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11 Convex functions

DEFINITION 10. Let X € K c E, where K is a convex Set. A function fIX) is said to

be convex if for any two points X, and X, in K,
FO) S (1-NFX)+MX),0SA< L,
Jfor every X = (1-0)X, +2X,.
The function is said to be concave if the inequality sign Is reversed or if — X)

is convex. _
Interpreting in E,, let x,,x, be two points M and N respectively on the real line

(Fig. 1) and let a convex linear combination of x, and x, be x which is any point R
on the scgment MN. With f{(x) as the curve shown, MA = i), NB = fixy),
RP=fx). If x=(1 —)) x, + A x,, it is easy to see that RC =(1 = A)f(x;) + Af(x,).
Now RP < RC for all R lying in MN means that the curve is bulging out or convex
towards the real linc. If this happens for all x,, x, in a convex domain [a, b] we say

the curve f(x) is convex. If RP = RC, f(x) is concave.

y
678
A P
M R N
X x x

Fig. 1

It is important to note that the convexity or concavity of a function is dcfincd
only when its domain is a convex set. The use of convex sets in this context gives
us regions in E, which are in a sense ‘unbroken’ in each variable x;,j = 1, 2, ..., n.

The following thcorems are proved for convex functions, The corresponding
theorems for concave functions can be easily enunciated.

THEOREM 3. Ler Xe E, and let {X) = X’AX be a quadratic form. If (X) is positive
semidefinite, then AX) is a convex function.

Proof.Let Xy, X;beany tiwopointsin E,and let X = (1 -A) X, +A X,,0SA< 1.
Also let f(X) = X"AX be positive semidefinite, that is , X’AX >0 for any X € E,.

Then
(1= A (X)) + M (X2) = F(X)
= (1= DX AN, +AXZAX, = (1= MX, + AX Y A((1 - V)X, + AX,)
= (1-)X"AX, +AX5AX, - (1 -0'X",AX, - A2X,AX, - 24(1 - A)X,AX,
= Ml - )‘) (x,lel + X’ZAXZ - “X’IAXZ)

=M1 - DX, = X)'AX, - X,) 20
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because 0 <A <1and X, - X, is any vector in E,. Hence
FX) S (1-Mf(X))+Af(X,)

which means AX) is a convex function. Proved.

THEOREM 4. Let K c E, be a convex set, X € K, and X) a convex function. Then
if AX) has a relative minimum, it is also a global minimum. Also if this minimum

is atta'mec-i at more than one point, the minimum is attained ar the convex linear
combination of all such points.

Proof. Let fiX) have a relative minimum at Xo. Let X, € K. Thenforany 6 >0
itis possible to choose A,0 < A < 1, such that there exists X = AX,+(1-2)X, lying

in the 6-neighbourhood of X, By the definition of relative minimum, with X in
this neighbourhood

F(Xo) < f(X)
= FXo) 2 f(AXo+ (1 - M)X,) < Af(Xp) + (1 - A)f(X,), since £(X) is convex
= (1-2)fXo) £ (1-f(X,)
= F(Xo) = f(X,), since 1 - is positive,
= f(Xy) is a global minimum.
Let Y, be another point where the minimum is attained. Then

f(xo) =f(Yo)-.
Since Y, is a point in X, what is true of X, is also true of Y, and so

FXo) S fAX,+ (1-1)Y,)
<M (X)) + (1 = NF(Yo) = F(Yo)
= f(Xo) =X+ (1-1)Y,)

which mecans minimum is also attained at the convex linear combination of X, and

Y,. Thus the sct of points where f{X) is minimum is a convex set and is therefore
a convex linear combination of points (not necessarily only two) in it. Proved.

THEOREM 5. Let f{X) be defined in a convex domain K ¢ E, and be differentiable.
Then fIX) is a convex function if and only if

f(xz)"f(xx) 2 (xz_' xl)’vf(xl)
forall X,, X, in X.

Proof. First, for any X, X, in X let

FED-fX) 2 X, - XY VAX).

Let X; be any point in X such that
X, =2X,+(1-2)X,,0<A< 1.

Then, from hypothesis,

f(xs) —f(xx) P (Xs T, Xl)’vf(xl)-



48 OPTIMIZATION METHODS

From the above two incqualitics

AFIXD) = MOX) + (1= M)f(Xy) - (1= MK

> [MX,- X)) +(1 =M (X, = X)VfX)
= MXD+(1=0)F(X,) - f(X,) 2 [AX,+ (1 -VX, - X)'Vf(X) =0
= A(X) + (1= Af(X,) 2 £(X,) = fAX, + (1 - VX))

which means {X) is a convex function.

To prove the converse, let f1X) be a convex function. Then for X, X, in K angq
O<A<l,

(1= (X)) + M(X,) 2 f((1 - X, +2AX)
= M(X,) - M(X) 2 (1 - VX, +AX) - f(X))

X +MX - X)) - (X))
A

=fX)-fX))2

Taking limit as A — 0, (see definition 5),
FX)-fX)) 2 (X, - X))VfAX)) Proved.

THEOREM 6. Let f{X) be a convex differentiable function defined in a convex

domain K c E,. Thenf(X,), X, € K, is a global minimum if and only if
X-Xp)'VAXy)20forallXink.

. Proof. First, let {X,) be a global minimum. Then for all X in K

J(X) 2 f(Xo).
Also, since for any X in K, AX + (1 - V)X, is also in K,

FOX+(1-1)X) 2 /(X0 <A< 1,
=f(Xo+ MX = Xp) 2 /(X

=f(Xo+MX - X)) - f(Xy) 20.
Dividing by A and taking limit as A — 0, (see definition 5),
(X =Xo)'Vf(X,) 20.

It should be noticed that if X, is an interior point in X, AX,) is also a local
minimum and so Vf(X,)=0 and then necessarily (X-Xo)YVf(X,)=0. It is only
when X, is a boundary point that Vf(X,) may not be zero, but even then necessarily
(X -Xo)'V/(X0) 20.

To prove the converse, let for every X in K
‘ (X =X,V Vf(X,) 20,
Since f{X) is convex, from theorem §,
JX)-1(Xo) 2 (X-X,)'Vf(X,) 20

which means f{X,) is a global minimum, Proved.
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The geometrical interpretation of theorems 4, 5, 6 in £, Is Instructive. In I of
Vf(x) is dffdx which is the slope of the curve fix) with respect 1o thc positive
dircction of x, and is positive, negative or zero according as the curve slopes up or
down or remains steady as x increases. We assume JUx) 1o be a convex function
defined in the convex domain a <x < b, Itiscasy 1o sce the truth of theorem 4 that
any relative minimum is a global minimum, and if there arc minima at two points,
there is a minimum at every point on the line joining the two points (Fig. 2). To

illustrate theorem 5, in figure 3, MQ = fx,) — fix,) and MN = (x, —x,) (df/dx,), and

Q /
p N
M
' \
i i
a : b a X, X, b
Fig. 2 Fig. 3

apparently f(x))—f(x) 2 (x;—x,)(df/dx,). In Fig. 4, ON = f(x,)—f(x,) and
MN = (x;—x,) (—dfldx,), and so the apparent relation MN > QN leads again to
f(xz) —f(x)) 2 (x;— x,Xdfldx,). To illustrate theorem 6, if min f{x) lies at x = x,,
where a < x, < b, obviously dff/dx, = 0 and so it is true that (x —xp)(dfldx,) 2 0. If,
however, x, = a, (Fig. 5), then (x —x,) (df/dx,) =0 as x > x, and (dfldx,) 2 0. If, on
the other hand, x, = b, (Fig. 6), then again (x —x,) (df/dx,) = 0 because x <X, and
(dfldxo) £ 0. |

P
N.
Q
M
a5 3% X, %%, 38b x;=a ‘'x * p a X  box,
Fig. 4 Fig. 5 Fig. 6

12 General problem of mathematical programming

In operations research or systems analysis a system has to be studied and ana-

' lyzed with a view to determine its most advantageous behaviour under certain
- limitations.
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i = ) reey whi
In the mathematical model of the system occur vanab?cs X (-fn X nf.)l T;h
can be controlled and varied, and parameters over \\fhlf:h %hcnc lf] I;({J C\?,her: -m e
latter are to be regarded as given constants. - The limitations on X, put in
mathematical terms, take the form of constraints of the type s |
8(X)<0,i=1,2,..,p:8X)20,i=p+1,..r;8X)=0,i —‘r T
where g,(X) are real-valued functions of X. In general the constraints can always
be put as
8i(X)<0,i=1,2,...,m,
because
8i(X)20=-g(X)<0,
and gi(x)=0¢58i(x) 20,8,(X)<0.
It is also possible to convert an inequality into an equation by introducing an
Cxtra variable with a constraint imposed on it. Thus
8(X)<0 = 8i(X)+x,.,; =0,x,,;20, (1)

and g;(X)ZO@gE(X)—x“,-=0,x”,-20 (ii)
The variable X, S0 introduced is called a slack variable. Many authors distinguish

between cases (i) and (ii) by calling x,; in case () the slack variable and in case

(ii) the surplus variable. We, however, Proposc 1o use the term slack to cover both
cascs.

constraint,
The performance, rewumn, utility or wh

achicved through the System is generally measured by a real-valued function SX).
It is given various names in various problems

ed the optimal value
of X or the optimal solution, Usually the optimum value of f{X) is the maximum
or the minimum of SUX) under constraints,

Mathematical programming is the general
general problem may be stated as follows,
Let AX), g(X),i =1,2,...,m, be real-valued functions of X inE,, and let S be
the subset of E, containing all points satisfying the constraints
8(X)<0,i=1,2, ;X 20,
To find X, in S such that f{X,) is a global minimum in S.

As explained above, we may introduce slack variables X 10 put the constraints
as

€ used for such problems. The

gi(x)+xn+i = 01 -x.+,' 20.
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Then the total number of variables becomes n + i, We can state the general
problem in the following altemative form also,
To find Xo € § < E, such that £(X,) is a global minimum in S and for all X in §
8i(X)=0,i=1,2,...,m: X 0.

It should however be remembered that a1 in the above statement is n + m of the
carlicr statement and neither X nor g,arc identical in the two cases,

If S is a convex sct andjp() and g,(X) arc convex functions, the problem is said
to be of convex programming. The following theorem is significant in this con-
nection.

THEOREM 7. LetX e E, and let g(X),i=1,2, ..., m, be convex functions in E,. Let
'S  E, be the set of points satisfying the constraints 8/(X)<0,i =1,2,...,m. Then
S is a convex set
Proof. Let X,, X, be in §, and let Xy = AX, +(1-A)X,,0< A < 1. Since g,(X) is
a convex function and g,(X,) <0, g,X,) <0,

8i(Xy) =g,(AX, +(1- VX))

<Ag(X)+(1- Mg(X;) <0.
Hence X, is in S and so S is a convex set. Proved.

BIBLIOGRAPHICAL NOTE
(For references see bibliography)

Apostol [1969] gives a rigorous modern approach to the classical problem of extrema of functions
of several variables. For functions of two variables Widder [1968] is sufficient.

Convex functions are discussed by Gass [1969], and in a more sophisticated manner by Berge and
Ghouila-Houri [1965].

PROBLEMS I

 Gradients and derivatives

1. Find Vf(X) and H(X) for
(1) S(X) =x{} +3x,x;, = 4x] +4x, + 5x,%, ~ X3;

(i) f(X)=x)+2x)+3x..%,+ x].

2, Write Taylor series for f{X) of problem 1 (i) about the origin and of problem 1 (ii) about the
point (1, 1, 1). :
[(i) 7+6(x,=1)+9(x;— 1)+ 5(xy— 1)+ 3(x; — 1)} + 60, — 1)+ (x3— 1)* + 3(x, - 1) (x— 1)
1306 — 1) (x3—1) = 3(x; - 1) (x,— 1)...]
3. Find Vf(X,) and H(X,) at X, =(2, 0, — 1) for
f(X) = 65 — 18x,x,— 6xyx, + 2x,, = Tx, + 55, — 6x; — 4,

and write Taylor series for f{X) about X, o Gy
[=0r, = 2) + 27x, — 18(xy + 1)+ 2(x, — 2)x, — 6(x, — 2) (xy + 1) — 18x,(x, + 1) + 6x5)

4. Find the directional derivative of f{X) at X, of problem 3 in the direction of the vector
Y=[111]" (8]
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5.

an

~

10.

11.
12.

13.
14.

15.
16.

17.

18.

19.

sost nscent of
Find the unit vector in the direction of the stecy i

JX) =] 208Xy

~1,1). Also find the directional derivative in the same direction,
(V3 12)°Nis, i

. - stor of st td
Find a point Y in E, such that | Y = X, |= 4 and Y = X, 18 the vector of stecpest descent fo, the

at the point (1, 0,

function 1
SOX) = x] =B,y 4 Ax gy X+ A%,
at the point Xo = (1, 0, = 1, = 1). (148102, 122102, ~1~20/4102,-1 +32107]

Find the directional derivative of f(X) = 2x]x, ~ 3, at the point Xo = (1, 2, = 1) in a direction
towards the point Y = (3, = 1, 5). Find also the maximum dircctional derivative o X,
and the vector of steepest descent. [=90/7; 22, [-12-14 12y

Extrema of functions

Find the relative maxima and minima and saddle points, if any, of
J(X) =x] +x3~3x,~ 12x, + 25.
[Min 7 at (1, 2), max 43 at (= 1, —2), saddle at (- 1, 2), (1, -2)]
Show that the function f(X)=x? +x? +x? - 6x, x, + 8x,x;— 10x,x, has a saddle point at the
origin.
Show that f(X) = 7x{ +10x? +7x? - 4x,x, + 2x,x;— 4x,x, has a local minimum at the origin
“which is also a global minimum,

Find the relative extrema of (x? —2x, + 4x? - 8x,)*. [Max 25 at (1, 1)]

Find the least value of | X|,X in E,. subject to constraints x2+ 8x,x, + 7x? = 225, X3=0,

(3

Find the point on the surface z = x*+ y? nearest to the point (3, — 6, 4). [(1,-2,6)]
Find the extreme values of x, such that

2x] +3x; +x; - 120, + 4x,x, =35 = 0 [5,-9]

Give a geometrical interpretation of the solved example in section 10.

Find the volume of the largest rectangular solid inscribed in the ellipsoid
X!yt gt

z
;+%+;= 1. [8abcr3\3]

Find the extrema of x,x}x; under the constraints

. %+ +X,=6,x,>0,x,> 0,x,> 0. [108 at (1,2,3)]
Prove that the maximum and minimum distance from the origin to the curve of intersection
defined by
4,2 1
—_———— = — :
alz azz+a§ 1.C|X|+C,I,+C,x,—-0, 1n EJ

can be obtained by solving for d the equation

2.2 2.2
cia 24, cia}

ad-d -t oo
Use the method of Lagrange multipliers to find the maxima and minima of
(x;—4)* + (x,— 3)" subject 1o 36(x, — 2)* + (5=3) =9,

Verify the results through geometrical interpretation,
[Local minima at (5/2, 3) and (3/2, 3), the former being the global minimum; global maxima

at (68/35, 5.98) and (68/35, 0.02).]




20.

21.
22.

24,

26.

27.
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. ‘o 2
Use the method of Lagrange multipliers to find the maxima and minima of X3 = (x,+1)
subject to x,’+x§ sl

[Maxima at (- 1/2, +4/3, /2), minimum at (1, 0). Is there an extremum at (= 1, 0) ? ]

Convex functions

Prove that f(x) =x? x € R, is a convex function.
Prove that f(X) =||X||,X E,; is a convex function.

Prove that the linear function J(X)=CX,X € E,, is both convex and concave.
Prove that f(X) = 2x} + 2} + dx? + 2x,x, + 2xx; +4x,x, is a convex function.
Show that the sum of two convex functions is a convex function.

Prove that every positive linear combination of convex functions in K is a convex function in
K. (This is a generalization of the above problem.)

Prove that for f{X) to be convex in K,

it is necessary and sufficient that for any positive integer
mandfor X; e K,i=1,2,...,m.
FOX 40X+ + 1K) S MK + A f(K) + . + A f(X,)
where _Elk‘ =1A,20.

(Compare with theorem 8, chapter 1).
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Linear Programming

1 Introduction

The general problem of mathematical programming, described in chapter 2,
section 12, reduces to linear programming (LP) when the functions f{X), 84X),
(=1,2, .., m,all are lincar. So the problem of LP is to find a minimum (or
maximum) of a lincar function subject to linear constraints, Because of its relatiye
simplicity LP was the first area of constrained optimization which attracted the
mathematicians during World War II when problems arising in military operationg
were posed before them, Subsequently it found extensive use in problems of

cconomics, management, planning and other complex operations in diverse areas
of human study and activity.

2 LP in two-dimensional space
Since the basic features of LP can be illustrated in two-dimensional space, we

first consider an LP problem in two variables.
Let X € E,, and

F(X)=4x,+5x, (1)
Also let
xn—-2x,<2, (i)
2x,+x, <6, (ii)
x+24 <5, (iii) (2)

X +5<2, (V)
xl+x2 2 ll (V)

X, X, 20. 3
The problem is to find Xo=(x,0, X20) Which maximizes A{X) and satisfies the con-

Slrtnisu(f 2;;:“ ;:1 éls-;)llnhical approach. The non-negativity conditions (3) restrict the

imc X, to the first quadrant of the £, space (x, x, plane). Constraint (i) gives L.hc
D o sonce bounded by the straight line x,—26=2. If (i) is to be satisficd. the point
]\]'alir:gi:zlcl;r on this line or on the same side of it as the origin. Similarly (ii) is the
<%0

half-space of points lying on the line 2x; +x, = 6 or on the same side of it as the
) -

,,___-‘
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0 A\ B \\
Fig. 1

origin. So with (iii) and (iv). Constraint (v) however is the half-space of points
either on the line x, + x, = 1 or on that side of it which is opposite to the origin. The

- intersection of all constraints (2) and (3) is the convex polygon ABCDEFG (see

Fig. 1). Any point X within the polygon or on its boundary satisfies constraints (2)
and (3). An infinity of such points exist. Our problem is to find that point (or
points) X, within the polygon or on its boundary which makes AX) = 4x, + 5x, the
maximum.

Consider the parallel straight lines that correspond to different values of f{X).
The lines AX) = 8, 10, 12 cut through the polygon and AX) = 16 just goes through
the point D. The line for values of f{X) greater than 16 will not intersect the
polygon at all. Therefore the maximum value, subject to the constraints, that {X)
can have is 16, and it is attained at the point x; = 7/3, x, = 4/3, which is one of the
vertices of the polygon.

Suppose the problem were to find the minimum value of f{X) subject to the
same constraints. It can be seen that the line {X) = 4 just passes through the point
A(1, 0) and lines for smaller values of AX) do not intersect the polygon. The
solution therefore would be min AX) = 4 for X = (1, 0) which again is a vertex of
the polygon.

In both cases the point where f{X) attains its extreme value is unique and is a
vertex of the polygon.

Let us consider a slightly different case. Let f{X) be 2x; + X, and suppose the
maximum of f{X) subject to the same constraints has to be determined. The answer
in this case is AX) = 6 with any point on the side DC of the polygon giving this
value. fAX) thus attains its maximum value at the vertex C(14/5, 2/5) and also at
D(7/3, 4/3) and also at every point on CD, that is, any convex linear combination
of C and D.

The following features of the problem which are of fundamental significance
deserve notice.

(i) The set of solutions of (2) and (3) is a convex set with vertices.
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f this convex s
i i inimum) at a vericx O a0 g

i) AX)i um (maximum or min
‘(ln) ﬂ?ﬂ)} :fv %psl:;gh vcfﬁccs every convex lincar combination of the verticeg | alg,

1cre § '

i 1ere AX) is optimum,

’ p((‘:lg:n\:lnintsﬁ (2))'1rc ig the form of incqualitics. Mmhcm] alici:;llly i: ti;sn?aislcr 10 dey
with cq;:atiom and theoretical discussion would be simp c[r kcozll.-hb]n ig coulq
written as cqu:;tions. It can be done by introducing onc § aclc :1‘01: ; c T cach of
the constraints (see chapter 2, section 12)." The resulting sys Quations gp,

constraints is

—

X, = 2x, +x, R

2u+ x, X, =6,
x, + 2%, +X; =3, ()

X+ X =2,

X+ X, %=1
X1y Xy Xyy Xgy Xy Xy X7 2 0, )

Note that we introduce the slack variables in such a way that all of them, along with
the original variables, satisfy the non-negativity conditions (5).

We have replaced (2) and (3) with the equivalent conditions (4) and (5) but only
by increasing the number of variables. But any complication caused by this

increase is more than compensated by the fact that we have to deal with equations
now.

ables zero, we get unique values for the rest of the variables, thus getting a basic
solution. There are ’C, (=21) ways of choosing two variables as zero. Table 1
gives all the 21 basic solutions of (4). The significant thing about these Solutions
is that there are exactly seven solutions which are non-negative, and these, so far
as the values of x, and X, dre concemed, correspond to the seven vertices of the

TABLE 1
Vertices
No. X X Xy X, . X x, of
Polygon
30 6 14 P :
4 0 sz 7 7/2 0 o ln 3,2
5 0 2 6 4 1 0 ] E
6 0 1 4 5 3 1 0 G
7 2 0 0 2 3 4 1 B
8 3 0 -1 0 2 5 2
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9 5 0 -3 -4 0 7 4
10 -2 0 4 10 7 0 -3
11 1 0, 1 4 4 3 0 A
12 14/5 2/5 0 0 15 22/5 11/5 C
13 I 3/4 0 -7 0 19/4  -13/4
14 -6 -4 0 22 19 0 11
15 an -1 0 1173 1373 11/6 0
16 13 473 m 0 0 3 83 D
17 4p 103 2273 0 -3 0 -113
18 5 -4 -11 0 8 11 0
19 1A n 19/3 3 0 0 53 E
20 -3 4 13 8 0 -5 0
21 -1 n 1172 1172 512 0 0
3 General LP problem
We can now enunciate the general LP problem as follows,
Let Xe E, and fX) and g(X) be linear functions defined as
fX)= jgl C; Xjs
g'(x)=j§| aux_,—b,-; Cj,au,bie R;'i=1.2,...,m,j=1,2,..., n.
To find X, such that
FX) = f(X)
for all X satisfying the constraints
g‘(X)=0.i=1,2, .--,m,
and X220
It is more customary to state this LP problem, in matrix notation, as
Minimize fX)=CX, (6)
subject to AX =B, €))
X20 ®)

where C is a row vector and X and B are column vectors

C=[cc,...cl,X=xx...x]1,B=[bb,...b,),
and A is an m x-n matrix

all alz a s 8 ah
Ao @ 92 - G

Q) Qpz - .- Gy
The equivalent form of the problem in ordinary notation is

Minimize f= E.l ¢; X, : (6)
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subject 10 I}:‘ a”xlub‘,in 1,2,..0,MM (7)

20, j=1,2,...n (8)

Expression (6) is the objective function to be minimized, (7) arc the constraints,
and (8) the non-negativity conditions. Equations (8) arc also COﬂSlfamts but,
becausc of their simplicity, are treated separately from (7). The cocfficients ¢;are
usually called the cost coefficients.

The form (6), (7), (8) of an LP problem is general. If given in any other form j;
can always be converted to this form (sce chapter 2, section 12). If AX) is o be
maximized, then we may put —f{1X) = y(X) which is to be minimized. If a cop.
straint is an inequality, then it can be converted 10 an equation by introducing a
slack variable. If a variable x;is unconstrained, that is, if it may vary from —o g
+ee, then we may replace x;by two other variables x; and xj, such that x; = x;, - Xy
where x;, >0, X 20.

Example: Write the following LP in the above standard form.

Maximize f=2x+x,—x,
subject to 2x, —5x,4+3x,< 4,
Ix,+6x,— x,22,
x+ x5+ x,=4,

%, 20, x;, 20, x, unrestricted.
It has equality as well as inequality constraints, and one variable X, is unrestricted.
Replacing x, by two variables x,,, Xy, Such that x;, = x), — x,,, x,, > 0, x5 20,

putting all the constraints as equations by introducing slack variables x4 and x,, and

changing the sign of the objective function, the problem takes the following stan-
dard form.
Minimize V=(=)=-2x,-1x, + X + 2,

subject to 2x,—-Sx.z,+51r12+3x3+_1:4 = 4,

31:,+6Jr,u—6x,n—,;;3 x5 =2,

4t - xXp+ x, = 4,
X1 X915 Xy X3 X4y X5 2 )

4 Feasible solutions

DEFINITION 1. A solution of (7) and (8) is called 4
We shall denote by Sgthe set of feasible solutions. It js possible that there may
be no feasible solution. In that case S,is empty,

feasible solution.
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THEOREM 1. The set Sy.of feasible solutions, if not empty, is a closed convex set
(polytope) bounded from below and so has at least one vertex.

Proof. Sgis the intersection of the hyperplanes g,(X)=0,i=1,2, ..., m, and the

set H= (X | X 20). All these are closed convex sets and H is bounded from below.

Hence Sgis a closed convex set (polytope) bounded from below, and so it has a
vertex (sec chapter 1, section 18, theorem 21).

Altematively, we can give a more direct proof of the convexity of Sy as follows.
Let X, and X, be two feasible solutions. Then

X, 20, X,20; 9

and AX,=B, AX,=B. (10)
Let X be any convex linear combination of X, and X,. Then
X=(1-)X,+AX,,0SA<1,

20, from (9). 11)
Further AX=A[(1-M)X,+AX))
=(1-A1)AX, + AAX, =B, from (10). (12)

(11) and (12) mean that X is a feasible solution. Thus the convex linear combi-
nation of every two feasible solutions is a feasible solution. Therefore the set of
feasible

solutions is a convex set. Proved.

5 Basic solutions

Equations (7), namely
AX=B (7
are m equations in n unknowns. We shall assume that m < n and the equations are |
linearly independent (see chapter 1, section 9). Generally constraints appear as

inequalities in mathematical models and the introduction of slack variables makes
m < n. Therefore the assumption is justified.

If any of the n—m variables x;are given the values zero, the remaining system of
m equations in m unknowns may have a unique solution (section 9, chapter 1). This
solution along with the assumed zeros is a solution of (7). It is called a basic
solution. The m variables remaining in the system after n—m variables have been
put equal to zero are called the basic variables or simply the basis. The rest of the
variables may be called nonbasic. Since the unique solution of m equations in m
variables may also contain zeros, a basic solution must contain at least n—m zeros.

(The case when the number of zeros is more than n—m is called degenerate, and will
be discussed later.)

Equations (7) may be written as

Gy G G ... G| |X% b,

... b
a4 anp an O | | X2| _| D2 (13)
Qmy Gy Gpy ... G X b

or as P +x,P,+xP+...+x,P,=B (14)
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Where P, j= 1, 2, w1, is the mevector in the jth column of A,
Since P; is a vector in E,,, not more than m of the vectors PyPy..., P, can by
linearly indcpendent. Since the cquations are assumed lincarly independen,
exactly m of the vectors are lincarly independent (sec chapter 1, scction 9), Lc{
these m vectors (suffixes rcarranged, if nccessary) be
PP, Py, ..., P
That they are lincarly independent means that there do notexistay € R,j=1,2,

m, not all zero, such that
o,P, + P, +. ..+, P, =0.
On the other hand it is possible to find o, not all zero, such that
P, + o0, +. ..+, P+, P, =0

where P, ., is any of the remaining vectors of the set. Thus the vectors
Pris Posy...., P, can be separately expressed as linear combinations of P,, P,,
P,., and so (14) can be rewritten as

| »nPi+y,P,+...+y,P, =B
Suppose that the m-vector [E &2 &s. . . )’ is the solution of the above equations,
Then the n-vector [E, &,...£,00 ... 0’ is a solution of (14) or (7).

This is a basic solution of AX = B. The corresponding linearly independent
veciors Py, Py, ..., P, are a basis and the variables x,, x,, ..., x,, are the basic vari-
ables.

6 Basic feasible solutions

DEFINITION 2. A basic solution of (7) satisfying (8) is called a basic feasible
: ) solution (b.f.s.)

THEOREM 2. A basic feasible solution of the LP problem is a vertex of the convex
set of feasible solutions. Or, equivalently, if a set of vectors P, P,, ..., P, can be
Jound that are linearly independent such that

EP,+EP,+...+E P =B, (15)
and £,20,j=1,2,...,m,
then X;=[E &...E,00...0 .

which is a b.f.s. is an extreme point (or vertex) of Sg.
Proof. That the point X, belongs to Sgis obvious. Suppose it is not an extreme

point. Then two points X, and X, different from X, exist in Spsuch that
X;=7LX,+(1—7&.)X2, O<A<],
that is, §,=ijz+(1—k)xﬂ,j=1,2,...,m,
0= lle'*'(l _x)sz, j =m+ 1,...,".
X, X;€ Sk X5, X220, AlsoO<A< 1.

and

Since

Hence Xn= j2=0vf=m+1,...,n.
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Thercfore Xi= R X0 v 00 ... 00,

X1=[x|2 J”l PR xmz 0 0 oo 0]'-
Since X, X; arc solutions of AX = B,
x P +x, P+, . +x,,P. =B, (16)

X, P +x,P +. . . +x,,P, =B. a7
From (15) and (16),
G —x) P+ & —x) Pyt oo+ (€, ~=Xn) P =0.
But P, P, ..., P, are, by hypothesis, linearly independent. Therefore
Ei=x & =2, ..., <
or X=X,

which contradicts the assumption. Hence X, is an extreme point. Proved.

THEOREM 3. A vertex of Sgis a basic feasible solution.
(This is the converse of theorem 2.)

Proof. Let X, =[£,, &, ..., £.]" be a vertex of S;. Then since X; € Sy, X; 0.
Letroftheg;'s,j=1,2,..., n, be nonzero, where r < n. Since m <n, eitherr <m
orr>m. If r <m, X; is obviously a b.f.s. and so the theorem holds.
If > m, then we may put X; as
X:=[5¢& ....5,00...0.
where §; >0 forj= 1,2, ..., r. Since X is a solution of AX = B, we have
| EP,+EP,+...+EP =B, (18)
As r > m, the vectors P,, P,, ..., P, are not linearly independent.
Hence there exist scalars a,, oy, ..., o, not all zero such that
o, P +o,P+.. .+, P, =0.
Multiplying by ¢ > 0, we get

co,Pi+coPy+...+ca P, =0. (19\)

From (18) and (19), O
G +eco) P+ (E+co) Po+...+( +ca,) P, =B, (20)
and G-ca)Pi+E-co) P +...+E —co)P,=B. (1)

Choose ¢ > 0 sufficiently small to make
§xca,>0forj=1,2,...,r.
Then we conclude from (20) and (21) that
X, =, +ca, & +co, ... E+ca, 00 ... O),

and X;=E-co; &—coy ... E—co, 00 ... 0]
are feasible solutions. We have now three feasible solutions, X, X, and X, which
are related through
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1 1
ation of X, and X, which are both dlrfcrcn
‘ t

X, is a convex lincar combin ; ini
Hence X is a co ich contradicls our initia] assupm

from X;. This mcans that X, is not &V
tion.

criex wh

: : ion.
Hence r > m, which means that Xg 15 @ basic feasible solutio ProVCd,

. is a set :
COROLLARY. Associated with every extreme point of S of m lineg, ly
independent vectors Py, Py, s Pa of A

7 Optimal solutions

THEOREM 4. If Spis nonempty, the objective function fiX) has either an unboung,,
minimum or it is minimum at a vertex of S. . )

By unbounded minimum we méan that there is always an X in Sg such thy
A(X) <- N where N is as large a positive number as we please. Ir} other words f(x)
can be made as small as we please without violating the constraints.

For a clear understanding of the proof given below the reader is advised to reaq
the sections on convex sets in chapter 1, particularly sections 14-19.

Proof. Two cases arise. Either Sgis bounded or unbounded. :
Case (i). Sris bounded. Then Syhas vertices and every point in Sgis a convex linear
combination of its vertices. Let X;, X;, ..., X, be the vertices of Sg.

Since Sy is closed and bounded, f(X) is finite for all X in S, and so there is a
point X, in S, where X,) is minimum. X, can be expressed as a convex linear
combination of X,,7 =1, 2, ..., p, and so

Since fX) is linear,
fXo=f (i, a,X,) = }t;l o, f(X,)

2 é:x o, f(X,) =f(X),

where f{X,) is the least of the values f{X,), r = 1, 2, ... p. But by hypothesis
F(Xo) = f(Xa).

Therefore FXo) =f(X,)

which means that f{X) is minimum at X, which is a vertex of Sg.

Casc (ii). Sris unbounded. Since it is bounded from below (see theorem 1), Sghas
a vertex. Let X, be its vertex.

Consider the cone S¢ with vertex X, and produced by the hyperplanes inter”
secting at X, (see Fig. 2). Sris a subset of S¢. The edges of Scare also wholly of
partly edges of Sgin the following sense. If Y is a fixed point other than X, on a0
edge of Sc, then any point on the edge is X=(1-A) X,+AY,A>0. If X isin Se
for all A =0, then the edge of Scis also wholly an edge of S, (as X,A in figure)- If
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C g, AX XX
5, = AX,B
S, = ervxo

4
/ 7/
ya

Flg. 2

Xisin S forA <A, and notin S, for A > A, then, the edge of S¢is partly an edge
of S¢ (as X,B in figure), and the point X, =(1-2) X;+A.Y is the other extremity
of the edge of Sy, the first extremity being the point X,. X, is also a vertex of Sy.
Th‘llS moving along any edge of the cone Sc from the vertex X,, either we shall
armve at another vertex X, of Szor not. In the latter case Sghas an unbounded edge.

Now consider AX,). One of the two following situations can arise.

(a) For every X on any of the edges of S¢, fiX,) <f(X). In other words fX) does
not decrease as A increases where X=(1-A) X, + XY, A >0, and Y is any fixed point
on any of the edges.

If possible, let X, in Scbe a point different from X, such that AX,) is minimum
forall X in S.. We can find a hyperplane containing X, intersecting all the edges
of S¢ and thereby producing a bounded polytope S, Sc. The vertices of S, are
contained in the edges of S.. From case (i) AX) has a minimum in the bounded
polytope S, at one of the vertices of Sp. Let X, be such a vertex. Then since
Xo € Sp =S¢, flXp) <fAX,). Also £X,)< fXo), for AX,)is minimum in S,. Hence
X =AX,). But X)) < f(X,) because X, is on an edge of S¢. Also AX,)) < AX,))
because fX,) is minimum in S,. Hence AX,) = X)) = fiX,) which means AX) is
minimum at X, in S¢. Since S < S, in Sr also AX) is minimum at X,, a vertex of
SF. :

(b) Along some edge of S¢ AX) decreases as A increases. If this edge is wholly
the edge of S, then AX) decreases without limit along this edge, and so AX) has an
unbounded minimum in S;.

If the edge is partly in S, then for A =, we arrive at another vertex X, of S

with fX,;) < AX,). We can now apply the same reasoning to X, which we
have been applying to X,, namely that either f{X,) is minimum or {X) has an
unbounded minimum or there is another vertex X, of Sy such that AX,) < f(X,).
Since the number of vertices of S, is finite, proceeding like this, if AX) has not an
unbounded minimum, we shall arrive at some vertex of Sy for which AX) is mini-

mum.
Proved.

THEOREM 5. If fX) is minimum at more than one of the vertices of S, then it is
minimum at all those points which are the convex linear combinations of these

vertices.
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Proof. Let X, X,, ..., X, be the vertices of Sy where AAX) is minimypy,, They
fX)=fX)=...=f(X,).

Let Y be any convex lincar combination of these vertices. Then
A &
Y= E Brxr’ E‘ Br =1, [3'.20,
rwl re
and since fX) is lincar

so0=7 (3%, 8% )= £ Bk

&
= Z. B.f(X,) = f(X))
which means AX) is minimum at Y also. Proveq.

DEFINITION 3. A solution of (7) and (8) which optimizes the objective Junction )
is called an optimal solution of the LP problem.

8 Summary

We may summarize some of the conclusions that can be drawn from the theo-
retical discussion in sections 4-7.

If the set S, of feasible solutions is cmpty, the problem has no solution,

If Sy is nonempty, it is a convex set (polytope) with vertices corresponding to
the basic feasible solutions. These ar¢ finite in number as they are a subset of basic
solutions which arc at most "C,, in number.

The convex set S, may be bounded or unbounded. If bounded, it is a convex
polyhedron, and the problem has a solution with STX) attaining its minimum value
at a veriex.,

If S is unbounded, fAX) may have a finite minimum at a vertex. Or clse f{X)
may tend o —ee in which case the solution is unbounded.

9 Simplex method

Ithas not been possible to find an analytic solution to the LP problem, The
difficulty ariscs because the tools of analysis are not well suited to handle
incqualitics. Numercal methods which cnable us to compute the solution for
numcrical valucs of a;, b;and ¢;for finite number of variables and constraints have
been discovered. The most general and widely used of these methods is called the
simplex method. ’

The simplex method provides an algorithm! which consists in moving from one
vertex of Sy (one b.f.s.) to another in a prescribed manner such that the value of the
objective function X) at the succeeding vertex is less than at the preceding vertex.
The procedure of jumping from vertex 1o vertex js repeated. If we can reduce f{X)

1. A rule of procedure usually involving repetitive application of an operation. The word is derived
from the Arabic Al Khwarizmi (after the Arab mathematician of the same name; about 825 AD.)
which in Old French became algorismus and in Middle English algorism,
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at cach jump, then no basis can ever repeat and we can never g0 back to a vertex
alrcady covered. Since the number of vertices is finite, the process must lead to the
optimal vertex in a finite number of steps. We shall explain the procedure through
a numerical example. The general ‘proof goes along the lines indicated in the
numerical example.: The basic principles involved in the proof are alrcady dis-
cussed in the course of thcorem 4,

The first step in any casc is to find a b.f.s. For this purposc we define a
canonical form of the equations which immedlately gives us a b.f.s.

10 Canonical form of equations

Let xy, x3, ..., X be the basic variables corresponding to a certain basis of the
equations

AX=B

)]
These can then be written as
an Gn ... G,lx _b!_al.m+lxu|+1_'“_alnxn
@y Qp . Gu||l%| | g, — ... —ayx,
aml am! o= am X bm_am.n+lxm+!_"'_amnx

The m x m matrix on the left side is nonsingular because the basic vectors which

are the columns of this matrix are linearly independent. Premultiplying both sides
by its inverse, we get

X, by =@y X1 = - — AL,
X2 - b2—01m+lxu+l_"'—a2-xu
L bn—an.u+lxn|+l—"'_znuxn

or
X+ Q)i Xmr t o ALK, = b,y

X+ 8y i X g1+ e 480X, = b, @)

x-u +Em.m+lxm+l + ... +Emnxn = bm
Equations (22) which are equivalent to (7) are called the canonical form of the
equations provided b, >0, i = 1, 2, ..., m. Corresponding to each feasible basis we
can get a canonical form, and vice versa. The advantage of putting the equations in
a canonical form is that the basis and the corresponding b.f.s. can be immediately
known. Since the b.f.s. should have zero values of nonbasic variables, putting
X1 =Xpez=...=X, =0 in (22), we get the b.f:s. as (b, b;b5... b, 00...0).
Thus the right side of (22) gives the values of the basic variables.
Using (22) we can eliminate the basic variables from the objective function (6)
and get

fX)= 'g b, * DI ¢ (23)

=m+]
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n o »
'E =0 - E C‘all. J =m+1,0--’n.
1=8= 4

It may be noted that the above formula for ¢, holds cvcfn f'orhj :cl' Zim, Ite
be seen 10 give zero values for ¢, j = 10 2, o which is right because x,, ; 1)

... m, have been climinated from (6), and therefore their cocfficicnts in (5, are
zero. The advantage of this form is that the value of AX) for the present ¢ I

where

immediatcly obtained as ‘2 b,c;. The coefficients ¢, j=m+1, ..., n, are Calleg the
ie=l

relative cost coefficients.

11 Simplex method (numerical example)

We explain the ‘simple: method through the example of section 2 with the

modification that we delete constraint (V). it
Introducing slack variables and converting the problem of maximizing f(x) 1,
minimizing — AX) = y(X), we put the problem in the following standard form,

Minimize W(X) =—4x, — 5xy; (24)
subject to 4 X —26+% =2,
g U+ X, +X, =6,
x;+2x, +x; =35, 25
X+ X, +x,=2;
Xyy Xy, Xy, Xy, X, X6 2 0. (26) \

Equations (25) are four equations in six variables. Two of the variables, arbitrarily
chosen, can be given zero values to obtain a basic solution. To obtain a b.f.s. (ora
vertex of the convex set of feasible solutions) zero variables have to be so chosen
that the other variables are non-negative,

I First canonical form. Equations (25) are in canonical form which gives a b.fs
as
; x:=O-Iz=0’1’a=2,x4=6,x,=5,xs=2;

and the corresponding value of y as

y=—dx, - 5x,=0. (27
Both x, and x,, the nonbasic variables in terms of which v is expressed, are zer0:
If cither of them is made positive, y will decrease because the coefficients of x; a1
x, in (27) are negative. So  at this stage is not minimum. It can be decreased by
changing the basis so as to include x, or x, in place of some other variable which i
in the present basis. Let us decide to bring x, into the basis. It would be equally
rcasonable to (?c?ide in favour of x,. But which variable to drop (or be given zero
value) ? Examining (25) the following are the altematives (keeping x, = 0)-

i

>
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() Putxy=0;ithenx,=-1,x,=7,xy=7, x,= 3. This is not a fcasible solution.
(i) Putx,=0;thenx; =6, x, = 14, xy=-7, x;=~4. This is also not feasible.
(iii) Putxg = 0: then x, = 5/2, x,= 7, x,=17/2, x,=~1/2. This is also not feasible.
(v) Putxg=0ithenx; =2,x,=6, x,=4,x,=1. This s a feasible solution.

So the greatest value that can be given to x, without making the solution non-
feasible is 2. Putting x, =2 would mean putting x, = 0 which means x, goes out of
the basis.

Itis easy to discover a simple rule for deciding which variable to drop. Consider
the ratios 2/(=2), 6/1, 5/2, 2/1 of the right-hand side constant of each of the equa-
tions (25) to the coefficient of x, in that equation. Of the positive ones the least is
2/1 corresponding to the last equation which determines the maximum value which
can be given to x, bringing it into the basis without forcing any other variable to
become negative. This also indicates that x, should be dropped from the basis. The
negative ratio need not be considered because in the corresponding equation x, can

be made as large as we please without forcing any other variable in that equation
to become negative.

11 Second canonical form. The new basic variables should therefore be x;, x4, Xs,
x,. The canonical form for this basis can be obtained by eliminating x, from the
- first three of the equations (25) with the help of the last, and writing the equations
such that the coefficient of each basic variable in its respective equation is 1. The
required form is

—X, + 22X+ X, =6,
3x,— xs  +x4 =4,
3x, — 2x, +xs =1, (28)
=X, + X +x,=2.

From this canonical form we get the second b.f.s. as
%=6,%,=4,%=1,5=2,%=0,%=0.

Also we eliminate x, from (24) and express \ in terms of the nonbasic variables x,
and x, as
W+ 10 =-9x, + 5x¢ (29)

This gives the value of v for the present b.f.s. as —10. Notice that since y is
éxpressed in terms of the nonbasic variables which are zero, the constant term
occurring in (29) directly gives the value of y. Itisan imprcveme.nt on the first
value. Can we reduce it further? Yes, by bringing x, into the basis because the
coefficient of x, in (29) is negative. But which basic variable to dx‘qp? The‘rclcv?nt
ratios to be examined in (28) are 6/(—1), 4/3, 1/3, 2/(-1). Keeping the ncgatfve
ratios out of consideration for reasons already explained, the least ratio is 1/3 which
corresponds to the third of equations (28). So to bring x, into the basis x5 should

be dropped.
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: x X ’ x an
I Third canonical form. The ncw basic variables are Xy, X3, X3, X4 and thg Cor.

responding canonical form is

4 1
%xs +-§x6+x; 3 '
=X +Xg X =3
1
%xs *%‘xo e (30)
7
1 1 ==
Fs+3% =3
and y expressed in terms of the nonbasic variables is
Y+ 13 =3x5—% (31)

Theb.fs. isx, = 1/3,x,=7/3, x;= 19/3, x, =3, xs=0, %, = 0.
The coefficient of x4 in (31) is negative and so y can be further decreased by

bringing x, back into the basis. The ratios to be observed now are 19/4, 31,71
the fourth one being negative is out of consideration. Out of these 3/1 is the least,
So x¢ should replace x,.

IV Fourth canonical form. The new basic variables are x,, x,, x,, X, and the
corresponding canonical form is

e Wi
3x4 3 5 xj - 3’
Xy —Xs +Xx¢ =3,
1 7
314—515 +x, = §, (32)
4
314'4' 3x5 +x2 = 3 :

and y expressed in terms of the nonbasic variables X4 X iS
Y+16=x,+2x, (33)

The value of  at this stage is -16, and it cannot be further reduced by any change
of basis because the coefficients of X4 and x; are positive,

We have come to the end of our search, The minimum value of y is —16 and
so the maximum value of AX) is 16. The optimal solution is

=713, x,=4/3, X,=17/3, x,=0, Xs=0, xs=3.

It is instructive to compare results with th
The set of feasible solutions of (2) and (3) [e
OBCDEFO (see Fig. 1). f{X) becomes maxi
that the first, second, third and fourth basi

 vertices O, F, Eand D respectively,

¢ graphical solution of the problem:
XCluding (v)] is the convex polygoP
Mmum at the point D. It can be verified
¢ feasible solutions correspond 10 e
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12 Simplex tableau

The numerical work explained in the last section can be cconomically organized

in a form known as the simplex tablcau. The following is the simplex tablcau for
the preceding example.

TABLE 2
] Basis B P‘ P’ Pg P4 P’ . P‘
Xy 2 1 -2 1
X, 6 2 1 1
1 X 5 1 2 1
Xg 2 -1 1 1
0 —4‘ -5
X 6 -1 {10 2
x, 4 1 -1
2 X 1 3 1 -2
X, 2 -1 1 1
v 10 -9 5
X, 1973 1 13 473
X, 3 ' G ) L -1 1
3 X 13 1 - 13 =23
x, 73 1 ' 173 13
13 : 3 -1
%X, 13 ) 1 -4/3 53
‘ X 3 1 -1 1
4 x, mn 1 273 173
x, an3 ‘ _ 1 -13 23
v 16 1 2

. The first column shows the iteration number /. The second and the third col-
umns give the variables in the basis and their values (vector B). The succeeding
columns give the vectors P,, P,, ... of the canonical form, which means that
row-wise the entries in these columns are the coefficients of x,, x;, ... in the equa-
tions. (For this reason sometimes it is more convenient to write x,, X,, ... in place
of P,, P,, ... at the top of these columns). For example, the first numerical row in
the above table records the first equation in the first canonical form (/ = 1) which
is the equation with 1 as the coefficient of x,, -2 as the cocfficient of x,, 1 as the
coefficient of x5, and 2 as the right side constant. The equation for the objective
function  is also written as a row, putting  in the column for basic variables, its
_ value with sign changed in the next column, and the relative cost coefficients of the
nonbasic variables in the respective columns. The equation for y is read, say for

: j,‘ -I=2,as

y+ 10 =-9x, + 5x;, [compare (29)].
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onstitutcs onc flcration Icading from oncb,f,g

The following sequence of SIcps € 1)
to another. (/ = 1 is takcn as an cxampic). y :
(i) Examine the rclative cost cocfficicnts. If all arc non-ncgative, the Curren

solution is optimal.

(i) If not, pick out the numerically 1a
vector corresponding to it (Py) is to be broug
basic variable is x;,. :

(iii) Divide each element of vector B by the ?Omspond'&g lelcm‘”z“s of the
chosen column vector (P,). Out of the positive ratios choose the lcast (2/1). The
corresponding basic variable (xg) has to go out of the basis. . ,

(iv) If all the ratios are negative, it means that the \faluc of }he incoming variable
(whatever it is), can be made as large as we please without violating the feasibiliy

unbounded solution. Iteration stops,

condition. It follows that the problem has an
the table for the next iter-

(v) Replace x, by x, in the basic variables column in
so that the coefficient of x; is 1,

ation / = 2 and rewrite the equation against it _
Eliminate x, from the rest of the equations in such a way that the coefficients of the

basic variables x,, x,, xs remain 1.
(vi) Eliminate x, from the equation for y also so that it is expressed in terms of

the new nonbasic variables x,, x; only. The entry in the third column of the y

equation gives the value of -y at this stage.
(vii) Thus the table for / = 2 is complete. Go to (.

rgest negative cocfficient (- 5), Ty,
ht into the basis. The corresponding

13 Finding the first b.f.s.; artificial variables

In the example of section 11 the introduction of slack variables gave a canonical
form which immediately led 10 a b.f.s. providing a starting point for the iterative
procedure. This happened because all the constraints were of the type ‘less than’
and all the constants on the right-hand sides of the inequalities were non-negative.
But if there is a ‘greater than’ constraint with non-negative right-hand side or ‘less
than’ constraint with negative right-hand side, then a b.f.s. cannot be obtained right
away.

To overcome this difficulty we first put the constraints so that the right-hand
side constants are all non-negative. Then we introduce the necessary slack vari-
ables. To get a b.f.s. of this system we formulate an auxiliary LP problem whose
one b.f.s. can be obtained straightaway as in the last example. This auxiliary
problem has the property that its optimal solution may immediately give a b.f.s. of
the original problem. The auxiliary problem is also solved by the simplex method.
We explain the procedure through the following example.

Minimize f(X)=4x,+5x,;
subject to 2x,+x,< 6,
X +2x, <5,
n+x21,
X, +4x,22,

XX 2 0.
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Introducing the slack variables,

2+ X+ X, =6,
X, +2x, +x, =5,
X+ X —Xs =1,
X +4x —Xe =2;

xl' xl' Xy X4y Xs, Xe 20.
The solution x, = 0, x, = 0, x, = 6, x, = 5, x5 = -1, x, = -2 is not a basic feasible

solution. To get the first b.f.s. to serve as a starting point of iteration for this
problem, let us formulate the following auxiliary problem.

Minimize gX)=x,+x;
subject to 2x,+ x,+x, =6,
V x+2x, +x, =5
xn+x, 0 —x+x, =1,
x +4x, —Xe+Xy =25

X1s Xy Xay Xgs X5y Xgp X7, Xg 2 0.
We have introduced two more variables, x, and x;, called artificial variables, both
non-negative and with positive algebraic signs, one in each of the equations which
arose from ‘greater than’ constraints. Also the objective function in this new
problem is taken as the sum of the artificial variables.

The solution of this problem may be g(X) = 0 with x;=x;=0 and the values of the
other variables non-negative with at least two of them zero, because the optimal
solution should be a b.f.s. with at most four variables having nonzero values. Then
the values of the variables other than the artificial ones should constitute a b.f.s. of
the original problem which can become the starting point of iterations for that
problem.

Table 3 is the simplex tableau for this example. In phase / we solve the auxiliary
problem. Its optimal solution gives the starting b.f.s. for the original problem. At
the beginning of phase // we drop the columns for the artificial variables and the
row for the function g(X), and carry on the iterations for minimizing AX). It is
convenient to carry the equation for f{X) through phase / also, so that when we start
on phase /I the expression for AX) in terms of the nonbasic variables at that stage
is readily available.

Phase / starts with the basic variables x,, X;, X;, X5 and so g(X) should be
expressed in terms of the nonbasic variables as

gX)-3=—2x, -5, + X5+ X4
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TABLE]

»
Phase I Bosis » P, P, _J’; Py P, P,
" 1 0 0
X, 2 f ; 1 0 0
xg . aini l 0

1 1 =

: y \ 4 0 1
: —"=3 1 1
7 5 3 5 0 0
x, 112 174 . 8 "
3 s IR : 12
Y “:J 1”"
x, 172 1/4 1 TR
e 1 —1/4
T e 0 5/

1 1

5

f‘ : - 1 2
* 2 —4 1

X, 1 1 =

g 0 0 0 1 ;
End of Phase | f -5 - 3 =5 9

Phase II x 2/3 1 —43 13
x, 133 1 73 —13
x, 113 1 23 113
f —133 113 173

In general we define the auxiliary (or phase /) problem for the LP proble |

(6) —(8) as ' 

m

Minimize gX) = X x,,;
i=1
subject to Lax+x,,,=b,i=12,..m,
I=1
X 20,

where X = [x; X,,...X, Xp1y ... Xusml’s X4, being called the artificial variables.

In this problem min g(X) = 0 if and only if x,,,= 0 for all ;. Hence if we solve!
this problem by the simplex method .we get its solution as g(X) = O only if in its §
optimal b.f.s. the artificial variables are zero. The optimal values of the rest of the
variables, being non-negative, will then satisfy the constraints of the original
problem. Moreover, not more than m of these being nonzero, they will constitute |
a basic feasible solution of the original problem providing a starting point for its |
solution by the simplex method. :

If min g(X) > 0, the conclusion is that there is no feasible solution of auxiliary §
problem with the values of the artificial variables as zero, and consequently no ;
feasible solution of the original LP problem.
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As n altemative to solving the problem in two phascs, it is also possible to
solve it in onc phasce after the artificial variables have been introduced. We

describe one such method, popularly called the big M method. 1n this method the
original objective function f'is replaced by

F=f+M T x
i=1

a4+l

where x,,; arc the artificial variables and M is an arbitrary large number as com-
parcd to the cocfficients in f. This modificd objcctive function F is minimiscd
subject to the constraints of the original problem. It can be shown that if in the
optimal solution of the modificd problem all the artificial variables arc zero, then
that is also the optimal solution of the original problem. If, however, in the optimal
solution of the modified problem all the artificial variables are not zero, the con-
clusion is that the original problem is not feasible. If the modified problem is found
to have an unbounded minimum, then the original problem too, if feasible, is
unbounded.

To solve the numerical problem of this section by the big M method, we may
take the objective function as

F =4x,+ 5%+ 100 (x,+ X,).

The iterations would be the same as in table 3 except that the successive rows for
| F (instead of for for g) will be as follows:

B Pl Pz PJ P4 Ps P‘ P‘l Pl
F -300 -196 —495 100 100
F —105/2 —-289/4 100 -95/4 495/4
F -5 -1 5 95 100
F -1373 1173 173 28973 299/3

The starting form of F in terms of the nonbasic variables is
F =300-196x, —495x, + 100x, + 100x,

The complete simplex tableau can be written out by inserting the rows for F above
in place of the rows for g and fin table 3.

14 Degeneracy

The least of a set of non-negative ratios decides which variable is to be dropped
from the basis at a particular stage. It may happen that two or more ratios are equal
and the least. In that case a tie occurs as to which variable to drop. One can arbi-
trarily decide in favour of one, but then it tums out that the variables which tied
with it and continue to remain in the basis also become zero. In other words, one
or more of the basic variables too have zero value. Such a case is called degener-
ate. '

The difficulty appears in the next iteration when we find that the variable to be
brought into the basis and the variable to be dropped both are already zero. The
basis, theoretically, is changed, but the value of the objective function remains
the same. Geometrically it may be interpreted as the case of two coincident
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vertices. We change from one to the other but nulmtnmlnllyrni::: l\:,l::]wllllt:;c We werg,
Inmost eases we go ahead with our iterations and find that | tIJ . élﬂ . l:mccdum
we eventually change 1o a substantlally diffcrent basis “; : LI‘ ! l|ul|0 -," L hrovey
valuc of the objective function, and we finally get tho opt mlﬂ Ko ” L ’

1t may, however, happen that the successive itcrations only :Ihl l(: Ufi 1,‘0 lhmugh
a number of (onc or more) degencrate bascs 10 arrive back at the degencrage baglg
from which we started, This sltus

We getinto a cycle with no apparent way to get out ol it I h.is situation presenys
some difficulty, but procedures have been discovered Lo overcome it Such g gj,.
uation is very rare. It is claimed that in thousands of lincar programming moeyg
solved by the simplex method, some of them very large, there Is not a CUSC whien
degencracy has proved a hurdle. The procedure recommended to deal with guch 5

hurdle, if it occurs, is therefore of theoretical interest, and s0-we shall omiy its
discussion.

1S Simplex multiplicrs

In the simplex method it is necessary at every iteration to express the objective
function of f{X) in terms of the nonbasic variables as given in a general form by
(23). We get this equation for cach successive canonical form from the preceding
canonical form. It is possible 1o get it for any basis dircctly from the original
cquations (6) and (7). This we procced to cxplain.

Suppose (x;, %, ... %, 0,0,... 0)isab.f.s. To cxpress f{X) in terms of the
nonbasic variables x,,,,, X3, . . . , X,, We may climinate the basic variables x,, x,, .
-+ X,, from (6) with the help of (7). With this object in view let us multiply each of

the equations (7) by constants T, T, . . . 4 TG, Fespectively and add them to (6). We
get

(c, + X a“n,)x, +(c2+ % a,zn:,)xz+ +(c, +‘Zl a,,n,)x, =f+:z1 b, (34)
(=1 =] - -

Choose &y, m,, . . ., &, such that the coefficients of Xy X, .. X, vanish, that is, let

‘:):‘,l aym=—c,j=12,...,m. (35)

Then (34) reduces to
f= ,-:fﬂ e I b, (36)
where EJ=C,+‘% G, j=m+1,...,n. (37)

(35) are m cquations in m unknowns r;, and on solution give the required values of
7t;. In matrix notation we may put (35) as

A= -
where




LINEAR PROGRAMMING 75

yI =m0 ma), Co=[cy 05 .. ¢l

Hence
n o _[AIO]—lclo o _[A;l]l ’0,

of T = —CoAg. (38)
Here we have defined IT as a column vector and C, as a row vector. T, Cy/, A
are the transpose of the respective vectors and matrix. The vector IT is called the

multiplier vector and its components the simplex multipliers. To calculate IT at any
stage the inverse of A,, the matrix of basic vectors at that stage, is needed.

Having calculated r; for any basis, the value of the objective function for that
basis is given by

f==% b, 39)

because the terms in (36) involving the nonbasic variables Xms1s Xms2s « « - 3 X, QTE
zero for the simple reason that the variables themselves are zero.

The above discussion is of theoretical interest in a general case when A, is any
m X mmatrix.’ For, to get Ag' or to solve equations (35) for m,i=1,2,... m,means
essentially the same thing, and may not be easy. However, where A, arises from
constraints converted into equations through slack variables, it becomes easy to
read Ag' and IT from the tables of the original equations and equations in the
canonical form with respect to the basis under consideration.

As an example, consider the problem of section 13 and its solution obtained in
table 3. The table below shows the initial form of the problem after introducing
slack variables, and the final canonical form which gives the optimal solution. We
shall show how Ag' and the simplex multipliers for the optimal solution can be read
off from the table.

. Basis Value X x, X, X, X Xg
Xy 6 2 1 1
X, 5 1 2 1
Xg 2 51 4 -1
f -0 4 5
X 273 1 -473 173
x 13 ) 173 -13
X 133 1 3 -13
X, 1173 1 23 13
f

-13/3 113 13
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X, Xp. X3, X, being the basic variables in the optimal solution, the problem jg to

find Ag' where A, is the matrix of the coefficicnts of these variables in the initi)
form, namely,

0

1

0

i v B
S O -

2
1
Ao=|
1 4 0

Ag' operating on the initial matrix of coefficients produces the final matrix of

coefficients, that is

2110 o0 o0 [1 000 -43 1/3
41201 0 o0 (0100 173 =113
A*’1100—1 ol " [o o1 0 773 =173

14 grag =g =Y slp20+ 0“1 2/3 173

or, taking only the submatrix of the last four columns on either side,
1 0 0 O] [00 -43 1/3
AD 0 1 0 0 0 0 173 —-1/73
0 0 -1 0 1 0 713 -1/3
0 0 0 -1J L0 1 2/3 1/3

Since the inverse of a diagonal matrix with diagonal entries 1 or -1 is the matrix
itself, we get

0 0 -4/3 17131/t 0 0 0O
4_|0 0 173 -13(|0 1 0 O
Ao = 1 0 73 -1/3[|0 0 -1 0
0 1 2/3 113Jl0 0 0 -1

00 43 .—113

e 0000 s8R

Ok Ao =1y 0 -3
01 -23 —1/3

The rule for determining Aj' boils down to this. Observe the columns in the

original form which constitute a diagonal matrix with 1 or — 1 on the diagonal. The
matrix of columns corresponding to them in the final form multiplied by this
diagonal matrix gives the required inverse.
To get the simplex multipliers, by'(38)

0 0 4/3 -1/3
0 0 -173 173
1 0 =773 173
01 -23 -113
Even otherwise, we can directly observe that the row for fin the final form can only
be obtained from the initial form by multiplying the initial rows of the coefficients
by 0, 0, —11/3, —1/3 respectively and adding to the initial row for f.

momnr] = —[4500] =00 -11/3 -1/3]



17 Duality in LP problems

To every LP problem there corresponds another LP problem called its dual.
The original problem is called the primal. There exists an important theoretical
relationship between the primal and its dual which is of practical use also. Before
defining the dual, we shall restate the LP problem in a standard form different from
the form defined in equations (6), (7) and (8). This altemnative statement is also
quite general and is better suited to proving the duality theorems.

We state the general LP problem as

Minimize fX)=CX, (43)
subject to AX >B, (44)
X=>0, - 45)

where A is an m x n matrix, X is a column and C a row n-vector and B is a column
m-vector. The above problem may also be written as

Minimize fX) =El Cx), (43)

SUbjCC[ to ‘zlauszb,‘, i=1, 2,...,m, (44)
j=

x, 20, j=12,..,n. (45)

That the above form is quite general follows from the fact that constraints in other
forms can always be put in form (44). For, an inequality of the type ? a;ix; < b

can be put as ¥, (—a;x;) Z—b;, and an equation of the type gla,- ;x;=b; canbe put
J

as two inequalities X, a;x, 2 b, and —? ayx; 2 b
J
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1 S‘c L
For example, the example of section 3 can be written in the present standar lon,

as

¥ 'y - Xa,
Minimize . fe=2xy =X tiath

subject to —2x, + 5%y =S¥ = 3x, 2 -4,
3x, + 6y — 6y = X% 2 2,
X+ Xy - Xat B2 4
—x = Xyt = K24

X X Xy Xy 20.

DEFINITION 4. If the primal LP problem is in the form (43), (44), (45), then its qyg
is defined as the following LP problem.

Maximize o(Y)=BY (46)
subject to - AYSC, 47
Y 20, (48)

where Y is a column m-vector.
It may also be written as:

Maximize o(Y)= _; by (46)
SUbjCC[ o 'il auy,-SC,, j=1: 2, s 0y M3 (47)
yi20,i=1,2,...,m. (48)

The primal-dual pair of problems can be defined in other forms also (for
example, sece problem 28). The equivalence of various definitions can be easily
established. —

The above definition implies the following correspondence between the primal
in the standard form (43), (44), (45), and its dual,

Primal Dual
n n variables n constraints
m m constraints m variables
c,j=1,2,.n cost coefficients constraint constants
b,i=12,.m constraint constants cost coefficients
variables x20,j=1,2,...n 20, i=1,2,.m
3 ) - L]
constraints Izl a;x;2 b, X a;ysc
= (=l
LJ
objective function minimize ¥ cx, maximize i by,
J=1 i=1
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As an cxample, to write the dual of the example of section 3 we first put itin the
standard form (43), (44), (45), as has been done above. We then writc the dual as

Maximise G=—4y, +2y,+ 4y, —4y,,
subject to ~2y1+3y,+ y,- YaS -2,
5y,+6y,+ V= Ws-1,
=5Y1=6y,~ y3+ y, <1,
=3I Yty <1,
Y1s Y25 Y30 ¥a 20,

We can simplify the above statement of the problem by noticing that y, and y,
occur throughout as y; — y,, and 50 y; — y, can be regarded as a single variable. Let
it be denoted by a single symbol, say y,. (It does not mean that we are making the
statement y; — y; = y3. Itis convenient to call the new variable ¥3 because the other

two variables are y, and y,. We could use any other symbol). Since the original V3

and y, are both non-negative, y; — y, is unrestricted, and so the new variable Y, is
unrestricted. The problem can now be written as

Maximize =—4y+2y,+4y,
subject to —2y,+3y,+ y, <=2,
Sy, +6y,+ y,<-1,

=5y,—6y,— y,< 1,

=3y1= Y+ 3 1,

Y1, ¥, 20, y, unrestricted.

We further notice that the second and third constraints are equivalent to one
equation. Therefore we may write the above problem as

Maximize - b=-4y,+2y,+4y,,
subject to =2y, +3y,+ y,<-2,

Sy, +6y,+y;=-1,

=3y,— »+¥,< 1,
Y1 Y2 20, y, unrestricted.

This is the dual of the primal problem of section 3 which, for better comparison,
we write below. ‘

Minimize f==2—- %+ x,
subject to —2x,+5x,—3x, 24,
3x,+6x,— x,2 2,
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'tl. - ,1'1 -+ L= dv

X, Xy 20, x, unrestricted.

and dual problems is that the third
ariable in the dual is unre-
d while the second

f this property scc

The interesting point (o note in the above primal
constraint in the primal is an equation while the third v
stricted, and the second variable in the primal is unrestricic
constraint in the dual is an equation. (For gencral statement O
problems 27, 28).

If we generalize the statement of the standard LP prob
the constraints (44) may be equations and the rest inequ
get the following rule regarding constraints and variabl

lem to admit that some of

alities of > type, then we
es in the primal and the

dual.
Primal Dual
ith constraint 2 type * 320
ith constraint = type y, unrestricted
x20 ; a jth constraint S type
X unrestricted jth constraint = type



