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by Average or Dispersion! 
By John H. Curtiss 

This paper is devoted to a presentation of the theory and practice of certai.n types of 
acceptance sampling plan based on the statistical test of hypoth~ses. The . basIc concepts 
of the statistical theory are discussed in detail, and are then applIed to obtam a number of 
specific formulas for the single sampling case. 

I. Introduction 
Acceptance sampling is one of the most interest­

ing and useful application of modern mathemati­
cal statistics. Involving as it. doe the principles 
of experimental design and of the testing of sta­
tistical hypothe es, it furnishes a proving ground 
for these theories in which the validity of the 
basic assumptions is often more readily verifiable, 
and the correctness of the inference often more 
rapidly ascertainable, than in many of the standard 
biometric and sociometric applications. 

This paper will b e devoted to a pre entation of 
the theory and practice of certain types of sampling 
plans which are based on statistical tests of hy­
potheses. Such a plan is intended to act as a 
sieve for separating unsatisfactory material from 
acceptable product , to be used with the under­
standing that there is no guarantee that an occa­
sional poor lot will not accidentally pass through 
the sieve. The distinction between this type of 
acceptance plan and certain other popular types 
is made in the earlier sections of the paper, and 
the basic concepts of the statistical theory are 
then discussed in considerable detail. The later 
sections are devoted to the details of the applica­
tion of the basic principles to the derivation of 
explicit formulas for sample size and acceptance 
numbers. These derivations are given because 
there seems to be no collection of these derivations 
and of the formulas themselves readily available 
in the literature. 

1 An invited address delivered to ajoint ses~ion of the American Statistical 
Association and tbelnstituteofMathematical Statistics in Cleveland, Ohio, 
on January:27, 1946. 

Acceptance Sampling by Variables 

II. What Is Acceptance Sampling? 

Because statisticians who are not primarily in­
terested in the engineering applications may wish 
to follow the di. cussion for a while, it might be 
well to start by explaining from the very begin­
ning what acceptance sampling is all about. 

Acceptance sampling is a branch of the science 
of engineering tati tics, or industrial stati tics, or 
statistical quality control; that is, the cience of 
dealing with the variability encountered in data 
ari iug from engineering experiments and indus­
trial processe. Consider a stream of nominally 
identical items produced by an industrial proce s. 
The items are upposed to be all exactly alike, but 
of course they never really are. POl'hap the most 
fundamental and natural way to tudy their varia­
bility is to express the several quality charactcri -
t ics of each item in terms of a like number of 
variables which assume numerical values, and then 
to investigate the properties of the joint frequency 
distribution of these variables as built up for an 
aggregate of the items. 

One obvious way to perform the inve tigation 
consists in actually setting up the frequency dis­
tribution in complete detail by making a 100-
percent inspection of the items in the aggregate. 
But for most purposes a much better way to con­
duct the investigation is to inspect only a portion 
of the aggregate, and from the data so obtained, 
make estimates and draw inferences concerning 
the nature of the frequency distribution of the ag­
gregate. When the portion, or sample, is properly 
chosen, and the methods of inference properly 

271 



----------------------------------.v-~------------------------

founded on sound theory, an exact balance can 
often be achieved between economy in cost of in­
spection and the needed accuracy of conclusions. 

As the name implies, acceptance sampling is a 
speciallcind of sampling investigation of an aggre­
gate in which the sample data are used not only 
to study the distribution of quali ty characteristics 
of the aggregate, but also to provide a cri terion as 
to whether the aggregate should be accepted or 
rejected by a purchaser or consumer. 

There are two basic types of acceptance sam­
pling plans. In one type, the entire interest is 
centered on inferences drawn from the sample 
relating to the frequency distribu tion of the aggre­
gate, and rejection or acceptance is specified in 
accordance with whether or not the inferences so 
drawn deny or affirm tha t the frequency distribu­
tion of the aggregate m eets cer tain prestated r e­
quirements. This will her einafter be called the 
inferential type of acceptance sampling plan. The 
other type of acceptance sampling plan is based 
on the assumption that a r ejected aggregate will 
always be subj ected to corrective ac tion (such as 
100-percent inspection) which will surely r emove 
all, or a known fraction, of the deficiencies which 
caused rejection. The plan is then set up so that 
after the entire inspection process the distribution 
of the quality-defining variables in the final out­
goi1lg sequence of aggregates will meet certain 
pres tated requirements . Since the r equiremen ts 
generally pertain to the mean valu es of the vari­
ables in the outgoing sequence of aggregates, this 
sort of plan might appropriately be termed an 
average outgoing quality type of acceptance sam­
pling plan. Such plans were invented by Dodge 
and Romig [1].2 

When there are only a few admissible values of 
a given quality-defining variable (and the case 
most frequently encountered is that in which there 
are only two values, conveniently taken to be 0 
and 1, corresponding to whether or no t the item 
meets a specified standard ), or when the sampling 
acceptance-rejection r equirements are based on 
the observed propor tion of the total number of 
sample measuremen ts which fall in to a few (say 
2 or 3) intervals in the range of a quality defining 
variable, the associated sampling inspection proc­
ess is t ermed acceptance sampling " by attributes." 
More general cases are grouped together under the 

, Figures iu brackets indicate· t he li terature references at tbe cnd of thi s 
paper. 

272 

generic t it le of accept ance sampling " by varia bles." 
Theoretically, the distinction between " attributes" 
and "variables" is quite artificial and the bound­
ary is indefinite; "attributes" sampling is really 
just a highly developed special case of "variables" 
sampling. 

The average outgoing quality type of acceptance 
sampling plan has b een developed only !for sam­
pling by attributes and only in the case in which 
100-percent inspection (no t partial inspecti.on ) of 
rejected lo ts is specified. The average outgoing 
quality theory for more general cases, and in 
particular for the case in which a rejected lo t is 
only partially inspected, apparen tly has not yet 
been studied in any detail. This paper will be 
devoted hencefor th entirely to the inferen tial type 
of accep tance sampling plan, anel the average ou t­
gomg quality type will not be mentioned again. 

III. An Example 
To illustrate how inferential accep tance sam­

pling plans are set up and used, a simple practical 
example based on a wartime procurement problem 
will now be presented. For expository purposes 
and for consideration of commercial confidence, 
t he example has been considerably simplified and 
the actual dimensions have been altered. 

During the war, a small metal cylinder for 
dispensing insec.ticide.m the form of an .aerosol was 
manufactured in large quantities for the U. S. 
Navy. The cylinders were manufactured by one 
set of contractors and filled by another set of 
contractors. It was necessary to control the 
volumetric capacity of the cylinder rather carefully, 
beca use the filling process used by some of thr. 
filling eontractors was not, automatically adjustable 
to the size of the individual cylinder. Overfills 
pres en ted a hazard of explosions when th e cylinders 
were stored in the sun. 

A preliminary survey revealed that the fre­
qUlmcy distribution of volumetric capacities of 
cylinders produced by e.ach m anufacturer when 
the manufacturer was aiming at one given nominal 
capacity, would be of the type illustrated in 
idealized form in figm e 1. The preliminary survey 
consisted of determining the frequency distribu­
tion of a random sample of 1,800 cylinders selected 
from the first 100,000 produced by each manufac­
turer. The stu,ndard deviation of this observed 
frequency distribution in each case was about 2.0 
cc. A normal (or Gaussian) theoretical distribu-
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FIGURE 1. Theoretical frequency distribution oj volumetric capacities of cylinders to be used for insecticide dispensers. 

tion gave a satisfactory fit to the data; it is the 
frequency curve of this distribution which actually 
appears in figure 1. 

The variability in successive determinations of 
capacity was probably due in no small part to 
testing errot'.3 The chief manufacturing variable 
affecting volume was in the brazing operation by 
which the two halves of the cylinder were sealed 
together. Certain of the manufacturers were 
known to be experimenting with the nominal size 
of their cylinders, bu t it was believed that such 
changes would probably affect only the mean of 
the distribution of volumetric capacities, and not 
the standard deviation . 

It seemed probable therofore that the proper 
control over volumetric capacity could be achieved 
by first formulating suitable restrictions on the 
size and pedigree of an aggregate or "lot" of 
cylinders so that i t would have a distribution of 
the form shown in figure 1, and then imposing re­
quirements on the arithmetic mean of this distri­
bution which were enforced by an acceptance 
sampling plan. 

The appropriate definition of lot will not be 
detailed here; this is purely an engineering matter. 
1 t was decided from the chemical and engineering 
considerations involved, that if the arithmetic 
mean of the distribution of volumetric capacities 
in a lot wore to be reduced to less than 530.5 cc, 
the lot (in effect here, the process) 4 should almost 
sUl'ely be rejected, and if the lot mean remained 

3 It should be noted tbat the population which is under study in any accept­
ance sampling plan for a giv€n quality defining variable i. the population of 
apparent vallte" of the variable as determined by some tcst or inspection pro· 
ccdure. Thus the variance of the popu lation is made up of two components: 
one due to t he nonuniformity in the material and one due to lack of precision 
in tho test. 

• Sec section XII. 
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above 534.0 cc, the lot should almo~t; surely be 
accepted. 

The problem of setting up the acceptance 
sampling plan that would provid e the basis for 
deciding whether or not a lot meets these require­
ments can be solved in many different ways. The 
method which seem to be the most natural one 
from an intuitive point of view:, and which indeed 
doc theoretically have certain optimum properties 
(see section V below), co nsists in selecting a ran­
dom sample of several cylind ers from each lot, 
finding the average of the volumetric capacities 
of these cylinders, and accepting or rejecting the 
lot arbitrarily in accordance with whether or not 
this average is greater th an some predetermined 
"acceptance number ," 

To determine the ample size and the value of 
the acceptance number, it i necessary to study 
the sampling distl'ibu tion of the average volu­
metric capacity of a random sample of cylinders 
taken from a population with a distribution shown 
in figure 1. It is of course well known that if 
the population has a normal distribution with 
mean J.I. and standard deviation fT , the distribution 
of the average of a random sample of n observa­
tions will be normal with mean J.I. and standard 
deviation fTrin. The distribution of the average 
of n=4 cylinders is shown in figure 2. From 
figure 3 it will be seen that if an acceptance num­
ber of 532,0 cc is specified, using a random sample 
of 4, the probabili ty (or " ],isk") of accidentally 
r ejecting a lot with a mean volumetric capacity 
of more than 534 .0 cc would not exceed 0.023 , 
and the probabili ty of accidentally accepting a 
lot with mean volumetric capacity of less than 
530.5 cc would not exceed 0.067. 
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FIGURE 2. P1'obability distribution of mean of random sample of four cylinders, derived from the Itheoretical distribu-
. lion in figure 1. 

Either one of these two risks can obviously be 
decreased at the expense of increasing the other 
by merely changing the position of the acceptance 
number appropriately. By using a larger sample 
size, or by multiple or sequential sampling, it 
would be possible to reduce both of the risks 
simultaneously. The general order of magnitude 
of the risks in the sampling plan illustrated by 
figure 3 is considered to be appropriate for such 
work. 

IV. Acceptance Sampling and Statistical 
Inference 

Inferen tial acceptance sampling plans may be 
classified as statistical or nonstatistical , in accord­
ance with whether or not they are based on the 
principles of statistical inference. 

In nonstatistical inferential plans, sample items 
are purposively selected in accordance with prior 
information, and from the observations on the 
sample items a supposedly certain inference is 
made concerning the nature of the sampled aggre­
gate. Such acceptance sampling plans will not 
be considered in this paper. They are useful and 
efficien t in special cases, but their theory is a 
function of the application and does not lend 
itself readily to a general discussion . 
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Statistical inferential acceptance ampling plans 
are characterized by a selection of sample items 
from an aggregate in accordance with some method 
which insures that the observations on the r espec­
tive items in the sample have a joint probability 
distribution which b ears some direct and calculable 
relation to the frequency distribution of the 
aggregate. Through the use of this probability 
distribution, an uncertain inference into the nature 
of the distribution of the aggregate is drawn from 
the data of a sample. The example given in 
section III was a statistical acceptance sampling 
plan. The "random" selection of the sample 
cylinders implies a unique determination of the 
probability distribu tion of the sample in terms of 
the frequency distribution of volumetric capacities 
in the sampled aggregate. 

The general theory of the uncertain inferences 
involved in statistical acceptance sampling plans 
may convenien tly b e identified with a branch of 
modern mathematical statistics called tests of 
statistical hypotheses.5 A statistical hypothesis 
is a statement concerning the unknown frequency 

, Simon [2] prcfers to identify the theory of statistical acceptance plans 
with the thcory of estimation of population parameters. The approach via 
t he theory of statistical h ypotheses. which was pioneered by Dodge and 
Romig [1]. bas the advantage tbat it provides a quantitative basis for a 
rational selection of the accuracy of estimation required in a given applica­
tion; see section VI. 
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distribution (or probability distribution) of a 
variate X (which may be a vector with several 
components), to the effect that thi unknown 
frequency distribution belong to a certain we11-
defined subclass w of a class n of admissible fre­
quency distributions of X. The hypothesis is 
tested by first drawing a sample of observations 
on the variable X, say (Xl ' X 2, . , X n), in 
such a way that the probability distribution of 
the sample can be calculated from the distribu tion 
of X, and then noting just whrre the point defined 
by the coordinates (Xl ' X 2 , ., Xn) faDs in 
n-dimensional Euclidean space. If this ample 
point fall s on a certain predetermined region wof 
the n-dimensional space, the hypothesis is rejected. 
The subset w is called the "critical region" 6 for the 
t,est. 

In the application to acceptance ampling, the 

A cceptance Sampling by Variables 

variable X is a measure of the quality of the indi­
vidual item, and the hypo thesi to be tested is that 
the unknown frequency distribution of X in the 
sampled aggregate of item belongs to a certain 
subclass of distributions which is identified with 
definitely "good" or acceptable quality (alterna­
tively, "bad" or unacceptable quality) with respect 
to the characteristics measured by X . Thu in 
the example of section III, X is volumetric capac­
i ty; the admissible class n of frequency di tribu­
tions consists of all normal distribution with 
standard deviations equal to 2.0 cc; the sub­
class w representing acceptable quality consists 
of all such frequency distributions with means 
not less than 534.0 cc; and the purpose of the 
sampling plan can be considered to be to test 

, For the henefit of mathematicians reading this paper, it might he observed 
that this usage of tho word " region" is at variance witb tbe usage in classical 
mathematical analysis; the critical region is not necessarily an open connected set. 
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the hypotheses (designated as Ho in fig. 3) that 
the distribution of X lies in this subclass. 

The critical region for this test, chosen on 
intuitive grounds in section III, was the region in 
the sample space of four dimensions defined by 
the inequality 

XI + X 2! X a+ Xl < 532.0, (1) 

where XI , X 2 , Xa, and Xl represent four observa­
tions on X . In general, in accept.ance sampling 
whenever the critical region is defined by an 
inequality such as 

CI< }(XI, X 2, •• • , X n)<C2, 

where} is some continuous function of the apparent 
variables, the numbers CI and C2 can appropriately 
be called acceptance n 'u.mber8. It is also natural 
to call the critical region the region o} rejection in 
acceptanee sampling work. 

V. Choice of the Optimum Type of Critical 
Region 

It is fairly clear that the tllPl.lry of tests of 
statistical hypotheses must revolve to a consider­
able extent around the choice of the critical 
region. Such a region can always be chosen in 
infinitely many ways so that the probability 
that the Rample point falls in it, given that the 
hypothesis und er test is true, is not greater than 
a given arbit,rarily small number. For example, 
the critical region used in section III is the region 
defined by the inequality (1), and the maximum 
probability of the sample point falling into it 
under the hypothesis of good quality is 0.023. 
But another critical region for which this maxi­
mum probability is also 0.023 is defined by the 
inequality 

532.9 < X I+ X 2! X a+ X 4< 533.0, (2 ) 

ane!. the reader will have no difficulty in concocting 
other critical regions with the same maximum 
probability of rejection. Which one is the "best" ? 

To answer this sort of question, Neyman and 
Pearson 7 introduced the idea of the "power" of a 
test of a statistical hypothesis. This concept is 
based on the obvious fact that the probability 
that the sample point falls in a predetermined 

'See, for example. Wilks [3], chapter VII. 

276 

critieal region w depends on what the unknown 
frequency distribution of X really is. That is, for 
each member of the class Q of admissible frequency 
distributions of X, there is a probability, theoret ­
ically calculable, that the sample point falls in w. 
The power of the test is simply defined to be this 
probability, and is thus a functional depending on 
the distribution of X (and also on w) . This 
means that if the frequency distribution of X 
really belongs to the subclass w (that is, the hy­
pothesis is really true) , then the power of the test 
is the probability of (erroneously) rejecting the 
hypothesis, and if the frequency distribution of X 
does not belong to w, then the power of the test is 
the probability of (correctly) rejecting the hy­
pothesis. 

Common sense indicates the right way to choose 
the critical region for a test is to choose it in such 
a way that when the hypothesis is true, the power 
is as small as possible, and when the hypothesis is 
not true, the power is as large as possible. A more 
careful formulation of this principle would proceed 
as follows: For any given fixed sample size n ,s 
consider all possible critical regions for which the 
power is less than or equal to a given number a 

when the hypothesis is true. From these, select 
the particular region which has the property that 
for each frequency distribution not in w it makes 
the power greater t han do all the other regions . 
Such a region is said to provide a uniformly most 
powerful test. When this sort of optimum region 
does not exist. various compromises have been 
worked out which rationalize and systematize in­
tuitional solutions of the problem In some cases 
where a critical region which is Imown to be in some 
sense optimum does exist, the boundary is so com­
plicated that for practical reasons it is desirable to 
use a simpler critical region . An example of such 
a case will be discussed in section VIII. 

To return to the example of section III, the 
power of the test for any member of the class nand 
for any critical region defined by an inequality 
like (1 ) or (2) is very easily calculated by simply 
noting that the probability distribution of (X 1+ 
X 2+ X a+ X 4)/4 has exactly the same mean as the 
parent frequency distribution in Q, and has the 
standard deviation 2/ ..[4= 1 cc. Therefore, the 
probability that the sample observations fall so 

8 If sequential sampling is used, this clause can be omitted (see Wald [4]). 
If multiple sampling is used, the clause should be replaced by a specification 
of th e sample ~ize at each step of the samplin g procedure. 
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that they satisfy an inequality uch as (1) or (2) 
can quickly be looked up in a table of a normal 
distribution. It appears reasonable from figure 3, 
which shows the distribution of (XI + X 2+ X 3+ 
X 4)/4 drawn for four typical members of the class 
~, that among all critical regions of the type given 
by inequalities such as (1) and (2), the one given 
by (1) gives the uniformly most powerful test in 
the sense above defined. This can be proved 
rigorously with little trouble. It is not so easy to 
show that this same critical region gives the 
uniformly most powerful test among all possible 
imaginable critical regions in space of four dimen­
sions, and not just among those critical regions 
defined by inequali ties to be satisfied by the sample 
mean, but it can be proved that such is indeed th e 
case [5]. 

VI. Adjustment of the Power of the Test 

Presuming that an optimum (or at least, satis­
factory) type of critical region for a given statistical 
hypothesis is known, the chief remaining question 
in setting up the test, or acceptance sampling plan, 
is that of arranging for thc appropriate power. It 
was previously pointed out that the power of the 
test depended on the distribution of the variate X 
to which the hypothesis applied, and on the shape 
and size of the critical region w. In addition, it 
should now be observed that for a fixed specifira­
tion of the distribution of X and for a fixed w, the 
power also depends on the probabili ty distribution 
of the sample point (Xl , X 2, • • • , X n), which is 
determined by such things as method of sclection 
of the sample and the sample size. 

The problem of deciding upon the appropriate 
power for a test is complicated by the fact that in 
most cases of practical importance, given any fixed 
critical region, the power functional docs not have 
a sharp discontinuity as the frequency distribution 
of X crosses the boundary between wand the re­
mainder of~. In other words, if the hypothesis 
is almost, but not quite, true, the probability that 
the sample point falls into the critical region is 
about the same as if the hypothesis was almost, 
but not quite, untrue. This phenomenon can be 
seen very easily in figure 3. Obviously as the 
mean of the true distribution move continuously 
leftward from the value 534.0 cc, which repre­
sents t he boundary of good quality, the shaded 
area to the left of the point 532.0 cc (which repre-
ents the power of the test) continuously increases. 

Acceptance Samplin g b y Va riables 

A convenient way of getting around this difli­
culty is to recognize that in the applications there 
is often no real need for distinguishing sharply 
between a case where the hypothesis is true and 
another case where it is " just a little bit" untrue. 
In many situations it is possible from practical 
considerations to select a second well-defined sub­
class WI of the class n of admissible frequency 
distributions, such that there is a positive distance 
(as defined in some reasonable way) between wand 
WI , and such that from the viewpoint of the applica­
tion , WI , and ware subclasses that are so radically 
different that if the true distribution of X really 
belongs to WI, t hen there should be a high proba ­
bility of rejecting the hypothesis that it belongs 
to w. It is natmal in such a case to introduce 
a second statistical hypothesis into the picture, 
consisting of a statement that the unknown 
frequency distribution of X belongs to the subclass 
WI . The test is then conveniently though t of as 
affording a criterion of choice between the two 
hypotheses. 

This approach, which will henceforth be called 
the method of alternative hypotheses, leads to 
simple quantitative rules for determining the ap­
propriate power, as for example that the power 
shall not be greater than a preassigned number ex 
when the di tribution of X is truly a member of 
w, and the power hall not be less than a pre­
assigned number 1- {3 when the distribution of X 
is a member of WI . For a given method of sample 
selection and a given type of critical region, this 
sort of requirement will in many practical case 
uniquely determine a minimum ample size and a 
corresponding position for the critical region, as 
will be seen in section VIII. 

In the application of the theory of statistical 
tests to acceptance sampling, the method of al­
ternative hypothesis is particularly useful and 
convenient. It is seldom indeed that the bound­
ary between the characterization of a "good" lot 
and a "bad" one is sharply defined ; but given a 
class of admissible frequency di tribution of a 
quality-defining variable X , it is often possible to 
pick out two isolated subclasses which respectively 
represent deflllitely "good" or definitely "bad" 
quality with respect to the characteristics meas­
ured by X. When thi has been done, the maxi­
mum 9 probability of erroneously rejecting an 
aggregate that is really in the good subclass IS 

, M ax imum is here used in the sense of least upper bound. 
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called the producer's risk, and the maximum (see 
.footnote 9) probability of erroneously accepting 
an aggregate that is really in the bad subclass is 
called the con;-,umer's risk. In the terminology of 
the preceding paragraph, if {3 represents good 
quality and WI r epresents bad quality, then a is 
the producer 's risk and {3 is the consumer's risk ­
a notation that will be adhered to in the sequel. 

The example of section III illustrates the method 
of alternative hypotheses. It was pointed out 
previously in ection IV that the admissible class 
Q of frequency distributions in this example con­
sists of all normal distributions with standard 
deviations equal to 2.0 cc, and the subclass w, 
identified with a good quality, consists 'of all fre­
quency distributions in n with means not less than 
534.0 cc. A second subclass WI , identified with 
unacceptable quality, is also defined in the exam­
pIe; this WI subclass consists of the members of n 
with means less than or equal to 530.5 cc. The 
producer'S risk of the sampling plan thereupon 
chosen is 0.023 , and the consumer's risk is 0.067. 

VII. Parametric Case and Operating 
Characteristic 

The study of the power of a statistical test is 
considerably simplified when the members of the 
class n of admissible frequency distributions are 
uniquely determined by the values of one or more 
parameters. The discussion in the preceding sec­
tions has not been limited to the parametric case 
because the basic definitions and concepts can be 
stated just as easily for the general case as for the 
parametric case. Moreover, work is proceeding 
rapidly now on the theory of nonparametric tes ts, 
and it would seem to be worth while to lay down 
general definitions here with an eye to the day 
when nonparametric tes ts come into general use 
in acceptance sampling. But parametric hypo­
theses are still used far more commonly in the 
applications than nonparametric ones; this is 
especially true in acceptance sampling applica­
tions. 

The case illustrated in the example of section 
III, where each member of the class n was uniquely 
determined by the value of its mean, is an example 
of the important case in which the class n is a one 
parameter family. Let the parameter in a one 
parameter family of admissible frequency dis­
tributions be denoted bye. For a fixed critical 
region w, and method of sampling, the power of the 
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test is a single-valued function of e, which can be 
represented graphically in the usual way. In 
the theory of statistical inference, this graph is 
called the power curve of the test; in acceptance 
sampling work, it is called the operating cha.racter­
istic. The power curve or operating characteristic 
of the sampling plan of section III will be found in 
figure 4. 
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FIGURE 4. Operating characteristic of the sampling plan 
of figure 3. 

By drawing the power curves, or operating 
characteristics of a number of proposed tests, 
corresponding to different positions of the critical 
region and different sample izes (and perhaps 
even to different methods of sampling), a rational 
choice of the most suitable test can often be made.10 

10 Collections ofoperatingcbaracteristics for tbe attributes ease will be found 
in [0] and in [7]. A collection of power curves for certain standard tcsts of 
statistical bypotbeses for sa mpling by variables is given in [8]. 
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The choice can be based on one or more of a 
number of rather obvious properties of the various 
curves, such as their relative slopes and their 
heights at specially chosen values of 8. The alter­
l)ative hypothesis approach described in consider­
able generality above can also be used profitably 
in conjunction with a power curve. The sub­
classes wand WI are respectively represented by 
intervals (or more general point sets) on the 8-axis 
of the power curve, and from inspection of the 
curve the maximum probabilities of rejecting the 
alternative hypotheses when 8 lies in these inter­
vals can easily be estimated. 

VIII. Sample Size and Region of Rejection: 
Normal Distribution 

In the present section, and in the following one, 
the methods of alternative hypotheses will be 
applied to obtain some general formulas of 
practical importance for sample sizes and regions 
of rejection of acceptance sampling plans in­
volving parametric hypotheses. The parameters 
to which the hypotheses pertain will be the mean 
and the standard deviation of the frequency 
distribution of a quality-defining variable X in 
the sampled aggregate. Single sampling only 
will be considered; this means that a sample of n 
items is to be drawn from the aggregate, the value 
of X for each of the n item is to be observed, and 
on the basis of these ob ervations the aggregate 
is to be sentenced. It will furthcr be as umed that 
the sample is so selected that the observations on 
the items are statistically independent, and the 
probability distribution of each observation is 
identical with the unknown frcquency distribu­
tion of X. Thi can be accomplished, for example, 
by what is generally known as "random" selection 
from a finitc aggregate with replacement after 
each drawing. The assumption will not be 
strictly valid if the sample items are selected" at 
random" without replacements, but in the practical 
applications of sampling by variables the size of 
the aggregate is usually so much larger than that 
of the sample that the requirement of replace­
ments can be dropped without causing any ap­
preciable change in the probability distribution of 
the sample. As a convenient rule of thumb, it 
might be stated that the formulas to be derived 
are valid for sampling without replacements if the 
ratio of aggregate size to sample size is greater 
than 10 to 1. 

Acceptance Sarn.pling by Variables 

Consider first the case in which the parameter 
to which the hypotheses are to be applied i the 
mean J.L of the frequency distribution of the aggre­
gate, as in section III. Suppose further that this 
distribution is normal, that the value of its 
standard deviation er is known, say u= Uo , and 
that two values of J.L, J.Lo, and J.l l can be found, so 
that acceptable quality is identifiable with J.L 
lying in the interval J.Lo;52 J.L < oo, and unacceptable 
quality is identified with - 00 < J.I;52 J.l l. (This is the 
case exemplified in sec. III. ) As pointed out in 
section V, a critical region of the type x < c will 
provide a uniformly most powerful test; here c is 
some constant and 

where Xl, X 2, ., X n , denote the observations 
on the sample items. Let a be the producer's 
risk and {3 be the consumer' risk. Then the 
definition of the e risks yields the following pair 
of simultaneous inequalities 

Prob. [x< c/J.lo;52 J.I < 00 , u= uo];52 a, (3) 

Prob. [x~c/- CXl < J.I;52J.L, u= uo];52{3. (4) 

(The first formula is to be interpreted a stating 
that the probability of x < c, given that J.lo ;52J.1 <oo 

and er= ero is less than or equal to a, and the second 
formula has an analogous meaning.) 

ow it can be seen, say from a figure like figure 3, 
that for a fixed c, if J.I is allowed to approach J.lQ from 
the right, while the distribution of x is otherwi e 
kept unchanged, then Prob. [x<c] continually in­
creases, and achieves a maximum at J.I = J.lo. Simi­
larly, Prob. [x> c] achieves a maximum for all J.L ;52J.Lt 

when J.I = J.Lt . Thus (3) and (4) can be revised to 
read 

Prob. [x< c/J.I = J.Lo, er = ero] = a. (5 ) 

Prob. [x~C/J.I= J.Ll' er = ero] = {3. (6) 

As x has a normal distribution with mean J.L and 
standard deviation ero/ -{ii it follows that 
(x-J.l) / (ero / -{ii) has a normal distribution with 
mean zero and unit standard deviation. Tables 
of this sort of normal distribution (henceforth to 
be called a standard normal distribution) are 
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widely available. Consider (6) first. It follows 
that 

Prob. rx ~ C\IL = ILl, <T = <Tol 

[ X- ILl C- ILI J 
= Prob. ~J~In~ <To/ n \IL = ILh <T = <To 

= [Area under standard normal curve 

from ordinate at c - ILl to +ro J . 
<To/ .In 

(7) 

Let kll be the lOOp percent point on the standard 
normal scale, that is, t he point at which the ordi­
nate of the standard normal curve bounds a tail 
area exactly equal to p. Then combining (6) 
and (7), 

C- ILI --= k p• 
<To/ .ffi 

(8) 

A similar argument applied to (5) leads to the 
equation 

C- ILo 
<To/ .J7i=-k a. (9) 

The solution of (8) and (9) . simultaneously for n 
and C yields formulas for these unknowns in 
terms of <To, ka, and k~, which provide a general 
solution to the problem of setting up the sampling 
plan. These formulas will be found under case 1 
in the list of formulas in the appendi.-.::. Analogous 
formulas for the case in which the two hypotheses 
are interchanged are given there under case 2. 

A slight generalization is obtained by remarking 
that the argument that led from (3) and (4) to (5) 
and (6) is valid if the class of admissible distribu­
tions is extended from just those normal distribu. 
tions with <T= <To for an values of }l. to include all 
normal distributions with <T ~ <To when IL lies in the 
interval identified with good quality, and with 
<T ~ <TI when IL lies in the interval identified with 
bad quality (where 0"1 is any arbitrary positive 
number), and with no restriction at all on 0" when 
JL lies in the interval identified with neither bad 
nor good quality. 

The region of rejection x<c is then no longer a 
uniformly most powerful critical region, but it 
does still have certain optimum properties. This 
generalization is incorporated in the formulas 
given in the appendix. 

The significance in practice of this extension of 
the class of admissible distributions is that while 
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in a given instance it is seldom known exactly 
what the standard deviation of the distribution of 
the aggregate is, frequently a good guess can be 
made at a reasonable upper bound for this standard 
deviation. The practical side of making estimates 
of bounds for dispersion will be considered in more 
detail in section XIII. 

A case which is often encountered is one in 
which the standard deviation of the distribution 
of a quality-defining variable X is directly propor­
t ional to the mean of X. Minor adjustments in 
the above argument yield the formulas listed under 
cases 3 and 4 in the a,ppendix. The region of re­
jection used in these formulas is no t a uniformly 
most powerful region, and in fact a theoretically 
"better" r egion can be found fairly easilyY How­
ever, this better region is a hypersphere in the 
sample space of n dimensions with radius and 
center which depend in a complicated way on ILo, 
}ll, and n. Although the matter has not been care­
fully investigated, there would seem to be very 
litt le loss in power in using a critical region of the 
type x<c, as is done in the formulas in the ap­
pendix, and t he gain in simplicity is very con­
siderable. It would be of interest to make a more 
thorough study of this point. 

Turning now to the case in which the hypotheses 
are to apply to the standard deviation <T of the 
sampled aggregate, an optimum type of critical 
region for testing the hypothesis <T~ <To against the 
hypothesis O'~ 0"1 in the case of a normal aggregate 
0"0 < <TI is known to be given by the inequality 82> C, 
where C is a positive constant, and 82 is the usual 
unbiased sample estimate of 0'2 ; that is, 

n 
L:(X, _ x)2 

82 = J,_·=-=-l _ ------:-_ 

n - l 

Inequalities (3) and (4) become 

Prob . [S2>C\0"~ <Tol~ a 

Prob. [82 ~C\cr~ <Tt1~ (3 

(10) 

(11) 

Now the probability distribution of (n- l).~ 2/ O'2 

depends only on n and not on JL or <T, and is a 
standard tabulated distribution known as a chi­
square distribution with n - l degrees of freedom .12 

11 This better critical region is the region for the " likelihood ratio test "; see 
p . 150 of [3]. 

12 See [91. p. 150. For tables of the chi·square distribution, see [9]. p. 169 . 
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This means that since 

PrDb. [S2> C] = 

PrDb. [Cn - 1)S2 > (n- 1)~J' 
u2 cr2 

(12) 

fDr a fixed value Df nand c, the prDbabiliti es in 
this identity increase as the quantity (n- 1)c/cr2 

decreases; that is, as cr increases. This remark 
leads to. the following revisions of (10) and (11 ): 

Prob. [s2> c!cr = cro]= a. (13) 

(14) 

Now let X2n, p denote in general the lOOp percent 
point of the chi-square distribution with n degrees 
of freedom; that is, the point at which the ordinate 
of the frequ ency CUTve of thi distribution bounds 
a right-hand tail area exactly equal to p. By 
applying the identity (12) to (13) and (14), the 
following simultaneous equations are obtained: 

. (n- 1)c_ x2". n-I , 
u02 .-

(n- 1)c 2 

0'12 = x I-P. n-I · 

The olution of these simultaneous equations for 
nand c yields the formulas that define the sampling 
plan. The best way to obtain the solution seems 
to be as follows: 

R eplace the equatio.n by the equivalent pair 

2 2 
Xa.1I- 1 __ 0'1 

2 ---2' 
XI - B.n-l cro 

c= croX~.n-l . 
n- 1 

(15) 

(16) 

For fixed a and {3, the quantity on the left side 
of (15) decreases a n increases. By inspection of 
a table of the percentage points of the chi-square 
distribution,13 determine the first value of (n- 1) 
which makes the left member of (15) grcater than 
(or equal to) the right member . Then substitute 
into (16) to obtain c. 

Most tables of the x2 distribution stop at n = 30. 
Beyond this value of n, a sati factory approxima­
tion is obtained by treating s as if it had a normal 
distribution with mean equal to cr and with stand­
ard deviation equal to cr/ ..j2n-2 . 

13 See footnote 12. 

Acceptance Sampling by Variables 

The derivation of formulas for nand c then 
becomes essentially the same as that for ca e 4 in 
the appendix; the r esults are given under case 7. 

IX. Sample Size and Region of Rejection: 
Nonnormal Distribution 

The principal limitation to the use of the formu­
las so far developed is that they involve the as­
sumption that the distribution of the quality­
defining variable X in the sampled aggregate is 
of the normal or Gaussian type. If in any given 
case, the assumption of normality appears to be 
inapplicable, it may happen that some other 
fairly tractable form of distribu tion can be 
specified. The general principles outlined in the 
preceding sections for determining sample sizes 
and regions of rejection will again be applicable, 
but rather troublesome computational difficulties 
may be encountered in determining the distribu­
tion of the ample mean and in solving for the 
sample size and boundary of the optimum critical 
reglOn . 

Moreo.ver, in practice, cases are frequently 
encountered in which, due to. lack of "statistical 
control" (see section XII ) or lack of any historical 
data concerning the production proces , very little 
a priori information i available concerning the 
possible form of the di tribution of the variable 
X in a given aggregate. A method for dealing 
with such cases will be described in the remaining 
paragraphs o.f this section . It naturally leads to 
somewhat higher sample sizes than arc obtained 
when for equivalent hypo.these and risks of 
error the form of the distribution is completely 
specified in advance. However, the increase in 
sample size over that obtained even with the 
assumption of normality is often not unreasonably 
great, and it is suggested that the method about to 
be described might be used whenever there i 
serious doubt about normality, unless there 
exists a priori lmowledge of the physical nature 
of the production process which leads quite 
definitely to the conclusiDn that X should have 
some special form of nonnormal distribution, 
such as a Poisson distribution. 

The metho.d consists in making usc of the vari­
ous inequalities of the so-called T chebycheff type, 
which place upper bounds on the proportion of a 
distribution that can lie at more than a preassigned 
distan ce from a central point in t.he distribution .H 

" See [10] p . 182 to 1S3. 
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The bes t-known and most frequently employed of 
these inequalities is the Bienayme-T chebycheff 
inequali ty/5 which presupposes no r estrictions at 
all on the distribut ion excep t that there is a finite 
standard deviation. As might be expected from 
the absen ce of prior information assumed, the use 
of this inequality to derive formulas analogous to 
those of section VIII leads t o very high sample 
sizes compar ed to tho e obtainable under the as­
sumption of n ormality. It is possible to improve 
t he Bienaym e-Tchebycheff inequality somewhat 
by imposing cer tain additional restrictions on the 
distribution, such as that it be continuous and 
unimodal.I6 This type of r est riction is not unre­
alistic in acceptance sampling workY But anoth­
er and more fundamental difficulty in the applica­
tion of the Bienayme-T chebycheff inequality to 
acceptance sampling by variables is tha t the ine­
quality seems to fail to take full advantage of the 
usually rapid approach of the sampling distribu­
t ions of x and s to the normal form as n increases. 

Thus in spite of the popularity of the Bienayme­
Tchebycheff inequality and its various modifica­
t ions, in the case of hypotheses concerning f.L , it 
would seem that the appropriate type of T cheby­
chef! inequality to use is one which is known as 
the inequality of S. Bernstein. This inequality 
has the double virtue of appearing to avoid the 
difficulty jus t now mentioned, and of involving 
restrictions on the distribution of X that are 
automatically satisfied in most acceptance sam­
pling work. The Bernstein inequality may be 
wr it t en in the form of a pair of inequalities as 
follows: 18 

Prob. [x_ f.L~K] ~e-nK2/(2q2+2hK), (17) 

Prob. [x- f.L ~ _K] ~e-nK2I (2q2+2hK), (18) 

and the restrictions on th e distribut ion of the 
aggregate are tha t the absolute momen ts 

vj= E( iX - f.L i j ), j = l , 2, . .. , 

all exist and satisfy th e inequality 

2 

<!!.-- " hj - 2 ' - 2 3 VJ= 2 J. ,J - " ,., 

where 11, is a posit ive number . These conditions 
are satisfied if, for example, the dis tribut ion of X 

" See [10] p . 183. 
16 See [10] p . 183, also [11]. 
17 Simon [21 discusses in some detail the use of the sh arpened Bienaym~. 

'rchebychefl' inequality in industrial sampling work. 
18 See [12] p. 204 to 205; also [1 3]. 
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is bounded, which is usually the case in practice. 
If the distribution of X lies entirely in the interval 
( f.L - !::J. , f.L + !::J. ) , th en it can be shown that 11, can 
be taken as equal to !::J.3.19 

The use of th e inequalities (17) and (18) to 
derive formulas for sample size and critical regions 
for hypotheses relating to f.L , follows closely in the 
pattern set up in section VIII. The same type of 
r egions of rejection will be u ed as before; these 
regions at least have opt imum proper ties in th e 
limit as the ample size t ends to infinity. 

The argument used in section VIII is applicable 
without change down through (5) and (6). At 
that point the inequalities (17) and (18) are intro­
duced. The analogue of (7), obtained by usmg 
(17), is 

Prob. [xG; Ci f.L = f.L1, 0' = 0'0] = 

Prob. [X- I-L I G;C - f.L l if.L = f.L I ' 0' = 0'0] 

~ e __ n(c..:." ,), - (J, 
- 2q~+2h (c-",) 

where e= 2.71828 That is, 

n(c- JL I)2 I 
+ 11, ( ) = - 2 oge .B. 

0'0 C - f.LI 
(19) 

Similarly , applying (18) to (5), the following 
equation is obtained: 

n(c- 110)2 1 
2 11, ( )= - 2 og. a . 

0'0 - C- f.Lo 
(20) 

The two simultan eous equations (19) and (20) 
define nand c. The extension to the case in which 
the a priori information 0' = 0'0 is replaced by 
(}' ~ 0'0 for Ho and O' ~ 0"1 for H I is again valid. The 
only change in the equations (19) and (20) necessi­
t ated by this generalization consists in replacing 
0"0 by 0"1 in (19) . 

Unfortunately, (19) and (20) happen to be 
equations of the third degree in the unknowns, 
and the general solution is somewhat complicated. 
The situation is grea tly simplified from the alge­
braic point of view by taking a= fJ . The solution 
for this case, and with 0'0= 0"1 for additional 
simplicity, is given in cases 5 and 6 in the appendix. 
The reader will have no great difficulty in obtain­
ing the solution of (19) and (20) in more general 
cases, either by graphical methods or by s traigh t­
forward algebra. 

, , See [121 p. 205. 
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X. The Case of Unknown (J" 

It has doubtless been noticed by the reader that 
the formula so far derived for acceptance sampling 
plans involving hypothese l'elating primarily to 
fJ. , have unfortunately always explicitly involved 
upper bounds for IT. This situation stems from 
the fact that the power curves for any efficient 
test of a statistical hypothesis concerning fJ. will in 
general always depend on higher moments of the 
distribution of fJ., except in th e ea e of certain very 
special distributions, where IT is a known function 
of fJ.. (An example of such a special distribution 
is the Poisson distribution, where IT = ..j;.) 

If it can be assumed without too much error 
that the distribution of X i normal, then it is 
possible to devi e a test of a hypo the is relating 
to fJ., which has the property that the power curves 
corre ponding to different values of IT all go 
through one point, say the point (fJ.o, a) or the 
point (fJ. l, (3) in the notation of section VIII and 
the appendLx. Moreover, the power curve of the 
test corresponding to each given value of IT either 
always ri e or always falls as fJ. increa es, so that 
if the hypo the is to be te ted is of the form 
fJ.o~ fJ.< co, say, and if the test is arranged so that 
each power curve passes through the point ( fJ.o, a), 

then it is po sible further to arrange the test 0 

that the power for fJ. > f.!.o is always less than a no 
matter what IT may be. 

Translated into the language of acceptance 
sampling, thi all means that if the distribution of 
X in the sampled aggregate can be as umed to be 
normal, and if good quality is defined, say, by 
J..Lo~ fJ. <co and bad quality by -co <fJ. ~ fJ. l (as in 
case 1 in the appendix), then there is a way to set 
up a sampling plan that will have a preassigned 
producer 's risk, or alternatively a preassigned 
consumer's risk, regardless of the standard devia­
tion of the aggregate. But only a chosen one of 
the two kind of risks can be preassigned ; when a 
series of aggregates having differing values of IT 

are sampled, the value of the opposite risk will be 
different for each aggregate in the series, and will 
increase with IT. 

A suming (as always) the method of sampling 
described in section VIII, t h e critical region (or 
region of rejection) for the test in question is 
defined by inequalities of the type 

(21) 

Accep tance Sam.pling by Variables 

X-fJ.' 
s/..j7i ~c, (22) 

where fJ.' is the particular value of fJ. for which it is 
desired that the power of the test shall be inde­
pendent of IT. In case the producer's risk is to be 
fixed for a hypothesis of good quality given by 
fJ.o~ fJ. < co, then (2 1) would be used with fJ. = fJ.O' 

The left member of (2 1) and of (22) is a function 
of the observations Xl, X 2 ••• , X n known as 
Student's t 20 with n-1 degrees of freedom. 
Tables giving certain of the percentiles of the 
distribution of this function for various values of 
n are widely available. Let tn.v denote the lOOp 
percent point of the distribution of Student's t 
with n degrees of freedom; that is, the point at 
which the ordinate of the frequency curve of this 
distribution bound a right-hand tail area exactly 
equal to p. Then if the producer ' risk is to be 
fixed, the formula for determining c is simply 

with the ign chosen so as to place the region of 
rejection properly in accordance with the obvious 
requi;rements of the hypo the is. If the con-
umer's risl~ i to be fixed, the formula becomes 

umerical example and further details will be 
found in [9] . 

The proeedUl'e given above is applicable for any 
proposed sample ize n and docs not fix the value 
of n. P erhaps the most satisfactory method of 
selecting n is by inspection of a family of power 
curve for the Student's t test drawn for various 
different values of (J" and n.2l If the use of alter­
native hypotheses seem to be appropriate, then 
these curves will be found to give in convenient 
form, for each n, the various values of the . con­
sumer's risk (assuming that the producer's risk 
was fixed in setting up the plan) which corre pond 
to the particular values of IT , which are likely to 
be encountered in the applications. 

It is perhaps a little discouraging to notice in 
this connection t hat if a sampling plan is set up 
by the formulas given in ca e 1, or case 2 in the 
appendL,(, and if the Student' t plan with, say, 
fixed producer ' risk is set up for the same defi-

lO See, for eX!UIlple, [9], p. 14. A table oC tbe distribution oC t is given on p. 
167oC(9]. 

21 See [8]. 
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nition of good quality, the same producer's risk, 
and the same sample size, t,hen the consumer 's 
risk for a given definition of bad quality and a 
given upper bound for (J" is considerably greater 
in the case of the Student's t plan than in the case 
of the other plan . (Of course, this consumer's 
risk in the Student's t plan can be reduced by 
increasing the sample size beyond that of the 
other plan). This fact suggests that the use of 
the Student's t approach in acceptance sampling 
work should be limited to cases in which it is 
essential at all costs to maintain either a constant 
producer 's risk or a constant consumer's risk. 
But in practice, the exact validity of t~e underlying 
assumption of normality is always in doubt, and 
the method of sampling is seldom truly random, 
so the concept of a constant risk is in reality qui te 
a nebulous one. Th ere is thus some basis jor a 
rr.commendation that the Student's t approach should 
never be used at all in acceptance s'ampling work . 

The dependence on (J" of the power curve of tests 
r elating to J1- in the normal case can be eliminated 
by the device of using a two-sample test, or double­
sampling plan, in which the fu'st sample serves the 
purpose of exploring the situation as regards (J", and 
the sample size of the second sample is adjusted 
accordingly. If the assumption of normality 
could be removed, such double-sampling plans 
might be of considerable utility in acceptance 
sampling work in which a variety of unique aggre­
gates of uncertain pedigree and composition are 
to be sentenced by sampling in the complete ab­
sense of any history on which to base estimated 
upper bounds for (J" . But as far as the writer is 
aware, there has been no attempt to eliminate the 
normality assumption in the literature of such 
tests to date. The assumption of normality, or 
even approximate normality, in the situation just 
now described would seem to be rather dangerous. 

If the normali ty assumption is admi tted, then 
there are several ways of going about the problem 
of setting up the test. A particularly interesting 
and straightforward method is given by Stein in 
[14]. Although it is beyond the scope of this paper 
to discuss multiple or sequen tial sampling plans 
at any length, it seems worth while to give here 
the instructions for setting up an acceptance sam­
pling plan for alternative hypotheses on the basis 
of the Stein theory. For the hypotheses of case 1 
of the appendix, the steps are as follows in terms 
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of the notation introduced in this section and 
previously: 

(1) Select a random sample of size m from the 
aggregate, and calculate S2 for this sample. (The 
sample size m is not prescribed by the condit ions 
of the problem, and is left to the judgment of the 
person doing the sampling. A small m might 
r esult in a large total sample size if (J" is large.) 

(2) Find the numerical value of 

Let n be th e total number of observations in the 
first and second samples. The value of n is to 
be taken as [n'J 22 or m, whichever is the larger. 
(This means that if [n /] > m, it will be necessary 
to take a second sample of [n/] - m items, but 
if [nJ;2; m, no second sample is necessary.) 

(3) The region of r ejection is now defined to be 

where 

-
x-}-!o 

/ ,-<c, 
s -y n 

n 

~xJ 
c=- tm _ 1• cr and x=~· 

(23) 

(Note that s is compu ted only from the firs t sample 
of m items, but x is computed from the first and 
second samples combined, if there is a second 
sample.) 

For the hypotheses of case 2 of the appendix, the 
sense of the inequality (23) and the sign of c is 
reversed ; the instructions are otherwise unchanged. 

The critical r egion defined by (23) is obviously 
a very complicated one, as n is a function of the 
first m observations. It is not known to the 
writer whether or in what sense the test so defin ed 
has optimum properties. 

It is important to observe that the producer 's 
and consumer's risks of a double-sampling plan 
such as the above one apply to the entire double­
sampling process and not just to the second 
sample. In sampling a sequence of aggregates, 
it would not be legi timate to select the first 
sample of m only in the case of the first aggregate 
and then to use the value of sand n so derived 
for all the succeeding aggregates. The value of 
s must be determined separately for each aggre­
gate of the sequence. 

22 The symbol In'] means largest integer in n'. 
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XI. Quality Measured Simultaneously by 
Several Parameters 

It occurs frequently that the quality of an item 
must be measured by a number of variables that 
may be correlated with varying degrees of 
intensity. 

If the quality of the sampled aggregate is to be 
measured by the mean value of two or more 
variables, and if these variables may be con­
sidered on engineering grounds to be statistically 
independent, then it is very easy to generalize 
the theory of the single-parameter case. For 
example, suppose that aggregate quality is to be 
measured by the three arithmetic mean values 
ILl, IL2, IL3, and that the hypothesis Ho of good 
quality has the form 

Let ai, a2, and a3 be the producer's risks asso­
ciated individually and respectively with these 
three inequalities; that is, the producer's risks for 
sampling plans designed to control the means, one 
at a time. If Xl, X2 , and X;l are the three respective 
sample means, then an efficient test of Ho simply 
consists in requiring rejection if one or more of the 
:v's fall b elow acceptance numbers determined 
individually for the three quality characteristics 
by the methods used for the single-variate case. 
From this it can be inferred that the total pro­
ducer's risk of the entire sampling plan (that is, 
the maximum probability of r ejecting Ho if Ho 
is true) is given by 

1- (I - al) (1-a2) (1-a3) = a l+ a 2+a3- ala2-
ala3- a 2a3 + ala2a3' 

If each of these risks is small, say less than 0.05, 
as is usually the case in practice, the product 
terms can safely be ignored, and the total pro­
ducer's risk becomes simply the sum of the three 
individual risks. 

On the other hand, the problem of the con­
sumer's risk requires a different approach. The 
aggregate would usually be considered to be of bad 
quality if anyone of the three parameters ILl, IL2, ILa 

lies in an interval that is associated with bad 
quality for that parameter; that is, an aggregate 
is generally considered unacceptable if it is bad 
in anyone respect. Under these conditions the 
total consumer's risk of the sampling plan would 
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be simply equal to the largest of the individual 
consumer's risks associated with sampling plans 
designed to control the means one at a time. Of 
course this point of view is somewhat arbitrary, 
and perhaps there would be circumstances in 
which an aggregate would not be rejected unless 
an inference could be made that it was bad on two 
or more counts. In this case the total consumer's 
risk would be the largest of the products of pairs 
of individual consumer's risks. 

The special case of three parameters so far con­
sidered can immediately be generalized to a higher 
number of inde'pendent quality characteristics. 
The general resul t is that the producer's risks for 
individual quality characteristics are always added 
to get the total producer's risk, but the consumer's 
risks for each of the quality characteristics must 
ordinarily be considered separately. 

A similar situation occurs when aggregate qual­
ity is simultaneously mea ured by the arithmetic 
mean of a quality characteristic and by the stand­
ard deviation. If a normally distributed aggre­
gate can be assumed, the customary sample esti­
mates of these parameters are statistically inde­
pendent. (This is true asymptotically for any 
aggregate.) Thus if sampling plans are et up 
individually for these quality measures in accord­
ance with the formulas in the appendix, the com­
bined producer's risk will be approximately the 
sum of the two producer'S risks, but the con­
sumer's risks cannot be combined. 

When the quality characteristics are correlated, 
the problem becomes far more complicated, both 
from the engineering and from the computational 
points of view. The definition of what is good 
and what is bad quality is often harder to decide 
upon in this case. For instance, a lot of plywood 
that is low on shear strength but high on percent-

. age wood failure in sheared spr,cimens might be 
just as acceptable as a lot that, is very high on 
shear strength but very low on percentage wood 
failure in sheared specimens. Thus in the case of 
correlation, the definition of good quality may 
correspond in some cases to a spherical or ellip­
soidal region of the space whose coordinates are 
the population parameters representing quality 
characteristics. 23 The formulation of the "best" 
test of the hypothesi of good quality in such cases 
and the computation of the risks may involve a 

23 It is conceivable tbat such a definition of good quality might occasionally 
be considered appropriate even iu the case of independent characteristics. 
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number of difficulties. Even for the hypothesis 
Ho considered above, the computation of the 
producer's risk in a given case would involve a 
rather laborious mechanical quadrature. How­
ever, the formula given above for the case of 
independent variables provides an upper bound 
that often suffices in practical applications. 

XII. Lot Acceptance and Process 
Acceptance 

It has been emphasized several times in the fore­
going discussion that the theory of inferential 
statistical sampling plans always involves the 
assumption that the sample is selected in such a 
way that the distribution of the sample observa­
tions bears a known, ealculable relation to the 
unknown frequency distribution of the aggregate. 
In particular, it will b e recalled that the validity 
of t he formulas developed in sections VIII to X 
is d ependent upon a method of sampling that will 
insure that the observations are statistically inde­
pendent and that each has a probability distri­
bution identical with the frequency distribution 
of t he aggregate. 

When such a requirement is considered from the 
operational point of view, it becomes necessary to 
distinguish between the case in which the sampled 
aggregate is all physically present and complete 
in itself at the time of sampling, and that in which 
the aggregate is iewed as a whole stream of 
items, some of which have yet to be manufactured. 
In other words, is it the purpose of the sampling 
plan to sentence a fini te " lot" or delivery already 
produced, or the entire process? It has been 
customary to call the plan 'a "lot acceptance sam­
pling plan "in the first case. The second case might 
be called " process acceptance sampling," and is 
,one of the fundamental techniques of statistical 
q uality control. 

In lot acceptance sampling work, it is always 
possible, though often not practicable, by the use 
of a table of random numbers or some such device, 
to obtain more or less complete theoretical 
conformance with the requirement of "random­
ness," which is basic to the formulas of sections 
VIII to X. In process acceptance work, the 
difficulties in securing randomness with respect 
to the entire process arc much more formidable. 
In addition, the viewpoint is broader , and economic 
and psychological considerations may dictate that 
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it is more important to avoid erroneous rejection 
of a good process (and consequent shutdown of 
machinery) than it is to avoid temporary erroneous 
acceptance of a sub tandard process. 

These considerations suggest that a rather 
frequently repeated statistical test of low nominal 
power and with a very low nominal producer 's risk 
might be more suitable for process control than a 
less frequently repeated test of considerably 
high er power. Such an approach was advocated 
by Shewhart [1 5} and has now become the ac­
cepted sampling technic for statistical process 
control. An essential feature of the Shewhart 
system consists in plotting th e sample data on a 
"control chart." This graphical device has been 
found useful in bringing abou t a condition in which 
the sequen ce of observations on successive items 
produced by th e process has the characteristics of 
a sequence of observations on items successively 
drawn" at random" (in the sense of section VIII) 
from a finite aggregate. Shewhart calls this con­
di tion that of "statistical control" and has pointed 
out a number of benefits that it entails. 

Wh en a process is known to be in statistical 
control, a fairly extensive history of the production 
process is necessarily at. hand. If this history 
indicates that the distribution of the aggregate 
has remained for some time within a subclass of 
distributions identifiable with good quality , then 
it is the viewpoint of many experts in the fi eld of 
statistical quality control that the weight of such 
historical data should be ordinarily sufficient to 
permit t he continual accep tance of lots without 
the use of a more powerful (and more expensive) 
lot acceptance sampling plan. 

Such a viewpoint clearly rests on experience 
rather than on mathematical theory. If the 
purchaser does not have his own inspectors in the 
plant of the manufacturer, he may very well feel 
that he needs some sort of definite lot-by-lot 
protection against lack of real control or shifts in 
the distribution of a statistically controlled process. 
Moreover, each lot produced by a process in sta­
tistical control is itself a random sample from the 
aggregate consisting of the process, so a poor lot 
will occasionally be produced by a good process 
through sampling fluctuations. 

Thus it is by no means irrational under some 
circumstances to employ a lot acceptance sampling 
plan on lots produced by a process supposedly in 
a state of statistical control. If the decision is 
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made to do this, the historical data concerning the 
control of the process, when available, will often 
provide safe estimates of nui ance parameters such 
as u in the case of hypoLheses concerning the mean 
and also will provide appraisals of the applicability 
of assumptions concerning the general form of the 
distribution of the lot. 

It is interesting to notice that if a lo t acceptance 
sampling plan is set up in connection with a con­
trolled process, with the ultimate aim of accepting 
or rejecting the process, th en the chances of mak­
ing an erroneous decision are likely to be about the 
same for the individual lot and for the process. 
More precisely, if a sampling plan involving a 
hypothesis concerning, say, the mean J.l. of the 
sampled aggregate (assumed to be normally dis­
tributed), is set up for a pair of hypotheses similar 
to those of ease 1 of the appendix, with the process 
playing the role of the sampled aggregate, then 
the upper limit of the conditional probability of 
rejection for a lot with m ean X satisfying the 
condition X~ J.l.o is less than (but only slightly less 
than) a, and the upper limit of the conditional 
probability of acceptance for a lot with X;;? J.l.l is 
less than (but only slightly less than) {3. This 
situation arises from the fact that for any given J.l. , 

the "uncondi tional" marginal distribution of x 
(tbe sample mean ) is normal with mean J.l. and 
standard deviation u/~n, while for a given fixed 
value of X , the conditional distribution of x 
(which is incidentally independent of J.l.) is normal 

with mean X and standard deviation (u;'/n) 
(~(N-l)N) where Nis the lo t size), whieh is 
only very slighLly less than u/.fii for rea onably 
large values of N. Similar considerations apply 
to sampling plans involving the standard devia­
tion. 

Thus under the hypothesis of control, if the 
mean of the process is in a region associated with 
good quality, the occa ional "bad" lot that is 
produced by an accident of chance itself has a high 
probability of being rejected by the sampling plan. 
The probability of accidentally accepting a bad lo t 
under such circumstances is a little less than the 
probability, multiplied by {3, that a bad lot will be 
produced. This probability of accidentally ac­
cepting a bad lot, for N >n, is infinitesimal for the 
pairs of hypothesis considered in this paper; for 
example, in the case of hypotheses concerning the 
mean, the region for X identified with bad lies well 
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beyond the accep tance number c, which itself lies 
in the extreme tail of the distribu tion of a sample 
of n. 

This suggests that when there is a certain 
amount of assurance that a state of statistical 
control exists, a "cheap" lot acceptance sampling 
plan with low power might be the reasonable one to 
use. For given definitions of good and bad quality, 
when statistical control is not assumed, it is cus­
tomm-y to use consumer 's and producer's risks of 
the order of 1 to 10 percent. It is suggested that 
when statistical control can be assumed, a satis­
factory plan will result if a consumer 's risk of 50 
percent is used in conjunction with the value of 
the producer's risk, and the definitions of good and 
bad quaFty, that would have been chosen if no 
control were assumed. 

XIII . Random Remarks on the Applications 

In practice, the control of dispersion in lot ac­
ceptance sampling work is till usually handled by 
the method of inlposmg upper and lower toler­
ances on the variable in question, which are then 
enforced by sampling by attributes. However, 
the writer has seen a number of succes ful applica­
Lions of variable technics involving the sample 
range or sLandard deviation . It seems probable 
LhaL as staLi Lical quality control methodology 
becomes more familiar to inspectors and factory 
personnel, the variable approach to the disp rsion 
problem win be given propel' emphasis in cases 
where it is noL the position of Lhe distribution, but 
its "width " that must be con trolled. A case in 
point is to be found i.n recent issues of Navy D e­
partment specifications for certain types of high­
pressure cylind ers. The range of tensile trength 
in the steel in individual cylinders, which affects 
the weldability properties of the metal, is con­
trolled in these specifications by means of a 
variables sampling plan. 

In the case of quality measured by the mean , the 
situation as regards the present popularity of the 
variables approach is quite difreren t. Acceptance 
sampling plans involving the use of the sample 
mean are very frequent,ly met with in practice. 
Needless to say, they are usually set up on the 
assumption thaL the sample is an exact replica of 
the lot, and are then defended by their authors on 
the basis that "years of experience" have proved 
them to be satisfactory. 
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It is easy to see why this type of approach 
actually does not often lead to trouble. The fact 
is that variables sampling plans involving the 
mean are usually applied in cases where t here is 
considerable flexibility in the establishing of the 
definition of good and bad qu ality. By far the 
most frequent applications of this sampling tech­
nic are to cases in which the main problem is to see 
that a purchaser reeeives full measure under a con­
tract or order. The replica-of-the-Iot theory of 
sampling places the acceptance number for the 
sample mean squarely on the value of the mean 
agreed upon for the total amount of material un­
der contract, and the contractor usually has sense 
enough to avoid rejections caused by sampling 
fluctuations by keeping his lo t mean a little above 
the accep tance number. The purchaser , in his 
turn, has unconsciously established for himself a 
defulition of a bad lo t; but he seldom really knows 
exactly what is really in a given delivery, and a 
single underweight lot accidentally accepted 
through sampling errors will probably never be 
detected. 

Closely related to the problem of full measure 
is the problem of the average analysis. In the 
purchase of certain commercial chemicals where 
complete homogeneity is not necessary, an average 
analysis is all that is needed to insure tha t th e 
purchaser is getting his money's worth . This 
situation also obtains in the purchase of many 
metal items, such as pots and pans. I n the same 
category are service life lot acceptance problems, 
in which the item is easily replaced from stock­
room supplies if it wears out in use. Lamp bulbs, 
welding rods, searchlight carbons, and abrasives 
are all examples of materials which, under mass 
procurement conditions, give rise to inspection 
problems in which the estimation of the average 
service life of the items in each lot (perhaps by 
means of an accelerated life test) is the really im­
portant problem. In all these cases, the definition 
of what is good and what is bad quality is never 
really clear-cut. It is safe to say in general that 
empirically set up sampling plans using variables 
are not as likely to be really disadvantageous or 
pernicious from the purchaser 's point of view as 
are certain empirical attributes sampling plans, 
such as the familiar " take one in each lot of 250" 
plan. 

To be sure, the writer has seen some excep tions 
to this statement, which have occurred when speci-
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fication writers in attempting to extrapolate from 
"years of experience" uneonsciously have run afoul 
of the laws of probability. An example that comes 
to mind is a case in which the mean of a fairly 
large preliminary sample of observations on the 
breaking strength of glass portligh ts was taken by 
a specification writer as the acceptan('e number for 
the mean of a sample of four portlights selected 
from each lot. In another case, th e mean of the 
buoyancy values of a few experimen tal kapok­
stuffed life preserver pads was r educed arbitrarily 
by 1 pound and then used in the ensuing specifi­
cation as a lower lo t tolerance limit to be strictly 
enforced by attributes sampling. Because the 
standard deviation of most contractors for pad­
stuffin g was about % pound (as could have been 
roughly inferred from the original data), trouble 
struck quicldy when the specification hi t the street. 

These examples are admittedly somewhat ex­
treme. It is not on the basis of such incidents 
that the scien tific approach to variable acceptance 
sampling plans should be recommendcd , but 
rather on the basis of the fact that such an ap­
proach pays off in the long run. As in so many 
other fields of application of the modern theory of 
statistical inference, one can always do better 
on the average by using the theory than by not 
using it. And once in a while, a spectacular 
saving results or a serious error is averted, which 
alone justifies the extra trouble involved in basing 
t he work on sound theory. 

The chief obstacles (o ther than the difficulty of 
training p ersonnel involved) to overcome in 
applying statistical theory to acceptance sampling 
by variables are that the sample selection should 
be truly random and that prior data on the form 
of the dis tribution , or at least on its higher 
moments, m ust generally be obtained. The 
problem of randomness has already been men·· 
tioned briefly in section XII and will no t be fur ­
ther elaborated on here. The question of esti­
mating bounds for higher moments is worth dis­
cussing hen; in a little more detail, at least in the 
important case in which the hypothesis concerns 
t he mean and limits must be assigned to the dis­
persion of t he sampled aggregate. 

In some cases, the dispersion of the population 
i.s no t due so much to nonhomogeneity of material 
as to lack of precision or reproducibility of a test, 
and once the testing error has been determined 
from a preliminary sample, it is likely to remain 
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rather constant. Example of cases in which 
the lot, if propel'ly defined , is likely to be.rather 
uniform bu t the test (or tests) may exhibit con­
siJerablc variahility, are soap, impregnite, and 
various commercial chemicals produced by wet 
mix processes. In the case of chemical compounds 
blended by dry mix processes and in the case of 
metals produced by cont,inuous melting furnaces, 
the composition of a lot is likely to change slowly 
and uniformly from the first portion poured to the 
last portion, and if it were not for the error of the 
test, purposively selected samples from the first 
and last portion should " bracket" the lot. In 
these cases, it is not the number of sample items, 
bu t rather the number of repetitions of a test 
or an analysis that must be calcul ated on the 
basis of the known precision of the analysis. 

But in the majori ty of case, it is the material 
rather than the test that is variable, and predic­
tions as to future dispersions must be made on the 
basis of famili arity with the engin eering process, 
intuition, and a certain amount of historical 
evid ence. 

In the fir t place, purely eno'ineering considera­
t.ions that limi t t he range of Lhe variable under 
ob ervation will some/'im es y ield useful upper 
bounds for the sLandard deviaLion of the ampled 
aggregate. In the gagin g of the inside diameter 
of a bearing, for example, it may be known tha t 
the range of measuremen t in a lot will almost 
surely be ± O.OOI inch, from wllich a r easonable 
bound for the standard deviaLion can be inferred. 
In the production of fiber gla , Lhe range of diam­
eters of the fibers may be pretty well e tablished 
by the process; in the winding of m etallic-asbestos 
spiral-wound gaskets, the length of the strips of 
asbestos used will insure that the numb er of plies 
will fall within defini te limits. An interesting 
case is furnished by resistance wire, which is sub­
jected to average requirements on diameter 
mainly so that a piece of wire wi th a given re­
sistance will not take up too mu ch or too little 
room when wound on a mandreL Unless different 
sizes of wire accidentally get mixed in a lot 
(which does sometimes happen but which would 
probably be detected by the r esistance test), i t 
can safely be inferr ed th at Lhe range of diameters 
in a lot will be restricted by the dies so that it lies 
between certain k nown limit. 
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XV. Appendix 

Single-Sample Formulas for Acceptance 
Sampling by Variables 

1. Notation 
X = a variable which mcasures a quali ty charactcri t ic of 

an individual iLem 
Jl = t he a ri t hmetic mean of the frcqucn cy distr ibution of 

X in an aggrcgatc of the itcms 
u= the standard deviation of t he distri bution of X in an 

aggregate of the items 
n=sample size (number of items in a sample) 

X=Xl +X2+ ... + Xn, where 
n 

Xl, X2, ••• , Xn are the observations on t he sample 
items 

S2=(XI ~X)2+(X2~X')2+ ... +(X,, ~X)2 
n - l 

c= acceptance n umber 
a = producer' s risk (maximum probability of rejccting an 

aggregate of good or acceptable quali ty) 
!3 = consumcr's r isk (maximum probabi li ty of accepting 

an aggregate of bad or un acccptablc qua li ty) 
k p = defi ned by t he equatioll 
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2 . Pairs of Alternative Hypotheses 

flo liJ 

Case number 
Definition of A pr iori information 
good quality con cern in g parameters 

Definition of bad 
quality 

A pr iori 
information 
concerning 
parameters 

--------------------------------------------------------------------------1----------------1----------
1 _________________________________________________ _ 

2 ________ ________________________________________ _ 

3 ___________ : ____________________________________ _ 

4 ______________________ ~ _________________________ _ 

5 ________________________________________________ _ 

6 ________________________________________________ _ 

7 __________ __________ ____________________________ _ 

8 ___________ - __ - -_ - - -- - - - - - - -- -- - - - - - - - -- - - --- -- - - J.LO~ J.L ~ J..L~ 

Case num ber .<\.ssumcd form of distr ibution of 
aggregate 

3 . Single-Sample Formulas 

(Random sampling) 

n 

1-' ~ 1-'1 < 1-'0 

1-' ;; 1-'1> 1-'0 

1-' ~ 1-'1 < I-'O 

1-' ;; 1-'1 > 1-'0 

1-' ~ 1-'1 < 1-'0 

1-' ;; 1-'1 > 1'0 

<1;; <11 > <10 

{ 1-' ~ I-'I < JJ.o 

I-' ;; I-';> I-'~ 

Reg ion R 
01 rejee- elerence 

tion to notes 

-----------1------------------------- ------------------------ ------------------ ----- ------
L _________ NormaL _______________ (kWI + ka<10 y k~l-'o<Tl + kal-' l<10 

x < c (a) 
1-'1 - 1-'0 k~<T1 + ka<10 

2 ________ -_ _____ do __ _______________ ( k~<Tl + ka<10 y k~I-'O<Tl + kal-' l<10 
x > c (a) 

1-'1-1-'0 k~<11 + ka<10 

3 _________ _____ do __ _______________ (k~al l-' l + kaaol-'o ) 2 k~al+kaao 
x < c (a) 

1-'1 - 1-'0 1-'01-'1 k~all-'l + kaaOI-'O 

4 ____ ___ __ _____ do _________________ (kpa11-'1 + kaaol-'o) 2 kpal+ kaao 
x > c (a) 

1-'1 - 1'0 1-'01-'1 kSal l-'1 + kaaol'O 

5 ___ __ ____ {Lies entirely in fini te 

{ 
<15+~ 1 1-'0- 1-' 11 1-'0+ 1-'1 X< c (a), (b) 

inter val (I-' - D., I-' + D.) - 18.42 (log lO a) ( )2 --2 -1-'0 - 1-'1 

.6 1 1 

6 ______ --- _____ do _________________ <15+ 611-'0 - 1-'11 1-'0+ 1-'1 x > c (a), (b) - 18.42 (10glO a) ( )2 - --2--1-'0- 1-'1 

7 _________ NormaL _______________ 1+! ( kW1 +ka<1°Y 
0"1- 0"0 

( kp + ka ) 
<10<11 kpul + kauo s>c (c) 

------~----------~------~----------------------~------------------~--~------
4. Notes be assumed t hat <1 < 6./3. This leads to the following 

(a) In the case of the " two-sided a lternative" hypothe-
sis, identified as case 8 in the list of pairs of a lternative 
hypot heses, calculate sampling plan for each side sepa­
rately by use of cases 1 and 2, or 3 and 4, or 5 and 6, as 
applicable, and use larger value of n for the final sampling 
plan. Final producer's risk will be less t han or equal t o 
the sum of the two producer 's risks for each side. 

(b) These formulas apply only when a ={3 . In practice 
it is often easier to estimate D. than <10, and it may safely 
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useful alternat ive formula for n: 

(c) Use these formulas only for n > 30. For n ~ 30, set 
up sampling plan with the use of t he x2 distribu tion_ 

Washington, November 22, 1946. 
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