18 Duality theorems ‘

In the following theorems it is assumed that the primal and dual problems are in
the form given in definition 4.

THEOREM 6. The dual of the dual is the primal.
Proof. The dual (46), (47), (48) written in the primal form is:

Minimize -4(Y)=-B’Y,
subject to -A’Y >2-C’, Y 20.
Its dual, according to definition, is:
Maximize y(X)=-CX,
subject to -AX<-B,X20;
which may also be written as:
Minimize fX)=—y(X)=CX,
subject to AX 2B, X2>0.
This is the primal (43), (44), (45). Proved.

THEOREM 7. The value of the objective function f{X) for any feasible solution of
the primal is not less than the value of the objective function ¢(Y) for any feasible

solution of the dual.
Proof. Let us introduce the necessary slack variables in the primal (43), (44),

(45) and the dual (46), (47), (48). We obtain



LINEAR PROGRAMMING 85

Primal: Minimize fX)=cxy+ e+ .0 +C Xy,
subject to anXy+a%. .+ 01X, = X, 4 = b,,
QX+ apXy... + X, X,y =y,
amlxl+am2x'1"' +amnxn —xn-Hn =bm'
X1y Xay voes Xy X i1s 2iis Kyips 2 U
Dual: Maximize o(Y)=by,+ by, +...+b,¥,.,
subject to apnntayyY,t...+a,,\ Y+ Ymi =Cy
a12y1+any2+"'+amlym +ym+2 =C2-'
alnyl+a7ay2+“'+amnym +ym+n=cn’
yl’ y?) seey }’,.., y,.+1 veey y,,+,, 20.
Let Xy, Xa, « - « s Xpemo @A0A Y1, V5, . . ., Ymin DE any feasible solutions of the primal
and the dual respectively. Multiply the primal constraints by y;, ¥, - - - » Ym
respectively and add, also multiply the dual constraints by x;, x,, . . . , X, respec-

tively and add. Thus we obtain two equations. Subtracting one from the other we
get

f—¢=xlym+l+x2ym+2+ o +xnym+n+ylxn+l+y2xn+2+ "'+ymxn+m‘

Since all the variables on the right-hand side are non-negative (they are compo-
nents of feasible solutions)

f-9=20. : Proved.
COROLLARY. It immediately follows from above that

min f(X) 2 max ¢(Y).

THEOREM 8. The optimum value of RX) of the primal, if it exists, is equal to the
optimum value of §(Y) of the dual.
Proof. After introducing slack variables in (44) we get

z a,-jxj—x,,,”:b,-, i= l, 2, ceay m.
Jj=1

Let the primal have the optimal solution (X}, X3, « - « s Xps Xa415 - - - » ). OiNCe it has
10 be a basic feasible solution, at least n of these numbers are zero. Let
Ty, T, ..., T, be the simplex multipliers for this solution. Then, as in (34), AX) for

this b. f. s. is given by
fX)+ éx nb, = ;2:'1 (c, + éx a; ,-n,-)xj - é X, , ;.
Since f{X) is optimum, from (39),
min fX)=- 5. b1,



86 OPTIMIZATION METHODS

and all the relative cost coefficients are non-negative, that is,

C’+.-§1 a;m20,j=1,2,..,n -m,20,i=1,2, ..., m;

m
or - 'El a,-jﬂ:,- S Cj,—ﬂ:‘ 2 0.

The .last two inequalities mean that (~m,, —n,, . . . , -1,) is a solution of (47), 43
that is, a feasible solution of the dual. Corresponding to this solution, from (46) ,

o(Y)= —él b;m; = min f(X).

Thus we have found a feasible solution of the dual such that

. min f(X) = ¢(Y)
which, by corollary of theorem 7, is possible only when

min £(X) = max §(Y).

Hence this solution of the dual is optimal. Proved

'I‘H'EOREM 9. The negative of the simplex multipliers for the optimal solution of the
primal are the values of the variables for the optimal solution of the dual; and the
simplex multipliers for the optimal solution of the dual are the values of the vari-
ables for the optimal solution of the primal.

The proof of the first part is implied in the proof of theorem 8, and the second
part can be proved likewise.

THEOREM 10. If the primal problem is feasible, then it has an unbounded optimum
if and only if the dual has no feasible solution, and vice versa.

Proof. Let the primal have an unbounded optimum. It means f{X) has no lower
bound, or in other wonrds, there is no number which is less than all possible values
of AX).

If possible, let the dual have a feasible solution. Then ¢ is a definite number
corresponding to that solution, and by theorem 7 ¢ < f(X). This contradicts the
conclusion in the last paragraph. So the dual has no feasible solution.

Conversely, let the primal be feasible and the dual infeasible. Let f{X) have a
minimum (not unbounded) for feasible X. By theorem 8, min f{X) = max ¢ (Y)
over feasible values of Y. Thusa feasible Y exists which contradicts the assump-

tion that the dual is infeasible. Therefore f{X) has an unbounded minimum.

Since the dual of the dual is the primal, the theorem is true if the words dual and

in i iad Proved.
primal are interchanged in 1ts enunciaton.

in the optimal solutions of the primal and the dual, (i) a primal
¢ dual slack variable Ym.; is zero,: and
then the corresponding dual variable

THEOREM 11. If,
variable x,is positive, then the correspondin,
(i) if a primal slack variable x,.; is positive,
¥, Is zero; and vice versa.
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Proof. Tt follows from theorems 7 and 8 that for the optimal solutions x;, / = 1,
2,...mn+ 1, . ntm,of the primal,and y,, i=1,2,... mm+1,... m+n,
of the dual,

X Vet TPzt oo B X Vi E VXt Yaasat oot YuXoim =20

Since an optimal solution is feasible, all x;2 0, all y,2 0. Hence all the terms in the
expression on the left side above are non-negative, and since their sum is zcro, cach
term scparately should be zero. Tt follows that in a term like x; y,.,, il x;> 0 then
Yy = 0, and if 3. ;> 0 then x;= 0. Also in a term like y;x,,;, il X,,;> 0 then y, =0,
and if ;> 0 then x,,;= 0. Proved.

These conditions are called the complementary slackness conditions. In words
they can be stated as follows.

In the optimal solutions of the primal and the dual,

(@@ if the jth primal variable x;> 0, then the corresponding dual constraint is
satisfied as an equation, or, in other words, the constraint is ‘tight’ (since its slack
variable y,.,;is zero), and vice versa; and

(i) if the ith primal constraint is satisfied as a strict inequality, or, in other
words, the constraint is ‘slack’ (since its slack variable x,,; is positive), then the
corresponding dual variable y;is zero, and vice versa.

This theorem is sometimes helpful in determining the optimal solution of the
primal from the optimal solution of the dual, or vice versa.

As an example, consider the problem
Maximize f=3x,+2x,+ x,+4x,,
subject to 2x, +2x, + x;,+ 3x, < 20,
3x, + xp,+2x,+2x, < 20,

X1y X X3 X4 2 0.
Its dual is _
Minimize ¢ =20y,+20y,,
subject to 2y,+ 3y, 23,
2y, + ¥, 22,
Y+ 2y,21,

3y, + 2y, 24,
Y Y. 20.

This is a two-variable problem whose solution can be obtained geometrically as -
=12, y,=02, $=28.

After introducing the slack variables, the primal and dual constraints arc
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2x, + 20, + Xy + 3X o+ Xg = 20,

3x, 42+ 23+ 20,4 %6 = 20,

2y, +3y,= Y3 =3,
0+ =N =2,
Y +2y, = Vs =1,
3y,+2y, -Ys =4

Xy X3y oo Xey Yis Yo 0+ Y6 2 0. ' .
Substituting the optimal values of y; (= 1.2) and y, (= 0.2) in the dual constraing,

it follows that the slack variables ‘
¥1=Y6=0,5,>0, ys>0. i

Thus the second and the third constraints are satisfied as strict inequalities, an.d so

the corresponding primal variables should be zero, that is, x, = 0, X3 = 0. .ftlso since

the dual variables y, > 0, y, > 0, it follows that _the corresponding primal con-

straints should be tight, that is, x5 = x = 0. The primal constraints thus reduce to

2x,+3x, = 20,

3x,+2x, = 20,
which give x, = 4, X =4. The optimal solution of the primal is therefore
X =x=4,x,=x,=0, f=28.

19 Applications of duality

The existence of a dual to every LP problem and the primal-dual relationship
are in conformity with the Kuhn-Tucker theory (see chapter 8, problem 12). Apart
from this theoretical implication, the existence of the dual provides some prac-
tically useful suggestions which sometimes help in reducing the work in a
straightforward application of the simplex method to the solution of the problem.

It follows from the duality theorems that, given an LP problem, one may obtain
its solution either by solving it or solving its dual. Sometimes the solution of the
dual may involve less work. Usually in an LP problem numerical work increases
more with the number of constraints than with the number of variables. Since
the two get interchanged in the dual problem, if the constraints in the primal
far outnumber the variables, then it is generally economical to solve the dual.

It is also possible under certain conditions toavoid the introduction of artificial
variables to obtain an initial b.f.s. and thus avoid Phase I part in the simplex
procedure. If the introduction of slack variables in the primal leads to a non-
feasible basic solution of the primal, but the introduction of slack variables in the
dual provides a basic feasible solution of the dual, then also it may be economical
tosolve the dual. What is more interesting is that in such a case it is also possible
to start on the simplex tableau of the primal with a nonfeasible basic solution,

and proceed with the iterations with a modified algorithm which finally leads to
the optimal solution, provided the cost coefficients satisfy a certain condition.
The procedure which we explain in ‘the next section is particularly useful when
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additional constraints are introduced in a problem after the optimal solution has
been obtained under the original sct of constraints, and the objective is to find the
optimal solution to the modificd problem without starting work from the very
beginning. Such situations commonly arise in Scnsitivity Analysis (chapter 7) and
the cutting plane method of integer programming (chapter 6).

20 Dual simplex method

Consider the primal and the dual problems in the forms (43), (44), (45) and
(46), (47), (48) respectively.

Suppose all ¢;> 0 and all ;< 0. Then the basis consisting of the basic vari-
ables Xpy1s Xna2s - - - » Xnum (Which are the slack variables) is feasible and also optimal.
Similarly the corresponding basis of the dual is feasible and also optimal. If,
however, some or all ;>0 and all ¢;2 0, then the basis X,,1, Xai2s - - - » Xn4m 1S NOL
feasible for the primal, but the basiS Yn.1s Ymszs - - « » Ymen 1S feasible for the dual.
We call this situation primal infeasible and dual feasible. Suppose we start with
the simplex algorithm on the dual. We shall be moving through a succession of
basic feasible solutions of the dual (which means all ¢c; >0) till the final relative

cost coefficients b; of the dual are all non-positive. We would have then arrived

at the optimal solution. To get the optimal basis of the primal from the optimal
basis of the dual we shall have to use theorem 9.

It is possible to abridge this procedure by applying a slightly modified algorithm
to the primal tableau wherein we start with a non-feasible basic solution but with
non-negative cost coefficients. This modified procedure is called the dual simplex
method.

Let us write the simplex tableau (table S) for the primal problem (43)-(45)
with a basis consisting of slack variables. We assume that some b;> 0 (that is, the
values of some basic variables are negative) and all ¢;> 0. The dual simplex
method consists in changing a negative basic variable in such a way that the value
of the new basic variable in its place would be positive, and the relative cost
coefficients for the changed basis still remain non-negative.

TABLE §

Basis Value x, x x, . X, X . Xpm
x.,, — bl —a" _alz _a" . _al. 1 .. 0
x.,z - bz - azl - an .. = % | az' 0 ] . 0 '
Xper —b, —a, —a, .- —a, .- —a,. 0 5 0
Xnem — b, —a, —Qau . —a,, o -—a,, 0 s 1

f 0 c [N L, (3 . C. 0 . 0

For example, let b,> 0 so that the corresponding basic variable x,,,is negative.
Also let some coefficients —a,;be negative. Let, in particular, —a,,< 0. We may
replace x,,, by x,in the basis by dividing the rth equation by —a,,,and eliminating x,
from all other equations and also from the last row giving the expression for fin
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cost cocfficients. This change shoyy,

lative Jol

[ the nonbasic variables and rc i

:)ccngxscz that no relative cost cocfficicnt becomces negative. Th 0 When
""L’!‘CP 20, j= 1, 2’ vet) n +,n9

B i

]

2L 2&- over all those j for which —a,, < 0,

or
a; ay
.
or mln-—'l- ==, a4, <0.
j Gy Gp

This lcads to the determination of p. The value of the new basic variable x, woul_d
be (-b,)/(a,,) which is positive. If for -b,<0, there is no —a,;< 0, the problem is
infeasible. . ; ;

We may change the basis in this way step by step, one basic variable in each
iteration, till all the basic variables come to have non-negative values. Thus we

shall arrive at a basic feasible solution which is optimal.

Notice that in this method we move through a set of points which are noE primal
feasible taking care all the time that the relative cost coefficients remain non-
negative so that the moment we arrive at a feasible basis, we find ourselves at the

optimal.
Example: Minimise f=3x+55+2x,
subject to =X, +2x,+2x, 2 3,
' n+2+x,22,
-2 —-x5+2,2>24
X1 X5, X3 2 0.

Table 6 gives the iterations by the dual simplex algorithm leading to the optimal
solution x; = x; = 0, x, = 2 and the optimum value of f = 4.

TABLE 6
Basis Value P, P, P, P, P, P
x, -3 1 -2 -2 1
Xg -2 -1 -2 -1 1
Xs 4 2 1 -2 1
’a 0 3 5 2
X, 32 -1 1 1 =172
X5 -1 -3/ -1 -122 1
3 7 1 3 -1 1
f -3 4 3 1
X3 1 2 1 -1
X, 1 3 2 1 -2
X 8 4 5 -2 1
if -4 1 1 2
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The proof of the equivalence of two forms is left as an exercise

(problem 32).
(viii) Go to (i)

22 Applications of LP

Lincar programming finds extensive use in solving real lifc problems in ccon-
omics, management, planning, industry and scveral other arcas of human activity.
Making mathematical models of real lifc situations is an important part of
operations research, and the problem is often quite complex. There are no hard and
fast rules about the way onc gocs about sctting a mathematical model. It is more
of an art than a science, and requires a thorough understanding of the system and
the relative importance of various factors entering it. For, in real life there are far
too many variables and parameters influcncing decisions, and to sct up a manage-
able mathematical problem representing the situation, approximations have nec-
essarily to be made. Still a good linear programming model of a real problem may
involve hundreds, even thousands, of variables and constraints. Whereas relatively
small problems can be solved by using the computational algorithms presented in
this chapter, more efficient algorithms are available for solving large scale prob-
lems. Even for special types of moderately sized problems more convenient
algorithms are available. One such type we shall discuss in the next chapter.

In this section we give simple examples of formulating a LP problem in math-
ematical terms from a problem described in words. The important steps in setting
up the mathematical model are the following.

(i) Identify the variables whose values are to be deiermined. Represent them by
suitable symbols like x,, x,, etc.

(ii) Identify the objective or the criterion which is to be maximized or minimized,
and express it as a linear function of the variables.

(iii) Identify all the constraints or restrictions and express them as linear equations
or inequalities in terms of the variables.

The mathematical problem so formulated is solved and the results finally
interpreted in the words of the original problem.

Example 1: A small manufacturing company produces one-band pocket and
two-band table radios. Each two-band model requires twice as much time as one
one-band model. If the company were to produce only two-band models, it could
manufacture 150 units per week. The company is licensed to produce in all not
more than 250 units per week. The market survey has shown that no more than 100
pieces of two-band model per week could be sold. The company is also committed
to supply at least 50 pieces of one-band model per week. If the net profit on the
sale of one-band model is Rs 10 per piece, and on the two-band model Rs 15 per
piece, how should the company plan its production to maximize profit?

The problem is to determine the number of one-band and two-band model
radios which the company should produce per week to eam maximum profit. Let
these be x,, x, respectively.
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ne-band model is Rs 10, ang 6t

icce of 0
the sale per pi d x, picces of the two Moe|,

(it per week on xy an )
wgicch it is sought t0 maximize. This thereforg ig

imized.

Since the profit from
two-band is Rs 15, the total pro
respectively will be 10x, + 15x2,
the objective function to be max

onstraints: . ) ,
2)5 f?r;]t:;;(;ucﬁon capacity of the company 1S such that if only two-band radiog

able to produce only 150 units per week. It take,

were to be produced, it will be )
twice as much time to produce a two-band model as to produce aonc band mode],
facturing capacity as ; X,

Therefore x, picces of one-band model use the same manu

l .
pieces of two-band model. The total capacity used is therefore ; x; + X, which

cannot exceed 150. Hence
0 +x%,$150

(i) Since the company is licensed to produce in all not more than 250 pieces per

week,
x, +x,<250

(iii) Since the demand per week of two-band radios is not more than 100, the
company should not produce more than 100 of this type. Hence
x, <100

(iv) Also since the manufacturer has a commitment to supply at least 50 one-band

models per week,
x,250

(v) Finally since a solution in which either x, or x, has negative values has no
practical significance (making negative number of articles is senseless), x,, x;

should be non-negative.
x 20,620

Summing up, the mathematical model of the problem which should be solved
to provide answer to the company’s problem is
Maximize ‘ f=10x,+15x,
subject to ix, +x, < 150

x, <100
x, 250

x,20,x,20
This is a two-variable LP problem easily solvable graphically or by the simplex
method. Its solution can be found to be x; = 200, x, = 50 with the maximum value
offas 2750. Interpreting in the words of the original problem, the company should
manufacture 200 one-band models and 50 two-band models per week to eamn the

maximum possible profit of Rs 2750,
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Example 2: A company manufactures three products, A, B and C. Each product
has to undergo operations on three types of machines, My, M,, My before they are
ready for sale. The time that each product requires on each machine, and the total
time per day available on cach machine are given in the following table. The table
also shows the net profit per unit on the sale of the three products. Formulate the
mathematical model for this problem to maximize the total net profit of the com-
pany per day, and obtain its solution.

Time per unit Total time
in minutcs available per day
Product A B C in minutes
Machine
M, 1 2 1 480
M, 2 1 0 540
M, 1 0 3 510
Profit per 4 3 5
unit in Rs

The problem here is to determine the number of items of the products A, B, C
which must be manufactured per day to maximize profits. Let these be X1 X, X3
respectively. Since there is a profit of Rs 4 per unit on A, Rs 3 on B and Rs 5 on
C, the total profit on x; units of A, x, of B and x;, of C is

f = 4x,+3x,+ 5x,
The objective is to maximize this function. :

As for the constraints, on machine M, time required for processing one unit of
A and C each separately is 1 minute, and for one unit of B it is 2 minutes. The total
time in minutes required on machine M, is therefore Xy + 2x, + x, which should not
exceed 480 minutes. Hence

X+ 2%, + x; <480
Similarly considering the limitations of time on machines M, and M, we should
ensure that

2u+ x, <540
x+ 3x, <510
Also since negative values of the variables will be meaningless, we should have
x20,x20,x20
Combining all these, the mathematical model of the given problem is
Maximize f=4x,+3x,+5x,
subject to x+25+ x, < 480
2, + x, < 540

x+  3x, <510

x20,x5,20 x20
(The solution of this problem by the simplex method is left to the Student).
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3 units of C per day. Wit
e profit of Rs 1623 per

3, with f =
of B and 93
imum possiD

The solution is x,=231,5=78%% 9
Sh-o uld manufacture 231 units of A, 78 units
this production schedule it will cam the max
day.
rm of 80 hectares learns that for
hould spray at Jeast 15 units of chemical A

Three brands of insecticides are available
41, One brand contains 4 units of A and
the second brand contains 12 and 8 units
contains 8 and 4 units respectively

Example 3: The manager of an agricultural fa

effective protection against insects, he s
and 20 units of chemical B per hectarc.
in the market which contain these chemic
8 units of B per kg and costs Rs 3 per kg,
respectively and costs Rs 8 per kg, and the third :
and costs Rs 6 per kg. It is also leamnt that more than 2.5. kg per hec.tam o.f insec-
ticides will be harmful to the crops. Determine the quantity of each insecticide he
should buy to minimize the total cost for the whole farm.
Let the quantity of each of the three i cecticides used be X, %z, s kg per hectare.

Since the cost of these three is Rs 5, 8 and 6 per kg respectively, the totfil cost per
bjective function to be minimized.

hectare would be 5x, + 8x; + 6x,. This is the o
4 units of chemical A per kg, the second

The first brand of insecticide contains .
12 units and the third 8 units. Hence the total content of chemical A is 4x, + 12x,

~ + 8x, units which should not be less than 15. Hence
4x, + 12x,+ 8, 2 15

provided by the content of chemical B is
8x, +8x,+4x,220

Further, not more than a total of 2.5 kg per hectare of insecC

sprayed. Hence

Similarly the constraint

ticides should be

X, +X+x,£2.5
Also, from the physical nature of the variables
1,20, 520,120
Summing up, the mathematical model of this problem is
Minimize f=5x+ &, +6x,
subject to 4x,+12x,+ 8¢, 2 15
&, + 8x,+4x,220
Lt+u+x, <25

x20,x,20, x,20
This L? pn;.)bfem can be solved using the big-M or two-phase simplex method.
Also, since it is a minimization problem in which all the cost coefficients are pos
itive and two of the constraints are > i :
| oot : 2 type, on introducing the slack vari an
to,pl:hng l:xln fnfeasxble basis can be found. Hence the p::t,a;]em can ::oaﬁ:bslglsved
y the dual simplex method. The following table gives the solution by this method
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Basis Valucs X X, Xy X, Xy X4
X -15 -4 ~12 ~8 1
X -20 -8 -8 -4 1
Xq 52 1 1 1 |
I 0 5 8 6
X, -5 -8 -6 1 -172
x 512 1 1 172 -122
X 0 -0 172 1/8 1
f: —25/2' L 3 712 5/8
x 8 1 3 -1 1716
X 15/8 1 -1/4 1/8 -3/16
Xs 0 172 0 1/8 1
f -115/8 5/4 378 7/16

The optimal solution is x, = 15/8, x, = 5/8, x, = 0,with f= 115/8. Hence the manager
must buy for each hectare 15/8 kg of the first brand of the insecticide and 5/8 kg of
the second brand and none of the third. The cost will be Rs 115/8 per hectare, or
Rs 1150 for the whole farm.

HISTORICAL NOTE

Linear programming began formally in 1947 when under the compulsions of
World War II a United States Air Force project called SCOOP (Scientific Com-
putation of Optimum Programs) was setup under the leadership of G.B. Dantzig.
The simplex algorithm and much of the related theory was developed by Dantzig
and his team in 1947 and further work on special problems and methods continued
throughout the next decade by the Dantzig group in the U.S.A. and others in
Europe. In the U.S.S.R. L.V. Kantorovitch published in 1939 a monograph in
which the possibilities of applying linear mathematical models to increase the
efficiency in organization and planning of production were suggested. Unfortu-
nately the suggestions were not taken up otherwise much work might have been
done in the U.S.S.R. in LP before Dantzig.

Contacts of the Dantzig team with John von Neumann (see note after chapter
8) led to fundamental insight into the mathematical theory of LP. Neumann
emphasized the importance of duality and could immediately see the connection
between LP and the Theory of Games on which he had done fundamental work in
1928. : . o 30

In the last few decades LP has become a very important tool of analysis in the
hands of economists. T.C. Koopmans in the U.S.A. and L.V. Kantorovitch in the
U.S.S.R. have been pioneers in this field, for which they were jointly awarded
Nobel prize in economics in 1975. Ragnar Frisch of Norway and Paul Samuelson
of the U.S.A. are other outstanding economists, both Nobel prize winners, who
have made significant contributions. -

AL L]
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Transportation and Assignment Problems

1 Introduction

We shall consider in this chapter some lincar programming Problems which
have special mathematical structure. The general method of so]vmg an LI.> prob-
lem, namely, the simplex method, can be applied to them. But theif special fea-
tures have led to the discovery of simpler algorithms for their solution. Because of
the occurrence of fairly large number of physical situations whose mathematical
formulation conform or can be made to conform to these special structures, these
problems have assumed considerable importance and have been given special
names—the transportation problem and the assignment problem. While the names
do indicate the physical situations in which the problems most obviously arise, they
arc uscd to refer to particular forms of mathematical models rather than any

physical situations.

2 Transportation problem

The transportation model most apparently arises when we want to determine the
minimum cost at which goods can be transported from given origins to specified
destinations. Suppose there are m sources (or origins or supply centres) O;, i = 1,
2,...,m, of a certain commodity and n sinks (or destinations or demand centres) D;,
Jj=1,2,.., n, where it is required. The quantity produced at source O; is g; (> 0),
and the quantity required at sink D; is b; (> 0). Let us for the present assume that
the total supply equals the total demand, that is

Sa = 3b - )
i=1 j=1

If this condition is satisfied, the transportation problem is said to be balanced.
The cost of unit flow (or transportation of the unit quantity) from each source to
cach sink is known. The problem is: How to meet the demand that the cost of
transportation is minimum? Or in more general terms, what is the flow with mini-

mum cost? ¢
Let x;;be the flow from O; to D;. Then the total outflow at O, and the total inflow

at D; are respectively

i

m
2 x;and ¥ x;,
J i=1

and therefore
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}leu=a,.l'=1,2,....m, (2)
and ’glxu=bj,j=1,2,...,n. (3)

Also since the flow, in order tobecm

! caningful, should be ¢ither zero or positive, we
further impose the condition

X;20 forall i and j. 4)
The cost of flow is
f= J)=:1 tgl CU x” (5)

where c;; is the cost of unit flow fro
(1), (2), (3) and (4) which minimis
(3) and the objective function are Jj

m O; to D;. The problem is to find x;; subject to
¢ the objective function (5). Equations (2) and
nearin x;. Therefore itis an LP problem. It can

3 Transportation array

Some special features of the constraint equations in the transportation problem
are very well revealed when the equations are visualized in the array form (table
1). Also, as we shall see later, the simplex method of solution when applied to the
transportation pfoblem reduces to very simple rules of computation if the equations
arc written in the array form. Therefore for theoretical as well as practical reasons
the transportation array is useful.

Visualised in the array form, equations (2) may be called the row equations and
equations (3) the column equations. There are m rows and n columns in the array,
providing mn number of cells, one for each of the variables. The cell in the ith row
and the jth column, which we call the (i, J) cell, is the position of the variablei X;j.
The constants a;and b; are placed respectively in an additional column on the right

TABLE 1
Dl D2 Dj D n
i Xij Xa @
0, | x Xn % Yox g
o|xm = - x % | a
0- x.ll x“z e I.y x-. a.
b Za,
b, b b L
1 -,
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and an additional row bclow. In somc discussions it may not bc necessary to
refer to a;and b, and in such cases we shall consider the array to consis't of on'Iy the
mn number of (i, j) cclls. It is also not necessary to explicitly write x;; in the
(i, j) cell. For example, the transportation array for m = 3, n = 4 would be as in

table 2.

TABLE 2

4 Transportation matrix

Though the array is the most useful form of representation of the transportation
equations, their matrix representation is also useful to bring out some of their
important features. To put them in their matrix form, it is convenient to multiply
one set of constraint equations, say equations (3), by —1, and put them as

ng x;=a,i=12,...,m, 6)

- z x‘j=—bj, j= 1, 2, AP (B
i=1

The advantage of this form will become evident as we proceed. The above equa-

tions, in the matrix form, are :
TX =B, €))

where X is the column vector of elements x;;which are mn in number. The column
vector B has m + n elements, m of the type a;and n of the type —b;. The matrix T

is of order (m + n) X (mn).
To get a clear idea of the form of T, let us write equations (6) more explicitly

for the particular case m = 3, n = 4, as follows.
Xyt Xt X3t Xy =
Xy F X+ Xpy T Xy = &
Xyt Xyt Xt Xy = a4
—X —Xy — Xy =-b, (8)

X3 — X3 —Xa3 =—b,

X4 — Xy —X =-b,
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The matrix T for the above particular casc is

L l')Il Pll Pl:! PM PZI 1)22 P23 P?A PJI P32 PJJ PM
1 1 1 1 0 0 0O 0 0 0 0 o0
0:-%0- 010z o] 1 1 1 0 0 0 o0
o 0 O 0 o0 0 0 0 1 A R

-1 0 0 0 -1 0 0 0 -1 0 0 o ©®

o -1 0 0 0 -1 0 0 0 -1 0 0
o 0 -1 0 O 0 -1 0 0 0 -1 0

. 0 0 0 -1 0 0O 0 -1 0 0 0 -1l

P,;, Py ... have been writien above the matrix to denote the column vectors of T
corresponding to x;,, X, ... for future reference. It is obvious that each column of
T has onc entry +1, another —1, and all others zero. The general form of T can be

written as
) A A I |
T - 2 N m )

[ -U, -U, . . - (10)
where I, i= 1,2, ..., m,is an m X n matrix in which all entries in the ith row are +1
and all other entries are zero, and U, is an n x n unit matrix. It is important to note
that each column of T contains two and only two nonzero entries, one +1 and the
other —1.

The correspondence between a variable x;and a column in T should also be

borne in mind. For every x;;there is a column in T which gives the coefficients of
that variable in the set of equations (6).

5 Triangular basis

The constraint equations (2, 3) or (6) are not linearly independent if (1) is
satisfied. If (1) does not hold, the equations become inconsistent. This can be
easily seen by adding all the equations (6). Unless otherwise mentioned we shall
assume that the transportation problem is balanced, that is, (1) holds. Then the

m + n equations (6) are linearly dependent. | '

~ The same conclusion can be easily drawn from matrix (10). Since each column
contains two and only two nonzero entries, +1 and —1, the sum of all rows of T is
a zero row, which means that equations (6) are linearly dependent. It is also
obvious that deletion of one, any one, row would leave the remaining set of rows
linearly independent. Hence the rank of the matrix T is m + n — 1, or, in other
words, any m + n— 1 of the equations (6) are linearly independent. The number of
basic variables (chapter 1, section 9) in these equations is therefore 7 + n — 1. A
basic solution will consist of at most m + n — 1 of the variables having nonzero
values.

We now enunciate and prove a theorem about the transportation problem which
provides a simple method of obtaining a basic solution.

THEGREM 1. The transportation problem has a triangular basis. .
By triangular basis we mean that the system of equations, when put in term.s
of the basic variables only, the nonbasic variables having been put as zero, 18
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clents of such cquations, Il nceessary, afier

tangular, that is, the matrix of coefll

|wnu}ulmi(‘m of its rows and columns, i trdangular. In other W()‘nls, ;hcm I8 an
cquation in which only on¢ pasic variable occurss in another cquation there g ong
more basic varable with the total number of basic variables being not more thap
two: in a thind equation another basle varable occurs with the total now being noy

more than three, and so on. ‘
ally casily by refc

The theorem can be proved equall i

atrix. We prove it first by considenng A
\ t;’li:;‘l%c:: gn?::ol be an cquymlon in which there i no basic va‘riablc because
then the equation cannot be satisficd for a; # 0 or b # O: If possible, let cvery
cquation have at least (WO basic variables. Then there will be at least two basic
variables in cach row, and so the (otal number of basic variqblcs will be at least 2/,
Also each column cquation will have at least two basic variablcs, and sp there wil]
be in all at Icast 2n basic variables. Thus, if N is the total number of basic variables,

N >2m, N 22n.

m>n, then N 22m=m-+m >m+n,

rring to the array or mfcrring

If
if m<n, thenN 22n=n+n>n+m;
if m=n, thenN 22m=m+n.
already seen, N=m+n— 1. Thisis

N > m+ n. But, as we have

mption that there are at Jeast two basic variables

least one equation, row or

So in every case
a contradiction. Therefore the assu
in each row and column is wrong. There is therefore at

column, in which there is only one basic variable.

Let the rth row equation be such an equation an
row and the cth column, be the only basic variable init. Then x,. = a,. Eliminate

this equation from the system by deleting the rth row equation and putting x,.= g,
in the cth column equation. The rth row then stands cancelled, and b is replaced

by b’ = b.—a,.
The resulting system consists of m — 1 row equations and n column equations,
of which m + n — 2 are linearly independent. Therefore, the number of basic
the earlier argument we conclude .

variables in this system is m +n — 2. Repeating
that there is an equation in this reduced system which has only one basic variable.
If this equation happens to be the cth column equation, in the original system the

cth column equation now contains two basic variables. So we conclude that the
original system has an equation which has at most two basic variables. Continuing
wnql this line of reasoning we next prove that there is an equation with at most three
basic variables, and so on. We thus prove the theorem.

f rank

Alternative proof. Referring to the matrix T, it has m + n rows but is 0
m +n—1. Deleting a row from T we are left with a matrix T with m + n — 1 TOWS,

_and it should be possible to find m + n— 1 columns in this matrix which are linearly
independent. Let A be the (m +n —1) x (m + n — 1) matrix with such linearly
mdependent columns. Each of these columns can at most have two nonzero
entries, one +1 and the other —1. If all the columns have two nonzero entries, then
the sum of the rows will be a zero row, and so the matrix A will be singular which
';v“rc])}ﬂd mean that its columns are not linearly independent (chapter 1, section 9)-

is will be a contradiction, Hence all the columns cannot have two nonzero

d let x,, the variable in the rth
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entries. The total number of nonzero entries in A should therefore be less than
2 (m + n—1). Since there are only m + n—1 rows in A and each row must contain
at Icast onc nonzero entry (otherwise A will not be nonsingular), there should be at
least onc row with only one nonzero entry. This means there should be an equation
with only onc basic variable. Eliminating this equation from the system, we are
left with a nonsingular matrix of order m + n — 2, and repeating the argument we
must find an equation in this system containing only one basic variable, the original
system then having an equation with at most two basic variables. Repeating the
argument we prove that the basic variables constitute a triangular system of equa-
tions. ‘

We have given two proofs because it is important for the reader to clearly
understand the correspondence between the matrix and the array of the transpor-
tation problem.

The theorem provides a very simple method of testing whether a given set of
m + n — 1 variables is a set of basic variables. For example, form =3, n =4,
consider the two different sets of six variables shown in tables 3 and 4. We shall
test in each case whether they form a triangular set of lequations. Considering
table 3 first, there is an equation containing only one variable; it is the column
equation j =4. Letus :

TABLE 3 TABLE 4
Xn | X2 Xy | %12
X2 X2 . X | Xz
X33 | X Xy | X

cross out this column, implying thereby that the variable x,, is eliminated from the
equations. In the remaining array, the row equation i = 3 contains only one vari-
able, namely x;;. Crossing out this row, we are left with an array in which the
column equation j = 3 contains only one variable x,,. Crossing out the columnj =
3, in the remaining array the row equation i =2 has only one variable x;,. Crossing
out this row, the column equations of the remaining array contain only one variable
cach. These variables therefore form a triangular set of equations, and so the
variables are basic.

Tuming to table 4, we cross out the column j = 4 which contains only one
variable. In the remaining array the column j = 3 contains only one variable, so we
cross it out. Now there is no row or column in the remaining array having only one
variable. The variables therefore do not form a triangular system of equations and
are not basic.

6 Finding a basic feasible solution

Theorem 1 also provides a practical method of finding ab..s. Letus arbitrarily
choose x,, as the basic variable which occurs alone in an equation. It can so occur
cither in the rth row or the cth column. If we choose the rth row equation, then x,
=a,; if we choose the cth column equation, then x,, = b.. Suppose a,> b,.. Then if
we choose x,.= a,, some other variable in the cth column will have to have a neg-
ative value in order that the column equation may be satisfied. This will mean
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n. Ifon the other hand we choose x,.= b, the rnp, B0
able with a positive value for satisfaction whicp Wil

create no such difficulty. If @,< bo the position V&flll beblgvc’izsgld and it wi]) p,
necessary to choose x,.= a. The rule is to put x,.= min (@, bo)- ks ¢ thO al‘(’: equa],
it is immaterial which choice is made. Just now let a,.< bc.w en, following the
above rule, put x,.= G,. This satisfies the rth ro“_' equation. We tumn our attentjoy,
to the cth column equation. Eliminating x, from 1.t, we 'replace b by b~a,, and the,
obtain an array with one row (or column) less. With this reduced array we proceeg

as we did with the first.

The procedure is continued
an equal number of variables
so obtained is basic feasible.

going to a non-feasible solutio.
equation will need another vari

till m + n— 1 rows and columns are crossed out anq

evaluated. The procedure ensures that the solution
The last row or column left uncrossed will be auto.

matically satisfied.
It is important to cross out one and not more than one row or column at each
stage after choosing a basic variable. In the case when at any stage of the above

procedure a,= b,, we may put x,.= @, Of b, and may Cross out the rth row or the cth
column but not both. If we choose to cross out the rth row, then b, is replaced by
b.— a, = 0, and the cth column has still to be satisfied by choosing some other
variable in the cth column to be included in the basis. The value of this variable
would be zero. On the other hand if the cth column is crossed out first, the rth row
should be kept open for choosing another basic variable in it whose value would be
zero. The resulting basis in either case would be degenerate. We illustrate the
method by two numerical examples, the second involving degeneracy.

Example 1: In the numerical problem of table 5

TABLE § TABLE 6
D, Dy~ Dy D }ia D, Dyt Dy 3D | @
o, | 10 15 25 0, 20 5|25
0, 320 12| 35 0, 35 | 35
0y | - 30 | 30 0, | 10 18 2 | 30
b |10 18 2 4| 9% b | 10 18 20 42|90

the three origins have capacities 25, 35 and 30, and the four destinations have
demands 10, 18, 20 and 42. The total capacity equals the total demand. The
n.umber of linearly independent equations and so the number of basic variables is
Six. Starting with x,, as a basic variable, we put x;, = 10 because a,=25>b=10
This satisfies the first column equation, and a,’=25-10 = 15. Tuming to the first
TOW equation, We put Xy, = min (15, 18) = 15 and b, = 18 — 15 = 3. The first OV
quzggg is '1?1]180 satisfied. Next we put x,, = 3 which satisfies the second colum?
b(elcausel.a = Z%S:?nf ;tz)w equation should not be satisfied by putting % =
g o e, -mﬁmead We put x,; = 20 thus satisfying the third colum®

g €r we put x,, = 12 and finally x,, = 30, thus satisfyin

all the equations and gettin
ga b.f,S_ as x, =1 - o _ = 121
X3¢ = 30, and all other variables zero, S 3 e
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It is not necessary that we should always start with x;,. Any variable may be
selected to make a start. For example, starting with x,; = 20 the b.fs. as given in
table 6 is obtained.

Example 2: The example in table 7 illustrates a degenerate case: Afier setting
x;; = 10, the first column is crossed and in the first row a, = 25 is replaced by
25 — 10 = 15 which is equal to b,. Putting x,, = 15 satisfies both the first row and
the second column. But we cross the first row only, and put x,, = 0 and then cross
the second column. Proceeding further we get a b.f.s. as shown in table 7.

TABLE 7
D, D, . Dy D, a;
0, 10 15 25
0, 0o - 10 10
0, 10 40 50
b; 10 15 20 40 85

7 Testing for optimality

To test whether a particular b.f.s. is optimal or not, we recall from chapter 3,
section 11 that the objective function should be expressed in terms of the nonbasic
variables only by eliminating the basic variables with the help of the constraint
equations. The coefficients of the nonbasic variables in the new expression for the
objective function are called the relative cost coefficients for the current b.f.s. If
all the relative cost coefficients are non-negative, the solution is optimal and the
corresponding value of the objective function is minimum. If a relative cost
coefficient is negative, the value of the objective function can be further reduced
by bringing the corresponding nonbasic variable in the basis in place of some basic
variable which is dropped out of the basis.

In the transportation problem the relative cost coefficients can be worked out
very easily. Let us for simplicity consider the problem withm =3, n =4, and write
equations (2) and (3) and the objective function (5) in the following extended form.

Xy + Xig + Xy + Xya L)
X+ X+ X3+ X =0
X3l+X32+X33+X34 =Qy

X +Xy1 +X3 L= bl (11)
5 +Xz +Xy =b,
X13 +X3 +X33 = b3
xl4 +X’IA +x34 = b4
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+
CoXyy + CpaXip + Cra¥in + Cra¥ua + Caka +CpXn

+ CayXps + Copdgy + Cyp Xy T+ gz + Caxkn + CaaXs =f (12)

Following table 5, lct a feasible basis be x;;, X2 .xfu.. X230 X0 X4 '.To find the
relative cost coefficients for this case we have to eliminate t.hcsc variables frop,
(12). Let t,, 0, T, be the simplex multipliers (chapter 3, section 15) fm the three
row equations and G,, G,, O3, G, for the four column equations respectively. Thep

in order to eliminate the basic variables we must evaluate these multipliers from
the following equations.
T, +0,+¢,; =0,

n,+0,+C,=0,
T,+0,+C5 =0,
T,+0,+Cy;y =0,
T,+0,+Cy =0,

Ty+0,+Cy =0.
These are six equations but seven unknowns to be evaluated. In general these are
respectively m + n—1 and m + n in number. Obviously there are infinitely many

solutions, but any one would serve our purpose. We may therefore choose any one
of the simplex multipliers arbitrarily. The simplest way would be to choose one of

these, say m,, as zero. Putting x, = 0, the others are evaluated quite easily. In tab-

ulated form the rule for evaluation tumns out to be very simple. The simplex mul-
tipliers for a column and a row should be such that the sum of the two multipliers
plus the cost coefficient in the intersecting cell should be zero provided the square

is occupied by a basic variable. This rule enables us to evaluate all the simplex
multipliers.

- Now to evaluate the relative cost coefficients ¢/’ (the coefficients of the non-
basic variables x;in f after the basic variables haye been eliminated),
= T+0;+c,
where the cell (i, j) corresponds to nonbasic variable, This is calculated for all
nonbasic variables. If ¢/’ is negative for any (i, j), the present basis is not optimal
and the value of f can be improved by bringing the variable x;;in the basis.

of table 5 is optimal. Let r,

=0 [written in the second row of the square containing

10) is a basic variable,

1t1+01+cu=0=>0+01+3:0=cl

=-3,
Also x,, (= 15) is a basic variable, and so

1t,+c,+cu=o=0+cz+2=0 =0,=-2,
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TABLE 8

Dl Dz D, D‘ q
10 15—u u 25

0,
: 3 2 -3 5 -3 4 0
3+u 20-u 12 35

0,
2 4 1 7 6 1
30 30

0,
6 7 8 8 -3 3 5 2

10 18 20 42

bj

—3 —2 -8 -7 -90

Similarly, since x,, (=3) is a basic variable,
TL+0,+cp=0=2m-2+1=0=m,=1.
In this way all the simplex multipliers are easily evaluated. These are written in
the second row in each square for g; and b;. Now, since the relative cost coefficient
for the nonbasic variable x;;is .
Cif =T +0;+Cy,

Cl3’=0_8+5=—3, Cl4’=0'—7+4=—3,

Co'=2,C5" =6, =8, ¢y’ =-3.
We write these in the left bottom corners of the nonbasic (vacant) cells. Since there
are negative ¢;;’, the present basis is not optimal. The value of the objective func-
tion for the present solution is _ '
F=10x3+15%2+3x1+20x7+12%x6+30%x5=425.
This can be reduced by a change of basis. The candidates to enter the basis are
X13, X145 X33.

8 Loop in transportation array

The procedure for changing the basis is based theoretically on a notion in the
transportation array called the loop which we proceed to define and discuss.

DEFINITION. A set of cells L in the transportation array is said to constitute a loop
if in every row or column of the array the number of cells belonging to the set is
either zero or two.

Suppose (i, j,) is a cell of the loop L. Then there must be cells (i), j2), (&2, j2),
(igy j3) ....s (i1 jy) belonging to L. Examples of loops are shown in table 9. One loop
consisting of x;;, X13» X3, X2 is shown by continuous lines, another consisting of
Xy3) X150 Xas» X430 X330 X360 Xags X3 i shown by dotted lines. The idea is that in a set of
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S
______-___1,__.__-___.’-—____-—7
x',, 12— — —x13— ===~ " X1
' I P-—-_——-_—d
X2 X22 X3 - e — =+ — ]~ X26
—— |- Xe3- i
l 1 1o
X33 —=— == =T
"
X43 — —4 —— — —| = X45
e

. ’ vy ible to go through all
, starting from any one cell, it is posst ( .
cells forming a loop g s eaci intormedliin oy

other cells of the loop and back to the starting
once only and moving altemnately along rows and columns of the array.

THEOREM 2. The necessary and sufficient condition for a set of column vectors P;

in the matrix T (section 5) to be linearly dependent is that the corresponding
varlables x; in the transportation array occupy cells a subset of which constitutes
aloop.
~ Proof. To prove that the condition is necessary, let a sct of column vectors P,
of the matrix T (obtained by deleting a row from T) be lincarly dependent. It is
more convenient in the present case to denote the column vectors as P(i, ), [ =,
By v bpp coon by J = J1v Ja ey o I Since they are lincarly dependent, there exist
numbers af{, j), not all zero, such that

% xf.a(i. )P, j)=0. (13)

Pick up a nonzero multiplier afi,, j,) of the column vector P(i,, j,). The corre-
sponding variable x(i,. j,) occupies the cell (i, /) in the array. The row of the
column vector P(i,, j,) corresponding to the i,th row of the array contains the entry
+1. Therefore in order that (13) is satisfied for this row of the matrix of column
vectors, there must be at least one more nonzero entry in that very row of the
matrix, that is, there must be another column vector of type P(i,, ,) in the given set
of column vectors, and its multiplier a(/,, /,) should be nonzero. The corresponding
variable x(i,, j,) occupies the cell (i, /,). Thus the /,th row of the array contains al
least two variables x(7,, /) and x({,. j,) corresponding to the column vectors of the
given sct.

Also in the column vector P(i,, j,) the entry in the row corresponding to the jih
column of the array is —1. Again, in order that (13) is satisfied for this row of the
ma.uix of the given column vectors, there must be another column of the type
P(i, j,) whose multiplier a(é,, j,) is nonzero. This means there s a variable x(/p /)
;:a‘;c[;‘:)l-l (i, j;) of the array, making the number of variables in the j th column al

We can proceed with this type of argument till we find that for all nonzr
mulllphcr§ a(i, j) of P(i, j) there must be corresponding variables x(i, /) in the array
1such that in a row or a column of the array if one of such variables’occur, then &
cast one more of them also occurs. This proves the existence of a loop in the $¢
of variables corresponding to the given set of linearly dependent column veclors:

To prove the converse, let the set of variables x(; . Jumn?
vectors PG, ), i=iy by i i jei 1 x(i, /) corresponding to the o’ .

*Ypr w1 b ] = J1s Jas s o ouny J, CONLAiN @ subset forming
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loop. Let the subset be x(iy, /,), x(i;, f), x(Ly, J2), .oy x(i,,J,), x(i,, j1). Let the corre-
sponding column vectors be multiplied by +1 and —1 altematively and let the
rcmaining column vectors of the given set be multiplied by zero. Then consider
the following lincar combination of the given set of column vectors.
P(ilv j l)_P(il' .12)+ P(izv jl)_ ----- "P(ipvj l)

The row of this vector corresponding to the i;th row of the array becomes zero
because only two vectors P(iy, j,) and P(i,, j,) have nonzero entries in this row and
they are each +1, and so their difference becomes zero. Similarly for all other rows
of the vector corresponding to other rows and columns of the array. Hence the
above linear combination is a zero vector, which means that the given column
vectors are linearly dependent. Proved.

9 Changing the basis

Theorem 2 provides a method of changing the basis in a transportation array so
as to bring into the basis any desired variable in place of another which is deleted
from the basis without making the solution non-feasible.

In section 7 we have seen how to select a variable for entry into the basis. The
existing m + n — 1 basic variables along with this new variable become m + n in
number. The corresponding m + n column vectors in the matrix T are linearly
dependent because the matrix is of rank m + n — 1. Hence, by theorem 2, the
m + n variables in the transportation array have a loop within themselves. It can be
proved that this loop is unique for a particular set of basic variables with a partic-
ular additional variable and includes the latter. (We omit the proof). This loop can
be easily traced as illustrated in the example of table 8.

Let us, in table 8, decide to bring x,, into the basis. This variable x,, together
with x5, X5, X,; Which are variables of the existing basis, forms a loop. The values
of these basic variables at this stage are

X2=15,x5=3,x,=20
If we put x,; = u (a constant), and alternately subtract and add u from and to the
other variables of the loop so that the equations are still satisfied, we get

X12=15-uU, X =3+ U, x3=20—u,

The value of u which would reduce the value of one of these variables to zero
without making any of the others negative is u = 15, Then

X,=0,x,=18,x,=35.
Thus x,, goes out of the basis and x,, comes in. The new basis is shown in table
10. The value of f for this solution is 380 which is an improvement on the previous
value (section 7),

TABLE 10 TABLE 11
D, D, D, D, q D, D, D, D, aq
0, 10 15 25 0, 25 25
0, 18 5 12 35 0, 10 18 7 35
0, 30 30 0, 20 10 30
b | 10 18 20 42| 9% b |10 18 2 42| 9
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The procedure outlined in sections 6, 7 & 9 constitutes the algorithr for the
solution of the transportation problem. It is repeated till an optimal solution ig
obtained. It is left to the reader to proceed with the successive iterations, The
optimal solution is shown in table 11 with the minimum value of f as 310.

It should be remembered that while the minimum value of the objective func-
tion has to be unique, the optimal basis may not be unique. There may be other
solutions giving the same value of the objective function. If any ¢/ = 0 at the

optimal stage, then an altemative solution exists with the corresponding variable in

the basis (see problem 15, chapter 3).
A summary of the transportation algorithm is given in section 16.

10 Degeneracy

Degeneracy can occur in transportation problem also. The example in table 7
illustrates a degenerate case. X, =0is alsoa basic variable. The general remarks
on degeneracy in chapter 3, section 14 apply here also. In practical problems it has
seldom proved to be a hurdle. One can proceed to the next b.f.s. according to the
prescribed rule and hopefully one would get out of the loop to eventually arrive at
the optimal solution. There can, however, be examples in which one is caught in
the loop and is unable to get out by the ordinary rule. We shall omit the discussion

of the method to overcome this difficulty.
11 Unbalanced problem

If we remove condition (1) and assume that

é',l a; ;tél b,
the problem (2)-(5) becomes infeasible. In physical sense, if Xa; > X b, there
would be surplus left at the sources after all the demands are met, and if > a; <X by,
there would be deficit at the sinks after all the sources have exhausted their

capacities. Problems involving surpluses and deficits are common and significant-

in practical life. They have only to be posed properly to have feasible solutions.

Let us look at the problem of surplus at the sources in the following way. If the
total available supply is more than the total demand, the demands at the sinks can
be fully met without exhausting the supplies. We may want to know the minimum
cost of meeting the demands at all the sinks. The problem then may be

N

Minimise Anom
X X cigips
j=1 i=1
subject to n
Zl x;<a,i=12,...,m,
fe. } (14)
2 x]]-bjrj_lrza snt

-
L}
—
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If cquality holds in the third constraint, the total demand can be fully met only with
all the supply, and so a feasible solution exists. The problem then reduces. toa
balanced problem already discussed. If, however, the third constraint is an
incquality, the following artifice converts it into a balanced problem.

We create a fictitious sink j = n + 1 with demand

bpi1= i a,— i bj- (15)
=1 =1

The new problem with m sources and n + 1 sinks is balanced. Any amount going
from a source to the fictitious sink is actually the surplus remaining at that source.
Before this balanced problem can be solved, the cost coefficient ¢, from the ith
source to the fictitious sink forall i,i= 1,2, ..., m, should be known. It is obviously
the cost of surplus lying at the source i. Depending upon the physical nature of the
problem, it may be zero or some other number which should be estimated.

The problem of surplus at the sources may be posed in another way also. The
demand may be flexible with prescribed minimum at each sink. The supply at each
source is fixed and all of it must be transported. The problem is then as follows.

Ly i )
Minimise 30 8 e

subject to SRS

n
y lx”=a,,i=1,2, ceeym,

d . L (16)
Z‘x xUZb])] = 1: 2’ ey 1y

Z 422 by

i=1
%, 20.

s

To solve it we again introduce a fictitious sink j = n + 1 with demand b,,, given
by (15). But now the cost coefficients for the (n + 1)th column in the array should
be taken as

Cions1 = Cry, =MIN (Cpy, €1y Cigy oo s Ciahy i = 1,2, .y m.

The idea is that with the minimum demands at all the sinks been met, the surplus
at a source is transported to that sink for which the cost is minimum. The optimal
solution of the balanced problem with m sources and n + 1 sinks provides the
optimal solution of the original problem after the value in the (i, n+ 1) cell is added
to the value in the (i, r;) cell forall {, i = 1, 2, ..., m. (Sce Problem 7).
The problem in which the total demand exceeds the total supply may be posed
as follows.
Minimis m oA )
Minimise $ 5 ey X
subject 10 I
IZI xy=api=12,..,m,

m 17
’Z X Shyj=12,...n } an
“1

(]

Y, < X b,
Iwl /=1
X2 0.
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ink is not nccess
this pro

I arily fully met. The actual supply may fy
rsl::ndglfntiamnedd::::;; s'ro solve plem a fictitious sOurce {=m+1is iy,
duced with capacity ) ;
= -2 a4
Om+1™ ,).;1 b El '

st of deficit at cach gj
2kt Iy row should be the cost ol dc] sink
The cost coefficients in the (1 + lz)nll nature of the problem to estimate how muygh,

It again depends upon the physic . :
lossgis suffl:r:cd on account of deficit supply at 2 smlf. The 1ba}ancc;d problem of
m + 1 sources and n sinks sO obtained is solved for optimal solution. Supplics from

the fictitious (m + 1)th source given by the optimal solution are to be interpreted g

deficits in the original problem.
The following is an example 0
eracy during its solution.

f an unbalanced problem, also involving degen-

Example: Table 12 gives the quantity of goods available at four origins 0;, i = |,
2,3, 4, and the minimum requirement at three destinations, D}, j= 1, 2, 3, and the
cost of transportation of unit quantity of goods from origins to destinations. The
available goods exceed the minimum total requirement, and the excess can be
transported to the destinations, but at minimum cost. Find the distribution of goods
such that the total cost of transportation is minimum.

TABLE 12

0, 2 1 3 10

0, 4 5 7 ' 25

03 0 9 25

O : 3 5 30
Y 20 15

The total availfal_)ility is 90 while the minimum requirement is 55. Hence We
:jntrqduc:e a fictitious destination with demand 35. Whatever goes to the fictitious
; szgnzﬁgfgl i)., fror.n 0! spould really go to one of the real destinations D,, D; 0 Ds
vl c_oit xss {nl{nlxmum. Hence the cost coefficient c,, = min (cyy, €12 €13)
array obtairied aner imilarly ¢y =4, ¢y, = 0, ¢,y = 1. The balanced transportation
in table 13(i). It alsl(:l:;%(:::::sg f b a?d tfhe corresponding cost coefficients is giVe"
. - . asic feasible solution which a starting
nonbasi i S
was done in table 8, rbasic variables are also written in the table: &
Noting that the relative cost i
coefficient ¢, i i we
g 2 100 the. basil, Piigi » is negative and the least (- 7
. ng = .
X =5 —u, and hence set y = 5, Txﬁ;s ml;’k:/e adjust xy; = 5 — u, xyp = 15+ 1
these, o3 35 th'e nonbasic variable, ang o ns *33 = X3 = 0. Treating only oncﬂoc
new basic feasible solution ag SSein i ing %225 a basic variable, we get !
€ 13(ii). Itisa degenerate solution-
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TABLE 13(})
D, D, D, D,
0, 10 10
9 2|7 1 317 1 6
0, 20 5—u u 25
4 51—7 7 |—1 4 -5
0, 15+u 5—u 5 25
7 6 0 9 0 0
0, 30 30
1 112 3 |—5 5 1 -1
20 20 15 35
1 0 -9 0
TABLE 13(i)
D, D, D, D,
0, 10 10
2 2|0 1 310 1 4
0, 20 0—u 5 u 25
4 5 71—-1 4 0
0, 20+u 5—u 25
7 6 o|l7 9 0 5
0, 30 30
1 1 2 3 2 5 1 4
20 20 15 35
—4 -5 -7 -5
TABLE 13(ili)
D, D, D, D,
0, 10 10
2 211 1 3 1 1 4
0, 20 5 0 25
4 |1 5 1 4 0
0, 20 5 25
6 6 0.}]:6+.9 0 4
o, 30 30
o 112 3 1 5 1 3
20 20 15 35
-4 -4 >, -4

For this basic feasible solution ¢’,, is the only negative relative cost coefficient.

Therefore x,, is brought into the basis. This necessitates dropping x,, out of the
basis. The new value of x,, is also zero. Table 13 (iii) gives the next basic feasible
solution. As all the relative cost coefficients are non-negative in this table, we have
obtained the optimal solution. It isx;3 =10, Xy =20, X3 =5, X3, =20, X3, = 5, X4y =
30. The value of x,, is to be interpreted as the excess quantity sent from O, to D,,
and similarly the value of x,, is the excess quantity from O, to D,. Thus the optimal
distribution in terms of the original problem is: O, — D,, 10; O, — D,, 20; 0, —
D,, 5,0, - D,,25; 0,— D,,30. The supply to D, is 50, to D, itis 25, and to D,




itis 15. The first two destinations receive more than the minimum required, while
the third receives just the required minimum. The total cost of transportation is
10x3+20x4+5x7+20x0+5x0+30x1=175.



13 Caterer problem

What is popularly known as the caterer problem in operations research ﬁrsit:
arose in connection with number of spare engines required to maintain a fleet ?
aeroplancs airworthy during a certain period. We shall describe the problemm 11
general terms.

Suppose there is an article which is used once and then sent for repair OrT SC€I-
vicing before it can be used again. On a job ay, ,, ..., a, (positive integers) of these
articles are required at times T, 2T, ..., nT respectively. The job lasts till nT. The
job begins at T with a, articles purchased new from the market at a certain price.
But at successive times the requirement can be met partly by repaired articles and
partly, if necessary, through purchase of new ones. The minimum time of repairis
/T and maximum (r + )T, r and s being positive integers with r + 5 < n. The
quicker the service, the higher the cost of repair, which in any case is less than the
price of a new article. The problem is: How to organize purchase and repair of

articles so that the job is completed with minimum cost of the articleg, ©
We can look at the problem as follows.

Let x; be the number of articles received back after repair whijch Wi

repair at time iT to be returned at time JT, and let ¢; be the cost of sent for

this repa;
. : pair per
article. Then ¥, x, is the total number of repaired articleg ava;

2 Alable at .
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Of course x;; is meaningless for i > j and can have nonzero value only if r <j—i <

r + s. The difficulty is easily overcome by putting ¢;; = e for inadmissible values
of i, so that the minimum cost expression can never include a nonzero value of x;;
for any inadmissible i. Any shortage at time jT will have to be met by purchase of
new articles. Let x,,,,; be this number. Then

n
121 X+ Xy =8y j=1,2,...,n.

The use of the symbol x,,,,; for the number of new articles purchased is convenient.
It makes up the deficit in the inequality

L]
2-.:1 x,<a,

and is therefore é slack variable. Moreover its introduction helps put the problem
in the transportation form.

Also X x; is the total number of articles sent out for repair at time /7. Again
j=1

since x; can be nonzero only for r < j — i < r + s, we put ¢; = oo for inadmissible
values of j. All the articles used at time iT need not be sent for repair, as the job is
to last only up to nT and if they cannot be repaired before that time they may as
well be left unrepaired. The cost of leaving an article unrepaired may be taken as
zero. Let x; ,,, be the number of articles used but not sent for repair at time i7. Then
121 Xy+Xi=a,i=12,..,n.
Also we have the non-negativity conditions
x;20,%,,,20,x,,,;,20

The objective function to be minimized is
R n

f=2 X cxy+c é,l Xeul

J=1.i=1
where c is the price of the new article.

We may finally put the equations derived above in the standard transportation

form
n+l

Z x,j=aj, j= 1,2, ...,n+1;
i=1

a+l

121 xy=a,i=12,..,n+1;

x,20;

n+l a+l

f=x T cmy

J=1 (=1
provided we can give mcanings 10 Xy, 10n410 Gny1 AN Cryp0ney. Let G,y be a sufficiently
large number chosen arbitrarily. A convenient value will be Xq; which is the total

number of articles required on all the days. The variable x,,,, ,,; can be interpreted
as the number of new articles left without being used and so not purchased at all.
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The cost of this fictitious transaction may be taken as C,,;, o1 = 0. This finally puts
the problem in the transportation form which can be solved by the standard pro-
cedure. .

Example: A caterer needs clean table covers every day for six days to meet 3
contract according to the following schedule.

Days 1 2 3 4 5 6
Number of covers 50 60 80 70 9 100

The cost of a new cover is Rs 20 while washing charges are Re 1 for return on the
fourth day or later, Rs 2 for return on the third day and Rs 3 for the next day. Find
the minimum cost schedule for the purchase and washing of table covers, assuming
that after the end of the contract the covers are rejected.

The problem, when put in the transportation form, is as shown in table 15 The
table shows an initial b.f.s. and also the optimal solution (bold numbers). The

minimum cost is Rs. 2950. The new purchases are 100 required on the first two
days. Subsequently the used ones return after washing.

TABLE 15
Soiled and
«... Sent for washing ................ —» rejected
1 2 3 4 5 6 7
T 50
1 50
=110 3120 2|20 1 1 1 0
60
2 60
oo w |60 3 2 1 1 0
) 70 10
. 80
Received o oo =150 3120 2110 1 0
afler 70
i 4 70
g oo oo oo o |70 3 2 0
90
5 90
s o e oo =9 3 0
100
2 : . .
S0 10
Purchased 7 2 - 10 30 450
S0 20|50 20 20 20 20 201350 0
50 60 80 70 90 100 450




