wisdom, an academy
established by Caliph al-Ma’mun in Baghdad. Linear algebra, then, is the art of
solving systems of linear equations.

The need to solve systems of linear equations frequently arises in mathematics,
statistics, physics, astronomy, engineering, computer science, and economics.

Solving systems of linear equations is not conceptually difficult. For small sys-
tems, ad hoc methods certainly suffice. Larger systems, however, require more sys-
tematic methods. The approach generally used today was beautifully explained
2,000 years ago in a Chinese text, the Nine Chapters on the Mathematical Art
(Jiuzhang Suanshu, ).2 Chapter 8 of that text, called Method of Rectan-
gular Arrays (Fang Cheng, ), contains the following problem:

The yield of one bundle of inferior rice, two bundles of medium-grade rice,
and three bundles of superior rice is 39 dou of grain.3 The yield of one
bundle of inferior rice, three bundles of medium-grade rice, and two bundles
of superior rice is 34 dou. The yield of three bundles of inferior rice, two
bundles of medium-grade rice, and one bundle of superior rice is 26 dou.
What is the yield of one bundle of each grade of rice?

In this problem the unknown quantities are the yields of one bundle of inferior,
one bundle of medium-grade, and one bundle of superior rice. Let us denote these
quantities by x , y, and z, respectively. The problem can then be represented by the

1At one time, it was not unusual to see the sign Algebrista y Sangrador (bone setter and blood letter)
at the entrance of a Spanish barber’s shop.
2Shen Kangshen et al. (ed.), The Nine Chapters on the Mathematical Art, Companion and
Commentary, Oxford University Press, 1999.
3The dou is a measure of volume, corresponding to about 2 liters at that time.

1



2 CHAPTER 1 Linear Equations

following system of linear equations:∣∣∣∣∣∣
x + 2y + 3z = 39
x + 3y + 2z = 34

3x + 2y + z = 26

∣∣∣∣∣∣ .
To solve for x , y, and z, we need to transform this system from the form∣∣∣∣∣∣

x + 2y + 3z = 39
x + 3y + 2z = 34

3x + 2y + z = 26

∣∣∣∣∣∣ into the form

∣∣∣∣∣∣
x = . . .

y = . . .

z = . . .

∣∣∣∣∣∣ .
In other words, we need to eliminate the terms that are off the diagonal, those circled
in the following equations, and make the coefficients of the variables along the
diagonal equal to 1:

x + 2y�+ 3z�= 39

x�+ 3y + 2z�= 34

3x�+ 2y�+ z = 26.

We can accomplish these goals step by step, one variable at a time. In the past,
you may have simplified systems of equations by adding equations to one another
or subtracting them. In this system, we can eliminate the variable x from the second
equation by subtracting the first equation from the second:∣∣∣∣∣∣

x + 2y + 3z = 39
x + 3y + 2z = 34

3x + 2y + z = 26

∣∣∣∣∣∣
−→

−1st equation

∣∣∣∣∣∣
x + 2y + 3z = 39

y − z = −5
3x + 2y + z = 26

∣∣∣∣∣∣ .
To eliminate the variable x from the third equation, we subtract the first equation
from the third equation three times. We multiply the first equation by 3 to get

3x + 6y + 9z = 117 (3 × 1st equation)

and then subtract this result from the third equation:∣∣∣∣∣∣
x + 2y + 3z = 39

y − z = −5
3x + 2y + z = 26

∣∣∣∣∣∣
−→

−3 × 1st equation

∣∣∣∣∣∣
x + 2y + 3z = 39

y − z = −5
− 4y − 8z = −91

∣∣∣∣∣∣ .
Similarly, we eliminate the variable y above and below the diagonal:∣∣∣∣∣∣

x + 2y + 3z = 39
y − z = −5

− 4y − 8z = −91

∣∣∣∣∣∣
−2 × 2nd equation

−→
+4 × 2nd equation

∣∣∣∣∣∣
x + 5z = 49

y − z = −5
− 12z = −111

∣∣∣∣∣∣ .
Before we eliminate the variable z above the diagonal, we make the coefficient of z
on the diagonal equal to 1, by dividing the last equation by −12:∣∣∣∣∣∣

x + 5z = 49
y − z = −5

− 12z = −111

∣∣∣∣∣∣ −→
÷ (−12)

∣∣∣∣∣∣
x + 5z = 49

y − z = −5
z = 9.25

∣∣∣∣∣∣ .
Finally, we eliminate the variable z above the diagonal:∣∣∣∣∣∣

x + 5z = 49
y − z = −5

z = 9.25

∣∣∣∣∣∣
−5 × third equation

+ third equation
−→

∣∣∣∣∣∣
x = 2.75

y = 4.25
z = 9.25

∣∣∣∣∣∣ .
The yields of inferior, medium-grade, and superior rice are 2.75, 4.25, and 9.25 dou
per bundle, respectively.
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By substituting these values, we can check that x = 2.75, y = 4.25, z = 9.25
is indeed the solution of the system:

2.75 + 2 × 4.25 + 3 × 9.25 = 39
2.75 + 3 × 4.25 + 2 × 9.25 = 34

3 × 2.75 + 2 × 4.25 + 9.25 = 26.

Happily, in linear algebra, you are almost always able to check your solutions.
It will help you if you get into the habit of checking now.

Geometric Interpretation
How can we interpret this result geometrically? Each of the three equations of the
system defines a plane in x–y–z-space. The solution set of the system consists of
those points (x, y, z) that lie in all three planes (i.e., the intersection of the three
planes). Algebraically speaking, the solution set consists of those ordered triples of
numbers (x, y, z) that satisfy all three equations simultaneously. Our computations
show that the system has only one solution, (x, y, z) = (2.75, 4.25, 9.25). This
means that the planes defined by the three equations intersect at the point (x, y, z) =
(2.75, 4.25, 9.25), as shown in Figure 1.

point of
intersection

Figure 1 Three planes in space, intersecting at a point.

While three different planes in space usually intersect at a point, they may have
a line in common (see Figure 2a) or may not have a common intersection at all, as
shown in Figure 2b. Therefore, a system of three equations with three unknowns
may have a unique solution, infinitely many solutions, or no solutions at all.

Figure 2(a) Three planes having a line in
common.

Figure 2(b) Three planes with no common
intersection.
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A System with Infinitely Many Solutions
Next, let’s consider a system of linear equations that has infinitely many solutions:∣∣∣∣∣∣

2x + 4y + 6z = 0
4x + 5y + 6z = 3
7x + 8y + 9z = 6

∣∣∣∣∣∣ .
We can solve this system using the method of elimination as previously dis-

cussed. For simplicity, we label the equations with Roman numerals.∣∣∣∣∣∣
2x + 4y + 6z = 0
4x + 5y + 6z = 3
7x + 8y + 9z = 6

∣∣∣∣∣∣
÷2
−→

∣∣∣∣∣∣
x + 2y + 3z = 0

4x + 5y + 6z = 3
7x + 8y + 9z = 6

∣∣∣∣∣∣
−→

−4 (I)
−7 (I)∣∣∣∣∣∣

x + 2y + 3z = 0
− 3y − 6z = 3
− 6y − 12z = 6

∣∣∣∣∣∣
−→

÷(−3)

∣∣∣∣∣∣
x + 2y + 3z = 0

y + 2z = −1
− 6y − 12z = 6

∣∣∣∣∣∣
−2 (II)
−→

+6 (II)∣∣∣∣∣∣
x − z = 2

y + 2z = −1
0 = 0

∣∣∣∣∣∣ −→
∣∣∣∣x − z = 2

y + 2z = −1

∣∣∣∣
After omitting the trivial equation 0 = 0, we are left with only two equations

with three unknowns. The solution set is the intersection of two nonparallel planes
in space (i.e., a line). This system has infinitely many solutions.

The two foregoing equations can be written as follows:∣∣∣∣x = z + 2
y = −2z − 1

∣∣∣∣ .
We see that both x and y are determined by z. We can freely choose a value of z, an
arbitrary real number; then the two preceding equations give us the values of x and
y for this choice of z. For example,

• Choose z = 1. Then x = z + 2 = 3 and y = −2z − 1 = −3. The solution is
(x, y, z) = (3, −3, 1).

• Choose z = 7. Then x = z + 2 = 9 and y = −2z − 1 = −15. The solution
is (x, y, z) = (9, −15, 7).

More generally, if we choose z = t , an arbitrary real number, we get x = t + 2
and y = −2t − 1. Therefore, the general solution is

(x, y, z) = (t + 2, −2t − 1, t) = (2, −1, 0) + t (1, −2, 1).

This equation represents a line in space, as shown in Figure 3.

(2, −1, 0) for t = 0
(3, −3, 1) for t = 1

(9, −15, 7) for t = 7

Figure 3 The line (x , y, z ) = (t + 2, −2t − 1, t ).
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A System without Solutions
In the following system, perform the eliminations yourself to obtain the result
shown: ∣∣∣∣∣∣

x + 2y + 3z = 0
4x + 5y + 6z = 3
7x + 8y + 9z = 0

∣∣∣∣∣∣ −→
∣∣∣∣∣∣
x − z = 2

y + 2z = −1
0 = −6

∣∣∣∣∣∣ .
Whatever values we choose for x , y, and z, the equation 0 = −6 cannot be

satisfied. This system is inconsistent; that is, it has no solutions.

EXERCISES 1.1
GOAL Set up and solve systems with as many as three
linear equations with three unknowns, and interpret the
equations and their solutions geometrically.

In Exercises 1 through 10, find all solutions of the lin-
ear systems using elimination as discussed in this section.
Then check your solutions.

1.

∣∣∣∣ x + 2y = 1
2x + 3y = 1

∣∣∣∣ 2.

∣∣∣∣4x + 3y = 2
7x + 5y = 3

∣∣∣∣
3.

∣∣∣∣2x + 4y = 3
3x + 6y = 2

∣∣∣∣ 4.

∣∣∣∣2x + 4y = 2
3x + 6y = 3

∣∣∣∣
5.

∣∣∣∣2x + 3y = 0
4x + 5y = 0

∣∣∣∣ 6.

∣∣∣∣∣∣
x + 2y + 3z = 8
x + 3y + 3z = 10
x + 2y + 4z = 9

∣∣∣∣∣∣
7.

∣∣∣∣∣∣
x + 2y + 3z = 1
x + 3y + 4z = 3
x + 4y + 5z = 4

∣∣∣∣∣∣ 8.

∣∣∣∣∣∣
x + 2y + 3z = 0

4x + 5y + 6z = 0
7x + 8y + 10z = 0

∣∣∣∣∣∣
9.

∣∣∣∣∣∣
x + 2y + 3z = 1

3x + 2y + z = 1
7x + 2y − 3z = 1

∣∣∣∣∣∣ 10.

∣∣∣∣∣∣
x + 2y + 3z = 1

2x + 4y + 7z = 2
3x + 7y + 11z = 8

∣∣∣∣∣∣
In Exercises 11 through 13, find all solutions of the linear
systems. Represent your solutions graphically, as intersec-
tions of lines in the x– y-plane.

11.

∣∣∣∣ x − 2y = 2
3x + 5y = 17

∣∣∣∣ 12.

∣∣∣∣ x − 2y = 3
2x − 4y = 6

∣∣∣∣
13.

∣∣∣∣ x − 2y = 3
2x − 4y = 8

∣∣∣∣
In Exercises 14 through 16, find all solutions of the linear
systems. Describe your solutions in terms of intersecting
planes. You need not sketch these planes.

14.

∣∣∣∣∣∣
x + 4y + z = 0

4x + 13y + 7z = 0
7x + 22y + 13z = 1

∣∣∣∣∣∣ 15.

∣∣∣∣∣∣
x + y − z = 0

4x − y + 5z = 0
6x + y + 4z = 0

∣∣∣∣∣∣
16.

∣∣∣∣∣∣
x + 4y + z = 0

4x + 13y + 7z = 0
7x + 22y + 13z = 0

∣∣∣∣∣∣

17. Find all solutions of the linear system∣∣∣∣ x + 2y = a
3x + 5y = b

∣∣∣∣ ,
where a and b are arbitrary constants.

18. Find all solutions of the linear system∣∣∣∣∣∣
x + 2y + 3z = a
x + 3y + 8z = b
x + 2y + 2z = c

∣∣∣∣∣∣ ,
where a, b, and c are arbitrary constants.

19. Consider the linear system∣∣∣∣∣∣
x + y − z = −2

3x − 5y + 13z = 18
x − 2y + 5z = k

∣∣∣∣∣∣ ,
where k is an arbitrary number.
a. For which value(s) of k does this system have one or

infinitely many solutions?
b. For each value of k you found in part a, how many

solutions does the system have?
c. Find all solutions for each value of k.

20. Consider the linear system∣∣∣∣∣∣
x + y − z = 2
x + 2y + z = 3
x + y + (k2 − 5)z = k

∣∣∣∣∣∣ ,
where k is an arbitrary constant. For which value(s)
of k does this system have a unique solution? For
which value(s) of k does the system have infinitely
many solutions? For which value(s) of k is the system
inconsistent?

21. The sums of any two of three real numbers are 24, 28,
and 30. Find these three numbers.

22. Emile and Gertrude are brother and sister. Emile has
twice as many sisters as brothers, and Gertrude has just
as many brothers as sisters. How many children are
there in this family?



6 CHAPTER 1 Linear Equations

23. Consider a two-commodity market. When the unit
prices of the products are P1 and P2, the quantities de-
manded, D1 and D2, and the quantities supplied, S1 and
S2, are given by

D1 = 70 − 2P1 + P2,

D2 = 105 + P1 − P2,

S1 = −14 + 3P1,

S2 = −7 + 2P2.

a. What is the relationship between the two commodi-
ties? Do they compete, as do Volvos and BMWs, or
do they complement one another, as do shirts and
ties?

b. Find the equilibrium prices (i.e., the prices for which
supply equals demand), for both products.

24. The Russian-born U.S. economist and Nobel laureate
Wassily Leontief (1906–1999) was interested in the fol-
lowing question: What output should each of the indus-
tries in an economy produce to satisfy the total demand
for all products? Here, we consider a very simple exam-
ple of input–output analysis, an economy with only two
industries, A and B. Assume that the consumer demand
for their products is, respectively, 1,000 and 780, in mil-
lions of dollars per year.

Industry A Industry B

Consumer

1,000 780

What outputs a and b (in millions of dollars per
year) should the two industries generate to satisfy the
demand? You may be tempted to say 1,000 and 780,
respectively, but things are not quite as simple as that.
We have to take into account the interindustry demand
as well. Let us say that industry A produces electricity.
Of course, producing almost any product will require
electric power. Suppose that industry B needs 10c/ worth
of electricity for each $1 of output B produces and that
industry A needs 20c/ worth of B’s products for each $1
of output A produces. Find the outputs a and b needed
to satisfy both consumer and interindustry demand.

Industry A
(output a)

Consumer

1,000 780

Industry B
(output b)

0.2a

0.1b

25. Find the outputs a and b needed to satisfy the consumer
and interindustry demands given in the following figure.
See Exercise 24:

Industry A

Consumer

310 100

Industry B

0.5a

0.3b

26. Consider the differential equation

d2x

dt2 − dx

dt
− x = cos(t).

This equation could describe a forced damped oscilla-
tor, as we will see in Chapter 9. We are told that the
differential equation has a solution of the form

x(t) = a sin(t) + b cos(t).

Find a and b, and graph the solution.

27. Find all solutions of the system∣∣∣∣ 7x − y = λx
−6x + 8y = λy

∣∣∣∣ , for

a. λ = 5 b. λ = 10, and c. λ = 15.

28. On a sunny summer day, you are taking the scenic
boat ride from Stein am Rhein, Switzerland, to
Schaffhausen, down the Rhein River. This nonstop trip
takes 40 minutes, but the return trip to Stein, upstream,
will take a full hour. Back in Stein, you decide to stay
on the boat and continue on to Constance, Germany,
now traveling on the still waters of Lake Constance.
How long will this nonstop trip from Stein to Constance
take? You may assume that the boat is traveling at a
constant speed relative to the water throughout and that
the Rhein River flows at a constant speed between Stein
and Schaffhausen. The traveling distance from Stein to
Schaffhausen is the same as from Stein to Constance.

29. On your next trip to Switzerland, you should take the
scenic boat ride from Rheinfall to Rheinau and back.
The trip downstream from Rheinfall to Rheinau takes
20 minutes, and the return trip takes 40 minutes; the
distance between Rheinfall and Rheinau along the river
is 8 kilometers. How fast does the boat travel (relative
to the water), and how fast does the river Rhein flow
in this area? You may assume both speeds to be con-
stant throughout the journey.

30. In a grid of wires, the temperature at exterior mesh
points is maintained at constant values (in ◦C), as shown
in the accompanying figure. When the grid is in thermal
equilibrium, the temperature T at each interior mesh
point is the average of the temperatures at the four
adjacent points. For example,

T2 = T3 + T1 + 200 + 0

4
.
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Find the temperatures T1, T2, and T3 when the grid is
in thermal equilibrium.

0°

0° 400°

200°

200°

0°

0°

T1

T3T2

31. Find the polynomial of degree 2 [a polynomial of the
form f (t) = a + bt + ct2] whose graph goes through
the points (1,−1), (2, 3), and (3, 13). Sketch the graph
of this polynomial.

32. Find a polynomial of degree ≤ 2 [of the form f (t) =
a + bt + ct2] whose graph goes through the points
(1, p), (2, q), (3, r), where p, q , r are arbitrary con-
stants. Does such a polynomial exist for all values of
p, q , r?

33. Find all the polynomials f (t) of degree ≤ 2 [of the form
f (t) = a + bt + ct2] whose graphs run through the
points (1, 3) and (2, 6), such that f ′(1) = 1 [where
f ′(t) denotes the derivative].

34. Find all the polynomials f (t) of degree ≤ 2 [of the form
f (t) = a + bt + ct2] whose graphs run through the
points (1, 1) and (2, 0), such that

∫ 2
1 f (t) dt = −1.

35. Find all the polynomials f (t) of degree ≤ 2 [of the form
f (t) = a + bt + ct2] whose graphs run through the
points (1, 1) and (3, 3), such that f ′(2) = 1.

36. Find all the polynomials f (t) of degree ≤ 2 [of the form
f (t) = a + bt + ct2] whose graphs run through the
points (1, 1) and (3, 3), such that f ′(2) = 3.

37. Find the function f (t) of the form f (t) = ae3t + be2t

such that f (0) = 1 and f ′(0) = 4.

38. Find the function f (t) of the form f (t) = a cos(2t) +
b sin(2t) such that f ′′(t)+2 f ′(t)+3 f (t) = 17 cos(2t).
(This is the kind of differential equation you might have
to solve when dealing with forced damped oscillators,
in physics or engineering.)

39. Find the circle that runs through the points (5, 5), (4, 6),
and (6, 2). Write your equation in the form a+bx+cy+
x2 + y2 = 0. Find the center and radius of this circle.

40. Find the ellipse centered at the origin that runs through
the points (1, 2), (2, 2), and (3, 1). Write your equation
in the form ax2 + bxy + cy2 = 1.

41. Find all points (a, b, c) in space for which the system∣∣∣∣∣∣
x + 2y + 3z = a

4x + 5y + 6z = b
7x + 8y + 9z = c

∣∣∣∣∣∣
has at least one solution.

42. Linear systems are particularly easy to solve when they
are in triangular form (i.e., all entries above or below
the diagonal are zero).
a. Solve the lower triangular system∣∣∣∣∣∣∣

x1 = −3
−3x1 + x2 = 14

x1 + 2x2 + x3 = 9
−x1 + 8x2 − 5x3 + x4 = 33

∣∣∣∣∣∣∣
by forward substitution, finding x1 first, then x2,
then x3, and finally x4.

b. Solve the upper triangular system∣∣∣∣∣∣∣
x1 + 2x2 − x3 + 4x4 = −3

x2 + 3x3 + 7x4 = 5
x3 + 2x4 = 2

x4 = 0

∣∣∣∣∣∣∣ .
43. Consider the linear system∣∣∣∣∣∣

x + y = 1

x + t

2
y = t

∣∣∣∣∣∣ ,
where t is a nonzero constant.
a. Determine the x- and y-intercepts of the lines

x +y = 1 and x +(t/2)y = t ; sketch these lines. For
which values of the constant t do these lines inter-
sect? For these values of t , the point of intersection
(x, y) depends on the choice of the constant t ; that
is, we can consider x and y as functions of t . Draw
rough sketches of these functions.

x

t

1

1 2

y

t

1

1 2
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Explain briefly how you found these graphs.
Argue geometrically, without solving the system al-
gebraically.

b. Now solve the system algebraically. Verify that the
graphs you sketched in part (a) are compatible with
your algebraic solution.

44. Find a system of linear equations with three unknowns
whose solutions are the points on the line through
(1, 1, 1) and (3, 5, 0).

45. Find a system of linear equations with three unknowns
x , y, z whose solutions are

x = 6 + 5t, y = 4 + 3t, and z = 2 + t,

where t is an arbitrary constant.

46. Boris and Marina are shopping for chocolate bars. Boris
observes, “If I add half my money to yours, it will
be enough to buy two chocolate bars.” Marina naively
asks, “If I add half my money to yours, how many
can we buy?” Boris replies, “One chocolate bar.” How
much money did Boris have? (From Yuri Chernyak and
Robert Rose, The Chicken from Minsk, Basic Books,
1995.)

47. Here is another method to solve a system of linear equa-
tions: Solve one of the equations for one of the vari-
ables, and substitute the result into the other equations.
Repeat this process until you run out of variables or
equations. Consider the example discussed on page 2:∣∣∣∣∣∣

x + 2y + 3z = 39
x + 3y + 2z = 34

3x + 2y + z = 26

∣∣∣∣∣∣ .
We can solve the first equation for x :

x = 39 − 2y − 3z.

Then we substitute this equation into the other equa-
tions: ∣∣∣∣ (39 − 2y − 3z) + 3y + 2z = 34

3(39 − 2y − 3z) + 2y + z = 26

∣∣∣∣ .

We can simplify:∣∣∣∣ y − z = −5
−4y − 8z = −91

∣∣∣∣ .
Now, y = z − 5, so that −4(z − 5) − 8z = −91, or

−12z = −111.

We find that z = 111

12
= 9.25. Then

y = z − 5 = 4.25,

and

x = 39 − 2y − 3z = 2.75.

Explain why this method is essentially the same as the
method discussed in this section; only the bookkeeping
is different.

48. A hermit eats only two kinds of food: brown rice and
yogurt. The rice contains 3 grams of protein and 30
grams of carbohydrates per serving, while the yogurt
contains 12 grams of protein and 20 grams of carbohy-
drates.
a. If the hermit wants to take in 60 grams of protein

and 300 grams of carbohydrates per day, how many
servings of each item should he consume?

b. If the hermit wants to take in P grams of protein
and C grams of carbohydrates per day, how many
servings of each item should he consume?

49. I have 32 bills in my wallet, in the denominations of
US$ 1, 5, and 10, worth $100 in total. How many do I
have of each denomination?

50. Some parking meters in Milan, Italy, accept coins in the
denominations of 20c/, 50c/, and C 2. As an incentive
program, the city administrators offer a big reward (a
brand new Ferrari Testarossa) to any meter maid who
brings back exactly 1,000 coins worth exactly C 1,000
from the daily rounds. What are the odds of this reward
being claimed anytime soon?

1.2 Matrices, Vectors, and Gauss–Jordan Elimination

When mathematicians in ancient China had to solve a system of simultaneous linear
equations such as4

∣∣∣∣∣∣
3x + 21y − 3z = 0

−6x − 2y − z = 62
2x − 3y + 8z = 32

∣∣∣∣∣∣ ,

4This example is taken from Chapter 8 of the Nine Chapters on the Mathematical Art; see page 1. Our
source is George Gheverghese Joseph, The Crest of the Peacock, Non-European Roots of Mathematics,
3rd ed., Princeton University Press, 2010.
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they took all the numbers involved in this system and arranged them in a rectangular
pattern (Fang Cheng in Chinese), as follows:5

3 21 −3 0

−6 −2 −1 62

2 −3 8 32

All the information about this system is conveniently stored in this array of
numbers.

The entries were represented by bamboo rods, as shown below; red and black
rods stand for positive and negative numbers, respectively. (Can you detect how this
number system works?) The equations were then solved in a hands-on fashion, by
manipulating the rods. We leave it to the reader to find the solution.

Today, such a rectangular array of numbers,⎡
⎣ 3 21 −3 0

−6 −2 −1 62
2 −3 8 32

⎤
⎦ ,

is called a matrix.6 Since this particular matrix has three rows and four columns, it
is called a 3 × 4 matrix (“three by four”).

The four columns of the matrix

�� �� �� �	

The three rows of the matrix 


���

⎡
⎣ 3 21 −3 0

−6 −2 −1 62
2 −3 8 32

⎤
⎦

Note that the first column of this matrix corresponds to the first variable of the
system, while the first row corresponds to the first equation.

It is customary to label the entries of a 3 × 4 matrix A with double subscripts
as follows:

A =
⎡
⎣a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

⎤
⎦ .

The first subscript refers to the row, and the second to the column: The entry ai j is
located in the i th row and the j th column.

Two matrices A and B are equal if they are the same size and if corresponding
entries are equal: ai j = bi j .

If the number of rows of a matrix A equals the number of columns (A is n ×n),
then A is called a square matrix, and the entries a11, a22, . . . , ann form the (main)
diagonal of A. A square matrix A is called diagonal if all its entries above and below

5Actually, the roles of rows and columns were reversed in the Chinese representation.
6It appears that the term matrix was first used in this sense by the English mathematician
J. J. Sylvester, in 1850.
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the main diagonal are zero; that is, ai j = 0 whenever i �= j . A square matrix A is
called upper triangular if all its entries below the main diagonal are zero; that is,
ai j = 0 whenever i exceeds j . Lower triangular matrices are defined analogously.
A matrix whose entries are all zero is called a zero matrix and is denoted by 0
(regardless of its size). Consider the matrices

A =
[

1 2 3
4 5 6

]
, B =

[
1 2
3 4

]
, C =

⎡
⎣2 0 0

0 3 0
0 0 0

⎤
⎦ ,

D =
[

2 3
0 4

]
, E =

⎡
⎣5 0 0

4 0 0
3 2 1

⎤
⎦ .

The matrices B, C , D, and E are square, C is diagonal, C and D are upper triangu-
lar, and C and E are lower triangular.

Matrices with only one column or row are of particular interest.

Vectors and vector spaces
A matrix with only one column is called a column vector, or simply a vector.
The entries of a vector are called its components. The set of all column vectors
with n components is denoted by Rn; we will refer to Rn as a vector space.

A matrix with only one row is called a row vector.
In this text, the term vector refers to column vectors, unless otherwise stated.

The reason for our preference for column vectors will become apparent in the
next section.

Examples of vectors are ⎡
⎢⎢⎣

1
2
9
1

⎤
⎥⎥⎦ ,

a (column) vector in R4, and [
1 5 5 3 7

]
,

a row vector with five components. Note that the m columns of an n × m matrix are
vectors in Rn .

In previous courses in mathematics or physics, you may have thought about
vectors from a more geometric point of view. See the Appendix for a summary of
basic facts on vectors. Let’s establish some conventions regarding the geometric
representation of vectors.

(x, y)

x
yv� =

0

Figure 1

Standard representation of vectors
The standard representation of a vector

�v =
[

x
y

]
in the Cartesian coordinate plane is as an arrow (a directed line segment) from
the origin to the point (x, y), as shown in Figure 1.

The standard representation of a vector in R3 is defined analogously.
In this text, we will consider the standard representation of vectors, unless

stated otherwise.
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Occasionally, it is helpful to translate (or shift) a vector in the plane (preserving
its direction and length), so that it will connect some point (a, b) to the point (a +
x, b + y), as shown in Figure 2.

(x, y)

(a, b)

(a + x, b + y)

x

y

v�

translated v�

Figure 2

When considering an infinite set of vectors, the arrow representation becomes

impractical. In this case, it is sensible to represent the vector �v =
[

x
y

]
simply by

the point (x, y), the head of the standard arrow representation of �v.

For example, the set of all vectors �v =
[

x
x + 1

]
(where x is arbitrary) can be

represented as the line y = x + 1. For a few special values of x we may still use the
arrow representation, as illustrated in Figure 3.

y = x + 1

1
2v� =         , for x = 1

−2
−1v� =         , for x = −2

Figure 3

In this course, it will often be helpful to think about a vector numerically, as a
list of numbers, which we will usually write in a column.

In our digital age, information is often transmitted and stored as a string of
numbers (i.e., as a vector). A 10-second clip of music on a CD is stored as a vector
with 440,000 components. A weather photograph taken by a satellite is transmitted
to Earth as a string of numbers.

Consider the system ∣∣∣∣∣∣
2x + 8y + 4z = 2
2x + 5y + z = 5
4x + 10y − z = 1

∣∣∣∣∣∣ .
Sometimes we are interested in the matrix⎡

⎣2 8 4
2 5 1
4 10 −1

⎤
⎦ ,

which contains the coefficients of the variables in the system, called its coefficient
matrix.

By contrast, the matrix ⎡
⎣2 8 4 2

2 5 1 5
4 10 −1 1

⎤
⎦ ,

which displays all the numerical information contained in the system, is called its
augmented matrix. For the sake of clarity, we will often indicate the position of the
equal signs in the equations by a dotted line:
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⎡
⎣2 8 4 2

2 5 1 5
4 10 −1 1

⎤
⎦ .

To solve the system, it is more efficient to perform the elimination on the
augmented matrix rather than on the equations themselves. Conceptually, the two
approaches are equivalent, but working with the augmented matrix requires less
writing yet is easier to read, with some practice. Instead of dividing an equation
by a scalar,7 you can divide a row by a scalar. Instead of adding a multiple of an
equation to another equation, you can add a multiple of a row to another row.

As you perform elimination on the augmented matrix, you should always re-
member the linear system lurking behind the matrix. To illustrate this method, we
perform the elimination both on the augmented matrix and on the linear system it
represents:

⎡
⎣2 8 4 2

2 5 1 5
4 10 −1 1

⎤
⎦ ÷2

∣∣∣∣∣∣
2x + 8y + 4z = 2
2x + 5y + z = 5
4x + 10y − z = 1

∣∣∣∣∣∣
÷2

↓ ↓⎡
⎣1 4 2 1

2 5 1 5
4 10 −1 1

⎤
⎦ −2 (I)

−4 (I)

∣∣∣∣∣∣
x + 4y + 2z = 1

2x + 5y + z = 5
4x + 10y − z = 1

∣∣∣∣∣∣ −2 (I)
−4 (I)

↓ ↓⎡
⎣1 4 2 1

0 −3 −3 3
0 −6 −9 −3

⎤
⎦ ÷(−3)

∣∣∣∣∣∣
x + 4y + 2z = 1

−3y − 3z = 3
−6y − 9z = −3

∣∣∣∣∣∣ ÷(−3)

↓ ↓⎡
⎣1 4 2 1

0 1 1 −1
0 −6 −9 −3

⎤
⎦ −4 (II)

+6 (II)

∣∣∣∣∣∣
x + 4y + 2z = 1

y + z = −1
−6y − 9z = −3

∣∣∣∣∣∣
−4 (II)

+6 (II)
↓ ↓⎡

⎣1 0 −2 5
0 1 1 −1
0 0 −3 −9

⎤
⎦

÷(−3)

∣∣∣∣∣∣
x − 2z = 5

y + z = −1
−3z = −9

∣∣∣∣∣∣ ÷(−3)

↓ ↓⎡
⎣1 0 −2 5

0 1 1 −1
0 0 1 3

⎤
⎦ +2 (III)

− (III)

∣∣∣∣∣∣
x − 2z = 5

y + z = −1
z = 3

∣∣∣∣∣∣
+2 (III)
− (III)

↓ ↓⎡
⎣1 0 0 11

0 1 0 −4
0 0 1 3

⎤
⎦

∣∣∣∣∣∣
x = 11

y = −4
z = 3

∣∣∣∣∣∣ .

7In vector and matrix algebra, the term scalar is synonymous with (real) number.
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The solution is often represented as a vector:⎡
⎣x

y
z

⎤
⎦ =
⎡
⎣ 11

−4
3

⎤
⎦ .

Thus far we have been focusing on systems of three linear equations with three
unknowns. Next we will develop a technique for solving systems of linear equations
of arbitrary size.

Here is an example of a system of three linear equations with five unknowns:∣∣∣∣∣∣
x1 − x2 + 4x5 = 2

x3 − x5 = 2
x4 − x5 = 3

∣∣∣∣∣∣ .
We can proceed as in the example on page 4. We solve each equation for the leading
variable: ∣∣∣∣∣∣

x1 = 2 + x2 − 4x5
x3 = 2 + x5
x4 = 3 + x5

∣∣∣∣∣∣ .
Now we can freely choose values for the nonleading variables, x2 = t and x5 = r ,
for example. The leading variables are then determined by these choices:

x1 = 2 + t − 4r, x3 = 2 + r, x4 = 3 + r.

This system has infinitely many solutions; we can write the solutions in vector
form as ⎡

⎢⎢⎢⎣
x1
x2
x3
x4
x5

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

2 +t −4r
t

2 +r
3 +r

r

⎤
⎥⎥⎥⎦ .

Again, you can check this answer by substituting the solutions into the original
equations, for example, x3 − x5 = (2 + r) − r = 2.

What makes this system so easy to solve? The following three properties are
responsible for the simplicity of the solution, with the second property playing a
key role:

• P1: The leading coefficient in each equation is 1. (The leading coefficient is
the coefficient of the leading variable.)

• P2: The leading variable in each equation does not appear in any of the
other equations. (For example, the leading variable x3 of the second equation
appears neither in the first nor in the third equation.)

• P3: The leading variables appear in the “natural order,” with increasing in-
dices as we go down the system (x1, x3, x4 as opposed to x3, x1, x4, for ex-
ample).

Whenever we encounter a linear system with these three properties, we can solve
for the leading variables and then choose arbitrary values for the other, nonleading
variables, as we did above and on page 4.

Now we are ready to tackle the case of an arbitrary system of linear equations.
We will illustrate our approach by means of an example:
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∣∣∣∣∣∣∣
2x1 + 4x2 − 2x3 + 2x4 + 4x5 = 2

x1 + 2x2 − x3 + 2x4 = 4
3x1 + 6x2 − 2x3 + x4 + 9x5 = 1
5x1 + 10x2 − 4x3 + 5x4 + 9x5 = 9

∣∣∣∣∣∣∣ .
We wish to reduce this system to a system satisfying the three properties (P1, P2,
and P3); this reduced system will then be easy to solve.

We will proceed from equation to equation, from top to bottom. The leading
variable in the first equation is x1, with leading coefficient 2. To satisfy property P1,
we will divide this equation by 2. To satisfy property P2 for the variable x1, we will
then subtract suitable multiples of the first equation from the other three equations
to eliminate the variable x1 from those equations. We will perform these operations
both on the system and on the augmented matrix.∣∣∣∣∣∣∣

2x1 + 4x2 − 2x3 + 2x4 + 4x5 = 2
x1 + 2x2 − x3 + 2x4 = 4

3x1 + 6x2 − 2x3 + x4 + 9x5 = 1
5x1 + 10x2 − 4x3 + 5x4 + 9x5 = 9

∣∣∣∣∣∣∣
÷2

⎡
⎢⎣

2 4 −2 2 4 2
1 2 −1 2 0 4
3 6 −2 1 9 1
5 10 −4 5 9 9

⎤
⎥⎦

÷2

↓ ↓∣∣∣∣∣∣∣
x1 + 2x2 − x3 + x4 + 2x5 = 1
x1 + 2x2 − x3 + 2x4 = 4

3x1 + 6x2 − 2x3 + x4 + 9x5 = 1
5x1 + 10x2 − 4x3 + 5x4 + 9x5 = 9

∣∣∣∣∣∣∣
− (I)

−3 (I)
−5 (I)

⎡
⎢⎣

1 2 −1 1 2 1
1 2 −1 2 0 4
3 6 −2 1 9 1
5 10 −4 5 9 9

⎤
⎥⎦ − (I)

−3 (I)
−5 (I)

↓ ↓∣∣∣∣∣∣∣
x1 + 2x2 − x3 + x4 + 2x5 = 1

x4 − 2x5 = 3
x3 − 2x4 + 3x5 = −2
x3 − x5 = 4

∣∣∣∣∣∣∣
⎡
⎢⎣

1 2 −1 1 2 1
0 0 0 1 −2 3
0 0 1 −2 3 −2
0 0 1 0 −1 4

⎤
⎥⎦

Now on to the second equation, with leading variable x4. Since the leading coeffi-
cient is 1 already, all we need to do is eliminate x4 from the other equations. Then
we will proceed to the third equation and use the same approach.∣∣∣∣∣∣∣

x1 + 2x2 − x3 + x4 + 2x5 = 1
x4 − 2x5 = 3

x3 − 2x4 + 3x5 = −2
x3 − x5 = 4

∣∣∣∣∣∣∣
− (II)

+2 (II)

⎡
⎢⎣

1 2 −1 1 2 1
0 0 0 1 −2 3
0 0 1 −2 3 −2
0 0 1 0 −1 4

⎤
⎥⎦

− (II)

+2 (II)

↓ ↓∣∣∣∣∣∣∣
x1 + 2x2 − x3 + 4x5 = −2

x4 − 2x5 = 3
x3 − x5 = 4
x3 − x5 = 4

∣∣∣∣∣∣∣
+ (III)

− (III)

⎡
⎢⎣

1 2 −1 0 4 −2
0 0 0 1 −2 3
0 0 1 0 −1 4
0 0 1 0 −1 4

⎤
⎥⎦

+ (III)

− (III)

↓ ↓∣∣∣∣∣∣∣
x1 + 2x2 + 3x5 = 2

x4 − 2x5 = 3
x3 − x5 = 4

0 = 0

∣∣∣∣∣∣∣
⎡
⎢⎣

1 2 0 0 3 2
0 0 0 1 −2 3
0 0 1 0 −1 4
0 0 0 0 0 0

⎤
⎥⎦

There are no variables left in the fourth equation, and we are almost done. Our
system now satisfies properties P1 and P2, but not P3: The leading variables x3 and
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x4 appear in reversed order. This is not a big problem, though: We can rearrange the
order of the equations, swapping equations (II) and (III).∣∣∣∣∣∣∣

x1 + 2x2 + 3x5 = 2
x3 − x5 = 4

x4 − 2x5 = 3
0 = 0

∣∣∣∣∣∣∣
⎡
⎢⎣

1 2 0 0 3 2
0 0 1 0 −1 4
0 0 0 1 −2 3
0 0 0 0 0 0

⎤
⎥⎦

Our system now satisfies properties P1, P2, and P3. We can solve each equation for
its leading variable: ∣∣∣∣∣∣

x1 = 2 − 2x2 − 3x5
x3 = 4 + x5
x4 = 3 + 2x5

∣∣∣∣∣∣ .
If we let x2 = t and x5 = r , then the infinitely many solutions are of the form⎡

⎢⎢⎢⎣
x1
x2
x3
x4
x5

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

2 −2t −3r
t

4 + r
3 +2r

r

⎤
⎥⎥⎥⎥⎦ .

Let us summarize.

Solving a system of linear equations
We proceed from equation to equation, from top to bottom.

Suppose we get to the i th equation, with leading variable x j and leading
(nonzero) coefficient c, so that the equation will be of the form cx j + . . . = b.

Divide the i th equation by c to bring it into the form x j + . . . = b/c.
Eliminate x j from all the other equations, above and below the i th equation,

by subtracting suitable multiples of the i th equation.
Now proceed to the next equation.
If an equation zero = nonzero emerges in this process, then the system is

inconsistent, and there are no solutions.
If you get through the system without encountering an inconsistency, then

rearrange the equations so that the leading variables appear in the “natural order”
(see property P3; this can be accomplished by a sequence of swaps of equations).

Solve each equation for its leading variable. You may freely choose values
for the nonleading variables; the leading variables are then determined by these
choices.

Take another look at the preceding example to see how this algorithm works in
practice.

This process can be performed on the augmented matrix. As you do so, just
imagine the linear system lurking behind the matrix.

In the preceding example, we reduced the augmented matrix

M =

⎡
⎢⎣

2 4 −2 2 4 2
1 2 −1 2 0 4
3 6 −2 1 9 1
5 10 −4 5 9 9

⎤
⎥⎦ to E =

⎡
⎢⎣

1 2 0 0 3 2
0 0 1 0 −1 4
0 0 0 1 −2 3
0 0 0 0 0 0

⎤
⎥⎦ .

We say that the final matrix E is the reduced row-echelon form of M , written E =
rref(M).
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You can use computational software (Mathematica, MATLAB, Maple, etc.) or
the computational search engine Wolfram Alpha to find the reduced row-echelon
form of a given matrix.

Reduced row-echelon form
A matrix is said to be in reduced row-echelon form (rref) if it satisfies all of the
following conditions:

a. If a row has nonzero entries, then the first nonzero entry is a 1, called the
leading 1 (or pivot) in this row.

b. If a column contains a leading 1, then all the other entries in that column
are 0.

c. If a row contains a leading 1, then each row above it contains a leading 1
further to the left.

Condition c implies that rows of 0’s, if any, appear at the bottom of the matrix.

Conditions a, b, and c defining the reduced row-echelon form correspond to the
conditions P1, P2, and P3 that we imposed on the system.

Note that the leading 1’s in the matrix

E =

⎡
⎢⎢⎢⎢⎢⎣

1� 2 0 0 3 2

0 0 1� 0 −1 4

0 0 0 1� −2 3

0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎦

correspond to the leading variables in the reduced system,∣∣∣∣∣∣∣∣∣
x1� + 2x2 + 3x5 = 2

x3� − x5 = 4

x4� − 2x5 = 3

∣∣∣∣∣∣∣∣∣
.

Here we draw the staircase formed by the leading variables. This is where the name
echelon form comes from. According to Webster, an echelon is a formation “like a
series of steps.”

The operations we perform when bringing a matrix into reduced row-echelon
form are referred to as elementary row operations. Let’s review the three types of
such operations.

Types of elementary row operations
• Divide a row by a nonzero scalar.
• Subtract a multiple of a row from another row.
• Swap two rows.

Consider the following system:∣∣∣∣∣∣∣
x1 − 3x2 − 5x4 = −7

3x1 − 12x2 − 2x3 − 27x4 = −33
−2x1 + 10x2 + 2x3 + 24x4 = 29
−x1 + 6x2 + x3 + 14x4 = 17

∣∣∣∣∣∣∣ .
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The augmented matrix is⎡
⎢⎢⎣

1 −3 0 −5 −7
3 −12 −2 −27 −33

−2 10 2 24 29
−1 6 1 14 17

⎤
⎥⎥⎦ .

The reduced row-echelon form for this matrix is⎡
⎢⎢⎣

1 0 0 1 0
0 1 0 2 0
0 0 1 3 0
0 0 0 0 1

⎤
⎥⎥⎦ .

(We leave it to you to perform the elimination.)
Since the last row of the echelon form represents the equation 0 = 1, the system

is inconsistent.
This method of solving linear systems is sometimes referred to as Gauss–

Jordan elimination, after the German mathematician Carl Friedrich Gauss (1777–
1855; see Figure 4), perhaps the greatest mathematician of modern times, and the
German engineer Wilhelm Jordan (1844–1899). Gauss himself called the method
eliminatio vulgaris. Recall that the Chinese were using this method 2,000 years ago.

Figure 4 Carl Friedrich Gauss appears on an old German 10-mark note. (In fact, this is the
mirror image of a well-known portrait of Gauss.8)

How Gauss developed this method is noteworthy. On January 1, 1801, the
Sicilian astronomer Giuseppe Piazzi (1746–1826) discovered a planet, which he
named Ceres, in honor of the patron goddess of Sicily. Today, Ceres is called a
dwarf planet, because it is only about 1,000 kilometers in diameter. Piazzi was able
to observe Ceres for 40 nights, but then he lost track of it. Gauss, however, at the
age of 24, succeeded in calculating the orbit of Ceres, even though the task seemed
hopeless on the basis of a few observations. His computations were so accurate
that the German astronomer W. Olbers (1758–1840) located the planet on Decem-
ber 31, 1801. In the course of his computations, Gauss had to solve systems of 17
linear equations.9 In dealing with this problem, Gauss also used the method of least

8Reproduced by permission of the German Bundesbank.
9For the mathematical details, see D. Teets and K. Whitehead, “The Discovery of Ceres: How Gauss
Became Famous,” Mathematics Magazine, 72, 2 (April 1999): 83–93.
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squares, which he had developed around 1794. See Section 5.4. Since Gauss at first
refused to reveal the methods that led to this amazing accomplishment, some even
accused him of sorcery. Gauss later described his methods of orbit computation in
his book Theoria Motus Corporum Coelestium (1809).

The method of solving a linear system by Gauss–Jordan elimination is called
an algorithm.10An algorithm can be defined as “a finite procedure, written in a fixed
symbolic vocabulary, governed by precise instructions, moving in discrete Steps, 1,
2, 3, . . . , whose execution requires no insight, cleverness, intuition, intelligence, or
perspicuity, and that sooner or later comes to an end” (David Berlinski, The Advent
of the Algorithm: The Idea That Rules the World, Harcourt Inc., 2000).

Gauss–Jordan elimination is well suited for solving linear systems on a com-
puter, at least in principle. In practice, however, some tricky problems associated
with roundoff errors can occur.

Numerical analysts tell us that we can reduce the proliferation of roundoff
errors by modifying Gauss–Jordan elimination, employing more sophisticated re-
duction techniques.

In modifying Gauss–Jordan elimination, an interesting question arises: If we
transform a matrix A into a matrix B by a sequence of elementary row operations
and if B is in reduced row-echelon form, is it necessarily true that B = rref(A)?
Fortunately (and perhaps surprisingly), this is indeed the case.

In this text, we will not utilize this fact, so there is no need to present the
somewhat technical proof. If you feel ambitious, try to work out the proof yourself
after studying Chapter 3. See Exercises 3.3.86 through 3.3.89.

10 The word algorithm is derived from the name of the mathematician al-Khowarizmi, who introduced

the term algebra into mathematics (see page 1).

EXERCISES 1.2
GOAL Use Gauss–Jordan elimination to solve linear
systems. Do simple problems using paper and pencil, and
use technology to solve more complicated problems.

In Exercises 1 through 12, find all solutions of the equa-
tions with paper and pencil using Gauss–Jordan elimina-
tion. Show all your work.

1.

∣∣∣∣ x + y − 2z = 5
2x + 3y + 4z = 2

∣∣∣∣ 2.

∣∣∣∣3x + 4y − z = 8
6x + 8y − 2z = 3

∣∣∣∣
3. x + 2y + 3z = 4 4.

∣∣∣∣∣∣
x + y = 1

2x − y = 5
3x + 4y = 2

∣∣∣∣∣∣
5.

∣∣∣∣∣∣∣
x3 + x4 = 0

x2 + x3 = 0
x1 + x2 = 0
x1 + x4 = 0

∣∣∣∣∣∣∣
6.

∣∣∣∣∣∣
x1 − 7x2 + x5 = 3

x3 − 2x5 = 2
x4 + x5 = 1

∣∣∣∣∣∣

7.

∣∣∣∣∣∣∣
x1 + 2x2 2x4 + 3x5 = 0

x3 + 3x4 + 2x5 = 0
x3 + 4x4 − x5 = 0

x5 = 0

∣∣∣∣∣∣∣
8. Solve this system for the variables x1, x2, x3, x4, and

x5. ∣∣∣∣x2 + 2x4 + 3x5 = 0
4x4 + 8x5 = 0

∣∣∣∣
9.

∣∣∣∣∣∣
x4 + 2x5 − x6 = 2

x1 + 2x2 + x5 − x6 = 0
x1 + 2x2 + 2x3 − x5 + x6 = 2

∣∣∣∣∣∣
10.

∣∣∣∣∣∣∣
4x1 + 3x2 + 2x3 − x4 = 4
5x1 + 4x2 + 3x3 − x4 = 4

−2x1 − 2x2 − x3 + 2x4 = −3
11x1 + 6x2 + 4x3 + x4 = 11

∣∣∣∣∣∣∣

11.

∣∣∣∣∣∣∣
x1 + 2x3 + 4x4 = −8

x2 − 3x3 − x4 = 6
3x1 + 4x2 − 6x3 + 8x4 = 0

− x2 + 3x3 + 4x4 = −12

∣∣∣∣∣∣∣
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12.

∣∣∣∣∣∣∣∣∣

2x1 − 3x3 + 7x5 + 7x6 = 0
−2x1 + x2 + 6x3 − 6x5 − 12x6 = 0

x2 − 3x3 + x5 + 5x6 = 0
− 2x2 + x4 + x5 + x6 = 0

2x1 + x2 − 3x3 + 8x5 + 7x6 = 0

∣∣∣∣∣∣∣∣∣
Solve the linear systems in Exercises 13 through 17. You
may use technology.

13.

∣∣∣∣∣∣
3x + 11y + 19z = −2
7x + 23y + 39z = 10

−4x − 3y − 2z = 6

∣∣∣∣∣∣
14.

∣∣∣∣∣∣
3x + 6y + 14z = 22
7x + 14y + 30z = 46
4x + 8y + 7z = 6

∣∣∣∣∣∣
15.

∣∣∣∣∣∣
3x + 5y + 3z = 25
7x + 9y + 19z = 65

−4x + 5y + 11z = 5

∣∣∣∣∣∣
16.

∣∣∣∣∣∣
3x1 + 6x2 + 9x3 + 5x4 + 25x5 = 53
7x1 + 14x2 + 21x3 + 9x4 + 53x5 = 105

−4x1 − 8x2 − 12x3 + 5x4 − 10x5 = 11

∣∣∣∣∣∣

17.

∣∣∣∣∣∣∣∣∣

2x1 + 4x2 + 3x3 + 5x4 + 6x5 = 37
4x1 + 8x2 + 7x3 + 5x4 + 2x5 = 74

−2x1 − 4x2 + 3x3 + 4x4 − 5x5 = 20
x1 + 2x2 + 2x3 − x4 + 2x5 = 26

5x1 − 10x2 + 4x3 + 6x4 + 4x5 = 24

∣∣∣∣∣∣∣∣∣
18. Determine which of the matrices below are in reduced

row-echelon form:

a.

⎡
⎢⎢⎣

1 2 0 2 0
0 0 1 3 0
0 0 1 4 0
0 0 0 0 1

⎤
⎥⎥⎦ b.

⎡
⎣0 1 2 0 3

0 0 0 1 4
0 0 0 0 0

⎤
⎦

c.

⎡
⎣1 2 0 3

0 0 0 0
0 0 1 2

⎤
⎦ d.

[
0 1 2 3 4

]
19. Find all 4 × 1 matrices in reduced row-echelon form.

20. For which values of a, b, c, d , and e is the following
matrix in reduced row-echelon form?

A =
⎡
⎣ 0 a 2 1 b

0 0 0 c d
0 0 e 0 0

⎤
⎦

21. For which values of a, b, c, d , and e is the following
matrix in reduced row-echelon form?

A =
⎡
⎣ 1 a b 3 0 −2

0 0 c 1 d 3
0 e 0 0 1 1

⎤
⎦

22. We say that two n ×m matrices in reduced row-echelon
form are of the same type if they contain the same num-
ber of leading 1’s in the same positions. For example,

[
1� 2 0
0 0 1�

]
and

[
1� 3 0
0 0 1�

]
are of the same type. How many types of 2×2 matrices
in reduced row-echelon form are there?

23. How many types of 3 × 2 matrices in reduced row-
echelon form are there? See Exercise 22.

24. How many types of 2 × 3 matrices in reduced row-
echelon form are there? See Exercise 22.

25. Suppose you apply Gauss–Jordan elimination to a ma-
trix. Explain how you can be sure that the resulting
matrix is in reduced row-echelon form.

26. Suppose matrix A is transformed into matrix B by
means of an elementary row operation. Is there an
elementary row operation that transforms B into A?
Explain.

27. Suppose matrix A is transformed into matrix B by a
sequence of elementary row operations. Is there a se-
quence of elementary row operations that transforms B
into A? Explain your answer. See Exercise 26.

28. Consider an n×m matrix A. Can you transform rref(A)

into A by a sequence of elementary row operations? See
Exercise 27.

29. Is there a sequence of elementary row operations that
transforms⎡

⎣1 2 3
4 5 6
7 8 9

⎤
⎦ into

⎡
⎣1 0 0

0 1 0
0 0 0

⎤
⎦?

Explain.

30. Suppose you subtract a multiple of an equation in a sys-
tem from another equation in the system. Explain why
the two systems (before and after this operation) have
the same solutions.

31. Balancing a chemical reaction. Consider the chemical
reaction

a NO2 + b H2O → c HNO2 + d HNO3,

where a, b, c, and d are unknown positive integers. The
reaction must be balanced; that is, the number of atoms
of each element must be the same before and after the
reaction. For example, because the number of oxygen
atoms must remain the same,

2a + b = 2c + 3d.

While there are many possible values for a, b, c, and d
that balance the reaction, it is customary to use the smal-
lest possible positive integers. Balance this reaction.

32. Find the polynomial of degree 3 [a polynomial of the
form f (t) = a + bt + ct2 + dt3] whose graph goes
through the points (0, 1), (1, 0), (−1, 0), and (2,−15).
Sketch the graph of this cubic.

33. Find the polynomial of degree 4 whose graph goes
through the points (1, 1), (2,−1), (3,−59), (−1, 5),
and (−2,−29). Graph this polynomial.
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34. Cubic splines. Suppose you are in charge of the design
of a roller coaster ride. This simple ride will not make
any left or right turns; that is, the track lies in a verti-
cal plane. The accompanying figure shows the ride as
viewed from the side. The points (ai , bi ) are given to
you, and your job is to connect the dots in a reasonably
smooth way. Let ai+1 > ai , for i = 0, . . . , n − 1.

(a0, b0)

(a1, b1)

(a2, b2)

(an, bn)

One method often employed in such design problems is
the technique of cubic splines. We choose fi (t), a poly-
nomial of degree ≤ 3, to define the shape of the ride
between (ai−1, bi−1) and (ai , bi ), for i = 1, . . . , n.

(ai − 1, bi − 1)

(ai + 1, bi + 1)

fi(t)

(ai, bi)
fi + 1(t)

Obviously, it is required that fi (ai ) = bi and
fi (ai−1) = bi−1, for i = 1, . . . , n. To guarantee a
smooth ride at the points (ai , bi ), we want the first
and second derivatives of fi and fi+1 to agree at these
points:

f ′
i (ai ) = f ′

i+1(ai ) and
f ′′
i (ai ) = f ′′

i+1(ai ), for i = 1, . . . , n − 1.

Explain the practical significance of these conditions.
Explain why, for the convenience of the riders, it is also
required that

f ′
1(a0) = f ′

n(an) = 0.

Show that satisfying all these conditions amounts to
solving a system of linear equations. How many vari-
ables are in this system? How many equations? (Note:
It can be shown that this system has a unique solution.)

35. Find the polynomial f (t) of degree 3 such that
f (1) = 1, f (2) = 5, f ′(1) = 2, and f ′(2) = 9, where
f ′(t) is the derivative of f (t). Graph this polynomial.

36. The dot product of two vectors

�x =

⎡
⎢⎢⎢⎣

x1

x2
...

xn

⎤
⎥⎥⎥⎦ and �y =

⎡
⎢⎢⎢⎣

y1

y2
...

yn

⎤
⎥⎥⎥⎦

in Rn is defined by

�x · �y = x1 y1 + x2 y2 + · · · + xn yn .

Note that the dot product of two vectors is a scalar.
We say that the vectors �x and �y are perpendicular if
�x · �y = 0.

Find all vectors in R3 perpendicular to⎡
⎣ 1

3
−1

⎤
⎦ .

Draw a sketch.

37. Find all vectors in R4 that are perpendicular to the three
vectors ⎡

⎢⎢⎣
1
1
1
1

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣

1
2
3
4

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣

1
9
9
7

⎤
⎥⎥⎦ .

See Exercise 36.

38. Find all solutions x1, x2, x3 of the equation

�b = x1 �v1 + x2 �v2 + x3 �v3,

where

�b =

⎡
⎢⎢⎣

−8
−1

2
15

⎤
⎥⎥⎦ , �v1 =

⎡
⎢⎢⎣

1
4
7
5

⎤
⎥⎥⎦ , �v2 =

⎡
⎢⎢⎣

2
5
8
3

⎤
⎥⎥⎦ , �v3 =

⎡
⎢⎢⎣

4
6
9
1

⎤
⎥⎥⎦ .

39. For some background on this exercise, see Exer-
cise 1.1.24.

Consider an economy with three industries, I1, I2,
I3. What outputs x1, x2, x3 should they produce to sat-
isfy both consumer demand and interindustry demand?
The demands put on the three industries are shown in
the accompanying figure.

Industry I1
(output x1)

Industry I2
(output x2)0.2x2

0.1x1

Industry I3
(output x3)

Consumer

0.2x1 0.5x2
0.4x30.3x3

320 150 90

40. If we consider more than three industries in an input–
output model, it is cumbersome to represent all the
demands in a diagram as in Exercise 39. Suppose
we have the industries I1, I2, . . . , In , with outputs
x1, x2, . . . , xn . The output vector is
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�x =

⎡
⎢⎢⎢⎣

x1

x2
...

xn

⎤
⎥⎥⎥⎦ .

The consumer demand vector is

�b =

⎡
⎢⎢⎢⎣

b1

b2
...

bn

⎤
⎥⎥⎥⎦ ,

where bi is the consumer demand on industry Ii . The
demand vector for industry I j is

�v j =

⎡
⎢⎢⎢⎣

a1 j

a2 j
...

anj

⎤
⎥⎥⎥⎦ ,

where ai j is the demand industry I j puts on industry Ii ,
for each $1 of output industry I j produces. For exam-
ple, a32 = 0.5 means that industry I2 needs 50c/ worth
of products from industry I3 for each $1 worth of goods
I2 produces. The coefficient aii need not be 0: Produc-
ing a product may require goods or services from the
same industry.
a. Find the four demand vectors for the economy in

Exercise 39.
b. What is the meaning in economic terms of x j �v j ?
c. What is the meaning in economic terms of

x1 �v1 + x2 �v2 + · · · + xn �vn + �b?
d. What is the meaning in economic terms of the equa-

tion

x1 �v1 + x2 �v2 + · · · + xn �vn + �b = �x?

41. Consider the economy of Israel in 1958.11 The three
industries considered here are

I1 : agriculture,
I2 : manufacturing,
I3 : energy.

Outputs and demands are measured in millions of
Israeli pounds, the currency of Israel at that time. We
are told that

�b =
⎡
⎣13.2

17.6
1.8

⎤
⎦ , �v1 =

⎡
⎣0.293

0.014
0.044

⎤
⎦ ,

�v2 =
⎡
⎣0

0.207
0.01

⎤
⎦ , �v3 =

⎡
⎣0

0.017
0.216

⎤
⎦ .

a. Why do the first components of �v2 and �v3 equal 0?
b. Find the outputs x1, x2, x3 required to satisfy

demand.

42. Consider some particles in the plane with position vec-
tors �r1, �r2, . . . , �rn and masses m1, m2, . . . , mn .

m1

m2

mn

r2�

r1�

rn�

The position vector of the center of mass of this system
is

�rcm = 1

M
(m1�r1 + m2�r2 + · · · + mn �rn),

where M = m1 + m2 + · · · + mn .
Consider the triangular plate shown in the accom-

panying sketch. How must a total mass of 1 kg be
distributed among the three vertices of the plate so that

the plate can be supported at the point

[
2
2

]
; that is,

�rcm =
[

2
2

]
? Assume that the mass of the plate itself is

negligible.

2
3

1
2

4
1

r�cm =
2
2

43. The momentum �P of a system of n particles in space
with masses m1, m2, . . . , mn and velocities �v1, �v2, . . . ,

�vn is defined as

�P = m1 �v1 + m2 �v2 + · · · + mn �vn .

Now consider two elementary particles with velocities

�v1 =
⎡
⎣1

1
1

⎤
⎦ and �v2 =

⎡
⎣ 4

7
10

⎤
⎦ .11 W. Leontief, Input–Output Economics, Oxford University Press,

1966.
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The particles collide. After the collision, their respec-
tive velocities are observed to be

�w1 =
⎡
⎣4

7
4

⎤
⎦ and �w2 =

⎡
⎣2

3
8

⎤
⎦ .

Assume that the momentum of the system is conserved
throughout the collision. What does this experiment
tell you about the masses of the two particles? See the
accompanying figure.

Particle 2

Particle 1

Collision

44. The accompanying sketch represents a maze of one-
way streets in a city in the United States. The traffic
volume through certain blocks during an hour has been
measured. Suppose that the vehicles leaving the area
during this hour were exactly the same as those enter-
ing it.

?

?

?

?

300

400

100

250

120

150

300

320

JFK Street

Dunster Street

Mt. Auburn Street

Winthrop Street

What can you say about the traffic volume at the
four locations indicated by a question mark? Can you
figure out exactly how much traffic there was on each
block? If not, describe one possible scenario. For each
of the four locations, find the highest and the lowest
possible traffic volume.

45. Let S(t) be the length of the t th day of the year 2013
in Mumbai (formerly known as Bombay), India (mea-
sured in hours, from sunrise to sunset). We are given
the following values of S(t):

t S(t)

47 11.5
74 12

273 12

For example, S(47) = 11.5 means that the time
from sunrise to sunset on February 16 is 11 hours and
30 minutes. For locations close to the equator, the func-
tion S(t) is well approximated by a trigonometric func-
tion of the form

S(t) = a + b cos

(
2π t

365

)
+ c sin

(
2π t

365

)
.

(The period is 365 days, or 1 year.) Find this approxima-
tion for Mumbai, and graph your solution. According
to this model, how long is the longest day of the year in
Mumbai?

46. Kyle is getting some flowers for Olivia, his Valentine.
Being of a precise analytical mind, he plans to spend
exactly $24 on a bunch of exactly two dozen flowers.
At the flower market they have lilies ($3 each), roses
($2 each), and daisies ($0.50 each). Kyle knows that
Olivia loves lilies; what is he to do?

47. Consider the equations∣∣∣∣∣∣
x + 2y + 3z = 4
x + ky + 4z = 6
x + 2y + (k + 2)z = 6

∣∣∣∣∣∣ ,
where k is an arbitrary constant.
a. For which values of the constant k does this system

have a unique solution?
b. When is there no solution?
c. When are there infinitely many solutions?

48. Consider the equations∣∣∣∣∣∣
y + 2kz = 0

x + 2y + 6z = 2
kx + 2z = 1

∣∣∣∣∣∣ ,
where k is an arbitrary constant.
a. For which values of the constant k does this system

have a unique solution?
b. When is there no solution?
c. When are there infinitely many solutions?

49. a. Find all solutions x1, x2, x3, x4 of the system
x2 = 1

2 (x1 + x3), x3 = 1
2 (x2 + x4).

b. In part (a), is there a solution with x1 = 1 and
x4 = 13?

50. For an arbitrary positive integer n ≥ 3, find all solutions
x1, x2, x3, . . . , xn of the simultaneous equations x2 =
1
2 (x1+x3), x3 = 1

2 (x2+x4), . . . , xn−1 = 1
2 (xn−2+xn).

Note that we are asked to solve the simultaneous equa-
tions xk = 1

2 (xk−1 + xk+1), for k = 2, 3, . . . , n − 1.

51. Consider the system∣∣∣∣∣∣
2x + y = C

3y + z = C
x + 4z = C

∣∣∣∣∣∣ ,
where C is a constant. Find the smallest positive integer
C such that x , y, and z are all integers.



1.2 Matrices, Vectors, and Gauss–Jordan Elimination 23

52. Find all the polynomials f (t) of degree ≤ 3 such that
f (0) = 3, f (1) = 2, f (2) = 0, and

∫ 2
0 f (t) dt = 4.

(If you have studied Simpson’s rule in calculus, explain
the result.)

Exercises 53 through 62 are concerned with conics. A
conic is a curve in R2 that can be described by an equation
of the form f (x, y) = c1 + c2x + c3 y + c4x2 + c5x y +
c6 y2 = 0, where at least one of the coefficients ci is
nonzero. Examples are circles, ellipses, hyperbolas, and
parabolas. If k is any nonzero constant, then the equa-
tions f (x, y) = 0 and k f (x, y) = 0 describe the same
conic. For example, the equation −4 + x2 + y2 = 0 and
−12 + 3x2 + 3 y2 = 0 both describe the circle of radius 2
centered at the origin. In Exercises 53 through 62, find all
the conics through the given points. If there is a unique
conic, make a rough sketch. If there are infinitely many
conics, sketch two of them.

53. (0, 0), (1, 0), (2, 0), (0, 1), and (0, 2).

54. (0, 0), (2, 0), (0, 2), (2, 2), and (1, 3).

55. (0, 0), (1, 0), (2, 0), (3, 0), and (1, 1).

56. (0, 0), (1, 1), (2, 2), (3, 3), and (1, 0).

57. (0, 0), (1, 0), (0, 1), and (1, 1).

58. (0, 0), (1, 0), (0, 1), and (1,−1).

59. (5, 0), (1, 2), (2, 1), (8, 1), and (2, 9).

60. (1, 0), (2, 0), (2, 2), (5, 2), and (5, 6).

61. (0, 0), (1, 0), (2, 0), (0, 1), (0, 2), and (1, 1).

62. (0, 0), (2, 0), (0, 2), (2, 2), (1, 3), and (4, 1).

63. Students are buying books for the new semester. Eddie
buys the environmental statistics book and the set the-
ory book for $178. Leah, who is buying books for her-
self and her friend, spends $319 on two environmental
statistics books, one set theory book, and one educa-
tional psychology book. Mehmet buys the educational
psychology book and the set theory book for $147 in
total. How much does each book cost?

64. Students are buying books for the new semester.
Brigitte buys the German grammar book and the Ger-
man novel, Die Leiden des jungen Werther, for C64 in
total. Claude spends C98 on the linear algebra text and
the German grammar book, while Denise buys the lin-
ear algebra text and Werther, for C76. How much does
each of the three books cost?

65. At the beginning of a political science class at a large
university, the students were asked which term, liberal
or conservative, best described their political views.
They were asked the same question at the end of the
course, to see what effect the class discussions had
on their views. Of those that characterized themselves
as “liberal” initially, 30% held conservative views at
the end. Of those who were conservative initially, 40%

moved to the liberal camp. It turned out that there were
just as many students with conservative views at the end
as there had been liberal students at the beginning. Out
of the 260 students in the class, how many held liberal
and conservative views at the beginning of the course
and at the end? (No students joined or dropped the class
between the surveys, and they all participated in both
surveys.)

66. At the beginning of a semester, 55 students have signed
up for Linear Algebra; the course is offered in two
sections that are taught at different times. Because of
scheduling conflicts and personal preferences, 20% of
the students in Section A switch to Section B in the
first few weeks of class, while 30% of the students in
Section B switch to A, resulting in a net loss of 4 stu-
dents for Section B. How large were the two sections
at the beginning of the semester? No students dropped
Linear Algebra (why would they?) or joined the course
late.

Historical Problems

67. Five cows and two sheep together cost 10 liang12 of
silver. Two cows and five sheep together cost eight
liang of silver. What is the cost of a cow and a sheep,
respectively? (Nine Chapters,13 Chapter 8, Problem 7)

68. If you sell two cows and five sheep and you buy 13 pigs,
you gain 1,000 coins. If you sell three cows and three
pigs and buy nine sheep, you break even. If you sell
six sheep and eight pigs and you buy five cows, you
lose 600 coins. What is the price of a cow, a sheep,
and a pig, respectively? (Nine Chapters, Chapter 8,
Problem 8)

69. You place five sparrows on one of the pans of a balance
and six swallows on the other pan; it turns out that the
sparrows are heavier. But if you exchange one sparrow
and one swallow, the weights are exactly balanced. All
the birds together weigh 1 jin. What is the weight of
a sparrow and a swallow, respectively? [Give the an-
swer in liang, with 1 jin = 16 liang.] (Nine Chapters,
Chapter 8, Problem 9)

70. Consider the task of pulling a weight of 40 dan14 up a
hill; we have one military horse, two ordinary horses,
and three weak horses at our disposal to get the job
done. It turns out that the military horse and one of the
ordinary horses, pulling together, are barely able to pull

12 A liang was about 16 grams at the time of the Han Dynasty.
13See page 1; we present some of the problems from the Nine
Chapters on the Mathematical Art in a free translation, with
some additional explanations, since the scenarios discussed in
a few of these problems are rather unfamiliar to the modern
reader.
141 dan = 120 jin = 1,920 liang. Thus, a dan was about
30 kilograms at that time.
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the weight (but they could not pull any more). Likewise,
the two ordinary horses together with one weak horse
are just able to do the job, as are the three weak horses
together with the military horse. How much weight can
each of the horses pull alone? (Nine Chapters, Chap-
ter 8, Problem 12)

71. Five households share a deep well for their water sup-
ply. Each household owns a few ropes of a certain
length, which varies only from household to household.
The five households, A, B, C, D, and E, own 2, 3, 4,
5, and 6 ropes, respectively. Even when tying all their
ropes together, none of the households alone is able to
reach the water, but A’s two ropes together with one
of B’s ropes just reach the water. Likewise, B’s three
ropes with one of C’s ropes, C’s four ropes with one of
D’s ropes, D’s five ropes with one of E’s ropes, and E’s
six ropes with one of A’s ropes all just reach the water.
How long are the ropes of the various households, and
how deep is the well?
Commentary: As stated, this problem leads to a system
of five linear equations in six variables; with the given
information, we are unable to determine the depth of
the well. The Nine Chapters gives one particular solu-
tion, where the depth of the well is 7 zhang,15 2 chi, 1
cun, or 721 cun (since 1 zhang = 10 chi and 1 chi =
10 cun). Using this particular value for the depth of the
well, find the lengths of the various ropes.

72. “A rooster is worth five coins, a hen three coins, and
3 chicks one coin. With 100 coins we buy 100 of them.
How many roosters, hens, and chicks can we buy?”
(From the Mathematical Manual by Zhang Qiujian,
Chapter 3, Problem 38; 5th century A.D.)
Commentary: This famous Hundred Fowl Problem has
reappeared in countless variations in Indian, Arabic,
and European texts (see Exercises 73 through 76); it has
remained popular to this day. See Exercise 46 of this
section.

73. Pigeons are sold at the rate of 5 for 3 panas, sarasabirds
at the rate of 7 for 5 panas, swans at the rate of 9 for 7
panas, and peacocks at the rate of 3 for 9 panas. A man
was ordered to bring 100 birds for 100 panas for the
amusement of the Prince. How much does he pay for
each of the various kinds of birds he buys? (From the
Ganita-Sara-Sangraha by Mahavira, India; 9th century
A.D.) Find one solution to this problem.

74. A duck costs four coins, five sparrows cost one coin,
and a rooster costs one coin. Someone purchases
100 birds for 100 coins. How many birds of each kind
can he buy? (From the Key to Arithmetic by Al-Kashi;
15th century)

75. “A certain person buys sheep, goats, and hogs, to the
number of 100, for 100 crowns; the sheep cost him
1
2 a crown a-piece; the goats, 1 1

3 crown; and the hogs

3 1
2 crowns. How many had he of each?” (From the

Elements of Algebra by Leonhard Euler, 1770)

76. A gentleman runs a household of 100 people and or-
ders that they be given 100 measures of grain. He di-
rects that each man should receive three measures, each
woman two measures, and each child half a measure.
How many men, women, and children are there in this
household? We are told that there is at least one man,
one woman, and one child. (From the Problems for
Quickening a Young Mind by Alcuin [c. 732–804], the
Abbot of St. Martins at Tours. Alcuin was a friend and
tutor to Charlemagne and his family at Aachen.)

77. A dying father gave to his sons 30 barrels, of which 10
were full of wine, 10 were half-full, and the last 10 were
empty. Divide the wine and flasks so that there will be
equal division among the three sons of both wine and
barrels. Find all the solutions of this problem. (From
Alcuin)

78. Make me a crown weighing 60 minae from a mixture
of gold, bronze, tin, and wrought iron. Let the gold
and bronze together form two-thirds of the weight, the
gold and tin together three-fourths, and the gold and
iron three-fifths. Tell me how much gold, tin, bronze,
and iron you must use. (From the Greek Anthology by
Metrodorus, 6th century A.D.)

79. Three merchants find a purse lying in the road. One
merchant says, “If I keep the purse, I will have twice
as much money as the two of you together.” “Give
me the purse and I will have three times as much
as the two of you together,” said the second mer-
chant. The third merchant said, “I will be much bet-
ter off than either of you if I keep the purse, I will
have five times as much as the two of you together.”
If there are 60 coins (of equal value) in the purse,
how much money does each merchant have? (From
Mahavira)

80. 3 cows graze 1 field bare in 2 days,
7 cows graze 4 fields bare in 4 days, and
3 cows graze 2 fields bare in 5 days.
It is assumed that each field initially provides the same
amount, x , of grass; that the daily growth, y, of the
fields remains constant; and that all the cows eat the
same amount, z, each day. (Quantities x , y, and z are
measured by weight.) Find all the solutions of this prob-
lem. (This is a special case of a problem discussed by
Isaac Newton in his Arithmetica Universalis, 1707.)

15 1 zhang was about 2.3 meters at that time.
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1.3 On the Solutions of Linear Systems; Matrix Algebra

In this final section of Chapter 1, we will discuss two rather unrelated topics:

• First, we will examine how many solutions a system of linear equations can
possibly have.

• Then, we will present some definitions and rules of matrix algebra.

The Number of Solutions of a Linear System

EXAMPLE 1 The reduced row-echelon forms of the augmented matrices of three systems are
given. How many solutions are there in each case?

a.

⎡
⎢⎢⎣

1 2 0 0
0 0 1 0
0 0 0 1
0 0 0 0

⎤
⎥⎥⎦ b.

⎡
⎣1 2 0 1

0 0 1 2
0 0 0 0

⎤
⎦ c.

⎡
⎣1 0 0 1

0 1 0 2
0 0 1 3

⎤
⎦

Solution

a. The third row represents the equation 0 = 1, so that there are no solutions.
We say that this system is inconsistent.

b. The given augmented matrix represents the system∣∣∣∣x1 + 2x2 = 1
x3 = 2

∣∣∣∣ , or

∣∣∣∣x1 = 1 − 2x2
x3 = 2

∣∣∣∣ .
We can assign an arbitrary value, t , to the free variable x2, so that the system
has infinitely many solutions,⎡

⎣x1

x2

x3

⎤
⎦ =
⎡
⎣1 − 2t

t
2

⎤
⎦ , where t is an arbitrary constant.

c. Here there are no free variables, so that we have only one solution, x1 = 1,
x2 = 2, x3 = 3. �

We can generalize our findings:16

Theorem 1.3.1 Number of solutions of a linear system

A system of equations is said to be consistent if there is at least one solution; it
is inconsistent if there are no solutions.

A linear system is inconsistent if (and only if) the reduced row-echelon form
of its augmented matrix contains the row

[
0 0 · · · 0 1

]
, representing the

equation 0 = 1.
If a linear system is consistent, then it has either

• infinitely many solutions (if there is at least one free variable), or
• exactly one solution (if all the variables are leading).

16Starting in this section, we will number the definitions we give and the theorems we derive. The nth
theorem stated in Section p.q is labeled as Theorem p.q.n.
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Example 1 illustrates what the number of leading 1’s in the echelon form tells
us about the number of solutions of a linear system. This observation motivates the
following definition:

Definition 1.3.2 The rank of a matrix17

The rank of a matrix A is the number of leading 1’s in rref(A), denoted rank(A).

EXAMPLE 2 rank

⎡
⎣1 2 3

4 5 6
7 8 9

⎤
⎦ = 2, since rref

⎡
⎣1 2 3

4 5 6
7 8 9

⎤
⎦ =
⎡
⎣ 1� 0 −1

0 1� 2
0 0 0

⎤
⎦ �

Note that we have defined the rank of a matrix rather than the rank of a linear
system. When relating the concept of rank to a linear system, we must be careful
to specify whether we consider the coefficient matrix or the augmented matrix of
the system.

EXAMPLE 3 Consider a system of n linear equations with m variables, which has a coefficient
matrix A of size n × m. Show that

a. The inequalities rank(A) ≤ n and rank(A) ≤ m hold.

b. If the system is inconsistent, then rank(A) < n.

c. If the system has exactly one solution, then rank(A) = m.

d. If the system has infinitely many solutions, then rank(A) < m.

Solution

a. By definition of the reduced row-echelon form, there is at most one leading
1 in each of the n rows and in each of the m columns of rref(A).

b. If the system is inconsistent, then the rref of the augmented matrix will con-
tain a row of the form [ 0 0 . . . 0 1 ], so that rref(A) will contain a row of
zeros. Since there is no leading 1 in that row, we find that rank(A) < n, as
claimed.

c. For parts c and d, it is worth noting that(
number of

free variables

)
=
(

total number
of variables

)
−
(

number of
leading variables

)
= m − rank(A).

If the system has exactly one solution, then there are no free variables (see
Theorem 1.3.1), so that m − rank(A) = 0 and rank(A) = m as claimed.

d. If the system has infinitely many solutions, then there is at least one free
variable, so that m − rank(A) > 0 and rank(A) < m, as claimed. �

EXAMPLE 4 It is useful to think about the contrapositives of the statements in parts b through d
of Example 3.18

17This is a preliminary, rather technical definition. In Chapter 3, we will gain a better conceptual
understanding of the rank.
18The contrapositive of the statement “if p then q” is “if not-q then not-p.” A statement and its
contrapositive are logically equivalent. For example, the contrapositive of “If you live in New York
City, then you live in the Unites States” is “If you don’t live in the United States, then you don’t live in
New York City.” Here is a more convoluted example: On the service truck of a plumbing company we
read, “If we can’t fix it, then it ain’t broken.” The contrapositive of this claim is, “If it is broken, then
we can fix it” (not quite as catchy!).
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b. If rank(A) = n, then the system is consistent.

c. If rank(A) < m, then the system has no solution or infinitely many solutions.

d. If rank(A) = m, then the system has no solution or exactly one solution. �
In Theorems 1.3.3 and 1.3.4, we will discuss two important special cases of

Example 3.

Theorem 1.3.3 Number of equations vs. number of unknowns

a. If a linear system has exactly one solution, then there must be at least
as many equations as there are variables (m ≤ n with the notation from
Example 3).

Equivalently, we can formulate the contrapositive:

b. A linear system with fewer equations than unknowns (n < m) has either
no solutions or infinitely many solutions.

The proof of part (a) is based on parts (a) and (c) of Example 3: m = rank(A) ≤
n, so that m ≤ n as claimed.

To illustrate part b of Theorem 1.3.3, consider two linear equations in three
variables, with each equation defining a plane. Two different planes in space either
intersect in a line or are parallel (see Figure 1), but they will never intersect at a
point! This means that a system of two linear equations with three unknowns cannot
have a unique solution.

(a) (b)

Figure 1 (a) Two planes intersect in a line. (b) Two parallel planes.

EXAMPLE 5 Consider a linear system of n equations with n variables. When does this system
have exactly one solution? Give your answer in terms of the rank of the coefficient
matrix A.

Solution
If the system has exactly one solution, then rank(A) = m = n by Example 3c.

Conversely, if rank(A) = n, then there will be a leading 1 in each row and in
each column, and these leading 1’s will be lined up along the diagonal:

rref(A) =

⎡
⎢⎢⎣

1 0 . . . 0
0 1 . . . 0
...

...
. . .

...

0 0 . . . 1

⎤
⎥⎥⎦ .

This system will have exactly one solution. �
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Theorem 1.3.4 Systems of n equations in n variables

A linear system of n equations in n variables has a unique solution if (and only
if) the rank of its coefficient matrix A is n. In this case,

rref(A) =

⎡
⎢⎢⎢⎢⎢⎣

1 0 0 · · · 0
0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1

⎤
⎥⎥⎥⎥⎥⎦ ,

the n × n matrix with 1’s along the diagonal and 0’s everywhere else.

Matrix Algebra
We will now introduce some basic definitions and rules of matrix algebra. Our pre-
sentation will be somewhat lacking in motivation at first, but it will be good to have
these tools available when we need them in Chapter 2.

Sums and scalar multiples of matrices are defined entry by entry, as for vectors.
See Definition A.1 in the Appendix.

Definition 1.3.5 Sums of matrices

The sum of two matrices of the same size is defined entry by entry:⎡
⎢⎣a11 . . . a1m

...
...

an1 . . . anm

⎤
⎥⎦+

⎡
⎢⎣b11 . . . b1m

...
...

bn1 . . . bnm

⎤
⎥⎦ =

⎡
⎢⎣a11 + b11 . . . a1m + b1m

...
...

an1 + bn1 . . . anm + bnm

⎤
⎥⎦ .

Scalar multiples of matrices
The product of a scalar with a matrix is defined entry by entry:

k

⎡
⎢⎣a11 . . . a1m

...
...

an1 . . . anm

⎤
⎥⎦ =

⎡
⎢⎣ ka11 . . . ka1m

...
...

kan1 . . . kanm

⎤
⎥⎦ .

EXAMPLE 6
[

1 2 3
4 5 6

]
+
[

7 3 1
5 3 −1

]
=
[

8 5 4
9 8 5

]
�

EXAMPLE 7 3

[
2 1

−1 3

]
=
[

6 3
−3 9

]
�

The definition of the product of matrices is less straightforward; we will give
the general definition later in Section 2.3.

Because vectors are special matrices (with only one row or only one column),
it makes sense to start with a discussion of products of vectors. The reader may be
familiar with the dot product of vectors.
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Definition 1.3.6 Dot product of vectors

Consider two vectors �v and �w with components v1, . . . , vn and w1, . . . , wn , re-
spectively. Here �v and �w may be column or row vectors, and the two vectors
need not be of the same type. The dot product of �v and �w is defined to be the
scalar

�v · �w = v1w1 + · · · + vnwn.

Note that our definition of the dot product isn’t row-column-sensitive. The dot
product does not distinguish between row and column vectors.

EXAMPLE 8
[
1 2 3

] ·
⎡
⎣3

1
2

⎤
⎦ = 1 · 3 + 2 · 1 + 3 · 2 = 11 �

Now we are ready to define the product A�x , where A is a matrix and �x is a
vector, in terms of the dot product.

Definition 1.3.7 The product A�x
If A is an n × m matrix with row vectors �w1, . . . , �wn , and �x is a vector in Rm ,
then

A�x =

⎡
⎢⎣− �w1 −

...

− �wn −

⎤
⎥⎦ �x =

⎡
⎢⎣ �w1 · �x

...

�wn · �x

⎤
⎥⎦ .

In words, the i th component of A�x is the dot product of the i th row of A with �x .
Note that A�x is a column vector with n components, that is, a vector in Rn .

EXAMPLE 9
[

1 2 3
1 0 −1

]⎡⎣3
1
2

⎤
⎦ =
[

1 · 3 + 2 · 1 + 3 · 2
1 · 3 + 0 · 1 + (−1) · 2

]
=
[

11
1

]
�

EXAMPLE 10

⎡
⎣1 0 0

0 1 0
0 0 1

⎤
⎦
⎡
⎣x1

x2

x3

⎤
⎦ =
⎡
⎣x1

x2

x3

⎤
⎦ for all vectors

⎡
⎣x1

x2

x3

⎤
⎦ in R3 �

Note that the product A�x is defined only if the number of columns of matrix A
matches the number of components of vector �x :

n × m︷︸︸︷
A

m × 1︷︸︸︷
�x︸ ︷︷ ︸

n × 1

.

EXAMPLE 11 The product A�x =
[

1 2 3
1 0 −1

] [
3
1

]
is undefined, because the number of columns

of matrix A fails to match the number of components of vector �x . �
In Definition 1.3.7, we express the product A�x in terms of the rows of the matrix

A. Alternatively, the product can be expressed in terms of the columns.
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Let’s take another look at Example 9:

A�x =
[

1 2 3
1 0 −1

]⎡⎣3
1
2

⎤
⎦ =
[

1 · 3 + 2 · 1 + 3 · 2
1 · 3 + 0 · 1 + (−1) · 2

]

=
[

1 · 3
1 · 3

]
+
[

2 · 1
0 · 1

]
+
[

3 · 2
(−1) · 2

]
= 3

[
1
1

]
+ 1

[
2
0

]
+ 2

[
3

−1

]
.

We recognize that the expression 3

[
1
1

]
+1

[
2
0

]
+2

[
3

−1

]
involves the vectors �v1 =[

1
1

]
, �v2 =

[
2
0

]
, �v3 =

[
3

−1

]
, the columns of A, and the scalars x1 = 3, x2 = 1,

x3 = 2, the components of �x . Thus, we can write

A�x =
⎡
⎣ | | |

�v1 �v2 �v3

| | |

⎤
⎦
⎡
⎣ x1

x2

x3

⎤
⎦ = x1 �v1 + x2 �v2 + x3 �v3.

We can generalize:

Theorem 1.3.8 The product A�x in terms of the columns of A

If the column vectors of an n × m matrix A are �v1, . . . , �vm and �x is a vector in
Rm with components x1, . . . , xm , then

A�x =
⎡
⎣ | |

�v1 . . . �vm

| |

⎤
⎦
⎡
⎢⎣ x1

...

xm

⎤
⎥⎦ = x1 �v1 + · · · + xm �vm .

Proof As usual, we denote the rows of A by �w1, . . . , �wn and the entries by ai j . It suffices
to show that the i th component of A�x is equal to the i th component of x1 �v1 + · · · +
xm �vm , for i = 1, . . . n. Now

(i th component of A�x) =︸︷︷︸
step 1

�wi · �x = ai1x1 + · · · aim xm

= x1(i th component of �v1) + · · ·
+xm(i th component of �vm)

=︸︷︷︸
step 4

i th component of x1 �v1 + · · · + xm �vm .

In Step 1 we are using Definition 1.3.7, and in step 4 we are using the fact that
vector addition and scalar multiplication are defined component by component. �

EXAMPLE 12 A�x =
⎡
⎣1 2 3

4 5 6
7 8 9

⎤
⎦
⎡
⎣ 2

−4
2

⎤
⎦ = 2

⎡
⎣1

4
7

⎤
⎦+ (−4)

⎡
⎣2

5
8

⎤
⎦+ 2

⎡
⎣3

6
9

⎤
⎦

=
⎡
⎣ 2

8
14

⎤
⎦−
⎡
⎣ 8

20
32

⎤
⎦+
⎡
⎣ 6

12
18

⎤
⎦ =
⎡
⎣0

0
0

⎤
⎦

Note that something remarkable is happening here: Although A isn’t the zero
matrix and �x isn’t the zero vector, the product A�x is the zero vector. (By contrast,
the product of any two nonzero scalars is nonzero.) �
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The formula for the product A�x in Theorem 1.3.8 involves the expression
x1 �v1 + · · · + xm �vm , where �v1, . . . , �vm are vectors in Rn , and x1, . . . , xm are scalars.
Such expressions come up very frequently in linear algebra; they deserve a name.

Definition 1.3.9 Linear combinations

A vector �b in Rn is called a linear combination of the vectors �v1, . . . , �vm in Rn

if there exist scalars x1, . . . , xm such that

�b = x1 �v1 + · · · + xm �vm .

EXAMPLE 13 Is the vector �b =
⎡
⎣1

1
1

⎤
⎦ a linear combination of the vectors �v =

⎡
⎣1

2
3

⎤
⎦ and

�w =
⎡
⎣4

5
6

⎤
⎦?

Solution
According to Definition 1.3.9, we need to see whether we can find scalars x and y

such that

⎡
⎣1

1
1

⎤
⎦ = x

⎡
⎣1

2
3

⎤
⎦ + y

⎡
⎣4

5
6

⎤
⎦ =
⎡
⎣ x + 4y

2x + 5y
3x + 6y

⎤
⎦. We need to solve the linear

system

∣∣∣∣∣∣
x + 4y = 1

2x + 5y = 1
3x + 6y = 1

∣∣∣∣∣∣, with augmented matrix M =
⎡
⎣1 4 1

2 5 1
3 6 1

⎤
⎦ and rref(M) =⎡

⎣1 0 −1/3
0 1 1/3
0 0 0

⎤
⎦.

It turns out that the system is consistent, with x = −1/3 and y = 1/3. The
vector �b is indeed a linear combination of �v and �w, with �b = − 1

3 �v + 1
3 �w. �

Note that the product A�x is the linear combination of the columns of A with
the components of �x as the coefficients:

A�x =
⎡
⎣ | |

�v1 . . . �vm

| |

⎤
⎦
⎡
⎢⎣ x1

...

xm

⎤
⎥⎦ = x1 �v1 + · · · + xm �vm .

Take a good look at this equation, because it is the most frequently used for-
mula in this text. Particularly in theoretical work, it will often be useful to write the
product A�x as the linear combination x1 �v1 +· · ·+ xm �vm . Conversely, when dealing
with a linear combination x1 �v1 + · · · + xm �vm , it will often be helpful to introduce
the matrix

A =
⎡
⎣ | |

�v1 . . . �vm

| |

⎤
⎦ and the vector �x =

⎡
⎢⎣ x1

...

xm

⎤
⎥⎦

and then write x1 �v1 + · · · + xm �vm = A�x .
Next we present two rules concerning the product A�x . In Chapter 2 we will see

that these rules play a central role in linear algebra.
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Theorem 1.3.10 Algebraic rules for A�x
If A is an n × m matrix, �x and �y are vectors in Rm , and k is a scalar, then

a. A(�x + �y) = A�x + A�y, and

b. A(k �x) = k(A�x).

We will prove the first equation, leaving the second as Exercise 45.
Denote the i th row of A by �wi . Then

(
i th component of A(�x + �y)

) = �wi · (�x + �y)

step 2︷︸︸︷= �wi · �x + �wi · �y
= (i th component of A�x) + (i th component of A�y)

= (i th component of A�x + A�y).

In step 2 we are using a rule for dot products stated in Theorem A.5b, in the Ap-
pendix.

Our new tools of matrix algebra allow us to see linear systems in a new light,
as illustrated in the next example. The definition of the product A�x and the concept
of a linear combination will be particularly helpful.

EXAMPLE 14 Consider the linear system∣∣∣∣3x1 + x2 = 7
x1 + 2x2 = 4

∣∣∣∣ , with augmented matrix

[
3 1 7
1 2 4

]
.

We can interpret the solution of this system as the intersection of two lines in the
x1x2-plane, as illustrated in Figure 2.

(2, 1)

3x1 + x2 = 7

x1 + 2x2 = 4

x2

x1

Figure 2

Alternatively, we can write the system in vector form, as[
3x1 + x2

x1 + 2x2

]
=
[

7
4

]
or

[
3x1

x1

]
+
[

x2

2x2

]
=
[

7
4

]
or x1

[
3
1

]
+ x2

[
1
2

]
=
[

7
4

]
.

We see that solving this system amounts to writing the vector

[
7
4

]
as a linear com-

bination of the vectors

[
3
1

]
and

[
1
2

]
. See Definition 1.3.9. The vector equation
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x1

[
3
1

]
+ x2

[
1
2

]
=
[

7
4

]
and its solution can be represented geometrically, as shown in Figure 3. The prob-

lem amounts to resolving the vector

[
7
4

]
into two vectors parallel to

[
3
1

]
and

[
1
2

]
,

respectively, by means of a parallelogram.

7
4

3
1

1
2= 2         + 1

3
12

1
2

3
1

Figure 3

We can go further and write the linear combination

x1

[
3
1

]
+ x2

[
1
2

]
as

[
3 1
1 2

] [
x1

x2

]
so that the linear system

x1

[
3
1

]
+ x2

[
1
2

]
=
[

7
4

]
takes the form

[
3 1
1 2

] [
x1

x2

]
=
[

7
4

]
,

the matrix form of the linear system.
Note that we started out with the augmented matrix[

A �b] = [3 1 7
1 2 4

]
,

and we ended up writing the system as[
3 1
1 2

]
︸ ︷︷ ︸

A

[
x1

x2

]
︸︷︷︸

�x

=
[

7
4

]
︸︷︷︸

�b

, or A�x = �b. �
We can generalize:

Theorem 1.3.11 Matrix form of a linear system

We can write the linear system with augmented matrix
[

A �b] in matrix form
as

A�x = �b.

Note that the i th component of A�x is ai1x1 + · · · + aim xm , by Definition 1.3.7.
Thus, the i th component of the equation A�x = �b is

ai1x1 + · · · + aim xm = bi ;
this is the i th equation of the system with augmented matrix

[
A �b].
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Solving the linear system A�x = �b amounts to expressing vector �b as a linear
combination of the column vectors of matrix A.

EXAMPLE 15 Write the system ∣∣∣∣2x1 − 3x2 + 5x3 = 7
9x1 + 4x2 − 6x3 = 8

∣∣∣∣
in matrix form.

Solution

The coefficient matrix is A =
[

2 −3 5
9 4 −6

]
, and �b =

[
7
8

]
. The matrix form is

A�x = �b, or

[
2 −3 5
9 4 −6

]⎡⎣x1

x2

x3

⎤
⎦ =
[

7
8

]
.

�

Now that we can write a linear system as a single equation, A�x = �b, rather than
a list of simultaneous equations, we can think about it in new ways.

For example, if we have an equation ax = b of numbers, we can divide both
sides by a to find the solution x :

x = b

a
= a−1b (if a �= 0).

It is natural to ask whether we can take an analogous approach in the case of the
equation A�x = �b. Can we “divide by A,” in some sense, and write

�x =
�b
A

= A−1�b?

This issue of the invertibility of a matrix will be one of the main themes of
Chapter 2.

EXERCISES 1.3
GOAL Use the reduced row-echelon form of the aug-
mented matrix to find the number of solutions of a linear
system. Apply the definition of the rank of a matrix. Com-
pute the product A�x in terms of the rows or the columns
of A. Represent a linear system in vector or matrix
form.

1. The reduced row-echelon forms of the augmented
matrices of three systems are given here. How many so-
lutions does each system have?

a.

⎡
⎣1 0 2 0

0 1 3 0
0 0 0 1

⎤
⎦ b.

[
1 0 5
0 1 6

]

c.
[

0 1 0 2
0 0 1 3

]
Find the rank of the matrices in Exercises 2 through 4.

2.

⎡
⎣1 2 3

0 1 2
0 0 1

⎤
⎦ 3.

⎡
⎣1 1 1

1 1 1
1 1 1

⎤
⎦ 4.

⎡
⎣1 4 7

2 5 8
3 6 9

⎤
⎦

5. a. Write the system ∣∣∣∣ x + 2y = 7
3x + y = 11

∣∣∣∣
in vector form.

b. Use your answer in part (a) to represent the system
geometrically. Solve the system and represent the
solution geometrically.

6. Consider the vectors �v1, �v2, �v3 in R2 (sketched in the
accompanying figure). Vectors �v1 and �v2 are parallel.
How many solutions x , y does the system

x �v1 + y �v2 = �v3

have? Argue geometrically.

v�3

v�1

v�2
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7. Consider the vectors �v1, �v2, �v3 in R2 shown in the ac-
companying sketch. How many solutions x , y does the
system

x �v1 + y �v2 = �v3

have? Argue geometrically.

v�3

v�1

v�2

8. Consider the vectors �v1, �v2, �v3, �v4 in R2 shown in the
accompanying sketch. Arguing geometrically, find two
solutions x , y, z of the linear system

x �v1 + y �v2 + z �v3 = �v4.

How do you know that this system has, in fact, infinitely
many solutions?

v�3

v�1

v�2
v�4

9. Write the system ∣∣∣∣∣∣
x + 2y + 3z = 1

4x + 5y + 6z = 4
7x + 8y + 9z = 9

∣∣∣∣∣∣
in matrix form.

Compute the dot products in Exercises 10 through 12
(if the products are defined).

10.

⎡
⎣1

2
3

⎤
⎦ ·
⎡
⎣ 1

−2
1

⎤
⎦ 11.

[
1 9 9 7

] ·
⎡
⎣6

6
6

⎤
⎦

12.
[
1 2 3 4

] ·
⎡
⎢⎢⎣

5
6
7
8

⎤
⎥⎥⎦

Compute the products A�x in Exercises 13 through 15 us-
ing paper and pencil. In each case, compute the product
two ways: in terms of the columns of A (Theorem 1.3.8)
and in terms of the rows of A (Definition 1.3.7).

13.
[

1 2
3 4

] [
7

11

]
14.
[

1 2 3
2 3 4

]⎡⎣−1
2
1

⎤
⎦

15.
[
1 2 3 4

]
⎡
⎢⎢⎣

5
6
7
8

⎤
⎥⎥⎦

Compute the products A�x in Exercises 16 through 19
using paper and pencil (if the products are defined).

16.
[

0 1
3 2

] [
2

−3

]
17.
[

1 2 3
4 5 6

] [
7
8

]

18.

⎡
⎣1 2

3 4
5 6

⎤
⎦[1

2

]
19.

⎡
⎣ 1 1 −1

−5 1 1
1 −5 3

⎤
⎦
⎡
⎣1

2
3

⎤
⎦

20. a. Find

⎡
⎣2 3

4 5
6 7

⎤
⎦+
⎡
⎣7 5

3 1
0 −1

⎤
⎦.

b. Find 9

[
1 −1 2
3 4 5

]
.

21. Use technology to compute the product⎡
⎢⎢⎣

1 7 8 9
1 2 9 1
1 5 1 5
1 6 4 8

⎤
⎥⎥⎦
⎡
⎢⎢⎣

1
9
5
6

⎤
⎥⎥⎦ .

22. Consider a linear system of three equations with three
unknowns. We are told that the system has a unique so-
lution. What does the reduced row-echelon form of the
coefficient matrix of this system look like? Explain your
answer.

23. Consider a linear system of four equations with three
unknowns. We are told that the system has a unique so-
lution. What does the reduced row-echelon form of the
coefficient matrix of this system look like? Explain your
answer.

24. Let A be a 4 × 4 matrix, and let �b and �c be two vec-
tors in R4. We are told that the system A�x = �b has a
unique solution. What can you say about the number of
solutions of the system A�x = �c?

25. Let A be a 4×4 matrix, and let �b and �c be two vectors in
R4. We are told that the system A�x = �b is inconsistent.
What can you say about the number of solutions of the
system A�x = �c?

26. Let A be a 4 × 3 matrix, and let �b and �c be two vec-
tors in R4. We are told that the system A�x = �b has a
unique solution. What can you say about the number of
solutions of the system A�x = �c?

27. If the rank of a 4 × 4 matrix A is 4, what is rref(A)?

28. If the rank of a 5 × 3 matrix A is 3, what is rref(A)?

In Problems 29 through 32, let �x =
⎡
⎣ 5

3
−9

⎤
⎦ and �y =

⎡
⎣2

0
1

⎤
⎦.

29. Find a diagonal matrix A such that A�x = �y.

30. Find a matrix A of rank 1 such that A�x = �y.

31. Find an upper triangular matrix A such that A�x = �y,
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where all the entries of A on and above the diagonal are
nonzero.

32. Find a matrix A with all nonzero entries such that
A�x = �y.

33. Let A be the n × n matrix with all 1’s on the diagonal
and all 0’s above and below the diagonal. What is A�x ,
where �x is a vector in Rn?

34. We define the vectors

�e1 =
⎡
⎣1

0
0

⎤
⎦ , �e2 =

⎡
⎣0

1
0

⎤
⎦ , �e3 =

⎡
⎣0

0
1

⎤
⎦

in R3.
a. For

A =
⎡
⎣a b c

d e f
g h k

⎤
⎦ ,

compute A�e1, A�e2, and A�e3.
b. If B is an n × 3 matrix with columns �v1, �v2, and �v3,

what are B�e1, B�e2, and B�e3?

35. In Rm , we define

�ei =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
...

1
...

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

← i th component.

If A is an n × m matrix, what is A�ei ?

36. Find a 3 × 3 matrix A such that

A

⎡
⎣1

0
0

⎤
⎦ =
⎡
⎣1

2
3

⎤
⎦ , A

⎡
⎣0

1
0

⎤
⎦ =
⎡
⎣4

5
6

⎤
⎦ ,

and A

⎡
⎣0

0
1

⎤
⎦ =
⎡
⎣7

8
9

⎤
⎦ .

37. Find all vectors �x such that A�x = �b, where

A =
⎡
⎣1 2 0

0 0 1
0 0 0

⎤
⎦ and �b =

⎡
⎣2

1
0

⎤
⎦ .

38. a. Using technology, generate a random 3 × 3 matrix
A. (The entries may be either single-digit integers
or numbers between 0 and 1, depending on the tech-
nology you are using.) Find rref(A). Repeat this ex-
periment a few times.

b. What does the reduced row-echelon form of most
3 × 3 matrices look like? Explain.

39. Repeat Exercise 38 for 3 × 4 matrices.

40. Repeat Exercise 38 for 4 × 3 matrices.

41. How many solutions do most systems of three linear
equations with three unknowns have? Explain in terms
of your work in Exercise 38.

42. How many solutions do most systems of three linear
equations with four unknowns have? Explain in terms
of your work in Exercise 39.

43. How many solutions do most systems of four linear
equations with three unknowns have? Explain in terms
of your work in Exercise 40.

44. Consider an n × m matrix A with more rows than
columns (n > m). Show that there is a vector �b in Rn

such that the system A�x = �b is inconsistent.

45. Consider an n × m matrix A, a vector �x in Rm , and a
scalar k. Show that

A(k �x) = k(A�x).

46. Find the rank of the matrix⎡
⎣a b c

0 d e
0 0 f

⎤
⎦ ,

where a, d , and f are nonzero, and b, c, and e are arbi-
trary numbers.

47. A linear system of the form

A�x = �0

is called homogeneous. Justify the following facts:
a. All homogeneous systems are consistent.
b. A homogeneous system with fewer equations than

unknowns has infinitely many solutions.
c. If �x1 and �x2 are solutions of the homogeneous sys-

tem A�x = �0, then �x1 + �x2 is a solution as well.
d. If �x is a solution of the homogeneous system

A�x = �0 and k is an arbitrary constant, then k �x
is a solution as well.

48. Consider a solution �x1 of the linear system A�x = �b.
Justify the facts stated in parts (a) and (b):
a. If �xh is a solution of the system A�x = �0, then

�x1 + �xh is a solution of the system A�x = �b.
b. If �x2 is another solution of the system A�x = �b, then

�x2 − �x1 is a solution of the system A�x = �0.
c. Now suppose A is a 2 × 2 matrix. A solution vector

�x1 of the system A�x = �b is shown in the accom-
panying figure. We are told that the solutions of the
system A�x = �0 form the line shown in the sketch.
Draw the line consisting of all solutions of the sys-
tem A�x = �b.
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x�1

solutions of Ax� = 0�
0

If you are puzzled by the generality of this problem,
think about an example first:

A =
[

1 2
3 6

]
, �b =

[
3
9

]
, and �x1 =

[
1
1

]
.

49. Consider the accompanying table. For some linear sys-
tems A�x = �b, you are given either the rank of the co-
efficient matrix A, or the rank of the augmented matrix[

A �b]. In each case, state whether the system could
have no solution, one solution, or infinitely many solu-
tions. There may be more than one possibility for some
systems. Justify your answers.

Number of Number of Rank Rank
Equations Unknowns of A of

[
A �b
]

a. 3 4 — 2
b. 4 3 3 —
c. 4 3 — 4
d. 3 4 3 —

50. Consider a linear system A�x = �b, where A is a 4 × 3
matrix. We are told that rank

[
A �b] = 4. How many

solutions does this system have?

51. Consider an n × m matrix A, an r × s matrix B, and a
vector �x in Rp . For which values of n, m, r , s, and p is
the product

A(B �x)

defined?

52. Consider the matrices

A =
[

1 0
1 2

]
and B =

[
0 −1
1 0

]
.

Can you find a 2 × 2 matrix C such that

A(B �x) = C �x,

for all vectors �x in R2?

53. If A and B are two n × m matrices, is

(A + B)�x = A�x + B �x

for all �x in Rm?

54. Consider two vectors �v1 and �v2 in R3 that are not paral-
lel. Which vectors in R3 are linear combinations of �v1
and �v2? Describe the set of these vectors geometrically.
Include a sketch in your answer.

55. Is the vector

⎡
⎣7

8
9

⎤
⎦ a linear combination of

⎡
⎣1

2
3

⎤
⎦ and

⎡
⎣4

5
6

⎤
⎦?

56. Is the vector

⎡
⎢⎢⎢⎢⎣

30
−1
38
56
62

⎤
⎥⎥⎥⎥⎦

a linear combination of

⎡
⎢⎢⎢⎢⎣

1
7
1
9
4

⎤
⎥⎥⎥⎥⎦ ,

⎡
⎢⎢⎢⎢⎣

5
6
3
2
8

⎤
⎥⎥⎥⎥⎦ ,

⎡
⎢⎢⎢⎢⎣

9
2
3
5
2

⎤
⎥⎥⎥⎥⎦ ,

⎡
⎢⎢⎢⎢⎣

−2
−5

4
7
9

⎤
⎥⎥⎥⎥⎦?

57. Express the vector

[
7

11

]
as the sum of a vector on the

line y = 3x and a vector on the line y = x/2.

y = 3x
y

y = x/2

x

7
11

58. For which values of the constants b and c is the vector⎡
⎣3

b
c

⎤
⎦ a linear combination of

⎡
⎣1

3
2

⎤
⎦,
⎡
⎣2

6
4

⎤
⎦, and

⎡
⎣−1

−3
−2

⎤
⎦?
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59. For which values of the constants c and d is

⎡
⎢⎢⎣

5
7
c
d

⎤
⎥⎥⎦ a lin-

ear combination of

⎡
⎢⎢⎣

1
1
1
1

⎤
⎥⎥⎦ and

⎡
⎢⎢⎣

1
2
3
4

⎤
⎥⎥⎦?

60. For which values of the constants a, b, c, and d is

⎡
⎢⎢⎣

a
b
c
d

⎤
⎥⎥⎦

a linear combination of

⎡
⎢⎢⎣

0
0
3
0

⎤
⎥⎥⎦,
⎡
⎢⎢⎣

1
0
4
0

⎤
⎥⎥⎦, and

⎡
⎢⎢⎣

2
0
5
6

⎤
⎥⎥⎦?

61. For which values of the constant c is

⎡
⎣ 1

c
c2

⎤
⎦ a linear

combination of

⎡
⎣1

2
4

⎤
⎦ and

⎡
⎣1

3
9

⎤
⎦?

62. For which values of the constant c is

⎡
⎣ 1

c
c2

⎤
⎦ a linear

combination of

⎡
⎣ 1

a
a2

⎤
⎦ and

⎡
⎣ 1

b
b2

⎤
⎦, where a and b are

arbitrary constants?

In Exercises 63 through 68, consider the vectors �v and �w
in the accompanying figure.

v�
w�

63. Give a geometrical description of the set of all vectors
of the form �v + c �w, where c is an arbitrary real number.

64. Give a geometrical description of the set of all vectors
of the form �v + c �w, where 0 ≤ c ≤ 1.

65. Give a geometrical description of the set of all vectors
of the form a �v + b �w, where 0 ≤ a ≤ 1 and 0 ≤ b ≤ 1.

66. Give a geometrical description of the set of all vectors
of the form a �v + b �w, where a + b = 1.

67. Give a geometrical description of the set of all vectors
of the form a �v+b �w, where 0 ≤ a, 0 ≤ b, and a+b ≤ 1.

68. Give a geometrical description of the set of all vectors
�u in R2 such that �u · �v = �u · �w.

69. Solve the linear system∣∣∣∣∣∣
y + z = a

x + z = b
x + y = c

∣∣∣∣∣∣ ,
where a, b, and c are arbitrary constants.

70. Let A be the n × n matrix with 0’s on the main diago-
nal, and 1’s everywhere else. For an arbitrary vector �b
in Rn , solve the linear system A�x = �b, expressing the
components x1, . . . , xn of �x in terms of the components
of �b. See Exercise 69 for the case n = 3.

Chapter One Exercises

TRUE OR FALSE?19

Determine whether the statements that follow are true or
false, and justify your answer.

1. If A is an n × n matrix and �x is a vector in Rn , then the
product A�x is a linear combination of the columns of
matrix A.

2. If vector �u is a linear combination of vectors �v and
�w, then we can write �u = a �v + b �w for some scalars
a and b.

3. Matrix

⎡
⎣1 2 0

0 0 1
0 0 0

⎤
⎦ is in reduced row-echelon form.

4. A system of four linear equations in three unknowns is
always inconsistent.

5. There exists a 3 × 4 matrix with rank 4.

6. If A is a 3 × 4 matrix and vector �v is in R4, then vector
A�v is in R3.

7. If the 4 × 4 matrix A has rank 4, then any linear system
with coefficient matrix A will have a unique solution.

19 We will conclude each chapter (except for Chapter 9) with some
true–false questions, over 400 in all. We will start with a group of
about 10 straightforward statements that refer directly to definitions
and theorems given in the chapter. Then there may be some
computational exercises, and the remaining ones are more
conceptual, calling for independent reasoning. In some chapters, a
few of the problems toward the end can be quite challenging. Don’t
expect a balanced coverage of all the topics; some concepts are
better suited for this kind of questioning than others.
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8. There exists a system of three linear equations with
three unknowns that has exactly three solutions.

9. There exists a 5 × 5 matrix A of rank 4 such that the
system A�x = �0 has only the solution �x = �0.

10. If matrix A is in reduced row-echelon form, then at least
one of the entries in each column must be 1.

11. The system

⎡
⎣1 2 3

4 5 6
0 0 0

⎤
⎦ �x =
⎡
⎣1

2
3

⎤
⎦ is inconsistent.

12. There exists a 2 × 2 matrix A such that A

[
1
2

]
=
[

3
4

]
.

13. If A is a nonzero matrix of the form

[
a −b
b a

]
, then the

rank of A must be 2.

14. rank

⎡
⎣1 1 1

1 2 3
1 3 6

⎤
⎦ = 3

15. The system A�x =

⎡
⎢⎢⎣

0
0
0
1

⎤
⎥⎥⎦ is inconsistent for all 4 × 3

matrices A.

16. There exists a 2 × 2 matrix A such that

A

[
1
1

]
=
[

1
2

]
and A

[
2
2

]
=
[

2
1

]
.

17. rank

⎡
⎣2 2 2

2 2 2
2 2 2

⎤
⎦ = 2

18.
[

11 13 15
17 19 21

]⎡⎣−1
3

−1

⎤
⎦ =
⎡
⎣13

19
21

⎤
⎦

19. There exists a matrix A such that A

[−1
2

]
=
⎡
⎣3

5
7

⎤
⎦.

20. Vector

⎡
⎣1

2
3

⎤
⎦ is a linear combination of vectors

⎡
⎣4

5
6

⎤
⎦ and

⎡
⎣7

8
9

⎤
⎦ .

21. If the system A�x = �b has a unique solution, then A
must be a square matrix.

22. If A is any 4 × 3 matrix, then there exists a vector �b in
R4 such that the system A�x = �b is inconsistent.

23. There exist scalars a and b such that matrix

⎡
⎣ 0 1 a

−1 0 b
−a −b 0

⎤
⎦

has rank 3.

24. If �v and �w are vectors in R4, then �v must be a linear
combination of �v and �w.

25. If �u, �v, and �w are nonzero vectors in R2, then �w must
be a linear combination of �u and �v.

26. If �v and �w are vectors in R4, then the zero vector in R4

must be a linear combination of �v and �w.

27. If A and B are any two 3 × 3 matrices of rank 2, then A
can be transformed into B by means of elementary row
operations.

28. If vector �u is a linear combination of vectors �v and �w,
and �v is a linear combination of vectors �p, �q, and �r , then
�u must be a linear combination of �p, �q , �r , and �w.

29. A linear system with fewer unknowns than equations
must have infinitely many solutions or none.

30. The rank of any upper triangular matrix is the number
of nonzero entries on its diagonal.

31. There exists a 4 × 3 matrix A of rank 3 such that

A

⎡
⎣1

2
3

⎤
⎦ = �0.

32. The system A�x = �b is inconsistent if (and only if)
rref(A) contains a row of zeros.

33. If A is a 4 × 3 matrix of rank 3 and A�v = A �w for two
vectors �v and �w in R3, then vectors �v and �w must be
equal.

34. If A is a 4 × 4 matrix and the system A�x =

⎡
⎢⎢⎣

2
3
4
5

⎤
⎥⎥⎦ has a

unique solution, then the system A�x = �0 has only the
solution �x = �0.

35. If vector �u is a linear combination of vectors �v and �w,
then �w must be a linear combination of �u and �v.

36. If A =
[
�u �v �w

]
and rref(A) =

⎡
⎣1 0 2

0 1 3
0 0 0

⎤
⎦, then

the equation �w = 2�u + 3�v must hold.

37. If A and B are matrices of the same size, then the
formula rank(A + B) = rank(A) + rank(B) must
hold.
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38. If A and B are any two n ×n matrices of rank n, then A
can be transformed into B by means of elementary row
operations.

39. If a vector �v in R4 is a linear combination of �u and �w,
and if A is a 5 × 4 matrix, then A�v must be a linear
combination of A�u and A �w.

40. If matrix E is in reduced row-echelon form, and if we
omit a row of E , then the remaining matrix must be in
reduced row-echelon form as well.

41. The linear system A�x = �b is consistent if (and only if)
rank(A) = rank

[
A �b].

42. If A is a 3 × 4 matrix of rank 3, then the system

A�x =
⎡
⎣1

2
3

⎤
⎦ must have infinitely many solutions.

43. If two matrices A and B have the same reduced row-
echelon form, then the equations A�x = �0 and B�x = �0
must have the same solutions.

44. If matrix E is in reduced row-echelon form, and if we
omit a column of E , then the remaining matrix must be
in reduced row-echelon form as well.

45. If A and B are two 2 × 2 matrices such that the equa-
tions A�x = �0 and B�x = �0 have the same solutions, then
rref(A) must be equal to rref(B).

46. A lower triangular 3 × 3 matrix has rank 3 if (and only
if) the product of its diagonal entries is nonzero.

47. If ad−bc �= 0, then the matrix

[
a b
c d

]
must have rank 2.

48. If vector �w is a linear combination of �u and �v, then
�u + �v + �w must be a linear combination of �u and �u + �v.

49. If the linear system A�x = �b has a unique solution and
the linear system A�x = �c is consistent, then the linear
system A�x = �b + �c must have a unique solution.

50. A matrix is called a 0–1-matrix if all of its entries
are ones and zeros. True or false: The majority of the
0–1-matrices of size 3 × 3 have rank 3.
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2
Linear Transformations

2.1 Introduction to Linear Transformations and Their Inverses

Imagine yourself cruising in the Mediterranean as a crew member on a French
coast guard boat, looking for evildoers. Periodically, your boat radios its position to
headquarters in Marseille. You expect that communications will be intercepted. So,
before you broadcast anything, you have to transform the actual position of the boat,[

x1

x2

]
(x1 for Eastern longitude, x2 for Northern latitude), into an encoded position[

y1

y2

]
.

You use the following code:

y1 = x1 + 3x2
y2 = 2x1 + 5x2.

For example, when the actual position of your boat is 5◦ E, 42◦ N, or

�x =
[

x1

x2

]
=
[

5
42

]
,

your encoded position will be

�y =
[

y1

y2

]
=
[

x1 + 3x2

2x1 + 5x2

]
=
[

5 + 3 · 42
2 · 5 + 5 · 42

]
=
[

131
220

]
.

See Figure 1.
The coding transformation can be represented as[

y1

y2

]
︸︷︷︸

�y

=
[

x1 + 3x2

2x1 + 5x2

]
=
[

1 3
2 5

]
︸ ︷︷ ︸

A

[
x1

x2

]
︸︷︷︸

�x

,

41
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Marseille

actual position

encoded position

x1
x2

5
42

=

y1
y2

131
220

=

Figure 1

or, more succinctly, as

�y = A�x .

The matrix A is called the (coefficient) matrix of the transformation.
A transformation of the form

�y = A�x
is called a linear transformation. We will discuss this important concept in greater
detail later in this section and throughout this chapter.

As the ship reaches a new position, the sailor on duty at headquarters in Mar-
seille receives the encoded message

�b =
[

133
223

]
.

He must determine the actual position of the boat. He will have to solve the linear
system

A�x = �b,

or, more explicitly, ∣∣∣∣ x1 + 3x2 = 133
2x1 + 5x2 = 223

∣∣∣∣ .
Here is his solution. Is it correct?

�x =
[

x1

x2

]
=
[

4
43

]
As the boat travels on and dozens of positions are radioed in, the sailor gets a

little tired of solving all those linear systems, and he thinks there must be a general
formula to simplify the task. He wants to solve the system∣∣∣∣ x1 + 3x2 = y1

2x1 + 5x2 = y2

∣∣∣∣
when y1 and y2 are arbitrary constants, rather than particular numerical values. He
is looking for the decoding transformation

�y → �x,
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which is the inverse1 of the coding transformation

�x → �y.

The method of finding this solution is nothing new. We apply elimination as we
have for a linear system with known values y1 and y2:∣∣∣∣ x1 + 3x2 = y1

2x1 + 5x2 = y2

∣∣∣∣ −→
−2 (I)

∣∣∣∣x1 + 3x2 = y1
−x2 = −2y1 + y2

∣∣∣∣ −→
÷(−1)

∣∣∣∣x1 + 3x2 = y1
x2 = 2y1 − y2

∣∣∣∣ −3 (II)
−→

∣∣∣∣x1 = −5y1 + 3y2
x2 = 2y1 − y2

∣∣∣∣ .
The formula for the decoding transformation is

x1 = −5y1 + 3y2,

x2 = 2y1 − y2,

or

�x = B�y, where B =
[−5 3

2 −1

]
.

Note that the decoding transformation is linear and that its coefficient matrix is

B =
[−5 3

2 −1

]
.

The relationship between the two matrices A and B is shown in Figure 2.

x� y�

Coding, with matrix A = 1
2

3
5

Decoding, with matrix B = −5
2

3
−1

Figure 2

Since the decoding transformation �x = B�y is the inverse of the coding trans-
formation �y = A�x , we say that the matrix B is the inverse of the matrix A. We can
write this as B = A−1.

Not all linear transformations [
x1

x2

]
→
[

y1

y2

]
are invertible. Suppose some ignorant officer chooses the code

y1 = x1 + 2x2
y2 = 2x1 + 4x2

with matrix A =
[

1 2
2 4

]
for the French coast guard boats. When the sailor in Marseille has to decode a
position, for example,

�b =
[

89
178

]
,

1We will discuss the concept of the inverse of a transformation more systematically in Section 2.4.
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he will be chagrined to discover that the system∣∣∣∣ x1 + 2x2 = 89
2x1 + 4x2 = 178

∣∣∣∣
has infinitely many solutions, namely,[

x1

x2

]
=
[

89 − 2t
t

]
,

where t is an arbitrary number.
Because this system does not have a unique solution, it is impossible to recover

the actual position from the encoded position: The coding transformation and the
coding matrix A are noninvertible. This code is useless!

Now let us discuss the important concept of linear transformations in greater
detail. Since linear transformations are a special class of functions, it may be helpful
to review the concept of a function first.

Consider two sets X and Y . A function T from X to Y is a rule that associates
with each element x of X a unique element y of Y . The set X is called the domain
of the function, and Y is its target space. We will sometimes refer to x as the input
of the function and to y as its output. Figure 3 shows an example where domain X
and target space Y are finite.

X Y

T

Figure 3 Domain X and target space Y of a function T .

In precalculus and calculus, you studied functions whose input and output are
scalars (i.e., whose domain and target space are the real numbers R or subsets of
R); for example,

y = x2, f (x) = ex , g(t) = t2 − 2

t − 1
.

In multivariable calculus, you may have encountered functions whose input or out-
put were vectors.

EXAMPLE 1 y = x2
1 + x2

2 + x2
3

This formula defines a function from the vector space R3 to R. The input is the

vector �x =
⎡
⎣x1

x2

x3

⎤
⎦, and the output is the scalar y. �

EXAMPLE 2 �r =
⎡
⎣cos(t)

sin(t)
t

⎤
⎦

This formula defines a function from R to the vector space R3, with input t and
output �r . �
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We now return to the topic of linear transformations.

Definition 2.1.1 Linear transformations2

A function T from Rm to Rn is called a linear transformation if there exists an
n × m matrix A such that

T (�x) = A�x,

for all �x in the vector space Rm .

It is important to note that a linear transformation is a special kind of function.
The input and the output are both vectors. If we denote the output vector T (�x) by
�y, we can write

�y = A�x .

Let us write this equation in terms of its components:⎡
⎢⎢⎢⎣

y1

y2
...

yn

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

a11 a12 · · · a1m

a21 a22 · · · a2m
...

...
...

an1 an2 · · · anm

⎤
⎥⎥⎥⎦
⎡
⎢⎢⎢⎣

x1

x2
...

xm

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

a11x1 + a12x2 + · · · + a1m xm

a21x1 + a22x2 + · · · + a2m xm
...

...
...

an1x1 + an2x2 + · · · + anm xm

⎤
⎥⎥⎥⎥⎦ ,

or

y1 = a11x1 + a12x2 + · · · + a1m xm

y2 = a21x1 + a22x2 + · · · + a2m xm
... = ...

...
...

yn = an1x1 + an2x2 + · · · + anm xm .

The output variables yi are linear functions of the input variables x j . In some
branches of mathematics, a first-order function with a constant term, such as
y = 3x1 − 7x2 + 5x3 + 8, is called linear. Not so in linear algebra: The linear func-
tions of m variables are those of the form y = c1x1 + c2x2 + · · · + cm xm , for some
coefficients c1, c2, . . . , cm . By contrast, a function such as y = 3x1 − 7x2 + 5x3 + 8
is called affine.

EXAMPLE 3 The linear transformation

y1 = 7x1 + 3x2 − 9x3 + 8x4
y2 = 6x1 + 2x2 − 8x3 + 7x4
y3 = 8x1 + 4x2 + 7x4

(a function from R4 to R3) is represented by the 3 × 4 matrix

A =
⎡
⎣7 3 −9 8

6 2 −8 7
8 4 0 7

⎤
⎦ . �

2This is one of several possible definitions of a linear transformation; we could just as well have
chosen the statement of Theorem 2.1.3 as the definition (as many texts do). This will be a recurring
theme in this text: Most of the central concepts of linear algebra can be characterized in two or more
ways. Each of these characterizations can serve as a possible definition; the other characterizations
will then be stated as theorems, since we need to prove that they are equivalent to the chosen
definition. Among these multiple characterizations, there is no “correct” definition (although
mathematicians may have their favorite). Each characterization will be best suited for certain purposes
and problems, while it is inadequate for others.
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EXAMPLE 4 The coefficient matrix of the identity transformation

y1 = x1
y2 = x2
...

. . .

yn = xn

(a linear transformation from Rn to Rn whose output equals its input) is the n × n
matrix ⎡

⎢⎢⎢⎣
1 0 . . . 0
0 1 . . . 0
...

...
. . .

...

0 0 . . . 1

⎤
⎥⎥⎥⎦ .

All entries on the main diagonal are 1, and all other entries are 0. This matrix is
called the identity matrix and is denoted by In:

I2 =
[

1 0
0 1

]
, I3 =

⎡
⎣1 0 0

0 1 0
0 0 1

⎤
⎦ , and so on. �

We have already seen the identity matrix in other contexts. For example, we
have shown that a linear system A�x = �b of n equations with n unknowns has a
unique solution if and only if rref(A) = In . See Theorem 1.3.4.

0
2

1
0

Figure 4

EXAMPLE 5 Consider the letter L (for Linear?) in Figure 4, made up of the vectors

[
1
0

]
and

[
0
2

]
.

Show the effect of the linear transformation

T (�x) =
[

0 −1
1 0

]
�x

on this letter, and describe the transformation in words.

Solution
We have

T

[
1
0

]
=
[

0 −1
1 0

] [
1
0

]
=
[

0
1

]
and T

[
0
2

]
=
[

0 −1
1 0

] [
0
2

]
=
[−2

0

]
,

as shown in Figure 5.

0
2

1
0

0
1

−2
0

0
1

−1
0

Figure 5
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The L is rotated through an angle of 90◦ in the counterclockwise direction.

Let’s examine the effect of transformation T on an arbitrary vector �x =
[

x1

x2

]
:

T (�x) =
[

0 −1
1 0

]
�x =
[

0 −1
1 0

] [
x1

x2

]
=
[−x2

x1

]
.

We observe that the vectors �x and T (�x) have the same length,√
x2

1 + x2
2 =
√

(−x2)2 + x2
1 ,

and that they are perpendicular to one another, since the dot product equals zero.
See Definition A.8 in the Appendix:

�x · T (�x) =
[

x1

x2

]
·
[−x2

x1

]
= −x1x2 + x2x1 = 0.

Paying attention to the signs of the components, we see that if �x is in the first

quadrant (meaning that x1 and x2 are both positive), then T (�x) =
[−x2

x1

]
is in the

second quadrant. See Figure 6.

T
x1
x2

x� =

−x2
x1

T(x�) =

Figure 6

We can conclude that T (�x) is obtained by rotating vector �x through an angle of

90◦ in the counterclockwise direction, as in the special cases �x =
[

1
0

]
and �x =

[
0
2

]
considered earlier. (Check that the rotation is indeed counterclockwise when �x is in
the second, third, or fourth quadrant.) �

EXAMPLE 6 Consider the linear transformation T (�x) = A�x , with

A =
⎡
⎣1 2 3

4 5 6
7 8 9

⎤
⎦ .

Find

T

⎡
⎣1

0
0

⎤
⎦ and T

⎡
⎣0

0
1

⎤
⎦ ,

where for simplicity we write T

⎡
⎣1

0
0

⎤
⎦ instead of T

⎛
⎝
⎡
⎣1

0
0

⎤
⎦
⎞
⎠.
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Solution
A straightforward computation shows that

T

⎡
⎣1

0
0

⎤
⎦ =
⎡
⎣1 2 3

4 5 6
7 8 9

⎤
⎦
⎡
⎣1

0
0

⎤
⎦ =
⎡
⎣1

4
7

⎤
⎦

and

T

⎡
⎣0

0
1

⎤
⎦ =
⎡
⎣1 2 3

4 5 6
7 8 9

⎤
⎦
⎡
⎣0

0
1

⎤
⎦ =
⎡
⎣3

6
9

⎤
⎦ .

Note that T

⎡
⎣1

0
0

⎤
⎦ is the first column of the matrix A and that T

⎡
⎣0

0
1

⎤
⎦ is its third

column. �
We can generalize this observation:

Theorem 2.1.2 The columns of the matrix of a linear transformation

Consider a linear transformation T from Rm to Rn . Then, the matrix of T is

A =

⎡
⎢⎢⎢⎢⎣

| | |

T (�e1) T (�e2) · · · T (�em)

| | |

⎤
⎥⎥⎥⎥⎦ , where �ei =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
...

1
...

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦ ← i th

.

To justify this result, write

A =

⎡
⎢⎢⎢⎢⎣

| | |

�v1 �v2 · · · �vm

| | |

⎤
⎥⎥⎥⎥⎦ .

Then

T (�ei ) = A�ei =

⎡
⎢⎢⎢⎢⎣

| | | |

�v1 �v2 · · · �vi · · · �vm

| | | |

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
...

1
...

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

= �vi ,

by Theorem 1.3.8.
The vectors �e1, �e2, . . . , �em in the vector space Rm are sometimes referred to as

the standard vectors in Rm . The standard vectors �e1, �e2, �e3 in R3 are often denoted
by �i , �j , �k.
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EXAMPLE 7 Consider a linear transformation T (�x) = A�x from Rm to Rn .

a. What is the relationship among T (�v), T ( �w), and T (�v + �w), where �v and �w
are vectors in Rm?

b. What is the relationship between T (�v) and T (k �v), where �v is a vector in Rm

and k is a scalar?

Solution
a. Applying Theorem 1.3.10, we find that

T (�v + �w) = A(�v + �w) = A�v + A �w = T (�v) + T ( �w).

In words, the transform of the sum of two vectors equals the sum of the
transforms.

b. Again, apply Theorem 1.3.10:

T (k �v) = A(k �v) = k A�v = kT (�v).

In words, the transform of a scalar multiple of a vector is the scalar multiple
of the transform. �

Figure 7 illustrates these two properties in the case of the linear transformation
T from R2 to R2 that rotates a vector through an angle of 90◦ in the counterclock-
wise direction. Compare this with Example 5.

T

(a)

T(v� + w�) =
T(v�) + T(w�)

v� + w�

v�
w�

T(w�)

T(v�)
T

(b)

T(kv�) = kT(v�)

v� kv�
T(v�)

Figure 7 (a) Illustrating the property T ( �v + �w) = T ( �v) + T ( �w).
(b) Illustrating the property T (k �v) = kT ( �v).

In Example 7, we saw that a linear transformation satisfies the two equations
T (�v+ �w) = T (�v)+T ( �w) and T (k �v) = kT (�v). Now we will show that the converse
is true as well: Any transformation from Rm to Rn that satisfies these two equations
is a linear transformation.

Theorem 2.1.3 Linear transformations

A transformation T from Rm to Rn is linear if (and only if)

a. T (�v + �w) = T (�v) + T ( �w), for all vectors �v and �w in Rm , and

b. T (k �v) = kT (�v), for all vectors �v in Rm and all scalars k.

Proof In Example 7, we saw that a linear transformation satisfies the equations in (a)
and (b). To prove the converse, consider a transformation T from Rm to Rn that
satisfies equations (a) and (b). We must show that there exists a matrix A such that
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T (�x) = A�x , for all �x in the vector space Rm . Let �e1, . . . , �em be the standard vectors
introduced in Theorem 2.1.2.

T (�x) = T

⎡
⎢⎢⎢⎣

x1

x2
...

xm

⎤
⎥⎥⎥⎦ = T (x1�e1 + x2�e2 + · · · + xm�em)

= T (x1�e1) + T (x2�e2) + · · · + T (xm�em) (by property a)

= x1T (�e1) + x2T (�e2) + · · · + xm T (�em) (by property b)

=

⎡
⎢⎢⎢⎢⎣

| | |

T (�e1) T (�e2) · · · T (�em)

| | |

⎤
⎥⎥⎥⎥⎦
⎡
⎢⎢⎢⎣

x1

x2
...

xm

⎤
⎥⎥⎥⎦ = A�x

�

Here is an example illustrating Theorem 2.1.3.

EXAMPLE 8 Consider a linear transformation T from R2 to R2 such that T (�v1) = 1
2 �v1 and

T (�v2) = 2�v2, for the vectors �v1 and �v2 sketched in Figure 8. On the same axes,
sketch T (�x), for the given vector �x . Explain your solution.

Solution
Using a parallelogram, we can represent �x as a linear combination of �v1 and �v2, as
shown in Figure 9:

�x = c1 �v1 + c2 �v2.

By Theorem 2.1.3,

T (�x) = T (c1 �v1 + c2 �v2) = c1T (�v1) + c2T (�v2) = 1
2 c1 �v1 + 2c2 �v2.

The vector c1 �v1 is cut in half, and the vector c2 �v2 is doubled, as shown in Figure 10.

v�2

v�1

x�

Figure 8

c2v�2

c1v�1

x� = c1v�1 + c2v�2

Figure 9

2c2v�2

c2v�2

c1v�1

x�

T(x�)

c1v�1
1
2

Figure 10

Imagine that vector �x is drawn on a rubber sheet. Transformation T expands
this sheet by a factor of 2 in the �v2-direction and contracts it by a factor of 2 in the
�v1-direction. (We prefer “contracts by a factor of 2” to the awkward “expands by a
factor of 1

2 .”) �
We will conclude this section with one more example of a linear transformation,

from computer science.
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EXAMPLE 9 Let’s develop a simple model of how people might surf the World Wide Web, by
following links. To keep things manageable, we consider a “mini-Web” with only
four pages, labeled 1, 2, 3, 4, linked as shown in the diagram below:

1 � 2

↓ ↙ ↑
3 → 4.

Let x1, x2, x3, and x4 be the proportions of the surfers who find themselves on each
of the four pages initially; we can collect this information in the distribution vector

�x =

⎡
⎢⎢⎣

x1

x2

x3

x4

⎤
⎥⎥⎦. For example, the initial distribution might be �x =

⎡
⎢⎢⎣

0.4
0.1
0.3
0.2

⎤
⎥⎥⎦,

meaning that 40% of the surfers are on page 1, and so forth. The components of a
distribution vector add up to 1, or 100%, of course.

At a predetermined time, at the blow of a whistle, each surfer will randomly
follow one of the links: If several links are available out of a web page, then an equal
proportion of the surfers will follow each of them. For example, the proportion of
surfers taking each of the two links out of page 1 (to pages 2 and 3) will be x1

2 .
Let the vector �y, with components y1, y2, y3, y4, represent the distribution of

the surfers after the transition. According to the rules stated above, we will have

y1 = 1
2 x2

y2 = 1
2 x1 + x4

y3 = 1
2 x1 + 1

2 x2

y4 = x3

,

or �y = A�x in vector form, where

A =

⎡
⎢⎢⎢⎢⎣

0 1
2 0 0

1
2 0 0 1
1
2

1
2 0 0

0 0 1 0

⎤
⎥⎥⎥⎥⎦ ,

showing that �y = T (�x) is a linear transformation. Matrix A is referred to as the
transition matrix of this transformation.

For example, the equation y2 = 1
2 x1 + x4 reflects the fact that half of the surfers

from page 1 and all of the surfers from page 4 will follow the links to page 2.
Alternatively, we can construct the matrix A column by column. The j th col-

umn of A tells us where the surfers go from page j . For example, the second column
of A is ⎡

⎢⎢⎢⎣
1
2

0
1
2

0

⎤
⎥⎥⎥⎦ ,

indicating that half of the surfers from page 2 take the link to page 1, and the other
half go to page 3. Thus, the entries in each column of A must add up to 1.

Let’s discuss the structure of matrix A more formally. Let c j be the number
of links going out of page j . For example, we have c2 = 2 and c3 = 1 for our
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mini-Web. Then the proportion of the surfers taking a link from page j to page i
will be x j

c j
, since the initial population x j of page j gets distributed equally among

the c j outgoing links. We see that the i j th entry of A is 1
c j

if there is a link from
page j to page i ; the other entries are 0. Thus, we have

ai j =
{

1/c j if there is a link j → i
0 otherwise.

We might wonder whether this system has any equilibrium distributions, that is,
distributions �x such that A�x = �x . The distribution after the transition is required to
be exactly the same as before. To find out, we have to solve the linear system∣∣∣∣∣∣∣∣∣∣∣

1
2 x2 = x1

1
2 x1 + x4 = x2

1
2 x1 + 1

2 x2 = x3

x3 = x4

∣∣∣∣∣∣∣∣∣∣∣
or

∣∣∣∣∣∣∣∣∣∣∣

−x1 + 1
2 x2 = 0

1
2 x1 − x2 + x4 = 0

1
2 x1 + 1

2 x2 − x3 = 0

x3 − x4 = 0

∣∣∣∣∣∣∣∣∣∣∣

with augmented matrix M =

⎡
⎢⎢⎢⎢⎣

−1 1
2 0 0 0

1
2 −1 0 1 0
1
2

1
2 −1 0 0

0 0 1 −1 0

⎤
⎥⎥⎥⎥⎦ and rref(M) =

⎡
⎢⎢⎣

1 0 0 −2/3 0
0 1 0 −4/3 0
0 0 1 −1 0
0 0 0 0 0

⎤
⎥⎥⎦. The solutions are x1 = 2t

3 , x2 = 4t
3 , x3 = x4 = t ,

where t is an arbitrary real number. Since we are looking for a distribution vector,
we want x1 + x2 + x3 + x4 = 4t = 1, so t = 1

4 . The equilibrium distribution is

�xequ =

⎡
⎢⎢⎢⎣

1/6

1/3

1/4

1/4

⎤
⎥⎥⎥⎦ ≈

⎡
⎢⎢⎢⎣

16.7%

33.3%

25%

25%

⎤
⎥⎥⎥⎦ .

In this context, an interesting question arises: If we iterate our transition, letting
the surfers move to a new page over and over again, following links at random,
will the system eventually approach this equilibrium state �xequ , regardless of the
initial distribution? Perhaps surprisingly, the answer is affirmative for the mini-Web
considered in this example, as well as for many others: The equilibrium distribution
represents the distribution of the surfers in the long run, for any initial distribution.
We will further discuss these important issues in Theorem 2.3.11 and then again in
Chapter 7.

In 1998, Sergey Brin and Lawrence Page, then at Stanford University, published
a landmark paper, “The Anatomy of a Large-Scale Hypertextual Search Engine,”
where they present a prototype of the search engine Google. The key feature of this
search engine is a “quality ranking” of each web page, which measures its “link
popularity.” They call this ranking PageRank, after the second author of the paper.

The basic idea is to define the popularity of a web page as the likelihood that
random surfers find themselves on that web page in the long run. But this is exactly
the corresponding component of the equilibrium vector �xequ we found above. In our
example, page 2 is the most popular, with a PageRank of 1/3, while page 1 is only
half as popular, with a PageRank of 1/6.
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Actually, the model developed by Brin and Page in their 1998 paper is a bit
more complicated, involving a “jumping rate” as well. They assume that surfers
will not always follow links, but sometimes randomly jump to a new page, even if
there is no link available to that page. The “jumping rate,” often set at 0.15 or 0.2,
represents the proportion of transitions where a surfer jumps rather than following
a link. See Exercise 53. In our example, we set the jumping rate to be 0 in order to
simplify the computation. The resulting popularity ranking (with jumping rate 0) is
sometimes referred to as the naı̈ve PageRank. �
Example 9 motivates the following definitions:

Definition 2.1.4 Distribution vectors and transition matrices

A vector �x in Rn is said to be a distribution vector if its components add up to 1
and all the components are positive or zero.

A square matrix A is said to be a transition matrix (or stochastic matrix) if all
its columns are distribution vectors. This means that all the entries of a transition
matrix are positive or zero, and the entries in each column add up to 1.

If A is a transition matrix and �x is a distribution vector, then A�x will be a
distribution vector as well. See Exercise 49.

In Example 9, the vector �xequ is a distribution vector and the matrix A is a

transition matrix. Simple examples of transition matrices are

[
0.3 0.6
0.7 0.4

]
,

[
1 0
0 1

]
,[

0.2 0
0.8 1

]
, and

[
1 1
0 0

]
, while

[
0.5 −0.1
0.5 1.1

]
fails to be a transition matrix since

one of its entries is negative.

EXERCISES 2.1

GOAL Use the concept of a linear transformation in
terms of the formula �y = A�x , and interpret simple lin-
ear transformations geometrically. Find the inverse of a
linear transformation from R2 to R2 (if it exists). Find the
matrix of a linear transformation column by column.

Consider the transformations from R3 to R3 defined in
Exercises 1 through 3. Which of these transformations are
linear?

1. y1 = 2x2
y2 = x2 + 2
y3 = 2x2

2. y1 = 2x2
y2 = 3x3
y3 = x1

3. y1 = x2 − x3
y2 = x1x3
y3 = x1 − x2

4. Find the matrix of the linear transformation

y1 = 9x1 + 3x2 − 3x3
y2 = 2x1 − 9x2 + x3
y3 = 4x1 − 9x2 − 2x3
y4 = 5x1 + x2 + 5x3.

5. Consider the linear transformation T from R3 to R2

with

T

⎡
⎣1

0
0

⎤
⎦ =
[

7
11

]
, T

⎡
⎣0

1
0

⎤
⎦ =
[

6
9

]
,

and T

⎡
⎣0

0
1

⎤
⎦ =
[−13

17

]
.

Find the matrix A of T .

6. Consider the transformation T from R2 to R3 given by

T

[
x1

x2

]
= x1

⎡
⎣1

2
3

⎤
⎦+ x2

⎡
⎣4

5
6

⎤
⎦ .

Is this transformation linear? If so, find its matrix.

7. Suppose �v1, �v2, . . . , �vm are arbitrary vectors in Rn .
Consider the transformation from Rm to Rn given by

T

⎡
⎢⎢⎢⎣

x1

x2
...

xm

⎤
⎥⎥⎥⎦ = x1 �v1 + x2 �v2 + · · · + xm �vm .

Is this transformation linear? If so, find its matrix A in
terms of the vectors �v1, �v2, . . . , �vm .
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8. Find the inverse of the linear transformation

y1 = x1 + 7x2
y2 = 3x1 + 20x2.

In Exercises 9 through 12, decide whether the given ma-
trix is invertible. Find the inverse if it exists. In Exercise
12, the constant k is arbitrary.

9.
[

2 3
6 9

]
10.
[

1 2
4 9

]

11.
[

1 2
3 9

]
12.
[

1 k
0 1

]
13. Prove the following facts:

a. The 2 × 2 matrix

A =
[

a b
c d

]
is invertible if and only if ad − bc �= 0. Hint: Con-
sider the cases a �= 0 and a = 0 separately.

b. If [
a b
c d

]
is invertible, then[

a b
c d

]−1

= 1

ad − bc

[
d −b

−c a

]
.

[The formula in part (b) is worth memorizing.]

14. a. For which values of the constant k is the matrix[
2 3
5 k

]
invertible?

b. For which values of the constant k are all entries of[
2 3
5 k

]−1

integers?

See Exercise 13.

15. For which values of the constants a and b is the matrix

A =
[

a −b
b a

]
invertible? What is the inverse in this case? See Exer-
cise 13.

Give a geometric interpretation of the linear transforma-
tions defined by the matrices in Exercises 16 through 23.
Show the effect of these transformations on the letter L
considered in Example 5. In each case, decide whether the
transformation is invertible. Find the inverse if it exists,
and interpret it geometrically. See Exercise 13.

16.
[

3 0
0 3

]
17.
[−1 0

0 −1

]
18.
[

0.5 0
0 0.5

]

19.
[

1 0
0 0

]
20.
[

0 1
1 0

]
21.
[

0 1
−1 0

]

22.
[

1 0
0 −1

]
23.
[

0 2
−2 0

]

Consider the circular face in the accompanying figure. For
each of the matrices A in Exercises 24 through 30, draw
a sketch showing the effect of the linear transformation
T(�x) = A�x on this face.

1

1

24.
[

0 −1
1 0

]
25.
[

2 0
0 2

]
26.
[

0 1
1 0

]

27.
[

1 0
0 −1

]
28.
[

1 0
0 2

]
29.
[−1 0

0 −1

]

30.
[

0 0
0 1

]
31. In Chapter 1, we mentioned that an old German bill

shows the mirror image of Gauss’s likeness. What linear
transformation T can you apply to get the actual picture
back?

32. Find an n × n matrix A such that A�x = 3�x , for all �x
in Rn .

33. Consider the transformation T from R2 to R2 that
rotates any vector �x through an angle of 45◦ in the coun-
terclockwise direction, as shown in the following figure:

T(x�)

x�
45°

You are told that T is a linear transformation. (This will
be shown in the next section.) Find the matrix of T .

34. Consider the transformation T from R2 to R2 that ro-
tates any vector �x through a given angle θ in the coun-
terclockwise direction. Compare this with Exercise 33.
You are told that T is linear. Find the matrix of T in
terms of θ .
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35. In the example about the French coast guard in this sec-
tion, suppose you are a spy watching the boat and listen-
ing in on the radio messages from the boat. You collect
the following data:

• When the actual position is

[
5

42

]
, they radio

[
89
52

]
.

• When the actual position is

[
6

41

]
, they radio

[
88
53

]
.

Can you crack their code (i.e., find the coding matrix),
assuming that the code is linear?

36. Let T be a linear transformation from R2 to R2. Let �v1,
�v2, and �w be three vectors in R2, as shown below. We
are told that T (�v1) = �v1 and T (�v2) = 3�v2. On the same
axes, sketch T ( �w).

v�2

v�1

w�

37. Consider a linear transformation T from R2 to R2. Sup-
pose that �v and �w are two arbitrary vectors in R2 and
that �x is a third vector whose endpoint is on the line
segment connecting the endpoints of �v and �w. Is the
endpoint of the vector T (�x) necessarily on the line seg-
ment connecting the endpoints of T (�v) and T ( �w)? Jus-
tify your answer.

T(x�)

T(w�)

T(v�)

w�

x�
v�

T

Hint: We can write �x = �v + k( �w − �v), for some scalar
k between 0 and 1.

We can summarize this exercise by saying that a
linear transformation maps a line onto a line.

38. The two column vectors �v1 and �v2 of a 2 × 2
matrix A are shown in the accompanying sketch. Con-
sider the linear transformation T (�x) = A�x , from R2 to
R2. Sketch the vector

T

[
2

−1

]
.

v�1v�2

O

39. Show that if T is a linear transformation from Rm to
Rn , then

T

⎡
⎢⎢⎢⎣

x1

x2
...

xm

⎤
⎥⎥⎥⎦ = x1T (�e1) + x2T (�e2) + · · · + xm T (�em),

where �e1, �e2, . . . , �em are the standard vectors in Rm .

40. Describe all linear transformations from R (= R1) to R.
What do their graphs look like?

41. Describe all linear transformations from R2 to R

(= R1). What do their graphs look like?

42. When you represent a three-dimensional object graphi-
cally in the plane (on paper, the blackboard, or a com-
puter screen), you have to transform spatial coordinates,⎡

⎣x1

x2

x3

⎤
⎦ ,

into plane coordinates,

[
y1

y2

]
. The simplest choice is a

linear transformation, for example, the one given by the
matrix ⎡

⎣− 1
2 1 0

− 1
2 0 1

⎤
⎦ .

a. Use this transformation to represent the unit cube
with corner points⎡

⎣0
0
0

⎤
⎦ ,

⎡
⎣1

0
0

⎤
⎦ ,

⎡
⎣0

1
0

⎤
⎦ ,

⎡
⎣0

0
1

⎤
⎦ ,

⎡
⎣1

1
0

⎤
⎦ ,

⎡
⎣0

1
1

⎤
⎦ ,

⎡
⎣1

0
1

⎤
⎦ ,

⎡
⎣1

1
1

⎤
⎦ .

Include the images of the x1, x2, and x3 axes in your
sketch:

y2

y1
−1

−1

1

1

b. Represent the image of the point

⎡
⎢⎢⎣

1
1
2
1
2

⎤
⎥⎥⎦ in your fig-

ure in part (a).
(part c on next page)
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c. Find all the points ⎡
⎣x1

x2

x3

⎤
⎦ in R3

that are transformed to

[
0
0

]
. Explain.

43. a. Consider the vector �v =
⎡
⎣2

3
4

⎤
⎦. Is the transformation

T (�x) = �v · �x (the dot product) from R3 to R linear?
If so, find the matrix of T .

b. Consider an arbitrary vector �v in R3. Is the transfor-
mation T (�x) = �v · �x linear? If so, find the matrix of
T (in terms of the components of �v).

c. Conversely, consider a linear transformation T from
R3 to R. Show that there exists a vector �v in R3 such
that T (�x) = �v · �x , for all �x in R3.

44. The cross product of two vectors in R3 is given by⎡
⎣a1

a2

a3

⎤
⎦×
⎡
⎣b1

b2

b3

⎤
⎦ =
⎡
⎣a2b3 − a3b2

a3b1 − a1b3

a1b2 − a2b1

⎤
⎦ .

See Definition A.9 and Theorem A.11 in the
Appendix. Consider an arbitrary vector �v in R3. Is the
transformation T (�x) = �v × �x from R3 to R3 linear?
If so, find its matrix in terms of the components of the
vector �v.

45. Consider two linear transformations �y = T (�x) and
�z = L(�y), where T goes from Rm to Rp and L goes
from Rp to Rn . Is the transformation �z = L

(
T (�x)
)

lin-
ear as well? [The transformation �z = L

(
T (�x)
)

is called
the composite of T and L .]

46. Let

A =
[

a b
c d

]
and B =

[
p q
r s

]
.

Find the matrix of the linear transformation T (�x) =
B(A�x). See Exercise 45. Hint: Find T (�e1) and T (�e2).

47. Let T be a linear transformation from R2 to R2. Three
vectors �v1, �v2, �w in R2 and the vectors T (�v1), T (�v2)

are shown in the accompanying figure. Sketch T ( �w).
Explain your answer.

w�
x2

x1

T

v�1

v�2

y2

y1

T(v�1)

T(v�2)

48. Consider two linear transformations T and L from R2

to R2. We are told that T (�v1) = L(�v1) and T (�v2) =
L(�v2) for the vectors �v1 and �v2 sketched below. Show
that T (�x) = L(�x), for all vectors �x in R2.

v�1

v�2

49. Prove that if A is a transition matrix and �x is a distribu-
tion vector, then A�x is a distribution vector as well.

For each of the mini-Webs in Exercises 50 through 52,
a. find the transition matrix A as defined in Example 9,
b. find the equilibrium distribution, and
c. find the web page(s) with the highest (naı̈ve) Page-

Rank.
Feel free to use technology throughout.

50. 1 � 2
↓ ↗ ↑
3 → 4

51. 1 → 2

� ↗ �

3 � 4

52. 1 � 2
↓ ↗
3

53. As in Example 9, consider the mini-Web with the link
structure shown in the diagram below:

1 � 2
↓ ↙ ↑
3 → 4.

Again, let vector �x represent the distribution of surfers
among the various pages at a given time. Following the
1998 paper by Brin and Page (see Example 9), we con-
sider a more sophisticated model of transition: At the
blow of a whistle, 80% of the surfers on a given page
will randomly follow a link, while the remaining 20%
will randomly “jump” to a web page (even if no link is
available). The jumpers have the option to stay on the
current page. For example, of the surfers that are ini-
tially on page 2, 40% will follow the link to page 1,
40% will follow the link to page 3, and 5% will jump to
any of the four webpages. If we add up the jumpers and
the link-followers, we see that 45% will move to page 1;
another 45% go to page 3; 5% will jump to page 4; and
5% will stay put on page 2. Thus, the second column of
the transition matrix B will be
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⎡
⎢⎢⎣

0.4 + 0.05
0.05

0.4 + 0.05
0.05

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

0.45
0.05
0.45
0.05

⎤
⎥⎥⎦ .

↑ ↖
link jumpers

followers

Let �y be the distribution vector after the transition; we
have y2 = 0.45x1 + 0.05x2 + 0.05x3 + 0.85x4, for
example.
a. Find the transition matrix B such that �y = B�x .
b. Explain why B = 0.2

N E + 0.8A = 0.05E + 0.8A,
where A is the matrix we found in Example 9, E is
the matrix whose entries are all 1, and N is the total
number of web pages.

c. Find the equilibrium distribution �xequ , such that
B�xequ = �xequ . Feel free to use technology. (The
components of this equilibrium solution represent
the PageRank of the various web pages, as defined
in the 1998 paper by Brin and Page.)

For each of the mini-Webs in Exercises 54 through 56,
a. find the transition matrix B as defined in Exercise

53 (with a jumping rate of 20%),
b. find the equilibrium distribution for the transition

matrix B, and
c. find the web page(s) with the highest PageRank

(with a jumping rate of 20%).
Feel free to use technology throughout.

54. 1 � 2
↓ ↗ ↑
3 → 4

55. 1 → 2

� ↗ �

3 � 4

56. 1 � 2
↓ ↗
3

57. Some parking meters in downtown Geneva, Switzer-
land, accept 2 Franc and 5 Franc coins.
a. A parking officer collects 51 coins worth 144

Francs. How many coins are there of each kind?
b. Find the matrix A that transforms the vector[

number of 2 Franc coins
number of 5 Franc coins

]

into the vector[
total value of coins

total number of coins

]
.

c. Is the matrix A in part (b) invertible? If so, find the
inverse (use Exercise 13). Use the result to check
your answer in part (a).

58. A goldsmith uses a platinum alloy and a silver alloy to
make jewelry; the densities of these alloys are exactly
20 and 10 grams per cubic centimeter, respectively.
a. King Hiero of Syracuse orders a crown from this

goldsmith, with a total mass of 5 kilograms (or
5,000 grams), with the stipulation that the platinum
alloy must make up at least 90% of the mass. The
goldsmith delivers a beautiful piece, but the king’s
friend Archimedes has doubts about its purity. While
taking a bath, he comes up with a method to check
the composition of the crown (famously shouting
“Eureka!” in the process, and running to the king’s
palace naked). Submerging the crown in water, he
finds its volume to be 370 cubic centimeters. How
much of each alloy went into this piece (by mass)?
Is this goldsmith a crook?

b. Find the matrix A that transforms the vector[
mass of platinum alloy

mass of silver alloy

]

into the vector [
total mass

total volume

]
,

for any piece of jewelry this goldsmith makes.
c. Is the matrix A in part (b) invertible? If so, find the

inverse (use Exercise 13). Use the result to check
your answer in part (a).

59. The conversion formula C = 5
9 (F − 32) from

Fahrenheit to Celsius (as measures of temperature) is
nonlinear, in the sense of linear algebra (why?). Still,
there is a technique that allows us to use a matrix to
represent this conversion.
a. Find the 2 × 2 matrix A that transforms the vector[

F
1

]
into the vector

[
C
1

]
. (The second row of A

will be
[

0 1
]
.)

b. Is the matrix A in part (a) invertible? If so, find the
inverse (use Exercise 13). Use the result to write a
formula expressing F in terms of C .

60. In the financial pages of a newspaper, one can some-
times find a table (or matrix) listing the exchange rates
between currencies. In this exercise we will consider
a miniature version of such a table, involving only
the Canadian dollar (C$) and the South African Rand
(ZAR). Consider the matrix

A =
[C$ ZAR

1 1/8
8 1

]
C$

ZAR
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representing the fact that C$1 is worth ZAR8 (as of
September 2012).
a. After a trip you have C$100 and ZAR1,600 in your

pocket. We represent these two values in the vec-

tor �x =
[

100
1,600

]
. Compute A�x . What is the practi-

cal significance of the two components of the vector
A�x?

b. Verify that matrix A fails to be invertible. For which
vectors �b is the system A�x = �b consistent? What
is the practical significance of your answer? If the
system A�x = �b is consistent, how many solutions �x
are there? Again, what is the practical significance
of the answer?

61. Consider a larger currency exchange matrix (see Exer-
cise 60), involving four of the world’s leading curren-
cies: Euro (C), U.S. dollar ($), Chinese yuan (¥), and
British pound (£).

A =

⎡
⎢⎣

C $ ¥ £
∗ 0.8 ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ 10

0.8 ∗ ∗ ∗

⎤
⎥⎦

C
$
¥
£

The entry ai j gives the value of one unit of the j th
currency, expressed in terms of the i th currency. For
example, a34 = 10 means that £1 = ¥10 (as of
August 2012). Find the exact values of the 13 missing
entries of A (expressed as fractions).

62. Consider an arbitrary currency exchange matrix A. See
Exercises 60 and 61.
a. What are the diagonal entries aii of A?
b. What is the relationship between ai j and a ji ?
c. What is the relationship among aik , ak j , and ai j ?
d. What is the rank of A? What is the relationship

between A and rref(A)?

63. Solving a linear system A�x = �0 by Gaussian elimina-
tion amounts to writing the vector of leading variables
as a linear transformation of the vector of free variables.
Consider the linear system

x1 − x2 + 4x5 = 0
x3 − x5 = 0

x4 − 2x5 = 0.

Find the matrix B such that

⎡
⎣ x1

x3
x4

⎤
⎦ = B

[
x2
x5

]
.

64. Consider the linear system

x1 + 2x2 + x3 + 7x4 = 0

x1 + 2x2 + 2x3 + 11x4 = 0

x1 + 2x2 + 3x3 + 15x4 = 0

x1 + 2x2 + 4x3 + 19x4 = 0.

Find the matrix B such that

[
x1
x3

]
= B

[
x2
x4

]
. See

Exercise 63.

2.2 Linear Transformations in Geometry

In Example 2.1.5 we saw that the matrix

[
0 −1
1 0

]
represents a counterclockwise

rotation through 90◦ in the coordinate plane. Many other 2 × 2 matrices define
simple geometrical transformations as well; this section is dedicated to a discussion
of some of those transformations.

EXAMPLE 1 Consider the matrices

A =
[

2 0
0 2

]
, B =

[
1 0
0 0

]
, C =

[−1 0
0 1

]
,

D =
[

0 1
−1 0

]
, E =

[
1 0.2
0 1

]
, and F =

[
1 −1
1 1

]
.

Show the effect of each of these matrices on our standard letter L,3 and describe
each transformation in words.

3See Example 2.1.5. Recall that vector

[
1
0

]
is the foot of our standard L, and

[
0
2

]
is its back.
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a.

0
2

1
0

0
4

2
0

2
0

0
2A =

The L gets enlarged by a factor of 2; we will call this transformation a scal-
ing by 2.

b.

0
2

1
0

1
0

1
0

0
0B =

The L gets smashed into the horizontal axis. We will call this transformation
the orthogonal projection onto the horizontal axis.

c.

0
2

1
0

0
2

−1
0

−1
0

0
1C =

The L gets flipped over the vertical axis. We will call this the reflection about
the vertical axis.

d.

0
2

1
0

0
−1

1
0D =

0
−1

2
0
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The L is rotated through 90◦, in the clockwise direction (this amounts to a
rotation through −90◦). The result is the opposite of what we got in Exam-
ple 2.1.5.

e.

0
2

1
0

0.4
2

1
0

1
0

0.2
1E =

The foot of the L remains unchanged, while the back is shifted horizontally
to the right; the L is italicized, becoming L. We will call this transformation
a horizontal shear.

f.

0
2

1
0

−2
2

1
1

1
1

−1
1F =

There are two things going on here: The L is rotated through 45◦ and also enlarged
(scaled) by a factor of

√
2. This is a rotation combined with a scaling (you may

perform the two transformations in either order). Among all the possible composites
of the transformations considered in parts (a) through (e), this one is particularly
important in applications as well as in pure mathematics. See Theorem 7.5.3, for
example. �

We will now take a closer look at the six types of transformations we encoun-
tered in Example 1.

Scalings
For any positive constant k, the matrix

[
k 0
0 k

]
defines a scaling by k, since

[
k 0
0 k

]
�x =
[

k 0
0 k

] [
x1

x2

]
=
[

kx1

kx2

]
= k

[
x1

x2

]
= k �x .

This is a dilation (or enlargement) if k exceeds 1, and it is a contraction (or
shrinking) for values of k between 0 and 1. (What happens when k is negative or
zero?)
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Orthogonal Projections4

Consider a line L in the plane, running through the origin. Any vector �x in R2 can
be written uniquely as

�x = �x‖ + �x⊥,

where �x‖ is parallel to line L , and �x⊥ is perpendicular to L . See Figure 1.

x�ll

x�⊥ (translated)

x�

O

L

Figure 1

x�llx�⊥

L⊥

x�

O

L

Figure 2

The transformation T (�x) = �x‖ from R2 to R2 is called the orthogonal projec-
tion of �x onto L , often denoted by projL(�x):

projL(�x) = �x‖.

You can think of projL(�x) as the shadow that vector �x casts on L if you shine a light
straight down on L .

Let L⊥ be the line through the origin perpendicular to L . Note that �x⊥ is par-
allel to L⊥, and we can interpret �x⊥ as the orthogonal projection of �x onto L⊥, as
illustrated in Figure 2.

We can use the dot product to write a formula for an orthogonal projection.
Before proceeding, you may want to review the section “Dot Product, Length,
Orthogonality” in the Appendix.

To find a formula for �x‖, let �w be a nonzero vector parallel to L . Since �x‖ is
parallel to �w, we can write

�x‖ = k �w,

for some scalar k about to be determined. Now �x⊥ = �x − �x‖ = �x − k �w is perpen-
dicular to line L , that is, perpendicular to �w, meaning that

(�x − k �w) · �w = 0.

It follows that

�x · �w − k( �w · �w) = 0, or k = �x · �w
�w · �w.

We can conclude that

projL(�x) = �x‖ = k �w =
( �x · �w

�w · �w
)

�w.

4The term orthogonal is synonymous with perpendicular. For a more general discussion of
projections, see Exercise 33.
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See Figure 3. Consider the special case of a unit vector �u parallel to L . Then the
formula for projection simplifies to

projL(�x) =
( �x · �u

�u · �u
)

�u = (�x · �u)�u

since �u · �u = ‖�u‖2 = 1 for a unit vector �u.

x�ll = projL(x�) = 

x�⊥ = x� − x�ll (translated)

x�

O

L

w�

w�x� ⋅ w�
w� ⋅ w�

Figure 3

Is the transformation T (�x) = projL(�x) linear? If so, what is its matrix? If we write

�x =
[

x1

x2

]
and �u =

[
u1

u2

]
,

then

projL(�x) = (�x · �u)�u =
([

x1

x2

]
·
[

u1

u2

])[
u1

u2

]

= (x1u1 + x2u2)

[
u1

u2

]

=
[

u2
1x1 + u1u2x2

u1u2x1 + u2
2x2

]

=
[

u2
1 u1u2

u1u2 u2
2

] [
x1

x2

]

=
[

u2
1 u1u2

u1u2 u2
2

]
�x .

It turns out that T (�x) = projL(�x) is indeed a linear transformation, with matrix[
u2

1 u1u2

u1u2 u2
2

]
. More generally, if �w is a nonzero vector parallel to L , then the

matrix is P = 1

w2
1 + w2

2

[
w2

1 w1w2

w1w2 w2
2

]
. See Exercise 12.

EXAMPLE 2 Find the matrix P of the orthogonal projection onto the line L spanned by �w =
[

3
4

]
.

Solution

P = 1

w2
1 + w2

2

[
w2

1 w1w2

w1w2 w2
2

]
= 1

25

[
9 12

12 16

]
=
[

0.36 0.48
0.48 0.64

]
�

Let us summarize our findings.
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Definition 2.2.1 Orthogonal Projections

Consider a line L in the coordinate plane, running through the origin. Any vector
�x in R2 can be written uniquely as

�x = �x‖ + �x⊥,

where �x‖ is parallel to line L , and �x⊥ is perpendicular to L .
The transformation T (�x) = �x‖ from R2 to R2 is called the orthogonal pro-

jection of �x onto L , often denoted by projL(�x). If �w is a nonzero vector parallel
to L, then

projL(�x) =
( �x · �w

�w · �w
)

�w.

In particular, if �u =
[

u1

u2

]
is a unit vector parallel to L, then

projL(�x) = (�x · �u)�u.

The transformation T (�x) = projL(�x) is linear, with matrix

P = 1

w2
1 + w2

2

[
w2

1 w1w2

w1w2 w2
2

]
=
[

u2
1 u1u2

u1u2 u2
2

]
.

Reflections
Again, consider a line L in the coordinate plane, running through the origin, and let
�x be a vector in R2. The reflection refL(�x) of �x about L is shown in Figure 4: We
are flipping vector �x over the line L . The line segment joining the tips of vectors
�x and refL �x is perpendicular to line L and bisected by L. In previous math courses
you have surely seen examples of reflections about the horizontal and vertical axes
[when comparing the graphs of y = f (x), y = − f (x), and y = f (−x), for
example].

We can use the representation �x = �x‖ + �x⊥ to write a formula for refL(�x). See
Figure 4.

x�

x�ll

O

L

x�⊥ (translated)

−x�⊥ (translated)

refL(x�)

Figure 4

We can see that

refL(�x) = �x‖ − �x⊥.

Adding up the equations �x = �x‖ + �x⊥ and refL(�x) = �x‖ − �x⊥, we find that �x +
refL(�x) = 2�x‖ = 2projL(�x), so

refL(�x) = 2projL(�x) − �x = 2P �x − �x = (2P − I2)�x,
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where P is the matrix representing the orthogonal projection onto the line L . See
Definition 2.2.1. Thus, the matrix S of the reflection is

S = 2P − I2 =
[

2u2
1 2u1u2

2u1u2 2u2
2

]
−
[

1 0
0 1

]
=
[

2u2
1 − 1 2u1u2

2u1u2 2u2
2 − 1

]
,

It turns out that this matrix S is of the form

[
a b
b −a

]
, where a2 + b2 = 1 (we leave

the straightforward verification as Exercise 13). Conversely, any matrix of the form[
a b
b −a

]
, with a2 + b2 = 1, represents a reflection about a line. See Exercise 17.

We are not surprised to see that the column vectors

[
a
b

]
and

[
b

−a

]
of a re-

flection matrix are unit vectors, with a2 + b2 = b2 + (−a)2 = 1. Indeed, the

column vectors are the reflections of the standard vectors,

[
a
b

]
= refL(�e1) and[

b
−a

]
= refL(�e2), by Theorem 2.1.2. Since the standard vectors �e1 and �e2 are unit

vectors and a reflection preserves length, these column vectors will be unit vectors
as well. Also, it makes sense that the column vectors are perpendicular, with dot

product

[
a
b

]
·
[

b
−a

]
= ab + b(−a) = 0, since the reflection preserves the right

angle between �e1 and �e2. See Figure 5.

refL(e�2)
b

L

–a
= refL(e�1)

a
b

=

e�1

e�2

Figure 5

Definition 2.2.2 Reflections

Consider a line L in the coordinate plane, running through the origin, and let
�x = �x‖ + �x⊥ be a vector in R2. The linear transformation T (�x) = �x‖ − �x⊥ is
called the reflection of �x about L , often denoted by refL(�x):

refL(�x) = �x‖ − �x⊥.

We have a formula relating refL(�x) to projL(�x):

refL(�x) = 2projL(�x) − �x = 2(�x · �u)�u − �x .

The matrix of T is of the form

[
a b
b −a

]
, where a2 + b2 = 1. Conversely, any

matrix of this form represents a reflection about a line.
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Use Figure 6 to explain the formula refL(�x) = 2projL(�x) − �x geometrically.

x�

O

L

refL(x�)

projL(x�)

Figure 6

Orthogonal Projections and Reflections in Space
Although this section is mostly concerned with linear transformations from R2 to
R2, we will take a quick look at orthogonal projections and reflections in space,
since this theory is analogous to the case of two dimensions.

Let L be a line in coordinate space, running through the origin. Any vector �x
in R3 can be written uniquely as �x = �x‖ + �x⊥, where �x‖ is parallel to L , and �x⊥ is
perpendicular to L . We define

projL(�x) = �x‖,

and we have the formula

projL(�x) = �x‖ = (�x · �u)�u,

where �u is a unit vector parallel to L . See Definition 2.2.1.
Let L⊥ = V be the plane through the origin perpendicular to L; note that the

vector �x⊥ will be parallel to L⊥ = V . We can give formulas for the orthogonal
projection onto V , as well as for the reflections about V and L , in terms of the
orthogonal projection onto L:

projV (�x) = �x − projL(�x) = �x − (�x · �u)�u,

refL(�x) = projL(�x) − projV (�x) = 2projL(�x) − �x = 2(�x · �u)�u − �x, and

refV (�x) = projV (�x) − projL(�x) = −refL(�x) = �x − 2(�x · �u)�u.

See Figure 7, and compare with Definition 2.2.2.

x�

O V = L⊥

L

projL(x�)

projV(x�)

Figure 7
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EXAMPLE 3 Let V be the plane defined by 2x1 +x2 −2x3 = 0, and let �x =
⎡
⎣ 5

4
−2

⎤
⎦. Find refV (�x).

Solution
Note that the vector �v =

⎡
⎣ 2

1
−2

⎤
⎦ is perpendicular to plane V (the components of �v

are the coefficients of the variables in the given equation of the plane: 2, 1, and −2).
Thus,

�u = 1

‖�v‖ �v = 1

3

⎡
⎣ 2

1
−2

⎤
⎦

is a unit vector perpendicular to V , and we can use the formula we derived earlier:

refV (�x) = �x − 2(�x · �u)�u =
⎡
⎣ 5

4
−2

⎤
⎦− 2

9

⎛
⎝
⎡
⎣ 5

4
−2

⎤
⎦ ·
⎡
⎣ 2

1
−2

⎤
⎦
⎞
⎠
⎡
⎣ 2

1
−2

⎤
⎦

=
⎡
⎣ 5

4
−2

⎤
⎦− 4

⎡
⎣ 2

1
−2

⎤
⎦

=
⎡
⎣ 5

4
−2

⎤
⎦−
⎡
⎣ 8

4
−8

⎤
⎦

=
⎡
⎣−3

0
6

⎤
⎦ . �

Rotations
Consider the linear transformation T from R2 to R2 that rotates any vector �x through
a fixed angle θ in the counterclockwise direction,5 as shown in Figure 8. Recall
Example 2.1.5, where we studied a rotation through θ = π/2.

x�

T (x�)

Figure 8

x�

y�

T (x�)

Figure 9

5We can define a rotation more formally in terms of the polar coordinates of �x . The length of T (�x)

equals the length of �x , and the polar angle (or argument) of T (�x) exceeds the polar angle of �x by θ .
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Now consider Figure 9, where we introduce the auxiliary vector �y, obtained

by rotating �x through π/2. From Example 2.1.5 we know that if �x =
[

x1

x2

]
, then

�y =
[−x2

x1

]
. Using basic trigonometry, we find that

T (�x) = (cos θ)�x + (sin θ)�y = (cos θ)

[
x1

x2

]
+ (sin θ)

[−x2

x1

]

=
[
(cos θ)x1 − (sin θ)x2

(sin θ)x1 + (cos θ)x2

]

=
[

cos θ − sin θ

sin θ cos θ

] [
x1

x2

]

=
[

cos θ − sin θ

sin θ cos θ

]
�x .

This computation shows that a rotation through θ is indeed a linear transformation,
with the matrix [

cos θ − sin θ

sin θ cos θ

]
.

Theorem 2.2.3 Rotations

The matrix of a counterclockwise rotation in R2 through an angle θ is[
cos θ − sin θ

sin θ cos θ

]
.

Note that this matrix is of the form

[
a −b
b a

]
, where a2 + b2 = 1. Conversely,

any matrix of this form represents a rotation.

EXAMPLE 4 The matrix of a counterclockwise rotation through π/6 (or 30◦) is[
cos(π/6) − sin(π/6)

sin(π/6) cos(π/6)

]
= 1

2

[√
3 −1
1

√
3

]
. �

Rotations Combined with a Scaling

EXAMPLE 5 Examine how the linear transformation

T (�x) =
[

a −b
b a

]
�x

affects our standard letter L. Here a and b are arbitrary constants.

Solution
Figure 10 suggests that T represents a rotation combined with a scaling. Think polar

coordinates: This is a rotation through the polar angle θ of vector

[
a
b

]
, combined
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with a scaling by the magnitude r = √
a2 + b2 of vector

[
a
b

]
. To verify this claim

algebraically, we can write the vector

[
a
b

]
in polar coordinates, as

[
a
b

]
=
[

r cos θ

r sin θ

]
,

0
2

1
0

−2b
2a

a
b

a
b

−b
a

Figure 10

as illustrated in Figure 11. Then[
a −b
b a

]
=
[

r cos θ −r sin θ

r sin θ r cos θ

]
= r

[
cos θ − sin θ

sin θ cos θ

]
.

It turns out that matrix

[
a −b
b a

]
is a scalar multiple of a rotation matrix, as

claimed. �

a
b

r sin

r cos

r

Figure 11

Theorem 2.2.4 Rotations combined with a scaling

A matrix of the form

[
a −b
b a

]
represents a rotation combined with a scaling.

More precisely, if r and θ are the polar coordinates of vector

[
a
b

]
, then[

a −b
b a

]
represents a rotation through θ combined with a scaling by r .

Shears
We will introduce shears by means of some simple experiments involving a ruler
and a deck of cards.6

In the first experiment, we place the deck of cards on the ruler, as shown in
Figure 12. Note that the 2 of diamonds is placed on one of the short edges of the
ruler. That edge will stay in place throughout the experiment. Now we lift the other
short edge of the ruler up, keeping the cards in vertical position at all times. The
cards will slide up, being “fanned out,” without any horizontal displacement.

6Two hints for instructors:
• Use several decks of cards for dramatic effect.
• Hold the decks together with a rubber band to avoid embarrassing accidents.
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2

2
Ruler

Figure 12

Figure 13 shows a side view of this transformation. The origin represents the
ruler’s short edge that is staying in place.

Ruler
O O

T

Figure 13

Such a transformation T is called a vertical shear. If we focus on the side view
only, we have a vertical shear in R2 (although in reality the experiment takes place
in 3-space).

Now let’s draw a vector �x =
[

x1

x2

]
on the side of our deck of cards, and let’s find

a formula for the sheared vector T (�x), using Figure 14 as a guide. Here, k denotes
the slope of the ruler after the transformation:

T (�x) = T

([
x1

x2

])
=
[

x1

kx1 + x2

]
=
[

1 0
k 1

] [
x1

x2

]
=
[

1 0
k 1

]
�x .

Ruler

T

O O

x�

x2

x1

Slope k

T(x�)

x2

kx1
x1

Deck of Cards

Figure 14

We find that the matrix of a vertical shear is of the form

[
1 0
k 1

]
, where k is an

arbitrary constant.
Horizontal shears are defined analogously; consider Figure 15.

Ruler

Deck of
Cards

O
O

Figure 15
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We leave it as an exercise for the reader to verify that the matrix of a horizontal

shear is of the form

[
1 k
0 1

]
. Take another look at part (e) of Example 1.

Oblique shears are far less important in applications, and we will not consider
them in this introductory text.

Theorem 2.2.5 Horizontal and vertical shears

The matrix of a horizontal shear is of the form

[
1 k
0 1

]
, and the matrix of a

vertical shear is of the form

[
1 0
k 1

]
, where k is an arbitrary constant.

Let us summarize the main definitions of this section in a table.

Transformation Matrix

Scaling
by k

k I2 =
[

k 0
0 k

]

Orthogonal projection
onto line L

[
u2

1 u1u2

u1u2 u2
2

]
, where

[
u1
u2

]
is a unit vector

parallel to L

Reflection
about a line

[
a b
b −a

]
, where a2 + b2 = 1

Rotation
through angle θ

[
cos θ − sin θ

sin θ cos θ

]
or

[
a −b
b a

]
, where a2 + b2 = 1

Rotation through angle θ

combined with scaling by r

[
a −b
b a

]
= r

[
cos θ − sin θ

sin θ cos θ

]

Horizontal shear
[

1 k
0 1

]

Vertical shear
[

1 0
k 1

]

The Scottish scholar d’Arcy Thompson showed how the shapes of related
species of plants and animals can often be transformed into one another, using lin-
ear as well as nonlinear transformations.7 In Figure 16 he uses a horizontal shear to
transform the shape of one species of fish into another.

Argyropelecus olfersi. Sternoptyx diaphana.

Figure 16

7 Thompson, d’Arcy W., On Growth and Form, Cambridge University Press, 1917. P. B. Medawar calls
this “the finest work of literature in all the annals of science that have been recorded in the English
tongue.”
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EXERCISES 2.2
GOAL Use the matrices of orthogonal projections,
reflections, and rotations. Apply the definitions of shears,
orthogonal projections, and reflections.

1. Sketch the image of the standard L under the linear
transformation

T (�x) =
[

3 1
1 2

]
�x .

See Example 1.

2. Find the matrix of a rotation through an angle of 60◦ in
the counterclockwise direction.

3. Consider a linear transformation T from R2 to R3. Use
T (�e1) and T (�e2) to describe the image of the unit square
geometrically.

4. Interpret the following linear transformation geometri-
cally:

T (�x) =
[

1 1
−1 1

]
�x .

5. The matrix [−0.8 −0.6
0.6 −0.8

]

represents a rotation. Find the angle of rotation (in
radians).

6. Let L be the line in R3 that consists of all scalar multi-

ples of the vector

⎡
⎣2

1
2

⎤
⎦. Find the orthogonal projection

of the vector

⎡
⎣1

1
1

⎤
⎦ onto L .

7. Let L be the line in R3 that consists of all scalar multi-

ples of

⎡
⎣2

1
2

⎤
⎦. Find the reflection of the vector

⎡
⎣1

1
1

⎤
⎦ about

the line L .

8. Interpret the following linear transformation geometri-
cally:

T (�x) =
[

0 −1
−1 0

]
�x .

9. Interpret the following linear transformation geometri-
cally:

T (�x) =
[

1 0
1 1

]
�x .

10. Find the matrix of the orthogonal projection onto the
line L in R2 shown in the accompanying figure:

L

4
3

11. Refer to Exercise 10. Find the matrix of the reflection
about the line L .

12. Consider a reflection matrix A and a vector �x in R2. We
define �v = �x + A�x and �w = �x − A�x .
a. Using the definition of a reflection, express A(A�x)

in terms of �x .
b. Express A�v in terms of �v.
c. Express A �w in terms of �w.
d. If the vectors �v and �w are both nonzero, what is the

angle between �v and �w?
e. If the vector �v is nonzero, what is the relationship

between �v and the line L of reflection?
Illustrate all parts of this exercise with a sketch showing
�x , A�x , A(A�x), �v, �w, and the line L .

13. Suppose a line L in R2 contains the unit vector

�u =
[

u1

u2

]
.

Find the matrix A of the linear transformation
T (�x) = refL (�x). Give the entries of A in terms of u1

and u2. Show that A is of the form

[
a b
b −a

]
, where

a2 + b2 = 1.

14. Suppose a line L in R3 contains the unit vector

�u =
⎡
⎣u1

u2

u3

⎤
⎦ .

a. Find the matrix A of the linear transformation
T (�x) = projL (�x). Give the entries of A in terms
of the components u1, u2, u3 of �u.

b. What is the sum of the diagonal entries of the matrix
A you found in part (a)?

15. Suppose a line L in R3 contains the unit vector

�u =
⎡
⎣u1

u2

u3

⎤
⎦ .

Find the matrix A of the linear transformation T (�x) =
refL (�x). Give the entries of A in terms of the compo-
nents u1, u2, u3 of �u.
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16. Let T (�x) = refL (�x) be the reflection about the line L in
R2 shown in the accompanying figure.
a. Draw sketches to illustrate that T is linear.
b. Find the matrix of T in terms of θ .

L

17. Consider a matrix A of the form A =
[

a b
b −a

]
, where

a2 + b2 = 1. Find two nonzero perpendicular vectors
�v and �w such that A�v = �v and A �w = − �w (write the
entries of �v and �w in terms of a and b). Conclude that
T (�x) = A�x represents the reflection about the line L
spanned by �v.

18. The linear transformation T (�x) =
[

0.6 0.8
0.8 −0.6

]
�x is

a reflection about a line L . See Exercise 17. Find the
equation of line L (in the form y = mx).

Find the matrices of the linear transformations from R3 to
R3 given in Exercises 19 through 23. Some of these trans-
formations have not been formally defined in the text. Use
common sense. You may assume that all these transfor-
mations are linear.

19. The orthogonal projection onto the x–y-plane.

20. The reflection about the x–z-plane.

21. The rotation about the z-axis through an angle of π/2,
counterclockwise as viewed from the positive z-axis.

22. The rotation about the y-axis through an angle θ , coun-
terclockwise as viewed from the positive y-axis.

23. The reflection about the plane y = z.

24. Rotations and reflections have two remarkable prop-
erties: They preserve the length of vectors and the
angle between vectors. (Draw figures illustrating these
properties.) We will show that, conversely, any linear
transformation T from R2 to R2 that preserves length
and angles is either a rotation or a reflection (about a
line).
a. Show that if T (�x) = A�x preserves length and

angles, then the two column vectors �v and �w of A
must be perpendicular unit vectors.

b. Write the first column vector of A as �v =
[

a
b

]
; note

that a2 + b2 = 1, since �v is a unit vector. Show that
for a given �v there are two possibilities for �w, the
second column vector of A. Draw a sketch showing
�v and the two possible vectors �w. Write the compo-
nents of �w in terms of a and b.

c. Show that if a linear transformation T from R2 to R2

preserves length and angles, then T is either a rota-
tion or a reflection (about a line). See Exercise 17.

25. Find the inverse of the matrix

[
1 k
0 1

]
, where k is an

arbitrary constant. Interpret your result geometrically.

26. a. Find the scaling matrix A that transforms

[
2

−1

]
into[

8
−4

]
.

b. Find the orthogonal projection matrix B that trans-

forms

[
2
3

]
into

[
2
0

]
.

c. Find the rotation matrix C that transforms

[
0
5

]
into[

3
4

]
.

d. Find the shear matrix D that transforms

[
1
3

]
into[

7
3

]
.

e. Find the reflection matrix E that transforms

[
7
1

]
into[−5

5

]
.

27. Consider the matrices A through E below.

A =
[

0.6 0.8
0.8 −0.6

]
, B =

[
3 0
0 3

]
,

C =
[

0.36 −0.48
−0.48 0.64

]
, D =

[−0.8 0.6
−0.6 −0.8

]
,

E =
[

1 0
−1 1

]

Fill in the blanks in the sentences below.
We are told that there is a solution in each case.
Matrix represents a scaling.
Matrix represents an orthogonal projection.
Matrix represents a shear.
Matrix represents a reflection.
Matrix represents a rotation.

28. Each of the linear transformations in parts (a) through
(e) corresponds to one (and only one) of the matrices A
through J . Match them up.
a. Scaling b. Shear c. Rotation
d. Orthogonal projection e. Reflection

A =
[

0 0
0 1

]
, B =

[
2 1
1 0

]
, C =

[−0.6 0.8
−0.8 −0.6

]
,

D =
[

7 0
0 7

]
, E =

[
1 0

−3 1

]
, F =

[
0.6 0.8
0.8 −0.6

]
,
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G =
[

0.6 0.6
0.8 0.8

]
, H =

[
2 −1
1 2

]
, I =

[
0 0
1 0

]
,

J =
[

0.8 −0.6
0.6 −0.8

]
29. Let T be a function from Rm to Rn , and let L be a func-

tion from Rn to Rm . Suppose that L
(
T (�x)
) = �x for all

�x in Rm and T
(

L(�y)
) = �y for all �y in Rn . If T is a lin-

ear transformation, show that L is linear as well. Hint:
�v + �w = T

(
L(�v)
) + T
(

L( �w)
) = T

(
L(�v) + L( �w)

)
since T is linear. Now apply L on both sides.

30. Find a nonzero 2 × 2 matrix A such that A�x is parallel

to the vector

[
1
2

]
, for all �x in R2.

31. Find a nonzero 3 × 3 matrix A such that A�x is perpen-

dicular to

⎡
⎣1

2
3

⎤
⎦, for all �x in R3.

32. Consider the rotation matrix D =
[

cos α − sin α

sin α cos α

]
and the vector �v =

[
cos β

sin β

]
, where α and β are arbi-

trary angles.

a. Draw a sketch to explain why D�v =
[

cos(α + β)

sin(α + β)

]
.

b. Compute D�v. Use the result to derive the addition
theorems for sine and cosine:

cos(α + β) = . . . , sin(α + β) = . . . .

33. Consider two nonparallel lines L1 and L2 in R2.
Explain why a vector �v in R2 can be expressed
uniquely as

�v = �v1 + �v2,

where �v1 is on L1 and �v2 on L2. Draw a sketch. The
transformation T (�v) = �v1 is called the projection onto
L1 along L2. Show algebraically that T is linear.

34. One of the five given matrices represents an orthogonal
projection onto a line and another represents a reflec-
tion about a line. Identify both and briefly justify your
choice.

A = 1

3

⎡
⎣1 2 2

2 1 2
2 2 1

⎤
⎦ , B = 1

3

⎡
⎣1 1 1

1 1 1
1 1 1

⎤
⎦ ,

C = 1

3

⎡
⎣2 1 1

1 2 1
1 1 2

⎤
⎦ , D = −1

3

⎡
⎣1 2 2

2 1 2
2 2 1

⎤
⎦ ,

E = 1

3

⎡
⎣−1 2 2

2 −1 2
2 2 −1

⎤
⎦

35. Let T be an invertible linear transformation from R2 to
R2. Let P be a parallelogram in R2 with one vertex at
the origin. Is the image of P a parallelogram as well?
Explain. Draw a sketch of the image.

x2

x1

P

36. Let T be an invertible linear transformation from R2 to
R2. Let P be a parallelogram in R2. Is the image of P
a parallelogram as well? Explain.

P

x2

x1

37. The trace of a matrix

[
a b
c d

]
is the sum a + d of its

diagonal entries. What can you say about the trace of a
2 × 2 matrix that represents a(n)
a. orthogonal projection b. reflection about a line
c. rotation d. (horizontal or vertical) shear.
In three cases, give the exact value of the trace, and in
one case, give an interval of possible values.

38. The determinant of a matrix

[
a b
c d

]
is ad − bc (we

have seen this quantity in Exercise 2.1.13 already). Find
the determinant of a matrix that represents a(n)
a. orthogonal projection b. reflection about a line
c. rotation d. (horizontal or vertical) shear.
What do your answers tell you about the invertibility of
these matrices?

39. Describe each of the linear transformations defined by
the matrices in parts (a) through (c) geometrically, as
a well-known transformation combined with a scaling.
Give the scaling factor in each case.

a.
[

1 1
1 1

]
b.
[

3 0
−1 3

]

c.
[

3 4
4 −3

]
40. Let P and Q be two perpendicular lines in R2. For

a vector �x in R2, what is projP (�x) + projQ(�x)? Give
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your answer in terms of �x . Draw a sketch to justify your
answer.

41. Let P and Q be two perpendicular lines in R2. For
a vector �x in R2, what is the relationship between
refP (�x) and refQ(�x)? Draw a sketch to justify your
answer.

42. Let T (�x) = projL (�x) be the orthogonal projection onto
a line in R2. What is the relationship between T (�x) and
T
(
T (�x)
)
? Justify your answer carefully.

43. Use the formula derived in Exercise 2.1.13 to find the
inverse of the rotation matrix

A =
[

cos θ −sin θ

sin θ cos θ

]
.

Interpret the linear transformation defined by A−1 geo-
metrically. Explain.

44. A nonzero matrix of the form A =
[

a −b
b a

]
repre-

sents a rotation combined with a scaling. Use the for-
mula derived in Exercise 2.1.13 to find the inverse of
A. Interpret the linear transformation defined by A−1

geometrically. Explain.

45. A matrix of the form A =
[

a b
b −a

]
, where a2 + b2 =

1, represents a reflection about a line. See Exercise 17.
Use the formula derived in Exercise 2.1.13 to find the
inverse of A. Explain.

46. A nonzero matrix of the form A =
[

a b
b −a

]
repre-

sents a reflection about a line L combined with a scal-
ing. (Why? What is the scaling factor?) Use the formula
derived in Exercise 2.1.13 to find the inverse of A. Inter-
pret the linear transformation defined by A−1 geomet-
rically. Explain.

47. In this exercise we will prove the following remark-
able theorem: If T (�x) = A�x is any linear transfor-
mation from R2 to R2, then there exist perpendicular
unit vectors �v1 and �v2 in R2 such that the vectors T (�v1)

and T (�v2) are perpendicular as well (see the accom-
panying figure), in the sense that T (�v1) · T (�v2) =
0. This is not intuitively obvious: Think about the
case of a shear, for example. For a generalization, see
Theorem 8.3.3.

For any real number t , the vectors

[
cos t
sin t

]
and[− sin t

cos t

]
will be perpendicular unit vectors. Now we

can consider the function

f (t) =
(

T

[
cos t
sin t

])
·
(

T

[− sin t
cos t

])

=
(

A

[
cos t
sin t

])
·
(

A

[− sin t
cos t

])
.

It is our goal to show that there exists a number c such

that f (c) =
(

T

[
cos c
sin c

])
·
(

T

[− sin c
cos c

])
= 0. Then

the vectors �v1 =
[

cos c
sin c

]
and �v2 =

[− sin c
cos c

]
will

have the required property that they are perpendicular
unit vectors such that T (�v1) · T (�v2) = 0.
a. Show that the function f (t) is continuous. You may

assume that cos t , sin t , and constant functions are
continuous. Also, sums and products of continuous

functions are continuous. Hint: Write A =
[

a b
c d

]
.

b. Show that f
(

π
2

) = − f (0).
c. Show that there exists a number c, with 0 ≤ c ≤ π

2 ,
such that f (c) = 0. Hint: Use the intermediate
value theorem: If a function f (t) is continuous for
a ≤ t ≤ b and if L is any number between f (a) and
f (b), then there exists a number c between a and b
with f (c) = L .

x2

x1

y2

y1

T

T(v�1)

T(v�2)

v�1

v�2

48. If a 2×2 matrix A represents a rotation, find perpendic-
ular unit vectors �v1 and �v2 in R2 such that the vectors
T (�v1) and T (�v2) are perpendicular as well. See Exer-
cise 47.

For the linear transformations T in Exercises 49
through 52, do the following:
a. Find the function f (t) defined in Exercise 47 and

graph it for 0 ≤ t ≤ π
2 . You may use technology.

b. Find a number c, with 0 ≤ c ≤ π
2 , such that

f (c) = 0. (In Problem 50, approximate c to three
significant digits, using technology.)

c. Find perpendicular unit vectors �v1 and �v2 in R2

such that the vectors T(�v1) and T(�v2) are per-
pendicular as well. Draw a sketch showing �v1, �v2,
T(�v1), and T (�v2).

49. T (�x) =
[

2 2
1 −4

]
�x

50. T (�x) =
[

1 1
0 1

]
�x

51. T (�x) =
[

2 1
1 2

]
�x
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52. T (�x) =
[

0 4
5 −3

]
�x

53. Sketch the image of the unit circle under the linear
transformation

T (�x) =
[

5 0
0 2

]
�x .

54. Let T be an invertible linear transformation from R2 to
R2. Show that the image of the unit circle is an ellipse
centered at the origin.8 Hint: Consider two perpendicu-
lar unit vectors �v1 and �v2 such that T (�v1) and T (�v2) are
perpendicular. See Exercise 47. The unit circle consists
of all vectors of the form

�v = cos(t)�v1 + sin(t)�v2,

where t is a parameter.

55. Let �w1 and �w2 be two nonparallel vectors in R2. Con-
sider the curve C in R2 that consists of all vectors of
the form cos(t) �w1 + sin(t) �w2, where t is a parameter.

Show that C is an ellipse. Hint: You can interpret C as
the image of the unit circle under a suitable linear trans-
formation; then use Exercise 54.

C

w�2

w�1

O

56. Consider an invertible linear transformation T from R2

to R2. Let C be an ellipse in R2. Show that the image
of C under T is an ellipse as well. Hint: Use the result
of Exercise 55.

2.3 Matrix Products

Recall the composition of two functions: The composite of the functions y =
sin(x) and z = cos(y) is z = cos

(
sin(x)
)
, as illustrated in Figure 1.

y

y = sin(x)

z = cos(sin(x))

z = cos(y)

x

z

Figure 1

Similarly, we can compose two linear transformations.
To understand this concept, let’s return to the coding example discussed in Sec-

tion 2.1. Recall that the position �x =
[

x1

x2

]
of your boat is encoded and that you

radio the encoded position �y =
[

y1

y2

]
to Marseille. The coding transformation is

�y = A�x, with A =
[

1 2
3 5

]
.

In Section 2.1, we left out one detail: Your position is radioed on to Paris, as you
would expect in a centrally governed country such as France. Before broadcasting
to Paris, the position �y is again encoded, using the linear transformation

8An ellipse in R2 centered at the origin may be defined as a curve that can be parametrized as

cos(t) �w1 + sin(t) �w2,

for two perpendicular vectors �w1 and �w2. Suppose the length of �w1 exceeds the length of �w2. Then we
call the vectors ± �w1 the semimajor axes of the ellipse and ± �w2 the semiminor axes.

Convention: All ellipses considered in this text are centered at the origin unless stated otherwise.

O

w�1

w�2
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�z = B�y, with B =
[

6 7
8 9

]
this time, and the sailor in Marseille radios the encoded position �z to Paris. See
Figure 2.

z� = By�, where B =

Paris: z�

Boat: x�

Marseille: y�

y� = Ax�, where A =

6
8

7
9

1
3

2
5

Figure 2

We can think of the message �z received in Paris as a function of the actual
position �x of the boat,

�z = B(A�x),

the composite of the two transformations �y = A�x and �z = B�y. Is this transforma-
tion �z = T (�x) linear, and, if so, what is its matrix? We will show two approaches to
these important questions: (a) using brute force, and (b) using some theory.

a. We write the components of the two transformations and substitute:

z1 = 6y1 + 7y2
z2 = 8y1 + 9y2

and
y1 = x1 + 2x2
y2 = 3x1 + 5x2

so that

z1 = 6(x1 + 2x2) + 7(3x1 + 5x2) = (6 · 1 + 7 · 3)x1 + (6 · 2 + 7 · 5)x2

= 27x1 + 47x2,

z2 = 8(x1 + 2x2) + 9(3x1 + 5x2) = (8 · 1 + 9 · 3)x1 + (8 · 2 + 9 · 5)x2

= 35x1 + 61x2.

This shows that the composite is indeed linear, with matrix[
6 · 1 + 7 · 3 6 · 2 + 7 · 5
8 · 1 + 9 · 3 8 · 2 + 9 · 5

]
=
[

27 47
35 61

]
.

b. We can use Theorem 1.3.10 to show that the transformation T (�x) = B(A�x)

is linear:

T (�v + �w) = B
(

A(�v + �w)
) = B(A�v + A �w)

= B(A�v) + B(A �w) = T (�v) + T ( �w),

T (k �v) = B
(

A(k �v)
) = B
(
k(A�v)
) = k
(

B(A�v)
) = kT (�v).

Once we know that T is linear, we can find its matrix by computing the
vectors T (�e1) = B(A�e1) and T (�e2) = B(A�e2); the matrix of T is then[
T (�e1) T (�e2)

]
, by Theorem 2.1.2:

T (�e1) = B(A�e1) = B(first column of A) =
[

6 7
8 9

] [
1
3

]
=
[

27
35

]
,

T (�e2) = B(A�e2) = B(second column of A) =
[

6 7
8 9

] [
2
5

]
=
[

47
61

]
.
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We find that the matrix of the linear transformation T (�x) = B(A�x) is⎡
⎣ | |

T (�e1) T (�e2)

| |

⎤
⎦ =
[

27 47
35 61

]
.

This result agrees with the result in (a), of course.

The matrix of the linear transformation T (�x) = B(A�x) is called the product of
the matrices B and A, written as B A. This means that

T (�x) = B(A�x) = (B A)�x,

for all vectors �x in R2. See Figure 3.
Now let’s look at the product of larger matrices. Let B be an n × p matrix and

A a p × m matrix. These matrices represent linear transformations, as shown in
Figure 4.

Paris: z�

Boat: x�

Marseille: y�

z� = By�, where B = 6
8

7
9

z� = B(Ax�) = (BA)x�,

where BA =               27
35

47
61

y� = Ax�, where A = 1
3

2
5

Figure 3

z� = By�
z� in �n

x� in �m

y� in �p

y� = Ax�

Figure 4

Again, the composite transformation �z = B(A�x) is linear. [Part (b) of the fore-
going justification applies in this more general case as well.] The matrix of the linear
transformation �z = B(A�x) is called the product of the matrices B and A, written as
B A. Note that B A is an n × m matrix (as it represents a linear transformation from
Rm to Rn). As in the case of R2, the equation

�z = B(A�x) = (B A)�x
holds for all vectors �x in Rm , by definition of the product B A. See Figure 5.

z� = B(Ax�) = (BA)x�

z� = By�
z� in �n

x� in �m

y� in �p

y� = Ax�

Figure 5

z� = By�
z� in �n

x� in �m

y� = Ax�

y� in �p

y� in �q p ≠ q

Figure 6

In the definition of the matrix product B A, the number of columns of B matches
the number of rows of A. What happens if these two numbers are different? Suppose
B is an n × p matrix and A is a q × m matrix, with p �= q.

In this case, the transformations �z = B�y and �y = A�x cannot be composed,
since the target space of �y = A�x is different from the domain of �z = B�y. See
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Figure 6. To put it more plainly: The output of �y = A�x is not an acceptable input
for the transformation �z = B�y. In this case, the matrix product B A is undefined.

Definition 2.3.1 Matrix multiplication

a. Let B be an n × p matrix and A a q × m matrix. The product B A is
defined if (and only if) p = q.

b. If B is an n × p matrix and A a p × m matrix, then the product B A is
defined as the matrix of the linear transformation T (�x) = B(A�x). This
means that T (�x) = B(A�x) = (B A)�x , for all �x in the vector space Rm .
The product B A is an n × m matrix.

Although this definition of matrix multiplication does not give us concrete
instructions for computing the product of two numerically given matrices, such
instructions can be derived easily from the definition.

As in Definition 2.3.1, let B be an n × p matrix and A a p × m matrix. Let’s
think about the columns of the matrix B A:

(i th column of B A) = (B A)�ei

= B(A�ei )

= B(i th column of A).

If we denote the columns of A by �v1, �v2, . . . , �vm , we can write

B A = B

⎡
⎢⎣ | | |

�v1 �v2 · · · �vm

| | |

⎤
⎥⎦ =

⎡
⎢⎣ | | |

B �v1 B �v2 · · · B �vm

| | |

⎤
⎥⎦ .

Theorem 2.3.2 The columns of the matrix product

Let B be an n × p matrix and A a p × m matrix with columns �v1, �v2, . . . , �vm .
Then, the product B A is

B A = B

⎡
⎢⎣ | | |

�v1 �v2 · · · �vm

| | |

⎤
⎥⎦ =

⎡
⎢⎣ | | |

B �v1 B �v2 · · · B �vm

| | |

⎤
⎥⎦ .

To find B A, we can multiply B by the columns of A and combine the
resulting vectors.

This is exactly how we computed the product

B A =
[

6 7
8 9

] [
1 2
3 5

]
=
[

27 47
35 61

]
on page 76, using approach (b).

For practice, let us multiply the same matrices in the reverse order. The first

column of AB is

[
1 2
3 5

] [
6
8

]
=
[

22
58

]
; the second is

[
1 2
3 5

] [
7
9

]
=
[

25
66

]
. Thus,

AB =
[

1 2
3 5

] [
6 7
8 9

]
=
[

22 25
58 66

]
.

Compare the two previous displays to see that AB �= B A: Matrix multiplica-
tion is noncommutative. This should come as no surprise, in view of the fact that
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the matrix product represents a composite of transformations. Even for functions of
one variable, the order in which we compose matters. Refer to the first example in
this section and note that the functions cos

(
sin(x)
)

and sin
(
cos(x)
)

are different.

Theorem 2.3.3 Matrix multiplication is noncommutative

AB �= B A, in general. However, at times it does happen that AB = B A; then
we say that the matrices A and B commute.

It is useful to have a formula for the i j th entry of the product B A of an n × p
matrix B and a p × m matrix A.

Let �v1, �v2, . . . , �vm be the columns of A. Then, by Theorem 2.3.2,

B A = B

⎡
⎢⎣ | | | |

�v1 �v2 · · · �v j · · · �vm

| | | |

⎤
⎥⎦ =

⎡
⎢⎣ | | | |

B �v1 B �v2 · · · B �v j · · · B �vm

| | | |

⎤
⎥⎦ .

The i j th entry of the product B A is the i th component of the vector B �v j , which is
the dot product of the i th row of B and �v j , by Definition 1.3.7.

Theorem 2.3.4 The entries of the matrix product

Let B be an n × p matrix and A a p × m matrix. The i j th entry of B A is the dot
product of the i th row of B with the j th column of A.

B A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

b11 b12 · · · b1p

b21 b22 · · · b2p
...

...
...

bi1 bi2 · · · bip
...

...
...

bn1 bn2 · · · bnp

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

a11 a12 · · · a1 j · · · a1m

a21 a22 · · · a2 j · · · a2m
...

...
...

...

ap1 ap2 · · · apj · · · apm

⎤
⎥⎥⎥⎦

is the n × m matrix whose i j th entry is

bi1a1 j + bi2a2 j + · · · + bipapj =
p∑

k=1

bikak j .

EXAMPLE 1
[

6 7
8 9

] [
1 2
3 5

]
=
[

6 · 1 + 7 · 3 6 · 2 + 7 · 5
8 · 1 + 9 · 3 8 · 2 + 9 · 5

]
=
[

27 47
35 61

]
We have done these computations before. (Where?) �

EXAMPLE 2 Compute the products B A and AB for A =
[

0 1
1 0

]
and B =

[−1 0
0 1

]
. Interpret

your answers geometrically, as composites of linear transformation. Draw compo-
sition diagrams.

Solution

B A =
[−1 0

0 1

] [
0 1
1 0

]
=
[

0 −1
1 0

]
and AB =

[
0 1
1 0

] [−1 0
0 1

]
=
[

0 1
−1 0

]
.

Note that in this special example it turns out that B A = −AB.
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From Section 2.2 we recall the following geometrical interpretations:

A =
[

0 1
1 0

]
represents the reflection about the vector

[
1
1

]
;

B =
[−1 0

0 1

]
represents the reflection about

[
0
1

]
;

B A =
[

0 −1
1 0

]
represents the rotation through

π

2
; and

AB =
[

0 1
−1 0

]
represents the rotation through −π

2
.

Let’s use our standard L to show the effect of these transformations. See Figures 7
and 8. �

A B

BA

Figure 7

AB

AB

Figure 8

Matrix Algebra
Next let’s discuss some algebraic rules for matrix multiplication.

• Composing a linear transformation with the identity transformation, on either
side, leaves the transformation unchanged. See Example 2.1.4.

Theorem 2.3.5 Multiplying with the identity matrix

For an n × m matrix A,

AIm = In A = A.
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• If A is an n × p matrix, B a p × q matrix, and C a q × m matrix, what is the
relationship between (AB)C and A(BC)?

One way to think about this problem (although perhaps not the most
elegant one) is to write C in terms of its columns: C = [ �v1 �v2 · · · �vm

]
.

Then

(AB)C = (AB)
[�v1 �v2 · · · �vm

] = [(AB)�v1 (AB)�v2 · · · (AB)�vm
]
,

and

A(BC) = A
[

B �v1 B �v2 · · · B �vm
] = [A(B �v1) A(B �v2) · · · A(B �vm)

]
.

Since (AB)�vi = A(B �vi ), by definition of the matrix product, we find that
(AB)C = A(BC).

Theorem 2.3.6 Matrix multiplication is associative

(AB)C = A(BC)

We can simply write ABC for the product (AB)C = A(BC).

A more conceptual proof is based on the fact that the composition of functions
is associative. The two linear transformations

T (�x) = ((AB)C
)�x and L(�x) = (A(BC)

)�x
are identical because, by the definition of matrix multiplication,

T (�x) = ((AB)C
)�x = (AB)(C �x) = A

(
B(C �x)
)

and

L(�x) = (A(BC)
)�x = A

(
(BC)�x) = A

(
B(C �x)
)
.

The domains and target spaces of the linear transformations defined by the matrices
A, B, C , BC , AB, A(BC), and (AB)C are shown in Figure 9.

B

BC

C A

(AB)C

A(BC)

AB

�n�p�q�m

Figure 9

Theorem 2.3.7 Distributive property for matrices

If A and B are n × p matrices, and C and D are p × m matrices, then

A(C + D) = AC + AD, and

(A + B)C = AC + BC.

You will be asked to verify this property in Exercise 27.

Theorem 2.3.8 If A is an n × p matrix, B is a p × m matrix, and k is a scalar, then

(k A)B = A(k B) = k(AB).

You will be asked to verify this property in Exercise 28.

Block Matrices (Optional)
In the popular puzzle Sudoku, one considers a 9×9 matrix A that is subdivided into
nine 3 × 3 matrices called blocks. The puzzle setter provides some of the 81 entries
of matrix A, and the objective is to fill in the remaining entries so that each row of
A, each column of A, and each block contains each of the digits 1 through 9 exactly
once.
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5 3 7

1

1

9 5

5

6
6

9

9

8

8 6

8

2

2

3

3

6
4
7

6

8

8

4 1 9

7

This Sudoku puzzle is an example of a block matrix (or partitioned matrix), that is,
a matrix that is partitioned into rectangular submatrices, called blocks, by means of
horizontal and vertical lines that go all the way through the matrix.

The blocks need not be of equal size.
For example, we can partition the matrix

B =
⎡
⎣1 2 3

4 5 6
6 7 9

⎤
⎦ as B =

⎡
⎣1 2 3

4 5 6
6 7 9

⎤
⎦ =
[

B11 B12

B21 B22

]
,

where B11 =
[

1 2
4 5

]
, B12 =

[
3
6

]
, B21 = [6 7

]
, and B22 = [9].

A useful property of block matrices is the following:

Theorem 2.3.9 Multiplying block matrices

Block matrices can be multiplied as though the blocks were scalars (i.e., using
the formula in Theorem 2.3.4):

AB =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

A11 A12 · · · A1p

A21 A22 · · · A2p
...

...
...

Ai1 Ai2 · · · Aip
...

...
...

An1 An2 · · · Anp

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

B11 B12 · · · B1 j · · · B1m

B21 B22 · · · B2 j · · · B2m
...

...
...

...

Bp1 Bp2 · · · Bpj · · · Bpm

⎤
⎥⎥⎥⎦

is the block matrix whose i j th block is the matrix

Ai1 B1 j + Ai2 B2 j + · · · + Aip Bpj =
p∑

k=1

Aik Bkj ,

provided that all the products Aik Bkj are defined.

Verifying this fact is left as an exercise. A numerical example follows.

EXAMPLE 3
[

0 1
1 0

−1
1

]⎡⎢⎣ 1 2
4 5

3
6

7 8 9

⎤
⎥⎦

=
[[

0 1
1 0

] [
1 2
4 5

]
+
[−1

1

] [
7 8
] [

0 1
1 0

] [
3
6

]
+
[−1

1

] [
9
]]

=
[−3 −3 −3

8 10 12

]
.
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Compute this product without using a partition, and see whether you find the
same result. �

In this simple example, using blocks is somewhat pointless. Example 3 merely
illustrates Theorem 2.3.9. In Example 2.4.7, we will see a more sensible usage of
the concept of block matrices.

Powers of Transition Matrices
We will conclude this section with an example on transition matrices. See Defini-
tion 2.1.4.

EXAMPLE 4 Let’s revisit the mini-Web we considered in Example 9 of Section 2.1:

1 � 2

↓ ↙ ↑
3 → 4

with the transition matrix

A =

⎡
⎢⎢⎢⎣

0 1
2 0 0

1
2 0 0 1
1
2

1
2 0 0

0 0 1 0

⎤
⎥⎥⎥⎦ .

At a predetermined time, all the surfers will follow one of the available links, in the
manner described in Example 2.1.9. If the initial distribution of the surfers among
the four pages is given by the vector �x , then the distribution after this transition will
be A�x . Now, let’s iterate this process: Imagine an event of “speed surfing,” where,
every few minutes, at the blow of a whistle, each surfer will follow an available link.
After two transitions, the distribution will be A(A�x) = A2�x , and after m transitions
the distribution will be given by the vector Am �x . Let’s use technology to compute
some of the powers Am of matrix A:

A2 =

⎡
⎢⎢⎢⎣

1
4 0 0 1

2

0 1
4 1 0

1
4

1
4 0 1

2
1
2

1
2 0 0

⎤
⎥⎥⎥⎦ , A10 ≈

⎡
⎢⎢⎢⎣

0.173 0.172 0.172 0.150

0.344 0.345 0.301 0.344

0.247 0.247 0.270 0.236

0.236 0.236 0.258 0.270

⎤
⎥⎥⎥⎦ ,

A20 ≈

⎡
⎢⎢⎢⎣

0.16697 0.16697 0.16650 0.16623

0.33347 0.33347 0.33246 0.33393

0.25008 0.25008 0.25035 0.24948

0.24948 0.24948 0.25068 0.25035

⎤
⎥⎥⎥⎦ .

These powers Am will be transition matrices as well; see Exercise 68.
In Exercises 69 through 72, you will have a chance to explore the significance

of the entries of these matrices Am , in terms of our mini-Web and its graph.
As we take a closer look at the matrix A20, our attention may be drawn to the

fact that the four column vectors are all close to the vector⎡
⎢⎢⎣

1/6
1/3
1/4
1/4

⎤
⎥⎥⎦ ,
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which happens to be the equilibrium distribution �xequ for the matrix A, as discussed
in Example 2.1.9. We might conjecture that the limit of the column vectors of Am

is �xequ as m goes to infinity. �
Before we address this issue, let’s introduce some terminology.

Definition 2.3.10 Regular transition matrices

A transition matrix is said to be positive if all its entries are positive (meaning
that all the entries are greater than 0).

A transition matrix is said to be regular (or eventually positive) if the matrix
Am is positive for some positive integer m.

For example, the transition matrix

[
0.4 0.7
0.6 0.3

]
is positive (and therefore also

regular; let m = 1 in Definition 2.3.10). The transition matrix A =
[

0 1/2
1 1/2

]
fails

to be positive, but it is regular since A2 =
[

1/2 1/4
1/2 3/4

]
.

The matrix A in Example 4 fails to be positive, but it is regular since A10 is

positive. The reflection matrix A =
[

0 1
1 0

]
fails to be regular since Am =

[
1 0
0 1

]
for even m and Am = A =

[
0 1
1 0

]
for odd m.

Now we can address the conjecture we made at the end of Example 4.

Theorem 2.3.11 Equilibria for regular transition matrices

Let A be a regular transition matrix of size n × n.

a. There exists exactly one distribution vector �x in Rn such that A�x = �x .
This is called the equilibrium distribution for A, denoted �xequ . All the
components of �xequ are positive.

b. If �x is any distribution vector in Rn , then lim
m→∞(Am �x) = �xequ .

c. lim
m→∞ Am =

⎡
⎣ | |

�xequ · · · �xequ

| |

⎤
⎦, which is the matrix whose columns are all

�xequ .9

Part (b) states that in the long run the system will approach the equilibrium
distribution �xequ , regardless of the initial distribution; we say that �xequ is the
globally stable equilibrium distribution.

We will outline a proof of parts (a) and (b) in Chapter 7. Parts (b) and
(c) are easily seen to be equivalent. If we assume that part (b) holds, then
lim

m→∞( j th column of Am) = lim
m→∞(Am�e j ) = �xequ since �e j is a distribution vector. In

Exercise 73, you are asked to derive part (b) from part (c).

9This limit is defined entry by entry. We claim that any entry of Am converges to the corresponding

entry of the matrix

⎡
⎣ | |

�xequ · · · �xequ

| |

⎤
⎦ as m goes to infinity.
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EXERCISES 2.3
GOAL Compute matrix products column by column
and entry by entry. Interpret matrix multiplication in
terms of the underlying linear transformations. Use the
rules of matrix algebra. Multiply block matrices.

If possible, compute the matrix products in Exercises 1
through 13, using paper and pencil.

1.
[

1 1
0 1

] [
1 2
3 4

]
2.

⎡
⎣1 −1

0 2
2 1

⎤
⎦[3 2

1 0

]

3.
[

1 2 3
4 5 6

] [
1 2
3 4

]
4.
[

1 −1
−2 2

] [
7 5
3 1

]

5.

⎡
⎣1 0

0 1
0 0

⎤
⎦[a b

c d

]
6.
[

0 1
0 0

] [
0 1
0 0

]

7.

⎡
⎣1 0 −1

0 1 1
1 −1 −2

⎤
⎦
⎡
⎣1 2 3

3 2 1
2 1 3

⎤
⎦

8.
[

a b
c d

] [
d −b

−c a

]
9.
[

1 2
2 4

] [−6 8
3 −4

]

10.

⎡
⎣1

2
3

⎤
⎦ [1 2 3

]
11.
[

1 2 3
] ⎡⎣3

2
1

⎤
⎦

12.
[

1 0 −1
] ⎡⎣1 2

2 1
1 1

⎤
⎦

13.
[

0 0 1
] ⎡⎣a b c

d e f
g h k

⎤
⎦
⎡
⎣0

1
0

⎤
⎦

14. For the matrices

A =
[

1 1
1 1

]
, B = [1 2 3

]
,

C =
⎡
⎣1 0 −1

2 1 0
3 2 1

⎤
⎦ , D =

⎡
⎣1

1
1

⎤
⎦ , E = [5] ,

determine which of the 25 matrix products AA, AB,
AC , . . . , E D, E E are defined, and compute those that
are defined.

Use the given partitions to compute the products in Exer-
cises 15 and 16. Check your work by computing the same
products without using a partition. Show all your work.

15.

⎡
⎢⎣ 1 0

0 1
0
0

1 3 4

⎤
⎥⎦
⎡
⎢⎣ 1

2
0
0

3 4

⎤
⎥⎦

16.

⎡
⎢⎢⎢⎣

1 0
0 1

1 0
0 1

0 0
0 0

1 0
0 1

⎤
⎥⎥⎥⎦
⎡
⎢⎢⎢⎣

1 2
3 4

2 3
4 5

0 0
0 0

1 2
3 4

⎤
⎥⎥⎥⎦

In the Exercises 17 through 26, find all matrices that com-
mute with the given matrix A.

17. A =
[

1 0
0 2

]
18. A =

[
2 3

−3 2

]

19. A =
[

0 −2
2 0

]
20. A =

[
1 2
0 1

]

21. A =
[

1 2
2 −1

]
22. A =

[
1 1
1 1

]

23. A =
[

1 3
2 6

]
24. A =

⎡
⎣2 0 0

0 2 0
0 0 3

⎤
⎦

25. A =
⎡
⎣2 0 0

0 3 0
0 0 2

⎤
⎦ 26. A =

⎡
⎣2 0 0

0 3 0
0 0 4

⎤
⎦

27. Prove the distributive laws for matrices:

A(C + D) = AC + AD

and

(A + B)C = AC + BC.

28. Consider an n × p matrix A, a p × m matrix B, and a
scalar k. Show that

(k A)B = A(k B) = k(AB).

29. Consider the matrix

Dα =
[

cos α − sin α

sin α cos α

]
.

We know that the linear transformation T (�x) = Dα �x is
a counterclockwise rotation through an angle α.
a. For two angles, α and β, consider the products

Dα Dβ and Dβ Dα . Arguing geometrically, describe
the linear transformations �y = Dα Dβ �x and �y =
Dβ Dα �x . Are the two transformations the same?

b. Now compute the products Dα Dβ and Dβ Dα . Do
the results make sense in terms of your answer in
part (a)? Recall the trigonometric identities

sin(α ± β) = sin α cos β ± cos α sin β

cos(α ± β) = cos α cos β ∓ sin α sin β.

30. Consider the lines P and Q in R2 in the accompany-
ing figure. Consider the linear transformation T (�x) =
refQ
(
refP (�x)

)
; that is, we first reflect �x about P and

then we reflect the result about Q.
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x�
P

Q

30°

a. For the vector �x given in the figure, sketch T (�x).
What angle do the vectors �x and T (�x) enclose?
What is the relationship between the lengths of �x
and T (�x)?

b. Use your answer in part (a) to describe the trans-
formation T geometrically, as a reflection, rotation,
shear, or projection.

c. Find the matrix of T .
d. Give a geometrical interpretation of the linear trans-

formation L(�x) = refP
(
refQ(�x)

)
, and find the

matrix of L .

31. Consider two matrices A and B whose product AB
is defined. Describe the i th row of the product AB in
terms of the rows of A and the matrix B.

32. Find all 2 × 2 matrices X such that AX = X A for all
2 × 2 matrices A.

For the matrices A in Exercises 33 through 42, compute
A2 = AA, A3 = AAA, and A4. Describe the pattern that
emerges, and use this pattern to find A1001. Interpret your
answers geometrically, in terms of rotations, reflections,
shears, and orthogonal projections.

33.
[−1 0

0 −1

]
34.
[

1 1
0 1

]
35.
[

0 1
1 0

]

36.
[

1 0
0 −1

]
37.
[

1 0
−1 1

]
38.

1

2

[−1 −√
3√

3 −1

]

39.
1√
2

[
1 1

−1 1

]
40.
[

0 −1
1 0

]

41.
1√
2

[
1 1
1 −1

]
42.

1

2

[
1 1
1 1

]

In Exercises 43 through 48, find a 2 × 2 matrix A with
the given properties. Hint: It helps to think of geometrical
examples.

43. A �= I2, A2 = I2 44. A2 �= I2, A4 = I2

45. A2 �= I2, A3 = I2

46. A2 = A, all entries of A are nonzero.

47. A3 = A, all entries of A are nonzero.

48. A10 =
[

1 1
0 1

]

In Exercises 49 through 54, consider the matrices

A =
[

0 1
1 0

]
, B =

[−1 0
0 1

]
, C =

[
1 0
0 −1

]
,

D =
[

0 −1
−1 0

]
, E =

[
0.6 0.8
0.8 −0.6

]
, F =

[
0 −1
1 0

]
,

G =
[

0 1
−1 0

]
, H =

[
0.8 −0.6
0.6 0.8

]
, J =

[
1 −1
1 1

]
.

Compute the indicated products. Interpret these prod-
ucts geometrically, and draw composition diagrams, as in
Example 2.

49. AF and F A 50. CG and GC

51. F J and J F 52. J H and H J

53. C D and DC 54. B E and E B.

In Exercises 55 through 64, find all matrices X that satisfy
the given matrix equation.

55.
[

1 2
2 4

]
X =
[

0 0
0 0

]

56. X

[
1 2
3 5

]
= I2 57.

[
1 2
3 5

]
X = I2

58. X

[
2 1
4 2

]
=
[

0 0
0 0

]
59. X

[
2 1
4 2

]
= I2

60.
[

1 2
2 4

]
X = I2 61.

[
1 2 3
0 1 2

]
X = I2

62.

⎡
⎣1 0

2 1
3 2

⎤
⎦ X = I3 63.

⎡
⎣1 4

2 5
3 6

⎤
⎦ X = I3

64.
[

1 2 3
4 5 6

]
X = I2

65. Find all upper triangular 2 × 2 matrices X such that X2

is the zero matrix.

66. Find all lower triangular 3 × 3 matrices X such that X3

is the zero matrix.

67. a. If A is any 3 × 3 transition matrix (see Defini-
tion 2.1.4), find the matrix product [1 1 1] A.

b. For a fixed n, let �e be the row vector �e =
[1 1 . . . 1]︸ ︷︷ ︸

n 1’s

. Show that an n × n matrix A with

nonnegative entries is a transition matrix A if (and
only if) �eA = �e.

68. Show that if A and B are n ×n transition matrices, then
AB will be a transition matrix as well. Hint: Use Exer-
cise 67b.

69. Consider the matrix A2 in Example 4 of Section 2.3.
a. The third component of the first column of A2 is 1/4.

What does this entry mean in practical terms, that is,
in terms of surfers following links in our mini-Web?
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b. When is the i j th entry of A2 equal to 0? Give your
answer both in terms of paths of length 2 in the
graph of the mini-Web and also in terms of surfers
being able to get from page j to page i by following
two consecutive links.

70. a. Compute A3 for the matrix A in Example 2.3.4.
b. The fourth component of the first column of A3 is

1/4. What does this entry mean in practical terms,
that is, in terms of surfers following links in our
mini-Web?

c. When is the i j th entry of A3 equal to 0? Give your
answer both in terms of paths in the graph of the
mini-Web and also in terms of surfers being able to
get from page j to page i by following consecutive
links.

d. How many paths of length 3 are there in the
graph of the mini-Web from page 1 to page 2?
How many surfers are taking each of these paths,
expressed as a proportion of the initial population of
page 1?

71. For the mini-Web in Example 2.3.4, find pages i and j
such that it is impossible to get from page j to page i
by following exactly four consecutive links. What does
the answer tell you about the entries of A4?

72. For the mini-Web in Example 2.3.4, find the smallest
positive integer m such that all the entries of Am are
positive; you may use technology. What does your an-
swer tell you in terms of paths in the graph of the mini-
Web and also in terms of surfers following consecutive
links?

73. Use part (c) of Theorem 2.3.11 to prove part (b): If A is
a regular transition matrix of size n×n with equilibrium
distribution �xequ , and if �x is any distribution vector in
Rn , then lim

m→∞(Am �x) = �xequ .

74. Suppose A is a transition matrix and B is a positive tran-
sition matrix (see Definition 2.3.10), where A and B are
of the same size. Is AB necessarily a positive transition
matrix? What about B A?

75. Prove the following: If A is a transition matrix and Am

is positive, then Am+1 is positive as well.

76. For the mini-Web graphed below, find the equilibrium
distribution in the following way: Write the transition
matrix A, test high powers of A to come up with a con-
jecture for the equilibrium distribution �xequ , and then
verify that A�xequ = �xequ . (This method, based on The-
orem 2.3.11, is referred to as the power method for
finding the equilibrium distribution of a regular transi-
tion matrix.) Also, find the page with the highest naı̈ve
PageRank. You may use technology.

1 � 2
↗ ↓

3 ← 4

77. Consider the transition matrix

A =

⎡
⎢⎣ 0.4 0.2 0.7

0 0.6 0.1

0.6 0.2 0.2

⎤
⎥⎦ .

Verify that A is a regular transition matrix and then use
the power method (see Exercise 76) to find the equilib-
rium distribution. You may use technology.

78. Let’s revisit the mini-Web with the graph

1 � 2

↓ ↙ ↑
3 → 4 ,

but here we consider the surfing model with a “jump-
ing rate” of 20%, as discussed in Exercise 2.1.53. The
corresponding transition matrix is

B =

⎡
⎢⎢⎢⎣

0.05 0.45 0.05 0.05

0.45 0.05 0.05 0.85

0.45 0.45 0.05 0.05

0.05 0.05 0.85 0.05

⎤
⎥⎥⎥⎦ .

This transition matrix is positive and therefore regular,
so that Theorem 2.3.11 applies. Use the power method
(see Exercise 76) to find the equilibrium distribution.
You may use technology. Write the components of �xequ
as rational numbers.

79. Give an example of a transition matrix A such that there
exists more than one distribution vector �x with A�x = �x .

80. Give an example of a transition matrix A such that
lim

m→∞ Am fails to exist.

81. If A�v = 5�v, express A2�v, A3�v, and Am �v as scalar mul-
tiples of the vector �v.

82. In this exercise we will verify part (b) of Theo-
rem 2.3.11 in the special case when A is the transi-

tion matrix

[
0.4 0.3
0.6 0.7

]
and �x is the distribution vector[

1
0

]
. [We will not be using parts (a) and (c) of Theo-

rem 2.3.11.] The general proof of Theorem 2.3.11 runs
along similar lines, as we will see in Chapter 7.

a. Compute A

[
1
2

]
and A

[
1

−1

]
. Write A

[
1

−1

]
as a

scalar multiple of the vector

[
1

−1

]
.

b. Write the distribution vector �x =
[

1
0

]
as a linear

combination of the vectors

[
1
2

]
and

[
1

−1

]
.

c. Use your answers in parts (a) and (b) to write A�x as

a linear combination of the vectors

[
1
2

]
and

[
1

−1

]
.

More generally, write Am �x as a linear combination
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of the vectors

[
1
2

]
and

[
1

−1

]
, for any positive

integer m. See Exercise 81.
d. In your equation in part (c), let m go to infinity

to find lim
m→∞(Am �x). Verify that your answer is the

equilibrium distribution for A.

83. If A�x = �x for a regular transition matrix A and a distri-
bution vector �x , show that all components of �x must be

positive. (Here you are proving the last claim of Theo-
rem 2.3.11a.)

84. Consider an n × m matrix A of rank n. Show that there
exists an m × n matrix X such that AX = In . If n < m,
how many such matrices X are there?

85. Consider an n × n matrix A of rank n. How many n × n
matrices X are there such that AX = In?

2.4 The Inverse of a Linear Transformation

Let’s first review the concept of an invertible function. As you read these abstract
definitions, consider the examples in Figures 1 and 2, where X and Y are finite sets.

y0
y0

X Y

T

X Y

R

x1
x2

X Y

S

Figure 1 T is invertible. R is not invertible: The equation R (x ) = y0 has two solutions, x1 and x2. S is not
invertible: There is no x such that S (x ) = y0.

X Y

T

X Y

T −1

x y x y

Figure 2 A function T and its inverse T −1.

Definition 2.4.1 Invertible Functions

A function T from X to Y is called invertible if the equation T (x) = y has a
unique solution x in X for each y in Y .

In this case, the inverse T −1 from Y to X is defined by

T −1(y) = (the unique x in X such that T (x) = y
)
.

To put it differently, the equation

x = T −1(y) means that y = T (x).

Note that

T −1(T (x)
) = x and T

(
T −1(y)

) = y

for all x in X and for all y in Y .
Conversely, if L is a function from Y to X such that

L
(
T (x)
) = x and T

(
L(y)
) = y

for all x in X and for all y in Y , then T is invertible and T −1 = L .
If a function T is invertible, then so is T −1 and (T −1)−1 = T .
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If a function is given by a formula, we may be able to find the inverse by solving
the formula for the input variable(s). For example, the inverse of the function

y = x3 − 1

5
(from R to R)

is

x = 3
√

5y + 1.

Now consider the case of a linear transformation T from Rn to Rn given by

�y = T (�x) = A�x,

where A is an n × n matrix. (The case of an n × m matrix will be discussed in
Exercise 48.)

According to Definition 2.4.1, the linear transformation �y = T (�x) = A�x is
invertible if the linear system

A�x = �y
has a unique solution �x in Rn for all �y in the vector space Rn . By Theorem 1.3.4,
this is the case if (and only if) rank(A) = n or, equivalently, if

rref(A) =

⎡
⎢⎢⎢⎢⎢⎣

1 0 0 . . . 0
0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1

⎤
⎥⎥⎥⎥⎥⎦ = In.

Definition 2.4.2 Invertible matrices

A square matrix A is said to be invertible if the linear transformation
�y = T (�x) = A�x is invertible. In this case, the matrix10 of T −1 is denoted by
A−1. If the linear transformation �y = T (�x) = A�x is invertible, then its inverse is
�x = T −1(�y) = A−1�y.

Theorem 2.4.3 Invertibility

An n × n matrix A is invertible if (and only if)

rref(A) = In

or, equivalently, if

rank(A) = n.

The following proposition follows directly from Theorem 1.3.4 and Exam-
ple 1.3.3d.

Theorem 2.4.4 Invertibility and linear systems

Let A be an n × n matrix.

a. Consider a vector �b in Rn . If A is invertible, then the system A�x = �b
has the unique solution �x = A−1 �b. If A is noninvertible, then the system
A�x = �b has infinitely many solutions or none.

10The inverse transformation is linear. See Exercise 2.2.29.



90 CHAPTER 2 Linear Transformations

Theorem 2.4.4 Invertibility and linear systems (Continued)

b. Consider the special case when �b = �0. The system A�x = �0 has �x = �0
as a solution. If A is invertible, then this is the only solution. If A is
noninvertible, then the system A�x = �0 has infinitely many solutions.

EXAMPLE 1 Is the matrix

A =
⎡
⎣1 1 1

2 3 2
3 8 2

⎤
⎦

invertible?

Solution⎡
⎣1 1 1

2 3 2
3 8 2

⎤
⎦ −2(I)

−3(I)
→
⎡
⎣1 1 1

0 1 0
0 5 −1

⎤
⎦ − (II)

−5(II)
→

⎡
⎣1 0 1

0 1 0
0 0 −1

⎤
⎦

÷(−1)

→
⎡
⎣1 0 1

0 1 0
0 0 1

⎤
⎦ − (III)

→
⎡
⎣1 0 0

0 1 0
0 0 1

⎤
⎦ = I3 = rref(A)

Matrix A is invertible since rref(A) = I3. �
Let’s find the inverse of the matrix

A =
⎡
⎣1 1 1

2 3 2
3 8 2

⎤
⎦

in Example 1 or, equivalently, the inverse of the linear transformation

�y = A�x or

⎡
⎣y1

y2

y3

⎤
⎦ =
⎡
⎣ x1 + x2 + x3

2x1 + 3x2 + 2x3

3x1 + 8x2 + 2x3

⎤
⎦ .

To find the inverse transformation, we solve this system for the input variables x1,
x2, and x3: ∣∣∣∣∣∣

x1 + x2 + x3 = y1
2x1 + 3x2 + 2x3 = y2
3x1 + 8x2 + 2x3 = y3

∣∣∣∣∣∣
−→
−2(I)
−3(I)∣∣∣∣∣∣

x1 + x2 + x3 = y1
x2 = −2y1 + y2

5x2 − x3 = −3y1 + y3

∣∣∣∣∣∣
− (II)
−→

−5(II)∣∣∣∣∣∣
x1 + x3 = 3y1 − y2

x2 = −2y1 + y2
− x3 = 7y1 − 5y2 + y3

∣∣∣∣∣∣
−→

÷(−1)∣∣∣∣∣∣
x1 + x3 = 3y1 − y2

x2 = −2y1 + y2
x3 = −7y1 + 5y2 − y3

∣∣∣∣∣∣
− (III)
−→

∣∣∣∣∣∣
x1 = 10y1 − 6y2 + y3

x2 = −2y1 + y2
x3 = −7y1 + 5y2 − y3

∣∣∣∣∣∣ .
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We have found the inverse transformation; its matrix is

B = A−1 =
⎡
⎣ 10 −6 1

−2 1 0
−7 5 −1

⎤
⎦ .

We can write the preceding computations in matrix form:⎡
⎣1 1 1 1 0 0

2 3 2 0 1 0
3 8 2 0 0 1

⎤
⎦ −→

−2(I)
−3(I)

⎡
⎣1 1 1 1 0 0

0 1 0 −2 1 0
0 5 −1 −3 0 1

⎤
⎦ − (II)

−→
−5(II)⎡

⎣1 0 1 3 −1 0
0 1 0 −2 1 0
0 0 −1 7 −5 1

⎤
⎦ −→

÷ (−1)

⎡
⎣1 0 1 3 −1 0

0 1 0 −2 1 0
0 0 1 −7 5 −1

⎤
⎦ − (III)

−→
⎡
⎣1 0 0 10 −6 1

0 1 0 −2 1 0
0 0 1 −7 5 −1

⎤
⎦ .

This process can be described succinctly as follows.

Theorem 2.4.5 Finding the inverse of a matrix

To find the inverse of an n × n matrix A, form the n × (2n) matrix
[

A In
]

and
compute rref

[
A In
]
.

• If rref
[

A In
]

is of the form
[

In B
]
, then A is invertible, and A−1 = B.

• If rref
[

A In
]

is of another form (i.e., its left half fails to be In), then A
is not invertible. Note that the left half of rref

[
A In
]

is rref(A).

Next let’s discuss some algebraic rules for matrix inversion.

• Consider an invertible linear transformation T (�x) = A�x from Rn to Rn . By
Definition 2.4.1, the equation T −1(T (�x)) = �x holds for all �x in Rn . Written in
matrix form, this equation reads A−1 A�x = �x = In �x . It follows that A−1 A =
In . Likewise, we can show that AA−1 = In .

Theorem 2.4.6 Multiplying with the inverse

For an invertible n × n matrix A,

A−1 A = In and AA−1 = In.

• If A and B are invertible n × n matrices, is B A invertible as well? If so, what
is its inverse?

To find the inverse of the linear transformation

�y = B A�x,

we solve the equation for �x in two steps. First, we multiply both sides of the
equation by B−1 from the left:

B−1�y = B−1 B A�x = In A�x = A�x .

Now, we multiply by A−1 from the left:

A−1 B−1�y = A−1 A�x = �x .
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This computation shows that the linear transformation

�y = B A�x
is invertible and that its inverse is

�x = A−1 B−1�y.

Theorem 2.4.7 The inverse of a product of matrices

If A and B are invertible n × n matrices, then B A is invertible as well, and

(B A)−1 = A−1 B−1.

Pay attention to the order of the matrices. (Order matters!)

To verify this result, we can multiply A−1 B−1 by BA (in either order), and
check that the result is In:

B AA−1 B−1 = B In B−1 = B B−1 = In, and

A−1 B−1 BA = A−1 A = In.

Everything works out!
To understand the order of the factors in the formula (B A)−1 = A−1 B−1, think

about our French coast guard story again.
To recover the actual position �x from the doubly encoded position �z, you first

apply the decoding transformation �y = B−1�z and then the decoding transformation
�x = A−1�y. The inverse of �z = B A�x is therefore �x = A−1 B−1�z, as illustrated in
Figure 3.

B

A−1

B−1

A−1B−1

A

BA Marseille: y�

Paris: z�

Boat: x�
Figure 3

The following result is often useful in finding inverses:

Theorem 2.4.8 A criterion for invertibility

Let A and B be two n × n matrices such that

B A = In.

Then

a. A and B are both invertible,

b. A−1 = B and B−1 = A, and

c. AB = In .
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It follows from the definition of an invertible function that if AB = In and
B A = In , then A and B are inverses; that is, A = B−1 and B = A−1. Theorem 2.4.8
makes the point that the equation B A = In alone guarantees that A and B are
inverses. Exercise 107 illustrates the significance of this claim.

Proof To demonstrate that A is invertible, it suffices to show that the linear system A�x = �0
has only the solution �x = �0 (by Theorem 2.4.4b). If we multiply the equation
A�x = �0 by B from the left, we find that B A�x = B�0 = �0. It follows that �x =
In �x = B A�x = �0, as claimed. Therefore, A is invertible. If we multiply the equation
B A = In by A−1 from the right, we find that B = A−1. Matrix B, being the inverse
of A, is itself invertible, and B−1 = (A−1)−1 = A. See Definition 2.4.1. Finally,
AB = AA−1 = In .

You can use Theorem 2.4.8 to check your work when computing the inverse of
a matrix. Earlier in this section we claimed that

B =
⎡
⎣ 10 −6 1

−2 1 0
−7 5 −1

⎤
⎦ is the inverse of A =

⎡
⎣1 1 1

2 3 2
3 8 2

⎤
⎦ .

Let’s use Theorem 2.4.8b to check our work:

B A =
⎡
⎣ 10 −6 1

−2 1 0
−7 5 −1

⎤
⎦
⎡
⎣1 1 1

2 3 2
3 8 2

⎤
⎦ =
⎡
⎣1 0 0

0 1 0
0 0 1

⎤
⎦ = I3.

�

EXAMPLE 2 Suppose A, B, and C are three n × n matrices such that ABC = In . Show that B is
invertible, and express B−1 in terms of A and C .

Solution
Write ABC = (AB)C = In . We have C(AB) = In , by Theorem 2.4.8c. Since
matrix multiplication is associative, we can write (C A)B = In . Applying Theo-
rem 2.4.8 again, we conclude that B is invertible, and B−1 = C A. �

EXAMPLE 3 For an arbitrary 2×2 matrix A =
[

a b
c d

]
, compute the product

[
d −b

−c a

] [
a b
c d

]
.

When is A invertible? If so, what is A−1?

Solution[
d −b

−c a

] [
a b
c d

]
=
[

ad − bc 0
0 ad − bc

]
= (ad − bc)I2.

If ad − bc �= 0, we can write

(
1

ad − bc

[
d −b

−c a

])
︸ ︷︷ ︸

B

[
a b
c d

]
︸ ︷︷ ︸

A

= I2.

It now follows from Theorem 2.4.8 that A is invertible, with A−1 =
1

ad − bc

[
d −b

−c a

]
. Conversely, if A is invertible, then we can multiply the

equation

[
d −b

−c a

] [
a b
c d

]
= (ad − bc)I2 with A−1 from the right, finding[

d −b
−c a

]
= (ad − bc)A−1. Since some of the scalars a, b, c, d are nonzero

(being the entries of the invertible matrix A), it follows that ad − bc �= 0. �
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Theorem 2.4.9 Inverse and determinant of a 2 × 2 matrix

a. The 2 × 2 matrix

A =
[

a b
c d

]
is invertible if (and only if) ad − bc �= 0.

Quantity ad − bc is called the determinant of A, written det(A):

det(A) = det

[
a b
c d

]
= ad − bc.

b. If

A =
[

a b
c d

]
is invertible, then[

a b
c d

]−1

= 1

ad − bc

[
d −b

−c a

]
= 1

det(A)

[
d −b

−c a

]
.

In Chapter 6 we will introduce the determinant of a square matrix of arbitrary
size, and we will generalize the results of Theorem 2.4.9 to n × n matrices. See
Theorems 6.2.4 and 6.3.9.

a
cv� =

−c
av�rot =

b
dw� =

2
− 

Figure 4

What is the geometrical interpretation of the determinant of a 2 × 2 matrix A?

Write A =
[

a b
c d

]
, and consider the column vectors �v =

[
a
c

]
and �w =

[
b
d

]
. It

turns out to be helpful to introduce the auxiliary vector �vrot =
[−c

a

]
, obtained by

rotating vector �v =
[

a
c

]
through an angle of

π

2
. Let θ be the (oriented) angle from

�v to �w, with −π < θ ≤ π . See Figure 4. Then

det A = ad − bc =︸︷︷︸
step 2

�vrot · �w =︸︷︷︸
step 3

‖�vrot‖ cos
(π

2
− θ
)

‖ �w‖ = ‖�v‖ sin θ‖ �w‖.

In steps 2 and 3 we use the definition of the dot product and its geometrical inter-
pretation. See Definition A.4 in the Appendix.

Theorem 2.4.10 Geometrical interpretation of the determinant of a 2 × 2 matrix

If A = [�v �w] is a 2 × 2 matrix with nonzero columns �v and �w, then

det A = det
[�v �w] = ‖�v‖ sin θ‖ �w‖,

where θ is the oriented angle from �v to �w, with −π < θ ≤ π . It follows that

• |det A| = ‖�v‖ |sin θ | ‖ �w‖ is the area of the parallelogram spanned by �v
and �w. See Figure 5,

• det A = 0 if �v and �w are parallel, meaning that θ = 0 or θ = π ,
• det A > 0 if 0 < θ < π , and
• det A < 0 if −π < θ < 0.

v�

w�

w�       sin     

Figure 5

In Chapter 6 we will go a step further and interpret det A in terms of the linear
transformation T (�x) = A�x .
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EXAMPLE 4 Is the matrix A =
[

1 3
2 1

]
invertible? If so, find the inverse. Interpret det A geo-

metrically.

Solution
We find the determinant det(A) = 1 · 1 − 3 · 2 = −5 �= 0, so that A is indeed
invertible, by Theorem 2.4.9a. Then

A−1 = 1

det A

[
d −b

−c a

]
= 1

(−5)

[
1 −3

−2 1

]
=
[
− 1

5
3
5

2
5 − 1

5

]
,

by Theorem 2.4.9b.
Furthermore, |det A| = 5 is the area of the shaded parallelogram in Figure 6,

and det A is negative since the angle θ from �v to �w is negative. �

1
2v� =

3
1w� =

Figure 6

EXAMPLE 5 For which values of the constant k is the matrix A =
[

1 − k 2
4 3 − k

]
invertible?

Solution
By Theorem 2.4.9a, the matrix A fails to be invertible if det A = 0. Now

det A = det

[
1 − k 2

4 3 − k

]
= (1 − k)(3 − k) − 2 · 4

= k2 − 4k − 5 = (k − 5)(k + 1) = 0

when k = 5 or k = −1. Thus, A is invertible for all values of k except k = 5 and
k = −1. �

EXAMPLE 6 Consider a matrix A that represents the reflection about a line L in the plane. Use
the determinant to verify that A is invertible. Find A−1. Explain your answer con-
ceptually, and interpret the determinant geometrically.

Solution

By Definition 2.2.2, a reflection matrix is of the form A =
[

a b
b −a

]
, where

a2 + b2 = 1. Now det A = det

[
a b
b −a

]
= −a2 − b2 = −1. It turns out that

A is invertible, and A−1 = 1

(−1)

[−a −b
−b a

]
=
[

a b
b −a

]
= A. It makes good

sense that A is its own inverse, since A(A�x) = �x for all �x in R2, by definition of a
reflection. See Figure 7.

L

x� = A(Ax�)

Ax�

Figure 7

L
w� = Ae�2 v� = Ae�1

e�1

e�2

2
−

2

Figure 8

To interpret the determinant geometrically, recall that �v =
[

a
b

]
= A�e1 and

�w =
[

b
−a

]
= A�e2. The parallelogram spanned by �v and �w is actually a unit

square, with area 1 = |det A|, and θ is −π

2
since the reflection about L reverses the

orientation of an angle. See Figure 8. �
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The Inverse of a Block Matrix (Optional)
We will conclude this chapter with two examples involving block matrices. To re-
fresh your memory, take another look at Theorem 2.3.9.

EXAMPLE 7 Let A be a block matrix

A =
[

A11 A12

0 A22

]
,

where A11 is an n × n matrix, A22 is an m × m matrix, and A12 is an n × m matrix.

a. For which choices of A11, A12, and A22 is A invertible?

b. If A is invertible, what is A−1 (in terms of A11, A12, A22)?

Solution
We are looking for an (n + m) × (n + m) matrix B such that

B A = In+m =
[

In 0
0 Im

]
.

Let us partition B in the same way as A:

B =
[

B11 B12

B21 B22

]
,

where B11 is n × n, B22 is m × m, and so on. The fact that B is the inverse of A
means that [

B11 B12

B21 B22

] [
A11 A12

0 A22

]
=
[

In 0
0 Im

]
,

or, using Theorem 2.3.9, ∣∣∣∣∣∣∣
B11 A11 = In

B11 A12 + B12 A22 = 0
B21 A11 = 0

B21 A12 + B22 A22 = Im

∣∣∣∣∣∣∣ .
We have to solve for the blocks Bi j . Applying Theorem 2.4.8 to the equation
B11 A11 = In , we find that A11 is invertible, and B11 = A−1

11 . Equation 3 now
implies that B21 = 0A−1

11 = 0. Next, Equation 4 simplifies to B22 A22 = Im . By
Theorem 2.4.8, A22 is invertible, and B22 = A−1

22 . Lastly, Equation 2 becomes
A−1

11 A12 + B12 A22 = 0, or B12 A22 = −A−1
11 A12, or B12 = −A−1

11 A12 A−1
22 . We

conclude that

a. A is invertible if (and only if) both A11 and A22 are invertible (no condition
is imposed on A12), and

b. If A is invertible, then its inverse is

A−1 =
[

A−1
11 −A−1

11 A12 A−1
22

0 A−1
22

]
.

�
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Verify this result for the following example:

EXAMPLE 8

⎡
⎢⎢⎢⎢⎢⎣

1 1
1 2

1 2 3
4 5 6

0 0
0 0
0 0

1 0 0
0 1 0
0 0 1

⎤
⎥⎥⎥⎥⎥⎦

−1

=

⎡
⎢⎢⎢⎢⎢⎣

2 −1
−1 1

2 1 0
−3 −3 −3

0 0
0 0
0 0

1 0 0
0 1 0
0 0 1

⎤
⎥⎥⎥⎥⎥⎦ . �

EXERCISES 2.4
GOAL Apply the concept of an invertible function. De-
termine whether a matrix (or a linear transformation) is
invertible, and find the inverse if it exists.

Decide whether the matrices in Exercises 1 through 15 are
invertible. If they are, find the inverse. Do the computa-
tions with paper and pencil. Show all your work.

1.
[

2 3
5 8

]
2.
[

1 1
1 1

]

3.
[

0 2
1 1

]
4.

⎡
⎣1 2 3

0 1 2
0 0 1

⎤
⎦

5.

⎡
⎣1 2 2

1 3 1
1 1 3

⎤
⎦ 6.

⎡
⎣1 2 1

1 3 2
1 0 1

⎤
⎦

7.

⎡
⎣1 2 3

0 0 2
0 0 3

⎤
⎦ 8.

⎡
⎣1 1 1

1 2 3
1 3 6

⎤
⎦

9.

⎡
⎣1 1 1

1 1 1
1 1 1

⎤
⎦ 10.

⎡
⎣0 0 1

0 1 0
1 0 0

⎤
⎦

11.

⎡
⎣1 0 1

0 1 0
0 0 1

⎤
⎦

12.

⎡
⎢⎢⎣

2 5 0 0
1 3 0 0
0 0 1 2
0 0 2 5

⎤
⎥⎥⎦

13.

⎡
⎢⎢⎣

1 0 0 0
2 1 0 0
3 2 1 0
4 3 2 1

⎤
⎥⎥⎦ 14.

⎡
⎢⎢⎣

1 1 2 3
0 −1 0 0
2 2 5 4
0 3 0 1

⎤
⎥⎥⎦

15.

⎡
⎢⎢⎣

1 2 3 4
2 4 7 11
3 7 14 25
4 11 25 50

⎤
⎥⎥⎦

Decide whether the linear transformations in Exercises 16
through 20 are invertible. Find the inverse transformation
if it exists. Do the computations with paper and pencil.
Show all your work.

16. y1 = 3x1 + 5x2
y2 = 5x1 + 8x2

17. y1 = x1 + 2x2
y2 = 4x1 + 8x2

18. y1 = x2
y2 = x3
y3 = x1

19. y1 = x1 + x2 + x3
y2 = x1 + 2x2 + 3x3
y3 = x1 + 4x2 + 9x3

20. y1 = x1 + 3x2 + 3x3
y2 = x1 + 4x2 + 8x3
y3 = 2x1 + 7x2 + 12x3

Which of the functions f from R to R in Exercises 21
through 24 are invertible?

21. f (x) = x2 22. f (x) = 2x

23. f (x) = x3 + x 24. f (x) = x3 − x

Which of the (nonlinear) transformations from R2 to R2

in Exercises 25 through 27 are invertible? Find the inverse
if it exists.

25.
[

y1

y2

]
=
[

x3
1

x2

]
26.
[

y1

y2

]
=
[

x2

x3
1 + x2

]

27.
[

y1

y2

]
=
[

x1 + x2

x1 · x2

]
28. Find the inverse of the linear transformation

T

⎡
⎢⎢⎣

x1

x2

x3

x4

⎤
⎥⎥⎦ = x1

⎡
⎢⎢⎣

22
−16

8
5

⎤
⎥⎥⎦+ x2

⎡
⎢⎢⎣

13
−3

9
4

⎤
⎥⎥⎦

+ x3

⎡
⎢⎢⎣

8
−2

7
3

⎤
⎥⎥⎦+ x4

⎡
⎢⎢⎣

3
−2

2
1

⎤
⎥⎥⎦

from R4 to R4.

29. For which values of the constant k is the following ma-
trix invertible? ⎡

⎣1 1 1
1 2 k
1 4 k2

⎤
⎦



98 CHAPTER 2 Linear Transformations

30. For which values of the constants b and c is the follow-
ing matrix invertible?

⎡
⎣ 0 1 b

−1 0 c
−b −c 0

⎤
⎦

31. For which values of the constants a, b, and c is the fol-
lowing matrix invertible?

⎡
⎣ 0 a b

−a 0 c
−b −c 0

⎤
⎦

32. Find all matrices

[
a b
c d

]
such that ad − bc = 1 and

A−1 = A.

33. Consider the matrices of the form A =
[

a b
b −a

]
,

where a and b are arbitrary constants. For which val-
ues of a and b is A−1 = A?

34. Consider the diagonal matrix

A =
⎡
⎣a 0 0

0 b 0
0 0 c

⎤
⎦ .

a. For which values of a, b, and c is A invertible? If it
is invertible, what is A−1?

b. For which values of the diagonal elements is a dia-
gonal matrix (of arbitrary size) invertible?

35. a. Consider the upper triangular 3 × 3 matrix

A =
⎡
⎣a b c

0 d e
0 0 f

⎤
⎦ .

For which values of a, b, c, d , e, and f is A invert-
ible?

b. More generally, when is an upper triangular matrix
(of arbitrary size) invertible?

c. If an upper triangular matrix is invertible, is its in-
verse an upper triangular matrix as well?

d. When is a lower triangular matrix invertible?

36. To determine whether a square matrix A is invertible,
it is not always necessary to bring it into reduced row-
echelon form. Instead, reduce A to (upper or lower) tri-
angular form, using elementary row operations. Show
that A is invertible if (and only if) all entries on the di-
agonal of this triangular form are nonzero.

37. If A is an invertible matrix and c is a nonzero scalar, is
the matrix cA invertible? If so, what is the relationship
between A−1 and (cA)−1?

38. Find A−1 for A =
[

1 k
0 −1

]
.

39. Consider a square matrix that differs from the identity
matrix at just one entry, off the diagonal, for example,⎡

⎢⎣ 1 0 0

0 1 0

− 1
2 0 1

⎤
⎥⎦ .

In general, is a matrix M of this form invertible? If so,
what is the M−1?

40. Show that if a square matrix A has two equal columns,
then A is not invertible.

41. Which of the following linear transformations T from
R3 to R3 are invertible? Find the inverse if it exists.
a. Reflection about a plane
b. Orthogonal projection onto a plane
c. Scaling by a factor of 5 [i.e., T (�v) = 5�v, for all vec-

tors �v]
d. Rotation about an axis

42. A square matrix is called a permutation matrix if it con-
tains a 1 exactly once in each row and in each column,
with all other entries being 0. Examples are In and⎡

⎣0 0 1
1 0 0
0 1 0

⎤
⎦ .

Are permutation matrices invertible? If so, is the inverse
a permutation matrix as well?

43. Consider two invertible n × n matrices A and B. Is the
linear transformation �y = A(B �x) invertible? If so, what
is the inverse? Hint: Solve the equation �y = A(B �x) first
for B �x and then for �x .

44. Consider the n×n matrix Mn , with n ≥ 2, that contains
all integers 1, 2, 3, . . . , n2 as its entries, written in se-
quence, column by column; for example,

M4 =

⎡
⎢⎢⎣

1 5 9 13
2 6 10 14
3 7 11 15
4 8 12 16

⎤
⎥⎥⎦ .

a. Determine the rank of M4.
b. Determine the rank of Mn .
c. For which n is Mn invertible?

45. To gauge the complexity of a computational task, math-
ematicians and computer scientists count the number of
elementary operations (additions, subtractions, multi-
plications, and divisions) required. For a rough count,
we will sometimes consider multiplications and divi-
sions only, referring to those jointly as multiplicative
operations. As an example, we examine the process of
inverting a 2 × 2 matrix by elimination.
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[
a b 1 0
c d 0 1

] ÷ a, requires 2 multiplicative
operations: b/a and 1/a

↓[
1 b′ e 0
c d 0 1

]
(where b′ = b/a, and e = 1/a)
− c (I), requires 2 multiplicative

operations: cb′ and ce↓[
1 b′ e 0
0 d ′ g 1

]
÷ d ′, requires 2 multiplicative

operations↓[
1 b′ e 0
0 1 g′ h

]
− b′ (II), requires 2 multiplicative

operations

↓[
1 0 e′ f
0 1 g′ h

]

The whole process requires eight multiplicative opera-
tions. Note that we do not count operations with pre-
dictable results, such as 1a, 0a, a/a, 0/a.
a. How many multiplicative operations are required to

invert a 3 × 3 matrix by elimination?
b. How many multiplicative operations are required to

invert an n × n matrix by elimination?
c. If it takes a slow hand-held calculator 1 second to

invert a 3 × 3 matrix, how long will it take the same
calculator to invert a 12 × 12 matrix? Assume that
the matrices are inverted by Gauss–Jordan elimina-
tion and that the duration of the computation is pro-
portional to the number of multiplications and divi-
sions involved.

46. Consider the linear system

A�x = �b,

where A is an invertible matrix. We can solve this sys-
tem in two different ways:
• By finding the reduced row-echelon form of the aug-

mented matrix
[

A �b ],
• By computing A−1 and using the formula �x = A−1 �b.

In general, which approach requires fewer multiplica-
tive operations? See Exercise 45.

47. Give an example of a noninvertible function f from R

to R and a number b such that the equation

f (x) = b

has a unique solution.

48. Consider an invertible linear transformation T (�x) =
A�x from Rm to Rn , with inverse L = T −1 from Rn to
Rm . In Exercise 2.2.29 we show that L is a linear trans-
formation, so that L(�y) = B�y for some m × n matrix
B. Use the equations B A = In and AB = Im to show

that n = m. Hint: Think about the number of solutions
of the linear systems A�x = �0 and B�y = �0.

49. Input–Output Analysis. (This exercise builds on Exer-
cises 1.1.24, 1.2.39, 1.2.40, and 1.2.41). Consider the
industries J1, J2, . . . , Jn in an economy. Suppose the
consumer demand vector is �b, the output vector is �x ,
and the demand vector of the j th industry is �v j . (The
i th component ai j of �v j is the demand industry J j puts
on industry Ji , per unit of output of J j .) As we have seen
in Exercise 1.2.40, the output �x just meets the aggregate
demand if

x1 �v1 + x2 �v2 + · · · + xn �vn + �b︸ ︷︷ ︸
aggregate demand

= �x︸︷︷︸
output

.

This equation can be written more succinctly as

⎡
⎢⎣ | | |

�v1 �v2 · · · �vn

| | |

⎤
⎥⎦
⎡
⎢⎢⎢⎣

x1

x2
...

xn

⎤
⎥⎥⎥⎦+ �b = �x,

or A�x + �b = �x . The matrix A is called the technology
matrix of this economy; its coefficients ai j describe the
interindustry demand, which depends on the technology
used in the production process. The equation

A�x + �b = �x
describes a linear system, which we can write in the
customary form:

�x − A�x = �b
In �x − A�x = �b
(In − A)�x = �b.

If we want to know the output �x required to satisfy a
given consumer demand �b (this was our objective in
the previous exercises), we can solve this linear system,
preferably via the augmented matrix.

In economics, however, we often ask other ques-
tions: If �b changes, how will �x change in response?
If the consumer demand on one industry increases by
1 unit and the consumer demand on the other indus-
tries remains unchanged, how will �x change?11 If we

11 The relevance of questions like these became particularly
clear during World War II, when the demand on certain
industries suddenly changed dramatically. When U.S.
President F. D. Roosevelt asked for 50,000 airplanes to be
built, it was easy enough to predict that the country would
have to produce more aluminum. Unexpectedly, the demand
for copper dramatically increased (why?). A copper shortage
then occurred, which was solved by borrowing silver from
Fort Knox. People realized that input–output analysis can be
effective in modeling and predicting chains of increased
demand like this. After World War II, this technique rapidly
gained acceptance and was soon used to model the economies
of more than 50 countries.
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ask questions like these, we think of the output �x as a
function of the consumer demand �b.

If the matrix (In−A) is invertible,12 we can express
�x as a function of �b (in fact, as a linear transformation):

�x = (In − A)−1 �b.

a. Consider the example of the economy of Israel in
1958 (discussed in Exercise 1.2.41). Find the tech-
nology matrix A, the matrix (In − A), and its inverse
(In − A)−1.

b. In the example discussed in part (a), suppose the
consumer demand on agriculture (Industry 1) is 1
unit (1 million pounds), and the demands on the
other two industries are zero. What output �x is re-
quired in this case? How does your answer relate to
the matrix (In − A)−1?

c. Explain, in terms of economics, why the diagonal
elements of the matrix (In − A)−1 you found in part
(a) must be at least 1.

d. If the consumer demand on manufacturing increases
by 1 (from whatever it was), and the consumer de-
mand on the other two industries remains the same,
how will the output have to change? How does your
answer relate to the matrix (In − A)−1?

e. Using your answers in parts (a) through (d) as a
guide, explain in general (not just for this exam-
ple) what the columns and the entries of the matrix
(In − A)−1 tell you, in terms of economics. Those
who have studied multivariable calculus may wish
to consider the partial derivatives

∂xi

∂b j
.

50. This exercise refers to Exercise 49a. Consider the en-
try k = a11 = 0.293 of the technology matrix A. Ver-
ify that the entry in the first row and the first column
of (In − A)−1 is the value of the geometrical series
1 + k + k2 + · · · . Interpret this observation in terms
of economics.

51. a. Consider an n × m matrix A with rank(A) < n.
Show that there exists a vector �b in Rn such that
the system A�x = �b is inconsistent. Hint: For E =
rref(A), show that there exists a vector �c in Rn such
that the system E �x = �c is inconsistent; then, “work
backward.”

b. Consider an n × m matrix A with n > m. Show that
there exists a vector �b in Rn such that the system
A�x = �b is inconsistent.

52. For

A =

⎡
⎢⎢⎣

0 1 2
0 2 4
0 3 6
1 4 8

⎤
⎥⎥⎦ ,

find a vector �b in R4 such that the system A�x = �b is
inconsistent. See Exercise 51.

53. Let A =
[

3 1
3 5

]
in all parts of this problem.

a. Find a scalar λ (lambda) such that the matrix A−λI2
fails to be invertible. There are two solutions; choose
one and use it in parts (b) and (c).

b. For the λ you chose in part (a), find the matrix
A − λI2; then find a nonzero vector �x such that
(A − λI2)�x = �0. (This can be done, since A − λI2
fails to be invertible.)

c. Note that the equation (A − λI2)�x = �0 can be writ-
ten as A�x − λ�x = �0, or A�x = λ�x . Check that the
equation A�x = λ�x holds for your λ from part (a)
and your �x from part (b).

54. Let A =
[

1 10
−3 12

]
. Using Exercise 53 as a guide, find

a scalar λ and a nonzero vector �x such that A�x = λ�x .

In Exercises 55 through 65, show that the given matrix
A is invertible, and find the inverse. Interpret the linear
transformation T(�x) = A�x and the inverse transforma-
tion T−1(�y) = A−1�y geometrically. Interpret det A geo-
metrically. In your figure, show the angle θ and the vectors
�v and �w introduced in Theorem 2.4.10.

55.
[

2 0
0 2

]
56.
[

cos α − sin α

sin α cos α

]

57.
[

cos α sin α

sin α − cos α

]
58.
[−3 0

0 −3

]

59.
[

0.6 −0.8
0.8 0.6

]
60.
[−0.8 0.6

0.6 0.8

]

61.
[

1 1
−1 1

]
62.
[

1 −1
0 1

]

63.
[−3 4

4 3

]
64.
[

3 4
−4 3

]

65.
[

1 0
1 1

]
66. Consider two n × n matrices A and B such that the

product AB is invertible. Show that the matrices A
and B are both invertible. Hint: AB(AB)−1 = In and
(AB)−1 AB = In . Use Theorem 2.4.8.

For two invertible n × n matrices A and B, determine
which of the formulas stated in Exercises 67 through 75
are necessarily true.

67. (A + B)2 = A2 + 2AB + B2

68. (A − B)(A + B) = A2 − B2

69. A + B is invertible, and (A + B)−1 = A−1 + B−1

70. A2 is invertible, and (A2)−1 = (A−1)2

71. AB B−1 A−1 = In

12 This will always be the case for a “productive” economy. See
Exercise 103.
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72. AB A−1 = B

73. (AB A−1)3 = AB3 A−1

74. (In + A)(In + A−1) = 2In + A + A−1

75. A−1 B is invertible, and (A−1 B)−1 = B−1 A

76. Find all linear transformations T from R2 to R2 such
that

T

[
1
2

]
=
[

2
1

]
and T

[
2
5

]
=
[

1
3

]
.

Hint: We are looking for the 2 × 2 matrices A such that

A

[
1
2

]
=
[

2
1

]
and A

[
2
5

]
=
[

1
3

]
.

These two equations can be combined to form the ma-
trix equation

A

[
1 2
2 5

]
=
[

2 1
1 3

]
.

77. Using the last exercise as a guide, justify the following
statement:
Let �v1, �v2, . . . , �vm be vectors in Rm such that the ma-
trix

S =

⎡
⎢⎣ | | |

�v1 �v2 · · · �vm

| | |

⎤
⎥⎦

is invertible. Let �w1, �w2, . . . , �wm be arbitrary vectors
in Rn . Then there exists a unique linear transforma-
tion T from Rm to Rn such that T (�vi ) = �wi , for all
i = 1, . . . , m. Find the matrix A of this transformation
in terms of S and

B =

⎡
⎢⎣ | | |

�w1 �w2 · · · �wm

| | |

⎤
⎥⎦ .

78. Find the matrix A of the linear transformation T from
R2 to R3 with

T

[
1
2

]
=
⎡
⎣7

5
3

⎤
⎦ and T

[
2
5

]
=
⎡
⎣1

2
3

⎤
⎦ .

Compare with Exercise 77.

79. Find the matrix A of the linear transformation T from
R2 to R2 with

T

[
3
1

]
= 2

[
3
1

]
and T

[
1
2

]
= 3

[
1
2

]
.

Compare with Exercise 77.

80. Consider the regular tetrahedron sketched below, whose
center is at the origin.

0
P3 =

−1
−1
1

P2 =
−1
1

−1
P1 =

1
−1
−1

P0 =
1
1
1

Let T from R3 to R3 be the rotation about the axis
through the points 0 and P2 that transforms P1 into P3.
Find the images of the four corners of the tetrahedron
under this transformation.

P0
T→

P1 → P3

P2 →
P3 →

Let L from R3 to R3 be the reflection about the plane
through the points 0, P0, and P3. Find the images of the
four corners of the tetrahedron under this transformation.

P0
L→

P1 →
P2 →
P3 →

Describe the transformations in parts (a) through
(c) geometrically.
a. T −1 b. L−1

c. T 2 = T ◦ T (the composite of T with itself)
d. Find the images of the four corners under the trans-

formations T ◦ L and L ◦ T . Are the two transforma-
tions the same?

P0
T ◦L→

P1 →
P2 →
P3 →

P0
L◦T→

P1 →
P2 →
P3 →

e. Find the images of the four corners under the trans-
formation L ◦ T ◦ L . Describe this transformation
geometrically.

81. Find the matrices of the transformations T and L defined
in Exercise 80.

82. Consider the matrix

E =
⎡
⎣ 1 0 0

−3 1 0
0 0 1

⎤
⎦

and an arbitrary 3 × 3 matrix

A =
⎡
⎣a b c

d e f
g h k

⎤
⎦ .
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a. Compute E A. Comment on the relationship be-
tween A and E A, in terms of the technique of elim-
ination we learned in Section 1.2.

b. Consider the matrix

E =

⎡
⎢⎣1 0 0

0 1
4 0

0 0 1

⎤
⎥⎦

and an arbitrary 3×3 matrix A. Compute E A. Com-
ment on the relationship between A and E A.

c. Can you think of a 3 × 3 matrix E such that E A is
obtained from A by swapping the last two rows (for
any 3 × 3 matrix A)?

d. The matrices of the forms introduced in parts (a),
(b), and (c) are called elementary: An n × n matrix
E is elementary if it can be obtained from In by per-
forming one of the three elementary row operations
on In . Describe the format of the three types of ele-
mentary matrices.

83. Are elementary matrices invertible? If so, is the inverse
of an elementary matrix elementary as well? Explain
the significance of your answers in terms of elementary
row operations.

84. a. Justify the following: If A is an n × m matrix, then
there exist elementary n × n matrices E1, E2, . . . ,

E p such that

rref(A) = E1 E2 · · · E p A.

b. Find such elementary matrices E1, E2, . . . , E p for

A =
[

0 2
1 3

]
.

85. a. Justify the following: If A is an n × m matrix, then
there exists an invertible n × n matrix S such that

rref(A) = S A.

b. Find such an invertible matrix S for

A =
[

2 4
4 8

]
.

86. a. Justify the following: Any invertible matrix is a
product of elementary matrices.

b. Write A =
[

0 2
1 3

]
as a product of elementary

matrices.

87. Write all possible forms of elementary 2 × 2 matrices
E . In each case, describe the transformation �y = E �x
geometrically.

88. Consider an invertible n × n matrix A and an n × n ma-
trix B. A certain sequence of elementary row operations
transforms A into In .
a. What do you get when you apply the same row op-

erations in the same order to the matrix AB?

b. What do you get when you apply the same row op-
erations to In?

89. Is the product of two lower triangular matrices a lower
triangular matrix as well? Explain your answer.

90. Consider the matrix

A =
⎡
⎣1 2 3

2 6 7
2 2 4

⎤
⎦ .

a. Find lower triangular elementary matrices E1,
E2, . . . , Em such that the product

Em · · · E2 E1 A

is an upper triangular matrix U . Hint: Use elemen-
tary row operations to eliminate the entries below
the diagonal of A.

b. Find lower triangular elementary matrices M1,
M2, . . . , Mm and an upper triangular matrix U such
that

A = M1 M2 · · · MmU.

c. Find a lower triangular matrix L and an upper trian-
gular matrix U such that

A = LU.

Such a representation of an invertible matrix is
called an LU -factorization. The method outlined
in this exercise to find an LU -factorization can be
streamlined somewhat, but we have seen the ma-
jor ideas. An LU -factorization (as introduced here)
does not always exist. See Exercise 92.

d. Find a lower triangular matrix L with 1’s on the di-
agonal, an upper triangular matrix U with 1’s on
the diagonal, and a diagonal matrix D such that
A = L DU . Such a representation of an invertible
matrix is called an L DU -factorization.

91. Knowing an LU -factorization of a matrix A makes it
much easier to solve a linear system

A�x = �b.

Consider the LU -factorization

A =

⎡
⎢⎢⎣

1 2 −1 4
−3 −5 6 −5

1 4 6 20
−1 6 20 43

⎤
⎥⎥⎦

=

⎡
⎢⎢⎣

1 0 0 0
−3 1 0 0

1 2 1 0
−1 8 −5 1

⎤
⎥⎥⎦
⎡
⎢⎢⎣

1 2 −1 4
0 1 3 7
0 0 1 2
0 0 0 1

⎤
⎥⎥⎦

= LU.
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Suppose we have to solve the system A�x = LU �x = �b,
where

�b =

⎡
⎢⎢⎣

−3
14

9
33

⎤
⎥⎥⎦ .

a. Set �y = U �x , and solve the system L�y = �b, by for-
ward substitution (finding first y1, then y2, etc.). Do
this using paper and pencil. Show all your work.

b. Solve the system U �x = �y, using back substitution,
to find the solution �x of the system A�x = �b. Do this
using paper and pencil. Show all your work.

U

A

L

x� b�

y�

92. Show that the matrix A =
[

0 1
1 0

]
cannot be written in

the form A = LU , where L is lower triangular and U
is upper triangular.

93. In this exercise we will examine which invertible n × n
matrices A admit an LU -factorization A = LU , as dis-
cussed in Exercise 90. The following definition will be
useful: For m = 1, . . . , n, the principal submatrix A(m)

of A is obtained by omitting all rows and columns of A
past the mth. For example, the matrix

A =
⎡
⎣1 2 3

4 5 6
7 8 7

⎤
⎦

has the principal submatrices

A(1) = [1], A(2) =
[

1 2
4 5

]
, A(3) = A =

⎡
⎣1 2 3

4 5 6
7 8 7

⎤
⎦ .

We will show that an invertible n × n matrix A admits
an LU -factorization A = LU if (and only if) all its
principal submatrices are invertible.
a. Let A = LU be an LU -factorization of an

n × n matrix A. Use block matrices to show that
A(m) = L(m)U (m) for m = 1, . . . , n.

b. Use part (a) to show that if an invertible n × n ma-
trix A has an LU -factorization, then all its principal
submatrices A(m) are invertible.

c. Consider an n × n matrix A whose principal
submatrices are all invertible. Show that A ad-
mits an LU -factorization. Hint: By induction, you
can assume that A(n−1) has an LU -factorization
A(n−1) = L ′U ′. Use block matrices to find an LU -
factorization for A. Alternatively, you can explain
this result in terms of Gauss–Jordan elimination (if

all principal submatrices are invertible, then no row
swaps are required).

94. a. Show that if an invertible n × n matrix A ad-
mits an LU -factorization, then it admits an L DU -
factorization. See Exercise 90 d.

b. Show that if an invertible n × n matrix A ad-
mits an L DU -factorization, then this factorization
is unique. Hint: Suppose that A = L1 D1U1 =
L2 D2U2. Then U2U−1

1 = D−1
2 L−1

2 L1 D1 is diag-
onal (why?). Conclude that U2 = U1.

95. Consider a block matrix

A =
[

A11 0
0 A22

]
,

where A11 and A22 are square matrices. For which
choices of A11 and A22 is A invertible? In these cases,
what is A−1?

96. Consider a block matrix

A =
[

A11 0
A21 A22

]
,

where A11 and A22 are square matrices. For which
choices of A11, A21, and A22 is A invertible? In these
cases, what is A−1?

97. Consider the block matrix

A =
[

A11 A12 A13

0 0 A23

]
,

where A11 is an invertible matrix. Determine the rank
of A in terms of the ranks of the blocks A11, A12, A13,
and A23.

98. Consider the block matrix

A =
[

In �v
�w 1

]
,

where �v is a vector in Rn , and �w is a row vector with n
components. For which choices of �v and �w is A invert-
ible? In these cases, what is A−1?

99. Find all invertible n × n matrices A such that A2 = A.

100. Find a nonzero n × n matrix A with identical entries
such that A2 = A.

101. Consider two n × n matrices A and B whose entries are
positive or zero. Suppose that all entries of A are less
than or equal to s, and all column sums of B are less
than or equal to r (the j th column sum of a matrix is
the sum of all the entries in its j th column). Show that
all entries of the matrix AB are less than or equal to sr .

102. (This exercise builds on Exercise 101.) Consider an
n × n matrix A whose entries are positive or zero. Sup-
pose that all column sums of A are less than 1. Let r be
the largest column sum of A.
a. Show that the entries of Am are less than or equal to

rm , for all positive integers m.
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b. Show that

lim
m→∞ Am = 0

(meaning that all entries of Am approach zero).
c. Show that the infinite series

In + A + A2 + · · · + Am + · · ·
converges (entry by entry).

d. Compute the product

(In − A)(In + A + A2 + · · · + Am).

Simplify the result. Then let m go to infinity, and
thus show that

(In − A)−1 = In + A + A2 + · · · + Am + · · · .
103. (This exercise builds on Exercises 49, 101, and 102.)

a. Consider the industries J1, . . . , Jn in an economy.
We say that industry J j is productive if the j th col-
umn sum of the technology matrix A is less than 1.
What does this mean in terms of economics?

b. We say that an economy is productive if all of its
industries are productive. Exercise 102 shows that
if A is the technology matrix of a productive econ-
omy, then the matrix In − A is invertible. What does
this result tell you about the ability of a productive
economy to satisfy consumer demand?

c. Interpret the formula

(In − A)−1 = In + A + A2 + · · · + Am + · · ·
derived in Exercise 102d in terms of economics.

104. The color of light can be represented in a vector⎡
⎣ R

G
B

⎤
⎦ ,

where R = amount of red, G = amount of green, and
B = amount of blue. The human eye and the brain
transform the incoming signal into the signal⎡

⎣ I
L
S

⎤
⎦ ,

where

intensity I = R + G + B

3
long-wave signal L = R − G

short-wave signal S = B − R + G

2
.

a. Find the matrix P representing the transformation
from ⎡

⎣ R
G
B

⎤
⎦ to

⎡
⎣ I

L
S

⎤
⎦ .

b. Consider a pair of yellow sunglasses for water sports
that cuts out all blue light and passes all red and
green light. Find the 3 × 3 matrix A that represents
the transformation incoming light undergoes as it
passes through the sunglasses. All the entries of your
matrix A will be 0’s and 1’s.

c. Find the matrix for the composite transformation
that light undergoes as it first passes through the sun-
glasses and then the eye.

d. As you put on the sunglasses, the signal you receive
(intensity, long- and short-wave signals) undergoes
a transformation. Find the matrix M of this transfor-
mation. Feel free to use technology.

Light passes through eyes only.

A

P

M

P

Light passes through glasses and 
then through eyes.

105. A village is divided into three mutually exclusive
groups called clans. Each person in the village belongs
to a clan, and this identification is permanent. There
are rigid rules concerning marriage: A person from one
clan can only marry a person from one other clan. These
rules are encoded in the matrix A below. The fact that
the 2–3 entry is 1 indicates that marriage between a man
from clan III and a woman from clan II is allowed. The
clan of a child is determined by the mother’s clan, as
indicated by the matrix B. According to this scheme,
siblings belong to the same clan.

Husband’s clan
I II III

A =
⎡
⎣0 1 0

0 0 1�
1 0 0

⎤
⎦ I

II
III

Wife’s
clan

Mother’s clan
I II III

B =
⎡
⎣1 0 0

0 0 1
0 1 0

⎤
⎦ I

II
III

Child’s
clan

The identification of a person with clan I can be repre-
sented by the vector

�e1 =
⎡
⎣1

0
0

⎤
⎦ ,
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and likewise for the two other clans. Matrix A trans-
forms the husband’s clan into the wife’s clan (if �x repre-
sents the husband’s clan, then A�x represents the wife’s
clan).
a. Are the matrices A and B invertible? Find the in-

verses if they exist. What do your answers mean, in
practical terms?

b. What is the meaning of B2, in terms of the rules of
the community?

c. What is the meaning of AB and B A, in terms of the
rules of the community? Are AB and B A the same?

d. Bueya is a young woman who has many male first
cousins, both on her mother’s and on her father’s
sides. The kinship between Bueya and each of her
male cousins can be represented by one of the four
diagrams below:

Bueya

Her mother An aunt on the mother’s side

A male first cousin

In each of the four cases, find the matrix that gives
you the cousin’s clan in terms of Bueya’s clan.

e. According to the rules of the village, could Bueya
marry a first cousin? (We do not know Bueya’s clan.)

106. As background to this exercise, see Exercise 45.
a. If you use Theorem 2.3.4, how many multiplica-

tions of scalars are necessary to multiply two 2 × 2
matrices?

b. If you use Theorem 2.3.4, how many multiplications
are needed to multiply an n × p and a p×m matrix?

In 1969, the German mathematician Volker Strassen
surprised the mathematical community by showing that
two 2 × 2 matrices can be multiplied with only seven
multiplications of numbers. Here is his trick: Suppose

you have to find AB for A =
[

a b
c d

]
and B =[

p q
r s

]
. First compute

h1 = (a + d)(p + s)
h2 = (c + d)p
h3 = a(q − s)
h4 = d(r − p)

h5 = (a + b)s
h6 = (c − a)(p + q)

h7 = (b − d)(r + s).

Then

AB =
[

h1 + h4 − h5 + h7 h3 + h5

h2 + h4 h1 + h3 − h2 + h6

]
.

107. Let N be the set of all positive integers, 1, 2, 3, . . . . We
define two functions f and g from N to N:

f (x) = 2x, for all x in N

g(x) =
{

x/2 if x is even
(x + 1)/2 if x is odd.

Find formulas for the composite functions g
(

f (x)
)

and
f
(
g(x)
)
. Is one of them the identity transformation

from N to N? Are the functions f and g invertible?

108. Geometrical optics. Consider a thin biconvex lens with
two spherical faces.

This is a good model for the lens of the human eye and
for the lenses used in many optical instruments, such as
reading glasses, cameras, microscopes, and telescopes.
The line through the centers of the spheres defining the
two faces is called the optical axis of the lens.

Center of sphere
defining the right face

Center of sphere
defining the left face

Optical axis

In this exercise, we learn how we can track the path of
a ray of light as it passes through the lens, provided that
the following conditions are satisfied:
• The ray lies in a plane with the optical axis.
• The angle the ray makes with the optical axis is small.
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To keep track of the ray, we introduce two reference
planes perpendicular to the optical axis, to the left and
to the right of the lens.

Left reference
plane

Right reference
plane

<     L    > <         R         >

We can characterize the incoming ray by its slope m and
its intercept x with the left reference plane. Likewise, we
characterize the outgoing ray by slope n and intercept y.

<     L    >

slope m

x y

slope n

<         R          >

We want to know how the outgoing ray depends on the
incoming ray; that is, we are interested in the transfor-
mation

T : R2 → R2;
[

x
m

]
→
[

y
n

]
.

We will see that T can be approximated by a linear trans-
formation provided that m is small, as we assumed. To
study this transformation, we divide the path of the ray
into three segments, as shown in the following figure:

IIIIII

<     L    >

m

x y

n

<         R         >

v w

We have introduced two auxiliary reference planes, di-
rectly to the left and to the right of the lens. Our trans-
formation [

x
m

]
→
[

y
n

]
can now be represented as the composite of three sim-
pler transformations:[

x
m

]
→
[

v

m

]
→
[
w

n

]
→
[

y
n

]
.

From the definition of the slope of a line, we get the
relations v = x + Lm and y = w + Rn.

L

Lm
Slope m

x x

v

[
v

m

]
=
[

x + Lm
m

]
=
[

1 L
0 1

] [
x
m

]
[

y
n

]
=
[

1 R
0 1

] [
w

n

]
[

x
m

]
−−−−−→[

1 L
0 1

]
[

v

m

]
−−−−−→

[
w

n

]
−−−−−→[

1 R
0 1

]
[

y
n

]

It would lead us too far into physics to derive a formula
for the transformation[

v

m

]
→
[
w

n

]
here.13 Under the assumptions we have made, the trans-
formation is well approximated by[

w

n

]
=
[

1 0
−k 1

] [
v

m

]
,

for some positive constant k (this formula implies that
w = v).

[
x
m

]
−−−−−→[

1 L
0 1

]
[

v

m

]
−−−−−→[

1 0
−k 1

]
[
w

n

]
−−−−−→[

1 R
0 1

]
[

y
n

]

13 See, for example, Paul Bamberg and Shlomo Sternberg, A
Course in Mathematics for Students of Physics 1, Cambridge
University Press, 1991.
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The transformation

[
x
m

]
→
[

y
n

]
is represented by the

matrix product[
1 R
0 1

] [
1 0

−k 1

] [
1 L
0 1

]

=
[

1 − Rk L + R − kL R
−k 1 − kL

]
.

a. Focusing parallel rays. Consider the lens in the hu-
man eye, with the retina as the right reference plane.
In an adult, the distance R is about 0.025 meters
(about 1 inch). The ciliary muscles allow you to vary
the shape of the lens and thus the lens constant k,
within a certain range. What value of k enables you
to focus parallel incoming rays, as shown in the fig-
ure? This value of k will allow you to see a distant
object clearly. (The customary unit of measurement
for k is 1 diopter = 1

1 meter .)

R

Slope m

y

Hint: In terms of the transformation[
x
m

]
→
[

y
n

]
,

you want y to be independent of x (y must depend
on the slope m alone). Explain why 1/k is called the
focal length of the lens.

b. What value of k enables you to read this text from a
distance of L = 0.3 meters? Consider the following
figure (which is not to scale).

RL

c. The telescope. An astronomical telescope consists of
two lenses with the same optical axis.

D

k1 k2

Left reference
plane

Right reference
plane

Find the matrix of the transformation[
x
m

]
→
[

y
n

]
,

in terms of k1, k2, and D. For given values of k1 and
k2, how do you choose D so that parallel incoming
rays are converted into parallel outgoing rays? What
is the relationship between D and the focal lengths
of the two lenses, 1/k1 and 1/k2?

Chapter Two Exercises

TRUE OR FALSE?

1. The matrix

[
5 6

−6 5

]
represents a rotation combined

with a scaling.

2. If A is any invertible n × n matrix, then A commutes
with A−1.

3. The function T

[
x
y

]
=
[

x − y
y − x

]
is a linear trans-

formation.

4. Matrix

[
1/2 −1/2
1/2 1/2

]
represents a rotation.

5. If A is any invertible n × n matrix, then rref(A) = In .

6. The formula (A2)−1 = (A−1)2 holds for all invertible
matrices A.

7. The formula AB = B A holds for all n × n matrices A
and B.

8. If AB = In for two n × n matrices A and B, then A
must be the inverse of B.

9. If A is a 3 × 4 matrix and B is a 4 × 5 matrix, then AB
will be a 5 × 3 matrix.

10. The function T

[
x
y

]
=
[

y
1

]
is a linear transformation.
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11. Matrix

[
k −2
5 k − 6

]
is invertible for all real numbers k.

12. There exists a real number k such that the matrix[
k − 1 −2
−4 k − 3

]
fails to be invertible.

13. There exists a real number k such that the matrix[
k − 2 3
−3 k − 2

]
fails to be invertible.

14. A =
[

1 1/2
0 1/2

]
is a regular transition matrix.

15. The formula det(2A) = 2 det(A) holds for all 2 × 2
matrices A.

16. There exists a matrix A such that[
1 2
3 4

]
A

[
5 6
7 8

]
=
[

1 1
1 1

]
.

17. Matrix

[
1 2
3 6

]
is invertible.

18. Matrix

⎡
⎣1 1 1

1 0 1
1 1 0

⎤
⎦ is invertible.

19. There exists an upper triangular 2 × 2 matrix A such

that A2 =
[

1 1
0 1

]
.

20. The function T

[
x
y

]
=
[
(y + 1)2 − (y − 1)2

(x − 3)2 − (x + 3)2

]
is a

linear transformation.

21. There exists an invertible n × n matrix with two identi-
cal rows.

22. If A2 = In , then matrix A must be invertible.

23. There exists a matrix A such that A

[
1 1
1 1

]
=
[

1 2
1 2

]
.

24. There exists a matrix A such that

[
1 2
1 2

]
A =
[

1 1
1 1

]
.

25. The matrix

[
1 1
1 −1

]
represents a reflection about a

line.

26. For every regular transition matrix A there exists a tran-
sition matrix B such that AB = B.

27. The matrix product

[
a b
c d

] [
d −b

−c a

]
is always a

scalar multiple of I2.

28. There exists a nonzero upper triangular 2 × 2 matrix A

such that A2 =
[

0 0
0 0

]
.

29. There exists a positive integer n such that[
0 −1
1 0

]n
= I2.

30. There exists an invertible 2 × 2 matrix A such that

A−1 =
[

1 1
1 1

]
.

31. There exists a regular transition matrix A of size 3 × 3
such that A2 = A.

32. If A is any transition matrix and B is any positive tran-
sition matrix, then AB must be a positive transition ma-
trix.

33. If matrix

⎡
⎣a b c

d e f
g h i

⎤
⎦ is invertible, then matrix

[
a b
d e

]
must be invertible as well.

34. If A2 is invertible, then matrix A itself must be invert-
ible.

35. If A17 = I2, then matrix A must be I2.

36. If A2 = I2, then matrix A must be either I2 or −I2.

37. If matrix A is invertible, then matrix 5A must be invert-
ible as well.

38. If A and B are two 4 × 3 matrices such that A�v = B �v
for all vectors �v in R3, then matrices A and B must be
equal.

39. If matrices A and B commute, then the formula A2 B =
B A2 must hold.

40. If A2 = A for an invertible n ×n matrix A, then A must
be In .

41. If A is any transition matrix such that A100 is positive,
then A101 must be positive as well.

42. If a transition matrix A is invertible, then A−1 must be
a transition matrix as well.

43. If matrices A and B are both invertible, then matrix
A + B must be invertible as well.

44. The equation A2 = A holds for all 2 × 2 matrices A
representing a projection.

45. The equation A−1 = A holds for all 2 × 2 matrices A
representing a reflection.

46. The formula (A�v) · (A �w) = �v · �w holds for all invertible
2 × 2 matrices A and for all vectors �v and �w in R2.

47. There exist a 2 × 3 matrix A and a 3 × 2 matrix B such
that AB = I2.

48. There exist a 3 × 2 matrix A and a 2 × 3 matrix B such
that AB = I3.

49. If A2 +3A +4I3 = 0 for a 3×3 matrix A, then A must
be invertible.

50. If A is an n × n matrix such that A2 = 0, then matrix
In + A must be invertible.
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51. If matrix A commutes with B, and B commutes with C ,
then matrix A must commute with C .

52. If T is any linear transformation from R3 to R3,
then T (�v × �w) = T (�v) × T ( �w) for all vectors �v and
�w in R3.

53. There exists an invertible 10 × 10 matrix that has 92
ones among its entries.

54. The formula rref(AB) = rref(A) rref(B) holds for all
n × p matrices A and for all p × m matrices B.

55. There exists an invertible matrix S such that

S−1
[

0 1
0 0

]
S is a diagonal matrix.

56. If the linear system A2 �x = �b is consistent, then the sys-
tem A�x = �b must be consistent as well.

57. There exists an invertible 2 × 2 matrix A such that
A−1 = −A.

58. There exists an invertible 2 × 2 matrix A such that

A2 =
[

1 0
0 −1

]
.

59. If a matrix A =
[

a b
c d

]
represents the orthog-

onal projection onto a line L , then the equation
a2 + b2 + c2 + d2 = 1 must hold.

60. If A is an invertible 2×2 matrix and B is any 2×2 ma-
trix, then the formula rref(AB) = rref(B) must hold.

61. There is a transition matrix A such that lim
m→∞ Am fails

to exist.

62. For every transition matrix A there exists a nonzero vec-
tor �x such that A�x = �x .



C H A P T E R

3
Subspaces of Rn and Their Dimensions

3.1 Image and Kernel of a Linear Transformation

You may be familiar with the notion of the image1 of a function.

Definition 3.1.1 Image of a function

The image of a function consists of all the values the function takes in its target
space. If f is a function from X to Y , then

image ( f ) = { f (x): x in X}
= {b in Y : b = f (x), for some x in X}.

EXAMPLE 1 A group X of students and a group Y of professors stand in the yard. Each student
throws a snowball at one of the professors (and each snowball hits its intended
target). Consider the function y = f (x) from X to Y that associates with each
student x the target y of his or her snowball. The image of f consists of those
professors that are hit. See Figure 1. �

X: the domain of f Y: the target space of f

f

image ( f )

Figure 1

1Some authors use the term range for what we call the image, while others use the term range for
what we call the target space. Because of this ambiguity, we will not use the term range at all. Make
sure to check which definition is used when you encounter the term range in a text.

110
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EXAMPLE 2 The image of the exponential function f (x) = ex from R to R consists of all
positive real numbers. Indeed, f (x) = ex is positive for all x , and every positive
number b can be written as b = eln b = f (ln b). See Figure 2. �

b

ln(b)

f(x) = ex

Figure 2

More generally, the image of a function f (x) from R to R consists of all real
numbers b such that the line y = b intersects the graph of f (take another look at
Figure 2). The image of f is the orthogonal projection of the graph of f onto the
vertical axis.

EXAMPLE 3 The image of the function

f (t) =
[

cos t
sin t

]
from R to R2

is the unit circle centered at the origin. See Figure 3. Indeed,

[
cos t
sin t

]
is a unit vector

for all t , since cos2 t + sin2 t = 1, and, conversely, any unit vector �u in R2 can be

written in polar coordinates as �u =
[

cos t
sin t

]
, where t is its polar angle. �

t

0 1
0

f(t) =
cos t
sin t

Figure 3

The function f in Example 3 is called a parametrization of the unit circle. More
generally, a parametrization of a curve C in R2 is a function g from R to R2 whose
image is C .
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EXAMPLE 4 If the function f from X to Y is invertible, then the image of f is Y . Indeed, for
every b in Y , there exists one (and only one) x in X such that b = f (x), namely,
x = f −1(b):

b = f
(

f −1(b)
)
.

See Figure 4. �

X

x = f −1(b)

Y

f

b

Figure 4

EXAMPLE 5 Consider the linear transformation T from R3 to R3 that projects a vector �x orthog-

onally into the x1–x2-plane, meaning that T

⎡
⎣x1

x2

x3

⎤
⎦ =
⎡
⎣ x1

x2

0

⎤
⎦. See Figure 5.

T(x�)x1

x2

x3

x�

Figure 5

The image of T is the x1–x2-plane in R3, consisting of all vectors of the form⎡
⎣ x1

x2

0

⎤
⎦. �

EXAMPLE 6 Describe the image of the linear transformation

T (�x) = A�x from R2 to R2, where A =
[

1 3
2 6

]
.

Solution
The image of T consists of all the values of T , that is, all vectors of the form

T

[
x1

x2

]
= A

[
x1

x2

]
=
[

1 3
2 6

] [
x1

x2

]
= x1

[
1
2

]
+ x2

[
3
6

]

= x1

[
1
2

]
+ 3x2

[
1
2

]
= (x1 + 3x2)

[
1
2

]
.
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Since the vectors

[
1
2

]
and

[
3
6

]
are parallel, the image of T is the line of all scalar

multiples of the vector

[
1
2

]
, as illustrated in Figure 6. �

image(T )

1
2

3
6

Figure 6

EXAMPLE 7 Describe the image of the linear transformation

T (�x) = A�x from R2 to R3, where A =
⎡
⎣1 1

1 2
1 3

⎤
⎦ .

Solution
The image of T consists of all vectors of the form

T

[
x1

x2

]
=
⎡
⎣1 1

1 2
1 3

⎤
⎦[ x1

x2

]
= x1

⎡
⎣1

1
1

⎤
⎦+ x2

⎡
⎣1

2
3

⎤
⎦ ,

that is, all linear combinations of the column vectors of A,

�v1 =
⎡
⎣1

1
1

⎤
⎦ and �v2 =

⎡
⎣1

2
3

⎤
⎦ .

The image of T is the plane V “spanned” by the two vectors �v1 and �v2, that is,
the plane through the origin and the endpoints (1, 1, 1) and (1, 2, 3) of �v1 and �v2,
respectively. See Figure 7. �

0

V
v�2

v�1

x2v�2

x1v�1

x1v�1 + x2v�2

Figure 7
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The observations we made in Examples 6 and 7 motivate the following
definition.

Definition 3.1.2 Span

Consider the vectors �v1, . . . , �vm in Rn . The set of all linear combinations
c1 �v1 + · · · + cm �vm of the vectors �v1, . . . , �vm is called their span:

span(�v1, . . . , �vm) = {c1 �v1 + · · · + cm �vm : c1, . . . , cm in R} .

Theorem 3.1.3 Image of a linear transformation

The image of a linear transformation T (�x) = A�x is the span of the column
vectors of A.2 We denote the image of T by im(T ) or im(A).

To prove this theorem, we write the transformation T in vector form as in Ex-
amples 6 and 7:

T (�x) = A�x =

⎡
⎢⎣ | |

�v1 · · · �vm

| |

⎤
⎥⎦
⎡
⎢⎣ x1

...

xm

⎤
⎥⎦ = x1 �v1 + · · · + xm �vm .

This shows that the image of T consists of all linear combinations of the column
vectors �v1, . . . , �vm of matrix A. Thus, im(T ) is the span of the vectors �v1, . . . , �vm .

The image of a linear transformation has some noteworthy properties.

Theorem 3.1.4 Some properties of the image

The image of a linear transformation T (from Rm to Rn) has the following
properties:

a. The zero vector �0 in Rn is in the image of T .

b. The image of T is closed under addition: If �v1 and �v2 are in the image
of T , then so is �v1 + �v2.

c. The image of T is closed under scalar multiplication: If �v is in the image
of T and k is an arbitrary scalar, then k �v is in the image of T as well.

Proof a. �0 = A�0 = T (�0).

b. There exist vectors �w1 and �w2 in Rm such that �v1 = T ( �w1) and �v2 = T ( �w2).
Then �v1 + �v2 = T ( �w1) + T ( �w2) = T ( �w1 + �w2), so that �v1 + �v2 is in the
image of T as well.

c. If �v = T ( �w), then k �v = kT ( �w) = T (k �w). �
It follows from properties (b) and (c) that the image of T is closed under linear

combinations: If some vectors �v1, . . . , �v p are in the image and c1, . . . , cp are arbi-
trary scalars, then c1 �v1 +· · ·+cp �v p is in the image as well. In Figure 8 we illustrate
this property in the case when p = 2 and n = 3 (that is, the target space of T
is R3).

EXAMPLE 8 Consider an n × n matrix A. Show that im(A2) is a subset of im(A); that is, each
vector in im(A2) is also in im(A).

2The image of T is also called the column space of A.
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Solution
Consider a vector �b = A2 �v = AA�v in the image of A2. We can write
�b = A(A�v) = A �w, where �w = A�v. The equation �b = A �w shows that �b is in
the image of A. See Figure 9. �

0

V

v�2

v�1
c1v�1

c2v�2

c1v�1 + c2v�2

Figure 8 If �v1 and �v2 are in the image, then so are all vectors
in the plane V in R3 spanned by �v1 and �v2.

v�

w�

b�

A A

A2

Figure 9

The Kernel of a Linear Transformation
When you study functions y = f (x) of one variable, you are often interested in
the zeros of f (x), that is, the solutions of the equation f (x) = 0. For example, the
function y = sin(x) has infinitely many zeros, namely, all integer multiples of π .

The zeros of a linear transformation are of interest as well.

Definition 3.1.5 Kernel

The kernel 3 of a linear transformation T (�x) = A�x from Rm to Rn consists of all
zeros of the transformation, that is, the solutions of the equation T (�x) = A�x = �0.
See Figure 10, where we show the kernel along with the image.

In other words, the kernel of T is the solution set of the linear system

A�x = �0.

We denote the kernel of T by ker(T ) or ker(A).

T

Rm Rn

ker(T) 0�
im(T)

Figure 10

For a linear transformation T from Rm to Rn ,

• im(T ) = {T (�x) : �x in Rm} is a subset of the target space Rn of T , and
• ker(T ) = {�x in Rm : T (�x) = �0} is a subset of the domain Rm of T .

3The kernel of T is also called the null space of A.
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EXAMPLE 9 Consider the linear transformation T from R3 to R3 that projects a vector orthogo-
nally into the x1–x2-plane. See Example 5 and Figure 5.

The kernel of T consists of the solutions of the equation T (�x) = �0, that is,
the vectors whose orthogonal projection onto the x1–x2-plane is zero. Those are the
vectors on the x3-axis, that is, the scalar multiples of �e3. See Figure 11. �

x�

T(x�)

ker(T)

x3

x1

x2

Figure 11

EXAMPLE 10 Find the kernel of the linear transformation

T (�x) =
[

1 1 1
1 2 3

]
�x from R3 to R2.

Solution
We have to solve the linear system

T (�x) =
[

1 1 1
1 2 3

]
�x = �0.

Since we have studied this kind of problem carefully in Section 1.2, we can be brief.

rref

[
1 1 1 0
1 2 3 0

]
=
[

1 0 −1 0
0 1 2 0

]
∣∣∣∣x1 − x3 = 0

x2 + 2x3 = 0

∣∣∣∣ , or

∣∣∣∣x1 = x3
x2 = −2x3

∣∣∣∣⎡
⎣x1

x2

x3

⎤
⎦ =
⎡
⎣ t

−2t
t

⎤
⎦ = t

⎡
⎣ 1

−2
1

⎤
⎦ , where t is an arbitrary constant.

The kernel of T is the line spanned by

⎡
⎣ 1

−2
1

⎤
⎦ in R3. �

Consider a linear transformation T (�x) = A�x from Rm to Rn , where m exceeds
n (as in Example 10, where m = 3 and n = 2). There will be free variables for
the equation T (�x) = A�x = �0; that is, this system has infinitely many solutions.
Therefore, the kernel of T consists of infinitely many vectors. This agrees with
our intuition: We expect some collapsing to take place as we transform the “large”
vector space Rm into the “smaller” Rn . (Recall that the kernel consists of everything
that “collapses to zero.”)
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EXAMPLE 11 Find the kernel of the linear transformation T (�x) = A�x from R5 to R4, where

A =

⎡
⎢⎢⎣

1 2 2 −5 6
−1 −2 −1 1 −1

4 8 5 −8 9
3 6 1 5 −7

⎤
⎥⎥⎦ .

Solution
We have to solve the linear system

T (�x) = A�x = �0.

We leave it to the reader to verify that

rref[A | �0] =

⎡
⎢⎢⎣

1 2 0 3 −4 0
0 0 1 −4 5 0
0 0 0 0 0 0
0 0 0 0 0 0

⎤
⎥⎥⎦ .

The kernel of T consists of the solutions of the system∣∣∣∣x1 + 2x2 + 3x4 − 4x5 = 0
x3 − 4x4 + 5x5 = 0

∣∣∣∣ or

∣∣∣∣x1 = −2x2 − 3x4 + 4x5
x3 = 4x4 − 5x5

∣∣∣∣ .
The solutions are the vectors of the form

�x =

⎡
⎢⎢⎢⎢⎣

x1

x2

x3

x4

x5

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

−2s −3t +4r
s

4t −5r
t

r

⎤
⎥⎥⎥⎥⎦ = s

⎡
⎢⎢⎢⎢⎣

−2
1
0
0
0

⎤
⎥⎥⎥⎥⎦+ t

⎡
⎢⎢⎢⎢⎣

−3
0
4
1
0

⎤
⎥⎥⎥⎥⎦+ r

⎡
⎢⎢⎢⎢⎣

4
0

−5
0
1

⎤
⎥⎥⎥⎥⎦ ,

where s, t , and r are arbitrary constants. Using the concept of the span introduced
in Definition 3.1.2, we can write

ker(T ) = span

⎛
⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎣

−2
1
0
0
0

⎤
⎥⎥⎥⎥⎦ ,

⎡
⎢⎢⎢⎢⎣

−3
0
4
1
0

⎤
⎥⎥⎥⎥⎦ ,

⎡
⎢⎢⎢⎢⎣

4
0

−5
0
1

⎤
⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎠ . �

The kernel has some remarkable properties, analogous to the properties of the
image listed in Theorem 3.1.4.

Theorem 3.1.6 Some properties of the kernel

Consider a linear transformation T from Rm to Rn .

a. The zero vector �0 in Rm is in the kernel of T .

b. The kernel is closed under addition.

c. The kernel is closed under scalar multiplication.

The verification of Theorem 3.1.6 is left as Exercise 49.

EXAMPLE 12 For an invertible n × n matrix A, find ker(A).
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Solution
By Theorem 2.4.4b, the system

A�x = �0

has the sole solution �x = �0, so that ker(A) = {�0}. �
Conversely, if A is a noninvertible n × n matrix, then ker(A) �= {�0}, meaning

that the kernel consists of more than just the zero vector (again by Theorem 2.4.4b).

EXAMPLE 13 For which n × m matrices A is ker(A) = {�0}? Give your answer in terms of the
rank of A.

Solution
It is required that there be no free variables for the system A�x = �0, meaning that
all m variables are leading variables. Thus, we want rank(A) = m, since the rank is
the number of leading variables. �

Let’s summarize the results of Examples 12 and 13.

Theorem 3.1.7 When is ker(A) = {�0}?
a. Consider an n × m matrix A. Then ker(A) = {�0} if (and only if)

rank(A) = m.

b. Consider an n × m matrix A. If ker(A) = {�0}, then m ≤ n. Equivalently,
if m > n, then there are nonzero vectors in the kernel of A.

c. For a square matrix A, we have ker(A) = {�0} if (and only if) A is
invertible.

We conclude this section with a summary that relates many concepts we have
introduced thus far.

SUMMARY 3.1.8 Various characterizations of invertible matrices

For an n × n matrix A, the following statements are equivalent; that is, for a
given A, they are either all true or all false.

i. A is invertible.

ii. The linear system A�x = �b has a unique solution �x , for all �b in Rn .

iii. rref(A) = In .

iv. rank(A) = n.

v. im(A) = Rn .

vi. ker(A) = {�0}.

In Figure 12 we briefly recall the justification for these equivalences.
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Example 1.3.3b and
Exercise 2.4.51 *

Definition of rank (1.3.2)Theorem 2.4.3

Definition of
invertibility

(2.4.1 and 2.4.2)

Theorem 3.1.7c

(iv) (v)(iii)(i)

(ii)

(vi)

*Note that b� is in the image of A if and only if the system Ax� = b� is consistent (by definition of the image).

Figure 12

EXERCISES 3.1
GOAL Use the concepts of the image and the kernel of
a linear transformation (or a matrix). Express the image
and the kernel of any matrix as the span of some vectors.
Use kernel and image to determine whether a matrix is
invertible.

For each matrix A in Exercises 1 through 13, find vectors
that span the kernel of A. Use paper and pencil.

1. A =
[

1 2
3 4

]
2. A = [1 2 3

]

3. A =
[

0 0
0 0

]
4. A =

[
2 3
6 9

]

5. A =
⎡
⎣1 1 1

1 2 3
1 3 5

⎤
⎦ 6. A =

[
1 1 1
1 2 3

]

7. A =
⎡
⎣1 2 3

1 3 2
3 2 1

⎤
⎦ 8. A =

⎡
⎣1 1 1

1 1 1
1 1 1

⎤
⎦

9. A =
⎡
⎣1 1

1 2
1 3

⎤
⎦

10. A =

⎡
⎢⎢⎣

1 −1 −1 1 1
−1 1 0 −2 2

1 −1 −2 0 3
2 −2 −1 3 4

⎤
⎥⎥⎦

11. A =

⎡
⎢⎢⎣

1 0 2 4
0 1 −3 −1
3 4 −6 8
0 −1 3 4

⎤
⎥⎥⎦

12. A =
⎡
⎣1 2 3 4

0 1 2 3
0 0 0 1

⎤
⎦

13. A =

⎡
⎢⎢⎢⎢⎣

1 2 0 0 3 0
0 0 1 0 2 0
0 0 0 1 1 0
0 0 0 0 0 0
0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎦

For each matrix A in Exercises 14 through 16, find vectors
that span the image of A. Give as few vectors as possible.
Use paper and pencil.

14. A =
⎡
⎣1 2 3

1 2 3
1 2 3

⎤
⎦

15. A =
[

1 1 1 1
1 2 3 4

]
16. A =

⎡
⎢⎢⎣

1 1
1 2
1 3
1 4

⎤
⎥⎥⎦

For each matrix A in Exercises 17 through 22, describe
the image of the transformation T(�x) = A�x geometrically
(as a line, plane, etc. in R2 or R3).

17. A =
[

1 2
3 4

]
18. A =

[
1 4
3 12

]

19. A =
[

1 2 3 4
−2 −4 −6 −8

]

20. A =
⎡
⎣2 1 3

3 4 2
6 5 7

⎤
⎦ 21. A =

⎡
⎣4 7 3

1 9 2
5 6 8

⎤
⎦

22. A =
⎡
⎣1 1 1

1 1 1
1 1 1

⎤
⎦

Describe the images and kernels of the transformations in
Exercises 23 through 25 geometrically.

23. Reflection about the line y = x/3 in R2
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24. Orthogonal projection onto the plane x + 2y + 3z = 0
in R3

25. Rotation through an angle of π/4 in the counterclock-
wise direction (in R2)

26. What is the image of a function f from R to R given by

f (t) = t3 + at2 + bt + c,

where a, b, c are arbitrary scalars?

27. Give an example of a noninvertible function f from R

to R with im( f ) = R.

28. Give an example of a parametrization of the ellipse

x2 + y2

4
= 1

in R2. See Example 3.

29. Give an example of a function whose image is the unit
sphere

x2 + y2 + z2 = 1

in R3.

30. Give an example of a matrix A such that im(A) is

spanned by the vector

[
1
5

]
.

31. Give an example of a matrix A such that im(A) is the

plane with normal vector

⎡
⎣1

3
2

⎤
⎦ in R3.

32. Give an example of a linear transformation whose im-
age is the line spanned by⎡

⎣7
6
5

⎤
⎦

in R3.

33. Give an example of a linear transformation whose ker-
nel is the plane x + 2y + 3z = 0 in R3.

34. Give an example of a linear transformation whose ker-
nel is the line spanned by⎡

⎣−1
1
2

⎤
⎦

in R3.

35. Consider a nonzero vector �v in R3. Arguing geomet-
rically, describe the image and the kernel of the linear
transformation T from R3 to R given by

T (�x) = �v · �x .

36. Consider a nonzero vector �v in R3. Using a geo-
metric argument, describe the kernel of the linear

transformation T from R3 to R3 given by

T (�x) = �v × �x .

See Definition A.9 in the Appendix.

37. For the matrix

A =
⎡
⎣0 1 0

0 0 1
0 0 0

⎤
⎦ ,

describe the images and kernels of the matrices A, A2,
and A3 geometrically.

38. Consider a square matrix A.
a. What is the relationship among ker(A) and ker(A2)?

Are they necessarily equal? Is one of them necessar-
ily contained in the other? More generally, what can
you say about ker(A), ker(A2), ker(A3), . . .?

b. What can you say about im(A), im(A2),
im(A3), . . .?

Hint: Exercise 37 is helpful.

39. Consider an n × p matrix A and a p × m matrix B.
a. What is the relationship between ker(AB) and

ker(B)? Are they always equal? Is one of them
always contained in the other?

b. What is the relationship between im(A) and
im(AB)?

40. Consider an n × p matrix A and a p × m matrix B. If
ker(A) = im(B), what can you say about the product
AB?

41. Consider the matrix A =
[

0.36 0.48
0.48 0.64

]
.

a. Describe ker(A) and im(A) geometrically.
b. Find A2. If �v is in the image of A, what can you say

about A�v?
c. Describe the transformation T (�x) = A�x geometri-

cally.

42. Express the image of the matrix

A =

⎡
⎢⎢⎣

1 1 1 6
1 2 3 4
1 3 5 2
1 4 7 0

⎤
⎥⎥⎦

as the kernel of a matrix B. Hint: The image of A con-
sists of all vectors �y in R4 such that the system A�x = �y
is consistent. Write this system more explicitly:

∣∣∣∣∣∣∣
x1 + x2 + x3 + 6x4 = y1
x1 + 2x2 + 3x3 + 4x4 = y2
x1 + 3x2 + 5x3 + 2x4 = y3
x1 + 4x2 + 7x3 = y4

∣∣∣∣∣∣∣ .
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Now, reduce rows:∣∣∣∣∣∣∣
x1 − x3 + 8x4 = 4y3 − 3y4

x2 + 2x3 − 2x4 = − y3 + y4
0 = y1 − 3y3 + 2y4
0 = y2 − 2y3 + y4

∣∣∣∣∣∣∣ .
For which vectors �y is this system consistent? The an-
swer allows you to express im(A) as the kernel of a 2×4
matrix B.

43. Using your work in Exercise 42 as a guide, explain how
you can write the image of any matrix A as the kernel
of some matrix B.

44. Consider a matrix A, and let B = rref(A).
a. Is ker(A) necessarily equal to ker(B)? Explain.
b. Is im(A) necessarily equal to im(B)? Explain.

45. Consider an n × m matrix A with rank(A) = r < m.
Explain how you can write ker(A) as the span of m − r
vectors.

46. Consider a 3×4 matrix A in reduced row-echelon form.
What can you say about the image of A? Describe all
cases in terms of rank(A), and draw a sketch for each.

47. Let T be the projection along a line L1 onto a line L2.
See Exercise 2.2.33. Describe the image and the kernel
of T geometrically.

48. Consider a 2 × 2 matrix A with A2 = A.
a. If �w is in the image of A, what is the relationship

between �w and A �w?
b. What can you say about A if rank(A) = 2? What if

rank(A) = 0?
c. If rank(A) = 1, show that the linear transforma-

tion T (�x) = A�x is the projection onto im(A) along
ker(A). See Exercise 2.2.33.

49. Verify that the kernel of a linear transformation is closed
under addition and scalar multiplication. See Theo-
rem 3.1.6.

50. Consider a square matrix A with ker(A2) = ker(A3). Is
ker(A3) = ker(A4)? Justify your answer.

51. Consider an n × p matrix A and a p × m matrix B such
that ker(A) = {�0} and ker(B) = {�0}. Find ker(AB).

52. Consider a p × m matrix A and a q × m matrix B, and
form the block matrix

C =
[

A
B

]
.

What is the relationship among ker(A), ker(B), and
ker(C)?

53. In Exercises 53 and 54, we will work with the binary
digits (or bits) 0 and 1, instead of the real numbers R.
Addition and multiplication in this system are defined
as usual, except for the rule 1 + 1 = 0. We denote this

number system with F2, or simply F. The set of all vec-
tors with n components in F is denoted by Fn ; note that
Fn consists of 2n vectors. (Why?) In information tech-
nology, a vector in F8 is called a byte. (A byte is a string
of eight binary digits.)

The basic ideas of linear algebra introduced so far
(for the real numbers) apply to F without modifications.

A Hamming matrix with n rows is a matrix that
contains all nonzero vectors in Fn as its columns (in
any order). Note that there are 2n − 1 columns. Here is
an example:

H =
⎡
⎣1 0 0 1 0 1 1

0 1 0 1 1 0 1
0 0 1 1 1 1 0

⎤
⎦, 3 rows

23 − 1 = 7 columns.

a. Express the kernel of H as the span of four vectors
in F7 of the form

�v1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

∗
∗
∗
1
0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

, �v2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

∗
∗
∗
0
1
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

, �v3 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

∗
∗
∗
0
0
1
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

, �v4 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

∗
∗
∗
0
0
0
1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

b. Form the 7 × 4 matrix

M =
⎡
⎣ | | | |

�v1 �v2 �v3 �v4

| | | |

⎤
⎦ .

Explain why im(M) = ker(H). If �x is an arbitrary
vector in F4, what is H(M �x)?

54. See Exercise 53 for some background. When informa-
tion is transmitted, there may be some errors in the
communication. We present a method of adding extra
information to messages so that most errors that occur
during transmission can be detected and corrected.
Such methods are referred to as error-correcting codes.
(Compare these with codes whose purpose is to conceal
information.) The pictures of man’s first landing on the
Moon (in 1969) were televised just as they had been
received and were not very clear, since they contained
many errors induced during transmission. On later
missions, much clearer error-corrected pictures were
obtained.

In computers, information is stored and processed
in the form of strings of binary digits, 0 and 1. This
stream of binary digits is often broken up into “blocks”
of eight binary digits (bytes). For the sake of simplicity,
we will work with blocks of only four binary digits (i.e.,
with vectors in F4), for example,

· · · 1 0 1 1 1 0 0 1 1 0 1 0 1 0 1 1

1 0 0 0 · · · .
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Suppose these vectors in F4 have to be transmitted from
one computer to another, say, from a satellite to ground
control in Kourou, French Guiana (the station of the
European Space Agency). A vector �u in F4 is first trans-
formed into a vector �v = M �u in F7, where M is the ma-
trix you found in Exercise 53. The last four entries of �v
are just the entries of �u; the first three entries of �v are
added to detect errors. The vector �v is now transmitted
to Kourou. We assume that at most one error will oc-
cur during transmission; that is, the vector �w received
in Kourou will be either �v (if no error has occurred) or
�w = �v + �ei (if there is an error in the i th component of
the vector).
a. Let H be the Hamming matrix introduced in

Exercise 53. How can the computer in Kourou use
H �w to determine whether there was an error in
the transmission? If there was no error, what is
H �w? If there was an error, how can the com-
puter determine in which component the error was
made?

b. Suppose the vector

�w =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
0
1
0
1
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

is received in Kourou. Determine whether an error
was made in the transmission and, if so, correct it.
(That is, find �v and �u.)

M

encode

H

F3

F4F7F7F7F4

correct error

detect error

decode

transmission

possible error

Kourou

Satellite

u� w� u�v� v�

3.2 Subspaces of Rn; Bases and Linear Independence

In the last section, we saw that both the image and the kernel of a linear transfor-
mation contain the zero vector (of the target space and the domain, respectively),
are closed under addition, and are closed under scalar multiplication. Subsets of the
vector space Rn with these three properties are called (linear) subspaces of Rn .

Definition 3.2.1 Subspaces of Rn

A subset W of the vector space Rn is called a (linear) subspace of Rn if it has
the following three properties:

a. W contains the zero vector in Rn .

b. W is closed under addition: If �w1 and �w2 are both in W , then so is �w1 +
�w2.

c. W is closed under scalar multiplication: If �w is in W and k is an arbitrary
scalar, then k �w is in W .

Properties (b) and (c) together mean that W is closed under linear combina-
tions: If vectors �w1, . . . , �wm are in W and k1, . . . , km are scalars, then the linear
combination k1 �w1 + · · · + km �wm is in W as well.

Theorems 3.1.4 and 3.1.6 tell us the following:

Theorem 3.2.2 Image and kernel are subspaces

If T (�x) = A�x is a linear transformation from Rm to Rn , then

• ker(T ) = ker(A) is a subspace of Rm , and
• image (T ) = im(A) is a subspace of Rn .
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EXAMPLE 1 Is W =
{[

x
y

]
in R2: x ≥ 0 and y ≥ 0

}
a subspace of R2?

Solution
Note that W consists of all vectors in the first quadrant of the x–y-plane, including
the positive axes and the origin, as illustrated in Figure 1.

W contains the zero vector and is closed under addition, but it is not closed
under multiplication with a negative scalar. See Figure 2. Thus, W fails to be a
subspace of R2. �

y

x

W

Figure 1

y

x

W

v� in W

−v� = (−1)v�

Figure 2

EXAMPLE 2 Show that the only subspaces of R2 are R2 itself, the set {�0}, and any of the lines
through the origin.

Solution
Suppose W is a subspace of R2 that is neither {�0} nor a line through the origin.
We have to show that W must equal R2. Consider a nonzero vector �v1 in W . (We
can find such a vector since W �= {�0}.) The line L spanned by �v1 is a subset of
W , since W is closed under scalar multiplication; but W does not equal L , since
W isn’t a line. Consider a vector �v2 in W that isn’t on L . See Figure 3. Using a
parallelogram, we can express any vector �v in R2 as a linear combination of �v1 and
�v2. Therefore, �v belongs to W , since W is closed under linear combinations. This
shows that W = R2, as claimed. �

L

0

v�1

v�2

v�

Figure 3

Similarly, the only subspaces of R3 are R3 itself, the planes through the origin,
the lines through the origin, and the set {�0}. See Exercise 5. Note the hierarchy of
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subspaces, arranged according to their dimensions. (The concept of dimension will
be made precise in the next section.)

Subspaces of R2 Subspaces of R3

Dimension 3 R3

Dimension 2 R2 Planes through �0
Dimension 1 Lines through �0 Lines through �0
Dimension 0 {�0} {�0}

We have seen that both the kernel and the image of a linear transformation
are subspaces (of the domain and target space, respectively). Conversely, can we
express any subspace V of Rn as the kernel or the image of a linear transformation
(or, equivalently, of a matrix)?

Let us consider an example.

EXAMPLE 3 Consider the plane V in R3 given by the equation x1 + 2x2 + 3x3 = 0.

a. Find a matrix A such that V = ker(A).

b. Find a matrix B such that V = im(B).

Solution
a. We can write the equation x1 + 2x2 + 3x3 = 0 as

[
1 2 3

] ⎡⎣ x1

x2

x3

⎤
⎦ = 0, so

that V = ker
[

1 2 3
]
.

b. Since the image of a matrix is the span of its columns, we need to describe
V as the span of some vectors. For the plane V , any two nonparallel vectors

will do, for example,

⎡
⎣−2

1
0

⎤
⎦ and

⎡
⎣−3

0
1

⎤
⎦. Thus, V = im

⎡
⎣−2 −3

1 0
0 1

⎤
⎦.

�
A subspace of Rn is usually given either as the solution set of a homogeneous

linear system (that is, as a kernel), as in Example 3, or as the span of some vec-
tors (that is, as an image). Sometimes, a subspace that has been defined as a kernel
must be given as an image (as in part b of Example 3), or vice versa. The transi-
tion from kernel to image is straightforward: Using Gaussian elimination, we can
represent the solution set as the span of some vectors. See Examples 10 and 11 of
Section 3.1. A method of writing the image of a matrix as a kernel is discussed in
Exercises 3.1.42 and 3.1.43.

Bases and Linear Independence
EXAMPLE 4 Consider the matrix

A =
⎡
⎣1 2 1 2

1 2 2 3
1 2 3 4

⎤
⎦ .

Find vectors in R3 that span the image of A. What is the smallest number of vectors
needed to span the image of A?
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Solution
We know from Theorem 3.1.3 that the image of A is spanned by the four column
vectors of A,

�v1 =
⎡
⎣1

1
1

⎤
⎦ , �v2 =

⎡
⎣2

2
2

⎤
⎦ , �v3 =

⎡
⎣1

2
3

⎤
⎦ , �v4 =

⎡
⎣2

3
4

⎤
⎦ .

0

v�2
v�1

v�3
v�4

im(A)

Figure 4

Figure 4 illustrates that the image of A is a plane; we don’t need all four vectors
to span im(A). We observe that �v2 = 2�v1 and �v4 = �v1 + �v3, so that the vectors �v2
and �v4 are “redundant” as far as the span is concerned:

im

⎡
⎣1 2 1 2

1 2 2 3
1 2 3 4

⎤
⎦ = span(�v1, �v2, �v3, �v4) = span(�v1, �v3).

The image of A can be spanned by two vectors, but not by one vector alone.
Let us verify the equation span(�v1, �v2, �v3, �v4) = span(�v1, �v3) algebraically. If

a vector �v is in span(�v1, �v2, �v3, �v4), then

�v = c1 �v1 + c2 �v2 + c3 �v3 + c4 �v4

= c1 �v1 + c2(2�v1) + c3 �v3 + c4(�v1 + �v3)

= (c1 + 2c2 + c4)�v1 + (c3 + c4)�v3,

showing that �v is in span(�v1, �v3), as claimed. �
The preceding example motivates the following important definitions.

Definition 3.2.3 Redundant vectors4; linear independence; basis

Consider vectors �v1, . . . , �vm in Rn .

a. We say that a vector �vi in the list �v1, . . . , �vm is redundant if �vi is a linear
combination of the preceding vectors �v1, . . . , �vi−1.5

b. The vectors �v1, . . . , �vm are called linearly independent if none of them is
redundant. Otherwise, the vectors are called linearly dependent (meaning
that at least one of them is redundant).6

c. We say that the vectors �v1, . . . , �vm in a subspace V of Rn form a basis of
V if they span V and are linearly independent.7

Let’s take another look at Example 4: In the list

�v1 =
⎡
⎣1

1
1

⎤
⎦ , �v2 =

⎡
⎣2

2
2

⎤
⎦ , �v3 =

⎡
⎣1

2
3

⎤
⎦ , �v4 =

⎡
⎣2

3
4

⎤
⎦

4The notion of a redundant vector is not part of the established vocabulary of linear algebra. However,
we will find this concept quite useful in discussing linear independence.
5We call the first vector, �v1, redundant if it is the zero vector. This agrees with the convention that the
empty linear combination of vectors is the zero vector.
6A list of alternative characterizations of linear independence will be presented in Summary 3.2.9. In
many texts, characterization (iv) of that list is used to define linear independence.
7An alternative characterization of a basis will be presented in Theorem 3.2.10.
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of column vectors of A, the vectors �v2 and �v4 are redundant, since �v2 = 2�v1 and
�v4 = �v1 + �v3. If we omit the redundant vectors from the list, then the remaining
vectors

�v1 =
⎡
⎣1

1
1

⎤
⎦ , �v3 =

⎡
⎣1

2
3

⎤
⎦

are linearly independent; they form a basis of V = image (A).
We can generalize the result of Example 4.

Theorem 3.2.4 Basis of the image

To construct a basis of the image of a matrix A, list all the column vectors of A,
and omit the redundant vectors from this list.

But how can we identify the redundant column vectors? In simple cases, this
can often be done by inspection (as in Example 4); in the next section we will
develop a general algorithm, based on Gaussian elimination.

EXAMPLE 5 Are the following vectors in R7 linearly independent?

�v1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

7
0
4
0
1
9
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

, �v2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

6
0
7
1
4
8
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

, �v3 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

5
0
6
2
3
1
7

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

, �v4 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

4
5
3
3
2
2
4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

Solution
Let’s look for redundant vectors in this list. Vectors �v1 and �v2 are clearly nonredun-
dant, since �v1 is nonzero and �v2 fails to be a scalar multiple of �v1 (look at the fourth
components). Looking at the last components, we realize that �v3 cannot be a linear
combination of �v1 and �v2, since any linear combination of �v1 and �v2 will have a 0
in the last component, while the last component of �v3 is 7. Looking at the second
components, we can see that �v4 isn’t a linear combination of �v1, �v2, �v3. Thus, the
vectors �v1, �v2, �v3, �v4 are linearly independent. �

We will frequently use the approach of Example 5 to show linear independence.

Theorem 3.2.5 Linear independence and zero components

Consider vectors �v1, . . . , �vm in Rn . If �v1 is nonzero, and if each of the vectors �vi

(for i ≥ 2) has a nonzero entry in a component where all the preceding vectors
�v1, . . . , �vi−1 have a 0, then the vectors �v1, . . . , �vm are linearly independent.

To understand what we are trying to say in Theorem 3.2.5, take another look at
the vectors in Example 5.
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⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

7
0
4
0
1
9
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

6
0
7
1�
4
8
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

5
0
6
2
3
1
7�

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

4
5�
3
3
2
2
4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

EXAMPLE 6 Are the vectors

�v1 =
⎡
⎣1

2
3

⎤
⎦ , �v2 =

⎡
⎣4

5
6

⎤
⎦ , �v3 =

⎡
⎣7

8
9

⎤
⎦

linearly independent?

Solution
Theorem 3.2.5 doesn’t help here, since these vectors don’t have any zero compo-
nents. The vectors �v1 and �v2 are clearly nonredundant, as �v1 is nonzero and �v2
fails to be a scalar multiple of �v1. To see whether vector �v3 is redundant, we need to
examine whether �v3 can be written as �v3 = c1 �v1+c2 �v2. Considering the augmented
matrix

M =
⎡
⎣1 4 7

2 5 8
3 6 9

⎤
⎦ , with rref(M) =

⎡
⎣1 0 −1

0 1 2
0 0 0

⎤
⎦ ,

we find the unique solution c1 = −1, c2 = 2, so that

�v3 = −�v1 + 2�v2.

It turns out that vector �v3 is redundant, making vectors �v1, �v2, �v3 linearly dependent.
�

For good reasons, mathematicians like to write their equations in the form

(Something) = 0.

Applying this principle,8 we can write the equation �v3 =−�v1+2�v2 from Example 6
as

�v1 − 2�v2 + �v3 = �0.

This equation is called a linear relation among the vectors �v1, �v2, and �v3.

Definition 3.2.6 Linear Relations

Consider the vectors �v1, . . . , �vm in Rn . An equation of the form

c1 �v1 + · · · + cm �vm = �0
is called a (linear) relation among the vectors �v1, . . . , �vm . There is always the
trivial relation, with c1 = · · · = cm = 0. Nontrivial relations (where at least one
coefficient ci is nonzero) may or may not exist among the vectors �v1, . . . , �vm .

8This method was popularized by Descartes, and is often credited to him, but it was used earlier
by the English geographer Thomas Harriot (1560–1621). For more on “Harriot’s Principle,” see
W. P. Berlinghoff and F. Q. Gouvêa, Math Through the Ages, Oxton House Publishers and MAA,
2004.
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Example 6 suggests the following result.

Theorem 3.2.7 Relations and linear dependence

The vectors �v1, . . . , �vm in Rn are linearly dependent if (and only if) there are
nontrivial relations among them.

Proof • Suppose vectors �v1, . . . , �vm are linearly dependent, and �vi = c1 �v1 + · · · +
ci−1 �vi−1 is a redundant vector in this list. Then we can generate a nontrivial
relation by subtracting �vi from both sides: c1 �v1+· · ·+ci−1 �vi−1+(−1)�vi = �0.

• Conversely, if there is a nontrivial relation c1 �v1 +· · ·+ci �vi +· · ·+cm �vm = �0,
where i is the highest index such that ci �= 0, then we can solve for �vi and
thus express �vi as a linear combination of the preceding vectors:

�vi = −c1

ci
�v1 − · · · − ci−1

ci
�vi−1.

This shows that vector �vi is redundant, so that vectors �v1, . . . , �vm are linearly
dependent, as claimed. �

EXAMPLE 7 Suppose the column vectors of an n × m matrix A are linearly independent. Find
the kernel of matrix A.

Solution
We need to solve the equation

A�x = �0 or

⎡
⎢⎣ | |

�v1 · · · �vm

| |

⎤
⎥⎦
⎡
⎢⎣ x1

...

xm

⎤
⎥⎦ = �0 or x1 �v1 + · · · + xm �vm = �0.

We see that finding the kernel of A amounts to finding the relations among the
column vectors of A. By Theorem 3.2.7, there is only the trivial relation, with
x1 = · · · = xm = 0, so that ker(A) = {�0}. �

Let us summarize the findings of Example 7.

Theorem 3.2.8 Kernel and relations

The vectors in the kernel of an n ×m matrix A correspond to the linear relations
among the column vectors �v1, . . . , �vm of A: The equation

A�x = �0 means that x1 �v1 + · · · + xm �vm = �0.

In particular, the column vectors of A are linearly independent if (and only if)
ker(A) = {�0}, or, equivalently, if rank(A) = m. This condition implies that
m ≤ n.

Thus, we can find at most n linearly independent vectors in Rn .
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EXAMPLE 8 Consider the matrix

A =
⎡
⎣1 4 7

2 5 8
3 6 9

⎤
⎦

to illustrate the connection between redundant column vectors, relations among the
column vectors, and the kernel. See Example 6.

Redundant column vector:

⎡
⎣7

8
9

⎤
⎦ = −

⎡
⎣1

2
3

⎤
⎦+ 2

⎡
⎣4

5
6

⎤
⎦

�
�

Relation among column vectors: 1

⎡
⎣1

2
3

⎤
⎦− 2

⎡
⎣4

5
6

⎤
⎦+ 1

⎡
⎣7

8
9

⎤
⎦ = �0

�
�

Vector

⎡
⎣ 1

−2
1

⎤
⎦ is in ker(A), since

⎡
⎣1 4 7

2 5 8
3 6 9

⎤
⎦
⎡
⎣ 1

−2
1

⎤
⎦ =
⎡
⎣0

0
0

⎤
⎦

�

In the following summary we list the various characterizations of linear
independence discussed thus far (in Definition 3.2.3b, Theorem 3.2.7, and Theo-
rem 3.2.8). We include one new characterization, (iii). The proof of the equivalence
of statements (iii) and (iv) is left to the reader as Exercise 35; it is analogous to the
proof of Theorem 3.2.7.

SUMMARY 3.2.9 Various characterizations of linear independence

For a list �v1, . . . , �vm of vectors in Rn , the following statements are equivalent:

i. Vectors �v1, . . . , �vm are linearly independent.

ii. None of the vectors �v1, . . . , �vm is redundant, meaning that none of them
is a linear combination of preceding vectors.

iii. None of the vectors �vi is a linear combination of the other vectors
�v1, . . . , �vi−1, �vi+1, . . . , �vm in the list.

iv. There is only the trivial relation among the vectors �v1, . . . , �vm , mean-
ing that the equation c1 �v1 + · · · + cm �vm = �0 has only the solution
c1 = · · · = cm = 0.

v. ker

⎡
⎣ | |

�v1 · · · �vm

| |

⎤
⎦ = {�0}.

vi. rank

⎡
⎣ | |

�v1 · · · �vm

| |

⎤
⎦ = m.

We conclude this section with an important alternative characterization of a
basis. See Definition 3.2.3c.
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EXAMPLE 9 If �v1, . . . , �vm is a basis of a subspace V of Rn , and if �v is a vector in V , how many
solutions c1, . . . , cm does the equation

�v = c1 �v1 + · · · + cm �vm

have?

Solution
There is at least one solution, since the vectors �v1, . . . , �vm span V (that’s part of the
definition of a basis). Suppose we have two representations

�v = c1 �v1 + · · · + cm �vm

= d1 �v1 + · · · + dm �vm .

By subtraction, we find

(c1 − d1)�v1 + · · · + (cm − dm)�vm = �0,

a relation among the vectors �v1, . . . , �vm . Since the vectors �v1, . . . , �vm are linearly
independent, this must be the trivial relation, and we have c1 − d1 = 0, . . . ,

cm − dm = 0, or c1 = d1, . . . , cm = dm . It turns out that the two representa-
tions �v = c1 �v1 + · · · + cm �vm and �v = d1 �v1 + · · · + dm �vm are identical. We have
shown that there is one and only one way to write �v as a linear combination of the
basis vectors �v1, . . . , �vm . �

Let us summarize.

Theorem 3.2.10 Basis and unique representation

Consider the vectors �v1, . . . , �vm in a subspace V of Rn .
The vectors �v1, . . . , �vm form a basis of V if (and only if) every vector �v in

V can be expressed uniquely as a linear combination

�v = c1 �v1 + · · · + cm �vm .

(In Section 3.4, we will call the coefficients c1, . . . , cm the coordinates of �v with
respect to the basis �v1, . . . , �vm .)

Proof In Example 9 we have shown only one part of Theorem 3.2.10; we still need to
verify that the uniqueness of the representation �v = c1 �v1 + · · · + cm �vm (for every �v
in V ) implies that �v1, . . . , �vm is a basis of V . Clearly, the vectors �v1, . . . , �vm span
V , since every �v in V can be written as a linear combination of �v1, . . . , �vm .

To show the linear independence of vectors �v1, . . . , �vm , consider a relation
c1 �v1 + · · · + cm �vm = �0. This relation is a representation of the zero vector
as a linear combination of �v1, . . . , �vm . But this representation is unique, with
c1 = · · · = cm = 0, so that c1 �v1 + · · · + cm �vm = �0 must be the trivial relation. We
have shown that vectors �v1, . . . , �vm are linearly independent. �

Consider the plane V = im(A) = span(�v1, �v2, �v3, �v4) introduced in Exam-
ple 4. (Take another look at Figure 4.)

We can write

�v4 = 1�v1 + 0�v2 + 1�v3 + 0�v4

= 0�v1 + 0�v2 + 0�v3 + 1�v4,

illustrating the fact that the vectors �v1, �v2, �v3, �v4 do not form a basis of V . However,
every vector �v in V can be expressed uniquely as a linear combination of �v1 and �v3
alone, meaning that the vectors �v1, �v3 do form a basis of V .
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EXERCISES 3.2
GOAL Check whether or not a subset of Rn is a sub-
space. Apply the concept of linear independence (in terms
of Definition 3.2.3, Theorem 3.2.7, and Theorem 3.2.8).
Apply the concept of a basis, both in terms of Defini-
tion 3.2.3 and in terms of Theorem 3.2.10.

Which of the sets W in Exercises 1 through 3 are sub-
spaces of R3?

1. W =
⎧⎨
⎩
⎡
⎣x

y
z

⎤
⎦ : x + y + z = 1

⎫⎬
⎭

2. W =
⎧⎨
⎩
⎡
⎣x

y
z

⎤
⎦ : x ≤ y ≤ z

⎫⎬
⎭

3. W =
⎧⎨
⎩
⎡
⎣ x + 2y + 3z

4x + 5y + 6z
7x + 8y + 9z

⎤
⎦ : x, y, z arbitrary constants

⎫⎬
⎭

4. Consider the vectors �v1, �v2, . . . , �vm in Rn . Is span
(�v1, . . . , �vm) necessarily a subspace of Rn? Justify your
answer.

5. Give a geometrical description of all subspaces of R3.
Justify your answer.

6. Consider two subspaces V and W of Rn .
a. Is the intersection V ∩ W necessarily a subspace

of Rn?
b. Is the union V ∪ W necessarily a subspace of Rn?

7. Consider a nonempty subset W of Rn that is closed un-
der addition and under scalar multiplication. Is W nec-
essarily a subspace of Rn? Explain.

8. Find a nontrivial relation among the following vectors:

[
1
2

]
,

[
2
3

]
,

[
3
4

]
.

9. Consider the vectors �v1, �v2, . . . , �vm in Rn , with �vm =
�0. Are these vectors linearly independent?

In Exercises 10 through 20, use paper and pencil to iden-
tify the redundant vectors. Thus determine whether the
given vectors are linearly independent.

10.
[

7
11

]
,

[
0
0

]
11.
[

7
11

]
,

[
11

7

]

12.
[

2
1

]
,

[
6
3

]
13.
[

1
2

]
,

[
1
2

]

14.

⎡
⎣1

1
1

⎤
⎦,
⎡
⎣3

2
1

⎤
⎦,
⎡
⎣6

5
4

⎤
⎦ 15.

[
1
2

]
,

[
2
3

]
,

[
3
4

]

16.

⎡
⎣1

0
0

⎤
⎦,
⎡
⎣1

2
0

⎤
⎦,
⎡
⎣1

2
3

⎤
⎦ 17.

⎡
⎣1

1
1

⎤
⎦,
⎡
⎣1

2
3

⎤
⎦,
⎡
⎣1

3
6

⎤
⎦

18.

⎡
⎣0

0
0

⎤
⎦,
⎡
⎣1

0
0

⎤
⎦,
⎡
⎣3

0
0

⎤
⎦,
⎡
⎣0

1
0

⎤
⎦,
⎡
⎣4

5
0

⎤
⎦,
⎡
⎣6

7
0

⎤
⎦,
⎡
⎣0

0
1

⎤
⎦

19.

⎡
⎢⎢⎣

1
0
0
0

⎤
⎥⎥⎦,
⎡
⎢⎢⎣

2
0
0
0

⎤
⎥⎥⎦,
⎡
⎢⎢⎣

0
1
0
0

⎤
⎥⎥⎦,
⎡
⎢⎢⎣

0
0
1
0

⎤
⎥⎥⎦,
⎡
⎢⎢⎣

3
4
5
0

⎤
⎥⎥⎦

20.

⎡
⎢⎢⎣

1
1
1
1

⎤
⎥⎥⎦,
⎡
⎢⎢⎣

1
2
3
4

⎤
⎥⎥⎦,
⎡
⎢⎢⎣

1
4
7

10

⎤
⎥⎥⎦

In Exercises 21 through 26, find a redundant column vec-
tor of the given matrix A, and write it as a linear com-
bination of preceding columns. Use this representation to
write a nontrivial relation among the columns, and thus
find a nonzero vector in the kernel of A. (This procedure
is illustrated in Example 8.)

21.
[

1 1
1 1

]
22.
[

1 3
2 6

]
23.
[

0 1
0 2

]

24.

⎡
⎣1 0 2 0

0 1 3 0
0 0 0 1

⎤
⎦ 25.

⎡
⎣1 0 1

1 1 1
1 0 1

⎤
⎦

26.

⎡
⎣1 3 6

1 2 5
1 1 4

⎤
⎦

Find a basis of the image of the matrices in Exercises 27
through 33.

27.

⎡
⎣1 1

1 2
1 3

⎤
⎦ 28.

⎡
⎣0 1 0

0 0 1
0 0 0

⎤
⎦ 29.

[
1 2 3
4 5 6

]

30.

⎡
⎣1 1 1

1 2 5
1 3 7

⎤
⎦ 31.

⎡
⎢⎢⎣

1 5
2 6
3 7
5 8

⎤
⎥⎥⎦

32.

⎡
⎢⎢⎣

0 1 2 0 0 3
0 0 0 1 0 4
0 0 0 0 1 5
0 0 0 0 0 0

⎤
⎥⎥⎦

33.

⎡
⎢⎢⎣

0 1 2 0 3 0
0 0 0 1 4 0
0 0 0 0 0 1
0 0 0 0 0 0

⎤
⎥⎥⎦
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34. Consider the 5 × 4 matrix

A =
⎡
⎣ | | | |

�v1 �v2 �v3 �v4
| | | |

⎤
⎦ .

We are told that the vector

⎡
⎢⎢⎣

1
2
3
4

⎤
⎥⎥⎦ is in the kernel of A.

Write �v4 as a linear combination of �v1, �v2, �v3.

35. Show that there is a nontrivial relation among the vec-
tors �v1, . . . , �vm if (and only if) at least one of the vec-
tors �vi is a linear combination of the other vectors
�v1, . . . , �vi−1, �vi+1, . . . , �vm .

36. Consider a linear transformation T from Rn to Rp and
some linearly dependent vectors �v1, �v2, . . . , �vm in Rn .
Are the vectors T (�v1), T (�v2), . . . , T (�vm) necessarily
linearly dependent? How can you tell?

37. Consider a linear transformation T from Rn to Rp and
some linearly independent vectors �v1, �v2, . . . , �vm in
Rn . Are the vectors T (�v1), T (�v2), . . . , T (�vm) necessar-
ily linearly independent? How can you tell?

38. a. Let V be a subspace of Rn . Let m be the largest
number of linearly independent vectors we can find
in V . (Note that m ≤ n, by Theorem 3.2.8.) Choose
linearly independent vectors �v1, �v2, . . . , �vm in V .
Show that the vectors �v1, �v2, . . . , �vm span V and are
therefore a basis of V . This exercise shows that any
subspace of Rn has a basis.

If you are puzzled, think first about the special
case when V is a plane in R3. What is m in this case?

b. Show that any subspace V of Rn can be represented
as the image of a matrix.

39. Consider some linearly independent vectors �v1, �v2, . . . ,

�vm in Rn and a vector �v in Rn that is not contained in
the span of �v1, �v2, . . . , �vm . Are the vectors �v1, �v2, . . . ,

�vm , �v necessarily linearly independent? Justify your
answer.

40. Consider an n × p matrix A and a p × m matrix B. We
are told that the columns of A and the columns of B are
linearly independent. Are the columns of the product
AB linearly independent as well? Hint: Exercise 3.1.51
is useful.

41. Consider an m × n matrix A and an n × m matrix B
(with n �= m) such that AB = Im . (We say that A is a
left inverse of B.) Are the columns of B linearly inde-
pendent? What about the columns of A?

42. Consider some perpendicular unit vectors �v1, �v2, . . . ,

�vm in Rn . Show that these vectors are necessarily lin-
early independent. Hint: Form the dot product of �vi and
both sides of the equation

c1 �v1 + c2 �v2 + · · · + ci �vi + · · · + cm �vm = �0.

43. Consider three linearly independent vectors �v1, �v2, �v3
in Rn . Are the vectors �v1, �v1 + �v2, �v1 + �v2 + �v3 linearly
independent as well? How can you tell?

44. Consider linearly independent vectors �v1, �v2, . . . , �vm
in Rn , and let A be an invertible m × m matrix. Are the
columns of the following matrix linearly independent?⎡

⎣ | | |
�v1 �v2 . . . �vm

| | |

⎤
⎦ A

45. Are the columns of an invertible matrix linearly inde-
pendent?

46. Find a basis of the kernel of the matrix[
1 2 0 3 5
0 0 1 4 6

]
.

Justify your answer carefully; that is, explain how you
know that the vectors you found are linearly indepen-
dent and span the kernel.

47. Consider three linearly independent vectors �v1, �v2, �v3
in R4. Find

rref

⎡
⎣ | | |

�v1 �v2 �v3

| | |

⎤
⎦ .

48. Express the plane V in R3 with equation 3x1 + 4x2 +
5x3 = 0 as the kernel of a matrix A and as the image of
a matrix B.

49. Express the line L in R3 spanned by the vector

⎡
⎣1

1
1

⎤
⎦ as

the image of a matrix A and as the kernel of a matrix B.

50. Consider two subspaces V and W of Rn . Let V + W be
the set of all vectors in Rn of the form �v + �w, where �v
is in V and �w in W . Is V + W necessarily a subspace
of Rn?

If V and W are two distinct lines in R3, what is
V + W ? Draw a sketch.

51. Consider two subspaces V and W of Rn whose inter-
section consists only of the vector �0.
a. Consider linearly independent vectors �v1, �v2, . . . ,

�v p in V and �w1, �w2, . . . , �wq in W . Explain why the
vectors �v1, �v2, . . . , �v p , �w1, �w2, . . . , �wq are linearly
independent.

b. Consider a basis �v1, �v2, . . . , �v p of V and a ba-
sis �w1, �w2, . . . , �wq of W . Explain why �v1, �v2, . . . ,

�v p, �w1, �w2, . . . , �wq is a basis of V + W . See Exer-
cise 50.

52. For which values of the constants a, b, c, d , e, and f
are the following vectors linearly independent? Justify
your answer.
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⎡
⎢⎢⎣

a
0
0
0

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣

b
c
0
0

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣

d
e
f
0

⎤
⎥⎥⎦

53. Consider a subspace V of Rn . We define the orthogo-
nal complement V ⊥ of V as the set of those vectors �w
in Rn that are perpendicular to all vectors in V ; that is,
�w · �v = 0, for all �v in V . Show that V ⊥ is a subspace
of Rn .

54. Consider the line L spanned by

⎡
⎣1

2
3

⎤
⎦ in R3. Find a basis

of L⊥. See Exercise 53.

55. Consider the subspace L of R5 spanned by the given
vector. Find a basis of L⊥. See Exercise 53.⎡

⎢⎢⎢⎢⎣
1
2
3
4
5

⎤
⎥⎥⎥⎥⎦

56. For which values of the constants a, b, . . . , m are the
given vectors linearly independent?

⎡
⎢⎢⎢⎢⎢⎢⎣

a
b
c
d
1
0

⎤
⎥⎥⎥⎥⎥⎥⎦ ,

⎡
⎢⎢⎢⎢⎢⎢⎣

e
1
0
0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎦ ,

⎡
⎢⎢⎢⎢⎢⎢⎣

f
g
h
i
j
1

⎤
⎥⎥⎥⎥⎥⎥⎦ ,

⎡
⎢⎢⎢⎢⎢⎢⎣

k
m
1
0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎦

57. Consider the matrix

A =

⎡
⎢⎢⎣

0 1 2 0 0 3 0
0 0 0 1 0 4 0
0 0 0 0 1 5 0
0 0 0 0 0 0 0

⎤
⎥⎥⎦ .

Note that matrix A is in reduced row-echelon form.
For which positive integers j = 1, . . . , 7 does

there exist a vector �x in the kernel of A such that the
j th component x j of �x is nonzero, while all the compo-
nents x j+1, . . . , x7 are zero?

58. Consider an n×m matrix A. For which positive integers
j = 1, . . . , m does there exist a vector �x in the kernel
of A such that the j th component x j of �x is nonzero,
while all the components x j+1, . . . , xm are zero? Use
Exercise 57 as a guide. Give your answer in terms of
the redundant column vectors of A.

3.3 The Dimension of a Subspace of Rn

Consider a plane V in R3. Using our geometric intuition, we observe that all
bases of V consist of two vectors. (Any two nonparallel vectors in V will do; see
Figure 1.) One vector is not enough to span V , and three or more vectors are linearly
dependent. It turns out that, more generally, all bases of a subspace V of Rn consist
of the same number of vectors. In order to prove this important fact, we need an
auxiliary result.

0

v�1

v�2
V

Figure 1 The vectors �v1, �v2 form a basis of V .
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Theorem 3.3.1 Consider vectors �v1, . . . , �v p and �w1, . . . , �wq in a subspace V of Rn . If the vec-
tors �v1, . . . , �v p are linearly independent, and the vectors �w1, . . . , �wq span V ,
then q ≥ p.

For example, let V be a plane in R3. Our geometric intuition tells us that we
can find at most two linearly independent vectors in V , so that 2 ≥ p, and we need
at least two vectors to span V , so that q ≥ 2. Therefore, the inequality q ≥ p does
indeed hold in this case.

Proof This proof is rather technical and not very illuminating. In the next section, when
we study coordinate systems, we will gain a more conceptual understanding of this
matter.

C
B

A
�p �n

�q

Figure 2

Consider the matrices

A =
⎡
⎣ | |

�v1 · · · �v p

| |

⎤
⎦ and B =

⎡
⎣ | |

�w1 · · · �wq

| |

⎤
⎦ .

Note that im(B) = V , since the vectors �w1, . . . , �wq span V . The vectors �v1, . . . , �v p

are in the image of B, so that we can write

�v1 = B �u1, . . . , �v p = B �u p

for some vectors �u1, . . . , �u p in Rq . We can combine these equations and write

A =
⎡
⎣ | |

�v1 · · · �v p

| |

⎤
⎦ = B

⎡
⎣ | |

�u1 · · · �u p

| |

⎤
⎦

︸ ︷︷ ︸
C

, or A = BC.

See Figure 2.
The kernel of C is a subset of the kernel of A (if C �x = �0, then A�x = BC �x = �0).

But the kernel of A is {�0}, since the vectors �v1, . . . , �v p are linearly independent.
Therefore, the kernel of C is {�0} as well. Theorem 3.1.7b now tells us that the q × p
matrix C has at least as many rows as it has columns, that is, q ≥ p, as claimed. �

Theorem 3.3.2 Number of vectors in a basis

All bases of a subspace V of Rn consist of the same number of vectors.

Proof Consider two bases �v1, . . . , �v p and �w1, . . . , �wq of V . Since the vectors �v1, . . . , �v p

are linearly independent and the vectors �w1, . . . , �wq span V , we have q ≥ p, by
Theorem 3.3.1. Likewise, since the vectors �w1, . . . , �wq are linearly independent and
the vectors �v1, . . . , �v p span V , we have p ≥ q. Therefore, p = q. �

Consider a line L and a plane V in R3. A basis of L consists of just one vector
(any nonzero vector in L will do), while all bases of V consist of two vectors.
A basis of R3 consists of three vectors. (The standard vectors �e1, �e2, �e3 are one
possible choice.) In each case, the number of vectors in a basis corresponds to what
we intuitively sense to be the dimension of the subspace.
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Definition 3.3.3 Dimension

Consider a subspace V of Rn . The number of vectors in a basis of V is called the
dimension of V , denoted by dim(V ).9

This algebraic definition of dimension represents a major advance in the
development of linear algebra, and indeed of mathematics as a whole: It allows
us to conceive of spaces with more than three dimensions. This idea is often
poorly understood in popular culture, where some mysticism still surrounds higher-
dimensional spaces. The German mathematician Hermann Weyl (1855–1955) put
it this way: “We are by no means obliged to seek illumination from the mystic doc-
trines of spiritists to obtain a clearer vision of multidimensional geometry” (Raum,
Zeit, Materie, 1918).

The first mathematician who thought about dimension from an algebraic point
of view may have been the Frenchman Jean Le Rond d’Alembert (1717–1783). In
the article on dimension in the Encyclopédie, he wrote the following:

The way of considering quantities having more than three dimensions is just
as right as the other, because letters can always be viewed as representing
numbers, whether rational or not. I said above that it was not possible to
conceive more than three dimensions. A thoughtful gentleman [un homme
d’esprit] with whom I am acquainted believes that nevertheless one could
view duration as a fourth dimension. . . . This idea may be challenged, but it
has, it seems to me, some merit, were it only that of being new [cette idée
peut être contestée, mais elle a, ce me semble, quelque mérite, quand ce ne
seroit que celui de la nouveauté]. (Encyclopédie, vol. 4, 1754)

This homme d’esprit was no doubt d’Alembert himself, afraid of being attacked
for what appeared as a risky idea at that time.

The idea of dimension was later studied much more systematically by the
German mathematician Hermann Günther Grassmann (1809–1877), who intro-
duced the concept of a subspace of Rn . In fact, most of the concepts discussed
in this chapter can be traced back to Grassmann’s work. Grassmann presented his
ideas in 1844 in the book Die lineare Ausdehnungslehre, ein neuer Zweig der Math-
ematik (The Theory of Linear Extension, a New Branch of Mathematics). Grass-
mann’s methods were only slowly adopted, partly because of his obscure writing.
He used unfamiliar authentic German terms, rather than the customary Latin, for
mathematical concepts; he writes about “Schatten,” shadows, for example, rather
than projections. While his ideas have survived, most of his terminology has not.

Similar work was done by the Swiss mathematician Ludwig Schläfli (1814–
1895), a contemporary of Grassmann.

Today, dimension is a standard and central tool in mathematics, as well as in
physics and statistics. The concept can be applied to certain nonlinear subsets of
Rn , called manifolds, generalizing the idea of curves and surfaces in R3.

After this brief historical digression, let us return to the more mundane: What
is the dimension of Rn? We expect this dimension to be n, of course. This is indeed
the case: The vectors �e1, . . . , �en form a basis, called the standard basis of Rn .

A plane V in R3 is two dimensional. Earlier, we mentioned that we cannot
find more than two linearly independent vectors in V and that we need at least two

9For this definition to make sense, we have to be sure that any subspace of Rn has a basis. This
verification is left as Exercise 3.2.38a.
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vectors to span V . If two vectors in V are linearly independent, then they form a
basis of V . Likewise, if two vectors span V , then they form a basis of V .

We can generalize these observations as follows:

Theorem 3.3.4 Independent vectors and spanning vectors in a subspace of Rn

Consider a subspace V of Rn with dim(V ) = m.
a. We can find at most m linearly independent vectors in V .

b. We need at least m vectors to span V .

c. If m vectors in V are linearly independent, then they form a basis of V .

d. If m vectors in V span V , then they form a basis of V .

Part (a) allows us to define the dimension of V alternatively as the maximal
number of linearly independent vectors in V . Likewise, part (b) tells us that the
dimension of V is the minimal number of vectors needed to span V .

In parts (c) and (d) we make the following point: By Definition 3.2.3, some
vectors �v1, . . . , �vm in V form a basis of V if they are linearly independent and span
V . However, if we are dealing with “the right number” of vectors (namely, m, the
dimension of V ), then it suffices to check only one of the two properties; the other
will then follow “automatically.”

Proof We prove Theorem 3.3.4, parts (a) and (c). We leave the proofs of parts (b) and (d)
as Exercises 80 and 81.

a. Consider linearly independent vectors �v1, �v2, . . . , �v p in V , and let
�w1, �w2, . . . , �wm be a basis of V . Since the vectors �w1, �w2, . . . , �wm span
V , we have p ≤ m, by Theorem 3.3.1, as claimed.

c. Consider linearly independent vectors �v1, . . . , �vm in V . We have to show
that the vectors �v1, . . . , �vm span V . If �v is any vector in V , then the m + 1
vectors �v1, . . . , �vm, �v will be linearly dependent, by part (a). Since vectors
�v1, . . . , �vm are linearly independent and therefore nonredundant, vector �v
must be redundant in the list �v1, . . . , �vm, �v, meaning that �v is a linear com-
bination of �v1, . . . , �vm . Since �v is an arbitrary vector in V , we have shown
that vectors �v1, . . . , �vm span V , as claimed. �

In Section 3.2, we saw that the kernel and image of a linear transformation are
subspaces of the domain and the target space of the transformation, respectively.
We will now examine how we can find bases of the image and kernel and thus
determine their dimensions.

Finding Bases of Kernel and Image
EXAMPLE 1 Consider the matrix

A =

⎡
⎢⎢⎣

1 2 2 −5 6
−1 −2 −1 1 −1

4 8 5 −8 9
3 6 1 5 −7

⎤
⎥⎥⎦ .

a. Find a basis of the kernel of A, and thus determine the dimension of the
kernel.

b. Find a basis of the image of A, and thus determine the dimension of the
image.
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Solution
a. We will solve the linear system A�x = �0, by Gaussian elimination. From

Example 3.1.11 we know that

B = rref(A) =

⎡
⎢⎢⎣

1 2 0 3 −4
0 0 1 −4 5
0 0 0 0 0
0 0 0 0 0

⎤
⎥⎥⎦ .

Note that ker(A) = ker(B), by the definition of the reduced row-echelon
form. In Chapter 1 we learned to solve the equation A�x = �0 by solving the
simpler equation B �x = �0 instead. In Example 3.1.11 we saw that the vectors
in ker(A) = ker(B) are of the form

�x =

⎡
⎢⎢⎢⎢⎣

x1

x2

x3

x4

x5

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

−2s −3t +4r
s

4t −5r
t

r

⎤
⎥⎥⎥⎥⎦ = s

⎡
⎢⎢⎢⎢⎣

−2
1
0
0
0

⎤
⎥⎥⎥⎥⎦

︸ ︷︷ ︸
�w1

+ t

⎡
⎢⎢⎢⎢⎣

−3
0
4
1
0

⎤
⎥⎥⎥⎥⎦

︸ ︷︷ ︸
�w2

+ r

⎡
⎢⎢⎢⎢⎣

4
0

−5
0
1

⎤
⎥⎥⎥⎥⎦

︸ ︷︷ ︸
�w3

,

where s, t , and r are arbitrary constants.
We claim that the three vectors �w1, �w2, �w3 form a basis of the kernel of

A. The preceding equation, �x = s �w1 + t �w2 + r �w3, shows that the vectors
�w1, �w2, �w3 span the kernel.

Theorem 3.2.5 tells us that the vectors �w1, �w2, �w3 are linearly indepen-
dent, since each has a 1 in a component where the other two vectors have a
0; these components correspond to the free variables x2, x4, and x5.

Thus, a basis of the kernel of A is⎡
⎢⎢⎢⎢⎣

−2
1
0
0
0

⎤
⎥⎥⎥⎥⎦ ,

⎡
⎢⎢⎢⎢⎣

−3
0
4
1
0

⎤
⎥⎥⎥⎥⎦ ,

⎡
⎢⎢⎢⎢⎣

4
0

−5
0
1

⎤
⎥⎥⎥⎥⎦ ,

and dim(ker A) = 3.

b. To construct a basis of the image of A by means of Theorem 3.2.4, we need
to find the redundant columns of A. Let’s see how we can use B = rref(A)

to carry out this task. To keep track of the columns of A and B, we will
denote the columns of A by �a1, . . . , �a5 and those of B by �b1, . . . , �b5.

The redundant columns of B = rref(A) are easy to spot. They are the
columns that do not contain a leading 1, namely, �b2 = 2�b1, �b4 = 3�b1 − 4�b3,
and �b5 = −4�b1 + 5�b3.

And here comes the key observation: The redundant columns of A cor-
respond to those of B, meaning that �ai is redundant if and only if �bi is
redundant. We will illustrate this fact by means of an example. We know
that �b5 is redundant, with �b5 = −4�b1 + 5�b3. This induces the relation
4�b1 − 5�b3 + �b5 = �0, meaning that the vector⎡

⎢⎢⎢⎢⎣
4
0

−5
0
1

⎤
⎥⎥⎥⎥⎦
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is in ker(B) = ker(A); see part (a) of this example. But this in turn induces
the relation 4�a1 − 5�a3 + �a5 = �0 among the columns of A, showing that �a5
is redundant, with �a5 = −4�a1 + 5�a3.10

Thus, the redundant columns of A are �a2 = 2�a1, �a4 = 3�a1 − 4�a3 and
�a5 = −4�a1 + 5�a3. By Theorem 3.2.4, the nonredundant columns �a1 and �a3
form a basis of the image of A.

Thus, a basis of the image of A is⎡
⎢⎢⎣

1
−1

4
3

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣

2
−1

5
1

⎤
⎥⎥⎦

and dim(im A) = 2. �
Using Example 1b as a guide, we can establish the following general rule for

finding a basis of the image of a matrix.

Theorem 3.3.5 Using rref to construct a basis of the image

To construct a basis of the image of A, pick the column vectors of A that corre-
spond to the columns of rref(A) containing the leading 1’s.

Again, here are the three main points that make this procedure work:

• The nonredundant column vectors of A form a basis of the image of A (The-
orem 3.2.4).

• The redundant columns of A correspond to those of rref(A).
• The nonredundant column vectors of rref(A) are those containing the leading

1’s.

Note that in Theorem 3.3.5 you need to pick columns of matrix A, not of
rref(A), because the matrices A and rref(A) need not have the same image. See
Exercise 3.1.44b.

In Theorem 3.3.5, we are constructing a basis of im(A) that contains as many
vectors as there are leading 1’s in rref(A). By Definition 1.3.2, this number is the
rank of A.

Theorem 3.3.6 Dimension of the image

For any matrix A,
dim (im A) = rank(A).

Let’s get back to the kernel. In Example 1a we are constructing a basis of the
kernel of an n×m matrix A that contains as many vectors as there are free variables.
Thus,

dim(ker A) =
(

number of
free variables

)
=
(

total number
of variables

)
−
(

number of
leading variables

)
= m − rank(A).

Adding up the equations dim(ker A) = m−rank(A) and dim(im A) = rank(A),
we find the remarkable equation dim(ker A) + dim(im A) = m for any n × m
matrix A.

10A general proof of the claim that the redundant columns of A correspond to those of B goes along
similar lines. Suppose �bi is redundant, with �bi = c1�b1 + · · · + ci−1�bi−1. This induces a relation
−c1�b1 − · · · − ci−1�bi−1 + �bi = �0, and so forth, as above.



3.3 The Dimension of a Subspace of Rn 139

Theorem 3.3.7 Rank-nullity theorem

For any n × m matrix A, the equation

dim(ker A) + dim(imA) = m

holds. The dimension of ker(A) is called the nullity of A, and in Theorem 3.3.6
we observed that dim(imA) = rank(A). Thus, we can write the preceding equa-
tion alternatively as

(nullity of A) + (rank of A) = m.

Some authors go so far as to call this the fundamental theorem of linear algebra.

We can write the rank-nullity theorem as

m − dim(ker A) = dim(imA);
we can interpret this formula geometrically as follows.

Consider the linear transformation

T (�x) = A�x from Rm to Rn .

Note that m is the dimension of the domain of transformation T . The quantity
nullity(A) = dim(ker A) counts the dimensions that “collapse” as we perform
transformation T , and rank(A) = dim(imA) counts the dimensions that “survive”
transformation T .

EXAMPLE 2 Consider the orthogonal projection T onto a plane V in R3. See Figure 3. Here, the
dimension of the domain is m = 3, one dimension collapses (the kernel of T is the

x�

T(x�)

ker(T) = V⊥

V = im(T)

Figure 3

line V ⊥ orthogonal to V ), and we are left with the two-dimensional im(T ) = V .
See Examples 3.1.5 and 3.1.9.

m − dim(ker T ) = dim(image T )

↑ ↑ ↑
3 − 1 = 2 �

If we can find the redundant column vectors of a matrix A by inspection, then
we can construct bases for the image and kernel of A without computing the reduced
row-echelon form of A. This shortcut is illustrated in the following example.
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EXAMPLE 3 Find bases of the image and kernel of the matrix

A =

⎡
⎢⎢⎣

1 2 0 1 2
1 2 0 2 3
1 2 0 3 4
1 2 0 4 5

⎤
⎥⎥⎦ .

Solution
We can spot the redundant columns, �v2 = 2�v1, �v3 = �0, and �v5 = �v1 + �v4. Proposi-
tion 3.2.4 tells us that the nonredundant columns

�v1 =

⎡
⎢⎢⎣

1
1
1
1

⎤
⎥⎥⎦ , �v4 =

⎡
⎢⎢⎣

1
2
3
4

⎤
⎥⎥⎦

form a basis of the image of A. Thus, dim(im A) = 2.
Applying the method outlined in Example 3.2.8 to the redundant vectors �v2, �v3,

and �v5, we can generate three vectors in the kernel of A. We will organize our work
in a table.

Redundant Vector

�v2 = 2�v1

�v3 = �0

�v5 = �v1 + �v4

Relation

−2�v1 + �v2 = �0

�v3 = �0

−�v1 − �v4 + �v5 = �0

Vector in Kernel of A

�w2 =

⎡
⎢⎢⎢⎢⎣

−2
1
0
0
0

⎤
⎥⎥⎥⎥⎦

�w3 =

⎡
⎢⎢⎢⎢⎣

0
0
1
0
0

⎤
⎥⎥⎥⎥⎦

�w5 =

⎡
⎢⎢⎢⎢⎣

−1
0
0

−1
1

⎤
⎥⎥⎥⎥⎦

To facilitate the transition from the relation to the vector in the kernel, it can be
useful to write the coefficients of a relation above the corresponding columns of the
matrix,11 as follows (for the last relation):

⎡
⎢⎣

−1 0 0 −1 1
1 2 0 1 2
1 2 0 2 3
1 2 0 3 4
1 2 0 4 5

⎤
⎥⎦.

We claim that the three vectors �w2, �w3, �w5 constructed above form a basis of the
kernel of A. Theorem 3.2.5 tells us that these vectors are linearly independent, since

11We will refer to these numbers above the matrix as the Kyle numbers, after Kyle Burke (Colby
2003), who introduced them.
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vector �wi has a 1 in the i th component, while the preceding vectors have a 0 in that
component.

From Theorem 3.3.7, we know that dim(ker A) = 5−dim(im A) = 3. Because
�w2, �w3, �w5 are three linearly independent vectors in the three-dimensional space
ker(A), they form a basis of ker(A), by Theorem 3.3.4c. �

More generally, if A is an n × m matrix, then this procedure generates as many
linearly independent vectors in ker(A) as there are redundant columns vectors in A.
But this number is

m −
(

number of
nonredundant columns

)
= m − dim(im A) = dim(ker A),

by Theorem 3.3.7, showing that we have enough vectors to form a basis of the
kernel (again, we are invoking Theorem 3.3.4c).

Theorem 3.3.8 Finding bases of the kernel and image by inspection

Suppose you are able to spot the redundant columns of a matrix A.
Express each redundant column as a linear combination of the preced-

ing columns, �vi = c1 �v1 + · · · + ci−1 �vi−1; write a corresponding relation,
−c1 �v1 − · · · − ci−1 �vi−1 + �vi = �0; and generate the vector⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−c1
...

−ci−1

1
0
...

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

in the kernel of A. The vectors so constructed form a basis of the kernel of A.
The nonredundant columns form a basis of the image of A.
The use of Kyle numbers can facilitate this procedure. See Example 3.

Bases of Rn

We know that any basis of Rn consists of n vectors, since we have the standard
basis �e1, . . . , �en (recall Theorem 3.3.2). Conversely, how can we tell whether n
given vectors �v1, . . . , �vn in Rn form a basis?

By Theorem 3.2.10, the vectors �v1, . . . , �vn form a basis of Rn if (and only if)
every vector �b in Rn can be written uniquely as a linear combination of the vectors
�v1, . . . , �vn:

�b = c1 �v1 + · · · + cn �vn =
⎡
⎣ | |

�v1 · · · �vn

| |

⎤
⎦
⎡
⎢⎣ c1

...

cn

⎤
⎥⎦ .

By the definition of invertibility, the linear system⎡
⎣ | |

�v1 · · · �vn

| |

⎤
⎦
⎡
⎢⎣ c1

...

cn

⎤
⎥⎦ = �b
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has a unique solution for all �b if (and only if) the n × n matrix⎡
⎣ | |

�v1 · · · �vn

| |

⎤
⎦

is invertible. We have shown the following result:

Theorem 3.3.9 Bases of Rn

The vectors �v1, . . . , �vn in Rn form a basis of Rn if (and only if) the matrix⎡
⎣ | |

�v1 · · · �vn

| |

⎤
⎦

is invertible.

EXAMPLE 4 For which values of the constant k do the following vectors form a basis of R3?⎡
⎣1

1
1

⎤
⎦ ,

⎡
⎣ 1

−1
1

⎤
⎦ ,

⎡
⎣ 1

k
k2

⎤
⎦

Solution
We need to examine when the matrix⎡

⎣1 1 1
1 −1 k
1 1 k2

⎤
⎦

is invertible. This matrix reduces to⎡
⎣1 1 1

0 1 (1 − k)/2
0 0 k2 − 1

⎤
⎦ .

We can reduce this matrix all the way to I3 if (and only if) k2 − 1 �= 0, that is, if k
is neither 1 nor −1.

Thus, the three given vectors form a basis of R3 if (and only if) k is neither 1
nor −1. �

Theorem 3.3.4, parts (c) and (d), applied to V = Rn , and Theorem 3.3.9 provide
us with three new characterizations of invertible matrices.

SUMMARY 3.3.10 Various characterizations of invertible matrices

For an n × n matrix A, the following statements are equivalent.

i. A is invertible.

ii. The linear system A�x = �b has a unique solution �x , for all �b in Rn .

iii. rref(A) = In .

iv. rank(A) = n.

v. im(A) = Rn.

vi. ker(A) = {�0}.
vii. The column vectors of A form a basis of Rn .

viii. The column vectors of A span Rn .

ix. The column vectors of A are linearly independent.
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EXERCISES 3.3
GOAL Use the concept of dimension. Find a basis of the
kernel and of the image of a linear transformation.

In Exercises 1 through 20, find the redundant column vec-
tors of the given matrix A “by inspection.” Then find a
basis of the image of A and a basis of the kernel of A.

1.
[

1 3
2 6

]
2.
[

0 1
0 2

]

3.
[

1 2
3 4

]
4.
[

1 4
2 8

]

5.
[

1 −2 3
2 4 6

]
6.
[

1 1 3
2 1 4

]

7.
[

1 2 3
1 2 4

]
8.

⎡
⎣0 1 1

0 1 2
0 1 3

⎤
⎦

9.

⎡
⎣1 2 1

1 2 2
1 2 3

⎤
⎦ 10.

⎡
⎣1 −3

2 −6
3 −9

⎤
⎦

11.

⎡
⎣1 0 1

0 1 0
0 1 0

⎤
⎦ 12.

[
0 1 2

]

13.
[

1 2 3
]

14.

⎡
⎣1 0 0

1 0 0
1 1 1

⎤
⎦

15.

⎡
⎢⎢⎣

1 0 2 0
0 1 2 0
1 0 2 0
0 1 2 0

⎤
⎥⎥⎦ 16.

⎡
⎣1 −2 0 −1 0

0 0 1 5 0
0 0 0 0 1

⎤
⎦

17.
[

0 1 2 0 3
0 0 0 1 4

]
18.

⎡
⎢⎢⎣

1 1 5 1
0 1 2 2
0 1 2 3
0 1 2 4

⎤
⎥⎥⎦

19.

⎡
⎢⎢⎣

1 0 5 3 0
0 1 4 2 0
0 0 0 0 1
0 0 0 0 0

⎤
⎥⎥⎦ 20.

⎡
⎢⎢⎣

1 0 5 3 −3
0 0 0 1 3
0 0 0 0 0
0 0 0 0 0

⎤
⎥⎥⎦

In Exercises 21 through 25, find the reduced row-echelon
form of the given matrix A. Then find a basis of the image
of A and a basis of the kernel of A.

21.

⎡
⎣1 3 9

4 5 8
7 6 3

⎤
⎦ 22.

⎡
⎣2 4 8

4 5 1
7 9 3

⎤
⎦

23.

⎡
⎢⎢⎣

1 0 2 4
0 1 −3 −1
3 4 −6 8
0 −1 3 1

⎤
⎥⎥⎦ 24.

⎡
⎢⎢⎣

4 8 1 1 6
3 6 1 2 5
2 4 1 9 10
1 2 3 2 0

⎤
⎥⎥⎦

25.

⎡
⎢⎢⎣

1 2 3 2 1
3 6 9 6 3
1 2 4 1 2
2 4 9 1 2

⎤
⎥⎥⎦

26. Consider the matrices

C =
⎡
⎣1 1 1

1 0 0
1 1 1

⎤
⎦ , H =

⎡
⎣1 0 1

1 1 1
1 0 1

⎤
⎦

L =
⎡
⎣1 0 0

1 0 0
1 1 1

⎤
⎦ , T =

⎡
⎣1 1 1

0 1 0
0 1 0

⎤
⎦

X =
⎡
⎣1 0 1

0 1 0
1 0 1

⎤
⎦ , Y =

⎡
⎣1 0 1

0 1 0
0 1 0

⎤
⎦ .

a. Which of the matrices in this list have the same ker-
nel as matrix C?

b. Which of the matrices in this list have the same im-
age as matrix C?

c. Which of these matrices has an image that is differ-
ent from the images of all the other matrices in the
list?

27. Determine whether the following vectors form a basis
of R4: ⎡

⎢⎢⎣
1
1
1
1

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣

1
−1

1
−1

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣

1
2
4
8

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣

1
−2

4
−8

⎤
⎥⎥⎦ .

28. For which value(s) of the constant k do the vectors
below form a basis of R4?⎡

⎢⎢⎣
1
0
0
2

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣

0
1
0
3

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣

0
0
1
4

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣

2
3
4
k

⎤
⎥⎥⎦

29. Find a basis of the subspace of R3 defined by the
equation

2x1 + 3x2 + x3 = 0.

30. Find a basis of the subspace of R4 defined by the
equation

2x1 − x2 + 2x3 + 4x4 = 0.
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31. Let V be the subspace of R4 defined by the equation

x1 − x2 + 2x3 + 4x4 = 0.

Find a linear transformation T from R3 to R4 such
that ker(T ) = {�0} and im(T ) = V . Describe T by its
matrix A.

32. Find a basis of the subspace of R4 that consists of all
vectors perpendicular to both⎡

⎢⎢⎣
1
0

−1
1

⎤
⎥⎥⎦ and

⎡
⎢⎢⎣

0
1
2
3

⎤
⎥⎥⎦ .

See Definition A.8 in the Appendix.

33. A subspace V of Rn is called a hyperplane if V is
defined by a homogeneous linear equation

c1x1 + c2x2 + · · · + cn xn = 0,

where at least one of the coefficients ci is nonzero. What
is the dimension of a hyperplane in Rn? Justify your
answer carefully. What is a hyperplane in R3? What is
it in R2?

34. Consider a subspace V in Rm that is defined by n
homogeneous linear equations:∣∣∣∣∣∣∣∣∣

a11x1 + a12x2 + · · · + a1m xm = 0
a21x1 + a22x2 + · · · + a2m xm = 0

...
...

...
...

an1x1 + an2x2 + · · · + anm xm = 0

∣∣∣∣∣∣∣∣∣
.

What is the relationship between the dimension of V
and the quantity m − n? State your answer as an in-
equality. Explain carefully.

35. Consider a nonzero vector �v in Rn . What is the dimen-
sion of the space of all vectors in Rn that are perpendic-
ular to �v?

36. Can you find a 3 × 3 matrix A such that im(A) =
ker(A)? Explain.

37. Give an example of a 4 × 5 matrix A with
dim(ker A) = 3.

38. a. Consider a linear transformation T from R5 to
R3. What are the possible values of dim(ker T )?
Explain.

b. Consider a linear transformation T from R4 to
R7. What are the possible values of dim(imT )?
Explain.

39. We are told that a certain 5 × 5 matrix A can be written
as

A = BC,

where B is a 5 × 4 matrix and C is 4 × 5. Explain how
you know that A is not invertible.

In Exercises 40 through 43, consider the problem of
fitting a conic through m given points P1(x1, y1), . . . ,

Pm(xm, ym) in the plane; see Exercises 53 through 62
in Section 1.2. Recall that a conic is a curve in R2 that
can be described by an equation of the form f (x, y) =
c1 + c2x + c3 y + c4x2 + c5x y + c6 y2 = 0, where at least
one of the coefficients ci is nonzero.

40. Explain why fitting a conic through the points
P1(x1, y1), . . . , Pm(xm , ym) amounts to finding the
kernel of an m × 6 matrix A. Give the entries of the
i th row of A.

Note that a one-dimensional subspace of the ker-
nel of A defines a unique conic, since the equations
f (x, y) = 0 and k f (x, y) = 0 describe the same conic.

41. How many conics can you fit through four distinct
points P1(x1, y1), . . . , P4(x4, y4)?

42. How many conics can you fit through five distinct points
P1(x1, y1), . . . , P5(x5, y5)? Describe all possible sce-
narios, and give an example in each case.

43. How many conics can you fit through six distinct points
P1(x1, y1), . . . , P6(x6, y6)? Describe all possible sce-
narios, and give an example in each case.

For Exercises 44 through 61, consider the problem of
fitting a cubic through m given points P1(x1, y1), . . . ,

Pm(xm, ym) in the plane. A cubic is a curve in R2 that
can be described by an equation of the form f (x, y) =
c1 + c2x + c3 y + c4x2 + c5x y + c6 y2 + c7x3 + c8x2 y +
c9x y2 + c10 y3 = 0, where at least one of the coefficients
ci is nonzero. If k is any nonzero constant, then the equa-
tions f (x, y) = 0 and k f (x, y) = 0 define the same cubic.

44. Show that the cubics through the points (0,0), (1,0),
(2,0), (0,1), and (0,2) can be described by equations of
the form c5xy + c7(x3 − 3x2 + 2x)+ c8x2 y + c9xy2 +
c10(y3 − 3y2 + 2y) = 0, where at least one of the
coefficients ci is nonzero. Alternatively, this equation
can be written as c7x(x − 1)(x − 2) + c10 y(y − 1)(y −
2) + xy(c5 + c8x + c9 y) = 0.

45. Show that the cubics through the points (0,0), (1,0),
(2,0), (3,0), (0,1), (0,2), and (0,3) can be described by
equations of the form c5xy + c8x2 y + c9xy2 = 0,
where at least one of the coefficients c5, c8, and c9
is nonzero. Alternatively, this equation can be written
as xy(c5 + c8x + c9 y) = 0. Describe these cubics
geometrically.

In Problems 46 through 55, find all the cubics through the
given points. You may use the results from Exercises 44
and 45 throughout. If there is a unique cubic, make a
rough sketch of it. If there are infinitely many cubics,
sketch two of them.

46. (0, 0), (1, 0), (2, 0), (3, 0), (0, 1), (0, 2), (0, 3), (1, 1)

47. (0, 0), (1, 0), (2, 0), (3, 0), (0, 1), (0, 2), (0, 3), (1, 1),
(2, 2)
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48. (0, 0), (1, 0), (2, 0), (3, 0), (4, 0), (0, 1), (0, 2), (0, 3),
(1, 1)

49. (0, 0), (1, 0), (2, 0), (3, 0), (0, 1), (0, 2), (0, 3), (1, 1),
(2, 2), (2, 1)

50. (0, 0), (1, 0), (2, 0), (3, 0), (0, 1), (0, 2), (0, 3), (1, 1),
(2, 2), (3, 3)

51. (0, 0), (1, 0), (2, 0), (3, 0), (4, 0), (0, 1), (0, 2), (0, 3),
(0, 4), (1, 1)

52. (0, 0), (1, 0), (2, 0), (0, 1), (1, 1), (2, 1), (0, 2), (1, 2)

53. (0, 0), (1, 0), (2, 0), (0, 1), (1, 1), (2, 1), (0, 2), (1, 2),
(3, 2)

54. (0, 0), (1, 0), (2, 0), (0, 1), (1, 1), (2, 1), (0, 2), (1, 2),
(2, 2)

55. (0, 0), (1, 0), (2, 0), (0, 1), (1, 1), (2, 1), (0, 2), (1, 2),
(2, 2), (3, 3)

56. Explain why fitting a cubic through the m points
P1(x1, y1), . . . , Pm(xm , ym) amounts to finding the
kernel of an m × 10 matrix A. Give the entries of the
i th row of A.

57. How many cubics can you fit through eight distinct
points P1(x1, y1), . . . , P8(x8, y8)?

58. How many cubics can you fit through nine distinct
points P1(x1, y1), . . . , P9(x9, y9)? Describe all possi-
ble scenarios, and give an example in each case.

59. How many cubics can you fit through 10 distinct
points P1(x1, y1), . . . , P10(x10, y10)? Describe all pos-
sible scenarios, and give an example in each case.

60. On September 30, 1744, the Swiss mathematician
Gabriel Cramer (1704–1752) wrote a remarkable let-
ter to his countryman Leonhard Euler, concerning the
issue of fitting a cubic to given points in the plane.
He states two “facts” about cubics: (1) Any nine dis-
tinct points determine a unique cubic. (2) Two cubics
can intersect in nine points. Cramer points out that
these two statements are incompatible. If we consider
two specific cubics that intersect in nine points (such
as x3 − x = 0 and y3 − y = 0), then there is
more than one cubic through these nine points, con-
tradicting the first “fact.” Something is terribly wrong
here, and Cramer asks Euler, the greatest mathemati-
cian of that time, to resolve this apparent contradic-
tion. (This issue is now known as the Cramer–Euler
paradox.)

Euler worked on the problem for a while and put
his answer into an article he submitted in 1747, “Sur
one contradiction apparente dans la doctrine des lignes
courbes” [Mémoires de l’Académie des Sciences de
Berlin, 4 (1750): 219–233].

Using Exercises 46 through 59 as a guide, explain
which of the so-called facts stated by Cramer is wrong,
thus resolving the paradox.

61. Find all points P in the plane such that you can fit in-
finitely many cubics through the points (0, 0), (1, 0),
(2, 0), (3, 0), (0, 1), (0, 2), (0, 3), (1, 1), P .

62. Consider two subspaces V and W of Rn , where V
is contained in W . Explain why dim(V ) ≤ dim(W ).
(This statement seems intuitively rather obvious. Still,
we cannot rely on our intuition when dealing with Rn .)

63. Consider two subspaces V and W of Rn , where V
is contained in W . In Exercise 62 we learned that
dim(V ) ≤ dim(W ). Show that if dim(V ) = dim(W ),
then V = W .

64. Consider a subspace V of Rn with dim(V ) = n. Ex-
plain why V = Rn .

65. Consider two subspaces V and W of Rn , with V ∩W =
{�0}. What is the relationship among dim(V ), dim(W ),
and dim(V + W )? (For the definition of V + W , see
Exercise 3.2.50; Exercise 3.2.51 is helpful.)

66. Two subspaces V and W of Rn are called complements
if any vector �x in Rn can be expressed uniquely as
�x = �v + �w, where �v is in V and �w is in W . Show that V
and W are complements if (and only if) V ∩ W = {�0}
and dim(V ) + dim(W ) = n.

67. Consider linearly independent vectors �v1, �v2, . . . , �v p in
a subspace V of Rn and vectors �w1, �w2, . . . , �wq that
span V . Show that there is a basis of V that consists of
all the �vi and some of the �w j . Hint: Find a basis of the
image of the matrix

A =

⎡
⎢⎣ | | | |

�v1 · · · �v p �w1 · · · �wq

| | | |

⎤
⎥⎦ .

68. Use Exercise 67 to construct a basis of R4 that consists
of the vectors ⎡

⎢⎢⎣
1
2
3
4

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣

1
4
6
8

⎤
⎥⎥⎦ ,

and some of the vectors �e1, �e2, �e3, and �e4 in R4.

69. Consider two subspaces V and W of Rn . Show that

dim(V ) + dim(W ) = dim(V ∩ W ) + dim(V + W ).

For the definition of V + W , see Exercise 3.2.50.
Hint: Pick a basis �u1, �u2, . . . , �um of V ∩ W . Using
Exercise 67, construct bases �u1, �u2, . . . , �um , �v1, �v2, . . . ,

�v p of V and �u1, �u2, . . . , �um , �w1, �w2, . . . , �wq of W .
Show that �u1, �u2, . . . , �um , �v1, �v2, . . . , �v p, �w1, �w2, . . . ,

�wq is a basis of V + W . Demonstrating linear indepen-
dence is somewhat challenging.

70. Use Exercise 69 to answer the following question: If
V and W are subspaces of R10, with dim(V ) = 6
and dim(W ) = 7, what are the possible dimensions of
V ∩ W ?
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In Exercises 71 through 74, we will study the row space of
a matrix. The row space of an n × m matrix A is defined
as the span of the row vectors of A (i.e., the set of their
linear combinations). For example, the row space of the
matrix ⎡

⎣1 2 3 4
1 1 1 1
2 2 2 3

⎤
⎦

is the set of all row vectors of the form

a
[

1 2 3 4
]+ b
[

1 1 1 1
]+ c
[

2 2 2 3
]
.

71. Find a basis of the row space of the matrix

E =

⎡
⎢⎢⎣

0 1 0 2 0
0 0 1 3 0
0 0 0 0 1
0 0 0 0 0

⎤
⎥⎥⎦ .

72. Consider an n × m matrix E in reduced row-echelon
form. Using your work in Exercise 71 as a guide,
explain how you can find a basis of the row space of
E . What is the relationship between the dimension of
the row space and the rank of E?

73. Consider an arbitrary n × m matrix A.
a. What is the relationship between the row spaces of

A and E = rref(A)? Hint: Examine how the row
space is affected by elementary row operations.

b. What is the relationship between the dimension of
the row space of A and the rank of A?

74. Find a basis of the row space of the matrix

A =

⎡
⎢⎢⎣

1 1 1 1
2 2 2 2
1 2 3 4
1 3 5 7

⎤
⎥⎥⎦ .

75. Consider an n × n matrix A. Show that there exist
scalars c0, c1, . . . , cn (not all zero) such that the ma-
trix c0 In + c1 A + c2 A2 + · · · + cn An is noninvert-
ible. Hint: Pick an arbitrary nonzero vector �v in Rn .
Then the n + 1 vectors �v, A�v, A2 �v, . . . , An �v will be
linearly dependent. (Much more is true: There are
scalars c0, c1, . . . , cn , not all zero, such that c0 In +
c1 A + c2 A2 + · · · + cn An = 0. You are not asked to
demonstrate this fact here.)

76. Consider the matrix

A =
[

1 −2
2 1

]
.

Find scalars c0, c1, c2 (not all zero) such that the matrix
c0 I2 + c1 A + c2 A2 is noninvertible. See Exercise 75.

77. Consider an n × m matrix A. Show that the rank of A
is n if (and only if) A has an invertible n × n subma-
trix (i.e., a matrix obtained by deleting m − n columns
of A).

78. An n × n matrix A is called nilpotent if Am = 0
for some positive integer m. Examples are triangular

matrices whose entries on the diagonal are all 0. Con-
sider a nilpotent n × n matrix A, and choose the small-
est number m such that Am = 0. Pick a vector �v
in Rn such that Am−1 �v �= �0. Show that the vec-
tors �v, A�v, A2 �v, . . . , Am−1 �v are linearly independent.
Hint: Consider a relation c0 �v + c1 A�v + c2 A2 �v + · · · +
cm−1 Am−1 �v = �0. Multiply both sides of the equation
with Am−1 to show that c0 = 0. Next, show that c1 = 0,
and so on.

79. Consider a nilpotent n × n matrix A. Use the result
demonstrated in Exercise 78 to show that An = 0.

80. Explain why you need at least m vectors to span a space
of dimension m. See Theorem 3.3.4b.

81. Prove Theorem 3.3.4d: If m vectors span an
m-dimensional space, they form a basis of the space.

82. If a 3×3 matrix A represents the projection onto a plane
in R3, what is rank (A)?

83. Consider a 4 × 2 matrix A and a 2 × 5 matrix B.
a. What are the possible dimensions of the kernel of

AB?
b. What are the possible dimensions of the image of

AB?

84. Consider two n × m matrices A and B. What can you
say about the relationship among the quantitites
rank(A), rank(B), and rank(A + B)?

85. Consider an n × p matrix A and a p × m matrix B.
a. What can you say about the relationship between

rank(A) and rank(AB)?
b. What can you say about the relationship between

rank(B) and rank(AB)?

86. Consider the matrices

A =

⎡
⎢⎢⎣

1 0 2 0 4 0
0 1 3 0 5 0
0 0 0 1 6 0
0 0 0 0 0 1

⎤
⎥⎥⎦

and

B =

⎡
⎢⎢⎣

1 0 2 0 4 0
0 1 3 0 5 0
0 0 0 1 7 0
0 0 0 0 0 1

⎤
⎥⎥⎦ .

Show that the kernels of matrices A and B are different.
Hint: Think about ways to write the fifth column as a
linear combination of the preceding columns.

87. Consider the matrices

A =

⎡
⎢⎢⎣

1 0 2 0 4 0
0 1 3 0 5 0
0 0 0 1 6 0
0 0 0 0 0 1

⎤
⎥⎥⎦

and
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B =

⎡
⎢⎢⎣

1 0 2 0 0 4
0 1 3 0 0 5
0 0 0 1 0 6
0 0 0 0 1 7

⎤
⎥⎥⎦ .

Show that the kernels of matrices A and B are different.
Hint: Think about ways to write the fifth column as a
linear combination of the preceding columns.

88. Let A and B be two matrices of the same size, with
A �= B, both in reduced row-echelon form. Show that
ker(A) �= ker(B). Hint: Focus on the first column in
which the two matrices differ, say, the kth columns �ak
and �bk of A and B, respectively. Explain why at least
one of the columns �ak and �bk fails to contain a leading
1. Thus, reversing the roles of matrices A and B if nec-
essary, we can assume that �ak does not contain a leading

1. We can write �ak as a linear combination of preceding
columns and use this representation to construct a vec-
tor in the kernel of A. Show that this vector fails to be
in the kernel of B. Use Exercises 86 and 87 as a guide.

89. Suppose a matrix A in reduced row-echelon form can be
obtained from a matrix M by a sequence of elementary
row operations. Show that A = rref(M). Hint: Both A
and rref(M) are in reduced row-echelon form, and they
have the same kernel. Exercise 88 is helpful.

90. Consider a nonzero vector �v in R3. Using a geometric
argument, describe the image and the kernel of the lin-
ear transformation T from R3 to R3 given by

T (�x) = �v × �x .

See Definition A.9 in the Appendix.

3.4 Coordinates

Coordinates are one of the “great ideas” of mathematics. René Descartes (1596–
1650) is credited with having introduced them, in an appendix to his treatise Dis-
cours de la Méthode (Leyden, 1637). Myth has it that the idea came to him as he
was laying on his back in bed one lazy Sunday morning, watching a fly on the ceil-
ing above him. It occurred to him that he could describe the position of the fly by
giving its distance from two walls.

Descartes’s countryman Pierre de Fermat (1601–1665) independently devel-
oped the basic principles of analytic geometry, at about the same time, but he did
not publish his work.

We have used Cartesian coordinates in the x–y-plane and in x–y–z-space
throughout Chapters 1 through 3, without much fanfare, when representing vec-
tors in R2 and R3 geometrically. In this section and in Chapter 4, we will discuss
coordinates more systematically.

EXAMPLE 1 Consider the vectors

�v1 =
⎡
⎣1

1
1

⎤
⎦ and �v2 =

⎡
⎣1

2
3

⎤
⎦

in R3, and define the plane V = span(�v1, �v2) in R3. Is the vector

�x =
⎡
⎣5

7
9

⎤
⎦

on the plane V ? Visualize your answer.

Solution
We have to examine whether there exist scalars c1 and c2 such that �x = c1 �v1 +c2 �v2.
This problem amounts to solving the linear system with augmented matrix

M =
⎡
⎣1 1 5

1 2 7
1 3 9

⎤
⎦ , and rref(M) =

⎡
⎣1 0 3

0 1 2
0 0 0

⎤
⎦ .
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This system is consistent, with the unique solution c1 = 3 and c2 = 2, so that

�x = c1 �v1 + c2 �v2 = 3�v1 + 2�v2.

In Figure 1, we represent this solution geometrically. It turns out that the vector is
indeed on the plane V .

3v�1

v�1

x� = 3v�1 + 2v�2

2v�2

v�2 V

Figure 1

To visualize the coefficients 3 and 2 in the linear combination �x = 3�v1 +2�v2, it
is suggestive to introduce a coordinate grid on the plane V , with the axes pointing
in the directions of the vectors �v1 and �v2 , as in Figure 2, where we label the axes
c1 and c2. In this grid, our vector �x has the coordinates c1 = 3 and c2 = 2. The
coordinate vector of �v = 3�v1 + 2�v2 in this coordinate system is[

c1

c2

]
=
[

3
2

]
.

We can think of

[
3
2

]
as the address of �x in the c1–c2 coordinate system. By intro-

ducing c1–c2 coordinates in V , we transform the plane V into R2.

V

v�1

x� = 3v�1 + 2v�2

v�2

c2

c1

Figure 2

Don’t be alarmed by the fact that the axes aren’t perpendicular; Cartesian coor-
dinates work just as well with oblique axes.

The following notation can be helpful when discussing coordinates, although it
is a bit heavy. Let’s denote the basis �v1, �v2 of V by �. Then the coordinate vector
of �x with respect to � is denoted by

[ �x]
�

.
It is customary to denote bases with capital letters in the Fraktur typeface:

�, �, �, �, �, �, �, 	, 
, �, �, , �, �, �, �, �, �, �, �, �, �, �, �, �, �.
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If �x =
⎡
⎣5

7
9

⎤
⎦ = c1 �v1 + c2 �v2 = 3�v1 + 2�v2, then

[ �x]
�

=
[

c1

c2

]
=
[

3
2

]
. �

Let’s generalize the ideas introduced in Example 1.

Definition 3.4.1 Coordinates in a subspace of Rn

Consider a basis � = (�v1, �v2, . . . , �vm) of a subspace V of Rn . By Theorem
3.2.10, any vector �x in V can be written uniquely as

�x = c1 �v1 + c2 �v2 + · · · + cm �vm .

The scalars c1, c2, . . . , cm are called the �-coordinates of �x , and the vector⎡
⎢⎢⎢⎣

c1

c2
...

cm

⎤
⎥⎥⎥⎦

is the �-coordinate vector of �x , denoted by
[ �x]

�
. Thus,

[ �x]
�

=

⎡
⎢⎢⎢⎣

c1

c2
...

cm

⎤
⎥⎥⎥⎦ means that �x = c1 �v1 + c2 �v2 + · · · + cm �vm .

Note that

�x = S
[ �x ]

�
, where S =

⎡
⎣ | | |

�v1 �v2 · · · �vm

| | |

⎤
⎦, an n × m matrix.

The last equation, �x = S
[ �x ]

�
, follows directly from the definition of coordinates:

�x = c1 �v1 + c2 �v2 + · · · + cm �vm =
⎡
⎣ | | |

�v1 �v2 . . . �vm

| | |

⎤
⎦
⎡
⎢⎢⎢⎣

c1

c2
...

cm

⎤
⎥⎥⎥⎦ = S
[ �x ]

�
.

In Example 1 we considered the case where

�x =
⎡
⎣5

7
9

⎤
⎦ ,
[ �x]

�
=
[

3
2

]
, and S =

⎡
⎣1 1

1 2
1 3

⎤
⎦ .

You can verify that

�x = S
[ �x]

�
, or

⎡
⎣5

7
9

⎤
⎦ =
⎡
⎣1 1

1 2
1 3

⎤
⎦[3

2

]
.
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It turns out that coordinates have some important linearity properties:

Theorem 3.4.2 Linearity of Coordinates

If � is a basis of a subspace V of Rn , then

a.
[ �x + �y]

�
= [ �x]

�
+ [ �y]

�
, for all vectors �x and �y in V , and

b.
[
k �x ]

�
= k
[ �x]

�
, for all �x in V and for all scalars k.

Proof We will prove property (b) and leave part (a) as Exercise 51. Let � = (�v1, �v2, . . . ,

�vm). If �x = c1 �v1 + c2 �v2 + · · · + cm �vm , then k �x = kc1 �v1 + kc2 �v2 + · · · + kcm �vm , so
that

[
k �x ]

�
=

⎡
⎢⎢⎢⎣

kc1

kc2
...

kcm

⎤
⎥⎥⎥⎦ = k

⎡
⎢⎢⎢⎣

c1

c2
...

cm

⎤
⎥⎥⎥⎦ = k
[ �x ]

�
,

as claimed. �
As an important special case of Definition 3.4.1, consider the case when V is

all of Rn . It is often useful to work with bases of Rn other than the standard basis,
�e1, �e2, . . . , �en . When dealing with the ellipse in Figure 3, for example, the c1–c2-
axes aligned with the principal axes may be preferable to the standard x1–x2-axes.

x2

x1

c2

c1

Figure 3

EXAMPLE 2 Consider the basis � of R2 consisting of vectors �v1 =
[

3
1

]
and �v2 =

[−1
3

]
.

a. If �x =
[

10
10

]
, find
[ �x]

�
. b. If

[ �y]
�

=
[

2
−1

]
, find �y.

Solution

a. To find the �-coordinates of vector �x , we write �x as a linear combination of
the basis vectors:

�x = c1 �v1 + c2 �v2 or

[
10
10

]
= c1

[
3
1

]
+ c2

[−1
3

]
.

The solution is c1 = 4, c2 = 2, so that
[ �x ]

�
=
[

4
2

]
.
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Alternatively, we can solve the equation �x = S
[ �x]

�
for
[ �x ]

�
:

[ �x]
�

= S−1 �x =
[

3 −1
1 3

]−1 [
10
10

]
= 1

10

[
3 1

−1 3

] [
10
10

]
=
[

4
2

]
.

b. By definition of coordinates,
[ �y]

�
=
[

2
−1

]
means that

�y = 2�v1 + (−1)�v2 = 2

[
3
1

]
+ (−1)

[−1
3

]
=
[

7
−1

]
.

Alternatively, use the formula

�y = S
[ �y]

�
=
[

3 −1
1 3

] [
2

−1

]
=
[

7
−1

]
.

These results are illustrated in Figure 4. �

c2

c1

y�

x�

v�1

v�2

x2

x1

Figure 4

We will now go a step further and see how we can express a linear transforma-
tion in coordinates.

EXAMPLE 3 Let L be the line in R2 spanned by vector

[
3
1

]
. Let T be the linear transformation

from R2 to R2 that projects any vector �x orthogonally onto line L , as shown in Fig-
ure 5. We can facilitate the study of T by introducing a coordinate system where
L is one of the axes (say, the c1-axis), with the c2-axis perpendicular to L , as illus-

trated in Figure 6. If we use this coordinate system, then T transforms

[
c1

c2

]
into[

c1

0

]
. In c1–c2 coordinates, T is represented by the matrix B =

[
1 0
0 0

]
, since

[
c1

0

]
=
[

1 0
0 0

] [
c1

c2

]
.
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T(x�)

L

x2

x1

x�

Figure 5

c1

c2

x� c1
c2

=

T(x�) 
c1
0=

Figure 6

Let’s make these ideas more precise. We start by introducing a basis � =
(�v1, �v2) of R2 with vector �v1 on line L and vector �v2 perpendicular to L , for
example,

�v1 =
[

3
1

]
and �v2 =

[−1
3

]
.

If �x = c1 �v1︸︷︷︸
in L

+ c2 �v2︸︷︷︸
in L⊥

, then T (�x) = projL(�x) = c1 �v1. Equivalently, if

[ �x]
�

=
[

c1

c2

]
, then

[
T (�x)
]

�
=
[

c1

0

]
;

see Figure 6.

The matrix B =
[

1 0
0 0

]
that transforms

[ �x]
�

=
[

c1

c2

]
into
[
T (�x)
]

�
=
[

c1

0

]
is called the �-matrix of T : [

T (�x)
]

�
= B
[ �x ]

�
.

We can organize our work in a diagram as follows:

�x =
in L︷︸︸︷
c1 �v1 +

in L⊥︷︸︸︷
c2 �v2 −−−−−−−−→

T
T (�x) = c1 �v1

� �[ �x]
�

=
[

c1

c2

]
−−−−−−−−→

B =
[

1 0
0 0

] [T (�x)
]

�
=
[

c1

0

]
.
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When setting up such a diagram, we begin in the top left by writing an arbitrary
input vector �x as a linear combination of the vectors in the given basis �. In the top
right we have T (�x), again written as a linear combination of the vectors of basis
�. The corresponding entries below are the coordinate vectors

[ �x ]
�

and
[
T (�x)
]

�
.

Finding those is a routine step that requires no computational work, since �x and
T (�x) have been written as linear combinations of the basis vectors already. Finally,
we find the matrix B that transforms

[ �x]
�

into
[
T (�x)
]

�
; this is again a routine

step. �
Let’s generalize the ideas of Example 3.

Theorem 3.4.3 The matrix of a linear transformation

Consider a linear transformation T from Rn to Rn and a basis � = (�v1, . . . , �vn)

of Rn . Then there exists a unique n × n matrix B that transforms [�x]� into
[T (�x)]�:

[T (�x)]� = B[�x]�,

for all �x in Rn . This matrix B is called the �-matrix of T. We can construct B
column by column, as follows:

B =
⎡
⎣ | |

[T (�v1)]� . . . [T (�vn)]�

| |

⎤
⎦ .

Proof If we write �x in �-coordinates, �x = c1�v1 + · · · + cn�vn , then we have

[T (�x)]� = [T (c1�v1 + · · · + cn�vn)]�

=︸︷︷︸
step 2

[c1T (�v1) + · · · + cnT (�vn)]�

=︸︷︷︸
step 3

c1[T (�v1)]� + · · · + cn[T (�vn)]�

=
⎡
⎣ | |

[T (�v1)]� . . . [T (�vn)]�

| |

⎤
⎦
⎡
⎢⎣ c1

...

cn

⎤
⎥⎦

=
⎡
⎣ | |

[T (�v1)]� . . . [T (�vn)]�

| |

⎤
⎦

︸ ︷︷ ︸
B

[�x]� = B[�x]�,

as claimed. In step 2 we are using the linearity of T , and step 3 follows from the
linearity of coordinates, Theorem 3.4.2. �

EXAMPLE 4 Consider two perpendicular unit vectors �v1 and �v2 in R3. Form the basis � =
(�v1, �v2, �v3) of R3, where �v3 = �v1 × �v2. (Take a look at Theorem A.10
in the Appendix to review the basic properties of the cross product.) Note
that �v3 is perpendicular to both �v1 and �v2, and �v3 is a unit vector, since
‖�v3‖ = ‖�v1 × �v2‖ = ‖�v1‖‖�v2‖ sin(π/2) = 1 · 1 · 1 = 1.

a. Draw a sketch to find �v1 × �v3.

b. Find the �-matrix B of the linear transformation T (�x) = �v1 × �x .



154 CHAPTER 3 Subspaces of Rn and Their Dimensions

Solutionv�3 = v�1 × v�2

v�2

v�1

v�1 × v�3 = −v�2

Figure 7

a. Note first that �v1 × �v3 is a unit vector.
Figure 7 illustrates that �v1 × �v3 = −�v2.

b. We will organize our work in a diagram, as in Example 3.

�x = c1 �v1 + c2 �v2 + c3 �v3 T−−−−−−−→
T (�x) = �v1 × (c1 �v1 + c2 �v2 + c3 �v3)

= c1(�v1 × �v1) + c2(�v1 × �v2) + c3(�v1 × �v3)

= c2 �v3 − c3 �v2

� �

[ �x ]
�

=
⎡
⎣c1

c2

c3

⎤
⎦ −−−−−−−−−−→

B =
⎡
⎣0 0 0

0 0 −1
0 1 0

⎤
⎦

[
T (�x)
]

�
=
⎡
⎣ 0

−c3

c2

⎤
⎦

Alternatively, we can construct B column by column,

B =
⎡
⎣ | | |[

T (�v1)
]

�

[
T (�v2)
]

�

[
T (�v3)
]

�
| | |

⎤
⎦ .

We have T (�v1) = �v1 × �v1 = �0, T (�v2) = �v1 × �v2 = �v3, and
T (�v3) = �v1 × �v3 = −�v2, so that

[
T (�v1)
]

�
=
⎡
⎣0

0
0

⎤
⎦ ,
[
T (�v2)
]

�
=
⎡
⎣0

0
1

⎤
⎦ ,
[
T (�v3)
]

�
=
⎡
⎣ 0

−1
0

⎤
⎦

���������������

�
�
�
�
��� �

B =
⎡
⎣[T (�v1)

]
�

[
T (�v2)
]

�

[
T (�v3)
]

�

⎤
⎦ =
⎡
⎣0 0 0

0 0 −1
0 1 0

⎤
⎦

Note the block

[
0 −1
1 0

]
in matrix B, representing a rotation through

π

2
.

Writing

⎡
⎣0 0 0

0 0 −1
0 1 0

⎤
⎦ =
⎡
⎣1 0 0

0 0 −1
0 1 0

⎤
⎦
⎡
⎣0 0 0

0 1 0
0 0 1

⎤
⎦, we can interpret

transformation T geometrically. It is the orthogonal projection onto the
c2–c3-plane followed by a rotation through

π

2
about the c1-axis, counter-

clockwise as viewed from the positive c1-axis. �
In Example 4, when finding the matrix B of the linear transformation T with respect
to the basis � = (�v1, �v2, �v3), it helps to write the basis vectors �v1, �v2, �v3 next to the
rows and the values T (�v1), T (�v2), T (�v3) above the columns:

T (�v1) T (�v2) T (�v3)

B =
⎡
⎣ 0 0 0

0 0 −1
0 1 0

⎤
⎦ �v1

�v2
�v3

.
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This reminds us that the components of the j th column vector of B are the coordi-
nates of T (�v j ) with respect to the basis � = (�v1, �v2, �v3), meaning that T (�v1) = �0,
T (�v2) = 1�v3, and T (�v3) = (−1)�v2.

EXAMPLE 5 As in Example 3, let T be the linear transformation from R2 to R2 that projects any

vector orthogonally onto the line L spanned by the vector

[
3
1

]
. In Example 3, we

found that the matrix of B of T with respect to the basis � =
([

3
1

]
,

[−1
3

])
is

B =
[

1 0
0 0

]
.

What is the relationship between B and the standard matrix A of T [such that
T (�x) = A�x]? We introduced the standard matrix of a linear transformation back
in Section 2.1; alternatively, we can think of A as the matrix of T with respect
to the standard basis � = (�e1, �e2) of R2, in the sense of Definition 3.4.3. (Think
about it!)

Solution
Recall from Definition 3.4.1 that

�x = S
[ �x ]

�
, where S =

[
3 −1
1 3

]
,

and consider the following diagram:

�x A
−−−−−−−−−−→ T (�x)

↑ ↑| S | S| |[ �x]
�

B
−−−−−−−−−−→

[
T (�x)
]

�

.

Note that T (�x) = AS
[ �x ]

�
= SB
[ �x]

�
for all �x in R2, so that

AS = SB, B = S−1 AS, and A = SBS−1.

We can use the last formula to find the standard matrix A of T :

A = SBS−1 =
[

3 −1
1 3

] [
1 0
0 0

](
1

10

[
3 1

−1 3

])
=
[

0.9 0.3
0.3 0.1

]
.

Alternatively, we could use Definition 2.2.1 to construct matrix A. �

Theorem 3.4.4 Standard matrix versus �-matrix

Consider a linear transformation T from Rn to Rn and a basis � = (�v1, . . . , �vn)

of Rn . Let B be the �-matrix of T , and let A be the standard matrix of T [such
that T (�x) = A�x for all �x in Rn]. Then

AS = SB, B = S−1 AS, and A = SBS−1, where S =
⎡
⎣ | |

�v1 . . . �vn

| |

⎤
⎦ .

The formulas in Theorem 3.4.4 motivate the following definition.
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Definition 3.4.5 Similar matrices

Consider two n × n matrices A and B. We say that A is similar to B if there
exists an invertible matrix S such that

AS = SB, or B = S−1 AS.

Thus, two matrices are similar if they represent the same linear transformation with
respect to different bases.

EXAMPLE 6 Is matrix A =
[

1 2
4 3

]
similar to B =

[
5 0
0 −1

]
?

Solution
At this early stage of the course, we have to tackle this problem with “brute force,”
using Definition 3.4.5. In Chapter 7, we will develop tools that allow a more con-
ceptual approach.

We are looking for a matrix S =
[

x y
z t

]
such that AS = SB, or

[
x + 2z y + 2t

4x + 3z 4y + 3t

]
=
[

5x −y
5z −t

]
.

These equations simplify to

z = 2x, t = −y,

so that any invertible matrix of the form

S =
[

x y
2x −y

]

does the job. Note that det(S) = −3xy. By Theorem 2.4.9, matrix S is invertible if
det(S) = −3xy �= 0, meaning that neither x nor y is zero. For example, we can let

x = y = 1, so that S =
[

1 1
2 −1

]
.

Matrix A turns out to be similar to B. �

EXAMPLE 7 Show that if matrix A is similar to B, then its power At is similar to Bt , for all
positive integers t . (That is, A2 is similar to B2, A3 is similar to B3, and so on.)

Solution
We know that B = S−1 AS for some invertible matrix S. Now

Bt = (S−1 AS)(S−1 AS) · · · (S−1 AS)(S−1 AS)︸ ︷︷ ︸
t times

= S−1 At S,

proving our claim. Note the cancellation of many terms of the form SS−1. �

Here are some noteworthy facts about similar matrices.

• A−−−−−−−−−−→ •
↑ ↑

P| |P| |
• B−−−−−−−−−−→ •
↑ ↑

Q| |Q| |
• C−−−−−−−−−−→ •

Figure 8
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Theorem 3.4.6 Similarity is an equivalence relation

a. An n × n matrix A is similar to A itself (reflexivity).

b. If A is similar to B, then B is similar to A (symmetry).

c. If A is similar to B and B is similar to C , then A is similar to C (transi-
tivity).

Proof We will prove transitivity, leaving reflexivity and symmetry as Exercise 65.
The assumptions of part (c) mean that there exist invertible matrices P and Q

such that AP = P B and B Q = QC . Using Figure 8 as a guide, we find that
AP Q = P B Q = P QC . We see that AS = SC , where S = P Q is invertible,
proving that A is similar to C . �

Problems in geometry, physics, or engineering can often be simplified by
choosing a coordinate system that is “well adjusted” to the situation at hand. Take
another look at Example 3.

EXAMPLE 8 Given a linear transformation T (�x) = A�x from R2 to R2, we will often be interested
in finding a basis � = (�v1, �v2) of R2 such that the �-matrix B of T turns out
to be “simple” in some sense. Ideally, we might want B to be a diagonal matrix

B =
[

c1 0
0 c2

]
, as in Example 3, where we found B =

[
1 0
0 0

]
. What is required

of T (�v1) and T (�v2) to make the �-matrix B of T diagonal? Let’s write auxiliary
vectors as discussed after Example 4:

T (�v1) T (�v2)

B =
[

c1 0

0 c2

] �v1

�v2

.

We see that the matrix B is diagonal, B =
[

c1 0

0 c2

]
, if and only if T (�v1) = c1�v1

and T (�v2) = c2�v2, meaning that T (�v1) is a scalar multiple of �v1, and T (�v2) is a
scalar multiple of �v2. From a geometrical point of view, this means that T (�v j ) is
parallel to �v j , for j = 1 and 2. �
We can generalize.

Theorem 3.4.7 When is the �-matrix of T diagonal?

Consider a linear transformation T (�x) = A�x from Rn to Rn . Let � =
(�v1, . . . , �vn) be a basis of Rn .

Then the �-matrix B of T is diagonal if and only if T (�v1) =
c1�v1, . . . , T (�vn) = cn�vn for some scalars c1, . . . , cn .

From a geometrical point of view, this means that T (�v j ) is parallel to �v j for
all j = 1, . . . , n.

The following diagram, generalizing Example 8, illustrates this result:

T (�v1) T (�v2) . . . T (�vn)

B =

⎡
⎢⎢⎢⎢⎣

c1 0 . . . 0

0 c2 . . . 0
...

...
. . .

...

0 0 . . . cn

⎤
⎥⎥⎥⎥⎦

�v1

�v2

...

�vn

.



158 CHAPTER 3 Subspaces of Rn and Their Dimensions

A basis �v1, . . . , �vn such that T (�v j ) is parallel to �v j can often be found geometrically
(see Example 9 and Exercises 37 through 42) or algebraically. See Exercise 82. In
Chapter 7, we will develop a more systematic way to find such bases.

EXAMPLE 9 Let the linear transformation T from R2 to R2 be the reflection about a line L
through the origin. See Figure 9. Find a basis � = (�v1, �v2) of R2 such that the
�-matrix B of T is diagonal.

Solution
According to Example 8 or Theorem 3.4.7, we need to find a basis �v1, �v2 of R2

such that T (�v1) = c1�v1 and T (�v2) = c2�v2 for some scalars c1 and c2. Thinking
about this problem from a geometrical point of view, we realize that we can choose
a nonzero vector �v1 parallel to L , with T (�v1) = �v1 = 1�v1, and a nonzero vector �v2
perpendicular to L , with T (�v2) = −�v2 = (−1)�v2. See Figure 10. Then the matrix
of T with respect to the basis � = (�v1, �v2) will be

T (�v1) T (�v2)

B =
[

1 0

0 −1

] �v1

�v2
,

a diagonal matrix as required. �
x�

L

O
T(x�) 

Figure 9

v�1 = T(v�1)

T(v�2) = −v�2

L

O

x�

T(x�)

v�2

Figure 10

EXAMPLE 10 Consider the matrix A =
[

0 −1

1 0

]
, representing the rotation through an angle of

θ = π/2 in R2. See Figure 11. Find a basis � = (�v1, �v2) of R2 such that the �-
matrix B of the transformation T (�x) = A�x is diagonal, or explain why no such
basis exists.

Solution
According to Example 8 or Theorem 3.4.7, we need to make an attempt to find a
basis �v1, �v2 of R2 such that T (�v1) = c1�v1 and T (�v2) = c2�v2 for some scalars c1 and
c2. If �x is any nonzero vector, then T (�x) is perpendicular to �x , so that T (�x) fails to
be parallel to �x . Thus, it is impossible to find a basis � = (�v1, �v2) such that T (�v j )

is a scalar multiple of �v j for j = 1 and 2. A basis � with the required property fails
to exist. �

T(x�) = Ax�

x�

O

Figure 11
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EXERCISES 3.4

GOAL Use the concept of coordinates. Apply the defini-
tion of the matrix of a linear transformation with respect
to a basis. Relate this matrix to the standard matrix of
the transformation. Find the matrix of a linear transfor-
mation (with respect to any basis) column by column. Use
the concept of similarity.

In Exercises 1 through 18, determine whether the vector
�x is in the span V of the vectors �v1, . . . , �vm (proceed “by
inspection” if possible, and use the reduced row-echelon
form if necessary). If �x is in V , find the coordinates of �x
with respect to the basis � = (�v1, . . . , �vm) of V , and write
the coordinate vector

[ �x]�.

1. �x =
[

2
3

]
; �v1 =
[

1
0

]
, �v2 =
[

0
1

]

2. �x =
[

23
29

]
; �v1 =
[

46
58

]
, �v2 =
[

61
67

]

3. �x =
[

31
37

]
; �v1 =
[

23
29

]
, �v2 =
[

31
37

]

4. �x =
[

3
−4

]
; �v1 =
[

0
1

]
, �v2 =
[

1
0

]

5. �x =
[

7
16

]
; �v1 =
[

2
5

]
, �v2 =
[

5
12

]

6. �x =
⎡
⎣2

3
4

⎤
⎦; �v1 =

⎡
⎣1

1
0

⎤
⎦, �v2 =

⎡
⎣2

0
1

⎤
⎦

7. �x =
⎡
⎣ 3

1
−4

⎤
⎦; �v1 =

⎡
⎣ 1

−1
0

⎤
⎦, �v2 =

⎡
⎣ 0

1
−1

⎤
⎦

8. �x =
[−4

4

]
; �v1 =
[

1
2

]
, �v2 =
[

5
6

]

9. �x =
⎡
⎣3

3
4

⎤
⎦; �v1 =

⎡
⎣1

1
0

⎤
⎦, �v2 =

⎡
⎣ 0

−1
2

⎤
⎦

10. �x =
⎡
⎣ 1

−2
−2

⎤
⎦; �v1 =

⎡
⎣ 8

4
−1

⎤
⎦, �v2 =

⎡
⎣ 5

2
−1

⎤
⎦

11. �x =
⎡
⎣−1

2
2

⎤
⎦; �v1 =

⎡
⎣1

2
1

⎤
⎦, �v2 =

⎡
⎣−3

2
3

⎤
⎦

12. �x =
⎡
⎣−5

1
3

⎤
⎦; �v1 =

⎡
⎣−1

0
1

⎤
⎦, �v2 =

⎡
⎣−2

1
0

⎤
⎦

13. �x =
⎡
⎣1

1
1

⎤
⎦; �v1 =

⎡
⎣1

2
3

⎤
⎦, �v2 =

⎡
⎣0

1
2

⎤
⎦, �v3 =

⎡
⎣0

0
1

⎤
⎦

14. �x =
⎡
⎣7

1
3

⎤
⎦; �v1 =

⎡
⎣1

1
1

⎤
⎦, �v2 =

⎡
⎣1

2
3

⎤
⎦, �v3 =

⎡
⎣1

3
6

⎤
⎦

15. �x =
⎡
⎣1

0
0

⎤
⎦; �v1 =

⎡
⎣1

2
1

⎤
⎦, �v2 =

⎡
⎣1

3
4

⎤
⎦, �v3 =

⎡
⎣1

4
8

⎤
⎦

16. �x =
⎡
⎣ 3

7
13

⎤
⎦; �v1 =

⎡
⎣1

1
1

⎤
⎦, �v2 =

⎡
⎣0

1
1

⎤
⎦, �v3 =

⎡
⎣0

0
1

⎤
⎦

17. �x =

⎡
⎢⎢⎣

1
1
1

−1

⎤
⎥⎥⎦; �v1 =

⎡
⎢⎢⎣

1
0
2
0

⎤
⎥⎥⎦, �v2 =

⎡
⎢⎢⎣

0
1
3
0

⎤
⎥⎥⎦, �v3 =

⎡
⎢⎢⎣

0
0
4
1

⎤
⎥⎥⎦

18. �x =

⎡
⎢⎢⎣

5
4
3
2

⎤
⎥⎥⎦; �v1 =

⎡
⎢⎢⎣

1
1
0
0

⎤
⎥⎥⎦, �v2 =

⎡
⎢⎢⎣

0
1
1
0

⎤
⎥⎥⎦, �v3 =

⎡
⎢⎢⎣

0
−1

0
1

⎤
⎥⎥⎦

In Exercises 19 through 24, find the matrix B of the lin-
ear transformation T(�x) = A�x with respect to the basis
� = (�v1, �v2). For practice, solve each problem in three
ways: (a) Use the formula B = S−1 AS, (b) use a commu-
tative diagram (as in Examples 3 and 4), and (c) construct
B “column by column.”

19. A =
[

0 1
1 0

]
; �v1 =
[

1
1

]
, �v2 =
[

1
−1

]

20. A =
[−3 4

4 3

]
; �v1 =
[

1
2

]
, �v2 =
[−2

1

]

21. A =
[

1 2
3 6

]
; �v1 =
[

1
3

]
, �v2 =
[−2

1

]

22. A =
[

1 1
1 1

]
; �v1 =
[

1
1

]
, �v2 =
[

1
−1

]

23. A =
[

5 −3
6 −4

]
; �v1 =
[

1
1

]
, �v2 =
[

1
2

]

24. A =
[

13 −20
6 −9

]
; �v1 =
[

2
1

]
, �v2 =
[

5
3

]
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In Exercises 25 through 30, find the matrix B of the lin-
ear transformation T(�x) = A�x with respect to the basis
� = (�v1, . . . , �vm).

25. A =
[

1 2
3 4

]
; �v1 =
[

1
1

]
, �v2 =
[

1
2

]

26. A =
[

0 1
2 3

]
; �v1 =
[

1
2

]
, �v2 =
[

1
1

]

27. A =
⎡
⎣ 4 2 −4

2 1 −2
−4 −2 4

⎤
⎦;

�v1 =
⎡
⎣ 2

1
−2

⎤
⎦, �v2 =

⎡
⎣0

2
1

⎤
⎦, �v3 =

⎡
⎣1

0
1

⎤
⎦

28. A =
⎡
⎣ 5 −4 −2

−4 5 −2
−2 −2 8

⎤
⎦;

�v1 =
⎡
⎣2

2
1

⎤
⎦, �v2 =

⎡
⎣ 1

−1
0

⎤
⎦, �v3 =

⎡
⎣ 0

1
−2

⎤
⎦

29. A =
⎡
⎣−1 1 0

0 −2 2
3 −9 6

⎤
⎦;

�v1 =
⎡
⎣1

1
1

⎤
⎦, �v2 =

⎡
⎣1

2
3

⎤
⎦, �v3 =

⎡
⎣1

3
6

⎤
⎦

30. A =
⎡
⎣0 2 −1

2 −1 0
4 −4 1

⎤
⎦;

�v1 =
⎡
⎣1

1
1

⎤
⎦, �v2 =

⎡
⎣0

1
2

⎤
⎦, �v3 =

⎡
⎣1

2
4

⎤
⎦

Let � = (�v1, �v2, �v3) be any basis of R3 consisting of per-
pendicular unit vectors, such that �v3 = �v1 × �v2. In Ex-
ercises 31 through 36, find the �-matrix B of the given
linear transformation T from R3 to R3. Interpret T geo-
metrically.

31. T (�x) = �v2 × �x 32. T (�x) = �x × �v3

33. T (�x) = (�v2 · �x)�v2 34. T (�x) = �x − 2(�v3 · �x)�v3

35. T (�x) = �x − 2(�v1 · �x)�v2

36. T (�x) = �v1 × �x + (�v1 · �x)�v1

In Exercises 37 through 42, find a basis � of Rn such that
the �-matrix B of the given linear transformation T is
diagonal.

37. Orthogonal projection T onto the line in R2 spanned by[
1
2

]

38. Reflection T about the line in R2 spanned by

[
2
3

]

39. Reflection T about the line in R3 spanned by

⎡
⎣1

2
3

⎤
⎦

40. Orthogonal projection T onto the line in R3 spanned by⎡
⎣1

1
1

⎤
⎦

41. Orthogonal projection T onto the plane 3x1 + x2 +
2x3 = 0 in R3

42. Reflection T about the plane x1 − 2x2 + 2x3 = 0 in R3

43. Consider the plane x1 +2x2 + x3 = 0 with basis � con-

sisting of vectors

⎡
⎣−1

0
1

⎤
⎦ and

⎡
⎣−2

1
0

⎤
⎦. If
[ �x ]

�
=
[

2
−3

]
,

find �x .
44. Consider the plane 2x1 − 3x2 + 4x3 = 0 with basis

� consisting of vectors

⎡
⎣ 8

4
−1

⎤
⎦ and

⎡
⎣ 5

2
−1

⎤
⎦. If
[ �x ]

�
=

[
2

−1

]
, find �x .

45. Consider the plane 2x1 − 3x2 + 4x3 = 0. Find a basis

� of this plane such that
[ �x ]

�
=
[

2
3

]
for �x =

⎡
⎣ 2

0
−1

⎤
⎦.

46. Consider the plane x1 + 2x2 + x3 = 0. Find a basis �

of this plane such that
[ �x ]

�
=
[

2
−1

]
for �x =

⎡
⎣ 1

−1
1

⎤
⎦.

47. Consider a linear transformation T from R2 to R2. We
are told that the matrix of T with respect to the basis[

0
1

]
,

[
1
0

]
is

[
a b
c d

]
. Find the standard matrix of T in

terms of a, b, c, and d .

48. In the accompanying figure, sketch the vector �x with[ �x ]
�

=
[−1

2

]
, where � is the basis of R2 consisting

of the vectors �v, �w.

v�

w� 

0
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49. Consider the vectors �u, �v, and �w sketched in the accom-
panying figure. Find the coordinate vector of �w with
respect to the basis �u, �v.

v� (translated)w�  (translated)

0 u� 

50. Given a hexagonal tiling of the plane, such as you might
find on a kitchen floor, consider the basis � of R2 con-
sisting of the vectors �v, �w in the following sketch:

P

QO

v�

w�  

a. Find the coordinate vectors
[−→

O P
]

�
and
[−−→

O Q
]

�
.

Hint: Sketch the coordinate grid defined by the
basis � = (�v, �w).

b. We are told that
[−→

O R
]

�
=
[

3
2

]
. Sketch the point

R. Is R a vertex or a center of a tile?

c. We are told that
[−→

O S
]

�
=
[

17
13

]
. Is S a center or a

vertex of a tile?

51. Prove part (a) of Theorem 3.4.2.

52. If � is a basis of Rn , is the transformation T from Rn

to Rn given by

T (�x) = [ �x ]
�

linear? Justify your answer.

53. Consider the basis � of R2 consisting of the vectors[
1
2

]
and

[
3
4

]
. We are told that

[ �x ]
�

=
[

7
11

]
for a cer-

tain vector �x in R2. Find �x .

54. Let � be the basis of Rn consisting of the vectors �v1,

�v2, . . . , �vn , and let � be some other basis of Rn . Is

[�v1
]

�
,
[�v2
]

�
, . . . ,

[�vn
]

�

a basis of Rn as well? Explain.

55. Consider the basis � of R2 consisting of the vectors[
1
1

]
and

[
1
2

]
, and let � be the basis consisting of

[
1
2

]
,[

3
4

]
. Find a matrix P such that

[ �x ]
�

= P
[ �x ]

�
,

for all �x in R2.

56. Find a basis � of R2 such that[
1
2

]
�

=
[

3
5

]
and

[
3
4

]
�

=
[

2
3

]
.

57. Show that if a 3 × 3 matrix A represents the reflec-
tion about a plane, then A is similar to the matrix⎡
⎣1 0 0

0 1 0
0 0 −1

⎤
⎦.

58. Consider a 3 × 3 matrix A and a vector �v in R3 such
that A3 �v = �0, but A2 �v �= �0.
a. Show that the vectors A2 �v, A�v, �v form a basis of

R3. Hint: It suffices to show linear independence.
Consider a relation c1 A2 �v + c2 A�v + c3 �v = �0 and
multiply by A2 to show that c3 = 0.

b. Find the matrix of the transformation T (�x) = A�x
with respect to the basis A2 �v, A�v, �v.

59. Is matrix

[
2 0
0 3

]
similar to matrix

[
2 1
0 3

]
?

60. Is matrix

[
1 0
0 −1

]
similar to matrix

[
0 1
1 0

]
?

61. Find a basis � of R2 such that the �-matrix of the linear
transformation

T (�x) =
[−5 −9

4 7

]
�x is B =

[
1 1
0 1

]
.

62. Find a basis � of R2 such that the �-matrix of the linear
transformation

T (�x) =
[

1 2
4 3

]
�x is B =

[
5 0
0 −1

]
.

63. Is matrix

[
p −q
q p

]
similar to matrix

[
p q

−q p

]
for all

p and q?

64. Is matrix

[
a b
c d

]
similar to matrix

[
a c
b d

]
for all

a, b, c, d?

65. Prove parts (a) and (b) of Theorem 3.4.6.
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66. Consider a matrix A of the form A =
[

a b
b −a

]
, where

a2 + b2 = 1 and a �= 1. Find the matrix B of the lin-
ear transformation T (�x) = A�x with respect to the basis[

b
1 − a

]
,

[
a − 1

b

]
. Interpret the answer geometrically.

67. If c �= 0, find the matrix of the linear transformation

T (�x) =
[

a b
c d

]
�x with respect to basis

[
1
0

]
,

[
a
c

]
.

68. Find an invertible 2 × 2 matrix S such that

S−1
[

1 2
3 4

]
S

is of the form

[
0 b
1 d

]
. See Exercise 67.

69. If A is a 2 × 2 matrix such that

A

[
1
2

]
=
[

3
6

]
and A

[
2
1

]
=
[−2
−1

]
,

show that A is similar to a diagonal matrix D. Find an
invertible S such that S−1 AS = D.

70. Is there a basis � of R2 such that �-matrix B of the
linear transformation

T (�x) =
[

0 −1
1 0

]
�x

is upper triangular? Hint: Think about the first column
of B.

71. Suppose that matrix A is similar to B, with B =
S−1 AS.
a. Show that if �x is in ker(B), then S �x is in ker(A).
b. Show that nullity(A) = nullity(B). Hint: If �v1,

�v2, . . . , �v p is a basis of ker(B), then the vectors
S �v1, S �v2, . . . , S �v p in ker(A) are linearly indepen-
dent. Now reverse the roles of A and B.

72. If A is similar to B, what is the relationship between
rank(A) and rank(B)? See Exercise 71.

73. Let L be the line in R3 spanned by the vector

�v =
⎡
⎣0.6

0.8
0

⎤
⎦ .

Let T from R3 to R3 be the rotation about this line
through an angle of π/2, in the direction indicated in

the accompanying sketch. Find the matrix A such that
T (�x) = A�x .

x3

x2

x1
0.6

0.8L

v�

74. Consider the regular tetrahedron in the accompanying
sketch whose center is at the origin. Let �v0, �v1, �v2, �v3
be the position vectors of the four vertices of the tetra-
hedron:

�v0 = −→
O P0, . . . , �v3 = −→

O P3.

a. Find the sum �v0 + �v1 + �v2 + �v3.
b. Find the coordinate vector of �v0 with respect to the

basis �v1, �v2, �v3.
c. Let T be the linear transformation with T (�v0) = �v3,

T (�v3) = �v1, and T (�v1) = �v0. What is T (�v2)? De-
scribe the transformation T geometrically (as a re-
flection, rotation, projection, or whatever). Find the
matrix B of T with respect to the basis �v1, �v2, �v3.
What is B3? Explain.

O

P3 =
−1
−1
1

P2 =
−1
1

−1

P1 =
1

−1
−1

P0 =
1
1
1

75. Find the matrix B of the rotation T (�x) =
[

0 −1
1 0

]
�x

with respect to the basis

[
0
1

]
,

[−1
0

]
. Interpret your an-

swer geometrically.
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76. If t is any real number, what is the matrix B of the linear
transformation

T (�x) =
[

cos(t) − sin(t)
sin(t) cos(t)

]
�x

with respect to basis

[
cos(t)
sin(t)

]
,

[− sin(t)
cos(t)

]
? Interpret

your answer geometrically.

77. Consider a linear transformation T (�x) = A�x from Rn

to Rn . Let B be the matrix of T with respect to the basis
�en, �en−1, . . . , �e2, �e1 of Rn . Describe the entries of B in
terms of the entries of A.

78. This problem refers to Leontief’s input–output model,
first discussed in the Exercises 1.1.24 and 1.2.39. Con-
sider three industries I1, I2, I3, each of which produces
only one good, with unit prices p1 = 2, p2 = 5,
p3 = 10 (in U.S. dollars), respectively. Let the three
products be labeled good 1, good 2, and good 3. Let

A =
⎡
⎣a11 a12 a13

a21 a22 a23

a31 a32 a33

⎤
⎦ =
⎡
⎣0.3 0.2 0.1

0.1 0.3 0.3
0.2 0.2 0.1

⎤
⎦

be the matrix that lists the interindustry demand in terms
of dollar amounts. The entry ai j tells us how many dol-
lars’ worth of good i are required to produce one dol-
lar’s worth of good j . Alternatively, the interindustry
demand can be measured in units of goods by means of
the matrix

B =
⎡
⎣b11 b12 b13

b21 b22 b23

b31 b32 b33

⎤
⎦ ,

where bi j tells us how many units of good i are required
to produce one unit of good j . Find the matrix B for the
economy discussed here. Also, write an equation relat-
ing the three matrices A, B, and S, where

S =
⎡
⎣2 0 0

0 5 0
0 0 10

⎤
⎦

is the diagonal matrix listing the unit prices on the
diagonal. Justify your answer carefully.

79. Consider the matrix A =
[

11 −30
4 −11

]
. Find a basis

� of R2 such that the �-matrix B of T (�x) = A�x is

B =
[

1 0
0 −1

]
.

80. Consider the matrix A =
[−2 9

−1 4

]
. Find a basis �

of R2 such that the �-matrix B of T (�x) = A�x is

B =
[

1 1
0 1

]
.

81. Consider the linear transformation T

⎡
⎣ x1

x2
x3

⎤
⎦ =⎡

⎣ x2
x3

x2 + x3

⎤
⎦ from R3 to R3.

a. Find all vectors of the form �x =
⎡
⎣ 1

x2
x3

⎤
⎦ such that

T (�x) is a scalar multiple of �x . Be prepared to deal
with irrational numbers.

b. Find a basis � of R3 such that the �-matrix B of T
is diagonal.

82. Consider the linear transformation T

⎡
⎣ x1

x2
x3

⎤
⎦ =⎡

⎣ x2
x3

3x3 − 2x2

⎤
⎦ from R3 to R3.

a. Find all vectors of the form �x =
⎡
⎣ 1

x2
x3

⎤
⎦ such that

T (�x) is a scalar multiple of �x .
b. Find a basis � of R3 such that the �-matrix B of T

is diagonal.

Chapter Three Exercises

TRUE OR FALSE?
1. If �v1, �v2, . . . , �vn and �w1, �w2, . . . , �wm are any two

bases of a subspace V of R10, then n must equal m.

2. If A is a 5 × 6 matrix of rank 4, then the nullity of A
is 1.

3. The image of a 3 × 4 matrix is a subspace of R4.

4. The span of vectors �v1, �v2, . . . , �vn consists of all linear
combinations of vectors �v1, �v2, . . . , �vn .

5. If �v1, �v2, . . . , �vn are linearly independent vectors in Rn ,
then they must form a basis of Rn .

6. There exists a 5 × 4 matrix whose image consists of all
of R5.

7. The kernel of any invertible matrix consists of the zero
vector only.

8. The identity matrix In is similar to all invertible n × n
matrices.
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9. If 2�u + 3�v + 4 �w = 5�u + 6�v + 7 �w, then vectors �u, �v, �w
must be linearly dependent.

10. The column vectors of a 5 × 4 matrix must be linearly
dependent.

11. If matrix A is similar to matrix B, and B is similar to
C , then C must be similar to A.

12. If a subspace V of Rn contains none of the standard
vectors �e1, �e2, . . . , �en , then V consists of the zero vec-
tor only.

13. If vectors �v1, �v2, �v3, �v4 are linearly independent, then
vectors �v1, �v2, �v3 must be linearly independent as
well.

14. The vectors of the form

⎡
⎢⎢⎣

a
b
0
a

⎤
⎥⎥⎦ (where a and b are arbi-

trary real numbers) form a subspace of R4.

15. Matrix

[
1 0
0 −1

]
is similar to

[
0 1
1 0

]
.

16. Vectors

⎡
⎣1

0
0

⎤
⎦,
⎡
⎣2

1
0

⎤
⎦,
⎡
⎣3

2
1

⎤
⎦ form a basis of R3.

17. If the kernel of a matrix A consists of the zero vec-
tor only, then the column vectors of A must be linearly
independent.

18. If the image of an n × n matrix A is all of Rn , then A
must be invertible.

19. If vectors �v1, �v2, . . . , �vn span R4, then n must be equal
to 4.

20. If vectors �u, �v, and �w are in a subspace V of Rn , then
vector 2�u − 3�v + 4 �w must be in V as well.

21. If A and B are invertible n × n matrices, then AB must
be similar to B A.

22. If A is an invertible n × n matrix, then the kernels of A
and A−1 must be equal.

23. Matrix

[
0 1
0 0

]
is similar to

[
0 0
0 1

]
.

24. Vectors

⎡
⎢⎢⎣

1
2
3
4

⎤
⎥⎥⎦,
⎡
⎢⎢⎣

5
6
7
8

⎤
⎥⎥⎦,
⎡
⎢⎢⎣

9
8
7
6

⎤
⎥⎥⎦,
⎡
⎢⎢⎣

5
4
3
2

⎤
⎥⎥⎦,
⎡
⎢⎢⎣

1
0

−1
−2

⎤
⎥⎥⎦ are linearly

independent.

25. If a subspace V of R3 contains the standard vectors
�e1, �e2, �e3, then V must be R3.

26. If a 2 × 2 matrix P represents the orthogonal projec-
tion onto a line in R2, then P must be similar to matrix[

1 0
0 0

]
.

27. If A and B are n × n matrices, and vector �v is in the
kernel of both A and B, then �v must be in the kernel of
matrix AB as well.

28. If two nonzero vectors are linearly dependent, then each
of them is a scalar multiple of the other.

29. If �v1, �v2, �v3 are any three distinct vectors in R3, then
there must be a linear transformation T from R3 to R3

such that T (�v1) = �e1, T (�v2) = �e2, and T (�v3) = �e3.

30. If vectors �u, �v, �w are linearly dependent, then vector �w
must be a linear combination of �u and �v.

31. R2 is a subspace of R3.

32. If an n ×n matrix A is similar to matrix B, then A+7In
must be similar to B + 7In .

33. If V is any three-dimensional subspace of R5, then V
has infinitely many bases.

34. Matrix In is similar to 2In .

35. If AB = 0 for two 2 × 2 matrices A and B, then B A
must be the zero matrix as well.

36. If A and B are n × n matrices, and vector �v is in the
image of both A and B, then �v must be in the image of
matrix A + B as well.

37. If V and W are subspaces of Rn , then their union V ∪W
must be a subspace of Rn as well.

38. If the kernel of a 5 × 4 matrix A consists of the zero
vector only and if A�v = A �w for two vectors �v and �w in
R4, then vectors �v and �w must be equal.

39. If �v1, �v2, . . . , �vn and �w1, �w2, . . . , �wn are two bases of
Rn , then there exists a linear transformation T from
Rn to Rn such that T (�v1) = �w1, T (�v2) = �w2, . . . ,

T (�vn) = �wn .

40. If matrix A represents a rotation through π/2 and
matrix B a rotation through π/4, then A is similar
to B.

41. There exists a 2×2 matrix A such that im(A) = ker(A).

42. If two n × n matrices A and B have the same rank, then
they must be similar.

43. If A is similar to B, and A is invertible, then B must be
invertible as well.

44. If A2 = 0 for a 10 × 10 matrix A, then the inequality
rank(A) ≤ 5 must hold.

45. For every subspace V of R3, there exists a 3 × 3 matrix
A such that V = im(A).

46. There exists a nonzero 2 × 2 matrix A that is similar
to 2A.

47. If the 2 × 2 matrix R represents the reflection about a

line in R2, then R must be similar to matrix

[
0 1
1 0

]
.
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48. If A is similar to B, then there exists one and only one
invertible matrix S such that S−1 AS = B.

49. If the kernel of a 5 × 4 matrix A consists of the zero
vector alone, and if AB = AC for two 4 × 5 matrices
B and C , then matrices B and C must be equal.

50. If A is any n × n matrix such that A2 = A, then the
image of A and the kernel of A have only the zero vec-
tor in common.

51. There exists a 2 × 2 matrix A such that A2 �= 0 and
A3 = 0.

52. If A and B are n × m matrices such that the image of A
is a subset of the image of B, then there must exist an
m × m matrix C such that A = BC .

53. Among the 3 × 3 matrices whose entries are all 0’s and
1’s, most are invertible.



C H A P T E R

4
Linear Spaces

4.1 Introduction to Linear Spaces

Thus far in this text, we have applied the language of linear algebra to vectors in
Rn . Some of the key words of this language are linear combination, linear transfor-
mation, kernel, image, subspace, span, linear independence, basis, dimension, and
coordinates. Note that all these concepts can be defined in terms of sums and scalar
multiples of vectors. In this chapter, we will see that it can be both natural and
useful to apply this language to other mathematical objects, such as functions, ma-
trices, equations, or infinite sequences. Indeed, linear algebra provides a unifying
language used throughout modern mathematics and physics.

Here is an introductory example:

EXAMPLE 1 Consider the differential equation1 (DE)

f ′′(x) + f (x) = 0, or f ′′(x) = − f (x).

We are asked to find all twice-differentiable functions f (x) whose second deriva-
tive is the negative of the function itself. Recalling the derivative rules from your
introductory calculus class, you will (hopefully) note that

sin(x) and cos(x)

are solutions of this DE.
Can you find any other solutions?
Note that the solution set of this DE is closed under addition and under scalar

multiplication. If f1(x) and f2(x) are solutions, then so is f (x) = f1(x) + f2(x),
since

f ′′(x) = f ′′
1 (x) + f ′′

2 (x) = − f1(x) − f2(x) = − f (x).

Likewise, if f1(x) is a solution and k is any scalar, then f (x) = k f1(x) is a solution
of the DE as well. (Verify this!)

1A differential equation is an equation involving derivatives of an unknown function. No previous
knowledge of DEs is expected here.

166
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It follows that all “linear combinations”2

f (x) = c1 sin(x) + c2 cos(x)

are solutions of this DE. It can be shown that all solutions are of this form; we leave
the proof as Exercise 58.

Let F(R, R) be the set of all functions from R to R. Since the solution set V
of our DE is closed under addition and scalar multiplication, we can say that V is a
“subspace” of F(R, R).

How many solutions does this differential equation have? There are infinitely
many solutions, of course, but we can use the language of linear algebra to give
a more informative answer. The functions sin(x) and cos(x) form a “basis” of the
“solution space” V , so that the “dimension” of V is 2.

In summary, the solutions of our DE form a two-dimensional subspace of
F(R, R), with basis sin(x) and cos(x). �

We will now make the informal ideas presented in Example 1 more precise.
Note again that all the basic concepts of linear algebra can be defined in terms

of sums and scalar multiples. Whenever we are dealing with a set [such as F(R, R)

in Example 1] whose elements can be added and multiplied by scalars, subject to
certain rules, then we can apply the language of linear algebra just as we do for
vectors in Rn . These “certain rules” are spelled out in Definition 4.1.1. Compare
this definition with the rules of vector algebra listed in Appendix A.2.

Definition 4.1.1 Linear spaces (or vector spaces)

A linear space3 V is a set endowed with a rule for addition (if f and g are in V ,
then so is f + g) and a rule for scalar multiplication (if f is in V and k in R,
then k f is in V ) such that these operations satisfy the following eight rules4 (for
all f , g, h in V and all c, k in R):

1. ( f + g) + h = f + (g + h).

2. f + g = g + f .

3. There exists a neutral element n in V such that f + n = f , for all f in
V . This n is unique and denoted by 0.

4. For each f in V , there exists a g in V such that f + g = 0. This g is
unique and denoted by (− f ).

5. k( f + g) = k f + kg.

6. (c + k) f = c f + k f .

7. c(k f ) = (ck) f .

8. 1 f = f .

This definition contains a lot of fine print. In brief, a linear space is a set with two
reasonably defined operations, addition and scalar multiplication, that allow us to

2We are cautious here and use quotes, since the term “linear combination” has been officially defined
for vectors in Rn only.
3The term “vector space” is more commonly used in English (but it’s espace linéaire in French). We
prefer the term “linear space” to avoid the confusion that some students experience with the term
“vector” in this abstract sense.
4These axioms were established by the Italian mathematician Giuseppe Peano (1858–1932) in his
Calcolo Geometrico of 1888. Peano calls V a “linear system.”



168 CHAPTER 4 Linear Spaces

form linear combinations. All the other basic concepts of linear algebra in turn rest
on the concept of a linear combination.

EXAMPLE 2 In Rn , the prototype linear space, the neutral element is the zero vector, �0. �
Probably the most important examples of linear spaces, besides Rn , are spaces

of functions.

EXAMPLE 3 Let F(R, R) be the set of all functions from R to R (see Example 1), with the
operations

( f + g)(x) = f (x) + g(x)

and

(k f )(x) = k f (x).

Then F(R, R) is a linear space. The neutral element is the zero function, f (x) = 0
for all x . �

EXAMPLE 4 If addition and scalar multiplication are given as in Definition 1.3.5, then Rn×m , the
set of all n × m matrices, is a linear space. The neutral element is the zero matrix,
whose entries are all zero. �

EXAMPLE 5 The set of all infinite sequences of real numbers is a linear space, where addition
and scalar multiplication are defined term by term:

(x0, x1, x2, . . .) + (y0, y1, y2, . . .) = (x0 + y0, x1 + y1, x2 + y2, . . .)

k(x0, x1, x2, . . .) = (kx0, kx1, kx2, . . .).

The neutral element is the sequence

(0, 0, 0, . . .). �
EXAMPLE 6 The linear equations in three unknowns,

ax + by + cz = d,

where a, b, c, and d are constants, form a linear space.
The operations (addition and scalar multiplication) are familiar from the pro-

cess of Gaussian elimination discussed in Chapter 1. The neutral element is the
equation 0 = 0 (with a = b = c = d = 0). �

EXAMPLE 7 Consider the plane P with a point designated as the origin, O , but without a co-
ordinate system (the coordinate-free plane). A geometric vector �v in this plane is
an arrow (a directed line segment) with its tail at the origin, as shown in Figure 1.
The sum �v + �w of two vectors �v and �w is defined by means of a parallelogram, as
illustrated in Figure 2. If k is a positive scalar, then vector k�v points in the same
direction as �v, but k�v is k times as long as �v; see Figure 3. If k is negative, then k�v
points in the opposite direction, and it is |k| times as long as �v; see Figure 4. The
geometric vectors in the plane with these operations form a linear space, �P . The
neutral element of �P is the zero vector �0, with tail and head at the origin.

By introducing a coordinate system, we can identify the space �P of geomet-
ric vectors with R2; this was the great idea of Descartes’s Analytic Geometry. In
Section 4.3, we will study this idea more systematically. �

EXAMPLE 8 Let C be the set of the complex numbers. We trust that you have at least a fleeting
acquaintance with complex numbers. Without attempting a definition, we recall that
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a complex number can be expressed as z = a +bi , where a and b are real numbers.
Addition of complex numbers is defined in a natural way, by the rule

(a + ib) + (c + id) = (a + c) + i(b + d).

If k is a real scalar, we define

k(a + ib) = ka + i(kb).

There is also a (less natural) rule for the multiplication of complex numbers, but we
are not concerned with this operation here.

The complex numbers C with the two operations just given form a linear space;
the neutral element is the complex number 0 = 0 + 0i . �

We say that an element f of a linear space is a linear combination of the ele-
ments f1, f2, . . . , fn if

f = c1 f1 + c2 f2 + · · · + cn fn

for some scalars c1, c2, . . . , cn .

EXAMPLE 9 Let A =
[

0 1
2 3

]
. Show that A2 =

[
2 3
6 11

]
is a linear combination of A and I2.

Solution
We have to find scalars c1 and c2 such that

A2 = c1 A + c2 I2,

or [
2 3
6 11

]
= c1

[
0 1
2 3

]
+ c2

[
1 0
0 1

]
.

In this simple example, we can see by inspection that c1 = 3 and c2 = 2. We could
do this problem more systematically and solve a system of four linear equations in
two unknowns. �

Linear Combination

Kernel

Image

Dimension

Coordinates
Linear
Transformation

Basis

Linear
Independence

Span Subspace

Matrix of a
Transformation

Figure 5

Since the basic notions of linear algebra (initially introduced for Rn) are de-
fined in terms of linear combinations, we can now generalize these notions without
modifications. A short version of the rest of this chapter would say that the concepts
of linear transformation, kernel, image, linear independence, span, subspace, basis,
dimension, and coordinates can be defined for a linear space in just the same way
as for Rn . Figure 5 illustrates the logical dependencies between the key concepts of
linear algebra introduced thus far.
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What follows is the long version, with many examples.

Definition 4.1.2 Subspaces

A subset W of a linear space V is called a subspace of V if

a. W contains the neutral element 0 of V .

b. W is closed under addition (if f and g are in W , then so is f + g).

c. W is closed under scalar multiplication (if f is in W and k is a scalar,
then k f is in W ).

We can summarize parts b and c by saying that W is closed under linear combi-
nations.

Note that a subspace W of a linear space V is a linear space in its own right.
(Why do the eight rules listed in Definition 4.1.1 hold for W ?)

EXAMPLE 10 Show that the polynomials of degree ≤2, of the form f (x) = a + bx + cx2, are a
subspace W of the space F(R, R) of all functions from R to R.

Solution
a. W contains the neutral element of F(R, R), the zero function f (x) = 0.

Indeed, we can write f (x) = 0 + 0x + 0x2.

b. W is closed under addition: If two polynomials f (x) = a + bx + cx2 and
g(x) = p + qx + r x2 are in W , then their sum f (x) + g(x) = (a + p) +
(b + q)x + (c + r)x2 is in W as well, since f (x) + g(x) is a polynomial of
degree ≤2.

c. W is closed under scalar multiplication: If f (x) = a + bx + cx2 is a poly-
nomial in W and k is a constant, then k f (x) = ka + (kb)x + (kc)x2 is in W
as well. �

EXAMPLE 11 Show that the differentiable functions form a subspace W of F(R, R).

Solution
a. The zero function f (x) = 0 is differentiable, with f ′(x) = 0.

b. W is closed under addition: You learned in your introductory calculus class
that the sum of two differentiable functions f (x) and g(x) is differentiable,
with
(

f (x) + g(x)
)′ = f ′(x) + g′(x).

c. W is closed under scalar multiplication, since any scalar multiple of a dif-
ferentiable function is differentiable as well. �

In the next example, we will build on Examples 10 and 11.

EXAMPLE 12 Here are more subspaces of F(R, R):

a. C∞, the smooth functions, that is, functions f (x) from R to R that have
derivatives of all orders, f ′(x), f ′′(x), f ′′′(x), and so on. This subspace
contains all polynomials, exponential functions, sin(x), and cos(x), for
example. However, C∞ fails to contain functions such as 1

x , tan x, |x |, or
x5|x |.

b. P , the set of all polynomials.

c. Pn , the set of all polynomials of degree ≤n. �
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EXAMPLE 13 Show that the matrices B that commute with A =
[

0 1
2 3

]
form a subspace of

R2×2.

Solution

a. The zero matrix 0 commutes with A, since A0 = 0A = 0.

b. If matrices B1 and B2 commute with A, then so does matrix B = B1 + B2,
since

B A = (B1 + B2)A = B1 A + B2 A = AB1 + AB2 = A(B1 + B2) = AB.

c. If B commutes with A, then so does k B, since

(k B)A = k(B A) = k(AB) = A(k B).

Note that we have not used the special form of A. We have indeed shown that
the n × n matrices B that commute with any given n × n matrix A form a subspace
of Rn×n . �

EXAMPLE 14 Consider the set W of all noninvertible 2 × 2 matrices. Is W a subspace of R2×2?

Solution
The following example shows that W isn’t closed under addition:[

1 0
0 0

]
+
[

0 0
0 1

]
=
[

1 0
0 1

]
.

↖ ↗ ↑
in W not in W

Therefore, W fails to be a subspace of R2×2. �

Next, we will generalize the notions of span, linear independence, basis, coor-
dinates, and dimension.

Definition 4.1.3 Span, linear independence, basis, coordinates

Consider the elements f1, . . . , fn in a linear space V .

a. We say that f1, . . . , fn span V if every f in V can be expressed as a
linear combination of f1, . . . , fn .

b. We say that fi is redundant if it is a linear combination of f1, . . . , fi−1.
The elements f1, . . . , fn are called linearly independent if none of them
is redundant. This is the case if the equation

c1 f1 + · · · + cn fn = 0

has only the trivial solution

c1 = · · · = cn = 0.
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Definition 4.1.3 Span, linear independence, basis, coordinates (Continued)

c. We say that elements f1, . . . , fn are a basis of V if they span V and
are linearly independent. This means that every f in V can be written
uniquely as a linear combination f = c1 f1 + · · · + cn fn . The coeffi-
cients c1, . . . , cn are called the coordinates of f with respect to the basis
� = ( f1, . . . , fn). The vector ⎡

⎢⎣ c1
...

cn

⎤
⎥⎦

in Rn is called the �-coordinate vector of f , denoted by
[

f
]

�
.

The transformation

L( f ) = [ f ]
�

=

⎡
⎢⎣ c1

...

cn

⎤
⎥⎦ from V to Rn

is called the �-coordinate transformation, sometimes denoted by L�.

The �-coordinate transformation is invertible, with inverse

L−1

⎡
⎢⎣ c1

...

cn

⎤
⎥⎦ = c1 f1 + · · · + cn fn.

Note in particular that L−1(�ei ) = fi .
We can represent the coordinate transformation and its inverse in the following

diagram:

f = c1 f1 + · · · + cn fn in V
L�−−−−−→←−−−−−
L−1

�

[
f
]

�
=

⎡
⎢⎣ c1

...

cn

⎤
⎥⎦ in Rn.

As in the case of Rn , coordinates have important linearity properties.

Theorem 4.1.4 Linearity of the coordinate transformation L�

If � is a basis of a linear space V , then

a.
[

f + g
]

�
= [ f ]

�
+ [g]

�
, for all elements f and g of V , and

b.
[
k f
]

�
= k
[

f
]

�
, for all f in V and for all scalars k.

The proof is analogous to that of Theorem 3.4.2.
Now we are ready to introduce the key concept of the dimension of a linear

space.

Theorem 4.1.5 Dimension

If a linear space V has a basis with n elements, then all other bases of V consist
of n elements as well. We say that n is the dimension of V :

dim(V ) = n.

To prove this important theorem, consider two bases � = ( f1, . . . , fn) and
� = (g1, . . . , gm) of V ; we have to show that n = m.
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We will show first that the m vectors
[
g1
]

�
, . . . ,
[
gm
]

�
in Rn are linearly

independent, which implies that m ≤ n (by Theorem 3.2.8). Consider a relation

c1
[
g1
]

�
+ · · · + cm

[
gm
]

�
= �0.

By Theorem 4.1.4, we have[
c1g1 + · · · + cm gm

]
�

= �0, so that c1g1 + · · · + cm gm = 0.

Since the elements g1, . . . , gm are linearly independent, it follows that c1 = · · · =
cm = 0, meaning that c1

[
g1
]

�
+ · · · + cm

[
gm
]

�
= �0 is the trivial relation, as

claimed.
Reversing the roles of the two bases, we see that the n vectors

[
f1
]

�
, . . . ,
[

fn
]

�
in Rm are linearly independent, so that n ≤ m.

We can conclude that n = m, as claimed. �
EXAMPLE 15 Find a basis of R2×2, the space of all 2 × 2 matrices, and thus determine the dimen-

sion of R2×2.

Solution

We can write any 2 × 2 matrix

[
a b
c d

]
as

[
a b
c d

]
= a

[
1 0
0 0

]
+ b

[
0 1
0 0

]
+ c

[
0 0
1 0

]
+ d

[
0 0
0 1

]
.

This shows that matrices[
1 0
0 0

]
,

[
0 1
0 0

]
,

[
0 0
1 0

]
,

[
0 0
0 1

]
span R2×2. The four matrices are also linearly independent: None of them is a linear
combination of the others, since each has a 1 in a position where the three others
have a 0. This shows that

� =
([

1 0
0 0

]
,

[
0 1
0 0

]
,

[
0 0
1 0

]
,

[
0 0
0 1

])
is a basis (called the standard basis of R2×2), so that dim(R2×2) = 4.

The �-coordinate transformation L� is represented in the following diagram:

A =
[

a b
c d

]
in R2×2 L�−−−−−→

[
A
]

�
=

⎡
⎢⎢⎣

a
b
c
d

⎤
⎥⎥⎦ in R4.

�
EXAMPLE 16 Find a basis of P2, the space of all polynomials of degree ≤2, and thus determine

the dimension of P2.

Solution
We can write any polynomial f (x) of degree ≤2 as

f (x) = a + bx + cx2 = a · 1 + b · x + c · x2,

showing that the monomials 1, x , x2 span P2. We leave it as an exercise for the
reader to verify the linear independence of these monomials. Thus, � = (1, x, x2)

is a basis (called the standard basis of P2), so that dim(P2) = 3.
The �-coordinate transformation L� is represented in the following diagram:

f (x) = a + bx + cx2 in P2
L�−−−−−→

[
f (x)
]

�
=
⎡
⎣a

b
c

⎤
⎦ in R3. �
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Using Examples 15 and 16 as a guide, we can present the following strategy
for finding a basis of a linear space.

SUMMARY 4.1.6 Finding a basis of a linear space V

a. Write down a typical element of V , in terms of some arbitrary constants.

b. Using the arbitrary constants as coefficients, express your typical ele-
ment as a linear combination of some elements of V .

c. Verify that the elements of V in this linear combination are linearly in-
dependent; then they will form a basis of V .

In Examples 10 and 11 of Section 3.1, we used this method to find a basis of a
kernel.

EXAMPLE 17 Find a basis of the space V of all matrices B that commute with A =
[

0 1
2 3

]
. See

Example 13.

Solution

We need to find all matrices B =
[

a b
c d

]
such that

[
a b
c d

] [
0 1
2 3

]
=
[

0 1
2 3

] [
a b
c d

]
.

The entries of B must satisfy the linear equations

2b = c, a + 3b = d, 2d = 2a + 3c, c + 3d = 2b + 3d.

The last two equations are redundant, so that the matrices B in V are of the form

B =
[

a b
2b a + 3b

]
= a

[
1 0
0 1

]
+ b

[
0 1
2 3

]
= aI2 + bA.

Since the matrices I2 and A are linearly independent, a basis of V is

(I2, A) =
([

1 0
0 1

]
,

[
0 1
2 3

])
. �

In the introductory example of this section, we found that the solutions of the
differential equation

f ′′(x) + f (x) = 0

form a two-dimensional subspace of C∞, with basis (cos x, sin x).
We can generalize this result as follows:

Theorem 4.1.7 Linear differential equations

The solutions of the differential equation

f ′′(x) + a f ′(x) + b f (x) = 0 (where a and b are constants)

form a two-dimensional subspace of the space C∞ of smooth functions.
More generally, the solutions of the differential equation

f (n)(x) + an−1 f (n−1)(x) + · · · + a1 f ′(x) + a0 f (x) = 0
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Theorem 4.1.7 Linear differential equations (Continued)

(where a0, . . . , an−1 are constants) form an n-dimensional subspace of C∞. A
differential equation of this form is called an nth-order linear differential equa-
tion with constant coefficients.

Second-order linear DEs are frequently used to model oscillatory phenomena
in physics. Important examples are damped harmonic motion and LC circuits.

Consider how cumbersome it would be to state the second part of Theorem
4.1.7 without using the language of linear algebra. (Try it!) This may convince you
that it can be both natural and useful to apply the language of linear algebra to
functions. Theorem 4.1.7 will be proven in Section 9.3.

EXAMPLE 18 Find all solutions of the DE

f ′′(x) + f ′(x) − 6 f (x) = 0.

Hint: Find all exponential functions f (x) = ekx that solve the DE.

Solution
An exponential function f (x) = ekx solves the DE if

f ′′(x) + f ′(x) − 6 f (x) = k2ekx + kekx − 6ekx

= (k2 + k − 6)ekx = (k + 3)(k − 2)ekx = 0.

The solutions are k = 2 and k = −3. Thus, e2x and e−3x are solutions of the DE.
(Check this!) Theorem 4.1.7 tells us that the solution space is two-dimensional.
Thus, the linearly independent functions e2x , e−3x form a basis of V , and all solu-
tions are of the form

f (x) = c1e2x + c2e−3x . �
EXAMPLE 19 Let f1, . . . , fn be polynomials. Explain why these polynomials will not span the

space P of all polynomials.

Solution
Let N be the maximum of the degrees of the polynomials f1, . . . , fn . Then all linear
combinations of f1, . . . , fn are in PN , the space of polynomials of degree ≤N . Any
polynomial of higher degree, such as f (x) = x N+1, will not be in the span of
f1, . . . , fn , proving our claim. �

Example 19 implies that the space P of all polynomials does not have a finite
basis f1, . . . , fn.

Here we are faced with an issue that we did not encounter in Chapter 3, when
studying Rn and its subspaces (they all have finite bases). This state of affairs calls
for some new terminology.

Definition 4.1.8 Finite dimensional linear spaces

A linear space V is called finite dimensional if it has a (finite) basis f1, . . . , fn , so
that we can define its dimension dim(V ) = n. See Definition 4.1.5. Otherwise,
the space is called infinite dimensional.5

As we have just seen, the space P of all polynomials is infinite dimensional (as
was known to Peano in 1888).

5More advanced texts introduce the concept of an infinite basis.
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Take another look at the linear spaces introduced in Examples 1 through 8 of
this section and see which of them are finite dimensional.

The basic theory of infinite dimensional spaces of functions was established
by David Hilbert (1862–1943) and his student Erhard Schmidt (1876–1959), in the
first decade of the twentieth century, based on their work on integral equations. A
more general and axiomatic approach was presented by Stefan Banach (1892–1945)
in his 1920 doctoral thesis. These topics (Hilbert spaces, Banach spaces) would be
discussed in a course on functional analysis rather than linear algebra.

EXERCISES 4.1
GOAL Find a basis of a linear space and thus determine
its dimension. Examine whether a subset of a linear space
is a subspace.

Which of the subsets of P2 given in Exercises 1 through
5 are subspaces of P2 (see Example 16)? Find a basis for
those that are subspaces.

1. {p(t): p(0) = 2} 2. {p(t): p(2) = 0}
3. {p(t): p′(1) = p(2)} (p′ is the derivative.)

4. {p(t):
∫ 1

0 p(t) dt = 0}
5. {p(t): p(−t) = −p(t), for all t}

Which of the subsets V of R3×3 given in Exercises 6
through 11 are subspaces of R3×3?

6. The invertible 3 × 3 matrices

7. The diagonal 3 × 3 matrices

8. The upper triangular 3 × 3 matrices

9. The 3 × 3 matrices whose entries are all greater than or
equal to zero

10. The 3 × 3 matrices A such that vector

⎡
⎣1

2
3

⎤
⎦ is in the

kernel of A

11. The 3 × 3 matrices in reduced row-echelon form

Let V be the space of all infinite sequences of real num-
bers. See Example 5. Which of the subsets of V given in
Exercises 12 through 15 are subspaces of V?

12. The arithmetic sequences [i.e., sequences of the form
(a, a + k, a + 2k, a + 3k, . . .), for some constants a
and k]

13. The geometric sequences [i.e., sequences of the form
(a, ar, ar2, ar3, . . .), for some constants a and r ]

14. The sequences (x0, x1, . . .) that converge to zero (i.e.,
lim

n→∞xn = 0)

15. The square-summable sequences (x0, x1, . . .) (i.e.,

those for which
∞∑

i=0

x2
i converges)

Find a basis for each of the spaces V in Exercises 16
through 36, and determine its dimension.

16. R3×2 17. Rn×m 18. Pn

19. The real linear space C2

20. The space of all matrices A =
[

a b
c d

]
in R2×2 such

that a + d = 0

21. The space of all diagonal 2 × 2 matrices

22. The space of all diagonal n × n matrices

23. The space of all lower triangular 2 × 2 matrices

24. The space of all upper triangular 3 × 3 matrices

25. The space of all polynomials f (t) in P2 such that
f (1) = 0

26. The space of all polynomials f (t) in P3 such that
f (1) = 0 and

∫ 1
−1 f (t) dt = 0

27. The space of all 2 × 2 matrices A that commute with

B =
[

1 0
0 2

]
28. The space of all 2 × 2 matrices A that commute with

B =
[

1 1
0 1

]
29. The space of all 2 × 2 matrices A such that

A

[
1 1
1 1

]
=
[

0 0
0 0

]
30. The space of all 2 × 2 matrices A such that[

1 2
3 6

]
A =
[

0 0
0 0

]
31. The space of all 2 × 2 matrices S such that[

0 1
1 0

]
S = S

[
1 0
0 −1

]
32. The space of all 2 × 2 matrices S such that[

1 1
1 1

]
S = S

[
2 0
0 0

]
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33. The space of all 2 × 2 matrices S such that[
1 1
1 1

]
S = S

34. The space of all 2 × 2 matrices S such that[
3 2
4 5

]
S = S

35. The space of all 3 × 3 matrices A that commute with

B =
⎡
⎣2 0 0

0 3 0
0 0 4

⎤
⎦

36. The space of all 3 × 3 matrices A that commute with

B =
⎡
⎣2 0 0

0 3 0
0 0 3

⎤
⎦

37. If B is a diagonal 3 × 3 matrix, what are the possible
dimensions of the space V of all 3 × 3 matrices A that
commute with B? Use Exercises 35 and 36 as a guide.

38. If B is a diagonal 4 × 4 matrix, what are the possible
dimensions of the space V of all 4 × 4 matrices A that
commute with B?

39. What is the dimension of the space of all upper triangu-
lar n × n matrices?

40. If �c is any vector in Rn , what are the possible dimen-
sions of the space V of all n × n matrices A such that
A�c = �0?

41. If B is any 3 × 3 matrix, what are the possible dimen-
sions of the space V of all 3 × 3 matrices A such that
B A = 0?

42. If B is any n × n matrix, what are the possible dimen-
sions of the space V of all n × n matrices A such that
B A = 0?

43. If matrix A represents the reflection about a line L in
R2, what is the dimension of the space V of all matri-
ces S such that

AS = S

[
1 0
0 −1

]
?

Hint: Write S = [�v �w], and show that �v must be paral-
lel to L , while �w must be perpendicular to L .

44. If matrix A represents the orthogonal projection onto a
plane V in R3, what is the dimension of the space V of
all matrices S such that

AS = S

⎡
⎣1 0 0

0 1 0
0 0 0

⎤
⎦?

See Exercise 43.

45. Find a basis of the space V of all 3 × 3 matrices A that
commute with

B =
⎡
⎣0 1 0

0 0 1
0 0 0

⎤
⎦ ,

and thus determine the dimension of V .

46. In the linear space of infinite sequences, consider the
subspace W of arithmetic sequences. See Exercise 12.
Find a basis for W , and thus determine the dimension
of W .

47. A function f (t) from R to R is called even if f (−t) =
f (t), for all t in R, and odd if f (−t) = − f (t), for
all t . Are the even functions a subspace of F(R, R), the
space of all functions from R to R? What about the odd
functions? Justify your answers carefully.

48. Find a basis of each of the following linear spaces, and
thus determine their dimensions. See Exercise 47.
a. { f in P4: f is even}
b. { f in P4: f is odd}

49. Let L(Rm , Rn) be the set of all linear transforma-
tions from Rm to Rn . Is L(Rm , Rn) a subspace of
F(Rm , Rn), the space of all functions from Rm to Rn?
Justify your answer carefully.

50. Find all the solutions of the differential equation
f ′′(x) + 8 f ′(x) − 20 f (x) = 0.

51. Find all the solutions of the differential equation
f ′′(x) − 7 f ′(x) + 12 f (x) = 0.

52. Make up a second-order linear DE whose solution space
is spanned by the functions e−x and e−5x .

53. Show that in an n-dimensional linear space we can find
at most n linearly independent elements. Hint: Consider
the proof of Theorem 4.1.5.

54. Show that if W is a subspace of an n-dimensional lin-
ear space V , then W is finite dimensional as well, and
dim(W ) ≤ n. Compare with Exercise 3.2.38a.

55. Show that the space F(R, R) of all functions from R to
R is infinite dimensional.

56. Show that the space of infinite sequences of real num-
bers is infinite dimensional.

57. We say that a linear space V is finitely generated if it
can be spanned by finitely many elements. Show that
a finitely generated space is in fact finite dimensional
(and vice versa, of course). Furthermore, if the elements
g1, . . . , gm span V , then dim(V ) ≤ m.

58. In this exercise we will show that the functions cos(x)

and sin(x) span the solution space V of the differen-
tial equation f ′′(x) = − f (x). See Example 1 of this
section.
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a. Show that if g(x) is in V , then the function(
g(x)
)2 + (g′(x)

)2
is constant. Hint: Consider the

derivative.
b. Show that if g(x) is in V , with g(0) = g′(0) = 0,

then g(x) = 0 for all x .
c. If f (x) is in V , then g(x) = f (x) − f (0) cos(x) −

f ′(0) sin(x) is in V as well (why?). Verify that
g(0) = 0 and g′(0) = 0. We can conclude that
g(x) = 0 for all x , so that f (x) = f (0) cos(x) +
f ′(0) sin(x). It follows that the functions cos(x) and
sin(x) span V , as claimed.

59. Show that if 0 is the neutral element of a linear space
V , then k0 = 0, for all scalars k.

60. Consider the sequence ( f0, f1, f2, . . .) recursively de-
fined by f0 = 0, f1 = 1, and fn = fn−2 + fn−1 for
all n = 2, 3, 4, . . . . This is known as the Fibonacci se-
quence; for some historical context, see Exercise 48 of
Section 7.3.

In this exercise you are invited to derive a closed
formula for fn , expressing fn in terms of n, rather
than recursively in terms of fn−1 and fn−2. Another
derivation of this closed formula will be presented in
Exercise 7.3.48b.

a. Find the terms f0, f1, . . . , f9, f10 of the Fibonacci
sequence.

b. In the space V of all infinite sequences of real num-
bers (see Example 5), consider the subset W of all
sequences (x0, x1, x2, . . .) that satisfy the recursive
equation xn = xn−2 + xn−1 for all n = 2, 3, 4, . . . .

Note that the Fibonacci sequence belongs to W .
Show that W is a subspace of V , and find a basis
of W (write the first five terms x0, . . . , x4 of each
sequence in your basis). Determine the dimension
of W .

c. Find all geometric sequences of the form
(1, r, r2, . . .) in W . Can you form a basis of W
consisting of such sequences? (Be prepared to deal
with irrational numbers.)

d. Write the Fibonacci sequence as a linear combina-
tion of geometric sequences. Use your answer to
find a closed formula for fn .6

e. Explain why fn is the integer closest to
1√
5

(
1+√

5
2

)n
, for all n = 0, 1, 2, . . . . Use tech-

nology to find f50.7

f. Find lim
n→∞

fn+1
fn

.

4.2 Linear Transformations and Isomorphisms

In this section, we will define the concepts of a linear transformation, image, kernel,
rank, and nullity in the context of linear spaces.

Definition 4.2.1 Linear transformations, image, kernel, rank, nullity

Consider two linear spaces V and W . A function T from V to W is called a
linear transformation if

T ( f + g) = T ( f ) + T (g) and T (k f ) = kT ( f )

for all elements f and g of V and for all scalars k. These two rules are referred
to as the sum rule and the constant-multiple rule, respectively.

For a linear transformation T from V to W , we let

im(T ) = {T ( f ) : f in V }
and

ker(T ) = { f in V : T ( f ) = 0}.
Note that im(T ) is a subspace of target space W and that ker(T ) is a subspace of
domain V .

6This is known as Binet’s formula, named after the French mathematician Jacques Binet (1786–1856),
although the result was known to Leonhard Euler and Daniel Bernoulli more than a century earlier.
7The number 1+√

5
2 ≈ 1.618, known as the golden ratio or golden section, is of interest not just to

mathematicians, but to painters, musicians, architects, and biologists as well.
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Definition 4.2.1 Linear transformations, image, kernel, rank, nullity (Continued)

If the image of T is finite dimensional, then dim(im T ) is called the rank of T ,
and if the kernel of T is finite dimensional, then dim(ker T ) is the nullity of T .

If V is finite dimensional, then the rank-nullity theorem holds. See Theo-
rem 3.3.7:

dim(V ) = rank(T ) + nullity(T ) = dim(im T ) + dim(ker T ).

A proof of the rank-nullity theorem is outlined in Exercise 81.

EXAMPLE 1 Consider the transformation D( f ) = f ′ from C∞ to C∞. It follows from the rules
of calculus that D is a linear transformation:

D( f + g) = ( f + g)′ = f ′ + g′ equals D( f ) + D(g) = f ′ + g′ and

D(k f ) = (k f )′ = k f ′ equals k D( f ) = k f ′.

Here f and g are smooth functions, and k is a constant.
What is the kernel of D? This kernel consists of all smooth functions f such

that D( f ) = f ′ = 0. As you may recall from calculus, these are the constant
functions f (x) = k. Therefore, the kernel of D is one-dimensional; the function
f (x) = 1 is a basis. The nullity of D is 1.

What about the image of D? The image consists of all smooth functions g such
that g = D( f ) = f ′ for some function f in C∞ (i.e., all smooth functions g that
have a smooth antiderivative f ). The fundamental theorem of calculus implies that
all smooth functions (in fact, all continuous functions) have an antiderivative. We
can conclude that

im(D) = C∞. �
EXAMPLE 2 Let C[0, 1] be the linear space of all continuous functions from the closed interval

[0, 1] to R. We define the transformation

I ( f ) =
∫ 1

0
f (x) dx from C[0, 1] to R.

We adopt the simplified notation I ( f ) = ∫ 1
0 f . To check that I is linear, we apply

basic rules of integration:

I ( f + g) =
∫ 1

0
( f + g) =

∫ 1

0
f +
∫ 1

0
g equals I ( f ) + I (g) =

∫ 1

0
f +
∫ 1

0
g

and

I (k f ) =
∫ 1

0
(k f ) = k

∫ 1

0
f equals k I ( f ) = k

∫ 1

0
f.

What is the image of I ? The image of I consists of all real numbers b such that

b = I ( f ) =
∫ 1

0
f,

for some continuous function f . One of many possible choices for f is the constant
function f (x) = b. Therefore,

im(I ) = R, and rank(I ) = 1.

We leave it to the reader to think about the kernel of I . �
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EXAMPLE 3 Let V be the space of all infinite sequences of real numbers. Consider the
transformation

T (x0, x1, x2, . . .) = (x1, x2, x3, . . .)

from V to V . (We drop the first term, x0, of the sequence.)

a. Show that T is a linear transformation.

b. Find the kernel of T .

c. Is the sequence (1, 2, 3, . . .) in the image of T ?

d. Find the image of T .

Solution
a. T
(
(x0, x1, x2, . . .) + (y0, y1, y2, . . .)

) = T (x0 + y0, x1 + y1, x2 + y2, . . .)

= (x1 + y1, x2 + y2, x3 + y3, . . .)

equals

T (x0, x1, x2, . . .) + T (y0, y1, y2, . . .) = (x1, x2, x3, . . .) + (y1, y2, y3, . . .)

= (x1 + y1, x2 + y2, x3 + y3, . . .).

We leave it to the reader to verify the constant-multiple rule.

b. The kernel consists of everything that is transformed to zero, that is, all
sequences (x0, x1, x2, . . .) such that

T (x0, x1, x2, . . .) = (x1, x2, x3, . . .) = (0, 0, 0, . . .).

This means that entries x1, x2, x3, . . . all have to be zero, while x0 is ar-
bitrary. Thus, ker(T ) consists of all sequences of the form (x0, 0, 0, . . .),
where x0 is arbitrary. The kernel of T is one-dimensional, with basis
(1, 0, 0, 0, . . .). The nullity of T is 1.

c. We need to find a sequence (x0, x1, x2, . . .) such that

T (x0, x1, x2, . . .) = (x1, x2, x3, . . .) = (1, 2, 3, . . .).

It is required that x1 = 1, x2 = 2, x3 = 3, . . . , and we can choose any value
for x0, for example, x0 = 0. Thus,

(1, 2, 3, . . .) = T (0, 1, 2, 3, . . .)

is indeed in the image of T .

d. Mimicking our solution in part (c), we can write any sequence (b0, b1,
b2, . . .) as

(b0, b1, b2, . . .) = T (0, b0, b1, b2, . . .),

so that im(T ) = V . �
EXAMPLE 4 Consider the transformation

L

([
a b
c d

])
=

⎡
⎢⎢⎣

a
b
c
d

⎤
⎥⎥⎦ from R2×2 to R4.

Note that L is the coordinate transformation L� with respect to the standard basis

� =
([

1 0
0 0

]
,

[
0 1
0 0

]
,

[
0 0
1 0

]
,

[
0 0
0 1

])
of R2×2; see Example 4.1.15. Being a coordinate transformation, L is both linear
and invertible; see Theorem 4.1.4.
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Note that the elements of both R2×2 and R4 are described by a list of four scalars
a, b, c, and d. The linear transformation L merely “rearranges” these scalars, and
L−1 puts them back into their original places in R2×2.

[
a b
c d

] L−−−−−−−−−→
←−−−−−−−−−

L−1

⎡
⎢⎢⎣

a
b
c
d

⎤
⎥⎥⎦

The linear spaces R2×2 and R4 have essentially the same structure. We say that
the linear spaces R2×2 and R4 are isomorphic, from Greek (isos), same,
and (morphe), structure. The invertible linear transformation L is called an
isomorphism. �

Definition 4.2.2 Isomorphisms and isomorphic spaces

An invertible linear transformation T is called an isomorphism. We say that the
linear space V is isomorphic to the linear space W if there exists an isomorphism
T from V to W .

We can generalize our findings in Example 4.

Theorem 4.2.3 Coordinate transformations are isomorphisms

If � = ( f1, f2, . . . , fn) is a basis of a linear space V , then the coordinate trans-
formation L�( f ) = [ f ]

�
from V to Rn is an isomorphism. Thus, V is isomor-

phic to Rn; the linear spaces V and Rn have the same structure.

f = c1 f1 + · · · + cn fn in V
L�−−−−→←−−−−

(L�)−1

[
f
]

�
=

⎡
⎢⎣ c1

...

cn

⎤
⎥⎦ in Rn

Let’s reiterate the main point: Any n-dimensional linear space V is isomorphic to
Rn. This means that we don’t need a new theory for finite dimensional spaces. By
introducing coordinates, we can transform any n-dimensional linear space into Rn

and then apply the techniques of Chapters 1 through 3. Infinite dimensional linear
spaces, on the other hand, are largely beyond the reach of the methods of elementary
linear algebra.

EXAMPLE 5 Show that the transformation

T (A) = S−1 AS from R2×2 to R2×2

is an isomorphism, where S =
[

1 2
3 4

]
.

Solution
We need to show that T is a linear transformation, and that T is invertible.

Let’s check the linearity first:

T (A1 + A2) = S−1(A1 + A2)S = S−1(A1S + A2S) = S−1 A1S + S−1 A2S

equals

T (A1) + T (A2) = S−1 A1S + S−1 A2S,
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and

T (k A) = S−1(k A)S = k(S−1 AS) equals kT (A) = k(S−1 AS).

The most direct way to show that a function is invertible is to exhibit the inverse.
Here we need to solve the equation B = S−1 AS for input A. We find that A =
SBS−1, so that T is indeed invertible. The inverse transformation is

T −1(B) = SBS−1. �

Theorem 4.2.4 Properties of isomorphisms

a. A linear transformation T from V to W is an isomorphism if (and only
if) ker(T ) = {0} and im(T ) = W .

In parts (b) through (d), the linear spaces V and W are assumed to be finite
dimensional.

b. The linear space V is isomorphic to W if (and only if) dim(V ) =
dim(W ).

c. Suppose T is a linear transformation from V to W with ker(T ) = {0}. If
dim(V ) = dim(W ), then T is an isomorphism.

d. Suppose T is a linear transformation from V to W with im(T ) = W . If
dim(V ) = dim(W ), then T is an isomorphism.

Proof a. Suppose first that T is an isomorphism. To find the kernel of T , we have
to solve the equation T ( f ) = 0. Applying T −1 on both sides, we find that
f = T −1(0) = 0, so that ker(T ) = {0}, as claimed. See Exercise 75. To see
that im(T ) = W , note that any g in V can be written as g = T

(
T −1(g)

)
.

Conversely, suppose that ker(T ) = {0} and im(T ) = W . We have to
show that T is invertible; that is, the equation T ( f ) = g has a unique
solution f for every g in W (by Definition 2.4.1). There is at least one
solution f , since im(T ) = W . Consider two solutions f1 and f2, so that
T ( f1) = T ( f2) = g. Then

0 = T ( f1) − T ( f2) = T ( f1 − f2),

so that f1 − f2 is in the kernel of T . Since the kernel of T is {0}, we must
have f1 − f2 = 0 and f1 = f2, as claimed.

b. First assume that V is isomorphic to W , and let T be an isomorphism from
V to W . Now apply the rank-nullity theorem (Definition 4.2.1) to T :

dim(V ) = dim(ker T ) + dim(im T ) = 0 + dim(W ) = dim(W ), by part (a).

Conversely, suppose that dim(V ) = dim(W ) = n. Then, by Theo-
rem 4.2.3, both V and W are isomorphic to Rn . If L1 is an isomorphism
from V to Rn and L2 is an isomorphism from W to Rn , then L−1

2 ◦ L1
will be an isomorphism from V to W , by Exercises 76 and 77. Thus, V is
isomorphic to W , as claimed.

V

W

L1

o L1L–1
2

L2

�
n
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c. By part (a), it suffices to show that im(T ) = W , or, equivalently, that
dim(im T ) = dim(W ); compare with Exercise 3.3.61. But this claim fol-
lows from the rank-nullity theorem:

dim(W ) = dim(V ) = dim(ker T ) + dim(im T ) = dim(im T ).

d. By part (a), it suffices to show that ker(T ) = {0}. The proof is analogous to
part (c). �

EXAMPLE 6 a. Is the linear transformation

L
(

f (x)
) =
⎡
⎣ f (1)

f (2)

f (3)

⎤
⎦ from P3 to R3 an isomorphism?

b. Is the linear transformation

T
(

f (x)
) =
⎡
⎣ f (1)

f (2)

f (3)

⎤
⎦ from P2 to R3 an isomorphism?

Solution
a. Consider Theorem 4.2.4b. Since dim(P3) = 4 and dim(R3) = 3, the spaces

P3 and R3 fail to be isomorphic, so that L fails to be an isomorphism.

b. In this case, the domain and target space have the same dimension,

dim(P2) = dim(R3) = 3.

This fact alone does not guarantee that T is an isomorphism, however. Let’s
find the kernel of T and use Theorem 4.2.4c. The kernel of T consists of all
polynomials f (x) in P2 such that

Is dim(V) = dim(W) ?

Can you write a formula
for the inverse of T ?

Is ker(T) = {0} ?

T isn't an isomorphism T is an isomorphism

yes

no

Is im(T) = W ?

can't
tell

no yes

no

no

yes

yes

Figure 1 Is the linear transformation T from V to W an isomorphism? (V and W are finite
dimensional linear spaces.)
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T
(

f (x)
) =
⎡
⎣ f (1)

f (2)

f (3)

⎤
⎦ =
⎡
⎣0

0
0

⎤
⎦ ,

that is, f (1) = 0, f (2) = 0, and f (3) = 0. Since a nonzero polynomial in
P2 has at most two zeros, the zero polynomial is the only solution, so that
ker(T ) = {0}. Thus, T is indeed an isomorphism. �

The diagram in Figure 1 can be a useful guide in determining whether a given
linear transformation T from V to W is an isomorphism. Here we assume that both
V and W are finite dimensional. (We leave it as an exercise for the reader to adapt
the diagram to the case of infinite dimensional spaces.)

EXERCISES 4.2
GOAL Examine whether a transformation is linear.
Find the image and kernel of a linear transformation. Ex-
amine whether a linear transformation is an isomorphism.

Find out which of the transformations in Exercises 1
through 50 are linear. For those that are linear, determine
whether they are isomorphisms.

1. T (M) = M + I2 from R2×2 to R2×2

2. T (M) = 7M from R2×2 to R2×2

3. T (M) = (sum of the diagonal entries of M) from
R2×2 to R

4. T (M) = det(M) from R2×2 to R

5. T (M) = M2 from R2×2 to R2×2

6. T (M) = M

[
1 2
3 6

]
from R2×2 to R2×2

7. T (M) =
[

1 2
3 4

]
M from R2×2 to R2×2

8. T (M) = M

[
1 2
3 4

]
M from R2×2 to R2×2

9. T (M) = S−1 M S, where S =
[

3 4
5 6

]
, from R2×2 to

R2×2

10. T (M) = P M P−1, where P =
[

2 3
5 7

]
, from R2×2 to

R2×2

11. T (M) = P M Q, where P =
[

2 3
5 7

]
and Q =[

3 5
7 11

]
, from R2×2 to R2×2

12. T (c) = c

[
2 3
4 5

]
from R to R2×2

13. T (M) = M

[
1 2
0 1

]
−
[

1 2
0 1

]
M from R2×2 to R2×2

14. T (M) =
[

2 3
5 7

]
M − M

[
2 3
5 7

]
from R2×2 to R2×2

15. T (M) =
[

2 0
0 3

]
M − M

[
4 0
0 5

]
from R2×2 to R2×2

16. T (M) = M

[
2 0
0 3

]
−
[

3 0
0 4

]
M from R2×2 to R2×2

17. T (x + iy) = x from C to C

18. T (x + iy) = x2 + y2 from C to C

19. T (x + iy) = i(x + iy) from C to C

20. T (x + iy) = x − iy from C to C

21. T (x + iy) = y + i x from C to C

22. T
(

f (t)
) = ∫ 3

−2 f (t) dt from P2 to R

23. T
(

f (t)
) = f (7) from P2 to R

24. T
(

f (t)
) = f ′′(t) f (t) from P2 to P2

25. T
(

f (t)
) = f ′′(t) + 4 f ′(t) from P2 to P2

26. T
(

f (t)
) = f (−t) from P2 to P2, that is, T (a + bt +

ct2) = a − bt + ct2

27. T
(

f (t)
) = f (2t) from P2 to P2, that is, T (a + bt +

ct2) = a + 2bt + 4ct2

28. T
(

f (t)
) = f (2t) − f (t) from P2 to P2

29. T
(

f (t)
) = f ′(t) from P2 to P2

30. T
(

f (t)
) = t
(

f ′(t)
)

from P2 to P2

31. T
(

f (t)
) = [ f (0) f (1)

f (2) f (3)

]
from P2 to R2×2

32. T
(

f (t)
) = f ′(t) + t2 from P2 to P2

In Exercises 33 through 36, V denotes the space of infinite
sequences of real numbers.

33. T (x0, x1, x2, x3, x4, . . .) = (x0, x2, x4, . . .) from V to
V (we are dropping every other term)

34. T (x0, x1, x2, . . .) = (0, x0, x1, x2, . . .) from V to V
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35. T
(

f (t)
) = ( f (0), f ′(0), f ′′(0), f ′′′(0), . . .

)
from P

to V , where P denotes the space of all polynomials

36. T
(

f (t)
) = ( f (0), f (1), f (2), f (3), . . .

)
from P to

V , where P denotes the space of all polynomials

37. T ( f ) = f + f ′ from C∞ to C∞

38. T ( f ) = f + f ′′ from C∞ to C∞

39. T ( f ) = f ′′ − 5 f ′ + 6 f from C∞ to C∞

40. T ( f ) = f ′′ + 2 f ′ + f from C∞ to C∞

41. T
(

f (t)
) = f (t) + f ′′(t) + sin(t) from C∞ to C∞

42. T
(

f (t)
) = [ f (7)

f (11)

]
from P2 to R2

43. T
(

f (t)
) =
⎡
⎣ f (5)

f (7)

f (11)

⎤
⎦ from P2 to R3

44. T
(

f (t)
) =
⎡
⎣ f (1)

f ′(2)

f (3)

⎤
⎦ from P2 to R3

45. T
(

f (t)
) = t
(

f (t)
)

from P to P

46. T
(

f (t)
) = (t − 1) f (t) from P to P

47. T
(

f (t)
) = ∫ t

0 f (x) dx from P to P

48. T
(

f (t)
) = f ′(t) from P to P

49. T
(

f (t)
) = f (t2) from P to P

50. T
(

f (t)
) = f (t + 2) − f (t)

2
from P to P

51. Find the kernel and nullity of the transformation T in
Exercise 13.

52. Find the kernel and nullity of the transformation T in
Exercise 6.

53. Find the image, rank, kernel, and nullity of the transfor-
mation T in Exercise 25.

54. Find the image, rank, kernel, and nullity of the transfor-
mation T in Exercise 22.

55. Find the image and kernel of the transformation T in
Exercise 33.

56. Find the image, rank, kernel, and nullity of the transfor-
mation T in Exercise 30.

57. Find the kernel and nullity of the transformation T in
Exercise 39.

58. Find the image and kernel of the transformation T in
Exercise 34.

59. For the transformation T in Exercise 23, find the kernel,
nullity, rank, and image, in this order.

60. For the transformation T in Exercise 42, find the kernel,
nullity, rank, and image, in this order.

61. Find the image and kernel of the transformation T in
Exercise 45.

62. Find the image and kernel of the transformation T in
Exercise 48.

63. Define an isomorphism from P3 to R3, if you can.

64. Define an isomorphism from P3 to R2×2, if you can.

65. We will define a transformation T from Rn×m to
F(Rm , Rn); recall that F(Rm , Rn) is the space of all
functions from Rm to Rn . For a matrix A in Rn×m , the
value T (A) will be a function from Rm to Rn ; thus, we
need to define

(
T (A)
)
(�v) for a vector �v in Rm . We let(

T (A)
)
(�v) = A�v.

a. Show that T is a linear transformation.
b. Find the kernel of T .
c. Show that the image of T is the space L(Rm , Rn)

of all linear transformations from Rm to Rn . See
Exercise 4.1.19.

d. Find the dimension of L(Rm , Rn).

66. Find the kernel and nullity of the linear transformation
T ( f ) = f − f ′ from C∞ to C∞.

67. For which constants k is the linear transformation

T (M) =
[

2 3
0 4

]
M − M

[
3 0
0 k

]
an isomorphism from R2×2 to R2×2?

68. For which constants k is the linear transformation

T (M) = M

[
5 0
0 1

]
−
[

2 0
0 k

]
M

an isomorphism from R2×2 to R2×2?

69. If matrix A is similar to B, is T (M) = AM − M B an
isomorphism from R2×2 to R2×2?

70. For which real numbers c0, c1, . . . , cn is the linear
transformation

T
(

f (t)
) =
⎡
⎢⎢⎢⎣

f (c0)

f (c1)
...

f (cn)

⎤
⎥⎥⎥⎦

an isomorphism from Pn to Rn+1?

71. Does there exist a polynomial f (t) of degree ≤4 such
that f (2) = 3, f (3) = 5, f (5) = 7, f (7) = 11,
and f (11) = 2? If so, how many such polynomials are
there? Hint: Use Exercise 70.
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In Exercises 72 through 74, let Zn be the set of all polyno-
mials of degree ≤n such that f (0) = 0.

72. Show that Zn is a subspace of Pn , and find the dimen-
sion of Zn .

73. Is the linear transformation T
(

f (t)
) = ∫ t

0 f (x) dx an
isomorphism from Pn−1 to Zn?

74. Define an isomorphism from Zn to Pn−1 (think calcu-
lus!).

75. Show that if T is a linear transformation from V to W ,
then T (0V ) = 0W , where 0V and 0W are the neutral
elements of V and W , respectively. If T is an isomor-
phism, show that T −1(0W ) = 0V .

76. Prove that if T is an isomorphism from V to W , then
T −1 is an isomorphism from W to V . Hint: T −1( f +
g) = T −1(T (T −1( f )) + T (T −1(g))). Compare with
Exercise 2.2.29.

77. If T is a linear transformation from V to W and L is
a linear transformation from W to U , is the composite
transformation L ◦ T from V to U linear? How can you
tell? If T and L are isomorphisms, is L ◦ T an isomor-
phism as well?

78. Let R+ be the set of positive real numbers. On R+ we
define the “exotic” operations

x ⊕ y = xy (usual multiplication)

and

k � x = xk .

a. Show that R+ with these operations is a linear
space; find a basis of this space.

b. Show that T (x) = ln(x) is a linear transformation
from R+ to R, where R is endowed with the ordi-
nary operations. Is T an isomorphism?

79. Is it possible to define “exotic” operations on R2, so that
dim(R2) = 1?

80. Let X be the set of all students in your linear algebra
class. Can you define operations on X that make X into
a real linear space? Explain.

81. In this exercise, we will outline a proof of the rank-
nullity theorem: If T is a linear transformation from V
to W , where V is finite dimensional, then

dim(V ) = dim(im T ) + dim(ker T )

= rank(T ) + nullity(T ).

a. Explain why ker(T ) and image (T ) are finite dimen-
sional. Hint: Use Exercises 4.1.54 and 4.1.57.

Now consider a basis v1, . . . , vn of ker(T ),
where n = nullity(T ), and a basis w1, . . . , wr
of im(T ), where r = rank(T ). Consider elements
u1, . . . , ur in V such that T (ui ) = wi for i =
1, . . . , r . Our goal is to show that the r +n elements
u1, . . . , ur , v1, . . . , vn form a basis of V ; this will
prove our claim.

b. Show that the elements u1, . . . , ur , v1, . . . , vn are
linearly independent. Hint: Consider a relation
c1u1 + · · · + cr ur + d1v1 + · · · + dnvn = 0, ap-
ply transformation T to both sides, and take it from
there.

c. Show that the elements u1, . . . , ur , v1, . . . , vn span
V . Hint: Consider an arbitrary element v in V , and
write T (v) = d1w1 + · · · + drwr . Now show that
the element v − d1u1 − · · · − dr ur is in the kernel
of T , so that v − d1u1 − · · · − dr ur can be written
as a linear combination of v1, . . . , vn .

82. Prove the following variant of the rank-nullity theorem:
If T is a linear transformation from V to W , and if
ker T and im T are both finite dimensional, then V is
finite dimensional as well, and dim V = dim(ker T ) +
dim(im T ).

83. Consider linear transformations T from V to W and
L from W to U . If ker T and ker L are both finite di-
mensional, show that ker(L ◦ T ) is finite dimensional as
well, and dim

(
ker(L ◦T )

) ≤ dim(ker T )+dim(ker L).
Hint: Restrict T to ker(L ◦T ) and apply the rank-nullity
theorem, as presented in Exercise 82.

84. Consider linear transformations T from V to W and L
from W to U . If ker T and ker L are both finite dimen-
sional, and if im T = W , show that ker(L ◦ T ) is fi-
nite dimensional as well and that dim

(
ker(L ◦ T )

) =
dim(ker T ) + dim(ker L).

4.3 The Matrix of a Linear Transformation

Next we will examine how we can express a linear transformation in coordinates.

EXAMPLE 1 Consider the linear transformation

T ( f ) = f ′ + f ′′ from P2 to P2,
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or, written more explicitly,

T
(

f (x)
) = f ′(x) + f ′′(x).

Since P2 is isomorphic to R3, this is essentially a linear transformation from R3 to
R3, given by a 3 × 3 matrix B. Let’s see how we can find this matrix.

If we let f (x) = a + bx + cx2, then we can write transformation T as

T (a + bx + cx2) = (a + bx + cx2)′ + (a + bx + cx2)′′

= (b + 2cx) + 2c = (b + 2c) + 2cx .

Next let’s write the input f (x) = a + bx + cx2 and the output T
(

f (x)
) =

(b + 2c) + 2cx in coordinates with respect to the standard basis � = (1, x, x2)

of P2:

f (x) = a + bx + cx2 T−−−−−→ T
(

f (x)
) = (b + 2c) + 2cx

L�
� �

L�

[
f (x)
]

�
=
⎡
⎣a

b
c

⎤
⎦ −−−−−→

[
T
(

f (x)
)]

�
=
⎡
⎣b + 2c

2c
0

⎤
⎦ .

Written in �-coordinates, transformation T takes
[

f (x)
]

�
to

[
T
(

f (x)
)]

�
=
⎡
⎣b + 2c

2c
0

⎤
⎦ =
⎡
⎣0 1 2

0 0 2
0 0 0

⎤
⎦
⎡
⎣a

b
c

⎤
⎦ =
⎡
⎣0 1 2

0 0 2
0 0 0

⎤
⎦ [ f (x)

]
�

.

The matrix

B =
⎡
⎣0 1 2

0 0 2
0 0 0

⎤
⎦

is called the �-matrix of transformation T . It describes the transformation T if the
input and output are written in �-coordinates. Let us summarize our work in two
diagrams:

P2
T−−−−−→ P2

| |
L� | | L�↓ ↓

R3 B−−−−−→ R3,

f T−−−−−→ T ( f )

| |
L� | | L�↓ ↓
[ f ]�

B−−−−−→ [T ( f )]�.

�

Definition 4.3.1 The �-matrix of a linear transformation

Consider a linear transformation T from V to V , where V is an n-dimensional
linear space. Let � be a basis of V . Consider the linear transformation
L� ◦ T ◦ L−1

� from Rn to Rn , with standard matrix B, meaning that B�x =
L�

(
T
(

L−1
� (�x)
))

for all �x in Rn . This matrix B is called the �-matrix of transfor-
mation T . See the accompanying diagrams Letting f = L−1

� (�x) and �x = [ f ]
�

,
we find that [

T ( f )
]

�
= B
[

f
]

�
, for all f in V .
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Consider the following diagrams.

V T−−−−−→ V
| |

L� | | L�↓ ↓
Rn B−−−−−→ Rn

f T−−−−−→ T ( f )

| |
L� | | L�↓ ↓
[ f ]�

B−−−−−→ [T ( f )]�

Compare this with Theorem 3.4.3.
We can write B in terms of its columns. Suppose that � = ( f1, . . . , fi , . . . , fn).

Then [
T ( fi )
]

�
= B
[

fi
]

�
= B�ei = (i th column of B).

Theorem 4.3.2 The columns of the �-matrix of a linear transformation

Consider a linear transformation T from V to V , and let B be the matrix of T
with respect to a basis � = ( f1, . . . , fn) of V . Then

B =
⎡
⎣ | |[

T ( f1)
]

�
· · · [

T ( fn)
]

�
| |

⎤
⎦ .

The columns of B are the �-coordinate vectors of the transforms of the basis
elements f1, . . ., fn of V .

EXAMPLE 2 Use Theorem 4.3.2 to find the matrix B of the linear transformation T ( f ) = f ′+ f ′′
from P2 to P2 with respect to the standard basis � = (1, x, x2); see Example 1.

Solution
By Theorem 4.3.2, we have

B =
⎡
⎣[T (1)

]
�

[
T (x)
]

�

[
T (x2)
]

�

⎤
⎦ .

Now

T (1) = 1′ + 1′′
= 0

[
T (1)
]

�
=
⎡
⎣0

0
0

⎤
⎦
������������������

�
�
�
�
�
���

�
�
�
��

T (x) = x ′ + x ′′
= 1

[
T (x)
]

�
=
⎡
⎣1

0
0

⎤
⎦

T (x2) = (x2)′ + (x2)′′
= 2 + 2x

[
T (x2)
]

�
=
⎡
⎣2

2
0

⎤
⎦

B =
⎡
⎣[T (1)

]
�

[
T (x)
]

�

[
T (x2)
]

�

⎤
⎦ =
⎡
⎣0 1 2

0 0 2
0 0 0

⎤
⎦ .
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As in Section 3.4, it is suggestive to write the basis elements 1, x , and x2 next to the
rows of matrix B, while the values T (1) = 0, T (x) = 1, and T (x2) = 2 + 2x are
written above the columns:

T (1) T (x) T (x2)

B =
⎡
⎣ 0 1 2

0 0 2
0 0 0

⎤
⎦ 1

x
x2

.

The last column of B, for example, indicates that T (x2)= 2 · 1 + 2 · x = 2 + 2x . �
A problem concerning a linear transformation T can often be done by solving

the corresponding problem for the matrix B of T with respect to some basis �. We
can use this technique to find the image and kernel of T , to determine whether T is
an isomorphism (this is the case if B is invertible), or to solve an equation T ( f ) = g
for f if g is given (this amounts to solving the linear system B

[
f
]

�
= [g]

�
).

EXAMPLE 3 Let V be the span of cos(x) and sin(x) in C∞; note that V consists of all trigonomet-
ric functions of the form f (x) = a cos(x) + b sin(x). Consider the transformation

T ( f ) = 3 f + 2 f ′ − f ′′ from V to V .

We are told that T is a linear transformation.

a. Using Theorem 4.3.2, find the matrix B of T with respect to the basis � =(
cos(x), sin(x)

)
.

b. Is T an isomorphism?

Solution
a. Here

B =
⎡
⎣[T (cos x)

]
�

[
T (sin x)

]
�

⎤
⎦ .

Now

T (cos x)

= 3 cos(x) − 2 sin(x) + cos(x)

= 4 cos(x) − 2 sin(x)

T (sin x)

= 3 sin(x) + 2 cos(x) + sin(x)

= 2 cos(x) + 4 sin(x).

Then

T (cos x) T (sin x)

B =
[

4 2
−2 4

]
cos(x)

sin(x)
.

Matrix B represents a rotation combined with a scaling.

b. Matrix B is invertible, since det(B) = ad − bc = 20 �= 0. Thus transforma-
tion T is invertible as well, so that T is an isomorphism (we were told that
T is linear). �

EXAMPLE 4 Consider the linear transformation

T (M) =
[

0 1
0 0

]
M − M

[
0 1
0 0

]
from R2×2 to R2×2.

a. Find the matrix B of T with respect to the standard basis � of R2×2 .

b. Find bases of the image and kernel of B.
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c. Find bases of the image and kernel of T , and thus determine the rank and
nullity of transformation T .

Solution
a. For the sake of variety, let us find B by means of a diagram.[

a b
c d

]
T−−−−→
[

0 1
0 0

] [
a b
c d

]
−
[

a b
c d

] [
0 1
0 0

]

=
[

c d
0 0

]
−
[

0 a
0 c

]
=
[

c d − a
0 −c

]

L�
� �

L�⎡
⎢⎢⎣

a
b
c
d

⎤
⎥⎥⎦ −−−−→

B

⎡
⎢⎢⎣

c
d − a

0
−c

⎤
⎥⎥⎦

We see that

B =

⎡
⎢⎢⎣

0 0 1 0
−1 0 0 1

0 0 0 0
0 0 −1 0

⎤
⎥⎥⎦ .

b. Note that columns �v2 and �v4 of B are redundant, with �v2 = �0 and �v4 = −�v1,
or �v1 + �v4 = �0. Thus, the nonredundant columns

�v1 =

⎡
⎢⎢⎣

0
−1

0
0

⎤
⎥⎥⎦ , �v3 =

⎡
⎢⎢⎣

1
0
0

−1

⎤
⎥⎥⎦ form a basis of im(B),

and ⎡
⎢⎢⎣

0
1
0
0

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣

1
0
0
1

⎤
⎥⎥⎦ form a basis of ker(B).

c. We apply L−1
� to transform the vectors we found in part (b) back into R2×2,

the domain and target space of transformation T :[
0 −1
0 0

]
,

[
1 0
0 −1

]
is a basis of im(T ),

and [
0 1
0 0

]
, I2 =

[
1 0
0 1

]
is a basis of ker(T ).

Thus, rank(T ) = dim(im T ) = 2 and nullity(T ) = dim(ker T ) = 2. �
Change of Basis
If � and � are two bases of a linear space V , what is the relationship between the
coordinate vectors

[
f
]

�
and
[

f
]

�
, for an element f of V ?
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Definition 4.3.3 Change of basis matrix

Consider two bases � and � of an n-dimensional linear space V . Consider the
linear transformation L� ◦ L−1

� from Rn to Rn , with standard matrix S, mean-
ing that S�x = L�

(
L−1

� (�x)
)

for all �x in Rn . This invertible matrix S is called
the change of basis matrix from � to �, sometimes denoted by S�→�. See the
accompanying diagrams. Letting f = L−1

� (�x) and �x = [ f ]
�

, we find that[
f
]

�
= S
[

f
]

�
, for all f in V .

If � = (b1, . . . , bi , . . . , bn), then[
bi
]

�
= S
[
bi
]

�
= S�ei = (i th column of S),

so that

S�→� =
⎡
⎣ | |[

b1
]

�
· · · [

bn
]

�
| |

⎤
⎦ .











�

�������

�
L�

Rn

V S

L� Rn











�

��������

�L�

[ f ]�

f S

L�

[ f ]�

What is the relationship between the change of basis matrices S�→� and
S�→�? Solving the equation

[
f
]

�
= (S�→�)

[
f
]

�
for
[

f
]

�
, we find that[

f
]

�
= (S�→�)−1

[
f
]

�
, so that

S�→� = (S�→�)−1.

EXAMPLE 5 Let V be the subspace of C∞ spanned by the functions ex and e−x , with the bases
� = (ex , e−x) and � = (ex + e−x , ex − e−x). Find the change of basis matrix
S�→�.

Solution
By Definition 4.3.3,

S =
[[

ex + e−x
]

�

[
ex − e−x

]
�

]
.

Now

ex + e−x = 1 · ex + 1 · e−x[
ex + e−x

]
�

=
[

1
1

]
�

����������

ex − e−x = 1 · ex + (−1) · e−x[
ex − e−x

]
�

=
[

1
−1

]

S�→� =
[

1 1
1 −1

]
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It is suggestive to write the functions ex and e−x of basis � next to the rows of
matrix S�→�, while the functions ex + e−x and ex − e−x of basis � are written
above the columns:

ex + e−x ex − e−x

S�→� =
[

1 1
1 −1

]
ex

e−x .

The second column of matrix S indicates that ex − e−1 = 1 · ex + (−1) · e−x . �
EXAMPLE 6 Let � = (�e1, . . . , �en) be the standard basis of Rn , and let � = (�b1, . . . , �bn) be an

arbitrary basis of Rn . Find the change of basis matrix S�→�.

Solution
By Definition 4.3.3,

S�→� =
[[�b1
]

�
· · · [�bn

]
�

]
.

But note that [�x ]
�

= �x for all �x in Rn ,

since

�x =

⎡
⎢⎣ x1

...

xn

⎤
⎥⎦ = x1�e1 + · · · + xn�en;

the components of �x are its coordinates with respect to the standard basis. Thus,

S�→� =
[
�b1 · · · �bn

]
.

Compare this with Definition 3.4.1. �
EXAMPLE 7 The equation x1 + x2 + x3 = 0 defines a plane V in R3. In this plane, consider the

two bases

� = (�a1, �a2)=

⎛
⎝
⎡
⎣ 0

1
−1

⎤
⎦ ,

⎡
⎣ 1

0
−1

⎤
⎦
⎞
⎠ and � = (�b1, �b2)=

⎛
⎝
⎡
⎣ 1

2
−3

⎤
⎦ ,

⎡
⎣ 4

−1
−3

⎤
⎦
⎞
⎠ .

a. Find the change of basis matrix S from � to �.

b. Verify that the matrix S in part (a) satisfies the equation[
�b1 �b2

]
=
[

�a1 �a2

]
S.

Solution

a. By inspection, we find that �b1 = 2�a1 + �a2 and �b2 = −�a1 + 4�a2, so that

�b1 �b2

S�→� =
[

2 −1
1 4

] �a1
�a2

.
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b. We can verify that⎡
⎣ �b1 �b2

⎤
⎦ =
⎡
⎣ 1 4

2 −1
−3 −3

⎤
⎦ =
⎡
⎣ 0 1

1 0
−1 −1

⎤
⎦[2 −1

1 4

]
=
⎡
⎣ �a1 �a2

⎤
⎦ S.

This equation reflects the fact that the two columns of S are the coordinate
vectors of �b1 and �b2 with respect to the basis � = (�a1, �a2). We can illustrate
this equation with a commutative diagram, where �x represents a vector in V :[�x]

�

��������

��
��
��

��

�

[
�a1 �a2

]

S �x
[

�b1 �b2

][�x]
�

.

Let us remind ourselves where the equation �x = [ �b1 �b2
] [ �x ]

�
comes

from: If c1, c2 are the coordinates of �x with respect to �, then

�x = c1�b1 + c2�b2 =
[

�b1 �b2

] [
c1

c2

]
=
[

�b1 �b2

] [ �x ]
�

.

�
We can generalize.

Theorem 4.3.4 Change of basis in a subspace of Rn

Consider a subspace V of Rn with two bases � = (�a1, . . . , �am) and � =
(�b1, . . . , �bm). Let S be the change of basis matrix from � to �. Then the fol-
lowing equation holds:⎡

⎣ | |
�b1 · · · �bm

| |

⎤
⎦ =
⎡
⎣ | |

�a1 · · · �am

| |

⎤
⎦ S.

As in Example 7, this equation can be justified by means of a commutative
diagram: [�x ]

�

��������

��
��
��
��

�

[
�a1 · · · �am

]

S �x

[
�b1 · · · �bm

][�x]
�

.

Now consider a linear transformation T from V to V , where V is a finite di-
mensional linear space. Let � and � be two bases of V , and let A and B be the
�- and the �-matrix of T , respectively. What is the relationship among A, B, and
the change of basis matrix S from � to �?
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Consider the following diagram.

[
f
]

�

�
�
�

��

�
�
�

��

�
�
�
��

�
�
�
��

� �

A−−−−−−−−−−−−−−−−−−−−−−→
[
T ( f )
]

�

L� L�

S f
T−−−−−−−−−→ T ( f ) S

L� L�[
f
]

� −−−−−−−−−−−−−−−−−−−−−−→
B

[
T ( f )
]

�

As in Section 3.4, we see that
[
T ( f )
]

�
= AS
[

f
]

�
= SB
[

f
]

�
for all f in V , so

that AS = SB.

Theorem 4.3.5 Change of basis for the matrix of a linear transformation

Let V be a linear space with two given bases � and �. Consider a linear trans-
formation T from V to V , and let A and B be the �-matrix and �-matrix of T ,
respectively. Let S be the change of basis matrix from � to �. Then A is similar
to B, and

AS = SB or A = SBS−1 or B = S−1 AS.

EXAMPLE 8 As in Example 5, let V be the linear space spanned by the functions ex and e−x ,
with the bases � = (ex , e−x) and � = (ex + e−x , ex − e−x). Consider the linear
transformation D( f ) = f ′ from V to V .

a. Find the �-matrix A of D.

b. Use part (a), Theorem 4.3.5, and Example 5 to find the �-matrix B of D.

c. Use Theorem 4.3.2 to find the �-matrix B of D in terms of its columns.

Solution
a. Let’s use a diagram. Recall that (e−x)′ = −e−x , by the chain rule.

aex + be−x D−−−−−−−−−→ aex − be−x

� �[
a
b

]
−−−−−−−−−→

A =
[

1 0
0 −1

]
[

a
−b

]

b. In Example 5 we found the change of basis matrix S =
[

1 1
1 −1

]
from �

to �. Now

B = S−1 AS = 1

2

[
1 1
1 −1

] [
1 0
0 −1

] [
1 1
1 −1

]
=
[

0 1
1 0

]
.

c. Note that D(ex + e−x) = ex − e−x and D(ex − e−x) = ex + e−x . Thus,

D(ex + e−x) D(ex − e−x )

B =
[

0 1
1 0

]
ex + e−x

ex − e−x . �
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EXERCISES 4.3
GOAL Use the concept of coordinates. Find the matrix
of a linear transformation. Use this matrix to find the im-
age and kernel of a transformation.

1. Are the polynomials f (t) = 7 + 3t + t2, g(t) =
9 + 9t + 4t2, and h(t) = 3 + 2t + t2 linearly inde-
pendent?

2. Are the matrices[
1 1
1 1

]
,

[
1 2
3 4

]
,

[
2 3
5 7

]
,

[
1 4
6 8

]
linearly independent?

3. Do the polynomials f (t) = 1 + 2t + 9t2 + t3, g(t) =
1 + 7t + 7t3, h(t) = 1 + 8t + t2 + 5t3, and k(t) =
1 + 8t + 4t2 + 8t3 form a basis of P3?

4. Consider the polynomials f (t) = t + 1 and g(t) =
(t+2)(t+k), where k is an arbitrary constant. For which
values of the constant k are the three polynomials f (t),
t f (t), and g(t) a basis of P2?

In Exercises 5 through 40, find the matrix of the given lin-
ear transformation T with respect to the given basis. If
no basis is specified, use the standard basis: � = (1, t, t2)

for P2,

� =
([

1 0
0 0

]
,

[
0 1
0 0

]
,

[
0 0
1 0

]
,

[
0 0
0 1

])
for R2×2, and � = (1, i) for C. For the space U2×2 of up-
per triangular 2 × 2 matrices, use the basis

� =
([

1 0
0 0

]
,

[
0 1
0 0

]
,

[
0 0
0 1

])
unless another basis is given. In each case, determine
whether T is an isomorphism. If T isn’t an isomorphism,
find bases of the kernel and image of T , and thus deter-
mine the rank of T .

5. T (M) =
[

1 2
0 3

]
M from U 2×2 to U 2×2

6. T (M) =
[

1 2
0 3

]
M from U 2×2 to U 2×2, with respect

to the basis � =
([

1 0
0 0

]
,

[
0 1
0 0

]
,

[
0 1
0 1

])

7. T (M) = M

[
1 2
0 1

]
−
[

1 2
0 1

]
M from U 2×2 to U 2×2,

with respect to the basis

� =
([

1 0
0 1

]
,

[
0 1
0 0

]
,

[
1 0
0 −1

])

8. T (M) = M

[
1 2
0 1

]
−
[

1 2
0 1

]
M from U 2×2 to U 2×2

9. T (M) =
[

1 0
0 2

]−1

M

[
1 0
0 2

]
from U 2×2 to U 2×2

10. T (M) =
[

1 2
0 3

]−1

M

[
1 2
0 3

]
from U 2×2 to U 2×2

11. T (M) =
[

1 2
0 3

]−1

M

[
1 2
0 3

]
from U 2×2 to U 2×2,

with respect to the basis

� =
([

1 −1
0 0

]
,

[
0 1
0 1

]
,

[
0 1
0 0

])

12. T (M) = M

[
2 0
0 3

]
from R2×2 to R2×2

13. T (M) =
[

1 1
2 2

]
M from R2×2 to R2×2

14. T (M) =
[

1 1
2 2

]
M from R2×2 to R2×2, with respect

to the basis

� =
([

1 0
−1 0

]
,

[
0 1
0 −1

]
,

[
1 0
2 0

]
,

[
0 1
0 2

])

15. T (x + iy) = x − iy from C to C

16. T (x + iy) = x − iy from C to C, with respect to the
basis � = (1 + i, 1 − i)

17. T (z) = i z from C to C

18. T (z) = (2 + 3i)z from C to C

19. T (z) = (p + iq)z from C to C, where p and q are
arbitrary real numbers

20. T ( f ) = f ′ from P2 to P2

21. T ( f ) = f ′ − 3 f from P2 to P2

22. T ( f ) = f ′′ + 4 f ′ from P2 to P2

23. T
(

f (t)
) = f (3) from P2 to P2

24. T
(

f (t)
) = f (3) from P2 to P2, with respect to the

basis � = (1, t − 3, (t − 3)2
)

25. T
(

f (t)
) = f (−t) from P2 to P2

26. T
(

f (t)
) = f (2t) from P2 to P2

27. T
(

f (t)
) = f (2t − 1) from P2 to P2

28. T
(

f (t)
) = f (2t −1) from P2 to P2, with respect to the

basis � = (1, t − 1, (t − 1)2
)

29. T
(

f (t)
) = ∫ 2

0 f (t) dt from P2 to P2
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30. T
(

f (t)
) = f (t + h) − f (t)

h
from P2 to P2, where h is

a nonzero constant. Interpret transformation T geomet-
rically.

31. T
(

f (t)
) = f (t + h) − f (t − h)

2h
from P2 to P2, where

h is a nonzero constant. Interpret transformation T ge-
ometrically.

32. T
(

f (t)
) = f (1)+ f ′(1)(t −1) from P2 to P2. Interpret

transformation T geometrically.

33. T
(

f (t)
) = f (1) + f ′(1)(t − 1) from P2 to P2, with

respect to the basis � = (1, t − 1, (t − 1)2
)

34. T (M) =
[

2 0
0 5

]
M − M

[
2 0
0 5

]
from R2×2 to R2×2

35. T (M) =
[

2 1
0 2

]
M − M

[
2 1
0 2

]
from R2×2 to R2×2

36. T (M) =
[

1 1
1 1

]
M − M

[
1 1
1 1

]
from R2×2 to R2×2

37. T (M) =
[

1 1
1 1

]
M − M

[
1 1
1 1

]
from R2×2 to R2×2,

with respect to the basis

� =
([

1 1
−1 −1

]
,

[
1 −1
1 −1

]
,

[
1 0
0 1

]
,

[
0 1
1 0

])

38. T (M) =
[

0 1
1 0

]
M − M

[
1 0
0 −1

]
from R2×2 to

R2×2, with respect to the basis

� =
([

1 0
1 0

]
,

[
1 0

−1 0

]
,

[
0 1
0 1

]
,

[
0 1
0 −1

])

39. T (M) =
[

0 1
1 0

]
M − M

[
1 0
0 −1

]
from R2×2 to

R2×2

40. T (M) =
[

1 2
4 3

]
M − M

[
5 0
0 −1

]
from R2×2 to

R2×2

41. a. Find the change of basis matrix S from the basis �
considered in Exercise 6 to the standard basis � of
U 2×2 considered in Exercise 5.

b. Verify the formula SB = AS for the matrices B and
A you found in Exercises 6 and 5, respectively.

c. Find the change of basis matrix from � to �.

42. a. Find the change of basis matrix S from the basis �
considered in Exercise 7 to the standard basis � of
U 2×2 considered in Exercise 8.

b. Verify the formula SB = AS for the matrices B and
A you found in Exercises 7 and 8, respectively.

c. Find the change of basis matrix from � to �.

43. a. Find the change of basis matrix S from the basis �
considered in Exercise 11 to the standard basis � of
U 2×2 considered in Exercise 10.

b. Verify the formula SB = AS for the matrices B and
A you found in Exercises 11 and 10, respectively.

c. Find the change of basis matrix from � to �.

44. a. Find the change of basis matrix S from the basis �
considered in Exercise 14 to the standard basis � of
R2×2 considered in Exercise 13.

b. Verify the formula SB = AS for the matrices B and
A you found in Exercises 14 and 13, respectively.

45. a. Find the change of basis matrix S from the basis
� considered in Exercise 16 to the standard basis
� = (1, i) of C considered in Exercise 15.

b. Verify the formula SB = AS for the matrices B and
A you found in Exercises 16 and 15, respectively.

c. Find the change of basis matrix from � to �.

46. a. Find the change of basis matrix S from the basis
� considered in Exercise 24 to the standard basis
� = (1, t, t2) of P2 considered in Exercise 23.

b. Verify the formula SB = AS for the matrices B and
A you found in Exercises 24 and 23, respectively.

c. Find the change of basis matrix from � to �.

47. a. Find the change of basis matrix S from the basis
� considered in Exercise 28 to the standard basis
� = (1, t, t2) of P2 considered in Exercise 27.

b. Verify the formula SB = AS for the matrices B and
A you found in Exercises 28 and 27, respectively.

c. Find the change of basis matrix from � to �.

In Exercises 48 through 53, let V be the space spanned
by the two functions cos(t) and sin(t). In each exercise,
find the matrix of the given transformation T with respect
to the basis cos(t), sin(t), and determine whether T is an
isomorphism.

48. T ( f ) = f ′ 49. T ( f ) = f ′′ + 2 f ′ + 3 f

50. T ( f ) = f ′′ +a f ′ +b f , where a and b are arbitrary real
numbers. Find all the values of a and b such that T is
an isomorphism.

51. T
(

f (t)
) = f (t − π/2)

52. T
(

f (t)
) = f (t − π/4)

53. T
(

f (t)
) = f (t − θ), where θ is an arbitrary real num-

ber. Hint: Use the addition theorems for sine and cosine.

In Exercises 54 through 58, let V be the plane with equa-
tion x1 + 2x2 + 3x3 = 0 in R3. In each exercise, find the
matrix B of the given transformation T from V to V , with
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respect to the basis

⎡
⎣ 1

1
−1

⎤
⎦ ,

⎡
⎣ 5

−4
1

⎤
⎦. Note that the domain

and target space of T are restricted to the plane V , so that
B will be a 2 × 2 matrix.

54. The orthogonal projection onto the line spanned by

vector

⎡
⎣ 1

1
−1

⎤
⎦

55. The orthogonal projection onto the line spanned by

vector

⎡
⎣ 1

−2
1

⎤
⎦

56. T (�x) =
⎡
⎣1

2
3

⎤
⎦× �x . See Theorem A.11 in the Appendix.

57. T (�x) =
⎡
⎣−2 −3 1

1 0 −2
0 1 1

⎤
⎦ �x

58. T (�x) =
⎛
⎝�x ·
⎡
⎣ 1

1
−1

⎤
⎦
⎞
⎠
⎡
⎣ 1

1
−1

⎤
⎦

59. Consider a linear transformation T from V to V with
ker(T ) = {0}. If V is finite dimensional, then T is an
isomorphism, since the matrix of T will be invertible.
Show that this is not necessarily the case if V is in-
finite dimensional: Give an example of a linear trans-
formation T from P to P with ker(T ) = {0} that is
not an isomorphism. (Recall that P is the space of all
polynomials.)

60. In the planeV defined by the equation 2x1 + x2 −2x3 =
0, consider the bases

� = (�a1, �a2) =
⎛
⎝
⎡
⎣1

2
2

⎤
⎦ ,

⎡
⎣ 2

−2
1

⎤
⎦
⎞
⎠

and

� = (�b1, �b2) =
⎛
⎝
⎡
⎣1

2
2

⎤
⎦ ,

⎡
⎣3

0
3

⎤
⎦
⎞
⎠ .

a. Find the change of basis matrix S from � to �.
b. Find the change of basis matrix from � to �.
c. Write an equation relating the matrices

[ �a1 �a2
]
,[ �b1 �b2

]
, and S = S�→�.

61. In R2, consider the bases

� = (�a1, �a2) =
([

1
2

]
,

[
2

−1

])

and

� = (�b1, �b2) =
([

5
−10

]
,

[
10

5

])
.

a. Find the change of basis matrix S from � to �. Inter-
pret the transformation defined by S geometrically.

b. Find the change of basis matrix from � to �.
c. Write an equation relating the matrices

[ �a1 �a2
]
,[ �b1 �b2

]
, and S = S�→�.

62. In the planeV defined by the equation x1 − 2x2 + 2x3 =
0, consider the basis

� = (�a1, �a2) =
⎛
⎝
⎡
⎣2

1
0

⎤
⎦ ,

⎡
⎣−2

0
1

⎤
⎦
⎞
⎠ .

a. Construct another basis � = (�b1, �b2) of V , such that
neither �b1 nor �b2 has any zero components.

b. Find the change of basis matrix S from � to �.
c. Find the change of basis matrix from � to �.
d. Write an equation relating the matrices

[ �a1 �a2
]
,[ �b1 �b2

]
, and S = S�→�.

63. In the planeV defined by the equation x1 + 3x2 − 2x3 =
0, consider the basis

� = (�a1, �a2) =
⎛
⎝
⎡
⎣−3

1
0

⎤
⎦ ,

⎡
⎣−1

1
1

⎤
⎦
⎞
⎠ .

a. Construct another basis � = (�b1, �b2) of V , such that
neither �b1 nor �b2 has any negative components.

b. Find the change of basis matrix S from � to �.
c. Find the change of basis matrix from � to �.
d. Write an equation relating the matrices

[ �a1 �a2
]
,[ �b1 �b2

]
, and S = S�→�.

64. Let V be the space of all upper triangular 2×2 matrices.
Consider the linear transformation

T

[
a b
0 c

]
= aI2 + bQ + cQ2

from V to V , where Q =
[

1 2
0 3

]
.

a. Find the matrix A of T with respect to the basis

� =
([

1 0
0 0

]
,

[
0 1
0 0

]
,

[
0 0
0 1

])
.

b. Find bases of the image and kernel of T , and thus
determine the rank of T .
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65. Let V be the subspace of R2×2 spanned by the matrices

I2 and Q =
[

a b
c d

]
, where b �= 0.

a. Compute Q2 and find the coordinate vector
[
Q2
]

�,
where � = (I2, Q).

b. Consider the linear transformation T (M) = M Q
from V to V . Find the �-matrix B of T . For which
matrices Q is T an isomorphism?

c. If T fails to be an isomorphism, find the image and
kernel of T . What is the rank of T in that case?

66. Let V be the linear space of all functions in two vari-
ables of the form q(x1, x2) = ax2

1 + bx1x2 + cx2
2 .

Consider the linear transformation

T ( f ) = x2
∂ f

∂x1
− x1

∂ f

∂x2

from V to V .
a. Find the matrix � of T with respect to the basis x2

1 ,
x1x2, x2

2 of V .
b. Find bases of the kernel and image of T .

67. Let V be the linear space of all functions of the form

f (t) = c1 cos(t) + c2 sin(t) + c3t cos(t) + c4t sin(t).

Consider the linear transformation T from V to V given
by

T ( f ) = f ′′ + f.

a. Find the matrix of T with respect to the basis cos(t),
sin(t), t cos(t), t sin(t) of V .

b. Find all solutions f in W of the differential equation

T ( f ) = f ′′ + f = cos(t).

Graph your solution(s). [The differential equation
f ′′+ f = cos(t) describes a forced undamped oscil-
lator. In this example, we observe the phenomenon
of resonance.]

68. Consider the linear space V of all infinite sequences of
real numbers. We define the subset W of V consisting of
all sequences (x0, x1, x2, . . .) such that xn+2 = xn+1 +
6xn for all n ≥ 0.
a. Show that W is a subspace of V .
b. Determine the dimension of W .
c. Does W contain any geometric sequences of the

form (1, c, c2, c3, . . .), for some constant c? Find all
such sequences in W .

d. Can you find a basis of W consisting of geometric
sequences?

e. Consider the sequence in W whose first two terms
are x0 = 0, x1 = 1. Find x2, x3, x4. Find a closed
formula for the nth term xn of this sequence. Hint:
Write this sequence as a linear combination of the
sequences you found in part (d).

69. Consider a basis f1, . . . , fn of Pn−1. Let a1, . . . , an
be distinct real numbers. Consider the n × n matrix M
whose i j th entry is f j (ai ). Show that the matrix M is
invertible. Hint: If the vector

⎡
⎢⎢⎢⎣

c1

c2
...

cn

⎤
⎥⎥⎥⎦

is in the kernel of M , then the polynomial f = c1 f1 +
· · · + cn fn in Pn−1 vanishes at a1, . . . , an ; therefore,
f = 0.

70. Let a1, . . . , an be distinct real numbers. Show that there
exist “weights” w1, . . . , wn such that

∫ 1

−1
f (t) dt =

n∑
i=1

wi f (ai ),

for all polynomials f (t) in Pn−1. Hint: It suffices to
prove the claim for a basis f1, . . . , fn of Pn−1. Exer-
cise 69 is helpful.

71. Find the weights w1, w2, w3 in Exercise 70 for a1 =−1,
a2 = 0, a3 = 1. Compare this with Simpson’s rule in
calculus.

72. In all parts of this problem, let V be the set of all vectors
�x in R4 such that x3 = x1 + x2 and x4 = x2 + x3.
a. Represent V as the kernel of a matrix M . Find

the rank of M and the dimension of V . Show that

� =

⎛
⎜⎝
⎡
⎢⎣

1
0
1
1

⎤
⎥⎦ ,

⎡
⎢⎣

0
1
1
2

⎤
⎥⎦
⎞
⎟⎠ is a basis of V .

b. Find all vectors of the form

⎡
⎢⎢⎣

1
r
r2

r3

⎤
⎥⎥⎦ that are contained

in V . (Be prepared to deal with irrational numbers.)
Can you form a basis � of V consisting of such vec-
tors?

c. Consider the linear transformation T

⎡
⎢⎣

x1
x2
x3
x4

⎤
⎥⎦ =

⎡
⎢⎣

x2
x3
x4

x3 + x4

⎤
⎥⎦ from R4 to R4. If �x is a vector in V ,

show that T (�x) is in V as well. Thus, T induces a
linear transformation from V to V , which we will
denote by F .

d. Find the matrix A of F with respect to the basis �
from part (a). [Note that A will be a 2 × 2 matrix,
since dim(V ) = 2.]
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e. Find the matrix B of F with respect to your basis �
from part (b).

f. Find the change of basis matrix S = S�→�.
g. Write an equation relating the matrices A, B, and S,

and check that this equation holds for the matrices
you found in parts (d), (e), and (f).

73. As in Problem 72, let V be the set of all vectors �x in R4

such that x3 = x1 +x2 and x4 = x2 +x3. In Problem 72
we see that V is a subspace of R4 with dim(V ) = 2.

a. Consider the linear transformation T

⎡
⎢⎣

x1
x2
x3
x4

⎤
⎥⎦ =

⎡
⎢⎣

x4
−x3

x2
−x1

⎤
⎥⎦ from R4 to R4. Show that T (�x) is orthog-

onal to �x , for all �x in R4. If �x is a vector in V , show

that T (�x) is in V as well. Thus, T induces a linear
transformation from V to V , which we will denote
by F .

b. Find the matrix A of F with respect to the basis

� =

⎛
⎜⎝
⎡
⎢⎣

1
0
1
1

⎤
⎥⎦ ,

⎡
⎢⎣

0
1
1
2

⎤
⎥⎦
⎞
⎟⎠.

c. Find the matrix B of F with respect to the basis

� =

⎛
⎜⎝
⎡
⎢⎣

0
1
1
2

⎤
⎥⎦ ,

⎡
⎢⎣

2
−1

1
0

⎤
⎥⎦
⎞
⎟⎠.

d. Find the change of basis matrix S = S�→�.
e. Write an equation relating the matrices A, B, and S,

and check that this equation holds for the matrices
you found in parts (b), (c), and (d).

f. Does there exist a basis � of V such that the �-
matrix C of F is diagonal?
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TRUE OR FALSE?
1. The polynomials of degree less than 7 form a seven-

dimensional subspace of the linear space of all
polynomials.

2. The function T ( f ) = 3 f − 4 f ′ from C∞ to C∞ is a
linear transformation.

3. The lower triangular 2 × 2 matrices form a subspace of
the space of all 2 × 2 matrices.

4. The kernel of a linear transformation is a subspace of
the domain.

5. The space R2×3 is five-dimensional.

6. If f1, . . . , fn is a basis of a linear space V , then any
element of V can be written as a linear combination of
f1, . . . , fn .

7. The space P1 is isomorphic to C.

8. If the kernel of a linear transformation T from P4 to P4
is {0}, then T must be an isomorphism.

9. If W1 and W2 are subspaces of a linear space V , then
the intersection W1 ∩ W2 must be a subspace of V as
well.

10. If T is a linear transformation from P6 to R2×2, then
the kernel of T must be three-dimensional.

11. All bases of P3 contain at least one polynomial of de-
gree ≤2.

12. If T is an isomorphism, then T −1 must be an isomor-
phism as well.

13. The linear transformation T ( f ) = f + f ′′ from C∞ to
C∞ is an isomorphism.

14. All linear transformations from P3 to R2×2 are isomor-
phisms.

15. If T is a linear transformation from V to V , then the
intersection of im(T ) and ker(T ) must be {0}.

16. The space of all upper triangular 4 × 4 matrices is
isomorphic to the space of all lower triangular 4 × 4
matrices.

17. Every polynomial of degree 3 can be expressed as a lin-
ear combination of the polynomial (t −3), (t −3)2, and
(t − 3)3.

18. If a linear space V can be spanned by 10 elements, then
the dimension of V must be ≤ 10.

19. The function T (M) = det(M) from R2×2 to R is a lin-
ear transformation.

20. There exists a 2 × 2 matrix A such that the space V of
all matrices commuting with A is one-dimensional.

21. The linear transformation T (M) =
[

1 2
3 6

]
M from

R2×2 to R2×2 has rank 1.

22. If the matrix of a linear transformation T (with respect

to some basis) is

[
3 5
0 4

]
, then there must exist a

nonzero element f in the domain of T such that
T ( f ) = 3 f .
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23. The kernel of the linear transformation T
(

f (t)
) =

f (t2) from P to P is {0}.
24. If S is any invertible 2 × 2 matrix, then the linear trans-

formation T (M) = SM S is an isomorphism from R2×2

to R2×2.

25. There exists a 2 × 2 matrix A such that the space of all
matrices commuting with A is two-dimensional.

26. There exists a basis of R2×2 that consists of four invert-
ible matrices.

27. If the image of a linear transformation T from P to P
is all of P , then T must be an isomorphism.

28. If f1, f2, f3 is a basis of a linear space V , then f1,
f1 + f2, f1 + f2 + f3 must be a basis of V as well.

29. If a, b, and c are distinct real numbers, then the polyno-
mials (x −b)(x −c), (x −a)(x −c), and (x −a)(x −b)

must be linearly independent.

30. The linear transformation T
(

f (t)
) = f (4t − 3) from

P to P is an isomorphism.

31. If W is a subspace of V , and if W is finite dimensional,
then V must be finite dimensional as well.

32. There exists a linear transformation from R3×3 to R2×2

whose kernel consists of all lower triangular 3 × 3 ma-
trices, while the image consists of all upper triangular
2 × 2 matrices.

33. Every two-dimensional subspace of R2×2 contains at
least one invertible matrix.

34. If � = ( f, g) and � = ( f, f + g) are two bases of a
linear space V , then the change of basis matrix from �

to � is

[
1 1
0 1

]
.

35. If the matrix of a linear transformation T with respect

to a basis ( f, g) is

[
1 2
3 4

]
, then the matrix of T with

respect to the basis (g, f ) is

[
2 1
4 3

]
.

36. The linear transformation T ( f ) = f ′ from Pn to Pn
has rank n, for all positive integers n.

37. If the matrix of a linear transformation T (with respect

to some basis) is

[
2 3
5 7

]
, then T must be an isomor-

phism.

38. There exists a subspace of R3×4 that is isomorphic
to P9.

39. There exist two distinct subspaces W1 and W2 of R2×2

whose union W1 ∪ W2 is a subspace of R2×2 as well.

40. There exists a linear transformation from P to P5 whose
image is all of P5.

41. If f1, . . . , fn are polynomials such that the degree of fk
is k (for k = 1, . . . , n), then f1, . . . , fn must be linearly
independent.

42. The transformation D( f ) = f ′ from C∞ to C∞ is an
isomorphism.

43. If T is a linear transformation from P4 to W with
im(T ) = W , then the inequality dim(W ) ≤ 5 must
hold.

44. The kernel of the linear transformation

T
(

f (t)
) = ∫ 1

0
f (t) dt

from P to R is finite dimensional.

45. If T is a linear transformation from V to V , then
{ f in V : T ( f ) = f } must be a subspace of V .

46. If T is a linear transformation from P6 to P6 that
transforms tk into a polynomial of degree k (for k =
0, 1, . . . , 6), then T must be an isomorphism.

47. There exist invertible 2 × 2 matrices P and Q such that
the linear transformation T (M) = P M − M Q is an
isomorphism.

48. There exists a linear transformation from P6 to C whose
kernel is isomorphic to R2×2.

49. If f1, f2, f3 is a basis of a linear space V , and if f is
any element of V , then the elements f1 + f , f2 + f ,
f3 + f must form a basis of V as well.

50. There exists a two-dimensional subspace of R2×2

whose nonzero elements are all invertible.

51. The space P11 is isomorphic to R3×4 .

52. If T is a linear transformation from V to W , and if both
im(T ) and ker(T ) are finite dimensional, then W must
be finite dimensional.

53. If T is a linear transformation from V to R2×2 with
ker(T ) = {0}, then the inequality dim(V ) ≤ 4 must
hold.

54. The function

T
(

f (t)
) = d

dt

∫ 3t+4

2
f (x) dx

from P5 to P5 is an isomorphism.

55. Any four-dimensional linear space has infinitely many
three-dimensional subspaces.

56. If the matrix of a linear transformation T (with respect

to some basis) is

[
3 5
0 4

]
, then there must exist a

nonzero element f in the domain of T such that
T ( f ) = 4 f .
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57. If the image of a linear transformation T is infinite
dimensional, then the domain of T must be infinite
dimensional.

58. There exists a 2 × 2 matrix A such that the space of all
matrices commuting with A is three-dimensional.

59. If A, B, C , and D are noninvertible 2 × 2 matrices,
then the matrices AB, AC , and AD must be linearly
dependent.

60. There exist two distinct three-dimensional subspaces
W1 and W2 of P4 such that the union W1 ∪ W2 is a
subspace of P4 as well.

61. If the elements f1, . . . , fn (where f1 �= 0) are lin-
early dependent, then one element fk can be expressed
uniquely as a linear combination of the preceding ele-
ments f1, . . . , fk−1.

62. There exists a 3 × 3 matrix P such that the linear trans-
formation T (M) = M P − P M from R3×3 to R3×3 is
an isomorphism.

63. If f1, f2, f3, f4, f5 are elements of a linear space V ,
and if there are exactly two redundant elements in
the list f1, f2, f3, f4, f5, then there must be exactly
two redundant elements in the list f2, f4, f5, f1, f3
as well.

64. There exists a linear transformation T from P6 to P6
such that the kernel of T is isomorphic to the image
of T .

65. If T is a linear transformation from V to W , and if both
im(T ) and ker(T ) are finite dimensional, then V must
be finite dimensional.

66. If the matrix of a linear transformation T (with respect

to some basis) is

[
3 5
0 4

]
, then there must exist a

nonzero element f in the domain of T such that
T ( f ) = 5 f .

67. Every three-dimensional subspace of R2×2 contains at
least one invertible matrix.
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5
Orthogonality and Least Squares

5.1 Orthogonal Projections and Orthonormal Bases

In Section 2.2, we took a first look at some linear transformations that are impor-
tant in geometry: orthogonal projections, reflections, and rotations in particular. In
this chapter, we will generalize these ideas. In Sections 5.1 and 5.2, we will dis-
cuss the orthogonal projection onto a subspace V of Rn . In Section 5.3, we will
study linear transformations that preserve length, such as reflections and rotations.
In Section 5.4, we will present an important application of orthogonal projections:
the method of least squares in statistics. Finally, in Section 5.5, we will go a step
further and generalize all these ideas from Rn to linear spaces.

First, we will discuss some basic concepts of geometry.

Definition 5.1.1 Orthogonality, length, unit vectors

a. Two vectors �v and �w in Rn are called perpendicular or orthogonal1 if
�v · �w = 0.

b. The length (or magnitude or norm) of a vector �v in Rn is ‖�v‖ = √�v · �v.

c. A vector �u in Rn is called a unit vector if its length is 1, (i.e., ‖�u‖ = 1, or
�u · �u = 1).

If �v is a nonzero vector in Rn , then

�u = 1

‖�v‖ �v
is a unit vector. See Exercise 25b.

A vector �x in Rn is said to be orthogonal to a subspace V of Rn if �x is orthog-
onal to all the vectors �v in V , meaning that �x · �v = 0 for all vectors �v in V .

1The two terms are synonymous: Perpendicular comes from Latin and orthogonal from Greek.

202
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If we are given a basis �v1, . . . , �vm of V , then �x is orthogonal to V if (and only
if) �x is orthogonal to all the vectors �v1, . . . , �vm . See Exercise 22.

For example, a vector �x in R3 is orthogonal to a plane V in R3 if (and only if)
�x is orthogonal to two vectors �v1, �v2 that form a basis of V . See Figure 1.

v�1

v�2

x�

V

Figure 1

Definition 5.1.2 Orthonormal vectors

The vectors �u1, �u2, . . . , �um in Rn are called orthonormal if they are all unit vec-
tors and orthogonal to one another:

�ui · �u j =
{

1 if i = j
0 if i �= j

EXAMPLE 1 The vectors �e1, �e2, . . . , �en in Rn are orthonormal. �

EXAMPLE 2 For any scalar θ , the vectors

[
cos θ

sin θ

]
and

[− sin θ

cos θ

]
are orthonormal. See Figure 2.

�

cos
−sin

cos
sin

Figure 2

EXAMPLE 3 The vectors

�u1 =

⎡
⎢⎢⎣

1/2
1/2
1/2
1/2

⎤
⎥⎥⎦ , �u2 =

⎡
⎢⎢⎣

1/2
1/2

−1/2
−1/2

⎤
⎥⎥⎦ , �u3 =

⎡
⎢⎢⎣

1/2
−1/2

1/2
−1/2

⎤
⎥⎥⎦

in R4 are orthonormal. (Verify this.) Can you find a vector �u4 in R4 such that all the
vectors �u1, �u2, �u3, �u4 are orthonormal? See Exercise 16. �
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The following properties of orthonormal vectors are often useful:

Theorem 5.1.3 Properties of orthonormal vectors

a. Orthonormal vectors are linearly independent.

b. Orthonormal vectors �u1, . . . , �un in Rn form a basis of Rn .

Proof a. Consider a relation

c1�u1 + c2�u2 + · · · + ci �ui + · · · + cm �um = �0
among the orthonormal vectors �u1, �u2, . . . , �um in Rn . Let us form the dot
product of each side of this equation with �ui :

(c1�u1 + c2�u2 + · · · + ci �ui + · · · + cm �um) · �ui = �0 · �ui = 0.

Because the dot product is distributive (see Theorem A5 in the Appendix),

c1(�u1 · �ui ) + c2(�u2 · �ui ) + · · · + ci (�ui · �ui ) + · · · + cm(�um · �ui ) = 0.

We know that �ui · �ui = 1, and all other dot products �u j · �ui are zero.
Therefore, ci = 0. Since this holds for all i = 1, . . . , m, it follows that the
vectors �u1, . . . , �um are linearly independent.

b. This follows from part (a) and Summary 3.3.10. (Any n linearly indepen-
dent vectors in Rn form a basis of Rn .) �

Orthogonal Projections
In Section 2.2 we discussed the basic idea behind an orthogonal projection: If �x is a
vector in R2 and L is a line in R2, then we can resolve the vector �x into a component
�x‖ parallel to L and a component �x⊥ perpendicular to L ,

�x = �x‖ + �x⊥,

and this decomposition is unique. The vector �x‖ is called the orthogonal projection
of �x onto L . See Figure 3.

x�

O

L
x�⊥ (translated)

x�ll = projL(x�)

Figure 3

Let’s see how we can generalize this idea to any subspace V of Rn .

Theorem 5.1.4 Orthogonal projection

Consider a vector �x in Rn and a subspace V of Rn . Then we can write

�x = �x‖ + �x⊥,

where �x‖ is in V and �x⊥ is perpendicular to V , and this representation is unique.



5.1 Orthogonal Projections and Orthonormal Bases 205

Theorem 5.1.4 Orthogonal projection (Continued)

The vector �x‖ is called the orthogonal projection of �x onto V , denoted by
projV �x . See Figure 4.

The transformation T (�x) = projV �x = �x‖ from Rn to Rn is linear.

x�

0V

x�⊥

x�‖ = projV x�

Figure 4

Proof Consider an orthonormal basis �u1, . . . , �um of V (see Definition 5.1.2).2 If a decom-
position �x = �x‖ + �x⊥ (with �x‖ in V and �x⊥ orthogonal to V ) does exist, then we
can write

�x‖ = c1�u1 + · · · + ci �ui + · · · + cm �um,

for some coefficients c1, . . . , ci , . . . , cm yet to be determined (since �x‖ is in V ). We
know that

�x⊥ = �x − �x‖ = �x − c1�u1 − · · · − ci �ui − · · · − cm �um

is orthogonal to V , meaning that �x − c1�u1 − · · · − ci �ui − · · · − cm �um is orthogonal
to all the vectors �ui in V :

0 = �ui · (�x − c1�u1 − · · · − ci �ui − · · · − cm �um)

= �ui · �x − c1 (�ui · �u1)︸ ︷︷ ︸
0

− · · · − ci (�ui · �ui )︸ ︷︷ ︸
1

− · · · − cm (�ui · �um)︸ ︷︷ ︸
0

= �ui · �x − ci

See Definition 5.1.2. It follows that ci = �ui · �x , so that

�x‖ = (�u1 · �x)�u1 + · · · + (�ui · �x)�ui + · · · + (�um · �x)�um

and

�x⊥ = �x − �x‖ = �x − (�u1 · �x)�u1 − · · · − (�ui · �x)�ui − · · · − (�um · �x)�um .

Note that �ui · �x⊥ = 0, by construction, so that �x⊥ is orthogonal to V , as required.
(Recall the remarks preceding Figure 1.)

We leave the verification of the linearity of the transformation T (�x) =
projV �x = �x‖ as Exercise 24. �

2In the next section we will introduce an algorithm for constructing an orthonormal basis of any
subspace V of Rn . Here we need to convince ourselves merely that such a basis of V does indeed
exist. We will present a proof by induction on m = dim(V ), for a fixed n. See Appendix B.1. If
dim(V ) = 1, then a unit vector �u in V will form an orthonormal basis of V . For the induction step
from m − 1 to m, consider a subspace V of Rn with dim(V ) = m, and let �u be a unit vector in V .
Consider the linear transformation T (�x) = �x · �u from V to R. By the rank-nullity theorem, the kernel
of T will be an (m − 1)-dimensional subspace W of V , consisting of all vectors �x in V that are
orthogonal to �u [since T (�x) = �x · �u = 0]. By the induction hypothesis, there exists an orthonormal
basis (�u1, . . . , �um−1) of W , and (�u1, . . . , �um−1, �u) will be an orthonormal basis of V .
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Theorem 5.1.5 Formula for the orthogonal projection

If V is a subspace of Rn with an orthonormal basis �u1, . . . , �um , then

projV �x = �x‖ = (�u1 · �x)�u1 + · · · + (�um · �x)�um .

for all �x in Rn .

Note that projV �x is the sum of all vectors (�ui · �x)�ui , for i = 1, . . . , m, repre-
senting the orthogonal projections of �x onto the lines spanned by the basis vectors
�u1, . . . , �um of V . See Definition 2.2.1.

For example, projecting a vector in R3 orthogonally onto the x1–x2-plane
amounts to the same as projecting it onto the x1-axis, then onto the x2-axis, and
then adding the resultant vectors. See Figure 5.

x1
x2
x3

x� =

0
x2
0

x1
x2
0

x1
0
0

Figure 5

EXAMPLE 4 Consider the subspace V = im(A) of R4, where

A =

⎡
⎢⎢⎣

1 1
1 −1
1 −1
1 1

⎤
⎥⎥⎦ .

Find projV �x , for

�x =

⎡
⎢⎢⎣

1
3
1
7

⎤
⎥⎥⎦ .

Solution
Since the two column vectors of A happen to be linearly independent, they form a
basis of V . Since they happen to be orthogonal, we can construct an orthonormal
basis of V merely by dividing each of these two vectors by its length (2 for both
vectors):

�u1 =

⎡
⎢⎢⎣

1/2
1/2
1/2
1/2

⎤
⎥⎥⎦ , �u2 =

⎡
⎢⎢⎣

1/2
−1/2
−1/2

1/2

⎤
⎥⎥⎦ .



5.1 Orthogonal Projections and Orthonormal Bases 207

Then

projV �x = (�u1 · �x)�u1 + (�u2 · �x)�u2 = 6�u1 + 2�u2 =

⎡
⎢⎢⎣

3
3
3
3

⎤
⎥⎥⎦+

⎡
⎢⎢⎣

1
−1
−1

1

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

4
2
2
4

⎤
⎥⎥⎦ .

To check this answer, verify that �x − projV �x is perpendicular to both �u1 and �u2. �
What happens when we apply Theorem 5.1.5 to the subspace V = Rn of Rn

with orthonormal basis �u1, �u2, . . . , �un? Clearly, projV �x = �x , for all �x in Rn by
Theorem 5.1.4. Therefore,

�x = (�u1 · �x)�u1 + · · · + (�un · �x)�un,

for all �x in Rn .

Theorem 5.1.6 Consider an orthonormal basis �u1, . . . , �un of Rn . Then

�x = (�u1 · �x)�u1 + · · · + (�un · �x)�un,

for all �x in Rn .

This means that if you project �x onto all the lines spanned by the basis vectors
�ui and add the resultant vectors, you get the vector �x back. Figure 6 illustrates this
in the case n = 2.

x� = (u�1 · x�)u�1 + (u�2 · x�)u�2

(u�2 · x�)u�2

(u�1 · x�)u�1

u�2

u�1

O

Figure 6

What is the practical significance of Theorem 5.1.6? Whenever we have a basis
�v1, . . . , �vn of Rn , any vector �x in Rn can be expressed uniquely as a linear combi-
nation of the �vi , by Theorem 3.2.10:

�x = c1�v1 + c2�v2 + · · · + cn�vn.

To find the coordinates ci , we generally need to solve a linear system, which may
involve a fair amount of computation. However, if we are dealing with an orthonor-
mal basis �u1, . . . , �un , then we can find the ci much more easily, using the formula

ci = �ui · �x .

EXAMPLE 5 Consider the orthogonal projection T (�x) = projV �x onto a subspace V of Rn . De-
scribe the image and kernel of T .
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Solution
By definition of an orthogonal projection, the image of T is the subspace V , while
the kernel of T consists of all those vectors �x in Rn such that T (�x) = projV �x =
�x‖ = �0, meaning that �x = �x⊥. In other words, the kernel consists of those vectors
�x in Rn that are orthogonal to V . This space deserves a name. �

Definition 5.1.7 Orthogonal complement

Consider a subspace V of Rn . The orthogonal complement V ⊥ of V is the set of
those vectors �x in Rn that are orthogonal to all vectors in V :

V ⊥ = {�x in Rn: �v · �x = 0, for all �v in V }.
Note that V ⊥ is the kernel of the orthogonal projection onto V .

Take another look at Figures 3 and 4, and identify the kernel of the projection
in each case.

In Figure 7, we sketch the orthogonal complements of a line L and of a plane
V in R3. Note that both L⊥ and V ⊥ are subspaces of R3. Furthermore,

dim(L) + dim(L⊥) = 1 + 2 = 3 = dim(R3),

and

dim(V ) + dim(V ⊥) = 2 + 1 = 3 = dim(R3).

We can generalize these observations.

O

L⊥

L

O

V

V⊥

Figure 7

Theorem 5.1.8 Properties of the orthogonal complement

Consider a subspace V of Rn .

a. The orthogonal complement V ⊥ of V is a subspace of Rn .

b. The intersection of V and V ⊥ consists of the zero vector: V ∩ V ⊥ = {�0}.
c. dim(V ) + dim(V ⊥) = n.

d. (V ⊥)
⊥ = V .

Proof a. If T (�x) = projV �x , then V ⊥ = ker(T ), a subspace of Rn .

b. If a vector �x is in V as well as in V ⊥, then �x is orthogonal to itself: �x · �x =
‖�x‖2 = 0, so that �x must equal �0, as claimed.
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c. We can apply the rank-nullity theorem to the linear transformation
T (�x) = projV �x :

n = dim(imT ) + dim(ker T ) = dim(V ) + dim(V ⊥).

d. We leave this proof as Exercise 23. �

From Pythagoras to Cauchy
EXAMPLE 6 Consider a line L in R3 and a vector �x in R3. What can you say about the relation-

ship between the lengths of the vectors �x and projL �x?

Solution
Applying the Pythagorean theorem to the shaded right triangle in Figure 8, we find
that ‖projL �x‖ ≤ ‖�x‖. The statement is an equality if (and only if) �x is on L . �

projLx� L

x�

O

Figure 8

translated y�

x�

x� + y�

O

Figure 9

Does this inequality hold in higher-dimensional cases? We have to examine
whether the Pythagorean theorem holds in Rn .

Theorem 5.1.9 Pythagorean theorem

Consider two vectors �x and �y in Rn . The equation

‖�x + �y‖2 = ‖�x‖2 + ‖�y‖2

holds if (and only if) �x and �y are orthogonal. See Figure 9.

Proof The verification is straightforward:

‖�x + �y‖2 = (�x + �y) · (�x + �y) = �x · �x + 2(�x · �y) + �y · �y = ‖�x‖2 + 2(�x · �y) + ‖�y‖2

= ‖�x‖2 + ‖�y‖2 if (and only if) �x · �y = 0. �
Now we can generalize Example 6.

Theorem 5.1.10 An inequality for the magnitude of projV (�x)

Consider a subspace V of Rn and a vector �x in Rn . Then

‖projV �x‖ ≤ ‖�x‖.
The statement is an equality if (and only if) �x is in V .

Proof We apply the Pythagorean theorem (see Figure 10):

‖�x‖2 = ‖projV �x‖2 + ‖�x⊥‖2.

It follows that ‖projV �x‖ ≤ ‖�x‖, as claimed. �
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x�⊥ (translated)

projV(x�) = x�ll

x�

O

Figure 10

For example, let V be a one-dimensional subspace of Rn spanned by a
(nonzero) vector �y. We introduce the unit vector

�u = 1

‖�y‖ �y

in V . See Figure 11.

O

x�

u�

y�

V

Figure 11

We know that

projV �x = (�x · �u)�u,

for any �x in Rn . Theorem 5.1.10 tells us that

‖�x‖ ≥ ‖projV �x‖ = ‖(�x · �u)�u‖
step 3︷︸︸︷= |�x · �u| =

∣∣∣∣�x ·
(

1

‖�y‖ �y
)∣∣∣∣ = 1

‖�y‖|�x · �y|.

To justify step 3, note that ‖k�v‖ = |k|‖�v‖, for all vectors �v in Rn and all scalars k.
See Exercise 25a. We conclude that

|�x · �y|
‖�y‖ ≤ ‖�x‖.

Multiplying both sides of this inequality by ‖�y‖, we find the following useful result:

Theorem 5.1.11 Cauchy–Schwarz inequality3

If �x and �y are vectors in Rn , then

|�x · �y| ≤ ‖�x‖‖�y‖.
This statement is an equality if (and only if) �x and �y are parallel.

3Named after the French mathematician Augustin-Louis Cauchy (1789–1857) and the German
mathematician Hermann Amandus Schwarz (1843–1921).
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Consider two nonzero vectors �x and �y in R3. You may know an expression for
the dot product �x · �y in terms of the angle θ between the two vectors (see Figure 12):

�x · �y = ‖�x‖‖�y‖ cos θ.

x�

y�

Figure 12

This formula allows us to find the angle between two nonzero vectors �x and �y
in R3:

cos θ = �x · �y
‖�x‖‖�y‖ or θ = arccos

�x · �y
‖�x‖‖�y‖ .

In Rn , where we have no intuitive notion of an angle between two vectors, we can
use this formula to define the angle:

Definition 5.1.12 Angle between two vectors

Consider two nonzero vectors �x and �y in Rn . The angle θ between these vectors
is defined as

θ = arccos
�x · �y

‖�x‖‖�y‖ .

Note that θ is between 0 and π , by definition of the inverse cosine function.

We have to make sure that

arccos
�x · �y

‖�x‖‖�y‖
is defined; that is,

�x · �y
‖�x‖‖�y‖

is between −1 and 1, or, equivalently,∣∣∣∣ �x · �y
‖�x‖‖�y‖

∣∣∣∣ = |�x · �y|
‖�x‖‖�y‖ ≤ 1.

But this follows from the Cauchy–Schwarz inequality, |�x · �y| ≤ ‖�x‖‖�y‖.

EXAMPLE 7 Find the angle between the vectors

�x =

⎡
⎢⎢⎣

1
0
0
0

⎤
⎥⎥⎦ and �y =

⎡
⎢⎢⎣

1
1
1
1

⎤
⎥⎥⎦ .

Solution

θ = arccos
�x · �y

‖�x‖‖�y‖ = arccos
1

1 · 2
= π

3 �

Here is an application to statistics of some concepts introduced in this section.
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Correlation (Optional)
Consider the meat consumption (in grams per day per person) and incidence of
colon cancer (per 100,000 women per year) in various industrialized countries.

Country Meat Consumption Cancer Rate

Japan 26 7.5
Finland 101 9.8
Israel 124 16.4
Great Britain 205 23.3
United States 284 34.0

Mean 148 18.2

Can we detect a positive or negative correlation4 between meat consumption
and cancer rate? Does a country with high meat consumption have high cancer rates,
and vice versa? By high, we mean “above average,” of course. A quick look at the
data shows such a positive correlation: In Great Britain and the United States, both
meat consumption and cancer rate are above average. In the three other countries,
they are below average. This positive correlation becomes more apparent when we
list the preceding data as deviations from the mean (above or below the average).

Meat Consumption Cancer Rate
Country (Deviation from Mean) (Deviation from Mean)

Japan −122 −10.7
Finland −47 −8.4
Israel −24 −1.8
Great Britain 57 5.1
United States 136 15.8

Perhaps even more informative is a scatter plot of the deviation data. See
Figure 13.

Japan

Finland

Israel

Great Britain

United States

100−100

−10

10

Cancer rate
(deviation
from mean)

Meat consumption
(deviation from mean)

Figure 13

4We are using the term “correlation” in a colloquial, qualitative sense. Our goal is to quantify this
term.
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A positive correlation is indicated when most of the data points (in our case, all
of them) are located in the first and third quadrant.

To process these data numerically, it is convenient to represent the deviation for
both characteristics (meat consumption and cancer rate) as vectors in R5:

�x =

⎡
⎢⎢⎢⎢⎣

−122
−47
−24

57
136

⎤
⎥⎥⎥⎥⎦ , �y =

⎡
⎢⎢⎢⎢⎣

−10.7
−8.4
−1.8

5.1
15.8

⎤
⎥⎥⎥⎥⎦ .

We will call these two vectors the deviation vectors of the two characteristics.
In the case of a positive correlation, most of the corresponding entries xi , yi

of the deviation vectors have the same sign (both positive or both negative). In our
example, this is the case for all entries. This means that the product xi yi will be
positive most of the time; hence, the sum of all these products will be positive. But
this sum is simply the dot product of the two deviation vectors.

Still using the term “correlation” in a colloquial sense, we conclude the
following:

Consider two characteristics of a population, with deviation vectors �x and �y.
There is a positive correlation between the two characteristics if (and only if)
�x · �y > 0.

A positive correlation between the characteristics means that the angle θ be-
tween the deviation vectors is less than 90◦. See Figure 14.

Acute angle Right angle Obtuse angle

(a) (b) (c)

x�

y�

x�

y�

x�

y�

Figure 14 (a) Positive correlation: �x · �y > 0. (b) No correlation: �x · �y = 0. (c) Negative
correlation: �x · �y < 0.

We can use the cosine of the angle θ between �x and �y as a quantitative measure
for the correlation between the two characteristics.

Definition 5.1.13 Correlation coefficient

The correlation coefficient r between two characteristics of a population is the
cosine of the angle θ between the deviation vectors �x and �y for the two charac-
teristics:

r = cos(θ) = �x · �y
‖�x‖‖�y‖ .
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In the case of meat consumption and cancer, we find that

r ≈ 4182.9

198.53 · 21.539
≈ 0.9782.

The angle between the two deviation vectors is arccos(r) ≈ 0.21 (radians) ≈
12◦.

Note that the length of the deviation vectors is irrelevant for the correlation: If
we had measured the cancer rate per 1,000,000 women (instead of 100,000), the
vector �y would be 10 times longer, but the correlation would be the same.

The correlation coefficient r is always between −1 and 1; the cases when r = 1
(representing a perfect positive correlation) and r = −1 (perfect negative correla-
tion) are of particular interest. See Figure 15. In both cases, the data points (xi , yi )

will be on the straight line y = mx . See Figure 16.

r = 1 r = −1

(a) (b)

x� x�y� y�

Figure 15 (a) �y = m�x , for positive m. (b) �y = m�x , for negative m.

y

x

yi = mxir = 1
y

x

yi = mxi

r = −1

Figure 16

Note that even a strong positive correlation (an r close to 1) does not necessar-
ily imply a causal relationship. Based only on the work we did above, we cannot
conclude that high meat consumption causes colon cancer. Take a statistics course
to learn more about these important issues!

EXERCISES 5.1
GOAL Apply the basic concepts of geometry in Rn:
length, angles, orthogonality. Use the idea of an orthog-
onal projection onto a subspace. Find this projection if an
orthonormal basis of the subspace is given.

Find the length of each of the vectors �v in Exercises 1
through 3.

1. �v =
[

7
11

]
2. �v =

⎡
⎣2

3
4

⎤
⎦ 3. �v =

⎡
⎢⎢⎣

2
3
4
5

⎤
⎥⎥⎦
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Find the angle θ between each of the pairs of vectors �u and
�v in Exercises 4 through 6.

4. �u =
[

1
1

]
, �v =
[

7
11

]
5. �u =

⎡
⎣1

2
3

⎤
⎦, �v =

⎡
⎣2

3
4

⎤
⎦

6. �u =

⎡
⎢⎢⎣

1
−1

2
−2

⎤
⎥⎥⎦, �v =

⎡
⎢⎢⎣

2
3
4
5

⎤
⎥⎥⎦

For each pair of vectors �u, �v listed in Exercises 7 through
9, determine whether the angle θ between �u and �v is acute,
obtuse, or right.

7. �u =
[

2
−3

]
, �v =
[

5
4

]
8. �u =

⎡
⎣2

3
4

⎤
⎦, �v =

⎡
⎣ 2

−8
5

⎤
⎦

9. �u =

⎡
⎢⎢⎣

1
−1

1
−1

⎤
⎥⎥⎦, �v =

⎡
⎢⎢⎣

3
4
5
3

⎤
⎥⎥⎦

10. For which value(s) of the constant k are the vectors

�u =
⎡
⎣2

3
4

⎤
⎦ and �v =

⎡
⎣1

k
1

⎤
⎦

perpendicular?

11. Consider the vectors

�u =

⎡
⎢⎢⎢⎣

1
1
...

1

⎤
⎥⎥⎥⎦ and �v =

⎡
⎢⎢⎢⎣

1
0
...

0

⎤
⎥⎥⎥⎦ in Rn .

a. For n = 2, 3, 4, find the angle θ between �u and �v.
For n = 2 and 3, represent the vectors graphically.

b. Find the limit of θ as n approaches infinity.

12. Give an algebraic proof for the triangle inequality

‖�v + �w‖ ≤ ‖�v‖ + ‖ �w‖.
Draw a sketch. Hint: Expand ‖�v+ �w‖2 = (�v+ �w) · (�v+
�w). Then use the Cauchy–Schwarz inequality.

13. Leg traction. The accompanying figure shows how a leg
may be stretched by a pulley line for therapeutic pur-
poses. We denote by �F1 the vertical force of the weight.
The string of the pulley line has the same tension ev-
erywhere; hence, the forces �F2 and �F3 have the same
magnitude as �F1. Assume that the magnitude of each
force is 10 pounds. Find the angle θ so that the magni-
tude of the force exerted on the leg is 16 pounds. Round
your answer to the nearest degree. (Adapted from E.
Batschelet, Introduction to Mathematics for Life Scien-
tists, Springer, 1979.)

F3

F2

F1

14. Leonardo da Vinci and the resolution of forces.
Leonardo (1452–1519) asked himself how the weight
of a body, supported by two strings of different length,
is apportioned between the two strings.

longer string shorter string

weight

D

AEB

Three forces are acting at the point D: the tensions �F1
and �F2 in the strings and the weight �W . Leonardo be-
lieved that

‖ �F1‖
‖ �F2‖

= E A

E B
.

AEB

W

F�2
F�1

D

�

Was he right? (Source: Les Manuscrits de Léonard de
Vinci, published by Ravaisson-Mollien, Paris, 1890.)
Hint: Resolve �F1 into a horizontal and a vertical com-
ponent; do the same for �F2. Since the system is at rest,
the equation �F1 + �F2 + �W = �0 holds. Express the ratios

‖ �F1‖
‖ �F2‖

and
E A

E B

in terms of α and β, using trigonometric functions, and
compare the results.



216 CHAPTER 5 Orthogonality and Least Squares

15. Consider the vector

�v =

⎡
⎢⎢⎣

1
2
3
4

⎤
⎥⎥⎦ in R4.

Find a basis of the subspace of R4 consisting of all vec-
tors perpendicular to �v.

16. Consider the vectors

�u1 =

⎡
⎢⎢⎣

1/2
1/2
1/2
1/2

⎤
⎥⎥⎦ , �u2 =

⎡
⎢⎢⎣

1/2
1/2

−1/2
−1/2

⎤
⎥⎥⎦ , �u3 =

⎡
⎢⎢⎣

1/2
−1/2

1/2
−1/2

⎤
⎥⎥⎦

in R4. Can you find a vector �u4 in R4 such that the vec-
tors �u1, �u2, �u3, �u4 are orthonormal? If so, how many
such vectors are there?

17. Find a basis for W⊥, where

W = span

⎛
⎜⎜⎝
⎡
⎢⎢⎣

1
2
3
4

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣

5
6
7
8

⎤
⎥⎥⎦
⎞
⎟⎟⎠ .

18. Here is an infinite-dimensional version of Euclidean
space: In the space of all infinite sequences, consider the
subspace �2 of square-summable sequences [i.e., those
sequences (x1, x2, . . .) for which the infinite series x2

1 +
x2

2 + · · · converges]. For �x and �y in �2, we define

‖�x‖ =
√

x2
1 + x2

2 + · · ·, �x · �y = x1 y1 + x2 y2 + · · · .
(Why does the series x1 y1 + x2 y2 + · · · converge?)
a. Check that �x = (1, 1

2 , 1
4 , 1

8 , 1
16 , . . .) is in �2, and

find ‖�x‖. Recall the formula for the geometric series:
1 + a + a2 + a3 + · · · = 1/(1 − a), if −1 < a < 1.

b. Find the angle between (1, 0, 0, . . .) and
(1, 1

2 , 1
4 , 1

8 , . . .).
c. Give an example of a sequence (x1, x2, . . .) that

converges to 0 (i.e., lim
n→∞ xn = 0) but does not

belong to �2.
d. Let L be the subspace of �2 spanned by

(1, 1
2 , 1

4 , 1
8 , . . .). Find the orthogonal projection of

(1, 0, 0, . . .) onto L .
The Hilbert space �2 was initially used mostly in
physics: Werner Heisenberg’s formulation of quantum
mechanics is in terms of �2. Today, this space is used in
many other applications, including economics. See, for
example, the work of the economist Andreu Mas-Colell
of the University of Barcelona.

19. For a line L in R2, draw a sketch to interpret the fol-
lowing transformations geometrically:
a. T (�x) = �x − projL �x
b. T (�x) = �x − 2projL �x
c. T (�x) = 2projL �x − �x

20. Refer to Figure 13 of this section. The least-squares
line for these data is the line y = mx that fits the data
best, in that the sum of the squares of the vertical dis-
tances between the line and the data points is minimal.
We want to minimize the sum

(mx1 − y1)
2 + (mx2 − y2)

2 + · · · + (mx5 − y5)
2.

y = mx
(xi, mxi)

mxi

yi

(xi, yi)

xi

mxi − yi

In vector notation, to minimize the sum means to find
the scalar m such that

‖m�x − �y‖2

is minimal. Arguing geometrically, explain how you
can find m. Use the accompanying sketch, which is not
drawn to scale.

x�

y�

Find m numerically, and explain the relationship be-
tween m and the correlation coefficient r . You may find
the following information helpful:

�x · �y = 4182.9, ‖�x‖ ≈ 198.53, ‖�y‖ ≈ 21.539.

To check whether your solution m is reasonable, draw
the line y = mx in Figure 13. (A more thorough dis-
cussion of least-squares approximations will follow in
Section 5.4.)

21. Find scalars a, b, c, d , e, f , g such that the vectors⎡
⎣ a

d
f

⎤
⎦ ,

⎡
⎣ b

1
g

⎤
⎦ ,

⎡
⎣ c

e
1/2

⎤
⎦

are orthonormal.

22. Consider a basis �v1, �v2, . . . , �vm of a subspace V of Rn .
Show that a vector �x in Rn is orthogonal to V if (and
only if) �x is orthogonal to all the vectors �v1, . . . , �vm .

23. Prove Theorem 5.1.8d. (V ⊥)⊥ = V for any subspace
V of Rn . Hint: Show that V ⊆ (V ⊥)⊥, by the defini-
tion of V ⊥; then show that dim(V ) = dim(V ⊥)⊥, by
Theorem 5.1.8c.

24. Complete the proof of Theorem 5.1.4: Orthogonal pro-
jections are linear transformations.
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25. a. Consider a vector �v in Rn , and a scalar k. Show that

‖k�v‖ = |k|‖�v‖.
b. Show that if �v is a nonzero vector in Rn , then

�u = 1

‖�v‖ �v is a unit vector.

26. Find the orthogonal projection of

⎡
⎣49

49
49

⎤
⎦ onto the sub-

space of R3 spanned by⎡
⎣2

3
6

⎤
⎦ and

⎡
⎣ 3

−6
2

⎤
⎦ .

27. Find the orthogonal projection of 9�e1 onto the subspace
of R4 spanned by⎡

⎢⎢⎣
2
2
1
0

⎤
⎥⎥⎦ and

⎡
⎢⎢⎣

−2
2
0
1

⎤
⎥⎥⎦ .

28. Find the orthogonal projection of⎡
⎢⎢⎣

1
0
0
0

⎤
⎥⎥⎦

onto the subspace of R4 spanned by⎡
⎢⎢⎣

1
1
1
1

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣

1
1

−1
−1

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣

1
−1
−1

1

⎤
⎥⎥⎦ .

29. Consider the orthonormal vectors �u1, �u2, �u3, �u4, �u5 in
R10. Find the length of the vector

�x = 7�u1 − 3�u2 + 2�u3 + �u4 − �u5.

30. Consider a subspace V of Rn and a vector �x in Rn .
Let �y = projV �x . What is the relationship between the
following quantities?

‖�y‖2 and �y · �x
31. Consider the orthonormal vectors �u1, �u2, . . . , �um in Rn ,

and an arbitrary vector �x in Rn . What is the relationship
between the following two quantities?

p = (�u1 · �x)2 + (�u2 · �x)2 +· · ·+ (�um · �x)2 and ‖�x‖2

When are the two quantities equal?

32. Consider two vectors �v1 and �v2 in Rn . Form the matrix

G =
[ �v1 · �v1 �v1 · �v2

�v2 · �v1 �v2 · �v2

]
.

For which choices of �v1 and �v2 is the matrix G invert-
ible?

33. Among all the vectors in Rn whose components add
up to 1, find the vector of minimal length. In the case
n = 2, explain your solution geometrically.

34. Among all the unit vectors in Rn , find the one for which
the sum of the components is maximal. In the case
n = 2, explain your answer geometrically, in terms
of the unit circle and the level curves of the function
x1 + x2.

35. Among all the unit vectors �u =
⎡
⎣x

y
z

⎤
⎦ in R3, find the

one for which the sum x + 2y + 3z is minimal.

36. There are three exams in your linear algebra class, and
you theorize that your score in each exam (out of 100)
will be numerically equal to the number of hours you
study for that exam. The three exams count 20%, 30%,
and 50%, respectively, toward the final grade. If your
(modest) goal is to score 76% in the course, how many
hours a, b, and c should you study for each of the three
exams to minimize quantity a2+b2+c2? This quadratic
model reflects the fact that it may be four times as
painful to study for 10 hours than for just 5 hours.

37. Consider a plane V in R3 with orthonormal basis
�u1, �u2. Let �x be a vector in R3. Find a formula for
the reflection R(�x) of �x about the plane V .

38. Consider three unit vectors �v1, �v2, and �v3 in Rn . We are
told that �v1 · �v2 = �v1 · �v3 = 1/2. What are the possible
values of �v2 · �v3? What could the angle between the
vectors �v2 and �v3 be? Give examples; draw sketches for
the cases n = 2 and n = 3.

39. Can you find a line L in Rn and a vector �x in Rn such
that

�x · projL �x
is negative? Explain, arguing algebraically.

In Exercises 40 through 46, consider vectors �v1, �v2, �v3 in
R4; we are told that �vi · �v j is the entry ai j of matrix A.

A =
⎡
⎣ 3 5 11

5 9 20
11 20 49

⎤
⎦

40. Find ‖�v2‖.

41. Find the angle enclosed by vectors �v2 and �v3.

42. Find ‖�v1 + �v2‖.

43. Find proj�v2
(�v1), expressed as a scalar multiple of �v2.

44. Find a nonzero vector �v in span(�v2, �v3) such that �v is
orthogonal to �v3. Express �v as a linear combination of
�v2 and �v3.

45. Find projV (�v1), where V = span(�v2, �v3). Express your
answer as a linear combination of �v2 and �v3.

46. Find projV (�v3), where V = span(�v1, �v2). Express your
answer as a linear combination of �v1 and �v2.
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5.2 Gram–Schmidt Process and QR Factorization

One of the main themes of this chapter is the study of the orthogonal projection
onto a subspace V of Rn . In Theorem 5.1.5, we gave a formula for this projection,

projV �x = (�u1 · �x)�u1 + · · · + (�um · �x)�um,

where �u1, . . . , �um is an orthonormal basis of V . Now we will show how to construct
such an orthonormal basis. We will present an algorithm that allows us to convert
any basis �v1, . . . , �vm of a subspace V of Rn into an orthonormal basis �u1, . . . , �um

of V .
Let us first think about low-dimensional cases. If V is a line with basis �v1, we

can find an orthonormal basis �u1 simply by dividing �v1 by its length:

�u1 = 1

‖�v1‖ �v1.

When V is a plane with basis �v1, �v2, we first construct

�u1 = 1

‖�v1‖ �v1

as before. See Figure 1.

VV

v�2

v�1
O

v�2

O
u�1 =        v�1

1
‖v�1‖

Figure 1

Now comes the crucial step: We have to find a vector in V orthogonal to �u1.
(Initially, we will not insist that this vector be a unit vector.) Let’s resolve the vector
�v2 into its components parallel and perpendicular to the line L spanned by �u1:

�v2 = �v‖
2 + �v2

⊥

See Figure 2. Then the vector

�v2
⊥ = �v2 − �v‖

2 = �v2 − projL(�v2) = �v2 − (�u1 · �v2)�u1

is orthogonal to �u1.

VV

v�2

v�2
ll

v�2
⊥

v�2
⊥ = v�2 − (u�1 · v�2)u�1

u�1 u�1O L O

Figure 2
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The last step is straightforward: We divide the vector �v2
⊥ by its length to get

the second vector �u2 of an orthonormal basis (see Figure 3):

�u2 = 1

‖ �v2
⊥‖ �v2

⊥
.

VV

O u�1O u�1

u�2 =          v�2
⊥1

‖v�2
⊥‖

v�2
⊥

Figure 3

EXAMPLE 1 a. Find an orthonormal basis �u1, �u2 of the subspace

V = span

⎛
⎜⎜⎝
⎡
⎢⎢⎣

1
1
1
1

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣

1
9
9
1

⎤
⎥⎥⎦
⎞
⎟⎟⎠ of R4, with basis �v1 =

⎡
⎢⎢⎣

1
1
1
1

⎤
⎥⎥⎦, �v2 =

⎡
⎢⎢⎣

1
9
9
1

⎤
⎥⎥⎦.

b. Find the change of basis matrix R from the basis � = (�v1, �v2) to the basis
� = (�u1, �u2) you constructed in part a.

Solution

a. Following the three steps illustrated in Figures 1, 2, and 3, we will compute
first �u1, then �v2

⊥, and finally �u2:

�u1 = 1

‖�v1‖ �v1 = 1

2

⎡
⎢⎢⎣

1
1
1
1

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

1/2
1/2
1/2
1/2

⎤
⎥⎥⎦ ,

�v2
⊥ = �v2 − �v‖

2 = �v2 − (�u1 · �v2)�u1 =

⎡
⎢⎢⎣

1
9
9
1

⎤
⎥⎥⎦− 10

⎡
⎢⎢⎣

1/2
1/2
1/2
1/2

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

−4
4
4

−4

⎤
⎥⎥⎦ ,

�u2 = 1

‖ �v2
⊥‖ �v2

⊥ = 1

8

⎡
⎢⎢⎣

−4
4
4

−4

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

−1/2
1/2
1/2

−1/2

⎤
⎥⎥⎦ .

We have found an orthonormal basis � of V :

�u1 =

⎡
⎢⎢⎣

1/2
1/2
1/2
1/2

⎤
⎥⎥⎦ , �u2 =

⎡
⎢⎢⎣

−1/2
1/2
1/2

−1/2

⎤
⎥⎥⎦ .
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b. Recall that the columns of the change of basis matrix R from � to � are
the coordinate vectors of �v1 and �v2 with respect to basis � = (�u1, �u2). See
Definition 4.3.3.

A straightforward computation shows that �v1 = 2�u1 and �v2 = 10�u1 +
8�u2, so that

R =
[ �v1 �v2

2 10
0 8

] �u1

�u2
.

(Later in this section, we will develop more efficient methods for finding the
entries of R.)

To express the relationship between the bases � and � in matrix form,
we can use Theorem 4.3.4 and write

[
�v1 �v2

]
=
[

�u1 �u2

]
R, or

⎡
⎢⎢⎣

1 1
1 9
1 9
1 1

⎤
⎥⎥⎦

︸ ︷︷ ︸
M

=

⎡
⎢⎢⎣

1/2 −1/2
1/2 1/2
1/2 1/2
1/2 −1/2

⎤
⎥⎥⎦

︸ ︷︷ ︸
Q

[
2 10
0 8

]
︸ ︷︷ ︸

R

.

In this context, it is customary to denote the matrices on the right-hand side
by Q and R. Note that we have written the 4 × 2 matrix M with columns �v1
and �v2 as the product of the 4 × 2 matrix Q with orthonormal columns and
the upper triangular 2 × 2 matrix R with positive entries on the diagonal.
This is referred to as the QR factorization of matrix M . Matrix Q stores the
orthonormal basis �u1, �u2 we constructed, and matrix R gives the relationship
between the “old” basis �v1, �v2, and the “new” basis �u1, �u2 of V . �

Now that we know how to find an orthonormal basis of a plane, how would
we proceed in the case of a three-dimensional subspace V of Rn with basis �v1, �v2,
�v3? We can first find an orthonormal basis �u1, �u2 of the plane E = span(�v1, �v2), as
illustrated in Example 1. Next we resolve the vector �v3 into its components parallel
and perpendicular to the plane E :

�v3 = �v‖
3 + �v3

⊥
,

so that

�v3
⊥ = �v3 − �v‖

3 = �v3 − projE(�v3) = �v3 − (�u1 · �v3)�u1 − (�u2 · �v3)�u2.

Finally, we let

�u3 = 1

‖ �v3
⊥‖ �v3

⊥
.

See Figure 4.

v�3

u�1

u�2

E

u�1

u�2

E

u�1

u�2

E

v�3
⊥

u�3 =          v�3
⊥1

‖v�3
⊥‖

Figure 4
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Generalizing this method, we can construct an orthonormal basis of any sub-
space V of Rn . Unfortunately, the terminology gets a bit heavy in the general case.
Conceptually, the method is pretty straightforward, however: We keep computing
perpendicular components of vectors, using the formula for projection, and we keep
dividing vectors by their length to generate unit vectors.

Theorem 5.2.1 The Gram–Schmidt process5

Consider a basis �v1, . . . , �vm of a subspace V of Rn . For j = 2, . . . , m, we
resolve the vector �v j into its components parallel and perpendicular to the span
of the preceding vectors, �v1, . . . , �v j−1:

�v j = �v‖
j + �v j

⊥
, with respect to span(�v1, . . . , �v j−1).

Then

�u1 = 1

‖�v1‖ �v1, �u2 = 1

‖ �v2
⊥‖ �v2

⊥
, . . . , �u j = 1

‖ �v j
⊥‖ �v j

⊥
, . . . , �um = 1

‖ �vm
⊥‖ �vm

⊥

is an orthonormal basis of V . By Theorem 5.1.7, we have

�v j
⊥ = �v j − �v‖

j = �v j − (�u1 · �v j )�u1 − · · · − (�u j−1 · �v j )�u j−1.

If you are puzzled by these formulas, go back to the cases where V is a two- or
three-dimensional space; take another good look at Figures 1 through 4.

The QR Factorization
The Gram–Schmidt process represents a change of basis from the “old” basis � =
(�v1, . . . , �vm) to a “new,” orthonormal basis � = (�u1, . . . , �um) of V ; it is most
succinctly described in terms of the change of basis matrix R from � to �, as
discussed in Example 1. Using Theorem 4.3.4, we can write⎡

⎣ | |
�v1 · · · �vm

| |

⎤
⎦

︸ ︷︷ ︸
M

=
⎡
⎣ | |

�u1 · · · �um

| |

⎤
⎦

︸ ︷︷ ︸
Q

R.

Again, it is customary to denote the matrices on the right-hand side by Q and
R; the preceding equation is called the QR factorization of M .

We can represent the relationship among the matrices M , Q, and R in a com-
mutative diagram, where �x is a vector in V .[�x]

�
�









�

Q

↑|
R |||

�x

M[�x]
�

5Named after the Danish actuary Jörgen Gram (1850–1916) and the German mathematician Erhardt
Schmidt (1876–1959).
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What do the entries of the change of basis matrix R look like? We know that the
entries in the j th column of R are the coordinates of �v j with respect to the basis
� = (�u1, . . . , �um). Using the equations in Theorem 5.2.1, we can write

�v j = �v‖
j + �v j

⊥

=
r1 j︷ ︸︸ ︷

(�u1 · �v j ) �u1 + · · · +
ri j︷ ︸︸ ︷

(�ui · �v j ) �ui + · · · +
r j−1, j︷ ︸︸ ︷

(�u j−1 · �v j ) �u j−1︸ ︷︷ ︸
�v‖

j

+
r j j︷ ︸︸ ︷∥∥∥ �v j

⊥
∥∥∥ �u j︸ ︷︷ ︸

�v j
⊥

.

It follows that ri j = �ui · �v j if i < j ; r j j =
∥∥∥ �v j

⊥
∥∥∥; and ri j = 0 if i > j . The last

equation implies that R is upper triangular. (The first diagonal entry is r11 = ‖�v1‖,
since �v1 = ‖�v1‖�u1.)

Theorem 5.2.2 QR factorization

Consider an n × m matrix M with linearly independent columns �v1, . . . , �vm .
Then there exists an n×m matrix Q whose columns �u1, . . . , �um are orthonormal
and an upper triangular matrix R with positive diagonal entries such that

M = Q R.

This representation is unique. Furthermore, r11 = ‖�v1‖, r j j =
∥∥∥ �v j

⊥
∥∥∥ (for j =

2, . . . , m), and ri j = �ui · �v j (for i < j).

Take another look at Example 1, where L = V1 = span(�v1).
The verification of the uniqueness of the Q R factorization is left as Exer-

cise 5.3.51. To find the Q R factorization of a matrix M , we perform the Gram–
Schmidt process on the columns of M , constructing R and Q column by column.
No extra computations are required: All the information necessary to build R and Q
is provided by the Gram–Schmidt process. Q R factorization is an effective way to
organize and record the work performed in the Gram–Schmidt process; it is useful
for many computational and theoretical purposes.

EXAMPLE 2 Find the Q R factorization of the matrix M =
⎡
⎣ 2 2

1 7
−2 −8

⎤
⎦.

Solution
Here

�v1 =
⎡
⎣ 2

1
−2

⎤
⎦ , and �v2 =

⎡
⎣ 2

7
−8

⎤
⎦ .

As in Example 1, the Q R factorization of M will have the form

M =
[

�v1 �v2

]
=
[

�u1 �u2

]
︸ ︷︷ ︸

Q

[‖�v1‖ �u1 · �v2

0
∥∥ �v2

⊥∥∥
]

︸ ︷︷ ︸
R

.
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We will compute the entries of R and the columns of Q step by step:

r11 = ‖�v1‖ = 3, �u1 = 1

r11
�v1 = 1

3

⎡
⎣ 2

1
−2

⎤
⎦ ,

r12 = �u1 · �v2 = 1

3

⎡
⎣ 2

1
−2

⎤
⎦ ·
⎡
⎣ 2

7
−8

⎤
⎦ = 9, �v2

⊥ = �v2 − r12�u1 =
⎡
⎣−4

4
−2

⎤
⎦ ,

r22 =
∥∥∥ �v2

⊥
∥∥∥ =

√
36 = 6, �u2 = 1

r22
�v2

⊥ = 1

3

⎡
⎣−2

2
−1

⎤
⎦ .

Now ⎡
⎣ 2 2

1 7
−2 −8

⎤
⎦ = M = Q R =

[
�u1 �u2

] [
r11 r12

0 r22

]

=
⎛
⎝1

3

⎡
⎣ 2 −2

1 2
−2 −1

⎤
⎦
⎞
⎠

︸ ︷︷ ︸
Q

[
3 9
0 6

]
︸ ︷︷ ︸

R

.

Draw pictures analogous to Figures 1 through 3 to illustrate these computations! �
Let us outline the algorithm we used in Example 2.

Theorem 5.2.3 QR factorization

Consider an n × m matrix M with linearly independent columns �v1, . . . , �vm .
Then the columns �u1, . . . , �um of Q and the entries ri j of R can be computed in
the following order:

first column of R, first column of Q;

second column of R, second column of Q;

third column of R, third column of Q;

and so on.

More specifically,

r11 = ‖�v1‖, �u1 = 1

r11
�v1;

r12 = �u1 · �v2, �v2
⊥ = �v2 − r12�u1, r22 =

∥∥∥ �v2
⊥
∥∥∥ , �u2 = 1

r22
�v2

⊥;

r13 = �u1 · �v3, r23 = �u2 · �v3, �v3
⊥ =
{�v3 − r13�u1

−r23�u2
,

r33 =
∥∥∥ �v3

⊥
∥∥∥ , �u3 = 1

r33
�v3

⊥;
and so on.

For matrices M with more than three columns, the computation of the Q R fac-
torization is tedious, and may best be left to a machine (unless M is of a particularly
simple form).
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EXERCISES 5.2
GOAL Perform the Gram–Schmidt process, and thus
find the Q R factorization of a matrix.

Using paper and pencil, perform the Gram–Schmidt pro-
cess on the sequences of vectors given in Exercises 1
through 14.

1.

⎡
⎣ 2

1
−2

⎤
⎦ 2.

⎡
⎣6

3
2

⎤
⎦,
⎡
⎣ 2

−6
3

⎤
⎦

3.

⎡
⎣4

0
3

⎤
⎦,
⎡
⎣ 25

0
−25

⎤
⎦ 4.

⎡
⎣4

0
3

⎤
⎦,
⎡
⎣ 25

0
−25

⎤
⎦,
⎡
⎣ 0

−2
0

⎤
⎦

5.

⎡
⎣2

2
1

⎤
⎦,
⎡
⎣1

1
5

⎤
⎦ 6.

⎡
⎣2

0
0

⎤
⎦,
⎡
⎣3

4
0

⎤
⎦,
⎡
⎣5

6
7

⎤
⎦

7.

⎡
⎣2

2
1

⎤
⎦,
⎡
⎣−2

1
2

⎤
⎦,
⎡
⎣18

0
0

⎤
⎦ 8.

⎡
⎢⎢⎣

5
4
2
2

⎤
⎥⎥⎦,
⎡
⎢⎢⎣

3
6
7

−2

⎤
⎥⎥⎦

9.

⎡
⎢⎢⎣

1
1
1
1

⎤
⎥⎥⎦,
⎡
⎢⎢⎣

1
9

−5
3

⎤
⎥⎥⎦ 10.

⎡
⎢⎢⎣

1
1
1
1

⎤
⎥⎥⎦,
⎡
⎢⎢⎣

6
4
6
4

⎤
⎥⎥⎦

11.

⎡
⎢⎢⎣

4
0
0
3

⎤
⎥⎥⎦,
⎡
⎢⎢⎣

5
2

14
10

⎤
⎥⎥⎦ 12.

⎡
⎢⎢⎣

2
3
0
6

⎤
⎥⎥⎦,
⎡
⎢⎢⎣

4
4
2

13

⎤
⎥⎥⎦

13.

⎡
⎢⎢⎣

1
1
1
1

⎤
⎥⎥⎦,
⎡
⎢⎢⎣

1
0
0
1

⎤
⎥⎥⎦,
⎡
⎢⎢⎣

0
2
1

−1

⎤
⎥⎥⎦ 14.

⎡
⎢⎢⎣

1
7
1
7

⎤
⎥⎥⎦,
⎡
⎢⎢⎣

0
7
2
7

⎤
⎥⎥⎦,
⎡
⎢⎢⎣

1
8
1
6

⎤
⎥⎥⎦

Using paper and pencil, find the Q R factorizations of the
matrices in Exercises 15 through 28. Compare with Exer-
cises 1 through 14.

15.

⎡
⎣ 2

1
−2

⎤
⎦ 16.

⎡
⎣6 2

3 −6
2 3

⎤
⎦

17.

⎡
⎣4 25

0 0
3 −25

⎤
⎦ 18.

⎡
⎣4 25 0

0 0 −2
3 −25 0

⎤
⎦

19.

⎡
⎣2 1

2 1
1 5

⎤
⎦ 20.

⎡
⎣2 3 5

0 4 6
0 0 7

⎤
⎦

21.

⎡
⎣2 −2 18

2 1 0
1 2 0

⎤
⎦ 22.

⎡
⎢⎢⎣

5 3
4 6
2 7
2 −2

⎤
⎥⎥⎦

23.

⎡
⎢⎢⎣

1 1
1 9
1 −5
1 3

⎤
⎥⎥⎦ 24.

⎡
⎢⎢⎣

1 6
1 4
1 6
1 4

⎤
⎥⎥⎦

25.

⎡
⎢⎢⎣

4 5
0 2
0 14
3 10

⎤
⎥⎥⎦ 26.

⎡
⎢⎢⎣

2 4
3 4
0 2
6 13

⎤
⎥⎥⎦

27.

⎡
⎢⎢⎣

1 1 0
1 0 2
1 0 1
1 1 −1

⎤
⎥⎥⎦ 28.

⎡
⎢⎢⎣

1 0 1
7 7 8
1 2 1
7 7 6

⎤
⎥⎥⎦

29. Perform the Gram–Schmidt process on the following
basis of R2:

�v1 =
[−3

4

]
, �v2 =

[
1
7

]
.

Illustrate your work with sketches, as in Figures 1
through 3 of this section.

30. Consider two linearly independent vectors �v1 =
[

a
b

]
and �v2 =

[
c
d

]
in R2. Draw sketches (as in Fig-

ures 1 through 3 of this section) to illustrate the Gram–
Schmidt process for �v1, �v2. You need not perform the
process algebraically.

31. Perform the Gram–Schmidt process on the following
basis of R3:

�v1 =
⎡
⎣a

0
0

⎤
⎦ , �v2 =

⎡
⎣b

c
0

⎤
⎦ , �v3 =

⎡
⎣ d

e
f

⎤
⎦ .

Here, a, c, and f are positive constants, and the other
constants are arbitrary. Illustrate your work with a
sketch, as in Figure 4.

32. Find an orthonormal basis of the plane

x1 + x2 + x3 = 0.

33. Find an orthonormal basis of the kernel of the matrix

A =
[

1 1 1 1
1 −1 −1 1

]
.

34. Find an orthonormal basis of the kernel of the matrix

A =
[

1 1 1 1
1 2 3 4

]
.



5.3 Orthogonal Transformations and Orthogonal Matrices 225

35. Find an orthonormal basis of the image of the matrix

A =
⎡
⎣1 2 1

2 1 1
2 −2 0

⎤
⎦ .

36. Consider the matrix

M = 1

2

⎡
⎢⎢⎣

1 1 1
1 −1 −1
1 −1 1
1 1 −1

⎤
⎥⎥⎦
⎡
⎣2 3 5

0 −4 6
0 0 7

⎤
⎦ .

Find the Q R factorization of M .

37. Consider the matrix

M = 1

2

⎡
⎢⎢⎣

1 1 1 1
1 −1 −1 1
1 −1 1 −1
1 1 −1 −1

⎤
⎥⎥⎦
⎡
⎢⎢⎣

3 4
0 5
0 0
0 0

⎤
⎥⎥⎦ .

Find the Q R factorization of M .

38. Find the Q R factorization of

A =

⎡
⎢⎢⎣

0 −3 0
0 0 0
2 0 0
0 0 4

⎤
⎥⎥⎦ .

39. Find an orthonormal basis �u1, �u2, �u3 of R3 such that

span(�u1) = span

⎛
⎝
⎡
⎣1

2
3

⎤
⎦
⎞
⎠

and

span(�u1, �u2) = span

⎛
⎝
⎡
⎣1

2
3

⎤
⎦ ,

⎡
⎣ 1

1
−1

⎤
⎦
⎞
⎠ .

40. Consider an invertible n × n matrix A whose columns
are orthogonal, but not necessarily orthonormal. What
does the Q R factorization of A look like?

41. Consider an invertible upper triangular n × n matrix A.
What does the Q R factorization of A look like?

42. The two column vectors �v1 and �v2 of a 2 × 2 matrix A
are shown in the accompanying figure. Let A = Q R be
the Q R factorization of A. Represent the diagonal en-
tries r11 and r22 of R as lengths in the figure. Interpret
the product r11r22 as an area.

v�2 

v�1

43. Consider a block matrix

A = [ A1 A2
]

with linearly independent columns. (A1 is an n × m1
matrix, and A2 is n × m2.) Suppose you know the Q R
factorization of A. Explain how this allows you to find
the Q R factorization of A1.

44. Consider an n × m matrix A with rank(A) < m. Is it
always possible to write

A = Q R,

where Q is an n × m matrix with orthonormal columns
and R is upper triangular? Explain.

45. Consider an n × m matrix A with rank(A) = m. Is it
always possible to write A as

A = QL ,

where Q is an n × m matrix with orthonormal columns
and L is a lower triangular m × m matrix with positive
diagonal entries? Explain.

5.3 Orthogonal Transformations and Orthogonal Matrices

In geometry, we are particularly interested in those linear transformations that pre-
serve the length of vectors.

Definition 5.3.1 Orthogonal transformations and orthogonal matrices

A linear transformation T from Rn to Rn is called orthogonal if it preserves the
length of vectors:

‖T (�x)‖ = ‖�x‖, for all �x in Rn.

If T (�x) = A�x is an orthogonal transformation, we say that A is an orthogo-
nal matrix.6

6A list of alternative characterizations of an orthogonal matrix will be presented in Summary 5.3.8.
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EXAMPLE 1 The rotation

T (�x) =
[

cos θ − sin θ

sin θ cos θ

]
�x

is an orthogonal transformation from R2 to R2, and

A =
[

cos θ − sin θ

sin θ cos θ

]
is an orthogonal matrix, for all angles θ . �

EXAMPLE 2 Consider a subspace V of Rn . For a vector �x in Rn , the vector refV (�x) = �x‖ − �x⊥ is
called the reflection of �x about V . Compare this with Definition 2.2.2; see Figure 1.
Show that reflections are orthogonal transformations.

O
V

x�

refV(x�)

x�⊥ (translated)

−x�⊥ (translated)

x�ll

Figure 1

Solution
By the Pythagorean theorem, we have

‖refV (�x)‖2 = ∥∥�x‖∥∥2 + ∥∥−�x⊥∥∥2 = ∥∥�x‖∥∥2 + ∥∥�x⊥∥∥2 = ‖�x‖2. �
As the name suggests, orthogonal transformations preserve right angles. In fact,

orthogonal transformations preserve all angles. See Exercise 29.

Theorem 5.3.2 Orthogonal transformations preserve orthogonality

Consider an orthogonal transformation T from Rn to Rn . If the vectors �v and �w
in Rn are orthogonal, then so are T (�v) and T ( �w).

Proof By the theorem of Pythagoras, we have to show that

‖T (�v) + T ( �w)‖2 = ‖T (�v)‖2 + ‖T ( �w)‖2.

Let’s see:

‖T (�v) + T ( �w)‖2 = ‖T (�v + �w)‖2 (T is linear)

= ‖�v + �w‖2 (T is orthogonal)

= ‖�v‖2 + ‖ �w‖2 (�v and �w are orthogonal)

= ‖T (�v)‖2 + ‖T ( �w)‖2 (T is orthogonal). �
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Theorem 5.3.2 is perhaps better explained with a sketch. See Figure 2.

D1

T

v�

w� (translated)

D2T(v�)

T(w�) (translated)

T(v�) � T(w�) � T(v� � w�)

v� � w�

Figure 2

The two shaded triangles are congruent, because corresponding sides are the
same length (since T preserves length). Since D1 is a right triangle, so is D2.

Here is an alternative characterization of orthogonal transformations:

Theorem 5.3.3 Orthogonal transformations and orthonormal bases

a. A linear transformation T from Rn to Rn is orthogonal if (and only if)
the vectors T (�e1), T (�e2), . . . , T (�en) form an orthonormal basis of Rn .

b. An n × n matrix A is orthogonal if (and only if) its columns form an
orthonormal basis of Rn .

Figure 3 illustrates part (a) for a linear transformation from R2 to R2.

T

e�2

 e�1

T(e�1)

T(e�2)

Figure 3

Proof We prove part (a); part (b) then follows from Theorem 2.1.2. If T is an orthogonal
transformation, then, by definition, the T (�ei ) are unit vectors and, by Theorem 5.3.2,
they are orthogonal. Conversely, suppose the T (�ei ) form an orthonormal basis.
Consider a vector�x = x1�e1 + x2�e2 + · · · + xn�en in Rn . Then
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‖T (�x)‖2 = ‖x1T (�e1) + x2T (�e2) + · · · + xnT (�en)‖2

= ‖x1T (�e1)‖2 + ‖x2T (�e2)‖2 + · · · + ‖xnT (�en)‖2 (by Pythagoras)

= x2
1 + x2

2 + · · · + x2
n

= ‖�x‖2. �

Note: A matrix with orthogonal columns need not be an orthogonal matrix. As

an example, consider the matrix A =
[

4 −3
3 4

]
.

EXAMPLE 3 Show that the matrix A is orthogonal:

A = 1

2

⎡
⎢⎢⎣

1 −1 −1 −1
1 −1 1 1
1 1 −1 1
1 1 1 −1

⎤
⎥⎥⎦ .

Solution
Check that the columns of A form an orthonormal basis of R4. �

Here are some algebraic properties of orthogonal matrices.

Theorem 5.3.4 Products and inverses of orthogonal matrices

a. The product AB of two orthogonal n×n matrices A and B is orthogonal.

b. The inverse A−1 of an orthogonal n × n matrix A is orthogonal.

Proof In part (a), the linear transformation T (�x) = AB�x preserves length, because
‖T (�x)‖ = ‖A(B�x)‖ = ‖B�x‖ = ‖�x‖. In part (b), the linear transformation
T (�x) = A−1�x preserves length, because ‖A−1�x‖ = ‖A(A−1�x)‖ = ‖�x‖. Figure 4
illustrates property (a). �

x�

Bx�

ABx�

B A

preserves
length

preserves
length

Figure 4

The Transpose of a Matrix
EXAMPLE 4 Consider the orthogonal matrix

A = 1

7

⎡
⎣2 6 3

3 2 −6
6 −3 2

⎤
⎦ .
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Form another 3 × 3 matrix B whose i j th entry is the j i th entry of A:

B = 1

7

⎡
⎣2 3 6

6 2 −3
3 −6 2

⎤
⎦ .

Note that the rows of B correspond to the columns of A.
Compute B A, and explain the result.

Solution

B A = 1
49

⎡
⎣2 3 6

6 2 −3
3 −6 2

⎤
⎦
⎡
⎣2 6 3

3 2 −6
6 −3 2

⎤
⎦ = 1

49

⎡
⎣49 0 0

0 49 0
0 0 49

⎤
⎦ = I3

This result is no coincidence: The i j th entry of B A is the dot product of the i th row
of B and the j th column of A. By definition of B, this is just the dot product of the
i th column of A and the j th column of A. Since A is orthogonal, this product is 1
if i = j and 0 otherwise. �

Before we can generalize the findings of Example 4, we introduce some new
terminology.

Definition 5.3.5 The transpose of a matrix; symmetric and skew-symmetric matrices

Consider an m × n matrix A.
The transpose AT of A is the n ×m matrix whose i j th entry is the j i th entry

of A: The roles of rows and columns are reversed.
We say that a square matrix A is symmetric if AT = A, and A is called

skew-symmetric if AT = −A.

EXAMPLE 5 If A =
[

1 2 3
9 7 5

]
, then AT =

⎡
⎣1 9

2 7
3 5

⎤
⎦. �

EXAMPLE 6 The symmetric 2 × 2 matrices are those of the form A =
[

a b
b c

]
, for example,

A =
[

1 2
2 3

]
. The symmetric 2 × 2 matrices form a three-dimensional subspace of

R2×2, with basis

[
1 0
0 0

]
,

[
0 1
1 0

]
,

[
0 0
0 1

]
.

The skew-symmetric 2 × 2 matrices are those of the form A =
[

0 b
−b 0

]
,

for example, A =
[

0 2
−2 0

]
. These form a one-dimensional space with basis[

0 1
−1 0

]
. �

Note that the transpose of a (column) vector �v is a row vector: If

�v =
⎡
⎣1

2
3

⎤
⎦ , then �vT = [1 2 3

]
.

The transpose gives us a convenient way to express the dot product of two (column)
vectors as a matrix product.
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Theorem 5.3.6 If �v and �w are two (column) vectors in Rn , then

�v · �w = �vT �w.

↑ ↑
Dot Matrix

product product

Here we are identifying the 1×1 matrix �vT �w with its sole entry, the scalar �v · �w.
Purists may prefer to write �vT �w = [ �v · �w ].

For example, ⎡
⎣1

2
3

⎤
⎦ ·
⎡
⎣ 1

−1
1

⎤
⎦ = [1 2 3

] ⎡⎣ 1
−1

1

⎤
⎦ = 2.

Now we can succinctly state the observation made in Example 4.

Theorem 5.3.7 Consider an n × n matrix A. The matrix A is orthogonal if (and only if) AT A =
In or, equivalently, if A−1 = AT .

Proof To justify this fact, write A in terms of its columns:

A =

⎡
⎢⎢⎣

| | |
�v1 �v2 · · · �vn

| | |

⎤
⎥⎥⎦ .

Then

AT A =

⎡
⎢⎢⎢⎣

− �vT
1 −

− �vT
2 −
...

− �vT
n −

⎤
⎥⎥⎥⎦
⎡
⎢⎢⎣

| | |
�v1 �v2 . . . �vn

| | |

⎤
⎥⎥⎦ =

⎡
⎢⎢⎢⎣

�v1 · �v1 �v1 · �v2 . . . �v1 · �vn

�v2 · �v1 �v2 · �v2 . . . �v2 · �vn
...

...
. . .

...

�vn · �v1 �vn · �v2 . . . �vn · �vn

⎤
⎥⎥⎥⎦ .

By Theorem 5.3.3b, this product is In if (and only if) A is orthogonal. �
Later in this text, we will frequently work with matrices of the form AT A. It

is helpful to think of AT A as a table displaying the dot products �vi · �v j among the
columns of A, as shown above.

We summarize the various characterizations we have found of orthogonal
matrices, and we will add one more characterization, (vi), below.

SUMMARY 5.3.8 Orthogonal matrices

Consider an n × n matrix A. Then the following statements are equivalent:

i. A is an orthogonal matrix.

ii. The transformation L(�x) = A�x preserves length; that is, ‖A�x‖ = ‖�x‖
for all �x in Rn .

iii. The columns of A form an orthonormal basis of Rn .

iv. AT A = In .

v. A−1 = AT .

vi. A preserves the dot product, meaning that (A�x) · (A�y) = �x · �y for all �x
and �y in Rn .
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In Exercise 28, we invite the reader to prove that (vi) is equivalent to the char-
acterizations (i) through (v).

Here are some algebraic properties of the transpose.

Theorem 5.3.9 Properties of the transpose

a. (A + B)T = AT + BT for all m × n matrices A and B.
b. (k A)T = k AT for all m × n matrices A and for all scalars k.
c. (AB)T = BT AT for all m × p matrices A and for all p × n

matrices B.
d. rank(AT ) = rank(A) for all matrices A.
e. (AT )−1 = (A−1)T for all invertible n × n matrices A.

Proof We leave the proofs of parts (a) and (b) as exercises to the reader. Note that parts
(a) and (b) tell us that the function L(A) = AT from Rm×n to Rn×m is a linear
transformation (and, in fact, an isomorphism).

c. Write A in terms of its rows and B in terms of its columns, A =⎡
⎣− �w1 −

...

− �wm −

⎤
⎦ and B =

⎡
⎣ | |

�v1 · · · �vn

| |

⎤
⎦, so that BT =

⎡
⎣− �vT

1 −
...

− �vT
n −

⎤
⎦ and

AT =
⎡
⎣ | |

�wT
1 · · · �wT

m| |

⎤
⎦.

Now show that the the i j th entry of (AB)T equals the i j th entry of
BT AT : (

i j th entry of (AB)T
) = ( j i th entry of AB) = �w j · �vi(

i j th entry of BT AT
) = �vT

i · �wT
j = �w j · �vi .

d. Consider the row space of A (i.e., the span of the rows of A). It is not hard
to show that the dimension of this space is rank(A). See Exercises 71–74
in Section 3.3. Indeed, we have

rank(AT ) = dimension of the span of the columns of AT

= dimension of the span of the rows of A

= rank(A).

e. We know that

AA−1 = In.

Transposing both sides and using part (c), we find that

(AA−1)T = (A−1)T AT = In.

By Theorem 2.4.8, it follows that AT is invertible and

(A−1)T = (AT )−1. �

The Matrix of an Orthogonal Projection
The transpose allows us to write a formula for the matrix of an orthogonal projec-
tion. Consider first the orthogonal projection

projL �x = (�u1 · �x)�u1
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onto a line L in Rn , where �u1 is a unit vector in L . If we view the vector �u1 as an
n × 1 matrix and the scalar �u1 · �x as a 1 × 1 matrix, we can write

projL �x = �u1(�u1 · �x)

= �u1�uT
1 �x

= M �x,

where M = �u1�uT
1 . Note that �u1 is an n × 1 matrix and �uT

1 is 1 × n, so that M is
n × n, as expected.

More generally, consider the projection

projV �x = (�u1 · �x)�u1 + · · · + (�um · �x)�um

onto a subspace V of Rn with orthonormal basis �u1, . . . , �um . We can write

projV �x = �u1�uT
1 �x + · · · + �um �uT

m �x
= (�u1�uT

1 + · · · + �um �uT
m

)�x
=

⎡
⎢⎣ | |

�u1 · · · �um

| |

⎤
⎥⎦
⎡
⎢⎣− �uT

1 −
...

− �uT
m −

⎤
⎥⎦ �x .

We have shown the following result:

Theorem 5.3.10 The matrix of an orthogonal projection

Consider a subspace V of Rn with orthonormal basis �u1, �u2, . . . , �um . The matrix
P of the orthogonal projection onto V is

P = Q QT , where Q =
⎡
⎣ | | |

�u1 �u2 . . . �um

| | |

⎤
⎦ .

Pay attention to the order of the factors (Q QT as opposed to QT Q). Note that
matrix P is symmetric, since PT = (Q QT )T = (QT )T QT = Q QT = P .

EXAMPLE 7 Find the matrix P of the orthogonal projection onto the subspace of R4 spanned by

�u1 = 1

2

⎡
⎢⎢⎣

1
1
1
1

⎤
⎥⎥⎦ , �u2 = 1

2

⎡
⎢⎢⎣

1
−1
−1

1

⎤
⎥⎥⎦ .

Solution
Note that the vectors �u1 and �u2 are orthonormal. Therefore, the matrix is

P = Q QT = 1

4

⎡
⎢⎢⎣

1 1
1 −1
1 −1
1 1

⎤
⎥⎥⎦
[

1 1 1 1
1 −1 −1 1

]
= 1

2

⎡
⎢⎢⎣

1 0 0 1
0 1 1 0
0 1 1 0
1 0 0 1

⎤
⎥⎥⎦ .

�



5.3 Orthogonal Transformations and Orthogonal Matrices 233

EXERCISES 5.3
GOAL Use the various characterizations of orthogonal
transformations and orthogonal matrices. Find the ma-
trix of an orthogonal projection. Use the properties of the
transpose.

Which of the matrices in Exercises 1 through 4 are ortho-
gonal?

1.
[

0.6 0.8
0.8 0.6

]
2.
[−0.8 0.6

0.6 0.8

]

3.
1

3

⎡
⎣2 −2 1

1 2 2
2 1 −2

⎤
⎦ 4.

1

7

⎡
⎣2 6 −3

6 −3 2
3 2 6

⎤
⎦

If the n × n matrices A and B are orthogonal, which of
the matrices in Exercises 5 through 11 must be orthogo-
nal as well?

5. 3A 6. −B 7. AB 8. A + B

9. B−1 10. B−1 AB 11. AT

If the n × n matrices A and B are symmetric and B is in-
vertible, which of the matrices in Exercises 13 through 20
must be symmetric as well?

13. 3A 14. −B 15. AB 16. A + B

17. B−1 18. A10

19. 2In + 3A − 4A2 20. AB2 A

If A and B are arbitrary n × n matrices, which of the ma-
trices in Exercises 21 through 26 must be symmetric?

21. AT A 22. B BT 23. A − AT

24. AT B A 25. AT BT B A 26. B(A + AT )BT

27. Consider an n × m matrix A, a vector �v in Rm , and a
vector �w in Rn . Show that

(A�v) · �w = �v · (AT �w).

28. Consider an n × n matrix A. Show that A is an ortho-
gonal matrix if (and only if) A preserves the dot prod-
uct, meaning that (A�x) · (A�y) = �x · �y for all �x and �y
in Rn . Hint: In Summary 5.3.8, show that statement (iv)
implies (vi), and (vi) implies (ii).

29. Show that an orthogonal transformation L from Rn to
Rn preserves angles: The angle between two nonzero
vectors �v and �w in Rn equals the angle between L(�v)

and L( �w). Conversely, is any linear transformation that
preserves angles orthogonal?

30. Consider a linear transformation L from Rm to Rn that
preserves length. What can you say about the kernel of
L? What is the dimension of the image? What can you
say about the relationship between n and m? If A is
the matrix of L , what can you say about the columns
of A? What is AT A? What about AAT ? Illustrate your
answers with an example where m = 2 and n = 3.

31. Are the rows of an orthogonal matrix A necessarily
orthonormal?

32. a. Consider an n × m matrix A such that AT A = Im .
Is it necessarily true that AAT = In? Explain.

b. Consider an n × n matrix A such that AT A = In . Is
it necessarily true that AAT = In? Explain.

33. Find all orthogonal 2 × 2 matrices.

34. Find all orthogonal 3 × 3 matrices of the form⎡
⎣a b 0

c d 1
e f 0

⎤
⎦ .

35. Find an orthogonal transformation T from R3 to R3

such that

T

⎡
⎣2/3

2/3
1/3

⎤
⎦ =
⎡
⎣0

0
1

⎤
⎦ .

36. Find an orthogonal matrix of the form⎡
⎣2/3 1/

√
2 a

2/3 −1/
√

2 b
1/3 0 c

⎤
⎦ .

37. Is there an orthogonal transformation T from R3 to R3

such that

T

⎡
⎣2

3
0

⎤
⎦ =
⎡
⎣3

0
2

⎤
⎦ and T

⎡
⎣−3

2
0

⎤
⎦ =
⎡
⎣ 2

−3
0

⎤
⎦ ?

38. a. Give an example of a (nonzero) skew-symmetric
3 × 3 matrix A, and compute A2.

b. If an n × n matrix A is skew-symmetric, is matrix
A2 necessarily skew-symmetric as well? Or is A2

necessarily symmetric?

39. Consider a line L in Rn , spanned by a unit vector

�u =

⎡
⎢⎢⎢⎣

u1

u2
...

un

⎤
⎥⎥⎥⎦ .

Consider the matrix A of the orthogonal projection onto
L . Describe the i j th entry of A, in terms of the compo-
nents ui of �u.
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40. Consider the subspace W of R4 spanned by the vectors

�v1 =

⎡
⎢⎢⎣

1
1
1
1

⎤
⎥⎥⎦ and �v2 =

⎡
⎢⎢⎣

1
9

−5
3

⎤
⎥⎥⎦ .

Find the matrix of the orthogonal projection onto W .

41. Find the matrix A of the orthogonal projection onto the
line in Rn spanned by the vector⎡

⎢⎢⎢⎣
1
1
...

1

⎤
⎥⎥⎥⎦
⎫⎪⎪⎪⎬
⎪⎪⎪⎭ all n components are 1.

42. Let A be the matrix of an orthogonal projection. Find
A2 in two ways:
a. Geometrically. (Consider what happens when you

apply an orthogonal projection twice.)
b. By computation, using the formula given in Theo-

rem 5.3.10.

43. Consider a unit vector �u in R3. We define the matrices

A = 2�u�uT − I3 and B = I3 − 2�u�uT .

Describe the linear transformations defined by these
matrices geometrically.

44. Consider an n × m matrix A. Find

dim
(
im(A)
)+ dim

(
ker(AT )

)
,

in terms of m and n.

45. For which n × m matrices A does the equation

dim
(
ker(A)
) = dim

(
ker(AT )

)
hold? Explain.

46. Consider a Q R factorization

M = Q R.

Show that

R = QT M.

47. If A = Q R is a Q R factorization, what is the relation-
ship between AT A and RT R?

48. Consider an invertible n × n matrix A. Can you write A
as A = L Q, where L is a lower triangular matrix and
Q is orthogonal? Hint: Consider the Q R factorization
of AT .

49. Consider an invertible n × n matrix A. Can you write
A = RQ, where R is an upper triangular matrix and Q
is orthogonal?

50. a. Find all n × n matrices that are both orthogonal and
upper triangular, with positive diagonal entries.

b. Show that the Q R factorization of an invertible n×n
matrix is unique. Hint: If A = Q1 R1 = Q2 R2, then
the matrix Q−1

2 Q1 = R2 R−1
1 is both orthogonal and

upper triangular, with positive diagonal entries.

51. a. Consider the matrix product Q1 = Q2S, where
both Q1 and Q2 are n × m matrices with orthonor-
mal columns. Show that S is an orthogonal matrix.
Hint: Compute QT

1 Q1 = (Q2S)T Q2S. Note that
QT

1 Q1 = QT
2 Q2 = Im .

b. Show that the Q R factorization of an n × m ma-
trix M is unique. Hint: If M = Q1 R1 = Q2 R2,
then Q1 = Q2 R2 R−1

1 . Now use part (a) and Exer-
cise 50a.

52. Find a basis of the space V of all symmetric 3 × 3 ma-
trices, and thus determine the dimension of V .

53. Find a basis of the space V of all skew-symmetric 3×3
matrices, and thus determine the dimension of V .

54. Find the dimension of the space of all skew-symmetric
n × n matrices.

55. Find the dimension of the space of all symmetric n × n
matrices.

56. Is the transformation L(A) = AT from R2×3 to R3×2

linear? Is L an isomorphism?

57. Is the transformation L(A) = AT from Rm×n to Rn×m

linear? Is L an isomorphism?

58. Find image and kernel of the linear transformation
L(A) = 1

2 (A + AT ) from Rn×n to Rn×n . Hint: Think
about symmetric and skew-symmetric matrices.

59. Find the image and kernel of the linear transformation
L(A) = 1

2 (A − AT ) from Rn×n to Rn×n . Hint: Think
about symmetric and skew-symmetric matrices.

60. Find the matrix of the linear transformation L(A) = AT

from R2×2 to R2×2 with respect to the basis[
1 0
0 0

]
,

[
0 0
0 1

]
,

[
0 1
1 0

]
,

[
0 1

−1 0

]
.

61. Find the matrix of the linear transformation L(A) =
A − AT from R2×2 to R2×2 with respect to the basis[

1 0
0 0

]
,

[
0 0
0 1

]
,

[
0 1
1 0

]
,

[
0 1

−1 0

]
.

62. Consider the matrix

A =
⎡
⎣1 1 −1

3 2 −5
2 2 0

⎤
⎦

with LDU-factorization

A =
⎡
⎣1 0 0

3 1 0
2 0 1

⎤
⎦
⎡
⎣1 0 0

0 −1 0
0 0 2

⎤
⎦
⎡
⎣1 1 −1

0 1 2
0 0 1

⎤
⎦ .
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Find the LDU-factorization of AT . See Exercise
2.4.90d.

63. Consider a symmetric invertible n × n matrix A which
admits an LDU-factorization A = L DU . See Exer-
cises 90, 93, and 94 of Section 2.4. Recall that this
factorization is unique. See Exercise 2.4.94. Show that
U = LT . (This is sometimes called the L DLT -
factorization of a symmetric matrix A.)

64. This exercise shows one way to define the quaternions,
discovered in 1843 by the Irish mathematician Sir W. R.
Hamilton (1805–1865). Consider the set H of all 4 × 4
matrices M of the form

M =

⎡
⎢⎢⎢⎢⎣

p −q −r −s

q p s −r

r −s p q

s r −q p

⎤
⎥⎥⎥⎥⎦ ,

where p, q, r, s are arbitrary real numbers. We can write
M more succinctly in partitioned form as

M =
[

A −BT

B AT

]
,

where A and B are rotation–scaling matrices.
a. Show that H is closed under addition: If M and N

are in H , then so is M + N .
b. Show that H is closed under scalar multiplication:

If M is in H and k is an arbitrary scalar, then k M is
in H .

c. Parts (a) and (b) show that H is a subspace of the
linear space R4×4. Find a basis of H , and thus de-
termine the dimension of H .

d. Show that H is closed under multiplication: If M
and N are in H , then so is M N .

e. Show that if M is in H , then so is MT .
f. For a matrix M in H , compute MT M .
g. Which matrices M in H are invertible? If a matrix

M in H is invertible, is M−1 necessarily in H as
well?

h. If M and N are in H , does the equation M N = N M
always hold?

65. Find all orthogonal 2 × 2 matrices A such that all the
entries of 10A are integers and such that both entries in
the first column are positive.

66. Find an orthogonal 2 × 2 matrix A such that all the en-
tries of 100A are integers while all the entries of 10A
fail to be integers.

67. Consider a subspace V of Rn with a basis �v1, . . . , �vm ;
suppose we wish to find a formula for the orthogo-
nal projection onto V . Using the methods we have
developed thus far, we can proceed in two steps:
We use the Gram–Schmidt process to construct an
orthonormal basis �u1, . . . , �um of V , and then we use

Theorem 5.3.10: The matrix of the orthogonal projec-
tion is Q QT , where

Q =
[
�u1 · · · �um

]
.

In this exercise we will see how we can write the ma-
trix of the projection directly in terms of the basis
�v1, . . . , �vm and the matrix

A =
[

�v1 · · · �vm

]
.

(This issue will be discussed more thoroughly in Sec-
tion 5.4; see Theorem 5.4.7.)

Since projV �x is in V , we can write

projV �x = c1�v1 + · · · + cm �vm

for some scalars c1, . . . , cm yet to be determined. Now
�x − projV (�x) = �x − c1�v1 −· · ·− cm �vm is orthogonal to
V , meaning that �vi · (�x − c1�v1 − · · · − cm �vm) = 0 for
i = 1, . . . , m.
a. Use the equation �vi · (�x − c1�v1 − · · · − cm �vm) = 0

to show that AT A�c = AT �x , where �c =

⎡
⎢⎣

c1
...

cm

⎤
⎥⎦.

b. Conclude that �c = (AT A)−1 AT �x and projV �x =
A�c = A(AT A)−1 AT �x .

68. The formula A(AT A)−1 AT for the matrix of an or-
thogonal projection is derived in Exercise 67. Now con-
sider the Q R factorization of A, and express the matrix
A(AT A)−1 AT in terms of Q.

69. In R4, consider the subspace W spanned by the vectors⎡
⎢⎣

1
1

−1
0

⎤
⎥⎦ and

⎡
⎢⎣

0
1
1

−1

⎤
⎥⎦. Find the matrix PW of the ortho-

gonal projection onto W .

70. In all parts of this problem, let V be the subspace of all
vectors �x in R4 such that x3 = x1+x2 and x4 = x2+x3.
See Problems 72 and 73 of Section 4.3.
a. Find the matrix PV of the orthogonal projection onto

the subspace V in R4. Hint: Work with one of the
bases of V we considered in Problem 4.3.73.

b. What is the relationship between the subspaces W
and V defined in Exercises 69 and 70? Conse-
quently, what is the relationship between the matri-
ces PW and PV in Exercises 69 and 70?

71. An n ×n matrix A is said to be a Hankel matrix (named
after the German mathematician Hermann Hankel,
1839–1873) if ai j = ai+1, j−1 for all i = 1, . . . , n − 1
and all j = 2, . . . , n, meaning that A has constant pos-
itive sloping diagonals. For example, a 4 × 4 Hankel
matrix is of the form
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A =

⎡
⎢⎣

a b c d
b c d e
c d e f
d e f g

⎤
⎥⎦ .

Show that the n × n Hankel matrices form a subspace
of Rn×n . Find the dimension of this space.

72. Consider a vector �v in Rn of the form

�v =

⎡
⎢⎢⎢⎢⎢⎣

1
a
a2

...

an−1

⎤
⎥⎥⎥⎥⎥⎦ ,

where a is any real number. Let P be the matrix of
the orthogonal projection onto span(�v). Describe the en-
tries of P in terms of a, and explain why P is a Han-
kel matrix. See Exercise 71. As an example, find P for

�v =
⎡
⎣ 1

2
4

⎤
⎦.

73. Let n be an even positive integer. In both parts of this
problem, let V be the subspace of all vectors �x in Rn

such that x j+2 = x j + x j+1, for all j = 1, . . . , n − 2.
(In Exercise 70 we consider the special case n = 4.)
Consider the basis �v, �w of V with

�a =

⎡
⎢⎢⎢⎢⎢⎣

1
a
a2

...

an−1

⎤
⎥⎥⎥⎥⎥⎦ , �b =

⎡
⎢⎢⎢⎢⎢⎣

1
b
b2

...

bn−1

⎤
⎥⎥⎥⎥⎥⎦ ,

where a = 1 + √
5

2
and b = 1 − √

5

2
.

(In Exercise 4.3.72 we consider the case n = 4.)
a. Show that �a is orthogonal to �b.
b. Explain why the matrix P of the orthogonal projec-

tion onto V is a Hankel matrix. See Exercises 71 and
72.

74. For any integer m, we define the Fibonacci number fm
recursively by f0 = 0, f1 = 1, and f j+2 = f j + f j+1
for all integers j .7

a. Find the Fibonacci numbers fm for m = −5, . . . , 5.

b. Based upon your answer in part (a), describe the re-
lationship between f−m and fm . (For extra credit,
give a formal proof by induction on m.)

Now let n be a positive integer, with n ≥ 2. Let V be the
two-dimensional subspace of all vectors �x in Rn such
that x j+2 = x j + x j+1, for all j = 1, . . . , n − 2. See
Exercise 73. Note that, by definition, any n consecutive
Fibonacci numbers form a vector in V . Consider the ba-
sis �v, �w of V with

�v =

⎡
⎢⎢⎢⎢⎢⎣

f0
f1
...

fn−2
fn−1

⎤
⎥⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎣

0
1
...

fn−2
fn−1

⎤
⎥⎥⎥⎥⎥⎦ ,

�w =

⎡
⎢⎢⎢⎢⎢⎣

f−n+1
f−n+2

...

f−1
f0

⎤
⎥⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎣

fn−1
− fn−2

...

1
0

⎤
⎥⎥⎥⎥⎥⎦ .

(In Exercise 4.3.73c, we introduce this basis in the case
n = 4.) We are told that ‖�v‖2 = ‖ �w‖2 = fn−1 fn . (For
extra credit, give a proof by induction on n.)
c. Find the basis �v, �w in the case n = 6. Verify the

identity ‖�v‖2 = ‖ �w‖2 = f5 f6. Also, show that �v is
orthogonal to �w.

d. Show that �v is orthogonal to �w for any even positive
integer n.

e. For an even positive integer n, let P be the matrix of
the orthogonal projection onto V . Show that the first
column of P is 1

fn
�w, while the last column is 1

fn
�v.

Recall from Exercise 73 that P is a Hankel matrix,
and note that a Hankel matrix is determined by its
first and last columns. Conclude that

P = 1

fn

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

f−n+1 f−n+2 . . . f−1 f0

f−n+2 f−n+3 . . . f0 f1

...
...

. . .
...

...

f−1 f0 . . . fn−3 fn−2

f0 f1 . . . fn−2 fn−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

,

meaning that the i j th entry of P is
fi+ j−n−1

fn
.

f. Find the matrix P in the case n = 6.

5.4 Least Squares and Data Fitting

In this section, we will present an important application of the ideas introduced in
this chapter. First, we take another look at orthogonal complements and orthogonal
projections.

7Exercises 69 through 74 are based on research by Prof. Ben Mathes, Colby College.
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Another Characterization of Orthogonal Complements

Consider a subspace V = im(A) of Rn , where A =
⎡
⎣ | | |

�v1 �v2 · · · �vm

| | |

⎤
⎦. Then

V ⊥ = {�x in Rn: �v · �x = 0, for all �v in V }
= {�x in Rn: �vi · �x = 0, for i = 1, . . . , m}
= {�x in Rn: �vT

i �x = 0, for i = 1, . . . , m}.
In other words, V ⊥ = (imA)⊥ is the kernel of the matrix

AT =

⎡
⎢⎢⎢⎣

− �vT
1 −

− �vT
2 −
...

− �vT
m −

⎤
⎥⎥⎥⎦ .

Theorem 5.4.1 For any matrix A,

(imA)⊥ = ker(AT ).

Here is a very simple example: Consider the line

V = im

⎡
⎣1

2
3

⎤
⎦ .

Then

V ⊥ = ker
[
1 2 3

]
is the plane with equation x1 + 2x2 + 3x3 = 0. See Figure 1.

0

V⊥ = ker[1  2  3], which is
the plane x1 + 2x2 + 3x3 = 0

the line spanned by

, which is

1
2
3

V = im
1
2
3

Figure 1

The following somewhat technical result will be useful later:

Theorem 5.4.2 a. If A is an n × m matrix, then

ker(A) = ker(AT A).

b. If A is an n × m matrix with ker(A) = {�0}, then AT A is invertible.
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Proof a. Clearly, the kernel of A is contained in the kernel of AT A. Conversely, con-
sider a vector �x in the kernel of AT A, so that AT A�x = �0. Then A�x is in the
image of A and in the kernel of AT . Since ker(AT ) is the orthogonal com-
plement of im(A) by Theorem 5.4.1, the vector A�x is �0 by Theorem 5.1.8b;
that is, �x is in the kernel of A.

b. Note that AT A is an m × m matrix. By part (a), ker(AT A) = {�0}, and the
square matrix AT A is therefore invertible. See Theorem 3.3.10. �

An Alternative Characterization of Orthogonal Projections

Theorem 5.4.3 Consider a vector �x in Rn and a subspace V of Rn . Then the orthogonal projec-
tion projV �x is the vector in V closest to �x , in that

‖�x − projV �x‖ < ‖�x − �v‖,
for all �v in V different from projV �x .

To justify this fact, apply the Pythagorean theorem to the shaded right triangle
in Figure 2.

v� 

x�x� − projV x� x� − v�

0
projV x�

V

(translated)
(translated)

Figure 2

Least-Squares Approximations
Consider an inconsistent linear system A�x = �b. The fact that this system is incon-
sistent means that the vector �b is not in the image of A. See Figure 3.

O im(A)

b�

Figure 3

Although this system cannot be solved, we might be interested in finding a good
approximate solution. We can try to find a vector �x∗ such that A�x∗ is “as close as
possible” to �b. In other words, we try to minimize the error ‖�b − A�x‖.

Definition 5.4.4 Least-squares solution

Consider a linear system

A�x = �b,

where A is an n × m matrix. A vector �x∗ in Rm is called a least-squares solution
of this system if ‖�b − A�x∗‖ ≤ ‖�b − A�x‖ for all �x in Rm .
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See Figure 4.

Ax�

b�
(translated)

(translated)b� − Ax�

0
Ax�*

im(A)

b� − Ax�*

Figure 4

The term least-squares solution reflects the fact that we are minimizing the sum
of the squares of the components of the vector �b − A�x .

If the system A�x = �b happens to be consistent, then the least-squares solutions
are its exact solutions: The error ‖�b − A�x‖ is zero.

How can we find the least-squares solutions of a linear system A�x = �b? Con-
sider the following string of equivalent statements:

The vector �x∗ is a least-squares solution
of the system A�x = �b.123 Definition 5.4.4

‖�b − A�x∗‖ ≤ ‖�b − A�x‖ for all �x in Rm .123 Theorem 5.4.3

A�x∗ = projV
�b, where V = im(A).123 Theorems 5.1.4 and 5.4.1

�b − A�x∗ is in V ⊥ = (imA)⊥ = ker(AT ).123
AT (�b − A�x∗) = �0.123
AT A�x∗ = AT �b.

Take another look at Figures 2 and 4.

Theorem 5.4.5 The normal equation

The least-squares solutions of the system

A�x = �b
are the exact solutions of the (consistent) system

AT A�x = AT �b.

The system AT A�x = AT �b is called the normal equation of A�x = �b.

The case when ker(A) = {�0} is of particular importance. Then, the matrix AT A
is invertible (by Theorem 5.4.2b), and we can give a closed formula for the least-
squares solution.
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Theorem 5.4.6 If ker(A) = {�0}, then the linear system

A�x = �b
has the unique least-squares solution

�x∗ = (AT A)−1 AT �b.

From a computational point of view, it may be more efficient to solve the nor-
mal equation AT A�x = AT �b by Gauss–Jordan elimination, rather than by using
Theorem 5.4.6.

EXAMPLE 1 Use Theorem 5.4.6 to find the least-squares solution �x∗ of the system

A�x = �b, where A =
⎡
⎣1 1

1 2
1 3

⎤
⎦ and �b =

⎡
⎣0

0
6

⎤
⎦ .

What is the geometric relationship between A�x∗ and �b?

Solution
We compute

�x∗ = (AT A)−1 AT �b =
[−4

3

]
and A�x∗ =

⎡
⎣−1

2
5

⎤
⎦ .

Recall that A�x∗ is the orthogonal projection of �b onto the image of A. Check that

�b − A�x∗ =
⎡
⎣ 1

−2
1

⎤
⎦

is indeed perpendicular to the two column vectors of A. See Figure 5. �

b� 

b� − Ax�* (translated)

x�*

V = im(A)

O

A

Ax�* = projV b�

Figure 5

If �x∗ is a least-squares solution of the system A�x = �b, then A�x∗ is the or-
thogonal projection of �b onto im(A). We can use this fact to find a new formula
for orthogonal projections. Compare this with Theorems 5.1.5 and 5.3.10. Con-
sider a subspace V of Rn and a vector �b in Rn . Choose a basis �v1, . . . , �vm of
V , and form the matrix A = [ �v1 . . . �vm

]
. Note that ker(A) = {�0}, since the

columns of A are linearly independent. The least-squares solution of the system
A�x = �b is �x∗ = (AT A)−1 AT �b. Thus, the orthogonal projection of �b onto V is
projV

�b = A�x∗ = A(AT A)−1 AT �b.
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Theorem 5.4.7 The matrix of an orthogonal projection

Consider a subspace V of Rn with basis �v1, �v2, . . . , �vm . Let

A =
⎡
⎣ | | |

�v1 �v2 . . . �vm

| | |

⎤
⎦ .

Then the matrix of the orthogonal projection onto V is

A(AT A)−1 AT .

We are not required to find an orthonormal basis of V here. If the vectors
�v1, . . . , �vm happen to be orthonormal, then AT A = Im and the formula simplifies
to AAT . See Theorem 5.3.10.

EXAMPLE 2 Find the matrix of the orthogonal projection onto the subspace of R4 spanned by
the vectors ⎡

⎢⎢⎣
1
1
1
1

⎤
⎥⎥⎦ and

⎡
⎢⎢⎣

1
2
3
4

⎤
⎥⎥⎦ .

Solution
Let

A =

⎡
⎢⎢⎣

1 1
1 2
1 3
1 4

⎤
⎥⎥⎦ ,

and compute

A(AT A)−1 AT = 1

10

⎡
⎢⎢⎣

7 4 1 −2
4 3 2 1
1 2 3 4

−2 1 4 7

⎤
⎥⎥⎦ .

�

Data Fitting
Scientists are often interested in fitting a function of a certain type to data they have
gathered. The functions considered could be linear, polynomial, rational, trigono-
metric, or exponential. The equations we have to solve as we fit data are frequently
linear. See Exercises 31 through 38 of Section 1.1, and Exercises 32 through 35 of
Section 1.2.

EXAMPLE 3 Find a cubic polynomial whose graph passes through the points (1, 3), (−1, 13),
(2, 1), (−2, 33).

Solution
We are looking for a function

f (t) = c0 + c1t + c2t2 + c3t3
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such that f (1) = 3, f (−1) = 13, f (2) = 1, f (−2) = 33; that is, we have to solve
the linear system ∣∣∣∣∣∣∣∣∣

c0 + c1 + c2 + c3 = 3

c0 − c1 + c2 − c3 = 13

c0 + 2c1 + 4c2 + 8c3 = 1

c0 − 2c1 + 4c2 − 8c3 = 33

∣∣∣∣∣∣∣∣∣
.

This linear system has the unique solution⎡
⎢⎢⎣

c0

c1

c2

c3

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

5
−4

3
−1

⎤
⎥⎥⎦ .

Thus, the cubic polynomial whose graph passes through the four given data points
is f (t) = 5 − 4t + 3t2 − t3, as shown in Figure 6. �

(1, 3) (2, 1)

(−1, 13)

(−2, 33)

f (t)

t

Figure 6

Frequently, a data-fitting problem leads to a linear system with more equations
than variables. (This happens when the number of data points exceeds the number
of parameters in the function we seek.) Such a system is usually inconsistent, and
we will look for the least-squares solution(s).

EXAMPLE 4 Fit a quadratic function to the four data points (a1, b1) = (−1, 8), (a2, b2) = (0, 8),
(a3, b3) = (1, 4), and (a4, b4) = (2, 16).

Solution
We are looking for a function f (t) = c0 + c1t + c2t2 such that∣∣∣∣∣∣∣∣∣

f (a1) = b1

f (a2) = b2

f (a3) = b3

f (a4) = b4

∣∣∣∣∣∣∣∣∣
or

∣∣∣∣∣∣∣∣∣
c0 − c1 + c2 = 8

c0 = 8

c0 + c1 + c2 = 4

c0 + 2c1 + 4c2 = 16

∣∣∣∣∣∣∣∣∣
or A

⎡
⎣c0

c1

c2

⎤
⎦ = �b,

where

A =

⎡
⎢⎢⎣

1 −1 1
1 0 0
1 1 1
1 2 4

⎤
⎥⎥⎦ and �b =

⎡
⎢⎢⎣

8
8
4

16

⎤
⎥⎥⎦ .

We have four equations, corresponding to the four data points, but only three un-
knowns, the three coefficients of a quadratic polynomial. Check that this system is
indeed inconsistent. The least-squares solution is

�c∗ =

⎡
⎢⎣c∗

0

c∗
1

c∗
2

⎤
⎥⎦ = (AT A)−1 AT �b =

⎡
⎢⎣ 5

−1

3

⎤
⎥⎦ .
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The least-squares approximation is f ∗(t) = 5 − t + 3t2, as shown in Figure 7.

(a1, b1)
(a2, b2)

(a3, b3)

(a4, b4)f *(t)

t

Figure 7

This quadratic function f ∗(t) fits the data points best, in that the vector

A�c∗ =

⎡
⎢⎢⎢⎢⎣

f ∗(a1)

f ∗(a2)

f ∗(a3)

f ∗(a4)

⎤
⎥⎥⎥⎥⎦

is as close as possible to

�b =

⎡
⎢⎢⎢⎢⎣

b1

b2

b3

b4

⎤
⎥⎥⎥⎥⎦ .

This means that

‖�b − A�c∗‖2 = (b1 − f ∗(a1)
)2 + (b2 − f ∗(a2)

)2
+ (b3 − f ∗(a3)

)2 + (b4 − f ∗(a4)
)2

is minimal: The sum of the squares of the vertical distances between graph and data
points is minimal. See Figure 8. �

(ai, f*(ai))

(ai , bi)

f*(t)
bi − f*(ai)

Figure 8

EXAMPLE 5 Find the linear function c0 + c1t that best fits the data points (a1, b1), (a2, b2), . . . ,
(an, bn), using least squares. Assume that a1 �= a2.

Solution
We attempt to solve the system ∣∣∣∣∣∣∣∣∣∣

c0 + c1a1 = b1

c0 + c1a2 = b2

...
...

...

c0 + c1an = bn

∣∣∣∣∣∣∣∣∣∣
,

or ⎡
⎢⎢⎢⎣

1 a1

1 a2
...

...

1 an

⎤
⎥⎥⎥⎦
[

c0

c1

]
=

⎡
⎢⎢⎢⎣

b1

b2
...

bn

⎤
⎥⎥⎥⎦ ,

or

A

[
c0

c1

]
= �b.
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Note that rank(A) = 2, since a1 �= a2.
The least-squares solution is

[
c∗

0

c∗
1

]
= (AT A)−1 AT �b =

⎛
⎜⎝[ 1 · · · 1

a1 · · · an

]⎡⎢⎣1 a1
...

...

1 an

⎤
⎥⎦
⎞
⎟⎠

−1 [
1 · · · 1
a1 · · · an

]⎡⎢⎣b1
...

bn

⎤
⎥⎦

=
⎡
⎣ n

∑
i ai∑

i ai
∑

i a2
i

⎤
⎦−1 ⎡⎣ ∑i bi∑

i ai bi

⎤
⎦ (where

∑
i refers to the sum for

i = 1, . . . , n)

= 1

n(
∑

i a2
i ) − (
∑

i ai )2

⎡
⎣ ∑i a2

i −∑i ai

−∑i ai n

⎤
⎦
⎡
⎣ ∑i bi∑

i ai bi

⎤
⎦ .

We have found that

c∗
0 =
(∑

i a2
i

) (∑
i bi
)− (∑i ai

) (∑
i ai bi
)

n
(∑

i a2
i

)− (∑i ai
)2

c∗
1 = n
(∑

i ai bi
)− (∑i ai

) (∑
i bi
)

n
(∑

i a2
i

)− (∑i ai
)2 .

These formulas are well known to statisticians. There is no need to memorize them.
�

We conclude this section with an example for multivariate data fitting.

EXAMPLE 6 In the accompanying table, we list the scores of five students on the three exams
given in a class.

h: m: f :
Hour Exam Midterm Exam Final Exam

Gabriel 76 48 43
Kyle 92 92 90
Faruk 68 82 64
Yasmine 86 68 69
Alec 54 70 50

Find the function of the form f = c0 +c1h +c2m that best fits these data, using
least squares. What score f does your formula predict for Marilyn, another student,
whose scores in the first two exams were h = 92 and m = 72?

Solution
We attempt to solve the system∣∣∣∣∣∣∣∣∣∣∣

c0 + 76c1 + 48c2 = 43

c0 + 92c1 + 92c2 = 90

c0 + 68c1 + 82c2 = 64

c0 + 86c1 + 68c2 = 69

c0 + 54c1 + 70c2 = 50

∣∣∣∣∣∣∣∣∣∣∣
.
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The least-squares solution is⎡
⎢⎣c∗

0

c∗
1

c∗
2

⎤
⎥⎦ = (AT A)−1 AT �b ≈

⎡
⎣−42.4

0.639
0.799

⎤
⎦ .

The function that gives the best fit is approximately

f = −42.4 + 0.639h + 0.799m.

This formula predicts the score

f = −42.4 + 0.639 · 92 + 0.799 · 72 ≈ 74

for Marilyn. �

EXERCISES 5.4
GOAL Use the formula (im A)⊥ = ker(AT ). Apply the
characterization of projV �x as the vector in V “closest
to �x.” Find the least-squares solutions of a linear system
A�x = �b using the normal equation AT A�x = AT �b.

1. Consider the subspace im(A) of R2, where

A =
[

2 4
3 6

]
.

Find a basis of ker(AT ), and draw a sketch illustrating
the formula

(im A)⊥ = ker(AT )

in this case.

2. Consider the subspace im(A) of R3, where

A =
⎡
⎣1 1

1 2
1 3

⎤
⎦ .

Find a basis of ker(AT ), and draw a sketch illustrating
the formula (im A)⊥ = ker(AT ) in this case.

3. Consider a subspace V of Rn . Let �v1, . . . , �vp be a ba-
sis of V and �w1, . . . , �wq a basis of V ⊥. Is �v1, . . . , �vp ,
�w1, . . . , �wq a basis of Rn? Explain.

4. Let A be an n × m matrix. Is the formula

(ker A)⊥ = im(AT )

necessarily true? Explain.

5. Let V be the solution space of the linear system∣∣∣∣x1 + x2 + x3 + x4 = 0

x1 + 2x2 + 5x3 + 4x4 = 0

∣∣∣∣ .
Find a basis of V ⊥.

6. If A is an n × m matrix, is the formula

im(A) = im(AAT )

necessarily true? Explain.

7. Consider a symmetric n × n matrix A. What is the rela-
tionship between im(A) and ker(A)?

8. Consider a linear transformation L(�x) = A�x from Rn

to Rm , with ker(L) = {�0}. The pseudoinverse L+ of L
is the transformation from Rm to Rn given by

L+(�y) = (the least-squares solution of L(�x) = �y).
a. Show that the transformation L+ is linear. Find the

matrix A+ of L+, in terms of the matrix A of L .
b. If L is invertible, what is the relationship between

L+ and L−1?
c. What is L+(L(�x)

)
, for �x in Rn?

d. What is L
(

L+(�y)
)
, for �y in Rm?

e. Find L+ for the linear transformation

L(�x) =
⎡
⎣1 0

0 1
0 0

⎤
⎦ �x .

9. Consider the linear system A�x = �b, where

A =
[

1 3
2 6

]
and �b =

[
10
20

]
.

a. Draw a sketch showing the following subsets of R2:

• the kernel of A, and (ker A)⊥
• the image of AT

• the solution set S of the system A�x = �b
b. What relationship do you observe between ker(A)

and im(AT )? Explain.
c. What relationship do you observe between ker(A)

and S? Explain.
d. Find the unique vector �x0 in the intersection of S and

(ker A)⊥. Show �x0 on your sketch.
e. What can you say about the length of �x0 compared

with the length of all other vectors in S?
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10. Consider a consistent system A�x = �b.
a. Show that this system has a solution �x0 in (ker A)⊥.

Hint: An arbitrary solution �x of the system can be
written as �x = �xh + �x0, where �xh is in ker(A) and
�x0 is in (ker A)⊥.

b. Show that the system A�x = �b has only one solution
in (ker A)⊥. Hint: If �x0 and �x1 are two solutions in
(ker A)⊥, think about �x1 − �x0.

c. If �x0 is the solution in (ker A)⊥ and �x1 is another
solution of the system A�x = �b, show that ‖�x0‖ <

‖�x1‖. The vector �x0 is called the minimal solution of
the linear system A�x = �b.

11. Consider a linear transformation L(�x) = A�x from Rn

to Rm , where rank(A) = m. The pseudoinverse L+ of
L is the transformation from Rm to Rn given by

L+(�y)=(the minimal solution of the system L(�x)= �y).
See Exercise 10.
a. Show that the transformation L+ is linear.
b. What is L

(
L+(�y)
)
, for �y in Rm?

c. What is L+(L(�x)
)
, for �x in Rn?

d. Determine the image and kernel of L+.
e. Find L+ for the linear transformation

L(�x) =
[

1 0 0
0 1 0

]
�x .

12. Using Exercise 10 as a guide, define the term minimal
least-squares solution of a linear system. Explain why
the minimal least-squares solution �x∗ of a linear system
A�x = �b is in (ker A)⊥.

13. Consider a linear transformation L(�x) = A�x from Rn

to Rm . The pseudoinverse L+ of L is the transformation
from Rm to Rn given by

L+(�y) = (the minimal least-squares solution
of the system L(�x) = �y).

See Exercises 8, 11, and 12 for special cases.
a. Show that the transformation L+ is linear.
b. What is L+(L(�x)

)
, for �x in Rn?

c. What is L
(

L+(�y)
)
, for �y in Rm?

d. Determine the image and kernel of L+ [in terms of
im(AT ) and ker(AT )

]
.

e. Find L+ for the linear transformation

L(�x) =
[

2 0 0
0 0 0

]
�x .

14. In the accompanying figure, we show the kernel and the
image of a linear transformation L from R2 to R2, to-
gether with some vectors �v1, �w1, �w2, �w3. We are told
that L(�v1) = �w1. For i = 1, 2, 3, find the vectors
L+( �wi ), where L+ is the pseudoinverse of L defined in

Exercise 13. Show your solutions in the figure, and ex-
plain how you found them.

im(L)

ker(L)

v�1

w�2

w�1

w�3

OO

L

15. Consider an m × n matrix A with ker(A) = {�0}. Show
that there exists an n × m matrix B such that B A = In .
Hint: AT A is invertible.

16. Use the formula (im A)⊥ = ker(AT ) to prove the equa-
tion

rank(A) = rank(AT ).

17. Does the equation

rank(A) = rank(AT A)

hold for all n × m matrices A? Explain.

18. Does the equation

rank(AT A) = rank(AAT )

hold for all n × m matrices A? Explain. Hint: Exer-
cise 17 is useful.

19. Find the least-squares solution �x∗ of the system

A�x = �b, where A =
⎡
⎣1 0

0 1
0 0

⎤
⎦ and �b =

⎡
⎣1

1
1

⎤
⎦ .

Use paper and pencil. Draw a sketch showing the vec-
tor �b, the image of A, the vector A�x∗, and the vector
�b − A�x∗.

20. By using paper and pencil, find the least-squares solu-
tion �x∗ of the system

A�x = �b, where A =
⎡
⎣1 1

1 0
0 1

⎤
⎦ and �b =

⎡
⎣3

3
3

⎤
⎦ .

Verify that the vector �b − A�x∗ is perpendicular to the
image of A.

21. Find the least-squares solution �x∗ of the system

A�x = �b, where A =
⎡
⎣6 9

3 8
2 10

⎤
⎦ and �b =

⎡
⎣ 0

49
0

⎤
⎦ .

Determine the error ‖�b − A�x∗‖.
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22. Find the least-squares solution �x∗ of the system

A�x = �b, where A =
⎡
⎣3 2

5 3
4 5

⎤
⎦ and �b =

⎡
⎣5

9
2

⎤
⎦ .

Determine the error ‖�b − A�x∗‖.

23. Find the least-squares solution �x∗ of the system

A�x = �b, where A =
⎡
⎣1 1

2 8
1 5

⎤
⎦ and �b =

⎡
⎣ 1

−2
3

⎤
⎦ .

Explain.

24. Find the least-squares solution �x∗ of the system

A�x = �b, where A =
⎡
⎣1

2
3

⎤
⎦ and �b =

⎡
⎣3

2
7

⎤
⎦ .

Draw a sketch showing the vector �b, the image of A, the
vector A�x∗, and the vector �b − A�x∗.

25. Find the least-squares solutions �x∗ of the system
A�x = �b, where

A =
[

1 3
2 6

]
and �b =

[
5
0

]
.

Use only paper and pencil. Draw a sketch.

26. Find the least-squares solutions �x∗ of the system
A�x = �b, where

A =
⎡
⎣1 2 3

4 5 6
7 8 9

⎤
⎦ and �b =

⎡
⎣1

0
0

⎤
⎦ .

27. Consider an inconsistent linear system A�x = �b, where
A is a 3×2 matrix. We are told that the least-squares so-

lution of this system is �x∗ =
[

7
11

]
. Consider an orthog-

onal 3 × 3 matrix S. Find the least-squares solution(s)
of the system S A�x = S�b.

28. Consider an orthonormal basis �u1, �u2, . . . , �un in Rn .
Find the least-squares solution(s) of the system

A�x = �un,

where

A =
⎡
⎣ | | |

�u1 �u2 · · · �un−1

| | |

⎤
⎦ .

29. Find the least-squares solution of the system

A�x = �b, where A =
⎡
⎣ 1 1

10−10 0
0 10−10

⎤
⎦ and

�b =
⎡
⎣ 1

10−10

10−10

⎤
⎦ .

Describe and explain the difficulties you may encounter
if you use technology. Then find the solution using
paper and pencil.

30. Fit a linear function of the form f (t) = c0 + c1t to the
data points (0, 0), (0, 1), (1, 1), using least squares. Use
only paper and pencil. Sketch your solution, and explain
why it makes sense.

31. Fit a linear function of the form f (t) = c0 + c1t to
the data points (0, 3), (1, 3), (1, 6), using least squares.
Sketch the solution.

32. Fit a quadratic polynomial to the data points (0, 27),
(1, 0), (2, 0), (3, 0), using least squares. Sketch the
solution.

33. Find the trigonometric function of the form f (t) =
c0 + c1 sin(t) + c2 cos(t) that best fits the data points
(0, 0), (1, 1), (2, 2), (3, 3), using least squares. Sketch
the solution together with the function g(t) = t .

34. Find the function of the form

f (t) = c0 + c1 sin(t) + c2 cos(t) + c3 sin(2t) + c4 cos(2t)

that best fits the data points (0, 0), (0.5, 0.5), (1, 1),
(1.5, 1.5), (2, 2), (2.5, 2.5), (3, 3), using least squares.
Sketch the solution, together with the function g(t) = t .

35. Suppose you wish to fit a function of the form

f (t) = c + p sin(t) + q cos(t)

to a given continuous function g(t) on the closed inter-
val from 0 to 2π . One approach is to choose n equally
spaced points ai between 0 and 2π [ai = i · (2π/n), for
i = 1, . . . , n, say]. We can fit a function

fn(t) = cn + pn sin(t) + qn cos(t)

to the data points
(
ai , g(ai )

)
, for i = 1, . . . , n. Now

examine what happens to the coefficients cn , pn , qn of
fn(t) as n approaches infinity.

a5, g(a5)

fn(t)

g(t)

a1 a2 a3 a4 a5 a6 a7 a8 = 2 

ai = i · 2 
8( )
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To find fn(t), we make an attempt to solve the equations

fn(ai ) = g(ai ), for i = 1, . . . , n,

or ∣∣∣∣∣∣∣∣∣
cn + pn sin(a1) + qn cos(a1) = g(a1)

cn + pn sin(a2) + qn cos(a2) = g(a2)
...

...

cn + pn sin(an) + qn cos(an) = g(an)

∣∣∣∣∣∣∣∣∣
,

or

An

⎡
⎣ cn

pn

qn

⎤
⎦ = �bn,

where

An =

⎡
⎢⎢⎢⎣

1 sin(a1) cos(a1)

1 sin(a2) cos(a2)
...

...
...

1 sin(an) cos(an)

⎤
⎥⎥⎥⎦ , �bn =

⎡
⎢⎢⎢⎣

g(a1)

g(a2)
...

g(an)

⎤
⎥⎥⎥⎦ .

a. Find the entries of the matrix AT
n An and the com-

ponents of the vector AT
n
�bn .

b. Find

lim
n→∞

(
2π

n
AT

n An

)
and lim

n→∞

(
2π

n
AT

n
�b
)

.

Hint: Interpret the entries of the matrix
(2π/n)AT

n An and the components of the vector

(2π/n)AT �b as Riemann sums. Then the limits are
the corresponding Riemann integrals. Evaluate as
many integrals as you can. Note that

lim
n→∞

(
2π

n
AT

n An

)

is a diagonal matrix.
c. Find

lim
n→∞

⎡
⎣ cn

pn

qn

⎤
⎦ = lim

n→∞(AT
n An)−1 AT

n
�bn

= lim
n→∞

[(
2π

n
AT

n An

)−1(2π

n
AT

n
�bn

)]

=
[

lim
n→∞

(
2π

n
AT

n An

)]−1

lim
n→∞

(
2π

n
AT

n
�bn

)
.

The resulting vector

⎡
⎣ c

p
q

⎤
⎦ gives you the coefficient

of the desired function

f (t) = lim
n→∞ fn(t).

Write f (t). The function f (t) is called the first
Fourier approximation of g(t). The Fourier ap-
proximation satisfies a “continuous” least-squares
condition, an idea we will make more precise in the
next section.

36. Let S(t) be the number of daylight hours on the t th day
of the year 2012 in Rome, Italy. We are given the fol-
lowing data for S(t):

Day t S(t)

February 1 32 10
March 17 77 12
April 30 121 14
May 31 152 15

We wish to fit a trigonometric function of the form

f (t) = a + b sin

(
2π

366
t

)
+ c cos

(
2π

366
t

)

to these data. Find the best approximation of this form,
using least squares.

How many daylight hours does your model predict
for the longest day of the year 2012? (The actual value
is 15 hours, 13 minutes, 39 seconds.)

37. The accompanying table lists several commercial air-
planes, the year they were introduced, and the number
of displays in the cockpit.

Plane Year t Displays d

Douglas DC-3 ’35 35
Lockheed Constellation ’46 46
Boeing 707 ’59 77
Concorde ’69 133

a. Fit a linear function of the form log(d) = c0 + c1t
to the data points

(
ti , log(di )

)
, using least squares.

b. Use your answer in part (a) to fit an exponential
function d = kat to the data points (ti , di ).

c. The Airbus A320 was introduced in 1988. Based on
your answer in part b, how many displays do you
expect in the cockpit of this plane? (There are 93
displays in the cockpit of an Airbus A320. Explain.)

38. In the accompanying table, we list the height h, the gen-
der g, and the weight w of some young adults.
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Height h Gender g
(in Inches above (1 = “Female,” Weight w

5 Feet) 0 = “Male”) (in Pounds)

2 1 110
12 0 180
5 1 120

11 1 160
6 0 160

Fit a function of the form

w = c0 + c1h + c2g

to these data, using least squares. Before you do the
computations, think about the signs of c1 and c2. What
signs would you expect if these data were representa-
tive of the general population? Why? What is the sign
of c0? What is the practical significance of c0?

39. In the accompanying table, we list the estimated num-
ber g of genes and the estimated number z of cell types
for various organisms.

Number of Number of
Organism Genes, g Cell Types, z

Humans 600,000 250
Annelid worms 200,000 60
Jellyfish 60,000 25
Sponges 10,000 12
Yeasts 2,500 5

a. Fit a function of the form log(z) = c0 + c1 log(g)

to the data points
(
log(gi ), log(zi )

)
, using least

squares.
b. Use your answer in part (a) to fit a power function

z = kgn to the data points (gi , zi ).
c. Using the theory of self-regulatory systems, scien-

tists developed a model that predicts that z is a

square-root function of g (i.e., a = k
√

g, for some
constant k). Is your answer in part (b) reasonably
close to this form?

40. Consider the data in the following table.

a D
Mean Distance from Period of

the Sun (in Revolution
Planet Astronomical Units) (in Earth Years)

Mercury 0.387 0.241
Earth 1.000 1.000
Jupiter 5.203 11.86
Uranus 19.19 84.04
Pluto 39.53 248.6

Use the methods discussed in Exercise 39 to fit a power
function of the form D = kan to these data. Explain,
in terms of Kepler’s laws of planetary motion. Explain
why the constant k is close to 1.

41. In the accompanying table, we list the public debt D
of the United States (in billions of dollars), in various
years t (as of September 30).

Year 1975 1985 1995 2005
D 533 1,823 4,974 7,933

a. Letting t = 0 in 1975, fit a linear function of
the form log(D) = c0 + c1t to the data points
(ti , log(Di )), using least squares. Use the result to fit
an exponential function to the data points (ti , Di ).

b. What debt does your formula in part (a) predict for
2015?

42. If A is any matrix, show that the linear transforma-
tion L(�x) = A�x from im(AT ) to im(A) is an isomor-
phism. This provides yet another proof of the formula
rank(A) = rank(AT ).

5.5 Inner Product Spaces

Let’s take a look back at what we have done thus far in this text. In Chapters 1
through 3, we studied the basic concepts of linear algebra in the concrete context of
Rn . Recall that these concepts are all defined in terms of two operations: addition
and scalar multiplication. In Chapter 4, we saw that it can be both natural and use-
ful to apply the language of linear algebra to objects other than vectors in Rn , for
example, to functions. We introduced the term linear space (or vector space) for a
set that behaves like Rn as far as addition and scalar multiplication are concerned.

In this chapter, a new operation for vectors in Rn takes center stage: the dot
product. In Sections 5.1 through 5.4, we studied concepts that are defined in terms
of the dot product, the most important of them being the length of vectors and
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orthogonality of vectors. In this section, we will see that it can be useful to define
a product analogous to the dot product in a linear space other than Rn . These gen-
eralized dot products are called inner products. Once we have an inner product in a
linear space, we can define length and orthogonality in that space just as in Rn , and
we can generalize all the key ideas and theorems of Sections 5.1 through 5.4.

Definition 5.5.1 Inner products and inner product spaces

An inner product in a linear space V is a rule that assigns a real scalar (denoted
by 〈 f, g〉) to any pair f , g of elements of V , such that the following properties
hold for all f , g, h in V , and all c in R:

a. 〈 f, g〉 = 〈g, f 〉 (symmetry).

b. 〈 f + h, g〉 = 〈 f, g〉 + 〈h, g〉.
c. 〈c f, g〉 = c〈 f, g〉.
d. 〈 f, f 〉 > 0, for all nonzero f in V (positive definiteness).

A linear space endowed with an inner product is called an inner product space.

Properties (b) and (c) express the fact that T ( f ) = 〈 f, g〉 is a linear transfor-
mation from V to R, for a fixed g in V .

Compare these rules with those for the dot product in Rn , listed in the Ap-
pendix, Theorem A.5. Roughly speaking, an inner product space behaves like Rn

as far as addition, scalar multiplication, and the dot product are concerned.

EXAMPLE 1 Consider the linear space C[a, b] consisting of all continuous functions whose do-
main is the closed interval [a, b], where a < b. See Figure 1.

a b

Figure 1

For functions f and g in C[a, b], we define

〈 f, g〉 =
∫ b

a
f (t)g(t) dt.

The verification of the first three axioms for an inner product is straightforward. For
example,

〈 f, g〉 =
∫ b

a
f (t)g(t) dt =

∫ b

a
g(t) f (t) dt = 〈g, f 〉.

The verification of the last axiom requires a bit of calculus. We leave it as Exercise 1.
Recall that the Riemann integral

∫ b
a f (t)g(t) dt is the limit of the Riemann

sum
∑m

i=1 f (tk)g(tk)	t , where the tk can be chosen as equally spaced points on
the interval [a, b]. See Figure 2.
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f (t)

g(t)

… tm = bt0 = a t1 t2

Figure 2

Then

〈 f, g〉 =
∫ b

a
f (t)g(t) dt ≈

m∑
k=1

f (tk)g(tk)	t =

⎛
⎜⎜⎜⎝
⎡
⎢⎢⎢⎣

f (t1)
f (t2)

...

f (tm)

⎤
⎥⎥⎥⎦ ·

⎡
⎢⎢⎢⎣

g(t1)
g(t2)

...

g(tm)

⎤
⎥⎥⎥⎦
⎞
⎟⎟⎟⎠	t

for large m.
This approximation shows that the inner product 〈 f, g〉 = ∫ b

a f (t)g(t) dt for
functions is a continuous version of the dot product: The more subdivisions you
choose, the better the dot product on the right will approximate the inner product
〈 f, g〉. �

EXAMPLE 2 Let �2 be the space of all “square-summable” infinite sequences, that is, sequences

�x = (x0, x1, x2, . . . , xn, . . .)

such that
∑∞

i=0 x2
i = x2

0 + x2
1 + · · · converges. In this space we can define the inner

product

〈�x, �y〉 =
∞∑

i=0

xi yi = x0 y0 + x1 y1 + · · · .

(Show that this series converges.) The verification of the axioms is straightforward.
Compare this with Exercises 4.1.15 and 5.1.18. �

EXAMPLE 3 The trace of a square matrix is the sum of its diagonal entries. For example,

trace

[
1 2
3 4

]
= 1 + 4 = 5.

In Rn×m , the space of all n × m matrices, we can define the inner product

〈A, B〉 = trace(AT B).

We will verify the first and fourth axioms.

〈A, B〉 = trace(AT B) = trace
(
(AT B)T

) = trace(BT A) = 〈B, A〉
To check that 〈A, A〉 > 0 for nonzero A, write A in terms of its columns:

A =
⎡
⎣ | | |

�v1 �v2 . . . �vm

| | |

⎤
⎦ .
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Now we have

〈A, A〉 = trace(AT A) = trace

⎛
⎜⎜⎜⎝
⎡
⎢⎢⎢⎣

− �vT
1 −

− �vT
2 −
...

− �vT
m −

⎤
⎥⎥⎥⎦
⎡
⎣ | | |

�v1 �v2 . . . �vm

| | |

⎤
⎦
⎞
⎟⎟⎟⎠

= trace

⎛
⎜⎜⎜⎝
⎡
⎢⎢⎢⎣

‖�v1‖2 . . . . . .

. . . ‖�v2‖2 . . .
...

...
. . .

...

. . . ‖�vm‖2

⎤
⎥⎥⎥⎦
⎞
⎟⎟⎟⎠

= ‖�v1‖2 + ‖�v2‖2 + · · · + ‖�vm‖2.

If A is nonzero, then at least one of the column vectors �vi is nonzero, so that
the sum ‖�v1‖2 + ‖�v2‖2 + · · · + ‖�vm‖2 is positive, as desired. �

We can introduce the basic concepts of geometry for an inner product space
exactly as we did in Rn for the dot product.

Definition 5.5.2 Norm, orthogonality

The norm (or magnitude) of an element f of an inner product space is

‖ f ‖ =
√

〈 f, f 〉.
Two elements f and g of an inner product space are called orthogonal (or per-
pendicular) if

〈 f, g〉 = 0.

We can define the distance between two elements of an inner product space as
the norm of their difference:

dist( f, g) = ‖ f − g‖.

Consider a function f in the space C[a, b], with the inner product defined in
Example 1. In physics, the quantity ‖ f ‖2 can often be interpreted as energy. For
example, it describes the acoustic energy of a periodic sound wave f (t) and the
elastic potential energy of a uniform string with vertical displacement f (x). See
Figure 3. The quantity ‖ f ‖2 may also measure thermal or electric energy.

x

Vertical
displacement at x

a x b

A string attached
at (a, 0) and (b, 0)

Displacement f(x)

Figure 3
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EXAMPLE 4 In the inner product space C[0, 1] with 〈 f, g〉 = ∫ 1
0 f (t)g(t) dt , find ‖ f ‖ for

f (t) = t2.

Solution

‖ f ‖ =
√

〈 f, f 〉 =
√∫ 1

0
t4 dt =

√
1

5 �

EXAMPLE 5 Show that f (t) = sin(t) and g(t) = cos(t) are orthogonal in the inner product
space C[0, 2π] with 〈 f, g〉 = ∫ 2π

0 f (t)g(t) dt .

Solution

〈 f, g〉 =
∫ 2π

0
sin(t) cos(t) dt =

[
1

2
sin2(t)

]∣∣∣∣2π

0
= 0 �

EXAMPLE 6 Find the distance between f (t) = t and g(t) = 1 in C[0, 1].

Solution

dist〈 f, g〉 =
√∫ 1

0
(t − 1)2 dt =

√[
1

3
(t − 1)3

]∣∣∣∣1
0

= 1√
3 �

The results and procedures discussed for the dot product generalize to arbitrary
inner product spaces. For example, the Pythagorean theorem holds; the Gram–
Schmidt process can be used to construct an orthonormal basis of a (finite di-
mensional) inner product space; and the Cauchy–Schwarz inequality tells us that
|〈 f, g〉| ≤ ‖ f ‖ ‖g‖, for two elements f and g of an inner product space.

Orthogonal Projections
In an inner product space V , consider a finite dimensional subspace W with or-
thonormal basis g1, . . . , gm . The orthogonal projection projW f of an element f of
V onto W is defined as the unique element of W such that f −projW f is orthogonal
to W . As in the case of the dot product in Rn , the orthogonal projection is given by
the following formula.

Theorem 5.5.3 Orthogonal projection

If g1, . . . , gm is an orthonormal basis of a subspace W of an inner product
space V , then

projW f = 〈g1, f 〉g1 + · · · + 〈gm, f 〉gm,

for all f in V .

(Verify this by checking that 〈 f − projW f, gi 〉 = 0 for i = 1, . . . , m.)
We may think of projW f as the element of W closest to f . In other words, if

we choose another element h of W , then the distance between f and h will exceed
the distance between f and projW f .

As an example, consider a subspace W of C[a, b], with the inner product intro-
duced in Example 1. Then projW f is the function g in W that is closest to f , in the
sense that
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dist( f, g) = ‖ f − g‖ =
√∫ b

a

(
f (t) − g(t)

)2
dt

is least.
The requirement that ∫ b

a

(
f (t) − g(t)

)2
dt

be minimal is a continuous least-squares condition, as opposed to the discrete
least-squares conditions we discussed in Section 5.4. We can use the discrete least-
squares condition to fit a function g of a certain type to some data points (ak, bk),
while the continuous least-squares condition can be used to fit a function g of a cer-
tain type to a given function f . (Functions of a certain type are frequently polynomi-
als of a certain degree or trigonometric functions of a certain form.) See Figures 4(a)
and 4(b).

ak

g(t)

(a1, b1)
(ak, bk)

bk − g(ak)

(am, bm)

a t b

f (t)

f (t) − g(t)

g(t)

Figure 4 (a) Discrete least-squares condition: (b) Continuous least-squares condition:∑m
k=1 (bk − g(ak ))2

is minimal.
∫ b

a ( f (t ) − g(t ))2
dt is minimal.

We can think of the continuous least-squares condition as a limiting case of a
discrete least-squares condition by writing∫ b

a

(
f (t) − g(t)

)2
dt = lim

m→∞

m∑
k=1

(
f (tk) − g(tk)

)2
	t.

EXAMPLE 7 Find the linear function of the form g(t) = a + bt that best fits the function
f (t) = et over the interval from −1 to 1, in a continuous least-squares sense.

Solution
We need to find projP1

f . We first find an orthonormal basis of P1 for the given inner
product; then we will use Theorem 5.5.3. In general, we have to use the Gram–
Schmidt process to find an orthonormal basis of an inner product space. Because
the two functions 1, t in the standard basis of P1 are orthogonal already, or

〈1, t〉 =
∫ 1

−1
t dt = 0,
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we merely need to divide each function by its norm:

‖1‖ =
√∫ 1

−1
1 dt =

√
2 and ‖t‖ =

√∫ 1

−1
t2 dt =

√
2

3
.

An orthonormal basis of P1 is

1√
2

1 and

√
3

2
t.

Now,

projP1
f = 1

2
〈1, f 〉1 + 3

2
〈t, f 〉t

= 1

2
(e − e−1) + 3e−1t. (We omit the straightforward computations.)

See Figure 5. �

−1 1

f(t) = et

projP1  f

Figure 5

What follows is one of the major applications of this theory.

Fourier Analysis7

In the space C[−π, π], we introduce an inner product that is a slight modification
of the definition given in Example 1:

〈 f, g〉 = 1

π

∫ π

−π

f (t)g(t) dt.

The factor 1/π is introduced to facilitate the computations. Convince yourself that
this is indeed an inner product. Compare with Exercise 7.

More generally, we can consider this inner product in the space of all piece-
wise continuous functions defined in the interval [−π, π]. These are functions f (t)
that are continuous except for a finite number of jump-discontinuities [i.e., points
c where the one-sided limits lim

t→c−
f (t) and lim

t→c+
f (t) both exist, but are not equal].

Also, it is required that f (c) equal one of the two one-sided limits. Let us consider
the piecewise continuous functions with f (c) = lim

t→c−
f (t). See Figure 6.

For a positive integer n, consider the subspace Tn of C[−π, π] that is defined
as the span of the functions 1, sin(t), cos(t), sin(2t), cos(2t), . . . , sin(nt), cos(nt).
The space Tn consists of all functions of the form

7Named after the French mathematician Jean-Baptiste-Joseph Fourier (1768–1830), who developed
the subject in his Théorie analytique de la chaleur (1822), where he investigated the conduction of
heat in very thin sheets of metal. Baron Fourier was also an Egyptologist and government
administrator; he accompanied Napoléon on his expedition to Egypt in 1798.
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c

f (t)

t

Figure 6 f (t ) has a jump-discontinuity at t = c.

f (t) = a + b1 sin(t) + c1 cos(t) + · · · + bn sin(nt) + cn cos(nt),

called trigonometric polynomials of order ≤n.
From calculus, you may recall the Euler identities:∫ π

−π

sin(pt) cos(mt) dt = 0, for integers p, m∫ π

−π

sin(pt) sin(mt) dt = 0, for distinct integers p, m∫ π

−π

cos(pt) cos(mt) dt = 0, for distinct integers p, m.

These equations tell us that the functions 1, sin(t), cos(t), . . . , sin(nt), cos(nt) are
orthogonal to one another (and therefore linearly independent).

Another of Euler’s identities tells us that∫ π

−π

sin2(mt) dt =
∫ π

−π

cos2(mt) dt = π,

for positive integers m. This means that the functions sin(t), cos(t), . . . , sin(nt),
cos(nt) all have norm 1 with respect to the given inner product. This is why we
chose the inner product as we did, with the factor 1

π
.

The norm of the function f (t) = 1 is

‖ f ‖ =
√

1

π

∫ π

−π

1 dt =
√

2;
therefore,

g(t) = f (t)

‖ f (t)‖ = 1√
2

is a function of norm 1.

Theorem 5.5.4 An orthonormal basis of Tn

Let Tn be the space of all trigonometric polynomials of order ≤n, with the inner
product

〈 f, g〉 = 1

π

∫ π

−π

f (t)g(t) dt.

Then the functions
1√
2
, sin(t), cos(t), sin(2t), cos(2t), . . . , sin(nt), cos(nt)

form an orthonormal basis of Tn .



5.5 Inner Product Spaces 257

For a piecewise continuous function f , we can consider

fn = projTn
f.

As discussed after Theorem 5.5.3, fn is the trigonometric polynomial in Tn that best
approximates f , in the sense that

dist( f, fn) < dist( f, g),

for all other g in Tn .
We can use Theorems 5.5.3 and 5.5.4 to find a formula for fn = projTn

f .

Theorem 5.5.5 Fourier coefficients

If f is a piecewise continuous function defined on the interval [−π, π], then its
best approximation fn in Tn is

fn(t) = projTn
f (t)

= a0
1√
2

+ b1 sin(t) + c1 cos(t) + · · · + bn sin(nt) + cn cos(nt),

where

bk = 〈 f (t), sin(kt)〉 = 1

π

∫ π

−π

f (t) sin(kt) dt

ck = 〈 f (t), cos(kt)〉 = 1

π

∫ π

−π

f (t) cos(kt) dt

a0 =
〈

f (t),
1√
2

〉
= 1√

2π

∫ π

−π

f (t) dt.

The bk , the ck , and a0 are called the Fourier coefficients of the function f . The
function

fn(t) = a0
1√
2

+ b1 sin(t) + c1 cos(t) + · · · + bn sin(nt) + cn cos(nt)

is called the nth-order Fourier approximation of f .

Note that the constant term, written somewhat awkwardly, is

a0
1√
2

= 1

2π

∫ π

−π

f (t) dt,

which is the average value of the function f between −π and π . It makes sense
that the best way to approximate f (t) by a constant function is to take the average
value of f (t).

The function bk sin(kt) + ck cos(kt) is called the kth harmonic of f (t). Using
elementary trigonometry, we can write the harmonics alternatively as

bk sin(kt) + ck cos(kt) = Ak sin
(
k(t − δk)

)
,

where Ak =
√

b2
k + c2

k is the amplitude of the harmonic and δk is the phase shift.

Figure 7

Consider the sound generated by a vibrating string, such as in a piano or on a
violin. Let f (t) be the air pressure at your eardrum as a function of time t . [The
function f (t) is measured as a deviation from the normal atmospheric pressure.] In
this case, the harmonics have a simple physical interpretation: They correspond to
the various sinusoidal modes at which the string can vibrate. See Figure 7.



258 CHAPTER 5 Orthogonality and Least Squares

The fundamental frequency (corresponding to the vibration shown at the bottom
of Figure 7) gives us the first harmonic of f (t), while the overtones (with frequen-
cies that are integer multiples of the fundamental frequency) give us the other terms
of the harmonic series. The quality of a tone is in part determined by the relative
amplitudes of the harmonics. When you play concert A (440 Hertz) on a piano,
the first harmonic is much more prominent than the higher ones, but the same tone
played on a violin gives prominence to higher harmonics (especially the fifth). See
Figure 8. Similar considerations apply to wind instruments; they have a vibrating
column of air instead of a vibrating string.

The human ear cannot hear tones whose frequencies exceed 20,000 Hertz. We
pick up only finitely many harmonics of a tone. What we hear is the projection of
f (t) onto a certain Tn .

1 2 3 4 5 6

1 2 3 4 5 6

PianoAk

k

ViolinAk

k

Figure 8

EXAMPLE 8 Find the Fourier coefficients for the function f (t) = t on the interval −π ≤ t ≤ π :

bk = 〈 f, sin(kt)〉 = 1

π

∫ π

−π

sin(kt)t dt

= 1

π

{
−
[

1

k
cos(kt)t

]∣∣∣∣π
−π

+ 1

k

∫ π

−π

cos(kt) dt

}
(integration by parts)

=

⎧⎪⎪⎨
⎪⎪⎩

−2

k
if k is even

2

k
if k is odd

= (−1)k+1 2

k
.

All ck and a0 are zero, since the integrands are odd functions.
The first few Fourier polynomials are

f1 = 2 sin(t),

f2 = 2 sin(t) − sin(2t),

f3 = 2 sin(t) − sin(2t) + 2

3
sin(3t),

f4 = 2 sin(t) − sin(2t) + 2

3
sin(3t) − 1

2
sin(4t).

See Figure 9. �

f4

f

f2

Figure 9
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How do the errors ‖ f − fn‖ and ‖ f − fn+1‖ of the nth and the (n +1)st Fourier
approximation compare? We hope that fn+1 will be a better approximation than fn ,
or at least no worse:

‖ f − fn+1‖ ≤ ‖ f − fn‖.
This is indeed the case, by definition: fn is a polynomial in Tn+1, since Tn is con-
tained in Tn+1, and

‖ f − fn+1‖ ≤ ‖ f − g‖,
for all g in Tn+1, in particular for g = fn . In other words, as n goes to infinity, the
error ‖ f − fn‖ becomes smaller and smaller (or at least not larger). Using somewhat
advanced calculus, we can show that this error approaches zero:

lim
n→∞ ‖ f − fn‖ = 0.

What does this tell us about limn→∞ ‖ fn‖? By the theorem of Pythagoras, we
have

‖ f − fn‖2 + ‖ fn‖2 = ‖ f ‖2.

As n goes to infinity, the first summand, ‖ f − fn‖2, approaches 0, so that

lim
n→∞ ‖ fn‖ = ‖ f ‖.

We have an expansion of fn in terms of an orthonormal basis

fn = a0
1√
2

+ b1 sin(t) + c1 cos(t) + · · · + bn sin(nt) + cn cos(nt),

where the bk , the ck , and a0 are the Fourier coefficients. We can express ‖ fn‖ in
terms of these Fourier coefficients, using the Pythagorean theorem:

‖ fn‖2 = a2
0 + b2

1 + c2
1 + · · · + b2

n + c2
n.

Combining the last two “shaded” equations, we get the following identity:

Theorem 5.5.6 a2
0 + b2

1 + c2
1 + · · · + b2

n + c2
n + · · · = ‖ f ‖2.

The infinite series of the squares of the Fourier coefficients of a piecewise con-
tinuous function f converges to ‖ f ‖2.

For the function f (t) studied in Example 8, this means that

4 + 4

4
+ 4

9
+ · · · + 4

n2
+ · · · = 1

π

∫ π

−π

t2 dt = 2

3
π2,

or
∞∑

n=1

1

n2
= 1 + 1

4
+ 1

9
+ 1

16
+ · · · = π2

6
,

an equation discovered by Euler.
Theorem 5.5.6 has a physical interpretation when ‖ f ‖2 represents energy. For

example, if f (x) is the displacement of a vibrating string, then b2
k + c2

k represents
the energy of the kth harmonic, and Theorem 5.5.6 tells us that the total energy
‖ f ‖2 is the sum of the energies of the harmonics.
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There is an interesting application of Fourier analysis in quantum mech-
anics. In the 1920s, quantum mechanics was presented in two distinct forms:
Werner Heisenberg’s matrix mechanics and Erwin Schrödinger’s wave mechanics.
Schrödinger (1887–1961) later showed that the two theories are mathematically
equivalent: They use isomorphic inner product spaces. Heisenberg works with the
space �2 introduced in Example 2, while Schrödinger works with a function space
related to C[−π, π]. The isomorphism from Schrödinger’s space to �2 is established
by taking Fourier coefficients. See Exercise 13.

EXERCISES 5.5
GOAL Use the idea of an inner product, and apply the
basic results derived earlier for the dot product in Rn to
inner product spaces.

1. In C[a, b], define the product

〈 f, g〉 =
∫ b

a
f (t)g(t) dt.

Show that this product satisfies the property

〈 f, f 〉 > 0

for all nonzero f .

2. Does the equation

〈 f, g + h〉 = 〈 f, g〉 + 〈 f, h〉
hold for all elements f , g, h of an inner product space?
Explain.

3. Consider a matrix S in Rn×n . In Rn , define the product

〈�x, �y〉 = (S�x)T S�y.

a. For matrices S is this an inner product?
b. For matrices S is 〈�x, �y〉 = �x · �y (the dot product)?

4. In Rn×m , consider the inner product

〈A, B〉 = trace(AT B)

defined in Example 3.
a. Find a formula for this inner product in Rn×1 = Rn .
b. Find a formula for this inner product in R1×m (i.e.,

the space of row vectors with m components).

5. Is 〈〈A, B〉〉 = trace(ABT ) an inner product in Rn×m?
(The notation 〈〈A, B〉〉 is chosen to distinguish this prod-
uct from the one considered in Example 3 and Exer-
cise 4.)

6. a. Consider an n × m matrix P and an m × n matrix
Q. Show that

trace(P Q) = trace(Q P).

b. Compare the following two inner products in Rn×m :

〈A, B〉 = trace(AT B),

and

〈〈A, B〉〉 = trace(ABT ).

See Example 3 and Exercises 4 and 5.

7. Consider an inner product 〈v,w〉 in a space V , and a
scalar k. For which choices of k is

〈〈v,w〉〉 = k〈v,w〉
an inner product?

8. Consider an inner product 〈v,w〉 in a space V . Let w

be a fixed element of V . Is the transformation T (v) =
〈v,w〉 from V to R linear? What is its image? Give a
geometric interpretation of its kernel.

9. Recall that a function f (t) from R to R is called

even if f (−t) = f (t), for all t ,

and

odd if f (−t) = − f (t), for all t .

Show that if f (x) is an odd continuous function and
g(x) is an even continuous function, then functions
f (x) and g(x) are orthogonal in the space C[−1, 1]
with the inner product defined in Example 1.

10. Consider the space P2 with inner product

〈 f, g〉 = 1

2

∫ 1

−1
f (t)g(t) dt.

Find an orthonormal basis of the space of all functions
in P2 that are orthogonal to f (t) = t .

11. The angle between two nonzero elements v and w of an
inner product space is defined as

�(v,w) = arccos
〈v,w〉

‖v‖‖w‖ .

In the space C[−π, π] with inner product

〈 f, g〉 = 1

π

∫ π

−π

f (t)g(t) dt,

find the angle between f (t) = cos(t) and g(t) =
cos(t + δ), where 0 ≤ δ ≤ π . Hint: Use the formula
cos(t + δ) = cos(t) cos(δ) − sin(t) sin(δ).
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12. Find all Fourier coefficients of the absolute value func-
tion

f (t) = |t |.
13. For a function f in C[−π, π ] (with the inner product

defined on page 255), consider the sequence of all its
Fourier coefficients,

(a0, b1, c1, b2, c2, . . . , bn, cn, . . .).

Is this infinite sequence in �2? If so, what is the rela-
tionship between

‖ f ‖ (the norm in C[−π, π])

and

‖(a0, b1, c1, b2, c2, . . .)‖ (the norm in �2)?

The inner product space �2 was introduced in
Example 2.

14. Which of the following is an inner product in P2?
Explain.
a. 〈 f, g〉 = f (1)g(1) + f (2)g(2)

b. 〈〈 f, g〉〉 = f (1)g(1) + f (2)g(2) + f (3)g(3)

15. For which values of the constants b, c, and d is the fol-
lowing an inner product in R2?〈[

x1

x2

]
,

[
y1

y2

]〉
= x1 y1 + bx1 y2 + cx2 y1 + dx2 y2

Hint: Be prepared to complete a square.

16. a. Find an orthonormal basis of the space P1 with in-
ner product

〈 f, g〉 =
∫ 1

0
f (t)g(t) dt.

b. Find the linear polynomial g(t) = a + bt that best
approximates the function f (t) = t2 on the interval
[0, 1] in the (continuous) least-squares sense. Draw
a sketch.

17. Consider a linear space V . For which linear transforma-
tions T from V to Rn is

〈v,w〉 = T (v) · T (w)
↑

Dot product

an inner product in V ?

18. Consider an orthonormal basis � of the inner product
space V . For an element f of V , what is the relation-
ship between ‖ f ‖ and ‖[ f ]�‖ (the norm in Rn defined
by the dot product)?

19. For which 2 × 2 matrices A is

〈�v, �w〉 = �vT A �w
an inner product in R2? Hint: Be prepared to complete
a square.

20. Consider the inner product

〈�v, �w〉 = �vT
[

1 2
2 8

]
�w

in R2. See Exercise 19.

a. Find all vectors in R2 that are perpendicular to

[
1
0

]
with respect to this inner product.

b. Find an orthonormal basis of R2 with respect to this
inner product.

21. If ‖�v‖ denotes the standard norm in Rn , does the for-
mula

〈�v, �w〉 = ‖�v + �w‖2 − ‖�v‖2 − ‖ �w‖2

define an inner product in Rn?

22. If f (t) is a continuous function, what is the relationship
between∫ 1

0

(
f (t)
)2

dt and

(∫ 1

0
f (t) dt

)2

?

Hint: Use the Cauchy–Schwarz inequality.

23. In the space P1 of the polynomials of degree ≤1, we
define the inner product

〈 f, g〉 = 1

2

(
f (0)g(0) + f (1)g(1)

)
.

Find an orthonormal basis for this inner product space.

24. Consider the linear space P of all polynomials, with in-
ner product

〈 f, g〉 =
∫ 1

0
f (t)g(t) dt.

For three polynomials f , g, and h we are given the fol-
lowing inner products:

〈·〉 f g h

f 4 0 8
g 0 1 3
h 8 3 50

For example, 〈 f, f 〉 = 4 and 〈g, h〉 = 〈h, g〉 = 3.
a. Find 〈 f, g + h〉.
b. Find ‖g + h‖.
c. Find projE h, where E = span( f, g). Express your

solution as linear combinations of f and g.
d. Find an orthonormal basis of span( f, g, h). Express

the functions in your basis as linear combinations of
f , g, and h.
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25. Find the norm ‖�x‖ of

�x =
(

1,
1

2
,

1

3
, . . . ,

1

n
, . . .

)
in �2.

(�2 is defined in Example 2.)

26. Find the Fourier coefficients of the piecewise continu-
ous function

f (t) =
{

−1 if t ≤ 0
1 if t > 0.

Sketch the graphs of the first few Fourier polynomials.

27. Find the Fourier coefficients of the piecewise continu-
ous function

f (t) =
{

0 if t ≤ 0
1 if t > 0.

28. Apply Theorem 5.5.6 to your answer in Exercise 26.

29. Apply Theorem 5.5.6 to your answer in Exercise 27.

30. Consider an ellipse E in R2 centered at the origin. Show
that there is an inner product 〈·, ·〉 in R2 such that E
consists of all vectors �x with ‖�x‖ = 1, where the norm
is taken with respect to the inner product 〈·, ·〉.

31. Gaussian integration. In an introductory calculus
course, you may have seen approximation formulas for
integrals of the form∫ b

a
f (t) dt ≈

n∑
i=i

wi f (ai ),

where the ai are equally spaced points on the inter-
val (a, b), and the wi are certain “weights” (Riemann
sums, trapezoidal sums, and Simpson’s rule). Gauss has
shown that, with the same computational effort, we can
get better approximations if we drop the requirement
that the ai be equally spaced. Next, we outline his ap-
proach.

Consider the space Pn with the inner product

〈 f, g〉 =
∫ 1

−1
f (t)g(t) dt.

Let f0, f1, . . . , fn be an orthonormal basis of this
space, with degree( fk) = k. (To construct such a ba-
sis, apply the Gram–Schmidt process to the standard
basis 1, t, . . . , tn .) It can be shown that fn has n distinct
roots a1, a2, . . . , an on the interval (−1, 1). We can find
“weights” w1, w2, . . . , wn such that∫ 1

−1
f (t) dt =

n∑
i=1

wi f (ai ),

for all polynomials of degree less than n. See Exercise
4.3.70. In fact, much more is true: This formula holds
for all polynomials f (t) of degree less than 2n.

You are not asked to prove the foregoing assertions
for arbitrary n, but work out the case n = 2: Find a1, a2
and w1, w2, and show that the formula∫ 1

−1
f (t) dt = w1 f (a1) + w2 f (a2)

holds for all cubic polynomials.

32. In the space C[−1, 1], we introduce the inner product

〈 f, g〉 = 1

2

∫ 1

−1
f (t)g(t)dt .

a. Find 〈tn, tm〉, where n and m are positive integers.
b. Find the norm of f (t) = tn , where n is a positive

integer.
c. Applying the Gram–Schmidt process to the standard

basis 1, t, t2, t3 of P3, construct an orthonormal
basis g0(t), . . . , g3(t) of P3 for the given inner
product.

d. Find the polynomials
g0(t)

g0(1)
, . . . ,

g3(t)

g3(1)
. (Those are

the first few Legendre polynomials, named after the
great French mathematician Adrien-Marie Legen-
dre, 1752–1833. These polynomials have a wide
range of applications in math, physics, and engineer-
ing. Note that the Legendre polynomials are normal-
ized so that their value at 1 is 1.)

e. Find the polynomial g(t) in P3 that best approx-

imates the function f (t) = 1

1 + t2 on the inter-

val [−1, 1], for the inner product introduced in this
exercise. Draw a sketch.

33. a. Let w(t) be a positive-valued function in C[a, b],
where b > a. Verify that the rule 〈 f, g〉 =∫ b

a w(t) f (t)g(t)dt defines an inner product on
C[a, b].

b. If we chose the weight function w(t) so that∫ b
a w(t)dt = 1, what is the norm of the constant

function f (t) = 1 in this inner product space?

34. In the space C[−1, 1], we define the inner
product 〈 f, g〉 = ∫ 1

−1
2
π

√
1 − t2 f (t)g(t) dt =

2
π

∫ 1
−1

√
1 − t2 f (t)g(t) dt . See Exercise 33; here we

let w(t) = 2
π

√
1 − t2. [This function w(t) is called

a Wigner semicircle distribution, after the Hungarian
physicist and mathematician E. P. Wigner (1902–1995),
who won the 1963 Nobel Prize in Physics.] Since this
is not a course in calculus, here are some inner prod-
ucts that will turn out to be useful: 〈1, t2〉 = 1/4,
〈t, t3〉 = 1/8, and 〈t3, t3〉 = 5/64.

a. Find
∫ 1
−1 w(t)dt . Sketch a rough graph of the weight

function w(t).
b. Find the norm of the constant function f (t) = 1.
c. Find 〈t2, t3〉; explain. More generally, find 〈tn, tm〉

for positive integers n and m whose sum is odd.
d. Find 〈t, t〉 and 〈t2, t2〉. Also, find the norms of the

functions t and t2.
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e. Applying the Gram–Schmidt process to the stan-
dard basis 1, t, t2, t3 of P3, construct an orthonor-
mal basis g0(t), . . . , g3(t) of P3 for the given inner
product. [The polynomials g0(t), . . . , g3(t) are the
first few Chebyshev polynomials of the second kind,
named after the Russian mathematician Pafnuty
Chebyshev (1821–1894). They have a wide range of
applications in math, physics, and engineering.]

f. Find the polynomial g(t) in P3 that best approxi-
mates the function f (t) = t4 on the interval [−1, 1],
for the inner product introduced in this exercise.

35. In this exercise, we compare the inner products and
norms introduced in Problems 32 and 34. Let’s denote
the two norms by ‖ f ‖32 and ‖ f ‖34, respectively.
a. Compute ‖t‖32 and ‖t‖34. Which is larger? Explain

the answer conceptually. Graph the weight func-
tions w32(t) = 1

2 and w34(t) = 2
π

√
1 − t2 on the

same axes. Then graph the functions w32(t)t2 and
w34(t)t2 on the same axes.

b. Give an example of a continuous function f (t) such
that ‖ f ‖34 > ‖ f ‖32.

Chapter Five Exercises

TRUE OR FALSE?

1. If T is a linear transformation from Rn to Rn such
that T (�e1), T (�e2), . . . , T (�en) are all unit vectors, then
T must be an orthogonal transformation.

2. If A is an invertible matrix, then the equation (AT )−1 =
(A−1)T must hold.

3. If matrix A is orthogonal, then matrix A2 must be or-
thogonal as well.

4. The equation (AB)T = AT BT holds for all n × n ma-
trices A and B.

5. If A and B are symmetric n × n matrices, then A + B
must be symmetric as well.

6. If matrices A and S are orthogonal, then S−1 AS is or-
thogonal as well.

7. All nonzero symmetric matrices are invertible.

8. If A is an n × n matrix such that AAT = In , then A
must be an orthogonal matrix.

9. If �u is a unit vector in Rn , and L = span(�u), then
projL (�x) = (�x · �u)�x for all vectors �x in Rn .

10. If A is a symmetric matrix, then 7A must be symmetric
as well.

11. If �x and �y are two vectors in Rn , then the equation
‖�x + �y‖2 = ‖�x‖2 + ‖�y‖2 must hold.

12. The equation det(AT ) = det(A) holds for all 2 × 2 ma-
trices A.

13. If matrix A is orthogonal, then AT must be orthogonal
as well.

14. If A and B are symmetric n ×n matrices, then AB must
be symmetric as well.

15. If matrices A and B commute, then A must commute
with BT as well.

16. If A is any matrix with ker(A) = {�0}, then the matrix
AAT represents the orthogonal projection onto the im-
age of A.

17. If A and B are symmetric n × n matrices, then AB B A
must be symmetric as well.

18. If matrices A and B commute, then matrices AT and
BT must commute as well.

19. There exists a subspace V of R5 such that dim(V ) =
dim(V ⊥), where V ⊥ denotes the orthogonal comple-
ment of V .

20. Every invertible matrix A can be expressed as the prod-
uct of an orthogonal matrix and an upper triangular
matrix.

21. The determinant of all orthogonal 2 × 2 matrices is 1.

22. If A is any square matrix, then matrix 1
2 (A − AT ) is

skew-symmetric.

23. The entries of an orthogonal matrix are all less than or
equal to 1.

24. Every nonzero subspace of Rn has an orthonormal
basis.

25.
[

3 −4
4 3

]
is an orthogonal matrix.

26. If V is a subspace of Rn and �x is a vector in Rn , then
vector projV �x must be orthogonal to vector �x −projV �x .

27. If A and B are orthogonal 2 × 2 matrices, then AB =
B A.

28. If A is a symmetric matrix, vector �v is in the image of A,
and �w is in the kernel of A, then the equation �v · �w = 0
must hold.

29. The formula ker(A) = ker(AT A) holds for all matri-
ces A.

30. If AT A = AAT for an n × n matrix A, then A must be
orthogonal.

31. There exist orthogonal 2×2 matrices A and B such that
A + B is orthogonal as well.

32. If ‖A�x‖ ≤ ‖�x‖ for all �x in Rn , then A must represent
the orthogonal projection onto a subspace V of Rn .
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33. If A is an invertible matrix such that A−1 = A, then A
must be orthogonal.

34. If the entries of two vectors �v and �w in Rn are all posi-
tive, then �v and �w must enclose an acute angle.

35. The formula (ker B)⊥ = im(BT ) holds for all matri-
ces B.

36. The matrix AT A is symmetric for all matrices A.

37. If matrix A is similar to B and A is orthogonal, then B
must be orthogonal as well.

38. The formula im(B) = im(BT B) holds for all square
matrices B.

39. If matrix A is symmetric and matrix S is orthogonal,
then matrix S−1 AS must be symmetric.

40. If A is a square matrix such that AT A = AAT , then
ker(A) = ker(AT ).

41. Any square matrix can be written as the sum of a sym-
metric and a skew-symmetric matrix.

42. If x1, x2, . . . , xn are any real numbers, then the
inequality (

n∑
k=1

xk

)2

≤ n
n∑

k=1

(x2
k )

must hold.

43. If AAT = A2 for a 2 × 2 matrix A, then A must be
symmetric.

44. If V is a subspace of Rn and �x is a vector in Rn , then
the inequality �x · (projV �x) ≥ 0 must hold.

45. If A is an n × n matrix such that ‖A�u‖ = 1 for all unit
vectors �u, then A must be an orthogonal matrix.

46. If A is any symmetric 2 × 2 matrix, then there must ex-
ist a real number x such that matrix A − x I2 fails to be
invertible.

47. There exists a basis of R2×2 that consists of orthogonal
matrices.

48. If A =
[

1 2
2 1

]
, then the matrix Q in the Q R factor-

ization of A is a rotation matrix.

49. There exists a linear transformation L from R3×3 to
R2×2 whose kernel is the space of all skew-symmetric
3 × 3 matrices.

50. If a 3 × 3 matrix A represents the orthogonal projection
onto a plane V in R3, then there must exist an orthogo-
nal 3 × 3 matrix S such that ST AS is diagonal.
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6
Determinants

6.1 Introduction to Determinants

In Chapter 2 we found a criterion for the invertibility of a 2 × 2 matrix: The matrix

A =
[

a b
c d

]
is invertible if (and only if)

det A = ad − bc �= 0,

by Theorem 2.4.9a.
You may wonder whether the concept of a determinant can be generalized to

square matrices of arbitrary size. Can we assign a number det A to a square ma-
trix A, expressed in terms of the entries of A, such that A is invertible if (and only
if) det A �= 0?

The Determinant of a 3×3 Matrix
Let

A =
⎡
⎣a11 a12 a13

a21 a22 a23

a31 a32 a33

⎤
⎦ =
⎡
⎣ | | |

�u �v �w
| | |

⎤
⎦

(we denote the three column vectors �u, �v, and �w). See Figure 1.
The matrix A fails to be invertible if the image of A isn’t all of R3, meaning

that the three column vectors �u, �v, and �w are contained in some plane V. In this
case, the cross product1 �v × �w, being perpendicular to V , is perpendicular to vector
�u, so that

�u · (�v × �w) = 0.

If A is invertible, on the other hand, then �v × �w fails to be perpendicular to �u, so
that �u · (�v × �w) �= 0.

1To review the definition of the cross product, see Definition A.9 in the Appendix.

265
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0

v� × w�

w�

v�V

u�

Figure 1

Thus, the quantity �u · (�v × �w) has the property we expect from the determinant:
It is nonzero if (and only if) matrix

A =
[
�u �v �w

]
is invertible. This motivates the following definition.

Definition 6.1.1 Determinant of a 3 × 3 matrix, in terms of the columns

If A =
[
�u �v �w

]
, then

det A = �u · (�v × �w).

A 3 × 3 matrix A is invertible if (and only if) det A �= 0.

Let’s express the determinant det A = �u · (�v × �w) in terms of the entries of
matrix A:

det A = �u·(�v × �w)

=
⎡
⎣a11

a21

a31

⎤
⎦ ·
⎛
⎝
⎡
⎣a12

a22

a32

⎤
⎦×
⎡
⎣a13

a23

a33

⎤
⎦
⎞
⎠ =
⎡
⎣a11

a21

a31

⎤
⎦ ·
⎡
⎣a22a33 − a32a23

a32a13 − a12a33

a12a23 − a22a13

⎤
⎦

= a11(a22a33 − a32a23) + a21(a32a13 − a12a33) + a31(a12a23 − a22a13)

= a11a22a33 − a11a32a23 + a21a32a13 − a21a12a33 + a31a12a23 − a31a22a13.

Here is a memory aid for the determinant of a 3 × 3 matrix.

Theorem 6.1.2 Sarrus’s rule2

To find the determinant of a 3 × 3 matrix A, write the first two columns of A to
the right of A. Then multiply the entries along the six diagonals shown below.⎡

⎣










































− − − + + +

a11 a12 a13

a21 a22 a23

a31 a32 a33

⎤
⎦ a11 a12

a21 a22

a31 a32

Add or subtract these diagonal products, as shown in the diagram:

det A = a11a22a33 +a12a23a31 +a13a21a32 −a13a22a31 −a11a23a32 −a12a21a33.

2Stated by Pierre Frédéric Sarrus (1798–1861) of Strasbourg, c. 1820.
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EXAMPLE 1 Find the determinant of

A =
⎡
⎣1 2 3

4 5 6
7 8 10

⎤
⎦ .

Solution
By Sarrus’s rule, det A = 1·5·10+2·6·7+3·4·8−3·5·7−1·6·8−2·4·10 = −3.
Matrix A is invertible. �

EXAMPLE 2 Find the determinant of the upper triangular matrix

A =
⎡
⎣a b c

0 d e
0 0 f

⎤
⎦ .

Solution
We find that det A = ad f , since all other terms in Sarrus’s formula are zero. The
determinant of an upper (or lower) triangular 3 × 3 matrix is the product of the di-
agonal entries. Thus, a triangular 3 × 3 matrix is invertible if (and only if) all its
diagonal entries are nonzero. �

EXAMPLE 3 For which values of the scalar λ (lambda) is the matrix

A =
⎡
⎣λ 1 1

1 λ −1
1 1 λ

⎤
⎦

invertible?

Solution

det A = λ3 − 1 + 1 + λ − λ − λ = λ3 − λ

= λ(λ2 − 1) = λ(λ − 1)(λ + 1).

The determinant is 0 if λ = 0, λ = 1, or λ = −1. Matrix A is invertible if λ is any
real number other than 0, 1, and −1. �

EXAMPLE 4 For three column vectors �u, �v, �w in R3, what is the relationship between the deter-
minants of A = [ �u �v �w ] and B = [ �u �w �v ]? Note that matrix B is obtained
by swapping the last two columns of A.

Solution
det B =det

[ �u �w �v ] = �u · ( �w×�v) = −�u · (�v× �w) =− det
[ �u �v �w ] =− det A.

We have used the fact that the cross product is anticommutative: �w×�v = −(�v × �w).
See Theorem A.10 in the Appendix. �

It turns out that det B = − det A if B is obtained by swapping any two columns
or any two rows of a 3 × 3 matrix A; we can verify this by direct computation.
This is referred to as the alternating property of the determinant on the columns
and on the rows. The 2 × 2 determinant is alternating on the rows and columns as
well (verify this!), and we will see that this property generalizes to determinants of
square matrices of any size.



268 CHAPTER 6 Determinants

Linearity Properties of the Determinant
EXAMPLE 5 Is the function F(A) = det A from the linear space R3×3 to R a linear transforma-

tion?

Solution
The answer is negative. For example, F(I3 + I3) = F(2I3) = 8, while F(I3) +
F(I3) = 1 + 1 = 2. �

However, the determinant does have some noteworthy linearity properties.

EXAMPLE 6 Is the function

T

⎡
⎣ x1

x2

x3

⎤
⎦ = det

⎡
⎣2 x1 5

3 x2 6
4 x3 7

⎤
⎦

from R3 to R a linear transformation? Here we are placing the input variables
x1, x2, x3 in the second column, choosing arbitrary constants for all the other
entries.

Solution
Note that

T

⎡
⎣ x1

x2

x3

⎤
⎦ = det

⎡
⎣2 x1 5

3 x2 6
4 x3 7

⎤
⎦ = (6 · 4 − 3 · 7)x1 + (2 · 7 − 5 · 4)x2 + (5 · 3 − 2 · 6)x3

= 3x1 − 6x2 + 3x3.

Therefore, T is a linear transformation, by Definition 2.1.1, since the output is a
linear combination of the input variables. �

We say that the 3 × 3 determinant is linear in the second column. Likewise, the
determinant is linear in the two other columns and in all three rows. For example,
linearity in the third row means that

L(�x) = det

⎡
⎣— �v1 —

— �v2 —
— �x —

⎤
⎦

is linear on row vectors �x with three components, for any two fixed row vectors �v1
and �v2.

Alternatively, we can express the linearity of L by the equations

L(�x + �y) = L(�x) + L(�y) and L(k�x) = kL(�x)

or

det

⎡
⎣— �v1 —

— �v2 —
— �x + y —

⎤
⎦ = det

⎡
⎣— �v1 —

— �v2 —
— �x —

⎤
⎦+ det

⎡
⎣— �v1 —

— �v2 —
— �y —

⎤
⎦ and

det

⎡
⎣— �v1 —

— �v2 —
— k�x —

⎤
⎦ = k det

⎡
⎣— �v1 —

— �v2 —
— �x —

⎤
⎦ .
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The Determinant of an n × n Matrix
We may be tempted to define the determinant of an n × n matrix by generalizing
Sarrus’s rule (see Theorem 6.1.2). For a 4 × 4 matrix, a naive generalization of
Sarrus’s rule produces the expression

a11a22a33a44 + · · · + a14a21a32a43 − a14a23a32a41 − · · · − a13a22a31a44.⎡
⎢⎢⎣









































































− − − − + + + +

a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

a41 a42 a43 a44

⎤
⎥⎥⎦

a11 a12 a13

a21 a22 a23

a31 a32 a33

a41 a42 a43

For example, for the invertible matrix

A =

⎡
⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

⎤
⎥⎥⎦ ,

the expression given by this generalization of Sarrus’s rule is 0. This shows that we
cannot define the determinant by generalizing Sarrus’s rule in this way: Recall that
we want the determinant of an invertible matrix to be nonzero.

We have to look for a more subtle structure in the formula

det A = a11a22a33 + a12a23a31 + a13a21a32 − a13a22a31 − a11a23a32 − a12a21a33

for the determinant of a 3 × 3 matrix. Note that each of the six terms in this ex-
pression is a product of three factors involving exactly one entry from each row and
each column of the matrix:⎡

⎢⎢⎣
a11� a12 a13

a21 a22� a23

a31 a32 a33�

⎤
⎥⎥⎦
⎡
⎢⎢⎣

a11 a12� a13

a21 a22 a23�

a31� a32 a33

⎤
⎥⎥⎦
⎡
⎢⎢⎣

a11 a12 a13�

a21� a22 a23

a31 a32� a33

⎤
⎥⎥⎦

⎡
⎢⎢⎣

a11 a12 a13�

a21 a22� a23

a31� a32 a33

⎤
⎥⎥⎦
⎡
⎢⎢⎣

a11� a12 a13

a21 a22 a23�

a31 a32� a33

⎤
⎥⎥⎦
⎡
⎢⎢⎣

a11 a12� a13

a21� a22 a23

a31 a32 a33�

⎤
⎥⎥⎦ .

For lack of a better word, we call such a choice of a number in each row and
column of a square matrix a pattern in the matrix.3 The simplest pattern is the
diagonal pattern, where we choose all numbers aii on the main diagonal. For you
chess players, a pattern in an 8 × 8 matrix corresponds to placing 8 rooks on a
chessboard so that none of them can attack another.

How many patterns are there in an n × n matrix? Let us see how we can con-
struct a pattern column by column. In the first column we have n choices. For each
of these, we then have n − 1 choices left in the second column. Therefore, we have
n(n − 1) choices for the numbers in the first two columns. For each of these, there
are n − 2 choices in the third column, and so on. When we come to the last column,
we have no choice, because there is only one row left. We conclude that there are
n(n − 1)(n − 2) · · · 3 · 2 · 1 patterns in an n × n matrix. The quantity 1 · 2 · 3 · · ·
(n − 2) · (n − 1) · n is written n! (read “n factorial”).

3This theory is usually phrased in the language of permutations. Here we attempt a less technical
presentation, without sacrificing content.
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For a pattern P in a 3 × 3 matrix, we consider the product of all the entries in
the pattern, denoted prod P . For example, for the pattern P = (a12, a23, a31), we
have prod P = a12a23a31. Then we can write

det A =∑± prod P,

where the sum is taken over all six patterns P in a 3 × 3 matrix A. Next we need to
examine how the signs of the six summands are chosen.

It turns out that these signs are related to the alternating property of the deter-
minant we discussed after Example 4:

det

⎡
⎣ 0 a12 0

0 0 a23

a31 0 0

⎤
⎦
 
 = − det

⎡
⎣ 0 a12 0

a31 0 0
0 0 a23

⎤
⎦  

= det

⎡
⎣a31 0 0

0 a12 0
0 0 a23

⎤
⎦ = a31a12a23 = a12a23a31,

since we perform two row swaps to bring the matrix into diagonal form, while

det

⎡
⎣ 0 0 a13

0 a22 0
a31 0 0

⎤
⎦
 

 

= − det

⎡
⎣a31 0 0

0 a22 0
0 0 a13

⎤
⎦ = −a31a22a13 = −a13a22a31.

There is an equivalent way to predict this sign without actually counting row
swaps. We say that two numbers in a pattern are inverted if one of them is to the
right and above the other. Let’s indicate the number of inversions for each of the six
patterns in a 3 × 3 matrix.

det A = a11a22a33 + a12a23a31 + a13a21a32 − a13a22a31 − a11a23a32 − a12a21a33⎡
⎢⎢⎣

a11� a12 a13

a21 a22� a23

a31 a32 a33�

⎤
⎥⎥⎦
⎡
⎢⎢⎣

a11

�
��








a12� a13

a21 a22 a23�

a31� a32 a33

⎤
⎥⎥⎦
⎡
⎢⎢⎣

a11








�
��

a12 a13�

a21� a22 a23

a31 a32� a33

⎤
⎥⎥⎦

no inversion 2 inversions 2 inversions⎡
⎢⎢⎣

a11 a12 a13�

a21 a22� a23

a31� a32 a33

⎤
⎥⎥⎦
⎡
⎢⎢⎣

a11� a12 a13

a21 a22 a23�

a31 a32� a33

⎤
⎥⎥⎦
⎡
⎢⎢⎣

a11 a12� a13

a21� a22 a23

a31 a32 a33�

⎤
⎥⎥⎦

3 inversions 1 inversion 1 inversion

We see that the sign of prod P in the formula det A =∑± prod P depends on the
number of inversions in P . We get the plus sign if the number of inversions is even
and the minus sign if that number is odd. We can write

det A =∑(−1)(number of inversions in P)prod P

If we define the signature of a pattern P as sgn P = (−1)(number of inversions in P),
then we can write more succinctly

det A =∑(sgn P)(prod P),

where the sum is taken over all six patterns P in the matrix A.
Alternatively, we can describe the signature in terms of row swaps: If we

can bring a pattern P into diagonal form by means of p row swaps, then sgn
P = (−1)p. See Theorem 6.2.3b.
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Using these definitions and observations as a guide, we are now ready to define
the determinant of an n × n matrix.

Definition 6.1.3 Patterns, inversions, and determinants4

A pattern in an n × n matrix A is a way to choose n entries of the matrix so that
there is one chosen entry in each row and in each column of A.

With a pattern P we associate the product of all its entries, denoted prod P .
Two entries in a pattern are said to be inverted if one of them is located to

the right and above the other in the matrix.
The signature of a pattern P is defined as sgn P = (−1)(number of inversions in P).
The determinant of A is defined as

det A =∑(sgn P)(prod P),

where the sum is taken over all n! patterns P in the matrix A. Thus, we are
summing up the products associated with all patterns with an even number of
inversions, and we are subtracting the products associated with the patterns with
an odd number of inversions.

EXAMPLE 7 Apply Definition 6.1.3 to a 2 × 2 matrix, and verify that the result agrees with the
formula given in Theorem 2.4.9a.

Solution

There are two patterns in the 2 × 2 matrix A =
[

a b
c d

]
:

[
a� b
c d�
] [

a b�
c� d

]
.

No inversions One inversion

Therefore, det A = (−1)0ad + (−1)1bc = ad − bc. �

EXAMPLE 8 Find det A for

A =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 2 0 0 0 0
0 0 0 8 0 0
0 0 0 0 0 2
3 0 0 0 0 0
0 0 0 0 5 0
0 0 1 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦ .

4It appears that determinants were first considered by the Japanese mathematician Seki Kowa
(1642–1708). Seki may have known that the determinant of an n × n matrix has n! terms and that
rows and columns are interchangeable. See Theorem 6.2.1. The French mathematician
Alexandre-Théophile Vandermonde (1735–1796) was the first to give a coherent and systematic
exposition of the theory of determinants. Throughout the 19th century, determinants were considered
the ultimate tool in linear algebra, used extensively by Cauchy, Jacobi, Kronecker, and others.
Recently, determinants have gone somewhat out of fashion, and some people would like to see them
eliminated altogether from linear algebra. See, for example, Sheldon Axler’s article “Down with
Determinants” in The American Mathematical Monthly, February 1995, where we read, “This paper
will show how linear algebra can be done better without determinants.” Read it and see what you think.
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Solution
Only one pattern P makes a nonzero contribution toward the determinant:⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 2� 0 0 0 0

0 0 0 8� 0 0

0 0 0 0 0 2�

3� 0 0 0 0 0

0 0 0 0 5� 0

0 0 1� 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

7 inversions

Thus, det A = (sgn P)(prod P) = (−1)72 · 8 · 2 · 3 · 5 · 1 = −480. �
EXAMPLE 9 Find det A for

A =

⎡
⎢⎢⎢⎢⎣

6 0 1 0 0
9 3 2 3 7
8 0 3 2 9
0 0 4 0 0
5 0 5 0 1

⎤
⎥⎥⎥⎥⎦ .

Solution
Again, let’s look for patterns with a nonzero product. We pick the entries column
by column this time. In the second column, we must choose the second component,
3. Then, in the fourth column, we must choose the third component, 2. Next, think
about the last column, and so on. It turns out that there is only one pattern P with a
nonzero product. ⎡

⎢⎢⎢⎢⎣
6� 0 1 0 0
9 3� 2 3 7
8 0 3 2� 9
0 0 4� 0 0
5 0 5 0 1�

⎤
⎥⎥⎥⎥⎦

1 inversion

det A = (sgn P)(prod P) = (−1)1 6 · 3 · 2 · 4 · 1 = −144. �
EXAMPLE 10 Find det A for

A =

⎡
⎢⎢⎢⎢⎣

1 2 3 4 5
0 2 3 4 5
0 0 3 4 5
0 0 0 4 5
0 0 0 0 5

⎤
⎥⎥⎥⎥⎦ .

Solution
Note that A is an upper triangular matrix. To have a nonzero product, a pattern
must contain the first component of the first column, then the second component of
the second column, and so on. Thus, only the diagonal pattern P makes a nonzero
contribution. We conclude that

det A = (sgn P)(prod P) = (−1)01 · 2 · 3 · 4 · 5 = 5! = 120. �
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We can generalize this result:

Theorem 6.1.4 Determinant of a triangular matrix

The determinant of an (upper or lower) triangular matrix is the product of the
diagonal entries of the matrix.

In particular, the determinant of a diagonal matrix is the product of its diag-
onal entries.

The Determinant of a Block Matrix (optional)
EXAMPLE 11 Find det M for

M =

⎡
⎢⎢⎣

a11 a12 b11 b12

a21 a22 b21 b22

0 0 c11 c12

0 0 c21 c22

⎤
⎥⎥⎦ .

Solution
It is natural to partition the 4 × 4 matrix M into four 2 × 2 blocks, one of which is
zero:

M =
[

A B
0 C

]
.

Let’s see whether we can express det

[
A B
0 C

]
in terms of det A, det B, and det C .

Let’s find the patterns in M that may have a nonzero product.⎡
⎢⎢⎢⎢⎢⎣

a11� a12 b11 b12

a21 a22� b21 b22

0 0 c11� c12

0 0 c21 c22�

⎤
⎥⎥⎥⎥⎥⎦ ,

⎡
⎢⎢⎢⎢⎢⎣

a11� a12 b11 b12

a21 a22� b21 b22

0 0 c11 c12�

0 0 c21� c22

⎤
⎥⎥⎥⎥⎥⎦ ,

⎡
⎢⎢⎢⎢⎢⎣

a11 a12� b11 b12

a21� a22 b21 b22

0 0 c11� c12

0 0 c21 c22�

⎤
⎥⎥⎥⎥⎥⎦ ,

⎡
⎢⎢⎢⎢⎢⎣

a11 a12� b11 b12

a21� a22 b21 b22

0 0 c11 c12�

0 0 c21� c22

⎤
⎥⎥⎥⎥⎥⎦ .

Thus

det M = a11a22c11c22 − a11a22c12c21 − a12a21c11c22 + a12a21c12c21

= a11a22(c11c22 − c12c21) − a12a21(c11c22 − c12c21)

= (a11a22 − a12a21)(c11c22 − c12c21) = (det A)(det C).

In summary,

det M = det

[
A B
0 C

]
= (det A)(det C). �

It turns out that the formula we derived in Example 11 holds for block matrices
of any size.
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Theorem 6.1.5 Determinant of a block matrix

If M =
[

A B
0 C

]
, where A and C are square matrices (not necessarily of the

same size), then

det

[
A B
0 C

]
= (det A)(det C).

Likewise,

det

[
A 0
B C

]
= (det A)(det C).

However, the formula

det

[
A B
C D

]
= (det A)(det D) − (det B)(det C)

does not always hold. See Exercise 48.

Proof Let’s outline a proof for Theorem 6.1.5. As you follow this somewhat technical
presentation, use Example 11 as a guide.

If PA is a pattern in A and PC is a pattern in C , then their concatenation,
PM = (PA, PC), will be a pattern in M , with prod PM = (prod PA)(prod PC)

and sgn PM = (sgn PA)(sgn PC), since the number of inversions in PM will be
the sum of those in PA and PC . Conversely, any pattern PM in M with a nonzero
product will be of this form, PM = (PA, PC), since the pattern entries cannot be
taken from the zero block in matrix M . Now

(det A)(det C) =
(∑

PA

(sgn PA)(prod PA)

)(∑
PC

(sgn PC)(prod PC)

)

=
∑

(PA,PC )

(sgn PA)(sgn PC)(prod PA)(prod PC)

=
∑
PM

(sgn PM)(prod PM) = det M.

Here is another example illustrating this proof:

M =
[

A B
0 C

]
=

⎡
⎢⎢⎢⎢⎢⎢⎣

1 2� 3 0 0 0
4� 5 6 0 0 0
7 8 7� 0 0 0
6 5 4 3 2 1�
2 3 4 5� 6 7
8 7 6 5 4� 3

⎤
⎥⎥⎥⎥⎥⎥⎦ .

Here, prod PM = 2 · 4 · 7 · 1 · 5 · 4 = (2 · 4 · 7)(1 · 5 · 4) = (prod PA)(prod PC).
There is one inversion in PA and there are two inversions in PC , for a total of three
inversions in PM . Thus, sgn PM = (−1)3 = (−1)1(−1)2 = (sgn PA)(sgn PC). �



6.1 Introduction to Determinants 275

EXAMPLE 12 Find

det

⎡
⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0
2 7 0 0 0 0
3 8 6 0 0 0
4 9 5 2 1 4
5 8 4 0 2 5
6 7 3 0 3 6

⎤
⎥⎥⎥⎥⎥⎥⎦ .

Solution

det

⎡
⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0
2 7 0 0 0 0
3 8 6 0 0 0
4 9 5 2 1 4
5 8 4 0 2 5
6 7 3 0 3 6

⎤
⎥⎥⎥⎥⎥⎥⎦ = det

⎡
⎣1 0 0

2 7 0
3 8 6

⎤
⎦ det

⎡
⎣2 1 4

0 2 5
0 3 6

⎤
⎦

= (1 · 7 · 6)(2 · 2 · 6 − 2 · 5 · 3)

= 42(−6) = −252 �

EXERCISES 6.1
Find the determinants of the matrices A in Exercises 1
through 10, and find out which of these matrices are
invertible.

1.
[

1 2
3 6

]
2.
[

2 3
4 5

]

3.
[

3 5
7 11

]
4.
[

1 4
2 8

]

5.

⎡
⎣2 5 7

0 11 7
0 0 5

⎤
⎦ 6.

⎡
⎣6 0 0

5 4 0
3 2 1

⎤
⎦

7.

⎡
⎣1 1 1

2 2 2
3 3 3

⎤
⎦ 8.

⎡
⎣1 2 3

1 1 1
3 2 1

⎤
⎦

9.

⎡
⎣0 1 2

7 8 3
6 5 4

⎤
⎦ 10.

⎡
⎣1 1 1

1 2 3
1 3 6

⎤
⎦

In Exercises 11 through 22, use the determinant to find
out for which values of the constant k the given matrix A
is invertible.

11.
[

k 2
3 4

]
12.
[

1 k
k 4

]

13.

⎡
⎣k 3 5

0 2 6
0 0 4

⎤
⎦ 14.

⎡
⎣4 0 0

3 k 0
2 1 0

⎤
⎦

15.

⎡
⎣0 k 1

2 3 4
5 6 7

⎤
⎦ 16.

⎡
⎣1 2 3

4 k 5
6 7 8

⎤
⎦

17.

⎡
⎣1 1 1

1 k −1
1 k2 1

⎤
⎦ 18.

⎡
⎣0 1 k

3 2k 5
9 7 5

⎤
⎦

19.

⎡
⎣1 1 k

1 k k
k k k

⎤
⎦ 20.

⎡
⎣1 k 1

1 k + 1 k + 2
1 k + 2 2k + 4

⎤
⎦

21.

⎡
⎣k 1 1

1 k 1
1 1 k

⎤
⎦ 22.

⎡
⎣cos k 1 − sin k

0 2 0
sin k 0 cos k

⎤
⎦

In Exercises 23 through 30, use the determinant to find
out for which values of the constant λ the matrix A − λIn
fails to be invertible.

23.
[

1 2
0 4

]
24.
[

2 0
1 0

]

25.
[

4 2
4 6

]
26.
[

4 2
2 7

]

27.

⎡
⎣2 0 0

5 3 0
7 6 4

⎤
⎦ 28.

⎡
⎣5 7 11

0 3 13
0 0 2

⎤
⎦

29.

⎡
⎣3 5 6

0 4 2
0 2 7

⎤
⎦ 30.

⎡
⎣4 2 0

4 6 0
5 2 3

⎤
⎦
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Find the determinants of the matrices A in Exercises 31
through 42.

31.

⎡
⎢⎢⎣

1 9 8 7
0 2 9 6
0 0 3 5
0 0 0 4

⎤
⎥⎥⎦ 32.

⎡
⎢⎢⎣

2 5 7 11
0 3 5 13
0 0 5 11
0 0 0 7

⎤
⎥⎥⎦

33.

⎡
⎢⎢⎣

1 2 3 4
8 7 6 5
0 0 2 3
0 0 7 5

⎤
⎥⎥⎦ 34.

⎡
⎢⎢⎣

4 5 0 0
3 6 0 0
2 7 1 4
1 8 2 3

⎤
⎥⎥⎦

35.

⎡
⎢⎢⎣

2 3 0 2
4 3 2 1
6 0 0 3
7 0 0 4

⎤
⎥⎥⎦ 36.

⎡
⎢⎢⎣

0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

⎤
⎥⎥⎦

37.

⎡
⎢⎢⎢⎢⎣

5 4 0 0 0
6 7 0 0 0
3 4 5 6 7
2 1 0 1 2
2 1 0 0 1

⎤
⎥⎥⎥⎥⎦ 38.

⎡
⎢⎢⎢⎢⎣

1 2 3 4 5
3 0 4 5 6
2 1 2 3 4
0 0 0 6 5
0 0 0 5 6

⎤
⎥⎥⎥⎥⎦

39.

⎡
⎢⎢⎢⎢⎣

0 0 0 0 1
0 0 2 0 0
0 4 0 0 0
0 0 0 3 0
5 0 0 0 0

⎤
⎥⎥⎥⎥⎦ 40.

⎡
⎢⎢⎢⎢⎣

0 0 3 0 0
0 0 0 0 2
0 4 0 0 0
0 0 0 1 0
5 0 0 0 0

⎤
⎥⎥⎥⎥⎦

41.

⎡
⎢⎢⎢⎢⎣

0 0 1 0 2
5 4 3 2 1
1 3 5 0 7
2 0 4 0 6
0 0 3 0 4

⎤
⎥⎥⎥⎥⎦ 42.

⎡
⎢⎢⎢⎢⎣

0 0 2 3 1
0 0 0 2 2
0 9 7 9 3
0 0 0 0 5
3 4 5 8 5

⎤
⎥⎥⎥⎥⎦

43. If A is an n ×n matrix, what is the relationship between
det A and det(−A)?

44. If A is an n × n matrix and k is an arbitrary constant,
what is the relationship between det A and det(k A)?

45. If A is a 2 × 2 matrix, what is the relationship between
det A and det(AT )?

46. If A is an invertible 2×2 matrix, what is the relationship
between det A and det(A−1)?

47. Find nonzero numbers a, b, c, d , e, f , g, h such that the

matrix

⎡
⎣ a b c

d k e
f g h

⎤
⎦ is invertible for all real numbers

k, or explain why no such matrix exists.

48. Find 2 × 2 matrices A, B, C , D such that

det

[
A B
C D

]
�= (det A)(det D) − (det B)(det C).

49. For two nonparallel vectors �v and �w in R3, consider the
linear transformation

T (�x) = det
[
�v �w �x

]
from R3 to R. Describe the kernel of T geometrically.
What is the image of T ?

50. If �u, �v, �w are three unit vectors in R3, what are the pos-
sible values of det

[
�u �v �w

]
?

51. Explain why any pattern P in a matrix A, other than the
diagonal pattern, contains at least one entry below the
diagonal and at least one entry above the diagonal.

52. Consider two vectors �v and �w in R3. Form the matrix

A =
[
�v × �w �v �w

]
.

Express det A in terms of ‖�v × �w‖. For which choices
of �v and �w is A invertible?

53. Find the determinant of the (2n) × (2n) matrix

A =
[

0 In

In 0

]
.

54. Is the determinant of the matrix

A =

⎡
⎢⎢⎢⎢⎣

1 1000 2 3 4
5 6 7 1000 8

1000 9 8 7 6
5 4 3 2 1000
1 2 1000 3 4

⎤
⎥⎥⎥⎥⎦

positive or negative? How can you tell? Do not use
technology.

55. Does the following matrix have an LU factorization?
See Exercises 2.4.90 and 2.4.93.

A =
⎡
⎣7 4 2

5 3 1
3 1 4

⎤
⎦

56. Let Mn be the n × n matrix with all 1’s along “the other
diagonal,” and 0’s everywhere else. For example,

M4 =

⎡
⎢⎢⎣

0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

⎤
⎥⎥⎦ .

a. Find det(Mn) for n = 2, 3, 4, 5, 6, 7.
b. Find a formula for det(Mn), in terms of n.

57. A square matrix is called a permutation matrix if each
row and each column contains exactly one entry 1, with

all other entries being 0. Examples are In ,

⎡
⎣0 1 0

0 0 1
1 0 0

⎤
⎦,

and the matrices considered in Exercises 53 and 56.
What are the possible values of the determinant of a
permutation matrix?
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58. a. Find a noninvertible 2 × 2 matrix whose entries are
four distinct prime numbers, or explain why no such
matrix exists.

b. Find a noninvertible 3 × 3 matrix whose entries are
nine distinct prime numbers, or explain why no such
matrix exists.

59. Consider the function F(A) = F
[ �v �w ] = �v · �w from

R2×2 to R, the dot product of the column vectors of A.
a. Is F linear in both columns of A? See Example 6.
b. Is F linear in both rows of A?
c. Is F alternating on the columns of A? See Exam-

ple 4.

60. Which of the following functions F of A =
[

a b
c d

]
are linear in both columns? Which are linear in both
rows? Which are alternating on the columns?

a. F(A) = bc b. F(A) = cd c. F(A) = ac

d. F(A) = bc − ad e. F(A) = c

61. Show that the function

F

⎡
⎣a b c

d e f
g h j

⎤
⎦ = b f g

is linear in all three columns and in all three rows.
See Example 6. Is F alternating on the columns? See
Example 4.

In Exercises 62 through 64, consider a function D from
R2×2 to R that is linear in both columns and alternating
on the columns. See Examples 4 and 6 and the subsequent
discussions. Assume that D(I2) = 1.

62. Show that D(A) = 0 for any 2 × 2 matrix A whose two
columns are equal.

63. Show that D

[
a b
0 d

]
= ad . Hint: Write

[
b
d

]
=[

b
0

]
+
[

0
d

]
and use linearity in the second col-

umn: D

[
a b
0 d

]
= D

[
a b
0 0

]
+ D

[
a 0
0 d

]
=

ab D

[
1 1
0 0

]
+ . . . . Use Exercise 62.

64. Using Exercises 62 and 63 as a guide, show that
D(A) = ad − bc = det A for all 2 × 2 matrices A.

65. Consider a function D from R3×3 to R that is linear
in all three columns and alternating on the columns.
Assume that D(I3) = 1. Using Exercises 62 through
64 as a guide, show that D(A) = det A for all 3 × 3
matrices A.

66. a. Let V be the linear space of all functions F from
R2×2 to R that are linear in both columns. Find a
basis of V , and thus determine the dimension of V .

b. Let W be the linear space of all functions D from
R2×2 to R that are linear in both columns and alter-
nating on the columns. Find a basis of W , and thus
determine the dimension of W .

6.2 Properties of the Determinant

The main goal of this section is to show that a square matrix of any size is invertible
if (and only if) its determinant is nonzero. As we work toward this goal, we will
discuss a number of other remarkable properties of the determinant.

The Determinant of the Transpose5

EXAMPLE 1 Let

A =

⎡
⎢⎢⎢⎢⎣

1 2 3 4 5
6 7 8 9 8
7 6 5 4 3
2 1 2 3 4
5 6 7 8 9

⎤
⎥⎥⎥⎥⎦ .

Express det(AT ) in terms of det A. You need not compute det A.

5If you skipped Chapter 5, read Definition 5.3.5.
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Solution
For each pattern P in A, we can consider the corresponding (transposed) pattern
PT in AT ; for example,

A =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 2 3�4 5

6�7 8 9 8

7 6 5 4 3�
2 1�2 3 4

5 6 7 8�9

⎤
⎥⎥⎥⎥⎥⎥⎦ , AT =

⎡
⎢⎢⎢⎢⎣

1 6�7 2 5
2 7 6 1�6
3�8 5 2 7
4 9 4 3 8�
5 8 3�4 9

⎤
⎥⎥⎥⎥⎦ .

P PT

The two patterns P and PT involve the same numbers, and they contain the same
number of inversions, but the role of the two numbers in each inversion is reversed.
Therefore, the two patterns make the same contributions to the respective determi-
nants (sgn P)(prod P) = (sgn PT )(prod PT ). Since these observations apply to all
patterns of A, we can conclude that det(AT ) = det A. �

Since we have not used any special properties of the matrix A in Example 1,
we can state more generally:

Theorem 6.2.1 Determinant of the transpose

If A is a square matrix, then

det(AT ) = det A.

This symmetry property will prove very useful. Any property of the determi-
nant expressed in terms of the rows holds for the columns as well, and vice versa.

Linearity Properties of the Determinant
In Section 6.1 we observed that the 3 × 3 determinant is linear in the rows and in
the columns; take another look at Example 6 of Section 6.1. It turns out that these
linearity properties generalize to the determinant of n × n matrices.

Theorem 6.2.2 Linearity of the determinant in the rows and columns

Consider fixed row vectors �v1, . . . , �vi−1, �vi+1, . . . , �vn with n components. Then
the function

T (�x) = det

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

— �v1 —
...

— �vi−1 —
— �x —
— �vi+1 —

...

— �vn —

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

from R1×n to R

is a linear transformation. This property is referred to as linearity of the deter-
minant in the i th row. Likewise, the determinant is linear in all the columns.

To prove Theorem 6.2.2, observe that the product prod P associated with a
pattern P is linear in all the rows and columns, since this product contains exactly
one factor from each row and one from each column. Thus, the determinant itself is
linear in all the rows and columns, being a linear combination of pattern products.
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We can express the linearity of the transformation T in Theorem 6.2.2 in terms
of the equations T (�x + �y) = T (�x) + T (�y) and T (k�x) = kT (�x), or

det

⎡
⎢⎢⎢⎢⎢⎢⎣

— �v1 —
...

— �x + �y —
...

— �vn —

⎤
⎥⎥⎥⎥⎥⎥⎦ = det

⎡
⎢⎢⎢⎢⎢⎢⎣

— �v1 —
...

— �x —
...

— �vn —

⎤
⎥⎥⎥⎥⎥⎥⎦+

⎡
⎢⎢⎢⎢⎢⎢⎣

— �v1 —
...

— �y —
...

— �vn —

⎤
⎥⎥⎥⎥⎥⎥⎦ and

det

⎡
⎢⎢⎢⎢⎢⎢⎣

— �v1 —
...

— k�x —
...

— �vn —

⎤
⎥⎥⎥⎥⎥⎥⎦ = k det

⎡
⎢⎢⎢⎢⎢⎢⎣

— �v1 —
...

— �x —
...

— �vn —

⎤
⎥⎥⎥⎥⎥⎥⎦ .

In these equations, all rows except the i th are fixed, �x and �y are arbitrary row vectors
with n components, and k is an arbitrary real number.

Determinants and Gauss–Jordan Elimination
Consider a 30×30 matrix A, a rather small matrix by the standards of contemporary
scientific and engineering applications. Then 29 · 30! ≈ 7 · 1033 multiplications are
required to compute the determinant of A by Definition 6.1.3, using patterns. If a
super computer performs 10 trillion (1013) multiplications a second, it will take over
a trillion years to carry out these computations; our universe might long be gone by
then. Clearly, we have to look for more efficient ways to compute the determinant.

To use the language of computer science, is there an algorithm for the determi-
nant that runs on polynomial rather than exponential time?

So far in this text, Gauss–Jordan elimination has served us well as a powerful
tool for solving numerical problems in linear algebra. If we could understand what
happens to the determinant of a matrix as we row-reduce it, we could use Gauss–
Jordan elimination to compute determinants as well. We have to understand how
the three elementary row operations affect the determinant:

a. Row division: dividing a row by a nonzero scalar k,

b. Row swap: swapping two rows, and

c. Row addition: adding a multiple of a row to another row.

Let’s look at the case of a 2×2 matrix A =
[

a b
c d

]
first, with det A = ad−bc.

a. If B =
[

a/k b/k
c d

]
, then det B = a

k
d − b

k
c = 1

k
det A.

Verify that det B = 1

k
det A if B is obtained from A by dividing the

second row by k.

b. If B =
[

c d
a b

]
, then det B = cb − da = − det A.

c. If B =
[

a + kc b + kd
c d

]
, then det B = (a + kc)d − (b + kd)c = ad +

kcd − bc − kdc = det A. Verify that det B = det A if B is obtained from A
by adding k times the first row to the second row.

Next, we will examine the effect of the elementary row operations on the deter-
minant of square matrices of arbitrary size.
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a. Row division: If

A =

⎡
⎢⎢⎢⎢⎢⎢⎣

— �v1 —
...

— �vi —
...

— �vn —

⎤
⎥⎥⎥⎥⎥⎥⎦ and B =

⎡
⎢⎢⎢⎢⎢⎢⎣

— �v1 —
...

— �vi/k —
...

— �vn —

⎤
⎥⎥⎥⎥⎥⎥⎦ ,

then det B = (1/k) det A, by linearity in the i th row, Theorem 6.2.2.

b. Row swap: Refer to Example 2.

EXAMPLE 2 Consider the matrices

A =

⎡
⎢⎢⎢⎢⎣

1 2 3 4 5
6 7 8 9 8
7 6 5 4 3
2 1 2 3 4
5 6 7 8 9

⎤
⎥⎥⎥⎥⎦
 
 

and B =

⎡
⎢⎢⎢⎢⎣

6 7 8 9 8
1 2 3 4 5
7 6 5 4 3
2 1 2 3 4
5 6 7 8 9

⎤
⎥⎥⎥⎥⎦ .

Note that B is obtained from A by swapping the first two rows. Express det B in
terms of det A.

Solution
For each pattern P in A, we can consider the corresponding pattern Pswap in B; for
example,

A =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 2 3�4 5

6�7 8 9 8

7 6 5 4 3�
2 1�2 3 4

5 6 7 8�9

⎤
⎥⎥⎥⎥⎥⎥⎦ and B =

⎡
⎢⎢⎢⎢⎢⎢⎣

6�7 8 9 8

1 2 3�4 5

7 6 5 4 3�
2 1�2 3 4

5 6 7 8� 9

⎤
⎥⎥⎥⎥⎥⎥⎦ .

P Pswap

These two patterns P and Pswap involve the same numbers, but the number of in-
versions in Pswap is one less than in P , since we are losing the inversion formed
by the entries in the first two rows of A. Thus, prod Pswap = prod P , but
sgn Pswap = −sgn P , so that the two patterns make opposite contributions to the
respective determinants. Since these remarks apply to all patterns in A, we can con-
clude that

det B = − det A.

(If P is a pattern in A such that the entries in the first two rows do not form an inver-
sion, then an additional inversion is created in Pswap; again, sgn Pswap = −sgn P .)

�
What if B is obtained from A by swapping any two rows, rather than the first two? If
we swap two adjacent rows, then everything works the same way as in Example 2,
and det B = − det A. But what if B is obtained from A by swapping two arbitrary
rows? Observe that swapping any two rows amounts to an odd number of swaps of
adjacent rows. See Exercise 60. Since the determinant changes its sign with each
swap of adjacent rows, the equation det B = − det A still holds.

EXAMPLE 3 If a matrix A has two equal rows, what can you say about det A?

Solution
Swap the two equal rows and call the resulting matrix B. Since we have swapped
two equal rows, we have A = B. Now
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det A = det B = − det A,

so that

det A = 0. �
c. Row addition: Finally, what happens to the determinant if we add k times the i th

row to the j th row?

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

...

— �vi —
...

— �v j —
...

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

−→ B =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

...

— �vi —
...

— �v j + k�vi —
...

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

By linearity in the j th row, Theorem 6.2.2, we find that

det B = det

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

...

— �vi —
...

— �v j —
...

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

+ k det

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

...

— �vi —
...

— �vi —
...

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

= det A,

by Example 3.

Theorem 6.2.3 Elementary row operations and determinants

a. If B is obtained from A by dividing a row of A by a scalar k, then

det B = (1/k) det A.

b. If B is obtained from A by a row swap, then

det B = − det A.

We say that the determinant is alternating on the rows.

c. If B is obtained from A by adding a multiple of a row of A to another
row, then

det B = det A.

Analogous results hold for elementary column operations.

Now that we understand how elementary row operations affect determinants,
we can analyze the relationship between the determinant of a square matrix A and
that of rref A. Suppose that in the course of Gauss–Jordan elimination we swap
rows s times and divide various rows by the scalars k1, k2, . . . , kr . Then

det(rref A) = (−1)s 1

k1k2 · · · kr
(det A),

or

det A = (−1)sk1k2 · · · kr det(rref A),

by Theorem 6.2.3.
Let us examine the cases when A is invertible and when it is not.
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If A is invertible, then rref A = In , so that det(rref A) = det(In) = 1, and

det A = (−1)sk1k2 · · · kr �= 0.

Note that det A fails to be zero since all the scalars ki are nonzero.
If A is noninvertible, then the last row of rref A contains all zeros, so that

det(rref A) = 0 (by linearity in the last row). It follows that det A = 0.
We have established the following fundamental result.

Theorem 6.2.4 Invertibility and determinant

A square matrix A is invertible if and only if det A �= 0.

The foregoing discussion provides us with an efficient method for computing
the determinant, using Gauss–Jordan elimination.

Algorithm 6.2.5 Using Gauss–Jordan elimination to compute the determinant

a. Consider an invertible n × n matrix A. Suppose you swap rows s times
as you compute rref A = In , and you divide various rows by the scalars
k1, k2, . . . , kr . Then

det A = (−1)sk1k2 · · · kr .

b. In fact, it is not always sensible to reduce A all the way to rref A. Suppose
you can use elementary row operations to transform A into some matrix B
whose determinant is easy to compute (B might be a triangular matrix, for
example). Suppose you swap rows s times as you transform A into B, and
you divide various rows by the scalars k1, k2, . . . , kr . Then

det A = (−1)sk1k2 · · · kr det B.

EXAMPLE 4 Find

det

⎡
⎢⎢⎣

0 7 5 3
1 1 2 1
1 1 2 −1
1 1 1 2

⎤
⎥⎥⎦ .

Solution
We go through the elimination process, keeping a note of all the row swaps and row
divisions we perform (if any). In view of part b of Algorithm 6.2.5, we realize that
it suffices to reduce A to an upper triangular matrix: There is no need to eliminate
entries above the diagonal, or to make the diagonal entries equal to 1.

A =

⎡
⎢⎢⎣

0 7 5 3
1 1 2 1
1 1 2 −1
1 1 1 2

⎤
⎥⎥⎦ 
 

−→

⎡
⎢⎢⎣

1 1 2 1
0 7 5 3
1 1 2 −1
1 1 1 2

⎤
⎥⎥⎦ − (I)

− (I)

−→

⎡
⎢⎢⎣

1 1 2 1
0 7 5 3
0 0 0 −2
0 0 −1 1

⎤
⎥⎥⎦
 
 −→ B =

⎡
⎢⎢⎣

1 1 2 1
0 7 5 3
0 0 −1 1
0 0 0 −2

⎤
⎥⎥⎦
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We have performed two row swaps, so that det A = (−1)2(det B) = 7(−1)(−2) =
14. We have used Theorem 6.1.4: The determinant of the triangular matrix B is the
product of its diagonal entries. �

Determinant of a Product
If A and B are two n × n matrices, what is the relationship among det A, det B, and
det(AB)? The answer is as simple as could be:

Theorem 6.2.6 Determinants of products and powers

If A and B are n × n matrices and m is a positive integer, then

a. det(AB) = (det A)(det B), and

b. det(Am) = (det A)m .

Proof a. Let’s first consider the case when A is invertible. In Exercise 34 the reader is
asked to show that

rref
[

A AB
] = [ In B

]
.

Suppose we swap rows s times, and we divide various rows by k1, k2, . . . , kr as we
perform this elimination.

Considering the left and right halves of the matrices
[

A AB
]

and
[

In B
]

separately, and using Algorithm 6.2.5, we conclude that

det(A) = (−1)sk1k2 · · · kr

and

det(AB) = (−1)sk1k2 · · · kr (det B) = (det A)(det B),

as claimed. If A is not invertible, then neither is AB (think about the image), so that
(det A)(det B) = 0(det B) = 0 = det(AB), as claimed.
b. We have

det(Am) = det (A · A · · · A)︸ ︷︷ ︸
m times

= (det A)(det A) · · · (det A)︸ ︷︷ ︸
m times

= (det A)m,

as claimed. �

EXAMPLE 5 If matrix A is similar to B, what is the relationship between det A and det B?

Solution
By Definition 3.4.5, there exists an invertible matrix S such that AS = SB. By
Theorem 6.2.6, we have

(det A)(det S) = (det S)(det B).

Dividing both sides by the nonzero scalar det S, we find that

det A = det B. �
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Theorem 6.2.7 Determinants of similar matrices

If matrix A is similar to B, then det A = det B.

Conversely, if det A = det B, are the matrices A and B necessarily similar? See
Exercise 59.

The Determinant of an Inverse
If A is an invertible n × n matrix, what is the relationship between det A and
det(A−1)? By definition of an inverse, the equation In = AA−1 holds. By taking
determinants of both sides and using Theorem 6.2.6, we find that

1 = det(In) = det(AA−1) = det(A) det(A−1),

so that

det(A−1) = 1

det A
.

It turns out that det(A−1) is the reciprocal of det A.

Theorem 6.2.8 Determinant of an inverse

If A is an invertible matrix, then

det(A−1) = 1

det A
= (det A)−1.

Minors and Laplace Expansion6 (Optional)
Recall the formula

det A = a11a22a33 + a12a23a31 + a13a21a32 − a13a22a31 − a11a23a32 − a12a21a33

for the determinant of a 3 × 3 matrix. See Theorem 6.1.2. Collecting the two terms
involving a11 and then those involving a21 and a31, we can write

det A = a11(a22a33 − a32a23)

+ a21(a32a13 − a12a33)

+ a31(a12a23 − a22a13).

(Where have we seen this formula before?)
Note that computing the determinant this way requires only 9 multiplica-

tions, compared with the 12 for Sarrus’s formula. Let’s analyze the structure
of this formula more closely. The terms a22a33 − a32a23, a32a13 − a12a33, and
a12a23 − a22a13 are the determinants of submatrices of A, up to the signs. The
expression a22a33 − a32a23 is the determinant of the matrix we get when we omit
the first row and the first column of A:⎡

⎣a11 a12 a13

a21 a22 a23

a31 a32 a33

⎤
⎦ .

6Named after the French mathematician Pierre-Simon Marquis de Laplace (1749–1827). Laplace is
perhaps best known for his investigation into the stability of the solar system. He was also a prominent
member of the committee that aided in the organization of the metric system.
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Likewise for the other summands:

det A = a11 det

⎡
⎣a11 a12 a13

a21 a22 a23

a31 a32 a33

⎤
⎦− a21 det

⎡
⎣a11 a12 a13

a21 a22 a13

a31 a32 a33

⎤
⎦

+ a31 det

⎡
⎣a11 a12 a13

a21 a22 a23

a31 a32 a33

⎤
⎦ .

To state these observations more succinctly, we introduce some terminology.

Definition 6.2.9 Minors

For an n × n matrix A, let Ai j be the matrix obtained by omitting the i th row
and the j th column of A. The determinant of the (n − 1) × (n − 1) matrix Ai j is
called a minor of A.

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

a11 a12 . . . a1 j . . . a1n

a21 a22 . . . a2 j . . . a2n
...

...
...

...

ai1 ai2 . . . ai j . . . ain
...

...
...

...

an1 an2 . . . anj . . . ann

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

Ai j =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

a11 a12 . . . a1 j . . . a1n

a21 a22 . . . a2 j . . . a2n
...

...
...

...

ai1 ai2 . . . ai j . . . ain
...

...
...

...

an1 an2 . . . anj . . . ann

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

We can now represent the determinant of a 3 × 3 matrix more succinctly:

det A = a11 det(A11) − a21 det(A21) + a31 det(A31).

This representation of the determinant is called the Laplace expansion (or
cofactor expansion) of det A down the first column. Likewise, we can expand along
the first row [since det(AT ) = det A]:

det A = a11 det(A11) − a12 det(A12) + a13 det(A13).

In fact, we can expand along any row or down any column. (We can verify this
directly or argue in terms of row or column swaps.) For example, the Laplace
expansion down the second column is

det A = −a12 det(A12) + a22 det(A22) − a32 det(A32),

and the Laplace expansion along the third row is

det A = a31 det(A31) − a32 det(A32) + a33 det(A33).

The rule for the signs is as follows: The summand ai j det(Ai j ) has a negative sign if
the sum of the two indices, i + j , is odd. The signs follow a checkerboard pattern:
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⎡
⎣+ − +

− + −
+ − +

⎤
⎦ .

We can generalize the Laplace expansion to n × n matrices.
We will focus on the expansion down the j th column of A. The formula for

the expansion along the i th row then follows from the fact that det A = det(AT ),
Theorem 6.2.1.

Consider a pattern P in an n × n matrix A. For a fixed j , the pattern P will
contain exactly one entry ai j in the j th column of A. Let Pi j be the pattern in Ai j

that contains the same entries as P , except for the omitted entry ai j . See the example
below, where j = 4 and i = 3.

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 2 3 1 6�5

6 7�8 2 9 8

7 6 5 3�4 3

2 1 2�4 3 4

5�6 7 5 8 9

8 7 6 6 5 4�

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

← i = 3
Ai j =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 2 3 6�5

6 7�8 9 8

2 1 2� 3 4

5�6 7 8 9

8 7 6 5 4�

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

↖
P j = 4 Pi j

8 inversions 5 inversions

Note that prod P = ai j prod(Pi j ). In Exercise 68 we see that sgn P =
(−1)i+ j sgn(Pi j ), so that (sgnP)(prod P) = (−1)i+ j ai j (sgnPi j )(prod Pi j ). Verify
this formula in the example above, where (sgnP)(prod P) = 7! = 5,040. Now we
can compute the determinant of A, collecting the patterns containing a1 j , then those
containing a2 j , and so forth, just as we did on page 284 in the case of a 3×3 matrix,
with j = 1:

det A =
∑

(sgnP)(prod P) =
n∑

i=1

∑
P contains ai j

(sgnP)(prod P)

=
n∑

i=1

∑
P contains ai j

(−1)i+ j ai j (sgnPi j )(prod Pi j )

=
n∑

i=1

(−1)i+ j ai j

∑
P contains ai j

(sgnPi j )(prod Pi j ) =
n∑

i=1

(−1)i+ j ai j det(Ai j ).

Theorem 6.2.10 Laplace expansion (or cofactor expansion)

We can compute the determinant of an n × n matrix A by Laplace expansion
down any column or along any row.

Expansion down the j th column:

det A =
n∑

i=1

(−1)i+ j ai j det(Ai j ).

Expansion along the i th row:

det A =
n∑

j=1

(−1)i+ j ai j det(Ai j ).
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Again, the signs follow a checkerboard pattern:⎡
⎢⎢⎢⎢⎢⎣

+ − + − . . .

− + − + . . .

+ − + − . . .

− + − + . . .
...

...
...

...
. . .

⎤
⎥⎥⎥⎥⎥⎦ .

EXAMPLE 6 Use Laplace expansion to compute det A for

A =

⎡
⎢⎢⎣

1 0 1 2
9 1 3 0
9 2 2 0
5 0 0 3

⎤
⎥⎥⎦ .

Solution
Looking for rows or columns with as many zeros as possible, we choose the second
column:

det A = −a12 det(A12) + a22 det(A22) − a32 det(A32) + a42 det(A42)

= 1 det

⎡
⎢⎢⎣

1 0 1 2
9 1 3 0
9 2 2 0
5 0 0 3

⎤
⎥⎥⎦− 2 det

⎡
⎢⎢⎣

1 0 1 2
9 1 3 0
9 2 2 0
5 0 0 3

⎤
⎥⎥⎦

= det

⎡
⎣1 1 2

9 2 0
5 0 3

⎤
⎦− 2 det

⎡
⎣1 1 2

9 3 0
5 0 3

⎤
⎦

= 2 det

[
9 2
5 0

]
+ 3 det

[
1 1
9 2

]
− 2

(
2 det

[
9 3
5 0

]
+ 3 det

[
1 1
9 3

])
↗

Expand down
the last
column

= −20 − 21 − 2(−30 − 18) = 55. �
Computing the determinant using Laplace expansion is a bit more efficient than

using the definition of the determinant, but a lot less efficient than Gauss–Jordan
elimination.

The Determinant of a Linear Transformation (Optional)
(For those who have studied Chapter 4.)

If T (�x) = A�x is a linear transformation from Rn to Rn , then it is natural to
define the determinant of T as the determinant of matrix A:

det T = det A.

This definition makes sense in view of the fact that an n × n matrix is essentially
the same thing as a linear transformation from Rn to Rn .

If T is a linear transformation from V to V , where V is a finite-dimensional
linear space, then we can introduce coordinates to define the determinant of T . If �
is a basis of V and B is the �-matrix of T , then we define
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det T = det B.

We need to think about one issue though. If you pick another basis, �, of V and
consider the �-matrix A of T , will you end up with the same determinant; that is,
will det A equal det B?

Fortunately, there is no reason to worry. We know that matrix A is similar to
B (by Theorem 4.3.5), so that determinants det A and det B are indeed equal, by
Theorem 6.2.7.

Definition 6.2.11 The determinant of a linear transformation

Consider a linear transformation T from V to V , where V is a finite-dimensional
linear space. If � is a basis of V and B is the �-matrix of T , then we define

det T = det B.

This determinant is independent of the basis � we choose.

EXAMPLE 7 Let V be the space spanned by functions cos(2x) and sin(2x). Find the determinant
of the linear transformation D( f ) = f ′ from V to V .

Solution
The matrix B of D with respect to the basis cos(2x), sin(2x) is

B =
[

0 2
−2 0

]
,

so that

det D = det B = 4. �
Determinants: Focus on History
Most of the results of this and the preceding section (with the notable exception
of the product rule, Theorem 6.2.6) were known to Gottfried Wilhelm von Leibniz
(1646–1716). In 1678, while studying the solutions of systems of three equations
in three unknowns, he used a method that amounts to expanding the determinant
of a 3 × 3 matrix down the third column. Later that year he attempted the same
for 4 × 4 matrices but made a sign error in his computations. In a manuscript of
1684, however, Leibniz states the sign rule for determinants in the correct, general
form. His work remained unpublished and was discovered only after 1850, through
careful examination of his manuscripts.

Meanwhile, the greatest mathematician of ancient Japan, Seki Kowa (1642–
1708), came up with remarkably similar results, in his manuscript Kai Fukudai no
Ho. It appears that he found the correct sign rule for determinants of 4 × 4 matri-
ces. However, it is hard to assess his work, as he was an extremely secretive fellow.
Florian Cajori, the eminent Swiss historian of mathematics, puts it this way:

Seki was a great teacher who attracted many gifted pupils. Like Pythagoras,
he discouraged divulgence of mathematical discoveries made by himself and
his school. For that reason it is difficult to determine with certainty the exact
origin and nature of some of the discoveries attributed to him. He is said to
have left hundreds of manuscripts; the translations of only a few of them still
remain. (Cajori, A History of Mathematics, 1919)

Apparently without detailed knowledge of Leibniz’s work, the Swiss mathe-
matician Gabriel Cramer (1704–1752) developed the general theory of determinants
(still without the product rule, though) and published his results in the Introduction
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à l’analyse des lignes courbes algébriques (1750). The mathematical community
quickly discovered the power of this new technique, and during the next 100 years
many mathematicians made important advances: Bézout, Vandermonde, Laplace,
Binet, and Cayley, to name just a few. In 1812, Augustin Louis Cauchy (1789–1857)
contributed the product rule. In the 1880s, Karl Weierstrass (1817–1897) offered an
axiomatic definition of the determinant that allows a more elegant exposition of the
theory. See Exercise 55.

EXERCISES 6.2
Use Gaussian elimination to find the determinant of the
matrices A in Exercises 1 through 10.

1.

⎡
⎣1 1 1

1 3 3
2 2 5

⎤
⎦ 2.

⎡
⎣ 1 2 3

1 6 8
−2 −4 0

⎤
⎦

3.

⎡
⎢⎢⎣

1 3 2 4
1 6 4 8
1 3 0 0
2 6 4 12

⎤
⎥⎥⎦ 4.

⎡
⎢⎢⎣

1 −1 2 −2
−1 2 1 6

2 1 14 10
−2 6 10 33

⎤
⎥⎥⎦

5.

⎡
⎢⎢⎣

0 2 3 4
0 0 0 4
1 2 3 4
0 0 3 4

⎤
⎥⎥⎦ 6.

⎡
⎢⎢⎣

1 1 1 1
1 1 4 4
1 −1 2 −2
1 −1 8 −8

⎤
⎥⎥⎦

7.

⎡
⎢⎢⎢⎢⎣

0 0 0 0 1
0 0 0 1 2
0 0 1 2 3
0 1 2 3 4
1 2 3 4 5

⎤
⎥⎥⎥⎥⎦ 8.

⎡
⎢⎢⎢⎢⎣

0 0 0 0 2
1 0 0 0 3
0 1 0 0 4
0 0 1 0 5
0 0 0 1 6

⎤
⎥⎥⎥⎥⎦

9.

⎡
⎢⎢⎢⎢⎣

1 1 1 1 1
1 2 2 2 2
1 1 3 3 3
1 1 1 4 4
1 1 1 1 5

⎤
⎥⎥⎥⎥⎦ 10.

⎡
⎢⎢⎢⎢⎣

1 1 1 1 1
1 2 3 4 5
1 3 6 10 15
1 4 10 20 35
1 5 15 35 70

⎤
⎥⎥⎥⎥⎦

Consider a 4 × 4 matrix A with rows �v1, �v2, �v3, �v4.
If det(A) = 8, find the determinants in Exercises 11
through 16.

11. det

⎡
⎢⎢⎣

�v1

�v2

−9�v3

�v4

⎤
⎥⎥⎦ 12. det

⎡
⎢⎢⎣

�v4

�v2

�v3

�v1

⎤
⎥⎥⎦

13. det

⎡
⎢⎢⎣

�v2

�v3

�v1

�v4

⎤
⎥⎥⎦ 14. det

⎡
⎢⎢⎣

�v1

�v2 + 9�v4

�v3

�v4

⎤
⎥⎥⎦

15. det

⎡
⎢⎢⎣

�v1

�v1 + �v2

�v1 + �v2 + �v3

�v1 + �v2 + �v3 + �v4

⎤
⎥⎥⎦ 16. det

⎡
⎢⎢⎣

6�v1 + 2�v4

�v2

�v3

3�v1 + �v4

⎤
⎥⎥⎦

Find the determinants of the linear transformations in
Exercises 17 through 28.

17. T ( f ) = 2 f + 3 f ′ from P2 to P2

18. T
(

f (t)
) = f (3t − 2) from P2 to P2

19. T
(

f (t)
) = f (−t) from P2 to P2

20. L(A) = AT from R2×2 to R2×2

21. T
(

f (t)
) = f (−t) from P3 to P3

22. T
(

f (t)
) = f (−t) from Pn to Pn

23. L(A) = AT from Rn×n to Rn×n

24. T (z) = (2 + 3i)z from C to C

25. T (M) =
[

2 3
0 4

]
M from the space V of upper trian-

gular 2 × 2 matrices to V

26. T (M) =
[

1 2
2 3

]
M + M

[
1 2
2 3

]
from the space V of

symmetric 2 × 2 matrices to V

27. T ( f ) = a f ′ + b f ′′, where a and b are arbitrary con-
stants, from the space V spanned by cos(x) and sin(x)

to V

28. T (�v) =
⎡
⎣1

2
3

⎤
⎦× �v from the plane V given by

x1 + 2x2 + 3x3 = 0 to V

29. Let Pn be the n × n matrix whose entries are all ones,
except for zeros directly below the main diagonal; for
example,

P5 =

⎡
⎢⎢⎢⎢⎣

1 1 1 1 1
0 1 1 1 1
1 0 1 1 1
1 1 0 1 1
1 1 1 0 1

⎤
⎥⎥⎥⎥⎦ .

Find the determinant of Pn .

30. Consider two distinct real numbers, a and b. We define
the function

f (t) = det

⎡
⎣ 1 1 1

a b t
a2 b2 t2

⎤
⎦ .
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a. Show that f (t) is a quadratic function. What is the
coefficient of t2?

b. Explain why f (a) = f (b) = 0. Conclude that
f (t) = k(t − a)(t − b), for some constant k. Find k,
using your work in part (a).

c. For which values of t is the matrix invertible?

31. Vandermonde determinants (introduced by Alexandre-
Théophile Vandermonde). Consider distinct real num-
bers a0, a1, . . . , an . We define the (n + 1) × (n + 1)

matrix

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 1 · · · 1

a0 a1 · · · an

a2
0 a2

1 · · · a2
n

...
...

...

an
0 an

1 · · · an
n

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.

Vandermonde showed that

det(A) =
∏
i> j

(ai − a j ),

the product of all differences (ai − a j ), where i
exceeds j .
a. Verify this formula in the case of n = 1.
b. Suppose the Vandermonde formula holds for n − 1.

You are asked to demonstrate it for n. Consider the
function

f (t) = det

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 1 . . . 1 1

a0 a1 . . . an−1 t

a2
0 a2

1 . . . a2
n−1 t2

...
...

...
...

an
0 an

1 . . . an
n−1 tn

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.

Explain why f (t) is a polynomial of nth degree.
Find the coefficient k of tn using Vandermonde’s
formula for a0, . . . , an−1. Explain why

f (a0) = f (a1) = · · · = f (an−1) = 0.

Conclude that

f (t) = k(t − a0)(t − a1) · · · (t − an−1)

for the scalar k you found above. Substitute t = an
to demonstrate Vandermonde’s formula.

32. Use Exercise 31 to find

det

⎡
⎢⎢⎢⎢⎣

1 1 1 1 1
1 2 3 4 5
1 4 9 16 25
1 8 27 64 125
1 16 81 256 625

⎤
⎥⎥⎥⎥⎦ .

Do not use technology.

33. For n distinct scalars a1, a2, . . . , an , find

det

⎡
⎢⎢⎢⎢⎣

a1 a2 . . . an

a2
1 a2

2 . . . a2
n

...
...

...

an
1 an

2 . . . an
n

⎤
⎥⎥⎥⎥⎦ .

34. a. For an invertible n × n matrix A and an arbitrary
n × n matrix B, show that

rref
[

A AB
] = [ In B

]
.

Hint: The left part of rref
[

A AB
]

is rref(A) = In .
Write rref

[
A AB

] = [ In M
]
; we have to show

that M = B. To demonstrate this, note that the
columns of matrix [

B
−In

]
are in the kernel of

[
A AB

]
and therefore in the

kernel of
[

In M
]
.

b. What does the formula

rref
[

A AB
] = [ In B

]
tell you if B = A−1?

35. Consider two distinct points

[
a1

a2

]
and

[
b1

b2

]
in the

plane. Explain why the solutions

[
x1

x2

]
of the equation

det

⎡
⎣ 1 1 1

x1 a1 b1

x2 a2 b2

⎤
⎦ = 0

form a line and why this line goes through the two

points

[
a1

a2

]
and

[
b1

b2

]
.

36. Consider three distinct points

[
a1

a2

]
,

[
b1

b2

]
,

[
c1

c2

]
in the

plane. Describe the set of all points

[
x1

x2

]
satisfying the

equation

det

⎡
⎢⎢⎢⎢⎣

1 1 1 1

x1 a1 b1 c1

x2 a2 b2 c2

x2
1 + x2

2 a2
1 + a2

2 b2
1 + b2

2 c2
1 + c2

2

⎤
⎥⎥⎥⎥⎦ = 0.

37. Consider an n × n matrix A such that both A and A−1

have integer entries. What are the possible values of
det A?

38. If det A = 3 for some n × n matrix, what is det(AT A)?

39. If A is an invertible matrix, what can you say about the
sign of det(AT A)?
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40. If A is an orthogonal matrix, what are the possible val-
ues of det A?

41. Consider a skew-symmetric n × n matrix A, where n
is odd. Show that A is noninvertible, by showing that
det A = 0.

42. Consider an n × m matrix

A = Q R,

where Q is an n × m matrix with orthonormal columns
and R is an upper triangular m ×m matrix with positive
diagonal entries r11, . . . , rmm . Express det(AT A) in
terms of the scalars rii . What can you say about the sign
of det(AT A)?

43. Consider two vectors �v and �w in Rn . Form the matrix
A = [ �v �w ]. Express det(AT A) in terms of ‖�v‖, ‖ �w‖,
and �v · �w. What can you say about the sign of the result?

44. The cross product in Rn . Consider the vectors �v2,
�v3, . . . , �vn in Rn . The transformation

T (�x) = det

⎡
⎢⎣ | | | |

�x �v2 �v3 · · · �vn

| | | |

⎤
⎥⎦

is linear. Therefore, there exists a unique vector �u in Rn

such that

T (�x) = �x · �u
for all �x in Rn . Compare this with Exercise
2.1.43c. This vector �u is called the cross product of
�v2, �v3, . . . , �vn , written as

�u = �v2 × �v3 × · · · × �vn .

In other words, the cross product is defined by the fact
that

�x · (�v2 × �v3 × · · · × �vn)

= det

⎡
⎢⎣ | | | |

�x �v2 �v3 · · · �vn

| | | |

⎤
⎥⎦ ,

for all �x in Rn . Note that the cross product in Rn is
defined for n − 1 vectors only. (For example, you can-
not form the cross product of just two vectors in R4.)
Since the i th component of a vector �w is �ei · �w, we can
find the cross product by components as follows:

i th component of �v2 × �v3 × · · · × �vn

= �ei · (�v2 × · · · × �vn)

= det

⎡
⎢⎣ | | | |

�ei �v2 �v3 · · · �vn

| | | |

⎤
⎥⎦ .

a. When is �v2 × �v3 × · · · × �vn = �0? Give your answer
in terms of linear independence.

b. Find �e2 × �e3 × · · · × �en .

c. Show that �v2 × �v3 × · · ·× �vn is orthogonal to all the
vectors �vi , for i = 2, . . . , n.

d. What is the relationship between �v2 × �v3 × · · · × �vn
and �v3 × �v2 × · · · × �vn? (We swap the first two fac-
tors.)

e. Express det
[�v2 × �v3 × · · · × �vn �v2 �v3 · · · �vn

]
in

terms of ‖�v2 × �v3 × · · · × �vn‖.
f. How do we know that the cross product of two vec-

tors in R3, as defined here, is the same as the stan-
dard cross product in R3? See Definition A.9 of the
Appendix.

45. Find the derivative of the function

f (x) = det

⎡
⎢⎢⎢⎢⎣

1 1 2 3 4
9 0 2 3 4
9 0 0 3 4
x 1 2 9 1
7 0 0 0 4

⎤
⎥⎥⎥⎥⎦ .

46. Given some numbers a, b, c, d , e, and f such that

det

⎡
⎣a 1 d

b 1 e
c 1 f

⎤
⎦ = 7 and det

⎡
⎣a 1 d

b 2 e
c 3 f

⎤
⎦ = 11,

a. Find

det

⎡
⎣a 3 d

b 3 e
c 3 f

⎤
⎦ .

b. Find

det

⎡
⎣a 3 d

b 5 e
c 7 f

⎤
⎦ .

47. Is the function

T

[
a b
c d

]
= ad + bc

linear in the rows and columns of the matrix?

48. Consider the linear transformation

T (�x) = det

⎡
⎢⎣ | | | |

�v1 �v2 · · · �vn−1 �x
| | | |

⎤
⎥⎦

from Rn to R, where �v1, . . . , �vn−1, are linearly inde-
pendent vectors in Rn . Describe image and kernel of
this transformation, and determine their dimensions.

49. Give an example of a 3 × 3 matrix A with all nonzero
entries such that det A = 13.
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50. Find the determinant of the matrix

Mn =

⎡
⎢⎢⎢⎢⎢⎣

1 1 1 · · · 1
1 2 2 · · · 2
1 2 3 · · · 3
...

...
...

. . .
...

1 2 3 · · · n

⎤
⎥⎥⎥⎥⎥⎦

for arbitrary n. (The i j th entry of Mn is the minimum
of i and j .)

51. Find the determinant of the (2n) × (2n) matrix

A =
[

0 In

In 0

]
.

52. Consider a 2 × 2 matrix

A =
[

a b
c d

]
with column vectors

�v =
[

a
c

]
and �w =

[
b
d

]
.

We define the linear transformation

T (�x) =
[

det
[ �x �w ]

det
[ �v �x ]

]

from R2 to R2.
a. Find the standard matrix B of T . (Write the entries

of B in terms of the entries a, b, c, d of A.)
b. What is the relationship between the determinants of

A and B?
c. Show that B A is a scalar multiple of I2. What about

AB?
d. If A is noninvertible (but nonzero), what is the rela-

tionship between the image of A and the kernel of
B? What about the kernel of A and the image of B?

e. If A is invertible, what is the relationship between B
and A−1?

53. Consider an invertible 2 × 2 matrix A with integer
entries.
a. Show that if the entries of A−1 are integers, then

det A = 1 or det A = −1.
b. Show the converse: If det A = 1 or det A = −1,

then the entries of A−1 are integers.

54. Let A and B be 2 × 2 matrices with integer entries such
that A, A + B, A + 2B, A + 3B, and A + 4B are all
invertible matrices whose inverses have integer entries.
Show that A + 5B is invertible and that its inverse has
integer entries. This question was in the William Lowell
Putnam Mathematical Competition in 1994. Hint: Con-
sider the function f (t) = (det(A+t B)

)2−1. Show that
this is a polynomial; what can you say about its degree?
Find the values f (0), f (1), f (2), f (3), f (4), using
Exercise 53. Now you can determine f (t) by using a

familiar result: If a polynomial f (t) of degree ≤m has
more than m zeros, then f (t) = 0 for all t .

55. For a fixed positive integer n, let D be a function which
assigns to any n × n matrix A a number D(A) such that
a. D is linear in the rows (see Theorem 6.2.2),
b. D(B) = −D(A) if B is obtained from A by a row

swap, and
c. D(In) = 1.
Show that D(A) = det(A) for all n × n matrices A.
Hint: Consider E = rref A. Think about the relationship
between D(A) and D(E), mimicking Algorithm 6.2.5.

The point of this exercise is that det(A) can be
characterized by the three properties a, b, and c; the de-
terminant can, in fact, be defined in terms of these prop-
erties. Ever since this approach was first presented in the
1880s by the German mathematician Karl Weierstrass
(1817–1897), this definition has been generally used
in advanced linear algebra courses because it allows a
more elegant presentation of the theory of determinants.

56. Use the characterization of the determinant given in Ex-
ercise 55 to show that

det(AM) = (det A)(det M).

Hint: For a fixed invertible matrix M , consider the func-
tion

D(A) = det(AM)

det M
.

Show that this function has the three properties a, b, and
c listed in Exercise 55, and therefore D(A) = det A.

57. Consider a linear transformation T from Rm+n to Rm .
The matrix A of T can be written in block form as
A = [A1 A2

]
, where A1 is m × m and A2 is m × n.

Suppose that det(A1) �= 0. Show that for every vector �x
in Rn there exists a unique �y in Rm such that

T

[�y
�x
]

= �0.

Show that the transformation

�x → �y
from Rn to Rm is linear, and find its matrix M (in terms
of A1 and A2). (This is the linear version of the implicit
function theorem of multivariable calculus.)

58. Find the matrix M introduced in Exercise 57 for the lin-
ear transformation

T (�v) =
[

1 2 1 2
3 7 4 3

]
�v.

You can either follow the approach outlined in Ex-
ercise 57 or use Gaussian elimination, expressing the
leading variables y1, y2 in terms of the free variables
x1, x2, where
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�v =

⎡
⎢⎢⎣

y1

y2

x1

x2

⎤
⎥⎥⎦ .

Note that this procedure amounts to finding the kernel
of T , in the familiar way; we just interpret the result
somewhat differently.

59. If the equation det A = det B holds for two n × n
matrices A and B, is A necessarily similar to B?

60. Consider an n×n matrix A. Show that swapping the i th
and j th rows of A (where i < j) amounts to performing
2( j − i) − 1 swaps of adjacent rows.

61. Consider n × n matrices A, B, C , and D, where A is
invertible and commutes with C . Show that

det

[
A B
C D

]
= det(AD − C B).

Hint: Consider the product[
In 0

−C A

] [
A B
C D

]
.

62. Consider n × n matrices A, B , C , and D such that

rank(A) = rank

[
A B
C D

]
= n.

Show that
a. D = C A−1 B, and

b. The 2 × 2 matrix

[
det(A) det(B)

det(C) det(D)

]
is noninvert-

ible. Hint: Consider the product[
In 0

−C A−1 In

] [
A B
C D

]
.

63. Show that more than n! = 1 · 2 · 3 · · · · · n multipli-
cations are required to compute the determinant of an
n × n matrix by Laplace expansion (for n > 2).

64. Show that fewer than e · n! algebraic operations (addi-
tions and multiplications) are required to compute the
determinant of an n × n matrix by Laplace expansion.
Hint: Let Ln be the number of operations required to
compute the determinant of a “general” n × n matrix
by Laplace expansion. Find a formula expressing Ln in
terms of Ln−1. Use this formula to show, by induction
(see Appendix B.1), that

Ln

n!
= 1 + 1 + 1

2!
+ 1

3!
+ · · · + 1

(n − 1)!
− 1

n!
.

Use the Taylor series of ex , ex = ∑∞
n=0

xn

n! , to show
that the right-hand side of this equation is less than e.

65. Let Mn be the n × n matrix with 1’s on the main diago-
nal and directly above the main diagonal, −1’s directly
below the main diagonal, and 0’s elsewhere. For
example,

M4 =

⎡
⎢⎢⎣

1 1 0 0
−1 1 1 0

0 −1 1 1
0 0 −1 1

⎤
⎥⎥⎦ .

Let dn = det(Mn).
a. For n ≥ 3, find a formula expressing dn in terms of

dn−1 and dn−2.
b. Find d1, d2, d3, d4, and d10.
c. For which positive integers n is the matrix Mn

invertible?

66. Let Mn be the matrix with all 1’s along the main diag-
onal, directly above the main diagonal, and directly be-
low the diagonal, and 0’s everywhere else. For example,

M4 =

⎡
⎢⎢⎣

1 1 0 0
1 1 1 0
0 1 1 1
0 0 1 1

⎤
⎥⎥⎦ .

Let dn = det(Mn).
a. Find a formula expressing dn in terms of dn−1 and

dn−2, for positive integers n ≥ 3.
b. Find d1, d2, . . . , d8.
c. What is the relationship between dn and dn+3? What

about dn and dn+6?
d. Find d100.

67. Consider a pattern P in an n × n matrix, and choose an
entry ai j in this pattern. Show that the number of inver-
sions involving ai j is even if (i + j) is even and odd if
(i + j) is odd. Hint: Suppose there are k entries in the
pattern to the left and above ai j . Express the number of
inversions involving ai j in terms of k.

68. Using the terminology introduced in the proof of The-
orem 6.2.10, show that sgnP = (−1)i+ j sgn(Pi j ). See
Exercise 67.

69. Let G be the set of all integers x that can be written as
the sum of the squares of two integers, x = a2 +b2. For
example, 13 = 32 + 22 is in G, while 7 fails to be in G.
a. List all integers x ≤ 10 that are in G.
b. Show that G is closed under multiplication: If x =

a2 + b2 and y = c2 + d2 are in G, then so is their

product xy. Hint: Consider the matrices

[
a −b
b a

]
,[

c −d
d c

]
, their product, and their determinants.

c. Given that 2642 = 312+412 and 3218 = 372+432,
write 8,501,956 = 2642 · 3218 as the sum of
the squares of two positive integers. You may use
technology.

70. Throughout this exercise, consider the Fibonacci
sequence f0, f1, f2, . . . recursively defined by f0 = 0,
f1 = 1, and fn+2 = fn + fn+1 for all n = 0, 1, 2, . . .
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a. Find the Fibonacci numbers f0, f1, . . . , f8.

b. Consider the matrix A =
[

1 1
1 0

]
. Prove by induction

(see Appendix B.1) that An =
[

fn+1 fn
fn fn−1

]
for all

n = 1, 2, . . . .

c. Show that fn+1 fn−1− f 2
n = (−1)n . This equation is

known as Cassini’s identity; it was discovered by the
Italian/French mathematician and astronomer Gio-
vanni Domenico Cassini, 1625–1712.

6.3 Geometrical Interpretations of the Determinant; Cramer’s Rule

We now present several ways to think about the determinant in geometrical terms.
Here is a preliminary exercise.

EXAMPLE 1 What are the possible values of the determinant of an orthogonal matrix A?

Solution
We know that

AT A = In

(by Theorem 5.3.7). Taking the determinants of both sides and using Theorems
6.2.1 and 6.2.6, we find that

det(AT A) = det(AT ) det A = (det A)2 = 1.

Therefore, det A is either 1 or −1. �

Theorem 6.3.1 The determinant of an orthogonal matrix is either 1 or −1.

For example,

det

[
0.6 −0.8
0.8 0.6

]
= 1,

representing a rotation, and

det

[
0.6 0.8
0.8 −0.6

]
= −1,

representing a reflection about a line.

Definition 6.3.2 Rotation matrices

An orthogonal n × n matrix A with det A = 1 is called a rotation matrix, and the
linear transformation T (�x) = A�x is called a rotation.

The Determinant as Area and Volume
In Theorem 2.4.10 we give a geometrical interpretation of the determinant of a 2×2
matrix A, based on the formula

det A = det
[ �v1 �v2

] = ‖�v1‖ sin θ‖�v2‖,
where θ is the oriented angle from �v1 to �v2.

Figure 1a illustrates the fact that

|det A| = ∣∣det
[ �v1 �v2

]∣∣ = ‖�v1‖ |sin θ | ‖�v2‖
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is the area of the parallelogram spanned by the vectors �v1 and �v2. In Theorem 2.4.10,
we provide a geometrical interpretation of the sign of det A as well; here we will
focus on interpreting the absolute value.

v�2

v�1

v�2 sin θ

Figure 1a

v�2

v�2
⊥

v�1

Figure 1b

Alternatively, we can write |det A| in terms of the Gram–Schmidt process, The-
orem 5.2.1. Observe that |sin θ | ‖�v2‖ = ∥∥�v⊥

2

∥∥, where �v⊥
2 denotes the component of

�v2 perpendicular to �v1. See Figure 1b. Thus

|det A| = ∥∥�v1

∥∥∥∥�v⊥
2

∥∥ .
More generally, consider an invertible n × n matrix

A =
⎡
⎣ | | |

�v1 �v2 · · · �vn

| | |

⎤
⎦ .

By Theorem 5.2.2, we can write A = Q R, where Q is an orthogonal matrix and R
is an upper triangular matrix whose diagonal entries are

r11 = ‖�v1‖ and r j j = ∥∥�v⊥
j

∥∥ , for j ≥ 2.

We conclude that

|det A| = |det Q||det R| = ∥∥�v1

∥∥∥∥�v⊥
2

∥∥ · · ·∥∥�v⊥
n

∥∥ .
Indeed, |det Q| = 1 by Theorem 6.3.1, and the determinant of R is the product of
its diagonal entries, by Theorem 6.1.4.

Theorem 6.3.3 The determinant in terms of the columns

If A is an n × n matrix with columns �v1, �v2, . . . , �vn , then

| det A| = ∥∥�v1

∥∥∥∥�v⊥
2

∥∥ · · ·∥∥�v⊥
n

∥∥ ,
where �v⊥

k is the component of �vk perpendicular to span (�v1, . . . , �vk−1). See
Theorem 5.2.1.

The proof of Theorem 6.3.3 in the case of a noninvertible matrix A is left as
Exercise 8.

As an example, consider the 3 × 3 matrix

A =

⎡
⎢⎣ | | |

�v1 �v2 �v3

| | |

⎤
⎥⎦ ,
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with

| det A| = ∥∥�v1

∥∥∥∥�v⊥
2

∥∥∥∥�v⊥
3

∥∥ .
As in Figure 1b,

∥∥�v1

∥∥∥∥�v⊥
2

∥∥ is the area of the parallelogram defined by �v1 and �v2.
Now consider the parallelepiped defined by �v1, �v2, and �v3 (i.e., the set of all vectors
of the form c1�v1 + c2�v2 + c3�v3, where the ci are between 0 and 1, as shown in
Figure 2).

v�2

Base

v�1 

v�3

Height

The parallelepiped
defined by v�1, v�2, and v�3

v�3
⊥

Figure 2

The volume of this parallelepiped is

Volume =
Base area︷ ︸︸ ︷

‖�v1‖‖ �v2
⊥‖

Height︷ ︸︸ ︷
‖ �v3

⊥‖ = | det A|
(by Theorem 6.3.3).

Theorem 6.3.4 Volume of a parallelepiped in R3

Consider a 3 × 3 matrix A = [ �v1 �v2 �v3
]
. Then the volume of the paral-

lelepiped defined by �v1, �v2, and �v3 is | det A|.

For a geometrical interpretation of the sign of det A, see Exercises 19 through 21.
Let us generalize these observations to higher dimensions.

Definition 6.3.5 Parallelepipeds in Rn

Consider the vectors �v1, �v2, . . . , �vm in Rn . The m-parallelepiped defined by the
vectors �v1, . . . , �vm is the set of all vectors in Rn of the form c1�v1 + c2�v2 + · · · +
cm�vm , where 0 ≤ ci ≤ 1. The m-volume V (�v1, . . . , �vm) of this m-parallelepiped
is defined recursively by V (�v1) = ‖�v1‖ and

V (�v1, . . . , �vm) = V (�v1, . . . , �vm−1)
∥∥�v⊥

m

∥∥ .
Note that this formula for the m-volume generalizes the formula

(base)(height)

we used to compute the area of a parallelogram (i.e., a 2-parallelepiped) and the
volume of a 3-parallelepiped in R3. Take another look at Figures 1 and 2.
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Alternatively, we can write the formula for the m-volume as

V (�v1, . . . , �vm) = ∥∥�v1

∥∥∥∥�v⊥
2

∥∥ · · ·∥∥�v⊥
m

∥∥ .
Let A be the n × m matrix whose columns are �v1, . . . , �vm . If the columns of A
are linearly independent, we can consider the Q R factorization A = Q R. Then,
AT A = RT QT Q R = RT R, because QT Q = Im (since the columns of Q are
orthonormal). Therefore,

det(AT A) = det(RT R) = (det R)2 = (r11r22 · · · rmm)2

= (∥∥�v1

∥∥∥∥�v⊥
2

∥∥ · · ·∥∥�v⊥
m

∥∥)2 = (V (�v1, . . . , �vm)
)2

.

We can conclude

Theorem 6.3.6 Volume of a parallelepiped in Rn

Consider the vectors �v1, �v2, . . . , �vm in Rn . Then the m-volume of the m-
parallelepiped defined by the vectors �v1, . . . , �vm is√

det(AT A),

where A is the n × m matrix with columns �v1, �v2, . . . , �vm .
In particular, if m = n, this volume is

| det A|.
Compare this with Theorem 6.3.3.

We leave it to the reader to verify Theorem 6.3.6 for linearly dependent vectors
�v1, . . . , �vm . See Exercise 15.

As a simple example, consider the 2-volume (i.e., area) of the 2-parallelepiped
(i.e., parallelogram) defined by the vectors

�v1 =
⎡
⎣1

1
1

⎤
⎦ and �v2 =

⎡
⎣1

2
3

⎤
⎦

in R3. By Theorem 6.3.6, this area is√√√√√det

⎛
⎝[1 1 1

1 2 3

]⎡⎣1 1
1 2
1 3

⎤
⎦
⎞
⎠ =
√

det

[
3 6
6 14

]
=

√
6.

In this special case, we can also determine the area as the norm ‖�v1 × �v2‖ of the
cross product of the two vectors.

The Determinant as Expansion Factor
Consider a linear transformation T from R2 to R2. In Chapter 5, we examined how
a linear transformation T affects various geometric quantities such as lengths and
angles. For example, we observed that a rotation preserves both the length of vectors
and the angle between vectors. Similarly, we can ask how a linear transformation T
affects the area of a region � in the plane. See Figure 3.
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T(Ω)T

Ω

Figure 3

We might be interested in finding the expansion factor, the ratio

area of T (�)

area of �
.

The simplest example is the unit square � shown in Figure 4.

T(Ω)Ωe�2

e�1

T (x�) = A x� =          x� a    b
c    d

T (e�2) = b
d

T (e�1) = 
a
c

Figure 4

Since the area of � is 1 here, the expansion factor is simply the area of the
parallelogram T (�), which is | det A|, by Theorem 2.4.10.

More generally, let � be the parallelogram defined by �v1 and �v2, as shown in
Figure 5.

T(Ω)

Ω
T(x�) = A x�

Av�1

Av�2

v�2

v�1

Figure 5

Let B = [ �v1 �v2
]
. Then

area of � = | det B|,
and

area of T (�) = ∣∣det
[

A�v1 A�v2
]∣∣ = | det(AB)| = | det A|| det B|,

and the expansion factor is

area of T (�)

area of �
= | det A|| det B|

| det B| = | det A|.

It is remarkable that the linear transformation T (�x) = A�x expands the area of all
parallelograms by the same factor, namely, | det A|.
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Theorem 6.3.7 Expansion factor

Consider a linear transformation T (�x) = A�x from R2 to R2. Then | det A| is the
expansion factor

area of T (�)

area of �

of T on parallelograms �.
Likewise, for a linear transformation T (�x) = A�x from Rn to Rn , | det A| is

the expansion factor of T on n-parallelepipeds:

V (A�v1, . . . , A�vn) = | det A|V (�v1, . . . , �vn),

for all vectors �v1, . . . , �vn in Rn .

This interpretation allows us to think about the formulas det(A−1) = 1/ det A
and det(AB) = (det A)(det B) from a geometric point of view. See Figures 6 and 7.

x� = A−1y�

y� = Ax�

Figure 6

z� = AB x�

y� = Bx�
z� = Ay�

Figure 7

The expansion factor | det(A−1)| is the reciprocal of the expansion factor
| det A|:

| det(A−1)| = 1

| det A| .

The expansion factor | det(AB)| of the composite transformation is the product
of the expansion factors | det A| and | det B|:

| det(AB)| = | det A|| det B|.
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Using techniques of calculus, you can verify that | det A| gives us the expansion
factor of the transformation T (�x) = A�x on any region � in the plane. The approach
uses inscribed parallelograms (or even squares) to approximate the area of the re-
gion, as shown in Figure 8. Note that the expansion factor of T on each of these
squares is | det A|. Choosing smaller and smaller squares and applying calculus,
you can conclude that the expansion factor of T on � itself is | det A|.

T(x�) = Ax�
T(Ω)

a square S
T(S) area (T(S))

Ω

area (S)
=  det (A)

Figure 8

We will conclude this chapter with the discussion of a closed-form solution for
the linear system A�x = �b in the case when the coefficient matrix A is invertible.

Cramer’s Rule
If a matrix

A =
[

a11 a12

a21 a22

]
is invertible, we can express its inverse in terms of its determinant:

A−1 = 1

det(A)

[
a22 −a12

−a21 a11

]
.

This formula can be used to find a closed-formula solution for a linear system∣∣∣∣a11x1 + a12x2 = b1
a21x1 + a22x2 = b2

∣∣∣∣
when the coefficient matrix is invertible. We write the system as A�x = �b, where

A =
[

a11 a12

a21 a22

]
, �x =

[
x1

x2

]
, �b =

[
b1

b2

]
.

Then [
x1

x2

]
= �x = A−1�b = 1

det A

[
a22 −a12

−a21 a11

] [
b1

b2

]

= 1

det A

[
a22b1 − a12b2

a11b2 − a21b1

]
.

To write this formula more succinctly, we observe that

a22b1 − a12b2 = det

[
b1 a12

b2 a22

]
←− replace the first column of A by �b.

a11b2 − a21b1 = det

[
a11 b1

a21 b2

]
←− replace the second column of A by �b.
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Let A�b,i be the matrix obtained by replacing the i th column of A by �b:

A�b,1 =
[

b1 a12

b2 a22

]
, A�b,2 =

[
a11 b1

a21 b2

]
.

The solution of the system A�x = �b can now be written as

x1 = det(A�b,1)

det A
, x2 = det(A�b,2)

det A
.

EXAMPLE 2 Use the preceding formula to solve the system∣∣∣∣2x1 + 3x2 = 7
4x1 + 5x2 = 13

∣∣∣∣ .
Solution

x1 =
det

[
7 3

13 5

]

det

[
2 3
4 5

] = 2, x2 =
det

[
2 7
4 13

]

det

[
2 3
4 5

] = 1

�

This method is not particularly helpful for solving numerically given linear
systems; Gauss–Jordan elimination is preferable in this case. However, in many
applications we have to deal with systems whose coefficients contain parameters.
Often we want to know how the solution changes as we change the parameters.
The closed-formula solution given before is well suited to deal with questions of
this kind.

EXAMPLE 3 Solve the system ∣∣∣∣(b − 1)x1 + ax2 = 0
−ax1 + (b − 1)x2 = C

∣∣∣∣ ,
where a, b, C are arbitrary positive constants.

Solution

x1 =
det

[
0 a
C b − 1

]

det

[
b − 1 a
−a b − 1

] = −aC

(b − 1)2 + a2

x2 =
det

[
b − 1 0
−a C

]

det

[
b − 1 a
−a b − 1

] = (b − 1)C

(b − 1)2 + a2 �
EXAMPLE 4 Consider the linear system∣∣∣∣ax + by = 1

cx + dy = 1

∣∣∣∣ , where d > b > 0 and a > c > 0.

This system always has a unique solution, since the determinant ad − bc is positive

(note that ad > bc). Thus, we can think of the solution vector

[
x
y

]
as a (nonlinear)

function of the vector
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⎡
⎢⎢⎣

a
b
c
d

⎤
⎥⎥⎦

of the parameters. How does x change as we change the parameters a and c? More
precisely, find ∂x/∂a and ∂x/∂c, and determine the signs of these quantities.

Solution

x =
det

[
1 b
1 d

]

det

[
a b
c d

] = d − b

ad − bc
> 0,

∂x

∂a
= −d(d − b)

(ad − bc)2
< 0,

∂x

∂c
= b(d − b)

(ad − bc)2
> 0

See Figure 9. �

(x, y)

1
b

1
d

1
b

1
d

1
b

1
d (x, y) (x, y)

(a) (b) (c)

1
a

1
c

1
a

1
c

1
a

1
c

Figure 9 (a) Both components x and y of the solution are positive. (b) ∂x/∂a < 0: As a
increases, the component x of the solution decreases. (c) ∂x/∂c > 0: As c increases,
the component x of the solution increases.

An interesting application of these simple results in biology is to the study of
castes.7

The closed formula for solving linear systems of two equations with two un-
knowns generalizes easily to larger systems.

Theorem 6.3.8 Cramer’s rule

Consider the linear system

A�x = �b,

where A is an invertible n × n matrix. The components xi of the solution vector
�x are

xi = det(A�b,i )

det A
,

where A�b,i is the matrix obtained by replacing the i th column of A by �b.

7See E. O. Wilson, “The Ergonomics of Caste in the Social Insects,” American Naturalist, 102, 923
(1968): 41–66.
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This result is due to the Swiss mathematician Gabriel Cramer (1704–1752).
The rule appeared in an appendix to his 1750 book, Introduction à l’analyse des
lignes courbes algébriques.

Proof Write A = [ �w1 �w2 · · · �wi · · · �wn
]
. If �x is the solution of the system A�x =

�b, then

det (A�b,i ) = det
[ �w1 �w2 · · · �b · · · �wn

]
= det
[ �w1 �w2 · · · A�x · · · �wn

]
= det
[ �w1 �w2 · · · (x1 �w1 + x2 �w2 + · · · + xi �wi + · · · + xn �wn) · · · �wn

]
= det
[ �w1 �w2 · · · xi �wi · · · �wn

]
= xi det

[ �w1 �w2 · · · �wi · · · �wn
]

= xi det A.

Note that we have used the linearity of the determinant in the i th column (Theo-
rem 6.2.2).

Therefore,

xi = det(A�b,i )

det A
. �

Cramer’s rule allows us to find a closed formula for A−1, generalizing the result[
a b
c d

]−1

= 1

det A

[
d −b

−c a

]
for 2 × 2 matrices.

Consider an invertible n × n matrix A and write

A−1 =

⎡
⎢⎢⎢⎣

m11 m12 · · · m1 j · · · m1n

m21 m22 · · · m2 j · · · m2n
...

...
...

...

mn1 mn2 · · · mnj · · · mnn

⎤
⎥⎥⎥⎦ .

We know that AA−1 = In . Picking out the j th column of A−1, we find that

A

⎡
⎢⎢⎢⎣

m1 j

m2 j
...

mnj

⎤
⎥⎥⎥⎦ = �e j .

By Cramer’s rule, mi j = det(A�e j ,i )/ det A.

A�e j ,i =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

a11 a12 · · · 0 · · · a1n

a21 a22 · · · 0 · · · a2n
...

...
...

...

a j1 a j2 · · · 1 · · · a jn
...

...
...

...

an1 an2 · · · 0 · · · ann

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦ ← j th row

↑
i th column

Now det(A�e j ,i ) = (−1)i+ j det(A ji ) by Laplace expansion down the i th column, so
that
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mi j = (−1)i+ j det(A ji )

det A
.

We have shown the following result.

Theorem 6.3.9 Adjoint and inverse of a matrix

Consider an invertible n × n matrix A. The classical adjoint adj(A) is the n × n
matrix whose i j th entry is (−1)i+ j det(A ji ). Then

A−1 = 1

det A
adj(A).

For an invertible 2 × 2 matrix A =
[

a b
c d

]
, we find

adj(A) =
[

d −b
−c a

]
and A−1 = 1

ad − bc

[
d −b

−c a

]
.

Compare this with Theorem 2.4.9.
For an invertible 3 × 3 matrix

A =
⎡
⎣a b c

d e f
g h k

⎤
⎦ ,

the formula is

A−1 = 1

det A

⎡
⎣ ek − f h ch − bk b f − ce

f g − dk ak − cg cd − a f
dh − eg bg − ah ae − bd

⎤
⎦ .

We can interpret Cramer’s rule geometrically.

EXAMPLE 5 For the vectors �w1, �w2, and �b shown in Figure 10, consider the linear system
A�x = �b, where A = [ �w1 �w2

]
.

w�2

w�1

b�

Figure 10

Using the terminology introduced in Cramer’s rule, let A�b,2 = [ �w1 �b ]. Note
that det(A) and det(A�b,2) are both positive, according to Theorem 2.4.10. Cramer’s
rule tells us that

x2 = det(A�b,2)

det A
or det(A�b,2) = x2 det A.

Explain this last equation geometrically, in terms of areas of parallelograms.

Solution
We can write the system A�x = �b as x1 �w1 + x2 �w2 = �b. The geometrical solution is
shown in Figure 11.
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w�2

w�1

x2w�2

x1w�1

b�

Cramer’s rule:

x2 =
det  w�1  b�

det  w�1  w�2

Figure 11

Now,

det(A�b,2) = det
[ �w1 �b ] = area of the parallelogram defined by �w1 and �b

= area of the parallelogram8 defined by �w1 and x2 �w2

= x2(area of the parallelogram9 defined by �w1 and �w2)

= x2 det A,

as claimed. Note that this geometrical proof mimics the algebraic proof of Cramer’s
rule, Theorem 6.3.8. �

The ambitious and artistically inclined reader is encouraged to draw an anal-
ogous figure illustrating Cramer’s rule for a system of three linear equations with
three unknowns.

8The two parallelograms have the same base and the same height.
9Again, think about base and height.

EXERCISES 6.3
GOAL Interpret the determinant as an area or volume
and as an expansion factor. Use Cramer’s rule.

1. Find the area of the parallelogram defined by

[
3
7

]
and[

8
2

]
.

2. Find the area of the triangle defined by

[
3
7

]
and

[
8
2

]
.

3
7

8
2

3. Find the area of the triangle below.

5
7

4
3

10
1

4. Consider the area A of the triangle with vertices

[
a1

a2

]
,[

b1

b2

]
,

[
c1

c2

]
. Express A in terms of

det

⎡
⎣a1 b1 c1

a2 b2 c2

1 1 1

⎤
⎦ .
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5. The tetrahedron defined by three vectors �v1, �v2, �v3 in R3

is the set of all vectors of the form c1�v1 + c2�v2 + c3�v3,
where ci ≥ 0 and c1 + c2 + c3 ≤ 1. Explain why the
volume of this tetrahedron is one sixth of the volume of
the parallelepiped defined by �v1, �v2, �v3.

6. What is the relationship between the volume of the
tetrahedron defined by the vectors⎡

⎣a1

a2

1

⎤
⎦ ,

⎡
⎣b1

b2

1

⎤
⎦ ,

⎡
⎣c1

c2

1

⎤
⎦

and the area of the triangle with vertices[
a1

a2

]
,

[
b1

b2

]
,

[
c1

c2

]
?

See Exercises 4 and 5. Explain this relationship geomet-
rically. Hint: Consider the top face of the tetrahedron.

7. Find the area of the following region:

5
5

−7
7

−5
−6

3
−4

8. Demonstrate the equation

| det A| =
∥∥∥�v1

∥∥∥∥∥∥�v⊥
2

∥∥∥ · · · ∥∥∥�v⊥
n

∥∥∥
for a noninvertible n × n matrix A =[ �v1 �v2 . . . �vn

]
(Theorem 6.3.3).

9. If �v1 and �v2 are linearly independent vectors in R2,
what is the relationship between det

[ �v1 �v2
]

and
det
[ �v1 �v⊥

2

]
, where �v⊥

2 is the component of �v2
orthogonal to �v1?

10. Consider an n × n matrix A = [ �v1 �v2 · · · �vn
]
.

What is the relationship between the product
‖�v1‖‖�v2‖ · · · ‖�vn‖ and | det A|? When is | det A| =
‖�v1‖‖�v2‖ · · · ‖�vn‖?

11. Consider a linear transformation T (�x) = A�x from R2

to R2. Suppose for two vectors �v1 and �v2 in R2 we have
T (�v1) = 3�v1 and T (�v2) = 4�v2. What can you say about
det A? Justify your answer carefully.

12. Consider those 4 × 4 matrices whose entries are all 1,
−1, or 0. What is the maximal value of the determinant
of a matrix of this type? Give an example of a matrix
whose determinant has this maximal value.

13. Find the area (or 2-volume) of the parallelogram (or 2-
parallelepiped) defined by the vectors⎡

⎢⎢⎣
1
1
1
1

⎤
⎥⎥⎦ and

⎡
⎢⎢⎣

1
2
3
4

⎤
⎥⎥⎦ .

14. Find the 3-volume of the 3-parallelepiped defined by
the vectors ⎡

⎢⎢⎣
1
0
0
0

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣

1
1
1
1

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣

1
2
3
4

⎤
⎥⎥⎦ .

15. Demonstrate Theorem 6.3.6 for linearly dependent vec-
tors �v1, . . . , �vm .

16. True or false? If � is a parallelogram in R3 and T (�x) =
A�x is a linear transformation from R3 to R3, then

area of T (�) = | det A|(area of �).

17. (For some background on the cross product in Rn , see
Exercise 6.2.44.) Consider three linearly independent
vectors �v1, �v2, �v3 in R4.
a. What is the relationship between V (�v1, �v2, �v3) and

V (�v1, �v2, �v3, �v1 × �v2 × �v3)? See Definition 6.3.5.
Exercise 6.2.44c is helpful.

b. Express V (�v1, �v2, �v3, �v1 × �v2 × �v3) in terms of
‖�v1 × �v2 × �v3‖.

c. Use parts (a) and (b) to express V (�v1, �v2, �v3) in
terms of ‖�v1 ×�v2 ×�v3‖. Is your result still true when
the �vi are linearly dependent?

(Note the analogy to the fact that for two vectors �v1 and
�v2 in R3, ‖�v1 × �v2‖ is the area of the parallelogram de-
fined by �v1 and �v2.)

18. If T (�x) = A�x is an invertible linear transformation
from R2 to R2, then the image T (�) of the unit circle
� is an ellipse. See Exercise 2.2.54.

a. Sketch this ellipse when A =
[

p 0
0 q

]
, where p

and q are positive. What is its area?
b. For an arbitrary invertible transformation T (�x) =

A�x , denote the lengths of the semimajor and semi-
minor axes of T (�) by a and b, respectively. What
is the relationship among a, b, and det(A)?

T
Ω

T(Ω)

a

b
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c. For the transformation T (�x) =
[

3 1
1 3

]
�x , sketch

this ellipse and determine its axes. Hint: Consider

T

[
1
1

]
and T

[
1

−1

]
.

19. A basis �v1, �v2, �v3 of R3 is called positively oriented if �v1
encloses an acute angle with �v2 × �v3. Illustrate this def-
inition with a sketch. Show that the basis is positively
oriented if (and only if) det

[ �v1 �v2 �v3
]

is positive.

20. We say that a linear transformation T from R3 to R3

preserves orientation if it transforms any positively
oriented basis into another positively oriented basis.
See Exercise 19. Explain why a linear transformation
T (�x) = A�x preserves orientation if (and only if) det A
is positive.

21. Arguing geometrically, determine whether the follow-
ing orthogonal transformations from R3 to R3 preserve
or reverse orientation. See Exercise 20.
a. Reflection about a plane b. Reflection about a line
c. Reflection about the origin

Use Cramer’s rule to solve the systems in Exercises 22
through 24.

22.

∣∣∣∣3x + 7y = 1
4x + 11y = 3

∣∣∣∣ 23.

∣∣∣∣ 5x1 − 3x2 = 1
−6x1 + 7x2 = 0

∣∣∣∣
24.

∣∣∣∣∣∣
2x + 3y = 8

4y + 5z = 3
6x + 7z = −1

∣∣∣∣∣∣
25. Find the classical adjoint of the matrix

A =
⎡
⎣1 0 1

0 1 0
2 0 1

⎤
⎦ ,

and use the result to find A−1.

26. Consider an n×n matrix A with integer entries such that
det A = 1. Are the entries of A−1 necessarily integers?
Explain.

27. Consider two positive numbers a and b. Solve the fol-
lowing system: ∣∣∣∣ax − by = 1

bx + ay = 0

∣∣∣∣ .
What are the signs of the solutions x and y? How does
x change as b increases?

28. In an economics text,10 we find the following system:

sY + ar = I ◦ + G
mY − hr = Ms − M◦.

Solve for Y and r .

29. In an economics text11 we find the following system:⎡
⎢⎢⎢⎢⎣

−R1 R1 −(1 − α)

α 1 − α −(1 − α)2

R2 −R2
−(1 − α)2

α

⎤
⎥⎥⎥⎥⎦
⎡
⎣dx1

dy1

dp

⎤
⎦ =
⎡
⎣ 0

0
−R2de2

⎤
⎦ .

Solve for dx1, dy1, and dp. In your answer, you may
refer to the determinant of the coefficient matrix as D.
(You need not compute D.) The quantities R1, R2, and
D are positive, and α is between zero and one. If de2
is positive, what can you say about the signs of dy1 and
dp?

30. Find the classical adjoint of A =
⎡
⎣1 0 0

2 3 0
4 5 6

⎤
⎦.

31. Find the classical adjoint of A =
⎡
⎣1 1 1

1 2 3
1 6 6

⎤
⎦.

32. Find the classical adjoint of A =

⎡
⎢⎢⎣

0 0 0 1
0 1 0 0
0 0 1 0
1 0 0 0

⎤
⎥⎥⎦.

33. Find the classical adjoint of A =

⎡
⎢⎢⎣

1 0 0 0
0 2 0 0
0 0 3 0
0 0 0 4

⎤
⎥⎥⎦.

34. For an invertible n × n matrix A, find the product
A(adjA). What about (adj A)(A)?

35. For an invertible n×n matrix A, what is the relationship
between det(A) and det(adj A)?

36. For an invertible n × n matrix A, what is adj(adj A)?

37. For an invertible n×n matrix A, what is the relationship
between adj(A) and adj(A−1)?

38. For two invertible n × n matrices A and B, what is the
relationship between adj(A), adj(B), and adj(AB)?

39. If A and B are invertible n × n matrices, and if A is
similar to B, is adj(A) necessarily similar to adj(B)?

40. For an invertible n × n matrix A, consider the linear
transformation

T (�x) =

⎡
⎢⎢⎢⎣

det(A�x,1)

det(A�x,2)
...

det(A�x,n)

⎤
⎥⎥⎥⎦ from Rn to Rn .

Express the standard matrix of T in terms of adj(A).
10 Simon and Blume, Mathematics for Economists, Norton, 1994.

11 Simon and Blume, op. cit.
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41. Show that an n × n matrix A has at least one nonzero
minor if (and only if) rank(A) ≥ n − 1.

42. Even if an n × n matrix A fails to be invertible, we can
define the adjoint adj(A) as in Theorem 6.3.9. The i j th
entry of adj(A) is (−1)i+ j det(A ji ). For which n × n
matrices A is adj(A) = 0? Give your answer in terms
of the rank of A. See Exercise 41.

43. Show that A(adjA) = 0 = (adjA)A for all noninvert-
ible n × n matrices A. See Exercise 42.

44. If A is an n × n matrix of rank n − 1, what is the rank
of adj(A)? See Exercises 42 and 43.

45. Find all 2 × 2 matrices A such that adj(A) = AT .

46. (For those who have studied multivariable calculus.) Let
T be an invertible linear transformation from R2 to R2,
represented by the matrix M . Let �1 be the unit square
in R2 and �2 its image under T . Consider a continuous
function f (x, y) from R2 to R, and define the func-
tion g(u, v) = f

(
T (u, v)

)
. What is the relationship

between the following two double integrals?∫∫
�2

f (x, y) d A and
∫∫
�1

g(u, v) d A

Your answer will involve the matrix M. Hint: What
happens when f (x, y) = 1, for all x, y?

v

u

Ω1

y

x

Ω2

f

T

g

R

47. Consider the quadrilateral in the accompanying figure,
with vertices Pi = (xi , yi ), for i = 1, 2, 3, 4. Show that
the area of this quadrilateral is

1

2

(
det

[
x1 x2

y1 y2

]
+ det

[
x2 x3

y2 y3

]

+ det

[
x3 x4

y3 y4

]
+ det

[
x4 x1

y4 y1

])
.

P3 P2

P1

P4

48. What is the area of the largest ellipse you can inscribe
into a triangle with side lengths 3, 4, and 5? Hint: The
largest ellipse you can inscribe into an equilateral trian-
gle is a circle.

49. What are the lengths of the semiaxes of the largest el-
lipse you can inscribe into a triangle with sides 3, 4, and
5? See Exercise 48.

Chapter Six Exercises

TRUE OR FALSE?

1. If B is obtained be multiplying a column of A by 9, then
the equation det B = 9 det A must hold.

2. det(A10) = (det A)10 for all 10 × 10 matrices A.

3. The determinant of any diagonal n × n matrix is the
product of its diagonal entries.

4. If matrix B is obtained by swapping two rows of an
n × n matrix A, then the equation det B = − det A
must hold.

5. If A = [ �u �v �w ] is any 3 × 3 matrix, then det A =
�u · (�v × �w).

6. det(4A) = 4 det A for all 4 × 4 matrices A.

7. det(A + B) = det A + det B for all 5 × 5 matrices A
and B.

8. The equation det(−A) = det A holds for all 6 × 6
matrices.

9. If all the entries of a 7 × 7 matrix A are 7, then det A
must be 77.

10. An 8 × 8 matrix fails to be invertible if (and only if) its
determinant is nonzero.

11. The matrix

⎡
⎣k2 1 4

k −1 −2
1 1 1

⎤
⎦ is invertible for all posi-

tive constants k.
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12. det

⎡
⎢⎢⎣

0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0

⎤
⎥⎥⎦ = 1.

13. Matrix

⎡
⎢⎢⎣

9 100 3 7
5 4 100 8

100 9 8 7
6 5 4 100

⎤
⎥⎥⎦ is invertible.

14. If A is an invertible n × n matrix, then det(AT ) must
equal det(A−1).

15. If the determinant of a 4 × 4 matrix A is 4, then its rank
must be 4.

16. There exists a nonzero 4×4 matrix A such that det A =
det(4A).

17. If two n×n matrices A and B are similar, then the equa-
tion det A = det B must hold.

18. The determinant of all orthogonal matrices is 1.

19. If A is any n × n matrix, then det(AAT ) = det(AT A).

20. There exists an invertible matrix of the form⎡
⎢⎢⎣

a e f j
b 0 g 0
c 0 h 0
d 0 i 0

⎤
⎥⎥⎦.

21. If all the entries of a square matrix are 1 or 0, then det A
must be 1, 0, or −1.

22. If all the entries of a square matrix A are integers and
det A = 1, then the entries of matrix A−1 must be inte-
gers as well.

23. If all the columns of a square matrix A are unit vectors,
then the determinant of A must be less than or equal
to 1.

24. If A is any noninvertible square matrix, then det A =
det(rref A).

25. If the determinant of a square matrix is −1, then A must
be an orthogonal matrix.

26. If all the entries of an invertible matrix A are integers,
then the entries of A−1 must be integers as well.

27. There exists a 4 × 4 matrix A whose entries are all 1 or
−1, and such that det A = 16.

28. If the determinant of a 2 × 2 matrix A is 4, then the
inequality ‖A�v‖ ≤ 4‖�v‖ must hold for all vectors �v
in R2.

29. If A = [ �u �v �w ] is a 3 × 3 matrix, then the formula
det(A) = �v · (�u × �w) must hold.

30. There exist invertible 2 × 2 matrices A and B such that
det(A + B) = det A + det B.

31. There exist real invertible 3 × 3 matrices A and S such
that S−1 AS = 2A.

32. There exist real invertible 3 × 3 matrices A and S such
that ST AS = −A.

33. If A is any symmetric matrix, then det A = 1 or
det A=−1.

34. If A is any skew-symmetric 4 × 4 matrix, then
det A = 0.

35. If det A = det B for two n × n matrices A and B, then
A must be similar to B.

36. Suppose A is an n × n matrix and B is obtained from
A by swapping two rows of A. If det B < det A, then A
must be invertible.

37. If an n × n matrix A is invertible, then there must be
an (n − 1) × (n − 1) submatrix of A (obtained by
deleting a row and a column of A) that is invertible as
well.

38. If all the entries of matrices A and A−1 are integers,
then the equation det A = det(A−1) must hold.

39. If a square matrix A is invertible, then its classical ad-
joint adj(A) is invertible as well.

40. There exists a real 3 × 3 matrix A such that A2 = −I3.

41. If all the diagonal entries of an n × n matrix A are odd
integers and all the other entries are even integers, then
A must be an invertible matrix.12

42. If all the diagonal entries of an n × n matrix A are even
integers and all the other entries are odd integers, then
A must be an invertible matrix.12

43. For every nonzero 2 × 2 matrix A there exists a 2 × 2
matrix B such that det(A + B) �= det A + det B.

44. If A is a 4×4 matrix whose entries are all 1 or −1, then
det A must be divisible by 8 (i.e., det A = 8k for some
integer k).

45. If A is an invertible n ×n matrix, then A must commute
with its adjoint, adj(A).

46. There exists a real number k such that the matrix⎡
⎢⎢⎣

1 2 3 4
5 6 k 7
8 9 8 7
0 0 6 5

⎤
⎥⎥⎦

is invertible.

47. If A and B are orthogonal n × n matrices such that det
A = det B = 1, then matrices A and B must commute.

12 The even integers are 0,±2,±4, . . ., while the odd integers
are ±1,±3, . . . .
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7
Eigenvalues and Eigenvectors

7.1 Diagonalization

Here is an introductory example to motivate the main theme of this chapter.

EXAMPLE 1 Consider the matrices

A =

⎡
⎢⎣

−1 0 0 0
0 0 0 0
0 0 1 0
0 0 0 2

⎤
⎥⎦ and B =

⎡
⎢⎣

1 2 3 4
5 6 7 8
9 8 7 6
5 4 3 2

⎤
⎥⎦ .

Find A5, B5, rank A, rank B, det A, and det B. Find bases of ker A and ker B.

(Partial) Solution
The parts pertaining to the diagonal matrix A are easy to do, by inspection:

A5 =

⎡
⎢⎢⎣

(−1)5 0 0 0
0 0 0 0
0 0 15 0
0 0 0 25

⎤
⎥⎥⎦ =

⎡
⎢⎣

−1 0 0 0
0 0 0 0
0 0 1 0
0 0 0 32

⎤
⎥⎦ ,

where rank A = 3, the number of nonzero entries on the diagonal; det A = 0, the
product of the diagonal entries; and a basis of ker A is �e2 since the second column
of A is zero.

The corresponding computations for matrix B are doable, of course, but they
are much more tedious. We could compute rref B to find rank B, det B, and ker B,
but then we still have to compute B5. �

Example 1 illustrates why we like to work with diagonal matrices whenever
possible: They are easy to handle.

Let’s put in another plug for diagonal matrices.

310
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Consider the linear transformations

�y =
⎡
⎣1 2 3

4 5 6
7 8 9

⎤
⎦ �x and �y =

⎡
⎣1 0 0

0 2 0
0 0 3

⎤
⎦ �x,

represented by the equations

y1 = x1 +2x2 +3x3
y2 = 4x1 +5x2 +6x3
y3 = 7x1 +8x2 +9x3

and
y1 = x1
y2 = 2x2
y3 = 3x3,

respectively. If we use arrows to represent the functional dependencies between the
variables, we see a tangled web of dependencies in the case of the first transfor-
mation. In the case of the diagonal matrix, however, the web is untangled since the
three equations are uncoupled: We can deal with the three simple equations y1 = x1,
y2 = 2x2, and y3 = 3x3 separately:

x1−−−−−−→
−−−−−−−→
−−−−−→y1 x1−−−−−→y1

x2 −−−−−−→
−−−−−−→
−−−−−→y2 x2−−−−−→y2

x3 −−−−−−→
−−−

−−−
−→

−−−−−→y3 x3−−−−−→y3.

The idea behind diagonalization is to untangle the web of functional dependencies
we see on the left.

When dealing with a linear transformation T (�x) = A�x from Rn to Rn , where A
fails to be a diagonal matrix, we may be interested in finding a basis of Rn such that
the matrix of T with respect to that basis is diagonal. In this context, the following
definition is useful.

Definition 7.1.1 Diagonalizable matrices

Consider a linear transformation T (�x) = A�x from Rn to Rn . Then A (or T )
is said to be diagonalizable if the matrix B of T with respect to some basis is
diagonal.

By Theorem 3.4.4 and Definition 3.4.5, matrix A is diagonalizable if (and
only if) A is similar to some diagonal matrix B, meaning that there exists an
invertible matrix S such that S−1 AS = B is diagonal.

To diagonalize a square matrix A means to find an invertible matrix S and a
diagonal matrix B such that S−1 AS = B.

In Examples 9 and 10 of Section 3.4, we have seen that the reflection about

a line in R2 is diagonalizable, while the rotation T (�x) =
[

0 −1
1 0

]
�x fails to be

diagonalizable.
Consider a linear transformation T (�x) = A�x from Rn to Rn and a basis � =

(�v1, . . . , �vn) for Rn . In Theorem 3.4.7 we learned that the �-matrix B of T is diag-
onal if (and only if) A�v1 = λ1�v1, . . . , A�vn = λn�vn for some scalars λ1, . . . , λn . (In
this context, it is customary to use the Greek letter lambda, λ, to denote the scalars.)

The diagram below reminds us why this result holds; nothing “deep” is going
on here.

A�v1 A�v2 . . . A�vn

B =

⎡
⎢⎢⎣

λ1 0 . . . 0
0 λ2 . . . 0
...

...
. . .

...

0 0 . . . λn

⎤
⎥⎥⎦

�v1
�v2
...

�vn

We can conclude that an n×n matrix A is diagonalizable if (and only if) there exists
a basis �v1, . . . , �vn of Rn such that A�v1 = λ1�v1, . . . , A�vn = λn�vn for some scalars
λ1, . . . , λn .
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If we wish to diagonalize a matrix A, we need to find a basis of Rn consisting
of vectors �v such that

A�v = λ�v, for some scalar λ.

It is sensible to introduce a name for vectors with this property.

Definition 7.1.2 Eigenvectors, eigenvalues, and eigenbases1

Consider a linear transformation T (�x) = A�x from Rn to Rn .
A nonzero vector �v in Rn is called an eigenvector of A (or T ) if

A�v = λ�v
for some scalar λ. This λ is called the eigenvalue associated with eigenvector �v.

A basis �v1, . . . , �vn of Rn is called an eigenbasis for A (or T ) if the vectors
�v1, . . . , �vn are eigenvectors of A, meaning that A�v1 = λ1�v1, . . . , A�vn = λn�vn

for some scalars λ1, . . . , λn .

A nonzero vector �v in Rn is an eigenvector of A if A�v is parallel to �v, as shown
in Figure 1. See Definition A.3 in the Appendix.

v�

Av� v�

Av�

Av� = v�
v�

Av� = 2v�
Av� = 0�

Av� = v� = 1v� Av� = −v� = (−1)v� Av� = 0� = 0v�
eigenvalue: 2 eigenvalue: 1 eigenvalue: −1 eigenvalue: 0

Figure 1

If �v is an eigenvector of matrix A, with associated eigenvalue λ, then �v is an eigen-
vector of the matrices A2, A3, . . . as well, with

A2�v = λ2�v, A3�v = λ3�v, . . . , Am�v = λm�v,

for all positive integers m. The proof, by induction on m, is straightforward. The
base case, A1�v = A�v = λ�v = λ1�v, is given. As for the induction step, we have
Am+1�v = A(Am�v) =︸︷︷︸

step 2

A(λm�v) = λm(A�v) = λmλ�v = λm+1�v. In step 2, we are

using the induction hypothesis, Am�v = λm�v.
The important result below follows from the our work after Definition 7.1.1.

Theorem 7.1.3 Eigenbases and diagonalization

The matrix A is diagonalizable if (and only if) there exists an eigenbasis for A.
If �v1, . . . , �vn is an eigenbasis for A, with A�v1 = λ1�v1, . . . , A�vn = λn�vn , then
the matrices

S =

⎡
⎢⎢⎣

| | |
�v1 �v2 . . . �vn

| | |

⎤
⎥⎥⎦ and B =

⎡
⎢⎢⎣

λ1 0 . . . 0
0 λ2 . . . 0
...

...
. . .

...

0 0 . . . λn

⎤
⎥⎥⎦

will diagonalize A, meaning that S−1 AS = B.

1From German eigen: proper, characteristic. (The words eigen and own have a common
Indo-European root.)
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Theorem 7.1.3 Eigenbases and diagonalization (Continued)

Conversely, if the matrices S and B diagonalize A, then the column vectors
of S will form an eigenbasis for A, and the diagonal entries of B will be the
associated eigenvalues.

Above, we explained Theorem 7.1.3 in terms of a change of basis. Equiva-
lently, we can prove the result by using matrix products. Here we will prove just
one implication, leaving the other as Exercise 23 to the reader.

Suppose there exists an eigenbasis �v1, . . . , �vn for A, and define S and B as in
Theorem 7.1.3. Then

AS = A

⎡
⎢⎣ | | |

�v1 �v2 . . . �vn

| | |

⎤
⎥⎦ =

⎡
⎢⎣ | | |

A�v1 A�v2 . . . A�vn

| | |

⎤
⎥⎦ =

⎡
⎢⎣ | | |

λ1�v1 λ2�v2 . . . λn�vn

| | |

⎤
⎥⎦

=

⎡
⎢⎢⎣

| | |
�v1 �v2 . . . �vn

| | |

⎤
⎥⎥⎦
⎡
⎢⎢⎣

λ1 0 . . . 0
0 λ2 . . . 0
...

...
. . .

...

0 0 . . . λn

⎤
⎥⎥⎦ = SB,

showing that S−1 AS = B, as claimed.

EXAMPLE 2 Find all eigenvectors and eigenvalues of the identity matrix In . Is there an eigenbasis
for In? Is In diagonalizable?

Solution
Since In�v = �v = 1�v for all �v in Rn , all nonzero vectors in Rn are eigenvectors of
In , with associated eigenvalue 1.

Thus, all bases of Rn are eigenbases for In .
Clearly, In is diagonalizable; it’s a diagonal matrix already. If S is any invertible

matrix, then S−1 In S = In is diagonal. �
EXAMPLE 3 Consider the linear transformation T (�x) =

[
0.64 0.48
0.48 0.36

]
�x . We are told that

T (�x) = A�x represents the orthogonal projection onto the line L = span

[
4
3

]
.

See Example 2 of Section 2.2. Describe the eigenvectors of A geometrically, and
find all eigenvalues of A. Is there an eigenbasis for A? Diagonalize matrix A if you
can.

Solution
We find the eigenvectors of A by inspection. Can you think of any nonzero vectors
�v in R2 such that T (�v) = A�v is a scalar multiple of �v? Clearly, any nonzero vector
�v parallel to L will do, with A�v = �v = 1�v, as well as any nonzero vector �w
perpendicular to L , with A �w = �0 = 0 �w. The eigenvalues of A are 1 and 0. Note
that the eigenvectors with eigenvalue 0 are the nonzero vectors in the kernel of A.

For example, �v =
[

4
3

]
is an eigenvector with eigenvalue 1, and �w =

[−3
4

]
is an eigenvector with eigenvalue 0. See Figure 2. Thus, � = (�v, �w) will be an
eigenbasis for A, and the �-matrix B of T will be the diagonal matrix

T (�v) T ( �w)

B =
[

1 0
0 0

] �v
�w .
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L

w� =

T(w�) = 0� = 0w�
T(v�) = v� = 1v�

−3
4

v� = 4
3

Figure 2

The matrices S =
[

�v �w
]

=
[

4 −3
3 4

]
and B =

[
1 0
0 0

]
will diagonalize A, meaning

that S−1 AS = B. There is no need to compute S−1 AS, since the equation S−1 AS =
B follows from the theory derived earlier (take another look at the proof of Theorem
7.1.3). To check our work, we may want to verify that AS = SB. �

EXAMPLE 4 Let T (�x) = A�x =
[

0 −1
1 0

]
�x be the rotation through an angle of 90◦ in the coun-

terclockwise direction. Find all eigenvectors and eigenvalues of A. Is there an eigen-
basis for A? Is A diagonalizable?

Solution
If �v is any nonzero vector in R2, then T (�v) = A�v fails to be parallel to �v (it’s
perpendicular). See Figure 3. There are no real eigenvectors and eigenvalues here,2

there is no eigenbasis for A, and A fails to be diagonalizable. �

v�

T(v�)

Figure 3

2In Section 7.5, we will consider complex eigenvalues, but through Section 7.4, all eigenvalues and
eigenvectors are assumed to be real unless stated otherwise.
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EXAMPLE 5 What are the possible real eigenvalues of an orthogonal3 n × n matrix A?

Solution
If A is an orthogonal matrix, then the linear transformation T (�x) = A�x preserves
length, by Definition 5.3.1: We have ‖T (�x)‖ = ‖A�x‖ = ‖�x‖ for all �x in Rn .
Consider an eigenvector �v of A, with associated eigenvalue λ,

A�v = λ�v.

Then

‖�v‖ = ‖A�v‖ = ‖λ�v‖ = |λ|‖�v‖,
so that |λ| = 1. We conclude that λ = 1 or λ = −1.

For example, consider the reflection matrix A =
[

1 0
0 −1

]
, with A�e1 = �e1 =

1�e1 and A�e2 = −�e2 = (−1)�e2, so that 1 and −1 are the eigenvalues of A. �

Theorem 7.1.4 The possible real eigenvalues of an orthogonal matrix are 1 and −1.

EXAMPLE 6 For which n × n matrices A is 0 an eigenvalue? Give your answer in terms of the
kernel of A and also in terms of the invertibility of A.

Solution
By definition, 0 is an eigenvalue of A if there exists a nonzero vector �v in Rn such
that A�v = 0�v = �0, meaning that there exists a nonzero vector in the kernel of A.
Thus, 0 is an eigenvalue of A if (and only if) ker A �= {�0}, meaning that A fails to
be invertible. �

Example 6 allows us to update our “Summary on invertible matrices.” Compare
this with Summary 3.3.10.

SUMMARY 7.1.5 Various characterizations of invertible matrices

For an n × n matrix A, the following statements are equivalent.

i. A is invertible.

ii. The linear system A�x = �b has a unique solution �x , for all �b in Rn .

iii. rref A = ln .

iv. rank A = n.

v. im A = Rn .

vi. ker A = {�0}.
vii. The column vectors of A form a basis of Rn .

viii. The column vectors of A span Rn .

ix. The column vectors of A are linearly independent.

x. det A �= 0.

xi. 0 fails to be an eigenvalue of A.

Characterization (x) was given in Theorem 6.2.4.

3Example 5 and Theorem 7.1.4 are for those who have studied Chapter 5.
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Dynamical Systems and Eigenvectors (optional)
Dynamical systems provide a powerful application of eigenvalues and eigenvectors.
We start with a somewhat lighthearted example, but a wealth of relevant exam-
ples can be found in applied mathematics, physics, chemistry, biology, engineering,
computer science, economics, and the theory of finance. In Section 7.4 we will re-
cast the theory of transition matrices in terms of a dynamical system. See Example 9
of Section 2.1.

EXAMPLE 7 A stretch of desert in northwestern Mexico is populated mainly by two species of
animals: coyotes and roadrunners. We wish to model the populations c(t) and r(t)
of coyotes and roadrunners t years from now if the current populations c0 and r0
are known.4

For this habitat, the following equations model the transformation of this sys-
tem from one year to the next, from time t to time (t + 1):∣∣∣∣c(t + 1) = 0.86c(t) + 0.08r(t)

r(t + 1) = −0.12c(t) + 1.14r(t)

∣∣∣∣ .
Why is the coefficient of c(t) in the first equation less than 1, while the coefficient
of r(t) in the second equation exceeds 1? What is the practical significance of the
signs of the other two coefficients, 0.08 and −0.12?

The two equations can be written in matrix form, as[
c(t + 1)

r(t + 1)

]
=
[

0.86c(t) + 0.08r(t)
−0.12c(t) + 1.14r(t)

]
=
[

0.86 0.08
−0.12 1.14

] [
c(t)
r(t)

]
.

The vector

�x(t) =
[

c(t)
r(t)

]
is called the state vector of the system at time t , because it completely describes
this system at time t . If we let

A =
[

0.86 0.08
−0.12 1.14

]
,

we can write the preceding matrix equation more succinctly as

�x(t + 1) = A�x(t).

The transformation the system undergoes over the period of one year is linear, rep-
resented by the matrix A:

�x(t)
A−→ �x(t + 1).

Suppose we know the initial state

�x(0) = �x0 =
[

c0

r0

]
.

We wish to find �x(t), for an arbitrary positive integer t :

�x(0)
A−→ �x(1)

A−→ �x(2)
A−→ �x(3)

A−→ · · · A−→ �x(t)
A−→ · · · .

4The point of this lighthearted story is to present an introductory example where neither messy data
nor a complicated scenario distracts us from the mathematical ideas we wish to develop.
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We can find �x(t) by applying the transformation t times to �x(0):

�x(t) = At �x(0) = At �x0.

Although it is extremely tedious to find �x(t) with paper and pencil for large t , we
can easily compute �x(t) using technology. For example, given

�x0 =
[

100
100

]
,

we find that

�x(10) = A10�x0 ≈
[

80
170

]
.

To understand the long-term behavior of this system and how it depends on the
initial values, we must go beyond numerical experimentation. It would be useful to
have closed formulas for c(t) and r(t), expressing these quantities as functions of
t . We will first do this for certain (carefully chosen) initial state vectors.

Case 1 � Suppose we have c0 = 100 and r0 = 300. Initially, there are 100 coyotes

and 300 roadrunners, so that �x0 =
[

100
300

]
. Then

�x(1) = A�x0 =
[

0.86 0.08
−0.12 1.14

] [
100
300

]
=
[

110
330

]
= 1.1

[
100
300

]
= 1.1�x0.

The equation A�x0 = 1.1�x0 tells us that �x0 is an eigenvector of A with associated
eigenvalue 1.1. See Figure 4. Each population will grow by 10% in the course of
the next year. According to our remarks after Definition 7.1.2, we have

�x(t) = At �x0 = (1.1)t �x0.

We keep multiplying the state vector by 1.1 each time we multiply with matrix A.

x�0 = 100 
300

x�(1) = 110 
330 = 1.1x�0 

Figure 4

Recall that our goal is to find closed formulas for c(t) and r(t). We have

�x(t) =
[

c(t)
r(t)

]
= 1.1t �x0 = 1.1t

[
100
300

]
,

so that

c(t) = 100(1.1)t and r(t) = 300(1.1)t .

Both populations will grow exponentially, by 10% each year.

Case 2 � Suppose we have c0 = 200 and r0 = 100. Then

�x(1) = A�x0 =
[

0.86 0.08
−0.12 1.14

] [
200
100

]
=
[

180
90

]
= 0.9�x0.

In this case, �x0 turns out to be an eigenvector of A with associated eigenvalue 0.9.
Both populations decline by 10% in the first year and will therefore decline another
10% each subsequent year. Thus,

�x(t) = At �x0 = 0.9t �x0,

so that

c(t) = 200(0.9)t and r(t) = 100(0.9)t .

The initial populations are mismatched: Too many coyotes are chasing too few road-
runners, a bad state of affairs for both species.
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Case 3 � Suppose we have c0 = r0 = 1,000. Then

�x(1) = A�x0 =
[

0.86 0.08
−0.12 1.14

] [
1,000
1,000

]
=
[

940
1,020

]
.

Things are not working out as nicely as in the first two cases we considered: The
initial state vector �x0 fails to be an eigenvector of A in this case. Just by computing
�x(2), �x(3), . . . , we could not easily detect a trend that would allow us to generate
closed formulas for c(t) and r(t). We have to look for another approach.

The idea is to work with the eigenbasis

�v1 =
[

100
300

]
and �v2 =

[
200
100

]
considered in the first two cases. Any vector in R2 can be written uniquely as a
linear combination of the eigenvectors �v1 and �v2. This holds in particular for the
initial state vector

�x0 =
[

1,000
1,000

]
of the coyote–roadrunner system:

�x0 = c1�v1 + c2�v2.

A straightforward computation shows that the coordinates are c1 = 2 and c2 = 4:

�x0 = 2�v1 + 4�v2.

Recall that At �v1 = (1.1)t �v1 and At �v2 = (0.9)t �v2. Therefore,

�x(t) = At �x0 = At (2�v1 + 4�v2) = 2At �v1 + 4At �v2

= 2(1.1)t �v1 + 4(0.9)t �v2

= 2(1.1)t

[
100
300

]
+ 4(0.9)t

[
200
100

]
.

Considering the components of this vector equation, we can now find closed for-
mulas for c(t) and r(t):

c(t) = 200(1.1)t + 800(0.9)t

r(t) = 600(1.1)t + 400(0.9)t .

Since the terms involving 0.9t approach zero as t increases, both populations even-
tually grow by about 10% a year, and their ratio r(t)/c(t) approaches 600/200 = 3.c(t)

r(t)

x�(t) = c(t)
r(t)

Figure 5
Note that the ratio r(t)/c(t) can be interpreted as the slope of the state vector

�x(t), as shown in Figure 5.
Alternatively, we can derive the formula

�x(t) = 2(1.1)t

[
100
300

]
+ 4(0.9)t

[
200
100

]

by means of diagonalization. We can use the eigenbasis �v1 =
[

100
300

]
, �v2 =[

200
100

]
to form the invertible matrix S =

[
100 200
300 100

]
. Then S−1 AS = B =[

1.1 0
0 0.9

]
. See Theorem 7.1.3. Thus, A = SBS−1 and At = (SBS−1)t =
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(SBS−1)(SBS−1) · · · (SBS−1)︸ ︷︷ ︸
t times

= SBt S−1. Now �x(t) = SBt S−1�x0. We leave it

to the reader to verify that S−1�x0 =
[

100 200
300 100

]−1 [
1000
1000

]
=
[

2
4

]
. This is just the

coordinate vector of the initial state vector �x0 with respect to the given eigenbasis
(by Definition 3.4.1). Thus,

�x(t) = SBt S−1�x0 =
[

100 200
300 100

] [
1.1t 0

0 0.9t

] [
2
4

]
=
[

100 200
300 100

] [
2(1.1)t

4(0.9)t

]

= 2(1.1)t

[
100
300

]
+ 4(0.9)t

[
200
100

]
,

as expected.
How can we represent the preceding computations graphically?
Figure 6 shows the representation �x0 = 2�v1 + 4�v2 of �x0 as the sum of a vector

on L1 = span(�v1) and a vector on L2 = span(�v2). The formula

�x(t) = (1.1)t 2�v1 + (0.9)t 4�v2

now tells us that the component in L1 grows by 10% each year, while the component
in L2 shrinks by 10%. The component (0.9)t 4�v2 in L2 approaches �0, which means
that the tip of the state vector �x(t) approaches the line L1, so that the slope of the
state vector will approach 3, the slope of L1.

To show the evolution of the system more clearly, we can sketch just the end-
points of the state vectors �x(t). Then the changing state of the system will be traced
out as a sequence of points in the c–r -plane.

It is natural to connect the dots to create the illusion of a continuous trajectory.
(Although, of course, we do not know what really happens between times t and
t + 1.)

Sometimes we are interested in the state of the system in the past, at times
−1, −2, . . . . Note that �x(0) = A�x(−1), so that �x(−1) = A−1�x0 if A is invertible
(as in our example). Likewise, �x(−t) = (At )−1�x0, for t = 2, 3, . . . . The trajectory
(future and past) for our coyote–roadrunner system is shown in Figure 7.

1000

1000

r

c

x�(10)

L1 = span(v�1)

x�(3)x�(2)
x�(1)
x�0

2v�1

v�1 4v�2

v�2

L2 = span(v�2)

Figure 6
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1000

1000

L1 

L2

t = 10

t = 5

t = −5

t = 0

Past

Future

Present

r

c

Figure 7

To get a sense for the long-term behavior of this system and how it depends
on the initial state, we can draw a rough sketch that shows a number of different
trajectories, representing the various qualitative types of behavior. Such a sketch is
called a phase portrait of the system. In our example, a phase portrait might show
the trajectory drawn in Figure 7, trajectories moving along the lines L1 and L2, as
well as a trajectory that starts above L1 and one that starts below L2. See Figure 8.

To sketch these trajectories, express the initial state vector �x0 as the sum of a
vector �w1 on L1 and a vector �w2 on L2. Then see how these two vectors change
over time. If �x0 = �w1 + �w2, then

�x(t) = (1.1)t �w1 + (0.9)t �w2.

We see that the two populations will prosper over the long term if the ratio r0/c0
of the initial populations exceeds 1/2; otherwise, both populations will die out.

r

c

L2 = span

L1 = span 100
300

200
100

Figure 8
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r

c

L1 L2

Figure 9

From a mathematical point of view, it is informative to sketch a phase portrait
of this system in the whole c–r -plane, even though the trajectories outside the first
quadrant are meaningless in terms of our population study. See Figure 9. �

Let’s discuss the ideas and techniques developed in Example 7 more sys-
tematically. Consider a physical system whose state at any given time t is de-
scribed by some quantities x1(t), x2(t), . . . , xn(t). [In Example 7, there were two
such quantities, the populations c(t) and r(t).] We can represent the quantities
x1(t), x2(t), . . . , xn(t) by the state vector

�x(t) =

⎡
⎢⎢⎢⎣

x1(t)
x2(t)

...

xn(t)

⎤
⎥⎥⎥⎦ .

Suppose that the state of the system at time t + 1 is determined by the state at
time t and that the transformation of the system from time t to time t + 1 is linear,
represented by an n × n matrix A:

�x(t + 1) = A�x(t).

Then

�x(t) = At �x0.

Such a system is called a discrete linear dynamical system. (Discrete indicates that
we model the change of the system from time t to time t + 1, rather than modeling
the continuous rate of change, which would be described by differential equations.)

For an initial state �x0, it is often our goal to find closed formulas for x1(t), x2(t),
. . . , xn(t) [i.e., formulas expressing xi (t) as a function of t alone, as opposed to a
recursive formula, for example, which would merely express xi (t + 1) in terms of
x1(t), x2(t), . . . , xn(t)].

Theorem 7.1.6 Discrete dynamical systems

Consider the dynamical system

�x(t + 1) = A�x(t) with �x(0) = �x0.
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Theorem 7.1.6 Discrete dynamical systems (Continued)

Then �x(t) = At �x0. Suppose we can find an eigenbasis �v1, . . . , �vn for A, with
A�v1 = λ1�v1, . . . , A�vn = λn�vn . Find the coordinates c1, . . . , cn of the vector �x0
with respect to the eigenbasis �v1, . . . , �vn:

�x0 = c1�v1 + · · · + cn�vn.

Then

�x(t) = At �x0 = c1 At �v1 + · · · + cn At �vn = c1λ
t
1�v1 + · · · + cnλ

t
n�vn.

Alternatively, we can derive the formula �x(t) = c1λ
t
1�v1 + · · · + cnλ

t
n�vn by

means of diagonalization. See Example 7. If we let

S =

⎡
⎢⎢⎣

| | |
�v1 �v2 . . . �vn

| | |

⎤
⎥⎥⎦, B =

⎡
⎢⎢⎣

λ1 0 . . . 0
0 λ2 . . . 0
...

...
. . .

...

0 0 . . . λn

⎤
⎥⎥⎦, and S−1�x0 =

⎡
⎢⎢⎣

c1
c2
...

cn

⎤
⎥⎥⎦, then

S−1 AS = B, A = SBS−1, and At = (SBS−1)t = (SBS−1)(SBS−1) · · · (SBS−1)︸ ︷︷ ︸
t times

=

SBt S−1, so that

�x(t) = At �x0 = SBt S−1�x0 =

⎡
⎢⎢⎣

| | |
�v1 �v2 . . . �vn

| | |

⎤
⎥⎥⎦
⎡
⎢⎢⎣

λt
1 0 . . . 0

0 λt
2 . . . 0

...
...

. . .
...

0 0 . . . λt
n

⎤
⎥⎥⎦
⎡
⎢⎢⎣

c1
c2
...

cn

⎤
⎥⎥⎦

=

⎡
⎢⎢⎢⎣

| | |
�v1 �v2 . . . �vn

| | |

⎤
⎥⎥⎥⎦
⎡
⎢⎢⎢⎣

c1λ
t
1

c2λ
t
2

...

cnλ
t
n

⎤
⎥⎥⎥⎦ = c1λ

t
1�v1 + c2λ

t
2�v2 + · · · + cnλ

t
n�vn.

We are left with two questions: How can we find the eigenvalues and eigenvectors of
an n×n matrix A? When is there an eigenbasis for A, i.e., when is A diagonalizable?
These issues are central to linear algebra; they will keep us busy for the rest of this
long chapter.

Definition 7.1.7 Discrete trajectories and phase portraits

Consider a discrete dynamical system

�x(t + 1) = A�x(t) with initial value �x(0) = �x0,

where A is a 2 × 2 matrix. In this case, the state vector �x(t) =
[

x1(t)
x2(t)

]
can be

represented geometrically in the x1–x2-plane.
The endpoints of state vectors �x(0) = �x0, �x(1) = A�x0, �x(2) = A2�x0, . . .

form the (discrete) trajectory of this system, representing its evolution in the
future. Sometimes we are interested in the past states �x(−1) = A−1�x0, �x(−2) =
(A2)−1�x0, . . . as well. It is suggestive to “connect the dots” to create the illusion
of a continuous trajectory. Take another look at Figure 7.

A (discrete) phase portrait of the system �x(t+1) = A�x(t) shows trajectories
for various initial states, capturing all the qualitatively different scenarios (as in
Figure 9).
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L1 L1L1

L2 L2L2

(a) (b) (c)

Figure 10 (a) λ1 > λ2 > 1. (b) λ1 > 1 > λ2 > 0. (c) 1 > λ1 > λ2 > 0.

In Figure 10, we sketch phase portraits for the case when A has two eigenvalues
λ1 > λ2 > 0 with associated eigenvectors �v1 and �v2. We leave out the special case
when one of the eigenvalues is 1. Start by sketching the trajectories along the lines
L1 = span(�v1) and L2 = span(�v2). As you sketch the other trajectories

�x(t) = c1λ
t
1�v1 + c2λ

t
2�v2,

think about the summands c1λ
t
1�v1 and c2λ

t
2�v2. Note that for a large positive t , the

vector �x(t) will be almost parallel to L1, since λt
1 will be much larger than λt

2.
Likewise, for large negative t the vector �x(t) will be almost parallel to L2.

EXERCISES 7.1
GOAL Apply the concepts of eigenvalues, eigenvectors,
eigenbases, and diagonalization. Use eigenvectors to ana-
lyze discrete dynamical systems.

In Exercises 1 through 4, let A be an invertible n × n
matrix and �v an eigenvector of A with associated eigen-
value λ.

1. Is �v an eigenvector of A3? If so, what is the eigenvalue?

2. Is �v an eigenvector of A−1? If so, what is the eigen-
value?

3. Is �v an eigenvector of A + 2In? If so, what is the eigen-
value?

4. Is �v an eigenvector of 7A? If so, what is the eigenvalue?

5. If a vector �v is an eigenvector of both A and B, is �v
necessarily an eigenvector of A + B?

6. If a vector �v is an eigenvector of both A and B, is �v
necessarily an eigenvector of AB?

7. If �v is an eigenvector of the n × n matrix A with asso-
ciated eigenvalue λ, what can you say about

ker(A − λIn)?

Is the matrix A − λIn invertible?

8. Find all 2 × 2 matrices for which �e1 =
[

1
0

]
is an eigen-

vector with associated eigenvalue 5.

9. Find all 2 × 2 matrices for which �e1 is an eigenvector.

10. Find all 2 × 2 matrices for which

[
1
2

]
is an eigenvector

with associated eigenvalue 5.

11. Find all 2 × 2 matrices for which

[
2
3

]
is an eigenvector

with associated eigenvalue −1.

12. Consider the matrix A =
[

2 0
3 4

]
. Show that 2 and 4

are eigenvalues of A and find all corresponding eigen-
vectors. Find an eigenbasis for A and thus diagonal-
ize A.

13. Show that 4 is an eigenvalue of A =
[ −6 6
−15 13

]
and

find all corresponding eigenvectors.

14. Find all 4 × 4 matrices for which �e2 is an eigenvector.

Arguing geometrically, find all eigenvectors and eigen-
values of the linear transformations in Exercises 15
through 22. In each case, find an eigenbasis if you can,
and thus determine whether the given transformation is
diagonalizable.

15. Reflection about a line L in R2

16. Rotation through an angle of 180◦ in R2

17. Counterclockwise rotation through an angle of 45◦ fol-
lowed by a scaling by 2 in R2
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18. Reflection about a plane V in R3

19. Orthogonal projection onto a line L in R3

20. Rotation about the �e3-axis through an angle of 90◦,
counterclockwise as viewed from the positive �e3-axis
in R3

21. Scaling by 5 in R3

22. The linear transformation with T (�v) = �v and T ( �w) =
�v + �w for the vectors �v and �w in R2 sketched below

v�

w�

23. Use matrix products to prove the following: If
S−1 AS = B for an invertible matrix S and a diago-
nal matrix B, then the column vectors of S will form an
eigenbasis for A, and the diagonal entries of B will be
the associated eigenvalues. See Theorem 7.1.3.

In Exercises 24 through 29, consider a dynamical system

�x(t + 1) = A�x(t)

with two components. The accompanying sketch shows
the initial state vector �x0 and two eigenvectors, �v1 and �v2,
of A (with eigenvalues λ1 and λ2, respectively). For the
given values of λ1 and λ2, sketch a rough trajectory. Con-
sider the future and the past of the system.

v�1

v�2

x�0

24. λ1 = 1.1, λ2 = 0.9 25. λ1 = 1, λ2 = 0.9

26. λ1 = 1.1, λ2 = 1 27. λ1 = 0.9, λ2 = 0.8

28. λ1 = 1.2, λ2 = 1.1 29. λ1 = 0.9, λ2 = 0.9

In Exercises 30 through 32, consider the dynamical system

�x(t + 1) =
[

1.1 0
0 λ

]
�x(t).

Sketch a phase portrait of this system for the given values
of λ:

30. λ = 1.2 31. λ = 1 32. λ = 0.9

33. Find a 2 × 2 matrix A such that

�x(t) =
[

2t − 6t

2t + 6t

]
is a trajectory of the dynamical system

�x(t + 1) = A�x(t).

34. Suppose �v is an eigenvector of the n × n matrix A,
with eigenvalue 4. Explain why �v is an eigenvector of
A2 + 2A + 3In . What is the associated eigenvalue?

35. Show that similar matrices have the same eigenvalues.
Hint: If �v is an eigenvector of S−1 AS, then S�v is an
eigenvector of A.

36. Find a 2 × 2 matrix A such that

[
3
1

]
and

[
1
2

]
are eigen-

vectors of A, with eigenvalues 5 and 10, respectively.

37. Consider the matrix

A =
[

3 4
4 −3

]
.

a. Use the geometric interpretation of this transfor-
mation as a reflection combined with a scaling to
find the eigenvalues of A.

b. Find an eigenbasis for A.
c. Diagonalize A.

38. We are told that

⎡
⎣ 1

−1
−1

⎤
⎦ is an eigenvector of the matrix

⎡
⎣ 4 1 1

−5 0 −3
−1 −1 2

⎤
⎦; what is the associated eigenvalue?

39. Find a basis of the linear space V of all 2 × 2 matrices

A for which

[
0
1

]
is an eigenvector, and thus determine

the dimension of V .

40. Find a basis of the linear space V of all 2×2 matrices A

for which

[
1

−3

]
is an eigenvector, and thus determine

the dimension of V .

41. Find a basis of the linear space V of all 2×2 matrices A

for which both

[
1
1

]
and

[
1
2

]
are eigenvectors, and thus

determine the dimension of V .

42. Find a basis of the linear space V of all 3 × 3 matrices

A for which both

⎡
⎣1

0
0

⎤
⎦ and

⎡
⎣0

0
1

⎤
⎦ are eigenvectors, and

thus determine the dimension of V .
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43. Consider the linear space V of all n × n matrices for
which all the vectors �e1, . . . , �en are eigenvectors. De-
scribe the space V (the matrices in V “have a name”),
and determine the dimension of V .

44. For m ≤ n, find the dimension of the space of all
n × n matrices A for which all the vectors �e1, . . . , �em
are eigenvectors.

45. If �v is any nonzero vector in R2, what is the dimension
of the space V of all 2 × 2 matrices for which �v is an
eigenvector?

46. If �v is an eigenvector of matrix A with associated eigen-
value 3, show that �v is in the image of matrix A.

47. If �v is an eigenvector of matrix A, show that �v is in the
image of A or in the kernel of A. Hint: Exercise 46 is is
helpful.

48. If A is a matrix of rank 1, show that any nonzero vector
in the image of A is an eigenvector of A.

49. Give an example of a matrix A of rank 1 that fails to be
diagonalizable.

Find an eigenbasis for each of the matrices A in Exercises
50 through 54, and thus diagonalize A. Hint: Exercise 48
is helpful.

50. A =
[

1 3
2 6

]
51. A =

[
1 1
1 1

]
52. A =

⎡
⎣ 1 1 1

1 1 1
1 1 1

⎤
⎦

53. A =
⎡
⎣ 1 2 3

2 4 6
3 6 9

⎤
⎦ 54. A =

⎡
⎣ 1 −1 1

−1 1 −1
1 −1 1

⎤
⎦

Arguing geometrically, find an eigenbasis for each of the
matrices A in Exercises 55 through 63, and thus diagonal-
ize A. Use Example 3 as a guide.

55. A =
[

0.36 0.48
0.48 0.64

]
, representing the orthogonal projec-

tion onto the line L = span

[
3
4

]

56. A =
[

0.6 0.8
0.8 −0.6

]
, representing the reflection about the

line L = span

[
2
1

]

57. A =
[

0.8 −0.6
−0.6 −0.8

]
58. A =

[
0 1
1 0

]

59. A = 1

9

⎡
⎣ 8 2 −2

2 5 4
−2 4 5

⎤
⎦, representing the orthogonal

projection onto the plane x − 2y + 2z = 0

60. A = 1

9

⎡
⎣ 7 4 −4

4 1 8
−4 8 1

⎤
⎦, representing the reflection

about the plane x − 2y + 2z = 0

61. A = 1

7

⎡
⎣ 6 −2 −3

−2 3 −6
−3 −6 −2

⎤
⎦, representing the reflection

about a plane E

62. A = 1

14

⎡
⎣ 13 −2 −3

−2 10 −6
−3 −6 5

⎤
⎦, representing the orthogonal

projection onto a plane E

63. A = 1

14

⎡
⎣ 1 2 3

2 4 6
3 6 9

⎤
⎦

64. In all parts of this problem, let V be the linear space of

all 2 × 2 matrices for which

[
1
2

]
is an eigenvector.

a. Find a basis of V and thus determine the dimension
of V .

b. Consider the linear transformation T (A) = A

[
1
2

]
from V to R2. Find a basis of the image of T and a
basis of the kernel of T . Determine the rank of T .

c. Consider the linear transformation L(A) = A

[
1
3

]
from V to R2. Find a basis of the image of L and a
basis of the kernel of L . Determine the rank of L .

65. Consider an n ×n matrix A. A subspace V of Rn is said
to be A-invariant if A�v is in V for all �v in V . Describe
all the one-dimensional A-invariant subspaces of Rn , in
terms of the eigenvectors of A.

66. a. Give an example of a 3 × 3 matrix A with as many
nonzero entries as possible such that both span(�e1)

and span(�e1, �e2) are A-invariant subspaces of R3.
See Exercise 65.

b. Consider the linear space V of all 3 × 3 matrices
A such that both span (�e1) and span (�e1, �e2) are
A-invariant subspaces of R3. Describe the space V
(the matrices in V “have a name”), and determine
the dimension of V .

67. Consider the coyotes–roadrunner system discussed in
Example 7. Find closed formulas for c(t) and r(t), for
the initial populations c0 = 100, r0 = 800.

68. Two interacting populations of hares and foxes can be
modeled by the recursive equations

h(t + 1) = 4h(t) − 2 f (t)

f (t + 1) = h(t) + f (t).

For each of the initial populations given in parts (a)
through (c), find closed formulas for h(t) and f (t).



326 CHAPTER 7 Eigenvalues and Eigenvectors

a. h(0) = f (0) = 100
b. h(0) = 200, f (0) = 100
c. h(0) = 600, f (0) = 500

69. Two interacting populations of coyotes and roadrunners
can be modeled by the recursive equations

c(t + 1) = 0.75r(t)
r(t + 1) = −1.5c(t) + 2.25r(t).

For each of the initial populations given in parts (a)
through (c), find closed formulas for c(t) and r(t).
a. c(0) = 100, r(0) = 200
b. c(0) = r(0) = 100
c. c(0) = 500, r(0) = 700

70. Imagine that you are diabetic and have to pay close
attention to how your body metabolizes glucose. Let
g(t) represent the excess glucose concentration in your
blood, usually measured in milligrams of glucose per
100 milliliters of blood. (Excess means that we mea-
sure how much the glucose concentration deviates from
your fasting level, i.e., the level your system approaches
after many hours of fasting.) A negative value of g(t)
indicates that the glucose concentration is below fast-
ing level at time t . Shortly after you eat a heavy meal,
the function g(t) will reach a peak, and then it will
slowly return to 0. Certain hormones help regulate glu-
cose, especially the hormone insulin. Let h(t) repre-
sent the excess hormone concentration in your blood.
Researchers have developed mathematical models for
the glucose regulatory system. The following is one
such model, in slightly simplified form (these formulas
apply between meals; obviously, the system is disturbed
during and right after a meal):∣∣∣∣g(t + 1) = ag(t) − bh(t)

h(t + 1) = cg(t) + dh(t)

∣∣∣∣ ,
where time t is measured in minutes; a and d are con-
stants slightly less than 1; and b and c are small positive
constants. For your system, the equations might be∣∣∣∣g(t + 1) = 0.978g(t) − 0.006h(t)

h(t + 1) = 0.004g(t) + 0.992h(t)

∣∣∣∣ .
The term −0.006h(t) in the first equation is negative,
because insulin helps your body absorb glucose. The
term 0.004g(t) is positive, because glucose in your
blood stimulates the cells of the pancreas to secrete in-
sulin. (For a more thorough discussion of this model,
read E. Ackerman et al., “Blood glucose regulation
and diabetes,” Chapter 4 in Concepts and Models of
Biomathematics, Marcel Dekker, 1969.)

Consider the coefficient matrix

A =
[

0.978 −0.006
0.004 0.992

]
of this dynamical system.

a. We are told that

[−1
2

]
and

[
3

−1

]
are eigenvectors

of A. Find the associated eigenvalues.
b. After you have consumed a heavy meal, the concen-

trations in your blood are g0 = 100 and h0 = 0.
Find closed formulas for g(t) and h(t). Sketch the
trajectory. Briefly describe the evolution of this sys-
tem in practical terms.

c. For the case discussed in part (b), how long does
it take for the glucose concentration to fall below
fasting level? (This quantity is useful in diagnosing
diabetes: A period of more than four hours may in-
dicate mild diabetes.)

71. Three holy men (let’s call them Anselm, Benjamin,
and Caspar) put little stock in material things; their
only earthly possession is a small purse with a bit of
gold dust. Each day they get together for the following
bizarre bonding ritual: Each of them takes his purse and
gives his gold away to the two others, in equal parts. For
example, if Anselm has 4 ounces one day, he will give
2 ounces each to Benjamin and Caspar.
a. If Anselm starts out with 6 ounces, Benjamin with 1

ounce, and Caspar with 2 ounces, find formulas for
the amounts a(t), b(t), and c(t) each will have after
t distributions.

Hint: The vectors

⎡
⎣1

1
1

⎤
⎦,
⎡
⎣ 1

−1
0

⎤
⎦, and

⎡
⎣ 1

0
−1

⎤
⎦ will be

useful.
b. Who will have the most gold after one year, that is,

after 365 distributions?

72. Consider the growth of a lilac bush. The state of this
lilac bush for several years (at year’s end) is shown in
the accompanying sketch. Let n(t) be the number of
new branches (grown in the year t) and a(t) the num-
ber of old branches. In the sketch, the new branches are
represented by shorter lines. Each old branch will grow
two new branches in the following year. We assume that
no branches ever die.

year 0

n(0) = 1
a(0) = 0

n(1) = 0
a(1) = 1

year 1

n(2) = 2
a(2) = 1

year 2

n(3) = 2
a(3) = 3

year 3

n(4) = 6
a(4) = 5

year 4

a. Find the matrix A such that[
n(t + 1)

a(t + 1)

]
= A

[
n(t)
a(t)

]
.

b. Verify that

[
1
1

]
and

[
2

−1

]
are eigenvectors of A.

Find the associated eigenvalues.
c. Find closed formulas for n(t) and a(t).
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7.2 Finding the Eigenvalues of a Matrix

In the previous section, we used eigenvalues to diagonalize a matrix A and to ana-
lyze the dynamical system

�x(t + 1) = A�x(t).

Now we will see how we can actually find those eigenvalues.
Consider an n × n matrix A and a scalar λ. By Definition 7.1.2, λ is an eigen-

value of A if there exists a nonzero vector �v in Rn such that

A�v = λ�v or A�v − λ�v = �0 or A�v − λIn�v = �0 or (A − λIn)�v = �0.

This means, by definition of the kernel, that

ker(A − λIn) �= {�0}.
(That is, there are other vectors in the kernel besides the zero vector.) This is the
case if (and only if) the matrix A − λIn fails to be invertible (by Theorem 3.1.7c),
that is, if det(A − λIn) = 0 (by Theorem 6.2.4).

Theorem 7.2.1 Eigenvalues and determinants; characteristic equation

Consider an n ×n matrix A and a scalar λ. Then λ is an eigenvalue5 of A if (and
only if)

det(A − λIn) = 0.

This is called the characteristic equation (or the secular equation) of matrix A.

Let’s write the observations we made previously as a string of equivalent
statements.

λ is an eigenvalue of A.13
There exists a nonzero vector �v such that

A�v = λ�v or (A − λIn)�v = �0.13
ker(A − λIn) �= {�0}.13

Matrix A − λIn fails to be invertible.13
det(A − λIn) = 0.

The idea of the characteristic equation is implicit in the work of Jean
d’Alembert (1717–1783), in his Traité de Dynamique of 1743. Joseph Louis
Lagrange (1736–1813) was the first to study the equation systematically (naming it
équation séculaire), in his works on gravitational attraction between heavenly bod-
ies. Augustin-Louis Cauchy (1789–1857) wrote the equation in its modern form,
involving a determinant. It appears that the term eigenvalue (Eigenwert in German)

5Alternatively, the eigenvalues are the solutions of the equation det(λIn − A) = 0. Our formula
det(A − λIn) = 0 is usually more convenient for numerical work.
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was first used by David Hilbert in 1904, based perhaps on Helmholtz’s notion of an
Eigenton in acoustics.

EXAMPLE 1 Find the eigenvalues of the matrix

A =
[

1 2
4 3

]
.

Solution
By Theorem 7.2.1, we have to solve the characteristic equation det(A − λI2) = 0.
Now

det(A − λI2) = det

([
1 2
4 3

]
−
[
λ 0
0 λ

])
= det

[
1 − λ 2

4 3 − λ

]
= (1 − λ)(3 − λ) − 2 · 4 = λ2 − 4λ − 5 = (λ − 5)(λ + 1) = 0.

The equation det(A − λI2) = (λ − 5)(λ + 1) = 0 holds for λ1 = 5 and λ2 = −1.
These two scalars are the eigenvalues of A. In Section 7.3 we will find the corre-
sponding eigenvectors. �

EXAMPLE 2 Find the eigenvalues of

A =
⎡
⎣2 3 4

0 3 4
0 0 4

⎤
⎦ .

Solution
We have to solve the characteristic equation det(A − λI3) = 0.

det(A − λI3) = det

⎡
⎣2 − λ 3 4

0 3 − λ 4
0 0 4 − λ

⎤
⎦ step 2︷︸︸︷= (2 − λ)(3 − λ)(4 − λ) = 0

In step 2 we use the fact that the determinant of a triangular matrix is the product
of its diagonal entries (Theorem 6.1.4). The solutions of the characteristic equation
are 2, 3, and 4; these are the eigenvalues of A. �

Theorem 7.2.2 Eigenvalues of a triangular matrix

The eigenvalues of a triangular matrix are its diagonal entries.

EXAMPLE 3 Find the characteristic equation for an arbitrary 2 × 2 matrix A =
[

a b
c d

]
.

Solution

det(A − λI2) = det

[
a − λ b

c d − λ

]

= (a − λ)(d − λ) − bc = λ2 − (a + d)λ + (ad − bc) = 0

This is a quadratic equation. The constant term of det(A −λI2) is ad − bc = det A,
the value of det(A −λI2) at λ = 0. The coefficient of λ is −(a + d), the opposite of
the sum of the diagonal entries a and d of A. Since this sum is important in many
other contexts as well, we introduce a name for it. �
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Definition 7.2.3 Trace

The sum of the diagonal entries of a square matrix A is called the trace of A,
denoted by tr A.

Let us highlight the result of Example 3.

Theorem 7.2.4 Characteristic equation of a 2 × 2 matrix A

det(A − λI2) = λ2 − (tr A)λ + det A = 0

For the matrix A =
[

1 2
4 3

]
, we have tr A = 1+3 = 4 and det A = 3−8 = −5,

so that the characteristic equation is

λ2 − (trA)λ + det A = λ2 − 4λ − 5 = 0,

as we found in Example 1.
If A is a 3 × 3 matrix, what does the characteristic equation det(A − λI3) = 0

look like?

det

⎡
⎣a11 − λ a12 a13

a21 a22 − λ a23

a31 a32 a33 − λ

⎤
⎦

= (a11 − λ)(a22 − λ)(a33 − λ) + (a polynomial of degree ≤1)

= (λ2 − (a11 + a22)λ + a11a22
)
(a33 − λ) + (a polynomial of degree ≤1)

= −λ3 + (a11 + a22 + a33)λ
2 + (a polynomial of degree ≤1)

= −λ3 + (tr A)λ2 + (a polynomial of degree ≤1)

= 0,

a cubic equation. Again, the constant term is det A, so that the characteristic equa-
tion has the form

det(A − λI3) = −λ3 + (tr A)λ2 − cλ + det A = 0, for some scalar c.

It is possible to give a formula for c, in terms of the entries of A, but this formula is
complicated, and we will not need it in this introductory text.

Based on the quadratic and cubic cases, we might conjecture that the charac-
teristic equation of any n × n matrix A is a polynomial equation of degree n, of the
form

det(A − λIn) = (−1)nλn + (−1)n−1(tr A)λn−1 + · · · + det A = 0.

It makes sense to write this equation in terms of −λ rather than λ:

det(A − λIn) = (−λ)n + (tr A)(−λ)n−1 + · · · + det A = 0.

Let us state and then prove that the characteristic equation is indeed of this form.

Theorem 7.2.5 Characteristic polynomial

If A is an n × n matrix, then det(A − λIn) is a polynomial of degree n, of the
form

(−λ)n + (tr A)(−λ)n−1 + · · · + det A

= (−1)nλn + (−1)n−1(tr A)λn−1 + · · · + det A.

This is called the characteristic polynomial of A, denoted by f A(λ).
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Proof

f A(λ) = det(A − λIn) = det

⎡
⎢⎢⎢⎣

a11 − λ a12 · · · a1n

a21 a22 − λ · · · a2n
...

...
. . .

...

an1 an2 · · · ann − λ

⎤
⎥⎥⎥⎦

The product associated with any pattern in the matrix A − λIn is a polynomial of
degree less than or equal to n. This implies that det(A − λIn) is a polynomial of
degree less than or equal to n.

We can be more precise: The diagonal pattern gives the product

(a11 − λ)(a22 − λ) · · · (ann − λ)

= (−λ)n + (a11 + a22 + · · · + ann)(−λ)n−1 + (a polynomial of degree ≤ n − 2)

= (−λ)n + (tr A)(−λ)n−1 + (a polynomial of degree ≤ n − 2).

Any other pattern involves at least two scalars off the diagonal (see Exercise 6.1.51),
and its product is therefore a polynomial of degree less than or equal to n − 2. This
implies that

f A(λ) = (−λ)n + (tr A)(−λ)n−1 + (a polynomial of degree ≤ n − 2).

The constant term is f A(0) = det A. �

Note that Theorem 7.2.4 represents a special case of Theorem 7.2.5, when
n = 2.

What does Theorem 7.2.5 tell us about the number of eigenvalues of an n × n
matrix A? We know from elementary algebra that a polynomial of degree n has
at most n zeros. Therefore, an n × n matrix has at most n eigenvalues. If n is
odd, then f A(λ) has at least one zero, by the intermediate value theorem (see Exer-
cise 2.2.47c), since

lim
λ→∞

f A(λ) = −∞ and lim
λ→−∞

f A(λ) = ∞.

See Figure 1.

An eigenvalue
of A

fA(  )

Figure 1
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EXAMPLE 4 Find all eigenvalues of

A =

⎡
⎢⎢⎢⎢⎣

5 4 3 2 1
0 4 3 2 1
0 0 5 4 3
0 0 0 4 3
0 0 0 0 5

⎤
⎥⎥⎥⎥⎦ .

Solution
The characteristic polynomial is f A(λ) = (5 − λ)3(4 − λ)2, so that the eigenvalues
are 4 and 5. Since 5 is a root of multiplicity 3 of the characteristic polynomial, we
say that the eigenvalue 5 has algebraic multiplicity 3. Likewise, the eigenvalue 4
has algebraic multiplicity 2. �

Definition 7.2.6 Algebraic multiplicity of an eigenvalue

We say that an eigenvalue λ0 of a square matrix A has algebraic multiplicity k
if λ0 is a root of multiplicity k of the characteristic polynomial f A(λ), meaning
that we can write

f A(λ) = (λ0 − λ)k g(λ)

for some polynomial g(λ) with g(λ0) �= 0. We write almu(λ0) = k.

In Example 4, almu(5) = 3 since

f A(λ) = (5
↑
λ0

−λ)

k
↓
3 (4 − λ)2︸ ︷︷ ︸

g(λ)

.

EXAMPLE 5 Find the eigenvalues of

A =
⎡
⎣1 1 1

1 1 1
1 1 1

⎤
⎦ ,

with their algebraic multiplicities.

Solution
We leave it to the reader to verify that

f A(λ) = λ2(3 − λ) = (0 − λ)2(3 − λ).

We have two distinct eigenvalues, 0 and 3, with algebraic multiplicities 2 and 1,
respectively. We can write, more succinctly, that the eigenvalues are 0, 0, 3. �

Let us summarize.

Theorem 7.2.7 Number of eigenvalues

An n × n matrix has at most n real eigenvalues, even if they are counted with
their algebraic multiplicities.

If n is odd, then an n × n matrix has at least one real eigenvalue.
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If n is even, an n × n matrix A need not have any real eigenvalues. Consider

A =
[

0 −1
1 0

]
,

with f A(λ) = det

[−λ −1
1 −λ

]
= λ2 + 1. See Figure 2.

fA(  ) = 2 + 1

Figure 2

Recall that the transformation T (�x) = A�x is a counterclockwise rotation
through an angle of 90◦. Geometrically, it makes sense that A has no real eigen-
values: Compare with Example 7.1.4.

EXAMPLE 6 Describe all possible cases for the number of real eigenvalues (with their algebraic
multiplicities) of a 3 × 3 matrix A.

Solution
Either the characteristic polynomial factors completely,

f A(λ) = (λ1 − λ)(λ2 − λ)(λ3 − λ),

or it has a quadratic factor without real zeros:

f A(λ) = (λ1 − λ)p(λ), where p(λ) �= 0 for all real λ.

In the first case, the λi could all be distinct, two of them could be equal, or they
could all be equal. This leads to the following possibilities.

No. of Distinct Algebraic
Case Eigenvalues Multiplicities

1 3 1 each
2 2 2 and 1
3 1 3
4 1 1
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Examples for each case follow.

Case 1 � (see Figure 3)

A =
⎡
⎣1 0 0

0 2 0
0 0 3

⎤
⎦ , f A(λ) = (1 − λ)(2 − λ)(3 − λ), Eigenvalues 1, 2, 3

Case 2 � (see Figure 4)

A =
⎡
⎣1 0 0

0 1 0
0 0 2

⎤
⎦ , f A(λ) = (1 − λ)2(2 − λ), Eigenvalues 1, 1, 2

Case 3 � (see Figure 5)

A = I3, f A(λ) = (1 − λ)3, Eigenvalues 1, 1, 1

Case 4 � (see Figure 6)

A =
⎡
⎣1 0 0

0 0 −1
0 1 0

⎤
⎦ , f A(λ) = (1 − λ)(λ2 + 1), Eigenvalue 1

You can recognize an eigenvalue λ0 whose algebraic multiplicity exceeds 1
on the graph of f A(λ) by the fact that f A(λ0) = f ′

A(λ0) = 0 (the derivative is
zero, so that the tangent is horizontal). The verification of this observation is left as
Exercise 37. �

1 2 3

fA(  )

Figure 3

1 2

fA(  )

Figure 4
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1

fA(  )

Figure 5

1

fA( )

Figure 6

EXAMPLE 7 Suppose A is a 2 × 2 matrix with eigenvalues λ1 and λ2 (we allow λ1 = λ2 if λ1
has algebraic multiplicity 2). Explore the relationship among the sum λ1 + λ2, the
product λ1λ2, the determinant det A, and the trace tr A. You may want to consider

a numerical example first, such as A =
[

1 2
4 3

]
, with eigenvalues λ1 = 5 and

λ2 = −1. See Example 1.

Solution

In the case of A =
[

1 2
4 3

]
, we observe that det A = λ1λ2 = −5 and tr A =

λ1 + λ2 = 4. To see that these results hold in general, write the characteristic
polynomial in two ways, as

f A(λ) = λ2 − (tr A)λ + det A

and as

f A(λ) = (λ1 − λ)(λ2 − λ) = λ2 − (λ1 + λ2)λ + λ1λ2.

Comparing coefficients, we conclude that det A = λ1λ2 and tr A = λ1 + λ2. �
It turns out that the observations we made in Example 7 generalize to n × n

matrices.

Theorem 7.2.8 Eigenvalues, determinant, and trace

If an n×n matrix A has the eigenvalues λ1, λ2, . . . , λn , listed with their algebraic
multiplicities, then

det A = λ1λ2 · · · λn, the product of the eigenvalues

and

tr A = λ1 + λ2 + · · · + λn, the sum of the eigenvalues.

We will prove the claim concerning the determinant and leave the case of the
trace as Exercise 21 for the reader.

Since the characteristic polynomial factors completely in this case, we can write

f A(λ) = det(A − λIn) = (λ1 − λ)(λ2 − λ) · · · (λn − λ).
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Now

f A(0) = det A = λ1λ2 · · · λn,

as claimed.

Note that the claims of Theorem 7.2.8 are trivial in the case of a triangular
matrix, since the eigenvalues are the diagonal entries in this case.

Finding the Eigenvalues of a Matrix in Practice
To find the eigenvalues of an n × n matrix A with the method developed in this
section, we have to find the zeros of f A(λ), a polynomial of degree n. For n = 2,
this is a trivial matter: We can either factor the polynomial by inspection or use the
quadratic formula (this formula was known over 3500 years ago in Mesopotamia,
the present-day Iraq). The problem of finding the zeros of a polynomial of higher
degree is nontrivial; it has been of considerable interest throughout the history
of mathematics. In the early 1500s, Italian mathematicians found formulas in the
cases n = 3 and n = 4, published in the Ars Magna by Gerolamo Cardano.6 See
Exercise 50 for the case n = 3. During the next 300 years, people tried hard to find a
general formula to solve the quintic (a polynomial equation of fifth degree). In 1824,
the Norwegian mathematician Niels Henrik Abel (1802–1829) showed that no such
general solution is possible, putting an end to the long search. The French mathe-
matician Evariste Galois (1811–1832) was the first to give a numerical example of
a quintic that cannot be solved by radicals. (Note the short life spans of these two
brilliant mathematicians. Abel died from tuberculosis, and Galois died in a duel.)

When finding the eigenvalues of a matrix by means of the characteristic poly-
nomial, it may be worth trying out a few small integers, such as ±1 and ±2. The
matrices considered in introductory linear algebra texts often just happen to have
such eigenvalues.

In light of the preceding discussion, it is usually impossible to find the exact
eigenvalues of a matrix. To find approximations for the eigenvalues, you could
graph the characteristic polynomial, using technology. The graph may give you
an idea of the number of eigenvalues and their approximate values. Numerical ana-
lysts tell us that this is not a very efficient way to go about finding the eigenvalues
of large matrices; other techniques are used in practice. See Exercise 7.5.33 for an
example; another approach uses the QR factorization (Theorem 5.2.2). There is a lot
of ongoing research in this area. A text in numerical linear algebra7 characterizes
the eigenvalue problem as “the third major problem area in matrix computations,”
after linear equations and least squares, dedicating some 200 pages to this topic.

6Cardano (1501–1576) was a Renaissance man with a wide range of interests. In his book Liber de
ludo aleae, he presents the first systematic computations of probabilities. Trained as a physician, he
gave the first clinical description of typhoid fever. In his book Somniorum Synesiorum (Basel, 1562),
he explores the meaning of dreams. He was also a leading astrologer of his day, whose predictions
won him access to some of the most powerful people in sixteenth-century Europe. Still, he is best
known today as the most outstanding mathematician of his time and the author of the Ars Magna. In
1570, he was arrested on accusation of heresy; he lost his academic position and the right to publish.

To learn more about this fascinating fellow, read the award-winning biography, Cardano’s
Cosmos, by Anthony Grafton (Harvard University Press, 2000), focusing on Cardano’s work as an
astrologer.

For an English translation of part XI of the Ars Magna (dealing with cubic equations), see
D. J. Struik (editor), A Source Book in Mathematics 1200–1800, Princeton University Press, 1986.
7G. H. Golub and C. F. van Loan, Matrix Computations, 3rd ed., Johns Hopkins University Press,
1996.
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EXERCISES 7.2
GOAL Use the characteristic polynomial fA(λ) =
det(A − λIn) to find the eigenvalues of a matrix A, with
their algebraic multiplicities.

For each of the matrices in Exercises 1 through 13, find all
real eigenvalues, with their algebraic multiplicities. Show
your work. Do not use technology.

1.
[

1 2
0 3

]
2.

⎡
⎢⎢⎣

2 0 0 0
2 1 0 0
2 1 2 0
2 1 2 1

⎤
⎥⎥⎦

3.
[

5 −4
2 −1

]
4.
[

0 4
−1 4

]

5.
[

11 −15
6 −7

]
6.
[

1 2
3 4

]

7. I3 8.

⎡
⎣−1 −1 −1

−1 −1 −1
−1 −1 −1

⎤
⎦

9.

⎡
⎣3 −2 5

1 0 7
0 0 2

⎤
⎦ 10.

⎡
⎣−3 0 4

0 −1 0
−2 7 3

⎤
⎦

11.

⎡
⎣5 1 −5

2 1 0
8 2 −7

⎤
⎦ 12.

⎡
⎢⎢⎣

2 −2 0 0
1 −1 0 0
0 0 3 −4
0 0 2 −3

⎤
⎥⎥⎦

13.

⎡
⎣0 1 0

0 0 1
1 0 0

⎤
⎦

14. Consider a 4 × 4 matrix A =
[

B C
0 D

]
, where B, C ,

and D are 2 × 2 matrices. What is the relationship
among the eigenvalues of A, B, C , and D?

15. Consider the matrix A =
[

1 k
1 1

]
, where k is an arbi-

trary constant. For which values of k does A have two
distinct real eigenvalues? When is there no real eigen-
value?

16. Consider the matrix A =
[

a b
b c

]
, where a, b, and c

are nonzero constants. For which values of a, b, and c
does A have two distinct eigenvalues?

17. Consider the matrix A =
[

a b
b −a

]
, where a and b are

arbitrary constants. Find all eigenvalues of A. Explain
in terms of the geometric interpretation of the linear
transformation T (�x) = A�x .

18. Consider the matrix A =
[

a b
b a

]
, where a and b are

arbitrary constants. Find all eigenvalues of A.

19. True or false? If the determinant of a 2 × 2 matrix A is
negative, then A has two distinct real eigenvalues.

20. If a 2 × 2 matrix A has two distinct eigenvalues λ1 and
λ2, show that A is diagonalizable.

21. Prove the part of Theorem 7.2.8 that concerns the trace:
If an n × n matrix A has n eigenvalues λ1, . . . , λn ,
listed with their algebraic multiplicities, then tr A =
λ1 + · · · + λn .

22. Consider an arbitrary n × n matrix A. What is the
relationship between the characteristic polynomials of
A and AT ? What does your answer tell you about the
eigenvalues of A and AT ?

23. Suppose matrix A is similar to B. What is the relation-
ship between the characteristic polynomials of A and
B? What does your answer tell you about the eigenval-
ues of A and B?

24. Find all eigenvalues of the positive transition matrix

A =
[

0.5 0.25
0.5 0.75

]
.

See Definitions 2.1.4 and 2.3.10.

25. Consider a positive transition matrix

A =
[

a b
c d

]
,

meaning that a, b, c, and d are positive numbers such
that a + c = b + d = 1. (The matrix in Exercise 24

has this form.) Verify that

[
b
c

]
and

[
1

−1

]
are eigenvec-

tors of A. What are the associated eigenvalues? Is the
absolute value of these eigenvalues more or less than 1?
Sketch a phase portrait.

26. Based on your answers in Exercises 24 and 25, sketch a
phase portrait of the dynamical system

�x(t + 1) =
[

0.5 0.25
0.5 0.75

]
�x(t).

27. a. Based on your answers in Exercises 24 and 25, find
closed formulas for the components of the dynami-
cal system

�x(t + 1) =
[

0.5 0.25
0.5 0.75

]
�x(t),

with initial value �x0 = �e1. Then do the same for the
initial value �x0 = �e2. Sketch the two trajectories.
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b. Consider the matrix

A =
[

0.5 0.25
0.5 0.75

]
.

Using technology, compute some powers of the ma-
trix A, say, A2, A5, A10, . . . . What do you observe?
Diagonalize matrix A to prove your conjecture. (Do
not use Theorem 2.3.11, which we have not proven
yet.)

c. If A =
[

a b
c d

]
is an arbitrary positive transition

matrix, what can you say about the powers At as t
goes to infinity? Your result proves Theorem 2.3.11c
for the special case of a positive transition matrix of
size 2 × 2.

28. Consider the isolated Swiss town of Andelfingen, in-
habited by 1,200 families. Each family takes a weekly
shopping trip to the only grocery store in town, run by
Mr. and Mrs. Wipf, until the day when a new, fancier
(and cheaper) chain store, Migros, opens its doors. It
is not expected that everybody will immediately run to
the new store, but we do anticipate that 20% of those
shopping at Wipf’s each week switch to Migros the
following week. Some people who do switch miss the
personal service (and the gossip) and switch back: We
expect that 10% of those shopping at Migros each week
go to Wipf’s the following week. The state of this town
(as far as grocery shopping is concerned) can be repre-
sented by the vector

�x(t) =
[
w(t)
m(t)

]
,

where w(t) and m(t) are the numbers of families shop-
ping at Wipf’s and at Migros, respectively, t weeks after
Migros opens. Suppose w(0) = 1,200 and m(0) = 0.
a. Find a 2 × 2 matrix A such that �x(t + 1) = A�x(t).

Verify that A is a positive transition matrix. See Ex-
ercise 25.

b. How many families will shop at each store after t
weeks? Give closed formulas.

c. The Wipfs expect that they must close down when
they have less than 250 customers a week. When
does that happen?

29. Consider an n × n matrix A such that the sum of the
entries in each row is 1. Show that the vector

�e =

⎡
⎢⎢⎢⎣

1
1
...

1

⎤
⎥⎥⎥⎦

in Rn is an eigenvector of A. What is the corresponding
eigenvalue?

30. In all parts of this problem, consider an n × n matrix
A such that all entries are positive and the sum of the

entries in each row is 1 (meaning that AT is a positive
transition matrix).
a. Consider an eigenvector �v of A with positive com-

ponents. Show that the associated eigenvalue is less
than or equal to 1. Hint: Consider the largest entry
vi of �v. What can you say about the i th entry of A�v?

b. Now we drop the requirement that the components
of the eigenvector �v be positive. Show that the asso-
ciated eigenvalue is less than or equal to 1 in abso-
lute value.

c. Show that λ = −1 fails to be an eigenvalue of A, and
show that the eigenvectors with eigenvalue 1 are the
vectors of the form ⎡

⎢⎢⎢⎣
c
c
...

c

⎤
⎥⎥⎥⎦ ,

where c is nonzero.

31. Consider a positive transition matrix A. Explain why 1
is an eigenvalue of A. What can you say about the other
eigenvalues? Is

�e =

⎡
⎢⎢⎢⎣

1
1
...

1

⎤
⎥⎥⎥⎦

necessarily an eigenvector? Hint: Consider Exercises
22, 29, and 30.

32. Consider the matrix

A =
⎡
⎣0 1 0

0 0 1
k 3 0

⎤
⎦ ,

where k is an arbitrary constant. For which values of k
does A have three distinct real eigenvalues? For which k
does A have two distinct eigenvalues? Hint: Graph the
function g(λ) = λ3 − 3λ. Find its local maxima and
minima.

33. a. Find the characteristic polynomial of the matrix

A =
⎡
⎣ 0 1 0

0 0 1
a b c

⎤
⎦ .

b. Can you find a 3 × 3 matrix M whose characteristic
polynomial is

−λ3 + 17λ2 − 5λ + π?

34. Suppose a certain 4 × 4 matrix A has two distinct real
eigenvalues. What could the algebraic multiplicities of
these eigenvalues be? Give an example for each possi-
ble case and sketch the characteristic polynomial.
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35. Give an example of a 4×4 matrix A without real eigen-
values.

36. For an arbitrary positive integer n, give a 2n×2n matrix
A without real eigenvalues.

37. Consider an eigenvalue λ0 of an n × n matrix A. We
are told that the algebraic multiplicity of λ0 exceeds 1.
Show that f ′

A(λ0) = 0 (i.e., the derivative of the char-
acteristic polynomial of A vanishes at λ0).

38. If A is a 2 × 2 matrix with tr A = 5 and det A = −14,
what are the eigenvalues of A?

39. If A and B are 2 × 2 matrices, show that tr(AB) =
tr(B A).

40. If A and B are n × n matrices, show that tr(AB) =
tr(B A).

41. If matrix A is similar to B, show that tr B = tr A. Hint:
Exercise 40 is helpful.

42. Consider two n×n matrices A and B such that B A = 0.
Show that tr

(
(A + B)2

) = tr(A2) + tr(B2). Hint: Exer-
cise 40 is helpful.

43. Do there exist n × n matrices A and B such that
AB − B A = In? Explain. Hint: Exercise 40 is helpful.

44. Do there exist invertible n × n matrices A and B such
that AB − B A = A? Explain.

45. For which value of the constant k does the matrix A =[−1 k
4 3

]
have 5 as an eigenvalue?

46. In all the parts of this problem, consider a matrix A =[
a b
c d

]
with the eigenvalues λ1 and λ2.

a. Show that λ2
1 + λ2

2 = a2 + d2 + 2bc.

b. Show that λ2
1 + λ2

2 ≤ a2 + b2 + c2 + d2.

c. For which matrices A does the equality λ2
1 + λ2

2 =
a2 + b2 + c2 + d2 hold?

47. For which 2 × 2 matrices A does there exist a nonzero

matrix M such that AM = M D, where D =
[

2 0
0 3

]
?

Give your answer in terms of the eigenvalues of A.

48. For which 2×2 matrices A does there exist an invertible

matrix S such that AS = SD, where D =
[

2 0
0 3

]
?

Give your answer in terms of the eigenvalues of A.

49. For which 3 × 3 matrices A does there exist a nonzero

matrix M such that AM = M D, where D =⎡
⎣2 0 0

0 3 0
0 0 4

⎤
⎦? Give your answer in terms of the eigen-

values of A.

50. In his groundbreaking text Ars Magna (Nuremberg,
1545), the Italian mathematician Gerolamo Cardano ex-
plains how to solve cubic equations. In Chapter XI, he
considers the following example:

x3 + 6x = 20.

a. Explain why this equation has exactly one (real)
solution. Here, this solution is easy to find by in-
spection. The point of the exercise is to show a
systematic way to find it.

b. Cardano explains his method as follows (we are us-
ing modern notation for the variables): “I take two
cubes v3 and u3 whose difference shall be 20, so
that the product vu shall be 2, that is, a third of
the coefficient of the unknown x . Then, I say that
v − u is the value of the unknown x .” Show that
if v and u are chosen as stated by Cardano, then
x = v − u is indeed the solution of the equation
x3 + 6x = 20.

c. Solve the system ∣∣∣∣v3 − u3 = 20
vu = 2

∣∣∣∣
to find u and v.

d. Consider the equation

x3 + px = q,

where p is positive. Using your work in parts (a),
(b), and (c) as a guide, show that the unique solution
of this equation is

x = 3

√
q

2
+
√(q

2

)2 +
( p

3

)3

− 3

√
−q

2
+
√(q

2

)2 +
( p

3

)3
.

This solution can also be written as

x = 3

√
q

2
+
√(q

2

)2 +
( p

3

)3

+ 3

√
q

2
−
√(q

2

)2 +
( p

3

)3
.

What can go wrong when p is negative?
e. Consider an arbitrary cubic equation

x3 + ax2 + bx + c = 0.

Show that the substitution x = t − (a/3) allows you
to write this equation as

t3 + pt = q.
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7.3 Finding the Eigenvectors of a Matrix

Having found an eigenvalue λ of an n × n matrix A, we will now turn our attention
to the corresponding eigenvectors. We have to find the vectors �v in Rn such that

A�v = λ�v, or (A − λIn)�v = �0.

In other words, we have to find the kernel of the matrix A −λIn . In this context, the
following definition is useful.

Definition 7.3.1 Eigenspaces

Consider an eigenvalue λ of an n × n matrix A. Then the kernel of the matrix
A − λIn is called the eigenspace associated with λ, denoted by Eλ:

Eλ = ker(A − λIn) = {�v in Rn : A�v = λ�v}.

Note that the eigenvectors with eigenvalue λ are the nonzero vectors in the
eigenspace Eλ.

EXAMPLE 1 Let T (�x) = A�x be the orthogonal projection onto a plane V in R3. Describe the
eigenspaces E1 and E0 geometrically. Is matrix A diagonalizable?

Solution
Eigenspace E1 consists of the solutions of the equation A�v = 1�v = �v; those are the
vectors on plane V . Thus, E1 = V .

Eigenspace E0 = ker A consists of the solutions of the equation A�v = 0�v = �0;
those are the vectors on the line V ⊥ perpendicular to plane V . See Figure 1.

We can construct an eigenbasis �v1, �v2, �v3 for A by choosing two linearly in-
dependent vectors �v1, �v2 in E1 = V and a nonzero vector �v3 in E0 = V ⊥. Thus,

matrix A is diagonalizable; namely, A is similar to B =
⎡
⎣1 0 0

0 1 0
0 0 0

⎤
⎦. �

E0: the vectors v�  
such that Av� = 0v� = 0�

V⊥

E1 = V: the vectors v�  
such that Av� = 1v� =  v� 

Figure 1

To find the eigenvectors associated with a known eigenvalue λ algebraically,
we seek a basis of the eigenspace Eλ = ker(A − λIn), a problem we can handle.
See Section 3.3.

EXAMPLE 2 Find the eigenspaces of the matrix A =
[

1 2
4 3

]
. Diagonalize matrix A if you can.
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Solution
In Example 1 of Section 7.2, we saw that the eigenvalues are 5 and −1. Now

E5 = ker(A − 5I2) = ker

[−4 2
4 −2

]
.

Finding the kernel amounts to finding the relations between the columns. In the case
of a 2 × 2 matrix, this can be done by inspection. Consider the Kyle numbers,

[ 1 2
−4 2

4 −2

]
,

so that

E5 = span

[
1
2

]
.

Similarly,

E−1 = ker(A + I2) = ker

[ 1 −1
2 2
4 4

]
= span

[
1

−1

]
.

We can (and should) check that the vectors we found are indeed eigenvectors of A,
with the eigenvalues we claim:[

1 2
4 3

] [
1
2

]
=
[

5
10

]
= 5

[
1
2

]
and [

1 2
4 3

] [
1

−1

]
=
[−1

1

]
= (−1)

[
1

−1

]
.

√E−1

E5

1
2

1
−1

Figure 2
Both eigenspaces are lines, as shown in Figure 2. The vectors

[
1
2

]
,

[
1

−1

]
form an

eigenbasis for A, so that A is diagonalizable, with S =
[

1 1
2 −1

]
and B =

[
5 0
0 −1

]
.

For peace of mind, we may want to check that AS = SB. �
Geometrically, the matrix A represents a scaling by a factor of 5 along the line

spanned by vector

[
1
2

]
, while the line spanned by

[
1

−1

]
is flipped over the origin.

EXAMPLE 3 Find the eigenspaces of

A =
⎡
⎣1 1 1

0 0 1
0 0 1

⎤
⎦ .

Diagonalize matrix A if you can.

Solution
The eigenvalues are 1 and 0, the diagonal entries of the upper triangular matrix A,
with algebraic multiplicities 2 and 1, respectively. Now

E1 = ker(A − I2) = ker

⎡
⎣

1 0 0
0 1 1
0 −1 1
0 0 0

⎤
⎦ = span

⎡
⎣1

0
0

⎤
⎦
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and

E0 = ker A = ker

⎡
⎣

−1 1 0
1 1 1
0 0 1
0 0 1

⎤
⎦ = span

⎡
⎣−1

1
0

⎤
⎦ .

Both eigenspaces are lines in the x1–x2-plane, as shown in Figure 3.

x3

−1

−1

1

1

x2

x1

E0 = span
−1

1
0

E1 = span
1
0
0

Figure 3

We can find only two linearly independent eigenvectors, one in each of the
eigenspaces E0 and E1, so that we are unable to construct an eigenbasis for A.
Thus, matrix A fails to be diagonalizable. �

Note that Example 3 is qualitatively different from Example 1, where we stud-
ied the orthogonal projection onto a plane in R3. There, too, we had two eigenval-
ues, 1 and 0, but one of the eigenspaces, E1, was a plane, while both eigenspaces in
Example 3 turn out to be lines.

To discuss these different cases, it is useful to introduce the following
terminology.

Definition 7.3.2 Geometric multiplicity

Consider an eigenvalue λ of an n × n matrix A. The dimension of eigenspace
Eλ = ker(A − λIn) is called the geometric multiplicity of eigenvalue λ, denoted
gemu(λ). Thus,

gemu(λ) = nullity(A − λIn) = n − rank(A − λIn)

Example 3 shows that the geometric multiplicity of an eigenvalue may be dif-
ferent from the algebraic multiplicity (but see Theorem 7.3.6). We have

almu(1) = 2,

but

gemu(1) = dim(E1) = 1.

Based on our findings in Examples 1 through 3, we can now tackle the main
questions of this chapter.
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a. Which square matrices A are diagonalizable; that is, when does there exist
an eigenbasis for A?

b. If eigenbases exist, how can we find one?

Consider an n × n matrix A. If the sum s of the geometric multiplicities of the
eigenvalues is less than n (as in Example 3, where s = 2 and n = 3), then there are
not enough linearly independent eigenvectors to form an eigenbasis. In fact, we can
find no more than s linearly independent eigenvectors.

Conversely, suppose that the geometric multiplicities of the eigenvalues do add
up to n, as in Examples 1 and 2. Can we construct an eigenbasis for A by finding a
basis of each eigenspace and concatenating8 these bases? This method does work in
Examples 1 and 2. Next we will state and prove that this approach works in general.

Theorem 7.3.3 Eigenbases and geometric multiplicities

a. Consider an n × n matrix A. If we find a basis of each eigenspace of A
and concatenate all these bases, then the resulting eigenvectors �v1, . . . , �vs

will be linearly independent. (Note that s is the sum of the geometric
multiplicities of the eigenvalues of A.) This result implies that s ≤ n.

b. Matrix A is diagonalizable if (and only if) the geometric multiplicities of
the eigenvalues add up to n (meaning that s = n in part a).

Proof a. We will argue indirectly, assuming that the eigenvectors �v1, . . . , �vs are lin-
early dependent. Let �vm be the first redundant vector in this list, with
�vm = c1�v1+· · ·+cm−1�vm−1. Suppose that A�vi = λi �vi . There must be at least
one nonzero coefficient ck such that λk �= λm , since �vm cannot be expressed
as a linear combination of vectors �vi that are all in the same eigenspace Eλm .
Multiplying the equation �vm = c1�v1 + · · · + ck �vk + · · · + cm−1�vm−1 by
A − λm In from the left, and realizing that (A − λm In)�vi = (λi − λm)�vi , we
find that

(λm − λm)�vm = �0
= (λ1 − λm)c1�v1 + · · · + (λk − λm)ck︸ ︷︷ ︸

�=0

�vk + · · · + (λm−1 − λm)cm−1�vm−1.

This is a nontrivial relation among vectors �v1, . . . , �vm−1, contradicting our
assumption that �vm is the first redundant vector in the list.

b. This claim follows directly from part a. There exists an eigenbasis if (and
only if) s = n in part a. �

Here is an important special case of Theorem 7.3.3.

Theorem 7.3.4 An n × n matrix with n distinct eigenvalues

If an n ×n matrix A has n distinct eigenvalues, then A is diagonalizable. We can
construct an eigenbasis by finding an eigenvector for each eigenvalue.

8 The concatenation of two lists (a1, a2, . . . , ap) and (b1, b2, . . . , bq) is the list (a1, a2, . . . , ap,

b1, b2, . . . , bq ).
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EXAMPLE 4 Is the following matrix A diagonalizable?

A =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 2 3 4 5 6
0 2 3 4 5 6
0 0 3 4 5 6
0 0 0 4 5 6
0 0 0 0 5 6
0 0 0 0 0 6

⎤
⎥⎥⎥⎥⎥⎥⎦

Solution
Yes, since the 6 × 6 matrix A has six distinct eigenvalues, namely, the diagonal
entries 1, 2, 3, 4, 5, 6. �

Eigenvalues and Similarity
If matrix A is similar to B, what is the relationship between the eigenvalues of A
and B? The following theorem shows that this relationship is very close indeed.

Theorem 7.3.5 The eigenvalues of similar matrices

Suppose matrix A is similar to B. Then

a. Matrices A and B have the same characteristic polynomial; that is,
f A(λ) = fB(λ).

b. rank A = rank B and nullity A = nullity B.

c. Matrices A and B have the same eigenvalues, with the same algebraic
and geometric multiplicities. (However, the eigenvectors need not be the
same.)

d. Matrices A and B have the same determinant and the same trace:
det A = det B and tr A = tr B.

Proof a. If B = S−1 AS, then fB(λ) = det(B − λIn) = det(S−1 AS − λIn) =
det
(

S−1(A − λIn)S
) = (det S)−1 det(A − λIn) det(S) = (det S)−1(det S)

det(A − λIn) = det(A − λIn) = f A(λ) for all scalars λ.

b. See Exercises 71 and 72 of Section 3.4. An alternative proof is suggested in
Exercise 34 of this section.

c. It follows from part a that matrices A and B have the same eigenvalues, with
the same algebraic multiplicities. See Theorem 7.2.1 and Definition 7.2.6.
As for the geometric multiplicity, note that A −λIn is similar to B −λIn for
all λ (see Exercise 33), so that nullity(A − λIn) = nullity(B − λIn) for all
eigenvalues λ, by part b. See Definition 7.3.2.

d. These equations follow from part a and Theorem 7.2.5: Trace and determi-
nant are coefficients of the characteristic polynomial, up to signs. �

EXAMPLE 5 Is the matrix A =
[

2 3
5 7

]
similar to B =

[
3 2
8 5

]
?

Solution
No, since tr A = 9 and tr B = 8. See Theorem 7.3.5d. �
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Earlier in this section we observed that the algebraic and the geometric mul-
tiplicity of an eigenvalue are not necessarily the same. However, the following in-
equality always holds.

Theorem 7.3.6 Algebraic versus geometric multiplicity

If λ is an eigenvalue of a square matrix A, then

gemu(λ) ≤ almu(λ).

Proof Suppose λ0 is an eigenvalue of an n × n matrix A, with geometric multiplicity m,
meaning that the dimension of eigenspace Eλ0 is m. Let �v1, . . . , �vm be a basis of Eλ0 ,
and consider an invertible n × n matrix S whose first m columns are �v1, . . . , �vm .
(How would you find such an S?) Let B = S−1 AS, a matrix similar to A. Now
compute B�ei , for i = 1, . . . , m, keeping in mind that S�ei = �vi , and therefore
S−1�vi = �ei : (ith column of B) = B�ei = S−1 AS�ei = S−1 A�vi = S−1(λ0�vi ) =
λ0(S−1�vi ) = λ0�ei . This computation shows that the first m columns of B look like
those of λ0 In .

m︷ ︸︸ ︷

B =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

λ0 0 · · · 0 ∗ · · · ∗
0 λ0 · · · 0 ∗ · · · ∗
...

...
. . .

...
...

...
...

0 0 · · · λ0 ∗ · · · ∗
0 0 · · · 0 ∗ · · · ∗
...

...
...

...
...

. . .
...

0 0 · · · 0 ∗ · · · ∗

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=
[
λ0 Im P

0 Q

]

Since B is similar to A, we have

f A(λ)

step 1︷︸︸︷= fB(λ) = det(B − λIn)

step 3︷︸︸︷= (λ0 − λ)m fQ(λ),

showing that the algebraic multiplicity of eigenvalue λ0 is at least m, as claimed. In
step 1 we use Theorem 7.3.5a, and in step 3 we use Theorem 6.1.5. �

We conclude this section with a summary on diagonalization.

Theorem 7.3.7 Strategy for Diagonalization

Suppose we are asked to determine whether a given n × n matrix A is diago-
nalizable. If so, we wish to find an invertible matrix S such that S−1 AS = B is
diagonal.

We can proceed as follows.

a. Find the eigenvalues of A by solving the characteristic equation

f A(λ) = det(A − λIn) = 0.

b. For each eigenvalue λ, find a basis of the eigenspace

Eλ = ker(A − λIn).

c. Matrix A is diagonalizable if (and only if) the dimensions of the
eigenspaces add up to n. In this case, we find an eigenbasis �v1, . . . , �vn
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for A by concatenating the bases of the eigenspaces we found in part b.
Let

S =
⎡
⎣ | | |

�v1 �v2 . . . �vn

| | |

⎤
⎦ . Then S−1 AS = B =

⎡
⎢⎢⎣

λ1 0 . . . 0
0 λ2 . . . 0
...

...
. . .

...

0 0 . . . λn

⎤
⎥⎥⎦ ,

where λ j is the eigenvalue associated with �v j .

EXERCISES 7.3
GOAL For a given eigenvalue, find a basis of the
associated eigenspace. Use the geometric multiplicities
of the eigenvalues to determine whether a matrix is
diagonalizable.

For each of the matrices A in Exercises 1 through 20, find
all (real) eigenvalues. Then find a basis of each eigenspace,
and diagonalize A, if you can. Do not use technology.

1.
[

7 8
0 9

]
2.
[

1 1
1 1

]

3.
[

6 3
2 7

]
4.
[

0 −1
1 2

]

5.
[

4 5
−2 −2

]
6.
[

2 3
4 5

]

7.

⎡
⎣1 0 0

0 2 0
0 0 3

⎤
⎦ 8.

⎡
⎣1 1 0

0 2 2
0 0 3

⎤
⎦

9.

⎡
⎣1 0 1

0 1 0
0 0 0

⎤
⎦ 10.

⎡
⎣1 1 0

0 1 0
0 0 0

⎤
⎦

11.

⎡
⎣1 1 1

1 1 1
1 1 1

⎤
⎦ 12.

⎡
⎣1 1 0

0 1 1
0 0 1

⎤
⎦

13.

⎡
⎣ 3 0 −2

−7 0 4
4 0 −3

⎤
⎦ 14.

⎡
⎣ 1 0 0

−5 0 2
0 0 1

⎤
⎦

15.

⎡
⎣−1 0 1

−3 0 1
−4 0 3

⎤
⎦ 16.

⎡
⎣1 1 0

0 −1 −1
2 2 0

⎤
⎦

17.

⎡
⎢⎢⎣

0 0 0 0
0 1 1 0
0 0 0 0
0 0 0 1

⎤
⎥⎥⎦ 18.

⎡
⎢⎢⎣

0 0 0 0
0 1 0 1
0 0 0 0
0 0 0 1

⎤
⎥⎥⎦

19. A =
⎡
⎣1 1 1

0 1 0
0 1 0

⎤
⎦ 20. A =

⎡
⎣1 0 1

1 1 1
1 0 1

⎤
⎦

21. Find a 2 × 2 matrix A for which

E1 = span

[
1
2

]
and E2 = span

[
2
3

]
.

How many such matrices are there?

22. Find all 2 × 2 matrices A for which

E7 = R2.

23. Find all eigenvalues and eigenvectors of A =
[

1 1
0 1

]
.

Is there an eigenbasis? Interpret your result geometri-
cally.

24. Find a 2 × 2 matrix A for which

E1 = span

[
2
1

]
is the only eigenspace.

25. What can you say about the geometric multiplicity of
the eigenvalues of a matrix of the form

A =
⎡
⎣ 0 1 0

0 0 1
a b c

⎤
⎦ ,

where a, b, c are arbitrary constants?

26. Show that if a 6 × 6 matrix A has a negative determi-
nant, then A has at least one positive eigenvalue. Hint:
Sketch the graph of the characteristic polynomial.

27. Consider a 2 × 2 matrix A. Suppose that tr A = 5 and
det A = 6. Find the eigenvalues of A.

28. Consider the matrix

Jn(k) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

k 1 0 . . . 0 0
0 k 1 . . . 0 0
0 0 k . . . 0 0
...

...
...

. . .
...

...

0 0 0 . . . k 1
0 0 0 . . . 0 k

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(with all k’s on the diagonal and 1’s directly above),
where k is an arbitrary constant. Find the eigenvalue(s)
of Jn(k), and determine their algebraic and geometric
multiplicities.
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29. Consider a diagonal n × n matrix A with rank A = r <

n. Find the algebraic and the geometric multiplicity of
the eigenvalue 0 of A in terms of r and n.

30. Consider an upper triangular n × n matrix A with aii �=
0 for i = 1, 2, . . . , m and aii = 0 for i = m + 1, . . . , n.
Find the algebraic multiplicity of the eigenvalue 0 of A.
Without using Theorem 7.3.6, what can you say about
the geometric multiplicity?

31. Suppose there is an eigenbasis for a matrix A. What
is the relationship between the algebraic and geometric
multiplicities of its eigenvalues?

32. Consider an eigenvalue λ of an n × n matrix A. We
know that λ is an eigenvalue of AT as well (since A and
AT have the same characteristic polynomial). Compare
the geometric multiplicities of λ as an eigenvalue of A
and AT .

33. Show that if matrix A is similar to B, then A − λIn is
similar to B − λIn , for all scalars λ.

34. Suppose that B = S−1 AS for some n×n matrices A, B,
and S.
a. Show that if �x is in ker B, then S�x is in ker A.
b. Show that the linear transformation T (�x) = S�x

from ker B to ker A is an isomorphism.
c. Show that nullity A = nullity B and rank A =

rank B.

35. Is matrix

[
1 2
0 3

]
similar to

[
3 0
1 2

]
?

36. Is matrix

[
0 1
5 3

]
similar to

[
1 2
4 3

]
?

37. Consider a symmetric n × n matrix A.
a. Show that if �v and �w are two vectors in Rn , then

A�v · �w = �v · A �w.

b. Show that if �v and �w are two eigenvectors of A, with
distinct eigenvalues, then �w is orthogonal to �v.

38. Consider a rotation T (�x) = A�x in R3. (That is, A is
an orthogonal 3 × 3 matrix with determinant 1.) Show
that T has a nonzero fixed point [i.e., a vector �v with
T (�v) = �v]. This result is known as Euler’s theorem,
after the great Swiss mathematician Leonhard Euler
(1707–1783). Hint: Consider the characteristic polyno-
mial f A(λ). Pay attention to the intercepts with both
axes. Use Theorem 7.1.4.

39. Consider a subspace V of Rn with dim(V ) = m.
a. Suppose the n × n matrix A represents the orthog-

onal projection onto V . What can you say about the
eigenvalues of A and their algebraic and geometric
multiplicities?

b. Suppose the n × n matrix B represents the
reflection about V . What can you say about the

eigenvalues of B and their algebraic and geometric
multiplicities?

For which values of constants a, b, and c are the matrices
in Exercises 40 through 50 diagonalizable?

40.
[

1 a
0 1

]

41.
[

1 a
0 2

]
42.
[

1 a
0 b

]

43.
[

1 1
a 1

]
44.
[

a b
b c

]

45.

⎡
⎣1 a b

0 2 c
0 0 3

⎤
⎦ 46.

⎡
⎣1 a b

0 2 c
0 0 1

⎤
⎦

47.

⎡
⎣1 a b

0 1 c
0 0 1

⎤
⎦ 48.

⎡
⎣0 0 0

1 0 a
0 1 0

⎤
⎦

49.

⎡
⎣0 0 a

1 0 0
0 1 0

⎤
⎦ 50.

⎡
⎣0 0 a

1 0 3
0 1 0

⎤
⎦

51. Find the characteristic polynomial of the matrix

A =
⎡
⎣0 0 a

1 0 b
0 1 c

⎤
⎦, where a, b, and c are arbitrary

constants.

52. Find the characteristic polynomial of the n × n matrix

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 · · · 0 a0

1 0 0 · · · 0 a1

0 1 0 · · · 0 a2
...

...
...

. . .
...

...

0 0 0 · · · 0 an−2

0 0 0 · · · 1 an−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.

Note that the i th column of A is �ei+1, for i =
1, . . . , n −1, while the last column has the arbitrary en-
tries a0, . . . , an−1. See Exercise 51 for the special case
n = 3.

53. Consider a 5×5 matrix A and a vector �v in R5. Suppose
the vectors �v, A�v, A2�v are linearly independent, while
A3�v = a�v + bA�v + cA2�v for some scalars a, b, c. We
can take the linearly independent vectors �v, A�v, A2�v
and expand them to a basis � = (�v, A�v, A2�v, �w4, �w5)

of R5.
a. Consider the matrix B of the linear transformation

T (�x) = A�x with respect to the basis �. Write the
entries of the first three columns of B. (Note that we
do not know anything about the entries of the last
two columns of B.)

b. Explain why f A(λ) = fB(λ) = h(λ)(−λ3 + cλ2 +
bλ + a), for some quadratic polynomial h(λ). See
Exercise 51.



7.4 More on Dynamical Systems 347

c. Explain why f A(A)�v = �0. Here, f A(A) is the
characteristic polynomial evaluated at A, that is, if
f A(λ) = cnλn + · · · + c1λ + c0, then f A(A) =
cn An + · · · + c1 A + c0 In .

54. Consider an n × n matrix A and a vector �v in Rn . Form
the vectors �v, A�v, A2�v, A3�v, . . . , and let Am �v be the
first redundant vector in this list. Then the m vectors
�v, A�v, A2�v, . . . , Am−1�v are linearly independent; note
that m ≤ n. Since Am �v is redundant, we can write
Am �v = a0�v + a1 A�v + a2 A2�v + · · · + am−1 Am−1�v
for some scalars a0, . . . , am−1. Form a basis � =
(�v, A�v, A2�v, . . . , Am−1�v, �wm+1, . . . , �wn) of Rn .
a. Consider the matrix B of the linear transformation

T (�x) = A�x with respect to the basis �. Write B

in block form, B =
[

B11 B12

B21 B22

]
, where B11 is an

m×m matrix. Describe B11 column by column, pay-
ing particular attention to the mth column. What can
you say about B21? (Note that we do not know any-
thing about the entries of B12 and B22.)

b. Explain why f A(λ) = fB(λ) = fB22(λ) fB11(λ) =
(−1)m fB22(λ)(λm − am−1λ

m−1 − · · · − a1λ − a0).
See Exercise 52.

c. Explain why f A(A)�v = �0. See Exercise 53.

d. Explain why f A(A) = 0.

The equation f A(A) = 0 is referred to as the
Cayley–Hamilton theorem: A square matrix satisfies
its characteristic polynomial. The English mathemati-
cian Arthur Cayley (1821–1895) played a leading role
in the development of the algebra of matrices, and
the Irish mathematician Sir William Rowan Hamilton
(1805–1865) is best remembered today for his dis-
covery of the quaternions. See Exercises 5.3.64 and
7.5.37.

55. Give an example of a 3 × 3 matrix A with nonzero in-
teger entries such that 7 is an eigenvalue of A.

56. Give an example of a 3 × 3 matrix A with nonzero in-
teger entries such that 1, 2, and 3 are the eigenvalues
of A.

7.4 More on Dynamical Systems

In Section 7.1 we learned how to use eigenbases and diagonalization to analyze the
dynamical system

�x(t + 1) = A�x(t), or �x(t) = At �x0.

Take another look at Theorem 7.1.6.
Now that we know how to find the eigenvalues and the eigenvectors of a matrix,

let us work two more examples of dynamical systems.

EXAMPLE 1 As in Example 9 of Section 2.1, consider a “mini-Web” with only three pages,
labeled 1, 2, and 3. Initially there is an equal number of surfers on each page, mean-
ing that the initial distribution vector is

�x0 =
⎡
⎣1/3

1/3
1/3

⎤
⎦ .

At the blow of a whistle, some surfers will move on to a different page, in a way
described by the transition matrix

A =
⎡
⎣0.7 0.1 0.2

0.2 0.4 0.2
0.1 0.5 0.6

⎤
⎦ .

For example, the entries of the first column of A tell us that 20% of those who
are initially on Page 1 will move to Page 2, while 10% will move to Page 3 and
70% will stay on Page 1. (These are not the rules of transition we considered when
defining PageRank.)
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We can represent the rules of transition in a diagram:

20%

20%

3

1

2

20% 50%

10%

10%

After one transition, the distribution of the surfers will be

A�x0 =
⎡
⎣1/3

4/15
2/5

⎤
⎦ ≈
⎡
⎣0.333

0.267
0.4

⎤
⎦ .

If we iterate this transition t times, the final distribution will be At �x0.

a. Find a closed formula for At �x0, expressing the vector At �x0 as a function of t .

b. What happens in the long run? Find lim
t→∞ At �x0 if it exists.

Solution
a. Following the strategy outlined in Theorem 7.1.6, we wish to construct an

eigenbasis for A. Using technology, we find the eigenvalues λ1 = 1, λ2 =
0.5, and λ3 = 0.2 of A.

At this point, we know that matrix A is diagonalizable, by Theo-
rem 7.3.4.

A straightforward but tedious computation, involving nothing more than
finding some reduced row-echelon forms, reveals that

E1 = span

⎡
⎣7

5
8

⎤
⎦ , E0.5 = span

⎡
⎣ 1

0
−1

⎤
⎦ , E0.2 = span

⎡
⎣−1

−3
4

⎤
⎦ .

Thus, we have the eigenbasis �v1 =
⎡
⎣7

5
8

⎤
⎦, �v2 =

⎡
⎣ 1

0
−1

⎤
⎦, �v3 =

⎡
⎣−1

−3
4

⎤
⎦.

Next we need to find the coordinates c1, c2, c3 of the initial state vector
�x0 with respect to the given eigenbasis �v1, �v2, �v3. It turns out that

�x0 = c1�v1 + c2�v2 + c3�v3 = 1

20
�v1 − 2

45
�v2 − 1

36
�v3.

Using the formula derived in Theorem 7.1.6, we have

At �x0 = c1λ
t
1�v1 + c2λ

t
2�v2 + c3λ

t
3�v3

= 1

20

⎡
⎣7

5
8

⎤
⎦− 2

45
(0.5)t

⎡
⎣ 1

0
−1

⎤
⎦− 1

36
(0.2)t

⎡
⎣−1

−3
4

⎤
⎦ .

For example, the proportion of surfers on Page 1 after t iterations will be

7

20
− 2

45
(0.5)t + 1

36
(0.2)t .
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In the long run, as we let t go to infinity, this proportion will approach 7
20 =

35%, since the other two terms, 2
45 (0.5)t and 1

36 (0.2)t , decay exponentially.

b. lim
t→∞(At �x0) = 1

20

⎡
⎣7

5
8

⎤
⎦ =
⎡
⎣35%

25%
40%

⎤
⎦, since the other two terms go to �0. See

our work at the end of part a. In the long run, the proportions of surfers on
the three pages will approach 35%, 25%, and 40%, respectively. Note that
this limit is the unique distribution vector that is an eigenvector of A with
eigenvalue 1. With the terminology of Theorem 2.3.11, this is the equilib-
rium distribution for A,

�xequ = 1

20

⎡
⎣7

5
8

⎤
⎦ .

In summary, lim
t→∞(At �x0) = �xequ. �

We will now state and prove that the equation lim
t→∞(At �x0) = �xequ holds in

fact for all diagonalizable regular transition matrices A, regardless of the initial
distribution �x0. See Definition 2.3.10 and Theorem 2.3.11.

Theorem 7.4.1 Equilibria for regular transition matrices

Let A be a regular transition matrix of size n × n.

a. There exists exactly one distribution vector �x in Rn such that A�x = �x ,
meaning that �x is an eigenvector with eigenvalue 1. This is called the
equilibrium distribution for A, denoted �xequ. All components of �xequ are
positive.

b. If �x0 is any distribution vector in Rn , then lim
t→∞(At �x0) = �xequ .

c. lim
t→∞ At =

⎡
⎣ | |

�xequ . . . �xequ

| |

⎤
⎦, the matrix whose columns are all �xequ .

Proof In this introductory text, we will prove Theorem 7.4.1 for diagonalizable matrices
only.9 We will prove parts a and b together. Part c follows easily from part b since

lim
t→∞ At = lim

t→∞

⎡
⎣ | |

At�e1 . . . At�en

| |

⎤
⎦ =
⎡
⎣ | |

�xequ . . . �xequ

| |

⎤
⎦. Note that �e1, . . . . �en are

distribution vectors, so that lim
t→∞(At�e j ) = �xequ by part b.

In Exercises 7.2.30, 7.2.31, and 7.3.32, we have seen the following facts con-
cerning the eigenvalues of a positive transition matrix A:

• λ = 1 is an eigenvalue of A with gemu(1) = 1.
• If λ �= 1 is an eigenvalue of A, then |λ| < 1, so that lim

t→∞ λt = 0.

9Here we consider a matrix A that is diagonalizable over R. However, our proof can easily be adapted
to the case of a matrix that is diagonalizable over C, as illustrated in Exercises 7.5.31 and 7.5.32. In
Section 7.5, we will see that “most” square matrices are diagonalizable over C.
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In Exercise 53, you will be asked to prove the analogous results for the eigenvalues
of a regular transition matrix.

Since A is assumed to be diagonalizable, there exists an eigenbasis �v1, . . . , �vn

for A, with associated eigenvalues λ1, . . . , λn . We can order the eigenvectors so that
λ1 = 1 and |λ j | < 1 for j = 2, . . . , n. Now we can write

�x0 = c1�v1 + c2�v2 + · · · + cn�vn.

Then

At �x0 = c1λ
t
1�v1 + c2λ

t
2�v2 + · · · + cnλ

t
n�vn = c1�v1 + c2λ

t
2�v2 + · · · + cnλ

t
n�vn

and

lim
t→∞(At �x0) = lim

t→∞(c1�v1 + c2λ
t
2�v2 + · · · + cnλ

t
n�vn︸ ︷︷ ︸

↘�0

) = c1�v1.

Since At �x0 is a distribution vector for all t , so is lim
t→∞(At �x0) = c1�v1, by the sum

rule for limits. Also, c1�v1 is an eigenvector with eigenvalue 1, so that it is an equi-
librium distribution. Since the eigenspace E1 is one-dimensional, this equilibrium
distribution is in fact unique, and we can denote it by �xequ . By Exercise 2.3.83, all
the components of �xequ are positive. �

We can interpret part b of Theorem 7.4.1 geometrically. Let Dn be the set of all
distribution vectors in Rn , that is, vectors �x with components x1, . . . , xn such that
x1 + · · · + xn = 1 and x j ≥ 0 for all j . For example, for n = 3, the set D3 is the
portion of the plane x1 + x2 + x3 = 1 in the first octant, the triangle with its vertices
at (1,0,0), (0,1,0), and (0,0,1). See Figure 1. We know that a transition matrix A
maps Dn into Dn , by Definition 2.1.4.

For a regular transition matrix A, the equilibrium distribution xequ sits some-
where on this set Dn , and all the other trajectories At �x0, for any other point �x0 on
Dn , will approach �xequ as we let t go to infinity. The phase portrait in Figure 1
illustrates the case n = 3.

x�equx�0

x3

x1

x2

D3

1

1

1

Figure 1
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Let’s work one more example to show a different approach to dynamical
systems.

EXAMPLE 2 Consider the positive transition matrix A =
[

0.4 0.3
0.6 0.7

]
.

a. Use diagonalization to find a closed formula for At . Compute lim
t→∞ At .

b. Find a closed formula for the dynamical system At

[
0.5
0.5

]
and compute

lim
t→∞

(
At

[
0.5
0.5

])
.

Solution

a. The characteristic polynomial of A is f A(λ) = λ2 − 1.1λ + 0.1 =
(λ − 1)(λ − 0.1), so that the eigenvalues are 1 and 0.1.

Now E1 =ker

[−0.6 0.3
0.6 −0.3

]
= span

[
1
2

]
and E0.1 =ker

[
0.3 0.3
0.6 0.6

]
=

span

[
1

−1

]
. We can diagonalize A with S =

[
1 1
2 −1

]
and B =

[
1 0
0 0.1

]
.

Then S−1 AS = B and A = SBS−1, so that

At = SBt S−1 = 1

3

[
1 1
2 −1

] [
1 0
0 (0.1)t

] [
1 1
2 −1

]
= 1

3

[
1 + 2(0.1)t 1 − (0.1)t

2 − 2(0.1)t 2 + (0.1)t

]
.

Now lim
t→∞ At = lim

t→∞

(
1

3

[
1 + 2(0.1)t 1 − (0.1)t

2 − 2(0.1)t 2 + (0.1)t

])
= 1

3

[
1 1
2 2

]
.

b. At

[
0.5
0.5

]
= 1

6

[
1 + 2(0.1)t 1 − (0.1)t

2 − 2(0.1)t 2 + (0.1)t

] [
1
1

]
= 1

6

[
2 + (0.1)t

4 − (0.1)t

]
and

lim
t→∞

(
At

[
0.5
0.5

])
= lim

t→∞

(
1

6

[
2 + (0.1)t

4 − (0.1)t

])
= 1

3

[
1
2

]
.

�
Let us summarize the technique we used in Example 2a.

Theorem 7.4.2 Powers of a diagonalizable matrix

If

S−1 AS = B =

⎡
⎢⎢⎢⎣

λ1 0 . . . 0

0 λ2 . . . 0
...

...
. . .

...

0 0 . . . λn

⎤
⎥⎥⎥⎦ ,

then

At = SBt S−1 = S

⎡
⎢⎢⎢⎣

λt
1 0 . . . 0

0 λt
2 . . . 0

...
...

. . .
...

0 0 . . . λt
n

⎤
⎥⎥⎥⎦ S−1.
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The Eigenvalues of a Linear Transformation
(for those who have studied Chapter 4)
In the preceding three sections, we developed the theory of eigenvalues and eigen-
vectors for n × n matrices, or, equivalently, for linear transformations T (�x) = A�x
from Rn to Rn . These concepts can be generalized to linear transformations from V
to V , where V is any linear space. In the case of a finite dimensional space V , we
can generalize the idea of diagonalization as well.

Definition 7.4.3 The eigenvalues of a linear transformation

Consider a linear transformation T from V to V , where V is a linear space. A
scalar λ is called an eigenvalue of T if there exists a nonzero element f of V
such that

T ( f ) = λ f.

Such an f is called an eigenfunction if V consists of functions, an eigenma-
trix if V consists of matrices, and so on. In theoretical work, the inclusive term
eigenvector is often used for f .

Now suppose that V is finite dimensional. Then a basis � of V consisting
of eigenvectors of T is called an eigenbasis for T . We say that transformation
T is diagonalizable if the matrix of T with respect to some basis is diagonal.
Transformation T is diagonalizable if (and only if) there exists an eigenbasis for
T . See Theorem 7.1.3.

EXAMPLE 3 Consider the linear transformation D( f ) = f ′ (the derivative) from C∞ to C∞.
Show that all real numbers are eigenvalues of D. Hint: Apply D to exponential
functions.

Solution
Following the hint, we observe that D(ex) = (ex)′ = ex = 1ex . This shows that ex

is an eigenfunction of D, with associated eigenvalue 1. More generally,

D(ekx ) = (ekx)′ = k(ekx ) (use the chain rule),

showing that ekx is an eigenfunction of D with associated eigenvalue k. Here k can
be any real number, proving our claim. �

EXAMPLE 4 Consider the linear transformation L(A) = AT (the transpose10) from R2×2 to
R2×2. Is transformation L diagonalizable? If so, find an eigenbasis for L . Hint:
Consider symmetric and skew-symmetric matrices.

Solution
If A is symmetric, then L(A) = AT = A = 1A, so that A is an eigenmatrix

with eigenvalue 1. The symmetric 2×2 matrices

[
a b
b c

]
form a three-dimensional

space, with basis [
1 0
0 0

]
,

[
0 1
1 0

]
,

[
0 0
0 1

]
.

We need only one more matrix to form an eigenbasis for L , since R2×2 is four-
dimensional.

10 If you have skipped Chapter 5, read Definition 5.3.5 and Examples 5 and 6 following that definition.
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If A is skew symmetric, then L(A) = AT = −A = (−1)A, so that A is an

eigenmatrix with eigenvalue −1. The skew-symmetric 2 × 2 matrices

[
0 a

−a 0

]
form a one-dimensional space, with basis

[
0 1

−1 0

]
.

We have found enough eigenmatrices to form an eigenbasis for L:[
1 0
0 0

]
,

[
0 1
1 0

]
,

[
0 0
0 1

]
,

[
0 1

−1 0

]
.

Thus, L is diagonalizable. �
EXAMPLE 5 Consider the linear transformation T

(
f (x)
) = f (2x − 1) from P2 to P2. Is trans-

formation T diagonalizable? If so, find an eigenbasis � and the �-matrix B of T .

Solution
Here it would be hard to find eigenvalues and eigenfunctions “by inspection”; we
need a systematic approach. The idea is to find the matrix A of T with respect to
some convenient basis �. Then we can determine whether A is diagonalizable, and,
if so, we can find an eigenbasis for A. Finally we can transform this basis back into
P2 to find an eigenbasis � for T .

We will use a commutative diagram to find the matrix A of T with respect to
the standard basis � = (1, x, x2).

a + bx + cx2 T−−−−−−−−−−−−→
T (a + bx + cx2)

= a + b(2x − 1) + c(2x − 1)2

= a − b + c + (2b − 4c)x + 4cx2

� �
L� L�⎡
⎣a

b
c

⎤
⎦ −−−−−−−−−−−−→

A =
⎡
⎣1 −1 1

0 2 −4
0 0 4

⎤
⎦

⎡
⎣a − b + c

2b − 4c
4c

⎤
⎦

The upper triangular matrix A has the three distinct eigenvalues, 1, 2, and 4, so that
A is diagonalizable, by Theorem 7.3.4. A straightforward computation produces the
eigenbasis ⎡

⎣1
0
0

⎤
⎦ ,

⎡
⎣−1

1
0

⎤
⎦ ,

⎡
⎣ 1

−2
1

⎤
⎦

for A. Transforming these vectors back into P2, we find the eigenbasis � for T
consisting of

1, x − 1, x2 − 2x + 1 = (x − 1)2.

To check our work, we can verify that these are indeed eigenfunctions of T :

T (1) = 1

T (x − 1) = (2x − 1) − 1 = 2x − 2 = 2(x − 1)

T
(
(x − 1)2) = ((2x − 1) − 1

)2 = (2x − 2)2 = 4(x − 1)2.
√

The �-matrix of T is

B =
⎡
⎣1 0 0

0 2 0
0 0 4

⎤
⎦ .
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Consider Figure 2, where

S =
⎡
⎣1 −1 1

0 1 −2
0 0 1

⎤
⎦

is the change of basis matrix from � to �. �
[

f
]

�

�
�
�
��

�
�
�
��

�
�
�
��

�
�
�
��

� �

A−−−−−−−−−−−−−−−−−−−−−−−−−−→
[
T ( f )
]

�

L� L�

S f
T−−−−−−−−−−→ T ( f ) S

L� L�[
f
]

� −−−−−−−−−−−−−−−−−−−−−−−−−−→
B

[
T ( f )
]

�

Figure 2

EXAMPLE 6 Let V be the space of all infinite sequences of real numbers. We define the linear
transformation

T (x0, x1, x2, x3, x4, . . . ) = (x1, x2, x3, x4, . . . )

from V to V (we omit the first term, x0). Find all the eigenvalues and eigense-
quences of T .

Solution
Since V is infinite dimensional, we cannot use the matrix techniques of Example 5
here. We have to go back to the definition of an eigenvalue: For a fixed scalar λ, we
are looking for the infinite sequences (x0, x1, x2, x3, . . . ) such that

T (x0, x1, x2, x3, . . . ) = λ(x0, x1, x2, x3, . . . )

or

(x1, x2, x3, . . . ) = λ(x0, x1, x2, x3, . . . )

or

x1 = λx0, x2 = λx1 = λ2x0, x3 = λx2 = λ3x0, . . . .

The solutions are the geometric sequences of the form

(x0, λx0, λ
2x0, λ

3x0, . . . ) = x0(1, λ, λ2, λ3, . . . ).

Thus, all real numbers λ are eigenvalues of T , and the eigenspace Eλ is one-
dimensional for all λ, with the geometric sequence (1, λ, λ2, λ3, . . . ) as a basis.

For example, when λ = 3, we have

T (1, 3, 9, 27, 81, . . . ) = (3, 9, 27, 81, . . . ) = 3(1, 3, 9, 27, . . . ),

demonstrating that (1, 3, 9, 27, 81, . . . ) is an eigensequence of T with eigenvalue 3.
�



7.4 More on Dynamical Systems 355

EXERCISES 7.4
For the matrices A in Exercises 1 through 12, find closed
formulas for At , where t is an arbitrary positive integer.
Follow the strategy outlined in Theorem 7.4.2 and illus-
trated in Example 2. In Exercises 9 though 12, feel free to
use technology.

1. A =
[

1 2
0 3

]
2. A =

[
2 0
1 3

]

3. A =
[

1 2
4 3

]
4. A =

[
4 −2
1 1

]

5. A =
[

1 2
3 6

]
6. A =

[
1 1
2 2

]

7. A =
[

0.5 0.25
0.5 0.75

]
8. A =

[
0.8 0.6
0.2 0.4

]

9. A =
⎡
⎣ 0 0 0

1 −1 0
0 1 1

⎤
⎦ 10. A =

⎡
⎣ 1 1 1

0 0 1
0 0 2

⎤
⎦

11. A =
⎡
⎣ 1 0 −1

−2 −1 −2
1 1 3

⎤
⎦ 12. A =

⎡
⎣ 0.3 0.1 0.3

0.4 0.6 0.4
0.3 0.3 0.3

⎤
⎦

For the matrices A and the vectors �x0 in Exercises 13
through 19, find closed formulas for At�x0, where t is an
arbitrary positive integer. Follow the strategy outlined in
Theorem 7.1.6 and illustrated in Example 1. In Exercises
16 through 19, feel free to use technology.

13. A =
[

1 2
0 3

]
, �x0 =
[

3
2

]

14. A =
[

4 −2
1 1

]
, �x0 =
[

4
3

]

15. A =
[

0.5 0.25
0.5 0.75

]
, �x0 =
[

1
0

]

16. A =
⎡
⎣ 1 1 0

0 2 1
0 0 3

⎤
⎦, �x0 =

⎡
⎣ 0

0
2

⎤
⎦

17. A =
⎡
⎣ 1 0 −1

−2 −1 −2
1 1 3

⎤
⎦, �x0 =

⎡
⎣ 2

0
0

⎤
⎦

18. A =
⎡
⎣ 2 2 1

0 0 0
1 1 2

⎤
⎦, �x0 =

⎡
⎣ 0

2
0

⎤
⎦

19. A =
⎡
⎣ 3 1 2

2 4 2
1 1 2

⎤
⎦, �x0 =

⎡
⎣ 5

4
1

⎤
⎦

For the matrices A in Exercises 20 through 24, find
lim

t→∞
At. Feel free to use Theorem 7.4.1.

20. A =
[

0.2 1
0.8 0

]
21. A =

[
0.5 0.25
0.5 0.75

]

22. A =
[

0.8 0.6
0.2 0.4

]
23. A =

⎡
⎣ 0 0.5 0.4

1 0 0.6
0 0.5 0

⎤
⎦

24. A =
⎡
⎣ 0.3 0.1 0.3

0.4 0.6 0.4
0.3 0.3 0.3

⎤
⎦

For the matrices A and the vectors �x0 in Exercises 25
through 29, find lim

t→∞
(At�x0). Feel free to use Theorem

7.4.1.

25. A =
[

0.3 1
0.7 0

]
, �x0 =
[

0.64
0.36

]

26. A =
[

0.4 0.5
0.6 0.5

]
, �x0 =
[

0.54
0.46

]

27. A =
⎡
⎣ 0 0.5 0.4

1 0 0.6
0 0.5 0

⎤
⎦, �x0 =

⎡
⎣ 0.3

0.3
0.4

⎤
⎦

28. A =
⎡
⎣ 0.3 0.1 0.3

0.4 0.6 0.4
0.3 0.3 0.3

⎤
⎦, �x0 =

⎡
⎣ 0.1

0.2
0.7

⎤
⎦

29. A =
⎡
⎣ 0.5 0.2 0.2

0.2 0.3 0.5
0.3 0.5 0.3

⎤
⎦, �x0 =

⎡
⎣ 0.5

0.2
0.3

⎤
⎦

30. a. Sketch a phase portrait for the dynamical system
�x(t + 1) = A�x(t), where

A =
[

2 1
3 2

]
.

b. In his paper “On the Measurement of the Circle,”
the great Greek mathematician Archimedes (c. 280–
210 B.C.) uses the approximation

265

153
<

√
3 <

1351

780
to estimate cos(30◦). He does not explain how he ar-
rived at these estimates. Explain how we can obtain
these approximations from the dynamical system in
part a. Hint:

A4 =
[

97 56
168 97

]
, A6 =

[
1351 780
2340 1351

]
.

c. Without using technology, explain why

1351

780
−

√
3 < 10−6.

Hint: Consider det(A6).
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d. Based on the data in part b, give an underestimate of
the form p/q of

√
3 that is better than the one given

by Archimedes.

31. Let x(t) and y(t) be the annual defense budgets of two
antagonistic nations (expressed in billions of U.S. dol-
lars). The change of these budgets is modeled by the
equations

x(t + 1) = ax(t) + by(t)
y(t + 1) = bx(t) + ay(t),

where a is a constant slightly less than 1, expressing the
fact that defense budgets tend to decline when there is
no perceived threat. The constant b is a small positive
number. You may assume that a exceeds b.

Suppose x(0) = 3 and y(0) = 0.5. What will hap-
pen in the long term? There are three possible cases,
depending on the numerical values of a and b. Sketch
a trajectory for each case, and discuss the outcome
in practical terms. Include the eigenspaces in all your
sketches.

32. A street magician at Montmartre begins to perform at
11:00 P.M. on Saturday night. He starts out with no on-
lookers, but he attracts passersby at a rate of 10 per
minute. Some get bored and wander off: Of the peo-
ple present t minutes after 11:00 P.M., 20% will have
left a minute later (but everybody stays for at least a
minute). Let C(t) be the size of the crowd t minutes
after 11:00 P.M. Find a 2 × 2 matrix A such that[

C(t + 1)

1

]
= A

[
C(t)

1

]
.

Find a closed formula for C(t), and graph this function.
What is the long-term behavior of C(t)?

33. Three friends, Alberich, Brunnhilde, and Carl, play a
number game together: Each thinks of a (real) number
and announces it to the others. In the first round, each
player finds the average of the numbers chosen by the
two others; that is his or her new score. In the second
round, the corresponding averages of the scores in the
first round are taken, and so on. Here is an example:

A B C

Initial choice

After 1st round

After 2nd round

7 11 5

8 6 9

7.5 8.5 7

Whoever is ahead after 1,001 rounds wins.
a. The state of the game after t rounds can be repre-

sented as a vector:

�x(t) =
⎡
⎣a(t)

b(t)
c(t)

⎤
⎦ Alberich’s score

Brunnhilde’s score.
Carl’s score

Find the matrix A such that �x(t + 1) = A�x(t).

b. With the initial values mentioned earlier (a0 = 7,
b0 = 11, c0 = 5), what is the score after 10 rounds?
After 50 rounds? Use technology.

c. Now suppose that Alberich and Brunnhilde initially
pick the numbers 1 and 2, respectively. If Carl picks
the number c0, what is the state of the game after t
rounds? [Find closed formulas for a(t), b(t), c(t),
in terms of c0.] For which choices of c0 does Carl
win the game?

34. In an unfortunate accident involving an Austrian truck,
100 kg of a highly toxic substance are spilled into Lake
Sils, in the Swiss Engadine Valley. The river Inn carries
the pollutant down to Lake Silvaplana and later to Lake
St. Moritz.

River Inn

Lake Silvaplana

Lake St. Moritz

Lake Sils

This sorry state, t weeks after the accident, can be
described by the vector

�x(t) =
⎡
⎣x1(t)

x2(t)
x3(t)

⎤
⎦pollutant in Lake Sils

pollutant in Lake Silvaplana
pollutant in Lake St. Moritz

⎫⎬
⎭ (in kg).

Suppose that

�x(t + 1) =
⎡
⎣0.7 0 0

0.1 0.6 0
0 0.2 0.8

⎤
⎦ �x(t).

a. Explain the significance of the entries of the trans-
formation matrix in practical terms.

b. Find closed formulas for the amount of pollutant in
each of the three lakes t weeks after the accident.
Graph the three functions against time (on the same
axes). When does the pollution in Lake Silvaplana
reach a maximum?

35. Consider a dynamical system

�x(t) =
[

x1(t)
x2(t)

]

whose transformation from time t to time t + 1 is given
by the following equations:

x1(t + 1) = 0.1x1(t) + 0.2x2(t) + 1

x2(t + 1) = 0.4x1(t) + 0.3x2(t) + 2.

Such a system, with constant terms in the equations, is
not linear, but affine.
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a. Find a 2 × 2 matrix A and a vector �b in R2 such that

�x(t + 1) = A�x(t) + �b.

b. Introduce a new state vector

�y(t) =
⎡
⎣ x1(t)

x2(t)
1

⎤
⎦ ,

with a “dummy” 1 in the last component. Find a
3 × 3 matrix B such that

�y(t + 1) = B�y(t).

How is B related to the matrix A and the vector �b in
part (a)? Can you write B as a block matrix involv-
ing A and �b?

c. What is the relationship between the eigenvalues of
A and B? What about eigenvectors?

d. For arbitrary values of x1(0) and x2(0), what can
you say about the long-term behavior of x1(t) and
x2(t)?

36. A machine contains the grid of wires shown in the ac-
companying sketch. At the seven indicated points, the
temperature is kept fixed at the given values (in ◦C).
Consider the temperatures T1(t), T2(t), and T3(t) at
the other three mesh points. Because of heat flow along
the wires, the temperatures Ti (t) changes according
to the formula

Ti (t + 1) = Ti (t) − 1

10

∑(
Ti (t) − Tadj(t)

)
,

where the sum is taken over the four adjacent points in
the grid and time is measured in minutes. For example,

T2(t + 1) = T2(t) − 1

10

(
T2(t) − T1(t)

)− 1

10

(
T2(t) − 200

)
− 1

10

(
T2(t) − 0

)− 1

10

(
T2(t) − T3(t)

)
.

Note that each of the four terms we subtract represents
the cooling caused by heat flowing along one of the
wires. Let

�x(t) =
⎡
⎣T1(t)

T2(t)
T3(t)

⎤
⎦ .

a. Find a 3 ×3 matrix A and a vector �b in R3 such that

�x(t + 1) = A�x(t) + �b.

b. Introduce the state vector

�y(t) =

⎡
⎢⎢⎣

T1(t)
T2(t)
T3(t)

1

⎤
⎥⎥⎦ ,

0

0 400

200

200

0

0

T1

T3T2

with a “dummy” 1 as the last component. Find a
4 × 4 matrix B such that

�y(t + 1) = B�y(t).

(This technique for converting an affine system into
a linear system is introduced in Exercise 35; see also
Exercise 32.)

c. Suppose the initial temperatures are T1(0) =
T2(0) = T3(0) = 0. Using technology, find the tem-
peratures at the three points at t = 10 and t = 30.
What long-term behavior do you expect?

d. Using technology, find numerical approximations
for the eigenvalues of the matrix B. Find an eigen-
vector for the largest eigenvalue. Use the results to
confirm your conjecture in part (c).

37. The color of snapdragons is determined by a pair of
genes, which we designate by the letters A and a. The
pair of genes is called the flower’s genotype. Geno-
type AA produces red flowers, genotype Aa pink ones,
and genotype aa white ones. A biologist undertakes a
breeding program, starting with a large population of
flowers of genotype AA. Each flower is fertilized with
pollen from a plant of genotype Aa (taken from another
population), and one offspring is produced. Since it is a
matter of chance which of the genes a parent passes on,
we expect half of the flowers in the next generation to
be red (genotype AA) and the other half pink (genotype
Aa). All the flowers in this generation are now fertilized
with pollen from plants of genotype Aa (taken from an-
other population), and so on.
a. Find closed formulas for the fractions of red, pink,

and white flowers in the t th generation. We know
that r(0) = 1 and p(0) = w(0) = 0, and we found
that r(1) = p(1) = 1

2 and w(1) = 0.
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b. What is the proportion r(t) : p(t) : w(t) in the long
run?

38. Leonardo of Pisa: The rabbit problem. Leonardo of
Pisa (c. 1170–1240), also known as Fibonacci, was
the first outstanding European mathematician after the
ancient Greeks. He traveled widely in the Islamic
world and studied Arabic mathematical writing. His
work is in the spirit of the Arabic mathematics of his
day. Fibonacci brought the decimal-position system to
Europe. In his book Liber abaci (1202),11 Fibonacci
discusses the following problem:

How many pairs of rabbits can be bred from
one pair in one year? A man has one pair of
rabbits at a certain place entirely surrounded
by a wall. We wish to know how many pairs
can be bred from it in one year, if the nature
of these rabbits is such that they breed every
month one other pair and begin to breed in the
second month after their birth. Let the first pair
breed a pair in the first month, then duplicate it
and there will be 2 pairs in a month. From these
pairs one, namely, the first, breeds a pair in the
second month, and thus there are 3 pairs in the
second month. From these, in one month, two
will become pregnant, so that in the third month
2 pairs of rabbits will be born. Thus, there are
5 pairs in this month. From these, in the same
month, 3 will be pregnant, so that in the fourth
month there will be 8 pairs. From these pairs,
5 will breed 5 other pairs, which, added to the
8 pairs, gives 13 pairs in the fifth month, from
which 5 pairs (which were bred in that same
month) will not conceive in that month, but the
other 8 will be pregnant. Thus, there will be 21
pairs in the sixth month. When we add to these
the 13 pairs that are bred in the seventh month,
then there will be in that month 34 pairs [and
so on, 55, 89, 144, 233, 377, . . .]. Finally, there
will be 377, and this number of pairs has been
born from the first-mentioned pair at the given
place in one year.

Let j (t) be the number of juvenile pairs and a(t)
the number of adult pairs after t months. Fibonacci
starts his thought experiment in rabbit breeding with
one adult pair, so j (0) = 0 and a(0) = 1. At t = 1, the
adult pair will have bred a (juvenile) pair, so a(1) = 1
and j (1) = 1. At t = 2, the initial adult pair will have
bred another (juvenile) pair, and last month’s juvenile
pair will have grown up, so a(2) = 2 and j (2) = 1.
a. Find formulas expressing a(t + 1) and j (t + 1) in

terms of a(t) and j (t). Find the matrix A such that

�x(t + 1) = A�x(t),

where

�x(t) =
[

a(t)
j (t)

]
.

b. Find closed formulas for a(t) and j (t). (Note: You
will have to deal with irrational quantities here.)

c. Find the limit of the ratio a(t)/j (t) as t approaches
infinity. The result is known as the golden section.
The golden section of a line segment AB is given by
the point P such that

 AB  †  AP
 AP  PB

 A P B

.=

Find all the eigenvalues and “eigenvectors” of the linear
transformations in Exercises 39 through 52.

39. T ( f ) = f ′ − f from C∞ to C∞

40. T ( f ) = 5 f ′ − 3 f from C∞ to C∞

41. L(A) = A + AT from R2×2 to R2×2. Is L diagonaliz-
able?

42. L(A) = A − AT from R2×2 to R2×2. Is L diagonaliz-
able?

43. T (x + iy) = x − iy from C to C. Is T diagonalizable?

44. T (x0, x1, x2, . . . ) = (x2, x3, . . . ) from the space V of
infinite sequences into V . (We drop the first two terms
of the sequence.)

45. T (x0, x1, x2, . . . ) = (0, x0, x1, x2, . . . ) from the space
V of infinite sequences into V . (We insert a zero at the
beginning.)

46. T (x0, x1, x2, x3, x4, . . . ) = (x0, x2, x4, . . . ) from the
space V of infinite sequences into V . (We drop every
other term.)

47. T
(

f (x)
) = f (−x) from P2 to P2. Is T diagonalizable?

48. T
(

f (x)
) = f (2x) from P2 to P2. Is T diagonalizable?

49. T
(

f (x)
) = f (3x − 1) from P2 to P2. Is T diagonaliz-

able?

50. T
(

f (x)
) = f (x − 3) from P2 to P2. Is T diagonaliz-

able?

51. T ( f ) = f ′ from P to P

52. T
(

f (x)
) = x
(

f ′(x)
)

from P to P

11 For a translation into modern English, see Laurence E. Sigler,
Fibonacci’s Liber Abaci, Springer-Verlag, 2002.
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53. For a regular transition matrix A, prove the following:
a. λ = 1 is an eigenvalue of A with geometric multi-

plicity 1, and
b. If λ is any real eigenvalue of A, then −1 < λ ≤ 1.
Hint: There exists an odd positive integer m such that
Am is a positive transition matrix, by Exercise 2.3.75.

54. Are the following matrices similar?

A =

⎡
⎢⎢⎣

0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0

⎤
⎥⎥⎦ , B =

⎡
⎢⎢⎣

0 1 0 0
0 0 1 0
0 0 0 0
0 0 0 0

⎤
⎥⎥⎦

Hint: Compute A2 and B2.

55. Find two 2 × 2 matrices A and B such that AB fails to
be similar to B A. Hint: It can be arranged that AB is
zero, but B A isn’t.

56. Show that if A and B are two n × n matrices, then the
matrices AB and B A have the same characteristic poly-
nomial, and thus the same eigenvalues (matrices AB
and B A need not be similar though; see Exercise 55).
Hint:[

AB 0
B 0

] [
In A
0 In

]
=
[

In A
0 In

] [
0 0
B B A

]
.

57. Consider an m ×n matrix A and an n×m matrix B. Us-
ing Exercise 56 as a guide, show that matrices AB and
B A have the same nonzero eigenvalues, with the same
algebraic multiplicities. What about eigenvalue 0?

58. Consider a nonzero 3 × 3 matrix A such that A2 = 0.
a. Show that the image of A is a subspace of the kernel

of A.
b. Find the dimensions of the image and kernel of A.
c. Pick a nonzero vector �v1 in the image of A, and

write �v1 = A�v2 for some �v2 in R3. Let �v3 be a vec-
tor in the kernel of A that fails to be a scalar multiple
of �v1. Show that � = (�v1, �v2, �v3) is a basis of R3.

d. Find the matrix B of the linear transformation
T (�x) = A�x with respect to basis �.

59. If A and B are two nonzero 3 × 3 matrices such that
A2 = B2 = 0, is A necessarily similar to B? Hint:
Exercise 58 is useful.

60. For the matrix A =
⎡
⎣1 −2 1

2 −4 2
3 −6 3

⎤
⎦, find an invertible

matrix S such that S−1 AS =
⎡
⎣0 1 0

0 0 0
0 0 0

⎤
⎦. Hint: Exer-

cise 58 is useful.

61. Consider an n × n matrix A such that A2 = 0, with
rank A = r . (In Example 58 we consider the case when

n = 3 and r = 1.) Show that A is similar to the block
matrix

B =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

J 0 · · · 0 · · · 0
0 J · · · 0 · · · 0
...

...
. . .

...
...

0 0 · · · J · · · 0
...

...
...

. . .
...

0 0 · · · 0 · · · 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, where J =
[

0 1
0 0

]
.

Matrix B has r blocks of the form J along the di-
agonal, with all other entries being 0. Hint: Mimic
the approach outlined in Exercise 58. Pick a ba-
sis �v1, . . . , �vr of the image if A, write �vi = A �wi
for i = 1, . . . , r , and expand �v1, . . . , �vr to a basis
�v1, . . . , �vr , �u1, . . . , �um of the kernel of A. Show that
�v1, �w1, �v2, �w2, . . . , �vr , �wr , �u1, . . . , �um is a basis of Rn ,
and show that B is the matrix of T (�x) = A�x with re-
spect to this basis.

62. Consider the linear transformation T ( f ) = f ′′ + a f ′ +
b f from C∞ to C∞, where a and b are arbitrary con-
stants. What does Theorem 4.1.7 tell you about the
eigenvalues of T ? What about the dimension of the
eigenspaces of T ?

63. Consider the linear transformation T ( f ) = f ′′ from
C∞ to C∞. For each of the following eigenvalues, find
a basis of the associated eigenspace. See Exercise 62.
a. λ = 1 b. λ = 0 c. λ = −1 d. λ = −4

64. If A =
[

1 2
0 3

]
, find a basis of the linear space V

of all 2 × 2 matrices S such that AS = SB, where

B =
[

1 0
0 3

]
. Find the dimension of V .

65. If A =
[

1 2
4 3

]
, find a basis of the linear space V

of all 2 × 2 matrices S such that AS = SB, where

B =
[

5 0
0 −1

]
. Find the dimension of V .

66. If A =
⎡
⎣1 1 1

0 2 1
0 0 1

⎤
⎦, find a basis of the linear space

V of all 3 × 3 matrices S such that AS = SB, where

B =
⎡
⎣1 0 0

0 1 0
0 0 2

⎤
⎦. Find the dimension of V .

67. Consider a 5 × 5 matrix A with two distinct eigenval-
ues, λ1 and λ2, with geometric multiplicities 3 and 2,
respectively. What is the dimension of the linear space
of all 5 × 5 matrices S such that AS = SB, where B
is the diagonal matrix with the diagonal entries λ1, λ1,
λ1, λ2, λ2?
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68. If A is an n × n matrix with n distinct eigenvalues
λ1, . . . , λn , what is the dimension of the linear space of
all n ×n matrices S such that AS = SB, where B is the
diagonal matrix with the diagonal entries λ1, . . . , λn?
Use Exercises 64 and 65 as a guide.

69. We say that two n × n matrices A and B are simultane-
ously diagonalizable if there exists an invertible n × n
matrix S such that S−1 AS and S−1 BS are both diago-
nal.
a. Are the matrices

A =
⎡
⎣1 0 0

0 1 0
0 0 1

⎤
⎦ and B =

⎡
⎣1 2 3

0 2 3
0 0 3

⎤
⎦

simultaneously diagonalizable? Explain.
b. Show that if A and B are simultaneously diagonal-

izable then AB = B A.

c. Give an example of two n × n matrices such that
AB = B A, but A and B are not simultaneously di-
agonalizable.

d. Let D be a diagonal n ×n matrix with n distinct en-
tries on the diagonal. Find all n × n matrices B that
commute with D.

e. Show that if AB = B A and A has n distinct eigen-
values, then A and B are simultaneously diagonal-
izable. Hint: Part d is useful.

70. Consider an n × n matrix A with m distinct eigen-
values λ1, . . . , λm . Show that matrix A is diago-
nalizable if (and only if) (A − λ1 In)(A − λ2 In) · · ·
(A − λm In) = 0. Hint: If (A − λ1 In)(A − λ2 In) · · ·

(A − λm In) = 0, use Exercise 4.2.83 to show that the
sum of the dimensions of the eigenspaces is n.

71. Use the method outlined in Exercise 70 to check

whether the matrix A =
⎡
⎣ 2 0 1

−1 1 −1
0 0 1

⎤
⎦ is diagonaliz-

able.

72. Use the method outlined in Exercise 70 to check for
which values of the constants a, b, and c the matrix

A =
⎡
⎣1 a b

0 0 c
0 0 1

⎤
⎦ is diagonalizable.

73. Prove the Cayley–Hamilton theorem, f A(A) = 0, for
diagonalizable matrices A. See Exercise 7.3.54.

74. In both parts of this problem, consider the matrix

A =
[

1 2
4 3

]
,

with eigenvalues λ1 = 5 and λ2 = −1. See Example 1.
a. Are the column vectors of the matrices A − λ1 I2

and A − λ2 I2 eigenvectors of A? Explain. Does this
work for other 2×2 matrices? What about diagonal-
izable n × n matrices with two distinct eigenvalues,
such as projections or reflections? Hint: Exercise 70
is helpful.

b. Are the column vectors of

A −
[
λ1 0
0 λ2

]

eigenvectors of A? Explain.

7.5 Complex Eigenvalues

Imagine that you are diabetic and have to pay close attention to how your body me-
tabolizes glucose. After you eat a heavy meal, the glucose concentration will reach
a peak, and then it will slowly return to the fasting level. Certain hormones help
regulate the glucose metabolism, especially the hormone insulin. Compare with
Exercise 7.1.70. Let g(t) be the excess glucose concentration in your blood, usually
measured in milligrams of glucose per 100 milliliters of blood. (Excess means that
we measure how much the glucose concentration deviates from the fasting level.) A
negative value of g(t) indicates that the glucose concentration is below fasting level
at time t . Let h(t) be the excess insulin concentration in your blood. Researchers
have developed mathematical models for the glucose regulatory system. The fol-
lowing is one such model, in slightly simplified (linearized) form.

g(t + 1) = ag(t) − bh(t)

h(t + 1) = cg(t) + dh(t)

(These formulas apply between meals; obviously, the system is disturbed during
and right after a meal.)
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In these formulas, a, b, c, and d are positive constants; constants a and d will
be less than 1. The term −bh(t) expresses the fact that insulin helps your body
absorb glucose, and the term cg(t) represents the fact that the glucose in your blood
stimulates the pancreas to secrete insulin.

For your system, the equations might be

g(t + 1) = 0.9g(t) − 0.4h(t)

h(t + 1) = 0.1g(t) + 0.9h(t),

with initial values g(0) = 100 and h(0) = 0, after a heavy meal. Here, time t is
measured in hours.

After one hour, the values will be g(1) = 90 and h(1) = 10. Some of the
glucose has been absorbed, and the excess glucose has stimulated the pancreas to
produce 10 extra units of insulin.

The rounded values of g(t) and h(t) in the following table give you some sense
for the evolution of this dynamical system.

t 0 1 2 3 4 5 6 7 8 15 22 29

g(t) 100 90 77 62.1 46.3 30.6 15.7 2.3 −9.3 −29 1.6 9.5
h(t) 0 10 18 23.9 27.7 29.6 29.7 28.3 25.7 −2 −8.3 0.3

We can “connect the dots” to sketch a rough trajectory, visualizing the long-
term behavior. See Figure 1.

We see that after 7 hours the excess glucose is almost gone, but now there
are about 30 units of excess insulin in the system. Since this excess insulin helps
to reduce glucose further, the glucose concentration will now fall below fasting
level, reaching about −30 after 15 hours. (You will feel awfully hungry by now.)
Under normal circumstances, you would have taken another meal in the meantime,
of course, but let’s consider the case of (voluntary or involuntary) fasting.

We leave it to the reader to explain the concentrations after 22 and 29 hours, in
terms of how glucose and insulin concentrations influence each other, according to
our model. The spiraling trajectory indicates an oscillatory behavior of the system:
Both glucose and insulin levels will swing back and forth around the fasting level,
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like a damped pendulum. Both concentrations will approach the fasting level (thus
the name).

Another way to visualize this oscillatory behavior is to graph the functions g(t)
and h(t) against time, using the values from our table. See Figure 2.

Next, we try to use the tools developed in the last four sections to analyze this
system. We can introduce the transformation matrix

A =
[

0.9 −0.4
0.1 0.9

]
and the state vector

�x(t) =
[

g(t)
h(t)

]
.

Then

�x(t + 1) = A�x(t) and thus �x(t) = At �x(0) = At

[
100

0

]
.

To find formulas for g(t) and h(t), we need to know the eigenvalues and eigen-
vectors of matrix A. The characteristic polynomial of A is

f A(λ) = λ2 − 1.8λ + 0.85,

so that

λ1,2 = 1.8 ± √
3.24 − 3.4

2
= 1.8 ± √−0.16

2
.

Since the square of a real number cannot be negative, there are no real eigenvalues
here. However, if we allow complex solutions, then we have the eigenvalues

λ1,2 = 1.8 ± √−0.16

2
= 1.8 ± i

√
0.16

2
= 0.9 ± 0.2i.

In this section, we will first review some basic facts on complex numbers. Then
we will examine how the theory of eigenvalues and eigenvectors developed in Sec-
tions 7.1 through 7.4 can be adapted to the complex case. In Section 7.6 we will
apply this work to dynamical systems. A great many dynamical systems, in physics,
chemistry, biology, and economics, show oscillatory behavior; we will see that we
can expect complex eigenvalues in this case.
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These tools will enable you to find formulas for g(t) and h(t). See Exer-
cise 7.6.32.

Complex Numbers: A Brief Review
Let us review some basic facts about complex numbers. We trust that you have at
least a fleeting acquaintance with complex numbers. Without attempting a formal
definition, we recall that a complex number can be expressed as

z = a + ib,

where a and b are real numbers.12 Addition of complex numbers is defined in a
natural way, by the rule

(a + ib) + (c + id) = (a + c) + i(b + d),

and multiplication is defined by the rule

(a + ib)(c + id) = (ac − bd) + i(ad + bc);
that is, we let i · i = −1 and distribute.

If z = a + ib is a complex number, we call a its real part, denoted by Re z
and b its imaginary part, denoted by Im z. A complex number of the form ib (with
a = 0) is called imaginary.

The set of all complex numbers is denoted by C. The real numbers, R, form a
subset of C (namely, those complex numbers with imaginary part 0).

Complex numbers can be represented as vectors (or points) in the complex
plane,13 as shown in Figure 3. This is a graphical representation of the isomorphism

T

[
a
b

]
= a + ib from R2 to C.

−1 1 2 3 Real axis

Imaginary
axis

3i

2i

i

z = 2 + 3i

Figure 3

iz = −b + ia

z = a + ib

90°

Figure 4

EXAMPLE 1 Consider a nonzero complex number z. What is the geometric relationship between
z and i z in the complex plane?

12 The letter i for the imaginary unit was introduced by Leonhard Euler, the most prolific
mathematician in history. For a fascinating glimpse at the history of the complex numbers, see Tobias
Dantzig, Number: The Language of Science, Macmillan, 1954. For another intriguing introduction,
full of poetry, history, and philosophy, see Barry Mazur, Imagining Numbers (particularly the square
root of minus fifteen), Farrar, Straus, and Giroux, 2003.
13Also called “Argand plane,” after the Swiss mathematician Jean Robert Argand (1768–1822). The
representation of complex numbers in the plane was introduced independently by Argand, by Gauss,
and by the Norwegian mathematician Caspar Wessel (1745–1818).
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Solution

If z = a + ib, then i z = −b + ia. We obtain the vector

[−b
a

]
(representing i z)

by rotating the vector

[
a
b

]
(representing z) through an angle of 90◦ in the counter-

clockwise direction. See Figure 4. �
The conjugate of a complex number z = a + ib is defined by

z = a − ib.

(The sign of the imaginary part is reversed.) We say that z and z form a conjugate
pair of complex numbers. Geometrically, the conjugate z is the reflection of z about
the real axis, as shown in Figure 5.

Sometimes it is useful to describe a complex number in polar coordinates, as
shown in Figure 6.

The length r of the vector is called the modulus of z, denoted by |z|. The polar
angle θ is called an argument of z; note that the argument is determined only up to
a multiple of 2π . (Mathematicians say “modulo 2π .”) For example, for z = −1, we
can choose the argument π , −π , or 3π .

z = a + ib

z = a − ib

Figure 5

z = a + ibr =   a2 + b2 = |z|

= arg(z)

Figure 6

EXAMPLE 2 Find the modulus and an argument of z = −2 + 2i .

Solution
|z| = √

22 + 22 = √
8. Representing z in the complex plane, we see that 3

4π is an
argument of z. See Figure 7. �

If z is a complex number with modulus r and argument θ , we can write z as

z = r(cos θ) + ir(sin θ) = r(cos θ + i sin θ),

as shown in Figure 8.

−2

z 2

r =   8

= 3
4

Figure 7

z

r 
r (sin   )

r (cos   )

Figure 8
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The representation

z = r(cos θ + i sin θ)

is called the polar form of the complex number z.

EXAMPLE 3 Consider the complex numbers z = cos α + i sin α and w = cos β + i sin β. Find
the polar form of the product zw.

Solution
Apply the addition formulas from trigonometry (see Exercise 2.2.32):

zw = (cos α + i sin α)(cos β + i sin β)

= (cos α cos β − sin α sin β) + i(sin α cos β + cos α sin β)

= cos(α + β) + i sin(α + β).

We conclude that the modulus of zw is 1, and α + β is an argument of zw. See
Figure 9. �

zw

w

z

1

Figure 9

In general, if z = r(cos α + i sin α) and w = s(cos β + i sin β), then

zw = rs
(
cos(α + β) + i sin(α + β)

)
.

When we multiply two complex numbers, we multiply the moduli, and we add the
arguments:

|zw| = |z||w|
arg(zw) = arg z + arg w (modulo 2π).

EXAMPLE 4 Describe the transformation T (z) = (3 + 4i)z from C to C geometrically.

Solution

|T (z)| = |3 + 4i ||z| = 5|z|
arg
(
T (z)
) = arg(3 + 4i) + arg(z) = arctan

(
4

3

)
+ arg(z) ≈ 53◦ + arg(z)

The transformation T is a rotation combined with a scaling in the complex plane.
See Figure 10.

z1

z2

T(z1)

T(z2 )

Figure 10 Rotate through about 53◦ and stretch the vector by a factor
of 5.
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Alternatively, we observe that the matrix of the linear transformation T with

respect to the basis 1, i is

[
3 −4
4 3

]
, representing a rotation combined with a scal-

ing.
The polar form is convenient for finding powers of a complex number z: If

z = r(cos θ + i sin θ),

then

z2 = r2
(
cos(2θ) + i sin(2θ)

)
,

...

zn = rn
(
cos(nθ) + i sin(nθ)

)
,

for any positive integer n. Each time we multiply by z, the modulus is multiplied by
r and the argument increases by θ . The preceding formula was found by the French
mathematician Abraham de Moivre (1667–1754). �

Theorem 7.5.1 De Moivre’s formula

(cos θ + i sin θ)n = cos(nθ) + i sin(nθ)

EXAMPLE 5 Consider the complex number z = 0.5 + 0.8i . Represent the powers z2, z3, . . . in
the complex plane. What is lim

n→∞ zn?

Solution
To study the powers, write z in polar form:

z = r(cos θ + i sin θ).

Here

r =
√

0.52 + 0.82 ≈ 0.943

and

θ = arctan
0.8

0.5
≈ 58◦.

We have

zn = rn
(
cos(nθ) + i sin(nθ)

)
.

The vector representation of zn+1 is a little shorter than that of zn (by about
5.7%), and zn+1 makes an angle θ ≈ 58◦ with zn . If we connect the tips of con-
secutive vectors, we see a trajectory that spirals in toward the origin, as shown in
Figure 11. Note that lim

n→∞ zn = 0, since r = |z| < 1. �
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z2 z

z7

z8

z3

z4
z5

z6 1

i

−1

−i

Figure 11

Perhaps the most remarkable property of the complex numbers is expressed in
the fundamental theorem of algebra, first demonstrated by Carl Friedrich Gauss (in
his thesis, at age 22).

Theorem 7.5.2 Fundamental theorem of algebra

Any polynomial p(λ) with complex coefficients splits; that is, it can be written
as a product of linear factors

p(λ) = k(λ − λ1)(λ − λ2) · · · (λ − λn),

for some complex numbers λ1, λ2, . . . , λn , and k. (The λi need not be distinct.)
Therefore, a polynomial p(λ) of degree n has precisely n complex roots if

they are properly counted with their multiplicities.

For example, the polynomial

p(λ) = λ2 + 1,

which does not have any real zeros, splits over C:

p(λ) = (λ + i)(λ − i).

More generally, for a quadratic polynomial

q(λ) = λ2 + bλ + c,

where b and c are real, we can find the complex roots

λ1,2 = −b ± √
b2 − 4c

2

and

q(λ) = (λ − λ1)(λ − λ2).
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Proving the fundamental theorem of algebra would lead us too far afield. Read any
introduction to complex analysis or check Gauss’s original proof.14

Complex Eigenvalues and Eigenvectors
The complex numbers share some basic algebraic properties with the real num-
bers.15 Mathematicians summarize these properties by saying that both the real
numbers R and the complex numbers C form a field. The rational numbers Q are
another important example of a field; the integers Z, on the other hand, don’t form
a field. (Which of the 10 properties listed in the footnote fail to hold in this case?)

Which of the results and techniques derived in this text thus far still apply when
we work with complex numbers throughout, that is, when we consider complex
scalars, vectors with complex components, and matrices with complex entries? We
observe that everything works the same way except for those geometrical concepts
that are defined in terms of the dot product (length, angles, orthogonality, and so
on, discussed in Chapter 5 and Section 6.3). The dot product in Cn is defined in
a way that we will not discuss in this introductory text. The whole body of “core
linear algebra” can be generalized without difficulty, however: echelon form, linear
transformation, kernel, image, linear independence, basis, dimension, coordinates,
linear spaces, determinant, eigenvalues, eigenvectors, and diagonalization.

EXAMPLE 6 Diagonalize the rotation-scaling matrix A =
[

a −b
b a

]
“over C.” Here, a and b are

real numbers, and b is nonzero.

Solution
We will find the eigenvalues of A first:

f A(λ) = det

[
a − λ −b

b a − λ

]
= (a − λ)2 + b2 = 0

when
(a − λ)2 = −b2 or a − λ = ±ib or λ = a ± ib.

Now we find the eigenvectors:

Ea+ib = ker

[−ib −b
b −ib

]
= span

[
i
1

]

Ea−ib = ker

[
ib −b
b ib

]
= span

[−i
1

]
.

14C. F. Gauss, Werke, III, 3–56. For an English translation, see D. J. Struik (editor), A Source Book in
Mathematics 1200–1800, Princeton University Press, 1986.
15Here is a list of these properties:

1. Addition is commutative.
2. Addition is associative.
3. There exists a unique number n such that a + n = a, for all numbers a. This number n is

denoted by 0.
4. For each number a there exists a unique number b such that a + b = 0. This number b is denoted

by −a. (Comment: This property says that we can subtract in this number system.)
5. Multiplication is commutative.
6. Multiplication is associative.
7. There is a unique number e such that ea = a, for all numbers a. This number e is denoted by 1.
8. For each nonzero number a there exists a unique number b such that ab = 1. This number b is

denoted by a−1. (Comment: This property says that we can divide by a nonzero number.)
9. Multiplication distributes over addition: a(b + c) = ab + ac.

10. The numbers 0 and 1 are not equal.
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Thus,

R−1

[
a −b
b a

]
R =
[

a + ib 0
0 a − ib

]
, where R =

[
i −i
1 1

]
. �

EXAMPLE 7 Let A be a real 2 × 2 matrix with eigenvalues a ± ib (where b �= 0). Show that A

is similar (over R) to the matrix

[
a −b
b a

]
, representing a rotation combined with

a scaling.

Solution
Let �v ± i �w be eigenvectors of A with eigenvalues a ± ib. See Exercise 42. Matrix

A is similar to

[
a + ib 0

0 a − ib

]
; more precisely,

[
a + ib 0

0 a − ib

]
= P−1 AP,

where P =
[

�v + i �w �v − i �w
]

. By Example 6, matrix[
a −b
b a

]
is similar to [

a + ib 0
0 a − ib

]
as well, with[

a + ib 0
0 a − ib

]
= R−1

[
a −b
b a

]
R, where R =

[
i −i
1 1

]
.

Thus,

P−1 AP = R−1

[
a −b
b a

]
R,

and [
a −b
b a

]
= R P−1 AP R−1 = S−1 AS,

where S = P R−1 and S−1 = (P R−1)−1 = R P−1.
A straightforward computation shows that

S = P R−1 = 1

2i

[
v + i �w �v − i �w

] [
1 i

−1 i

]
=
[

�w �v
]

;

note that S has real entries, as claimed. �

Theorem 7.5.3 Complex eigenvalues and rotation-scaling matrices

If A is a real 2 × 2 matrix with eigenvalues a ± ib (where b �= 0), and if �v + i �w
is an eigenvector of A with eigenvalue a + ib, then

S−1 AS =
[

a −b
b a

]
, where S =

[
�w �v
]

.
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We see that matrix A is similar to a rotation-scaling matrix. Those who have stud-
ied Section 5.5 can go a step further: If we introduce the inner product 〈�x, �y〉
= (S−1�x) · (S−1�y) in R2 and define the length of vectors and the angle between
vectors with respect to this inner product, then the transformation T (�x) = A�x is a
rotation combined with a scaling in that inner product space. (Think about it!)

EXAMPLE 8 For A =
[

3 −5
1 −1

]
, find an invertible 2 × 2 matrix S such that S−1 AS is a rotation-

scaling matrix.

Solution
We will use the method outlined in Theorem 7.5.3:

f A(λ) = λ2 − 2λ + 2, so that λ1,2 = 2 ± √
4 − 8

2
= 1 ± i.

Now

E1+i = ker

[
2 − i −5

1 −2 − i

]
= span

[ −5
−2 + i

]
,

and [ −5
−2 + i

]
=
[−5
−2

]
+ i

[
0
1

]
, so that �w =

[
0
1

]
, �v =

[−5
−2

]
.

Therefore,

S−1 AS =
[

1 −1
1 1

]
, where S =

[
0 −5
1 −2

]
. �

The great advantage of complex eigenvalues is that there are so many of them.
By the fundamental theorem of algebra, Theorem 7.5.2, the characteristic polyno-
mial always splits:

f A(λ) = (λ1 − λ)(λ2 − λ) · · · (λn − λ).

Theorem 7.5.4 A complex n × n matrix has n complex eigenvalues if they are counted with
their algebraic multiplicities.

Although a complex n × n matrix may have fewer than n distinct complex

eigenvalues (examples are In or

[
0 1
0 0

]
), this is literally a coincidence: Some of

the λi in the factorization of the characteristic polynomial f A(λ) coincide. “Most”
complex n × n matrices do have n distinct eigenvalues, so that most complex n × n
matrices are diagonalizable (by Theorem 7.3.4). An example of a matrix that fails

to be diagonalizable over C is

[
0 1
0 0

]
.

In this text, we focus on diagonalizable matrices and often dismiss others as
rare aberrations. Some theorems will be proven in the diagonalizable case only,
with the nondiagonalizable case being left as an exercise. Much attention is given
to nondiagonalizable matrices in more advanced linear algebra courses.

EXAMPLE 9 Consider an n × n matrix A with complex eigenvalues λ1, λ2, . . . , λn , listed with
their algebraic multiplicities. What is the relationship between the λi and the deter-
minant of A? Compare with Theorem 7.2.8.
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Solution

f A(λ) = det(A − λIn) = (λ1 − λ)(λ2 − λ) · · · (λn − λ)

f A(0) = det A = λ1λ2 · · · λn

so that

det A = λ1λ2 · · · λn �
Can you interpret this result geometrically when A is a 3 × 3 matrix with a real

eigenbasis? Hint: Think about the expansion factor. See Exercise 18.
In Example 9, we found that the determinant of a matrix is the product of its

complex eigenvalues. Likewise, the trace is the sum of the eigenvalues. The verifi-
cation is left as Exercise 35.

Theorem 7.5.5 Trace, determinant, and eigenvalues

Consider an n×n matrix A with complex eigenvalues λ1, λ2, . . . , λn , listed with
their algebraic multiplicities. Then

tr A = λ1 + λ2 + · · · + λn

and

det A = λ1λ2 · · · λn.

Note that this result is obvious for a triangular matrix: In this case, the eigen-
values are the diagonal entries.

EXERCISES 7.5
GOAL Use the basic properties of complex numbers.
Write products and powers of complex numbers in polar
form. Apply the fundamental theorem of algebra.

1. Write the complex number z = 3 − 3i in polar form.

2. Find all complex numbers z such that z4 = 1. Represent
your answers graphically in the complex plane.

3. For an arbitrary positive integer n, find all complex
numbers z such that zn = 1 (in polar form). Represent
your answers graphically.

4. Show that if z is a nonzero complex number, then there
are exactly two complex numbers w such that w2 = z.
If z is in polar form, describe w in polar form.

5. Show that if z is a nonzero complex number, then there
exist exactly n complex numbers w such that wn = z.
If z is in polar form, write w in polar form. Represent
the vectors w in the complex plane.

6. If z is a nonzero complex number in polar form, de-
scribe 1/z in polar form. What is the relationship be-
tween the complex conjugate z and 1/z? Represent the
numbers z, z, and 1/z in the complex plane.

7. Describe the transformation T (z) = (1 − i)z from C to
C geometrically.

8. Use de Moivre’s formula to express cos(3θ) and sin(3θ)

in terms of cos θ and sin θ .

9. Consider the complex number z = 0.8−0.7i . Represent
the powers z2, z3, . . . in the complex plane and explain
their long-term behavior.

10. Prove the fundamental theorem of algebra for cubic
polynomials with real coefficients.

11. Express the polynomial f (λ) = λ3 − 3λ2 + 7λ − 5 as
a product of linear factors over C.

12. Consider a polynomial f (λ) with real coefficients.
Show that if a complex number λ0 is a root of f (λ),
then so is its complex conjugate, λ0.

For the matrices A listed in Exercises 13 through 17,

find an invertible matrix S such that S−1 AS =
[

a −b
b a

]
,

where a and b are real numbers.

13.
[

0 −4
1 0

]
14.
[

1 −2
1 −1

]

15.
[

0 1
−5 4

]
16.
[

3 1
−2 5

]
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17.
[

5 4
−5 1

]
18. Consider a real 2 × 2 matrix A with two distinct real

eigenvalues, λ1 and λ2. Explain the formula det A =
λ1λ2 geometrically, thinking of |det A| as an expan-
sion factor. Illustrate your explanation with a sketch.
Is there a similar geometric interpretation for a 3 × 3
matrix?

19. Consider a subspace V of Rn , with dim(V ) = m < n.
a. If the n × n matrix A represents the orthogonal pro-

jection onto V , what is tr A? What is det A?
b. If the n × n matrix B represents the reflection about

V , what is tr B? What is det B?

Find all complex eigenvalues of the matrices in Exercises
20 through 26 (including the real ones, of course). Do not
use technology. Show all your work.

20.
[

3 −5
2 −3

]
21.
[

11 −15
6 −7

]

22.
[

1 3
−4 10

]
23.

⎡
⎣0 0 1

1 0 0
0 1 0

⎤
⎦

24.

⎡
⎣0 1 0

0 0 1
5 −7 3

⎤
⎦ 25.

⎡
⎢⎢⎣

0 0 0 1
1 0 0 0
0 1 0 0
0 0 1 0

⎤
⎥⎥⎦

26.

⎡
⎢⎢⎣

1 −1 1 −1
1 1 1 1
0 0 1 1
0 0 1 1

⎤
⎥⎥⎦

27. Suppose a real 3 × 3 matrix A has only two distinct
eigenvalues. Suppose that tr A = 1 and det A = 3. Find
the eigenvalues of A with their algebraic multiplicities.

28. Suppose a 3 × 3 matrix A has the real eigenvalue 2 and
two complex conjugate eigenvalues. Also, suppose that
det A = 50 and tr A = 8. Find the complex eigenvalues.

29. Consider a matrix of the form

A =
⎡
⎣0 a b

c 0 0
0 d 0

⎤
⎦ ,

where a, b, c, and d are positive real numbers. Sup-
pose the matrix A has three distinct real eigenvalues.
What can you say about the signs of the eigenvalues?
(How many of them are positive, negative, zero?) Is the
eigenvalue with the largest absolute value positive or
negative?

30. a. If 2i is an eigenvalue of a real 2 × 2 matrix A, find
A2.

b. Give an example of a real 2 × 2 matrix A such that
all the entries of A are nonzero and 2i is an eigen-

value of A. Compute A2 and check that your answer
agrees with part a.

31. Consider the regular transition matrix

A = 1

15

⎡
⎢⎢⎢⎣

4 2 5 1 3
1 3 4 5 2
3 5 1 2 4
2 1 3 4 5
5 4 2 3 1

⎤
⎥⎥⎥⎦ .

Note that the matrix 15A contains each of the integers
1, 2, 3, 4, and 5 once in every row and in every column.
a. Using technology, compute a high power of A, such

as A20. What do you observe? Make a conjecture for
lim

t→∞ At . (In part e, you will prove this conjecture.)

b. Use technology to find the complex eigenvalues of
A. Is matrix A diagonalizable over C?

c. Find the equilibrium distribution �xequ for A, that is,
the unique distribution vector in the eigenspace E1.

d. Without using Theorem 7.4.1 (which was proven
only for matrices that are diagonalizable over R),
show that lim

t→∞(At �x0) = �xequ for any distribution

vector �x0. Hint: Adapt the proof of Theorem 7.4.1
to the complex case.

e. Find lim
t→∞ At , proving your conjecture from part a.

32. Consider the dynamical system

�x(t + 1) = A�x(t), where A =
⎡
⎣ 0.4 0.1 0.5

0.4 0.3 0.1
0.2 0.6 0.4

⎤
⎦ ,

perhaps modeling the way people surf a mini-Web, as
in Exercise 7.4.1.
a. Using technology, compute a high power of A, such

as A20. What do you observe? Make a conjecture for
lim

t→∞ At . (In part e, you will prove this conjecture.)

b. Use technology to find the complex eigenvalues of
A. Is matrix A diagonalizable over C?

c. Find the equilibrium distribution �xequ for A, that is,
the unique distribution vector in the eigenspace E1.

d. Without using Theorem 7.4.1 (which was proven
only for matrices that are diagonalizable over R),
show that lim

t→∞(At �x0) = �xequ for any distribution

vector �x0. Hint: Adapt the proof of Theorem 7.4.l to
the complex case.

e. Find lim
t→∞ At , proving your conjecture from

part a.

33. The power method for finding eigenvalues. Using tech-
nology, generate a random 5 × 5 matrix A with non-
negative entries. (Depending on the technology you are
using, the entries could be integers between zero and
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nine, or numbers between zero and one.) Using tech-
nology, compute B = A20 (or another high power of
A). We wish to compare the columns of B. This is hard
to do by inspection, particularly because the entries of
B may get rather large.

To get a better hold on B, form the diagonal 5 × 5
matrix D whose i th diagonal element is b1i , the i th en-
try of the first row of B. Compute C = B D−1.
a. How is C obtained from B? Give your answer in

terms of elementary row or column operations.
b. Take a look at the columns of the matrix C you get.

What do you observe? What does your answer tell
you about the columns of B = A20?

c. Explain the observations you made in part b. You
may assume that A has five distinct (complex)
eigenvalues and that the eigenvalue with maximal
modulus is real and positive. (We cannot explain
here why this will usually be the case.)

d. Compute AC . What is the significance of the en-
tries in the top row of this matrix in terms of the
eigenvalues of A? What is the significance of the
columns of C (or B) in terms of the eigenvectors
of A?

34. Exercise 33 illustrates how you can use the powers of
a matrix to find its dominant eigenvalue (i.e., the eigen-
value with maximal modulus), at least when this eigen-
value is real. But what about the other eigenvalues?
a. Consider an n × n matrix A with n distinct com-

plex eigenvalues λ1, λ2, . . . , λn , where λ1 is real.
Suppose you have a good (real) approximation λ

of λ1 (good in that |λ − λ1| < |λ − λi |, for
i = 2, . . . , n). Consider the matrix A − λIn . What
are its eigenvalues? Which has the smallest modu-
lus? Now consider the matrix (A − λIn)−1. What
are its eigenvalues? Which has the largest modulus?
What is the relationship between the eigenvectors of
A and those of (A − λIn)−1? Consider higher and
higher powers of (A − λIn)−1. How does this help
you to find an eigenvector of A with eigenvalue λ1,
and λ1 itself? Use the results of Exercise 33.

b. As an example of part a, consider the matrix

A =
⎡
⎣1 2 3

4 5 6
7 8 10

⎤
⎦ .

We wish to find the eigenvectors and eigenvalues of
A without using the corresponding commands on
the computer (which is, after all, a “black box”).
First, we find approximations for the eigenvalues by
graphing the characteristic polynomial (use techno-
logy). Approximate the three real eigenvalues of A
to the nearest integer. One of the three eigenvalues
of A is negative. Find a good approximation for
this eigenvalue and a corresponding eigenvector
by using the procedure outlined in part a. You

are not asked to do the same for the two other
eigenvalues.

35. Demonstrate the formula

tr A = λ1 + λ2 + · · · + λn,

where the λi are the complex eigenvalues of the
matrix A, counted with their algebraic multiplicities.
Hint: Consider the coefficient of λn−1 in f A(λ) =
(λ1 − λ)(λ2 − λ) · · · (λn − λ), and compare the result
with Theorem 7.2.5.

36. In 1990, the population of the African country Benin
was about 4.6 million people. Its composition by age
was as follows:

Age Bracket 0–15 15–30 30–45 45–60 60–75 75–90
Percent of 46.6 25.7 14.7 8.4 3.8 0.8

Population

We represent these data in a state vector whose compo-
nents are the populations in the various age brackets, in
millions:

�x(0) = 4.6

⎡
⎢⎢⎢⎢⎢⎢⎣

0.466
0.257
0.147
0.084
0.038
0.008

⎤
⎥⎥⎥⎥⎥⎥⎦ ≈

⎡
⎢⎢⎢⎢⎢⎢⎣

2.14
1.18
0.68
0.39
0.17
0.04

⎤
⎥⎥⎥⎥⎥⎥⎦ .

We measure time in increments of 15 years, with t = 0
in 1990. For example, �x(3) gives the age composition in
the year 2035 (1990 + 3 · 15). If current age-dependent
birth and death rates are extrapolated, we have the fol-
lowing model:

�x(t + 1) =

⎡
⎢⎢⎢⎢⎢⎢⎣

1.1 1.6 0.6 0 0 0
0.82 0 0 0 0 0
0 0.89 0 0 0 0
0 0 0.81 0 0 0
0 0 0 0.53 0 0
0 0 0 0 0.29 0

⎤
⎥⎥⎥⎥⎥⎥⎦ �x(t)

= A�x(t).

a. Explain the significance of all the entries in the ma-
trix A in terms of population dynamics.

b. Find the eigenvalue of A with the largest modu-
lus and an associated eigenvector (use technology).
What is the significance of these quantities in terms
of population dynamics? (For a summary on ma-
trix techniques used in the study of age-structured
populations, see Dmitrii O. Logofet, Matrices and
Graphs: Stability Problems in Mathematical Ecol-
ogy, Chapters 2 and 3, CRC Press, 1993.)
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37. Consider the set H of all complex 2 × 2 matrices of the
form

A =
[
w −z
z w

]
,

where w and z are arbitrary complex numbers.
a. Show that H is closed under addition and multipli-

cation. (That is, show that the sum and the product
of two matrices in H are again in H.)

b. Which matrices in H are invertible?
c. If a matrix in H is invertible, is the inverse in H as

well?
d. Find two matrices A and B in H such that AB �=

B A.
H is an example of a skew field: It satisfies all

axioms for a field, except for the commutativity of
multiplication. [The skew field H was introduced
by the Irish mathematician Sir William Hamilton
(1805–1865); its elements are called the quater-
nions. Another way to define the quaternions is dis-
cussed in Exercise 5.3.64.]

38. Consider the matrix

C4 =

⎡
⎢⎢⎣

0 0 0 1
1 0 0 0
0 1 0 0
0 0 1 0

⎤
⎥⎥⎦ .

a. Find the powers C2
4 , C3

4 , C4
4 , . . . .

b. Find all complex eigenvalues of C4, and construct a
complex eigenbasis.

c. A 4 × 4 matrix M is called circulant if it is of the
form

M =

⎡
⎢⎢⎣

a d c b
b a d c
c b a d
d c b a

⎤
⎥⎥⎦ .

Circulant matrices play an important role in statistics.
Show that any circulant 4×4 matrix M can be expressed
as a linear combination of I4, C4, C2

4 , C3
4 . Use this rep-

resentation to find an eigenbasis for M . What are the
eigenvalues (in terms of a, b, c, d)?

39. Consider the n × n matrix Cn which has ones directly
below the main diagonal and in the right upper corner,
and zeros everywhere else. See Exercise 38 for a dis-
cussion of C4.
a. Describe the powers of Cn .
b. Find all complex eigenvalues of Cn , and construct a

complex eigenbasis.
c. Generalize part c of Exercise 38.

40. Consider a cubic equation

x3 + px = q,

where (p/3)3 +(q/2)2 is negative. Show that this equa-
tion has three real solutions; write the solutions in the
form x j = A cos(θ j ) for j = 1, 2, 3, expressing A and
θ j in terms of p and q . How many of the solutions are
in the interval (

√−p/3, 2
√−p/3)? Can there be so-

lutions larger than 2
√−p/3? Hint: Cardano’s formula

derived in Exercise 7.2.50 is useful.

41. In his high school final examination (Aarau, Switzer-
land, 1896), young Albert Einstein (1879–1955) was
given the following problem: In a triangle ABC , let P
be the center of the inscribed circle. We are told that
AP = 1, B P = 1

2 , and C P = 1
3 . Find the radius ρ of

the inscribed circle. Einstein worked through this prob-
lem as follows:

sin
(α

2

)
= ρ

sin

(
β

2

)
= 2ρ

sin
(γ

2

)
= 3ρ.

(not to scale)

A B

C

α β

γ

ρ

P

For every triangle the following equation holds:

sin2
(α

2

)
+ sin2
(

β

2

)
+ sin2
(γ

2

)
+ 2 sin

(α
2

)
sin

(
β

2

)
sin
(γ

2

)
= 1.

In our case

14ρ2 + 12ρ3 − 1 = 0.

Now let

ρ = 1

x
.

At this point we interrupt Einstein’s work and ask you
to finish the job. Hint: Exercise 40 is helpful. Find the
exact solution (in terms of trigonometric and inverse
trigonometric functions), and give a numerical approxi-
mation as well. (By the way, Einstein, who was allowed
to use a logarithm table, solved the problem correctly.)
Source: The Collected Papers of Albert Einstein, Vol. 1,
Princeton University Press, 1987.

42. Consider a complex n × m matrix A. The conjugate A
is defined by taking the conjugate of each entry of A.
For example, if
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A =
[

2 + 3i 5
2i 9

]
, then A =

[
2 − 3i 5
−2i 9

]
.

a. Show that if A and B are complex n × p and p × m
matrices, respectively, then

AB = A B.

b. Let A be a real n × n matrix and �v + i �w an eigen-
vector of A with eigenvalue p + iq . Show that the
vector �v− i �w is an eigenvector of A with eigenvalue
p − iq .

43. Consider two real n × n matrices A and B that are
“similar over C”: That is, there is a complex invert-
ible n × n matrix S such that B = S−1 AS. Show
that A and B are in fact “similar over R”: That is,
there is a real R such that B = R−1 AR. Hint: Write
S = S1 + i S2, where S1 and S2 are real. Consider the
function f (z) = det(S1 + zS2), where z is a complex
variable. Show that f (z) is a nonzero polynomial. Con-
clude that there is a real number x such that f (x) �= 0.
Show that R = S1 + x S2 does the job.

44. Show that every complex 2 × 2 matrix is similar to an
upper triangular 2 × 2 matrix. Can you generalize this
result to square matrices of larger size? Hint: Argue by
induction.

For which values of the real constant a are the matrices
in Exercises 45 through 50 diagonalizable over C?

45.
[

1 1
a 1

]
46.
[

0 −a
a 0

]
47.

⎡
⎣0 0 0

1 0 a
0 1 0

⎤
⎦

48.

⎡
⎣0 0 a

1 0 3
0 1 0

⎤
⎦ 49.

⎡
⎣0 1 0

0 0 1
0 1 − a a

⎤
⎦

50.

⎡
⎣ −a a −a

−a − 1 a + 1 −a − 1
0 0 0

⎤
⎦

For Exercises 51 through 55, state whether the given set is
a field (with the customary addition and multiplication).

51. The rational numbers Q

52. The integers Z

53. The binary digits (introduced in Exercises 3.1.53 and
3.1.54)

54. The rotation-scaling matrices of the form

[
p −q
q p

]
,

where p and q are real numbers

55. The set H considered in Exercise 5.3.64

7.6 Stability

In applications, the long-term behavior is often the most important qualitative fea-
ture of a dynamical system. We are frequently faced with the following situa-
tion: The state �0 represents an equilibrium of the system (in physics, ecology, or
economics, for example). If the system is disturbed (moved into another state, away
from the equilibrium �0) and then left to its own devices, will it always return to the
equilibrium state �0?

EXAMPLE 1 Consider a dynamical system �x(t + 1) = A�x(t), where A is an n × n matrix.
Suppose an initial state vector �x0 is given. We are told that A has n distinct complex
eigenvalues, λ1, . . . , λn , and that |λi | < 1 for i = 1, . . . , n. What can you say about
the long-term behavior of the system, that is, about lim

t→∞ �x(t)?

Solution
For each complex eigenvalue λi , we can choose a complex eigenvector �vi . Then
the �vi form a complex eigenbasis for A (by Theorem 7.3.4). We can write �x0 as a
complex linear combination of the �vi :

�x0 = c1�v1 + · · · + cn�vn.

Then

�x(t) = At �x0 = c1λ
t
1�v1 + · · · + cnλ

t
n�vn.

By Example 5 of Section 7.5,

lim
t→∞ λt

i = 0, since |λi | < 1.
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Therefore,

lim
t→∞ �x(t) = �0. �

For the discussion of the long-term behavior of a dynamical system, the follow-
ing definition is useful:

Definition 7.6.1 Stable equilibrium

Consider a dynamical system

�x(t + 1) = A�x(t).

We say that �0 is an (asymptotically) stable equilibrium for this system if

lim
t→∞ �x(t) = lim

t→∞(At �x0) = �0
for all vectors �x0 in Rn .16

Note that the zero state is stable if (and only if)

lim
t→∞ At = 0

(meaning that all entries of At approach zero). See Exercise 36.
Consider the examples shown in Figure 1.

Figure 1(a) Asymptotically stable. Figure 1(b) Not asymptotically stable.

Generalizing Example 1, we have the following result:

Theorem 7.6.2 Stability and eigenvalues

Consider a dynamical system �x(t +1) = A�x(t). The zero state is asymptotically
stable if (and only if) the modulus of all the complex eigenvalues of A is less
than 1.

Example 1 illustrates this fact only when A is diagonalizable (i.e., when there
is a complex eigenbasis for A); recall that this is the case for most matrices A. In
Exercises 45 through 50 of Section 8.1, we will discuss the nondiagonalizable case.

16In this text, stable will always mean “asymptotically stable.” Several other notions of stability are
used in applied mathematics.
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For an illustration of Theorem 7.6.2, see Figure 10 of Section 7.1, where we
sketched the phase portraits of 2×2 matrices with two distinct positive eigenvalues.

We will now turn our attention to the phase portraits of 2 × 2 matrices with
complex eigenvalues p ± iq (where q �= 0).

EXAMPLE 2 Consider the dynamical system

�x(t + 1) =
[

p −q
q p

]
�x(t),

where p and q are real, and q is nonzero. Examine the stability of this system.
Sketch phase portraits. Discuss your results in terms of Theorem 7.6.2.

Solution
As in Theorem 2.2.4, we can write[

p −q
q p

]
= r

[
cos θ − sin θ

sin θ cos θ

]
,

representing the transformation as a rotation through an angle θ combined with a
scaling by r =

√
p2 + q2. Then

�x(t) =
[

p −q
q p

]t
�x0 = r t

[
cos(θ t) − sin(θ t)
sin(θ t) cos(θ t)

]
�x0,

representing a rotation through an angle θ t combined with a scaling by r t .
Figure 2 illustrates that the zero state is stable if r =

√
p2 + q2 < 1.

(a) (b) (c)

Figure 2 (a) r < 1: trajectories spiral inward. (b) r = 1: trajectories are circles. (c) r > 1:
trajectories spiral outward.

Alternatively, we can use Theorem 7.6.2 to examine the stability of the system.

From Example 6 of Section 7.5, we know that the eigenvalues of

[
p −q
q p

]
are

λ1,2 = p ± iq, with |λ1| = |λ2| =
√

p2 + q2. By Theorem 7.6.2, the zero state is
stable if

√
p2 + q2 < 1. �

Let us generalize Example 2. If A is any 2 × 2 matrix with eigenvalues λ1,2 =
p± iq, what does the phase portrait of the dynamical system �x(t +1) = A�x(t) look
like? Let �v+i �w be an eigenvector of A with eigenvalue p+iq. From Theorem 7.5.3,

we know that A is similar to the rotation–scaling matrix

[
p −q
q p

]
, with
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S−1 AS =
[

p −q
q p

]
or A = S

[
p −q
q p

]
S−1, where S =

[
�w �v
]

.

Using the terminology introduced in Example 2, we find that

�x(t) = At �x0 = S

[
p −q
q p

]t
S−1�x0 = r t S

[
cos(θ t) − sin(θ t)
sin(θ t) cos(θ t)

]
S−1�x0.

Theorem 7.6.3 Dynamical systems with complex eigenvalues

Consider the dynamical system �x(t +1) = A�x(t), where A is a real 2×2 matrix
with eigenvalues

λ1,2 = p ± iq = r
(
cos(θ) ± i sin(θ)

)
, where q �= 0.

Let �v + i �w be an eigenvector of A with eigenvalue p + iq.
Then

�x(t) = r t S

[
cos(θ t) − sin(θ t)
sin(θ t) cos(θ t)

]
S−1�x0, where S =

[
�w �v
]

.

Note that S−1�x0 is the coordinate vector of �x0 with respect to basis �w, �v.

EXAMPLE 3 Consider the dynamical system

�x(t + 1) =
[

3 −5
1 −1

]
�x(t) with initial state �x0 =

[
0
1

]
.

Use Theorem 7.6.3 to find a closed formula for �x(t), and sketch the trajectory.

Solution
In Example 8 of Section 7.5, we found the eigenvalues

λ1,2 = 1 ± i.

The polar coordinates of eigenvalue 1 + i are r = √
2 and θ = π

4 . Furthermore, we
found that

S =
[

�w �v
]

=
[

0 −5
1 −2

]
.

Since

S−1�x0 =
[

1
0

]
,

Theorem 7.6.3 gives

�x(t) = (
√

2)t

[
0 −5
1 −2

]⎡⎣cos
(

π
4 t
) − sin

(
π
4 t
)

sin
(

π
4 t
)

cos
(

π
4 t
)
⎤
⎦[1

0

]

= (
√

2)t

⎡
⎣ −5 sin

(
π
4 t
)

cos
(

π
4 t
)− 2 sin

(
π
4 t
)
⎤
⎦ .

We leave it to the reader to work out the details of this computation.
Next, let’s think about the trajectory. We will develop the trajectory step by

step:
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• The points ⎡
⎣cos
(

π
4 t
) − sin

(
π
4 t
)

sin
(

π
4 t
)

cos
(

π
4 t
)
⎤
⎦[1

0

]
(for t = 0, 1, 2, . . . )

are located on the unit circle, as shown in Figure 3a. Note that at t = 8 the

system returns to its initial position,

[
1
0

]
; the period of this system is 8.

• In Exercise 2.2.54, we saw that an invertible linear transformation maps the
unit circle into an ellipse. Thus, the points[

0 −5
1 −2

]⎡⎣cos
(

π
4 t
) − sin

(
π
4 t
)

sin
(

π
4 t
)

cos
(

π
4 t
)
⎤
⎦[1

0

]

are located on an ellipse, as shown in Figure 3b. The two column vectors of

S =
[

0 −5
1 −2

]
=
[

�w �v
]

are shown in that figure as well. Again, the period of this system is 8.
• The exponential growth factor (

√
2)t will produce longer and longer vectors

�x(t) = (
√

2)t

[
0 −5
1 −2

]⎡⎣cos
(

π
4 t
) − sin

(
π
4 t
)

sin
(

π
4 t
)

cos
(

π
4 t
)
⎤
⎦[1

0

]
.

t = 4

t = 3
t = 2

t = 1

t = 0,8

t = 4

t = 3

t = 2

t = 1

t = 0,8

(a) (b)

(c)

1

1

1

1

t = 8

t = 4t = 3
t = 2

t = 1 t = 0

20

20

v�

w�

−5
−2

0
1

−5
−2

0
1x�(t) = (  2)t

1
0

cos    t4
sin    t4

−sin    t4
cos    t4

1
0

cos    t4
sin    t4

−sin    t4
cos    t4

1
0

cos    t4
sin    t4

−sin    t4
cos    t4

Figure 3
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Thus, the trajectory spirals outward, as shown in Figure 3c. (We are using
different scales in Figures 3a, b, and c.) Note that �x(8) = (

√
2)8�x(0) =

16�x(0). �
We can generalize our findings in Example 3.

Theorem 7.6.4 Phase portrait of a system with complex eigenvalues

Consider a dynamical system

�x(t + 1) = A�x(t),

where A is a real 2 × 2 matrix with eigenvalues λ1,2 = p ± iq (where q �= 0).
Let

r = |λ1| = |λ2| =
√

p2 + q2.

If r = 1, then the points �x(t) are located on an ellipse; if r exceeds 1, then
the trajectory spirals outward; and if r is less than 1, then the trajectory spirals
inward, approaching the origin.

Theorem 7.6.4 provides another illustration of Theorem 7.6.2: The zero state is
stable if (and only if) r = |λ1| = |λ2| < 1.

If you have to sketch a trajectory of a system with complex eigenvalues with-
out the aid of technology, it helps to compute and plot the first few points �x(0),

�x(1), �x(2), . . . , until you see a trend.

EXERCISES 7.6
GOAL Use eigenvalues to determine the stability of
a dynamical system. Analyze the dynamical system
�x(t + 1) = A�x(t), where A is a real 2 × 2 matrix with
eigenvalues p ± iq.

For the matrices A in Exercises 1 through 10, determine
whether the zero state is a stable equilibrium of the dy-
namical system �x(t + 1) = A�x(t).

1. A =
[

0.9 0
0 0.8

]
2. A =

[−1.1 0
0 0.9

]

3. A =
[

0.8 0.7
−0.7 0.8

]
4. A =

[−0.9 −0.4
0.4 −0.9

]

5. A =
[

0.5 0.6
−0.3 1.4

]
6. A =

[ −1 3
−1.2 2.6

]

7. A =
[

2.4 −2.5
1 −0.6

]
8. A =

[
1 −0.2

0.1 0.7

]

9. A =
⎡
⎣0.8 0 −0.6

0 0.7 0
0.6 0 0.8

⎤
⎦

10. A =
⎡
⎣0.3 0.3 0.3

0.3 0.3 0.3
0.3 0.3 0.3

⎤
⎦

Consider the matrices A in Exercises 11 through 16. For
which real numbers k is the zero state a stable equilibrium
of the dynamical system �x(t + 1) = A�x(t)?

11. A =
[

k 0
0 0.9

]
12. A =

[
0.6 k
−k 0.6

]

13. A =
[

0.7 k
0 −0.9

]
14. A =

[
k k
k k

]

15. A =
[

1 k
0.01 1

]
16. A =

[
0.1 k
0.3 0.3

]

For the matrices A in Exercises 17 through 24, find
real closed formulas for the trajectory �x(t + 1) = A�x(t),

where �x(0) =
[

0
1

]
. Draw a rough sketch.

17. A =
[

0.6 −0.8
0.8 0.6

]
18. A =

[−0.8 0.6
−0.8 −0.8

]

19. A =
[

2 −3
3 2

]
20. A =

[
4 3

−3 4

]

21. A =
[

1 5
−2 7

]
22. A =

[
7 −15
6 −11

]

23. A =
[−0.5 1.5
−0.6 1.3

]
24. A =

[
1 −3

1.2 −2.6

]
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Consider an invertible n × n matrix A such that the
zero state is a stable equilibrium of the dynamical system
�x(t + 1) = A�x(t). What can you say about the stability of
the systems listed in Exercises 25 through 30?

25. �x(t + 1) = A−1�x(t) 26. �x(t + 1) = AT �x(t)

27. �x(t + 1) = −A�x(t) 28. �x(t + 1) = (A − 2In)�x(t)

29. �x(t + 1) = (A + In)�x(t) 30. �x(t + 1) = A2�x(t)

31. Let A be a real 2 × 2 matrix. Show that the zero state is
a stable equilibrium of the dynamical system �x(t +1) =
A�x(t) if (and only if)

|tr A| − 1 < det A < 1.

32. Let’s revisit the introductory example of Section 7.5:
The glucose regulatory system of a certain patient can
be modeled by the equations

g(t + 1) = 0.9g(t) − 0.4h(t)

h(t + 1) = 0.1g(t) + 0.9h(t).

Find closed formulas for g(t) and h(t), and draw the
trajectory. Does your trajectory look like the one on
page 361?

33. Consider a real 2 × 2 matrix A with eigenvalues p ± iq
and corresponding eigenvectors �v ± i �w. Show that if a
real vector �x0 is written as �x0 = c1(�v+i �w)+c2(�v−i �w),
then c2 = c1.

34. Consider a dynamical system �x(t + 1) = A�x(t), where
A is a real n × n matrix.
a. If | det A| ≥ 1, what can you say about the stability

of the zero state?
b. If | det A| < 1, what can you say about the stability

of the zero state?

35. a. Consider a real n × n matrix with n distinct real
eigenvalues λ1, . . . , λn , where |λi | ≤ 1 for all i =
1, . . . , n. Let �x(t) be a trajectory of the dynamical
system �x(t+1) = A�x(t). Show that this trajectory is
bounded; that is, there is a positive number M such
that ‖�x(t)‖ ≤ M for all positive integers t .

b. Are all trajectories of the dynamical system

�x(t + 1) =
[

1 1
0 1

]
�x(t)

bounded? Explain.

36. Show that the zero state is a stable equilibrium of the
dynamical system �x(t + 1) = A�x(t) if (and only if )

lim
t→∞ At = 0

(meaning that all entries of At approach zero).

37. Consider the national income of a country, which
consists of consumption, investment, and govern-
ment expenditures. Here we assume the government

expenditure to be constant, at G0, while the national
income Y (t), consumption C(t), and investment I (t)
change over time. According to a simple model, we
have∣∣∣∣∣∣

Y (t) = C(t) + I (t) + G0
C(t + 1) = γ Y (t)
I (t + 1) = α

(
C(t + 1) − C(t)

)
∣∣∣∣∣∣ (0 < γ < 1),

(α > 0)

where γ is the marginal propensity to consume and α

is the acceleration coefficient. (See Paul E. Samuelson,
“Interactions between the Multiplier Analysis and the
Principle of Acceleration,” Review of Economic Statis-
tics, May 1939, pp. 75–78.)
a. Find the equilibrium solution of these equations,

when Y (t + 1) = Y (t), C(t + 1) = C(t), and
I (t + 1) = I (t).

b. Let y(t), c(t), and i(t) be the deviations of Y (t),
C(t), and I (t), respectively, from the equilibrium
state you found in part (a). These quantities are re-
lated by the equations∣∣∣∣∣∣

y(t) = c(t) + i(t)
c(t + 1) = γ y(t)
i(t + 1) = α

(
c(t + 1) − c(t)

)
∣∣∣∣∣∣ .

(Verify this!) By substituting y(t) into the second
equation, set up equations of the form∣∣∣∣c(t + 1) = pc(t) + qi(t)

i(t + 1) = rc(t) + si(t)

∣∣∣∣ .
c. When α = 5 and γ = 0.2, determine the stability of

the zero state of this system.
d. When α = 1 (and γ is arbitrary, 0 < γ < 1), deter-

mine the stability of the zero state.
e. For each of the four sectors in the α–γ -plane, deter-

mine the stability of the zero state.

γ

α

αγ = 1

1

1 2 3 4

IV II III

I

γ = 4α
(1 + α)2

Discuss the various cases, in practical terms.

38. Consider an affine transformation

T (�x) = A�x + �b,

where A is an n×n matrix and �b is a vector in Rn . Com-
pare this with Exercise 7.4.35. Suppose that 1 is not an
eigenvalue of A.
a. Find the vector �v in Rn such that T (�v) = �v; this vec-

tor is called the equilibrium state of the dynamical
system �x(t + 1) = T

(�x(t)
)
.

b. When is the equilibrium �v in part (a) stable (mean-
ing that lim

t→∞ �x(t) = �v for all trajectories)?



382 CHAPTER 7 Eigenvalues and Eigenvectors

39. Consider the dynamical system

x1(t + 1) = 0.1x1(t) + 0.2x2(t) + 1,

x2(t + 1) = 0.4x1(t) + 0.3x2(t) + 2.

See Exercise 7.4.35. Find the equilibrium state of this
system and determine its stability. See Exercise 38.
Sketch a phase portrait.

40. Consider the matrix

A =

⎡
⎢⎢⎣

p −q −r −s
q p s −r
r −s p q
s r −q p

⎤
⎥⎥⎦ ,

where p, q , r , s are arbitrary real numbers. Compare
this with Exercise 5.3.64.
a. Compute AT A.
b. For which values of p, q , r , s is A invertible? Find

the inverse if it exists.
c. Find the determinant of A.
d. Find the complex eigenvalues of A.
e. If �x is a vector in R4, what is the relationship be-

tween ‖�x‖ and ‖A�x‖?
f. Consider the numbers

59 = 32 + 32 + 42 + 52

and

37 = 12 + 22 + 42 + 42.

Express the number

2183

as the sum of the squares of four integers:

2183 = a2 + b2 + c2 + d2.

Hint: Part e is useful. Note that 2183 = 59 · 37.
g. The French mathematician Joseph-Louis Lagrange

(1736–1813) showed that any prime number can be
expressed as the sum of the squares of four integers.
Using this fact and your work in part (f) as a guide,
show that any positive integer can be expressed in
this way.

41. Find a 2 × 2 matrix A without real eigenvalues and a
vector �x0 in R2 such that for all positive integers t , the
point At �x0 is located on the ellipse in the accompanying
sketch.

−3
4

8
6

42. We quote from a text on computer graphics (M. Beeler
et al., “HAKMEM,” MIT Artificial Intelligence Report
AIM-239, 1972):

Here is an elegant way to draw almost circles
on a point-plotting display.

CIRCLE ALGORITHM:

NEW X = OLD X - K*OLD Y;
NEW Y = OLD Y + K*NEW X.

This makes a very round ellipse centered at
the origin with its size determined by the ini-
tial point. The circle algorithm was invented by
mistake when I tried to save a register in a dis-
play hack!

(In the preceding formula, k is a small number.) Here,
a dynamical system is defined in “computer lingo.” In
our terminology, the formulas are

x(t + 1) = x(t) − ky(t),

y(t + 1) = y(t) + kx(t + 1).

a. Find the matrix of this transformation. [Note the en-
try x(t + 1) in the second formula.]

b. Explain why the trajectories are ellipses, as claimed.

Chapter Seven Exercises

TRUE OR FALSE?
1. If 0 is an eigenvalue of a matrix A, then det A = 0.

2. The eigenvalues of a 2 × 2 matrix A are the solutions of
the equation λ2 − (trA)λ + (det A) = 0.

3. The eigenvalues of any triangular matrix are its diago-
nal entries.

4. The trace of any square matrix is the sum of its diagonal
entries.
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5. The algebraic multiplicity of an eigenvalue cannot ex-
ceed its geometric multiplicity.

6. If an n × n matrix A is diagonalizable (over R), then
there must be a basis of Rn consisting of eigenvectors
of A.

7. If the standard vectors �e1, �e2, . . . , �en are eigenvectors
of an n × n matrix A, then A must be diagonal.

8. If �v is an eigenvector of A, then �v must be an eigenvec-
tor of A3 as well.

9. There exists a diagonalizable 5×5 matrix with only two
distinct eigenvalues (over C).

10. There exists a real 5 × 5 matrix without any real
eigenvalues.

11. If matrices A and B have the same eigenvalues (over C),
with the same algebraic multiplicities, then matrices A
and B must have the same trace.

12. If a real matrix A has only the eigenvalues 1 and −1,
then A must be orthogonal.

13. Any rotation-scaling matrix in R2×2 is diagonalizable
over C.

14. If A is a noninvertible n × n matrix, then the geometric
multiplicity of eigenvalue 0 is n − rank(A).

15. If matrix A is diagonalizable, then its transpose AT

must be diagonalizable as well.

16. If A and B are two 3 × 3 matrices such that tr A = tr B
and det A = det B, then A and B must have the same
eigenvalues.

17. If 1 is the only eigenvalue of an n × n matrix A, then A
must be In .

18. If A and B are n × n matrices, if α is an eigenvalue of
A, and if β is an eigenvalue of B, then αβ must be an
eigenvalue of AB.

19. If 3 is an eigenvalue of an n × n matrix A, then 9 must
be an eigenvalue of A2.

20. The matrix of any orthogonal projection onto a sub-
space V of Rn is diagonalizable.

21. All diagonalizable matrices are invertible.

22. If vector �v is an eigenvector of both A and B, then �v
must be an eigenvector of A + B.

23. If matrix A2 is diagonalizable, then matrix A must be
diagonalizable as well.

24. The determinant of a matrix is the product of its eigen-
values (over C), counted with their algebraic multiplic-
ities.

25. All lower triangular matrices are diagonalizable
(over C).

26. If two n × n matrices A and B are diagonalizable, then
AB must be diagonalizable as well.

27. If an invertible matrix A is diagonalizable, then A−1

must be diagonalizable as well.

28. If det(A) = det(AT ), then matrix A must be symmetric.

29. If matrix A =
⎡
⎣7 a b

0 7 c
0 0 7

⎤
⎦ is diagonalizable, then a, b,

and c must all be zero.

30. If two n × n matrices A and B are diagonalizable, then
A + B must be diagonalizable as well.

31. If �u, �v, �w are eigenvectors of a 4 × 4 matrix A, with
associated eigenvalues 3, 7, and 11, respectively, then
vectors �u, �v, �w must be linearly independent.

32. If a 4 × 4 matrix A is diagonalizable, then the matrix
A + 4I4 must be diagonalizable as well.

33. If an n×n matrix A is diagonalizable, then A must have
n distinct eigenvalues.

34. If two 3×3 matrices A and B both have the eigenvalues
1, 2, and 3, then A must be similar to B.

35. If �v is an eigenvector of A, then �v must be an eigenvec-
tor of AT as well.

36. All invertible matrices are diagonalizable.

37. If �v and �w are linearly independent eigenvectors of ma-
trix A, then �v + �w must be an eigenvector of A as well.

38. If a 2×2 matrix R represents a reflection about a line L ,
then R must be diagonalizable.

39. If A is a 2×2 matrix such that tr A = 1 and det A = −6,
then A must be diagonalizable.

40. If a matrix is diagonalizable, then the algebraic multi-
plicity of each of its eigenvalues λ must equal the geo-
metric multiplicity of λ.

41. All orthogonal matrices are diagonalizable (over R).

42. If A is an n × n matrix and λ is an eigenvalue of the

block matrix M =
[

A A
0 A

]
, then λ must be an eigen-

value of matrix A.

43. If two matrices A and B have the same characteristic
polynomials, then they must be similar.

44. If A is a diagonalizable 4 × 4 matrix with A4 = 0, then
A must be the zero matrix.

45. If an n ×n matrix A is diagonalizable (over R), then ev-
ery vector �v in Rn can be expressed as a sum of eigen-
vectors of A.

46. If vector �v is an eigenvector of both A and B, then �v is
an eigenvector of AB.
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47. Similar matrices have the same characteristic
polynomials.

48. If a matrix A has k distinct eigenvalues, then
rank(A) ≥ k.

49. If the rank of a square matrix A is 1, then all the nonzero
vectors in the image of A are eigenvectors of A.

50. If the rank of an n × n matrix A is 1, then A must be
diagonalizable.

51. If A is a 4 × 4 matrix with A4 = 0, then 0 is the only
eigenvalue of A.

52. If two n × n matrices A and B are both diagonalizable,
then they must commute.

53. If �v is an eigenvector of A, then �v must be in the kernel
of A or in the image of A.

54. All symmetric 2 × 2 matrices are diagonalizable
(over R).

55. If A is a 2 × 2 matrix with eigenvalues 3 and 4 and if �u
is a unit eigenvector of A, then the length of vector A�u
cannot exceed 4.

56. If �u is a nonzero vector in Rn , then �u must be an eigen-
vector of matrix �u�uT .

57. If �v1, �v2, . . . , �vn is an eigenbasis for both A and B, then
matrices A and B must commute.

58. If �v is an eigenvector of a 2 × 2 matrix A =
[

a b
c d

]
,

then �v must be an eigenvector of its classical adjoint

adj(A) =
[

d −b
−c a

]
as well.



C H A P T E R

8
Symmetric Matrices and Quadratic Forms

8.1 Symmetric Matrices

In this chapter we will work with real numbers throughout, except for a brief
digression into C in the discussion of Theorem 8.1.3.

Our work in the last chapter dealt with the following central question:

When is a given square matrix A diagonalizable? That is, when is there an
eigenbasis for A?

In geometry, we prefer to work with orthonormal bases, which raises the fol-
lowing question:

For which matrices is there an orthonormal eigenbasis? Or, equivalently, for
which matrices A is there an orthogonal matrix S such that S−1 AS = ST AS is
diagonal?

(Recall that S−1 = ST for orthogonal matrices, by Theorem 5.3.7.) We say that
A is orthogonally diagonalizable if there exists an orthogonal matrix S such that
S−1 AS = ST AS is diagonal. Then, the question is:

Which matrices are orthogonally diagonalizable?

Simple examples of orthogonally diagonalizable matrices are diagonal matrices
(we can let S = In) and the matrices of orthogonal projections and reflections.

EXAMPLE 1 If A is orthogonally diagonalizable, what is the relationship between AT and A?

Solution
We have

S−1 AS = D or A = SDS−1 = SDST ,

385
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for an orthogonal S and a diagonal D. Then

AT = (SDST )T = SDT ST = SDST = A.

We find that A is symmetric:

AT = A. �
Surprisingly, the converse is true as well:

Theorem 8.1.1 Spectral theorem

A matrix A is orthogonally diagonalizable (i.e., there exists an orthogonal S
such that S−1 AS = ST AS is diagonal) if and only if A is symmetric (i.e.,
AT = A).

We will prove this theorem later in this section, based on two preliminary re-
sults, Theorems 8.1.2 and 8.1.3. First, we will illustrate the spectral theorem with
an example.

EXAMPLE 2 For the symmetric matrix A =
[

4 2
2 7

]
, find an orthogonal S such that S−1 AS is

diagonal.

Solution
We will first find an eigenbasis. The eigenvalues of A are 3 and 8, with correspond-

ing eigenvectors

[
2

−1

]
and

[
1
2

]
, respectively. See Figure 1.

E8 = span 1
2

E3 = span 2
−1

Figure 1

Note that the two eigenspaces, E3 and E8, are perpendicular. (This is no coin-
cidence, as we will see in Theorem 8.1.2.) Therefore, we can find an orthonormal
eigenbasis simply by dividing the given eigenvectors by their lengths:

�v1 = 1√
5

[
2

−1

]
, �v2 = 1√

5

[
1
2

]
.

If we define the orthogonal matrix

S =
⎡
⎣ | |

�v1 �v2

| |

⎤
⎦ = 1√

5

[
2 1

−1 2

]
,

then S−1 AS will be diagonal; namely, S−1 AS =
[

3 0
0 8

]
. �
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The key observation we made in Example 2 generalizes as follows:

Theorem 8.1.2 Consider a symmetric matrix A. If �v1 and �v2 are eigenvectors of A with distinct
eigenvalues λ1 and λ2, then �v1 · �v2 = 0; that is, �v2 is orthogonal to �v1.

Proof We compute the product

�vT
1 A�v2

in two different ways:

�vT
1 A�v2 = �vT

1 (λ2�v2) = λ2(�v1 · �v2)

�vT
1 A�v2 = �vT

1 AT �v2 = (A�v1)
T �v2 = (λ1�v1)

T �v2 = λ1(�v1 · �v2).

Comparing the results, we find

λ1(�v1 · �v2) = λ2(�v1 · �v2),

or

(λ1 − λ2)(�v1 · �v2) = 0.

Since the first factor in this product, λ1 − λ2, is nonzero, the second factor, �v1 · �v2,
must be zero, as claimed. �

Theorem 8.1.2 tells us that the eigenspaces of a symmetric matrix are perpen-
dicular to one another. Here is another illustration of this property:

EXAMPLE 3 For the symmetric matrix

A =
⎡
⎣1 1 1

1 1 1
1 1 1

⎤
⎦ ,

find an orthogonal S such that S−1 AS is diagonal.

Solution
The eigenvalues are 0 and 3, with

E0 = span

⎛
⎝
⎡
⎣−1

1
0

⎤
⎦ ,

⎡
⎣−1

0
1

⎤
⎦
⎞
⎠ and E3 = span

⎡
⎣1

1
1

⎤
⎦ .

Note that the two eigenspaces are indeed perpendicular to one another, in accor-
dance with Theorem 8.1.2. See Figure 2.

We can construct an orthonormal eigenbasis for A by picking an orthonormal
basis of each eigenspace (using the Gram–Schmidt process in the case of E0). See
Figure 3.

In Figure 3, the vectors �v1, �v2 form an orthonormal basis of E0, and �v3 is a
unit vector in E3. Then �v1, �v2, �v3 is an orthonormal eigenbasis for A. We can let
S = [ �v1 �v2 �v3

]
to diagonalize A orthogonally.

If we apply the Gram–Schmidt1 process to the vectors⎡
⎣−1

1
0

⎤
⎦ ,

⎡
⎣−1

0
1

⎤
⎦

1Alternatively, we could find a unit vector �v1 in E0 and a unit vector �v3 in E3, and then let �v2 = �v3 × �v1.
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0

E3 = span
1
1
1

E0 = span              ,
−1

1
0

−1
0
1

Figure 2 The eigenspaces E0 and E3 are
orthogonal complements.

0

E3 

E0 

v�3

v�2

v�1

Figure 3

spanning E0, we find

�v1 = 1√
2

⎡
⎣−1

1
0

⎤
⎦ and �v2 = 1√

6

⎡
⎣−1

−1
2

⎤
⎦ .

The computations are left as an exercise. For E3, we get

�v3 = 1√
3

⎡
⎣1

1
1

⎤
⎦ .

Therefore, the orthogonal matrix

S =
⎡
⎣ | | |

�v1 �v2 �v3

| | |

⎤
⎦ =

⎡
⎢⎣−1/

√
2 −1/

√
6 1/

√
3

1/
√

2 −1/
√

6 1/
√

3

0 2/
√

6 1/
√

3

⎤
⎥⎦

diagonalizes the matrix A:

S−1 AS =
⎡
⎣0 0 0

0 0 0
0 0 3

⎤
⎦ . �

By Theorem 8.1.2, if a symmetric matrix is diagonalizable, then it is orthogo-
nally diagonalizable. We still have to show that symmetric matrices are diagonaliz-
able in the first place (over R). The key point is the following observation:

Theorem 8.1.3 A symmetric n ×n matrix A has n real eigenvalues if they are counted with their
algebraic multiplicities.

Proof (This proof is for those who have studied Section 7.5.) By Theorem 7.5.4, we need
to show that all the complex eigenvalues of matrix A are in fact real. Consider
two complex conjugate eigenvalues p ± iq of A with corresponding eigenvectors
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�v ± i �w. Compare this with Exercise 7.5.42b. We wish to show that these eigen-
values are real; that is, q = 0. Note first that

(�v + i �w)T (�v − i �w) = ‖�v‖2 + ‖ �w‖2.

(Verify this.) Now we compute the product

(�v + i �w)T A(�v − i �w)

in two different ways:

(�v + i �w)T A(�v − i �w) = (�v + i �w)T (p − iq)(�v − i �w)

= (p − iq)(‖�v‖2 + ‖ �w‖2)

(�v + i �w)T A(�v − i �w) = (A(�v + i �w)
)T

(�v − i �w) = (p + iq)(�v + i �w)T (�v − i �w)

= (p + iq)(‖�v‖2 + ‖ �w‖2).

Comparing the results, we find that p + iq = p − iq, so that q = 0, as claimed.
�

The foregoing proof is not very enlightening. A more transparent proof would
follow if we were to define the dot product for complex vectors, but to do so would
lead us too far afield.

We are now ready to prove Theorem 8.1.1: Symmetric matrices are orthogo-
nally diagonalizable.

Even though this is not logically necessary, let us first examine the case of a
symmetric n × n matrix A with n distinct real eigenvalues. For each eigenvalue,
we can choose an eigenvector of length 1. By Theorem 8.1.2, these eigenvectors
will form an orthonormal eigenbasis; that is, the matrix A will be orthogonally
diagonalizable, as claimed.

Proof
(of Theorem 8.1.1):

This proof is somewhat technical; it may be skipped in a first reading of this text
without harm.

We prove by induction on n that a symmetric n × n matrix A is orthogonally
diagonalizable. See Appendix B.

For a 1 × 1 matrix A, we can let S = [1].
Now assume that the claim is true for n; we show that it holds for n + 1. Pick a

real eigenvalue λ of A (this is possible by Theorem 8.1.3), and choose an eigenvec-
tor �v1 of length 1 for λ. We can find an orthonormal basis �v1, �v2, . . . , �vn+1 of Rn+1.
(Think about how you could construct such a basis.) Form the orthogonal matrix

P =
⎡
⎣ | | |

�v1 �v2 · · · �vn+1

| | |

⎤
⎦ ,

and compute

P−1 AP.

The first column of P−1 AP is λ�e1. (Why?) Also note that P−1 AP = PT AP is
symmetric: (PT AP)T = PT AT P = PT AP , because A is symmetric. Combining
these two statements, we conclude that P−1 AP has the block form

P−1 AP =
[
λ 0
0 B

]
, (I)
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where B is a symmetric n×n matrix. By the induction hypothesis, B is orthogonally
diagonalizable; that is, there exists an orthogonal n × n matrix Q such that

Q−1 B Q = D

is a diagonal n × n matrix. Now introduce the orthogonal (n + 1) × (n + 1) matrix

R =
[

1 0
0 Q

]
.

Then

R−1

[
λ 0
0 B

]
R =
[

1 0
0 Q−1

] [
λ 0
0 B

] [
1 0
0 Q

]
=
[
λ 0
0 D

]
(II)

is diagonal.
Combining equations (I) and (II), we find that

R−1 P−1 AP R =
[
λ 0
0 D

]
(III)

is diagonal. Consider the orthogonal matrix S = P R. (Recall Theorem 5.3.4a:
The product of orthogonal matrices is orthogonal.) Note that S−1 = (P R)−1 =
R−1 P−1. Therefore, equation (III) can be written

S−1 AS =
[
λ 0
0 D

]
,

proving our claim. �
The method outlined in the proof of Theorem 8.1.1 is not a sensible way to find

the matrix S in a numerical example. Rather, we can proceed as in Example 3:

Theorem 8.1.4 Orthogonal diagonalization of a symmetric matrix A

a. Find the eigenvalues of A, and find a basis of each eigenspace.

b. Using the Gram–Schmidt process, find an orthonormal basis of each
eigenspace.

c. Form an orthonormal eigenbasis �v1, �v2, . . . , �vn for A by concatenating
the orthonormal bases you found in part b, and let

S =
⎡
⎣ | | |

�v1 �v2 . . . �vn

| | |

⎤
⎦ .

S is orthogonal (by Theorem 8.1.2), and S−1 AS will be diagonal.

We conclude this section with an example of a geometric nature:

EXAMPLE 4 Consider an invertible symmetric 2 × 2 matrix A. Show that the linear transforma-
tion T (�x) = A�x maps the unit circle into an ellipse, and find the lengths of the
semimajor and the semiminor axes of this ellipse in terms of the eigenvalues of A.
Compare this with Exercise 2.2.54.

Solution
The spectral theorem tells us that there exists an orthonormal eigenbasis �v1, �v2 for
T , with associated real eigenvalues λ1 and λ2. These eigenvalues will be nonzero,
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since A is invertible. Arrange things so that |λ1| ≥ |λ2|. The unit circle in R2

consists of all vectors of the form

�v = cos(t)�v1 + sin(t)�v2.

The image of the unit circle consists of the vectors

T (�v) = cos(t)T (�v1) + sin(t)T (�v2)

= cos(t)λ1�v1 + sin(t)λ2�v2,

an ellipse whose semimajor axis λ1�v1 has the length ‖λ1�v1‖ = |λ1|, while the length
of the semiminor axis is ‖λ2�v2‖ = |λ2|. See Figure 4.

v�1v�2

T

T(v�2) =   2v�2Unit
circle

T(v�1) =   1v�1

Figure 4

In the example illustrated in Figure 4, the eigenvalue λ1 is positive, and λ2 is
negative. �

EXERCISES 8.1
GOAL Find orthonormal eigenbases for symmetric
matrices. Apply the spectral theorem.

For each of the matrices in Exercises 1 through 6, find an
orthonormal eigenbasis. Do not use technology.

1.
[

1 0
0 2

]
2.
[

1 1
1 1

]

3.
[

6 2
2 3

]
4.

⎡
⎣0 0 1

0 0 1
1 1 1

⎤
⎦

5.

⎡
⎣0 1 1

1 0 1
1 1 0

⎤
⎦ 6.

⎡
⎣0 2 2

2 1 0
2 0 −1

⎤
⎦

For each of the matrices A in Exercises 7 through 11, find
an orthogonal matrix S and a diagonal matrix D such that
S−1 AS = D. Do not use technology.

7. A =
[

3 2
2 3

]
8. A =

[
3 3
3 −5

]

9. A =
⎡
⎣0 0 3

0 2 0
3 0 0

⎤
⎦ 10. A =

⎡
⎣ 1 −2 2

−2 4 −4
2 −4 4

⎤
⎦

11. A =
⎡
⎣1 0 1

0 1 0
1 0 1

⎤
⎦

12. Let L from R3 to R3 be the reflection about the line
spanned by

�v =
⎡
⎣1

0
2

⎤
⎦ .

a. Find an orthonormal eigenbasis � for L .
b. Find the matrix B of L with respect to �.
c. Find the matrix A of L with respect to the standard

basis of R3.

13. Consider a symmetric 3 × 3 matrix A with A2 = I3.
Is the linear transformation T (�x) = A�x necessarily the
reflection about a subspace of R3?
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14. In Example 3 of this section, we diagonalized the ma-
trix

A =
⎡
⎣1 1 1

1 1 1
1 1 1

⎤
⎦

by means of an orthogonal matrix S. Use this result to
diagonalize the following matrices orthogonally (find S
and D in each case):

a.

⎡
⎣2 2 2

2 2 2
2 2 2

⎤
⎦ b.

⎡
⎣−2 1 1

1 −2 1
1 1 −2

⎤
⎦

c.

⎡
⎢⎢⎢⎣

0 1
2

1
2

1
2 0 1

2
1
2

1
2 0

⎤
⎥⎥⎥⎦

15. If A is invertible and orthogonally diagonalizable, is
A−1 orthogonally diagonalizable as well?

16. a. Find the eigenvalues of the matrix

A =

⎡
⎢⎢⎢⎢⎣

1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1

⎤
⎥⎥⎥⎥⎦

with their multiplicities. Note that the algebraic
multiplicity agrees with the geometric multiplicity.
(Why?) Hint: What is the kernel of A?

b. Find the eigenvalues of the matrix

B =

⎡
⎢⎢⎢⎢⎣

3 1 1 1 1
1 3 1 1 1
1 1 3 1 1
1 1 1 3 1
1 1 1 1 3

⎤
⎥⎥⎥⎥⎦

with their multiplicities. Do not use technology.
c. Use your result in part b to find det B.

17. Use the approach of Exercise 16 to find the determinant
of the n × n matrix B that has p’s on the diagonal and
q’s elsewhere:

B =

⎡
⎢⎢⎢⎣

p q · · · q
q p · · · q
...

...
. . .

...

q q · · · p

⎤
⎥⎥⎥⎦ .

18. Consider unit vectors �v1, . . . , �vn in Rn such that the an-
gle between �vi and �v j is 60◦ for all i �= j . Find the
n-volume of the n-parallelepiped spanned by
�v1, . . . , �vn . Hint: Let A = [ �v1 · · · �vn

]
, and think

about the matrix AT A and its determinant. Exercise 17
is useful.

19. Consider a linear transformation L from Rm to
Rn . Show that there exists an orthonormal ba-
sis �v1, �v2, . . . , �vm of Rm such that the vectors
L(�v1), L(�v2), . . . , L(�vm) are orthogonal. Note that
some of the vectors L(�vi ) may be zero. Hint: Consider
an orthonormal eigenbasis �v1, �v2, . . . , �vm for the sym-
metric matrix ATA.

20. Consider a linear transformation T from Rm to Rn ,
where m ≤ n. Show that there exist an orthonor-
mal basis �v1, . . . , �vm of Rm and an orthonormal basis
�w1, . . . , �wn of Rn such that T (�vi ) is a scalar multiple
of �wi , for i = 1, . . . , m. Hint: Exercise 19 is helpful.

21. Consider a symmetric 3 × 3 matrix A with eigenval-
ues 1, 2, and 3. How many different orthogonal matrices
S are there such that S−1 AS is diagonal?

22. Consider the matrix

A =

⎡
⎢⎢⎣

0 2 0 0
k 0 2 0
0 k 0 2
0 0 k 0

⎤
⎥⎥⎦ ,

where k is a constant.
a. Find a value of k such that the matrix A is diagonal-

izable.
b. Find a value of k such that A fails to be diagonal-

izable.

23. If an n × n matrix A is both symmetric and orthogo-
nal, what can you say about the eigenvalues of A? What
about the eigenspaces? Interpret the linear transforma-
tion T (�x) = A�x geometrically in the cases n = 2 and
n = 3.

24. Consider the matrix

A =

⎡
⎢⎢⎣

0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

⎤
⎥⎥⎦ .

Find an orthonormal eigenbasis for A.

25. Consider the matrix⎡
⎢⎢⎢⎢⎣

0 0 0 0 1
0 0 0 1 0
0 0 1 0 0
0 1 0 0 0
1 0 0 0 0

⎤
⎥⎥⎥⎥⎦ .

Find an orthogonal 5 × 5 matrix S such that S−1 AS is
diagonal.

26. Let Jn be the n × n matrix with all ones on the “other
diagonal” and zeros elsewhere. (In Exercises 24 and 25,
we studied J4 and J5, respectively.) Find the eigenval-
ues of Jn , with their multiplicities.
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27. Diagonalize the n × n matrix⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 · · · 0 1
0 1 0 · · · 1 0
0 0 1 · · · 0 0
...

...
...

. . .
...

...

0 1 0 · · · 1 0
1 0 0 · · · 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.

(All ones along both diagonals, and zeros elsewhere.)

28. Diagonalize the 13 × 13 matrix⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 · · · 0 1
0 0 0 · · · 0 1
0 0 0 · · · 0 1
...

...
...

. . .
...

...

0 0 0 · · · 0 1
1 1 1 · · · 1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.

(All ones in the last row and the last column, and zeros
elsewhere.)

29. Consider a symmetric matrix A. If the vector �v is in the
image of A and �w is in the kernel of A, is �v necessarily
orthogonal to �w? Justify your answer.

30. Consider an orthogonal matrix R whose first column is
�v. Form the symmetric matrix A = �v�vT . Find an or-
thogonal matrix S and a diagonal matrix D such that
S−1 AS = D. Describe S in terms of R.

31. True or false? If A is a symmetric matrix, then
rank(A) = rank(A2).

32. Consider the n × n matrix with all ones on the main di-
agonal and all q’s elsewhere. For which values of q is
this matrix invertible? Hint: Exercise 17 is helpful.

33. For which angle(s) θ can you find three distinct unit
vectors in R2 such that the angle between any two of
them is θ? Draw a sketch.

34. For which angle(s) θ can you find four distinct unit vec-
tors in R3 such that the angle between any two of them
is θ? Draw a sketch.

35. Consider n + 1 distinct unit vectors in Rn such that the
angle between any two of them is θ . Find θ .

36. Consider a symmetric n × n matrix A with A2 = A.
Is the linear transformation T (�x) = A�x necessarily the
orthogonal projection onto a subspace of Rn?

37. If A is any symmetric 2×2 matrix with eigenvalues −2
and 3, and �u is a unit vector in R2, what are the possi-
ble values of ‖A�u‖? Explain your answer geometrically,
using Example 4 as a guide.

38. If A is any symmetric 2 × 2 matrix with eigenvalues
−2 and 3, and �u is a unit vector in R2, what are the
possible values of the dot product �u · A�u? Illustrate

your answer, in terms of the unit circle and its image
under A.

39. If A is any symmetric 3 × 3 matrix with eigenvalues
−2, 3, and 4, and �u is a unit vector in R3, what are the
possible values of the dot product �u · A�u?

40. If A is any symmetric 3×3 matrix with eigenvalues −2,
3, and 4, and �u is a unit vector in R3, what are the possi-
ble values of ‖A�u‖? Explain your answer geometrically,
in terms of the unit sphere and its image under A.

41. Show that for every symmetric n × n matrix A, there
exists a symmetric n × n matrix B such that B3 = A.

42. Find a symmetric 2 × 2 matrix B such that

B3 = 1

5

[
12 14
14 33

]
.

43. For A =
⎡
⎣ 2 11 11

11 2 11
11 11 2

⎤
⎦, find a nonzero vector �v in

R3 such that A�v is orthogonal to �v.

44. Consider an invertible symmetric n×n matrix A. When
does there exist a nonzero vector �v in Rn such that A�v is
orthogonal to �v? Give your answer in terms of the signs
of the eigenvalues of A.

45. We say that an n × n matrix A is triangulizable if A is
similar to an upper triangular n × n matrix B.
a. Give an example of a matrix with real entries that

fails to be triangulizable over R.
b. Show that any n × n matrix with complex entries is

triangulizable over C. Hint: Give a proof by induc-
tion analogous to the proof of Theorem 8.1.1.

46. a. Consider a complex upper triangular n ×n matrix U
with zeros on the diagonal. Show that U is nilpotent
(i.e., that U n = 0). Compare with Exercises 3.3.78
and 3.3.79.

b. Consider a complex n × n matrix A that has zero as
its only eigenvalue (with algebraic multiplicity n).
Use Exercise 45 to show that A is nilpotent.

47. Let us first introduce two notations.
For a complex n × n matrix A, let |A| be the matrix
whose i j th entry is |ai j |.
For two real n × n matrices A and B, we write A ≤ B
if ai j ≤ bi j for all entries. Show that
a. |AB| ≤ |A||B|, for all complex n × n matrices A

and B, and
b. |At | ≤ |A|t , for all complex n × n matrices A and

all positive integers t .

48. Let U ≥ 0 be a real upper triangular n × n matrix with
zeros on the diagonal. Show that

(In + U )t ≤ tn(In + U + U 2 + · · · + U n−1)

for all positive integers t . See Exercises 46 and 47.
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49. Let R be a complex upper triangular n × n matrix with
|rii | < 1 for i = 1, . . . , n. Show that

lim
t→∞ Rt = 0,

meaning that the modulus of all entries of Rt ap-
proaches zero. Hint: We can write |R| ≤ λ(In +U ), for
some positive real number λ < 1 and an upper triangu-
lar matrix U ≥ 0 with zeros on the diagonal. Exercises
47 and 48 are helpful.

50. a. Let A be a complex n × n matrix such that |λ| < 1
for all eigenvalues λ of A. Show that

lim
t→∞ At = 0,

meaning that the modulus of all entries of At ap-
proaches zero.

b. Prove Theorem 7.6.2.

8.2 Quadratic Forms

In this section, we will present an important application of the spectral theorem
(Theorem 8.1.1).

In a multivariable calculus text, we find the following problem:

EXAMPLE 1 Consider the function

q(x1, x2) = 8x2
1 − 4x1x2 + 5x2

2

from R2 to R.
Determine whether q(0, 0) = 0 is the global maximum, the global minimum,

or neither.
Recall that q(0, 0) is called the global (or absolute) minimum if q(0, 0)

≤ q(x1, x2) for all real numbers x1, x2; the global maximum is defined analogously.

Solution
There are a number of ways to do this problem, some of which you may have seen
in a previous course. Here we present an approach based on matrix techniques. We
will first develop some theory and then do the example.

Note that we can write

q

[
x1

x2

]
= 8x2

1 − 4x1x2 + 5x2
2

=
[

x1

x2

]
·
[

8x1 − 2x2

−2x1 + 5x2

]
We “split” the term −4x1x2

equally between the two components.

More succinctly, we can write

q(�x) = �x · A�x, where A =
[

8 −2
−2 5

]
,

or
q(�x) = �xT A�x .

The matrix A is symmetric by construction. By the spectral theorem (Theorem
8.1.1), there exists an orthonormal eigenbasis �v1, �v2 for A. We find

�v1 = 1√
5

[
2

−1

]
, �v2 = 1√

5

[
1
2

]
,

with associated eigenvalues λ1 = 9 and λ2 = 4. (Verify this.)
If we write �x =c1�v1 +c2�v2, we can express the value of the function as follows:

q(�x) = �x · A�x = (c1�v1 + c2�v2) · (c1λ1�v1 + c2λ2�v2) = λ1c2
1 + λ2c2

2 = 9c2
1 + 4c2

2.
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(Recall that �v1 · �v1 = 1, �v1 · �v2 = 0, and �v2 · �v2 = 1, since �v1, �v2 is an orthonormal
basis of R2.)

The formula q(�x) = 9c2
1 + 4c2

2 shows that q(�x) > 0 for all nonzero �x , because
at least one of the terms 9c2

1 and 4c2
2 is positive.

Thus, q(0, 0) = 0 is the global minimum of the function.
The preceding work shows that the c1–c2-coordinate system defined by an

orthonormal eigenbasis for A is “well adjusted” to the function q. The formula

9c2
1 + 4c2

2

is easier to work with than the original formula

8x2
1 − 4x1x2 + 5x2

2 ,

because no term involves c1c2:

q(x1, x2) = 8x2
1 − 4x1x2 + 5x2

2

= 9c2
1 + 4c2

2

The two coordinate systems are shown in Figure 1. �

v�1

v�2

x2

x1

e�2

e�1

c2

c1

Figure 1

Let us present these ideas in greater generality:

Definition 8.2.1 Quadratic forms

A function q(x1, x2, . . . , xn) from Rn to R is called a quadratic form if it is a
linear combination of functions of the form xi x j (where i and j may be equal).
A quadratic form can be written as

q(�x) = �x · A�x = �xT A�x,

for a unique symmetric n × n matrix A, called the matrix of q.

The uniqueness of matrix A will be shown in Exercise 52.
The set Qn of quadratic forms q(x1, x2, . . . , xn) is a subspace of the linear

space of all functions from Rn to R. In Exercise 42 you will be asked to think about
the dimension of this space.

EXAMPLE 2 Consider the quadratic form

q(x1, x2, x3) = 9x2
1 + 7x2

2 + 3x2
3 − 2x1x2 + 4x1x3 − 6x2x3.

Find the matrix of q.
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Solution
As in Example 1, we let

aii = (coefficient of x2
i )

ai j = a ji = 1
2 (coefficient of xi x j ), if i �= j .

Therefore,

A =
⎡
⎣ 9 −1 2

−1 7 −3
2 −3 3

⎤
⎦ .

�

The observation we made in Example 1 can now be generalized as follows:

Theorem 8.2.2 Diagonalizing a quadratic form

Consider a quadratic form q(�x) = �x · A�x , where A is a symmetric n × n ma-
trix. Let � be an orthonormal eigenbasis for A, with associated eigenvalues
λ1, . . . , λn . Then

q(�x) = λ1c2
1 + λ2c2

2 + · · · + λnc2
n,

where the ci are the coordinates of �x with respect to �.2

Again, note that we have been able to get rid of the mixed terms: No summand
involves ci c j (with i �= j) in the preceding formula. To justify the formula stated in
Theorem 8.2.2, we can proceed as in Example 1. We leave the details as an exercise.

When we study a quadratic form q, we are often interested in finding out
whether q(�x) > 0 for all nonzero �x (as in Example 1). In this context, it is use-
ful to introduce the following terminology:

Definition 8.2.3 Definiteness of a quadratic form

Consider a quadratic form q(�x) = �x · A�x , where A is a symmetric n × n matrix.
We say that A is positive definite if q(�x) is positive for all nonzero �x in Rn ,

and we call A positive semidefinite if q(�x) ≥ 0, for all �x in Rn .
Negative definite and negative semidefinite symmetric matrices are defined

analogously.
Finally, we call A indefinite if q takes positive as well as negative values.

EXAMPLE 3 Consider an n × m matrix A. Show that the function q(�x) = ‖A�x‖2 is a quadratic
form, find its matrix, and determine its definiteness.

Solution
We can write q(�x) = (A�x) · (A�x) = (A�x)T (A�x) = �xT AT A�x = �x · (AT A�x).
This shows that q is a quadratic form, with matrix AT A. This quadratic form is
positive semidefinite, because q(�x) = ‖A�x‖2 ≥ 0 for all vectors �x in Rm . Note that
q(�x) = 0 if and only if �x is in the kernel of A. Therefore, the quadratic form is
positive definite if and only if ker(A) = {�0}. �

2The basic properties of quadratic forms were first derived by the Dutchman Johan de Witt
(1625–1672) in his Elementa curvarum linearum. De Witt was one of the leading statesmen of his
time, guiding his country through two wars against England. He consolidated his nation’s commercial
and naval power. De Witt met an unfortunate end when he was literally torn to pieces by an angry
mob. (He should have stayed with math!)
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By Theorem 8.2.2, the definiteness of a symmetric matrix A is easy to deter-
mine from its eigenvalues:

Theorem 8.2.4 Eigenvalues and definiteness

A symmetric matrix A is positive definite if (and only if) all of its eigenval-
ues are positive. The matrix A is positive semidefinite if (and only if) all of its
eigenvalues are positive or zero.

These facts follow immediately from the formula

q(�x) = λ1c2
1 + · · · + λnc2

n. See Theorem 8.2.2.

The determinant of a positive definite matrix is positive, since the determinant is
the product of the eigenvalues. The converse is not true, however: Consider a sym-
metric 3 × 3 matrix A with one positive and two negative eigenvalues. Then det A
is positive, but q(�x) = �x · A�x is indefinite. In practice, the following criterion for
positive definiteness is often used (a proof is outlined in Exercise 34):

Theorem 8.2.5 Principal submatrices and definiteness

Consider a symmetric n × n matrix A. For m = 1, . . . , n, let A(m) be the m × m
matrix obtained by omitting all rows and columns of A past the mth. These
matrices A(m) are called the principal submatrices of A.

The matrix A is positive definite if (and only if) det(A(m)) > 0, for all
m = 1, . . . , n.

Consider the matrix

A =
⎡
⎣ 9 −1 2

−1 7 −3
2 −3 3

⎤
⎦

from Example 2:

det(A(1)) = det
[
9
] = 9 > 0

det(A(2)) = det

[
9 −1

−1 7

]
= 62 > 0

det(A(3)) = det(A) = 89 > 0.

We can conclude that A is positive definite.
Alternatively, we could find the eigenvalues of A and use Theorem 8.2.4. Using

technology, we find that λ1 ≈ 10.7, λ2 ≈ 7.1, and λ3 ≈ 1.2, confirming our result.

Principal Axes
When we study a function f (x1, x2, . . . , xn) from Rn to R, we are often interested
in the solutions of the equations

f (x1, x2, . . . , xn) = k,

for a fixed k in R, called the level sets of f (level curves for n = 2, level surfaces
for n = 3).

Here we will think about the level curves of a quadratic form q(x1, x2) of two
variables. For simplicity, we focus on the level curve q(x1, x2) = 1.
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Let us first consider the case when there is no mixed term in the formula. We
trust that you had at least a brief encounter with those level curves in a previous
course. Let us discuss the two major cases:

Case 1: q(x1, x2) = ax2
1 + bx2

2 = 1, where b > a > 0. This curve is an ellipse, as
shown in Figure 2. The lengths of the semimajor and the semiminor axes are 1/

√
a

and 1/
√

b, respectively. This ellipse can be parametrized by[
x1

x2

]
= cos t

[
1/

√
a

0

]
+ sin t

[
0

1/
√

b

]
.

Case 2: q(x1, x2) = ax2
1 + bx2

2 = 1, where a is positive and b negative. This is a

hyperbola, with x1-intercepts

[±1/
√

a
0

]
, as shown in Figure 3. What are the slopes

of the asymptotes, in terms of a and b?

x2

x1

1/  a
0

1/  b
0

Figure 2

x2

x11/  a
0

Figure 3

Now consider the level curve

q(�x) = �x · A�x = 1,

where A is an invertible symmetric 2 × 2 matrix. By Theorem 8.2.2, we can write
this equation as

λ1c2
1 + λ2c2

2 = 1,

where c1, c2 are the coordinates of �x with respect to an orthonormal eigenbasis for
A, and λ1, λ2 are the associated eigenvalues.

This curve is an ellipse if both eigenvalues are positive and a hyperbola if one
eigenvalue is positive and one negative. (What happens when both eigenvalues are
negative?)

EXAMPLE 4 Sketch the curve

8x2
1 − 4x1x2 + 5x2

2 = 1.

See Example 1.
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Solution
In Example 1, we found that we can write this equation as

9c2
1 + 4c2

2 = 1,

where c1, c2 are the coordinates of �x with respect to the orthonormal eigenbasis

�v1 = 1√
5

[
2

−1

]
, �v2 = 1√

5

[
1
2

]
,

for A =
[

8 −2
−2 5

]
. We sketch this ellipse in Figure 4.

The c1- and c2-axes are called the principal axes of the quadratic form
q(x1, x2) = 8x2

1 − 4x1x2 + 5x2
2 . Note that these are the eigenspaces of the ma-

trix

A =
[

8 −2
−2 5

]
of the quadratic form. �

x2

x1

c2

c1

1
2

1
3

Figure 4

Definition 8.2.6 Principal axes

Consider a quadratic form q(�x) = �x · A�x , where A is a symmetric n × n matrix
with n distinct eigenvalues. Then the eigenspaces of A are called the principal
axes of q. (Note that these eigenspaces will be one-dimensional.)

Let’s return to the case of a quadratic form of two variables. We can summarize
our findings as follows:

Theorem 8.2.7 Ellipses and hyperbolas

Consider the curve C in R2 defined by

q(x1, x2) = ax2
1 + bx1x2 + cx2

2 = 1.

Let λ1 and λ2 be the eigenvalues of the matrix

[
a b/2

b/2 c

]
of q.

If both λ1 and λ2 are positive, then C is an ellipse. If one eigenvalue is
positive and the other is negative, then C is a hyperbola.
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EXERCISES 8.2
GOAL Apply the concept of a quadratic form. Use an
orthonormal eigenbasis for A to analyze the quadratic
form q(�x) = �x · A�x.

For each of the quadratic forms q listed in Exercises 1
through 3, find the matrix of q.

1. q(x1, x2) = 6x2
1 − 7x1x2 + 8x2

2

2. q(x1, x2) = x1x2

3. q(x1, x2, x3) = 3x2
1 + 4x2

2 + 5x2
3 + 6x1x3 + 7x2x3

Determine the definiteness of the quadratic forms in
Exercises 4 through 7.

4. q(x1, x2) = 6x2
1 + 4x1x2 + 3x2

2

5. q(x1, x2) = x2
1 + 4x1x2 + x2

2

6. q(x1, x2) = 2x2
1 + 6x1x2 + 4x2

2

7. q(x1, x2, x3) = 3x2
2 + 4x1x3

8. If A is a symmetric matrix, what can you say about the
definiteness of A2? When is A2 positive definite?

9. Recall that a real square matrix A is called skew sym-
metric if AT = −A.
a. If A is skew symmetric, is A2 skew symmetric as

well? Or is A2 symmetric?
b. If A is skew symmetric, what can you say about

the definiteness of A2? What about the eigenvalues
of A2?

c. What can you say about the complex eigenvalues of
a skew-symmetric matrix? Which skew-symmetric
matrices are diagonalizable over R?

10. Consider a quadratic form q(�x) = �x · A�x on Rn and a
fixed vector �v in Rn . Is the transformation

L(�x) = q(�x + �v) − q(�x) − q(�v)

linear? If so, what is its matrix?

11. If A is an invertible symmetric matrix, what is the rela-
tionship between the definiteness of A and A−1?

12. Show that a quadratic form q(�x) = �x · A�x of two vari-
ables is indefinite if (and only if) det A < 0. Here, A is
a symmetric 2 × 2 matrix.

13. Show that the diagonal elements of a positive definite
matrix A are positive.

14. Consider a 2 × 2 matrix A =
[

a b
b c

]
, where a and

det A are both positive. Without using Theorem 8.2.5,
show that A is positive definite. Hint: Show first that c
is positive, and thus tr A is positive. Then think about
the signs of the eigenvalues.

Sketch the curves defined in Exercises 15 through 20. In
each case, draw and label the principal axes, label the in-
tercepts of the curve with the principal axes, and give the
formula of the curve in the coordinate system defined by
the principal axes.

15. 6x2
1 + 4x1x2 + 3x2

2 = 1 16. x1x2 = 1

17. 3x2
1 + 4x1x2 = 1 18. 9x2

1 − 4x1x2 + 6x2
2 = 1

19. x2
1 + 4x1x2 + 4x2

2 = 1 20. −3x2
1 + 6x1x2 + 5x2

2 = 1

21. a. Sketch the following three surfaces:

x2
1 + 4x2

2 + 9x2
3 = 1

x2
1 + 4x2

2 − 9x2
3 = 1

−x2
1 − 4x2

2 + 9x2
3 = 1.

Which of these are bounded? Which are connected?
Label the points closest to and farthest from the ori-
gin (if there are any).

b. Consider the surface

x2
1 + 2x2

2 + 3x2
3 + x1x2 + 2x1x3 + 3x2x3 = 1.

Which of the three surfaces in part (a) does this sur-
face qualitatively resemble most? Which points on
this surface are closest to the origin? Give a rough
approximation; you may use technology.

22. On the surface

−x2
1 + x2

2 − x2
3 + 10x1x3 = 1,

find the two points closest to the origin.

23. Consider an n × n matrix M that is not symmetric, and
define the function g(�x) = �x · M �x from Rn to R. Is g
necessarily a quadratic form? If so, find the matrix of g.

24. Consider a quadratic form

q(�x) = �x · A�x,

where A is a symmetric n × n matrix. Find q(�e1). Give
your answer in terms of the entries of the matrix A.

25. Consider a quadratic form

q(�x) = �x · A�x,

where A is a symmetric n × n matrix. Let �v be a unit
eigenvector of A, with associated eigenvalue λ. Find
q(�v).

26. Consider a quadratic form

q(�x) = �x · A�x,

where A is a symmetric n × n matrix. True or false? If
there exists a nonzero vector �v in Rn such that q(�v) = 0,
then A fails to be invertible.
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27. Consider a quadratic form q(�x) = �x · A�x , where A is
a symmetric n × n matrix with eigenvalues λ1 ≥ λ2
≥ · · · ≥ λn . Let Sn−1 be the set of all unit vectors in
Rn . Describe the image of Sn−1 under q , in terms of the
eigenvalues of A.

28. Show that any positive definite n × n matrix A can be
written as A = B BT , where B is an n × n matrix with
orthogonal columns. Hint: There exists an orthogonal
matrix S such that S−1 AS = ST AS = D is a diagonal
matrix with positive diagonal entries. Then A = SDST .
Now write D as the square of a diagonal matrix.

29. For the matrix A =
[

8 −2
−2 5

]
, write A = B BT as

discussed in Exercise 28. See Example 1.

30. Show that any positive definite matrix A can be written
as A = B2, where B is a positive definite matrix.

31. For the matrix A =
[

8 −2
−2 5

]
, write A = B2 as dis-

cussed in Exercise 30. See Example 1.

32. Cholesky factorization for 2×2 matrices. Show that any
positive definite 2 × 2 matrix A can be written uniquely
as A = L LT , where L is a lower triangular 2 × 2 ma-
trix with positive entries on the diagonal. Hint: Solve
the equation

[
a b
b c

]
=
[

x 0
y z

] [
x y
0 z

]
.

33. Find the Cholesky factorization (discussed in Exer-
cise 32) for

A =
[

8 −2
−2 5

]
.

34. A Cholesky factorization of a symmetric matrix A is a
factorization of the form A = L LT , where L is lower
triangular with positive diagonal entries.

Show that for a symmetric n × n matrix A, the fol-
lowing are equivalent:

(i) A is positive definite.
(ii) All principal submatrices A(m) of A are positive

definite. See Theorem 8.2.5.
(iii) det(A(m)) > 0 for m = 1, . . . , n.
(iv) A has a Cholesky factorization A = L LT .
Hint: Show that (i) implies (ii), (ii) implies (iii), (iii)
implies (iv), and (iv) implies (i). The hardest step is the
implication from (iii) to (iv): Arguing by induction on
n, you may assume that A(n−1) has a Cholesky factor-
ization A(n−1) = B BT . Now show that there exist a
vector �x in Rn−1 and a scalar t such that

A =
[

A(n−1) �v
�vT k

]
=
[

B 0
�xT 1

] [
BT �x
0 t

]
.

Explain why the scalar t is positive. Therefore, we have
the Cholesky factorization

A =
[

B 0
�xT √

t

] [
BT �x
0

√
t

]
.

This reasoning also shows that the Cholesky factor-
ization of A is unique. Alternatively, you can use the
L DLT factorization of A to show that (iii) implies (iv).
See Exercise 5.3.63.

To show that (i) implies (ii), consider a nonzero
vector �x in Rm , and define

�y =

⎡
⎢⎢⎢⎣

�x
0
...

0

⎤
⎥⎥⎥⎦

in Rn (fill in n − m zeros). Then

�xT A(m)�x = �yT A�y > 0.

35. Find the Cholesky factorization of the matrix

A =
⎡
⎣ 4 −4 8

−4 13 1
8 1 26

⎤
⎦ .

36. Consider an invertible n × n matrix A. What is the re-
lationship between the matrix R in the QR factorization
of A and the matrix L in the Cholesky factorization of
AT A?

37. Consider the quadratic form

q(x1, x2) = ax2
1 + bx1x2 + cx2

2 .

We define

q11 = ∂2q

∂x2
1

, q12 = q21 = ∂2q

∂x1 ∂x2
, q22 = ∂2q

∂x2
2

.

The discriminant D of q is defined as

D = det

[
q11 q12

q21 q22

]
= q11q22 − (q12)

2.

The second derivative test tells us that if D and q11 are
both positive, then q(x1, x2) has a minimum at (0, 0).
Justify this fact, using the theory developed in this
section.

38. For which values of the constants p and q is the n × n
matrix

B =

⎡
⎢⎢⎢⎣

p q · · · q
q p · · · q
...

...
. . .

...

q q · · · p

⎤
⎥⎥⎥⎦

positive definite? (B has p’s on the diagonal and q’s
elsewhere.) Hint: Exercise 8.1.17 is helpful.

39. For which angles θ can you find a basis of Rn such that
the angle between any two vectors in this basis is θ?
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40. Show that for every symmetric n × n matrix A there
exists a constant k such that matrix A + k In is positive
definite.

41. Find the dimension of the space Q2 of all quadratic
forms in two variables.

42. Find the dimension of the space Qn of all quadratic
forms in n variables.

43. Consider the transformation T
(
q(x1, x2)

) = q(x1, 0)

from Q2 to P2. Is T a linear transformation? If so, find
the image, rank, kernel, and nullity of T .

44. Consider the transformation T
(
q(x1, x2)

) = q(x1, 1)

from Q2 to P2. Is T a linear transformation? Is it an
isomorphism?

45. Consider the transformation T
(
q(x1, x2, x3)

) =
q(x1, 1, 1) from Q3 to P2. Is T a linear transformation?
If so, find the image, rank, kernel, and nullity of T .

46. Consider the linear transformation T
(
q(x1, x2, x3)

) =
q(x1, x2, x1) from Q3 to Q2. Find the image, kernel,
rank, and nullity of this transformation.

47. Consider the function T (A)(�x) = �xT A�x from Rn×n

to Qn . Show that T is a linear transformation. Find the
image, kernel, rank, and nullity of T .

48. Consider the linear transformation T
(
q(x1, x2)

) =
q(x2, x1) from Q2 to Q2. Find all the eigenvalues and
eigenfunctions of T . Is transformation T diagonaliz-
able?

49. Consider the linear transformation T
(
q(x1, x2)

) =
q(x1, 2x2) from Q2 to Q2. Find all the eigenvalues and
eigenfunctions of T . Is transformation T diagonaliz-
able?

50. Consider the linear transformation

T
(
q(x1, x2)

) = x1
∂q

∂x2
+ x2

∂q

∂x1

from Q2 to Q2. Find all the eigenvalues and eigenfunc-
tions of T . Is transformation T diagonalizable?

51. What are the signs of the determinants of the principal
submatrices of a negative definite matrix? See Theo-
rem 8.2.5.

52. Consider a quadratic form q . If A is a symmetric ma-
trix such that q(�x) = �xT A�x for all �x in Rn , show that
aii = q(�ei ) and ai j = 1

2

(
q(�ei + �e j ) − q(�ei ) − q(�e j )

)
for i �= j .

53. Consider a quadratic form q(x1, . . . , xn) with sym-
metric matrix A. For two integers i and j with
1 ≤ i < j ≤ n, we define the function

p(x, y) = q

⎛
⎜⎝0, . . . , 0, x︸︷︷︸

i th

, 0, . . . , 0, y︸︷︷︸
j th

, 0, . . . , 0

⎞
⎟⎠.

a. Show that p is a quadratic form, with matrix[
aii ai j

a ji a j j

]
.

b. If q is positive definite, show that p is positive def-
inite as well.

c. If q is positive semidefinite, show that p is positive
semidefinite as well.

d. Give an example where q is indefinite, but p is
positive definite.

54. If A is a positive semidefinite matrix with a11 = 0, what
can you say about the other entries in the first row and
in the first column of A? Hint: Exercise 53 is helpful.

55. If A is a positive definite n × n matrix, show that the
largest entry of A must be on the diagonal. Hint: Use
Exercise 53 to show that ai j < aii or ai j < a j j for all
1 ≤ i < j ≤ n.

56. If A is a real symmetric matrix, show that there exists
an eigenvalue λ of A with λ ≥ a11. Hint: Exercise 27 is
helpful.

In Exercises 57 through 61, consider a quadratic form
q on R3 with symmetric matrix A, with the given prop-
erties. In each case, describe the level surface q(�x) = 1
geometrically.

57. q is positive definite.

58. q is positive semidefinite and rank A = 2.

59. q is positive semidefinite and rank A = 1.

60. q is indefinite and det A > 0.

61. q is indefinite and det A < 0.

62. Consider an indefinite quadratic form q on R3 with
symmetric matrix A. If det A < 0, describe the level
surface q(�x) = 0.

63. Consider a positive definite quadratic form q on Rn

with symmetric matrix A. We know that there exists an
orthonormal eigenbasis �v1, . . . , �vn for A, with associ-
ated positive eigenvalues λ1, . . . , λn . Now consider the

orthogonal eigenbasis �w1, . . . , �wn , where �wi = 1√
λi

�vi .

Show that q
(
c1 �w1 + · · · + cn �wn

)= c2
1 + · · · + c2

n .

64. For the quadratic form q(x1, x2) = 8x2
1 − 4x1x2 + 5x2

2 ,
find an orthogonal basis �w1, �w2 of R2 such that
q(c1 �w1 + c2 �w2) = c2

1 + c2
2. Use your answer to sketch

the level curve q(�x) = 1. Compare with Example 4 and
Figure 4 in this section. Exercise 63 is helpful.

65. Show that for every indefinite quadratic form q on R2,
there exists an orthogonal basis �w1, �w2 of R2 such that
q(c1 �w1 + c2 �w2) = c2

1 − c2
2. Hint: Modify the approach

outlined in Exercise 63.

66. For the quadratic form q(x1, x2) = 3x2
1 −10x1x2+3x2

2 ,
find an orthogonal basis �w1, �w2 of R2 such that
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q(c1 �w1 + c2 �w2) = c2
1 − c2

2. Use your answer to sketch
the level curve q(�x) = 1. Exercise 65 is helpful.

67. Consider a quadratic form q on Rn with symmetric ma-
trix A, with rank A = r . Suppose that A has p positive
eigenvalues, if eigenvalues are counted with their mul-
tiplicities. Show that there exists an orthogonal basis
�w1, . . . , �wn of Rn such that q(c1 �w1 + · · · + cn �wn) =
c2

1 + · · · + c2
p − c2

p+1 − · · · − c2
r . Hint: Modify the

approach outlined in Exercises 63 and 65.

68. If q is a quadratic form on Rn with symmetric matrix A,
and if L(�x) = R�x is a linear transformation from Rm to
Rn , show that the composite function p(�x) = q

(
L(�x)
)

is a quadratic form on Rm . Express the symmetric ma-
trix of p in terms of R and A.

69. If A is a positive definite n ×n matrix, and R is any real
n × m matrix, what can you say about the definiteness
of the matrix RT AR? For which matrices R is RT AR
positive definite?

70. If A is an indefinite n × n matrix, and R is a real n × m
matrix of rank n, what can you say about the definite-
ness of the matrix RT AR?

71. If A is an indefinite n × n matrix, and R is any real
n × m matrix, what can you say about the definiteness
of the matrix RT AR?

8.3 Singular Values

In Exercise 47 of Section 2.2, we stated the following remarkable fact.

EXAMPLE 1 Show that if L(�x) = A�x is a linear transformation from R2 to R2, then there exist
two orthogonal unit vectors �v1 and �v2 in R2 such that vectors L(�v1) and L(�v2)

are orthogonal as well (although not necessarily unit vectors). See Figure 1. Hint:
Consider an orthonormal eigenbasis �v1, �v2 of the symmetric matrix AT A.

x2

x1

y2

y1

L

L(v�1)

L(v�2)

v�1

v�2

Figure 1

Solution
This statement is clear for some classes of transformations. For example,

• If L is an orthogonal transformation, then any two orthogonal unit vectors �v1
and �v2 will do, by Theorem 5.3.2.

• If L(�x) = A�x , where A is symmetric, then we can choose two orthogonal unit
eigenvectors, by the spectral theorem, Theorem 8.1.1. See also Example 4 of
Section 8.1.

However, for an arbitrary linear transformation L , the statement isn’t that obvious;
think about the case of a shear, for example.

In Exercise 47 of Section 2.2, we suggested a proof based on the intermediate
value theorem for continuous functions. Here we will present a proof in the spirit
of linear algebra that generalizes more easily to higher-dimensional spaces.

Following the hint, we first note that matrix AT A is symmetric, since
(AT A)T = AT (AT )T = AT A. The spectral theorem (Theorem 8.1.1) tells us that
there exists an orthonormal eigenbasis �v1, �v2 for AT A, with associated eigenvalues
λ1, λ2. We can verify that vectors L(�v1) = A�v1 and L(�v2) = A�v2 are orthogonal,
as claimed:
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(A�v1) · (A�v2) = (A�v1)
T A�v2 = �vT

1 AT A�v2 = �vT
1 (λ2�v2) = λ2(�v1 · �v2) = 0.

It is worth mentioning that �v1 and �v2 need not be eigenvectors of matrix A. �

EXAMPLE 2 Consider the linear transformation L(�x) = A�x , where A =
[

6 2
−7 6

]
.

a. Find an orthonormal basis �v1, �v2 of R2 such that vectors L(�v1) and L(�v2)

are orthogonal.

b. Show that the image of the unit circle under transformation L is an ellipse.
Find the lengths of the two semiaxes of this ellipse, in terms of the eigenval-
ues of matrix AT A.

Solution

a. Using the ideas of Example 1, we will find an orthonormal eigenbasis for
matrix AT A:

AT A =
[

6 −7
2 6

] [
6 2

−7 6

]
=
[

85 −30
−30 40

]
.

The characteristic polynomial of AT A is

λ2 − 125λ + 2500 = (λ − 100)(λ − 25),

so that the eigenvalues of AT A are λ1 = 100 and λ2 = 25. Now we can find
the eigenspaces of AT A:

E100 = ker

[−15 −30
−30 −60

]
= span

[
2

−1

]
and

E25 = ker

[
60 −30

−30 15

]
= span

[
1
2

]
.

To find an orthonormal basis, we need to multiply these vectors by the re-
ciprocals of their lengths:

�v1 = 1√
5

[
2

−1

]
, �v2 = 1√

5

[
1
2

]
.

b. The unit circle consists of the vectors of the form �x = cos(t)�v1 + sin(t)�v2,
and the image of the unit circle consists of the vectors L(�x) = cos(t)L(�v1)+
sin(t)L(�v2). This image is the ellipse whose semimajor and semiminor axes
are L(�v1) and L(�v2), respectively. What are the lengths of these axes?

‖L(�v1)‖2 = (A�v1) · (A�v1) = �vT
1 AT A�v1 = �vT

1 (λ1�v1) = λ1(�v1 · �v1) = λ1

Likewise,

‖L(�v2)‖2 = λ2.

Thus,

‖L(�v1)‖ =
√

λ1 =
√

100 = 10 and ‖L(�v2)‖ =
√

λ2 =
√

25 = 5.

See Figure 2. We can compute the lengths of vectors L(�v1) and L(�v2) di-
rectly, of course, but the way we did it before is more informative. For ex-
ample,

L(�v1) = A�v1 = 1√
5

[
6 2

−7 6

] [
2

−1

]
= 1√

5

[
10

−20

]
,

so that

‖L(�v1)‖ =
∥∥∥∥ 1√

5

[
10

−20

]∥∥∥∥ = 10. �
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v�1

v�2

Unit
circle

Image of
the unit
circle:
an ellipse

L(x�) = Ax�

L(v�2)

L(v�1)

2

1

not to
scale

Figure 2

Part b of Example 2 shows that the square roots of the eigenvalues of matrix
AT A play an important role in the geometrical interpretation of the transformation
L(�x) = A�x . In Example 8.2.3 we have seen that the symmetric matrix AT A is
positive semidefinite for any n × m matrix A, meaning that the eigenvalues of AT A
are positive or zero.

Definition 8.3.1 Singular values

The singular values of an n × m matrix A are the square roots of the eigenvalues
of the symmetric m × m matrix AT A, listed with their algebraic multiplicities. It
is customary to denote the singular values by σ1, σ2, . . . , σm and to list them in
decreasing order:

σ1 ≥ σ2 ≥ · · · ≥ σm ≥ 0.

The singular values of the matrix A =
[

6 2
−7 6

]
considered in Example 2 are

σ1 = √
λ1 = 10 and σ2 = √

λ2 = 5, since the eigenvalues of AT A are λ1 = 100
and λ2 = 25.

We can now generalize our work in Example 2.

Theorem 8.3.2 The image of the unit circle

Let L(�x) = A�x be an invertible linear transformation from R2 to R2. The image
of the unit circle under L is an ellipse E . The lengths of the semimajor and
semiminor axes of E are the singular values σ1 and σ2 of A, respectively.

Take another look at Figure 2.
We can generalize our findings in Examples 1 and 2 to matrices of arbitrary

size.

Theorem 8.3.3 Let L(�x) = A�x be a linear transformation from Rm to Rn . Then there exists an
orthonormal basis �v1, �v2, . . . , �vm of Rm such that

a. Vectors L(�v1), L(�v2), . . . , L(�vm) are orthogonal, and

b. The lengths of vectors L(�v1), L(�v2), . . . , L(�vm) are the singular values
σ1, σ2, . . . , σm of matrix A.
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Theorem 8.3.3 (Continued)

To construct �v1, �v2, . . . , �vm , find an orthonormal eigenbasis for matrix AT A.
Make sure that the corresponding eigenvalues λ1, λ2, . . . , λm appear in descend-
ing order:

λ1 ≥ λ2 ≥ · · · ≥ λm ≥ 0,

so that λi = σ 2
i for i = 1, . . . , m.

The proof is analogous to the special case n = m = 2 considered in Examples 1
and 2:

a. L(�vi ) · L(�v j ) = (A�vi ) · (A�v j ) = (A�vi )
T A�v j = �vT

i AT A�v j = �vT
i (λ j �v j ) =

λ j (�vi · �v j ) = 0 when i �= j , and

b. ‖L(�vi )‖2 = (A�vi ) · (A�vi ) = �vT
i AT A�vi = �vT

i (λi �vi ) = λi (�vi · �vi ) = λi = σ 2
i ,

so that ‖L(�vi )‖ = σi .

EXAMPLE 3 Consider the linear transformation

L(�x) = A�x, where A =
[

0 1 1
1 1 0

]
.

a. Find the singular values of A.

b. Find orthonormal vectors �v1, �v2, �v3 in R3 such that L(�v1), L(�v2), and L(�v3)

are orthogonal.

c. Sketch and describe the image of the unit sphere under the transformation L .

Solution

a. AT A =
⎡
⎣0 1

1 1
1 0

⎤
⎦[0 1 1

1 1 0

]
=
⎡
⎣1 1 0

1 2 1
0 1 1

⎤
⎦

The eigenvalues of AT A are λ1 = 3, λ2 = 1, λ3 = 0. The singular values of
A are

σ1 =
√

λ1 =
√

3, σ2 =
√

λ2 = 1, σ3 =
√

λ3 = 0.

b. Find an orthonormal eigenbasis �v1, �v2, �v3 for AT A (we omit the details):

E3 = span

⎡
⎣1

2
1

⎤
⎦ , E1 = span

⎡
⎣ 1

0
−1

⎤
⎦ , E0 = ker(AT A) = span

⎡
⎣ 1

−1
1

⎤
⎦

�v1 = 1√
6

⎡
⎣1

2
1

⎤
⎦ , �v2 = 1√

2

⎡
⎣ 1

0
−1

⎤
⎦ , �v3 = 1√

3

⎡
⎣ 1

−1
1

⎤
⎦ .

We compute A�v1, A�v2, A�v3 and check orthogonality:

A�v1 = 1√
6

[
3
3

]
, A�v2 = 1√

2

[−1
1

]
, A�v3 =

[
0
0

]
.

We can also check that the length of A�vi is σi :

‖A�v1‖ =
√

3 = σ1, ‖A�v2‖ = 1 = σ2, ‖A�v3‖ = 0 = σ3.

c. The unit sphere in R3 consists of all vectors of the form

�x = c1�v1 + c2�v2 + c3�v3, where c2
1 + c2

2 + c2
3 = 1.
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The image of the unit sphere consists of the vectors

L(�x) = c1L(�v1) + c2L(�v2),

where c2
1 + c2

2 ≤ 1. [Recall that L(�v3) = �0.]
The image is the full ellipse shaded in Figure 3. �

v�1

v�2

L(x�) = Ax�

Av�2

Av�1

1

2

v�3

Unit sphere
in �3

Figure 3

Example 3 shows that some of the singular values of a matrix may be zero.
Suppose the singular values σ1, . . . , σs of an n × m matrix A are nonzero, while
σs+1, . . . , σm are zero. Choose vectors �v1, . . . , �vs, �vs+1, . . . , �vm for A as introduced
in Theorem 8.3.3. Note that ‖A�vi‖ = σi = 0 and therefore A�vi = �0 for i =
s + 1, . . . , m. We claim that the vectors A�v1, . . . , A�vs form a basis of the image
of A. Indeed, these vectors are linearly independent (because they are orthogonal
and nonzero), and they span the image, since any vector in the image of A can be
written as

A�x = A(c1�v1 + · · · + cs �vs + · · · + cm�vm)

= c1 A�v1 + · · · + cs A�vs .

This shows that s = dim(imA) = rank A.

Theorem 8.3.4 Singular values and rank

If A is an n×m matrix of rank r , then the singular values σ1, . . . , σr are nonzero,
while σr+1, . . . , σm are zero.

The Singular Value Decomposition
Just as we expressed the Gram–Schmidt process in terms of a matrix decomposition
(the Q R-factorization), we will now express Theorem 8.3.3 in terms of a matrix
decomposition.

Consider a linear transformation L(�x) = A�x from Rm to Rn , and choose an
orthonormal basis �v1, . . . , �vm of Rm as in Theorem 8.3.3. Let r = rank A. We know
that the vectors A�v1, . . . , A�vr are orthogonal and nonzero, with ‖A�vi‖ = σi . We
introduce the unit vectors

�u1 = 1

σ1
A�v1, . . . , �ur = 1

σr
A�vr .
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We can expand the sequence �u1, . . . , �ur to an orthonormal basis �u1, . . . , �un of Rn .
Then we can write

A�vi = σi �ui for i = 1, . . . , r

and
A�vi = �0 for i = r + 1, . . . , m.

We can express these equations in matrix form as follows:

A

⎡
⎢⎢⎣

| | | |
�v1 · · · �vr �vr+1 · · · �vm

| | | |

⎤
⎥⎥⎦

︸ ︷︷ ︸
V

=

⎡
⎢⎢⎣

| | | |
σ1�u1 · · · σr �ur �0 · · · �0

| | | |

⎤
⎥⎥⎦

=

⎡
⎢⎢⎣

| | | |
�u1 · · · �ur �0 · · · �0
| | | |

⎤
⎥⎥⎦
⎡
⎢⎢⎢⎢⎣

σ1
. . . 0

σr

0 0

⎤
⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎣

| | | |
�u1 · · · �ur �ur+1 · · · �un

| | | |

⎤
⎥⎥⎦

︸ ︷︷ ︸
U

⎡
⎢⎢⎢⎢⎣

σ1
. . . 0

σr

0 0

⎤
⎥⎥⎥⎥⎦ ,

︸ ︷︷ ︸
�

or, more succinctly,

AV = U�.

Note that V is an orthogonal m × m matrix; U is an orthogonal n × n matrix; and
� is an n × m matrix whose first r diagonal entries are σ1, . . . , σr , while all other
entries are zero.

Multiplying the equation AV = U� with V T from the right, we find that
A = U�V T .

Theorem 8.3.5 Singular value decomposition (SVD)

Any n × m matrix A can be written as

A = U�V T ,

where U is an orthogonal n ×n matrix; V is an orthogonal m ×m matrix; and �

is an n × m matrix whose first r diagonal entries are the nonzero singular values
σ1, . . . , σr of A, while all other entries are zero (where r = rank A).

Alternatively, this singular value decomposition can be written as

A = σ1�u1�vT
1 + · · · + σr �ur �vT

r ,

where the �ui and the �vi are the columns of U and V , respectively. See Exer-
cise 29.
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A singular value decomposition of a 2 × 2 matrix A is presented in Figure 4.

v�1

v�2

A = U�VT

e�1

e�2

VT = V−1

orthogonal

1e�1

U
orthogonal

Av�2 =   2u�2

� =    1    0
0     2

2e�2

Av�1 =   1u�1

Figure 4

Here are two numerical examples.

EXAMPLE 4 Find an SVD for A =
[

6 2
−7 6

]
. Compare with Example 2.

Solution

In Example 2, we found �v1 = 1√
5

[
2

−1

]
and �v2 = 1√

5

[
1
2

]
, so that

V = 1√
5

[
2 1

−1 2

]
.

The columns �u1 and �u2 of U are defined as

�u1 = 1

σ1
A�v1 = 1√

5

[
1

−2

]

�u2 = 1

σ2
A�v2 = 1√

5

[
2
1

]
,

and therefore

U = 1√
5

[
1 2

−2 1

]
.

Finally,

� =
[
σ1 0
0 σ2

]
=
[

10 0
0 5

]
.

You can check that

A = U�V T . �
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EXAMPLE 5 Find an SVD for A =
[

0 1 1
1 1 0

]
. Compare with Example 3.

Solution
Using our work in Example 3, we find that

V =
⎡
⎣1/

√
6 1/

√
2 1/

√
3

2/
√

6 0 −1/
√

3
1/

√
6 −1/

√
2 1/

√
3

⎤
⎦

U =
[

1/
√

2 −1/
√

2
1/

√
2 1/

√
2

]
,

and

� =
[√

3 0 0
0 1 0

]
.

Check that A = U�V T . �
Consider a singular value decomposition

A = U�V T ,

where

V =

⎡
⎢⎢⎣

| |
�v1 . . . �vm

| |

⎤
⎥⎥⎦ and U =

⎡
⎢⎢⎣

| |
�u1 . . . �un

| |

⎤
⎥⎥⎦ .

We know that

A�vi = σi �ui for i = 1, . . . , r

and

A�vi = �0 for i = r + 1, . . . , m.

These equations tell us that

ker A = span(�vr+1, . . . , �vm)

and

im A = span(�u1, . . . , �ur ).

(Fill in the details.) We see that an SVD provides us with orthonormal bases for the
kernel and image of A.

Likewise, we have

AT = V �T U T or AT U = V �T .

Reading the last equation column by column, we find that

AT �ui = σi �vi for i = 1, . . . , r ,

and

AT �ui = �0 for i = r + 1, . . . , n.

(Observe that the roles of vectors �ui and �vi are reversed.)
As before, we have

im(AT ) = span(�v1, . . . , �vr )



8.3 Singular Values 411

and
ker(AT ) = span(�ur+1, . . . , �un).

In Figure 5, we make an attempt to visualize these observations. We represent
each of the kernels and images simply as a line.

span (v�1 , . . . , v�r)
= im(AT)

Av�i =   iu�i if i  �  rspan (v�r + 1 , . . . , v�m)
= ker(A)

span (u�1 , . . . , u�r)
= im(A)

span (u�r + 1 , . . . , u�n)
= ker(AT)

ATu�i  =   iv�i if i  �  r

AT

A

Av�i = 0� if i  �  r

ATu�i = 0� if i  �  r 

Figure 5

Note that im(A) and ker(AT ) are orthogonal complements, as observed in The-
orem 5.4.1.

We conclude this section with a brief discussion of one of the many applica-
tions of the SVD—an application to data compression. We follow the exposition of
Gilbert Strang (Linear Algebra and Its Applications, 4th ed., Brooks Cole, 2005).

Suppose a satellite transmits a picture containing 1000 × 1000 pixels. If the
color of each pixel is digitized, this information can be represented in a 1000×1000
matrix A. How can we transmit the essential information contained in this picture
without sending all 1,000,000 numbers?

Suppose we know an SVD

A = σ1�u1�vT
1 + · · · + σr �ur �vT

r .

Even if the rank r of the matrix A is large, most of the singular values will
typically be very small (relative to σ1). If we neglect those, we get a good approxi-
mation A ≈ σ1�u1�vT

1 + · · · + σs �us �vT
s , where s is much smaller than r . For example,

if we choose s = 10, we need to transmit only the 20 vectors σ1�u1, . . . , σ10�u10 and
�v1, . . . , �v10 in R1000, that is, 20,000 numbers.

EXERCISES 8.3
GOAL Find the singular values and a singular value
decomposition of a matrix. Interpret the singular values
of a 2 × 2 matrix in terms of the image of the unit circle.

1. Find the singular values of A =
[

1 0
0 −2

]
.

2. Let A be an orthogonal 2 × 2 matrix. Use the image of
the unit circle to find the singular values of A.

3. Let A be an orthogonal n × n matrix. Find the singular
values of A algebraically.

4. Find the singular values of A =
[

1 1
0 1

]
.

5. Find the singular values of A =
[

p −q
q p

]
. Explain

your answer geometrically.

6. Find the singular values of A =
[

1 2
2 4

]
. Find a unit

vector �v1 such that ‖A�v1‖ = σ1. Sketch the image of
the unit circle.

Find singular value decompositions for the matrices listed
in Exercises 7 through 14. Work with paper and pencil.
In each case, draw a sketch analogous to Figure 4 in the
text, showing the effect of the transformation on the unit
circle, in three steps.
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7.
[

1 0
0 −2

]
8.
[

p −q
q p

]
9.
[

1 2
2 4

]

10.
[

6 −7
2 6

]
(See Example 4.)

11.

⎡
⎣1 0

0 2
0 0

⎤
⎦ 12.

⎡
⎣0 1

1 1
1 0

⎤
⎦ (See Example 5.)

13.
[

6 3
−1 2

]
14.
[

2 3
0 2

]
15. If A is an invertible 2 × 2 matrix, what is the relation-

ship between the singular values of A and A−1? Justify
your answer in terms of the image of the unit circle.

16. If A is an invertible n×n matrix, what is the relationship
between the singular values of A and A−1?

17. Consider an n × m matrix A with rank(A) = m, and
a singular value decomposition A = U�V T. Show that
the least-squares solution of a linear system A�x = �b can
be written as

�x∗ =
�b · �u1

σ1
�v1 + · · · +

�b · �um

σm
�vm .

18. Consider the 4 × 2 matrix

A = 1

10

⎡
⎢⎢⎣

1 1 1 1
1 1 −1 −1
1 −1 1 −1
1 −1 −1 1

⎤
⎥⎥⎦
⎡
⎢⎢⎣

2 0
0 1
0 0
0 0

⎤
⎥⎥⎦
[

3 −4
4 3

]
.

Use the result of Exercise 17 to find the least-squares
solution of the linear system

A�x = �b, where �b =

⎡
⎢⎢⎣

1
2
3
4

⎤
⎥⎥⎦ .

Work with paper and pencil.

19. Consider an n × m matrix A of rank r , and a singu-
lar value decomposition A = U�V T . Explain how
you can express the least-squares solutions of a sys-
tem A�x = �b as linear combinations of the columns
�v1, . . . , �vm of V .

20. a. Explain how any square matrix A can be written as

A = QS,

where Q is orthogonal and S is symmetric positive
semidefinite. This is called the polar decomposition
of A. Hint: Write A = U�V T = U V T V �V T .

b. Is it possible to write A = S1 Q1, where Q1 is or-
thogonal and S1 is symmetric positive semidefinite?

21. Find a polar decomposition A = QS as discussed in

Exercise 20 for A =
[

6 2
−7 6

]
. Draw a sketch showing

S(C) and A(C) = Q
(

S(C)
)
, where C is the unit circle

centered at the origin. Compare with Examples 2 and 4
and with Figure 4.

22. Consider the standard matrix A representing the linear
transformation

T (�x) = �v × �x from R3 to R3,

where �v is a given nonzero vector in R3.
a. Use the geometrical interpretation of the cross prod-

uct to find an orthogonal projection T1 onto a plane,
a scaling T2, and a rotation T3 about a line such that
T (�x) = T3

(
T2(T1(�x))

)
, for all �x in R3. Describe the

transformations T1, T2, and T3 as precisely as you
can: For T1 give the plane onto which we project,
for T2 find the scaling factor, and for T3 give the
line about which we rotate and the angle of rotation.
All of these answers, except for the angle of rota-
tion, will be in terms of the given vector �v. Now let
A1, A2, and A3 be the standard matrices of these
transformations T1, T2, and T3, respectively. (You
are not asked to find these matrices.) Explain how
you can use the factorization A = A3 A2 A1 to write
a polar decomposition A = QS of A. Express the
matrices Q and S in terms of A1, A2, and A3. See
Exercise 20.

b. Find the A3 A2 A1 and QS factorizations discussed
in part (a) in the case

�v =
⎡
⎣0

2
0

⎤
⎦ .

23. Consider an SVD

A = U�V T

of an n ×m matrix A. Show that the columns of U form
an orthonormal eigenbasis for AAT . What are the as-
sociated eigenvalues? What does your answer tell you
about the relationship between the eigenvalues of AT A
and AAT ? Compare this with Exercise 7.4.57.

24. If A is a symmetric n×n matrix, what is the relationship
between the eigenvalues of A and the singular values
of A?

25. Let A be a 2 × 2 matrix and �u a unit vector in R2. Show
that

σ2 ≤ ‖A�u‖ ≤ σ1,

where σ1, σ2 are the singular values of A. Illustrate this
inequality with a sketch, and justify it algebraically.

26. Let A be an n × m matrix and �v a vector in Rm . Show
that

σm‖�v‖ ≤ ‖A�v‖ ≤ σ1‖�v‖,
where σ1 and σm are the largest and the smallest singu-
lar values of A, respectively. Compare this with Exer-
cise 25.
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27. Let λ be a real eigenvalue of an n × n matrix A. Show
that

σn ≤ |λ| ≤ σ1,

where σ1 and σn are the largest and the smallest singular
values of A, respectively.

28. If A is an n × n matrix, what is the product of its sin-
gular values σ1, . . . , σn? State the product in terms of
the determinant of A. For a 2 × 2 matrix A, explain this
result in terms of the image of the unit circle.

29. Show that an SVD

A = U�V T

can be written as

A = σ1�u1�vT
1 + · · · + σr �ur �vT

r .

30. Find a decomposition

A = σ1�u1�vT
1 + σ2�u2�vT

2

for A =
[

6 2
−7 6

]
. See Exercise 29 and Example 2.

31. Show that any matrix of rank r can be written as the
sum of r matrices of rank 1.

32. Consider an n × m matrix A, an orthogonal n × n ma-
trix S, and an orthogonal m ×m matrix R. Compare the
singular values of A with those of S AR.

33. If the singular values of an n × n matrix A are all 1, is
A necessarily orthogonal?

34. For which square matrices A is there a singular value
decomposition A = U�V T with U = V ?

35. Consider a singular value decomposition A = U�V T

of an n × m matrix A with rank A = m. Let �v1, . . . , �vm
be the columns of V and �u1, . . . , �un the columns of
U . Without using the results of Chapter 5, compute
(AT A)−1 AT �ui . Explain the result in terms of least-
squares approximations.

36. Consider a singular value decomposition A = U�V T

of an n × m matrix A with rank A = m. Let �u1, . . . , �un
be the columns of U . Without using the results of Chap-
ter 5, compute A(AT A)−1 AT �ui . Explain your result in
terms of Theorem 5.4.7.

Chapter Eight Exercises

TRUE OR FALSE?
(Work with real numbers throughout.)

1. The singular values of any diagonal matrix D are the
absolute values of the diagonal entries of D.

2. The equation 2x2 + 5xy + 3y2 = 1 defines an ellipse.

3. All symmetric matrices are diagonalizable.

4. If the matrix

[
a b
b c

]
is positive definite, then a must

be positive.

5. If A is an orthogonal matrix, then there must exist a
symmetric invertible matrix S such that S−1 AS is dia-
gonal.

6. The singular value of the 2 × 1 matrix

[
3
4

]
is 5.

7. The function q(x1, x2) = 3x2
1 + 4x1x2 + 5x2 is a

quadratic form.

8. The singular values of any matrix A are the eigenvalues
of matrix AT A.

9. If matrix A is positive definite, then all the eigenvalues
of A must be positive.

10. The function q(�x) = �xT
[

1 2
2 4

]
�x is a quadratic form.

11. The singular values of any triangular matrix are the ab-
solute values of its diagonal entries.

12. If A is any matrix, then matrix ATA is the transpose
of AAT .

13. If the singular values of a 2 × 2 matrix A are 3 and 4,
then there must exist a unit vector �u in R2 such that
‖A�u‖ = 4.

14. The determinant of a negative definite 4×4 matrix must
be positive.

15. If A is a symmetric matrix such that A�v = 3�v and
A �w = 4 �w, then the equation �v · �w = 0 must hold.

16. Matrix

⎡
⎣−2 1 1

1 −2 1
1 1 −2

⎤
⎦ is negative definite.

17. All skew-symmetric matrices are diagonalizable
(over R).

18. If A is any matrix, then matrix AAT is diagonalizable.

19. All positive definite matrices are invertible.

20. Matrix

⎡
⎣3 2 1

2 3 2
1 2 3

⎤
⎦ is diagonalizable.

21. If A is an invertible symmetric matrix, then A2 must be
positive definite.

22. If the two columns �v and �w of a 2 × 2 matrix A are or-
thogonal, then the singular values of A must be ‖�v‖ and
‖ �w‖.
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23. If A and S are invertible n × n matrices, then matrices
A and ST AS must be similar.

24. If A is negative definite, then all the diagonal entries of
A must be negative.

25. If the positive definite matrix A is similar to the sym-
metric matrix B, then B must be positive definite as
well.

26. If A is a symmetric matrix, then there must exist an or-
thogonal matrix S such that S AST is diagonal.

27. If �v and �w are linearly independent eigenvectors of a
symmetric matrix A, then �w must be orthogonal to �v.

28. For any n×m matrix A there exists an orthogonal m×m
matrix S such that the columns of matrix AS are orthog-
onal.

29. If A is a symmetric n ×n matrix such that An = 0, then
A must be the zero matrix.

30. If q(�x) is a positive definite quadratic form, then so is
kq(�x), for any scalar k.

31. If A and B are 2 × 2 matrices, then the singular values
of matrices AB and B A must be the same.

32. If A is any orthogonal matrix, then matrix A + A−1 is
diagonalizable (over R).

33. The product of two quadratic forms in three variables
must be a quadratic form as well.

34. The function q(�x) = �xT
[

1 2
3 4

]
�x is a quadratic form.

35. If the determinants of all the principal submatrices of a
symmetric 3 × 3 matrix A are negative, then A must be
negative definite.

36. If A and B are positive definite n × n matrices, then
matrix A + B must be positive definite as well.

37. If A is a positive definite n×n matrix and �x is a nonzero
vector in Rn , then the angle between �x and A�x must be
acute.

38. If the 2×2 matrix A has the singular values 2 and 3 and
the 2 × 2 matrix B has the singular values 4 and 5, then
both singular values of matrix AB must be ≤15.

39. The equation AT A = AAT holds for all square matri-
ces A.

40. For every symmetric n × n matrix A there exists a con-
stant k such that A + k In is positive definite.

41. If matrix

⎡
⎣a b c

b d e
c e f

⎤
⎦ is positive definite, then a f

must exceed c2.

42. If A is positive definite, then all the entries of A must
be positive or zero.

43. If A is indefinite, then 0 must be an eigenvalue of A.

44. If A is a 2 × 2 matrix with singular values 3 and 5,
then there must exist a unit vector �u in R2 such that
‖A�u‖ = 4.

45. If A is skew symmetric, then A2 must be negative
semidefinite.

46. The product of the n singular values of an n × n matrix
A must be | det A|.

47. If A =
[

1 2
2 3

]
, then there exist exactly four orthogo-

nal 2 × 2 matrices S such that S−1 AS is diagonal.

48. The sum of two quadratic forms in three variables must
be a quadratic form as well.

49. The eigenvalues of a symmetric matrix A must be equal
to the singular values of A.

50. Similar matrices must have the same singular values.

51. If A is a symmetric 2 × 2 matrix with eigenvalues 1 and
2, then the angle between �x and A�x must be less than
π/6, for all nonzero vectors �x in R2.

52. If both singular values of a 2 × 2 matrix A are less than
5, then all the entries of A must be less than 5.

53. If A is a positive definite matrix, then the largest entry
of A must be on the diagonal.

54. If A and B are real symmetric matrices such that A3 =
B3, then A must be equal to B.



C H A P T E R

9
Linear Differential Equations

9.1 An Introduction to Continuous Dynamical Systems

There are two fundamentally different ways to model the evolution of a dynamical
system over time: the discrete approach and the continuous approach. As a simple
example, consider a dynamical system with only one component.

EXAMPLE 1 You want to open a savings account and you shop around for the best available inter-
est rate. You learn that DiscreetBank pays 7%, compounded annually. Its competi-
tor, the Bank of Continuity, offers 6% annual interest, compounded continuously.
Everything else being equal, where should you open the account?

Solution
Let us examine what will happen to your investment at the two banks. At Discreet-
Bank, the balance grows by 7% each year if no deposits or withdrawals are made.

new
balance = old

balance + interest

↓ ↓ ↓
x(t + 1) = x(t) + 0.07x(t)
x(t + 1) = 1.07x(t)

This equation describes a discrete linear dynamical system with one component.
The balance after t years is

x(t) = (1.07)t x0.

The balance grows exponentially with time.
At the Bank of Continuity, by definition of continuous compounding, the bal-

ance x(t) grows at an instantaneous rate of 6% of the current balance:

dx

dt
= 6% of balance x(t),

415
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or
dx

dt
= 0.06x .

Here, we use a differential equation to model a continuous linear dynamical sys-
tem with one component. We will solve the differential equation in two ways, by
separating variables and by making an educated guess.

Let us try to guess the solution. We think about an easier problem first. Do we
know a function x(t) that is its own derivative: dx/dt = x? You may recall from
calculus that x(t) = et is such a function. [Some people define x(t) = et in terms
of this property.] More generally, the function x(t) = Cet is its own derivative, for
any constant C . How can we modify x(t) = Cet to get a function whose derivative
is 0.06 times itself? By the chain rule, x(t) = Ce0.06t will do:

dx

dt
= d

dt
(Ce0.06t) = 0.06Ce0.06t = 0.06x(t).

Note that x(0) = Ce0 = C ; that is, C is the initial value, x0. We conclude that the
balance after t years is

x(t) = e0.06t x0.

Again, the balance x(t) grows exponentially.
Alternatively, we can solve the differential equation dx/dt = 0.06x by sepa-

rating variables. Write

dx

x
= 0.06dt

and integrate both sides to get

ln x = 0.06t + k,

for some constant k. Exponentiating gives

x = eln x = e0.06t+k = e0.06t C,

where C = ek .
Which bank offers the better deal? We have to compare the exponential func-

tions (1.07)t and e0.06t . Using a calculator (or a Taylor series), we compute

e0.06t = (e0.06)t ≈ (1.0618)t

to see that DiscreetBank offers the better deal. The extra interest from continuous
compounding does not make up for the one-point difference in the nominal interest
rate. �

We can generalize.

Theorem 9.1.1 Exponential growth and decay

Consider the linear differential equation

dx

dt
= kx,

with initial value x0 (k is an arbitrary constant). The solution is

x(t) = ekt x0.

The quantity x will grow or decay exponentially (depending on the sign of k).
See Figure 1.
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x

t

x(t) = e0.06t 

(a)

x

t

x(t) = e−t 

(b)

3

2

1

1

0.5

5 010 1 215

Figure 1 (a) x (t ) = ekt with positive k. Exponential growth. (b) x (t ) = ekt with negative k. Exponential decay.

Now consider a dynamical system with state vector �x(t) and components x1(t),
. . . , xn(t). In Chapter 7, we use the discrete approach to model this dynamical sys-
tem: We take a snapshot of the system at times t = 1, 2, 3, . . . , and we describe the
transformation the system undergoes between these snapshots. If �x(t + 1) depends
linearly on �x(t), we can write

�x(t + 1) = A�x(t),

or

�x(t) = At �x0,

for some n × n matrix A.
In the continuous approach, we model the gradual change the system undergoes

as time goes by. Mathematically speaking, we model the (instantaneous) rates of
change of the components of the state vector �x(t), or their derivatives

dx1

dt
,

dx2

dt
, . . . ,

dxn

dt
.

If these rates depend linearly on x1, x2, . . . , xn , then we can write∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

dx1

dt
= a11x1 + a12x2 + · · · + a1nxn

dx2

dt
= a21x1 + a22x2 + · · · + a2nxn

...
...

...
...

dxn

dt
= an1x1 + an2x2 + · · · + annxn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
,

or, in matrix form,

d�x
dt

= A�x,

where

A =

⎡
⎢⎢⎢⎣

a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
. . .

...

an1 an2 · · · ann

⎤
⎥⎥⎥⎦ .
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The derivative of the parameterized curve �x(t) is defined componentwise:

d�x
dt

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

dx1

dt
dx2

dt
...

dxn

dt

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

We summarize these observations:

Theorem 9.1.2 Linear dynamical systems: Discrete versus continuous

A linear dynamical system can be modeled by

�x(t + 1) = B�x(t) (discrete model)

or
d�x
dt

= A�x (continuous model).

A and B are n ×n matrices, where n is the number of components of the system.

We will first think about the equation

d�x
dt

= A�x
from a graphical point of view when A is a 2 × 2 matrix. We are looking for the
parametrized curve

�x(t) =
[

x1(t)
x2(t)

]
that represents the evolution of the system from a given initial value �x0. Each point
on the curve �x(t) will represent the state of the system at a certain moment in time,
as shown in Figure 2.

x2

Trajectory

x�(2)

x1

x�(0) = x�0

x�(1)

Figure 2

x2

x1

x�(1)

at t = 1dx�
dt

Figure 3

It is natural to think of the trajectory �x(t) in Figure 2 as the path of a moving
particle in the x1–x2-plane. As you may have seen in a previous course, the velocity
vector d�x/dt of this moving particle is tangent to the trajectory at each point.1 See
Figure 3.

1It is sensible to attach the velocity vector d�x/dt at the endpoint of the state vector �x(t), indicating the
path the particle would take if it were to maintain its direction at time t .
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In other words, to solve the system

d�x
dt

= A�x
for a given initial state �x0, we have to find the trajectory in the x1–x2-plane that starts
at �x0 and whose velocity vector at each point �x is the vector A�x . The existence
and uniqueness of such a trajectory seems intuitively obvious. Our intuition can
be misleading in such matters, however, and it is comforting to know that we can
establish the existence and uniqueness of the trajectory later. See Theorems 9.1.3
and 9.2.3 and Exercise 9.3.48.

We can represent A�x graphically as a vector field in the x1–x2-plane: At the
endpoint of each vector �x , we attach the vector A�x . To get a clearer picture, we often
sketch merely a direction field for A�x , which means that we will not necessarily
sketch the vectors A�x to scale. (We care only about their direction.)

To find the trajectory �x(t), we follow the vector field (or direction field); that is,
we follow the arrows of the field, starting at the point representing the initial state
�x0. The trajectories are also called the flow lines of the vector field A�x .

To put it differently, imagine a traffic officer standing at each point of the plane,
showing us in which direction to go and how fast to move (in other words, defining
our velocity). As we follow these directions, we trace out a trajectory.

EXAMPLE 2 Consider the linear system d�x/dt = A�x , where A =
[

1 2
4 3

]
. In Figure 4, we

sketch a direction field for A�x . Draw rough trajectories for the three given initial
values.

Solution
Sketch the flow lines for the three given points by following the arrows, as shown
in Figure 5.

This picture does not tell the whole story about a trajectory �x(t). We don’t
know the position �x(t) of the moving particle at a specific time t . In other words,
we know roughly which curve the particle follows, but we don’t know how fast it
moves along that curve. �

x1

x2

Figure 4

x1

x2

Figure 5
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As we look at Figure 5, our eye’s attention is drawn to two special lines, along
which the vectors A�x point either radially away from the origin or directly toward
the origin. In either case, the vector A�x is parallel to �x :

A�x = λ�x,

for some scalar λ. This means that the nonzero vectors along these two special lines
are just the eigenvectors of A, and the special lines themselves are the eigenspaces.
See Figure 6.

Ax�

x� Ax�

x�

(b)(a)

Figure 6 (a) A�x = λ�x , for a positive λ. (b) A�x = λ�x , for a negative λ.

In Examples 7.2.1 and 7.3.2 we have seen that the eigenvalues of A =
[

1 2
4 3

]
are 5 and −1, with corresponding eigenvectors

[
1
2

]
and

[
1

−1

]
. These results agree

with our graphical work in Figures 4 and 5. See Figure 7.
As in the case of a discrete dynamical system, we can sketch a phase portrait for

the system d�x/dt = A�x that shows some representative trajectories. See Figure 8.
In summary, if the initial state vector �x0 is an eigenvector, then the trajectory

moves along the corresponding eigenspace, away from the origin if the eigenvalue
is positive and toward the origin if the eigenvalue is negative. If the eigenvalue is
zero, then �x0 is an equilibrium solution: �x(t) = �x0, for all times t .

How can we solve the system d�x/dt = A�x analytically? We start with a simple
case.

x1

x2E−1 E5

Figure 7

x1

x2

Figure 8
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EXAMPLE 3 Find all solutions of the system

d�x
dt

=
[

2 0
0 3

]
�x .

Solution
The two differential equations

dx1

dt
= 2x1

dx2

dt
= 3x2

are unrelated, or uncoupled; we can solve them separately, using Theorem 9.1.1:

x1(t) = e2t x1(0)

x2(t) = e3t x2(0).

Thus,

�x(t) =
[

e2t x1(0)

e3t x2(0)

]
.

Both components of �x(t) grow exponentially, and the second one will grow faster
than the first. In particular, if one of the components is initially 0, it remains 0 for
all future times. In Figure 9, we sketch a rough phase portrait for this system. �

x2

x1

Figure 9

Now let’s do a slightly harder example:

EXAMPLE 4 Find all solutions of the system

d�x
dt

= A�x, where A =
[

1 2
−1 4

]
.

Solution
We have seen that the eigenvalues and eigenvectors of A tell us a lot about the
behavior of the solutions of the system d�x/dt = A�x . The eigenvalues of A are
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λ1 = 2 and λ2 = 3, with corresponding eigenvectors �v1 =
[

2
1

]
and �v2 =

[
1
1

]
.

This means that S−1 AS = B, where S =
[

2 1
1 1

]
and B =

[
2 0
0 3

]
, the matrix

considered in Example 3.
We can write the system

d�x
dt

= A�x
as

d�x
dt

= SBS−1�x,

or

S−1 d�x
dt

= BS−1�x,

or (see Exercise 51)

d

dt
(S−1�x) = B(S−1�x).

Let us introduce the notation �c(t) = S−1�x(t); note that �c(t) is the coordinate vector
of �x(t) with respect to the eigenbasis �v1, �v2. Then the system takes the form

d�c
dt

= B�c,

which is just the equation we solved in Example 3. We found that the solutions are
of the form

�c(t) =
[

e2t c1

e3t c2

]
,

where c1 and c2 are arbitrary constants. Therefore, the solutions of the original
system

d�x
dt

= A�x
are

�x(t) = S�c(t) =
[

2 1
1 1

] [
e2t c1

e3t c2

]
= c1e2t

[
2
1

]
+ c2e3t

[
1
1

]
.

We can write this formula in more general terms as

�x(t) = c1eλ1t �v1 + c2eλ2t �v2.

Note that c1 and c2 are the coordinates of �x(0) with respect to the basis �v1, �v2, since

�x(0) = c1�v1 + c2�v2.

It is informative to consider a few special trajectories: If c1 = 1 and c2 = 0, the
trajectory

�x(t) = e2t

[
2
1

]
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moves along the eigenspace E2 spanned by

[
2
1

]
, as expected. Likewise, if c1 = 0

and c2 = 1, we have the trajectory

�x(t) = e3t

[
1
1

]
moving along the eigenspace E3.

If c2 �= 0, then the entries of c2e3t

[
1
1

]
will become much larger (in abso-

lute value) than the entries of c1e2t

[
2
1

]
as t goes to infinity. The dominant term

c2e3t

[
1
1

]
, associated with the larger eigenvalue, determines the behavior of the sys-

tem in the distant future. The state vector �x(t) is almost parallel to E3 for large t .
For large negative t , on the other hand, the state vector is very small and almost
parallel to E2.

In Figure 10, we sketch a rough phase portrait for the system d�x/dt = A�x .

x1

x2

E3

E2

Figure 10

This is a linear distortion of the phase portrait we sketched in Figure 9. More

precisely, the matrix S =
[

2 1
1 1

]
transforms the phase portraits in Figure 9 into

the phase portrait sketched in Figure 10 (transforming �e1 into the eigenvector

[
2
1

]
and �e2 into

[
1
1

]
). �

Our work in Examples 3 and 4 generalizes readily to any n × n matrix A that
is diagonalizable over R (i.e., for which there is an eigenbasis in Rn):

Theorem 9.1.3 Continuous dynamical systems

Consider the system d�x/dt = A�x . Suppose there is a real eigenbasis �v1, . . . , �vn

for A, with associated eigenvalues λ1, . . . , λn . Then the general solution of the
system is

�x(t) = c1eλ1t �v1 + · · · + cneλn t �vn.
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Theorem 9.1.3 Continuous dynamical systems (Continued)

The scalars c1, c2, . . . , cn are the coordinates of �x0 with respect to the basis
�v1, �v2, . . . , �vn .

We can write the preceding equation in matrix form as

�x(t) =

⎡
⎢⎣ | | |

�v1 �v2 . . . �vn

| | |

⎤
⎥⎦
⎡
⎢⎢⎢⎣

eλ1t 0 · · · 0
0 eλ2t · · · 0
...

...
. . .

...

0 0 · · · eλn t

⎤
⎥⎥⎥⎦
⎡
⎢⎢⎢⎣

c1

c2
...

cn

⎤
⎥⎥⎥⎦

= S

⎡
⎢⎢⎢⎣

eλ1t 0 · · · 0
0 eλ2t · · · 0
...

...
. . .

...

0 0 · · · eλn t

⎤
⎥⎥⎥⎦ S−1�x0,

where S =

⎡
⎢⎣ | | |

�v1 �v2 · · · �vn

| | |

⎤
⎥⎦.

We can think of the general solution as a linear combination of the solutions
eλi t �vi associated with the eigenvectors �vi . Note the analogy between this solution
and the general solution of the discrete dynamical system �x(t + 1) = A�x(t),

�x(t) = c1λ
t
1�v1 + · · · + cnλ

t
n�vn.

See Theorem 7.1.6.
The terms λt

i are replaced by eλi t . We have already observed this fact in a dy-
namical system with only one component. See Example 1.

We can state Theorem 9.1.3 in the language of linear spaces. The solutions of
the system d�x/dt = A�x form a subspace of the space F(R, Rn) of all functions
from R to Rn . See Exercises 22 and 23. This space is n-dimensional, with basis
eλ1t �v1, eλ2t �v2, . . . , eλn t �vn .

EXAMPLE 5 Consider a system d�x/dt = A�x , where A is diagonalizable over R. When is the zero
state a stable equilibrium solution? Give your answer in terms of the eigenvalues
of A.

Solution
Note that lim

t→∞ eλt = 0 if (and only if) λ is negative. Therefore, we observe stability
if (and only if) all eigenvalues of A are negative. �

Consider an invertible 2 × 2 matrix A with two distinct eigenvalues λ1 > λ2.
Then the phase portrait of d�x/dt = A�x looks qualitatively like one of the three
sketches in Figure 11. We observe stability only in Figure 11c.

Consider a trajectory that does not run along one of the eigenspaces. In all
three cases, the state vector �x(t) is almost parallel to the dominant eigenspace Eλ1

for large t . For large negative t , on the other hand, the state vector is almost parallel
to Eλ2 . Compare with Figure 7.1.11.
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E  
2

E  
2

E  
2

E  
1

E  
1

E  
1

(a) (b) (c)

Figure 11 (a) λ1 > λ2 > 0. (b) λ1 > 0 > λ2. (c) 0 > λ1 > λ2.

EXERCISES 9.1
GOAL Use the concept of a continuous dynamical sys-
tem. Solve the differential equation dx/dt = kx. Solve
the system d �x/dt = A�x when A is diagonalizable over R,
and sketch the phase portrait for 2 × 2 matrices A.

Solve the initial value problems posed in Exercises 1
through 5. Graph the solution.

1.
dx

dt
= 5x with x(0) = 7

2.
dx

dt
= −0.71x with x(0) = −e

3.
d P

dt
= 0.03P with P(0) = 7

4.
dy

dt
= 0.8t with y(0) = −0.8

5.
dy

dt
= 0.8y with y(0) = −0.8

Solve the nonlinear differential equations in Exercises 6
through 11 using the method of separation of vari-
ables: Write the differential equation dx/dt = f (x) as
dx/ f (x) = dt and integrate both sides.

6.
dx

dt
= 1

x
, x(0) = 1

7.
dx

dt
= x2, x(0) = 1. Describe the behavior of your

solution as t increases.

8.
dx

dt
= √

x , x(0) = 4

9.
dx

dt
= xk (with k �= 1), x(0) = 1

10.
dx

dt
= 1

cos(x)
, x(0) = 0

11.
dx

dt
= 1 + x2, x(0) = 0

12. Find a differential equation of the form dx/dt = kx for
which x(t) = 3t is a solution.

13. In 1778, a wealthy Pennsylvanian merchant named
Jacob DeHaven lent $450,000 to the Continental
Congress to support the troops at Valley Forge. The
loan was never repaid. Mr. DeHaven’s descendants have
taken the U.S. government to court to collect what they
believe they are owed. The going interest rate at the time
was 6%. How much were the DeHavens owed in 1990
a. if interest is compounded yearly?
b. if interest is compounded continuously?
Source: Adapted from The New York Times, May 27,
1990.

14. The carbon in living matter contains a minute propor-
tion of the radioactive isotope C-14. This radiocarbon
arises from cosmic-ray bombardment in the upper at-
mosphere and enters living systems by exchange pro-
cesses. After the death of an organism, exchange stops,
and the carbon decays. Therefore, carbon dating enables
us to calculate the time at which an organism died. Let
x(t) be the proportion of the original C-14 still present
t years after death. By definition, x(0) = 1 = 100%.
We are told that x(t) satisfies the differential equation

dx

dt
= − 1

8270
x .

a. Find a formula for x(t). Determine the half-life of
C-14 (that is, the time it takes for half of the C-14 to
decay).

b. The Iceman. In 1991, the body of a man was
found in melting snow in the Alps of Northern
Italy. A well-known historian in Innsbruck, Austria,
determined that the man had lived in the Bronze
Age, which started about 2000 B.C. in that region.
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Examination of tissue samples performed indepen-
dently at Zürich and Oxford revealed that 47% of
the C-14 present in the body at the time of his death
had decayed. When did this man die? Is the result
of the carbon dating compatible with the estimate of
the Austrian historian?

15. Justify the “Rule of 69”: If a quantity grows at a con-
stant instantaneous rate of k%, then its doubling time is
about 69/k. Example: In 2008 the population of Mada-
gascar was about 20 million, growing at an annual rate
of about 3%, with a doubling time of about 69/3 = 23
years.

Consider the system

d �x
dt

=
[
λ1 0
0 λ2

]
�x.

For the values of λ1 and λ2 given in Exercises 16 through
19, sketch the trajectories for all nine initial values shown
in the following figure. For each of the points, trace out
both the future and the past of the system.

1

1

x2

x1

16. λ1 = 1, λ2 = −1 17. λ1 = 1, λ2 = 2

18. λ1 = −1, λ2 = −2 19. λ1 = 0, λ2 = 1

20. Consider the system d�x/dt = A�x with A =
[

0 −1
1 0

]
.

Sketch a direction field for A�x . Based on your sketch,
describe the trajectories geometrically. From your
sketch, can you guess a formula for the solution with

�x0 =
[

1
0

]
? Verify your guess by substituting into the

equations.

21. Consider the system d�x/dt = A�x with A =
[

0 1
0 0

]
.

Sketch a direction field of A�x . Based on your sketch,
describe the trajectories geometrically. Can you find the
solutions analytically?

22. Consider a linear system d�x/dt = A�x of arbitrary size.
Suppose �x1(t) and �x2(t) are solutions of the system. Is

the sum �x(t) = �x1(t) + �x2(t) a solution as well? How
do you know?

23. Consider a linear system d�x/dt = A�x of arbitrary size.
Suppose �x1(t) is a solution of the system and k is an
arbitrary constant. Is �x(t) = k�x1(t) a solution as well?
How do you know?

24. Let A be an n × n matrix and k a scalar. Consider the
following two systems:

d�x
dt

= A�x (I)

d�c
dt

= (A + k In)�c. (II)

Show that if �x(t) is a solution of system (I), then �c(t) =
ekt �x(t) is a solution of system (II).

25. Let A be an n × n matrix and k a scalar. Consider the
following two systems:

d�x
dt

= A�x (I)

d�c
dt

= k A�c. (II)

Show that if �x(t) is a solution of system (I), then �c(t) =
�x(kt) is a solution of system (II). Compare the vector
fields of the two systems.

In Exercises 26 through 31, solve the system with the given
initial value.

26.
d�x
dt

=
[

1 2
3 0

]
�x with �x(0) =

[
7
2

]

27.
d�x
dt

=
[−4 3

2 −3

]
�x with �x(0) =

[
1
0

]

28.
d�x
dt

=
[

4 3
4 8

]
�x with �x(0) =

[
1
1

]

29.
d�x
dt

=
[

1 2
2 4

]
�x with �x(0) =

[
5
0

]

30.
d�x
dt

=
[

1 2
2 4

]
�x with �x(0) =

[
2

−1

]

31.
d�x
dt

=
⎡
⎣2 1 1

1 3 3
3 2 2

⎤
⎦ �x with �x(0) =

⎡
⎣ 1

−2
1

⎤
⎦

Sketch rough phase portraits for the dynamical systems
given in Exercises 32 through 39.

32.
d�x
dt

=
[

1 2
3 0

]
�x 33.

d�x
dt

=
[−4 3

2 −3

]
�x
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34.
d�x
dt

=
[

4 3
4 8

]
�x 35.

d�x
dt

=
[

1 2
2 4

]
�x

36. �x(t + 1) =
[

0.9 0.2

0.2 1.2

]
�x(t)

37. �x(t + 1) =
[

1 0.3

−0.2 1.7

]
�x(t)

38. �x(t + 1) =
[

1.1 0.2

−0.4 0.5

]
�x(t)

39. �x(t + 1) =
[

0.8 −0.4

0.3 1.6

]
�x(t)

40. Find a 2×2 matrix A such that the system d�x/dt = A�x
has

�x(t) =
[

2e2t + 3e3t

3e2t + 4e3t

]

as one of its solutions.

41. Consider a noninvertible 2 × 2 matrix A with two dis-
tinct eigenvalues. (Note that one of the eigenvalues must
be 0.) Choose two eigenvectors �v1 and �v2 with eigenval-
ues λ1 = 0 and λ2 as shown in the accompanying fig-
ure. Suppose λ2 is negative. Sketch a phase portrait for
the system d�x/dt = A�x , clearly indicating the shape
and long-term behavior of the trajectories.

x2

x1

v�2 

v�1

42. Consider the interaction of two species of animals in a
habitat. We are told that the change of the populations
x(t) and y(t) can be modeled by the equations

∣∣∣∣∣∣∣∣
dx

dt
= 1.4x − 1.2y

dy

dt
= 0.8x − 1.4y

∣∣∣∣∣∣∣∣ ,

where time t is measured in years.
a. What kind of interaction do we observe (symbiosis,

competition, or predator–prey)?
b. Sketch a phase portrait for this system. From the na-

ture of the problem, we are interested only in the
first quadrant.

c. What will happen in the long term? Does the out-
come depend on the initial populations? If so, how?

43. Answer the questions posed in Exercise 42 for the fol-
lowing system:

∣∣∣∣∣∣∣∣
dx

dt
= 5x − y

dy

dt
= −2x + 4y

∣∣∣∣∣∣∣∣ .

44. Answer the questions posed in Exercise 42 for the fol-
lowing system:

∣∣∣∣∣∣∣∣
dx

dt
= x + 4y

dy

dt
= 2x − y

∣∣∣∣∣∣∣∣ .

45. Two herds of vicious animals are fighting each other
to the death. During the fight, the populations x(t) and
y(t) of the two species can be modeled by the following
system:2

∣∣∣∣∣∣∣∣
dx

dt
= − 4y

dy

dt
= − x

∣∣∣∣∣∣∣∣ .

a. What is the significance of the constants −4 and
−1 in these equations? Which species has the more
vicious (or more efficient) fighters?

b. Sketch a phase portrait for this system.
c. Who wins the fight (in the sense that some individ-

uals of that species are left while the other herd is
eradicated)? How does your answer depend on the
initial populations?

2 This is the simplest in a series of combat models developed
by F. W. Lanchester during World War I (F. W. Lanchester,
Aircraft in Warfare, the Dawn of the Fourth Arm, Tiptree,
Constable and Co., Ltd., 1916).
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46. Repeat Exercise 45 for the system∣∣∣∣∣∣∣∣
dx

dt
= − py

dy

dt
= −qx

∣∣∣∣∣∣∣∣ ,

where p and q are two positive constants.3

47. The interaction of two populations of animals is mod-
eled by the differential equations

∣∣∣∣∣∣∣∣
dx

dt
= − x + ky

dy

dt
= kx − 4y

∣∣∣∣∣∣∣∣ ,

for some positive constant k.
a. What kind of interaction do we observe? What is the

practical significance of the constant k?
b. Find the eigenvalues of the coefficient matrix of the

system. What can you say about the signs of these
eigenvalues? How does your answer depend on the
value of the constant k?

c. For each case you discussed in part (b), sketch a
rough phase portrait. What does each phase portrait
tell you about the future of the two populations?

48. Repeat Exercise 47 for the system

∣∣∣∣∣∣∣∣
dx

dt
= − x + ky

dy

dt
= x − 4y

∣∣∣∣∣∣∣∣ ,
where k is a positive constant.

49. Here is a continuous model of a person’s glucose reg-
ulatory system. Compare this with Exercise 7.1.70. Let
g(t) and h(t) be the excess glucose and insulin concen-
trations in a person’s blood. We are told that

∣∣∣∣∣∣∣∣∣

dg

dt
= −g − 0.2h

dh

dt
= 0.6g − 0.2h

∣∣∣∣∣∣∣∣∣
,

where time t is measured in hours. After a heavy hol-
iday dinner, we measure g(0) = 30 and h(0) = 0.
Find closed formulas for g(t) and h(t). Sketch the
trajectory.

50. Consider a linear system d�x/dt = A�x , where A is a
2 × 2 matrix that is diagonalizable over R. When is the
zero state a stable equilibrium solution? Give your an-
swer in terms of the determinant and the trace of A.

51. Let �x(t) be a differentiable curve in Rn and S an n × n
matrix. Show that

d

dt
(S�x) = S

d�x
dt

.

52. Find all solutions of the system

d�x
dt

=
[
λ 1
0 λ

]
�x,

where λ is an arbitrary constant. Hint: Exercises 21 and
24 are helpful.

Sketch a phase portrait. For which choices of λ is
the zero state a stable equilibrium solution?

53. Solve the initial value problem

d�x
dt

=
[

p −q
q p

]
�x with �x0 =

[
1
0

]
.

Sketch the trajectory for the cases when p is positive,
negative, or 0. In which cases does the trajectory ap-
proach the origin? Hint: Exercises 20, 24, and 25 are
helpful.

54. Consider a door that opens to only one side (as most
doors do). A spring mechanism closes the door au-
tomatically. The state of the door at a given time t
(measured in seconds) is determined by the angular dis-
placement θ(t) (measured in radians) and the angular
velocity ω(t) = dθ/dt . Note that θ is always positive
or zero (since the door opens to only one side), but ω

can be positive or negative (depending on whether the
door is opening or closing).

When the door is moving freely (nobody is pushing or
pulling), its movement is subject to the following dif-
ferential equations:

∣∣∣∣∣∣∣∣
dθ

dt
= ω

dω

dt
= − 2θ − 3ω

∣∣∣∣∣∣∣∣
(the definition of ω)

(−2θ reflects the force of the
spring, and −3ω models friction).

3 The result is known as Lanchester’s square law.



9.2 The Complex Case: Euler’s Formula 429

a. Sketch a phase portrait for this system.
b. Discuss the movement of the door represented by

the qualitatively different trajectories. For which
initial states does the door slam (i.e., reach θ = 0
with velocity ω < 0)?

55. Answer the questions posed in Exercise 54 for the
system

∣∣∣∣∣∣∣∣∣∣

dθ

dt
= ω

dω

dt
= − pθ − qω

∣∣∣∣∣∣∣∣∣∣
,

where p and q are positive, and q2 > 4p.

9.2 The Complex Case: Euler’s Formula

Consider a linear system

d�x
dt

= A�x,

where the n × n matrix A is diagonalizable over C: There exists a complex eigen-
basis �v1, . . . , �vn for A, with associated complex eigenvalues λ1, . . . , λn . You may
wonder whether the formula

�x(t) = c1eλ1t �v1 + · · · + cneλn t �vn

(with complex ci ) produces the general complex solution of the system, just as in
the real case (Theorem 9.1.3).

Before we can make sense out of the formula above, we have to think about the
idea of a complex-valued function and in particular about the exponential function
eλt for complex λ.

Complex-Valued Functions
A complex-valued function z = f (t) is a function from R to C (with domain R

and target space C): The input t is real, and the output z is complex. Here are two
examples:

z = t + i t2

z = cos t + i sin t.

For each t , the output z can be represented as a point in the complex plane. As
we let t vary, we trace out a trajectory in the complex plane. In Figure 1, we sketch
the trajectories of the two complex-valued functions just defined.

t = −1
z = −1 + i

t = 0
z = 0

t = 1
z = 1 + i

t =   /2
z = i

t = 0
z = 1

t =
z = −1

t = 3   /2
z = − i

(a) (b)

Figure 1 (a) The trajectory of z = t + i t2. (b) The trajectory of z = cos t + i sin t .
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We can write a complex-valued function z(t) in terms of its real and imaginary
parts:

z(t) = x(t) + iy(t).

(Consider the two preceding examples.) If x(t) and y(t) are differentiable real-
valued functions, then the derivative of the complex-valued function z(t) is defined
by

dz

dt
= dx

dt
+ i

dy

dt
.

For example, if

z(t) = t + i t2,

then

dz

dt
= 1 + 2i t.

If

z(t) = cos t + i sin t,

then

dz

dt
= − sin t + i cos t.

Please verify that the basic rules of differential calculus (the sum, product, and
quotient rules) apply to complex-valued functions. The chain rule holds in the fol-
lowing form: If z = f (t) is a differentiable complex-valued function and t = g(s)
is a differentiable function from R to R, then

dz

ds
= dz

dt

dt

ds
.

The derivative dz/dt of a complex-valued function z(t), for a given t , can be visu-
alized as a tangent vector to the trajectory at z(t), as shown in Figure 2.

z(t)

z(1)

dz
dt at t = 1

Figure 2

Next let’s think about the complex-valued exponential function z = eλt , where
λ is complex and t real. How should the function z = eλt be defined? We can get
some inspiration from the real case: The exponential function x = ekt (for real k)
is the unique function such that dx/dt = kx and x(0) = 1. Compare this with
Theorem 9.1.1.

We can use this fundamental property of real exponential functions to define
the complex exponential functions:
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Definition 9.2.1 Complex exponential functions

If λ is a complex number, then z = eλt is the unique complex-valued function
such that

dz

dt
= λz and z(0) = 1.

The existence of such a function, for any λ, will be established later; the proof
of uniqueness is left as Exercise 38.

It follows that the unique complex-valued function z(t) with

dz

dt
= λz and z(0) = z0

is

z(t) = eλt z0,

for an arbitrary complex initial value z0.
Let us first consider the simplest case, z = eit , where λ = i . We are looking for

a complex-valued function z(t) such that dz/dt = i z and z(0) = 1.
From a graphical point of view, we are looking for the trajectory z(t) in the

complex plane that starts at z = 1 and whose tangent vector dz/dt = i z is per-
pendicular to z at each point. See Example 1 of Section 7.5. In other words, we are
looking for the flow line of the vector field in Figure 3 starting at z = 1.

The unit circle, with parametrization z(t) = cos t + i sin t , satisfies

dz

dt
= − sin t + i cos t = i z(t),

and z(0) = 1. See Figure 4.

z = 1

Figure 3

z(t) = cos(t) + i sin(t)

Figure 4

We have shown the following fundamental result:

Theorem 9.2.2 Euler’s formula

eit = cos t + i sin t
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The case t = π leads to the intriguing formula eiπ = −1; this has been called
the most beautiful formula in all of mathematics.4

Figure 5 Euler’s
likeness and his

celebrated formula
are shown on a
Swiss postage

stamp.

Euler’s formula can be used to write the polar form of a complex number more
succinctly:

z = r(cos θ + i sin θ) = reiθ .

Now consider z = eλt , where λ is an arbitrary complex number, λ = p + iq.
By manipulating exponentials as if they were real, we find that

eλt = e(p+iq)t = ept eiqt = ept
(
cos(qt) + i sin(qt)

)
.

We can validate this result by checking that the complex-valued function

z(t) = ept
(
cos(qt) + i sin(qt)

)
does indeed satisfy the definition of eλt , namely, dz/dt = λz and z(0) = 1:

dz

dt
= pept

(
cos(qt) + i sin(qt)

)+ ept
(−q sin(qt) + iq cos(qt)

)
= (p + iq)ept

(
cos(qt) + i sin(qt)

) = λz.

EXAMPLE 1 Sketch the trajectory of the complex-valued function z(t) = e(0.1+i)t in the complex
plane.

Solution
z(t) = e0.1t ei t = e0.1t (cos t + i sin t)

5i

5

Figure 6

The trajectory spirals outward as shown in Figure 6, since the function e0.1t grows
exponentially. �

4Benjamin Peirce (1809–1880), a Harvard mathematician, after observing that eiπ = −1, used to
turn to his students and say, “Gentlemen, that is surely true, it is absolutely paradoxical, we cannot
understand it, and we don’t know what it means, but we have proved it, and therefore we know it must
be the truth.” Do you not now think that we understand not only that the formula is true but also what
it means?
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EXAMPLE 2 For which complex numbers λ is lim
t→∞ eλt = 0?

Solution
Recall that

eλt = e(p+iq)t = ept
(
cos(qt) + i sin(qt)

)
,

so that |eλt | = ept . This quantity approaches zero if (and only if) p is negative (i.e.,
if ept decays exponentially).

We summarize: lim
t→∞ eλt = 0 if (and only if) the real part of λ is negative.

�
We are now ready to tackle the problem posed at the beginning of this section:

Consider a system d�x/dt = A�x , where the n×n matrix A has a complex eigenbasis
�v1, . . . , �vn , with eigenvalues λ1, . . . , λn . Find all complex solutions �x(t) of this
system. By a complex solution, we mean a function from R to Cn (that is, t is real
and �x is in Cn). In other words, the component functions x1(t), . . . , xn(t) of �x(t)
are complex-valued functions.

As you review our work in the last section, you will find that the approach we
took to the real case applies to the complex case as well, without modifications:

Theorem 9.2.3 Continuous dynamical systems with complex eigenvalues

Consider a linear system

d�x
dt

= A�x .

Suppose there exists a complex eigenbasis �v1, . . . , �vn for A, with associated
complex eigenvalues λ1, . . . , λn . Then the general complex solution of the sys-
tem is

�x(t) = c1eλ1t �v1 + · · · + cneλn t �vn,

where the ci are arbitrary complex numbers.
We can write this solution in matrix form, as in Theorem 9.1.3.

We can check that the given curve �x(t) satisfies the equation d�x/dt = A�x : We
have

d�x
dt

= c1λ1eλ1t �v1 + · · · + cnλneλn t �vn

(by Definition 9.2.1), and

A�x = c1eλ1tλ1�v1 + · · · + cneλn tλn�vn,

because the �vi are eigenvectors. The two answers match.
When is the zero state a stable equilibrium solution for the system d�x/dt =

A�x? Considering Example 3 and the form of the solution given in Theorem 9.2.3,
we can conclude that this is the case if (and only if) the real parts of all eigenvalues
are negative (at least when A is diagonalizable over C). The nondiagonalizable case
is left as Exercise 9.3.48.

Theorem 9.2.4 Stability of a continuous dynamical system

For a system

d�x
dt

= A�x,



434 CHAPTER 9 Linear Differential Equations

Theorem 9.2.4 Stability of a continuous dynamical system (Continued)

the zero state is an asymptotically stable equilibrium solution if (and only if) the
real parts of all eigenvalues of A are negative.

EXAMPLE 3 Consider the system d�x/dt = A�x , where A is a (real) 2 × 2 matrix. When is the
zero state a stable equilibrium solution for this system? Give your answer in terms
of the trace and the determinant of A.

Solution
We observe stability either if A has two negative eigenvalues or if A has two con-
jugate eigenvalues p ± iq, where p is negative. In both cases, tr A is negative and
det A is positive. Check that in all other cases tr A ≥ 0 or det A ≤ 0. �

Theorem 9.2.5 Determinant, trace, and stability

Consider the system

d�x
dt

= A�x,

where A is a real 2 × 2 matrix. Then the zero state is an asymptotically stable
equilibrium solution if (and only if) tr A < 0 and det A > 0.

As a special case of Theorem 9.2.3, let’s consider the system

d�x
dt

= A�x,

where A is a real 2 × 2 matrix with eigenvalues λ1,2 = p ± iq (where q �= 0) and
corresponding eigenvectors �v1,2 = �v ± i �w.

Theorems 9.1.3 and 9.2.3 tell us that

�x(t) = P

[
eλ1t 0
0 eλ2t

]
P−1�x0 = P

[
e(p+iq)t 0

0 e(p−iq)t

]
P−1�x0

= ept P

[
cos(qt) + i sin(qt) 0

0 cos(qt) − i sin(qt)

]
P−1�x0,

where P = [ �v + i �w �v − i �w ]. Note that we have used Euler’s formula (Theo-
rem 9.2.2).

We can write this formula in terms of real quantities. By Example 6 of Sec-
tion 7.5,[

cos(qt) + i sin(qt) 0

0 cos(qt) − i sin(qt)

]
= R−1

[
cos(qt) − sin(qt)

sin(qt) cos(qt)

]
R,

where

R =
[

i −i

1 1

]
.
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Thus,

�x(t) = ept P R−1

[
cos(qt) − sin(qt)

sin(qt) cos(qt)

]
R P−1�x0

= ept S

[
cos(qt) − sin(qt)

sin(qt) cos(qt)

]
S−1�x0,

where

S = P R−1 = 1

2i

[
�v + i �w v − i �w

] [
1 i

−1 i

]
=
[

�w �v
]

,

and

S−1 = (P R−1)−1 = R P−1.

Recall that we have performed the same computations in Example 7 of Section 7.5.

Theorem 9.2.6 Continuous dynamical systems with eigenvalues p ± iq

Consider the linear system

d�x
dt

= A�x,

where A is a real 2 × 2 matrix with complex eigenvalues p ± iq (and q �= 0).
Consider an eigenvector �v + i �w with eigenvalue p + iq. Then

�x(t) = ept S

[
cos(qt) − sin(qt)
sin(qt) cos(qt)

]
S−1�x0,

where S = [ �w �v ]. Recall that S−1�x0 is the coordinate vector of �x0 with respect
to basis �w, �v.

The trajectories are either ellipses (linearly distorted circles), if p = 0, or
spirals, spiraling outward if p is positive and inward if p is negative. In the case
of an ellipse, the trajectories have a period of 2π/q.

Note the analogy between Theorem 9.2.6 and the formula

�x(t) = r t S

[
cos(θ t) − sin(θ t)
sin(θ t) cos(θ t)

]
S−1�x0

in the case of the discrete system �x(t + 1) = A�x(t) (Theorem 7.6.3).

EXAMPLE 4 Solve the system

d�x
dt

=
[

3 −2
5 −3

]
�x with �x0 =

[
0
1

]
.

Solution
The eigenvalues are λ1,2 = ±i , so that p = 0 and q = 1. This tells us that the trajec-
tory is an ellipse. To determine the direction of the trajectory (clockwise or counter-
clockwise) and its rough shape, we can draw the direction field A�x for a few simple

points �x , say, �x = ±�e1 and �x = ±�e2, and sketch the flow line starting at

[
0
1

]
. See

Figure 7.
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Now let us find a formula for the trajectory:

Ei = ker

[
3 − i −2

5 −3 − i

]
= span

[ −2
i − 3

]
[ −2

i − 3

]
=
[−2
−3

]
︸ ︷︷ ︸

�v

+i

[
0
1

]
︸︷︷︸

�w

.

Therefore,

�x(t) = ept S

[
cos(qt) − sin(qt)

sin(qt) cos(qt)

]
S−1�x0 =

[
0 −2
1 −3

][
cos t − sin t

sin t cos t

] [
1
0

]

=
[

−2 sin t

cos t − 3 sin t

]
= cos t

[
0
1

]
+ sin t

[−2
−3

]
.

You can check that

d�x
dt

= A�x and �x(0) =
[

0
1

]
.

The trajectory is the ellipse shown in Figure 8. �

1

Figure 7

t = 0, 2

t =

2
3

t =

2
t =

3

2

−3 −2 −1

−2

−3

1 2 3

Figure 8

Consider a 2 × 2 matrix A. The various scenarios for the system d�x/dt = A�x
can be conveniently represented in the tr A–det A plane, where a 2 × 2 matrix A is
represented by the point (tr A, det A). Recall that the characteristic polynomial is

λ2 − (tr A)λ + det A

and the eigenvalues are

λ1,2 = 1

2

(
tr A ±
√

(trA)2 − 4 det A
)

.

Therefore, the eigenvalues of A are real if (and only if) the point (trA, det A) is
located below or on the parabola

det A =
(

tr A

2

)2

in the tr A–det A plane. See Figure 9.
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det A

tr A

det A = tr A 2

2

Figure 9

Note that there are five major cases, corresponding to the regions in Figure 9,
and some exceptional cases, corresponding to the dividing lines.

What does the phase portrait look like when det A = 0 and tr A �= 0?
In Figure 10 we take another look at the five major types of phase portraits. Both

in the discrete and in the continuous cases, we sketch the phase portraits produced
by various eigenvalues. We include the case of an ellipse, since it is important in
applications.

EXERCISES 9.2
GOAL Use the definition of the complex-valued expo-
nential function z = eλt . Solve the system

d �x
dt

= A�x

for a 2 × 2 matrix A with complex eigenvalues p ± iq.

1. Find e2π i .

2. Find e(1/2)π i .

3. Write z = −1 + i in polar form as z = reiθ .

4. Sketch the trajectory of the complex-valued function

z = e3i t .

What is the period?

5. Sketch the trajectory of the complex-valued function

z = e(−0.1−2i)t .

6. Find all complex solutions of the system

d�x
dt

=
[

3 −2
5 −3

]
�x

in the form given in Theorem 9.2.3. What solution do
you get if you let c1 = c2 = 1?

7. Determine the stability of the system

d�x
dt

=
[−1 2

3 −4

]
�x .

8. Consider a system

d�x
dt

= A�x,

where A is a symmetric matrix. When is the zero state a
stable equilibrium solution? Give your answer in terms
of the definiteness of the matrix A.

9. Consider a system

d�x
dt

= A�x,

where A is a 2 × 2 matrix with tr A < 0. We are told
that A has no real eigenvalues. What can you say about
the stability of the system?

10. Consider a quadratic form q(�x) = �x · A�x of two vari-
ables, x1 and x2. Consider the system of differential
equations ∣∣∣∣∣∣∣∣

dx1

dt
= ∂q

∂x1

dx2

dt
= ∂q

∂x2

∣∣∣∣∣∣∣∣ ,
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Discrete Continuous Phase Portrait

λ1 > λ2 > 1 λ1 > λ2 > 0

E  
2

E  
1

λ1 > 1 > λ2 > 0 λ1 > 0 > λ2

E  
2

E  
1

1 > λ1 > λ2 > 0 0 > λ1 > λ2

E  
2

E  
1

λ1,2 = p ± iq

p2 + q2 > 1

λ1,2 = p ± iq

p > 0

λ1,2 = p ± iq

p2 + q2 < 1

λ1,2 = p ± iq

p < 0

λ1,2 = p ± iq

p2 + q2 = 1

λ1,2 = ±iq

Figure 10 The major types of phase portraits.
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or, more succinctly,

d�x
dt

= grad q.

a. Show that the system d�x/dt = grad q is linear by
finding a matrix B (in terms of the symmetric matrix
A) such that grad q = B�x .

b. When q is negative definite, draw a sketch showing
possible level curves of q . On the same sketch, draw
a few trajectories of the system d�x/dt = grad q .
What does your sketch suggest about the stability of
the system d�x/dt = grad q?

c. Do the same as in part b for an indefinite quadratic
form.

d. Explain the relationship between the definiteness of
the form q and the stability of the system d�x/dt
= grad q .

11. Do parts a and d of Exercise 10 for a quadratic form of
n variables.

12. Determine the stability of the system

d�x
dt

=
⎡
⎣ 0 1 0

0 0 1
−1 −1 −2

⎤
⎦ �x .

13. If the system d�x/dt = A�x is stable, is d�x/dt = A−1�x
stable as well? How can you tell?

14. Negative Feedback Loops. Suppose some quantities
x1(t), x2(t), . . . , xn(t) can be modeled by differential
equations of the form

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

dx1

dt
= −k1x1 − bxn

dx2

dt
= x1 − k2x2

...
. . .

dxn

dt
= xn−1 − kn xn

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
,

where b is positive and the ki are positive. (The matrix
of this system has negative numbers on the diagonal,
1’s directly below the diagonal, and a negative num-
ber in the top right corner.) We say that the quantities
x1, . . . , xn describe a (linear) negative feedback loop.
a. Describe the significance of the entries in this sys-

tem, in practical terms.
b. Is a negative feedback loop with two components

(n = 2) necessarily stable?
c. Is a negative feedback loop with three components

necessarily stable?

15. Consider a noninvertible 2 × 2 matrix A with a posi-
tive trace. What does the phase portrait of the system
d�x/dt = A�x look like?

16. Consider the system

d�x
dt

=
[

0 1
a b

]
�x,

where a and b are arbitrary constants. For which values
of a and b is the zero state a stable equilibrium solution?

17. Consider the system

d�x
dt

=
[−1 k

k −1

]
�x,

where k is an arbitrary constant. For which values of k
is the zero state a stable equilibrium solution?

18. Consider a diagonalizable 3 × 3 matrix A such that the
zero state is a stable equilibrium solution of the system
d�x/dt = A�x . What can you say about the determinant
and the trace of A?

19. True or False? If the trace and the determinant of a 3×3
matrix A are both negative, then the origin is a stable
equilibrium solution of the system d�x/dt = A�x . Jus-
tify your answer.

20. Consider a 2 × 2 matrix A with eigenvalues ±π i . Let
�v+i �w be an eigenvector of A with eigenvalue π i . Solve
the initial value problem

d�x
dt

= A�x, with �x0 = �w.

Draw the solution in the accompanying figure. Mark the
vectors �x(0), �x( 1

2 ), �x(1), and �x(2).

v�
w�

21. Ngozi opens a bank account with an initial balance of
1,000 Nigerian naira. Let b(t) be the balance in the
account at time t ; we are told that b(0) = 1,000. The
bank is paying interest at a continuous rate of 5% per
year. Ngozi makes deposits into the account at a contin-
uous rate of s(t) (measured in naira per year). We are
told that s(0) = 1,000 and that s(t) is increasing at a
continuous rate of 7% per year. (Ngozi can save more
as her income goes up over time.)
a. Set up a linear system of the form∣∣∣∣∣∣∣∣

db

dt
= ?b + ?s

ds

dt
= ?b + ?s

∣∣∣∣∣∣∣∣ .

(Time is measured in years.)
b. Find b(t) and s(t).
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For each of the linear systems in Exercises 22 through 26,
find the matching phase portrait below.

22. �x(t + 1) =
[

3 0
−2.5 0.5

]
�x(t)

23. �x(t + 1) =
[−1.5 −1

2 0.5

]
�x(t)

24.
d�x
dt

=
[

3 0
−2.5 0.5

]
�x

25.
d�x
dt

=
[−1.5 −1

2 0.5

]
�x

26.
d�x
dt

=
[−2 0

3 1

]
�x

3

3

2

2

1

1

0

0

−1

−1

−2

−2
−3

−3

I

3

3

2

2

1

1

0

0

−1

−1

−2

−2
−3

−3

III

3

3

2

2

1

1

0

0

−1

−1

−2

−2
−3

−3

V

3

3

2

2

1

1

0

0

−1

−1

−2

−2
−3

−3

VII

3

3

2

2

1

1

0

0

−1

−1

−2

−2
−3

−3

II

3

3

2

2

1

1

0

0

−1

−1

−2

−2
−3

−3

IV

3

3

2

2

1

1

0

0

−1

−1

−2

−2
−3

−3

VI

3

3

2

2

1

1

0

0

−1

−1

−2

−2
−3

−3

VIII
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Find all real solutions of the systems in Exercises 27
through 30.

27.
d�x
dt

=
[

0 −3
3 0

]
�x 28.

d�x
dt

=
[

0 4
−9 0

]
�x

29.
d�x
dt

=
[

2 4
−4 2

]
�x 30.

d�x
dt

=
[−11 15

−6 7

]
�x

Solve the systems in Exercises 31 through 34. Give the
solution in real form. Sketch the solution.

31.
d�x
dt

=
[−1 −2

2 −1

]
�x with �x(0) =

[
1

−1

]

32.
d�x
dt

=
[

0 1
−4 0

]
�x with �x(0) =

[
1
0

]

33.
d�x
dt

=
[−1 1
−2 1

]
�x with �x(0) =

[
0
1

]

34.
d�x
dt

=
[

7 10
−4 −5

]
�x with �x(0) =

[
1
0

]
35. Prove the product rule for derivatives of complex-

valued functions.

36. Consider the following mass-spring system:

x

Equilibrium

Let x(t) be the deviation of the block from the
equilibrium position at time t . Consider the velocity
v(t) = dx/dt of the block. There are two forces act-
ing on the mass: the spring force Fs , which is assumed
to be proportional to the displacement x , and the force
F f of friction, which is assumed to be proportional to
the velocity,

Fs = −px and F f = −qv,

where p > 0 and q ≥ 0 (q is 0 if the oscillation is fric-
tionless). Therefore, the total force acting on the mass
is

F = Fs + F f = −px − qv.

By Newton’s second law of motion, we have

F = ma = m
dv

dt
,

where a represents acceleration and m the mass of the
block. Combining the last two equations, we find that

m
dv

dt
= −px − qv,

or

dv

dt
= − p

m
x − q

m
v.

Let b = p/m and c = q/m for simplicity. Then the
dynamics of this mass-spring system are described by
the system∣∣∣∣∣∣∣∣

dx

dt
= v

dv

dt
= −bx − cv

∣∣∣∣∣∣∣∣ (b > 0, c ≥ 0).

Sketch a phase portrait for this system in each of the
following cases, and describe briefly the significance of
your trajectories in terms of the movement of the block.
Comment on the stability in each case.
a. c = 0 (frictionless). Find the period.
b. c2 < 4b (underdamped).
c. c2 > 4b (overdamped).

37. a. For a differentiable complex-valued function z(t),
find the derivative of

1

z(t)
.

b. Prove the quotient rule for derivatives of complex-
valued functions.

In both parts of this exercise, you may use the prod-
uct rule. See Exercise 35.

38. Let z1(t) and z2(t) be two complex-valued solutions of
the initial value problem

dz

dt
= λz, with z(0) = 1,

where λ is a complex number. Suppose that z2(t) �= 0
for all t .
a. Using the quotient rule (Exercise 37), show that the

derivative of

z1(t)

z2(t)

is zero. Conclude that z1(t) = z2(t) for all t .
b. Show that the initial value problem

dz

dt
= λz, with z(0) = 1,

has a unique complex-valued solution z(t). Hint:
One solution is given in the text.

39. Solve the system

d�x
dt

=
⎡
⎣λ 1 0

0 λ 1
0 0 λ

⎤
⎦ �x .

Compare this with Exercise 9.1.24. When is the zero
state a stable equilibrium solution?
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40. An eccentric mathematician is able to gain autocratic
power in a small Alpine country. In her first decree, she
announces the introduction of a new currency, the Euler,
which is measured in complex units. Banks are ordered
to pay only imaginary interest on deposits.
a. If you invest 1,000 Euler at 5i% interest, com-

pounded annually, how much money do you have
after 1 year, after 2 years, after t years? Describe
the effect of compounding in this case. Sketch a tra-
jectory showing the evolution of the balance in the
complex plane.

b. Do part a in the case when the 5i% interest is com-
pounded continuously.

c. Suppose people’s social standing is determined by
the modulus of the balance of their bank account.
Under these circumstances, would you choose an
account with annual compounding or with contin-
uous compounding of interest?

Source: This problem is based on an idea of Professor
D. Mumford, Brown University.

9.3 Linear Differential Operators and Linear Differential Equations

In this final section, we will study an important class of linear transformations from
C∞ to C∞. Here, C∞ denotes the linear space of complex-valued smooth functions
(i.e., functions from R to C), which we consider as a linear space over C.

Definition 9.3.1 Linear differential operators and linear differential equations

A transformation T from C∞ to C∞ of the form

T ( f ) = f (n) + an−1 f (n−1) + · · · + a1 f ′ + a0 f

is called an nth-order linear differential operator.5,6 Here f (k) denotes the kth
derivative of function f, and the coefficients ak are complex scalars.

If T is an nth-order linear differential operator and g is a smooth function,
then the equation

T ( f ) = g or f (n) + an−1 f (n−1) + · · · + a1 f ′ + a0 f = g

is called an nth-order linear differential equation (DE). The DE is called homo-
geneous if g = 0 and inhomogeneous otherwise.

Verify that a linear differential operator is indeed a linear transformation.
Examples of linear differential operators are

D( f ) = f ′,
T ( f ) = f ′′ − 5 f ′ + 6 f and

L( f ) = f ′′′ − 6 f ′′ + 5 f,

of first, second, and third order, respectively.
Examples of linear DEs are

f ′′ − f ′ − 6 f = 0 (second order, homogeneous)

and

f ′(t) − 5 f (t) = sin t (first order, inhomogeneous).

Note that solving a homogeneous DE T ( f ) = 0 amounts to finding the kernel of T .

5More precisely, this is a linear differential operator with constant coefficients. More advanced texts
consider the case when the ak are functions.
6The term operator is often used for a transformation whose domain and target space consist of
functions.
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We will first think about the relationship between the solutions of the DEs
T ( f ) = 0 and T ( f ) = g.

More generally, consider a linear transformation T from V to W , where V and
W are arbitrary linear spaces. What is the relationship between the kernel of T and
the solutions f of the equation T ( f ) = g, provided that this equation has solutions
at all? Compare this with Exercise 1.3.48.

Here is a simple example:

EXAMPLE 1 Consider the linear transformation T (�x) =
[

1 2 3
2 4 6

]
�x from R3 to R2. Describe

the relationship between the kernel of T and the solutions of the linear system

T (�x) =
[

6
12

]
, both algebraically and geometrically.

Solution
We find that the kernel of T consists of all vectors of the form⎡

⎣−2x2 − 3x3

x2

x3

⎤
⎦ = x2

⎡
⎣−2

1
0

⎤
⎦+ x3

⎡
⎣−3

0
1

⎤
⎦ ,

with basis ⎡
⎣−2

1
0

⎤
⎦ ,

⎡
⎣−3

0
1

⎤
⎦ .

The solution set of the system T (�x) =
[

6
12

]
consists of all vectors of the form

⎡
⎣6 − 2x2 − 3x3

x2

x3

⎤
⎦ = x2

⎡
⎣−2

1
0

⎤
⎦+ x3

⎡
⎣−3

0
1

⎤
⎦

︸ ︷︷ ︸
A vector in the kernel of T

+
⎡
⎣6

0
0

⎤
⎦
︸︷︷︸

A particular solution
of the system

T (�x) =
[

6
12

]

The kernel of T and the solution set of T (�x) =
[

6
12

]
form two parallel planes

in R3, as shown in Figure 1. �

solutions of

T(x�) =

kernel of T

−3

1
0

−2

0
1

6

0
0 6

12

Figure 1
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These observations generalize as follows:

Theorem 9.3.2 Consider a linear transformation T from V to W , where V and W are arbitrary
linear spaces. Suppose we have a basis f1, f2, . . . , fn of the kernel of T . Con-
sider an equation T ( f ) = g with a particular solution f p. Then the solutions f
of the equation T ( f ) = g are of the form

f = c1 f1 + c2 f2 + · · · + cn fn + f p,

where the ci are arbitrary constants.

Note that T ( f ) = T (c1 f1 + · · · + cn fn) + T ( f p) = 0 + g = g, so that f is
indeed a solution. Verify that all solutions are of this form.

What is the significance of Theorem 9.3.2 for linear differential equations? At
the end of this section, we will demonstrate the following fundamental result:

Theorem 9.3.3 The kernel of an nth-order linear differential operator is n-dimensional.

Theorem 9.3.2 now provides us with the following strategy for solving linear
differential equations:

Theorem 9.3.4 Strategy for solving linear differential equations

To solve an nth-order linear DE

T ( f ) = g,

we have to find

a. a basis f1, . . . , fn of ker(T ), and

b. a particular solution f p of the DE T ( f ) = g.

Then the solutions f are of the form

f = c1 f1 + · · · + cn fn + f p,

where the ci are arbitrary constants.

EXAMPLE 2 Find all solutions of the DE

f ′′(t) + f (t) = et .

We are told that f p(t) = 1
2 et is a particular solution (verify this).

Solution
Consider the linear differential operator T ( f ) = f ′′ + f . A basis of the kernel of
T is f1(t) = cos t and f2(t) = sin t . Compare with Example 1 of Section 4.1.

Therefore, the solutions f of the DE f ′′ + f = et are of the form

f (t) = c1 cos t + c2 sin t + 1

2
et ,

where c1 and c2 are arbitrary constants. �
We now present an approach that allows us to find solutions to homogeneous

linear DEs more systematically.
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The Eigenfunction Approach to Solving Linear DEs

Definition 9.3.5 Eigenfunctions

Consider a linear differential operator T from C∞ to C∞. A smooth function f
is called an eigenfunction of T if T ( f ) = λ f for some complex scalar λ; this
scalar λ is called the eigenvalue associated with the eigenfunction f .

EXAMPLE 3 Find all eigenfunctions and eigenvalues of the operator D( f ) = f ′.

Solution
We have to solve the differential equation

D( f ) = λ f or f ′ = λ f.

For a given λ, the solutions are all exponential functions of the form f (t) = Ceλt .
This means that all complex numbers are eigenvalues of D, and the eigenspace
associated with the eigenvalue λ is one-dimensional, spanned by eλt . Compare this
with Definition 9.2.1. �

It follows that the exponential functions are eigenfunctions for all linear differ-
ential operators: If

T ( f ) = f (n) + an−1 f (n−1) + · · · + a1 f ′ + a0 f,

then

T (eλt) = (λn + an−1λ
n−1 + · · · + a1λ + a0)e

λt .

This observation motivates the following definition:

Definition 9.3.6 Characteristic polynomial

Consider the linear differential operator

T ( f ) = f (n) + an−1 f (n−1) + · · · + a1 f ′ + a0 f.

The characteristic polynomial of T is defined as

pT (λ) = λn + an−1λ
n−1 + · · · + a1λ + a0.

Theorem 9.3.7 If T is a linear differential operator, then eλt is an eigenfunction of T , with
associated eigenvalue pT (λ), for all λ:

T (eλt ) = pT (λ)eλt .

In particular, if pT (λ) = 0, then eλt is in the kernel of T .

EXAMPLE 4 Find all exponential functions eλt in the kernel of the linear differential operator

T ( f ) = f ′′ + f ′ − 6 f.

Solution
The characteristic polynomial is pT (λ) = λ2 +λ−6 = (λ+3)(λ−2), with roots 2
and −3. Therefore, the functions e2t and e−3t are in the kernel of T . We can check
this:

T (e2t ) = 4e2t + 2e2t − 6e2t = 0

T (e−3t) = 9e−3t − 3e−3t − 6e−3t = 0. �
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Since most polynomials of degree n have n distinct complex roots, we can find n
distinct exponential functions eλ1t , . . . , eλn t in the kernel of most nth-order linear
differential operators. Note that these functions are linearly independent. (They are
eigenfunctions of D with distinct eigenvalues; the proof of Theorem 7.3.4 applies.)

Now we can use Theorem 9.3.3.

Theorem 9.3.8 The kernel of a linear differential operator

Consider an nth-order linear differential operator T whose characteristic poly-
nomial pT (λ) has n distinct roots λ1, . . . , λn . Then the exponential functions

eλ1t , eλ2t , . . . , eλn t

form a basis of the kernel of T ; that is, they form a basis of the solution space of
the homogeneous DE

T ( f ) = 0.

See Exercise 38 for the case of an nth-order linear differential operator whose
characteristic polynomial has fewer than n distinct roots.

EXAMPLE 5 Find all solutions f of the differential equation

f ′′ + 2 f ′ − 3 f = 0.

Solution
The characteristic polynomial of the operator T ( f ) = f ′′ + 2 f ′ − 3 f is pT (λ) =
λ2 + 2λ − 3 = (λ + 3)(λ − 1), with roots 1 and −3. The exponential functions et

and e−3t form a basis of the solution space; that is, the solutions are of the form

f (t) = c1et + c2e−3t . �
EXAMPLE 6 Find all solutions f of the differential equation

f ′′ − 6 f ′ + 13 f = 0.

Solution
The characteristic polynomial is pT (λ) = λ2 − 6λ + 13, with complex roots 3 ± 2i .
The exponential functions

e(3+2i)t = e3t
(
cos(2t) + i sin(2t)

)
and

e(3−2i)t = e3t
(
cos(2t) − i sin(2t)

)
form a basis of the solution space. We may wish to find a basis of the solution space
consisting of real-valued functions. The following observation is helpful: If f (t) =
g(t) + ih(t) is a solution of the DE T ( f ) = 0, then T ( f ) = T (g) + iT (h) = 0,
so that g and h are solutions as well. We can apply this remark to the real and the
imaginary parts of the solution e(3+2i)t : The functions

e3t cos(2t) and e3t sin(2t)

are a basis of the solution space (they are clearly linearly independent), and the
general solution is

f (t) = c1e3t cos(2t) + c2e3t sin(2t) = e3t
(
c1 cos(2t) + c2 sin(2t)

)
. �
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Theorem 9.3.9 Consider a differential equation

T ( f ) = f ′′ + a f ′ + b f = 0,

where the coefficients a and b are real. Suppose the zeros of pT (λ) are p ± iq,
with q �= 0. Then the solutions of the given DE are

f (t) = ept
(
c1 cos(qt) + c2 sin(qt)

)
,

where c1 and c2 are arbitrary constants.
The special case when a = 0 and b > 0 is important in many applications.

Then p = 0 and q = √
b, so that the solutions of the DE

f ′′ + b f = 0

are

f (t) = c1 cos(
√

bt) + c2 sin(
√

bt).

Note that the function

f (t) = ept
(
c1 cos(qt) + c2 sin(qt)

)
is the product of an exponential and a sinusoidal function. The case when p is
negative comes up frequently in physics, when we model a damped oscillator. See
Figure 2.

t

f(t) = ept  c1 cos(qt) + c2 sin(qt)

Figure 2

What about nonhomogeneous differential equations? Let us discuss an example
that is particularly important in applications.

EXAMPLE 7 Consider the differential equation

f ′′(t) + f ′(t) − 6 f (t) = 8 cos(2t).

a. Let V be the linear space consisting of all functions of the form
c1 cos(2t) + c2 sin(2t). Show that the linear differential operator
T ( f ) = f ′′ + f ′ − 6 f defines an isomorphism from V to V .

b. Part (a) implies that the DE T ( f ) = 8 cos(2t) has a unique particular solu-
tion f p(t) in V . Find this solution.

c. Find all solutions of the DE T ( f ) = 8 cos(2t).
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Solution
a. Consider the matrix A of T with respect to the basis cos(2t), sin(2t). A

straightforward computation shows that

A =
[−10 2

−2 −10

]
,

representing a rotation combined with a scaling. Since A is invertible, T
defines an isomorphism from V to V .

b. If we work in coordinates with respect to the basis cos(2t), sin(2t), the DE

T ( f ) = 8 cos(2t) takes the form A�x =
[

8
0

]
, with the solution

�x = A−1

[
8
0

]
= 1

104

[−10 −2
2 −10

] [
8
0

]
=
[−10/13

2/13

]
.

The particular solution in V is

f p(t) = −10

13
cos(2t) + 2

13
sin(2t).

A more straightforward way to find f p(t) is to set f p(t) = P cos(2t) +
Q sin(2t) and substitute this trial solution into the DE to determine P and
Q. This approach is referred to as the method of undetermined coefficients.

c. In Example 4, we have seen that the functions f1(t) = e2t and f2(t) = e−3t

form a basis of the kernel of T . By Theorem 9.3.4, the solutions of the DE
are of the form

f (t) = c1 f1(t) + c2 f2(t) + f p(t)

= c1e2t + c2e−3t − 10

13
cos(2t) + 2

13
sin(2t). �

Let us summarize the methods developed in Example 7:

Theorem 9.3.10 Consider the linear differential equation

f ′′(t) + a f ′(t) + b f (t) = C cos(ωt),

where a, b, C, and ω are real numbers. Suppose that a �= 0 or b �= ω2. This DE
has a particular solution of the form

f p(t) = P cos(ωt) + Q sin(ωt).

Now use Theorems 9.3.4 and 9.3.8 to find all solutions f of the DE.

What goes wrong when a = 0 and b = ω2?

The Operator Approach to Solving Linear DEs
We will now present an alternative, deeper approach to DEs, which allows us to
solve any linear DE (at least if we can find the zeros of the characteristic poly-
nomial). This approach will lead us to a better understanding of the kernel and
image of a linear differential operator; in particular, it will enable us to prove The-
orem 9.3.3.

Let us first introduce a more succinct notation for linear differential operators.
Recall the notation D f = f ′ for the derivative operator. We let

Dm = D ◦ D ◦ · · · ◦ D︸ ︷︷ ︸
m times

;
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that is,

Dm f = f (m).

Then the operator

T ( f ) = f (n) + an−1 f (n−1) + · · · + a1 f ′ + a0 f

can be written more succinctly as

T = Dn + an−1 Dn−1 + · · · + a1 D + a0,

the characteristic polynomial pT (λ) “evaluated at D.”
For example, the operator

T ( f ) = f ′′ + f ′ − 6 f

can be written as

T = D2 + D − 6.

Treating T formally as a polynomial in D, we can write

T = (D + 3) ◦ (D − 2).

We can verify that this formula gives us a decomposition of the operator T :(
(D+3)◦(D−2)

)
f = (D+3)( f ′−2 f ) = f ′′−2 f ′+3 f ′−6 f = (D2+ D−6) f.

This works because D is linear: We have D( f ′ − 2 f ) = f ′′ − 2 f ′.
The fundamental theorem of algebra (Theorem 7.5.2) now tells us the

following:

Theorem 9.3.11 An nth-order linear differential operator T can be expressed as the composite of
n first-order linear differential operators:

T = Dn + an−1 Dn−1 + · · · + a1 D + a0

= (D − λ1)(D − λ2) . . . (D − λn),

where the λi are complex numbers.

We can therefore hope to understand all linear differential operators by studying
first-order operators.

EXAMPLE 8 Find the kernel of the operator T = D − a, where a is a complex number. Do not
use Theorem 9.3.3.

Solution
We have to solve the homogeneous differential equation T ( f ) = 0 or
f ′(t) − a f (t) = 0 or f ′(t) = a f (t). By definition of an exponential function,
the solutions are the functions of the form f (t) = Ceat , where C is an arbitrary
constant. See Definition 9.2.1. �

Theorem 9.3.12 The kernel of the operator

T = D − a

is one dimensional, spanned by

f (t) = eat .
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Next we think about the nonhomogeneous equation

(D − a) f = g,

or

f ′(t) − a f (t) = g(t),

where g(t) is a smooth function. It will turn out to be useful to multiply both sides
of this equation with the function e−at :

e−at f ′(t) − ae−at f (t) = e−at g(t).

We recognize the left-hand side of this equation as the derivative of the function
e−at f (t), so that we can write(

e−at f (t)
)′ = e−at g(t).

Integrating, we get

e−at f (t) =
∫

e−at g(t) dt

and

f (t) = eat
∫

e−at g(t) dt,

where
∫

e−at g(t) dt denotes the indefinite integral, that is, the family of all
antiderivatives of the functions e−at g(t), involving a parameter C .

Theorem 9.3.13 First-order linear differential equations

Consider the differential equation

f ′(t) − a f (t) = g(t),

where g(t) is a smooth function and a a constant.
Then

f (t) = eat
∫

e−at g(t) dt.

Theorem 9.3.13 shows that the differential equation (D−a) f = g has solutions
f , for any smooth function g; this means that

im(D − a) = C∞.

EXAMPLE 9 Find the solutions f of the DE

f ′ − a f = ceat ,

where c is an arbitrary constant.

Solution
Using Theorem 9.3.13, we find that

f (t) = eat
∫

e−at ceat dt = eat
∫

c dt = eat (ct + C),

where C is another arbitrary constant. �
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Now consider an nth-order DE T ( f ) = g, where

T = Dn + an−1 Dn−1 + · · · + a1 D + a0

= (D − λ1)(D − λ2) · · · (D − λn−1)(D − λn).

We can break this DE down into n first-order DEs:

f
D−λn

fn−1

D−λn−1

fn−2 · · · f2

D−λ2

f1

D−λ1

g.

We can successively solve the first-order DEs:

(D − λ1) f1 = g

(D − λ2) f2 = f1

...

(D − λn−1) fn−1 = fn−2

(D − λn) f = fn−1.

In particular, the DE T ( f ) = g does have solutions f .

Theorem 9.3.14 The image of a linear differential operator

The image of all linear differential operators (from C∞ to C∞) is C∞; that is,
any linear DE T ( f ) = g has solutions f .

EXAMPLE 10 Find all solutions of the DE

T ( f ) = f ′′ − 2 f ′ + f = 0.

Note that pT (λ) = λ2 − 2λ + 1 = (λ − 1)2 has only one root, 1, so that we cannot
use Theorem 9.3.8.

Solution
We break the DE down into two first-order DEs, as discussed earlier:

f
D−1

f1

D−1
0.

The DE (D − 1) f1 = 0 has the general solution f1(t) = c1et , where c1 is an
arbitrary constant.

Then the DE (D − 1) f = f1 = c1et has the general solution f (t) = et (c1t +
c2), where c2 is another arbitrary constant. See Example 9.

The functions et and tet form a basis of the solution space (i.e., of the kernel of
T ). Note that the kernel is two-dimensional, since we pick up an arbitrary constant
each time we solve a first-order DE. �

Now we can explain why the kernel of an nth-order linear differential operator
T is n-dimensional. Roughly speaking, this is true because the general solution of
the DE T ( f ) = 0 contains n arbitrary constants. (We pick up one each time we
solve a first-order linear DE.)

Here is a formal proof of Theorem 9.3.3. We will argue by induction on n.
Theorem 9.3.12 takes care of the case n = 1. By Theorem 9.3.11, we can write an
nth-order linear differential operator T as T = (D − λ) ◦ L , where L is of order
n −1. Arguing by induction, we assume that the kernel of L is (n −1)-dimensional.
Since dim

(
ker(D − λ)

) = 1 and imL = C∞, by Theorem 9.3.14, we can conclude
that dim(ker T ) = dim

(
ker(D − λ)

)+ dim(ker L) = n, by Exercise 4.2.84.

Let’s summarize the main techniques we discussed in this section.
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SUMMARY 9.3.15 Strategy for linear differential equations

Suppose you have to solve an nth-order linear differential equation T ( f ) = g.

Step 1 Find n linearly independent solutions of the DE T ( f ) = 0.
• Write the characteristic polynomial pT (λ) of T [replacing f (k) by λk].
• Find the solutions λ1, λ2, . . . , λn of the equation pT (λ) = 0.
• If λ is a solution of the equation pT (λ) = 0, then eλt is a solution of T ( f ) =

0.
• If λ is a solution of pT (λ) = 0 with multiplicity m, then eλt , teλt , t2eλt , . . . ,

tm−1eλt are solutions of the DE T ( f ) = 0. See Exercise 38.
• If p ± iq are complex solutions of pT (λ) = 0, then ept cos(qt) and

ept sin(qt) are real solutions of the DE T ( f ) = 0.

Step 2 If the DE is inhomogeneous (i.e., if g �= 0), find one particular solution
f p of the DE T ( f ) = g.
• If g is of the form g(t) = A cos(ωt)+B sin(ωt), look for a particular solution

of the same form, f p(t) = P cos(ωt) + Q sin(ωt).
• If g is constant, look for a constant particular solution f p(t) = c.7

• If the DE is of first order, of the form f ′(t) − a f (t) = g(t), use the formula
f (t) = eat

∫
e−at g(t) dt .

• If none of the preceding techniques applies, write T = (D − λ1)

(D − λ2) · · · (D − λn), and solve the corresponding first-order DEs.

Step 3 The solutions of the DE T ( f ) = g are of the form

f (t) = c1 f1(t) + c2 f2(t) + · · · + cn fn(t) + f p(t),

where f1, f2, . . . , fn are the solutions from step 1 and f p is the solution from
step 2.

Take another look at Examples 2, 5, 6, 7, 9, and 10.

EXAMPLE 11 Find all solutions of the DE

f ′′′(t) + f ′′(t) − f ′(t) − f (t) = 10.

Solution
We will follow the approach just outlined.

Step 1
• pT (λ) = λ3 + λ2 − λ − 1.

• We recognize λ = 1 as a root, and we can use long division to factor:

pT (λ) = λ3 + λ2 − λ − 1 = (λ − 1)(λ2 + 2λ + 1) = (λ − 1)(λ + 1)2.

• Since λ = 1 is a solution of the equation pT (λ) = 0, we let f1(t) = et .
• Since λ = −1 is a solution of pT (λ) = 0 with multiplicity 2, we let f2(t)

= e−t and f3(t) = te−t .

7More generally, it is often helpful to look for a particular solution of the same form as g(t), for
example, a polynomial of a certain degree, or an exponential function Cekt . This technique is explored
more fully in a course on differential equations.
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Step 2 Since g(t) = 10 is a constant, we look for a constant solution, f p(t) =
c. Plugging into the DE, we find that c = −10. Thus, we can let f p(t) = −10.

Step 3 The solutions can be written in the form

f (t) = c1et + c2e−t + c3te−t − 10,

where c1, c2, and c3 are arbitrary constants. �

EXERCISES 9.3
GOAL Solve linear differential equations.

Find all real solutions of the differential equations in
Exercises 1 through 22.

1. f ′(t) − 5 f (t) = 0

2.
dx

dt
+ 3x = 7

3. f ′(t) + 2 f (t) = e3t

4.
dx

dt
− 2x = cos(3t)

5. f ′(t) − f (t) = t

6. f ′(t) − 2 f (t) = e2t

7. f ′′(t) + f ′(t) − 12 f (t) = 0

8.
d2x

dt2 + 3
dx

dt
− 10x = 0

9. f ′′(t) − 9 f (t) = 0

10. f ′′(t) + f (t) = 0

11.
d2x

dt2 − 2
dx

dt
+ 2x = 0

12. f ′′(t) − 4 f ′(t) + 13 f (t) = 0

13. f ′′(t) + 2 f ′(t) + f (t) = 0

14. f ′′(t) + 3 f ′(t) = 0

15. f ′′(t) = 0

16. f ′′(t) + 4 f ′(t) + 13 f (t) = cos(t)

17. f ′′(t) + 2 f ′(t) + f (t) = sin(t)

18. f ′′(t) + 3 f ′(t) + 2 f (t) = cos(t)

19.
d2x

dt2 + 2x = cos(t)

20. f ′′′(t) − 3 f ′′(t) + 2 f ′(t) = 0

21. f ′′′(t) + 2 f ′′(t) − f ′(t) − 2 f (t) = 0

22. f ′′′(t) − f ′′(t) − 4 f ′(t) + 4 f (t) = 0

Solve the initial value problems in Exercises 23 thro-
ugh 29.

23. f ′(t) − 5 f (t) = 0, f (0) = 3

24.
dx

dt
+ 3x = 7, x(0) = 0

25. f ′(t) + 2 f (t) = 0, f (1) = 1

26. f ′′(t) − 9 f (t) = 0, f (0) = 0, f ′(0) = 1

27. f ′′(t) + 9 f (t) = 0, f (0) = 0, f
(

π
2

) = 1

28. f ′′(t) + f ′(t) − 12 f (t) = 0, f (0) = f ′(0) = 0

29. f ′′(t) + 4 f (t) = sin(t), f (0) = f ′(0) = 0

30. The temperature of a hot cup of coffee can be modeled
by the DE

T ′(t) = −k
(
T (t) − A

)
.

a. What is the significance of the constants k and A?
b. Solve the DE for T (t), in terms of k, A, and the ini-

tial temperature T0.

31. The speed v(t) of a falling object can sometimes be
modeled by

m
dv

dt
= mg − kv,

or
dv

dt
+ k

m
v = g,

where m is the mass of the body, g the gravitational ac-
celeration, and k a constant related to the air resistance.
Solve this DE when v(0) = 0. Describe the long-term
behavior of v(t). Sketch a graph.

32. Consider the balance B(t) of a bank account, with ini-
tial balance B(0) = B0. We are withdrawing money at
a continuous rate r (in euro/year). The interest rate is k
(%/year), compounded continuously. Set up a differen-
tial equation for B(t), and solve it in terms of B0, r ,
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and k. What will happen in the long run? Describe
all possible scenarios. Sketch a graph for B(t) in each
case.

33. Consider a pendulum of length L . Let x(t) be the an-
gle the pendulum makes with the vertical (measured in
radians). For small angles, the motion is well approxi-
mated by the DE

d2x

dt2 = − g

L
x,

where g is the acceleration due to gravity (g ≈
9.81 m/s2). How long does the pendulum have to be
so that it swings from one extreme position to the other
in exactly one second?

x(t)

L

Note:  x(t) is negative
when the pendulum is
on the left.

The two extreme positions
of the pendulum.

Historical note: The result of this exercise was consid-
ered as a possible definition of the meter. The French
committee reforming the measures in the 1790s finally
adopted another definition: A meter was set to be the
10,000,000th part of the distance from the North Pole to
the Equator, measured along the meridian through Paris.
(In 1983 a new definition of the meter was adopted,
based on the speed of light.)

34. Consider a wooden block in the shape of a cube whose
edges are 10 cm long. The density of the wood is
0.8 g/cm3. The block is submersed in water; a guiding
mechanism guarantees that the top and the bottom sur-
faces of the block are parallel to the surface of the water
at all times. Let x(t) be the depth of the block in the
water at time t . Assume that x is between 0 and 10 at
all times.

x(t)

a. Two forces are acting on the block: its weight and
the buoyancy (the weight of the displaced water).
Recall that the density of water is 1 g/cm3. Find for-
mulas for these two forces.

b. Set up a differential equation for x(t). Find the solu-
tion, assuming that the block is initially completely
submersed [x(0) = 10] and at rest.

c. How does the period of the oscillation change if you
change the dimensions of the block? (Consider a
larger or smaller cube.) What if the wood has a dif-
ferent density or if the initial state is different? What
if you conduct the experiment on the moon?

35. The displacement x(t) of a certain oscillator can be
modeled by the DE

d2x

dt2 + 3
dx

dt
+ 2x = 0.

a. Find all solutions of this DE.
b. Find the solution with initial values x(0) = 1,

x ′(0) = 0. Graph the solution.
c. Find the solution with initial values x(0) = 1,

x ′(0) = −3. Graph the solution.
d. Describe the qualitative difference of the solutions

in parts (b) and (c), in terms of the motion of the
oscillator. How many times will the oscillator go
through the equilibrium state x = 0 in each case?

36. The displacement x(t) of a certain oscillator can be
modeled by the DE

d2x

dt2 + 2
dx

dt
+ 101x = 0.

Find all solutions of this DE, and graph a typical solu-
tion. How many times will the oscillator go through the
equilibrium state x = 0?

37. The displacement x(t) of a certain oscillator can be
modeled by the DE

d2x

dt2 + 6
dx

dt
+ 9x = 0.

Find the solution x(t) for the initial values x(0) = 0,
x ′(0) = 1. Sketch the graph of the solution. How many
times will the oscillator go through the equilibrium state
x = 0 in this case?

38. a. If p(t) is a polynomial and λ a scalar, show that

(D − λ)
(

p(t)eλt) = p′(t)eλt .

b. If p(t) is a polynomial of degree less than m, what
is

(D − λ)m(p(t)eλt)?
c. Find a basis of the kernel of the linear differential

operator (D − λ)m .
d. If λ1, . . . , λr are distinct scalars and m1, . . . , mr are

positive integers, find a basis of the kernel of the lin-
ear differential operator

(D − λ1)
m1 . . . (D − λr )

mr .
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39. Find all solutions of the linear DE

f ′′′(t) + 3 f ′′(t) + 3 f ′(t) + f (t) = 0.

Hint: Use Exercise 38.

40. Find all solutions of the linear DE

d3x

dt3 + d2x

dt2 − dx

dt
− x = 0.

Hint: Use Exercise 38.

41. If T is an nth-order linear differential operator and λ is
an arbitrary scalar, is λ necessarily an eigenvalue of T ?
If so, what is the dimension of the eigenspace associated
with λ?

42. Let C∞ be the space of all real-valued smooth func-
tions.
a. Consider the linear differential operator T = D2

from C∞ to C∞. Find all (real) eigenvalues of T .
For each eigenvalue, find a basis of the associated
eigenspace.

b. Let V be the subspace of C∞ consisting of
all periodic functions f (t) with period one [i.e.,
f (t + 1) = f (t), for all t]. Consider the linear dif-
ferential operator L = D2 from V to V . Find all
(real) eigenvalues and eigenfunctions of L .

43. The displacement of a certain forced oscillator can be
modeled by the DE

d2x

dt2 + 5
dx

dt
+ 6x = cos(t).

a. Find all solutions of this DE.
b. Describe the long-term behavior of this oscillator.

44. The displacement of a certain forced oscillator can be
modeled by the DE

d2x

dt2 + 4
dx

dt
+ 5x = cos(3t).

a. Find all solutions of this DE.
b. Describe the long-term behavior of this oscillator.

45. Use Theorem 9.3.13 to solve the initial value problem

d�x
dt

=
[

1 2
0 1

]
�x, with �x(0) =

[
1

−1

]
.

Hint: Find first x2(t) and then x1(t).

46. Use Theorem 9.3.13 to solve the initial value problem

d�x
dt

=
⎡
⎣2 3 1

0 1 2
0 0 1

⎤
⎦ , with �x(0) =

⎡
⎣ 2

1
−1

⎤
⎦ .

Hint: Find first x3(t), then x2(t), and finally x1(t).

47. Consider the initial value problem

d�x
dt

= A�x, with �x(0) = �x0,

where A is an upper triangular n × n matrix with m dis-
tinct diagonal entries λ1, . . . , λm . See the examples in
Exercises 45 and 46.
a. Show that this problem has a unique solution �x(t),

whose components xi (t) are of the form

xi (t) = p1(t)e
λ1t + · · · + pm(t)eλm t ,

for some polynomials p j (t). Hint: Find first xn(t),
then xn−1(t), and so on.

b. Show that the zero state is a stable equilibrium so-
lution of this system if (and only if) the real part of
all the λi is negative.

48. Consider an n × n matrix A with m distinct eigenvalues
λ1, . . . , λm .
a. Show that the initial value problem

d�x
dt

= A�x, with �x(0) = �x0,

has a unique solution �x(t).
b. Show that the zero state is a stable equilibrium so-

lution of the system

d�x
dt

= A�x
if and only if the real part of all the λi is negative.
Hint: Exercise 47 and Exercise 8.1.45 are helpful.
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A P P E N D I X

A
Vectors

Here we will provide a concise summary of basic facts on vectors. In
Section 1.2, vectors are defined as matrices with only one column:

�v =

⎡
⎢⎢⎢⎣

v1

v2
...

vn

⎤
⎥⎥⎥⎦. The scalars vi are called the components of the vector.1 The set

of all vectors with n components is denoted by Rn .
You may be accustomed to a different notation for vectors. Writing the compo-

nents in a column is the most convenient notation for linear algebra.

Vector Algebra

Definition A.1 Vector addition and scalar multiplication

a. The sum of two vectors �v and �w in Rn is defined “componentwise”:

�v + �w =

⎡
⎢⎢⎢⎣

v1

v2
...

vn

⎤
⎥⎥⎥⎦+

⎡
⎢⎢⎢⎣

w1

w2
...

wn

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

v1 + w1

v2 + w2
...

vn + wn

⎤
⎥⎥⎥⎦ .

b. The product of a scalar k and a vector �v is defined componentwise as well:

k �v = k

⎡
⎢⎢⎢⎣

v1

v2
...

vn

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

kv1

kv2
...

kvn

⎤
⎥⎥⎥⎦ .

1In vector and matrix algebra, the term “scalar” is synonymous with (real) number.

457
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EXAMPLE 1

⎡
⎢⎢⎣

1
2
3
4

⎤
⎥⎥⎦+

⎡
⎢⎢⎣

4
2
0

−1

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

5
4
3
3

⎤
⎥⎥⎦ �

EXAMPLE 2 3

⎡
⎢⎢⎣

1
2
0

−1

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

3
6
0

−3

⎤
⎥⎥⎦ �

The negative or opposite of a vector �v in Rn is defined as

−�v = (−1)�v.

The difference �v − �w of two vectors �v and �w in Rn is defined componentwise.
Alternatively, we can express the difference of two vectors as

�v − �w = �v + (− �w).

The vector in Rn that consists of n zeros is called the zero vector in Rn:

�0 =

⎡
⎢⎢⎢⎣

0
0
...

0

⎤
⎥⎥⎥⎦ .

Theorem A.2 Rules of vector algebra

The following formulas hold for all vectors �u, �v, �w in Rn and for all scalars c
and k:

1. (�u + �v) + �w = �u + (�v + �w): Addition is associative.

2. �v + �w = �w + �v: Addition is commutative.

3. �v + �0 = �v.

4. For each �v in Rn , there exists a unique �x in Rn such that �v + �x = �0;
namely, �x = −�v.

5. k(�v + �w) = k �v + k �w.

6. (c + k)�v = c�v + k �v.

7. c(k �v) = (ck)�v.

8. 1�v = �v.

These rules follow from the corresponding rules for scalars (commutativity,
associativity, distributivity); for example:

�v + �w =

⎡
⎢⎢⎢⎣

v1

v2
...

vn

⎤
⎥⎥⎥⎦+

⎡
⎢⎢⎢⎣

w1

w2
...

wn

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

v1 + w1

v2 + w2
...

vn + wn

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

w1 + v1

w2 + v2
...

wn + vn

⎤
⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎣

w1

w2
...

wn

⎤
⎥⎥⎥⎦+

⎡
⎢⎢⎢⎣

v1

v2
...

vn

⎤
⎥⎥⎥⎦ = �w + �v.
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Geometrical Representation of Vectors

The standard representation of a vector

�x =
[

x1

x2

]
in the Cartesian coordinate plane is as an arrow (a directed line segment) connecting
the origin to the point (x1, x2), as shown in Figure 1.

Occasionally, it is helpful to translate (or shift) the vector in the plane (preserv-
ing its direction and length), so that it will connect some point (a1, a2) to the point
(a1 + x1, a2 + x2). See Figure 2.

(x1, x2)

0

x� =
x1
x2

Figure 1

(x1, x2)

translated x�

(a1, a2) x1

(a1 + x1, a2 +  x2 )

x2

x�

Figure 2

In this text, we consider the standard representation of vectors, unless we ex-
plicitly state that the vector has been translated.

A vector in R2 (in standard representation) is uniquely determined by its end-
point. Conversely, with each point in the plane we can associate its position vector,
which connects the origin to the given point. See Figure 3.

(x1, x2)x1
x2

Figure 3 The components of a vector in standard representation are the coordinates of its
endpoint.

We need not clearly distinguish between a vector and its endpoint; we can iden-
tify them as long as we consistently use the standard representation of vectors.

For example, we will talk about “the vectors on a line L” when we really mean
the vectors whose endpoints are on the line L (in standard representation). Likewise,
we can talk about “the vectors in a region R” in the plane. See Figure 4.

Adding vectors in R2 can be represented by means of a parallelogram, as shown
in Figure 5.
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L

(a) (b)

R

x� x�

Figure 4 (a) �x is a vector on the line L . (b) �x is a vector in the region R.

w�

(v1 + w1, v2 + w2)
translated v�

(w1, w2)

(v1, v2)

translated w�

v�

Figure 5

0

0
v�

v�
3v�

v�1
2

−

Figure 6

If k is a positive scalar, then k �v is obtained by stretching the vector �v by a factor
of k, leaving its direction unchanged. If k is negative, then the direction is reversed.
See Figure 6.

Definition A.3 We say that two vectors �v and �w in Rn are parallel if one of them is a scalar
multiple of the other.

EXAMPLE 3 The vectors ⎡
⎢⎢⎣

1
3
2

−2

⎤
⎥⎥⎦ and

⎡
⎢⎢⎣

3
9
6

−6

⎤
⎥⎥⎦

are parallel, since ⎡
⎢⎢⎣

3
9
6

−6

⎤
⎥⎥⎦ = 3

⎡
⎢⎢⎣

1
3
2

−2

⎤
⎥⎥⎦ .

�

EXAMPLE 4 The vectors ⎡
⎢⎢⎣

1
2
3
4

⎤
⎥⎥⎦ and

⎡
⎢⎢⎣

0
0
0
0

⎤
⎥⎥⎦
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are parallel, since ⎡
⎢⎢⎣

0
0
0
0

⎤
⎥⎥⎦ = 0

⎡
⎢⎢⎣

1
2
3
4

⎤
⎥⎥⎦ .

�

Let us briefly review Cartesian coordinates in space: If we choose an origin 0
and three mutually perpendicular coordinate axes through 0, we can describe any
point in space by a triple of numbers, (x1, x2, x3). See Figure 7.

The standard representation of the vector

�x =
⎡
⎣x1

x2

x3

⎤
⎦

is the arrow connecting the origin to the point (x1, x2, x3), as shown in Figure 8.

x3

x1

x2

(x1, x2, x3)

(0, x2,0)

0

(0, 0, x3)

(x1, 0, 0 )

Figure 7

x3

x1

x2

x� = 

x1
x2
x3

Figure 8

Dot Product, Length, Orthogonality

Definition A.4 Consider two vectors �v and �w with components v1, v2, . . . , vn and w1,
w2, . . . , wn , respectively. Here �v and �w may be column or row vectors, and they
need not be of the same type (these conventions are convenient in linear algebra).
The dot product of �v and �w is defined as

�v · �w = v1w1 + v2w2 + · · · + vnwn.

We can interpret the dot product geometrically: If �v and �w are two nonzero vec-
tors in Rn , then

�v · �w = ‖�v‖ cos θ‖ �w‖,
where θ is the angle enclosed by vectors �v and �w. See Definition 5.1.12.

Note that the dot product of two vectors is a scalar.
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EXAMPLE 5

⎡
⎣1

2
1

⎤
⎦ ·
⎡
⎣ 3

−1
−1

⎤
⎦ = 1 · 3 + 2 · (−1) + 1 · (−1) = 0 �

EXAMPLE 6
[

1 2 3 4
] ·
⎡
⎢⎢⎣

3
1
0

−1

⎤
⎥⎥⎦ = 3 + 2 + 0 − 4 = 1 �

Theorem A.5 Rules for dot products

The following equations hold for all column or row vectors �u, �v, �w with n com-
ponents, and for all scalars k:

1. �v · �w = �w · �v.

2. (�u + �v) · �w = �u · �w + �v · �w.

3. (k �v) · �w = k(�v · �w).

4. �v · �v > 0 for all nonzero �v.

The verification of these rules is straightforward. Let us justify Rule 4: Since �v
is nonzero, at least one of the components vi is nonzero, so that v2

i is positive. Then

�v · �v = v2
1 + v2

2 + · · · + v2
i + · · · + v2

n

is positive as well.
Let us think about the length of a vector. The length of a vector

�x =
[

x1

x2

]

in R2 is
√

x2
1 + x2

2 by the Pythagorean theorem. See Figure 9.

x� =

x1

x2

x1
x2

Figure 9
This length is often denoted by ‖�x‖. Note that we have

�x · �x =
[

x1

x2

]
·
[

x1

x2

]
= x2

1 + x2
2 = ‖�x‖2;

therefore,

‖�x‖ =
√

�x · �x .

Verify that this formula holds for vectors �x in R3 as well.
We can use this formula to define the length of a vector in Rn:

Definition A.6 The length (or norm) ‖�x‖ of a vector �x in Rn is

‖�x‖ =
√

�x · �x =
√

x2
1 + x2

2 + · · · + x2
n .

EXAMPLE 7 Find ‖�x‖ for

�x =

⎡
⎢⎢⎣

7
1
7

−1

⎤
⎥⎥⎦ .

Solution
‖�x‖ = √�x · �x = √

49 + 1 + 49 + 1 = 10 �
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Definition A.7 A vector �u in Rn is called a unit vector if ‖�u‖ = 1; that is, the length of the
vector �u is 1.

Consider two perpendicular vectors �x and �y in R2, as shown in Figure 10.

x�

translated y�x� + y�

0

Figure 10

By the theorem of Pythagoras,

‖�x + �y‖2 = ‖�x‖2 + ‖�y‖2,

or

(�x + �y) · (�x + �y) = �x · �x + �y · �y.

By Theorem A.5,

�x · �x + 2(�x · �y) + �y · �y = �x · �x + �y · �y,

or

�x · �y = 0.

You can read these equations backward to show that �x · �y = 0 if and only if �x and
�y are perpendicular. This reasoning applies to vectors in R3 as well.

We can use this characterization to define perpendicular vectors in Rn:

Definition A.8 Two vectors �v and �w in Rn are called perpendicular (or orthogonal) if �v · �w = 0.

Cross Product

Here we present the cross product for vectors in R3 only; for a generalization to Rn ,
see Exercises 6.2.44 and 6.3.17.

In Chapter 6, we discuss the cross product in the context of linear algebra.

Definition A.9 Cross product in R3

The cross product �v × �w of two vectors �v and �w in R3 is the vector in R3 with
the following three properties:

• �v × �w is orthogonal to both �v and �w.
• ‖�v × �w‖ = ‖�v‖ sin θ‖ �w‖, where θ is the angle between �v and �w, with

0 ≤ θ ≤ π . This means that the magnitude of the vector �v × �w is the area
of the parallelogram spanned by �v and �w, as illustrated in Figure 11a.

• The direction of �v × �w follows the right-hand rule, as illustrated in
Figure 11b.
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v�

w�

(a)

v� × w�

w�

v�

(b)

Figure 11 (a) ‖�v × �w‖ is the shaded area. (b) A right-handed system.

Theorem A.10 Properties of the cross product

The following equations hold for all vectors �u, �v, �w in R3 and for all scalars k.

a. �w × �v = −(�v × �w): The cross product is anticommutative.

b. (k �v) × �w = k(�v × �w) = �v × (k �w).

c. �v × (�u + �w) = �v × �u + �v × �w.

d. �v × �w = �0 if (and only if) �v is parallel to �w.

e. �v × �v = �0.

f. �e1 × �e2 = �e3, �e2 × �e3 = �e1, �e3 × �e1 = �e2
(and �e2 × �e1 = −�e3, �e3 × �e2 = −�e1, �e1 × �e3 = −�e2).

Note that the cross product fails to be associative: �u × (�v × �w) �= (�u × �v) × �w, in
general. For example, (�e1 × �e1) × �e2 = �0, but �e1 × (�e1 × �e2) = −�e2.

Properties b and c stated in Theorem A.10 imply that the function T (�x) = �v×�x
is a linear transformation from R3 to R3, for any fixed vector �v in R3.

The following diagram can serve as a memory aid for property f:

�e3
↙ ↖

�e1 → �e2.

We can use the properties stated in Theorem A.10 to express the cross products in
components.⎡
⎣v1

v2

v3

⎤
⎦×
⎡
⎣w1

w2

w3

⎤
⎦ = (v1�e1 + v2�e2 + v3�e3) × (w1�e1 + w2�e2 + w3�e3)

= (v2w3 − v3w2)�e1 + (v3w1 − v1w3)�e2 + (v1w2 − v2w1)�e3

=
⎡
⎣v2w3 − v3w2

v3w1 − v1w3

v1w2 − v2w1

⎤
⎦
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Theorem A.11 The cross product in components⎡
⎣v1

v2

v3

⎤
⎦×
⎡
⎣w1

w2

w3

⎤
⎦ =
⎡
⎣v2w3 − v3w2

v3w1 − v1w3

v1w2 − v2w1

⎤
⎦

EXAMPLE 8 ⎡
⎣2

3
4

⎤
⎦×
⎡
⎣5

6
7

⎤
⎦ =
⎡
⎣3 · 7 − 4 · 6

4 · 5 − 2 · 7
2 · 6 − 3 · 5

⎤
⎦ =
⎡
⎣−3

6
−3

⎤
⎦

�
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A P P E N D I X

B
Two Techniques of Proof:

Induction and Contraposition

Here is the principle of induction, succinctly stated (you may have to work an ex-
ample or two before fully understanding the wording).

Proof Technique B.1 Principle of mathematical induction

The truth of a sequence of statements P1, P2, . . . , Pn, . . . is established if2

1. P1 is true, and

2. Pn implies Pn+1 for all n = 1, 2, . . . .

Alternatively, we can write property 2 as Pn ⇒ Pn+1, with the arrow “⇒”
signifying implication.

For example, if properties 1 and 2 hold, then P5 is true since

P1 ⇒ P2 ⇒ P3 ⇒ P4 ⇒ P5.

First we are using property 1 and then property 2 for n = 1, 2, 3, and 4.
The following terminology is useful for proofs by induction:

• P1 is referred to as the base case,
• The implication Pn ⇒ Pn+1 is called the induction step,
• When proving the implication Pn ⇒ Pn+1, statement Pn is called the

induction hypothesis.

EXAMPLE 1 Let’s consider the Fibonacci sequence f0, f1, f2, . . . , recursively defined by f0 =0,
f1 = 1, and fn+2 = fn+ fn+1 for all n = 0, 1, 2, . . . . The first few terms are f0 = 0,
f1 = 1, f2 = 1, f3 = 2, f4 = 3, f5 = 5, f6 = 8, f7 = 13, f8 = 21, . . . .

Let’s prove by induction that

f1 + f2 + · · · + fn = fn+2 − 1

for all n = 1, 2, . . . . (Verify this equation for n = 6.)

2“Statement Pn” is written as an equation or a sentence involving an arbitrary positive integer n.

467
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Here, the “Statement Pn” in B.1 is the equation f1 + f2 + · · ·+ fn = fn+2 − 1.

1. Base Case: We need to show that P1 is true, meaning that f1 = f3 −1. This
equation does hold since f1 = 1 and f3 = 2.

2. Induction Step: Then we need to show that Pn implies Pn+1, meaning that
the equation f1 + f2 + · · · + fn = fn+2 − 1 implies f1 + f2 + · · · + fn+1 =
fn+3 − 1; here we are replacing n by n + 1 throughout.

Indeed, f1 + f2 + · · · + fn+1 = ( f1 + f2 + · · · + fn) + fn+1 =︸︷︷︸
step2

fn+2 −

1 + fn+1 =︸︷︷︸
step3

fn+3 − 1. In step 2, we are using the induction hypothesis,

f1 + f2 + · · · + fn = fn+2 − 1, and step 3, fn+3 = fn+1 + fn+2, follows
from the definition of the Fibonacci sequence. �

As a broad strategy for a proof by induction, we suggest you proceed systematically,
as illustrated in the table below. In the right column, we show the implementation
of this strategy in Example 1.

Write down statement Pn f1 + f2 + · · · + fn
?= fn+2 − 1

Let n = 1 and write down the base
case P1

f1
?= f3 − 1

Verify the base case 1 = 2 − 1
√

Write down the induction step, ( f1 + f2 + · · · + fn = fn+2 − 1)

Pn ⇒ Pn+1
?⇒ ( f1 + f2 +· · ·+ fn+1 = fn+3 −1)

Do the induction step: Using the f1 + f2 + · · · + fn+1

induction hypothesis Pn , prove Pn+1 = ( f1 + f2 + · · · + fn) + fn+1

= fn+2 − 1 + fn+1 = fn+3 − 1
√

Let’s move on to a second important technique of proof.

Proof Technique B.2 Contraposition

The contrapositive of the statement “P implies Q” is “Not Q implies not P ,”

where, P and Q are two statements.

An implication “P implies Q” and its contrapositive “Not Q implies not P” are
logically equivalent: They are either both true or both false.

The technique of “proof by contraposition” takes advantage of the logical equiv-
alence of an implication with its contrapositive. Instead of proving an implica-
tion, we can prove the contrapositive if that turns out to be easier.

EXAMPLE 2 On a plumber’s service truck we read the boast “If we can’t fix it, it ain’t broken”.
The contrapositive of this claim is the logically equivalent (but less catchy) phrase
“If it is broken, we can fix it”. (The lesson to be learned from this example: If your
story is too dull, contrapose it!) �
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EXAMPLE 3 Prove the following proposition by contraposition:

If x ≤ y + ε for all positive ε, then x ≤ y.

Here, ε denotes the Greek letter epsilon.
Let’s state and then prove the contrapositive:

If x > y, then x > y + ε for some positive ε.

We assume that x > y, and we draw the two numbers x and y on the number
line. What positive number ε can we add to y so that x > y + ε? Clearly, any
number 0 < ε < x − y will work, for example, ε = x−y

2 . Let’s verify the inequality
x > y + ε algebraically:

y + ε = y + x − y

2
= x + y

2
<︸︷︷︸

step3

x + x

2
= x . In step 3 we use the fact that y < x .

�

y xy+εε

ε
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Answers to Odd-Numbered Exercises
CHAPTER 1
1.1 Answers to more theoretical questions are omitted.

1. (x, y) = (−1, 1) 3. No solutions

5. (x, y) = (0, 0) 7. No solutions

9. (x, y, z) = (t, 1
2 − 2t, t), where t is arbitrary

11. (x, y) = (4, 1) 13. No solutions

15. (x, y, z) = (0, 0, 0)

17. (x, y) = (−5a + 2b, 3a − b)

19. a. If k = 7
b. If k = 7, there are infinitely many solutions.
c. If k = 7, the solutions are (x, y, z) =

(1 − t, 2t − 3, t).
21. 11, 13, and 17
23. a. Products are competing.

b. P1 = 26, P2 = 46
25. a = 400, b = 300
27. a. (x, y) = (t, 2t);

b. (x, y) = (t,−3t);
c. (x, y) = (0, 0)

31. f (t) = 1 − 5t + 3t2 33. f (t) = 2t2 − 3t + 4

35. f (t) = at2 + (1 − 4a)t + 3a, for arbitrary a
37. f (t) = 2e3t − e2t

39. −20 − 2x − 4y + x2 + y2 = 0, the circle centered
at (1, 2) with radius 5

41. If a − 2b + c = 0
43. a. The intercepts of the line x + y = 1 are (1, 0)

and (0, 1). The intercepts of the line x + t
2 y =

t are (t, 0) and (0, 2). The lines intersect if
t �= 2.

b. x = − t

t − 2
, y = 2t − 2

t − 2
45. There are many correct answers. Example:∣∣∣∣x −5z = −4

y −3z = −2

∣∣∣∣
49. Twenty $1 bills, eight $5 bills, and four $10 bills.

1.2 Answers to more theoretical questions are omitted.

1.

⎡
⎣x

y
z

⎤
⎦ =
⎡
⎣10t + 13

−8t − 8
t

⎤
⎦

3.

⎡
⎣x

y
z

⎤
⎦ =
⎡
⎣4 − 2s − 3t

s
t

⎤
⎦

5.

⎡
⎢⎢⎣

x1

x2

x3

x4

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

−t
t

−t
t

⎤
⎥⎥⎦

7.

⎡
⎢⎢⎢⎢⎣

x1

x2

x3

x4

x5

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

−2t
t
0
0
0

⎤
⎥⎥⎥⎥⎦

9.

⎡
⎢⎢⎢⎢⎢⎢⎣

x1

x2

x3

x4

x5

x6

⎤
⎥⎥⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎣

t − s − 2r
r

−t + s + 1
t − 2s + 2

s
t

⎤
⎥⎥⎥⎥⎥⎥⎦

11.

⎡
⎢⎢⎣

x1

x2

x3

x4

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

−2t
3t + 4

t
−2

⎤
⎥⎥⎦

13. No solutions 15.

⎡
⎣x

y
z

⎤
⎦ =
⎡
⎣4

2
1

⎤
⎦

17.

⎡
⎢⎢⎢⎢⎣

x1

x2

x3

x4

x5

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

−8221/4340
8591/8680
4695/434
−459/434

699/434

⎤
⎥⎥⎥⎥⎦

19.

⎡
⎢⎢⎣

0
0
0
0

⎤
⎥⎥⎦ and

⎡
⎢⎢⎣

1
0
0
0

⎤
⎥⎥⎦

21. b = 0, c = 1, d = 0, with a being arbitrary

23. 4 types

27. Yes; perform the operations backwards.

29. No; you cannot make the last column zero by ele-
mentary row operations.

31. a = 2, b = c = d = 1

33. f (t) = 1 − 5t + 4t2 + 3t3 − 2t4

35. f (t) = −5 + 13t − 10t2 + 3t3

37.

⎡
⎢⎢⎣

−t
6t

−9t
4t

⎤
⎥⎥⎦, where t is arbitrary.

39.

⎡
⎣x1

x2

x3

⎤
⎦ =
⎡
⎣500

300
400

⎤
⎦

41. a. Neither the manufacturing nor the energy sector
makes demands on agriculture.

b. x1 ≈ 18.67, x2 ≈ 22.60, x3 ≈ 3.63

471
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43. m1 = 2
3 m2

45. a ≈ 12.17, b ≈ −1.15, c ≈ 0.18. The longest day
is about 13.3 hours.

47. a. If k is neither 1 nor 2
b. If k = 1 c. If k = 2

49. a. x1 = 3x3 − 2x4, x2 = 2x3 − x4, for arbitrary x3
and x4

b. Yes, x1 = 1, x2 = 5, x3 = 9, x4 = 13.

51. C = 25

53. xy = 0, the union of the two coordinate axes

55. a(xy − y) + b(y2 − y) = 0, where a �= 0 or b �= 0

57. a(x2 − x) + b(y2 − y) = 0, where a �= 0 or b �= 0

59. 25 − 10x − 10y + x2 + y2 = 0, the circle of radius
5 centered at (5, 5)

61. No solutions

63. Statistics: $86; Set Theory: $92; Psychology: $55

65. Beginning: 120 liberal, 140 conservative.
End: 140 liberal, 120 conservative.

67. Cow: 34/21 liang; sheep: 20/21 liang

69. Swallow: 24/19 liang; sparrow: 32/19 liang

71. A: 265; B: 191; C: 148; D: 129; E: 76

73. Gaussian elimination shows that

Pigeons = −250 + 5
9 (Swans) + 20(Peacocks) and

Sarasas = 350 − 14
9 (Swans) − 21(Peacocks).

One solution (the one given by Mahavira) is 15 pi-
geons, 28 sarasabirds, 45 swans, and 12 peacocks
(spending 9, 20, 35, and 36 panas, respectively).

75. 53 sheep, 42 goats, and 5 hogs

77. Full Half Empty

1st Son p 10 − 2p p
2nd Son q 10 − 2q q
3rd Son 10 − p − q 2p + 2q − 10 10 − p − q

Here, p and q are integers between 0 and 5 such that
p + q ≥ 5.

1.3 Answers to more theoretical questions are omitted.
1. a. No solutions b. One solution

c. Infinitely many solutions

3. Rank is 1.

5. a. x

[
1
3

]
+ y

[
2
1

]
=
[

7
11

]
b. x = 3, y = 2

7. One solution

9.

⎡
⎣1 2 3

4 5 6
7 8 9

⎤
⎦
⎡
⎣ x

y
z

⎤
⎦ =
⎡
⎣1

4
9

⎤
⎦

11. Undefined

13.

[
29
65

]
15. 70

17. Undefined 19.

⎡
⎣0

0
0

⎤
⎦

21.

⎡
⎢⎢⎣

158
70
81

123

⎤
⎥⎥⎦ 23.

⎡
⎢⎢⎣

1 0 0
0 1 0
0 0 1
0 0 0

⎤
⎥⎥⎦

25. The system A�x = �c has infinitely many solutions or
none.

27.

⎡
⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦ 29.

⎡
⎢⎣

2
5 0 0

0 0 0

0 0 − 1
9

⎤
⎥⎦

31.

⎡
⎣1 2 1

0 3 1
0 0 − 1

9

⎤
⎦, for example

33. A�x = �x
35. A �ei is the i th column of A.

37. �x =
⎡
⎣2 − 2t

t
1

⎤
⎦, where t is arbitrary

39.

⎡
⎣1 0 0 ∗

0 1 0 ∗
0 0 1 ∗

⎤
⎦

41. One solution 43. No solutions

47. a. �x = 0 is a solution.
b. By part (a) and Theorem 1.3.3
c. A(�x1 + �x2) = A�x1 + A�x2 = �0 + �0 = �0
d. A(k �x) = k(A�x) = k�0 = �0

49. a. Infinitely many solutions or none
b. One solution or none
c. No solutions
d. Infinitely many solutions

51. If m = r and s = p

53. Yes

55. Yes;

⎡
⎣7

8
9

⎤
⎦ = −1

⎡
⎣1

2
3

⎤
⎦+ 2

⎡
⎣4

5
6

⎤
⎦

57.

[
7

11

]
=
[

3
9

]
+
[

4
2

]
59. c = 9, d = 11

61. For c = 2 and for c = 3

63. Line through the endpoint of �v in the direction of �w
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65. Parallelogram with its vertices at the origin and at
the endpoints of vectors �v, �w, and �v + �w

67. Triangle with its vertices at the origin and at the end-
points of vectors �v and �w

69.
(

b+c−a
2 , c−b+a

2 , b−c+a
2

)
CHAPTER 2
2.1 Answers to more theoretical questions are omitted.

1. Not linear 3. Not linear

5. A =
[

7 6 −13
11 9 17

]
7. T is linear; A = [ �v1 �v2 · · · �vm

]
9. Not invertible

11. The inverse is

[
3 −2/3

−1 1/3

]
.

15. A is invertible if a �= 0 or b �= 0. In this case,

A−1 = 1

a2 + b2

[
a b

−b a

]
.

17. Reflection about the origin; this transformation is its
own inverse.

19. Orthogonal projection onto the �e1-axis; not inver-
tible

21. Rotation through an angle of 90◦ in the clockwise
direction; invertible

23. Clockwise rotation through an angle of 90◦, fol-
lowed by a scaling by a factor of 2; invertible

25. Scaling by a factor of 2

27. Reflection about the �e1-axis

29. Reflection about the origin

31. Reflection about the �e2-axis, represented by the

matrix

[−1 0
0 1

]

33.

√
2

2

[
1 −1
1 1

]
35.

[
1 2
2 1

]
37. T (�x) = T (�v) + k

(
T ( �w) − T (�v)

)
is on the line

segment.

41. y = c1x1 + c2x2; the graph is a plane through the
origin in R3.

43. a. T is linear, represented by the matrix[
2 3 4

]
45. Yes; use Theorem 2.1.3.

47. Write �w = c1 �v1 + c2 �v2; then
T ( �w) = c1T (�v1) + c2T (�v2).

51. A =

⎡
⎢⎣

0 0 1/3 0
1/2 0 1/3 1/2
1/2 0 0 1/2
0 1 1/3 0

⎤
⎥⎦, �xequ = 1

13

⎡
⎢⎣

1
4
3
5

⎤
⎥⎦,

and Page 4 has the highest (naı̈ve) PageRank.

53. B =

⎡
⎢⎣

0.05 0.45 0.05 0.05
0.45 0.05 0.05 0.85
0.45 0.45 0.05 0.05
0.05 0.05 0.85 0.05

⎤
⎥⎦, �xequ = 1

28

⎡
⎢⎣

5
9
7
7

⎤
⎥⎦

55. B =

⎡
⎢⎢⎣

0.05 0.05 0.316̄ 0.05
0.45 0.05 0.316̄ 0.45
0.45 0.05 0.05 0.45
0.05 0.85 0.316̄ 0.05

⎤
⎥⎥⎦, �xequ = 1

2860

⎡
⎢⎣

323
855
675

1007

⎤
⎥⎦ ≈

⎡
⎢⎣

0.113
0.299
0.236
0.352

⎤
⎥⎦, and Page 4 has the highest

PageRank.

57. a. 37 SFr2 coins, and 14 SFr5 coins

b. A =
[

2 5
1 1

]

c. Yes. A−1 =
⎡
⎣− 1

3
5
3

1
3 − 2

3

⎤
⎦

59. a.

[
5
9 − 160

9
0 1

]

b. Yes.

[
9
5 32

0 1

]
, F = 9

5 C + 32

61. A =

⎡
⎢⎢⎣

1 4/5 1/8 5/4
5/4 1 5/32 25/16
8 32/5 1 10

4/5 16/25 1/10 1

⎤
⎥⎥⎦

63. B =
⎡
⎣ 1 −4

0 1
0 2

⎤
⎦

2.2 Answers to more theoretical questions are omitted.

1. The image consists of the vectors

[
3
1

]
and

[
2
4

]
.

3. The parallelogram in R3 defined by the vectors
T (�e1) and T (�e2)

5. About 2.5 radians 7. 1
9

⎡
⎣11

1
11

⎤
⎦

9. A vertical shear

11. 1
25

[
7 24

24 −7

]
13.

[
2u2

1 − 1 2u1u2

2u1u2 2u2
2 − 1

]
15. aii = 2u2

i − 1, and ai j = 2ui u j when i �= j

17. If b �= 0, then let �v =
[

b
1 − a

]
and �w =

[ −b
1 + a

]
,

for example.

19.

⎡
⎣1 0 0

0 1 0
0 0 0

⎤
⎦ 21.

⎡
⎣0 −1 0

1 0 0
0 0 1

⎤
⎦
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23.

⎡
⎣1 0 0

0 0 1
0 1 0

⎤
⎦

25.

[
1 −k
0 1

]
; you shear back.

27. A is a reflection; B is a scaling; C is a projection; D
is a rotation; E is a shear.

31. A =
⎡
⎣−2 0 0

1 0 0
0 0 0

⎤
⎦

33. Use a parallelogram. 35. Yes

37. a. 1 b. 0

c. −2 ≤ tr A ≤ 2 d. 2

39. a. Projection with scaling
b. Shear with scaling
c. Reflection with scaling

41. refQ �x = −refP �x
43.

[
cos θ sin θ

− sin θ cos θ

]
, a clockwise rotation through the

angle θ

45. A−1 = A. The inverse of a reflection is the reflec-
tion itself.

47. Write T (�x) =
[

a b
c d

]
�x . Express f (t) in terms of

a, b, c, d .

49. c = 0 (or c = π
2 ), �v1 =

[
1
0

]
, and �v2 =

[
0
1

]

51. c = π
4 , �v1 = 1√

2

[
1
1

]
, and �v2 = 1√

2

[−1
1

]
53. The image is an ellipse with semimajor axes ±5�e1

and semiminor axes ±2�e2.
55. The curve C is the image of the unit circle under the

transformation with matrix
[ �w1 �w2

]
.

2.3 Answers to more theoretical questions are omitted.

1.

[
4 6
3 4

]
3. Undefined

5.

⎡
⎣a b

c d
0 0

⎤
⎦ 7.

⎡
⎣−1 1 0

5 3 4
−6 −2 −4

⎤
⎦

9.

[
0 0
0 0

]
11. [10] 13. [h]

15.

⎡
⎢⎣ 1 0

2 0

19 16

⎤
⎥⎦

17. All matrices of the form

[
a 0
0 b

]

19. All matrices of the form

[
a b

−b a

]

21. All matrices of the form

[
a b
b a − b

]

23. All matrices of the form

[
a b
2
3 b 5

3 b + a

]

25. All matrices of the form

⎡
⎣a 0 b

0 c 0
d 0 e

⎤
⎦

29. a. The matrices Dα Dβ and Dβ Dα both represent
the counterclockwise rotation through the angle
α + β.

b. Dα Dβ = Dβ Dα

=
[

cos(α + β) − sin(α + β)

sin(α + β) cos(α + β)

]
31. (i th row of AB) = (i th row of A)B
33. An = I2 for even n and An = −I2 for odd n. A

represents the rotation through π .
35. An = I2 for even n and An = A for odd n. A repre-

sents the reflection about the line spanned by

[
1
1

]
.

37. An =
⎡
⎣ 1 0

−n 1

⎤
⎦. A represents a vertical shear.

39. An represents the rotation through nπ/4 in the
clockwise direction, so that A8 = I2. Now A1001 =
(A8)125 A = A.

41. An = I2 for even n and An = A for odd n. A repre-
sents the reflection about a line.

43. A = −I2, for example, or any matrix representing a
reflection about a line

45. The matrix representing the rotation through 2π/3,

for example, A =
[

cos(2π/3) − sin(2π/3)

sin(2π/3) cos(2π/3)

]
=

1

2

[−1 −√
3√

3 −1

]
47. Any projection or reflection matrix with nonzero

entries will do, for example, A =
[

0.6 0.8
0.8 −0.6

]
.

49. AF =
[

1 0
0 −1

]
, F A =

[−1 0
0 1

]
. We compose a

rotation with a reflection to obtain a reflection.

51. F J = J F =
[−1 −1

1 −1

]
. Note that F represents

the rotation through π/2 while J represents the
rotation through π/4 combined with a scaling by√

2. The products F J and J F both represent the
rotation through 3π/4 combined with a scaling
by

√
2.
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53. C D =
[

0 −1
1 0

]
and DC =

[
0 1

−1 0

]
. We com-

pose two reflections to obtain a rotation.

55. X =
[−2s −2t

s t

]
, where s and t are arbitrary

constants

57. X =
[−5 2

3 − 1

]
59. No such matrix X exists.

61. X =
⎡
⎣1 + s −2 + t

−2s 1 − 2t
s t

⎤
⎦, where s and t are arbitrary

constants
63. No such matrix X exists.

65. X =
[

0 t
0 0

]
, where t is an arbitrary constant

67a. [1 1 1]A = [1 1 1]
69a. Of the surfers who are on Page 1 initially, 25% will

be on Page 3 after following two consecutive links.
69b. The i j th entry of A2 is 0 if there is no path of

length 2 from vertex j to vertex i in the graph of
the mini-Web, meaning that a surfer cannot get from
Page j to Page i by following two consecutive links.

71. A straightforward computation shows that the only
nonzero entry of A4 is the first component of the
third column. Thus there is no path of length 4 from
Page 3 to Page 1 in the graph of the mini-Web, while
there is a path of length 4 linking any other two
pages. We cannot get from Page 3 to Page 1 by fol-
lowing four consecutive links.

73. lim
m→∞(Am �x) =

(
lim

m→∞ Am
)

�x =⎡
⎣ | |

�xequ · · · �xequ
| |

⎤
⎦ �x = (x1 + · · · + xn)︸ ︷︷ ︸

components of �x
�xequ =

�xequ

75. The i j th entry of Am+1 = Am A is the dot product
of the i th row �w or Am with the j th column �v of A.
Since all components of �w and some components of
�v are positive (with all components of �v being non-
negative), this dot product is positive, as claimed.

77. We find A10 ≈
⎡
⎣ 0.5003 0.4985 0.5000

0.0996 0.1026 0.0999
0.4002 0.3989 0.4001

⎤
⎦. This

shows that A is regular and it suggests then �xequ =⎡
⎣ 0.5

0.1
0.4

⎤
⎦. To be sure, we verify that A

⎡
⎣ 0.5

0.1
0.4

⎤
⎦ =

⎡
⎣ 0.5

0.1
0.4

⎤
⎦.

79. An extreme example is the identity matrix In . In this
case, In �x = �x for all distribution vectors.

81. Am �v = 5m �v
83. By Definition 2.3.10, there exists a positive integer

m such that Am is a positive transition matrix. Note
that Am �x = �x . Thus, the i th component of �x is the
dot product of the i th row �w of Am with �x . Since
all components of �w and some components of �x are
positive (with all components of �x being nonnega-
tive), this dot product is positive, as claimed.

85. There is one and only one such X .

2.4 Answers to more theoretical questions are omitted.

1.

[
8 −3

−5 2

]
3.

⎡
⎣− 1

2 1
1
2 0

⎤
⎦

5. Not invertible 7. Not invertible

9. Not invertible 11.

⎡
⎣1 0 −1

0 1 0
0 0 1

⎤
⎦

13.

⎡
⎢⎢⎣

1 0 0 0
−2 1 0 0

1 −2 1 0
0 1 −2 1

⎤
⎥⎥⎦

15.

⎡
⎢⎢⎣

−6 9 −5 1
9 −1 −5 2

−5 −5 9 −3
1 2 −3 1

⎤
⎥⎥⎦

17. Not invertible

19. x1 = 3y1 − 2.5y2 + 0.5y3
x2 = −3y1 + 4y2 − y3
x3 = y1 − 1.5y2 + 0.5y3

21. Not invertible 23. Invertible

25. Invertible 27. Not invertible

29. For all k except k = 1 and k = 2

31. It’s never invertible.

33. If a2 + b2 = 1

35. a. Invertible if a, d , f are all nonzero
b. Invertible if all diagonal entries are nonzero
c. Yes; use Theorem 2.4.5.
d. Invertible if all diagonal entries are nonzero

37. (cA)−1 = 1

c
A−1

39. M is invertible; if mi j = k (where i �= j), then the
i j th entry of M−1 is −k; all other entries are the
same.

41. The transformations in parts a, c, and d are invert-
ible, while the projection in part b is not.

43. Yes; �x = B−1(A−1�y)
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45. a. 33 = 27 b. n3

c. 123

33 = 64 (seconds)

47. f (x) = x2 is not invertible, but the equation
f (x) = 0 has the unique solution x = 0.

51. a. Since rank A < n, all the entries in the last row
of E will be zero. We can let �c = �en ; the sys-
tem E �x = �en will be inconsistent. Reversing
the row reduction from A to E , we can trans-
form the system E �x = �en into an inconsistent
system A�x = �b.

b. We have rank A ≤ m < n. Now use part a.

53. a. λ1 = 2, λ2 = 6

b. We chose λ = 2. A−λI2 =
[

1 1
3 3

]
, �x =
[−1

1

]
.

c. Check that

[
3 1
3 5

]
�x = 2�x .

55. det A =
∥∥∥∥
[

2
0

]∥∥∥∥ sin(π/2)

∥∥∥∥
[

0
2

]∥∥∥∥ = 4, and A−1 =[
1/2 0
0 1/2

]
, a scaling by 1/2

57. det A =
∥∥∥∥
[

cos α

sin α

]∥∥∥∥ sin(−π/2)

∥∥∥∥
[

sin α

− cos α

]∥∥∥∥ =

−1, and A−1 = A, a reflection

59. det A =
∥∥∥∥
[

0.6
0.8

]∥∥∥∥ sin(π/2)

∥∥∥∥
[−0.8

0.6

]∥∥∥∥ = 1, and

A−1 =
[

0.6 0.8
−0.8 0.6

]
, a rotation

61. det A =
∥∥∥∥
[

1
−1

]∥∥∥∥ sin(π/2)

∥∥∥∥
[

1
1

]∥∥∥∥ = 2, and A−1 =
1

2

[
1 −1
1 1

]
, a rotation through π/4 combined with

a scaling by
√

2/2

63. det A =
∥∥∥∥
[−3

4

]∥∥∥∥ sin(−π/2)

∥∥∥∥
[

4
3

]∥∥∥∥ = −25, and

A−1 = 1

25

[−3 4
4 3

]
, a reflection combined with a

scaling by 1/5

65. det A =
∥∥∥∥
[

1
1

]∥∥∥∥ sin(π/4)

∥∥∥∥
[

0
1

]∥∥∥∥ = 1, and A−1 =[
1 0

−1 1

]
, a vertical shear

67. False 69. False 71. True

73. True 75. True

77. A = BS−1 79. A = 1

5

[
9 3

−2 16

]

81.

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

matrix of T :

⎡
⎣ 0 0 1

−1 0 0
0 −1 0

⎤
⎦

matrix of L:

⎡
⎣0 1 0

1 0 0
0 0 1

⎤
⎦

83. Yes; yes; each elementary row operation can be “un-
done” by an elementary row operation.

85. a. Use Exercise 84; let S = E1 E2 · · · E p .

b. S =
[

1 0
−4 1

] [ 1
2 0
0 1

]
=
[ 1

2 0
−2 1

]

87.

[
k 0
0 1

]
,

[
1 0
0 k

]
,

[
1 c
0 1

]
,

[
1 0
c 1

]
,

[
0 1
1 0

]
,

where k is nonzero and c is arbitrary. Cases 3 and 4
represent shears, and case 5 is a reflection.

89. Yes; use Theorem 2.3.4.

91. a. �y =

⎡
⎢⎢⎣

−3
5
2
0

⎤
⎥⎥⎦ b. �x =

⎡
⎢⎢⎣

1
−1

2
0

⎤
⎥⎥⎦

93. a. Write A =
[

A(m) A2

A3 A4

]
, L =

[
L(m) 0

L3 L4

]
,

U =
[

U (m) U2

0 U4

]
. Use Theorem 2.3.9.

c. Solve the equation

A =
[

A(n−1) �v
�w k

]
=
[

L ′ 0
�x t

] [
U ′ �y

0 1

]
for �x , �y, and t .

95. A is invertible if both A11 and A22 are invertible. In
this case,

A−1 =
[

A−1
11 0

0 A−1
22

]
.

97. rank A = rank(A11) + rank(A23)

99. Only A = In

101. (i j th entry of AB) =∑n
k=1 aikbk j ≤

s
∑n

k=1 bk j ≤ sr

107. g
(

f (x)
) = x , for all x

f
(
g(x)
) =
{

x if x is even
x + 1 if x is odd

The functions f and g are not invertible.

CHAPTER 3
3.1 Answers to more theoretical questions are omitted.

1. ker A = {�0} 3. �e1, �e2

5.

⎡
⎣ 1

−2
1

⎤
⎦ 7. ker A = {�0}
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9. ker A = {�0} 11.

⎡
⎢⎢⎣

−2
3
1
0

⎤
⎥⎥⎦

13.

⎡
⎢⎢⎢⎢⎢⎢⎣

−2
1
0
0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎦,
⎡
⎢⎢⎢⎢⎢⎢⎣

−3
0

−2
−1

1
0

⎤
⎥⎥⎥⎥⎥⎥⎦,
⎡
⎢⎢⎢⎢⎢⎢⎣

0
0
0
0
0
1

⎤
⎥⎥⎥⎥⎥⎥⎦

15.

[
1
1

]
,

[
1
2

]
17. All of R2

19. The line spanned by

[
1

−2

]
21. All of R3

23. kernel is {�0}, image is all of R2.

25. Same as Exercise 23

27. f (x) = x3 − x

29. f

[
φ

θ

]
=
⎡
⎣ sin φ cos θ

sin φ sin θ

cos φ

⎤
⎦

(compare with spherical coordinates)

31. A =
⎡
⎣−2 −3

0 1
1 0

⎤
⎦

33. T

⎡
⎣x

y
z

⎤
⎦ = x + 2y + 3z

35. ker T is the plane with normal vector �v;
im T = R.

37. im A = span(�e1, �e2); ker A = span(�e1);
im(A2) = span(�e1); ker(A2) = span(�e1, �e2);
A3 = 0 so ker(A3) = R3 and im(A3) = {�0}

39. a. ker B is contained in ker(AB), but they need not
be equal.

b. im(AB) is contained in im A, but they need not
be equal.

41. a. im A is the line spanned by

[
3
4

]
, and ker A is the

perpendicular line, spanned by

[−4
3

]
.

b. A2 = A; if �v is in im A, then A�v = �v.
c. Orthogonal projection onto the line spanned by[

3
4

]
43. Suppose A is an n × m matrix of rank r . Let B be

the matrix you get when you omit the first r rows
and the first m columns of rref

[
A In
]
. (What can

you do when r = n?)

45. There are m − r nonleading variables, which can be
chosen freely. The general vector in the kernel can
be written as a linear combination of m − r vectors,
with the nonleading variables as coefficients.

47. im T = L2 and ker T = L1

51. ker(AB) = {�0}

53. a.

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
1
1
1
0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
1
1
0
1
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
0
1
0
0
1
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
1
0
0
0
0
1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

b. ker H = span(�v1, �v2, �v3, �v4), by part a,
and im M = span(�v1, �v2, �v3, �v4), by Theo-
rem 3.1.3. Thus ker H = im(M). H(M �x) = �0,
since M �x is in im M = ker H .

3.2 Answers to more theoretical questions are omitted.

1. Not a subspace 3. W is a subspace.

7. Yes 9. Dependent

11. Independent 13. Dependent

15. Dependent 17. Independent

19.

⎡
⎢⎢⎣

2
0
0
0

⎤
⎥⎥⎦ and

⎡
⎢⎢⎣

3
4
5
0

⎤
⎥⎥⎦ are redundant.

21. �v2 = �v1, or, �v1 − �v2 = �0, so that

[
1

−1

]
is in the

kernel.

23. �v1 = �0, so that

[
1
0

]
is in the kernel.

25. �v3 = �v1, or, �v1 − �v3 = �0, so that

⎡
⎣ 1

0
−1

⎤
⎦ is in the

kernel.

27.

⎡
⎣1

1
1

⎤
⎦,
⎡
⎣1

2
3

⎤
⎦ 29.

[
1
4

]
,

[
2
5

]

31.

⎡
⎢⎢⎣

1
2
3
5

⎤
⎥⎥⎦,
⎡
⎢⎢⎣

5
6
7
8

⎤
⎥⎥⎦ 33.

⎡
⎢⎢⎣

1
0
0
0

⎤
⎥⎥⎦,
⎡
⎢⎢⎣

0
1
0
0

⎤
⎥⎥⎦,
⎡
⎢⎢⎣

0
0
1
0

⎤
⎥⎥⎦

35. Suppose there is a nontrivial relation c1 �v1 + · · · +
ci �vi + · · · + cm �vm = �0, with ci �= 0. We can solve
this equation for �vi and thus express �vi as a linear
combination of the other vectors in the list.

Conversely, if �vi is a linear combination of the
other vectors, �vi = . . . , then we can subtract �vi
from both sides of the equation to obtain a nontri-
vial relation (the coefficient of �vi will be −1).



478 ANSWERS TO ODD-NUMBERED EXERCISES

37. The vectors T (�v1), . . . , T (�vm) are not necessarily
independent.

39. The vectors �v1, . . . , �vm , �v are linearly independent.

41. The columns of B are linearly independent, while
the columns of A are dependent.

43. The vectors are linearly independent.

45. Yes 47.

⎡
⎢⎢⎣

1 0 0
0 1 0
0 0 1
0 0 0

⎤
⎥⎥⎦

49. L = im

⎡
⎣1

1
1

⎤
⎦ = ker

[
1 0 −1
0 1 −1

]

51. a. Consider a relation c1 �v1 +· · ·+ cp �v p +d1 �w1 +
· · · + dq �wq = �0. Then c1 �v1 + · · · + cp �v p =
−d1 �w1 − · · · − dq �wq is �0, because this vector is
both in V and in W . The claim follows.

b. From part a we know that the vectors
�v1, . . . , �v p, �w1, . . . , �wq are linearly indepen-
dent. Consider a vector �x in V + W . By the
definition of V + W , we can write �x = �v + �w
for a �v in V and a �w in W . The �v is a linear
combination of the �vi , and �w is a linear com-
bination of the �w j . This shows that the vectors
�v1, . . . , �v p, �w1, . . . , �wq span V + W .

55.

⎡
⎢⎢⎢⎢⎣

−2
1
0
0
0

⎤
⎥⎥⎥⎥⎦,
⎡
⎢⎢⎢⎢⎣

−3
0
1
0
0

⎤
⎥⎥⎥⎥⎦,
⎡
⎢⎢⎢⎢⎣

−4
0
0
1
0

⎤
⎥⎥⎥⎥⎦,
⎡
⎢⎢⎢⎢⎣

−5
0
0
0
1

⎤
⎥⎥⎥⎥⎦

57. For j = 1, 3, 6, and 7, corresponding to the columns
that do not contain leading 1’s

3.3 Answers to more theoretical questions are omitted.

1. �v2 = 3�v1; basis of image:

[
1
2

]
;

basis of kernel:

[−3
1

]

3. No redundant vectors; basis of image:

[
1
3

]
,

[
2
4

]
;

basis of kernel: ∅

5. �v3 = 3�v1; basis of image:

[
1
2

]
,

[−2
4

]
;

basis of kernel:

⎡
⎣−3

0
1

⎤
⎦

7. �v2 = 2�v1; basis of image:

[
1
1

]
,

[
3
4

]
;

basis of kernel:

⎡
⎣−2

1
0

⎤
⎦

9. �v2 = 2�v1; basis of image:

⎡
⎣1

1
1

⎤
⎦,
⎡
⎣1

2
3

⎤
⎦;

basis of kernel:

⎡
⎣−2

1
0

⎤
⎦

11. �v3 = �v1; basis of image:

⎡
⎣1

0
0

⎤
⎦,
⎡
⎣0

1
1

⎤
⎦;

basis of kernel:

⎡
⎣−1

0
1

⎤
⎦

13. �v2 = 2�v1, �v3 = 3�v1; basis of image:
[
1
]
;

basis of kernel:

⎡
⎣−2

1
0

⎤
⎦,
⎡
⎣−3

0
1

⎤
⎦

15. �v3 = 2�v1 + 2�v2, �v4 = �0;

basis of image:

⎡
⎢⎢⎣

1
0
1
0

⎤
⎥⎥⎦,
⎡
⎢⎢⎣

0
1
0
1

⎤
⎥⎥⎦;

basis of kernel:

⎡
⎢⎢⎣

−2
−2

1
0

⎤
⎥⎥⎦,
⎡
⎢⎢⎣

0
0
0
1

⎤
⎥⎥⎦

17. �v1 = �0, �v3 = 2�v2, �v5 = 3�v2 + 4�v4;

basis of image:

[
1
0

]
,

[
0
1

]
;

basis of kernel:

⎡
⎢⎢⎢⎢⎣

1
0
0
0
0

⎤
⎥⎥⎥⎥⎦,
⎡
⎢⎢⎢⎢⎣

0
−2

1
0
0

⎤
⎥⎥⎥⎥⎦,
⎡
⎢⎢⎢⎢⎣

0
−3

0
−4

1

⎤
⎥⎥⎥⎥⎦

19. �v3 = 5�v1 + 4�v2, �v4 = 3�v1 + 2�v2;

basis of image:

⎡
⎢⎢⎣

1
0
0
0

⎤
⎥⎥⎦,
⎡
⎢⎢⎣

0
1
0
0

⎤
⎥⎥⎦,
⎡
⎢⎢⎣

0
0
1
0

⎤
⎥⎥⎦;

basis of kernel:

⎡
⎢⎢⎢⎢⎣

−5
−4

1
0
0

⎤
⎥⎥⎥⎥⎦,
⎡
⎢⎢⎢⎢⎣

−3
−2

0
1
0

⎤
⎥⎥⎥⎥⎦

21. rref A =
⎡
⎣1 0 −3

0 1 4
0 0 0

⎤
⎦;
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basis of image:

⎡
⎣1

4
7

⎤
⎦,
⎡
⎣3

5
6

⎤
⎦;

basis of kernel:

⎡
⎣ 3

−4
1

⎤
⎦

23. rref A =

⎡
⎢⎢⎣

1 0 2 4
0 1 −3 −1
0 0 0 0
0 0 0 0

⎤
⎥⎥⎦;

basis of image:

⎡
⎢⎢⎣

1
0
3
0

⎤
⎥⎥⎦,
⎡
⎢⎢⎣

0
1
4

−1

⎤
⎥⎥⎦;

basis of kernel:

⎡
⎢⎢⎣

−2
3
1
0

⎤
⎥⎥⎦,
⎡
⎢⎢⎣

−4
1
0
1

⎤
⎥⎥⎦

25. rref A =

⎡
⎢⎢⎢⎢⎣

1 2 0 5 0
0 0 1 −1 0
0 0 0 0 1
0 0 0 0 0
0 0 0 0 0

⎤
⎥⎥⎥⎥⎦;

basis of image:

⎡
⎢⎢⎣

1
3
1
2

⎤
⎥⎥⎦,
⎡
⎢⎢⎣

3
9
4
9

⎤
⎥⎥⎦,
⎡
⎢⎢⎣

1
3
2
2

⎤
⎥⎥⎦;

basis of kernel:

⎡
⎢⎢⎢⎢⎣

−2
1
0
0
0

⎤
⎥⎥⎥⎥⎦,
⎡
⎢⎢⎢⎢⎣

−5
0
1
1
0

⎤
⎥⎥⎥⎥⎦

27. They do. 29.

⎡
⎣−3

2
0

⎤
⎦,
⎡
⎣−1

0
2

⎤
⎦

31. A =

⎡
⎢⎢⎣

1 −2 −4
1 0 0
0 1 0
0 0 1

⎤
⎥⎥⎦

33. The dimension of a hyperplane in Rn is n − 1.

35. The dimension is n − 1.

37. A =

⎡
⎢⎢⎣

1 0 0 0 0
0 1 0 0 0
0 0 0 0 0
0 0 0 0 0

⎤
⎥⎥⎦

39. ker C is at least one-dimensional, and ker C is con-
tained in ker A.

41. To fit a conic through a given point Pj (x j , y j ), we
need to solve the equation c1 + c2x j + c3 y j +
c4x2

j + c5x j y j + c6 y2
j = 0, a homoge-

neous linear equation in the six unknowns
c1, . . . , c6. Thus, fitting a conic to four given points
P1(x1, y1), . . . , P4(x4, y4) amounts to solving a
system of four homogeneous linear equations with
six unknowns. This in turn amounts to finding the
kernel of a 4×6 matrix A. This kernel is at least two-
dimensional. Since every one-dimensional subspace
of ker A defines a unique conic (see Exercise 40),
there will be infinitely many such conics.

43. Building on our work in Exercise 41, we observe
that fitting a conic through six points amounts to
finding the kernel of a 6 × 6 matrix A. There
will be no such conic if ker A = {�0}, one conic
if dim(ker A) = 1, and infinitely many conics if
dim(ker A) > 1. To give an example for each case,
recall Exercise 1.2.53, where we showed that the
unique conic xy = 0 runs through the points (0, 0),
(1, 0), (2, 0), (0, 1), (0, 2). Thus, there is no conic
through the points (0, 0), (1, 0), (2, 0), (0, 1), (0, 2),
(1, 1), whereas the only conic through (0, 0), (1, 0),
(2, 0), (0, 1), (0, 2), (0, 3) is xy = 0. There are in-
finitely many conics through (0, 0), (1, 0), (2, 0),
(3, 0), (4, 0), (5, 0).

45. A cubic runs through (0, 0) if c1 = 0. Now the cu-
bic runs through the points (1, 0), (2, 0), and (3, 0)
as well if

c2 + c4 + c7 = 0
2c2 + 4c4 + 8c7 = 0
3c3 + 9c4 + 27c7 = 0.

Gaussian elimination shows that c2 = c4 = c7 =
0. Analogously, the cubic runs through the points
(0, 1), (0, 2), and (0, 3) if c3 = c6 = c10 = 0. The
claim follows.

Each such cubic is the union of the x-axis, the
y-axis, and an arbitrary line in R2.

47. Plugging the points (1, 1) and (2, 2) into the solu-
tion xy(c5 +c8x +c9 y) = 0 of Problem 45, we find
c5 = 0 and c9 = −c8, so that the solutions are of the
form xy(c8x − c8 y) = 0, where c8 �= 0. Division
by c8 produces the unique solution xy(x − y) = 0,
the union of the y-axis, the x-axis, and the diagonal
y = x .

49. No such cubic exists, since the unique cubic through
the first 9 points does not pass through (2, 1). See
Exercise 47.

51. Plugging the points (4, 0), (0, 4) and (1, 1) into
the solution xy(c5 + c8x + c9 y) = 0 of Prob-
lem 45, we find that c5 + c8 + c9 = 0. Define
a = c8 and b = c9. There are infinitely many cu-
bics running through the given points, of the form
xy(ax + by − a − b) = 0, where a �= 0 or b �= 0.
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Each such cubic is the union of the y-axis, the
x-axis, and any line through the point (1, 1).

53. Plugging the points (1, 1), (2, 1), (1, 2), and
(3, 2) into the solutions of Problem 44, we find that
c5 = c7 = c8 = c9 = 0, so that the solutions
are of the form c10 y(y − 1)(y − 2) = 0, where
c10 �= 0. Division by c10 produces the unique so-
lution y(y − 1)(y − 2) = 0, the union of the three
horizontal lines y = 0, y = 1, and y = 2.

55. Plugging the points (1, 1), (2, 1), (1, 2), (2, 2), and
(3, 3) into the solutions of Problem 44, we find that
c5 = c8 = c9 = 0 and c7 + c10 = 0, so that
the solutions are of the form c7x(x − 1)(x − 2) −
c7 y(y − 1)(y − 2) = 0, where c7 �= 0. Division by
c7 produces the unique solution x(x − 1)(x − 2) =
y(y − 1)(y − 2), the union of the diagonal y = x
with an ellipse.

57. See Exercises 41 and 56. Since the kernel of the
8 × 10 matrix A is at least two-dimensional, and
because every one-dimensional subspace of ker A
defines a unique cubic (compare with Exercise 40),
there will be infinitely many such cubics.

59. There may be no such cubic [as in Exercise 49], ex-
actly one [take the 9 points in Exercise 47 and add
(−1,−1)], or infinitely many [as in Exercise 51].

63. A basis of V is also a basis of W , by Theorem
3.3.4c.

65. dim(V +W )= dim V + dim W , by Exercise 3.2.51.

67. The first p columns of rref A contain leading 1’s be-
cause the �vi are linearly independent. Now apply
Theorem 3.3.5.

71.
[

0 1 0 2 0
]
,
[

0 0 1 3 0
]
,[

0 0 0 0 1
]

73. a. A and E have the same row space, since ele-
mentary row operations leave the row space un-
changed.

b. rank A = dim
(
rowspace(A)

)
, by part a and Ex-

ercise 72.

77. Suppose rank A = n. The submatrix of A consisting
of the n pivot columns of A is invertible, since the
pivot columns are linearly independent.

Conversely, if A has an invertible n ×n subma-
trix, then the columns of that submatrix span Rn , so
im A = Rn and rank A = n.

79. Let m be the smallest number such that Am = 0.
By Exercise 78, there are m linearly independent
vectors in Rn ; therefore, m ≤ n, and An =
Am An−m = 0.

83. a. 3, 4, or 5 b. 0, 1, or 2

85. a. rank(AB) ≤ rank A b. rank(AB) ≤ rank B

3.4 Answers to more theoretical questions are omitted.

1.
[ �x ]

�
=
[

2
3

]
3.
[ �x ]

�
=
[

0
1

]

5.
[ �x ]

�
=
[−4

3

]
7.
[ �x ]

�
=
[

3
4

]

9. �x isn’t in V . 11.
[ �x ]

�
=
[

1/2
1/2

]

13.
[ �x ]

�
=
⎡
⎣ 1

−1
0

⎤
⎦ 15.

[ �x ]
�

=
⎡
⎣ 8

−12
5

⎤
⎦

17.
[ �x ]

�
=
⎡
⎣ 1

1
−1

⎤
⎦ 19. B =

[
1 0
0 −1

]

21. B =
[

7 0
0 0

]
23. B =

[
2 0
0 −1

]

25. B =
[−1 −1

4 6

]
27. B =

⎡
⎣9 0 0

0 0 0
0 0 0

⎤
⎦

29. B =
⎡
⎣0 0 0

0 1 0
0 0 2

⎤
⎦ 31. B =

⎡
⎣ 0 0 1

0 0 0
−1 0 0

⎤
⎦

33. B =
⎡
⎣0 0 0

0 1 0
0 0 0

⎤
⎦ 35. B =

⎡
⎣ 1 0 0

−2 1 0
0 0 1

⎤
⎦

37.

[
1
2

]
,

[−2
1

]
, for example

39.

⎡
⎣1

2
3

⎤
⎦,
⎡
⎣−2

1
0

⎤
⎦,
⎡
⎣−3

0
1

⎤
⎦, for example

41.

⎡
⎣3

1
2

⎤
⎦,
⎡
⎣−1

3
0

⎤
⎦,
⎡
⎣ 0

−2
1

⎤
⎦, for example

43. �x =
⎡
⎣ 4

−3
2

⎤
⎦

45. If �v is any vector in the plane that is not parallel
to �x , then �v, 1

3 (�x − 2�v) is a basis with the desired

property. For example, �v =
⎡
⎣3

2
0

⎤
⎦ gives the basis

⎡
⎣3

2
0

⎤
⎦ ,

1

3

⎡
⎣−4

−4
−1

⎤
⎦.

47. A =
[

d c
b a

]
49.

[−1
−1

]

53. �x =
[

40
58

]
55.

1

2

[−1 2
1 0

]
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57. Consider a basis with two vectors parallel to the
plane, and one vector perpendicular.

59. Yes

61.

[−9
6

]
,

[
0
1

]
, for example

63. Yes 67. B =
[

0 bc − ad
1 a + d

]

69. If S =
[

1 2
2 1

]
, then S−1 AS =

[
3 0
0 −1

]
.

71. a. If B �x = S−1 AS �x = �0, then A(S �x) = �0.
b. Since we have the p linearly independent vec-

tors S �v1, S �v2, . . . , S �v p in ker A, we know that
dim(ker B) = p ≤ dim(ker A), by Theo-
rem 3.3.4a. Reversing the roles of A and B,
we find that dim(ker A) ≤ dim(ker B). Thus,
nullity A = dim(ker A) = dim(ker B) =
nullity B.

73.

⎡
⎣ 0.36 0.48 0.8

0.48 0.64 −0.6
−0.8 0.6 0

⎤
⎦

75.

[
0 −1
1 0

]
77. bi j = an+1−i,n+1− j

79. By Theorem 3.4.7, we seek a basis �v1, �v2 such that
A�v1 = �v1 and A�v2 = −�v2. Solving the linear sys-
tems A�x = �x and A�x = −�x [or (A − I2)�x = �0 and

(A + I2)�x = �0], we find �v1 =
[

3
1

]
and �v2 =

[
5
2

]
,

for example.

CHAPTER 4
4.1 Answers to more theoretical questions are omitted.

1. Not a subspace

3. Subspace with basis 1 − t , 2 − t2

5. Subspace with basis t 7. Subspace

9. Not a subspace 11. Not a subspace

13. Not a subspace 15. Subspace

17. Matrices with one entry equal to 1 and all other en-
tries equal to 0. The dimension is mn.

19. A basis is

[
1
0

]
,

[
i
0

]
,

[
0
1

]
,

[
0
i

]
, so that the dimension

is 4.

21. A basis is

[
1 0
0 0

]
,

[
0 0
0 1

]
, so that the dimension

is 2.

23. A basis is

[
1 0
0 0

]
,

[
0 0
1 0

]
,

[
0 0
0 1

]
, so that the

dimension is 3.

25. A basis is 1 − t , 1 − t2, so that the dimension is 2.

27. A basis is

[
1 0
0 0

]
,

[
0 0
0 1

]
, so that the dimension

is 2.

29. A basis is

[−1 1
0 0

]
,

[
0 0

−1 1

]
, so that the dimen-

sion is 2.

31. A basis is

[
1 0
1 0

]
,

[
0 −1
0 1

]
, so that the dimension

is 2.

33. Only the zero matrix has this property, so that the
basis is ∅, and the dimension is 0.

35. A basis is

⎡
⎣1 0 0

0 0 0
0 0 0

⎤
⎦,
⎡
⎣0 0 0

0 1 0
0 0 0

⎤
⎦,

⎡
⎣0 0 0

0 0 0
0 0 1

⎤
⎦, and the dimension is 3.

37. 3, 5, or 9 39.
n∑

k=1

k = n(n + 1)

2

41. 0, 3, 6, or 9 43. 2 45. dim(V ) = 3

47. Yes and yes 49. Yes

51. f (x) = ae3x + be4x

4.2 Answers to more theoretical questions are omitted.
1. Nonlinear

3. Linear, not an isomorphism

5. Nonlinear 7. Isomorphism
9. Isomorphism 11. Isomorphism

13. Linear, not an isomorphism

15. Isomorphism

17. Linear, not an isomorphism

19. Isomorphism 21. Isomorphism

23. Linear, not an isomorphism
25. Linear, not an isomorphism
27. Isomorphism
29. Linear, not an isomorphism
31. Linear, not an isomorphism
33. Linear, not an isomorphism
35. Linear, not an isomorphism
37. Linear, not an isomorphism
39. Linear, not an isomorphism

41. Nonlinear 43. Isomorphism
45. Linear, not an isomorphism
47. Linear, not an isomorphism
49. Linear, not an isomorphism

51. ker T consists of all matrices of the form

[
a b
0 a

]
,

so that the nullity is 2.
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53. The image consists of all linear functions, of the
form mt+b, so that the rank is 2. The kernel consists
of the constant functions, so that the nullity is 1.

55. The image consists of all infinite sequences, and
the kernel consists of all sequences of the form
(0, x1, 0, x3, 0, x5, . . .).

57. The kernel consists of all functions of the form
ae2t + be3t , so that the nullity is 2.

59. The kernel has the basis t − 7, (t − 7)2, so that the
nullity is 2. The image is all of R, so that the rank
is 1.

61. The kernel consists of the zero function alone, and
the image consists of all polynomials g(t) whose
constant term is zero [that is, g(0) = 0].

63. Impossible, since dim(P3) �= dim(R3).
65. b. ker T consists of the zero matrix alone.

d. This dimension is mn.
67. For all k except k = 2 and k = 4
69. No; if B = S−1 AS, then T (S) = 0.
71. Yes, there is exactly one such polynomial.
73. Yes 77. Yes and yes
79. Surprisingly, yes
83. The transformation T induces a transformation T̃

from ker(L ◦ T ) to ker L , with ker T̃ = ker T .
Applying the rank-nullity theorem as stated in
Exercise 82 to T̃ , we find that dim (ker(L ◦
T )) = dim (ker T̃ ) + dim (im T̃ ) ≤ dim (ker T ) +
dim (ker L), since im T̃ is a subspace of the kernel
of L .

4.3 Answers to more theoretical questions are omitted.

1. Yes 3. Yes

5.

⎡
⎣1 0 0

0 1 2
0 0 3

⎤
⎦ 7.

⎡
⎣0 0 0

0 0 4
0 0 0

⎤
⎦

9.

⎡
⎣1 0 0

0 2 0
0 0 1

⎤
⎦ 11.

⎡
⎣1 0 0

0 1 0
0 0 3

⎤
⎦

13.

⎡
⎢⎢⎣

1 0 1 0
0 1 0 1
2 0 2 0
0 2 0 2

⎤
⎥⎥⎦ 15.

[
1 0
0 −1

]

17.

[
0 −1
1 0

]
19.

[
p −q
q p

]

21.

⎡
⎣−3 1 0

0 −3 2
0 0 −3

⎤
⎦ 23.

⎡
⎣1 3 9

0 0 0
0 0 0

⎤
⎦

25.

⎡
⎣1 0 0

0 −1 0
0 0 1

⎤
⎦ 27.

⎡
⎣1 −1 1

0 2 −4
0 0 4

⎤
⎦

29.

⎡
⎣2 2 8/3

0 0 0
0 0 0

⎤
⎦ 31.

⎡
⎣0 1 0

0 0 2
0 0 0

⎤
⎦

33.

⎡
⎣1 0 0

0 1 0
0 0 0

⎤
⎦ 35.

⎡
⎢⎢⎣

0 0 1 0
−1 0 0 1

0 0 0 0
0 0 −1 0

⎤
⎥⎥⎦

37.

⎡
⎢⎢⎣

−2 0 0 0
0 2 0 0
0 0 0 0
0 0 0 0

⎤
⎥⎥⎦ 39.

⎡
⎢⎢⎣

−1 0 1 0
0 1 0 1
1 0 −1 0
0 1 0 1

⎤
⎥⎥⎦

41. a. S =
⎡
⎣1 0 0

0 1 1
0 0 1

⎤
⎦

c. S−1 =
⎡
⎣1 0 0

0 1 −1
0 0 1

⎤
⎦

43. a. S =
⎡
⎣ 1 0 0

−1 1 1
0 1 0

⎤
⎦

c. S−1 =
⎡
⎣1 0 0

0 0 1
1 1 −1

⎤
⎦

45. a. S =
[

1 1
1 −1

]
c. S−1 = 1

2

[
1 1
1 −1

]

47. a. S =
⎡
⎣1 −1 1

0 1 −2
0 0 1

⎤
⎦

c. S−1 =
⎡
⎣1 1 1

0 1 2
0 0 1

⎤
⎦

49.

[
2 2

−2 2

]
51.

[
0 −1
1 0

]

53.

[
cos θ − sin θ

sin θ cos θ

]
55.

[
2/9 −14/9

−1/9 7/9

]

57.

[−1 3
−1 0

]
59. T
(

f (t)
) = t · f (t) from P to P , for example

61. a. S =
[−3 4

4 3

]
b. S−1 = 1

25

[−3 4
4 3

]

63. a. �b1 =
⎡
⎣2

0
1

⎤
⎦, �b2 =

⎡
⎣0

2
3

⎤
⎦, for example

b. S =
[−1 −1

1 3

]
c. S−1 = 1

2

[−3 −1
1 1

]
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65. a. P2 =
[

a2 + bc b(a + d)

c(a + d) bc + d2

]
and

[
P2
]

�
=
[

bc − ad
a + d

]

b. B =
[

0 bc − ad
1 a + d

]
. T is an isomorphism if B

is invertible.
c. In this case, im T is spanned by P and ker T is

spanned by (a + d)I2 − P =
[

d −b
−c a

]
.

67. a.

⎡
⎢⎢⎣

0 0 0 2
0 0 −2 0
0 0 0 0
0 0 0 0

⎤
⎥⎥⎦ b. f (t) = 1

2 t sin(t)

73. b. A =
[

1 2
−1 −1

]
c. B =

[
0 −1
1 0

]
d. S =

[
0 2
1 −1

]
e. AS = S A f. No

CHAPTER 5
5.1 Answers to more theoretical questions are omitted.

1.
√

170 3.
√

54

5. arccos

(
20√
406

)
≈ 0.12 (radians)

7. obtuse 9. acute

11. arccos

(
1√
n

)
→ π

2
(as n → ∞)

13. 2 arccos(0.8) ≈ 74◦

15.

⎡
⎢⎢⎣

−2
1
0
0

⎤
⎥⎥⎦,
⎡
⎢⎢⎣

−3
0
1
0

⎤
⎥⎥⎦,
⎡
⎢⎢⎣

−4
0
0
1

⎤
⎥⎥⎦

17.

⎡
⎢⎢⎣

1
−2

1
0

⎤
⎥⎥⎦,
⎡
⎢⎢⎣

2
−3

0
1

⎤
⎥⎥⎦

19. a. Orthogonal projection onto L⊥

b. Reflection about L⊥

c. Reflection about L

21. For example: b = d = e = g = 0, a = 1

2
,

c =
√

3

2
, f = −

√
3

2

25. a. ‖k �v‖ =
√

(k �v) · (k �v) =
√

k2(�v · �v) =√
k2

√�v · �v = |k| ‖�v‖
b. By part a,

∣∣∣∣
∣∣∣∣ 1

‖�v‖ �v
∣∣∣∣
∣∣∣∣ = 1

‖�v‖‖�v‖ = 1.

27.

⎡
⎢⎢⎣

8
0
2

−2

⎤
⎥⎥⎦

29. By Pythagoras, ‖�x‖ = √
49 + 9 + 4 + 1 + 1 = 8.

31. p ≤ ‖�x‖2. Equality holds if (and only if) �x is a
linear combination of the vectors �ui .

33. The vector whose n components are all 1/n

35. − 1√
14

⎡
⎣1

2
3

⎤
⎦

37. R(�x) = 2(�u1 · �x)�u1 + 2(�u2 · �x)�u2 − �x
39. No; if �u is a unit vector in L , then �x · projL �x =

�x · (�u · �x)�u = (�u · �x)2 ≥ 0.

41. arccos(20/21) ≈ 0.31 radians

43. 5
9 �v2 45. 25

41 �v2 − 1
41 �v3

5.2 Answers to more theoretical questions are omitted.

1.

⎡
⎣ 2/3

1/3
−2/3

⎤
⎦ 3.

⎡
⎣4/5

0
3/5

⎤
⎦,
⎡
⎣ 3/5

0
−4/5

⎤
⎦

5.

⎡
⎣2/3

2/3
1/3

⎤
⎦, 1√

18

⎡
⎣−1

−1
4

⎤
⎦

7.

⎡
⎣2/3

2/3
1/3

⎤
⎦,
⎡
⎣−2/3

1/3
2/3

⎤
⎦,
⎡
⎣ 1/3

−2/3
2/3

⎤
⎦

9.

⎡
⎢⎢⎣

1/2
1/2
1/2
1/2

⎤
⎥⎥⎦,
⎡
⎢⎢⎣

−1/10
7/10

−7/10
1/10

⎤
⎥⎥⎦

11.

⎡
⎢⎢⎣

4/5
0
0

3/5

⎤
⎥⎥⎦,
⎡
⎢⎢⎣

−3/15
2/15

14/15
4/15

⎤
⎥⎥⎦

13.

⎡
⎢⎢⎣

1/2
1/2
1/2
1/2

⎤
⎥⎥⎦,
⎡
⎢⎢⎣

1/2
−1/2
−1/2

1/2

⎤
⎥⎥⎦,
⎡
⎢⎢⎣

1/2
1/2

−1/2
−1/2

⎤
⎥⎥⎦

15.

⎡
⎣ 2/3

1/3
−2/3

⎤
⎦ [3]

17.

⎡
⎣4/5 3/5

0 0
3/5 −4/5

⎤
⎦[5 5

0 35

]
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19.

⎡
⎣2/3 −1/

√
18

2/3 −1/
√

18
1/3 4/

√
18

⎤
⎦[3 3

0
√

18

]

21.
1

3

⎡
⎣2 −2 1

2 1 −2
1 2 2

⎤
⎦
⎡
⎣3 0 12

0 3 −12
0 0 6

⎤
⎦

23.

⎡
⎢⎢⎣

1/2 −1/10
1/2 7/10
1/2 −7/10
1/2 1/10

⎤
⎥⎥⎦
[

2 4
0 10

]

25.

⎡
⎢⎢⎣

4/5 −3/15
0 2/15
0 14/15

3/5 4/15

⎤
⎥⎥⎦
[

5 10
0 15

]

27.
1

2

⎡
⎢⎢⎣

1 1 1
1 −1 1
1 −1 −1
1 1 −1

⎤
⎥⎥⎦
⎡
⎣2 1 1

0 1 −2
0 0 1

⎤
⎦

29.

[−3/5
4/5

]
,

[
4/5
3/5

]
31. �e1, �e2, �e3

33.
1√
2

⎡
⎢⎢⎣

1
0
0

−1

⎤
⎥⎥⎦ ,

1√
2

⎡
⎢⎢⎣

0
1

−1
0

⎤
⎥⎥⎦

35.

⎡
⎣1/3

2/3
2/3

⎤
⎦,
⎡
⎣ 2/3

1/3
−2/3

⎤
⎦ 37.

1

2

⎡
⎢⎢⎣

1 1
1 −1
1 −1
1 1

⎤
⎥⎥⎦
[

3 4
0 5

]

39.
1√
14

⎡
⎣1

2
3

⎤
⎦, 1√

3

⎡
⎣ 1

1
−1

⎤
⎦, 1√

42

⎡
⎣ 5

−4
1

⎤
⎦

41. Q is diagonal with qii = 1 if aii > 0 and qii = −1
if aii < 0. You can get R from A by multiplying the
i th row of A with −1 whenever aii is negative.

43. Write the Q R factorization of A in partitioned form

as A = [ A1 A2
] = [Q1 Q2

] [ R1 R2

0 R4

]
.

Then A1 = Q1 R1 is the Q R factorization of A1.

45. Yes

5.3 Answers to more theoretical questions are omitted.

1. Not orthogonal 3. Orthogonal

5. Not orthogonal 7. Orthogonal

9. Orthogonal 11. Orthogonal
13. Symmetric
15. Not necessarily symmetric

17. Symmetric 19. Symmetric

21. Symmetric
23. Not necessarily symmetric
25. Symmetric
27. (A�v) · �w = (A�v)T �w = �vT AT �w = �v · (AT �w)

29. �
(

L(�v), L( �w)
) = arccos

L(�v) · L( �w)

‖L(�v)‖‖L( �w)‖ =

arccos
�v · �w

‖�v‖‖ �w‖ = �(�v, �w) [The equation

L(�v) · L( �w) = �v · �w is shown in Exercise 28.]
31. Yes, since AAT = In .
33. The first column is a unit vector; we can write it

as �v1 =
[

cos θ

sin θ

]
for some θ . The second col-

umn is a unit vector orthogonal to �v1; there are

two choices:

[− sin θ

cos θ

]
and

[
sin θ

− cos θ

]
. Solution:[

cos θ − sin θ

sin θ cos θ

]
and

[
cos θ sin θ

sin θ − cos θ

]
, for arbi-

trary θ .

35. For example, T (�x) = 1

3

⎡
⎣ 1 −2 2

−2 1 2
2 2 1

⎤
⎦ �x

37. No, by Theorem 5.3.2
39. (i j th entry of A) = ui u j

41. All entries of A are
1

n
.

43. A represents the reflection about the line spanned by
�u (compare with Example 2), and B represents the
reflection about the plane with normal vector �u.

45. dim
(
ker A
) = m − rank A (by Theorem 3.3.7) and

dim
(
ker(AT )

) = n − rank(AT ) = n − rank A (by
Theorem 5.3.9c). Therefore, the dimensions of the
two kernels are equal if (and only if) m = n, that is,
if A is a square matrix.

47. AT A = (Q R)T Q R = RT QT Q R = RT R

49. By Exercise 5.2.45, we can write AT = QL , where
Q is orthogonal and L is lower triangular. Then
A = (QL)T = LT QT does the job.

51. a. Im = QT
1 Q1 = ST QT

2 Q2S = ST S, so that S is
orthogonal.

b. R2 R−1
1 is both orthogonal (by part a) and up-

per triangular, with positive diagonal entries. By
Exercise 50a, we have R2 R−1

1 = Im , so that
R2 = R1 and Q1 = Q2, as claimed.

53.

⎡
⎣ 0 1 0

−1 0 0
0 0 0

⎤
⎦,
⎡
⎣ 0 0 1

0 0 0
−1 0 0

⎤
⎦,
⎡
⎣0 0 0

0 0 1
0 −1 0

⎤
⎦;

dimension 3

55.
n(n + 1)

2
57. Yes, and yes
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59. The kernel consists of the symmetric n × n matri-
ces, and the image consists of the skew-symmetric
matrices.

61.

⎡
⎢⎢⎣

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 2

⎤
⎥⎥⎦

63. If A = L DU , then AT = U T DLT is the L DU
factorization of AT . Since A = AT the two factor-
izations are identical, so that U = LT , as claimed.

65.

[
0.6 −0.8
0.8 0.6

]
,

[
0.8 −0.6
0.6 0.8

]
,

[
0.6 0.8
0.8 −0.6

]
, and[

0.8 0.6
0.6 −0.8

]

69. PW = 1

3

⎡
⎢⎣

1 1 −1 0
1 2 0 −1

−1 0 2 −1
0 −1 −1 1

⎤
⎥⎦

71. dim V = 2n − 1

73. a. Note that ab = −1. Now �a · �b =
n−1∑
k=0

(ab)k =
1 − (ab)n

1 − ab
= 0 for even n.

b. By Theorem 5.3.10 and the preceding para-
graph, P is a linear combination of the matrices
M = �a�aT and N = �b�bT . It suffices to show that
M and N are Hankel matrices. Indeed, mi j =
ai+ j−2 = mi+1, j−1 and ni j = bi+ j−2 =
ni+1, j−1 for all i = 1, . . . , n − 1 and all j = 2,

. . . , n.

5.4 Answers to more theoretical questions are omitted.

1. im A = span

[
2
3

]
and ker(AT ) = span

[−3
2

]
3. The vectors form a basis of Rn .
5. V ⊥ = (ker A

)⊥ = im(AT ), where

A =
[

1 1 1 1
1 2 5 4

]

Basis of V ⊥:

⎡
⎢⎢⎣

1
1
1
1

⎤
⎥⎥⎦,
⎡
⎢⎢⎣

1
2
5
4

⎤
⎥⎥⎦

7. im A = (ker A
)⊥

0

x�0 = 

im(AT) = (ker A)⊥

ker A

S:  parallel to ker A
1
3

9. ‖�x0‖ < ‖�x‖ for all other vectors �x in S
11. b. L

(
L+(�y)
) = �y

c. L+(L(�x)
) = projV �x , where V = (ker A

)⊥ =
im(AT )

d. im(L+) = im(AT ) and ker(L+) = {�0}

e. L+(�y) =
⎡
⎣1 0

0 1
0 0

⎤
⎦ �y

13. b. L+(L(�x)
) = projV �x , where V = (ker A

)⊥ =
im(AT )

c. L
(

L+(�y)
) = projW �y, where W = im A =(

ker(AT )
)⊥

d. im(L+) = im(AT ) and ker(L+) = ker(AT )

e. L+(�y) =

⎡
⎢⎣

1
2 0

0 0

0 0

⎤
⎥⎦ �y

15. Let B = (AT A)−1 AT .
17. Yes; note that ker A = ker(AT A).

19.

[
1
1

]

21. �x∗ =
[−1

2

]
, ‖�b − A�x∗‖ = 42

23.

[
0
0

]

25.

[
1 − 3t

t

]
, for arbitrary t

27.

[
7

11

]
29. x∗

1 = x∗
2 ≈ 1

2

31. 3 + 1.5t
33. approximately 1.5 + 0.1 sin(t) − 1.41 cos(t)

37. a. Try to solve the system

∣∣∣∣∣∣∣
c0 + 35c1 = log(35)

c0 + 46c1 = log(46)

c0 + 59c1 = log(77)

c0 + 69c1 = log(133)

∣∣∣∣∣∣∣.
Least-squares solution

[
c∗

0
c∗

1

]
≈
[

0.915
0.017

]
. Use

approximation log(d) = 0.915 + 0.017t .
b. Exponentiate the equation in part (a): d =

10log d = 100.915+0.017t ≈ 8.221 · 100.017t ≈
8.221 · 1.04t .

c. Predicts 259 displays for the A320; there are
much fewer since the A320 is highly comput-
erized.

39. a. Try to solve the system∣∣∣∣∣∣∣∣∣

c0 + log(600,000)c1 = log(250)

c0 + log(200,000)c1 = log(60)

c0 + log(60,000)c1 = log(25)

c0 + log(10,000)c1 = log(12)

c0 + log(2,500)c1 = log(5)

∣∣∣∣∣∣∣∣∣
.
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5.5 Answers to more theoretical questions are omitted.
3. a. If S is invertible

b. If S is orthogonal

5. Yes 7. For positive k

9. True 11. The angle is δ

13. The two norms are equal, by Theorem 5.5.6.

15. If b = c and b2 < d 17. If ker T = {0}

19. The matrices A =
[

a b
c d

]
such that b = c, a > 0,

and b2 < ad .

21. Yes, 〈�v, �w〉 = 2(�v · �w)

23. 1, 2t − 1

25.

√
1 + 1

4
+ 1

9
+ · · · = π√

6

27. a0 = 1√
2

. ck = 0 for all k

bk =
⎧⎨
⎩

2

kπ
if k is odd

0 if k is even

29.
∑

k odd

1

k2 = π2

8

33. b. ‖ f ‖2 = 〈 f, f 〉 = ∫ b
a w(t)dt = 1, so that

‖ f ‖ = 1

35. a. ‖t‖32 =
√

1

2

∫ 1

−1
t2dt =

√
1

3
and ‖t‖34 =√

2

π

∫ 1

−1

√
1 − t2 t2dt =

√
2

π
· π

8
= 1

2

b. For f (t) =
√

1 − t2 we have ‖ f ‖32 =
√

2

3
and

‖ f ‖34 =
√

3

4
CHAPTER 6

6.1 Answers to more theoretical questions are omitted.

1. 0 3. −2 5. 110

7. 0 9. −36 11. k �= 3/2

13. k �= 0 15. k �= 1/2

17. If k is neither 1 nor −1

19. If k is neither 0 nor 1

21. If k is neither 1 nor −2

23. If λ is 1 or 4 25. If λ is 2 or 8

27. If λ is 2, 3, or 4 29. If λ is 3 or 8

31. 24 33. 99 35. 18

37. 55 39. 120 41. 24

43. det(−A) = (−1)n det A

45. They are the same.

49. The kernel is the plane span(�v, �w) and the image
is R.

51. Let aii be the first diagonal entry that does not be-
long to the pattern. The pattern must contain an en-
try in the i th row to the right of aii as well as an
entry in the i th column below aii .

53. Only one pattern has a nonzero product, and that
product is 1. Since there are n2 inversions in that
pattern, we have det A = (−1)n2 = (−1)n .

55. Yes, since the determinants of all principal subma-
trices are nonzero. See Exercise 2.4.93.

57. Only one pattern has a nonzero product, and that
product is 1. Thus, det A = 1 or det A = −1.

59. a. Yes b. No c. No

61. Fails to be alternating, since F

⎡
⎣0 1 0

0 0 1
1 0 0

⎤
⎦ = 1 but

F

⎡
⎣0 0 1

0 1 0
1 0 0

⎤
⎦ = 0.

6.2 Answers to more theoretical questions are omitted.
1. 6 3. −24 5. −24

7. 1 9. 24 11. −72

13. 8 15. 8 17. 8

19. −1 21. 1

23. (−1)n(n−1)/2. This is 1 if either n or (n − 1) is di-
visible by 4, and −1 otherwise.

25. 16 27. a2 + b2

29. det(P1) = 1 and det(Pn) = det(Pn−1), by expan-
sion down the first column, so det(Pn) = 1 for all n.

31. a. det

[
1 1
a0 a1

]
= a1 − a0

b. Use Laplace expansion down the last column to
see that f (t) is a polynomial of degree ≤n. The
coefficient k of tn is

∏
n−1≥i> j

(ai − a j ). Now

det A = f (an) = k(an − a0)(an − a1) · · · (an −
an−1) = ∏

n≥i> j
(ai − a j ), as claimed.

33.
n∏

i=1
ai ·
∏

i> j
(ai −a j ) (use linearity in the columns and

Exercise 31)

35.

[
x1

x2

]
=
[

a1

a2

]
and

[
x1

x2

]
=
[

b1

b2

]
are solutions. The

equation is of the form px1 + qx2 + b = 0; that is,
it defines a line.

37. ±1

39. det(AT A) = ( det A
)2

> 0



ANSWERS TO ODD-NUMBERED EXERCISES 487

41. det A = det(AT ) = det(−A) = (−1)n det A =
−det A, so det A = 0

43. AT A =
[ ‖�v‖2 �v · �w

�v · �w ‖ �w‖2

]
,

so det(AT A) = ‖�v‖2‖ �w‖2 − (�v· �w)2 ≥ 0, by the
Cauchy–Schwarz inequality. Equality holds only if
�v and �w are parallel.

45. Expand down the first column: f (x) =
−x det(A41) + constant, so f ′(x) = − det(A41) =
−24.

47. T is linear in the rows and columns.

49. A =
⎡
⎣1 1 1

1 2 2
1 1 14

⎤
⎦, for example. Start with a

triangular matrix with determinant 13, such as⎡
⎣1 1 1

0 1 1
0 0 13

⎤
⎦, and add the first row to the second

and to the third to make all entries nonzero.

51. det A = (−1)n

53. a. Note that det(A) det(A−1) = 1, and both factors
are integers.

b. Use the formula for the inverse of a 2×2 matrix
(Theorem 2.4.9b).

59. No

61. Take the determinant of both sides of[
In 0

−C A

] [
A B
C D

]
=
[

A B
0 AD − C B

]
,

and divide by det A.

65. a. dn = dn−1 + dn−2, a Fibonacci sequence
b. d1 = 1, d2 = 2, d3 = 3, d4 = 5, . . . , d10 = 89
c. Invertible for all positive integers n

6.3 Answers to more theoretical questions are omitted.

1. 50 3. 13 7. 110

11. | det A| = 12, the expansion factor of T on the par-
allelogram defined by �v1 and �v2

13.
√

20
15. We need to show that if �v1, . . . , �vm are linearly

dependent, then (a) V (�v1, . . . , �vm) = 0 and
(b) det(AT A) = 0.
a. One of the �vi is redundant, so that �v⊥

i = �0 and
V (�v1, . . . , �vm) = 0, by Definition 6.3.5.

b. ker A �= {�0} and ker A ⊆ ker(AT A), so
that ker(AT A) �= {�0}. Thus, AT A fails to be
invertible.

17. a. V (�v1, �v2, �v3, �v1 × �v2 × �v3)

= V (�v1, �v2, �v3)‖�v1 × �v2 × �v3‖ because �v1 ×
�v2 × �v3 is orthogonal to �v1, �v2, and �v3

b. V (�v1, �v2, �v3, �v1 × �v2 × �v3)

= ∣∣det
[ �v1 × �v2 × �v3 �v1 �v2 �v3

]∣∣
= ‖�v1 × �v2 × �v3‖2, by definition of the cross
product

c. V (�v1, �v2, �v3) = ‖�v1 × �v2 × �v3‖, by parts (a)
and (b)

19. det
[ �v1 �v2 �v3

] = �v1 · (�v2 × �v3) is positive if
(and only if) �v1 and �v2 × �v3 enclose an acute angle.

21. a. Reverses b. Preserves c. Reverses

23. x1 =
det

[
1 −3
0 7

]

det

[
5 −3

−6 7

] = 7

17
;

x2 =
det

[
5 1

−6 0

]

det

[
5 −3

−6 7

] = 6

17

25. adj A =
⎡
⎣ 1 0 −1

0 −1 0
−2 0 1

⎤
⎦;

A−1 = 1

det A
adj A = −adj A

=
⎡
⎣−1 0 1

0 1 0
2 0 −1

⎤
⎦

27. x = a

a2 + b2 > 0; y = −b

a2 + b2 < 0; x decreases

as b increases.
29. dx1 = −D−1 R2(1 − R1)(1 − α)2de2

dy1 = D−1(1 − α)R2
(

R1(1 − α) + α
)
de2 > 0

dp = D−1 R1 R2de2 > 0

31.

⎡
⎣−6 0 1

−3 5 −2
4 −5 1

⎤
⎦ 33.

⎡
⎢⎢⎣

24 0 0 0
0 12 0 0
0 0 8 0
0 0 0 6

⎤
⎥⎥⎦

35. det(adj A) = (det A)n−1

37. adj(A−1) = (adj A)−1 = (det A)−1 A

39. Yes. Use Exercises 38: If AS = SB, then
(adj S)(adj A) = (adj B)(adj S).

43. A(adj A) = (adj A)A = (det A)In = 0

45.

[
a −b
b a

]

CHAPTER 7
7.1 Answers to more theoretical questions are omitted.

1. Yes; the eigenvalue is λ3.

3. Yes; the eigenvalue is λ + 2.

5. Yes
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7. ker(A − λIn) �= {�0} because (A − λIn)�v = �0. The
matrix A − λIn fails to be invertible.

9.

[
a b
0 d

]
11.

⎡
⎣a −2−2a

3

c −3−2c
3

⎤
⎦

13. All vectors of the form

[
3t
5t

]
, where t �= 0 (solve the

linear system A�x = 4�x)

15. The nonzero vectors in L are the eigenvectors with
eigenvalue 1, and the nonzero vectors in L⊥ have
eigenvalue −1. Construct an eigenbasis by picking
one of each. This transformation is diagonalizable.

17. There are no eigenvectors and eigenvalues (compare
with Example 4). There is no eigenbasis, and the
transformation fails to be diagonalizable.

19. The nonzero vectors in L are the eigenvectors with
eigenvalue 1, and the nonzero vectors in the plane
L⊥ have eigenvalue 0. Construct an eigenbasis by
picking one nonzero vector in L and two linearly in-
dependent vectors in L⊥. (Compare with Example
3). This transformation is diagonalizable.

21. All nonzero vectors in R3 are eigenvectors with
eigenvalue 5. Any basis of R3 is an eigenbasis, so
that the transformation is diagonalizable.

25.

27.

29.

31.

33. �x(t) = 2t
[

1
1

]
+ 6t
[−1

1

]
. We need a ma-

trix A with eigenvectors

[
1
1

]
,

[−1
1

]
, with as-

sociated eigenvalues 2 and 6, respectively. Let

A

[
1 −1
1 1

]
=
[

2 −6
2 6

]
and solve for A. We find

A =
[

4 −2
−2 4

]
.

35. If λ is an eigenvalue of S−1 AS, with corresponding
eigenvector �v, then

S−1 AS �v = λ�v,

so

AS �v = Sλ�v = λS �v,

and λ is an eigenvalue of A (S �v is an eigenvector).
Likewise, if �w is an eigenvector of A, then S−1 �w is
an eigenvector of S−1 AS with the same eigenvalue.

37. a. A represents a reflection about a line followed
by a scaling by a factor of

√
32 + 42 = 5.

Therefore, the eigenvalues are 5 and −5.
b. Solving the linear systems A�x = 5�x and A�x =

−5�x we find the eigenbasis

[
2
1

]
,

[−1
2

]
.

c. S =
[

2 −1
1 2

]
, B =
[

5 0
0 −5

]
39. V consists of all lower triangular 2×2 matrices, and

dim V = 3.

41. A basis is

[
2 −1
2 −1

]
,

[−1 1
−2 2

]
, and dim V = 2.

43. V consists of all diagonal matrices, so that
dim V = n.

45. dim V = 3

47. Let A�v = λ�v. If λ = 0, then �v is in the kernel of A.
If λ �= 0, then �v = A

(
1
λ
�v
)

, so that �v is in the image
of A.

49. A =
[

0 1
0 0

]
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51. Eigenbasis

[
1

−1

]
,

[
1
1

]
, S =

[
1 1

−1 1

]
, B =[

0 0
0 2

]
53. To form an eigenbasis for this matrix of rank 1, con-

catenate a basis of the kernel with a nonzero vector

in the image, for example,

⎡
⎣−2

1
0

⎤
⎦ ,

⎡
⎣−3

0
1

⎤
⎦ ,

⎡
⎣ 1

2
3

⎤
⎦.

The matrices S =
⎡
⎣−2 −3 1

1 0 2
0 1 3

⎤
⎦ and B =⎡

⎣ 0 0 0
0 0 0
0 0 14

⎤
⎦ diagonalize A.

55. S =
[

3 −4
4 3

]
, B =
[

1 0
0 0

]
57. Matrix A represents a reflection, with eigenvalues

1 and −1. Solve the equation A�x = �x to find an
eigenvector with eigenvalue 1. For example, S =[

3 1
−1 3

]
and B =

[
1 0
0 −1

]
.

59. Pick two linearly independent vectors �v1, �v2 on the
plane and one perpendicular vector �v3, for exam-

ple, S =
⎡
⎣ | | |

�v1 �v2 �v3
| | |

⎤
⎦ =
⎡
⎣ 2 0 1

1 1 −2
0 1 2

⎤
⎦ and

B =
⎡
⎣ 1 0 0

0 1 0
0 0 0

⎤
⎦.

61. Pick two linearly independent solutions �v1, �v2 of
the equation A�x = �x , let �v3 = �v1 × �v2, and

make S =
⎡
⎣ | | |

�v1 �v2 �v3
| | |

⎤
⎦ =
⎡
⎣−2 −3 1

1 0 2
0 1 3

⎤
⎦ and

B =
⎡
⎣ 1 0 0

0 1 0
0 0 −1

⎤
⎦.

63. Matrix A represents the orthogonal projection onto

span

⎡
⎣ 1

2
3

⎤
⎦. We can let S =

⎡
⎣−2 −3 1

1 0 2
0 1 3

⎤
⎦ and

B =
⎡
⎣ 0 0 0

0 0 0
0 0 1

⎤
⎦.

65. The subspaces spanned by an eigenvector

67. c(t) = 300(1.1)t − 200(0.9)t

r(t) = 900(1.1)t − 100(0.9)t

69. a. c(t) = 100(1.5)t , r(t) = 200(1.5)t

b. c(t) = 100(0.75)t , r(t) = 100(0.75)t

c. c(t) = 300(0.75)t + 200(1.5)t ,
r(t) = 300(0.75)t + 400(1.5)t

71.

⎡
⎣a(t + 1)

b(t + 1)

c(t + 1)

⎤
⎦ = 1

2

⎡
⎣0 1 1

1 0 1
1 1 0

⎤
⎦

︸ ︷︷ ︸
A

⎡
⎣a(t)

b(t)
c(t)

⎤
⎦. The three

given vectors are eigenvectors of A, with eigenval-
ues 1, − 1

2 , − 1
2 , respectively.

a. a(t) = 3 + 3
(
− 1

2

)t
, b(t) = 3 − 2

(
− 1

2

)t
,

c(t) = 3 −
(
− 1

2

)t
b. Benjamin will have the most.

7.2 Answers to more theoretical questions are omitted.

1. 1, 3 3. 1, 3 5. None

7. 1, 1, 1 9. 1, 2, 2
11. −1 13. 1

15. Eigenvalues λ1,2 = 1±√
k. Two distinct real eigen-

values if k is positive; none, if k is negative.

17. A represents a reflection followed by a scaling, with
a scaling factor of

√
a2 + b2. The eigenvalues are

±
√

a2 + b2.

19. True [the discriminant (tr A)2 − 4 det A is positive]

21. Write f A(λ) = (λ1 − λ) · · · (λn − λ) to show that
the coefficient of (−λ)n−1 is λ1 +· · ·+λn . But that
coefficient is tr A, by Theorem 7.2.5.

23. A and B have the same characteristic polynomial
and the same eigenvalues, with the same algebraic
multiplicities.

25. A

[
b
c

]
=
[

b
c

]
and A

[
1

−1

]
= (a − b)

[
1

−1

]
. Note

that |a − b| < 1. Phase portrait when a > b:

b
c

line spanned by

line spanned by
1

−1

27. a. �x(t) = 1

3

[
1
2

]
+ 2

3

(
1

4

)t [ 1
−1

]
for �x0 = �e1

�x(t) = 1

3

[
1
2

]
− 1

3

(
1

4

)t [ 1
−1

]
for �x0 = �e2
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e�1

e�2

b. At = [ At �e1 At �e2
]

approaches
1

3

[
1 1
2 2

]
, by

part a.

c. At → 1

b + c

[
b b
c c

]
29. A�e = �e, so that �e is an eigenvector with associated

eigenvalue 1.

31. A and AT have the same eigenvalues, by Exer-
cise 22. Since the row sums of AT are 1, we can
use the results of Exercises 29 and 30: 1 is an
eigenvalue of A; if λ is an eigenvalue of A, then
−1 < λ ≤ 1. �e need not be an eigenvector of A;

consider A =
[

0.9 0.9
0.1 0.1

]
.

33. a. f A(λ) = −λ3 + cλ2 + bλ + a

b. M =
⎡
⎣ 0 1 0

0 0 1
π −5 17

⎤
⎦

35. A =

⎡
⎢⎢⎣

0 −1 0 0
1 0 0 0
0 0 0 −1
0 0 1 0

⎤
⎥⎥⎦

37. We can write f A(λ) = (λ − λ0)
2g(λ). By the prod-

uct rule, f ′
A(λ) = 2(λ − λ0)g(λ) + (λ − λ0)

2g′(λ),
so that f ′

A(λ0) = 0.

39. It’s a straightforward computation.

41. tr
(

S−1(AS)
) = tr
(
(AS)S−1

) = tr A

43. No, since tr(AB − B A) = 0 and tr(In) = n

45. For k = 3

47. If we write M = [ �v �w ], then it is required that
A�v = 2�v and A �w = 3 �w. Thus, a nonzero M with
the given property exists if 2 or 3 is an eigenvalue
of A.

49. If 2, 3, or 4 is an eigenvalue of A

7.3 Answers to more theoretical questions are omitted.

1. Eigenbasis:

[
1
0

]
,

[
4
1

]
, with eigenvalues 7, 9

3. S =
[

3 1
−2 1

]
and B =

[
4 0
0 9

]
5. No real eigenvalues.

7. Eigenbasis: �e1, �e2, �e3, with eigenvalues 1, 2, 3

9. S =
⎡
⎣ 1 0 −1

0 1 0
0 0 1

⎤
⎦ and B =

⎡
⎣ 1 0 0

0 1 0
0 0 0

⎤
⎦

11. Eigenbasis:

⎡
⎣1

1
1

⎤
⎦,
⎡
⎣ 1

−1
0

⎤
⎦,
⎡
⎣ 1

0
−1

⎤
⎦, with eigenvalues

3, 0, 0

13. S =
⎡
⎣ 0 1 1

1 −3 −1
0 1 2

⎤
⎦ and B =

⎡
⎣ 0 0 0

0 1 0
0 0 −1

⎤
⎦

15. Eigenvectors:

⎡
⎣0

1
0

⎤
⎦,
⎡
⎣ 1

−1
2

⎤
⎦, with eigenvalues 0, 1;

no eigenbasis

17. Eigenbasis: �e2, �e4, �e1, �e3 − �e2, with eigenvalues 1,
1, 0, 0

19. Eigenvectors

⎡
⎣ 1

0
−1

⎤
⎦,
⎡
⎣ 1

0
0

⎤
⎦ with eigenvalues 0, 1.

Matrix A fails to be diagonalizable.

21. We want A

[
1
2

]
=
[

1
2

]
and A

[
2
3

]
= 2

[
2
3

]
=
[

4
6

]
;

that is, A

[
1 2
2 3

]
=
[

1 4
2 6

]
. The unique solution

is A =
[

5 −2
6 −2

]
.

23. The only eigenvalue of A is 1, with E1 = span(�e1).
There is no eigenbasis. A represents a horizontal
shear.

25. The geometric multiplicity is always 1.

27. f A(λ) = λ2 − 5λ + 6 = (λ − 2)(λ − 3), so that the
eigenvalues are 2, 3.

29. Both multiplicities are n − r .

31. They are the same.

33. If B = S−1 AS, then B − λIn = S−1(A − λIn)S.

35. No (consider the eigenvalues)

37. a. A�v · �w = (A�v)T �w = �vT AT �w = �vT A �w =
�v · A �w

b. Suppose A�v = λ�v and A �w = μ �w. Then
A�v · �w = λ(�v · �w) and �v · A �w = μ(�v · �w). By part
a, λ(�v · �w) = μ(�v · �w), so that (λ−μ)(�v · �w) = 0.
Since λ �= μ, it follows that �v · �w = 0, as
claimed.

39. a. E1 = V and E0 = V ⊥, so that the geometric
multiplicity of 1 is m and that of 0 is n − m. The
algebraic multiplicities are the same. See Exer-
cise 31.

b. E1 = V and E−1 = V ⊥, so that the multiplicity
of 1 is m and that of −1 is n − m.
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41. Diagonalizable for all a

43. Diagonalizable for positive a

45. Diagonalizable for all a, b, c

47. Diagonalizable only if a = b = c = 0

49. Never diagonalizable

51. f A(λ) = −λ3 + cλ2 + bλ + a

53. a. B =

⎡
⎢⎢⎢⎢⎣

0 0 a ∗ ∗
1 0 b ∗ ∗
0 1 c ∗ ∗
0 0 0 w x
0 0 0 y z

⎤
⎥⎥⎥⎥⎦ =
[

B1 B2

0 B3

]

b. Note that A is similar to B. Thus,
f A(λ) = fB(λ) = fB3(λ) fB1(λ)

= h(λ)(−λ3 + cλ2 + bλ + a), where
h(λ) = fB3(λ). See Exercise 51.

c. f A(A)�v = h(A)(−A3 + cA2 + bA + aI5)�v =
h(A) (−A3 �v + cA2 �v + bAv + a �v)︸ ︷︷ ︸

�0

= �0

55. We want A − 7I3 to be noninvertible. For example,

A =
⎡
⎣ 8 1 1

1 8 1
1 1 8

⎤
⎦.

7.4 Answers to more theoretical questions are omitted.

1. At =
[

1 3t − 1
0 3t

]

3. At = 1

3

[
5t + 2(−1)t 5 − (−1)t

2 · 5t − 2(−1)t 2 · 5t + (−1)t

]

5. At = 7t−1
[

1 2
3 6

]

7. At = 1

3

[
1 + 2(0.25)t 1 − (0.25)t

2 − 2(0.25)t 2 + (0.25)t

]

9. At = 1

2

⎡
⎣ 0 0 0

−2(−1)t 2(−1)t 0
1 + (−1)t 1 − (−1)t 2

⎤
⎦

11. At = 1

2

⎡
⎣ 4 − 2t 2 − 2t 4 − 3 · 2t

−4 −2 −4
2t 2t 3 · 2t

⎤
⎦

13. At �x0 =
[

1 + 2 · 3t

2 · 3t

]

15. At �x0 = 1

3

[
1 + 2(0.25)t

2 − 2(0.25)t

]

17. At �x0 =
⎡
⎣ 4 − 2t

−4
2t

⎤
⎦

19. At �x0 =
⎡
⎣ 1 + 2t + 3 · 6t

−2t + 5 · 6t

−1 + 2 · 6t

⎤
⎦

21. lim
t→∞ At = 1

3

[
1 1
2 2

]

23. lim
t→∞ At = 1

22

⎡
⎣ 7 7 7

10 10 10
5 5 5

⎤
⎦

25. lim
t→∞(At �x0) = 1

17

[
10
7

]

27. lim
t→∞(At �x0) = 1

22

⎡
⎣ 7

10
5

⎤
⎦

29. lim
t→∞(At �x0) = 1

84

⎡
⎣ 24

29
31

⎤
⎦

33. a. A = 1

2

⎡
⎣0 1 1

1 0 1
1 1 0

⎤
⎦

c. �x(t) =
(

1 + c0

3

)⎡⎣1
1
1

⎤
⎦ +
(

−1

2

)t
⎡
⎣ 0

1
−1

⎤
⎦ +

(
−1

2

)t c0

3

⎡
⎣−1

−1
2

⎤
⎦

Carl wins if he chooses c0 < 1.

35. a. A =
[

0.1 0.2
0.4 0.3

]
, �b =
[

1
2

]

b. B =
[

A �b
0 1

]
c. The eigenvalues of A are 0.5 and −0.1, those of

B are 0.5, −0.1, 1. If �v is an eigenvector of A,

then

[ �v
0

]
is an eigenvector of B. Furthermore,

[
(I2 − A)−1�b

1

]
=
⎡
⎣2

4
1

⎤
⎦ is an eigenvector of B

with eigenvalue 1.

d. Will approach (I2 − A)−1�b =
[

2
4

]
, for any ini-

tial value

37. Let �x(t) =
⎡
⎣ r(t)

p(t)
w(t)

⎤
⎦. Then �x(t + 1) = A�x(t) where

A =

⎡
⎢⎢⎣

1
2

1
4 0

1
2

1
2

1
2

0 1
4

1
2

⎤
⎥⎥⎦. Eigenbasis for A:

⎡
⎣1

2
1

⎤
⎦,
⎡
⎣ 1

0
−1

⎤
⎦,

⎡
⎣ 1

−2
1

⎤
⎦, with eigenvalues 1, 1

2 , 0.
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�x0 = �e1 = 1

4

⎡
⎣1

2
1

⎤
⎦+ 1

2

⎡
⎣ 1

0
−1

⎤
⎦+ 1

4

⎡
⎣ 1

−2
1

⎤
⎦,

so �x(t) = 1

4

⎡
⎣1

2
1

⎤
⎦+
(

1

2

)t+1
⎡
⎣ 1

0
−1

⎤
⎦ for t > 0.

The proportion in the long run is 1:2:1.
39. All real numbers λ are eigenvalues, with corre-

sponding eigenfunctions Ce(λ+1)t .
41. The symmetric matrices are eigenmatrices with

eigenvalue 2, and the skew-symmetric matrices have
eigenvalue 0. Yes, L is diagonalizable, since the sum
of the dimensions of the eigenspaces is 4.

43. 1 and i are “eigenvectors” with eigenvalues 1 and
−1, respectively. Yes, T is diagonalizable; 1, i is an
eigenbasis.

45. No eigensequences
47. The nonzero polynomials of the form a + cx2 are

eigenfunctions with eigenvalue 1, and bx (with b �=
0) has eigenvalue −1. Yes, T is diagonalizable, with
eigenbasis 1, x, x2.

49. 1, 2x − 1, and (2x − 1)2 are eigenfunctions with
eigenvalues 1, 3, and 9, respectively. These func-
tions form an eigenbasis, so that T is indeed diago-
nalizable.

51. The only eigenfunctions are the nonzero constant
functions, with eigenvalue 0.

55. A =
[

0 1
0 0

]
, B =
[

0 0
0 1

]
, for example

59. Exercise 58 implies that A and B are both similar to

the matrix

⎡
⎣0 1 0

0 0 0
0 0 0

⎤
⎦, so that A is similar to B.

65. A basis of V is

[
1 0
2 0

]
,

[
0 1
0 −1

]
, and

dim V = 2.

67. The dimension is 32 + 22 = 13.
71. The eigenvalues are 1 and 2, and

(A − I3)(A − 2I3) = 0. Thus A is diagonalizable.
73. If λ1, . . . , λm are the distinct eigenvalues of

A, then f A(λ) = (λ − λ1) · · · (λ − λm)h(λ)

for some polynomial h(λ), so that f A(A) =
(A − λ1 In) · · · (A − λm In)︸ ︷︷ ︸

0

h(A) = 0, by Exer-

cise 70.

7.5 Answers to more theoretical questions are omitted.

1.
√

18
(

cos
(
−π

4

)
+ i sin
(
−π

4

))
3. cos

(
2πk

n

)
+ i sin

(
2πk

n

)
, for k = 0, . . . , n − 1

5. If z = r
(
cos φ + i sin φ

)
, then

w = n
√

r

(
cos

(
φ + 2πk

n

)
+ i sin

(
φ + 2πk

n

))
,

for k = 0, . . . , n − 1.

7. Clockwise rotation through an angle of π
4 followed

by a scaling by a factor of
√

2

9. Spirals outward since |z| > 1

11. f (λ) = (λ − 1)(λ − 1 − 2i)(λ − 1 + 2i)

13. S =
[

2 0
0 1

]
, for example

15. S =
[

0 1
1 2

]
, for example

17. S =
[

2 0
−1 2

]
, for example

19. a. tr A = m, det A = 0
b. tr B = 2m − n, det B = (−1)n−m . Compare

with Exercise 7.3.39

21. 2 ± 3i 23. 1,−1

2
±

√
3

2
i

25. ±1,±i 27. −1,−1, 3

29. trA = λ1 + λ2 + λ3 = 0 and det A = λ1λ2λ3 =
bcd > 0. Therefore, there are one positive and two
negative eigenvalues; the positive one is largest in
absolute value.

31. b. Eigenvalues λ1 = 1, λ2,3 ≈ −0.2 ± 0.136i ,
λ4,5 ≈ 0.134 ± 0.132i . Note that |λ j | < 1 for
j = 2, 3, 4, 5. Having five distinct eigenvalues,
matrix A is diagonalizable.

c. �xequ = [0.2 0.2 0.2 0.2 0.2]T

d. The proof is analogous to the proof of Theo-
rem 7.4.1. Note that lim

t→∞(λt
j ) = 0 for j =

2, 3, 4, 5 since |λ j | < 1. See Example 5.
e. lim

t→∞ At is the 5 × 5 matrix whose entries are

all 0.2.

33. c. Hint: Let λ1, λ2, . . . , λ5 be the eigenvalues,
with λ1 > |λ j |, for j = 2, . . . , 5. Let
�v1, �v2, . . . , �v5 be corresponding eigenvectors.
Write �ei = c1 �v1 + · · · + c5 �v5. Then i th col-
umn of At = At �ei = c1λ

t
1 �v1 +· · ·+ c5λ

t
5 �v5 is

nearly parallel to �v1 for large t .

45. If a is nonzero.

47. If a is nonzero.

49. If a is neither 1 nor 2.

51. Q is a field.

53. The binary digits form a field.

55. H is not a field (multiplication is noncommuta-
tive).
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7.6 Answers to more theoretical questions are omitted.

1. Stable 3. Not stable

5. Not stable 7. Not stable

9. Not stable 11. For |k| < 1

13. For all k 15. Never stable

17. �x(t) =
[− sin(φt)

cos(φt)

]
, where φ = arctan

(
4
3

)
; a

circle

19. �x(t) = √
13

t
[− sin(φt)

cos(φt)

]
, where φ = arctan

(
3
2

)
;

spirals outward

21. �x(t) = √
17

t
[

5 sin(φt)
cos(φt) + 3 sin(φt)

]
, where φ =

arctan
(

1
4

)
; spirals outward

23. �x(t) =
(

1
2

)t [ 5 sin(φt)
cos(φt) + 3 sin(φt)

]
, where φ =

arctan
(

3
4

)
; spirals inward

25. Not stable 27. Stable

29. May or may not be stable; consider A = ± 1
2 I2.

33. The matrix represents a rotation followed by a scal-
ing with a scaling factor of

√
0.992 + 0.012 < 1.

Trajectory spirals inward.

35. a. Choose an eigenbasis �v1, . . . , �vn and write

�x0 = c1 �v1 + · · · + cn �vn .

Then

�x(t) = c1λ
t
1 �v1 + · · · + cnλt

n �vn

and

‖�x(t)‖ ≤ |c1|‖�v1‖ + · · · + |cn |‖�vn‖ = M

(use the triangle inequality ‖�u + �w‖
≤ ‖�u‖ + ‖ �w‖, and observe that |λt

i | ≤ 1).

b. The trajectory �x(t) =
[

1 1
0 1

]t [
0
1

]
=
[

t
1

]
is not bounded. This does not contradict part
a, since there is no eigenbasis for the matrix[

1 1
0 1

]
.

39.

[
2
4

]
is a stable equilibrium.

CHAPTER 8
8.1 Answers to more theoretical questions are omitted.

1.

[
1
0

]
,

[
0
1

]

3.
1√
5

[
2
1

]
,

1√
5

[−1
2

]

5.
1√
2

⎡
⎣−1

1
0

⎤
⎦, 1√

6

⎡
⎣−1

−1
2

⎤
⎦, 1√

3

⎡
⎣1

1
1

⎤
⎦

7. S = 1√
2

[
1 −1
1 1

]
, D =
[

5 0
0 1

]

9. S =
⎡
⎣1/

√
2 −1/

√
2 0

0 0 1
1/

√
2 1/

√
2 0

⎤
⎦, D =

⎡
⎣3 0 0

0 −3 0
0 0 2

⎤
⎦

11. Same S as in 9, D =
⎡
⎣2 0 0

0 0 0
0 0 1

⎤
⎦

13. Yes (reflection about E1)

15. Yes (can use the same orthonormal eigenbasis)

17. Let A be the n × n matrix whose entries are all
1. The eigenvalues of A are 0 (with multiplicity
n − 1) and n. Now B = q A + (p − q)In , so
that the eigenvalues of B are p − q (with multi-
plicity n − 1) and qn + p − q . Therefore, det B =
(p − q)n−1(qn + p − q).

21. 48 = 6 · 4 · 2 (note that A has 6 unit eigenvectors)

23. The only possible eigenvalues are 1 and −1 (be-
cause A is orthogonal), and the eigenspaces E1
and E−1 are orthogonal complements (because A
is symmetric). Hence, A represents the reflection
about a subspace of Rn .

25. S = 1√
2

⎡
⎢⎢⎢⎢⎣

1 1 0 0 0
0 0 1 1 0
0 0 0 0

√
2

0 0 1 −1 0
1 −1 0 0 0

⎤
⎥⎥⎥⎥⎦

27. If n is even, we have the eigenbasis �e1 − �en , �e2 −
�en−1, . . . , �en/2 − �en/2+1, �e1 + �en , �e2 + �en−1, . . . ,

�en/2 + �en/2+1, with associated eigenvalues 0 (n/2
times) and 2 (n/2 times).

29. Yes 31. True 33. θ = 2
3π = 120◦

35. θ = arccos(− 1
n ). Hint: If �v0, . . . , �vn are such vec-

tors, let A = [ �v0 · · · �vn
]
. Then the noninvert-

ible matrix AT A has 1’s on the diagonal and cos θ

everywhere else. Now use Exercise 17.

37. In Example 4 we see that the image of the unit circle
will be an ellipse with semimajor axis 3 and semi-
minor axis 2. Thus 2 ≤ ‖A�u‖ ≤ 3.

39. Let �v1, �v2, �v3 be an orthonormal eigenbasis with
associated eigenvalues −2, 3, and 4, respectively.
Consider a unit vector �u = c1 �v1 + c2 �v2 + c3 �v3.
Then A�u = −2c1 �v1 + 3c2 �v2 + 4c3 �v3 and �u · A�u =
−2c2

1 +3c2
2 +4c2

3 ≤ 4c2
1 +4c2

2 +4c2
3 = 4. Likewise,

�u · A�u = −2c2
1 + 3c2

2 + 4c2
3 ≥ −2c2

1 − 2c2
2 − 2c2

3 =
−2. Thus −2 ≤ �u · A�u ≤ 4.
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41. There exist an orthogonal S and a diagonal D such
that A = SDS−1. Taking cube roots of the diago-
nal entries of D, we can write D = D3

0 for some
diagonal D0. Now A = SDS−1 = SD3

0 S−1 =
(SD0S−1)3 = B3, where B = SD0S−1.

43. Consider the eigenvectors �v1 =
⎡
⎣1

1
1

⎤
⎦ and �v2 =

⎡
⎣ 1

−1
0

⎤
⎦, with eigenvalues 24 and −9, respectively.

There must exist a nonzero solution of the form
�v = a �v1+b�v2. Now �v · A�v = (a �v1+b�v2)·(24a �v1−
9b�v2) = 72a2 − 18b2 = 0 when b = ±2a. Let

a = 1 and b = 2 to find the solution �v =
⎡
⎣ 3

−1
1

⎤
⎦.

47. a. i j th entry of |AB| = ∣∣∑n
k=1 aikbk j

∣∣
≤∑n

k=1 |aik ||bk j |
= i j th entry of |A||B|

b. By induction on t , using part a: |At | =
|At−1 A| ≤ |At−1||A| ≤ |A|t−1|A| = |A|t

49. Let λ be the maximum of all |rii |, for i = 1, . . . , n.
Note that λ < 1. Then |R| ≤ λ(In + U ), where U
is upper triangular with uii = 0 and ui j = |ri j |/λ
if j > i . Note that U n = 0, by Exercise 46a. Now
|Rt | ≤ |R|t ≤ λt (In + U )t ≤ λt tn(In + U + · · · +
U n−1). From calculus we know that lim

t→∞ λt tn = 0.

8.2 Answers to more theoretical questions are omitted.

1.

[
6 −3.5

−3.5 8

]

3.

⎡
⎣3 0 3

0 4 3.5
3 3.5 5

⎤
⎦

5. Indefinite 7. Indefinite

9. a. A2 is symmetric.
b. A2 = −AT A is negative semidefinite, so that its

eigenvalues are ≤0.
c. The eigenvalues of A are imaginary (that is, of

the form bi , for a real b). The zero matrix is the
only skew-symmetric matrix that is diagonaliz-
able over R.

11. The same (the eigenvalues of A and A−1 have the
same signs).

13. aii = q(�ei ) > 0.

15. Ellipse; principal axes spanned by

[
2
1

]
and

[−1
2

]
;

equation 7c2
1 + 2c2

2 = 1

17. Hyperbola; principal axes spanned by

[
2
1

]
and[−1

2

]
, equation 4c2

1 − c2
2 = 1

19. A pair of lines; principal axes spanned by

[
2

−1

]
and[

1
2

]
; equation 5c2

2 = 1

Note that we can write x2
1 + 4x1x2 + 4x2

2
= (x1 + 2x2)

2 = 1, so that x1 + 2x2 = ±1.

21. a. The first is an ellipsoid, the second a hyper-
boloid of one sheet, and the third a hyperboloid
of two sheets (see any text in multivariable cal-
culus). Only the ellipsoid is bounded, and the
first two surfaces are connected.

b. The matrix A of this quadratic form has positive
eigenvalues λ1 ≈ 0.56, λ2 ≈ 4.44, and λ3 = 1,
with corresponding unit eigenvectors

�v1 ≈
⎡
⎣ 0.86

0.19
−0.47

⎤
⎦ , �v2 ≈

⎡
⎣0.31

0.54
0.78

⎤
⎦ ,

�v3 ≈
⎡
⎣ 0.41

−0.82
0.41

⎤
⎦ .

Since all eigenvalues are positive, the surface is
an ellipsoid. The points farthest from the origin
are

± 1√
λ1

�v1 ≈ ±
⎡
⎣ 1.15

0.26
−0.63

⎤
⎦

and those closest are

± 1√
λ2

�v2 ≈ ±
⎡
⎣0.15

0.26
0.37

⎤
⎦ .

23. Yes; A = 1
2 (M + MT )

25. q(�v) = �v · λ�v = λ

27. The closed interval [λn, λ1]

29. B = 1√
5

[
6 2

−3 4

]

31. B = 1

5

[
14 −2
−2 11

]

33. L = 1√
2

[
4 0

−1 3

]
35. L =

⎡
⎣ 2 0 0

−2 3 0
4 3 1

⎤
⎦

39. For 0 < θ < arccos

(
− 1

n − 1

)
41. 3
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43. im T = span(x2
1 ), rank T = 1,

ker T = span(x1x2, x2
2 ), nullity T = 2

45. im T = P2, rank T = 3,
ker T = span(x2

3 − x2
2 , x1x3 − x1x2, x2x3 − x2

2 ),
nullity T = 3

47. The determinant of the mth principal submatrix is
positive if m is even, and negative if m is odd.

55. Note that det

[
aii ai j

a ji a j j

]
= aii a j j − a2

i j > 0, so

that aii > ai j or a j j > ai j .

57. q(�x) = λ1c2
1 + λ2c2

2 + λ3c2
3 = 1, with positive λi ,

defines an ellipsoid.

59. q(�x) = λ1c2
1 = 1, with positive λ1, defines a pair of

parallel planes, c1 = ± 1√
λ1

.

61. q(�x) = λ1c2
1 + λ2c2

2 + λ3c2
3 = 1, with λ1 > 0,

λ2 > 0, λ3 < 0 defines a hyperboloid of one sheet.

63. q(c1 �w1 + · · · + cn �wn) = (c1 �w1 + · · · + cn �wn) ·
(c1λ1 �w1 + · · · + cnλn �wn) = c2

1λ1‖ �w1‖2 + · · · +
c2

nλn‖ �wn‖2 = c2
1 + · · · + c2

n since ‖ �wi‖2 = 1

λi
, by

construction.

65. Adapt the method outlined in Exercise 63. Consider
an orthonormal eigenbasis �v1, �v2 for A with associ-
ated eigenvalues λ1 > 0 and λ2 < 0. Now let �w1 =
�v1/

√
λ1 and �w2 = �v2/

√−λ2, so that ‖ �w1‖2 =
1/λ1 and ‖ �w2‖2 = −1/λ2. Then q(c1 �w1+c2 �w2) =
(c1 �w1+c2 �w2)·(λ1c1 �w1+λ2c2 �w2) = λ1c2

1‖ �w1‖2+
λ2c2

2‖ �w2‖2 = c2
1 − c2

2.

67. Adapt the method outlined in Exercises 63
and 65. Consider an orthonormal eigenbasis
�v1, . . . , �v p, . . . , �vr , . . . , �vn for A such that the asso-
ciated eigenvalues λ j are positive for j = 1, . . . , p,
negative for j = p + 1, . . . , r , and zero for j =
r + 1, . . . , n. Let �w j = �v j/

√|λ j | for j = 1, . . . , r
and �w j = �v j for j = r + 1, . . . , n.

69. Note that �xT RT AR �x = (R �x)T A(R �x) ≥ 0 for all �x
in Rm . Thus RT AR is positive semidefinite. RT AR
is positive definite if (and only if) ker R = {�0}.

71. Anything can happen: The matrix RT AR may be
positive definite, positive semidefinite, negative def-
inite, negative semidefinite, or indefinite.

8.3 Answers to more theoretical questions are omitted.
1. σ1 = 2, σ2 = 1

3. All singular values are 1 (since AT A = In).

5. σ1 = σ2 =
√

p2 + q2

7.

[
0 1

−1 0

] [
2 0
0 1

] [
0 1
1 0

]

9.
1√
5

[
1 −2
2 1

] [
5 0
0 0

]
1√
5

[
1 2

−2 1

]

11.

⎡
⎣0 1 0

1 0 0
0 0 1

⎤
⎦
⎡
⎣2 0

0 1
0 0

⎤
⎦[0 1

1 0

]

13. I2

[
3
√

5 0
0

√
5

]
1√
5

[
2 1

−1 2

]
15. Singular values of A−1 are the reciprocals of those

of A.

21.

[
0.8 0.6

−0.6 0.8

] [
9 −2

−2 6

]

23. AAT �ui =
{

σ 2
i �ui for i = 1, . . . , r

�0 for i = r + 1, . . . , n

The nonzero eigenvalues of AT A and AAT are the
same.

25. Choose vectors �v1 and �v2 as in Theorem 8.3.3.
Write

�u = c1 �v1 + c2 �v2.

Note that
‖�u‖2 = c2

1 + c2
2 = 1.

Now
A�u = c1 A�v1 + c2 A�v2,

so that

‖A�u‖2 = c2
1‖A�v1‖2 + c2

2‖A�v2‖2

= c2
1σ 2

1 + c2
2σ 2

2

≤ (c2
1 + c2

2)σ 2
1

= σ 2
1 .

We conclude that ‖A�u‖ ≤ σ1. The proof of
σ2 ≤ ‖A�u‖ is analogous.

27. Apply Exercise 26 to a unit eigenvector �v with as-
sociated eigenvalue λ.

33. No; consider A =
[

0 1
2 0

]
.

35. (AT A)−1 AT �ui =

⎧⎪⎨
⎪⎩

1

σi
�vi for i = 1, . . . , m

�0 for i = m + 1, . . . , n

CHAPTER 9

9.1 Answers to more theoretical questions are omitted.

1. x(t) = 7e5t 3. P(t) = 7e0.03t

5. y(t) = −0.8e0.8t

7. x(t) = 1
1−t , has a vertical asymptote at t = 1.

9. x(t) = ((1 − k)t + 1
)1/(1−k)

11. x(t) = tan t
13. a. About 104 billion dollars

b. About 150 billion dollars
15. The solution of the equation ekT/100 = 2 is

T = 100 ln(2)

k
≈ 69

k
.



496 ANSWERS TO ODD-NUMBERED EXERCISES

17.

19.

21. �x(t) =
[

1 t
0 1

]
�x0 23. �x(t) is a solution.

27. �x(t) = 0.2e−6t
[

3
−2

]
+ 0.4e−t

[
1
1

]

29. �x(t) = 2

[
2

−1

]
+ e5t
[

1
2

]

31. �x(t) = et

⎡
⎣ 1

−2
1

⎤
⎦

33.
E−1

E−6

35. E5

E0

0

37. E1.1 = span

[
3
1

]
and E1.6 = span

[
1
2

]
. Looks

roughly like the phase portrait in Figure 10.

39. E1 = span

[
2

−1

]
and E1.4 = span

[
2

−3

]
. Looks

roughly like the phase portrait in Exercise 35.

41.

0

43. a. Competition
b.

x

y

c. Species 1 “wins” if
y(0)

x(0)
< 2.

45. b.

x

y

c. Species 1 “wins” if
y(0)

x(0)
<

1

2
.

47. a. Symbiosis

b. The eigenvalues are 1
2 (−5 ±

√
9 + 4k2). There

are two negative eigenvalues if k < 2; if k > 2,
there is a negative and a positive eigenvalue.

49. g(t) = 45e−0.8t − 15e−0.4t and
h(t) = −45e−0.8t + 45e−0.4t

53. �x(t) = ept
[

cos(qt)
sin(qt)

]
, a spiral if p �= 0 and a circle

if p = 0. Approaches the origin if p is negative.

55. Eigenvalues λ1,2 = 1
2 (−q ±

√
q2 − 4p); both

eigenvalues are negative.



ANSWERS TO ODD-NUMBERED EXERCISES 497

trajectory 1

trajectory 2

w

E  1

E  2

door slams

trajectory 3

door slams if
ω(0)

θ(0)
< λ2.

9.2 Answers to more theoretical questions are omitted.
1. 1 3.

√
2e3π i/4

5. e−0.1t
(
cos(2t) − i sin(2t)

)
; spirals inward, in the

clockwise direction

7. Not stable 9. Stable
11. a. B = 2A

d. The zero state is a stable equilibrium of the sys-

tem
d �x
dt

= grad(q) if (and only if) q is negative

definite (then, the eigenvalues of A and B are all
negative).

13. The eigenvalues of A−1 are the reciprocals of the
eigenvalues of A; the real parts have the same sign.

15.
E0

0

17. If |k| < 1

19. False; consider A with eigenvalues 1, 2, −4.

21. a.

∣∣∣∣∣∣∣∣
db

dt
= 0.5b + s

ds

dt
= 0.07s

∣∣∣∣∣∣∣∣
b. b(t) = 50,000e0.07t − 49,000e0.5t

s(t) = 1,000e0.07t

27. �x(t) =
[

cos(3t) − sin(3t)
sin(3t) cos(3t)

] [
a
b

]
, where a, b are

arbitrary constants

29. Eigenvalue 2 + 4i with corresponding eigenvector[
i

−1

]
. Use Theorem 9.2.6, with p = 2, q = 4,

�w =
[

1
0

]
, �v =
[

0
−1

]
.

�x(t) = e2t
[

1 0
0 −1

] [
cos(4t) − sin(4t)
sin(4t) cos(4t)

] [
a
b

]
31. Eigenvalue −1 + 2i with corresponding eigenvec-

tor

[
i
1

]
. �x(t) = e−t

[
cos(2t) − sin(2t)
sin(2t) cos(2t)

] [
1

−1

]
=

e−t
[

cos(2t) + sin(2t)
sin(2t) − cos(2t)

]
. Spirals inward, in the

counterclockwise direction.

33. Eigenvalue i with corresponding eigenvec-

tor

[
1

1 + i

]
. �x(t) =

[
0 1
1 1

] [
cos t
sin t

]
=[

sin t
sin t + cos t

]
. An ellipse with clockwise ori-

entation.

39. The system
d �c
dt

=
⎡
⎣0 1 0

0 0 1
0 0 0

⎤
⎦ �c has the solutions

�c(t) =
⎡
⎣k1 + k2t + k3t2/2

k2 + k3t
k3

⎤
⎦ ,

where k1, k2, k3 are arbitrary constants. The solu-
tions of the given system are �x(t) = eλt �c(t), by Ex-
ercise 9.1.24. The zero state is a stable equilibrium
solution if (and only if) the real part of λ is negative.

9.3 Answers to more theoretical questions are omitted.
1. Ce5t

3. 1
5 e3t + Ce−2t (use Theorem 9.3.13)

5. −1 − t + Cet 7. c1e−4t + c2e3t

9. c1e3t + c2e−3t

11. et
(
c1 cos t + c2 sin t

)
13. e−t (c1 + c2t) (compare with Example 10).
15. c1 + c2t
17. e−t (c1 + c2t) − 1

2 cos t

19. cos t + c1 cos(
√

2t) + c2 sin(
√

2t)

21. c1et + c2e−t + c3e−2t 23. 3e5t

25. e−2t+2 27. − sin(3t)

29. 1
3 sin(t) − 1

6 sin(2t)

31. v(t) = mg

k
(1 − e−kt/m)

lim
t→∞ v(t) = mg

k
= terminal velocity

35. a. c1e−t + c2e−2t

b. 2e−t − e−2t

c. −e−t + 2e−2t

d. In part c the oscillator goes through the equi-
librium state once; in part b it never reaches it.

37. x(t) = te−3t 39. e−t (c1 + c2t + c3t2)

41. λ is an eigenvalue with dim(Eλ) = n, because Eλ

is the kernel of the nth-order linear differential op-
erator T (x) − λx .

43. 1
10 cos t + 1

10 sin t + c1e−2t + c2e−3t

45. et
[

1 − 2t
−1

]
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SUBJECT INDEX

A
Affine system, 356
Algebraic multiplicity of an eigenvalue, 331

and complex eigenvalues, 371
and geometric multiplicity, 344

Algorithm, 18
Alternating property of determinant, 267, 281
Angle, 211

and orthogonal transformations, 226
Approximations,

Fourier, 248, 257
least-squares, 17, 238

Argument (of a complex number), 364
of a product, 365

Associative law for matrix multiplication, 81
Asymptotically stable equilibrium, 376

(see stable equilibrium)
Augmented matrix, 11

B
Base case (for induction), 466
Basis, 125, 172

and coordinates, 149
and dimension, 135, 172
and unique representation, 130
finding basis of a linear space, 174
of an image, 126, 138, 141
of a kernel, 137, 141
of Rn , 142
standard, 135

Binary digits, 121
Block matrices, 81

determinant of, 274
inverse of, 96
multiplication of, 82

Bounded trajectory, 381

C
Carbon dating, 425
Cardano’s formula, 335, 338, 374
Cartesian coordinates, 10, 147
Cassini’s identity, 294
Cauchy–Schwarz inequality, 210, 253

and angles, 211
and triangle inequality, 215

Cayley–Hamilton Theorem, 347
Center of mass, 21
Change of basis, 191, 194

Characteristic polynomial, 329
and algebraic multiplicity, 331
and its derivative, 338
of linear differential operator, 445
of similar matrices, 343

Chebyshev polynomials, 263
Cholesky factorization, 401
Circulant matrix, 374
Classical adjoint, 304
Closed-formula solution

for discrete dynamical system, 321
for Fibonacci sequence, 178
for inverse, 304
for least-squares approximation, 240
for linear system, 302

Coefficient matrix
of a linear system, 11
of a linear transformation, 42

Column of a matrix, 9
Column space of a matrix, 114
Column vector, 10
Commuting matrices, 79
Complements, 145
Complex eigenvalues, 368

and determinant, 371
and rotation–scaling matrices, 369, 377, 435
and stable equilibrium, 376
and trace, 371

Complex numbers, 168, 363
and rotation–scaling, 365
in polar form, 365

Complex-valued functions, 429
derivative of, 430
exponential, 430

Component of a vector, 10
Composite functions, 75
Computational complexity, 98, 105
Concatenation, 342
Conics, 23, 144
Consistent linear system, 25
Continuous least-squares condition, 254
Continuous linear dynamical system, 418

stability of, 433
with complex eigenbasis, 435
with real eigenbasis, 423

Contraction, 60
Contraposition, 26, 467
Coordinates, 149, 172
Coordinate transformation, 172, 181
Coordinate vector, 149, 172

499



500 Subject Index

Correlation (coefficient), 213
Cramer’s Rule, 302
Cross product

and polar (QS) factorization, 412
in R3, 56, 463, 465
in Rn , 291
rules for, 464

Cubic equation (Cardano’s formula), 335, 374
Cubic splines, 19
Cubics, 144
Curve fitting

with conics, 23, 144
with cubics, 144

D
Data compression, 411
Data fitting, 241

multivariate, 244
De Moivre’s formula, 366
Determinant, 94, 271

alternating property of, 267, 281
and characteristic polynomial, 329
and eigenvalues, 334, 371
and Cramer’s rule, 302
and elementary row operations, 281
and invertibility, 282
and Laplace expansion, 284, 286
and QR factorization, 295
as area, 94, 295
as expansion factor, 299
as volume, 297
is linear in rows and columns, 268, 278
of inverse, 284
of linear transformation, 288
of orthogonal matrix, 294
of permutation matrix, 276
of product, 283
of rotation matrix, 294
of similar matrices, 284
of 3 × 3 matrix, 266
of transpose, 278
of triangular matrix, 273
of 2 × 2 matrix, 94
patterns and, 271
Vandermonde, 290
Weierstrass definition of, 292

Diagonalizable matrices, 311, 344
and eigenbases, 312
and powers, 351
orthogonally, 385, 390
simultaneously, 360

Diagonal matrix, 9

Diagonal of a matrix, 9
Dilation, 60
Dimension, 135, 172

and isomorphism, 182
of image, 138, 179
of kernel, 139, 179
of orthogonal complement, 208

Direction field, 419
Discrete linear dynamical system, 321

and complex eigenvalues, 378, 380
and stable equilibrium, 376, 377

Distance, 252
Distribution vector, 53
Distributive Laws, 81
Domain of a function, 44
Dominant eigenvector, 423
Dot product, 20, 29, 230, 461

and matrix product, 79, 230
and product A�x , 29
rules for, 462

Dynamical system
(see continuous, discrete linear dynamical system)

E
Eigenbasis, 312

and continuous dynamical system, 423
and diagonalization, 312
and discrete dynamical system, 321
and distinct eigenvalues, 342
and geometric multiplicity, 342

Eigenfunction, 352, 445
Eigenspaces, 339

and geometric multiplicity, 341
and principal axes, 399

Eigenvalue(s), 312
algebraic multiplicity of, 331
and characteristic polynomial, 329
and determinant, 334, 371
and positive (semi)definite matrices, 397
and QR factorization, 335
and singular values, 405
and stable equilibrium, 376, 433
and trace, 334, 371
complex, 368, 380
geometric multiplicity of, 341
of linear transformation, 352
of orthogonal matrix, 315
of rotation–scaling matrix, 369
of similar matrices, 343
of symmetric matrix, 388
of triangular matrix, 328
power method for finding, 372



Subject Index 501

Eigenvectors, 312
and linear independence, 342
dominant, 423
of symmetric matrix, 387

Elementary matrix, 102
Elementary row operations, 16

and determinant, 281
and elementary matrices, 102

Ellipse, 75
as image of the unit circle, 75, 390, 405
as level curve of quadratic form, 399
as trajectory, 380, 435

Equilibrium distribution, 52, 84
for regular transition matrix, 349
Power method for, 87

Equilibrium (state), 376
Equivalence Relation, 157
Error (in least-squares solution), 238
Error-correcting codes, 121
Euler identities, 256
Euler’s formula, 431
Euler’s theorem, 346
Exotic operations (in a linear space), 186
Expansion factor, 299
Exponential functions, 416

complex-valued, 431

F
Factorizations,

Cholesky, 401
LDLT , 235, 401
LDU, 102, 235
LLT , 401
LU, 102
QR, 222, 223, 295, 335
QS, 412
SDST , 385
U�V T , 408

Fibonacci sequence, 178, 236, 293, 466
Field, 368
Finite dimensional linear space, 175
Flow line, 419
Fourier analysis, 257
Function, 44
Fundamental theorem of algebra, 367
Fundamental theorem of linear algebra, 139

G
Gaussian integration, 262
Gauss–Jordan elimination, 17

and determinant, 281
and inverse, 91

Geometric multiplicity of an eigenvalue, 341
and algebraic multiplicity, 344
and eigenbases, 342

Golden section, 178, 358
Google, 52
Gram–Schmidt process, 221

and determinant, 295
and orthogonal diagonalization, 390
and QR factorization, 222

H
Hankel matrix, 235
Harmonics, 257
Hilbert space �2, 216, 251

and quantum mechanics, 260
Homogeneous linear system, 36
Hyperbola, 399
Hyperplane, 144

I
Identity matrix In , 46
Identity transformation, 46
Image of a function, 110
Image of a linear transformation, 114, 178

and rank, 138
is a subspace, 114, 178
orthogonal complement of, 237
written as a kernel, 120

Image
of the unit circle, 75, 390, 405

Imaginary part of a complex number, 363
Implicit function theorem, 292
Inconsistent linear system, 5, 17, 25

and least-squares, 238
Indefinite matrix, 396
Induction, 466
Infinite dimensional linear space, 175
Inner product (space), 250
Input-output analysis, 6, 20, 99, 104, 163
Intermediate value theorem, 74
Intersection of subspaces, 132

dimension of, 145
Invariant Subspace, 325
Inverse (of a matrix), 89

and Cramer’s rule, 304
determinant of, 284
of an orthogonal matrix, 230
of a product, 92
of a transpose, 231
of a 2 × 2 matrix, 94
of a block matrix, 96

Inversion (in a pattern), 271
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Invertible function, 88
Invertible matrix, 89

and determinant, 282
and kernel, 118

Isomorphism, 181
and dimension, 182

K
Kernel, 115, 178

and invertibility, 118
and linear independence, 129
and rank, 139
dimension of, 139
is a subspace, 117, 178

Kyle numbers, 140, 340

L
Laplace expansion, 284, 286
LDLT factorization, 235, 401
LDU factorization, 102, 235
Leading one, 16
Leading variable, 13
Least-squares solutions, 17, 216, 238

and normal equation, 239
minimal, 246

Left inverse, 132
Legendre polynomials, 262
Length of a vector, 202, 462

and orthogonal transformations, 225
Linear combination, 31, 169

and span, 114
Linear dependence, 125
Linear differential equation, 174, 442

homogeneous, 442
order of, 442
solution of, 444, 452
solving a first order, 450
solving a second order, 447, 448

Linear differential operator, 442
characteristic polynomial of, 445
eigenfunctions of, 445
image of, 451
kernel of, 446

Linear independence, 125, 171
and dimension, 136
and kernel, 129
and relations, 128
in Rn , 125
in a linear space, 171
of eigenvectors, 342
of orthonormal vectors, 204

Linearity of the determinant, 268, 278

Linear relations, 127
Linear space(s), 167

basis of, 172
dimension of, 172
finding basis of, 174
finite dimensional, 175
isomorphic, 181

Linear system
closed-formula solution for, 302
consistent, 25
homogeneous, 36
inconsistent, 5, 25
least-squares solutions of, 238
matrix form of, 33
minimal solution of, 246
number of solutions of, 25
of differential equations: see continuous linear

dynamical system
unique solution of, 28
vector form of, 32
with fewer equations than unknowns, 27

Linear transformation, 42, 45, 49, 178
image of, 114, 178
kernel of, 115, 178
matrix of, 42, 45, 48, 153, 187

Lower triangular matrix, 10
LU factorization, 102

and principal submatrices, 103

M
Main diagonal of a matrix, 9
Mass-spring system, 441
Mathematical Induction, 466
Matrix, 9

(for a composite entry such as “zero matrix”
see zero)

Minimal solution of a linear system, 246
Minors of a matrix, 285
Modulus (of a complex number), 364

of a product, 365
Momentum, 21
Multiplication (of matrices), 78

and determinant, 283
column by column, 78
entry by entry, 79
is associative, 81
is noncommutative, 79
of block matrices, 82

N
Negative feedback loop, 439
Neutral element, 167
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Nilpotent matrix, 146, 393
Norm

of a vector, 202
in an inner product space, 252

Normal equation, 239
Nullity, 139, 179
Null space, 115

O
Orthogonal complement, 208

of an image, 237
Orthogonally diagonalizable matrix, 385, 390
Orthogonal matrix, 225, 230

determinant of, 294
eigenvalues of, 315
inverse of, 230
transpose of, 230

Orthogonal projection, 63, 204, 206,
241, 253

and Gram–Schmidt process, 218
and reflection, 64
as closest vector, 238
matrix of, 232, 241

Orthogonal transformation, 225
and orthonormal bases, 232
preserves dot product, 230
preserves right angles, 226

Orthogonal vectors, 202, 252, 463
and Pythagorean theorem, 209

Orthonormal bases, 204, 207
and Gram–Schmidt process, 218
and orthogonal transformations, 227
and symmetric matrices, 386

Orthonormal vectors, 203
are linearly independent, 204

Oscillator, 198

P
PageRank, 52

naı̈ve, 53
Parallelepiped, 296
Parallel vectors, 460
Parametrization (of a curve), 111
Partitioned matrices, 82

(see block matrix)
Pattern (in a matrix), 271

inversion in, 271
signature of, 271

Permutation matrix, 98
determinant of, 276

Perpendicular vectors, 202, 252, 463

Phase portrait,
of continuous system, 419, 438
of discrete system, 320, 438
summary, 438

Piecewise continuous function, 255
Pivot, 16
Polar factorization, 412
Polar form (of a complex number), 365

and powers, 366
and products, 365
with Euler’s formula, 432

Positive (semi)definite matrix, 396
and eigenvalues, 397
and principal submatrices, 397

Positive transition matrix, 84
Positively oriented basis, 307
Power method for finding eigenvalues, 372
Principal axes, 399
Principal submatrices, 103

and positive definite matrices, 397
Product A�x , 29

and dot product, 29
and matrix multiplication, 78

Projection, 61, 73
(see also orthogonal projection)

Proof techniques, 466
Pseudo-inverse, 245
Pythagorean theorem, 209, 253

Q
QR factorization, 222

and Cholesky factorization, 401
and determinant, 295
and eigenvalues, 335
is unique, 234

QS factorization, 412
Quadratic forms, 395

indefinite, 396
negative (semi)definite, 396
positive (semi)definite, 396
principal axes for, 399

Quaternions, 235, 374, 382
form a skew field, 374

R
Rank (of a matrix), 26, 138

and image, 138
and kernel, 139
and row space, 146
and singular values, 407
of similar matrices, 343
of transpose, 231
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Rank-nullity theorem, 139, 179
Real part of a complex number, 363
Reduced row-echelon form (rref), 15

and determinant, 281
and inverse, 89, 91
and rank, 26

Redundant vector(s), 125, 171
image and, 126, 141
kernel and, 141

Reflection, 64
Regular transition matrix, 84, 349

Equilibrium for, 349
Relations (among vectors), 127
Resonance, 198
Riemann integral, 248, 250
Rotation matrix, 67, 294
Rotation–scaling matrix, 68

and complex eigenvalues, 369
and complex numbers, 365

Row of a matrix, 9
Row space, 146
Row vector, 10
Rule of 69, 426

S
Sarrus’s rule, 266
Scalar, 12
Scalar multiples of matrices, 28
Scaling, 60
Second derivative test, 401
Secular equation, 327
Separation of variables, 416, 425
Shears, 70
Signature of a pattern, 271
Similar matrices, 156

and characteristic polynomial,
343

Simultaneously diagonalizable
matrices, 360

Singular value decomposition
(SVD), 408

Singular values, 405
and ellipses, 405
and rank, 407

Skew field, 374
Skew-symmetric matrices, 229, 400

determinant of, 291
Smooth function, 170
Space of functions, 168
Span

in Rn , 114
in a linear space, 171

Spectral theorem, 386
Spirals, 361, 366, 380, 432, 435, 438
Square matrix, 9
Square-summable sequences, 216, 251
Stable equilibrium, 84, 376

of continuous system, 433
of discrete system, 376

Standard basis, 135, 173
State vector, 316
Subspace

invariant, 325
of Rn , 122
of a linear space, 170

Sudoku, 81
Sum of subspaces, 132

dimension of, 145
Sums of matrices, 28
Symmetric matrices, 229

are orthogonally diagonalizable, 386
have real eigenvalues, 388

T
Target space (of a function), 44
Tetrahedron, 101, 162, 306
Theorem of Pythagoras, 209, 253
Trace, 251, 329

and characteristic polynomial, 329
and eigenvalues, 334, 371
and inner product, 251
of similar matrices, 343

Trajectory, 319, 418
bounded, 381

Transition matrix, 53
positive, 84
regular, 84, 349

Transpose (of a matrix), 229
and determinant, 278
and inverse, 231
and rank, 231
of an orthogonal matrix, 230
of a product, 231

Triangle inequality, 215
Triangular matrices, 10

and determinant, 273
and eigenvalues, 328
invertible, 98

Triangulizable matrix, 393
Trigonometric polynomials, 256

U
Unit vector, 202, 463
Upper triangular matrix, 10
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V
Vandermonde determinant, 290
Vector(s), 10

angles between, 211
addition, 457
column, 10
coordinate, 149, 172
cross product of, 56, 265, 463
distribution, 53
dot product of, 461
geometric representation of, 459
length of, 202, 462
orthogonal, 202, 463
parallel, 460
position, 459
redundant, 125
row, 10
rules of vector algebra, 458
scalar multiplication, 457

standard representation of, 10, 459
unit, 202, 463
velocity, 418
vs. points, 11, 459
zero, 458

Vector field, 419
Vector form of a linear system, 32
Vector space, 10, 167

(see linear space)
Velocity vector, 418

W
Weierstrass definition of determinant, 292
Wigner semicircle distribution, 262

Z
Zero matrix, 10
Zero vector, 458
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Abel, Niels Henrik, 335
Alcuin of York, 24
al-Kashi, Jamshid, 24
al-Khowarizmi, Mohammed, 1, 18n
al-Ma’mun, Caliph, 1
Archimedes, 57, 355
Argand, Jean Robert, 363n

Banach, Stefan, 176
Berlinski, David, 18
Bernoulli, Daniel, 178n
Bézout, Etienne, 289
Binet, Jacques, 178, 289
Brin, Sergey, 52
Burke, Kyle, 140n

Cajori, Florian, 288
Cardano, Gerolamo, 335, 338
Cassini, Giovanni, 294
Cauchy, Augustin-Louis, 210, 271n,

289, 327
Cayley, Arthur, 289, 347
Chebyshev, Pafnuty, 263
Cholesky, André-Louis, 401
Cramer, Gabriel, 145, 288, 303

d’Alembert, Le Rond, 135, 327
Dantzig, Tobias, 363n
De Moivre, Abraham, 366
Descartes, René, 127n, 147, 168
De Witt, Johan, 396n

Einstein, Albert, 374
Euler, Leonhard Paul, 24, 145, 256, 259, 346,

363n, 431

Fermat, Pierre de, 147
Fibonacci (Leonardo of Pisa), 358
Fourier, Jean Baptiste Joseph, 255n

Galois, Evariste, 335
Gauss, Carl Friedrich, 17–18, 54, 262,

363n, 368
Gram, Jörgen, 221n
Grassmann, Hermann Günther, 135

Hamilton, William Rowan, 235, 347, 374
Hamming, Richard W., 121

Hankel, Hermann, 235
Harriot, Thomas, 127n
Heisenberg, Werner, 216, 260
Helmholtz, Hermann von, 328
Hilbert, David, 176, 216, 328

Jacobi, Carl Gustav Jacob, 271n
Jordan, Wilhelm, 17

Kepler, Johannes, 249
Kronecker, Leopold, 271n

Lagrange, Joseph Louis, 327, 382
Lanchester, Frederick William, 427n
Laplace, Pierre-Simon Marquis de,

284n, 289
Legendre, Adrien-Marie, 262
Leibniz, Gottfried Wilhelm von, 288
Leonardo da Vinci, 215
Leontief, Wassily, 6, 163

Mahavira, 24
Mas-Colell, Andreu, 216
Mazur, Barry, 363n
Medawar, Peter B., 70
Mumford, David, 442

Newton, Isaac, 24

Olbers, Wilhelm, 17

Page, Lawrence, 52
Peano, Giuseppe, 167n
Peirce, Benjamin, 432n
Piazzi, Giuseppe, 17
Pythagoras, 209, 259, 288

Riemann, Bernhard, 248, 250, 262
Roosevelt, Franklin D., 99n

Samuelson, Paul E., 381
Sarrus, Pierre Frédéric, 266n
Schläfi, Ludwig, 135
Schmidt, Erhard, 176, 221n
Schrödinger, Erwin, 260
Schwarz, Hermann Amandus, 210
Seki, Kōwa (or Takakazu), 271n, 288
Simpson, Thomas, 262
Strang, Gilbert, 411
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Sylvester, James Joseph, 9n

Thompson, d’Arcy, 70

Vandermonde, Alexandre-Théophile, 271n, 289
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Wessel, Caspar, 363n
Weyl, Hermann, 135
Wigner, Eugene Paul, 262
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