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Preface

The Self Learning Material (SLM) Real Analysis II is prepared

based on the syllabus for M.Sc. Mathematics (CBCSS) PG

Programme of University of Calicut effective from 2019 ad-

mission onwards. The material is mainly intended for helping

the students who are studying M.Sc. Mathematics course un-

der the School of Distance of Education, University of Calicut.

The material is prepared based on the text book Real Anal-

ysis (Fourth Edition) by H.L. Royden and P. M. Fitzpatrick

(Prentice Hall of lndia (2000)).
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In Real Analysis II we present the fundamental concepts of

the Lebesgue theory of measure and integration. The Rie-

mann integral, dealt with in calculus courses, is well suited

for computations but less suited for dealing with limit pro-

cesses. In this course we will introduce the so called Lebesgue

integral, which keeps the advantages of the Riemann integral

and eliminates its drawbacks.

In Chapter 1, we discuss definitions and examples of Sigma

Algebras and Borel Sets. We see that the collection B of Borel

sets of real numbers is the smallest σ-algebra of sets of real

numbers that contains all of the open and closed sets of real

numbers (Definition 1.1.12 and Example 1.1.13). In Chapter

2, we lay the foundation of Lebesgue theory by describing the

concept of measurable set and the Lebesgue measure of such

a set. In Chapter 3, we study measurable functions. We es-

tablish that all continuous functions on a measurable domain

are measurable (Proposition 3.1.5), as are all monotone and

step functions on a closed, bounded interval. In Chapter 4,

we study Lebesgue integration.

In Chapter 5, we consider a generalization of the Vitali
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Convergence Theorem to sequences of integrable functions on

a set of infinite measure; for a pointwise convergent sequence

of integrable functions, tightness must be added to uniform

integrablity in order to justify passage of the limit under the

integral sign.

The fundamental theorems of integral and differential cal-

culus, with respect to the Riemann integral, are the workhorses

of calculus. In Chapter 6, we formulate these two theorems

for the Lebesgue integral. We answer the question: for a

function f on the closed, bounded interval [a, b], when is
b∫
a

f ′ = f(b)− f(a) ?

In Chapter 7, we discuss completeness for Lebesgue inte-

grable functions.

Throughout this course we use the following notations:

N = {0, 1, 2, . . .}, the set of natural numbers

Z = {. . . , −2, −1, 0, 1, 2, . . .}, the set of integers

Q, the set of rational numbers

R, the set of real numbers
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Chapter 1
Sigma Algebra and Borel Sets

A Borel set is an element of a Borel σ-algebra. Roughly speak-

ing, Borel sets are the sets that can be constructed from open

or closed sets by repeatedly taking countable unions and in-

tersections. This is an advantage over open sets for which

countable intersections of open sets need not be an open set.

1



2 Chapter 1. Sigma Algebra and Borel Sets

1.1 Sigma Algebra

Definition 1.1.1. Given a set X, a collection A of subsets of

X is called a σ-algebra (of subsets of X ) provided

1. the empty set, ∅, belongs to A;

2. the complement in X of a set in A also belongs to A;

3. the union of a countable collection of sets in A also

belongs to A.

Example 1.1.2. Given a set X, the collection A = {∅, X}
is a σ-algebra because of the following observations:

1. the empty set, ∅, belongs to A;

2. ∅c = X − ∅ = X, and Xc = X − X = ∅, showing that

the complement in X of the sets ∅ and X in A are X

and ∅, respectively, and also belongs to A;

3. ∅∪ ∅ = ∅, ∅∪X = X, and X ∪X = X, showing that

the unions of collection of sets in A also belong to A.
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Remark 1.1.3. [{∅, X} is the smallest σ-algebra] The

σ-algebra {∅, X} (discussed in Example 1.1.2), which has only

two members, is contained in every σ-algebra of subsets of X.

Example 1.1.4. Given a set X, the collection P(X) of all

subsets of X, called the power set of X (which is also denoted

by 2X), is a σ-algebra because of the following observations:

1. the empty set, ∅, belongs to A;

2. the complement in X of any subset of X is a subset of

X and so the complement in X of a set in P(X) also

belongs to P(X);

3. the countable unions of collection of sets in P(X) also

belong to P(X).

Remark 1.1.5. [P(X) is the largest σ-algebra] The σ-algebra

P(X) (discussed in Example 1.1.4), which is the collection of

all subsets of X, is a superset of every σ-algebra of subsets of

X.
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Remark 1.1.6. Combining remarks 1.1.3 and 1.1.5, we have

{∅, X}︸ ︷︷ ︸
smallest σ algebra of

subsets of X

⊆ A ⊆ P (X)︸ ︷︷ ︸
largest σ algebra of

subsets of X

for any σ-algebra A of subsets of X.

For any σ-algebra A, we infer from De Morgan’s Identities

that A is closed under intersections of countable collections of

sets that belong to A; moreover, since the empty-set belongs

to A, A is closed with respect to the formation of finite unions

and finite intersections of sets that belong to A.

Definition 1.1.7. [Difference of Sets, Complement of A

in B] Let A and B be two sets. The complement of A in B,

denoted by B ∼ A, is the set of all points in B that are not

in A; that is,

B ∼ A = {x | x ∈ B, x /∈ A}.



1.1 Sigma Algebra 5

Remark 1.1.8. If X is the universal set, or the reference set,

then

X ∼ A = {x | x ∈ X, x /∈ A} = Ac,

the complement of A.

We observe that a σ-algebra is closed with respect to rel-

ative complements since if A1 and A2 belong to A, so does

A1 ∼ A2. This is because of the following observation: We

know that

A1 ∼ A2 = A1 ∩ Ac2. (1.1)

Since A2 belongs to A, its complement X ∼ A2 also be-

longs to A. Now A1 and X ∼ A2 belong to A, implies their

intersection A1 ∩ [X ∼ A2] belongs to A. Hence from (1.1) it

follows that A1 ∼ A2 belongs to A.

Proposition 1.1.9. Let F be a collection of subsets of a set

X. Then the intersection A of all σ-algebras of subsets of X

that contain F is a σ-algebra that contains F . Moreover, it is

the smallest σ-algebra of subsets of X that contains F in the

sense that any σ-algebra that contains F also contains A.
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Let {An}∞n=1 be a countable collection of sets that belong

to a σ-algebra A. Since A is closed with respect to the forma-

tion of countable intersections and unions, the following two

sets belong to A :

lim sup{An}∞n=1 =
∞⋂
k=1

[
∞⋃
n=k

An

]

and

lim inf{An}∞n=1 =
∞⋃
k=1

[
∞⋂
n=k

An

]
.

Remark 1.1.10.

1. The set lim sup{An}∞n=1 is the set of points that belong

to An for countably infinitely many indices n;

2. The set lim inf{An}∞n=1 is the set of points that belong

to An except for at most finitely many indices n.

Remark 1.1.11. Although the union of any collection of

open sets is open and the intersection of any finite collec-

tion of open sets is open, as we have seen, the intersection

of a countable collection of open sets need not be open. In
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our development of Lebesgue measure and integration on the

real line, we will see that the smallest σ-algebra of sets of real

numbers that contains the open sets is a natural object of

study.

Definition 1.1.12. The collection B of Borel sets of real

numbers is the smallest σ-algebra of sets of real numbers that

contains all of the open sets of real numbers.

Example 1.1.13.

1. Every open set is a Borel set and since a σ-algebra is

closed with respect to the formation of complements,

every closed set is a Borel set.

2. As singleton sets are closed, by the above remark, every

singleton set is a Borel set.

3. Since each singleton set is closed and since every count-

able set is the countable union of singleton sets, it fol-

lows that every countable set is a Borel set.

Definition 1.1.14. A countable intersection of open sets is

called a Gδ set. A countable union of closed sets is called an

Fσ set.
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Example 1.1.15. [Gδ sets and Fσ sets are Borel sets]

Since a σ-algebra is closed with respect to the formation of

countable unions and countable intersections, each Gδ set and

each Fσ set is a Borel set.

Example 1.1.16. Both the lim inf and lim sup of a countable

collection of sets of real numbers, each of which is either open

or closed, is a Borel set.



Chapter 2
Lebesgue Measure

The Riemann integral of a bounded function over a closed,

bounded interval is defined using approximations of the func-

tion that are associated with partitions of its domain into

finite collection of subintervals. The generalization of the

Riemann integral to the Lebesgue integral will be achieved

by using approximations of the function that are associated

with decompositions of its domain into finite collections of sets

which we call Lebesgue measurable sets. Each interval (Def-

inition 2.1.1) is Lebesgue measurable (Proposition 2.3.20).

9
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The richness of the collection of Lebesgue measurable sets

provides better upper and lower approximations of a function,

and therefore of its integral, than are possible by just employ-

ing intervals. This leads to a larger class of functions that are

Lebesgue integrable over very general domains and an inte-

gral that has better properties. In this chapter we establish

the basis for the forthcoming study of Lebesgue measurable

functions and the Lebesgue integral: the basis is the concept

of measurable set and the Lebesgue measure of such a set.

2.1 Intervals

The simplest sets of real numbers are the intervals.

Definition 2.1.1. Intervals

1. We define open interval (a, b) to be the set

(a, b) = {x ∈ R : a < x < b} .
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2. The half open interval (a, b] is the set

(a, b] = {x ∈ R : a < x ≤ b} .

3. The half open interval [a, b) is the set

[a, b) = {x ∈ R : a ≤ x < b} .

Remark 2.1.2. We always take a < b, but we also consider

the infinite intervals

(a, ∞) = {x ∈ R : a < x}

and

(−∞, a ) = {x ∈ R : x < a} .

We write (−∞, ∞ ) for R, the set of all real numbers.

Closed interval [a, b] is the set

[a, b] = {x ∈ R : a ≤ x ≤ b} .

Definition 2.1.3. [Bounded and Unbounded Intervals]
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Intervals of the form

(a, b), [a, b], (a, b], and [a, b)

are bounded intervals. Intervals of the form

(a, ∞), (−∞, a ), [a, ∞), and (−∞, a ]

(−∞, ∞ ) can also be regarded as an interval. are unbounded

intervals.

2.1.1 Length of an Interval

Let I be an interval of any type given above. Then we have

the following definition:

Definition 2.1.4. The length l(I) of the interval I is defined

1. to be the difference of the endpoints of the interval I if

I is bounded, and

2. ∞ if I is unbounded.
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Example 2.1.5.

1. The length of the bounded interval (a, b) is b − a.

Lengths of the intervals [a, b], (a, b] and [a, b) are also

b − a. In particular, the length of (0, 1) is 1 and that

of [0, 1] is also 1.

2. The lengths of the unbounded intervals (a, ∞), (−∞, a ),

[a, ∞) and (−∞, a ] are the same and is ∞.

Remark 2.1.6. (We recall that the system of real numbers

R can be extended by including two elements +∞ and −∞.

This enlarged set is called the extended real number sys-

tem.) If we let S be the collection of all intervals (bounded

and unbounded), then the length is the function

l : S → R ∪ {∞}

from the collection of all intervals to the extended real number

system. That is, length is an example of a set function,

(Recall that a set function is a function that associates an

extended real number to each set in some collection of sets.)
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So far, the domain of the set function length is the collec-

tion of all intervals.

Aim of this chapter is to extend the notion of length to

more complicated sets than intervals.

As a generalization, we could define the length of an

open set to be the sum of the lengths the countable number

of open intervals of which it is composed.

Example 2.1.7. The length of the open set (0, 1)∪(3, 8) is

the sum of the lengths the of open intervals (0, 1) and (3, 8)

of which it is composed and is given by

l( (0, 1) ∪ (3, 8) ) = l((0, 1)) + l((3, 8) )

= (1− 0)︸ ︷︷ ︸
1

+ (8− 3)︸ ︷︷ ︸
5

= 6.

However, the collection of sets consisting of intervals and

open sets is still too limited for our purposes.

Aim: We construct a collection of sets called Lebesgue

measurable sets, and a set function of this collection called

Lebesgue measure which is denoted by m.
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2.1.2 Collection of Lebesgue measurable sets

is a σ-algebra

Definition 2.1.8. [Definition 1.1.1 (Page 2) revisited] A col-

lection of subsets of R is called a σ-algebra provided it con-

tains R and is closed with respect to the formation of com-

plements and countable unions.

Remark 2.1.9. By De Morgan’s Identities, a collection as in

the definition above is closed with respect to the formation

of countable intersections. That is, σ-algebra is closed with

respect to the formation of countable intersections.

Definition 2.1.10. [ Collection of disjoint sets ] A col-

lection of sets is said to be disjoint if the members of the

collection are pairwise disjoint; that is, that each pair of sets

in the collection has empty intersection.

The collection of Lebesgue measurable sets (which we

will construct in coming sections) is a σ -algebra which con-

tains all open sets and all closed sets The set function m,

called measure (or Lebesgue measure), possesses the

following three properties:
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1. (The measure of an interval is its length) Each

nonempty interval I is Lebesgue measurable and

m(I) = l(I).

2. (Measure m is translation invariant) If E is

Lebesgue measurable and y is any number, then the

translate of E by y, given by

E + y = {x+ y | x ∈ E}

is also Lebesgue measurable and

m(E + y) = m(E).

3. (Measure is countably additive over countable

disjoint unions of sets) If {Ek}∞k=1 is a countable dis-

joint collection of Lebesgue measurable sets, then

m

(
∞⋃
k=1

Ek

)
=

∞∑
k=1

m(Ek) .
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2.1.3 Construction of a set function satisfy-

ing the above three properties

It is not possible to construct a set function having the above

three properties and is defined for all sets of real numbers. In

fact, there is not even a set function defined for all sets of real

numbers that possesses the first two properties and is finitely

additive. We overcome this limitation by constructing

a set function on a very rich class of sets that does

possess the above three properties. The construction

has two stages.

Stage One: We first construct a set function called outer

measure, which we denote by m∗. It is defined for any

set of real numbers (any subset of R), and thus, in

particular, for any interval. We will see that

1. The outer measure of an interval is its length.

2. Outer measure is translation invariant.

3. However, outer measure is not finitely additive. But it

is countably subadditive in the sense that if {Ek}∞k=1 is
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any countable collection of sets, disjoint or not, then

m∗

(
∞⋃
k=1

Ek

)
≤

∞∑
k=1

m∗(Ek) .

Stage Two: The second stage in the construction is to

determine what it means for a set to be Lebesgue measur-

able and show that the collection of Lebesgue measurable

sets is a σ -algebra containing the open and closed sets. We

then restrict the set function m∗ to the collection of Lebesgue

measurable sets, denote it by m, and prove m is countably

additive. We call m, the Lebesgue measure.

2.2 Lebesgue Outer Measure

We have seen that the length l(I) of the interval I is (Defi-

nition 2.2) defined

1. to be the difference of the endpoints of the interval I if

I is bounded, and

2. ∞ if I is unbounded.
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Definition 2.2.1. [Outer measure] For a set A of real

numbers, consider the countable collections {Ik}∞k=1 of nonempty

open, bounded intervals that cover A, that is, collection for

which A ⊆
⋃∞
k=1 Ik. For each such collection, consider the

sum of the lengths of the intervals in the collection. Since the

lengths of nonempty intervals are positive numbers, this sum

is uniquely defined independently of the order of the terms.

We define the outer measure of A, denoted by m∗(A), to

be infimum of all such sums, that is,

m∗(A ) = inf

{
∞∑
k=1

l(Ik)

∣∣∣∣∣A ⊆
∞⋃
k=1

Ik

}
. (2.1)

Remark 2.2.2.

1. For any set A of real numbers, m∗(A ) ≥ 0, because

by the Definition 2.2.1 (Equation (2.1)) m∗(A ) is the

infimum of a set of positive real numbers.

2. For the empty set ∅, m∗(∅) = 0.

3. Since any cover of a set B is also a cover of any subset
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of B, outer measure is monotone in the sense that

if A ⊂ B, thenm∗(A) ≤ m∗(B).

Example 2.2.3. Each set consisting of a single point has

outer measure 0 (Ref. Exercise 2.8.1 in Page 106)

Example 2.2.4. A countable set has outer measure 0 (Ref.

Exercise 2.8.2.)

Proposition 2.2.5. The outer measure of an interval is its

length.

Proof. CASE 1: We begin with the case of a closed, bounded

interval, say, [a, b].

Claim:

m∗[a, b] = b− a. (2.2)

i.e., we claim that

m∗[a, b] = l ( [a, b] ).

Subclaim 1: m∗[a, b] ≤ b − a. To prove this subclaim, let

ε > 0. Since the open interval (a − ε, b + ε) contains [a, b]
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(Fig.2.1),

m∗[a, b] ≤ l(a− ε, b+ ε) = b− a+ 2ε. (2.3)

Figure 2.1: The open interval (a− ε, b+ ε) contains [a, b] and
l(a− ε, b+ ε) = (b+ ε)− (a− ε) = b− a+ 2ε.

[[ Details: By the definition of outer measure,

m∗([a, b]) = inf

{
∞∑
k=1

l(Ik)|A ⊆
∞⋃
k=1

Ik

}
(2.4)

where infimum is taken over all countable coverings {Ik}∞k=1

of [a, b] (where Ik’s are nonempty open, bounded intervals).

In the above, we have seen that the open interval (a−ε, b+ε)
contains [a, b], so that the collection { (a− ε, b+ ε) } (con-

taining the single element, which is the open interval (a −
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ε, b+ ε)) covers C. Hence, from (2.4), we have

m∗([a, b]) = inf

{
∞∑
k=1

l(Ik)|A ⊆
∞⋃
k=1

Ik

}
≤ l(a− ε, b+ ε)︸ ︷︷ ︸

b+ε−(a−ε)=b−a+2ε

]]

Since ε > 0 is arbitrary, (2.3) shows that

m∗[a, b] ≤ b− a. (2.5)

Subclaim 2:

m∗[a, b] ≥ b− a. (2.6)

This is equivalent to showing that if {Ik}∞k=1 is any countable

collection of open, bounded intervals covering [a, b], then

∞∑
k=1

l(Ik) ≥ b− a. (2.7)

[[ Why (2.6) and (2.8) are equivalent? If we show that

∞∑
k=1

l(Ik) ≥ b− a

for any countable collection {Ik}∞k=1of open intervals covering
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[a, b], then

inf

{
∞∑
k=1

l(Ik) | A ⊆
∞⋃
k=1

Ik

}
≥ b− a

where infimum is taken over all countable coverings {Ik}∞k=1

of [a, b] (where Ik’s are nonempty open, bounded intervals).

Then

m∗([a, b]) = inf

{
∞∑
k=1

l(Ik)|A ⊆
∞⋃
k=1

Ik

}
≥ b− a

proving the subclaim 2. ]]

Now to show that if {Ik}∞k=1 is any countable collection of

open, bounded intervals covering [a, b], then

∞∑
k=1

l(Ik) ≥ b− a, (2.8)

we use the Heine-Borel Theorem, which gives that the closed

bounded interval [a, b] is compact and hence, any collection of

open intervals covering [a, b] contains a finite subcollection

that also covers [a, b]. So for the given collection {Ik}∞k=1 of
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open intervals covering [a, b] has a finite subcollection, say,

{ Ik }nk=1 that covers [a, b]. We will show that

n∑
k=1

l(Ik) ≥ b− a (2.9)

and therefore

∞∑
k=1

l(Ik) ≥
n∑
k=1

l(Ik) ≥ b− a. (2.10)

Since the finite collection { Ik }nk=1 covers [a, b] (i.e., that [a, b] ⊆⋃n
k=1 Ik) and since a ∈ [a, b], we have a ∈

⋃n
k=1 Ik and so

there must be one of the Ik’s that contains a. Select such

an interval IP from the collection { Ik }nk=1 and denote it by

IP = (a1, b1).

Case 1: If b1 ≥ b , then

l( IP ) = l(a1, b1) = b1 − a1 > b− a.
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Figure 2.2: By the choice of the interval (a1, b1), a ∈ (a1, b1).

If also b1 ≥ b, then we have the situation as in the figure.

Hence
n∑
k=1

l(Ik) ≥ l( IP ) > b− a.

Case 2: Consider the case b1 < b. Then b1 ∈ [a, b) (i.e., b1

is an element in the left closed right open interval [a, b)) and

since b1 /∈ (a1, b1), there must be an interval in the collection

{Ik}nk=1, which we label IQ = (a2, b2), distinct from (a1, b1),

for which b1 ∈ (a2, b2); that is a2 < b1 < b2.

Case 2a: If b2 ≥ b , then (Fig. 2.3)
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Figure 2.3: By the choice of the interval (a1, b1), a ∈ (a1, b1).
If b1 < b, then we choose (a2, b2) such that b1 ∈ (a2, b2).
Figure consider the Case 2a where b2 ≥ b.

l( IP ) + l( IQ ) = l(a1, b1) + l(a2, b2)

= (b1 − a1) + (b2 − a2)

= b2 − (a2 − b1)− a1

= b2 − a1︸ ︷︷ ︸− (a2 − b1)︸ ︷︷ ︸
>0

> b2 − a1

> b− a.

Hence
n∑
k=1

l(Ik) ≥ l( IP ) + l( IQ ) > b− a.

We continue this selection process until it terminates, as it

must since there only n intervals in the collection {Ik}nk=1.

Thus, we obtain a subcollection {(ak, bk)}Nk=1 of {Ik}nk=1 for
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which the following three conditions are satisfied:

1. a1 < a

2. ak+1 < bk for 1 ≤ k ≤ N − 1, and

3. bN > b.

(Third condition holds since the selection process terminated.

Since {Ik}nk=1 is a finite collection, our process must terminate

with some interval (aN , bN). But it terminates only if b ∈
(aN , bN); that is if aN < b < bN). Thus,

n∑
k=1

l(Ik) ≥
N∑
k=1

l(ak − bk)

= (bN − aN) + (bN−1 − aN−1) + · · · + (b1 − a1)

= bN − (ak − bk−1)︸ ︷︷ ︸
>0

− (ak−1 − bk−2)︸ ︷︷ ︸
>0

− · · · − (a2 − b1)︸ ︷︷ ︸
>0

−a1

= bN − a1 − (ak − bk−1)︸ ︷︷ ︸
>0

− (ak−1 − bk−2)︸ ︷︷ ︸
>0

− · · · − (a2 − b1)︸ ︷︷ ︸
>0
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> bN − a1

> b− a.

Thus the inequality (2.9) holds. Hence m∗[a, b] ≥ b−a, prov-

ing the subclaim 2 given by the inequality (2.6). Now from

(2.5) and (2.6) it follows that

m∗[a, b] = b− a.

This proves the claim (2.2).

CASE 2: If I is any bounded interval (need not be a closed

interval), then given ε > 0, there are two closed, bounded

intervals (Fig. (2.4)) J1 and J2 such that

J1 ⊆ I ⊆ J2

while

l(I)− ε < l(J1) and l(J2) < l(I) + ε. (2.11)



2.2 Lebesgue Outer Measure 29

Figure 2.4: We choose J1 and J2 such that J1 ⊆ I ⊆ J2 and
l(I)− ε < l(J1) and l(J2) < l(I) + ε.

By CASE 1, for closed, bounded intervals J1 and J2,

m∗( J1) = l ( J1 ) and m∗( J2) = l ( J2 ). (2.12)

Also, by the montonicity of outer measure,

J1 ⊆ I ⊆ J2 ⇒ m∗( J1) ≤ m∗(I) ≤ m∗( J2). (2.13)

Hence using (2.12),

l ( J1 )︸ ︷︷ ︸
m∗( J1)

≤ m∗(I) ≤ l ( J2 )︸ ︷︷ ︸
m∗( J2)
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and using (2.11),

l(I)− ε < l ( J1 ) ≤ m∗(I) ≤ l ( J2 ) < l(I) + ε

As the choice of ε > 0 is arbitrary, it follows that for any

ε > 0,

l(I)− ε < m∗(I) < l(I) + ε

and hence

l(I) = m∗(I).

Remark: Case 1 and Case 2 together shows that for any

bounded interval I,

l(I) = m∗(I).

CASE 3: If I is an unbounded interval, then for each

natural number n, there is an interval J ⊂ I with l (J) =

n (Fig. (2.5)).

By the monotonicity of outer measure, J ⊂ I implies

m∗(I) ≥ m∗(J).

Since J is a bounded interval, by the Remark just above,
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Figure 2.5: If I is an unbounded interval, then for each natural
number n it is possible to find an interval of length n which is a
subset of I. In the figure, two such intervals (of lengths 4 and 6)
are shown.

m∗(J) = l(J). Also, by the choice of J, l(J) = n. Thus,

m∗(I) ≥ m∗(J) = l(J) = n .

That is,

m∗(I) ≥ n .

The above holds for each natural number n. Therefore

m∗(I) = ∞ . (2.14)
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Being the length of an unbounded interval (by Definition )

l(I) = ∞ .

This together with (2.14) gives

m∗(I) = ∞ = l(I) .

Considering all cases we have outer measure of an interval is

its length. This completes the proof.

Definition 2.2.6. For any set A and number y, A+ y is the

set given by

A+ y = {a+ y : a ∈ A} .

Example 2.2.7. If A = [1, 5], then A+3 = {a+ 3 : a ∈ A} =

[4, 8] (Fig. ( 2.6)).
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Figure 2.6: A = [1, 5] and A+ 3 = [4, 8].

Example 2.2.8. If A = [−3, 1], then

A+ (−3) = {a+ (−3) : a ∈ A} = [−6, −2] (Fig.( 2.7)).

Figure 2.7: A = [−3, 1] and A+ (−3) = [−6, −2].
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Example 2.2.9. If A = (−2, ∞), (Fig. ( 2.8)) then

A+ (−6) = {a+ (−6) : a ∈ A} = (−8, ∞).

Figure 2.8: A = [1, 5] and A+ 3 = [4, 8].

Proposition 2.2.10. Outer measure is translation invariant,

that is, for any set A and number y,

m∗(A+ y) = m∗(A).

Proof. Observe that if {Ik}∞k=1 is any countable collection of

sets, then

{Ik}∞k=1 coversA if and only if {Ik + y}∞k=1 coversA+ y.
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Figure 2.9: A = (−8, −1) and A + 2 = (−6, 1) are open
intervals.

[[Details: We know that

A+ y = {a+ y : a ∈ A} .

{Ik}∞k=1covers A if and only if A ⊆
⋃∞
k=1 Ik if and only if

A + y ⊆
⋃∞
k=1(Ik + y) where Ik + y = {z + y : z ∈ Ik} for

k = 1, 2, . . . if and only if {Ik+y}∞k=1 covers A+y .]] Moreover,

if each Ik is an open interval, then each Ik + y is an open

interval of the same length (An example is shown in Fig. 2.9)

and so
∞∑
k=1

l(Ik) =
∞∑
k=1

l(Ik + y).

The conclusion follows from these two observations.

Proposition 2.2.11. Outer measure is countably subadditive.
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That is, if {Ek}∞k=1 is any countable collection of sets, disjoint

or not, then

m∗

(
∞⋃
k=1

Ek

)
≤

∞∑
k=1

m∗(Ek). (2.15)

Proof. Case 1: If one of the sets Ek’ s has infinite outer

measure, say m∗(Ep) = ∞, the inequality (2.15) holds triv-

ially. [[Reason: m∗(Ep) = ∞ implies
∑∞

k=1m
∗(Ek) = ∞, so

that the right hand side of (2.15) is ∞; also we know that

always m∗ (
⋃∞
k=1Ek) ≤ ∞. Thus (2.15) holds.]]

Case 2: Suppose m∗(Ek) is finite for all k (i.e., we assume

that each of the Ek’s has finite outer measure). Let ε > 0.

For each natural number k, there is a countable collection

{Ik, i}∞i=1 of open, bounded intervals for which

Ek ⊆
∞⋃
i=1

Ik, i and
∞∑
k=1

l(Ik, i) ≤ m∗(Ek) +
ε

2k
. (2.16)

[Reason: Fix a natural number k. By the definition of



2.2 Lebesgue Outer Measure 37

outer measure,

m∗(Ek) = inf

{
∞∑
k=1

l(Jk)|Ek ⊆
∞⋃
k=1

Jk

}

where infimum is taken by considering all countable collec-

tions {Jk}∞k=1 of nonempty open, bounded intervals that cover

Ek, that is, we consider all collections {Jk}∞k=1 for which Ek ⊆⋃∞
k=1 Jk. Then m∗(Ek) + ε

2k
is not the infimum of the set{

∞∑
k=1

l(Jk)|Ek ⊆
∞⋃
k=1

Jk

}

and hence there is a countable collection {Ik, i}∞i=1 of nonempty

open, bounded intervals for which Ek ⊆
⋃∞
i=1 Ik, i,

∑∞
k=1 l(Ik, i) ∈

{
∑∞

k=1 l(Jk)|Ek ⊆
⋃∞
k=1 Jk} and

∑∞
k=1 l(Ik, i) ≤ m∗(Ek) + ε

2k
.

] Now we vary k over the set of natural numbers and obtain

the collection

{Ik, i}1≤ k, i <∞ = {I1, i}∞i=1 ∪ {I2, i}
∞
i=1 ∪ {I3, i}

∞
i=1 ∪ · · · .



38 Chapter 2. Lebesgue Measure

Being the countable union of countable collections,

{Ik, i}1≤ k, i <∞

is a countable collection. For each natural number k, Ek is

covered by {Ik, i}∞i=1. Hence {Ik, i}1≤ k, i <∞ is a countable col-

lection of open, bounded intervals that covers
⋃∞
k=1Ek. That

is,
∞⋃
k=1

Ek ⊆
⋃

1≤ k, i<∞

Ik, i.

Thus, by the definition of outer measure,
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m∗

(
∞⋃
k=1

Ek

)
≤

∑
1≤ k, i<∞

l(Ik, i)

=
∞∑
k=1

[
∞∑
i=1

l(Ik, i)

]

<
∞∑
k=1

[
m∗(Ek) +

ε

2k

]
, using (2.16)

=
∞∑
k=1

m∗(Ek) + ε
∞∑
k=1

1

2k︸ ︷︷ ︸
= 1

=

[
∞∑
k=1

m∗(Ek)

]
+ ε

In the above
∞∑
k=1

1

2k
= 1

being the geometric series with initial term a = 1
2

and common

ratio r = 1
2
; we have

∑∞
k=1

1
2k

= a
1−r =

1
2

1− 1
2

= 1.
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Since ε is an arbitrary positive number, we have

m∗

(
∞⋃
k=1

Ek

)
<

[
∞∑
k=1

m∗(Ek)

]
+ ε

holds for every ε > 0. Hence

m∗

(
∞⋃
k=1

Ek

)
≤

∞∑
k=1

m∗(Ek).

Thus 2.15 is obtained and the proof is complete.

The following result follows from Proposition 2.2.11 (Ex-

ample 2.2.3 revisited) and its proof is given in Exercise 2.8.3.

Corollary 2.2.12. A countable set has outer measure zero.

Example 2.2.13. The set [0, 1] is not countable.

Solution. If [0, 1] is countable, then by Corollary (2.2.12), its

measure must be 0, which is a contradiction to the fact that

the outer measure of the interval [0, 1] is its length given by

1− 0 = 1. Hence [0, 1] is not countable.

Corollary 2.2.14. Outer measure is finite subadditive. That

is, if {Ek}nk=1 is any finite collection of sets, disjoint or not,
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then

m∗

(
n⋃
k=1

Ek

)
≤

n∑
k=1

m∗(Ek). (2.17)

Proof. The result is obtained by taking Ek = ∅ for k > n in

Proposition 2.2.11.

2.3 The σ-Algebra of Lebesgue Mea-

surable Sets

In the previous section we have seen that outer measure has

four virtues:

1. it is defined for all sets of real numbers,

2. the outer measure of an interval is its length,

3. outer measure is countably subadditive, and

4. outer measure is translation invariant.

But outer measure fails to be countably additive. In fact, it

is not even finitely additive because there are disjoint sets A
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and B for which

m∗(A ∪B) < m∗(A) +m∗(B) . (2.18)

To solve this fundamental defect and make things better, we

identify a σ-algebra of sets, called the Lebesgue measurable

sets, which contains all intervals and open sets and has the

property that the restriction of the set function outer measure

to the collection of Lebesgue measurable sets is countably

additive.

There are a number of

ways to define what it means

for a set to be measurable.

We follow an approach due

to the Greek mathematician

Constantine Caratheodory.

Constantine Caratheodory

(1873-1950)

Greek Mathematician
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Definition 2.3.1. A set E is said to be measurable if for

each set A, we have

m∗(A) = m∗(A ∩ E) +m∗(A ∩ EC). (2.19)

Remark 2.3.2. 1. One advantage possessed by measur-

able sets is that the strict inequality (2.18)

m∗(A ∪B) < m∗(A) +m∗(B)

cannot occur if one of the sets is measurable. To

exhibit this, suppose A is measurable and B is any set

disjoint from A. Then, since A is measurable, by the

definition of measurability given above, for any set Q,

m∗(Q) = m∗(Q ∩ A) +m∗(Q ∩ AC) .

In particular, taking Q = A ∪B, we have

m∗(A∪B) = m∗([A∪B]∩A)+m∗([A∪B]∩AC) (2.20)

By assumption B is disjoint from A, and hence (Fig.
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(2.10))

[A ∪B] ∩ A = [A ∩ A]︸ ︷︷ ︸
A

∪ [B ∩ A]︸ ︷︷ ︸
∅

= A

and

[A ∪B] ∩ AC = [A ∩ AC ]︸ ︷︷ ︸
∅

∪ [B ∩ AC ]︸ ︷︷ ︸
B

= B.

Figure 2.10: If A ∩ B = ∅, then [A ∪ B] ∩ A = A and [A ∪
B] ∩ AC = B.

Thus, from (2.20), we obtain

m∗(A ∪B) = m∗(A) +m∗(B).
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Figure 2.11:

A∩
E 6= ∅.

Figure 2.12:

A∩
E = ∅.

2. Since A = [A ∩ E] ∪ [A ∩ EC ]︸ ︷︷ ︸
A∩(E∪EC) =A

(two cases are shown in

Fig.2.11 and Fig.2.12) and since outer measure m∗ is

finitely subadditive (Corollary 2.2.14), we always have

m∗(A) = m∗ ([A ∩ E] ∪ [A ∩ EC ]
)

≤
↑

asm∗ is finitely

subadditive

m∗(A ∩ E) +m∗(A ∩ EC)

Hence we see that E is measurable if (and only if) for
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each A we have

m∗(A) ≥ m∗(A ∩ E) +m∗(A ∩ EC). (2.21)

This last inequality trivially holds if m∗(A) = ∞ . Thus

it suffices to establish (2.21) for sets A that have finite

outer measure.

Remark 2.3.3. [Method of verifying measurability of

a set] In view of the observation in Part 2 of the Remark

2.3.2 above, to show the measurability of a set E we proceed as

follows:

1. if m∗(A) = ∞, then there is nothing to prove.

2. if A that has finite outer measure, then it suffices to

establish

m∗(A) ≥ m∗(A ∩ E) +m∗(A ∩ EC). (2.22)

Proposition 2.3.4. A set is measurable if and only if its

complement is measurable.
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Proof. By the Definition 2.3.1 of measurability, E is mea-

surable if and only if for any set A,

m∗(A) = m∗(A ∩ E) +m∗(A ∩ EC)

By reordering the summands, we obtain

m∗(A) = m∗(A ∩ EC) +m∗(A ∩ E). (2.23)

Since (EC)C = E, (2.23) can be rewritten as, for any set A,

m∗(A) = m∗(A ∩ EC) +m∗(A ∩ (EC)C). (2.24)

(i.e., the definition of measurability is symmetric in E and

EC)

By Definition 2.3.1 of measurability, the last equality (which

is true for any set A ) shows that EC is measurable.

Proposition 2.3.5. The empty set ∅ is measurable.

Proof. The empty set ∅ is measurable, since for each set A
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we have

m∗(A ∩ ∅︸ ︷︷ ︸
Φ

) +m∗(A ∩ ∅C︸ ︷︷ ︸
A

) = m∗(∅)︸ ︷︷ ︸
0

+m∗(A) = m∗(A).

Proposition 2.3.6. The set R of real numbers is measurable.

Proof. The set R of real numbers is measurable, since for each

set A we have

m∗(A ∩ R︸ ︷︷ ︸
A

) +m∗(A ∩ RC︸ ︷︷ ︸
A∩∅=∅

) = m∗(A) +m∗(∅)︸ ︷︷ ︸
0

= m∗(A).

Theorem 2.3.7. If m∗(E ) = 0, then E is measurable. i.e.,

if E is a set of outer measure zero, then E is measurable.

Proof. Let the set E have outer measure zero. i.e., suppose

m∗(E ) = 0. By Remark 2.3.3 (See inequality (2.22)), to

show that E is measurable, it is enough to show that for any

set A,

m∗(A) ≥ m∗(A ∩ E) +m∗(A ∩ EC). (2.25)
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For this, let A be any set. Then

A ∩ E ⊆ E,

and so, by the monotonicity of outer measure,

m∗ (A ∩ E) ≤ m∗(E ) = 0.

Hence

m∗ (A ∩ E) = 0.

Also

A ∩ EC ⊆ A,

and so by the monotonicity of outer measure,

m∗(A ∩ EC) ≤ m∗(A ).
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Thus,

m∗(A ) ≥ m∗(A ∩ EC)

= 0︸ ︷︷ ︸
m∗(A∩E)

+m∗(A ∩ EC)

= m∗(A ∩ E) +m∗(A ∩ EC).

Hence (2.25) holds for any set A. This shows that E is

measurable and proof is complete.

Corollary 2.3.8. Any countable set is measurable.

Proof. By Example 2.2.4, outer measure of any countable set

is zero. By Theorem 2.3.7, if E is a set of outer measure zero,

then E is measurable. Hence any countable set is measurable.

Proposition 2.3.9. If E1 and E2 are measurable, so is E1 ∪
E2.

Proof. By the Remark 2.3.3 (See inequality (2.22)), to show

that E1 ∪ E2 is measurable, it is enough to show that for any
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set A,

m∗(A) ≥ m∗(A ∩ (E1 ∪ E2)) +m∗(A ∩ (E1 ∪ E2)
C) . (2.26)

To show this, let A be any set. Since E1 is measurable, we

have

m∗(A ) = m∗(A ∩ E1) +m∗(A ∩ EC
1 ). (2.27)

Since E2 is measurable, considering the set A ∩ EC
1 ,

m∗(A∩EC
1 ) = m∗([A∩EC

1 ]∩E2)+m
∗([A∩EC

1 ]∩EC
2 ). (2.28)

Hence (2.27) becomes

m∗(A ) = m∗(A∩E1)+m
∗([A ∩ EC

1 ] ∩ E2) +m∗([A ∩ EC
1 ] ∩ EC

2 )︸ ︷︷ ︸
m∗(A∩EC1 )

.

(2.29)

Also we use the following two set identities:

[A ∩ EC
1 ] ∩ EC

2 = A ∩ [EC
1 ∩ EC

2 ]︸ ︷︷ ︸
[E1∪E2]C

= A ∩ [E1 ∪ E2]
C
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and

[A ∩ E1] ∪ [A ∩ EC
1 ∩ E2] = A ∩ [E1 ∪ (EC

1 ∩ E2)︸ ︷︷ ︸
E1∪E2

]

= A ∩ (E1 ∪ E2)

Hence

m∗ (A ∩ (E1 ∪ E2)) = m∗

[A ∩ E1]︸ ︷︷ ︸∪ [A ∩ EC
1 ∩ E2]︸ ︷︷ ︸


≤ m∗ ([A ∩ E1]) +m∗ ([A ∩ EC

1 ∩ E2

)
],

where the last inequality follows by the finite subadditivity of

outer measure (Corollary 2.2.14).
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Hence (2.29) gives

m∗(A ) = m∗(A ∩ E1) +m∗([A ∩ EC
1 ] ∩ E2)

+ m∗([A ∩ EC
1 ] ∩ EC

2 )︸ ︷︷ ︸
m∗(A∩ [E1∪E2]C)

, using (2.28)

= m∗(A ∩ E1) +m∗([A ∩ EC
1 ] ∩ E2)︸ ︷︷ ︸

≥m∗(A∩(E1∪E2))

+ m∗(A ∩ [E1 ∪ E2]
C)

≥ m∗ (A ∩ (E1 ∪ E2)) +m∗(A ∩ [E1 ∪ E2]
C).

This inequality is true for any set A. Hence (2.26) is

proved. Thus, E1 ∪ E2 is measurable.

Proposition 2.3.10. The union of a finite collection of mea-

surable sets is measurable.

Proof. By Proposition 2.3.9, if E1 and E2 are measurable, so

is E1 ∪ E2.

Now let {Ek}nk=1 be any finite collection of measurable sets.

We prove the measurability of the union
⋃n
k=1Ek, for general

n, by induction.
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Step 1. The result is trivially true for n = 1. (i.e., if consider

a set {E} consisting of a singleton measurable set E, then its

union is E itself, which is measurable.)

Step 2. As induction argument, assume the result is true

for n− 1. That is, we assume that for any collection of n−
1 measurable sets, its union is measurable. Now we show

that the union
⋃n
k=1Ek (the union of n measurable sets) is

measurable. We note that

n⋃
k=1

Ek =

[
n−1⋃
k=1

Ek

]
∪ En. (2.30)

By the induction argument, being the union of n− 1 measur-

able sets,
⋃n−1
k=1 Ek is measurable. By the assumption, En also

is a measurable set. Hence, by Proposition 2.3.9, the union

of the two measurable sets
⋃n−1
k=1 Ek and En is also measur-

able. That is,
[⋃n−1

k=1 Ek
]
∪En is measurable. Hence by (2.30),⋃n

k=1Ek is measurable.

Proposition 2.3.11. Let A be any set, and {E1, . . . , En}
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be a disjoint collection of measurable sets. Then

m∗

(
A ∩

[
n⋃
k=1

Ek

])
=

n∑
k=1

m∗(A ∩ Ek).

Proof. We prove the Proposition by induction on n.

Step 1. The result is clearly true for n = 1, because

m∗

(
A ∩

[
1⋃

k=1

Ek

])
= m∗(A ∩ Ek) =

1∑
k=1

m∗(A ∩ E1).

Step 2. As induction argument, we assume the result is

true for n − 1. Since the Ek, k = 1, 2, . . . , n are disjoint

sets, we have (a special case is shown in Figure 6.8)

[
n⋃
k=1

Ek

]
∩ En = En

and [
n⋃
k=1

Ek

]
∩ EC

n =
n−1⋃
k=1

Ek

and hence



56 Chapter 2. Lebesgue Measure

Figure 2.13: If E1, E2, and E3 are disjoint sets, then[⋃3
k=1Ek

]
∩ E3 = E3 and

[⋃3
k=1Ek

]
∩ EC

3 =
⋃2
k=1Ek.

A ∩

[
n⋃
k=1

Ek

]
∩ En = A ∩ En (2.31)

and

A ∩

[
n⋃
k=1

Ek

]
∩ EC

n = A ∩

[
n−1⋃
k=1

Ek

]
. (2.32)
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Now by the measurability of En (using the Definition 2.3.1

of measurability of a set), for the set A ∩ [
⋃n
i=1Ei],

m∗

(
A ∩

[
n⋃
k=1

Ei

])
= m∗

(
A ∩

[
n⋃
k=1

Ek

]
∩ En

)

+m∗

(
A ∩

[
n⋃
k=1

Ek

]
∩ EC

n

)

Using (2.31) and (2.32), the above equation becomes

m∗

(
A ∩

[
n⋃
k=1

Ei

])
= m∗ (A ∩ En) +m∗

(
A ∩

[
n−1⋃
k=1

Ei

])
.

(2.33)

By the induction assumption, the result in the statement of

the Proposition is true for n – 1 sets, and hence

m∗

(
A ∩

[
n−1⋃
k=1

Ei

])
=

n−1∑
k=1

m∗ (A ∩ Ek) .



58 Chapter 2. Lebesgue Measure

Thus, (2.33) gives

m∗

(
A ∩

[
n⋃
k=1

Ei

])
= m∗ (A ∩ En) +

n−1∑
k=1

m∗ (A ∩ Ek)

=
n∑
k=1

m∗ (A ∩ Ek) .

This completes the proof.

Corollary 2.3.12. Let {E1, . . . , En} be a disjoint collection

of measurable sets. Then

m∗

(
n⋃
k=1

Ek

)
=

n∑
k=1

m∗(Ek).

Proof. By taking A = R in the statement of Proposition

2.3.11, we obtain

m∗

(
R ∩

[
n⋃
k=1

Ek

])
=

n∑
k=1

m∗(R ∩ Ek).

Since

R ∩

[
n⋃
k=1

Ek

]
=

n⋃
k=1

Ek
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and

R ∩ Ek = Ek, for k = 1, . . . , n,

we conclude that

m∗

(
n⋃
k=1

Ek

)
=

n∑
k=1

m∗(Ek).

Definition 2.3.13. A collection of subsets of R is called an

algebra provided it contains R and is closed with respect

to the formation of complements and finite unions; by De

Morgan’s Identities, such a collection is closed with respect to

the formation of finite intersections.

Remark 2.3.14. [collection of measurable sets is an alge-

bra] We infer from Proposition 2.3.10, together with the mea-

surability of the complement of a measurable set (Proposition

2.3.4), that the collection of measurable sets is an algebra.

It is useful to observe that the union of a countable collec-

tion of measurable sets is also the union of a countable disjoint

collection of measurable sets. We state this as follows:
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Lemma 2.3.15. Let {Ak}nk=1 be a countable collection of mea-

surable sets. Define

A′1 = A 1

and for each k ≥ 2 , define

A′k = A k ∼
k−1⋃
i=1

A i.

Then {A′k}
∞
k=1 is a disjoint collection of measurable sets whose

union is the same as that of {Ak}∞k=1.

Proof. Since the collection of measurable sets is an algebra,

{A′k}
∞
k=1 is a disjoint collection of measurable sets whose union

is the same as that of {Ak}∞k=1.

Proposition 2.3.16. The union of a countable collection of

measurable sets is measurable.

Proof. Let E be the union of a countable collection of mea-

surable sets. As we observed in Lemma 2.3.15, there is a

countable disjoint collection of measurable sets {Ek}∞k=1 for
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which

E =
∞⋃
k=1

Ek.

Let A be any set. Let n be a natural number. Define

Fn =
n⋃
k=1

Ek.

That is,

Fn = E1 ∪ E2 · · · ∪ En.

Being the finite union of measurable sets, Fn is measurable

(Proposition 2.3.10). Hence, by the definition of measurable

set, for the measurable set Fn and the given set A,

m∗(A ) = m∗ (A ∩ Fn) +m∗ (A ∩ FC
n

)
. (2.34)

Since

Fn =
n⋃
k=1

Ek ⊆
∞⋃
k=1

Ek = E

we have

FC
n ⊇ EC ,
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and hence

A ∩ FC
n ⊇ A ∩ EC ,

and so the monotonicity of outer measure gives

m∗ (A ∩ FC
n

)
≥ m∗ (A ∩ EC

)
.

Thus, (2.34) gives

m∗(A ) = m∗ (A ∩ Fn) +m∗ (A ∩ FC
n

)
≥ m∗ (A ∩ Fn) +m∗ (A ∩ EC

)
. (2.35)

Also,

m∗ (A ∩ Fn) = m∗

(
A ∩

[
n⋃
k=1

Ek

])

=
n∑
k=1

m∗(A ∩ Ek), using Proposition 2.3.11.

Thus, (2.35) gives

m∗(A ) ≥
n∑
k=1

m∗(A ∩ Ek) +m∗(A ∩ EC).
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Since the left side of this inequality is independent of n, it

follows that the above result is true for any natural number

n and hence we have (letting n→∞)

m∗(A ) ≥
∞∑
k=1

m∗(A ∩ Ek) +m∗(A ∩ EC). (2.36)

By the countable subadditivitiy of the outer measurem∗ (Propo-

sition 2.2.11), we have

∞∑
k=1

m∗(A ∩ Ek) ≥ m∗

(
∞⋃
k=1

(A ∩ Ek)

)

Since
∞⋃
k=1

(A ∩ Ek) = A ∩
∞⋃
k=1

Ek

the above inequality gives

∞∑
k=1

m∗(A ∩ Ek) ≥ m∗(A ∩

[
∞⋃
k=1

Ek

]
) = m∗(A ∩ E),
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and so (2.36) gives

m∗(A ) ≥ m∗(A ∩ E) +m∗(A ∩ EC).

Thus, (2.22) in the Remark 2.3.3 is satisfied for any set A.

Hence E is measurable. This completes the proof.

Definition 2.3.17. [ σ-algebra ] A collection of subsets of

R is called an σ-algebra provided it contains R and is closed

with respect to the formation of complements and countable

unions.

Remark 2.3.18. By De Morgan’s Identities, σ-algebra is also

closed with respect to the formation of countable intersec-

tions.

Proposition 2.3.19. The collection of measurable sets is a

σ-algebra.

Proof. Let M be the collection of measurable sets.

1. By Proposition 2.3.6, R ∈M.

2. By Proposition 2.3.4, A ∈ M implies Ac ∈ M; i.e., M
is closed with respect to the formation of complements.
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3. By Proposition 2.3.16, the union of a countable col-

lection of measurable sets is measurable. Hence M is

closed with respect to the formation of countable unions.

Hence, by Definition 2.3.17, M is a σ-algebra. That is, the

collection of measurable sets is a σ-algebra.

Proposition 2.3.20. Every interval is measurable.

Proof. By Proposition 2.3.19, the set of measurable sets are

a σ-algebra. Therefore to show that every interval is measur-

able it suffices to show that every interval of the form (a, ∞)

is measurable [Because then, by the Definition of σ-algebra or

by Part 2 of the proof of Proposition 2.3.19, its complement

(−∞, a] is measurable. Using De-Morgan’s laws, Remark

2.3.18 and various set identities it can be shown that intervals

of the form [a, b], [a, b), (a, b], (a, b), (−∞, a], and (a, ∞) are

also measurable].

Consider such an interval (a, ∞). Let A be any set. We

assume a does not belong to A. Otherwise, replace A by A ∼
{a} (then a /∈ A ∼ {a}) leaving the outer measure unchanged,
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because of the following observation:

m∗(A) = m∗([A ∼ {a}] ∪ {a}︸ ︷︷ ︸
A

)≤m∗(A ∼ {a}) +m∗({a})︸ ︷︷ ︸
= 0

(where the last inequality is obtained by the countable sub-

additivity of outer measure) and so

m∗(A)≤m∗(A\{a})

As outer measure is monotonic increasing, since A ∼ {a} ⊂ A,

we also have

m∗(A\{a})≤m∗(A)

and thus

m∗(A\{a}) =m∗(A).

It is enough to prove (2.22) in the Remark 2.3.3. That is, we

must show that

m∗(A) ≥ m∗(A ∩ (a, ∞)) +m∗(A ∩ (a, ∞)C).
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(a, ∞)C = (−∞, a]. So

A ∩ (a, ∞)C = A ∩ (−∞, a]

and since a /∈ A, it follows that

A ∩ (a, ∞)C = A ∩ (−∞, a).

Hence it we let

A1 = A
⋂

(−∞, a), and A2 = A
⋂

(a , ∞).

then it must be shown that

m∗(A1) +m∗(A2) ≤ m∗(A ). (2.37)

By the definition of the outer measure m∗(A ) as an infimum

(Definition 2.2.1 ), to verify (2.37) it is necessary and sufficient

to show that for any countable collection {Ik}∞k=1 of open,

bounded intervals that covers A,

m∗(A1) +m∗(A2) ≤
∞∑
k=1

l(Ik). (2.38)
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Indeed, for such a covering, for each index k, define

I ′k = Ik
⋂

(−∞, a), and I ′′k = Ik
⋂

(a , ∞).

Then Ik and I ′′k are intervals and

l(Ik) = l(I ′k ) + l(I ′′k ). (2.39)

Since {I ′k}
∞
k=1 and {I ′′k}

∞
k=1 are countable collections of open,

bounded intervals that cover A 1 and A 2 , respectively, by the

definition of outer measure (Definition 2.2.1 ),

m∗(A1) ≤
∞∑
k=1

l(I ′k), and m∗(A2) ≤
∞∑
k=1

l(I ′′k ).

Therefore,

m∗(A1) +m∗(A2) ≤
∞∑
k=1

l(I ′k) +
∞∑
k=1

l(I ′′k )

=
∞∑
k=1

[l(I ′k) + l(I ′′k )]

=
∞∑
k=1

l(Ik), using (2.39).
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Thus (2.38) holds and the proof is complete.

Proposition 2.3.21. Every open set is measurable.

Proof. Every open set is the disjoint union of a countable col-

lection of open intervals. By Proposition 2.3.20, every open

interval is measurable. Hence, by Proposition 2.3.16, every

open set is measurable.

Proposition 2.3.22. Every closed set is measurable.

Proof. By Proposition 2.3.21, every open set is measurable.

Since the collection of measurable sets is a σ-algebra (Propo-

sition 2.3.19), it follows that complement of an open set is

also measurable. Every closed set is the complement of an

open set. Hence closed sets are measurable. This completes

the proof.

Recall that (Definition 1.1.14) a set of real numbers is said

to be a Gδ set provided it is the intersection of a countable

collection of open sets and said to be an Fσ set provided it is

the union of a countable collection of closed sets.

Proposition 2.3.23. Every Gδ set is measurable.
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Proof. Since open sets are measurable (Proposition 2.3.21)

and since the collection of measurable sets is a σ-algebra

(Proposition 2.3.19), using Remark 2.3.18, it follows that Gδ

set, which is the intersection of a countable collection of open

sets, is measurable.

Proposition 2.3.24. Every Fσ set is measurable.

Proof. An Fσ set is the union of a countable collection of

closed sets. By Proposition 2.3.22, every closed set is mea-

surable and by Proposition 2.3.16 the union of a countable

collection of measurable sets is measurable. Hence every Fσ

set is measurable.

Definition 2.3.25. The intersection of all the σ-algebras of

subsets of R that contain the open sets is a σ-algebra called the

Borel σ-algebra; members of this collection are called Borel

sets.

Notation 2.3.26. Borel σ-algebra is denoted by B.

Remark 2.3.27. The Borel σ-algebra is contained in every

σ-algebra that contains all open sets. i.e., if A is a σ-algebra
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that contains the open sets, then

B ⊂ A.

Theorem 2.3.28. The collection M of measurable sets is a

σ-algebra that contains the σ-algebra B of Borel sets. Each

interval, each open set, each closed set, each Gδ set and each

Fσ set is measurable.

Proof. • By Proposition 2.3.19, the collection M of mea-

surable sets is a σ-algebra.

• By Proposition 2.3.21, M contains all open sets.

• NowM is a σ-algebra that contains all open sets. Hence,

by Remark 2.3.27,

B ⊂M.

Hence M is a σ-algebra that contains the σ-algebra B
of Borel sets.

• Each interval, each open set, each closed set, each Gδ

set and each Fσ set is measurable follows from various

propositions given above.
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Proposition 2.3.29. The translate of a measurable set is

measurable.

Proof. Let E be a measurable set. Let A be any set and y

be a real number. We show that E + y is measurable, using

the measurability of E and the translation invariance of outer

measure (Proposition 2.2.10).

m∗(A) = m∗(A− y),

by the translation invariance of outer measure

= m∗( [A− y ] ∩ E) +m∗( [A− y ] ∩ EC),

by the measurability of E and

using the set A− y

= m∗( A ∩ [E + y]) +m∗( A ∩ [E + y ] C).

As the choice of the set A is arbitrary,

m∗(A) = m∗( A ∩ [E + y]) +m∗( A ∩ [E + y ] C)

holds for any set A and this shows that E + y is measurable.
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As the choice of the real number y is also arbitrary, it follows

that any translate of E is measurable. As the choice of the

measurable set E is also arbitrary, we have translate of a

measurable set is measurable.

2.4 Outer and Inner Approximation

of Lebesgue Measurable Sets

We now present two characterizations of measurability of

a set, one based on inner approximation by closed sets and

the other on outer approximation by open sets, which provide

alternate angles of vision on measurability. These character-

izations will be essential tools for our forthcoming study of

approximation properties of measurable and integrable func-

tions.

Measurable sets possess the following excision property:

Proposition 2.4.1. Excision Property: If A is a measur-

able set of finite outer measure that is contained in B, then
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m∗(B ∼ A) = m∗(B)−m∗(A). (2.40)

Figure 2.14: If A ⊆ B then B ∩ A = A and B ∩ AC = B\A.

Proof. By the measurability of A, for the set B,

m∗(B) = m∗(B ∩ A) +m∗(B ∩ AC).
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Also, since A ⊆ B, we have B ∩A = A and B ∩AC = B ∼ A

(Fig.(2.14)), and hence the above equation gives

m∗(B) = m∗(A) +m∗(B ∼ A).

Since A is a measurable set of finite outer measure, m∗(A) <

∞, and subtracting m∗(A) from both sides of the above equa-

tion, we get

m∗(B ∼ A) = m∗(B)−m∗(A).

Theorem 2.4.2. Let E be any set of real numbers. Then

each one of the following four statements is equivalent to the

measurability of E.

(Outer Approximation by Open Sets and Gδ Sets)

(i) Given ε > 0, there is an open set O ⊃ E with m∗ (O ∼ E) <

ε.

(ii) There is a Gδ set G such that E ⊂ G, and m∗ (G ∼ E) =

0.
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(Inner Approximation by Closed Sets and Fσ

Sets)

(iii) Given ε > 0, there is a closed set F ⊂ E with m∗ (E ∼ F ) <

ε.

(iv) There is an Fσ set F with F ⊂ E, and m∗ (E ∼ F ) = 0.

Proof. We establish the equivalence of the measurability of E

with each of the two outer approximation properties (i) and (ii).

The remainder of the proof follows from De Morgan’s Iden-

tities together with the observations that a set is measurable

if and only if its complement is measurable, is open if and

only if its complement is closed, and is Fσ if and only if its

complement is Gδ.

We are now going to show that E is measurable implies

property (i) holds for E implies property (ii) holds for E

implies E is measurable. Assume E is measurable. Let ε > 0.

Case 1: First consider the case that m∗(E) < ∞. By the

definition of outer measure (Definition 2.2.1), since

m∗(E) = inf
E ⊂

⋃
Jk

∑
l (Jk) ,
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where infimum is taken by considering nonempty open, bounded

intervals {Jk}∞k=1 that cover E. Hence, m∗(E) + ε cannot be

a lower bound of the set{∑
l (Jk) : E ⊂

⋃
Jk, where {Jk}∞k=1 covers E

}
and hence there exists a countable collection of open intervals

{ Ik}∞k=1 which covers E and for which

∞∑
k=1

l(Ik) < m∗(E) + ε . (2.41)

Define

O =
∞⋃
k=1

Ik.

Then, being the union of open intervals, O is an open set .

Since { Ik}∞k=1 covers E, we have E ⊆
⋃∞
k=1 Ik. Thus O is an

open set containing E. By the definition of outer measure of

O,

m∗(O) = inf
O⊂

⋃
Jk

∑
l (Jk) ,

where infimum is taken by considering nonempty open, bounded

intervals {Jk}∞k=1 that covers O.
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Thus, in particular,

m∗(O) ≤
∞∑
k=1

l(Ik).

Using (2.41), this gives

m∗(O) ≤
∞∑
k=1

l(Ik) < m∗(E) + ε .

Hence

m∗(O)−m∗(E) < ε .

However, E is measurable and has finite outer measure.

Therefore, by the excision property of measurable sets (Propo-

sition 2.4.1 ) ,

m∗(O ∼ E) = m∗(O)−m∗(E) < ε .

Case 2: Now we assume that E is a measurable set of infinite

measure; i.e., m∗(E) = ∞ . For each k ∈ N, let

Ek = E ∩ (−k, k).
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Then Ek ⊂ (−k, k) and hence each Ek has finite measure and

by what proved in Case 1 above (corresponding to ε
2k

) there

is an open set, say Ok, Ok ⊃ Ek such that

m∗ (Ok ∼ Ek) <
ε

2k
. (2.42)

Let O =
⋃∞
k=1Ok. Then O is open, O ⊃ E and since

O ∼ E =
∞⋃
k=1

Ok ∼ E ⊂
∞⋃
k=1

[Ok ∼ Ek]

we get (by the monotonicity of m∗)

m∗ (O ∼ E) ≤ m∗

(
∞⋃
k=1

[Ok ∼ Ek]

)
. (2.43)

By the countable subadditivity of outer measure,

m∗

(
∞⋃
k=1

[Ok ∼ Ek]

)
≤

∞∑
k=1

m∗ (Ok ∼ Ek)
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and hence (2.43) gives

m∗ (O ∼ E) ≤
∞∑
k=1

m∗ (Ok ∼ Ek)

<
∞∑
k=1

ε

2k
, using (2.42)

= ε.

Thus property (i) holds for E.

Now assume property (i) holds for E. For each natural

number k, choose an open set Ok that contains E and for

which

m∗ (Ok ∼ E) <
1

k
.

Define

G =
∞⋂
k=1

Ok .

Then, being the countable intersection of open sets, G is a

Gδ set that contains E. Moreover, since for each k, G ∼ E ⊆
Ok ∼ E , by the monotonicity of outer measure,

m∗(G ∼ E) ≤ m∗(Ok ∼ E) <
1

k
.
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That is, for each k,

0 ≤ m∗(G ∼ E) <
1

k
.

Hence

m∗(G ∼ E) = 0

and so (ii) holds.

Now assume property (ii) holds for E. i.e.., assume that there

is a Gδ set G such that E ⊂ G, and m∗ (G ∼ E) = 0. Since

a set of measure zero is measurable (Theorem 2.3.7), it fol-

lows that G ∼ E is measurable. Also Gδ sets are measurable

(Theorem 2.3.28). Hence G is also measurable. Also, since

the collection of measurable sets is an algebra, intersection of

the measurable sets G ∼ E and G is also measurable. That

is, the set G ∩ [G ∼ E]C is measurable. Since

E = G ∩ [G ∼ E]C

it follows that E is measurable.

Thus, we have shown that E is measurable implies property

(i) holds for E implies property (ii) holds for E implies E
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is measurable. This completes the proof.

Theorem 2.4.3. [Measurable sets of finite outer measure are

nearly equal to the disjoint union of a finite number of open

interval] Let E be a measurable set of finite outer measure.

Then for each ε > 0, there is a finite disjoint collection of

open intervals { Ik}nk=1 for which if O =
⋃n
k=1 Ik, then

m∗(E ∼ O) +m∗(O ∼ E) < ε.

Proof. According to Theorem 2.4.2(i), since E is measurable

corresponding to ε > 0 there is an open set U such that

E ⊆ U , with , m∗ (U ∼ E) <
ε

2
. (2.44)

Since E is measurable and has finite outer measure, we infer

from the excision property of outer measure that U also has

finite outer measure [[Details: By excision property (Proposi-

tion 2.4.1), m∗(U ∼ E) = m∗(U)−m∗(E) and hence m∗(U) =

m∗(U ∼ E)+m∗(E) <∞, sincem∗(E) <∞ andm∗ (U ∼ E) <
ε
2
.]] We note that Every open set of real numbers is the dis-

joint union of a countable collection of open intervals . Let
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U be the union of the countable disjoint collection of open

intervals { Ik}∞k=1. Each interval is measurable and its outer

measure is its length. Therefore, by Proposition 2.3.11 and

the monotonicity of outer measure, for each natural number

n,
n∑
k=1

l(Ik) = m∗

(
n⋃
k=1

Ik

)
≤ m∗(U ) <∞.

The right-hand side of this inequality is independent of n.

Therefore
∞∑
k=1

l(Ik) <
ε

2
.

Define O =
⋃n
k=1 Ik. Since O ∼ E ⊆ U ∼ E , by the mono-

tonicity of outer measure

m∗ (O ∼ E) ≤ m∗ (U ∼ E)

and since E ⊆ U withm∗ (U ∼ E) < ε
2

(using 2.44), the above

gives

m∗ (O ∼ E) ≤ m∗ (U ∼ E) <
ε

2
.
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On the other hand, since E ⊆ U ,

E ∼ O ⊆ U ∼ O =
∞⋃

k=n+1

Ik

so that by the definition of outer measure,

m∗(E ∼ O) ≤
∞∑

k=n+1

l(Ik) <
ε

2
.

Thus,

m∗(O ∼ E) +m∗(E ∼ O) < ε .

2.5 Countable Additivity, Continu-

ity, and the Borel-Cantelli Lemma

2.5.1 Lebesgue Measure

Definition 2.5.1. The restriction of the set function outer

measure to the class of measurable sets is called Lebesgue
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measure. It is denoted by m, so that if E is a measurable

set, its Lebesgue measure, m(E), is defined by

m(E) = m∗(E).

Proposition 2.5.2. Lebesgue measure is countably additive,

that is, if {Ek}∞k=1 is a countable disjoint collection of mea-

surable sets, then its union
⋃∞
k=1Ek also is measurable and

m

(
∞⋃
k=1

Ek

)
=

∞∑
k=1

m(Ek) .

Proof. Proposition 2.3.16 tells us that
⋃∞
k=1Ek is measurable.

According to Proposition 2.2.11, outer measure is countably

subadditive. Thus,

m∗

(
∞⋃
k=1

Ek

)
≤

∞∑
k=1

m(Ek). (2.45)

To get the equality, it remains to prove this inequality in the

opposite direction. According to Proposition 2.3.11, for each
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natural number n,

m∗

(
n⋃
k=1

Ek

)
=

n∑
k=1

m(Ek) .

Since
⋃∞
k=1Ek contains

⋃n
k=1Ek, by the monotonicity of outer

measure and the preceding equality, for each n,

m

(
∞⋃
k=1

Ek

)
≥

n∑
k=1

m(Ek).

The left-hand side of this inequality if independent of n.

Therefore

m∗

(
∞⋃
k=1

Ek

)
≥

∞∑
k=1

m(Ek). (2.46)

From the inequalities (2.45) and (2.46) it follows that

m∗

(
∞⋃
k=1

Ek

)
=

∞∑
k=1

m(Ek).

Theorem 2.5.3. The set function Lebesgue measure, defined

on the σ-algebra of Lebesgue measurable sets, assigns length to
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any interval, is translation invariant, and is countable additive.

Proof. By Definition 2.5.1, the restriction of the set func-

tion outer measure to the class of measurable sets is called

Lebesgue measure and denoted by m. Hence if A is a mea-

surable set, then m(A) = m∗(A).

• By Proposition 2.3.20, every interval is measurable. Hence

its Lebesgue measure is the same as the outer measure.

By Proposition 2.2.5, the outer measure of an interval

is its length. Hence the Lebesgue measure of an interval

is its length.

• By Proposition 2.2.10, outer measure is translation in-

variant. Hence on the σ-algebra of Lebesgue measurable

sets, Lebesgue measure is translation invariant.

• By Proposition 2.5.2, Lebesgue measure is countably

additive.

This completes the proof.

Definition 2.5.4. A countable collection of sets {Ek}∞k=1 is

said to be
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1. ascending provided for each k, Ek ⊆ Ek+1, and

2. descending provided for each k, Ek+1 ⊆ Ek.

Remark 2.5.5. 1. {Ek}∞k=1 is ascending if

E1 ⊆ E2 ⊆ E3 ⊆ · · · ⊆ Ek ⊆ Ek+1 ⊆ · · ·

2. {Ek}∞k=1 is descending if

E1 ⊇ E2 ⊇ E3 ⊇ · · · ⊇ Ek ⊇ Ek+1 ⊇ · · ·

Theorem 2.5.6. (The Continuity of Measure) Lebesgue

measure possesses the following continuity properties:

1. If {Ak}∞k=1 is an ascending collection of measurable sets,

then

m

(
∞⋃
k=1

Ak

)
= lim

k→∞
m(Ak). (2.47)

2. If {Bk}∞k=1 is a descending collection of measurable sets
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and m(B1) <∞, then

m

(
∞⋂
k=1

Bk

)
= lim

k→∞
m(Bk). (2.48)

Proof. We first prove (i).

Case 1. If there is an index k0 for which m(Ak0) = ∞ , then,

by the monotonicity of measure (
∞⋃
k=1

Ak ⊇ Ak0 and Ak ⊇

Ak0 for k ≥ k0 implies m

(
∞⋃
k=1

Ak

)
≥ m(Ak0) and m(Ak) ⊇

m(Ak0) fork ≥ k0 so that ) m (
⋃∞
k=1Ak) = ∞ and m(Ak) =

∞ for all k ≥ k0.

Therefore (2.47) holds since each side equals ∞.

Case 2. It remains to consider the case that m(Ak) <∞ for

all k. Define

A0 = ∅

and then define

Ck = Ak ∼ Ak−1 for each k ≥ 1.

By construction, since the sequence {Ak}∞k=1 is ascending,
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{Ck}∞k=1 is disjoint and
⋃∞
k=1Ak =

⋃∞
k=1Ck.

By the countable additivity of m (Proposition 2.5.2),

m

(
∞⋃
k=1

Ak

)
= m

(
∞⋃
k=1

Ck

)
=

∞∑
k=1

m(Ak ∼ Ak−1). (2.49)

Since {Ak}∞k=1 is ascending, we infer from the excision prop-

erty of measure that

∞∑
k=1

m(Ak ∼ Ak−1) =
∞∑
k=1

[m(Ak)−m(Ak−1)]

= lim
n→∞

n∑
k=1

[m(Ak)−m(Ak−1)]. . .(2.50)

= lim
n→∞

[m(An)−m(A0)]

Since m(A0) = m(∅) = 0, (2.47) follows from (2.49) and

(2.50).

To prove (ii) we define

Dk = B1 ∼ Bk for each k.
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Since the sequence {Bk}∞k=1 is descending, the sequence {Dk}∞k=1

is ascending. By part (i),

m

(
∞⋃
k=1

Dk

)
= lim

k→∞
m(Dk).

∞⋃
k=1

Dk =
∞⋃
k=1

[B1 ∼ Bk]

= B1 ∼
∞⋂
k=1

Bk, using De Morgan′s identities.

On the other hand, by the excision property of measure,

for each k, since m (Bk) <∞,

m (Dk) = m (B1)−m (Bk).

Therefore,

m

(
B1 ∼

∞⋂
k=1

Bk

)
= lim

n→∞
[m(B1)−m(Bn)].
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Once more using excision we obtain the equality (2.48).

Definition 2.5.7. For a measurable set E, we say that a

property holds almost everywhere on E, or it holds for

almost all x ∈ E, provided there is a subset E0 of E for which

m (E0) = 0 and the property holds for all x ∈ E ∼ E0.

Remark 2.5.8. If f and g are extended real-valued functions

on E, then

f = g a.e. on E if m{x ∈ E : f(x) 6= g(x)} = 0.

Lemma 2.5.9. [ The Borel-Cantelli Lemma ]

Let {Ek}∞k=1 be a countable collection of measurable sets for

which
∑∞

k=1m(Ek) <∞. Then almost all x ∈ R belong to at

most finitely many of the Ek’s.

Proof. For each n, by the countable subadditivity of m,

m

(
∞⋃
k=n

Ek

)
≤

∞∑
k=n

m(Ek) <∞.
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Hence, by the continuity of measure (Proposition 2.5.6,

m

(
∞⋂
n=1

[
∞⋃
k=n

Ek

])
= lim

n→∞
m(

∞⋃
k=n

Ek) ≤ lim
n→∞

∞∑
k=n

m(Ek) = 0.

Therefore almost all x ∈ R fail to belong to
⋂∞
n=1 [

⋃∞
k=nEk]

and therefore belong to at most finitely many Ek’s.

2.5.2 Properties of Lebesgue measure

The set function Lebesgue measure inherits the properties

possessed by Lebesgue outer measure. We lsit some of these

properties.

(Finite Additivity) For any finite disjoint collection {Ek}nk=1

of measurable sets,

m

(
n⋃
k=1

Ek

)
=

n∑
k=1

m(Ek).

(Monotonicity) If A and B are measurable sets and A ⊆ B ,

then

m(A) ≤ m(B).
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(Excision) If, moreover, A ⊆ B and m(A) <∞, then

m(B ∼ A) = m(B)−m(A)

so that if m(A) = 0 , then

m(B ∼ A) = m(B).

(Countable Monotonicity) For any countable collection

{Ek}∞k=1 of measurable sets that covers a measurable set E,

m(E) ≤
∞∑
k=1

m(Ek).

Countable monotonicity is a combination of the monotonicity

and countable subadditivity properties of measure.

Remark 2.5.10. In our forthcoming study of Lebesgue inte-

gration it will be apparent that it is the countable additivity

of Lebesgue measure that provides the Lebesgue integral with

its decisive advantage over the Riemann integral.



2.6 Nonmeasurable Sets 95

2.6 Nonmeasurable Sets

In the previous sections, we defined Lebesgue measurable sets

and studied properties of the class of measurable sets. It is

only natural to ask if, in fact, there are any sets that fail to

be measurable. The answer is not at all obvious.

We know that if a set E has outer measure zero, then it is

measurable, and since any subset of E also has outer measure

zero, every subset of E is measurable. This is the best that

can be said regarding the inheritance of measurability through

the relation of set inclusion: we now show that if E is

any set of real numbers with positive outer measure,

then there are subsets of E that fail to be measurable.

Lemma 2.6.1. Let E be a bounded measurable set of real

numbers. Suppose there is a bounded, countably infinite set

of real numbers Λ for which the collection of translates of E,

{λ+ E }λ∈Λ, is disjoint. Then m(E) = 0 .

Proof. The translate of a measurable set is measurable. Thus,

by the countable additivity of measure over countable disjoint
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unions of measurable sets,

m

[⋃
λ∈Λ

(λ+ E )

]
=
∑
λ∈Λ

m(λ+ E ). (2.51)

Since both E and Λ are bounded sets, the set

⋃
λ∈Λ

(λ+ E )

also is bounded and therefore has finite measure. Thus the

left-hand side of (2.51) is finite. However, since measure is

translation invariant,

m(λ+ E ) = m(E ) > 0

for each λ ∈ Λ. Thus, since the set Λ is countably infinite and

the right-hand sum in (2.51) is finite, we must have m(E ) =

0 . This completes the proof.

Definition 2.6.2. For any nonempty set E of real numbers,

we define two points in E to be rationally equivalent pro-

vided their difference belongs to Q, the set of rational num-

bers. It is easy to see that this is an equivalence relation,
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that is, it is reflexive, symmetric, and transitive. We call it

the rational equivalence relation on E. For this relation,

there is the disjoint decomposition of E into the collection of

equivalence classes. By a choice set for the rational equiva-

lence relation on E we mean a set CE consisting of exactly one

member of each equivalence class. We infer from the Axiom

of Choice that there are such choice sets.

A choice set CE is characterized by the following two prop-

erties:

1. the difference of two points in CE is not rational;

2. for each point x ∈ E, there is a point c ∈ CE for which

x = c+ q , with q rational.

This first characteristic property of CE may be conve-

niently reformulated as follows:

For any set Λ ⊆ Q , {λ+ CE}λ∈Λ is disjoint. (2.52)

Theorem 2.6.3. (Vitali) Any set E of real numbers with

positive outer measure contains a subset that fails to be mea-



98 Chapter 2. Lebesgue Measure

surable.

Proof. By the countable subadditivity of outer measure, we

may suppose E is bounded. Let CE be any choice set for the

rational equivalence relation on E.

We claim that CE is not measurable. To verify this

claim, we assume it is measurable and derive a contradiction.

Let Λ0 be any bounded, countably infinite set of rational

numbers. Since CE is measurable, and, by ((2.52)), the col-

lection of translates of CE by members of Λ0 is disjoint, it

follows from Lemma 2.6.1 that m(CE) = 0. Hence, again us-

ing the translation invariance and the countable additivity of

measure over countable disjoint unions of measurable sets,

m

[ ⋃
λ∈Λ0

(λ+ CE )

]
=
∑
λ∈Λ0

m(λ+ CE ) = 0.

To obtain a contradiction we make a special choice of Λ0.

Because E is bounded it is contained in some interval [−b, b].
We choose

Λ0 = [−2b, 2b] ∩Q.
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Then Λ0 is bounded, and is countably infinite since the ratio-

nals are countable and dense. We claim that

E ⊆
⋃

λ∈ [−2b, 2b]∩Q

(λ+ CE ). (2.53)

Indeed, by the second characteristic property of CE, if x ∈ E,

there is a number c in the choice set CE for which x = c + q

with q rational. But x and c belong to [−b, b] , so that q

belongs to [−2b, 2b]. Thus the inclusion (2.53) holds. This is

a contradiction because E, a set of positive outer measure, is

not a subset of a set of measure zero. The assumption that

CE is measurable has led to a contradiction and thus it must

fail to be measurable.

Theorem 2.6.4. There are disjoint sets of real numbers A

and B for which

m∗(A ∪B) < m∗(A) +m∗(B).

Proof. We prove this by contradiction. Assume

m∗(A ∪B) = m∗(A) +m∗(B)
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for every disjoint pair of sets A and B. Then, by the very

definition of measurable set, every set must be measurable.

This contradicts the preceding theorem.

2.7 The Cantor Set

We have shown that a countable set has measure zero and

a Borel set is Lebesgue measurable. These two assertions

prompt the following two questions.

Question 1 If a set has measure zero, is it also countable?

Question 2 If a set is measurable, is it also Borel?

The answer to each of these questions is negative. In this

section we give a detailed answer to the first question by con-

structing a set called the Cantor set.
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2.7.1 The Cantor Set

Figure 2.15: The Cantor set, produced by the iterated process

of open middle one-third removal.

Consider the closed, bounded interval I = [0, 1]. The first

step in the construction of the Cantor set is to subdivide I

into three intervals of equal length 1/3 and remove the interior

of the middle interval, that is, we remove the open interval

(1/3, 2/3) from the interval [0, 1] to obtain the closed set C1,

which is the union of two disjoint closed intervals, each of

length 1/3 :

C1 = [0, 1/3] ∪ [2/3, 1].

We now repeat this open middle one-third removal on each
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of the two intervals in C1 to obtain a closed set C2, which is

the union of 4 = 22 closed intervals, each of length 1/32 :

C2 = [0, 1/9] ∪ [2/9, 1/3] ∪ [2/3, 7/9] ∪ [8/9, 1].

We now repeat this open middle one-third removal on each

of the four intervals in C2 to obtain a closed set C3, which is

the union of 8 = 23 closed intervals, each of length 1/33.

We continue this removal operation countably many times to

obtain the countable collection of sets {Ck}∞k=1. We define the

Cantor set C by

C =
∞⋂
k=1

Ck.

The collection {Ck}∞k=1 possesses the following two properties:

1. {Ck}∞k=1 is a descending sequence of closed sets;

2. For each k, Ck is the disjoint union of 2k closed intervals,

each of length 1/3k.

We need the Nested Set Theorem in the proof of Proposition
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2.7.2.

Theorem 2.7.1. [ The Nested Set Theorem ] Let {Fn}∞n=1

be a descending countable collection of nonempty closed sets

of real numbers for which F1 is bounded. Then

∞⋂
n=1

Fn 6= ∅.

Proposition 2.7.2. The Cantor set C is a closed, uncount-

able set of measure zero.

Proof. 1. Each Ck considered in the construction of the

Cantor set is closed. As the intersection of any collection

of closed sets is closed, it follows that the Cantor set

C =
∞⋂
k=1

Ck.

is closed.

2. Each closed set is measurable so that each Ck and C

itself is measurable. Now each Ck is the disjoint union

of 2k intervals, each of length 1/3k, so that by the finite



104 Chapter 2. Lebesgue Measure

additivity of Lebesgue measure,

m(Ck) =

(
2

3

)k
.

By the monotonicity of measure, since

m(C) ≤ m(Ck) =

(
2

3

)k
, for all k,

we have

m(C) = 0.

3. It remains to show that C is uncountable. To do so we

argue by contradiction. Suppose C is countable. Let

{ck}∞k=1 be an enumeration of C. One of the two disjoint

Cantor intervals whose union is C1 fails to contain the

point c1; denote it by F1. One of the two disjoint Cantor

intervals in C2 whose union is F1 fails to contain the

point c2; denote it by F2. Continuing in this way, we

construct a countable collection of sets {Fk}∞k=1, which,

for each k, possesses the following three properties:

(a) Fk is closed and Fk+1 ⊆ Fk;
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(b) Fk ⊆ Ck; and

(c) ck /∈ Fk.

From (i) and the Nested Set Theorem (Theorem 2.7.1)

we conclude that the intersection
∞⋂
k=1

Fk is nonempty.

Let the point x belong to this intersection. By property

(ii),
∞⋂
k=1

Fk ⊆
∞⋂
k=1

Ck = C,

and therefore the point x belongs to C.However, {ck}∞k=1

is an enumeration of C so that x = cn for some index

n. Thus

cn = x ∈
∞⋂
k=1

Fk ⊆ Fn.

This contradicts property (iii). Hence C must be un-

countable.
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2.8 Exercises

1. Prove that a set consisting of a single point has outer

measure 0.

2. Prove that a countable set has outer measure 0.

3. Using Proposition 2.2.11 , prove that a countable set

has outer measure zero.

4. Prove that a set of measure zero is measurable.

2.8.1 Answers to Exercises

1. Let {x} be a singleton set. Then for ε > 0, (x−ε, x+ε)

is an open cover of {x} so that

m∗({x}) = inf

{
∞∑
k=1

l(Ik)|A ⊆
∞⋃
k=1

Ik

}
≤ 2ε︸︷︷︸

↑
length of the

interval (x− ε, x+ ε)

.
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The above inequality is true for any ε > 0. That is, for

any ε > 0, we have

0 ≤ m∗({x}) ≤ 2ε.

Since ε is arbitrary, it follows that m∗({x}) = 0.

2. Let C be a countable set. Then we can enumerate it

(i.e., we can number the members of C by arranging it

in an order) as

C = {ck}∞k=1 .

Let ε > 0. For each natural number k, define

Ik =
(
ck −

ε

2k+1
, ck +

ε

2k+1

)
.

For each k, ck ∈ Ik =
(
ck − ε

2k+1 , ck + ε
2k+1

)
, so that

the countable collection of open intervals {Ik}∞k=1 covers

C. By the definition of outer measure,

m∗(C ) = inf

{
∞∑
k=1

l(Jk)|A ⊆
∞⋃
k=1

Jk

}
(2.54)
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where infimum is taken over all countable coverings {Jk}∞k=1

of E (where Jk’s are nonempty open, bounded inter-

vals). In the above, we have constructed {Ik}∞k=1 that

covers C. Hence, from (2.54), we have

m∗(C ) = inf

{
∞∑
k=1

l(Jk)|A ⊆
∞⋃
k=1

Jk

}
≤

∞∑
k=1

l(Ik)

(2.55)
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Therefore,

0 ≤ m∗(C ) ≤
∞∑
k=1

l(Ik)

=
∞∑
k=1

ε

2k︸ ︷︷ ︸
↑

length of the

interval
(
ck − ε

2k+1 , ck + ε
2k+1

)

.

= ε
∞∑
k=1

1

2k︸ ︷︷ ︸
↑

geometric series with intial term 1
2

and common ratio 1
2

= ε
1
2

1− 1
2

= ε

That is,

0 ≤ m∗(C ) ≤ ε.

The above inequality is true for any ε > 0. That is, we
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have for any ε > 0,

0 ≤ m∗(C ) ≤ ε.

Since ε is arbitrary, it follows that m∗(C ) = 0.

3. This is an alternate proof of Exercise 2.8.2.If A is

countable, then the set A is of the form

A = {x1, x2, x3, . . . , xn, . . .} .

Then A can be expressed as the countable union of pair

wise disjoint singleton sets {x1} , {x2} , {x3} , . . . , {xn} , . . ...
i.e.,

A = {x1} ∪ {x2} ∪ {x3} ∪ . . . ∪ {xn} ∪ . . . .

Then

m∗(A) = m∗

(⋃
n

{xn}

)



2.8 Exercises 111

≤
∑
n

m∗ ({xn}) , using Proposition 2.2.11

or inequality (2.15)

=
∑
n

0, since m∗({xn}) = 0 for n = 1, 2, 3, . . .

using Example 2.2.3

= 0.

4. Ref. Theorem 2.3.7



Chapter 3
Lebesgue Measurable

Functions

In this chapter we study measurable functions that will lay

the foundation for the study of the Lebesgue integral (Chap-

ter 4). We establish that all continuous functions on a mea-

surable domain are measurable (Proposition 3.1.5), as are all

monotone and step functions on a closed, bounded interval.

Linear combinations of measurable functions are measurable.

The pointwise limit of a sequence of measurable functions is

112
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measurable. We establish results regarding the approxima-

tion of measurable functions by simple functions (Definition

3.2.5) and by continuous functions.

3.1 Sums, Products, and Composi-

tions

All the functions considered in this chapter take values in the

extended real numbers, that is, the set R∪{±∞} . Recall that

a property is said to hold almost everywhere (abbreviated

a.e.) on a measurable set E provided it holds on E ∼ E0,

where E0 is a subset of E for which m(E0) = 0 (Definition

2.5.7).

Given two functions h and g defined on E, for notational

brevity we often write

h ≤ g to mean that h(x) ≤ g(x) for all x ∈ E .

Definition 3.1.1. A sequence of functions { fn } on E is

increasing provided fn ≤ fn+1 on E for each index n. i.e.,
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if

fn(x) ≤ fn+1(x) for all x ∈ E and each index n.

Proposition 3.1.2. Let f be an extended real-valued function

whose domain E is measurable. Then the following state-

ments are equivalent:

(i) For each real number c, the set {x : f(x) > c} is mea-

surable.

(ii) For each real number c, the set {x : f(x) ≥ c} is mea-

surable.

(iii) For each real number c, the set {x : f(x) < c} is mea-

surable.

(iv) For each real number c, the set {x : f(x) ≤ c} is mea-

surable.

Each of these properties implies that for each extended real

number c,

(v) the set {x ∈ E : f(x) = c} is measurable.
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Proof. Since the sets in (i) and (iv) are complementary in

E, as are the sets in (ii) and (iii), and the complement in E

of a measurable subset of E is measurable, (i) and (iv) are

equivalent, as are (ii) and (iii). Details are given below:

(i) implies (ii): Note that

{x ∈ E : f(x) ≥ c} =
∞⋂
k=1

{
x ∈ E : f(x) > c− 1

k

}
. (3.1)

By the assumption (i),{
x ∈ E : f(x) > c− 1

k

}
is measurable for any natural number k, and, since intersec-

tion of a countable collection of measurable sets is measurable

(Proposition 2.3.19 and ), we have

∞⋂
k=1

{
x ∈ E : f(x) > c− 1

k

}

is measurable. This implies (using (3.1)) that {x ∈ E : f(x) ≥ c}
is measurable. That is, (i) implies (ii) is proved.
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(ii) implies (i): Note that

{x ∈ E : f(x) > c} =
∞⋃
k=1

{
x ∈ E : f(x) ≥ c+

1

k

}
.

By the assumption (ii),
{
x ∈ E : f(x) ≥ c+ 1

k

}
is measurable

for any natural number k , and, since union of a sequence of

measurable sets is measurable (Proposition 2.3.16), we have⋃∞
k=1

{
x ∈ E : f(x) ≥ c+ 1

k

}
is measurable. This implies that

{x ∈ E : f(x) > c} is measurable. That is, (ii) implies (i) is

proved.

(i) implies (iv): Note that

{x ∈ E : f(x) ≤ c} = E ∼ {x ∈ E : f(x) > c} .

E and {x ∈ E : f(x) > c} are measurable implies the differ-

ence E ∼ {x ∈ E : f(x) > c} is also measurable. That is,

{x ∈ E : f(x) ≤ c} is measurable. That is, (i) implies (iv).

(iv) implies (i): Note that

{x ∈ E : f(x) > c} = E ∼ {x ∈ E : f(x) ≤ c} .



3.1 Sums, Products, and Compositions 117

E and {x ∈ E : f(x) ≤ c} are measurable sets implies the

difference set E ∼ {x : f(x) ≤ c} is also measurable. That is,

{x ∈ E : f(x) > c} is measurable. That is, (iv) implies (i).

As above, (ii) implies (iii) and (iii) implies (ii) can be

proved.

That we have shown that the first four statements are

equivalent.

Next we have to show that first four statements imply the

fifth statement. For this assume one statement; and then by

the discussion above, all the four statements hold. We have

to show that this implies fifth statement.

Case 1) If c is a real number:

{x ∈ E : f(x) = c} = {x ∈ E : f(x) ≥ c}∩{x ∈ E : f(x) ≤ c} ,

and so (ii) and (iv) implies sets on the right hand side are

measurable and hence their intersection is measurable. i.e.,

{x ∈ E : f(x) = c} is measurable.
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Case 2) If c = ∞:

{x ∈ E : f(x) = ∞} =
∞⋂
k=1

{x ∈ E : f(x) > k} .

By (i), for any natural number k, {x ∈ E : f(x) > k} is mea-

surable, and hence the countable intersection

∞⋂
k=1

{x ∈ E : f(x) > k}

is measurable. Thus, {x ∈ E : f(x) = ∞} is measurable.

Case 3) If c = −∞:

{x ∈ E : f(x) = −∞} =
∞⋂
k=1

{x ∈ E : f(x) < −k} ,

and for any natural number k, {x ∈ E : f(x) < −k} is mea-

surable, and hence the countable intersection

∞⋂
k=1

{x ∈ E : f(x) < −k}

is measurable. Hence {x ∈ E : f(x) = ∞} is measurable.
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Hence in any case (v) holds. This completes the proof.

Definition 3.1.3. [Lebesgue measurable function] An ex-

tended real valued function f defined on a set E is said to

be Lebesgue measurable or simply measurable, provided

its domain E is measurable and it satisfies one of the first

four statements of Proposition 3.1.2.

Proposition 3.1.4. Let the function f be defined on a mea-

surable set E. Then f is measurable if and only if for each

open set O, the inverse image of O under f ,

f−1(O) = {x ∈ E|f(x) ∈ O },

is measurable.

Proof Suppose the inverse image of each open set is measur-

able. To prove that f is measurable, by Definition 3.1.3, it is

enough to show that one of the first four statements of Propo-

sition 3.1.2 holds. We show that statement (i) of Proposition

3.1.2 holds. Fix a real number c. Then

{x ∈ E|f(x) > c} = f−1((c, ∞)).



120 Chapter 3. Lebesgue Measurable Functions

Since the interval (c, ∞) is open, by the assumption the set

f−1((c, ∞)) is measurable. Hence, the set {x ∈ E|f(x) > c}
is also measurable. Since c is an arbitrary real number, this

shows that, for each real number c, the set {x : f(x) > c} is

measurable. Hence statement (i) of Proposition 3.1.2 holds,

and hence, by Definition 3.1.3, f is measurable.

Conversely, suppose f is measurable. Let O be open. Then we

can express O as the union of a countable collection of open,

bounded intervals { Ik}∞k=1 where each Ik may be expressed as

Ik = Bk ∩ Ak

where Bk = (−∞, bk) and Ak = (ak, ∞). That is,

O =
∞⋃
k=1

Ik =

[
∞⋃
k=1

Bk ∩ Ak

]
.

Since f is a measurable function, by Definition 3.1.3, any one

of the statements in Proposition 3.1.2 holds, and since the

statements are equivalent, it follows that all statements in



3.1 Sums, Products, and Compositions 121

Proposition 3.1.2 hold. Hence, noting that

f−1(Bk) = {x ∈ E|f(x) < bk}

and

f−1(Ak) = {x ∈ E|f(x) > ak}

we have (using statements in Proposition 3.1.2) each f−1(Bk)

and f−1(Ak) are measurable sets. On the other hand, the

measurable sets are a σ-algebra (Proposition 2.3.19) and there-

fore f−1(O) is measurable since

f−1(O) = f−1

[
∞⋃
k=1

Bk ∩ Ak

]
=

∞⋃
k=1

f−1(Bk)︸ ︷︷ ︸
measurable set

∩ f−1(Ak)︸ ︷︷ ︸
measurable set︸ ︷︷ ︸

measurable set︸ ︷︷ ︸
measurable set

.

The following proposition tells us that the most familiar

functions from elementary analysis, the continuous functions,

are measurable.

Proposition 3.1.5. [Continuous functions are measurable]

A real-valued function that is continuous on its measurable do-
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main is measurable.

Proof. Let the function f be continuous on the measurable set

E. Let O be open. Since f is continuous, f−1(O) is an open

subset of E. Hence this open subset can be expressed as the

intersection of E with an open set U of R (Ref. The section

Subspace Topology in any one of Topology text books). So

f−1(O) = E ∩ U (3.2)

where U is open. Being open set, O is measurable. Thus,

from (3.2), f−1(O), being the intersection of two measurable

sets, is measurable. It follows from the preceding proposition

that f is measurable.

Definition 3.1.6. A real-valued function that is either in-

creasing or decreasing is said to be monotone.

We leave the proof of the next proposition as an exercise.

Proposition 3.1.7. A monotone function that is defined on

an interval is measurable.
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Proposition 3.1.8. Let f be an extended real-valued function

on E.

1. If f is measurable on E and f = g a.e. on E, then g is

measurable on E.

2. For a measurable subset D of E, f is measurable on E

if and only if the restrictions of f to D and E ∼ D are

measurable.

Proof. First assume that f is measurable on E and f = g

a.e. on E. To prove that g is measurable on E (by Definition

3.1.3), it is enough to show that for each real number c, the set

{x : g(x) > c} is measurable. Define

A = {x ∈ E : f(x) 6= g(x)} .

Observe that

{x ∈ E : g(x) > c} = {x ∈ A : g(x) > c}

∪ [{x ∈ E : f(x) > c} ∩ [E ∼ A]] .

(3.3)
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• Since f = g a.e. E, we have m(A ) = 0 (Remark 2.5.8).

Thus, noting that

{x ∈ E : g(x) > c} ⊆ A

it follows that {x ∈ E : g(x) > c} is measurable, being

a subset of the set A of measure zero.

• Since f is a measurable function on E, by Definition

3.1.3, the set {x ∈ E : f(x) > c} is a measurable set.

• Since both E and A are measurable, and since the

measurable sets are an algebra (Remark 2.3.14), the

set E ∼ A is measurable.

Hence, the set on the right hand side of (3.3), being the union

of measurable sets, is measurable. So, the set {x ∈ E : g(x) > c}
is measurable.

To verify (ii), just observe that for any c,

{x ∈ E : f(x) > c} = {x ∈ D : f(x) > c}

∪ {x ∈ E ∼ D : f(x) > c}
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and once more use the fact that the measurable sets are an

algebra.

Remark 3.1.9. The sum f + g of two measurable extended

real-valued functions f and g is not properly defined at points

at which f and g take infinite values of opposite sign.

Assume f and g are finite a.e. on E. Define E0 to be the

set of points in E at which both f and g are finite. If the

restriction of f + g to E0 is measurable, then,

• by the preceding proposition, any extension of f + g,

as an extended real-valued function, to all of E also is

measurable.

This is the sense in which we consider it unambiguous to state

that the sum of two measurable functions that are finite a.e.

is measurable. Similar remarks apply to products.

The following proposition tells us that standard algebraic

operations performed on measurable functions that are finite

a.e. again lead to measurable functions.

Theorem 3.1.10. Let f and g be measurable functions on

E that are finite a.e. on E.
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(a) (Linearity) For any α and β,

αf + βg is measurable on E.

(In particular,

Taking α = β = 1, f + g is measurable on E.

Taking α = 1, β = −1, f − g is measurable on E.

Taking β = 0, αf is measurable on E. )

(b) (Products) fg is measurable on E.

Proof. By the above remarks, we may assume f and g are

finite on all of E. If α = 0, then the function αf also is

measurable. If α 6= 0, observe that for a number c,

{x ∈ E : αf(x) > c} =
{
x ∈ E : f(x) > c

α

}
if α > 0

and {x ∈ E : αf(x) > c} =
{
x ∈ E : f(x) < c

α

}
if α < 0.

Thus the measurability of f implies the measurability of αf .

Therefore to establish linearity it suffices to consider the case

α = β = 1.

For x ∈ E, if f(x) + g(x) < c , then f(x) < c − g(x) and
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so, by the density of the set of rational numbers Q in R, there

is a rational number q for which

f(x) < q < c− g(x) .

Hence

{x ∈ E : f(x) + g(x) < c}

=
⋃
q∈Q

{x ∈ E : g(x) < c− q} ∩ {x ∈ E : f(x) < q} .

The rational numbers are countable. Thus

{x ∈ E : f(x) + g(x) < c }

is measurable, since it is the union of a countable collection

of measurable sets. Hence f + g is measurable.

(b) To prove that the product of measurable functions is

measurable, first observe that

fg =
1

2

[
(f + g)2 − f 2 − g2

]
(3.4)
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By (a), if f and g be measurable functions on E, then f+g is

measurable. If we also prove that square of a measur-

able function is measurable, then it follows that (f + g)2,

f 2 and g2 are measurable. Then by the Linearity in (a),

(f + g)2 − f 2 is measurable. Then, (f + g)2 − f 2 is mea-

surable and g2 is measurable implies, again by linearity, that

(f+g)2−f 2−g2 is measurable. Again by linearity with α = 1
2

and (f + g)2− f 2− g2 in place of measurable function, linear-

ity implies 1
2
[(f + g)2 − f 2 − g2] is measurable. That is, fg

is measurable. So we claim that square of a measurable

function is measurable. i.e., we show that if f is measur-

able, then f 2 is measurable. By Definition 3.1.3, it is enough

to show that for any real number c, {x ∈ E : f 2(x) > c} is

measurable.

Case 1) For c ≥ 0;

{
x ∈ E : f 2(x) > c

}
=

{
x ∈ E : (f(x))2 > c

}
=

{
x ∈ E : f(x) >

√
c
}

∪
{
x ∈ E : f(x) < −

√
c
}

Since f is a measurable function, by Definition 3.1.3, the sets
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{x ∈ E : f(x) >
√
c} and {x ∈ E : f(x) < −

√
c} are measur-

able sets. Hence their union

{
x ∈ E : f(x) >

√
c
}
∪
{
x ∈ E : f(x) < −

√
c
}

is also measurable. i.e., {x ∈ E : f 2(x) > c} is measurable.

Case 2) For c < 0,

{
x ∈ E : f 2(x) > c

}
=
{
x ∈ E : (f(x))2 > c

}
= E

is measurable, since E, the domain of f , is a measurable set.

By Case 1 and Case 2, it follows that for any real number c,

{x ∈ E : f 2(x) > c} is measurable. This completes the proof.

Many of the properties of functions considered in elemen-

tary analysis, including continuity and differentiability, are

preserved under the operation of composition of functions.

However, the composition of measurable functions may not be

measurable.

Proposition 3.1.11. [The Preservation of Measurability

Under Composition] Let g be a measurable real-valued func-
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tion defined on E and f a continuous real-valued function de-

fined on all of R. Then the composition f ◦ g is a measurable

function on E.

Proof. According to Proposition 3.1.4, a function is measur-

able if and only if the inverse image of each open set is mea-

surable. Let O be open. Then

(f ◦ g)−1(O) = g−1(f−1(O)) .

Since f is continuous and defined on an open set, the set

U = f−1(O) is open. We infer from the measurability of the

function g that g−1(U) is measurable. Thus the inverse image

(f ◦g)−1(O) is measurable and so the composite function f ◦g
is measurable.

This completes the proof.

Definition 3.1.12. If f is real valued function defined on a

subset E of R. Then |f | : E → R is defined by

|f | (x) = |f(x)| for x ∈ E
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and for p > 0, |f |p : E → R is defined by

|f |p (x) = |f(x)|p for x ∈ E.

Corollary 3.1.13. From the definition above, we also have

|f | (x) = |f(x)| = max{ f(x), −f(x)},

Corollary 3.1.14. If f is a measurable function on E, then

| f | is a measurable function on E.

Proof. If we take h be defined on E by h(x) = |x| for x ∈ E,
then h is continuous on E. Also, if we let f be a measurable

function on E, then by the above Proposition, the composition

h ◦ f is a measurable function on E. Since

|f | = h ◦ f

it follows that | f | is a measurable function on E..

Corollary 3.1.15. If f is a measurable function on E, then

| f |p is measurable with the same domain E for each p > 0 .

Definition 3.1.16. For a finite family { fk }nk=1 of functions
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with common domain E, the function

max{ f1, . . . , fn }

is defined on E by

max{ f1, . . . fn } = max{ f1(x), . . . fn(x) } forx ∈ E.

The function

min{ f1, . . . , fn }

is defined on E by

min{ f1, . . . , fn } = min{ f1(x), . . . , fn(x) } for x ∈ E.

Proposition 3.1.17. For a finite family { fk }nk=1 of measur-

able functions with common domain E, the functions

max{ f1, . . . , fn }

and

min{ f1, . . . , fn }

also are measurable.
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Proof. For any c, we have

{x ∈ E : max{ f1, . . . , fn }(x) > c} =
n⋃
k=1

{x ∈ E : fk(x) > c}

so this set is measurable since it is the finite union of mea-

surable sets. Thus the function max{ f1, . . . , fn } is measur-

able. A similar argument shows that the function

min{ f1, . . . , fn } also is measurable.

Definition 3.1.18. For a function f defined on E, we have

the associated functions |f | , f+, and f− defined on E by

|f | (x) = max{ f(x), −f(x)},

f+(x) = max{ f(x), 0},

f −(x) = max{ −f(x), 0}.

Example 3.1.19. For the function

f(x) = sinx, 0 ≤ x ≤ 2π (Fig. (3.1))

we have

−f(x) = − sin x, 0 ≤ x ≤ 2π (Fig. (3.2))
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|f | (x) = max{ f(x), −f(x)} =

{
sin x, 0 ≤ x ≤ π

− sin x, π < x ≤ 2π

(Fig. (3.3)

f+(x) = max{ f(x), 0} =

{
sin x, 0 ≤ x ≤ π

0, π < x ≤ 2π
(Fig.

(3.4))

f −(x) = max{−f(x), 0} =

{
0, 0 ≤ x ≤ π

− sin x, π < x ≤ 2π

(Fig. (3.5))

Figure 3.1: Graph of f(x) = sinx, 0 ≤ x ≤ 2π
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Figure 3.2: Graph of −f(x) = − sin x, 0 ≤ x ≤ 2π

Figure 3.3: Graph of |f |
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Figure 3.4: Graph of f+

Figure 3.5: Graph of f−

Corollary 3.1.20. If f is measurable on E, then, so are the

functions |f | , f+, and f−.
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Proof. If f is measurable on E, then, by the preceding propo-

sition, so are the functions |f | , f+, and f−.

This will be important when we study integration since the

expression of f as the difference of two nonnegative functions,

f = f+ − f − on E, plays an important part in defining the

Lebesgue integral.

3.2 Sequential Pointwise Limits and

Simple Approximation

For a sequence {fn} of functions with common domain E and

a function f on E, there are several distinct ways in which it

is necessary to consider what it means to state that

“ the sequence {fn} converges to f. ”

In this section we consider the concepts of pointwise con-

vergence and uniform convergence, which are familiar from

elementary analysis.
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Definition 3.2.1. For a sequence {fn} of functions with com-

mon domain E, a function f on E and a subset A of E, we

say that

1. The sequence {fn} converges to f pointwise on A

provided

lim
n→∞

fn(x) = f(x) for allx ∈ A.

2. The sequence {fn} converges to f pointwise a.e.

on A provided it converges pointwise on A ∼ B, where

m(B) = 0 .

3. The sequence {fn} converges to f uniformly on A

provided for each ε > 0, there is an index N for which

|f − fn| < ε on A for alln ≥ N .

When considering sequences of functions {fn} and their

convergence to a function f , we often implicitly assume that

all of the functions have a common domain. We write “{fn} →
f pointwise on A ” to indicate the sequence {fn} converges
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to f pointwise on A and use similar notation for uniform con-

vergence.

The pointwise limit of continuous functions may not be

continuous. The pointwise limit of Riemann integrable func-

tions may not be Riemann integrable. The following proposi-

tion is the first indication that the measurable functions have

much better stability properties.

Proposition 3.2.2. Let {fn} be a sequence of measurable

functions on E that converges pointwise a e. on E to the func-

tion f . Then f is measurable.

Proof. Let E0 be a subset of E for which m(E0) = 0 and

{fn} converges to f pointwise on E ∼ E0. Since m(E0) = 0,

it follows from Proposition 3.1.8 that f is measurable if and

only if its restriction to E ∼ E0 is measurable. Therefore, by

possibly replacing E by E ∼ E0, we may assume the sequence

converges pointwise on all of E.

Fix a number c. We must show that {x ∈ E|f(x) <

c} is measurable. Observe that for a point x ∈ E , since
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lim
n→∞

fn(x) = f(x) ,

f(x) < c

if and only if

there are natural numbers n and k for which fj(x) < c − 1
n

for all j ≥ k .

But for any natural numbers n and j, since the function fj

is measurable, the set
{
x ∈ E|fj(x) < c− 1

n

}
is measurable.

Therefore, for any k, the intersection of the countably collec-

tion of measurable sets

∞⋂
j=k

{
x ∈ E|fj(x) < c− 1

n

}

also is measurable. Consequently, since the union of a count-

able collection of measurable sets is measurable,

{x ∈ E|f(x) < c} =
⋃

1≤k, n<∞

[
∞⋂
j=k

{
x ∈ E|fj(x) < c− 1

n

}]

is measurable. This completes the proof.
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Definition 3.2.3. If A is any set, we define the charac-

teristic function χA of the set A to be the function given

by

χA(x) =

{
1 if x ∈ A
0 if x /∈ A

Remark 3.2.4. The function χA is measurable if and only if

A is measurable.

Thus the existence of a nonmeasurable set implies the ex-

istence of a nonmeasuarble function. Linear combinations

of characteristic functions of measurable sets play a role in

Lebesgue integration similar to that played by step functions

in Riemann Integration, and so we name these functions.

Definition 3.2.5. A real-valued function ϕ defined on a mea-

surable set E is called simple if it is measurable and assumes

only a finite number of values.

If ϕ is simple, has domain E and assumes only the finite

number of values c1, . . . , cn, then

ϕ =
n∑
k=1

ckχEk
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on E, where Ek = {x ∈ E : ϕ(x) = ck}.

This particular expression of ϕ as a linear combination of char-

acteristic functions is called the canonical representation

of the simple function ϕ.

It is easy to show that the sum, product, and difference of

two simple functions are simple.

Lemma 3.2.6. The Simple Approximation Lemma Let

f be a measurable real-valued function on E. Assume f is

bounded on E, that is, there is an M ≥ 0 for which |f | ≤M

on E. Then for each ε > 0, there are simple functions ϕε

and ψε defined on E which have the following approximation

properties:

ϕε ≤ f ≤ ψε and 0 ≤ ψε − ϕε < ε on E.

Proof. Let (c, d ) be an open, bounded interval that contains

the image of E, f(E ), and

c = y0 < y1 < · · · < yn−1 < yn = d

be a partition of the closed, bounded interval [c, d ] such that
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yk − yk−1 < ε for 1 ≤ k ≤ n. Define

Ik = [yk−1, yk) and Ek = f−1(Ik) for 1 ≤ k ≤ n.

Since each Ik is an interval and the function f is measurable,

each set Ek is measurable. Define the simple functions ϕε and

ψε on E by

ϕε =
n∑
k=1

yk−1 · χEk and ψε =
n∑
k=1

yk · χEk .

Let x ∈ E. Since f(E ) ⊆ (c, d ), there is a unique k, 1 ≤ k ≤
n, for which yk−1 ≤ f(x) < yk and therefore

ϕε(x) = yk−1 ≤ f(x) < yk = ψε(x).

But yk − yk−1 < ε, and therefore ϕε and ψε have required

approximation properties. This completes the proof.

To the several characterizations of measurable functions

that we already established, we add the following one.

Theorem 3.2.7. The Simple Approximation Theorem

An extended real-valued function f on a measurable set E is
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measurable if and only if there is a sequence {ϕn} of simple

functions on E which converges pointwise on E to f and has

the property that

|ϕn| ≤ |f | on E for all n.

If f is nonnegative, we may choose {ϕn} to be increasing.

Proof. Since each simple function is measurable, Proposition

3.2.2 tells us that a function is measurable if it is the pointwise

limit of a sequence of simple functions. It remains to prove

the converse.

Assume f is measurable. We also assume f ≥ 0 on E. The

general case follows by expressing f as the difference of non-

negative measurable functions. Let n be a natural number.

Define

En = {x ∈ E|f(x) ≤ n}.

Then En is a measurable set and the restriction of f to En

is a nonnegative bounded measurable function. By the Sim-

ple Approximation Lemma, applied to the restriction of f to
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En and with the choice of ε = 1
n
, we may select simple func-

tions ϕn and ψn defined on En which have the following

approximation properties:

0 ≤ ϕn ≤ f ≤ ψn on En and 0 ≤ ψn − ϕn <
1
n

on En .

Observe that

0 ≤ ϕn ≤ f and 0 ≤ f − ϕn ≤ ψn − ϕn <
1
n

on En . (3.4)

Extend ϕn to all of E by setting

ϕn(x) = n if f(x) > n .

The function ϕn is a simple function defined on E and 0 ≤
ϕn ≤ f on E. We claim that the sequence {ψn} converges to

f pointwise on E.

Let x ∈ E.

Case 1: Assume f(x) is finite. Choose a natural number N

for which f(x) < N . Then

0 ≤ f(x)− ϕn(x) <
1
n

for n ≥ N ,

and therefore lim
n→∞

ψn(x) = f(x) .
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Case 2: Assume f(x) = ∞. Then ϕn(x) = n for all n, so

that lim
n→∞

ϕn(x) = f(x) .

By replacing each ϕn with max{ϕ1, . . . , ϕn} we have

{ϕn} increasing. This completes the proof.

3.3 Littlewood’s Three Principles,

Egoroff’s Theorem, and

Lusin’s Theorem

Theorem 3.3.1. Egoroff’s Theorem Assume E has finite

measure. Let {fn} be a sequence of measurable functions on

E that converges pointwise on E to the real-valued function

f . Then for each ε > 0, there is a closed set F contained in

E for which

{fn} → f uniformly on F and m(E ∼ F ) < ε.

To prove Egoroff’s Theorem it is convenient to first estab-

lish the following lemma.
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Lemma 3.3.2. Under the assumptions of Egoroff’s Theorem,

for each η > 0 and δ > 0, there is a measurable subset A of

E and an index N for which

|fn − f | < η on A for all n ≥ N and m(E ∼ F ) < δ.

Proof. For each k, the function |f − fk| is properly defined,

since f is real-valued, and it is measurable, so that the set

{x ∈ E| |f(x)− fk(x)| < η} is measurable. The intersection

of a countable collection of measurable sets is measurable.

Therefore

En = {x ∈ E| |f(x)− fk(x)| < η for all k ≥ n}

is a measurable set. Then {En}∞n=1 is an ascending condition

of measurable sets, and

E =
∞⋃
n=1

En,

since {fn} converges pointwise to f on E. We infer from the
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continuity of measure that

m(E) = lim
n→∞

m(En).

Since m(E) <∞ , we may choose an index N for which

m(EN) > m(E)− ε.

Define A = En and observe that, by the excision property of

measure,

m(E ∼ A) = m(E)−m(EN) < ε.

This completes the proof of the Lemma.

Proof of Egoroff’s Theorem For each natural number n,

let An be a measurable subset of E and N(n) an index which

satisfy the conclusion of the preceding lemma with δ = ε
2n+1

and η = 1
n
, that is,

m(E ∼ An) <
ε

2n+1
(3.5)

and

|fk − f | < 1

n
on An for all k ≥ N(n). (3.6)
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Define

A =
∞⋂
n=1

An.

By De Morgan’s Identities, the countably subadditivity of

measure and (6.4),

m(E ∼ A) = m

(
∞⋃
n=1

[E ∼ An]

)

≤
∞∑
n=1

m(E ∼ An)

<
∞∑
n=1

ε

2n+1

= ε
1
4

1− 1
2

=
ε

2
.

We claim that {fn} converges to f uniformly on A. Indeed,

let ε > 0 . Choose an index n0 such that 1
n0

< ε . Then, by

(6.5),

|fk − f | < 1
n0

on An0 for all k ≥ N(n0).
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However, A ⊆ An0 and 1/n0 < ε and therefore

|fk − f | < ε on A for k ≥ N(n0).

Thus {fn} converges to f uniformly on A andm(E ∼ A) < ε
2
.

Finally, by Theorem 2.4.2, we may choose a closed set F

contained in A for whichm(A ∼ F ) < ε
2
. Thusm(E ∼ F ) < ε

and {fn} → f uniformly on F. This completes the proof of

Egoroff’s Theorem. �

It is clear that Egoroff’s Theorem also holds if the conver-

gence is pointwise a.e. and the limit function is finite a.e.

We now present a precise version of Littlewood’s second

principle in the case the measurable function is simple and

then use this special case to prove the general case of the

principle, Lusin’s Theorem.

Proposition 3.3.3. Let f be a simple function defined on E.

Then for each ε > 0, there is a continuous function g on R
and a closed set F contained in E for which

f = g on F and m(A ∼ F ) < ε.



3.3 Littlewood’s Three Principles, ... 151

Proof. Let a1, a2, . . . , an be the finite number of distinct

values taken by f, and let them be taken on the sets

E1, E2, . . . , En ,

respectively. The collection {Ek}∞k=1 is disjoint since the ak ’s

are distinct. According to Theorem 2.4.2, we may choose

closed sets F1, F2, . . . , Fn such that for each index k, k, 1 ≤
k ≤ n ,

Fk ⊆ Ek and m(Ek ∼ Fk) <
ε
n
.

Then

F =
∞⋃
k=1

Fk ,

being the union of a finite collection of closes sets, is closed.

Since {Ek}∞k=1 is disjoint,

m(E ∼ F ) = m

(
n⋃
k=1

[Ek ∼ Fk]

)
=

n∑
k=1

m(Ek ∼ Fk) < ε.

Define g on F to take the value ak on Fk for 1 ≤ k ≤ n .

Since the collection {Fk}nk=1 is disjoint, g is properly defined.

Moreover, g is continuous on F since for a point x ∈ Fi ,
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there is an open interval containing x which is disjoint from

the closed set
⋃
k 6=i Fk and hence on the intersection of this

interval with F the function g is constant. But g can be

extended from a continuous function on the closed set F to

a continuous function on all of R. The continuous function g

on R has the required approximation properties.

Theorem 3.3.4. [ Lusin’s Theorem ] Let f be a real-valued

measurable function on E. Then for each ε > 0, there is a

continuous function g on R and a closed set F contained in

E for which

f = g on F and m(E ∼ F ) < ε.

Proof. We consider the case m(E) <∞ and leave the exten-

sion to m(E) = ∞ as an exercise. According to the Simple

Approximation Theorem, there is a sequence {fn} of simple

functions defined on E that converges to f pointwise on E.

Let n be a natural number. By the preceding proposition,

with f replaced by fn and ε replaced by ε
2n+1 , we may choose

a continuous function gn on R and a closed set Fn contained

in E for which
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fn = gn on Fn and m(E ∼ Fn) <
ε

2n+1 .

According to Egoroff’s Theorem, there is a closed set F0 con-

tained in E such that {fn} converges to f uniformly on F0

and m(E ∼ F0) <
ε
2
. Define

F =
∞⋂
n=0

Fn.

Observe that, by De Morgan’s Identities and the countable

subadditivitiy of measure,

m(E ∼ F ) = m

(
[E ∼ F0] ∪

∞⋃
n=1

[E ∼ Fn]

)

≤ ε

2
+

∞∑
n=1

ε

2n+1

= ε.

The set F is closed since it is the intersection of closed

sets. Each fn is continuous on F since F ⊆ Fn and fn = gn

on Fn. Finally, {fn} converges to f uniformly on F since

F ⊆ F0. However, the uniform limit of continuous functions

is continuous, so the restriction of f to F is continuous on
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F . Finally, there is a continuous function g defined on all of

R whose restriction to F equals f . This function g has the

required approximation properties.



Chapter 4
Lebesgue Integration

In this chapter we study Lebesgue integration. We define this

integral in four stages.

• We first define the integral for simple functions (Defini-

tion 3.2.5) over a set of finite measure.

• Then define the integral for bounded measurable func-

tions f over a set of finite measure, in terms of integrals

of upper and lower approximations of f by simple func-

tions.

155
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• We define the integral of a general nonnegative mea-

surable function f over E to be the supremum of the

integrals of lower approximations of f by bounded mea-

surable functions that vanish outside a set of finite mea-

sure; the integral of such a function is nonnegative.

• Finally, a general measurable function is said to be in-

tegrable over E provided
∫
E

|f | <∞.

We prove that linear combinations of integrable functions are

integrable and that, on the class of integrable functions, the

Lebesgue integral is a monotone, linear functional. A princi-

pal virtue of the Lebesgue integral, beyond the extent of the

class of integrable functions, is the availability of quite gen-

eral criteria which guarantee that if a sequence of integrable

functions {fn} converge pointwise almost everywhere on E to

f, then

lim
n→∞

∫
E

fn =

∫
E

[ lim
n→∞

fn] ≡
∫
E

f.

We refer to that as passage of the limit under the integral

sign or interchanging of limit and integration. Based on Ego-

roff’s Theorem, a consequence of the countable additivity of
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Lebesgue measure, we prove four theorems that provide cri-

teria for justification of this passage: the Bounded Conver-

gence Theorem, the Monotone Convergence Theorem, the

Lebesgue Dominated Convergence Theorem, and the Vitali

Convergence Theorem.

4.1 The Riemann Integral

Definition 4.1.1. Let f be a bounded real-valued function

defined on the closed, bounded interval [a, b]. Let

P = {x0, x1, . . . , xn}

be a partition of [a, b], that is,

a = x0 < x1 < · · · < xn = b.
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Figure 4.1: A partition P = {x0, x1, . . . , xn} of [a, b]

The lower Darboux sum for f with respect to the

partition P, denoted by L(f, P ), is defined by

L(f, P ) =
n∑
i=1

mi · (xi − xi−1)

and the upper Darboux sum for f with respect to the

partition P, denoted by U(f, P ), is defined by

U(f, P ) =
n∑
i=1

Mi · (xi − xi−1)

where, for 1 ≤ i ≤ n,

mi = inf {f(x)|xi−1 < x < xi}

and

Mi = sup {f(x)|xi−1 < x < xi} .
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The lower Riemann integral of f over [a, b], denoted by

(R)
∫ b
a
f, is defined by

(R)

∫ b

a

f = sup {L(f, P ) | P a partition of [a, b]}

and the upper Riemann integral of f over [a, b], denoted

by (R)
∫ b
a
f, is defined by

(R)

∫ b

a

f = inf {U(f, P ) | P a partition of [a, b]}

Since f is assumed to be bounded and the interval [a, b] has

finite length, the lower and upper Riemann integrals are finite.

Proposition 4.1.2.

(R)

∫ b

a

f ≤ (R)

∫ b

a

f.

That is, the upper integral is always at least as large as the

lower integral.

Definition 4.1.3. A bounded real-valued function f defined

on the closed, bounded interval [a, b] is Riemann integrable
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over [a, b] if

(R)

∫ b

a

f = (R)

∫ b

a

f

and in that case the common value, called Riemann integral

of f over [a, b], is denoted by

(R)

∫ b

a

f

Notation 4.1.4. The notation of Riemann integral of f over

[a, b] as (R)
∫ b
a
f is just to distinguish it from the Lebesgue

integral, which we consider in the next section.

Remark 4.1.5. If we define

mi = inf {f(x)|xi−1 ≤ x ≤ xi}

and

Mi = sup {f(x)|xi−1 ≤ x ≤ xi}

so the infima and suprema are taken over closed subintervals,

we arrive at the same value of the upper and lower Riemann

integral.

Definition 4.1.6. A real-valued function ψ defined on [a, b]
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is called a step function provided there is a partition P =

{x0, x1, . . . , xn} of [a, b] and numbers c1, . . . , cn such that

for 1 ≤ i ≤ n,

ψ(x) = ci if xi−1 < x < xi .

Remark 4.1.7.

L(ψ, P ) =
n∑
i=1

ci (xi − xi−1) = U(ψ, P ).

From the above remark and the definition of upper and

lower Riemann integrals, we infer that a step function ψ is

Riemann integrable and

(R)

∫ b

a

ψ =
n∑
i=1

ci (xi − xi−1).

Therefore, we may reformulate the definition of the lower and
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upper Riemann integrals as follows:

(R)

∫ b

a

f

= sup

{
(R)

∫ b

a

ϕ | ϕ a step function andϕ ≤ f on [a, b]

}
and

(R)

∫ b

a

f

= inf

{
(R)

∫ b

a

ψ | ψ a step function andψ ≥ f on [a, b]

}
.

Example 4.1.8. [ Dirichlet’s Function - An Example of

a Function which is Not Riemann Integrable ] Define f

on [0, 1] by setting

f(x) =

{
1 if x is rational,

0 if x is irrational,

Let P be any partition of [0, 1]. By the density of the rationals
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and the irrationals,

L(f, P ) = 0 and U(f, P ) = 1.

Thus

(R)

∫ 1

0

f = 0 < 1 = (R)

∫ 1

0

f,

so f is not Riemann integrable. The set of rational numbers

in [0, 1] is countable. Let {qk}∞k=1 be an enumeration of the

rational numbers in [0, 1]. For a natural number n, define fn

on [0, 1] by setting

fn(x) =

{
1 if x = qk for some qk with 1 ≤ k ≤ n,

0 otherwise.

Then each fn is a step function, so it is Riemann integrable.

Thus, {fn} is an increasing sequence of Riemann integrable

functions on [0, 1],

|fn| ≤ 1 on [0, 1] for all n

and

{fn} → f pointwiseon [0, 1].
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However, the limit function f fails to be Riemann integrable

on [0, 1].

4.2 The Lebesgue Integral of a Bounded

Function over a Set of Finite Mea-

sure

The Dirichlet function (Example 4.1.8) exhibits one of the

principal shortcomings of the Riemann integral: a uniformly

bounded sequence of Riemann integrable functions on a closed,

bounded interval can converge pointwise to a function that is

not Riemann integrable. We will see that Lebesgue integral

does not suffer from this shortcoming.

Notation 4.2.1. Henceforth we only consider the Lebesgue in-

tegral, unless explicitly mentioned otherwise, and so we use

the pure integral symbol to denote the Lebesgue integral.

Theorem 4.2.8 tells us that any bounded function that is

Riemann integrable over [a, b] is also Lebesgue integrable over

[a, b] and two integrals are equal.
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We recall Definition 3.2.5 of simple function over a mea-

surable set with the function ψ in place of ϕ :

Definition 4.2.2. A real-valued function ψ defined on a set

E is called simple if it is measurable and assumes only a

finite number of real values.

If ψ is simple, has domain E and assumes only the finite

number of distinct values a1, . . . , an, then, by the measura-

bility of ψ, its level sets (or inverse images) ψ−1(ai) are mea-

surable 1 and we have the canonical representation of ψ on E

as

ψ =
n∑
k=1

ckχEk on E (4.1)

where each Ei = ψ−1(ai) = {x ∈ E : ψ(x) = ai} .

This particular expression of ψ as a linear combination of

1 Using Definition 3.1.3 and Proposition 2.3.10, ψ−1(ai) is measur-
able, since

ψ−1(ai) = {x ∈ E : ψ(x) ≥ ai}︸ ︷︷ ︸
measurable set since ψ is measurable

∩ {x ∈ E : ψ(x) ≤ ai}︸ ︷︷ ︸
measurable set since ψ is measurable︸ ︷︷ ︸

measurable , beingtheintersectionofmeasurablesets
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characteristic functions is called the canonical representa-

tion of the simple function ψ, and it is characterized by

the fact that ai distinct and nonzero (and hence the Ei are

disjoint also).

Definition 4.2.3. (Integral of a simple function)For a sim-

ple function ψ defined on a set of finite measure E, we define

the integral of ψ over E by∫
E

ψ =
n∑
i=1

ai ·m(Ei)

when ψ has the canonical representation (4.1)

ψ =
n∑
i=1

ai · χEi

on E, where each

Ei = ψ−1(ai) = {x ∈ E : ψ(x) = ai} .

Lemma 4.2.4. Let {Ei}ni=1 be a finite disjoint collection of

measurable subsets of a set of finite measure E. For 1 ≤ i ≤
n, let ai be a real number.
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If ϕ =
∑n

i=1 aiχEi on E, then
∫
E
ϕ =

∑n
i=1 ai ·m(Ei) .

Proof. The collection {Ei}ni=1 is disjoint but the above may

not be the canonical representation since the ai’s may not

be distinct. We must account for possible repetitions. Let

{λ 1, . . . , λm} be distinct values taken by ϕ. For 1 ≤ j ≤ m,

set

Aj = {x ∈ E : ϕ(x) = λj} .(Fig.4.2)

By definition of the integral in terms of canonical representa-

tions, ∫
E

ϕ =
m∑
j=1

λj ·m(Aj) .

For 1 ≤ j ≤ m, let Ij be the set of indices i ∈ {1, . . . , n}
for which ai = λj. Then

{1, . . . , n} =
m⋃
j=1

Ij,

and the union is disjoint. Moreover, by finite additivity of
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Figure 4.2: In the figure, assuming that a3 = a7 = a9 = λa, we
have for x ∈ E3, ϕ(x) =

∑n
i=1 aiχEi(x) = a3 = λa. Similarly,

ϕ(x) = λa for x ∈ E7 and x ∈ E9. Also, ϕ(x) = λb for
x ∈ E1, x ∈ E2 and x ∈ E12. Also, ϕ(x) = λc for x ∈ E4 and
x ∈ E6.
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measure,

m(Aj) =
∑

i∈Ij m(Ei) for 1 ≤ j ≤ m.

Therefore

n∑
i=1

ai ·m(Ei) =
m∑
j=1

∑
i∈Ij

ai ·m(Ei)

 =
m∑
j=1

λj

∑
i∈Ij

m(Ei)



=
m∑
j=1

λj ·m(Aj) =

∫
E

ϕ

This completes the proof.

Proposition 4.2.5. [ Linearity and Monotonicity of In-

tegration ]Let ϕ and ψ be simple functions defined on a set

of finite measure. Then for any αand β,

(a) (Linearity of Integration)∫
E

(αϕ+ βψ) = α

∫
E

ϕ+ β

∫
E

ψ;

and,
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(b) (Monotonicity of Integration)

if ϕ ≤ ψ on E, then

∫
E

ϕ ≤
∫
E

ψ .

Proof. Since both ϕ and ψ take only a finite number of values

on E, we may choose a finite disjoint collection {Ei}ni=1 of

measurable subsets of E, the union of which is E, such that

ϕ and ψ are constant on each Ei. For each i, 1 ≤ i ≤ n, let

ai and bi, respectively, be the values taken by ϕ and ψ on Ei.

By the preceding lemma,∫
E
ϕ =

∑n
i=1 ai ·m(Ei) and

∫
E
ψ =

∑n
i=1 bi ·m(Ei) .

However, the simple function αϕ+βψ takes the constant value

αai + βbi on Ei. Thus, again by the preceding lemma,∫
E

(αϕ+ βψ) =
n∑
i=1

(αai + βbi) ·m(Ei)

= α
n∑
i=1

ai ·m(Ei) + β
n∑
i=1

bi ·m(Ei)

= α

∫
E

ϕ+ β

∫
E

ψ.
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(b) To prove monotonicity, assume ϕ ≤ ψ on E. Define

η = ψ − ϕ on E. By linearity,∫
E

ψ −
∫
E

ϕ =

∫
E

(ψ − ϕ) =

∫
E

η ≥ 0 ,

since the nonnegative simple function η has a nonnegative

integral. This completes the proof.

The linearity of integration over sets of finite measure of

simple functions shows that the restriction in the statement

of Lemma 4.2.4 that the collection {Ei}ni=1 be disjoint is un-

necessary.

A step function takes only a finite number of values and

each interval is measurable. Thus a step function is simple.

Since the measure of a singleton set is zero and the measure of

an interval is its length, we infer from the linearity of Lebesgue

integration for simple functions defined on sets of finite mea-

sure that the Riemann Integral over a closed, bounded interval

of a step function agrees with the Lebesgue integral.

Definition 4.2.6. Let f be a bounded real-valued function

defined on a set of finite measure E. By analogy with the

Riemann Integral, we define the lower Lebesgue integral
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of f over E to be

sup

{∫
E

ϕ : ϕ simple and ϕ ≤ f on E

}
the upper Lebesgue integral of f over E to be

inf

{∫
E

ψ : ψ simple and f ≤ ψ on E

}
.

Since f is assumed to be bounded, by the monotonicity prop-

erty of the integral for simple functions, the lower and upper

integrals are finite and the upper integral is always at least as

large as the lower integral.

Definition 4.2.7. A bounded function f on a domain E of

finite measure is said to be Lebesgue integrable over E

provided its upper and lower Lebesgue integrals over E are

equal. The common value of the upper and lower integrals

is called the Lebesgue integral, or simply the integral, of f

over E and is denoted by
∫
E
f .

Theorem 4.2.8. Let f be a bounded function defined on the

closed, bounded interval [a, b]. If f is Riemann integrable over
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[a, b], then it is Lebesgue integrable over [a, b] and the two

integrals are equal.

Proof. The assertion that f is Riemann integrable means that,

setting I = [a, b],

sup

{
(R)

∫
I

ϕ : ϕ a step function, ϕ ≤ f

}
= inf

{
(R)

∫
I

ψ : ψ a step function, f ≤ ψ

}
.

To prove that f is Lebesgue integrable we must show that

sup

{∫
I

ϕ : ϕ simple and on ϕ ≤ f on I

}

= inf

{∫
I

ψ : ψ simple and f ≤ ψ on I

}
However, each step function is a simple function and, as we

have already observed, for a step function, the Riemann

integral and the Lebesgue integral are the same.

Therefore the first equality implies the second and also the

equality of the Riemann and Lebesgue integrals.
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Notation 4.2.9. We are now fully justified in using the symbol∫
E
f , without any preliminary (R), to denote the integral of

a bounded function that is Lebesgue integrable over a set

of finite measure. In the case of an interval E = [a, b], we

sometimes use the familiar notation
∫ b
a
f to denote

∫
[a, b]

f

and sometimes it is useful to use the classic Leibniz notation∫ b
a
f(x) dx.

Example 4.2.10. The set E of rational numbers in [0, 1] is

a measurable set of measure zero. The Dirichlet function f

is the restriction to [0, 1] of the characteristic function of E,

χE. Thus f is integrable over [0, 1] and∫
[0, 1]

f =

∫
[0, 1]

1 · χE = 1 ·m(E) = 0 .

We have shown that f is not Riemann integrable over [0, 1].

Theorem 4.2.11. Let f be a bounded measurable function on

a set of finite measure E. Then f is integrable over E.

Proof. Let n be a natural number. By the Simple Approxi-

mation Lemma, with ε = 1
n
, there are two simple functions

ϕn and ψn defined on E for which
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ϕn ≤ f ≤ ψn on E,

and

0 ≤ ψn − ϕn ≤
1

n
on E.

By the monotonicity and linearity of the integral for simple

functions,

0 ≤
∫
E

ψn −
∫
E

ϕn =

∫
E

[ψn − ϕn] ≤
1

n
·m(E).

However,

0 ≤ inf


∫
E

ψ|ψ simple , ψ ≥ f


− sup


∫
E

ϕ|ϕ simple , ϕ ≤ f


≤

∫
E

ψn −
∫
E

ϕn ≤
1

n
·m(E).

This inequality holds for every natural number n and m(E) is
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finite. Therefore the upper and lower Lebesgue integrals are

equal and thus the function f is integrable over E.

It turns out that the converse of the preceding theorem is

true; a bounded function on a set of finite measure is Lebesgue

integrable if and only if it is measurable (We will see this

in Theorem 5.3.2 in Page 249). This shows, in particular,

that not every bounded function defined on a set of finite

measure is Lebesgue integrable. In fact, for any measurable

set E of finite positive measure, the restriction to E of the

characteristic function of each nonmeasurable subset of E fails

to be Lebesgue integrable over E.

Theorem 4.2.12. (Linearity and Monotonicity of In-

tegration) Let f and g be bounded measurable functions on

a set of finite measure E. Then for any α and β,

∫
E

αf + βg = α

∫
E

f + β

∫
E

g. (4.2)

Moreover,
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if f ≤ g on E, then

∫
E

f ≤
∫
E

g. (4.3)

Proof. A linear combination of measurable bounded functions

is measurable and bounded. Thus, by Theorem 4.2.11, αf+βg

is integrable over E. We first prove linearity for β = 0. If

ψ is a simple function so is αψ, and conversely (if α 6= 0).

We established linearity of integration for simple functions.

Let α > 0. Since the Lebesgue integral is equal to the upper

Lebesgue integral,

∫
E

αf = inf
ψ≥αf

∫
E

ψ = α inf
ψ
α
≥f

∫
E

ψ

α
= α

∫
E

f.

For α < 0, since the Lebesgue integral is equal both to the

upper Lebesgue integral and the lower Lebesgue integral,

∫
E

αf = inf
ϕ≥αf

∫
E

ϕ = α sup
ϕ
α
≤f

∫
E

ϕ

α
= α

∫
E

f.

It remains to establish linearity in the case that α = β = 1.

Let ψ1 and ψ2 be simple functions for which f ≤ ψ1 and g ≤



178 Chapter 4. Lebesgue Integration

ψ2 on E. Then ψ1+ψ2 is a simple function and f+g ≤ ψ1+ψ2

on E. Hence, since
∫
E

(f + g) is equal to the upper Lebesgue

integral of f + g over E, by the linearity of integration for

simple functions,

∫
E

(f + g) ≤
∫
E

(ψ1 + ψ2) =

∫
E

ψ1 +

∫
E

ψ2.

The greatest lower bound for the sums of integrals on the

right-hand side, as ψ1 and ψ2 vary among simple functions for

which f ≤ ψ1 and g ≤ ψ2, equals
∫
E

f+
∫
E

g. These inequalities

tell us that
∫
E

(f + g) is a lower bound for these same sums.

Therefore, ∫
E

(f + g) ≤
∫
E

f +

∫
E

g.

It remains to prove this inequality in the opposite direction.

Let ϕ1 and ϕ2 be simple functions for which ϕ1 ≤ f and

ϕ2 ≤ g on E. Then ϕ1 + ϕ2 ≤ f + g on E and ϕ1 + ϕ2 is

simple. Hence, since
∫
E

(f + g) is equal to the lower Lebesgue

integral of f + g over E, by the linearity of integration for
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simple functions,

∫
E

(f + g) ≥
∫
E

(ϕ1 + ϕ2) =

∫
E

ϕ1 +

∫
E

ϕ2.

The least upper bound bound for the sums of integrals on the

right-hand side, as ϕ1 and ϕ2 vary among simple functions for

which ϕ1 ≤ f and ϕ2 ≤ g, equals
∫
E

f+
∫
E

g. These inequalities

tell us that
∫
E

(f + g) is an upper bound for these same sums.

Therefore, ∫
E

(f + g) ≥
∫
E

f +

∫
E

g.

This completes the proof of linearity of integration.

To prove monotonicity, assume f ≤ g on E. Define h =

g − f on E. By linearity,

∫
E

g −
∫
E

f =

∫
E

(g − f) =

∫
E

h .

The function h is nonnegative and therefore ψ ≤ h on E,

where ψ = 0 on E. Since the integral of h equals its lower
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integral,
∫
E

h ≥
∫
E

ψ = 0. Therefore,

∫
E

f ≤
∫
E

g.

Corollary 4.2.13. Let f be a bounded measurable function

on a set of finite measure E. Suppose A and B are disjoint

measurable subsets of E. Then

∫
A∪B

f =

∫
A

f +

∫
B

f. (4.4)

Proof. Both f ·χA and f ·χB are bounded measurable functions

on E. Since A and B are disjoint,

f · χA∪B = f · χA + f · χB.

Furthermore, for any measurable subset El of E,

∫
E1

f =

∫
E

f · χE1 .
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Therefore, by the linearity of integration,

∫
A∪B

f =

∫
E

f · χA∪B =

∫
E

f · χA +

∫
E

f · χB =

∫
A

f +

∫
B

f.

Corollary 4.2.14. Let f be a bounded measurable function

on a set of finite measure E. Then∣∣∣∣∣∣
∫
E

f

∣∣∣∣∣∣ ≤
∫
E

|f |. (4.5)

Proof. The function |f | is measurable and bounded. Now

− |f | ≤ f ≤ |f | on E.

By the linearity and monotonicity of integration,

−
∫
E

|f | ≤
∫
E

f ≤
∫
E

|f | ,

that is, (4.5) holds.



182 Chapter 4. Lebesgue Integration

Proposition 4.2.15. Let {fn} be a sequence of bounded mea-

surable functions on a set of finite measure E.

If { fn} → f uniformly onE, then lim
n→∞

∫
E

fn =

∫
E

f.

Proof. Since the convergence is uniform and each fn is bounded,

the limit function f is bounded. The function f is measur-

able since it is the pointwise limit of a sequence of measurable

functions. Let ε > 0. Choose an index N for which

|f − fn| <
ε

m(E)
onE foralln ≥ N. (4.6)

By the linearity and monotonicity of integration and the pre-

ceding corollary (Corollary 4.2.14), for each n ≥ N,∣∣∣∣∣∣
∫
E

f −
∫
E

fn

∣∣∣∣∣∣ =

∣∣∣∣∣∣
∫
E

[f − fn]

∣∣∣∣∣∣ ≤
∫
E

|f − fn| ≤
ε

m(E)
·m(E) = ε.

Therefore

lim
n→∞

∫
E

fn =

∫
E

f.
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This proposition is rather weak since frequently a sequence

will be presented that converges pointwise but not uniformly.

It is important to understand when it is possible to infer from

{ fn} → f pointwise a.e. .on E

that

lim
n→∞

∫
E

fn

 =

∫
E

[
lim
n→∞

fn

]
=

∫
E

f.

We refer to this equality as passage of the limit under the

integral sign or interchange of limit and integration. Be-

fore proving first result regarding this passage, we consider an

example.

Example 4.2.16. For each natural number n, define fn on

[0, 1] to have the value 0 if x ≥ 2/n, have f(1/n) = n, f(0) =

0 and to be linear on the intervals [0, 1/n] and [1/n, 2/n].

Observe that
1∫

0

fn = 1 for each n.
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Define f = 0 on [0, 1]. Then

{ fn} → f pointwise on [0, 1], but lim
n→∞

1∫
0

fn 6=
1∫

0

f.

Thus, pointwise convergence alone is not sufficient to justify

passage of the limit under the integral sign.

Theorem 4.2.17. [The Bounded Convergence Theo-

rem] Let {fn} be a sequence of measurable functions on a

set of finite measure E. Suppose {fn} is uniformly pointwise

bounded on E, that is, there is a number M ≥ 0 for which

|fn| ≤M onE for all n .

If { fn} → f pointwise on [0, 1], then lim
n→∞

∫
E

fn =

∫
E

f.

Proof. The proof of this theorem furnishes a nice illustration

of Littlewood’s Third Principle. If the convergence is uni-

form, we have the easy proof of the preceding proposition.

However, Egoroff’s Theorem tells us, roughly, that pointwise

convergence is nearly uniform.
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The pointwise limit of a sequence of measurable functions

is measurable. Therefore f is measurable. Clearly |f | ≤ M

on E. Let A be any measurable subset of E and n a natural

number. By the linearity and additivity over domains of the

integral,

∫
E

fn −
∫
E

f =

∫
E

[fn − f ] =

∫
A

[fn − f ] +

∫
E∼A

fn +

∫
E∼A

(−f)

Therefore, by Corollary 4.2.14 and the monotonicity of inte-

gration,∣∣∣∣∣∣
∫
E

fn −
∫
E

f

∣∣∣∣∣∣ ≤
∫
A

[fn − f ] + 2M ·m(E ∼ A). (4.7)

To prove convergence of the integrals, let ε > 0. Since m(E) <

∞ and f is real-valued, Egoroff’s Theorem tells us that there

is a measurable subset A of E for which {fn} → f uniformly

on A and m(E ∼ A) < ε
4M
.
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By uniform convergence, there is an index N for which

|fn − f | < ε

2 ·m(E)
on A for all n ≥ N.

Therefore, for n ≥ N, we infer from (4.7) and the monotonic-

ity of integration that∣∣∣∣∣∣
∫
E

fn −
∫
E

f

∣∣∣∣∣∣ ≤ ε

2 ·m(E)
·m(A) + 2M ·m(E ∼ A) < ε.

Hence the sequence of integrals

{∫
E

fn

}
converges to

∫
E

f.

4.3 The Lebesgue Integral of a Mea-

surable Nonnegative Function

A measurable function f on E is said to vanish outside a set

of finite measure provided there is a subset E0 of E for which

m(E0) <∞ and f ≡ 0 on E ∼ E0. It is convenient to say that

a function that vanishes outside a set of finite measure has

finite support and define its support to be {x ∈ E|f(x) 6= 0}.
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In the previous section, we defined the integral of a bounded

measurable function f over a set of finite measure E. However,

even if m(E) < ∞, if f is bounded and measurable on E

but has finite support, we can define its integral over E by∫
E

f =

∫
E0

f,

where E0 has finite measure and f ≡ 0 on E ∼ E0. This

integral is properly defined, that is, it is independent of the

choice of set of finite measure E0 outside of which f vanishes.

This is a consequence of the additivity over domains property

of integration for bounded measurable functions over a set of

finite measure.

Definition 4.3.1. (Lebesgue Integral of a Measurable Non-

negative Function) If f is a nonnegative measurable function

defined on a measurable set E, we define the integral of f

over E by

∫
E

f = sup

{∫
E

h

∣∣∣∣h bounded, measurable, of finite support

and 0 ≤ h ≤ f on E} .
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Theorem 4.3.2. Chebychev’s Inequality Let f be a non-

negative measurable function on E . Then for any λ > 0,

m {x ∈ E | f(x) ≥ λ } ≤ 1

λ
·
∫
E

f. (4.8)

Proof. Define

Eλ = {x ∈ E | f(x) ≥ λ} .

Case 1. Suppose m(Eλ) = ∞. Let n be a natural number.

Define

Eλ, n = Eλ ∩ [−n, n] and ψn = λ · χEλ, n .

Then ψn is a bounded measurable function of finite support,

λ ·m(Eλ, n) =

∫
E

ψn and 0 ≤ ψn ≤ f on E for all n.

We infer from the continuity of measure that

∞ = λ ·m(Eλ) = λ · lim
n→∞

m(Eλ, n) = lim
n→∞

∫
E

ψn ≤
∫
E

f.
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Thus inequality (4.8) holds since both sides equal ∞.

Case 2. Now consider the case m(Eλ) <∞ . Define

h = λ · χE
λ
.

Then h is a bounded measurable function of finite support

and 0 ≤ h ≤ f on E . By the definition of the integral of f

over E,

λ ·m(Eλ) =

∫
E

h ≤
∫
E

f.

Divide both sides of this inequality by λ to obtain Chebychev’s

Inequality. This completes the proof.

Proposition 4.3.3. Let f be a nonnegative measurable func-

tion on E. Then∫
E

f = 0 if and only if f = 0 a.e. on E. (4.9)

Proof. First assume ∫
E

f = 0.
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Then, by Chebychev’s Inequality, for each natural number n,

m

{
x ∈ X | f(x) ≥ 1

n

}
= 0 .

By the countable additivity of Lebesgue measure,

m {x ∈ X | f(x) > 0} = 0 .

Conversely, suppose f = 0 a.e. on E. Let ϕ be a simple func-

tion and h a bounded measurable function of finite support

for which 0 ≤ ϕ ≤ h ≤ f on E. Then ϕ = 0 a.e. on E

and hence
∫
E
ϕ = 0. Since this holds for all such ϕ , we infer

that
∫
E
h = 0. Since this holds for all such h, we infer that∫

E
f = 0.

Theorem 4.3.4. [Linearity and Monotonicity of In-

tegration] Let f and g be nonnegative measurable functions

on E. Then for any α > 0 and β > 0,

(Linearity) ∫
E

(αf + βg) = α

∫
E

f + β

∫
E

g. (4.10)
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Moreover,

(Monotonicity)

if f ≤ g on E, then

∫
E

f =

∫
E

g. (4.11)

Proof. For α > 0, 0 ≤ h ≤ f on E if and only if 0 ≤ αh ≤ αf

on E. Therefore, by the linearity of the integral of bounded

functions of finite support,∫
E

αf = α

∫
E

f.

Thus, to prove linearity we need only consider the case α =

β = 1. Let h and g be bounded measurable functions of finite

support for which 0 ≤ h ≤ f and 0 ≤ k ≤ g on E. We have

0 ≤ h+k ≤ f+g on E, and h+k also is a bounded measurable

function of finite support. Thus, by the linearity of integration

for bounded measurable functions of finite support,∫
E

h+

∫
E

k =

∫
E

(h+ k) ≤
∫
E

(f + g).

The least upper bound for the sums of integrals on the left-
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hand side, as h and k vary among bounded measurable func-

tions of finite support for which h ≤ f and k ≤ g, equals∫
E
f +

∫
E
g . These inequalities tell us that

∫
E
(f + g) is an

upper bound for these same sums. Therefore,∫
E

f +

∫
E

g ≤
∫
E

(f + g).

It remains to prove this inequality in the opposite direction,

that is, ∫
E

(f + g) ≤
∫
E

f +

∫
E

g.

By the definition of
∫
E
(f + g) as the supremum of

∫
E
l as l

ranges over all bounded measurable functions of finite support

for which 0 ≤ l ≤ f + g on E, to verify this inequality it is

necessary and sufficient to show that for any such function l

, ∫
E

l ≤
∫
E

f +

∫
E

g. (4.12)

For such a function l, define the functions h and k on E by

h = min{ f, l } and k = l − h on E.

Let x belongs to E. If l(x) ≤ f(x), then k(x) = 0 ≤ g(x);
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if l(x) > f(x), then h(x) = l(x) − f(x) ≤ g(x). Therefore,

h ≤ g on E. Both h and k are bounded measurable functions

of finite support. We have

0 ≤ h ≤ f, 0 ≤ k ≤ g and l = h+ k on E.

Hence, again using the linearity of integration for bounded

measurable functions of finite support and the definitions of∫
E
f and

∫
E
g, we have∫

E

l =

∫
E

h+

∫
E

k ≤
∫
E

f +

∫
E

g

Thus (4.12) holds and the proof of linearity is complete.

In view of the definition of
∫
E
f as a supremum, to prove

the monotonicity inequality (6.16) it is necessary and suffi-

cient to show that if h is a bounded measurable function of

finite support for which 0 ≤ h ≤ f on E, then∫
E

h ≤
∫
E

g (4.13)

Let h be such a function. Then h ≤ g on E. Therefore, by the

definition of
∫
E
g as a supremum,

∫
E
h ≤

∫
E
g. This completes
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the proof of monotonicity.

Theorem 4.3.5. [ Additivity Over Domains of Inte-

gration ]Let f be a nonnegative measurable function on E. If

A and B are disjoint measurable subsets of E, then∫
A∪B

f =

∫
A

f +

∫
B

f.

In particular, if E0 is a subset of E of measure zero, then∫
E

f =

∫
E∼E0

f. (4.14)

Proof. Additivity over domains of integration follows from lin-

earity as it did for bounded functions on sets of finite mea-

sure. The excision formula (4.14) follows from additivity over

domains and the observation that, by Proposition 4.3.3, the

integral of a nonnegative function over a set of measure zero

is zero.

The following lemma will enable us to establish several

criteria to justify passage of the limit under the integral sign.

Lemma 4.3.6. [ Fatou’s Lemma ] Let { fn } be a sequence
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of nonnegative measurable functions on E.

If {fn} → f pointwise a.e. onE, then

∫
E

f ≤ lim inf

∫
E

fn.

(4.15)

Proof. In view of (4.14), by possibly excising from E a set of

measure zero, we assume the pointwise convergence is on all

of E. The function f is nonnegative and measurable since it is

the pointwise limit of a sequence of such functions. To verify

the inequality in (4.15) it is necessary and sufficient to show

that if h is any bounded measurable function of finite support

for which 0 ≤ h ≤ f on E, then

∫
E

h ≤ lim inf

∫
E

fn. (4.16)

Let h be such a function. Choose M ≥ 0 for which |h| ≤
M on E. Define

E0 = {x ∈ E|h(x) 6= 0}.

Then m(E0) < ∞. Let n be a natural number. Define a
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function hn on E by

hn = min{h, fn} on E.

Observe that the function hn is measurable, that

0 ≤ hn ≤M on E0 and hn ≡ 0 on E ∼ E0.

Furthermore, for each x ∈ E, since h(x) ≤ f(x) and {fn(x)} →
f(x), {hn(x)} → h(x). We infer from the Bounded Conver-

gence Theorem applied to the uniformly bounded sequence

of restrictions of hn to the set of finite measure E0, and the

vanishing of each hn on E ∼ E0, that

lim
n→∞

∫
E

hn = lim
n→∞

∫
E0

hn =

∫
E0

h =

∫
E

h.

However, for each n, hn ≤ fn on E and therefore, by the

definition of the integral of fn over E,
∫
E

hn ≤
∫
E

fn. Thus,

∫
E

h = lim
n→∞

∫
E

hn ≤ lim inf

∫
E

fn.
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The inequality in Fatou’s Lemma may be strict.

Example 4.3.7. Let E = (0, 1] and for a natural number n,

define fn = n · χ(0, 1
n)
. Then {fn} converges pointwise on E

to f ≡ 0 on E. However,

∫
E

f = 0 < 1 = lim
n→∞

∫
E

fn.

As another example of strict inequality in Fatou’s Lemma,

let E = R and for a nautral number n, define gn = χ(n, n+1).

Then {gn} converges pointwise on E to g ≡ 0 on E. However,

∫
E

g = 0 < 1 = lim
n→∞

∫
E

gn.

However, the inequality in Fatou’s Lemma is an equality if

the sequence {fn} is increasing.

Theorem 4.3.8. The Monotone Convergence Theo-

rem Let {fn} be an increasing sequence of nonnegative mea-
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surable functions on E.

If {fn} → f pointwise a.e. on E, then lim
n→∞

∫
E

fn =

∫
E

f.

Proof. According to Fatou’s Lemma (Lemma 4.3.6),

∫
E

f ≤ lim inf

∫
E

fn.

However, for each index n, fn ≤ f a.e.on E, and so, by the

monotonicity of integration for nonnegative measurable func-

tions and (4.14), ∫
E

fn ≤
∫
E

f.

Therefore

lim sup

∫
E

fn ≤
∫
E

f.

Hence ∫
E

f = lim
n→∞

∫
E

fn.
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Corollary 4.3.9. Let {un} be a sequence of nonnegative mea-

surable functions on E.

If f =
∞∑
n=1

un pointwise a.e. on E, then

∫
E

f =
∞∑
n=1

∫
E

un.

Proof. Apply the Monotone Convergence Theorem with fn =
n∑
k=1

uk, for each index n, and then use the linearity of integra-

tion for nonnegative measurable functions.

Definition 4.3.10. A nonnegative measurable function f on

a measurable set E is said to be integrable over E provided

∫
E

f <∞.

Proposition 4.3.11. Let the nonnegative function f be inte-

grable over E. Then f is finite a.e. on E.

Proof. Let n be a natural number. Chebychev’s Inequality
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and the monotonicity of measure tell us that

m {x ∈ E|f(x) = ∞} ≤ m {x ∈ E|f(x) ≥ n} ≤ 1

n

∫
E

f.

But
∫
E

f is finite and therefore m {x ∈ E|f(x) = ∞} = 0.

Lemma 4.3.12. Beppo Levi’s Lemma Let {fn} be an in-

creasing sequence of nonnegative measurable functions on E.

If the sequence of integrals

{∫
E

fn

}
is bounded, then {fn} con-

verges pointwise on E to a measurable function f that is finite

a.e. on E and

lim
n→∞

∫
E

fn =

∫
E

f <∞.

Proof. Every monotone sequence of extended real numbers

converges to an extended real number. Since {fn} is an in-

creasing sequence of extended real-valued functions on E, we

may define the extended real-valued nonnegative function f

pointwise on E by

f(x) = lim
n→∞

fn(x) for all x ∈ E.
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According to the Monotone Convergence Theorem,

{∫
E

fn

}
→∫

E

f. Therefore, since the sequence of real numbers

{∫
E

fn

}
is

bounded, its limit is finite and so
∫
E

f <∞. We infer from the

preceding proposition that f is finite a.e. on E.

4.4 The General Lebesgue Integral

We first recall Definition 3.1.18 (Also ref. Example 3.1.19):

Definition 4.4.1. For an extended real-valued function f on

E, positive part f+ of f is given by

f+(x) = max {f(x), 0} for allx ∈ E;

and the negative part f− of f is given by

f−(x) = max {−f(x), 0} for allx ∈ E.
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|f | is defined by

|f | (x) = max{ f(x), −f(x)} for allx ∈ E.

Example 4.4.2. [Example 3.1.19 revisited] For the func-

tion

f(x) = sin x, 0 ≤ x ≤ 2π (Fig. (4.3))

we have

−f(x) = − sinx, 0 ≤ x ≤ 2π (Fig. (4.4))

f+(x) = max{ f(x), 0} =

{
sin x, 0 ≤ x ≤ π

0, π < x ≤ 2π
(Fig.

(4.5))

f −(x) = max{−f(x), 0} =

{
0, 0 ≤ x ≤ π

− sin x, π < x ≤ 2π

(Fig. (4.6))

Also,

|f | (x) = max{ f(x), −f(x)} =

{
sin x, 0 ≤ x ≤ π

− sin x, π < x ≤ 2π

(Fig. (4.7)
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Figure 4.3: Graph of f(x) = sinx, 0 ≤ x ≤ 2π

Figure 4.4: Graph of −f(x) = − sin x, 0 ≤ x ≤ 2π
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Figure 4.5: Graph of f+

Figure 4.6: Graph of f−
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Figure 4.7: Graph of |f |

Remark 4.4.3. f+ and f− are nonegative functions on E,

and

f = f+ − f− on E

and

|f | = f+ + f− on E.

An example of this can seen in Example 4.4.2. Observe that

f is measurable if and only if both f+ and f− are measurable.

Proposition 4.4.4. Let f be a measurable function on E.

Then f+ and f− are integrable over E if and only if |f | is

integrable over E.
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Proof. Assume f+ and f− are integrable nonnegative func-

tions. By the linearity of integration for nonnegative func-

tions,

f+ + f−

is integrable over E. Hence

|f | = f+ + f−

is integrable over E.

Conversely, suppose |f | is integrable over E. Since

0 ≤ f+ ≤ |f |

and

0 ≤ f− ≤ |f |

on E, we infer from the monotonicity of integration for non-

negative functions that both f+ and f− are integrable over

E.

Definition 4.4.5. A measurable function f is said to be

integrable over E provided |f | is integrable over E. In this
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case we define the integral of f over E by∫
E

f =

∫
E

f+ −
∫
E

f−.

Of course, for a nonnegative function f, since f = f+ and

f− ≡ 0 on E, this definition of integral coincides with the one

just considered. By the linearity of integration for bounded

measurable functions of finite support, the above definition

of integral also agrees with the definition of integral for this

class of functions.

Proposition 4.4.6. Let f be integrable over E. Then f is

finite a.e. on E and

∫
E

f =

∫
E∼E0

f if E0 ⊆ E and m(E0) = 0. (4.17)

Proof. Proposition 4.3.11, tells us that |f | is finite a.e. on E.

Thus f is finite a.e. on E.

Moreover, (4.17) follows by applying (4.14) to the positive

and negative parts of f.
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The following criterion for integrability is the Lebesgue inte-

gral correspondent of the comparison test for the convergence of

series of real numbers.

Proposition 4.4.7. [ The Integral Comparison Test ]

Let f be a measurable function on E. Suppose there is a non-

negative function g that is integrable over E and dominates f

in the sense that

|f | ≤ g on E.

Then f is integrable over E and∣∣∣∣∣∣
∫
E

f

∣∣∣∣∣∣ ≤
∫
E

|f |.

Proof. By the monotonicity of integration for nonnegative

functions, |f | , and hence f, is integrable. By the triangle

inequality for real numbers and the linearity of integration

for nonnegative functions,∣∣∣∣∣∣
∫
E

f

∣∣∣∣∣∣ =

∣∣∣∣∣∣
∫
E

f+ −
∫
E

f−

∣∣∣∣∣∣ ≤
∫
E

f+ +

∫
E

f− =

∫
E

|f |.
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We have arrived our final stage of generality for the Lebesgue

integral for functions of a single real variable. Before prov-

ing the linearity property for integration, we need to address,

with respect to integration, a point already addressed with

respect to measurability. The point is that for two functions

f and g which are integrable over E, the sum f + g is not

properly defined at points in E where f and g take infinite

values of opposite sign. However, by Proposition 4.4.6, if we

define A to be the set of points in E at which both f and g

are finite, then m(E ∼ A) = 0. Once we show that f + g is

integrable over A, we define

∫
E

(f + g) =

∫
A

(f + g) .

We infer from (4.17) that
∫
E

(f + g) is equal to the integral

over E of any extension of (f + g)|A to an extended real-

valued function on all of E.

Theorem 4.4.8. [Linearity and Monotonicity of In-
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tegration] Let the functions f and g be integrable over E.

Then for any α and β, the function αf +βg is integrable over

E and ∫
E

(αf + βg) = α

∫
E

f + β

∫
E

g.

Moreover,

if f ≤ g on E then

∫
E

f ≤
∫
E

g.

Proof. If α > 0, then [αf ]+ = αf+ and [αf ]− = αf−, while if

α < 0, [αf ]+ = −αf− and [αf ]− = −αf+. Therefore

∫
E

αf = α

∫
E

f

since we established this for nonnegative functions f and α >

0. So it suffices to establish linearity in the case α = β = 1. By

the linearity of integration for nonnegative functions, |f |+ |g|
is integrable over E. Since

|f + g| ≤ |f |+ |g|
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on E, by the integral comparison test, f + g also is integrable

over E. Proposition 4.4.6 tells us that f and g are finite a.e.

on E. According to the same proposition, by possibly excising

from E a set of measure zero, we may assume that f and g

are finite on E. To verify linearity is to show that

∫
E

[f + g]+−
∫
E

[f + g]− =

∫
E

f+ −
∫
E

f−

+

∫
E

g+ −
∫
E

g−

 .
(4.18)

But

(f + g)+ − (f + g)− = f + g = (f+ − f−) + (g+ − g−) on E,

and therefore, since each of these six functions takes real val-

ues on E,

(f + g)+ + f− + g− = (f + g)− + f+ + g+ on E.

We infer from linearity of integration for nonnegative func-
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tions that∫
E

(f + g)+ +

∫
E

f− +

∫
E

g− =

∫
E

(f + g)− +

∫
E

f+ +

∫
E

g+.

Since f, g and f + g are integrable over E, each of these six

integrals is finite. Rearrange these integrals to obtain (4.18).

This completes the proof of linearity.

To establish monotonicity we again argue as above that we

may assume g and f are finite on E. Define h = g − f on E.

Then h is a properly defined nonnegative measurable function

on E. By linearity of integration for integrable functions and

monotonicity of integration for nonnegative functions,

∫
E

g −
∫
E

f =

∫
E

(g − f) =

∫
E

h ≥ 0.

Corollary 4.4.9. [Additivity Over Domains of Inte-

gration] Let f be integrable over E. Assume A and B are
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disjoint measurable subsets of E. Then

∫
A∪B

f =

∫
A

f +

∫
B

f. (4.19)

Proof. Observe that

|f · χA| ≤ |f |

and

|f · χB| ≤ |f |

on E. By the integral comparison test, the measurable func-

tions f · χA and f · χB are integrable over E. Since A and B

are disjoint

f · χA∪B = f · χA + f · χB on E. (4.20)

But for any measurable subset C of E,

∫
C

f =

∫
E

f · χC .
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Thus (4.19) follows from (4.20) and the linearity of integra-

tion.

The following generalization of the Bounded Convergence

Theorem provides another justification for passage of the limit

under the integral sign.

Theorem 4.4.10. [The Lebesgue Dominated Conver-

gence Theorem] Let {fn} be a sequence of measurable func-

tions on E. Suppose there is a function g that is integrable

over E and dominates {fn} on E in the sense that |fn| ≤ g

on E for all n. If {fn} → f pointwise a.e. on E, then f is

integrable over E and

lim
n→∞

∫
E

fn =

∫
E

f.

Proof. Since |fn| ≤ g and |f | ≤ g a.e. on E and g is integrable

over E, by the integral comparison test, f and each fn also

are integrable over E. We infer from Proposition 4.4.6 that,

by possibly excising from E a countable collection of sets of

measure zero and using the countable additivity of Lebesgue

measure, we may assume that f and each fn is finite on E.
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The function g − f and for each n, the function g − fn, are

properly defined, nonnegative and measurable. Moreover, the

sequence {g − fn} converges pointwise a.e. on E to g − f.

Fatou’s Lemma (Lemma 4.3.6) tells us that

∫
E

(g − f) ≤ lim inf

∫
E

(g − fn) .

Thus, by the linearity of integration for integrable functions,

∫
E

g−
∫
E

f =

∫
E

(g − f) ≤ lim inf

∫
E

(g − fn) =

∫
E

g−lim sup

∫
E

fn,

that is,

lim sup

∫
E

fn ≤
∫
E

f.

Similarly, considering the sequence {g + fn}, we obtain

∫
E

f ≤ lim inf

∫
E

fn.

This completes the proof.
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The following generalization of the Lebesgue Dominated

Convergence Theorem, the proof of which we leave as an ex-

ercise, is often useful.

Theorem 4.4.11. (General Lebesgue Dominated Con-

vergence Theorem) Let {fn} be a sequence of measurable

functions on E that converges pointwise a.e. on E to f. Sup-

pose there is a sequence {gn} of nonnegative measurable func-

tions on E that converges pointwise a.e. on E to g and dom-

inates {fn} on E in the sense that

|fn| ≤ |gn | on E for all n.

If

lim
n→∞

∫
E

gn =

∫
E

g <∞,

then

lim
n→∞

∫
E

fn =

∫
E

f.

Remark 4.4.12. In Fatou’s Lemma and the Lebesgue Dom-

inated Convergence Theorem, the assumption of pointwise

convergence a.e. on E rather than on all of E is not a decora-
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tion pinned on to honor generality. It is necessary for future

applications of these results. We provide one illustration of

this necessity. Suppose f is an increasing function on all of

R. A forthcoming theorem of Lebesgue (Lebesgue’s Theorem

(Theorem 6.4.6 in Page 284) tells us that

lim
n→∞

f(x+ 1/n)− f(x)

1/n
= f ′(x) for almost all x. (4.21)

From this and Fatou’s Lemma we will show that for any

closed, bounded interval [a, b],

b∫
a

f ′(x)dx ≤ f(b)− f(a).

In general, given a nondegenerate closed, bounded interval

[a, b] and a subset A of [a, b] that has measure zero, there is

an increasing function f on [a, b] for which the limit in (4.21)

fails to exist at each point in A.



218 Chapter 4. Lebesgue Integration

4.5 Countable Additivity and Con-

tinuity of Integration

The linearity and monotonicity properties of the Lebesgue in-

tegral, which we established in the preceding section, are ex-

tensions of familiar properties of the Riemann integral. We

now establish two properties of the Lebesgue integral

which have no counterpart for the Riemann integral.

The following countable additivity property for Lebesgue in-

tegration is a comparison of the countable additivity property

of Lebesgue measure.

Theorem 4.5.1. (The Countable Additivity of Inte-

gration)Let f be integrable over E and {En}∞n=1 a disjoint

countable collection of measurable subsets of E whose union

is E. Then ∫
E

f =
∞∑
n=1

∫
En

f. (4.22)

Proof. Let n be a natural number. Define

fn = f · χn
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where χn is the characteristic function of the measurable set⋃n
k=1Ek. Then fn is a measurable function on E and

|fn| ≤ |f | on E.

Observe that {fn} → f pointwise onE. Thus, by the Lebesgue

Dominated Convergence Theorem,

∫
E

f = lim
n→∞

∫
E

fn.

On the other hand, since {En}∞n=1 is disjoint, it follows from

the additivity over domains property of the integral that for

each n, ∫
E

fn =
n∑
k=1

∫
Ek

f.

Thus

∫
E

f = lim
n→∞

∫
E

fn = lim
n→∞

 n∑
k=1

∫
Ek

f

 =
∞∑
k=1

∫
Ek

f.
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We leave it to the reader to use the countable additivity

of integration to prove the following result regarding the con-

tinuity of integration: use a pattern similar to the proof of

continuity of measure based on countable additivity of mea-

sure.

Theorem 4.5.2. (The Continuity of Integration) Let f

be integrable over E.

1. If {En}∞n=1 is an ascending countable collection of mea-

surable subsets of E, then

∫
⋃∞
n=1 En

f = lim
n→∞

∫
En

f. (4.23)

2. If {En}∞n=1 is an descending countable collection of mea-

surable subsets of E, then

∫
⋂∞
n=1 En

f = lim
n→∞

∫
En

f. (4.24)
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4.6 Uniform Integrability:

Vitali Convergence Theorem

We conclude this chapter on Lebesgue integration by estab-

lishing, for functions that are integrable over a set of finite

measure, a criterion for justifying passage of the limit under the

integral sign which is suggested by the following lemma and

proposition.

Lemma 4.6.1. Let E be a set of finite measure and δ > 0.

Then E is the disjoint union of a finite collection of sets, each

of which has measure less than δ.

Proof. By the continuity of measure,

lim
n→∞

m(E ∼ [−n, n]) = m(∅) = 0.

Choose a natural number n0 for which m(E ∼ [−n0, n0]) <

δ. By choosing a fine enough partition of [−n0, n0], express

E ∩ [−n0, n0] as the disjoint union of a finite collection of

sets, each of which has measure less than δ.
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Proposition 4.6.2. Let f be a measurable function on E. If

f is integrable over E, then for each ε > 0, there is a δ > 0

for which

if A ⊆ E is measurable and m(A) < δ, then

∫
A

|f | < ε.

(4.25)

Conversely, in the case m(E) < ∞, if for each ε, there is a

δ > 0 for which (4.25) holds, then f is integrable over E.

Proof. The theorem follows by establishing it separately for

the positive and negative parts of f. We therefore suppose

f ≥ 0 on E. First assume f is integrable over E. Let ε > 0.

By the definition of the integral of a nonnegative integrable

function, there is a measurable bounded function fε of finite

support for which

0 ≤ fε ≤ f on E and 0 ≤
∫
E

f −
∫
E

fε <
ε

2
.

Since f − fε ≥ 0 on E, if A ⊆ E is measurable, then, by the
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linearity and additivity over domains of the integral,

∫
A

f −
∫
A

fε =

∫
A

[f − fε] ≤
∫
E

[f − fε] =

∫
E

f −
∫
A

fε <
ε

2
.

But fε is bounded. Choose M > 0 for which 0 ≤ fε < M on

E0. Therefore, if A ⊆ E is measurable, then

∫
A

f <

∫
A

fε +
ε

2
≤M ·m(A) +

ε

2
.

Define

δ =
ε

2M
.

Then (4.25) holds for this choice of δ.

Conversely, suppose m(E) <∞ and for each ε > 0, there

is a δ > 0 for which (4.25) holds. Let δ0 > 0 respond to

the ε = 1 challenge. Since m(E) < ∞, according to the

preceding lemma, we may express E as the disjoint union of a

finite collection of measurable subsets {Ek}Nk=1, each of which
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has measure less than δ. Therefore

N∑
k=1

∫
Ek

f < N.

By the additivity over domains of integration it follows that if

h is a nonnegative measurable function of finite support and

0 ≤ h ≤ f on E, then

∫
E

h < N.

Therefore f is integrable.

Definition 4.6.3. A family F of measurable functions on E

is said to be uniformly integrable over E provided for each

ε > 0, there is a δ > 0 such that for each f ∈ F ,

if A ⊆ E is measurable and m(A) < δ, then

∫
A

|f | < ε.

(4.26)

Example 4.6.4. Let g be a nonnegative integrable function



4.6 Uniform Integrability: Vitali Convergence Theorem 225

over E. Define

F = {f | f is measurable on E and |f | ≤ g on E} .

Then F is uniformly integrable. This follows from Proposition

4.6.2, with f replaced by g, and the observation that for any

measurable subset A of E, by the monotonicity of integration,

if f ∈ F , then ∫
A

|f | ≤
∫
A

g.

Proposition 4.6.5. Let {fk}nk=1 be a finite collection of func-

tions, each of which is integrable over E. Then {fk}nk=1 is

uniformly integrable.

Proof. Let ε > 0. For 1 ≤ k ≤ n, by Proposition 4.6.2, there

is a δk > 0 for which

if A ⊆ E is measurable and m(A) < δk, then

∫
A

|fk| < ε.

(4.27)

Define

δ = min{δ1, . . . , δn}.



226 Chapter 4. Lebesgue Integration

This δ responds to the ε challenge regarding the criterion for

the collection {fk}nk=1 to be uniformly integrable.

Proposition 4.6.6. Assume E has finite measure. Let the

sequence of functions {fn} be uniformly integrable over E. If

{fn} → f pointwise a.e. on E, then f is integrable over E.

Proof. Let δ0 > 0 respond to the ε = 1 challenge in the uni-

form integrability criteria for the sequence {fn}. Sincem(E) <

∞, by Lemma 4.21, we may express E as the disjoint union

of a finite collection of measurable subsets {Ek}Nk=1 such that

m(Ek) < δ0 for 1 ≤ k ≤ N. For any n, by the monotonicity

and additivity over domains property of the integral,

∫
E

|fn| =
N∑
k=1

∫
Ek

|fn| < N.

We infer from Fatou’s Lemma that∫
E

|f | ≤ lim inf

∫
E

|fn| ≤ N.

Thus |f | is integrable over E.
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Theorem 4.6.7. [The Vitali Convergence Theorem]

Let E be of finite measure. Suppose the sequence of functions

{fn} is uniformly integrable over E.

If {fn} → f pointwise a.e. on E, then

f is integrable over E and lim
n→∞

∫
E

fn =

∫
E

f.

Proof. Propositions 4.24 tells us that f is integrable over E

and hence, by Proposition 4.14, is finite a.e. on E. There-

fore, using Proposition 4.14 once more, by possibly excising

from E a set of measure zero, we suppose the convergence is

pointwise on all of E and f is real-valued. We infer from the

integral comparison test and the linearity, monotonicity, and

additivity over domains property of integration that, for any
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measurable subset A of E and any natural number n,∣∣∣∣∣∣
∫
E

fn −
∫
E

f

∣∣∣∣∣∣ =

∣∣∣∣∣∣
∫
E

(fn − f)

∣∣∣∣∣∣
≤

∫
E

|fn − f |

=

∫
E∼A

|fn − f |+
∫
A

|fn − f |

≤
∫

E∼A

|fn − f |+
∫
A

|fn|+
∫
A

|f |.(4.28)

Let ε > 0. By the uniform integrability of {fn}, there is a

δ > 0 such that ∫
A

|fn| <
ε

3

for any measurable subset of E for whichm(A) < δ. Therefore,

by Fatou’s Lemma (Lemma 4.3.6), we also have

∫
A

|f | ≤ ε

3
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for any measurable subset of A for which m(A) < δ. Since

f is real-valued and E has finite measure, Egoroff’s Theorem

tells us that there is a measurable subset E0 of E for which

m(E0) < δ and {fn} → f uniformly on E ∼ E0. Choose a

natural number N such that

|fn − f | < ε

3 ·m(E)

on E ∼ E0 for all n ≥ N. Take A = E0 in the integral

inequality (4.28). If n ≥ N, then∣∣∣∣∣∣
∫
E

fn −
∫
E

f

∣∣∣∣∣∣ ≤
∫

E∼E0

|fn − f |+
∫
E0

|fn|+
∫
E0

|f |

<
ε

3 ·m(E)
·m(E ∼ E0) +

ε

3
+
ε

3
≤ ε.

This completes the proof.

The following theorem shows that the concept of uniform

integrability is an essential ingredient in the justification, for

a sequence {hn} of nonnegative functions on a set of finite
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measure that converges pointwise to h ≡ 0, of passage of the

limit under the integral sign.

Theorem 4.6.8. Let E be of finite measure. Suppose {hn} is

a sequence of nonnegative integrable functions that converges

pointwise a. e. on E to h ≡ 0. Then

lim
n→∞

∫
E

hn = 0 if and only if

{hn} is uniformly integrable over E.

Proof. If {hn} is uniformly integrable, then, by the Vitali

Convergence Theorem,

lim
n→∞

∫
E

hn = 0 .

Conversely, suppose lim
n→∞

∫
E

hn = 0 . Let ε > 0. We may choose

a natural number N for which∫
E

hn < ε if n ≥ N.
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Therefore, since each hn ≥ 0 on E,

if A ⊆ E is measurable and n ≥ N, then

∫
E

hn < ε . (4.29)

According to Propositions 4.6.2 and 4.6.5, the finite collection

{hn}N−1
n=1 is uniformly integrable over E. Let δ respond to the ε

challenge regarding the criterion for the uniform integrability

of {hn}N−1
n=1 . We infer from (4.29) that δ also responds to the ε

challenge regarding the criterion for the uniform integrability

of {hn}∞n=1.



Chapter 5
Lebesgue Integration: Further

Topics

In this brief chapter, we first consider a generalization of the

Vitali Convergence Theorem to sequences of integrable func-

tions on a set of infinite measure; for a pointwise convergent

sequence of integrable functions, tightness must be added to

uniform integrablity in order to justify passage of the limit un-

der the integral sign. We then consider a mode of sequential

convergence for sequences of measurable functions called con-

232
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vergence in measure and examine its relationship to pointwise

convergence and convergence of integrals. Finally, we prove

that a bounded function is Lebesgue integrable over a set of

finite measure if and only if it is measurable (Theorem 5.3.2),

and that a bounded function is Riemann integrable over a

closed, bounded interval if and only if it is continuous at al-

most all points in its domain.

5.1 Uniform Integrability and Tight-

ness: A General Vitali Conver-

gence Theorem

The Vitali Convergence Theorem (Theorem 4.6.7) of the pre-

ceding chapter tells us that if m(E) < ∞, {fn} is uniformly

integrable over E and converges pointwise almost everywhere

on E to f, then f is integrable over E and passage of the limit
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under the integral sign is justified, that is,

lim
n→∞

∫
E

fn

 =

∫
E

lim
n→∞

fn = lim
n→∞

∫
E

f. (5.1)

This theorem requires that E have finite measure. Indeed,

for each natural number n, define fn = χ[n, n+1] and f ≡ 0 on

R. Then {fn} is uniformly integrable over R and converges

pointwise on R to f. However,

lim
n→∞

∫
E

fn

 = 1 6= 0 =

∫
E

lim
n→∞

fn = lim
n→∞

∫
E

f.

The following property of functions that are integrable over

sets of infinite measure suggests an additional property which

should accompany uniform integrability in order to justify

passage of the limit under the integral sign for sequences of

functions on a domain of infinite measure.

Proposition 5.1.1. Let f be integrable over E. Then for each
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ε > 0, there is a set of finite measure E0 for which

∫
E∼E0

|f | < ε .

Proof. Let ε > 0. The nonnegative function |f | is integrable

over E. By the definition of the integral of a nonnegative func-

tion, there is a bounded measurable function g on E, which

vanishes outside a subset E0 of E of finite measure, for which

0 ≤ g ≤ |f | and
∫
E

|f | −
∫
E

g < ε . Therefore, by the linearity

and additivity over domains properties of integration,∫
E∼E0

|f | =
∫

E∼E0

[|f | − g] ≤
∫
E

[|f | − g] < ε.

Definition 5.1.2. A family F of measurable functions on E

is said to be tight over E provided for each ε > 0, there is a

subset E0 of E of finite measure for which∫
E∼E0

|f | < ε for all f ∈ F .
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We infer from Proposition 4.6.2 of the preceding chapter

that if F is a family of functions on E that is uniformly inte-

grable and tight over E, then each function in F is integrable

over E.

Theorem 5.1.3. [The Vitali Convergence Theorem]

Let {fn} be a sequence of functions on E that is uniformly

integrable and tight over E. Then f is integrable over E and

lim
n→∞

∫
E

fn =

∫
E

f.

Proof. Let ε > 0. By the tightness over E of the sequence

{fn}, there is a measurable subset E0 of E which has finite

measure and ∫
E∼E0

|fn| <
ε

4
for all n.

We infer from Fatou’s Lemma that∫
E∼E0

|f | < ε

4
.

Therefore f is integrable over E ∼ E0. Moreover, by the lin-
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earity and monotonicity of integration,∣∣∣∣∣∣
∫

E∼E0

[fn − f ]

∣∣∣∣∣∣ ≤
∫

E∼E0

|fn|+
∫

E∼E0

|f | < ε

2
for all n. (5.2)

But E0 has finite measure and {fn} is uniformly integrable

over E0. Therefore, by the Vitali Convergence Theorem for

functions on domains of finite measure, f is integrable over

E0 and we may choose an index N for which∣∣∣∣∣∣
∫
E0

[fn − f ]

∣∣∣∣∣∣ < ε

2
for all n ≥ N. (5.3)

Therefore f is integrable over E and, by (5.2) and (5.3),∣∣∣∣∣∣
∫
E

[fn − f ]

∣∣∣∣∣∣ < ε for all n ≥ N.

The proof is complete.

We leave the proof of the following corollary as an exercise.

Corollary 5.1.4. Let {hn} be a sequence of nonnegative in-
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tegrable functions on E. Suppose {hn(x)} → 0 for almost all

x in E. Then

lim
n→∞

∫
E

hn = 0 if and only if

{hn} is uniformly integrable and tight over E.

5.2 Convergence in Measure

We have considered sequences of functions that converge uni-

formly, that converge pointwise, and that converge pointwise

almost everywhere. To this list we add one more mode of

convergence that has useful relationships both to pointwise

convergence almost everywhere and to forthcoming criteria

for justifying the passage of the limit under the integral sign.

Definition 5.2.1. Let {fn} be a sequence of measurable func-

tions on E and f a measurable function on E for which f and

each fn is finite a.e. on E. The sequence {fn} is said to con-
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verge in measure on E to f provided for each η > 0,

lim
n→∞

m {x ∈ E | |fn(x)− f(x)| > η} = 0.

When we write {fn} → f in measure on E we are im-

plicitly assuming that f and each fn is measurable, and finite

a.e. on E. Observe that if {fn} → f uniformly on E, and f

is a real-valued measurable function on E, then {fn} → f in

measure on E since for η > 0, the set

{x ∈ E | |fn(x)− f(x)| > η}

is empty for n sufficiently large. However, we also have the

following much stronger result.

Proposition 5.2.2. Assume E has finite measure. Let {fn}
be a sequence of measurable functions on E that converges

pointwise a.e. on E to f and f is finite a.e. on E. Then

{fn} → f in measure on E.

Proof. First observe that f is measurable since it is the point-

wise limit almost everywhere of a sequence of measurable
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functions. Let η > 0. To prove convergence in measure we

let ε > 0 and seek an index N such that

m {x ∈ E| |fn(x)− f(x)| > η} < ε for all n ≥ N. (5.4)

Egoroff’s Theorem tells us that there is a measurable subset

F of E with m(E ∼ F ) < ε such that {fn} → f uniformly on

F. Thus there is an index N such that

|fn − f | > η on F for all n ≥ N.

Thus, for n ≥ N,

{x ∈ E| |fn(x)− f(x)| > η} ⊆ E ∼ F

and so (5.4) holds for this choice of N.

The above proposition is false if E has infinite measure.

The following example shows that the converse of this propo-

sition also is false.

Example 5.2.3. Consider the sequence of subintervals of
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[0, 1], {In}∞n=1, which has initial terms listed as

[0, 1], [0, 1/2], [1/2, 1], [0, 1/3], [1/3, 2/3], [2/3, 1],

[0, 1/4], [1/4, 1/2], [1/2, 3/4], [3/4, 1] . . .

For each index n, define fn to be the restriction to [0, 1] of

the characteristic function of In. Let f be the function that is

identically zero on [0, 1]. We claim that {fn} → f in measure.

Indeed, observe that

lim
n→∞

l(In) = 0

since for each natural number m,

if n > 1 + · · ·+m =
m(m+ 1)

2
, then l(In) <

1

m
.

Thus, for 0 < η < 1, since

{x ∈ E | |fn(x)− f(x)| > η} ⊆ In,
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we have

0 ≤ lim
n→∞

m {x ∈ E| |fn(x)− f(x)| > η} ≤ lim
n→∞

l(In) = 0.

However, it is clear that there is no point x in [0, 1] at which

{fn(x))} converges to f(x) since for each point x in [0, 1],

fn(x) = 1 for infinitely many indices n, while f(x) = 0.

Theorem 5.2.4. (Riesz) If {fn} → f in measure on E, then

there is a subsequence {fnk} that converges pointwise a. e. on

E to f.

Proof. By the definition of convergence in measure, there is a

strictly increasing sequence of natural numbers {nk} for which

m

{
x ∈ E | |fj(x)− f(x)| > 1

k

}
<

1

2k
for all j ≥ nk.

For each index k, define

Ek =

{
x ∈ E | |fnk(x)− f(x)| > 1

k

}
.
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Then m(Ek) < 1/2k and therefore

∞∑
k=1

m(Ek) <∞.

The Borel-Cantelli Lemma tells us that for almost all x ∈ E,
there is an index K(x) such that x /∈ Ek if k ≥ K(x), that is,

|fnk(x)− f(x)| ≤ 1

k
forall k ≥ K(x).

Therefore

lim
k→∞

fnk(x) = f(x).

Corollary 5.2.5. Let {fn} be a sequence of nonnegative in-

tegrable functions on E. Then

lim
n→∞

∫
E

fn = 0 (5.5)
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if and only if

{fn} → 0 in measure on E and {fn} is

uniformly integrable and tight over E. (5.6)

Proof. First assume (5.5). Corollary 5.1.4 tells us that {fn} is

uniformly integrable and tight over E. To show that {fn} → 0

in measure on E, let η > 0. By Chebychev’s Inequality, for

each index n,

m {x ∈ E | fn > η} ≤ 1

η
·
∫
E

fn.

Thus,

0 ≤ lim
n→∞

m {x ∈ E | fn > η} ≤ 1

η
· lim
n→∞

∫
E

fn= 0.

Hence {fn} → 0 in measure on E.

To prove the converse, we argue by contradiction. Assume

(5.6) holds but (5.5) fails to hold. Then there is some ε0 > 0
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and a subsequence {fnk} for which

∫
E

fnk ≥ ε0 for all k.

However, by Theorem 5.2.4, a subsequence of {fnk} converges

to f ≡ 0 pointwise almost everywhere on E and this subse-

quence is uniformly integrable and tight so that, by the Vitali

Convergence Theorem, we arrive at a contradiction to the ex-

istence of the above ε0 > 0. This completes the proof.

5.3 Characterizations of Riemann and

Lebesgue Integrability

Lemma 5.3.1. Let {ϕn} and {ψn} be sequences of functions,

each of which is integrable over E, such that {ϕn} is increasing

while {ψn} is decreasing on E. Let the function f on E have

the property that

ϕn ≤ f ≤ ψn on E for all n.
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If

lim
n→∞

∫
E

[ψn − ϕn] = 0,

then

{ϕn} → f pointwise a.e. on E,

{ψn} → f pointwise a.e. on E,

f is integrable overE,

and

lim
n→∞

∫
E

ϕn =

∫
E

f and lim
n→∞

∫
E

ψn =

∫
E

f .

Proof. For x in E, define

ϕ∗(x) = lim
n→∞

ϕn(x) and ψ∗(x) = lim
n→∞

ψn(x).

The functions are ϕ∗ and ψ∗ properly defined since monotone

sequences of extended real valued numbers converge to an

extended real number and they are measurable since each is

the pointwise limit of a sequence of measurable functions. We
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have the inequalities

ϕn ≤ ϕ∗ ≤ f ≤ ψ∗ ≤ ψn on E for all n. (5.7)

By the monotonicity and linearity of the integral of nonnega-

tive measurable functions,

0 ≤
∫
E

(ψ∗ − ϕ∗) ≤
∫
E

(ψn − ϕn) for all n,

so that

0 ≤
∫
E

(ψ∗ − ϕ∗) ≤ lim
n→∞

∫
E

(ψn − ϕn) = 0.

Since ψ∗ − ϕ∗ is a nonnegative measurable function and

∫
E

(ψ∗ − ϕ∗) = 0,

Proposition 4.3.3 in Page 189 tells us that ψ∗ = ϕ∗ a.e. on E.

But

ϕ∗ ≤ f ≤ ψ∗ onE.
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Therefore

{ϕn} → f and {ψn} → f pointwise a.e. on E.

Therefore f is measurable. Observe that since

0 ≤ f − ϕ1 ≤ ψ1 − ϕ1 onE

and ψ1 and φ1 are integrable over E, we infer from the integral

comparison test that f is integrable over E. We infer from

inequality (5.7) that for all n,

0 ≤
∫
E

ψn −
∫
E

fn =

∫
E

(ψn − f) ≤
∫
E

(ψn − ϕn)

and

0 ≤
∫
E

f −
∫
E

ϕn =

∫
E

(f − ϕn) ≤
∫
E

(ψn − ϕn)

therefore

lim
n→∞

∫
E

ϕn =

∫
E

f = lim
n→∞

∫
E

ψn.
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Theorem 5.3.2. Let f be a bounded function on a set of

finite measure E. Then f is Lebesgue integrable over E if and

only if it is measurable.

Proof. We have already shown that a bounded measurable

function on a set of finite measure is Lebesgue integrable

(Theorem 4.2.11 in Page 174). It remains to prove the con-

verse. Suppose f is integrable. From the equality of the upper

and lower Lebesgue integrals we conclude that there are se-

quences of simple functions {ϕn} and {ψn} for which

ϕn ≤ f ≤ ψn on E for all n,

and

lim
n→∞

∫
E

[ψn − ϕn] = 0.

Since the maximum and minimum of a pair of simple functions

are again simple, using the monotonicity of integration and by

possibly replacing ϕn by max1≤i≤nϕi and ψn by min1≤i≤nψi,

we may suppose {ϕn} is increasing and {ψn} is decreasing. By
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the preceding lemma, {ϕn} → f pointwise almost everywhere

on E. Therefore f is measurable since it is the pointwise limit

almost everywhere of a sequence of measurable functions.

At the very beginning of our consideration of integration,

we showed that if a bounded function on the closed, bounded

interval [a, b] is Riemann integrable over [a, b], then it is

Lebesgue integrable over [a, b] and the integrals are equal.

We may therefore infer from the preceding theorem that if a

bounded function on [a, b] is Riemann integrable, then it is

measurable. The following theorem is much more precise.

Theorem 5.3.3. (Lebesgue) Let f be a bounded function on

the closed, bounded interval [a, b]. Then f is Riemann inte-

grable over [a, b] if and only if the set of points in [a, b] at

which f fails to be continuous has measure zero.

Proof. We first suppose f is Riemann integrable. We infer

from the equality of the upper and lower Riemann integrals

over [a, b] that there are sequences of partitions {Pn} and
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{P ′
n} of [a, b] for which

lim
n→∞

[U(f, Pn)− L(f, P ′
n)] = 0,

where U(f, Pn) and L(f, P ′
n) are upper and lower Darboux

sums, respectively. Since, under refinement, lower Darboux

sums increase and upper Darboux sums decrease, by possibly

replacing each Pn by a common refinement of

P1, . . . , Pn, P
′
1 , . . . , P

′
n ,

we may assume each Pn+1 is a refinement of Pn and Pn = P ′
n.

For each index n, define ϕn to be the lower step function asso-

ciated with f with respect to Pn, that is, which agrees with f

at the partition points of Pn and which on each open interval

determined by Pn has constant value equal to the infimum of

f on that interval. We define the upper step function ψn in a

similar manner. By definition of the Darboux sums,
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L(P, fn) =

b∫
a

ϕn and U(P, fn) =

b∫
a

ψn for all n.

Then {ϕn} and {ψn} are sequences of integrable functions

such that for each index n,

ϕn ≤ f ≤ ψn onE.

Moreover, the sequence {ϕn} is increasing and {ψn} is de-

creasing, because each Pn+1 is a refinement of Pn. Finally,

lim
n→∞

b∫
a

[ψn − ϕn] = lim
n→∞

[U(P, fn)− L(P, fn)] = 0.

We infer from the preceding lemma that

{ϕn} → f and {ψn} → f pointwise a.e on [a, b].

The set E of points x at which either {ψn(x)} or {ϕn(x)} fail

to converge to f(x) has measure 0. Let E0 be the union of E
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and the set of all the partition points in the Pn’s. As the union

of a set of measure zero and a countable set, m(E0) = 0. We

claim that f is continuous at each point in E ∼ E0. Indeed,

let x0 belong to E ∼ E0. To show that f is continuous at x0,

let ε > 0. Since {ψn(x0)} and {ϕn(x0)} converge to f(x0), we

may choose a natural number n0 for which

f(x0)− ε < ϕn0(x0) ≤ f(x0) ≤ ψn0(x0) < f(x0) + ε. (5.8)

Since x0 is not a partition point of Pn0 , we may choose δ > 0

such that the open interval (x0− δ, x0 + δ) is contained in the

open interval In0 determined by Pn0 which contains x0. This

containment implies that

if |x− x0|<δ,

then ϕn0(x0) ≤ ϕn0(x) ≤ f(x) ≤ ψn0(x) ≤ ψn0(x).

From this inequality and inequality (5.8) we infer that

if |x− x0|<δ, then |f(x)− f(x0)|<ε.

Thus f is continuous at x0.
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It remains to prove the converse. Assume f is continuous

at almost all points in [a, b]. Let {Pn} be any sequence of

partitions of [a, b] for which

lim
n→∞

gapPn = 0,

where the gap of a partition P is defined to be the maximum

distance between consecutive points of the partition.

We claim that

lim
n→∞

[U(P, fn)− L(P, fn)] = 0. (5.9)

If this is verified, then from the following estimate for the

lower and upper Riemann integrals,

0 ≤
∫ b

a

f −
∫ b

a

f ≤ [U(P, fn)− L(P, fn)] for all n,

we conclude that f is integrable over [a, b]. For each n, let ϕn

and ψn be the lower and upper step functions associated with
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f over the partition Pn. To prove (5.9) is to prove that

lim
n→∞

b∫
a

[ψn − ϕn] = 0. (5.10)

The Riemann integral of a step function equals its Lebesgue

integral. Moreover, since the function f is bounded on the

bounded set [a, b], the sequences {ϕn} and {ψn} are uniformly

bounded on [a, b]. Hence, by the Bounded Convergence The-

orem, to verify (5.10) it suffices to show that {ϕn} → f and

{ψn} → f pointwise on the set of points in (a, b) at which f is

continuous and which are not partition points of any partition

Pn. Let x0 be such a point. We show that

lim
n→∞

ϕn(x0) = f(x0) and lim
n→∞

ψn(x0) = f(x0). (5.11)

Let ε > 0. Let δ > 0 be such that

f(x0)−
ε

2
< f(x) < f(x0) +

ε

2
if |x− x0|<δ. (5.12)

Choose an index N for which gapPn < δ if n ≥ N. If n ≥ N

and In is the open partition interval determined by Pn, which



256 Chapter 5. Lebesgue Integration: Further Topics

contains x0, then In ⊆ (x0 − δ, x0 + δ). We infer from (5.12)

that

f(x0)−
ε

2
≤ ϕn(x0) < f(x0) < ψn(x0) ≤ f(x0) +

ε

2

and therefore

0 ≤ ψn(x0)− f(x0) < ε for all n ≥ N

and

0 ≤ f(x0)− ϕn(x0) < ε for all n ≥ N.

Thus (5.11) holds. This completes the proof.



Chapter 6
Differentiation and Integration

6.1 Introduction

The fundamental theorems of integral and differential calcu-

lus, with respect to the Riemann integral, are the workhorses

of calculus. In this chapter we formulate these two theorems

for the Lebesgue integral. For a function f on the closed,

257
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bounded interval [a, b], when is

b∫
a

f ′ = f(b)− f(a) ? (6.1)

Assume f is continuous. Extend f to take the value f(b)

on (b, b + 1], and for 0 < h ≤ 1, define (Definition 6.4.7)

the divided difference function Diffhf and average value

function Avhf on [a, b] by

Diffhf(x) =
f(x+ h)− f(x)

h

and

Avhf =
1

h

x+h∫
x

f(t)dt for all x ∈ [a, b].

A change of variables and cancellation provides the discrete

formulation of (6.1) for the Riemann integral:

b∫
a

Diffhf = Avhf(b)− Avhf(a).
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Figure 6.1: Henri Lebesgue (1875-1941) French Mathe-
matician

The limit of the right-hand side as h→ 0+ equals f(b)−f(a).

We prove a striking theorem of Henri Lebesgue which tells us

that a monotone function on (a, b) has a finite derivative al-

most everywhere. We then define what it means for a function

to be absolutely continuous and prove that if f is absolutely

continuous, then f is the difference of monotone functions

and the collection of divided differences, {Diffhf }0<h≤1 , is

uniformly integrable. Therefore, by the Vitali Convergence

Theorem, (6.1) follows for f absolutely continuous by taking
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the limit as h→ 0+ in its discrete formulation. If f is mono-

tone and (6.1) holds, we prove that f must be absolutely con-

tinuous. From the integral form of the fundamental theorem,

(6.1), we obtain the differential form of the fundamental

theorem, namely, if f is Lebesgue integrable over [a, b], then

d

dx

 x∫
a

f

 = f(x) for almost all x in [a, b]. (6.2)

6.2 Monotonic Functions

Definition 6.2.1. Let f be a real-valued function defined

on a subset S of R. Then f is said to be increasing ( or

nondecreasing) on S if for every pair of points x and y in

S,

x < y implies f(x) ≤ f(y).

If

x < y implies f(x) < f(y),

then f is said to be strictly increasing on S.
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Figure 6.2: Graph of an increasing function.
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Figure 6.3: Graph of a decreasing function.
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Figure 6.4: Graph of a function which is neither increasing or

decreasing on the interval where it is defined. If we restrict the

function to smaller domain that restriction functions can be made

either increasing or decreasing.

Definition 6.2.2. Let f be a real-valued function defined

on a subset S of R. Then f is said to be decreasing ( or
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nonincreasing) on S if for every pair of points x and y in S,

x < y implies f(x) ≥ f(y).

If

x < y implies f(x) > f(y),

then f is said to be strictly decreasing on S.

Definition 6.2.3. A function is called monotonic on S if it

is increasing on S or decreasing on S.

Remark 6.2.4. If f is an increasing function, then −f is

a decreasing function. Because of this simple fact, in many

situations involving monotonic functions it suffices to consider

only the case of increasing functions.

Definition 6.2.5. [Right Hand Limit of a Function

at a Point] Let f be defined on an interval (a, b). Assume

c ∈ [a, b). If f(x) → A as x→ c through values greater than

c, we say that A is the righthand limit of f at c and we

indicate this by writing

lim
x→c+

f(x) = A.
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Figure 6.5: The function f is not defined at c = 1. Lefthand

limit at 1 is 1 and righthand limit at 1 is −1, because f(x) → 1

as x→ 1 through values less than 1, and f(x) → −1 as x→ 1

through values greater than 1.
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The righthand limit A is also denoted by f(c+). In the

ε, δ terminology this means that for every ε > 0 there is a

δ > 0 such that

|f(x)− f(c+)| < ε whenever c < x < c+ δ < b.

Note that f need not be defined at the point c itself. If f is

defined at c and if f(c+) = f(c), we say that f is continuous

from the right at c.

Definition 6.2.6. [Left Hand Limit of a Function at

a Point] Let f be defined on an interval (a, b). Assume c ∈
(a, b]. If f(x) → B as x → c through values less than c, we

say that B is the lefthand limit of f at c and we indicate

this by writing

lim
x→c−

f(x) = B.

The righthand limit A is also denoted by f(c−). In the ε, δ

terminology this means that for every ε > 0 there is a δ > 0

such that

|f(x)− f(c−)| < ε whenever a < c− δ < x < c.
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Note that f need not be defined at the point c itself. If f is

defined at c and if f(c−) = f(c), we say that f is continuous

from the left at c.

If a < c < b, then f is continuous at c if, and only if,

f(c) = f(c+) = f(c−).

We say c is a discontinuity of f if f is not continuous at c. In

this case one of the following conditions is satisfied :

(a) Either f(c+) or f(c−) does not exist.

(b) Both f(c+) and f(c−) exist but have different values.

(c) Both f(c+) and f(c−) exist and f(c+) = f(c−) 6= f(c).

In case (c), the point c is called a removable discontinuity,

since the discontinuity could be removed by redefining f at

c to have the value f(c+) = f(c−). In cases (a) and (b), we

call c an irremovable discontinuity because the discontinuity

cannot be removed by redefining f at c.
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Definition 6.2.7. (Fig.6.5 and Fig.6.6) Let f be defined on

a closed interval [a, b]. If f(c+) and f(c−) both exist at some

interior point c, then

(a) f(c)− f(c−) is called the left hand jump of f at c,

(b) f(c+)− f(c) is called the right hand jump of f at c,

(c) f(c+)− f(c−) is called the jump of f at c,

If any one of these three numbers is different from 0, then c

is called a jump discontinuity of f.

For the end points a and b, only one-sided jumps are con-

sidered, the right hand jump at a, f(a+)− f(a), and the left

hand jump at b, f(b)− f(b−).

Next theorem states that functions which are monotonic

on compact (closed and bounded) intervals always have finite

right hand and left hand limits. Hence their discontinuities

(if any) must be jump discontinuities.
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Figure 6.6: Functions which are monotonic on compact (closed

and bounded) intervals always have finite right hand and left

hand limits.

Theorem 6.2.8. If f is increasing on [a, b], then (the right

hand limit) f(c+) (the left hand limit) f(c−) both exist for

each c in (a, b) and we have

f(c−) ≤ f(c) ≤ f(c+).
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At the end points we have

f(a) ≤ f(a+) and f(b−) ≤ f(b).

6.3 Continuity of Monotone

Functions

Definition 6.3.1. A function is defined to be monotone if

it is either increasing or decreasing.

Monotone functions play a decisive role in resolving the

question posed in the introductory section. There are two

reasons for this. First, a theorem of Lebesgue (Theorem 6.4.6

in Page 284) asserts that a monotone function on an open in-

terval is differentiable almost everywhere. Second, a theorem

of Jordan (Theorem 6.5.6 in Page 299) tells us that a very gen-

eral family of functions on a closed, bounded interval, those of

bounded variation, which includes Lipschitz functions, may be

expressed as the difference of monotone functions and there-

fore they also are differentiable almost everywhere on the in-
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terior of their domain. In this brief preliminary section we

consider continuity properties of monotone functions.

Theorem 6.3.2. Let f be a monotone function on the open

interval (a, b). Then f is continuous except possibly at a count-

able number of points in (a, b).

Proof. Assume f is increasing. Furthermore, assume (a, b) is

bounded and f is increasing on the closed interval [a, b]. Oth-

erwise, express (a, b) as the union of an ascending sequence of

open, bounded intervals, the closures of which are contained

in (a, b), and take the union of the discontinuities in each of

this countable collection of intervals. For each x0 ∈ (a, b), f

has a limit from the left and from the right at x0. Define

f(x−0 ) = lim
x→x−0

f(x) = sup {f(x)|a < x < x0} ,

f(x+
0 ) = lim

x→x+
0

f(x) = inf {f(x)|x0 < x < b} .

Since f is increasing,

f(x−0 ) ≤ f(x+
0 ).
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The function f fails to be continuous at x0 if and only if

f(x−0 ) < f(x+
0 ), in which case we define the open jump interval

J(x0) by

J(x0) = {y|f(x−0 ) < y < f(x+
0 )}.
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Figure 6.7: Figure shows open jump interval (on the y-axis)

of the function f at the point x0. A function may have (i) no

jump interval (if the function is continuous on [a, b]) (ii) only one

jump interval (if the function have only one point of discontinuity

on [a, b]) or (iii) more than one jump interval (if the function

have more than one point of discontinuity on [a, b].) Each jump

interval is contained in the bounded interval [f(a), f(b)] and the

collection of jump intervals is disjoint.
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Each jump interval is contained in the bounded interval

[f(a), f(b)] and the collection of jump intervals is disjoint.

Therefore, for each natural number n, there are only a finite

number of jump intervals of length greater than 1/n. Thus the

set of points of discontinuity of f is the union of a countable

collection of finite sets and therefore is countable.

Proposition 6.3.3. Let C be a countable subset of the open

interval (a, b). Then there is an increasing function on (a, b)

that is continuous only at points in (a, b) ∼ C.

Proof. Case 1. If C is finite the proof is clear.

Case 2. Assume C is countably infinite. Let {qn}∞n=1 be an

enumeration of C. Define the function f on (a, b) by setting

f(x) =
∑

{n|qn≤x}

1

2n
for all a < x < b,

where we use the convention that a sum over the empty-set

is zero.

Since a geometric series with a ratio less than 1 converges,
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f is properly defined. Moreover,

if a < u < v < b, then f(v)− f(u) =
∑

{n|u<qn≤v}

1

2n
. (6.3)

Thus f is increasing. Let x0 = qk belong to C. Then, by (6.3),

f(x0)− f(x) ≥ 1

2k
for all x < x0.

Therefore f fails to be continuous at x0. Now let x0 belong

to (a, b) ∼ C. Let n be a natural number. There is an open

interval I containing x0 for which qn does not belong to I for

1 ≤ k ≤ n. We infer from (6.3) that

|f(x)− f(x0)| <
1

2n
for all x ∈ I .

Therefore f is continuous at x0.
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6.4 Differentiability of Monotone

Functions: Lebesgue’s Theorem

Definition 6.4.1. A closed, bounded interval [c, d] is said to

be nondegenerate provided c < d.

Definition 6.4.2. Let F be a collection of closed, bounded,

nondegenerate intervals. We say that F covers a set E in

the sense of Vitali if for each point x in E and ε > 0,

there is an interval I ∈ F such that x ∈ I and l(I) < ε.

Lemma 6.4.3. [ The Vitali Covering Lemma ] Let E be

a set of finite outer measure and F a collection of closed,

bounded intervals that covers E in the sense of VItali. Then

for each ε > 0, there is a finite disjoint subcollection {Ik}nk=1 =

{I1, . . . , In} of F for which

m∗

[
E ∼

N⋃
n=1

In

]
< ε. (6.4)

Proof. Since E is a set of finite outer measure, we havem∗(E) <

∞, and hence there is an open set O containing E for which
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m(O) < ∞ . Because F is a Vitali covering of E, we may

assume that each interval in F is contained in O. By the

countable additivity and monotonicity of measure,

if {Ik}nk=1 ⊆ F is disjoint, then
∞∑
k=1

l (Ik) ≤ m(O) <∞. (6.5)

Moreover, since each Ik is closed and F is a Vitali covering of

E,

if {Ik}nk=1 ⊆ F , then E ∼
∞⋃
k=1

Ik ⊆
⋃
I∈Fn

I where

Fn =

{
I ∈ F | I ∩

n⋃
k=1

Ik = ∅

}
.(6.6)

Case 1: If there is a finite disjoint subcollection of F that

covers E, the proof is complete.

Case 2: Otherwise, we inductively choose a disjoint count-

able subcollection {Ik}∞k=1 of F which has the following prop-

erty:

E ∼
n⋃
k=1

Ik ⊆
∞⋃

k=n+1

5 ∗ Ik for all n, (6.7)
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where, for a closed, bounded interval I, 5 ∗ I denotes the

closed interval that has the same midpoint as I and 5 times

its length.

Figure 6.8: We choose points c1, c2, d1, d2, and m such that

I = [c2, d2]; 5 ∗ I = [c1, d1]; m is the midpoint of both the

intervals and that the closed interval 5 ∗ I has 5 times length of

I.

To begin this selection, let I1 be any interval in F . Sup-

pose n is a natural number and the finite disjoint subcollec-

tion {Ik}nk=1 of F has been chosen. Since E ∼
⋃n
k=1 Ik 6= ∅,

the collection Fn defined in (6.6) is nonempty. Moreover, the

supremum, sn, of the lengths of the intervals in Fn is finite

since m(O) is an upper bound for these lengths. Choose In+1

to be an interval in Fn for which l(In+1) > sn/2. This induc-

tively defines {Ik}∞k=1 , a countable disjoint subcollection of F
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such that for each n,

l(In+1) >
l(I)

2
if I ∈ F and I ∩

n⋃
k=1

Ik = ∅. (6.8)

We infer from (6.5) that l(Ik) → 0 . Fix a natural number n.

To verify the inclusion (6.7), let x ∈ E ∼
⋃n
k=1 Ik. We infer

from (6.6) that there is an I ∈ F which contains x and is

disjoint from
⋃n
k=1 Ik. Now I must have nonempty intersection

with some I k, for otherwise, by (6.8), l(Ik) >
l(I)
2

for all k,

which contradicts the convergence of {l(Ik)} to 0. Let N be

the first natural number for which I ∩ IN 6= ∅. Then N > n.

Since I ∩
⋃N−1
k=1 Ik = ∅, we infer from (6.8) that l(IN) > l(I)

2

Since x ∈ I and I ∩ IN 6= ∅, the distance from x to the

midpoint of IN is at most

l(I) +
l(IN)

2

and hence, since l(I) < 2 · l(IN), the distance from x to the

midpoint of IN is less than 5
2
·l(IN). This means that x belongs
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to 5 ∗ IN . Thus,

x ∈ 5 ∗ IN ⊆
∞⋃

k=n+1

5 ∗ Ik.

We have established the inclusion (6.7).

Let ε > 0. We infer from (6.5) that here is a natural num-

ber n for which
∑∞

k=n+1 l (Ik) <
ε
5
. This choice of n, together

with the inclusion (6.7) and the monotonicity and countable

additivity of measure, establishes (6.4). This completes the

proof.

Definition 6.4.4. For a real-valued function f and an inte-

rior point x of its domain, the upper derivative of f at x,

denoted by D̄f(x), is defined by

D̄f(x) = lim
h→0

[
sup

0<| t |≤h

f(x+ t)− f(x)

t

]
;

and the lower derivative of f at x, Df(x) is defined by

Df(x) = lim
h→0

[
inf

0<| t |≤h

f(x+ t)− f(x)

t

]
.
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Clearly, we have

D̄f(x) ≥ Df(x).

If

D̄f(x) = Df(x)

we say that f is differentiable at x and define f ′(x) to

be the common value of the upper and lower derivatives of f

at x.

The Mean Value Theorem of Calculus tells us that

if a function f is continuous on the closed, bounded interval

[c, d] and differentiable on its interior (c, d) with f ′ ≥ α on

(c, d), then

α · (d− c) ≤ [f(d)− f(c)].

The proof of the following generalization of this inequality,

inequality (6.9), is a nice illustration of the fruitful interplay

between the Vitali Covering Lemma and monotonicity prop-

erties of functions.

Lemma 6.4.5. Let f be an increasing function on the closed,
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bounded interval [a, b]. Then for each α > 0,

m∗ {x ∈ (a, b)|D̄f(x) ≥ α
}
≤ 1

α
· [f(b)− f(a)] (6.9)

and

m∗ {x ∈ (a, b)|D̄f(x) = ∞
}

= 0. (6.10)

Proof. Let α > 0. Define

Eα =
{
x ∈ (a, b)|D̄f(x) ≥ α

}
.

Choose α′ ∈ (0, α). Let F be the collection of closed, bounded

intervals [c, d] contained in (a, b) for which f(d) − f(c) ≥
α′(d − c). Since D̄f ≥ α on Eα, F is a Vitali covering of

Eα. The Vitali Covering Lemma tells us that there is a finite

disjoint subcollection { [ck, dk] }nk=1 of F for which

m∗

[
Eα ∼

n⋃
k=1

[ck, dk]

]
< ε.

Since

Eα ⊆
n⋃
k=1

[ck, dk]
⋃{

Eα ∼
n⋃
k=1

[ck, dk]

}
,
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by the finite subadditivity of outer measure, the preceding

inequality and the choice of the intervals [ck, dk],

m∗(Eα) <
n∑
k=1

(dk−ck)+ε ≤
1

α′
·
n∑
k=1

[f(dk)−f(ck)]+ε. (6.11)

However, the function f is increasing on [a, b] and { [ck, dk] }nk=1

is a disjoint collection of subintervals of [a, b]. Therefore

n∑
k=1

[f(dk)− f(ck)] ≤ f(b)− f(a).

Thus for each ε > 0, and each α′ ∈ (0, α),

m∗(Eα) ≤
1

α′
· [f(b)− f(a)] + ε. (6.12)

This proves (6.9). For each natural number n,

{x ∈ (a, b) | D̄f(x) = ∞} ⊆ En

and therefore

m∗{x ∈ (a, b) | D̄f(x) = ∞} ≤ m∗(En) ≤
1

n
· (f(b)− f(a)).
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Letting n → ∞ the right hand approaches 0 and hence this

proves (6.10).

Theorem 6.4.6. [ Lebesgue’s Theorem ] If the function f

is monotone on the open interval (a, b), then it is differen-

tiable almost everywhere on (a, b).

Proof. Assume f is increasing. Furthermore, assume (a, b) is

bounded. Otherwise, express (a, b) as the union of an ascend-

ing sequence of open, bounded intervals and use the continuity

of Lebesgue measure. The set of points x in (a, b) at which

D̄f(x) > Df(x) is the union of the sets

Eα, β =
{
x ∈ (a, b)|D̄f(x) > α > β > Df(x)

}
where α and β are rational numbers. Hence, since this is a

countable collection, by the countable subadditivity of outer

measure, it suffices to prove that each Eα, β has outer measure

zero. Fix rationals α and β with α > β and set E = Eα, β.

Let ε > 0. Choose an open set O for which

E ⊆ O ⊆ (a, b) and m(O) < m∗(E) + ε. (6.13)
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Let F be the collection of closed, bounded intervals [c, d] con-

tained in O for which f(d) − f(c) < β(d − c). Since Df <

β on E, F is a Vitali covering of E. The Vitali Covering

Lemma tells us that there is a finite disjoint subcollection

{ [ck, dk] }nk=1 of F for which

m∗

[
E ∼

n⋃
k=1

[ck, dk]

]
< ε. (6.14)

By the choice of the intervals [ck, dk], the inclusion of the

union of the disjoint collection intervals {[ck, dk]}nk=1 in O

and (6.13),

n∑
k=1

[f(dk)− f(ck)] < β

[
n∑
k=1

(dk − ck)

]
≤ β ·m(O) (6.15)

≤ β · [m∗(E) + ε]. (6.16)

For 1 ≤ k ≤ n, we infer from the preceding lemma, applied

to the restriction of f to [ck, dk], that

m∗ (E ∩ (ck, dk)) ≤
1

α
[f(dk)− f(ck)].
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Therefore, by (6.14),

m∗(E) ≤
n∑
k=1

m∗ (E ∩ (ck, dk)) + ε

≤ 1

α

[
n∑
k=1

[f(dk)− f(ck)]

]
+ ε. (6.17)

We infer from (6.16) and (6.17) that

m∗(E) ≤ β

α
·m∗(E) +

1

α
· ε+ ε for all ε > 0.

Therefore, since 0 ≤ m∗(E) <∞ and β
α
< 1, m∗(E) = 0.

Lebesgue’s Theorem is the best possible in the sense that

if E is a set of measure zero contained in the open interval

(a, b), there is an increasing function on (a, b) that fails to be

differentiable at each point in E.

Definition 6.4.7. Let f be integrable over the closed, bounded

interval [a, b]. Extend f to take the value f(b) on (b, b+1). For

0 < h ≤ 1, define the divided difference function Diffhf

of [a, b] by
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Diffhf =
f(x+ h)− f(x)

h
for all x ∈ [a, b]

and the average value function Avhf of [a, b] by

Avhf =
1

h

∫ x+h

x

f for all x ∈ [a, b]

By a change of variables in the integral and cancellation,

for all a ≤ u < v ≤ b,∫ v

u

Diffhf = Avhf(v)− Avhf(u). (6.18)

Corollary 6.4.8. Let f be an increasing function on the

closed, bounded interval [a, b]. Then f ′ is integrable over [a, b]

and ∫ b

a

f ′ ≤ f(b)− f(a). (6.19)

Proof. Since f is increasing on [a, b+1], it is measurable and

therefore the divided difference functions are also measurable.

Lebesgue’s Theorem tells us that f is differentiable almost

everywhere on (a, b). Therefore
{

Diff1/nf
}

is a sequence of
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nonnegative measurable functions that converges pointwise al-

most everywhere on [a, b] to f ′. According to Fatou’s Lemma

4.3.6, ∫ b

a

f ′ ≤ lim inf
n→∞

[∫ b

a

Diff1/nf

]
(6.20)

By the change of variable formula (6.18), for each natural

number n, since f is increasing,∫ b

a

Diff1/nf =
1

1/n
·
∫ b+1/n

b

f − 1

1/n
·
∫ a+1/n

a

f

= f(b)− 1

1/n
·
∫ a+1/n

a

f

≤ f(b)− f(a).

Thus

lim sup
n→∞

[∫ b

a

Diff1/nf

]
≤ f(b)− f(a). (6.21)

The inequality (6.19) follows from the inequalities (6.20) and

(6.21).

Remark 6.4.9. The integral in (6.19) is independent of the

values taken by f at the endpoints. On the other hand, the
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right-hand side of this equality holds for the extension of any

increasing extension of f on the open, bounded interval (a, b)

to its closure [a, b]. Therefore a tighter form of equality (6.19)

is ∫ b

a

f ′ ≤ sup
x∈(a, b)

f(x)− inf
x∈(a, b)

f(x). (6.22)

The right-hand side of this inequality equals f(b)−f(a) if and

only if f is continuous at the endpoints. However, even if f is

increasing and continuous on [a, b], inequality (6.19) may be

strict. It is strict for the Cantor-Lebesgue function ϕ on [0, 1]

since ϕ(1) − ϕ(0) = 1 while ϕ′ vanishes almost everywhere

on (0, 1). We show that for an increasing function f on [a, b],

(6.19) is an equality if and only if the function is absolutely

continuous on [a, b] (see the forthcoming Corollary 6.7.3).

Remark 6.4.10. For a continuous function f on a closed,

bounded interval [a, b] that is differentiable on the open in-

terval (a, b), in the absence of a monotonicity assumption on

f we cannot infer that its derivative f ′ is integrable over [a, b].

We leave it as an exercise to show that for f defined on [0, 1]
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by

f(x) =

{
x2 sin(1/x2) for 0 < x ≤ 1,

0 for x = 0,
(6.23)

f ′ is not integrable over [0, 1] where

f ′(x) = 2x sin

(
1

x2

)
− 2

x
cos

(
1

x2

)
, 0 < x < 1.
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Figure 6.9: Graph of f given by (6.23)

6.5 Functions of Bounded Variation:

Jordan’s Theorem

Lebesgue’s Theorem tells us that a monotone function on an

open interval is differentiable almost everywhere. Therefore

the difference of two increasing functions on an open interval
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also is differentiable almost everywhere. We now provide a

characterization of the class of functions on a closed, bounded

interval that may be expressed as the difference of increasing

functions, which shows that this class is surprisingly large: it

includes, for instance, all Lipschitz functions.

Let f be a real-valued function defined on the closed,

bounded interval [a, b] and P = {x0, . . . , xk} be a partition

of [a, b]. Define the variation of f with respect to P by

V (f, P ) =
k∑
i=1

|f(xi)− f(xi−1)|

and the total variation of fon [a, b] by

TV (f) = sup {V (f, P )|P is a partition of [a, b]} .

For a subinterval [c, d] of [a, b], TV (f[c, d]) denotes the total

variation of the restriction of f to [c, d].

Definition 6.5.1. A real-valued function f on the closed,

bounded interval [a, b] is said to be of bounded variation
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on [a, b] provided

TV (f) <∞.

Example 6.5.2. Let f be an increasing function on [a, b].

Then show that f is of bounded variation on [a, b] and

TV (f) = f(b)− f(a).

Solution For any partition P = {x0, . . . , xk} of [a, b],

V (f, P ) =
k∑
i=1

|f(xi)− f(xi−1)|

=
k∑
i=1

(f(xi)− f(xi−1)), since f is an increasing

function on [a, b], f(xi) ≥ f(xi−1), and so

|f(xi)− f(xi−1)| = f(xi)− f(xi−1)

= f(b)− f(a).

Example 6.5.3. Let f be a Lipschitz function on [a, b]. Then

show that f is of bounded variation on [a, b] and

TV (f) ≤ c · (b− a),
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where

|f(u)− f(v)| ≤ c |u− v| for all u, v in [a, b]. (6.24)

Solution For any partition P = {x0, . . . , xk} of [a, b],

V (f, P ) =
k∑
i=1

|f(xi)− f(xi−1)|

≤ c ·
k∑
i=1

|xi − xi−1| , using (6.24)

= c ·
k∑
i=1

[xi − xi−1], since xi ≥ xi−1

|xi − xi−1| = xi − xi−1

= c · (b− a).

Thus, c · [b − a] is an upper bound of the set of variations of

f with respect to a partition of [a, , b] and hence

TV (f) ≤ c · (b− a).
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Figure 6.10: Graph of f mentioned in Example 6.5.4.

Example 6.5.4. Define the function f on [0, 1] by (Fig. 6.10)

f(x) =

{
x cos(π/2x) if 0 < x ≤ 1

0 if x = 0.

Then prove that f is continuous on [0, 1], but not of bounded

variation on [0, 1].

Solution The verification that f is continuous on [0, 1] is left

as an exercise. To prove that f is not of bounded variation

on [0, 1], we proceed as follows:



296 Chapter 6. Differentiation and Integration

For a natural number n, consider the partition

Pn =

{
0,

1

2n
,

1

2n− 1
, . . . ,

1

3
,

1

2
, 1

}
of [0, 1]. Then

V (f, Pn) = 1 +
1

2
+ · · ·+ 1

n
.

Hence

TV (f) = sup {V (f, P )|P is a partition of [a, b]}

> 1 +
1

2
+ · · ·+ 1

n
.

That is, the inequality

TV (f) > 1 +
1

2
+ · · ·+ 1

n

holds for any natural number n. Since the series

1 +
1

2
+ · · ·+ 1

n
+ · · ·
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is the divergent harmonic series the above shows that

TV (f) <∞ is not possible.

Hence f is not of bounded variation on [0, 1]. �

Observe that if c ∈ (a, b), P is a partition of [a, b], and

P ′ is the refinement of P obtained by adjoining c to P, then,

by the triangle inequality,

V (f, P ) ≤ V (f, P ′).

Thus, in the definition of the total variation of a function on

[a, b], the supremum can be taken over partitions of [a, b] that

contain the point c. Now a partition P of [a, b] that contains

the point c induces, and is induced by, partitions P1 and P2

of [a, c] and [c, b], respectively, and for such partitions

V (f|[a, b] , P ) = V (f|[a, c] , P1) + V (f|[c, b] , P2). (6.25)

Take the supremum among such parttions to conclude that

TV (f|[a, b] ) = TV (f|[a, c] ) + TV (f|[c, b] ). (6.26)
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We infer from this that if f is of bounded variation on [a, b],

then

TV (f|[a, v] )− TV (f|[a, u] ) = TV (f|[u, v]≥0) (6.27)

for all a ≤ u < v ≤ b.

Therefore the function x 7→ TV (f|[a, x] ), which we call the

total variation function for f , is a real valued increasing

function on [a, b]. Moreover, for a ≤ u < v ≤ b, if we take the

crudest partition

P = [u, v]

of [u, v], we have

f(u)− f(v) ≤ |f(u)− f(v)|

= V (f|[u, v] , P )

≤ TV (f|[u, v] )

= TV (f|[a, v] )− TV (f|[a, u] ).
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Thus,

f(v) +TV (f|[a, v] ) ≥ f(u)+TV (f|[a, u] ) for all a ≤ u < v ≤ b.

(6.28)

We have established the following lemma.

Lemma 6.5.5. Let the function f be of bounded variation on

the closed, bounded interval [a, b]. Then f has the following

explicit expression as the difference of two increasing functions

on [a, b] :

f(x) = [f(x) + TV (f|[a, x] )]− TV (f|[a, x] ) for all x ∈ [a, b].

(6.29)

Theorem 6.5.6. [ Jordan’s Theorem ] A function f is of

bounded variation on the closed, bounded interval [a, b] if and

only if it is the difference of two increasing functions on [a, b].

Proof. Let f be of bounded variation on [a, b]. The preceding

lemma provides an explicit representation of f as the differ-

ence of increasing functions.
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To prove the converse, let

f = g − h on [a, b],

where g and h are increasing functions on [a, b]. For any par-

tition P = {x0, . . . , xk} of [a, , b],

V (f, P ) =
k∑
i=1

|f(xi)− f(xi−1)|

=
k∑
i=1

|(g(xi)− h(xi))− (g(xi−1)− h(xi−1))|

=
k∑
i=1

|(g(xi)− g(xi−1)) + (h(xi−1)− h(xi))|

≤
k∑
i=1

|g(xi)− g(xi−1)|+
k∑
i=1

|h(xi−1)− h(xi)|

=
k∑
i=1

(g(xi)− g(xi−1)) +
∑

k
i=1(h(xi)− h(xi−1)),

since |g(xi)− g(xi−1)| = g(xi)− g(xi−1)

and |h(xi)− h(xi−1)| = h(xi)− h(xi−1)

= (g(b)− g(a)) + (h(b)− h(a)).
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Thus, the set of variations f with respect to partitions of [a, b]

is bounded above by (g(b)−g(a))+(h(b)−h(a)) and therefore

f is of bounded variation of [a, b].

Definition 6.5.7. We call the expression of a function of

bounded variation f as the difference of increasing functions

a Jordan decomposition of f.

Corollary 6.5.8. If the function f is of bounded variation

on the closed, bounded interval [a, b], then it is differentiable

almost everywhere on the open interval (a, b) and f ′ is inte-

grable over [a, b].

Proof. According to Jordan’s Theorem, f is the difference of

two increasing functions on [a, b]. Thus Lebesgue’s Theorem

tells us that f is the difference of two functions which are

differentiable almost everywhere on (a, b). Therefore f is dif-

ferentiable almost everywhere on (a, b). The integrability of

f ′ follows from Corollary 6.4.8.
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6.6 Absolutely Continuous Functions

Definition 6.6.1. A real-valued function f on a closed, bounded

interval [a, b] is said to be absolutely continuous on [a, b]

provided for each ε > 0, there is a δ > 0 such that for ev-

ery finite disjoint collection {(ak, bk)}nk=1 of open intervals in

(a, b),

if
n∑
k=1

(bk − ak) < δ, then
n∑
k=1

|f(bk)− f(ak)| < ε.

(6.30)

The criterion for absolute continuity in the case the finite

collection of intervals consists of a single interval is the crite-

rion for the uniform continuity of f on [a, b]. Thus absolutely

continuous functions are continuous. The converse is false,

even for increasing functions.

Example 6.6.2. The Cantor-Lebesgue function ϕ is increas-

ing and continuous on [0, 1], but it is not absolutely contin-

uous. Indeed, to see that ϕ is not absolutely continuous, let

n be a natural number. At the n-th stage of the construc-

tion of the Cantor set, a disjoint collection {[ck, dk]}1≤k≤2n
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of 2n subintervals of [0, 1] have been constructed that cover

the Cantor set, each of which bas length (1/3)n. The Cantor-

Lebesgue function is constant on each of the intervals that

comprise the complement in [0, 1] of this collection of inter-

vals. Therefore, since ϕ is increasing and ϕ(1)− ϕ(1) = 1,

∑
1≤k≤2n

[dk − ck] =

(
2

3

)n
while ∑

1≤k≤2n

[ϕ(dk)− ϕ(ck)] = 1.

There is no response to the ε = 1 challenge regarding the

criterion for ϕ to be absolutely continuous. �

Clearly linear combinations of absolutely continuous func-

tions are absolutely continuous. However, the composition

of absolutely continuous functions may fail to be absolutely

continuous.

Proposition 6.6.3. If the function f is Lipschitz on a closed,

bounded interval [a, b], then it is absolutely continuous on

[a, b].
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Proof. Let c > 0 be a Lipschitz constant for f on [a, b], that

is,

|f(u)− f(v)| ≤ c |u− v| for all u, v ∈ [a, b].

Then, regarding the criterion for the absolute continuity of f,

it is clear that δ = ε/c responds to any ε > 0 challenge.

There are absolutely continuous functions that fail to be

Lipschitz: the function f on [0, 1], defined by

f(x) =
√
x for 0 ≤ x ≤ 1,

is absolutely continuous but not Lipschitz.

Theorem 6.6.4. Let the Junction f be absolutely continuous

on the closed, bounded interval [a, b]. Then f is the difference

of increasing absolutely continuous functions and, in particu-

lar, is of bounded variation.

Proof. We first prove that f is of bounded variation. Indeed,

let δ > 0 respond to the ε = 1 challenge regarding the criterion

for the absolute continuity of f. Let P be a partition of [a, b]
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into N closed intervals {[ck, dk]}Nk=1 , each of length less than

δ. Then, by the definition of δ in relation to the absolute

continuity of f, it is clear that

TV (f[ck, dk]) ≤ 1 for 1 ≤ k ≤ n.

The additivity formula (6.25) extends to finite sums. Hence

TV (f) =
N∑
k=1

TV (f[ck, dk]) ≤ N.

Therefore f is of bounded variation. In view of (6.29) and

the absolute continuity of sums of absolutely continuous func-

tions, to show that f is the difference of increasing absolutely

continuous functions it suffices to show that the total variation

function for f is absolutely continuous. Let ε > 0. Choose δ

as a response to the ε/2 challenge regarding the criterion for

the absolute continuity of f on [a, b]. Let {(ck, dk)}nk=1 be

a disjoint collection of open subintervals of (a, b) for which
n∑
k=1

[dk − ck] < δ. For 1 ≤ k ≤ n, let Pk be a partition of

[ck, dk]. By the choice of δ in relation to the absolute conti-
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nuity of f on [a, b],

n∑
k=1

TV (f[ck, dk], Pk) <
ε

2
.

Take the supremum as, for 1 ≤ k ≤ n, Pk vary among parti-

tions of [ck, dk], to obtain

n∑
k=1

TV (f[ck, dk]) ≤
ε

2
< ε.

We infer from (6.27) that, for 1 ≤ k ≤ n,

TV (f[ck, dk]) = TV (f[a, dk])− TV (f[a, ck]).

Hence

if
n∑
k=1

[dk − ck] < δ, then
n∑
k=1

∣∣TV (f[a, dk])− TV (f[a, ck])
∣∣ < ε.

(6.31)

Therefore the total variation function for f is absolutely con-

tinuous on [a, b].

Theorem 6.6.5. Let the function f be continuous on the
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closed, bounded interval [a, b]. Then f is absolutely contin-

uous on [a, b] if and only if the family of divided difference

functions {Diffhf}0<h≤1 is uniformly integrable over [a, b].

Proof. First assume {Diffhf}0<h≤1 is uniformly integrable over

[a, b]. Let ε > 0. Choose δ > 0 for which

∫
E

|Diffh| <
ε

2
if m(E) < δ and 0 < h ≤ 1.

We claim that δ responds to the ε challenge regarding the cri-

terion for f to be absolutely continuous. Indeed, let {(ck, dk)}nk=1

be a disjoint collection of open subintervals of (a, b) for which
n∑
k=1

[dk − ck] < δ. For 0 < h ≤ 1 and 1 ≤ k ≤ n, by (6.18),

Avhf(dk)− Avhf(ck) =

dk∫
ck

Diffhf.

Therefore

n∑
k=1

|Avhf(dk)− Avhf(ck)| ≤
n∑
k=1

dk∫
ck

|Diffhf | =
∫
E

|Diffhf |,
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where E =
⋃n
k=1 (ck, dk) has measure less than δ. Thus, by

the choice of δ,

n∑
k=1

|Avhf(dk)− Avhf(ck)| <
ε

2
for all 0 < h ≤ 1.

Since f is continuous, take the limit as h→ 0+ to obtain

n∑
k=1

|f(dk)− f(ck)| ≤
ε

2
< ε.

Hence f is absolutely continuous.

To prove the converse, suppose f is absolutely continu-

ous. The preceding theorem tells us that f is the difference

of increasing absolutely continuous functions. We may there-

fore assume that f is increasing, so that the divided difference

functions are nonnegative. To verify the uniformly integrabil-

ity of {Diffhf}0<h≤1 , let ε > 0. We must show that there is a

δ > 0 such that for each measurable subset E of (a, b),

∫
E

Diffhf < ε if m(E) < δ and 0 < h ≤ 1. (6.32)
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According to Theorem 2.4.2 in Page 75, a measurable set E

is contained in a Gδ set G for which m(G ∼ E) = 0. But

every Gδ set is the intersection of a descending sequence of

open sets. Moreover, every open set is the disjoint union of

a countable collection of open intervals, and therefore every

open set is the union of an ascending sequence of open sets,

each of which is the union of a finite disjoint collection of open

intervals. Therefore, by the continuity of integration, to verify

(6.32) it suffices to find a δ > 0 such that for {(ck, dk)}nk=1 a

disjoint collection of open subintervals of (a, b),

∫
E

Diffh <
ε

2
if m(E) < δ, (6.33)

where E =
n⋃
k=1

(ck, dk), and 0 < h ≤ 1.

Choose δ > 0 as the response to the ε/2 challenge regarding

the criterion for the absolute continuity of f on [a, b+1]. By a
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change of variables for the Riemann integral and cancellation,

v∫
u

Diffhf =
1

h

h∫
0

g(t)dt,

where g(t) = f(v + t)− f(u+ t)

for 0 ≤ t ≤ 1 and a ≤ u < v ≤ b.

Therefore, if {(ck, dk)}nk=1 is a disjoint collection of open subin-

tervals of (a, b),

∫
E

Diffh =
1

h

h∫
0

g(t)dt,

where

E =
⋃n

k=1
(ck, dk)

and

g(t) =
n∑
k=1

[f(dk + t)− f(ck + t)] for all 0 ≤ t ≤ 1.
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If
n∑
k=1

[dk − ck] < δ, then, for 0 ≤ t ≤ 1,

n∑
k=1

[(dk + t)− (ck + t)] < δ,

and therefore g(t) < ε
2
. Thus

∫
E

Diffh =
1

h

h∫
0

g(t)dt <
ε

2
.

Hence (6.33) is verified for this choice of δ.

Remark 6.6.6. For a nondegenerate closed, bounded inter-

val [a, b], let FLip, FAC , and FBV denote the families of func-

tions on [a, b] that are Lipschitz, absolutely continuous, and of

bounded variation, respectively. We have the following strict

inclusions:

FLip ⊆ FAC ⊆ FBV

Proposition 6.6.3 tells us of the first inclusion, and the

second inclusion was established in Theorem. Each of these

collections is closed with respect to the formation of linear
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combinations. Moreover a function in one of these collections

has its total variation function in the same collection. There-

fore, by (6.29), a function in one of these collections may be

expressed as the difference of two increasing functions in the

same collection.

6.7 Integrating Derivatives: Differ-

entiating Indefinite Integrals

Let f be a continuous function on the closed, bounded interval

[a, b]. In (6.18), take a = u and b = v to arrive at the following

discrete formulation of the fundamental theorem of integral

calculus:
b∫

a

Diffhf =Avhf(b)− Avhf(a).

Since f is continuous, the limit of the right-hand side as h→
0+ equals f(b) − f(a). We now show that if f is absolutely

continuous, then the limit of the left-hand side as h → 0+

equals
b∫
a

f ′ and thereby establish the fundamental theorem of
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integral calculus for the Lebesgue integral.

Theorem 6.7.1. Let the function f be absolutely continuous

on the closed, bounded interval [a, b]. Then f is differentiable

almost everywhere on (a, b), its derivative f ′ is integrable over

[a, b], and
b∫

a

f ′ = f(b)− f(a). (6.34)

Proof. We infer from the discrete formulation of the funda-

mental theorem of integral calculus that

lim
n→∞

 b∫
a

Diff1/nf

 = f(b)− f(a). (6.35)

Theorem 6.6.4 tells us that f is the difference of increas-

ing functions on [a, b] and therefore, by Lebesgue’s Theo-

rem, is differentiable almost everywhere on (a, b). Therefore

{Diff1/nf} converges pointwise almost everywhere on (a, b) to

f ′. On the other hand, according to Theorem 6.6.5, {Diff1/nf}
is uniformly integrable over [a, b]. The Vitali Convergence

Theorem 4.6.7 in Page 227 permits passage of the limit under
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the integral sign in order to conclude that

lim
n→∞

 b∫
a

Diff1/nf

 =

b∫
a

lim
n→∞

Diff1/nf =

b∫
a

f ′. (6.36)

Formula (6.34) follows from (6.35) and (6.36).

In the study of calculus, indefinite integrals are defined

with respect to the Riemann integral. We here call a function

f on a closed, bounded interval [a, b] the indefinite integral

of g over [a, b] provided g is Lebesgue integrable over [a, b] and

f(x) = f(a) +

x∫
a

g for all x ∈ [a, b]. (6.37)

Theorem 6.7.2. A function f on a closed, bounded interval

[a, b] is absolutely continuous on [a, b] if and only if it is an

indefinite integral over [a, b].

Proof. First suppose f is absolutely continuous on [a, b]. For

each x ∈ (a, b], f is absolutely continuous over [a, x] and

hence, by the preceding theorem, in the case [a, b] is replaced
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by [a, x],

f(x) = f(a) +

x∫
a

f ′.

Thus f is the indefinite integral of f ′ over [a, b].

Conversely, suppose that f is the indefinite integral over

[a, b] of g. For a disjoint collection {(ak, bk)}nk=1 of open in-

tervals in (a, b), if we define

E =
n⋃
k=1

(ak, bk),

then, by the monotonicity and additivity over domains prop-

erties of the integral,

n∑
k=1

|f(bk)− f(ak)| =
n∑
k=1

∣∣∣∣∣∣
bk∫

ak

g

∣∣∣∣∣∣ ≤
n∑
k=1

bk∫
ak

|g| =
∫
E

|g|. (6.38)

Let ε > 0. Since |g| is integrable over [a, b], according to
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Proposition 4.6.2 in Page 221, there is a δ > 0 such that∫
E

|g| < ε if E ⊆ [a, b] is measurable and m(E) < δ.

It follows from (6.38) that this same δ responds to the ε chal-

lenge regarding the criterion for f to be absolutely continuous

[a, b].

Corollary 6.7.3. Let the function f be monotone on the

closed, bounded interval [a, b]. Then f is absolutely contin-

uous on [a, b] if and only if

b∫
a

f ′ = f(b)− f(a). (6.39)

Proof. Theorem 6.7.1 is the assertion that (6.39) holds if f

is absolutely continuous, irrespective of any monotonicity as-

sumption. Conversely, assume f is increasing and (6.39) holds.

Let x belong to [a, b]. By the additivity over domains of inte-
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gration,

0 =

b∫
a

f ′ − [f(b)− f(a)]

=


x∫
a

f ′ − [f(x)− f(a)]

+


b∫

x

f ′ − [f(b)− f(x)]

 .

According to Corollary 6.4.8 in Page 6.4.8,

x∫
a

f ′ − [f(x)− f(a)] ≤ 0

and
b∫

x

f ′ − [f(b)− f(x)] ≤ 0.

If the sum of two nonnegative numbers is zero, then they both

are zero. Therefore

f(x) = f(a) +

x∫
a

f ′.
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Thus f is the indefinite integral of f ′. The preceding theorem

tells us that f is absolutely continuous.

Lemma 6.7.4. Let f be integrable over the closed, bounded

interval [a, b]. Then

f(x) = 0 for almost all x ∈ [a, b] (6.40)

if and only if

x2∫
x1

f = 0 for all (x1, x2) ⊆ [a, b]. (6.41)

Proof. Clearly (6.40) implies (6.41). Conversely, suppose (6.41)

holds. We claim that∫
E

f = 0 for all measurable sets E ⊆ [a, b]. (6.42)

Indeed, (6.42) holds for all open sets contained in (a, b) since

integration is countably additive and every open set is the

union of countable disjoint collection of open intervals. The

continuity of integration then tells us that (6.42) also holds
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for all Gδ sets contained in (a, b) since every such set is the

intersection of a countable descending collection of open sets.

But every measurable subset of [a, b] is of the form G ∼ E0,

whereG is aGδ subset of (a, b) andm(E0) = 0 (Theorem 2.4.2

in Page 75). We conclude from the additivity over domains

of integration that (6.42) is verified. Define

E+ = {x ∈ [a, b] | f(x) ≥ 0}

and

E− = {x ∈ [a, b] | f(x) ≤ 0}.

These are two measurable subsets of [a, b] and therefore, by

(6.42),
b∫

a

f+ =

∫
E+

f = 0

and
b∫

a

(−f−) = −
∫
E−

f = 0.

According to Proposition 4.3.3 in Page 189, a nonnegative

integrable function with zero integral must vanish almost ev-
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erywhere on its domain. Thus f+ and f− vanish almost ev-

erywhere on [a, b] and hence so does f.

Theorem 6.7.5. Let f be integrable over the closed, bounded

interval [a, b]. Then

d

dx

 x∫
a

f

 = f(x) for almost all x ∈ (a, b). (6.43)

Proof. Define the function F on [a, b] by

F (x) =

x∫
a

f for all x ∈ [a, b].

Theorem 6.8.7 in Page 331 tells us that since F is an indefinite

integral, it is absolutely continuous. Therefore, by Theorem

6.7.1, F is differentiable almost everywhere on (a, b) and its

derivative F is integrable. According to the preceding lemma,

to show that the integrable function F ′ − f vanishes almost

everywhere on [a, b] it suffices to show that its integral over

every closed subinterval of [a, b] is zero. Let the closed interval

[x1, x2] be contained in [a, b]. According to Theorem 6.7.1, in
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the case [a, b] is replaced by [x1, x2], and the linearity and

additivity over domains properties of integration,

x2∫
x1

[F ′ − f ] =

x2∫
x1

F ′−
x2∫
x1

f

= F (x2)− F (x1)−
x2∫
x1

f

=

x2∫
0

f −
x1∫

0

f −
x2∫
x1

f

= 0.

Definition 6.7.6. A function of bounded variation is said

to be singular provided its derivative vanishes almost ev-

erywhere. The Cantor-Lebesgue function is a non-constant

singular function.

We infer from Theorem 6.7.1 that an absolutely continuous

function is singular if and only if it is constant. Let f be of

bounded variation on [a, b]. According to Corollary 6.5.8, f ′
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is integrable over [a, b]. Define

g(x) =

x∫
a

f ′ for all x ∈ [a, b],

and

h(x) = f(x)−
x∫
a

f ′ for all x ∈ [a, b],

so that

f = g + h on [a, b].

According to Theorem 6.7.2, the function g is absolutely con-

tinuous. We infer from Theorem 6.7.5 that the function h is

singular. The above decomposition of a function of bounded

variation f as the sum g+h of two functions of bounded vari-

ation, where g is absolutely continuous and h is singular, is

called a Lebesgue decomposition of f.
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Figure 6.11: Graph of a convex function. For each pair
of points x1, x2 in (a, b) and each λ with 0 ≤ λ ≤ 1,
ϕ(λx1 + (1 − λ)x2) ≤ λϕ(x1) + (1 − λ)ϕ(x2). The point
((λx1 + (1 − λ)x2, ϕ(λx1 + (1 − λ)x2)) lies on the graph
while (λx1 +(1−λ)x2, λϕ(x1)+(1−λ)ϕ(x2)) lies on the line
segment with end points (x1, ϕ(x1)) and (x2, ϕ(x2)).

6.8 Convex Functions

Throughout this section (a, b) is an open interval that may

be bounded or unbounded.
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Figure 6.12: Curve in the figure is not the graph of a convex
function. There are points x1, x2 in (a, b) and λ with 0 ≤ λ ≤ 1,
ϕ(λx1 + (1− λ)x2) > λϕ(x1) + (1− λ)ϕ(x2).

Definition 6.8.1. A real-valued function ϕ on (a, b) is said

to be convex provided for each pair of points x1, x2 in (a, b)

and each λ with 0 ≤ λ ≤ 1,

ϕ(λx1 + (1− λ)x2) ≤ λϕ(x1) + (1− λ)ϕ(x2). (6.44)

If we look at the graph of ϕ (Fig. 6.11), the convexity

inequality can be formulated geometrically by saying that

each point on the chord between (x1, ϕ(x1)) and (x2, ϕ(x2))

is above the graph of ϕ.

Observe that for two points x1 < x2 in (a, b), each point
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x in (x1, x2) may be expressed as

x = λx1 + (1− λ)x2 where λ =
x2 − x

x2 − x1

.

Thus the convexity inequality may be written as

ϕ(x) ≤
[
x2 − x

x2 − x1

]
ϕ(x1) +

[
x− x1

x2 − x1

]
ϕ(x2)

for x1 < x < x2 in (, b).

Regathering terms, this inequality may also be rewritten

as

ϕ(x)− ϕ(x1)

x− x1

≤ ϕ(x2)− ϕ(x)

x2 − x
for x1 < x < x2in (a, b).

(6.45)

Therefore convexity may also be formulated geometrically by

saying that for x1 < x < x2, the slope of the chord from

(x1, ϕ(x1)) to (x, ϕ(x)) is no greater than the slope of the

chord from (x, ϕ(x)) to (x2, ϕ(x2)).

Proposition 6.8.2. If ϕ is differentiable on (a, b) and its

derivative ϕ′ is increasing, then ϕ is convex. In particular,

ϕ is convex if it has a nonnegative second derivative ϕ′′ on
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(a, b).

Proof. Let x1, x2 be in (a, b) with x1 < x2, and let x belong

to (x1, x2). We must show that

ϕ(x)− ϕ(x1)

x− x1

≤ ϕ(x2)− ϕ(x)

x2 − x
.

However, apply the Mean Value Theorem to the restriction of

ϕ to each of the intervals [x1, x] and [x, x2] to choose points

c1 ∈ (x1, x) and c2 ∈ (x, x2) for which

ϕ′(c1) =
ϕ(x)− ϕ(x1)

x− x1

and ϕ′(c2) =
ϕ(x2)− ϕ(x)

x2 − x
.

Thus, since ϕ′ is increasing, (c1 < c2 implies ϕ′(c1) ≤ ϕ′(c2)

and hence)

ϕ(x)− ϕ(x1)

x− x1

= ϕ′(c1) ≤ ϕ′(c2) =
ϕ(x2)− ϕ(x)

x2 − x
.

Example 6.8.3. Each of the following three functions is con-

vex since each has a nonnegative second derivative:
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(i) ϕ1(x) = xp on (0, ∞) for p ≥ 1;

(ii) ϕ2(x) = eax on (−∞, ∞);

(iii) ϕ3(x) = ln(1/x) on (0, ∞).

The following final geometric reformulation of convexity

will be useful in the establishment of differentiability proper-

ties of convex functions.

Lemma 6.8.4. The Chordal Slope Lemma let ϕ be convex

on (a, b). lf x1 < x < x2 belong to (a, b), then for p1 =

(x1, ϕ(x1)), p = (x, ϕ(x)), p2 = (x2, ϕ(x1)) (Fig. 6.13),

slope of p1p ≤ slope of p1p2 ≤ slope of pp2

Proof. Regather terms in the inequality (6.45) to rewrite it in

the following two equivalent forms:

ϕ(x1)− ϕ(x)

x1 − x
≤ ϕ(x2)− ϕ(x1)

x2 − x1

for x1 < x < x2 in (a, b);
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Figure 6.13: slope of p1p ≤ slope of p1p2 ≤ slope of pp2
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and

ϕ(x2)− ϕ(x1)

x2 − x1

≤ ϕ(x2)− ϕ(x)

x2 − x
for x1 < x < x2 in (a, b).

For a function g on an open interval (a, b), and point x0 ∈
(a, b), if

lim
h→0, h<0

g(x0 + h)− g(x0)

h
exists and is finite,

we denote this limit by g′(x−0 ) and call it the left-hand deriva-

tive of g at x0. Similarly, we define right-hand derivative

of g at x0.

g′(x+
0 ) = lim

h→0, h>0

g(x0 + h)− g(x0)

h

provided the limit on the right hand side exists. Of course, g

is differentiable at x0 if and only if it has left-hand and right-hand

derivatives at x0 that are equal. The continuity and differentia-

bility properties of convex functions follow from the following

lemma, whose proof follows directly from the Chordal Slope
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Lemma.

Lemma 6.8.5. Let ϕ be a convex function on (a, b). Then

ϕ has left-hand and right-hand derivatives at each point x ∈
(a, b). Moreover, for points u, v in (a, b) with u < v, these

one-sided derivatives satisfy the following inequality:

ϕ′(u−) ≤ ϕ′(u+) ≤ ϕ(v)− ϕ(u)

v − u
≤ ϕ′(v−) ≤ ϕ′(v+). (6.46)

Corollary 6.8.6. Let ϕ be a convex function on (a, b). Then

ϕ is Lipschitz, and therefore absolutely continuous, on each

closed, bounded subinterval [c, d] of (a, b).

Proof. According to the preceding lemma, for c ≤ u < v ≤ d,

ϕ′(c+) ≤ ϕ′(u+) ≤ ϕ(v)− ϕ(u)

v − u
≤ ϕ′(v−) ≤ ϕ′(d−) (6.47)

and therefore

|ϕ(u)− ϕ(v)| ≤M |u− v| for all u, v ∈ [c, d],
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where

M = max{
∣∣ϕ′(c+)

∣∣ , ∣∣ϕ′(d−)
∣∣}.

Thus the restriction of ϕ to [u, v] is Lipschitz. A Lipschitz

function on a closed, bounded interval is absolutely continu-

ous.

We infer from the above corollary and Corollary 6.5.8 in

Page 301 that any convex function defined on an open interval

is differentiable almost everywhere on its domain. In fact,

much more can be said.

Theorem 6.8.7. Let ϕ be a convex function on (a, b). Then

ϕ is differentiable except at a countable number of points and

its derivative ϕ′ is an increasing function.

Proof.

We infer from the inequalities (6.46) that the functions

x 7→ f ′(x−) and x 7→ f ′(x+)

are increasing real-valued functions on (a, b). But, according

to Theorem 6.3.2 in 271, an increasing real-valued function
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is continuous except at a countable number of points. Thus,

except on a countable subset C of (a, b), both the left-hand

and right-hand derivatives of ϕ are continuous. Let x0 belong

to (a, b) ∼ C. Choose a sequence {xn} of points greater than

x0 that converges to x0. Apply Lemma 6.8.5, with x0 = u and

xn = v, and take limits lo conclude that

ϕ′(x−0 ) ≤ ϕ′(x+
0 ) ≤ ϕ′(x−0 ).

Then

ϕ′(x−0 ) = ϕ′(x+
0 )

so that ϕ is differentiable at x0. To show that ϕ′ is an increas-

ing function on (a, b) ∼ C, let u, v belong to (a, b) ∼ C with

u < v. Then by Lemma 6.8.5,

ϕ′(u) ≤ ϕ(u)− ϕ(v)

u− v
≤ ϕ′(v).

Let ϕ be a convex function on (a, b) and x0 belong to (a, b).

For a real number m, the line y = m(x − x0) + ϕ(x0), which

passes through the point (x0, ϕ(x0)), is called a supporting

line at x0 for the graph of ϕ provided this line always lies
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below the graph of ϕ, that is, if

ϕ(x) ≥ m(x− x0) + ϕ(x0) for all x ∈ (a, b).

It follows from Lemma 6.8.5 that such a line is supporting if

and only if its slope m lies between the left- and right-hand

derivatives of ϕ at x0. Thus, in particular, there is always at

least one supporting line at each point. This notion enables

us to give a short proof of the following inequality:

Theorem 6.8.8. [Jensen’s Inequality] Let ϕ be a convex

function on (−∞,∞), f an integrable function over [0, 1], and

ϕ ◦ f also integrable over [0, 1]. Then

ϕ

 1∫
0

f(x)dx

 ≤
1∫

0

(ϕ ◦ f)(x)dx. (6.48)

Proof. Define α =
1∫
0

f(x)dx. Choose m to lie between the

left-hand and right-hand derivative of ϕ at the point α. Then

y = m(t− α) + ϕ(α)
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is the equation of a supporting line at (α, ϕ(α)) for the graph

of ϕ. Hence

ϕ(t) ≥ m(t− α) + ϕ(α) for all t ∈ R .

Since f is integrable over [0, 1], it is finite a.e.on [0, 1] and

therefore, substituting f(x) for t in this inequality, we have

ϕ(f(x)) ≥ m(f(x)− α) + ϕ(α) for almost all x ∈ [0, 1] .

Integrate across this inequality, using the monotonicity of the

Lebesgue integral and the assumption that both f and ϕ ◦ f
are integrable over [a, b], to obtain

1∫
0

ϕ(f(x))dx ≥
1∫

0

[m(f(x)− α) + ϕ(α)]dx

= m

 1∫
0

f(x)dx− α

+ ϕ(α)

= ϕ(α).
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A few words regarding the assumption, for Jensen’s In-

equality, of the integrability of ϕ◦f over [0, 1] are in order. We

have shown that a convex function is continuous and therefore

Proposition 3.1.11 in Page 129 tells us that the composition

ϕ◦f is measurable if ϕ is convex and f is integrable. If ϕ◦f is

nonnegative, then it is unnecessary to assume the ϕ ◦ f is in-

tegrable since equality (6.48) trivially holds if the right-hand

integral equals +∞. In the case ϕ ◦ f fails to be nonnegative,

if there are constants c1 and c2 for which

|ϕ(x)| ≤ c1 + c2 |x| for all x ∈ R , (6.49)

then we infer from the integral comparison test that ϕ ◦ f
is integrable over [0, 1] if f is. ln the absence of the growth

assumption (6.49), the function ϕ ◦ f may not be integrable

over [0, 1].



Chapter 7
LP spaces

7.1 Introduction

We have already seen the notion of completeness in the case

of real numbers R, given a sequence of real numbers an, such

that limn,m→∞ |an − am| = 0, then there exits a real number

a such that limn→∞ |an− a| = 0. In this chapter we will see a

corresponding completeness for Lebesgue integrable function.
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7.2 Normed Linear space

Let E be a measurable set of real numbers. Define F to be

the set of measurable extended real valued function of E, that

is finite a.e on E. Define an equivalence relation ‘ ≈ ’ on F
by f ≈ g if

f(x) = g(x), for almost all x ∈ E

Check that ‘ ≈ ’ indeed forms an equivalence relation on F .

Let F/ ≈ denote the collection of all equivalence classes of F .

F/ ≈ has a natural linear structure:given two functions f and

g in F , their equivalence classes [f ] and [g] and real numbers

α and β, we define the linear combination α[f ] + β[g] to be

the equivalence class of the functions in F that take the value

αf(x)+βg(x) at points x in E at which both f and g are finite.

Definition 7.2.1. For 0 < p ≤ ∞, define Lp(E) to be the

collection of equivalence classes [f ] of functions such

that ∫
E

|f |p <∞.
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The above property is well defined because if f ≈ g,

then
∫
E
|f |p =

∫
E
|g|p. Notice that, for any real number a, b,

|a+ b|p ≤ 2p(|ap+ |b|p). This fact along with the linearity and

monotonicity of integration gives us that if [f ] and [g] beongs

to Lp(E), then so does their linear combination α[f ] + β[β].

Therefore, Lp(E) is a linear space.

We call a function f ∈ F essentially bounded if there is

some M ≥ 0, called an essential upper bound for f , for which

|f(x)| ≤M for almost all x ∈ E

We define L∞(E) to be the collection of equivalence classes

[f ] for which f is essentially bounded. Check that L∞(E) also

forms a linear space.

Definition 7.2.2. Norm: Let X be a linear space. A real-

valued functional ‘ ‖ ‖ ’ on X is called a norm if for each f

and g in X and each real number a, it satisfies the following

properties:

1. ‖f + g‖ ≤ ‖f‖+ ‖g‖ (The Triangle Inequality)

2. ‖af‖ = |a|‖f‖ (Positive Homogeneity)
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3. ‖f‖ ≥ 0 and ‖f‖ = 0 if anf only if f = 0 (Nonnegativity ).

Definition 7.2.3. A normed Linear space is a linear space

together with a norm. If X is a linear space normed by ‖ ‖, we

say that a function in X is a unit function provided ‖f‖ = 1.

For any f ∈ X and f 6= 0, the function f/‖f‖ is a unit

function and it is a scalar multiple of f which we call the

normalization of f .

Example 7.2.4. Normed Linear space L1(E)

For f ∈ L1(E), define

‖f‖1 =

∫
E

|f |

For f, g ∈ L1(E) and real number a,

1.

‖f + g‖1 =

∫
E

|f + g|

≤
∫
E

|f |+ |g|

=

∫
E

|f |+
∫
E

|g|

= ‖f‖1 + ‖g‖1.
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2. ‖af‖1 = |a|‖f‖1

3. ‖f‖1 = 0 if and only if f = 0 a.e.

Therefore,

‖ ‖1 is a norm on L1(E).

Example 7.2.5. Normed Linear space L∞(E) For f ∈
L∞(E), define ‖f‖∞ as the infimum of the essential upper

bounds of f( we will call this the essential supremum)and

we claim that ′‖‖′∞ is a norm on L∞(E). We will first show

that ‖f‖∞ is an essential upper bound of f on E i.e

|f | ≤ ‖f‖∞, a.e on E

For each natural number n, there is subset En of E such that

|f | ≤ ‖f‖∞ +
1

n
on E ∼ En and m(Em) = 0

Now define E∞ =
⋃∞
n=1En. Then, we have

|f | ≤ ‖f‖∞ on E ∼ E∞ and m(E∞) = 0
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Thus, proving that ‖f‖∞ is a essential upper bound of f . ‖ ‖
clearly satisfies positive homogeneity and non negativity. Now

to show if satisfies triangle inequality. For f, g ∈ L∞(E),

|f(x) + g(x)| ≤ |f(x)|+ |g(x)|

≤ ‖f‖∞ + ‖g‖∞ for almost all x ∈ E.

Thus, ‖f‖∞+‖g‖∞ is a essential upper bound of f+g. There-

fore,

‖f + g‖∞ ≤ ‖f‖∞ + ‖g‖∞

(since ‖f + g‖∞ is the infimum of the essential upper bound

of f + g.)

Example 7.2.6. The Normed Linear Spaces lp and l∞

We define lp to be the collection of real sequences a = (a1, a2, ....)

such that
∞∑
k=1

|ak|p <∞

Since for real number a, b, |a + b|p ≤ 2p(|ap + |b|p), the sum

of two sequences in lp also belongs to lp. Also real multiple of

a sequence in lp belongs to lp. Thus lp is a linear space. For
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{ak} ∈ lp we define

‖{ak}‖p =
∞∑
k=1

|ak|p

It is trivial to check that ‖ ‖ is a norm on lp.

We define l∞ to be the linear space of real bounded sequences

and for {ak} ∈ l∞, define

‖{ak}‖∞ = sup{ak}

Clearly, ‖ ‖∞ is a norm on l∞.

Example 7.2.7. The Normed Linear Space C[a, b]

Let [a, b] be a closed, bounded interval.Then the linear space

of continuous real-valued functions on [a, b] is denoted by

C[a, b]. We define

‖f‖max = max
x∈[a,b]

|f(x)|

Clearly, ‖ ‖max is satisfies positive homogeneity and non neg-
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ativity. For f, g ∈ C[a, b]

‖f + g‖max = max
x∈[a,b]

|f(x) + g(x)|

≤ max
x∈[a,d]

(|f(x)|+ |g(x)|)

= max
x∈[a,d]

|f(x)|+ max
x∈[a,d]

|g(x)|

= ‖f‖max + ‖g‖max

Thus, ‖ ‖max satisfies traingle inequality. Therefore, ‖ ‖max is

a norm on C[a, b].

7.3 The inequalities of Young, Holder,

and Minkowski

We have already seen the linear space Lp(E) for 1 ≤ p ≤ ∞
for a mesurable set E of real numbers. We have defined the

norm in the case of p = 1 and p = ∞. In this section, we will

define the norm for 1 < p <∞.

Definition 7.3.1. For E a measurable set, 1 < p < ∞, and
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a function f in Lp(E), define

‖f‖p = [

∫
E

|f |p]
1
p

We will show that ‖f‖p is norm on Lp(E). Clearly ‖ ‖p
satisfies positive homogeneity. If ‖f‖p = 0, then f vanishes

a.e in E. Thus, [f ] is a zero element in Lp(E), which implies

that f = 0. Therefore, non negativity is also satisfied. Now,

it only remains to establish triangle inequality, which need

some work.

Definition 7.3.2. The conjugate of a number p ∈ (1,∞) is

the number q = p
p−1

, which is the unique number q ∈ (1,∞)

for which
1

p
+

1

q
= 1

The conjugate of 1 is defined to be ∞ and the conjugate of

∞ defined to be 1.

Proposition 7.3.3. Young’s Inequality For 1 < p < ∞,

q the conjugate of p, and any two positive numbers a and b,

ab ≤ ap

p
+
bq

q
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Proof. Defined by g(x) = (1/p)xp+1/q−x for x > 0. Observe

that the derivative of g(x) is positive for x ∈ (1,∞), negative

for x ∈ (0, 1) and g(x) vanishes at x = 1. Therefore, g(x) is

non negative for x ∈ (0,∞).

(1/p)xp + 1/q − x ≥ 0 for x ∈ (0,∞)

=⇒ (1/p)xp + 1/q ≥ x for x ∈ (0,∞)

Thus, we have

x ≤ (1/p)xp + 1/q > 0 if x > 0
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Put x = a
bq−1 . Then

a

bq−1
≤ 1

p
(
a

bq−1
)p +

1

q

a ≤ ap

p(bq−1)p−1
+
bq−1

q

a ≤ ap

pb(q−1)(p−1)
+
bq−1

q

a ≤ ap

pb
+
bq−1

q
(using p(q − 1) = q)

ab ≤ ap

p
+
bq

q
(multiplying by b)

Theorem 7.3.4. Let E be a measurable set, 1 ≤ p <∞, and

q the conjugate of p. If f belongs to Lp(E) and g belongs to

Lq(E), then their product fg is integrable over E and

Holder’s Inequality

∫
E

|f · g| ≤ ‖f‖p‖g‖q. (7.1)

Moreover, if f 6= 0, the function f ∗ defined by

f ∗ = ‖f‖1−p
p sgn(f)|f |p−1 (7.2)
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is an element in Lq(E).∫
E

ff ∗ = ‖f‖p and ‖f ∗‖q = 1 (7.3)

Proof. We will first consider the case when p = 1. Then

(7.1) follows from the monotonicity of integration and the

fact that ‖g‖∞ is the essential upper bound of g in E. Since

f ∗ = sgn(f), (7.3) also follows trivially. Now consider the case

when p > 1. Assume f 6= 0 and g 6= 0 as otherwise its trivial.

Without loss of generality take ‖f‖p = 1 and ‖g‖q = 1( we

can always replace f and g by their normalization). Thus, we

have ∫
E

|f |p = 1 and

∫
E

|g|q = 1

Then the Holder’s inequality becomes∫
E

|fg| ≤ 1

Since fp and gq are integrable over E, f and g are finite a.e

on E. Thus, by Young’s inequality

|fg| = |f ||g| ≤ |f |p

p
+
|g|q

q
a.e on E
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Thus, we get∫
E

|fg| ≤ 1

p

∫
E

|f |p +
1

q

∫
E

|g|q =
1

p
+

1

q
= 1

Now, observe that

ff ∗ = ‖f‖1−p
p |f |p

=⇒
∫
E

ff ∗ = ‖f‖1−p
p

∫
E

|f |p = ‖f‖1−p
p ‖f‖p = ‖f‖p

Also, ∫
E

(|f ∗|)q = ‖f‖(1−p)q
p

∫
E

|f |p (using (p− 1)q = p)

= 1 (using ‖f‖p = 1)

which proves (7.3).

Remark 7.3.5. For f ∈ Lp(E), f ∗ as defined in (7.2) is called

the conjugate function of f .

Theorem 7.3.6. Minkowski’s Theorem Let E be a mea-

surable set and 1 ≤ p ≤ ∞. If the functions f and g belong
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to Lp(E), then so does their sum f + g and, moreover,

‖f + g‖p ≤ ‖f‖p + ‖g‖p

Proof. We have already seen the case when p = 1 and ∞.

Therefore we will consider the case when p ∈ (1,∞). We

have already inferred why f + g also belongs to Lp(E). Let

f + g 6= 0 and (f + g)∗ be the conjugate function. Then by

Holder’s inequality,

‖f + g‖p =

∫
E

(f + g)(f + g)∗

=

∫
E

f(f + g)∗ + g(f + g)∗

≤ ‖f‖p‖(f + g)∗‖q + ‖g‖p‖(f + g)∗‖q
= ‖f‖p + ‖g‖p

Definition 7.3.7. The Cauchy-Schwarz Inequality :.It

is a special case of Holder inequality when p = q = 2. Let E

be a measurable set and f and g measurable functions on E

for which f 2 and g2 are integrable over E. Then their product
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fg also is integrable over E and

∫
E

|fg| ≤

√∫
E

f 2

√∫
E

g2

Corollary 7.3.8. Let E be a measurable set and 1 < p <∞.

Suppose F is a family of functions in Lp(E) that is bounded

in Lp(E) in the sense that there is a constant M for which

‖f‖p ≤M for all f ∈ F

Then the family F is uniformly integrable over E.

Corollary 7.3.9. Let E be a measurable set of finite measure

and 1 ≤ p1 < p2 ≤ ∞. Then Lp2(E) ⊆ Lp1(E). Furthermore,

‖f‖p1 ≤ c‖f‖p2 for all f ∈ Lp2(E)

.



7.4 Lp Space Completeness Theorem 351

7.4 Lp Space Completeness Theorem:

The Riesz-Fischer Theorem

Definition 7.4.1. A sequence {Fn} in a linear space X that

is normed by ‖ ‖ is said to converge to f in X provided that

lim
n→∞

‖f − fn‖ = 0

and we denote it by

{fn} → f in X or lim
n→∞

fn = f in X

Remark 7.4.2. 1. For a sequence {fn} and function f in

C[a, b], {fn} → f in C[a, b], normed by the maximum

norm, if and only if {fn} converges to f uniformly on

[a, b].

2. Similarly, for a sequence {fn} and function f in L∞(E),

{fn} → f in L∞(E) if and only if {fn} → f uniformly

a.e on E.

3. For a sequence {fn} and function f in Lp(E), where
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1 < p <∞,

{fn} → f in Lp(E) if and only if lim
n→∞

∫
E

|f−fn|p = 0.

Definition 7.4.3. A sequence {fn} in a linear space X that

is normed by ′‖‖′ is said to be Cauchy in X provided for each

ε > 0, there is a natural number N such that

‖fm − fn‖ < ε for all m, n ≥ N

A normed linear space X is said to be complete provided

every Cauchy sequence in X converges to a function in X. A

complete normed linear space is called a Banach space.

Proposition 7.4.4. Let X be a normed linear space. Then

every convergent sequence in X is Cauchy. Moreover, a Cauchy

sequence in X converges if it has a convergent subsequence.

Proof. Let {fn} → f . Then, by the triangle inequality, for all
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m, n,

‖fm − fn‖ = ‖f −m− f = f − fn‖

≤ ‖fm − f‖

= ‖fn − f‖.

Therefore {fn} is cauchy.

Now, let {fn} be cauchy and {fnk} be the convergent subse-

quence of {fn}, which converges to f in X. Choose a N such

that |fm − fn| < ε/2 for all m,n ≥ N . Now we choose k such

that nk > N and |fnk − f | < ε/2. By triangle inequality, for

n ≥ N,

‖fn − f‖ = ‖fn − fnk + fnk − f‖

≤ ‖fn − fnk‖+ ‖fnk − f‖

< ε.

Thus {fn} → f in X.

Definition 7.4.5. Let X be a linear space normed by ‖ ‖ . A

sequence {fn} in X is said to be rapidly Cauchy provided

there is a convergent series of positive numbers
∑∞

k=1 εk for
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which

‖fk+1 − fk‖ ≤ ε2k for all k

Observe that

‖fn+k − fn‖ ≤
n+k−1∑
j=n

‖fj+1 − fj‖ ≤
∞∑
j=n

ε2j for all n and k

Theorem 7.4.6. Let X be a normed linear space. Then every

rapidly Cauchy sequence in X is Cauchy. Furthermore, every

Cauchy sequence has a rapidly Cauchy subsequence.

Proof. Let {fn} be a rapidly cauchy sequnce and
∑∞

i=1 εi the

convergent series of non negative numbers such that

‖fk+1 − fk‖ ≤ ε2k for all k

Then,

‖fn+k − fn‖ ≤
∞∑
j=n

ε2j for all n and k

Since
∑∞

i=1 εi converges,
∑∞

i=1 ε
2
i also converges. Thus {fn} is

cauchy.

Now assume that {fn} is a cauchy sequnce in X. We choose a
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strictly increasing sequence of natural numbers nk such that

‖fnk+1
− fnk‖ ≤ (1/2)k for all k

The subsequence {fnk} is rapidly Cauchy.

Theorem 7.4.7. Let E be a measurable set and 1 ≤ p ≤ ∞.

Then every rapidly Cauchy sequence in Lp(E) converges both

with respect to the Lp(E) norm and pointwise a.e. on E to a

function in Lp(E).

Theorem 7.4.8. The Riesz-Fischer Theorem: Let E be

a measurable set and 1 ≤ p ≤ ∞. Then Lp(E) is a Banach

space. Moreover, if fn → f in Lp(E), a subsequence of fn

converges pointwise a.e. on E to I.

Proof. Let fn be a Cauchy sequence Lp(E). Then there is

a subsequence fnk of fn that is rapidly Cauchy. Then by

the previous theorem fnk converges to a function f in Lp(E)

both with respect to the Lp(E) norm and pointwise a.e. on

E. Therefore, the whole Cauchy sequence converges to f with

respect to the Lp(E) norm.
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