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Integer Programming

1 Introduction

In many programming problems opiimal solution is sought in terms of integral
values of the variables, nonintegral answers not being meaningful in the context of
the situation which gives rise to the problem. For example, if the variables are the
numbers of buses on different routes in a town or the numbers of bank branches in
different regions of a country, fractional answers have no meaning, Mathematical
programming subject to the constraint that the variables are integers is called
integer programming. If some of the variables are restricted 10 be integers while
others are real numbers, the problem is said (o be mixed integer programming,.

Striculy speaking, if in an LP problem we restrict the variables to integers, the
problem becomes nonlincar. But it is convenient to call it an integer linear pro-
gramming problem (ILP) because the constraints and the objective function remain
linear if the integral restriction on the variables is ignored. If not all but some of
the variables are restricted 1o be integers, we have a mixed integer linear pro-
gramming problem (MILP). In general we may have an integer or a mixed integer
nonlinear programming problem if it is obtained by imposing integer restriction on
an otherwise nonlinear problem. In this chapter we shall consider only the integer
and the mixed integer lincar programming problems.

One obvious way of getting an answer 10 an [LP or MILP is 0 ignore the integer
restrictions on variables and solve it as an ordinary LP problem, and then to round
off the optimal solution to nearest integers. When the answers are in the neigh-
bourhood of large integers, the method gives satisfactory results. For example, if
the problem is concerned with human population in a town, a fractional answer
giving the number of persons as 3548.68 can be rounded off to 3549 or even to
3550 without any significant error. But if the answer is in the neighbourhood of
small integers such rounding off may give a totally wrong answer. We illustrate
this by an example in the next sectiomn, !

We have seen in chapters 4 and 5 that in transportation or network type of
problems with integral data, the answers are always in terms of integers. If in an
LP problem the optimal solution turns out to be integral, it is obviously the optimal
solution to the related ILP problem also, and nothing more need be done, Special
methods have to be derived if this is not so.

2 ILP in two-dimensional space

As in the case of an LP problem, it is easy to obtain a graphical solution of an
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i i i wo. We therefore take a two-
ILP problem i the number of variables is only t et foalurs e

dimensional ILP problem as an example t0 bring out

general ILP problem.
Consider the problem:
Maximise O(X) = 3x, + 4255 M
subject to 2x, +4x, <13,
o +n<2,
2, +2x5 21, 2
6x,—4x, < 15,
X 520; 3
X, X, integers. “

This is an ILP problem. If we drop (4) we obtain the related LP problem.

Fig. 1 shows the graphical solution of the related LP problem. The polygon
ABCDEF is the convex set of feasible solutions and the point C(x, = 7/2, x, = 3/2)
is the optimal solution_with the maximum value of ¢ = 33/2. If we round off
(7/2, 3/2) to nearest integers, assuming that 1/2 may be rounded off to 0 or 1 with
equal justification, we get the four points (3, 1), (4, 1), (4,2), (3, 2). Of these the
last three are not feasible. So the only feasible point obtained by rounding off is
(3, 1), which makes ¢ = 13.

Consider now the given ILP problem. We restrict x;, x, to be integers, and so
the set of feasible solutions are the points in the polygon ABCDEF whose coordi-
nates are integers. Such points, marked x in Fig. 1, are (1, 0), (2, 0), (0, 1), (1, 1),
@, 1), (3, 1),(0,2),(1,2), (2,2). Among these points the objective function ¢ is
maximum at (2, 2) with ¢ = 14. Thus rounding off gives a wrong answer.

max ¢ for related LP

max ¢ for ILP
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INTEGER PROGRAMMING 165

lated nine points gj ’
iven : :
nonconvex set of feasible soluliﬁ above. If we obtain the convex hull of this

i ns, we get the polygon EGHKLM. E e
of this convex polygon j : . polyg . Every vertex
A TP problcmp; Ygon is a feasible solution of the ILp problem. Let us consider

Maximise 0(X)=3x, +4x, o
Thsubje.ct toXe Fonvex hull of feasible solutions of (2), (3) and (4).
h  Optimal solu.non of this problem can be seen to be the point M(2, 2) which is
;Op“mfﬂ solution of the given ILP. We may therefore conjecture that the opti-
mal solution of an ILP problem is the same as the optimal solution to an LP
problerr} whose objective function is the same as that of the ILP problem but whose
constraints are such that the convex set of feasible sollitions tumns out to be the

convex hull of the set of feasible solutions of the ILP problem. We proceed to
prove this conjecture. ’

3 General ILP and MILP problems

DEFINITION 1. A vector X € E, shall be called an integer vector if its components
x; foralli,i=1,2, .., n,areintegers; it shall be called a mixed integer vector if x;
is integer for i € J where J — {1,2,3, ..., n}.

With symbols as defined in section 3, chapter 3, we enunciate the general ILP
or MILP problem as follows:

Minimise fX)=CX, ()
subject to « AX=B, (6)
X 20, M

X an integer or a mixed integer vector. (8)

If we drop constraint (8) we are left with the related LP problem. A solution of (6),
(7), (8) is obviously a solution of (6), (7). Therefore, if Trdenotes the set of feasible
solutions of the ILP or the MILP problem, and S the set of feasible solutions of the
related LP problem, then Ty < Sr. Since S, if nonempty, is a convex set (theorem
1, chapter 3), and every point of T¢is in Sg, the convex linear .combinations of
points in Ty arc also in Sy. Hence [T¢], the convex hull of T, is a subset of Sg

(theorem 10, chapter 1). Thus

T clTh < Sp- ®
The ILP or MILP problem (5)-(8) may now be stated as follows also:
Minimise  f(X)= Cx,} (10)
subject to Xe T, ‘
Y is:
The related LP problem inimie fX)= CX.} an
subject L0 Xe S

We state another LP problem associated with the above:
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Minimise  f(X)= CX,} 12)
subject to X e [TH.
We prove three theorems concerning the solutions of these problems.

onempty, then optimal

THEOREM 1. [ j 1 11) exists and Tgis n
If an optimal solution of (11) F 11y is @ lower bound

solutions of (10) and (12) exist. Also the optimal solution of
for the optimal solutions of (10) and (12). :
Proof. Let X, be an optimal solution of (11). Then for all XinSf

f(Xo) £ fX).
Let Y € Tx. Then, from (9), Y € S, and so

fX) < S (Y).
This means that Y), Y € Ty, has a lower bound, and so (10) has an optimal solu-
tion. Similarly we prove that (12) has an optimal solution. The second part of the

theorem

also stands proved. Proved.

THEOREM 2. If an optimal solution of (11) is an integer or a mixed integer vector
as required by (8), then it is also an optimal solution of (10).

Proof. Let X, be an optimal solution of (11) satisfying (8). Then X, € Trand
so Tis nonempty. Let, if possible, X, be not an optimal solution of (10). But, from
theorem 1, an optimal solution exists. Let it be Y,. Then Y, e Tp and

F(Yo) < f(Xy).
Since Ty < 8¢, Yo € Sp. Also Xy e Sy The above inequality then implies that X,
is not an optimal solution of (11) which contrad:2is our hypothesis. Hence X, is an
optimai solution of (10). Proved.

THEOREM 3. An optimal solution of (10) is an optimal solution of (12). Con-
versely, a basic optimal solution of (12) is an optimal solution of (10).
Proof. Let X, e Trbe an optimal solution of (10). Then for all X & T,

F(X)o £ f(X). (13)
Let Y be any point in (T;]. Then Y is a convex linear combination of some points
X,i=1,2,..r0f T thatis

Y=i§x.x,.,x,.zo. _Z;:ll,:l.

Since X, € Tr, X, is also in [T;]. Let Y be different from X,, and if possible, let
FY) < f(Xo) (14)

= /(é:‘ )"ixi) <f(Xoh
= £ AS(X) <f(Xo), since f(X) s linear,

= 70X 5, & < F0X0),
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INTEGER PROGRAMMING 167
= fX) < f(X), (15)

where fXy= m'in FX).

?ul X, being onc of the Xi's, is in Ty, and so (15) contradicts (13). Therefore (14)
1S not truc, and consequently

f¥) 2 f(Xo)
which means X, is an optimal solution of (12).

To prove the converse, let X, be an optimal solution of (12). Then Xo is a vertex
of [T¢), and 50 X, is in T (chapter 1, theorem 15). Let X be any other point in Tj.
Thenitis in [T¢], and so

FXo) < f(X),
which means X, is an optimal solution of (10). Proved.

The above theorem leads to the conclusion that 1o solve an ILP or MILP prob-
lem one has only to solve the associated LP problem whose set of feasible solutions
is the convex hull of the set of feasible solutions of the original problem. It is,
however, not casy to find the required convex hull, and therefore the theorem
provides only theoretical insight and not any practical method of solution. The
practical methods generally recommended fall in two categories, commonly called
(i) the cutting plane method and (ii) the branch and bound method. We proceed to
discuss these methods, in each case first explaining the underlying idea with the
help of the numerical example of section 2.

4 Example of section 2 continued

We go back to the example of section 2 to illustrate the cutting plane method.
Suppose we introduce an additional constraint in the problem which has the effect
of cutting out the portion NPC from the polygon ABCDEF (Fig. 1). Since the
equation of the straight line ML is x, + x, = 4, such a constraint is

X +x,<4.
This cuts out the optimal soluiion C of the LP problem without cutting out any of
its integral feasible solutions. The solution to the LP problem with this additional
constraint is the point N (3/2, 5/2) which again is nonintegral. Let us cut this out
by introducing the constraint corresponding to the line EM which is
<2

This again docs not cut out any of the integral feasible solutions.

With the two additional constraints, the original LP problem is now modified so
that its set of feasible solutions is the polygon ABPMEF which still contains all the
integral feasible solutions of the original problem. The optimal_ solution qf this
modified problem is the point M (2, 2). Since this is integral, it is the solution of
the original ILP problem.

The additional constraints are called cuts. By introducing suitable cuts one'by
one and solving an LP problem every time, we could hope to arrive at the solution
of the ILP problem. The important question now is — How to find suitable cuts.

prren ——
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S Cutting planes

We confine our discussion to the general ILP problem (5)-(8), leaving the MILP
problem for later comment. We therefore assume that X is an integer vector. The
related LP problem is (5)-(7).

Let a basic optimal solution of the related LP problem be [X;) X2r «-» Xmo 0 .. 0],
and let the corresponding canonical form of equations (6) (see section 10, chapter
3), be

XA K+ A X =Dy

Xty Kt +ay,x,=by,
(16)

xm+am‘m‘1xm+1+' . '+amn xnzbm

Since the solution is necessarily feasible,
x=b'20,i=12,...,m.

If all the b, are integers, we have the solution of the ILP problem, and nothing more
need be done. In general this may not be so. Let a particular b, be noninteger. The

corresponding equation in (16) is

xi +al’,m+1xm1-i +... +a|jn xn = bi" (17)
Let b’=[b1+B, (18)
and a‘jj'_'[ai'/]'*'di/:j:m'*1:---7"; (19)

where [b;] is the greatest integer less than b, and [a,-',] is the greatest integer less

than or equal to a;;. Then
[6120,0<B;<1,0<0;< 1.

Equation (17) can now be written as

x-b)+ L la)x=B- % o, X;.

Jj=m+1 j=m+1 /
This equation, being one of the constraints, must be satisfied by every feasible
solution of the ILP as well as the related LP problem. For an integer feasible
solution the left side should be an integer and so the right side too should be an
integer. Also, since 0 < o;; < 1 and x;, being feasible, is non-negative,
) a;; x; 20.
j=rzn:+l i x/

n |
Hence Bi- ¥ @ xisaninteger < B,
J=m+1

But 0 < f; < 1. Therefore for an integer feasible solution

Br‘j}}ﬂ O.ijijO,
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or 5
But for th —/3.:” 0%, < B, @0)
ut for the optimal solutjg
J=m+1,..,n, and so n of the relateq Problem with which we started, x;= 0,
B R BN

Thus we have discovered a linear cons

sg(ljut(;qng of the: problem but cuts out the optimal solution of the LP problem pro-
vided it is .nom'ntcgral. This, therefore, provides a suitable new constraint. (20)
with equality sign is the corresponding cutting plane. We note that f; and o; in
(20) are definced by (18) and (19) respectively.

We add the constraint (20) to the set of constraints (6) and solve the modified
prot?lcm. If its optimal solution is integral, we stop, otherwise we again obtain a
cunmg planc to cut out this optimal solution but not any of the integer feasible
solutions. We go on doing this till we get an integer optimal solution. It has been
proved that the cutting plane method terminates in a finite number of iterations
either with the integer optimal solution or with the conclusion that the given
problem is not feasible.

The successively modified LP problems obtained after adding each time a
constraint of the type (20) arc best so}ved by the dual simplex method (section 20,
chapter 3). Constraint (20) leads to the constraint equation

traint (20) which is satisfied by integer

- X oxty=-P, ’
j=m+

m+1 Y -
where y is a slack variable. We add this constraint to the simplex tableau as it
stands at the optimal stage of the preceding LP problem. A basic solution of the
modified problem consists of the basic solution at the preceding stage along withy
=—p,. But this solution is not feasible. It is, however, dual feasible because ¢=0,
j=m+ 1, ..., n,at this stage. Hence we apply the dual simplex algorithm fo proceed
further to obtain a solution which is both primal and dual feasible and therefore

optimal.

6 Example ~

We illustrate the cutting plane melhoq explained in L.he preceding section
through the example of section 2. Introducing the sI'aCR variables X5y X Xs, Xg and
the artificial variable x; (which we inLrodu.cc' o obtain ahbasw feasible soluuop by
first solving the Phase I problem which minimises w), the problem can be written

as
- 2! a II
I\rﬁnilllisef - 3xl - 4x ) (r ll Se )

(Phase I)
minimise w = X, - 13
subject to 2, +4x 1% -9
tx - 15
611'4x’l + X5 . ’
20+ 2% i '
1

Xy Xy oo %1 2 0 and integers-
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Table 1 is the simplex tableau for the complete solution. Phase I ends after the
iteration / = 2 when we get a basic feasible solution of the related LP problem. The
end of Phase II at iteration / = 4 gives the optimal solution of this problcm.' This is
nonintegral, and so cutting plancs in the form of additional f:onstraml_s are
included, one at a time, in subscquent iterations till the integer optimal solution s
reached. .

In the optimal solution of the related LP problem x, = 7/2. The corresponding
equation of type (17) is

LS |
TS T

! 0l -3+l
or X, + 0+-8' X+ +8 5= 2

The required constraint, by (20), is therefore

1 11
goTER 2
or, after introducing the slack variable xg,

2 2 1
BT |

The constraint is added to the problem as it stands at stage / = 4 producing the
problem at stage / = 5. The dual simplex algorithm is used to proceed further and
the optimal solution of the current problem is obtained in /' = 6. This is also non-
integral. Hence from the equation

LA 1 7
X 411 2x3-4v
1 1 3
or XZ+(0+4]X3+(—1+EJ,¥8=1+2,
a second consiraint is obtained as
o1 .3
ah TRy
or YU SR
ah TR RETY

Again the optimal solution of the current problem is obtained by the dual simplex
method (/ = 8). The optimal solution is not yet integral. A third cutting plane is
added in / = 9 which finally gives the integral optimal solution in / = 10.

TABLE 1
I Basis Value x, x, x X X X X

X 13 2 4 1

X, 2 -2 1 1
1 X 15 6 -4 1
x 1 2 2 -1 1

-f 0 -3 -4
-w -1 -2 =2 1
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I Basis Value x
1 & Xoox x,
s Xg x

X 12 2 1
X 3 1 -1
4 3 1 1
2 Xs 12 -10 ! .
: 1 3 -3 Initial b.f.s. of related LP
X 12 1 1
-12 12
- 3 =
B j ’(2) 1 3 3n
) 0 0 1 EndofPhasel
% 8 163 1 -13
%4 7 -1 113
3 X 4 -103 131
X 52 1 -23 1/6
= 152 -6 12
X 32 1 3/16 -1/16 Optimal solution of related
4 X, 15/2 1716 1 5/16 LP
g 9 10/16 2716 1
X 72 1 2/16 2/16 Eq. giving cutting plane
-f 3312 9/8 1/8 . End of Phase I

I Basis Value x, X X3 X, X5 Xs Xg X

n 3R 1316 -1/16
x, 1572 1/16 1 5116
5 x 9 10/16 M6 1
x, 17 1 216 216
x —12 -2/16 -2/16 1 First cutting plane
—f 3312 98 18
x T4 1 14 —122  Eq. giving cutting plane
x 25/ -4 1 5
6 x 112 112 o1 i
x 3 1 0
1 1 -8
X 4
1
-f 16 1
R —
A
-1
x, 74 1 14 5n
-1/4 1
X, 25/4 1 1
x 172 12 1
7 x 3 1 0 i _8
X5 4 ! -1/2 1 Second cutting plane
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I Basis Value x X X3 X, X Xg Xg X

x Sr 1 12 ' -1
x SR -2 1 5
X 7 0 1
8 x 37 1 -12 2
Xg 16 5 1 -16
x 3N 12 1 -2 Gives cutting plane
-f 2912 12 2

I Basis Value x, X X X X X X X X
x SR 1 1R -1
n SR -3 1 ) 5
x 1 0 1 2
9 x 32 1 -1n 2
xs 16 5 1 -16
Y} 12 1 -2
xo — 12 -1n 0 1 Third cutting plane
-f 91 12 2
x 2 1 -1 1
X 4 1 5 -3
X 7 1 2 0
10 x 2 1 2 -1 Integeroptimal
Xg 11 1 -16 10 solution
Xq 1 1 -2 1
X 1 1 0 -2
< 14 2 1

7 Remarks on cuttirz plane methods

The above method of obtaining cutting planes is only one of the several methods
of generating cutting planes which have been proposed by various authors and
which can be found in the vast literature on integer programming. It has been
proved that the cutting plane method solves the ILP problem in a finite number of

steps, either giving an integer optimal solution or indicating that a feasible solution

does not exist.
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One disadvantage of the method is that the number of steps can be very large
sometimes even in problems which apparently look simple. The number of con-
straints goes on increasing leading to increased volume of numerical work. Some
relief can be obtained by dropping out a cutting plane from the simplex tableau
once it becomes superfluous due to subsequent addition of other cutting planes.
This happens when the slack variable in that cutting plane becomes a basic variable
with a positive value in the simplex tableau. For example, in table 1, let us follow
the part played by the first cutting plane introduced at the stage / = 5. We find that
the slack variable xg in the constraint added at stage / = 5 is nonbasic for the optimal
solution at stage / = 6. This means that at this stage x = 0 and so the optimal
solution lies on the cutting plane

1 1 1
e Xy— o Xy ===

8 8 2

Later on after a second cutting plane'has been introduced at / = 7, x; appears as a
basic variable with positive value at / = 8. This means that the optimal solution at
this stage does not lie on the first cutting plane but within the region

1 1

813—§IS<—§.

It remains so throughout subsequent work. The first cutting plane plays no active
part in the remaining stages of the solution. It could therefore as well be erased
from the simplex tableau after / = 8.

Cutting plane methods can be applied to MILP problems also. There are rules
by which cutting planes for mixed integer problems can be obtained. We, how-
ever, omit these as, in general, the cutting plane method has been found to be less
suitable than the other method, the branch and bound method, which we proceed

to discuss.

8 Branch and bound method—examples

It will be more helpful to the understanding of the branch and bound method if,
before discussing the method in its generality, it is illustrated through simple

examples. .

Example 1: We again take the ILP problem (1)-(4) of section 2, but with the sign
of the objective function changed, so that the problem is to
minimise f=-3x,—4x,

Dropping the constraint (4) we get the related LP problem. Its solution is f =
—33/2 with x, = 7/2, x, = 3/2 (as can be easily obtained graphically or otherwise).
Obviously — 33/2 is alower bound (LB) for the objective function fof this problem.
Let us call the related LP as problem 1, and say that a LB of the objective function
f of this problem is — 33/2 with x, = 7/2, x, = 3/2. (We adopt this phraseology
because, as we shall see later, what is essential to the branch and bound method is
not the exact minimum value of the objective function but a lower bound to it). In
Fig. 2 circle 1 at the top with information regarding the LB and the corresponding
values of the variables indicates this situation.
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X‘ =72
x, =32

LB =-332

Infeasible

LB=-16 (Fruiied)

x,=3
o X, = 5/2
LB=-13 x =2
(Fathomec) LB--312
X, =2 Infeasible
)L(28=_9141 . (Pruned)
X, =2 '
X -2 x, =112
LB=-14 X, =
(Fathomed) LB =-27/2
(Optimal) (Pruned)

Fig. 2
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Let us divide problem 1 into two SubproblemS, problem 11 and problem 12, by
imposing the constraints x, < 3 and x, >4 respectively on problem .l. The§e con-
straints are suggested by the solution x, = 7/2. Since we are lopking for integer
solutions, the interval 3 < x; < 4 in which x, = 7/2 ljes can be left out, an’d further
probes need be made only in regions x, > 4 and x, < 3. (We could, with equal
justification, impose the constraints x, < 1 and x, > 2 first). This operation ol
replacing a problem by two subproblems is called branching. Problem 1 which
may be called the parent problem has been branched into problems 11 and 12.

Solution to problem 11 can be obtained, again graphically or otherwise, asx, =

3,x,=1/4, with f= - 16. Following the phraseology explained above, — 16 is the
LB of the problem with values x, = 3, x, = 7/4. Problem 12 is easily found to be
infeasible. It is therefore left out of further consideration, or, in standard branch
and bound terminology, pruned. Problem 11 is further branched into two prob-
lems, 111 and 112, by imposing the additional constraints x, < 1 and x, > 2, which
are suggested by the nonintegral value x, = 7/4. The LB of problem 111 is found
tobe — 13 forx, = 3, x, = 1. Thisis an integer solution, and is therefore a possible
candidate for the optimal solution of the ori ginal ILP problem. Moreover, no other
feasible integer solution of problem 111 need be found out as the one already found
gives the lowest value of £, We say that problem 111 has been fathomed. There is
no need to branch it further, but its LB integer solution should be kept in view as a
possible candidate for the optimal solution of the given ILP problem.

Problem 112 is found to have an LB = — 31/2 withx, =5/2, x, = 2. Since its LB
is lower than the LB of problem 111, it may be concealing integer solutions which
may give lower values of f than problem 111. Hence it should be further branched
into problem 1121 and 1122. The latter is found to be infeasible and is therefore
pruned. The former gives the LB — 15 for x, = 2, x, = 9/4. Since this LB is lower
than the LB of the fathomed problem 111, we branch problem 1121 into problems
11211 and 11212. The former has the LB — 14 forx,=2,x,=2. Since this solution
is integral, this problem stands fathomed, and its solution gives a possible candi-
date for the optimal solution of the original ILP problem. Problem 11212 is found
to have the LB - 27/2 for x, = 1/2, x, = 3. This problem is not fathomed, but since
its LB is higher than the LB of the fathomed problem 11211, it cannot possibly
conceal an integer solution which may be a candidate for optimality. Hence this
problem is also left out of consideration or pruned.

Now all the subproblems have been fathomed or pruned or branched. The
fathomed problem which gives the lowest LB for the objective function gives the
optimal solution of the original ILP problem. Thus 4 =2,%=2,f=-14is the
required solution.

Example 2:
Minimise £ =3x,+4x5+5x,,
subject to 2x, + 20— Axs+ 2, =3,

2x, +4x‘+2xs—2x6=5,

X3—= X4t X5+ X =4,

Scanned by CamScanner



176 OPTIMIZATION METHODS

X X2 -+ 0r X6 2 0; Xy, X, intEgETS.

Since only two of the six variables are constrained to be integers, the problem
is of mixed integer programming.

Deleting the integer constraints, we get the related LP problem, whose minimal
solution is casily found as x = 3/2, x, = 5/2, %, = 4 x, = x5 = X = 0, giving the LB
of fas zero. Thisis problem 1 of Fig. 3. Since x, is required to be an integer, we
branch problem 1 into problems 11 and 12 by introducing respectively the con-
straints x, € 1 and x, 22 indicated by the value x, = 3/2 which lies between 1 and
2. The solutions to these two problems can be found by the dual simplex method,
and are shown in the figure. Since these problems have optimal solutions in which
the variable x, is non-integral, none of the problems has been fathomed. Nor any
of them has been pruned (that is, not to be considered further). So both problems
11 and 12 are branched into problems 111, 112, 121, 122, with additional con-
straints respectively as 1, €1, x, 2 2,%,<2,x 23, indicated by the value x, = 3/2
in problem 11 and x, = 9/4 in problem 12. Again the four problems can be solved
by the dual simplex method to give the solutions as written in the figure. Problems
112, 121 and 122 stand fathomed as the optimal solution in each case is integral in
x,, X, Problem 111 is not fathomed, but the LB in it is 9/4 which is greater than
3/2, the LB of problem 121. Hence it is pruned. -Among the fathomed problems
the least LB is provided by problem 121. This therefore gives the solution of the
original problem. ’

:,i?m X =1 X, =2 x =2
2 = X, =2 X, =2 x,=3
(LF?;:/: tB=116 tB-ar LB =232
ed) (Fathomed) (Fathomed) (Fathomed)
' (Optimal)

Fig.3
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9 Branch and bound method—general description

As the name implies and as is also clear from the above examples, the branch
and bound method consists of two strategies, alternately followed, till the desired
solution is obtained. One strategy consists in branching a problem into two sub-
problems, and the other in solving each of the two subproblems to obtain the
minimum or a suitable lower bound of the objective function, if the original
problem is to minimise the objective. (If the problem is to maximise an objective
function, the lower bound is replaced by the upper bound).

Let the problem be of the MILP type in which the variables x;, j =1, 2, 4., 1, are
integers and j = r + 1, ..., n, are real numbers. The problem of ILP, by the branch
and bound method, is only a special case of MILP, with 7 =, and needs no separate
discussion.

We start with the related LP problem, hereafter designated as problem 1, and
solve it to obtain a lower bound of its objective function. Let us suppose, for the
present, that it is the actual minimum that we are able to determine. We presume
that this minimum and the corresponding optimal (minimal) solution can be found
without much difficulty. If the optimal solution happens to satisfy the integer
constraint also, it is the optimal solution of the given MILP, and nothing more need
be done. If not, then the value of at least one of the variables xj,j =1,2,..,rin
that optimal solution is not integral. Let x, be one such variable, and at the optimal
let x,= b, where bis not an integer. Let [5] be the largest integer less than b. Since
b, being feasible, is non-negative, [b] is also non-negative.

Formulate two subproblems, designed as problems 11 and 12, by imposing on
problem 1 the additional constraints x, < [b] and x,> [b] + 1 respectively. This
operation is called branching. In effect, the sct of feasible solutions of the MILP
is partitioned into two subsets, and the optimal solution which we are seeking is in
one subset or the other, provided it exists.

Each of the iwo subproblems 11 and 12 is now treated as an independent
problem, and subjected to the same operation as problem 1, namely, obtaining the
minimum of the objective function, and then, if necessary, branching. This ‘branch
and bound’ process is continued through resulting subproblems which fan out from
problem 1 as a tree. Branching terminates when any of the following three con-
ditions arise.

(i) The subproblem yields an optimal solution which satisfies the integer
constraint on all the variables x;, j=1,2,.,rthe subproblem is then said to have

been fathomed. o
(ii) The optimum (minimum) value of the objective function in the subproblem

is not lower than the minimum value of the objective function in a subproblem
which has been fathomed.

(iii) The subproblem tums out to be infeasible.
The reasons to terminate branching in the above three cases are as follows. In

case (i) the optimal solution with required integer constraint out of the subset of
feasible solutions of that subproblem has been obtained, and no further probe in
that subproblem is necessary. In case (ii), since an integer optimal solution which
is lower than the optimal solution of the subproblem has been discovered in the set
of feasible solutions of another subproblem, the former subproblem needs no fur-
ther probe, as it cannot be concealing a solution which would make the objective
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function lower than what has been discovered in the latter supproblcm. In case (iii)
the subproblem obviously cannot contain the required solution. Subproblems fal-
ling under cases (ii) and (iii) are said to be pruned. ‘

When all the subproblems obtained through branchmg have been either fath-
omed or pruned, the branch and bound algorithm termmates: The fathomed sub-
problem with the lowest minimum gives the answer to thg original problem. _

The branch and bound method is partially enumerative. The set of feasible )
solutions is successively partitioned into subsets and those subsets which 'canpot
contain the optimal solution are deleted from further consideration'. The criterion
for deletion is provided by the lower bound of the objective function for the fea-
sible values in that subset.

Itis sometimes difficult or strenuous to determine the minimum of the objective
function in a problem. The reason why in the branch and bound method the stress
is on a lower bound and not the minimum of the objective function is that any
suitable lower bound and not necessarily the exact minimum is needed to decide
whether a subset of feasible solutions should be further probed or deleted. Of
course the closer a lower bound is to the minimum the better, but one has to balance
the time spent in determining the minimum against the time spent in going ahead

with further branching. If a suitable lower bound is more easily determined than
the minimum, it is worthwhile saving time here. Branching being easier than
finding the minimum, bulk of the total time spent in solving a problem by the
‘branch and bound method is spent in the latter operation, and so whatever time can
be saved on it should be saved. It may result in more branching, but the overall
effort is less.

There are several strategies recommended for determining a lower bound. We
shall briefly mention only two of them. The detailed discussion would be omitted.
One method consists in ignoring the constraints which appear to be difficult, and
minimising the objective function subject to the remaining constraints. This
minimum is certainly not higher than the minimum under all the constraints, and
SO can serve as the required lower bound. Another method is to construct another
objective function which is not greater than the given objective function for any
feasible solution of the original problem, and determination of whose minimum is
comparatively easier than that of the briginal function.

10 The 0—1 variable problems

Many problems in Operations Research can be formulated as mixed integer
programmes with some (or all) variables constrained to have value 0 or 1. We shall

call such variables the 0—1 variables. Mathematically such variables present no
new problem, because

x;=0or1
is equivalent to
0 s£x21,xan integer.

Introducing the 0—1 variables in a formulation is a very useful device through
which a variety of conditions can be expressed. Most logical constraints can be
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PROBLEMS VI

Solve problems 1 0 § by the cutting plane method.

1.

Minimise 4x, + 5x, subject to 3x, +x, 2, X, + 4%, 2 5, 3x, + 2x, 2 7; x,, X, rion-negative
integers.

s . [13; 2, D]
Maxumse X + X, subject to Tx, ~ 6x, < 5, 6x, + 3x, 27, - 3x, + 8x, < 6; x,, X, non-negative
integers.

[2;(1,1)
Maximise x, +x, subject to 2x, <3, 2x, + 2x, 25, - 2x, + 2x, < 1; x,, X, non-negative integers.
x [Infeasible]
Minimise 3x, - x, subject to - 10x, + 6x, < 15, 14x, + 18x, 2 63; x,, X, non-negative integers.
[-1;(1,4)]

Minimise - 2x, - 3x, subject to 2x, + 2,7, 0 < x, €2, 0 x, € 2; x,, X, integers.
[-8;(1,2)]

Solve problems 6 to 10 by the branch and bound method.

6.

10.
11.

12.

®

(i)

Maximise 11x, + 21x, subject to 4x, + 7x, +x, = 13; x,, X,, X, non-negative integers.
[33; (3,0, 1)]
Minimise 9x, + 10x, subject to 0 < x, < 10, 0 < x, < 8, 3x, + 5x, 2 45; x, integer.
[95; (573, 8)]
Maximise 13x, + 3x, + 3x, subject to 7x, + 6x, — 3x, < 8, 7x, — 3x, + 6x, < 8; x|, X,, X, nion-
negative integers.
[13;(1,0,0)]
Maximise x, + 2x, subject to 5x, + 7x, < 21, — x, + 3x, < 8; x,, x, non-negative integers.
(5: (1L, 2)]
Same as 5.
Formulate the following knapsack problem as an ILP.
There are n objects, j = 1, 2, ..., n, whose weights are w; and values v;. They have to be chosen
to be packed in a knapsack so that the total value of the objects chosen is maximum subject
to their total weight not exceeding W.
[Maximise ?_:,v,-xi subject gw,x,- <W,x;=0o0r1]

Solve the knapsack problem (as formulated above) with the following data.

Object Weight Value
J Wi i
1 2 10
2 2 14
3 3 18
4 6 48
5 8 80
Knapsack capacity W =12 [max value 98, with
objects 3 and 5]
Object Weight Value
J Wi Y
1 3 12
2 4 12
3 3 9
4 6 30
5 10 20
6 12 12 o~
Knapsack capacity W = 14 [max val:gef‘i. with
objects 1, 2, 4]
N
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13.

14,

15.

16.

18.

i - 0.
deither4 —x,200r4 —x,2
<8,0<x,<8,an 48, (4. )
- ) 20,4 —x,+10y,20,
[Hint: Introduce two 0 — 1 variables y,, ¥, such that 4 —x, + 10y, 2 2 N
+y,=1, 10 being a suitably large number]. ' . T
Il; a flzctwork of stregets and junctions, the junctions are dencfl.ed l;l);é mls.o i.w & the yunciions
connecting the junctions by (i, /). Fire-hydrants have to be mstaﬁr e at that mction,
such that every street connected to a junclion‘ has‘ access to lhe] em ey i g A
The cost of installing the fire-hydrant at junction j is ¢;, Formulate ‘h;; et ey accca st
program to minimise the cost of installing the ﬁre-h).'drants so that eac
least one hydrant. Soive the problem for the following data.
j=123456

Maximise 2x, + 5x, subject to 0 S x,

=4610879

(,/)=(1,2), (1,4), (1,6), (2,4), 3,5, 3,6), (4,5).

(Hint: Minimise Ec,x; subject to x;= 0 or 1, x;+ x;2 1, for every given ()R
[Hydrants atj=1, 5 at cost 11]

Minimise 33+ 24+ fi+f
subject to 5x,+2x, 210,
3x,+5x, 215,

f,=5ifx,>0, f,=0ifx, =0,
£i=2if5,>0, f,=0ifx,= 0.

[12; (0, 5)]
In a factory 4000 units of a certain product are to be manufactured. There are three machines

on which it can be manufactured. The set up cost, the production cost per unit and the max-
imum production capacity for each machine are tabulated below. The objective is to mini-

mize the total cost of producing the entire lot. Formulate the problem as an integer
programme, and solve it.

Machine Set up Production Capacity
cost cost/unit units
I 400 10 2400
I 600 4 1600
III 200 20 1200

Express the following conditions as simultaneous cons
(i) Eitherx, + 2x,< 4 or 2, +3x, 212
(ii) If x; < 4 then X, 25, otherwise x, < 2.
(iii)) x,=1or3or$ only.
(iv) Atleast two of the following constraints are satisfied.
X+X <3, x,<2, x,<4, X+Xx,25.

subject to x, + x, + 2x, < 10, | -3x, + 10x, - xy | 2 15, x,, X3, X3, 2 0.
nd constraint as ‘ejther or’ constraint).

traints using 0 — 1 variables.

Maximize 5x, + 2x, + x5,
(Hint. Treat the seco,

[[(10, 0, 0); 50]
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Additional Topics in Linear Programming

1 Introduction

In the preceding four chapters we primarily discussed methods for solving lin-
car programming problems, However, solving an LP in itself is not the end of the
story. In most real life problems we want 1o find not only an optimal solution but
also to know as to what happens to this optimal solution when changes are made in
the initial system. It would be preferable to determine the effect of these changes
on the optimal solution without having to solve a modified problem from the very
beginning. In sensitivity analysis (also called post-optimality analysis) we develop
methods to do this. A more general problem is to study the effects on the optimal

solution of an LP as some parameter of it undergoes continuous change in its value.

The procedures developed for doing this are known as parametric programming
techniques.

In linear programming our aim so far has been to get as large (or small) a value
of the objective function as is possible without violating any of the constraints. It
may happen that in doing so other considerations which may also be important are
ignored. (In many practical problems, instead of maxim
objective function, it may be considered better to be satisfied with sctting up a
certain value of the objective function as a reasonable goal, and then try to achieve
itas closely as possible. This approach is known as goal programming,.

There can also be multiobjective linear programming problems in which it is
desirable 1o optimize simultancously more than one objective function satisfying
the same set of constraints. The objectives may be conflicting,

and it may not be
possible to find a solution that accomplishes their simultaneous optimization. But
one may still try to get the best solution, defining the best in some satisfactory

manner. One can also visualize multiobjective goal programming problems in
which different goals are set for different objective functions, it being desired that
the objective functions achieve these goals as closely as possible.

In the present chapter we propose to study these topics in some detail.

izing or minimizing the

2 Sensitivity analysis '

In an LP the optimal solution is dependent on the values of the cost coefficients

¢;, the constants b; occurring on the right side of the constraint equations, and the
I . . i

coefficients a;;in the constraints. In real life problems the values of these coeffi-

cients are seldom known with certainty because many of them are functions of

some uncontrolled parameters. For instance, the future demands, the cost of raw
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materials, or the cost of energy resources cannot be accurately predicted. H(.:nce
the problem is not satisfactorily solved with the mere determination of the optimal
solution. Each variation in the values of the data coefficients changes the problem
which may affect the optimal solution found earlier. However, it .is not al»\{ays
necessary 1o solve the whole problem afresh to determine the new optimal solugon.
In the following sections we discuss methods of starting out from the optimal
solution already obtained to determine the new optimal solution under the fol-
lowing modifications.
(i) changes in the values of b;
(ii) changes in the values of ¢;;
(iii) changes in the values of a;;
(iv) introduction of new variables;
(v) introduction of new constraints;
(vi) deletion of certain variables;
(vii) deletion of some constraints.

3 Changes in b,

For the LP problem:
Minimize f(X) = CX, subject to AX = B,X >0, 1)
let the optimal basis be
' Xo=[xx...,x,), X 20,
X1 Xm +25 -, X, DCINgG the nonbasic variables for this solution. The corresponding
relative cost coefficients ¢; given by (sce section 10, chapter 3)

EJ-:CJ—‘;Zlc,EU.,j:l,Z,...,n, ¥)

are all nonnegalivL Also since the nonbasic variables have zero values in the
optimal solution, the constraints in (1) reduce to

AX,=B,
so that
X,=A;'B,
.
where
a, a, .. a,,
Ay Ay ... ay,
a4 4, .. a

Let B change to B + A B where AB = [Ab, Ab, ... Ab,)’, everything else in (1)
remaining the same. Then the new values of the variables of the carlier optimal
basis are given by

X, +AX, = A;'(B + AB),
Now if AJ(B+AB)>0 3
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the original optimal basis continues to be feasible for the new problem. It will also
be an optimal basis if all the relative cost coefficients of the modified problem for
this basis are nonnegative. The relative cost coefficients, by (2), are independent
of B, and so remain unchanged. So they remain nonnegative. Hence, if (3) holds,
the original optimal basis is still optimal. The new value of the objective function
is given by f(X,+AX,).

If, however, AB is such that (3) does not hold, that is, the new values of the
variables in the basis X, are not all nonnegative, then the new solution X, + AX,
is not feasible. In such a case we may replace the values of the basic variables in
the earlier optimal solution by their new values and proceed further by the big M
or the two-phase or the dual simplex method to obtain the new optimal solution. If

00 many components of X, + AX, are negative, it may be more economical to solve
the new problem ab initio.

Example: Consider the problem of section 13, chapter 3. Its optimal solution, as
obtained there, is given in table 1.

TABLE 1
Basis B P, P, P, P, P P
% 2 1 —453 13
x, 13 1 13 - 13
X 1353 1 mn -1n
% 173 1 23 13
S ~BA 3 13

From this we find that
Xo=[x%xx)" =(2/31/313/3 11/3)
Also, from the original problem,
Co=[4500,B=[6512)
and, as explained in section 15, chapter 3,
2110 00 43 -113
1201 ,5, (00 -13 153
A=l 10 oM 0 2 13
1 4 00 01 -23 -113

We proceed to consider three cases of changes in B,

(i) LetB+AB=[7412]. (Notice that only b, and b, change).

Then Ag'(B+AB)=[2/3 1/3 16/3 8/31'20. Thus the original optimal basis
remains feasible and hence optimal. The new optimal values of the basic variables
are x, = 2/3, 5, = 1/3, x,= 16/3, x, = 8/3, and the new optimal value of the objective
function is f = 13/3 which is the same as before. This is so because the values of
only those basic variables have changed which do not occur in the original form of

the objective function. In fact, from the form of A" it follows that any change in

the value of b, or b, will not affect the values of x, and X,, and therefore the value
of the objective function, as long as the new basis is feasible.
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(ii) Let ' B+AB=[6511].

In this case A)'B+AB)=[1 0 4 4]". .
Thus the original optimal basis is still feasible with the opt.imal values (f)i}:he tt):xs]c
variables as x, = 1, x,=0, x, =4, x,=4. However, the optimal value of the objec-
tive function is now 4 which is different from the earlier value.

(iii) Let B+AB=[6521].

Now AJ'(B+AB)=[7/3 —1/3 5/3 10/3]". .

In this case the ori g'inal optimal basis X, becomes infeasible. Since }he relative cost
cocfficients remain unchanged and so nonnegative, from IhI‘S point oqwards we
may proceed by thé dual simplex method to obtain the optimal solution of the
modified problem. The new values of the basic variables are x, = 7./3, X, =- 1/3,
x3=5/3, x, = 10/3, and the new value of fis 23/3. With these values in the sxmplex
table, and doing one iteration of the dual simplex method, we get the new optimal
solution as x; =2, x,=0, %, =2, %, =3, x,= 0, = 1; f = 8.

4 Changes in ¢

If c;are changed to ¢;, everything else in the problem remaining the same, then
the changed relative cost coefficients of the nonbasic variables are given by (2) as

m
— . — .
cj=cj—AZIC.-a;j,j=m+1,...,n.
i

These may not all be nonnegative. If c; is negative for some J» then this would
mean that the basic feasible solution X, which was earlier optimal is now not
optimal. So from this point onwards.further iterations may be done with ¢, in the
simplex table replaced by E; Jj=m+1,...,n,to obtain the new optimal solution.

If ¢} are such that all cj are nonnegative, then the ori ginal optimal basis remains

optimal and the optimal values of the basic variables also remain unchanged.
Optimum value of the objective function, however, will be different since the cost
coefficients have changed. In the particular case when ¢j =c; for the basic vari-
ables, even the value of the objective function will not change,

Example: Suppose in the example of section 3

. . €1 =4, ¢, =5 are changed to
€1 =35,¢,=6. Then, using (2),

Cy=—~(~4/3)c; - (113)e; = (13) (de; - ¢]) = 143
Cy : . C))
3 €6=~(13)c; = (~173)c; =(183)(c; < cy=1/3

As ¢ and ¢, are both nonnegative, the origi

there is no change in the optima) values of
the objective function is f = ¢)x, + ey =

nal optimal basis is stil] optimal, and
the basic variables. The new value of

16/3. From (4) it is evident that csand ¢

will be nonnegative as long as ¢ < ¢; <4cr, s the original optimal basis will

remain optimal so long as the changed cogt coefficients satisfy this condition.
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Next suppose that ¢, ang ¢ change 10 ¢;=5, ¢; = 1. Then cs5=19/3 and
Ce=—4/3. Since ¢} is ncgative

" » the original optimal basis ceases to be optimal.
Replacing the previous value 1

h 1/3 of ¢4 by ¢5=19/3, and the value 1/3 of ¢, by
€¢==4/3, and the original entry 23/3 for the value of f by its new value 11/3 in

table 1, we can do one more iteration to obtain the new optimal solution x, =0,
X, = 1,X3=5,X4=3,x5=0,x6=2;f= 1.

S Changes in a;
If the changes arc in ¢

i Where x,is a nonbasic variable of the original optimal

solution, then the modified value ¢} of ¢, may be found by using equation (37),
chapter 3:

G=c+3an, &)

where a;, are new values of a,. If Z, >0, the original optimal solution is still
optimal. If ¢; <0, then further iterations of the simplex method may be done to
find the new optimal solution. For this purpose the values of a;,, the modified

values of g, in the original optimal table, may be calculated by the formula (see
section 10, chapter 3)

P—

l[@nay...a,,) = A (a5ay,...a.). 6)
If X, is a basic variable in the original optimal solution, then the procedure may-

be as follows.
Introduce a new variable x; in the system with coefficients a;, and c=c In

this new problem treat the original variable x, as an artificial variable and use phase
I of the two-phase simplex mcthod to eliminate it, and then proceed to phase II to,
get the new optimal solution.

Example: To illustrate the above procedures, we take the example of section 20,
chapter 3. There the problem has been solved by the dual simplex method, and its
optimal solution (table 6, chapter 3) is given in table 2.

TABLE 2
Basis B P, P, P, P, Py P,
x 2 1 2 1 -1
X, 1 3 2 1 -2
X 8 4 5 -2 1
—4 1 1 2
f k)

From the above, the optimal bgsis is .
Xo=[xxx)"=[2 1 8, withCo=[2 0 0],

2 -1 0 010
il Ap=|" 1 0 0| Hence Aj'=[-1 2 0
-2 0 1 0 21

Scanned by CamScanner



188 OPTIMIZATION METHODS

and, by (38), chapter 3, the simplex multipliers are
I =-C,Ay' =[0 -2 0] )
We consider three cases of changes in a;;
(i) Let the values of a,y, @y, a3 change from.(-l, 1', 2)to (1, -?. -2). The changes
are in the coefficients of x; which is a nonbasic variable. In this case

[ar, ay ayl=[1-1-12,
3
and so T=c+ L aim=3+1x0+(-1)(-2)+(-2)x0=5 >0.
i=1
Therefore the original optimal sclution is still optimal.
(ii) Suppose the changed values of ay;, @y, @ are 1,2,-2.
In this case [a], @}, @] =[1 2 —2],and soc; =—1. The original optimal solution,

therefore, ceases to be optimal. The entries in the column for P, in table 2 are
modified to

[y, ay a,)'= A(-)l[al.l a’:l a;l]’ = A(—)l[l 2 -'=23 2%
The modified table appears as

Basis B P, P, P, P, | P
X3 2 2 2 1 —1
X, 1 3 2 1 -2
Xg 8 2 5 -2 1
f —4 -1 1 2

On performing one iteration of the simplex method we find the new optimal solu-
tiontobe x, =1/3,x,=0, x,=4/3; f=11/3. )

(iii) Let a3, a3, a33 change from (2, 1,-2) to (1, -1, 2). Since the change is in the
coefficients of x, which is a basic variable in the original optimal solution, to study
the effect of this change we introduce a new variable x; with coefficients ap=1,
ap=-1,a=2and ¢c; =c,=2. Fromthese ¢} =4, ay=-1,a5=-3,a;,=0. Now
the simplex table (given béowydr finding the new optimal solution by the two-
phase method, treating the original variable X3 as an artificial variable, is obtained
by introducing a column P} in table 2. The objective function g for phase I is given

by g = X3, which in terms of nonbasic variables is 8=2-X,- 2% + X5+ X.

Basis B B B B B B p B
Xy 2 1 2 1-
— 1 ]
* ! 3 2 1. —2 _\;‘
a 5 4 3 -2 1 -0
! ¢ : i 2 7
§ 2 o =2 1 1

Proceeding from here onwards, the new optimal solution is found to be x,=0,
Xp =504, %, (0r x3) = 1/2, x,= 0, X5 =0, X6 = 7/4; f = 29/4,
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6 Introduétion of new variables

Let the new variables be x,,, k= 1,2,3,..., and their coefficients be
@inind=12,..,m,and c,,,. Since the number of constraints remains the same,
the number of basic variables also remains the same, and so the original optimal
solutio. gives a basic feasible solution of the new problem. The relative cost
coefficients corresponding to the newly introduced cost coefficients ¢, ., would be
given by (5) as

m
Cask=Copxt X @, T, k=1,2,3,...
i=1

If all these arc nonnegative, the original optimal solution remains optimal for the
new problem. If not, then from this point onwards iterations may be done to obtain
the new optimal solution taking into account the new variables.

Example: Suppose in the example of section 3 we introduce a new variable x, such
that (i) ¢;=2, ay =1, ay=-1, ay=-3, ay =3, and (i) ¢;=2, ay=1, az=-1,
ay =3, a;; =3, and wish in each case to determine the new optimal solution.

For the optimal basis of the original problem (table 1)

Xo=[x, %, %3 %) = [2/3 1/3 13/3 11/3Y’,
the simplex multipliers, by (7), are
I =-CA' =—[4 5 0 01A;'=(0 0 —11/3 —1/3].
Hence, by (5), the value of ¢, corresponding to ¢, for case (i) is
4
=0+ ¥ agm =12 >0.

i=1
Therefore in case (i) the original optimal basis remains optimal, and the optimum
value of the objective function remains unchanged.

In case (ii), proceeding similarly, ¢, =-10. This being negative, the 6ﬁginal
optimal basis is now not optimal, and further iterations are necessary to get the new
optimal. The starting table for finding the new optimal solution will be the same .
as of the original optimal solution, (table 1), with an additional column P, in which

@18y a5 a0 =Ad [0y ay ay ag)’ = [30 -5 —4)and c,=-10.

Thus the starting table for further iterations is

Basis B P, P, P, P, Py P, P,
X 2/3 1 —_ 4[3 IB ) - 3
x 13 1 13 —-13 0
X 133 1 mn Y —s
Xy 11/3 . 1 2,3 1[3 —a
f 1A 1173 B —10

The new optimal solution after two iterations tums out

tobe x, = =0,x,=16 ,
X =17/3, x5= 1, 2= 0, x, = 2/3; f= 4/3. 15 % % /3

R il
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7 Introduction of new constraints

_If K is the set of feasible solutions of the original problem and K the set of
feasible solutions of the modified problem obtained by introducing new con-
straints, then K’ ¢ K. If the original optimal solution Xo satisfies the new con-
stéaints. then X, is in K’, and since f{Xo) is minimum in K, it is also minimum in X,
In this case, therefore, the original optimal solution continues to be optimal.

If some or all of the new constraints are violated by X,, then the problem has to
" be solved further by taking into consideration the new constraints. Each new
constraint in the form of an inequality gives rise to a slack variable, and, if neces-
sary, also an artificial variable. For a constraint in the form of an equation, an
artificial varigble may be introduced. A start is made with the feasible basis
consisting of the variables in the original optimal solution and the slack or artificial
variables (as the need be) of the new constraints. The problem may now be solved
by the two-phase or the big M method. If all the additional constraints are
inequalities, the problem may also be solved, without introducing artificial vari-
ables, by the dual simplex method.

Example: Let us introduce the additional constraint 3x; — 2x, < 2 in the example of
section 3. The original optimal solution, x, = 2/3, x, = 1/3, does not violate this
constraint. Hence it continues to be the optimal solution of the modified problem.

However, if the new constraint is 3x, — 2x, > 2, the situation becomes different.
The original optimal solution, (table 1) x, = 2/3, x, = 1/3, violates this constraint.
In order to obtain the new optimal solution, we introduce the slack variable x, in
the new constraint, and write it as

3 -22-x,=2.

Eliminating the basic variables x,, x, from this equation with the help of the first
two equations in the original optimal table, we put this equation as
' 14 5 2
—?x5+§x6+x, = —5,
and introduce it in table 1 as follows.

Basis B P, P, P,

P, Py P P,
X 23 1 —45 13
% 13 1 1B -8
s 133 1 23 B
x 1B 1 1 113
n B —143 sn 1
[ 1A 13

Doing one iteration of the dual simplex method, we obtain the new optimal solu-
tion as x, = 6/7, x, = 2/T; f = 34/1.
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8 Deletion of variablesw

Ifthe deleted variable is a nonbasic variable or a basic variable with a zero value
inthe optimal basis, then the ori ginal optimal solution remains unchanged, because
the zero value of the variable in the optimal solution makes the variable nonexis-
tent in effect, .

If the variable to be deleted is a basic variable with positive value in the optimal
solution, its removal will affect the optimal solution. To obtain the new optimal

%solution, we should delete from the original optimal table the column correspond--
ing to the deleted variable. Also this variable should be dropped from the basis
column. This leaves the equation against the deleted basic variable in a form which
is not canonical, and the number of basic variables in the system one short. We
may now introduce an artificial variable in this equation, and proceed to obtain the
solution by the two-phase or the b g M method. As an altenative, another
approach is also possible which involves the dual simplex method. After dropping
the deleted variable from the table, the sign of all the entries of the row corre-
sponding to that variable are changed. This leaves the equation essentially
unchanged. Then a new basic variable is introduced in this equation with +1 as its
coefficient. This makes the new basis, which includes this variable, infeasible, but
the relative cost coefficients remain unchanged as nonnegative. Therefore from
here onwards the dual simplex method may be employed to obtain the new optimal
solution, with the new variable becoming nonbasic, which can then, be dropped
without affecting the optimal solution.

Example: In the example of section S, if we delete the variable x; which is non-
basic in the optimal solution, (table 2), the modified problem has the same optimal
solution.

However, if x, is deleted, then in table 2 column P, disappears and from the
basis column x; goes. Following the second method suggested above, we change
the signs of all entries in the row which corresponded to x,. Then introduce a new
variable x, with coefficient +1 in that row, treating it as a basic variable. Thus we
get the following table, from which after two iterations of the dual simplex method
we get the new optimal solution (ignoring the entries in column P)asx,=0,x,=

3/2;f=15/2.

Basis B P, P, P, - Py Py P,
-2 -1 -2 1 1
X
X 1 2 1 -2
8 4 5 -2 1
f —4 1 1 2
x 32 -1 1 —1R —1
x 1 -2 -1 1 -1
X 5r 512 12 1 3
f —1512 1172 ) 5r 3
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9 Deletion of constraints

If the constraint to be deleted is such that its slack variable has a positive value
in the optimal solution, then its deletion leaves the optimal solution unchanged.
This is so because the constraint is not being satisfied as an equality by the optimal
solution, and therefore it is ineffective in determining the optimal solution. There
are other constraints, those which are satisfied as equations, which determine it.
Therefore the ineffective constraint may be deleted from the problem without
doing any damage to the optimal solution.

If the constraint to be deleted has zero value for its slack variable in the optimal
solution, that is, if it is being satisfied as an equality, then the modified problem
may have a different optimal solution. Let the constraint to be deleted be of the
type

j2=:l ax, < b,
so that after introducing the slack variable it becomes
Y ax+u=b,u, 20.
j=1
There are two ways of looking at the process of deletion of this constraint. The
obvious one is to delete it from the problem, but in that case we shall have to solve
the problem ab initio. The other is to say that

n n
either ¥ ayx;<b, or X ayx; 2b,.
j=1 j=1

(Notice that it is one constraint or the other, not one and the other.) This also, in
effect, removes the constraint. The two altemnative constraints can be combined
into a single equation by introducing a slack variable which is not restricted in sign:

n
Y a,x;+s5, = b,,s, unrestricted in sign,
j=1
which is equivalent to

E,l QX+ U= vy =b,, u, 20, v, 20.

u can be identified with the slack variable already occurring in the original con-
straint, and so now we have only to introduce another variable v, with coefficient
— 1 inthe original constraint to get the modified problem. The problem so modified
is equivalent to the problem obtained by deleting the constraint from the original
problem. The problem with the additional variable can now be solved by the
method of section 6. '

Similarly, if the constraint to be deleted is of the type

jgl DX 2 b,,
or, on introducing the slack variable,
a5~ =buv, 20,

we have to introduce a variable 4, with coefficient +1, so that the constraint
becomes
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n
jglavx, +U,—v,=b,,u, 20,v,20,

whic‘h. in effect, deletes the constraint.
Finally, if the constraint to be deleted is of the type

n
;5—“1 ax;=b,,

we may introduce two new variable, u,, v,, with coefficients +1 and -1 respectively,
In the constraint to get the desired effect of deleting the constraint.

Example: In the optimal solution of the example of section 5, (table 2), the vari-
ables x, and x,, which are respectively the slack variables of the first and the third
constraint of the original problem, are positive. Hence the deletion of the first or
the third constraint from the problem leaves the optimal solution unchanged. But
the slack variable x5 of the second constraint is zero in the original optimal solution.
Therefore if the second constraint is deleted, the optimal solution will change.
Since this constraint is of > type, to determine the optimal solution of the modified
problem, we introduce a new variable x,, with coefficient +1, in addition to the old
slak variable x5 (with coefficient —1), to get the constraint
X+ 20+ X, — X+ X, =2.

The other two constraints remain the same. The coefficients of x; in the three
constraint equations and the objective function are a;; =0, ay =1, a5 =0, ¢;=0.
The corresponding values in the original optimal solution, (table 2), can be calcu-
lated to be @3 =1, a5 =2, @y =2, ¢,=-2, so that the starting simplex table for
finding the new optimal solution is

Basis B P, P, Ry P, Py P, P,
x 2 1 2 1 -1 1
x, 1 3 2 1 -2 2
X 8 4 5 -2 1 2
f —4 1 1 2 -2

One iteration on the above table gives the new optimal solution as x, =0, x,=0,

x,=3/2; f=3. Itcanbe verified that this solution satisfies the first and the third

constraint but not the second, as it now stands deleted.

10 Parametric linear programming

So far in this chapter we discussed the effect of changes in the values of the
input data of an LP problem on its' original optimal solution. The changes con-
sidered were discrete. We shall now assume that(the coefficients in the problem
vary continuously as a function of some parameter.  The analysis of the effef:t of
this functional dependence, hereafter called parametric variation, on the optxmfxl
solution of the problem, is called parametric linear programming. Parametric
variation can be linear or nonlinear.) The nonlinear case will not be considered
here, as the computations in that Case become too cumbersome.

Scanned by CamScanner



194 OPTIMIZATION METHODS

In the subsequent sections we shall consider linear parametric variations in (i)
the cost coefficients c;, (ii) the right hand cntries b; of the constraints, (iii) the
coefficients ay, and (iv) ¢;, b;and a;simultaneously.

Parametric linear programming is essentially based on the same concepts as
sensitivity analysis. Assuming that the coefficients which are varying are linear
functions of a parameter A, the general strategy adopted is the following. We first
compute the optimal solution for A=0. Then using optimality and feasibility
conditions, we find the range of values of A for which this optimal solution remains
optimal and feasible. Suppose this range is (0, A,). This means that any increase

in the value of A beyond A, will make the present optimal solution nonoptimal or
infeasible. At A=2, we defermine a new optimal solution and find the range
(A1, A of the values of A for which this new optimal solution remains feasible and
optimal. The process is repeated at A, and continued till a value of A is reached

beyond which either the optimal solution does not change or does not exist. A
similar strategy is adopted for investigating the effect of variations for the negative
values of A.

11 Parametric variations in ¢;

Consider the problem:

Minimise fA)=(C+ACHX,
subject to AX =B, 8)
X220,

where C is the original cost vector, C" the cost variation vector and A a parameter
which can have any real value. The problem is to determine the optimal solutions
for all possible values of A. It will be useful to put

f) =fo+ M, where f,=CX, f =C'X.
We first solve this problem for A =0. Let X, =[x, x, ... x,] * represent its optimal
basis and A, the corresponding coefficient matrix. Then E,, the relative cost
coefficients of the nonbasic variables in the optimal solution, given by (2), namely,

m
cj=c,—.2',lc,a,-j,j=m+ 1,...,n,
i=

are all nonnegative. Now let A be nonzero. Corresponding to the same basis the
relative cost coefficients of the nonbasic variables are, by the same formula, given

by
EIOL) = (cj + M;.) - igl(Ci + M.“)E.]

m — a m —
= c,.—‘ZZlc.-aU + c,—);lc,au)

=C;+Ae,j=m+1,...n.
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o tim:la:;f [6 gives the solution of this problem by the simplex method. The
o oo %1 = 14X, = 24, with , = ~ 38, f, = - 440. Thus in the optimal
solution f; achieves its minimum value, but f; falls short by — 7

TABLE 6
Basi .

is Values x, X v, V) X %
141 45 1 1 1
v, 440 16 9 1
X3 90 3 2 1
X4 80 4 1 1
f —485 —17 ~10
v 25 3/4 1 —1/4
v 120 5 1 —4
x 30 5/4 1 —3/4
x, 20 1 1/4 1/4
f — 145 —23/4 17/4
v, 7 1 —3/5 1/5
V2 0 1 —4 -1
x 24 1 4/5 —3/5
x, 14 1 —1/5 2/5
f -7 1 23/5 4/5

BIBLIOGRAPHICAL NOTE

(For references see bibliography)

Most books on linear programming include sensitivity analysis and parametric analysis. Gal
(1979) discusses them in greater detail. Lee (1972) gives a nice introduction to multiobjective and
goal programming. A brief introduction to these topics is also given in Gass (1985, fifth edition).
Osyczka (1985) discusses the use of multicriterion optimization in engineering design problems,
while Steuer (1986) gives some of the latest developments on these fast developing topics.

PROBLEMS VII
Sensitivity analysis

1.  Solve graphically the LP problem: maximize f= 4x, + 8x,, subject to x, + 2x, 2 20, 2x, + 2x, <
100, x, - 3%, €0,4x,-x, 20, x, 2 0,x,20. Also analyse graphically how the optimal solution
is modified when the following changes are introduced in the problem, (one at a time);

(i) objective function is replaced by 8x, + 4x,; -
(ii) right hand side of the second constraint is changed to 50;
(iii) the coefficients of x, in the constraints are changed from (2,2, -3, - 1)1t (2, 1,
-2,-1)
(iv) fourth copstraint is deleted;
(v) anew constraint 2x,+x; 2 10 is introduced.

[ (10, 40), 360; (i) (37.5, 12.5), 350; (i) (5. 20), 180; (iii) (50/3, 200/3), 600; (iv) (0, 50), 400;

. (v) no change. ]
2. Solve the above problem using simplex method, and analyse the effects of the changes using

sensitivity analysis methods.
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3. Solve by simplex method the problem: maximize f=-5%+13%+ 5%, subject 1o
125, +10x, + 4xy < 90, —x, + 35, +.x; < 20, X, X3, %3 2 0. Use the sensitivity analysis approach to

investigate the effects on the optimal solution of the following changes introduced one at a
time:

(i) right side of the second constraint is changed to 30;
(i1) coefficient of x, in the objective function changes 0 8
(iii) coefficieat of x, in the objective function changes to -2, and in the constraints from 12,
—1105, 10 respectively;
(iv) anew variable is introduced with coefficient 10 in the objective function and 5 and 3
respectively in the first and second constraints;
(v) variable x, is deleted from the problem;
(vi) a new constraint 2x, +5x, +3x, < 50 is introduced.

Verify your answers by solving the modified problems ab initio by the shjplex method.
[ 0, 0, 20), 100; (i) (0,9, 0), 117; (i, ii, iv) no change; (v) (0, 20/3), 260/3; (vi) (0, 5/2,25/2),
95].
4. For the problem: maximize f=X—X+2% subject 10 X=X +X;$4, X+nL—X <3,
2x, = 2x, + 3x; < 15, Xy, X, X3 2 0, assuming X, Xs, Xg respectively as the slack variables for the
three constraints, the optimal table is the following.

Basis Values X, X, X, Xy Xs X
X, 21 4 1 2 1
X, 7 2 1 1 0
X, 24 5 1 3 1

—f 18 2 1 1

Carry out the sensitivity analysis for each of the following changes:
(i coefficient of x, in the objective function changes to 2;
(iff coefficients of x, in the problem become ¢, =4, a,, =1, 4y = 2,85 = 3;
(iii) coefficients of x, and x, change 10 ¢; = = 2,a,=2a,=3,a,=-1,6=1,a,= 3,
. ap=-2,a5=1,
(jyf right hand side vector changes from [4 315]to [2 4 20];
(v) objective function changes to 3x, +X,+ 5%3;
@) first constraint is deleted;
(vii) anew constraint 2x, +x,+2x; < 60 is introduced;

(viii) third constraint changes to 4x, —x, +2x; < 12.

[(i). ii) no change; (iii) (17/5, 0, 1/5), 18/5; (iv) (0, 32, 28), 24; (v) (O, 24, 21), 129; (vi) no
change; (vii) (0, 150/7, 135/7), 120/7; (viii) (0, 18, 15), 12; or (0, 4, 8}, 12].

5. A company manufactures three products, A, B and C, using the same raw material and the
same labour force. The mathematical model of the problem formulated to maximize the profits
is:

Maximize f=5x+3x,+x,,
subjectto - 5x,+6x,+3x, < 45, (labour)
5x, +3x, + 4x, < 30, (material)
X1 X3 X3 2 0;
wh VX0 Xy, 3
ere X, X,, X are the amounts of the products AB,C. T!le optimal solution to this prob]em

is given in the following table, wher. ¢ : -
straints respectively. ’ € X,, X are the slack variables in the first and second cOm
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~.Basis Values X, x, % x, X
% 5 1 -3 1 -1
* 3 1 1 =15 25
—f 30 3 0 1

. Use sensitivity analysis 10 find the new
lime, are made in the data:
(.1.) coefficient of x; in the expression for fis changed to 2;
(“) available material increases from 30 to 60 units;
(l.‘l) Per unit requirement of the material for the production of C is reduced from 4 to 2 units;
(iv) a constraint 3x, +2x,+ x, < 20, expressing limitation of supervisory staff is added.

[ () (6, 0, 0), 30; (ii) (9, 0, 0), 45; (iii, iv) no change ].
¥n preblem 2 determine the effect on the optimal solution if changes (i) and (ii) are introduced
In succession, (that is, the solution obtained after introducing change (i) is subjected to change
(ii)). Also solve the problem when both the changes are introduced simultaneously. Is the
optimal solution in the two cases the same?

Repeat this analysis for the successive and simultancous occurrence of changes (ii) and
(iii). .

What inference can be drawn regarding the technique to carry out sensitivity analysis when
changes of more than one type are introduced simultancously in the data?
[Changes may be introduced in succession.)
Use the approach suggested in problem 6 to determine the effect on the optimal solution of
problem 5 of introducing simultaneously (a) changes (i) and (i), (b) changes (ii) and (iii).

[In both cases (9, 0, 0), 45 ].

The following table gives the optimal solution to a LP problem of the type: Maximize f = CX,
subjectto AX =B, X 20.

optimal solution if the following changes, one at a

Basis Values X, x, X3 X, s
X, 1 1 1 3 —1
X, 2 1 1 —1 2
—f 8 4 3 4

x,, X5 are the slack variables respectively in the two constraints with right hand sides b, and b,.
The values of the cost coefficients are ¢, =2, ¢, =3, ¢, = 1.
(i) How much can the cocfficient ¢, be increased before the current basis ceases to be
optimal? Answer the same question with respect to c,.
(ii) How much can the value of b, be varied before the present basis (x,, x,) ceases to be
feasible? (It is not necessary to know the value of b, to answer this question).
(iii) Find the optimal solution by the dual simplex method when b, is increased by 3.
[(i) ¢,, ¢, separately can be increased by 4; (ii) 7/15 < b, < 14/5; (ii) (7, 0, 0), 14].

Parametric lincar programming

Solve the following parametric programming problems for variations in the values of the
cocfficients of the objective function for values of parameter A > 0.
(i) Maximize (4 +22)x, +3(1 + A)x,, subject to 3x, +4x, < 12, 3x,+3x, < 10, 4%, + 2, < 8,
X, %20,
(ii) Maximize 2+ 30) x; + 3+A) x; + (1 + 2 1) x,, subject 1o X, +x,+ 26,4, X + 35 -
2x, €6, 4x; + 20, + %, £ 10, x,, 2, X, 2 0.
(ili) Maximize 2(1 “NX T2 HN G+ +20)x, subject to —x, +xp+25< 2, 2x, =X, +
2x, S 8. %), X5 %3 2 0. "
(iv) Minimize (1 + ) x, +(1+3) %+ 2 (2 + 3)) x,, subject to S
—x 21, x2S 1 X, X, %, 20,
I
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10.

11.

13.

15.

17.

75(0,3),9+9 4 () 0S A < 13/6: AL, 191,
38 + (i) 0S A< 4:(10,12,0),44 -8 %;
g30)/7; A > 1: (13/2,7/2,0), 10 +

[G)0 <A< T:(4/5 12/5), (52 + 44 0)/5; A2
4/11), (95 + 78 AY/11; A 2 13/6: (16/7, 0, 6/7), (38 + 60 MIT;
A24: (0,200 4 +2 4 (v) 0SA<1: (0,57, 13N BT+
10 .
Solﬁl the following problems for parametric variations in the values
forA20.

(i) Maximize 4x, + 3x,, subject to 3x, + 4x, <1242 3+ 3, <10+ 24, 4% + 2, <8

+30x,x%,20.

(ii) Minimize 2x, + 3x, + X3, subject to X,

20, +%,$ 10+ 24, X, X5, %, 20 .
(iii) Maximize 2x, +2x, + X, subject to — X;
Xy 2 0.
[G)o0s o (8 (1 +1)/10, (24 -\ )/10), (104 +29 1 )/10; 4 SA< 16: ((4+52)/6,(16 -2 )1/?).
(64 + 17 A)/6: & 2 16: (10 + 2 )73, 0), (40 + 8 )3, (ii) A2 0: (17/11, (A9/11) + A 4N,
©5/11)+ 3 A. (i) 0<A<5/2: (10-4A,12-31,0), 44~ 1442 5/2: infeasible.]
Write the duals of 9(i) and 10(i), and carry out the parametric analysis of these duals for values
of parameter A 2 0. ; .
Show that the optimal solution of the following problem for A =0 remains optimal for
0 <A <23, and find that solution.
Maximize 3x, + 6x,, subject to (1+2A)x, € 4, 3(1 - A)x, +25 < 18, x;, %, 20. [(0,9),54]
Carry out the parametric analysis of the following problems for simultaneous variation in the
cost coefficient and right hand side vectors.
(i) Maximize (4~ 10A)x, + (8 —4A)x,, subject 10 X; + X, < 4,2x, +x,<3-7,x,%20, for
—oo <A < oo,
(ii) Maximize 2(1—2A)x,+(2+A)x; +(1+2A)x,, subject to —x; + X, + 2x; <2+ A 24X+
2, <8 5A, x,, 3, X, 2 0, for A 20.

Also compare the result of 13 (ii) with the results of 9 (iii) and 10 (iii) to see if the solutions

for separate variations in the cost coefficient vector and right hand side vector superimpose
when these variations are considered simultaneously.
[() —0o<A<-5:(4,0), 16-40%; -5<A<-1: (-1-24, 5+1), 36-6L+60% —1<A<2:
(0, 3=X), 24—-200+4\% 2<A<3: (0,0), 0; A>3:infeasible. (i) 0<A<5/2: (10—4A,
12-3%, 0),44 — 220+ 5A%; A > 5/2: infeasible]
In parametric analysis the starting basic feasible solution is calculated at A = 0. Difficulty can
arise if no feasible solution exists for A=0. Show that it is also possible to do parametric
;nal{;is by starting with some other value of . As an example, analyse 9 (i) by starting with
Solve the problem: minimize (2+A)x,+(1+4)\)x,, subject to 4x,+ 34,26, 3x,+x,23,
X +2x, < 3,x,: x; 20, for A = 0 by the dual simplex method, and then do its parametric analysis
for.A 2 O (Thx§ example illustrates that parametric analysis of a linear programme can be done
even if its starting solution is obtained by the dual simplex method).

[0<A<213: (315, 6/5), (12+270)/5; A 2 213: (312, 0), (6+30)/2]

of the right side constants

+x2+2x,s4+k,x.+3x2-71356+37~.4xl+

+x,+21,$2+l.?-xx"x2+2"358_5)" X1 X2

Multiobjective and goal proéramming

Find the (l) extreme poinl solutions (ll) altainable so utions and (iii extreme point efficient
) 1 1 ( N . . .
solutions to the fO“OWUlg muluol))ecllve pIOblelll: maximize )

(h=x,+2x,, f, = 3x, - x,), subject
030+5 <9, 5+3,<18, x,-x, <3 . »J2 1—X,), subjec
igcal lSOlUljon? 1+3x, X=X <3, 0+x%59,x, 5,20, (iv) Does this problem have an
() 3, 0 (6 3). O12, 972), 918, 4S/8); (i) £, = 2712 ax 972, 9P2), £, = 15 at (6, 3); i) (6.3)
Find all the extreme POi.nl. solutions to the following multiobjective proble(;l in?l/zl)l' (ivt)hno' :
of these seven are efficient solutions. Maximize (i fur £, where f = —x +;:‘:.2:t+om

= St =X 3t Xy,
=30t it Bei=X-x+ax +2x; subject to 2, +

X +3 x,+4x, <

20, + %, S 60,%,, X3y X3, %4 20, 1+4x,< 60, 3x,+4x,+
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5
Flow and Potential in Networks

1 Introduction

Networks are familiar diagrams in electrical theory; they are easily visualized
in transportation or communication systems like roads, railways or pipelines,
nerves or blood vessels. A large variety of mathematical probleras are presented
by networks, ranging from puzzles for children 1o intricate probleras chailenging
mathematicians. Many problems, particularly those which involve sequential
operations or different but related states or stages, are conveniently described dia-
grammatically as netwc:ks. Sometimes a problem with no such apparent structure
assumes a mathematical form which is best understood and solved by interpreting
it as a network.

A network, in its more generalized and abstract sense, is called a graph. In
recent years graph theory has been a subject of much study and research by math-
ematicians, and has found more and more applications in diverse areas. In the field
of operations research graph theory plays a particularly important role as quite
often the problem of finding an optimal solution can be looked upon as a problem
of choosing the best sequence of operations cut of a finite number of alternatives
which can be represented as a graph.

In this chapter we shall discuss some linear programming problems of such
special forms that the ideas of graph theory help in their solution. We shall not
introduce graph theory in its abstraction but shall take up the special problems and
show how they can be looked upon and solved as networks or graphs. We start
with some definitions of terms relating to graphs. '

2 Graphs: definitions and notation

| A graph G(V, U) or simply G (when there is no ambiguity) is defined as a set V
of elements v, »J=1,2,..., n, which can be represented as points, and a set U of pairs
W, V), v, Vi€V, which can be represented as arcs joining points of V. The ele-
ments of V are called vertices and the elements of U arcs. We shall denote the
elements of U as either u;, i = 1,2, ..., m, or as (v;, vy.

If (v;, vy are ordered pairs, we represent them by directed arcs, that is, arcs
carrymg arrow marks on them denoting the direction v;tov,. A graph with directed
arcs is called a directed graph. Unless otherwise stated we shall assume that a
graph G(V, U) is directed.

The graph is said to be finite when V and U are finite sets. We shall restrict our
discussion to finite graphs only,
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FLOW AND POTENTIAL IN NETWORKS 137
We shall denote a graph diagrammatical)
shown as small circles, with vertex

section to explain the defined terms refer 1o

v; denoted as j. The examples given in this

this figure.

Fig. 1

An arc (directed or undirected) is said to be incident with a vertex which it joins
to some other vertex. It connects the two vertices. (The directed arc u;=;,v)is
said to be incident from or going from v; and incident to ot going to v,; v;is called
the initial vertex and v, the terminal vertex of the arc (v;, V).

A subgraph of G(V, U) (Fig. 1) is defined as a graph G,(V,, U;) with V, ¢ V and
U, containing all those arcs of G which connect the vertices of G,. For example,
in the figure, if V| = (v, v,, v;) and U, = {u,, u,, u,}, then G,(V,, U,) is a subgraph
of G. A partial graph of G(V, U) is a graph G,(V, U,) which contains all the ver-
tices of G and some of its arcs (U, ¢ U). For example, if we erase some arcs, say
u,, U, from Fig. 1 we shall be left with a partial graph of the original graph.

Let V, and V, be two subsets of V such that they have no common vertex, and
let u;= (v;, vy) be an arc such that v;e V), v, € V,. Then u;is said to be incident from
or going from V, and incident to or going to V,. 1t is incident with both V, and V,
and is said to connect them. In the figure, if V, = {v,, v;} and V, = (v, v,}, then u,
connects V, and V,. It goes from V, to V, and is incident with both. We shall denote
by (V) the set of arcs of G(V, U) incident with a subset V, of V, by Q*(V,) the set

of arcs incident to V, and by Q7(V,) the set of arcs incident from V,. In the figure,
if V; = {v,, v3}, then
Q' (V) = {u,, ugt, Q(V)) = {uy, uy, ug and QV)) = {u,, u,, u,, us, ug.

A sequence of arcs (i, Uy, ..., Uy, Upyy, -» Ug) Of a graph such that every inter-
mediate arc u, has one vertex common with the arc u,, and another common with
U, is called a chain. For example, the sequence (4, Uy, Uy, ;) in the figure is a
chain. We may also denote a chain by the vertices which it connects, for example,
the above chain may also be written as (vy, v3, ¥3, Vg, V¢

A chain becomes a cycle if in the sequence of arcs no arc is used twice and the
first arc has a vertex common with the last arc, and this vertex is not common with
any intermediate arc. For example, the chain (ky, 4s, 1, u) in the figure is a cycle.

A path is a chain in which all the arcs are directed in the same sense such that
the terminal vertex of the preceding arc is the initial vertex of the succeeding arc.
In the figure the sequence of arcs (), Us, U, 4s) is a path. We may also denote the
path in terms of the vertices as (v, vz, ¥y Va ¥s)- A path is a chain, but every chain
is not a path,
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A circuit is  cycle in which all the arcs are directed in the same Sensc: The

cycles (uy, Us, Uy) and (g, Ug) are Circuits. . )

A graph is said to be connected if for every pair of vertices l.hCIC‘lS a cha¥n
connecting the two. The graph in Fig. 1 is not connected because there 1S N0 chain
connecting, for instance, vs t0 v, OF V2 10 Vs. If we erase the vertices vz, Vs and the
arc u,, we shall be left with a connected graph. If v, is avertex of a graph, then the
set formed by v, and all other vertices which are connected to v, by chains, and the
set of arcs connecting them, form a component of the graph. A connected graph
has only one component. If a graph is not connected, it has at least two compo-
nents. The graph of Fig. 1 has two components, oné consisting of vertices Vs, Vg
and the arc u,,, and the other the remaining portion.

A graph is strongly connected if there is a path connecting every pair of vertices
init. Telephones in a town are the vertices of a strongly connected graph. Radio
receivers and transmitters form a connected graph but not strongly connected,
because there is a path from a transmitter t0 a receiver but not one from a receiver
to a transmitter.

A tree is defined as a connected graph with at least two vertices
(Fig. 2). It can be proved that a tree with n vertices has n— 1 arcs, and that every
pair of vertices is joined by one and only one chain. If we delete an arc from a tree,
the resulting graph is not connected, and if we add an arc, a cycle is formed. As
the name indicates, a natural tree is the best example of a graphical tree, the
branches forming the arcs and the extremities of the branches forming the vertices.

and no cycles

Fig.2

Fig.3

. c:,, :/reeng;( ﬂ\:'t:uch is connected to every other vertex of the graph by a path is called

o Evers sl:r;:. /; graph may or may not have a centre, or may have many

s ;xmre o m: : a strongly connected graph is a centre. The tree of Fig. 2
. an at the most have only one centre.
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A tree with a i
A centre is called an arborescence (Fig. 3). In the figure the centre

;smarked ©. In an arborescence all the arcs inci
C arcs i .
all the other arcs are directed in the same se:sl:ldem with the centre go from it and

/
3 Minimum path problem

, ;Z‘ :‘ ‘l;‘e“:‘“l:g"vﬁ;ge associated with each arc (v, v,) of a graph G(V, U), and let
a b ces of the graph. There may be a number of paths from v,to
v,. For each path we define the length of the path as I x;, where the summation is
over the sequence of arcs forming the path. The problem is to find the path of the
smallest length.

_ The term length is used here in a generalized sense of any real number asso-
ciated with tl_le arc and should not be regarded as 2 geometrical distance. A road
map connecting towns is a graph and the distance along a road between any two
towns is the length of a path within the present definition of the term, but this is
only a particular case. The time or the cost involved in going from one town to
another is also a length under the present definition. There may be more abstract
situations in which the length is not even non-negative. In general x; is a real
number, unrestricted in sign. |

Many methods and algorithms have been suggested for solving the problem of
the minimum path. We shall describe two algorithms here, one applicable only to
the case when x;, > 0 for all arcs and the other for the general case when x; is
unrestricted. A third method, using the principle of dynamic programming, will be
given in chapter 10.

L 1 All arc lengths non-negative. Let f;denote the mifiimum path from v,to v, We
have to find f,, Obviously f,=0.

Let V, be a subset of V such that v,is in V, and v, is not in V,. Further suppose
that f; for every v;in V, has been determined. Now determine f;+ x; for every v; in
V,and v,not in V, such that (v, vy is an arc incident from V,,. Let

£, +x,, =min (f;+X;)

where v, € V, and v, & V,. Then the minimum path from v,to v,is given by
fi=ft%,.
This is so because to reach v, we must leave V, and f, +x,, is the least of all paths

going out of v, along single arcs. Any alternative path to v, can either be along
some other single arc going out of V,to v, which would be larger, or along some
other arc going out of V, to some other point and then to v, which would be larger
still.

Now form an enlarged subset V,; of V defined by

V., =V,uiv

and repeat the operation. Suppose we start with p = 0 with V, consisting of a single
vertex v,and f, = 0. Following the procedure described above the sets V), Vyy ces
Vs Vprse.: ATE formed. Assoon as we arrive at a set in this sequence which includes

v, we have found f,. If no such set can be found, there is no path connecting v, to
Vbs
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Example: Find the minimum path from v, 0 Vs in the graph of Fig. 4 in which the

number along a directed arc denotes its length.

Table 1 shows the iterations according to the aigorithm explained above. Inthe v,
column are listed the vertices in the subset V,. Under f are written the least dis-
tances to these vertices from v,. Q7(V,) are the arcs incident from V,,, (v, v,) being
written as (j, k). Under x are given the lengths of the arcs. f,is the minimum of f +
x, and v, is the vertex to which this minimum distance leads and which in the next
iteration is included in the enlarged subset V,,,. g

TABLE 1
p v, f Q (v, x f+x f. v,
0 0. 0 ©,1) 2 2 2 1
©,2) 6 6
©,3) 8 8
1 0 0 0,2) 6 6
(0,3) 8 8
1 2 - 1,2 3 5 5 2
1,4) 10 12
(1,5) 8 10
2 0 0 ©,3) 8 8
1 2 1,4 10 12
(1,5) 8 10
2 5 2,3) 1 6 6 -3
' @.5) 1 6 6 5
3 0 0
1 2 1,4) 10 12
2 5
3 6 (3.6) 4 10
5 6 (sv 4) 1 7 7 4
(5.7 5 11
4 0 0
1 2
2 5
3 6 (3,6) 4 10
4 7 4.7 3 10 }g g
5 6 6.7 5 1
5 0 0
1 2
2 5
3 6
4 7
5 6
6 10 6. 8) 7
» 17 7 - 8
! 10 (1.8) 10 20 !
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The minimum path is found 1o be of length 17 and goes through the vertices
0,1,2,3,6, 8). '

It should be appreciated that actualt
the description of the problem or to
enunciated if all the vertices,
problem with many vertices
nor necessary.

y drawing the graph is not essential either to

its solution. The problem is completely
arcs and arc lengths are specified. In fact in a large
and arcs drawing a figure may be neither practicable

g I Arc lengths unrestricted in sign.( Let v,, v, be two vertices in the graph G(V,
U) whose arc lengths are real numbers, positive, negative or zero. We have to find
the minimum path from Va0 v,. We assume that there are no circuits in the graph
whose arc lengths add up to a negative number. For, if there is any such circuit,
one can go around and round it and decrease the length of the path without limit,
getting an unbounded solution.

Construct an arborescence 4,(V,, U,), V, < V, U, < U, with centre v,and V,
containing all those vertices of V which can be reached from v, along a path, and
U, containing some arcs of U which are necessary to construct the arborescence.
If V, contains v,, a path connects V.10 v,. In a particular arborescence this path is
unique. There may be many arborescences and therefore many paths. A, is any
one arborescence. If in any problem only one arborescence is possible, there is
only one path from v, to v,, and that is the solution. If V., does not contain v, there
is no path from v, to v, and the problem has no solution.

The method of construction of the arborescence is straightforward. Mark out
‘the arcs going from v, From the vertices so reached mark out the arcs (not nec-
essarily all of them) going out to the other vertices. No vertex should be reached
by more than one arc, that is, not more than one aré?ﬁo—ul'd-bké-ﬁlmﬁa'any
vertex. If there is a vertex to which no arc is incident, it cannot be reached from v,
and so is left out. No arc incident to v, should be drawn.

Let f;denote the length of the path from v, to any vertex v; in the arborescence.

" The arborescence determines Jf; uniquely for each v;in V,, but f; is not necessarily
minimum. Let (v,, v)) be an arc in G but not in A,. Consider the length f, + x,;and
compare it with f;. If f;< f, + x,;, make no change. If f;> f,+ Xy, delete the arc
incident to v;in A, and include instead the arc (v, v). This modifies the arbores-
cence from A, to A, and reduces f; to its new value f, + Xy» the reduction in the value
of fibeing f;— fi— xy. The lengths of the paths to the vertices going through v; are
also reduced by the same amount. These adjustments are made and thus the new
values of f; for all v;in A, are calculated.

Now repeat the operation in A,, that is, select a vertex and see if any alternative
arc gives a smaller path to it. If yes, modify A, to A, and adjust Jfyaccordingly.
Ultimately an arborescence A, is reached which cannot be further changed by the
above procedure. A, marks out the minimum path to each v;from v,, and f,in this
arborescence is the minimum path to v,. The proof is as follows,

Proof. Let (v, i, Vi, ..., vy) be any path in G from v, to v, Tts length is x,, + x,,
+ ... + x,,. The vertices in this path are in A, also because A, containg all those
vertices of G which can be reached from v,. By the property of 4, given in the last
paragraph, for every vertex v;in A, and for every arc (v,, v)inG,
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f} < f‘ +XU:

or fi=fesxy,
because otherwise A, could have been further modified. Writing these inequalitieg

for all vertices of the above path,
fl _fn S xnll

fz _fl S

s _f, <x,
Adding, we get .
fo—faSXat X+ X+ .+ Xy, |
or, since f, = 0,
L Sx,+Xp+x,+... +X,p-
Thus we prove that no path from v,to v,in G can be smaller thanf,. Since the path
of length f, is also in G, this path is the minimum. Proved.

The path of maximum length can be found either by changing the signs of the
lengths of all arcs and then finding the minimum path, or by reversing the
inequality f;> f; + x,;t0 f;< fy + x;; as the criterion for changing an arc in the
arborescence, so that at every stage a greater path is selected against a smaller one.

Example: Find the minimum path from v, to v, in the graph G of Fig. 5. Notice
that it has no circuit whose length is negative.

Draw an arborescence A, (Fig. 6) with centre v, consisting of all those vertices
of the graph which can be reached from v,, (v, is thus excluded), and the necessary
number of arcs. Notice that there can be many such arborescences. A, is one of

them.

Flg.5

The lengths f;of the paths from v, to different vertices v;of A, are as follows.
5=0,fi=1,£=-4,£,=3,f,=3,f;=2,f;=4,f,=5.
Consider the vertex v,. There is an arc (v, vp) in G which is not in A;, such that
bh=—4<fi+x,=1+2=3.
So we leave A, unchanged.
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Now consider the vertex V3. There is an arc (v,
,

that v;) in G which is not in A, such

L=3>f4n,=-4-1=25,

v;) which is incident to v, in A, and instead include the arc
a new arborescence A, with f, = — 5. Since no vertex is
all other f; remain unchanged.

So we delete the arc (v,,
(v, v5). This gives us
reached in A, through v,,

Fig. 6

Coming now to v, in A, (figure not drawn), arc (v, v,) is in G but not in A, such
that
fi=3>fi+x,=-5-4=-9.
So we delete the arc (v,, v,), include (v,, v,), get another arborescence A, with
fa=—9 and consequently f, =-7.

Continuing like this we finally get the arborescence (Fig. 7) which cannot be
further modified. No alternative arc decreases the length of the path from v, to any

Fig.7

veriex. This is seen by testing for every possible alternative arc. The minimum
path from v, t0 v, is (Vg, V3 V3, Vay Ver v7) With length —12.

4 Spanning tree of minimum length

(Let G(V, U) be a connected graph with undirected arcs, and let T(V, U’) be a tree
such that U’ ¢ U. The set of vertices of T is the same as that of G, while all the
arcs of T are arcs of G also. Then T(V, U’) is said to be a spanning tree of G(V, U)
or Tis said to span G) In Fig. 8 a spanning tree is shown in thick lines and the graph

Scanned by CamScanner



148 OPTIMIZATION METHODS

TABLE 2
A Pah [ Alemativepath !
1 .24 4 @Y )
:1.3) 2 (L2.3)
2 (1,4 -1 (1234 5
1,2,3)
3 (1,4) -1
1,2,3) 1

A more general problem of maximum potential difference in a network is
presented if the constraints are of the type
bu<fi-fiscp
for all arcs (Vs v). The method of solution remains Fh.e same because each
inequality of the above type can be written as two inequalities
fi—fiscp

fi—fi$=b.

Example: Find the maximum potential difference between v; and v, in the graph
G(V, U) where

v 1 2 3 4

U 1L2) (1,3) 2.3) (3,4) 4,2) 1,4
subject to the constraints

—Zsz—f,SfS,6Sf3—f2S10,f4—f3$—2, -2<f,~f,
15f,—f,$6,f3-f,s7.
The constraints can be written as
fz—f,SB,fl—fzSZ,f;—fzS10,f1—f35—6,f4—f35—2,
- hS2fi-£i56, fi-f <1, fy-f <7

Tpe graph of the problem and the arborescence of minimum path are shown in
Figs. 12 and 13. The maximum potential f, - £, is 3.

Fig. 13

6 Scheduling of sequential activities

The problem of minimum pi:lth finds an important application in scheduling and
coordinating various activities In a project so as to complete it in minimum time at
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a given Cost. AIFO itis possible to estimate the least rise in cost or the maximum
saving possible if certain activities are s

pl‘O_]CC[ within a prescribed period. pee up or slowed down to finish the

A project involves a number of activities

s vertices v , Operations or jobs which we identify
a O

. Vis +eo0 "f- =+ Vs Of a graph, v, represents the beginning and v, the
end of the project. Each job v; requires some time for its completion. 1t may not be

possible to start on a job unless some specified time has been spent on some other
job or jobs. ‘The problem is to find the minimum time in which the project can be
finished and the time schedule for each job.

Let c; be the time required on job v;before job v,can start. It is the time interval
between the start of the two jobs, v;preceding v,, We indicate this information by
drawing the arc (v;, v,) and associating the length ¢, with it. The time required to
complete v;is represented by the arc (v, v,) of length ¢j» as it would mean that the
time c;, shou}d be spent on v; before the end v, can be reached. Aiso if v;can start
only after some time has passed from the beginning of the project, we may indicate
itby c,;. All arcs (v, v) with lengths c; will in this way denote a sequential rela-
tionship in terms of time among various jobs.

Each sequence of jobs which must be done before work on v; can begin is rep-
resented by a path connecting v, to vj.’ The longest of these paths determines the
earliest time v; can start. In this way the longest path joining v, to v, gives the
minimum time of completion of the project. The problem thus reduces to finding
the maximum path with arc lengths c;, (or the minimum path with arc lengths —c,).
This path is called the critical path.

Example: A building activity has been analyzed as follows, v;stands for a job.

(i) v,and v, can start simultaneously, each one taking 10 days to finish.

(ii) v, can start after 5 days and v, after 4 days of starting v,.

(iii) v, can start after 3 days of work on v, and 6 days of work on v,.

(iv) vscan start after v, is finished and v, is half done.

(v) v, v, and vs take respectively 6, 8 and 12 days to finish. Find the critical
path and the minimum time for completion.

Fig. 14 is the graph of the activity, vertices v,and v, representing the start and
the finish, and the other vertices the jobs to be done in between.  The arc lengths
denote the time between the start of two jobs.
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in Fig. 15. The critical path

th is shown .
P time of completion of the

The arborescence giving the maximu 0
h is the minimum

is (v,, v, vs, v,) of length 22 days whic
work.

Fig. 15

ed the critical path, another type of question can be raised.
me jobs but at an increased cost. To keep

f a job increases linearly as time of its
is the least increase in cost if the

Having determin
Suppose it is possible to reduce time 0n SO
matters simple let us assume that cost 0
completioii decr.ases within certain limits. What
time of completion of the project is decreased by a certain period? If the maximum
path is to be reduced, some arc lengths must decrease. We have to determine the

decrease which costs the least.
Let a; be the increase in cost for a unit decrease in time for the completion of

the job v, Normally o; would be positive. But there can be situations when
slowing down a job results in increased cost and speeding it up leads to some
saving. Therefore o, in general, are real numbers unrestricted in sign.

We pick up the paths which need reduction in time and examine each vertex v;
in these paths in the order of o increasing, beginning with the smallest o, and
reduce the time there as much as is necessary and possible. When the reduction in

time in the concemed paths has been made, we stop further reduction and add up
the cost. We illustrate by the following example.

Example: In the previous example the work is required to be finished in 16 days.
The following table gives the normal values of ¢; (same as in the previous exam-
ple), the minimum possible values of C»» and the increase a; in cost at v;for a unit
decrease in time. Find the minimum additional cost at which the work can be
completed.

Vi 1 2 3 4 5
Minimum ¢, 7 8 4 6 8
Q; 3 1 2 2 2

The paths from v, to v, exceeding the length of 16 days are (v,, v,, Vs, ;) and
(V,» V3, Vs» V). The former is of length 22 days and so needs a reduction of 6 days,
while the latter is of length 17 and so needs to be reduced by 1 day. The jobs (0f
vertices) involved are v, v;, vs. Of these reduction at v, is the cheapest. So we start
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with o, = 1. The path th .

i 4 P rough v, needs reduction of 1 day only which we get by
putling cs =4 days at a cost of 1, T brings th

other path the reductj o gs the path (v, v,, v5, v,) to 16. In the

4 ction required is still 6, because the arc ( isnotinit. The

ertices to be examineq , : V,, Vg) is notin i
v cd are now v, and v, of which reduction at v, is cheaper. So
we should reduce cy, by 6, Th ’ o i

e of ¢ is § sb - that would make cy, = 6, but the minimum possible

value of cg, is 8, ; -
e duction :be > da So we reduce i 10 8 days at a cost 4 x 2 = 8. The remaining
8 d ak YS can come only at v, at a cost 2 x 3 = 6. But reducing cs, t0
. 5a)(,js makes reduction in cys unnecessary. So we restore cys to its original value
of 5 days. The mlmmun.l additional cost of doing the work in 16 days is thus 14.

' Tpe method of coordinating and scheduling of activities described in this sec-
tion is commonly referred 1o as CPM (critical path method), and is helpful in
maintaining Progress in construction projects, manufacturing and assembly works,
etc. We have given an example of how increase or decrease in cost can be esti-
mated for a specnﬁed completion time. There can be variations of this problem.
For example, it should be possible to estimate the minimum completion time for a
given total cost.

- Another similar procedure, called PERT (project evaluation and review tech-
nique), goes further and takes into account chance variations in completion times
of various jobs to estimate the total expected time of completion. Since we are
keeping stochastic and probabilistic considerations completely out of the scope of
the present work, we omit further discussion.

7 Maximum flow problem

Like potential, flow in a network is a familiar concept in electrical theory. Flow
of liquid through a network of pipelines, or of traffic through a network of roads,
or of production through assembly lines are other examples of network flows. In
physical terms the basic condition of flow in a network is that at every vertex the
total flow in should be equal to the total flow out, that is, there should be no
accumulation of whatever stuff is flowing. To extend the idea to more abstract
situations it is necessary io give a precise definition of flow in a graph.

Let x;be a real number associated with every arc u;, i = 1, 2, ..., m, of a graph
G(V, U) such that for every vertex v,

Elxi = zlxi?j = 11 2) oy
where the left-hand side summation £, is on all arcs going to v;and the right-hand
side summation Z, is on all arcs going from v, Then x;is said to be a flow in the
arc u;, and the set {x;}, i=1,2, ..., m, is said to be a flow in the graph G.

To state the problem of maximum flow in a network we define a graph as fol-
lows.

Let G(V, U) be a graph (Fig. 16) with V as the set of n + 2 vertices v,, v,, v, v,
wur VoV, and U as the set of m + 1 arcs uy, u;, u,, ..., u,. The vertices v,and v, and
the arc u, play a special role in this graph. v, is called the source and v, the sink,
and the arc u, connects v,t0 v, It is the only arc going from v, and also the only
arc going to v,. Other arcs incident with v, are such that they all go from v,,
Similarly all other arcs incident with v, g0 0 v,. P

With every arc u;, i = 1,2, ..., m, (€Xcept up), is associated a real number ¢;> 0
called the capacity of the arc.
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Let {x) be a flow in the graph G such that 0S x; < ¢y i = 1,2, e - Notice that
%o as the flow in the arc u, is defined but the capacity of the arc u, is not dcﬁned
and so there is no constraint on x,. By the definition of flow and because x, is the

only flow out at v,and inat v,,

total flow in at v, = total flow out at v,
Xo

total flow in at v,
total flow out at v,.

1]

All that flows out at v, flows in at v,. This explains why v, and v, have been called
the source and the sink respectively. The arc i, serves as a mathematical device to
bring the flow in the network within the definition of a flow in a graph. We shall
call u, the return arc.

The problem is to determine the maximum flow out at the source (= maximum
flow in at the sink). More precisely, the problem is to find the flow {x;} such
that

X, IS maximum

subject to 0<x< G i=12,.,m.

We first describe an algorithm which solves the problem. The proof will be
given later.

(i) Start by assuming a feasible flow. In the absence of any better guess, it is
always possible to start with x,= 0 for all ;.

(ii) Divide the set V of vertices into two subsets, W, and W,, such that each
vertex is either in W, or in W, but not in both. To begin with let W, = (v,}, all other
vertices being in W,.

(iii) Adopt the following procedure of transferring a vertex from W, 1o W,. Let
vie W,v,e W,

(a) if (v, vy is an arc u;and x,< Ci, transfer v,to W;

(®) if (v, v)) is an arc u;and x,> 0, transfer vito W3
(c) otherwise do not transfer vito W,.

Go on transferring vertices from W, to W, like this. If v, is transferred to W, by this
procedure, the flow is not optimal.

(iv) If the flow is not optimal, increase x;in arc of category (a) in which x;< ¢;
and decrease x;in arc of category (b) in which X;> 0 so that the flow remains fea-
sible and at least one arc gets capacity flow. Go back to (ii).

Repeating operations (i), (iii) and (iv) we shall come to a stage when v, cannot
be transferred to W, by operation (iii). The flow at that stage is optimal.

Example: In the graph of Fig. 16, numbers along arcs are values of ¢, Find the
maximum flow in the graph.

L
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Fig. 16

Assuming the initial flow as zero in all arcs, let W, = {v,}. There is an arc
(v, v)) from v,in W, to v, in W, in which the flow (zero) is less than its capacity 3.
Therefore by criterion (iiia) transfer v, to W,. Now there is an arc (v, v,) with
v, € Wyand v, e W, such that the flow-in it is less than its capacity 1. So we trans-
ferv,to W), Inthe arc (v, v,), v, € W, v,e W,, the flow is zero which is equal to
its capacity and so we cannot transfer v,to W, for this reason. But there is another
arc (vg, v3), v4 € Wy, v3 € W,, which is such that v, is transferrable to W,. Further,
because the flow in arc (vy, ), v, € W,, vse W, is below capacity, v; is transferred
to W), and finally because the arc (v, v,) satisfies the same criterion, v, is trans-
ferred to W,. Thus it is possible to transfer v, to W, and so the flow is not optimal.

We have gone along the chain (v,, v, v, V3, Vs, v,). The least capacity in this
chain is 1. So in each arc of this chain and also in the return arc (v,, v,) increase
the flow to 1, keeping the flow as it was in all other arcs. The modified flow is
feasible because in each arc it is less than or equal to its capacity, and also at every
vertex the flow in equals the flow out.

The above reasoning is repeated with every modified feasible flow until it is not
possible to transfer v, toW,. The iterations are shown in table 3. In each feasible

TABLE 3
Arcs Capacity Feasible flows

¢ I i m v \ VI
(CY) 3 (V) m 3 3* 3* 3*
(a,2) 2 0 0 0) 1) 2" 2°
@3) 1 0 0 0 0 ©) r
(,4) 1 () . r 1 a9 0
(1,5) 4 0 ) 2 2 (3} 3
(1,6) 2 0 0 0 0 0 0
2, 4) 2 0 0 0 ©) 1 1
(2, 6) 1 0 0 ©) r 1 1
3, 5) 1 (0) 1 1 1 1 N
@3, 6) 1 0 0 0 ) 1° 1
4,3) 2 ©) 1 1 1) @ 1
@, b) 0 0 0 0 0 o o
5,2 1 0 0 0 0 0 0
(5, b) 5 ) 4)) 3 3 3) 4
(6.b) 2 0 0 ©) ) 2 7
(b, a) 0 1 3 4 5 6
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flow the numbers in () indicate the chain along which it is possible to ppwed ‘.0
bring v, into W,. The asterisk indicates that the flow in the corresponding arc is
equal 1o its capacity and cannot be further increased.
The change from flow V to flow VI deserves to be followed carefully. The
chain in V the flow through which has been modified is (Vo Vs Var Vis Vst V). We
argue as follows. Starting with W, = (v,}, v, can be transferred to W, by criterion
(iiia). There is no unsaturated arc going out from v, both (vs, ve) and (vs, vs) car-
rying capacity flows. But (v, v,) is an arc such that v;€ W), vi€ Wz. and ihe flow
in it is 2 which is greater than zero. Hence, by criterion (iiib), vs 1S transferred to
W,. Again there is an arc (v,, v,) with v,e W, and v, € W, and with the flow in it
greater than zero. So v, is also transferred to W, by criterion (iiib). This time there
is an arc (v,, v) with v, € W,, vs € W, with flow 2 in it which is less than its
capacity 4. Consequently, by criterion (iiia), vs is transferred to W,, and finally, by
the same criterion, v, is transferred to W,. So the flow is not optimal. In this chain
arcs (v, v5) and (v,, v,) occur in reverse directions. We reduce flows in them by 1
and increase flows in other arcs of the chain by 1 thereby saturating the arc (v, v,).
The iterations stop at this stage because no matter how we try we cannot bring
v,into W,. In fact we cannot even proceed one step from the initial position of W,
containing only one point v,. This is so because the arcs going out from v, are all
saturated and so neither v, nor v, nor v, can be brought in W,. The maximum flow
in the graph is 6.
We now proceed to prove the algorithm. We begin with a definition.

DEFINITION 1. Ifin the graph G(V, U) of the maximum flow problem, W, is a subset
of V such that v,e W, v,e W,, then the set of arcs Q'(W,) (arcs incident to W,) is

said to be a cut. The capacity of the cut is the sum of the capacities of the arcs
contained in the cut.

THEOREM 1. For any feasible flow {x;},i= 1,2, ..., m, in the graph, the flow x, in
the return arc is not greater than the capacity of any cut in the graph.
Proof. Let Q'(W,) be any cut. Consider the flow in the arcs going to and going

from W,. The flow in should be equal to the flow out.
Therefore

zlxl = Xo + szl-
where Z, and X, respectively denote summations over the arcs going to and going
from W, (except ug). Since x;2 0 for all i,

Ix, 2 x,
Also x;< c; for all i. Therefore
IC 2 X,
where Z,¢; is the capacity of the cut Q" (W), . Proved.

THEOREM 2. The algorithin described earlier in this section solves the problem of
the maximum flow.
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Proof. Suppose by the application of the algorithm a stage is reached when no
vertex of W, can be transferred to W, by the prescribed procedure and v,e W,. The

setof arcs QW) is a cut. Let u, € Q'(W,). It means u;is an arc (v,, v,) where v, €
W), v, € Wa. The flow in this arc should be saturated, that is x; = c;, because if it

were 1ot so it would have been possible to transfer v, from W, to W, by criterion
(iiia), which is contrary to hypothesis.
Again, let u;e Q(W,), j#0. It means w;is an arc (v,, v,) where v, € W, v, € Wy

The flow in this arc should be zero, because if it were not so, it would have been
possible to transfer v, from W, to W, by criterion (iiib), which again is contrary to
hypothesis.

We conclude that the flow into W, is Zc;, summation being over all u; € Q'(W2),
and the flow out of W, is only in the return arc u,, because it is the only arc going
from W, carrying a nonzero flow. Let the flow in i, be y,. Then, since the flow in
and out of W, should balance.

26 = Yo,
where Z¢; is the capacity of the cut obtained by the application of the algorithm.
But from theorem 1, for any flow x, in u,,

X% < Zc;,
where Z¢; is the capacity of any cut. It follows that

Yo = Max X,
which means the algorithm leads to finding out the maximum flow. Proved.

THEOREM 3. The maximum flow in a graph is equal to the minimum of the
capacities of all possible cuts in it.

Proof. By theorem 1, %< Zc,

Thercfore max x, < min Zc;.

But we have seen in the course of the proof of theorem 2 that there is a cut corre-
sponding to which the flow in u, is equal to cut capacity. Necessarily this flow
should be maximum and the corresponding cut capacity should be the least of all
cut capacities. Proved.

This theorem is generally known as the max-flow min-cut theorem,

8 Duality in the maximum flow problem

Theorems 1 and 3 above are basically the duality theorems 7 and 8 (chapter 3,
section 18) of linear programming. 1t is therefore interesting to examine the dual
of the maximum flow problem, particularly because the motivation for the algo-
rithm forsolving it has come from the dual.

To make the discussion easier to understand, we take a particular network
(Fig. 17) with 5 vertices (including a source and a sink) and 8 arcs (including the
return arc) rather than a general network with n + 2 vertices and m+#+ 1 arcs.
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of a century, the Maxwell-Kirchoff
rks had clarified the basic concepts
blem involved minimization of
objective function in transpor.

Going back about another three quarters
theory of electric current distribution in netwo
govemning flow and potential. But the electrical pro
a quadratic function (heat generation) whereas the
tation problems is generally linear.

BIBLIOGRAPHICAL NOTE
(For references see bibliography)

Berge and Ghouila-Houri (1965) gives a good account of u'an‘s?orfation network problems of
different types with algorithms for solution and large number of utilitarian examples. The relevant
basic ideas of graph theory are also introduced. ]

Ford and Fulkerson (1962) is an authoritative book on network flows and contains general
mathematical theory as well as practically oriented concepts and problems.

Chuistofides (1975) deals with algorithmic and computational aspects of graph theory and pres-
ents the main techniques for the solution of important graph theory problems.

Murty (1976) and Bazaraa and Jarvis (1977) include good discussion of network problems.

PROBLEMS V

Minimum path

1. Explain why the algorithm for finding the minimum path when all arc lengths are non-
negative, given in section 3, is not applicable o the general case when arc lengths can be
negative also.

2. (i) Find the minimum path from v, to v, in the graph with arcs and arc lengths (i) given below.

- Solve the problem by both the algorithms given in section 3 and compare the numerical work
involved.
(ii) Find the minimum path from v, to v in the same gtaph with arc lengths (ii).
In the following table (i, j) denotes the arc (v, v).

Arc 12y @13 14 @3 26 @5 G5 G4 @7
Length (i) 1 4 11 2 8 7 3 7 3
Length (i) -1 4 -1 2 -8 7 -3 7 3
Arc G668 63 64 67 68 (13) (1.8)
Length (i) 1 12 4 2 6 10 2 2
Length (i) 1 12 4 2 6 -10 -2 2

[G) 15; i) - 22]

3. In each case of problem 2, is there a maximum path from vy to v4? Explain with reasons.
Identify circuits with positive lengths.

_ - ) [Max§mum unbounded because of circuits with positive lengths]

4. Find the minimum spanning tree in the following undirected graph. Arc (v, v;) is denoted as

G ). ; - o v -

Arc 12) (L) 14 23) @8) (210 (3.4) (3.8) 4.5 (4.?)

Length 7 4 8 3_ 9 14 4 10 15 12

Arc (48)./(5.6) 57) (67) (68 (6,9) (7.9) (89) (810) (9,10

Length . 10 4 1 2 2 16 18 3 4 6
[42]

5. Five villages in a hilly region are 10 be connected by roads. The direct distance (in km)
between each pair of villages alm.lg a possible road and its cost of construction per km (in
10" rupees) are given in the following table (distances are given in the upper triangle and costs
in the lower triangle). Find the minimum cost at which al] the vill be cted, and
the roads which should be constructed. 1lages can be conne
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Distances
| 1 2 3 4 5
1 18 12 15 10
2 3 15 8 22
Costs 3 4 3 6 20
4 5 5 6 7
. 5 2 2 5 7
(Hint. Construct the spanning tree of minimum cost).

[Rs 140 x 10% (1, 5,2, 4,3)]

Project scheduling

A project consists of activities A, B,C, ... M. In the following data X — Y = c means Y can
start after ¢ days of work on X. A, B, C can stant simultaneously. K and M are the last activities
and take 14 and 13 days respectively. A-D=4,B-F=6,B-E=3,C-E=4. D-H=5,
D-F=3,E-F=10,F-G=4,G-]= 12.H—l=3.H—J=3.J-K§ 8,I-K=17I1-L
=7,L-M=9. Find the least time of completién of the project. If activities K and L both
need a crane, and only one crane is available, how should the crane be used so that the project
is completed with the least delay? [59; use crane first on L, resulting delay 1 day)
Tasks A, B, C, ..., H, I constitute aproject. The notation X < ¥ means that the task X must be
finished before ¥ can begin. With this notation
A<D, A<E, B<F, D<F, C<G,C<H, F<I, G<I.

The time (in days) of completion of each task in as follows.

Task A B C D E F G H I

Time § 10 7 9 16 7 8 14 9
Draw a graph to represent the sequence of tasks and find the minimum time of completion of
the project. [33 days]
The project of problem 7 is required to be completed as early as possible. How soon can it be
completed and at what additional minimum cost with the following data?

Task A B C D E F G H 1
Increase in )
cost for each 1 2 — 3 4 1 - 6 4
day less
Minimum time 6 7 7 8 13 6 8 11 8
(28 days; cost 16]

Maximum flow

Find the maximum flow in the graph with the following arcs and arc capacities, flow in each
arc being non-negative. Arc (vj» vy) is denoted as (, k). v, is the source and v, the sink,

Arc (@l) @2 @3) 14) 1.5 16 @4 2.5) )
Capacity 2 2 2 1 1 1 1 1 1
Arc B4 (35 (36) @b (5.b) (6.b)
Capacity 1 1 1 2 2 2

Find the maximum non-negative flow in the network described below, arc (vj» v)) being
denoted as (j, k). v, is the source and v, the sink.

Arc @l @2) (12) (13) 14 @4 G2 (G4) @3) @.b) @4.b)
Capacity 8 10 3 4 2 8 3 4 2 10 9
N4

Find the maximum flow in the network with the following data, flow in arcs not necessarily
being non-negative. The arc (v, v,) is denoted as (j, k) and the flow limit (b, c) means that the
constraint on the flow x;is b, S x;< ¢;. 'v, is the source and v, the sink,
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G4 Gb @4

Arc @) (2 02 Q3 @4

(& c) (;10) (3.5) 23) (110) (=35 LD ©08) (04
[12)

12.  Families a, g, ..., a, decide to go on & picnic in cars by, by, - b,. The "‘":lb" of Persons in
family a; is c,, and the seating capacity of car b;is k. Assuming that the total seating capacity
is not less than the total number of persons, it is required to allot persons to cars such that i
cat b;the number of persons from the same family should ot exceed k. Formulate the
problem as that of maximum flow, and solve it for the following data.

i 1 2 3 4 5 119 ; f g
g 2 3 4 4 2 S

' - , K2 2 2

(Hint. Let a, be the source, b, the sink, {2, ) an arc with capacity ¢;, (b, by) an arc with
capacity &, (a, b) an arc with cepacity &).

13.  Convoys of army vehicles have to go from stations a;, i = 1,2, 3,4, 0 b, j= 1,2, 3, at night.
The maximum number of vehicles leaving a,or arriving at b;i= different for each station due
10 limited parking space, and is given in the following table. Each g;is connected to each b;
by road. For secrecy reasons no convoy should consist of more than 15 vehicles.

Station a, a, a, a, b, b, by
Parking capacity (no. of vehicles) 40 30 25 55 50 30 45
Find how the vehicles should be sent so that the total number of vehicles moved is maximum.
Is the optimal solution unique? If not, find two alternatives.
(Hint. Let a, be a source connected to each a,, and b, be a sink connected to each by, with
capacity of arc (ag, a,) or (b, by) equal to parking capacity of g, or b;. Let the capacity of each
arc (a;, b)) be 15. Find the maximum flow). ‘
[Maximum vehicles 125, distribution not unique. See answer to problem 14]

14. Solve problem 13 if the convoy on each road should consist of not more than 15 and not less
than 7 vehicles. Is there a solution to this problem if the least sirength of each convoy is 8
vehicles?

[125 vehicles. (i) is the solution to this problem. Both (i) and (ii) are solutions of problem 13.

@) (Gi) @) (i) [
@) 15 15  (aub) 7 S (a.b) 15 5
@nb) 15 15  (ayb) T 0 (anb) 8 15
@wb) 9 5 (a,b) 9 10 (aub) 1 10
@b) 11 15  (a,b) T 15 (a.b) 15 15]

15.  Show thatif {x;} and (y,} are two flows in a graph, then {a:x,- + by;}, where a and b are real
constants, is also a flow.

16.  Lety be a set of arcs forming a circuit in a graph G(V, U ), and let {x,(y)} be a set of numbers
such that x,(y) = 1 for ;€ v and x,(y) = 0 for u; ¢ \, where u,€ U. Show that {x(y)} is a
flow in G. (We call {x,(y)} the unit flow in the circuit y).

17.  Lety,, vy, ..., y, becircuits in a graph G and let (xi(;)} be the unit flow in the circuit y;, (see
Problem 16). Show that a necessary and sufficient condition for {y,) to be a flow in G is that
Yiis of the form

Yi =_a|xi(‘l’|) +ax(yy) + .. ax(v,),
where a,, a,. ..., a, are non-negative real numbers.
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Theory of Games

1 Introduction

I~

In al_l the various types of optimization problems considered so far the
assumption has t‘>e€n th'at there is a single decision maker whose interest lies in
chf>osmg the v'an?bles in such a way as to optimize the objective function, there
Pemg .no conflict in deciding what the objective is. There are, however, situations
Tn Wthh- there are two or more decision makers, each one making decisions (that
is, choosing variables) to optimize his objective function which may be in conflict
with the objectives of others. Trade and commerce, battles and wars, various types
of games, and many other activities present situations in which different parties ~
compete to achieve their own objective and prevent others from achieving theirs.
Mathematical models of such situations and their solutions form the subject matter
of the theory of games.

Game is defined as an activity between two or more persons involving moves
by each person according to a set of rules, at the end of which each person receives
some benefit or satisfaction or suffers loss (negative benefit).

The set of rules defines the game. Going through the set of rules once by the
participants defines a play. There can be various types of games. They can be
classified on the basis of the following characteristics.

() Chance or strategy: If in a game the moves are determined by chance, we
call it a game of chance, if they are determined by skill, itis a game of strategy. In
general a game may involve partly strategy and partly chance. We shall discuss the
simplest models of games of strategy only. .

(ii) Number of persons: A game is called an n-Pe_rson game if th.e n.umber of
persons playing it is n. (Here ‘person’ means an individual or group aiming at one
cbjective.) These may be finite or infinite

ii ves: .
gi‘? I\Luu”;:be:roi_f{ntlolternatives (or choices) available to each person per move:

These also may be finite or infinite.
A finite game has a finite number of moves,

i i is infinite.
matives. Otherwise the game 1S 1 e
alte(v) Information available to players of th:lll)ag)rr;\t:;l th‘ :itﬁg r}:icgiz: T
are, (a) no information at ll, omp .
bl e)'(lt':leme f:‘sf; caseg in between in which mformzfnon 1‘s partly avaxlabtlse.a e
" Pcrc gjf - Itisa quantitative measure of the saqsfacn?n a person ge
end( ‘:)il)’ th:);,)lay. It is a real-valued function of the variables in the game.

each involving a finite number of
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i i -person game. The
Lelp,-bemepayoffloﬂlepemnph‘=1'2’ ..., m, in an n-person g n

if i p; =0, the game is said to be a zero-sum game-
i=1

2 Matrix (or rectangular) games

A matrix game is a zero-sum two-person game with the following mathematical

model. (The name ‘rectangular’ or ‘matrix’ has no other significance except that
the game can be described in a rectangular matrix form). . .

The player P, has m choices i,i =1, 2, ..., m, the row§ of a matrix, while .Pz has
n choices j, j = 1, 2, ..., n, the columns of the same matrix. The m.xn ma.tnx A=
{a;} gives the pay off to P, for all possible combinations of the c‘:howes. Since it is
a zero-sum game, the pay off to P, is the matrix —A. Conventionally the pay off
matrix to P,, the player who chooses row-wise, is taken as the matrix of the game
(table 1).

TABLE 1
P,
j 1 2 n
i
1 ay a a,
P2 e a4 . g,
m [ a, a,,

The game is played as follows. P, -chooses a value of ; and P, choose a value of
J without each knowing what the other has chosen. Then the choices are disclosed,
and P, reccives a;; (or P, pays ay).

Here we shall discuss matrix games only.

3 Problem of game theory

To solve a mathematical model of a game is to investigate whether there is an
optimal way to play it, that is, whether there exists any rational argument in favour
of playing it one way or the other. Briefly, the problem is to discover, if any, the
optimal strategy.

This is explained further in the following examples.

Example 1: Consider the following matrix game.

-2 -4 —

Py

WA W -

4
3

2 3 -2 3
1

3

2 -2 -3
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P, wishes 1o obtain the largest possible a; by choosing some i, i = 1, 2,..5
while P, Is determined to make P,'s gain the minimum possible by his choice of j,
j=1,2,3,4. We shall call P, the maximizing player and P, the minimizing player.
1t would be rational for P, to arguc as follows.

“If I choose { = 1, then it could happen that P, chooses j = 3 in which case I gain
only —4. Similarly for my other choices i = 2, 3, 4, 5, P, can force me to get only
~1,-2,-3,-3 respectively by his choice of j. Thus the best choice for me is to opt
for i = 2, for this assures me at least the gain —1. In general, I should try to maxi-
mize my least gain, or find out

m‘ax m/in a,.”

P, can argue similarly to keep P,’s gain the least. By his choosing j =1, 2,3,4,
P,’s gain can be respectively as high as 4, 3, -1, 2. So P, should settle for j =3
because that would minimize P,’s gain. In general, he should find out

min max a;;.
J i

It tuns out in the present problem that
max min g, = min max a;
i J j i

and so the arguments of P, and P, Icad to the same pay off. It may not always
happen, as in the following example.

Example 2: Consider the following game.

S

1 2 -3 7
3 5 —6 6

Arguing as in example 1, in this problem
max min a; =-3,
i

minmax a; =4,
] i

The two are not equal. Notice that
max mjin a,; < min max a;,
J i
If a matrix {ay) is such that
m‘ax mlm a;= mjin m‘ax a;=a,,

fhc matrix is said to have a saddle point at (r, 5). In a game whose pay off matrix
is of this type, the optimal strategies of players P, and P, are said to be i = r and
j=5 rcspcc.uvcly, and a,, is said to be the value of the game. Example 1 is of this
type. But, in general, a matrix need not be of this type, as example 2 shows, and a

saddle point as defined above may not exist. The above definitions of optimal
strategy and value of the game are therefore not adequate to cover all cases and
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need to be generalized. The definition of a saddle point of a f“'flc‘io;: gf se:"‘;;laf
variables and some theorems connected with it form the basis of such a g
ization. We therefore first present these theorems.

4 Minimax theorem, saddle point

Let AX, Y) be a real-valued function of two vectors X and Y, X € E,.,. Ye E:l
Suppose this function is such that if X is kept fixed at some valu_e and Y t1)s varied,
then (X, Y) has a minimum for some value of Y. We denote this value by

6= m"}n fX,Y).

If we give to X some other fixed value, we may find another value of ¢. Thus for

different values of X we can obtain values of ¢, assuming that ¢ exists in every
case. This means that ¢ is a function of X and we may write

oX)= m‘i{n X, Y).
Let us now suppose that ¢(X) has a maximum for some value of X. We may
write it as
max ¢ (X) = max min f(X,Y).
X X Y
Similarly the expression
m‘}n m’z(lx X, Y)

is interpreted. Here we first find a maximum of X,

Y) with respect to X keeping
Y fixed, and then find the minimum of the function s

0 obtained with respect to Y.

THEOREM 1. Let fiX, Y) be such that both max min f(X, Y) and min max f(X, Y)
X Y Y X

exist. Then

max min f(X, Y) < min max f(X, Y).
X Y Y X

e))]
Proof. Let X, and Y, be some arbitrarily chosen points in E, and E,, respec-
tively. Then

minf(Xo, Y) < f(X,, Yo)

and m’?xf(xv Yo) 2f(XO! Yo)-

Hence m‘}n f(Xo, Y) < max f(X, Y,).
X

But Y, is arbitrarily chosen and could have

one of them the inequality should hold. Even

been any point in E,, and for every
for which m’?x f(X, Y) has the least value,

if we had chosen Y, to be that point
the inequality shall be true, So

mjn fXe Y) < mén m’?x X, Y).

Also since X, is any point in E,, the inequali

ty will hold even if we choose that X,
which makes m‘;n f(X,Y) maximum. There

fore
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m’?x mén fX,Y)< mvin m’z‘xx fXY). Proved.

COROLLARY 1. Let {a;;} be an m x n matrix. Then
e
max min 4, < min max . o 2)

We have only to regard {a;} as a real-valued functionf{i, /) = a;; of two variables
jand jwherei=1,2,..,m,andj=1,2,.., 1 and (2) follows immediately from
.

We defined the saddle point of a function in chapter 2, section 7. Because of its
importance in the present context we state the definition again.

DEFINITION 1. A point (Xo, Yo) Xo € E,, Yo € E,, is said to be a saddle point of
X, Y)if ‘
FX,Yo) £ f(Xo, Yo) < f(Xo Y). : 3

We now prove the following theorem on the existence of a saddle point.

THEOREM 2. Let X, Y) be such that both max min f(X,Y) and m}n m’z(axf(X,Y)
X Y

exist. Then the necessary and sufficient condition for the existence of a saddle
point (Xo, Yo) of f(X,Y) is that
(X, Y,) = max min f(X,Y)= mjn m’?xf(X,Y). 4)
X Y
Proof. (i) To prove that the condition is necessary, let (X, Y,) be a saddle point

such that (3) holds. Since
FX,Yy) S f(Xp, Yo) forall X € E,,

m’?xf(x: Yo) < fXon Yo)
But min [ max f(X,Y)] £ max X, Y).
Y X X
Therefore myin m’z(lx fX,Y) < f(Xp, Yo)-

Again, from (3), since
fX0 Yo S f(XpY)forall Ye E_,

fXoYo) < myin X Y).
But ’ min f(X,, Y) £ max [ min f(X, Y)).
Y X Y
Hence (X, Yo) < m;lx m\?n fX,Y).

Thus we find that
m}n m;xx fXY) S f(Xp Yo) < m:xx mén fX,Y).

But from theorem 1,
m}n m’?x fX,Y)2 max mén X, Y).

The only conclusion from the above two statements is that
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max min f(X, Y) = min max f(X, Y) = f(Xo Yo)-
X Y Y X

let (4) be true. Let the maximum

(ii) To prove that the condition is sufficient, ( Y, Then,

ini occur a
of mvin £(X,Y) occur at X,, and the minimum of max fX,Y)

from (4) )
minf(X, Y)= max fX,Yo)
Y
v
But by definition of minimum,
m}n (X0 Y) < f(Xo» Yoh
and so from (5),
m’?xf (X,Yo) S f(Xos Yo)
which means that
fX,Y,) < (X, Y,) for all X.
Also, by definition of maximum,
mxa'xf(xr YO) Zf(xm Yo}y
and so, again from (5),
m‘:nf(xo, Y) Zf(x()l Yo)r
which means
fXo,Y) 2 (X, Y,) for all Y.
Thus we find that
FX,Yo) S f(Xo, Yo) S f(X,, Y)
which, by definition, means that (X,, Y,) is a saddle point of X, Y) .
Proved.

COROLLARY 2. Let {a;} be an m xn matrix. Then the necessary and sufficient
condition that (a;} has a saddle point ati=r,j = s is that
a,= m‘ax mlm a;= mjln mlax a;. 6)

Asincorollary 1, regarding {a;} as a real-valued function of two variables i and
J» (6) follows immediately from (4). .

5 Strategies and pay off

As was mentioned at the end of section 3, in a matrix game, if the pay off matrix
{a;} has a saddle point (r, 5), theni=r, j = 5 are the optimal strategies of the game
and the pay off a,, is called the value of the game. If the matrix has no saddle point,
the game has no optimal strategies in-the above sense. By introducing probability
with choice and mathematical expectation with pay off, the concept of optimal
strategy can be extended to apply to all matrices. This we proceed to do.
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Let P, choose a particular i, i = 1, 2, ..., m, with probability x, We may also
interpret it as the relative frequency with which P, chooses i in a large number of
‘plays of the game. The probabilities x;, i = 1, 2, ..., m, constitute the strategy of P,.
Similarly if P, chooses a particular j with probability y;, the probabilities y;,j =1,
2, ..., I, are the strategy of P,.

DEFINITION 2. The vector X = (x;} of nonnegative numbers x;, such that ¥ x=1,
i=1

is defined as the mixed strategy of P,. Similarly the vector Y = (y;) of nonnegative

numbers y;, such that ;Z y; = 1, defines the mixed strategy of P,.
=1

For the sake of brevity we define S,, as the set of ordered m-tuples of nonnega-
tive numbers whose sum is unity, and say that X € S, Similarly Y € S,. Unless
otherwise mentioned it will be assumed throughout this chapter that X e Spand Y
e S, where X and Y are mixed strategies of P, and P, respectively. =
DEFINITION 3. The mixed strategy X = & whose ith component is unity and all
other components are equal to zero is called a pure strategy of P,. Similarly Y=
1, where all the components of Y except the jth are zero, is called a pure strategy

of P,.
DEFINITION 4. The mathematical expectation or the payoff function E(X, Y) in the
game whose payoff matrix is A = (a;) is defined as
EX,Y)= X X xa,y;=XAY
i=1j=1
where X and Y are the mixed strategies of P, and P,.
Following the argument given in section 3, it is reasonable to postulate that P,

should choose X so as to maximize his least expectation and P, should choose Y
so as to minimize P,’s greatest expectation. Thus P, aims at max min E(X,Y)and
X Y

P, aims at min m’?x EX,Y).
DEFINITION 5. If max m}n EX,Y)= m}n miax E(X,Y)=E(Xo, Yo), then (Xo, Yo) is

defined as the strategic saddle point of the game, X, and Y, are defined as the
optimal strategies, and v = E(Xo, Yo) is the value of the game. ’

According to a theorem, known as the fundamental theorem of the theory of
rectangular games, a strategic saddie point always exists. Before tuming to the
theoretical aspects let us consider the following example.

Example: Consider the following matrix game
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334 OPTIMIZATION METHODS

The above matrix is without a saddle point, as - X 7/,\ iy
max min g, =3 # min max ;= 4.
i i
Let the mixed strategies of P, and P, be X = [x, %] and Y = [y Y2l
Then oy
EX,Y)=5xy, + 35y, + XY, + 4%,
where H+u=1y+y,=1
Eliminating x,, y,, we get
EX,Y)=5xy,-3x,—y, +4

1 317
=5(X1—"5‘)(y,—§)+?.

If P, chooses x, = 1/5, he ensures that his expectation is at least 17/5. He cannot be
sure of more than 17/5, because by choosing y, = 3/5, P, can keep E(X, Y) down
to 17/5. So P, might as well settle for 17/5 and play X, = [1/5, 4/5], and P, rec-
oncile to — 17/5 and play Y, = [3/5, 2/5). These are the optimal strategies for P,
and P,. The value of the game is 17/5, and (X,, Y,) is a saddle point of E(X, Y).

6 Theorems of matrix games

We begin with a theorem which is required in the proof of the fundamental
theorem of games.

THEOREM 3. Let A be an m x n matrix, and let PiandQ,j=1,2,..n,i= 1.2, ..

m, be its column and row vectors respectively. Then either (i) there exists a Yin
S, such that QY < 0 for all i, or (ii) there exists an X in S Such that X’ P;> 0 for
allj.

Proof. Let E; € S,, be a vector such that its ith component is unity and all other
components are zero. Consider the m + n points ‘

gpgz: ---’;,Pl,PZ, ""Pn

belonging to E,,. Let C be the convex hull of the m + n points. Then the origin
0of £, is either in C ornot in C. We consider the two case separately.

(i) LetObeinC. Then 0 can be expressed as a convex linear combination of
the m + n points which span C (chapter 1, section 15). Hence there exist

[M,M,---.Myﬂnm,---,ll.] E‘ s,.,_,.
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sueh that

Era Sum-o,
o A+ IZ;u,au-O,l- 1,2,...,m. ®
Sinced, 20, Iil Way$0,i=1,2,..,m. ()]
Also )
AlSC E| W, > 0,

for, if it 1s equal to zere, each p, should be zero, which from (8) would mean that
each A, should also be zero. This would contradict hypothesis (7), and therefore is

not possible, Dividing (9) by }": J; we get
J=1

(/);l Wa;) //)‘:l W, <0.
Putting v = i W
J=1
we get )E’::l Y,y < ()'
or QY<0,i=12,...,m (10)

This proves alternative (i) of the thcorem.
(i) Let 0 ¢ C. Then by the theorem on separating hyperplanes (theorem 18,

chapter 1) there exists a hyperplane containing 0, say BZ = 0, such that C is con-
tained in the halfspace BZ > 0. In particular, since ; € C,

BE, >0,
or bl>0-i=lv27---,m:
and therefore
Y b,>0,
=1

where b, is the ith component of B. Also P;e C and so
Bpj >0)j = ]v2---~r"|

or ‘)_:l ba, >0.

Dividing by ‘Zl b, and putting x, = b/ 1).:1 b,, we get

‘le,qu>0.
or X'Pl>01j=1-2n---";

aan
which proves altemative (ii) of the theorem,

Scanned by CamScanner



336 OPTIMIZATION METHODS

iar games.
We now state and prove the fundamental theorem of rectanguiar g

; nd min max
THEOREM 4. For an m xn matrix game both max m‘;nE X, Y)a Y X

EX,Y) exist and are equal. )
Proof. E(X, Y)is a continuous linear function of X defined over Lhc': closeg 2:;1(;
bounded subset S,, of E,, for each Y in S,. Therefore max E (X, Y) exists an

continuous function of Y. Since §, is also closed and bounded, m‘m max EX.Y)

exisis. Similarly we prove that max min E(X, Y) also exists.
X Y

From thecrem 3 either (10) 0. (11) holds. Let (11) hold. Then multiplying (11)
by the component y;of Y and snumming for ali j, we get

EX,Y)= ¥ Z xa;y,>0
j=li=1
forall Y. Hence minZ(X,Y)>0,
v :
and consequently maxmin £(X,Y) > 0.
X Y

If, on the other hand, (10) holds, then by a similar argument we conclude that
minmax E(X,Y)<0
Y X

Atleast one of the above two inequalities must hoid, and so

max min £(X,Y) < 0 < min max E(X,Y) is not true. (12)
X Y Y X
Let A, be the matrix {a;~k} formed by subtracting k from eac ~ents
of A, and let its expectation function he £,(X, Y). Then
EX)Y)= _Zl ‘21 xl(alj - k)y,',
i=1j=
=Y Zxay-kY N Vs
i=lj=1 i=1j=1
=EX)Y)—«k. (13)

Since A is any matrix, what is true for A is true for A, Therefore, from (12),
) m):(:lx m‘}n E(X,Y)<0< m&n m)?x E\(X,Y) s not true,

or using (13), max myin EX,Y)<k< m\gn max E(X,Y) s also not true (14)

for any value of k. The onrly conclusion from (12) and (14) is that
max min E(X Y)< m‘;n m;xx E(X,Y)is false.
X Y

Therefore
max min E(X,Y) 2 min max E{X,Y).
X v Y X

But from theorem 1
mxe.x minE(X,Y) < mén m;).x EX,Y).
Y
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| - \
Hence ' -~

max min E(X,Y) = min maxE(X,Y). (15)
X ¥ Y X

Proved.---

By theorem 2, (15) is a necessary‘and sufficient condition for a point (Xo, Yo),
Xo€ S. Yo € S, to exist such that '

E(XyYo) = max m}n EX,Y)= m}n max EXX,Y),
and

: EX,Y)<EX, Yo SEXpY), (16)
forall Xe S,,Ye S,

By definition 5, (X,, Y,) is a strategic saddle point, E(Xo, Yo) is the value of the
game and X,, Y, are the optimal strategies.

We thus conclude that every matrix game has a value and an optimal strategy
for each player.

THEOREM S. Condition (16) is equivalent to
EE€.Y) SEXo Yo SEXoM)) an,
where&,,i=1,2,..,mandn,j=1,2, .., n, are the pure strategies.

Proof. To prove the equivalence of (16) and (17) we have to prove that a7is
anecessary and sufficient condition for the existence of (16).

That the condition is necessary is obvious. For, (16) holds for all X € S,, and
Y e S,, and & and n, are in S, and S, respectively.
To prove that (17) is sufficient for (16), we notice that

E&Y)=3 0,

because the ith component of &, is unity and all the other components are zero.
Similarly

EX,n)= ig xa;.

Hence 3 EG Vi =EXY),
and élE(X.n,)y, =EXX,Y).

Now let (17) be true, that is, let
EE,Yo) SE(XyYo) SE(X,m)

Then
E&, Yox; < E(Xq, Yoix;, E(X,, Yo)y, SE(Xpn )Y
= § p@Yons LEKYor, £ B Yoy, < § Bk,
= E(X, Yo £ E(Xo Y9 SE(X, Y),
since ‘gxl = El y=L
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340 OPTIMIZATION METHODS

The optimal strategy of P, is thus Yo = [0 11/16 0 5/16].

(v) B

@\\

0 2 1
Fig.2

It can be verified that E(X,, Yo) = 245/16. This completes the solution of the

problem.
To solve an m x2 game graphically, piecewise linear curve representing the

maximum expectation for any y, should be drawn and the point where it attains its
minimum would give the optimal strategy of P, and the value of the game. The
optimal strategy of P, can be found zs above.

8 Notion of dominance

Sometimes a row or a column in the payoff matrix of a game is obviously
ineffective in influencing the optimal strategies and the value of the game. For

example, consider the game

1 4 -8 7 -2
P, 2 3 -9 2 -3
3 |-2 6 8 2

Notice the rows 1 and 2. For every j, a;;> a,. Whatever the choice of P, P,
will do better by choosing i = 1 rather than i = 2. The second row therefore should
not play any part in the strategy of P), or, in other words, the probability associated
with it should be zero. The solution of the above game would be the same as that
of the game with the payoff matrix

[4—8 7-2]
-2 6 8
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THEORY OF GAMES 341
The problem is thus simplified. As another example, in the following matrix, the

first column does not play any part in deciding the strategy of P, and so may be left
out of consideration,

3 1 -1
-1 -2 3
4 3 -3

9 Rectangular game as an LP problem

It can be shown that the problem of solving a rectangular game is equivalent to
solving a problem of linear programming. This provides one of the methods of
solving a matrix game problem. Since the simplex method of solving an LP
problem has bzen described in chapter 3, we shalt only explain here how to convert
the problem of a matrix gare into an equivalent LP probler.

Let the m x » matrix A = {a;} be the payoff matrix of the game and v its value.
vis areal number. By increasing every a; by a suitable positive number k, we may
form a matrix A, = [a;+ k) = {a,;"} where every a;/ > 0. The expectation function
E, (X, Y) of the game with payoff matrix A, is given by equation (13) as

EX,Y)=EX,Y)+k.

By such a transformation the optimal strategies of the game do not change, but the
value of the game is inicreased by k, and it is ensured that this new value is positive.
Let us assume that, if necessary. after this transformation, the matrix of the
game is A = (a;), where a;> 0 forall ¢ and j, and the value of the game is v> 0.
Let X, = [x, x; ... x,,) and Yy = [y, y, ... y,] be optimal strategies of P, and P,
respectively. Thenr, from (17), for all j,

F(Xom) 2 E(X, Yo =V,

or 2(2in,2¥.}=1,2,...,71,
i-1
(19)
subject to xu=1
and x20,i=12,...,m.

Since v > 0, dividing (19) throughout by v, we get

|\.MB

a;x' 21, j=12,..,n,

subject to

1 M3

x/=1v,x/ 20.

i=1

The strategy of P, is to maximize v. Therefore he has to choose x;/, such that
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342 OPTIMIZATION METHODS
f= Zx, is minimum
i=1 @0)
20,,).’,'21, j=l,2,..-,’l,
i=1
x’ 20, i=12,....m

m. The value of the game is
'y} where {x/} is the optimal

subject to

This is an LP problem put in the standard primal fo
v = 1/fy and the optimal strategy of P, is {x;} ={x
solution of the LP problem.
If we start from the inequality
EE,Y)SEXpYo)=V
of (17), we shall get the LP problem as
o= i y, is maximum
Jj=1
(21)
Ea,jy] < i=12,....m
1=

Yi ZO, j=1y2)"'vn’

subject to

which is the dual of (20). One may either solve the primal or the dual to get the
solution of the game.

HISTORICAL NOTE

Games of chance have been studied for a long time; in fact the theory of pro-
babilitiy had its origins in this study. The first attempt to formulate a mathematical
theory of games of strategy was made by Emile Borel in 1921.. John von Neumann
gave a sound foundation to the theory in 1928 when he proved the minimax theo-
rem, the fundamental theorem in game theory. In 1944 Neumann and Morgenstern
published the *‘Theory of Games and Economic Behaviour’’. Since then the
subject has received much attention and has been applied to competitive situations
in diverse fields including economics, politics and military.

BIBLIOGRAPHICAL NOTE
(For references see bibliography)

Mckinsey (1952) and Dresher (1961) are comprehensive introductions to games of strategy; the
former confines more or less to theory while the latter includes applications also. For economists
Karlin (1959) may be of greater interest and benefit. Chapters on game theory are often included in
books on operations research. )

PROBLEMS XII

1. Examine the following payoff matrices for saddle points. In case the saddle point exists, find
the optimal strategies and value of the game. In every case verify that
mpming, < min et
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2 -1 -
. 13 o[22 23
@ [—2 10] ) [1 H @) [_; I 71]

=53 1 2] 1 3 6
(iv) 5 5 6 ) 13
-4 -2 0 -5] 16 2
0 2 -3 O 3 2 4 0
. -2 0 0 3 . 3424
(vi) 3 0 0 -4 (vii) 4240
0 -3 4 0 4 0
Solve the games with the following payoff matrices
1 -1 3
® [—1 1] . [4 J
Solve graphically the games whosc payoff matrices are the following.
1 -3
2 7] 3 2
. 1 -1 3 o |-1 6
K [li ZJ “‘)[ 2 3 U @4
2 2
L-s5
Use the notion of dominance to simplify the following payoff matrices and then solve the
game,
e RN
(')i_?_ @lg 31 32
. 4 3 4 1 %

Write both the primal and the dual LP problems corresponding o the rectangular games with
the following payoff mairices. Solve the game by solving the LP problem by simpiex method

01 2 -1 3
@2 o 1| i) [3 5 -
12 6 2 -

Show that an alternative formulation of an LP problem equivalent to the problem of strategy
of P, in a rectangular game with payoff matrix
A={q}, i=1,2,...,m, j=1,2,..,n,is

Maximize v= ;21 BinXi =Xy 4n
/

subjecllo 'z(ﬂ _ail)'xl lnl+x-u_0 .’ 1 2:
2 x=1, x20.

Write the corresponding LP problem for the strategy of P, and show that it is the dual of the
above.
Following the formulation suggested in the above problem, formulate the primal and dual LP

problems equivalent to the matrix games of problems 3 and 5 above, and solve them by the
simplex method.
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